Michel Marie Deza
Elena Deza

Encyclopedia of Distances

Encyclopedia of Distances

Michel Marie Deza • Elena Deza

Encyclopedia of Distances

Third Edition

Springer

Michel Marie Deza
Ecole Normale Supérieure
Paris, France

Elena Deza
Moscow State Pedagogical University Moscow, Russia

ISBN 978-3-662-44341-5
ISBN 978-3-662-44342-2 (eBook)
DOI 10.1007/978-3-662-44342-2
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2014950664
Mathematics Subject Classification (2010): 46-XX, 51-XX, 12-XX, 15-XX, 60-XX, 52-XX, 92-XX, 70-XX, 86-XX, 91-XX, 94-XX

[^0]In 1906, Maurice Fréchet submitted his outstanding thesis Sur quelques points $d u$ calcul functionnel introducing (within a systematic study of functional operations) the notion of metric space (E-espace, E from écart, i.e., gap).

Also, in 1914, Felix Hausdorff published his famous Grundzüge der Mengenlehre where the theory of topological and metric spaces (metrische Räume) was created.

Let this Encyclopedia be our homage to the memory of these great mathematicians and their lives of dignity through the hard times of the first half of the twentieth century.

Maurice Fréchet (1878-1973)

Felix Hausdorff (1868-1942)

Preface

Since the publication of the second edition in 2012, several people have again given us their valued feedback, and have thus contributed to the publication of this third edition. We are thankful to them for their input.

In the latest edition, new items from very active research areas in the use of distances and metrics such as geometry, graph theory, probability theory, and analysis have been added. We have kept the structure, but have revised many topics, simplifying, shortening, and updating them, especially in Chaps. 23-25 and 27-29.

Among the new topics included are, for example, polyhedral metric spaces, nearness matrix problems, distances between belief assignments, distance-related animal settings, diamond-cutting distances, natural units of length, Heidegger's deseverance distance, and brain distances in Chaps. 9, 12, 14, 23, 24, 27, 28, and 29, respectively.

We would also like to thank the team at Springer for their very efficient and friendly assistance.

Paris, France
Michel Marie Deza
Moscow, Russia
Elena Deza
May 2014

Preface to the Second Edition

The preparation of the second edition of Encyclopedia of Distances has presented a welcome opportunity to improve the first edition published in 2009 by updating and streamlining many sections, and by adding new items (especially in Chaps. $1,15,18,23,25,27-29$), increasing the book's size by about 70 pages. This new edition preserves, except for Chaps. 18, 23, 25 and 28, the structure of the first edition.

The first large conference with a scope matching that of this Encyclopedia is MDA 2012, the International Conference "Mathematics of Distances and Applications", held in July 2012 in Varna, Bulgaria; cf. [DPM12].

Preface to the First Edition

Encyclopedia of Distances is the result of re-writing and extending of our Dictionary of Distances published in 2006 (and put online http://www.sciencedirect.com/ science/book/9780444520876) by Elsevier. About one-third of the items are new, and majority of the remaining ones are upgraded.

We were motivated by the growing intensity of research on metric spaces and, especially, in distance design for applications. Even if we do not address the practical questions arising during the selection of a "good" distance function, just a sheer listing of the main available distances should be useful for the distance design community.

This Encyclopedia is the first one treating fully the general notion of distance. This broad scope is useful per se, but it also limited our options for referencing. We give an original reference for many definitions but only when it was not too difficult to do so. On the other hand, citing somebody who well developed the notion but was not the original author may induce problems. However, with our data (usually, author name(s) and year), a reader can easily search sources using the Internet.

We found many cases when authors developed very similar distances in different contexts and, clearly, were unaware of it. Such connections are indicated by a simple "cf." in both definitions, without going into priority issues explicitly.

Concerning the style, we tried to make it a mixture of resource and coffee-table book, with maximal independence of its parts and many cross-references.

Preface to Dictionary of Distances, 2006

The concept of distance is a basic one in the whole human experience. In everyday life it usually means some degree of closeness of two physical objects or ideas, i.e., length, time interval, gap, rank difference, coolness or remoteness, while the term metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathematical meaning of those terms which is an abstraction of measurement. The mathematical notions of distance metric (i.e., a function $d(x, y)$ from $X \times X$ to the set of real numbers satisfying to $d(x, y) \geq 0$ with equality only for $x=y, d(x, y)=d(y, x)$, and $d(x, y) \leq d(x, z)+d(z, y))$ and of metric space (X, d) were originated a century ago by M. Fréchet (1906) and F. Hausdorff (1914) as a special case of an infinite topological space. The triangle inequality above appears already in Euclid. The infinite metric spaces are usually seen as a generalization of the metric $|x-y|$ on the real numbers. Their main classes are the measurable spaces (add measure) and Banach spaces (add norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces in Geometry) and L.M. Blumenthal (1953), an explosion of interest in both finite and infinite metric spaces occurred. Another trend: many mathematical theories, in the process of their generalization, settled on the level of metric space. It is an ongoing process, for example, for Riemannian geometry, Real Analysis, Approximation Theory.

Distance metrics and distances have become now an essential tool in many areas of Mathematics and its applications including Geometry, Probability, Statistics, Coding/Graph Theory, Clustering, Data Analysis, Pattern Recognition, Networks, Engineering, Computer Graphics/Vision, Astronomy, Cosmology, Molecular Biology, and many other areas of science. Devising the most suitable distance metrics and similarities, in order to quantify the proximity between objects, has become a standard task for many researchers. Especially intense ongoing search for such distances occurs, for example, in Computational Biology, Image Analysis, Speech Recognition, and Information Retrieval.

Often the same distance metric appears independently in several different areas; for example, the edit distance between words, the evolutionary distance in Biology, the Levenstein metric in Coding Theory, and the Hamming+Gap or shuffleHamming distance.

This body of knowledge has become too big and disparate to operate within. The number of worldwide web entries offered by Google on the topics "distance", "metric space" and "distance metric" is about 216, 3 and 9 million, respectively, not to mention all the printed information outside the Web, or the vast "invisible Web" of searchable databases. About 15,000 books on Amazon.com contains "distance" in their titles. However, this huge information on distances is too scattered: the works evaluating distance from some list usually treat very specific areas and are hardly accessible for nonexperts.

Therefore many researchers, including us, keep and cherish a collection of distances for use in their areas of science. In view of the growing general need for an accessible interdisciplinary source for a vast multitude of researchers, we have expanded our private collection into this Dictionary. Some additional material was reworked from various encyclopedias, especially Encyclopedia of Mathematics [EM98], MathWorld [Weis99], PlanetMath [PM] and Wikipedia [WFE]. However, the majority of distances are extracted directly from specialist literature.

Besides distances themselves, we collected here many distance-related notions (especially in Chap.1) and paradigms, enabling people from applications to get those (arcane for nonspecialists) research tools, in ready-to-use fashion. This and the appearance of some distances in different contexts can be a source of new research.

In the time when over-specialization and terminology fences isolate researchers, this Dictionary tries to be "centripetal" and "ecumenical", providing some access and altitude of vision but without taking the route of scientific vulgarization. This attempted balance defined the structure and style of the Dictionary.

This reference book is a specialized encyclopedic dictionary organized by subject area. It is divided into 29 chapters grouped into 7 parts of about the same length. The titles of the parts are purposely approximative: they just allow a reader to figure out her/his area of interest and competence. For example, Parts II, III and IV, V require some culture in, respectively, pure and applied Mathematics. Part VII can be read by a layman.

The chapters are thematic lists, by areas of Mathematics or applications, which can be read independently. When necessary, a chapter or a section starts with a short introduction: a field trip with the main concepts. Besides these introductions, the main properties and uses of distances are given, within items, only exceptionally. We also tried, when it was easy, to trace distances to their originator(s), but the proposed extensive bibliography has a less general ambition: just to provide convenient sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections between them. All item titles and (with majuscules only for proper nouns) selected key terms can be traced in the large Subject Index; they are boldfaced unless the meaning is clear from the context. So, the definitions are easy to locate, by subject, in chapters and/or, by alphabetic order, in the Subject Index.

The introductions and definitions are reader-friendly and maximally independent each from another; still they are interconnected, in the 3D HTML manner, by hyperlink-like boldfaced references to similar definitions.

Many nice curiosities appear in this "Who is Who" of distances. Examples of such sundry terms are: ubiquitous Euclidean distance ("as-the-crow-flies"), flowershop metric (shortest way between two points, visiting a "flower-shop" point first), knight-move metric on a chessboard, Gordian distance of knots, Earth Mover's distance, biotope distance, Procrustes distance, lift metric, Post Office metric, Internet hop metric, WWW hyperlink quasi-metric, Moscow metric, dogkeeper distance.

Besides abstract distances, the distances having physical meaning appear also (especially in Part VI); they range from $1.6 \times 10^{-35} \mathrm{~m}$ (Planck length) to $8.8 \times 10^{26} \mathrm{~m}$ (the estimated size of the observable Universe, about 5.4×10^{61} Planck lengths).

The number of distance metrics is infinite, and therefore our Dictionary cannot enumerate all of them. But we were inspired by several successful thematic dictionaries on other infinite lists; for example, on Numbers, Integer Sequences, Inequalities, Random Processes, and by atlases of Functions, Groups, Fullerenes, etc. On the other hand, the large scope often forced us to switch to the mode of laconic tutorial.

The target audience consists of all researchers working on some measuring schemes and, to a certain degree, students and a part of the general public interested in science.

We tried to address all scientific uses of the notion of distance. But some distances did not made it to this Dictionary due to space limitations (being too specific and/or complex) or our oversight. In general, the size/interdisciplinarity cutoff, i.e., decision where to stop, was our main headache. We would be grateful to the readers who will send us their favorite distances missed here.

Contents

Part I Mathematics of Distances
1 General Definitions 3
1.1 Basic Definitions 3
1.2 Main Distance-Related Notions 12
1.3 Metric Numerical Invariants 22
1.4 Main Mappings of Metric Spaces 36
1.5 General Distances 46
2 Topological Spaces 63
3 Generalizations of Metric Spaces 71
$3.1 m$-Tuple Generalizations of Metrics 71
3.2 Indefinite Metrics 73
3.3 Topological Generalizations 74
3.4 Beyond Numbers 78
4 Metric Transforms 85
4.1 Metrics on the Same Set 85
4.2 Metrics on Set Extensions 89
4.3 Metrics on Other Sets 92
5 Metrics on Normed Structures 95
Part II Geometry and Distances
6 Distances in Geometry 109
6.1 Geodesic Geometry 109
6.2 Projective Geometry 115
6.3 Affine Geometry 121
6.4 Non-Euclidean Geometry 123
7 Riemannian and Hermitian Metrics 133
7.1 Riemannian Metrics and Generalizations 134
7.2 Riemannian Metrics in Information Theory 150
7.3 Hermitian Metrics and Generalizations 154
8 Distances on Surfaces and Knots 167
8.1 General Surface Metrics 167
8.2 Intrinsic Metrics on Surfaces 173
8.3 Distances on Knots 178
9 Distances on Convex Bodies, Cones, and Simplicial Complexes 181
9.1 Distances on Convex Bodies 181
9.2 Distances on Cones 187
9.3 Distances on Simplicial Complexes 190
Part III Distances in Classical Mathematics
10 Distances in Algebra 197
10.1 Group Metrics 197
10.2 Metrics on Binary Relations 206
10.3 Metrics on Semilattices 208
11 Distances on Strings and Permutations 213
11.1 Distances on General Strings 214
11.2 Distances on Permutations 222
12 Distances on Numbers, Polynomials, and Matrices 227
12.1 Metrics on Numbers 227
12.2 Metrics on Polynomials 233
12.3 Metrics on Matrices 235
13 Distances in Functional Analysis 245
13.1 Metrics on Function Spaces 245
13.2 Metrics on Linear Operators 252
14 Distances in Probability Theory 257
14.1 Distances on Random Variables 258
14.2 Distances on Distribution Laws 259
Part IV Distances in Applied Mathematics
15 Distances in Graph Theory 275
15.1 Distances on the Vertices of a Graph 276
15.2 Distance-Defined Graphs 284
15.3 Distances on Graphs 294
15.4 Distances on Trees 302
16 Distances in Coding Theory 309
16.1 Minimum Distance and Relatives 311
16.2 Main Coding Distances 314
17 Distances and Similarities in Data Analysis 323
17.1 Similarities and Distances for Numerical Data 325
17.2 Relatives of Euclidean Distance 328
17.3 Similarities and Distances for Binary Data 331
17.4 Correlation Similarities and Distances 335
18 Distances in Systems and Mathematical Engineering 341
18.1 Distances in State Transition and Dynamical Systems 342
18.2 Distances in Control Theory 347
18.3 Motion Planning Distances 349
18.4 MOEA Distances 354
Part V Computer-Related Distances
19 Distances on Real and Digital Planes 359
19.1 Metrics on Real Plane 359
19.2 Digital Metrics 369
20 Voronoi Diagram Distances 377
20.1 Classical Voronoi Generation Distances 378
20.2 Plane Voronoi Generation Distances 380
20.3 Other Voronoi Generation Distances 383
21 Image and Audio Distances 387
21.1 Image Distances 387
21.2 Audio Distances 401
22 Distances in Networks 413
22.1 Scale-Free Networks 413
22.2 Network-Based Semantic Distances 418
22.3 Distances in Internet and Web 422
Part VI Distances in Natural Sciences
23 Distances in Biology 431
23.1 Genetic Distances 435
23.2 Distances for DNA/RNA and Protein Data 447
23.3 Distances in Ecology, Biogeography, Ethology 458
23.4 Other Biological Distances 472
24 Distances in Physics and Chemistry 487
24.1 Distances in Physics 487
24.2 Distances in Chemistry and Crystallography 511
25 Distances in Earth Science and Astronomy 521
25.1 Distances in Geography 521
25.2 Distances in Geophysics 533
25.3 Distances in Astronomy 544
26 Distances in Cosmology and Theory of Relativity 561
26.1 Distances in Cosmology 561
26.2 Distances in Theory of Relativity 570
Part VII Real-World Distances
27 Length Measures and Scales 595
27.1 Length Scales 595
27.2 Orders of Magnitude for Length 604
28 Distances in Applied Social Sciences 609
28.1 Distances in Perception and Psychology 609
28.2 Distances in Economics and Human Geography 619
28.3 Distances in Sociology and Language. 632
28.4 Distances in Philosophy, Religion and Art 642
29 Other Distances 661
29.1 Distances in Medicine, Anthropometry and Sport 661
29.2 Equipment Distances 678
29.3 Miscellany 692
References 701
Index 709

Part I Mathematics of Distances

Chapter 1
 General Definitions

In this core Chapter, the main metrics and metric-related notions are given.

1.1 Basic Definitions

- Distance

A distance space (X, d) is a set X (carrier) equipped with a distance d.
A function $d: X \times X \rightarrow \mathbb{R}$ is called a distance (or dissimilarity) on X if, for all $x, y \in X$, it holds:

1. $d(x, y) \geq 0$ (nonnegativity);
2. $d(x, y)=d(y, x)$ (symmetry);
3. $d(x, x)=0$ (reflexivity).

In Topology, a distance with $d(x, y)=0$ implying $x=y$ is called a symmetric. For any distance d, the function D_{1} defined for $x \neq y$ by $D_{1}(x, y)=d(x, y)+$ c, where $c=\max _{x, y, z \in X}(d(x, y)-d(x, z)-d(y, z))$, and $D(x, x)=0$, is a metric. Also, $D_{2}(x, y)=d(x, y)^{c}$ is a metric for sufficiently small $c \geq 0$.
The function $D_{3}(x, y)=\inf \sum_{i} d\left(z_{i}, z_{i+1}\right)$, where the infimum is taken over all sequences $x=z_{0}, \ldots, z_{n+1}=y$, is the path semimetric of the complete weighted graph on X, where, for any $x, y \in X$, the weight of edge $x y$ is $d(x, y)$.

- Similarity

Let X be a set. A function $s: X \times X \rightarrow \mathbb{R}$ is called a similarity on X if s is nonnegative, symmetric and the inequality

$$
s(x, y) \leq s(x, x)
$$

holds for all $x, y \in X$, with equality if and only if $x=y$.

The main transforms used to obtain a distance (dissimilarity) d from a similarity s bounded by 1 from above are: $d=1-s, d=\frac{1-s}{s}, d=\sqrt{1-s}, d=$ $\sqrt{2\left(1-s^{2}\right)}, d=\arccos s, d=-\ln s$ (cf. Chap.4).

- Semimetric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a semimetric on X if d is nonnegative, symmetric, reflexive $(d(x, x)=0$ for $x \in X)$ and it holds

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

for all $x, y, z \in X$ (triangle inequality or, sometimes, triangular inequality).
In Topology, it is called a pseudo-metric (or, rarely, semidistance), while the term semimetric is sometimes used for a symmetric (a distance $d(x, y)$ with $d(x, y)=0$ only if $x=y$); cf. symmetrizable space in Chap. 2 .
For a semimetric d, the triangle inequality is equivalent, for each fixed $n \geq 4$ and all $x, y, z_{1}, \ldots, z_{n-2} \in X$, to the following n-gon inequality

$$
d(x, y) \leq d\left(x, z_{1}\right)+d\left(z_{1}, z_{2}\right)+\cdots+d\left(z_{n-2}, y\right)
$$

Equivalent rectangle inequality is $\left|d(x, y)-d\left(z_{1}, z_{2}\right)\right| \leq d\left(x, z_{1}\right)++d\left(y, z_{2}\right)$. For a semimetric d on X, define an equivalence relation, called metric identification, by $x \sim y$ if $d(x, y)=0$; equivalent points are equidistant from all other points. Let $[x]$ denote the equivalence class containing x; then $D([x],[y])=$ $d(x, y)$ is a metric on the set $\{[x]: x \in X\}$ of equivalence classes.

- Metric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a metric on X if, for all $x, y, z \in X$, it holds:

1. $d(x, y) \geq 0$ (nonnegativity);
2. $d(x, y)=0$ if and only if $x=y$ (identity of indiscernibles);
3. $d(x, y)=d(y, x)$ (symmetry);
4. $d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality).

In fact, the above condition 1 . follows from above 3 . and 4.
If 2 . is dropped, then d is called (Bukatin, 2002) relaxed semimetric. If 2. is weakened to " $d(x, x)=d(x, y)=d(y, y)$ implies $x=y$ ", then d is called relaxed metric. A partial metric is a partial semimetric, which is a relaxed metric.
If above 2. is weakened to " $d(x, y)=0$ implies $x=y$ ", then d is called (Amini-Harandi, 2012) metric-like function. Any partial metric is metric-like.

- Metric space

A metric space (X, d) is a set X equipped with a metric d.
It is called a metric frame (or metric scheme, integral) if d is integer-valued.
A pointed metric space (or rooted metric space) $\left(X, d, x_{0}\right)$ is a metric space (X, d) with a selected base point $x_{0} \in X$.

- Extended metric

An extended metric is a generalization of the notion of metric: the value ∞ is allowed for a metric d.

- Quasi-distance

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a quasi-distance on X if d is nonnegative, and $d(x, x)=0$ holds for all $x \in X$. It is also called a premetric or prametric in Topology and a divergence in Probability.
If a quasi-distance d satisfies the strong triangle inequality $d(x, y) \leq d(x, z)+$ $d(y, z)$, then (Lindenbaum, 1926) it is symmetric and so, a semimetric. A quasisemimetric d is a semimetric if and only if (Weiss, 2012) it satisfies the full triangle inequality $|d(x, z)-d(z, y)| \leq d(x, z) \leq d(x, z)+d(z, y)$.
The distance/metric notions are usually named as weakenings or modifications of the fundamental notion of metric, using various prefixes and modifiers. But, perhaps, extended (i.e., the value ∞ is allowed) quasi-distance or (as suggested in Lawvere, 2002) quasi-semimetric should be used as the basic term.

- Quasi-semimetric

A function $d: X \times X \rightarrow \mathbb{R}$ is called a quasi-semimetric (or hemimetric, ostensible metric) on X if $d(x, x)=0, d(x, y) \geq 0$ and the oriented triangle inequality

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

hold for all $x, y, z \in X$. The set X can be partially ordered by the specialization order: $x \preceq y$ if and only if $d(x, y)=0$.
A weak quasi-metric is a quasi-semimetric d on X with weak symmetry, i.e., for all $x, y \in X$ the equality $d(x, y)=0$ implies $d(y, x)=0$.
An Albert quasi-metric is a quasi-semimetric d on X with weak definiteness, i.e., for all $x, y \in X$ the equality $d(x, y)=d(y, x)=0$ implies $x=y$.

A weightable quasi-semimetric is a quasi-semimetric d on X with relaxed symmetry, i.e., for all $x, y, z \in X$

$$
d(x, y)+d(y, z)+d(z, x)=d(x, z)+d(z, y)+d(y, x),
$$

holds or, equivalently, there exists a weight function $w(x) \in \mathbb{R}$ on X with $d(x, y)-d(y, x)=w(y)-w(x)$ for all $x, y \in X$ (i.e., $d(x, y)+\frac{1}{2}(w(x)-w(y))$ is a semimetric). If d is a weightable quasi-semimetric, then $d(x, y)+w(x)$ is a partial semimetric (moreover, a partial metric if d is an Albert quasi-metric).

- Partial metric

Let X be a set. A nonnegative symmetric function $p: X \times X \rightarrow \mathbb{R}$ is called a partial metric [Matt92] if, for all $x, y, z \in X$, it holds:

1. $p(x, x) \leq p(x, y)$, i.e., every self-distance (or extent) $p(x, x)$ is small;
2. $x=y$ if $p(x, x)=p(x, y)=p(y, y)=0\left(T_{0}\right.$ separation axiom $)$;
3. $p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$ (sharp triangle inequality).

If the above separation axiom is dropped, the function p is called a partial semimetric. The nonnegative function p is a partial semimetric if and only if $p(x, y)-p(x, x)$ is a weightable quasi-semimetric with $w(x)=p(x, x)$.

If the 1st above condition is also dropped, the function p is called (Heckmann, 1999) a weak partial semimetric. The nonnegative function p is a weak partial semimetric if and only if $2 p(x, y)-p(x, x)-p(y, y)$ is a semimetric.
Sometimes, the term partial metric is used when a metric $d(x, y)$ is defined only on a subset of the set of all pairs x, y of points.

- Protometric

A function $p: X \times X \rightarrow \mathbb{R}$ is called a protometric if, for all (equivalently, for all different) $x, y, z \in X$, the sharp triangle inequality holds:

$$
p(x, y) \leq p(x, z)+p(z, y)-p(z, z) .
$$

For finite X, the matrix $((p(x, y)))$ is (Burkard et al., 1996) weak Monge array. A strong protometric is a protometric p with $p(x, x)=0$ for all $x \in X$. Such a protometric is exactly a quasi-semimetric, but with the condition $p(x, y) \geq 0$ (for any $x, y \in X$) being relaxed to $p(x, y)+p(y, x) \geq 0$.
A partial semimetric is a symmetric protometric (i.e., $p(x, y)=p(y, x)$) with $p(x, y) \geq p(x, x) \geq 0$ for all $x, y \in X$. An example of a nonpositive symmetric protometric is given by $p(x, y)=-(x . y)_{x_{0}}=\frac{1}{2}\left(d(x, y)-d\left(x, x_{0}\right)-\right.$ $\left.d\left(y, y_{0}\right)\right)$, where (X, d) is a metric space with a fixed base point $x_{0} \in X$; see Gromov product similarity $(x . y)_{x_{0}}$ and, in Chap. 4, Farris transform metric $C-(x . y)_{x_{0}}$.
A 0-protometric is a protometric p for which all sharp triangle inequalities (equivalently, all inequalities $p(x, y)+p(y, x) \geq p(x, x)+p(y, y)$ implied by them) hold as equalities. For any $u \in X$, denote by $A_{u}^{\prime}, A_{u}^{\prime \prime}$ the 0 -protometrics p with $p(x, y)=1_{x=u}, 1_{y=u}$, respectively. The protometrics on X form a flat convex cone in which the 0 -protometrics form the largest linear space. For finite $|X|$, a basis of this space is given by all but one $A_{u}^{\prime}, A_{u}^{\prime \prime}$ (since $\sum_{u} A_{u}^{\prime}=\sum_{u} A_{u}^{\prime \prime}$) and, for the flat subcone of all symmetric 0 -protometrics on X, by all $A_{u}^{\prime}+A_{u}^{\prime \prime}$. A weighted protometric on X is a protometric with a point-weight function $w: X \rightarrow \mathbb{R}$. The mappings $p(x, y)=\frac{1}{2}(d(x, y)+w(x)+w(y))$ and $d(x, y)=2 p(x, y)-p(x, x)-p(y, y), w(x)=p(x, x)$ establish a bijection between the weighted strong protometrics (d, w) and the protometrics p on X, as well as between the weighted semimetrics and the symmetric protometrics. For example, a weighted semimetric (d, w) with $w(x)=-d\left(x, x_{0}\right)$ corresponds to a protometric $-(x . y)_{x_{0}}$. For finite $|X|$, the above mappings amount to the representation

$$
2 p=d+\sum_{u \in X} p(u, u)\left(A_{u}^{\prime}+A_{u}^{\prime \prime}\right) .
$$

- Quasi-metric

A function $d: X \times X \rightarrow \mathbb{R}$ is called a quasi-metric (or asymmetric metric, directed metric) on X if $d(x, y) \geq 0$ holds for all $x, y \in X$ with equality if and only if $x=y$, and for all $x, y, z \in X$ the oriented triangle inequality

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

holds. A quasi-metric space (X, d) is a set X equipped with a quasi-metric d. For any quasi-metric d, the functions $\max \{d(x, y), d(y, x)\}$ (called sometimes bi-distance $), \min \{d(x, y), d(y, x)\}$,
$\frac{1}{2}\left(d^{p}(x, y)+d^{p}(y, x)\right)^{\frac{1}{p}}$ with given $p \geq 1$ are metric generating; cf. Chap. 4.
A non-Archimedean quasi-metric d is a quasi-distance on X which, for all $x, y, z \in X$, satisfies the following strengthened oriented triangle inequality:

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\} .
$$

- Directed-metric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called (Jegede, 2005) a directedmetric on X if, for all $x, y, z \in X$, it holds that $d(x, y)=-d(y, x)$ and

$$
|d(x, y)| \leq|d(x, z)|+|d(z, y)| .
$$

Cf. displacement in Chap. 24 and rigid motion of metric space.

- Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a fixed $C \geq 0$ and for every pair of points $x, y \in X$, there exists a sequence $x=$ $x_{0}, x_{1}, \ldots, x_{t}=y$ for which $d\left(x_{i-1}, x_{i}\right) \leq C$ for $i=1, \ldots, t$, and it holds

$$
d(x, y) \geq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{t-1}, x_{t}\right)-C .
$$

- Near-metric

Let X be a set. A distance d on X is called a near-metric (or C-near-metric) if $d(x, y)>0$ for $x \neq y$ and the C-relaxed triangle inequality

$$
d(x, y) \leq C(d(x, z)+d(z, y))
$$

holds for all $x, y, z \in X$ and some constant $C \geq 1$.
If $d(x, y)>0$ for $x \neq y$ and the C-asymmetric triangle inequality $d(x, y) \leq$ $d(x, z)+C d(z, y)$ holds, d is a $\frac{C+1}{2}$-near-metric.
A C-inframetric is a C-near-metric, while a C-near-metric is a $2 C$-inframetric. Some recent papers use the term quasi-triangle inequality for the above inequality and so, quasi-metric for the notion of near-metric.
The power transform (cf. Chap. 4) $(d(x, y))^{\alpha}$ of any near-metric is a nearmetric for any $\alpha>0$. Also, any near-metric d admits a bi-Lipschitz mapping on $(D(x, y))^{\alpha}$ for some semimetric D on the same set and a positive number α. A near-metric d on X is called a Hölder near-metric if the inequality

$$
|d(x, y)-d(x, z)| \leq \beta d(y, z)^{\alpha}(d(x, y)+d(x, z))^{1-\alpha}
$$

holds for some $\beta>0,0<\alpha \leq 1$ and all points $x, y, z \in X$. Cf. Hölder mapping.

- Weak ultrametric

A weak ultrametric (or C-inframetric, C-pseudo-distance) d is a distance on X such that $d(x, y)>0$ for $x \neq y$ and the C-inframetric inequality

$$
d(x, y) \leq C \max \{d(x, z), d(z, y)\}
$$

holds for all $x, y, z \in X$ and some constant $C \geq 1$.
The term pseudo-distance is also used, in some applications, for any of a pseudo-metric, a quasi-distance, a near-metric, a distance which can be infinite, a distance with an error, etc. Another unsettled term is weak metric: it is used for both a near-metric and a quasi-semimetric.

- Ultrametric

An ultrametric (or non-Archimedean metric) is (Krasner, 1944) a metric d on X which satisfies, for all $x, y, z \in X$, the following strengthened version of the triangle inequality (Hausdorff, 1934), called the ultrametric inequality:

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

An ultrametric space is also called an isosceles space since at least two of $d(x, y), d(z, y), d(x, z)$ are equal. An ultrametric on a set V has at most $|V|$ different values.
A metric d is an ultrametric if and only if its power transform (see Chap. 4) d^{α} is a metric for any real positive number α. Any ultrametric satisfies the four-point inequality. A metric d is an ultrametric if and only if it is a Farris transform metric (cf. Chap. 4) of a four-point inequality metric.

- Robinsonian distance

A distance d on X is called a Robinsonian distance (or monotone distance) if there exists a total order \leq on X compatible with it, i.e., for $x, y, w, z \in X$,

$$
x \preceq y \preceq w \preceq z \text { implies } d(y, w) \leq d(x, z),
$$

or, equivalently, for $x, y, z \in X$,

$$
x \preceq y \preceq z \text { implies } d(x, y) \leq \max \{d(x, z), d(z, y)\} .
$$

Any ultrametric is a Robinsonian distance.

- Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive metric) if it satisfies the following strengthened version of the triangle inequality called the four-point inequality (Buneman, 1974): for all $x, y, z, u \in X$

$$
d(x, y)+d(z, u) \leq \max \{d(x, z)+d(y, u), d(x, u)+d(y, z)\}
$$

holds. Equivalently, among the three sums $d(x, y)+d(z, u), d(x, z)+d(y, u)$, $d(x, u)+d(y, z)$ the two largest sums are equal.
A metric satisfies the four-point inequality if and only if it is a tree-like metric.
Any metric, satisfying the four-point inequality, is a Ptolemaic metric and an L_{1}-metric. Cf. L_{p}-metric in Chap. 5.
A bush metric is a metric for which all four-point inequalities are equalities, i.e., $d(x, y)+d(u, z)=d(x, u)+d(y, z)$ holds for any $u, x, y, z \in X$.

- Relaxed four-point inequality metric

A metric d on X satisfies the relaxed four-point inequality if, for all $x, y, z, u \in$ X, among the three sums

$$
d(x, y)+d(z, u), d(x, z)+d(y, u), d(x, u)+d(y, z)
$$

at least two (not necessarily the two largest) are equal. A metric satisfies this inequality if and only if it is a relaxed tree-like metric.

- Ptolemaic metric

A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic inequality

$$
d(x, y) d(u, z) \leq d(x, u) d(y, z)+d(x, z) d(y, u)
$$

for all $x, y, u, z \in X$. A classical result, attributed to Ptolemy, says that this inequality holds in the Euclidean plane, with equality if and only if the points x, y, u, z lie on a circle in that order.
A Ptolemaic space is a normed vector space ($V,\|\|$.$) such that its norm metric$ $\|x-y\|$ is a Ptolemaic metric. A normed vector space is a Ptolemaic space if and only if it is an inner product space (cf. Chap. 5); so, a Minkowskian metric (cf. Chap. 6) is Euclidean if and only if it is Ptolemaic.
The involution space $\left(X \backslash z, d_{z}\right)$, where $d_{z}(x, y)=\frac{d(x, y)}{d(x, z) d(y, z)}$, is a metric space, for any $z \in X$, if and only if d is Ptolemaic [FoSc06].
For any metric d, the metric \sqrt{d} is Ptolemaic [FoSc06].

- δ-Hyperbolic metric

Given a number $\delta \geq 0$, a metric d on a set X is called δ-hyperbolic if it satisfies the following Gromov δ-hyperbolic inequality (another weakening of the fourpoint inequality): for all $x, y, z, u \in X$, it holds that

$$
d(x, y)+d(z, u) \leq 2 \delta+\max \{d(x, z)+d(y, u), d(x, u)+d(y, z)\} .
$$

A metric space (X, d) is δ-hyperbolic if and only if for all $x_{0}, x, y, z \in X$ it holds

$$
(x . y)_{x_{0}} \geq \min \left\{(x . z)_{x_{0}},(y . z)_{x_{0}}\right\}-\delta,
$$

where $(x . y)_{x_{0}}=\frac{1}{2}\left(d\left(x_{0}, x\right)+d\left(x_{0}, y\right)-d(x, y)\right)$ is the Gromov product of the points x and y of X with respect to the base point $x_{0} \in X$.
A metric space (X, d) is 0 -hyperbolic exactly when d satisfies the four-point inequality. Every bounded metric space of diameter D is D-hyperbolic. The n-dimensional hyperbolic space is $\ln 3$-hyperbolic.
Every δ-hyperbolic metric space is isometrically embeddable into a geodesic metric space (Bonk and Schramm, 2000).

- Gromov product similarity

Given a metric space (X, d) with a fixed point $x_{0} \in X$, the Gromov product similarity (or Gromov product, covariance, overlap function) (. $)_{x_{0}}$ is a similarity on X defined by

$$
(x . y)_{x_{0}}=\frac{1}{2}\left(d\left(x, x_{0}\right)+d\left(y, x_{0}\right)-d(x, y)\right) .
$$

The triangle inequality for d implies $(x . y)_{x_{0}} \geq(x . z)_{x_{0}}+(y . z)_{x_{0}}-(z . z)_{x_{0}}$ (covariance triangle inequality), i.e., sharp triangle inequality for protometric $-(x . y)_{x_{0}}$.
If (X, d) is a tree, then $(x . y)_{x_{0}}=d\left(x_{0},[x, y]\right)$. If (X, d) is a measure semimetric space, i.e., $d(x, y)=\mu(x \Delta y)$ for a Borel measure μ on X, then $(x . y)_{\emptyset}=\mu(x \cap y)$. If d is a distance of negative type, i.e., $d(x, y)=d_{E}^{2}(x, y)$ for a subset X of a Euclidean space \mathbb{E}^{n}, then $(x . y)_{0}$ is the usual inner product on \mathbb{E}^{n}.
Cf. Farris transform metric $d_{x_{0}}(x, y)=C-(x . y)_{x_{0}}$ in Chap. 4.

- Cross-difference

Given a metric space (X, d) and quadruple (x, y, z, w) of its points, the crossdifference is the real number $c d$ defined by

$$
c d(x, y, z, w)=d(x, y)+d(z, w)-d(x, z)-d(y, w) .
$$

In terms of the Gromov product similarity, for all $x, y, z, w, p \in X$, it holds

$$
\frac{1}{2} c d(x, y, z, w)=-(x \cdot y)_{p}-(z \cdot w)_{p}+(x \cdot z)_{p}+(y \cdot w)_{p}
$$

in particular, it becomes $(x . y)_{p}$ if $y=w=p$.
If $x \neq z$ and $y \neq w$, the cross-ratio is the positive number defined by

$$
c r((x, y, z, w), d)=\frac{d(x, y) d(z, w)}{d(x, z) d(y, w)}
$$

- $2 k$-gonal distance

A $2 k$-gonal distance d is a distance on X which satisfies, for all distinct elements $x_{1}, \ldots, x_{n} \in X$, the $2 k$-gonal inequality

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=0$ and $\sum_{i=1}^{n}\left|b_{i}\right|=2 k$.

- Distance of negative type

A distance of negative type d is a distance on X which is $2 k$-gonal for any $k \geq 1$, i.e., satisfies the negative type inequality

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=0$, and for all distinct elements $x_{1}, \ldots, x_{n} \in X$. A distance can be of negative type without being a semimetric. Cayley proved that a metric d is an L_{2}-metric if and only if d^{2} is a distance of negative type.

- $(2 k+1)$-gonal distance

A $(2 k+1)$-gonal distance d is a distance on X which satisfies, for all distinct elements $x_{1}, \ldots, x_{n} \in X$, the $(2 k+1)$-gonal inequality

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=1$ and $\sum_{i=1}^{n}\left|b_{i}\right|=2 k+1$.
The $(2 k+1)$-gonal inequality with $k=1$ is the usual triangle inequality. The ($2 k+1$)-gonal inequality implies the $2 k$-gonal inequality.

- Hypermetric

A hypermetric d is a distance on X which is $(2 k+1)$-gonal for any $k \geq 1$, i.e., satisfies the hypermetric inequality (Deza, 1960)

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=1$, and for all distinct elements $x_{1}, \ldots, x_{n} \in X$. Any hypermetric is a semimetric, a distance of negative type and, moreover, it can be isometrically embedded into some n-sphere \mathbb{S}^{n} with squared Euclidean distance. Any L_{1}-metric (cf. L_{p}-metric in Chap. 5) is a hypermetric.

- P-metric

A P-metric d is a metric on X with values in $[0,1]$ which satisfies the correlation triangle inequality

$$
d(x, y) \leq d(x, z)+d(z, y)-d(x, z) d(z, y)
$$

The equivalent inequality $1-d(x, y) \geq(1-d(x, z))(1-d(z, y))$ expresses that the probability, say, to reach x from y via z is either equal to
$(1-d(x, z))(1-d(z, y))$ (independence of reaching z from x and y from z), or greater than it (positive correlation). A metric is a P-metric if and only if it is a Schoenberg transform metric (cf. Chap. 4).

1.2 Main Distance-Related Notions

- Metric ball

Given a metric space (X, d), the metric ball (or closed metric ball) with center $x_{0} \in X$ and radius $r>0$ is defined by $\bar{B}\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right) \leq r\right\}$, and the open metric ball with center $x_{0} \in X$ and radius $r>0$ is defined by $B\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<r\right\}$. The closed ball is a subset of the closure of the open ball; it is a proper subset for, say, the discrete metric on X.
The metric sphere with center $x_{0} \in X$ and radius $r>0$ is defined by $S\left(x_{0}, r\right)=$ $\left\{x \in X: d\left(x_{0}, x\right)=r\right\}$.
For the norm metric on an n-dimensional normed vector space $(V,\|\|$.$) , the$ metric ball $\bar{B}^{n}=\{x \in V:\|x\| \leq 1\}$ is called the unit ball, and the set $S^{n-1}=$ $\{x \in V:\|x\|=1\}$ is called the unit sphere. In a two-dimensional vector space, a metric ball (closed or open) is called a metric disk (closed or open, respectively).

- Metric hull

Given a metric space (X, d), let M be a bounded subset of X.
The metric hull $H(M)$ of M is the intersection of all metric balls containing M. The set of surface points $S(M)$ of M is the set of all $x \in H(M)$ such that x lies on the sphere of one of the metric balls containing M.

- Distance-invariant metric space

A metric space (X, d) is distance-invariant if all metric balls $\bar{B}\left(x_{0}, r\right)=\{x \in$ $\left.X: d\left(x_{0}, x\right) \leq r\right\}$ of the same radius have the same number of elements.
Then the growth rate of a metric space (X, d) is the function $f(n)=|\bar{B}(x, n)|$. (X, d) is a metric space of polynomial growth if there are some positive constants k, C such that $f(n) \leq C n^{k}$ for all $n \geq 0$. Cf. graph of polynomial growth, including the group case, in Chap. 15.
For a metrically discrete metric space (X, d) (i.e., with $a=\inf _{x, y \in X, x \neq y}$ $d(x, y)>0$), its growth rate was defined also (Gordon-Linial-Rabinovich, 1998) by

$$
\max _{x \in X, r \geq 2} \frac{\log |\bar{B}(x, a r)|}{\log r}
$$

- Ahlfors q-regular metric space

A metric space (X, d) endowed with a Borel measure μ is called Ahlfors q regular if there exists a constant $C \geq 1$ such that for every ball in (X, d) with radius $r<\operatorname{diam}(X, d)$ it holds

$$
C^{-1} r^{q} \leq \mu\left(\bar{B}\left(x_{0}, r\right)\right) \leq C r^{q} .
$$

If such an (X, d) is locally compact, then the Hausdorff q-measure can be taken as μ and q is the Hausdorff dimension. For two disjoint continua (nonempty connected compact metric subspaces) C_{1}, C_{2} of such space (X, d), let Γ be the set of rectifiable curves connecting C_{1} to C_{2}. The q-modulus between C_{1} and C_{2} is $M_{q}\left(C_{1}, C_{2}\right)=\inf \left\{\int_{X} \rho^{q}: \inf _{\gamma \in \Gamma} \int_{\gamma} \rho \geq 1\right\}$, where $\rho: X \rightarrow \mathbb{R}_{>0}$ is any density function on X; cf. the modulus metric in Chap. 6.
The relative distance between C_{1} and C_{2} is $\delta\left(C_{1}, C_{2}\right)=\frac{\inf \left\{d\left(p_{1}, p_{2}\right): p_{1} \in C_{1}, p_{2} \in C_{2}\right\}}{\min \left\{\operatorname{diam}\left(C_{1}\right), \operatorname{diam}\left(C_{2}\right)\right\}}$. (X, d) is a q-Loewner space if there are increasing functions $f, g:[0, \infty) \rightarrow$ $[0, \infty)$ such that for all C_{1}, C_{2} it holds $f\left(\delta\left(C_{1}, C_{2}\right)\right) \leq M_{q}\left(C_{1}, C_{2}\right) \leq$ $g\left(\delta\left(C_{1}, C_{2}\right)\right)$.

- Connected metric space

A metric space (X, d) is called connected if it cannot be partitioned into two nonempty open sets. Cf. connected space in Chap. 2.
The maximal connected subspaces of a metric space are called its connected components. A totally disconnected metric space is a space in which all connected subsets are \emptyset and one-point sets.
A path-connected metric space is a connected metric space such that any two its points can be joined by an arc (cf. metric curve).

- Cantor connected metric space

A metric space (X, d) is called Cantor (or pre-) connected if, for any two its points x, y and any $\epsilon>0$, there exists an ϵ-chain joining them, i.e., a sequence of points $x=z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=y$ such that $d\left(z_{k}, z_{k+1}\right) \leq \epsilon$ for every $0 \leq$ $k \leq n$. A metric space (X, d) is Cantor connected if and only if it cannot be partitioned into two remote parts A and B, i.e., such that $\inf \{d(x, y): x \in$ $A, y \in B\}>0$.
The maximal Cantor connected subspaces of a metric space are called its Cantor connected components. A totally Cantor disconnected metric is the metric of a metric space in which all Cantor connected components are one-point sets.

- Indivisible metric space

A metric space (X, d) is called indivisible if it cannot be partitioned into two parts, neither of which contains an isometric copy of (X, d). Any indivisible metric space with $|X| \geq 2$ is infinite, bounded and totally Cantor disconnected (Delhomme-Laflamme-Pouzet-Sauer, 2007).
A metric space (X, d) is called an oscillation stable metric space (Nguyen Van Thé, 2006) if, given any $\epsilon>0$ and any partition of X into finitely many pieces, the ϵ-neighborhood of one of the pieces includes an isometric copy of (X, d).

- Closed subset of metric space

Given a subset M of a metric space (X, d), a point $x \in X$ is called a limit (or accumulation) point of M if any open metric ball $B(x, r)=\{y \in X$: $d(x, y)<r\}$ contains a point $x^{\prime} \in M$ with $x^{\prime} \neq x$. The boundary $\vartheta(M)$
of M is the set of all its limit points. The closure of M, denoted by $\operatorname{cl}(M)$, is $M \cup \vartheta(M)$, and M is called closed subset, if $M=\operatorname{cl}(M)$, and dense subset, if $X=c l(M)$.
Every point of M which is not its limit point, is called an isolated point. The interior $\operatorname{int}(M)$ of M is the set of all its isolated points, and the exterior $\operatorname{ext}(M)$ of M is $\operatorname{int}(X \backslash M)$. A subset M is called nowhere dense if $\operatorname{int}(c l(M))=\emptyset$.
A subset M is called topologically discrete (cf. metrically discrete metric space) if $\operatorname{int}(M)=M$ and dense-in-itself if $\operatorname{int}(M)=\emptyset$. A dense-in-itself subset is called perfect (cf. perfect metric space) if it is closed. The subsets Irr (irrational numbers) and \mathbb{Q} (rational numbers) of \mathbb{R} are dense, dense-in-itself but not perfect. The set $\mathbb{Q} \cap[0,1]$ is dense-in-itself but not dense in \mathbb{R}.

- Open subset of metric space

A subset M of a metric space (X, d) is called open if, given any point $x \in M$, the open metric ball $B(x, r)=\{y \in X: d(x, y)<r\}$ is contained in M for some number $r>0$. The family of open subsets of a metric space forms a natural topology on it. A closed subset is the complement of an open subset.
An open subset is called clopen, if it is closed, and a domain if it is connected.
A door space is a metric (in general, topological) space in which every subset is either open or closed.

- Metric topology

A metric topology is a topology induced by a metric; cf. equivalent metrics.
More exactly, the metric topology on a metric space (X, d) is the set of all open sets of X, i.e., arbitrary unions of (finitely or infinitely many) open metric balls $B(x, r)=\{y \in X: d(x, y)<r\}, x \in X, r \in \mathbb{R}, r>0$.
A topological space which can arise in this way from a metric space is called a metrizable space (cf. Chap. 2). Metrization theorems are theorems which give sufficient conditions for a topological space to be metrizable.
On the other hand, the adjective metric in several important mathematical terms indicates connection to a measure, rather than distance, for example, metric Number Theory, metric Theory of Functions, metric transitivity.

- Equivalent metrics

Two metrics d_{1} and d_{2} on a set X are called equivalent if they define the same topology on X, i.e., if, for every point $x_{0} \in X$, every open metric ball with center at x_{0} defined with respect to d_{1}, contains an open metric ball with the same center but defined with respect to d_{2}, and conversely.
Two metrics d_{1} and d_{2} are equivalent if and only if, for every $\epsilon>0$ and every $x \in X$, there exists $\delta>0$ such that $d_{1}(x, y) \leq \delta$ implies $d_{2}(x, y) \leq \epsilon$ and, conversely, $d_{2}(x, y) \leq \delta$ implies $d_{1}(x, y) \leq \epsilon$.
All metrics on a finite set are equivalent; they generate the discrete topology.

- Metric betweenness

The metric betweenness of a metric space (X, d) is (Menger, 1928) the set of all ordered triples (x, y, z) such that x, y, z are (not necessarily distinct) points of X for which the triangle equality $d(x, y)+d(y, z)=d(x, z)$ holds.

- Closed metric interval

Given two different points $x, y \in X$ of a metric space (X, d), the closed metric interval between them (or line induced by) them is the set of the points z, for which the triangle equality (or metric betweenness (x, z, y)) holds:

$$
I(x, y)=\{z \in X: d(x, y)=d(x, z)+d(z, y)\} .
$$

Cf. inner product space (Chap. 5) and cutpoint additive metric (Chap. 15).

- Underlying graph of a metric space

The underlying graph (or neighborhood graph) of a metric space (X, d) is a graph with the vertex-set X and $x y$ being an edge if $I(x, y)=\{x, y\}$, i.e., there is no third point $z \in X$, for which $d(x, y)=d(x, z)+d(z, y)$.

- Distance monotone metric space

A metric space (X, d) is called distance monotone if for any its closed metric interval $I(x, y)$ and $u \in X \backslash I(x, y)$, there exists $z \in I(x, x y)$ with $d(u, z)>$ $d(x, y)$.

- Metric triangle

Three distinct points $x, y, z \in X$ of a metric space (X, d) form a metric triangle if the closed metric intervals $I(x, y), I(y, z)$ and $I(z, x)$ intersect only in the common endpoints.

- Metric space having collinearity

A metric space (X, d) has collinearity if for any $\epsilon>0$ each of its infinite subsets contains distinct ϵ-collinear (i.e., with $d(x, y)+d(y, z)-d(x, z) \leq \epsilon$) points x, y, z.

- Modular metric space

A metric space (X, d) is called modular if, for any three different points $x, y, z \in$ X, there exists a point $u \in I(x, y) \cap I(y, z) \cap I(z, x)$. This should not be confused with modular distance in Chap. 10 and modulus metric in Chap. 6.

- Median metric space

A metric space (X, d) is called a median metric space if, for any three points $x, y, z \in X$, there exists a unique point $u \in I(x, y) \cap I(y, z) \cap I(z, x)$.
Any median metric space is an L_{1}-metric; cf. L_{p}-metric in Chap. 5 and median graph in Chap. 15.
A metric space (X, d) is called an antimedian metric space if, for any three points $x, y, z \in X$, there exists a unique point $u \in X$ maximizing $d(x, u)+$ $d(y, u)+d(z, u)$.

- Metric quadrangle

Four different points $x, y, z, u \in X$ of a metric space (X, d) form a metric
quadrangle if $x, z \in I(y, u)$ and $y, u \in I(x, z)$; then $d(x, y)=d(z, u)$ and $d(x, u)=d(y, z)$.
A metric space (X, d) is called weakly spherical if any three different points $x, y, z \in X$ with $y \in I(x, z)$, form a metric quadrangle with some point $u \in X$.

- Metric curve

A metric curve (or, simply, curve) γ in a metric space (X, d) is a continuous mapping $\gamma: I \rightarrow X$ from an interval I of \mathbb{R} into X. A curve is called an arc
(or path, simple curve) if it is injective. A curve $\gamma:[a, b] \rightarrow X$ is called a Jordan curve (or simple closed curve) if it does not cross itself, and $\gamma(a)=\gamma(b)$.
The length of a curve $\gamma:[a, b] \rightarrow X$ is the number $l(\gamma)$ defined by

$$
l(\gamma)=\sup \left\{\sum_{1 \leq i \leq n} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right): n \in \mathbb{N}, a=t_{0}<t_{1}<\cdots<t_{n}=b\right\} .
$$

A rectifiable curve is a curve with a finite length. A metric space (X, d), where every two points can be joined by a rectifiable curve, is called a quasi-convex metric space (or, specifically, C-quasi-convex metric space) if there exists a constant $C \geq 1$ such that every pair $x, y \in X$ can be joined by a rectifiable curve of length at most $C d(x, y)$. If $C=1$, then this length is equal to $d(x, y)$, i.e., (X, d) is a geodesic metric space (cf. Chap. 6).
In a quasi-convex metric space (X, d), the infimum of the lengths of all rectifiable curves, connecting $x, y \in X$ is called the internal metric.
The metric d on X is called the intrinsic metric (and then (X, d) is called a length space) if it coincides with the internal metric of (X, d).
If, moreover, any pair x, y of points can be joined by a curve of length $d(x, y)$, the metric d is called strictly intrinsic, and the length space (X, d) is a geodesic metric space. Hopf-Rinow, 1931, showed that any complete locally compact length space is geodesic and proper. The punctured plane $\left(\mathbb{R}^{2} \backslash\{0\},\|x-y\|_{2}\right)$ is locally compact and path-connected but not geodesic: the distance between $(-1,0)$ and $(1,0)$ is 2 but there is no geodesic realizing this distance.
The metric derivative of a metric curve $\gamma:[a, b] \rightarrow X$ at a limit point t is

$$
\lim _{s \rightarrow 0} \frac{d(\gamma(t+s), \gamma(t))}{|s|}
$$

if it exists. It is the rate of change, with respect to t, of the length of the curve at almost every point, i.e., a generalization of the notion of speed to metric spaces.

- Geodesic

Given a metric space (X, d), a geodesic is a locally shortest metric curve, i.e., it is a locally isometric embedding of \mathbb{R} into X; cf. Chap. 6.
A subset S of X is called a geodesic segment (or metric segment, shortest path, minimizing geodesic) between two distinct points x and y in X, if there exists a segment (closed interval) $[\mathrm{a}, \mathrm{b}]$ on the real line \mathbb{R} and an isometric embedding $\gamma:[a, b] \rightarrow X$, such that $\gamma[a, b]=S, \gamma(a)=x$ and $\gamma(b)=y$.
A metric straight line is a geodesic which is minimal between any two of its points; it is an isometric embedding of the whole of \mathbb{R} into X. A metric ray and metric great circle are isometric embeddings of, respectively, the half-line $\mathbb{R}_{\geq 0}$ and a circle $S^{1}(0, r)$ into X.
A geodesic metric space (cf. Chap. 6) is a metric space in which any two points are joined by a geodesic segment. If, moreover, the geodesic is unique, the space is called totally geodesic (or uniquely geodesic).

A geodesic metric space (X, d) is called geodesically complete if every geodesic is a subarc of a metric straight line. If (X, d) is complete, then it is geodesically complete. The punctured plane $\left(\mathbb{R}^{2} \backslash\{0\},\|x-y\|_{2}\right)$ is not geodesically complete: any geodesic going to 0 is not a subarc of a metric straight line.

- Length spectrum

Given a metric space (X, d), a closed geodesic is a map $\gamma: \mathbb{S}^{1} \rightarrow X$ which is locally minimizing around every point of \mathbb{S}^{1}.
If (X, d) is a compact length space, its length spectrum is the collection of lengths of closed geodesics. Each length is counted with multiplicity equal to the number of distinct free homotopy classes that contain a closed geodesic of such length. The minimal length spectrum is the set of lengths of closed geodesics which are the shortest in their free homotopy class. Cf. the distance list.

- Systole of metric space

Given a compact metric space (X, d), its systole $\operatorname{sys}(X, d)$ is the length of the shortest noncontractible loop in X ; such a loop is a closed geodesic. So, $\operatorname{sys}(X, d)=0$ exactly if (X, d) is simply connected. Cf. connected space in Chap. 2.
If (X, d) is a graph with path metric, then its systole is referred to as the girth. If (X, d) is a closed surface, then its systolic ratio is the ratio $S R=\frac{\operatorname{sys}^{2}(X, d)}{\text { area }(X, d)}$.
Some tight upper bounds of $S R$ for every metric on a surface are: $\frac{2}{\sqrt{3}}=\gamma_{2}$ (Hermite constant in 2D) for 2-torus (Loewner, 1949), $\frac{\pi}{2}$ for the real projective plane ($\mathrm{Pu}, 1952$) and $\frac{\pi}{\sqrt{8}}$ for the Klein bottle (Bavard, 1986). Tight asymptotic bounds for a surface S of large genus g are $\frac{4}{9} \frac{\log ^{2} g}{\pi g} \leq S R(S) \leq \frac{\log ^{2} g}{\pi g}$ (Katz et al., 2007).

- Shankar-Sormani radii

Given a geodesic metric space (X, d), Shankar and Sormani, 2009, defined its unique injectivity radius $\operatorname{Uirad}(X)$ as the supremum over all $r \geq 0$ such that any two points at distance at most r are joined by a unique geodesic, and its minimal radius $\operatorname{Mrad}(X)$ as $\inf _{p \in X} d(p, \operatorname{MinCut}(p))$.
Here the minimal cut locus of $p \operatorname{MinCut}(p)$ is the set of points $q \in X$ for which there is a geodesic γ running from p to q such that γ extends past q but is not minimizing from p to any point past q. If (X, d) is a Riemannian space, then the distance function from p is a smooth function except at p itself and the cut locus. Cf. medial axis and skeleton in Chap. 21.
It holds $\operatorname{Uirad}(X) \leq \operatorname{Mrad}(X)$ with equality if (X, d) is a Riemannian space in which case it is the injectivity radius. It holds $\operatorname{Uirad}(X)=\infty$ for a flat disk but $\operatorname{Mrad}(X)<\infty$ if (X, d) is compact and at least one geodesic is extendible.

- Geodesic convexity

Given a geodesic metric space (X, d) and a subset $M \subset X$, the set M is called geodesically convex (or convex) if, for any two points of M, there exists a geodesic segment connecting them which lies entirely in M; the space is strongly convex if such a segment is unique and no other geodesic connecting those points
lies entirely in M. The space is called locally convex if such a segment exists for any two sufficiently close points in M.
For a given point $x \in M$, the radius of convexity is $r_{x}=\sup \{r \geq 0: B(x, r) \subset$ $M\}$, where the metric ball $B(x, r)$ is convex. The point x is called the center of mass of points $y_{1}, \ldots, y_{k} \in M$ if it minimizes the function $\sum_{i} d\left(x, y_{i}\right)^{2}$ (cf. Fréchet mean); such point is unique if $d\left(y_{i}, y_{j}\right)<r_{x}$ for all $1 \leq i<j \leq k$.
The injectivity radius of the set M is the supremum over all $r \geq 0$ such that any two points in M at distance $\leq r$ are joined by unique geodesic segment which lies in M. The Hawaiian Earring is a compact complete metric space consisting of a set of circles of radius $\frac{1}{i}$ for each $i \in \mathbb{N}$ all joined at a common point; its injectivity radius is 0 . It is path-connected but not simply connected.
The set $M \subset X$ is called a totally convex metric subspace of (X, d) if, for any two points of M, any geodesic segment connecting them lies entirely in M.

- Busemann convexity

A geodesic metric space (X, d) is called Busemann convex (or Busemann space, nonpositively curved in the sense of Busemann) if, for any three points $x, y, z \in X$ and midpoints $m(x, z)$ and $m(y, z)$ (i.e., $d(x, m(x, z))=$ $d(m(x, z), z)=\frac{1}{2} d(x, z)$ and $\left.d(y, m(y, z))=d(m(y, z), z)=\frac{1}{2} d(y, z)\right)$, there holds

$$
d(m(x, z), m(y, z)) \leq \frac{1}{2} d(x, y) .
$$

The flat Euclidean strip $\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1\right\}$ is Gromov hyperbolic metric space (Chap. 6) but not Busemann convex one. In a complete Busemann convex metric space any two points are joined by a unique geodesic segment.
A locally geodesic metric space (X, d) is called Busemann locally convex if the above inequality holds locally. Any locally CAT(0) metric space is Busemann locally convex.

- Menger convexity

A metric space (X, d) is called Menger convex if, for any different points $x, y \in$ X, there exists a third point $z \in X$ for which $d(x, y)=d(x, z)+d(z, y)$, i.e., $|I(x, y)|>2$ holds for the closed metric interval $I(x, y)=\{z \in X:(x, y)=$ $d(x, z)+d(z, y)\}$. It is called strictly Menger convex if such a z is unique for all $x, y \in X$.
Geodesic convexity implies Menger convexity. The converse holds for complete metric spaces.
A subset $M \subset X$ is called (Menger, 1928) a d-convex set (or interval-convex set) if $I(x, y) \subset M$ for any different points $x, y \in M$. A function $f: M \rightarrow$ \mathbb{R} defined on a d-convex set $M \subset X$ is a d-convex function if for any $z \in$ $I(x, y) \subset M$

$$
f(z) \leq \frac{d(y, z)}{d(x, y)} f(x)+\frac{d(x, z)}{d(x, y)} f(y)
$$

A subset $M \subset X$ is a gated set if for every $x \in X$ there exists a unique $x^{\prime} \in M$, the gate, such that $d(x, y)=d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y\right)$ for $y \in M$. Any such set is d-convex.

- Midpoint convexity

A metric space (X, d) is called midpoint convex (or having midpoints, admitting a midpoint map) if, for any different points $x, y \in X$, there exists a third point $m(x, y) \in X$ for which $d(x, m(x, y))=d(m(x, y), y)=\frac{1}{2} d(x, y)$. Such a point $m(x, y)$ is called a midpoint and the map $m: X \times X \rightarrow X$ is called a midpoint map (cf. midset); this map is unique if $m(x, y)$ is unique for all $x, y \in X$.
For example, the geometric mean $\sqrt{x y}$ is the midpoint map for the metric space $\left(\mathbb{R}_{>0}, d(x, y)=|\log x-\log y|\right)$.
A complete metric space is geodesic if and only if it is midpoint convex.
A metric space (X, d) is said to have approximate midpoints if, for any points $x, y \in X$ and any $\epsilon>0$, there exists an ϵ-midpoint, i.e., a point $z \in X$ such that $d(x, z) \leq \frac{1}{2} d(x, y)+\epsilon \geq d(z, y)$.

- Ball convexity

A midpoint convex metric space (X, d) is called ball convex if

$$
d(m(x, y), z) \leq \max \{d(x, z), d(y, z)\}
$$

for all $x, y, z \in X$ and any midpoint map $m(x, y)$.
Ball convexity implies that all metric balls are totally convex and, in the case of a geodesic metric space, vice versa. Ball convexity implies also the uniqueness of a midpoint map (geodesics in the case of complete metric space).
The metric space $\left(\mathbb{R}^{2}, d(x, y)=\sum_{i=1}^{2} \sqrt{\left|x_{i}-y_{i}\right|}\right)$ is not ball convex.

- Distance convexity

A midpoint convex metric space (X, d) is called distance convex if

$$
d(m(x, y), z) \leq \frac{1}{2}(d(x, z)+d(y, z))
$$

A geodesic metric space is distance convex if and only if the restriction of the distance function $d(x, \cdot), x \in X$, to every geodesic segment is a convex function. Distance convexity implies ball convexity and, in the case of Busemann convex metric space, vice versa.

- Metric convexity

A metric space (X, d) is called metrically convex if, for any different points $x, y \in X$ and any $\lambda \in(0,1)$, there exists a third point $z=z(x, y, \lambda) \in X$ for which $d(x, y)=d(x, z)+d(z, y)$ and $d(x, z)=\lambda d(x, y)$.
The space is called strictly metrically convex if such a point $z(x, y, \lambda)$ is unique for all $x, y \in X$ and any $\lambda \in(0,1)$.
A metric space (X, d) is called strongly metrically convex if, for any different points $x, y \in X$ and any $\lambda_{1}, \lambda_{2} \in(0,1)$, there exists a third point $z=$ $z(x, y, \lambda) \in X$ for which $d\left(z\left(x, y, \lambda_{1}\right), z\left(x, y, \lambda_{2}\right)\right)=\left|\lambda_{1}-\lambda_{2}\right| d(x, y)$.

Metric convexity implies Menger convexity, and every Menger convex complete metric space is strongly metrically convex.
A metric space (X, d) is called nearly convex (Mandelkern, 1983) if, for any different points $x, y \in X$ and any $\lambda, \mu>0$ such that $d(x, y)<\lambda+\mu$, there exists a third point $z \in X$ for which $d(x, z)<\lambda$ and $d(z, y)<\mu$, i.e., $z \in$ $B(x, \lambda) \cap B(y, \mu)$. Metric convexity implies near convexity.

- Takahashi convexity

A metric space (X, d) is called Takahashi convex if, for any different points $x, y \in X$ and any $\lambda \in(0,1)$, there exists a third point $z=z(x, y, \lambda) \in X$ such that $d(z(x, y, \lambda), u) \leq \lambda d(x, u)+(1-\lambda) d(y, u)$ for all $u \in X$. Any convex subset of a normed space is a Takahashi convex metric space with $z(x, y, \lambda)=$ $\lambda x+(1-\lambda) y$.
A set $M \subset X$ is Takahashi convex if $z(x, y, \lambda) \in M$ for all $x, y \in X$ and any $\lambda \in[0,1]$. In a Takahashi convex metric space, all metric balls, open metric balls, and arbitrary intersections of Takahashi convex subsets are all Takahashi convex.

- Hyperconvexity

A metric space (X, d) is called hyperconvex (Aronszajn-Panitchpakdi, 1956) if it is metrically convex and its metric balls have the infinite Helly property, i.e., any family of mutually intersecting closed balls in X has nonempty intersection. A metric space (X, d) is hyperconvex if and only if it is an injective metric space.
The spaces $l_{\infty}^{n}, l_{\infty}^{\infty}$ and l_{1}^{2} are hyperconvex but l_{2}^{∞} is not.

- Distance matrix

Given a finite metric space $\left(X=\left\{x_{1}, \cdots, x_{n}\right\}, d\right)$, its distance matrix is the symmetric $n \times n$ matrix $\left(\left(d_{i j}\right)\right)$, where $d_{i j}=d\left(x_{i}, x_{j}\right)$ for any $1 \leq i, j \leq n$.
The probability that a symmetric $n \times n$ matrix, whose diagonal elements are zeros and all other elements are uniformly random real numbers, is a distance matrix is (Mascioni, 2005) $\frac{1}{2}, \frac{17}{120}$ for $n=3,4$, respectively.

- Distance product of matrices

Given $n \times n$ matrices $A=\left(\left(a_{i j}\right)\right)$ and $B=\left(\left(b_{i j}\right)\right)$, their distance (or min-plus) product is the $n \times n$ matrix $C=\left(\left(c_{i j}\right)\right)$ with $c_{i j}=\min _{k=1}^{n}\left(a_{i k}+b_{k j}\right)$.
It is the usual matrix multiplication in the tropical semiring $(\mathbb{R} \cup\{\infty\}$, min, +) (Chap. 18). If A is the matrix of weights of an edge-weighted complete graph K_{n}, then its direct power A^{n} is the (shortest path) distance matrix of this graph.

- Distance list

Given a metric space (X, d), its distance set and distance list are the set and the multiset (i.e., multiplicities are counted) and of all pairwise distances.
Two subsets $A, B \subset X$ are said to be homometric sets if they have the same distance list. Cf. homometric structures in Chap. 24.

- Degree of distance near-equality

Given a finite metric space (X, d) with $|X|=n \geq 3$, let $f=\min \left\lvert\, \frac{d(x, y)}{d(a, b)}-\right.$
$1 \mid$ (degree of distance near-equality) and $f^{\prime}=\min \left|\frac{d(x, y)}{d(x, b)}-1\right|$, where the minimum is over different 2 -subsets $\{x, y\},\{a, b\}$ of X and, respectively, over
different $x, y, b \in X$. [Ophi14] proved $f \leq \frac{9 \log n}{n^{2}}$ and $f^{\prime} \leq \frac{3}{n}$, while $f \geq \frac{\log n}{20 n^{2}}$ and $f^{\prime} \geq \frac{1}{2 n}$ for some (X, d).

- Semimetric cone

The semimetric cone $M E T_{n}$ is the polyhedral cone in $\mathbb{R}^{\binom{n}{2}}$ of all distance matrices of semimetrics on the set $V_{n}=\{1, \ldots, n\}$. Vershik, 2004, considers $M E T_{\infty}$, i.e., the weakly closed convex cone of infinite distance matrices of semimetrics on \mathbb{N}.
The cone of n-point weightable quasi-semimetrics is a projection along an extreme ray of the semimetric cone Met_{n+1} (Grishukhin-Deza-Deza, 2011).
The metric fan is a canonical decomposition $M F_{n}$ of $M E T_{n}$ into subcones whose faces belong to the fan, and the intersection of any two of them is their common boundary. Two semimetrics $d, d^{\prime} \in M E T_{n}$ lie in the same cone of the metric fan if the subdivisions $\delta_{d}, \delta_{d^{\prime}}$ of the polyhedron $\delta(n, 2)=\operatorname{conv}\left\{e_{i}+e_{j}: 1 \leq\right.$ $i<j \leq n\} \subset \mathbb{R}^{n}$ are equal. Here a subpolytope P of $\delta(n, 2)$ is a cell of the subdivision δ_{d} if there exists $y \in \mathbb{R}^{n}$ satisfying $y_{i}+y_{j}=d_{i j}$ if $e_{i}+e_{j}$ is a vertex of P, and $y_{i}+y_{j}>d_{i j}$, otherwise. The complex of bounded faces of the polyhedron dual to δ_{d} is the tight span of the semimetric d.

- Cayley-Menger matrix

Given a finite metric space ($X=\left\{x_{1}, \cdots, x_{n}\right\}, d$), its Cayley-Menger matrix is the symmetric $(n+1) \times(n+1)$ matrix

$$
C M(X, d)=\left(\begin{array}{cc}
0 & e \\
e^{T} & D
\end{array}\right)
$$

where $D=\left(\left(d^{2}\left(x_{i}, x_{j}\right)\right)\right)$ and e is the n-vector all components of which are 1.
The determinant of $C M(X, d)$ is called the Cayley-Menger determinant. If (X, d) is a metric subspace of the Euclidean space \mathbb{E}^{n-1}, then $C M(X, d)$ is $(-1)^{n} 2^{n-1}((n-1)!)^{2}$ times the squared $(n-1)$-dimensional volume of the convex hull of X in \mathbb{R}^{n-1}.

- Gram matrix

Given elements v_{1}, \ldots, v_{k} of a Euclidean space, their Gram matrix is the symmetric $k \times k$ matrix $V V^{T}$, where $V=\left(\left(v_{i j}\right)\right)$, of pairwise inner products of v_{1}, \ldots, v_{k} :

$$
G\left(v_{1}, \ldots, v_{k}\right)=\left(\left(\left\langle v_{i}, v_{j}\right\rangle\right)\right) .
$$

It holds $G\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{2}\left(\left(d_{E}^{2}\left(v_{0}, v_{i}\right)+d_{E}^{2}\left(v_{0}, v_{j}\right)-d_{E}^{2}\left(v_{i}, v_{j}\right)\right)\right)$, i.e., the inner product \langle,$\rangle is the Gromov product similarity of the squared Euclidean$ distance d_{E}^{2}. A $k \times k$ matrix $\left(\left(d_{E}^{2}\left(v_{i}, v_{j}\right)\right)\right)$ is called Euclidean distance matrix (or $E D M$). It defines a distance of negative type on $\{1, \ldots, k\}$; all such matrices form the (nonpolyhedral) closed convex cone of all such distances.
The determinant of a Gram matrix is called the Gram determinant; it is equal to the square of the k-dimensional volume of the parallelotope constructed on v_{1}, \ldots, v_{k}.

A symmetric $k \times k$ real matrix M is said to be positive-semidefinite (PSD) if $x M x^{T} \geq 0$ for any nonzero $x \in \mathbb{R}^{k}$ and positive-definite (PD) if $x M x^{T}>0$. A matrix is PSD if and only if it is a Gram matrix; it is PD if and only the vectors v_{1}, \ldots, v_{k} are linearly independent. In Statistics, the covariance matrices and correlation matrices are exactly PSD and PD ones, respectively.

- Midset

Given a metric space (X, d) and distinct $y, z \in X$, the midset (or bisector) of points y and z is the set $M=\{x \in X: d(x, y)=d(x, z)\}$ of midpoints x.
A metric space is said to have the n-point midset property if, for every pair of its points, the midset has exactly n points. The one-point midset property means uniqueness of the midpoint map. Cf. midpoint convexity.

- Distance k-sector

Given a metric space (X, d) and disjoint subsets $Y, Z \subset X$, the bisector of Y and Z is the set $M=\left\{x \in X: \inf _{y \in Y} d(x, y)=\inf _{z \in Z} d(x, z)\right\}$.
The distance k-sector of Y and Z is the sequence M_{1}, \ldots, M_{k-1} of subsets of X such that M_{i}, for any $1 \leq i \leq k-1$, is the bisector of sets M_{i-1} and M_{i+1}, where $Y=M_{0}$ and $Z=M_{k}$. Asano-Matousek-Tokuyama, 2006, considered the distance k-sector on the Euclidean plane $\left(\mathbb{R}^{2}, l_{2}\right)$; for compact sets Y and Z, the sets M_{1}, \ldots, M_{k-1} are curves partitioning the plane into k parts.

- Metric basis

Given a metric space (X, d) and a subset $M \subset X$, for any point $x \in X$, its metric M-representation is the set $\{(m, d(x, m)): m \in M\}$ of its metric M coordinates ($m, d(x, m)$). The set M is called (Blumenthal, 1953) a metric basis (or resolving set, locating set, set of uniqueness, metric generator) if distinct points $x \in X$ have distinct M-representations. A vertex-subset M of a connected graph is (Okamoto et al., 2009) a local metric basis if adjacent vertices have distinct M-representations.
The resolving number of a finite (X, d) is (Chartrand-Poisson-Zhang, 2000) minimum k such that any k-subset of X is a metric basis.
The vertices of a non degenerate simplex form a metric basis of \mathbb{E}^{n}, but l_{1} - and l_{∞}-metrics on $\mathbb{R}^{n}, n>1$, have no finite metric basis.
The distance similarity is (Saenpholphat-Zhang, 2003) an equivalence relation on X defined by $x \sim y$ if $d(z, x)=d(z, y)$ for any $z \in X \backslash\{x, y\}$. Any metric basis contains all or all but one elements from each equivalence class.

1.3 Metric Numerical Invariants

- Resolving dimension

Given a metric space (X, d), its resolving dimension (or location number (Slater, 1975), metric dimension (Harary-Melter, 1976)) is the minimum cardinality of its metric basis. The upper resolving dimension of (X, d) is the maximum cardinality of its metric basis not containing another metric basis
as a proper subset. Adjacency dimension of (X, d) is the metric dimension of $(X, \min (2, d))$.
A metric independence number of (X, d) is (Currie-Oellermann, 2001) the maximum cardinality I of a collection of pairs of points of X, such that for any two, (say, (x, y) and $\left(x^{\prime}, y^{\prime}\right)$) of them there is no point $z \in X$ with $d(z, x) \neq$ $d(z, y)$ and $d\left(z, x^{\prime}\right) \neq d\left(z, y^{\prime}\right)$. A function $f: X \rightarrow[0,1]$ is a resolving function of (X, d) if $\sum_{z \in X: d(x, z) \neq d(y, z)} f(z) \geq 1$ for any distinct $x, y \in X$. The fractional resolving dimension of (X, d) is $F=\min \sum_{x \in X} g(x)$, where the minimum is taken over resolving functions f such that any function f^{\prime} with f^{\prime}, f is not resolving.
The partition dimension of (X, d) is (Chartrand-Salevi-Zhang, 1998) the minimum cardinality P of its resolving partition, i.e., a partition $X=\cup_{1 \leq i \leq k} S_{i}$ such that no two points have, for $1 \leq i \leq k$, the same minimal distances to the set S_{i}. Related locating a robber game on a graph $G=(V, E)$ was considered in 2012 by Seager and by Carraher et al.: cop win on G if every sequence $r=r_{1}, \ldots, r_{n}$ of robber's steps ($r_{i} \in V$ and $d_{\text {path }}\left(r_{i}, r_{i+1}\right) \leq 1$) is uniquely identified by a sequence $d\left(r_{1}, c_{1}\right), \ldots, d\left(r_{n}, c_{n}\right)$ of cop's distance queries for some $c_{1}, \ldots, c_{n} \in$ V.

- Metric dimension

For a metric space (X, d) and a number $\epsilon>0$, let C_{ϵ} be the minimal size of an ϵ-net of (X, d), i.e., a subset $M \subset X$ with $\cup_{x \in M} B(x, \epsilon)=X$. The number

$$
\operatorname{dim}(X, d)=\lim _{\epsilon \rightarrow 0} \frac{\ln C_{\epsilon}}{-\ln \epsilon}
$$

(if it exists) is called the metric dimension (or Minkowski-Bouligand dimension, box-counting dimension) of X. If the limit above does not exist, then the following notions of dimension are considered:

1. $\underline{\operatorname{dim}}(X, d)=\underline{\lim }_{\epsilon \rightarrow 0} \frac{\ln C_{\epsilon}}{-\ln \epsilon}$ called the lower Minkowski dimension (or lower dimension, lower box dimension, Pontryagin-Snirelman dimension);
2. $\overline{\operatorname{dim}}(X, d)=\overline{\lim }_{\epsilon \rightarrow 0} \frac{\ln C_{\epsilon}}{-\ln \epsilon}$ called the Kolmogorov-Tikhomirov dimension (or upper dimension, entropy dimension, upper box dimension).

See below examples of other, less prominent, notions of metric dimension.

1. The (equilateral) metric dimension of a metric space is the maximum cardinality of its equidistant subset, i.e., such that any two of its distinct points are at the same distance. For a normed space, this dimension is equal to the maximum number of translates of its unit ball that touch pairwise.
2. For any $c>1$, the (normed space) metric dimension $\operatorname{dim}_{c}(X)$ of a finite metric space (X, d) is the least dimension of a real normed space $(V,\|\|$.$) such that$ there is an embedding $f: X \rightarrow V$ with $\frac{1}{c} d(x, y) \leq\|f(x)-f(y)\| \leq$ $d(x, y)$.
3. The (Euclidean) metric dimension of a finite metric space (X, d) is the least dimension n of a Euclidean space \mathbb{E}^{n} such that $(X, f(d))$ is its metric subspace, where the minimum is taken over all continuous monotone increasing functions $f(t)$ of $t \geq 0$.
4. The dimensionality of a metric space is $\frac{\mu^{2}}{2 \sigma^{2}}$, where μ and σ^{2} are the mean and variance of its histogram of distance values; this notion is used in Information Retrieval for proximity searching.
The term dimensionality is also used for the minimal dimension, if it is finite, of Euclidean space in which a given metric space embeds isometrically.

- Hausdorff dimension

Given a metric space (X, d) and $p, q>0$, let $H_{p}^{q}=\inf \sum_{i=1}^{\infty}\left(\operatorname{diam}\left(A_{i}\right)\right)^{p}$, where the infimum is taken over all countable coverings $\left\{A_{i}\right\}$ with diameter of A_{i} less than q. The Hausdorff q-measure of X is the metric outer measure defined by

$$
H^{p}=\lim _{q \rightarrow 0} H_{p}^{q}
$$

The Hausdorff dimension (or fractal dimension) of (X, d) is defined by

$$
\operatorname{dim}_{\text {Haus }}(X, d)=\inf \left\{p \geq 0: H^{p}(X)=0\right\}
$$

Any countable metric space has $\operatorname{dim}_{\text {Haus }}=0, \operatorname{dim}_{\text {Haus }}\left(\mathbb{E}^{n}\right)=n$, and any $X \subset \mathbb{E}^{n}$ with Int $X \neq \emptyset$ has $\operatorname{dim}_{\text {Haus }}=\overline{\operatorname{dim}}$. For any totally bounded (X, d), it holds

$$
\operatorname{dim}_{\text {top }} \leq \operatorname{dim}_{\text {Haus }} \leq \underline{\operatorname{dim}} \leq \operatorname{dim} \leq \overline{\operatorname{dim}} .
$$

- Rough dimension

Given a metric space (X, d), its rough n-volume $\operatorname{Vol}_{n} X$ is $\varlimsup_{\epsilon \rightarrow 0} \epsilon^{n} \beta_{X}(\epsilon)$, where $\epsilon>0$ and $\beta_{X}(\epsilon)=\max |Y|$ for $Y \subseteq X$ with $d(a, b) \geq \epsilon$ if $a \in Y, b \in Y \backslash\{a\}$; $\beta_{X}(\epsilon)=\infty$ is permitted. The rough dimension is defined [BBI01] by
$\operatorname{dim}_{\text {rough }}(X, d)=\sup \left\{n: \operatorname{Vol}_{n} X=\infty\right\}$ or, equivalently, $=\inf \left\{n: \operatorname{Vol}_{n} X=0\right\}$.
The space (X, d) can be not locally compact. It holds $\operatorname{dim}_{\text {Haus }} \leq \operatorname{dim}_{\text {rough }}$.

- Packing dimension

Given a metric space (X, d) and $p, q>0$, let $P_{p}^{q}=\sup \sum_{i=1}^{\infty}\left(\operatorname{diam}\left(B_{i}\right)\right)^{p}$, where the supremum is taken over all countable packings (by disjoint balls) $\left\{B_{i}\right\}$ with the diameter of B_{i} less than q.
The packing q-pre-measure is $P_{0}^{p}=\lim _{q \rightarrow 0} P_{p}^{q}$. The packing q-measure is the metric outer measure which is the infimum of packing q-pre-measures of countable coverings of X. The packing dimension of (X, d) is defined by

$$
\operatorname{dim}_{\text {pack }}(X, d)=\inf \left\{p \geq 0: P^{p}(X)=0\right\} .
$$

- Topological dimension

For any compact metric space (X, d) its topological dimension (or Lebesgue covering dimension) is defined by

$$
\operatorname{dim}_{\text {top }}(X, d)=\inf _{d^{\prime}}\left\{\operatorname{dim}_{\text {Haus }}\left(X, d^{\prime}\right)\right\}
$$

where d^{\prime} is any metric on X equivalent to d. So, it holds $\operatorname{dim}_{\text {top }} \leq \operatorname{dim}_{\text {Haus }}$. A fractal (cf. Chap. 18) is a metric space for which this inequality is strict.
This dimension does not exceed also the Assouad-Nagata dimension of (X, d). In general, the topological dimension of a topological space X is the smallest integer n such that, for any finite open covering of X, there exists a finite open refinement of it with no point of X belonging to more than $n+1$ elements.
The geometric dimension is (Kleiner, 1999) sup $\operatorname{dim}_{\text {top }}(Y, d)$ over compact $Y \subset$ X.

- Doubling dimension

The doubling dimension $\left(\operatorname{dim}_{\text {doubl }}(X, d)\right)$ of a metric space (X, d) is the smallest integer n (or ∞ if such an n does not exist) such that every metric ball (or, say, a set of finite diameter) can be covered by a family of at most 2^{n} metric balls (respectively, sets) of half the diameter.
If (X, d) has finite doubling dimension, then d is called a doubling metric and the smallest integer m such that every metric ball can be covered by a family of at most m metric balls of half the diameter is called doubling constant.

- Assouad-Nagata dimension

The Assouad-Nagata dimension $\operatorname{dim}_{A N}(X, d)$ of a metric space (X, d) is the smallest integer n (or ∞ if such an n does not exist) for which there exists a constant $C>0$ such that, for all $s>0$, there exists a covering of X by its subsets of diameter $\leq C s$ with every subset of X of diameter $\leq s$ meeting $\leq n+1$ elements of covering. It holds (LeDonne-Rajala, 2014) $\operatorname{dim}_{A N} \leq \operatorname{dim}_{\text {doubl }}$; but $\operatorname{dim}_{A N}=1$, while $\operatorname{dim}_{\text {doubl }}=\infty$, holds (Lang-Schlichenmaier, 2014) for some real trees (X, d).
Replacing "for all $s>0$ " in the above definition by "for $s>0$ sufficiently large" or by "for $s>0$ sufficiently small", gives the microscopic mi-dim $\operatorname{diN}(X, d)$ and macroscopic ma-dim ${ }_{A N}(X, d)$ Assouad-Nagata dimensions, respectively. Then (Brodskiy et al., 2006) mi- $\operatorname{dim}_{A N}(X, d)=\operatorname{dim}_{A N}(X, \min \{d, 1\})$ and
$m a-\operatorname{dim}_{A N}(X, d)=\operatorname{dim}_{A N}(X, \max \{d, 1\})$ (here $\max \{d(x, y), 1\}$ means 0 for $x=y$).
The Assouad-Nagata dimension is preserved (Lang-Schlichenmaier, 2004) under quasi-symmetric mapping but, in general, not under quasi-isometry.

- Vol'berg-Konyagin dimension

The Vol'berg-Konyagin dimension of a metric space (X, d) is the smallest constant $C>1$ (or ∞ if such a C does not exist) for which X carries a doubling measure, i.e., a Borel measure μ such that, for all $x \in X$ and $r>0$, it holds that

$$
\mu(\bar{B}(x, 2 r)) \leq C \mu(\bar{B}(x, r)) .
$$

A metric space (X, d) carries a doubling measure if and only if d is a doubling metric, and any complete doubling metric carries a doubling measure.
The Karger-Ruhl constant of a metric space (X, d) is the smallest $c>1$ (or ∞ if such a c does not exist) such that for all $x \in X$ and $r>0$ it holds

$$
|\bar{B}(x, 2 r)| \leq c|\bar{B}(x, r)| .
$$

If c is finite, then the doubling dimension of (X, d) is at most $4 c$.

- Hyperbolic dimension

A metric space (X, d) is called an (R, N)-large-scale doubling if there exists a number $R>0$ and integer $N>0$ such that every ball of radius $r \geq R$ in (X, d) can be covered by N balls of radius $\frac{r}{2}$.
The hyperbolic dimension $\operatorname{hypdim}(X, d)$ of a metric space (X, d) (BuyaloSchroeder, 2004) is the smallest integer n such that for every $r>0$ there are $R>0$, an integer $N>0$ and a covering of X with the following properties:

1. Every ball of radius r meets at most $n+1$ elements of the covering;
2. The covering is an (R, N)-large-scale doubling, and any finite union of its elements is an $\left(R^{\prime}, N\right)$-large-scale doubling for some $R^{\prime}>0$.

The hyperbolic dimension is 0 if (X, d) is a large-scale doubling, and it is n if (X, d) is n-dimensional hyperbolic space.
Also, hypdim $(X, d) \leq \operatorname{asdim}(X, d)$ since the asymptotic dimension $\operatorname{asdim}(X, d)$ corresponds to the case $N=1$ in the definition of $\operatorname{hypdim}(X, d)$.
The hyperbolic dimension is preserved under a quasi-isometry.

- Asymptotic dimension

The asymptotic dimension $\operatorname{asdim}(X, d)$ of a metric space (X, d) (Gromov, 1993) is the smallest integer n such that, for every $r>0$, there exists a constant $D=D(r)$ and a covering of X by its subsets of diameter at most D such that every ball of radius r meets at most $n+1$ elements of the covering.
The asymptotic dimension is preserved under a quasi-isometry.

- Width dimension

Let (X, d) be a compact metric space. For a given number $\epsilon>0$, the width dimension $\operatorname{Widim}_{\epsilon}(X, d)$ of (X, d) is (Gromov, 1999) the minimum integer n such that there exists an n-dimensional polyhedron P and a continuous map $f: X \rightarrow P$ (called an ϵ-embedding) with $\operatorname{diam}\left(f^{-1}(y)\right) \leq \epsilon$ for all $y \in P$.
The width dimension is a macroscopic dimension at the scale $\geq \epsilon$ of (X, d), because its limit for $\epsilon \rightarrow 0$ is the topological dimension of (X, d).

- Godsil-McKay dimension

We say that a metric space (X, d) has Godsil-McKay dimension $n \geq 0$ if there exists an element $x_{0} \in X$ and two positive constants c and C such that the inequality $c k^{n} \leq\left|\left\{x \in X: d\left(x, x_{0}\right) \leq k\right\}\right| \leq C k^{n}$ holds for every integer $k \geq 0$.

This notion was introduced in [GoMc80] for the path metric of a countable locally finite graph. They proved that, if the group \mathbb{Z}^{n} acts faithfully and with a finite number of orbits on the vertices of the graph, then this dimension is n.

- Metric outer measure

A σ-algebra over X is any nonempty collection Σ of subsets of X, including X itself, that is closed under complementation and countable unions of its members. Given a σ-algebra Σ over X, a measure on (X, Σ) is a function $\mu: \Sigma \rightarrow[0, \infty]$ with the following properties:

1. $\mu(\emptyset)=0$;
2. For any sequence $\left\{A_{i}\right\}$ of pairwise disjoint subsets of $X, \mu\left(\sum_{i} A_{i}\right)=$ $\sum_{i} \mu\left(A_{i}\right)$ (countable σ-additivity).

The triple (X, Σ, μ) is called a measure space. If $M \subset A \in \Sigma$ and $\mu(A)=0$ implies $M \in \Sigma$, then (X, Σ, μ) is called a complete measure space. A measure μ with $\mu(X)=1$ is called a probability measure.
If X is a topological space (see Chap. 2), then the σ-algebra over X, consisting of all open and closed sets of X, is called the Borel σ-algebra of $X,(X, \Sigma)$ is called a Borel space, and a measure on Σ is called a Borel measure. So, any metric space (X, d) admits a Borel measure coming from its metric topology, where the open set is an arbitrary union of open metric d-balls.
An outer measure on X is a function $v: P(X) \rightarrow[0, \infty]$ (where $P(X)$ is the set of all subsets of X) with the following properties:

1. $v(\emptyset)=0$;
2. For any subsets $A, B \subset X, A \subset B$ implies $v(A) \leq v(B)$ (monotonicity);
3. For any sequence $\left\{A_{i}\right\}$ of subsets of $X, v\left(\sum_{i} A_{i}\right) \leq \sum_{i} \nu\left(A_{i}\right)$ (countable subadditivity).

A subset $M \subset X$ is called v-measurable if $v(A)=v(A \cup M)+v(A \backslash M)$ for any $A \subset X$. The set Σ^{\prime} of all v-measurable sets forms a σ-algebra over X, and $\left(X, \Sigma^{\prime}, v\right)$ is a complete measure space.
A metric outer measure is an outer measure v defined on the subsets of a given metric space (X, d) such that $v(A \cup B)=v(A)+v(B)$ for every pair of nonempty subsets $A, B \subset X$ with positive set-set distance $\inf _{a \in A, b \in B} d(a, b)$. An example is Hausdorff q-measure; cf. Hausdorff dimension.

- Length of metric space

The Fremlin length of a metric space (X, d) is its Hausdorff 1-measure $H^{1}(X)$.
The Hejcman length $\operatorname{lng}(M)$ of a subset $M \subset X$ of a metric space (X, d) is $\sup \left\{\ln g\left(M^{\prime}\right): M^{\prime} \subset M,\left|M^{\prime}\right|<\infty\right\}$. Here $\ln g(\emptyset)=0$ and, for a finite subset $M^{\prime} \subset X, \ln g\left(M^{\prime}\right)=\min \sum_{i=1}^{n} d\left(x_{i-1}, x_{i}\right)$ over all sequences x_{0}, \ldots, x_{n} such that $\left\{x_{i}: i=0,1, \ldots, n\right\}=M^{\prime}$.

The Schechtman length of a finite metric space (X, d) is $\inf \sqrt{\sum_{i=1}^{n} a_{i}^{2}}$ over all sequences a_{1}, \ldots, a_{n} of positive numbers such that there exists a sequence X_{0}, \ldots, X_{n} of partitions of X with following properties:

1. $X_{0}=\{X\}$ and $X_{n}=\{\{x\}: x \in X\}$;
2. X_{i} refines X_{i-1} for $i=1, \ldots, n$;
3. For $i=1, \ldots, n$ and $B, C \subset A \in X_{i-1}$ with $B, C \in X_{i}$, there exists a one-to-one map f from B onto C such that $d(x, f(x)) \leq a_{i}$ for all $x \in B$.

- Volume of finite metric space

Given a metric space (X, d) with $|X|=k<\infty$, its volume (Feige, 2000) is the maximal $(k-1)$-dimensional volume of the simplex with vertices $\{f(x): x \in$ $X\}$ over all metric mappings $f:(X, d) \rightarrow\left(\mathbb{R}^{k-1}, l_{2}\right)$. The volume coincides with the metric for $k=2$. It is monotonically increasing and continuous in the metric d.

- Rank of metric space

The Minkowski rank of a metric space (X, d) is the maximal dimension of a normed vector space $(V,\|\|$.$) such that there is an isometry (V, \||.| |) \rightarrow(X, d)$. The Euclidean rank of a metric space (X, d) is the maximal dimension of a flat in it, that is of a Euclidean space \mathbb{E}^{n} such that there is an isometric embedding $\mathbb{E}^{n} \rightarrow(X, d)$.
The quasi-Euclidean rank of a metric space (X, d) is the maximal dimension of a quasi-flat in it, i.e., of an Euclidean space \mathbb{E}^{n} admitting a quasi-isometry $\mathbb{E}^{n} \rightarrow(X, d)$. Every Gromov hyperbolic metric space has this rank 1 .

- Roundness of metric space

The roundness of a metric space (X, d) is the supremum of all q such that

$$
d\left(x_{1}, x_{2}\right)^{q}+d\left(y_{1}, y_{2}\right)^{q} \leq d\left(x_{1}, y_{1}\right)^{q}+d\left(x_{1}, y_{2}\right)^{q}+d\left(x_{2}, y_{1}\right)^{q}+d\left(x_{2}, y_{2}\right)^{q}
$$

for any four points $x_{1}, x_{2}, y_{1}, y_{2} \in X$.
Every metric space has roundness ≥ 1; it is ≤ 2 if the space has approximate midpoints. The roundness of L_{p}-space is p if $1 \leq p \leq 2$.
The generalized roundness of a metric space (X, d) is (Enflo, 1969) the supremum of all q such that, for any $2 k \geq 4$ points $x_{i}, y_{i} \in X$ with $1 \leq i \leq k$,

$$
\sum_{1 \leq i<j \leq k}\left(d\left(x_{i}, x_{j}\right)^{q}+d\left(y_{i}, y_{j}\right)^{q}\right) \leq \sum_{1 \leq i, j \leq k} d\left(x_{i}, y_{j}\right)^{q}
$$

Lennard-Tonge-Weston, 1997, have shown that the generalized roundness is the supremum of q such that d is of q-negative type, i.e., d^{q} is of negative type.
Every CAT(0) space (cf. Chap. 6) has roundness 2, but some of them have generalized roundness 0 (Lafont-Prassidis, 2006).

- Type of metric space

The Enflo type of a metric space (X, d) is p if there exists a constant $1 \leq$ $C<\infty$ such that, for every $n \in \mathbb{N}$ and every function $f:\{-1,1\}^{n} \rightarrow X$, $\sum_{\epsilon \in\{-1,1\}^{n}} d^{p}(f(\epsilon), f(-\epsilon))$ is at most
$C^{p} \sum_{j=1}^{n} \sum_{\epsilon \in\{-1,1\}^{n}} d^{p}\left(f\left(\epsilon_{1}, \ldots, \epsilon_{j-1}, \epsilon_{j}, \epsilon_{j+1}, \ldots, \epsilon_{n}\right), f\left(\epsilon_{1}, \ldots, \epsilon_{j-1},-\right.\right.$ $\left.\epsilon_{j}, \epsilon_{j+1}, \ldots, \epsilon_{n}\right)$).
A Banach space ($V,\|$.$\|) of Enflo type p$ has Rademacher type p, i.e., for every $x_{1}, \ldots, x_{n} \in V$, it holds

$$
\sum_{\epsilon \in\{-1,1\}^{n}}\left\|\sum_{j=1}^{n} \epsilon_{j} x_{j}\right\|^{p} \leq C^{p} \sum_{j=1}^{n}\left\|x_{j}\right\|^{p} .
$$

Given a metric space (X, d), a symmetric Markov chain on X is a Markov chain $\left\{Z_{l}\right\}_{l=0}^{\infty}$ on a state space $\left\{x_{1}, \ldots, x_{m}\right\} \subset X$ with a symmetrical transition $m \times m$ matrix $\left(\left(a_{i j}\right)\right)$, such that $P\left(Z_{l+1}=x_{j}: Z_{l}=x_{i}\right)=a_{i j}$ and $P\left(Z_{0}=x_{i}\right)=\frac{1}{m}$ for all integers $1 \leq i, j \leq m$ and $l \geq 0$. A metric space (X, d) has Markov type $p($ Ball, 1992 $)$ if $\sup _{T} M_{p}(X, T)<\infty$ where $M_{p}(X, T)$ is the smallest constant $C>0$ such that the inequality

$$
\mathbb{E} d^{p}\left(Z_{T}, Z_{0}\right) \leq T C^{p} \mathbb{E} d^{p}\left(Z_{1}, Z_{0}\right)
$$

holds for every symmetric Markov chain $\left\{Z_{l}\right\}_{l=0}^{\infty}$ on X holds, in terms of expected value (mean) $\mathbb{E}[X]=\sum_{x} x p(x)$ of the discrete random variable X.
A metric space of Markov type p has Enflo type p.

- Strength of metric space

Given a finite metric space (X, d) with s different nonzero values of $d_{i j}=$ $d(i, j)$, its strength is the largest number t such that, for any integers $p, q \geq 0$ with $p+q \leq t$, there is a polynomial $f_{p q}(s)$ of degree at $\operatorname{most} \min \{p, q\}$ such that $\left(\left(d_{i j}^{2 p}\right)\right)\left(\left(d_{i j}^{2 q}\right)\right)=\left(\left(f_{p q}\left(d_{i j}^{2}\right)\right)\right)$.

- Rendez-vous number

Given a metric space (X, d), its Rendez-vous number (or Gross number, magic number) is a positive real number $r(X, d)$ (if it exists) defined by the property that for each integer n and all (not necessarily distinct) $x_{1}, \ldots, x_{n} \in X$ there exists a point $x \in X$ such that

$$
r(X, d)=\frac{1}{n} \sum_{i=1}^{n} d\left(x_{i}, x\right)
$$

If the number $r(X, d)$ exists, then it is said that (X, d) has the average distance property. Every compact connected metric space has this property. The unit ball $\{x \in V:\|x\| \leq 1\}$ of a Banach space $(V,\|\|$.$) has the rendez-vous number 1$.

- Wiener-like distance indices

Given a finite subset M of a metric space (X, d) and a parameter q, the Wiener polynomial of M (as defined by Hosoya, 1988, for the graphic metric $d_{\text {path }}$) is

$$
W(M ; q)=\frac{1}{2} \sum_{x, y \in M: x \neq y} q^{d(x, y)}
$$

It is a generating function for the distance distribution (cf. Chap. 16) of M, i.e., the coefficient of q^{i} in $W(M ; q)$ is the number $\mid\{\{x, y\} \in M \times M: d(x, y)=$ $i\} \mid$.
In the main case when M is the vertex-set V of a connected graph $G=(V, E)$ and d is the path metric of G, the number $W(M ; 1)=\frac{1}{2} \sum_{x, y \in M} d(x, y)$ is called the Wiener index of G. This notion is originated (Wiener, 1947) and applied, together with its many analogs, in Chemistry; cf. chemical distance in Chap. 24.
The hyper-Wiener index is $\sum_{x, y \in M}\left(d(x, y)+d(x, y)^{2}\right)$. The reverse-Wiener index is $\frac{1}{2} \sum_{x, y \in M}(D-d(x, y))$, where D is the diameter of M. The complementary reciprocal Wiener index is $\frac{1}{2} \sum_{x, y \in M}(1+D-d(x, y))^{-1}$. The Harary index is $\sum_{x, y \in M}(d(x, y))^{-1}$. The Szeged index and the vertex PI index are $\sum_{e \in E} n_{x}(e) n_{y}(e)$ and $\sum_{e \in E}\left(n_{x}(e)+n_{y}(e)\right)$, where $e=(x y)$ and $n_{x}(e)=$ $|\{z \in V: d(x, z)<d(y, z)\}|$.
Two studied edge-Wiener indices of G are the Wiener index of its line graph and $\sum_{(x y),\left(x^{\prime} y^{\prime}\right) \in E} \max \left\{d\left(x, x^{\prime}\right), d\left(x, y^{\prime}\right), d\left(y, x^{\prime}\right), d\left(y, y^{\prime}\right)\right\}$.
The Gutman-Schultz index, degree distance (Dobrynin-Kochetova, 1994), reciprocal degree distance and terminal Wiener index are:

$$
\begin{aligned}
& \sum_{x, y \in M} r_{x} r_{y} d(x, y), \sum_{x, y \in M} d(x, y)\left(r_{x}+r_{y}\right), \\
& \quad \times \sum_{x, y \in M} \frac{1}{d(x, y)}\left(r_{x}+r_{y}\right), \sum_{x, y \in\left\{z \in M: r_{z}=1\right\}} d(x, y),
\end{aligned}
$$

where r_{z} is the degree of the vertex $z \in M$. The eccentric distance sum (Gupta et al., 2002) is $\sum_{y \in M}\left(\max \{d(x, y): x \in M\} d_{y}\right.$, where d_{y} is $\sum_{x \in M} d(x, y)$. The Balaban index is $\frac{|E|}{c+1} \sum_{(y z) \in E}\left(\sqrt{d_{y} d_{z}}\right)^{-1}$, where c is the number of primitive cycles.
Above indices are called (corresponding) Kirchhoff indices if d the resistance metric (cf. Chap. 15) of G.
The average distance of M is the number $\frac{1}{|M|(|M|-1)} \sum_{x, y \in M} d(x, y)$. In general, for a quasi-metric space (X, d), the numbers $\sum_{x, y \in M} d(x, y)$ and $\frac{1}{|M|(|M|-1)} \sum_{x, y \in M, x \neq y} \frac{1}{d(x, y)}$ are called, respectively, the transmission and global efficiency of M.

- Distance polynomial

Given an ordered finite subset M of a metric space (X, d), let D be the distance matrix of M. The distance polynomial of M is the characteristic polynomial of D, i.e., the determinant $\operatorname{det}(D-\lambda I)$.

Usually, D is the distance matrix (of path metric) of a graph. Sometimes, the distance polynomial is defined as $\operatorname{det}(\lambda I-D)$ or $(-1)^{n} \operatorname{det}(D-\lambda I)$.
The roots of the distance polynomial constitute the distance spectrum (or D spectrum of D-eigenvalues) of M. Let $\rho_{\max }$ and $\rho_{\min }$ be the largest and the smallest roots; then $\rho_{\max }$ and $\rho_{\max }-\rho_{\min }$ are called (distance spectral) radius and spread of M. The distance degree of $x \in M$ is $\sum_{y \in M} d(x, y)$. The distance energy of M is the sum of the absolute values of its D-eigenvalues. It is $2 \rho_{\max }$ if (as, for example, for the path metric of a tree) exactly one D-eigenvalue is positive.

- s-energy

Given a finite subset M of a metric space (X, d) and a number $s>0$, the s energy and 0 -energy of M are, respectively, the numbers

$$
\sum_{x, y \in M, x \neq y} \frac{1}{d^{s}(x, y)} \text { and } \sum_{x, y \in M, x \neq y} \log \frac{1}{d(x, y)}=-\log \prod_{x, y \in M, x \neq y} d(x, y)
$$

The (unnormalized) s-moment of M is the number $\sum_{x, y \in M} d^{s}(x, y)$.
The discrete Riesz s-energy is the s-energy for Euclidean distance d. In general, let μ be a finite Borel probability measure on (X, d). Then $U_{s}^{\mu}(x)=\int \frac{\mu(d y)}{d(x, y)^{s}}$ is the (abstract) s-potential at a point $x \in X$. The Newton gravitational potential is the case $(X, d)=\left(\mathbb{R}^{3},|x-y|\right), s=1$, for the mass distribution μ.
The s-energy of μ is $E_{s}^{\mu}=\int U_{s}^{\mu}(x) \mu(d x)=\iint \frac{\mu(d x) \mu(d y)}{d(x, y)^{s}}$, and the s-capacity of (X, d) is $\left(\inf _{\mu} E_{s}^{\mu}\right)^{-1}$. Cf. the metric capacity.

- Fréchet mean

Given a metric space (X, d) and a number $s>0$, the Fréchet function is $F_{s}(x)=$ $\mathbb{E}\left[d^{s}(x, y)\right]$. For a finite subset M of X, this expected value is the mean $F_{s}(x)=$ $\sum_{y \in M} w(y) d^{s}(x, y)$, where $w(y)$ is a weight function on M.
The points, minimizing $F_{1}(x)$ and $F_{2}(x)$, are called the Fréchet median (or weighted geometric median) and Fréchet mean (or Karcher mean), respectively. If $(X, d)=\left(\mathbb{R}^{n},\|x-y\|_{2}\right)$ and the weights are equal, these points are called the geometric median (or Fermat-Weber point, 1-median) and the centroid (or geometric center, barycenter), respectively.
The k-median and k-mean of M are the k-sets C minimizing, respectively, the sums $\sum_{y \in M} \min _{c \in C} d(y, c)=\sum_{y \in M} d(y, C)$ and $\sum_{y \in M} d^{2}(y, C)$.
Let (X, d) be the metric space $\left(\mathbb{R}_{>0},|f(x)-f(y)|\right)$, where $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ is a given injective and continuous function. Then the Fréchet mean of $M \subset \mathbb{R}_{>0}$ is the f-mean (or Kolmogorov mean, quasi-arithmetic mean) $f^{-1}\left(\frac{\sum_{x \in M} f(x)}{|M|}\right)$. It is the arithmetic, geometric, harmonic, and power mean if $f=x, \log (x), \frac{1}{x}$, and $f=x^{p}$ (for a given $p \neq 0$), respectively. The cases $p \rightarrow+\infty, p \rightarrow$ $-\infty$ correspond to maximum and minimum, while $p=2,=1, \rightarrow 0, \rightarrow-1$ correspond to the quadratic, arithmetic, geometric and harmonic mean.
Given a completely monotonic (i.e., $(-1)^{k} f^{(k)} \geq 0$ for any k) function $f \in \mathbb{C}^{\infty}$, the f-potential energy of a finite subset M of (X, d) is
$\sum_{x, y \in M, x \neq y} f\left(d^{2}(x, y)\right)$. The set M is called (Cohn-Kumar, 2007) universally optimal if it minimizes, among sets $M^{\prime} \subset X$ with $\left|M^{\prime}\right|=|M|$, the f-potential energy for any such f. Among universally optimal subsets of $\left(\mathbb{S}^{n-1},\|x-y\|_{2}\right)$, there are the vertex-sets of a polygon, simplex, cross-polytope, icosahedron, 600-cell, E_{8} root system.

- Distance-weighted mean

In Statistics, the distance-weighted mean between given data points x_{1}, \ldots, x_{n} is defined (Dodonov-Dodonova, 2011) by

$$
\frac{\sum_{1 \leq i \leq n} w_{i} x_{i}}{\sum_{1 \leq i \leq n} w_{i}} \text { with } w_{i}=\frac{n-1}{\sum_{1 \leq j \leq n}\left|x_{i}-x_{j}\right|}
$$

The case $w_{i}=1$ for all i corresponds to the arithmetic mean.

- Inverse distance weighting

In Numerical Analysis, multivariate (or spatial) interpolation is interpolation on functions of more than one variable. Inverse distance weighting is a method (Shepard, 1968) for multivariate interpolation. Let x_{1}, \ldots, x_{n} be interpolating points (i.e., samples $u_{i}=u\left(x_{i}\right)$ are known), x be an interpolated (unknown) point and $d\left(x, x_{i}\right)$ be a given distance. A general form of interpolated value $u(x)$ is

$$
u(x)=\frac{\sum_{1 \leq i \leq n} w_{i}(x) u_{i}}{\sum_{1 \leq i \leq n} w_{i}(x)}, \text { with } w_{i}(x)=\frac{1}{\left(d\left(x, x_{i}\right)\right)^{p}},
$$

where $p>0$ (usually $p=2$) is a fixed power parameter.

- Transfinite diameter

The n-th diameter $D_{n}(M)$ and the n-th Chebyshev constant $C_{n}(M)$ of a set $M \subseteq X$ in a metric space (X, d) are defined (Fekete, 1923, for the complex plane \mathbb{C}) as

$$
\begin{aligned}
& D_{n}(M)=\sup _{x_{1}, \ldots, x_{n} \in M} \prod_{i \neq j} d\left(x_{i}, x_{j}\right)^{\frac{1}{n(n-1)}} \text { and } \\
& C_{n}(M)=\inf _{x \in X} \sup _{x_{1}, \ldots, x_{n} \in M} \prod_{j=1}^{n} d\left(x, x_{j}\right)^{\frac{1}{n}} .
\end{aligned}
$$

The number $\log D_{n}(M)$ (the supremum of the average distance) is called the n-extent of M. The numbers $D_{n}(M), C_{n}(M)$ come from the geometric mean averaging; they also come as the limit case $s \rightarrow 0$ of the s-moment $\sum_{i \neq j} d\left(x_{i}, x_{j}\right)^{s}$ averaging.
The transfinite diameter (or ∞-th diameter) and the ∞-th Chebyshev constant $C_{\infty}(M)$ of M are defined as

$$
D_{\infty}(M)=\lim _{n \rightarrow \infty} D_{n}(M) \text { and } C_{\infty}(M)=\lim _{n \rightarrow \infty} C_{n}(M) ;
$$

these limits existing since $\left\{D_{n}(M)\right\}$ and $\left\{C_{n}(M)\right\}$ are nonincreasing sequences of nonnegative real numbers. Define $D_{\infty}(\emptyset)=0$.

The transfinite diameter of a compact subset of \mathbb{C} is its conformal radius at infinity (cf. Chap. 6); for a segment in \mathbb{C}, it is $\frac{1}{4}$ of its length.

- Metric diameter

The metric diameter (or diameter, width) $\operatorname{diam}(M)$ of a set $M \subseteq X$ in a metric space (X, d) is defined by

$$
\sup _{x, y \in M} d(x, y)
$$

The diameter graph of M has, as vertices, all points $x \in M$ with $d(x, y)=$ $\operatorname{diam}(M)$ for some $y \in M$; it has, as edges, all pairs of its vertices at distance $\operatorname{diam}(M)$ in $(X, d) .(X, d)$ is called a diametrical metric space if any $x \in X$ has the antipode, i.e., a unique $x^{\prime} \in X$ such that the closed metric interval $I\left(x, x^{\prime}\right)$ is X.
The furthest neighbor digraph of M is a directed graph on M, where $x y$ is an arc (called a furthest neighbor pair) whenever y is at maximal distance from x.
In a metric space endowed with a measure, one says that the isodiametric inequality holds if the metric balls maximize the measure among all sets with given diameter. It holds for the volume in Euclidean space but not, for example, for the Heisenberg metric on the Heisenberg group (cf. Chap. 10).
The k-ameter (Grove-Markvorsen, 1992) is $\sup _{K \subseteq X:|K|=k} \frac{1}{2} \sum_{x, y \in K} d(x, y)$, and the k-diameter (Chung-Delorme-Sole, 1999) is $\sup _{K \subseteq X:|K|=k} \inf _{x, y \in K: x \neq y}$ $d(x, y)$.
Given a property $P \subseteq X \times X$ of a pair $\left(K, K^{\prime}\right)$ of subsets of a finite metric space (X, d), the conditional diameter (called P-diameter in Balbuena et al., 1996) is $\max _{\left(K, K^{\prime}\right) \in P} \min _{(x, y) \in K \times K^{\prime}} d(x, y)$. It is $\operatorname{diam}(X, d)$ if $P=\left\{\left(K, K^{\prime}\right) \in\right.$ $\left.X \times X:|K|=\left|K^{\prime}\right|=1\right\}$. When (X, d) models an interconnection network, the P-diameter corresponds to the maximum delay of the messages interchanged between any pair of clusters of nodes, K and K^{\prime}, satisfying a given property P of interest.

- Metric spread

A subset M of a metric space (X, d) is called Delone set (or separated ϵ-net, (A, a)-Delone set) if it is bounded (with a finite diameter $A=\sup _{x, y \in M} d(x, y)$) and metrically discrete (with a separation $a=$ $\left.\inf _{x, y \in M, x \neq y} d(x, y)>0\right)$.
The metric spread (or distance ratio, normalized diameter) of M is the ratio $\frac{A}{a}$. The aspect ratio (or axial ratio) of a shape is the ratio of its longer and shorter dimensions, say, the length and diameter of a rod, major and minor axes of a torus or width and height of a rectangle (image, display, pixel, etc.). The Feret ratio is the reciprocal of the aspect ratio; cf. shape parameters in Chap. 21.
In Physics, the aspect ratio is the ratio of height-to-length scale characteristics. Dynamic range DNR is the ratio between the largest and smallest possible values of a quantity, such as in sound or light signals; cf. SNR distance in Chap. 21.

In the Theory of Approximation and Interpolation, the separation a and the covering radius (or mesh norm) $c=\sup _{y \in X} \inf _{x \in M} d(x, y)$ of M are used to measure the stability and error of the approximation. The mesh ratio of M is $\frac{c}{a}$.

- Eccentricity

Given a bounded metric space (X, d), the eccentricity (or Koenig number) of a point $x \in X$ is the number $e(x)=\max _{y \in X} d(x, y)$.
The numbers $D=\max _{x \in X} e(x)$ and $r=\min _{x \in X} e(x)$ are called the diameter and the radius of (X, d), respectively. The point $z \in X$ is called central if $e(z)=r$, peripheral if $e(z)=D$, and pseudo-peripheral if for each point x with $d(z, x)=e(z)$ it holds that $e(z)=e(x)$. For finite $|X|$, the average eccentricity is $\frac{1}{|X|} \sum_{x \in X} e(x)$, and the contour of (X, d) is the set of points $x \in X$ such that no neighbor (closest point) of x has an eccentricity greater than x.
The eccentric digraph (Buckley, 2001) of (X, d) has, as vertices, all points $x \in X$ and, as arcs, all ordered pairs (x, y) of points with $d(x, y)=e(y)$. The eccentric graph (Akyiama-Ando-Avis, 1976) of (X, d) has, as vertices, all points $x \in X$ and, as edges, all pairs (x, y) of points at distance $\min \{e(x), e(y)\}$. The super-eccentric graph (Iqbalunnisa-Janairaman-Srinivasan, 1989) of (X, d) has, as vertices, all points $x \in X$ and, as edges, all pairs (x, y) of points at distance no less than the radius of (X, d). The radial graph (Kathiresan-Marimuthu, 2009) of (X, d) has, as vertices, all points $x \in X$ and, as edges, all pairs (x, y) of points at distance equal to the radius of (X, d).
The sets $\{x \in X: e(x) \leq e(z)$ for any $z \in X\},\{x \in X: e(x) \geq$ $e(z)$ for any $z \in X\}$ and $\left\{x \in X: \sum_{y \in X} d(x, y) \leq \sum_{y \in X} d(z, y)\right.$ for any $z \in$ $X\}$ are called, respectively, the metric center (or eccentricity center, center), metric antimedian (or periphery) and the metric median (or distance center) of (X, d).

- Radii of metric space

Given a bounded metric space (X, d) and a set $M \subseteq X$ of diameter D, its metric radius (or radius) $M r$, covering radius (or directed Hausdorff distance from X to M) $C r$ and remoteness (or Chebyshev radius) $R e$ are the numbers $\inf _{x \in M} \sup _{y \in M} d(x, y), \sup _{x \in X} \inf _{y \in M} d(x, y)$ and $\inf _{x \in X} \sup _{y \in M} d(x, y)$., respectively. It holds that $\frac{D}{2} \leq R e \leq M r \leq D$ with $M r=\frac{D}{2}$ in any injective metric space. Somemimes, $\frac{D}{2}$ is called the radius.
For $m>0$, a minimax distance design of size m is an m-subset of X having smallest covering radius. This radius is called the m-point mesh norm of (X, d). The packing radius Pr of M is the number $\sup \left\{r: \inf _{x, y \in M, x \neq y} d(x, y)>2 r\right\}$. For $m>0$, a maximum distance design of size m is an m-subset of X having largest packing radius. This radius is the m-point best packing distance on (X, d).

- ϵ-Net

Given a metric space (X, d), a subset $M \subset X$, and a number $\epsilon>0$, the ϵ neighborhood of M is the set $M^{\epsilon}=\cup_{x \in M} B(x, \epsilon)$.

The set M is called an ϵ-net (or ϵ-covering, ϵ-approximation) of (X, d) if $M^{\epsilon}=$ X, i.e., the covering radius of M is at most ϵ.
Let C_{ϵ} denote the ϵ-covering number, i.e., the smallest size of an ϵ-net in (X, d). The number $\lg _{2} C_{\epsilon}$ is called (Kolmogorov-Tikhomirov, 1959) the metric entropy (or ϵ-entropy) of (X, d). It holds $P_{\epsilon} \leq C_{\epsilon} \leq P_{\epsilon}$, where P_{ϵ} denote the ϵ-packing number of (X, d), i.e., $\sup \{|M|: M \subset X, \bar{B}(x, \epsilon) \cap \bar{B}(y, \epsilon)=$ \emptyset for any $x, y \in M, x \neq y\}$. The number $\lg _{2} P_{\epsilon}$ is called the metric capacity (or ϵ-capacity) of (X, d).

- Steiner ratio

Given a metric space (X, d) and a finite subset $V \subset X$, let $G=(V, E)$ be the complete weighted graph on V with edge-weights $d(x, y)$ for all $x, y \in V$.
Given a tree T, its weight is the sum $d(T)$ of its edge-weights. A spanning tree of V is a subset of $|V|-1$ edges forming a tree on V. Let $M S p T_{V}$ be a minimum spanning tree of V, i.e., a spanning tree with the minimal weight $d\left(M S p T_{V}\right)$.
A Steiner tree of V is a tree on $Y, V \subset Y \subset X$, connecting vertices from V; elements of $Y \backslash V$ are called Steiner points. Let StMT_{V} be a minimum Steiner tree of V, i.e., a Steiner tree with the minimal weight $d\left(S t M T_{V}\right)=$ $\inf _{Y \subset X: V \subset Y} d\left(M S p T_{Y}\right)$. This weight is called the Steiner diversity of V. It is the Steiner distance of set V (cf. Chap. 15) if (X, d) is graphic metric space. The Steiner ratio $\operatorname{St}(X, d)$ of the metric space (X, d) is defined by

$$
\inf _{V \subset X} \frac{d\left(S t M T_{V}\right)}{d\left(M S p T_{V}\right)}
$$

Cf. arc routing problems in Chap. 15.

- Diversity

Given a set X, a function f from its finite subsets to $\mathbb{R}_{\geq 0}$ is called (Bryant-Tupper, 2012) diversity on X if $f(A)=0$ for all $A \subset X$ with $|A| \leq 1$ and

$$
f(A \cup B)+f(B \cup C) \geq f(A \cup C) \text { for all } A, B, C \subset X \text { with } B \neq \emptyset .
$$

The induced diversity metric $d(x, y)$ is $f(\{x, y\})$. For any diversity $f(A)$ with induced metric space (X, d), it holds $f_{\text {diam }}(A) \leq f(A) \leq f_{S}(A) \leq$ $(|A|-1) f_{\text {diam }}(A)$, where the diameter diversity $f_{\text {diam }}(A)$ is $\max _{x, y \in A} d(x, y)=$ $\operatorname{diam}(A)$ and the Steiner diversity $f_{S}(A)$ is the minimum weight of a Steiner tree connecting elements of A. Also, the Traveling Salesman diversity is the minimum of $\frac{1}{2}\left(d\left(a_{1}, a_{2}\right)+d\left(a_{2}, a_{3}\right)+\cdots+d\left(a_{\mid} A \mid, a_{1}\right)\right)$ over all orderings $a_{1}, a_{2}, \ldots, a_{\mid} A \mid$ of A.

- Chromatic numbers of metric space

Given a metric space (X, d) and a set D of positive real numbers, the D-chromatic number of (X, d) is the standard chromatic number of its D-distance graph, i.e., the graph (X, E) with the vertex-set X and the edge-set $E=\{x y: d(x, y) \in D\}$ (Chap. 15). Usually, (X, d) is an l_{p}-space and $D=\{1\}$ (Benda-Perles chromatic number) or $D=[1-\epsilon, 1+\epsilon]$.

For a metric space (X, d), the polychromatic number is the minimum number of colors needed to color all the points $x \in X$ so that, for each color class C_{i}, there is a distance d_{i} such that no two points of C_{i} are at distance d_{i}.
For a metric space (X, d), the packing chromatic number is the minimum number of colors needed to color all the points $x \in X$ so that, for each color class C_{i}, no two distinct points of C_{i} are at distance at most i.
For any integer $t>0$, the t-distance chromatic number of a metric space (X, d) is the minimum number of colors needed to color all the points $x \in X$ so that any two points whose distance is $\leq t$ have distinct colors. Cf. k-distance chromatic number in Chap. 15.
For any integer $t>0$, the t-th Babai number of a metric space (X, d) is the minimum number of colors needed to color all the points in X so that, for any set D of positive distances with $|D| \leq t$, any two points $x, y \in X$ with $d(x, y) \in D$ have distinct colors.

- Congruence order of metric space

A metric space (X, d) has congruence order n if every finite metric space which is not isometrically embeddable in (X, d) has a subspace with at most n points which is not isometrically embeddable in (X, d). For example, the congruence order of l_{2}^{n} is $n+3$ (Menger, 1928); it is 4 for the path metric of a tree.

1.4 Main Mappings of Metric Spaces

- Distance function

In Topology, the term distance function is often used for distance. But, in general, a distance function (or ray function) is a continuous function on a metric space (X, d) (usually, on a Euclidean space $\left.\mathbb{E}^{n}\right) f: X \rightarrow \mathbb{R}_{\geq 0}$ which is homogeneous, i.e., $f(t x)=t f(x)$ for all $t \geq 0$ and all $x \in X$.

Such function f is called positive if $f(x)>0$ for all $x \neq 0$, symmetric if $f(x)=f(-x)$, convex if $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$ for any $0<t<1$ and $x \neq y$, and strictly convex if this inequality is strict.
If $X=\mathbb{E}^{n}$, the set $S_{f}=\left\{x \in \mathbb{R}^{n}: f(x)<1\right\}$ is star body, i.e., $x \in S_{f}$ implies $[0, x] \subset S_{f}$. Any star body S corresponds to a unique distance function $g(x)=\inf _{t x \in S, t>0} \frac{1}{t}$, and $S=S_{g}$. The star body is bounded if f is positive, symmetric about the origin if f is symmetric, convex if f is convex, and strictly convex (i.e., the boundary ∂B does not contain a segment) if f is strictly convex. For a quadratic distance function of the form $f_{A}=x A x^{T}$, where A is a real matrix and $x \in \mathbb{R}^{n}$, the matrix A is positive-definite (i.e., the Gram matrix $V V^{T}=\left(\left(\left\langle v_{i}, v_{j}\right\rangle\right)\right)$ of n linearly independent vectors $\left.v_{i}=\left(v_{i 1}, \ldots, v_{i n}\right)\right)$ if and only if f_{A} is symmetric and strictly convex function. The homogeneous minimum of f_{A} is

$$
\min \left(f_{A}\right)=\inf _{x \in \mathbb{Z}^{n} \backslash\{0\}} f_{A}(x)=\inf _{x \in L \backslash\{0\}} \sum_{1 \leq i \leq n} x_{i}^{2},
$$

where $L=\left\{\sum x_{i} v_{i}: x_{i} \in \mathbb{Z}\right\}$ is a lattice, i.e., a discrete subgroup of \mathbb{R}^{n} spanning it. The Hermite constant γ_{n}, a central notion in Geometry of Numbers, is the supremum, over all positive-definite $(n \times n)$-matrices, of $\min \left(f_{A}\right) \operatorname{det}(A)^{\frac{1}{n}}$. It is known only for $2 \leq n \leq 8$ and $n=24$; cf. systole of metric space.

- Convex distance function

Given a compact convex region $B \subset \mathbb{R}^{n}$ containing the origin O in its interior, the convex distance function (or Minkowski distance function, Minkowski seminorm, gauge) is the function $\|P\|_{B}$ whose value at a point $P \in \mathbb{R}^{n}$ is the distance ratio $\frac{O P}{O Q}$, where $Q \in B$ is the furthest from O point on the ray $O P$.
Then $d_{B}(x, y)=\|x-y\|_{B}$ is the quasi-metric on \mathbb{R}^{n} defined, for $x \neq y$, by

$$
\inf \{\alpha>0: y-x \in \alpha B\}
$$

and $B=\left\{x \in \mathbb{R}^{n}: d_{B}(0, x) \leq 1\right\}$ with equality only for $x \in \partial B$.
The function $\|P\|_{B}$ is called a polyhedral distance function if B is a n polytope, simplicial distance function if it is a n-simplex, and so on.
If B is centrally-symmetric with respect to the origin, then d_{B} is a Minkowskian metric (cf. Chap. 6) whose unit ball is B. This is the l_{1}-metric if B is the n-crosspolytope and the l_{∞}-metric if B is the n-cube.

- Funk distance

Let B be an nonempty open convex subset of \mathbb{R}^{n}. For any $x, y \in B$, denote by $R(x, y)$ the ray from x through y. The Funk distance (Funk, 1929) on B is the quasi-semimetric defined, for any $x, y \in B$, as 0 if the boundary $\partial(B)$ and $R(x, y)$ are disjoint, and, otherwise, i.e., if $R(x, y) \cap \partial B=\{z\}$, by

$$
\ln \frac{\|x-z\|_{2}}{\|y-z\|_{2}}
$$

The Hilbert projective metric in Chap. 6 is a symmetrization of this distance.

- Metric projection

Given a metric space (X, d) and a subset $M \subset X$, an element $u_{0} \in M$ is called an element of best approximation to a given element $x \in X$ if $d\left(x, u_{0}\right)=$ $\inf _{u \in M} d(x, u)$, i.e., if $d\left(x, u_{0}\right)$ is the point-set distance $d(x, M)$.
A metric projection (or operator of best approximation, nearest point map) is a multivalued mapping associating to each element $x \in X$ the set of elements of best approximation from the set M (cf. distance map).
A Chebyshev set in a metric space (X, d) is a subset $M \subset X$ containing a unique element of best approximation for every $x \in X$.
A subset $M \subset X$ is called a semi-Chebyshev set if the number of such elements is at most one, and a proximinal set if this number is at least one.
The Chebyshev radius (or remoteness) of the set M is $\inf _{x \in X} \sup _{y \in M} d(x, y)$, and a Chebyshev center of M is an element $x_{0} \in X$ realizing this infimum. Sometimes (say, for a finite graphic metric space), $\inf _{x \in X} \sum_{y \in M} d(x, y)$ and $\sup _{x \in X} \sum_{y \in M} d(x, y)$ are called proximity and remoteness of M.

- Distance map

Given a metric space (X, d) and a subset $M \subset X$, the distance map is a function $f_{M}: X \rightarrow \mathbb{R}_{\geq 0}$, where $f_{M}(x)=\inf _{u \in M} d(x, u)$ is the point-set distance $d(x, M)$ (cf. metric projection).
If the boundary $B(M)$ of the set M is defined, then the signed distance function g_{M} is defined by $g_{M}(x)=-\inf _{u \in B(M)} d(x, u)$ for $x \in M$, and $g_{M}(x)=$ $\inf _{u \in B(M)} d(x, u)$, otherwise. If M is a (closed orientable) n-manifold (Chap. 2), then g_{M} is the solution of the eikonal equation $|\nabla g|=1$ for its gradient ∇.
If $X=\mathbb{R}^{n}$ and, for every $x \in X$, there is unique element $u(x)$ with $d(x, M)=$ $d(x, u(x))$ (i.e., M is a Chebyshev set), then $\|x-u(x)\|$ is called a vector distance function.
Distance maps are used in Robot Motion (M being the set of obstacle points) and, especially, in Image Processing (M being the set of all or only boundary pixels of the image). For $X=\mathbb{R}^{2}$, the graph $\left\{\left(x, f_{M}(x)\right): x \in X\right\}$ of $d(x, M)$ is called the Voronoi surface of M.

- Isometry

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called an isometric embedding of X into Y if it is injective and the equality $d_{Y}(f(x), f(y))=d_{X}(x, y)$ holds for all $x, y \in X$.
An isometry (or congruence mapping) is a bijective isometric embedding. Two metric spaces are called isometric (or isometrically isomorphic) if there exists an isometry between them.
A property of metric spaces which is invariant with respect to isometries (completeness, boundedness, etc.) is called a metric property (or metric invariant).
A path isometry (or arcwise isometry) is a mapping from X into Y (not necessarily bijective) preserving lengths of curves.

- Rigid motion of metric space

A rigid motion (or, simply, motion) of a metric space (X, d) is an isometry of (X, d) onto itself.
For a motion f, the displacement function $d_{f}(x)$ is $d(x, f(x))$. The motion f is called semisimple if $\inf _{x \in X} d_{f}(x)=d\left(x_{0}, f\left(x_{0}\right)\right)$ for some $x_{0} \in X$, and parabolic, otherwise. A semisimple motion is called elliptic if $\inf _{x \in X} d_{f}(x)=0$, and axial (or hyperbolic), otherwise. A motion is called a Clifford translation if the displacement function $d_{f}(x)$ is a constant for all $x \in X$.

- Symmetric metric space

A metric space (X, d) is called symmetric if, for any point $p \in X$, there exists a symmetry relative to that point, i.e., a motion f_{p} of this metric space such that $f_{p}\left(f_{p}(x)\right)=x$ for all $x \in X$, and p is an isolated fixed point of f_{p}.

- Homogeneous metric space

A metric space is called homogeneous (or point-homogeneous) if, for any two points of it, there exists a motion mapping one of the points to the other.
In general, a homogeneous space is a set together with a given transitive group of symmetries. Moss, 1992, defined similar distance-homogeneous distanced graph.

A metric space is called ultrahomogeneous space (or highly transitive) if any isometry between two of its finite subspaces extends to the whole space.
A metric space (X, d) is called (Grünbaum-Kelly) metrically homogeneous metric space if $\{d(x, z): z \in X\}=\{d(y, z): z \in X\}$ for any $x, y \in X$.

- Flat space

A flat space is any metric space with local isometry to some \mathbb{E}^{n}, i.e., each point has a neighborhood isometric to an open set in \mathbb{E}^{n}. A space is locally Euclidean if every point has a neighborhood homeomorphic to an open subset in \mathbb{E}^{n}.

- Dilation of metric space

Given a metric space (X, d), its dilation (or r-dilation) is a mapping $f: X \rightarrow$ X with $d(f(x), f(y))=r d(x, y)$ for some $r>0$ and any $x \in X$.

- Wobbling of metric space

Given a metric space (X, d), its wobbling (or r-wobbling) is a mapping f : $X \rightarrow X$ with $d(x, f(x))<r$ for some $r>0$ and any $x \in X$.

- Paradoxical metric space

Given a metric space (X, d) and an equivalence relation on the subsets of X, the space (X, d) is called paradoxical if X can be decomposed into two disjoint sets M_{1}, M_{2} so that M_{1}, M_{2} and X are pairwise equivalent.
Deuber, Simonovitz and Sós, 1995, introduced this idea for wobbling equivalent subsets $M_{1}, M_{2} \subset X$, i.e., there is a bijective r-wobbling $f: M_{1} \rightarrow M_{2}$. For example, $\left(\mathbb{R}^{2}, l_{2}\right)$ is paradoxical for wobbling but not for isometry equivalence.

- Metric cone

A pointed metric space $\left(X, d, x_{0}\right)$ is called a metric cone, if it is isometric to ($\lambda X, d, x_{0}$) for all $\lambda>0$. A metric cone structure on (X, d, x_{0}) is a (pointwise) continuous family $f_{t}\left(t \in \mathbb{R}_{>0}\right)$ of dilations of X, leaving the point x_{0} invariant, such that $d\left(f_{t}(x), f_{t}(y)\right)=t d(x, y)$ for all x, y and $f_{t} \circ f_{s}=f_{t s}$. A Banach space has such a structure for the dilations $f_{t}(x)=t x\left(t \in \mathbb{R}_{>0}\right)$. The Euclidean cone over a metric space (cf. cone over metric space in Chap.9) is another example.
The tangent metric cone over a metric space (X, d) at a point x_{0} is (for all dilations $t X=(X, t d)$) the closure of $\cup_{t>0} t X$, i.e., of $\lim _{t \rightarrow \infty} t X$ taken in the pointed Gromov-Hausdorff topology (cf. Gromov-Hausdorff metric).
The asymptotic metric cone over (X, d) is its tangent metric cone "at infinity", i.e., $\cap_{t>0} t X=\lim _{t \rightarrow 0} t X$. Cf. boundary of metric space in Chap. 6 .

The term metric cone was also used by Bronshtein, 1998, for a convex cone C equipped with a complete metric compatible with its operations of addition (continuous on $C \times C$) and multiplication (continuous on $C \times \mathbb{R}_{\geq 0}$). by all $\lambda \geq 0$.

- Metric fibration

Given a complete metric space (X, d), two subsets M_{1} and M_{2} of X are called equidistant if for each $x \in M_{1}$ there exists $y \in M_{2}$ with $d(x, y)$ being equal to the Hausdorff metric between the sets M_{1} and M_{2}. A metric fibration of (X, d) is a partition \mathcal{F} of X into isometric mutually equidistant closed sets.

The quotient metric space X / \mathcal{F} inherits a natural metric for which the distance map is a submetry.

- Homeomorphic metric spaces

Two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are called homeomorphic (or topologically isomorphic) if there exists a homeomorphism from X to Y, i.e., a bijective function $f: X \rightarrow Y$ such that f and f^{-1} are continuous (the preimage of every open set in Y is open in X).
Two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are called uniformly isomorphic if there exists a bijective function $f: X \rightarrow Y$ such that f and f^{-1} are uniformly continuous. A function g is uniformly continuous if, for any $\epsilon>0$, there exists $\delta>0$ such that, for any $x, y \in X$, the inequality $d_{X}(x, y)<\delta$ implies that $d_{Y}(g(x), f(y))<\epsilon$; a continuous function is uniformly continuous if X is compact.

- Möbius mapping

Given distinct points x, y, z, w of a metric space (X, d), their cross-ratio is

$$
\operatorname{cr}((x, y, z, w), d)=\frac{d(x, y) d(z, w)}{d(x, z) d(y, w)}>0
$$

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a homeomorphism $f: X \rightarrow Y$ is called a Möbius mapping if, for every distinct points $x, y, z, w \in X$, it holds

$$
\operatorname{cr}\left((x, y, z, w), d_{X}\right)=\operatorname{cr}\left((f(x), f(y), f(z), f(w)), d_{Y}\right)
$$

A homeomorphism $f: X \rightarrow Y$ is called a quasi-Möbius mapping (Väisälä, 1984) if there exists a homeomorphism $\tau:[0, \infty) \rightarrow[0, \infty)$ such that, for every quadruple x, y, z, w of distinct points of X, it holds

$$
\operatorname{cr}\left((f(x), f(y), f(z), f(w)), d_{Y}\right) \leq \tau\left(c r\left((x, y, z, w), d_{X}\right)\right)
$$

A metric space (X, d) is called metrically dense (or μ-dense for given $\mu>1$, Aseev-Trotsenko, 1987) if for any $x, y \in X$, there exists a sequence $\left\{z_{i}, i \in \mathbb{Z}\right\}$ with $z_{i} \rightarrow x$ as $i \rightarrow-\infty, z_{i} \rightarrow y$ as $i \rightarrow \infty$, and $\log \operatorname{cr}\left(\left(x, z_{i}, z_{i+1}, y\right), d\right) \leq$ $\log \mu$ for all $i \in \mathbb{Z}$. The space (X, d) is μ-dense if and only if (Tukia-Väisälä, 1980), for any $x, y \in X$, there exists $z \in X$ with $\frac{d(x, y)}{6 \mu} \leq d(x, z) \leq \frac{d(x, y)}{4}$.

- Quasi-symmetric mapping

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a homeomorphism $f: X \rightarrow$ Y is called a quasi-symmetric mapping (Tukia-Väisälä, 1980) if there is a homeomorphism $\tau:[0, \infty) \rightarrow[0, \infty)$ such that, for every triple (x, y, z) of distinct points of X,

$$
\frac{d_{Y}(f(x), f(y))}{d_{Y}(f(x), f(z))} \leq \tau \frac{d_{X}(x, y)}{d_{X}(x, z)}
$$

Quasi-symmetric mappings are quasi-Möbius, and quasi-Möbius mappings between bounded metric spaces are quasi-symmetric. In the case $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, quasi-symmetric mappings are exactly the same as quasi-conformal mappings.

- Conformal metric mapping

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ which are domains in \mathbb{R}^{n}, a homeomorphism $f: X \rightarrow Y$ is called a conformal metric mapping if, for any nonisolated point $x \in X$, the limit $\lim _{y \rightarrow x} \frac{d_{Y}(f(x), f(y))}{d(x, y)}$ exists, is finite and positive.
A homeomorphism $f: X \rightarrow Y$ is called a quasi-conformal mapping (or, specifically, C-quasi-conformal mapping) if there exists a constant C such that

$$
\lim _{r \rightarrow 0} \sup \frac{\max \left\{d_{Y}(f(x), f(y)): d_{X}(x, y) \leq r\right\}}{\min \left\{d_{Y}(f(x), f(y)): d_{X}(x, y) \geq r\right\}} \leq C
$$

for each $x \in X$. The smallest such constant C is called the conformal dilation. The conformal dimension of a metric space (X, d) (Pansu, 1989) is the infimum of the Hausdorff dimension over all quasi-conformal mappings of (X, d) into some metric space. For the middle-third Cantor set on [0, 1], it is 0 but, for any of its quasi-conformal images, it is positive.

- Hölder mapping

Let $c, \alpha \geq 0$ be constants. Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called the Hölder mapping (or α-Hölder mapping if the constant α should be mentioned) if for all $x, y \in X$

$$
d_{Y}(f(x), f(y)) \leq c\left(d_{X}(x, y)\right)^{\alpha} .
$$

A 1-Hölder mapping is a Lipschitz mapping; 0-Hölder mapping means that the metric d_{Y} is bounded.

- Lipschitz mapping

Let c be a positive constant. Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a Lipschitz (or Lipschitz continuous, c-Lipschitz if the constant c should be mentioned) mapping if for all $x, y \in X$ it holds

$$
d_{Y}(f(x), f(y)) \leq c d_{X}(x, y)
$$

A c-Lipschitz mapping is called a metric mapping if $c=1$, and is called a contraction if $c<1$.

- Bi-Lipschitz mapping

Given metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and a constant $c>1$, a function $f: X \rightarrow$ Y is called a bi-Lipschitz mapping (or c-bi-Lipschitz mapping, c-embedding) if there exists a number $r>0$ such that for any $x, y \in X$ it holds

$$
r d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq \operatorname{crd}_{X}(x, y)
$$

Every bi-Lipschitz mapping is a quasi-symmetric mapping.

The smallest c for which f is a c-bi-Lipschitz mapping is called the distortion of f. Bourgain, 1985, proved that every k-point metric space c-embeds into a Euclidean space with distortion $O(\ln k)$. Gromov's distortion for curves is the maximum ratio of arc length to chord length.
Two metrics d_{1} and d_{2} on X are called bi-Lipschitz equivalent metrics if there are positive constants c and C such that $C d_{1}(x, y) \leq d_{2}(x, y) \leq C d_{1}(x, y)$ for all $x, y \in X$, i.e., the identity mapping is a bi-Lipschitz mapping from $\left(X, d_{1}\right)$ into $\left(X, d_{2}\right)$. Bi-Lipschitz equivalent metrics are equivalent, i.e., generate the same topology but, for example, equivalent L_{1}-metric and L_{2}-metric (cf. $L_{p^{-}}$ metric in Chap. 5) on \mathbb{R} are not bi-Lipschitz equivalent.
A bi-Lipschitz mapping $f: X \rightarrow Y$ is a c-isomorphism $f: X \rightarrow f(X)$.

- c-Isomorphism of metric spaces

Given two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, the Lipschitz norm $\|.\|_{\text {Lip }}$ on the set of all injective mappings $f: X \rightarrow Y$ is defined by

$$
\|f\|_{L i p}=\sup _{x, y \in X, x \neq y} \frac{d_{Y}(f(x), f(y))}{d_{X}(x, y)} .
$$

Two metric spaces X and Y are called c-isomorphic if there exists an injective mapping $f: X \rightarrow Y$ such that $\|f\|_{L i p}\left\|f^{-1}\right\|_{L i p} \leq c$.

- Metric Ramsey number

For a given class \mathcal{M} of metric spaces (usually, l_{p}-spaces), an integer $n \geq 1$, and a real number $c \geq 1$, the metric Ramsey number (or c-metric Ramsey number) $R_{\mathcal{M}}(c, n)$ is the largest integer m such that every n-point metric space has a subspace of cardinality m that c-embeds into a member of \mathcal{M} (see [BLMN05]). The Ramsey number R_{n} is the minimal number of vertices of a complete graph such that any edge-coloring with n colors produces a monochromatic triangle. The following metric analog of R_{n} was considered in [Masc04]: the least number of points a finite metric space must contain in order to contain an equilateral triangle, i.e., to have equilateral metric dimension greater than two.

- Uniform metric mapping

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a uniform metric mapping if there are two nondecreasing functions g_{1} and g_{2} from $\mathbb{R}_{\geq 0}$ to itself with $\lim _{r \rightarrow \infty} g_{i}(r)=\infty$ for $i=1,2$, such that the inequality

$$
g_{1}\left(d_{X}(x, y)\right) \leq d_{Y}(f(x), f(y)) \leq g_{2}\left(d_{X}(x, y)\right)
$$

holds for all $x, y \in X$. A bi-Lipschitz mapping is a uniform metric mapping with linear functions g_{1}, g_{2}.

- Metric compression

Given metric spaces $\left(X, d_{X}\right)$ (unbounded) and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow$ Y is a large scale Lipschitz mapping if, for some $c>0, D \geq 0$ and all $x, y \in X$,

$$
d_{Y}(f(x), f(y)) \leq c d_{X}(x, y)+D .
$$

The compression of such a mapping f is $\rho_{f}(r)=\inf _{d_{X}(x, y) \geq r} d_{Y}(f(x), f(y))$. The metric compression of $\left(X, d_{X}\right)$ in $\left(Y, d_{Y}\right)$ is defined by

$$
R(X, Y)=\sup _{f}\left\{\underline{\lim }_{r \rightarrow \infty} \frac{\log \max \left\{\rho_{f}(r), 1\right\}}{\log r}\right\},
$$

where the supremum is over all large scale Lipschitz mappings f.
In the main interesting case-when $\left(Y, d_{Y}\right)$ is a Hilbert space and $\left(X, d_{X}\right)$ is a (finitely generated discrete) group with word metric- $R(X, Y)=0$ if there is no (Guentner-Kaminker, 2004) uniform metric mapping $\left(X, d_{X}\right) \rightarrow$ $\left(Y, d_{Y}\right)$, and $R(X, Y)=1$ for free groups, even if there is no quasi-isometry. Arzhantzeva-Guba-Sapir, 2006, found groups with $\frac{1}{2} \leq R(X, Y) \leq \frac{3}{4}$.

- Quasi-isometry

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a quasi-isometry (or (C, c)-quasi-isometry) if it holds

$$
C^{-1} d_{X}(x, y)-c \leq d_{Y}(f(x), f(y)) \leq C d_{X}(x, y)+c,
$$

for some $C \geq 1, c \geq 0$, and $Y=\cup_{x \in X} B_{d_{Y}}(f(x), c)$, i.e., for every point $y \in Y$, there exists $x \in X$ such that $d_{Y}(y, f(x))<\frac{c}{2}$. Quasi-isometry is an equivalence relation on metric spaces; it is a bi-Lipschitz equivalence up to small distances. Quasi-isometry means that metric spaces contain bi-Lipschitz equivalent Delone sets.
A quasi-isometry with $C=1$ is called a coarse isometry (or rough isometry, almost isometry). Cf. quasi-Euclidean rank of a metric space.

- Coarse embedding

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a coarse embedding if there exist nondecreasing functions $\rho_{1}, \rho_{2}:[0, \infty) \rightarrow$ $[0, \infty)$ with $\rho_{1}\left(d_{X}\left(x, x^{\prime}\right)\right) \leq d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq \rho_{2}\left(d_{X}\left(x, x^{\prime}\right)\right)$ if $x, x^{\prime} \in X$ and $\lim _{t \rightarrow \infty} \rho_{1}(t)=+\infty$.
Metrics d_{1}, d_{2} on X are called coarsely equivalent metrics if there exist nondecreasing functions $f, g:[0, \infty) \rightarrow[0, \infty)$ such that $d_{1} \leq f\left(d_{2}\right), d_{2} \leq$ $g\left(d_{1}\right)$.

- Metrically regular mapping

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and let F be a set-valued mapping from X to Y, having inverse F^{-1}, i.e., with $x \in F^{-1}(y)$ if and only if $y \in F(x)$. The mapping F is said to be metrically regular at \bar{x} for \bar{y} (Dontchev-LewisRockafeller, 2002) if there exists $c>0$ such that it holds

$$
d_{X}\left(x, F^{-1}(y)\right) \leq c d_{Y}(y, F(x))
$$

for all (x, y) close to (\bar{x}, \bar{y}). Here $d(z, A)=\inf _{a \in A} d(z, a)$ and $d(z, \emptyset)=$ $+\infty$.

- Contraction

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a contraction if the inequality

$$
d_{Y}(f(x), f(y)) \leq c d_{X}(x, y)
$$

holds for all $x, y \in X$ and some real number $c, 0 \leq c<1$.
Every contraction is a contractive mapping, and it is uniformly continuous. Banach fixed point theorem (or contraction principle): every contraction from a complete metric space into itself has a unique fixed point.

- Contractive mapping

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a contractive (or strictly short, distance-decreasing) mapping if

$$
d_{Y}(f(x), f(y))<d_{X}(x, y)
$$

holds for all different $x, y \in X$. A function $f: X \rightarrow Y$ is called a noncontractive mapping (or dominating mapping) if for all $x, y \in X$ it holds

$$
d_{Y}(f(x), f(y)) \geq d_{X}(x, y)
$$

Every noncontractive bijection from a totally bounded metric space onto itself is an isometry.

- Short mapping

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called a short (or l-Lipschitz, nonexpansive, distance-noninreasing, metric) mapping (or semicontraction) if for all $x, y \in X$ it holds

$$
d_{Y}(f(x), f(y)) \leq d_{X}(x, y)
$$

A submetry is a short mapping such that the image of any metric ball is a metric ball of the same radius.
The set of short mappings $f: X \rightarrow Y$ for bounded metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ is a metric space under the uniform metric $\sup \left\{d_{Y}(f(x), g(x)): x \in\right.$ X \}.
Two subsets A and B of a metric space (X, d) are called (Gowers, 2000) similar if there exist short mappings $f: A \rightarrow X, g: B \rightarrow X$ and a small $\epsilon>0$ such that every point of A is within ϵ of some point of B, every point of B is within ϵ of some point of A, and $|d(x, g(f(x)))-d(y, f(g(y)))| \leq \epsilon$ for any $x \in A, y \in B$.

- Category of metric spaces

A category Ψ consists of a class $\operatorname{Ob}(\Psi)$ of objects and a class $\operatorname{Mor}(\Psi)$ of morphisms (or arrows) satisfying the following conditions

1. To each ordered pair of objects A, B is associated a set $\Psi(A, B)$ of morphisms, and each morphism belongs to only one set $\Psi(A, B)$;
2. The composition $f \cdot g$ of two morphisms $f: A \rightarrow B, g: C \rightarrow D$ is defined if $B=C$ in which case it belongs to $\Psi(A, D)$, and it is associative;
3. Each set $\Psi(A, A)$ contains, as an identity, a morphism $i d_{A}$ such that $f \cdot i d_{A}=$ f and $i d_{A} \cdot g=g$ for any morphisms $f: X \rightarrow A$ and $g: A \rightarrow Y$.

The category of metric spaces, denoted by Met (see [Isbe64]), is a category which has metric spaces as objects and short mappings as morphisms. A unique injective envelope exists in this category for every one of its objects; it can be identified with its tight span. In Met, the monomorphisms are injective short mappings, and isomorphisms are isometries. Met is a subcategory of the category which has metric spaces as objects and Lipschitz mappings as morphisms.
Cf. metric 1-space on the objects of a category in Chap. 3.

- Injective metric space

A metric space (X, d) is called injective if, for every isometric embedding $f: X \rightarrow X^{\prime}$ of (X, d) into another metric space $\left(X^{\prime}, d^{\prime}\right)$, there exists a short mapping f^{\prime} from X^{\prime} into X with $f^{\prime} \cdot f=i d_{X}$, i.e., X is a retract of X^{\prime}.
Equivalently, X is an absolute retract, i.e., a retract of every metric space into which it embeds isometrically. A metric space (X, d) is injective if and only if it is hyperconvex. Examples of such metric spaces are l_{1}^{2}-space, l_{∞}^{n}-space, any real tree and the tight span of a metric space.

- Injective envelope

The injective envelope (introduced first in [Isbe64] as injective hull) is a generalization of Cauchy completion. Given a metric space (X, d), it can be embedded isometrically into an injective metric space (\hat{X}, \hat{d}); given any such isometric embedding $f: X \rightarrow \hat{X}$, there exists a unique smallest injective subspace (\bar{X}, \bar{d}) of (\hat{X}, \hat{d}) containing $f(X)$ which is called the injective envelope of X. It is isometrically identified with the tight span of (X, d).
A metric space coincides with its injective envelope if and only if it is injective.

- Tight extension

An extension $\left(X^{\prime}, d^{\prime}\right)$ of a metric space (X, d) is called a tight extension if, for every semimetric $d^{\prime \prime}$ on X^{\prime} satisfying the conditions $d^{\prime \prime}\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$, and $d^{\prime \prime}\left(y_{1}, y_{2}\right) \leq d^{\prime}\left(y_{1}, y_{2}\right)$ for any $y_{1}, y_{2} \in X^{\prime}$, one has $d^{\prime \prime}\left(y_{1}, y_{2}\right)=d^{\prime}\left(y_{1}, y_{2}\right)$ for all $y_{1}, y_{2} \in X^{\prime}$.
The tight span is the universal tight extension of X, i.e., it contains, up to isometries, every tight extension of X, and it has no proper tight extension itself.

- Tight span

Given a metric space (X, d) of finite diameter, consider the set $\mathbb{R}^{X}=\{f: X \rightarrow$ $\mathbb{R}\}$. The tight span $T(X, d)$ of (X, d) is defined as the set $T(X, d)=\{f \in$ $\mathbb{R}^{X}: f(x)=\sup _{y \in X}(d(x, y)-f(y))$ for all $\left.x \in X\right\}$, endowed with the metric induced on $T(X, d)$ by the sup norm $\|f\|=\sup _{x \in X}|f(x)|$.
The set X can be identified with the set $\left\{h_{x} \in T(X, d): h_{x}(y)=d(y, x)\right\}$ or, equivalently, with the set $T^{0}(X, d)=\{f \in T(X, d): 0 \in f(X)\}$. The injective envelope (\bar{X}, \bar{d}) of X is isometrically identified with the tight span $T(X, d)$ by

$$
\bar{X} \rightarrow T(X, d), \bar{x} \rightarrow h_{\bar{x}} \in T(X, d): h_{\bar{x}}(y)=\bar{d}(f(y), \bar{x}) .
$$

The tight span $T(X, d)$ of a finite metric space is the metric space $(T(X), D(f, g)=\max |f(x)-g(x)|)$, where $T(X)$ is the set of functions $f: X \rightarrow \mathbb{R}$ such that for any $x, y \in X, f(x)+f(y) \geq d(x, y)$ and, for each $x \in X$, there exists $y \in X$ with $f(x)+f(y)=d(x, y)$. The mapping of any x into the function $f_{x}(y)=d(x, y)$ gives an isometric embedding of (X, d) into $T(X, d)$. For example, if $X=\left\{x_{1}, x_{2}\right\}$, then $T(X, d)$ is the interval of length $d\left(x_{1}, x_{2}\right)$.
The tight span of a metric space (X, d) of finite diameter can be considered as a polytopal complex of bounded faces of the polyhedron

$$
\left\{y \in \mathbb{R}_{\geq 0}^{n}: y_{i}+y_{j} \geq d\left(x_{i}, x_{j}\right) \text { for } 1 \leq i<j \leq n\right\}
$$

if, for example, $X=\left\{x_{1}, \ldots, x_{n}\right\}$. The dimension of this complex is called (Dress, 1984) dimension of (X, d).

- Real tree

A metric space (X, d) is called (Tits, 1977) a real tree (or \mathbb{R}-tree) if, for all $x, y \in X$, there exists a unique arc from x to y, and this arc is a geodesic segment. So, an \mathbb{R}-tree is a (uniquely) arcwise connected metric space in which each arc is isometric to a subarc of \mathbb{R}. \mathbb{R}-tree is not related to a metric tree in Chap. 17.
A metric space (X, d) is a real tree if and only if it is path-connected and Gromov 0-hyperbolic (i.e., satisfies the four-point inequality). The plane \mathbb{R}^{2} with the Paris metric or lift metric (cf. Chap. 19) are examples of an \mathbb{R}-tree.
Real trees are exactly tree-like metric spaces which are geodesic; they are injective metric spaces among tree-like spaces. Tree-like metric spaces are by definition metric subspaces of real trees.
If (X, d) is a finite metric space, then the tight span $T(X, d)$ is a real tree and can be viewed as an edge-weighted graph-theoretical tree.
A metric space is a complete real tree if and only if it is hyperconvex and any two points are joined by a metric segment.
A geodesic metric space (X, d) is called (Druţu-Sapir, 2005) tree-graded with respect to a collection \mathcal{P} of connected proper subsets with $\left|P \cap P^{\prime}\right| \leq 1$ for any distinct $P, P^{\prime} \in \mathcal{P}$, if every its simple loop composed of three geodesics is contained in one $P \in \mathcal{P}$. \mathbb{R}-trees are tree-graded with respect to the empty set.

1.5 General Distances

- Discrete metric

Given a set X, the discrete metric (or trivial metric, sorting distance, drastic distance, Dirac distance, overlap $)$ is a metric on X, defined by $d(x, y)=1$ for all distinct $x, y \in X$ and $d(x, x)=0$. Cf. the much more general notion of a (metrically or topologically) discrete metric space.

- Indiscrete semimetric

Given a set X, the indiscrete semimetric d is a semimetric on X defined by $d(x, y)=0$ for all $x, y \in X$.

- Equidistant metric

Given a set X and a positive real number t, the equidistant metric d is a metric on X defined by $d(x, y)=t$ for all distinct $x, y \in X($ and $d(x, x)=0)$.

- $(1,2)-B$-metric

Given a set X, the $(1,2)-B$-metric d is a metric on X such that, for any $x \in X$, the number of points $y \in X$ with $d(x, y)=1$ is at most B, and all other distances are equal to 2 . The $(1,2)-B$-metric is the truncated metric of a graph with maximal vertex degree B.

- Permutation metric

Given a finite set X, a metric d on it is called a permutation metric (or linear arrangement metric) if there exists a bijection $\omega: X \rightarrow\{1, \ldots,|X|\}$ such that

$$
d(x, y)=|\omega(x)-\omega(y)|
$$

holds for for all $x, y \in X$. Even-Naor-Rao-Schieber, 2000, defined a more general spreading metric, i.e., any metric d on $\{1, \ldots, n\}$ such that $\sum_{y \in M} d(x, y) \geq \frac{|M|(|M|+2)}{4}$ for any $1 \leq x \leq n$ and $M \subseteq\{1, \ldots, n\} \backslash\{x\}$ with
$|M| \geq 2$.

- Induced metric

Given a metric space (X, d) and a subset $X^{\prime} \subset X$, an induced metric (or submetric) is the restriction d^{\prime} of d to X^{\prime}. A metric space $\left(X^{\prime}, d^{\prime}\right)$ is called a metric subspace of (X, d), and (X, d) is called a metric extension of $\left(X^{\prime}, d^{\prime}\right)$.

- Katĕtov mapping

Given a metric space (X, d), the mapping $f: X \rightarrow \mathbb{R}$ is a Katĕtov mapping if

$$
|f(x)-f(y)| \leq d(x, y) \leq f(x)+f(y)
$$

for any $x, y \in X$, i.e., setting $d(x, z)=f(x)$ defines a one-point metric extension $(X \cup\{z\}, d)$ of (X, d).
The set $E(X)$ of Katĕtov mappings on X is a complete metric space with metric $D(f, g)=\sup _{x \in X}|f(x)-g(x)| ;(X, d)$ embeds isometrically in it via the Kuratowski mapping $x \rightarrow d(x,$.$) , with unique extension of each isometry of$ X to one of $E(X)$.

- Dominating metric

Given metrics d and d_{1} on a set X, d_{1} dominates d if $d_{1}(x, y) \geq d(x, y)$ for all $x, y \in X$. Cf. noncontractive mapping (or dominating mapping).

- Barbilian semimetric

Given sets X and P, the function $f: P \times X \rightarrow \mathbb{R}_{>0}$ is called an influence (of P over X) if for any $x, y \in X$ the ratio $g_{x y}(p)=\frac{f(p, x)}{f(p, y)}$ has a maximum when $p \in P$.

The Barbilian semimetric is defined on the set X by

$$
\ln \frac{\max _{p \in P} g_{x y}(p)}{\min _{p \in P} g_{x y}(p)}
$$

for any $x, y \in X$. Barbilian, 1959, proved that the above function is well defined (moreover, $\min _{p \in P} g_{x y}(p)=\frac{1}{\max _{p \in P} g_{y x}(p)}$) and is a semimetric. Also, it is a metric if the influence f is effective, i.e., there is no pair $x, y \in X$ such that $g_{x y}(p)$ is constant for all $p \in P$. Cf. a special case Barbilian metric in Chap. 6.

- Metric transform

A metric transform is a distance obtained as a function of a given metric (cf. Chap.4).

- Complete metric

Given a metric space (X, d), a sequence $\left\{x_{n}\right\}, x_{n} \in X$, is said to have convergence to $x^{*} \in X$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0$, i.e., for any $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x^{*}\right)<\epsilon$ for any $n>n_{0}$. Any sequence converges to at most one limit in X; it is not so, in general, if d is a semimetric.
A sequence $\left\{x_{n}\right\}_{n}, x_{n} \in X$, is called a Cauchy sequence if, for any $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<\epsilon$ for any $m, n>n_{0}$.
A metric space (X, d) is called a complete metric space if every Cauchy sequence in it converges. In this case the metric d is called a complete metric. An example of an incomplete metric space is $\left(\mathbb{N}, d(m, n)=\frac{|m-n|}{m n}\right)$.

- Cauchy completion

Given a metric space (X, d), its Cauchy completion is a metric space (X^{*}, d^{*}) on the set X^{*} of all equivalence classes of Cauchy sequences, where the sequence $\left\{x_{n}\right\}_{n}$ is called equivalent to $\left\{y_{n}\right\}_{n}$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. The metric d^{*} is defined by

$$
d^{*}\left(x^{*}, y^{*}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

for any $x^{*}, y^{*} \in X^{*}$, where $\left\{z_{n}\right\}_{n}$ is any element in the equivalence class z^{*}. The Cauchy completion $\left(X^{*}, d^{*}\right)$ is a unique, up to isometry, complete metric space, into which the metric space (X, d) embeds as a dense metric subspace. The Cauchy completion of the metric space $(\mathbb{Q},|x-y|)$ of rational numbers is the real line $(\mathbb{R},|x-y|)$. A Banach space is the Cauchy completion of a normed vector space $(V,\|\|$.$) with the norm metric \|x-y\|$. A Hilbert space corresponds to the case an inner product norm $\|x\|=\sqrt{\langle x, x\rangle}$.

- Perfect metric space

A complete metric space (X, d) is called perfect if every point $x \in X$ is a limit point, i.e., $|B(x, r)=\{y \in X: d(x, y)<r\}|>1$ holds for any $r>0$.
A topological space is a Cantor space (i.e., homeomorphic to the Cantor set with the natural metric $|x-y|$) if and only if it is nonempty, perfect, totally disconnected, compact and metrizable. The totally disconnected countable metric space $(\mathbb{Q},|x-y|)$ of rational numbers also consists only of limit points but it is not complete and not locally compact.

Every proper metric ball of radius r in a metric space has diameter at most $2 r$. Given a number $0<c \leq 1$, a metric space is called a c-uniformly perfect metric space if this diameter is at least $2 c r$. Cf. the radii of metric space.

- Metrically discrete metric space

A metric space (X, d) is called metrically (or uniformly) discrete if there exists a number $r>0$ such that $B(x, r)=\{y \in X: d(x, y)<r\}=\{x\}$ for every $x \in X$.
(X, d) is a topologically discrete metric space (or a discrete metric space) if the underlying topological space is discrete, i.e., each point $x \in X$ is an isolated point: there exists a number $r(x)>0$ such that $B(x, r(x))=\{x\}$. For $X=\left\{\frac{1}{n}\right.$: $n=1,2,3, \ldots\}$, the metric space $(X,|x-y|)$ is topologically but not metrically discrete. Cf. translation discrete metric in Chap. 10.
Alternatively, a metric space (X, d) is called discrete if any of the following holds:

1. (Burdyuk-Burdyuk 1991) it has a proper isolated subset, i.e., $M \subset X$ with $\inf \{d(x, y): x \in M, y \notin M\}>0$ (any such space admits a unique decomposition into continuous, i.e., nondiscrete, components);
2. (Lebedeva-Sergienko-Soltan, 1984) for any distinct points $x, y \in X$, there exists a point z of the closed metric interval $I(x, y)$ with $I(x, z)=\{x, z\}$;
3. a stronger property holds: for any two distinct points $x, y \in X$, every sequence of points z_{1}, z_{2}, \ldots with $z_{k} \in I(x, y)$ but $z_{k+1} \in I\left(x, z_{k}\right) \backslash\left\{z_{k}\right\}$ for $k=$ $1,2, \ldots$ is a finite sequence.

- Locally finite metric space

Let (X, d) be a metrically discrete metric space. Then it is called locally finite if for every $x \in X$ and every $r \geq 0$, the ball $|B(x, r)|$ is finite.
If, moreover, $|B(x, r)| \leq C(r)$ for some number $C(r)$ depending only on r, then (X, d) is said to have bounded geometry.

- Bounded metric space

A metric (moreover, a distance) d on a set X is called bounded if there exists a constant $C>0$ such that $d(x, y) \leq C$ for any $x, y \in X$.
For example, given a metric d on X, the metric D on X, defined by $D(x, y)=$ $\frac{d(x, y)}{1+d(x, y)}$, is bounded with $C=1$.
A metric space (X, d) with a bounded metric d is called a bounded metric space.

- Totally bounded metric space

A metric space (X, d) is called totally bounded if, for every $\epsilon>0$, there exists a finite ϵ-net, i.e., a finite subset $M \subset X$ with the point-set distance $d(x, M)<\epsilon$ for any $x \in X$ (cf. totally bounded space in Chap. 2).
Every totally bounded metric space is bounded and separable. A metric space is totally bounded if and only if its Cauchy completion is compact.

- Separable metric space

A metric space (X, d) is called separable if it contains a countable dense subset M, i.e., a subset with which all its elements can be approached: X is the closure $\operatorname{cl}(M)(M$ together with all its limit points).

A metric space is separable if and only if it is second-countable (cf. Chap. 2).

- Compact metric space

A compact metric space (or metric compactum) is a metric space in which every sequence has a Cauchy subsequence, and those subsequences are convergent. A metric space is compact if and only if it is totally bounded and complete. Every bounded and closed subset of a Euclidean space is compact. Every finite metric space is compact. Every compact metric space is second-countable.
A continuum is a nonempty connected metric compactum.

- Proper metric space

A metric space is called proper (or finitely compact, having the Heine-Borel property) if every its closed metric ball is compact. Any such space is complete.

- UC metric space

A metric space is called a UC metric space (or Atsuji space) if any continuous function from it into an arbitrary metric space is uniformly continuous.
Every such space is complete. Every metric compactum is a UC metric space.

- Metric measure space

A metric measure space (or mm-space, metric triple) is a triple (X, d, μ), where (X, d) is a Polish (i.e., complete separable; cf. Chap. 2) metric space and (X, Σ, μ) is a probability measure space $(\mu(X)=1)$ with Σ being a Borel σ algebra of all open and closed sets of the metric topology (cf. Chap. 2) induced by the metric d on X. Cf. metric outer measure.

- Norm metric

Given a normed vector space $(V,\|\|$.$) , the norm metric on V$ is defined by

$$
\|x-y\|
$$

The metric space $(V,\|x-y\|)$ is called a Banach space if it is complete. Examples of norm metrics are l_{p} - and L_{p}-metrics, in particular, the Euclidean metric.
Any metric space (X, d) admits an isometric embedding into a Banach space B such that its convex hull is dense in B (cf. Monge-Kantorovich metric in Chap. 14); (X, d) is a linearly rigid metric space if such an embedding is unique up to isometry. A metric space isometrically embeds into the unit sphere of a Banach space if and only if its diameter is at most 2.

- Path metric

Given a connected graph $G=(V, E)$, its path metric (or graphic metric) $d_{\text {path }}$ is a metric on V defined as the length (i.e., the number of edges) of a shortest path connecting two given vertices x and y from V (cf. Chap. 15).

- Editing metric

Given a finite set X and a finite set \mathcal{O} of (unary) editing operations on X, the editing metric on X is the path metric of the graph with the vertex-set X and $x y$ being an edge if y can be obtained from x by one of the operations from \mathcal{O}.

- Gallery metric

A chamber system is a set X (its elements are called chambers) equipped with n equivalence relations $\sim_{i}, 1 \leq i \leq n$. A gallery is a sequence of chambers x_{1}, \ldots, x_{m} such that $x_{i} \sim_{j} x_{i+1}$ for every i and some j depending on i.
The gallery metric is an extended metric on X which is the length of the shortest gallery connecting x and $y \in X$ (and is equal to ∞ if there is no connecting gallery). The gallery metric is the (extended) path metric of the graph with the vertex-set X and $x y$ being an edge if $x \sim_{i} y$ for some $1 \leq i \leq n$.

- Metric on incidence structure

An incidence structure (P, L, I) consists of three sets: points P, lines L and flags $I \subset P \times L$, where a point $p \in P$ is said to be incident with a line $l \in L$ if $(p, l) \in I$.
If, moreover, for any pair of distinct points, there is at most one line incident with both of them, then the collinearity graph is a graph whose vertices are the points with two vertices being adjacent if they determine a line.
The metric on incidence structure is the path metric of this graph.

- Riemannian metric

Given a connected n-dimensional smooth manifold M^{n} (cf. Chaps. 2, 7), its Riemannian metric is a collection of positive-definite symmetric bilinear forms $\left(\left(g_{i j}\right)\right)$ on the tangent spaces of M^{n} which varies smoothly from point to point.
The length of a curve γ on M^{n} is expressed as $\int_{\gamma} \sqrt{\sum_{i, j} g_{i j} d x_{i} d x_{j}}$, and the intrinsic metric on M^{n}, also called the Riemannian distance, is the infimum of lengths of curves connecting any two given points $x, y \in M^{n}$. Cf. Chap. 7 .

- Linearly additive metric

A linearly additive (or additive on lines) metric is a continuous metric d on \mathbb{R}^{n} which, for any points x, y, z lying in that order on a common line, satisfies

$$
d(x, z)=d(x, y)+d(y, z) .
$$

Hilbert's 4th problem asked in 1900 to classify such metrics; it is solved only for dimension $n=2$ [Amba76]. Cf. projective metric in Chap. 6.
Every norm metric on \mathbb{R}^{n} is; linearly additive. Every linearly additive metric on \mathbb{R}^{2} is a hypermetric.

- Hamming metric

The Hamming metric d_{H} (called sometimes Dalal distance in Semantics) is a metric on \mathbb{R}^{n} defined (Hamming, 1950) by

$$
\left|\left\{i: 1 \leq i \leq n, x_{i} \neq y_{i}\right\}\right| .
$$

On binary vectors $x, y \in\{0,1\}^{n}$ the Hamming metric and the l_{1}-metric (cf. L_{p}-metric in Chap. 5) coincide; they are equal to $|I(x) \Delta I(y)|=|I(x) \backslash I(y)|+$ $|I(y) \backslash I(x)|$, where $I(z)=\left\{1 \leq t \leq n: z_{i}=1\right\}$.
In fact, $\max \{|I(x) \backslash I(y)|,|I(y) \backslash I(x)|\}$ is also a metric.

- Lee metric

Given $m, n \in \mathbb{N}, m \geq 2$, the Lee metric $d_{\text {Lee }}$ is a metric on $\mathbb{Z}_{m}^{n}=\{0,1, \ldots, m-$ $1\}^{n}$ defined (Lee, 1958) by

$$
\sum_{1 \leq i \leq n} \min \left\{\left|x_{i}-y_{i}\right|, m-\left|x_{i}-y_{i}\right|\right\}
$$

The metric space $\left(Z_{m}^{n}, d_{\text {Lee }}\right)$ is a discrete analog of the elliptic space. The Lee metric coincides with the Hamming metric d_{H} if $m=2$ or $m=3$. The metric spaces $\left(Z_{4}^{n}, d_{\text {Lee }}\right)$ and $\left.Z_{2}^{2 n}, d_{H}\right)$ are isometric. Lee and Hamming metrics are applied for phase and orthogonal modulation, respectively.
Cf. absolute summation distance and generalized Lee metric in Chap. 16.

- Enomoto-Katona metric

Given a finite set X and an integer $k, 2 k \leq|X|$, the Enomoto-Katona metric (2001) is the distance between unordered pairs $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ of disjoint k-subsets of X defined by

$$
\min \left\{\left|X_{1} \backslash Y_{1}\right|+\left|X_{2} \backslash Y_{2}\right|,\left|X_{1} \backslash Y_{2}\right|+\left|X_{2} \backslash Y_{1}\right|\right\}
$$

Cf. Earth Mover's distance, transportation distance in Chaps. 21 and 14.

- Symmetric difference metric

Given a measure space $(\Omega, \mathcal{A}, \mu)$, the symmetric difference (or measure) semimetric on the set $\mathcal{A}_{\mu}=\{A \in \mathcal{A}: \mu(A)<\infty\}$ is defined by

$$
o d_{\Delta}(A, B)=\mu(A \triangle B),
$$

where $A \Delta B=(A \cup B) \backslash(A \cap B)$ is the symmetric difference of A and $B \in \mathcal{A}_{\mu}$. The value $d_{\Delta}(A, B)=0$ if and only if $\mu(A \triangle B)=0$, i.e., A and B are equal almost everywhere. Identifying two sets $A, B \in \mathcal{A}_{\mu}$ if $\mu(A \triangle B)=0$, we obtain the symmetric difference metric (or Fréchet-Nikodym-Aronszyan distance, measure metric).
If μ is the cardinality measure, i.e., $\mu(A)=|A|$, then $d_{\Delta}(A, B)=|A \Delta B|=$ $|A \backslash B|+|B \backslash A|$. In this case $|A \triangle B|=0$ if and only if $A=B$.
The metrics $d_{\max }(A, B)=\max (|A \backslash B|,|B \backslash A|)$ and $1-\frac{|A \cap B|}{\max (|A|,|B|)}$ (its normalised version) are special cases of Zelinka distance and Bunke-Shearer metric in Chap. 15. For each $p \geq 1$, the p-difference metric (Noradam-Nyblom, 2014) is $d_{p}(A, B)=\left(|A \backslash B|^{p}+|B \backslash A|^{p}\right)^{\frac{1}{p}} ;$ so, $d_{1}=d_{\Delta}$ and $\lim _{p \rightarrow \infty} d_{p}=d_{\text {max }}$.
The Johnson distance between k-sets A and B is $\frac{|A \triangle B|}{2}=k-|A \cap B|$. The symmetric difference metric between ordered q-partitions $A=\left(A_{1}, \ldots, A_{q}\right)$ and $B=\left(B_{1}, \ldots, B_{q}\right)$ is $\sum_{i=1}^{q}\left|A_{i} \Delta B_{i}\right|$. Cf. metrics between partitions in Chap. 10.

- Steinhaus distance

Given a measure space $(\Omega, \mathcal{A}, \mu)$, the Steinhaus distance $d_{S t}$ is a semimetric on the set $\mathcal{A}_{\mu}=\{A \in \mathcal{A}: \mu(A)<\infty\}$ defined as 0 if $\mu(A)=\mu(B)=0$, and by

$$
\frac{\mu(A \triangle B)}{\mu(A \cup B)}=1-\frac{\mu(A \cap B)}{\mu(A \cup B)}
$$

if $\mu(A \cup B)>0$. It becomes a metric on the set of equivalence classes of elements from \mathcal{A}_{μ}; here $A, B \in \mathcal{A}_{\mu}$ are called equivalent if $\mu(A \triangle B)=0$.
The biotope (or Tanimoto, Jaccard) distance $\frac{|A \triangle B|}{|A \cup B|}$ is the special case of Steinhaus distance obtained for the cardinality measure $\mu(A)=|A|$ for finite sets.
Cf. also the generalized biotope transform metric in Chap. 4.

- Fréchet metric

Let (X, d) be a metric space. Consider a set \mathcal{F} of all continuous mappings f : $A \rightarrow X, g: B \rightarrow X, \ldots$, where A, B, \ldots are subsets of \mathbb{R}^{n}, homeomorphic to $[0,1]^{n}$ for a fixed dimension $n \in \mathbb{N}$.

The Fréchet semimetric d_{F} is a semimetric on \mathcal{F} defined by

$$
\inf _{\sigma} \sup _{x \in A} d(f(x), g(\sigma(x))),
$$

where the infimum is taken over all orientation preserving homeomorphisms σ : $A \rightarrow B$. It becomes the Fréchet metric on the set of equivalence classes $f^{*}=$ $\left\{g: d_{F}(g, f)=0\right\}$. Cf. the Fréchet surface metric in Chap. 8.

- Hausdorff metric

Given a metric space (X, d), the Hausdorff metric (or two-sided Hausdorff distance) is a metric on the family \mathcal{F} of nonempty compact subsets of X defined by

$$
d_{\text {Haus }}=\max \left\{d_{d H a u s}(A, B), d_{d H a u s}(B, A)\right\},
$$

where $d_{d \text { Haus }}(A, B)=\max _{x \in A} \min _{y \in B} d(x, y)$ is the directed Hausdorff distance (or one-sided Hausdorff distance) from A to B. The metric space ($\mathcal{F}, d_{\text {Haus }}$) is called hyperspace of metric space (X, d); cf. hyperspace in Chap. 2.
In other words, $d_{\text {Haus }}(A, B)$ is the minimal number ϵ (called also the Blaschke distance) such that a closed ϵ-neighborhood of A contains B and a closed ϵ-neighborhood of B contains A. Then $d_{\text {Haus }}(A, B)$ is equal to

$$
\sup _{x \in X}|d(x, A)-d(x, B)|,
$$

where $d(x, A)=\min _{y \in A} d(x, y)$ is the point-set distance.

If the above definition is extended for noncompact closed subsets A and B of X, then $d_{\text {Haus }}(A, B)$ can be infinite, i.e., it becomes an extended metric.
For not necessarily closed subsets A and B of X, the Hausdorff semimetric between them is defined as the Hausdorff metric between their closures. If X is finite, $d_{\text {Haus }}$ is a metric on the class of all subsets of X.

- L_{p}-Hausdorff distance

Given a finite metric space (X, d), the L_{p}-Hausdorff distance [Badd92] between two subsets A and B of X is defined by

$$
\left(\sum_{x \in X}|d(x, A)-d(x, B)|^{p}\right)^{\frac{1}{p}}
$$

where $d(x, A)$ is the point-set distance. The usual Hausdorff metric corresponds to the case $p=\infty$.

- Generalized G-Hausdorff metric

Given a group (G, \cdot, e) acting on a metric space (X, d), the generalized G Hausdorff metric between two closed bounded subsets A and B of X is

$$
\min _{g_{1}, g_{2} \in G} d_{\text {Haus }}\left(g_{1}(A), g_{2}(B)\right)
$$

where $d_{\text {Haus }}$ is the Hausdorff metric. If $d(g(x), g(y))=d(x, y)$ for any $g \in G$ (i.e., if the metric d is left-invariant with respect of G), then above metric is equal to $\min _{g \in G} d_{\text {Haus }}(A, g(B))$.

- Gromov-Hausdorff metric

The Gromov-Hausdorff metric is a metric on the set of all isometry classes of compact metric spaces defined by

$$
\inf d_{\text {Haus }}(f(X), g(Y))
$$

for any two classes X^{*} and Y^{*} with the representatives X and Y, respectively, where $d_{\text {Haus }}$ is the Hausdorff metric, and the minimum is taken over all metric spaces M and all isometric embeddings $f: X \rightarrow M, g: Y \rightarrow M$. The corresponding metric space is called the Gromov-Hausdorff space.
The Hausdorff-Lipschitz distance between isometry classes of compact metric spaces X and Y is defined by

$$
\inf \left\{d_{G H}\left(X, X_{1}\right)+d_{L}\left(X_{1}, Y_{1}\right)+d_{G H}\left(Y, Y_{1}\right)\right\}
$$

where $d_{G H}$ is the Gromov-Hausdorff metric, d_{L} is the Lipschitz metric, and the minimum is taken over all (isometry classes of compact) metric spaces X_{1}, Y_{1}.

- Kadets distance

The gap (or opening) between two closed subspaces X and Y of a Banach space ($V, \| .| |)$ is defined by

$$
\operatorname{gap}(X, Y)=\max \{\delta(X, Y), \delta(Y, X)\}
$$

where $\delta(X, Y)=\sup \left\{\inf _{y \in Y}\|x-y\|: x \in X,\|x\|=1\right\}$ (cf. gap distance in Chap. 12 and gap metric in Chap. 18).
The Kadets distance between two Banach spaces V and W is a semimetric defined (Kadets, 1975) by

$$
\inf _{Z, f, g} \operatorname{gap}\left(\bar{B}_{f(V)}, \bar{B}_{g(W)}\right),
$$

where the infimum is taken over all Banach spaces Z and all linear isometric embeddings $f: V \rightarrow Z$ and $g: W \rightarrow Z$; here $\bar{B}_{f(V)}$ and $\bar{B}_{g(W)}$ are the closed unit balls of Banach spaces $f(V)$ and $g(W)$, respectively.
The nonlinear analog of the Kadets distance is the following Gromov-Hausdorff distance between Banach spaces U and W :

$$
\inf _{Z, f, g} d_{\text {Haus }}\left(f\left(\bar{B}_{V}\right), g\left(\bar{B}_{W}\right)\right)
$$

where the infimum is taken over all metric spaces Z and all isometric embeddings $f: V \rightarrow Z$ and $g: W \rightarrow Z$; here $d_{\text {Haus }}$ is the Hausdorff metric.
The Kadets path distance between Banach spaces V and W is defined (Ostrovskii, 2000) as the infimum of the length (with respect to the Kadets distance) of all curves joining V and W (and is equal to ∞ if there is no such curve).

- Banach-Mazur distance

The Banach-Mazur distance $d_{B M}$ between two Banach spaces V and W is

$$
\ln \inf _{T}\|T\| \cdot\left\|T^{-1}\right\|,
$$

where the infimum is taken over all isomorphisms $T: V \rightarrow W$.
It can also be written as $\ln d(V, W)$, where the number $d(V, W)$ is the smallest positive $d \geq 1$ such that $\bar{B}_{W}^{n} \subset T\left(\bar{B}_{V}^{n}\right) \subset d \bar{B}_{W}^{n}$ for some linear invertible transformation $T: V \rightarrow W$. Here $\bar{B}_{V}^{n}=\left\{x \in V:\|x\|_{V} \leq 1\right\}$ and $\bar{B}_{W}^{n}=\{x \in$ $\left.W ;\|x\|_{W} \leq 1\right\}$ are the unit balls of the normed spaces $\left(V,\|.\| \|_{V}\right)$ and $\left(W,\|.\|_{W}\right)$, respectively.
One has $d_{B M}(V, W)=0$ if and only if V and W are isometric, and $d_{B M}$ becomes a metric on the set X^{n} of all equivalence classes of n-dimensional normed spaces, where $V \sim W$ if they are isometric. The pair $\left(X^{n}, d_{B M}\right)$ is a compact metric space which is called the Banach-Mazur compactum.
The modified Banach-Mazur distance (Glushkin, 1963, and Khrabrov, 2001) is

$$
\inf \left\{| | T | _ { X \rightarrow Y } : | \operatorname { d e t } T | = 1 \} \cdot \operatorname { i n f } \left\{\left|\left|T \|_{Y \rightarrow X}:|\operatorname{det} T|=1\right\} .\right.\right.\right.
$$

The weak Banach-Mazur distance (Tomczak-Jaegermann, 1984) is

$$
\max \left\{\bar{\gamma}_{Y}\left(i d_{X}\right), \bar{\gamma}_{X}\left(i d_{Y}\right)\right\},
$$

where $i d$ is the identity map and, for an operator $U: X \rightarrow Y, \bar{\gamma}_{Z}(U)$ denotes $\inf \sum\left\|W_{k}\right\|\left\|V_{k}\right\|$. Here the infimum is taken over all representations $U=\sum W_{k} V_{k}$ for $W_{k}: X \rightarrow Z$ and $V_{k}: Z \rightarrow Y$. This distance never exceeds the corresponding Banach-Mazur distance.

- Lipschitz distance

Given $\alpha \geq 0$ and two metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, the α-Hölder norm $\|.\|_{\text {Hol }}$ on the set of all injective functions $f: X \rightarrow Y$ is defined by

$$
\|f\|_{\text {Hol }}=\sup _{x, y \in X, x \neq y} \frac{d_{Y}(f(x), f(y))}{d_{X}(x, y)^{\alpha}} .
$$

The Lipschitz norm $\|.\|_{\text {Lip }}$ is the case $\alpha=1$ of $\|.\|_{\text {Hol }}$.
The Lipschitz distance between metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ is defined by

$$
\ln \inf _{f}\|f\|_{L i p} \cdot\left\|f^{-1}\right\|_{L i p}
$$

where the infimum is taken over all bijective functions $f: X \rightarrow Y$. Equivalently, it is the infimum of numbers $\ln a$ such that there exists a bijective bi-Lipschitz mapping between $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ with constants $\exp (-a), \exp (a)$.
It becomes a metric-Lipschitz metric-on the set of all isometry classes of compact metric spaces. Cf. Hausdorff-Lipschitz distance.
This distance is an analog to the Banach-Mazur distance and, in the case of finite-dimensional real Banach spaces, coincides with it.
It also coincides with the Hilbert projective metric on nonnegative projective spaces, obtained by starting with $\mathbb{R}_{>0}^{n}$ and identifying any point x with $c x, c>0$.

- Lipschitz distance between measures

Given a compact metric space (X, d), the Lipschitz seminorm $\|.\| \|_{\text {Lip }}$ on the set of all functions $f: X \rightarrow \mathbb{R}$ is defined by $\|f\|_{L i p}=\sup _{x, y \in X, x \neq y} \frac{|f(x)-f(y)|}{d(x, y)}$.
The Lipschitz distance between measures μ and v on X is defined by

$$
\sup _{\|f\|_{L i p} \leq 1} \int f d(\mu-v)
$$

It is the transportation distance (Chap. 14) if μ, ν are probability measures. Let a such measure $m_{x}($.$) be attached to any x \in X$; for distinct x, y the coarse Ricci curvature along (xy) is defined (Ollivier, 2009) as $\kappa(x, y)=1-\frac{W_{1}\left(m_{x}, m_{y}\right)}{d(x, y)}$. Ollivier's curvature generalizes the Ricci curvature in Riemannian space (cf. Chap. 7).

- Barycentric metric space

Given a metric space (X, d), let $\left(B(X),\|\mu-v\|_{T V}\right)$ be the metric space, where $B(X)$ is the set of all regular Borel probability measures on X with bounded support, and $\|\mu-\nu\|_{T V}$ is the variational distance $\int_{X}|p(\mu)-p(\nu)| d \lambda$ (cf. Chap. 14). Here $p(\mu)$ and $p(v)$ are the density functions of measures μ and v, respectively, with respect to the σ-finite measure $\frac{\mu+v}{2}$.

A metric space (X, d) is barycentric if there exists a constant $\beta>0$ and a surjection $f: B(X) \rightarrow X$ such that for any measures $\mu, \nu \in B(X)$ it holds the inequality

$$
d(f(\mu), f(v)) \leq \beta \operatorname{diam}(\operatorname{supp}(\mu+v))\|\mu-v\|_{T v}
$$

Any Banach space $(X, d=\|x-y\|)$ is a barycentric metric space with the smallest β being 1 and the map $f(\mu)$ being the usual center of mass $\int_{X} x d \mu(x)$. Any Hadamard (i.e., a complete CAT(0) space, cf. Chap. 6, is barycentric with the smallest β being 1 and the map $f(\mu)$ being the unique minimizer of the function $g(y)=\int_{X} d^{2}(x, y) d \mu(x)$ on X.

- Point-set distance

Given a metric space (X, d), the point-set distance $d(x, A)$ between a point $x \in X$ and a subset A of X is defined as

$$
\inf _{y \in A} d(x, y)
$$

For any $x, y \in X$ and for any nonempty subset A of X, we have the following version of the triangle inequality: $d(x, A) \leq d(x, y)+d(y, A)$ (cf. distance map).
For a given point-measure $\mu(x)$ on X and a penalty function p, an optimal quantizer is a set $B \subset X$ such that $\int p(d(x, B)) d \mu(x)$ is as small as possible.

- Set-set distance

Given a metric space (X, d), the set-set distance between two subsets A and B of X is defined by

$$
d_{s s}(A, B)=\inf _{x \in A, y \in B} d(x, y) .
$$

This distance can be 0 even for disjoint sets, for example, for the intervals $(1,2)$, $(2,3)$ on \mathbb{R}. The sets A and B are positively separated if $d_{s s}(A, B)>0$. A constructive appartness space is a generalization of this relation on subsets of X. The spanning distance between A and B is $\sup _{x \in A, y \in B} d(x, y)$.
In Data Analysis, (cf. Chap. 17) the set-set and spanning distances between clusters are called the single and complete linkage, respectively.

- Matching distance

Given a metric space (X, d), the matching distance (or multiset-multiset distance) between two multisets A and B in X is defined by

$$
\inf _{\phi} \max _{x \in A} d(x, \phi(x)),
$$

where ϕ runs over all bijections between A and B, as multisets.

The matching distance is not related to the perfect matching distance in Chap. 15 and to the nonlinear elastic matching distance in Chap. 21.

- Metrics between multisets

A multiset (or bag) drawn from a set S is a mapping $m: S \rightarrow \mathbb{Z}_{\geq 0}$, where $m(x)$ represents the "multiplicity" of $x \in S$. The dimensionality, cardinality and height of multiset m is $|S|,|m|=\sum_{x \in S} m(x)$ and $\max _{x \in S} m(x)$, respectively. Multisets are good models for multi-attribute objects such as, say, all symbols in a string, all words in a document, etc.
A multiset m is finite if S and all $m(x)$ are finite; the complement of a finite multiset m is the multiset $\bar{m}: S \rightarrow \mathbb{Z}_{\geq 0}$, where $\bar{m}(x)=\max _{y \in S} m(y)-m(x)$. Given two multisets m_{1} and m_{2}, denote by $m_{1} \cup m_{2}, m_{1} \cap m_{2}, m_{1} \backslash m_{2}$ and $m_{1} \Delta m_{2}$ the multisets on S defined, for any $x \in S$, by $m_{1} \cup m_{2}(x)=\max \left\{m_{1}(x), m_{2}(x)\right\}$, $m_{1} \cap m_{2}(x)=\min \left\{m_{1}(x), m_{2}(x)\right\}, m_{1} \backslash m_{2}(x)=\max \left\{0, m_{1}(x)-m_{2}(x)\right\}$ and $m_{1} \Delta m_{2}(x)=\left|m_{1}(x)-m_{2}(x)\right|$, respectively. Also, $m_{1} \subseteq m_{2}$ denotes that $m_{1}(x) \leq m_{2}(x)$ for all $x \in S$.
The measure $\mu(m)$ of a multiset m is a linear combination $\mu(m)=$ $\sum_{x \in S} \lambda(x) m(x)$ with $\lambda(x) \geq 0$. In particular, $|m|$ is the counting measure.
For any measure $\mu(m) \in \mathbb{R}_{\geq 0}$, Miyamoto, 1990, and Petrovsky, 2003, proposed several semimetrics between multisets m_{1} and m_{2} including $d_{1}\left(m_{1}, m_{2}\right)=$ $\mu\left(m_{1} \Delta m_{2}\right)$ and $d_{2}\left(m_{1}, m_{2}\right)=\frac{\mu\left(m_{1} \Delta m_{2}\right)}{\mu\left(m_{1} \cup m_{2}\right)}$ (with $d_{2}(\emptyset, \emptyset)=0$ by definition). Cf. symmetric difference metric and Steinhaus distance.
Among examples of other metrics between multisets are matching distance, metric space of roots in Chap. 12, μ-metric in Chap. 15 and, in Chap. 11, bag distance $\max \left\{\left|m_{1} \backslash m_{2}\right|,\left|m_{2} \backslash m_{1}\right|\right\}$ and q-gram similarity.

- Metrics between fuzzy sets

A fuzzy subset of a set S is a mapping $\mu: S \rightarrow[0,1]$, where $\mu(x)$ represents the "degree of membership" of $x \in S$. It is an ordinary (crisp) if all $\mu(x)$ are 0 or 1. Fuzzy sets are good models for gray scale images (cf. gray scale images distances in Chap. 21), random objects and objects with nonsharp boundaries. Bhutani-Rosenfeld, 2003, introduced the following two metrics between two fuzzy subsets μ and ν of a finite set S. The diff-dissimilarity is a metric (a fuzzy generalization of Hamming metric), defined by

$$
d(\mu, v)=\sum_{x \in S}|\mu(x)-v(x)| .
$$

The perm-dissimilarity is a semimetric defined by

$$
\min \{d(\mu, p(\nu))\}
$$

where the minimum is taken over all permutations p of S.
The Chaudhuri-Rosenfeld metric (1996) between two fuzzy sets μ and ν with crisp points (i.e., the sets $\{x \in S: \mu(x)=1\}$ and $\{x \in S: v(x)=1\}$ are nonempty) is an extended metric, defined the Hausdorff metric $d_{\text {Haus }}$ by

$$
\int_{0}^{1} 2 t d_{\text {Haus }}(\{x \in S: \mu(x) \geq t\},\{x \in S: v(x) \geq t\}) d t
$$

A fuzzy number is a fuzzy subset μ of the real line \mathbb{R}, such that the level set (or t cut) $A_{\mu}(t)=\{x \in \mathbb{R}: \mu(x) \geq t\}$ is convex for every $t \in[0,1]$. The sendograph of a fuzzy set μ is the set $\operatorname{send}(\mu)=\{(x, t) \in S \times[0,1]: \mu(x)>0, \mu(x) \geq t\}$. The sendograph metric (Kloeden, 1980) between two fuzzy numbers μ, ν with crisp points and compact sendographs is the Hausdorff metric

$$
\max \left\{\sup _{a=(x, t) \in \operatorname{send}(\mu)} d(a, \operatorname{send}(v)), \sup _{b=\left(x^{\prime}, t^{\prime}\right) \in \operatorname{send}(v)} d(b, \operatorname{send}(\mu))\right\},
$$

where $d(a, b)=d\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)$ is a box metric (cf. Chap. 4) max $\left\{\left|x-x^{\prime}\right|, \mid t-\right.$ $\left.t^{\prime} \mid\right\}$.
The Klement-Puri-Ralesku metric (1988) between fuzzy numbers μ, v is

$$
\int_{0}^{1} d_{\text {Haus }}\left(A_{\mu}(t), A_{v}(t)\right) d t
$$

where $d_{\text {Haus }}\left(A_{\mu}(t), A_{v}(t)\right)$ is the Hausdorff metric

$$
\max \left\{\sup _{x \in A_{\mu}(t)} \inf _{y \in A_{\nu}(t)}|x-y|, \sup _{x \in A_{v}(t)} \inf _{x \in A_{\mu}(t)}|x-y|\right\}
$$

Several other Hausdorff-like metrics on some families of fuzzy sets were proposed by Boxer in 1997, Fan in 1998 and Brass in 2002; Brass also argued the nonexistence of a "good" such metric.
If q is a quasi-metric on $[0,1]$ and S is a finite set, then $Q(\mu, \nu)=$ $\sup _{x \in S} q(\mu(x), v(x))$ is a quasi-metric on fuzzy subsets of S.
Cf. fuzzy Hamming distance in Chap. 11 and, in Chap. 23, fuzzy set distance and fuzzy polynucleotide metric. Cf. fuzzy metric spaces in Chap. 3 for fuzzyvalued generalizations of metrics and, for example, [Bloc99] for a survey.

- Metrics between intuitionistic fuzzy sets

An intuitionistic fuzzy subset of a set S is (Atanassov, 1999) an ordered pair of mappings $\mu, \nu: \rightarrow[0,1]$ with $0 \leq \mu(x)+v(x) \leq 1$ for all $x \in S$, representing the "degree of membership" and the "degree of nonmembership" of $x \in S$, respectively. It is an ordinary fuzzy subset if $\mu(x)+v(x)=1$ for all $x \in S$.
Given two intuitionistic fuzzy subsets $(\mu(x), \nu(x))$ and $\left(\mu^{\prime}(x), \nu^{\prime}(x)\right)$ of a finite set $S=\left\{x_{1}, \ldots, x_{n}\right\}$, their Atanassov distances (1999) are:

$$
\frac{1}{2} \sum_{i=1}^{n}\left(\left|\mu\left(x_{i}\right)-\mu^{\prime}\left(x_{i}\right)\right|+\left|v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right)\right|\right) \text { (Hamming distance) }
$$

and, in general, for any given numbers $p \geq 1$ and $0 \leq q \leq 1$, the distance

$$
\left(\sum_{i=1}^{n}(1-q)\left(\mu\left(x_{i}\right)-\mu^{\prime}\left(x_{i}\right)\right)^{p}+q\left(v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right)^{p}\right)^{\frac{1}{p}} .\right.
$$

Their Grzegorzewski distances (2004) are:

$$
\begin{aligned}
& \sum_{i=1}^{n} \max \left\{\left|\mu\left(x_{i}\right)-\mu^{\prime}\left(x_{i}\right)\right|,\left|v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right)\right|\right\} \text { (Hamming distance), } \\
& \sqrt{\sum_{i=1}^{n} \max \left\{\left(\mu\left(x_{i}\right)-\mu^{\prime}\left(x_{i}\right)\right)^{2},\left(v\left(x_{i}\right)-v^{\prime}\left(x_{i}\right)\right)^{2}\right\}} \text { (Euclidean distance). }
\end{aligned}
$$

The normalized versions (dividing the above sums by n) were also proposed.
Szmidt-Kacprzyk, 1997, proposed a modification of the above, adding $\pi(x)-$ $\pi^{\prime}(x)$, where $\pi(x)$ is the third mapping $1-\mu(x)-v(x)$.
An interval-valued fuzzy subset of a set S is a mapping $\mu: \rightarrow[I]$, where [I] is the set of closed intervals $\left[a^{-}, a^{+}\right] \subseteq[0,1]$. Let $\mu(x)=\left[\mu^{-}(x), \mu^{+}(x)\right]$, where $0 \leq \mu^{-}(x) \leq \mu^{+}(x) \leq 1$ and an interval-valued fuzzy subset is an ordered pair of mappings μ^{-}and μ^{+}. This notion is close to the above intuitionistic one; so, above distance can easily be adapted. For example, $\sum_{i=1}^{n} \max \left\{\mid \mu^{-}\left(x_{i}\right)-\right.$ $\mu^{\prime-}\left(x_{i}\right)\left|,\left|\mu^{+}\left(x_{i}\right)-\mu^{\prime+}\left(x_{i}\right)\right|\right\}$ is a Hamming distance between interval-valued fuzzy subsets $\left(\mu^{-}, \mu^{+}\right)$and $\left(\mu^{\prime-}, \mu^{\prime+}\right)$.

- Polynomial metric space

Let (X, d) be a metric space with a finite diameter D and a finite normalized measure μ_{X}. Let the Hilbert space $L_{2}(X, d)$ of complex-valued functions decompose into a countable (when X is infinite) or a finite (with $D+1$ members when X is finite) direct sum of mutually orthogonal subspaces $L_{2}(X, d)=$ $V_{0} \oplus V_{1} \oplus \ldots$.
Then (X, d) is a polynomial metric space if there exists an ordering of the spaces V_{0}, V_{1}, \ldots such that, for $i=0,1, \ldots$, there exist zonal spherical functions, i.e., real polynomials $Q_{i}(t)$ of degree i such that

$$
Q_{i}(t(d(x, y)))=\frac{1}{r_{i}} \sum_{j=1}^{r_{i}} v_{i j}(x) \overline{v_{i j}(y)}
$$

for all $x, y \in X$, where r_{i} is the dimension of $V_{i},\left\{v_{i i}(x): 1 \leq j \leq r_{i}\right\}$ is an orthonormal basis of V_{i}, and $t(d)$ is a continuous decreasing real function such that $t(0)=1$ and $t(D)=-1$. The zonal spherical functions constitute an orthogonal system of polynomials with respect to some weight $w(t)$.
The finite polynomial metric spaces are also called (P and Q)-polynomial association schemes; cf. distance-regular graph in Chap. 15. The infinite
polynomial metric spaces are the compact connected two-point homogeneous spaces. Wang, 1952, classified them as the Euclidean unit spheres, the real, complex, quaternionic projective spaces or the Cayley projective line and plane.

- Universal metric space

A metric space (U, d) is called universal for a collection \mathcal{M} of metric spaces if any metric space $\left(M, d_{M}\right)$ from \mathcal{M} is isometrically embeddable in (U, d), i.e., there exists a mapping $f: M \rightarrow U$ which satisfies $d_{M}(x, y)=d(f(x), f(y))$ for any $x, y \in M$. Some examples follow.
Every separable metric space (X, d) isometrically embeds (Fréchet, 1909) in (a nonseparable) Banach space l_{∞}^{∞}. In fact, $d(x, y)=\sup _{i}\left|d\left(x, a_{i}\right)-d\left(y, a_{i}\right)\right|$, where $\left(a_{1}, \ldots, a_{i}, \ldots\right)$ is a dense countable subset of X.
Every metric space isometrically embeds (Kuratowski, 1935) in the Banach space $L^{\infty}(X)$ of bounded functions $f: X \rightarrow \mathbb{R}$ with the norm $\sup _{x \in X}|f(x)|$.
The Urysohn space is a homogeneous complete separable space which is the universal metric space for all separable metric spaces. The Hilbert cube (Chap.4) is the universal space for the class of metric spaces with a countable base.
The graphic metric space of the random graph (Rado, 1964; the vertex-set consists of all prime numbers $p \equiv 1(\bmod 4)$ with $p q$ being an edge if p is a quadratic residue modulo q) is the universal metric space for any finite or countable metric space with distances 0,1 and 2 only. It is a discrete analog of the Urysohn space.
There exists a metric d on \mathbb{R}, inducing the usual (interval) topology, such that (\mathbb{R}, d) is a universal metric space for all finite metric spaces (Holsztynski, 1978). The Banach space l_{∞}^{n} is a universal metric space for all metric spaces (X, d) with $|X| \leq n+2$ (Wolfe, 1967). The Euclidean space \mathbb{E}^{n} is a universal metric space for all ultrametric spaces (X, d) with $|X| \leq n+1$; the space of all finite functions $f(t): \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ equipped with the metric $d(f, g)=\sup \{t: f(t) \neq g(t)\}$ is a universal metric space for all ultrametric spaces (Lemin-Lemin, 1996).
The universality can be defined also for mappings, other than isometric embeddings, of metric spaces, say, a bi-Lipschitz embedding, etc. For example, any compact metric space is a continuous image of the Cantor set with the natural metric $|x-y|$ inherited from \mathbb{R}, and any complete separable metric space is a continuous image of the space of irrational numbers.

- Constructive metric space

A constructive metric space is a pair (X, d), where X is a set of constructive objects (say, words over an alphabet), and d is an algorithm converting any pair of elements of X into a constructive real number $d(x, y)$ such that d is a metric on X.

- Computable metric space

Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of elements from a given Polish (i.e., complete separable) metric space (X, d) such that the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ is dense in (X, d). Let $\mathcal{N}(m, n, k)$ be the Cantor tuple function of a triple $(n, m, k) \in \mathbb{N}^{3}$, and let $\left\{q_{k}\right\}_{k \in \mathbb{N}}$ be a fixed total standard numbering of the set \mathbb{Q} of rational numbers.

The triple ($X, d,\left\{x_{n}\right\}_{n \in \mathbb{N}}$) is called an effective (or semicomputable) metric space [Hemm02] if the set $\left\{\mathcal{N}(n, m, k): d\left(x_{m}, x_{n}\right)<q_{k}\right\}$ is recursively enumerable, i.e., there is an algorithm that enumerates the members of this set. If, moreover, the set $\left\{\mathcal{N}(n, m, k): d\left(s_{m}, s_{m}\right)>q_{k}\right\}$ is recursively enumerable, then this triple is called (Lacombe, 1951) computable metric space, (or recursive metric space). In other words, the map $d \circ(q \times q): \mathbb{N}^{2} \rightarrow \mathbb{R}$ is a computable (double) sequence of real numbers, i.e., is recursive over \mathbb{R}.

Chapter 2
 Topological Spaces

A topological space (X, τ) is a set X with a topology τ, i.e., a collection of subsets of X with the following properties:

1. $X \in \tau, \emptyset \in \tau$;
2. If $A, B \in \tau$, then $A \cap B \in \tau$;
3. For any collection $\left\{A_{\alpha}\right\}_{\alpha}$, if all $A_{\alpha} \in \tau$, then $\cup_{\alpha} A_{\alpha} \in \tau$.

The sets in τ are called open sets, and their complements are called closed sets. A base of the topology τ is a collection of open sets such that every open set is a union of sets in the base. The coarsest topology has two open sets, the empty set and X, and is called the trivial topology (or indiscrete topology). The finest topology contains all subsets as open sets, and is called the discrete topology.

In a metric space (X, d) define the open ball as the set $B(x, r)=\{y \in X$: $d(x, y)<r\}$, where $x \in X$ (the center of the ball), and $r \in \mathbb{R}, r>0$ (the radius of the ball). A subset of X which is the union of (finitely or infinitely many) open balls, is called an open set. Equivalently, a subset U of X is called open if, given any point $x \in U$, there exists a real number $\epsilon>0$ such that, for any point $y \in X$ with $d(x, y)<\epsilon, y \in U$.

Any metric space is a topological space, the topology (metric topology, topology induced by the metric d) being the set of all open sets. The metric topology is always T_{4} (see below a list of topological spaces). A topological space which can arise in this way from a metric space, is called a metrizable space.

A quasi-pseudo-metric topology is a topology on X induced similarly by a quasisemimetric d on X, using the set of open d-balls $B(x, r)$ as the base. In particular, quasi-metric topology and pseudo-metric topology are the terms used for the case of, respectively, quasi-metric and semimetric d. In general, those topologies are not T_{0}.

Given a topological space (X, τ), a neighborhood of a point $x \in X$ is a set containing an open set which in turn contains x. The closure of a subset of a topological space is the smallest closed set which contains it. An open cover of X is a collection \mathcal{L} of open sets, the union of which is X; its subcover is a cover \mathcal{K}
such that every member of \mathcal{K} is a member of \mathcal{L}; its refinement is a cover \mathcal{K}, where every member of \mathcal{K} is a subset of some member of \mathcal{L}. A collection of subsets of X is called locally finite if every point of X has a neighborhood which meets only finitely many of these subsets.

A subset $A \subset X$ is called dense if $X=c l(A)$, i.e., it consists of A and its limit points; cf. closed subset of metric space in Chap. 1. The density of a topological space is the least cardinality of its dense subset. A local base of a point $x \in X$ is a collection \mathcal{U} of neighborhoods of x such that every neighborhood of x contains some member of \mathcal{U}.

A function from one topological space to another is called continuous if the preimage of every open set is open. Roughly, given $x \in X$, all points close to x map to points close to $f(x)$. A function f from one metric space $\left(X, d_{X}\right)$ to another metric space $\left(Y, d_{Y}\right)$ is continuous at the point $c \in X$ if, for any positive real number ϵ, there exists a positive real number δ such that all $x \in X$ satisfying $d_{X}(x, c)<\delta$ will also satisfy $d_{Y}(f(x), f(c))<\epsilon$; the function is continuous on an interval I if it is continuous at any point of I.

The following classes of topological spaces (up to T_{4}) include any metric space.

- T_{0}-space

A T_{0}-space (or Kolmogorov space) is a topological space in which every two distinct points are topologically distinguishable, i.e., have different neighborhoods.

- T_{1}-space

A T_{1}-space (or accessible space) is a topological space in which every two distinct points are separated, i.e., each does not belong to other's closure. T_{1-} spaces are always T_{0}.

- T_{2}-space

A T_{2}-space (or Hausdorff space) is a topological space in which every two distinct points are separated by neighborhoods, i.e., have disjoint neighborhoods. T_{2}-spaces are always T_{1}.
A space is T_{2} if and only if it is both T_{0} and pre-regular, i.e., any two topologically distinguishable points are separated by neighborhoods.

- Regular space

A regular space is a topological space in which every neighborhood of a point contains a closed neighborhood of the same point.

- T_{3}-space

A T_{3}-space (or Vietoris space, regular Hausdorff space) is a topological space which is T_{1} and regular.

- Completely regular space

A completely regular space (or Tychonoff space) is a Hausdorff space (X, τ) in which any closed set A and any $x \notin A$ are functionally separated.
Two subsets A and B of X are functionally separated if there is a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=0$ and $f(B)=1$.

- Perfectly normal space

A perfectly normal space is a topological space (X, τ) in which any two disjoint closed subsets of X are functionally separated.

- Normal space

A normal space is a topological space in which, for any two disjoint closed sets A and B, there exist two disjoint open sets U and V such that $A \subset U$, and $B \subset V$.

- T_{4}-space

A T_{4}-space (or Tietze space, normal Hausdorff space) is a topological space which is T_{1} and normal. Any metric space is a perfectly normal T_{4}-space.

- Completely normal space

A completely normal space is a topological space in which any two separated sets have disjoint neighborhoods. It also called a hereditarily normal space since it is exactly one in which every subspace with subspace topology is a normal space.
Sets A and B are separated in X if each is disjoint from the other's closure.

- Monotonically normal space

A monotonically normal space is a completely normal space in which any two separated subsets A and B are strongly separated, i.e., there exist open sets U and V with $A \subset U, B \subset V$ and $C l(U) \cap C l(V)=\emptyset$.

- T_{5}-space

A T_{5}-space (or completely normal Hausdorff space) is a topological space which is completely normal and $T_{1} . T_{5}$-spaces are always T_{4}.

- T_{6}-space

A T_{6}-space (or perfectly normal Hausdorff space) is a topological space which is T_{1} and perfectly normal. T_{6}-spaces are always T_{5}.

- Moore space

A Moore space is a regular space with a development.
A development is a sequence $\left\{\mathcal{U}_{n}\right\}_{n}$ of open covers such that, for every $x \in X$ and every open set A containing x, there exists n such that $\operatorname{St}\left(x, \mathcal{U}_{n}\right)=\cup\{U \in$ $\left.\mathcal{U}_{n}: x \in U\right\} \subset A$, i.e., $\left\{\operatorname{St}\left(x, \mathcal{U}_{n}\right)\right\}_{n}$ is a neighborhood base at x.

- Polish space

A separable space is a topological space which has a countable dense subset.
A Polish space is a separable space which can be equipped with a complete metric. A Lusin space is a topological space such that some weaker topology makes it into a Polish space; every Polish space is Lusin. A Souslin space is a continuous image of a Polish space; every Lusin space is Suslin.

- Lindelöf space

A Lindelöf space is a topological space in which every open cover has a countable subcover.
An L-space is a hereditarily Lindelöf space which is not hereditarily separable.

- First-countable space

A topological space is called first-countable if every point has a countable local base. Any metric space is first-countable.

- Second-countable space

A topological space is called second-countable if its topology has a countable base. Such space is quasi-metrizable and, if and only if it is a T_{3}-space, metrizable.

Second-countable spaces are first-countable, separable and Lindelöf. The properties second-countable, separable and Lindelöf are equivalent for metric spaces.
The Euclidean space \mathbb{E}^{n} with its usual topology is second-countable.

- Baire space

A Baire space is a topological space in which every intersection of countably many dense open sets is dense. Every complete metric space is a Baire space. Every locally compact T_{2}-space (hence, every n-manifold) is a Baire space.

- Alexandrov space

An Alexandrov space is a topological space in which every intersection of arbitrarily many open sets is open.
A topological space is called a P-space if every G_{δ}-set (i.e., the intersection of countably many open sets) is open.
A topological space (X, τ) is called a Q-space if every subset $A \subset X$ is a G_{δ}-set.

- Connected space

A topological space (X, τ) is called connected if it is not the union of a pair of disjoint nonempty open sets. In this case the set X is called a connected set.
A connected topological space (X, τ) is called unicoherent if the intersection $A \cap B$ is connected for any closed connected sets A, B with $A \cup B=X$.
A topological space (X, τ) is called locally connected if every point $x \in X$ has a local base consisting of connected sets.
A topological space (X, τ) is called path-connected (or 0-connected) if for every points $x, y \in X$ there is a path γ from x to y, i.e., a continuous function γ : $[0,1] \rightarrow X$ with $\gamma(x)=0, \gamma(y)=1$.
A topological space (X, τ) is called simply connected (or 1-connected) if it consists of one piece, and has no circle-shaped "holes" or "handles" or, equivalently, if every continuous curve of X is contractible, i.e., can be reduced to one of its points by a continuous deformation.
A topological space (X, τ) is called hyperconnected (or irreducible) if X cannot be written as the union of two proper closed sets.

- Sober space

A topological space (X, τ) is called sober if every hyperconnected closed subset of X is the closure of exactly one point of X. Any sober space is a T_{0}-space.
Any T_{2}-space is a sober T_{1}-space but some sober T_{1}-spaces are not T_{2}.

- Paracompact space

A topological space is called paracompact if every open cover of it has an open locally finite refinement. Every metrizable space is paracompact.

- Totally bounded space

A topological space (X, τ) is called totally bounded (or pre-compact) if it can be covered by finitely many subsets of any fixed cardinality.
A metric space (X, d) is a totally bounded metric space if, for every real number $r>0$, there exist finitely many open balls of radius r, whose union is equal to X.

- Compact space

A topological space (X, τ) is called compact if every open cover of X has a finite subcover.
Compact spaces are always Lindelöf, totally bounded, and paracompact. A metric space is compact if and only if it is complete and totally bounded. A subset of a Euclidean space \mathbb{E}^{n} is compact if and only if it is closed and bounded. There exist a number of topological properties which are equivalent to compactness in metric spaces, but are nonequivalent in general topological spaces. Thus, a metric space is compact if and only if it is a sequentially compact space (every sequence has a convergent subsequence), or a countably compact space (every countable open cover has a finite subcover), or a pseudo-compact space (every real-valued continuous function on the space is bounded), or a weakly countably compact space (i.e., every infinite subset has an accumulation point).
Sometimes, a compact connected T_{2}-space is called continuит; cf. continuum in Chap. 1.

- Locally compact space

A topological space is called locally compact if every point has a local base consisting of compact neighborhoods. The Euclidean spaces \mathbb{E}^{n} and the spaces \mathbb{Q}_{p} of p-adic numbers are locally compact.
A topological space (X, τ) is called a k-space if, for any compact set $Y \subset X$ and $A \subset X$, the set A is closed whenever $A \cap Y$ is closed. The k-spaces are precisely quotient images of locally compact spaces.

- Locally convex space

A topological vector space is a real (complex) vector space V which is a T_{2} space with continuous vector addition and scalar multiplication. It is a uniform space (cf. Chap. 3).
A locally convex space is a topological vector space whose topology has a base, where each member is a convex balanced absorbent set. A subset A of V is called convex if, for all $x, y \in A$ and all $t \in[0,1]$, the point $t x+(1-t) y \in A$, i.e., every point on the line segment connecting x and y belongs to A. A subset A is balanced if it contains the line segment between x and $-x$ for every $x \in A ; A$ is absorbent if, for every $x \in V$, there exist $t>0$ such that $t x \in A$.
The locally convex spaces are precisely vector spaces with topology induced by a family $\left\{\|.\| \|_{\alpha}\right\}$ of seminorms such that $x=0$ if $\|x\|_{\alpha}=0$ for every α.
Any metric space ($V,\|x-y\|$) on a real (complex) vector space V with a norm metric $\|x-y\|$ is a locally convex space; each point of V has a local base consisting of convex sets. Every L_{p} with $0<p<1$ is an example of a vector space which is not locally convex.

- n-manifold

Broadly, a manifold is a topological space locally homeomorphic to a topological vector space over the reals.
But usually, a topological manifold is a second-countable T_{2}-space that is locally homeomorphic to Euclidean space. An n-manifold is a topological manifold such that every point has a neighborhood homeomorphic to \mathbb{E}^{n}.

- Fréchet space

A Fréchet space is a locally convex space (V, τ) which is complete as a uniform space and whose topology is defined using a countable set of seminorms $\|.\|_{1}, \ldots,\|.\|_{n}, \ldots$, i.e., a subset $U \subset V$ is open in (V, τ) if, for every $u \in U$, there exist $\epsilon>0$ and $N \geq 1$ with $\left\{v \in V:\|u-v\|_{i}<\epsilon\right.$ if $\left.i \leq N\right\} \subset U$.
A Fréchet space is precisely a locally convex \mathbf{F}-space (cf. Chap. 5). Its topology can be induced by a translation invariant metric (Chap. 5) and it is a complete and metrizable space with respect to this topology. But this topology may be induced by many such metrics. Every Banach space is a Fréchet space.

- Countably-normed space

A countably-normed space is a locally convex space (V, τ) whose topology is defined using a countable set of compatible norms $\|.\|_{1}, \ldots,\|.\| \|_{n}, \ldots$ It means that, if a sequence $\left\{x_{n}\right\}_{n}$ of elements of V that is fundamental in the norms $\|.\|_{i}$ and $\|.\|_{j}$ converges to zero in one of these norms, then it also converges in the other. A countably-normed space is a metrizable space, and its metric can be defined by

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\|x-y\|_{n}}{1+\|x-y\|_{n}}
$$

- Metrizable space

A topological space (T, τ) is called metrizable if it is homeomorphic to a metric space, i.e., X admits a metric d such that the set of open d-balls $\{B(x, r): r>$ $0\}$ forms a neighborhood base at each point $x \in X$. If, moreover, (X, d) is a complete metric space for one of such metrics d, then (X, d) is a completely metrizable (or topologically complete) space.
Metrizable spaces are always paracompact T_{2}-spaces (hence, normal and completely regular), and first-countable.
A topological space is called locally metrizable if every point in it has a metrizable neighborhood.
A topological space (X, τ) is called submetrizable if there exists a metrizable topology τ^{\prime} on X which is coarser than τ.
A topological space (X, τ) is called proto-metrizable if it is paracompact and has an orthobase, i.e., a base \mathcal{B} such that, for $\mathcal{B}^{\prime} \subset \mathcal{B}$, either $\cap \mathcal{B}^{\prime}$ is open, or \mathcal{B}^{\prime} is a local base at the unique point in $\cap \mathcal{B}^{\prime}$. It is not related to the protometric in Chap. 1.
Some examples of other direct generalizations of metrizable spaces follow.
A sequential space is a quotient image of a metrizable space.
Morita's M-space is a topological space (X, τ) from which there exists a continuous map f onto a metrizable topological space $\left(Y, \tau^{\prime}\right)$ such that f is closed and $f^{-1}(y)$ is countably compact for each $y \in Y$.
Ceder's M_{1}-space is a topological space (X, τ) having a σ-closure-preserving base (metrizable spaces have σ-locally finite bases).

Okuyama's σ-space is a topological space (X, τ) having a σ-locally finite net, i.e., a collection \mathcal{U} of subsets of X such that, given of a point $x \in U$ with U open, there exists $U^{\prime} \in \mathcal{U}$ with $x \in U^{\prime} \subset U$ (a base is a net consisting of open sets). Every compact subset of a σ-space is metrizable.
Michael's cosmic space is a topological space (X, τ) having a countable net (equivalently, a Lindelöf σ-space). It is exactly a continuous image of a separable metric space. A T_{2}-space is called analytic if it is a continuous image of a complete separable metric space; it is called a Lusin space if, moreover, the image is one-to-one.

- Quasi-metrizable space

A topological space (X, τ) is called a quasi-metrizable space if X admits a quasi-metric d such that the set of open d-balls $\{B(x, r): r>0\}$ forms a neighborhood base at each point $x \in X$.
A more general γ-space is a topological space admitting a γ-metric d (i.e., a function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ with $d\left(x, z_{n}\right) \rightarrow 0$ whenever $d\left(x, y_{n}\right) \rightarrow 0$ and $d\left(y_{n}, z_{n}\right) \rightarrow 0$) such that the set of open forward d-balls $\{B(x, r): r>0\}$ forms a neighborhood base at each point $x \in X$.
The Sorgenfrey line is the topological space (\mathbb{R}, τ) defined by the base $\{[a, b)$: $a, b \in \mathbb{R}, a<b\}$. It is not metrizable but it is a first-countable separable and paracompact T_{5}-space; neither it is second-countable, nor locally compact or locally connected. However, the Sorgenfrey line is quasi-metrizable by the Sorgenfrey quasi-metric (cf. Chap. 12) defined as $y-x$ if $y \geq x$, and 1 , otherwise.

- Symmetrizable space

A topological space (X, τ) is called symmetrizable (and τ is called the distance topology) if there is a symmetric d on X (i.e., a distance $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ with $d(x, y)=0$ implying $x=y$) such that a subset $U \subset X$ is open if and only if, for each $x \in U$, there exists $\epsilon>0$ with $B(x, \epsilon)=\{y \in X: d(x, y)<\epsilon\} \subset U$. In other words, a subset $H \subset X$ is closed if and only if $d(x, H)=\inf _{y}\{d(x, y)$: $y \in H\}>0$ for each $x \in X \backslash U$. A symmetrizable space is metrizable if and only if it is a Morita's M-space.
In Topology, the term semimetrizable space refers to a topological space (X, τ) admitting a symmetric d such that, for each $x \in X$, the family $\{B(x, \epsilon): \epsilon>0\}$ of balls forms a (not necessarily open) neighborhood base at x. In other words, a point x is in the closure of a set H if and only if $d(x, H)=0$.
A topological space is semimetrizable if and only if it is symmetrizable and firstcountable. Also, a symmetrizable space is semimetrizable if and only if it is a Fréchet-Urysohn space (or E-space), i.e., for any subset A and for any point x of its closure, there is a sequence in A converging to x.

- Hyperspace

A hyperspace of a topological space (X, τ) is a topological space on the set $C L(X)$ of all nonempty closed (or, moreover, compact) subsets of X. The topology of a hyperspace of X is called a hypertopology. Examples of such a hit-and-miss topology are the Vietoris topology, and the Fell topology. Examples
of such a weak hyperspace topology are the Hausdorff metric topology, and the Wijsman topology.

- Discrete topological space

A topological space (X, τ) is discrete if τ is the discrete topology (the finest topology on X), i.e., containing all subsets of X as open sets. Equivalently, it does not contain any limit point, i.e., it consists only of isolated points.

- Indiscrete topological space

A topological space (X, τ) is indiscrete if τ is the indiscrete topology (the coarsest topology on X), i.e., having only two open sets, \emptyset and X.
It can be considered as the semimetric space (X, d) with the indiscrete semimetric: $d(x, y)=0$ for any $x, y \in X$.

- Extended topology

Consider a set X and a map $c l: P(X) \rightarrow P(X)$, where $P(X)$ is the set of all subsets of X. The set $c l(A)$ (for $A \subset X$), its dual set $\operatorname{int}(A)=X \backslash c l(X \backslash A)$ and the map $N: X \rightarrow P(X)$ with $N(x)=\{A \subset X: x \in \operatorname{int}(A)\}$ are called the closure, interior and neighborhood map, respectively.
So, $x \in \operatorname{cl}(A)$ is equivalent to $X \backslash A \in P(X) \backslash N(x)$. A subset $A \subset X$ is closed if $A=\operatorname{cl}(A)$ and open if $A=\operatorname{int}(A)$. Consider the following possible properties of cl ; they are meant to hold for all $A, B \in P(X)$.

1. $c l(\emptyset)=\emptyset$;
2. $A \subseteq B$ implies $\operatorname{cl}(A) \subseteq \operatorname{cl}(B)$ (isotony);
3. $A \subseteq \operatorname{cl}(A)$ (enlarging);
4. $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$ (linearity, and, in fact, 4 implies 2);
5. $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)($ idempotency $)$.

The pair ($X, c l$) satisfying 1 is called an extended topology if 2 holds, a Brissaud space (Brissaud, 1974) if 3 holds, a neighborhood space (Hammer, 1964) if 2 and 3 hold, a Smyth space (Smyth, 1995) if 4 holds, a pre-topology (Čech, 1966) if 3 and 4 hold, and a closure space (Soltan, 1984) if 2,3 and 5 hold.
($X, c l$) is the usual topology, in closure terms, if $1,3,4$ and 5 hold.

Chapter 3
 Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, quasi-metric, near-metric, extended metric, were defined in Chap. 1. Here we give some generalizations in the direction of Topology, Probability, Algebra, etc.

3.1 m-Tuple Generalizations of Metrics

In the definition of a metric, for every two points there is a unique associated number. Here we group some generalizations of metrics in which several points or several numbers are considered instead.

- m-Hemimetric

Let X be a nonempty set. A function $d: X^{m+1} \rightarrow \mathbb{R}_{\geq 0}$ is called a m-hemimetric (Deza-Rosenberg, 2000) if it have the following properties:

1. d is totally symmetric, i.e., satisfies $d\left(x_{1}, \ldots, x_{m+1}\right)=d\left(x_{\pi(1)}, \ldots, x_{\pi(m+1)}\right)$ for all $x_{1}, \ldots, x_{m+1} \in X$ and for any permutation π of $\{1, \ldots, m+1\}$;
2. $d\left(x_{1}, \ldots, x_{m+1}\right)=0$ if x_{1}, \ldots, x_{m+1} are not pairwise distinct;
3. for all $x_{1}, \ldots, x_{m+2} \in X, d$ satisfies the m-simplex inequality:

$$
d\left(x_{1}, \ldots, x_{m+1}\right) \leq \sum_{i=1}^{m+1} d\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}\right)
$$

Cf. unrelated hemimetric (i.e., a quasi-semimetric) in Chap. 1.
If in above 3. $d\left(x_{1}, \ldots, x_{m+1}\right)$ is replaced by $s d\left(x_{1}, \ldots, x_{m+1}\right)$ for some $s, 0<$ $s \leq 1$, then d is called (m, s)-super-metric [DeDu03]. $(m, 1)$ - and $(1, s)$-supermetrics are exactly m-hemimetric and $\frac{1}{s}$-near-semimetric; cf. near-metric in Chap. 1.

If above 3 . is dropped, d is called m-dissimilarity. 1 -dissimilarity and 1hemimetric are exactly a distance and a semimetric.

- 2-Metric

A m-hemimetric with $m=2$ satisfies 2 -simplex (or tetrahedron) inequality

$$
d\left(x_{1}, x_{2}, x_{3}\right) \leq d\left(x_{4}, x_{2}, x_{3}\right)+d\left(x_{1}, x_{4}, x_{3}\right)+d\left(x_{1}, x_{2}, x_{4}\right) .
$$

A 2-metric (Gähler, 1963 and 1966) is a 2-hemimetric d in which, for any distinct points x_{1}, x_{2}, there is a point x_{3} with $d\left(x_{1}, x_{2}, x_{3}\right)>0$. The area of the triangle spanned by x_{1}, x_{2}, x_{3} on \mathbb{R}^{2} or \mathbb{S}^{2} is a 2 -metric.
A D-space (Dhage, 1992) is an 2 -hemimetric space (X, d) in which the condition " $d\left(x_{1}, x_{2}, x_{3}\right)=0$ if two of x_{1}, x_{2}, x_{3} are equal" is replaced by " $d\left(x_{1}, x_{2}, x_{3}\right)=0$ if and only if $x_{1}=x_{2}=x_{3}$." Mustafa and Sims, 2003, showed that D -spaces are not suitable for topological constructions. In 2006, they defined instead a function, let us call it $M S-2$-metric, $D: X^{3} \rightarrow \mathbb{R}_{\geq 0}$ which satisfies

1. $D\left(x_{1}, x_{2}, x_{3}\right)=0$ if $x_{1}=x_{2}=x_{3}$;
2. $D\left(x_{1}, x_{1}, x_{2}\right)>0$ whenever $x_{1} \neq x_{2}$;
3. $D\left(x_{1}, x_{2}, x_{3}\right) \geq D\left(x_{1}, x_{1}, x_{2}\right)$ whenever $x_{3} \neq x_{2}$;
4. D is a totally symmetric function of its three variables, and
5. $D\left(x_{1}, x_{2}, x_{3}\right) \leq D\left(x_{1}, x_{4}, x_{4}\right)+D\left(x_{4}, x_{2}, x_{3}\right)$ for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$.

The perimeter of the triangle spanned by x_{1}, x_{2}, x_{3} on \mathbb{R}^{2} is a $M S-2$ metric. If d is a metric, then $\frac{1}{2}\left(d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+d\left(x_{1}, x_{3}\right)\right)$ and $\max \left(d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right), d\left(x_{1}, x_{3}\right)\right)$ are $M S-2$-metrics. If D is a $M S-2$-metric, then $D\left(x_{1}, x_{2}, x_{2}\right)+D\left(x_{1}, x_{1}, x_{2}\right)$ is a metric. If (X, D) is a $M S-2$-metric space, the open D-ball with center x_{0} and radius r is $B_{D}\left(x_{0}, r\right)=\left\{x_{1} \in X\right.$: $\left.D\left(x_{0}, x_{1}, x_{1}\right)<r\right\}$.

- Multidistance

Let X be a set and let \mathcal{X} denote $\cup_{m=1}^{\infty} X^{m}$. A function $d: \mathcal{X} \rightarrow[0, \infty]$ is called a multidistance (Martin-Major, 2009) if it have the following properties for all m and all $x_{1}, \ldots, x_{m}, y \in X$:

1. $d\left(x_{1}, \ldots, x_{m}\right)=d\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)$ for any permutation π of $\{1, \ldots, m\}$;
2. $d\left(x_{1}, \ldots, x_{m}\right)=0$ if and only if $x_{1}=\cdots=x_{m}$;
3. $d\left(x_{1}, \ldots, x_{m}\right) \leq \sum_{i=1}^{m} d\left(x_{i}, y\right)$.

A multidistance is regular, if, moreover, $d\left(x_{1}, \ldots, x_{m}\right) \leq d\left(x_{1}, \ldots, x_{m}, y\right)$ holds.

- Multimetric

A multimetric space is the union of some metric spaces $\left(X_{i}, d_{i}\right), i \in J$.
In the case $X_{i}=X, i \in J$, the multimetric is defined as the sequence-valued $\operatorname{map} d(x, y)=\left(d_{i}\right), i \in J$, from $X \times X$ to $R_{\geq 0}^{|J|}$.
Cf. bimetric theory of gravity in Chap. 24 and (in the item meter-related terms) multimetric crystallography in Chap. 27. Also, Jörnsten, 2007, consider Clustering (cf. Chap. 17) under several distance metrics simultaneously.

- Metric 1-space

A category Ψ consists (Eilenberg and MacLane, 1945) of a set $O b(\Psi)$ of objects, a set $\operatorname{Mor}(\Psi)$ of morphisms (or arrows)) and a set-valued map associating a set $\Psi(x, y)$ of arrows to each ordered pair of objects x, y, so that each arrow belongs to only one set $\Psi(x, y)$. An element of $\Psi(x, y)$ is also denoted by $f: x \rightarrow y$.
Moreover, the composition $f \cdot g \in \Psi(x, z)$ of two arrows $f: x \rightarrow y, g: y \rightarrow z$ is defined, and it is associative. Finally, each set $\Psi(x, x)$ contains an identity arrow $^{\text {id }} x_{x}$ such that $f \cdot i d_{x}=f$ and $i d_{x} \cdot g=g$ for any arrows $f: y \rightarrow x$ and $g: x \rightarrow z$. Cf. category of metric spaces in Chap. 1 .
Weiss defined in [Weis12] a metric 1 -space as a category Ψ together with a weight-function $w: \Psi(x, y) \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ on arrows, which satisfies

1. $w\left(i_{x}\right)=0$ holds for each object $x \in O b(\Psi)$ (reflexivity).
2. $|w(g)-w(f)| \leq w(g \cdot f) \leq w(g)+w(f)$ holds for any objects x, y, z and arrows $f: x \rightarrow y, g: y \rightarrow z$ (full triangle inequality).

Any set X produces an indiscrete category I_{X}, in which $\operatorname{Ob}\left(I_{X}\right)=X$ and $\left|I_{X}(x, y)\right|=1$ for all $x, y \in X$. Any metric space (X, d) produces a metric 1 -space on I_{X} by defining $w(f)=d(x, y)$, and it is unique metric 1 -space on I_{X}. But, in general, the function w on arrows can be seen as a multivalued function on $O b \times O b$.
[Weis12] also outlined a metric m-space as a kind of an m-hemimetric on an m-category consisting of i-dimensional cells, $0 \leq i \leq m$ (objects, arrows, ...) and a associative-like composition rule for the cells with matching boundaries.

3.2 Indefinite Metrics

- Indefinite metric

An indefinite metric (or G-metric) on a real (complex) vector space V is a bilinear (in the complex case, sesquilinear) form G on V, i.e., a function $G: V \times V \rightarrow \mathbb{R}(\mathbb{C})$, such that, for any $x, y, z \in V$ and for any scalars α, β, we have the following properties: $G(\alpha x+\beta y, z)=\alpha G(x, z)+\beta G(y, z)$, and $G(x, \alpha y+\beta z)=\bar{\alpha} G(x, y)+\bar{\beta} G(x, z)$, where $\bar{\alpha}=\overline{a+b i}=a-b i$ denotes the complex conjugation.
If a positive-definite form G is symmetric, then it is an inner product on V, and one can use it to canonically introduce a norm and the corresponding norm metric on V. In the case of a general form G, there is neither a norm, nor a metric canonically related to G, and the term indefinite metric only recalls the close relation of such forms with certain metrics in vector spaces (cf. Chaps. 7 and 26).
The pair (V, G) is called a space with an indefinite metric. A finite-dimensional space with an indefinite metric is called a bilinear metric space. A Hilbert space H, endowed with a continuous G-metric, is called a Hilbert space with an indefinite metric. The most important example of such space is a J-space; cf. J-metric.

A subspace L in a space (V, G) with an indefinite metric is called a positive subspace, negative subspace, or neutral subspace, depending on whether $G(x, x)>0, G(x, x)<0$, or $G(x, x)=0$ for all $x \in L$.

- Hermitian G-metric

A Hermitian G-metric is an indefinite metric G^{H} on a complex vector space V such that, for all $x, y \in V$, we have the equality

$$
G^{H}(x, y)=\overline{G^{H}(y, x)}
$$

where $\bar{\alpha}=\overline{a+b i}=a-b i$ denotes the complex conjugation.

- Regular G-metric

A regular G-metric is a continuous indefinite metric G on a Hilbert space H over \mathbb{C}, generated by an invertible Hermitian operator T by the formula

$$
G(x, y)=\langle T(x), y\rangle,
$$

where \langle,$\rangle is the inner product on H$.
A Hermitian operator on a Hilbert space H is a linear operator T on H defined on a domain $D(T)$ of H such that $\langle T(x), y\rangle=\langle x, T(y)\rangle$ for any $x, y \in D(T)$. A bounded Hermitian operator is either defined on the whole of H, or can be so extended by continuity, and then $T=T^{*}$. On a finite-dimensional space a Hermitian operator can be described by a Hermitian matrix $\left(\left(a_{i j}\right)\right)=\left(\left(\bar{a}_{j i}\right)\right)$.

- J-metric

A J-metric is a continuous indefinite metric G on a Hilbert space H over \mathbb{C} defined by a certain Hermitian involution J on H by the formula

$$
G(x, y)=\langle J(x), y\rangle,
$$

where \langle,$\rangle is the inner product on H$.
An involution is a mapping H onto H whose square is the identity mapping. The involution J may be represented as $J=P_{+}-P_{-}$, where P_{+}and P_{-}are orthogonal projections in H, and $P_{+}+P_{-}=H$. The rank of indefiniteness of the J-metric is defined as $\min \left\{\operatorname{dim} P_{+}, \operatorname{dim} P_{-}\right\}$.
The space (H, G) is called a J-space. A J-space with finite rank of indefiniteness is called a Pontryagin space.

3.3 Topological Generalizations

- Metametric space

A metametric space (Väisälä, 2003) is a pair (X, d), where X is a set, and d is a nonnegative symmetric function $d: X \times X \rightarrow \mathbb{R}$ such that $d(x, y)=0$ implies $x=y$ and triangle inequality $d(x, y) \leq d(x, z)+d(z, y)$ holds for all $x, y, z \in X$.

A metametric space is metrizable: the metametric d defines the same topology as the metric d^{\prime} defined by $d^{\prime}(x, x)=0$ and $d^{\prime}(x, y)=d(x, y)$ if $x \neq y$. A metametric d induces a Hausdorff topology with the usual definition of a ball $B\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<r\right\}$. Any partial metric (cf. Chap. 1) is a metametric.

- Resemblance

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called (Batagelj-Bren, 1993) a resemblance on X if d is symmetric and if, for all $x, y \in X$, either $d(x, x) \leq$ $d(x, y)$ (in which case d is called a forward resemblance), or $d(x, x) \geq d(x, y)$ (in which case d is called a backward resemblance).
Every resemblance d induces a strict partial order \prec on the set of all unordered pairs of elements of X by defining $\{x, y\} \prec\{u, v\}$ if and only if $d(x, y)<$ $d(u, v)$.
For any backward resemblance d, the forward resemblance $-d$ induces the same partial order.

- w-distance

Given a metric space (X, d), a w-distance on X (Kada-Suzuki-Takahashi, 1996) is a nonnegative function $p: X \times X \rightarrow \mathbb{R}$ which satisfies the following conditions:

1. $p(x, z) \leq p(x, y)+p(y, z)$ for all $x, y, z \in X$;
2. for any $x \in X$, the function $p(x,):. X \rightarrow \mathbb{R}$ is lower semicontinuous, i.e., if a sequence $\left\{y_{n}\right\}_{n}$ in X converges to $y \in X$, then $p(x, y) \leq \underline{\lim }_{n \rightarrow \infty} p\left(x, y_{n}\right)$;
3. for any $\epsilon>0$, there exists $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \epsilon$, for each $x, y, z \in X$.

- τ-Distance space

A τ-distance space is a pair (X, f), where X is a topological space and f is an Aamri-Moutawakil's τ-distance on X, i.e., a nonnegative function $f: X \times X \rightarrow$ \mathbb{R} such that, for any $x \in X$ and any neighborhood U of x, there exists $\epsilon>0$ with $\{y \in X: f(x, y)<\epsilon\} \subset U$.
Any distance space (X, d) is a τ-distance space for the topology τ_{f} defined as follows: $A \in \tau_{f}$ if, for any $x \in X$, there exists $\epsilon>0$ with $\{y \in X$: $f(x, y)<\epsilon\} \subset A$. However, there exist nonmetrizable τ-distance spaces. A τ-distance $f(x, y)$ need be neither symmetric, nor vanishing for $x=y$; for example, $e^{|x-y|}$ is a τ-distance on $X=\mathbb{R}$ with usual topology.

- Proximity space

A proximity space (Efremovich, 1936) is a set X with a binary relation δ on the power set $P(X)$ of all of its subsets which satisfies the following conditions:

1. $A \delta B$ if and only if $B \delta A$ (symmetry);
2. $A \delta(B \cup C)$ if and only if $A \delta B$ or $A \delta C$ (additivity);
3. $A \delta A$ if and only if $A \neq \emptyset$ (reflexivity).

The relation δ defines a proximity (or proximity structure) on X. If $A \delta B$ fails, the sets A and B are called remote sets.

Every metric space (X, d) is a proximity space: define $A \delta B$ if and only if $d(A, B)=\inf _{x \in A, y \in B} d(x, y)=0$.
Every proximity on X induces a (completely regular) topology on X by defining the closure operator $c l: P(X) \rightarrow P(X)$ on the set of all subsets of X as $\operatorname{cl}(A)=$ $\{x \in X:\{x\} \delta A\}$.

- Uniform space

A uniform space is a topological space (with additional structure) providing a generalization of metric space, based on set-set distance.
A uniform space (Weil, 1937) is a set X with an uniformity (or uniform structure) \mathcal{U}, i.e., a nonempty collection of subsets of $X \times X$, called entourages, with the following properties:

1. Every subset of $X \times X$ which contains a set of \mathcal{U} belongs to \mathcal{U};
2. Every finite intersection of sets of \mathcal{U} belongs to \mathcal{U};
3. Every set $V \in \mathcal{U}$ contains the diagonal, i.e., the set $\{(x, x): x \in X\} \subset X \times X$;
4. If V belongs to \mathcal{U}, then the set $\{(y, x):(x, y) \in V\}$ belongs to \mathcal{U};
5. If V belongs to \mathcal{U}, then there exists $V^{\prime} \in \mathcal{U}$ such that $(x, z) \in V$ whenever $(x, y),(y, z) \in V^{\prime}$.

Every metric space (X, d) is a uniform space. An entourage in (X, d) is a subset of $X \times X$ which contains the set $V_{\epsilon}=\{(x, y) \in X \times X: d(x, y)<\epsilon\}$ for some positive real number ϵ. Other basic example of uniform space are topological groups.
Every uniform space (X, \mathcal{U}) generates a topology consisting of all sets $A \subset X$ such that, for any $x \in A$, there is a set $V \in \mathcal{U}$ with $\{y:(x, y) \in V\} \subset A$.
Every uniformity induces a proximity σ where $A \sigma B$ if and only if $A \times B$ has nonempty intersection with any entourage.
A topological space admits a uniform structure inducing its topology if only if the topology is completely regular (cf. Chap. 2) and, also, if only if it is a gauge space, i.e., the topology is defined by a \geq-filter of semimetrics.

- Nearness space

A nearness space (Herrich, 1974) is a set X with a nearness structure, i.e., a nonempty collection \mathcal{U} of families of subsets of X, called near families, with the following properties:

1. Each family refining a near family is near;
2. Every family with nonempty intersection is near;
3. V is near if $\{c l(A): A \in V\}$ is near, where $\operatorname{cl}(A)$ is $\{x \in X:\{\{x\}, A\} \in \mathcal{U}\}$;
4. \varnothing is near, while the set of all subsets of X is not;
5. If $\left\{A \cup B: A \in \mathcal{F}_{1}, B \in \mathcal{F}_{2}\right\}$ is near family, then so is \mathcal{F}_{1} or \mathcal{F}_{2}.

The uniform spaces are precisely paracompact nearness spaces.

- Approach space

An approach space is a topological space providing a generalization of metric space, based on point-set distance.

An approach space (Lowen, 1989) is a pair (X, D), where X is a set and D is a point-set distance, i.e., a function $X \times P(X) \rightarrow[0, \infty]$ (where $P(X)$ is the set of all subsets of X) satisfying, for all $x \in X$ and all $A, B \in P(X)$, the following conditions:

1. $D(x,\{x\})=0$;
2. $D(x,\{\emptyset\})=\infty$;
3. $D(x, A \cup B)=\min \{D(x, A), D(x, B)\}$;
4. $D(x, A) \leq D\left(x, A^{\epsilon}\right)+\epsilon$ for any $\epsilon \in[0, \infty]$, where $A^{\epsilon}=\{x: D(x, A) \leq \epsilon\}$ is the " ϵ-ball" with center x.

Every metric space (X, d) (moreover, any extended quasi-semimetric space) is an approach space with $D(x, A)$ being the usual point-set distance $\min _{y \in A} d(x, y)$. Given a locally compact separable metric space (X, d) and the family \mathcal{F} of its nonempty closed subsets, the Baddeley-Molchanov distance function gives a tool for another generalization. It is a function $D: X \times \mathcal{F} \rightarrow \mathbb{R}$ which is lower semicontinuous with respect to its first argument, measurable with respect to the second, and satisfies the following two conditions: $F=\{x \in X: D(x, F) \leq 0\}$ for $F \in \mathcal{F}$, and $D\left(x, F_{1}\right) \geq D\left(x, F_{2}\right)$ for $x \in X$, whenever $F_{1}, F_{2} \in \mathcal{F}$ and $F_{1} \subset F_{2}$.
The additional conditions $D(x,\{y\})=D(y,\{x\})$, and $D(x, F) \leq D(x,\{y\})+$ $D(y, F)$ for all $x, y \in X$ and every $F \in \mathcal{F}$, provide analogs of symmetry and the triangle inequality. The case $D(x, F)=d(x, F)$ corresponds to the usual point-set distance for the metric space (X, d); the case $D(x, F)=d(x, F)$ for $x \in X \backslash F$ and $D(x, F)=-d(x, X \backslash F)$ for $x \in X$ corresponds to the signed distance function in Chap. 1 .

- Metric bornology

Given a topological space X, a bornology of X is any family \mathcal{A} of proper subsets A of X such that the following conditions hold:

1. $\cup_{A \in \mathcal{A}} A=X$;
2. \mathcal{A} is an ideal, i.e., contains all subsets and finite unions of its members.

The family \mathcal{A} is a metric bornology [Beer99] if, moreover
3. \mathcal{A} contains a countable base;
4. For any $A \in \mathcal{A}$ there exists $A^{\prime} \in \mathcal{A}$ such that the closure of A coincides with the interior of A^{\prime}.

The metric bornology is called trivial if \mathcal{A} is the set $P(X)$ of all subsets of X; such a metric bornology corresponds to the family of bounded sets of some bounded metric. For any noncompact metrizable topological space X, there exists an unbounded metric compatible with this topology. A nontrivial metric bornology on such a space X corresponds to the family of bounded subsets with respect to some such unbounded metric. A noncompact metrizable topological space X admits uncountably many nontrivial metric bornologies.

3.4 Beyond Numbers

- Probabilistic metric space

A notion of probabilistic metric space is a generalization of the notion of metric space (see, for example, [ScSk83]) in two ways: distances become probability distributions, and the sum in the triangle inequality becomes a triangle operation.
Formally, let A be the set of all probability distribution functions, whose support lies in $[0, \infty]$. For any $a \in[0, \infty]$ define step functions $\epsilon_{a} \in A$ by $\epsilon_{a}(x)=1$ if $x>a$ or $x=\infty$, and $\epsilon_{a}(x)=0$, otherwise. The functions in A are ordered by defining $F \leq G$ to mean $F(x) \leq G(x)$ for all $x \geq 0$; the minimal element is ϵ_{0}. A commutative and associative operation τ on A is called a triangle function if $\tau\left(F, \epsilon_{0}\right)=F$ for any $F \in A$ and $\tau(E, F) \leq \tau(G, H)$ whenever $E \leq G$, $F \leq H$. The semigroup (A, τ) generalizes the group $(\mathbb{R},+)$.
A probabilistic metric space is a triple (X, D, τ), where X is a set, D is a function $X \times X \rightarrow A$, and τ is a triangle function, such that for any $p, q, r \in X$

1. $D(p, q)=\epsilon_{0}$ if and only if $p=q$;
2. $D(p, q)=D(q, p)$;
3. $D(p, r) \geq \tau(D(p, q), D(q, r))$.

For any metric space (X, d) and any triangle function τ, such that $\tau\left(\epsilon_{a}, \epsilon_{b}\right) \geq$ ϵ_{a+b} for all $a, b \geq 0$, the triple $\left(X, D=\epsilon_{d(x, y)}, \tau\right)$ is a probabilistic metric space. For any $x \geq 0$, the value $D(p, q)$ at x can be interpreted as "the probability that the distance between p and q is less than x "; this was approach of Menger, who proposed in 1942 the original version, statistical metric space, of this notion.
A probabilistic metric space is called a Wald space if the triangle function is a convolution, i.e., of the form $\tau_{x}(E, F)=\int_{\mathbb{R}} E(x-t) d F(t)$.
A probabilistic metric space is called a generalized Menger space if the triangle function has form $\tau_{x}(E, F)=\sup _{u+v=x} T(E(u), F(v))$ for a t-norm T, i.e., such a commutative and associative operation on $[0,1]$ that $T(a, 1)=a, T(0,0)=0$ and $T(c, d) \geq T(a, b)$ whenever $c \geq a, d \geq b$.

- Fuzzy metric spaces

A fuzzy subset of a set S is a mapping $\mu: S \rightarrow[0,1]$, where $\mu(x)$ represents the "degree of membership" of $x \in S$.
A continuous t-norm is a binary commutative and associative continuous operation T on $[0,1]$, such that $T(a, 1)=a$ and $T(c, d) \geq T(a, b)$ whenever $c \geq a, d \geq b$.
A KM fuzzy metric space (Kramosil-Michalek, 1975) is a pair $(X,(\mu, T))$, where X is a nonempty set and a fuzzy metric (μ, T) is a pair comprising a continuous t-norm T and a fuzzy set $\mu: X^{2} \times \mathbb{R}_{\geq 0} \rightarrow[0,1]$, such that, for $x, y, z \in X$ and $s, t \geq 0$, the following conditions hold:

1. $\mu(x, y, 0)=0$;
2. $\mu(x, y, t)=1$ if and only if $x=y, t>0$;
3. $\mu(x, y, t)=\mu(y, x, t)$;
4. $T(\mu(x, y, t), \mu(y, z, s)) \leq \mu(x, z, t+s)$;
5. the function $\mu(x, y, \cdot): \mathbb{R}_{\geq 0} \rightarrow[0,1]$ is left continuous.

A KM fuzzy metric space is called also a fuzzy Menger space since by defining $D_{t}(p, q)=\mu(p, q, t)$ one gets a generalized Menger space. The following modification of the above notion, using a stronger form of metric fuzziness, it a generalized Menger space with $D_{t}(p, q)$ positive and continuous on $\mathbb{R}_{>0}$ for all p, q.
A GV fuzzy metric space (George-Veeramani, 1994) is a pair $(X,(\mu, T))$, where X is a nonempty set, and a fuzzy metric (μ, T) is a pair comprising a continuous t-norm T and a fuzzy set $\mu: X^{2} \times \mathbb{R}_{>0} \rightarrow[0,1]$, such that for $x, y, z \in X$ and $s, t>0$

1. $\mu(x, y, t)>0$;
2. $\mu(x, y, t)=1$ if and only if $x=y$;
3. $\mu(x, y, t)=\mu(y, x, t)$;
4. $T(\mu(x, y, t), \mu(y, z, s)) \leq \mu(x, z, t+s)$;
5. the function $\mu(x, y, \cdot): \mathbb{R}_{>0} \rightarrow[0,1]$ is continuous.

An example of a GV fuzzy metric space comes from any metric space (X, d) by defining $T(a, b)=b-a b$ and $\mu(x, y, t)=\frac{t}{t+d(x, y)}$. Conversely, any GV fuzzy metric space (and also any KM fuzzy metric space) generates a metrizable topology. Most GV fuzzy metrics are strong, i.e., $T(\mu(x, y, t), \mu(y, z, t)) \leq$ $\mu(x, z, t)$ holds.
A fuzzy number is a fuzzy set $\mu: \mathbb{R} \rightarrow[0,1]$ which is normal $(\{x \in \mathbb{R}$: $\mu(x)=1\} \neq \emptyset)$, convex $(\mu(t x+(1-t) y) \geq \min \{\mu(x), \mu(y)\}$ for every $x, y \in \mathbb{R}$ and $t \in[0,1]$) and upper semicontinuous (at each point x_{0}, the values $\mu(x)$ for x near x_{0} are either close to $\mu\left(x_{0}\right)$ or less than $\left.\mu\left(x_{0}\right)\right)$. Denote the set of all fuzzy numbers which are nonnegative, i.e., $\mu(x)=0$ for all $x<0$, by G. The additive and multiplicative identities of fuzzy numbers are denoted by $\tilde{0}$ and $\tilde{1}$, respectively. The level set $[\mu]_{t}=\{x: \mu(x) \geq t\}$ of a fuzzy number μ is a closed interval.
Given a nonempty set X and a mapping $d: X^{2} \rightarrow G$, let the mappings L, R : $[0,1]^{2} \rightarrow[0,1]$ be symmetric and nondecreasing in both arguments and satisfy $L(0,0)=0, R(1,1)=1$. For all $x, y \in X$ and $t \in(0,1]$, let $[d(x, y)]_{t}=$ $\left[\lambda_{t}(x, y), \rho_{t}(x, y)\right]$.
A KS fuzzy metric space (Kaleva-Seikkala, 1984) is a quadruple (X, d, L, R) with fuzzy metric d, if for all $x, y, z \in X$

1. $d(x, y)=\tilde{0}$ if and only if $x=y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, y)(s+t) \geq L(d(x, z)(s), d(z, y)(t))$ whenever $s \leq \lambda_{1}(x, z), t \leq$ $\lambda_{1}(z, y)$, and $s+t \leq \lambda_{1}(x, y)$;
4. $d(x, y)(s+t) \leq R(d(x, z)(s), d(z, y)(t))$ whenever $s \geq \lambda_{1}(x, z), t \geq$ $\lambda_{1}(z, y)$, and $s+t \geq \lambda_{1}(x, y)$.

The following functions are some frequently used choices for L and R :

$$
\max \{a+b-1,0\}, a b, \min \{a, b\}, \max \{a, b\}, a+b-a b, \min \{a+b, 1\} .
$$

Several other notions of fuzzy metric space were proposed, including those by Erceg, 1979, Deng, 1982, and Voxman, 1998, Xu-Li, 2001, Tran-Duckstein, 2002, Chakraborty-Chakraborty, 2006. Cf. also metrics between fuzzy sets, fuzzy Hamming distance, gray-scale image distances and fuzzy polynucleotide metric in Chaps. 1, 11, 21 and 23, respectively.

- Interval-valued metric space

Let $I\left(\mathbb{R}_{\geq 0}\right)$ denote the set of closed intervals of $\mathbb{R}_{\geq 0}$.
An interval-valued metric space (Coppola-Pacelli, 2006) is a pair $((X, \leq), \Delta)$, where (X, \leq) is a partially ordered set and Δ is an interval-valued mapping Δ : $X \times X \rightarrow I\left(\mathbb{R}_{\geq 0}\right)$, such that for every $x, y, z \in X$

1. $\Delta(x, x) \star[0,1]=\Delta(x, x)$;
2. $\Delta(x, y)=\Delta(y, x)$;
3. $\Delta(x, y)-\Delta(z, z) \preceq \Delta(x, z)+\Delta(z, y)$;
4. $\Delta(x, y)-\Delta(x, y) \preceq \Delta(x, x)+\Delta(y, y)$;
5. $x \leq x^{\prime}$ and $y \leq y^{\prime}$ imply $\Delta(x, y) \subseteq \Delta\left(x^{\prime}, y^{\prime}\right)$;
6. $\Delta(x, y)=0$ if and only if $x=y$ and x, y are atoms (minimal elements of $(X, \leq))$.

Here the following interval arithmetic rules hold: $[u, v] \preceq\left[u^{\prime}, \nu^{\prime}\right]$ if and only if $u \leq u^{\prime}$,
$[u, v]+\left[u^{\prime}, v^{\prime}\right]=\left[u+u^{\prime}, v+v^{\prime}\right], \quad[u, v]-\left[u^{\prime}, v^{\prime}\right]=\left[u-u^{\prime}, v-v^{\prime}\right]$,
$[u, v] \star\left[u^{\prime}, v^{\prime}\right]=\left[\min \left\{u u^{\prime}, u v^{\prime}, v u^{\prime}, v v^{\prime}\right\}, \max \left\{u u^{\prime}, u v^{\prime}, v u^{\prime}, v v^{\prime}\right\}\right]$ and
$\frac{[u, v]}{\left[u^{\prime}, v^{\prime}\right]}=\left[\min \left\{\frac{u}{u^{\prime}}, \frac{u}{v^{\prime}}, \frac{v}{u^{\prime}}, \frac{v}{v^{\prime}}\right\}, \max \left\{\frac{u}{u^{\prime}}, \frac{u}{v^{\prime}}, \frac{v}{u^{\prime}}, \frac{v}{v^{\prime}}\right\}\right]$ when $0 \notin\left[u^{\prime}, v^{\prime}\right]$.
The addition and multiplication operations are commutative, associative and subdistributive: it holds $X \star(Y+Z) \subset(X \star Y+X \star Z)$.
Cf. metric between intervals in Chap. 10.
The usual metric spaces coincide with above spaces in which all $x \in X$ are atoms.

- Direction distance

Given a normed real vector space $(V,\|\|$.$) , for any x \in V \backslash\{0\}$, denote by $[x]$ the direction (ray) $\{\lambda x: \lambda>0\}$ and by x_{0} the point $\frac{x}{\|x\|}$. An oriented angle is an ordered pair $([x],[y])$ of directions. The direction distance from x to y is defined (Busch-Ruch, 1992) as the family of distances $\left\|\alpha x_{0}-\beta y_{0}\right\|$ with $\alpha, \beta \in \mathbb{R}_{>0}$. The mixing distance is defined as the restriction of the direction distance to pairs of directions in the cone $\{\lambda v: v \in V, \lambda>0\}$. In fact, authors introduced these distances on some special normed spaces used in Quantum Mechanics.

- Generalized metric

Let X be a set. Let $(V,+, \leq)$ be an ordered semigroup (not necessarily commutative) with a least element θ and with $x \leq y, x_{1} \leq y_{1}$ implying $x+x_{1} \leq y+y_{1}$. Let $(V,+)$ be also endowed with an order-preserving involution $x^{*}\left(\right.$ i.e., $\left.\left(x^{*}\right)^{*}=x\right)$, which is operation-reversing, i.e., $(x+y)^{*}=y^{*}+x^{*}$.

A function $d: X \times X \rightarrow G$ is called (Li-Wang-Pouzet, 1987) a generalized metric over $(V,+, \leq)$ if the following conditions hold:

1. $d(x, y)=\theta$ if and only if $x=y$;
2. $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y \in X$;
3. $d^{*}(x, y)=d(y, x)$.

- Cone metric

Let C be a proper cone in a real Banach space W, i.e., C is closed, $C \neq \emptyset$, the interior of C is not equal to $\{\theta\}$ (where θ is the zero vector in W) and

1. if $x, y \in C$ and $a, b \in \mathbb{R}_{\geq 0}$, then $a x+b y \in C$;
2. if $x \in C$ and $-x \in C$, then $x=0$.

Define a partial ordering (W, \leq) on W by letting $x \leq y$ if $y-x \in C$. The following variation of generalized metric and partially ordered distance was defined in Huang-Zhang, 2007, and, partially, in Rzepecki, 1980. Given a set X, a cone metric is a mapping $d: X \times X \rightarrow(W, \leq)$ such that

1. $\theta \leq d(x, y)$ with equality if and only if $x=y$;
2. $d(x, y)=d(y, x)$ for all $x, y \in X$;
3. $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y \in X$;

The pair (X, d) is called a cone metric space.

- W-distance on building

Let X be a set, and let $(W, \cdot, 1)$ be a group. A W-distance on X is a W-valued map $\sigma: X \times X \rightarrow W$ having the following properties:

1. $\sigma(x, y)=1$ if and only if $x=y$;
2. $\sigma(y, x)=(\sigma(x, y))^{-1}$.

A natural W-distance on W is $\sigma(x, y)=x^{-1} y$.
A Coxeter group is a group $(W, \cdot, 1)$ generated by the elements

$$
\left\{w_{1}, \ldots, w_{n}:\left(w_{i} w_{j}\right)^{m_{i j}}=1,1 \leq i, j \leq n\right\} .
$$

Here $M=\left(\left(m_{i j}\right)\right)$ is a Coxeter matrix, i.e., an arbitrary symmetric $n \times n$ matrix with $m_{i i}=1$, and the other values are positive integers or ∞. The length $l(x)$ of $x \in W$ is the smallest number of generators w_{1}, \ldots, w_{n} needed to represent x.
Let X be a set, let $(W, \cdot, 1)$ be a Coxeter group and let $\sigma(x, y)$ be a W-distance on X. The pair (X, σ) is called (Tits, 1981) a building over $(W, \cdot, 1)$ if it holds

1. the relation \sim_{i} defined by $x \sim_{i} y$ if $\sigma(x, y)=1$ or w_{i}, is an equivalence relation;
2. given $x \in X$ and an equivalence class C of \sim_{i}, there exists a unique $y \in C$ such that $\sigma(x, y)$ is shortest (i.e., of smallest length), and $\sigma\left(x, y^{\prime}\right)=$ $\sigma(x, y) w_{i}$ for any $y^{\prime} \in C, y^{\prime} \neq y$.

The gallery distance on building d is a usual metric on X defined by $l(d(x, y))$.

The distance d is the path metric in the graph with the vertex-set X and $x y$ being an edge if $\sigma(x, y)=w_{i}$ for some $1 \leq i \leq n$. The gallery distance on building is a special case of a gallery metric (of chamber system X).

- Boolean metric space

A Boolean algebra (or Boolean lattice) is a distributive lattice (B, \vee, \wedge) admitting a least element 0 and greatest element 1 such that every $x \in B$ has a complement \bar{x} with $x \vee \bar{x}=1$ and $x \wedge \bar{x}=0$.
Let X be a set, and let (B, \vee, \wedge) be a Boolean algebra. The pair (X, d) is called a
Boolean metric space over B if the function $d: X \times X \rightarrow B$ has the following properties:

1. $d(x, y)=0$ if and only if $x=y$;
2. $d(x, y) \leq d(x, z) \vee d(z, y)$ for all $x, y, z \in X$.

- Space over algebra

A space over algebra is a metric space with a differential-geometric structure, whose points can be provided with coordinates from some algebra (usually, an associative algebra with identity).
A module over an algebra is a generalization of a vector space over a field, and its definition can be obtained from the definition of a vector space by replacing the field by an associative algebra with identity. An affine space over an algebra is a similar generalization of an affine space over a field. In affine spaces over algebras one can specify a Hermitian metric, while in the case of commutative algebras even a quadratic metric can be given. To do this one defines in a unital module a scalar product $\langle x, y\rangle$, in the first case with the property $\langle x, y\rangle=J(\langle y, x\rangle)$, where J is an involution of the algebra, and in the second case with the property $\langle y, x\rangle=\langle x, y\rangle$.
The n-dimensional projective space over an algebra is defined as the variety of one-dimensional submodules of an $(n+1)$-dimensional unital module over this algebra. The introduction of a scalar product $\langle x, y\rangle$ in a unital module makes it possible to define a Hermitian metric in a projective space constructed by means of this module or, in the case of a commutative algebra, quadratic elliptic and hyperbolic metrics. The metric invariant of the points of these spaces is the cross-ratio $W=\langle x, x\rangle^{-1}\langle x, y\rangle\langle y, y\rangle^{-1}\langle y, x\rangle$. If W is a real number, then $w=\arccos \sqrt{W}$ is called the distance between x and y in the space over algebra.

- Partially ordered distance

Let X be a set. Let (G, \leq) be a partially ordered set with a least element g_{0}. A partially ordered distance is a function $d: X \times X \rightarrow G$ such that, for any $x, y \in X, d(x, y)=g_{0}$ if and only if $x=y$.
A generalized ultrametric (Priess-Crampe and Ribenboim, 1993) is a symmetric (i.e., $d(x, y)=d(y, x)$) partially ordered distance, such that $d(z, x) \leq g$ and $d(z, y) \leq g$ imply $d(x, y) \leq g$ for any $x, y, z \in X$ and $g \in G$.

Suppose that $G^{\prime}=G \backslash\left\{g_{0}\right\} \neq \emptyset$ and, for any $g_{1}, g_{2} \in G^{\prime}$, there exists $g_{3} \in G^{\prime}$ such that $g_{3} \leq g_{1}$ and $g_{3} \leq g_{2}$. Consider the following possible properties:

1. For any $g_{1} \in G^{\prime}$, there exists $g_{2} \in G^{\prime}$ such that, for any $x, y \in X$, from $d(x, y) \leq g_{2}$ it follows that $d(y, x) \leq g_{1}$;
2. For any $g_{1} \in G^{\prime}$, there exist $g_{2}, g_{3} \in G^{\prime}$ such that, for any $x, y, z \in X$, from $d(x, y) \leq g_{2}$ and $d(y, z) \leq g_{3}$ it follows that $d(x, z) \leq g_{1}$;
3. For any $g_{1} \in G^{\prime}$, there exists $g_{2} \in G^{\prime}$ such that, for any $x, y, z \in X$, from $d(x, y) \leq g_{2}$ and $d(y, z) \leq g_{2}$ it follows that $d(y, x) \leq g_{1}$;
4. G^{\prime} has no first element;
5. $d(x, y)=d(y, x)$ for any $x, y \in X$;
6. For any $g_{1} \in G^{\prime}$, there exists $g_{2} \in G^{\prime}$ such that, for any $x, y, z \in X$, from $d(x, y)<^{*} g_{2}$ and $d(y, z)<^{*} g_{2}$ it follows that $d(x, z)<^{*} g_{1}$; here $p<^{*} q$ means that either $p<q$, or p is not comparable to q;
7. The order relation $<$ is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered distance if 1 and 2 hold; the Golmez partially ordered distance of first type if 4,5, and 6 hold; the Golmez partially ordered distance of second type if 3,4 , and 5 hold; the Kurepa-Fréchet distance if 3, 4, 5, and 7 hold.
The case $G=\mathbb{R}_{\geq 0}$ of the Kurepa-Fréchet distance corresponds to the Fréchet V-space, i.e., a pair (X, d), where X is a set, and $d(x, y)$ is a symmetric function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ (voisinage of two points x and y) such that $d(x, y)=0$ if and only if $x=y$, and there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ with $\lim _{t \rightarrow 0} f(t)=0$ and $\max \{d(x, y), d(y, z)\} \leq r$ implying $d(x, z) \leq f(r)$ for all $x, y, z \in X$ and all $r>0$. The general case was considered in Kurepa, 1934, and rediscovered in Fréchet, 1946.

- Distance from measurement

Distance from measurement is an analog of distance on domains in Computer Science; it was developed in [Mart00].
A po (partially ordered set) (D, \preceq) is called dcpo (directed-complete po) if every directed subset $S \subset D$ (i.e., $S \neq \emptyset$ and any pair $x, y \in S$ is bounded: there is $z \in S$ with $x, y \preceq z$) has a supremum $\sqcup S$, i.e., the least of such upper bounds z. For $x, y \in D, y$ is an approximation of x if, for all directed subsets $S \subset D$, $x \preceq \sqcup S$ implies $y \preceq s$ for some $s \in S$. A dcpo (D, \preceq) is continuous if for all $x \in D$ the set of all approximations of x is directed and x is its supremum. A domain is a continuous dcpo (D, \preceq) such that for all $x, y \in D$ there is $z \in D$ with $z \preceq x, y$. A Scott domain is a domain with least element, in which any bounded pair has a supremum.
A subset U of a dcpo (D, \preceq) is Alexandrov open if, for any $x \in U$ and $y \in D$, $x \preceq y$ implies $y \in U$; it is Scott open if also, for any directed subset $S \subset$ $D, \sqcup S \in U$ implies $S \cap U \neq \emptyset$. The set of Scott open sets form the Scott topology; it is a T_{0}-space (Chap. 2) with generalized metrization by a partial metric (Chap. 1).

A measurement is a mapping $\mu: D \rightarrow \mathbb{R}_{\geq 0}$ between dcpo (D, \preceq) and dcpo $\left(\mathbb{R}_{\geq 0}, \preceq\right)$, where $\mathbb{R}_{\geq 0}$ is ordered as $x \preceq y$ if $y \leq x$, such that

1. $x \preceq y$ implies $\mu(x) \preceq \mu(y)$;
2. $\mu(\sqcup S)=\sqcup(\{\mu(s): s \in S\})$ for every directed subset $S \subset D$;
3. For all $x \in D$ with $\mu(x)=0$ and all sequences $\left(x_{n}\right), n \rightarrow \infty$, of approximations of x with $\lim _{n \rightarrow \infty} \mu\left(x_{n}\right)=\mu(x)$, one has $\sqcup\left(\cup_{n=1}^{\infty}\left\{x_{n}\right\}\right)=x$.
Given a measurement μ, the distance from measurement is a mapping d : $D \times D \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d(x, y)=\inf \{\mu(z): z \text { approximates } x, y\}=\inf \{\mu(z): z \preceq x, y\} .
$$

One has $d(x, x) \preceq \mu(x)$. The function $d(x, y)$ is a metric on the set $\{x \in D$: $\mu(x)=0\}$ if μ satisfies the following measurement triangle inequality: for all bounded pairs $x, y \in D$, there is an element $z \preceq x, y$ such that $\mu(z) \leq$ $\mu(x)+\mu(y)$.
Waszkiewicz, 2001, found topological connections between topologies coming from a distance from measurement and from a partial metric defined in Chap. 1.

Chapter 4
 Metric Transforms

There are many ways to obtain new distances (metrics) from given distances (metrics). Metric transforms give new distances as a functions of given metrics (or given distances) on the same set X. A metric so obtained is called a transform metric. We give some important examples of transform metrics in Sect. 4.1.

Given a metric space (X, d), one can construct a new metric on an extension of X; similarly, given a collection of metrics on sets X_{1}, \ldots, X_{n}, one can obtain a new metric on an extension of X_{1}, \ldots, X_{n}. Examples of such operations are given in Sect.4.2. There are many distances on other structures connected with X, say, on the set of all subsets of X. The main distances of this kind are considered in Sect. 4.3.

4.1 Metrics on the Same Set

- Metric transform

A metric transform is a distance on a set X, obtained as a function of given metrics (or given distances) on X.
In particular, given a continuous monotone increasing function $f(x)$ of $x \geq 0$ with $f(0)=0$, called the scale, and a distance space (X, d), one obtains another distance space $\left(X, d_{f}\right)$, called a scale metric transform of X, defining $d_{f}(x, y)=f(d(x, y))$. For every finite distance space (X, d), there exists a scale f, such that $\left(X, d_{f}\right)$ is a metric subspace of a Euclidean space \mathbb{E}^{n}.
If (X, d) is a metric space and f is a continuous differentiable strictly increasing scale with $f(0)=0$ and nonincreasing f^{\prime}, then $\left(X, d_{f}\right)$ is a metric space (cf. functional transform metric).
The metric d is an ultrametric if and only if $f(d)$ is a metric for every nondecreasing function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$.

- Transform metric

A transform metric is a metric on a set X which is a metric transform, i.e., is obtained as a function of a given metric (or given metrics) on X. In particular, transform metrics can be obtained from a given metric d (or given metrics d_{1} and d_{2}) on X by any of the following operations (here $t>0$):

1. $\operatorname{td}(x, y)(t$-scaled metric, or dilated metric, similar metric);
2. $\min \{t, d(x, y)\}(t$-truncated metric);
3. $\max \{t, d(x, y)\}$ for $x \neq y$ (t-uniformly discrete metric);
4. $d(x, y)+t$ for $x \neq y$ (t-translated metric);
5. $\frac{k d(x, y)}{1+d(x, y)}$ (this metric has diameter less than k);
6. $d^{p}(x, y)=\frac{2 d(x, y)}{d(x, p)+d(y, p)+d(x, y)}$, where p is an fixed element of X (biotope transform metric, or p-smoothing distance on $X \backslash\{p\}$);
7. $\max \left\{d_{1}(x, y), d_{2}(x, y)\right\}$;
8. $\alpha d_{1}(x, y)+\beta d_{2}(x, y)$, where $\alpha, \beta>0$ (cf. semimetric cone in Chap. 1).

- Generalized biotope transform metric

For a given metric d on a set X and a closed set $M \subset X$, the generalized biotope transform metric d^{M} on X is defined by

$$
d^{M}(x, y)=\frac{2 d(x, y)}{d(x, y)+\inf _{z \in M}(d(x, z)+d(y, z))} .
$$

In fact, $d^{M}(x, y)$ and its 1-truncation $\min \left\{1, d^{M}(x, y)\right\}$ are both metrics.
The biotope transform metric is $d^{M}(x, y)$ with $|M|=1$. The Steinhaus distance from Chap. 1 is the case $d(x, y)=\mu(x \Delta y)$ with $p \neq \emptyset$ and the biotope distance from Chap. 23 is its subcase $d(x, y)=\mu(x \Delta y)=|x \Delta y|$.

- Metric-preserving function

A function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with $f^{-1}(0)=\{0\}$ is a metric-preserving function if, for each metric space (X, d), the metric transform

$$
d_{f}(x, y)=f(d(x, y))
$$

is a metric on X; cf. [Cora99]. In this case d_{f} is called a functional transform metric. For example, $\alpha d(\alpha>0), d^{\alpha}(0<\alpha \leq 1), \ln (1+d)$, $\operatorname{arcsinh} d$, arccosh $(1+d)$, and $\frac{d}{1+d}$ are functional transform metrics.
The superposition, sum and maximum of two metric-preserving functions are metric-preserving. If f is subadditive, i.e. $f(x+y) \leq f(x)+f(y)$ for all $x, y \geq 0$, and nondecreasing, then it is metric-preserving. But, for example, the function $f(x)=\frac{x+2}{x+1}$, for $x>0$, and $f(0)=0$, is decreasing and metricpreserving. If f is metric-preserving, then it is subadditive.
If f is concave, i.e., $f\left(\frac{x+y}{2}\right) \geq \frac{f(x)+f(y)}{2}$ for all $x, y \geq 0$, then it is metricpreserving. In particular, a twice differentiable function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ such that $f(0)=0, f^{\prime}(x)>0$ for all $x \geq 0$, and $f^{\prime \prime}(x) \leq 0$ for all $x \geq 0$, is metric-preserving.

The function f is strongly metric-preserving function if d and $f(d(x, y))$ are equivalent metrics on X, for each metric space (X, d). A metric-preserving function is strongly metric-preserving if and only if it is continuous at 0 .

- Metric aggregating function

A function $f: \mathbb{R}_{\geq 0}^{2} \rightarrow \mathbb{R}_{\geq 0}$ with $f(a, b)=0$ if and only if $a=b=0$, is said to be metric (respectively, quasi-metric) aggregating function if the function $d_{f}: X \times X \rightarrow \mathbb{R}_{\geq 0}$ is a metric for every pair of metric spaces (respectively, a quasi-metric for every pair of quasi-metric spaces) (X_{1}, d_{1}) and (X_{2}, d_{2}), where $X=X_{1} \times X_{2}$ and, for all $(x, z),(y, w) \in X$, it holds

$$
d_{f}((x, z),(y, w))=f\left(d_{1}(x, z), d_{2}(y, w)\right) .
$$

Borsik-Doboš, 1981, proved that a function f is metric aggregating if and only if, for all $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \geq 0$ with $|a-b| \leq c \leq a+b$ and $\left|a^{\prime}-b^{\prime}\right| \leq c^{\prime} \leq a^{\prime}+b^{\prime}$, it holds

$$
\left|f\left(a, a^{\prime}\right)-f\left(b, b^{\prime}\right)\right| \leq f\left(c, c^{\prime}\right) \leq f\left(a, a^{\prime}\right)+f\left(b, b^{\prime}\right)
$$

Cf. spin triangle inequality in Chap. 15.
Major-Valero, 2008, proved that a function f is quasi-metric aggregating if and only if it holds $f\left(a, a^{\prime}\right) \leq f\left(b, c^{\prime}\right)+f\left(c, b^{\prime}\right)$ for all $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \geq 0$ such that $a \leq b+c$ and $a^{\prime} \leq b^{\prime}+c^{\prime}$; so, any quasi-metric aggregating function is metric aggregating.

- Metric generating function

A symmetric function $f: \mathbb{R}_{\geq 0}^{2} \rightarrow \mathbb{R}_{\geq 0}$ with $f(a, b)=0$ if and only if $a=b=$ 0 , is said to be metric generating if the function defined by

$$
d_{f}(x, y)=f(d(x, y), d(y, x))
$$

for all $x, y \in X$ is a metric on X for every quasi-metric space (X, d).
Martin-Major-Valero, 2013, proved that a function f is metric generating if and only if it holds $f\left(a, a^{\prime}\right) \leq f\left(b, c^{\prime}\right)+f\left(c, b^{\prime}\right)$ for all $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $a \leq b+c, b \leq a+b^{\prime}, c \leq c^{\prime}+a$ and $a^{\prime} \leq b^{\prime}+c^{\prime}, b^{\prime} \leq a^{\prime}+b, c^{\prime} \leq c+a^{\prime}$.

- Power transform metric

Let $0<\alpha \leq 1$. Given a metric space (X, d), the power (or α-snowflake) transform metric is a functional transform metric on X defined by

$$
(d(x, y))^{\alpha} .
$$

The distance $d(x, y)=\left(\sum_{1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}$ with $0<p=\alpha<1$ is not a metric on \mathbb{R}^{n}, but its power transform $\left(d(x, y)^{\alpha}\right)$ is a metric.
For a given metric d on X and any $\alpha>1$, the function d^{α} is, in general, only a distance on X. It is a metric, for any positive α, if and only if d is an ultrametric.

A metric d is a doubling metric if and only if (Assouad, 1983) the power transform metric d^{α} admits a bi-Lipschitz embedding in some Euclidean space for every $0<\alpha<1$ (cf. Chap. 1 for definitions).

- Quadrance

A distance which is a squared distance d^{2} is called a quadrance.
Rational trigonometry is the proposal (Wildberger, 2007) to use as its fundamental units, quadrance and spread (square of sine of angle), instead of distance and angle.
It makes some problems easier to computers: solvable with only addition, subtraction, multiplication, and division, while avoiding square roots, sine, and cosine functions. Also, such trigonometry can be done over any field.

- Schoenberg transform metric

Let $\lambda>0$. Given a metric space (X, d), the Schoenberg transform metric is a functional transform metric on X defined by

$$
1-e^{-\lambda d(x, y)}
$$

The Schoenberg transform metrics are exactly P-metrics (cf. Chap. 1).

- Pullback metric

Given two metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and an injective mapping $g: X \rightarrow Y$, the pullback metric (of $\left(Y, d_{Y}\right)$ by g) on X is defined by

$$
d_{Y}(g(x), g(y))
$$

If $\left(X, d_{X}\right)=\left(Y, d_{Y}\right)$, then the pullback metric is called a g-transform metric.

- Internal metric

Given a metric space (X, d) in which every pair of points x, y is joined by a rectifiable curve, the internal metric (or inner metric, induced intrinsic metric, interior metric) D is a transform metric on X, obtained from d as the infimum of the lengths of all rectifiable curves connecting two given points x and $y \in X$. The metric d is called an intrinsic metric (or length metric if it coincides with its internal metric. Cf. Chap. 6 and metric curve in Chap. 1.

- Farris transform metric

Given a metric space (X, d) and a point $z \in X$, the Farris transform is a metric transform D_{z} on $X \backslash\{z\}$ defined by $D_{z}(x, x)=0$ and, for different $x, y \in X \backslash\{z\}$, by

$$
D_{z}(x, y)=C-(x . y)_{z},
$$

where C is a positive constant, and $(x . y)_{z}=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y))$ is the Gromov product (cf. Chap. 1). It is a metric if $C \geq \max _{x \in X \backslash\{z\}} d(x, z)$; in fact, there exists a number $C_{0} \in\left(\max _{x, y \in X \backslash\{z\}, x \neq y}(x . y)_{z}\right.$, $\left.\max _{x \in X \backslash\{z\}} d(x, z)\right]$ such that it is a metric if and only if $C \geq C_{0}$. The Farris transform is an ultrametric if and only if d satisfies the four-point inequality. In Phylogenetics, where it
was applied first, the term Farris transform is used for the function $d(x, y)-$ $d(x, z)-d(y, z)$.

- Involution transform metric

Given a metric space (X, d) and a point $z \in X$, the involution transform metric is a metric transform d_{z} on $X \backslash\{z\}$ defined by

$$
d_{z}(x, y)=\frac{d(x, y)}{d(x, z) d(y, z)} .
$$

It is a metric for any $z \in X$, if and only if d is a Ptolemaic metric [FoSc06].

4.2 Metrics on Set Extensions

- Extension distances

If d is a metric on $V_{n}=\{1, \ldots, n\}$, and $\alpha \in \mathbb{R}, \alpha>0$, then the following extension distances (see, for example, [DeLa97]) are used.
The gate extension distance $g a t=g a t_{\alpha}^{d}$ is a metric on $V_{n+1}=\{1, \ldots, n+1\}$ defined by the following conditions:

1. $\operatorname{gat}(1, n+1)=\alpha$;
2. $\operatorname{gat}(i, n+1)=\alpha+d(1, i)$ if $2 \leq i \leq n$;
3. $\operatorname{gat}(i, j)=d(i, j)$ if $1 \leq i<j \leq n$.

The distance $g a t_{0}^{d}$ is called the gate 0 -extension or, simply, 0 -extension of d. If $\alpha \geq \max _{2 \leq i \leq n} d(1, i)$, then the antipodal extension distance $a n t=a n t_{\alpha}^{d}$ is a distance on V_{n+1} defined by the following conditions:

1. $\operatorname{ant}(1, n+1)=\alpha$;
2. $\operatorname{ant}(i, n+1)=\alpha-d(1, i)$ if $2 \leq i \leq n$;
3. $\operatorname{ant}(i, j)=d(i, j)$ if $1 \leq i<j \leq n$.

If $\alpha \geq \max _{1 \leq i, j \leq n} d(i, j)$, then the full antipodal extension distance $A n t=$ $A n t_{\alpha}^{d}$ is a distance on $V_{2 n}=\{1, \ldots, 2 n\}$ defined by the following conditions:

1. $\operatorname{Ant}(i, n+i)=\alpha$ if $1 \leq i \leq n$;
2. $\operatorname{Ant}(i, n+j)=\alpha-d(i, j)$ if $1 \leq i \neq j \leq n$;
3. $\operatorname{Ant}(i, j)=d(i, j)$ if $1 \leq i \neq j \leq n$;
4. $\operatorname{Ant}(n+i, n+j)=d(i, j)$ if $1 \leq i \neq j \leq n$.

It is obtained by applying the antipodal extension operation iteratively n times, starting from d.
The spherical extension distance $s p h=s p h_{\alpha}^{d}$ is a metric on V_{n+1} defined by the following conditions:

1. $\operatorname{sph}(i, n+1)=\alpha$ if $1 \leq i \leq n$;
2. $\operatorname{sph}(i, j)=d(i, j)$ if $1 \leq i<j \leq n$.

- 1-sum distance

Let d_{1} be a distance on a set X_{1}, let d_{2} be a distance on a set X_{2}, and suppose that $X_{1} \cap X_{2}=\left\{x_{0}\right\}$. The 1 -sum distance of d_{1} and d_{2} is the distance d on $X_{1} \cup X_{2}$ defined by the following conditions:

$$
d(x, y)=\left\{\begin{array}{cl}
d_{1}(x, y), & \text { if } \quad x, y \in X_{1}, \\
d_{2}(x, y), & \text { if } x, y \in X_{2} \\
d\left(x, x_{0}\right)+d\left(x_{0}, y\right), & \text { if } x \in X_{1}, y \in X_{2}
\end{array}\right.
$$

In Graph Theory, the 1 -sum distance is a path metric, corresponding to the clique 1 -sum operation for graphs.

- Disjoint union metric

Given a family $\left(X_{t}, d_{t}\right), t \in T$, of metric spaces, the disjoint union metric is an extended metric on the set $\bigcup_{t} X_{t} \times\{t\}$ defined by

$$
d\left(\left(x, t_{1}\right),\left(y, t_{2}\right)\right)=d_{t}(x, y)
$$

for $t_{1}=t_{2}$, and $d\left(\left(x, t_{1}\right),\left(y, t_{2}\right)\right)=\infty$, otherwise.

- Metric bouquet

Given a family $\left(X_{t}, d_{t}\right), t \in T$, of metric spaces with marked points x_{t}, the metric bouquet is obtained from their disjoint union by gluing all points x_{t} together.

- Product metric

Given finite or countable number n of metric spaces $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \ldots$, $\left(X_{n}, d_{n}\right)$, the product metric is a metric on the Cartesian product $X_{1} \times X_{2} \times$ $\cdots \times X_{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1} \in X_{1}, \ldots, x_{n} \in X_{n}\right\}$ defined as a function of d_{1}, \ldots, d_{n}. The simplest finite product metrics are defined by

1. $\sum_{i=1}^{n} d_{i}\left(x_{i}, y_{i}\right)$;
2. $\left(\sum_{i=1}^{n} d_{i}^{p}\left(x_{i}, y_{i}\right)\right)^{\frac{1}{p}}, 1<p<\infty$;
3. $\max _{1 \leq i \leq n} d_{i}\left(x_{i}, y_{i}\right)$;
4. $\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{d_{i}\left(x_{i}, y_{i}\right)}{1+d_{i}\left(x_{i}, y_{i}\right)}$.

The last metric is bounded and can be extended to the product of countably many metric spaces.
If $X_{1}=\cdots=X_{n}=\mathbb{R}$, and $d_{1}=\cdots=d_{n}=d$, where $d(x, y)=|x-y|$ is the natural metric on \mathbb{R}, all product metrics above induce the Euclidean topology on the n-dimensional space \mathbb{R}^{n}. They do not coincide with the Euclidean metric on \mathbb{R}^{n}, but they are equivalent to it. In particular, the set \mathbb{R}^{n} with the Euclidean metric can be considered as the Cartesian product $\mathbb{R} \times \cdots \times \mathbb{R}$ of n copies of the real line (\mathbb{R}, d) with the product metric defined by $\sqrt{\sum_{i=1}^{n} d^{2}\left(x_{i}, y_{i}\right)}$.

- Box metric

Let (X, d) be a metric space and I the unit interval of \mathbb{R}. The box metric is the product metric d^{\prime} on the Cartesian product $X \times I$ defined by

$$
d^{\prime}\left(\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right)=\max \left(d\left(x_{1}, x_{2}\right),\left|t_{1}-t_{2}\right|\right) .
$$

Cf. unrelated bounded box metric in Chap. 18.

- Fréchet product metric

Let (X, d) be a metric space with a bounded metric d. Let $X^{\infty}=X \times \cdots \times$ $X \cdots=\left\{x=\left(x_{1}, \ldots, x_{n}, \ldots\right): x_{1} \in X_{1}, \ldots, x_{n} \in X_{n}, \ldots\right\}$ be the countable Cartesian product space of X.
The Fréchet product metric is a product metric on X^{∞} defined by

$$
\sum_{n=1}^{\infty} A_{n} d\left(x_{n}, y_{n}\right),
$$

where $\sum_{n=1}^{\infty} A_{n}$ is any convergent series of positive terms. Usually, $A_{n}=\frac{1}{2^{n}}$ is used.
A metric (sometimes called the Fréchet metric) on the set of all sequences $\left\{x_{n}\right\}_{n}$ of real (complex) numbers, defined by

$$
\sum_{n=1}^{\infty} A_{n} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}
$$

where $\sum_{n=1}^{\infty} A_{n}$ is any convergent series of positive terms, is a Fréchet product metric of countably many copies of $\mathbb{R}(\mathbb{C})$. Usually, $A_{n}=\frac{1}{n!}$ or $A_{n}=\frac{1}{2^{n}}$ are used.

- Hilbert cube metric

The Hilbert cube $I^{\aleph_{0}}$ is the Cartesian product of countable many copies of the interval $[0,1]$, equipped with the metric

$$
\sum_{i=1}^{\infty} 2^{-i}\left|x_{i}-y_{i}\right|
$$

(cf. Fréchet infinite metric product). It also can be identified up to homeomorphisms with the compact metric space formed by all sequences $\left\{x_{n}\right\}_{n}$ of real numbers such that $0 \leq x_{n} \leq \frac{1}{n}$, where the metric is defined as $\sqrt{\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2}}$.
The Cartesian products $[0,1]^{\tau}$ and $\{0,1\}^{\tau}$, where τ is an arbitrary cardinal number, are called a Tikhonov cube and Cantor cube, respectively.

- Hamming cube

Given integers $n \geq 1$ and $q \geq 2$, the Hamming space $H(n, q)$ is the set of all n-tuples over an alphabet of size q (say, the Cartesian product of n copies of the set $\{0,1, \ldots, q-1\}$), equipped with the Hamming metric (cf. Chap. 1), i.e., the distance between two n-tuples is the number of coordinates where they differ. The Hamming cube is the Hamming space $H(n, 2)$.

The infinite Hamming cube $H(\infty, 2)$ is the set of all infinite strings over the alphabet $\{0,1\}$ containing only finitely many 1 's, equipped with the Hamming metric.
The Fibonacci cube $F(n)$ is the set of all n-tuples over $\{0,1\}$ that contain no two consecutive 1's, equipped with the Hamming metric; it is a partial cube (cf. Chap. 15), i.e., an isometric subgraph of $H(n, 2)$. The Lucas cube $L(n)$ is obtained from $F(n)$ by removing n-tuples that start and end with 1 .

- Cameron-Tarzi cube

Given integers $n \geq 1$ and $q \geq 2$, the normalized Hamming space $H_{n}(q)$ is the set of all n-tuples over an alphabet of size q, equipped with the Hamming metric divided by n. Clearly, there are isometric embeddings

$$
H_{1}(q) \rightarrow H_{2}(q) \rightarrow H_{4}(q) \rightarrow H_{8}(q) \rightarrow \ldots
$$

Let $H(q)$ denote the Cauchy completion (cf. Chap. 1) of the union (denote it by $\left.H_{\omega}(q)\right)$ of all metric spaces $H_{n}(q)$ with $n \geq 1$. This metric space was introduced in [CaTa08]. Call $H(2)$ the Cameron-Tarzi cube.
It is shown in [CaTa08] that $H_{\omega}(2)$ is the word metric space (cf. Chap. 10) of the countable Nim group, i.e., the elementary Abelian 2-group of all natural numbers under bitwise addition modulo 2 of the number expressions in base 2 . The Cameron-Tarzi cube is also the word metric space of an Abelian group.

- Rubik cube

There is a bijection between legal positions of the Rubik $3 \times 3 \times 3$ cube and elements of the subgroup G of the group $S y m_{48}$ (of all permutations of $6(9-1)$ movable facets) generated by the 6 face rotations. The number of possible positions attainable by the cube is $|G| \approx 43 \times 10^{18}$.
The maximum number of face turns needed to solve any instance of the Rubik cube is the diameter (maximal word metric), 20, of the Cayley graph of G.

- Warped product metric

Let $\left(X, d_{X}\right)$ and (Y, d_{Y}) be two complete length spaces (cf. Chap. 6), and let $f: X \rightarrow \mathbb{R}$ be a positive continuous function. Given a curve $\gamma:[a, b] \rightarrow X \times Y$, consider its projections $\gamma_{1}:[a, b] \rightarrow X$ and $\gamma_{2}:[a, b] \rightarrow Y$ to X and Y, and define the length of γ by the formula $\int_{a}^{b} \sqrt{\left|\gamma_{1}^{\prime}\right|^{2}(t)+f^{2}\left(\gamma_{1}(t)\right)\left|\gamma_{2}^{\prime}\right|^{2}(t)} d t$.
The warped product metric is a metric on $X \times Y$, defined as the infimum of lengths of all rectifiable curves connecting two given points in $X \times Y$ (see [BBI01]).

4.3 Metrics on Other Sets

Given a metric space (X, d), one can construct several distances between some subsets of X. The main such distances are: the point-set distance $d(x, A)=$ $\inf _{y \in A} d(x, y)$ between a point $x \in X$ and a subset $A \subset X$, the set-set distance
$\inf _{x \in A, y \in B} d(x, y)$ between two subsets A and B of X, and the Hausdorff metric between compact subsets of X which are considered in Chap. 1. In this section we list some other distances of this kind.

- Line-line distance

The line-line distance (or vertical distance between lines) is the set-set distance in \mathbb{E}^{3} between two skew lines, i.e., two straight lines that do not lie in a plane. It is the length of the segment of their common perpendicular whose endpoints lie on the lines. For l_{1} and l_{2} with equations $l_{1}: x=p+q t, t \in \mathbb{R}$, and l_{2} : $x=r+s t, t \in \mathbb{R}$, the distance is given by

$$
\frac{|\langle r-p, q \times s\rangle|}{\|q \times s\|_{2}},
$$

where \times is the cross product on \mathbb{E}^{3},\langle,$\rangle is the inner product on \mathbb{E}^{3}$, and $\|.\|_{2}$ is the Euclidean norm. For $x=\left(q_{1}, q_{2}, q_{3}\right), s=\left(s_{1}, s_{2}, s_{3}\right)$, one has $q \times s=$ $\left(q_{2} s_{3}-q_{3} s_{2}, q_{3} s_{1}-q_{1} s_{3}, q_{1} s_{2}-q_{2} s_{1}\right)$.

- Point-line distance

The point-line distance is the point-set distance between a point and a line.
In \mathbb{E}^{2}, the distance between a point $P=\left(x_{1}, y_{1}\right)$ and a line $l: a x+b y+c=0$ (in Cartesian coordinates) is the perpendicular distance given by

$$
\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} .
$$

In \mathbb{E}^{3}, the distance between a point P and a line $l: x=p+q t, t \in \mathbb{R}$ (in vector formulation) is given by

$$
\frac{\|q \times(p-P)\|_{2}}{\|q\|_{2}}
$$

where \times is the cross product on \mathbb{E}^{3}, and $\|.\|_{2}$ is the Euclidean norm.

- Point-plane distance

The point-plane distance is the point-set distance in \mathbb{E}^{3} between a point $P=$ $\left(x_{1}, y_{1}, z_{1}\right)$ and a plane $\alpha: a x+b y+c z+d=0$ given by

$$
\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

- Prime number distance

The prime number distance is the point-set distance in $(\mathbb{N},|n-m|)$ between a number $n \in \mathbb{N}$ and the set of prime numbers $P \subset \mathbb{N}$. It is the absolute difference between n and the nearest prime number.

- Distance up to nearest integer

The distance up to nearest integer is the point-set distance in $(\mathbb{R},|x-y|)$ between a number $x \in \mathbb{R}$ and the set of integers $\mathbb{Z} \subset \mathbb{R}$, i.e., $\min _{n \in \mathbb{Z}}|x-n|$.

- Busemann metric of sets

Given a metric space (X, d), the Busemann metric of sets (see [Buse55]) is a metric on the set of all nonempty closed subsets of X defined by

$$
\sup _{x \in X}|d(x, A)-d(x, B)| e^{-d(p, x)},
$$

where $p \in X$ is fixed, and $d(x, A)=\min _{y \in A} d(x, y)$ is the point-set distance. Instead of the weighting factor $e^{-d(p, x)}$, one can take any distance transform function which decreases fast enough (cf. L_{p}-Hausdorff distance in Chap. 1, and the list of variations of the Hausdorff metric in Chap. 21).

- Quotient semimetric Given an extended metric space (X, d) (i.e., a possibly infinite metric) and an equivalence relation \sim on X, the quotient semimetric is a semimetric on the set $\bar{X}=X / \sim$ of equivalence classes defined, for any $\bar{x}, \bar{y} \in \bar{X}$, by

$$
\bar{d}(\bar{x}, \bar{y})=\inf _{m \in \mathbb{N}} \sum_{i=1}^{m} d\left(x_{i}, y_{i}\right)
$$

where the infimum is taken over all sequences $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m}, y_{m}$ with $x_{1} \in \bar{x}, y_{m} \in \bar{y}$, and $y_{i} \sim x_{i+1}$ for $i=1,2, \ldots, m-1$. One has $\bar{d}(\bar{x}, \bar{y}) \leq$ $d(x, y)$ for all $x, y \in X$, and \bar{d} is the biggest semimetric on \bar{X} with this property.

Chapter 5
 Metrics on Normed Structures

In this chapter we consider a special class of metrics defined on some normed structures, as the norm of the difference between two given elements. This structure can be a group (with a group norm), a vector space (with a vector norm or, simply, a norm), a vector lattice (with a Riesz norm), a field (with a valuation), etc.

Any norm is subadditive, i.e., triangle inequality $\|x+y\| \leq\|x\|+\|y\|$ holds. A norm is submultiplicative if multiplicative triangle inequality $\|x y\| \leq\|x|\|| | y\|$ holds.

- Group norm metric

A group norm metric is a metric on a group $(G,+, 0)$ defined by

$$
\|x+(-y)\|=\|x-y\|,
$$

where $\|$.$\| is a group norm on G$, i.e., a function $\|\|:. G \rightarrow \mathbb{R}$ such that, for all $x, y \in G$, we have the following properties:

1. $\|x\| \geq 0$, with $\|x\|=0$ if and only if $x=0$;
2. $\|x\|=\|-x\|$;
3. $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality).

Any group norm metric d is right-invariant, i.e., $d(x, y)=d(x+z, y+z)$ for any $x, y, z \in G$. Conversely, any right-invariant (as well as any left-invariant, and, in particular, any bi-invariant) metric d on G is a group norm metric, since one can define a group norm on G by $\|x\|=d(x, 0)$.

- F-norm metric

A vector space (or linear space) over a field \mathbb{F} is a set V equipped with operations of vector addition $+: V \times V \rightarrow V$ and scalar multiplication $\cdot: \mathbb{F} \times V \rightarrow V$ such that $(V,+, 0)$ forms an Abelian group (where $0 \in V$ is the zero vector), and, for all vectors $x, y \in V$ and any scalars $a, b \in \mathbb{F}$, we have the following properties: $1 \cdot x=x$ (where 1 is the multiplicative unit of \mathbb{F}), $(a b) \cdot x=a \cdot(b \cdot x)$, $(a+b) \cdot x=a \cdot x+b \cdot x$, and $a \cdot(x+y)=a \cdot x+a \cdot y$.

A vector space over the field \mathbb{R} of real numbers is called a real vector space. A vector space over the field \mathbb{C} of complex numbers is called complex vector space.
A F-norm metric is a metric on a real (complex) vector space V defined by

$$
\|x-y\|_{F}
$$

where $\|.\|_{F}$ is an F-norm on V, i.e., a function $\|.\|_{F}: V \rightarrow \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a with $|a|=1$, we have the following properties:

1. $\|x\|_{F} \geq 0$, with $\|x\|_{F}=0$ if and only if $x=0$;
2. $\|a x\|_{F} \leq\|x\|_{F}$ if $|a| \leq 1$;
3. $\lim _{a \rightarrow 0}\|a x\|_{F}=0$;
4. $\|x+y\|_{F} \leq\|x\|_{F}+\|y\|_{F}$ (triangle inequality).

An F-norm is called p-homogeneous if $\|a x\|_{F}=|a|^{p}\|x\|_{F}$ for any scalar a.
Any F-norm metric d is a translation invariant metric, i.e., $d(x, y)=d(x+$ $z, y+z$) for all $x, y, z \in V$. Conversely, if d is a translation invariant metric on V, then $\|x\|_{F}=d(x, 0)$ is an F-norm on V.

- F^{*}-metric

An F^{*}-metric is an F-norm metric $\|x-y\|_{F}$ on a real (complex) vector space V such that the operations of scalar multiplication and vector addition are continuous with respect to $\|.\|_{F}$. Thus $\|.\|_{F}$ is a function $\|.\|_{F}: V \rightarrow \mathbb{R}$ such that, for all $x, y, x_{n} \in V$ and for all scalars a, a_{n}, we have the following properties:

1. $\|x\|_{F} \geq 0$, with $\|x\|_{F}=0$ if and only if $x=0$;
2. $\|a x\|_{F}=\|x\|_{F}$ for all a with $|a|=1$;
3. $\|x+y\|_{F} \leq\|x\|_{F}+\|y\|_{F}$;
4. $\left\|a_{n} x\right\|_{F} \rightarrow 0$ if $a_{n} \rightarrow 0$;
5. $\left\|a x_{n}\right\|_{F} \rightarrow 0$ if $x_{n} \rightarrow 0$;
6. $\left\|a_{n} x_{n}\right\|_{F} \rightarrow 0$ if $a_{n} \rightarrow 0, x_{n} \rightarrow 0$.

The metric space $\left(V,\|x-y\|_{F}\right)$ with an F^{*}-metric is called a $\mathrm{n} F^{*}$-space. Equivalently, an F^{*}-space is a metric space (V, d) with a translation invariant metric d such that the operation of scalar multiplication and vector addition are continuous with respect to this metric.
A complete F^{*}-space is called an F-space. A locally convex F-space is known as a Fréchet space (cf. Chap. 2) in Functional Analysis.
A modular space is an F^{*}-space $\left(V,\|.\|_{F}\right)$ in which the F-norm $\|.\|_{F}$ is defined by

$$
\|x\|_{F}=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right)<\lambda\right\}
$$

and ρ is a metrizing modular on V, i.e., a function $\rho: V \rightarrow[0, \infty]$ such that, for all $x, y, x_{n} \in V$ and for all scalars a, a_{n}, we have the following properties:

1. $\rho(x)=0$ if and only if $x=0$;
2. $\rho(a x)=\rho(x)$ implies $|a|=1$;
3. $\rho(a x+b y) \leq \rho(x)+\rho(y)$ implies $a, b \geq 0, a+b=1$;
4. $\rho\left(a_{n} x\right) \rightarrow 0$ if $a_{n} \rightarrow 0$ and $\rho(x)<\infty$;
5. $\rho\left(a x_{n}\right) \rightarrow 0$ if $\rho\left(x_{n}\right) \rightarrow 0$ (metrizing property);
6. For any $x \in V$, there exists $k>0$ such that $\rho(k x)<\infty$.

- Norm metric

A norm metric is a metric on a real (complex) vector space V defined by

$$
\|x-y\|,
$$

where $\|$.$\| is a norm on V$, i.e., a function $\|\|:. V \rightarrow \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a, we have the following properties:

1. $\|x\| \geq 0$, with $\|x\|=0$ if and only if $x=0$;
2. $\|a x\|=|a|\|x\|$;
3. $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality).

Therefore, a norm ||.|| is a 1-homogeneous F-norm. The vector space $(V, \| .| |)$ is called a normed vector space or, simply, normed space.
Any metric space can be embedded isometrically in some normed vector space as a closed linearly independent subset. Every finite-dimensional normed space is complete, and all norms on it are equivalent.
In general, the norm ||.\| is equivalent (Maligranda, 2008) to the norm

$$
\|x\|_{u, p}=\left(\|x+\| x\|\cdot u\|^{p}+\|x-\| x\|\cdot u\|^{p}\right)^{\frac{1}{p}}
$$

introduced, for any $u \in V$ and $p \geq 1$, by Odell and Schlumprecht, 1998.
The norm-angular distance between x and y is defined (Clarkson, 1936) by

$$
d(x, y)=\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| .
$$

The following sharpening of the triangle inequality (Maligranda, 2003) holds:

$$
\begin{gathered}
\frac{\|x-y\|-\|x\|-\|y\|}{\min \{\|x\|,\|y\|\}} \leq d(x, y) \leq \frac{\|x-y\|+\|x\|-\|y\|}{\max \{\|x\|,\|y\|\}} \text {, i.e., } \\
(2-d(x,-y)) \min \{\|x\|,\|y\|\} \leq\|x\|+\|y\|-\|x+y\| \\
\leq(2-d(x,-y)) \max \{\|x\|,\|y\|\} .
\end{gathered}
$$

Dragomir, 2004, call $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$ continuous triangle inequality.

- Reverse triangle inequality

The triangle inequality $\|x+y\| \leq\|x\|+\|y\|$ in a normed space $(V,\|\|$.$) is$ equivalent to the following inequality, for any $x_{1}, \ldots, x_{n} \in V$ with $n \geq 2$:

$$
\left\|\sum_{i=1}^{n} x_{i}\right\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\|
$$

If in the normed space $(V,\|\|$.$) , for some C \geq 1$ one has

$$
C\left\|\sum_{i=1}^{n} x_{i}\right\| \geq \sum_{i=1}^{n}\left\|x_{i}\right\|
$$

then this inequality is called the reverse triangle inequality.
This term is used, sometimes, also for the inverse triangle inequality (cf. kinematic metric in Chap. 26) and for the eventual inequality $\operatorname{Cd}(x, z) \geq$ $d(x, y)+d(y, z)$ with $C \geq 1$ in a metric space (X, d).
The triangle inequality $\|x+y\| \leq\|x\|+\|y\|$, for any $x, y \in V$, in a normed space $(V,\|\|$.$) is, for any number q>1$, equivalent (Belbachir, Mirzavaziri and Moslenian, 2005) to the following inequality:

$$
\|x+y\|^{q} \leq 2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right) .
$$

The parallelogram inequality $\|x+y\|^{2} \leq 2\left(\|x\|^{2}+\|y\|^{2}\right)$ is the case $q=2$ of above.
Given a number $q, 0<q \leq 1$, the norm is called q-subadditive if $\|x+y\|^{q} \leq$ $\|x\|^{q}+\|y\|^{q}$ holds for $x, y \in V$.

- Seminorm semimetric

A seminorm semimetric on a real (complex) vector space V is defined by

$$
\|x-y\|,
$$

where $\|$.$\| is a seminorm (or pseudo-norm) on V$, i.e., a function $\|\|:. V \rightarrow \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a, we have the following properties:

1. $\|x\| \geq 0$, with $\|0\|=0$;
2. $\|a x\|=|a|\|x\|$;
3. $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality).

The vector space $(V,\|\|$.$) is called a seminormed vector space. Many normed$ vector spaces, in particular, Banach spaces, are defined as the quotient space by the subspace of elements of seminorm zero.
A quasi-normed space is a vector space V, on which a quasi-norm is given. A quasi-norm on V is a nonnegative function $\|\|:. V \rightarrow \mathbb{R}$ which satisfies the same axioms as a norm, except for the triangle inequality which is replaced by the weaker requirement: there exists a constant $C>0$ such that, for all $x, y \in V$, the following C-triangle inequality (cf. near-metric in Chap. 1) holds:

$$
\|x+y\| \leq C(\|x\|+\|y\|)
$$

An example of a quasi-normed space, that is not normed, is the Lebesgue space $L_{p}(\Omega)$ with $0<p<1$ in which a quasi-norm is defined by

$$
\|f\|=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{1 / p}, f \in L_{p}(\Omega)
$$

- Banach space

A Banach space (or B-space) is a complete metric space ($V,\|x-y\|$) on a vector space V with a norm metric $\|x-y\|$. Equivalently, it is the complete normed space $(V,\|\|$.$) . In this case, the norm \|$.$\| on V$ is called the Banach norm. Some examples of Banach spaces are:

1. l_{p}^{n}-spaces, l_{p}^{∞}-spaces, $1 \leq p \leq \infty, n \in \mathbb{N}$;
2. The space C of convergent numerical sequences with the norm $\|x\|=$ $\sup _{n}\left|x_{n}\right|$;
3. The space C_{0} of numerical sequences which converge to zero with the norm $\|x\|=\max _{n}\left|x_{n}\right| ;$
4. The space $C_{[a, b]}^{p}, 1 \leq p \leq \infty$, of continuous functions on $[a, b]$ with the L_{p}-norm $\|f\|_{p}=\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}$;
5. The space C_{K} of continuous functions on a compactum K with the norm $\|f\|=\max _{t \in K}|f(t)|$;
6. The space $\left(C_{[a, b]}\right)^{n}$ of functions on $[a, b]$ with continuous derivatives up to and including the order n with the norm $\|f\|_{n}=\sum_{k=0}^{n} \max _{a \leq t \leq b}\left|f^{(k)}(t)\right|$;
7. The space $C^{n}\left[I^{m}\right]$ of all functions defined in an m-dimensional cube that are continuously differentiable up to and including the order n with the norm of uniform boundedness in all derivatives of order at most n;
8. The space $M_{[a, b]}$ of bounded measurable functions on $[a, b]$ with the norm

$$
\|f\|=e s s \sup _{a \leq t \leq b}|f(t)|=\inf _{e, \mu(e)=0} \sup _{t \in[a, b] \backslash e}|f(t)| ;
$$

9. The space $A(\Delta)$ of functions analytic in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<$ $1\}$ and continuous in the closed disk $\bar{\Delta}$ with the norm $\|f\|=\max _{z \in \bar{\Delta}}|f(z)|$;
10. The Lebesgue spaces $L_{p}(\Omega), 1 \leq p \leq \infty$;
11. The Sobolev spaces $W^{k, p}(\Omega), \Omega \subset \mathbb{R}^{n}, 1 \leq p \leq \infty$, of functions f on Ω such that f and its derivatives, up to some order k, have a finite L_{p}-norm, with the norm $\|f\|_{k, p}=\sum_{i=0}^{k}\left\|f^{(i)}\right\|_{p}$;
12. The Bohr space AP of almost periodic functions with the norm

$$
\|f\|=\sup _{-\infty<t<+\infty}|f(t)|
$$

A finite-dimensional real Banach space is called a Minkowskian space. A norm metric of a Minkowskian space is called a Minkowskian metric (cf. Chap. 6). In particular, any l_{p}-metric is a Minkowskian metric.

All n-dimensional Banach spaces are pairwise isomorphic; the set of such spaces becomes compact if one introduces the Banach-Mazur distance by $d_{B M}(V, W)=\ln _{\inf }^{T}\|T\| \cdot\left\|T^{-1}\right\|$, where the infimum is taken over all operators which realize an isomorphism $T: V \rightarrow W$.

- l_{p}-metric

The l_{p}-metric $d_{l_{p}}, 1 \leq p \leq \infty$, is a norm metric on \mathbb{R}^{n} (or on \mathbb{C}^{n}), defined by

$$
\|x-y\|_{p}
$$

where the l_{p}-norm $\|.\|_{p}$ is defined by

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

For $p=\infty$, we obtain $\|x\|_{\infty}=\lim _{p \rightarrow \infty} \sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}=\max _{1 \leq i \leq n}\left|x_{i}\right|$. The metric space $\left(\mathbb{R}^{n}, d_{l_{p}}\right)$ is abbreviated as l_{p}^{n} and is called l_{p}^{n}-space.
The l_{p}-metric, $1 \leq p \leq \infty$, on the set of all sequences $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ of real (complex) numbers, for which the sum $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}$ (for $p=\infty$, the sum $\left.\sum_{i=1}^{\infty}\left|x_{i}\right|\right)$ is finite, is

$$
\left(\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

For $p=\infty$, we obtain $\max _{i \geq 1}\left|x_{i}-y_{i}\right|$. This metric space is abbreviated as l_{p}^{∞} and is called l_{p}^{∞}-space.
Most important are $l_{1^{-}}, l_{2^{-}}$and $l_{\infty^{-}}$-metrics. Among l_{p}-metrics, only $l_{1^{-}}$and $l_{\infty^{-}}$ metrics are crystalline metrics, i.e., metrics having polygonal unit balls. On \mathbb{R} all l_{p}-metrics coincide with the natural metric (cf. Chap. 12) $|x-y|$.
The l_{2}-norm $\left\|\left(x_{1}, x_{2}\right)\right\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}}$ on \mathbb{R}^{2} is also called Pythagorean addition of the numbers x_{1} and x_{2}. Under this commutative operation, \mathbb{R} form a semigroup, and $\mathbb{R}_{\geq 0}$ form a monoid (semigroup with identity, 0).

- Euclidean metric

The Euclidean metric (or Pythagorean distance, as-the-crow-flies distance, beeline distance) d_{E} is the metric on \mathbb{R}^{n} defined by

$$
\|x-y\|_{2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

It is the ordinary l_{2}-metric on \mathbb{R}^{n}. The metric space $\left(\mathbb{R}^{n}, d_{E}\right)$ is abbreviated as \mathbb{E}^{n} and is called Euclidean space "Euclidean space" stands for the case $n=3$, as opposed, for $n=2$, to Euclidean plane and, for $n=1$, Euclidean (or real) line.
In fact, \mathbb{E}^{n} is an inner product space (and even a Hilbert space), i.e., $d_{E}(x, y)=\|x-y\|_{2}=\sqrt{\langle x-y, x-y\rangle}$, where $\langle x, y\rangle$ is the inner product
on \mathbb{R}^{n} which is given in the Cartesian coordinate system by $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$. In a standard coordinate system one has $\langle x, y\rangle=\sum_{i, j} g_{i j} x_{i} y_{j}$, where $g_{i j}=$ $\left\langle e_{i}, e_{j}\right\rangle$, and the metric tensor $\left(\left(g_{i j}\right)\right)$ (cf. Chap. 7) is a positive-definite symmetric $n \times n$ matrix.
In general, a Euclidean space is defined as a space, the properties of which are described by the axioms of Euclidean Geometry.

- Norm transform metric

A norm transform metric is a metric $d(x, y)$ on a vector space $(V,\|\|$.$) , which$ is a function of $\|x\|$ and $\| y \mid$. Usually, $V=\mathbb{R}^{n}$ and, moreover, $\mathbb{E}^{n}=\left(\mathbb{R}^{n},\|.\| \|_{2}\right)$. Some examples are (p, q)-relative metric, M-relative metric and, from Chap. 19, the British Rail metric $\|x\|+\|y\|$ for $x \neq y$, (and equal to 0 , otherwise), the radar screen metric $\min \{1,\|x-y\|\}$ and $\max \{1,\|x-y\|\}$ for $x \neq y$. Cf. t-truncated and t-uniformly discrete metrics in Chap.4.

- (p, q)-relative metric

Let $0<q \leq 1$, and $p \geq \max \left\{1-q, \frac{2-q}{3}\right\}$. Let $(V,\|\|$.$) be a Ptolemaic space,$ i.e., the norm metric $\|x-y\|$ is a Ptolemaic metric (cf. Chap. 1).

The (p, q)-relative metric on $(V,\|\|$.$) is defined, for x$ or $y \neq 0$, by

$$
\frac{\|x-y\|}{\left(\frac{1}{2}\left(\|x\|^{p}+\|y\|^{p}\right)\right)^{\frac{q}{p}}}
$$

(and equal to 0 , otherwise). In the case of $p=\infty$, it has the form

$$
\frac{\|x-y\|}{(\max \{\|x\|,\|y\|\})^{q}} .
$$

$(p, 1)-,(\infty, 1)$ - and the original $(1,1)$-relative metric on \mathbb{E}^{n} are called p-relative (or Klamkin-Meir metric), relative metric and Schattschneider metric.

- M-relative metric

Let $f:[0, \infty) \rightarrow(0, \infty)$ be a convex increasing function such that $\frac{f(x)}{x}$ is decreasing for $x>0$. Let $(V,\|\|$.$) be a Ptolemaic space, i.e., \|x-y\|$ is a Ptolemaic metric.
The M-relative metric on $(V,\|\|$.$) is defined by$

$$
\frac{\|x-y\|}{f(\|x\|) \cdot f(\|y\|)}
$$

- Unitary metric

The unitary (or complex Euclidean) metric is the l_{2}-metric on \mathbb{C}^{n} defined by

$$
\|x-y\|_{2}=\sqrt{\left|x_{1}-y_{1}\right|^{2}+\cdots+\left|x_{n}-y_{n}\right|^{2}} .
$$

For $n=1$, it is the complex modulus metric $|x-y|=\sqrt{(x-y) \overline{(x-y)}}$ on the Wessel-Argand plane (cf. Chap. 12).

- L_{p}-metric

An L_{p}-metric $d_{L_{p}}, 1 \leq p \leq \infty$, is a norm metric on $L_{p}(\Omega, \mathcal{A}, \mu)$ defined by

$$
\|f-g\|_{p}
$$

for any $f, g \in L_{p}(\Omega, \mathcal{A}, \mu)$. The metric space $\left(L_{p}(\Omega, \mathcal{A}, \mu), d_{L_{p}}\right)$ is called the L_{p}-space (or Lebesgue space).
Here Ω is a set, and \mathcal{A} is $\mathrm{n} \sigma$-algebra of subsets of Ω, i.e., a collection of subsets of Ω satisfying the following properties:

1. $\Omega \in \mathcal{A}$;
2. If $A \in \mathcal{A}$, then $\Omega \backslash A \in \mathcal{A}$;
3. If $A=\cup_{i=1}^{\infty} A_{i}$ with $A_{i} \in \mathcal{A}$, then $A \in \mathcal{A}$.

A function $\mu: \mathcal{A} \rightarrow \mathbb{R}_{\geq 0}$ is called a measure on \mathcal{A} if it is additive, i.e., $\mu\left(\cup_{i \geq 1} A_{i}\right)=\sum_{i \geq 1} \mu\left(A_{i}\right)$ for all pairwise disjoint sets $A_{i} \in \mathcal{A}$, and satisfies $\mu(\emptyset)=0$. A measure space is a triple $(\Omega, \mathcal{A}, \mu)$.
Given a function $f: \Omega \rightarrow \mathbb{R}(\mathbb{C})$, its L_{p}-norm is defined by

$$
\|f\|_{p}=\left(\int_{\Omega}|f(\omega)|^{p} \mu(d \omega)\right)^{\frac{1}{p}}
$$

Let $L_{p}(\Omega, \mathcal{A}, \mu)=L_{p}(\Omega)$ denote the set of all functions $f: \Omega \rightarrow \mathbb{R}(\mathbb{C})$ such that $\|f\|_{p}<\infty$. Strictly speaking, $L_{p}(\Omega, \mathcal{A}, \mu)$ consists of equivalence classes of functions, where two functions are equivalent if they are equal almost everywhere, i.e., the set on which they differ has measure zero. The set $L_{\infty}(\Omega, \mathcal{A}, \mu)$ is the set of equivalence classes of measurable functions $f: \Omega \rightarrow$ $\mathbb{R}(\mathbb{C})$ whose absolute values are bounded almost everywhere.
The most classical example of an L_{p}-metric is $d_{L_{p}}$ on the set $L_{p}(\Omega, \mathcal{A}, \mu)$, where Ω is the open interval $(0,1), \mathcal{A}$ is the Borel σ-algebra on $(0,1)$, and μ is the Lebesgue measure. This metric space is abbreviated by $L_{p}(0,1)$ and is called $L_{p}(0,1)$-space.
In the same way, one can define the L_{p}-metric on the set $C_{[a, b]}$ of all real (complex) continuous functions on $[a, b]: d_{L_{p}}(f, g)=\left(\int_{a}^{b}|f(x)-g(x)|^{p} d x\right)^{\frac{1}{p}}$. For $p=\infty, d_{L_{\infty}}(f, g)=\max _{a \leq x \leq b}|f(x)-g(x)|$. This metric space is abbreviated by $C_{[a, b]}^{p}$ and is called $C_{[a, b]}^{\bar{p}}$-space.
If $\Omega=\mathbb{N}, \mathcal{A}=2^{\Omega}$ is the collection of all subsets of Ω, and μ is the cardinality measure (i.e., $\mu(A)=|A|$ if A is a finite subset of Ω, and $\mu(A)=\infty$, otherwise $)$, then the metric space $\left(L_{p}\left(\Omega, 2^{\Omega},||.\right), d_{L_{p}}\right)$ coincides with the space l_{p}^{∞}.
If $\Omega=V_{n}$ is a set of cardinality $n, \mathcal{A}=2^{V_{n}}$, and μ is the cardinality measure, then the metric space $\left(L_{p}\left(V_{n}, 2^{V_{n}},||.\right), d_{L_{p}}\right)$ coincides with the space l_{p}^{n}.

- Dual metrics

The l_{p}-metric and the l_{q}-metric, $1<p, q<\infty$, are called dual if $1 / p+$ $1 / q=1$.
In general, when dealing with a normed vector space $\left(V,\|.\| \|_{V}\right)$, one is interested in the continuous linear functionals from V into the base field $(\mathbb{R}$ or $\mathbb{C})$. These functionals form a Banach space ($V^{\prime},\|\cdot\|_{V^{\prime}}$), called the continuous dual of V. The norm $\|.\|_{V^{\prime}}$ on V^{\prime} is defined by $\|T\|_{V^{\prime}}=\sup _{\|x\|_{V} \leq 1}|T(x)|$.
The continuous dual for the metric space $l_{p}^{n}\left(l_{p}^{\infty}\right)$ is l_{q}^{n} (l_{q}^{∞}, respectively). The continuous dual of $l_{1}^{n}\left(l_{1}^{\infty}\right)$ is $l_{\infty}^{n}\left(l_{\infty}^{\infty}\right.$, respectively). The continuous duals of the Banach spaces C (consisting of all convergent sequences, with l_{∞}-metric) and C_{0} (consisting of the sequences converging to zero, with l_{∞}-metric) are both naturally identified with l_{1}^{∞}.

- Inner product space

An inner product space (or pre-Hilbert space) is a metric space ($V,\|x-y\|)$ on a real (complex) vector space V with an inner product $\langle x, y\rangle$ such that the norm metric $\|x-y\|$ is constructed using the inner product norm $\|x\|=\sqrt{\langle x, x\rangle}$.
An inner product \langle,$\rangle on a real (complex) vector space V$ is a symmetric bilinear (in the complex case, sesquilinear) form on V, i.e., a function $\langle\rangle:, V \times V \longrightarrow \mathbb{R}$ (\mathbb{C}) such that, for all $x, y, z \in V$ and for all scalars α, β, we have the following properties:

1. $\langle x, x\rangle \geq 0$, with $\langle x, x\rangle=0$ if and only if $x=0$;
2. $\langle x, y\rangle=\overline{\langle y, x\rangle}$, where the bar denotes complex conjugation;
3. $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$.

For a complex vector space, an inner product is called also a Hermitian inner product, and the corresponding metric space is called a Hermitian inner product space.
A norm $\|$.$\| in a normed space (V,\|\| \mid$.$) is generated by an inner product if and$ only if, for all $x, y \in V$, we have: $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$.
In an inner product space, the triangle equality (Chap. 1) $\|x-y\|=\|x\|+\|y\|$, for $x, y \neq 0$, holds if and only if $\frac{x}{\|x\|}=\frac{y}{\|y\|}$, i.e., $x-y \in[x, y]$.

- Hilbert space

A Hilbert space is an inner product space which, as a metric space, is complete. More precisely, a Hilbert space is a complete metric space ($H,\|x-y\|$) on a real (complex) vector space H with an inner product \langle,$\rangle such that the norm$ metric $\|x-y\|$ is constructed using the inner product norm $\|x\|=\sqrt{\langle x, x\rangle}$. Any Hilbert space is a Banach space.
An example of a Hilbert space is the set of all sequences $x=\left\{x_{n}\right\}_{n}$ of real (complex) numbers such that $\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}$ converges, with the Hilbert metric defined by

$$
\left(\sum_{i=1}^{\infty}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

Other examples of Hilbert spaces are any L_{2}-space, and any finite-dimensional inner product space. In particular, any Euclidean space is a Hilbert space.
A direct product of two Hilbert spaces is called a Liouville space (or line space, extended Hilbert space).
Given an infinite cardinal number τ and a set A of the cardinality τ, let $\mathbb{R}_{a}, a \in A$, be the copies of \mathbb{R}. Let $H(A)=\left\{\left\{x_{a}\right\} \in \prod_{a \in A} \mathbb{R}_{a}: \sum_{a} x_{a}^{2}<\infty\right\}$; then $H(A)$ with the metric defined for $\left\{x_{a}\right\},\left\{y_{a}\right\} \in H(A)$ as

$$
\left(\sum_{a \in A}\left(x_{a}-y_{a}\right)^{2}\right)^{\frac{1}{2}}
$$

is called the generalized Hilbert space of weight τ.

- Erdös space

The Erdös space (or rational Hilbert space) is the metric subspace of l_{2} consisting of all vectors in l_{2} with only rational coordinates. It has topological dimension 1 and is not complete. Erdös space is homeomorphic to its countable infinite power, and every nonempty open subset of it is homeomorphic to whole space.
The complete Erdös space (or irrational Hilbert space) is the complete metric subspace of l_{2} consisting of all vectors in l_{2} the coordinates of which are all irrational.

- Riesz norm metric

A Riesz space (or vector lattice) is a partially ordered vector space ($V_{R i}, \preceq$) in which the following conditions hold:

1. The vector space structure and the partial order structure are compatible, i.e., from $x \preceq y$ it follows that $x+z \preceq y+z$, and from $x \succ 0, a \in \mathbb{R}, a>0$ it follows that $a x \succ 0$;
2. For any two elements $x, y \in V_{R i}$, there exist the join $x \vee y \in V_{R i}$ and meet $x \wedge y \in V_{R i}$ (cf. Chap. 10).

The Riesz norm metric is a norm metric on $V_{R i}$ defined by

$$
\|x-y\|_{R i}
$$

where $\|.\|_{R i}$ is a Riesz norm on $V_{R i}$, i.e., a norm such that, for any $x, y \in V_{R i}$, the inequality $|x| \leq|y|$, where $|x|=(-x) \vee(x)$, implies $\|x\|_{R i} \leq\|y\|_{R i}$.
The space ($V_{R i},\|.\|_{R i}$) is called a normed Riesz space. In the case of completeness, it is called a Banach lattice.

- Banach-Mazur compactum

The Banach-Mazur distance $d_{B M}$ between two n-dimensional normed spaces $\left(V,\|.\|_{V}\right)$ and $\left(W,\|.\| \|_{W}\right)$ is defined by

$$
\ln \inf _{T}\|T\| \cdot\left\|T^{-1}\right\|
$$

where the infimum is taken over all isomorphisms $T: V \rightarrow W$. It is a metric on the set X^{n} of all equivalence classes of n-dimensional normed spaces, where $V \sim W$ if and only if they are isometric. Then the pair $\left(X^{n}, d_{B M}\right)$ is a compact metric space which is called the Banach-Mazur compactum.

- Quotient metric

Given a normed space $\left(V,\|.\|_{V}\right)$ with a norm $\|.\|_{V}$ and a closed subspace W of V, let $\left(V / W,\|.\|_{V / W}\right)$ be the normed space of cosets $x+W=\{x+w: w \in W\}$, $x \in V$, with the quotient norm $\|x+W\|_{V / W}=\inf _{w \in W}\|x+w\|_{V}$.
The quotient metric is a norm metric on V / W defined by

$$
\|(x+W)-(y+W)\|_{V / W} .
$$

- Tensor norm metric

Given normed spaces $\left(V,\|.\|_{V}\right)$ and $\left(W,\|.\|_{W}\right)$, a norm $\|.\|_{\otimes}$ on the tensor product $V \otimes W$ is called tensor norm (or cross norm) if $\|x \otimes y\|_{\otimes}=\|x\|_{V}\|y\|_{W}$ for all decomposable tensors $x \otimes y$.
The tensor product metric is a norm metric on $V \otimes W$ defined by

$$
\|z-t\|_{\otimes}
$$

For any $z \in V \otimes W, z=\sum_{j} x_{j} \otimes y_{j}, x_{j} \in V, y_{j} \in W$, the projective norm (or π-norm) of z is defined by $\|z\|_{p r}=\inf \sum_{j}\left\|x_{j}\right\|_{V}\left\|y_{j}\right\|_{W}$, where the infimum is taken over all representations of z as a sum of decomposable vectors. It is the largest tensor norm on $V \otimes W$.

- Valuation metric

A valuation metric is a metric on a field \mathbb{F} defined by

$$
\|x-y\|
$$

where $\|$.$\| is a valuation on \mathbb{F}$, i.e., a function $\|\|:. \mathbb{F} \rightarrow \mathbb{R}$ such that, for all $x, y \in \mathbb{F}$, we have the following properties:

1. $\|x\| \geq 0$, with $\|x\|=0$ if and only if $x=0$;
2. $\|x y\|=\|x\|\|y\|$,
3. $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality).

If $\|x+y\| \leq \max \{\|x\|,\|y\|\}$, the valuation $\|$.$\| is called non-Archimedean. In$ this case, the valuation metric is an ultrametric. The simplest valuation is the trivial valuation $\|.\|_{t r}:\|0\|_{t r}=0$, and $\|x\|_{t r}=1$ for $x \in \mathbb{F} \backslash\{0\}$. It is nonArchimedean.
There are different definitions of valuation in Mathematics. Thus, the function $v: \mathbb{F} \rightarrow \mathbb{R} \cup\{\infty\}$ is called a valuation if $v(x) \geq 0, \nu(0)=\infty, \nu(x y)=$ $v(x)+v(y)$, and $v(x+y) \geq \min \{v(x), v(y)\}$ for all $x, y \in \mathbb{F}$. The valuation $\|$.$\| can be obtained from the function v$ by the formula $\|x\|=\alpha^{\nu(x)}$ for some fixed $0<\alpha<1$ (cf. p-adic metric in Chap. 12).

The Kürschäk valuation $|.|_{K r s}$ is a function $|\cdot|_{\text {Krs }}: \mathbb{F} \rightarrow \mathbb{R}$ such that $|x|_{\text {Krs }} \geq$ $0,|x|_{K r s}=0$ if and only if $x=0,|x y|_{K r s}=|x|_{K r s}|y|_{K r s}$, and $|x+y|_{K r s} \leq$ $C \max \left\{|x|_{K r s},|y|_{K r s}\right\}$ for all $x, y \in \mathbb{F}$ and for some positive constant C, called the constant of valuation. If $C \leq 2$, one obtains the ordinary valuation \|.\| which is non-Archimedean if $C \leq 1$. In general, any $|.|_{\text {Krs }}$ is equivalent to some $\|$.$\| ,$ i.e., $|\cdot|_{K r s}^{p}=\| .| |$ for some $p>0$.

Finally, given an ordered group (G, \cdot, e, \leq) equipped with zero, the Krull valuation is a function $||:. \mathbb{F} \rightarrow G$ such that $|x|=0$ if and only if $x=0$, $|x y|=|x||y|$, and $|x+y| \leq \max \{|x|,|y|\}$ for any $x, y \in \mathbb{F}$. It is a generalization of the definition of non-Archimedean valuation $\|$.$\| (cf. generalized metric in$ Chap. 3).

- Power series metric

Let \mathbb{F} be an arbitrary algebraic field, and let $\mathbb{F}\left\langle x^{-1}\right\rangle$ be the field of power series of the form $w=\alpha_{-m} x^{m}+\cdots+\alpha_{0}+\alpha_{1} x^{-1}+\ldots, \alpha_{i} \in \mathbb{F}$. Given $l>1$, a non-Archimedean valuation $\|$.$\| on \mathbb{F}\left\langle x^{-1}\right\rangle$ is defined by

$$
\|w\|=\left\{\begin{array}{cc}
l^{m}, & \text { if } w \neq 0 \\
0, & \text { if } w=0
\end{array}\right.
$$

The power series metric is the valuation metric $\|w-v\|$ on $\mathbb{F}\left\langle x^{-1}\right\rangle$.

Part II
Geometry and Distances

Chapter 6
 Distances in Geometry

Geometry arose as the field of knowledge dealing with spatial relationships. It was one of the two fields of pre-modern Mathematics, the other being the study of numbers.

Earliest known evidence of abstract representation-ochre rocks marked with cross hatches and lines to create a consistent complex geometric motif, dated about $75,000 \mathrm{BC}$-were found in Blombos Cave, South Africa. In modern times, geometric concepts have been generalized to a high level of abstraction and complexity.

6.1 Geodesic Geometry

In Mathematics, the notion of "geodesic" is a generalization of the notion of "straight line" to curved spaces. This term is taken from Geodesy, the science of measuring the size and shape of the Earth.

Given a metric space (X, d), a metric curve γ is a continuous function $\gamma: I \rightarrow X$, where I is an interval (i.e., nonempty connected subset) of \mathbb{R}. If γ is r times continuously differentiable, it is called a regular curve of class C^{r}; if $r=\infty, \gamma$ is called a smooth curve .

In general, a curve may cross itself. A curve is called a simple curve (or arc, path) if it does not cross itself, i.e., if it is injective. A curve $\gamma:[a, b] \rightarrow X$ is called a Jordan curve (or simple closed curve) if it does not cross itself, and $\gamma(a)=\gamma(b)$.

The length (which may be equal to ∞) $l(\gamma)$ of a curve $\gamma:[a, b] \rightarrow X$ is defined by $\sup \sum_{i=1}^{n} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right)$, where the supremum is taken over all finite decompositions $a=t_{0}<t_{1}<\ldots<t_{n}=b, n \in \mathbb{N}$, of $[a, b]$.

A curve with finite length is called rectifiable. For each regular curve $\gamma:[a, b] \rightarrow$ X define the natural parameter s of γ by $s=s(t)=l\left(\left.\gamma\right|_{[a, t]}\right)$, where $l\left(\left.\gamma\right|_{[a, t]}\right)$ is the length of the part of γ corresponding to the interval $[a, t]$. A curve with this natural
parametrization $\gamma=\gamma(s)$ is called of unit speed, (or parametrized by arc length, normalized $)$; in this parametrization, for any $t_{1}, t_{2} \in I$, one has $l\left(\left.\gamma\right|_{\left[t_{1}, t_{2}\right]}\right)=\left|t_{2}-t_{1}\right|$, and $l(\gamma)=|b-a|$.

The length of any curve $\gamma:[a, b] \rightarrow X$ is at least the distance between its endpoints: $l(\gamma) \geq d(\gamma(a), \gamma(b))$. The curve γ, for which $l(\gamma)=d(\gamma(a), \gamma(b))$, is called the geodesic segment (or shortest path) from $x=\gamma(a)$ to $y=\gamma(b)$, and denoted by $[x, y]$.

Thus, a geodesic segment is a shortest join of its endpoints; it is an isometric embedding of $[a, b]$ in X. In general, geodesic segments need not exist, unless the segment consists of one point only. A geodesic segment joining two points need not be unique.

A geodesic (cf. Chap. 1) is a curve which extends indefinitely in both directions and behaves locally like a segment, i.e., is everywhere locally a distance minimizer.

More exactly, a curve $\gamma: \mathbb{R} \rightarrow X$, given in the natural parametrization, is called a geodesic if, for any $t \in \mathbb{R}$, there exists a neighborhood U of t such that, for any $t_{1}, t_{2} \in U$, we have $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|$. Thus, any geodesic is a locally isometric embedding of the whole of \mathbb{R} in X.

A geodesic is called a metric straight line if the equality $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|$ holds for all $t_{1}, t_{2} \in \mathbb{R}$. Such a geodesic is an isometric embedding of the whole real line \mathbb{R} in X. A geodesic is called a metric great circle if it is an isometric embedding of a circle $S^{1}(0, r)$ in X. In general, geodesics need not exist.

- Geodesic metric space

A metric space (X, d) is called geodesic if any two points in X can be joined by a geodesic segment, i.e., for any two points $x, y \in X$, there is an isometry from the segment $[0, d(x, y)]$ into X. Examples of geodesic spaces are complete Riemannian spaces, Banach spaces and metric graphs from Chap. 15.
A metric space (X, d) is called a locally geodesic metric space if any two sufficiently close points in X can be joined by a geodesic segment; it is called D-geodesic if any two points at distance $<D$ can be joined by a geodesic segment.

- Geodesic distance

The geodesic distance (or shortest path distance) is the length of a geodesic segment (i.e., a shortest path) between two points.

- Intrinsic metric

Given a metric space (X, d) in which every two points are joined by a rectifiable curve, the internal metric (cf. Chap. 4) D on X is defined as the infimum of the lengths of all rectifiable curves, connecting two given points $x, y \in X$.
The metric d on X is called the intrinsic metric (or length metric) if it coincides with its internal metric D. A metric space with the intrinsic metric is called a length space (or path metric space, inner metric space, intrinsic space).
If, moreover, any pair x, y of points can be joined by a curve of length $d(x, y)$, the intrinsic metric d is called strictly intrinsic, and the length space (X, d) is a geodesic metric space (or shortest path metric space).

A complete metric space (X, d) is a length space if and only if it is having approximate midpoints, i.e., for any points $x, y \in X$ and for any $\epsilon>0$, there exists a third point $z \in X$ with $d(x, z), d(y, z) \leq \frac{1}{2} d(x, y)+\epsilon$. A complete metric space (X, d) is a geodesic metric space if and only if it is having midpoints.
Any complete locally compact length space is a proper geodesic metric space.

- G-space

A G-space (or space of geodesics) is a metric space (X, d) with the geometry characterized by the fact that extensions of geodesics, defined as locally shortest lines, are unique. Such geometry is a generalization of Hilbert Geometry (see [Buse55]).
More exactly, a G-space (X, d) is defined by the following conditions:

1. It is proper (or finitely compact), i.e., all metric balls are compact;
2. It is Menger-convex, i.e., for any different $x, y \in X$, there exists a third point $z \in X, z \neq x, y$, such that $d(x, z)+d(z, y)=d(x, y)$;
3. It is locally extendable, i.e., for any $a \in X$, there exists $r>0$ such that, for any distinct points x, y in the ball $B(a, r)$, there exists z distinct from x and y such that $d(x, y)+d(y, z)=d(x, z)$;
4. It is uniquely extendable, i.e., if in 3 above two points z_{1} and z_{2} were found, so that $d\left(y, z_{1}\right)=d\left(y, z_{2}\right)$, then $z_{1}=z_{2}$.

The existence of geodesic segments is ensured by finite compactness and Menger-convexity: any two points of a finitely compact Menger-convex set X can be joined by a geodesic segment in X. The existence of geodesics is ensured by the axiom of local prolongation: if a finitely compact Menger-convex set X is locally extendable, then there exists a geodesic containing a given segment. Finally, the uniqueness of prolongation ensures the assumption of Differential Geometry that a line element determines a geodesic uniquely.
All Riemannian and Finsler spaces are G-spaces. A 1D G-space is a metric straight line or metric great circle. Any 2D G-space is a topological manifold (Chap. 2).
Every G-space is a chord metric space, i.e., a metric space with a set distinguished geodesic segments such that any two points are joined by a unique such segment (see [BuPh87]).

- Desarguesian space

A Desarguesian space is a G-space (X, d) in which the role of geodesics is played by ordinary straight lines. Thus, X may be topologically mapped into a projective space $\mathbb{R} P^{n}$ so that each geodesic of X is mapped into a straight line of $\mathbb{R} P^{n}$.
Any X mapped into $\mathbb{R} P^{n}$ must either cover all of $\mathbb{R} P^{n}$ and, in such a case, the geodesics of X are all metric great circles of the same length, or X may be considered as an open convex subset of an affine space A^{n}.
A space (X, d) of geodesics is a Desarguesian space if and only if the following conditions hold:

1. The geodesic passing through two different points is unique;
2. For dimension $n=2$, both the direct and the converse Desargues theorems are valid and, for dimension $n>2$, any three points in X lie in one plane.

Among Riemannian spaces, the only Desarguesian spaces are Euclidean, hyperbolic, and elliptic spaces. An example of the non-Riemannian Desarguesian space is the Minkowskian space which can be regarded as the prototype of all non-Riemannian spaces, including Finsler spaces.

- G-space of elliptic type

A G-space of elliptic type is a G-space in which the geodesic through two points is unique, and all geodesics are the metric great circles of the same length. Every G-space such that there is unique geodesic through each given pair of points is either a G-space of elliptic type, or a straight G-space.

- Straight G-space

A straight G-space is a G-space in which extension of a geodesic is possible globally, so that any segment of the geodesic remains a shortest path. In other words, for any two points $x, y \in X$, there is a unique geodesic segment joining x to y, and a unique metric straight line containing x and y.
Any geodesic in a straight G-space is a metric straight line, and is uniquely determined by any two of its points. Any such 2D space is homeomorphic to the plane.
All simply connected Riemannian spaces of nonpositive curvature (including Euclidean and hyperbolic spaces), Hilbert geometries, and Teichmüller spaces of compact Riemann surfaces of genus $g>1$ (when metrized by the Teichmüller metric) are straight G-spaces.

- Gromov hyperbolic metric space

A metric space (X, d) is called Gromov hyperbolic if it is geodesic and δ hyperbolic for some $\delta \geq 0$.
An important class of such spaces are the hyperbolic groups, i.e., finitely generated groups whose word metric is Gromov hyperbolic. A metric space is a real tree exactly when it is 0 -hyperbolic.
Every bounded metric space X is (diam(X,d))-hyperbolic. A normed vector space is Gromov hyperbolic if and only it has dimension 1 . Any complete simply connected Riemannian space of sectional curvature $k \leq-a^{2}<0$ is $\frac{\ln 3}{a}$ hyperbolic. Every CAT (κ) space with $\kappa<0$ is Gromov hyperbolic.

- CAT (κ) space

Let (X, d) be a metric space. Let M^{2} be a simply connected 2D Riemannian manifold (cf. Chap. 7) of constant curvature κ, i.e., the 2 -sphere S_{κ}^{2} with $\kappa>0$, the Euclidean plane \mathbb{E}^{2} with $\kappa=0$, or the hyperbolic plane H_{κ}^{2} with $\kappa<0$. Let D_{κ} denote the diameter of M^{2}, i.e., $D_{\kappa}=\frac{\pi}{\sqrt{\kappa}}$ if $\kappa>0$, and $D_{\kappa}=\infty$ if $\kappa \leq 0$.
A triangle T in X consists of three points in X together with three geodesic segments joining them pairwise; the segments are called the sides of the triangle. For a triangle $T \subset X$, a comparison triangle for T in M^{2} is a triangle $T^{\prime} \subset M^{2}$ together with a map f_{T} which sends each side of T isometrically onto a side
of T^{\prime}. A triangle T is said (Gromov, 1987) to satisfy the CAT (κ) inequality (for Cartan, Alexandrov and Toponogov) if, for every $x, y \in T$, we have

$$
d(x, y) \leq d_{M^{2}}\left(f_{T}(x), f_{T}(y)\right),
$$

where f_{T} is the map associated to a comparison triangle for T in M^{2}. So, the geodesic triangle T is at least as "thin" as its comparison triangle in M^{2}.
The metric space (X, d) is a $\mathbf{C A T}(\kappa)$ space if it is D_{κ}-geodesic (i.e., any two points at distance $<D_{\kappa}$ can be joined by a geodesic segment), and all triangles T with perimeter $<2 D_{\kappa}$ satisfy the $\mathrm{CAT}(\kappa)$ inequality.
Every $\operatorname{CAT}\left(\kappa_{1}\right)$ space is a $\operatorname{CAT}\left(\kappa_{2}\right)$ space if $\kappa_{1}<\kappa_{2}$. Every real tree is a $\operatorname{CAT}(-\infty)$ space, i.e., is a $\operatorname{CAT}\left(\kappa_{1}\right)$ space for all $\kappa \in \mathbb{R}$.
A locally CAT (κ) space (called metric space with curvature $\leq \kappa$ in Alexandrov, $1951)$ is a metric space (X, d) in which every point $p \in X$ has a neighborhood U such that any two points $x, y \in U$ are connected by a geodesic segment, and the $\operatorname{CAT}(\kappa)$ inequality holds for any $x, y, z \in U$. A Riemannian manifold is locally CAT (κ) if and only if its sectional curvature is at most κ.
A metric space with curvature $\geq \kappa$ is (Alexandrov, 1951) a metric space (X, d) in which every $p \in X$ has a neighborhood U such that any $x, y \in U$ are connected by a geodesic segment, and the reverse $\operatorname{CAT}(\kappa)$ inequality

$$
d(x, y) \geq d_{M^{2}}\left(f_{T}(x), f_{T}(y)\right)
$$

holds for any $x, y, z \in U$, where f_{T} is the map associated to a comparison triangle for T in M^{2}. It is a generalized Riemannian space (cf. Chap. 7).
Above two definitions differ only by the sign of $d(x, y)-d_{M^{2}}\left(f_{T}(x), f_{T}(y)\right)$. In the case $\kappa=0$, the above spaces are called nonpositively curved and nonnegatively curved metric spaces, respectively. For complete metric spaces, they differ also (Bruhat-Tits, 1972) by the sign (≤ 0 or ≥ 0, respectively) of

$$
F(x, y, z)=4 d^{2}(z, m(x, y))-\left(d^{2}(z, x)+d^{2}(z, y)-d^{2}(x, y)\right),
$$

where x, y, z are any three points and $m(x, y)$ is the midpoint of the metric interval $I(x, y)$. A complete CAT(0) space is called Hadamard space.
The inequality $F(x, y, z) \leq 0$ for all $x, y, z \in X$, characterizing Hadamard spaces, is called semiparallelogram inequality, because the usual vector parallelogram law $\|u-v\|^{2}+\|u+v\|^{2}=2\|u\|^{2}+2\|v\|^{2}$, characterizing norms induced by inner products, is equivalent to the equality $F(x, y, z)=0$. A normed space is an Hadamard space if and only if it is a Hilbert space.
Every two points in an Hadamard space are connected by a unique geodesic (and hence unique shortest path), while in a general CAT(0) space, they are connected by a unique geodesic segment, and the distance is a convex function.
Foertsch-Lytchack-Schroeder, 2007, proved that a metric space is CAT(0) if and only if it is Busemann convex and Ptolemaic; cf. Chap. 1. Euclidean spaces, hyperbolic spaces, and trees are $\mathrm{CAT}(0)$ spaces.

- δ-Bolic metric space

Given a number $\delta>0$, a metric space (X, d) is called δ-bolic (KasparovSkandalis, 1994, simplified by Bucher-Karlsson, 2002) if for any $x, y, z \in X$ and some function $m: X \times X \rightarrow X$, it holds

$$
2 d(z, m(x, y)) \leq \sqrt{2 d^{2}(z, x)+2 d^{2}(z, y)-d^{2}(x, y)}+\frac{4}{3} \delta .
$$

A δ-hyperbolic space with approximate δ-midpoints (Chap. 1) is $\frac{3 \delta}{2}$-bolic. Every $\operatorname{CAT}(0)$-space is δ-bolic for any $\delta>0$; for complete spaces the converse holds as well. An l_{p}-metric space of dimension >1 is δ-bolic for any $\delta>0$ only if $p=2$.

- Boundary of metric space

There are many notions of the boundary ∂X of a metric space (X, d). We give below some of the most general among them. Usually, if (X, d) is locally compact, $X \cup \partial X$ is its compactification.

1. Ideal boundary (or boundary at ∞). Given a geodesic metric space (X, d), let γ^{1} and γ^{2} be two metric rays, i.e., geodesics with isometry of $\mathbb{R}_{\geq 0}$ into X. These rays are called equivalent if the Hausdorff distance between them (associated with the metric d) is finite, i.e., if $\sup _{t \geq 0} d\left(\gamma^{1}(t), \gamma^{2}(t)\right.$) $<\infty$. The ideal boundary of (X, d) is the set $\partial_{\infty} X$ of equivalence classes γ_{∞} of all metric rays. Cf. asymptotic metric cone (Chap. 1).
If (X, d) is a complete $\operatorname{CAT}(0)$ space, then the Tits metric (or asymptotic angle of divergence) on $\partial_{\infty} X$ is defined by $2 \arcsin \left(\frac{\rho}{2}\right)$ for all $\gamma_{\infty}^{1}, \gamma_{\infty}^{2} \in$ $\partial_{\infty} X$, where $\rho=\lim _{t \rightarrow \infty} \frac{1}{t} d\left(\gamma^{1}(t), \gamma^{2}(t)\right)$. The set $\partial_{\infty} X$ equipped with the Tits metric is called the Tits boundary of X.
If (X, d, x_{0}) is a pointed complete $\mathrm{CAT}(-1)$ space, then the Bourdon metric (or visual distance) on $\partial_{\infty} X$ is defined, for any distinct $x, y \in \partial_{\infty} X$, by $e^{-(x . y)}$, where ($x . y$) denotes the Gromov product $(x . y)_{x_{0}}$.
The visual sphere of (X, d) at a point $x_{0} \in X$ is the set of equivalence classes of all metric rays emanating from x_{0}.
2. Gromov boundary. Given a pointed metric space (X, d, x_{0}) (i.e., one with a selected base point $x_{0} \in X$), the Gromov boundary of it (as generalized by Buckley and Kokkendorff, 2005, from the case of the Gromov hyperbolic space) is the set $\partial_{G} X$ of equivalence classes of Gromov sequences.
A sequence $x=\left\{x_{n}\right\}_{n}$ in X is a Gromov sequence if the Gromov product $\left(x_{i} \cdot x_{j}\right)_{x_{0}} \rightarrow \infty$ as $i, j \rightarrow \infty$. Two Gromov sequences x and y are equivalent if there is a finite chain of Gromov sequences $x^{k}, 0 \leq k \leq k^{\prime}$, such that $x=x^{0}, y=x^{k^{\prime}}$, and $\lim _{i, j \rightarrow \infty} \inf \left(x_{i}^{k-1} \cdot x_{j}^{k}\right)=\infty$ for $0 \leq k \leq k^{\prime}$.
In a proper geodesic Gromov hyperbolic space (X, d), the visual sphere does not depends on the base point x_{0} and is naturally isomorphic to its Gromov boundary $\partial_{G} X$ which can be identified with $\partial_{\infty} X$.
3. g-Boundary. Denote by $\overline{X_{d}}$ the metric completion of (X, d) and, viewing X as a subset of $\overline{X_{d}}$, denote by ∂X_{d} the difference $\overline{X_{d}} \backslash X$. Let $\left(X, l, x_{0}\right)$ be a
pointed unbounded length space, i.e., its metric coincides with the internal metric l of (X, d). Given a measurable function $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$, the g-boundary of $\left(X, d, x_{0}\right)$ (as generalized by Buckley-Kokkendorff, 2005, from spherical and Floyd boundaries) is $\partial_{g} X=\partial X_{\sigma} \backslash \partial X_{l}$, where $\sigma(x, y)=$ $\inf \int_{\gamma} g(z) d l(z)$ for all $x, y \in X$ (here the infimum is taken over all metric segments $\gamma=[x, y]$).
4. Hotchkiss boundary. Given a pointed proper Busemann convex metric space $\left(X, d, x_{0}\right)$, the Hotchkiss boundary of it is the set $\partial_{H}\left(X, x_{0}\right)$ of isometries $f: \mathbb{R}_{\geq 0} \rightarrow X$ with $f(0)=x_{0}$. The boundaries $\partial_{H}^{x_{0}} X$ and $\partial_{H}^{x_{1}} X$ are homeomorphic for distinct $x_{0}, x_{1} \in X$. In a Gromov hyperbolic space, $\partial_{H}^{x_{0}} X$ is homeomorphic to the Gromov boundary $\partial_{G} X$.
5. Metric boundary. Given a pointed metric space (X, d, x_{0}) and an unbounded subset S of $\mathbb{R}_{\geq 0}$, a ray $\gamma: S \rightarrow X$ is called a weakly geodesic ray if, for every $x \in X$ and every $\epsilon>0$, there is an integer N such that $|d(\gamma(t), \gamma(0))-t|<\epsilon$, and $|d(\gamma(t), x)-d(\gamma(s), x)-(t-s)|<\epsilon$ for all $s, t \in T$ with $s, t \geq N$.
Let $\mathcal{G}(X, d)$ be the commutative unital C^{*}-algebra with the norm $\|.\|_{\infty}$, generated by the (bounded, continuous) functions which vanish at infinity, the constant functions, and the functions of the form $g_{y}(x)=d\left(x, x_{0}\right)-d(x, y)$; cf. Rieffel metric space in Chap. 7 for definitions.
The Rieffel's metric boundary $\partial_{R} X$ of (X, d) is the difference $\bar{X}^{d} \backslash X$, where \bar{X}^{d} is the metric compactification of (X, d), i.e., the maximum ideal space (the set of pure states) of this C^{*}-algebra.
For a proper metric space (X, d) (cf. Chap. 1) with a countable base, the boundary $\partial_{R} X$ consists of the limits $\lim _{t \rightarrow \infty} f(\gamma(t))$ for every weakly geodesic ray γ and every function f from the above C^{*}-algebra (Rieffel, 2002).

- Projectively flat metric space

A metric space, in which geodesics are defined, is called projectively flat if it locally admits a geodesic mapping (or projective mapping), i.e., a mapping preserving geodesics into an Euclidean space. Cf. Euclidean rank of metric space in Chap. 1; similar terms are: affinely flat, conformally flat, etc. A Riemannian space is projectively flat if and only if it has constant (sectional) curvature. Cf. flat metric in Chap. 8.

6.2 Projective Geometry

Projective Geometry is a branch of Geometry dealing with the properties and invariants of geometric figures under projection. Affine Geometry, Metric Geometry and Euclidean Geometry are subsets of Projective Geometry of increasing complexity. The main invariants of Projective, Affine, Metric, Euclidean Geometry are, respectively, cross-ratio, parallelism (and relative distances), angles (and relative distances), absolute distances.

An n-dimensional projective space $\mathbb{F} P^{n}$ is the space of one-dimensional vector subspaces of a given $(n+1)$-dimensional vector space V over a field \mathbb{F}. The basic construction is to form the set of equivalence classes of nonzero vectors in V under the relation of scalar proportionality. This idea goes back to mathematical descriptions of perspective.

The use of a basis of V allows the introduction of homogeneous coordinates of a point in $\mathbb{F} P^{n}$ which are usually written as $\left(x_{1}: x_{2}: \ldots: x_{n}: x_{n+1}\right)$-a vector of length $n+1$, other than $(0: 0: 0: \ldots: 0)$. Two sets of coordinates that are proportional denote the same point of the projective space. Any point of projective space which can be represented as $\left(x_{1}: x_{2}: \ldots: x_{n}: 0\right)$ is called a point at infinity. The part of a projective space $\mathbb{F} P^{n}$ not "at infinity", i.e., the set of points of the projective space which can be represented as $\left(x_{1}: x_{2}: \ldots: x_{n}: 1\right)$, is an n-dimensional affine space A^{n}.

The notation $\mathbb{R} P^{n}$ denotes the real projective space of dimension n, i.e., the space of 1 D vector subspaces of \mathbb{R}^{n+1}. The notation $\mathbb{C} P^{n}$ denotes the complex projective space of dimension n. The projective space $\mathbb{R} P^{n}$ carries a natural structure of a compact smooth n-manifold. It can be viewed as the space of lines through the zero element 0 of \mathbb{R}^{n+1} (i.e., as a ray space). It can be viewed also as the set \mathbb{R}^{n}, considered as an affine space, together with its points at infinity. Also it can be seen as the set of points of an n-sphere in \mathbb{R}^{n+1} with identified diametricallyopposite points.

The projective points, projective straight lines, projective planes, ..., projective hyperplanes of $\mathbb{F} P^{n}$ are one-, two-, three-, \ldots, n-dimensional subspaces of V, respectively. Any two projective straight lines in a projective plane have one and only one common point. A projective transformation (or collineation, projectivity) is a bijection of a projective space onto itself, preserving collinearity (the property of points to be on one line) in both directions. Any projective transformation is a composition of a pair of perspective projections. Projective transformations do not preserve sizes or angles but do preserve type (that is, points remain points, and lines remain lines), incidence (that is, whether a point lies on a line), and cross-ratio (cf. Chap. 1).

Here, given four collinear points $x, y, z, t \in \mathbb{F} P^{n}$, their cross-ratio (x, y, z, t) is $\frac{(x-z)(y-t)}{(y-z)(x-t)}$, where $\frac{x-z}{x-t}$ denotes the ratio $\frac{f(x)-f(z)}{f(x)-f(t)}$ for some affine bijection f from the straight line $l_{x, y}$ through the points x and y onto \mathbb{F}.

Given four projective straight lines $l_{x}, l_{y}, l_{z}, l_{t}$, containing points x, y, z, t, respectively, and passing through a given point, their cross-ratio $\left(l_{x}, l_{y}, l_{z}, l_{t}\right)$ is $\frac{\sin \left(l_{x}, l_{z}\right) \sin \left(l_{y}, l_{t}\right)}{\sin \left(l_{y}, l_{z}\right) \sin \left(l_{x}, l_{t}\right)}$, coincides with (x, y, z, t). The cross-ratio (x, y, z, t) of four complex numbers x, y, z, t is $\frac{(x-z)(y-t)}{(y-z)(x-t)}$. It is real if and only if the four numbers are either collinear or concyclic.

- Projective metric

Given a convex subset D of a projective space $\mathbb{R} P^{n}$, the projective metric d is a metric on D such that shortest paths with respect to this metric are parts
of or entire projective straight lines. It is assumed that the following conditions hold:

1. D does not belong to a hyperplane;
2. For any three noncollinear points $x, y, z \in D$, the triangle inequality holds in the strict sense: $d(x, y)<d(x, z)+d(z, y)$;
3. If x, y are different points in D, then the intersection of the straight line $l_{x, y}$ through x and y with D is either all of $l_{x, y}$, and forms a metric great circle, or is obtained from $l_{x, y}$ by discarding some segment (which can be reduced to a point), and forms a metric straight line.

The metric space (D, d) is called a projective metric space. The problem of determining all projective metrics on \mathbb{R}^{n} (called linearly additive metrics in Chap. 1) is the 4 th problem of Hilbert; it has been solved only for $n=2$. In fact, given a smooth measure on the space of hyperplanes in $\mathbb{R} P^{n}$, define the distance between any two points $x, y \in \mathbb{R} P^{n}$ as one-half the measure of all hyperplanes intersecting the line segment joining x and y. The obtained metric is projective; it is the Busemann's construction of projective metrics. [Amba76] proved that all projective metrics on \mathbb{R}^{2} can be obtained by this construction.
In a projective metric space there cannot simultaneously be both types of straight lines: they are either all metric straight lines, or they are all metric great circles of the same length (Hamel's theorem). Spaces of the first kind are called open. They coincide with subspaces of an affine space; the geometry of open projective metric spaces is a Hilbert Geometry. Hyperbolic Geometry is a Hilbert Geometry in which there exist reflections at all straight lines.
Thus, the set D has Hyperbolic Geometry if and only if it is the interior of an ellipsoid. The geometry of open projective metric spaces whose subsets coincide with all of affine space, is a Minkowski Geometry. Euclidean Geometry is a Hilbert Geometry and a Minkowski Geometry, simultaneously. Spaces of the second kind are called closed; they coincide with the whole of $\mathbb{R} P^{n}$. Elliptic Geometry is the geometry of a projective metric space of the second kind.

- Strip projective metric

The strip projective metric [BuKe53] is a projective metric on the strip $S t=$ $\left\{x \in \mathbb{R}^{2}:-\pi / 2<x_{2}<\pi / 2\right\}$ defined by

$$
\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}+\left|\tan x_{2}-\tan y_{2}\right| .
$$

The Euclidean metric $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ is not a projective metric on St.

- Half-plane projective metric

The half-plane projective metric [BuKe53] is a projective metric on $\mathbb{R}_{+}^{2}=$ $\left\{x \in \mathbb{R}^{2}: x_{2}>0\right\}$ defined by

$$
\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}+\left|\frac{1}{x_{2}}-\frac{1}{y_{2}}\right| .
$$

- Hilbert projective metric

Given a set H, the Hilbert projective metric h is a complete projective metric on H. It means that H contains, together with two arbitrary distinct points x and y, also the points z and t for which $h(x, z)+h(z, y)=h(x, y)$, $h(x, y)+h(y, t)=h(x, t)$, and that H is homeomorphic to a convex set in an n-dimensional affine space A^{n}, the geodesics in H being mapped to straight lines of A^{n}.
The metric space (H, h) is called the Hilbert projective space, and the geometry of a Hilbert projective space is called Hilbert Geometry.
Formally, let D be a nonempty convex open set in A^{n} with the boundary ∂D not containing two proper coplanar but noncollinear segments (ordinarily the boundary of D is a strictly convex closed curve, and D is its interior). Let $x, y \in D$ be located on a straight line which intersects ∂D at z and t, z is on the side of y, and t is on the side of x. Then the Hilbert projective metric h on D is the symmetrization of the Funk distance (cf. Chap. 1):

$$
h(x, y)=\frac{1}{2}\left(\ln \frac{x-z}{y-z}+\ln \frac{x-t}{y-t}\right)=\frac{1}{2} \ln (x, y, z, t)
$$

where (x, y, z, t) is the cross-ratio of x, y, z, t.
The metric space (D, h) is a straight G-space. If D is an ellipsoid, then h is the hyperbolic metric, and defines Hyperbolic Geometry on D. On the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ the metric h coincides with the Cayley-Klein-Hilbert metric. If $n=1$, the metric h makes D isometric to the Euclidean line.
If ∂D contains coplanar but noncollinear segments, a projective metric on D can be given by $h(x, y)+d(x, y)$, where d is any Minkowskian metric.

- Minkowskian metric

The Minkowskian metric (or Minkowski-Hölder distance) is the norm metric of a finite-dimensional real Banach space.
Formally, let \mathbb{R}^{n} be an n-dimensional real vector space, let K be a symmetric convex body in \mathbb{R}^{n}, i.e., an open neighborhood of the origin which is bounded, convex, and symmetric ($x \in K$ if and only if $-x \in K$). Then the Minkowski distance function $\|x\|_{K}: \mathbb{R}^{n} \rightarrow\left[0, \infty\right.$), defined as $\inf \left\{\alpha>0: \frac{x}{\alpha} \in \partial K\right\}$ (cf. Chap. 1), is a norm on \mathbb{R}^{n}, and the Minkowskian metric m_{K} on \mathbb{R}^{n} is defined by

$$
m_{K}(x, y)=\|x-y\|_{K}
$$

The metric space $\left(\mathbb{R}^{n}, m\right)$ is called Minkowskian space; its geometry is Minkowski Geometry. It can be seen as an affine space A^{n} with a metric m in which the unit ball is the body K. For a strictly convex symmetric body the Minkowskian metric is a projective metric, and $\left(\mathbb{R}^{n}, m\right)$ is a G-straight space. A Minkowski Geometry is Euclidean if and only if its unit sphere is an ellipsoid. The Minkowskian metric m is proportional to the Euclidean metric d_{E} on every given line l, i.e., $m(x, y)=\phi(l) d_{E}(x, y)$. Thus, the Minkowskian metric can be considered as a metric which is defined in the whole affine space A^{n} and has the
property that the affine ratio $\frac{a c}{a b}$ of any three collinear points a, b, c (cf. Sect. 6.3) is equal to their distance ratio $\frac{m(a, c)}{m(a, b)}$.
Given a convex body C in a Minkowskian space with unit ball K, the Minkowskian thickness and Minkowskian diameter of C are (Averkov, 2003):

$$
\sup \{\alpha>0: \alpha K \subset C-C\} \text { and } \inf \{\alpha>0: C-C \subset \alpha K\} .
$$

- C-distance

Given a convex body $C \subset \mathbb{E}^{n}$, the C-distance (or relative distance; Lassak, 1991) is a distance on \mathbb{E}^{n} defined, for any $x, y \in \mathbb{E}^{n}$, by

$$
d_{C}(x, y)=2 \frac{d_{E}(x, y)}{d_{E}\left(x^{\prime}, y^{\prime}\right)}
$$

where $x^{\prime} y^{\prime}$ is the longest chord of C parallel to the segment $x y . C$-distance is not related to C-metric in Chap. 10 and to rotating C-metric in Chap. 26.
The unit ball of the normed space with the norm $\|x\|=d_{C}(x, 0)$ is $\frac{1}{2}(C-C)$. For every $r \in[-1,1]$, it holds $d_{C}(x, y)=d_{r C+(1-r)(-C)}(x, y)$.

- Busemann metric

The Busemann metric [Buse55] is a metric on the real n-dimensional projective space $\mathbb{R} P^{n}$ defined by

$$
\min \left\{\sum_{i=1}^{n+1}\left|\frac{x_{i}}{\|x\|}-\frac{y_{i}}{\|y\|}\right|, \sum_{i=1}^{n+1}\left|\frac{x_{i}}{\|x\|}+\frac{y_{i}}{\|y\|}\right|\right\}
$$

for any $x=\left(x_{1}: \ldots: x_{n+1}\right), y=\left(y_{1}: \ldots: y_{n+1}\right) \in \mathbb{R} P^{n}$, where $\|x\|=$ $\sqrt{\sum_{i=1}^{n+1} x_{1}^{2}}$.

- Flag metric

Given an n-dimensional projective space $\mathbb{F} P^{n}$, the flag metric d is a metric on $\mathbb{F} P^{n}$ defined by a flag, i.e., an absolute consisting of a collection of m-planes $\alpha_{m}, m=0, \ldots, n-1$, with α_{i-1} belonging to α_{i} for all $i \in\{1, \ldots, n-1\}$. The metric space $\left(\mathbb{F} P^{n}, d\right)$ is abbreviated by F^{n} and is called a flag space.
If one chooses an affine coordinate system $\left(x_{i}\right)_{i}$ in a space F^{n}, so that the vectors of the lines passing through the $(n-m-1)$-plane α_{n-m-1} are defined by the condition $x_{1}=\ldots x_{m}=0$, then the flag metric $d(x, y)$ between the points $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is defined by

$$
\begin{gathered}
d(x, y)=\left|x_{1}-y_{1}\right|, \text { if } x_{1} \neq y_{1}, d(x, y)=\left|x_{2}-y_{2}\right|, \text { if } x_{1}=y_{1}, x_{2} \neq y_{2}, \ldots \\
\ldots, d(x, y)=\left|x_{k}-y_{k}\right|, \text { if } x_{1}=y_{1}, \ldots, x_{k-1}=y_{k-1}, x_{k} \neq y_{k}, \ldots
\end{gathered}
$$

- Projective determination of a metric

The projective determination of a metric is an introduction, in subsets of a projective space, of a metric such that these subsets become isomorphic to a Euclidean, hyperbolic, or elliptic space.
To obtain a Euclidean determination of a metric in $\mathbb{R} P^{n}$, one should distinguish in this space an $(n-1)$-dimensional hyperplane π, called the hyperplane at infinity, and define \mathbb{E}^{n} as the subset of the projective space obtained by removing from it this hyperplane π. In terms of homogeneous coordinates, π consists of all points $\left(x_{1}: \ldots: x_{n}: 0\right)$, and \mathbb{E}^{n} consists of all points $\left(x_{1}: \ldots: x_{n}: x_{n+1}\right)$ with $x_{n+1} \neq 0$. Hence, it can be written as $\mathbb{E}^{n}=\left\{x \in \mathbb{R} P^{n}: x=\left(x_{1}: \ldots: x_{n}: 1\right)\right\}$. The Euclidean metric d_{E} on \mathbb{E}^{n} is defined by

$$
\sqrt{\langle x-y, x-y\rangle}
$$

where, for any $x=\left(x_{1}: \ldots: x_{n}: 1\right), y=\left(y_{1}: \ldots: y_{n}: 1\right) \in \mathbb{E}^{n}$, one has $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$.
To obtain a hyperbolic determination of a metric in $\mathbb{R} P^{n}$, a set D of interior points of a real oval hypersurface Ω of order two in $\mathbb{R} P^{n}$ is considered. The hyperbolic metric $d_{\text {hyp }}$ on D is defined by

$$
\frac{r}{2}|\ln (x, y, z, t)|,
$$

where z and t are the points of intersection of the straight line $l_{x, y}$ through the points x and y with $\Omega,(x, y, z, t)$ is the cross-ratio of the points x, y, z, t, and $r>0$ is a fixed constant. If, for any $x=\left(x_{1}: \ldots: x_{n+1}\right), y=\left(y_{1}: \ldots\right.$: $\left.y_{n+1}\right) \in \mathbb{R} P^{n}$, the scalar product $\langle x, y\rangle=-x_{1} y_{1}+\sum_{i=2}^{n+1} x_{i} y_{i}$ is defined, the hyperbolic metric on the set $D=\left\{x \in \mathbb{R} P^{n}:\langle x, x\rangle<0\right\}$ can be written, for a fixed constant $r>0$, as

$$
r \operatorname{arccosh} \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}}
$$

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine. To obtain an elliptic determination of a metric in $\mathbb{R} P^{n}$, one should consider, for any $x=\left(x_{1}: \ldots: x_{n+1}\right), y=\left(y_{1}: \ldots: y_{n+1}\right) \in \mathbb{R} P^{n}$, the inner product $\langle x, y\rangle=\sum_{i=1}^{n+1} x_{i} y_{i}$. The elliptic metric $d_{\text {ell }}$ on $\mathbb{R} P^{n}$ is defined now by

$$
r \arccos \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}}
$$

where $r>0$ is a fixed constant, and arccos is the inverse cosine in $[0, \pi]$.
In all the considered cases, some hypersurfaces of the second-order remain invariant under given motions, i.e., projective transformations preserving a given metric. These hypersurfaces are called absolutes. In the case of a Euclidean
determination of a metric, the absolute is an imaginary $(n-2)$-dimensional oval surface of order two, in fact, the degenerate absolute $x_{1}^{2}+\cdots+x_{n}^{2}=0, x_{n+1}=0$. In the case of a hyperbolic determination of a metric, the absolute is a real $(n-1)$ dimensional oval hypersurface of order two, in the simplest case, the absolute $-x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=0$. In the case of an elliptic determination of a metric, the absolute is an imaginary $(n-1)$-dimensional oval hypersurface of order two, in fact, the absolute $x_{1}^{2}+\cdots+x_{n+1}^{2}=0$.

6.3 Affine Geometry

An n-dimensional affine space over a field \mathbb{F} is a set A^{n} (the elements of which are called points of the affine space) to which corresponds an n-dimensional vector space V over \mathbb{F} (called the space associated to A^{n}) such that, for any $a \in A^{n}$, $A=a+V=\{a+v: v \in V\}$. In the other words, if $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$, then the vector $\overrightarrow{a b}=\left(b_{1}-a_{1}, \ldots, b_{n}-a_{n}\right)$ belongs to V.

In an affine space, one can add a vector to a point to get another point, and subtract points to get vectors, but one cannot add points, since there is no origin. Given points $a, b, c, d \in A^{n}$ such that $c \neq d$, and the vectors $\overrightarrow{a b}$ and $\overrightarrow{c d}$ are collinear, the scalar λ, defined by $\overrightarrow{a b}=\lambda \overrightarrow{c d}$, is called the affine ratio of $a b$ and $c d$, and is denoted by $\frac{a b}{c d}$.

An affine transformation (or affinity) is a bijection of A^{n} onto itself which preserves collinearity and ratios of distances In this sense, affine indicates a special class of projective transformations that do not move any objects from the affine space to the plane at infinity or conversely. Any affine transformation is a composition of rotations, translations, dilations, and shears. The set of all affine transformations of A^{n} forms a group $A f f\left(A^{n}\right)$, called the general affine group of A^{n}. Each element $f \in \operatorname{Aff}(A)$ can be given by a formula $f(a)=b$, $b_{i}=\sum_{j=1}^{n} p_{i j} a_{j}+c_{j}$, where $\left(\left(p_{i j}\right)\right)$ is an invertible matrix.

The subgroup of $A f f\left(A^{n}\right)$, consisting of affine transformations with $\operatorname{det}\left(\left(p_{i j}\right)\right)=1$, is called the equi-affine group of A^{n}. An equi-affine space is an affine space with the equi-affine group of transformations. The fundamental invariants of an equi-affine space are volumes of parallelepipeds. In an equi-affine plane A^{2}, any two vectors v_{1}, v_{2} have an invariant $\left|v_{1} \times v_{2}\right|$ (the modulus of their cross product)-the surface area of the parallelogram constructed on v_{1} and ν_{2}.

Given a nonrectilinear curve $\gamma=\gamma(t)$, its affine parameter (or equi-affine arc length) is an invariant $s=\int_{t_{0}}^{t}\left|\gamma^{\prime} \times \gamma^{\prime \prime}\right|^{1 / 3} d t$. The invariant $k=\frac{d^{2} \gamma}{d s^{2}} \times \frac{d^{3} \gamma}{d s^{3}}$ is called the equi-affine curvature of γ. Passing to the general affine group, two more invariants of the curve are considered: the affine arc length $\sigma=\int k^{1 / 2} d s$, and the affine curvature $\mathrm{k}=\frac{1}{k^{3 / 2}} \frac{d k}{d s}$.

For $A^{n}, n>2$, the affine parameter (or equi-affine arc length) of a curve $\gamma=\gamma(t)$ is defined by $s=\int_{t_{0}}^{t}\left|\left(\gamma^{\prime}, \gamma^{\prime \prime}, \ldots, \gamma^{(n)}\right)\right|^{\frac{2}{n(n+1)}} d t$, where the invariant
$\left(v_{1}, \ldots, v_{n}\right)$ is the (oriented) volume spanned by the vectors v_{1}, \ldots, v_{n} which is equal to the determinant of the $n \times n$ matrix whose i-th column is the vector v_{i}.

- Affine distance

Given an affine plane A^{2}, a line element $\left(a, l_{a}\right)$ of A^{2} consists of a point $a \in A^{2}$ together with a straight line $l_{a} \subset A^{2}$ passing through a.
The affine distance is a distance on the set of all line elements of A^{2} defined by

$$
2 f^{1 / 3}
$$

where, for a given line elements $\left(a, l_{a}\right)$ and $\left(b, l_{b}\right), f$ is the surface area of the triangle $a b c$ if c is the point of intersection of the straight lines l_{a} and l_{b}. The affine distance between $\left(a, l_{a}\right)$ and $\left(b, l_{b}\right)$ can be interpreted as the affine length of the arc $a b$ of a parabola such that l_{a} and l_{b} are tangent to the parabola at a and b, respectively.

- Affine pseudo-distance

Let A^{2} be an equi-affine plane, and let $\gamma=\gamma(s)$ be a curve in A^{2} defined as a function of the affine parameter s. The affine pseudo-distance $d p_{\text {aff }}$ for A^{2} is

$$
d p_{a f f}(a, b)=\left|\overrightarrow{a b} \times \frac{d \gamma}{d s}\right|,
$$

i.e., it is equal to the surface area of the parallelogram constructed on the vectors $\overrightarrow{a b}$ and $\frac{d \gamma}{d s}$, where b is an arbitrary point in A^{2}, a is a point on γ, and $\frac{d \gamma}{d s}$ is the tangent vector to the curve γ at the point a.
Similarly, the affine pseudo-distance for an equi-affine space A^{3} is defined as

$$
\left|\left(\overrightarrow{a b}, \frac{d \gamma}{d s}, \frac{d^{2} \gamma}{d s^{2}}\right)\right|,
$$

where $\gamma=\gamma(s)$ is a curve in A^{3}, defined as a function of the affine parameter s, $b \in A^{3}, a$ is a point of γ, and the vectors $\frac{d \gamma}{d s}, \frac{d^{2} \gamma}{d s^{2}}$ are obtained at the point a.
For $A^{n}, n>3$, we have $d p_{a f f}(a, b)=\left|\left(\overrightarrow{a b}, \frac{d \gamma}{d s}, \ldots, \frac{d^{n-1} \gamma}{d s^{n-1}}\right)\right|$. For an arbitrary parametrization $\gamma=\gamma(t)$, one obtains $d p_{a f f}(a, b)=\left|\left(\overrightarrow{a b}, \gamma^{\prime}, \ldots, \gamma^{(n-1)}\right)\right| \mid$ $\left.\left(\gamma^{\prime}, \ldots, \gamma^{(n-1)}\right)\right|^{\frac{1-n}{1+n}}$.

- Affine metric

The affine metric is a metric on a nondevelopable surface $r=r\left(u_{1}, u_{2}\right)$ in an equi-affine space A^{3}, given by its metric tensor $\left(\left(g_{i j}\right)\right)$:

$$
g_{i j}=\frac{a_{i j}}{\left|\operatorname{det}\left(\left(a_{i j}\right)\right)\right|^{1 / 4}},
$$

where $a_{i j}=\left(\partial_{1} r, \partial_{2} r, \partial_{i j} r\right), i, j \in\{1,2\}$.

6.4 Non-Euclidean Geometry

The term non-Euclidean Geometry describes both Hyperbolic Geometry (or Lobachevsky-Bolyai-Gauss Geometry) and Elliptic Geometry which are contrasted with Euclidean Geometry (or Parabolic Geometry). The essential difference between Euclidean and non-Euclidean Geometry is the nature of parallel lines. In Euclidean Geometry, if we start with a line l and a point a, which is not on l, then there is only one line through a that is parallel to l. In Hyperbolic Geometry there are infinitely many lines through a parallel to l. In Elliptic Geometry, parallel lines do not exist. The Spherical Geometry is also "non-Euclidean", but it fails the axiom that any two points determine exactly one line.

- Spherical metric

Let $S^{n}(0, r)=\left\{x \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=r^{2}\right\}$ be the sphere in \mathbb{R}^{n+1} with the center 0 and the radius $r>0$.
The spherical metric (or great circle metric) is a metric on $S^{n}(0, r)$ defined by

$$
d_{s p h}=r \arccos \left(\frac{\left|\sum_{i=1}^{n+1} x_{i} y_{i}\right|}{r^{2}}\right),
$$

where \arccos is the inverse cosine in $[0, \pi]$. It is the length of the great circle arc, passing through x and y. In terms of the standard inner product $\langle x, y\rangle=$ $\sum_{i=1}^{n+1} x_{i} y_{i}$ on \mathbb{R}^{n+1}, the spherical metric can be written as $r \arccos \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}}$.
The metric space $\left(S^{n}(0, r), d_{s p h}\right)$ is called n-dimensional spherical space. It is a space of curvature $1 / r^{2}$, and r is the radius of curvature. It is a model of n-dimensional Spherical Geometry. The great circles of the sphere are its geodesics and all geodesics are closed and of the same length. (See, for example, [Blum70].)

- Elliptic metric

Let $\mathbb{R} P^{n}$ be the real n-dimensional projective space. The elliptic metric $d_{\text {ell }}$ is a metric on $\mathbb{R} P^{n}$ defined by

$$
r \arccos \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}},
$$

where, for any $x=\left(x_{1}: \ldots: x_{n+1}\right)$ and $y=\left(y_{1}: \ldots: y_{n+1}\right) \in \mathbb{R} P^{n}$, one has $\langle x, y\rangle=\sum_{i=1}^{n+1} x_{i} y_{i}, r>0$ is a constant and arccos is the inverse cosine in $[0, \pi]$.
The metric space $\left(\mathbb{R} P^{n}, d_{\text {ell }}\right)$ is called n-dimensional elliptic space. It is a model of n-dimensional Elliptic Geometry. It is the space of curvature $1 / r^{2}$, and r is the radius of curvature. As $r \rightarrow \infty$, the metric formulas of Elliptic Geometry yield formulas of Euclidean Geometry (or become meaningless).

If $\mathbb{R} P^{n}$ is viewed as the set $E^{n}(0, r)$, obtained from the sphere $S^{n}(0, r)=\{x \in$ $\left.\mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=r^{2}\right\}$ in \mathbb{R}^{n+1} with center 0 and radius r by identifying diametrically-opposite points, then the elliptic metric on $E^{n}(0, r)$ can be written as $d_{s p h}(x, y)$ if $d_{s p h}(x, y) \leq \frac{\pi}{2} r$, and as $\pi r-d_{s p h}(x, y)$ if $d_{s p h}(x, y)>\frac{\pi}{2} r$, where $d_{s p h}$ is the spherical metric on $S^{n}(0, r)$. Thus, no two points of $E^{n}(0, r)$ have distance exceeding $\frac{\pi}{2} r$. The elliptic space $\left(E^{2}(0, r), d_{e l l}\right)$ is called the Poincaré sphere.
If $\mathbb{R} P^{n}$ is viewed as the set E^{n} of lines through the zero element 0 in \mathbb{R}^{n+1}, then the elliptic metric on E^{n} is defined as the angle between the corresponding subspaces.
An n-dimensional elliptic space is a Riemannian space of constant positive curvature. It is the only such space which is topologically equivalent to a projective space. (See, for example, [Blum70, Buse55].)

- Hermitian elliptic metric

Let $\mathbb{C} P^{n}$ be the n-dimensional complex projective space. The Hermitian elliptic metric $d_{\text {ell }}^{H}$ (see, for example, [Buse55]) is a metric on $\mathbb{C} P^{n}$ defined by

$$
r \arccos \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}},
$$

where, for any $x=\left(x_{1}: \ldots: x_{n+1}\right)$ and $y=\left(y_{1}: \ldots: y_{n+1}\right) \in \mathbb{C} P^{n}$, one has $\langle x, y\rangle=\sum_{i=1}^{n+1} \bar{x}_{i} y_{i}, r>0$ is a constant and arccos is the inverse cosine in $[0, \pi]$.
The metric space ($\mathbb{C} P^{n}, d_{\text {ell }}^{H}$) is called n-dimensional Hermitian elliptic space (cf. Fubini-Study metric in Chap. 7).

- Elliptic plane metric

The elliptic plane metric is the elliptic metric on the elliptic plane $\mathbb{R} P^{2}$. If $\mathbb{R} P^{2}$ is viewed as the Poincaré sphere (i.e., a sphere in \mathbb{R}^{3} with identified diametrically-opposite points) of diameter 1 tangent to the extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ at the point $z=0$, then, under the stereographic projection from the "north pole" $(0,0,1), \overline{\mathbb{C}}$ with identified points z and $-\frac{1}{\bar{z}}$ is a model of the elliptic plane.
The elliptic plane metric $d_{\text {ell }}$ on it is defined by its line element $d s^{2}=\frac{|d z|^{2}}{\left(1+|z|^{2}\right)^{2}}$.

- Pseudo-elliptic distance

The pseudo-elliptic distance (or elliptic pseudo-distance) $d p_{\text {ell }}$ is defined, on the extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ with identified points z and $-\frac{1}{\bar{z}}$, by

$$
\left|\frac{z-u}{1+\bar{z} u}\right| .
$$

In fact, $d p_{\text {ell }}(z, u)=\tan d_{\text {ell }}(z, u)$, where $d_{\text {ell }}$ is the elliptic plane metric.

- Hyperbolic metric

Let $\mathbb{R} P^{n}$ be the n-dimensional real projective space. Let, for any $x=\left(x_{1}\right.$: $\left.\ldots: x_{n+1}\right), y=\left(y_{1}: \ldots: y_{n+1}\right) \in \mathbb{R} P^{n}$, their scalar product $\langle x, y\rangle$ be $-x_{1} y_{1}+\sum_{i=2}^{n+1} x_{i} y_{i}$.
The hyperbolic metric $d_{h y p}$ is a metric on the set $H^{n}=\left\{x \in \mathbb{R} P^{n}:\langle x, x\rangle<0\right\}$ defined, for a fixed constant $r>0$, by

$$
r \operatorname{arccosh} \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}},
$$

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine. In this construction, the points of H^{n} can be viewed as the one-spaces of the pseudo-Euclidean space $\mathbb{R}^{n, 1}$ inside the cone $C=\left\{x \in \mathbb{R}^{n, 1}:\langle x, x\rangle=0\right\}$.
The metric space $\left(H^{n}, d_{\text {hyp }}\right)$ is called n-dimensional hyperbolic space. It is a model of n-dimensional Hyperbolic Geometry. It is the space of curvature $-1 / r^{2}$, and r is the radius of curvature. Replacement of r by ir transforms all metric formulas of Hyperbolic Geometry into the corresponding formulas of Elliptic Geometry. As $r \rightarrow \infty$, both systems yield formulas of Euclidean Geometry (or become meaningless).
If H^{n} is viewed as the set $\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2}<K\right\}$, where $K>1$ is any fixed constant, the hyperbolic metric can be written as

$$
\frac{r}{2} \ln \frac{1+\sqrt{1-\gamma(x, y)}}{1-\sqrt{1-\gamma(x, y)}}
$$

where $\gamma(x, y)=\frac{\left(K-\sum_{i=1}^{n} x_{i}^{2}\right)\left(K-\sum_{i=1}^{n} y_{i}^{2}\right)}{\left(K-\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}}$, and $r>0$ is a number with $\tanh \frac{1}{r}=$ $\frac{1}{\sqrt{K}}$.
If H^{n} is viewed as a submanifold of the $(n+1)$-dimensional pseudo-Euclidean space $\mathbb{R}^{n, 1}$ with the scalar product $\langle x, y\rangle=-x_{1} y_{1}+\sum_{i=2}^{n+1} x_{i} y_{i}$ (in fact, as the top sheet $\left\{x \in \mathbb{R}^{n, 1}:\langle x, x\rangle=-1, x_{1}>0\right\}$ of the two-sheeted hyperboloid of revolution), then the hyperbolic metric on H^{n} is induced from the pseudoRiemannian metric on $R^{n, 1}$ (cf. Lorentz metric in Chap. 26).
An n-dimensional hyperbolic space is a Riemannian space of constant negative curvature. It is the only such space which is complete and topologically equivalent to an Euclidean space. (See, for example, [Blum70, Buse55].)

- Hermitian hyperbolic metric

Let $\mathbb{C} P^{n}$ be the n-dimensional complex projective space. Let, for any $x=\left(x_{1}\right.$: $\left.\ldots: x_{n+1}\right), y=\left(y_{1}: \ldots: y_{n+1}\right) \in \mathbb{C} P^{n}$, their scalar product $\langle x, y\rangle$ be $-\bar{x}_{1} y_{1}+\sum_{i=2}^{n+1} \bar{x}_{i} y_{i}$.
The Hermitian hyperbolic metric $d_{h y p}^{H}$ (see, for example, [Buse55]) is a metric on the set $\mathbb{C} H^{n}=\left\{x \in \mathbb{C} P^{n}:\langle x, x\rangle<0\right\}$ defined, for a fixed constant $r>0$, by

$$
\operatorname{arccosh} \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}},
$$

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine. The metric space ($\mathbb{C} H^{n}, d_{\text {hyp }}^{H}$) is called n-dimensional Hermitian hyperbolic space.

- Poincaré metric

The Poincaré metric d_{P} is the hyperbolic metric for the Poincaré disk model of Hyperbolic Geometry. In this model the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ is called the hyperbolic plane, every point of Δ is called a hyperbolic point, circular arcs (and diameters) in Δ which are orthogonal to the absolute $\Omega=\{z \in \mathbb{C}:|z|=1\}$ are called hyperbolic straight lines. Every point of Ω is called an ideal point.
The angular measurements in this model are the same as in Hyperbolic Geometry, i.e., it is a conformal model. There is a one-to-one correspondence between segments and acute angles. The Poincaré metric on Δ is defined by its line element

$$
d s^{2}=\frac{|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}=\frac{d z_{1}^{2}+d z_{2}^{2}}{\left(1-z_{1}^{2}-z_{2}^{2}\right)^{2}}
$$

The distance d_{P} between two points z and u of Δ can be written as

$$
\frac{1}{2} \ln \frac{|1-z \bar{u}|+|z-u|}{|1-z \bar{u}|-|z-u|}=\operatorname{arctanh} \frac{|z-u|}{|1-z \bar{u}|}
$$

In terms of cross-ratio, it is equal to

$$
\frac{1}{2} \ln \left(z, u, z^{*}, u^{*}\right)=\frac{1}{2} \ln \frac{\left(z^{*}-z\right)\left(u^{*}-u\right)}{\left(z^{*}-u\right)\left(u^{*}-z\right)}
$$

where z^{*} and u^{*} are the points of intersection of the hyperbolic straight line passing through z and u with Ω, z^{*} on the side of u, and u^{*} on the side of z.
The multiplicative distance function on the segments $z u$ of Δ is defined (Hartshorne, 2003) by $\mu(z u)=\left(z, u, z^{*}, u^{*}\right)^{-1}$; it allows the definition of trigonometric functions in the absence of continuity.
In the conformal Poincaré half-plane model of Hyperbolic Geometry the hyperbolic plane is the upper half-plane $H^{2}=\left\{z \in \mathbb{C}: z_{2}>0\right\}$, and the hyperbolic lines are semicircles and half-lines which are orthogonal to the real axis. The absolute (i.e., the set of ideal points) is the real axis together with the point at infinity.
The line element of the Poincaré metric on H^{2} is given by

$$
d s^{2}=\frac{|d z|^{2}}{(\Im z)^{2}}=\frac{d z_{1}^{2}+d z_{2}^{2}}{z_{2}^{2}}
$$

The distance between two points z, u can be written as
$\frac{1}{2} \ln \frac{|z-\bar{u}|+|z-u|}{|z-\bar{u}|-|z-u|}=\operatorname{arctanh} \frac{|z-u|}{|z-\bar{u}|}=\frac{1}{2} \ln \left(z, u, z^{*}, u^{*}\right)=\frac{1}{2} \ln \frac{\left(z^{*}-z\right)\left(u^{*}-u\right)}{\left(z^{*}-u\right)\left(u^{*}-z\right)}$,
where z^{*} is the ideal point of the half-line emanating from z and passing through u, and u^{*} is the ideal point of the half-line emanating from u and passing through z.
In general, the hyperbolic metric in any domain $D \subset \mathbb{C}$ with at least three boundary points is defined as the preimage of the Poincaré metric in Δ under a conformal mapping $f: D \rightarrow \Delta$. Its line element has the form

$$
d s^{2}=\frac{\left|f^{\prime}(z)\right|^{2}|d z|^{2}}{\left(1-|f(z)|^{2}\right)^{2}}
$$

The distance between two points z and u in D can be written as

$$
\frac{1}{2} \ln \frac{|1-f(z) \overline{f(u)}|+|f(z)-f(u)|}{|1-f(z) \overline{f(u)}|-|f(z)-f(u)|}
$$

- Pseudo-hyperbolic distance

The pseudo-hyperbolic distance (or Gleason distance, hyperbolic pseudodistance) $d p_{\text {hyp }}$ is a metric on the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$, defined by

$$
\left|\frac{z-u}{1-\bar{z} u}\right| .
$$

In fact, $d p_{\text {hyp }}(z, u)=\tanh d_{P}(z, u)$, where d_{P} is the Poincaré metric on Δ.

- Cayley-Klein-Hilbert metric

The Cayley-Klein-Hilbert metric $d_{C K H}$ is the hyperbolic metric for the Klein model (or projective disk model, for Hyperbolic Geometry. In this model the hyperbolic plane is realized as the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$, and the hyperbolic straight lines are realized as the chords of Δ. Every point of the absolute $\Omega=\{z \in \mathbb{C}:|z|=1\}$ is called an ideal point. This model is not conformal: the angular measurements are distorted. The Cayley-Klein-Hilbert metric on Δ is given by its metric tensor $\left(\left(g_{i j}\right)\right), i, j=1,2$:

$$
g_{11}=\frac{r^{2}\left(1-z_{2}^{2}\right)}{\left(1-z_{1}^{2}-z_{2}^{2}\right)^{2}}, \quad g_{12}=\frac{r^{2} z_{1} z_{2}}{\left(1-z_{1}^{2}-z_{2}^{2}\right)^{2}}, \quad g_{22}=\frac{r^{2}\left(1-z_{1}^{2}\right)}{\left(1-z_{1}^{2}-z_{2}^{2}\right)^{2}},
$$

where r is any positive constant. The distance between points z and u in Δ is

$$
r \operatorname{arccosh}\left(\frac{1-z_{1} u_{1}-z_{2} u_{2}}{\sqrt{1-z_{1}^{2}-z_{2}^{2}} \sqrt{1-u_{1}^{2}-u_{2}^{2}}}\right),
$$

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.

- Weierstrass metric

Given a real n-dimensional inner product space $\left(\mathbb{R}^{n},\langle\rangle,\right), n \geq 2$, the Weierstrass metric d_{W} is a metric on \mathbb{R}^{n} defined by

$$
\operatorname{arccosh}(\sqrt{1+\langle x, x\rangle} \sqrt{1+\langle y, y\rangle}-\langle x, y\rangle)
$$

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine. Here, $(x, \sqrt{1+\langle x, x\rangle}) \in \mathbb{R}^{n} \oplus \mathbb{R}$ are the Weierstrass coordinates of $x \in \mathbb{R}^{n}$, and the metric space $\left(\mathbb{R}^{n}, d_{W}\right)$ can be seen as the Weierstrass model of Hyperbolic Geometry.
The Cayley-Klein-Hilbert metric $d_{C K H}(x, y)=\operatorname{arccosh} \frac{1-\langle x, y\rangle}{\sqrt{1-\langle x, x\rangle} \sqrt{1-\langle y, y\rangle}}$ on the open ball $B^{n}=\left\{x \in \mathbb{R}^{n}:\langle x, x\rangle<1\right\}$ can be obtained from d_{W} by $d_{G K H}(x, y)=d_{W}(\mu(x), \mu(y))$, where $\mu: \mathbb{R}^{n} \rightarrow B^{n}$ is the Weierstrass mapping: $\mu(x)=\frac{x}{\sqrt{1-\langle x, x\rangle}}$.

- Harnack metric

Given a domain $D \subset \mathbb{R}^{n}, n \geq 2$, the Harnack metric is a metric on D defined by

$$
\sup _{f}\left|\log \frac{f(x)}{f(y)}\right|,
$$

where the supremum is taken over all positive functions which are harmonic on D.

- Quasi-hyperbolic metric

Given a domain $D \subset \mathbb{R}^{n}, n \geq 2$, the quasi-hyperbolic metric on D is defined by

$$
\inf _{\gamma \in \Gamma} \int_{\gamma} \frac{|d z|}{\rho(z)}
$$

where the infimum is taken over the set Γ of all rectifiable curves connecting x and y in $D, \rho(z)=\inf _{u \in \partial D}\|z-u\|_{2}$ is the distance between z and the boundary ∂D of D, and $\|\cdot\|_{2}$ is the Euclidean norm on \mathbb{R}^{n}.
This metric is Gromov hyperbolic if the domain D is uniform, i.e., there exist constants C, C^{\prime} such that each pair of points $x, y \in D$ can be joined by a rectifiable curve $\gamma=\gamma(x, y) \in D$ of length $l(\gamma)$ at most $C|x-y|$, and $\min \{l(\gamma(x, z)), l(\gamma(z, y))\} \leq C^{\prime} d(z, \partial D)$ holds for all $z \in \gamma$. Also, the quasihyperbolic metric is the inner metric (cf. Chap. 4) of the Vuorinen metric.
For $n=2$, one can define the hyperbolic metric on D by

$$
\inf _{\gamma \in \Gamma} \int_{\gamma} \frac{2\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}}|d z|
$$

where $f: D \rightarrow \Delta$ is any conformal mapping of D onto the unit disk $\Delta=\{z \in$ $\mathbb{C}:|z|<1\}$. For $n \geq 3$, it is defined only for the half-hyperplane H^{n} and for the open unit ball B^{n} as the infimum over all $\gamma \in \Gamma$ of the integrals $\int_{\gamma} \frac{|d z|}{z_{n}}$ and $\int_{\gamma} \frac{2|d z|}{1-\left||z| \|_{2}^{2}\right.}$.

- Apollonian metric

Let $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, be a domain such that its complement is not contained in a hyperplane or a sphere. The Apollonian metric (or Barbilian metric, [Barb35]) on D is defined (denoting the boundary of D by ∂D) by the cross-ratio as

$$
\sup _{a, b \in \partial D} \ln \frac{\|a-x\|_{2}\|b-y\|_{2}}{\|a-y\|_{2}\|b-x\|_{2}}
$$

This metric is Gromov hyperbolic.

- Half-Apollonian metric

Given a domain $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, the half-Apollonian metric η_{D} (Ha̋sto and Lindén, 2004) on D is defined (denoting the boundary of D by ∂D) by

$$
\sup _{a \in \partial D}\left|\ln \frac{\|a-y\|_{2}}{\|a-x\|_{2}}\right| .
$$

This metric is Gromov hyperbolic only if the domain is $\mathbb{R}^{n} \backslash\{x\}$.

- Gehring metric

Given a domain $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, the Gehring metric $\tilde{j_{D}}$ (Gehring, 1982) is a metric on D, defined by

$$
\frac{1}{2} \ln \left(\left(1+\frac{\|x-y\|_{2}}{\rho(x)}\right)\left(1+\frac{\|x-y\|_{2}}{\rho(y)}\right)\right)
$$

where $\rho(x)=\inf _{u \in \partial D}\|x-u\|_{2}$ is the distance between x and the boundary of D. This metric is Gromov hyperbolic.

- Vuorinen metric

Given a domain $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, the Vuorinen (or distance ratio, $j_{D^{-}}$) metric; Vuorinen, 1988) is a metric on D defined by

$$
\ln \left(1+\frac{\|x-y\|_{2}}{\min \{\rho(x), \rho(y)\}}\right),
$$

where $\rho(x)=\inf _{u \in \partial D}\|x-u\|_{2}$ is the distance between x and the boundary of D. This metric is Gromov hyperbolic only if the domain is $\mathbb{R}^{n} \backslash\{x\}$.

- Ferrand metric

Given a domain $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, the Ferrand metric σ_{D} (Ferrand, 1987) is a metric on D defined by

$$
\inf _{\gamma \in \Gamma} \int_{\gamma} \sup _{a, b \in \partial D} \frac{\|a-b\|_{2}}{\|z-a\|_{2}\|z-b\|_{2}}|d z|,
$$

where the infimum is taken over the set Γ of all rectifiable curves connecting x and y in $D, \partial D$ is the boundary of D, and $\|.\|_{2}$ is the Euclidean norm on \mathbb{R}^{n}. This metric is the inner metric (cf. Chap. 4) of the Möbius metric.

- Möbius metric

Given a domain $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, the Möbius (or absolute ratio, $\delta_{D^{-}}$) metric; Siettenranta, 1999) is a metric on D defined by

$$
\sup _{a, b \in \partial D} \ln \left(1+\frac{\|a-x\|_{2}\|b-y\|_{2}}{\|a-b\|_{2}\|x-y\|_{2}}\right) .
$$

This metric is Gromov hyperbolic.

- Modulus metric

Let $D \subset \mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, be a domain. The conformal modulus of a family Γ of locally rectifiable curves in D is $M(\Gamma)=\inf _{\rho} \int_{\mathbb{R}^{n}} \rho^{n} d m$, where m is the n dimensional Lebesgue measure, and ρ is any Borel-measurable function with $\int_{\gamma} \rho d s \geq 1$ and $\rho \geq 0$ for each $\gamma \in \Gamma$. Cf. general modulus in extremal metric, Chap. 8.
Let $\Delta(E, F ; D)$ denote the family of all closed nonconstant curves in D joining E and F. The modulus metric μ_{D} (Gál, 1960) is a metric on D, defined by

$$
\inf _{C_{x y}} M\left(\Delta\left(C_{x y}, \partial D ; D\right)\right),
$$

where $C_{x y}$ is a compact connected set such that for some $\gamma:[0,1] \rightarrow D$, it holds $C_{x y}=\gamma([0,1])$ and $\gamma(0)=x, \gamma(1)=y$.
The Ferrand second metric λ_{D}^{*} (Ferrand, 1997) is a metric on D, defined by

$$
\left(\inf _{C_{x}, C_{y}} M\left(\Delta\left(C_{x}, C_{y} ; D\right)\right)\right)^{\frac{1}{1-n}},
$$

where $C_{z}(z=x, y)$ is a compact connected set such that, for some $\gamma_{z}:[0,1] \rightarrow D$, it holds $C_{z}=\gamma([0,1)), z \in\left|\gamma_{z}\right|$ and $\gamma_{z}(t) \rightarrow \partial D$ as $t \rightarrow 1$.
Above two metrics are Gromov hyperbolic if D is the open ball $B^{n}=\{x \in$ $\left.\mathbb{R}^{n}:\langle x, x\rangle<1\right\}$ or a simply connected domain in \mathbb{R}^{2}.

- Conformal radius

Let $D \subset \mathbb{C}, D \neq \mathbb{C}$, be a simply connected domain and let $z \in D, z \neq \infty$.
The conformal (or harmonic) radius is defined by

$$
\operatorname{rad}(z, D)=\left(f^{\prime}(z)\right)^{-1}
$$

where $f: D \rightarrow \Delta$ is the uniformizing map, i.e., the unique conformal mapping onto the unit disk with $f(z)=0 \in \Delta$ and $f^{\prime}(z)>0$.
The Euclidean distance between z and the boundary ∂D of D (i.e., the radius of the largest disk inscribed in $D)$ lies in the segment $\left[\frac{\operatorname{rad}(z, D)}{4}, \operatorname{rad}(z, D)\right]$.

If D is compact, define $\operatorname{rad}(\infty, D)$ as $\lim _{z \rightarrow \infty} \frac{f(z)}{z}$, where $f:(\mathbb{C} \backslash \Delta) \rightarrow(\mathbb{C} \backslash D)$ is the unique conformal mapping with $f(\infty)=\infty$ and positive above limit. This radius is the transfinite diameter from Chap. 1.

- Parabolic distance

The parabolic distance is a metric on \mathbb{R}^{n+1}, considered as $\mathbb{R}^{n} \times \mathbb{R}$ defined by

$$
\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}+\left|t_{x}-t_{y}\right|^{1 / m}, m \in \mathbb{N}
$$

for any $x=\left(x_{1}, \ldots, x_{n}, t_{x}\right), y=\left(y_{1}, \ldots, y_{n}, t_{y}\right) \in \mathbb{R}^{n} \times \mathbb{R}$.
The space $\mathbb{R}^{n} \times \mathbb{R}$ can be interpreted as multidimensional space-time.
Usually, the value $m=2$ is applied. There exist some variants of the parabolic distance, for example, the parabolic distance

$$
\sup \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|^{1 / 2}\right\}
$$

on \mathbb{R}^{2} (cf. also Rickman's rug metric in Chap. 19), or the half-space parabolic distance on $\mathbb{R}_{+}^{3}=\left\{x \in \mathbb{R}^{3}: x_{1} \geq 0\right\}$ defined by

$$
\frac{\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|}{\sqrt{x_{1}}+\sqrt{x_{2}}+\sqrt{\left|x_{2}-y_{2}\right|}}+\sqrt{\left|x_{3}-y_{3}\right|} .
$$

Chapter 7
 Riemannian and Hermitian Metrics

Riemannian Geometry is a multidimensional generalization of the intrinsic geometry of 2 D surfaces in the Euclidean space \mathbb{E}^{3}. It studies real smooth manifolds equipped with Riemannian metrics, i.e., collections of positive-definite symmetric bilinear forms $\left(\left(g_{i j}\right)\right)$ on their tangent spaces which vary smoothly from point to point. The geometry of such (Riemannian) manifolds is based on the line element $d s^{2}=\sum_{i, j} g_{i j} d x_{i} d x_{j}$. This gives, in particular, local notions of angle, length of curve, and volume.

From these notions some other global quantities can be derived, by integrating local contributions. Thus, the value $d s$ is interpreted as the length of the vector ($d x_{1}, \ldots, d x_{n}$), and it is called the infinitesimal distance. The arc length of a curve γ is expressed by $\int_{\gamma} \sqrt{\sum_{i, j} g_{i j} d x_{i} d x_{j}}$, and then the intrinsic metric on a Riemannian manifold is defined as the infimum of lengths of curves joining two given points of the manifold.

Therefore, a Riemannian metric is not an ordinary metric, but it induces an ordinary metric, in fact, the intrinsic metric, called Riemannian distance, on any connected Riemannian manifold. A Riemannian metric is an infinitesimal form of the corresponding Riemannian distance.

As particular special cases of Riemannian Geometry, there occur Euclidean Geometry as well as the two standard types, Elliptic Geometry and Hyperbolic Geometry, of non-Euclidean Geometry. If the bilinear forms $\left(\left(g_{i j}\right)\right)$ are nondegenerate but indefinite, one obtains pseudo-Riemannian Geometry. In the case of dimension four (and signature $(1,3)$) it is the main object of the General Theory of Relativity.

If $d s=F\left(x_{1}, \ldots, x_{n}, d x_{1}, \ldots, d x_{n}\right)$, where F is a real positive-definite convex function which cannot be given as the square root of a symmetric bilinear form (as in the Riemannian case), one obtains the Finsler Geometry generalizing Riemannian Geometry.

Hermitian Geometry studies complex manifolds equipped with Hermitian metrics, i.e., collections of positive-definite symmetric sesquilinear forms (or $\frac{3}{2}$-linear forms) since they are linear in one argument and antilinear in the other) on their tangent spaces, which vary smoothly from point to point. It is a complex analog of Riemannian Geometry.

A special class of Hermitian metrics form Kähler metrics which have a closed fundamental form w. A generalization of Hermitian metrics give complex Finsler metrics which cannot be written as a bilinear symmetric positive-definite sesqulinear form.

7.1 Riemannian Metrics and Generalizations

A real n-manifold M^{n} with boundary is (cf. Chap. 2) a Hausdorff space in which every point has an open neighborhood homeomorphic to either an open subset of \mathbb{E}^{n}, or an open subset of the closed half of \mathbb{E}^{n}. The set of points which have an open neighborhood homeomorphic to \mathbb{E}^{n} is called the interior (of the manifold); it is always nonempty.

The complement of the interior is called the boundary (of the manifold); it is an ($n-1$)-dimensional manifold. If it is empty, one obtains a real n-manifold without boundary. Such manifold is called closed if it is compact, and open, otherwise.

An open set of M^{n} together with a homeomorphism between the open set and an open set of \mathbb{E}^{n} is called a coordinate chart. A collection of charts which cover M^{n} is an atlas on M^{n}. The homeomorphisms of two overlapping charts provide a transition mapping from a subset of \mathbb{E}^{n} to some other subset of \mathbb{E}^{n}.

If all these mappings are continuously differentiable, then M^{n} is a differentiable manifold. If they are k times (infinitely often) continuously differentiable, then the manifold is a C^{k} manifold (respectively, a smooth manifold, or C^{∞} manifold).

An atlas of a manifold is called oriented if the Jacobians of the coordinate transformations between any two charts are positive at every point. An orientable manifold is a manifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space: they are locally path-connected, locally compact, and locally metrizable. Every smooth Riemannian manifold embeds isometrically (Nash, 1956) in some finite-dimensional Euclidean space.

Associated with every point on a differentiable manifold is a tangent space and its dual, a cotangent space. Formally, let M^{n} be a C^{k} manifold, $k \geq 1$, and p a point of M^{n}. Fix a chart $\varphi: U \rightarrow \mathbb{E}^{n}$, where U is an open subset of M^{n} containing p. Suppose that two curves $\gamma^{1}:(-1,1) \rightarrow M^{n}$ and $\gamma^{2}:(-1,1) \rightarrow M^{n}$ with $\gamma^{1}(0)=$ $\gamma^{2}(0)=p$ are given such that $\varphi \cdot \gamma^{1}$ and $\varphi \cdot \gamma^{2}$ are both differentiable at 0 .

Then γ^{1} and γ^{2} are called tangent at 0 if $\left(\varphi \cdot \gamma^{1}\right)^{\prime}(0)=\left(\varphi \cdot \gamma^{2}\right)^{\prime}(0)$. If the functions $\varphi \cdot \gamma^{i}:(-1,1) \rightarrow \mathbb{E}^{n}, i=1,2$, are given by n real-valued component functions $\left(\varphi \cdot \gamma^{i}\right)_{1}(t), \ldots,\left(\varphi \cdot \gamma^{i}\right)_{n}(t)$, the condition above means that their Jacobians
$\left(\frac{d\left(\varphi \cdot \gamma^{i}\right)_{1}(t)}{d t}, \ldots, \frac{d\left(\varphi \cdot \gamma^{i}\right)_{n}(t)}{d t}\right)$ coincide at 0 . This is an equivalence relation, and the equivalence class $\gamma^{\prime}(0)$ of the curve γ is called a tangent vector of M^{n} at p.

The tangent space $T_{p}\left(M^{n}\right)$ of M^{n} at p is defined as the set of all tangent vectors at p. The function $(d \varphi)_{p}: T_{p}\left(M^{n}\right) \rightarrow \mathbb{E}^{n}$ defined by $(d \varphi)_{p}\left(\gamma^{\prime}(0)\right)=(\varphi \cdot \gamma)^{\prime}(0)$, is bijective and can be used to transfer the vector space operations from \mathbb{E}^{n} over to $T_{p}\left(M^{n}\right)$.

All the tangent spaces $T_{p}\left(M^{n}\right), p \in M^{n}$, when "glued together", form the tangent bundle $T\left(M^{n}\right)$ of M^{n}. Any element of $T\left(M^{n}\right)$ is a pair (p, v), where $v \in T_{p}\left(M^{n}\right)$.

If for an open neighborhood U of p the function $\varphi: U \rightarrow \mathbb{R}^{n}$ is a coordinate chart, then the preimage V of U in $T\left(M^{n}\right)$ admits a mapping $\psi: V \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ defined by $\psi(p, v)=(\varphi(p), d \varphi(p))$. It defines the structure of a smooth $2 n$ dimensional manifold on $T\left(M^{n}\right)$. The cotangent bundle $T^{*}\left(M^{n}\right)$ of M^{n} is obtained in similar manner using cotangent spaces $T_{p}^{*}\left(M^{n}\right), p \in M^{n}$.

A vector field on a manifold M^{n} is a section of its tangent bundle $T\left(M^{n}\right)$, i.e., a smooth function $f: M^{n} \rightarrow T\left(M^{n}\right)$ which assigns to every point $p \in M^{n}$ a vector $v \in T_{p}\left(M^{n}\right)$.

A connection (or covariant derivative) is a way of specifying a derivative of a vector field along another vector field on a manifold.

Formally, the covariant derivative ∇ of a vector u (defined at a point $p \in M^{n}$) in the direction of the vector v (defined at the same point p) is a rule that defines a third vector at p, called $\nabla_{v} u$ which has the properties of a derivative. A Riemannian metric uniquely defines a special covariant derivative called the Levi-Civita connection. It is the torsion-free connection ∇ of the tangent bundle, preserving the given Riemannian metric.

The Riemann curvature tensor R is the standard way to express the curvature of Riemannian manifolds. The Riemann curvature tensor can be given in terms of the Levi-Civita connection ∇ by the following formula:

$$
R(u, v) w=\nabla_{u} \nabla_{v} w-\nabla_{v} \nabla_{u} w-\nabla_{[u, v]} w,
$$

where $R(u, v)$ is a linear transformation of the tangent space of the manifold M^{n}; it is linear in each argument. If $u=\frac{\partial}{\partial x_{i}}$ and $v=\frac{\partial}{\partial x_{j}}$ are coordinate vector fields, then $[u, v]=0$, and the formula simplifies to $R(u, v) w=\nabla_{u} \nabla_{v} w-\nabla_{v} \nabla_{u} w$, i.e., the curvature tensor measures anti-commutativity of the covariant derivative. The linear transformation $w \rightarrow R(u, v) w$ is also called the curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the trace of the full curvature tensor R. It can be thought of as a Laplacian of the Riemannian metric tensor in the case of Riemannian manifolds. Ricci curvature is a linear operator on the tangent space at a point. Given an orthonormal basis $\left(e_{i}\right)_{i}$ in the tangent space $T_{p}\left(M^{n}\right)$, we have

$$
\operatorname{Ric}(u)=\sum_{i} R\left(u, e_{i}\right) e_{i} .
$$

The value of $\operatorname{Ric}(u)$ does not depend on the choice of an orthonormal basis. Starting with dimension four, the Ricci curvature does not describe the curvature tensor completely.

The Ricci scalar (or scalar curvature) $S c$ of a Riemannian manifold M^{n} is the full trace of the curvature tensor; given an orthonormal basis $\left(e_{i}\right)_{i}$ at $p \in M^{n}$, we have

$$
S c=\sum_{i, j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right\rangle=\sum_{i}\left\langle R i c\left(e_{i}\right), e_{i}\right\rangle
$$

The sectional curvature $K(\sigma)$ of a Riemannian manifold M^{n} is defined as the Gauss curvature of an σ-section at a point $p \in M^{n}$, where a σ-section is a locallydefined piece of surface which has the 2-plane σ as a tangent plane at p, obtained from geodesics which start at p in the directions of the image of σ under the exponential mapping.

- Metric tensor

The metric (or basic, fundamental) tensor is a symmetric tensor of rank 2, that is used to measure distances and angles in a real n-dimensional differentiable manifold M^{n}. Once a local coordinate system $\left(x_{i}\right)_{i}$ is chosen, the metric tensor appears as a real symmetric $n \times n$ matrix $\left(\left(g_{i j}\right)\right)$.
The assignment of a metric tensor on M^{n} introduces a scalar product (i.e., symmetric bilinear, but in general not positive-definite, form) \langle,\rangle_{p} on the tangent space $T_{p}\left(M^{n}\right)$ at any $p \in M^{n}$ defined by

$$
\langle x, y\rangle_{p}=g_{p}(x, y)=\sum_{i, j} g_{i j}(p) x_{i} y_{j}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in T_{p}\left(M^{n}\right)$. The collection of all these scalar products is called the metric g with the metric tensor $\left(\left(g_{i j}\right)\right)$. The length $d s$ of the vector $\left(d x_{1}, \ldots, d x_{n}\right)$ is expressed by the quadratic differential form

$$
d s^{2}=\sum_{i, j} g_{i j} d x_{i} d x_{j}
$$

which is called the line element (or first fundamental form) of the metric g. The length of a curve γ is expressed by the formula $\int_{\gamma} \sqrt{\sum_{i, j} g_{i j} d x_{i} d x_{j}}$. In general it may be real, purely imaginary, or zero (an isotropic curve).
Let p, q and r be the numbers of positive, negative and zero eigenvalues of the matrix $\left(\left(g_{i j}\right)\right)$ of the metric g; so, $p+q+r=n$. The metric signature (or, simply, signature) of g is the pair (p, q). A nondegenerated metric (i.e., one with $r=0$) is Riemannian or pseudo-Riemannian if its signature is positivedefinite $(q=0)$ or indefinite ($p q>0$), respectively.
The nonmetricity tensor is the covariant derivative of a metric tensor. It is 0 for Riemannian metrics but can be $\neq 0$ for pseudo-Riemannian ones.

- Nondegenerate metric

A nondegenerate metric is a metric g with the metric tensor $\left(\left(g_{i j}\right)\right)$, for which the metric discriminant $\operatorname{det}\left(\left(g_{i j}\right)\right) \neq 0$. All Riemannian and pseudo-Riemannian metrics are nondegenerate.
A degenerate metric is a metric g with $\operatorname{det}\left(\left(g_{i j}\right)\right)=0$ (cf. semi-Riemannian metric and semi-pseudo-Riemannian metric). A manifold with a degenerate metric is called an isotropic manifold.

- Diagonal metric

A diagonal metric is a metric g with a metric tensor $\left(\left(g_{i j}\right)\right)$ which is zero for $i \neq j$. The Euclidean metric is a diagonal metric, as its metric tensor has the form $g_{i i}=1, g_{i j}=0$ for $i \neq j$.

- Riemannian metric

Consider a real n-dimensional differentiable manifold M^{n} in which each tangent space is equipped with an inner product (i.e., a symmetric positive-definite bilinear form) which varies smoothly from point to point.
A Riemannian metric on M^{n} is a collection of inner products \langle,\rangle_{p} on the tangent spaces $T_{p}\left(M^{n}\right)$, one for each $p \in M^{n}$.
Every inner product \langle,\rangle_{p} is completely defined by inner products $\left\langle e_{i}, e_{j}\right\rangle_{p}=$ $g_{i j}(p)$ of elements e_{1}, \ldots, e_{n} of a standard basis in \mathbb{E}^{n}, i.e., by the real symmetric and positive-definite $n \times n$ matrix $\left(\left(g_{i j}\right)\right)=\left(\left(g_{i j}(p)\right)\right)$, called a metric tensor. In fact, $\langle x, y\rangle_{p}=\sum_{i, j} g_{i j}(p) x_{i} y_{j}$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right) \in T_{p}\left(M^{n}\right)$. The smooth function g completely determines the Riemannian metric.
A Riemannian metric on M^{n} is not an ordinary metric on M^{n}. However, for a connected manifold M^{n}, every Riemannian metric on M^{n} induces an ordinary metric on M^{n}, in fact, the intrinsic metric of M^{n},
For any points $p, q \in M^{n}$ the Riemannian distance between them is defined as

$$
\inf _{\gamma} \int_{0}^{1}\left\langle\frac{d \gamma}{d t}, \frac{d \gamma}{d t}\right\rangle^{\frac{1}{2}} d t=\inf _{\gamma} \int_{0}^{1} \sqrt{\sum_{i, j} g_{i j} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}} d t,
$$

where the infimum is over all rectifiable curves $\gamma:[0,1] \rightarrow M^{n}$, connecting p and q.
A Riemannian manifold (or Riemannian space) is a real n-dimensional differentiable manifold M^{n} equipped with a Riemannian metric. The theory of Riemannian spaces is called Riemannian Geometry. The simplest examples of Riemannian spaces are Euclidean spaces, hyperbolic spaces, and elliptic spaces.

- Conformal metric

A conformal structure on a vector space V is a class of pairwise-homothetic Euclidean metrics on V. Any Euclidean metric d_{E} on V defines a conformal structure $\left\{\lambda d_{E}: \lambda>0\right\}$.

A conformal structure on a manifold is a field of conformal structures on the tangent spaces or, equivalently, a class of conformally equivalent Riemannian metrics. Two Riemannian metrics g and h on a smooth manifold M^{n} are called conformally equivalent if $g=f \cdot h$ for some positive function f on M^{n}, called a conformal factor.
A conformal metric is a Riemannian metric that represents the conformal structure. Cf. conformally invariant metric in Chap. 8.

- Conformal space

The conformal space (or inversive space) is the Euclidean space \mathbb{E}^{n} extended by an ideal point (at infinity). Under conformal transformations, i.e., continuous transformations preserving local angles, the ideal point can be taken to be an ordinary point. Therefore, in a conformal space a sphere is indistinguishable from a plane: a plane is a sphere passing through the ideal point.
Conformal spaces are considered in Conformal (or angle-preserving, Möbius) Geometry in which properties of figures are studied that are invariant under conformal transformations. It is the set of transformations that map spheres into spheres, i.e., generated by the Euclidean transformations together with inversions which in coordinate form are conjugate to $x_{i} \rightarrow \frac{r^{2} x_{i}}{\sum_{j} x_{j}^{2}}$, where r is the radius of the inversion. An inversion in a sphere becomes an everywhere well defined automorphism of period two. Any angle inverts into an equal angle.
The 2D conformal space is the Riemann sphere, on which the conformal transformations are given by the Möbius transformations $z \rightarrow \frac{a z+b}{c z+d}, a d-b c \neq 0$. In general, a conformal mapping between two Riemannian manifolds is a diffeomorphism between them such that the pulled back metric is conformally equivalent to the original one. A conformal Euclidean space is a Riemannian space admitting a conformal mapping onto an Euclidean space.
In the General Theory of Relativity, conformal transformations are considered on the Minkowski space $\mathbb{R}^{1,3}$ extended by two ideal points.

- Space of constant curvature

A space of constant curvature is a Riemannian space M^{n} for which the sectional curvature $K(\sigma)$ is constant in all 2D directions σ.
A space form is a connected complete space of constant curvature k. Examples of a flat space form, i.e., with $k=0$, are the Euclidean space and flat torus. The sphere and hyperbolic space are space forms with $k>0$ and $k<0$, respectively.

- Generalized Riemannian space

A generalized Riemannian space is a metric space with the intrinsic metric, subject to certain restrictions on the curvature. Such spaces include spaces of bounded curvature, Riemannian spaces, etc. They are defined and investigated on the basis of their metric alone, without coordinates.
A space of bounded curvature ($\leq k$ and $\geq k^{\prime}$) is defined by the condition: for any sequence of geodesic triangles T_{n} contracting to a point, we have

$$
k \geq \overline{\lim } \frac{\bar{\delta}\left(T_{n}\right)}{\sigma\left(T_{n}^{0}\right)} \geq \underline{\lim } \frac{\bar{\delta}\left(T_{n}\right)}{\sigma\left(T_{n}^{0}\right)} \geq k^{\prime}
$$

where a geodesic triangle $T=x y z$ is the triplet of geodesic segments $[x, y]$, $[y, z],[z, x]$ (the sides of T) connecting in pairs three different points x, y, z, $\bar{\delta}(T)=\alpha+\beta+\gamma-\pi$ is the excess of the geodesic triangle T, and $\sigma\left(T^{0}\right)$ is the area of a Euclidean triangle T^{0} with the sides of the same lengths. The intrinsic metric on the space of bounded curvature is called a metric of bounded curvature.
Such a space turns out to be Riemannian under two additional conditions: local compactness of the space (this ensures the condition of local existence of geodesics), and local extendability of geodesics. If in this case $k=k^{\prime}$, it is a Riemannian space of constant curvature k (cf. space of geodesics in Chap. 6). A space of curvature $\leq k$ is defined by the condition $\overline{\lim } \frac{\bar{\delta}\left(T_{n}\right)}{\sigma\left(T_{n}^{0}\right)} \leq k$. In such a space any point has a neighborhood in which the sum $\alpha+\beta+\gamma$ of the angles of a geodesic triangle T does not exceed the sum $\alpha_{k}+\beta_{k}+\gamma_{k}$ of the angles of a triangle T^{k} with sides of the same lengths in a space of constant curvature k. The intrinsic metric of such space is called a k-concave metric.
A space of curvature $\geq k$ is defined by the condition $\underline{\lim \frac{\bar{\delta}\left(T_{n}\right)}{\sigma\left(T_{n}^{0}\right)} \geq k \text {. In such a }}$ space any point has a neighborhood in which $\alpha+\beta+\gamma \geq \alpha_{k}+\beta_{k}+\gamma_{k}$ for triangles T and T^{k}. The intrinsic metric of such space is called a K-concave metric.
An Alexandrov metric space is a generalized Riemannian space with upper, lower or integral curvature bounds. Cf. a CAT $\left(\kappa_{1}\right)$ space in Chap. 6.

- Complete Riemannian metric

A Riemannian metric g on a manifold M^{n} is called complete if M^{n} forms a complete metric space with respect to g.
Any Riemannian metric on a compact manifold is complete.

- Ricci-flat metric

A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature tensor.
A Ricci-flat manifold is a Riemannian manifold equipped with a Ricci-flat metric. Ricci-flat manifolds represent vacuum solutions to the Einstein field equation, and are special cases of Kähler-Einstein manifolds. Important Ricciflat manifolds are Calabi-Yau manifolds, and hyper-Kähler manifolds.

- Osserman metric

An Osserman metric is a Riemannian metric for which the Riemannian curvature tensor R is Osserman, i.e., the eigenvalues of the Jacobi operator $\mathcal{J}(x): y \rightarrow R(y, x) x$ are constant on the unit sphere S^{n-1} in \mathbb{E}^{n} (they are independent of the unit vectors x).

- G-invariant Riemannian metric

Given a Lie group ($G, \cdot, i d$) of transformations, a Riemannian metric g on a differentiable manifold M^{n} is called G-invariant, if it does not change under any $x \in G$. The group ($G, \cdot, i d$) is called the group of motions (or group of isometries) of the Riemannian space (M^{n}, g). Cf. G-invariant metric in Chap. 10.

- Ivanov-Petrova metric

Let R be the Riemannian curvature tensor of a Riemannian manifold M^{n}, and let $\{x, y\}$ be an orthogonal basis for an oriented 2-plane π in the tangent space $T_{p}\left(M^{n}\right)$ at a point p of M^{n}.
The Ivanov-Petrova metric is a Riemannian metric on M^{n} for which the eigenvalues of the antisymmetric curvature operator $\mathcal{R}(\pi)=R(x, y)$ [IvSt95] depend only on the point p of a Riemannian manifold M^{n}, but not upon the plane π.

- Zoll metric

A Zoll metric is a Riemannian metric on a smooth manifold M^{n} whose geodesics are all simple closed curves of an equal length. A 2D sphere S^{2} admits many such metrics, besides the obvious metrics of constant curvature. In terms of cylindrical coordinates $(z, \theta)(z \in[-1,1], \theta \in[0,2 \pi])$, the line element

$$
d s^{2}=\frac{(1+f(z))^{2}}{1-z^{2}} d z^{2}+\left(1-z^{2}\right) d \theta^{2}
$$

defines a Zoll metric on S^{2} for any smooth odd function $f:[-1,1] \rightarrow(-1,1)$ which vanishes at the endpoints of the interval.

- Berger metric

The Berger metric is a Riemannian metric on the Berger sphere (i.e., the threesphere S^{3} squashed in one direction) defined by the line element

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\cos ^{2} \alpha(d \psi+\cos \theta d \phi)^{2}
$$

where α is a constant, and θ, ϕ, ψ are Euler angles.

- Cycloidal metric

The cycloidal metric is a Riemannian metric on the half-plane $\mathbb{R}_{+}^{2}=\left\{x \in \mathbb{R}^{2}\right.$: $\left.x_{2}>0\right\}$ defined by the line element

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}}{2 x_{2}}
$$

It is called cycloidal because its geodesics are cycloid curves. The corresponding distance $d(x, y)$ between two points $x, y \in \mathbb{R}_{+}^{2}$ is equivalent to the distance

$$
\rho(x, y)=\frac{\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|}{\sqrt{x_{1}}+\sqrt{x_{2}}+\sqrt{\left|x_{2}-y_{2}\right|}}
$$

in the sense that $d \leq C \rho$, and $\rho \leq C d$ for some positive constant C.

- Klein metric

The Klein metric is a Riemannian metric on the open unit ball $B^{n}=\left\{x \in \mathbb{R}^{n}\right.$: $\left.\|x\|_{2}<1\right\}$ in \mathbb{R}^{n} defined by

$$
\frac{\sqrt{\|y\|_{2}^{2}-\left(\|x\|_{2}^{2}\|y\|_{2}^{2}-\langle x, y\rangle^{2}\right)}}{1-\|x\|_{2}^{2}}
$$

for any $x \in B^{n}$ and $y \in T_{x}\left(B^{n}\right)$, where $\|.\|_{2}$ is the Euclidean norm on \mathbb{R}^{n}, and \langle,$\rangle is the ordinary inner product on \mathbb{R}^{n}$.
The Klein metric is the hyperbolic case $a=-1$ of the general form

$$
\frac{\sqrt{\left(1+a\|x\|^{2}\right)\|y\|^{2}-a\langle x, y\rangle^{2}}}{1+a\|x\|^{2}}
$$

while $a=0,1$ correspond to the Euclidean and spherical cases.

- Carnot-Carathéodory metric

A distribution (or polarization) on a manifold M^{n} is a subbundle of the tangent bundle $T\left(M^{n}\right)$ of M^{n}. Given a distribution $H\left(M^{n}\right)$, a vector field in $H\left(M^{n}\right)$ is called horizontal. A curve γ on M^{n} is called horizontal (or distinguished, admissible) with respect to $H\left(M^{n}\right)$ if $\gamma^{\prime}(t) \in H_{\gamma(t)}\left(M^{n}\right)$ for any t.
A distribution $H\left(M^{n}\right)$ is called completely nonintegrable if the Lie brackets of $H\left(M^{n}\right)$, i.e., $\left[\cdots,\left[H\left(M^{n}\right), H\left(M^{n}\right)\right]\right]$, span the tangent bundle $T\left(M^{n}\right)$, i.e., for all $p \in M^{n}$ any tangent vector v from $T_{p}\left(M^{n}\right)$ can be presented as a linear combination of vectors of the following types: $u,[u, w],[u,[w, t]]$, $[u,[w,[t, s]]], \cdots \in T_{p}\left(M^{n}\right)$, where all vector fields u, w, t, s, \ldots are horizontal.
The Carnot-Carathéodory metric (or CC metric, sub-Riemannian metric, control metric) is a metric on a manifold M^{n} with a completely nonintegrable horizontal distribution $H\left(M^{n}\right)$ defined as the section g_{C} of positive-definite scalar products on $H\left(M^{n}\right)$. The distance $d_{C}(p, q)$ between any points $p, q \in$ M^{n} is defined as the infimum of the g_{C}-lengths of the horizontal curves joining p and q.
A sub-Riemannian manifold (or polarized manifold) is a manifold M^{n} equipped with a Carnot-Carathéodory metric. It is a generalization of a Riemannian manifold. Roughly, in order to measure distances in a sub-Riemannian manifold, one is allowed to go only along curves tangent to horizontal spaces.

- Pseudo-Riemannian metric

Consider a real n-dimensional differentiable manifold M^{n} in which every tangent space $T_{p}\left(M^{n}\right), p \in M^{n}$, is equipped with a scalar product which varies smoothly from point to point and is nondegenerate, but indefinite.
A pseudo-Riemannian metric on M^{n} is a collection of scalar products \langle,\rangle_{p} on the tangent spaces $T_{p}\left(M^{n}\right), p \in M^{n}$, one for each $p \in M^{n}$.
Every scalar product \langle,\rangle_{p} is completely defined by scalar products $\left\langle e_{i}, e_{j}\right\rangle_{p}=$ $g_{i j}(p)$ of elements e_{1}, \ldots, e_{n} of a standard basis in \mathbb{E}^{n}, i.e., by the real symmetric indefinite $n \times n$ matrix $\left(\left(g_{i j}\right)\right)=\left(\left(g_{i j}(p)\right)\right)$, called a metric tensor
(cf. Riemannian metric in which case this tensor is not only nondegenerate but, moreover, positive-definite).
In fact, $\langle x, y\rangle_{p}=\sum_{i, j} g_{i j}(p) x_{i} y_{j}$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right) \in T_{p}\left(M^{n}\right)$. The smooth function g determines the pseudoRiemannian metric.
The length $d s$ of the vector $\left(d x_{1}, \ldots, d x_{n}\right)$ is given by the quadratic differential form

$$
d s^{2}=\sum_{i, j} g_{i j} d x_{i} d x_{j}
$$

The length of a curve $\gamma:[0,1] \rightarrow M^{n}$ is expressed by the formula

$$
\int_{\gamma} \sqrt{\sum_{i, j} g_{i j} d x_{i} d x_{j}}=\int_{0}^{1} \sqrt{\sum_{i, j} g_{i j} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}} d t
$$

In general it may be real, purely imaginary or zero (an isotropic curve).
A pseudo-Riemannian metric on M^{n} is a metric with a fixed, but indefinite signature $(p, q), p+q=n$. A pseudo-Riemannian metric is nondegenerate, i.e., its metric discriminant $\operatorname{det}\left(\left(g_{i j}\right)\right) \neq 0$. Therefore, it is a nondegenerate indefinite metric.
A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a real n-dimensional differentiable manifold M^{n} equipped with a pseudo-Riemannian metric. The theory of pseudo-Riemannian spaces is called Pseudo-Riemannian Geometry.

- Pseudo-Euclidean distance

The model space of a pseudo-Riemannian space of signature (p, q) is the pseudo-Euclidean space $\mathbb{R}^{p, q}, p+q=n$ which is a real n-dimensional vector space \mathbb{R}^{n} equipped with the metric tensor $\left(\left(g_{i j}\right)\right)$ of signature (p, q) defined, for $i \neq j$, by $g_{11}=\cdots=g_{p p}=1, g_{p+1, p+1}=\cdots=g_{n n}=-1, g_{i j}=0$.
The line element of the corresponding metric is given by

$$
d s^{2}=d x_{1}^{2}+\cdots+d x_{p}^{2}-d x_{p+1}^{2}-\cdots-d x_{n}^{2}
$$

The pseudo-Euclidean distance of signature $(p, q=n-p)$ on \mathbb{R}^{n} is defined by

$$
d_{p E}^{2}(x, y)=D(x, y)=\sum_{i=1}^{p}\left(x_{i}-y_{i}\right)^{2}-\sum_{i=p+1}^{n}\left(x_{i}-y_{i}\right)^{2}
$$

Such a pseudo-Euclidean space can be seen as $\mathbb{R}^{p} \times i \mathbb{R}^{q}$, where $i=\sqrt{-1}$. The pseudo-Euclidean space with $(p, q)=(1,3)$ is used as flat space-time model of Special Relativity; cf. Minkowski metric in Chap. 26.

The points correspond to events; the line spanned by x and y is space-like if $D(x, y)>0$ and time-like if $D(x, y)<0$. If $D(x, y)>0$, then $\sqrt{D(x, y)}$ is Euclidean distance and if $D(x, y)<0$, then $\sqrt{|D(x, y)|}$ is the lifetime of a particle (from x to y).

The pseudo-Euclidean distance of signature $(p, q=n-p)$ is the case $A=$ $\operatorname{diag}\left(a_{i}\right)$ with $a_{i}=1$ for $1 \leq i \leq p$ and $a_{i}=-1$ for $p+1 \leq i \leq n$, of the weighted Euclidean distance $\sqrt{\sum_{1 \leq i \leq n} a_{i}\left(x_{i}-y_{i}\right)^{2}}$ in Chap. 17.

- Blaschke metric

The Blaschke metric on a nondegenerate hypersurface is a pseudo-Riemannian metric, associated to the affine normal of the immersion $\phi: M^{n} \rightarrow \mathbb{R}^{n+1}$, where M^{n} is an n-dimensional manifold, and \mathbb{R}^{n+1} is considered as an affine space.

- Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable manifold M^{n} is a degenerate Riemannian metric, i.e., a collection of positive-semidefinite scalar products $\langle x, y\rangle_{p}=\sum_{i, j} g_{i j}(p) x_{i} y_{j}$ on the tangent spaces $T_{p}\left(M^{n}\right)$, $p \in M^{n}$; the metric discriminant $\operatorname{det}\left(\left(g_{i j}\right)\right)=0$.
A semi-Riemannian manifold (or semi-Riemannian space) is a real n-dimensional differentiable manifold M^{n} equipped with a semi-Riemannian metric.
The model space of a semi-Riemannian manifold is the semi-Euclidean space $R_{d}^{n}, d \geq 1$ (sometimes denoted also by \mathbb{R}_{n-d}^{n}), i.e., a real n-dimensional vector space \mathbb{R}^{n} equipped with a semi-Riemannian metric.
It means that there exists a scalar product of vectors such that, relative to a suitably chosen basis, the scalar product $\langle x, x\rangle$ has the form $\langle x, x\rangle=\sum_{i=1}^{n-d} x_{i}^{2}$. The number $d \geq 1$ is called the defect (or deficiency) of the space.

- Grushin metric

The Grushin metric is a semi-Riemannian metric on \mathbb{R}^{2} defined by the line element

$$
d s^{2}=d x_{1}^{2}+\frac{d x_{2}^{2}}{x_{1}^{2}}
$$

- Agmon distance

The Agmon metric attached to an energy E and a potential V is defined as

$$
d s^{2}=\max \left\{0, V(x)-E_{0}(h)\right\} d x^{2}
$$

where $d x^{2}$ is the standard metric on \mathbb{R}^{d}. Then the Agmon distance on \mathbb{R}^{d} is the corresponding Riemannian distance defined, for any $x, y \in \mathbb{R}^{d}$, by

$$
\inf _{\gamma}\left\{\int_{0}^{1} \sqrt{\max \left\{V(\gamma(s))-E_{0}(h), 0\right\}} \cdot\left|\gamma^{\prime}(s)\right| d s: \gamma(0)=x, \gamma(1)=y, \gamma \in C^{1}\right\} .
$$

- Semi-pseudo-Riemannian metric

A semi-pseudo-Riemannian metric on a real n-dimensional differentiable manifold M^{n} is a degenerate pseudo-Riemannian metric, i.e., a collection of degenerate indefinite scalar products $\langle x, y\rangle_{p}=\sum_{i, j} g_{i j}(p) x_{i} y_{j}$ on the tangent spaces $T_{p}\left(M^{n}\right), p \in M^{n}$; the metric discriminant $\operatorname{det}\left(\left(g_{i j}\right)\right)=0$. In fact, a semi-pseudo-Riemannian metric is a degenerate indefinite metric.
A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian space) is a real n-dimensional differentiable manifold M^{n} equipped with a semi-pseudoRiemannian metric. The model space of such manifold is the semi-pseudoEuclidean space $\mathbb{R}_{l_{1} \ldots, l_{r}}^{n}$, , i.e., a vector space \mathbb{R}^{n} equipped with a semi-pseudoRiemannian metric.
It means that there exist r scalar products $\langle x, y\rangle_{a}=\sum \epsilon_{i_{a}} x_{i_{a}} y_{i_{a}}$, where $a=1, \ldots r, 0=m_{0}<m_{1}<\cdots<m_{r}=n, i_{a}=m_{a-1}+1, \ldots m_{a}$, $\epsilon_{i_{a}}= \pm 1$, and -1 occurs l_{a} times among the numbers $\epsilon_{i_{a}}$. The product $\langle x, y\rangle_{a}$ is defined for those vectors for which all coordinates $x_{i}, i \leq m_{a-1}$ or $i>m_{a}+1$ are zero.
The first scalar square of an arbitrary vector x is a degenerate quadratic form $\langle x, x\rangle_{1}=-\sum_{i=1}^{l_{1}} x_{i}^{2}+\sum_{j=l_{1}+1}^{n-d} x_{j}^{2}$. The number $l_{1} \geq 0$ is called the index, and the number $d=n-m_{1}$ is called the defect of the space. If $l_{1}=\cdots=l_{r}=0$, we obtain a semi-Euclidean space. The spaces \mathbb{R}_{m}^{n} and $\mathbb{R}_{\substack{k, l \\ m}}^{n}$ are called quasiEuclidean spaces.
The semi-pseudo-non-Euclidean space $\mathbb{S}_{l_{1}, \ldots, l_{r}}^{n}$ in $l_{1}, \ldots m_{r-1}$ a hypersphere in $\mathbb{R}_{l_{1}, \ldots, l_{r}}^{n+1}$ with identified antipodal points. It is called semielliptic (or semi-non-Euclidean) space if $l_{1}=\cdots=l_{r}=0$ and a semihyperbolic space if there exist $l_{i} \neq 0$.

- Finsler metric

Consider a real n-dimensional differentiable manifold M^{n} in which every tangent space $T_{p}\left(M^{n}\right), p \in M^{n}$, is equipped with a Banach norm $\|$.$\| such that the$ Banach norm as a function of position is smooth, and the matrix $\left(\left(g_{i j}\right)\right)$,

$$
g_{i j}=g_{i j}(p, x)=\frac{1}{2} \frac{\partial^{2}\|x\|^{2}}{\partial x_{i} \partial x_{j}},
$$

is positive-definite for any $p \in M^{n}$ and any $x \in T_{p}\left(M^{n}\right)$.
A Finsler metric on M^{n} is a collection of Banach norms $\|$.$\| on the tangent$ spaces $T_{p}\left(M^{n}\right)$, one for each $p \in M^{n}$. Its line element has the form

$$
d s^{2}=\sum_{i, j} g_{i j} d x_{i} d x_{j}
$$

The Finsler metric can be given by fundamental function, i.e., a real positivedefinite convex function $F(p, x)$ of $p \in M^{n}$ and $x \in T_{p}\left(M^{n}\right)$ acting at the point $p . F(p, x)$ is positively homogeneous of degree one in $x: F(p, \lambda x)=$ $\lambda F(p, x)$ for every $\lambda>0$. Then $F(p, x)$ is the length of the vector x.

The Finsler metric tensor has the form $\left(\left(g_{i j}\right)\right)=\left(\left(\frac{1}{2} \frac{\partial^{2} F^{2}(p, x)}{\partial x_{i} \partial x_{j}}\right)\right)$. The length of a curve $\gamma:[0,1] \rightarrow M^{n}$ is given by $\int_{0}^{1} F\left(p, \frac{d p}{d t}\right) d t$. For each fixed p the Finsler metric tensor is Riemannian in the variables x.
The Finsler metric is a generalization of the Riemannian metric, where the general definition of the length $\|x\|$ of a vector $x \in T_{p}\left(M^{n}\right)$ is not necessarily given in the form of the square root of a symmetric bilinear form as in the Riemannian case.
A Finsler manifold (or Finsler space) is a real differentiable n-manifold M^{n} equipped with a Finsler metric. The theory of such spaces is Finsler Geometry. The difference between a Riemannian space and a Finsler space is that the former behaves locally like a Euclidean space, and the latter locally like a Minkowskian space or, analytically, the difference is that to an ellipsoid in the Riemannian case there corresponds an arbitrary convex surface which has the origin as the center.
A pseudo-Finsler metric F is defined by weakening the definition of a Finsler metric): $\left(\left(g_{i j}\right)\right)$ should be nondegenerate and of constant signature (not necessarily positive-definite) and hence F could be negative. The pseudo-Finsler metric is a generalization of the pseudo-Riemannian metric.

- (α, β)-metric

Let $\alpha(x, y)=\sqrt{\alpha_{i j}(x) y^{i} y^{j}}$ be a Riemannian metric and $\beta(x, y)=b_{i}(x) y^{i}$ be a 1 -form on a n-dimensional manifold M^{n}. Let $s=\frac{\beta}{\alpha}$ and $\phi(s)$ is an C^{∞} positive function on some symmetric interval $(-r, r)$ with $r>\frac{\beta}{\alpha}$ for all (x, y) in the tangent bundle $T M=\cup_{x \in M} T_{x}\left(M^{n}\right)$ of the tangent spaces $T_{x}\left(M^{n}\right)$. Then $F=\alpha \phi(s)$ is a Finsler metric (Matsumoto, 1972) called an (α, β)-metric. The main examples of (α, β)-metrics follow.
The Kropina metric is the case $\phi(s)=\frac{1}{s}$, i.e., $F=\frac{\alpha^{2}}{\beta}$.
The generalized Kropina metric is the case $\phi(s)=s^{m}$, i.e., $F=\beta^{m} \alpha^{1-m}$.
The Randers metric (1941) is the case $\phi(s)=1+s$, i.e., $F=\alpha+\beta$.
The Matsumoto slope metric is the case $\phi(s)=\frac{1}{1-s}$, i.e., $F=\frac{\alpha^{2}}{\alpha-\beta}$.
The Riemann-type (α, β)-metric is the case $\phi(s)=\sqrt{1+s^{2}}$, i.e., $F=$ $\alpha^{2}+\beta^{2}$.
Park and Lee, 1998, considered the case $\phi(s)=1+s^{2}$, i.e., $F=\alpha+\frac{\beta^{2}}{\alpha}$.

- Shen metric

Given a vector $a \in \mathbb{R}^{n},\|a\|_{2}<1$, the Shen metric (2003) is a Finsler metric on the open unit ball $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}<1\right\}$ in \mathbb{R}^{n} defined by

$$
\frac{\sqrt{\|y\|_{2}^{2}-\left(\|x\|_{2}^{2}\|y\|_{2}^{2}-\langle x, y\rangle^{2}\right)}+\langle x, y\rangle}{1-\|x\|_{2}^{2}}+\frac{\langle a, y\rangle}{1+\langle a, x\rangle}
$$

for any $x \in B^{n}$ and $y \in T_{x}\left(B^{n}\right)$, where $\|.\|_{2}$ is the Euclidean norm on \mathbb{R}^{n}, and \langle,$\rangle is the ordinary inner product on \mathbb{R}^{n}$. It is a Randers metric and a projective metric. Cf. Klein metric and Berwald metric.

- Berwald metric

The Berwald metric (1929) is a Finsler metric $F_{B e}$ on the open unit ball $B^{n}=$ $\left\{x \in \mathbb{R}^{n}:\|x\|_{2}<1\right\}$ in \mathbb{R}^{n} defined, for any $x \in B^{n}$ and $y \in T_{x}\left(B^{n}\right)$, by

$$
\frac{\left(\sqrt{\|y\|_{2}^{2}-\left(\|x\|_{2}^{2}\|y\|_{2}^{2}-\langle x, y\rangle^{2}\right.}+\langle x, y\rangle\right)^{2}}{\left(1-\|x\|_{2}^{2}\right)^{2} \sqrt{\|y\|_{2}^{2}-\left(\|x\|_{2}^{2}\|y\|_{2}^{2}-\langle x, y\rangle^{2}\right)}}
$$

where $\|.\|_{2}$ is the Euclidean norm on \mathbb{R}^{n}, and \langle,$\rangle is the inner product on \mathbb{R}^{n}$. It is a projective metric and an (α, β)-metric with $\phi(s)=(1+s)^{2}$, i.e., $F=\frac{(\alpha+\beta)^{2}}{\alpha}$. The Riemannian metrics are special Berwald metrics. Every Berwald metric is affinely equivalent to a Riemannian metric.
In general, every Finsler metric on a manifold M^{n} induces a spray (second-order homogeneous ordinary differential equation) $y_{i} \frac{\partial}{\partial x_{i}}-2 G^{i} \frac{\partial}{\partial y_{i}}$ which determines the geodesics. A Finsler metric is a Berwald metric if the spray coefficients $G^{i}=G^{i}(x, y)$ are quadratic in $y \in T_{x}\left(M^{n}\right)$ at any point $x \in M^{n}$, i.e., $G^{i}=\frac{1}{2} \Gamma_{j k}^{i}(x) y^{j} y^{k}$.
A Finsler metric is a more general Landsberg metric $\Gamma_{j k}^{i}=\frac{1}{2} \partial_{y^{j}} \partial_{y^{k}}\left(\Gamma_{j k}^{i}(x) y^{j} y^{k}\right)$. The Landsberg metric is the one for which the Landsberg curvature (the covariant derivative of the Cartan torsion along a geodesic) is zero.

- Douglas metric

A Douglas metric a Finsler metric for which the spray coefficients $G^{i}=$ $G^{i}(x, y)$ have the following form:

$$
G^{i}=\frac{1}{2} \Gamma_{j k}^{i}(x) y_{i} y_{k}+P(x, y) y_{i}
$$

Every Finsler metric which is projectively equivalent to a Berwald metric is a Douglas metric. Every Berwald metric is a Douglas metric. Every known Douglas metric is (locally) projectively equivalent to a Berwald metric.

- Bryant metric

Let α be an angle with $|\alpha|<\frac{\pi}{2}$. Let, for any $x, y \in \mathbb{R}^{n}, A=\|y\|_{2}^{4} \sin ^{2} 2 \alpha+$ $\left(\|y\|_{2}^{2} \cos 2 \alpha+\|x\|_{2}^{2}\|y\|_{2}^{2}-\langle x, y\rangle^{2}\right)^{2}, B=\|y\|_{2}^{2} \cos 2 \alpha+\|x\|_{2}^{2}\|y\|_{2}^{2}-$ $\langle x, y\rangle^{2}, C=\langle x, y\rangle \sin 2 \alpha, D=\|x\|_{2}^{4}+2\|x\|_{2}^{2} \cos 2 \alpha+1$. Then we get a Finsler metric

$$
\sqrt{\frac{\sqrt{A}+B}{2 D}+\left(\frac{C}{D}\right)^{2}}+\frac{C}{D}
$$

On the 2D unit sphere S^{2}, it is the Bryant metric (1996).

- m-th root pseudo-Finsler metric

An m-th root pseudo-Finsler metric is (Shimada, 1979) a pseudo-Finsler metric defined (with $a_{i_{1} \ldots i_{m}}$ symmetric in all its indices) by

$$
F(x, y)=\left(a_{i_{1} \ldots i_{m}}(x) y^{i_{1} \ldots i_{m}}\right)^{\frac{1}{m}}
$$

For $m=2$, it is a pseudo-Riemannian metric. The 3rd and 4th root pseudoFinsler metrics are called cubic metric and quartic metric, respectively.

- Antonelli-Shimada metric

The Antonelli-Shimada metric (or ecological Finsler metric) is an m-th root pseudo-Finsler metric defined, via linearly independent 1-forms a^{i}, by

$$
F(x, y)=\left(\sum_{i=1}^{n}\left(a^{i}\right)^{m}\right)^{\frac{1}{m}}
$$

The Uchijo metric is defined, for a constant k, by

$$
F(x, y)=\left(\sum_{i=1}^{n}\left(a^{i}\right)^{2}\right)^{\frac{1}{2}}+k a^{1} .
$$

- Berwald-Moör metric

The Berwald-Moör metric is an m-th root pseudo-Finsler metric, defined by

$$
F(x, y)=\left(y^{1} \ldots y^{n}\right)^{\frac{1}{n}}
$$

More general Asanov metric is defined, via linearly independent 1-forms a^{i}, by

$$
F(x, y)=\left(a^{1} \ldots a^{n}\right)^{\frac{1}{n}}
$$

The Berwald-Moör metrics with $n=4$ and $n=6$ are applied in Relativity Theory and Diffusion Imaging, respectively. The pseudo-Finsler spaces which are locally isomorphic to the 4th root Berwald-Moör metric, are expected to be more general and productive space-time models than usual pseudo-Riemannian spaces, which are locally isomorphic to the Minkowski metric.

- Kawaguchi metric

The Kawaguchi metric is a metric on a smooth n-dimensional manifold M^{n}, given by the arc element $d s$ of a regular curve $x=x(t), t \in\left[t_{0}, t_{1}\right]$ via the formula

$$
d s=F\left(x, \frac{d x}{d t}, \ldots, \frac{d^{k} x}{d t^{k}}\right) d t
$$

where the metric function F satisfies Zermelo's conditions: $\sum_{s=1}^{k} s x^{(s)} F_{(s) i}=F$, $\sum_{s=r}^{k}\binom{s}{k} x^{(s-r+1) i} F_{(s) i}=0, x^{(s) i}=\frac{d^{s} x^{i}}{d t^{s}}, F_{(s) i}=\frac{\partial F}{\partial x^{(s) i}}$, and $r=2, \ldots, k$.
These conditions ensure that the arc element $d s$ is independent of the parametrization of the curve $x=x(t)$.
A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold equipped with a Kawaguchi metric. It is a generalization of a Finsler manifold.

- Lagrange metric

Consider a real n-dimensional manifold M^{n}. A set of symmetric nondegenerated matrices $\left(\left(g_{i j}(p, x)\right)\right)$ define a generalized Lagrange metric on M^{n} if a change of coordinates $(p, x) \rightarrow(q, y)$, such that $q_{i}=q_{i}\left(p_{1}, \ldots, p_{n}\right), y_{i}=\left(\partial_{j} q_{i}\right) x_{j}$ and rank $\left(\partial_{j} q_{i}\right)=n$, implies $g_{i j}(p, x)=\left(\partial_{i} q_{i}\right)\left(\partial_{j} q_{j}\right) g_{i j}(q, y)$.
A generalized Lagrange metric is called a Lagrange metric if there exists a Lagrangian, i.e., a smooth function $L(p, x)$ such that it holds

$$
g_{i j}(p, x)=\frac{1}{2} \frac{\partial^{2} L(p, x)}{\partial x_{i} \partial x_{j}}
$$

Every Finsler metric is a Lagrange metric with $L=F^{2}$.

- DeWitt supermetric

The DeWitt supermetric (or Wheeler-DeWitt supermetric) $G=\left(\left(G_{i j k l}\right)\right)$ calculates distances between metrics on a given manifold, and it is a generalization of a Riemannian (or pseudo-Riemannian) metric $g=\left(\left(g_{i j}\right)\right)$.
For example, for a given connected smooth 3-dimensional manifold M^{3}, consider the space $\mathcal{M}\left(M^{3}\right)$ of all Riemannian (or pseudo-Riemannian) metrics on M^{3}. Identifying points of $\mathcal{M}\left(M^{3}\right)$ that are related by a diffeomorphism of M^{3}, one obtains the space $\operatorname{Geom}\left(M^{3}\right)$ of 3-geometries (of fixed topology), points of which are the classes of diffeomorphically equivalent metrics. The space $\operatorname{Geom}\left(M^{3}\right)$ is called a superspace. It plays an important role in several formulations of Quantum Gravity.
A supermetric, i.e., a "metric on metrics", is a metric on $\mathcal{M}\left(M^{3}\right)$ (or on $\operatorname{Geom}\left(M^{3}\right)$) which is used for measuring distances between metrics on M^{3} (or between their equivalence classes). Given $g=\left(\left(g_{i j}\right)\right) \in \mathcal{M}\left(M^{3}\right)$, we obtain

$$
\|\delta g\|^{2}=\int_{M^{3}} d^{3} x G^{i j k l}(x) \delta g_{i j}(x) \delta g_{k l}(x),
$$

where $G^{i j k l}$ is the inverse of the DeWitt supermetric

$$
G_{i j k l}=\frac{1}{2 \sqrt{\operatorname{det}\left(\left(g_{i j}\right)\right)}}\left(g_{i k} g_{j l}+g_{i l} g_{j k}-\lambda g_{i j} g_{k l}\right)
$$

The value λ parametrizes the distance between metrics in $\mathcal{M}\left(M^{3}\right)$, and may take any real value except $\lambda=\frac{2}{3}$, for which the supermetric is singular.

- Lund-Regge supermetric

The Lund-Regge supermetric (or simplicial supermetric) is an analog of the DeWitt supermetric, used to measure the distances between simplicial 3-geometries in a simplicial configuration space.
More exactly, given a closed simplicial 3D manifold M^{3} consisting of several tetrahedra (i.e., 3-simplices), a simplicial geometry on M^{3} is fixed by an assignment of values to the squared edge lengths of M^{3}, and a flat Riemannian Geometry to the interior of each tetrahedron consistent with those values.
The squared edge lengths should be positive and constrained by the triangle inequalities and their analogs for the tetrahedra, i.e., all squared measures (lengths, areas, volumes) must be nonnegative (cf. tetrahedron inequality in Chap.3).
The set $\mathcal{T}\left(M^{3}\right)$ of all simplicial geometries on M^{3} is called a simplicial configuration space. The Lund-Regge supermetric $\left(\left(G_{m n}\right)\right)$ on $\mathcal{T}\left(M^{3}\right)$ is induced from the DeWitt supermetric on $\mathcal{M}\left(M^{3}\right)$, using for representations of points in $\mathcal{T}\left(M^{3}\right)$ such metrics in $\mathcal{M}\left(M^{3}\right)$ which are piecewise flat in the tetrahedra.

- Space of Lorentz metrics

Let M^{n} be an n-dimensional compact manifold, and $\mathcal{L}\left(M^{n}\right)$ the set of all
Lorentz metrics (i.e., the pseudo-Riemannian metrics of signature ($n-1,1$)) on M^{n}.
Given a Riemannian metric g on M^{n}, one can identify the vector space $S^{2}\left(M^{n}\right)$ of all symmetric 2-tensors with the vector space of endomorphisms of the tangent to M^{n} which are symmetric with respect to g. In fact, if \tilde{h} is the endomorphism associated to a tensor h, then the distance on $S^{2}\left(M^{n}\right)$ is given by

$$
d_{g}(h, t)=\sup _{x \in M^{n}} \sqrt{\operatorname{tr}\left(\tilde{h}_{x}-\tilde{t}_{x}\right)^{2}} .
$$

The set $\mathcal{L}\left(M^{n}\right)$ taken with the distance d_{g} is an open subset of $S^{2}\left(M^{n}\right)$ called the space of Lorentz metrics. Cf. manifold triangulation metric in Chap. 9.

- Perelman supermetric proof

The Thurston's Geometrization Conjecture is that, after two well-known splittings, any 3D manifold admits, as remaining components, only one of eight Thurston model geometries. If true, this conjecture implies the validity of the famous Poincaré Conjecture of 1904, that any 3-manifold, in which every simple closed curve can be deformed continuously to a point, is homeomorphic to the 3-sphere.
In 2002, Perelman gave a gapless "sketch of an eclectic proof" of Thurston's conjecture using a kind of supermetric approach to the space of all Riemannian metrics on a given smooth 3-manifold. In a Ricci flow the distances decrease in directions of positive curvature since the metric is time-dependent. Perelman's modification of the standard Ricci flow permitted systematic elimination of arising singularities.

7.2 Riemannian Metrics in Information Theory

Some special Riemannian metrics are commonly used in Information Theory. A list of such metrics is given below.

- Thermodynamic metrics

Given the space of all extensive (additive in magnitude, mechanically conserved) thermodynamic variables of a system (energy, entropy, amounts of materials), a thermodynamic metric is a Riemannian metric on the manifold of equilibrium states defined as the 2nd derivative of one extensive quantity, usually entropy or energy, with respect to the other extensive quantities. This information geometric approach provides a geometric description of thermodynamic systems in equilibrium.
The Ruppeiner metric (Ruppeiner, 1979) is defined by the line element $d s_{R}^{2}=$ $g_{i j}^{R} d x^{i} d x^{j}$, where the matrix $\left(\left(g_{i j}^{R}\right)\right)$ of the symmetric metric tensor is a negative Hessian (the matrix of 2nd order partial derivatives) of the entropy function S :

$$
g_{i j}^{R}=-\partial_{i} \partial_{j} S\left(M, N^{a}\right) .
$$

Here M is the internal energy (which is the mass in black hole applications) of the system and N^{a} refer to other extensive parameters such as charge, angular momentum, volume, etc. This metric is flat if and only if the statistical mechanical system is noninteracting, while curvature singularities are a signal of critical behavior, or, more precisely, of divergent correlation lengths (cf. Chap. 24).
The Weinhold metric (Weinhold, 1975) is defined by $g_{i j}^{W}=\partial_{i} \partial_{j} M\left(S, N^{a}\right)$.
The Ruppeiner and Weinhold metrics are conformally equivalent (cf. conformal metric) via $d s^{2}=g_{i j}^{R} d M^{i} d M^{j}=\frac{1}{T} g_{i j}^{W} d S^{i} d S^{j}$, where T is the temperature.
The thermodynamic length in Chap. 24 is a path function that measures the distance along a path in the state space.

- Fisher information metric

In Statistics, Probability, and Information Geometry, the Fisher information metric is a Riemannian metric for a statistical differential manifold (see, for example, [Amar85, Frie98]). Formally, let $p_{\theta}=p(x, \theta)$ be a family of densities, indexed by n parameters $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ which form the parameter manifold P.
The Fisher information metric $g=g_{\theta}$ on P is a Riemannian metric, defined by the Fisher information matrix $\left(\left(I(\theta)_{i j}\right)\right)$, where

$$
I(\theta)_{i j}=\mathbb{E}_{\theta}\left[\frac{\partial \ln p_{\theta}}{\partial \theta_{i}} \cdot \frac{\partial \ln p_{\theta}}{\partial \theta_{j}}\right]=\int \frac{\partial \ln p(x, \theta)}{\partial \theta_{i}} \frac{\partial \ln p(x, \theta)}{\partial \theta_{j}} p(x, \theta) d x .
$$

It is a symmetric bilinear form which gives a classical measure (Rao measure) for the statistical distinguishability of distribution parameters.

Putting $i(x, \theta)=-\ln p(x, \theta)$, one obtains an equivalent formula

$$
I(\theta)_{i j}=\mathbb{E}_{\theta}\left[\frac{\partial^{2} i(x, \theta)}{\partial \theta_{i} \partial \theta_{j}}\right]=\int \frac{\partial^{2} i(x, \theta)}{\partial \theta_{i} \partial \theta_{j}} p(x, \theta) d x .
$$

In a coordinate-free language, we get

$$
I(\theta)(u, v)=\mathbb{E}_{\theta}\left[u\left(\ln p_{\theta}\right) \cdot v\left(\ln p_{\theta}\right)\right],
$$

where u and v are vectors tangent to the parameter manifold P, and $u\left(\ln p_{\theta}\right)=$ $\frac{d}{d t} \ln p_{\theta+t u \mid t=0}$ is the derivative of $\ln p_{\theta}$ along the direction u.
A manifold of densities M is the image of the parameter manifold P under the mapping $\theta \rightarrow p_{\theta}$ with certain regularity conditions. A vector u tangent to this manifold is of the form $u=\frac{d}{d t} p_{\theta+t u \mid t=0}$, and the Fisher information metric $g=g_{p}$ on M, obtained from the metric g_{θ} on P, can be written as

$$
g_{p}(u, v)=\mathbb{E}_{p}\left[\frac{u}{p} \cdot \frac{v}{p}\right] .
$$

- Fisher-Rao metric

Let $\mathcal{P}_{n}=\left\{p \in \mathbb{R}^{n}: \sum_{i=1}^{n} p_{i}=1, p_{i}>0\right\}$ be the simplex of strictly positive probability vectors. An element $p \in \mathcal{P}_{n}$ is a density of the n-point set $\{1, \ldots, n\}$ with $p(i)=p_{i}$. An element u of the tangent space $T_{p}\left(\mathcal{P}_{n}\right)=\left\{u \in \mathbb{R}^{n}\right.$: $\left.\sum_{i=1}^{n} u_{i}=0\right\}$ at a point $p \in \mathcal{P}_{n}$ is a function on $\{1, \ldots, n\}$ with $u(i)=u_{i}$.
The Fisher-Rao metric g_{p} on \mathcal{P}_{n} is a Riemannian metric defined by

$$
g_{p}(u, v)=\sum_{i=1}^{n} \frac{u_{i} v_{i}}{p_{i}}
$$

for any $u, v \in T_{p}\left(\mathcal{P}_{n}\right)$, i.e., it is the Fisher information metric on \mathcal{P}_{n}.
The Fisher-Rao metric is the unique (up to a constant factor) Riemannian metric on \mathcal{P}_{n}, contracting under stochastic maps [Chen72].
This metric is isometric, by $p \rightarrow 2\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)$, with the standard metric on an open subset of the sphere of radius two in \mathbb{R}^{n}. This identification allows one to obtain on \mathcal{P}_{n} the geodesic distance, called the Rao distance, by

$$
2 \arccos \left(\sum_{i} p_{i}^{1 / 2} q_{i}^{1 / 2}\right)
$$

The Fisher-Rao metric can be extended to the set $\mathcal{M}_{n}=\left\{p \in \mathbb{R}^{n}, p_{i}>0\right\}$ of all finite strictly positive measures on the set $\{1, \ldots, n\}$. In this case, the geodesic distance on \mathcal{M}_{n} can be written as

$$
2\left(\sum_{i}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2}\right)^{1 / 2}
$$

for any $p, q \in \mathcal{M}_{n}$ (cf. Hellinger metric in Chap. 14).

- Monotone metrics

Let M_{n} be the set of all complex $n \times n$ matrices. Let $\mathcal{M} \subset M_{n}$ be the manifold of all such positive-definite matrices. Let $\mathcal{D} \subset \mathcal{M}, \mathcal{D}=\{\rho \in \mathcal{M}: \operatorname{Tr} \rho=1\}$, be the submanifold of all density matrices. It is the space of faithful states of an n-level quantum system; cf. distances between quantum states in Chap. 24. The tangent space of \mathcal{M} at $\rho \in \mathcal{M}$ is $T_{\rho}(\mathcal{M})=\left\{x \in M_{n}: x=x^{*}\right\}$, i.e., the set of all $n \times n$ Hermitian matrices. The tangent space $T_{\rho}(\mathcal{D})$ at $\rho \in \mathcal{D}$ is the subspace of traceless (i.e., with trace 0) matrices in $T_{\rho}(\mathcal{M})$.
A Riemannian metric λ on \mathcal{M} is called monotone metric if the inequality

$$
\lambda_{h(\rho)}(h(u), h(u)) \leq \lambda_{\rho}(u, u)
$$

holds for any $\rho \in \mathcal{M}$, any $u \in T_{\rho}(\mathcal{M})$, and any stochastic, i.e., completely positive trace preserving mapping h.
It was proved in [Petz96] that λ is monotone if and only if it can be written as

$$
\lambda_{\rho}(u, v)=\operatorname{Tr} u J_{\rho}(v),
$$

where J_{ρ} is an operator of the form $J_{\rho}=\frac{1}{f\left(L_{\rho} / R_{\rho}\right) R_{\rho}}$. Here L_{ρ} and R_{ρ} are the left and the right multiplication operators, and $f:(0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function which is symmetric, i.e., $f(t)=t f\left(t^{-1}\right)$, and normalized, i.e., $f(1)=1$. Then $J_{\rho}(v)=\rho^{-1} v$ if v and ρ are commute, i.e., any monotone metric is equal to the Fisher information metric on commutative submanifolds.
The Bures metric (or statistical metric) is the smallest monotone metric, obtained for $f(t)=\frac{1+t}{2}$. In this case $J_{\rho}(v)=g, \rho g+g \rho=2 v$, is the symmetric logarithmic derivative. For any $\rho_{1}, \rho_{2} \in \mathcal{M}$ the geodesic distance defined by the Bures metric, (cf. Bures length in Chap. 24) can be written as

$$
2 \sqrt{\operatorname{Tr}\left(\rho_{1}\right)+\operatorname{Tr}\left(\rho_{2}\right)-2 \operatorname{Tr}\left(\sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}}\right)}
$$

On the submanifold $\mathcal{D}=\{\rho \in \mathcal{M}: \operatorname{Tr} \rho=1\}$ of density matrices it has the form

$$
2 \arccos \operatorname{Tr}\left(\sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}}\right)
$$

The right logarithmic derivative metric (or RLD-metric) is the greatest monotone metric, corresponding to the function $f(t)=\frac{2 t}{1+t}$. In this case $J_{\rho}(v)=$ $\frac{1}{2}\left(\rho^{-1} v+v \rho^{-1}\right)$ is the right logarithmic derivative.
The Bogolubov-Kubo-Mori metric (or BKM-metric) is obtained for $f(x)=$ $\frac{x-1}{\ln x}$. It can be written as $\lambda_{\rho}(u, v)=\left.\frac{\partial^{2}}{\partial s \partial t} \operatorname{Tr}(\rho+s u) \ln (\rho+t v)\right|_{s, t=0}$.

- Wigner-Yanase-Dyson metrics

The Wigner-Yanase-Dyson metrics (or WYD-metrics) form a family of metrics on the manifold \mathcal{M} of all complex positive-definite $n \times n$ matrices defined by

$$
\lambda_{\rho}^{\alpha}(u, v)=\left.\frac{\partial^{2}}{\partial t \partial s} \operatorname{Tr} f_{\alpha}(\rho+t u) f_{-\alpha}(\rho+s v)\right|_{s, t=0}
$$

where $f_{\alpha}(x)=\frac{2}{1-\alpha} x^{\frac{1-\alpha}{2}}$, if $\alpha \neq 1$, and is $\ln x$, if $\alpha=1$. These metrics are monotone for $\alpha \in[-3,3]$. For $\alpha= \pm 1$ one obtains the Bogolubov-Kubo-Mori metric; for $\alpha= \pm 3$ one obtains the right logarithmic derivative metric.
The Wigner-Yanase metric (or WY-metric) is λ_{ρ}^{0}, the smallest metric in the family. It can be written as $\lambda_{\rho}(u, v)=4 \operatorname{Tr} u\left(\sqrt{L_{\rho}}+\sqrt{R_{\rho}}\right)^{2}(v)$.

- Connes metric

Roughly, the Connes metric is a generalization (from the space of all probability measures of a set X, to the state space of any unital C^{*}-algebra) of the transportation distance (Chap. 14) defined via Lipschitz seminorm.
Let M^{n} be a smooth n-dimensional manifold. Let $A=C^{\infty}\left(M^{n}\right)$ be the (commutative) algebra of smooth complex-valued functions on M^{n}, represented as multiplication operators on the Hilbert space $H=L^{2}\left(M^{n}, S\right)$ of square integrable sections of the spinor bundle on M^{n} by $(f \xi)(p)=f(p) \xi(p)$ for all $f \in A$ and for all $\xi \in H$.
Let D be the Dirac operator. Let the commutator $[D, f]$ for $f \in A$ be the Clifford multiplication by the gradient ∇f, so that its operator norm $\|$.$\| in H$ is given by $\|[D, f]\|=\sup _{p \in M^{n}}\|\nabla f\|$.
The Connes metric is the intrinsic metric on M^{n}, defined by

$$
\sup _{f \in A,\|[D, f]\| \leq 1}|f(p)-f(q)| .
$$

This definition can also be applied to discrete spaces, and even generalized to C^{*} algebras; cf. Rieffel metric space. In particular, for a labeled connected locally finite graph $G=(V, E)$ with the vertex-set $V=\left\{v_{1}, \ldots, v_{n}, \ldots\right\}$, the Connes metric on V is defined, for any $v_{i}, v_{j} \in V$, by $\sup _{\|[D, f]\|=\|d f\| \leq 1}\left|f_{v_{i}}-f_{v_{j}}\right|$, where $\left\{f=\sum f_{v_{i}} v_{i}: \sum\left|f_{v_{i}}\right|^{2}<\infty\right\}$ is the set of formal sums f, forming a Hilbert space, and $\|[D, f]\|$ is $\sup _{i}\left(\sum_{k=1}^{\operatorname{deg}\left(v_{i}\right)}\left(f_{v_{k}}-f_{v_{i}}\right)^{2}\right)^{\frac{1}{2}}$.

- Rieffel metric space

Let V be a normed space (or, more generally, a locally convex topological vector space, cf. Chap. 2), and let V^{\prime} be its continuous dual space, i.e., the set of all continuous linear functionals f on V. The weak-* topology on V^{\prime} is defined as the weakest (i.e., with the fewest open sets) topology on V^{\prime} such that, for every $x \in V$, the map $F_{x}: V^{\prime} \rightarrow \mathbb{R}$ defined by $F_{x}(f)=f(x)$ for all $f \in V^{\prime}$, remains continuous.
An order-unit space is a partially ordered real (complex) vector space (A, \preceq) with a special distinguished element e (order unit) satisfying the following properties:

1. For any $a \in A$, there exists $r \in \mathbb{R}$ with $a \preceq r e$;
2. If $a \in A$ and $a \preceq r e$ for all positive $r \in \mathbb{R}$, then $a \preceq 0$ (Archimedean property).

The main example of an order-unit space is the vector space of all self-adjoint elements in a unital C^{*}-algebra with the identity element being the order unit. Here a C^{*}-algebra is a Banach algebra over \mathbb{C} equipped with a special involution. It is called unital if it has a unit (multiplicative identity element); such C^{*}-algebras are also called, roughly, compact noncommutative topological spaces.
Main example of a unital C^{*}-algebra is the complex algebra of linear operators on a complex Hilbert space which is topologically closed in the norm topology of operators, and is closed under the operation of taking adjoints of operators.
The state space of an order-unit space (A, \preceq, e) is the set $S(A)=\left\{f \in A_{+}^{\prime}\right.$: $\|f\|=1\}$ of states, i.e., continuous linear functionals f with $\|f\|=f(e)=1$. A Rieffel (or compact quantum as in Rieffel, 1999) metric space is a pair $\left(A,\|.\|_{L i p}\right)$, where (A, \preceq, e) is an order-unit space, and $\|.\|_{L i p}$ is a $[0,+\infty]$-valued seminorm on A (generalizing the Lipschitz seminorm) for which it hold:

1. For $a \in A,\|a\|_{L i p}=0$ holds if and only if $a \in \mathbb{R} e$;
2. the metric $d_{L i p}(f, g)=\sup _{a \in A:\|a\|_{L i p} \leq 1}|f(a)-g(a)|$ generates on the state space $S(A)$ its weak-* topology.

So, $\left(S(A), d_{\text {Lip }}\right)$ is a usual metric space. If the order-unit space (A, \preceq, e) is a C^{*}-algebra, then $d_{L i p}$ is the Connes metric, and if, moreover, the C^{*}-algebra is noncommutative, $\left(S(A), d_{L i p}\right)$ is called a noncommutative metric space.
The term quantum is due to the belief that the Planck-scale geometry of spacetime comes from such C^{*}-algebras; cf. quantum space-time in Chap. 24.
Kuperberg and Weaver, 2010, proposed a new definition of quantum metric space, in the setting of von Neumann algebras.

7.3 Hermitian Metrics and Generalizations

A vector bundle is a geometrical construct where to every point of a topological space M we attach a vector space so that all those vector spaces "glued together" form another topological space E. A continuous mapping $\pi: E \rightarrow M$ is called a projection E on M. For every $p \in M$, the vector space $\pi^{-1}(p)$ is called a fiber of the vector bundle.

A real (complex) vector bundle is a vector bundle $\pi: E \rightarrow M$ whose fibers $\pi^{-1}(p), p \in M$, are real (complex) vector spaces.

In a real vector bundle, for every $p \in M$, the fiber $\pi^{-1}(p)$ locally looks like the vector space \mathbb{R}^{n}, i.e., there is an open neighborhood U of p, a natural number n, and a homeomorphism $\varphi: U \times \mathbb{R}^{n} \rightarrow \pi^{-1}(U)$ such that, for all $x \in U$ and $v \in \mathbb{R}^{n}$, one has $\pi(\varphi(x, v))=v$, and the mapping $v \rightarrow \varphi(x, v)$ yields an isomorphism between \mathbb{R}^{n} and $\pi^{-1}(x)$. The set U, together with φ, is called a local trivialization of the bundle.

If there exists a "global trivialization", then a real vector bundle $\pi: M \times \mathbb{R}^{n} \rightarrow$ M is called trivial. Similarly, in a complex vector bundle, for every $p \in M$, the fiber $\pi^{-1}(p)$ locally looks like the vector space \mathbb{C}^{n}. The basic example of such bundle is the trivial bundle $\pi: U \times \mathbb{C}^{n} \rightarrow U$, where U is an open subset of \mathbb{R}^{k}.

Important special cases of a real vector bundle are the tangent bundle $T\left(M^{n}\right)$ and the cotangent bundle $T^{*}\left(M^{n}\right)$ of a real n-dimensional manifold $M_{\mathbb{R}}^{n}=M^{n}$. Important special cases of a complex vector bundle are the tangent bundle and the cotangent bundle of a complex n-dimensional manifold.

Namely, a complex n-dimensional manifold $M_{\mathbb{C}}^{n}$ is a topological space in which every point has an open neighborhood homeomorphic to an open set of the n dimensional complex vector space \mathbb{C}^{n}, and there is an atlas of charts such that the change of coordinates between charts is analytic. The (complex) tangent bundle $T_{\mathbb{C}}\left(M_{\mathbb{C}}^{n}\right)$ of a complex manifold $M_{\mathbb{C}}^{n}$ is a vector bundle of all (complex) tangent spaces of $M_{\mathbb{C}}^{n}$ at every point $p \in M_{\mathbb{C}}^{n}$. It can be obtained as a complexification $T_{\mathbb{R}}\left(M_{\mathbb{R}}^{n}\right) \otimes \mathbb{C}=T\left(M^{n}\right) \otimes \mathbb{C}$ of the corresponding real tangent bundle, and is called the complexified tangent bundle of $M_{\mathbb{C}}^{n}$.

The complexified cotangent bundle of $M_{\mathbb{C}}^{n}$ is obtained similarly as $T^{*}\left(M^{n}\right) \otimes \mathbb{C}$. Any complex n-dimensional manifold $M_{\mathbb{C}}^{n}=M^{n}$ can be regarded as a real $2 n$ dimensional manifold equipped with a complex structure on each tangent space.

A complex structure on a real vector space V is the structure of a complex vector space on V that is compatible with the original real structure. It is completely determined by the operator of multiplication by the number i, the role of which can be taken by an arbitrary linear transformation $J: V \rightarrow V, J^{2}=-i d$, where id is the identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative of a vector field along another vector field in a vector bundle. A metric connection is a linear connection in a vector bundle $\pi: E \rightarrow M$, equipped with a bilinear form in the fibers, for which parallel displacement along an arbitrary piecewise-smooth curve in M preserves the form, that is, the scalar product of two vectors remains constant under parallel displacement.

In the case of a nondegenerate symmetric bilinear form, the metric connection is called the Euclidean connection. In the case of nondegenerate antisymmetric bilinear form, the metric connection is called the symplectic connection.

- Bundle metric

A bundle metric is a metric on a vector bundle.

- Hermitian metric

A Hermitian metric on a complex vector bundle $\pi: E \rightarrow M$ is a collection of Hermitian inner products (i.e., positive-definite symmetric sesquilinear forms) on every fiber $E_{p}=\pi^{-1}(p), p \in M$, that varies smoothly with the point p in M. Any complex vector bundle has a Hermitian metric.
The basic example of a vector bundle is the trivial bundle $\pi: U \times \mathbb{C}^{n} \rightarrow U$, where U is an open set in \mathbb{R}^{k}. In this case a Hermitian inner product on \mathbb{C}^{n}, and hence, a Hermitian metric on the bundle $\pi: U \times \mathbb{C}^{n} \rightarrow U$, is defined by

$$
\langle u, v\rangle=u^{T} H \bar{v},
$$

where H is a positive-definite Hermitian matrix, i.e., a complex $n \times n$ matrix such that $H^{*}=\bar{H}^{T}=H$, and $\bar{v}^{T} H v>0$ for all $v \in \mathbb{C}^{n} \backslash\{0\}$. In the simplest case, one has $\langle u, v\rangle=\sum_{i=1}^{n} u_{i} \bar{v}_{i}$.
An important special case is a Hermitian metric h on a complex manifold M^{n}, i.e., on the complexified tangent bundle $T\left(M^{n}\right) \otimes \mathbb{C}$ of M^{n}. This is the Hermitian analog of a Riemannian metric. In this case $h=g+i w$, and its real part g is a Riemannian metric, while its imaginary part w is a nondegenerate antisymmetric bilinear form, called a fundamental form. Here $g(J(x), J(y))=g(x, y)$, $w(J(x), J(y))=w(x, y)$, and $w(x, y)=g(x, J(y))$, where the operator J is an operator of complex structure on M^{n}; as a rule, $J(x)=i x$. Any of the forms g, w determines h uniquely.
The term Hermitian metric can also refer to the corresponding Riemannian metric g, which gives M^{n} a Hermitian structure.
On a complex manifold, a Hermitian metric h can be expressed in local coordinates by a Hermitian symmetric tensor $\left(\left(h_{i j}\right)\right)$:

$$
h=\sum_{i, j} h_{i j} d z_{i} \otimes d \bar{z}_{j},
$$

where $\left(\left(h_{i j}\right)\right)$ is a positive-definite Hermitian matrix. The associated fundamental form w is then written as $w=\frac{i}{2} \sum_{i, j} h_{i j} d z_{i} \wedge d \bar{z}_{j}$. A Hermitian manifold (or Hermitian space) is a complex manifold equipped with a Hermitian metric.

- Kähler metric

A Kähler metric (or Kählerian metric) is a Hermitian metric $h=g+i w$ on a complex manifold M^{n} whose fundamental form w is closed, i.e., $d w=0$ holds. A Kähler manifold is a complex manifold equipped with a Kähler metric.
If h is expressed in local coordinates, i.e., $h=\sum_{i, j} h_{i j} d z_{i} \otimes d \bar{z}_{j}$, then the associated fundamental form w can be written as $w=\frac{i}{2} \sum_{i, j} h_{i j} d z_{i} \wedge d \bar{z}_{j}$, where \wedge is the wedge product which is antisymmetric, i.e., $d x \wedge d y=-d y \wedge d x$ (hence, $d x \wedge d x=0$).
In fact, w is a differential 2 -form on M^{n}, i.e., a tensor of rank 2 that is antisymmetric under exchange of any pair of indices: $w=\sum_{i, j} f_{i j} d x^{i} \wedge d x^{j}$, where $f_{i j}$ is a function on M^{n}. The exterior derivative $d w$ of w is defined by $d w=\sum_{i, j} \sum_{k} \frac{\partial f_{i j}}{\partial x_{k}} d x_{k} \wedge d x_{i} \wedge d x_{k}$. If $d w=0$, then w is a symplectic (i.e., closed nondegenerate) differential 2-form. Such differential 2-forms are called Kähler forms.
The metric on a Kähler manifold locally satisfies $h_{i j}=\frac{\partial^{2} K}{\partial z i \partial \bar{z}_{j}}$. for some function K, called the Kähler potential. The term Kähler metric can also refer to the corresponding Riemannian metric g, which gives M^{n} a Kähler structure. Then a Kähler manifold is defined as a complex manifold which carries a Riemannian metric and a Kähler form on the underlying real manifold.

- Hessian metric

Given a smooth f on an open subset of a real vector space, the associated Hessian metric is defined by

$$
g_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} .
$$

A Hessian metric is also called an affine Kähler metric since a Kähler metric on a complex manifold has an analogous description as $\frac{\partial^{2} f}{\partial z_{i} \partial \bar{z}_{j}}$.

- Calabi-Yau metric

The Calabi-Yau metric is a Kähler metric which is Ricci-flat.
A Calabi-Yau manifold (or Calabi-Yau space) is a simply connected complex manifold equipped with a Calabi-Yau metric. It can be considered as a $2 n$ dimensional (6 D being particularly interesting) smooth manifold with holonomy group (i.e., the set of linear transformations of tangent vectors arising from parallel transport along closed loops) in the special unitary group.

- Kähler-Einstein metric

A Kähler-Einstein metric is a Kähler metric on a complex manifold M^{n} whose Ricci curvature tensor is proportional to the metric tensor. This proportionality is an analog of the Einstein field equation in the General Theory of Relativity.
A Kähler-Einstein manifold (or Einstein manifold) is a complex manifold equipped with a Kähler-Einstein metric. In this case the Ricci curvature tensor, seen as an operator on the tangent space, is just multiplication by a constant.
Such a metric exists on any domain $D \subset \mathbb{C}^{n}$ that is bounded and pseudo-convex. It can be given by the line element

$$
d s^{2}=\sum_{i, j} \frac{\partial^{2} u(z)}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} d \bar{z}_{j}
$$

where u is a solution to the boundary value problem: $\operatorname{det}\left(\frac{\partial^{2} u}{\partial z_{i} \partial \bar{z}_{j}}\right)=e^{2 u}$ on D, and $u=\infty$ on ∂D. The Kähler-Einstein metric is a complete metric. On the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ it is coincides with the Poincaré metric.
Let h be the Einstein metric on a smooth compact manifold M^{n-1} without boundary, having scalar curvature $(n-1)(n-2)$. A generalized Delaunay metric on $\mathbb{R} \times M^{n-1}$ is (Delay, 2010) of the form $g=u^{\frac{4}{n-2}}\left(d y^{2}+h\right)$, where $u=u(y)>0$ is a periodic solution of $u^{\prime \prime}-\frac{(n-2)^{2}}{4} u+\frac{n(n-2)}{4} u^{\frac{n+2}{n-2}}=0$.
There is one parameter family of constant positive curvature conformal metrics on $\mathbb{R} \times \mathbb{S}^{n-1}$, referred to as Delaunay metric; cf. Kottler metric in Chap. 26.

- Hodge metric

The Hodge metric is a Kähler metric whose fundamental form w defines an integral cohomology class or, equivalently, has integral periods.

A Hodge manifold (or Hodge variety) is a complex manifold equipped with a Hodge metric. A compact complex manifold is a Hodge manifold if and only if it is isomorphic to a smooth algebraic subvariety of some complex projective space.

- Fubini-Study metric

The Fubini-Study metric (or Cayley-Fubini-Study metric) is a Kähler metric on a complex projective space $\mathbb{C} P^{n}$ defined by a Hermitian inner product \langle,$\rangle in$ \mathbb{C}^{n+1}. It is given by the line element

$$
d s^{2}=\frac{\langle x, x\rangle\langle d x, d x\rangle-\langle x, d \bar{x}\rangle\langle\bar{x}, d x\rangle}{\langle x, x\rangle^{2}} .
$$

The Fubini-Study distance between points $\left(x_{1}: \ldots: x_{n+1}\right)$ and $\left(y_{1}: \ldots\right.$: $\left.y_{n+1}\right) \in \mathbb{C} P^{n}$, where $x=\left(x_{1}, \ldots, x_{n+1}\right)$ and $y=\left(y_{1}, \ldots, y_{n+1}\right) \in \mathbb{C}^{n+1} \backslash\{0\}$, is equal to

$$
\arccos \frac{|\langle x, y\rangle|}{\sqrt{\langle x, x\rangle\langle y, y\rangle}}
$$

The Fubini-Study metric is a Hodge metric. The space $\mathbb{C} P^{n}$ endowed with this metric is called a Hermitian elliptic space (cf. Hermitian elliptic metric).

- Bergman metric

The Bergman metric is a Kähler metric on a bounded domain $D \subset \mathbb{C}^{n}$ defined, for the Bergman kernel $K(z, u)$, by the line element

$$
d s^{2}=\sum_{i, j} \frac{\partial^{2} \ln K(z, z)}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} d \bar{z}_{j}
$$

It is a biholomorhically invariant metric on D, and it is complete if D is homogeneous. For the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ the Bergman metric coincides with the Poincaré metric; cf. also Bergman p-metric in Chap. 13.

The set of all analytic functions $f \neq 0$ of class $L_{2}(D)$ with respect to the Lebesgue measure, forms the Hilbert space $L_{2, a}(D) \subset L_{2}(D)$ with an orthonormal basis $\left(\phi_{i}\right)_{i}$. The Bergman kernel is a function in the domain $D \times D \subset \mathbb{C}^{2 n}$, defined by $K_{D}(z, u)=K(z, u)=\sum_{i=1}^{\infty} \phi_{i}(z) \overline{\phi_{i}(u)}$.
The Skwarczynski distance is defined by

$$
\left(1 \frac{|K(z, u)|}{\sqrt{K(z, z)} \sqrt{K(u, u)}}\right)^{\frac{1}{2}} .
$$

- Hyper-Kähler metric

A hyper-Kähler metric is a Riemannian metric g on a $4 n$-dimensional Riemannian manifold which is compatible with a quaternionic structure on the tangent bundle of the manifold.

Thus, the metric g is Kählerian with respect to 3 Kähler structures $\left(I, w_{I}, g\right)$, $\left(J, w_{J}, g\right)$, and (K, w_{K}, g), corresponding to the complex structures, as endomorphisms of the tangent bundle, which satisfy the quaternionic relationship

$$
I^{2}=J^{2}=K^{2}=I J K=-J I K=-1
$$

A hyper-Kähler manifold is a Riemannian manifold equipped with a hyperKähler metric. manifolds are Ricci-flat. Compact 4D hyper-Kähler manifolds are called K_{3}-surfaces; they are studied in Algebraic Geometry.

- Calabi metric

The Calabi metric is a hyper-Kähler metric on the cotangent bundle $T^{*}\left(\mathbb{C} P^{n+1}\right)$ of a complex projective space $\mathbb{C} P^{n+1}$.
For $n=4 k+4$, this metric can be given by the line element

$$
\begin{aligned}
d s^{2}= & \frac{d r^{2}}{1-r^{-4}}+\frac{1}{4} r^{2}\left(1-r^{-4}\right) \lambda^{2}+r^{2}\left(v_{1}^{2}+v_{2}^{2}\right) \\
& +\frac{1}{2}\left(r^{2}-1\right)\left(\sigma_{1 \alpha}^{2}+\sigma_{2 \alpha}^{2}\right)+\frac{1}{2}\left(r^{2}+1\right)\left(\Sigma_{1 \alpha}^{2}+\Sigma_{2 \alpha}^{2}\right),
\end{aligned}
$$

where $\left(\lambda, \nu_{1}, \nu_{2}, \sigma_{1 \alpha}, \sigma_{2 \alpha}, \Sigma_{1 \alpha}, \Sigma_{2 \alpha}\right)$, with α running over k values, are left-invariant one-forms (i.e., linear real-valued functions) on the coset $S U(k+2) / U(k)$. Here $U(k)$ is the unitary group consisting of complex $k \times k$ unitary matrices, and $S U(k)$ is the special unitary group of complex $k \times k$ unitary matrices with determinant 1 .
For $k=0$, the Calabi metric coincides with the Eguchi-Hanson metric.

- Stenzel metric

The Stenzel metric is a hyper-Kähler metric on the cotangent bundle $T^{*}\left(S^{n+1}\right)$ of a sphere S^{n+1}.

- $S O(3)$-invariant metric

An $S O(3)$-invariant metric is a 4D 4-dimensional hyper-Kähler metric with the line element given, in the Bianchi type $I X$ formalism (cf. Bianchi metrics in Chap. 26) by

$$
d s^{2}=f^{2}(t) d t^{2}+a^{2}(t) \sigma_{1}^{2}+b^{2}(t) \sigma_{2}^{2}+c^{2}(t) \sigma_{3}^{2}
$$

where the invariant one-forms $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of $S O(3)$ are expressed in terms of Euler angles θ, ψ, ϕ as $\sigma_{1}=\frac{1}{2}(\sin \psi d \theta-\sin \theta \cos \psi d \phi), \sigma_{2}=-\frac{1}{2}(\cos \psi d \theta+$ $\sin \theta \sin \psi d \phi), \sigma_{3}=\frac{1}{2}(d \psi+\cos \theta d \phi)$, and the normalization has been chosen so that $\sigma_{i} \wedge \sigma_{j}=\frac{1}{2} \epsilon_{i j k} d \sigma_{k}$. The coordinate t of the metric can always be chosen so that $f(t)=\frac{1}{2} a b c$, using a suitable reparametrization.

- Atiyah-Hitchin metric

The Atiyah-Hitchin metric is a complete regular $S O$ (3)-invariant metric with the line element

$$
d s^{2}=\frac{1}{4} a^{2} b^{2} c^{2}\left(\frac{d k}{k\left(1-k^{2}\right) K^{2}}\right)^{2}+a^{2}(k) \sigma_{1}^{2}+b^{2}(k) \sigma_{2}^{2}+c^{2}(k) \sigma_{3}^{2},
$$

where a, b, c are functions of $k, a b=-K(k)(E(k)-K(k)), b c=$ $-K(k)\left(E(k)-\left(1-k^{2}\right) K(k)\right), a c=-K(k) E(k)$, and $K(k), E(k)$ are the complete elliptic integrals, respectively, of the first and second kind, with $0<k<1$. The coordinate t is given by the change of variables $t=-\frac{2 K\left(1-k^{2}\right)}{\pi K(k)}$ up to an additive constant.

- Taub-NUT metric

The Taub-NUT metric (cf. also Chap. 26) is a complete regular $S O(3)$ invariant metric with the line element

$$
d s^{2}=\frac{1}{4} \frac{r+m}{r-m} d r^{2}+\left(r^{2}-m^{2}\right)\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+4 m^{2} \frac{r-m}{r+m} \sigma_{3}^{2},
$$

where m is the relevant moduli parameter, and the coordinate r is related to t by $r=m+\frac{1}{2 m t}$. NUT manifold was discovered in Ehlers, 1957, and rediscovered in Newman-Tamburino-Unti, 1963; it is closely related to the metric in Taub, 1951.

- Eguchi-Hanson metric

The Eguchi-Hanson metric is a complete regular $S O(3)$-invariant metric with the line element

$$
d s^{2}=\frac{d r^{2}}{1-\left(\frac{a}{r}\right)^{4}}+r^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\left(1-\left(\frac{a}{r}\right)^{4}\right) \sigma_{3}^{2}\right)
$$

where a is the moduli parameter, and the coordinate r is $a \sqrt{\operatorname{coth}\left(a^{2} t\right)}$. The Eguchi-Hanson metric coincides with the 4D Calabi metric.

- Complex Finsler metric

A complex Finsler metric is an upper semicontinuous function F : $T\left(M^{n}\right) \rightarrow \mathbb{R}_{+}$on a complex manifold M^{n} with the analytic tangent bundle $T\left(M^{n}\right)$ satisfying the following conditions:

1. F^{2} is smooth on \check{M}^{n}, where \check{M}^{n} is the complement in $T\left(M^{n}\right)$ of the zero section;
2. $F(p, x)>0$ for all $p \in M^{n}$ and $x \in \check{M}_{p}^{n}$;
3. $F(p, \lambda x)=|\lambda| F(p, x)$ for all $p \in M^{n}, x \in T_{p}\left(M^{n}\right)$, and $\lambda \in \mathbb{C}$.

The function $G=F^{2}$ can be locally expressed in terms of the coordinates $\left(p_{1}, \ldots, p_{n}, x_{1}, \ldots, x_{n}\right)$; the Finsler metric tensor of the complex Finsler metric is given by the matrix $\left(\left(G_{i j}\right)\right)=\left(\left(\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial x_{i} \partial \bar{x}_{j}}\right)\right)$, called the Levi matrix. If the matrix $\left(\left(G_{i j}\right)\right)$ is positive-definite, the complex Finsler metric F is called strongly pseudo-convex.

- Distance-decreasing semimetric

Let d be a semimetric which can be defined on some class \mathcal{M} of complex manifolds containing the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. It is called distancedecreasing if, for any analytic mapping $f: M_{1} \rightarrow M_{2}$ with $M_{1}, M_{2} \in \mathcal{M}$, the inequality $d(f(p), f(q)) \leq d(p, q)$ holds for all $p, q \in M_{1}$.
The Carathéodory semimetric F_{C}, Sibony semimetric F_{S}, Azukawa semimetric F_{A} and Kobayashi semimetric F_{K} are distance-decreasing with F_{C} and F_{K} being the smallest and the greatest distance-decreasing semimetrics. They are generalizations of the Poincaré metric to higher-dimensional domains, since $F_{C}=F_{K}$ is the Poincaré metric on the unit disk Δ, and $F_{C}=F_{K} \equiv 0$ on \mathbb{C}^{n}. It holds $F_{C}(z, u) \leq F_{S}(z, u) \leq F_{A}(z, u) \leq F_{K}(z, u)$ for all $z \in D$ and $u \in \mathbb{C}^{n}$. If D is convex, then all these metrics coincide.

- Biholomorphically invariant semimetric

A biholomorphism is a bijective holomorphic (complex differentiable in a neighborhood of every point in its domain) function whose inverse is also holomorphic.
A semimetric $F(z, u): D \times \mathbb{C}^{n} \rightarrow[0, \infty]$ on a domain D in \mathbb{C}^{n} is called biholomorphically invariant if $F(z, u)=|\lambda| F(z, u)$ for all $\lambda \in \mathbb{C}$, and $F(z, u)=F\left(f(z), f^{\prime}(z) u\right)$ for any biholomorphism $f: D \rightarrow D^{\prime}$.
Invariant metrics, including the Carathéodory, Kobayashi, Sibony, Azukawa,
Bergman, and Kähler-Einstein metrics, play an important role in Complex Function Theory, Complex Dynamics and Convex Geometry. The first four metrics are used mostly because they are distance-decreasing. But they are almost never Hermitian. On the other hand, the Bergman metric and the Kähler-Einstein metric are Hermitian (in fact, Kählerian), but, in general, not distance-decreasing.
The Wu metric (Cheung and Kim, 1996) is an invariant non-Kähler Hermitian metric on a complex manifold M^{n} which is distance-decreasing, up to a fixed constant factor, for any holomorphic mapping between two complex manifolds.

- Kobayashi metric

Let D be a domain in \mathbb{C}^{n}. Let $\mathcal{O}(\Delta, D)$ be the set of all analytic mappings f : $\Delta \rightarrow D$, where $\Delta=\{z \in \mathbb{C}:|z|<1\}$ is the unit disk.
The Kobayashi metric (or Kobayashi-Royden metric) F_{K} is a complex Finsler metric defined, for all $z \in D$ and $u \in \mathbb{C}^{n}$, by

$$
F_{K}(z, u)=\inf \left\{\alpha>0: \exists f \in \mathcal{O}(\Delta, D), f(0)=z, \alpha f^{\prime}(0)=u\right\}
$$

Given a complex manifold M^{n}, the Kobayashi semimetric F_{K} is defined by

$$
F_{K}(p, u)=\inf \left\{\alpha>0: \exists f \in \mathcal{O}\left(\Delta, M^{n}\right), f(0)=p, \alpha f^{\prime}(0)=u\right\}
$$

for all $p \in M^{n}$ and $u \in T_{p}\left(M^{n}\right)$.
$F_{K}(p, u)$ is a seminorm of the tangent vector u, called the Kobayashi seminorm. F_{K} is a metric if M^{n} is taut, i.e., $\mathcal{O}\left(\Delta, M^{n}\right)$ is a normal family (every sequence has a subsequence which either converge or diverge compactly).

The Kobayashi semimetric is an infinitesimal form of the Kobayashi semidistance (or Kobayashi pseudo-distance, 1967) $K_{M^{n}}$ on M^{n}, defined as follows. Given $p, q \in M^{n}$, a chain of disks α from p to q is a collection of points $p=p^{0}, p^{1}, \ldots, p^{k}=q$ of M^{n}, pairs of points $a^{1}, b^{1} ; \ldots ; a^{k}, b^{k}$ of the unit disk Δ, and analytic mappings $f_{1}, \ldots f_{k}$ from Δ into M^{n}, such that $f_{j}\left(a^{j}\right)=p^{j-1}$ and $f_{j}\left(b^{j}\right)=p^{j}$ for all j.
The length $l(\alpha)$ of a chain α is the sum $d_{P}\left(a^{1}, b^{1}\right)+\cdots+d_{P}\left(a^{k}, b^{k}\right)$, where d_{P} is the Poincaré metric. The Kobayashi semimetric $K_{M^{n}}$ on M^{n} is defined by

$$
K_{M^{n}}(p, q)=\inf _{\alpha} l(\alpha),
$$

where the infimum is taken over all lengths $l(\alpha)$ of chains of disks α from p to q. Given a complex manifold M^{n}, the Kobayashi-Busemann semimetric on M^{n} is the double dual of the Kobayashi semimetric. It is a metric if M^{n} is taut.

- Carathéodory metric

Let D be a domain in \mathbb{C}^{n}. Let $\mathcal{O}(D, \Delta)$ be the set of all analytic mappings f : $D \rightarrow \Delta$, where $\Delta=\{z \in \mathbb{C}:|z|<1\}$ is the unit disk.
The Carathéodory metric F_{C} is a complex Finsler metric defined by

$$
F_{C}(z, u)=\sup \left\{\left|f^{\prime}(z) u\right|: f \in \mathcal{O}(D, \Delta)\right\}
$$

for any $z \in D$ and $u \in \mathbb{C}^{n}$.
Given a complex manifold M^{n}, the Carathéodory semimetric F_{C} is defined by

$$
F_{C}(p, u)=\sup \left\{\left|f^{\prime}(p) u\right|: f \in \mathcal{O}\left(M^{n}, \Delta\right)\right\}
$$

for all $p \in M^{n}$ and $u \in T_{p}\left(M^{n}\right) . F_{C}$ is a metric if M^{n} is taut, i.e., every sequence in $\mathcal{O}\left(\Delta, M^{n}\right)$ has a subsequence which either converge or diverge compactly.
The Carathéodory semidistance (or Carathéodory pseudo-distance, 1926) C $M_{M^{n}}$ is a semimetric on a complex manifold M^{n}, defined by

$$
C_{M^{n}}(p, q)=\sup \left\{d_{P}(f(p), f(q)): f \in \mathcal{O}\left(M^{n}, \Delta\right)\right\}
$$

where d_{P} is the Poincaré metric.
In general, the integrated semimetric of the infinitesimal Carathéodory semimetric is internal for the Carathéodory semidistance, but does not equal to it.

- Azukawa semimetric

Let D be a domain in \mathbb{C}^{n}. Let $K_{D}(z)$ be the set of all logarithmically plurisubharmonic functions $f: D \rightarrow[0,1]$ such that there exist $M, r>0$ with $f(u) \leq M\|u-z\|_{2}$ for all $u \in B(z, r) \subset D$; here $\|.\|_{2}$ is the l_{2}-norm on \mathbb{C}^{n}, and $B(z, r)=\left\{x \in \mathbb{C}^{n}:\|z-x\|_{2}<r\right\}$. Let $g_{D}(z, u)$ be $\sup \left\{f(u): f \in K_{D}(z)\right\}$.
The Azukawa semimetric F_{A} is a complex Finsler metric defined by

$$
F_{A}(z, u)=\varlimsup_{\lambda \rightarrow 0} \frac{1}{|\lambda|} g_{D}(z, z+\lambda u)
$$

for all $z \in D$ and $u \in \mathbb{C}^{n}$.
The Azukawa metric is an infinitesimal form of the Azukawa semidistance.

- Sibony semimetric

Let D be a domain in \mathbb{C}^{n}. Let $K_{D}(z)$ be the set of all logarithmically plurisubharmonic functions $f: D \rightarrow[0,1)$ such that there exist $M, r>0$ with $f(u) \leq M\|u-z\|_{2}$ for all $u \in B(z, r)=\left\{x \in \mathbb{C}^{n}:\|z-x\|_{2}<r\right\} \subset D$. Let $C_{\text {loc }}^{2}(z)$ be the set of all functions of class C^{2} on some open neighborhood of z.
The Sibony semimetric F_{S} is a complex Finsler semimetric defined by

$$
F_{S}(z, u)=\sup _{f \in K_{D}(z) \cap C_{l o c}^{2}(z)} \sqrt{\sum_{i, j} \frac{\partial^{2} f}{\partial z_{i} \partial \bar{z}_{j}}(z) u_{i} \bar{u}_{j}}
$$

for all $z \in D$ and $u \in \mathbb{C}^{n}$.
The Sibony semimetric is an infinitesimal form of the Sibony semidistance.

- Teichmüller metric

A Riemann surface R is a one-dimensional complex manifold. Two Riemann surfaces R_{1} and R_{2} are called conformally equivalent if there exists a bijective analytic function (i.e., a conformal homeomorphism) from R_{1} into R_{2}. More precisely, consider a fixed closed Riemann surface R_{0} of a given genus $g \geq 2$.
For a closed Riemann surface R of genus g, one can construct a pair (R, f), where $f: R_{0} \rightarrow R$ is a homeomorphism. Two pairs (R, f) and $\left(R_{1}, f_{1}\right)$ are called conformally equivalent if there exists a conformal homeomorphism h : $R \rightarrow R_{1}$ such that the mapping $\left(f_{1}\right)^{-1} \cdot h \cdot f: R_{0} \rightarrow R_{0}$ is homotopic to the identity.
An abstract Riemann surface $R^{*}=(R, f)^{*}$ is the equivalence class of all Riemann surfaces, conformally equivalent to R. The set of all equivalence classes is called the Teichmüller space $T\left(R_{0}\right)$ of the surface R_{0}.
For closed surfaces R_{0} of given genus g, the spaces $T\left(R_{0}\right)$ are isometrically isomorphic, and one can speak of the Teichmüller space T_{g} of surfaces of genus $g . T_{g}$ is a complex manifold. If R_{0} is obtained from a compact surface of genus $g \geq 2$ by removing n points, then the complex dimension of T_{g} is $3 g-3+n$.
The Teichmüller metric is a metric on T_{g} defined by

$$
\frac{1}{2} \inf _{h} \ln K(h)
$$

for any $R_{1}^{*}, R_{2}^{*} \in T_{g}$, where $h: R_{1} \rightarrow R_{2}$ is a quasi-conformal homeomorphism, homotopic to the identity, and $K(h)$ is the maximal dilation of h. In fact, there exists a unique extremal mapping, called the Teichmüller mapping which
minimizes the maximal dilation of all such h, and the distance between R_{1}^{*} and R_{2}^{*} is equal to $\frac{1}{2} \ln K$, where the constant K is the dilation of the Teichmüller mapping.
In terms of the extremal length $\operatorname{ext}_{R^{*}}(\gamma)$, the distance between R_{1}^{*} and R_{2}^{*} is

$$
\frac{1}{2} \ln \sup _{\gamma} \frac{\operatorname{ext}_{R_{1}^{*}}(\gamma)}{\operatorname{ext}_{R_{2}^{*}}(\gamma)}
$$

where the supremum is taken over all simple closed curves on R_{0}.
The Teichmüller space T_{g}, with the Teichmüller metric on it, is a geodesic metric space (moreover, a straight G-space) but it is neither Gromov hyperbolic, nor a Busemann convex metric space.
The Thurston quasi-metric on the Teichmüller space T_{g} is defined by

$$
\frac{1}{2} \inf _{h} \ln \|h\|_{L i p}
$$

for any $R_{1}^{*}, R_{2}^{*} \in T_{g}$, where $h: R_{1} \rightarrow R_{2}$ is a quasi-conformal homeomorphism, homotopic to the identity, and $\|.\|_{\text {Lip }}$ is the Lipschitz norm on the set of all injective functions $f: X \rightarrow Y$ defined by $\|f\|_{L i p}=\sup _{x, y \in X, x \neq y} \frac{d_{Y}(f(x), f(y))}{d_{X}(x, y)}$. The moduli space R_{g} of conformal classes of Riemann surfaces of genus g is obtained by factorization of T_{g} by some countable group of automorphisms of it, called the modular group. The Zamolodchikov metric, defined (1986) in terms of exactly marginal operators, is a natural metric on the conformal moduli spaces.
Liu, Sun and Yau, 2005, showed that all known complete metrics on the Teichmüller space and moduli space (including Teichmüller metric, Bergman metric, Cheng-Yau-Mok Kähler-Einstein metric, Carathéodory metric, McMullen metric) are equivalent since they are quasi-isometric (cf. Chap. 1) to the Ricci metric and the perturbed Ricci metric introduced by them.

- Weil-Petersson metric

The Weil-Petersson metric is a Kähler metric on the Teichmüller space $T_{g, n}$ of abstract Riemann surfaces of genus g with n punctures and negative Euler characteristic. This metric has negative Ricci curvature; it is geodesically convex (cf. Chap. 1) and not complete.
The Weil-Peterson metric is Gromov hyperbolic if and only if (Brock and Farb, 2006) the complex dimension $3 g-3+n$ of $T_{g, n}$ is at most two.

- Gibbons-Manton metric

The Gibbons-Manton metric is a $4 n$-dimensional hyper-Kähler metric on the moduli space of n-monopoles which admits an isometric action of the n-dimensional torus T^{n}. It is a hyper-Kähler quotient of a flat quaternionic vector space.

- Metrics on determinant lines

Let M^{n} be an n-dimensional compact smooth manifold, and let F be a flat vector bundle over M^{n}. Let $H^{\bullet}\left(M^{n}, F\right)=\oplus_{i=0}^{n} H^{i}\left(M^{n}, F\right)$ be the de Rham cohomology of M^{n} with coefficients in F. Given an n-dimensional vector space V, the determinant line det V of V is defined as the top exterior power of V, i.e., det $V=\wedge^{n} V$. Given a finite-dimensional graded vector space $V=\oplus_{i=0}^{n} V_{i}$, the determinant line of V is defined as the tensor product $\operatorname{det} V=\otimes_{i=0}^{n}\left(\operatorname{det} V_{i}\right)^{(-1)^{i}}$. Thus, the determinant line $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$ of the cogomology $H^{\bullet}\left(M^{n}, F\right)$ can be written as $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)=\otimes_{i=0}^{n}\left(\operatorname{det} H^{i}\left(M^{n}, F\right)\right)^{(-1)^{i}}$.
The Reidemeister metric is a metric on $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$, defined by a given smooth triangulation of M^{n}, and the classical Reidemeister-Franz torsion.
Let g^{F} and $g^{T\left(M^{n}\right)}$ be smooth metrics on the vector bundle F and tangent bundle $T\left(M^{n}\right)$, respectively. These metrics induce a canonical L_{2}-metric $h^{H^{\bullet}\left(M^{n}, F\right)}$ on $H^{\bullet}\left(M^{n}, F\right)$. The Ray-Singler metric on $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$ is defined as the product of the metric induced on $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$ by $h^{H^{\bullet}\left(M^{n}, F\right)}$ with the RaySingler analytic torsion. The Milnor metric on $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$ can be defined in a similar manner using the Milnor analytic torsion. If g^{F} is flat, the above two metrics coincide with the Reidemeister metric. Using a co-Euler structure, one can define a modified Ray-Singler metric on $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$.
The Poincaré-Reidemeister metric is a metric on the cohomological determinant line $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$ of a closed connected oriented odd-dimensional manifold M^{n}. It can be constructed using a combination of the Reidemeister torsion with the Poincaré duality. Equivalently, one can define the PoincaréReidemeister scalar product on $\operatorname{det} H^{\bullet}\left(M^{n}, F\right)$ which completely determines the Poincaré-Reidemeister metric but contains an additional sign or phase information.
The Quillen metric is a metric on the inverse of the cohomological determinant line of a compact Hermitian one-dimensional complex manifold. It can be defined as the product of the L_{2}-metric with the Ray-Singler analytic torsion.

- Kähler supermetric

The Kähler supermetric is a generalization of the Kähler metric for the case of a supermanifold. A supermanifold is a generalization of the usual manifold with fermonic as well as bosonic coordinates. The bosonic coordinates are ordinary numbers, whereas the fermonic coordinates are Grassmann numbers.
Here the term supermetric differs from the one used in this chapter.

- Hofer metric

A symplectic manifold (M^{n}, w), $n=2 k$, is a smooth even-dimensional manifold M^{n} equipped with a symplectic form, i.e., a closed nondegenerate 2-form, w.
A Lagrangian manifold is a k-dimensional smooth submanifold L^{k} of a symplectic manifold (M^{n}, w), $n=2 k$, such that the form w vanishes identically on L^{k}, i.e., for any $p \in L^{k}$ and any $x, y \in T_{p}\left(L^{k}\right)$, one has $w(x, y)=0$.

Let $L\left(M^{n}, \Delta\right)$ be the set of all Lagrangian submanifolds of a closed symplectic manifold $\left(M^{n}, w\right)$, diffeomorphic to a given Lagrangian submanifold Δ. A smooth family $\alpha=\left\{L_{t}\right\}_{t}, t \in[0,1]$, of Lagrangian submanifolds $L_{t} \in$ $L\left(M^{n}, \Delta\right)$ is called an exact path connecting L_{0} and L_{1}, if there exists a smooth mapping $\Psi: \Delta \times[0,1] \rightarrow M^{n}$ such that, for every $t \in[0,1]$, one has $\Psi(\Delta \times\{t\})=L_{t}$, and $\Psi * w=d H_{t} \wedge d t$ for some smooth function $H: \Delta \times[0,1] \rightarrow \mathbb{R}$. The Hofer length $l(\alpha)$ of an exact path α is defined by $l(\alpha)=\int_{0}^{1}\left\{\max _{p \in \Delta} H(p, t)-\min _{p \in \Delta} H(p, t)\right\} d t$.
The Hofer metric on the set $L\left(M^{n}, \Delta\right)$ is defined by

$$
\inf _{\alpha} l(\alpha)
$$

for any $L_{0}, L_{1} \in L\left(M^{n}, \Delta\right)$, where the infimum is taken over all exact paths on $L\left(M^{n}, \Delta\right)$, that connect L_{0} and L_{1}.
The Hofer metric can be defined similarly on the group $\operatorname{Ham}\left(M^{n}, w\right)$ of Hamiltonian diffeomorphisms of a closed symplectic manifold ($\left.M^{n}, w\right)$, whose elements are time-one mappings of Hamiltonian flows ϕ_{t}^{H} : it is $\inf _{\alpha} l(\alpha)$, where the infimum is taken over all smooth paths $\alpha=\left\{\phi_{t}^{H}\right\}, t \in[0,1]$, connecting ϕ and ψ.

- Sasakian metric

A Sasakian metric is a metric on a contact manifold, naturally adapted to the contact structure.
A contact manifold equipped with a Sasakian metric is called a Sasakian space, and it is an odd-dimensional analog of a Kähler manifold. The scalar curvature of a Sasakian metric which is also Einstein metric, is positive.

- Cartan metric

A Killing form (or Cartan-Killing form) on a finite-dimensional Lie algebra Ω over a field \mathbb{F} is a symmetric bilinear form

$$
B(x, y)=\operatorname{Tr}\left(a d_{x} \cdot a d_{y}\right)
$$

where Tr denotes the trace of a linear operator, and $a d_{x}$ is the image of x under the adjoint representation of Ω, i.e., the linear operator on the vector space Ω defined by the rule $z \rightarrow[x, z]$, where [,] is the Lie bracket.
Let $e_{1}, \ldots e_{n}$ be a basis for the Lie algebra Ω, and $\left[e_{i}, e_{j}\right]=\sum_{k=1}^{n} \gamma_{i j}^{k} e_{k}$, where $\gamma_{i j}^{k}$ are corresponding structure constants. Then the Killing form is given by

$$
B\left(x_{i}, x_{j}\right)=g_{i j}=\sum_{k, l=1}^{n} \gamma_{i l}^{k} \gamma_{i k}^{l} .
$$

In Theoretical Physics, the metric tensor $\left(\left(g_{i j}\right)\right)$ is called a Cartan metric.

Chapter 8
 Distances on Surfaces and Knots

8.1 General Surface Metrics

A surface is a real 2D (two-dimensional) manifold M^{2}, i.e., a Hausdorff space, each point of which has a neighborhood which is homeomorphic to a plane \mathbb{E}^{2}, or a closed half-plane (cf. Chap. 7).

A compact orientable surface is called closed if it has no boundary, and it is called a surface with boundary, otherwise. There are compact nonorientable surfaces (closed or with boundary); the simplest such surface is the Möbius strip. Noncompact surfaces without boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with, say, g (cylindric) handles, or a sphere with, say, g cross-caps (i.e., caps with a twist like Möbius strip in them). In both cases the number g is called the genus of the surface. In the case of handles, the surface is orientable; it is called a torus (doughnut), double torus, and triple torus for $g=1,2$ and 3 , respectively. In the case of crosscaps, the surface is nonorientable; it is called the real projective plane, Klein bottle, and Dyck's surface for $g=1,2$ and 3, respectively. The genus is the maximal number of disjoint simple closed curves which can be cut from a surface without disconnecting it (the Jordan curve theorem for surfaces).

The Euler-Poincaré characteristic of a surface is (the same for all polyhedral decompositions of a given surface) the number $\chi=v-e+f$, where v, e and f are, respectively, the number of vertices, edges and faces of the decomposition. Then $\chi=2-2 g$ if the surface is orientable, and $\chi=2-g$ if not. Every surface with boundary is homeomorphic to a sphere with an appropriate number of (disjoint) holes (i.e., what remains if an open disk is removed) and handles or cross-caps. If h is the number of holes, then $\chi=2-2 g-h$ holds if the surface is orientable, and $\chi=2-g-h$ if not.

The connectivity number of a surface is the largest number of closed cuts that can be made on the surface without separating it into two or more parts. This number is equal to $3-\chi$ for closed surfaces, and $2-\chi$ for surfaces with boundaries. A surface
with connectivity number 1,2 and 3 is called, respectively, simply, doubly and triply connected. A sphere is simply connected, while a torus is triply connected.

A surface can be considered as a metric space with its own intrinsic metric, or as a figure in space. A surface in \mathbb{E}^{3} is called complete if it is a complete metric space with respect to its intrinsic metric.

Useful shape-aware (preserved by isomorphic deformations of the surface) distances on the interior of a surface mesh can be defined by isometric embedding of the surface into a suitable high-dimensional Euclidean space; for example, diffusion metric (cf. Chap. 15 and histogram diffusion distance from Chap. 21) and Rustamov et al., 2009.

A surface is called differentiable, regular, or analytic, respectively, if in a neighborhood of each of its points it can be given by an expression

$$
r=r(u, v)=r\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right)
$$

where the position vector $r=r(u, v)$ is a differentiable, regular (i.e., a sufficient number of times differentiable), or real analytic, respectively, vector function satisfying the condition $r_{u} \times r_{v} \neq 0$.

Any regular surface has the intrinsic metric with the line element (or first fundamental form)

$$
d s^{2}=d r^{2}=E(u, v) d u^{2}+2 F(u, v) d u d v+G(u, v) d v^{2}
$$

where $E(u, v)=\left\langle r_{u}, r_{u}\right\rangle, F(u, v)=\left\langle r_{u}, r_{v}\right\rangle, G(u, v)=\left\langle r_{v}, r_{v}\right\rangle$. The length of a curve defined on the surface by the equations $u=u(t), v=v(t), t \in[0,1]$, is computed by

$$
\int_{0}^{1} \sqrt{E u^{\prime 2}+2 F u^{\prime} v^{\prime}+G v^{\prime 2}} d t
$$

and the distance between any points $p, q \in M^{2}$ is defined as the infimum of the lengths of all curves on M^{2}, connecting p and q. A Riemannian metric is a generalization of the first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature, and mean curvature. To compute these curvatures at a given point of the surface, consider the intersection of the surface with a plane, containing a fixed normal vector, i.e., a vector which is perpendicular to the surface at this point. This intersection is a plane curve. The curvature k of this plane curve is called the normal curvature of the surface at the given point. If we vary the plane, the normal curvature k will change, and there are two extremal values, the maximal curvature k_{1}, and the minimal curvature k_{2}, called the principal curvatures of the surface. A curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, otherwise it is taken to be negative.

The Gaussian curvature is $K=k_{1} k_{2}$ (it can be given entirely in terms of the first fundamental form). The mean curvature is $H=\frac{1}{2}\left(k_{1}+k_{2}\right)$.

A minimal surface is a surface with mean curvature zero or, equivalently, a surface of minimum area subject to constraints on the location of its boundary.

A Riemann surface is a one-dimensional complex manifold, or a 2D real manifold with a complex structure, i.e., in which the local coordinates in neighborhoods of points are related by complex analytic functions. It can be thought of as a deformed version of the complex plane. All Riemann surfaces are orientable. Closed Riemann surfaces are geometrical models of complex algebraic curves. Every connected Riemann surface can be turned into a complete 2D Riemannian manifold with constant curvature $-1,0$, or 1 . The Riemann surfaces with curvature -1 are called hyperbolic, and the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ is the canonical example. The Riemann surfaces with curvature 0 are called parabolic, and \mathbb{C} is a typical example. The Riemann surfaces with curvature 1 are called elliptic, and the Riemann sphere $\mathbb{C} \cup\{\infty\}$ is a typical example.

- Regular metric

The intrinsic metric of a surface is regular if it can be specified by the line element

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2},
$$

where the coefficients of the form $d s^{2}$ are regular functions.
Any regular surface, given by an expression $r=r(u, v)$, has a regular metric with the line element $d s^{2}$, where $E(u, v)=\left\langle r_{u}, r_{u}\right\rangle, F(u, v)=\left\langle r_{u}, r_{v}\right\rangle, G(u, v)=$ $\left\langle r_{v}, r_{v}\right\rangle$.

- Analytic metric

The intrinsic metric on a surface is analytic if it can be specified by the line element

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2},
$$

where the coefficients of the form $d s^{2}$ are real analytic functions.
Any analytic surface, given by an expression $r=r(u, v)$, has an analytic metric with the line element $d s^{2}$, where $E(u, v)=\left\langle r_{u}, r_{u}\right\rangle, F(u, v)=\left\langle r_{u}, r_{v}\right\rangle, G(u, v)=$ $\left\langle r_{v}, r_{v}\right\rangle$.

- Metric of nonpositive curvature

A metric of nonpositive curvature is the intrinsic metric on a saddle-like surface. A saddle-like surface is a generalization of a surface of negative curvature: a twice continuously-differentiable surface is a saddle-like surface if and only if at each point of the surface its Gaussian curvature is nonpositive.
These surfaces can be seen as antipodes of convex surfaces, but they do not form such a natural class of surfaces as do convex surfaces.
A metric of negative curvature is the intrinsic metric on a surface of negative curvature, i.e., a surface in \mathbb{E}^{3} that has negative Gaussian curvature at every point.

A surface of negative curvature locally has a saddle-like structure. The intrinsic geometry of a surface of constant negative curvature (in particular, of a pseudosphere) locally coincides with the geometry of the Lobachevsky plane. There exists no surface in \mathbb{E}^{3} whose intrinsic geometry coincides completely with the geometry of the Lobachevsky plane (i.e., a complete regular surface of constant negative curvature).

- Metric of nonnegative curvature

A metric of nonnegative curvature is the intrinsic metric on a convex surface.
A convex surface is a domain (i.e., a connected open set) on the boundary of a convex body in \mathbb{E}^{3} (in some sense, it is an antipode of a saddle-like surface).
The entire boundary of a convex body is called a complete convex surface. If the body is finite (bounded), the complete convex surface is called closed. Otherwise, it is called infinite (an infinite convex surface is homeomorphic to a plane or to a circular cylinder).
Any convex surface M^{2} in \mathbb{E}^{3} is a surface of bounded curvature. The total Gaussian curvature $w(A)=\iint_{A} K(x) d \sigma(x)$ of a set $A \subset M^{2}$ is always nonnegative (here $\sigma($.$) is the area, and K(x)$ is the Gaussian curvature of M^{2} at a point x), i.e., a convex surface can be seen as a surface of nonnegative curvature. The intrinsic metric of a convex surface is a convex metric (not to be confused with metric convexity from Chap. 1) in the sense of Surface Theory, i.e., it displays the convexity condition: the sum of the angles of any triangle whose sides are shortest curves is not less that π.
A metric of positive curvature is the intrinsic metric on a surface of positive curvature, i.e., a surface in \mathbb{E}^{3} that has positive Gaussian curvature at every point.

- Metric with alternating curvature

A metric with alternating curvature is the intrinsic metric on a surface with alternating (positive or negative) Gaussian curvature.

- Flat metric

A flat metric is the intrinsic metric on a developable surface, i.e., a surface, on which the Gaussian curvature is everywhere zero. Cf. flat space in Chap. 1.
In general, a Riemannian metric on a surface is locally Euclidean up to a third order error (distortion of metric) measured by the Gaussian curvature.

- Metric of bounded curvature

A metric of bounded curvature is the intrinsic metric ρ on a surface of bounded curvature.
A surface M^{2} with an intrinsic metric ρ is called a surface of bounded curvature if there exists a sequence of Riemannian metrics ρ_{n} defined on M^{2}, such that $\rho_{n} \rightarrow \rho$ uniformly for any compact set $A \subset M^{2}$, and the sequence $\left|w_{n}\right|(A)$ is bounded, where $|w|_{n}(A)=\iint_{A}|K(x)| d \sigma(x)$ is the total absolute curvature of the metric ρ_{n} (here $K(x)$ is the Gaussian curvature of M^{2} at a point x, and $\sigma($.) is the area).

- Λ-Metric

A Λ-metric (or metric of type Λ) is a complete metric on a surface with curvature bounded from above by a negative constant.

A Λ-metric does not have embeddings into \mathbb{E}^{3}. It is a generalization of the result in Hilbert, 1901: no complete regular surface of constant negative curvature (i.e., a surface whose intrinsic geometry is the geometry of the Lobachevsky plane) exists in \mathbb{E}^{3}.

- (h, Δ)-metric

A (h, Δ)-metric is a metric on a surface with a slowly-changing negative curvature.
A complete (h, Δ)-metric does not permit a regular isometric embedding in three-dimensional Euclidean space (cf. Λ-metric).

- G-distance

A connected set G of points on a surface M^{2} is called a geodesic region if, for each point $x \in G$, there exists a disk $B(x, r)$ with center at x, such that $B_{G}=G \cap B(x, r)$ has one of the following forms: $B_{G}=B(x, r)(x$ is a regular interior point of G); B_{G} is a semidisk of $B(x, r)$ (x is a regular boundary point of G); B_{G} is a sector of $B(x, r)$ other than a semidisk (x is an angular point of $G) ; B_{G}$ consists of a finite number of sectors of $B(x, r)$ with no common points except x (a nodal point of G).
The G-distance between any x and $y \in G$ is the greatest lower bound of the lengths of all rectifiable curves connecting x and $y \in G$ and completely contained in G.

- Conformally invariant metric

Let R be a Riemann surface. A local parameter (or local uniformizing parameter, local uniformizer) is a complex variable z considered as a continuous function $z_{p_{0}}=\phi_{p_{0}}(p)$ of a point $p \in R$ which is defined everywhere in some neighborhood (parametric neighborhood) $V\left(p_{0}\right)$ of a point $p_{0} \in R$ and which realizes a homeomorphic mapping (parametric mapping) of $V\left(p_{0}\right)$ onto the disk (parametric disk) $\Delta\left(p_{0}\right)=\left\{z \in \mathbb{C}:|z|<r\left(p_{0}\right)\right\}$, where $\phi_{p_{0}}\left(p_{0}\right)=0$. Under a parametric mapping, any point function $g(p)$ defined in the parametric neighborhood $V\left(p_{0}\right)$, goes into a function of the local parameter $z: g(p)=$ $g\left(\phi_{p_{0}}^{-1}(z)\right)=G(z)$.
A conformally invariant metric is a differential $\rho(z)|d z|$ on the Riemann surface R which is invariant with respect to the choice of the local parameter z. Thus, to each local parameter $z(z: U \rightarrow \overline{\mathbb{C}})$ a function $\rho_{z}: z(U) \rightarrow[0, \infty]$ is associated such that, for any local parameters z_{1} and z_{2}, we have

$$
\frac{\rho_{z_{2}}\left(z_{2}(p)\right)}{\rho_{z_{1}}\left(z_{1}(p)\right)}=\left|\frac{d z_{1}(p)}{d z_{2}(p)}\right| \text { for any } p \in U_{1} \cap U_{2}
$$

Every linear differential $\lambda(z) d z$ and every quadratic differential $Q(z) d z^{2}$ induce conformally invariant metrics $|\lambda(z)||d z|$ and $|Q(z)|^{1 / 2}| | d z \mid$, respectively (cf. Q metric).

- Q-metric

An Q-metric is a conformally invariant metric $\rho(z)|d z|=|Q(z)|^{1 / 2}|d z|$ on a Riemann surface R defined by a quadratic differential $Q(z) d z^{2}$.

A quadratic differential $Q(z) d z^{2}$ is a nonlinear differential on a Riemann surface R which is invariant with respect to the choice of the local parameter z. Thus, to each local parameter $z(z: U \rightarrow \overline{\mathbb{C}})$ a function $Q_{z}: z(U) \rightarrow \overline{\mathbb{C}}$ is associated such that, for any local parameters z_{1} and z_{2}, we have

$$
\frac{Q_{z_{2}}\left(z_{2}(p)\right)}{Q_{z_{1}}\left(z_{1}(p)\right)}=\left(\frac{d z_{1}(p)}{d z_{2}(p)}\right)^{2} \text { for any } p \in U_{1} \cap U_{2}
$$

- Extremal metric

Let Γ be a family of locally rectifiable curves on a Riemann surface R and let P be a class of conformally invariant metrics $\rho(z)|d z|$ on R such that $\rho(z)$ is square-integrable in the z-plane for every local parameter z, and the following Lebesgue integrals are not simultaneously equal to 0 or ∞ :

$$
A_{\rho}(R)=\iint_{R} \rho^{2}(z) d x d y \text { and } L_{\rho}(\Gamma)=\inf _{\gamma \in \Gamma} \int_{y} \rho(z)|d z|
$$

The modulus of the family of curves Γ is defined by

$$
M(\Gamma)=\inf _{\rho \in P} \frac{A_{\rho}(R)}{\left(L_{\rho}(\Gamma)\right)^{2}}
$$

The extremal length of the family of curves Γ is the reciprocal of $M(\Gamma)$.
Let P_{L} be the subclass of P such that, for any $\rho(z)|d z| \in P_{L}$ and any $\gamma \in \Gamma$, one has $\int_{\gamma} \rho(z)|d z| \geq 1$. If $P_{L} \neq \emptyset$, then $M(\Gamma)=\inf _{\rho \in P_{L}} A_{\rho}(R)$. Every metric from P_{L} is called an admissible metric for the modulus on Γ. If there exists ρ^{*} for which

$$
M(\Gamma)=\inf _{\rho \in P_{L}} A_{\rho}(R)=A_{\rho^{*}}(R)
$$

the metric $\rho^{*}|d z|$ is called an extremal metric for the modulus on Γ. It is a conformally invariant metric.

- Fréchet surface metric

Let (X, d) be a metric space, M^{2} a compact 2 D manifold, f a continuous mapping $f: M^{2} \rightarrow X$, called a parametrized surface, and $\sigma: M^{2} \rightarrow M^{2}$ a homeomorphism of M^{2} onto itself. Two parametrized surfaces f_{1} and f_{2} are called equivalent if $\inf _{\sigma} \max _{p \in M^{2}} d\left(f_{1}(p), f_{2}(\sigma(p))\right)=0$, where the infimum is taken over all possible homeomorphisms σ. A class f^{*} of parametrized surfaces, equivalent to f, is called a Fréchet surface. It is a generalization of the notion of a surface in Euclidean space to the case of an arbitrary metric space (X, d).
The Fréchet surface metric on the set of all Fréchet surfaces is defined by

$$
\inf _{\sigma} \max _{p \in M^{2}} d\left(f_{1}(p), f_{2}(\sigma(p))\right)
$$

for any Fréchet surfaces f_{1}^{*} and f_{2}^{*}, where the infimum is taken over all possible homeomorphisms σ. Cf. the Fréchet metric in Chap. 1.

- Hempel metric

A handlebody of genus g is the boundary sum of g copies of a solid torus; it is homeomorphic to the closure of a regular neighborhood of some finite graph in \mathbb{R}^{3}. Given a closed orientable 3-manifold M, its Heegaard splitting (of genus g) is $M=A \cup_{P} B$ where A, B are genus g handlebodies in M such that $M=A \cup B$ and $A \cap B=\partial A=\partial B=P$. Then P is called a (genus g) Heegaard surface of M. In knot applications, Heegaard splitting of the exterior of a knot K (the complement of an open solid torus knotted like K) are considered.
Two embedded curves are isotopic if there exists a continuous deformation of one embedding to another through a path of embeddings. Given a closed connected orientable surface S of genus at least two, let $C(S)=(V, E)$ denotes the graph whose vertices are isotopy classes of essential (not bounding disk on the surface) simple closed curves and whose edges are drawn between vertices with disjoint representative curves. This graph is connected. For any subsets of vertices $X, Y \subset V$, denote by $d_{S}(X, Y)$ their set-to-set distance $\min d_{S}(x, y): x \in X, y \in Y$, where $d_{S}(x, y)$ is the path metric of $C(S)$.
If S is the boundary of a handlebody H, let $M(H)$ denotes the set of vertices with representatives bounding meridian disks D of H, i.e., such that ∂D are essential simple closed curves in ∂H. The Hempel distance of a (genus $g \geq 2$) Heegaard splitting $M=A \cup_{P} B$ is defined (Hempel, 2001) to be $d_{P}(M(A), M(B))$.
A Heegaard splitting $M=A \cup_{P} B$ is stabilized, if there are meridian disks D_{A}, D_{B} of A, B respectively such that ∂D_{A} and ∂D_{B} intersects transversely in a single point. The Reidemeister-Singer distance between two Heegaard surfaces/splittings is the minimal number of stabilizations (roughly, additions of a "trivial" handle) and destabilizations (inverse operation) relating them.

8.2 Intrinsic Metrics on Surfaces

In this section we list intrinsic metrics, given by their line elements (which, in fact, are 2D Riemannian metrics), for some selected surfaces.

- Quadric metric

A quadric (or quadratic surface, surface of second-order) is a set of points in \mathbb{E}^{3}, whose coordinates in a Cartesian coordinate system satisfy an algebraic equation of degree two. There are 17 classes of such surfaces. Among them are: ellipsoids, one-sheet and two-sheet hyperboloids, elliptic paraboloids, hyperbolic paraboloids, elliptic, hyperbolic and parabolic cylinders, and conical surfaces.

For example, a cylinder can be given by the following parametric equations:

$$
x_{1}(u, v)=a \cos v, x_{2}(u, v)=a \sin v, x_{3}(u, v)=u
$$

The intrinsic metric on it is given by the line element

$$
d s^{2}=d u^{2}+a^{2} d v^{2}
$$

An elliptic cone (i.e., a cone with elliptical cross-section) has the following equations:

$$
x_{1}(u, v)=a \frac{h-u}{h} \cos v, x_{2}(u, v)=b \frac{h-u}{h} \sin v, x_{3}(u, v)=u,
$$

where h is the height, a is the semi-major axis, and b is the semi-minor axis of the cone. The intrinsic metric on it is given by the line element

$$
\begin{gathered}
d s^{2}=\frac{h^{2}+a^{2} \cos ^{2} v+b^{2} \sin ^{2} v}{h^{2}} d u^{2}+2 \frac{\left(a^{2}-b^{2}\right)(h-u) \cos v \sin v}{h^{2}} d u d v+ \\
+\frac{(h-u)^{2}\left(a^{2} \sin ^{2} v+b^{2} \cos ^{2} v\right)}{h^{2}} d v^{2} .
\end{gathered}
$$

- Sphere metric

A sphere is a quadric, given by the Cartesian equation $\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}+$ $\left(x_{3}-c\right)^{2}=r^{2}$, where the point (a, b, c) is the center of the sphere, and $r>0$ is the radius of the sphere. The sphere of radius r, centered at the origin, can be given by the following parametric equations:

$$
x_{1}(\theta, \phi)=r \sin \theta \cos \phi, x_{2}(\theta, \phi)=r \sin \theta \sin \phi, x_{3}(\theta, \phi)=r \cos \theta
$$

where the azimuthal angle $\phi \in[0,2 \pi)$, and the polar angle $\theta \in[0, \pi]$.
The intrinsic metric on it (in fact, the 2D spherical metric) is given by the line element

$$
d s^{2}=r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

A sphere of radius r has constant positive Gaussian curvature equal to r.

- Ellipsoid metric

An ellipsoid is a quadric given by the Cartesian equation $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1$, or by the following parametric equations:

$$
x_{1}(\theta, \phi)=a \cos \phi \sin \theta, x_{2}(\theta, \phi)=b \sin \phi \sin \theta, x_{3}(\theta, \phi)=c \cos \theta
$$

where the azimuthal angle $\phi \in[0,2 \pi)$, and the polar angle $\theta \in[0, \pi]$.

The intrinsic metric on it is given by the line element

$$
\begin{gathered}
d s^{2}=\left(b^{2} \cos ^{2} \phi+a^{2} \sin ^{2} \phi\right) \sin ^{2} \theta d \phi^{2}+\left(b^{2}-a^{2}\right) \cos \phi \sin \phi \cos \theta \sin \theta d \theta d \phi+ \\
+\left(\left(a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi\right) \cos ^{2} \theta+c^{2} \sin ^{2} \theta\right) d \theta^{2}
\end{gathered}
$$

- Spheroid metric

A spheroid is an ellipsoid having two axes of equal length. It is also a rotation surface, given by the following parametric equations:

$$
x_{1}(u, v)=a \sin v \cos u, \quad x_{2}(u, v)=a \sin v \sin u, x_{3}(u, v)=c \cos v
$$

where $0 \leq u<2 \pi$, and $0 \leq v \leq \pi$.
The intrinsic metric on it is given by the line element

$$
d s^{2}=a^{2} \sin ^{2} v d u^{2}+\frac{1}{2}\left(a^{2}+c^{2}+\left(a^{2}-c^{2}\right) \cos (2 v)\right) d v^{2}
$$

- Hyperboloid metric

A hyperboloid is a quadric which may be one- or two-sheeted.
The one-sheeted hyperboloid is a surface of revolution obtained by rotating a hyperbola about the perpendicular bisector to the line between the foci, while the two-sheeted hyperboloid is a surface of revolution obtained by rotating a hyperbola about the line joining the foci.
The one-sheeted circular hyperboloid, oriented along the x_{3} axis, is given by the Cartesian equation $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{a^{2}}-\frac{x_{3}^{2}}{c^{2}}=1$, or by the following parametric equations:

$$
x_{1}(u, v)=a \sqrt{1+u^{2}} \cos v, x_{2}(u, v)=a \sqrt{1+u^{2}} \sin v, x_{3}(u, v)=c u,
$$

where $v \in[0,2 \pi)$. The intrinsic metric on it is given by the line element

$$
d s^{2}=\left(c^{2}+\frac{a^{2} u^{2}}{u^{2}+1}\right) d u^{2}+a^{2}\left(u^{2}+1\right) d v^{2} .
$$

- Rotation surface metric

A rotation surface (or surface of revolution) is a surface generated by rotating a 2D curve about an axis. It is given by the following parametric equations:

$$
x_{1}(u, v)=\phi(v) \cos u, x_{2}(u, v)=\phi(v) \sin u, x_{3}(u, v)=\psi(v) .
$$

The intrinsic metric on it is given by the line element

$$
d s^{2}=\phi^{2} d u^{2}+\left(\phi^{\prime 2}+\psi^{\prime 2}\right) d v^{2} .
$$

- Pseudo-sphere metric

A pseudo-sphere is a half of the rotation surface generated by rotating a tractrix about its asymptote. It is given by the following parametric equations:

$$
x_{1}(u, v)=\operatorname{sech} u \cos v, x_{2}(u, v)=\operatorname{sech} u \sin v, x_{3}(u, v)=u-\tanh u
$$

where $u \geq 0$, and $0 \leq v<2 \pi$. The intrinsic metric on it is given by the line element

$$
d s^{2}=\tanh ^{2} u d u^{2}+\operatorname{sech}^{2} u d v^{2}
$$

The pseudo-sphere has constant negative Gaussian curvature equal to -1 , and in this sense is an analog of the sphere which has constant positive Gaussian curvature.

- Torus metric

A torus is a surface having genus one. A torus azimuthally symmetric about the x_{3} axis is given by the Cartesian equation $\left(c-\sqrt{x_{1}^{2}+x_{2}^{2}}\right)^{2}+x_{3}^{2}=a^{2}$, or by the following parametric equations:
$x_{1}(u, v)=(c+a \cos v) \cos u, x_{2}(u, v)=(c+a \cos v) \sin u, x_{3}(u, v)=a \sin v$,
where $c>a$, and $u, v \in[0,2 \pi)$.
The intrinsic metric on it is given by the line element

$$
d s^{2}=(c+a \cos v)^{2} d u^{2}+a^{2} d v^{2}
$$

For toroidally confined plasma, such as in magnetic confinement fusion, the coordinates u, v and a correspond to the directions called, respectively, toroidal (long, as lines of latitude, way around the torus), poloidal (short way around the torus) and radial. The poloidal distance, used in plasma context, is the distance in the poloidal direction.

- Helical surface metric

A helical surface (or surface of screw motion) is a surface described by a plane curve γ which, while rotating around an axis at a uniform rate, also advances along that axis at a uniform rate. If γ is located in the plane of the axis of rotation x_{3} and is defined by the equation $x_{3}=f(u)$, the position vector of the helical surface is

$$
r=(u \cos v, u \sin v, f(u)=h v), h=\mathrm{const},
$$

and the intrinsic metric on it is given by the line element

$$
d s^{2}=\left(1+f^{\prime 2}\right) d u^{2}+2 h f^{\prime} d u d v+\left(u^{2}+h^{2}\right) d v^{2}
$$

If $f=$ const, one has a helicoid; if $h=0$, one has a rotation surface.

- Catalan surface metric

The Catalan surface is a minimal surface, given by the following equations:

$$
\begin{aligned}
x_{1}(u, v) & =u-\sin u \cosh v, x_{2}(u, v)=1-\cos u \cosh v, x_{3}(u, v) \\
& =4 \sin \left(\frac{u}{2}\right) \sinh \left(\frac{v}{2}\right) .
\end{aligned}
$$

The intrinsic metric on it is given by the line element

$$
d s^{2}=2 \cosh ^{2}\left(\frac{v}{2}\right)(\cosh v-\cos u) d u^{2}+2 \cosh ^{2}\left(\frac{v}{2}\right)(\cosh v-\cos u) d v^{2}
$$

- Monkey saddle metric

The monkey saddle is a surface, given by the Cartesian equation $x_{3}=x_{1}\left(x_{1}^{2}-\right.$ $3 x_{2}^{2}$), or by the following parametric equations:

$$
x_{1}(u, v)=u, x_{2}(u, v)=v, x_{3}(u, v)=u^{3}-3 u v^{2}
$$

This is a surface which a monkey can straddle with both legs and his tail. The intrinsic metric on it is given by the line element

$$
\left.d s^{2}=\left(1+\left(s u^{2}-3 v^{2}\right)^{2}\right) d u^{2}-2\left(18 u v\left(u^{2}-v^{2}\right)\right) d u d v+\left(1+36 u^{2} v^{2}\right) d v^{2}\right)
$$

- Distance-defined surfaces and curves

We give below examples of plane curves and surfaces which are the loci of points with given value of some function of their Euclidean distances to the given objects.
A parabola is the locus of all points in \mathbb{R}^{2} that are equidistant from the given point (focus) and given line (directrix) on the plane.
A hyperbola is the locus of all points in \mathbb{R}^{2} such that the ratio of their distances to the given point and line is a constant (eccentricity) greater than 1 . It is also the locus of all points in \mathbb{R}^{2} such that the absolute value of the difference of their distances to the two given foci is constant.
An ellipse is the locus of all points in \mathbb{R}^{2} such that the sum of their distances to the two given points (foci) is constant; cf. elliptic orbit distance in Chap. 25. A circle is an ellipse in which the two foci are coincident.
A Cassini oval is the locus of all points in \mathbb{R}^{2} such that the product of their distances to two given points is a constant k. If the distance between two points is $2 \sqrt{k}$, then such oval is called a lemniscate of Bernoulli.
A circle of Appolonius is the locus of points in \mathbb{R}^{2} such that the ratio of their distances to the first and second given points is constant.
A Cartesian oval is the locus of points in \mathbb{R}^{2} such that their distances r_{1}, r_{2} to the foci $(-1,0),(1,0)$ are related linearly by $a r_{1}+b r_{2}=1$. The cases $a=b, a=-b$ and $a=\frac{1}{2}$ (or $b=\frac{1}{2}$) correspond to the ellipse, hyperbola and limaçon of Pascal, respectively.

A Cassinian curve is the locus of all points in \mathbb{R}^{2} such that the product of their distances to n given points (poles) is constant. If the poles form a regular n-gon, then this (algebraic of degree $2 n$) curve is a sinusoidal spiral given also by polar equation $r^{n}=2 \cos (n \theta)$, and the case $n=3$ corresponds to the Kiepert curve. Farouki and Moon, 2000, considered many other multipolar generalizations of above curves. For example, their trifocal ellipse is the locus of all points in \mathbb{R}^{2} (seen as the complex plane) such that the sum of their distances to the three cube roots of unity is a constant k. If $k=2 \sqrt{3}$, the curve pass through (and is singular at) the three poles.
In \mathbb{R}^{3}, a surface, rotationally symmetric about an axis, is a locus defined via Euclidean distances of its points to the two given poles belonging to this axis. For example, a spheroid (or ellipsoid of revolution) is a quadric obtained by rotating an ellipse about one of its principal axes.
It is a sphere, if this ellipse is a circle. If the ellipse is rotated about its major axis, the result is an elongated (as the rugby ball) spheroid which is the locus of all points in \mathbb{R}^{3} such that the sum of their distances to the two given points is constant. The rotation about its minor axis results in a flattened spheroid (as the Earth) which is the locus of all points in \mathbb{R}^{3} such that the sum of the distances to the closest and the farthest points of given circle is constant.
A hyperboloid of revolution of two sheets is a quadric obtained by revolving a hyperbola about its semi-major (real) axis. Such hyperboloid with axis $A B$ is the locus of all points in \mathbb{R}^{3} such that the absolute value of the difference of their distances to the points A and B is constant.
Any point in \mathbb{R}^{n} is uniquely defined by its Euclidean distances to the vertices of a nondegenerated n-simplex. If a surface which is not rotationally symmetric about an axis, is a locus in \mathbb{R}^{3} defined via distances of its points to the given poles, then three noncollinear poles is needed, and the surface is symmetric with respect to reflexion in the plane defined by the three poles.

8.3 Distances on Knots

A knot is a closed, self-nonintersecting curve that is embedded in S^{3}. The trivial knot (or unknot) O is a closed loop that is not knotted. A knot can be generalized to a link which is a set of disjoint knots. Every link has its Seifert surface, i.e., a compact oriented surface with the given link as boundary.

Two knots (links) are called equivalent if one can be smoothly deformed into another. Formally, a link is defined as a smooth one-dimensional submanifold of the 3 -sphere S^{3}; a knot is a link consisting of one component; two links L_{1} and L_{2} are called equivalent if there exists an orientation-preserving homeomorphism $f: S^{3} \rightarrow S^{3}$ such that $f\left(L_{1}\right)=L_{2}$.

All the information about a knot can be described using a knot diagram. It is a projection of a knot onto a plane such that no more than two points of the knot
are projected to the same point on the plane, and at each such point it is indicated which strand is closest to the plane, usually by erasing part of the lower strand. Two different knot diagrams may both represent the same knot. Much of Knot Theory is devoted to telling when two knot diagrams represent the same knot.

An unknotting operation is an operation which changes the overcrossing and the undercrossing at a double point of a given knot diagram. The unknotting number of a knot K is the minimum number of unknotting operations needed to deform a diagram of K into that of the trivial knot, where the minimum is taken over all diagrams of K. Roughly, the unknotting number is the smallest number of times a knot K must be passed through itself to untie it. An \sharp-unknotting operation in a diagram of a knot K is an analog of the unknotting operation for a \sharp-part of the diagram consisting of two pairs of parallel strands with one of the pair overcrossing another. Thus, an \sharp-unknotting operation changes the overcrossing and the undercrossing at each vertex of obtained quadrangle.

- Gordian distance

The Gordian distance is a metric on the set of all knots defined, for given knots K and K^{\prime}, as the minimum number of unknotting operations needed to deform a diagram of K into that of K^{\prime}, where the minimum is taken over all diagrams of K from which one can obtain diagrams of K^{\prime}. The unknotting number of K is equal to the Gordian distance between K and the trivial knot O.
Let $r K$ be the knot obtained from K by taking its mirror image, and let $-K$ be the knot with the reversed orientation. The positive reflection distance $\operatorname{Ref}{ }_{+}(K)$ is the Gordian distance between K and $r K$. The negative reflection distance $R e f_{-}(K)$ is the Gordian distance between K and $-r K$. The inversion distance $\operatorname{Inv}(K)$ is the Gordian distance between K and $-K$.
The Gordian distance is the case $k=1$ of the C_{k}-distance which is the minimum number of C_{k}-moves needed to transform K into K^{\prime}; Habiro, 1994 and Goussarov, 1995, independently proved that, for $k>1$, it is finite if and only if both knots have the same Vassiliev invariants of order less than k. A C_{1-} move is a single crossing change, a C_{2}-move (or delta-move) is a simultaneous crossing change for 3 arcs forming a triangle. C_{2} - and C_{3}-distances are called delta distance and clasp-pass distance, respectively.

- $\#$-Gordian distance

The $\#$-Gordian distance (see, for example, [Mura85]) is a metric on the set of all knots defined, for given knots K and K^{\prime}, as the minimum number of \sharp-unknotting operations needed to deform a diagram of K into that of K^{\prime}, where the minimum is taken over all diagrams of K from which one can obtain diagrams of K^{\prime}.
Let $r K$ be the knot obtained from K by taking its mirror image, and let $-K$ be the knot with the reversed orientation. The positive \sharp-reflection distance $R e f_{+}^{\sharp}(K)$ is the \sharp-Gordian distance between K and $r K$. The negative $\#$-reflection distance $\operatorname{Re} f_{-}^{\sharp}(K)$ is the \sharp-Gordian distance between K and $-r K$. The \sharp inversion distance $\operatorname{Inv} v^{\sharp}(K)$ is the \sharp-Gordian distance between K and $-K$.

- Knot complement hyperbolic metric

The complement of a knot K (or a link L) is $S^{3} \backslash K$ (or $S^{3} \backslash L$, respectively). A knot (or, in general, a link) is called hyperbolic if its complement supports a complete Riemannian metric of constant curvature -1. In this case, the metric is called a knot (or link) complement hyperbolic metric, and it is unique.
A knot is hyperbolic if and only if (Thurston, 1978) it is not a satellite knot (then it supports a complete locally homogeneous Riemannian metric) and not a torus knot (does not lie on a trivially embedded torus in S^{3}). The complement of any nontrivial knot supports a complete nonpositively curved Riemannian metric.

Chapter 9
 Distances on Convex Bodies, Cones, and Simplicial Complexes

9.1 Distances on Convex Bodies

A convex body in the n-dimensional Euclidean space \mathbb{E}^{n} is a convex compact connected subset of \mathbb{E}^{n}. It is called solid (or proper) if it has nonempty interior. Let K denote the space of all convex bodies in \mathbb{E}^{n}, and let K_{p} be the subspace of all proper convex bodies. Given a set $X \subset \mathbb{E}^{n}$, its convex hull $\operatorname{conv}(X)$ is the minimal convex set containing X.

Any metric space (K, d) on K is called a metric space of convex bodies. Such spaces, in particular the metrization by the Hausdorff metric, or by the symmetric difference metric, play a basic role in Convex Geometry (see, for example, [Grub93]).

For $C, D \in K \backslash\{\emptyset\}$, the Minkowski addition and the Minkowski nonnegative scalar multiplication are defined by $C+D=\{x+y: x \in C, y \in D\}$, and $\alpha C=\{\alpha x: x \in C\}, \alpha \geq 0$, respectively. The Abelian semigroup $(K,+$) equipped with nonnegative scalar multiplication operators can be considered as a convex cone.

The support function $h_{C}: S^{n-1} \rightarrow \mathbb{R}$ of $C \in K$ is defined by $h_{C}(u)=$ $\sup \{\langle u, x\rangle: x \in C\}$ for any $u \in S^{n-1}$, where S^{n-1} is the ($n-1$)-dimensional unit sphere in \mathbb{E}^{n}, and \langle,$\rangle is the inner product in \mathbb{E}^{n}$. The width $w_{C}(u)$ is $h_{C}(u)+$ $h_{C}(-u)=h_{C-C}(u)$. It is the perpendicular distance between the parallel supporting hyperplanes perpendicular to given direction. The mean width is the average of width over all directions in S^{n-1}.

- Area deviation

The area deviation (or template metric) is a metric on the set K_{p} in \mathbb{E}^{2} (i.e., on the set of plane convex disks) defined by

$$
A(C \triangle D)
$$

where $A($.$) is the area, and \triangle$ is the symmetric difference. If $C \subset D$, then it is equal to $A(D)-A(C)$.

- Perimeter deviation

The perimeter deviation is a metric on K_{p} in \mathbb{E}^{2} defined by

$$
2 p(\operatorname{conv}(C \cup D))-p(C)-p(D)
$$

where $p($.$) is the perimeter. In the case C \subset D$, it is equal to $p(D)-p(C)$.

- Mean width metric

The mean width metric is a metric on K_{p} in \mathbb{E}^{2} defined by

$$
v 2 W(\operatorname{conv}(C \cup D))-W(C)-W(D)
$$

where $W($.$) is the mean width: W(C)=p(C) / \pi$, and $p($.$) is the perimeter.$

- Florian metric

The Florian metric is a metric on K defined by

$$
\int_{S^{n-1}}\left|h_{C}(u)-h_{D}(u)\right| d \sigma(u)=\left\|h_{C}-h_{D}\right\|_{1} .
$$

It can be expressed in the form $2 S(\operatorname{conv}(C \cup D))-S(C)-S(D)$ for $n=2$ (cf. perimeter deviation); it can be expressed also in the form $n k_{n}(2 W(\operatorname{conv}(C \cup$ $D)$) $-W(C)-W(D)$) for $n \geq 2$ (cf. mean width metric).
Here $S($.$) is the surface area, k_{n}$ is the volume of the unit ball \bar{B}^{n} of \mathbb{E}^{n}, and $W($. is the mean width: $W(C)=\frac{1}{n k_{n}} \int_{S^{n-1}}\left(h_{C}(u)+h_{C}(-u)\right) d \sigma(u)$.

- McClure-Vitale metric

Given $1 \leq p \leq \infty$, the McClure-Vitale metric is a metric on K, defined by

$$
\left(\int_{S^{n-1}}\left|h_{C}(u)-h_{D}(u)\right|^{p} d \sigma(u)\right)^{\frac{1}{p}}=\left\|h_{C}-h_{D}\right\|_{p}
$$

- Pompeiu-Hausdorff-Blaschke metric

The Pompeiu-Hausdorff-Blaschke metric is a metric on K defined by

$$
\max \left\{\sup _{x \in C} \inf _{y \in D}\|x-y\|_{2}, \sup _{y \in D} \inf _{x \in C}\|x-y\|_{2}\right\},
$$

where $\|.\|_{2}$ is the Euclidean norm on \mathbb{E}^{n}.
In terms of support functions and using Minkowski addition, this metric is

$$
\sup _{u \in S^{n-1}}\left|h_{C}(u)-h_{D}(u)\right|=\left\|h_{C}-h_{D}\right\|_{\infty}=\inf \left\{\lambda \geq 0: C \subset D+\lambda \bar{B}^{n}, D \subset C+\lambda \bar{B}^{n}\right\},
$$

where \bar{B}^{n} is the unit ball of \mathbb{E}^{n}. This metric can be defined using any norm on \mathbb{R}^{n} and for the space of bounded closed subsets of any metric space.

- Pompeiu-Eggleston metric

The Pompeiu-Eggleston metric is a metric on K defined by

$$
\sup _{x \in C} \inf _{y \in D}\|x-y\|_{2}+\sup _{y \in D} \inf _{x \in C}\|x-y\|_{2},
$$

where $\|.\|_{2}$ is the Euclidean norm on \mathbb{E}^{n}.
In terms of support functions and using Minkowski addition, this metric is

$$
\begin{gathered}
\max \left\{0, \sup _{u \in S^{n-1}}\left(h_{C}(u)-h_{D}(u)\right)\right\}+\max \left\{0, \sup _{u \in S^{n-1}}\left(h_{D}(u)-h_{C}(u)\right)\right\}= \\
=\inf \left\{\lambda \geq 0: C \subset D+\lambda \bar{B}^{n}\right\}+\inf \left\{\lambda \geq 0: D \subset C+\lambda \bar{B}^{n}\right\},
\end{gathered}
$$

where \bar{B}^{n} is the unit ball of \mathbb{E}^{n}. This metric can be defined using any norm on \mathbb{R}^{n} and for the space of bounded closed subsets of any metric space.

- Sobolev distance

The Sobolev distance is a metric on K defined by

$$
\left\|h_{C}-h_{D}\right\|_{w},
$$

where $\|.\|_{w}$ is the Sobolev 1-norm on the set $G_{S^{n-1}}$ of all real continuous functions on the unit sphere S^{n-1} of \mathbb{E}^{n}.
The Sobolev 1-norm is defined by $\|f\|_{w}=\langle f, f\rangle_{w}^{1 / 2}$, where \langle,\rangle_{w} is an inner product on $G_{S^{n-1}}$, given by

$$
\langle f, g\rangle_{w}=\int_{S^{n-1}}\left(f g+\nabla_{s}(f, g)\right) d w_{0}, \quad w_{0}=\frac{1}{n \cdot k_{n}} w,
$$

where $\nabla_{s}(f, g)=\left\langle\operatorname{grad}_{s} f, \operatorname{grad}_{s} g\right\rangle,\langle$,$\rangle is the inner product in \mathbb{E}^{n}$, and grad_{s} is the gradient on S^{n-1} (see [ArWe92]).

- Shephard metric

The Shephard metric is a metric on K_{p} defined by

$$
\ln (1+2 \inf \{\lambda \geq 0: C \subset D+\lambda(D-D), D \subset C+\lambda(C-C)\})
$$

- Nikodym metric

The Nikodym metric (or volume of symmetric difference, Dinghas distance) is a metric on K_{p} defined by

$$
V(C \triangle D)=\int\left(1_{x \in C}-1_{x \in D}\right)^{2} d x
$$

where $V($.$) is the volume (i.e., the Lebesgue n$-dimensional measure), and Δ is the symmetric difference. For $n=2$, one obtains the area deviation.

Normalized volume of symmetric difference is a variant of Steinhaus distance defined by

$$
\frac{V(C \triangle D)}{V(C \cup D)}
$$

- Eggleston distance

The Eggleston distance (or symmetric surface area deviation) is a distance on K_{p} defined by

$$
S(C \cup D)-S(C \cap D)
$$

where $S($.$) is the surface area. It is not a metric.$

- Asplund metric

The Asplund metric is a metric on the space K_{p} / \approx of affine-equivalence classes in K_{p} defined by

$$
\ln \inf \left\{\lambda \geq 1: \exists T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n} \text { affine, } x \in \mathbb{E}^{n}, C \subset T(D) \subset \lambda C+x\right\}
$$

for any equivalence classes C^{*} and D^{*} with the representatives C and D, respectively.

- Macbeath metric

The Macbeath metric is a metric on the space K_{p} / \approx of affine-equivalence classes in K_{p} defined by

$$
\ln \inf \left\{|\operatorname{det} T \cdot P|: \exists T, P: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n} \text { regular affine, } C \subset T(D), D \subset P(C)\right\}
$$

for any equivalence classes C^{*} and D^{*} with the representatives C and D, respectively.
Equivalently, it can be written as $\ln \delta(C, D)+\ln \delta(D, C)$, where $\delta(C, D)=$ $\inf _{T}\left\{\frac{V(T(D))}{V(C)} ; C \subset T(D)\right\}$, and T is a regular affine mapping of \mathbb{E}^{n} onto itself.

- Banach-Mazur metric

The Banach-Mazur metric is a metric on the space $K_{p o} / \sim$ of the equivalence classes of proper 0 -symmetric convex bodies with respect to linear transformations defined by

$$
\ln \inf \left\{\lambda \geq 1: \exists T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n} \text { linear, } C \subset T(D) \subset \lambda C\right\}
$$

for any equivalence classes C^{*} and D^{*} with the representatives C and D, respectively.
It is a special case of the Banach-Mazur distance (cf. Chap. 1).

- Separation distance

The separation distance between two disjoint convex bodies C and D in \mathbb{E}^{n} (in general, between any two disjoint subsets) \mathbb{E}^{n}) is (Buckley, 1985) their Euclidean
set-set distance $\inf \left\{\|x-y\|_{2}: x \in C, y \in D\right\}$, while $\sup \left\{\|x-y\|_{2}: x \in C, y \in\right.$ $D\}$ is their spanning distance.

- Penetration depth distance

The penetration depth distance between two interpenetrating convex bodies C and D in \mathbb{E}^{n} (in general, between any two interpenetrating subsets of \mathbb{E}^{n}) is (Cameron-Culley, 1986) defined as the minimum translation distance that one body undergoes to make the interiors of C and D disjoint:

$$
\min \left\{\|t\|_{2}: \text { interior }(C+t) \cap D=\emptyset\right\} .
$$

Keerthi-Sridharan, 1991, considered $\|t\|_{1^{-}}$and $\|t\|_{\infty}$-analogs of this distance. Cf. penetration distance in Chap. 23 and penetration depth in Chap. 24.

- Growth distances

Let $C, D \in K_{p}$ be two compact convex proper bodies. Fix their seed points $p_{C} \in \operatorname{int} C$ and $p_{D} \in \operatorname{int} D$; usually, they are the centroids of C and D. The growth function $g(C, D)$ is the minimal number $\lambda>0$, such that

$$
\left(\left\{p_{C}\right\}+\lambda\left(C \backslash\left\{p_{C}\right\}\right)\right) \cap\left(\left\{p_{D}\right\}+\lambda\left(D \backslash\left\{p_{D}\right\}\right)\right) \neq \emptyset .
$$

It is the amount objects must be grown if $g(C, D)>1$ (i.e., $C \cap D=\emptyset$), or contracted if $g(C, D)>1$ (i.e., int $C \cap$ int $D \neq \emptyset$) from their internal seed points until their surfaces just touch. The growth separation distance $d_{S}(C, D)$ and the growth penetration distance $d_{P}(C, D)$ [OnGi96] are defined as

$$
d_{S}(C, D)=\max \left\{0, r_{C D}(g(C, D)-1)\right\} \text { and } d_{P}(C, D)=\max \left\{0, r_{C D}(1-g(C, D))\right\},
$$

where $r_{C D}$ is the scaling coefficient (usually, the sum of radii of circumscribing spheres for the sets $C \backslash\left\{p_{C}\right\}$ and $\left.D \backslash\left\{p_{D}\right\}\right)$.
The one-sided growth distance between disjoint C and D (Leven-Sharir, 1987) is

$$
-1+\min \lambda>0:\left(\left\{p_{C}\right\}+\lambda\left\{\left(C \backslash\left\{p_{C}\right\}\right)\right) \cap D \neq \emptyset\right\} .
$$

- Minkowski difference

The Minkowski difference on the set of all compact subsets, in particular, on the set of all sculptured objects (or free form objects), of \mathbb{R}^{3} is defined by

$$
A-B=\{x-y: x \in A, y \in B\}
$$

If we consider object B to be free to move with fixed orientation, the Minkowski difference is a set containing all the translations that bring B to intersect with A. The closest point from the Minkowski difference boundary, $\partial(A-B)$, to the origin gives the separation distance between A and B.

If both objects intersect, the origin is inside of their Minkowski difference, and the obtained distance can be interpreted as a penetration depth distance.

- Demyanov distance

Given $C \in K_{p}$ and $u \in S^{n-1}$, denote, if $\left|\left\{c \in C:\langle u, c\rangle=h_{C}(u)\right\}\right|=1$, this unique point by $y(u, C)$ (exposed point of C in direction u).
The Demyanov difference $A \ominus B$ of two subsets $A, B \in K_{p}$ is the closure of

$$
\operatorname{conv}\left(\cup_{T(A) \cap T(B)}\{y(u, A)-y(u, B)\}\right),
$$

where $T(C)=\left\{u \in S^{n-1}:\left|\left\{c \in C:\langle u, c\rangle=h_{C}(u)\right\}\right|=1\right\}$.
The Demyanov distance between two subsets $A, B \in K_{p}$ is defined by

$$
\|A \ominus B\|=\max _{c \in A \ominus B}\|c\|_{2}
$$

It is shown in [BaFa07] that $\|A \ominus B\|=\sup _{\alpha}\left\|S t_{\alpha}(A)-S t_{\alpha}(M)\right\|_{2}$, where $S t_{\alpha}(C)$ is a generalized Steiner point and the supremum is over all "sufficiently smooth" probabilistic measures α.

- Maximum polygon distance

The maximum polygon distance is a distance between two convex polygons $P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{m}\right)$ defined by

$$
\max _{i, j}\left\|p_{i}-q_{j}\right\|_{2}, i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}
$$

- Grenander distance

Let $P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{m}\right)$ be two disjoint convex polygons, and let $L\left(p_{i}, q_{j}\right), L\left(p_{l}, q_{m}\right)$ be two intersecting critical support lines for P and Q. Then the Grenander distance between P and Q is defined by

$$
\left\|p_{i}-q_{j}\right\|_{2}+\left\|p_{l}-q_{m}\right\|_{2}-\Sigma\left(p_{i}, p_{l}\right)-\Sigma\left(g_{j}, q_{m}\right)
$$

where $\|.\|_{2}$ is the Euclidean norm, and $\Sigma\left(p_{i}, p_{l}\right)$ is the sum of the edges lengths of the polynomial chain p_{i}, \ldots, p_{l}.
Here $P=\left(p_{1}, \ldots, p_{n}\right)$ is a convex polygon with the vertices in standard form, i.e., the vertices are specified according to Cartesian coordinates in a clockwise order, and no three consecutive vertices are collinear. A line L is a line of support of P if the interior of P lies completely to one side of L.
Given two disjoint polygons P and Q, the line $L\left(p_{i}, q_{j}\right)$ is a critical support line if it is a line of support for P at p_{i}, a line of support for Q at q_{j}, and P and Q lie on opposite sides of $L\left(p_{i}, q_{j}\right)$. In general, a chord $[a, b]$ of a convex body C is called its affine diameter if there is a pair of different hyperplanes each containing one of the endpoints a, b and supporting C.

9.2 Distances on Cones

A convex cone C in a real vector space V is a subset C of V such that $C+C \subset C$, $\lambda C \subset C$ for any $\lambda \geq 0$. A cone C induces a partial order on V by

$$
x \preceq y \text { if and only if } y-x \in C .
$$

The order \preceq respects the vector structure of V, i.e., if $x \preceq y$ and $z \preceq u$, then $x+z \preceq y+u$, and if $x \preceq y$, then $\lambda x \preceq \lambda y, \lambda \in \mathbb{R}, \lambda \geq 0$. Elements $x, y \in V$ are called comparable and denoted by $x \sim y$ if there exist positive real numbers α and β such that $\alpha y \preceq x \preceq \beta y$. Comparability is an equivalence relation; its equivalence classes (which belong to C or to $-C$) are called parts (or components, constituents).

Given a convex cone C, a subset $S=\{x \in C: T(x)=1\}$, where $T: V \rightarrow \mathbb{R}$ is a positive linear functional, is called a cross-section of C. A convex cone C is called almost Archimedean if the closure of its restriction to any 2D subspace is also a cone.

A convex cone C is called pointed if $C \cup(-C)=\{0\}$ and solid if int $C \neq \emptyset$.

- Koszul-Vinberg metric

Given an open pointed convex cone C, let C^{*} be its dual cone.
The Koszul-Vinberg metric on C (Koszul, 1965, and Vinberg, 1963) is an affine invariant Riemannian metric defined as the Hessian $g=d^{2} \psi_{C}$, where $\psi_{C}(x)=$ $-\log \int_{C^{*}} e^{-(\epsilon, x)} d \epsilon$ for any $x \in C$.
The Hessian of the entropy (Legendre transform of $\psi_{C}(x)$) defines a metric on C^{*}, which (Barbaresco, 2014) is equivalent to the Fisher-Rao metric (Sect. 7.2).

- Invariant distances on symmetric cones

An open convex cone C in an Euclidean space V is said to be homogeneous if its group of linear automorhisms $G=\{g \in G L(V): g(C)=C\}$ act transitively on C. If, moreover, \bar{C} is pointed and C is self-dual with respect to the given inner product \langle,$\rangle , then it is called a symmetric cone. Any symmetric cone is$ a Cartesian product of such cones of only five types: the cones $\operatorname{Sym}(n, \mathbb{R})^{+}$, $\operatorname{Her}(n, \mathbb{C})^{+}(\mathrm{cf} . \operatorname{Chap} .12), \operatorname{Her}(n, \mathbb{H})^{+}$of positive-definite Hermitian matrices with real, complex or quaternion entries, the Lorentz cone (or forward light cone) $\left\{\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: t^{2}>x_{1}^{2}+\cdots+x_{n}^{2}\right\}$ and 27-dimensional exceptional cone of 3×3 positive-definite matrices over the octonions \mathbb{O}. An $n \times n$ quaternion matrix A can be seen as a $2 n \times 2 n$ complex matrix A^{\prime}; so, $A \in \operatorname{Her}(n, \mathbb{H})^{+}$means $A^{\prime} \in \operatorname{Her}(2 n, \mathbb{C})^{+}$.
Let V be an Euclidean Jordan algebra, i.e., a finite-dimensional Jordan algebra (commutative algebra satisfying $x^{2}(x y)=x\left(x^{2} y\right)$ and having a multiplicative identity e) equipped with an associative $(\langle x y, z\rangle=\langle y, x z\rangle)$ inner product \langle,$\rangle .$ Then the set of square elements of V is a symmetric cone, and every symmetric cone arises in this way. Denote $P(x) y=2 x(x y)-x^{2} y$ for any $x, y \in C$.

For example, for $C=P D_{n}(\mathbb{R})$, the group G is $G L(n, \mathbb{R})$, the inner product is $\langle X, Y\rangle=\operatorname{Tr}(X Y)$, the Jordan product is $\frac{1}{2}(X Y+Y X)$, and $P(X) Y=X Y X$, where the multiplication on the right hand side is the usual matrix multiplication.
If r is the rank of V, then for any $x \in V$ there is a complete set of orthogonal primitive idempotents $c_{1}, \ldots, c_{r} \neq 0$ (i.e., $c_{i}^{2}=c_{i}, c_{i}$ indecomposable, $c_{i} c_{j}=0$ if $i \neq j, \sum_{i=1}^{r} c_{i}=e$) and real numbers $\lambda_{1}, \ldots, \lambda_{r}$, called eigenvalues of x, such that $x=\sum_{i=1}^{r} \lambda_{i} c_{i}$. Let $x, y \in C$ and $\lambda_{1}, \ldots, \lambda_{r}$ be the eigenvalues of $P\left(x^{-\frac{1}{2}}\right) y$. Lim, 2001, defined following three G-invariant distances on any symmetric cone C :

$$
d_{R}=\left(\sum_{1 \leq i \leq r} \ln ^{2} \lambda_{i}\right)^{\frac{1}{2}}, d_{F}=\max _{1 \leq i \leq r} \ln \left|\lambda_{i}\right|, d_{H}=\ln \left(\max _{1 \leq i \leq r} \lambda_{i}\left(\min _{1 \leq i \leq r} \lambda_{i}\right)^{-1}\right) .
$$

For above distances, the geometric mean $P\left(x^{\frac{1}{2}}\right)\left(P\left(x^{-\frac{1}{2}} y\right)^{\frac{1}{2}}\right.$ is the midpoint of x and y. The distances $d_{R}(x, y), d_{F}(x, y)$ are the intrinsic metrics of G-invariant Riemannian and Finsler metrics on C. The Riemannian geodesic curve $\alpha(t)=$ $P\left(x^{\frac{1}{2}}\right)\left(P\left(x^{-\frac{1}{2}} y\right)^{t}\right.$ is one of infinitely many shortest Finsler curves passing through x and y. The space $\left(C, d_{R}(x, y)\right)$ is an Hadamard space (cf. Chap. 6), while $\left(C, d_{F}(x, y)\right)$ is not. The distance $d_{F}(x, y)$ is the Thompson's part metric on C, and the distance $d_{H}(x, y)$ is the Hilbert projective semimetric on C which is a complete metric on the unit sphere on C.

- Thompson's part metric

Given a convex cone C in a real Banach space V, the Thompson's part metric on a part $K \subset C \backslash\{0\}$ is defined (Thompson, 1963) by

$$
\log \max \{m(x, y), m(y, x)\}
$$

for any $x, y \in K$, where $m(x, y)=\inf \{\lambda \in \mathbb{R}: y \preceq \lambda x\}$.
If C is almost Archimedean, then K equipped with this metric is a complete metric space. If C is finite-dimensional, then one obtains a chord space (cf. Chap.6). The positive cone $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0\right.$ for $\left.1 \leq i \leq n\right\}$ equipped with this metric is isometric to a normed space which can be seen as being flat. The same holds for the Hilbert projective semimetric on \mathbb{R}_{+}^{n}.
If C is a closed solid cone in \mathbb{R}^{n}, then int C can be seen as an n-dimensional manifold M^{n}. If for any tangent vector $v \in T_{p}\left(M^{n}\right), p \in M^{n}$, we define a norm $\|v\|_{p}^{T}=\inf \{\alpha>0:-\alpha p \preceq v \preceq \alpha p\}$, then the length of any piecewise differentiable curve $\gamma:[0,1] \rightarrow M^{n}$ is $l(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\|_{\gamma(t)}^{T} d t$, and the distance between x and y is $\inf _{\gamma} l(\gamma)$, where the infimum is taken over all such curves γ with $\gamma(0)=x, \gamma(1)=y$.

- Hilbert projective semimetric

Given a pointed closed convex cone C in a real Banach space V, the Hilbert projective semimetric on $C \backslash\{0\}$ is defined (Bushell, 1973), for $x, y \in C \backslash\{0\}$, by

$$
h(x, y)=\log (m(x, y) m(y, x)),
$$

where $m(x, y)=\inf \{\lambda \in \mathbb{R}: y \preceq \lambda x\} ;$ it holds $\frac{1}{m(y, x)}=\sup \{\lambda \in \mathbb{R}: \lambda y \preceq$ $x\}$. This semimetric is finite on the interior of C and $h\left(\lambda x, \lambda^{\prime} y\right)=h(x, y)$ for $\lambda, \lambda^{\prime}>0$. So, $h(x, y)$ is a metric on the projectivization of C, i.e., the space of rays of this cone.
If C is finite-dimensional, and S is a cross-section of C (in particular, $S=\{x \in$ $C:\|x\|=1\}$, where $\|$.$\| is a norm on V$), then, for any distinct points $x, y \in S$, it holds $h(x, y)=|\ln (x, y, z, t)|$, where z, t are the points of the intersection of the line $l_{x, y}$ with the boundary of S, and (x, y, z, t) is the cross-ratio of x, y, z, t. Cf. the Hilbert projective metric in Chap. 6.
If C is finite-dimensional and almost Archimedean, then each part of C is a chord space (cf. Chap. 6) under the Hilbert projective semimetric. On the Lorentz cone $L=\left\{x=\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: t^{2}>x_{1}^{2}+\cdots+x_{n}^{2}\right\}$, this semimetric is isometric to the n-dimensional hyperbolic space. On the hyperbolic subspace $H=\{x \in L: \operatorname{det}(x)=1\}$, it holds $h(x, y)=2 d(x, y)$, where $d(x, y)$ is the Thompson's part metric which is (on H) the usual hyperbolic distance $\operatorname{arccosh}\langle x, y\rangle$.
If C is a closed solid cone in \mathbb{R}^{n}, then int C can be seen as an n-manifold M^{n} (Chap. 2). If for any tangent vector $v \in T_{p}\left(M^{n}\right), p \in M^{n}$, we define a seminorm $\|v\|_{p}^{H}=m(p, v)-m(v, p)$, then the length of any piecewise differentiable curve $\gamma:[0,1] \rightarrow M^{n}$ is $l(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\|_{\gamma(t)}^{H} d t$, and $h(x, y)=\inf _{\gamma} l(\gamma)$, where the infimum is taken over all such curves γ with $\gamma(0)=x$ and $\gamma(1)=y$.

- Bushell metric

Given a convex cone C in a real Banach space V, the Bushell metric on the set $S=\left\{x \in C: \sum_{i=1}^{n}\left|x_{i}\right|=1\right\}$ (in general, on any cross-section of C) is defined by

$$
\frac{1-m(x, y) \cdot m(y, x)}{1+m(x, y) \cdot m(y, x)}
$$

for any $x, y \in S$, where $m(x, y)=\inf \{\lambda \in \mathbb{R}: y \preceq \lambda x\}$. In fact, it is equal to $\tanh \left(\frac{1}{2} h(x, y)\right)$, where h is the Hilbert projective semimetric.

- k-oriented distance

A simplicial cone C in \mathbb{R}^{n} is defined as the intersection of n (open or closed) half-spaces, each of whose supporting planes contain the origin 0 . For any set M of n points on the unit sphere, there is a unique simplicial cone C that contains these points. The axes of the cone C can be constructed as the set of the n rays, where each ray originates at the origin, and contains one of the points from M. Given a partition $\left\{C_{1}, \ldots, C_{k}\right\}$ of \mathbb{R}^{n} into a set of simplicial cones C_{1}, \ldots, C_{k}, the k-oriented distance is a metric on \mathbb{R}^{n} defined by

$$
d_{k}(x-y)
$$

for all $x, y \in \mathbb{R}^{n}$, where, for any $x \in C_{i}$, the value $d_{k}(x)$ is the length of the shortest path from the origin 0 to x traveling only in directions parallel to the axes of C_{i}.

- Cones over metric space

A cone over a metric space (X, d) is the quotient space $\operatorname{Con}(X, d)=(X \times$ $[0,1]) /(X \times\{0\})$ obtained from the product $X \times \mathbb{R}_{\geq 0}$ by collapsing the fiber (subspace $X \times\{0\}$) to a point (the apex of the cone). Cf. metric cone in Chap. 1. The Euclidean cone over the metric space (X, d) is the cone $\operatorname{Con}(X, d)$ with a metric d defined, for any $(x, t),(y, s) \in \operatorname{Con}(X, d)$, by

$$
\sqrt{t^{2}+s^{2}-2 t s \cos (\min \{d(x, y), \pi\})}
$$

If (X, d) is a compact metric space with diameter <2, the Krakus metric is a metric on $\operatorname{Con}(X, d)$ defined, for any $(x, t),(y, s) \in \operatorname{Con}(X, d)$, by

$$
\min \{s, t\} d(x, y)+|t-s| .
$$

The cone $\operatorname{Con}(X, d)$ with the Krakus metric admits a unique midpoint for each pair of its points if (X, d) has this property.
If M^{n} is a manifold with a pseudo-Riemannian metric g, one can consider a metric $d r^{2}+r^{2} g$ (in general, a metric $\left.\frac{1}{k} d r^{2}+r^{2} g, k \neq 0\right)$ on $\operatorname{Con}\left(M^{n}\right)=$ $M^{n} \times \mathbb{R}_{>0}$. For example, $\operatorname{Con}\left(M^{n}\right)=\mathbb{R}^{n} \backslash\{0\}$ if $\left(M^{n}, g\right)$ is the unit sphere in \mathbb{R}^{n}.
A spherical cone (or suspension) $\Sigma(X)$ over a metric space (X, d) is the quotient of the product $X \times[0, a]$ obtained by identifying all points in the fibers $X \times\{0\}$ and $X \times\{a\}$. If (X, d) is a length space (cf. Chap. 6) with $\operatorname{diam}(X) \leq \pi$, and $a=\pi$, the suspension metric on $\Sigma(X)$ is defined, for any $(x, t),(y, s) \in \Sigma(X)$, by

$$
\arccos (\cos t \cos s+\sin t \sin s \cos d(x, y))
$$

9.3 Distances on Simplicial Complexes

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the convex hull of $r+1$ points of \mathbb{E}^{n} which do not lie in any $(r-1)$-plane. The boundary of an r-simplex has $r+10$-faces (polytope vertices), $\frac{r(r+1)}{2} 1$-faces (polytope edges), and $\binom{r+1}{i+1} i$-faces, where $\binom{r}{i}$ is the binomial coefficient. The content (i.e., the hypervolume) of a simplex can be computed using the Cayley-Menger determinant. The regular simplex of dimension r is denoted by α_{r}. Simplicial depth of a point $p \in \mathbb{E}^{n}$ relative to a set $P \subset \mathbb{E}^{n}$ is the number of simplices S, generated by $(n+1)$-subsets of P and containing p.

Roughly, a geometrical simplicial complex is a space with a triangulation, i.e., a decomposition of it into closed simplices such that any two simplices either do not intersect or intersect only along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices, in which a family of finite nonempty subsets, called simplices, is distinguished, such that every nonempty subset of a simplex s is a simplex, called a face of s, and every one-element subset is a simplex. A simplex is called i-dimensional if it consists of $i+1$ vertices. The dimension of S is the maximal dimension of its simplices. For every simplicial complex S there exists a triangulation of a polyhedron whose simplicial complex is S. This geometric simplicial complex, denoted by $G S$, is called the geometric realization of S.

- Vietoris-Rips complex

Given a metric space (X, d) and distance δ, their Vietoris-Rips complex is an abstract simplicial complex, the simplexes of which are the finite subsets M of (X, d) having diameter at most δ; the dimension of a simplex defined by M is $|M|-1$.

- Simplicial metric

Given an abstract simplicial complex S, the points of geometric simplicial complex $G S$, realizing S, can be identified with the functions $\alpha: S \rightarrow[0,1]$ for which the set $\{x \in S: \alpha(x) \neq 0\}$ is a simplex in S, and $\sum_{x \in S} \alpha(x)=1$. The number $\alpha(x)$ is called the x-th barycentric coordinate of α.
The simplicial metric on GS (Lefschetz, 1939) is the Euclidean metric on it:

$$
\sqrt{\sum_{x \in S}(\alpha(x)-\beta(x))^{2}}
$$

Tukey, 1939, found another metric on $G S$, topologically equivalent to a simplicial one. His polyhedral metric is the intrinsic metric, defined as the infimum of the lengths of the polygonal lines joining the points α and β such that each link is within one of the simplices. An example of a polyhedral metric is the intrinsic metric on the surface of a convex polyhedron in \mathbb{E}^{3}.

- Polyhedral space

A Euclidean polyhedral space is a simplicial complex with a polyhedral metric. Every simplex is a flat space (a metric space locally isometric to some \mathbb{E}^{n}; cf. Chap. 1), and the metrics of any two simplices coincide on their intersection. The metric is the maximal metric not exceeding the metrics of simplices.
If such a space is an n-manifold (Chap. 2), a point in it is a metric singularity if it has no neighborhood isometric to an open subset of \mathbb{E}^{n}.
A polyhedral metric on a simplicial complex in a space of constant (positive or negative) curvature results in spherical and hyperbolic polyhedral spaces.
The dimension of a polyhedral space is the maximal dimension of simplices used to glue it. Metric graphs (Chap. 15) are just one-dimensional polyhedral spaces.

The surface of a convex polyhedron is a 2D polyhedral space. A polyhedral metric d on a triangulated surface is a circle-packing metric (Thurston, 1985) if there exists a vertex-weighting $w(x)>0$ with $d(x, y)=w(x)+w(y)$ for any edge $x y$.

- Manifold edge-distance

A (boundaryless) combinatorial n-manifold is an abstract n-dimensional simplicial complex M^{n} in which the link of each r-simplex is an $(n-r-1)$-sphere. The category of such spaces is equivalent to the category of piecewise-linear (PL) manifolds.
The link of a simplex S is $C l\left(\right.$ Star $\left._{S}\right)$ - Star_{S}, where Star_{S} is the set of all simplices in M^{n} having a face S, and $C l\left(\right.$ Star $\left._{S}\right)$ is the smallest simplicial subcomplex of M^{n} containing Star $_{S}$.
The edge-distance between vertices $u, v \in M^{n}$ is the minimum number of edges needed to connect them.

- Manifold triangulation metric

Let M^{n} be a compact PL (piecewise-linear) n-dimensional manifold. A triangulation of M^{n} is a simplicial complex such that its corresponding polyhedron is PL-homeomorphic to M^{n}. Let $T_{M^{n}}$ be the set of all combinatorial types of triangulations, where two triangulations are equivalent if they are simplicially isomorphic.
Every such triangulation can be seen as a metric on the smooth manifold M if one assigns the unit length for any of its 1-dimensional simplices; so, $T_{M^{n}}$ can be seen as a discrete analog of the space of Riemannian structures, i.e., isometry classes of Riemannian metrics on M^{n}.
A manifold triangulation metric between two triangulations x and y is (Nabutovsky and Ben-Av, 1993) an editing metric on $T_{M^{n}}$, i.e., the minimal number of elementary moves, from a given finite list of operations, needed to obtain y from x.
For example, the bistellar move consists of replacing a subcomplex of a given triangulation, which is simplicially isomorphic to a subcomplex of the boundary of the standard $(n+1)$-simplex, by the complementary subcomplex of the boundary of an $(n+1)$-simplex, containing all remaining n-simplices and their faces. Every triangulation can be obtained from any other one by a finite sequence of bistellar moves.

- Polyhedral chain metric

An r-dimensional polyhedral chain A in \mathbb{E}^{n} is a linear expression $\sum_{i=1}^{m} d_{i} t_{i}^{r}$, where, for any i, the value t_{i}^{r} is an r-dimensional simplex of \mathbb{E}^{n}. The boundary ∂A of a chain $A D$ is the linear combination of boundaries of the simplices in the chain. The boundary of an r-dimensional chain is an $(r-1)$-dimensional chain.
A polyhedral chain metric is a norm metric $\|A-B\|$ on the set $C_{r}\left(\mathbb{E}^{n}\right)$ of all r-dimensional polyhedral chains. As a norm $\|$.$\| on C_{r}\left(\mathbb{E}^{n}\right)$ one can take:

1. The mass of a polyhedral chain, i.e., $|A|=\sum_{i=1}^{m}\left|d_{i}\right|\left|t_{i}^{r}\right|$, where $\left|t^{r}\right|$ is the volume of the cell t_{i}^{r};
2. The flat norm of a polyhedral chain, i.e., $|A|^{b}=\inf _{D}\{|A-\partial D|+|D|\}$, where the infimum is taken over all $(r+1)$-dimensional polyhedral chains;
3. The sharp norm of a polyhedral chain, i.e.,

$$
|A|^{\sharp}=\inf \left(\frac{\sum_{i=1}^{m}\left|d_{i}\right|\left|t_{i}^{r}\right|\left|v_{i}\right|}{r+1}+\left|\sum_{i=1}^{m} d_{i} T_{v_{i}} t_{i}^{r}\right|^{b}\right),
$$

where the infimum is taken over all shifts v (here $T_{v} t^{r}$ is the cell obtained by shifting t^{r} by a vector v of length $|v|$). A flat chain of finite mass is a sharp chain. If $r=0$, than $|A|^{b}=|A|^{\sharp}$.

The metric space of polyhedral co-chains (i.e., linear functions of polyhedral chains) can be defined similarly. As a norm of a polyhedral co-chain X one can take:

1. The co-mass of a polyhedral co-chain, i.e., $|X|=\sup _{|A|=1}|X(A)|$, where $X(A)$ is the value of the co-chain X on a chain A;
2. The flat co-norm of a polyhedral co-chain, i.e., $|X|^{b}=\sup _{|A|^{b}=1}|X(A)|$;
3. The sharp co-norm of a polyhedral co-chain, i.e., $|X|^{\sharp}=\sup _{|A|^{\sharp}=1}|X(A)|$.

Part III

Distances in Classical Mathematics

Chapter 10
 Distances in Algebra

10.1 Group Metrics

A group (G, \cdot, e) is a set G of elements with a binary operation \cdot, called the group operation, that together satisfy the four fundamental properties of closure $(x \cdot y \in G$ for any $x, y \in G)$, associativity $(x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for any $x, y, z \in G)$, the identity property ($x \cdot e=e \cdot x=x$ for any $x \in G$), and the inverse property (for any $x \in G$, there exists an element $x^{-1} \in G$ such that $x \cdot x^{-1}=x^{-1} \cdot x=e$).

In additive notation, a group $(G,+, 0)$ is a set G with a binary operation + such that the following properties hold: $x+y \in G$ for any $x, y \in G, x+(y+z)=$ $(x+y)+z$ for any $x, y, z \in G, x+0=0+x=x$ for any $x \in G$, and, for any $x \in G$, there exists an element $-x \in G$ such that $x+(-x)=(-x)+x=0$.

A group (G, \cdot, e) is called finite if the set G is finite. A group (G, \cdot, e) is called Abelian if it is commutative, i.e., $x \cdot y=y \cdot x$ for any $x, y \in G$.

Most metrics considered in this section are group norm metrics on a group (G, \cdot, e), defined by

$$
\left\|x \cdot y^{-1}\right\|
$$

(or, sometimes, by $\left\|y^{-1} \cdot x\right\|$), where $\|$.$\| is a group norm, i.e., a function \|\|:. G \rightarrow$ \mathbb{R} such that, for any $x, y \in G$, we have the following properties:

1. $\|x\| \geq 0$, with $\|x\|=0$ if and only if $x=e$;
2. $\|x\|=\left\|x^{-1}\right\|$;
3. $\|x \cdot y\| \leq\|x\|+\|y\|$ (triangle inequality).

In additive notation, a group norm metric on a group $(G,+, 0)$ is defined by $\|x+(-y)\|=\|x-y\|$, or, sometimes, by $\|(-y)+x\|$.

The simplest example of a group norm metric is the bi-invariant ultrametric (sometimes called the Hamming metric) $\left\|x \cdot y^{-1}\right\|_{H}$, where $\|x\|_{H}=1$ for $x \neq e$, and $\|e\|_{H}=0$.

- Bi-invariant metric

A metric (in general, a semimetric) d on a group (G, \cdot, e) is called bi-invariant if

$$
d(x, y)=d(x \cdot z, y \cdot z)=d(z \cdot x, z \cdot y)
$$

for any $x, y, z \in G$ (cf. translation invariant metric in Chap. 5). Any group norm metric on an Abelian group is bi-invariant.
A metric (in general, a semimetric) d on a group (G, \cdot, e) is called a rightinvariant metric if $d(x, y)=d(x \cdot z, y \cdot z)$ for any $x, y, z \in G$, i.e., the operation of right multiplication by an element z is a motion of the metric space (G, d). Any group norm metric defined by $\left\|x \cdot y^{-1}\right\|$, is right-invariant.
A metric (in general, a semimetric) d on a group (G, \cdot, e) is called a leftinvariant metric if $d(x, y)=d(z \cdot x, z \cdot y)$ holds for any $x, y, z \in G$, i.e., the operation of left multiplication by an element z is a motion of the metric space (G, d). Any group norm metric defined by $\left\|y^{-1} \cdot x\right\|$, is left-invariant.
Any right-invariant or left-invariant (in particular, bi-invariant) metric d on G is a group norm metric, since one can define a group norm on G by $\|x\|=d(x, 0)$.

- G-invariant metric

Given a metric space (X, d) and an action $g(x)$ of a group G on it, the metric d is called G-invariant (under this action) if for all $x, y \in X, g \in G$ it holds

$$
d(g(x), g(y))=d(x, y)
$$

For every G-invariant metric d_{X} on X and every point $x \in X$, the function

$$
d_{G}\left(g_{1}, g_{2}\right)=d_{X}\left(g_{1}(x), g_{2}(x)\right)
$$

is a left-invariant metric on G. This metric is called orbit metric in [BBI01], since it is the restriction of d on the orbit $G x$, which can be identified with G.

- Positively homogeneous distance

A distance d on an Abelian group $(G,+, 0)$ is called positively homogeneous if

$$
d(m x, m y)=m d(x, y)
$$

for all $x, y \in G$ and all $m \in \mathbb{N}$, where $m x$ is the sum of m terms all equal to x.

- Translation discrete metric

A group norm metric (in general, a group norm semimetric) on a group (G, \cdot, e) is called translation discrete if the translation distances (or translation numbers)

$$
\tau_{G}(x)=\lim _{n \rightarrow \infty} \frac{\left\|x^{n}\right\|}{n}
$$

of the nontorsion elements x (i.e., such that $x^{n} \neq e$ for any $n \in \mathbb{N}$) of the group with respect to that metric are bounded away from zero.
If the numbers $\tau_{G}(x)$ are just nonzero, such a group norm metric is called a translation proper metric.

- Word metric

Let (G, \cdot, e) be a finitely-generated group with a set A of generators (i.e., A is finite, and every element of G can be expressed as a product of finitely many elements A and their inverses). The word length $w_{W}^{A}(x)$ of an element $x \in G \backslash\{e\}$ is defined by

$$
w_{W}^{A}(x)=\inf \left\{r: x=a_{1}^{\epsilon_{1}} \ldots a_{r}^{\epsilon_{r}}, a_{i} \in A, \epsilon_{i} \in\{ \pm 1\}\right\} \text { and } w_{W}^{A}(e)=0
$$

The word metric d_{W}^{A} associated with A is a group norm metric on G defined by

$$
w_{W}^{A}\left(x \cdot y^{-1}\right) .
$$

As the word length w_{W}^{A} is a group norm on G, d_{W}^{A} is right-invariant. Sometimes it is defined as $w_{W}^{A}\left(y^{-1} \cdot x\right)$, and then it is left-invariant. In fact, d_{W}^{A} is the maximal metric on G that is right-invariant, and such that the distance from any element of A or A^{-1} to the identity element e is equal to one.
If A and B are two finite sets of generators of the group (G, \cdot, e), then the identity mapping between the metric spaces $\left(G, d_{W}^{A}\right)$ and $\left(G, d_{W}^{B}\right)$ is a quasi-isometry, i.e., the word metric is unique up to quasi-isometry.

The word metric is the path metric of the Cayley graph Γ of (G, \cdot, e), constructed with respect to A. Namely, Γ is a graph with the vertex-set G in which two vertices x and $y \in G$ are connected by an edge if and only if $y=a^{\epsilon} x$, $\epsilon= \pm 1, a \in A$.

- Weighted word metric

Let (G, \cdot, e) be a finitely-generated group with a set A of generators. Given a bounded weight function $w: A \rightarrow(0, \infty)$, the weighted word length $w_{W W}^{A}(x)$ of an element $x \in G \backslash\{e\}$ is defined by $w_{W W}^{A}(e)=0$ and

$$
w_{W W}^{A}(x)=\inf \left\{\sum_{i=1}^{t} w\left(a_{i}\right), t \in \mathbb{N}: x=a_{1}^{\epsilon_{1}} \ldots a_{t}^{\epsilon_{t}}, a_{i} \in A, \epsilon_{i} \in\{ \pm 1\}\right\} .
$$

The weighted word metric $d_{W W}^{A}$ associated with A is a group norm metric on G defined by

$$
w_{W W}^{A}\left(x \cdot y^{-1}\right) .
$$

As the weighted word length $w_{W W}^{A}$ is a group norm on $G, d_{W W}^{A}$ is right-invariant. Sometimes it is defined as $w_{W W}^{A}\left(y^{-1} \cdot x\right)$, and then it is left-invariant. The metric $d_{W W}^{A}$ is the supremum of semimetrics d on G with the property that $d(e, a) \leq w(a)$ for any $a \in A$.

The metric $d_{W W}^{A}$ is a coarse-path metric, and every right-invariant coarse path metric is a weighted word metric up to coarse isometry.
The metric $d_{W W}^{A}$ is the path metric of the weighted Cayley graph Γ_{W} of (G, \cdot, e) constructed with respect to A. Namely, Γ_{W} is a weighted graph with the vertexset G in which two vertices x and $y \in G$ are connected by an edge with the weight $w(a)$ if and only if $y=a^{\epsilon} x, \epsilon= \pm 1, a \in A$.

- Interval norm metric

An interval norm metric is a group norm metric on a finite group (G, \cdot, e) defined by

$$
\left\|x \cdot y^{-1}\right\|_{i n t}
$$

where $\|.\|_{\text {int }}$ is an interval norm on G, i.e., a group norm such that the values of $\|.\| \|_{\text {int }}$ form a set of consecutive integers starting with 0 .
To each interval norm $\|.\|_{\text {int }}$ corresponds an ordered partition $\left\{B_{0}, \ldots, B_{m}\right\}$ of G with $B_{i}=\left\{x \in G:\|x\|_{\text {int }}=i\right\}$; cf. Sharma-Kaushik distance in Chap. 16. The Hamming and Lee norms are special cases of interval norm. A generalized Lee norm is an interval norm for which each class has a form $B_{i}=\left\{a, a^{-1}\right\}$.

- C-metric

A C-metric d is a metric on a group (G, \cdot, e) satisfying the following conditions:

1. The values of d form a set of consecutive integers starting with 0 ;
2. The cardinality of the sphere $B(x, r)=\{y \in G: d(x, y)=r\}$ is independent of the particular choice of $x \in G$.
The word metric, the Hamming metric, and the Lee metric are C-metrics. Any interval norm metric is a C-metric.

- Order norm metric

Let (G, \cdot, e) be a finite Abelian group. Let $\operatorname{ord}(x)$ be the order of an element $x \in G$, i.e., the smallest positive integer n such that $x^{n}=e$. Then the function $\|.\|_{\text {ord }}: G \rightarrow \mathbb{R}$ defined by $\|x\|_{\text {ord }}=\ln \operatorname{ord}(x)$, is a group norm on G, called the order norm.
The order norm metric is a group norm metric on G, defined by

$$
\left\|x \cdot y^{-1}\right\|_{\text {ord }}
$$

- Monomorphism norm metric

Let $(G,+, 0)$ be a group. Let (H, \cdot, e) be a group with a group norm $\|.\|_{H}$. Let $f: G \rightarrow H$ be a monomorphism of groups G and H, i.e., an injective function such that $f(x+y)=f(x) \cdot f(y)$ for any $x, y \in G$. Then the function $\|\cdot\|_{G}^{f}: G \rightarrow \mathbb{R}$ defined by $\|x\|_{G}^{f}=\|f(x)\|_{H}$, is a group norm on G, called the monomorphism norm.

The monomorphism norm metric is a group norm metric on G defined by

$$
\|x-y\|_{G}^{f}
$$

- Product norm metric

Let $(G,+, 0)$ be a group with a group norm $\|.\|_{G}$. Let (H, \cdot, e) be a group with a group norm $\|$. $\|_{H}$. Let $G \times H=\{\alpha=(x, y): x \in G, y \in H\}$ be the Cartesian product of G and H, and $(x, y) \cdot(z, t)=(x+z, y \cdot t)$.
Then the function $\|.\|_{G \times H}: G \times H \rightarrow \mathbb{R}$ defined by $\|\alpha\|_{G \times H}=\|(x, y)\|_{G \times H}=$ $\|x\|_{G}+\|y\|_{H}$, is a group norm on $G \times H$, called the product norm.
The product norm metric is a group norm metric on $G \times H$ defined by

$$
\left\|\alpha \cdot \beta^{-1}\right\|_{G \times F}
$$

On the Cartesian product $G \times H$ of two finite groups with the interval norms $\|\cdot\|_{G}^{\text {int }}$ and $\|.\|_{H}^{\text {int }}$, an interval norm $\|.\|_{G \times H}^{\text {int }}$ can be defined. In fact, $\|\alpha\|_{G \times H}^{\text {int }}=$ $\|(x, y)\|_{G \times H}^{\text {int }}=\|x\|_{G}+(m+1)\|y\|_{H}$, where $m=\max _{a \in G}\|a\|_{G}^{\text {int }}$.

- Quotient norm metric

Let (G, \cdot, e) be a group with a group norm $\|.\|_{G}$. Let (N, \cdot, e) be a normal subgroup of (G, \cdot, e), i.e., $x N=N x$ for any $x \in G$. Let $(G / N, \cdot, e N)$ be the quotient group of G, i.e., $G / N=\{x N: x \in G\}$ with $x N=\{x \cdot a: a \in N\}$, and $x N \cdot y N=x y N$. Then the function $\|\cdot\|_{G / N}: G / N \rightarrow \mathbb{R}$ defined by $\|x N\|_{G / N}=\min _{a \in N}\|x a\|_{X}$, is a group norm on G / N, called the quotient norm.
A quotient norm metric is a group norm metric on G / N defined by

$$
\left\|x N \cdot(y N)^{-1}\right\|_{G / N}=\left\|x y^{-1} N\right\|_{G / N}
$$

If $G=\mathbb{Z}$ with the norm being the absolute value, and $N=m \mathbb{Z}, m \in \mathbb{N}$, then the quotient norm on $\mathbb{Z} / m \mathbb{Z}=\mathbb{Z}_{m}$ coincides with the Lee norm.
If a metric d on a group (G, \cdot, e) is right-invariant, then for any normal subgroup (N, \cdot, e) of (G, \cdot, e) the metric d induces a right-invariant metric (in fact, the Hausdorff metric) d^{*} on G / N by

$$
d^{*}(x N, y N)=\max \left\{\max _{b \in y N} \min _{a \in x N} d(a, b), \max _{a \in x N} \min _{b \in y N} d(a, b)\right\} .
$$

- Commutation distance

Let (G, \cdot, e) be a finite non-Abelian group. Let $Z(G)=\{c \in G: x \cdot c=$ $c \cdot x$ for any $x \in G\}$ be the center of G.
The commutation graph of G is defined as a graph with the vertex-set G in which distinct elements $x, y \in G$ are connected by an edge whenever they commute, i.e., $x \cdot y=y \cdot x$. (Darafsheh, 2009, consider noncommuting graph on $G \backslash Z(G)$.)

Any two noncommuting elements $x, y \in G$ are connected in this graph by the path x, c, y, where c is any element of $Z(G)$ (for example, e). A path $x=$ $x^{1}, x^{2}, \ldots, x^{k}=y$ in the commutation graph is called an $(x-y) N$-path if $x^{i} \notin Z(G)$ for any $i \in\{1, \ldots, k\}$. In this case the elements $x, y \in G \backslash Z(G)$ are called N-connected.
The commutation distance (see [DeHu98]) d is an extended distance on G defined by the following conditions:

1. $d(x, x)=0$;
2. $d(x, y)=1$ if $x \neq y$, and $x \cdot y=y \cdot x$;
3. $d(x, y)$ is the minimum length of an $(x-y) N$-path for any N-connected elements x and $y \in G \backslash Z(G)$;
4. $d(x, y)=\infty$ if $x, y \in G \backslash Z(G)$ are not connected by any N-path.

Given a group G and a G-conjugacy class X in it, Bates-Bundy-Perkins-Rowley in 2003, 2004, 2007, 2008 considered commuting graph (X, E) whose vertex set is X and distinct vertices $x, y \in X$ are joined by an edge $e \in E$ whenever they commute.

- Modular distance

Let $\left(\mathbb{Z}_{m},+, 0\right), m \geq 2$, be a finite cyclic group. Let $r \in \mathbb{N}, r \geq 2$. The modular r-weight $w_{r}(x)$ of an element $x \in \mathbb{Z}_{m}=\{0,1, \ldots, m\}$ is defined as $w_{r}(x)=$ $\min \left\{w_{r}(x), w_{r}(m-x)\right\}$, where $w_{r}(x)$ is the arithmetic r-weight of the integer x. The value $w_{r}(x)$ can be obtained as the number of nonzero coefficients in the generalized nonadjacent form $x=e_{n} r^{n}+\ldots e_{1} r+e_{0}$ with $e_{i} \in \mathbb{Z},\left|e_{i}\right|<r$, $\left|e_{i}+e_{i+1}\right|<r$, and $\left|e_{i}\right|<\left|e_{i+1}\right|$ if $e_{i} e_{i+1}<0$. Cf. arithmetic r-norm metric in Chap. 12.
The modular distance is a distance on \mathbb{Z}_{m}, defined by

$$
w_{r}(x-y) .
$$

The modular distance is a metric for $w_{r}(m)=1, w_{r}(m)=2$, and for several special cases with $w_{r}(m)=3$ or 4 . In particular, it is a metric for $m=r^{n}$ or $m=r^{n}-1$; if $r=2$, it is a metric also for $m=2^{n}+1$ (see, for example, [Ernv85]).
The most popular metric on \mathbb{Z}_{m} is the Lee metric defined by $\|x-y\|_{\text {Lee }}$, where $\|x\|_{\text {Lee }}=\min \{x, m-x\}$ is the Lee norm of an element $x \in \mathbb{Z}_{m}$.

- G-norm metric

Consider a finite field $\mathbb{F}_{p^{n}}$ for a prime p and a natural number n. Given a compact convex centrally-symmetric body G in \mathbb{R}^{n}, define the G-norm of an element $x \in \mathbb{F}_{p^{n}}$ by $\|x\|_{G}=\inf \left\{\mu \geq 0: x \in p \mathbb{Z}^{n}+\mu G\right\}$.
The G-norm metric is a group norm metric on $\mathbb{F}_{p^{n}}$ defined by

$$
\left\|x \cdot y^{-1}\right\|_{G}
$$

- Permutation norm metric

Given a finite metric space (X, d), the permutation norm metric is a group norm metric on the group $\left(\operatorname{Sym}_{X}, \cdot, i d\right)$ of all permutations of X (id is the identity mapping) defined by

$$
\left\|f \cdot g^{-1}\right\| \|_{y m},
$$

where the group norm $\|.\|_{\text {Sym }}$ on Sym_{X} is given by $\|f\|_{\text {Sym }}=\max _{x \in X} d(x, f(x))$.

- Metric of motions

Let (X, d) be a metric space, and let $p \in X$ be a fixed element of X.
The metric of motions (see [Buse55]) is a metric on the group ($\Omega, \cdot, i d$) of all motions of (X, d) (id is the identity mapping) defined by

$$
\sup _{x \in X} d(f(x), g(x)) \cdot e^{-d(p, x)}
$$

for any $f, g \in \Omega$ (cf. Busemann metric of sets in Chap. 3). If the space (X, d) is bounded, a similar metric on Ω can be defined as

$$
\sup _{x \in X} d(f(x), g(x)) .
$$

Given a semimetric space (X, d), the semimetric of motions on $(\Omega, \cdot, i d)$ is

$$
d(f(p), g(p))
$$

- General linear group semimetric

Let \mathbb{F} be a locally compact nondiscrete topological field. Let $\left(\mathbb{F}^{n},\|.\|_{\mathbb{F}^{n}}\right), n \geq 2$, be a normed vector space over \mathbb{F}. Let $\|$.$\| be the operator norm associated$ with the normed vector space $\left(\mathbb{F}^{n},\|.\|_{\mathbb{F}^{n}}\right)$. Let $G L(n, \mathbb{F})$ be the general linear group over \mathbb{F}. Then the function $|\cdot|_{o p}: G L(n, \mathbb{F}) \rightarrow \mathbb{R}$ defined by $|g|_{o p}=$ $\sup \left\{|\ln \|g\||\left|,\left|\ln \left\|g^{-1}\right\|\right|\right\}\right.$, is a seminorm on $G L(n, \mathbb{F})$.
The general linear group semimetric on the group $G L(n, \mathbb{F})$ is defined by

$$
\left|g \cdot h^{-1}\right|_{o p}
$$

It is a right-invariant semimetric which is unique, up to coarse isometry, since any two norms on \mathbb{F}^{n} are bi-Lipschitz equivalent.

- Generalized torus semimetric

Let (T, \cdot, e) be a generalized torus, i.e., a topological group which is isomorphic to a direct product of n multiplicative groups \mathbb{F}_{i}^{*} of locally compact nondiscrete topological fields \mathbb{F}_{i}. Then there is a proper continuous homomorphism $v: T \rightarrow$ \mathbb{R}^{n}, namely, $v\left(x_{1}, \ldots, x_{n}\right)=\left(v_{1}\left(x_{1}\right), \ldots, v_{n}\left(x_{n}\right)\right)$, where $v_{i}: \mathbb{F}_{i}^{*} \rightarrow \mathbb{R}$ are proper continuous homomorphisms from the \mathbb{F}_{i}^{*} to the additive group \mathbb{R}, given by the
logarithm of the valuation. Every other proper continuous homomorphism v^{\prime} : $T \rightarrow \mathbb{R}^{n}$ is of the form $v^{\prime}=\alpha \cdot v$ with $\alpha \in G L(n, \mathbb{R})$. If $\|$.$\| is a norm on \mathbb{R}^{n}$, one obtains the corresponding seminorm $\|x\|_{T}=\|v(x)\|$ on T.
The generalized torus semimetric is defined on the group (T, \cdot, e) by

$$
\left\|x y^{-1}\right\|_{T}=\left\|v\left(x y^{-1}\right)\right\|=\|v(x)-v(y)\| .
$$

- Stable norm metric

Given a Riemannian manifold (M, g), the stable norm metric is a group norm metric on its real homology group $H_{k}(M, \mathbb{R})$ defined by the following stable norm $\|h\|_{s}$: the infimum of the Riemannian k-volumes of real cycles representing h.
The Riemannian manifold $\left(\mathbb{R}^{n}, g\right)$ is within finite Gromov-Hausdorff distance (cf. Chap. 1) from an n-dimensional normed vector space $\left(\mathbb{R}^{n},\|.\| \|_{s}\right)$.
If (M, g) is a compact connected oriented Riemannian manifold, then the manifold $H_{1}(M, \mathbb{R}) / H_{1}(M, \mathbb{R})$ with metric induced by $\|.\|_{s}$ is called the Albanese torus (or Jacobi torus) of (M, g). This Albanese metric is a flat metric (cf. Chap. 8).

- Heisenberg metric

Let (H, \cdot, e) be the (real) Heisenberg group \mathcal{H}^{n}, i.e., a group on the set $H=$ $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$ with the group law $h \cdot h^{\prime}=(x, y, t) \cdot\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+\right.$ $y^{\prime}, t+t^{\prime}+2 \sum_{i=1}^{n}\left(x_{i}^{\prime} y_{i}-x_{i} y_{i}^{\prime}\right)$, and the identity $e=(0,0,0)$. Let $|.|_{\text {Heis }}$ be the Heisenberg gauge (Cygan, 1978) on \mathcal{H}^{n} defined by $|h|_{\text {Heis }}=|(x, y, t)|_{\text {Heis }}=$ $\left(\left(\sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)\right)^{2}+t^{2}\right)^{1 / 4}$.
The Heisenberg metric (or Korányi metric, Cygan metric, gauge metric) $d_{\text {Heis }}$ is a group norm metric on \mathcal{H}^{n} defined by

$$
\left|x^{-1} \cdot y\right|_{\text {Heis }}
$$

One can identify the Heisenberg group $\mathcal{H}^{n-1}=\mathbb{C}^{n-1} \times \mathbb{R}$ with $\partial \mathbb{H}_{\mathbb{C}}^{n} \backslash\{\infty\}$, where $\mathbb{H}_{\mathbb{C}}^{n}$ is the Hermitian (i.e., complex) hyperbolic n-space, and ∞ is any point of its boundary $\partial \mathbb{H}_{\mathbb{C}}^{n}$. So, the usual hyperbolic metric of $\mathbb{H}_{\mathbb{C}}^{n+1}$ induces a metric on \mathcal{H}^{n}. The Hamenstädt distance on $\partial \mathbb{H}_{\mathbb{C}}^{n} \backslash\{\infty\}$ (Hersonsky-Paulin, 2004) is $\frac{1}{\sqrt{2}} d_{H e i s}$. Sometimes, the term Cygan metric is reserved for the extension of the metric $d_{\text {Heis }}$ on whole $\mathbb{H}_{\mathbb{C}}^{n}$ and (Apanasov, 2004) for its generalization (via the Carnot group $\left.\mathbb{F}^{n-1} \times \operatorname{Im} \mathbb{F}\right)$ on \mathbb{F}-hyperbolic spaces $\mathbb{H}_{\mathbb{F}}^{n}$ over numbers \mathbb{F} that can be complex numbers, or quaternions or, for $n=2$, octonions. Also, the generalization of $d_{\text {Heis }}$ on Carnot groups of Heisenberg type is called the Cygan metric.
The second natural metric on \mathcal{H}^{n} is the Carnot-Carathéodory metric (or CC metric, sub-Riemannian metric; cf. Chap. 7) d_{C} defined as the length metric (cf. Chap.6) using horizontal vector fields on \mathcal{H}^{n}. This metric is the internal metric (cf. Chap. 4) corresponding to $d_{\text {Heis }}$.

The metric $d_{H e i s}$ is bi-Lipschitz equivalent with d_{C} but not with any Riemannian distance and, in particular, not with any Euclidean metric. For both metrics, the Heisenberg group \mathcal{H}^{n} is a fractal since its Hausdorff dimension, $2 n+2$, is strictly greater than its topological dimension, $2 n+1$.

- Metric between intervals

Let G be the set of all intervals $[a, b]$ of \mathbb{R}. The set G forms semigroups $(G,+)$ and (G, \cdot) under addition $I+J=\{x+y: x \in I, y \in J\}$ and under multiplication $I \cdot J=\{x \cdot y: x \in I, y \in J\}$, respectively.
The metric between intervals is a metric on G, defined by

$$
\max \{|I|,|J|\}
$$

for all $I, J \in G$, where, for $K=[a, b]$, one has $|K|=|a-b|$.

- Metric between games

Consider positional games, i.e., two-player nonrandom games of perfect information with real-valued outcomes. Play is alternating with a nonterminated game having move options for both players. Real-world examples include Chess, Go and Tic-Tac-Toe. Formally, let $F_{\mathbb{R}}$ be the universe of games defined inductively as follows:

1. Every real number $r \in \mathbb{R}$ belongs to $F_{\mathbb{R}}$ and is called an atomic game.
2. If $A, B \subset F_{\mathbb{R}}$ with $1 \leq|A|,|B|<\infty$, then $\{A \mid B\} \in F_{\mathbb{R}}$ (nonatomic game).

Write any game $G=\{A \mid B\}$ as $\left\{G^{L} \mid G^{R}\right\}$, where $G^{L}=A$ and $G^{R}=B$ are the set of left and right moves of G, respectively.
$F_{\mathbb{R}}$ becomes a commutative semigroup under the following addition operation:

1. If p and q are atomic games, then $p+q$ is the usual addition in \mathbb{R}.
2. $p+\left\{g_{l_{1}}, \ldots \mid g_{r_{1}}, \ldots\right\}=\left\{g_{l_{1}}+p, \ldots \mid g_{r_{1}}+p, \ldots\right\}$.
3. If G and H are both nonatomic, then $\left\{G^{L} \mid G^{R}\right\}+\left\{H^{L} \mid H^{R}\right\}=\left\{I^{L} \mid I^{R}\right\}$, where $I^{L}=\left\{g_{l}+H, G+h_{l}: g_{l} \in G^{L}, h_{l} \in H^{L}\right\}$ and $I^{R}=\left\{g_{r}+H, G+\right.$ $\left.h_{r}: g_{r} \in G^{R}, h_{r} \in H^{R}\right\}$.

For any game $G \in F_{\mathbb{R}}$, define the optimal outcomes $\bar{L}(G)$ and $\bar{R}(G)$ (if both players play optimally with Left and Right starting, respectively) as follows:
$\bar{L}(p)=\bar{R}(p)=p$ and $\bar{L}(G)=\max \left\{\bar{R}\left(g_{l}\right): g_{l} \in G^{L}\right\}, \bar{R}(G)=\max \left\{\bar{L}\left(g_{r}\right):\right.$ $\left.g_{r} \in G^{R}\right\}$.
The metric between games G and H defined by Ettinger, 2000, is the following extended metric on $F_{\mathbb{R}}$:

$$
\sup _{X}|\bar{L}(G+X)-\bar{L}(H+X)|=\sup _{X}|\bar{R}(G+X)-\bar{R}(H+X)| .
$$

- Helly semimetric

Consider a game $(\mathcal{A}, \mathcal{B}, H)$ between players A and B with strategy sets \mathcal{A} and \mathcal{B}, respectively. Here $H=H(\cdot, \cdot)$ is the payoff function, i.e., if player A plays $a \in \mathcal{A}$ and player B plays $b \in \mathcal{B}$, then A pays $\mathrm{H}(\mathrm{a}, \mathrm{b})$ to B. A player's strategy set
is the set of available to him pure strategies, i.e., complete algorithms for playing the game, indicating the move for every possible situation throughout it.
The Helly semimetric between strategies $a_{1} \in \mathcal{A}$ and $a_{2} \in \mathcal{A}$ of A is defined by

$$
\sup _{b \in \mathcal{B}}\left|H\left(a_{1}, b\right)-H\left(a_{2}, b\right)\right| .
$$

- Factorial ring semimetric

Let $(A,+, \cdot)$ be a factorial ring, i.e., an integral domain (nonzero commutative ring with no nonzero zero divisors), in which every nonzero nonunit element can be written as a product of (nonunit) irreducible elements, and such factorization is unique up to permutation.
The factorial ring semimetric is a semimetric on the set $A \backslash\{0\}$, defined by

$$
\ln \frac{\operatorname{lcm}(x, y)}{\operatorname{gcd}(x, y)}
$$

where $\operatorname{lcm}(x, y)$ is the least common multiple, and $\operatorname{gcd}(x, y)$ is the greatest common divisor of elements $x, y \in A \backslash\{0\}$.

- Frankild-Sather-Wagstaff metric

Let $\mathcal{G}(R)$ be the set of isomorphism classes, up to a shift, of semidualizing complexes over a local Noetherian commutative ring R. An R-complex is a particular sequence of R-module homomorphisms; see [FrSa 07]) for exact definitions.
The Frankild-Sather-Wagstaff metric [FrSa07] is a metric on $\mathcal{G}(R)$ defined, for any classes $[K],[L] \in \mathcal{G}(R)$, as the infimum of the lengths of chains of pairwise comparable elements starting with $[K]$ and ending with $[L]$.

10.2 Metrics on Binary Relations

A binary relation R on a set X is a subset of $X \times X$; it is the arc-set of the directed graph (X, R) with the vertex-set X.

A binary relation R which is symmetric $((x, y) \in R$ implies $(y, x) \in R)$, reflexive (all $(x, x) \in R$), and transitive $((x, y),(y, z) \in R$ imply $(x, z) \in R)$ is called an equivalence relation or a partition (of X into equivalence classes). Any q-ary sequence $x=\left(x_{1}, \ldots, x_{n}\right), q \geq 2$ (i.e., with $0 \leq x_{i} \leq q-1$ for $1 \leq i \leq n$), corresponds to the partition $\left\{B_{0}, \ldots, B_{q-1}\right\}$ of $V_{n}=\{1, \ldots, n\}$, where $B_{j}=\left\{1 \leq i \leq n: x_{i}=j\right\}$ are the equivalence classes.

A binary relation R which is antisymmetric $((x, y),(y, x) \in R$ imply $x=y)$, reflexive, and transitive is called a partial order, and the pair (X, R) is called a poset
(partially ordered set). A partial order R on X is denoted also by \preceq with $x \preceq y$ if and only if $(x, y) \in R$. The order \preceq is called linear if any elements $x, y \in X$ are compatible, i.e., $x \preceq y$ or $y \preceq x$.

A poset (L, \preceq) is called a lattice if every two elements $x, y \in L$ have the join $x \vee y$ and the meet $x \wedge y$. All partitions of X form a lattice by refinement; it is a sublattice of the lattice (by set-inclusion) of all binary relations.

- Kemeny distance

The Kemeny distance between binary relations R_{1} and R_{2} on a set X is the Hamming metric $\left|R_{1} \triangle R_{2}\right|$. It is twice the minimal number of inversions of pairs of adjacent elements of X which is necessary to obtain R_{2} from R_{1}.
If R_{1}, R_{2} are partitions, then the Kemeny distance coincides with the MirkinTcherny distance, and $1-\frac{\left|R_{1} \Delta R_{2}\right|}{n(n-1)}$ is the Rand index.
If binary relations R_{1}, R_{2} are linear orders (or permutations) on the set X, then the Kemeny distance coincides with the Kendall τ distance (Chap. 11).

- Drápal-Kepka distance

The Drápal-Kepka distance between distinct quasigroups (differing from groups in that they need not be associative) $(X,+)$ and (X, \cdot) is the Hamming metric $|\{(x, y): x+y \neq x \cdot y\}|$ between their Cayley tables.
For finite nonisomorphic groups, this distance is (Ivanyos, Le Gall and Yoshida, 2012) at least $2\left(\frac{|X|}{3}\right)^{2}$ with equality (Drápal, 2003) for some 3-groups.

- Metrics between partitions

Let X be a finite set of cardinality $n=|X|$, and let A, B be nonempty subsets of X. Let P_{X} be the set of partitions of X, and $P, Q \in P_{X}$. Let P_{1}, \ldots, P_{q} be blocks in the partition P, i.e., the pairwise disjoint sets such that $X=P_{1} \cup \cdots \cup P_{q}$, $q \geq 2$. Let $P \vee Q$ be the join of P and Q, and $P \wedge Q$ the meet of P and Q in the lattice \mathbb{P}_{X} of partitions of X.
Consider the following editing operations on partitions:

- An augmentation transforms a partition P of $A \backslash\{B\}$ into a partition of A by either including the objects of B in a block, or including B as a new block;
- An removal transforms a partition P of A into a partition of $A \backslash\{B\}$ by deleting the objects in B from each block that contains them;
- A division transforms one partition P into another by the simultaneous removal of B from P_{i} (where $B \subset P_{i}, B \neq P_{i}$), and augmentation of B as a new block;
- A merging transforms one partition P into another by the simultaneous removal of B from P_{i} (where $B=P_{i}$), and augmentation of B to P_{j} (where $j \neq i)$;
- A transfer transforms one partition P into another by the simultaneous removal of B from P_{i} (where $B \subset P_{i}$), and augmentation of B to P_{j} (where $j \neq i$).

Define (see, say, [Day81]), using above operations, the following metrics on P_{X} :

1. The minimum number of augmentations and removals of single objects needed to transform P into Q;
2. The minimum number of divisions, mergings, and transfers of single objects needed to transform P into Q;
3. The minimum number of divisions, mergings, and transfers needed to transform P into Q;
4. The minimum number of divisions and mergings needed to transform P into Q; in fact, it is equal to $|P|+|Q|-2|P \vee Q|$;
5. $\sigma(P)+\sigma(Q)-2 \sigma(P \wedge Q)$, where $\sigma(P)=\sum_{P_{i} \in P}\left|P_{i}\right|\left(\left|P_{i}\right|-1\right)$;
6. $e(P)+e(Q)-2 e(P \wedge Q)$, where $e(P)=\log _{2} n+\sum_{P_{i} \in P} \frac{\left|P_{i}\right|}{n} \log _{2} \frac{\left|P_{i}\right|}{n}$;
7. $2 n-\sum_{P_{i} \in P} \max _{Q_{j} \in Q}\left|P_{i} \cap Q_{j}\right|-\sum_{Q_{j} \in Q} \max _{P_{i} \in P}\left|P_{i} \cap Q_{j}\right|$ (van Dongen, 2000).

The Reignier distance is the minimum number of elements that must be moved between the blocks of partition P in order to transform it into Q. Cf. Earth Mover's distance in Chap. 21 and the above metric 2. Cf. also Wagner-Wagner, 2007, for an overview of other distances between partitions (clusterings).

10.3 Metrics on Semilattices

Consider a poset (L, \preceq). The meet (or infimum) $x \wedge y$ (if it exists) of two elements x and y is the unique element satisfying $x \wedge y \preceq x, y$, and $z \preceq x \wedge y$ if $z \preceq x, y$. The join (or supremum) $x \vee y$ (if it exists) is the unique element such that $x, y \preceq x \vee y$, and $x \vee y \preceq z$ if $x, y \preceq z$. A poset (L, \preceq) is called a lattice if every its elements x, y have the join $x \vee y$ and the meet $x \wedge y$. A poset is a meet (or lower) semilattice if only the meet-operation is defined. A poset is a join (or upper) semilattice if only the join-operation is defined.

A lattice $\mathbb{L}=(L, \preceq, \vee, \wedge)$ is called a semimodular lattice if the modularity relation $x M y$ is symmetric: $x M y$ implies $y M x$ for any $x, y \in L$. Here two elements x and y are said to constitute a modular pair, in symbols $x M y$, if $x \wedge(y \vee z)=$ $(x \wedge y) \vee z$ for any $z \preceq x$. A lattice \mathbb{L} in which every pair of elements is modular, is called a modular lattice.

Given a lattice \mathbb{L}, a function $v: L \rightarrow \mathbb{R}_{\geq 0}$, satisfying $v(x \vee y)+v(x \wedge y) \leq$ $v(x)+v(y)$ for all $x, y \in L$, is called a subvaluation on \mathbb{L}. A subvaluation v is isotone if $v(x) \leq v(y)$ whenever $x \leq y$, and it is positive if $v(x)<v(y)$ whenever $x \preceq y, x \neq y$. A subvaluation v is called a valuation if it is isotone and $v(x \vee y)+$ $v(x \wedge y)=v(x)+v(y)$ for all $x, y \in L$.

- Lattice valuation metric

Let $\mathbb{L}=(L, \preceq, \vee, \wedge)$ be a lattice, and let v be an isotone subvaluation on \mathbb{L}. The lattice subvaluation semimetric d_{v} on L is defined by

$$
2 v(x \vee y)-v(x)-v(y)
$$

(It can be defined also on some semilattices.) If v is a positive subvaluation on \mathbb{L}, one obtains a metric, called the lattice subvaluation metric. If v is a valuation, d_{v} is called the valuation semimetric and can be written as

$$
v(x \vee y)-v(x \wedge y)=v(x)+v(y)-2 v(x \wedge y)
$$

If v is a positive valuation on \mathbb{L}, one obtains a metric, called the lattice valuation metric, and the lattice is called a metric lattice.
If $L=\mathbb{N}$ (the set of positive integers), $x \vee y=\operatorname{lcm}(x, y)$ (least common multiple), $x \wedge y=\operatorname{gcd}(x, y)$ (greatest common divisor), and the positive valuation $v(x)=\ln x$, then $d_{v}(x, y)=\ln \frac{l c m(x, y)}{\operatorname{gcd}(x, y)}$.
This metric can be generalized on any factorial ring equipped with a positive valuation v such that $v(x) \geq 0$ with equality only for the multiplicative unit of the ring, and $v(x y)=v(x)+v(y)$. Cf. factorial ring semimetric.

- Finite subgroup metric

Let (G, \cdot, e) be a group. Let $\mathbb{L}=(L, \subset, \cap)$ be the meet semilattice of all finite subgroups of the group (G, \cdot, e) with the meet $X \cap Y$ and the valuation $v(X)=$ $\ln |X|$.
The finite subgroup metric is a valuation metric on L defined by

$$
v(X)+v(Y)-2 v(X \wedge Y)=\ln \frac{|X||Y|}{(|X \cap Y|)^{2}}
$$

- Join semilattice distances

Let $\mathbb{L}=(L, \preceq, \vee)$ be a join semilattice, finite or infinite, such that every maximal chain in every interval $[x, y]$ is finite. For $x \preceq y$, the height $h(x, y)$ of y above x is the least cardinality of a finite maximal (by inclusion) chain of $[x, y]$ minus 1 . Call the join semilattice \mathbb{L} semimodular if for all $x, y \in L$, whenever there exists an element z covered by both x and y, the join $x \vee y$ covers both x and y, or, in other words, whenever elements x, y have a common lower bound z, it holds $h(x, x \vee y) \leq h(z, y)$. Any tree (i.e., all intervals $[x, z]$ are finite, each pair x, y of uncomparable elements have a least common upper bound $x \vee y$ but they never have a common lower bound) is semimodular. Consider the following distances on L :
$d_{\text {path }}(x, y)$ is the path metric of the Hasse diagram of (L, \preceq), i.e., a graph with vertex-set L and an edge between two elements if they are comparable.
$d_{\text {a.path }}(x, y)$ is the smallest number of the form $h(x, z)+h(y, z)$, where z is a common upper bound of x and y, i.e., it is the ancestral path distance; cf. pedigree-based distances in Chap. 23. This and next distance reflect the way
how Roman civil law and medieval canon law, respectively, measured degree of kinship.
$d_{\text {max }}(x, y)$ is defined by $\max (h(x, x \vee y), h(y, x \vee y))$.
It holds $d_{\text {a.path }}(x, y) \geq d_{\text {path }}(x, y) \geq d_{\max }(x, y)$. Foldes, 2013, proved that $d_{\text {max }}(x, y)$ is a metric if \mathbb{L} is semimodular and that $d_{\text {a.path }}(x, y)$ is a metric if and only if \mathbb{L} is semimodular, in which case $d_{\text {a.path }}(x, y)=d_{\text {path }}(x, y)$.

- Gallery distance of flags

Let \mathbb{L} be a lattice. A chain C in \mathbb{L} is a subset of L which is linearly ordered, i.e., any two elements of C are compatible. A flag is a chain in \mathbb{L} which is maximal with respect to inclusion. If \mathbb{L} is a semimodular lattice, containing a finite flag, then \mathbb{L} has a unique minimal and a unique maximal element, and any two flags C, D in \mathbb{L} have the same cardinality, $n+1$. Then n is the height of the lattice \mathbb{L}. Two flags C, D are called adjacent if either they are equal or D contains exactly one element not in C. A gallery from C to D of length m is a sequence of flags $C=C_{0}, C_{1}, \ldots, C_{m}=D$ such that C_{i-1} and C_{i} are adjacent for $i=1, \ldots, m$. A gallery distance of flags (see [Abel91]) is a distance on the set of all flags of a semimodular lattice \mathbb{L} with finite height defined as the minimum of lengths of galleries from C to D. It can be written as

$$
|C \vee D|-|C|=|C \vee D|-|D|,
$$

where $C \vee D=\{c \vee d: c \in C, d \in D\}$ is the subsemilattice generated by C and D. This distance is the gallery metric of the chamber system consisting of flags.

- Scalar and vectorial metrics

Let $\mathbb{L}=(L, \leq, \max , \min)$ be a lattice with the join $\max \{x, y\}$, and the meet $\min \{x, y\}$ on a set $L \subset[0, \infty)$ which has a fixed number a as the greatest element and is closed under negation, i.e., for any $x \in L$, one has $\bar{x}=a-x \in L$.
The scalar metric d on L is defined, for $x \neq y$, by

$$
d(x, y)=\max \{\min \{x, \bar{y}\}, \min \{\bar{x}, y\}\} .
$$

The scalar metric d^{*} on $L^{*}=L \cup\{*\}, * \notin L$, is defined, for $x \neq y$, by

$$
d^{*}(x, y)=\left\{\begin{array}{cl}
d(x, y), & \text { if } \quad x, y \in L \\
\max \{x, \bar{x}\}, & \text { if } y=*, x \neq *, \\
\max \{y, \bar{y}\}, & \text { if } x=*, y \neq *
\end{array}\right.
$$

Given a norm $\|$.$\| on \mathbb{R}^{n}, n \geq 2$, the vectorial metric on L^{n} is defined by

$$
\left\|\left(d\left(x_{1}, y_{1}\right), \ldots, d\left(x_{n}, y_{n}\right)\right)\right\|
$$

and the vectorial metric on $\left(L^{*}\right)^{n}$ is defined by

$$
\left\|\left(d^{*}\left(x_{1}, y_{1}\right), \ldots, d^{*}\left(x_{n}, y_{n}\right)\right)\right\| .
$$

The vectorial metric on $L_{2}^{n}=\{0,1\}^{n}$ with l_{1}-norm on \mathbb{R}^{n} is the Fréchet-Nikodym-Aronszyan distance. The vectorial metric on $L_{m}^{n}=$ $\left\{0, \frac{1}{m-1}, \ldots, \frac{m-2}{m-1}, 1\right\}^{n}$ with l_{1}-norm on \mathbb{R}^{n} is the Sgarro m-valued metric. The vectorial metric on $[0,1]^{n}$ with l_{1}-norm on \mathbb{R}^{n} is the Sgarro fuzzy metric. If L is L_{m} or $[0,1]$, and $x=\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+r}\right), y=$ $\left(y_{1}, \ldots, y_{n}, *, \ldots, *\right)$, where $*$ stands in r places, then the vectorial metric between x and y is the Sgarro metric (see, for example, [CSY01]).

- Metrics on Riesz space

A Riesz space (or vector lattice) is a partially ordered vector space ($V_{R i}, \preceq$) in which the following conditions hold:

1. The vector space structure and the partial order structure are compatible: $x \preceq$ y implies $x+z \preceq y+z$, and $x \succ 0, \lambda \in \mathbb{R}, \lambda>0$ implies $\lambda x \succ 0$;
2. For any two elements $x, y \in V_{R i}$ there exists the join $x \vee y \in V_{R i}$ (in particular, the join and the meet of any finite set of elements from $V_{R i}$ exist).

The Riesz norm metric is a norm metric on $V_{R i}$ defined by

$$
\|x-y\|_{R i}
$$

where $\|.\|_{R i}$ is a Riesz norm, i.e., a norm on $V_{R i}$ such that, for any $x, y \in V_{R i}$, the inequality $|x| \leq|y|$, where $|x|=(-x) \vee(x)$, implies $\|x\|_{R i} \leq\|y\|_{R i}$.
The space ($V_{R i},\|.\|_{R i}$) is called a normed Riesz space. In the case of completeness it is called a Banach lattice. All Riesz norms on a Banach lattice are equivalent. An element $e \in V_{R i}^{+}=\left\{x \in V_{R i}: x \succ 0\right\}$ is called a strong unit of $V_{R i}$ if for each $x \in V_{R i}$ there exists $\lambda \in \mathbb{R}$ such that $|x| \preceq \lambda e$. If a Riesz space $V_{R i}$ has a strong unit e, then $\|x\|=\inf \{\lambda \in \mathbb{R}:|x| \preceq \lambda e\}$ is a Riesz norm, and one obtains on $V_{R i}$ a Riesz norm metric

$$
\inf \{\lambda \in \mathbb{R}:|x-y| \preceq \lambda e\} .
$$

A weak unit of $V_{R i}$ is an element e of $V_{R i}^{+}$such that $e \wedge|x|=0$ implies $x=0$. A Riesz space $V_{R i}$ is called Archimedean if, for any two $x, y \in V_{R i}^{+}$, there exists a natural number n, such that $n x \preceq y$. The uniform metric on an Archimedean Riesz space with a weak unit e is defined by

$$
\inf \{\lambda \in \mathbb{R}:|x-y| \wedge e \leq \lambda e\} .
$$

- Machida metric

For a fixed integer $k \geq 2$ and the set $V_{k}=\{0,1, \ldots, k-1\}$, let $O_{k}^{(n)}$ be the set of all n-ary functions from $\left(V_{k}\right)^{n}$ into V_{k} and $O_{k}=\cup_{n=1}^{\infty} O_{k}^{(n)}$. Let $P r_{k}$ be the
set of all projections $p r_{i}^{n}$ over V_{k}, where $p r_{i}^{n}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i}$ for any $x_{1}, \ldots, x_{n} \in V_{k}$.
A clone over V_{k} is a subset C of O_{k} containing $P r_{k}$ and closed under (functional) composition. The set L_{k} of all clones over V_{k} is a lattice. The Post lattice L_{2} defined over Boolean functions, is countable but any L_{k} with $k \geq 3$ is not. For $n \geq 1$ and a clone $C \in L_{k}$, let $C^{(n)}$ denote n-slice $C \cap O_{k}^{(n)}$.
For any two clones $C_{1}, C_{2} \in L_{k}$, Machida, 1998, defined the distance to be 0 if $C_{1}=C_{2}$ and $\left(\min \left\{n: C_{1}^{(n)} \neq C_{2}^{(n)}\right\}\right)^{-1}$, otherwise. The lattice L_{k} of clones with this distance is a compact ultrametric space. Cf. Baire metric in Chap. 11.

Chapter 11
 Distances on Strings and Permutations

An alphabet is a finite set $\mathcal{A},|\mathcal{A}| \geq 2$, elements of which are called characters (or symbols). A string (or word) is a sequence of characters over a given finite alphabet \mathcal{A}. The set of all finite strings over the alphabet \mathcal{A} is denoted by $W(\mathcal{A})$. Examples of real world applications, using distances and similarities of string pairs, are Speech Recognition, Bioinformatics, Information Retrieval, Machine Translation, Lexicography, Dialectology.

A substring (or factor, chain, block) of the string $x=x_{1} \ldots x_{n}$ is any contiguous subsequence $x_{i} x_{i+1} \ldots x_{k}$ with $1 \leq i \leq k \leq n$. A prefix of a string x is any its substring starting with x_{1}; a suffix is any its substring finishing with x_{n}. If a string is a part of a text, then the delimiters (a space, a dot, a comma, etc.) are added to \mathcal{A}.

A vector is any finite sequence consisting of real numbers, i.e., a finite string over the infinite alphabet \mathbb{R}. A frequency vector (or discrete probability distribution) is any string $x_{1} \ldots x_{n}$ with all $x_{i} \geq 0$ and $\sum_{i=1}^{n} x_{i}=1$. A permutation (or ranking) is any string $x_{1} \ldots x_{n}$ with all x_{i} being different numbers from $\{1, \ldots, n\}$.

An editing operation is an operation on strings, i.e., a symmetric binary relation on the set of all considered strings. Given a set of editing operations $\mathcal{O}=$ $\left\{O_{1}, \ldots, O_{m}\right\}$, the corresponding editing metric (or unit cost edit distance) between strings x and y is the minimum number of editing operations from \mathcal{O} needed to obtain y from x. It is the path metric of a graph with the vertex-set $W(\mathcal{A})$ and $x y$ being an edge if y can be obtained from x by one of the operations from \mathcal{O}.

In some applications, a cost function is assigned to each type of editing operation; then the editing distance is the minimal total cost of transforming x into y. Given a set of editing operations \mathcal{O} on strings, the corresponding necklace editing metric between cyclic strings x and y is the minimum number of editing operations from \mathcal{O} needed to obtain y from x, minimized over all rotations of x.

The main editing operations on strings are:

- Character indel, i.e., insertion or deletion of a character;
- Character replacement;
- Character swap, i.e., an interchange of adjacent characters;
- Substring move, i.e., transforming, say, the string $x=x_{1} \ldots x_{n}$ into the string $x_{1} \ldots x_{i-1} \mathbf{x}_{\mathbf{j}} \ldots \mathbf{x}_{\mathbf{k}-\mathbf{1}} x_{i} \ldots x_{j-1} x_{k} \ldots x_{n}$;
- Substring copy, i.e., transforming, say, $x=x_{1} \ldots x_{n}$ into $x_{1} \ldots x_{i-1} \mathbf{x}_{\mathbf{j}} \ldots \mathbf{x}_{\mathbf{k}-\mathbf{1}}$ $x_{i} \ldots x_{n}$;
- Substring uncopy, i.e., the removal of a substring provided that a copy of it remains in the string.

We list below the main distances on strings. However, some string distances will appear in Chaps. 15, 21 and 23, where they fit better, with respect to the needed level of generalization or specification.

11.1 Distances on General Strings

- Levenstein metric

The Levenstein metric (or edit distance, Hamming+Gap metric, shuffleHamming distance) is (Levenstein, 1965) an editing metric on $W(\mathcal{A})$, obtained for \mathcal{O} consisting of only character replacements and indels.
The Levenstein metric between strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$ is

$$
d_{L}(x, y)=\min \left\{d_{H}\left(x^{*}, y^{*}\right)\right\}
$$

where x^{*}, y^{*} are strings of length $k, k \geq \max \{m, n\}$, over the alphabet $\mathcal{A}^{*}=$ $\mathcal{A} \cup\{*\}$ so that, after deleting all new characters $*$, strings x^{*} and y^{*} shrink to x and y, respectively. Here, the gap is the new $\operatorname{symbol} *$, and x^{*}, y^{*} are shuffles of strings x and y with strings consisting of only $*$.
The Levenstein similarity is $1-\frac{d_{L}(x, y)}{\max \{m, n\}}$.
The Damerau-Levenstein metric (Damerau, 1964) is an editing metric on $W(\mathcal{A})$, obtained for \mathcal{O} consisting only of character replacements, indels and transpositions. In the Levenstein metric, a transposition corresponds to two editing operations: one insertion and one deletion.
The constrained edit distance (Oomen, 1986) is the Levenstein metric, but the ranges for the number of replacements, insertions and deletions are specified.

- Editing metric with moves

The editing metric with moves is an editing metric on $W(\mathcal{A})$ [Corm03], obtained for \mathcal{O} consisting of only substring moves and indels.

- Editing compression metric

The editing compression metric is an editing metric on $W(\mathcal{A})$ [Corm03], obtained for \mathcal{O} consisting of only indels, copy and uncopy operations.

- Indel metric

The indel metric is an editing metric on $W(\mathcal{A})$, obtained for \mathcal{O} consisting of only indels. It is an analog of the Hamming metric $|X \Delta Y|$ between sets X and Y. For strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$ it is $m+n-2 L C S(x, y)$, where the similarity $\operatorname{LCS}(x, y)$ is the length of the longest common subsequence of x and y.

The factor distance on $W(\mathcal{A})$ is $m+n-2 L C F(x, y)$, where the similarity $\operatorname{LCF}(x, y)$ is the length of the longest common substring (factor) of x and y.
The LCS ratio and the LCF ratio are the similarities on $W(\mathcal{A})$ defined by $\frac{L C S(x, y)}{\min \{m, n\}}$ and $\frac{L C F(x, y)}{\min \{m, n\}}$, respectively; sometimes, the denominator is $\max \{m, n\}$ or $\frac{m+n}{2}$.

- Swap metric

The swap metric (or interchange distance, Dodson distance) is an editing metric on $W(\mathcal{A})$, obtained for \mathcal{O} consisting only of character swaps, i.e., it is the minimum number of interchanges of adjacent pairs of symbols, converting x into y.

- Antidistance

There are $(n-1)$! circular permutations, i.e., cyclic orders, of a set X of size n. The antidistance between circular permutations x and y is the swap metric between x and the reversal of y.
Also, given complex $n \times n$ matrices A and B, the unitary similarity orbit through B is $\sup _{U \in \mathbb{U}_{n}}\left\|U^{*} B U\right\|_{\infty}$, where $U \in \mathbb{U}_{n}$ is the group of unitary matrices. Ando, 1996, define anti-distance between A and this orbit as $\sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty}$. Also, given a simple connected graph (V, E), we assign directions to edges and the weight of each edge (either 1 or -1) depending on the direction of the traverse. Iravanian, 2012, define anti-distance $d(u, v)=-d(v, u)$ between vertices as the weighted average length of all simple paths from u to v.

- Edit distance with costs

Given a set of editing operations $\mathcal{O}=\left\{O_{1}, \ldots, O_{m}\right\}$ and a weight (or cost function) $w_{i} \geq 0$, assigned to each type O_{i} of operation, the edit distance with costs between strings x and y is the minimal total cost of an editing path between them, i.e., the minimal sum of weights for a sequence of operations transforming x into y.
The normalized edit distance between strings x and y (Marzal-Vidal, 1993) is the minimum, over all editing paths P between them, of $\frac{W(P)}{L(P)}$, where $W(P)$ and $L(P)$ are the total cost and the length of the editing path P.

- Transduction edit distances

The Levenstein metric with costs between strings x and y is modeled in [RiYi98] as a memoryless stochastic transduction between x and y.
Each step of transduction generates either a character replacement pair (a, b), a deletion pair (a, \emptyset), an insertion pair (\emptyset, b), or the specific termination symbol t according to a probability function $\delta: E \cup\{t\} \rightarrow[0,1]$, where E is the set of all possible above pairs. Such a transducer induces a probability function on the set of all sequences of operations.
The transduction edit distances between strings x and y are ([RiYi98]) $\ln p$ of the following probabilities p :

- for the Viterbi edit distance, the probability of the most likely sequence of editing operations transforming x into y;
- for the stochastic edit distance, the probability of the string pair (x, y).

This model allows one to learn, in order to reduce error rate, the edit costs for the Levenstein metric from a corpus of examples (training set of string pairs). This learning is automatic; it reduces to estimating the parameters of above transducer.

- Bag distance

The bag distance (or multiset metric, counting filter) is a metric on $W(\mathcal{A})$ defined (Navarro, 1997) by

$$
\max \{|X \backslash Y|,|Y \backslash X|\}
$$

for any strings x and y, where X and Y are the bags of symbols (multisets of characters) in strings x and y, respectively, and, say, $|X \backslash Y|$ counts the number of elements in the multiset $X \backslash Y$. It is a (computationally) cheap approximation of the Levenstein metric. Cf. metrics between multisets in Chap. 1.

- Marking metric

The marking metric is a metric on $W(\mathcal{A})$ [EhHa88] defined by

$$
\ln _{2}((\operatorname{diff}(x, y)+1)(\operatorname{diff}(y, x)+1))
$$

for any strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$, where $\operatorname{diff}(x, y)$ is the minimal cardinality $|M|$ of a subset $M \subset\{1, \ldots, m\}$ such that any substring of x, not containing any x_{i} with $i \in M$, is a substring of y.
Another metric defined in [EhHa88], is $\ln _{2}(\operatorname{diff}(x, y)+\operatorname{diff}(y, x)+1)$.

- Transformation distance

The transformation distance is an editing distance with costs on $W(\mathcal{A})$ (Varre-Delahaye-Rivals, 1999) obtained for \mathcal{O} consisting only of substring copy, uncopy and substring indels. The distance between strings x and y is the minimal cost of transformation x into y using these operations, where the cost of each operation is the length of its description.
For example, the description of the copy requires a binary code specifying the type of operation, an offset between the substring locations in x and in y, and the length of the substring. A code for insertion specifies the type of operation, the length of the substring and the sequence of the substring.

- L_{1}-rearrangement distance

The L_{1}-rearrangement distance (Amir et al., 2007) between strings $x=$ $x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{m}$ is defined by

$$
\min _{\pi} \sum_{i=1}^{m}|i-\pi(i)|
$$

where $\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}$ is a permutation transforming x into y; if there are no such permutations, the distance is equal to ∞.
The L_{∞}-rearrangement distance (Amir et al., 2007) between x and y is $\min _{\pi} \max _{1 \leq i \leq m}|i-\pi(i)|$ and it is ∞ if such a permutation does not exist.
Cf. genome rearrangement distances in Chap. 23.

- Normalized information distance

The normalized information distance d between two binary strings x and y is a symmetric function on $W(\{0,1\})$ [LCLMV04] defined by

$$
\frac{\max \left\{K\left(x \mid y^{*}\right), K\left(y \mid x^{*}\right)\right\}}{\max \{K(x), K(y)\}}
$$

Here, for binary strings u and v, u^{*} is a shortest binary program to compute u on an appropriate (i.e., using a Turing-complete language) universal computer, the Kolmogorov complexity (or algorithmic entropy) $K(u)$ is the length of u^{*} (the ultimate compressed version of u), and $K(u \mid v)$ is the length of the shortest program to compute u if v is provided as an auxiliary input.
The function $d(x, y)$ is a metric up to small error term: $d(x, x)=O\left((K(x))^{-1}\right)$, and $d(x, z)-d(x, y)-d(y, z)=O\left((\max \{K(x), K(y), K(z)\})^{-1}\right)$. (Cf. $d(x, y)$ the information metric (or entropy metric) $H(X \mid Y)+H(Y \mid X)$ between stochastic sources X and Y.)
The Kolmogorov complexity is uncomputable and depends on the chosen computer language; so, instead of $K(u)$, were proposed the minimum message length (shortest overall message) by Wallace, 1968, and the minimum description length (largest compression of data) by Rissanen, 1978.
The normalized compression distance is a distance on $W(\{0,1\})$ [LCLMV04, BGLVZ98] defined by

$$
\frac{C(x y)-\min \{C(x), C(y)\}}{\max \{C(x), C(y)\}}
$$

for any binary strings x and y, where $C(x), C(y)$, and $C(x y)$ denote the size of the compression (by fixed compressor C, such as gzip, bzip2, or PPMZ) of strings x, y, and their concatenation $x y$. This distance is not a metric. It is an approximation of the normalized information distance. A similar distance is defined by $\frac{C(x y)}{C(x)+C(y)}-\frac{1}{2}$.

- Lempel-Ziv distance

The Lempel-Ziv distance between two binary strings x and y of length n is

$$
\max \left\{\frac{L Z(x \mid y)}{L Z(x)}, \frac{L Z(y \mid x)}{L Z(y)}\right\},
$$

where $L Z(x)=\frac{|P(x)| \log |P(x)|}{n}$ is the Lempel-Ziv complexity of x, approximating its Kolmogorov complexity $K(x)$. Here $P(x)$ is the set of nonoverlapping substrings into which x is parsed sequentially, so that the new substring is not yet contained in the set of substrings generated so far. For example, such a Lempel-Ziv parsing for $x=001100101010011$ is $0|01| 1|00| 10|101| 001 \mid 11$. Now, $L Z(x \mid y)=\frac{|P(x) \backslash P(y)| \log |P(x) \backslash P(y)|}{n}$.

- Anthony-Hammer similarity

The Anthony-Hammer similarity between a binary string $x=x_{1} \ldots x_{n}$ and the set Y of binary strings $y=y_{1} \ldots y_{n}$ is the maximal number m such that, for every m-subset $M \subset\{1, \ldots, n\}$, the substring of x, containing only x_{i} with $i \in M$, is a substring of some $y \in Y$ containing only y_{i} with $i \in M$.

- Jaro similarity

Given strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$, call a character x_{i} common with y if $x_{i}=y_{j}$, where $|i-j| \leq \frac{\min \{m, n\}}{2}$. Let $x^{\prime}=x_{1}^{\prime} \ldots x_{m^{\prime}}^{\prime}$ be all the characters of x which are common with y (in the same order as they appear in x), and let $y^{\prime}=y_{1}^{\prime} \ldots y_{n^{\prime}}^{\prime}$, be the analogic string for y.
The Jaro similarity $\operatorname{Jaro}(x, y)$ between strings x and y is defined by

$$
\frac{1}{3}\left(\frac{m^{\prime}}{m}+\frac{n^{\prime}}{n}+\frac{\left|\left\{1 \leq i \leq \min \left\{m^{\prime}, n^{\prime}\right\}: x_{i}^{\prime}=y_{i}^{\prime}\right\}\right|}{\min \left\{m^{\prime}, n^{\prime}\right\}}\right)
$$

This and following two similarities are used in Record Linkage.

- Jaro-Winkler similarity

The Jaro-Winkler similarity between strings x and y is defined by

$$
\operatorname{Jaro}(x, y)+\frac{\max \{4, L C P(x, y)\}}{10}(1-\operatorname{Jaro}(x, y))
$$

where $\operatorname{Jaro}(x, y)$ is the Jaro similarity, and $\operatorname{LCP}(x, y)$ is the length of the longest common prefix of x and y.

- q-gram similarity

Given an integer $q \geq 1$ (usually, q is 2 or 3), the q-gram similarity between strings x and y is defined by

$$
\frac{2 q(x, y)}{q(x)+q(y)}
$$

where $q(x), q(y)$ and $q(x, y)$ are the sizes of multisets of all q-grams (substrings of length q) occurring in x, y and both of them, respectively.
Sometimes, $q(x, y)$ is divided not by the average of $q(x)$ and $q(y)$, as above, but by their minimum, maximum or harmonic mean $\frac{2 q(x) q(y)}{q(x)+q(y)}$. Cf. metrics between multisets in Chap. 1 and, in Chap. 17, Dice similarity, Simpson similarity, Braun-Blanquet similarity and Anderberg similarity.
The q-gram similarity is an example of token-based similarities, i.e., ones defined in terms of tokens (selected substrings or words). Here tokens are q-grams. A generic dictionary-based metric between strings x and y is $|D(x) \Delta D(y)|$, where $D(z)$ denotes the full dictionary of z, i.e., the set of all of its substrings.

- Prefix-Hamming metric

The prefix-Hamming metric between strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$ is

$$
(\max \{m, n\}-\min \{m, n\})+\left|\left\{1 \leq i \leq \min \{m, n\}: x_{i} \neq y_{i}\right\}\right| .
$$

- Weighted Hamming metric

If (\mathcal{A}, d) is a metric space, then the weighted Hamming metric between strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{m}$ is defined by

$$
\sum_{i=1}^{m} d\left(x_{i}, y_{i}\right)
$$

The term weighted Hamming metric (or weighted Hamming distance) is also used for $\sum_{1 \leq i \leq m, x_{i} \neq y_{i}} w_{i}$, where, for any $1 \leq i \leq m, w(i)>0$ is its weight.

- Fuzzy Hamming distance

If (\mathcal{A}, d) is a metric space, the fuzzy Hamming distance between strings $x=$ $x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{m}$ is an editing distance with costs on $W(\mathcal{A})$ obtained for \mathcal{O} consisting of only indels, each of fixed $\operatorname{cost} q>0$, and character shifts (i.e., moves of 1 -character substrings), where the cost of replacement of i by j is a function $f(|i-j|)$. This distance is the minimal total cost of transforming x into y by these operations. Bookstein-Klein-Raita, 2001, introduced this distance for Information Retrieval and proved that it is a metric if f is a monotonically increasing concave function on integers vanishing only at 0 .
The case $f(|i-j|)=C|i-j|$, where $C>0$ is a constant and $|i-j|$ is a time shift, corresponds to the Victor-Purpura spike train distance in Chap. 23.
Ralescu, 2003, introduced, for Image Retrieval, another fuzzy Hamming distance on \mathcal{R}^{m}. The Ralescu distance between two strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{m}$ is the fuzzy cardinality of the difference fuzzy set $D_{\alpha}(x, y)$ (where α is a parameter) with membership function

$$
\mu_{i}=1-e^{-\alpha\left(x_{i}-y_{i}\right)^{2}}, 1 \leq i \leq m .
$$

The nonfuzzy cardinality of the fuzzy set $D_{\alpha}(x, y)$ approximating its fuzzy cardinality is $\left|\left\{1 \leq i \leq m: \mu_{i}>\frac{1}{2}\right\}\right|$.

- Needleman-Wunsch-Sellers metric

If (\mathcal{A}, d) is a metric space, the Needleman-Wunsch-Sellers metric (or global alignment metric) is an editing distance with costs on $W(\mathcal{A})$ [NeWu70], obtained for \mathcal{O} consisting of only indels, each of fixed $\operatorname{cost} q>0$, and character replacements, where the cost of replacement of i by j is $d(i, j)$. This metric is the minimal total cost of transforming x into y by these operations. It is

$$
\min \left\{d_{w H}\left(x^{*}, y^{*}\right)\right\},
$$

where x^{*}, y^{*} are strings of length $k, k \geq \max \{m, n\}$, over the alphabet $\mathcal{A}^{*}=$ $\mathcal{A} \cup\{*\}$, so that, after deleting all new characters $*$, strings x^{*} and y^{*} shrink to x and y, respectively. Here $d_{w H}\left(x^{*}, y^{*}\right)$ is the weighted Hamming metric between x^{*} and y^{*} with weight $d\left(x_{i}^{*}, y_{i}^{*}\right)=q$ (i.e., the editing operation is an indel) if one of x_{i}^{*}, y_{i}^{*} is $*$, and $d\left(x_{i}^{*}, y_{i}^{*}\right)=d(i, j)$, otherwise.

The Gotoh-Smith-Waterman distance (or string distance with affine gaps) is a more specialized editing metric with costs (see [Goto82]). It discounts mismatching parts at the beginning and end of the strings x, y, and introduces two indel costs: one for starting an affine gap (contiguous block of indels), and another one (lower) for extending a gap.

- Duncan metric

Consider the set X of all strictly increasing infinite sequences $x=\left\{x_{n}\right\}_{n}$ of positive integers. Define $N(n, x)$ as the number of elements in $x=\left\{x_{n}\right\}_{n}$ which are less than n, and $\delta(x)$ as the density of x, i.e., $\delta(x)=\lim _{n \rightarrow \infty} \frac{N(n, x)}{n}$. Let Y be the subset of X consisting of all sequences $x=\left\{x_{n}\right\}_{n}$ for which $\delta(x)<\infty$.
The Duncan metric is a metric on Y defined, for $x \neq y$, by

$$
\frac{1}{1+L C P(x, y)}+|\delta(x)-\delta(y)|
$$

where $\operatorname{LCP}(x, y)$ is the length of the longest common prefix of x and y.

- Martin metric

The Martin metric d^{a} between strings $x=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$ is

$$
\left|2^{-m}-2^{-n}\right|+\sum_{t=1}^{\max \{m, n\}} \frac{a_{t}}{|\mathcal{A}|^{t}} \sup _{z}|k(z, x)-k(z, y)|
$$

where z is any string of length $t, k(z, x)$ is the Martin kernel of a Markov chain $M=\left\{M_{t}\right\}_{t=0}^{\infty}$, and the sequence $a \in\left\{a=\left\{a_{t}\right\}_{t=0}^{\infty}: a_{t}>0, \sum_{t=1}^{\infty} a_{t}<\infty\right\}$ is a parameter.

- Baire metric

The Baire metric is an ultrametric between strings x and y defined, for $x \neq y$, by

$$
\frac{1}{1+L C P(x, y)},
$$

where $L C P(x, y)$ is the length of the longest common prefix of strings (finite or infinite) x and y. Cf. Baire space in Chap. 2 .
Given an infinite cardinal number κ and a set A of cardinality κ, the Cartesian product of countably many copies of A endowed with above ultrametric $\frac{1}{1+L C P(x, y)}$ is called the Baire space of weight κ and denoted by $B(\kappa)$. In particular, $B\left(\aleph_{0}\right)$ (called the Baire 0-dimensional space) is homeomorphic to the space Irr of irrationals with continued fraction metric (cf. Chap. 12).

- Generalized Cantor metric

The generalized Cantor metric (or, sometimes, Baire distance) is an ultrametric between infinite strings x and y defined, for $x \neq y$, by

$$
a^{1+L C P(x, y)},
$$

where a is a fixed number from the interval $(0,1)$, and $\operatorname{LCP}(x, y)$ is the length of the longest common prefix of x and y.
This ultrametric space is compact. In the case $a=\frac{1}{2}$, this metric was considered on a remarkable fractal, the Cantor set; cf. Cantor metric in Chap. 18. Another important case is $a=\frac{1}{e} \approx 0.367879441$.
Comyn-Dauchet, 1985, and Kwiatkowska, 1990, introduced some analogs of generalized Cantor metric for traces, i.e., equivalence classes of strings with respect to a congruence relation identifying strings x, y that are identical up to permutation of concurrent actions $(x y=y x)$.

- Parikh distance

Given an ordered alphabet $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$, the Parikh distance between words x and y over it is the Manhattan metric $\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|$ between their Parikh maps (or commutative images) $P(x)$ and $P(y)$, where, for a word w, w_{i} denotes the number of occurrences of a_{i} in w and $P(w)$ is $\left(w_{1}, \ldots, w_{k}\right)$.

- Parentheses string metrics

Let P_{n} be the set of all strings on the alphabet $\{()$,$\} generated by a grammar$ and having n open and n closed parentheses. A parentheses string metric is an editing metric on P_{n} corresponding to a given set of editing operations.
For example, the Monjardet metric (Monjardet, 1981) between two strings $x, y \in P_{n}$ is the minimum number of adjacent parentheses interchanges (")" to ")(" or ")(" to "()") needed to obtain y from x. It is the Manhattan metric between their representations p_{x} and p_{x}, where $p_{z}=\left(p_{z}(1), \ldots, p_{z}(n)\right)$ and $p_{z}(i)$ is the number of open parentheses written before the i-th closed parentheses of $z \in P_{n}$.
There is a bijection between parentheses strings and binary trees; cf. the tree rotation distance in Chap. 15.

- Dehornoy-Autord distance

The Dehornoy-Autord distance (2010) between two shortest expressions x and y of a permutation as a product of transpositions t_{i}, is the minimal, needed to get x from y, number of braid relations: $t_{i} t_{j} t_{i}=t_{j} t_{i} t_{j}$ with $|i-j|=1$ and $t_{i} t_{j}=t_{j} t_{i}$ with $|i-j| \geq 2$.
This distance can be extended to the decompositions of any given positive braid in terms of Artin's generators. The permutations corresponds to the simple braids which are the divisors of Garside's fundamental braid in the braid monoid.

- Schellenkens complexity quasi-metric

The Schellenkens complexity quasi-metric between infinite strings $x=\left(x_{i}\right)$ and $y=\left(y_{i}\right)(i=0,1, \ldots$,$) over \mathbb{R}_{\geq 0}$ with $\sum_{i=0}^{\infty} 2^{-i} \frac{1}{x_{i}}<\infty$ (seen as complexity functions) is defined (Schellenkens, 1995) by

$$
\sum_{i=0}^{\infty} 2^{-i} \max \left\{0, \frac{1}{x_{i}}-\frac{1}{y_{i}}\right\}
$$

- Graev metrics

Let (X, d) be a metric space. Let $\bar{X}=X \cup X^{\prime} \cup\{e\}$, where $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$ is a disjoint copy of X, and $e \notin X \cup X^{\prime}$. We use the notation $\left(e^{\prime}\right)^{\prime}=e$ and $\left(x^{\prime}\right)^{\prime}=x$ for any $x \in X$; also, the letters x, y, x_{i}, y_{i} will denote elements of \bar{X}. Let (\bar{X}, D) be a metric space such that $D(x, y)=D\left(x^{\prime}, y^{\prime}\right)=d(x, y)$, $D(x, e)=D\left(x^{\prime}, e\right)$ and $D\left(x, y^{\prime}\right)=D\left(x^{\prime}, y\right)$ for all $x, y \in X$.
Denote by $W(X)$ the set of all words over \bar{X} and, for each word $w \in W(X)$, denote by $l(w)$ its length. A word $w \in W(X)$ is called irreducible if $w=e$ or $w=x_{0} \ldots x_{n}$, where $x_{i} \neq e$ and $x_{i+1} \neq x_{i}^{\prime}$ for $0 \leq i<n$.
For each word w over \bar{X}, denote by \hat{w} the unique irreducible word obtained from w by successively replacing any occurrence of $x x^{\prime}$ in w by e and eliminating e from any occurrence of the form $w_{1} e w_{2}$, where $w_{1}=w_{2}-\emptyset$ is excluded.
Denote by $F(X)$ the set of all irreducible words over \bar{X} and, for $u, v \in F(X)$, define $u \cdot v=w^{\prime}$, where w is the concatenation of words u and v. Then $F(X)$ becomes a group; its identity element is the (nonempty) word e.
For any two words $v=x_{0} \ldots x_{n}$ and $u=y_{0} \ldots y_{n}$ over \bar{X} of the same length, let $\rho(v, u)=\sum_{i=0}^{n} D\left(x_{i}, y_{i}\right)$. The Graev metric between two irreducible words $u=u, v \in F(X)$ is defined [DiGa07] by

$$
\inf \left\{\rho\left(u^{*}, v^{*}\right): u^{*}, v^{*} \in W(X), l\left(u^{*}\right)=l\left(v^{*}\right), \widehat{u^{*}}=u, \widehat{v^{*}}=v\right\}
$$

Graev proved that this metric is bi-invariant metric on $F(X)$ and that $F(X)$ is a topological group in the topology induced by it.

- String-induced alphabet distance

Let $a=\left(a_{1}, \ldots, a_{m}\right)$ be a finite string over alphabet $X,|X|=n \geq 2$. Let $A(x)=\left\{1 \leq i \leq m: a_{i}=x\right\} \neq \emptyset$ for any $x \in X$.
The string-induced distance between symbols $x, y \in X$ is the set-set distance (cf. Chap. 1) defined by

$$
d_{a}(x, y)=\min \{|i-j|: i \in A(x), j \in A(y)\}
$$

A k-radius sequence (Jaromczyk and Lonc, 2004) is a string a over X with $\max _{x, y \in X} d_{a}(x, y) \leq k$, i.e., any two symbols (say, large digital images) occur in some window (say, memory cache) of length $k+1$. Minimal length m corresponds to most efficient pipelining of images when no more than $k+1$ of them can be placed in main memory in any given time.

11.2 Distances on Permutations

A permutation (or ranking) is any string $x_{1} \ldots x_{n}$ with all x_{i} being different numbers from $\{1, \ldots, n\}$; a signed permutation is any string $x_{1} \ldots x_{n}$ with all $\left|x_{i}\right|$ being different numbers from $\{1, \ldots, n\}$. Denote by $\left(S y m_{n}, \cdot, i d\right)$ the group of all permutations of the set $\{1, \ldots, n\}$, where id is the identity mapping.

The restriction, on the set $S y m_{n}$ of all n-permutation vectors, of any metric on \mathbb{R}^{n} is a metric on $S y m_{n}$; the main example is the l_{p}-metric $\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}, p \geq 1$.

The main editing operations on permutations are:

- Block transposition, i.e., a substring move;
- Character move, i.e., a transposition of a block consisting of only one character;
- Character swap, i.e., interchanging of any two adjacent characters;
- Character exchange, i.e., interchanging of any two characters (in Group Theory, it is called transposition);
- One-level character exchange, i.e., exchange of characters x_{i} and $x_{j}, i<j$, such that, for any k with $i<k<j$, either $\min \left\{x_{i}, x_{j}\right\}>x_{k}$, or $x_{k}>\max \left\{x_{i}, x_{j}\right\}$;
- Block reversal, i.e., transforming, say, the permutation $x=x_{1} \ldots x_{n}$ into the permutation $x_{1} \ldots x_{i-1} \mathbf{x}_{\mathbf{j}} \mathbf{x}_{\mathbf{j}-\mathbf{1}} \ldots \mathbf{x}_{\mathbf{i}+\mathbf{1}} \mathbf{x}_{\mathbf{i}} x_{j+1} \ldots x_{n}$ (so, a swap is a reversal of a block consisting only of two characters);
- Signed reversal, i.e., a reversal in signed permutation, followed by multiplication on -1 of all characters of the reversed block.

Below we list the most used editing and other metrics on $S y m_{n}$.

- Hamming metric on permutations

The Hamming metric on permutations d_{H} is an editing metric on $S_{n} m_{n}$, obtained for \mathcal{O} consisting of only character replacements. It is a bi-invariant metric. Also, $n-d_{H}(x, y)$ is the number of fixed points of $x y^{-1}$.

- Spearman ρ distance

The Spearman ρ distance is the Euclidean metric on $S y m_{n}$:

$$
\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

Its square is a 2-near-metric. Cf. Spearman ρ rank correlation in Chap. 17.

- Spearman footrule distance

The Spearman footrule distance is the l_{1}-metric on Sym_{n} :

$$
\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

Cf. Spearman footrule similarity in Chap. 17.
Both above Spearman distances are bi-invariant.

- Kendall τ distance

The Kendall τ distance (or inversion metric, permutation swap metric, bubblesort distance) I is an editing metric on $S y m_{n}$, obtained for \mathcal{O} consisting only of character swaps.
In terms of Group Theory, $I(x, y)$ is the number of adjacent transpositions needed to obtain x from y. Also, $I(x, y)$ is the number of relative inversions of x and y, i.e., pairs $(i, j), 1 \leq i<j \leq n$, with $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0$. Cf. Kendall τ rank correlation in Chap. 17.

In [BCFS97] the following metrics, associated with $I(x, y)$, were given:

1. $\min _{z \in S_{y m_{n}}}\left(I(x, z)+I\left(z^{-1}, y^{-1}\right)\right)$;
2. $\max _{z \in S y m_{n}} I(z x, z y)$;
3. $\min _{z \in S_{y m}} I(z x, z y)=T(x, y)$, where T is the Cayley metric;
4. editing metric with \mathcal{O} consisting only of one-level character exchanges.

- Daniels-Guilbaud semimetric

The Daniels-Guilbaud semimetric (see [Monj98]) is defined, for any $x, y \in$ Sym_{n}, as the number of triples $(i, j, k), 1 \leq i<j<k \leq n$, such that $\left(x_{i}, x_{j}, x_{k}\right)$ is not a cyclic shift of $\left(y_{i}, y_{j}, y_{k}\right)$. So, it is 0 if and only if x is a cyclic shift of y.

- Cayley metric

The Cayley metric (or transposition distance) T is an editing metric on $S y m_{n}$, obtained for \mathcal{O} consisting only of character exchanges. In terms of Group Theory, $T(x, y)$ is the minimum number of transpositions needed to obtain x from y.
The metric T is bi-invariant. Also, $n-T(x, y)$ is the number of cycles in $x y^{-1}$, and, for the Hamming metric on permutations, $d_{H}(x, y)-T(x, y)$ is the number of cycles with length at least 2 in $x y^{-1}$.

- Ulam metric

The Ulam metric (or permutation editing metric) U is an editing metric on Sym $_{n}$, obtained for \mathcal{O} consisting only of character moves. It is the half of the indel metric on Sym_{n}.
Also, $n-U(x, y)=\operatorname{LCS}(x, y)=\operatorname{LIS}\left(x y^{-1}\right)$, where $\operatorname{LCS}(x, y)$ is the length of the longest common subsequence (not necessarily a substring) of x and y, while $\operatorname{LIS}(z)$ is the length of the longest increasing subsequence of $z \in \operatorname{Sym}_{n}$.
This and the preceding six metrics are right-invariant.

- Reversal metric

The reversal metric is an editing metric on Sym_{n}, obtained for \mathcal{O} consisting only of block reversals.

- Signed reversal metric

The signed reversal metric (Sankoff, 1989) is an editing metric on the set of all $2^{n} n$! signed permutations of the set $\{1, \ldots, n\}$, obtained for \mathcal{O} consisting only of signed reversals.
This metric is used in Biology, where a signed permutation represents a singlechromosome genome, seen as a permutation of genes (along the chromosome) each having a direction (so, a sign + or -).

- Chain metric

The chain metric (or rearrangement metric) is a metric on Sym $_{n}$ [Page65] defined, for any x, y, \in Sym $_{n}$, as the minimum number, minus 1 , of chains (substrings) $y_{1}^{\prime}, \ldots, y_{t}^{\prime}$ of y, such that x can be parsed (concatenated) into, i.e., $x=y_{1}^{\prime} \ldots y_{t}^{\prime}$.

- Lexicographic metric

The lexicographic metric (Golenko-Ginzburg, 1973) is a metric on $S y m_{n}$:

$$
|N(x)-N(y)|
$$

where $N(x)$ is the ordinal number of the position (among $1, \ldots, n!$) occupied by the permutation x in the lexicographic ordering of the set $S y m_{n}$.
In the lexicographic ordering of $\operatorname{Sym}_{n}, x=x_{1} \ldots x_{n} \prec y=y_{1} \ldots y_{n}$ if there exists $1 \leq i \leq n$ such that $x_{1}=x_{1}, \ldots, x_{i-1}=y_{i-1}$, but $x_{i}<y_{i}$.

- Fréchet permutation metric

The Fréchet permutation metric is the Fréchet product metric (cf. Chap. 4) on the set $S y m_{\infty}$ of permutations of positive integers defined by

$$
\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}
$$

- Distance-rationalizable voting rule

Let $e=\left(\pi_{1}, \ldots, \pi_{m}\right)$ be a finite string over alphabet $S y m_{n}$; it can be seen as an election in which, for each $i, 1 \leq i \leq m$, the voter v_{i} give the ranking $\pi_{i}=$ $\left(\pi_{i}\left(c_{1}\right), \ldots, \pi_{i}\left(c_{n}\right)\right)$ on the set $C=\left\{c_{1}, \ldots, c_{n}\right)$ of candidates. Let $X=S y m_{n}^{m}$ be the set of all possible elections with m voters in each.
A voting rule is any map $R: X \rightarrow P(C)$ assigning to each election e a set $R(e) \subset C$ of its R-winners. For example, the winners of plurality rule are candidates with the largest number of first-place votes. A candidate is a unanimity winner if all voters rank him first. A candidate c_{i} is a Condorcet winner if for each $c_{j} \in C \backslash\left\{c_{i}\right\}$, a strict majority of voters prefer c_{i} to c_{j}. A candidate is a Dodson winner if the number of swaps of adjacent candidates in the rankings by voters after which he became a Condorcet winner, is minimal. So, $|R(e)| \leq 1$ for elections with unanimity or Condorcet rule, and $|R(e)| \geq 1$ for plurality or Dodson rule.
A consensus class is a pair (Y, W), where $Y \subset X$ is a set of elections and W is a voting rule with unique (Y, W)-winner (i.e., $|W(e)|=1$) for all $e \in Y$. Let \mathcal{U} and \mathcal{C} denote the consensus classes of all elections having the Condorcet winner and the unanimity winner, respectively.
Given a distance d on X and consensus class (Y, W), the voting rule R is called (Meskanen-Nurmi, 2008, and Elkind-Faliszewski-Slinko, 2009) (d; (Y, W))-distance-rationalizable if, for each election e, a candidate c_{i} is its R-winner if and only if he is the (Y, W)-winner in a d-closest election in Y.
The plurality rule is $\left(d_{H} ; \mathcal{U}\right)$-rationalizable, where $d_{H}\left(e, e^{\prime}\right)$ is the Hamming distance $\left|\left\{i \leq i \leq m: \pi_{i} \neq \pi_{i}^{\prime}\right\}\right|$. The Dodson rule is $\left(d_{s w} ; \mathcal{C}\right)$-rationalizable, where $d_{s w}\left(e, e^{\prime}\right)=\sum_{1 \leq i \leq m} d_{s w}\left(\pi_{i}, \pi_{i}^{\prime}\right)$ and $d_{s w}$ on rankings is the swap metric. Similar framework (minimization of an aggregation function of distances between a collective opinion and the individual judgements) is used in distancebased judgement aggregation and in general distance-based semantics for decision or choice.

Chapter 12
 Distances on Numbers, Polynomials, and Matrices

12.1 Metrics on Numbers

Here we consider the most important metrics on the classical number systems: the semiring \mathbb{N} of natural numbers, the ring \mathbb{Z} of integers, and the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ of rational, real, complex numbers, respectively. We consider also the algebra \mathcal{Q} of quaternions.

- Metrics on natural numbers

There are several well-known metrics on the set \mathbb{N} of natural numbers:

1. $|n-m|$; the restriction of the natural metric (from \mathbb{R}) on \mathbb{N};
2. $p^{-\alpha}$, where α is the highest power of a given prime number p dividing $m-n$, for $m \neq n$ (and equal to 0 for $m=n$); the restriction of the p-adic metric (from \mathbb{Q}) on \mathbb{N};
3. $\ln \frac{\operatorname{lcm}(m, n)}{g c d(m, n)}$; an example of the lattice valuation metric;
4. $w_{r}(n-m)$, where $w_{r}(n)$ is the arithmetic r-weight of n; the restriction of the arithmetic r-norm metric (from \mathbb{Z}) on \mathbb{N};
5. $\frac{|n-m|}{m n}$ (cf. M-relative metric in Chap. 5);
6. $1+\frac{1}{m+n}$ for $m \neq n$ (and equal to 0 for $m=n$); the Sierpinski metric.

Most of these metrics on \mathbb{N} can be extended on \mathbb{Z}. Moreover, any one of the above metrics can be used in the case of an arbitrary countable set X. For example, the Sierpinski metric is defined, in general, on a countable set $X=\left\{x_{n}: n \in \mathbb{N}\right\}$ by $1+\frac{1}{m+n}$ for all $x_{m}, x_{n} \in X$ with $m \neq n$ (and is equal to 0 , otherwise).

- Arithmetic r-norm metric

Let $r \in \mathbb{N}, r \geq 2$. The modified r-ary form of an integer x is a representation

$$
x=e_{n} r^{n}+\cdots+e_{1} r+e_{0},
$$

where $e_{i} \in \mathbb{Z}$, and $\left|e_{i}\right|<r$ for all $i=0, \ldots, n$.

An r-ary form is called minimal if the number of nonzero coefficients is minimal. The minimal form is not unique, in general. But if the coefficients $e_{i}, 0 \leq i \leq$ $n-1$, satisfy the conditions $\left|e_{i}+e_{i+1}\right|<r$, and $\left|e_{i}\right|<\left|e_{i+1}\right|$ if $e_{i} e_{i+1}<0$, then the above form is unique and minimal; it is called the generalized nonadjacent form.
The arithmetic r-weight $w_{r}(x)$ of an integer x is the number of nonzero coefficients in a minimal r-ary form of x, in particular, in the generalized nonadjacent form. The arithmetic r-norm metric on \mathbb{Z} (see, for example, [Ernv85]) is defined by

$$
w_{r}(x-y) .
$$

- Distance between consecutive primes

The distance between consecutive primes (or prime gap, prime difference function) is the difference $g_{n}=p_{n+1}-p_{n}$ between two successive prime numbers.
It holds $g_{n} \leq p_{n}, \varlimsup_{n \rightarrow \infty} g_{n}=\infty$ and (Zhang, 2013) $\lim _{n \rightarrow \infty} g_{n}<7 \times 10^{7}$, improved to ≤ 246 (conjecturally, to ≤ 6) by Polymath8, 2014. There is no $\lim _{n \rightarrow \infty} g_{n}$ but $g_{n} \approx \ln p_{n}$ for the average g_{n}.
Open Polignac's conjecture: for any $k \geq 1$, there are infinitely many n with $g_{n}=2 k$; the case $k=1$ (i.e., that $\underline{\lim }_{n \rightarrow \infty} g_{n}=2$ holds) is the twin prime conjecture.

- Distance Fibonacci numbers

Fibonacci numbers are defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with initial terms $F_{0}=0$ and $F_{1}=1$. Distance Fibonacci numbers are three following generalizations of them in the distance sense, considered by Wloch et al..
Kwaśnik-Wloch, 2000: $F(k, n)=F(k, n-1)+F(k, n-k)$ for $n>k$ and $F(k, n)=n+1$ for $n \leq k$.
Bednarz et al., 2012: $F d(k, n)=F d(k, n-k+1)+F d(k, n-k)$ for $n \geq k>1$ and $F d(k, n)=1$ for $0 \leq n<k$.
Wloch et al., 2013: $F_{2}(k, n)=F_{2}(k, n-2)+F_{2}(k, n-k)$ for $n \geq k \geq 1$ and $F_{2}(k, n)=1$ for $0 \leq n<k$.

- p-adic metric

Let p be a prime number. Any nonzero rational number x can be represented as $x=p^{\alpha} \frac{c}{d}$, where c and d are integers not divisible by p, and α is a unique integer. The p-adic norm of x is defined by $|x|_{p}=p^{-\alpha}$. Moreover, $|0|_{p}=0$ is defined.
The p-adic metric is a norm metric on the set \mathbb{Q} of rational numbers defined by

$$
|x-y|_{p}
$$

This metric forms the basis for the algebra of p-adic numbers. The Cauchy completions of the metric spaces $\left(\mathbb{Q},|x-y|_{p}\right)$ and $(\mathbb{Q},|x-y|)$ with the natural
metric $|x-y|$ give the fields \mathbb{Q}_{p} of p-adic numbers and \mathbb{R} of real numbers, respectively.
The Gajić metric is an ultrametric on the set \mathbb{Q} of rational numbers defined, for $x \neq y$ (via the integer part $\lfloor z\rfloor$ of a real number z), by

$$
\inf \left\{2^{-n}: n \in \mathbb{Z},\left\lfloor 2^{n}(x-e)\right\rfloor=\left\lfloor 2^{n}(y-e)\right\rfloor\right\}
$$

where e is any fixed irrational number. This metric is equivalent to the natural metric $|x-y|$ on \mathbb{Q}.

- Continued fraction metric on irrationals

The continued fraction metric on irrationals is a complete metric on the set Irr of irrational numbers defined, for $x \neq y$, by

$$
\frac{1}{n}
$$

where n is the first index for which the continued fraction expansions of x and y differ. This metric is equivalent to the natural metric $|x-y|$ on Irr which is noncomplete and disconnected. Also, the Baire 0-dimensional space $B\left(\boldsymbol{\aleph}_{0}\right)$ (cf. Baire metric in Chap. 11) is homeomorphic to Irr endowed with this metric.

- Natural metric

The natural metric (or absolute value metric, line metric, the distance between numbers) is a metric on \mathbb{R} defined by

$$
|x-y|=\left\{\begin{array}{l}
y-x, \text { if } x-y<0 \\
x-y, \text { if } x-y \geq 0
\end{array}\right.
$$

On \mathbb{R} all l_{p}-metrics coincide with the natural metric. The metric space ($\mathbb{R},|x-y|$) is called the real line (or Euclidean line).
There exist many other metrics on \mathbb{R} coming from $|x-y|$ by some metric transform (cf. Chap. 4). For example: $\min \{1,|x-y|\}, \frac{|x-y|}{1+|x-y|},|x|+|x-y|+|y|$ (for $x \neq y$) and, for a given $0<\alpha<1$, the generalized absolute value metric $|x-y|^{\alpha}$.
Some authors use $|x-y|$ as the Polish notation (parentheses-free and computerfriendly) of the distance function in any metric space.

- Zero bias metric

The zero bias metric is a metric on \mathbb{R} defined by

$$
1+|x-y|
$$

if one and only one of x and y is strictly positive, and by

$$
|x-y|
$$

otherwise, where $|x-y|$ is the natural metric (see, for example, [Gile87]).

- Sorgenfrey quasi-metric

The Sorgenfrey quasi-metric is a quasi-metric d on \mathbb{R} defined by

$$
y-x
$$

if $y \geq x$, and equal to 1 , otherwise. Some similar quasi-metrics on \mathbb{R} are:

1. $d_{1}(x, y)=\max \{y-x, 0\}$ (in general, $\max \{f(y)-f(x), 0\}$ is a quasi-metric on a set X if $f: X \rightarrow \mathbb{R}_{\geq 0}$ is an injective function);
2. $d_{2}(x, y)=\min \{y-x, 1\}$ if $y \geq x$, and equal to 1 , otherwise;
3. $d_{3}(x, y)=y-x$ if $y \geq x$, and equal to $a(x-y)$ (for fixed $a>0$), otherwise;
4. $d_{4}(x, y)=e^{y}-e^{x}$ if $y \geq x$, and equal to $e^{-y}-e^{-x}$ otherwise.

- Real half-line quasi-semimetric

The real half-line quasi-semimetric is defined on the half-line $\mathbb{R}_{>0}$ by

$$
\max \left\{0, \ln \frac{y}{x}\right\} .
$$

- Janous-Hametner metric

The Janous-Hametner metric is defined on the half-line $\mathbb{R}_{>0}$ by

$$
\frac{|x-y|}{(x+y)^{t}}
$$

where $t=-1$ or $0 \leq t \leq 1$, and $|x-y|$ is the natural metric.

- Extended real line metric

An extended real line metric is a metric on $\mathbb{R} \cup\{+\infty\} \cup\{-\infty\}$. The main example (see, for example, [Cops68]) of such metric is given by

$$
|f(x)-f(y)|
$$

where $f(x)=\frac{x}{1+|x|}$ for $x \in \mathbb{R}, f(+\infty)=1$, and $f(-\infty)=-1$.
Another metric, commonly used on $\mathbb{R} \cup\{+\infty\} \cup\{-\infty\}$, is defined by

$$
|\arctan x-\arctan y|
$$

where $-\frac{1}{2} \pi<\arctan x<\frac{1}{2} \pi$ for $-\infty<x<\infty$, and $\arctan (\pm \infty)= \pm \frac{1}{2} \pi$.

- Complex modulus metric

The complex modulus metric on the set \mathbb{C} of complex numbers is defined by

$$
|z-u|,
$$

where, for any $z=z_{1}+z_{2} i \in \mathbb{C}$, the number $|z|=\sqrt{z \bar{z}}=\sqrt{z_{1}^{2}+z_{2}^{2}}$ is the complex modulus. The complex argument θ is defined by $z=|z|(\cos (\theta)+$ $i \sin (\theta))$.

The metric space $(\mathbb{C},|z-u|)$ is called the complex (or Wessel-Argand) plane. It is isometric to the Euclidean plane $\left(\mathbb{R}^{2},\|x-y\|_{2}\right)$. So, the metrics on \mathbb{R}^{2}, given in Chaps. 19 and 5, can be seen as metrics on \mathbb{C}. For example, the British Rail metric on \mathbb{C} is $|z|+|u|$ for $z \neq u$. The p-relative (if $1 \leq p<\infty$) and relative metric (if $p=\infty$) on \mathbb{C} are defined for $|z|+|u| \neq 0$ respectively, by

$$
\frac{|z-u|}{\sqrt[p]{|z|^{p}+|u|^{p}}} \text { and } \frac{|z-u|}{\max \{|z|,|u|\}}
$$

- $\mathbb{Z}\left(\eta_{m}\right)$-related norm metrics

A Kummer (or cyclotomic) ring $\mathbb{Z}\left(\eta_{m}\right)$ is a subring of the ring \mathbb{C} (and an extension of the ring \mathbb{Z}), such that each of its elements has the form $\sum_{j=0}^{m-1} a_{j} \eta_{m}^{j}$, where η_{m} is a primitive m-th root $\exp \left(\frac{2 \pi i}{m}\right)$ of unity, and all a_{j} are integers.
The complex modulus $|z|$ of $z=a+b \eta_{m} \in \mathbb{C}$ is defined by

$$
|z|^{2}=z \bar{z}=a^{2}+\left(\eta_{m}+\overline{\eta_{m}}\right) a b+b^{2}=a^{2}+2 a b \cos \left(\frac{2 \pi i}{m}\right)+b^{2}
$$

Then $(a+b)^{2}=q^{2}$ for $m=2$ (or 1), $a^{2}+b^{2}$ for $m=4$, and $a^{2}+a b+b^{2}$ for $m=6$ (or 3), i.e., for the ring \mathbb{Z} of usual integers, $\mathbb{Z}(i)$ of Gaussian integers and $\mathbb{Z}(\rho)$ of Eisenstein-Jacobi (or EJ) integers.
The set of units of $\mathbb{Z}\left(\eta_{m}\right)$ contain $\eta_{m}^{j}, 0 \leq j \leq m-1$; for $m=5$ and $m \geq 6$, units of infinite order appear also, since $\cos \left(\frac{2 \pi i}{m}\right)$ is irrational. For $m=2,4,6$, the set of units is $\{ \pm 1\},\{ \pm 1, \pm i\},\left\{ \pm 1, \pm \rho, \pm \rho^{2}\right\}$, where $i=\eta_{4}$ and $\rho=\eta_{6}=\frac{1+i \sqrt{3}}{2}$. The norms $|z|=\sqrt{a^{2}+b^{2}}$ and $\left||z| \|_{i}=|a|+|b|\right.$ for $z=a+b i \in \mathbb{C}$ give rise to the complex modulus and i-Manhattan metrics on \mathbb{C}. They coincide with the Euclidean ($\left.l_{2}-\right)$ and Manhattan ($l_{1^{-}}$) metrics, respectively, on \mathbb{R}^{2} seen as the complex plane. The restriction of the i-Manhattan metric on $\mathbb{Z}(i)$ is the path metric of the square grid \mathbb{Z}^{2} of \mathbb{R}^{2}; cf. grid metric in Chap. 19.
The ρ-Manhattan metric on \mathbb{C} is defined by the norm $\|z\|_{\rho}$, i.e.,

$$
\begin{aligned}
& \min \left\{|a|+|b|+|c|: z=a+b \rho+c \rho^{2}\right\} \\
& =\min \{|a|+|b|,|a+b|+|b|,|a+b|+|a|: z=a+b \rho\} .
\end{aligned}
$$

The restriction of the ρ-Manhattan metric on $\mathbb{Z}(\rho)$ is the path metric of the triangular grid of \mathbb{R}^{2} (seen as the hexagonal lattice $A_{2}=\left\{(a, b, c) \in \mathbb{Z}^{3}\right.$: $a+b+c=0\}$), i.e., the hexagonal metric (Chap. 19).
Let f denote either i or $\rho=\frac{1+i \sqrt{3}}{2}$. Given a $\pi \in \mathbb{Z}(f) \backslash\{0\}$ and $z, z^{\prime} \in \mathbb{Z}(f)$, we write $z \equiv z^{\prime}(\bmod \pi)$ if $z-z^{\prime}=\delta \pi$ for some $\delta \in \mathbb{Z}(f)$. For the quotient ring $\mathbb{Z}_{\pi}(f)=\{z(\bmod \pi): z \in \mathbb{Z}(f)\}$, it holds $\left|\mathbb{Z}_{\pi}(f)\right|=\|\pi\|_{f}^{2}$.
Call two congruence classes $z(\bmod \pi)$ and $z^{\prime}(\bmod \pi)$ adjacent if $z-z^{\prime} \equiv$ $f^{j}(\bmod \pi)$ for some j. The resulting graph on $\mathbb{Z}_{\pi}(f)$ called a Gaussian network or EJ network if, respectively, $f=i$ or $f=\rho$. The path metrics
of these networks coincide with their norm metrics, defined (Fan-Gao, 2004) for $z(\bmod \pi)$ and $z^{\prime}(\bmod \pi)$, by

$$
\min \|u\|_{f}: u \in z-z^{\prime}(\bmod \pi)
$$

These metrics are different from the previously defined [Hube94a, Hube94b] distance on $\mathbb{Z}_{\pi}(f):\|v\|_{f}$, where $v \in z-z^{\prime}(\bmod \pi)$ is selected by minimizing the complex modulus. For $f=i$, this is the Mannheim distance (Chap. 16), which is not a metric.

- Chordal metric

The chordal metric d_{χ} is a metric on the set $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ defined by

$$
d_{\chi}(z, u)=\frac{2|z-u|}{\sqrt{1+|z|^{2}} \sqrt{1+|u|^{2}}} \text { and } d_{\chi}(z, \infty)=\frac{2}{\sqrt{1+|z|^{2}}}
$$

for all $u, z \in \mathbb{C}$ (cf. M-relative metric in Chap. 5).
The metric space $\left(\overline{\mathbb{C}}, d_{\chi}\right)$ is called the extended complex plane. It is homeomorphic and conformally equivalent to the Riemann sphere, i.e., the unit sphere $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{E}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ (considered as a metric subspace of \mathbb{E}^{3}), onto which $\left(\overline{\mathbb{C}}, d_{\chi}\right)$ is one-to-one mapped under stereographic projection. The plane $\overline{\mathbb{C}}$ can be identified with the plane $x_{3}=0$ such that the and imaginary axes coincide with the x_{1} and x_{2} axes. Under stereographic projection, each point $z \in \mathbb{C}$ corresponds to the point $\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$, where the ray drawn from the "north pole" $(0,0,1)$ to the point z meets the sphere S^{2}; the "north pole" corresponds to the point at ∞. The chordal (spherical) metric between two points $p, q \in S^{2}$ is taken to be the distance between their preimages $z, u \in \overline{\mathbb{C}}$. The chordal metric can be defined equivalently on $\overline{\mathbb{R}}^{n}=\mathbb{R}^{n} \cup\{\infty\}$:

$$
d_{\chi}(x, y)=\frac{2\|x-y\|_{2}}{\sqrt{1+\|x\|_{2}^{2}} \sqrt{1+\|y\|_{2}^{2}}} \text { and } d_{\chi}(x, \infty)=\frac{2}{\sqrt{1+\|x\|_{2}^{2}}}
$$

The restriction of the metric d_{χ} on \mathbb{R}^{n} is a Ptolemaic metric; cf. Chap. 1.
Given $\alpha>0, \beta \geq 0, p \geq 1$, the generalized chordal metric is a metric on \mathbb{C} (in general, on $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$ and even on any Ptolemaic space $(V,\|\|$.$)), defined by$

$$
\frac{|z-u|}{\sqrt[p]{\alpha+\beta|z|^{p}} \cdot \sqrt[p]{\alpha+\beta|u|^{p}}}
$$

- Metrics on quaternions

Quaternions are members of a noncommutative division algebra \mathcal{Q} over the field \mathbb{R}, geometrically realizable in \mathbb{R}^{4} [Hami66]. Formally,

$$
\mathcal{Q}=\left\{q=q_{1}+q_{2} i+q_{3} j+q_{4} k: q_{i} \in \mathbb{R}\right\}
$$

where the basic units $1, i, j, k \in \mathcal{Q}$ satisfy $i^{2}=j^{2}=k^{2}=-1$ and $i j=$ $-j i=k$.
The quaternion norm is defined by $\|q\|=\sqrt{q \bar{q}}=\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}}$, where $\bar{q}=q_{1}-q_{2} i-q_{3} j-q_{4} k$. The quaternion metric is the norm metric $\left\|q-q^{\prime}\right\|$ on \mathcal{Q}.
The set of all Lipschitz integers and Hurwitz integers are defined, respectively, by

$$
\begin{gathered}
L=\left\{q_{1}+q_{2} i+q_{3} j+q_{4} k: q_{i} \in \mathbb{Z}\right\} \text { and } \\
H=\left\{q_{1}+q_{2} i+q_{3} j+q_{4} k: \text { all } q_{i} \in \mathbb{Z} \text { or all } q_{i}+\frac{1}{2} \in \mathbb{Z}\right\} .
\end{gathered}
$$

A quaternion $q \in L$ is irreducible (i.e., $q=q^{\prime} q^{\prime \prime}$ implies $\left\{q^{\prime}, q^{\prime \prime}\right\} \cap$ $\{ \pm 1, \pm i, \pm j, \pm k\} \neq \emptyset)$ if and only if $\|q\|$ is a prime. Given an irreducible $\pi \in L$ and $q, q^{\prime} \in H$, we write $q \equiv q^{\prime}(\bmod \pi)$ if $q-q^{\prime}=\delta \pi$ for some $\delta \in L$.
For the rings $L_{\pi}=\{q(\bmod \pi): q \in L\}$ and $H_{\pi}=\{q(\bmod \pi): q \in H\}$ it holds $\left|L_{\pi}\right|=\|\pi\|^{2}$ and $\left|H_{\pi}\right|=2\|\pi\|^{2}-1$.
The quaternion Lipschitz metric on L_{π} is defined (Martinez et al., 2009) by

$$
d_{L}(\alpha, \beta)=\min \sum_{1 \leq s \leq 4}\left|q_{s}\right|: \alpha-\beta \equiv q_{1}+q_{2} i+q_{3} j+q_{4} k(\bmod \pi)
$$

The ring H is additively generated by its subring L and $w=\frac{1}{2}(1+i+j+k)$. The Hurwitz metric on the ring H_{π} is defined (Guzëltepe, 2013) by
$d_{H}(\alpha, \beta)=\min \sum_{1 \leq s \leq 5}\left|q_{s}\right|: \alpha-\beta \equiv q_{1}+q_{2} i+q_{3} j+q_{4} k+q_{5} w(\bmod \pi)$.
Cf. the hyper-Kähler and Gibbons-Manton metrics in Sect. 7.3 and the unit quaternions and joint angle metrics in Sect. 18.3.

12.2 Metrics on Polynomials

A polynomial is a sum of powers in one or more variables multiplied by coefficients. A polynomial in one variable (or monic polynomial) with constant real (complex) coefficients is given by $P=P(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k} \in \mathbb{R}\left(a_{k} \in \mathbb{C}\right)$. The set \mathcal{P} of all real (complex) polynomials forms a ring ($\mathcal{P},+, \cdot, 0$). It is also a vector space over \mathbb{R} (over $\mathbb{C})$.

- Polynomial norm metric

A polynomial norm metric is a norm metric on the vector space \mathcal{P} of all real (complex) polynomials defined by

$$
\|P-Q\|
$$

where $\|$.$\| is a polynomial norm, i.e., a function \|\|:. \mathcal{P} \rightarrow \mathbb{R}$ such that, for all $P, Q \in \mathcal{P}$ and for any scalar k, we have the following properties:

1. $\|P\| \geq 0$, with $\|P\|=0$ if and only if $P \equiv 0$;
2. $\|k P\|=|k\|\mid\| P \|$;
3. $\|P+Q\| \leq\|P\|+\|Q\|$ (triangle inequality).

The l_{p}-norm and L_{p}-norm of a polynomial $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$ are defined by

$$
\begin{gathered}
\|P\|_{p}=\left(\sum_{k=0}^{n}\left|a_{k}\right|^{p}\right)^{1 / p} \text { and }\|P\|_{L_{p}}=\left(\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{\frac{1}{p}} \text { for } 1 \leq p<\infty \\
\|P\|_{\infty}=\max _{0 \leq k \leq n}\left|a_{k}\right| \text { and }\|P\|_{L_{\infty}}=\sup _{|z|=1}|P(z)| \text { for } p=\infty
\end{gathered}
$$

The values $\|P\|_{1}$ and $\|P\|_{\infty}$ are called the length and height of polynomial P.

- Distance from irreducible polynomials

For any field \mathbb{F}, a polynomial with coefficients in \mathbb{F} is said to be irreducible over \mathbb{F} if it cannot be factored into the product of two nonconstant polynomials with coefficients in \mathbb{F}. Given a metric d on the polynomials over \mathbb{F}, the distance (of a given polynomial $P(z)$) from irreducible polynomials is $d_{i r}(P)=\inf d(P, Q)$, where $Q(z)$ is any irreducible polynomial of the same degree over \mathbb{F}.
Polynomial conjecture of Turán, 1967, is that there exists a constant C with $d_{i r}(P) \leq C$ for every polynomial P over \mathbb{Z}, where $d(P, Q)$ is the length $\|P-Q\|_{1}$ of $P-Q$.
Lee-Ruskey-Williams, 2007, conjectured that there exists a constant C with $d_{i r}(P) \leq C$ for every polynomial P over the Galois field \mathbb{F}_{2}, where $d(P, Q)$ is the Hamming distance between the $(0,1)$-sequences of coefficients of P and Q.

- Bombieri metric

The Bombieri metric (or polynomial bracket metric) is a polynomial norm metric on the set \mathcal{P} of all real (complex) polynomials defined by

$$
[P-Q]_{p}
$$

where $[.]_{p}, 0 \leq p \leq \infty$, is the Bombieri p-norm.
For a polynomial $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$ it is defined by

$$
[P]_{p}=\left(\sum_{k=0}^{n}\binom{n}{k}^{1-p}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

- Metric space of roots

The metric space of roots is (Curgus-Mascioni, 2006) the space (X, d) where X is the family of all multisets of complex numbers with n elements and the distance between multisets $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is defined by the following analog of the Fréchet metric:

$$
\min _{\tau \in S y m_{n}} \max _{1 \leq j \leq n}\left|u_{j}-v_{\tau(j)}\right|,
$$

where τ is any permutation of $\{1, \ldots, n\}$. Here the set of roots of some monic complex polynomial of degree n is considered as a multiset with n elements. Cf. metrics between multisets in Chap. 1 .
The function assigning to each polynomial the multiset of its roots is a homeomorphism between the metric space of all monic complex polynomials of degree n with the polynomial norm metric l_{∞} and the metric space of roots.

12.3 Metrics on Matrices

An $m \times n$ matrix $A=\left(\left(a_{i j}\right)\right)$ over a field \mathbb{F} is a table consisting of m rows and n columns with the entries $a_{i j}$ from \mathbb{F}. The set of all $m \times n$ matrices with real (complex) entries is denoted by $M_{m, n}$ or $\mathbb{R}^{m \times n}\left(\mathbb{C}^{m \times n}\right)$. It forms a $\operatorname{group}\left(M_{m, n},+, 0_{m, n}\right)$, where $\left(\left(a_{i j}\right)\right)+\left(\left(b_{i j}\right)\right)=\left(\left(a_{i j}+b_{i j}\right)\right)$, and the matrix $0_{m, n} \equiv 0$. It is also an $m n$-dimensional vector space over $\mathbb{R}(\mathbb{C})$.

The transpose of a matrix $A=\left(\left(a_{i j}\right)\right) \in M_{m, n}$ is the matrix $A^{T}=\left(\left(a_{j i}\right)\right) \in$ $M_{n, m}$. A $m \times n$ matrix A is called a square matrix if $m=n$, and a symmetric matrix if $A=A^{T}$. The conjugate transpose (or adjoint) of a matrix $A=\left(\left(a_{i j}\right)\right) \in M_{m, n}$ is the matrix $A^{*}=\left(\left(\bar{a}_{j i}\right)\right) \in M_{n, m}$. An Hermitian matrix is a complex square matrix A with $A=A^{*}$.

The set of all square $n \times n$ matrices with real (complex) entries is denoted by M_{n}. It forms a $\operatorname{ring}\left(M_{n},+, \cdot, 0_{n}\right)$, where + and 0_{n} are defined as above, and $\left(\left(a_{i j}\right)\right)$. $\left(\left(b_{i j}\right)\right)=\left(\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right)\right)$. It is also an n^{2}-dimensional vector space over $\mathbb{R}($ over $\mathbb{C})$. The trace of a square $n \times n$ matrix $A=\left(\left(a_{i j}\right)\right)$ is defined by $\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}$.

The identity matrix is $1_{n}=\left(\left(c_{i j}\right)\right)$ with $c_{i i}=1$, and $c_{i j}=0, i \neq j$. An unitary matrix $U=\left(\left(u_{i j}\right)\right)$ is a square matrix defined by $U^{-1}=U^{*}$, where U^{-1} is the inverse matrix of U, i.e., $U U^{-1}=1_{n}$. A matrix $A \in M_{m, n}$ is orthonormal if $A^{*} A=$ 1_{n}. A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^{T}=A^{-1}$, normal if $A^{T} A=A A^{T}$ and singular if its determinant is 0 .

If for a matrix $A \in M_{n}$ there is a vector x such that $A x=\lambda x$ for some scalar λ, then λ is called an eigenvalue of A with corresponding eigenvector x. Given a matrix $A \in \mathbb{C}^{m \times n}$, its singular values $s_{i}(A)$ are defined as $\sqrt{\lambda\left(A^{*} A\right)}$. A real matrix A is positive-definite if $v^{T} A v>0$ for all nonzero real vectors v; it holds if and only if all eigenvalues of $A_{H}=\frac{1}{2}\left(A+A^{T}\right)$ are positive. An Hermitian matrix A is positive-definite if $v^{*} A v>0$ for all nonzero complex vectors v; it holds if and only if all $\lambda(A)$ are positive.

The mixed states of a n-dimensional quantum system are described by their density matrices, i.e., positive-semidefinite Hermitian $n \times n$ matrices of trace 1 . The set of such matrices is convex, and its extremal points describe the pure states. Cf. monotone metrics in Chap. 7 and distances between quantum states in Chap. 24.

- Matrix norm metric

A matrix norm metric is a norm metric on the set $M_{m, n}$ of all real (complex) $m \times n$ matrices defined by

$$
\|A-B\|,
$$

where $\|$.$\| is a matrix norm, i.e., a function \|\|:. M_{m, n} \rightarrow \mathbb{R}$ such that, for all $A, B \in M_{m, n}$, and for any scalar k, we have the following properties:

1. $\|A\| \geq 0$, with $\|A\|=0$ if and only if $A=0_{m, n}$;
2. $\|k A\|=|k|\|A\|$;
3. $\|A+B\| \leq\|A\|+\|B\|$ (triangle inequality).
4. $\|A B\| \leq\|A\| \cdot\|B\|$ (submultiplicativity).

All matrix norm metrics on $M_{m, n}$ are equivalent. The simplest example of such metric is the Hamming metric on $M_{m, n}$ (in general, on the set $M_{m, n}(\mathbb{F})$ of all $m \times n$ matrices with entries from a field \mathbb{F}) defined by $\|A-B\|_{H}$, where $\|A\|_{H}$ is the Hamming norm of $A \in M_{m, n}$, i.e., the number of nonzero entries in A. Example of a generalized (i.e., not submultiplicative one) matrix norm is the max element norm $\left\|A=\left(\left(a_{i j}\right)\right)\right\| \max =\max _{i, j}\left|a_{i j}\right|$; but $\sqrt{m n}\|A\|_{\text {max }}$ is a matrix norm.

- Natural norm metric

A natural (or operator, induced) norm metric is a matrix norm metric on the set M_{n} defined by

$$
\|A-B\|_{\mathrm{nat}},
$$

where $\|.\|_{\text {nat }}$ is a natural (or operator, induced) norm on M_{n}, induced by the vector norm $\|x\|, x \in \mathbb{R}^{n}\left(x \in \mathbb{C}^{n}\right)$, is a matrix norm defined by

$$
\|A\|_{\text {nat }}=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{\|x\|=1}\|A x\|=\sup _{\|x\| \leq 1}\|A x\| .
$$

The natural norm metric can be defined in similar way on the set $M_{m, n}$ of all $m \times n$ real (complex) matrices: given vector norms $\|.\|_{\mathbb{R}^{m}}$ on \mathbb{R}^{m} and $\|.\|_{\mathbb{R}^{n}}$ on \mathbb{R}^{n}, the natural norm $\|A\|_{\text {nat }}$ of a matrix $A \in M_{m, n}$, induced by $\|\cdot\| \|_{\mathbb{R}^{n}}$ and $\|\cdot\| \|_{\mathbb{R}^{m}}$, is a matrix norm defined by $\|A\|_{\text {nat }}=\sup _{\|x\|_{\mathbb{R}^{n}}=1}\|A x\|_{\mathbb{R}^{m}}$.

- Matrix p-norm metric

A matrix p-norm metric is a natural norm metric on M_{n} defined by

$$
\|A-B\|_{\text {nat }}^{p},
$$

where $\|.\|_{\text {nat }}^{p}$ is the matrix (or operator) p-norm, i.e., a natural norm, induced by the vector l_{p}-norm, $1 \leq p \leq \infty$:

$$
\|A\|_{\text {nat }}^{p}=\max _{\|x\|_{p}=1}\|A x\|_{p}, \text { where }\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

The maximum absolute column and maximum absolute row metric are the matrix 1 -norm and matrix ∞-norm metric on M_{n}. For a matrix $A=\left(\left(a_{i j}\right)\right) \in M_{n}$, the maximum absolute column and maximum absolute row sum norm are

$$
\|A\|_{\text {nat }}^{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| \text { and }\left|A \|_{\text {nat }}^{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\right| a_{i j} \mid .
$$

The spectral norm metric is the matrix 2-norm metric $\|A-B\|_{\text {nat }}^{2}$ on M_{n}. The matrix 2 -norm $\|.\|_{\text {nat }}^{2}$, induced by the vector l_{2}-norm, is also called the spectral norm and denoted by $\|.\| \|_{s p}$. For a symmetric matrix $A=\left(\left(a_{i j}\right)\right) \in M_{n}$, it is

$$
\|A\|_{s p}=s_{\max }(A)=\sqrt{\lambda_{\max }\left(A^{*} A\right)}
$$

where $A^{*}=\left(\left(\bar{a}_{j i}\right)\right)$, while $s_{\max }$ and $\lambda_{\max }$ are largest singular value and eigenvalue.

- Frobenius norm metric

The Frobenius norm metric is a matrix norm metric on $M_{m, n}$ defined by

$$
\|A-B\|_{F r},
$$

where $\|\cdot\|_{F r}$ is the Frobenius (or Hilbert-Schmidt) norm. For $A=\left(\left(a_{i j}\right)\right)$, it is

$$
\|A\|_{F r}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}=\sqrt{\operatorname{Tr}\left(A^{*} A\right)}=\sqrt{\sum_{1 \leq i \leq \operatorname{rank}(A)} \lambda_{i}}=\sqrt{\sum_{1 \leq i \leq \operatorname{rank}(A)} s_{i}^{2}},
$$

where λ_{i}, s_{i} are the eigenvalues and singular values of A.
This norm is strictly convex, is a differentiable function of its elements $a_{i j}$ and is the only unitarily invariant norm among $\|A\|_{p}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{p}\right)^{\frac{1}{p}}, p \geq 1$. The trace norm metric is a matrix norm metric on $M_{m, n}$ defined by

$$
\|A-B\|_{t r},
$$

where $\|.\|_{t r}$ is the trace norm (or nuclear norm) on $M_{m, n}$ defined by

$$
\|A\|_{t r}=\sum_{i=1}^{\min \{m, n\}} s_{i}(A)=\operatorname{Tr}\left(\sqrt{A^{*} A}\right) .
$$

- Schatten norm metric

Given $1 \leq p<\infty$, the Schatten norm metric is a matrix norm metric on $M_{m, n}$ defined by

$$
\|A-B\|_{S c h}^{p},
$$

where $\|.\|_{\text {sch }}^{p}$ is the Schatten p-norm on $M_{m, n}$. For a matrix $A \in M_{m, n}$, it is defined as the p-th root of the sum of the p-th powers of all its singular values:

$$
\|A\|_{S c h}^{p}=\left(\sum_{i=1}^{\min \{m, n\}} s_{i}^{p}(A)\right)^{\frac{1}{p}} .
$$

For $p=\infty, 2$ and 1 , one obtains the spectral norm metric, Frobenius norm metric and trace norm metric, respectively.

- (c, p)-norm metric

Let $k \in \mathbb{N}, k \leq \min \{m, n\}, c \in \mathbb{R}^{k}, c_{1} \geq c_{2} \geq \cdots \geq c_{k}>0$, and $1 \leq p<\infty$. The (c, p)-norm metric is a matrix norm metric on $M_{m, n}$ defined by

$$
\|A-B\|_{(c, p)}^{k},
$$

where $\|.\|_{(c, p)}^{k}$ is the (c, p)-norm on $M_{m, n}$. For a matrix $A \in M_{m, n}$, it is defined by

$$
\|A\|_{(c, p)}^{k}=\left(\sum_{i=1}^{k} c_{i} s_{i}^{p}(A)\right)^{\frac{1}{p}},
$$

where $s_{1}(A) \geq s_{2}(A) \geq \cdots \geq s_{k}(A)$ are the first k singular values of A. If $p=1$, it is the c-norm. If, moreover, $c_{1}=\cdots=c_{k}=1$, it is the Ky Fan k-norm.

- Ky Fan k-norm metric

Given $k \in \mathbb{N}, k \leq \min \{m, n\}$, the Ky Fan k-norm metric is a matrix norm metric on $M_{m, n}$ defined by

$$
\|A-B\|_{K F}^{k},
$$

where $\|.\| \|_{K F}^{k}$ is the Ky Fan k-norm on $M_{m, n}$. For a matrix $A \in M_{m, n}$, it is defined as the sum of its first k singular values:

$$
\|A\|_{K F}^{k}=\sum_{i=1}^{k} s_{i}(A)
$$

For $k=1$ and $k=\min \{m, n\}$, one obtains the spectral and trace norm metrics.

- Cut norm metric

The cut norm metric is a matrix norm metric on $M_{m, n}$ defined by

$$
\|A-B\|_{c u t}
$$

where $\|.\|_{\text {cut }}$ is the cut norm on $M_{m, n}$ defined, for a matrix $A=\left(\left(a_{i j}\right)\right) \in$ $M_{m, n}$, as:

$$
\|A\|_{\text {cut }}=\max _{I \subset\{1, \ldots, m\}, J \subset\{1, \ldots, n\}}\left|\sum_{i \in I, j \in J} a_{i j}\right| .
$$

Cf. in Chap. 15 the rectangle distance on weighted graphs and the cut semimetric, but the weighted cut metric in Chap. 19 is not related.

- Matrix nearness problems

A norm $\|$.$\| is unitarily invariant on M_{m, n}$ if $\|B\|=\|U B V\|$ for all $B \in M_{m, n}$ and all unitary matrices U, V. All Schatten p-norms are
Given a unitarily invariant norm $\|$.$\| on M_{m, n}$, a matrix property \mathcal{P} defining a subspace or compact subset of $M_{m, n}$ (so that $d_{\| .| |}(A, \mathcal{P})$ below is well defined) and a matrix $A \in M_{m, n}$, then the distance to \mathcal{P} is the point-set distance on $M_{m, n}$

$$
d(A)=d_{\|.\|}(A, \mathcal{P})=\min \{\|E\|: A+E \text { has property } \mathcal{P}\} .
$$

A matrix nearness problem is [High89] to find an explicit formula for $d(A)$, the \mathcal{P}-closest matrix (or matrices) $X_{\|.\|}(A)=A+E$, satisfying the above minimum, and efficient algorithms for computing $d(A)$ and $X_{\| .| |}(A)$. The componentwise nearness problem is to find $d^{\prime}(A)=\min \{\epsilon:|E| \leq \epsilon|A|, A+E$ has property $\mathcal{P}\}$, where $|B|=\left(\left(\left|b_{i j}\right|\right)\right)$ and the matrix inequality is interpreted componentwise.
The most used norms for $B=\left(\left(b_{i j}\right)\right)$ are the Schatten 2 - and ∞ norms (cf. Schatten norm metric): the Frobenius norm $\|B\|_{F r}=$ $\sqrt{\operatorname{Tr}\left(B^{*} B\right)}=\sqrt{\sum_{1 \leq i \leq \operatorname{rank}(B)} s_{i}^{2}}$ and the spectral norm $\|B\|_{s p}=\sqrt{\lambda_{\max }\left(B^{*} B\right)}=$ $s_{1}(B)$.
Examples of closest matrices $X=X_{\| .| |}(A, \mathcal{P})$ follow.
Let $A \in \mathbb{C}^{n \times n}$. Then $A=A_{H}+A_{S}$, where $A_{H}=\frac{1}{2}\left(A+A^{*}\right)$ is Hermitian and $A_{H}=\frac{1}{2}\left(A-A^{*}\right)$ is skew-Hermitian (i.e., $\left.A_{H}^{*}=-A_{H}\right)$. Let $A=$ $U \Sigma V^{*}$ be a singular value decomposition (SVD) of A, i.e., $U \in M_{m}$ and $V^{*} \in M_{n}$ are unitary, while $\Sigma=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{\min \{m, n\}}\right)$ is an $m \times n$ diagonal matrix with $s_{1} \geq s_{2} \geq \cdots \geq s_{\operatorname{rank}(A)}>0=\cdots=0$. Fan and Hoffman, 1955, showed that, for any unitarily invariant norm, $A_{H}, A_{S}, U V^{*}$ are closest Hermitian (symmetric), skew-Hermitian (skew-symmetric) and unitary
(orthogonal) matrices, respectively. Such matrix $X_{F r}(A)$ is a unique minimizer in all three cases.
Let $A \in \mathbb{R}^{n \times n}$. Gabriel, 1979, found the closest normal matrix $X_{F r}(A)$. Higham found in 1988 a unique closest symmetric positive-semidefinite matrix $X_{F r}(A)$ and, in 2001, the closest matrix of this type with unit diagonal (i.e., ab correlation matrix).
Given a SVD $A=U \Sigma V^{*}$ of A, let A_{k} denote $U \Sigma_{k} V^{*}$, where Σ_{k} is a diagonal matrix $\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{k}, 0, \ldots, 0\right)$ containing the largest k singular values of A. Then (Mirsky, 1960) A_{k} achieves $\min _{\operatorname{rank}(A+E) \leq k}\|E\|$ for any unitarily invariant norm. So, $\left\|A-A_{k}\right\|_{F r}=\sqrt{\sum_{i=k+1}^{\operatorname{rank}(A)} s_{i}^{2}}$ (Eckart-Young, 1936) and $\left\|A-A_{k}\right\|_{s p}=$ $s_{\text {max }}\left(A-A_{k}\right)=s_{k+1}(A) . A_{k}$ is a unique minimizer $X_{F r}(A)$ if $s_{k}>s_{k+1}$.
Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then its distance to singularity $d(A$, Sing $)=$ $\min \{\|E\|: A+E$ is singular $\}$ is, for both above norms, $s_{n}(A)=\frac{1}{s_{1}\left(A^{-1}\right)}=$ $\frac{1}{\left\|A^{-1}\right\|_{s p}}=\sup \left\{\delta: \delta \mathbb{B}_{\mathbb{R}^{n}} \subseteq A \mathbb{B}_{\mathbb{R}^{n}}\right\} ;$ here $\mathbb{B}_{\mathbb{R}^{n}}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$.
Given a closed convex cone $C \subseteq \mathbb{R}^{n}$, call a matrix $A \in \mathbb{R}^{m \times n}$ feasible if $\{A x$: $x \in C\}=\mathbb{R}^{m}$; so, for $m=n$ and $C=\mathbb{R}^{n}$, feasibly means nonsingularity. Renegar, 1995, showed that, for feasible matrix A, its distance to infeasibility $\min \left\{\|E\|_{\text {nat }}: A+E\right.$ is not feasible $\}$ is $\sup \left\{\delta: \delta \mathbb{B}_{\mathbb{R}^{m}} \subseteq A\left(\mathbb{B}_{\mathbb{R}^{n}} \cap C\right)\right\}$.
Lewis, 2003, generalized this by showing that, given two real normed spaces X, Y and a surjective convex process (or set valued sublinear mapping) F from X to Y, i.e., a multifunction for which $\{(x, y): y \in F(x)\}$ is a closed convex cone, it holds
$\min \left\{\|E\|_{\text {nat }}: E\right.$ is any linear map $X \rightarrow Y, F+E$ is not surjective $\}=\frac{1}{\left\|F^{-1}\right\|_{\text {nat }}}$.
Donchev et al. 2002, extended this, computing distance to irregularity; cf. metric regularity (Chap.1). Cf. the above four distances to ill-posedness with distance to uncontrollability (Chap. 18) and distances from symmetry (Chap. 21).

- $\operatorname{Sym}(n, \mathbb{R})^{+}$and $\operatorname{Her}(n, \mathbb{C})^{+}$metrics

Let $\operatorname{Sym}(n, \mathbb{R})^{+}$and $\operatorname{Her}(n, \mathbb{C})^{+}$be the cones of $n \times n$ symmetric real and Hermitian complex positive-definite $n \times n$ matrices. The $\operatorname{Sym}(n, \mathbb{R})^{+}$metric is defined, for any $A, B \in \operatorname{Sym}(n, \mathbb{R})^{+}$, as

$$
\left(\sum_{i=1}^{n} \log ^{2} \lambda_{i}\right)^{\frac{1}{2}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the matrix $A^{-1} B$ (the same as those of $A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$). It is the Riemannian distance, arising from the Riemannian metric $d s^{2}=\operatorname{Tr}\left(\left(A^{-1}(d A)\right)^{2}\right)$. This metric was rediscovered in Förstner-Moonen, 1999, and Pennec et al., 2004, via generalized eigenvalue problem: $\operatorname{det}(\lambda A-B)=0$.

The $\operatorname{Her}(n, \mathbb{C})^{+}$metric is defined, for any $A, B \in \operatorname{Her}(n, \mathbb{C})^{+}$, by

$$
d_{R}(A, B)=\left\|\log \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\right\|_{F r},
$$

where $\|H\|_{F r}=\left(\sum_{i, j}\left|h_{i j}\right|^{2}\right)^{\frac{1}{2}}$ is the Frobenius norm of the matrix $H=\left(\left(h_{i j}\right)\right)$. It is the Riemannian distance arising from the Riemannian metric of nonpositive curvature, defined locally (at H) by $d s=\left\|H^{-\frac{1}{2}} d H H^{-\frac{1}{2}}\right\|_{F r}$. In other words, this distance is the geodesic distance

$$
\inf \{L(\gamma): \gamma \text { is a (differentiable) path from } \mathrm{A} \text { to } \mathrm{B}\}
$$

where $L(\gamma)=\int_{A}^{B}\left\|\gamma^{-\frac{1}{2}}(t) \gamma^{\prime}(t) \gamma^{-\frac{1}{2}}(t)\right\|_{F r} d t$ and the geodesic $[A, B]$ is parametrized by $\gamma(t)=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}$ in the sense that $d_{R}(A, \gamma(t))=$ $t d_{R}(A, B)$ for each $t \in[0,1]$. In particular, the geodesic midpoint $\gamma\left(\frac{1}{2}\right)$ of $[A, B]$ can be seen as the geometric mean of two positive-definite matrices A and B.
The space $\left.\left(\operatorname{Her}(n, \mathbb{C})^{+}, d_{R}\right)\right)$ is an Hadamard (i.e., complete and $\left.\operatorname{CAT}(0)\right)$ space, cf. Chap. 6. But $\operatorname{Her}(n, \mathbb{C})^{+}$is not complete with respect to matrix norms; it has a boundary consisting of the singular positive-semidefinite matrices.
Above $\operatorname{Sym}(n, \mathbb{R})^{+}$and $\operatorname{Her}(n, \mathbb{C})^{+}$metrics are the special cases of the distance $d_{R}(x, y)$ among invariant distances on symmetric cones in Chap. 9.
Cf. also, in Chap. 24, the trace distance on all Hermitian of trace 1 positivedefinite $n \times n$ matrices and in Chap. 7, the Wigner-Yanase-Dyson metrics on all complex positive-definite $n \times n$ matrices.
The Bartlett distance between two matrices $A, B \in \operatorname{Her}(n, \mathbb{C})^{+}$, is defined (Conradsen et al., 2003, for radar applications) by

$$
\ln \left(\frac{(\operatorname{det}(A+B))^{2}}{4 \operatorname{det}(A) \operatorname{det}(B)}\right) .
$$

- Siegel distance

The Siegel half-plane is the set $S H_{n}$ of $n \times n$ matrices $Z=X+i Y$, where X, Y are symmetric or Hermitian and Y is positive-definite. The Siegel-Hua metric (Siegel, 1943, and independently, Hua, 1944) on $S H_{n}$ is defined by

$$
d s^{2}=\operatorname{Tr}\left(Y^{-1}(d Z) Y^{-1}(d \bar{Z})\right)
$$

It is unique metric preserved by any automorphism of $S H_{n}$. The Siegel-Hua metric on the Siegel disk $S D_{n}=\left\{W=(Z-i I)(Z+i I)^{-1}: Z \in S H_{n}\right\}$ is defined by

$$
d s^{2}=\operatorname{Tr}\left(\left(I-W W^{*}\right)^{-1} d W\left(I-W^{*} W\right)^{-1} d W^{*}\right)
$$

For $\mathrm{n}=1$, the Siegel-Hua metric is the Poincaré metric (cf. Chap. 6) on the Poincaré half-plane $S H_{1}$ and the Poincaré disk $S D_{1}$, respectively.

Let $A_{n}=\{Z=i Y: Y>0\}$ be the imaginary axe on the Siegel half-plane. The Siegel-Hua metric on A_{n} is the Riemannian trace metric $d s^{2}=\operatorname{Tr}\left(\left(P^{1} d P\right)^{2}\right)$. The corresponding distances are $\operatorname{Sym}(n, \mathbb{R})^{+}$metric or $\operatorname{Her}(n, \mathbb{C})^{+}$metric.
The Siegel distance $d_{\text {Siegel }}\left(Z_{1}, Z_{2}\right)$ on $S H_{n} \backslash A_{n}$ is defined by

$$
d_{\text {Siegel }}^{2}\left(Z_{1}, Z_{2}\right)=\sum_{i=1}^{n} \log ^{2}\left(\frac{1+\sqrt{\lambda_{i}}}{1-\sqrt{\lambda_{i}}}\right)
$$

$\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the matrix $\left(Z_{1}-Z_{2}\right)\left(Z_{1}-\overline{Z_{2}}\right)-1\left(\overline{Z_{1}}-\right.$ $\left.\overline{Z_{2}}\right)\left(\overline{Z_{1}}-Z_{2}\right)^{-1}$.

- Barbaresco metrics

Let $z(k)$ be a complex temporal (discrete time) stationary signal, i.e., its mean value is constant and its covariance function $\mathbb{E}\left[z\left(k_{1}\right) z^{*}\left(k_{2}\right)\right]$ is only a function of $k_{1}-k_{2}$. Such signal can be represented by its covariance $n \times n$ matrix $R=\left(\left(r_{i j}\right)\right)$, where $r_{i j}=\mathbb{E}[z(i), z *(j)]=\mathbb{E}[z(n) z *(n-i+j)]$. It is a positive-definite Toeplitz (i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices represent the Doppler spectra of the signal. Matrices R admit a parametrization (complex ARM, i.e., m-th order autoregressive model) by partial autocorrelation coefficients defined recursively as the complex correlation between the forward and backward prediction errors of the ($m-1$)-th order complex ARM.
Barbaresco [Barb12] defined, via this parametrization, a Bergman metric (cf. Chap. 7) on the bounded domain $\mathbb{R} \times D_{n} \subset \mathbb{C}^{n}$ of above matrices R; here D is a Poincaré disk. He also defined a related Kähler metric on $M \times S_{n}$, where M is the set of positive-definite Hermitian matrices and $S D_{n}$ is the Siegel disk (cf. Siegel distance). Such matrices represent spatiotemporal stationary signals, i.e., in radar applications, the Doppler spectra and spatial directions of the signal.
Cf. Ruppeiner metric (Chap. 7) and Martin cepstrum distance (Chap. 21).

- Distances between graphs of matrices

The graph $G(A)$ of a complex $m \times n$ matrix A is the range (i.e., the span of columns) of the matrix $R(A)=\left(\left[I A^{T}\right]\right)^{T}$. So, $G(A)$ is a subspace of \mathbb{C}^{m+n} of all vectors v, for which the equation $R(A) x=v$ has a solution.
A distance between graphs of matrices A and B is a distance between the subspaces $G(A)$ and $G(B)$. It can be an angle distance between subspaces or, for example, the following distance (cf. also the Kadets distance in Chap. 1 and the gap metric in Chap. 18).
The spherical gap distance between subspaces A and B is defined by

$$
\max \left\{\max _{x \in S(A)} d_{E}(x, S(B)), \max _{y \in S(B)} d_{E}(y, S(A))\right\}
$$

where $S(A), S(B)$ are the unit spheres of the subspaces $A, B, d(z, C)$ is the point-set distance $\inf _{y \in C} d(z, y)$ and $d_{E}(z, y)$ is the Euclidean distance.

- Angle distances between subspaces

Consider the Grassmannian space $G(m, n)$ of all n-dimensional subspaces of Euclidean space \mathbb{E}^{m}; it is a compact Riemannian manifold of dimension $n(m-n)$. Given two subspaces $A, B \in G(m, n)$, the principal angles $\frac{\pi}{2} \geq \theta_{1} \geq \cdots \geq$ $\theta_{n} \geq 0$ between them are defined, for $k=1, \ldots, n$, inductively by

$$
\cos \theta_{k}=\max _{x \in A} \max _{y \in B} x^{T} y=\left(x^{k}\right)^{T} y^{k}
$$

subject to the conditions $\|x\|_{2}=\|y\|_{2}=1, x^{T} x^{i}=0, y^{T} y^{i}=0$, for $1 \leq i \leq$ $k-1$, where $\|.\|_{2}$ is the Euclidean norm.
The principal angles can also be defined in terms of orthonormal matrices Q_{A} and Q_{B} spanning subspaces A and B, respectively: in fact, n ordered singular values of the matrix $Q_{A} Q_{B} \in M_{n}$ can be expressed as cosines $\cos \theta_{1}, \ldots, \cos \theta_{n}$.
The geodesic distance between subspaces A and B is (Wong, 1967) defined by

$$
\sqrt{2 \sum_{i=1}^{n} \theta_{i}^{2}}
$$

The Martin distance between subspaces A and B is defined by

$$
\sqrt{\ln \prod_{i=1}^{n} \frac{1}{\cos ^{2} \theta_{i}}}
$$

In the case when the subspaces represent ARMs (autoregressive models), the Martin distance can be expressed in terms of the cepstrum of the autocorrelation functions of the models. Cf. the Martin cepstrum distance in Chap. 21.
The Asimov distance between subspaces A and B is defined by θ_{1}. It can be expressed also in terms of the Finsler metric on the manifold $G(m, n)$.
The gap distance between subspaces A and B is defined by $\sin \theta_{1}$. It is the l_{2} norm of the difference of the orthogonal projectors onto A and B. Many versions of this distance are used in Control Theory (cf. gap metric in Chap. 18).
The Frobenius distance between subspaces A and B is defined by

$$
\sqrt{2 \sum_{i=1}^{n} \sin ^{2} \theta_{i}} .
$$

It is the Frobenius norm of the difference of above projectors onto A and B.
Similar distances $\sqrt{\sum_{i=1}^{n} \sin ^{2} \theta_{i}}, 2 \sin \left(\frac{\theta_{1}}{2}\right), \sqrt{1-\prod_{i=1}^{n} \cos ^{2} \theta_{i}}$ and arccos ($\prod_{i=1}^{n} \cos \theta_{i}$) are called the chordal distance, chordal 2-norm distance, BinetCauchy distance and Fubini-Study distance (cf. Chap. 7), respectively.

- Larsson-Villani metric

Let A and B be two arbitrary orthonormal $m \times n$ matrices of full rank, and let $\theta_{i j}$ be the angle between the i-th column of A and the j-th column of B.
We call Larsson-Villani metric the distance between A and B (used by Larsson and Villani, 2000, for multivariate models) the square of which is defined by

$$
n-\sum_{i=1}^{n} \sum_{j=1}^{n} \cos ^{2} \theta_{i j}
$$

The square of usual Euclidean distance between A and B is $2\left(1-\sum_{i=1}^{n} \cos \theta_{i i}\right)$. For $n=1$, above two distances are $\sin \theta$ and $\sqrt{2(1-\cos \theta)}$, respectively.

- Lerman metric

Given a finite set X and real symmetric $|X| \times|X|$ matrices $\left(\left(d_{1}(x, y)\right)\right)$, $\left(\left(d_{2}(x, y)\right)\right)$ with $x, y \in X$, their Lerman semimetric (cf. Kendall τ distance on permutations in Chap. 11) is defined by
$\left|\left\{(\{x, y\},\{u, v\}):\left(d_{1}(x, y)-d_{1}(u, v)\right)\left(d_{2}(x, y)-d_{2}(u, v)\right)<0\right\}\right|\binom{|X|+1}{2}^{-2}$,
where $(\{x, y\},\{u, v\})$ is any pair of unordered pairs of elements x, y, u, v from X. Similar Kaufman semimetric between $\left(\left(d_{1}(x, y)\right)\right)$ and $\left(\left(d_{2}(x, y)\right)\right)$ is

$$
\frac{\left|\left\{(\{x, y\},\{u, v\}):\left(d_{1}(x, y)-d_{1}(u, v)\right)\left(d_{2}(x, y)-d_{2}(u, v)\right)<0\right\}\right|}{\left|\left\{(\{x, y\},\{u, v\}):\left(d_{1}(x, y)-d_{1}(u, v)\right)\left(d_{2}(x, y)-d_{2}(u, v)\right) \neq 0\right\}\right|} \text {. }
$$

Chapter 13
 Distances in Functional Analysis

Functional Analysis is the branch of Mathematics concerned with the study of spaces of functions. This usage of the word functional goes back to the calculus of variations which studies functions whose argument is a function. In the modern view, Functional Analysis is seen as the study of complete normed vector spaces, i.e., Banach spaces.

For any real number $p \geq 1$, an example of a Banach space is given by L_{p}-space of all Lebesgue-measurable functions whose absolute value's p-th power has finite integral.

A Hilbert space is a Banach space in which the norm arises from an inner product. Also, in Functional Analysis are considered continuous linear operators defined on Banach and Hilbert spaces.

13.1 Metrics on Function Spaces

Let $I \subset \mathbb{R}$ be an open interval (i.e., a nonempty connected open set) in \mathbb{R}. A real function $f: I \rightarrow \mathbb{R}$ is called real analytic on I if it agrees with its Taylor series in an open neighborhood $U_{x_{0}}$ of every point $x_{0} \in I: f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$ for any $x \in U_{x_{0}}$. Let $D \subset \mathbb{C}$ be a domain (i.e., a convex open set) in \mathbb{C}.

A complex function $f: D \rightarrow \mathbb{C}$ is called complex analytic (or, simply, analytic) on D if it agrees with its Taylor series in an open neighborhood of every point $z_{0} \in D$. A complex function f is analytic on D if and only if it is holomorphic on D, i.e., if it has a complex derivative $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ at every point $z_{0} \in D$.

- Integral metric

The integral metric is the L_{1}-metric on the set $C_{[a, b]}$ of all continuous real (complex) functions on a given segment $[a, b]$ defined by

$$
\int_{a}^{b}|f(x)-g(x)| d x
$$

The corresponding metric space is abbreviated by $C_{[a, b]}^{1}$. It is a Banach space. In general, for any compact topological space X, the integral metric is defined on the set of all continuous functions $f: X \rightarrow \mathbb{R}(\mathbb{C})$ by $\int_{X}|f(x)-g(x)| d x$.

- Uniform metric

The uniform metric (or sup metric) is the L_{∞}-metric on the set $C_{[a, b]}$ of all real (complex) continuous functions on a given segment $[a, b]$ defined by

$$
\sup _{x \in[a, b]}|f(x)-g(x)|
$$

The corresponding metric space is abbreviated by $C_{[a, b]}^{\infty}$. It is a Banach space.
A generalization of $C_{[a, b]}^{\infty}$ is the space of continuous functions $C(X)$, i.e., a metric space on the set of all continuous (more generally, bounded) functions $f: X \rightarrow$ \mathbb{C} of a topological space X with the L_{∞}-metric $\sup _{x \in X}|f(x)-g(x)|$.
In the case of the metric space $C(X, Y)$ of continuous (more generally, bounded) functions $f: X \rightarrow Y$ from one metric compactum $\left(X, d_{X}\right)$ to another $\left(Y, d_{Y}\right)$, the sup metric between two functions $f, g \in C(X, Y)$ is defined by $\sup _{x \in X} d_{Y}(f(x), g(x))$.
The metric space $C_{[a, b]}^{\infty}$, as well as the metric space $C_{[a, b]}^{1}$, are two of the most important cases of the metric space $C_{[a, b]}^{p}, 1 \leq p \leq \infty$, on the set $C_{[a, b]}$ with the L_{p}-metric $\left(\int_{a}^{b}|f(x)-g(x)|^{p} d x\right)^{\frac{1}{p}}$. The space $C_{[a, b]}^{p}$ is an example of an L_{p}-space.

- Dogkeeper distance

Given a metric space (X, d), the dogkeeper distance is a metric on the set of all functions $f:[0,1] \rightarrow X$, defined by

$$
\inf _{\sigma} \sup _{t \in[0,1]} d(f(t), g(\sigma(t))),
$$

where $\sigma:[0,1] \rightarrow[0,1]$ is a continuous, monotone increasing function such that $\sigma(0)=0, \sigma(1)=1$. This metric is a special case of the Fréchet metric.
For the case, when (X, d) is Euclidean space \mathbb{R}^{n}, this metric is the original (1906) Fréchet distance between parametric curves $f, g:[0,1] \rightarrow \mathbb{R}^{n}$. This distance can be seen as the length of the shortest leash that is sufficient for the man and the dog to walk their paths f and g from start to end. For example, the Fréchet distance between two concentric circles of radius r_{1} and r_{2} respectively is $\left|r_{1}-r_{2}\right|$. The discrete Fréchet distance (or coupling distance, Eiter and Mannila, 1994) is an approximation of the Fréchet metric for polygonal curves f and g. It considers only positions of the leash where its endpoints are located at vertices of f and g. So, this distance is the minimum, over all order-preserving pairings of vertices in f and g, of the maximal Euclidean distance between paired vertices.

- Bohr metric

Let \mathbb{R} be a metric space with a metric ρ. A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called almost periodic if, for every $\epsilon>0$, there exists $l=l(\epsilon)>0$ such that every interval $\left[t_{0}, t_{0}+l(\epsilon)\right]$ contains at least one number τ for which $\rho(f(t), f(t+\tau))<\epsilon$ for $-\infty<t<+\infty$.
The Bohr metric is the norm metric $\|f-g\|$ on the set $A P$ of all almost periodic functions defined by the norm

$$
\|f\|=\sup _{-\infty<t<+\infty}|f(t)| .
$$

It makes AP a Banach space. Some generalizations of almost periodic functions were obtained using other norms; cf. Stepanov distance, Weyl distance, Besicovitch distance and Bochner metric.

- Stepanov distance

The Stepanov distance is a distance on the set of all measurable functions f : $\mathbb{R} \rightarrow \mathbb{C}$ with summable p-th power on each bounded integral, defined by

$$
\sup _{x \in \mathbb{R}}\left(\frac{1}{l} \int_{x}^{x+l}|f(x)-g(x)|^{p} d x\right)^{1 / p} .
$$

The Weyl distance is a distance on the same set defined by

$$
\lim _{l \rightarrow \infty} \sup _{x \in \mathbb{R}}\left(\frac{1}{l} \int_{x}^{x+l}|f(x)-g(x)|^{p} d x\right)^{1 / p} .
$$

- Besicovitch distance

The Besicovitch distance is a distance on the set of all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ with summable p-th power on each bounded integral defined by

$$
\left(\varlimsup_{\lim }^{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(x)-g(x)|^{p} d x\right)^{1 / p}
$$

The generalized Besicovitch almost periodic functions correspond to this distance.

- Bochner metric

Given a measure space $(\Omega, \mathcal{A}, \mu)$, a Banach space $\left(V,\|\cdot\|_{V}\right)$, and $1 \leq p \leq$ ∞, the Bochner space (or Lebesgue-Bochner space) $L^{p}(\Omega, V)$ is the set of all measurable functions $f: \Omega \rightarrow V$ such that $\|f\|_{L^{p}(\Omega, V)} \leq \infty$.
Here the Bochner norm $\|f\|_{L^{p}(\Omega, V)}$ is defined by $\left(\int_{\Omega}\|f(\omega)\|_{V}^{p} d \mu(\omega)\right)^{\frac{1}{p}}$ for $1 \leq p<\infty$, and, for $p=\infty$, by ess $\sup _{\omega \in \Omega}\|f(\omega)\|_{V}$.

- Bergman p-metric

Given $1 \leq p<\infty$, let $L_{p}(\Delta)$ be the L_{p}-space of Lebesgue measurable functions f on the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ with $\|f\|_{p}=\left(\int_{\Delta}|f(z)|^{p} \mu(d z)\right)^{\frac{1}{p}}<$ ∞.
The Bergman space $L_{p}^{a}(\Delta)$ is the subspace of $L_{p}(\Delta)$ consisting of analytic functions, and the Bergman p-metric is the L_{p}-metric on $L_{p}^{a}(\Delta)$ (cf. Bergman metric in Chap. 7). Any Bergman space is a Banach space.

- Bloch metric

The Bloch space B on the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ is the set of all analytic functions f on Δ such that $\|f\|_{B}=\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty$. Using the complete seminorm $\|.\|_{B}$, a norm on B is defined by

$$
\|f\|=|f(0)|+\|f\|_{B}
$$

The Bloch metric is the norm metric $\|f-g\|$ on B. It makes B a Banach space.

- Besov metric

Given $1<p<\infty$, the Besov space B_{p} on the unit disk $\Delta=\{z \in \mathbb{C}$: $|z|<1\}$ is the set of all analytic functions f in Δ such that $\|f\|_{B_{p}}=$ $\left(\int_{\Delta}\left(1-|z|^{2}\right)^{p}\left|f^{\prime}(z)\right|^{p} d \lambda(z)\right)^{\frac{1}{p}}<\infty$, where $d \lambda(z)=\frac{\mu(d z)}{\left(1-|z|^{2}\right)^{2}}$ is the Möbius invariant measure on Δ. Using the complete seminorm $\|.\|_{B_{p}}$, the Besov norm on B_{p} is defined by

$$
\|f\|=|f(0)|+\|f\|_{B_{p}}
$$

The Besov metric is the norm metric $\|f-g\|$ on B_{p}.
It makes B_{p} a Banach space. The set B_{2} is the classical Dirichlet space of functions analytic on Δ with square integrable derivative, equipped with the Dirichlet metric. The Bloch space B can be considered as B_{∞}.

- Hardy metric

Given $1 \leq p<\infty$, the Hardy space $H^{p}(\Delta)$ is the class of functions, analytic on the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$, and satisfying the following growth condition for the Hardy norm $\|.\|_{H^{p}}$:

$$
\|f\|_{H^{p}(\Delta)}=\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}<\infty
$$

The Hardy metric is the norm metric $\|f-g\|_{H^{p}(\Delta)}$ on $H^{p}(\Delta)$. It makes $H^{p}(\Delta)$ a Banach space.
In Complex Analysis, the Hardy spaces are analogs of the L_{p}-spaces of Functional Analysis. Such spaces are applied in Mathematical Analysis itself, and also in Scattering Theory and Control Theory (cf. Chap. 18).

- Part metric

The part metric is a metric on a domain D of \mathbb{R}^{2} defined for any $x, y \in \mathbb{R}^{2}$ by

$$
\sup _{f \in H^{+}}\left|\ln \left(\frac{f(x)}{f(y)}\right)\right|
$$

where H^{+}is the set of all positive harmonic functions on the domain D. A twice-differentiable real function $f: D \rightarrow \mathbb{R}$ is called harmonic on D if its Laplacian $\Delta f=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}$ vanishes on D.

- Orlicz metric

Let $M(u)$ be an even convex function of a real variable which is increasing for u positive, and $\lim _{u \rightarrow 0} u^{-1} M(u)=\lim _{u \rightarrow \infty} u(M(u))^{-1}=0$. In this case the function $p(v)=M^{\prime}(v)$ does not decrease on $[0, \infty), p(0)=\lim _{v \rightarrow 0} p(v)=0$, and $p(v)>0$ when $v>0$. Writing $M(u)=\int_{0}^{|u|} p(v) d v$, and defining $N(u)=$ $\int_{0}^{|u|} p^{-1}(v) d v$, one obtains a pair $(M(u), N(u))$ of complementary functions.
Let $(M(u), N(u))$ be a pair of complementary functions, and let G be a bounded closed set in \mathbb{R}^{n}. The Orlicz space $L_{M}^{*}(G)$ is the set of Lebesgue-measurable functions f on G satisfying the following growth condition for the Orlicz norm $\|f\|_{M}$:

$$
\|f\|_{M}=\sup \left\{\int_{G} f(t) g(t) d t: \int_{G} N(g(t)) d t \leq 1\right\}<\infty
$$

The Orlicz metric is the norm metric $\|f-g\|_{M}$ on $L_{M}^{*}(G)$. It makes $L_{M}^{*}(G)$ a Banach space [Orli32].
When $M(u)=u^{p}, 1<p<\infty, L_{M}^{*}(G)$ coincides with the space $L_{p}(G)$, and, up to scalar factor, the L_{p}-norm $\|f\|_{p}$ coincides with $\|f\|_{M}$.
The Orlicz norm is equivalent to the Luxemburg norm $\|f\|_{(M)}=\inf \{\lambda>0$: $\left.\int_{G} M\left(\lambda^{-1} f(t)\right) d t \leq 1\right\}$; in fact, $\|f\|_{(M)} \leq\|f\|_{M} \leq 2\|f\|_{(M)}$.

- Orlicz-Lorentz metric

Let $w:(0, \infty) \rightarrow(0, \infty)$ be a nonincreasing function. Let $M:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing and convex function with $M(0)=0$. Let G be a bounded closed set in \mathbb{R}^{n}.
The Orlicz-Lorentz space $L_{w, M}(G)$ is the set of all Lebesgue-measurable functions f on G satisfying the following growth condition for the OrliczLorentz norm $\|f\|_{w, M}$:

$$
\|f\|_{w, M}=\inf \left\{\lambda>0: \int_{0}^{\infty} w(x) M\left(\frac{f^{*}(x)}{\lambda}\right) d x \leq 1\right\}<\infty
$$

where $f^{*}(x)=\sup \{t: \mu(|f| \geq t) \geq x\}$ is the nonincreasing rearrangement of f.
The Orlicz-Lorentz metric is the norm metric $\|f-g\|_{w, M}$ on $L_{w, M}(G)$. It makes $L_{w, M}(G)$ a Banach space.

The Orlicz-Lorentz space is a generalization of the Orlicz space $L_{M}^{*}(G)$ (cf. Orlicz metric), and the Lorentz space $L_{w, q}(G), 1 \leq q<\infty$, of all Lebesgue-measurable functions f on G satisfying the following growth condition for the Lorentz norm:

$$
\|f\|_{w, q}=\left(\int_{0}^{\infty} w(x)\left(f^{*}(x)\right)^{q}\right)^{\frac{1}{q}}<\infty
$$

- Hölder metric

Let $L^{\alpha}(G)$ be the set of all bounded continuous functions f defined on a subset G of \mathbb{R}^{n}, and satisfying the Hölder condition on G. Here, a function f satisfies the Hölder condition at a point $y \in G$ with index (or order) $\alpha, 0<\alpha \leq 1$, and with coefficient $A(y)$, if $|f(x)-f(y)| \leq A(y)|x-y|^{\alpha}$ for all $x \in G$ sufficiently close to y.
If $A=\sup _{y \in G}(A(y))<\infty$, the Hölder condition is called uniform on G, and A is called the Hölder coefficient of G. The quantity $|f|_{\alpha}=\sup _{x, y \in G} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}$, $0 \leq \alpha \leq 1$, is called the Hölder α-seminorm of f, and the Hölder norm of f is defined by

$$
\|f\|_{L^{\alpha}(G)}=\sup _{x \in G}|f(x)|+|f|_{\alpha} .
$$

The Hölder metric is the norm metric $\|f-g\|_{L^{\alpha}(G)}$ on $L^{\alpha}(G)$. It makes $L^{\alpha}(G)$ a Banach space.

- Sobolev metric

The Sobolev space $W^{k, p}$ is a subset of an L_{p}-space such that f and its derivatives up to order k have a finite L_{p}-norm. Formally, given a subset G of \mathbb{R}^{n}, define

$$
W^{k, p}=W^{k, p}(G)=\left\{f \in L_{p}(G): f^{(i)} \in L_{p}(G), 1 \leq i \leq k\right\}
$$

where $f^{(i)}=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{n}}^{\alpha_{n}} f, \alpha_{1}+\cdots+\alpha_{n}=i$, and the derivatives are taken in a weak sense. The Sobolev norm on $W^{k, p}$ is defined by

$$
\|f\|_{k, p}=\sum_{i=0}^{k}\left\|f^{(i)}\right\|_{p}
$$

In fact, it is enough to take only the first and last in the sequence, i.e., the norm defined by $\|f\|_{k, p}=\|f\|_{p}+\left\|f^{(k)}\right\|_{p}$ is equivalent to the norm above.
For $p=\infty$, the Sobolev norm is equal to the essential supremum of $|f|$: $\|f\|_{k, \infty}=$ ess $\sup _{x \in G}|f(x)|$, i.e., it is the infimum of all numbers $a \in \mathbb{R}$ for which $|f(x)|>a$ on a set of measure zero.
The Sobolev metric is the norm metric $\|f-g\|_{k, p}$ on $W^{k, p}$. It makes $W^{k, p}$ a Banach space.

The Sobolev space $W^{k, 2}$ is denoted by H^{k}. It is a Hilbert space for the inner product $\langle f, g\rangle_{k}=\sum_{i=1}^{k}\left\langle f^{(i)}, g^{(i)}\right\rangle_{L_{2}}=\sum_{i=1}^{k} \int_{G} f^{(i)} \bar{g}^{(i)} \mu(d \omega)$.

- Variable exponent space metrics

Let G be a nonempty open subset of \mathbb{R}^{n}, and let $p: G \rightarrow[1, \infty)$ be a measurable bounded function, called a variable exponent. The variable exponent Lebesgue space $L_{p(.)}(G)$ is the set of all measurable functions $f: G \rightarrow \mathbb{R}$ for which the modular $\varrho_{p(.)}(f)=\int_{G}|f(x)|^{p(x)} d x$ is finite. The Luxemburg norm on this space is defined by

$$
\|f\|_{p(.)}=\inf \left\{\lambda>0: \varrho_{p(.)}(f / \lambda) \leq 1\right\} .
$$

The variable exponent Lebesgue space metric is the norm metric $\|f-g\|_{p(.)}$ on $L_{p(.)}(G)$.
A variable exponent Sobolev space $W^{1, p(.)}(G)$ is a subspace of $L_{p(.)}(G)$ consisting of functions f whose distributional gradient exists almost everywhere and satisfies the condition $|\nabla f| \in L_{p(.)}(G)$. The norm

$$
\|f\|_{1, p(.)}=\|f\|_{p(.)}+\|\nabla f\|_{p(.)}
$$

makes $W^{1, p(.)}(G)$ a Banach space. The variable exponent Sobolev space metric is the norm metric $\|f-g\|_{1, p(.)}$ on $W^{1, p(.)}$.

- Schwartz metric

The Schwartz space (or space of rapidly decreasing functions) $S\left(\mathbb{R}^{n}\right)$ is the class of all Schwartz functions, i.e., infinitely-differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ that decrease at infinity, as do all their derivatives, faster than any inverse power of x. More precisely, f is a Schwartz function if we have the following growth condition:

$$
\|f\|_{\alpha \beta}=\sup _{x \in \mathbb{R}^{n}}\left|x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \frac{\partial^{\alpha_{1}+\cdots+\alpha_{n}} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}}\right|<\infty
$$

for any nonnegative integer vectors α and β. The family of seminorms $\|.\| \|_{\alpha \beta}$ defines a locally convex topology of $S\left(\mathbb{R}^{n}\right)$ which is metrizable and complete. The Schwartz metric is a metric on $S\left(\mathbb{R}^{n}\right)$ which can be obtained using this topology (cf. countably normed space in Chap. 2).
The corresponding metric space on $S\left(\mathbb{R}^{n}\right)$ is a Fréchet space in the sense of Functional Analysis, i.e., a locally convex F-space.

- Bregman quasi-distance

Let $G \subset \mathbb{R}^{n}$ be a closed set with the nonempty interior G^{0}. Let f be a Bregman function with zone G.
The Bregman quasi-distance $D_{f}: G \times G^{0} \rightarrow \mathbb{R}_{\geq 0}$ is defined by

$$
D_{f}(x, y)=f(x)-f(y)-\langle\nabla f(y), x-y\rangle,
$$

where $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots \frac{\partial f}{\partial x_{n}}\right) . D_{f}(x, y)=0$ if and only if $x=y$. Also $D_{f}(x, y)+D_{f}(y, z)-D_{f}(x, z)=\langle\nabla f(z)-\nabla f(y), x-y\rangle$ but, in general, D_{f} does not satisfy the triangle inequality, and is not symmetric.
A real-valued function f whose effective domain contains G is called a Bregman function with zone G if the following conditions hold:

1. f is continuously differentiable on G^{0};
2. f is strictly convex and continuous on G;
3. For all $\delta \in \mathbb{R}$ the partial level sets $\Gamma(x, \delta)=\left\{y \in G^{0}: D_{f}(x, y) \leq \delta\right\}$ are bounded for all $x \in G$;
4. If $\left\{y_{n}\right\}_{n} \subset G^{0}$ converges to y^{*}, then $D_{f}\left(y^{*}, y_{n}\right)$ converges to 0 ;
5. If $\left\{x_{n}\right\}_{n} \subset G$ and $\left\{y_{n}\right\}_{n} \subset G^{0}$ are sequences such that $\left\{x_{n}\right\}_{n}$ is bounded, $\lim _{n \rightarrow \infty} y_{n}=y^{*}$, and $\lim _{n \rightarrow \infty} D_{f}\left(x_{n}, y_{n}\right)=0$, then $\lim _{n \rightarrow \infty} x_{n}=y^{*}$.

When $G=\mathbb{R}^{n}$, a sufficient condition for a strictly convex function to be a Bregman function has the form: $\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=\infty$.

13.2 Metrics on Linear Operators

A linear operator is a function $T: V \rightarrow W$ between two vector spaces V, W over a field \mathbb{F}, that is compatible with their linear structures, i.e., for any $x, y \in V$ and any scalar $k \in \mathbb{F}$, we have the following properties: $T(x+y)=T(x)+T(y)$, and $T(k x)=k T(x)$.

- Operator norm metric

Consider the set of all linear operators from a normed space ($V,\|.\| \|_{V}$) into a normed space $\left(W,\|.\| \|_{W}\right)$. The operator norm $\|T\|$ of a linear operator $T: V \rightarrow$ W is defined as the largest value by which T stretches an element of V, i.e.,

$$
\|T\|=\sup _{\|v\|_{V} \neq 0} \frac{\|T(v)\|_{W}}{\|v\|_{V}}=\sup _{\|v\|_{V}=1}\|T(v)\|_{W}=\sup _{\|v\|_{V} \leq 1}\|T(v)\|_{W} .
$$

A linear operator $T: V \rightarrow W$ from a normed space V into a normed space W is called bounded if its operator norm is finite. For normed spaces, a linear operator is bounded if and only if it is continuous.
The operator norm metric is a norm metric on the set $B(V, W)$ of all bounded linear operators from V into W, defined by

$$
\|T-P\|
$$

The space $(B(V, W),\|\cdot\|)$ is called the space of bounded linear operators. This metric space is complete if W is. If $V=W$ is complete, the space $B(V, V)$ is a Banach algebra, as the operator norm is a submultiplicative norm.

A linear operator $T: V \rightarrow W$ from a Banach space V into another Banach space W is called compact if the image of any bounded subset of V is a relatively compact subset of W. Any compact operator is bounded (and, hence, continuous). The space $(K(V, W),\|\|$.$) on the set K(V, W)$ of all compact operators from V into W with the operator norm $\|$.$\| is called the space of$ compact operators.

- Nuclear norm metric

Let $B(V, W)$ be the space of all bounded linear operators mapping a Banach space $\left(V,\|.\|_{V}\right)$ into another Banach space $\left(W,\|\cdot\|_{W}\right)$. Let the Banach dual of V be denoted by V^{\prime}, and the value of a functional $x^{\prime} \in V^{\prime}$ at a vector $x \in V$ by $\left\langle x, x^{\prime}\right\rangle$.
A linear operator $T \in B(V, W)$ is called a nuclear operator if it can be represented in the form $x \mapsto T(x)=\sum_{i=1}^{\infty}\left\langle x, x_{i}^{\prime}\right\rangle y_{i}$, where $\left\{x_{i}^{\prime}\right\}_{i}$ and $\left\{y_{i}\right\}_{i}$ are sequences in V^{\prime} and W, respectively, such that $\sum_{i=1}^{\infty}\left\|x_{i}^{\prime}\right\|_{V^{\prime}}\left\|y_{i}\right\|_{W}<\infty$. This representation is called nuclear, and can be regarded as an expansion of T as a sum of operators of rank 1 (i.e., with one-dimensional range). The nuclear norm of T is defined as

$$
\|T\|_{n u c}=\inf \sum_{i=1}^{\infty}\left\|x_{i}^{\prime}\right\|_{V^{\prime}}\left\|y_{i}\right\|_{W}
$$

where the infimum is taken over all possible nuclear representations of T.
The nuclear norm metric is the norm metric $\|T-P\|_{n u c}$ on the set $N(V, W)$ of all nuclear operators mapping V into W. The space $\left(N(V, W),\|.\| \|_{n u c}\right)$, called the space of nuclear operators, is a Banach space.
A nuclear space is defined as a locally convex space for which all continuous linear functions into an arbitrary Banach space are nuclear operators. A nuclear space is constructed as a projective limit of Hilbert spaces H_{α} with the property that, for each $\alpha \in I$, one can find $\beta \in I$ such that $H_{\beta} \subset H_{\alpha}$, and the embedding operator $H_{\beta} \ni x \rightarrow x \in H_{\alpha}$ is a Hilbert-Schmidt operator. A normed space is nuclear if and only if it is finite-dimensional.

- Finite nuclear norm metric

Let $F(V, W)$ be the space of all linear operators of finite rank (i.e., with finite-dimensional range) mapping a Banach space ($V,\|.\|_{V}$) into another Banach space $\left(W,\|.\|_{W}\right)$. A linear operator $T \in F(V, W)$ can be represented in the form $x \mapsto T(x)=\sum_{i=1}^{n}\left\langle x, x_{i}^{\prime}\right\rangle y_{i}$, where $\left\{x_{i}^{\prime}\right\}_{i}$ and $\left\{y_{i}\right\}_{i}$ are sequences in V^{\prime} (Banach dual of V) and W, respectively, and $\left\langle x, x^{\prime}\right\rangle$ is the value of a functional $x^{\prime} \in V^{\prime}$ at a vector $x \in V$. The finite nuclear norm of T is defined as

$$
\|T\|_{\text {fnuc }}=\inf \sum_{i=1}^{n}\left\|x_{i}^{\prime}\right\|_{V^{\prime}}\left\|y_{i}\right\|_{W}
$$

where the infimum is taken over all possible finite representations of T.

The finite nuclear norm metric is the norm metric $\|T-P\|_{\text {finc }}$ on $F(V, W)$. The space $\left(F(V, W),\| \| \|_{\text {fnuc }}\right)$ is called the space of operators of finite rank. It is a dense linear subspace of the space of nuclear operators $N(V, W)$.

- Hilbert-Schmidt norm metric

Consider the set of all linear operators from a Hilbert space $\left(H_{1},\|.\|_{H_{1}}\right)$ into a Hilbert space $\left(H_{2},\|.\| \|_{H_{2}}\right)$. The Hilbert-Schmidt norm $\|T\|_{H S}$ of a linear operator $T: H_{1} \rightarrow H_{2}$ is defined by

$$
\|T\|_{H S}=\left(\sum_{\alpha \in I}\left\|T\left(e_{\alpha}\right)\right\|_{H_{2}}^{2}\right)^{1 / 2}
$$

where $\left(e_{\alpha}\right)_{\alpha \in I}$ is an orthonormal basis in H_{1}. A linear operator $T: H_{1} \rightarrow H_{2}$ is called a Hilbert-Schmidt operator if $\|T\|_{H S}^{2}<\infty$.
The Hilbert-Schmidt norm metric is the norm metric $\|T-P\|_{H S}$ on the set $S\left(H_{1}, H_{2}\right)$ of all Hilbert-Schmidt operators from H_{1} into H_{2}. In Euclidean space $\|.\|_{H S}$ is also called Frobenius norm; cf. Frobenius norm metric in Chap. 12.
For $H_{1}=H_{2}=H$, the algebra $S(H, H)=S(H)$ with the Hilbert-Schmidt norm is a Banach algebra. It contains operators of finite rank as a dense subset, and is contained in the space $K(H)$ of compact operators. An inner product $\langle,\rangle_{H S}$ on $S(H)$ is defined by $\langle T, P\rangle_{H S}=\sum_{\alpha \in I}\left\langle T\left(e_{\alpha}\right), P\left(e_{\alpha}\right)\right\rangle$, and $\|T\|_{H S}=$ $\langle T, T\rangle_{H S}^{1 / 2}$. So, $S(H)$ is a Hilbert space (independent of the chosen basis $\left.\left(e_{\alpha}\right)_{\alpha \in I}\right)$.

- Trace-class norm metric

Given a Hilbert space H, the trace-class norm of a linear operator $T: H \rightarrow H$ is

$$
\|T\|_{t c}=\sum_{\alpha \in I}\langle | T\left|\left(e_{\alpha}\right), e_{\alpha}\right\rangle,
$$

where $|T|$ is the absolute value of T in the Banach algebra $B(H)$ of all bounded operators from H into itself, and $\left(e_{\alpha}\right)_{\alpha \in I}$ is an orthonormal basis of H.
An operator $T: H \rightarrow H$ is called a trace-class operator if $\|T\|_{t c}<\infty$. Any such operator is the product of two Hilbert-Schmidt operators.
The trace-class norm metric is the norm metric $\|T-P\|_{t c}$ on the set $L(H)$ of all trace-class operators from H into itself.
The set $L(H)$ with the norm $\|\cdot\|_{t c}$ forms a Banach algebra which is contained in the algebra $K(H)$ (of all compact operators from H into itself), and contains the algebra $S(H)$ of all Hilbert-Schmidt operators from H into itself.

- Schatten p-class norm metric

Let $1 \leq p<\infty$. Given a separable Hilbert space H, the Schatten p-class norm of a compact linear operator $T: H \rightarrow H$ is defined by

$$
\|T\|_{S c h}^{p}=\left(\sum_{n}\left|s_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

where $\left\{s_{n}\right\}_{n}$ is the sequence of singular values of T. A compact operator T : $H \rightarrow H$ is called a Schatten p-class operator if $\|T\|_{\text {Sch }}^{p}<\infty$.
The Schatten p-class norm metric is the norm metric $\|T-P\|_{S c h}^{p}$ on the set $S_{p}(H)$ of all Schatten p-class operators from H onto itself. The set $S_{p}(H)$ with the norm $\|.\|_{S c h}^{p}$ forms a Banach space. $S_{1}(H)$ is the trace-class of H, and $S_{2}(H)$ is the Hilbert-Schmidt class of H. Cf. Schatten norm metric (in Chap. 12) for which trace and Frobenius norm metrics are cases $p=1$ and $p=2$, respectively.

- Continuous dual space

For any vector space V over some field, its algebraic dual space is the set of all linear functionals on V.
Let $(V,\|\|$.$) be a normed vector space. Let V^{\prime}$ be the set of all continuous linear functionals T from V into the base field $(\mathbb{R}$ or $\mathbb{C})$. Let $\|.\|^{\prime}$ be the operator norm on V^{\prime} defined by

$$
\|T\|^{\prime}=\sup _{\|x\| \leq 1}|T(x)| .
$$

The space $\left(V^{\prime},\|.\|^{\prime}\right)$ is a Banach space which is called the continuous dual (or Banach dual) of (V, ||.||).
The continuous dual of the metric space $l_{p}^{n}\left(l_{p}^{\infty}\right)$ is $l_{q}^{n}\left(l_{q}^{\infty}\right.$, respectively), where q is defined by $\frac{1}{p}+\frac{1}{q}=1$. The continuous dual of $l_{1}^{n}\left(l_{1}^{\infty}\right)$ is $l_{\infty}^{n}\left(l_{\infty}^{\infty}\right.$, respectively $)$.

- Distance constant of operator algebra

Let \mathcal{A} be an subalgebra of $B(H)$, the algebra of all bounded operators on a Hilbert space H. For any operator $T \in B(H)$, let P be a projection, P^{\perp} be its orthogonal complement and $\beta(T, \mathcal{A})=\sup \left\{\left\|P^{\perp} T P\right\|: P^{\perp} \mathcal{A} P=(0)\right\}$.
Let $\operatorname{dist}(T, \mathcal{A})=\inf _{A \in \mathcal{A}}\|T-A\|$ be the distance of T to algebra \mathcal{A}; cf. matrix nearness problems in Chap. 12. It holds $\operatorname{dist}(T, \mathcal{A}) \geq \beta(T, \mathcal{A})$.
The algebra \mathcal{A} is reflexive if $\beta(T, \mathcal{A})=0$ implies $T \in \mathcal{A}$; it is hyperreflexive if there exists a constant $C \geq 1$ such that, for any operator $T \in B(H)$, it holds

$$
\operatorname{dist}(T, \mathcal{A}) \leq C \beta(T, \mathcal{A})
$$

The smallest such C is called the distance constant of the algebra \mathcal{A}.
In the case of a reflexive algebra of matrices with nonzero entries specified by a given pattern, the problem of finding the distance constant can be formulated as a matrix-filling problem: given a partially completed matrix, fill in the remaining entries so that the operator norm of the resulting complete matrix is minimized.

Chapter 14
 Distances in Probability Theory

A probability space is a measurable space (Ω, \mathcal{A}, P), where \mathcal{A} is the set of all measurable subsets of Ω, and P is a measure on \mathcal{A} with $P(\Omega)=1$. The set Ω is called a sample space. An element $a \in \mathcal{A}$ is called an event. $P(a)$ is called the probability of the event a. The measure P on \mathcal{A} is called a probability measure, or (probability) distribution law, or simply (probability) distribution.

A random variable X is a measurable function from a probability space (Ω, \mathcal{A}, P) into a measurable space, called a state space of possible values of the variable; it is usually taken to be \mathbb{R} with the Borel σ-algebra, so $X: \Omega \rightarrow \mathbb{R}$. The range \mathcal{X} of the variable X is called the support of the distribution P; an element $x \in \mathcal{X}$ is called a state.

A distribution law can be uniquely described via a cumulative distribution (or simply, distribution) function CDF, which describes the probability that a random value X takes on a value at most $x: F(x)=P(X \leq x)=P(\omega \in \Omega: X(\omega) \leq x)$.

So, any random variable X gives rise to a probability distribution which assigns to the interval $[a, b]$ the probability $P(a \leq X \leq b)=P(\omega \in \Omega: a \leq X(\omega) \leq b)$, i.e., the probability that the variable X will take a value in the interval $[a, b]$.

A distribution is called discrete if $F(x)$ consists of a sequence of finite jumps at x_{i}; a distribution is called continuous if $F(x)$ is continuous. We consider (as in the majority of applications) only discrete or absolutely continuous distributions, i.e., the CDF function $F: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous. It means that, for every number $\epsilon>0$, there is a number $\delta>0$ such that, for any sequence of pairwise disjoint intervals $\left[x_{k}, y_{k}\right], 1 \leq k \leq n$, the inequality $\sum_{1 \leq k<n}\left(y_{k}-x_{k}\right)<\delta$ implies the inequality $\sum_{1 \leq k \leq n}\left|F\left(y_{k}\right)-F\left(x_{k}\right)\right|<\epsilon$.

A distribution law also can be uniquely defined via a probability density (or density, probability) function PDF of the underlying random variable. For an absolutely continuous distribution, the CDF is almost everywhere differentiable, and the PDF is defined as the derivative $p(x)=F^{\prime}(x)$ of the CDF; so, $F(x)=$ $P(X \leq x)=\int_{-\infty}^{x} p(t) d t$, and $\int_{a}^{b} p(t) d t=P(a \leq X \leq b)$. In the discrete case,
the PDF is $\sum_{x_{i} \leq x} p\left(x_{i}\right)$, where $p(x)=P(X=x)$ is the probability mass function. But $p(x)=0$ for each fixed x in any continuous case.

The random variable X is used to "push-forward" the measure P on Ω to a measure $d F$ on \mathbb{R}. The underlying probability space is a technical device used to guarantee the existence of random variables and sometimes to construct them.

We usually present the discrete version of probability metrics, but many of them are defined on any measurable space; see [Bass89, Bass13, Cha08]. For a probability distance d on random quantities, the conditions $P(X=Y)=1$ or equality of distributions imply (and characterize) $d(X, Y)=0$; such distances are called [Rach91] compound or simple distances, respectively. Often, some ground distance d is given on the state space \mathcal{X} and the presented distance is a lifting of it to a distance on distributions. A quasi-distance between distributions is also called divergence or distance statistic.

Below we denote $p_{X}=p(x)=P(X=x), F_{X}=F(x)=P(X \leq x)$, $p(x, y)=P(X=x, Y=y)$. We denote by $\mathbb{E}[X]$ the expected value (or mean) of the random variable X : in the discrete case $\mathbb{E}[X]=\sum_{x} x p(x)$, in the continuous case $\mathbb{E}[X]=\int x p(x) d x$.

The covariance between the random variables X and Y is $\operatorname{Cov}(X, Y)=\mathbb{E}[(X-$ $\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$. The variance and standard deviation of X are $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$ and $\sigma(X)=\sqrt{\operatorname{Var}(X)}$, respectively. The correlation between X and Y is $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma(X) \sigma(Y)} ;$ cf. Chap. 17 .

14.1 Distances on Random Variables

All distances in this section are defined on the set \mathbf{Z} of all random variables with the same support \mathcal{X}; here $X, Y \in \mathbf{Z}$.

- p-Average compound metric

Given $p \geq 1$, the p-average compound metric (or L_{p}-metric between variables) is a metric on \mathbf{Z} with $\mathcal{X} \subset \mathbb{R}$ and $\mathbb{E}\left[|Z|^{p}\right]<\infty$ for all $Z \in \mathbf{Z}$ defined by

$$
\left(\mathbb{E}\left[|X-Y|^{p}\right]\right)^{1 / p}=\left(\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}}|x-y|^{p} p(x, y)\right)^{1 / p}
$$

For $p=2$ and ∞, it is called, respectively, the mean-square distance and essential supremum distance between variables.

- Lukaszyk-Karmovski metric

The Lukaszyk-Karmovski metric (2001) on \mathbb{Z} with $\mathcal{X} \subset \mathbb{R}$ is defined by

$$
\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}}|x-y| p(x) p(y)
$$

For continuous random variables, it is defined by $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x-y| F(x) F(y) d x d y$. This function can be positive for $X=Y$. Such possibility is excluded, and so, it will be a distance metric, if and only if it holds

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x-y| \delta(x-\mathbb{E}[X]) \delta(y-\mathbb{E}[Y]) d x d y=|\mathbb{E}[X]-\mathbb{E}[Y]|
$$

- Absolute moment metric

Given $p \geq 1$, the absolute moment metric is a metric on \mathbf{Z} with $\mathcal{X} \subset \mathbb{R}$ and $\mathbb{E}\left[|Z|^{p}\right]<\infty$ for all $Z \in \mathbf{Z}$ defined by

$$
\left|\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}-\left(\mathbb{E}\left[|Y|^{p}\right]\right)^{1 / p}\right| .
$$

For $p=1$ it is called the engineer metric.

- Indicator metric

The indicator metric is a metric on \mathbf{Z} defined by

$$
\mathbb{E}\left[1_{X \neq Y}\right]=\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}} 1_{x \neq y} p(x, y)=\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}, x \neq y} p(x, y) .
$$

(Cf. Hamming metric in Chap. 1.)

- Ky Fan metric K

The Ky Fan metric K is a metric K on \mathbf{Z}, defined by

$$
\inf \{\epsilon>0: P(|X-Y|>\epsilon)<\epsilon\} .
$$

It is the case $d(x, y)=|X-Y|$ of the probability distance.

- Ky Fan metric K^{*}

The Ky Fan metric K^{*} is a metric on \mathbf{Z} defined by

$$
\mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]=\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}} \frac{|x-y|}{1+|x-y|} p(x, y)
$$

- Probability distance

Given a metric space (\mathcal{X}, d), the probability distance on \mathbf{Z} is defined by

$$
\inf \{\epsilon>0: P(d(X, Y)>\epsilon)<\epsilon\} .
$$

14.2 Distances on Distribution Laws

All distances in this section are defined on the set \mathcal{P} of all distribution laws such that corresponding random variables have the same range \mathcal{X}; here $P_{1}, P_{2} \in \mathcal{P}$.

- L_{p}-metric between densities

The L_{p}-metric between densities is a metric on \mathcal{P} (for a countable \mathcal{X}) defined, for any $p \geq 1$, by

$$
\left(\sum_{x}\left|p_{1}(x)-p_{2}(x)\right|^{p}\right)^{\frac{1}{p}}
$$

For $p=1$, one half of it is called the variational distance (or total variation distance, Kolmogorov distance). For $p=2$, it is the Patrick-Fisher distance. The point metric $\sup _{x}\left|p_{1}(x)-p_{2}(x)\right|$ corresponds to $p=\infty$.
The Lissak-Fu distance with parameter $\alpha>0$ is defined as $\sum_{x} \mid p_{1}(x)-$ $\left.p_{2}(x)\right|^{\alpha}$.

- Bayesian distance

The error probability in classification is the following error probability of the optimal Bayes rule for the classification into two classes with a priori probabilities $\phi, 1-\phi$ and corresponding densities p_{1}, p_{2} of the observations:

$$
P_{e}=\sum_{x} \min \left(\phi p_{1}(x),(1-\phi) p_{2}(x)\right)
$$

The Bayesian distance on \mathcal{P} is defined by $1-P_{e}$.
For the classification into m classes with a priori probabilities $\phi_{i}, 1 \leq i \leq m$, and corresponding densities p_{i} of the observations, the error probability becomes

$$
P_{e}=1-\sum_{x} p(x) \max _{i} P\left(C_{i} \mid x\right)
$$

where $P\left(C_{i} \mid x\right)$ is the a posteriori probability of the class C_{i} given the observation x and $p(x)=\sum_{i=1}^{m} \phi_{i} P\left(x \mid C_{i}\right)$. The general mean distance between m classes C_{i} (cf. m-hemimetric in Chap.3) is defined (Van der Lubbe, 1979) for $\alpha>0, \beta>1$ by

$$
\sum_{x} p(x)\left(\sum_{i} P\left(C_{i} \mid x\right)^{\beta}\right)^{\alpha}
$$

The case $\alpha=1, \beta=2$ corresponds to the Bayesian distance in Devijver, 1974; the case $\beta=\frac{1}{\alpha}$ was considered in Trouborst et al., 1974.

- Mahalanobis semimetric

The Mahalanobis semimetric is a semimetric on $\mathcal{P}\left(\right.$ for $\left.\mathcal{X} \subset \mathbb{R}^{n}\right)$ defined by

$$
\sqrt{\left(\mathbb{E}_{P_{1}}[X]-\mathbb{E}_{P_{2}}[X]\right)^{T} A\left(\mathbb{E}_{P_{1}}[X]-\mathbb{E}_{P_{2}}[X]\right)}
$$

for a given positive-semidefinite matrix A; its square is a Bregman quasidistance (cf. Chap. 13). Cf. also the Mahalanobis distance in Chap. 17.

- Engineer semimetric

The engineer semimetric is a semimetric on $\mathcal{P}($ for $\mathcal{X} \subset \mathbb{R})$ defined by

$$
\left|\mathbb{E}_{P_{1}}[X]-\mathbb{E}_{P_{2}}[X]\right|=\left|\sum_{x} x\left(p_{1}(x)-p_{2}(x)\right)\right| .
$$

- Stop-loss metric of order m

The stop-loss metric of order m is a metric on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$) defined by

$$
\sup _{t \in \mathbb{R}} \sum_{x \geq t} \frac{(x-t)^{m}}{m!}\left(p_{1}(x)-p_{2}(x)\right) .
$$

- Kolmogorov-Smirnov metric

The Kolmogorov-Smirnov metric (or Kolmogorov metric, uniform metric) is a metric on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$) defined (1948) by

$$
\sup _{x \in \mathbb{R}}\left|P_{1}(X \leq x)-P_{2}(X \leq x)\right|
$$

This metric is used, for example, in Biology as a measure of sexual dimorphism. The Kuiper distance on \mathcal{P} is defined by

$$
\sup _{x \in \mathbb{R}}\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right)+\sup _{x \in \mathbb{R}}\left(P_{2}(X \leq x)-P_{1}(X \leq x)\right) .
$$

(Cf. Pompeiu-Eggleston metric in Chap. 9.)
The Crnkovic-Drachma distance is defined by

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}}\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right) \ln \frac{1}{\sqrt{\left(P_{1}(X \leq x)\left(1-P_{1}(X \leq x)\right)\right.}}+ \\
& +\sup _{x \in \mathbb{R}}\left(P_{2}(X \leq x)-P_{1}(X \leq x)\right) \ln \frac{1}{\sqrt{\left(P_{1}(X \leq x)\left(1-P_{1}(X \leq x)\right)\right.}}
\end{aligned}
$$

- Cramér-von Mises distance

The Cramér-von Mises distance (1928) is defined on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$) by

$$
\omega^{2}=\int_{-\infty}^{+\infty}\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right)^{2} d P_{2}(x)
$$

The Anderson-Darling distance (1954) on \mathcal{P} is defined by

$$
\int_{-\infty}^{+\infty} \frac{\left.\left(P_{1}(X \leq x)-P_{2}\right)(X \leq x)\right)^{2}}{\left(P_{2}(X \leq x)\left(1-P_{2}(X \leq x)\right)\right.} d P_{2}(x)
$$

In Statistics, above distances of Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and, below, χ^{2}-distance are the main measures of goodness of fit between estimated, P_{2}, and theoretical, P_{1}, distributions.
They and other distances were generalized (for example by Kiefer, 1955, and Glick, 1969) on K-sample setting, i.e., some convenient generalized distances $d\left(P_{1}, \ldots, P_{K}\right)$ were defined. Cf. m-hemimetric in Chap. 3.

- Energy distance

The energy distance (Székely, 2005) between cumulative density functions $F(X), F(Y)$ of two independent random vectors $X, Y \in \mathbb{R}^{n}$ is defined by

$$
d(F(X), F(Y))=2 \mathbb{E}\left[\|(X-Y \|]-\mathbb{E}\left[\left\|X-X^{\prime}\right\|\right]-\mathbb{E}\left[\|\left(Y-Y^{\prime} \|\right]\right.\right.
$$

where X, X^{\prime} are iid (independent and identically distributed), Y, Y^{\prime} are iid and $\|$.$\| is the length of a vector. Cf. distance covariance in Chap. 17$.
It holds $d(F(X), F(Y))=0$ if and only if X, Y are iid.

- Prokhorov metric

Given a metric space (\mathcal{X}, d), the Prokhorov metric on \mathcal{P} is defined (1956) by
$\inf \left\{\epsilon>0: P_{1}(X \in B) \leq P_{2}\left(X \in B^{\epsilon}\right)+\epsilon\right.$ and $\left.P_{2}(X \in B) \leq P_{1}\left(X \in B^{\epsilon}\right)+\epsilon\right\}$,
where B is any Borel subset of \mathcal{X}, and $B^{\epsilon}=\{x: d(x, y)<\epsilon, y \in B\}$.
It is the smallest (over all joint distributions of pairs (X, Y) of random variables X, Y such that the marginal distributions of X and Y are P_{1} and P_{2}, respectively) probability distance between random variables X and Y.

- Levy-Sibley metric

The Levy-Sibley metric is a metric on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$ only) defined by
$\inf \left\{\epsilon>0: P_{1}(X \leq x-\epsilon)-\epsilon \leq P_{2}(X \leq x) \leq P_{1}(X \leq x+\epsilon)+\epsilon\right.$ for any $\left.x \in \mathbb{R}\right\}$.
It is a special case of the $\operatorname{Prokhorov}$ metric for $(\mathcal{X}, d)=(\mathbb{R},|x-y|)$.

- Dudley metric

Given a metric space (\mathcal{X}, d), the Dudley metric on \mathcal{P} is defined by

$$
\sup _{f \in F}\left|\mathbb{E}_{P_{1}}[f(X)]-\mathbb{E}_{P_{2}}[f(X)]\right|=\sup _{f \in F}\left|\sum_{x \in \mathcal{X}} f(x)\left(p_{1}(x)-p_{2}(x)\right)\right|
$$

where $F=\left\{f: \mathcal{X} \rightarrow \mathbb{R},\|f\|_{\infty}+\operatorname{Lip}_{d}(f) \leq 1\right\}$, and $\operatorname{Lip}_{d}(f)=$ $\sup _{x, y \in \mathcal{X}, x \neq y} \frac{|f(x)-f(y)|}{d(x, y)}$.

- Szulga metric

Given a metric space (\mathcal{X}, d), the Szulga metric (1982) on \mathcal{P} is defined by

$$
\sup _{f \in F}\left|\left(\sum_{x \in \mathcal{X}}|f(x)|^{p} p_{1}(x)\right)^{1 / p}-\left(\sum_{x \in \mathcal{X}}|f(x)|^{p} p_{2}(x)\right)^{1 / p}\right|,
$$

where $F=\left\{f: X \rightarrow \mathbb{R}, \operatorname{Lip}_{d}(f) \leq 1\right\}$, and $\operatorname{Lip}_{d}(f)=$ $\sup _{x, y \in \mathcal{X}, x \neq y} \frac{|f(x)-f(y)|}{d(x, y)}$.

- Zolotarev semimetric

The Zolotarev semimetric is a semimetric on \mathcal{P}, defined (1976) by

$$
\sup _{f \in F}\left|\sum_{x \in \mathcal{X}} f(x)\left(p_{1}(x)-p_{2}(x)\right)\right|
$$

where F is any set of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ (in the continuous case, F is any set of such bounded continuous functions); cf. Szulga metric, Dudley metric.

- Convolution metric

Let G be a separable locally compact Abelian group, and let $C(G)$ be the set of all real bounded continuous functions on G vanishing at infinity. Fix a function $g \in C(G)$ such that $|g|$ is integrable with respect to the Haar measure on G, and $\left\{\beta \in G^{*}: \hat{g}(\beta)=0\right\}$ has empty interior; here G^{*} is the dual group of G, and \hat{g} is the Fourier transform of g.
The convolution metric (or smoothing metric) is defined (Yukich, 1985), for any two finite signed Baire measures P_{1} and P_{2} on G, by

$$
\sup _{x \in G}\left|\int_{y \in G} g\left(x y^{-1}\right)\left(d P_{1}-d P_{2}\right)(y)\right| .
$$

It can also be seen as the difference $T_{P_{1}}(g)-T_{P_{2}}(g)$ of convolution operators on $C(G)$ where, for any $f \in C(G)$, the operator $T_{P} f(x)$ is $\int_{y \in G} f\left(x y^{-1}\right) d P(y)$. In particular, this metric can be defined on the space of probability measures on \mathbb{R}^{n}, where g is a PDF satisfying above conditions.

- Discrepancy metric

Given a metric space (\mathcal{X}, d), the discrepancy metric on \mathcal{P} is defined by

$$
\sup \left\{\left|P_{1}(X \in B)-P_{2}(X \in B)\right|: B \text { is any closed ball }\right\} .
$$

- Bi-discrepancy semimetric

The bi-discrepancy semimetric (evaluating the proximity of distributions P_{1}, P_{2} over different collections $\mathcal{A}_{1}, \mathcal{A}_{2}$ of measurable sets) is defined by

$$
D\left(P_{1}, P_{2}\right)+D\left(P_{2}, P_{1}\right)
$$

where $D\left(P_{1}, P_{2}\right)=\sup \left\{\inf \left\{P_{2}(C): B \subset C \in \mathcal{A}_{2}\right\}-P_{1}(B): B \in \mathcal{A}_{1}\right\}$ (discrepancy).

- Le Cam distance

The Le Cam distance (1974) is a semimetric, evaluating the proximity of probability distributions P_{1}, P_{2} (on different spaces $\mathcal{X}_{1}, \mathcal{X}_{2}$) and defined as follows:

$$
\max \left\{\delta\left(P_{1}, P_{2}\right), \delta\left(P_{2}, P_{1}\right)\right\}
$$

where $\delta\left(P_{1}, P_{2}\right)=\inf _{B} \sum_{x_{2} \in \mathcal{X}_{2}}\left|B P_{1}\left(X_{2}=x_{2}\right)-B P_{2}\left(X_{2}=x_{2}\right)\right|$ is the $L e$ Cam deficiency. Here $B P_{1}\left(X_{2}=x_{2}\right)=\sum_{x_{1} \in \mathcal{X}_{1}} p_{1}\left(x_{1}\right) b\left(x_{2} \mid x_{1}\right)$, where B is a probability distribution over $\mathcal{X}_{1} \times \mathcal{X}_{2}$, and

$$
b\left(x_{2} \mid x_{1}\right)=\frac{B\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{B\left(X_{1}=x_{1}\right)}=\frac{B\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{\sum_{x \in \mathcal{X}_{2}} B\left(X_{1}=x_{1}, X_{2}=x\right)}
$$

So, $B P_{2}\left(X_{2}=x_{2}\right)$ is a probability distribution over \mathcal{X}_{2}, since $\sum_{x_{2} \in \mathcal{X}_{2}} b\left(x_{2} \mid x_{1}\right)=$ 1.

Le Cam distance is not a probabilistic distance, since P_{1} and P_{2} are defined over different spaces; it is a distance between statistical experiments (models).

- Skorokhod-Billingsley metric

The Skorokhod-Billingsley metric is a metric on \mathcal{P}, defined by

$$
\begin{aligned}
\inf _{f} \max & \left\{\sup _{x}\left|P_{1}(X \leq x)-P_{2}(X \leq f(x))\right|, \sup _{x}|f(x)-x|,\right. \\
& \left.\sup _{x \neq y}\left|\ln \frac{f(y)-f(x)}{y-x}\right|\right\},
\end{aligned}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is any strictly increasing continuous function.

- Skorokhod metric

The Skorokhod metric is a metric on \mathcal{P} defined (1956) by

$$
\inf \left\{\epsilon>0: \max \left\{\sup _{x}\left|P_{1}(X<x)-P_{2}(X \leq f(x))\right|, \sup _{x}|f(x)-x|\right\}<\epsilon\right\},
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing continuous function.

- Birnbaum-Orlicz distance

The Birnbaum-Orlicz distance (1931) is a distance on \mathcal{P} defined by

$$
\sup _{x \in \mathbb{R}} f\left(\left|P_{1}(X \leq x)-P_{2}(X \leq x)\right|\right),
$$

where $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is any nondecreasing continuous function with $f(0)=0$, and $f(2 t) \leq C f(t)$ for any $t>0$ and some fixed $C \geq 1$. It is a near-metric, since the C-triangle inequality $d\left(P_{1}, P_{2}\right) \leq C\left(d\left(P_{1}, P_{3}\right)+d\left(P_{3}, P_{2}\right)\right)$ holds. Birnbaum-Orlicz distance is also used, in Functional Analysis, on the set of all integrable functions on the segment $[0,1]$, where it is defined by $\int_{0}^{1} H(|f(x)-g(x)|) d x$, where H is a nondecreasing continuous function from $[0, \infty)$ onto $[0, \infty)$ which vanishes at the origin and satisfies the Orlicz condition: $\sup _{t>0} \frac{H(2 t)}{H(t)}<\infty$.

- Kruglov distance

The Kruglov distance (1973) is a distance on \mathcal{P}, defined by

$$
\int f\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right) d x
$$

where $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is any even strictly increasing function with $f(0)=0$, and $f(s+t) \leq C(f(s)+f(t))$ for any $s, t \geq 0$ and some fixed $C \geq 1$. It is a near-metric, since the C-triangle inequality $d\left(P_{1}, P_{2}\right) \leq C\left(d\left(P_{1}, P_{3}\right)+\right.$ $\left.d\left(P_{3}, P_{2}\right)\right)$ holds.

- Bregman divergence

Given a differentiable strictly convex function $\phi(p): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\beta \in(0,1)$, the skew Jensen (or skew Burbea-Rao) divergence on \mathcal{P} is (Basseville-Cardoso, 1995)

$$
J_{\phi}^{(\beta)}\left(P_{1}, P_{2}\right)=\beta \phi\left(p_{1}\right)+(1-\beta) \phi\left(p_{2}\right)-\phi\left(\beta p_{1}+(1-\beta) p_{2}\right)
$$

The Burbea-Rao distance (1982) is the case $\beta=\frac{1}{2}$ of it, i.e., it is

$$
\sum_{x}\left(\frac{\phi\left(p_{1}(x)\right)+\phi\left(p_{2}(x)\right)}{2}-\phi\left(\frac{p_{1}(x)+\left(p_{2}(x)\right.}{2}\right)\right) .
$$

The Bregman divergence (1967) is a quasi-distance on \mathcal{P} defined by
$\sum_{x}\left(\phi\left(p_{1}(x)\right)-\phi\left(p_{2}(x)\right)-\left(p_{1}(x)-p_{2}(x)\right) \phi^{\prime}\left(p_{2}(x)\right)\right)=\lim _{\beta \rightarrow 1} \frac{1}{\beta} J_{\phi}^{(\beta)}\left(P_{1}, P_{2}\right)$.
The generalised Kullback-Leibler distance $\sum_{x} p_{1}(x) \ln \frac{p_{1}(x)}{p_{2}(x)}-\sum_{x}\left(p_{1}(x)-\right.$ $\left.p_{2}(x)\right)$ and Itakura-Saito distance (cf. Chap. 21) $\sum_{x} \frac{p_{1}(x)}{p_{2}(x)}-\ln \frac{p_{1}(x)}{p_{2}(x)}-1$ are the cases $\phi(p)=\sum_{x} p(x) \ln p(x)-\sum_{x} p(x)$ and $\phi(p)=-\sum_{x} \ln p(x)$ of the Bregman divergence. Cf. Bregman quasi-distance in Chap. 13.
Csizár, 1991, proved that the Kullback-Leibler distance is the only Bregman divergence which is an f-divergence.

- f-divergence

Given a convex function $f(t): \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ with $f(1)=0, f^{\prime}(1)=0, f^{\prime \prime}(1)=$ 1 , the f-divergence (independently, Csizár, 1963, Morimoto, 1963, Ali-Silvey, 1966, Ziv-Zakai, 1973, and Akaike, 1974) on \mathcal{P} is defined by

$$
\sum_{x} p_{2}(x) f\left(\frac{p_{1}(x)}{p_{2}(x)}\right)
$$

The cases $f(t)=t \ln t$ and $f(t)=(t-1)^{2}$ correspond to the Kullback-Leibler distance and to the χ^{2}-distance below, respectively. The case $f(t)=|t-1|$ corresponds to the variational distance, and the case $f(t)=4(1-\sqrt{t})$ (as well as $f(t)=2(t+1)-4 \sqrt{t})$ corresponds to the squared Hellinger metric.

Semimetrics can also be obtained, as the square root of the f-divergence, in the cases $f(t)=(t-1)^{2} /(t+1)$ (the Vajda-Kus semimetric), $f(t)=$ $\left|t^{a}-1\right|^{1 / a}$ with $0<a \leq 1$ (the generalized Matusita distance), and $f(t)=$ $\frac{\left(t^{a}+1\right)^{1 / a}-2^{(1-a) / a}(t+1)}{1-1 / \alpha}$ (the Osterreicher semimetric).

- α-divergence

Given $\alpha \in \mathbb{R}$, the α-divergence (independently, Csizár, 1967, HavrdaCharvát, 1967, Cressie-Read, 1984, and Amari, 1985) is defined as $K L\left(P_{1}, P_{2}\right)$, $K L\left(P_{2}, P_{1}\right)$ for $\alpha=1,0$ and for $\alpha \neq 0,1$, it is

$$
\frac{1}{\alpha(1-\alpha)}\left(1-\sum_{x} p_{2}(x)\left(\frac{p_{1}(x)}{p_{2}(x)}\right)^{\alpha}\right) .
$$

The Amari divergence come from the above by the transformation $\alpha=\frac{1+t}{2}$.

- Harmonic mean similarity

The harmonic mean similarity is a similarity on \mathcal{P} defined by

$$
2 \sum_{x} \frac{p_{1}(x) p_{2}(x)}{p_{1}(x)+p_{2}(x)}
$$

- Fidelity similarity

The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity) on \mathcal{P} is

$$
\rho\left(P_{1}, P_{2}\right)=\sum_{x} \sqrt{p_{1}(x) p_{2}(x)}
$$

Cf. more general quantum fidelity similarity in Chap. 24.

- Hellinger metric

In terms of the fidelity similarity ρ, the Hellinger metric (or Matusita distance, Hellinger-Kakutani metric) on \mathcal{P} is defined by

$$
\left(\sum_{x}\left(\sqrt{p_{1}(x)}-\sqrt{p_{2}(x)}\right)^{2}\right)^{\frac{1}{2}}=2 \sqrt{1-\rho\left(P_{1}, P_{2}\right)}
$$

- Bhattacharya distance 1

In terms of the fidelity similarity ρ, the Bhattacharya distance 1 (1946) is

$$
\left(\arccos \rho\left(P_{1}, P_{2}\right)\right)^{2}
$$

for $P_{1}, P_{2} \in \mathcal{P}$. Twice this distance is the Rao distance from Chap. 7. It is used also in Statistics and Machine Learning, where it is called the Fisher distance. The Bhattacharya distance 2 (1943) on \mathcal{P} is defined by

$$
-\ln \rho\left(P_{1}, P_{2}\right)
$$

- χ^{2}-distance

The χ^{2}-distance (or Pearson χ^{2}-distance) is a quasi-distance on \mathcal{P}, defined by

$$
\sum_{x} \frac{\left(p_{1}(x)-p_{2}(x)\right)^{2}}{p_{2}(x)}
$$

The Neyman χ^{2}-distance is a quasi-distance on \mathcal{P}, defined by

$$
\sum_{x} \frac{\left(p_{1}(x)-p_{2}(x)\right)^{2}}{p_{1}(x)}
$$

The half of χ^{2}-distance is also called Kagan's divergence.
The probabilistic symmetric χ^{2}-measure is a distance on \mathcal{P}, defined by

$$
2 \sum_{x} \frac{\left(p_{1}(x)-p_{2}(x)\right)^{2}}{p_{1}(x)+p_{2}(x)} .
$$

- Separation quasi-distance

The separation distance is a quasi-distance on \mathcal{P} (for a countable \mathcal{X}) defined by

$$
\max _{x}\left(1-\frac{p_{1}(x)}{p_{2}(x)}\right)
$$

(Not to be confused with separation distance in Chap. 9.)

- Kullback-Leibler distance

The Kullback-Leibler distance (or relative entropy, information deviation, information gain, KL-distance) is a quasi-distance on \mathcal{P}, defined (1951) by

$$
K L\left(P_{1}, P_{2}\right)=\mathbb{E}_{P_{1}}[\ln L]=\sum_{x} p_{1}(x) \ln \frac{p_{1}(x)}{p_{2}(x)},
$$

where $L=\frac{p_{1}(x)}{p_{2}(x)}$ is the likelihood ratio. Therefore,
$K L\left(P_{1}, P_{2}\right)=-\sum_{x} p_{1}(x) \ln p_{2}(x)+\sum_{x} p_{1}(x) \ln p_{1}(x)=H\left(P_{1}, P_{2}\right)-H\left(P_{1}\right)$,
where $H\left(P_{1}\right)$ is the entropy of P_{1}, and $H\left(P_{1}, P_{2}\right)$ is the cross-entropy of P_{1} and P_{2}.
If P_{2} is the product of marginals of P_{1} (say, $p_{2}(x, y)=p_{1}(x) p_{1}(y)$), the KL-distance $\operatorname{KL}\left(P_{1}, P_{2}\right)$ is called the Shannon information quantity and (cf. Shannon distance) is equal to $\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}} p_{1}(x, y) \ln \frac{p_{1}(x, y)}{p_{1}(x) p_{1}(y)}$.
The exponential divergence is defined by $\sum_{x} p_{1}(x)\left(\ln \frac{p_{1}(x)}{p_{2}(x)}\right)^{2}$.

- Distance to normality

For a continuous distribution P on \mathbb{R}, the differential entropy is defined by

$$
h(P)=-\int_{-\infty}^{\infty} p(x) \ln p(x) d x
$$

It is $\ln (\delta \sqrt{2 \pi e})$ for a normal (or Gaussian) distribution $g_{\delta, \mu}(x)=$ $\frac{1}{\sqrt{2 \pi \delta^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \delta^{2}}\right)$ with variance δ^{2} and mean μ.
The distance to normality (or negentropy) of P is the Kullback-Leibler distance $K L(P, g)=\int_{-\infty}^{\infty} p(x) \ln \left(\frac{p(x)}{g(x)}\right) d x=h(g)-h(P)$, where q is a normal distribution with the same variance as P. So, it is nonnegative and equal to 0 if and only if $P=g$ almost everywhere. Cf. Shannon distance.
Also, $h\left(u_{a, b}\right)=\ln (b-a)$ for an uniform distribution with minimum a and maximum $b>a$, i.e., $u_{a, b}(x)=\frac{1}{b-a}$, if $x \in[a, b]$, and it is 0 , otherwise. It holds $h\left(u_{a, b}\right) \geq h(P)$ for any distribution P with support contained in $[a, b]$; so, $h\left(u_{a, b}\right)-h(P)$ can be called the distance to uniformity. Tononi, 2008, used it in his model of consciousness.

- Jeffrey distance

The Jeffrey distance (or J-divergence, KL2-distance) is a symmetric version of the Kullback-Leibler distance defined (1946) on \mathcal{P} by

$$
K L\left(P_{1}, P_{2}\right)+K L\left(P_{2}, P_{1}\right)=\sum_{x}\left(\left(p_{1}(x)-p_{2}(x)\right) \ln \frac{p_{1}(x)}{p_{2}(x)} .\right.
$$

The Aitchison distance (1986) is defined by $\sqrt{\sum_{x}\left(\ln \frac{p_{1}(x) g\left(p_{1}\right)}{p_{2}(x) g\left(p_{2}\right)}\right)^{2}}$, where $g(p)=$ $\left(\prod_{x} p(x)\right)^{\frac{1}{n}}$ is the geometric mean of components $p(x)$ of p.

- Resistor-average distance

The resistor-average distance is (Johnson-Simanović, 2000) a symmetric version of the Kullback-Leibler distance on \mathcal{P} which is defined by the harmonic sum

$$
\left(\frac{1}{K L\left(P_{1}, P_{2}\right)}+\frac{1}{K L\left(P_{2}, P_{1}\right)}\right)^{-1}
$$

- Jensen-Shannon divergence

Given a number $\beta \in[0,1]$ and $P_{1}, P_{2} \in \mathcal{P}$, let P_{3} denote $\beta P_{1}+(1-\beta) P_{2}$. The skew divergence and the Jensen-Shannon divergence between P_{1} and P_{2} are defined on \mathcal{P} as $K L\left(P_{1}, P_{3}\right)$ and $\beta K L\left(P_{1}, P_{3}\right)+(1-\beta) K L\left(P_{2}, P_{3}\right)$, respectively. Here $K L$ is the Kullback-Leibler distance; cf. clarity similarity.
In terms of entropy $H(P)=-\sum_{x} p(x) \ln p(x)$, the Jensen-Shannon divergence is $H\left(\beta P_{1}+(1-\beta) P_{2}\right)-\beta H\left(P_{1}\right)-(1-\beta) H\left(P_{2}\right)$, i.e., the Jensen divergence (cf. Bregman divergence).

Let $P_{3}=\frac{1}{2}\left(P_{1}+P_{2}\right)$, i.e., $\beta=\frac{1}{2}$. Then the skew divergence and twice the Jensen-Shannon divergence are called K-divergence and Topsøe distance (or information statistics), respectively. The Topsøe distance is a symmetric version of $K L\left(P_{1}, P_{2}\right)$. It is not a metric, but its square root is a metric.

- Clarity similarity

The clarity similarity is a similarity on \mathcal{P}, defined by

$$
\begin{gathered}
\left(K L\left(P_{1}, P_{3}\right)+K L\left(P_{2}, P_{3}\right)\right)-\left(K L\left(P_{1}, P_{2}\right)+K L\left(P_{2}, P_{1}\right)\right)= \\
=\sum_{x}\left(p_{1}(x) \ln \frac{p_{2}(x)}{p_{3}(x)}+p_{2}(x) \ln \frac{p_{1}(x)}{p_{3}(x)}\right),
\end{gathered}
$$

where $K L$ is the Kullback-Leibler distance, and P_{3} is a fixed probability law. It was introduced in [CCL01] with P_{3} being the probability distribution of English.

- Ali-Silvey distance

The Ali-Silvey distance is a quasi-distance on \mathcal{P} defined by the functional

$$
f\left(\mathbb{E}_{P_{1}}[g(L)]\right),
$$

where $L=\frac{p_{1}(x)}{p_{2}(x)}$ is the likelihood ratio, f is a nondecreasing function on \mathbb{R}, and g is a continuous convex function on $\mathbb{R}_{\geq 0}$ (cf. f-divergence).
The case $f(x)=x, g(x)=x \ln x$ corresponds to the Kullback-Leibler distance; the case $f(x)=-\ln x, g(x)=x^{t}$ corresponds to the Chernoff distance.

- Chernoff distance

The Chernoff distance (or Rényi cross-entropy) on \mathcal{P} is defined (1954) by

$$
\max _{t \in(0,1)} D_{t}\left(P_{1}, P_{2}\right),
$$

where $0<t<1$ and $D_{t}\left(P_{1}, P_{2}\right)=-\ln \sum_{x}\left(p_{1}(x)\right)^{t}\left(p_{2}(x)\right)^{1-t}$ (called the Chernoff coefficient) which is proportional to the Rényi distance.

- Rényi distance

Given $t \in \mathbb{R}$, the Rényi distance (or order t Rényi entropy, 1961) is a quasidistance on \mathcal{P} defined as the Kullback-Leibler distance $K L\left(P_{1}, P_{2}\right)$ if $t=1$, and, otherwise, by

$$
\frac{1}{1-t} \ln \sum_{x} p_{2}(x)\left(\frac{p_{1}(x)}{p_{2}(x)}\right)^{t} .
$$

For $t=\frac{1}{2}$, one half of the Rényi distance is the Bhattacharya distance 2. Cf. f-divergence and Chernoff distance.

- Shannon distance

Given a measure space (Ω, \mathcal{A}, P), where the set Ω is finite and P is a probability measure, the entropy (or Shannon information entropy) of a function $f: \Omega \rightarrow$ X, where X is a finite set, is defined by

$$
H(f)=-\sum_{x \in X} P(f=x) \log _{a}(P(f=x))
$$

Here $a=2, e$, or 10 and the unit of entropy is called a bit, nat, or dit (digit), respectively. The function f can be seen as a partition of the measure space.
For any two such partitions $f: \Omega \rightarrow X$ and $g: \Omega \rightarrow Y$, denote by $H(f, g)$ the entropy of the partition $(f, g): \Omega \rightarrow X \times Y$ (joint entropy), and by $H(f \mid g)$ the conditional entropy (or equivocation). Then the Shannon distance between f and g is a metric defined by

$$
H(f \mid g)+H(g \mid f)=2 H(f, g)-H(f)-H(g)=H(f, g)-I(f ; g)
$$

where $I(f ; g)=H(f)+H(g)-H(f, g)$ is the Shannon mutual information. If P is the uniform probability law, then Goppa showed that the Shannon distance can be obtained as a limiting case of the finite subgroup metric.
In general, the information metric (or entropy metric) between two random variables (information sources) X and Y is defined by

$$
H(X \mid Y)+H(Y \mid X)=H(X, Y)-I(X ; Y)
$$

where the conditional entropy $H(X \mid Y)$ is defined by $\sum_{x \in X} \sum_{y \in Y} p(x, y) \ln$ $p(x \mid y)$, and $p(x \mid y)=P(X=x \mid Y=y)$ is the conditional probability.
The Rajski distance (or normalized information metric) is defined (Rajski, 1961, for discrete probability distributions X, Y) by

$$
\frac{H(X \mid Y)+H(Y \mid X)}{H(X, Y)}=1-\frac{I(X ; Y)}{H(X, Y)}
$$

It is equal to 1 if X and Y are independent. (Cf., a different one, normalized information distance in Chap. 11).

- Transportation distance

Given a metric space (\mathcal{X}, d), the transportation distance (and/or, according to Villani, 2009, Monge-Kantorovich-Wasserstein-Rubinstein-Ornstein-Gini-Dall'Aglio-Mallows-Tanaka distance) is the metric defined by

$$
W_{1}\left(P_{1}, P_{2}\right)=\inf \mathbb{E}_{S}[d(X, Y)]=\inf _{S} \int_{(X, Y) \in \mathcal{X} \times \mathcal{X}} d(X, Y) d S(X, Y),
$$

where the infimum is taken over all joint distributions S of pairs (X, Y) of random variables X, Y such that marginal distributions of X and Y are P_{1} and P_{2}.
For any separable metric space (\mathcal{X}, d), this is equivalent to the Lipschitz distance between measures $\sup _{f} \int f d\left(P_{1}-P_{2}\right)$, where the supremum is taken over all functions f with $|f(x)-f(y)| \leq d(x, y)$ for any $x, y \in \mathcal{X}$. Cf. Dudley metric.
In general, for a Borel function $c: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$, the c-transportation distance $T_{c}\left(P_{1}, P_{2}\right)$ is inf $\mathbb{E}_{S}[c(X, Y)]$. It is the minimal total transportation cost if $c(X, Y)$ is the cost of transporting a unit of mass from the location X to the location Y. Cf. the Earth Mover's distance (Chap. 21), which is a discrete form of it.
The L_{p}-Wasserstein distance is $W_{p}=\left(T_{d p}\right)^{1 / p}=\left(\inf \mathbb{E}_{S}\left[d^{p}(X, Y)\right]\right)^{1 / p}$. For $(\mathcal{X}, d)=(\mathbb{R},|x-y|)$, it is also called the L_{p}-metric between distribution functions (CDF) F_{i} with $F_{i}^{-1}(x)=\sup _{u}\left(P_{i}(X \leq x)<u\right)$, and can be written as

$$
\begin{aligned}
\left(\inf \mathbb{E}\left[|X-Y|^{p}\right]\right)^{1 / p} & =\left(\int_{\mathbb{R}}\left|F_{1}(x)-F_{2}(x)\right|^{p} d x\right)^{1 / p} \\
& =\left(\int_{0}^{1}\left|F_{1}^{-1}(x)-F_{2}^{-1}(x)\right|^{p} d x\right)^{1 / p}
\end{aligned}
$$

For $p=1$, this metric is called Monge-Kantorovich metric (or Wasserstein metric, Fortet-Mourier metric, Hutchinson metric, KantorovichRubinstein metric). For $p=2$, it is the Levy-Fréchet metric (Fréchet, 1957).

- Ornstein \bar{d}-metric

The Ornstein \bar{d}-metric is a metric on \mathcal{P} (for $\mathcal{X}=\mathbb{R}^{n}$) defined (1974) by

$$
\frac{1}{n} \inf \int_{x, y}\left(\sum_{i=1}^{n} 1_{x_{i} \neq y_{i}}\right) d S
$$

where the infimum is taken over all joint distributions S of pairs (X, Y) of random variables X, Y such that marginal distributions of X and Y are P_{1} and P_{2}.

- Distances between belief assignments

In Bayesian (or subjective, evidential) interpretation, a probability can be assigned to any statement, even if no random process is involved, as a way to represent its subjective plausibility, or the degree to which it is supported by the available evidence, or, mainly, degree of belief. Within this approach, imprecise probability generalizes Probability Theory to deal with scarce, vague, or conflicting information. The main model is Dempster-Shafer theory, which allows evidence to be combined.

Given a set X, a (basic) belief assignment is a function $m: P(X) \rightarrow[0,1]$ (where $P(X)$ is the set of all subsets of X) with $m(\emptyset)=0$ and $\sum_{A \subset P(X)}$ $m(A)=1$. Probability measures are a special case in which $m(A)>0$ only for singletons.
For the classic probability $P(A)$, it holds then $\operatorname{Bel}(A) \leq P(A) \leq \mathrm{Pl}(A)$, where the belief function and plausibility function are defined, respectively, by

$$
\operatorname{Bel}(A)=\sum_{B: B \subset A} m(B) \text { and } \operatorname{Pl}(A)=\sum_{B: B \cap A \neq \emptyset} m(B)=1-\operatorname{Bel}(\bar{A})
$$

The original (Dempster, 1967) conflict factor between two belief assignments m_{1} and m_{2} was defined as $c\left(m_{1}, m_{2}\right)=\sum_{A \cap B=\emptyset} m_{1}(A) m_{2}(B)$. This is not a distance since $c(m, m)>0$. The combination of m_{1} and m_{2}, seen as independent sources of evidence, is defined by $m_{1} \oplus m_{2}(A)=$ $\frac{1}{1-c\left(m_{1}, m_{2}\right)} \sum_{B \cap C=A} m_{1}(B) m_{2}(C)$.
Usually, a distance between m_{1} and m_{2} estimates the difference between these sources in the form $d_{U}=\left|U\left(m_{1}\right)-U\left(m_{2}\right)\right|$, where U is an uncertainty measure; see Sarabi-Jamab et al., 2013, for a comparison of their performance. In particular, this distance is called:
confusion (Hoehle, 1981) if $U(m)-\sum_{A} m(A) \log _{2} \operatorname{Bel}(A)$;
dissonance (Yager, 1983) if $U(m)=E(m)=-\sum_{A} m(A) \log _{2} \operatorname{Pl}(A)$;
Yager's factor (Eager, 1983) if $U(m)=1-\sum_{A \neq \emptyset} \frac{m(A)}{|A|}$;
possibility-based (Smets, 1983) if $U(m)=-\sum_{A} \log _{2} \sum_{B: A \subset B} m(B)$;
U-uncertainty (Dubois-Prade, 1985) if $U(m)=I(m)=-\sum_{A} m(A) \log _{2}|A|$; Lamata-Moral's (1988) if $U(m)=\log _{2}\left(\sum_{A} m(A)|A|\right)$ and $U(m)=E(m)+$ I(m);
discord (Klir-Ramer, 1990) if $U(m)=D(m)=-\sum_{A} m(A) \log _{2}(1-$ $\sum_{B} m(B) \frac{|B \backslash A|}{|B|}$) and a variant: $U(m)=D(m)+I(m)$;
strife (Klir-Parviz, 1992) if $U(m)=-\sum_{A} m(A) \log _{2}\left(\sum_{B} m(B) \frac{|A \cap B|}{|A|}\right)$;
Pal et al.'s (1993) if $U(m)=G(m)=-\sum_{A} \log _{2} m(A)$ and $U(m)=G(m)+$ I(m);
total conflict (George-Pal, 1996) if $U(m)=\sum_{A} m(A) \sum_{B}(m(B)(1-$ $\left.\frac{|A \cap B|}{|A \cup B|}\right)$).
Among other distances used are the cosine distance $1-\frac{m_{1}^{T} m_{2}}{\left\|m_{1}\right\|\left\|m_{2}\right\|}$, the Mahalanobis distance $\sqrt{\left(m_{1}-m_{2}\right)^{T} A\left(m_{1}-m_{2}\right)}$ for some matrices A, and pignisticbased one (Tessem, 1993) $\max _{A}\left\{\left\lvert\, \sum_{B \neg \emptyset}\left(\left.m_{1}(B)-m_{2}(B) \frac{|A \cap B|}{|B|} \right\rvert\,\right\}\right.\right.$.

Part IV Distances in Applied Mathematics

Chapter 15
 Distances in Graph Theory

A graph is a pair $G=(V, E)$, where V is a set, called the set of vertices of the graph G, and E is a set of unordered pairs of vertices, called the edges of the graph G. A directed graph (or digraph) is a pair $D=(V, E)$, where V is a set, called the set of vertices of the digraph D, and E is a set of ordered pairs of vertices, called arcs of the digraph D.

A graph in which at most one edge may connect any two vertices, is called a simple graph. If multiple edges are allowed between vertices, the graph is called a multigraph. A graph, together with a function which assigns a positive weight to each edge, is called a weighted graph or network.

The graph is called finite (infinite) if the set V of its vertices is finite (infinite, respectively). The order and size of a finite graph (V, E) are $|V|$ and $|E|$, respectively.

A subgraph of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subset V$ and $E^{\prime} \subset E$. If G^{\prime} is a subgraph of G, then G is called a supergraph of G^{\prime}. A subgraph $\left(V^{\prime}, E^{\prime}\right)$ of (V, E) is its induced subgraph if $E^{\prime}=\left\{e=u v \in E: u, v \in V^{\prime}\right\}$.

A graph $G=(V, E)$ is called connected if, for any $u, v \in V$, there exists a ($u-v$) walk, i.e., a sequence of edges $u w_{1}=w_{0} w_{1}, w_{1} w_{2}, \ldots, w_{n-1} w_{n}=w_{n-1} v$ from E. A $(u-v)$ path is a $(u-v)$ walk with distinct edges. A graph is called m-connected if there is no set of $m-1$ edges whose removal disconnects the graph; a connected graph is 1-connected. A digraph $D=(V, E)$ is called strongly connected if, for any $u, v \in V$, the directed $(u-v)$ and $(v-u)$ paths both exist. A maximal connected subgraph of a graph G is called its connected component.

Vertices connected by an edge are called adjacent. The degree deg (v) of a vertex $v \in V$ of a graph $G=(V, E)$ is the number of its vertices adjacent to v.

A complete graph is a graph in which each pair of vertices is connected by an edge. A bipartite graph is a graph in which the set V of vertices is decomposed into two disjoint subsets so that no two vertices within the same subset are adjacent. A simple path is a simple connected graph in which two vertices have degree 1, and
other vertices (if they exist) have degree 2; the length of a path is the number of its edges.

A cycle is a closed simple path, i.e., a simple connected graph in which every vertex has degree 2 . The circumference of a graph is the length of the longest cycle in it. A tree is a simple connected graph without cycles. A tree having a path from which every vertex has distance ≤ 1 or ≤ 2, is called a caterpillar or lobster, respectively.

Two graphs which contain the same number of vertices connected in the same way are called isomorphic. Formally, two graphs $G=(V(G), E(G))$ and $H=$ $(V(H), E(H))$ are called isomorphic if there is a bijection $f: V(G) \rightarrow V(H)$ such that, for any $u, v \in V(G), u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.

We will consider mainly simple finite graphs and digraphs; more exactly, the equivalence classes of such isomorphic graphs.

15.1 Distances on the Vertices of a Graph

- Path metric

The path metric (or graphic metric, shortest path metric) $d_{\text {path }}$ is a metric on the vertex-set V of a connected graph $G=(V, E)$ defined, for any $u, v \in V$, as the length of a shortest $(u-v)$ path in G, i.e., a geodesic. Examples follow.
Given an integer $n \geq 1$, the line metric on $\{1, \ldots, n\}$ in Chap. 1 is the path metric of the path $P_{n}=\{1, \ldots, n\}$. The path metric of the Cayley graph Γ of a finitely generated group (G, \cdot, e) is called a word metric.
The hypercube metric is the path metric of a hypercube graph $H(m, 2)$ with the vertex-set $V=\{0,1\}^{m}$, and whose edges are the pairs of vectors $x, y \in\{0,1\}^{m}$ such that $\left|\left\{i \in\{1, \ldots, n\}: x_{i} \neq y_{i}\right\}\right|=1$; it is equal to $\mid\{i \in\{1, \ldots, n\}$: $\left.x_{i}=1\right\} \triangle\left\{i \in\{1, \ldots, n\}: y_{i}=1\right\} \mid$. The graphic metric space associated with a hypercube graph coincides with a Hamming cube, i.e., the metric space $\left(\{0,1\}^{m}, d_{l_{1}}\right)$.
The belt distance (Garber-Dolbilin, 2010) is the path metric of a belt graph $B(P)$ of a polytope P with centrally symmetric facets. The vertices of $B(P)$ are the facets of P and two vertices are connected by an edge if the corresponding facets lie in the same belt (the set of all facets of P parallel to a given face of codimension 2).
The reciprocal path metric is called geodesic similarity.

- Weighted path metric

The weighted path metric $d_{\text {wpath }}$ is a metric on the vertex-set V of a connected weighted graph $G=(V, E)$ with positive edge-weights $(w(e))_{e \in E}$ defined by

$$
\min _{P} \sum_{e \in P} w(e),
$$

where the minimum is taken over all $(u-v)$ paths P in G.

Sometimes, $\frac{1}{w(e)}$ is called the length of the edge e. In the theory of electrical networks, the edge-length $\frac{1}{w(e)}$ is identified with the resistance of the edge e. The inverse weighted path metric is $\min _{P} \sum_{e \in P} \frac{1}{w(e)}$.

- Metric graph

A metric (or metrized) graph is a connected graph $G=(V, E)$, where edges e are identified with line segments $[0, l(e)]$ of length $l(e)$. Let x_{e} be the coordinate on the segment $[0, l(e)]$ with vertices corresponding to $x_{e}=0, l(e)$; the ends of distinct segments are identified if they correspond to the same vertex of G. A function f on G is the $|E|$-tuple of functions $f_{e}\left(x_{e}\right)$ on the segments.
A metric graph can be seen as an infinite metric space (X, d), where X is the set of all points on above segments, and the distance between two points is the length of the shortest, along the line segments traversed, path connecting them. Also, it can be seen as one-dimensional Riemannian manifold with singularities. There is a bijection between the metric graphs, the equivalence classes of finite connected edge-weighted graphs and the resistive electrical networks: if an edge e of a metric graph has length $l(e)$, then $\frac{1}{l(e)}$ is the weight of e in the corresponding edge-weighted graph and $l(e)$ is the resistance along e in the corresponding resistive electric circuit. Cf. the resistance metric.
A quantum graph is a metric graph equipped with a self-adjoint differential operator (such as a Laplacian) acting on functions on the graph. The Hilbert space of the graph is $\oplus_{e \in E} L^{2}([0, w(e)])$, where the inner product of functions is $\langle f, g\rangle=\sum_{e \in E} \int_{0}^{w(e)} f_{e}^{*}\left(x_{e}\right) g_{e}\left(x_{e}\right) d x_{e}$.

- Spin network

A spin network is (Penrose, 1971) a connected graph (V, E) with edge-weights $(w(e))_{e \in E}($ spins $), w(e) \in \mathbb{N}$, such that for any distinct edges e_{1}, e_{2}, e_{3} with a common vertex, it holds spin triangle inequality $\left|w\left(e_{1}\right)-w\left(e_{2}\right)\right| \leq w\left(e_{3}\right) \leq$ $w\left(e_{1}\right)+w\left(e_{2}\right)$ and fermion conservation: $w\left(e_{1}\right)+w\left(e_{2}\right)+w\left(e_{3}\right)$ is an even number. The quantum space-time (Chap. 24) in Loop Quantum Gravity is a network of loops at Planck scale. Loops are represented by adapted spin networks: directed graphs whose arcs are labeled by irreducible representations of a compact Lie group and vertices are labeled by interwinning operators from the tensor product of labels on incoming arcs to the tensor product of labels on outgoing arcs. Such networks represent "quantum states" of the gravitational field on a 3D hypersurface.

- Detour distance

Given a connected graph $G=(V, E)$, the detour distance is (Chartrand and Zhang, 2004) a metric on the vertex-set V defined, for $u \neq v$, as the length of the longest $(u-v)$ path in G. So, this distance is 1 or $|V|-1$ if and only if $u v$ is a bridge of G or, respectively, G contains a Hamiltonian $(u-v)$ path.
The monophonic distance is (Santhakumaran and Titus, 2011) a distance (in general, not a metric) on the V defined, for $u \neq v$, as the length of a longest monophonic (or minimal), i.e., containing no chords, $(u-v)$ path in G.

The height of a DAG (acyclic digraph) is the number of vertices in a longest directed path.

- Cutpoint additive metric

Given a graph $G=(V, E)$, Klein-Zhu, 1998, call a metric d on V graph-geodetic metric if, for $u, w, v \in V$, the triangle equality $d(u, w)+$ $d(w, v)=d(u, v)$ holds if w is a (u, v)-gatekeeper, i.e., w lies on any path connecting u and v. Cf. metric interval in Chap. 1. Any gatekeeper is a cutpoint, i.e., removing it disconnects G and a pivotal point, i.e., it lies on any shortest path between u and v.
Chebotarev, 2010, call a metric d on the vertices of a multigraph without loops cutpoint additive if $d(u, w)+d(w, v)=d(u, v)$ holds if and only if w lies on any path connecting u and v. The resistance metric is cutpoint additive (Gvishiani and Gurvich, 1992), while the path metric is graph-geodetic only (in the weaker Klein-Zhu sense). See also Chebotarev-Shamis metric.

- Graph boundary

Given a connected graph $G=(V, E)$, a vertex $v \in V$ is (Chartrand et al., 2003) a boundary vertex if there exists a witness, i.e., a vertex $u \in V$ such that $d(u, v) \geq d(u, w)$ for all neighbors w of v. So, the end-vertices of a longest path are boundary vertices. The boundary of G is the set of all boundary vertices.
The boundary of a subset $M \subset V$ is the set $\partial M \subset E$ of edges having precisely one endpoint in M. The isoperimetric number of G is (Buser, 1978) inf $\frac{\partial M}{|M|}$, where the infimum is taken over all $M \subset V$ with $2|M| \leq|V|$.

- Graph diameter

Given a connected graph $G=(V, E)$, its graph diameter is the largest value of the path metric between vertices of G.
A connected graph is vertex-critical (edge-critical) if deleting any vertex (edge) increases its diameter. A graph G of diameter k is goal-minimal if for every edge $u v$, the inequality $d_{G-u v}(x, y)>k$ holds if and only if $\{u, v\}=\{x, y\}$.
If G is m-connected and a is an integer, $0 \leq a<m$, then the a-fault diameter of G is the maximal diameter of a subgraph of G induced by $|V|-a$ of its vertices. For $0<a \leq m$, the a-wide distance $d_{a}(u, v)$ between vertices u and v is the minimum integer l, for which there are at least a internally disjoint $(u-v)$ paths of length at most l in G : cf. Hsu-Lyuu-Flandrin-Li distance. The a-wide diameter of G is $\max _{u, v \in V} d_{a}(u, v)$; it is at least the $(a-1)$-fault diameter of G. Given a strong orientation O of a connected graph $G=(V, E)$, i.e., a strongly connected digraph $D=\left(V, E^{\prime}\right)$ with arcs $e^{\prime} \in E^{\prime}$ obtained from edges $e \in E$ by orientation O, the diameter of D is the maximal length of shortest directed (u-v) path in it. The oriented diameter of a graph G is the smallest diameter among strong orientations of G. If it is equal to the diameter of G, then any orientation realizing this equality is called tight. For example, a hypercube graph $H(m, 2)$ admits a tight orientation if $m \geq 4$ (McCanna, 1988).

- Path quasi-metric in digraphs

The path quasi-metric in digraphs $d_{d p a t h}$ is a quasi-metric on the vertex-set V of a strongly connected digraph $D=(V, E)$ defined, for any $u, v \in V$, as the length of a shortest directed $(u-v)$ path in D.

The circular metric in digraphs is a metric on the vertex-set V of a strongly connected digraph $D=(V, E)$, defined by $d_{\text {dpath }}(u, v)+d_{\text {dpath }}(v, u)$.

- Strong distance in digraphs

The strong distance in digraphs is a metric between vertices v and v of a strongly connected digraph $D=(V, E)$ defined (Chartrand-Erwin-RainesZhang, 1999) as the minimum size (the number of edges) of a strongly connected subdigraph of D containing v and v. Cf. Steiner distance of a set.

- Υ-metric

Given a class Υ of connected graphs, the metric d of a metric space (X, d) is called a Υ-metric if (X, d) is isometric to a subspace of a metric space $\left(V, d_{\text {wpath }}\right)$, where $G=(V, E) \in \Upsilon$, and $d_{\text {wpath }}$ is the weighted path metric on V with positive edge-weight function w; cf. tree-like metric.

- Tree-like metric

A tree-like metric (or weighted tree metric) d on a set X is a Υ-metric for the class Υ of all trees, i.e., the metric space (X, d) is isometric to a subspace of a metric space $\left(V, d_{\text {wpath }}\right)$, where $T=(V, E)$ is a tree, and $d_{\text {wpath }}$ is the weighted path metric on the vertex-set V of T with a positive weight function w. A metric is a tree-like metric if and only if it satisfies the four-point inequality.
A metric d on a set X is called a relaxed tree-like metric if the set X can be embedded in some (not necessary positively) edge-weighted tree such that, for any $x, y \in X, d(x, y)$ is equal to the sum of all edge weights along the (unique) path between corresponding vertices x and y in the tree. A metric is a relaxed tree-like metric if and only if it is a relaxed four-point inequality metric.

- Katz similarity

Given a connected graph $G=(V, E)$ with positive edge-weight function $w=$ $(w(e))_{e \in E}$, let $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Denote by A the $(n \times n)$-matrix $\left(\left(a_{i j}\right)\right)$, where $a_{i j}=a_{j i}=w(i j)$ if $i j$ is an edge, and $a_{i j}=0$, otherwise. Let I be the identity $(n \times n)$-matrix, and let $t, 0<t<\frac{1}{\lambda}$, be a parameter, where $\lambda=\max _{i}\left|\lambda_{i}\right|$ is the spectral radius of A and λ_{i} are the eigenvalues of A. Define the $(n \times n)$-matrix

$$
K=\left(\left(k_{i j}\right)\right)=\sum_{i=1}^{\infty} t^{i} A^{i}=(I-t A)^{-1}-I
$$

The number $k_{i j}$ is called the Katz similarity between v_{i} and v_{j}. Katz, 1953, proposed it for evaluating social status.
Chebotarev, 2011, defined, for a similar $(n \times n)$-matrix $\left(\left(c_{i j}\right)\right)=\sum_{i=0}^{\infty} t^{i} A^{i}=$ $(I-t A)^{-1}$ and connected edge-weighted multigraphs allowing loops, the walk distance between vertices v_{i} and v_{j} as any positive multiple of $d_{t}(i, j)=$ $-\ln \frac{c_{i j}}{\sqrt{c_{i i} c_{j j}}}$ (cf. the Nei standard genetic distance in Chap. 23). He proved that d_{t} is a cutpoint additive metric and the path metric in G coincides with the short walk distance $\lim _{t \rightarrow 0^{+}} \frac{d_{t}}{-\ln t}$ in G, while the resistance metric in G coincides with the long walk distance $\lim _{t \rightarrow \frac{1}{\lambda}^{-}} \frac{2 d_{t}}{n\left(t^{-1}-\lambda\right)}$ in the graph G^{\prime} obtained from G by attaching weighted loops that provide G^{\prime} with uniform weighted degrees.

If G is a simple unweighted graph, then A is its adjacency matrix. Let J be the $(n \times n)$-matrix of all ones and let $\mu=\min _{i} \lambda_{i}$. Let $N=\left(\left(n_{i j}\right)\right)=\mu(I-J)-A$. Neumaier, 1980, remarked that $\left(\left(\sqrt{n_{i j}}\right)\right)$ is a semimetric on the vertices of G.

- Resistance metric

Given a connected graph $G=(V, E)$ with positive edge-weight function $w=(w(e))_{e \in E}$, let us interpret the edge-weights as electrical conductances and their inverses as resistances. For any two different vertices u and v, suppose that a battery is connected across them, so that one unit of a current flows in at u and out in v. The voltage (potential) difference, required for this, is, by Ohm's law, the effective resistance between u and v in an electrical network; it is called the resistance (or electric) metric $\Omega(u, v)$ between them (Sharpe, 1967, Gvishiani-Gurvich, 1987, and Klein-Randic, 1993 [KIRa93]). So, if a potential of one volt is applied across vertices u and v, a current of $\frac{1}{\Omega(u, v)}$ will flow. The number $\frac{1}{\Omega(u, v)}$ is a measure of the connectivity between u and v.
Let $r(u, v)=\frac{1}{w(e)}$ if $u v$ is an edge, and $r(u, v)=0$, otherwise. Formally,

$$
\Omega(u, v)=\left(\sum_{w \in V} f(w) r(w, v)\right)^{-1}
$$

where $f: V \rightarrow[0,1]$ is the unique function with $f(u)=1, f(v)=0$ and $\sum_{z \in V}(f(w)-f(z)) r(w, z)=0$ for any $w \neq u, v$.
The resistance metric is a weighted average of the lengths of all $(u-v)$ paths. It is applied when the number of $(u-v)$ paths, for any $u, v \in V$, matters.
A probabilistic interpretation (Gobel-Jagers, 1974) is: $\Omega(u, v)=(\operatorname{deg}(u) \operatorname{Pr}(u \rightarrow$ $v))^{-1}$, where $\operatorname{deg}(u)$ is the degree of the vertex u, and $\operatorname{Pr}(u \rightarrow v)$ is the probability for a random walk leaving u to arrive at v before returning to u. The expected commuting time between u and v is $2 \sum_{e \in E} w(e) \Omega(u, v)$.
Then $\Omega(u, v) \leq \min _{P} \sum_{e \in P} \frac{1}{w(e)}$, where P is any $(u-v)$ path (cf. inverse weighted path metric), with equality if and only if such a path P is unique. So, if $w(e)=1$ for all edges, the equality means that G is a geodetic graph, and hence the path and resistance metrics coincide. Also, it holds that $\Omega(u, v)=\frac{|\{t: u v \in t \in T\}|}{|T|}$ if $u v$ is an edge, and $\Omega(u, v)=\frac{\left|T^{\prime}-T\right|}{|T|}$, otherwise, where T, T^{\prime} are the sets of spanning trees for $G=(V, E)$ and $G^{\prime}=(V, E \cup\{u v\})$.
If $w(e)=1$ for all edges, then $\Omega(u, v)=\left(g_{u u}+g_{v v}\right)-\left(g_{u v}+g_{v u}\right)$, where $\left(\left(g_{i j}\right)\right)$ is the Moore-Penrose generalized inverse of the Laplacian matrix $\left(\left(l_{i j}\right)\right)$ of the graph G : here $l_{i i}$ is the degree of vertex i, while, for $i \neq j, l_{i j}=1$ if the vertices i and j are adjacent, and $l_{i j}=0$, otherwise. A symmetric (for an undirected graph) and positive-semidefinite matrix $\left(\left(g_{i j}\right)\right)$ admits a representation $K K^{T}$. So, $\Omega(u, v)$ is the squared Euclidean distance between the u-th and v-th rows of K. The distance $\sqrt{\Omega(u, v)}$ is a Mahalanobis distance (cf. Chap. 17) with a weighting matrix $\left(\left(g_{i j}\right)\right)$. So, $\Omega_{u, v}=a_{u v}\left|\left(\left(g_{i j}\right)\right)\right| a_{u v}$, where $a_{u v}$ are the vectors of zeros except for +1 and -1 in the u-th and v-th positions. This distance is called a diffusion metric in [CLMNWZ05] because it depends on a random walk.

The number $\frac{1}{2} \sum_{u, v \in V} \Omega(u, v)$ is called the total resistance (or Kirchhoff index) of G.

- Hitting time quasi-metric

Let $G=(V, E)$ be a connected graph. Consider random walks on G, where at each step the walk moves to a vertex randomly with uniform probability from the neighbors of the current vertex. The hitting (or first-passage) time quasi-metric $H(u, v)$ from $u \in V$ to $v \in V$ is the expected number of steps (edges) for a random walk on G beginning at u to reach v for the first time; it is 0 for $u=v$. This quasi-metric is a weightable quasi-semimetric (cf. Chap. 1).
The commuting time metric is $C(u, v)=H(u, v)+H(v, u)$.
Then $C(u, v)=2|E| \Omega(u, v)$, where $\Omega(u, v)$ is the resistance metric (or effective resistance), i.e., 0 if $u=v$ and, otherwise, $\frac{1}{\Omega(u, v)}$ is the current flowing into v, when grounding v and applying a 1 volt potential to u (each edge is seen as a resistor of 1 ohm$)$. Also, $\Omega(u, v)=\sup _{f: V \rightarrow \mathbb{R}, D(f)>0} \frac{(f(u)-f(v))^{2}}{D E(f)}$, where $D E(f)$ is the Dirichlet energy of f, i.e., $\sum_{s t \in E}(f(s)-f(t))^{2}$.
The above setting can be generalized to weighted digraphs $D=(V, E)$ with arc-weights $c_{i j}$ for $i j \in E$ and the cost of a directed $(u-v)$ path being the sum of the weights of its arcs. Consider the random walk on D, where at each step the walk moves by arc $i j$ with reference probability $p_{i j}$ proportional to $\frac{1}{c_{i j}}$; set $p_{i j}=0$ if $i j \notin E$. Saerens et al., 2008, defined the randomized et al. shortest path quasi-distance $d(u, v)$ on vertices of D as the minimum expected cost of a directed $(u-v)$ path in the probability distribution minimizing the expected cost among all distributions having a fixed Kullback-Leibler distance (cf. Chap. 14) with reference probability distribution. In fact, their biased random walk model depends on a parameter $\theta \geq 0$. For $\theta=0$ and large θ, the distance $d(u, v)+$ $d(v, u)$ become a metric; it is proportional to the commuting time and the usual path metric, respectively.

- Chebotarev-Shamis metric

Given $\alpha>0$ and a connected weighted multigraph $G=(V, E ; w)$ with positive edge-weight function $w=(w(e))_{e \in E}$, denote by $L=\left(\left(l_{i j}\right)\right)$ the Laplacian (or Kirchhoff) matrix of G, i.e., $l_{i j}=-w(i j)$ for $i \neq j$ and $l_{i i}=\sum_{j \neq i} w(i j)$. The Chebotarev-Shamis metric $d_{\alpha}(u, v)$ (Chebotarev and Shamis, 2000, called $\frac{1}{2} d_{\alpha}(u, v) \alpha$-forest metric) between vertices u and v is defined by

$$
2 q_{u v}-q_{u u}-q_{v v}
$$

for the protometric $\left(\left(g_{i j}\right)\right)=-(I+\alpha L)^{-1}$, where I is the identity matrix.
Chebotarev and Shamis showed that their metric of $G=(V, E ; w)$ is the resistance metric of another weighted multigraph, $G^{\prime}=\left(V^{\prime}, E^{\prime} ; w^{\prime}\right)$, where $V^{\prime}=V \cup\{0\}, E^{\prime}=E \cup\{u 0: u \in V\}$, while $w^{\prime}(e)=\alpha w(e)$ for all $e \in E$ and $w^{\prime}(u 0)=1$ for all $u \in V$. In fact, there is a bijection between the forests of G and trees of G^{\prime}. This metric becomes the resistance metric of $G=(V, E ; w)$ as $\alpha \rightarrow \infty$.
Their forest metric (1997) is the case $\alpha=1$ of the α-forest metric.

Chebotarev, 2010, remarked that $2 \ln q_{u v}-\ln q_{u u}-\ln q_{v v}$ is a cutpoint additive metric $d_{\alpha}^{\prime \prime}(u, v)$, i.e., $d_{\alpha}^{\prime \prime}(u, w)+d_{\alpha}^{\prime \prime}(w, v)=d_{\alpha}^{\prime \prime}(u, v)$ holds if and only if w lies on any path connecting u and v. The metric $d_{\alpha}^{\prime \prime}$ is the path metric if $\alpha \rightarrow 0^{+}$and the resistance metric if $\alpha \rightarrow \infty$.

- Truncated metric

The truncated metric is a metric on the vertex-set of a graph, which is equal to 1 for any two adjacent vertices, and is equal to 2 for any nonadjacent different vertices. It is the 2-truncated metric for the path metric of the graph. It is the $(1,2)-B$-metric if the degree of any vertex is at most B.

- Hsu-Lyuu-Flandrin-Li distance

Given an m-connected graph $G=(V, E)$ and two vertices $u, v \in V$, a container $C(u, v)$ of width m is a set of $m(u-v)$ paths with any two of them intersecting only in u and v. The length of a container is the length of the longest path in it.
The Hsu-Lyuu-Flandrin-Li distance between vertices u and v (Hsu-Lyuu, 1991, and Flandrin-Li, 1994) is the minimum of container lengths taken over all containers $C(u, v)$ of width m. This generalization of the path metric is used in parallel architectures for interconnection networks.

- Multiply-sure distance

The multiply-sure distance is a distance on the vertex-set V of an m-connected weighted graph $G=(V, E)$, defined, for any $u, v \in V$, as the minimum weighted sum of lengths of m disjoint $(u-v)$ paths. This generalization of the path metric helps when several disjoint paths between two points are needed, for example, in communication networks, where $m-1$ of $(u-v)$ paths are used to code the message sent by the remaining $(u-v)$ path (see [McCa97]).

- Cut semimetric

A cut is a partition of a set into two parts. Given a subset S of $V_{n}=$ $\{1, \ldots, n\}$, we obtain the partition $\left\{S, V_{n} \backslash S\right\}$ of V_{n}. The cut semimetric (or split semimetric) δ_{S} defined by this partition, is a semimetric on V_{n} defined by

$$
\delta_{S}(i, j)=\left\{\begin{array}{lc}
1, & \text { if } i \neq j,|S \cap\{i, j\}|=1, \\
0, & \text { otherwise } .
\end{array}\right.
$$

Usually, it is considered as a vector in $\mathbb{R}^{\left|E_{n}\right|}, E(n)=\{\{i, j\}: 1 \leq i<j \leq n\}$. A circular cut of V_{n} is defined by a subset $S_{[k+1, l]}=\{k+1, \ldots, l\}(\bmod n) \subset$ V_{n} : if we consider the points $\{1, \ldots, n\}$ as being ordered along a circle in that circular order, then $S_{[k+1, l]}$ is the set of its consecutive vertices from $k+1$ to l. For a circular cut, the corresponding cut semimetric is called a circular cut semimetric.
An even cut semimetric (odd cut semimetric) is δ_{S} on V_{n} with even (odd, respectively) $|S|$. A k-uniform cut semimetric is δ_{S} on V_{n} with $|S| \in\{k, n-$ $k\}$. An equicut semimetric (inequicut semimetric) is δ_{S} on V_{n} with $|S| \in$ $\left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil\right\}\left(|S| \notin\left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil\right\}\right.$, respectively); see, for example, [DeLa97].

- Decomposable semimetric

A decomposable semimetric is a semimetric on $V_{n}=\{1, \ldots, n\}$ which can be represented as a nonnegative linear combination of cut semimetrics. The set of all decomposable semimetrics on V_{n} is a convex cone, called the cut cone $C U T_{n}$. A semimetric on V_{n} is decomposable if and only if it is a finite l_{1}-semimetric.
A circular decomposable semimetric is a semimetric on $V_{n}=\{1, \ldots, n\}$ which can be represented as a nonnegative linear combination of circular cut semimetrics. A semimetric on V_{n} is circular decomposable if and only if it is a Kalmanson semimetric with respect to the same ordering (see [ChFi98]).

- Finite l_{p}-semimetric

A finite l_{p}-semimetric d is a semimetric on $V_{n}=\{1, \ldots, n\}$ such that $\left(V_{n}, d\right)$ is a semimetric subspace of the l_{p}^{m}-space $\left(\mathbb{R}^{m}, d_{l_{p}}\right)$ for some $m \in \mathbb{N}$.
If, instead of V_{n}, is taken $X=\{0,1\}^{n}$, the metric space (X, d) is called the l_{p}^{n}-cube. The l_{1}^{n}-cube is called a Hamming cube; cf. Chap. 4. It is the graphic metric space associated with a hypercube graph $H(n, 2)$, and any subspace of it is called a partial cube.

- Kalmanson semimetric

A Kalmanson semimetric d with respect to the ordering $1, \ldots, n$ is a semimetric on $V_{n}=\{1, \ldots, n\}$ which satisfies the condition

$$
\max \{d(i, j)+d(r, s), d(i, s)+d(j, r)\} \leq d(i, r)+d(j, s)
$$

for all $1 \leq i \leq j \leq r \leq s \leq n$.
Equivalently, if the points $\{1, \ldots, n\}$ are ordered along a circle C_{n} in that circular order, then the distance d on V_{n} is a Kalmanson semimetric if the inequality

$$
d(i, r)+d(j, s) \leq d(i, j)+d(r, s)
$$

holds for $i, j, r, s \in V_{n}$ whenever the segments $[i, j],[r, s]$ are crossing chords of C_{n}.
A tree-like metric is a Kalmanson metric for some ordering of the vertices of the tree. The Euclidean metric, restricted to the points that form a convex polygon in the plane, is a Kalmanson metric.

- Multicut semimetric

Let $\left\{S_{1}, \ldots, S_{q}\right\}, q \geq 2$, be a partition of the set $V_{n}=\{1, \ldots, n\}$, i.e., a collection S_{1}, \ldots, S_{q} of pairwise disjoint subsets of V_{n} such that $S_{1} \cup \cdots \cup S_{q}=$ V_{n}.
The multicut semimetric $\delta_{S_{1}, \ldots, S_{q}}$ is a semimetric on V_{n} defined by

$$
\delta_{S_{1}, \ldots, S_{q}}(i, j)= \begin{cases}0, & \text { if } i, j \in S_{h} \text { for some } h, 1 \leq h \leq q, \\ 1, & \text { otherwise } .\end{cases}
$$

- Oriented cut quasi-semimetric

Given a subset S of $V_{n}=\{1, \ldots, n\}$, the oriented cut quasi-semimetric δ_{S}^{\prime} is a quasi-semimetric on V_{n} defined by

$$
\delta_{S}^{\prime}(i, j)=\left\{\begin{array}{lc}
1, & \text { if } \quad i \in S, j \notin S \\
0, & \text { otherwise }
\end{array}\right.
$$

Usually, it is considered as the vector of $\mathbb{R}^{\left|I_{n}\right|}, I(n)=\{(i, j): 1 \leq i \neq j \leq n\}$. The cut semimetric δ_{S} is $\delta_{S}^{\prime}+\delta_{V_{n} \backslash S}^{\prime}$.

- Oriented multicut quasi-semimetric

Given a partition $\left\{S_{1}, \ldots, S_{q}\right\}, q \geq 2$, of V_{n}, the oriented multicut quasi-semimetric $\delta_{S_{1}, \ldots, S_{q}}^{\prime}$ is a quasi-semimetric on V_{n} defined by

$$
\delta_{S_{1}, \ldots, S_{n}}^{\prime}(i, j)=\left\{\begin{array}{l}
1, \quad \text { if } \quad i \in S_{h}, j \in S_{m}, h<m \\
0, \text { otherwise }
\end{array}\right.
$$

15.2 Distance-Defined Graphs

Below we first give some graphs defined in terms of distances between their vertices. Then some graphs associated with metric spaces are presented.

A graph (V, E) is, say, distance-invariant or distance monotone if its metric space ($V, d_{\text {path }}$) is distance invariant or distance monotone, respectively (cf. Chap. 1). The definitions of such graphs, being straightforward subcases of corresponding metric spaces, will be not given below.

- k-Power of a graph

The k-power of a graph $G=(V, E)$ is the supergraph $G^{k}=\left(V, E^{\prime}\right)$ of G with edges between all pairs of vertices having path distance at most k.

- Distance-residual subgraph

For a connected finite graph $G=(V, E)$ and a set $M \subset V$ of its vertices, a distance-residual subgraph is (Luksic and Pisanski, 2010) a subgraph induced on the set of vertices u of G at the maximal point-set distance $\min _{v \in M} d_{\text {path }}(u, v)$ from M. Such a subgraph is called vertex-residual if M consists of a vertex, and edge-residual if M consists of two adjacent vertices.

- Isometric subgraph

A subgraph H of a graph $G=(V, E)$ is called an isometric subgraph if the path metric between any two points of H is the same as their path metric in G. A subgraph H is called a convex subgraph if it is isometric, and for any $u, v \in H$ every vertex on a shortest $(u-v)$ path belonging to H also belongs to H.
A subset $M \subset V$ is called gated if for every $u \in V \backslash M$ there exists a unique vertex $g \in M$ (called a gate) lying on a shortest $(u-v)$ path for every $v \in M$. The subgraph induced by a gated set is a convex subgraph.

- Retract subgraph

A subgraph H of G is called a retract subgraph if it is induced by an idempotent metric mapping of G into itself, i.e., $f^{2}=f: V \rightarrow V$ with $d_{\text {path }}(f(u), f(v)) \leq d_{\text {path }}(u, v)$ for $u, v \in V$. Any retract subgraph is isometric.

- Partial cube

A partial cube is an isometric subgraph of a Hamming cube, i.e., of a hypercube $H(m, 2)$. Similar topological notion was introduced by Acharya, 1983: any graph (V, E) admits a set-indexing $f: V \cup E \rightarrow 2^{X}$ with injective $\left.f\right|_{V},\left.f\right|_{R}$ and $f(u v)=f(u) \Delta f(v)$ for any $(u v) \in E$. The set-indexing number is $\min |X|$.

- Median graph

A connected graph $G=(V, E)$ is called a median graph if, for any three vertices $u, v, w \in V$, there exists a unique vertex that lies simultaneously on a shortest $(u-v),(u-w)$ and $(w-v)$ paths, i.e., $\left(V, d_{\text {path }}\right)$ is a median metric space.
The median graphs are exactly retract subgraphs of hypercubes. Also, they are exactly partial cubes such that the vertex-set of any convex subgraph is gated (cf. isometric subgraph).

- Geodetic graph

A graph is called geodetic if there exists at most one shortest path between any two of its vertices. A graph is called strongly geodetic if there exists at most one path of length less than or equal to the diameter between any two of its vertices.
A uniformly geodetic graph is a connected graph such that the number of shortest paths between any two vertices u and v depends only on $d(u, v)$.
A graph is a forest (disjoint union of trees) if and only if there exists at most one path between any two of its vertices.
The geodetic number of a finite connected graph (V, E) [BuHa90] is min $|M|$ over sets $M \subset V$ such that any $x \in V$ lies on a shortest $(u-v)$ path with $u, v \in M$.

- k-geodetically connected graph

A k-connected graph is called (Entringer-Jackson-Slater, 1977) k-geodetically connected ($k-G C$) if the removal of less than k vertices (or, equivalently, edges) does not affect the path metric between any pair of the remaining vertices.
$2-G C$ graphs are called self-repairing. Cf. Hsu-Lyuu-Flandrin-Li distance.

- Interval distance monotone graph

A connected graph $G=(V, E)$ is called interval distance monotone if any of its intervals $I_{G}(u, v)$ induces a distance monotone graph, i.e., its path metric is distance monotone, cf. Chap. 1.
A graph is interval distance monotone if and only if (Zhang-Wang, 2007) each of its intervals is isomorphic to either a path, a cycle or a hypercube.

- Distance-regular graph

A connected regular (i.e., every vertex has the same degree) graph $G=(V, E)$ of diameter T is called distance-regular (or $d r g$) if, for every two its vertices u, v and any integers $0 \leq i, j \leq T$, the number $\mid\left\{w \in V: d_{\text {path }}(u, w)=i\right.$,
$\left.d_{\text {path }}(v, w)=j\right\} \mid$ depends only on i, j and $k=d_{\text {path }}(u, v)$, but not on the choice of u and v.
A special case of it is a distance-transitive graph, i.e., such that its group of automorphisms is transitive, for any $0 \leq i \leq T$, on the pairs of vertices (u, v) with $d_{\text {path }}(u, v)=i$. An analog of drg is an edge-regular graph (Fiol-Carriga, 2001).

Any drg is a distance-balanced graph (or $d b g$), i.e., $\left|W_{u, v}\right|=\left|W_{v, u}\right|$, where $W_{u, v}=\{x \in V: d(x, u)<d(x, v)\}$. Such graph is also called self-median since it is exactly one, metric median (cf. eccentricity in Chap. 1) of which is V. A gbg is called nicely distance-balanced if $\left|W_{u, v}\right|$ is the same for all edges $u v$.
Any drg is a distance degree-regular graph (i.e., $|\{x \in V: d(x, u)=i\}|$ depends only on i; such graph is also called strongly distance-balanced), and a walk-regular graph (i.e., the number of closed walks of length i starting at u depends only on i). van Dam-Omidi, 2013, call a graph strongly walk-regular if there is an $l \geq 2$ such that the number of walks of length l from u to v depends only on whether the $d(u, v)$ is 0,1 , or ≥ 2; for $l=2$, it is a strongly regular graph, i.e., a drg of diameter 2. A d-Deza graph (Gu, 2013) is a regular graph (V, E) in which there are exactly d different values of $|\{w \in V: d(u, w)=d(v, w)=1\}|$ for distinct $u, v \in V$.
A graph G is a distance-regularized graph if for each $u \in V$, if admits an intersection array at vertex u, i.e., the numbers $a_{i}(u)=\left|G_{i}(u) \cap G_{1}(v)\right|$, $b_{i}(u)=\left|G_{i+1}(u) \cap G_{1}(v)\right|$ and $c_{i}(u)=\left|G_{i-1}(v) \cap G_{1}(v)\right|$ depend only on the distance $d(u, v)=i$ and are independent of the choice of the vertex $v \in G_{i}(u)$. Here, for any $i, G_{i}(w)$ is the set of all vertices at the distance i from w. Godsil-Shawe-Taylor, 1987, defined such graph and proved that it is either drg or distance-biregular (a bipartite one with vertices in the same class having the same intersection array).
A drg is also called a metric association scheme or P-polynomial association scheme. A finite polynomial metric space (cf. Chap.1) is a special case of it, also called $\mathrm{a}(P$ and $Q)$-polynomial association scheme.

- Distance-regular digraph

A strongly connected digraph $D=(V, E)$ is called distance-regular (Damerell, 1981) if, for any its vertices u, v with $d_{\text {path }}(u, v)=k$ and for any integer $0 \leq i \leq k+1$, the number of vertices w, such that $d_{\text {path }}(u, w)=i$ and $d_{\text {path }}(v, w)=1$, depends only on k and i, but not on the choice of u and v. In order to find interesting classes of distance-regular digraphs with unbounded diameter, the above definition was weakened by two teams in different directions. Call $\overline{d(x, y)}=(d(x, y), d(y, x))$ the two-way distance in digraph D. A strongly connected digraph $D=(V, E)$ is called weakly distance-regular (Wang and Suzuku, 2003) if, for any its vertices u, v with $\overline{d(u, v)}=\left(k_{1}, k_{2}\right)$, the number of vertices w, such that $\overline{d(w, u)}=\left(i_{1}, i_{2}\right)$ and $\overline{d(w, v)}=\left(j_{1}, j_{2}\right)$, depends only on the values $k_{1}, k_{2}, i_{1}, i_{2}, j_{1}, j_{2}$. Comellas et al., 2004, defined a weakly distance-regular digraph as one in which, for any vertices u and v, the number of $u \rightarrow v$ walks of every given length only depends on the distance $d(u, v)$.

- Metrically almost transitive graph

An automorphism of a graph $G=(V, E)$ is a map $g: V \rightarrow V$ such that u is adjacent to v if and only if $g(u)$ is adjacent to $g(v)$, for any $u, v \in V$. The set $\operatorname{Aut}(G)$ of automorphisms of G is a group with respect to the composition of functions.
A graph G is metrically almost transitive (Krön-Möller, 2008) if there is an integer r such that, for any vertex $u \in V$ it holds

$$
\cup_{g \in \operatorname{Aut}(G)}\left\{g\left(\bar{B}(u, r)=\left\{v \in V: d_{\text {path }}(u, v) \leq r\right\}\right)\right\}=V .
$$

- Metric end

Given an infinite graph $G=(V, E)$, a ray is a sequence $\left(x_{0}, x_{1}, \ldots\right)$ of distinct vertices such that x_{i} and x_{i+1} are adjacent for $i \geq 0$.
Two rays R_{1} and R_{2} are equivalent whenever it is impossible to find a bounded set of vertices F such that any path from R_{1} to R_{2} contains an element of F.
Metric ends are defined as equivalence classes of metric rays which are rays without infinite, bounded subsets.

- Graph of polynomial growth

Let $G=(V, E)$ be a transitive locally finite graph. For a vertex $v \in V$, the growth function is defined by

$$
f(n)=|\{u \in V: d(u, v) \leq n\}|,
$$

and it does not depend on v. Cf. growth rate of metric space in Chap. 1.
The graph G is a graph of polynomial growth if there are some positive constants k, C such that $f(n) \leq C n^{k}$ for all $n \geq 0$. It is a graph of exponential growth if there is a constant $C>1$ such that $f(n)>C^{n}$ for all $n \geq 0$.
A group with a finite symmetric set of generators has polynomial growth rate if the corresponding Cayley graph has polynomial growth. Here the metric ball consists of all elements of the group which can be expressed as products of at most n generators, i.e., it is a closed ball centered in the identity in the word metric, cf. Chap. 10.

- Distance-polynomial graph

Given a connected graph $G=(V, E)$ of diameter T, for any $2 \leq i \leq T$ denote by G_{i} the graph $\left(V, E^{\prime}\right)$ with $E^{\prime}=\left\{e=u v \in E: d_{\text {path }}(u, v)=i\right\}$. The graph G is called a distance-polynomial if the adjacency matrix of any $G_{i}, 2 \leq i \leq T$, is a polynomial in terms of the adjacency matrix of G.
Any distance-regular graph is a distance-polynomial.

- Distance-hereditary graph

A connected graph is called distance-hereditary (Howorka, 1977) if each of its connected induced subgraphs is isometric.
A graph is distance-hereditary if each of its induced paths is isometric. A graph is distance-hereditary, bipartite distance-hereditary, block graph, tree if and only if its path metric is a relaxed tree-like metric for edge-weights being, respectively, nonzero half-integers, nonzero integers, positive half-integers, positive integers.

A graph is called a parity graph if, for any $u, v \in V$, the lengths of all induced $(u-v)$ paths have the same parity. A graph is a parity graph (moreover, distance-hereditary) if and only if every induced subgraph of odd (moreover, any) order of at least five has an even number of Hamiltonian cycles (McKee, 2008).

- Distance magic graph

A graph $G=(V, E)$ is called a distance magic graph if it admits a distance magic labeling, i.e., a magic constant $k>0$ and a bijection $f: V \rightarrow$ $\{1,2, \ldots,|V|\}$ with $\sum_{u v \in E} f(v)=k$ for every $u \in V$. Introduced by Vilfred, 1994, these graphs generalize magic squares (such complete n-partite graphs with parts of size n).
Among trees, cycles and K_{n}, only P_{1}, P_{3}, C_{4} are distance magic. The hypercube graph $H(m, 2)$ is distance magic if $m=2,6$ but not if $m \equiv 0,1,3$ $(\bmod 4)$.

- Block graph

A graph is called a block graph if each of its blocks (i.e., a maximal 2-connected induced subgraph) is a complete graph. Any tree is a block graph.
A graph is a block graph if and only if its path metric is a tree-like metric or, equivalently, satisfies the four-point inequality.

- Ptolemaic graph

A graph is called Ptolemaic if its path metric satisfies the Ptolemaic inequality

$$
d(x, y) d(u, z) \leq d(x, u) d(y, z)+d(x, z) d(y, u)
$$

A graph is Ptolemaic if and only if it is distance-hereditary and chordal, i.e., every cycle of length greater than 3 has a chord. So, any block graph is Ptolemaic.

- k-cocomparability graph

A graph $G=(V, E)$ is called (Chang-Ho-Ko, 2003) k-cocomparability graph if its vertex-set admits a linear ordering $<$ such that for any three vertices $u<$ $v<w, d(u, w) \leq k$ implies $d(u, v) \leq k$ or $d(v, w) \leq k$.

- Distance-perfect graph

Cvetković et al., 2007, observed that any graph of diameter T has at most $k+T^{k}$ vertices, where k is its location number (cf. Chap. 1), i.e., the minimal cardinality of a set of vertices, the path distances from which uniquely determines any vertex. They called a graph distance-perfect if it meets this upper bound and proved that such a graph has $T \neq 2$.

- t-irredundant set

A set $S \subset V$ of vertices in a connected graph $G=(V, E)$ is called t-irredundant (Hattingh-Henning, 1994) if for any $u \in S$ there exists a vertex $v \in V$ such that, for the path metric $d_{\text {path }}$ of G, it holds

$$
d_{\mathrm{path}}(v, x) \leq t<d_{\mathrm{path}}(v, V \backslash S)=\min _{u \notin S} d_{\mathrm{path}}(v, u)
$$

The t-irredundance number $i r_{t}$ of G is the smallest cardinality $|S|$ such that S is t-irredundant but $S \cup\{v\}$ is not, for every $v \in V \backslash S$.

The t-domination number γ_{t} and t-independent number α_{t} of G are, respectively, the cardinality of the smallest $(t+1)$-covering (by the open balls of the radius $r+1)$ and largest $\left\lceil\frac{t}{2}\right\rceil$-packing of the metric space $\left(V, d_{\text {path }}(u, v)\right)$; cf. the radii of metric space in Chap. 1. Then it holds that $\frac{\gamma_{t}+1}{2} \leq i r_{t} \leq \gamma_{t} \leq \alpha_{t}$.
Let B_{S} denote $\{v \in V: d(v, S)=1\}$. Then $\max _{S \subset V}\left|B_{S}\right|=|V|-\gamma_{1}$ and $\max _{S \subset V}\left(\left|B_{S}\right|-|S|\right)$ are called the enclaveless number and the differential of G.

- r-Locating-dominating set

Let $D=(V, E)$ be a digraph and $C \subset V$, and let $B_{r}^{-}(v)$ denote the set of all vertices x such that there exists a directed $(x-v)$ path with at most r arcs.
If $B_{r}^{-}(v) \cap C, v \in V \backslash C$ (respectively, $v \in V$), are nonempty distinct sets, C is called (Slater, 1984) an r-locating-dominating set (respectively, an r-identifying code; cf. Chap. 16) of D. Such sets of smallest cardinality are called optimal.

- Locating chromatic number

The locating chromatic number of a graph $G=(V, E)$ is the minimum number of color classes C_{1}, \ldots, C_{t} needed to color vertices of G so that any two adjacent vertices have distinct colors and each vertex $u \in V$ has distinct color code $\left(\min _{v \in C_{1}} d(u, v), \ldots, \min _{v \in C_{k}} d(u, v)\right)$.

- k-Distant chromatic number

The k-distant chromatic number of a graph $G=(V, E)$ is the minimum number of colors needed to color vertices of G so that any two vertices at distance at most k have distinct colors, i.e., it is the chromatic number of the k-power of G.

- Distance between edges

The distance between edges in a connected graph $G=(X, E)$ is the number of vertices in a shortest path between them. So, adjacent edges have distance 1.
A distance- k matching of G is a set of edges no two of which are within distance k. For $k=1$, it is the usual matching. For $k=2$, it is also induced (or strong) matching. A distance- k matching of G is equivalent to an independent set in the k-power of the line graph of G. A distance- k edge-coloring of G is an edgecoloring such that each color class induces a distance- k matching.
The distance- k chromatic index $\mu_{k}(G)$ is the least integer t such that there exists a distance- t edge-coloring of G. The distance- k matching number $v_{k}(G)$ is the largest integer t such that there exists a distance- t matching in G with t edges. It holds that $\mu_{k}(G) v_{k}(G) \geq|E|$.
The distance between faces of a plane graph is the number of vertices in a shortest path between them. A distance- k face-coloring is a face-coloring such that any two faces at distance at most k have different colors. The distance- k face chromatic index is the least integer t such that such coloring exists.

- Rainbow distance

In an edge-colored graph, the rainbow distance is (Chartrand and Zhang, 2005) the length of a shortest rainbow (i.e., containing no color twice) path.
In a vertex-colored graph, the colored distance is (Dankelmann et al., 2001) the sum of distances between all unordered pairs of vertices having different colors.

- D-distance graph

Given a set D of positive numbers containing 1 and a metric space (X, d), the D-distance graph is a graph $G=(V=X, E)$ with the edge-set $E=\{u v$: $d(u, v) \in D\}$ (cf. D-chromatic number in Chap. 1). If (X, d) is path metric of a graph H, then G is called the distance power H^{D} of H.
Alon-Kupavsky, 2014, call G (in the case $(X, d)=\mathbb{E}^{n}, d=\{1\}$) the faithful unit-distance graph, using term unit-distance graph for $E \subseteq\left\{(u, v):\|u-v\|_{2}=\right.$ $1\}$.
For a positive number t, the signed distance graph is (Fiedler, 1969) a signed graph with the vertex-set X in which vertices x, y are joined by a positive edge if $t>d(x, y)$, by a negative edge if $d(x, y)>t$, and not joined if $d(x, y)=t$.
A D-distance graph is called a distance graph (or unit-distance graph) if $D=$ $\{1\}$, an ϵ-unit graph if $D=[1-\epsilon, 1+\epsilon]$, a unit-neighborhood graph if $D=$ $(0,1]$, an integral-distance graph if $D=\mathbb{Z}_{+}$, a rational-distance graph if $D=$ \mathbb{Q}_{+}, and a prime-distance graph if D is the set of prime numbers (with 1).
Every finite graph can be represented by a D-distance graph in some \mathbb{E}^{n}. The minimum dimension of such a Euclidean space is called the D-dimension of G. A matchstick graph is a crossingless unit-distance graph in \mathbb{E}^{2}.

- Distance-number of a graph

Given a graph $G=(V, E)$, its degenerate drawing is a mapping $f: V \rightarrow \mathbb{R}^{2}$ such that $|f(V)|=|V|$ and $f(u v)$ is an open straight-line segment joining the vertices $f(u)$ and $f(v)$ for any edge $u v \in E$; it is a drawing if, moreover, $f(w) \notin$ $f(u v)$ for any $u v \in E$ and $w \in V$.
The distance-number $d n(G)$ of a graph G is (Carmi et al., 2008) the minimum number of distinct edge-lengths in a drawing of G.
The degenerate distance-number of G, denoted by $\operatorname{ddn}(G)$, is the minimum number of distinct edge-lengths in a degenerated drawing of G. The first of the Erdös-type distance problems in Chap. 19 is equivalent to determining $d d n\left(K_{n}\right)$.

- Dimension of a graph

The dimension $\operatorname{dim}(G)$ of a graph G is (Erdös-Harary-Tutte, 1965) the minimum k such that G has a unit-distance representation in \mathbb{R}^{k}, i.e., every edge is of length 1 . The vertices are mapped to distinct points of \mathbb{R}^{k}, but edges may cross.
For example, $\operatorname{dim}(G)=n-1,4,2$ for $G=K_{n}, K_{m, n}, C_{n}(m \geq n \geq 3)$.

- Bar-and-joint framework

A n-dimensional bar-and-joint framework is a pair (G, f), where $G=(V, E)$ is a finite graph (no loops and multiple edges) and $f: V \rightarrow \mathbb{R}^{n}$ is a map with $f(u) \neq f(v)$ whenever $u v \in E$. The framework is a straight line realization of G in \mathbb{R}^{n} in which the length of an edge $u v \in E$ is given by $\|f(u)-f(v)\|_{2}$.
The vertices and edges are called joints and bars, respectively, in terms of Structural Engineering. A tensegrity structure (Fuller, 1948) is a mechanically stable bar framework in which bars are either cables (tension elements which cannot get further apart), or struts (compression elements which cannot get closer together).

A framework (G, f) is globally rigid if every framework $\left(G, f^{\prime}\right)$, satisfying $\|f(u)-f(v)\|_{2}=\left\|f^{\prime}(u)-f^{\prime}(v)\right\|_{2}$ for all $u v \in E$, also satisfy it for all $u, v \in V$. A framework (G, f) is rigid if every continuous motion of its vertices which preserves the lengths of all edges, also preserves the distances between all pairs of vertices. The framework (G, f) is generic if the set containing the coordinates of all the points $f(v)$ is algebraically independent over the rationals. The graph G is n-rigid if every its n-dimensional generic realization is rigid. For generic frameworks, rigidity is equivalent to the stronger property of infinitesimal rigidity.
An infinitesimal motion of (G, f) is a map $m: V \rightarrow \mathbb{R}^{n}$ with $(m(u)-$ $m(v))(f(u)-f(v))=0$ whenever $u v \in E$. A motion is trivial if it can be extended to an isometry of \mathbb{R}^{n}. A framework is an infinitesimally rigid if every motion of it is trivial, and it is isostatic if, moreover, the deletion of any its edge will cause loss of rigidity. (G, f) is an elastic framework if, for any $\epsilon>0$, there exists a $\delta>0$ such that for every edge-weighting $w: E \rightarrow \mathbb{R}_{>0}$ with $\max _{u v \in E}\left|w(u v)-\|f(u)-f(v)\|_{2}\right| \leq \delta$, there exist a framework $\left(G, f^{\prime}\right)$ with $\max _{v \in V}\left\|f(u)-f^{\prime}(v)\right\|_{2}<\epsilon$.
A framework (G, f) with $\|f(u)-f(v)\|_{2}>r$ if $u, v \in V, u \neq c$ and $\|f(u), f(v)\|_{2} \leq R$ if $u v \in E$, for some $0<r<R$, is called (Doyle-Snell, 1984) a civilized drawing of a graph. The random walks on such graphs are recurrent if $n=1,2$.

- Distance constrained labeling

Given a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of distance constraints $\alpha_{1} \geq \cdots \geq \alpha_{k}>0$, a λ_{α}-labeling of a graph $G=(V, E)$ is an assignment of labels $f(v)$ from the set $\{0,1, \ldots, \lambda\}$ of integers to the vertices $v \in V$ such that, for any t with $0 \leq t \leq k$, $|f(v)-f(u)| \geq \alpha_{t}$ whenever the path distance between u and v is t.
The radio frequency assignment problem, where vertices are transmitters (available channels) and labels represent frequencies of not-interfering channels, consists of minimizing λ. Distance-two labeling is the main interesting case $\alpha=(2,1)$; its span is the difference between the largest and smallest labels used.

- Distance-related graph embedding

An embedding of the guest graph $G=\left(V_{1}, E_{1}\right)$ into the host graph $H=\left(V_{2}, E_{2}\right)$ with $\left|V_{1}\right| \leq\left|V_{2}\right|$, is an injective map from V_{1} into V_{2}.
The wire length, dilation and antidilation of G in H are
$\min _{f} \sum_{(u v) \in E_{1}} d_{H}(f(u), f(v)), \min _{f} \max _{(u v) \in E_{1}} d_{H}(f(u), f(v)), \max _{f} \min _{(u v) \in E_{1}} d_{H}(f(u), f(v))$,
respectively, where f is any embedding of G into H. The main distancerelated graph embedding problems consist of finding or estimating these three parameters.

The bandwidth and antibandwidth of G is the dilation and antidilation, respectively, of G in a path H with V_{1} vertices.

- Bandwidth of a graph

Given a graph $G=(V, E)$ with $|V|=n$, its ordering is a bijective mapping $f: V \rightarrow\{1, \ldots, n\}$. Given a number $b>0$, the bandwidth problem for (G, b) is the existence of ordering f with the stretch $\max _{u v \in E}|f(u)-f(v)|$ at most b. The bandwidth of G, denoted by $b w(G)$, is the minimum stretch over all f.
The antibandwidth problem for G is to find ordering f with maximal $\min _{u v \in E}|f(u)-f(v)|$ (antibandwidth).

- Path distance width of a graph

Given a connected graph $G=(V, E)$, an ordered partition $V=\cup_{i=1}^{t} L_{i}$ of its vertices is called a distance structure on G if $L_{i}=\{v \in V$: $\left.\min _{u \in L_{1}} d_{\text {path }}(u, v)=i-1\right\}$ for $1 \leq i \leq t$. The structure is rooted if $\left|L_{1}\right|=1$.
The path distance width $\operatorname{pwd}(G)$ of G is defined (Yamazaki et al., 1999) as $\min \max _{1 \leq i \leq t}\left|L_{i}\right|$ over all distance structures on G.
An ordered partition $V=\cup_{i=1}^{t} L_{i}$ is called a level structure on G if for each edge $u v$ with $u \in L_{i}$ and $v \in L_{j}$, it holds that $|i-j| \leq 1$. The level width (or strong pathwidth) $l w(G)$ is $\min \max _{1 \leq i \leq t}\left|L_{i}\right|$ over all level structures.
Clearly, $l w(G) \leq p d w(G)$. Yamazaki et al., 1999, proved that $p d w(G)$ can be arbitrarily larger than the bandwidth $b w(G)$ and $l w(G) \leq b w(G)<2 l w(G)$.

- Tree-length of a graph

A tree decomposition of a graph $G=(V, E)$ is a pair of a tree T with vertex-set W and a family of subsets $\left\{X_{i}: i \in W\right\}$ of V with $\cup_{i \in W} X_{i}=V$ such that

1. for every edge $(u v) \in E$, there is a subset X_{i} containing u, v, and
2. for every $v \in V$, the set $i \in W: v \in X_{i}$ induces a connected subtree of T.

The chordal graphs (i.e., ones without induced cycles of length at least 4) are exactly those admitting a tree decomposition where every X_{i} is a clique.
For tree decomposition, the tree-length is $\max _{i \in W} \operatorname{diam}\left(X_{i}\right)\left(\operatorname{diam}\left(X_{i}\right)\right.$ is the diameter of the subgraph of G induced by X_{i}) and tree-width is $\max _{i \in W}\left|X_{i}\right|-1$. The tree-length of G (Dourisboure-Gavoille, 2004) and its tree-width (Robertson-Seymour, 1986) are the minima, over all tree decompositions, of above tree-length and tree-width. The path-length G is defined taking as trees only paths.
Given a linear ordering $e_{1}, \ldots, e_{|E|}$ of the edges of G, let, for $1 \leq i<|E|$, denote by $G_{\leq i}$ and $G_{i<}$ the graphs induced by the edges $\left\{e_{1}, \ldots, e_{i}\right\}$ and $\left\{e_{i+1}, \ldots, e_{|E|}\right\}$, respectively. The linear-length is $\max _{1 \leq i<|E|} \operatorname{diam}\left(V\left(G_{\leq i}\right) \cap\right.$ $V\left(G_{i<}\right)$). The linear-length of G (Umezawa-Yamazaki, 2009) is the minimum of the above linear-length taken over all the linear orderings of its edges.

- Spatial graph

A spatial graph (or spatial network) is a graph $G=(V, E)$, where each vertex v has a spatial position $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$. (G is called a geometric graph if it is drawn on \mathbb{R}^{2} and its edges are straight-line segments.)
The graph-theoretic dilation and geometric dilation of G are, respectively:

$$
\max _{v, u \in V} \frac{d(v, u)}{\|v-u\|_{2}} \text { and } \max _{(v u) \in E} \frac{d(v, u)}{\|v-u\|_{2}} .
$$

- Distance Geometry problem

Given a weighted finite graph $G=(V, E ; w)$, the Distance Geometry problem (DGP) is the problem of realizing it as a spatial graph $G=\left(V^{\prime}, E^{\prime}\right)$, where $x: V \rightarrow V^{\prime}$ is a bijection with $x(v)=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ for every $v \in V$ and $E^{\prime}=\{(x(u) x(v)):(u v) \in E\}$, so that for every edge $(u v) \in E$ it holds that

$$
\|x(u)-x(u)\|_{2}=w(u v) .
$$

The main application of DGP is the molecular DGP: to find the coordinates of the atoms of a given molecular conformation are by exploiting only some of the distances between pairs of atoms found experimentally; cf. [MLLM13].

- Arc routing problems

Given a finite set X, a quasi-distance $d(x, y)$ on it and a set $A \subseteq\{(x, y): x, y \in$ $X\}$, consider the weighted digraph $D=(X, A)$ with the vertex-set X and arcweights $d(x, y)$ for all $\operatorname{arcs}(x, y) \in A$. For given sets V of vertices and E of arcs, the arc routing problem consists of finding a shortest (i.e., with minimal sum of weights of its arcs) (V, E)-tour, i.e., a circuit in $D=(X, A)$, visiting each vertex in V and each arc in E exactly once or, in a variation, at least once. The Asymmetric Traveling Salesman problem corresponds to the case $V=X$, $E=\emptyset$; the Traveling Salesman problem is the symmetric version of it (usually, each vertex should be visited exactly once). The Bottleneck Traveling Salesman problem consists of finding a (V, E)-tour T with smallest $\max _{(x, y) \in T} d(x, y)$.
The Windy Postman problem corresponds to the case $V=\emptyset, E=A$, while the Chinese Postman problem is the symmetric version of it.
The above problems are also considered for general arc- or edge-weights; then, for example, the term Metric TSP is used when edge-weights in the Traveling Salesman problem satisfy the triangle inequality, i.e., d is a quasi-semimetric.

- Steiner distance of a set

The Steiner distance of a set $S \subset V$ of vertices in a connected graph $G=$ (V, E) is (Chartrand et al., 1989) the minimum size (number of edges) of a connected subgraph of G, containing S. Such a subgraph is a tree, and is called a Steiner tree for S. Cf. general Steiner diversity in Steiner ratio (Chap. 1).
The Steiner distance of the set $S=\{u, v\}$ is the path metric between u and v. The Steiner k-diameter of G is the maximum Steiner distance of any k-subset of V.

- t-Spanner

A factor, i.e., a spanning subgraph, $H=(V, E(H))$ of a connected graph $G=$ (V, E) is called a t-spanner (or t-multiplicative spanner) of G if, for every $u, v \in$ V, the inequality $d_{\text {path }}^{H}(u, v) / d_{\text {path }}^{G}(u, v) \leq t$ holds. The value t is called the stretch factor (or dilation) of H. Cf. distance-related graph embedding and spatial graph.
The graph $H=(V, E(H))$ is called a k-additive spanner of G if, for every $u, v \in V$, the inequality $d_{\text {path }}^{H}(u, v) \leq d_{\text {path }}^{G}(u, v)+k$ holds.

Mulder and Nebeský, 2012, defined, for connected H, the guide of (H, G) as the ternary relation $R \subset V \times V \times V$ consisting of ordered triples (u, w, v) such that $u w \in E$ and $d_{\text {path }}^{H}(u, w)+d_{\text {path }}^{H}(w, v)=d_{\text {path }}^{H}(u, v)$. The guide of (G, G) is called the step ternary relation; cf. metric betweenness in Chap. 1.

- Optimal realization of metric space

Given a finite metric space (X, d), a realization of it is a weighted graph $G=$ $(V, E ; w)$ with $X \subset V$ such that $d(x, y)=d_{G}(x, y)$ holds for all $x, y \in X$.
The realization is optimal if it has minimal $\sum_{(u v) \in E} w(u v)$.

- Proximity graph

Given a finite subset V of a metric space (X, d), its proximity graph is a graph representing neighbor relationships between points of V. Such graphs are used in Computational Geometry and many real-world problems. The main examples are presented below. Cf. underlying graph of a metric space in Chap. 1.
A spanning tree of V is a set T of $|V|-1$ unordered pairs (x, y) of different points of V forming a tree on V; the weight of T is $\sum_{(x, y) \in T} d(x, y)$. A minimum spanning tree $\operatorname{MST}(V)$ of V is a spanning tree with the minimal weight. Such a tree is unique if the edge-weights are distinct.
A nearest neighbor graph is the digraph $N N G(V)=(V, E)$ with vertex-set $V=v_{1}, \ldots, v_{|V|}$ and, for $x, y \in V, x y \in E$ if y is the nearest neighbor of x, i.e., $d(x, y)=\min _{v_{i} \in V \backslash\{x\}} d\left(x, v_{i}\right)$ and only v_{i} with maximal index i is picked. The k-nearest neighbor graph arises if k such v_{i} with maximal indices are picked. The undirect version of $N N G(V)$ is a subgraph of $\operatorname{MST}(V)$.
A relative neighborhood graph is (Toussaint, 1980) the graph $R N G(V)=$ (V, E) with vertex-set V and, for $x, y \in V, x y \in E$ if there is no point $z \in V$ with $\max \{d(x, z), d(y, z)\}<d(x, y)$. Also considered, for $(X, d)=$ $\left(\mathbb{R}^{2},\|x-y\|_{2}\right)$, the related Gabriel graph $G G(V)$ (in general, β-skeleton) and Delaunay triangulation $D T(V)$; then $N N G(V) \subseteq \operatorname{MST}(V) \subseteq R N G(V) \subseteq$ $G G(V) \subseteq D T(V)$.
For any $x \in V$, its sphere of influence is the open metric ball $B\left(x, r_{x}\right)=\{z \in$ $X: d(x, z)<r\}$ in (X, d) centered at x with radius $r_{x}=\min _{z \in V \backslash\{x\}} d(x, z)$.
Sphere of influence graph is the graph $\operatorname{SIG}(V)=(V, E)$ with vertex-set V and, for $x, y \in V, x y \in E$ if $B\left(x, r_{x}\right) \cap B\left(y, r_{y}\right) \neq \emptyset$; so, it is a proximity graph and an intersection graph. The closed sphere of influence graph is the graph $\operatorname{CSIG}(V)=(V, E)$ with $x y \in E$ if $\overline{B\left(x, r_{x}\right)} \cap \overline{B\left(y, r_{y}\right)} \neq \emptyset$.

15.3 Distances on Graphs

- Chartrand-Kubicki-Schultz distance

The Chartrand-Kubicki-Schultz distance (or ϕ-distance, 1998) between two connected graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $\left|V_{1}\right|=\left|V_{2}\right|=n$ is

$$
\min \left\{\sum\left|d_{G_{1}}(u, v)-d_{G_{2}}(\phi(u), \phi(v))\right|\right\},
$$

where $d_{G_{1}}, d_{G_{2}}$ are the path metrics of graphs G_{1}, G_{2}, the sum is taken over all unordered pairs u, v of vertices of G_{1}, and the minimum is taken over all bijections $\phi: V_{1} \rightarrow V_{2}$.

- Subgraph metric

Let $\mathbb{F}=\left\{F_{1}=\left(V_{1}, E_{1}\right), F_{2}=\left(V_{2}, E_{2}\right), \ldots,\right\}$ be the set of isomorphism classes of finite graphs. Given a finite graph $G=(V, E)$, denote by $s_{i}(G)$ the number of injective homomorphisms from F_{i} into G, i.e., the number of injections ϕ : $V_{i} \rightarrow V$ with $\phi(x) \phi(y) \in E$ if $x y \in E_{i}$ divided by the number $\frac{|V|!}{\left(|V|-\left|V_{i}\right|\right)!}$ of such injections from F_{i} with $\left|V_{i}\right| \leq|V|$ into $K_{|V|}$. Set $s(G)=\left(s_{i}(G)\right)_{i=1}^{\infty} \in[0,1]^{\infty}$. Let d be the Cantor metric (cf. Chap. 18) $d(x, y)=\sum_{i=1}^{\infty} 2^{-i}\left|x_{i}-y_{i}\right|$ on $[0,1]^{\infty}$ or any metric on $[0,1]^{\infty}$ inducing the product topology. Then Bollobás-Riordan, 2007, defined the subgraph metric between the graphs G_{1} and G_{2} as

$$
d\left(s\left(G_{1}\right), s\left(G_{2}\right)\right)
$$

and generalized it on kernels (or graphons), i.e., symmetric measurable functions $k:[0,1] \times[0,1] \rightarrow \mathbb{R}_{\geq 0}$, replacing G by k and the above $s_{i}(G)$ by

$$
s_{i}(k)=\int_{[0,1]^{\left|V_{i}\right|}} \prod_{s t \in E_{i}} k\left(x_{s} x_{t}\right) \prod_{s=1}^{\left|V_{i}\right|} d x_{s}
$$

- Benjamini-Schramm metric

The rooted graphs (G, o) and $\left(G^{\prime}, o^{\prime}\right)$ (where $G=(V, E), G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and $o \in V, o^{\prime} \in V^{\prime}$) are isomorphic is there is a graph-isomorphism of G onto G^{\prime} taking o to o^{\prime}. Let X be the set of isomorphism classes of rooted connected locally finite graphs and let $(G, o),\left(G^{\prime}, o^{\prime}\right)$ be representatives of two classes.
Let k be the supremum of all radii r, for which rooted metric balls $\left(\bar{B}_{G}(o, r), o\right)$ and $\left(\bar{B}_{G^{\prime}}\left(o^{\prime}, r\right), o^{\prime}\right)$ (in the usual path metric) are isomorphic as rooted graphs. Benjamini and Schramm, 2001, defined the metric 2^{-k} between classes represented by (G, o) and $\left(G^{\prime}, o^{\prime}\right)$. Here $2^{-\infty}$ means 0 . Benjamini and Curien, 2011, defined the similar distance $\frac{1}{1+k}$.

- Rectangle distance on weighted graphs

Let $G=G(\alpha, \beta)$ be a complete weighted graph on $\{1, \ldots, n\}$ with vertex-weights $\alpha_{i}>0,1 \leq i \leq n$, and edge-weights $\beta_{i j} \in \mathbb{R}, 1 \leq i<j \leq n$. Denote by $A(G)$ the $n \times n$ matrix $\left(\left(a_{i j}\right)\right)$, where $a_{i j}=\frac{\alpha_{i} \alpha_{j} \beta_{i j}}{\left(\sum_{1 \leq i \leq n} \alpha_{i}\right)^{2}}$.
The rectangle distance (or cut distance) between two weighted graphs $G=$ $G(\alpha, \beta)$ and $G^{\prime}=G\left(\alpha^{\prime}, \beta^{\prime}\right)$ (with vertex-weights (α_{i}^{\prime}) and edge-weights ($\beta_{i j}^{\prime}$)) is defined (Borgs-Chayes-Lovász-Sós-Vesztergombi, 2007) by

$$
\max _{I, J \subset\{1, \ldots, n\}}\left|\sum_{i \in I, j \in J}\left(a_{i j}-a_{i j}^{\prime}\right)\right|+\sum_{i=1}^{n}\left|\frac{\alpha_{i}}{\sum_{1 \leq j \leq n} \alpha_{j}}-\frac{\alpha_{i}^{\prime}}{\sum_{1 \leq j \leq n} \alpha_{j}^{\prime}}\right|,
$$

where $A(G)=\left(\left(a_{i j}\right)\right)$ and $A\left(G^{\prime}\right)=\left(\left(a_{i j}^{\prime}\right)\right)$.

In the case $\left(\alpha_{i}^{\prime}\right)=\left(\alpha_{i}\right)$, the rectangle distance is $\left\|A(G)-A\left(G^{\prime}\right)\right\|_{\text {cut }}$, i.e., the cut norm metric (cf. Chap. 12) between matrices $A(G)$ and $A\left(G^{\prime}\right)$ and the rectangle distance from Frieze-Kannan, 1999. In this case, the l_{1} - and l_{2}-metrics between two weighted graphs G and G^{\prime} are defined as $\left\|A(G)-A\left(G^{\prime}\right)\right\|_{1}$ and $\| A(G)-$ $A\left(G^{\prime}\right) \|_{2}$, respectively. The subcase $\alpha_{i}=1$ for all $1 \leq i \leq n$ corresponds to unweighted vertices. Cf. the Robinson-Foulds weighted metric.
Authors generalized the rectangle distance on kernels (or graphons), i.e., symmetric measurable functions $k:[0,1] \times[0,1] \rightarrow \mathbb{R}_{\geq 0}$, using the cut norm $\|k\|_{c u t}=\sup _{S, T \subset[0,1]}\left|\int_{S \times T} k(x, y) d x d y\right|$.
A map $\phi:[0,1] \rightarrow[0,1]$ is measure-preserving if, for any measurable subset $A \subset[0,1]$, the measures of A and $\phi^{-1}(A)$ are equal. For a kernel k, define the kernel k^{ϕ} by $k^{\phi}(x, y)=k(\phi(x), \phi(y))$. The Lovász-Szegedy semimetric (2007) between kernels k_{1} and k_{1} is defined by

$$
\inf _{\phi}\left\|k_{1}^{\phi}-k_{2}\right\|_{c u t},
$$

where ϕ ranges over all measure-preserving bijections $[0,1] \rightarrow[0,1]$. Cf. Chartrand-Kubicki-Schultz distance.

- Subgraph-supergraph distances

A common subgraph of graphs G_{1} and G_{2} is a graph which is isomorphic to induced subgraphs of both G_{1} and G_{2}. A common supergraph of graphs G_{1} and G_{2} is a graph which contains induced subgraphs isomorphic to G_{1} and G_{2}.
The Zelinka distance d_{Z} [Zeli75] on the set \mathbf{G} of all graphs (more exactly, on the set of all equivalence classes of isomorphic graphs) is defined by

$$
d_{Z}=\max \left\{n\left(G_{1}\right), n\left(G_{2}\right)\right\}-n\left(G_{1}, G_{2}\right)
$$

for any $G_{1}, G_{2} \in \mathbf{G}$, where $n\left(G_{i}\right)$ is the number of vertices in $G_{i}, i=1,2$, and $n\left(G_{1}, G_{2}\right)$ is the maximum number of vertices of their common subgraph.
The Bunke-Shearer metric (1998) on the set of nonempty graphs is defined by

$$
1-\frac{n\left(G_{1}, G_{2}\right)}{\max \left\{n\left(G_{1}\right), n\left(G_{2}\right)\right\}} .
$$

Given any set \mathbf{M} of graphs, the common subgraph distance d_{M} on \mathbf{M} is

$$
\max \left\{n\left(G_{1}\right), n\left(G_{2}\right)\right\}-n\left(G_{1}, G_{2}\right),
$$

and the common supergraph distance d_{M}^{*} is defined, for any $G_{1}, G_{2} \in \mathbf{M}$, by

$$
N\left(G_{1}, G_{2}\right)-\min \left\{n\left(G_{1}\right), n\left(G_{2}\right)\right\},
$$

where $n\left(G_{i}\right)$ is the number of vertices in $G_{i}, i=1$, 2, while $n\left(G_{1}, G_{2}\right)$ and $N\left(G_{1}, G_{2}\right)$ are the maximal order of a common subgraph $G \in \mathbf{M}$ and the minimal order of a common supergraph $H \in \mathbf{M}$, respectively, of G_{1} and G_{2}.
d_{M} is a metric on \mathbf{M} if the following condition (i) holds:
(i) if $H \in \mathbf{M}$ is a common supergraph of $G_{1}, G_{2} \in \mathbf{M}$, then there exists a common subgraph $G \in \mathbf{M}$ of G_{1} and G_{2} with $n(G) \geq n\left(G_{1}\right)+n\left(G_{2}\right)-n(H)$. d_{M}^{*} is a metric on \mathbf{M} if the following condition (ii) holds:
(ii) if $G \in \mathbf{M}$ is a common subgraph of $G_{1}, G_{2} \in \mathbf{M}$, then there exists a common supergraph $H \in \mathbf{M}$ of G_{1} and G_{2} with $n(H) \leq n\left(G_{1}\right)+n\left(G_{2}\right)-n(G)$.

One has $d_{M} \leq d_{M}^{*}$ if the condition (i) holds, and $d_{M} \geq d_{M}^{*}$ if (ii) holds.
The distance d_{M} is a metric on the set \mathbf{G} of all graphs, the set of all cycle-free graphs, the set of all bipartite graphs, and the set of all trees. The distance d_{M}^{*} is a metric on the set \mathbf{G} of all graphs, the set of all connected graphs, the set of all connected bipartite graphs, and the set of all trees. The Zelinka distance d_{Z} coincides with d_{M} and d_{M}^{*} on the set \mathbf{G} of all graphs. On the set \mathbf{T} of all trees the distances d_{M} and d_{M}^{*} are identical, but different from the Zelinka distance.
The Zelinka distance d_{Z} is a metric on the set $\mathbf{G}(n)$ of all graphs with n vertices, and is equal to $n-k$ or to $K-n$ for all $G_{1}, G_{2} \in \mathbf{G}(n)$, where k is the maximum number of vertices of a common subgraph of G_{1} and G_{2}, and K is the minimum number of vertices of a common supergraph of G_{1} and G_{2}.
On the set $\mathbf{T}(n)$ of all trees with n vertices the distance d_{Z} is called the Zelinka tree distance (see, for example, [Zeli75]).

- Fernández-Valiente metric

Given graphs G and H, let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be their maximum common subgraph and minimum common supergraph; cf. subgraph-supergraph distances. The Fernández-Valiente metric (2001) between G and H is

$$
\left(\left|V_{2}\right|+\left|E_{2}\right|\right)-\left(\left|V_{1}\right|+\left|E_{1}\right|\right) .
$$

- Graph edit distance

The graph edit distance (Axenovich-Kézdy-Martin, 2008, and Alon-Stav, 2008) between graphs G and G^{\prime} on the same labeled vertex-set is defined by

$$
d_{e d}\left(G, G^{\prime}\right)=\left|E(G) \Delta E\left(G^{\prime}\right)\right| .
$$

It is the minimum number of edge deletions or additions needed to transform G into G^{\prime}, and half of the Hamming distance between their adjacency matrices.
Given a graph property (i.e., a family \mathcal{H} of graphs), let $d_{e d}(G, \mathcal{H})$ be $\min \left\{d_{e d}\left(G, G^{\prime}\right): V\left(G^{\prime}\right)=V(G), G^{\prime} \in \mathcal{H}\right\}$. Given a number $p \in(0,1]$, the edit distance function of a property \mathcal{H} is (if this limit exists) defined by

$$
e d_{\mathcal{H}}(p)=\lim _{n \rightarrow \infty} \max \left\{d_{e d}(G, \mathcal{H}):|V(G)|=n,|E(G)|=\left\lfloor p\binom{n}{2}\right]\right\}\left(\binom{n}{2}\right)^{-1} .
$$

If \mathcal{H} is hereditary (closed under the taking induced subgraphs) and nontrivial (contains arbitrarily large graphs), then (Balogh-Martin, 2008) it holds

$$
e d_{\mathcal{H}}(p)=\lim _{n \rightarrow \infty} \mathbb{E}\left[d_{e d}(G(n, p), \mathcal{H})\right]\left(\binom{n}{2}\right)^{-1}
$$

$G(n, p)$ is the random graph (Chap. 1) on n vertices with edge probability p. Bunke, 1997, defined the graph edit distance between vertex- and edge-labeled graphs G_{1} and G_{2} as the minimal total cost of matching G_{1} and G_{2}, using deletions, additions and substitutions of vertices and edges. Cf. also tree, topdown, unit cost and restricted edit distance between rooted trees.
The Bayesian graph edit distance between two relational graphs (i.e., triples (V, E, A), where V, E, A are the sets of vertices, edges, vertex-attributes) is (Myers-Wilson-Hancock, 2000) their graph edit distance with costs defined by probabilities of operations along an editing path seen as a memoryless error process. Cf. transduction edit distances (Chap. 11) and Bayesian distance (Chap. 14).
The structural Hamming distance between two digraphs $G=(X, E)$ and $G^{\prime}=\left(X, E^{\prime}\right)$ is defined (Acid-Campos, 2003) as $\operatorname{SHD}\left(G, G^{\prime}\right)=\left|E \Delta E^{\prime}\right|$.

- Edge distance

The edge distance on the set of all graphs is defined (Baláž et al., 1986) by

$$
\left|E_{1}\right|+\left|E_{2}\right|-2\left|E_{12}\right|+\left|\left|V_{1}\right|-\left|V_{2}\right|\right|
$$

for any graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, where $G_{12}=\left(V_{12}, E_{12}\right)$ is a common subgraph of G_{1} and G_{2} with maximal number of edges. This distance has many applications in Organic and Medical Chemistry.

- Contraction distance

The contraction distance is a distance on the set $\mathbf{G}(n)$ of all graphs with n vertices defined by

$$
n-k
$$

for any $G_{1}, G_{2} \in \mathbf{G}(n)$, where k is the maximum number of vertices of a graph which is isomorphic simultaneously to a graph, obtained from each of G_{1} and G_{2} by a finite number of edge contractions. To perform the contraction of the edge $u v \in E$ of a graph $G=(V, E)$ means to replace u and v by one vertex that is adjacent to all vertices of $V \backslash\{u, v\}$ which were adjacent to u or to v.

- Edge move distance

The edge move distance (Baláž et al., 1986) is a metric on the set $\mathbf{G}(n, m)$ of all graphs with n vertices and m edges, defined, for any $G_{1}, G_{2} \in \mathbf{G}(m, n)$, as the minimum number of edge moves necessary for transforming the graph G_{1} into the graph G_{2}. It is equal to $m-k$, where k is the maximum size of a common subgraph of G_{1} and G_{2}.

An edge move is one of the edge transformations, defined as follows: H can be obtained from G by an edge move if there exist (not necessarily distinct) vertices u, v, w, and x in G such that $u v \in E(G), w x \notin E(G)$, and $H=G-u v+w x$.

- Edge jump distance

The edge jump distance is an extended metric (which in general can take the value ∞) on the set $\mathbf{G}(n, m)$ of all graphs with n vertices and m edges defined, for any $G_{1}, G_{2} \in \mathbf{G}(m, n)$, as the minimum number of edge jumps necessary for transforming G_{1} into G_{2}.
An edge jump is one of the edge transformations, defined as follows: H can be obtained from G by an edge jump if there exist four distinct vertices u, v, w, and x in G, such that $u v \in E(G), w x \notin E(G)$, and $H=G-a v+w x$.

- Edge flipping distance

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a collection of points on the plane. A triangulation T of P is a partition of the convex hull of P into a set of triangles such that each triangle has a disjoint interior and the vertices of each triangle are points of P.
The edge flipping distance is a distance on the set of all triangulations of P defined, for any triangulations T and T_{1}, as the minimum number of edge flippings necessary for transforming T into T_{1}.
An edge e of T is called flippable if it is the boundary of two triangles t and t^{\prime} of T, and $C=t \cup t^{\prime}$ is a convex quadrilateral. The fipping e is one of the edge transformations, which consists of removing e and replacing it by the other diagonal of C. Edge flipping is an special case of edge jump.
The edge flipping distance can be extended on pseudo-triangulations, i.e., partitions of the convex hull of P into a set of disjoint interior pseudo-triangles (simply connected subsets of the plane that lie between any three mutually tangent convex sets) whose vertices are given points.

- Edge rotation distance

The edge rotation distance (Chartand-Saba-Zou, 1985) is a metric on the set $\mathbf{G}(n, m)$ of graphs with n vertices and m edges, defined, for any G_{1}, G_{2}, as the minimum number of edge rotations needed for transforming G_{1} into G_{2}.
An edge rotation is one of the edge transformations, defined as follows: H can be obtained from G by an edge rotation if there exist distinct vertices u, v, and w in G, such that $u v \in E(G), u w \notin E(G)$, and $H=G-u v+u w$.

- Tree edge rotation distance

The tree edge rotation distance is a metric on the set $\mathbf{T}(n)$ of all trees with n vertices defined, for all $T_{1}, T_{2} \in \mathbf{T}(n)$, as the minimum number of tree edge rotations necessary for transforming T_{1} into T_{2}. A tree edge rotation is an edge rotation performed on a tree, and resulting in a tree.
For $\mathbf{T}(n)$ the tree edge rotation and the edge rotation distances may differ.

- Edge shift distance

The edge shift distance (or edge slide distance) is a metric (Johnson, 1985) on the set $\mathbf{G}_{c}(n, m)$ of all connected graphs with n vertices and m edges defined, for any $G_{1}, G_{2} \in \mathbf{G}_{c}(m, n)$, as the minimum number of edge shifts necessary for transforming G_{1} into G_{2}.

An edge shift is one of the edge transformations, defined as follows: H can be obtained from G by an edge shift if there exist distinct vertices u, v, and w in G such that $u v, v w \in E(G), u w \notin E(G)$, and $H=G-u v+u w$. Edge shift is a special kind of edge rotation in the case when the vertices v, w are adjacent in G. The edge shift distance can be defined between any graphs G and H with components $G_{i}(1 \leq i \leq k)$ and $H_{i}(1 \leq i \leq k)$, respectively, such that G_{i} and H_{i} have the same order and the same size.

- F-rotation distance

The F-rotation distance is a distance on the set $\mathbf{G}_{F}(n, m)$ of all graphs with n vertices and m edges, containing a subgraph isomorphic to a given graph F of order at least 2 defined, for all $G_{1}, G_{2} \in \mathbf{G}_{F}(m, n)$, as the minimum number of F-rotations necessary for transforming G_{1} into G_{2}.
An F-rotation is one of the edge transformations, defined as follows: let F^{\prime} be a subgraph of a graph G, isomorphic to F, let u, v, w be three distinct vertices of the graph G such that $u \notin V\left(F^{\prime}\right), v, w \in V\left(F^{\prime}\right), u v \in E(G)$, and $u w \notin E(G)$; H can be obtained from G by the F-rotation of the edge $u v$ into the position $u w$ if $H=G-u v+u w$.

- Binary relation distance

Let R be a nonreflexive binary relation between graphs, i.e., $R \subset \mathbf{G} \times \mathbf{G}$, and there exists $G \in \mathbf{G}$ such that $(G, G) \notin R$.
The binary relation distance is a metric (which can take the value ∞) on the set \mathbf{G} of all graphs defined, for any graphs G_{1} and G_{2}, as the minimum number of R-transformations necessary for transforming G_{1} into G_{2}. We say that a graph H can be obtained from a graph G by an R-transformation if $(H, G) \in R$.
An example is the distance between two triangular embeddings of a complete graph (i.e., its cellular embeddings in a surface with only 3-gonal faces) defined as the minimal number t such that, up to replacing t faces, the embeddings are isomorphic.

- Crossing-free transformation metrics

Given a subset S of \mathbb{R}^{2}, a noncrossing spanning tree of S is a tree whose vertices are points of S, and edges are pairwise noncrossing straight line segments.
The crossing-free edge move metric (see [AAHOO]) on the set \mathbf{T}_{S} of all noncrossing spanning trees of a set S, is defined, for any $T_{1}, T_{2} \in \mathbf{T}_{S}$, as the minimum number of crossing-free edge moves needed to transform T_{1} into T_{2}. Such move is an edge transformation which consists of adding some edge e in $T \in \mathbf{T}_{S}$ and removing some edge f from the induced cycle so that e and f do not cross.
The crossing-free edge slide metric is a metric on the set \mathbf{T}_{S} of all noncrossing spanning trees of a set S defined, for any $T_{1}, T_{2} \in \mathbf{T}_{S}$, as the minimum number of crossing-free edge slides necessary for transforming T_{1} into T_{2}. Such slide is one of the edge transformations which consists of taking some edge e in $T \in \mathbf{T}_{S}$ and moving one of its endpoints along some edge adjacent to e in T, without introducing edge crossings and without sweeping across points in S (that gives a new edge f instead of e). The edge slide is a special kind of crossing-free edge
move: the new tree is obtained by closing with f a cycle C of length 3 in T, and removing e from C, in such a way that f avoids the interior of the triangle C.

- Traveling salesman tours distances

The Traveling Salesman problem is the problem of finding the shortest tour that visits a set of cities. We will consider only Traveling Salesman problem with undirected links. For an n-city traveling salesman problem, the space \mathcal{T}_{n} of tours is the set of $\frac{(n-1)!}{2}$ cyclic permutations of the cities $1,2, \ldots, n$.
The metric D on \mathcal{T}_{n} is defined in terms of the difference in form: if tours $T, T^{\prime} \in$ \mathcal{T}_{n} differ in m links, then $D\left(T, T^{\prime}\right)=m$.
A k-OPT transformation of a tour T is obtained by deleting k links from T, and reconnecting. A tour T^{\prime}, obtained from T by a k-OPT transformation, is called a $k-O P T$ of T. The distance d on the set \mathcal{T}_{N} is defined in terms of the 2-OPT transformations: $d\left(T, T^{\prime}\right)$ is the minimal i, for which there exists a sequence of i 2-OPT transformations which transforms T to T^{\prime}. In fact, $d\left(T, T^{\prime}\right) \leq D\left(T, T^{\prime}\right)$ for any $T, T^{\prime} \in \mathcal{T}_{N}$ (see, for example, [MaMo95]). Cf. arc routing problems.

- Orientation distance

The orientation distance (Chartrand-Erwin-Raines-Zhang, 2001) between two orientations D and D^{\prime} of a finite graph is the minimum number of arcs of D whose directions must be reversed to produce an orientation isomorphic to D^{\prime}.

- Subgraphs distances

The standard distance on the set of all subgraphs of a connected graph $G=$ (V, E) is defined by

$$
\min \left\{d_{\mathrm{path}}(u, v): u \in V(F), v \in V(H)\right\}
$$

for any subgraphs F, H of G. For any subgraphs F, H of a strongly connected digraph $D=(V, E)$, the standard quasi-distance is defined by

$$
\min \left\{d_{\text {dpath }}(u, v): u \in V(F), v \in V(H)\right\} .
$$

Using standard operations (rotation, shift, etc.) on the edge-set of a graph, one gets corresponding distances between its edge-induced subgraphs of given size which are subcases of similar distances on the set of all graphs of a given size and order.
The edge rotation distance on the set $\mathbf{S}^{k}(G)$ of all edge-induced subgraphs with k edges in a connected graph G is defined as the minimum number of edge rotations required to transform $F \in \mathbf{S}^{k}(G)$ into $H \in \mathbf{S}^{k}(G)$. We say that H can be obtained from F by an edge rotation if there exist distinct vertices u, v, and w in G such that $u v \in E(F), u w \in E(G) \backslash E(F)$, and $H=F-u v+u w$.
The edge shift distance on the set $\mathbf{S}^{k}(G)$ of all edge-induced subgraphs with k edges in a connected graph G is defined as the minimum number of edge shifts required to transform $F \in \mathbf{S}^{k}(G)$ into $H \in \mathbf{S}^{k}(G)$. We say that H can be obtained from F by an edge shift if there exist distinct vertices u, v and w in G such that $u v, v w \in E(F), u w \in E(G) \backslash E(F)$, and $H=F-u v+u w$.

The edge move distance on the set $\mathbf{S}^{k}(G)$ of all edge-induced subgraphs with k edges of a graph G (not necessary connected) is defined as the minimum number of edge moves required to transform $F \in \mathbf{S}^{k}(G)$ into $H \in \mathbf{S}^{k}(G)$. We say that H can be obtained from F by an edge move if there exist (not necessarily distinct) vertices u, v, w, and x in G such that $u v \in E(F), w x \in E(G) \backslash E(F)$, and $H=$ $F-u v+w x$. The edge move distance is a metric on $\mathbf{S}^{k}(G)$. If F and H have s edges in common, then it is equal to $k-s$.
The edge jump distance (which in general can take the value ∞) on the set $\mathbf{S}^{k}(G)$ of all edge-induced subgraphs with k edges of a graph G (not necessary connected) is defined as the minimum number of edge jumps required to transform $F \in \mathbf{S}^{k}(G)$ into $H \in \mathbf{S}^{k}(G)$. We say that H can be obtained from F by an edge jump if there exist four distinct vertices u, v, w, and x in G such that $u v \in E(F), w x \in E(G) \backslash E(F)$, and $H=F-u v+w x$.

15.4 Distances on Trees

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the root. The depth of a vertex v, $\operatorname{depth}(v)$, is the number of edges on the path from v to the root. A vertex v is called a parent of a vertex $u, v=\operatorname{par}(u)$, if they are adjacent, and $\operatorname{depth}(u)=\operatorname{depth}(v)+1$; in this case u is called a child of v. A leaf is a vertex without child. Two vertices are siblings if they have the same parent.

The in-degree of a vertex is the number of its children. $T(v)$ is the subtree of T, rooted at a node $v \in V(T)$. If $w \in V(T(v))$, then v is an ancestor of w, and w is a descendant of $v ; n c a(u, v)$ is the nearest common ancestor of the vertices u and v.
T is called a labeled tree if a symbol from a fixed finite alphabet \mathcal{A} is assigned to each node. T is called an ordered tree if a left-to-right order among siblings in T is given. On the set $\mathbb{T}_{\text {rlo }}$ of all rooted labeled ordered trees there are three editing operations:

- Relabel-change the label of a vertex v;
- Deletion-delete a nonrooted vertex v with parent v^{\prime}, making the children of v become the children of v^{\prime}; the children are inserted in the place of v as a subsequence in the left-to-right order of the children of v^{\prime};
- Insertion - the complement of deletion; insert a vertex v as a child of a v^{\prime} making v the parent of a consecutive subsequence of the children of v^{\prime}.

For unordered trees above operations (and so, distances) are defined similarly, but the insert and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation, and the cost of a sequence of editing operations is the sum of the costs of these operations.

The ordered edit distance mapping is a representation of the editing operations. Formally, the triple (M, T_{1}, T_{2}) is an ordered edit distance mapping from T_{1} to T_{2}, $T_{1}, T_{2} \in \mathbb{T}_{r l o}$, if $M \subset V\left(T_{1}\right) \times V\left(T_{2}\right)$ and, for any $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \in M$, the following conditions hold: $v_{1}=v_{2}$ if and only if $w_{1}=w_{2}$ (one-to-one condition),
v_{1} is an ancestor of v_{2} if and only if w_{1} is an ancestor of w_{2} (ancestor condition), v_{1} is to the left of v_{2} if and only if w_{1} is to the left of w_{2} (sibling condition).

We say that a vertex v in T_{1} and T_{2} is touched by a line in M if v occurs in some pair in M. Let N_{1} and N_{2} be the set of vertices in T_{1} and T_{2}, respectively, not touched by any line in M. The cost of M is given by $\gamma(M)=\sum_{(v, w) \in M} \gamma(v \rightarrow$ $w)+\sum_{v \in N_{1}} \gamma(v \rightarrow \lambda)+\sum_{w \in N_{2}} \gamma(\lambda \rightarrow w)$, where $\gamma(a \rightarrow b)=\gamma(a, b)$ is the cost of an editing operation $a \rightarrow b$ which is a relabel if $a, b \in \mathcal{A}$, a deletion if $b=\lambda$, and an insertion if $a=\lambda$. Here $\lambda \notin \mathcal{A}$ is a special blank symbol, and γ is a metric on the set $\mathcal{A} \cup \lambda$ (excepting the value $\gamma(\lambda, \lambda)$).

- Tree edit distance

The tree edit distance (see [Tai79]) on the set $\mathbb{T}_{\text {rlo }}$ of all rooted labeled ordered trees is defined, for any $T_{1}, T_{2} \in \mathbb{T}_{\text {rlo }}$, as the minimum cost of a sequence of editing operations (relabels, insertions, and deletions) turning T_{1} into T_{2}.
In terms of ordered edit distance mappings, it is equal to $\min _{\left(M, T_{1}, T_{2}\right)} \gamma(M)$, where the minimum is taken over all such mappings (M, T_{1}, T_{2}).
The unit cost edit distance between T_{1} and T_{2} is the minimum number of three above editing operations turning T_{1} into T_{2}, i.e., it is the tree edit distance with cost 1 of any operation.

- Selkow distance

The Selkow distance (or top-down edit distance, degree-1 edit distance) is a distance on the set $\mathbb{T}_{\text {rlo }}$ of all rooted labeled ordered trees defined, for any $T_{1}, T_{2} \in \mathbb{T}_{\text {rlo }}$, as the minimum cost of a sequence of editing operations (relabels, insertions, and deletions) turning T_{1} into T_{2} if insertions and deletions are restricted to leaves of the trees (see [Selk77]).
The root of T_{1} must be mapped to the root of T_{2}, and if a node v is to be deleted (inserted), then any subtree rooted at v is to be deleted (inserted).
In terms of ordered edit distance mappings, it is equal to $\min _{\left(M, T_{1}, T_{2}\right)} \gamma(M)$, where the minimum is taken over all such mappings $\left(M, T_{1}, T_{2}\right)$ such that $(\operatorname{par}(v), \operatorname{par}(w)) \in M$ if $(v, w) \in M$, where neither v nor w is the root.

- Restricted edit distance

The restricted edit distance is a distance on the set $\mathbb{T}_{\text {rlo }}$ of all rooted labeled ordered trees defined, for any $T_{1}, T_{2} \in \mathbb{T}_{\text {rlo }}$, as the minimum cost of a sequence of editing operations (relabels, insertions, and deletions) turning T_{1} into T_{2} with the restriction that disjoint subtrees should be mapped to disjoint subtrees.
In terms of ordered edit distance mappings, it is equal to $\min _{\left(M, T_{1}, T_{2}\right)} \gamma(M)$, where the minimum is taken over all such mappings $\left(M, T_{1}, T_{2}\right)$ satisfying the following condition: for all $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right),\left(v_{3}, w_{3}\right) \in M$, $\operatorname{nca}\left(v_{1}, v_{2}\right)$ is a proper ancestor of v_{3} if and only if $\operatorname{nca}\left(w_{1}, w_{2}\right)$ is a proper ancestor of w_{3}.
This distance is equivalent to the structure respecting edit distance which is defined by $\min _{\left(M, T_{1}, T_{2}\right)} \gamma(M)$. Here the minimum is taken over all ordered edit distance mappings (M, T_{1}, T_{2}), satisfying the following condition: for all $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right),\left(v_{3}, w_{3}\right) \in M$, such that none of v_{1}, v_{2}, and v_{3} is an ancestor of the others, $n c a\left(v_{1}, v_{2}\right)=n c a\left(v_{1}, v_{3}\right)$ if and only if $n c a\left(w_{1}, w_{2}\right)=n c a\left(w_{1}, w_{3}\right)$.
Cf. constrained edit distance in Chap. 11.

- Alignment distance

The alignment distance (see [JWZ94]) is a distance on the set $\mathbb{T}_{\text {rlo }}$ of all rooted labeled ordered trees defined, for any $T_{1}, T_{2} \in \mathbb{T}_{\text {rlo }}$, as the minimum cost of an alignment of T_{1} and T_{2}. It corresponds to a restricted edit distance, where all insertions must be performed before any deletions.
Thus, one inserts spaces, i.e., vertices labeled with a blank symbol λ, into T_{1} and T_{2} so that they become isomorphic when labels are ignored; the resulting trees are overlaid on top of each other giving the alignment $T_{\mathcal{A}}$ which is a tree, where each vertex is labeled by a pair of labels. The cost of $T_{\mathcal{A}}$ is the sum of the costs of all pairs of opposite labels in $T_{\mathcal{A}}$.

- Splitting-merging distance

The splitting-merging distance (see [ChLu85]) is a distance on the set $\mathbb{T}_{\text {rlo }}$ of all rooted labeled ordered trees defined, for any $T_{1}, T_{2} \in \mathbb{T}_{r l o}$, as the minimum number of vertex splittings and mergings needed to transform T_{1} into T_{2}.

- Degree-2 distance

The degree- 2 distance is a metric on the set \mathbb{T}_{l} of all labeled trees (labeled free trees), defined, for any $T_{1}, T_{2} \in \mathbb{T}_{l}$, as the minimum number of editing operations (relabels, insertions, and deletions) turning T_{1} into T_{2} if any vertex to be inserted (deleted) has no more than two neighbors. This metric is a natural extension of the tree edit distance and the Selkow distance.

A phylogenetic X-tree is an unordered unrooted tree with the labeled leaf set X and no vertices of degree two. If every interior vertex has degree three, the tree is called binary. Let $\mathbb{T}(X)$ denote the set of all phylogenetic X-trees.

- Robinson-Foulds metric

A cut $A \mid B$ of X is a partition of X into two subsets A and B (see cut semimetric). Removing an edge e from a phylogenetic X-tree induces a cut of the leaf set X which is called the cut associated with e.
The Robinson-Foulds metric (or Bourque metric, bipartition distance) is a metric on the set $\mathbb{T}(X)$, defined, for any phylogenetic X-trees $T_{1}, T_{2} \in \mathbb{T}(X)$, by

$$
\frac{1}{2}\left|\Sigma\left(T_{1}\right) \Delta \Sigma\left(T_{2}\right)\right|=\frac{1}{2}\left|\Sigma\left(T_{1}\right) \backslash \Sigma\left(T_{2}\right)\right|+\frac{1}{2}\left|\Sigma\left(T_{2}\right) \backslash \Sigma\left(T_{1}\right)\right|
$$

where $\Sigma(T)$ is the collection of all cuts of X associated with edges of T.
The Robinson-Foulds weighted metric is a metric on the set $\mathbb{T}(X)$ of all phylogenetic X-trees defined by

$$
\sum_{A \mid B \in \Sigma\left(T_{1}\right) \cup \Sigma\left(T_{2}\right)}\left|w_{1}(A \mid B)-w_{2}(A \mid B)\right|
$$

for all $T_{1}, T_{2} \in \mathbb{T}(X)$, where $w_{i}=(w(e))_{e \in E\left(T_{i}\right)}$ is the collection of positive weights, associated with the edges of the X-tree $T_{i}, \Sigma\left(T_{i}\right)$ is the collection of all
cuts of X, associated with edges of T_{i}, and $w_{i}(A \mid B)$ is the weight of the edge, corresponding to the cut $A \mid B$ of $X, i=1,2$. Cf. more general cut norm metric in Chap. 12 and rectangle distance on weighted graphs.

- μ-metric

Given a phylogenetic X-tree T with n leaves and a vertex v in it, let $\mu(v)=$ $\left(\mu_{1}(v), \ldots, \mu_{n}(v)\right)$, where $\mu_{i}(v)$ is the number of different paths from the vertex v to the i-th leaf. Let $\mu(T)$ denote the multiset on the vertex-set of T with $\mu(v)$ being the multiplicity of the vertex v.
The μ-metric (Cardona-Roselló-Valiente, 2008) is a metric on the set $\mathbb{T}(X)$ of all phylogenetic X-trees defined, for all $T_{1}, T_{2} \in \mathbb{T}(X)$, by

$$
\frac{1}{2}\left|\mu\left(T_{1}\right) \Delta \mu\left(T_{2}\right)\right|
$$

where Δ denotes the symmetric difference of multisets.
Cf. the metrics between multisets in Chap. 1 and the Dodge-Shiode WebX quasi-distance in Chap. 22.

- Nearest neighbor interchange metric

The nearest neighbor interchange metric (or crossover metric) on the set $\mathbb{T}(X)$ of all phylogenetic X-trees, is defined, for all $T_{1}, T_{2} \in \mathbb{T}(X)$, as the minimum number of nearest neighbor interchanges required to transform T_{1} into T_{2}.
A nearest neighbor interchange consists of swapping two subtrees in a tree that are adjacent to the same internal edge; the remainder of the tree is unchanged.

- Subtree prune and regraft distance

The subtree prune and regraft distance is a metric on the set $\mathbb{T}(X)$ of all phylogenetic X-trees defined, for all $T_{1}, T_{2} \in \mathbb{T}(X)$, as the minimum number of subtree prune and regraft transformations required to transform T_{1} into T_{2}.
A subtree prune and regraft transformation proceeds in three steps: one selects and removes an edge $u v$ of the tree, thereby dividing the tree into two subtrees T_{u} (containing u) and T_{v} (containing v); then one selects and subdivides an edge of T_{v}, giving a new vertex w; finally, one connects u and w by an edge, and removes all vertices of degree two.

- Tree bisection-reconnection metric

The tree bisection-reconnection metric (or TBR-metric) on the set $\mathbb{T}(X)$ of all phylogenetic X-trees is defined, for all $T_{1}, T_{2} \in \mathbb{T}(X)$, as the minimum number of tree bisection and reconnection transformations required to transform T_{1} into T_{2}.
A tree bisection and reconnection transformation proceeds in three steps: one selects and removes an edge $u v$ of the tree, thereby dividing the tree into two subtrees T_{u} (containing u) and T_{v} (containing v); then one selects and subdivides an edge of T_{v}, giving a new vertex w, and an edge of T_{u}, giving a new vertex z; finally one connects w and z by an edge, and removes all vertices of degree two.

- Quartet distance

The quartet distance (see [EMM85]) is a distance of the set $\mathbb{T}_{b}(X)$ of all binary phylogenetic X-trees defined, for all $T_{1}, T_{2} \in \mathbb{T}_{b}(X)$, as the number of mismatched quartets (from the total number $\binom{n}{4}$ possible quartets) for T_{1} and T_{2}. This distance is based on the fact that, given four leaves $\{1,2,3,4\}$ of a tree, they can only be combined in a binary subtree in three ways: $(12 \mid 34),(13 \mid 24)$, or $(14 \mid 23)$: the notation $(12 \mid 34)$ refers to the binary tree with the leaf set $\{1,2,3,4\}$ in which removing the inner edge yields the trees with the leaf sets $\{1,2\}$ and $\{3,4\}$.

- Triples distance

The triples distance (see [CPQ96]) is a distance of the set $\mathbb{T}_{b}(X)$ of all binary phylogenetic X-trees defined, for all $T_{1}, T_{2} \in \mathbb{T}_{b}(X)$, as the number of triples (from the total number $\binom{n}{3}$ possible triples) that differ (for example, by which leaf is the outlier) for T_{1} and T_{2}.

- Perfect matching distance

The perfect matching distance is a distance on the set $\mathbb{T}_{b r}(X)$ of all rooted binary phylogenetic X-trees with the set X of n labeled leaves defined, for any $T_{1}, T_{2} \in \mathbb{T}_{b r}(X)$, as the minimum number of interchanges necessary to bring the perfect matching of T_{1} to the perfect matching of T_{2}.
Given a set $A=\{1, \ldots, 2 k\}$ of $2 k$ points, a perfect matching of A is a partition of A into k pairs. A rooted binary phylogenetic tree with n labeled leaves has a root and $n-2$ internal vertices distinct from the root. It can be identified with a perfect matching on $2 n-2$, different from the root, vertices by following construction: label the internal vertices with numbers $n+1, \ldots, 2 n-2$ by putting the smallest available label as the parent of the pair of labeled children of which one has the smallest label among pairs of labeled children; now a matching is formed by peeling off the children, or sibling pairs, two by two.

- Tree rotation distance

The tree rotation distance is a distance on the set \mathbf{T}_{n} of all rooted ordered binary trees with n interior vertices defined, for all $T_{1}, T_{2} \in \mathbf{T}_{n}$, as the minimum number of rotations, required to transform T_{1} into T_{2}.
Given interior edges $u v, v v^{\prime}, v v^{\prime \prime}$ and $u w$ of a binary tree, the rotation is replacing them by edges $u v, u v^{\prime \prime}, v v^{\prime}$ and $v w$.
There is a bijection between edge flipping operations in triangulations of convex polygons with $n+2$ vertices and rotations in binary trees with n interior vertices.

- Attributed tree metrics

An attributed tree is a triple (V, E, α), where $T=(V, E)$ is the underlying tree, and α is a function which assigns an attribute vector $\alpha(v)$ to every vertex $v \in V$. Given two attributed trees $\left(V_{1}, E_{1}, \alpha\right)$ and $\left(V_{2}, E_{2}, \beta\right)$, consider the set of all subtree isomorphisms between them, i.e., the set of all isomorphisms f : $H_{1} \rightarrow H_{2}, H_{1} \subset V_{1}, H_{2} \subset V_{2}$, between their induced subtrees.
Given a similarity s on the set of attributes, the similarity between isomorphic induced subtrees is defined as $W_{s}(f)=\sum_{v \in H_{1}} s(\alpha(v), \beta(f(v)))$. Let ϕ be the isomorphism with maximal similarity $W_{s}(\phi)=W(\phi)$.

The following four semimetrics on the set $\mathbf{T}_{\text {att }}$ of all attributed trees are used:

$$
\begin{gathered}
\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}-W(\phi), \quad\left|V_{1}\right|+\left|V_{2}\right|-2 W(\phi) \text { and } \\
1-\frac{W(\phi)}{\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}}, \quad 1-\frac{W(\phi)}{\left|V_{1}\right|+\left|V_{2}\right|-W(\phi)} .
\end{gathered}
$$

They become metrics on the set of equivalences classes of attributed trees: two such trees $\left(V_{1}, E_{1}, \alpha\right)$ and $\left(V_{2}, E_{2}, \beta\right)$ are called equivalent if they are attribute-isomorphic, i.e., if there exists an isomorphism $g: V_{1} \rightarrow V_{2}$ between the trees such that, for any $v \in V_{1}$, we have $\alpha(v)=\beta(g(v))$. Then $\left|V_{1}\right|=\left|V_{2}\right|=$ $W(g)$.

- Maximal agreement subtree distance

The maximal agreement subtree distance (MAST) is a distance of the set \mathbf{T} of all trees defined, for all $T_{1}, T_{2} \in \mathbf{T}$, as the minimum number of leaves removed to obtain a (greatest) agreement subtree.
An agreement subtree (or common pruned tree) of two trees is an identical subtree that can be obtained from both trees by pruning leaves with the same label.

Chapter 16
 Distances in Coding Theory

Coding Theory deals with the design and properties of error-correcting codes for the reliable transmission of information across noisy channels in transmission lines and storage devices. The aim of Coding Theory is to find codes which transmit and decode fast, contain many valid code words, and can correct, or at least detect, many errors. These aims are mutually exclusive, however; so, each application has its own good code.

In communications, a code is a rule for converting a piece of information (for example, a letter, word, or phrase) into another form or representation, not necessarily of the same sort. Encoding is the process by which a source (object) performs this conversion of information into data, which is then sent to a receiver (observer), such as a data processing system. Decoding is the reverse process of converting data which has been sent by a source, into information understandable by a receiver.

An error-correcting code is a code in which every data signal conforms to specific rules of construction so that departures from this construction in the received signal can generally be automatically detected and corrected. It is used in computer data storage, for example in dynamic RAM, and in data transmission. Error detection is much simpler than error correction, and one or more "check" digits are commonly embedded in credit card numbers in order to detect mistakes. The two main classes of error-correcting codes are block codes, and convolutional codes.

A block code (or uniform code) of length n over an alphabet \mathcal{A}, usually, over a finite field $\mathbb{F}_{q}=\{0, \ldots, q-1\}$, is a subset $C \subset \mathcal{A}^{n}$; every vector $x \in C$ is called a codeword, and $M=|C|$ is called size of the code. Given a metric d on \mathbb{F}_{q}^{n} (for example, the Hamming metric, Lee metric, Levenstein metric), the value $d^{*}=d^{*}(C)=\min _{x, y \in C, x \neq y} d(x, y)$ is called the minimum distance of the code C. The weight $w(x)$ of a codeword $x \in C$ is defined as $w(x)=d(x, 0)$. An $\left(n, M, d^{*}\right)$-code is a q-ary block code of length n, size M, and minimum distance d^{*}. A binary code is a code over \mathbb{F}_{2}.

When codewords are chosen such that the distance between them is maximized, the code is called error-correcting, since slightly garbled vectors can be recovered by choosing the nearest codeword. A code C is a t-error-correcting code (and a $2 t$ -error-detecting code) if $d^{*}(C) \geq 2 t+1$. In this case each neighborhood $U_{t}(x)=$ $\{y \in C: d(x, y) \leq t\}$ of $x \in C$ is disjoint with $U_{t}(y)$ for any $y \in C, y \neq x$.

A perfect code is a q-ary $(n, M, 2 t+1)$-code for which the M spheres $U_{t}(x)$ of radius t centered on the codewords fill the whole space \mathbb{F}_{q}^{n} completely, without overlapping.

A block code $C \subset \mathbb{F}_{q}^{n}$ is called linear if C is a vector subspace of \mathbb{F}_{q}^{n}. An $[n, k]-$ code is a k-dimensional linear code $C \subset \mathbb{F}_{q}^{n}$ (with the minimum distance d^{*}); it has size q^{k}, i.e., it is an $\left(n, q^{k}, d^{*}\right)$-code. The Hamming code is the linear perfect one-error correcting $\left(\frac{q^{r}-1}{q-1}, \frac{q^{r}-1}{q-1}-r, 3\right)$-code.

A $k \times n$ matrix G with rows that are basis vectors for a linear $[n, k]$-code C is called a generator matrix of C. In standard form it can be written as $\left(1_{k} \mid A\right)$, where 1_{k} is the $k \times k$ identity matrix. Each message (or information symbol, source symbol) $u=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{F}_{q}^{k}$ can be encoded by multiplying it (on the right) by the generator matrix: $u G \in C$.

The matrix $H=\left(-A^{T} \mid 1_{n-k}\right)$ is called the parity-check matrix of C. The number $r=n-k$ corresponds to the number of parity check digits in the code, and is called the redundancy of the code C. The information rate (or code rate) of a code C is the number $R=\frac{\log _{2} M}{n}$. For a q-ary $[n, k]$-code, $R=\frac{k}{n} \log _{2} q$; for a binary $[n, k]$-code, $R=\frac{k}{n}$.

A convolutional code is a type of error-correction code in which each k-bit information symbol to be encoded is transformed into an n-bit codeword, where $R=\frac{k}{n}$ is the code rate $(n \geq k)$, and the transformation is a function of the last m information symbols, where m is the constraint length of the code. Convolutional codes are often used to improve the performance of radio and satellite links.

A variable length code is a code with codewords of different lengths.
In contrast to error-correcting codes which are designed only to increase the reliability of data communications, cryptographic codes are designed to increase their security. In Cryptography, the sender uses a key to encrypt a message before it is sent through an insecure channel, and an authorized receiver at the other end then uses a key to decrypt the received data to a message.

Often, data compression algorithms and error-correcting codes are used in tandem with cryptographic codes to yield communications that are efficient, robust to data transmission errors, and secure to eavesdropping and tampering. Encrypted messages which are, moreover, hidden in text, image, etc., are called steganographic messages.

The encryption/assortment theory of humor (Flamson-Barrett, 2008) proposes that people signal similarity in locally variable personal features through humor. In a successful joke, both the producer and the receiver share common background information-the key-and the joke is engineered in such a way (via devices such as incongruity) that there is a nonrandom fit between the surface utterance and this information that would only be apparent to a person with access to it. The function
of encrypted humor is not secrecy per se, but rather, honestly indexing the presence of shared keys.

16.1 Minimum Distance and Relatives

- Minimum distance

Given a code $C \subset V$, where V is an n-dimensional vector space equipped with a metric d, the minimum distance $d^{*}=d^{*}(C)$ of the code C is defined by

$$
\min _{x, y \in C, x \neq y} d(x, y) .
$$

The metric d depends on the nature of the errors for the correction of which the code is intended. For a prescribed correcting capacity it is necessary to use codes with a maximum number of codewords. Such most widely investigated codes are the q-ary block codes in the Hamming metric $d_{H}(x, y)=\mid\left\{i: x_{i} \neq y_{i}, i=\right.$ $1, \ldots, n\} \mid$.
For a linear code C the minimum distance $d^{*}(C)=w(C)$, where $w(C)=$ $\min \{w(x): x \in C\}$ is a minimum weight of the code C. As there are $\operatorname{rank}(H) \leq$ $n-k$ independent columns in the parity check matrix H of an $[n, k]$-code C, then $d^{*}(C) \leq n-k+1$ (Singleton upper bound).

- Dual distance

The dual distance d^{\perp} of a linear $[n, k]$-code $C \subset \mathbb{F}_{q}^{n}$ is the minimum distance of the dual code C^{\perp} of C defined by $C^{\perp}=\left\{v \in \mathbb{F}_{q}^{n}:\langle v, u\rangle=0\right.$ for any $u \in C\}$.
The code C^{\perp} is a linear $[n, n-k]$-code, and its $(n-k) \times n$ generator matrix is the parity-check matrix of C.

- Bar product distance

Given linear codes C_{1} and C_{2} of length n with $C_{2} \subset C_{1}$, their bar product $C_{1} \mid C_{2}$ is a linear code of length $2 n$ defined by $C_{1} \mid C_{2}=\left\{x \mid x+y: x \in C_{1}\right.$, $\left.y \in C_{2}\right\}$.
The bar product distance between C_{1} and C_{2} is the minimum distance $d^{*}\left(C_{1} \mid C_{2}\right)$ of their bar product $C_{1} \mid C_{2}$.

- Design distance

A linear code is called a cyclic code if all cyclic shifts of a codeword also belong to C, i.e., if for any $\left(a_{0}, \ldots, a_{n-1}\right) \in C$ the vector $\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right) \in C$. It is convenient to identify a codeword $\left(a_{0}, \ldots, a_{n-1}\right)$ with the polynomial $c(x)=$ $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$; then every cyclic $[n, k]$-code can be represented as the principal ideal $\langle g(x)\rangle=\left\{r(x) g(x): r(x) \in R_{n}\right\}$ of the ring $R_{n}=\mathbb{F}_{q}(x) /$ $\left(x^{n}-1\right)$, generated by the generator polynomial $g(x)=g_{0}+g_{1} x+\cdots+x^{n-k}$ of C.

Given an element α of order n in a finite field $\mathbb{F}_{q^{s}}$, a Bose-ChaudhuriHocquenghem $[n, k]$-code of design distance d is a cyclic code of length n, generated by a polynomial $g(x)$ in $\mathbb{F}_{q}(x)$ of degree $n-k$, that has roots at α, α^{2}, \ldots, α^{d-1}. The minimum distance d^{*} of such a code of odd design distance d is at least d.
A Reed-Solomon code is a Bose-Chaudhuri-Hocquenghem code with $s=1$. The generator polynomial of a Reed-Solomon code of design distance d is $g(x)=(x-\alpha) \ldots\left(x-\alpha^{d-1}\right)$ with degree $n-k=d-1$; that is, for a ReedSolomon code the design distance $d=n-k+1$, and the minimum distance $d^{*} \geq d$. Since, for a linear $[n, k]$-code, the minimum distance $d^{*} \leq n-k+1$ (Singleton upper bound), a Reed-Solomon code achieves this bound. Compact disc players use a double-error correcting $(255,251,5)$ Reed-Solomon code over \mathbb{F}_{256}.

- Goppa designed minimum distance

The Goppa designed minimum distance [Gopp71] is a lower bound $d^{\star}(m)$ for the minimum distance of one-point geometric Goppa codes (or algebraic geometry codes) $G(m)$. For $G(m)$, associated to the divisors D and $m P, m \in \mathbb{N}$, of a smooth projective absolutely irreducible algebraic curve of genus $g>0$ over a finite field \mathbb{F}_{q}, one has $d^{\star}(m)=m+2-2 g$ if $2 g-2<m<n$.
In fact, for a Goppa code $C(m)$ the structure of the gap sequence at P may allow one to give a better lower bound of the minimum distance (cf. Feng-Rao distance).

- Feng-Rao distance

The Feng-Rao distance $\delta_{F R}(m)$ is a lower bound for the minimum distance of one-point geometric Goppa codes $G(m)$ which is better than the Goppa designed minimum distance. The method of Feng and Rao for encoding the code $C(m)$ decodes errors up to half the Feng-Rao distance $\delta_{F R}(m)$, and gives an improvement of the number of errors that one can correct for one-point geometric Goppa codes.
Formally, the Feng-Rao distance is defined as follows. Let S be a subsemigroup S of $\mathbb{N} \cup\{0\}$ such that the genus $g=|\mathbb{N} \cup\{0\} \backslash S|$ of S is finite, and $0 \in S$. The Feng-Rao distance on S is a function $\delta_{F R}: S \rightarrow \mathbb{N} \cup\{0\}$ such that $\delta_{F R}(m)=$ $\min \{v(r): r \geq m, r \in S\}$, where $v(r)=\left|\left\{(a, b) \in S^{2}: a+b=r\right\}\right|$.
The generalized r-th Feng-Rao distance on S is $\delta_{F R}^{r}(m)=\min \left\{v\left[m_{1}, \ldots\right.\right.$, $\left.\left.m_{r}\right]: m \leq m_{1}<\cdots<m_{r}, m_{i} \in S\right\}$, where $v\left[m_{1}, \ldots, m_{r}\right]=\mid\{a \in S:$ $m_{i}-a \in S$ for some $\left.i=1, \ldots, r\right\} \mid$. Then $\delta_{F R}(m)=\delta_{F R}^{1}(m)$. See, for example, [FaMu03].

- Free distance

The free distance is the minimum nonzero Hamming weight of any codeword in a convolutional code or a variable length code.
Formally, the k-th minimum distance d_{k}^{*} of such code is the smallest Hamming distance between any two initial codeword segments which are k frame long and disagree in the initial frame. The sequence $d_{1}^{*}, d_{2}^{*}, d_{3}^{*}, \ldots\left(d_{1}^{*} \leq d_{2}^{*} \leq d_{3}^{*} \leq\right.$ \ldots.) is called the distance profile of the code. The free distance of a convolutional code or a variable length code is $\max _{l} d_{l}^{*}=\lim _{l \rightarrow \infty} d_{l}^{*}=d_{\infty}^{*}$.

- Effective free distance

A turbo code is a long block code in which there are L input bits, and each of these bits is encoded q times. In the j-th encoding, the L bits are sent through a permutation box P_{j}, and then encoded via an $\left[N_{j}, L\right]$ block encoder (code fragment encoder) which can be thought of as an $L \times N_{j}$ matrix. The overall turbo code is then a linear $\left[N_{1}+\cdots+N_{q}, L\right]$-code (see, for example, [BGT93]). The weight-i input minimum distance $d^{i}(C)$ of a turbo code C is the minimum weight among codewords corresponding to input words of weight i. The effective free distance of C is its weight-2 input minimum distance $d^{2}(C)$, i.e., the minimum weight among codewords corresponding to input words of weight 2.
Turbo codes were the first practical codes to closely approach the Shannon limit (or channel capacity), the theoretical limit of maximum information transfer rate over a symmetric memory-less noisy channel. These codes are used in 3G mobile and satellite communications. Another capacity-approaching codes with similar performance are linear LDPC (low-density parity-check) codes.

- Distance distribution

Given a code C over a finite metric space (X, d) with the diameter $\operatorname{diam}(X, d)=$ D, the distance distribution of C is a $(D+1)$-vector $\left(A_{0}, \ldots, A_{D}\right)$, where $A_{i}=\frac{1}{|C|}\left|\left\{\left(c, c^{\prime}\right) \in C^{2}: d\left(c, c^{\prime}\right)=i\right\}\right|$. That is, one considers $A_{i}(c)$ as the number of code words at distance i from the codeword c, and takes A_{i} as the average of $A_{i}(c)$ over all $c \in C . A_{0}=1$ and, if $d^{*}=d^{*}(C)$ is the minimum distance of C, then $A_{1}=\cdots=A_{d^{*}-1}=0$.
The distance distribution of a code with given parameters is important, in particular, for bounding the probability of decoding error under different decoding procedures from maximum likelihood decoding to error detection. It can also be helpful in revealing structural properties of codes and establishing nonexistence of some codes.

- Unicity distance

The unicity distance of a cryptosystem (Shannon, 1949) is the minimal length of a cyphertext that is required in order to expect that there exists only one meaningful decryption for it. For classic cryptosystems with fixed key space, the unicity distance is approximated by the formula $H(K) / D$, where $H(K)$ is the key space entropy (roughly $\log _{2} N$, where N is the number of keys), and D measures the redundancy of the plaintext source language in bits per letter.
A cryptosystem offers perfect secrecy if its unicity distance is infinite. For example, the one-time pads offer perfect secrecy; they were used for the "red telephone" between the Kremlin and the White House.
More generally, Pe-security distance of a cryptosystem (Tilburg-Boekee, 1987) is the minimal expected length of cyphertext that is required in order to break the cryptogram with an average error probability of at most Pe .

16.2 Main Coding Distances

- Arithmetic codes distance

An arithmetic code (or code with correction of arithmetic errors) is a finite subset of the set \mathbb{Z} of integers (usually, nonnegative integers). It is intended for the control of the functioning of an adder (a module performing addition). When adding numbers represented in the binary number system, a single slip in the functioning of the adder leads to a change in the result by some power of 2 , thus, to a single arithmetic error. Formally, a single arithmetic error on \mathbb{Z} is defined as a transformation of a number $n \in \mathbb{Z}$ to a number $n^{\prime}=n \pm 2^{i}, i=1,2, \ldots$. The arithmetic codes distance is a metric on \mathbb{Z} defined, for any $n_{1}, n_{2} \in \mathbb{Z}$, as the minimum number of arithmetic errors taking n_{1} to n_{2}. It is $w_{2}\left(n_{1}-n_{2}\right)$, where $w_{2}(n)$ is the arithmetic 2 -weight of n, i.e., the smallest possible number of nonzero coefficients in representations $n=\sum_{i=0}^{k} e_{i} 2^{i}$, where $e_{i}=0, \pm 1$, and k is some nonnegative integer. For each n there is a unique such representation with $e_{k} \neq 0, e_{i} e_{i+1}=0$ for all $i=0, \ldots, k-1$, which has the smallest number of nonzero coefficients (cf. arithmetic r-norm metric in Chap. 12).

- b-Burst metric

Given the number $b>1$ and the set $\mathbb{Z}_{m}^{n}=\{0,1, \ldots, m-1\}^{n}$, each its element $x=\left(x_{1}, \ldots, x_{n}\right)$ can be uniquely represented as

$$
\left(0^{k_{1}} u_{1} v_{1}^{b-1} 0^{k_{2}} u_{2} v_{2}^{b-1} \ldots\right),
$$

where $u_{i} \neq 0,0^{k}$ is the string of $k \geq 0$ zeroes and v^{b-1} is any string of length $b-1$.
The b-burst metric between elements x and y of \mathbb{Z}_{m}^{n} is (Bridewell and Wolf, 1979) the number of b-tuples $u v^{b-1}$ in $x-y$. It describes the burst errors.

- Sharma-Kaushik metrics

Let $q \geq 2, m \geq 2$. A partition $\left\{B_{0}, B_{1}, \ldots B_{q-1}\right\}$ of \mathbb{Z}_{m} is called a SharmaKaushik partition if the following conditions hold:

1. $B_{0}=\{0\}$;
2. For any $i \in Z_{m}, i \in B_{s}$ if and only if $m-i \in B_{s}, s=1,2, \ldots, q-1$;
3. If $i \in B_{s}, j \in B_{t}$, and $s>t$, then $\min \{i, m-i\}>\min \{j, m-j\}$;
4. If $s \geq t, s, t=0,1, \ldots, q-1$, then $\left|B_{s}\right| \geq\left|B_{t}\right|$ except for $s=q-1$ in which case $\left|B_{q-1}\right| \geq \frac{1}{2}\left|B_{q-2}\right|$.
Given a Sharma-Kaushik partition of \mathbb{Z}_{m}, the Sharma-Kaushik weight $w_{S K}(x)$ of any element $x \in \mathbb{Z}_{m}$ is defined by $w_{S K}(x)=i$ if $x \in B_{i}, i \in\{0,1, \ldots, q-1\}$.
The Sharma-Kaushik metric [ShKa79] is a metric on \mathbb{Z}_{m} defined by

$$
w_{S K}(x-y)
$$

The Sharma-Kaushik metric on Z_{m}^{n} is defined by $w_{S K}^{n}(x-y)$ where, for $x=$ $\left(x_{1}, \ldots x_{n}\right) \in \mathbb{Z}_{m}^{n}$, one has $w_{S K}^{n}(x)=\sum_{i=1}^{n} w_{S K}\left(x_{i}\right)$.

The Hamming metric and the Lee metric arise from two specific partitions of the above type: $P_{H}=\left\{B_{0}, B_{1}\right\}$, where $B_{1}=\{1,2, \ldots, q-1\}$, and $P_{L}=$ $\left\{B_{0}, B_{1}, \ldots, B_{\lfloor q / 2\rfloor}\right\}$, where $B_{i}=\{i, m-i\}, i=1, \ldots,\left\lfloor\frac{q}{2}\right\rfloor$.

- Varshamov metric

The Varshamov metric between two binary n-vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ from $\mathbb{Z}_{2}^{n}=\{0,1\}^{n}$ is defined by

$$
\max \left(\sum_{i=1}^{n} I_{x_{i}=1-y_{i}=0}, \sum_{i=1}^{n} I_{x_{i}=1-y_{i}=1}\right) .
$$

This metric was introduced by Varshamov, 1965, to describe asymmetric errors.

- Absolute summation distance

The absolute summation distance (or Lee distance) is the Lee metric on the set $\mathbb{Z}_{m}^{n}=\{0,1, \ldots, m-1\}^{n}$ defined by

$$
w_{\text {Lee }}(x-y),
$$

where $w_{\text {Lee }}(x)=\sum_{i=1}^{n} \min \left\{x_{i}, m-x_{i}\right\}$ is the Lee weight of $x=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{Z}_{m}^{n}.
If \mathbb{Z}_{m}^{n} is equipped with the absolute summation distance, then a subset C of \mathbb{Z}_{m}^{n} is called a Lee distance code. The most important such codes are negacyclic codes.

- Mannheim distance

The Mannheim distance is a 2D generalization of the Lee metric.
Let $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$ be the set of Gaussian integers. Let $\pi=a+b i$ $(a>b>0)$ be a Gaussian prime, i.e., either
(i) $(a+b i)(a-b i)=a^{2}+b^{2}=p$, where $p \equiv 1(\bmod 4)$ is a prime number, or
(ii) up to an integer, $\pi=p+0 \cdot i$, where $p \equiv 3(\bmod 4)$ is a prime number.

The Mannheim distance is not a metric; it is defined [Hube94a], for any $x, y \in$ $\mathbb{Z}[i]$, as $\left|x^{\prime}\right|+\left|y^{\prime}\right|$, where $x^{\prime}+y^{\prime} i=x-y(\bmod \pi)$, which is defined as $(x-y)-\left[\frac{(x-y) \bar{\pi}}{\pi \bar{\pi}}\right] \pi$ in the case (i). Here [.] denotes rounding to the closest Gaussian integer, i.e., $[c+d i]=[c]+[d] i$ with $[c]$ denoting the rounding to the closest integer.
In general, the elements of the finite field $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ for $p \equiv 1$ $(\bmod 4), p=a^{2}+b^{2}$, and of the finite field $\mathbb{F}_{p^{2}}$ for $p \equiv 3(\bmod 4), p=a$, can be mapped on a subset of $\mathbb{Z}[i]$ using the complex modulo function $\mu(k)=$ $k-\left[\frac{k(a-b i)}{p}\right](a+b i), k=0, \ldots, p-1$. The set of the selected Gaussian integers $a+b i$ with the minimal complex modulus norms $\sqrt{(a+b i)(a-b i)}=\sqrt{a^{2}+b^{2}}$ is called a constellation.
The Mannheim distance between two vectors over $\mathbb{Z}[i]$ is the sum of the Mannheim distances of corresponding components. It was introduced to make 2D QAM-like signals more susceptible to algebraic decoding methods.

For codes over hexagonal signal constellations, a similar metric was introduced over $\mathbb{Z}\left(\frac{i \sqrt{3}+1}{2}\right)$ in [Hube94b]. Cf. $\mathbb{Z}\left(\eta_{m}\right)$-related norm metrics in Chap. 12.

- Generalized Lee metric

Let $\mathbb{F}_{p^{m}}$ denote the finite field with p^{m} elements, where p is prime number and $m \geq 1$ is an integer. Let $e_{i}=(0, \ldots, 0,1,0, \ldots, 0), 1 \leq i \leq k$, be the standard basis of \mathbb{Z}^{k}. Choose elements $a_{i} \in \mathbb{F}_{p^{m}}, 1 \leq i \leq k$, and the mapping $\phi: \mathbb{Z}^{k} \rightarrow \mathbb{F}_{p^{m}}$, sending any $x=\sum_{i=1}^{k} x_{i} e_{i}, x_{i} \in \mathbb{Z}^{k}$, to $\phi(x)=\sum_{i=1}^{k} a_{i} x_{i}$ $(\bmod p)$, so that ϕ is surjective. So, for each $a \in \mathbb{F}_{p^{m}}$, there exists $x \in \mathbb{Z}^{k}$ such that $a=\phi(x)$. For each $a \in \mathbb{F}_{p^{m}}$, its k-dimensional Lee weight is $w_{k L}(a)=\min \left\{\sum_{i=1}^{k}\left|x_{i}\right|: x=\left(x_{i}\right) \in \mathbb{Z}, a=\phi(x)\right\}$.
The generalized Lee metric between vectors $\left(a_{j}\right)$ and $\left(b_{j}\right)$ of $\mathbb{F}_{p^{m}}^{n}$ is defined (Nishimura-Hiramatsu, 2008) by

$$
\sum_{j=1}^{n} w_{k L}\left(a_{j}-b_{j}\right)
$$

It is the Lee metric (or absolute summation distance) if $\phi\left(e_{1}\right)=1$ while $\phi\left(e_{i}\right)=0$ for $2 \leq i \leq k$. It is the Mannheim distance if $k=2, p \equiv 1$ $(\bmod 4), \phi\left(e_{1}\right)=1$ while $\phi\left(e_{2}\right)=a$ is a solution in \mathbb{F}_{p} of the quadratic congruence $x^{2} \equiv-1(\bmod p)$.

- Poset metric

Let $\left(V_{n}, \preceq\right)$ be a poset on $V_{n}=\{1, \ldots, n\}$. A subset I of V_{n} is called ideal if $x \in I$ and $y \preceq x$ imply that $y \in I$. If $J \subset V_{n}$, then $\langle J\rangle$ denotes the smallest ideal of V_{n} which contains J. Consider the vector space \mathbb{F}_{q}^{n} over a finite field \mathbb{F}_{q}. The P-weight of an element $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ is defined as the cardinality of the smallest ideal of V_{n} containing the support of $x: w_{P}(x)=|\langle\operatorname{supp}(x)\rangle|$, where $\operatorname{supp}(x)=\left\{i: x_{i} \neq 0\right\}$.
The poset metric (see [BGL95]) is a metric on \mathbb{F}_{q}^{n} defined by

$$
w_{P}(x-y) .
$$

If \mathbb{F}_{q}^{n} is equipped with a poset metric, then a subset C of \mathbb{F}_{q}^{n} is called a poset code. If V_{n} forms the chain $1 \leq 2 \leq \cdots \leq n$, then the linear code C of dimension k consisting of all vectors $\left(0, \ldots, 0, a_{n-k+1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is a perfect poset code with the minimum (poset) metric $d_{P}^{*}(C)=n-k+1$.
If V_{n} forms an antichain, then the poset distance coincides with the Hamming metric. If V_{n} consists of finite disjoint union of chains of equal lengths, then the poset distance coincides with the NRT metric.

- Rank metric

Let \mathbb{F}_{q} be a finite field, $\mathbb{K}=\mathbb{F}_{q^{m}}$ an extension of degree m of \mathbb{F}_{q}, and \mathbb{K}^{n} a vector space of dimension n over \mathbb{K}. For any $a=\left(a_{1}, \ldots a_{n}\right) \in \mathbb{K}^{n}$ define its rank, $\operatorname{rank}(a)$, as the dimension of the vector space over \mathbb{F}_{q}, generated by $\left\{a_{1}, \ldots, a_{n}\right\}$.

The rank metric (Delsarte, 1978) is a metric on \mathbb{K}^{n} defined by

$$
\operatorname{rank}(a-b)
$$

A constant rank-distance k set is (Gow et al., 2014) a set U of $n \times n$ matrices over a field \mathbb{F} such that $\operatorname{rank}(A-B)=k$ for all $A, B \in U, A \neq B$ and $\operatorname{rank}(A)=$ k for all $A \in U, A \neq 0$. Such set is called a partial spread set if $k=n$; it defines a partial spread in the $(2 n-1)$-dimensional projective, hermitian polar or symplectic polar space, if U consists of arbitrary, hermitian or symmetric matrices, respectively.

- Gabidulin-Simonis metrics

Let \mathbb{F}_{q}^{n} be the vector space over a finite field \mathbb{F}_{q} and let $F=\left\{F_{i}: i \in I\right\}$ be a finite family of its subsets such that the minimal linear subspace of \mathbb{F}_{q}^{n} containing $\cup_{i \in I} F_{i}$ is \mathbb{F}_{q}^{n}. Without loss of generality, F can be an antichain of linear subspaces of \mathbb{F}_{q}^{n}.
The F-weight w_{F} of a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ is the smallest $|J|$ over such subsets $J \subset I$ that x belongs to the minimal linear subspace of \mathbb{F}_{q}^{n} containing $\cup_{i \in J} F_{i}$. A Gabidulin-Simonis metric (or F-distance, see [GaSi98]) on \mathbb{F}_{q}^{n} is defined by

$$
w_{F}(x-y) .
$$

The Hamming metric corresponds to the case of $F_{i}, i \in I$, forming the standard basis. The Vandermonde metric is F-distance with $F_{i}, i \in I$, being the columns of a generalized Vandermonde matrix. Among other examples are: the rank metric and the combinatorial metrics (by Gabidulin, 1984), including the b burst metric.

- Subspace metric

Let \mathbb{F}_{q}^{n} be the vector space over a finite field \mathbb{F}_{q} and let $\mathcal{P}_{n, q}$ be the set of all subspaces of \mathbb{F}_{q}^{n}. For any subspace $U \in \mathcal{P}_{n, q}$, let $\operatorname{dim}(U)$ denote its dimension and let $U^{\perp}=\left\{v \in \mathbb{F}_{q}^{n}:\langle u, v\rangle=0\right.$ for all $\left.u \in U\right\}$ be its orthogonal space.
Let $U+V=\{u+v: u \in U, v \in V\}$, i.e., $U+V$ is the smallest subspace of \mathbb{F}_{q}^{n} containing both V and V. Then $\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)$. If $U \cap V=\emptyset$, then $U+V$ is a direct sum $U \oplus V$.
The subspace metric between two subspaces U and V from $\mathcal{P}_{n, q}$ is defined by
$d(U, V)=\operatorname{dim}(U+V)-\operatorname{dim}(U \cap V)=\operatorname{dim}(U)+\operatorname{dim}(V)-2 \operatorname{dim}(U \cap V)$.

This metric was introduced by Koetter and Kschischang, 2007, for network coding. It holds $d(U, V)=d\left(U^{\perp}, V^{\perp}\right)$. Cf. the lattice valuation metric in Chap. 10 and distances between subspaces in Chap. 12.

- NRT metric

Let $M_{m, n}\left(\mathbb{F}_{q}\right)$ be the set of all $m \times n$ matrices with entries from a finite field \mathbb{F}_{q} (in general, from any finite alphabet $\mathcal{A}=\left\{a_{1}, \ldots, a_{q}\right\}$). The NRT norm $\|\cdot\|_{R T}$ on $M_{m, n}\left(\mathbb{F}_{q}\right)$ is defined as follows: if $m=1$ and $a=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in$ $M_{1, n}\left(\mathbb{F}_{q}\right)$, then $\left\|0_{1, n}\right\|_{R T}=0$, and $\|a\|_{R T}=\max \left\{i: \xi_{i} \neq 0\right\}$ for $a \neq 0_{1, n}$; if $A=\left(a_{1}, \ldots, a_{m}\right)^{T} \in M_{m, n}\left(\mathbb{F}_{q}\right), a_{j} \in M_{1, n}\left(\mathbb{F}_{q}\right), 1 \leq j \leq m$, then $\|A\|_{R T}=\sum_{j=1}^{m}\left\|a_{j}\right\|_{R T}$.
The NRT metric (or Niederreiter-Rosenbloom-Tsfasman metric, since introduced by Niederreiter, 1991, and Rosenbloom-Tsfasman, 1997; or ordered Hamming distance, in [MaSt99] is a matrix norm metric (in fact, an ultrametric) on $M_{m, n}\left(\mathbb{F}_{q}\right)$, defined by

$$
\|A-B\|_{R T}
$$

For every matrix code $C \subset M_{m, n}\left(F_{q}\right)$ with q^{k} elements the minimum NRT distance $d_{R T}^{*}(C) \leq m n-k+1$. Codes meeting this bound are called maximum distance separable codes.
The most used distance between codewords of a matrix code $C \subset M_{m, n}\left(F_{q}\right)$ is the Hamming metric on $M_{m, n}\left(F_{q}\right)$ defined by $\|A-B\|_{H}$, where $\|A\|_{H}$ is the Hamming weight of a matrix $A \in M_{m, n}\left(\mathbb{F}_{q}\right)$, i.e., the number of its nonzero entries.
The LRTJ-metric (introduced as Generalized Lee-Rosenbloom-Tsfasman pseudo-metric by Jain, 2008) is the norm metric for the following generalization of the above norm $\|a\|_{R T}$ in the case $a \neq 0_{1, n}$:

$$
\|a\|_{L R T J}=\max _{1 \leq i \leq n} \min \left\{\xi_{i}, q-\xi_{i}\right\}+\max \left\{i-1: \xi_{i} \neq 0\right\}
$$

It is the Lee metric for $m=1$ and the NRT metric for $q=2,3$.

- ACME distance

The ACME distance on a code $C \subset \mathcal{A}^{n}$ over an alphabet \mathcal{A} is defined by

$$
\min \left\{d_{H}(x, y), d_{I}(x, y)\right\}
$$

where d_{H} is the Hamming metric, and d_{I} is the swap metric (cf. Chap. 11), i.e., the minimum number of interchanges of adjacent pairs of symbols, converting x into y.

- Indel distance

Let W be the set of all words over an alphabet \mathcal{A}. A deletion of a letter in a word $\beta=b_{1} \ldots b_{n}$ of the length n is a transformation of β into a word $\beta^{\prime}=b_{1} \ldots b_{i-1} b_{i+1} \ldots b_{n}$ of the length $n-1$. An insertion of a letter in a word $\beta=b_{1} \ldots b_{n}$ of the length n is a transformation of β into a word $\beta^{\prime \prime}=b_{1} \ldots b_{i} b b_{i+1} \ldots b_{n}$, of the length $n+1$.

The indel distance is a metric on W, defined as the minimum number of deletions and insertions of letters converting α into β. Cf. indel metric in Chap. 11.
A code C with correction of deletions and insertions is an arbitrary finite subset of W. An example of such a code is the set of words $\beta=b_{1} \ldots b_{n}$ of length n over the alphabet $\mathcal{A}=\{0,1\}$ for which $\sum_{i=1}^{n} i b_{i} \equiv 0(\bmod n+1)$. The number of words in this code is equal to $\frac{1}{2(n+1)} \sum_{k} \phi(k) 2^{(n+1) / k}$, where the sum is taken over all odd divisors k of $n+1$, and ϕ is the Euler function.

- Interval distance

The interval distance (see, for example, [Bata95]) is a metric on a finite group $(G,+, 0)$ defined by

$$
w_{i n t}(x-y),
$$

where $w_{\text {int }}(x)$ is an interval weight on G, i.e., a group norm whose values are consecutive nonnegative integers $0, \ldots, m$. This distance is used for group codes $C \subset G$.

- Fano metric

The Fano metric is a decoding metric with the goal to find the best sequence estimate used for the Fano algorithm of sequential decoding of convolutional codes. In a convolutional code each k-bit information symbol to be encoded is transformed into an n-bit codeword, where $R=\frac{k}{n}$ is the code rate ($n \geq k$), and the transformation is a function of the last m information symbols.
The linear time-invariant decoder (fixed convolutional decoder) maps an information symbol $u_{i} \in\left\{u_{1}, \ldots, u_{N}\right\}$, $u_{i}=\left(u_{i 1}, \ldots u_{i k}\right), u_{i j} \in \mathbb{F}_{2}$, into a codeword $x_{i} \in\left\{x_{1}, \ldots, x_{N}\right\}, x_{i}=\left(x_{i 1}, \ldots, x_{i n}\right), x_{i j} \in \mathbb{F}_{2}$, so one has a code $\left\{x_{1}, \ldots, x_{N}\right\}$ with N codewords which occur with probabilities $\left\{p\left(x_{1}\right), \ldots, p\left(x_{N}\right)\right\}$. A sequence of l codewords forms a path $x=x_{[1, l]}=$ $\left\{x_{1}, \ldots, x_{l}\right\}$ which is transmitted through a discrete memoryless channel, resulting in the received sequence $y=y_{[1, l]}$.
The task of a decoder minimizing the sequence error probability is to find a sequence maximizing the joint probability of input and output channel sequences $p(y, x)=p(y \mid x) \cdot p(x)$. Usually it is sufficient to find a procedure that maximizes $p(y \mid x)$, and a decoder that always chooses as its estimate one of the sequences that maximizes it or, equivalently, the Fano metric, is called a max-likelihood decoder.
Roughly, we consider each code as a tree, where each branch represents one codeword. The decoder begins at the first vertex in the tree, and computes the branch metric for each possible branch, determining the best branch to be the one corresponding to the codeword x_{j} resulting in the largest branch metric, $\mu_{F}\left(x_{j}\right)$. This branch is added to the path, and the algorithm continues from the new node which represents the sum of the previous node and the number of bits in the current best codeword. Through iterating until a terminal node of the tree is reached, the algorithm traces the most likely path.

In this construction, the bit Fano metric is defined by

$$
\log _{2} \frac{p\left(y_{i} \mid x_{i}\right)}{p\left(y_{i}\right)}-R
$$

the branch Fano metric is defined by

$$
\mu_{F}\left(x_{j}\right)=\sum_{i=1}^{n}\left(\log _{2} \frac{p\left(y_{i} \mid x_{j i}\right)}{p\left(y_{i}\right)}-R\right),
$$

and the path Fano metric is defined by

$$
\mu_{F}\left(x_{[1, l]}\right)=\sum_{j=1}^{l} \mu_{F}\left(x_{j}\right),
$$

where $p\left(y_{i} \mid x_{j i}\right)$ are the channel transition probabilities, $p\left(y_{i}\right)=\sum_{x_{m}} p\left(x_{m}\right)$ $p\left(y_{i} \mid x_{m}\right)$ is the probability distribution of the output given the input symbols averaged over all input symbols, and $R=\frac{k}{n}$ is the code rate.
For a hard-decision decoder $p\left(y_{j}=0 \mid x_{j}=1\right)=p\left(y_{j}=1 \mid x_{j}=0\right)=p$, $0<p<\frac{1}{2}$, the Fano metric for a path $x_{[1, l]}$ can be written as

$$
\mu_{F}\left(x_{[1, l]}\right)=-\alpha d_{H}\left(y_{[1, l]}, x_{[1, l]}\right)+\beta \cdot l \cdot n,
$$

where $\alpha=-\log _{2} \frac{p}{1-p}>0, \beta=1-R+\log _{2}(1-p)$, and d_{H} is the Hamming metric.
The generalized Fano metric is defined, for $0 \leq w \leq 1$, by

$$
\mu_{F}^{w}\left(x_{[1, l]}\right)=\sum_{j=1}^{l n}\left(\log _{2} \frac{p\left(y_{j} \mid x_{j}\right)^{w}}{p\left(y_{j}\right)^{1-w}}-w R\right) .
$$

For $w=1 / 2$, it is the Fano metric with a multiplicative constant $1 / 2$.

- Metric recursion of a MAP decoding

Maximum a posteriori sequence estimation, or MAP decoding for variable length codes, used the Viterbi algorithm, and is based on the metric recursion

$$
\Lambda_{k}^{(m)}=\Lambda_{k-1}^{(m)}+\sum_{n=1}^{l_{k}^{(m)}} x_{k, n}^{(m)} \log _{2} \frac{p\left(y_{k, n} \mid x_{k, n}^{(m)}=+1\right)}{p\left(y_{k, n} \mid x_{k, n}^{(m)}=-1\right)}+2 \log _{2} p\left(u_{k}^{(m)}\right),
$$

where $\Lambda_{k}^{(m)}$ is the branch metric of branch m at time (level) $k, x_{k, n}$ is the n-th bit of the codeword having $l_{k}^{(m)}$ bits labeled at each branch, $y_{k, n}$ is the respective received soft-bit, u_{k}^{m} is the source symbol of branch m at time k and,
assuming statistical independence of the source symbols, the probability $p\left(u_{k}^{(m)}\right)$ is equivalent to the probability of the source symbol labeled at branch m, that may be known or estimated. The metric increment is computed for each branch, and the largest value, when using log-likelihood values, of each state is used for further recursion. The decoder first computes the metric of all branches, and then the branch sequence with largest metric starting from the final state backward is selected.

- Distance decoder

A graph family A is said (Peleg, 2000) to have an $l(n)$ distance labeling scheme if there is a function L_{G} labeling the vertices of each n-vertex graph $G \in A$ with distinct labels up to $l(n)$ bits, and there exists an algorithm, called a distance decoder, that decides the distance $d(u, v)$ between any two vertices $u, v \in X$ in a graph $G \in A$, i.e., $d(u, v)=f\left(L_{G}(u), L_{G}(v)\right)$, polynomial in time in the length of their labels $L(u), L(v)$.
Cf. distance constrained labeling in Chap. 15.

- Identifying code

Let $G=(X, E)$ be a digraph and $C \subset V$, and let $B(v)$ denote the set consisting of v and all of its incoming neighbors in G. If the sets $B(v) \cap C$ are nonempty and distinct, C is called identifying code of G. Such sets of smallest cardinality are called (Karpovsky-Chakrabarty-Levitin, 1998) minimum identifying codes; denote this cardinality by $M(G)$. An r-locating-dominating set (cf. Chap. 15) with $r=1$ differs from an identifying code only in that $B(v) \cap C$ are not required to be unique identifying sets for $v \in C$.
A minimum identifying code graph of order n is a graph $G=(X, E)$ with $X=n$ and $M(G)=\left\lceil\log 2_{2}(n+1)\right\rceil$ having the minimum number of edges $|E|$.

Chapter 17
 Distances and Similarities in Data Analysis

A data set is a finite set comprising m sequences $\left(x_{1}^{j}, \ldots, x_{n}^{j}\right), j \in\{1, \ldots, m\}$, of length n. The values $x_{i}^{1}, \ldots, x_{i}^{m}$ represent an attribute S_{i}.

Among numerical data, metric data is any reading at an interval scale, measuring the degree of difference between items, or at a ratio scale measuring the ratio between a magnitude of a continuous quantity and a unit magnitude of the same kind; with them one have a meter permitting define distances between scale values. Nonmetric (or categorial, qualitative) data are collected from binary (presence/absence expressed by $1 / 0$), ordinal (numbers expressing rank only), or nominal (items are not ordered) scale.

Geometric data analysis refer to geometric aspects of image, pattern and shape analysis that treats arbitrary data sets as clouds of points in \mathbb{R}^{n}.

Often data are organized in a metric database (especially, metric tree), i.e., a database indexed in a metric space. The term metric indexing is also used.

Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) consists mainly of partition of data A into a relatively small number of clusters, i.e., such sets of objects that (with respect to a selected measure of distance) are at best possible degree, "close" if they belong to the same cluster, "far" if they belong to different clusters, and further subdivision into clusters will impair the above two conditions.

We give three typical examples. In Information Retrieval applications, nodes of peer-to-peer database network export data (collection of text documents); each document is characterized by a vector from \mathbb{R}^{n}. An user needs to retrive all documents in the database which are relevant to a query object (say, a vector $x \in \mathbb{R}^{n}$), i.e., belong to the ball in \mathbb{R}^{n}, center x, of fixed radius and with a convenient distance function. Such similarity query is called a metric range query. In Record Linkage, each document (database record) is represented by a term-frequency vector $x \in \mathbb{R}^{n}$ or a string, and one wants to measure semantic relevancy of syntactically different records. In Ecology, let x, y be species abundance distributions, obtained by two sample methods (i.e., x_{j}, y_{j} are the numbers of individuals of species j,
observed in a corresponding sample); one needs a measure of the distance between x and y, in order to compare two methods.

Once a distance d between objects is selected, it is intra-distance or interdistance if the objects are within the same cluster or in two different clusters, respectively.

The linkage metric, i.e., a distance between clusters $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is usually one of the following:
average linkage: the average of the distances between the all members of the clusters, i.e., $\frac{\sum_{i} \sum_{j} d\left(a_{i}, b_{j}\right)}{m n}$;
single linkage: the distance $\min _{i, j} d\left(a_{i},{ }_{j}\right)$ between the nearest members of the clusters, i.e., the set-set distance (cf. Chap. 1);
complete linkage: the distance $\max _{i, j} d\left(a_{i}, b_{j}\right)$ between the furthest members of the clusters, i.e., the spanning distance (cf. Chap. 1);
centroid linkage: the distance between the centroids of the clusters, i.e., $\| \tilde{a}-$ $\tilde{b} \|_{2}$, where $\tilde{a}=\frac{\sum_{i} a_{i}}{m}$, and $\tilde{b}=\frac{\sum_{j} b_{j}}{n}$;

Ward linkage: the distance $\sqrt{\frac{m n}{m+n}}\|\tilde{a}-\tilde{b}\|_{2}$.
Multidimensional Scaling is a technique developed in the behavioral and Social Sciences for studying the structure of objects or people. Together with Cluster Analysis, it is based on distance methods. But in Multidimensional Scaling, as opposed to Cluster Analysis, one starts only with some $m \times m$ matrix D of distances of the objects and (iteratively) looks for a representation of objects in \mathbb{R}^{n} with low n, so that their Euclidean distance matrix has minimal square deviation from the original matrix D.

The related Metric Nearness Problem (Dhillon-Sra-Tropp, 2003) is to approximate a given finite distance space (X, d) by a metric space $\left(X, d^{\prime}\right)$. Other examples of distance methods in Data Analysis are distance-based outlier detection (in Data Mining) and distance-based redundancy analysis (in Multivariate Statistics).

There are many similarities used in Data Analysis; the choice depends on the nature of data and is not an exact science. We list below the main such similarities and distances.

Given two objects, represented by nonzero vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$ from \mathbb{R}^{n}, the following notation is used in this chapter.
$\sum x_{i}$ means $\sum_{i=1}^{n} x_{i}$.
1_{F} is the characteristic function of event $F: 1_{F}=1$ if F happens, and $1_{F}=0$, otherwise.
$\|x\|_{2}=\sqrt{\sum x_{i}^{2}}$ is the ordinary Euclidean norm on \mathbb{R}^{n}.
\bar{x} denotes $\frac{\sum x_{i}}{n}$, i.e., the mean value of components of x. So, $\bar{x}=\frac{1}{n}$ if x is a frequency vector (discrete probability distribution), i.e., all $x_{i} \geq 0$, and $\sum^{n} x_{i}=1$; and $\bar{x}=\frac{n+1}{2}$ if x is a ranking (permutation), i.e., all x_{i} are different numbers from $\{1, \ldots, n\}$.

The k-th moment is $\frac{\sum\left(x_{i}-\bar{x}\right)^{k}}{n}$; it is called variance, skewness, kurtosis if $k=$ 2, 3, 4.

In the binary case $x \in\{0,1\}^{n}$ (i.e., when x is a binary n-sequence), let $X=$ $\left\{1 \leq i \leq n: x_{i}=1\right\}$ and $\bar{X}=\left\{1 \leq i \leq n: x_{i}=0\right\}$. Let $|X \cap Y|,|X \cup Y|$, $|X \backslash Y|$ and $|X \triangle Y|$ denote the cardinality of the intersection, union, difference and symmetric difference $(X \backslash Y) \cup(Y \backslash X)$ of the sets X and Y, respectively.

17.1 Similarities and Distances for Numerical Data

- Ruzicka similarity

The Ruzicka similarity is a similarity on \mathbb{R}^{n}, defined by

$$
\frac{\sum \min \left\{x_{i}, y_{i}\right\}}{\sum \max \left\{x_{i}, y_{i}\right\}} .
$$

The corresponding Soergel distance

$$
1-\frac{\sum \min \left\{x_{i}, y_{i}\right\}}{\sum \max \left\{x_{i}, y_{i}\right\}}=\frac{\sum\left|x_{i}-y_{i}\right|}{\sum \max \left\{x_{i}, y_{i}\right\}}
$$

coincides on $\mathbb{R}_{\geq 0}^{n}$ with the fuzzy polyonucleotide metric (cf. Chap. 23).
The Wave-Edges distance is defined by

$$
\sum\left(1-\frac{\min \left\{x_{i}, y_{i}\right\}}{\max \left\{x_{i}, y_{i}\right\}}\right)=\sum \frac{\left|x_{i}-y_{i}\right|}{\max \left\{x_{i}, y_{i}\right\}} .
$$

- Roberts similarity

The Roberts similarity is a similarity on \mathbb{R}^{n}, defined by

$$
\frac{\sum\left(x_{i}+y_{i}\right) \frac{\min \left\{x_{i}, y_{i}\right\}}{\max \left\{x_{i}, y_{i}\right\}}}{\sum\left(x_{i}+y_{i}\right)} .
$$

- Ellenberg similarity

The Ellenberg similarity is a similarity on \mathbb{R}^{n} defined by

$$
\frac{\sum\left(x_{i}+y_{i}\right) 1_{x_{i} \cdot y_{i} \neq 0}}{\sum\left(x_{i}+y_{i}\right)\left(1+1_{x_{i} y_{i}=0}\right)} .
$$

The binary cases of Ellenberg and Ruzicka similarities coincide; it is called Tanimoto similarity (or Jaccard similarity of community, Jaccard, 1908):

$$
\frac{|X \cap Y|}{|X \cup Y|}
$$

The Tanimoto distance (or biotope distance from Chap. 23, Jaccard distance) distance on $\{0,1\}^{n}$ defined by

$$
1-\frac{|X \cap Y|}{|X \cup Y|}=\frac{|X \Delta Y|}{|X \cup Y|}
$$

- Gleason similarity

The Gleason similarity is a similarity on \mathbb{R}^{n}, defined by

$$
\frac{\sum\left(x_{i}+y_{i}\right) 1_{x_{i} \cdot y_{i} \neq 0}}{\sum\left(x_{i}+y_{i}\right)}
$$

The binary cases of Cleason, Motyka and Bray-Curtis similarities coincide; it is called Dice similarity, 1945 (or Sørensen similarity, Czekanowsky similarity):

$$
\frac{2|X \cap Y|}{|X \cup Y|+|X \cap Y|}=\frac{2|X \cap Y|}{|X|+|Y|}
$$

The Czekanowsky-Dice distance (or nonmetric coefficient, Bray-Curtis, 1957) is a near-metric on $\{0,1\}^{n}$ defined by

$$
1-\frac{2|X \cap Y|}{|X|+|Y|}=\frac{|X \Delta Y|}{|X|+|Y|}
$$

- Intersection distance

The intersection distance is a distance on \mathbb{R}^{n}, defined by

$$
1-\frac{\sum \min \left\{x_{i}, y_{i}\right\}}{\min \left\{\sum x_{i}, \sum y_{i}\right\}}
$$

- Motyka similarity

The Motyka similarity is a similarity on \mathbb{R}^{n}, defined by

$$
\frac{\sum \min \left\{x_{i}, y_{i}\right\}}{\sum\left(x_{i}+y_{i}\right)}=n \frac{\sum \min \left\{x_{i}, y_{i}\right\}}{\bar{x}+\bar{y}} .
$$

- Bray-Curtis similarity

The Bray-Curtis similarity, 1957, is a similarity on \mathbb{R}^{n} defined by

$$
\frac{2}{n(\bar{x}+\bar{y})} \sum \min \left\{x_{i}, y_{j}\right\}
$$

It is called Renkonen similarity if x, y are frequency vectors.

- Sørensen distance

The Sørensen (or Bray-Curtis) distance on \mathbb{R}^{n} is defined (Sørensen, 1948) by

$$
\frac{\sum\left|x_{i}-y_{i}\right|}{\sum\left(x_{i}+y_{i}\right)} .
$$

- Canberra distance

The Canberra distance (Lance-Williams, 1967) is a distance on \mathbb{R}^{n}, defined by

$$
\sum \frac{\left|x_{i}-y_{i}\right|}{\left|x_{i}\right|+\left|y_{i}\right|}
$$

- Kulczynski similarity 1

The Kulczynski similarity 1 is a similarity on \mathbb{R}^{n} defined by

$$
\frac{\sum \min \left\{x_{i}, y_{i}\right\}}{\sum\left|x_{i}-y_{i}\right|}
$$

The corresponding distance is

$$
\frac{\sum\left|x_{i}-y_{i}\right|}{\sum \min \left\{x_{i}, y_{i}\right\}}
$$

- Kulczynski similarity 2

The Kulczynski similarity 2 is a similarity on \mathbb{R}^{n} defined by

$$
\frac{n}{2}\left(\frac{1}{\bar{x}}+\frac{1}{\bar{y}}\right) \sum \min \left\{x_{i}, y_{i}\right\}
$$

In the binary case it takes the form

$$
\frac{|X \cap Y| \cdot(|X|+|Y|)}{2|X| \cdot|Y|}
$$

- Baroni-Urbani-Buser similarity

The Baroni-Urbani-Buser similarity is a similarity on \mathbb{R}^{n} defined by

$$
\frac{\sum \min \left\{x_{i}, y_{i}\right\}+\sqrt{\sum \min \left\{x_{i}, y_{i}\right\} \sum\left(\max _{1 \leq j \leq n} x_{j}-\max \left\{x_{i}, y_{i}\right\}\right)}}{\sum \max \left\{x_{i}, y_{i}\right\}+\sqrt{\sum \min \left\{x_{i}, y_{i}\right\} \sum\left(\max _{1 \leq j \leq n} x_{j}-\max \left\{x_{i}, y_{i}\right\}\right)}} .
$$

In the binary case it takes the form

$$
\frac{|X \cap Y|+\sqrt{|X \cap Y| \cdot|\overline{X \cup Y}|}}{|X \cup Y|+\sqrt{|X \cap Y| \cdot|\overline{X \cup Y}|}}
$$

17.2 Relatives of Euclidean Distance

- Power (p, r)-distance

The power (p, r)-distance is a distance on \mathbb{R}^{n} defined, for $x, y \in \mathbb{R}^{n}$, by

$$
\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{r}}
$$

For $p=r \geq 1$, it is the l_{p}-metric, including the Euclidean, Manhattan (or magnitude) and Chebyshev (or maximum-value, dominance, template) metrics for $p=2,1$ and ∞, respectively.
The case $(p, r)=(2,1)$ corresponds to the squared Euclidean distance.
The power (p, r)-distance with $0<p=r<1$ is called the fractional l_{p}-distance (not a metric since the unit balls are not convex). It is used for "dimensionality-cursed" data, i.e., when there are few observations and the number n of variables is large. The case $0<p<r=1$, i.e., of the p-th power of the fractional l_{p}-distance, corresponds to a metric on \mathbb{R}^{n}.
The weighted versions $\left(\sum w_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}$ (with nonnegative weights w_{i}) are also used, for $p=1,2$, in applications. Given weights $w_{i} \geq 0$, the weighted Manhattan quasi-metric for $x, y \in \mathbb{R}^{n}$ is $\sum_{i=1}^{n} d_{i}$, where every d_{i} is the quasimetric defined by $d_{i}=w_{i}\left(x_{i}-y_{i}\right)$ if $x_{i}>y_{i}$ and $d_{i}=W_{i}\left(y_{i}-x_{i}\right)$, otherwise. The ordinal distance on \mathbb{R}^{n} is defined (Bahari and Van Hamme, 2014) by

$$
\left(\sum_{i=1}^{n}\left|\sum_{1 \leq j \leq i}\left(x_{j}-y_{j}\right)\right|^{p}\right)^{\frac{1}{p}} .
$$

- Penrose size distance

The Penrose size distance is a distance on \mathbb{R}^{n} defined by

$$
\sqrt{n} \sum\left|x_{i}-y_{i}\right| .
$$

It is proportional to the Manhattan metric.
The mean character distance (Czekanowsky, 1909) is defined by $\frac{\sum\left|x_{i}-y_{i}\right|}{n}$. The Lorentzian distance is a distance defined by $\sum \ln \left(1+\left|x_{i}-y_{i}\right|\right)$.

- Penrose shape distance

The Penrose shape distance is a distance on \mathbb{R}^{n} defined by

$$
\sqrt{\sum\left(\left(x_{i}-\bar{x}\right)-\left(y_{i}-\bar{y}\right)\right)^{2}} .
$$

The sum of squares of two above Penrose distances is the squared Euclidean distance.

- Effect size

Let \bar{x}, \bar{y} be the means of samples x, y and let s^{2} be the pooled variance of both samples. The effect size (a term used mainly in social sciences) is defined by

$$
\frac{\bar{x}-\bar{y}}{s} .
$$

Its symmetric version $\frac{|\bar{x}-\bar{y}|}{s}$ is called statistical distance by Johnson-Wichern, 1982, and standard distance by Flury-Riedwyl, 1986.
Cf. the engineer semimetric in Chap. 14 and the ward linkage.

- Binary Euclidean distance

The binary Euclidean distance is a distance on \mathbb{R}^{n} defined by

$$
\sqrt{\sum\left(1_{x_{i}>0}-1_{y_{i}>0}\right)^{2}}
$$

- Mean censored Euclidean distance

The mean censored Euclidean distance is a distance on \mathbb{R}^{n} defined by

$$
\sqrt{\frac{\sum\left(x_{i}-y_{i}\right)^{2}}{\sum 1_{x_{i}^{2}+y_{i}^{2} \neq 0}}} .
$$

- Normalized l_{p}-distance

The normalized l_{p}-distance, $1 \leq p \leq \infty$, is a distance on \mathbb{R}^{n} defined by

$$
\frac{\|x-y\|_{p}}{\|x\|_{p}+\|y\|_{p}}
$$

The only integer value p for which the normalized l_{p}-distance is a metric, is $p=2$. Moreover, the distance $\frac{\|x-y\|_{2}}{a+b\left(\|x\|_{2}+\|y\|_{2}\right)}$ is a metric for any $a, b>0$ [Yian91].

- Clark distance

The Clark distance (Clark, 1952) is a distance on \mathbb{R}^{n}, defined by

$$
\left(\frac{1}{n} \sum\left(\frac{x_{i}-y_{i}}{\left|x_{i}\right|+\left|y_{i}\right|}\right)^{2}\right)^{\frac{1}{2}}
$$

- Meehl distance

The Meehl distance (or Meehl index) is a distance on \mathbb{R}^{n} defined by

$$
\sum_{1 \leq i \leq n-1}\left(x_{i}-y_{i}-x_{i+1}+y_{i+1}\right)^{2}
$$

- Hellinger distance

The Hellinger distance is a distance on \mathbb{R}_{+}^{n} defined by

$$
\sqrt{2 \sum\left(\sqrt{\frac{x_{i}}{\bar{x}}}-\sqrt{\frac{y_{i}}{\bar{y}}}\right)^{2}}
$$

Cf. Hellinger metric in Chap. 14.
The Whittaker index of association is defined by $\frac{1}{2} \sum\left|\frac{x_{i}}{\bar{x}}-\frac{y_{i}}{\bar{y}}\right|$.

- Symmetric χ^{2}-measure

The symmetric χ^{2}-measure is a distance on \mathbb{R}^{n} defined by

$$
\sum \frac{2}{\bar{x} \cdot \bar{y}} \cdot \frac{\left(x_{i} \bar{y}-y_{i} \bar{x}\right)^{2}}{x_{i}+y_{i}}
$$

- Symmetric χ^{2}-distance

The symmetric χ^{2}-distance (or chi-distance) is a distance on \mathbb{R}^{n} defined by

$$
\sqrt{\sum \frac{\bar{x}+\bar{y}}{n\left(x_{i}+y_{i}\right)}\left(\frac{x_{i}}{\bar{x}}-\frac{y_{i}}{\bar{y}}\right)^{2}}=\sqrt{\sum \frac{\bar{x}+\bar{y}}{n(\bar{x} \cdot \bar{y})^{2}} \cdot \frac{\left(x_{i} \bar{y}-y_{i} \bar{x}\right)^{2}}{x_{i}+y_{i}}} .
$$

It is a weighted Euclidean distance.

- Weighted Euclidean distance

The general quadratic-form distance on \mathbb{R}^{n} is defined by

$$
\sqrt{(x-y)^{T} A(x-y)}
$$

where A is a real nonsingular symmetric $n \times n$ matrix; cf. Mahalanobis distance. The weighted Euclidean distance is the case $A=\operatorname{diag}\left(a_{i}\right), a_{i} \neq 0$, i.e., it is

$$
\sqrt{\sum a_{i}\left(x_{i}-y_{i}\right)^{2}}
$$

Some examples are: pseudo-Euclidean distance (Chap. 7), standardized Euclidean distance and first two metrics (Euclidean \mathbb{R}^{6}-distances) in Sect. 18.3.

- Mahalanobis distance

The Mahalanobis distance (or quadratic distance, or directionally weighted distance) is a semimetric on \mathbb{R}^{n} defined (Mahalanobis, 1936) by

$$
\|x-y\|_{A}=\sqrt{(x-y) A(x-y)^{T}}
$$

where A is a positive-semidefinite matrix. It is a metric if A is positive-definite. Cf. Mahalanobis semimetric in Chap. 14. The square $\|x-y\|_{A}^{2}$ is called generalized ellipsoid (or generalized squared interpoint) distance.
Usually, $A=C^{-1}$, where C is a covariance matrix $\left(\left(\operatorname{Cov}\left(x_{i}, x_{j}\right)\right)\right)$ of some data points $x, y \in \mathbb{R}^{n}$ (say, random vectors with the same distribution), or $A=$ $(\operatorname{det}(C))^{\frac{1}{n}} C^{-1}$ so that $\operatorname{det}(A)=1$.
Clearly, $\|x-y\|_{I}$ is the Euclidean distance. If $C=\left(\left(c_{i j}\right)\right)$ is a diagonal matrix, then $c_{i i}=\operatorname{Var}\left(x_{i}\right)=\operatorname{Var}\left(y_{i}\right)=\sigma_{i}^{2}$ and it holds

$$
\|x-y\|_{C^{-1}}=\sqrt{\sum_{i} \frac{\left(x_{i}-y_{i}\right)^{2}}{\sigma_{i}^{2}}}
$$

Such diagonal Mahalanobis distance is called the standardized Euclidean distance (or normalized Euclidean distance, scaled Euclidean distance).
The maximum scaled difference (Maxwell-Buddemeier, 2002) is defined by

$$
\max _{i} \frac{\left(x_{i}-y_{i}\right)^{2}}{\sigma_{i}^{2}} .
$$

17.3 Similarities and Distances for Binary Data

Usually, such similarities s range from 0 to 1 or from -1 to 1 ; the corresponding distances are usually $1-s$ or $\frac{1-s}{2}$, respectively.

- Hamann similarity

The Hamann similarity, 1961 , is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{2|\overline{X \Delta Y}|}{n}-1=\frac{n-2|X \Delta Y|}{n}
$$

- Rand similarity

The Rand similarity (or Sokal-Michener's simple matching) is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{\overline{|X \Delta Y|}}{n}=1-\frac{|X \Delta Y|}{n} .
$$

Its square root is called the Euclidean similarity. The corresponding metric $\frac{|X \Delta Y|}{n}$ is called the variance or Manhattan similarity; cf. Penrose size distance.

- Sokal-Sneath similarities

The Sokal-Sneath similarities 1,2,3 are the similarity on $\{0,1\}^{n}$ defined by

$$
\frac{2|\overline{X \Delta Y}|}{n+|\overline{X \Delta Y}|}, \quad \frac{|X \cap Y|}{|X \cup Y|+|X \Delta Y|}, \frac{|X \Delta Y|}{|\overline{X \Delta Y}|}
$$

- Russel-Rao similarity

The Russel-Rao similarity is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{|X \cap Y|}{n} .
$$

- Simpson similarity

The Simpson similarity (overlap similarity) is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{|X \cap Y|}{\min \{|X|,|Y|\}}
$$

- Forbes-Mozley similarity

The Forbes-Mozley similarity is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{n|X \cap Y|}{|X||Y|}
$$

- Braun-Blanquet similarity

The Braun-Blanquet similarity is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{|X \cap Y|}{\max \{|X|,|Y|\}}
$$

The average between it and the Simpson similarity is the Dice similarity.

- Roger-Tanimoto similarity

The Roger-Tanimoto similarity, 1960, is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{|\overline{X \Delta Y}|}{n+|X \Delta Y|}
$$

- Faith similarity

The Faith similarity is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{|X \cap Y|+|\overline{X \Delta Y}|}{2 n} .
$$

- Tversky similarity

The Tversky similarity is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{|X \cap Y|}{a|X \Delta Y|+b|X \cap Y|} .
$$

It becomes the Tanimoto, Dice and (the binary case of) Kulczynsky 1 similarities for $(a, b)=(1,1),\left(\frac{1}{2}, 1\right)$ and $(1,0)$, respectively.

- Mountford similarity

The Mountford similarity, 1962, is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{2|X \cap Y|}{|X||Y \backslash X|+|Y||X \backslash Y|} .
$$

- Gower-Legendre similarity

The Gower-Legendre similarity is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{|\overline{X \Delta Y}|}{a|X \Delta Y|+|\overline{X \Delta Y}|}=\frac{|\overline{X \Delta Y}|}{n+(a-1)|X \Delta Y|} .
$$

- Anderberg similarity

The Anderberg (or Sokal-Sneath 4 similarity) on $\{0,1\}^{n}$ is defined by

$$
\frac{|X \cap Y|}{4}\left(\frac{1}{|X|}+\frac{1}{|Y|}\right)+\frac{|\overline{X \cup Y}|}{4}\left(\frac{1}{|\bar{X}|}+\frac{1}{\overline{|Y|}}\right)
$$

- Yule similarities

The Yule Q similarity (Yule, 1900) is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{|X \cap Y| \cdot|\overline{X \cup Y}|-|X \backslash Y| \cdot|Y \backslash X|}{|X \cap Y| \cdot|\overline{X \cup Y}|+|X \backslash Y| \cdot|Y \backslash X|} .
$$

The Yule Y similarity of colligation (1912) is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{\sqrt{|X \cap Y| \cdot|\overline{X \cup Y}|}-\sqrt{|X \backslash Y| \cdot|Y \backslash X|}}{\sqrt{|X \cap Y| \cdot \mid \overline{X \cup Y \mid}}+\sqrt{|X \backslash Y| \cdot|Y \backslash X|}}
$$

- Dispersion similarity

The dispersion similarity is a similarity on $\{0,1\}^{n}$, defined by

$$
\frac{|X \cap Y| \cdot|\overline{X \cup Y}|-|X \backslash Y| \cdot|Y \backslash X|}{n^{2}} .
$$

- Pearson ϕ similarity

The Pearson ϕ similarity is a similarity on $\{0,1\}^{n}$ defined by

$$
\frac{|X \cap Y| \cdot|\overline{X \cup Y}|-|X \backslash Y| \cdot|Y \backslash X|}{\sqrt{|X| \cdot|\bar{X}| \cdot|Y| \cdot|\bar{Y}|}} .
$$

- Gower similarity 2

The Gower 2 (or Sokal-Sneath 5) similarity on $\{0,1\}^{n}$ is defined by

$$
\frac{|X \cap Y| \cdot \mid \overline{X \cup Y \mid}}{\sqrt{|X| \cdot|\bar{X}| \cdot|Y| \cdot|\bar{Y}|}}
$$

- Pattern difference

The pattern difference is a distance on $\{0,1\}^{n}$, defined by

$$
\frac{4|X \backslash Y| \cdot|Y \backslash X|}{n^{2}} .
$$

- Q_{0}-difference

The Q_{0}-difference is a distance on $\{0,1\}^{n}$, defined by

$$
\frac{|X \backslash Y| \cdot|Y \backslash X|}{|X \cap Y| \cdot|\overline{X \cup Y}|} .
$$

- Model distance

Let X, Y be two data sets, and let λ_{j} be the eigenvalues of the symmetrized cross-correlation matrix $C_{X \backslash Y Y \backslash X} \times C_{Y \backslash X X \backslash Y}$.
The model distance (Todeschini, 2004) is a distance on $\{0,1\}^{n}$ defined by

$$
\sqrt{|X \backslash Y|+|Y \backslash X|-2 \sum_{j} \sqrt{\lambda_{j}}}
$$

The CMD-distance (or, canonical measure of distance, Todeschini et al., 2009) is

$$
\sqrt{|X|+|Y|-2 \sum_{j} \sqrt{\lambda_{j}}}
$$

where λ_{j} are the nonzero eigenvalues of the cross-correlation matrix $C_{X}{ }_{Y} \times C_{Y X}$.

17.4 Correlation Similarities and Distances

The covariance between two real-valued random variables X and Y is $\operatorname{Cov}(x, y)=$ $\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$. The variance of X is $\operatorname{Var}(X)=$ $\operatorname{Cov}(X, X)$ and the Pearson correlation of X and Y is $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$; cf. Chap. 14.

Let $(X, Y),\left(X^{\prime}, Y^{\prime}\right),\left(X^{\prime \prime}, Y^{\prime \prime}\right)$ be independent and identically distributed. The distance covariance (Székely, 2005) is the square root of $\operatorname{dov}^{2}(X, Y)=\mathbb{E}[\mid X-$ $\left.X^{\prime}| | Y-Y^{\prime} \mid\right]+\mathbb{E}\left[\left|X-X^{\prime}\right|\right] \mathbb{E}\left[\left|Y-Y^{\prime}\right|\right]-\mathbb{E}\left[\left|X-X^{\prime}\right|\left|Y-Y^{\prime \prime}\right|\right]-\mathbb{E}\left[\left|X-X^{\prime \prime}\right|\left|Y-Y^{\prime}\right|\right]=$ $\mathbb{E}\left[\left|X-X^{\prime}\right|\left|Y-Y^{\prime}\right|\right]+\mathbb{E}\left[\left|X-X^{\prime}\right|\right] \mathbb{E}\left[\left|Y-Y^{\prime}\right|\right]-2 \mathbb{E}\left[\left|X-X^{\prime}\right|\left|Y-Y^{\prime \prime}\right|\right]$. It is 0 if and only if X and Y are independent. The distance correlation $\operatorname{Cor}(X, Y)$ is $\frac{d \operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Cov}(X, X) d \operatorname{Cov}(Y, Y)}}$.

The vectors x, y below can be seen as samples (series of n measurements) of X, Y.

- Covariance similarity

The covariance similarity is a similarity on \mathbb{R}^{n} defined by

$$
\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}=\frac{\sum x_{i} y_{i}}{n}-\bar{x} \cdot \bar{y} .
$$

- Pearson correlation similarity

The Pearson correlation similarity, or, by its full name, Pearson productmoment correlation coefficient) is a similarity on \mathbb{R}^{n} defined by

$$
s=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{j}-\bar{x}\right)^{2} \sum\left(y_{j}-\bar{y}\right)^{2}}} .
$$

The Pearson distance (or correlation distance) is defined by

$$
1-s=\frac{1}{2} \sum\left(\frac{x_{i}-\bar{x}}{\sqrt{\sum\left(x_{j}-\bar{x}\right)^{2}}}-\frac{y_{i}-\bar{y}}{\sqrt{\sum\left(y_{j}-\bar{y}\right)^{2}}}\right)
$$

A multivariate generalization of the Pearson correlation similarity is the $R V$ coefficient (Escoufier, 1973) $R V(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Covv}(X, X) \operatorname{Covv}(Y, Y)}}$, where X, Y are matrices of centered random (column) vectors with covariance matrix $C(X, Y)=$ $\mathbb{E}\left[X^{T} Y\right]$, and $\operatorname{Covv}(X, Y)$ is the trace of the matrix $C(X, Y) C(Y, X)$.

- Cosine similarity

The cosine similarity (or Orchini similarity, angular similarity, normalized dot product) is the case $\bar{x}=\bar{y}=0$ of the Pearson correlation similarity, i.e., it is

$$
\frac{\langle x, y\rangle}{\|x\|_{2} \cdot\|y\|_{2}}=\cos \phi
$$

where ϕ is the angle between vectors x and y. In the binary case, it becomes

$$
\frac{|X \cap Y|}{\sqrt{|X| \cdot|Y|}}
$$

and is called the Ochiai-Otsuka similarity.
In Record Linkage, cosine similarity is called TF-IDF; it (or $t f$ - idf, TFIDF) are used as an abbreviation of Frequency-Inverse Document Frequency.
The angular semimetric on \mathbb{R}^{n} is defined by $\arccos \phi$. The cosine distance is $1-\cos \phi$, and the Orloci distance (or chord distance) is

$$
\sqrt{2(1-\cos \phi)}=\sqrt{\sum\left(\frac{x_{i}}{\|x\|_{2}}-\frac{y_{i}}{\|y\|_{2}}\right)^{2}} .
$$

- Similarity ratio

The similarity ratio (or Kohonen similarity, Kumar-Hassebrook similarity) is a similarity on \mathbb{R}^{n} defined by

$$
\frac{\langle x, y\rangle}{\langle x, y\rangle+\|x-y\|_{2}^{2}} .
$$

Its binary case is the Tanimoto similarity. Sometimes, the similarity ratio is called the Tanimoto coefficient or extended Jaccard coefficient.

- Morisita-Horn similarity

The Morisita-Horn similarity (Morisita, 1959) is a similarity on \mathbb{R}^{n} defined by

$$
\frac{2\langle x, y\rangle}{\|x\|_{2}^{2} \cdot \frac{\bar{y}}{\bar{x}}+\|y\|_{2}^{2} \cdot \frac{\bar{x}}{\bar{y}}} .
$$

- Spearman rank correlation

If the sequences $x, y \in \mathbb{R}^{n}$ are ranked separately, then the Pearson correlation similarity is approximated by the following Spearman ρ rank correlation:

$$
\frac{\sum\left(a_{i}-\bar{a}\right)\left(b_{i}-\bar{b}\right)}{\sqrt{\sum\left(a_{j}-\bar{a}\right)^{2} \sum\left(b_{j}-\bar{b}\right)^{2}}}=1-\frac{6}{n\left(n^{2}-1\right)} \sum\left(a_{i}-b_{i}\right)^{2},
$$

where $n>1$ and $a_{i}=\operatorname{rank}\left(x_{i}\right), b_{i}=\operatorname{rank}\left(y_{i}\right), a=\left(a_{1}, \ldots, a_{n}\right), b=$ $\left(b_{1}, \ldots, b_{n}\right)$. This approximation is good for such ordinal data when it holds $\bar{x}=\bar{y}=\frac{n+1}{2}$.
The Spearman footrule is defined by

$$
1-\frac{3}{n^{2}-1} \sum\left|x_{i}-y_{i}\right| .
$$

Cf. the Spearman ρ distance and Spearman footrule distance in Chap. 11.
Another correlation similarity for rankings is the Kendall τ rank correlation:

$$
\frac{2 \sum_{1 \leq i<j \leq n} \operatorname{sign}\left(x_{i}-x_{j}\right) \operatorname{sign}\left(y_{i}-y_{j}\right)}{n(n-1)} .
$$

Cf. the Kendall τ distance on permutations in Chap. 11.

- Global correlation distance

Let $x \in \mathbb{R}^{n}$ and (A, d) be a metric space with n points a_{1}, \ldots, a_{n}. For any $d>0$, the Moran autocorrelation coefficient is defined by

$$
I(d)=\frac{n \sum_{1 \leq i \neq j \leq n} w_{i j}(d)\left(x_{i}-\bar{x}\right)\left(x_{j}-\bar{x}\right)}{\sum_{1 \leq i \neq j \leq n} w_{i j}(d) \sum_{1 \leq i \leq n}\left(x_{i}-\bar{x}\right)^{2}},
$$

where the weight $w_{i j}(d)$ is 1 if $d\left(a_{i}, a_{j}\right)=d$ and 0 , otherwise. In spatial analysis, eventual clustering of (A, d) implies that $I(d)$ decreases with increasing d. $I(d)$ is a global indicator of the presumed spatial dependence that evaluate the existence/size of clusters in the spatial arrangement (A, d) of a given variable.
The global correlation distance is the least value d^{\prime} for which $I(d)=0$.

- Log-likelihood distance

Given two clusters A and B, their log-likelihood distance is the decrease in log-likelihood (cf. the Kullback-Leibler distance in Chap. 14 and the loglikelihood ratio quasi-distance in Chap. 21) as they are combined into one cluster. Simplifying (taking $A, B \subset \mathbb{R}_{>0}$), it is defined by

$$
\sum_{x \in A} x \log \frac{x}{|A|}+\sum_{x \in B} x \log \frac{x}{|B|}-\sum_{x \in A \cup B} x \log \frac{x}{|A \cup B|}
$$

- Spatial analysis

In Statistics, spatial analysis (or spatial statistics) includes the formal techniques for studying entities using their topological, geometric, or geographic properties. More restrictively, it refers to Geostatistics and Human Geography. It considers spatially distributed data as a priori dependent one on another.
Spatial dependence is a measure for the degree of associative dependence between independently measured values in an ordered set, determined in samples selected at different positions in a sample space. Cf. spatial correlation in Chap. 24. An example of such space-time dynamics: Gould, 1997, showed that $\approx 80 \%$ of the diffusion of HIV in US is highly correlated with the air passenger traffic (origin-destination) matrix for 102 major urban centers.
SADIE (Spatial Analysis by Distance IndicEs) is a methodology (Perry, 1998) to measure the degree of nonrandomness in 2D spatial patterns of populations. Given n sample units $x_{i} \in \mathbb{R}^{2}$ with associated counts N_{i}, the distance to regularity is the minimal total Euclidean distance that the individuals in the sample would have to move, from unit to unit, so that all units contained an
identical number of individuals. The distance to crowding is the minimal total distance that individuals in the sample must move so that all are congregated in one unit. The indices of aggregation are defined by dividing above distances by their mean values. Cf. Earth Mover's distance in Chap. 21.

- Distance sampling

Distance sampling is a widely-used group of methods for estimating the density and abundance of biological populations. It is an extension of plot- (or quadratebased) sampling, where the number of objects at given distance from a point or a segment is counted. Also, Distance is the name of a Windows-based computer package that allows to design and analyze distance sampling surveys.
A standardized survey along a series of lines or points is performed, searching for objects of interest (say, animals, plants or their clusters). Detection distances r (perpendicular ones from given lines and radial ones from given points) are measured to each detected object. The detection function $g(r)$ (the probability that an object at distance r is detected) is fit then to the observed distances, and this fitted function is used to estimate the proportion of objects missed by the survey. It gives estimates for the density and abundance of objects in the survey area.

- Cook distance

The Cook distance is a distance on \mathbb{R}^{n} giving a statistical measure of deciding if some i-th observation alone affects much regression estimates. It is a normalized squared Euclidean distance between estimated parameters from regression models constructed from all data and from data without i-th observation.
The main similar distances, used in Regression Analysis for detecting influential observations, are DFITS distance, Welsch distance, and Hadi distance.

- Periodicity p-self-distance

Ergun-Muthukrishnan-Sahinalp, 2004, call a data stream $x=\left(x_{1}, \ldots, x_{n}\right)$ p-periodic approximatively, for given $1 \leq p \leq \frac{n}{2}$ and distance function d between p-blocks of x, if the periodicity p-self-distance $\sum_{i \neq j} d\left(\left(x_{j p+1}, \ldots\right.\right.$, $\left.\left.x_{j p+p}\right),\left(x_{i p+1}, \ldots, x_{i p+p}\right)\right)$ is below some threshold.
Above notion of self-distance is different from ones given in Chaps. 1 and 28. Also, the term self-distance is used for round-off error (or rounding error), i.e., the difference between the calculated approximation of a number and its exact value.

- Distance metric learning

Let x_{1}, \ldots, x_{n} denote the samples in the training set $X \subset \mathbb{R}^{m}$; here m is the number of features. Distance metric learning is an approach for the problem of clustering with side information, when algorithm learns a distance function d prior to clustering and then tries to satisfy some positive (or equivalence) constraints P and negative constraints D. Here S and D are the sets of similar (belonging to the same class) and dissimilar pairs (x_{i}, x_{j}), respectively.
Usually d is a Mahalanobis metric $\left\|x_{i}-x_{j}\right\|_{A}=\sqrt{\left(x_{i}-x_{j}\right)^{T} A\left(x_{i}-x_{j}\right)}$, where A is a positive-semidefinite matrix, i.e., $A=W^{T} W$ for a matrix W with m columns and $\left\|x_{i}-x_{j}\right\|_{A}^{2}=\left\|W x_{i}-W x_{j}\right\|^{2}$. Then, for example, one look for
(Xing et al., 2003) A minimizing $\sum_{\left(x_{i}, x_{j}\right) \in S}\left\|x_{i}-x_{j}\right\|_{A}^{2}$ while $\sum_{\left(x_{i}, x_{j}\right) \in D} \| x_{i}-$ $x_{j} \|_{A}^{2} \geq 1$.

- Heterogeneous distance

The following IBL (instance-based learning) setting is used for many real-world applications (neural networks, etc.), where data are incomplete and have both continuous and nominal attributes. Given an $m \times(n+1)$ matrix $\left(\left(x_{i j}\right)\right)$, its row $\left(x_{i 0}, x_{i 1}, \ldots, x_{i n}\right)$ denotes an instance input vector $x_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)$ with output class $x_{i 0}$; the set of m instances represents a training set during learning. For any new input vector $y=\left(y_{1}, \ldots, y_{n}\right)$, the closest (in terms of a selected distance d) instance x_{i} is sought, in order to classify y, i.e., predict its output class as $x_{i 0}$.
A heterogeneous distance $d\left(x_{i}, y\right)$ is defined [WiMa97] by

$$
\sqrt{\sum_{j=1}^{n} d_{j}^{2}\left(x_{i j}, y_{j}\right)}
$$

with $d_{j}\left(x_{i j}, y_{j}\right)=1$ if $x_{i j}$ or y_{j} is unknown. If the attribute (input variable) j is nominal, then $d_{j}\left(x_{i j}, y_{j}\right)$ is defined, for example, as $1_{x_{i j} \neq y_{j}}$, or as

$$
\sum_{a}\left|\frac{\left|\left\{1 \leq t \leq m: x_{t 0}=a, x_{i j}=x_{i j}\right\}\right|}{\left|\left\{1 \leq t \leq m: x_{t j}=x_{i j}\right\}\right|}-\frac{\left|\left\{1 \leq t \leq m: x_{t 0}=a, x_{i j}=y_{j}\right\}\right|}{\left|\left\{1 \leq t \leq m: x_{t j}=y_{j}\right\}\right|}\right|^{q}
$$

for $q=1$ or 2 ; the sum is taken over all output classes, i.e., values a from $\left\{x_{t 0}: 1 \leq t \leq m\right\}$. For continuous attributes j, the number d_{j} is taken to be $\left|x_{i j}-y_{j}\right|$ divided by $\max _{t} x_{t j}-\min _{t} x_{t j}$, or by $\frac{1}{4}$ of the standard deviation of values $x_{t j}, 1 \leq t \leq m$.

Chapter 18
 Distances in Systems and Mathematical Engineering

In this chapter we group the main distances used in Systems Theory (such as Transition Systems, Dynamical Systems, Cellular Automata, Feedback Systems) and other interdisciplinary branches of Mathematics, Engineering and Theoretical Computer Science (such as, say, Robot Motion and Multi-objective Optimization).

A labeled transition system (LTS) is a triple (S, T, F) where S is a set of states, T is a set of labels (or actions) and $F \subseteq S \times T \times S$ is a ternary relation. Any $(x, t, y) \in F$ represents a t-labeled transition from state x to state y. A LTS with $|T|=1$ corresponds to an unlabeled transition system.

A path is a sequence $\left(\left(x_{1}, t_{1}, x_{2}\right), \ldots,\left(x_{i}, t_{i}, x_{i+1}\right), \ldots\right)$ of transitions; it gives rise to a trace $\left(t_{1}, \ldots, t_{i}, \ldots\right)$. Two paths are trace-equivalent if they have the same traces. The term trace, in Computer Science, refers in general to the equivalence classes of strings of a trace monoid, wherein certain letters in the string are allowed to commute. It is not related to the trace in Linear Algebra.

A LTS is called deterministic if for any $x \in S$ and $t \in T$ it holds that $\mid\{y \in S$: $(x, t, y) \in F\} \mid=1$. Such LTS without output is called a semiautomaton (S, T, f) where S is a set of states, T is an input alphabet and $f: X \times T \rightarrow S$ is a transition function.

A deterministic finite-state machine is a tuple ($S, s_{0}, T, f, S^{\prime}$) with S, T, f as above but $0<|S|,|T|<\infty$, while $s_{o} \in S$ is an initial state, and $S^{\prime} \subset S$ is the set of final states.

The free monoid on a set T is a monoid (algebraic structure with an associative binary operation and an identity element) T^{*} whose elements are all the finite sequences $x=x_{0}, \ldots, x_{m}$ of elements from T. The identity element is the empty string λ, and the operation is string concatenation. The free semigroup on T is $T^{+}=T^{*} \backslash\{\lambda\}$. Let T^{ω} denote the set of all infinite sequences $x=\left(x_{0}, x_{1}, \ldots\right)$ in T, and let T^{∞} denote $T^{*} \cup T^{\omega}$.

A finite-state machine is nondeterministic if the next possible state is not uniquely determined. A weighted automaton is a such machine, say, M equipped
with a cost function $c \geq 0$, over some semiring (S, \oplus, \otimes), on transitions. For a probabilistic automaton, the semiring is $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $0 \leq c \leq 1$.

A distance automaton is (Hashiguchi, 1982) a weighted automaton over the tropical semiring $T R O P=(\mathbb{N} \cup\{\infty\}, \min ,+)$. A run over a word (string in the language of $M)\left(a_{1}, \ldots, a_{k}\right)$ is a sequence $\left(s_{0}, \ldots, s_{k}\right)$ of states. The run's distance is the sum $\sum_{i=1}^{k} c\left(a_{i}\right)_{p_{i-1} p_{i}}$ of costs of involved transitions. The run is accepting if s_{0} is initial and s_{k} is a final state. The distance of a word recognized by M is the minimum of the distances over the all accepting runs. The distance of M is the supremum over the distances of all recognized words. Distance automata are equivalent to finitely generated monoids of matrices over TROP: nondeterministic automata recognize the same language as some deterministic ones but with transitions acting on the sets of original states.

18.1 Distances in State Transition and Dynamical Systems

- Fahrenberg-Legay-Thrane distances

Given a labeled transition system (LTS) (S, T, F) Fahrenberg-Legay-Thrane, 2011, call T^{∞} the set of traces and define a trace distance as an extended hemimetric (or quasi-semimetric) $h: T^{\infty} \times T^{\infty} \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ such that $h(x, y)=\infty$ for any sequences $x, y \in T^{\infty}$ of different length.
For a given distance d on the set T of labels and a discount factor $q(0<q \leq$ 1), they defined the pointwise, accumulating and limit-average trace distance as, respectively, $P W_{d, q}(x, y)=\sup _{i} q^{i d}\left(x_{i}, y_{i}\right), A C C_{d, q}(x, y)=\sum_{i} q^{i d}\left(x_{i}, y_{i}\right)$ and $A V G_{d}=\underline{\lim }_{i \rightarrow \infty} \frac{1}{i+1} \sum_{j=0}^{i d}\left(x_{j}, y_{j}\right)$.
If d is a discrete metric, i.e., $d\left(t, t^{\prime}\right)=1$ whenever $t \neq t^{\prime}$, then $A C C_{d, 1}$ is the Hamming metric for finite traces of the same length, and $A C C_{d, q}$ with $q<1$ and $A V G_{d}$ are analogs of the Hamming metric for infinite traces.
Other examples of trace distances are a Cantor-like distance $\left(1+\inf \left\{i: x_{i} \neq\right.\right.$ $\left.\left.y_{i}\right\}\right)^{-1}$ and the maximum-lead distance, defined, for $T \subseteq \Sigma \times \mathbb{R}$, by Henzinger-Majumdar-Prabhu, 2005, as $\sup _{i}\left|\sum_{j=0}^{i} x_{j}^{\prime \prime}-\sum_{j=0}^{i} y_{j}^{\prime \prime}\right|$ if $x_{i}^{\prime}=y_{i}^{\prime}$ for all i and ∞, otherwise. Here any $z \in T$ is denoted by $\left(z^{\prime}, z^{\prime \prime}\right)$, where $z^{\prime} \in \Sigma$ and $z^{\prime \prime} \in \mathbb{R}$.
Fahrenberg-Legay-Thrane, 2011, also define the two following extended simulation hemimetrics between states $x, y \in S$.
The accumulating simulation distance $h_{a c}(x, y)$ and the pointwise simulation distance $h_{p o}(x, y)$ are the least fixed points, respectively, to the set of equations

$$
\begin{aligned}
h_{a c}(x, y) & =\max _{t \in T:\left(x, t, x^{\prime}\right) \in F} \min _{t^{\prime} \in T:\left(y, t^{\prime}, y^{\prime}\right) \in F}\left(d\left(t, t^{\prime}\right)+q h_{a c}\left(x^{\prime}, y^{\prime}\right)\right) \text { and } \\
h_{p o}(x, y) & =\max _{t \in T:\left(x, t, x^{\prime}\right) \in F} \min _{t^{\prime} \in T:\left(y, t^{\prime}, y^{\prime}\right) \in F} \max \left\{d\left(t, t^{\prime}\right), h_{p o}\left(x^{\prime}, y^{\prime}\right)\right\} .
\end{aligned}
$$

The above hemimetrics generalize the lifting by Alfaro-Faella-Stoelinga, 2004, of the quasi-metric $\max \left\{x^{\prime \prime}-y^{\prime \prime}, 0\right\}$ between labels $x, y \in T=\Sigma \times \mathbb{R}$ on an accumulating trace distance and then the lifting of it on the directed Hausdorff distance (Chap. 1) between the sets of traces from two given states.
The case $h_{a c}(x, y)=h_{p o}(x, y)=0$ corresponds to the simulation of x by y, written $x \leq y$, i.e., to the existence of a weighted simulation relation $R \subseteq$ $S \times S$, i.e., whenever $(x, y) \in R$ and $\left(x, t, x^{\prime}\right) \in F$, then $\left(y, t, y^{\prime}\right) \in F$ with $\left(x^{\prime}, y^{\prime}\right) \in R$.
The case $h_{a c}(x, y)<\infty$ or $h_{p o}(x, y)<\infty$ corresponds to the existence of an unweighted simulation relation $R \subseteq S \times S$, i.e., whenever $(x, y) \in R$ and $\left(x, t, x^{\prime}\right) \in F$, then $\left(y, t^{\prime}, y^{\prime}\right) \in F$ with $\left(x^{\prime}, y^{\prime}\right) \in R$ and $d\left(t, t^{\prime}\right)<\infty$.
The relation \leq is a pre-order on S. Two states x and y are similar if $x \leq y$ and $y \leq x$; they are bisimilar if, moreover, the simulation R of x by y is the inverse of the simulation of y by x. Similarity is an equivalence relation on S which is coarser than the bisimilarity congruence.
The above trace and similarity system hemimetrics are quantitative generalizations of system relations: trace-equivalence and simulation pre-order, respectively.

- Cellular automata distances

Let $S,|S| \geq 2$, be a finite set (alphabet), and let S^{∞} be the set of \mathbb{Z}-indexed bi-infinite sequences $\left\{x_{i}\right\}_{i=-\infty}^{\infty}$ (configurations) of elements of S. A (one-dimensional) cellular automaton is a continuous self-map $f: S^{\infty} \rightarrow S^{\infty}$ that commutes with all shift (or translation) maps $g: S^{\infty} \rightarrow S^{\infty}$ defined by $g\left(x_{i}\right)=x_{i+1}$.
Such cellular automaton form a discrete dynamical system with the time set $T=\mathbb{Z}$ (of cells, positions of a finite-state machine) on the finite-state space S. The main distances between configurations $\left\{x_{i}\right\}_{i}$ and $\left\{y_{i}\right\}_{i}$ (see [BFK99]) follow. The Cantor metric is a metric on S^{∞} defined, for $x \neq y$, by

$$
2^{-\min \left\{i \geq 0:\left|x_{i}-y_{i}\right|+\left|x_{-i}-y_{-i}\right| \neq 0\right\}} .
$$

It corresponds to the case $a=\frac{1}{2}$ of the generalized Cantor metric in Chap. 11. The corresponding metric space is compact.
The Besicovitch semimetric is a semimetric on S^{∞} defined, for $x \neq y$, by

$$
\overline{\lim }_{l \rightarrow \infty} \frac{\left|-l \leq i \leq l: x_{i} \neq y_{i}\right|}{2 l+1}
$$

Cf. Besicovitch distance on measurable functions in Chap. 13. The corresponding semimetric space is complete.
The Weyl semimetric is a semimetric on S^{∞}, defined by

$$
\varlimsup_{l \rightarrow \infty} \max _{k \in \mathbb{Z}} \frac{\left|k+1 \leq i \leq k+l: x_{i} \neq y_{i}\right|}{l} .
$$

This and the above semimetric are translation invariant, but are neither separable nor locally compact. Cf. Weyl distance in Chap. 13.

- Dynamical system

A (deterministic) dynamical system is a tuple (T, X, f) consisting of a metric space (X, d), called the state space, a time set T and an evolution function f : $T \times X \rightarrow X$. Usually, T is a monoid, (X, d) is a manifold locally diffeomorphic to a Banach space, and f is a continuous function.
The system is discrete if $T=\mathbb{Z}$ (cascade) or if $T=\{0,1,2 \ldots\}$. It is real (or flow) if T is an open interval in \mathbb{R}, and it is a cellular automaton if X is finite and $T=\mathbb{Z}^{n}$. Dynamical systems are studied in Control Theory in the context of stability; Chaos Theory considers the systems with maximal possible instability. A discrete dynamical system with $T=\{0,1,2 \ldots\}$ is defined by a self-map $f: X \rightarrow X$. For any $x \in X$, its orbit is the sequence $\left\{f^{n}(x)\right\}_{n}$; here $f^{n}(x)=$ $f\left(f^{n-1}(x)\right)$ with $f^{0}(x)=x$. The orbit of $x \in X$ is called periodic if $f^{n}(x)=x$ for some $n>0$.
A pair $(x, y) \in X \times X$ is called proximal if $\underline{\lim }_{n \rightarrow \infty} d\left(f^{n}(x), f^{n}(y)\right)=0$, and distal, otherwise. The system is called distal if any pair (x, y) of distinct points is distal.
The dynamical system is called expansive if there exists a constant $D>0$ such that the inequality $d\left(f^{n}(x), f^{n}(y)\right) \geq D$ holds for any distinct $x, y \in X$ and some n.
An attractor is a closed subset A of X such that there exists an open neighborhood U of A with the property that $\lim _{n \rightarrow \infty} d\left(f^{n}(b), A\right)=0$ for every $b \in U$, i.e., A attracts all nearby orbits. Here $d(x, A)=\inf _{y \in A} d(x, y)$ is the point-set distance.
If for large n and small r there exists a number α such that

$$
C(X, n, r)=\frac{\left|\left\{(i, j): d\left(f^{i}(x), f^{j}(x)\right) \leq r, 1 \leq i, j \leq n\right\}\right|}{n^{2}} \sim r^{\alpha}
$$

then α is called (Grassberger-Hentschel-Procaccia, 1983) the correlation dimension.

- Melnikov distance

The evolution of a planar dynamical system can be represented in a 3D state space with orthogonal coordinate axes $O x, O x^{\prime}, O t$. A homoclinic orbit (nongeneric orbit that joins a saddle point) can be seen in that space as the intersection with a plane of section $t=$ const of the stable manifold (the surface consisting of all trajectories that approach $\gamma_{0}=O t$ asymptotically in forward time) and the unstable manifold (the surface consisting of all trajectories that approach $O t$ in reverse time).
Under a sufficiently small perturbation ϵ which is bounded and smooth enough, $O t$ persists as a smooth curve $\gamma_{\epsilon}=\gamma_{0}+O(\epsilon)$, and the perturbed system has (not coinciding since $\epsilon>0$) stable and unstable manifolds (the surfaces consisting of all trajectories that approach γ_{ϵ} in forward and reverse time, respectively) contained in an $O(\epsilon)$ neighborhood of the unperturbed manifolds.

The Melnikov distance is the distance between these manifolds measured along a line normal to the unperturbed manifolds, i.e., a direction that is perpendicular to the unperturbed homoclinic orbit. Cf. Sect. 18.2.

- Fractal

For a metric space, its topological dimension does not exceed its Hausdorff dimension; cf. Chap. 1. A fractal is a metric space for which this inequality is strict. (Originally, Mandelbrot defined a fractal as a point set with noninteger Hausdorff dimension.) For example, the Cantor set, seen as a compact metric subspace of $(\mathbb{R}, d(x, y)=|x-y|)$ has the Hausdorff dimension $\frac{\ln 2}{\ln 3}$; cf. another Cantor metric in Chap.11. Another classical fractal, the Sierpinski carpet of $[0,1] \times[0,1]$, is a complete geodesic metric subspace of $\left(\mathbb{R}^{2}, d(x, y)=\| x-\right.$ $\left.y \|_{1}\right)$.
The term fractal is used also, more generally, for a self-similar (i.e., roughly, looking similar at any scale) object (usually, a subset of \mathbb{R}^{n}). Cf. scale invariance.

- Scale invariance

Scale invariance is a feature of laws or objects which do not change if length scales are multiplied by a common factor.
Examples of scale invariant phenomena are fractals and power laws; cf. scale-free network in Chap. 22 and self-similarity in long range dependence. Scale invariance arising from a power law $y=C x^{k}$, for a constant C and scale exponent k, amounts to linearity $\log y=\log C+k \log x$ for logarithms.
Much of scale invariant behavior (and complexity in nature) is explained (Bak-Tang-Wiesenfeld, 1987) by self-organized cruciality (SOC) of many dynamical systems, i.e., the property to have the critical point of a phase transition as an attractor which can be attained spontaneously without any fine-tuning of control parameters.
Two moving systems are dynamically similar if the motion of one can be made identical to the motion of the other by multiplying all lengths by one scale factor, all forces by another one and all time periods by a third scale factor.
Dynamic similarity can be formulated in terms of dimensionless parameters as, for example, the Reynolds number in Chap. 24.

- Long range dependence

A (second-order stationary) stochastic process $X_{k}, k \in \mathbb{Z}$, is called long range dependent (or long memory) if there exist numbers $\alpha, 0<\alpha<1$, and $c_{\rho}>0$ such that $\lim _{k \rightarrow \infty} c_{\rho} k^{\alpha} \rho(k)=1$, where $\rho(k)$ is the autocorrelation function. So, correlations decay very slowly (asymptotically hyperbolic) to zero implying that $\sum_{k \in \mathbb{Z}}|\rho(k)|=\infty$, and that events so far apart are correlated (long memory). If the above sum is finite and the decay is exponential, then the process is short range.
Examples of such processes are the exponential, normal and Poisson processes which are memoryless, and, in physical terms, systems in thermodynamic equilibrium. The above power law decay for correlations as a function of time translates into a power law decay of the Fourier spectrum as a function of frequency f and is called $\frac{1}{f}$ noise.

A process has a self-similarity exponent (or Hust parameter) H if X_{k} and $t^{-H} X_{t k}$ have the same finite-dimensional distributions for any positive t. The cases $H=$ $\frac{1}{2}$ and $H=1$ correspond, respectively, to purely random process and to exact self-similarity: the same behavior on all scales. Cf. fractal, scale invariance and, in Chap. 22, scale-free network. The processes with $\frac{1}{2}<H<1$ are long range dependent with $\alpha=2(1-H)$.
Long range dependence corresponds to heavy-tailed (or power law) distributions.
The distribution function and tail of a nonnegative random variable X are $F(x)=P(X \leq x)$ and $\overline{F(x)}=P(X>x)$. A distribution $F(X)$ is heavytailed if there exists a number $\alpha, 0<\alpha<1$, such that $\lim _{x \rightarrow \infty} x^{\alpha} \overline{F(x)}=1$.
Many such distributions occur in the real world (for example, in Physics, Economics, the Internet) in both space (distances) and time (durations). A standard example is the Pareto distribution $\overline{F(x)}=x^{-k}, x \geq 1$, where $k>0$ is a parameter. Cf. Sect. 18.4 and, in Chap. 29, distance decay.
Also, the random-copying model (the cultural analog of genetic drift) of the frequency distributions of various cultural traits (such as of scientific papers citations, first names, dog breeds, pottery decorations) results (Bentley-HahnShennan, 2004) in a power law distribution $y=C x^{-k}$, where y is the proportion of cultural traits that occur with frequency x in the population, and C and k are parameters.
A general Lévy flight is a random walk in which the increments have a power law probability distribution.

- Lévy walks in human mobility

A jump is a longest straight line trip from one location to another done without a directional change or pause. Consider a 2D random walk (taking successive jumps, each in a random direction) model that involves two distributions: a uniform one for the turning angle θ_{i} and a power law $P\left(l_{i}\right) \sim l_{i}^{-\alpha}$ for the jump length l_{i}.
Brownian motion has $\alpha \geq 3$ and normal diffusion, i.e., the MSD (mean squared displacement) grows linearly with time $t: M S D \sim t^{\gamma}, \gamma=1$.
A Lévy walk has $1<\alpha<3$. Its jump length is scale-free, i.e., lacks an average scale $\overline{l_{i}}$, and it is superdiffusive: $M S D \sim t^{\gamma}, \gamma>1$. Intuitively, Lévy walks consist of many short jumps and, exceptionally, long jumps eliminating the effect of short ones in average jump lengths.
Lévy walk dispersal was observed in our Web browsing and image scanning, as well as in foraging animals. It might be an optimal search strategy for finding patches of randomly dispersed unpredictable resources: to cluster, in order to save time and effort, closely located activities and then make many short jumps within the clustered areas and a few long jumps among areas. Scale-free Lévy and Brownian search strategies are effective when resources are abundant.
Human mobility occurs on many length scales, ranging from walking to air travel. On average, humans spend 1.1 h of their daily time budget traveling. Schafer and Victor, 2000, estimated the average travel distance, per person per year, as 1814, 4382 and 6787 km for 1960, 1990 and 2020, respectively.

Brockmann-Hafnagel-Geisel, 2006, studied long range human traffic via the geographic circulation of money. To track a bill, a user stamps it and enters data (serial number, series and local ZIP code) in a computer. The site www. wheresgeorge.com reports the time and distance between the bill's consecutive sightings. Fifty-seven percent of all $\approx 465,000$ considered bills traveled $50-$ 800 km over 9 months in US. The probability of a bill traversing a distance r (an estimate of the probability of humans moving such a distance) followed, over $10-3,500 \mathrm{~km}$, a power law $P(r)=r^{-1.6}$. Banknote dispersal was fractal, and the bill trajectories resembled Lévy walks.
González-Hidalgo-Barabási, 2008, studied the trajectory of 100,000 anonymized mobile phone users (a random sample of 6 million) over 6 months. The probability of finding a user at a location of rank k (by the number of times a user was recorded in the vicinity) was $P(k) \sim \frac{1}{k}$. Forty percent of the time users were found at their first two preferred locations (home, work), while spending remaining time in 5-50 places. Phithakkitnukoon et al., 2011, found that $\approx 80 \%$ of places visited by mobile phone users are within of their geo-social radius (nearest social ties' locations) 20 km .
Jiang-Yin-Zhao, 2009, analyzed people's moving trajectories, obtained from GPS data of 50 taxicabs over 6 months in a large street network. They found a Lévy behavior in walks (both origin-destination and between streets) and attributed it to the fractal property of the underlying street network, not to the goal-directed nature of human movement. Rhee et al., 2009, analyzed $\approx 1,000 \mathrm{~h}$ of GPS traces of walks of 44 participants. They also got Lévy walks.

18.2 Distances in Control Theory

Control Theory deals with influencing the behavior of dynamical systems. It considers the feedback loop of a plant P (a function representing the object to be controlled, a system) and a controller C (a function to design). The output y, measured by a sensor, is fed back to the reference value r.

Then the controller takes the error $e=r-y$ to make inputs $u=C e$. Subject to zero initial conditions, the input and output signals to the plant are related by $y=$ $P u$, where r, u, v and P, C are functions of the frequency variable s. So, $y=\frac{P C}{1+P C} r$. and $y \approx r$ (i.e., one controls the output by simply setting the reference) if $P C$ is large for any value of s.

If the system is modeled by a system of linear differential equations, then its transfer function $\frac{P C}{1+P C}$, relating the output with the input, is a rational function. The plant P is stable if it has no poles in the closed right half-plane $\mathbb{C}_{+}=\{z \in \mathbb{C}$: $\operatorname{Re}(z) \geq 0\}$.

The robust stabilization problem is: given a nominal plant (a model) P_{0} and some metric d on plants, find the open ball of maximal radius which is centered in P_{0}, such that some controller (rational function) C stabilizes every element of this ball.

The graph $G(P)$ of the plant P is the set of all bounded input-output pairs $(u, y=P u)$. Both u and y belong to the Hardy space $H^{2}\left(\mathbb{C}_{+}\right)$of the right half-plane; the graph is a closed subspace of $H^{2}\left(\mathbb{C}_{+}\right)+H^{2}\left(\mathbb{C}_{+}\right)$. In fact, $G(P)$ is a closed subspace of $H^{2}\left(\mathbb{C}^{2}\right)$, and $G(P)=f(P) \cdot H^{2}\left(\mathbb{C}^{2}\right)$ for some function $f(P)$, called the graph symbol.

Cf. a dynamical system and the Melnikov distance.

- Gap metric

The gap metric between plants P_{1} and P_{2} (Zames-El-Sakkary, 1980) is defined by

$$
\operatorname{gap}\left(P_{1}, P_{2}\right)=\left\|\Pi\left(P_{1}\right)-\Pi\left(P_{2}\right)\right\|_{2},
$$

where $\Pi\left(P_{i}\right), i=1,2$, is the orthogonal projection of the graph $G\left(P_{i}\right)$ of P_{i} seen as a closed subspace of $H^{2}\left(\mathbb{C}^{2}\right)$. We have

$$
\operatorname{gap}\left(P_{1}, P_{2}\right)=\max \left\{\delta_{1}\left(P_{1}, P_{2}\right), \delta_{1}\left(P_{2}, P_{1}\right)\right\},
$$

where $\delta_{1}\left(P_{1}, P_{2}\right)=\inf _{Q \in H^{\infty}}\left\|f\left(P_{1}\right)-f\left(P_{2}\right) Q\right\|_{H^{\infty}}$, and $f(P)$ is a graph symbol.
Here H^{∞} is the space of matrix-valued functions that are analytic and bounded in the open right half-plane $\{s \in \mathbb{C}: \mathfrak{R} s>0\}$; the H^{∞}-norm is the maximum singular value of the function over this space.
If A is an $m \times n$ matrix with $m<n$, then its n columns span an n-dimensional subspace, and the matrix B of the orthogonal projection onto the column space of A is $A\left(A^{T} A\right)^{-1} A^{T}$. If the basis is orthonormal, then $B=A A^{T}$.
In general, the gap metric between two subspaces of the same dimension is the l_{2}-norm of the difference of their orthogonal projections; see also the definition of this distance as an angle distance between subspaces.
In applications, when subspaces correspond to autoregressive models, the Frobenius norm is used instead of the l_{2}-norm. Cf. Frobenius distance in Chap. 12.

- Vidyasagar metric

The Vidyasagar metric (or graph metric) between plants P_{1} and P_{2} is defined by

$$
\max \left\{\delta_{2}\left(P_{1}, P_{2}\right), \delta_{2}\left(P_{2}, P_{1}\right)\right\},
$$

where $\delta_{2}\left(P_{1}, P_{2}\right)=\inf _{\|Q\| \leq 1}\left\|f\left(P_{1}\right)-f\left(P_{2}\right) Q\right\|_{H} \infty$.
The behavioral distance is the gap between extended graphs of P_{1} and P_{2}; a term is added to the graph $G(P)$, in order to reflect all possible initial conditions (instead of the usual setup with the initial conditions being zero).

- Vinnicombe metric

The Vinnicombe metric (ν-gap metric) between plants P_{1} and P_{2} is defined by

$$
\delta_{v}\left(P_{1}, P_{2}\right)=\left\|\left(1+P_{2} P_{2}^{*}\right)^{-\frac{1}{2}}\left(P_{2}-P_{1}\right)\left(1+P_{1}^{*} P_{1}\right)^{-\frac{1}{2}}\right\|_{\infty}
$$

if wno $\left(f^{*}\left(P_{2}\right) f\left(P_{1}\right)\right)=0$, and it is equal to 1 , otherwise.
Here $f(P)$ is the graph symbol function of plant P. See [Youn98] for the definition of the winding number wno (f) of a rational function f and for a good introduction to Feedback Stabilization.

- Lanzon-Papageorgiou quasi-distance

Given a plant P, a perturbed plant \hat{P} and an uncertainty structure expressed via a generalized plant H, let Δ be the set of all possible perturbations that explain the discrepancy between P and \hat{P}. Then Lanzon-Papageorgiou quasi-distance (2009) between P and \hat{P} is defined as ∞ if $\Delta=\emptyset$ and $\inf _{\delta \in \Delta}\|\delta\|_{\infty}$, otherwise. This quasi-distance corresponds to the worst-case degradation of the stability margin due to a plant perturbation. For standard uncertainity structures H, it is a metric, but it is only a quasi-metric for multiplicative uncertainity.

- Distance to uncontrollability

Linear Control Theory concerns a system of the form $\bar{x}=A x(t)+B u(t)$, where, at each time $t, x(t) \in \mathbb{C}^{n}$ is the state vector, $u(t) \in \mathbb{C}^{m}$ is the control input vector, and $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times m}$ are the given matrices. The system (matrix pair $(A, B))$ is called controllable if, for any initial and final states $x(0)$ and $x(T)$, there exists $u(t), 0 \leq t \leq T$, that drive the state from $x(0)$ to $x(T)$ within finite time, or, equivalently (Kalman, 1963) the matrix $A-\lambda I B$ has full row rank for all $\lambda \in \mathbb{C}$.
The distance to uncontrollability (Paige, 1981, and Eising, 1984) is defined as

$$
\min \{\|[E, F]\|:(A+E, B+F) \text { is uncontrollable }\}=\min _{\lambda \in \mathbb{C}} \sigma_{n}(A-\lambda I B),
$$

where $\|$.$\| is the spectral or Frobenius norm (cf. Sect. 12.3) and \sigma_{n}(A-\lambda I B)$ denotes the n-th largest singular value of the $(n \times(n+m))$-matrix $A-\lambda I B$. A matrix $A \in \mathbb{C}^{n \times n}$ is stable if any its eigenvalue λ has real part $\operatorname{Re}(\lambda)<0$. The distance to instability is (Van Loan, 1985) $\min \{\|E\|\}: A+E$ is unstable $\}$, where $\|$.$\| is one of two above norms. Cf. nearness matrix problems in$ Chap. 12.

18.3 Motion Planning Distances

Automatic motion planning methods are applied in Robotics, Virtual Reality Systems and Computer Aided Design. A motion planning metric is a metric used in automatic motion planning methods.

Let a robot be a finite collection of rigid links organized in a kinematic hierarchy. If the robot has n degrees of freedom, this leads to an n-dimensional manifold C,
called the configuration space (or C-space) of the robot. The workspace W of the robot is the space (usually, \mathbb{E}^{3}) in which the robot moves. Usually, it is modeled as the Euclidean space \mathbb{E}^{3}. A workspace metric is a motion planning metric in the workspace \mathbb{R}^{3}.

The obstacle region $C B$ is the set of all configurations $q \in C$ that either cause the robot to collide with obstacles B, or cause different links of the robot to collide among themselves. The closure $c l\left(C_{\text {free }}\right)$ of $C_{\text {free }}=C \backslash\{C B\}$ is called the space of collision-free configurations. A motion planning algorithm must find a collisionfree path from an initial configuration to a goal configuration.

A configuration metric is a motion planning metric on the configuration space C of a robot. Usually, the configuration space C consists of six-tuples $(x, y, z, \alpha, \beta, \gamma)$, where the first three coordinates define the position, and the last three the orientation. The orientation coordinates are the angles in radians.

Intuitively, a good measure of the distance between two configurations is a measure of the workspace region swept by the robot as it moves between them (the swept volume distance). However, the computation of such a metric is prohibitively expensive.

The simplest approach has been to consider the C-space as a Cartesian space and to use Euclidean distance or its generalizations. For such configuration metrics, one normalizes the orientation coordinates so that they get the same magnitude as the position coordinates. Roughly, one multiplies the orientation coordinates by the maximum x, y or z range of the workspace bounding box. Examples of such metrics are given below.

More generally, the configuration space of a 3D rigid body can be identified with the Lie group $\operatorname{ISO(3)}: C \cong \mathbb{R}^{3} \times \mathbb{R} P^{3}$. The general form of a matrix in $\operatorname{ISO}(3)$ is given by

$$
\left(\begin{array}{ll}
R & X \\
0 & 1
\end{array}\right)
$$

where $R \in S O(3) \cong \mathbb{R} P^{3}$, and $X \in \mathbb{R}^{3}$.
If X_{q} and R_{q} represent the translation and rotation components of the configuration $q=\left(X_{q}, R_{q}\right) \in I S O(3)$, then a configuration metric between configurations q and r is given by $w_{t r}\left\|X_{q}-X_{r}\right\|+w_{r o t} f\left(R_{q}, R_{r}\right)$, where the translation distance $\left\|X_{q}-X_{r}\right\|$ is obtained using some norm $\|$.$\| on \mathbb{R}^{3}$, and the rotation distance $f\left(R_{q}, R_{r}\right)$ is a positive scalar function which gives the distance between the rotations $R_{q}, R_{r} \in S O(3)$. The rotation distance is scaled relative to the translation distance via the weights $w_{t r}, w_{r o t}$.

There are many other types of metrics used in motion planning methods, in particular, the Riemannian metrics, the Hausdorff metric and, in Chap.9, the separation distance, the penetration depth distance and the growth distances.

- Weighted Euclidean \mathbb{R}^{6}-distance

The weighted Euclidean \mathbb{R}^{6}-distance is a configuration metric on \mathbb{R}^{6} defined, for any $x, y \in \mathbb{R}^{6}$, by

$$
\left(\sum_{i=1}^{3}\left|x_{i}-y_{i}\right|^{2}+\sum_{i=4}^{6}\left(w_{i}\left|x_{i}-y_{i}\right|\right)^{2}\right)^{\frac{1}{2}}
$$

where $x=\left(x_{1}, \ldots, x_{6}\right), x_{1}, x_{2}, x_{3}$ are the position coordinates, x_{4}, x_{5}, x_{6} are the orientation coordinates, and w_{i} is the normalization factor. Cf. the general, i.e., in \mathbb{R}^{n}, weighted Euclidean distance in Chap. 17.
The scaled weighted Euclidean \mathbb{R}^{6}-distance is defined, for any $x, y \in \mathbb{R}^{6}$, by

$$
\left(s \sum_{i=1}^{3}\left|x_{i}-y_{i}\right|^{2}+(1-s) \sum_{i=4}^{6}\left(w_{i}\left|x_{i}-y_{i}\right|\right)^{2}\right)^{\frac{1}{2}}
$$

This distance changes the relative importance of the position and orientation components through the scale parameter s.

- Weighted Minkowskian distance The weighted Minkowskian distance is a configuration metric on \mathbb{R}^{6} defined, for any $x, y \in \mathbb{R}^{6}$, by

$$
\left(\sum_{i=1}^{3}\left|x_{i}-y_{i}\right|^{p}+\sum_{i=4}^{6}\left(w_{i}\left|x_{i}-y_{i}\right|\right)^{p}\right)^{\frac{1}{p}}
$$

It gives the same importance to both position and orientation.

- Modified Minkowskian distance

The modified Minkowskian distance is a configuration metric on \mathbb{R}^{6} defined, for any $x, y \in \mathbb{R}^{6}$, by

$$
\left(\sum_{i=1}^{3}\left|x_{i}-y_{i}\right|^{p_{1}}+\sum_{i=4}^{6}\left(w_{i}\left|x_{i}-y_{i}\right|\right)^{p_{2}}\right)^{\frac{1}{p_{3}}}
$$

It distinguishes between position and orientation coordinates using the parameters $p_{1} \geq 1$ (for the position) and $p_{2} \geq 1$ (for the orientation).

- Weighted Manhattan distance

The weighted Manhattan distance is a configuration metric on \mathbb{R}^{6} defined, for any $x, y \in \mathbb{R}^{6}$, by

$$
\sum_{i=1}^{3}\left|x_{i}-y_{i}\right|+\sum_{i=4}^{6} w_{i}\left|x_{i}-y_{i}\right|
$$

- Robot displacement metric

The robot displacement metric (or DISP distance, Latombe, 1991, and LaValle, 2006) is a configuration metric on a configuration space C of a robot defined by

$$
\max _{a \in A}\|a(q)-a(r)\|
$$

for any two configurations $q, r \in C$, where $a(q)$ is the position of the point a in the workspace \mathbb{R}^{3} when the robot is at configuration q, and $\|$.$\| is one of$ the norms on \mathbb{R}^{3}, usually the Euclidean norm. Intuitively, this metric yields the maximum amount in workspace that any part of the robot is displaced when moving from one configuration to another (cf. bounded box metric).

- Euler angle metric

The Euler angle metric is a rotation metric on the group $S O$ (3) (for the case of using three-Heading-Elevation-Bank-Euler angles to describe the orientation of a rigid body) defined by

$$
w_{\text {rot }} \sqrt{\Delta\left(\theta_{1}, \theta_{2}\right)^{2}+\Delta\left(\phi_{1}, \phi_{2}\right)^{2}+\Delta\left(\eta_{1}, \eta_{2}\right)^{2}}
$$

for all $R_{1}, R_{2} \in S O(3)$, given by Euler angles $\left(\theta_{1}, \phi_{1}, \eta_{1}\right),\left(\theta_{2}, \phi_{2}, \eta_{2}\right)$, respectively, where $\Delta\left(\theta_{1}, \theta_{2}\right)=\min \left\{\left|\theta_{1}-\theta_{2}\right|, 2 \pi-\left|\theta_{1}-\theta_{2}\right|\right\}, \theta_{i} \in[0,2 \pi]$, is the metric between angles, and $w_{\text {rot }}$ is a scaling factor.

- Unit quaternions metric

The unit quaternions metric is a rotation metric on the unit quaternion representation of $S O(3)$, i.e., a representation of $S O(3)$ as the set of points (unit quaternions) on the unit sphere S^{3} in \mathbb{R}^{4} with identified antipodal points ($q \sim-q$).
This representation of $S O(3)$ suggested a number of possible metrics on it, for example, the following ones:

1. $\min \{\|q-r\|,\|q+r\|\}$,
2. $\left\|\ln \left(q^{-1} r\right)\right\|$,
3. $w_{\text {rot }}(1-|\lambda|)$,
4. $\arccos |\lambda|$,
where $q=q_{1}+q_{2} i+q_{3} j+q_{4} k, \sum_{i=1}^{4} q_{i}^{2}=1,\|$.$\| is a norm on \mathbb{R}^{4}, \lambda=$ $\langle q, r\rangle=\sum_{i=1}^{4} q_{i} r_{i}$, and $w_{\text {rot }}$ is a scaling factor.

- Center of mass metric

The center of mass metric is a workspace metric, defined as the Euclidean distance between the centers of mass of the robot in the two configurations. The center of mass is approximated by averaging all object vertices.

- Bounded box metric

The bounded box metric is a workspace metric defined as the maximum Euclidean distance between any vertex of the bounding box of the robot in one configuration and its corresponding vertex in the other configuration.
The box metric in Chap. 4 is unrelated.

- Pose distance

A pose distance provides a measure of dissimilarity between actions of agents (including robots and humans) for Learning by Imitation in Robotics.

In this context, agents are considered as kinematic chains, and are represented in the form of a kinematic tree, such that every link in the kinematic chain is represented by a unique edge in the corresponding tree.
The configuration of the chain is represented by the pose of the corresponding tree which is obtained by an assignment of the pair $\left(n_{i}, l_{i}\right)$ to every edge e_{i}. Here n_{i} is the unit normal, representing the orientation of the corresponding link in the chain, and l_{i} is the length of the link.
The pose class consists of all poses of a given kinematic tree. One of the possible pose distances is a distance on a given pose class which is the sum of measures of dissimilarity for every pair of compatible segments in the two given poses.
Another way is to view a pose $D(m)$ in the context of the a precedent and a subsequent frames as a $3 D$ point cloud $\left\{D^{j}(i): m-a \leq i \leq m+a, j \in J\right\}$, where J is the joint set. The set $D(m)$ contains $k=|J|(2 a+1)$ points (joint positions) $p_{i}=\left(x_{i}, y_{i}, z_{i}\right), 1 \leq i \leq k$. Let $T_{\theta, x, z}$ denote the linear transformation which simultaneously rotates all points of a point cloud about the y axis by an angle $\theta \in[0.2 \pi]$ and then shifts the resulting points in the $x z$ plane by a vector $(x, 0, z) \in \mathbb{R}^{3}$. Then the 3D point cloud distance (Kover and Gleicher, 2002) between the poses $D(m)=\left(p_{i}\right)_{i \in[1, k]}$ and $D(n)=\left(q_{i}\right)_{i \in[1, k]}$ is defined as

$$
\min _{\theta, x, z}\left\{\sum_{i=1}^{k}\left\|p_{i}-T_{\theta, x, z}\left(q_{i}\right)\right\|_{2}^{2}\right\} .
$$

Cf. Procrustes distance in Chap. 21.

- Joint angle metric

For a given frame (or pose) i in an animation, let us define $p_{i} \in \mathbb{R}^{3}$ as the global (root) position and $q_{i, k} \in S^{3}$ as the unit quaternion describing the orientation of a joint k from the joint set J. Cf. unit quaternions metric and 3D point cloud distance. The joint angle metric between frames x and y is defined as follows:

$$
\left|p_{x}-p_{y}\right|^{2}+\sum_{k \in J} w_{k}\left|\log \left(q_{y, k}^{-1} q_{x, k}\right)\right|^{2}
$$

The second term describes the weighted sum of the orientation differences; cf. weighted Euclidean \mathbb{R}^{6}-distance. Sometimes, the terms expressing differences in derivatives, such as joint velocity and acceleration, are added.

- Millibot train metrics

In Microbotics (the field of miniature mobile robots), nanorobot, microrobot, millirobot, minirobot, and small robot are terms for robots with characteristic dimensions at most one micrometer, $\mathrm{mm}, \mathrm{cm}, \mathrm{dm}$, and m , respectively.
A millibot train is a team of heterogeneous, resource-limited millirobots which can collectively share information. They are able to fuse range information from a variety of different platforms to build a global occupancy map that represents a single collective view of the environment.

In the construction of a motion planning metric of millibot trains, one casts a series of random points about a robot and poses each point as a candidate position for movement. The point with the highest overall utility is then selected, and the robot is directed to that point. Thus:
the free space metric, determined by free space contours, only allows candidate points that do not drive the robot through obstructions;
the obstacle avoidance metric penalizes for moves that get too close to obstacles;
the frontier metric rewards for moves that take the robot towards open space;
the formation metric rewards for moves that maintain formation;
the localization metric, based on the separation angle between one or more localization pairs, rewards for moves that maximize localization (see [GKC04]). Cf. collision avoidance distance and piano movers distance in Chap. 19.
A swarm-bot can form more complex (more sensors and actuators) and flexible (interconnecting at several angles and with less accuracy) configurations.
The wingspan range of flying robots includes 2.8 cm (quadcopter Lisa/S) and 40 m (Global Hawk). During 2012, a robot Papa Mau (PacX Wave Glider), piloted remotely, swam 16,668 km from San Francisco to Australia.

18.4 MOEA Distances

Most optimization problems have several objectives but, for simplicity, only one of them is optimized, and the others are handled as constraints. Multi-objective optimization considers (besides some inequality constraints) an objective vector function $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ from the search (or genotype, decision variables) space X to the objective (or phenotype, decision vectors) space $f(X)=\{f(x)$: $x \in X\} \subset \mathbb{R}^{k}$.

A point $x^{*} \in X$ is a Pareto-optimal solution if, for every other $x \in X$, the decision vector $f(x)$ does not Pareto-dominate $f\left(x^{*}\right)$, i.e., $f(x) \leq f\left(x^{*}\right)$. The Pareto-optimal front is the set $P F^{*}=\left\{f(x): x \in X^{*}\right\}$, where X^{*} is the set of all Pareto-optimal solutions.

Multi-objective evolutionary algorithms (MOEA) produce, at each generation, an approximation set (the found Pareto front $P F_{\text {known }}$ approximating the desired Pareto front $P F^{*}$) in objective space in which no element Pareto-dominates another element. Examples of MOEA metrics, i.e., measures evaluating how close $P F_{\text {known }}$ is to $P F^{*}$, follow.

- Generational distance

 The generational distance is defined by$$
\frac{\left(\sum_{j=1}^{m} d_{j}^{2}\right)^{\frac{1}{2}}}{m}
$$

where $m=\left|P F_{\text {known }}\right|$, and d_{j} is the Euclidean distance (in the objective space) between $f^{j}(x)$ (i.e., j-th member of $P F_{\text {known }}$) and the nearest member of $P F^{*}$. This distance is zero if and only if $P F_{\text {known }}=P F^{*}$.
The term generational distance (or rate of turnover) is also used for the minimal number of branches between two positions in any system of ranked descent represented by a hierarchical tree. Examples are: phylogenetic distance on a phylogenetic tree (cf. Chap. 23), the number of generations separating a photocopy from the original block print, and the number of generations separating the audience at a memorial from the commemorated event.

- Spacing

The spacing is defined by

$$
\left(\frac{\sum_{j=1}^{m}\left(\bar{d}-d_{j}\right)^{2}}{m-1}\right)^{\frac{1}{2}}
$$

where $m=\left|P F_{\text {known }}\right|, d_{j}$ is the L_{1}-metric (in the objective space) between $f^{j}(x)$ (i.e., j-th member of $P F_{\text {known }}$) and the nearest other member of $P F_{\text {known }}$, while \bar{d} is the mean of all d_{j}.

- Overall nondominated vector ratio The overall nondominated vector ratio is defined by

$$
\frac{\left|P F_{\text {known }}\right|}{\left|P F^{*}\right|} .
$$

- Crowding distance

The crowding distance (Deb et al., 2002) is a diversity metric assigned to each Pareto-optimal solution. It is the sum, for all objectives, of the absolute difference of the objective values of two nearest solutions on each side, if they exist. The boundary solutions, i.e., those with the smallest or the highest such value, are assigned an infinite crowding distance.

Part V
 Computer-Related Distances

Chapter 19
 Distances on Real and Digital Planes

19.1 Metrics on Real Plane

Any L_{p}-metric (as well as any norm metric for a given norm $\|$.$\| on \mathbb{R}^{2}$) can be used on the plane \mathbb{R}^{2}, and the most natural is the L_{2}-metric, i.e., the Euclidean metric $d_{E}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ which gives the length of the straight line segment $[x, y]$, and is the intrinsic metric of the plane.

However, there are other, often "exotic", metrics on \mathbb{R}^{2}. Many of them are used for the construction of generalized Voronoi diagrams on \mathbb{R}^{2} (see, for example, Moscow metric, network metric, nice metric). Some of them are used in Digital Geometry.

- Erdős-type distance problems

Those distance problems were given by Erdős and his collaborators, usually, for the Euclidean metric on \mathbb{R}^{2}, but they are of interest for \mathbb{R}^{n} and for other metrics on \mathbb{R}^{2}. Examples of such problems are to find out:
the least number of different distances (or largest occurrence of a given distance) in an m-subset of \mathbb{R}^{2}; the largest cardinality of a subset of \mathbb{R}^{2} determining at most m distances;
the minimum diameter of an m-subset of \mathbb{R}^{2} with only integral distances (or, say, without a pair $\left(d_{1}, d_{2}\right)$ of distances with $\left.0<\left|d_{1}-d_{2}\right|<1\right)$;
the Erdös-diameter of a given set S, i.e., the minimum diameter of a rescaled set $r S, r>0$, in which any two different positive distances differ at least by one;
the largest cardinality of an isosceles set in \mathbb{R}^{2}, i.e., a set of points, any three of which form an isosceles triangle;
existence of an m-subset of \mathbb{R}^{2} with, for each $1 \leq i \leq m$, a distance occurring exactly i times (examples are known for $m \leq 8$);
existence of a dense subset of \mathbb{R}^{2} with rational distances (Ulam problem); existence of $m, m>7$, noncollinear points of \mathbb{R}^{2} with integral distances; forbidden (not occurring within each part) distances of a partition of \mathbb{R}^{2}.

The general Erdős distinct distances problem, still open for $n>2$, is to prove that if $A \subset \mathbb{R}^{n},|A|=m$ and $d(A)$ denotes the set $\left\{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}: x, y \in A\right\}$, then $|d(A)| \geq C m^{\frac{n}{2}}$ for some constant $C>0$. This problem was generalized for distinct "distances" (cf. Chap. 3) over a finite field. Also, its continuous analog, open Falconer distance problem is to prove that if the Hausdorff dimension of $A \subset \mathbb{R}^{n}$ is $>\frac{n}{2}$, then 1-dimensional Lebesque measure of $d(A)$ is positive. Related result in Quas, 2009: if the upper density of $A \subset \mathbb{R}^{n}$ is positive, then there is $r_{0}>0$ such that for any $r>r_{0}$, there are $x, y \in A$ with $d_{E}(x, y)=r$.
The three-distance theorem (Sós, 1957): given $a \in(0,1)$ and $n \in \mathbb{N}$, the points $\{0\},\{a\},\{2 a\}, \ldots,\{n a\}(\bmod 1)$ on the circle of perimeter 1, partition it into $n+1$ intervals having at most three lengths, one being the sum of the other two.

- Distance inequalities in a triangle

The multitude of inequalities, involving Euclidean distances between points of \mathbb{R}^{n}, is represented below by some distance inequalities in a triangle.
Let $\triangle A B C$ be a triangle on \mathbb{R}^{2} with side-lengths $a=d(B, C), b=d(C, A), c=$ $d(A, B)$ and area $\mathcal{A}=\frac{1}{4} \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{4}+b^{4}+c^{4}\right)}$.
Let P, P^{\prime} be two arbitrary interior points in $\triangle A B C$. Denote by D_{A}, D_{B}, D_{C} the distances $d(P, A), d(P, B), d(P, C)$ and by d_{A}, d_{B}, d_{C} the point-line distances (cf. Chap.4) from P to the sides $B C, C A, A B$ opposite to A, B, C. For the point P^{\prime} define $D_{A}^{\prime}, D_{B}^{\prime}, D_{C}^{\prime}$ and $d_{A}^{\prime}, d_{B}^{\prime}, d_{C}^{\prime}$ similarly.
The point P is circumcenter if $D_{A}=D_{B}=D_{C}$; this distance, $R=\frac{a b c}{4 \mathcal{A}}$, is circumcircle's radius. The point P is incenter if $d_{A}=d_{B}=d_{C}$; this distance, $r=\frac{2 \mathcal{A}}{a+b+c}$, is incircle's radius. The centroid (the center of mass) is the point G of concurrency of three triangle's medians m_{a}, m_{b}, m_{c}; it holds $d(A, G)=\frac{2}{3} m_{a}, d(B, G)=\frac{2}{3} m_{b}, d(C, G)=\frac{2}{3} m_{c}$. The symmedian point is the point of concurrency of three triangle's symmedians (reflections of medians at corresponding angle bisectors).
The orthocenter is the point of concurrency of three triangle's altitudes. The centroid is situated on the Euler line through the circumcenter and the orthocenter, at $\frac{1}{3}$ of their distance. At $\frac{1}{2}$ of their distance lies the center of the circle going through the midpoints of three sides and the feet of three altitudes.

- If P and P^{\prime} are the circumcenter and incenter of $\triangle A B C$, then (Euler, 1765)

$$
d^{2}\left(P, P^{\prime}\right) \geq R(R-2 r)
$$

holds implying $R \geq 2 r$ with equality if and only if triangle is equilateral. In fact, the general Euler's inequality $R \geq n r$ holds (Klamkin-Tsintsifas, 1979) for the radii R, r of circumscribed and inscribed spheres of an n-simplex.

- For any P, P^{\prime}, the Erdös-Mordell inequality (Mordell-Barrow, 1937) is

$$
D_{A}+D_{B}+D_{C} \geq 2\left(d_{A}+d_{B}+d_{C}\right)
$$

Liu, 2008, generalized above as follows: for all $x, y, z \geq 0$ it holds

$$
\begin{aligned}
& \sqrt{D_{A} D_{A}^{\prime}} x^{2}+\sqrt{D_{B} D_{B}^{\prime}} y^{2}+\sqrt{D_{C} D_{C}^{\prime}} z^{2} \\
& \geq 2\left(\sqrt{d_{A} d_{A}^{\prime}} y z+\sqrt{d_{B} d_{B}^{\prime}} x z+\sqrt{d_{C} d_{C}^{\prime}} x y\right) .
\end{aligned}
$$

- Lemoine, 1873, proved that

$$
\frac{4 \mathcal{A}^{2}}{a^{2}+b^{2}+c^{2}} \leq d_{A}^{2}+d_{B}^{2}+d_{C}^{2}
$$

with equality if and only if P is the symmedian point.

- Posamentier and Salkind, 1996, showed

$$
\frac{3}{4}(a+b+c)<m_{a}+m_{b}+m_{c}<a+b+c, \text { while } \frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)=m_{a}^{2}+m_{b}^{2}+m_{c}^{2} .
$$

- Kimberling, 2010, proved that

$$
d_{A} d_{B} d_{C} \leq \frac{8 \mathcal{A}^{3}}{27 a b c}
$$

with equality if and only if P is the centroid.
He also gave (together with unique point realizing equality) inequality

$$
\frac{(2 \mathcal{A})^{q}}{\left(a^{\frac{2}{q-1}}+b^{\frac{2}{q-1}}+c^{\frac{2}{q-1}}\right)^{q-1}} \leq d_{A}^{q}+d_{B}^{q}+d_{C}^{q}
$$

for any $q<0$ or $q>1$. For $0<q<1$, the reverse inequality holds.
The side-lengths $d(A, B), d(B, C), d(C, A)$ of a right triangle are in arithmetic progression only if their ratio is $3: 4: 5$. They are in geometric progression only if their ratio is $1: \sqrt{\varphi}: \varphi$, where φ is the golden section $\frac{1+\sqrt{5}}{2}$.

- City-block metric

The city-block metric is the L_{1}-metric on \mathbb{R}^{2} defined by

$$
\left|\left|x-y \|_{1}=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| .\right.\right.
$$

It is also called the taxicab metric, Manhattan metric, rectilinear metric, right-angle metric, 4 -metric and, on \mathbb{Z}^{n}, grid metric. The von Neumann neighborhood of a point is the set of points at a Manhattan distance of 1 from it.

- Chebyshev metric

The Chebyshev metric (or chessboard metric, king-move metric, 8-metric) is the L_{∞}-metric on \mathbb{R}^{2} defined by

$$
\|x-y\|_{\infty}=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\} .
$$

On \mathbb{Z}^{n}, this metric is called also the lattice (or uniform, sup) metric. A point's Moore neighborhood is the set of points at a Chebyshev distance of 1 .

- α-metric

Given $\alpha \in\left[0, \frac{\pi}{4}\right]$, the α-metric for $x, y \in \mathbb{R}^{2}$ is defined (Tian, 2005) by
$d_{\alpha}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}-(\sec \alpha-\tan \alpha) \min \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right.$.
It is the city-block metric if $\alpha=0$. For $\alpha=\frac{\pi}{4}$, i.e., $\sec \alpha-\tan \alpha=\sqrt{2}-1$, it is the Chinese checkers metric (Chen, 1992). Chinese checkers (as well as Hexagonal chess, Masonic chess, Sannin shogi, Hexshogi) is a strategy board game with hexagonal cells, while Tiangular chess, Tri-chess, Trishogi have triangular cells. Cf. hexagonal metric. Gelişgen and Kaya, 2006, generalized α-metric on \mathbb{R}^{n}.

- Relative metrics on \mathbb{R}^{2}

The (p, q)-relative and M-relative metrics are defined in Chap. 5 on any Ptolemaic space. The (p, q)-relative metric on \mathbb{R}^{2} (in general, on \mathbb{R}^{n}) is defined (for x or $y \neq 0$) in the cases $1 \leq p<\infty$ and $p=\infty$, respectively, by

$$
\frac{\|x-y\|_{2}}{\left(\frac{1}{2}\left(\|x\|_{2}^{p}+\|y\|_{2}^{p}\right)\right)^{\frac{q}{p}}} \text { and } \frac{\|x-y\|_{2}}{\left(\max \left\{\|x\|_{2},\|y\|_{2}\right\}\right)^{q}}
$$

Let $f:[0, \infty) \rightarrow(0, \infty)$ be a convex increasing function such that $\frac{f(x)}{x}$ is decreasing for $x>0$. The M-relative metric on \mathbb{R}^{2} (in general, on \mathbb{R}^{n}), is defined by

$$
\frac{\|x-y\|_{2}}{f\left(\|x\|_{2}\right) \cdot f\left(\|y\|_{2}\right)}
$$

In particular, the distance below is a metric if and only if $p \geq 1$:

$$
\frac{\|x-y\|_{2}}{\sqrt[p]{1+\|x\|_{2}^{p}} \sqrt[p]{1+\|y\|_{2}^{p}}}
$$

A similar metric on $\mathbb{R}^{2} \backslash\{0\}$ (in general, on $\mathbb{R}^{n} \backslash\{0\}$) is defined by $\frac{\|x-y\|_{2}}{\|x\|_{2} \cdot\|y\|_{2}}$.

- MBR metric

The MBR metric (Schönemann, 1982, for bounded response scales in Psychology) is a metric $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)$ on \mathbb{R}^{2}, defined by

$$
\frac{\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|}{1+\left|x_{1}-y_{1}\right|\left|x_{2}-y_{2}\right|}=\tanh \left(\operatorname{arctanh}\left(\left|x_{1}-y_{1}\right|\right)+\operatorname{arctanh}\left(\left|x_{2}-y_{2}\right|\right)\right)
$$

- Moscow metric

The Moscow metric (or Karlsruhe metric) is a metric on \mathbb{R}^{2}, defined as the minimum Euclidean length of all admissible connecting curves between x and
$y \in \mathbb{R}^{2}$, where a curve is called admissible if it consists only of radial streets (segments of straight lines passing through the origin) and circular avenues (segments of circles centered at the origin); see, for example, [Klei88]).
If the polar coordinates for points $x, y \in \mathbb{R}^{2}$ are $\left(r_{x}, \theta_{x}\right),\left(r_{y}, \theta_{y}\right)$, respectively, then the distance between them is equal to $\min \left\{r_{x}, r_{y}\right\} \Delta\left(\theta_{x}-\theta_{y}\right)+\left|r_{x}-r_{y}\right|$ if $0 \leq \Delta\left(\theta_{x}, \theta_{y}\right)<2$, and is equal to $r_{x}+r_{y}$ if $2 \leq \Delta\left(\theta_{x}, \theta_{y}\right)<\pi$, where $\Delta\left(\theta_{x}, \theta_{y}\right)=\min \left\{\left|\theta_{x}-\theta_{y}\right|, 2 \pi-\left|\theta_{x}-\theta_{y}\right|\right\}, \theta_{x}, \theta_{y} \in[0,2 \pi)$, is the metric between angles.

- French Metro metric

Given a norm $\|$.$\| on \mathbb{R}^{2}$, the French Metro metric is a metric on \mathbb{R}^{2} defined by

$$
\|x-y\| \text { if } x=c y \text { for some } 0 \neq c \in \mathbb{R} \text { (i.e., } x_{1} y_{2}=x_{2} y_{1} \text {), }
$$

and by

$$
\|x\|+\|y\|, \text { otherwise. }
$$

For the Euclidean norm $\|.\|_{2}$, it is called the Paris metric, radial metric, hedgehog metric, or French railroad metric, enhanced SNCF metric.
In this case it can be defined as the minimum Euclidean length of all admissible connecting curves between two given points x and y, where a curve is called admissible if it consists only of segments of straight lines passing through the origin.
In graph terms, this metric is similar to the path metric of the tree consisting of a point from which radiate several disjoint paths. In the case when only one line radiates from the point, this metric is called the train metric.
The Paris metric is an example of an \mathbb{R}-tree T which is simplicial, i.e., its set of points x with $T \backslash\{x\}$ not having exactly two components, is discrete and closed.

- Lift metric

The lift metric (or jungle river metric, raspberry picker metric, barbed wire metric) is a metric $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)$ on \mathbb{R}^{2} defined (see, for example, [Brya85]) by

$$
\left|x_{1}-y_{1}\right| \text { if } x_{2}=y_{2},
$$

and by

$$
\left|x_{1}\right|+\left|x_{2}-y_{2}\right|+\left|y_{1}\right| \text { if } x_{2} \neq y_{2} .
$$

It is the minimum Euclidean length of all admissible (consisting only of segments of straight lines parallel to the x_{1} axis and segments of the x_{2} axis) connecting curves between points $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$.
The lift metric is an nonsimplicial (cf. French Metro metric) \mathbb{R}-tree.

- Radar screen metric

Given a norm $\|$.$\| on \mathbb{R}^{2}\left(\right.$ in general, on $\left.\mathbb{R}^{n}\right)$, the radar screen metric is a special case of the t-truncated metric (Chap. 4) defined by

$$
\min \{1,\|x-y\|\}
$$

- British Rail metric

Given a norm $\|$.$\| on \mathbb{R}^{2}$ (in general, on \mathbb{R}^{n}), the British Rail metric is a metric defined as 0 for $x=y$ and, otherwise, by

$$
\|x\|+\|y\| .
$$

It is also called the Post Office metric, caterpillar metric and shuttle metric.

- Flower-shop metric

Let d be a metric on \mathbb{R}^{2}, and let f be a fixed point (a flower-shop) in the plane. The flower-shop metric (sometimes called SNCF metric) is a metric on \mathbb{R}^{2} (in general, on any metric space) defined by

$$
d(x, f)+d(f, y)
$$

for $x \neq y$ (and is equal to 0 , otherwise). So, a person living at point x, who wants to visit someone else living at point y, first goes to f, to buy some flowers. In the case $d(x, y)=\|x-y\|$ and the point f being the origin, it is the British Rail metric.
If $k>1$ flower-shops f_{1}, \ldots, f_{k} are available, one buys the flowers, where the detour is a minimum, i.e., the distance between distinct points x, y is equal to $\min _{1 \leq i \leq k}\left\{d\left(x, f_{i}\right)+d\left(f_{i}, y\right)\right\}$.

- Rickman's rug metric

Given a number $\alpha \in(0,1)$, the Rickman's rug metric on \mathbb{R}^{2} is a 2 D case of the parabolic distance (Chap. 6) defined by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|^{\alpha} .
$$

- Burago-Burago-Ivanov metric

The Burago-Burago-Ivanov metric [BBI01] is a metric on \mathbb{R}^{2} defined by

$$
\left|\|x\|_{2}-\|y\|_{2}\right|+\min \left\{\|x\|_{2},\|y\|_{2}\right\} \cdot \sqrt{\angle(x, y)}
$$

where $\angle(x, y)$ is the angle between vectors x and y, and $\|.\|_{2}$ is the Euclidean norm on \mathbb{R}^{2}. The corresponding internal metric on \mathbb{R}^{2} is equal to $\left|\left|x\left\|_{2}-\right\| y \|_{2}\right|\right.$ if $\angle(x, y)=0$, and is equal to $\|x\|_{2}+\|y\|_{2}$, otherwise.

- $2 n$-gon metric

Given a centrally symmetric regular $2 n$-gon K on the plane, the $2 n$-gon metric is a metric on \mathbb{R}^{2} defined, for any $x, y \in \mathbb{R}^{2}$, as the shortest Euclidean length of a polygonal line from x to y with each of its sides parallel to some edge of K.

If K is a square with the vertices $\{(\pm 1, \pm 1)\}$, one obtains the Manhat$\boldsymbol{t a n}$ metric. The Manhattan metric arises also as the Minkowskian metric with the unit ball being the diamond, i.e., a square with the vertices $\{(1,0),(0,1),(-1,0),(0,-1)\}$.

- Fixed orientation metric

Given a set $A,|A| \geq 2$, of distinct orientations (i.e., angles with fixed x axis) on the plane \mathbb{R}^{2}, the A-distance (Widmayer-Wu-Wong, 1987) is Euclidean length of the shortest (zig-zag) path of line segments with orientations from A. Any A-distance is a metric; it is called also a fixed orientation metric.
A fixed orientation metric with $A=\left\{\frac{i \pi}{n}: 1 \leq i \leq n\right\}$ for fixed $n \in[2, \infty]$, is called a uniform orientation metric; cf. $2 n$-gon metric above. It is the L_{1} metric, hexagonal metric, L_{2}-metric for $n=2,3, \infty$, respectively.

- Central Park metric

The Central Park metric is a metric on \mathbb{R}^{2}, defined as the length of a shortest L_{1}-path (Manhattan path) between two points $x, y \in \mathbb{R}^{2}$ in the presence of a given set of areas which are traversed by a shortest Euclidean path (for example, Central Park in Manhattan).

- Collision avoidance distance

Let $\mathcal{O}=\left\{O_{1}, \ldots, O_{m}\right\}$ be a collection of pairwise disjoint polygons on the Euclidean plane representing a set of obstacles which are neither transparent nor traversable.
The collision avoidance distance (or piano movers distance, shortest path metric with obstacles) is a metric on the set $\mathbb{R}^{2} \backslash\{\mathcal{O}\}$, defined, for any $x, y \in$ $\mathbb{R}^{2} \backslash\{\mathcal{O}\}$, as the length of the shortest path among all possible continuous paths, connecting x and y, that do not intersect obstacles $O_{i} \backslash \partial O_{i}$ (a path can pass through points on the boundary ∂O_{i} of $\left.O_{i}\right), i=1, \ldots m$.

- Rectilinear distance with barriers

Let $\mathcal{O}=\left\{O_{1}, \ldots, O_{m}\right\}$ be a set of pairwise disjoint open polygonal barriers on \mathbb{R}^{2}. A rectilinear path (or Manhattan path) $P_{x y}$ from x to y is a collection of horizontal and vertical segments in the plane, joining x and y. The path $P_{x y}$ is called feasible if $P_{x y} \cap\left(\cup_{i=1}^{m} B_{i}\right)=\emptyset$.
The rectilinear distance with barriers (or rectilinear distance in the presence of barriers) is a metric on $\mathbb{R}^{2} \backslash\{\mathcal{O}\}$, defined, for any $x, y \in \mathbb{R}^{2} \backslash\{\mathcal{O}\}$, as the length of the shortest feasible rectilinear path from x to y.
The rectilinear distance in the presence of barriers is a restriction of the Manhattan metric, and usually it is considered on the set $\left\{q_{1}, \ldots, q_{n}\right\} \subset \mathbb{R}^{2}$ of n origin-destination points: the problem to find such a path arises, for example, in Urban Transportation, or in Plant and Facility Layout (see, for example, [LaLi81]).

- Link distance

Let $P \subset \mathbb{R}^{2}$. The polygonal distance (or link distance as defined by Suri, 1986) between any two points of P is the smallest number of edges of a polygonal path in P connecting them if such path exists and ∞, otherwise.

If the path is restricted to be rectilinear, one obtains the rectilinear link distance. If each line segment of the path is parallel to one from a set A of fixed orientations, one obtains the A-oriented link distance; cf. fixed orientation metric above.
If the turning points of the path are constrained to lie on the boundary of P, then the path is called $d r p$ (diffuse reflection path). The drp-diameter of P is the minimum number of diffuse reflections (segments in a drp) needed to illuminate any target point from any point light source inside P.

- Facility layout distances

A layout is a partition of a rectangular plane region into smaller rectangles, called departments, by lines parallel to the sides of original rectangle. All interior vertices should be of degree 3 , and some of them, at least one on the boundary of each department, are doors, i.e., input-output locations.
The problem is to design a convenient notion of distance $d(x, y)$ between departments x and y which minimizes the cost function $\sum_{x, y} F(x, y) d(x, y)$, where $F(x, y)$ is some material flow between x and y. The main distances used are:
the centroid distance, i.e., the shortest Euclidean or Manhattan distance between centroids (the intersections of the diagonals) of x and y;
the perimeter distance, i.e., the shortest rectilinear distance between doors of x and y, but going only along the walls (department perimeters).

- Quickest path metric

A quickest path metric (or network metric, time metric) is a metric on \mathbb{R}^{2} (or on a subset of \mathbb{R}^{2}) in the presence of a given transportation network, i.e., a finite graph $G=(V, E)$ with $V \subset \mathbb{R}^{2}$ and edge-weight function $w(e)>1$: the vertices and edges are stations and roads. For any $x, y \in \mathbb{R}^{2}$, it is the time needed for a quickest path (i.e., a path minimizing the travel duration) between them when using, eventually, the network.
Movement takes place, either off the network with unit speed, or along its roads $e \in E$ with fixed speeds $w(e) \gg 1$, with respect to a given (usually, Euclidean or Manhattan) metric d on the plane. The network G can be accessed or exited only at stations (usual discrete model) or at any point of roads (the continuous model).
The heavy luggage metric (Abellanas-Hurtado-Palop, 2005) is a quickest path metric on \mathbb{R}^{2} in the presence of a network with speed 1 outside of the network and speed ∞ (so, travel time 0) inside of it.
The airlift metric is a quickest path metric on \mathbb{R}^{2} in the presence of an airports network, i.e., a planar graph $G=(V, E)$ on n vertices (airports) with positive edge weights $\left(w_{e}\right)_{e \in E}$ (flight durations). The graph may be entered and exited only at the airports. Movement off the network takes place with unit speed with respect to the Euclidean metric. We assume that going by car takes time equal to the Euclidean distance d, whereas the flight along an edge $e=u v$ of G takes time $w(e)<d(u, v)$. In the simplest case, when there is an airlift between two points $a, b \in \mathbb{R}^{2}$, the distance between x and y is equal to

$$
\min \{d(x, y), d(x, a)+w+d(b, y), d(x, b)+w+d(a, y)\}
$$

where w is the flight duration from a to b.
The city metric is a quickest path metric on \mathbb{R}^{2} in the presence of a city public transportation network, i.e., a planar straight line graph G with horizontal or vertical edges. G may be composed of many connected components, and may contain cycles.
One can enter/exit G at any point, be it at a vertex or on an edge (it is possible to postulate fixed entry points, too). Once having accessed G, one travels at fixed speed $v>1$ in one of the available directions. Movement off the network takes place with unit speed with respect to the Manhattan metric, as in a large modern-style city with streets arranged in north-south and east-west directions. A variant of such semimetric is the subway semimetric defined [O'Bri03], for $x, y \in \mathbb{R}^{2}$, as $\min (d(x, y), d(x, L)+d(y, L))$, where d is the Manhattan metric and L is a (subway) line.

- Shantaram metric

For any numbers a, b with $0<b \leq 2 a \leq 2 b$, the Shantaram metric between two points $x, y \in \mathbb{R}^{2}$ is $0, a$ or b if x and y coincide in exactly 2,1 or 0 coordinates, respectively.

- Periodic metric

A metric d on \mathbb{R}^{2} is called periodic if there exist two linearly independent vectors v and u such that the translation by any vector $w=m v+n u, m, n \in \mathbb{Z}$, preserves distances, i.e., $d(x, y)=d(x+w, y+w)$ for any $x, y \in \mathbb{R}^{2}$.
Cf. translation invariant metric in Chap. 5.

- Nice metric

A metric d on \mathbb{R}^{2} with the following properties is called nice (Klein-Wood, 1989):

1. d induces the Euclidean topology;
2. The d-circles are bounded with respect to the Euclidean metric;
3. If $x, y \in \mathbb{R}^{2}$ and $x \neq y$, then there exists a point $z, z \neq x, z \neq y$, such that $d(x, y)=d(x, z)+d(z, y)$;
4. If $x, y \in \mathbb{R}^{2}, x \prec y$ (where \prec is a fixed order on \mathbb{R}^{2}, the lexicographic order, for example), $C(x, y)=\left\{z \in \mathbb{R}^{2}: d(x, z) \leq d(y, z)\right\}, D(x, y)=\{z \in$ $\mathbb{R}^{2}: d(x, z)<d(y, z)$, and $\overline{D(x, y)}$ is the closure of $D(x, y)$, then $J(x, y)=$ $C(x, y) \cap \overline{D(x, y)}$ is a curve homeomorphic to $(0,1)$. The intersection of two such curves consists of finitely many connected components.

Every norm metric fulfills 1,2 , and 3 Property 2 means that the metric d is continuous at infinity with respect to the Euclidean metric. Property 4 is to ensure that the boundaries of the correspondent Voronoi diagrams are curves, and that not too many intersections exist in a neighborhood of a point, or at infinity. A nice metric d has a nice Voronoi diagram: in the Voronoi diagram $V\left(P, d, \mathbb{R}^{2}\right)$ (where $P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, is the set of generator points) each Voronoi region $V\left(p_{i}\right)$ is a path-connected set with a nonempty interior, and the system $\left\{V\left(p_{1}\right), \ldots, V\left(p_{k}\right)\right\}$ forms a partition of the plane.

- Contact quasi-distances

The contact quasi-distances are the following variations of the distance convex function (cf. Chap. 1) defined on \mathbb{R}^{2} (in general, on \mathbb{R}^{n}) for any $x, y \in \mathbb{R}^{2}$.
Given a set $B \subset \mathbb{R}^{2}$, the first contact quasi-distance d_{B} is defined by

$$
\inf \{\alpha>0: y-x \in \alpha B\}
$$

(cf. sensor network distances in Chap. 29).
Given, moreover, a point $b \in B$ and a set $A \subset \mathbb{R}^{2}$, the linear contact quasidistance is a point-set distance defined by $d_{b}(x, A)=\inf \{\alpha \geq 0: \alpha b+x \in A\}$. The intercept quasi-distance is, for a finite set B, defined by $\frac{\sum_{b \in B} d_{b}(x, y)}{|B|}$.

- Radar discrimination distance

The radar discrimination distance is a distance on \mathbb{R}^{2} defined by

$$
\left|\rho_{x}-\rho_{y}+\theta_{x y}\right|
$$

if $x, y \in \mathbb{R}^{2} \backslash\{0\}$, and by

$$
\left|\rho_{x}-\rho_{y}\right|
$$

if $x=0$ or $y=0$, where, for each $x \in \mathbb{R}^{2}, \rho_{x}$ denotes the radial distance of x from $\{0\}$ and, for any $x, y \in R^{2} \backslash\{0\}, \theta_{x y}$ denotes the radian angle between them.

- Ehrenfeucht-Haussler semimetric

Let S be a subset of \mathbb{R}^{2} such that $x_{1} \geq x_{2}-1 \geq 0$ for any $x=\left(x_{1}, x_{2}\right) \in S$.
The Ehrenfeucht-Haussler semimetric (see [EhHa88]) on S is defined by

$$
\log _{2}\left(\left(\frac{x_{1}}{y_{2}}+1\right)\left(\frac{y_{1}}{x_{2}}+1\right)\right)
$$

- Toroidal metric

The toroidal metric is a metric on $T=[0,1) \times[0,1)=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\right.$ $\left.0 \leq x_{1}, x_{2}<1\right\}$ defined for any $x, y \in \mathbb{R}^{2}$ by

$$
\sqrt{t_{1}^{2}+t_{2}^{2}}
$$

where $t_{i}=\min \left\{\left|x_{i}-y_{i}\right|,\left|x_{i}-y_{i}+1\right|\right\}$ for $i=1,2$ (cf. torus metric).

- Circle metric

The circle metric is the intrinsic metric on the unit circle S^{1} in the plane. As $S^{1}=\left\{(x, y): x^{2}+y^{2}=1\right\}=\left\{e^{i \theta}: 0 \leq \theta<2 \pi\right\}$, it is the length of the shorter of the two arcs joining the points $e^{i \theta}, e^{\overline{i \vartheta}} \in S^{1}$, and can be written as

$$
\min \{|\theta-\vartheta|, 2 \pi-|\theta-\vartheta|\}=\left\{\begin{array}{cl}
|\vartheta-\theta|, & \text { if } 0 \leq|\vartheta-\theta| \leq \pi, \\
2 \pi-|\vartheta-\theta|, & \text { if } \quad|\vartheta-\theta|>\pi .
\end{array}\right.
$$

- Metric between angles

The metric between angles Δ is a metric on the set of all angles in the plane \mathbb{R}^{2} defined for any $\theta, \vartheta \in[0,2 \pi)$ (cf. circle metric) by

$$
\min \{|\theta-\vartheta|, 2 \pi-|\theta-\vartheta|\}=\left\{\begin{array}{cc}
|\vartheta-\theta|, & \text { if } 0 \leq|\vartheta-\theta| \leq \pi, \\
2 \pi-|\vartheta-\theta|, & \text { if } \quad|\vartheta-\theta|>\pi .
\end{array}\right.
$$

- Metric between directions

On \mathbb{R}^{2}, a direction \hat{l} is a class of all straight lines which are parallel to a given straight line $l \subset \mathbb{R}^{2}$. The metric between directions is a metric on the set \mathcal{L} of all directions on the plane defined, for any directions $\hat{l}, \hat{m} \in \mathcal{L}$, as the angle between any two representatives.

- Angular distance

The angular distance traveled around a circle is the number $\theta=\frac{l}{r}$ of radians the path subtends, $\theta=\frac{l}{r}$, where l is the path length, and r is the circle('s radius.

- Circular-railroad quasi-metric

The circular-railroad quasi-metric on the unit circle $S^{1} \subset \mathbb{R}^{2}$ is defined, for any $x, y \in S^{1}$, as the length of the counterclockwise circular arc from x to y in S^{1}.

- Inversive distance

The inversive distance between two nonintersecting circles in the plane \mathbb{R}^{2} is defined as the natural logarithm of the ratio of the radii (the larger to the smaller) of two concentric circles into which the given circles can be inverted.
Let c be the distance between the centers of two nonintersecting circles of radii a and $b<a$. Then their inversive distance is given by

$$
\cosh ^{-1}\left|\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right|
$$

The circumcircle and incircle of a triangle with circumradius R and inradius r are at the inversive distance $2 \sinh ^{-1}\left(\frac{1}{2} \sqrt{\frac{T}{R}}\right)$.
Given three noncollinear points, construct three tangent circles such that one is centered at each point and the circles are pairwise tangent to one another. Then there exist exactly two nonintersecting circles, called the Soddy circles, that are tangent to all three circles. Their inversive distance is $2 \cosh ^{-1} 2$.

19.2 Digital Metrics

Here we list special metrics which are used in Computer Vision (or Pattern Recognition, Robot Vision, Digital Geometry).

A computer picture (or computer image) is a subset of \mathbb{Z}^{n} which is called a digital $n D$ space. Usually, pictures are represented in the digital plane (or image plane) \mathbb{Z}^{2},
or in the digital space (or image space) \mathbb{Z}^{3}. The points of \mathbb{Z}^{2} and \mathbb{Z}^{3} are called pixels and voxels, respectively. An $n D$ m-quantized space is a scaling $\frac{1}{m} \mathbb{Z}^{n}$.

A digital metric (see, for example, [RoPf68]) is any metric on a digital $n D$ space. Usually, it should take integer values.

The metrics on \mathbb{Z}^{n} that are mainly used are the $L_{1^{-}}$and L_{∞}-metrics, as well as the L_{2}-metric after rounding to the nearest greater (or lesser) integer. In general, a given list of neighbors of a pixel can be seen as a list of permitted one-step moves on \mathbb{Z}^{2}. Let us associate a prime distance, i.e., a positive weight, to each type of such move.

Many digital metrics can be obtained now as the minimum, over all admissible paths (i.e., sequences of permitted moves), of the sum of corresponding prime distances.

In practice, the subset $\left(\mathbb{Z}_{m}\right)^{n}=\{0,1, \ldots, m-1\}^{n}$ is considered instead of the full space $\mathbb{Z}^{n} .\left(\mathbb{Z}_{m}\right)^{2}$ and $\left(\mathbb{Z}_{m}\right)^{3}$ are called the m-grill and m-framework, respectively. The most used metrics on $\left(\mathbb{Z}_{m}\right)^{n}$ are the Hamming metric and the Lee metric.

- Grid metric

The grid metric is the L_{1}-metric on \mathbb{Z}^{n}. It can be seen as the path metric of an infinite graph: two points of \mathbb{Z}^{n} are adjacent if their L_{1}-distance is 1 .
For $n=2$, this metric is the restriction on \mathbb{Z}^{2} of the city-block metric which is also called the taxicab (or rectilinear, Manhattan, 4-) metric.

- Lattice metric

The lattice metric is the L_{∞}-metric on \mathbb{Z}^{n}. It can be seen as the path metric of an infinite graph: two points of \mathbb{Z}^{n} are adjacent if their L_{∞}-distance is 1 . For \mathbb{Z}^{2}, the adjacency corresponds to the king move in chessboard terms, and this graph is called the $L_{\infty^{-}}$grid, while this metric is also called the chessboard metric, king-move metric, 8-metric, or checking distance.
This metric is the restriction on \mathbb{Z}^{n} of the Chebyshev metric which is also called the sup metric, or uniform metric.

- Hexagonal metric

The hexagonal metric (or 6-metric) is a metric on \mathbb{Z}^{2} with a unit sphere (centered at $x \in \mathbb{Z}^{2}$) defined by $S^{1}(x)=S_{L_{1}}^{1}(x) \cup\left\{\left(x_{1}-1, x_{2}-1\right),\left(x_{1}-1\right.\right.$, $\left.\left.x_{2}+1\right)\right\}$ for even x_{2}, and $S^{1}(x)=S_{L_{1}}^{1}(x) \cup\left\{\left(x_{1}+1, x_{2}-1\right),\left(x_{1}+1, x_{2}+1\right)\right\}$ for odd x_{2}. For any $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{Z}^{2}$, this metric $d_{6}(x, y)$ can be written as

$$
\max \left\{\left|x_{2}-y_{2}\right|, \frac{\left|x_{2}-y_{2}\right|}{2} \pm\left(\frac{x_{2}-y_{2}}{2}+\left\lfloor\frac{x_{2}+1}{2}\right\rfloor-\left\lfloor\frac{y_{2}+1}{2}\right\rfloor-\left(x_{1}-y_{1}\right)\right)\right\} .
$$

It is the path metric of the triangular grid (or, dually, the minimum number of cell moves of the hexagonal grid) on the plane. In hexagonal coordinates (h_{1}, h_{2}) (in which the h_{1} - and h_{2}-axes are parallel to the grid's edges) the hexagonal distance between points $h=\left(h_{1}, h_{2}\right)$ and $i=\left(i_{1}, i_{2}\right)$ is

$$
d_{6}(h, i)=\frac{1}{2}\left(\left|h_{1}-i_{1}\right|+\left|h_{2}-i_{2}\right|+\left|\left(h_{1}-i_{1}\right)-\left(h_{2}-i_{2}\right)\right|\right),
$$

i.e., $\left|h_{1}-i_{1}\right|+\left|h_{2}-i_{2}\right|$, if $\left(h_{1}-i_{1}\right)\left(h_{2}-i_{2}\right) \leq 0$, and $\max \left\{\left|h_{1}-i_{1}\right|,\left|h_{2}-i_{2}\right|\right\}$, if otherwise; cf. [LuRo76]. The coordinates (h_{1}, h_{2}) of a point x are related to its Cartesian coordinates $\left(x_{1}, x_{2}\right)$ by $h_{1}=x_{1}-\left\lfloor\frac{x_{2}}{2}\right\rfloor, h_{2}=x_{2}$.
This metric approximates the Euclidean metric better than L_{1} - or $L_{\infty^{-}}$metric.
The hexagonal Hausdorff metric is a metric on the set of all bounded subsets (pictures, or images) of the hexagonal grid on the plane defined by

$$
\inf \{p, q: A \subset B+q H, B \subset A+p H\}
$$

for any pictures A and B, where $p H$ is the regular hexagon of size p (i.e., with $p+1$ pixels on each edge), centered at the origin and including its interior, and + is the Minkowski addition: $A+B=\{x+y: x \in A, y \in B\}$ (cf. Pompeiu-Hausdorff-Blaschke metric in Chap. 9). If A is a pixel x, then the distance between x and B is equal to $\sup _{y \in B} d_{6}(x, y)$, where d_{6} is the hexagonal metric.

- Digital volume metric

The digital volume metric is a metric on the set K of all bounded subsets (pictures, or images) of \mathbb{Z}^{2} (in general, of \mathbb{Z}^{n}) defined by

$$
\operatorname{vol}(A \triangle B),
$$

where $\operatorname{vol}(A)=|A|$, i.e., the number of pixels contained in A, and $A \triangle B$ is the symmetric difference between sets A and B.
This metric is a digital analog of the Nikodym metric in Chap. 9.

- Neighborhood sequence metric

On the digital plane \mathbb{Z}^{2}, consider two types of motions: the city-block motion, restricting movements only to the horizontal or vertical directions, and the chessboard motion, also allowing diagonal movements.
The use of both these motions is determined by a neighborhood sequence $B=\{b(1), b(2), \ldots, b(l)\}$, where $b(i) \in\{1,2\}$ is a particular type of neighborhood, with $b(i)=1$ signifying unit change in 1 coordinate (cityblock neighborhood), and $b(i)=2$ meaning unit change also in 2 coordinates (chessboard neighborhood). The sequence B defines the type of motion to be used at every step (see [Das90]).
The neighborhood sequence metric is a metric on \mathbb{Z}^{2} defined as the length of a shortest path between x and $y \in \mathbb{Z}^{2}$, determined by a given neighborhood sequence B. It can be written as

$$
\max \left\{d_{B}^{1}(u), d_{B}^{2}(u)\right\}
$$

where $u_{1}=x_{1}-y_{1}, u_{2}=x_{2}-y_{2}, d_{B}^{1}(u)=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}, d_{B}^{2}(u)=$ $\sum_{j=1}^{l}\left\lfloor\frac{\left\lfloor u_{1}\left|+\left|u_{2}\right|+g(j)\right.\right.}{f(l)}\right\rfloor, f(0)=0, f(i)=\sum_{j=1}^{i} b(j), 1 \leq i \leq l, g(j)=$ $f(l)-f(j-1)-1,1 \leq j \leq l$.

For $B=\{1\}$ one obtains the city-block metric, for $B=\{2\}$ one obtains the chessboard metric. The case $B=\{1,2\}$, i.e., the alternative use of these motions, results in the octagonal metric, introduced in [RoPf68].
A proper selection of the B-sequence can make the corresponding metric very close to the Euclidean metric. It is always greater than the chessboard metric, but smaller than the city-block metric.

- $n D$-neighborhood sequence metric

The $n D$-neighborhood sequence metric is a metric on \mathbb{Z}^{n}, defined as the length of a shortest path between x and $y \in \mathbb{Z}^{n}$, determined by a given $n D$ neighborhood sequence B (see [Faze99]).
Formally, two points $x, y \in \mathbb{Z}^{n}$ are called m-neighbors, $0 \leq m \leq n$, if $0 \leq$ $\left|x_{i}-y_{i}\right| \leq 1,1 \leq i \leq n$, and $\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \leq m$. A finite sequence $B=$ $\{b(1), \ldots, b(l)\}, b(i) \in\{1,2, \ldots, n\}$, is called an $n D$-neighborhood sequence with period l. For any $x, y \in \mathbb{Z}^{n}$, a point sequence $x=x^{0}, x^{1}, \ldots, x^{k}=y$, where x^{i} and $x^{i+1}, 0 \leq i \leq k-1$, are r-neighbors, $r=b((i \bmod l)+1)$, is called a path from x to y determined by B with length k. The distance between x and y can be written as

$$
\max _{1 \leq i \leq n} d_{i}(u) \text { with } d_{i}(x, y)=\sum_{j=1}^{l}\left\lfloor\frac{a_{i}+g_{i}(j)}{f_{i}(l)}\right\rfloor,
$$

where $u=\left(\left|u_{1}\right|,\left|u_{2}\right|, \ldots,\left|u_{n}\right|\right)$ is the nonincreasing ordering of $\left|u_{m}\right|, u_{m}=x_{m}-$ $y_{m}, m=1, \ldots, n$, that is, $\left|u_{i}\right| \leq\left|u_{j}\right|$ if $i<j ; a_{i}=\sum_{j=1}^{n-i+1} u_{j} ; b_{i}(j)=b(j)$ if $b(j)<n-i+2$, and is $n-i+1$, otherwise; $f_{i}(j)=\sum_{k=1}^{j} b_{i}(k)$ if $1 \leq j \leq l$, and is 0 if $j=0 ; g_{i}(j)=f_{i}(l)-f_{i}(j-1)-1,1 \leq j \leq l$.

- Strand-Nagy distances

The face-centered cubic lattice is $A_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}: a_{1}+a_{2}+a_{3} \equiv 0(\right.$ $\bmod 2)\}$, and the body-centered cubic lattice is its dual

$$
A_{3}^{*}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}: a_{1} \equiv a_{2} \equiv a_{3}(\bmod 2)\right\} .
$$

Let $L \in\left\{A_{3}, A_{3}^{*}\right\}$. For any points $x, y \in L$, let $d_{1}(x, y)=\sum_{j=1}^{3}\left|x_{j}-y_{j}\right|$ denote the L_{1}-metric and $d_{\infty}(x, y)=\max _{j \in\{1,2,3\}}\left|x_{j}-y_{j}\right|$ denote the $L_{\infty^{-}}$ metric between them. Two points $x, y \in L$ are called 1 -neighbors if $d_{1}(x, y) \leq$ 3 and $0<d_{\infty}(x, y) \leq 1$; they are called 2-neighbors if $d_{1}(x, y) \leq 3$ and $1<d_{\infty}(x, y) \leq 2$.
Given a sequence $B=\{b(i)\}_{i=1}^{\infty}$ over the alphabet $\{1,2\}$, a B-path in L is a point sequence $x=x^{0}, x^{1}, \ldots, x^{k}=y$, where x^{i} and $x^{i+1}, 0 \leq i \leq k-1$, are 1-neighbors if $b(i)=1$ and 2-neighbors if $b(i)=2$.
The Strand-Nagy distance between two points $x, y \in L$ (or B-distance in Strand and Nagy, 2007) is the length of a shortest B-path between them. For $L=A_{3}$, it is

$$
\min \left\{k: k \geq \max \left\{\frac{d_{1}(x, y)}{2}, d_{\infty}(x, y)-|\{1 \leq i \leq k: b(i)=2\}|\right\}\right\} .
$$

The Strand-Nagy distance is a metric, for example, for the periodic sequence $B=(1,2,1,2,1,2, \ldots)$ but not for the periodic sequence $B=$ $(2,1,2,1,2,1, \ldots)$.

- Path-generated metric

Consider the l_{∞}-grid, i.e., the graph with the vertex-set \mathbb{Z}^{2}, and two vertices being neighbors if their l_{∞}-distance is 1 . Let \mathcal{P} be a collection of paths in the $l_{\infty^{-}}$ grid such that, for any $x, y \in \mathbb{Z}^{2}$, there exists at least one path from \mathcal{P} between x and y, and if \mathcal{P} contains a path Q, then it also contains every path contained in Q. Let $d_{\mathcal{P}}(x, y)$ be the length of the shortest path from \mathcal{P} between x and $y \in \mathbb{Z}^{2}$. If $d_{\mathcal{P}}$ is a metric on \mathbb{Z}^{2}, then it is called a path-generated metric (see [Melt91]).
Let G be one of the sets: $G_{1}=\{\uparrow, \rightarrow\}, G_{2 A}=\{\uparrow, \nearrow\}, G_{2 B}=\{\uparrow, \nwarrow\}$, $G_{2 C}=\{\nearrow, \nwarrow\}, G_{2 D}=\{\rightarrow, \nwarrow\}, G_{3 A}=\{\rightarrow, \uparrow, \nearrow\}, G_{3 B}\{\rightarrow, \uparrow, \nwarrow\}$, $G_{4 A}=\{\rightarrow, \nearrow, \nwarrow\}, G_{4 B}\{\uparrow, \nearrow, \nwarrow\},, G_{5}=\{\rightarrow, \uparrow, \nearrow, \nwarrow\}$. Let $\mathcal{P}(G)$ be the set of paths which are obtained by concatenation of paths in G and the corresponding paths in the opposite directions. Any path-generated metric coincides with one of the metrics $d_{\mathcal{P}(G)}$. Moreover, one can obtain the following formulas:

1. $d_{\mathcal{P}\left(G_{1}\right)}(x, y)=\left|u_{1}\right|+\left|u_{2}\right| ;$
2. $d_{\mathcal{P}\left(G_{2 A}\right)}(x, y)=\max \left\{\left|2 u_{1}-u_{2}\right|,\left|u_{2}\right|\right\} ;$
3. $d_{\mathcal{P}\left(G_{2 B}\right)}(x, y)=\max \left\{\left|2 u_{1}+u_{2}\right|,\left|u_{2}\right|\right\} ;$
4. $d_{\mathcal{P}\left(G_{2 C}\right)}(x, y)=\max \left\{\left|2 u_{2}+u_{1}\right|,\left|u_{1}\right|\right\} ;$
5. $d_{\mathcal{P}\left(G_{2 D}\right)}(x, y)=\max \left\{\left|2 u_{2}-u_{1}\right|,\left|u_{1}\right|\right\} ;$
6. $d_{\mathcal{P}\left(G_{3 A}\right)}(x, y)=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|,\left|u_{1}-u_{2}\right|\right\} ;$
7. $d_{\mathcal{P}\left(G_{3 B}\right)}(x, y)=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|,\left|u_{1}+u_{2}\right|\right\}$;
8. $d_{\mathcal{P}\left(G_{4 A}\right)}(x, y)=\max \left\{2\left\lceil\left(\left|u_{1}\right|-\left|u_{2}\right|\right) / 2\right\rceil, 0\right\}+\left|u_{2}\right| ;$
9. $d_{\mathcal{P}\left(G_{4 B}\right)}(x, y)=\max \left\{2\left\lceil\left(\left|u_{2}\right|-\left|u_{1}\right|\right) / 2\right\rceil, 0\right\}+\left|u_{1}\right|$;
10. $d_{\mathcal{P}\left(G_{5}\right)}(x, y)=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}$,
where $u_{1}=x_{1}-y_{1}, u_{2}=x_{2}-y_{2}$, and \lceil.$\rceil is the ceiling function: for any real x$ the number $\lceil x\rceil$ is the least integer greater than or equal to x.
The metric spaces obtained from G-sets with the same numerical index are isometric. $d_{\mathcal{P}\left(G_{1}\right)}$ is the city-block metric, and $d_{\mathcal{P}\left(G_{5}\right)}$ is the chessboard metric.

- Chamfer metric

Given numbers α, β with $0<\alpha \leq \beta<2 \alpha$, the (α, β)-weighted l_{∞}-grid is the graph with the vertex-set \mathbb{Z}^{2}, two vertices being adjacent if their l_{∞}-distance is one, while horizontal/vertical and diagonal edges have weights α and β, respectively.
A chamfer metric (or (α, β)-chamfer metric, [Borg86]) is the weighted path metric in this graph. For any $x, y \in \mathbb{Z}^{2}$ it can be written as

$$
\beta m+\alpha(M-m),
$$

where $M=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}, m=\min \left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}, u_{1}=x_{1}-y_{1}, u_{2}=x_{2}-y_{2}$.

If the weights α and β are equal to the Euclidean lengths $1, \sqrt{2}$ of horizontal/vertical and diagonal edges, respectively, then one obtains the Euclidean length of the shortest chessboard path between x and y. If $\alpha=\beta=1$, one obtains the chessboard metric. The (3,4)-chamfer metric is the most used one for digital images.
A $3 D$-chamfer metric is the weighted path metric of the graph with the vertexset \mathbb{Z}^{3} of voxels, two voxels being adjacent if their l_{∞}-distance is one, while weights α, β, and γ are associated, respectively, to the distance from 6 face neighbors, 12 edge neighbors, and 8 corner neighbors.

- Weighted cut metric

Consider the weighted l_{∞}-grid, i.e., the graph with the vertex-set \mathbb{Z}^{2}, two vertices being adjacent if their l_{∞}-distance is one, and each edge having some positive weight (or cost). The usual weighted path metric between two pixels is the minimal cost of a path connecting them. The weighted cut metric between two pixels is the minimal cost (defined now as the sum of costs of crossed edges) of a cut, i.e., a plane curve connecting them while avoiding pixels.

- Knight metric

The knight metric on \mathbb{Z}^{2} is the minimum number of moves a chess knight would take to travel from x to $y \in \mathbb{Z}^{2}$. Its unit sphere $S_{\text {knight }}^{1}$, centered at the origin, contains exactly 8 integral points $\{(\pm 2, \pm 1),(\pm 1, \pm 2)\}$, and can be written as $S_{\text {knight }}^{1}=S_{L_{1}}^{3} \cap S_{l_{\infty}}^{2}$, where $S_{L_{1}}^{3}$ denotes the L_{1}-sphere of radius 3, and $S_{L_{\infty}}^{2}$ denotes the L_{∞}-sphere of radius 2, both centered at the origin (see [DaCh88]). The distance between x and y is 3 if $(M, m)=(1,0)$, is 4 if $(M, m)=(2,2)$ and is equal to $\max \left\{\left\lceil\frac{M}{2}\right\rceil,\left\lceil\frac{M+m}{3}\right\rceil\right\}+(M+m)-\max \left\{\left\lceil\frac{M}{2}\right\rceil,\left\lceil\frac{M+m}{3}\right\rceil\right\}(\bmod 2)$, otherwise, where $M=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}, m=\min \left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}, u_{1}=x_{1}-y_{1}$, $u_{2}=x_{2}-y_{2}$.

- Super-knight metric

Let $p, q \in \mathbb{N}$. A (p, q)-super-knight (or (p, q)-leaper, (p, q)-spider) is a (variant) chess piece whose move consists of a leap p squares in one orthogonal direction followed by a 90° direction change, and q squares leap to the destination square. Rook, bishop and queen have $q=0, q=p$ and $q=0, p$, respectively.
Chess-variant terms exist for a ($p, 1$)-leaper with $p=0,1,2,3,4$ (Wazir, Ferz, usual Knight, Camel, Giraffe), and for a ($p, 2$)-leaper with $p=0,1,2,3$ (Dabbaba, usual Knight, Alfil, Zebra).
A (p, q)-super-knight metric (or (p, q)-leaper metric) is a metric on \mathbb{Z}^{2} defined as the minimum number of moves a chess (p, q)-super-knight would take to travel from x to $y \in \mathbb{Z}^{2}$. Thus, its unit sphere $S_{p, q}^{1}$, centered at the origin, contains exactly 8 integral points $\{(\pm p, \pm q),(\pm q, \pm p)\}$. (See [DaMu90].)
The knight metric is the $(1,2)$-super-knight metric. The city-block metric can be considered as the Wazir metric, i.e., $(0,1)$-super-knight metric.

- Rook metric

The rook metric is a metric on \mathbb{Z}^{2} defined as the minimum number of moves a chess rook would take to travel from x to $y \in \mathbb{Z}^{2}$. This metric can take only the values $\{0,1,2\}$, and coincides with the Hamming metric on \mathbb{Z}^{2}.

- Chess programming distances

On a chessboard \mathbb{Z}_{8}^{2}, files are eight columns labeled from a to h and ranks are eight rows labeled from 1 to 8 . Given two squares, their file-distance and rankdistance are the absolute differences between the 0 and 7 indices of their files or, respectively, ranks. The Chebyshev distance and Manhattan distance are the maximum or, respectively, the sum of their file-distance and rank-distance.
The center distance and corner distance of a square are its (Chebyshev or Manhattan) distance to closest square among $\{d 4, d 5, e 4, e 5\}$ or, respectively, closest corner. For example, the program Chess 4.x uses in endgame evaluation $4.7 d+1.6\left(14-d^{\prime}\right)$, where d is the center Manhattan distance of losing king and d^{\prime} is the Manhattan distance between kings.
Two kings at rank- and file- distances d_{r}, d_{f}, are in opposition, which is direct, or diagonal, or distant if $\left(d_{r}, d_{f}\right) \in\{(0,2),(2,0)\}$, or $=(2,2)$, or their Manhattan distance is even ≥ 6 and no pawns interfere between them.
Unrelated cavalry file distance is the number of files in which it rides.

Chapter 20
 Voronoi Diagram Distances

Given a finite set A of objects A_{i} in a space S, computing the Voronoi diagram of A means partitioning the space S into Voronoi regions $V\left(A_{i}\right)$ in such a way that $V\left(A_{i}\right)$ contains all points of S that are "closer" to A_{i} than to any other object A_{j} in A.

Given a generator set $P=\left\{p_{1}, \ldots p_{k}\right\}, k \geq 2$, of distinct points (generators) from $\mathbb{R}^{n}, n \geq 2$, the ordinary Voronoi polytope $V\left(p_{i}\right)$ associated with a generator p_{i} is defined by

$$
V\left(p_{i}\right)=\left\{x \in \mathbb{R}^{n}: d_{E}\left(x, p_{i}\right) \leq d_{E}\left(x, p_{j}\right) \text { for any } j \neq i\right\},
$$

where d_{E} is the Euclidean distance on \mathbb{R}^{n}. The set

$$
V\left(P, d_{E}, \mathbb{R}^{n}\right)=\left\{V\left(p_{1}\right), \ldots, V\left(p_{k}\right)\right\}
$$

is called the n-dimensional ordinary Voronoi diagram, generated by P.
The boundaries of (n-dimensional) Voronoi polytopes are called ($(n-1)$-dimensional) Voronoi facets, the boundaries of Voronoi facets are called $(n-2)$-dimensional Voronoi faces, ..., the boundaries of 2D Voronoi faces are called Voronoi edges, and the boundaries of Voronoi edges are called Voronoi vertices.

The ordinary Voronoi diagram can be generalized in the following three ways:

1. The generalization with respect to the generator set $A=\left\{A_{1}, \ldots, A_{k}\right\}$ which can be a set of lines, a set of areas, etc.;
2. The generalization with respect to the space S which can be a sphere (spherical Voronoi diagram), a cylinder (cylindrical Voronoi diagram), a cone (conic Voronoi diagram), a polyhedral surface (polyhedral Voronoi diagram), etc.;
3. The generalization with respect to the function d, where $d\left(x, A_{i}\right)$ measures the "distance" from a point $x \in S$ to a generator $A_{i} \in A$.

This generalized distance function d is called the Voronoi generation distance (or Voronoi distance, V-distance), and allows many more functions than the Euclidean metric on S. If F is a strictly increasing function of a V-distance d, i.e., $F\left(d\left(x, A_{i}\right)\right) \leq F\left(d\left(x, A_{j}\right)\right)$ if and only if $d\left(x, A_{i}\right) \leq d\left(x, A_{j}\right)$, then the generalized Voronoi diagrams $V(A, F(d), S)$ and $V(A, d, S)$ coincide, and one says that the V-distance $F(d)$ is transformable to the V-distance d, and that the generalized Voronoi diagram $V(A, F(d), S)$ is a trivial generalization of the generalized Voronoi diagram $V(A, d, S)$.

In applications, one often uses for trivial generalizations of the ordinary Voronoi diagram $V\left(P, d, \mathbb{R}^{n}\right)$ the exponential distance, the logarithmic distance, and the power distance. There are generalized Voronoi diagrams $V\left(P, D, \mathbb{R}^{n}\right)$, defined by V-distances, that are not transformable to the Euclidean distance d_{E} : the multiplicatively weighted Voronoi distance, the additively weighted Voronoi distance, etc.

The theory of generalized Voronoi diagrams $V\left(P, D, \mathbb{R}^{n}\right)$, where D is a norm metric $\|x-p\|$ collapses even for the case, when P is a lattice in \mathbb{R}^{n}. But [DeDu13] adapted it for polyhedral, i.e., with a polytopal unit ball, norms; $\|.\|_{1}$ and $\|.\|_{\infty}$ are among them.

For additional information see, for example, [OBS92, Klei89].

20.1 Classical Voronoi Generation Distances

- Exponential distance

The exponential distance is the Voronoi generation distance

$$
D_{\exp }\left(x, p_{i}\right)=e^{d_{E}\left(x, p_{i}\right)}
$$

for the trivial generalization $V\left(P, D_{\text {exp }}, \mathbb{R}^{n}\right)$ of the ordinary Voronoi diagram $V\left(P, d_{E}, \mathbb{R}^{n}\right)$, where d_{E} is the Euclidean distance.

- Logarithmic distance

The logarithmic distance is the Voronoi generation distance

$$
D_{\ln }\left(x, p_{i}\right)=\ln d_{E}\left(x, p_{i}\right)
$$

for the trivial generalization $V\left(P, D_{\mathrm{ln}}, \mathbb{R}^{n}\right)$ of the ordinary Voronoi diagram $V\left(P, d_{E}, \mathbb{R}^{n}\right)$, where d_{E} is the Euclidean distance.

- Power distance

The power distance is the Voronoi generation distance

$$
D_{\alpha}\left(x, p_{i}\right)=d_{E}\left(x, p_{i}\right)^{\alpha}, \alpha>0
$$

for the trivial generalization $V\left(P, D_{\alpha}, \mathbb{R}^{n}\right)$ of the ordinary Voronoi diagram $V\left(P, d_{E}, \mathbb{R}^{n}\right)$, where d_{E} is the Euclidean distance.

- Multiplicatively weighted distance

The multiplicatively weighted distance $d_{M W}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{M W}, \mathbb{R}^{n}\right)$ (multiplicatively weighted Voronoi diagram) defined by

$$
d_{M W}\left(x, p_{i}\right)=\frac{1}{w_{i}} d_{E}\left(x, p_{i}\right)
$$

for any point $x \in \mathbb{R}^{n}$ and any generator point $p_{i} \in P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, where $w_{i} \in w=\left\{w_{i}, \ldots, w_{k}\right\}$ is a given positive multiplicative weight of the generator p_{i}, and d_{E} is the Euclidean distance.
A Möbius diagram (Boissonnat-Karavelas, 2003) is a diagram the midsets (bisectors) of which are hyperspheres. It generalizes the Euclidean Voronoi and power diagrams, and it is equivalent to power diagrams in \mathbb{R}^{n+1}.

For \mathbb{R}^{2}, the multiplicatively weighted Voronoi diagram is called a circular Dirichlet tessellation. An edge in this diagram is a circular arc or a straight line. In the plane \mathbb{R}^{2}, there exists a generalization of the multiplicatively weighted Voronoi diagram, the crystal Voronoi diagram, with the same definition of the distance (where w_{i} is the speed of growth of the crystal p_{i}), but a different partition of the plane, as the crystals can grow only in an empty area.

- Additively weighted distance

The additively weighted distance $d_{A W}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{A W}, \mathbb{R}^{n}\right)$ (additively weighted Voronoi diagram) defined by

$$
d_{A W}\left(x, p_{i}\right)=d_{E}\left(x, p_{i}\right)-w_{i}
$$

for any point $x \in \mathbb{R}^{n}$ and any generator point $p_{i} \in P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, where $w_{i} \in w=\left\{w_{i}, \ldots, w_{k}\right\}$ is a given additive weight of the generator p_{i}, and d_{E} is the Euclidean distance.
For \mathbb{R}^{2}, the additively weighted Voronoi diagram is called a hyperbolic Dirichlet tessellation. An edge in this diagram is a hyperbolic arc or a straight line segment.

- Additively weighted power distance

The additively weighted power distance $d_{P W}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{P W}, \mathbb{R}^{n}\right)$ (additively weighted power Voronoi diagram) defined by

$$
d_{P W}\left(x, p_{i}\right)=d_{E}^{2}\left(x, p_{i}\right)-w_{i}
$$

for any point $x \in \mathbb{R}^{n}$ and any generator point $p_{i} \in P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, where $w_{i} \in w=\left\{w_{i}, \ldots, w_{k}\right\}$ is a given additive weight of the generator p_{i}, and d_{E} is the Euclidean distance.
This diagram can be seen as a Voronoi diagram of circles or as a Voronoi diagram with the Laguerre geometry.

The multiplicatively weighted power distance $d_{M P W}\left(x, p_{i}\right)=\frac{1}{w_{i}} d_{E}^{2}\left(x, p_{i}\right)$, $w_{i}>0$, is transformable to the multiplicatively weighted distance, and gives a trivial extension of the multiplicatively weighted Voronoi diagram.

- Compoundly weighted distance

The compoundly weighted distance $d_{C W}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{C W}, \mathbb{R}^{n}\right)$ (compoundly weighted Voronoi diagram) defined by

$$
d_{C W}\left(x, p_{i}\right)=\frac{1}{w_{i}} d_{E}\left(x, p_{i}\right)-v_{i}
$$

for any point $x \in \mathbb{R}^{n}$ and any generator point $p_{i} \in P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, where $w_{i} \in w=\left\{w_{i}, \ldots, w_{k}\right\}$ is a given positive multiplicative weight of the generator $p_{i}, v_{i} \in v=\left\{v_{1}, \ldots, v_{k}\right\}$ is a given additive weight of the generator p_{i}, and d_{E} is the Euclidean distance.
An edge in the 2D compoundly weighted Voronoi diagram is a part of a fourth-order polynomial curve, a hyperbolic arc, a circular arc, or a straight line.

20.2 Plane Voronoi Generation Distances

- Shortest path distance with obstacles

Let $\mathcal{O}=\left\{O_{1}, \ldots, O_{m}\right\}$ be a collection of pairwise disjoint polygons on the Euclidean plane, representing a set of obstacles which are neither transparent nor traversable.
The shortest path distance with obstacles $d_{s p}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{s p}, \mathbb{R}^{2} \backslash\{\mathcal{O}\}\right)$ (shortest path Voronoi diagram with obstacles) defined, for any $x, y \in \mathbb{R}^{2} \backslash\{\mathcal{O}\}$, as the length of the shortest path among all possible continuous $(x-y)$-paths that do not intersect obstacles $O_{i} \backslash \partial O_{i}$ (a path can pass through points on the boundary ∂O_{i} of O_{i}), $i=1, \ldots m$.
The shortest path is constructed with the aid of the visibility polygon and the visibility graph of $V\left(P, d_{s p}, \mathbb{R}^{2} \backslash\{\mathcal{O}\}\right)$.

- Visibility shortest path distance

Let $\mathcal{O}=\left\{O_{1}, \ldots, O_{m}\right\}$ be a collection of pairwise disjoint line segments $O_{l}=\left[a_{l}, b_{l}\right]$ in the Euclidean plane, with $P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, the set of generator points,

$$
\operatorname{VIS}\left(p_{i}\right)=\left\{x \in \mathbb{R}^{2}:\left[x, p_{i}\right] \cap\right] a_{l}, b_{l}[=\emptyset \text { for all } l=1, \ldots, m\}
$$

the visibility polygon of the generator p_{i}, and d_{E} the Euclidean distance.
The visibility shortest path distance $d_{v s p}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{\nu s p}, \mathbb{R}^{2} \backslash\{\mathcal{O}\}\right)$ (visibility shortest path Voronoi diagram with line obstacles), defined by

$$
d_{v s p}\left(x, p_{i}\right)=\left\{\begin{array}{cc}
d_{E}\left(x, p_{i}\right), & \text { if } x \in \operatorname{VIS}\left(p_{i}\right) \\
\infty, & \text { otherwise }
\end{array}\right.
$$

- Network distances

A network on \mathbb{R}^{2} is a connected planar geometrical graph $G=(V, E)$ with the set V of vertices and the set E of edges (links).
Let the generator set $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be a subset of the set $V=\left\{p_{1}, \ldots, p_{l}\right\}$ of vertices of G, and let the set L be given by points of links of G.
The network distance $d_{\text {netv }}$ on the set V is the Voronoi generation distance of the network Voronoi node diagram $V\left(P, d_{\text {netv }}, V\right)$ defined as the shortest path along the links of G from $p_{i} \in V$ to $p_{j} \in V$. It is the weighted path metric of the graph G, where w_{e} is the Euclidean length of the link $e \in E$.
The network distance $d_{\text {netl }}$ on the set L is the Voronoi generation distance of the network Voronoi link diagram $V\left(P, d_{\text {netl }}, L\right)$ defined as the shortest path along the links from $x \in L$ to $y \in L$.
The access network distance $d_{a c c n e t}$ on \mathbb{R}^{2} is the Voronoi generation distance of the network Voronoi area diagram $V\left(P, d_{\text {accnet }}, \mathbb{R}^{2}\right)$ defined by

$$
d_{\text {accnet }}(x, y)=d_{\text {netl }}(l(x), l(y))+d_{\text {acc }}(x)+d_{\text {acc }}(y),
$$

where $d_{a c c}(x)=\min _{l \in L} d(x, l)=d_{E}(x, l(x))$ is the access distance of a point x. In fact, $d_{a c c}(x)$ is the Euclidean distance from x to the access point $l(x) \in L$ of x which is the nearest to x point on the links of G.

- Airlift distance

An airports network is an arbitrary planar graph G on n vertices (airports) with positive edge weights (flight durations). This graph may be entered and exited only at the airports. Once having accessed G, one travels at fixed speed $v>1$ within the network. Movement off the network takes place with the unit speed with respect to the Euclidean distance.
The airlift distance $d_{a l}$ is the Voronoi generation distance of the airlift Voronoi diagram $V\left(P, d_{a l}, \mathbb{R}^{2}\right)$, defined as the time needed for a quickest, i.e., minimizing the travel time, path between x and y in the presence of the airports network G.

- City distance

A city public transportation network, like a subway or a bus transportation system, is a planar straight line graph G with horizontal or vertical edges. G may be composed of many connected components, and may contain cycles. One is free to enter G at any point, be it at a vertex or on an edge (it is possible to postulate fixed entry points, too). Once having accessed G, one travels at a fixed speed $v>1$ in one of the available directions. Movement off the network takes place with the unit speed with respect to the Manhattan metric.
The city distance $d_{\text {city }}$ is the Voronoi generation distance of the city Voronoi diagram $V\left(P, d_{\text {city }}, \mathbb{R}^{2}\right)$, defined as the time needed for the quickest path, i.e., the one minimizing the travel time, between x and y in the presence of the network G.

The set $P=\left\{p_{1}, \ldots, p_{k}\right\}, k \geq 2$, can be seen as a set of some city facilities (say, post offices or hospitals): for some people several facilities of the same kind are equally attractive, and they want to find out which facility is reachable first.

- Distance in a river

The distance in a river $d_{r i v}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{\text {riv }}, \mathbb{R}^{2}\right)$ (Voronoi diagram in a river), defined by

$$
d_{r i v}(x, y)=\frac{-\alpha\left(x_{1}-y_{1}\right)+\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(1-\alpha^{2}\right)\left(x_{2}-y_{2}\right)^{2}}}{v\left(1-\alpha^{2}\right)}
$$

where v is the speed of the boat on still water, $w>0$ is the speed of constant flow in the positive direction of the x_{1} axis, and $\alpha=\frac{w}{v}(0<\alpha<1)$ is the relative flow speed.

- Boat-sail distance

Let $\Omega \subset \mathbb{R}^{2}$ be a domain in the plane (water surface), let $f: \Omega \rightarrow \mathbb{R}^{2}$ be a continuous vector field on Ω, representing the velocity of the water flow (flow field); let $P=\left\{p_{1}, \ldots, p_{k}\right\} \subset \Omega, k \geq 2$, be a set of k points in Ω (harbors).
The boat-sail distance [NiSu03] $d_{b s}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{b s}, \Omega\right)$ (boat-sail Voronoi diagram) defined by

$$
d_{b s}(x, y)=\inf _{\gamma} \delta(\gamma, x, y)
$$

for all $x, y \in \Omega$, where $\delta(\gamma, x, y)=\int_{0}^{1}\left|F \frac{\gamma^{\prime}(s)}{\left|\gamma^{\prime}(s)\right|}+f(\gamma(s))\right|^{-1} d s$ is the time necessary for the boat with the maximum speed F on still water to move from x to y along the curve $\gamma:[0,1] \rightarrow \Omega, \gamma(0)=x, \gamma(1)=y$, and the infimum is taken over all possible curves γ.

- Peeper distance

Let $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0\right\}$ be the half-plane in \mathbb{R}^{2}, let $P=\left\{p_{1}, \ldots, p_{k}\right\}$, $k \geq 2$, be a set of points contained in the half-plane $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}<0\right\}$, and let the window be the interval (a, b) with $a=(0,1)$ and $b=(0,-1)$.
The peeper distance $d_{p e e}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{p e e}, S\right)$ (peeper's Voronoi diagram) defined by

$$
d_{p e e}\left(x, p_{i}\right)=\left\{\begin{array}{cc}
d_{E}\left(x, p_{i}\right), & \text { if }[x, p] \cap] a, b[\neq \emptyset \\
\infty, & \text { otherwise }
\end{array}\right.
$$

where d_{E} is the Euclidean distance.

- Snowmobile distance

Let $\Omega \subset \mathbb{R}^{2}$ be a domain in the $x_{1} x_{2}$-plane of the space \mathbb{R}^{3} (a $2 D$ mapping), and let $\Omega^{*}=\left\{(q, h(q)): q=\left(x_{1}(q), x_{2}(q)\right) \in \Omega, h(q) \in \mathbb{R}\right\}$ be the three-dimensional land surface associated with the mapping Ω. Let $P=$ $\left\{p_{1}, \ldots, p_{k}\right\} \subset \Omega, k \geq 2$, be a set of k points in Ω (snowmobile stations).

The snowmobile distance $d_{s m}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{s m}, \Omega\right)$ (snowmobile Voronoi diagram) defined by

$$
d_{s m}(q, r)=\inf _{\gamma} \int_{\gamma} \frac{1}{F\left(1-\alpha \frac{d h(\gamma(s))}{d s}\right)} d s
$$

for any $q, r \in \Omega$, and calculating the minimum time necessary for the snowmobile with the speed F on flat land to move from $(q, h(q))$ to $(r, h(r))$ along the land path $\gamma^{*}: \gamma^{*}(s)=(\gamma(s), h(\gamma(s)))$ associated with the domain path $\gamma:[0,1] \rightarrow \Omega, \gamma(0)=q, \gamma(1)=r$. Here the infimum is taken over all possible paths γ, and α is a positive constant.
A snowmobile goes uphill more slowly than downhill. The situation is opposite for a forest fire, and it can be modeled using a negative value of α. The resulting distance is called the forest-fire distance, and the resulting Voronoi diagram is called the forest-fire Voronoi diagram.

- Skew distance

Let T be a tilted plane in \mathbb{R}^{3}, obtained by rotating the $x_{1} x_{2}$ plane around the x_{1} axis through the angle $\alpha, 0<\alpha<\frac{\pi}{2}$, with the coordinate system obtained by taking the coordinate system of the $x_{1} x_{2}$ plane, accordingly rotated. For a point $q \in T, q=\left(x_{1}(q), x_{2}(q)\right)$, define the height $h(q)$ as its x_{3} coordinate in \mathbb{R}^{3}. Thus, $h(q)=x_{2}(q) \cdot \sin \alpha$. Let $P=\left\{p_{1}, \ldots, p_{k}\right\} \subset T, k \geq 2$.
The skew distance is the Voronoi generation distance of the generalized Voronoi diagram $V\left(P, d_{\text {skew }}, T\right)$ (skew Voronoi diagram) defined [AACLMP98] by

$$
d_{\text {skew }}(q, r)=d_{E}(q, r)+(h(r)-h(q))=d_{E}(q, r)+\sin \alpha\left(x_{2}(r)-x_{2}(q)\right)
$$

or, more generally, by

$$
d_{\text {skew }}(q, r)=d_{E}(q, r)+k\left(x_{2}(r)-x_{2}(q)\right)
$$

for all $q, r \in T$, where d_{E} is the Euclidean distance, and $k \geq 0$ is a constant.

20.3 Other Voronoi Generation Distances

- Voronoi distance for line segments

The Voronoi distance for (a set of) line segments $d_{s l}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(A, d_{s l}, \mathbb{R}^{2}\right)$ (line Voronoi diagram generated by straight line segments) defined by

$$
d_{s l}\left(x, A_{i}\right)=\inf _{y \in A_{i}} d_{E}(x, y),
$$

where the generator set $A=\left\{A_{1}, \ldots, A_{k}\right\}, k \geq 2$, is a set of pairwise disjoint straight line segments $A_{i}=\left[a_{i}, b_{i}\right]$, and d_{E} is the ordinary Euclidean distance.

In fact,

$$
d_{s l}\left(x, A_{i}\right)=\left\{\begin{array}{cl}
d_{E}\left(x, a_{i}\right), & \text { if } \quad x \in R_{a_{i}}, \\
d_{E}\left(x, b_{i}\right), & \text { if } \quad x \in R_{b_{i}} \\
d_{E}\left(x-a_{i}, \frac{\left(x-a_{i}\right)^{T}\left(b_{i}-a_{i}\right)}{d_{E}^{2}\left(a_{i}, b_{i}\right)}\left(b_{i}-a_{i}\right)\right), & \text { if } x \in \mathbb{R}^{2} \backslash\left\{R_{a_{i}} \cup R_{b_{i}}\right\},
\end{array}\right.
$$

where $R_{a_{i}}=\left\{x \in \mathbb{R}^{2}:\left(b_{i}-a_{i}\right)^{T}\left(x-a_{i}\right)<0\right\}, R_{b_{i}}=\left\{x \in \mathbb{R}^{2}:\left(a_{i}-b_{i}\right)^{T}(x-\right.$ $\left.\left.b_{i}\right)<0\right\}$.

- Voronoi distance for arcs

The Voronoi distance for (a set of circle) arcs $d_{c a}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(A, d_{c a}, \mathbb{R}^{2}\right)$ (line Voronoi diagram generated by circle arcs) defined by

$$
d_{c a}\left(x, A_{i}\right)=\inf _{y \in A_{i}} d_{E}(x, y)
$$

where the generator set $A=\left\{A_{1}, \ldots, A_{k}\right\}, k \geq 2$, is a set of pairwise disjoint circle $\operatorname{arcs} A_{i}$ (less than or equal to a semicircle) with radius r_{i} centered at $x_{c_{i}}$, and d_{E} is the Euclidean distance. In fact,

$$
d_{c a}\left(x, A_{i}\right)=\min \left\{d_{E}\left(x, a_{i}\right), d_{E}\left(x, b_{i}\right),\left|d_{E}\left(x, x_{c_{i}}\right)-r_{i}\right|\right\},
$$

where a_{i} and b_{i} are the endpoints of A_{i}.

- Voronoi distance for circles

The Voronoi distance for (a set of) circles $d_{c l}$ is the Voronoi generation distance of a generalized Voronoi diagram $V\left(A, d_{c l}, \mathbb{R}^{2}\right)$ (line Voronoi diagram generated by circles) defined by

$$
d_{c l}\left(x, A_{i}\right)=\inf _{y \in A_{i}} d_{E}(x, y),
$$

where the generator set $A=\left\{A_{1}, \ldots, A_{k}\right\}, k \geq 2$, is a set of pairwise disjoint circles A_{i} with radius r_{i} centered at $x_{c_{i}}$, and d_{E} is the Euclidean distance. In fact,

$$
d_{c l}\left(x, A_{i}\right)=\left|d_{E}\left(x, x_{c_{i}}\right)-r_{i}\right| .
$$

Examples of above Voronoi distances are $d_{c l}^{\star}\left(x, A_{i}\right)=d_{E}\left(x, x_{c_{i}}\right)-r_{i}$ and $d_{c l}^{*}\left(x, A_{i}\right)=d_{E}^{2}\left(x, x_{c_{i}}\right)-r_{i}^{2}$ (the Laguerre Voronoi diagram).

- Voronoi distance for areas

The Voronoi distance for areas $d_{a r}$ is the Voronoi generation distance of the generalized Voronoi diagram $V\left(A, d_{a r}, \mathbb{R}^{2}\right)$ (area Voronoi diagram) defined by

$$
d_{a r}\left(x, A_{i}\right)=\inf _{y \in A_{i}} d_{E}(x, y)
$$

where $A=\left\{A_{1}, \ldots, A_{k}\right\}, k \geq 2$, is a collection of pairwise disjoint connected closed sets (areas), and d_{E} is the ordinary Euclidean distance.

For any generalized generator set $A=\left\{A_{1}, \ldots, A_{k}\right\}, k \geq 2$, one can use as the Voronoi generation distance the Hausdorff distance from a point x to a set A_{i} : $d_{\text {Haus }}\left(x, A_{i}\right)=\sup _{y \in A_{i}} d_{E}(x, y)$, where d_{E} is the Euclidean distance.

- Cylindrical distance

The cylindrical distance $d_{c y l}$ is the intrinsic metric on the surface of a cylinder S which is used as the Voronoi generation distance in the cylindrical Voronoi diagram $V\left(P, d_{c y l}, S\right)$. If the axis of a cylinder with unit radius is placed at the x_{3} axis in \mathbb{R}^{3}, the cylindrical distance between any points $x, y \in S$ with the cylindrical coordinates $\left(1, \theta_{x}, z_{x}\right)$ and $\left(1, \theta_{y}, z_{y}\right)$ is given by

$$
d_{c y l}(x, y)=\left\{\begin{array}{cl}
\sqrt{\left(\theta_{x}-\theta_{y}\right)^{2}+\left(z_{x}-z_{y}\right)^{2}}, & \text { if } \theta_{y}-\theta_{x} \leq \pi, \\
\sqrt{\left(\theta_{x}+2 \pi-\theta_{y}\right)^{2}+\left(z_{x}-z_{y}\right)^{2}}, & \text { if } \theta_{y}-\theta_{x}>\pi
\end{array}\right.
$$

- Cone distance

The cone distance $d_{c o n}$ is the intrinsic metric on the surface of a cone S which is used as the Voronoi generation distance in the conic Voronoi diagram $V\left(P, d_{c o n}, S\right)$. If the axis of the cone S is placed at the x_{3} axis in \mathbb{R}^{3}, and the radius of the circle made by the intersection of the cone S with the $x_{1} x_{2}$ plane is equal to one, then the cone distance between any points $x, y \in S$ is given by

$$
d_{c o n}(x, y)=\left\{\begin{array}{c}
\sqrt{r_{x}^{2}+r_{y}^{2}-2 r_{x} r_{y} \cos \left(\theta_{y}^{\prime}-\theta_{x}^{\prime}\right)}, \\
\text { if } \theta_{y}^{\prime} \leq \theta_{x}^{\prime}+\pi \sin (\alpha / 2), \\
\sqrt{r_{x}^{2}+r_{y}^{2}-2 r_{x} r_{y} \cos \left(\theta_{x}^{\prime}+2 \pi \sin (\alpha / 2)-\theta_{y}^{\prime}\right)}, \\
\text { if } \theta_{y}^{\prime}>\theta_{x}^{\prime}+\pi \sin (\alpha / 2),
\end{array}\right.
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ are the Cartesian coordinates of a point x on S, α is the top angle of the cone, θ_{x} is the counterclockwise angle from the x_{1} axis to the ray from the origin to the point $\left(x_{1}, x_{2}, 0\right), \theta_{x}^{\prime}=\theta_{x} \sin (\alpha / 2), r_{x}=$ $\sqrt{x_{1}^{2}+x_{2}^{2}+\left(x_{3}-\operatorname{coth}(\alpha / 2)\right)^{2}}$ is the straight line distance from the top of the cone to the point $\left(x_{1}, x_{2}, x_{3}\right)$.

- Voronoi distances of order m

Given a finite set A of objects in a metric space (S, d), and an integer $m \geq 1$, consider the set of all m-subsets M_{i} of A (i.e., $M_{i} \subset A$, and $\left|M_{i}\right|=m$). The Voronoi diagram of order m of A is a partition of S into Voronoi regions $V\left(M_{i}\right)$ of m-subsets of A in such a way that $V\left(M_{i}\right)$ contains all points $s \in S$ which are "closer" to M_{i} than to any other m-set $M_{j}: d(s, x)<d(s, y)$ for any $x \in M_{i}$ and $y \in S \backslash M_{i}$. This diagram provides first, second, \ldots, m-th closest neighbors of a point in S.
Such diagrams can be defined in terms of some "distance function" $D\left(s, M_{i}\right)$, in particular, some m-hemimetric (cf. Chap. 3) on S. For $M_{i}=\left\{a_{i}, b_{i}\right\}$, there were considered the functions $\left|d\left(s, a_{i}\right)-d\left(s, b_{i}\right)\right|, d\left(s, a_{i}\right)+d\left(s, b_{i}\right), d\left(s, a_{i}\right)$. $d\left(s, b_{i}\right)$, as well as 2-metrics $d\left(s, a_{i}\right)+d\left(s, b_{i}\right)+d\left(a_{i}, b_{i}\right)$ and the area of triangle $\left(s, a_{i}, b_{i}\right)$.

Chapter 21

Image and Audio Distances

21.1 Image Distances

Image Processing treats signals such as photographs, video, or tomographic output. In particular, Computer Graphics consists of image synthesis from some abstract models, while Computer Vision extracts some abstract information: say, the 3D description of a scene from video footage of it. From about 2000, analog image processing (by optical devices) gave way to digital processing, and, in particular, digital image editing (for example, processing of images taken by popular digital cameras).

Computer graphics (and our brains) deals with vector graphics images, i.e., those represented geometrically by curves, polygons, etc. A raster graphics image (or digital image, bitmap) in $2 D$ is a representation of a $2 D$ image as a finite set of digital values, called pixels (short for picture elements) placed on a square grid \mathbb{Z}^{2} or a hexagonal grid. Typically, the image raster is a square $2^{k} \times 2^{k}$ grid with $k=8,9$ or 10 .

Video images and tomographic or MRI (obtained by cross-sectional slices) images are $3 D$ ($2 D$ plus time); their digital values are called voxels (volume elements). The spacing between two pixels in one slice is referred to as the interpixel distance, while the spacing between slices is the interslice distance.

A digital binary image corresponds to only two values 0,1 with 1 being interpreted as logical "true" and displayed as black; so, such image is identified with the set of black pixels. A continuous binary image is a (usually, compact) subset of a locally compact metric space (usually, Euclidean space \mathbb{E}^{n} with $n=2,3$).

The gray-scale images can be seen as point-weighted binary images. In general, a fuzzy set is a point-weighted set with weights (membership values); cf. metrics between fuzzy sets in Chap. 1. For the gray-scale images, xyi-representation is used, where plane coordinates (x, y) indicate shape, while the weight i (short for intensity, i.e., brightness) indicates texture. Sometimes, the matrix ($\left(i_{x y}\right)$) of graylevels is used.

The brightness histogram of a gray-scale image provides the frequency of each brightness value found in that image. If an image has m brightness levels (bins of gray-scale), then there are 2^{m} different possible intensities. Usually, $m=8$ and numbers $0,1, \ldots, 255$ represent the intensity range from black to white; other typical values are $m=10,12,14,16$. Humans can differ between around 10 million different colors but between only 30 different gray-levels; so, color has much higher discriminatory power.

For color images, (RGB)-representation is the better known, where space coordinates R, G, B indicate red, green and blue levels; a $3 D$ histogram provides brightness at each point. Among many other $3 D$ color models (spaces) are: (CMY) cube (Cyan, Magenta, Yellow colors), (HSL) cone (Hue-color type given as an angle, Saturation in \%, Luminosity in \%), and (YUV), (YIQ) used, respectively, in PAL, NTSC television. CIE-approved conversion of (RGB) into luminance (luminosity) of gray-level is $0.299 R+0.587 G+0.114 B$. The color histogram is a feature vector with components representing either the total number of pixels, or the percentage of pixels of a given color in the image.

Images are often represented by feature vectors, including color histograms, color moments, textures, shape descriptors, etc. Examples of feature spaces are: raw intensity (pixel values), edges (boundaries, contours, surfaces), salient features (corners, line intersections, points of high curvature), and statistical features (moment invariants, centroids). Typical video features are in terms of overlapping frames and motions.

Image Retrieval (similarity search) consists of (as for other data: audio recordings, DNA sequences, text documents, time-series, etc.) finding images whose features have values either mutual similarity, or similarity to a given query or in a given range.

There are two methods to compare images directly: intensity-based (color and texture histograms), and geometry-based (shape representations by medial axis, skeletons, etc.). The imprecise term shape is used for the extent (silhouette) of the object, for its local geometry or geometrical pattern (conspicuous geometric details, points, curves, etc.), or for that pattern modulo a similarity transformation group (translations, rotations, and scalings). The imprecise term texture means all that is left after color and shape have been considered, or it is defined via structure and randomness.

The similarity between vector representations of images is measured by the usual practical distances: l_{p}-metrics, weighted editing metrics, Tanimoto distance, cosine distance, Mahalanobis distance and its extension, distance.

Among probabilistic distances, the following ones are most used: Bhattacharya
2, Hellinger, Kullback-Leibler, Jeffrey and (especially, for histograms) χ^{2}-, Kolmogorov-Smirnov, Kuiper distances.

The main distances applied for compact subsets X and Y of \mathbb{R}^{n} (usually, $n=$ 2,3) or their digital versions are: Asplund metric, Shephard metric, symmetric difference semimetric $\operatorname{Vol}(X \Delta Y)$ (cf. Nykodym metric, area deviation, digital volume metric and their normalizations) and variations of the Hausdorff distance (see below).

For Image Processing, the distances below are between "true" and approximated digital images, in order to assess the performance of algorithms. For Image Retrieval, distances are between feature vectors of a query and reference.

- Color distances

The visible spectrum of a typical human eye is about $380-760 \mathrm{~nm}$. It matches the range of wavelengths sustaining photosynthesis; also, at those wavelengths opacity often coincides with impenetrability. A light-adapted eye has its maximum sensitivity at $\approx 555 \mathrm{~nm}(540 \mathrm{THz})$, in the green region of the optical spectrum.
A color space is a 3-parameter description of colors. The need for exactly three parameters comes from the existence of three kinds of receptors (cells on the retina) in the human eye: for short, middle and long wavelengths, corresponding to blue, green, and red. In fact, their respective sensitivity peaks are situated around 570, 543 and 442 nm , while wavelength limits of extreme violet and red are about 700 and 390 nm , respectively. About one of ten women has a 4th type of color receptor. Color blindness is ten times more common in males. People with absent or removed lens of the eye, can see UV (ultraviolet) wavelengths ($400-300 \mathrm{~nm}$). The mantis shrimp has 12 types of color receptors including 4 for UV; its species Gonodactylus smithii is the only organism known to have optimal polarization vision.
The CIE (International Commission on Illumination) derived (XYZ) color space in 1931 from the (RGB)-model and measurements of the human eye. In the CIE (XYZ) color space, the values X, Y and Z are also roughly red, green and blue. The basic assumption of Colorimetry (Indow, 1991), is that the perceptual color space admits a metric, the true color distance. This metric is expected to be almost locally Euclidean, i.e., a Riemannian metric. A continuous mapping from the metric space of light stimuli to this metric space is also expected.
Such a uniform color scale, where equal distances in the color space correspond to equal differences in color, is not obtained yet and existing color distances are various approximations of it. A first step in this direction was given by MacAdam ellipses, i.e., regions on a chromaticity (x, y) diagram which contains all colors looking indistinguishable to the average human eye; cf. JND (just-noticeable difference) video quality metric. For any $\epsilon>0$, the MacAdam metric in a color space is the metric for which those 25 ellipses are circles of radius ϵ. Here $x=\frac{X}{X+Y+Z}$ and $y=\frac{Y}{X+Y+Z}$ are projective coordinates, and the colors of the chromaticity diagram occupy a region of the real projective plane $\mathbb{R} P^{2}$.
The CIE $\left(L^{*} a^{*} b^{*}\right)$ (CIELAB) is an adaptation of CIE 1931 (XYZ) color space; it gives a partial linearization of the MacAdam color metric. The parameters L^{*}, a^{*}, b^{*} of the most complete model are derived from L, a, b which are: the luminance L of the color from black $L=0$ to white $L=100$, its position a between green $a<0$ and red $a>0$, and its position b between green $b<0$ and yellow $b>0$.

- Average color distance

For a given $3 D$ color space and a list of n colors, let $\left(c_{i 1}, c_{i 2}, c_{i 3}\right)$ be the representation of the i-th color of the list in this space. For a color histogram
$x=\left(x_{1}, \ldots, x_{n}\right)$, its average color is the vector $\left(x_{(1)}, x_{(2)}, x_{(3)}\right)$, where $x_{(j)}=$ $\sum_{i=1}^{n} x_{i} c_{i j}$ (for example, the average red, blue and green values in (RGB)).
The average color distance between two color histograms [HSEFN95] is the Euclidean distance of their average colors.

- Color component distance

Given an image (as a subset of \mathbb{R}^{2}), let p_{i} denote the area percentage of this image occupied by the color c_{i}. A color component of the image is a pair $\left(c_{i}, p_{i}\right)$.
The color component distance (Ma-Deng-Manjunath, 1997) between color components $\left(c_{i}, p_{i}\right)$ and $\left(c_{j}, p_{j}\right)$ is defined by

$$
\left|p_{i}-p_{j}\right| \cdot d\left(c_{i}, c_{j}\right)
$$

where $d\left(c_{i}, c_{j}\right)$ is the distance between colors c_{i} and c_{j} in a given color space. Mojsilović-Hu-Soljanin, 2002, developed an Earth Mover's distancelike modification of this distance.

- Riemannian color space

The proposal to measure perceptual dissimilarity of colors by a Riemannian metric (cf. Chap. 7) on a strictly convex cone $C \subset \mathbb{R}^{3}$ comes from von Helmholtz, 1892, and Luneburg, 1947.
Roughly, it was shown in [Resn74] that the only such GL-homogeneous cones C (i.e., the group of all orientation preserving linear transformations of \mathbb{R}^{3}, carrying C into itself, acts transitively on $C)$ are either $C_{1}=\mathbb{R}_{>0} \times\left(\mathbb{R}_{>0} \times \mathbb{R}_{>0}\right)$, or $C_{2}=\mathbb{R}_{>0} \times C^{\prime}$, where C^{\prime} is the set of 2×2 real symmetric matrices with determinant 1 . The first factor $\mathbb{R}_{>0}$ can be identified with variation of brightness and the other with the set of lights of a fixed brightness. Let α_{i} be some positive constants.
The Stiles color metric (Stiles, 1946) is the $G L$-invariant Riemannian metric on $C_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{i}>0\right\}$ given by the line element

$$
d s^{2}=\sum_{i=1}^{3} \alpha_{i}\left(\frac{d x_{i}}{x_{i}}\right)^{2}
$$

The Resnikoff color metric (Resnikoff, 1974) is the $G L$-invariant Riemannian metric on $C_{2}=\left\{(x, u): x \in \mathbb{R}_{>0}, u \in C^{\prime}\right\}$ given by the line element

$$
d s^{2}=\alpha_{1}\left(\frac{d x}{x}\right)^{2}+\alpha_{2} d s_{C^{\prime}}^{2}
$$

where $d s_{C^{\prime}}^{2}$, is the Poincaré metric (cf. Chap. 6) on C^{\prime}; so, C_{2} with this metric is not isometric to a Euclidean space.

- Histogram intersection quasi-distance

Given two color histograms $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ (with x_{i}, y_{i} representing the number of pixels in the bin i), the histogram intersection quasi-distance between them (cf. intersection distance in Chap. 17) is (SwainBallard, 1991) defined by

$$
1-\frac{\sum_{i=1}^{n} \min \left\{x_{i}, y_{i}\right\}}{\sum_{i=1}^{n} x_{i}}
$$

For normalized histograms (total sum is 1) the above quasi-distance becomes the usual l_{1}-metric $\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$. The normalized cross-correlation (RosenfeldKak, 1982) between x and y is a similarity defined by $\frac{\sum_{i=1}^{n} x_{i}, y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$.

- Histogram quadratic distance

Given two color histograms $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ (usually, $n=256$ or $n=64$) representing the color percentages of two images, their histogram quadratic distance (used in IBM's Query By Image Content system) is their Mahalanobis distance defined in Chap. 17 by

$$
\sqrt{(x-y)^{T} A(x-y)}
$$

where $A=\left(\left(a_{i j}\right)\right)$ is a symmetric positive-definite matrix, and the weight $a_{i j}$ is some, perceptually justified, similarity between colors i and j.
For example (cf. [HSEFN95]), $a_{i j}=1-\frac{d_{i j}}{\max _{1 \leq p, q \leq n} d_{p q}}$, where $d_{i j}$ is the Euclidean distance between 3 -vectors representing i and j in some color space.

If $\left(h_{i}, s_{i}, v_{i}\right)$ and $\left(h_{j}, s_{j}, v_{j}\right)$ are the representations of the colors i and j in the color space (HSV), then $a_{i j}=1-\frac{1}{\sqrt{5}}\left(\left(v_{i}-v_{j}\right)^{2}+\left(s_{i} \cos h_{i}-s_{j} \cos h_{j}\right)^{2}+\right.$ $\left.\left(s_{i} \sin h_{i}-s_{j} \sin h_{j}\right)^{2}\right)^{\frac{1}{2}}$ is used.

- Histogram diffusion distance

Given two histogram-based descriptors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$, their histogram diffusion distance (Ling-Okada, 2006) is defined by

$$
\int_{0}^{T}\|u(t)\|_{1} d t
$$

where T is a constant, and $u(t)$ is a heat diffusion process with initial condition $u(0)=x-y$. In order to approximate the diffusion, the initial condition is convoluted with a Gaussian window; then the sums of l_{1}-norms after each convolution approximate the integral.

- Gray-scale image distances

Let $f(x)$ and $g(x)$ denote the brightness values of two digital gray-scale images f and g at the pixel $x \in X$, where X is a raster of pixels. Any distance between point-weighted sets (X, f) and (X, g) (for example, the Earth Mover's distance) can be applied for measuring distances between f and g. However, the main used distances (called also errors) between the images f and g are:

1. The root-mean-square error $R M S(f, g)=\left(\frac{1}{|X|} \sum_{x \in X}(f(x)-g(x))^{2}\right)^{\frac{1}{2}}$ (a variant is to use the l_{1}-norm $|f(x)-g(x)|$ instead of the l_{2}-norm);
2. The signal-to-noise ratio $\operatorname{SNR}(f, g)=\left(\frac{\sum_{x \in X} g(x)^{2}}{\sum_{x \in X}(f(x)-g(x))^{2}}\right)^{\frac{1}{2}}$ (cf. SNR distance between sonograms);
3. The pixel misclassification error rate $\frac{1}{|X|}|\{x \in X: f(x) \neq g(x)\}|$ (normalized Hamming distance);
4. The frequency root-mean-square error $\left(\frac{1}{|U|^{2}} \sum_{u \in U}(F(u)-G(u))^{2}\right)^{\frac{1}{2}}$, where F and G are the discrete Fourier transforms of f and g, respectively, and U is the frequency domain;
5. The Sobolev norm of order $\delta \operatorname{error}\left(\frac{1}{|U|^{2}} \sum_{u \in U}\left(1+\left|\eta_{u}\right|^{2}\right)^{\delta}(F(u)-G(u))^{2}\right)^{\frac{1}{2}}$, where $0<\delta<1$ is fixed (usually, $\delta=\frac{1}{2}$), and η_{u} is the $2 D$ frequency vector associated with position u in the frequency domain U.
Cf. metrics between fuzzy sets in Chap. 1.

- Image compression L_{p}-metric

Given a number $r, 0 \leq r<1$, the image compression L_{p}-metric is the usual L_{p}-metric on $\mathbb{R}_{\geq 0}^{n^{2}}$ (the set of gray-scale images seen as $n \times n$ matrices) with p being a solution of the equation $r=\frac{p-1}{2 p-1} \cdot e^{\frac{p}{2 p-1}}$. So, $p=1,2$, or ∞ for, respectively, $r=0, r=\frac{1}{3} e^{\frac{2}{3}} \approx 0.65$, or $r \geq \frac{\sqrt{e}}{2} \approx 0.82$. Here r estimates the informative (i.e., filled with nonzeros) part of the image. According to [KKN02], it is the best quality metric to select a lossy compression scheme.

- Chamfering distances

The chamfering distances are distances approximating Euclidean distance by a weighted path distance on the graph $G=\left(\mathbb{Z}^{2}, E\right)$, where two pixels are neighbors if one can be obtained from another by an one-step move on \mathbb{Z}^{2}. The list of permitted moves is given, and a prime distance, i.e., a positive weight (cf. Chap. 19), is associated to each type of such move.
An (α, β)-chamfer metric corresponds to two permitted moves-with l_{1} distance 1 and with l_{∞}-distance 1 (diagonal moves only)—weighted α and β, respectively.
The main applied cases are $(\alpha, \beta)=(1,0)$ (the city-block metric, or 4-metric), $(1,1)$ (the chessboard metric, or 8 -metric), $(1, \sqrt{2})$ (the Montanari metric), $(3,4)$ (the $(3,4)$-metric), $(2,3)$ (the Hilditch-Rutovitz metric), $(5,7)$ (the Verwer metric).
The Borgefors metric corresponds to three permitted moves-with l_{1}-distance 1 , with l_{∞}-distance 1 (diagonal moves only) and knight moves-weighted 5, 7 and 11 .
A 3D-chamfer metric (or (α, β, γ)-chamfer metric) is the weighted path metric of the infinite graph with the vertex-set \mathbb{Z}^{3} of voxels, two vertices being adjacent if their l_{∞}-distance is one, while weights α, β and γ are associated to 6 face, 12 edge and 8 corner neighbors, respectively. If $\alpha=\beta=\gamma=1$, we obtain $l_{\infty^{-}}$ metric. The (3,4,5)- and (1,2,3)-chamfer metrics are the most used ones for digital $3 D$ images.

The Chaudhuri-Murthy-Chaudhuri metric between sequences $x=$ $\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is defined by

$$
\left|x_{i(x, y)}-y_{i(x, y)}\right|+\frac{1}{1+\left\lceil\frac{n}{2}\right\rceil} \sum_{1 \leq i \leq n, i \neq i(x, y)}\left|x_{i}-y_{i}\right|,
$$

where the maximum value of $x_{i}-y_{i}$ is attained for $i=i(x, y)$. For $n=2$ it is the $\left(1, \frac{3}{2}\right)$-chamfer metric.

- Earth Mover's distance

The Earth Mover's distance is a discrete form of the transportation distance (cf. Chap. 14). Roughly, it is the minimal amount of work needed to transport earth or mass from one position (properly spread in space) to the other (a collection of holes). For any two finite sequences $\left(x_{1}, \ldots, x_{m}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ over a metric space (X, d), consider signatures, i.e., point-weighted sets $P_{1}=$ $\left(p_{1}\left(x_{1}\right), \ldots, p_{1}\left(x_{m}\right)\right)$ and $P_{2}=\left(p_{2}\left(y_{1}\right), \ldots, p_{2}\left(y_{n}\right)\right)$.
For example, in [RTG00]) signatures represent clustered color or texture content of images: elements of X are centroids of clusters, and $p_{1}\left(x_{i}\right), p_{2}\left(y_{j}\right)$ are cardinalities of corresponding clusters. The ground distance d is a color distance, say, the Euclidean distance in $3 D \operatorname{CIE}\left(L^{*} a^{*} b^{*}\right)$ color space.
Let $W_{1}=\sum_{i} p_{1}\left(x_{i}\right)$ and $W_{2}=\sum_{j} p_{2}\left(y_{j}\right)$ be the total weights of P_{1} and P_{2}, respectively. Then the Earth Mover's distance between P_{1} and P_{2} is defined as

$$
\frac{\sum_{i, j} f_{i j}^{*} d\left(x_{i}, y_{j}\right)}{\sum_{i, j} f_{i j}^{*}}
$$

where the $m \times n$ matrix $S^{*}=\left(\left(f_{i j}^{*}\right)\right)$ is an optimal, i.e., minimizing $\sum_{i, j} f_{i j} d\left(x_{i}, y_{j}\right)$, flow. A flow is an $m \times n$ matrix $S=\left(\left(f_{i j}\right)\right)$ with following constraints:

1. all $f_{i j} \geq 0$;
2. $\sum_{i, j} f_{i j}=\min \left\{W_{1}, W_{2}\right\}$;
3. $\sum_{i} f_{i j} \leq p_{2}\left(y_{j}\right)$ and $\sum_{j} f_{i j} \leq p_{1}\left(x_{i}\right)$.

So, this distance is the average ground distance d that weights travel during an optimal flow. It is not a bin-to-bin (component-wise, as $L_{p^{-}}$, Kullback-Leibler, χ^{2}-distances), but a cross-bin histogram distance.
In the case $W_{1}=W_{2}$, the above two inequalities 3 . become equalities. Normalizing signatures to $W_{1}=W_{2}=1$ (which not changes the distance) allows us to see P_{1} and P_{2} as probability distributions of random variables, say, X and Y. Then $\sum_{i, j} f_{i j} d\left(x_{i}, y_{j}\right)$ is $\mathbb{E}_{S}[d(X, Y)]$, i.e., the Earth Mover's distance coincides, in this case, with the transportation distance (Chap. 14).
For $W_{1} \neq W_{2}$, it is not a metric in general. However, replacing the inequalities 3 in the above definition by equalities
$3^{\prime} . \sum_{i} f_{i j}=p_{2}\left(y_{j}\right)$ and $\sum_{j} f_{i j}=\frac{p_{1}\left(x_{i}\right) W_{1}}{W_{2}}$
produces the Giannopoulos-Veltkamp's proportional transport semimetric.

- Parameterized curves distance

The shape can be represented by a parametrized curve on the plane. Usually, such a curve is simple, i.e., it has no self-intersections. Let $X=X(x(t))$ and $Y=$ $Y(y(t))$ be two parametrized curves, where the (continuous) parametrization functions $x(t)$ and $y(t)$ on $[0,1]$ satisfy $x(0)=y(0)=0$ and $x(1)=y(1)=1$. The most used parametrized curves distance is the minimum, over all monotone increasing parametrizations $x(t)$ and $y(t)$, of the maximal Euclidean distance $d_{E}(X(x(t)), Y(y(t)))$. It is the Euclidean special case of the dogkeeper distance which is, in turn, the Fréchet metric for the case of curves.
Among variations of this distance are dropping the monotonicity condition of the parametrization, or finding the part of one curve to which the other has the smallest such distance [VeHa01].

- Nonlinear elastic matching distance

Consider a digital representation of curves. Let $r \geq 1$ be a constant, and let $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ be finite ordered sets of consecutive points on two closed curves. For any order-preserving correspondence f between all points of A and all points of B, the stretch $s\left(a_{i}, b_{j}\right)$ of $\left(a_{i}, f\left(a_{i}\right)=b_{j}\right)$ is r if either $f\left(a_{i-1}\right)=b_{j}$ or $f\left(a_{i}\right)=b_{j-1}$, or zero otherwise.
The relaxed nonlinear elastic matching distance is $\min _{f} \sum\left(s\left(a_{i}, b_{j}\right)+\right.$ $\left.d\left(a_{i}, b_{j}\right)\right)$, where $d\left(a_{i}, b_{j}\right)$ is the difference between the tangent angles of a_{i} and b_{j}. It is a near-metric for some r. For $r=1$, it is called the nonlinear elastic matching distance. In general, Younes, 1998, and Mio-Srivastava-Joshi, 2005, introduced elastic Riemannian distances between (seen as elastic) plane curves (or enclosed shapes) measuring the minimal cost of elastic reshaping of a curve into another.

- Turning function distance

For a plane polygon P, its turning function $T_{P}(s)$ is the angle between the counterclockwise tangent and the x axis as a function of the arc length s. This function increases with each left hand turn and decreases with right hand turns.
Given two polygons of equal perimeters, their turning function distance is the L_{p}-metric between their turning functions.

- Size function distance

For a shape, seen as a plane graph $G=(V, E)$, and a measuring function f on its vertex-set V (for example, the distance from $v \in V$ to the center of mass of V), the size function $S_{G}(x, y)$ is defined, on the points $(x, y) \in \mathbb{R}^{2}$, as the number of connected components of the restriction of G on vertices $\{v \in V: f(v) \leq y\}$ which contain a point v^{\prime} with $f\left(v^{\prime}\right) \leq x$.
Given two plane graphs with vertex-sets belonging to a raster $R \subset \mathbb{Z}^{2}$, their Uras-Verri's size function distance is the normalized l_{1}-distance between their size functions over raster pixels. The matching distance (cf. Chap. 1) between the cornerpoints/cornerlines multisets of two size functions is also used.

- Reflection distance

For a finite union A of plane curves and each point $x \in \mathbb{R}^{2}$, let V_{A}^{x} denote the union of intervals $(x, a), a \in A$ which are visible from x, i.e., $(x, a) \cap A=\emptyset$. Denote by ρ_{A}^{x} the area of the set $\left\{x+v \in V_{A}^{x}: x-v \in V_{A}^{x}\right\}$.

The Hagedoorn-Veltkamp's reflection distance between finite unions A and B of plane curves is the normalized l_{1}-distance between the corresponding functions ρ_{A}^{x} and ρ_{B}^{x} defined by

$$
\frac{\int_{\mathbb{R}^{2}}\left|\rho_{A}^{x}-\rho_{B}^{x}\right| d x}{\int_{\mathbb{R}^{2}} \max \left\{\rho_{A}^{x}, \rho_{B}^{x}\right\} d x}
$$

- Distance transform

Given a metric space $\left(X=\mathbb{Z}^{2}, d\right)$ and a binary digital image $M \subset X$, the distance transform is a function $f_{M}: X \rightarrow \mathbb{R}_{\geq 0}$, where $f_{M}(x)=$ $\inf _{u \in M} d(x, u)$ is the point-set distance $d(x, M)$. So, a distance transform can be seen as a gray-scale digital image where each pixel is given a label (a graylevel) which corresponds to the distance to the nearest pixel of the background. Distance transforms, in Image Processing, are also called distance fields and distance maps; but we reserve the last term only for this notion in any metric space as in Chap. 1.
A distance transform of a shape is the distance transform with M being the boundary of the image. For $X=\mathbb{R}^{2}$, the graph $\{(x, f(x)): x \in X\}$ of $d(x, M)$ is called the Voronoi surface of M.

- Medial axis and skeleton

Let (X, d) be a metric space, and let M be a subset of X. The medial axis of X is the set $M A(X)=\{x \in X:|\{m \in M: d(x, m)=d(x, M)\}| \geq 2\}$, i.e., all points of X which have in M at least two elements of best approximation; cf. metric projection in Chap. 1. $M A(X)$ consists of all points of boundaries of Voronoi regions of points of M. The reach of M is the set-set distance (cf. Chap. 1) between M and $M A(X)$.
The cut locus of X is the closure $\overline{M A(X)}$ of the medial axis. Cf. ShankarSormani radii in Chap. 1. The medial axis transform $\operatorname{MAT}(X)$ is the pointweighted set $M A(X)$ (the restriction of the distance transform on $M A(X)$) with $d(x, M)$ being the weight of $x \in X$.
If (as usual in applications) $X \subset \mathbb{R}^{n}$ and M is the boundary of X, then the skeleton $\operatorname{Skel}(X)$ of X is the set of the centers of all d-balls inscribed in X and not belonging to any other such ball; so, $\operatorname{Skel}(X)=M A(X)$. The skeleton with M being continuous boundary is a limit of Voronoi diagrams as the number of the generating points becomes infinite. For $2 D$ binary images X, the skeleton is a curve, a single-pixel thin one, in the digital case. The exoskeleton of X is the skeleton of the complement of X, i.e., of the background of the image for which X is the foreground.

- Procrustes distance

The shape of a form (configuration of points in \mathbb{R}^{2}), seen as expression of translation-, rotation- and scale-invariant properties of form, can be represented by a sequence of landmarks, i.e., specific points on the form, selected accordingly to some rule. Each landmark point a can be seen as an element $\left(a^{\prime}, a^{\prime \prime}\right) \in \mathbb{R}^{2}$ or an element $a^{\prime}+a^{\prime \prime} i \in \mathbb{C}$.

Consider two shapes x and y, represented by their landmark vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ from \mathbb{C}^{n}. Suppose that x and y are corrected for translation by setting $\sum_{t} x_{t}=\sum_{t} y_{t}=0$. Then their Procrustes distance is defined by

$$
\sqrt{\sum_{1 \leq t \leq n}\left|x_{t}-y_{t}\right|^{2}}
$$

where two forms are, first, optimally (by least squares criterion) aligned to correct for scale, and their Kendall shape distance is defined by

$$
\arccos \sqrt{\frac{\left(\sum_{t} x_{t} \bar{y}_{t}\right)\left(\sum_{t} y_{t} \bar{x}_{t}\right)}{\left(\sum_{t} x_{t} \bar{x}_{t}\right)\left(\sum_{t} y_{t} \bar{y}_{t}\right)}},
$$

where $\bar{\alpha}=a^{\prime}-a^{\prime \prime} i$ is the complex conjugate of $\alpha=a^{\prime}+a^{\prime \prime} i$.
Petitjean, 2002, extended the L_{2}-Wasserstein distance (cf. Chap. 14) to colored mixtures, i.e., ordinary mixtures of random vectors, for which an new axis (the space of colors) has been added. He remarked that the Procrustes distance is an instance of this colored Wasserstein distance, when this latter is minimized for a class of affine transformations (rotations and translations).

- Shape parameters

Let X be a figure in \mathbb{R}^{2} with area $A(X)$, perimeter $P(X)$ and convex hull conv X. The main shape parameters of X are given below.
$D_{A}(X)=2 \sqrt{\frac{A(X)}{\pi}}$ and $D_{P}(X)=\frac{P(X)}{\pi}$ are the diameters of circles with area $A(X)$ and with perimeter $P(X)$, respectively.
Feret's diameters $F_{x}(X), F_{y}(X), F_{\min }(X), F_{\max }(X)$ are the orthogonal projections of X on the x and y axes and such minimal and maximal projections on a line.
Martin's diameter $M(X)$ is the distance between opposite sides of X measured crosswise of it on a line bisecting the figure's area. $M_{x}(X)$ and $M_{y}(X)$ are Martin's diameters for horizontal and vertical directions, respectively.
$R_{\text {in }}(X)$ and $R_{\text {out }}(X)$ are the radii of the largest disc in X and the smallest disc including $X . a(X)$ and $b(X)$ are the lengths of the major and minor semiaxes of the ellipse with area $A(X)$ and perimeter $P(X)$.
Examples of the ratios, describing some shape properties in above terms, follow. The area-perimeter ratio (or projection sphericity) and Petland's projection sphericity ratio are $A r P e=\frac{4 \pi A(X)}{(P(X))^{2}}$ and $\frac{4 A(X)}{\pi\left(F_{\max }(X)\right)^{2}}$.
The circularity shape factor and Horton's compactness factor are $\frac{1}{\text { ArPe }}$ and $\frac{1}{\sqrt{\text { ArPe }}}$. Wadell's circularity shape and drainage-basin circularity shape ratios are $\frac{D_{A}(X)}{F_{\max }(X)}$ and $\frac{A(X)}{D_{P}(X)}$. Both ratios and ArPe are at most 1 with equality only for a disc.
Tickell's ratio is $\left(\frac{D_{A}(X)}{D_{\text {out }}(X)}\right)^{2}$. Cailleux's roundness ratio is $\frac{2 r(X)}{F_{\max }(X)}$, where $r(X)$ is the radius of curvature at a most convex part of the contour of X.

The rugosity coefficient and convexity ratio (or solidity) are $\frac{P(X)}{P(\text { conv } X)}$ and $\frac{A(X)}{A(\text { conv } X)}$. Both the solidity and $\frac{P(\text { conv } X)}{P(X)}$ are at most 1 with equality only for convex sets.
The diameters ratios are $\frac{M D_{x}(X)}{F_{x}(X)}$ and $\frac{M D_{y}(X)}{F_{y}(X)}$. The radii ratio and ellipse ratio are $\frac{R_{\text {in }}(X)}{R_{\text {out }}(X)}$ and $\frac{a(X)}{b(X)}$. The Feret's ratio and modification ratio are $\frac{F_{\min }(X)}{F_{\max }(X)}$ and $\frac{R_{\text {in }}(X)}{F_{\max }(X)}$. The aspect ratio in Chap. 1 is the reciprocal of the Feret's ratio.
The symmetry factor of Blaschke is $1-\frac{A(X)}{A(S(X))}$, where $S(X)=\frac{1}{2}(X \oplus\{x:-x \in$ X \}).

- Distances from symmetry

Many measures of chirality and, in general, given symmetry G of a given set $A \in \mathbb{R}^{n}$, were proposed. Several examples follow.
Let A^{\prime} be the enantiomorph (mirror image) of A. Gilat, 1985, proposed to measure distance from achirality of A by $\frac{V\left(A \triangle A^{\prime}\right)}{V(A)}$; cf. normalized volume of symmetric difference in Chap. 9.
Let shape A be represented by a sequence $\left(a_{1}, \ldots, a_{m}\right)$ of points. Then the symmetry distance of A is defined by Zabrodsky-Peleg-Avnir, 1992, as the point-set distance $\inf _{b} \frac{1}{m} \sum_{i=1}^{m}\left\|a_{i}-b_{i}\right\|_{2}^{2}$, where $b=\left(b_{1}, \ldots, b_{n}\right)$ is the L_{2}-nearest to a representation of a symmetric (i.e., invariant to rotation and translation) shape. The symmetry distance of a function f with respect to any transformation G is the L_{2}-distance between f and the nearest function invariant to G.
If A is a $2 D$ object, and it is represented by its radial function $R(r)$, then the distance of A from symmetry G can be measured (Köhler, 1993) by $\int_{0}^{2 \pi} \mid G(R(r))$ $R(r) \mid d r$. For a sequence $\left(a_{1}, \ldots, a_{m}\right)$ of points, similar distance is (Köhler, 1999) $\min _{p} \sum_{i=1}^{m} d_{E}\left(a_{i}, G\left(p\left(a_{i}\right)\right)\right)$, where p is any of $m!$ permutations of $\left(a_{1}, \ldots, a_{m}\right)$ and d_{E} is the Euclidean distance.

- Tangent distance

For any $x \in \mathbb{R}^{n}$ and a family of transformations $t(x, \alpha)$, where $\alpha \in \mathbb{R}^{k}$ is the vector of k parameters (for example, the scaling factor and rotation angle), the set $M_{x}=\left\{t(x, \alpha): \alpha \in \mathbb{R}^{k}\right\} \subset \mathbb{R}^{n}$ is a manifold of dimension at most k. It is a curve if $k=1$. The minimum Euclidean distance between manifolds M_{x} and M_{y} would be a useful distance since it is invariant with respect to transformations $t(x, \alpha)$.
However, the computation of such a distance is too difficult in general; so, M_{x} is approximated by its tangent subspace at $x:\left\{x+\sum_{i=1}^{k} \alpha_{k} x^{i}: \alpha \in \mathbb{R}^{k}\right\} \subset \mathbb{R}^{n}$, where the tangent vectors $x^{i}, 1 \leq i \leq k$, spanning it are the partial derivatives of $t(x, \alpha)$ with respect to α. The one-sided (or directed) tangent distance between elements x and y of \mathbb{R}^{n} is a quasi-distance d defined by

$$
\sqrt{\min _{\alpha}\left\|x+\sum_{i=1}^{k} \alpha_{k} x^{i}-y\right\|^{2}}
$$

The Simard-Le Cun-Denker's tangent distance is defined by $\min \{d(x, y)$, $d(y, x)\}$.

- Pixel distance

Consider two digital images, seen as binary $m \times n$ matrices $x=\left(\left(x_{i j}\right)\right)$ and $y=\left(\left(y_{i j}\right)\right)$, where a pixel $x_{i j}$ is black or white if it is equal to 1 or 0 , respectively. For each pixel $x_{i j}$, the fringe distance map to the nearest pixel of opposite color $D_{B W}\left(x_{i j}\right)$ is the number of fringes expanded from (i, j) (where each fringe is composed by the pixels that are at the same distance from (i, j)) until the first fringe holding a pixel of opposite color is reached.
The pixel distance (Smith-Bourgoin-Sims-Voorhees, 1994) is defined by

$$
\sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n}\left|x_{i j}-y_{i j}\right|\left(D_{B W}\left(x_{i j}\right)+D_{B W}\left(y_{i j}\right)\right)
$$

In a pixel-based device (computer monitor, printer, scanner), the pixel pitch (or dot pitch) is the spacing between subpixels (dots) of the same color on the inside of a display screen. Closer spacing usually produce a sharper image.

- Pratt's figure of merit

In general, a figure of merit is a quantity used to characterize the performance of a device, system or method, relative to its alternatives. Given two binary images, seen as nonempty subsets, A and B, of a finite metric space (X, d), their Pratt's figure of merit (or FOM, Abdou-Pratt, 1979) is a quasi-distance defined by

$$
\left(\max \{|A|,|B|\} \sum_{x \in B} \frac{1}{1+\alpha d(x, A)^{2}}\right)^{-1}
$$

where α is a scaling constant (usually, $\frac{1}{9}$), and $d(x, A)=\min _{y \in A} d(x, y)$ is the point-set distance.
Similar quasi-distances are Peli-Malah's mean error distance $\frac{1}{|B|} \sum_{x \in B}$ $d(x, A)$, and the mean square error distance $\frac{1}{|B|} \sum_{x \in B} d(x, A)^{2}$.

- p-th order mean Hausdorff distance

Given $p \geq 1$ and two binary images, seen as nonempty subsets A and B of a finite metric space (say, a raster of pixels) (X, d), their p-th order mean Hausdorff distance is [Badd92] a normalized L_{p}-Hausdorff distance, defined by

$$
\left(\frac{1}{|X|} \sum_{x \in X}|d(x, A)-d(x, B)|^{p}\right)^{\frac{1}{p}}
$$

where $d(x, A)=\min _{y \in A} d(x, y)$ is the point-set distance. The usual Hausdorff metric is proportional to the ∞-th order mean Hausdorff distance.
Venkatasubraminian's Σ-Hausdorff distance $d_{d \text { Haus }}(A, B)+d_{d \text { Haus }}(B, A)$ is equal to $\sum_{x \in A \cup B}|d(x, A)-d(x, B)|$, i.e., it is a version of L_{1}-Hausdorff distance.

Another version of the 1st order mean Hausdorff distance is Lindstrom-Turk's mean geometric error (1998) between two images (seen as surfaces A and B) defined by

$$
\frac{1}{\operatorname{Area}(A)+\operatorname{Area}(B)}\left(\int_{x \in A} d(x, B) d S+\int_{x \in B} d(x, A) d S\right),
$$

where $\operatorname{Area}(A)$ denotes the area of A. If the images are seen as finite sets A and B, their mean geometric error is defined by

$$
\frac{1}{|A|+|B|}\left(\sum_{x \in A} d(x, B)+\sum_{x \in B} d(x, A)\right) .
$$

- Modified Hausdorff distance

Given two binary images, seen as nonempty subsets A and B of a finite metric space (X, d), their Dubuisson-Jain's modified Hausdorff distance (1994) is defined as the maximum of point-set distances averaged over A and B :

$$
\max \left\{\frac{1}{|A|} \sum_{x \in A} d(x, B), \frac{1}{|B|} \sum_{x \in B} d(x, A)\right\}
$$

while their Eiter-Mannila's sum of minimal distances (1997) is defined as

$$
\frac{1}{2}\left(\sum_{x \in A} d(x, B)+\sum_{x \in B} d(x, A)\right)
$$

- Partial Hausdorff quasi-distance

Given two binary images, seen as subsets $A, B \neq \emptyset$ of a finite metric space (X, d), and integers k, l with $1 \leq k \leq|A|, 1 \leq l \leq|B|$, their HuttenlocherRucklidge's partial (k, l)-Hausdorff quasi-distance (1992) is defined by

$$
\max \left\{k_{x \in A}^{t h} d(x, B), l_{x \in B}^{\text {th }} d(x, A)\right\},
$$

where $k_{x \in A}^{t h} d(x, B)$ means the k-th (rather than the largest $|A|$-th ranked one) among $|A|$ distances $d(x, B)$ ranked in increasing order. The case $k=\left\lfloor\frac{|A|}{2}\right\rfloor$, $l=\left\lfloor\frac{|B|}{2}\right\rfloor$ corresponds to the modified median Hausdorff quasi-distance.

- Bottleneck distance

Given two binary images, seen as subsets $A, B \neq \emptyset$ with $|A|=|B|=m$, of a metric space (X, d), their bottleneck distance is defined by

$$
\min _{f} \max _{x \in A} d(x, f(x)),
$$

where f is any bijective mapping between A and B.

Variations of the above distance are:

1. The minimum weight matching: $\min _{f} \sum_{x \in A} d(x, f(x))$;
2. The uniform matching: $\min _{f}\left\{\max _{x \in A} d(x, f(x))-\min _{x \in A} d(x, f(x)\}\right.$;
3. The minimum deviation matching: $\min _{f}\left\{\max _{x \in A} d(x, f(x))-\frac{1}{|A|} \sum_{x \in A}\right.$ $d(x, f(x)\}$.

Given an integer t with $1 \leq t \leq|A|$, the t-bottleneck distance between A and B [InVe00] is the above minimum but with f being any mapping from A to B such that $|\{x \in A: f(x)=y\}| \leq t$.
The cases $t=1$ and $t=|A|$ correspond, respectively, to the bottleneck distance and directed Hausdorff distance $d_{\text {dHaus }}(A, B)=\max _{x \in A} \min _{y \in B} d(x, y)$ (Chap. 1).

- Hausdorff distance up to G

Given a group $(G, \cdot, i d)$ acting on the Euclidean space \mathbb{E}^{n}, the Hausdorff distance up to G between two compact subsets A and B (used in Image Processing) is their generalized G-Hausdorff distance (cf. Chap. 1), i.e., the minimum of $d_{\text {Haus }}(A, g(B))$ over all $g \in G$. Usually, G is the group of all isometries or all translations of \mathbb{E}^{n}.

- Hyperbolic Hausdorff distance

For any compact subset A of \mathbb{R}^{n}, denote by $\operatorname{MAT}(A)$ its Blum's medial axis transform, i.e., the subset of $X=\mathbb{R}^{n} \times \mathbb{R}_{\geq 0}$, whose elements are all pairs $x=\left(x^{\prime}, r_{x}\right)$ of the centers x^{\prime} and the radii r_{x} of the maximal inscribed (in A) balls, in terms of the Euclidean distance d_{E} in \mathbb{R}^{n}. (Cf. medial axis and skeleton transforms for the general case.)
The hyperbolic Hausdorff distance [ChSe00] is the Hausdorff metric on nonempty compact subsets $\operatorname{MAT}(A)$ of the metric space (X, d), where the hyperbolic distance d on X is defined, for its elements $x=\left(x^{\prime}, r_{x}\right)$ and $y=\left(y^{\prime}, r_{y}\right)$, by

$$
\max \left\{0, d_{E}\left(x^{\prime}, y^{\prime}\right)-\left(r_{y}-r_{x}\right)\right\} .
$$

- Nonlinear Hausdorff metric

Given two compact subsets A and B of a metric space (X, d), their nonlinear Hausdorff metric (or Szatmári-Rekeczky-Roska wave distance) is the Hausdorff distance $d_{\text {Haus }}\left(A \cap B,(A \cup B)^{*}\right)$, where $(A \cup B)^{*}$ is the subset of $A \cup B$ which forms a closed contiguous region with $A \cap B$, and the distances between points are allowed to be measured only along paths wholly in $A \cup B$.

- Video quality metrics

These metrics are between test and reference color video sequences, usually aimed at optimization of encoding/compression/decoding algorithms. Each of them is based on some perceptual model of the human vision system, the simplest ones being RMSE (root-mean-square error) and PSNR (peak signal-to-noise ratio) error measures. The threshold metrics estimate the probability of detecting
an $\operatorname{artifact}$ (i.e., a visible distortion that gets added to a video signal during digital encoding).
Examples are: Sarnoff's JND (just-noticeable differences), Winkler's PDM (perceptual distortion), and Watson's DVQ (digital video quality) metrics. DVQ is an l_{p}-metric between feature vectors representing two video sequences. Some metrics measure special artifacts in the video: the appearance of block structure, blurriness, added "mosquito" noise (ambiguity in the edge direction), texture distortion, etc.

- Time series video distances

The time series video distances are objective wavelet-based spatial-temporal video quality metrics. A video stream x is processed into a time series $x(t)$ (seen as a curve on coordinate plane) which is then (piecewise linearly) approximated by a set of n contiguous line segments that can be defined by $n+1$ endpoints $\left(x_{i}, x_{i}^{\prime}\right), 0 \leq i \leq n$, in the coordinate plane. In [WoPi99] are given the following (cf. Meehl distance) distances between video streams x and y :

- Shape $(x, y)=\sum_{i=0}^{n-1}\left|\left(x_{i+1}^{\prime}-x_{i}^{\prime}\right)-\left(y_{i+1}^{\prime}-y_{i}^{\prime}\right)\right|$;
$-\operatorname{Offset}(x, y)=\sum_{i=0}^{n-1}\left|\frac{x_{i+1}^{\prime}+x_{i}^{\prime}}{2}-\frac{y_{i+1}^{\prime}+y_{i}^{\prime}}{2}\right|$.

- Handwriting spatial gap distances

Automatic recognition of unconstrained handwritten texts (for example, legal amounts on bank checks or pre-hospital care reports) require measuring the spatial gaps between connected components in order to extract words.
Three most used ones, among handwriting spatial gap distances between two adjacent connected components x and y of text line, are:

- Seni-Cohen, 1994: the run-length (minimum horizontal Euclidean distance) between x and y, and the horizontal distance between their bounding boxes;
- Mahadevan-Nagabushnam, 1995: Euclidean distance between the convex hulls of x and y, on the line linking hull centroids.

21.2 Audio Distances

Sound is the vibration of gas or air particles that causes pressure variations within our eardrums. Audio (speech, music, etc.) Signal Processing is the processing of analog (continuous) or, mainly, digital representation of the air pressure waveform of the sound. A sound spectrogram (or sonogram) is a visual $3 D$ representation of an acoustic signal. It is obtained either by a series of bandpass filters (an analog processing), or by application of the short-time Fourier transform to the electronic analog of an acoustic wave. Three axes represent time, frequency and intensity (acoustic energy). Often this $3 D$ curve is reduced to two dimensions by indicating the intensity with more thick lines or more intense gray or color values.

Sound is called tone if it is periodic (the lowest fundamental frequency plus its multiples, harmonics or overtones) and noise, otherwise. The frequency is measured in cps (the number of complete cycles per second) or Hz (Hertz). The
range of audible sound frequencies to humans is typically 20 Hz to 20 kHz . A moth Galleria mellonella can hear up to 300 kHz , in order to locate predatory bats using ultrasound.

The power $P(f)$ of a signal is energy per unit of time; it is proportional to the square of signal's amplitude $A(f)$. Decibel $d B$ is the unit used to express the relative strength of two signals. One tenth of 1 dB is bel, the original outdated unit.

The amplitude of an audio signal in $d B$ is $20 \log _{10} \frac{A(f)}{A\left(f^{\prime}\right)}=10 \log _{10} \frac{P(f)}{P\left(f^{\prime}\right)}$, where f^{\prime} is a reference signal selected to correspond to 0 dB (usually, the threshold of human hearing). The threshold of pain is about $120-140 \mathrm{~dB}$.

Pitch and loudness are auditory subjective terms for frequency and amplitude.
The mel scale is a perceptual frequency scale, corresponding to the auditory sensation of tone height and based on mel, a unit of pitch. It is connected to the acoustic frequency f hertz scale by $\operatorname{Mel}(f)=1127 \ln \left(1+\frac{f}{700}\right)$ or, simply, $\operatorname{Mel}(f)=1000 \log _{2}\left(1+\frac{f}{1000}\right.$.

The Bark scale (named after Barkhausen) is a psycho-acoustic scale of frequency: it ranges from 0 to 24 Bark corresponding to the first 24 critical bands of hearing:
$0,100,200, \ldots, 1270,1480,1720, \ldots, 9500,12000,15500 \mathrm{~Hz}$.
Those bands correspond to spatial regions of the basilar membrane (of the inner ear), where oscillations, produced by the sound of given frequency, activate the hair cells and neurons. Our ears are most sensitive in $2,000-5,000 \mathrm{~Hz}$. The Bark scale is connected to the acoustic frequency f kilohertz scale by $\operatorname{Bark}(f)=$ $13 \arctan (0.76 f)+3.5 \arctan \left(\frac{f}{0.75}\right)^{2}$.

Terrestrial vertebrates perceive frequency on a logarithmic scale, i.e., pitch perception is better described by frequency ratios than by differences on a linear scale. It is matched by the distribution of cells sensitive to different frequencies in their ears.

Power spectral density $\operatorname{PSD}(f)$ of a wave is the power per Hz. It is the Fourier transform of the autocorrelation sequence. So, the power of the signal in the band $(-W, W)$ is given by $\int_{-W}^{W} P S D(f) d f$. A power law noise has $P S D(f) \sim f^{\alpha}$. The noise is called violet, blue, white, pink (or $\frac{1}{f}$), red (or brown(ian)), black (or silent) if $\alpha=2,1,0,-1,-2,<-2$. PSD changes by $3 \alpha \mathrm{~dB}$ per octave (i.e., with frequency doubling); it decreases for $\alpha<0$.

Pink noise occurs in many physical, biological and economic systems; cf. long range dependence in Chap. 18. It has equal power in proportionally wide frequency ranges. Humans also process frequencies in a such logarithmic space (approximated by the Bark scale). So, every octave contains the same amount of energy. Thus pink noise is used as a reference signal in Audio Engineering. Steady pink noise (including light music) reduces brain wave complexity and improve sleep quality.

Intensity of speech signal goes up/down within a $3-8 \mathrm{~Hz}$ frequency which resonates with the theta rhythm of neocortex. The speakers produce $3-8$ syllables per second.

The main way that humans control their phonation (speech, song, laughter) is by control over the vocal tract (the throat and mouth) shape. This shape, i.e.,
the cross-sectional profile of the tube from the closure in the glottis (the space between the vocal cords) to the opening (lips), is represented by the cross-sectional area function $\operatorname{Area}(x)$, where x is the distance to the glottis. The vocal tract acts as a resonator during vowel phonation, because it is kept relatively open. These resonances reinforce the source sound (ongoing flow of lung air) at particular resonant frequencies (or formants) of the vocal tract, producing peaks in the spectrum of the sound.

Each vowel has two characteristic formants, depending on the vertical and horizontal position of the tongue in the mouth. The source sound function is modified by the frequency response function for a given area function. If the vocal tract is approximated as a sequence of concatenated tubes of constant cross-sectional area, then the area ratio coefficients are the ratios $\frac{\operatorname{Area}\left(x_{i}+1\right)}{\text { Area }\left(x_{i}\right)}$ for consecutive tubes; those coefficients can be computed by $L P C$ (linear predictive coding).

The spectrum of a sound is the distribution of magnitude (dB) (and sometimes the phases) in frequency (kHz) of the components of the wave. The spectral envelope is a smooth contour that connects the spectral peaks. Its estimation is based on either LPC, or FFT (fast Fourier transform) using real cepstrum, i.e., the log amplitude spectrum.

FT (Fourier transform) maps time-domain functions into frequency-domain representations. The complex cepstrum of the signal $f(t)$ is $F T(\ln (F T(f(t)+$ $2 \pi m i)$)), where m is the integer needed to unwrap the angle or imaginary part of the complex logarithm function. The FFT performs the Fourier transform on the signal and samples the discrete transform output at the desired frequencies usually in the mel scale.

Parameter-based distances used in recognition and processing of speech data are usually derived by LPC, modeling the speech spectrum as a linear combination of the previous samples (as in autoregressive processes). Roughly, LPC processes each word of the speech signal in the following 6 steps: filtering, energy normalization, partition into frames, windowing (to minimize discontinuities at the borders of frames), obtaining LPC parameters by the autocorrelation method and conversion to the LPC-derived cepstral coefficients. LPC assumes that speech is produced by a buzzer at the glottis (with occasionally added hissing and popping sounds), and it removes the formants by filtering.

The majority of distortion measures between sonograms are variations of squared Euclidean distance (including a covariance-weighted one, i.e., Mahalanobis, distance) and probabilistic distances belonging to following general types: generalized variational distance, f-divergence and Chernoff distance; cf. Chap. 14.

The distances for sound processing below are between vectors x and y representing two signals to compare. For recognition, they are a template reference and input signal, while for noise reduction they are the original (reference) and distorted signal (see, for example, [OASM03]). Often distances are calculated for small segments, between vectors representing short-time spectra, and then averaged.

- SNR distance

Given a sound, let P and A_{s} denote its average power and RMS (root-meansquare) amplitude. The signal-to-noise ratio in decibels is defined by

$$
S N R_{d B}=10 \log _{10}\left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)=P_{\text {signal }, d B}-P_{\text {noise }, d B}=10 \log _{10}\left(\frac{A_{\text {signal }}}{A_{\text {noise }}}\right)^{2}
$$

The dynamic range is such ratio between the strongest undistorted and minimum discernable signals. It is roughly 140 dB for human hearing, 40 dB for human speech and 80 dB for a music in a concert hall.
The Shannon-Hartley theorem express the capacity (maximal possible information rate) of a channel with additive colored (frequency-dependent) Gaussian noise, on the bandwidth B in Hz as $\int_{0}^{B} \log _{2}\left(1+\frac{P_{\text {signal }}(f)}{P_{\text {noise }}(f)}\right) d f$.
The SNR distance between signals $x=\left(x_{i}\right)$ and $y=\left(y_{i}\right)$ with n frames is

$$
10 \log _{10} \frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

If M is the number of segments, the segmented $S N R$ between x and y is defined by

$$
\frac{10}{m} \sum_{m=0}^{M-1}\left(\log _{10} \sum_{i=n m+1}^{n m+n} \frac{x_{i}^{2}}{\left(x_{i}-y_{i}\right)^{2}}\right)
$$

Another measure, used to compare two waveforms x and y in the time-domain, is their Czekanovski-Dice distance defined by

$$
\frac{1}{n} \sum_{i=1}^{n}\left(1-\frac{2 \min \left\{x_{i}, y_{i}\right\}}{x_{i}+y_{i}}\right)
$$

- Spectral magnitude-phase distortion

The spectral magnitude-phase distortion between signals $x=x(\omega)$ and $y=$ $y(\omega)$ is defined by

$$
\frac{1}{n}\left(\lambda \sum_{i=1}^{n}(|x(w)|-|y(w)|)^{2}+(1-\lambda) \sum_{i=1}^{n}(\angle x(w)-\angle y(w))^{2}\right)
$$

where $|x(w)|,|y(w)|$ are magnitude spectra, and $\angle x(w), \angle y(w)$ are phase spectra of x and y, respectively, while the parameter $\lambda, 0 \leq \lambda \leq 1$, is chosen in order to attach commensurate weights to the magnitude and phase terms. The case $\lambda=0$ corresponds to the spectral phase distance.
Given a signal $f(t)=a e^{-b t} u(t), a, b>0$ which has Fourier transform $x(w)=$ $\frac{a}{b+i w}$, its magnitude (or amplitude) spectrum is $|x|=\frac{a}{\sqrt{b^{2}+w^{2}}}$, and its phase
spectrum (in radians) is $\alpha(x)=\tan ^{-1} \frac{w}{b}$, i.e., $x(w)=|x| e^{i \alpha}=|x|(\cos \alpha+$ $i \sin \alpha)$.
The Fourier distance and Fourier phase distance are $\|F F T(x)-F F T(y)\|_{2}$ and $\|\arg (F F T(x))-\arg (F F T(y))\|_{2}$, where the sums only contain the lower frequency terms of fast Fourier transform in order to reduce noise. The similar wavelet distance is based on the discrete wavelet transform separating low and high frequencies.

- Spectral distances

Given two discrete spectra $x=\left(x_{i}\right)$ and $y=\left(y_{i}\right)$ with n channel filters, their Euclidean metric EM, slope metric SM (Klatt, 1982) and 2nd differential metric 2DM (Assmann and Summerfield, 1989) are defined, respectively, by

$$
\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}, \sqrt{\sum_{i=1}^{n}\left(x_{i}^{\prime}-y_{i}^{\prime}\right)^{2}} \text { and } \sqrt{\sum_{i=1}^{n}\left(x_{i}^{\prime \prime}-y_{i}^{\prime \prime}\right)^{2}}
$$

where $z_{i}^{\prime}=z_{i+1}-z_{i}$ and $z_{i}^{\prime \prime}=\max \left(2 z_{i}-z_{i+1}-z_{i-1}, 0\right)$. Comparing, say, the auditory excitation patterns of vowels, $E M$ gives equal weight to peaks and troughs although spectral peaks have more perceptual weight. $S M$ emphasizes the formant frequencies, while $2 D M$ sets to zero the spectral properties other than the formants.
The RMS log spectral distance (or root-mean-square distance, quadratic mean distance) $\operatorname{LSD}(x, y)$ is defined by

$$
\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\ln x_{i}-\ln y_{i}\right)^{2}}
$$

The corresponding l_{1} - and l_{∞}-distances are called mean absolute distance and maximum deviation. These three distances are related to decibel variations in the \log spectral domain by the multiple $\frac{10}{\log 10}$.
The square of $\operatorname{LSD}(x, y)$, via the cepstrum representation $\ln x(\omega)=$ $\sum_{j=-\infty}^{\infty} c_{j} e^{-j \omega i}\left(\right.$ where $x(\omega)$ is the power cepstrum $\left.\left|F T\left(\left.\ln (\mid F T(f(t)))\right|^{2}\right)\right|^{2}\right)$ becomes, in the complex cepstral space, the cepstral distance.
The log area ratio distance $\operatorname{LAR}(x, y)$ between x and y is defined by

$$
\sqrt{\frac{1}{n} \sum_{i=1}^{n} 10\left(\log _{10} \operatorname{Area}\left(x_{i}\right)-\log _{10} \operatorname{Area}\left(y_{i}\right)\right)^{2}}
$$

where $\operatorname{Area}\left(z_{i}\right)$ is the cross-sectional area of the i-th segment of the vocal tract.

- Bark spectral distance

Let $\left(x_{i}\right)$ and $\left(y_{i}\right)$ be the Bark spectra of x and y, where the i-th component corresponds to the i-th auditory critical band in the Bark scale. The Bark
spectral distance (Wang-Sekey-Gersho, 1992) is a perceptual distance, defined by

$$
B S D(x, y)=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}
$$

i.e., it is the squared Euclidean distance between the Bark spectra.

A modification of the Bark spectral distance excludes critical bands i on which the loudness distortion $\left|x_{i}-y_{i}\right|$ is less than the noise masking threshold.

- Itakura-Saito quasi-distance

The Itakura-Saito (or maximum likelihood) quasi-distance between LPCderived spectral envelopes $x=x(\omega)$ and $y=y(\omega)$ is defined (1968) by

$$
I S(x, y)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{x(w)}{y(w)}-\ln \frac{x(w)}{y(w)}-1\right) d w .
$$

The cosh distance is defined by $\operatorname{IS}(x, y)+I S(y, x)$, i.e., is equal to

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{x(w)}{y(w)}+\frac{y(w)}{x(w)}-2\right) d w=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \cosh \left(\ln \frac{x(w)}{y(w)}-1\right) d w
$$

where $\cosh (t)=\frac{e^{t}+e^{-t}}{2}$ is the hyperbolic cosine function.

- Log-likelihood ratio quasi-distance

The log-likelihood ratio quasi-distance between LPC-derived spectral envelopes $x=x(\omega), y=y(\omega)$ is defined (cf. Kullback-Leibler distance in Chap. 14) by

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} x(w) \ln \frac{x(w)}{y(w)} d w .
$$

The weighted likelihood ratio distance between $x(\omega)$ and $y(\omega)$ is defined by

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{\left(\ln \left(\frac{x(w)}{y(w)}\right)+\frac{y(w)}{x(w)}-1\right) x(w)}{p_{x}}+\frac{\left(\ln \left(\frac{y(w)}{x(w)}\right)+\frac{x(w)}{y(w)}-1\right) y(w)}{p_{y}}\right) d w,
$$

where $P(x)$ and $P(y)$ denote the power of the spectra $x(w)$ and $y(w)$.

- Cepstral distance

The cepstral distance (or squared Euclidean cepstrum metric) $\operatorname{CEP}(x, y)$ between the LPC-derived spectral envelopes $x=x(\omega)$ and $y=y(\omega)$ is defined by

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\ln \frac{x(w)}{y(w)}\right)^{2} d w=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(\ln x(w)-\ln y(w))^{2} d w
$$

$$
=\sum_{j=-\infty}^{\infty}\left(c_{j}(x)-c_{j}(y)\right)^{2},
$$

where $c_{j}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j w i} \ln |z(w)| d w$ is j-th cepstral (real) coefficient of z derived from the Fourier transform or LPC.
The quefrency-weighted cepstral distance (or Yegnanarayana distance, weighted slope distance) between x and y is defined by

$$
\sum_{i=-\infty}^{\infty} i^{2}\left(c_{i}(x)-c_{i}(y)\right)^{2}
$$

"Quefrency" and "cepstrum" are anagrams of "frequency" and "spectrum".
The Martin cepstrum distance between two ARMs (autoregressive models) is defined, in terms of their cepstra, by

$$
\sqrt{\sum_{i=0}^{\infty} i\left(c_{i}(x)-c_{i}(y)\right)^{2}}
$$

Cf. general Martin distance in Chap. 12 and Martin metric in Chap. 11.

- Distances in Musicology

Pitch is a subjective correlate of the fundamental frequency. A note (or tone) is a named pitch. Pitch, seen as extending along a 1D continuum from high to low, is called pitch height. But it also varies circularly: a pitch class is a set of all pitches that are a whole number of octaves (intervals between a frequency and its double) apart. About 10 octaves cover the range of human hearing. In Western music, the most used octave division is the chromatic scale: 12 notes $C, C \#, D, D \#, E, F, F \#, G, G \#, A, A \#, B$ drawn usually as pitch class space: a circle of equal temperament, i.e., divided into 12 equal semitones (or half steps $)$. The distance between notes whose frequencies are f_{1}, f_{2} is $12 \log _{2}\left(\frac{f_{1}}{f_{2}}\right)$ semitones.
An interval is the difference between two pitches. Its width is the ratio $\frac{a}{b}$ (with g.c. $\mathrm{d}(a, b)=1$) between their frequencies. The Benedetti height of this ratio is $a b$; Tenney height (or Tenney harmonic distance) is $\log _{2} a b$ and Kees height is $\max \left(a^{\prime}, b^{\prime}\right)$, where a^{\prime}, b^{\prime} come from a, b by removing factors of 2 . The width of a semitone is $\sqrt[12]{2}$ or 100 cents. The width of octave is 2 or 1,200 cents.
A pitch distance (or melodic distance) is the size of the section of the pitchcontinuum bounded by those two pitches, such as modeled in a given scale. A MIDI (Musical Instrument Digital Interface) number of fundamental frequency f is defined by $p(f)=69+12 \log _{2} \frac{f}{440}$. The distance between notes, in terms of this linear pitch space, becomes the natural metric $\left|p\left(f_{1}\right)-p\left(f_{2}\right)\right|$ on \mathbb{R}. This pitch distance corresponds to physical distance on keyboard instruments, and psychological distance as measured by experiments and musicians.

Using integer notation $0,1, \ldots, 11$ of pitches, a pitch interval $\operatorname{PI}(x, y)$ between the pitches x and y is the number of semitones $|x-y|$ that separates them linearly, while a pitch-interval class $\operatorname{PIC}(x, y)$ is $|x-y| \bmod 12$ and an interval class $i c(x, y)$ is their Lee distance min $|x-y|, 12-|x-y|$ on the circle.
In integer notation, the circle of fifths is $\{7 i \bmod 12\}_{0, \ldots, 11}$, and its reversal, the circle of fourths, is $\{5 i \bmod 12\}_{0, \ldots, 11}$. Neighboring pitches are separated by a perfect fifth (interval of five staff positions or seven semitones).
Seven letters of a musical alphabet, C-D-E-F-G-A-B, are called the natural tones; they are the names of the white keys on a piano/keyboard, forming an octave. Above sequence and any of its translations is a major diatonic scale. A diatonic scale is a scale of 7 notes most used in Western music. Its structure is 1-$1-0.5-1-1-1-0.5$, in terms of interval succession of steps. A distance model (in Music) is the alternation of two different intervals to create a nondiatonic musical mode/scale, such as the 1:3 distance model (alternation of semitones and minor thirds).
In tonal music, composition written in home key; it modulates (move to other keys) and usually returns. The distance between keys approximates the ease of modulation. Every key is associated with a scale of pitches, usually, major or minor diatonic. The interkey distance of two keys is 7 minus the number of tones shared by their scales. It is also their distance around the circle of fifths, i.e., the difference in the number of sharps (or flats) in their signatures. The relative (having the same signatures) major and minor key share all seven notes.
A chord in music is any set of at least three pitch classes in the same octave that is heard as if sounding simultaneously. Music can be seen as a sequence of chords. Interval vector of a given chord c is $V(c)=\left(c_{1}, \ldots, c_{6}\right)$, where c_{i} is the number of times i-th interval class (having i or $12-i$ semitones) appears in it. Intervalic distance and Estrada distance between chord c and c^{\prime} are (Mathieu, 2002):

$$
\sum_{i=1}^{6}\left|c_{i}-c_{i}^{\prime}\right| \text { and } \max |c|,\left|c^{\prime}\right|-\left|V(c) \cap V\left(c^{\prime}\right)\right|-1
$$

The root distance is the number of fifths between the roots (pitches upon which a chord may be built, often by stacking thirds) of the chords. In [RRHD10], a survey of eight distances between chords is given: above 3 and those by Chew (2000), Costère (1962), Lerdahl (2001), Paiement et al. (2005) and Yoo et al. (2006).

Alternatively to equal-temperament, just intonation is a tuning in which the frequencies of notes are related by ratios of small whole numbers, say, $\frac{3}{2}$ for perfect fifth (G) and $\frac{4}{3}$ for perfect forth (F). The pitches can be arranged in a $2 D$ diagram. For an odd number $n>0$, the n-limit diagram contains all rational numbers such that any odd divisor of the numerator or denominator is at most n. Such 5- and 7-limit can be seen as the hexagonal lattice $A_{2}=\{(a, b, c) \in$ $\left.\mathbb{Z}^{3}: a+b+c=0\right\}$ and face-centered cubic lattice $A_{3}=\left\{(a, b, c) \in \mathbb{Z}^{3}:\right.$
$a+b+c \equiv 0(\bmod 2)\}$, respectively, with vector space norms $\sqrt{a^{2}+a b+b^{2}}$ and $\sqrt{a^{2}+a b+b^{2}+c(a+b+c)}$.

- Distances between rhythms

A rhythm timeline (music pattern) is represented, besides the standard music notation, in the following ways, used in computational music analysis.

1. By a binary vector $x=\left(x_{1}, \ldots, x_{m}\right)$ of m time intervals (equal in a metric timeline), where $x_{i}=1$ denotes a beat, while $x_{i}=0$ denotes a rest interval (silence). For example, the five $12 / 8$ metric timelines of Flamenco music are represented by five binary sequences of length 12 .
2. By a pitch vector $q=\left(q_{1}, \ldots, q_{n}\right)$ of absolute pitch values q_{i} and a pitch difference vector $p=\left(p_{1}, \ldots, p_{n-1}\right)$ where $p_{i}=q_{i+1}-q_{i}$ represents the number of semitones (positive or negative) from q_{i} to q_{i+1}.
3. By an interonset interval vector $t=\left(t_{1}, \ldots, t_{n}\right)$ of n time intervals between consecutive onsets.
4. By a chronotonic representation which is a histogram visualizing t as a sequence of squares of sides t_{1}, \ldots, t_{n}; it can be seen as a piecewise linear function.
5. By a rhythm difference vector $r=\left(r_{1}, \ldots, r_{n-1}\right)$, where $r_{i}=\frac{t_{i+1}}{t_{i}}$.

Examples of general distances between rhythms are the Hamming distance, swap metric (cf. Chap. 11) and Earth Mover's distance between their given vector representations.
The Euclidean interval vector distance is the Euclidean distance between two interonset interval vectors. The Gustafson chronotonic distance is a variation of l_{1}-distance between these vectors using the chronotonic representation.
Coyle-Shmulevich interval-ratio distance is defined by

$$
1-n+\sum_{i=1}^{n-1} \frac{\max \left\{r_{i}, r_{i}^{\prime}\right\}}{\min \left\{r_{i}, r_{i}^{\prime}\right\}}
$$

where r and r^{\prime} are rhythm difference vectors of two rhythms (cf. the reciprocal of Ruzicka similarity in Chap. 17).

- Long-distance drumming

Long-distance drumming (or drum telegraphy) is an early form of longdistance communication which was used by cultures in Africa, New Guinea and the tropical America living in deforested areas. A rhythm could represent an signal, repeat the profile of a spoken utterance or simply be subject to musical laws.
The message drums (or slit gongs) were developed from hollow tree trunks. The sound could be understood at $\leq 8 \mathrm{~km}$ but usually it was relayed to a next village. Another oldest tools of audio telecommunication were horns (tapered sound guides providing an acoustic impedance match between a sound source and free air). Any mode of communication (as by means of drums or horns) for use beyond the range of the articulate voice, is called distance language.

Soldier termites of some species drum their heads (11 times per second) on the ground to signal danger. The initial vibrations travel 40 cm , but a chain of soldiers relay the resulting wave, moving $1.3 \mathrm{~m} / \mathrm{s}$, over much greater distances.

- Sonority distance effect

People in warm-climate cultures spend more time outdoors and engage, on average, in more distal oral communication. So, such populations have greater sonority (audibility) of their phoneme inventory. Munroe et al., 1996 and 2009, observed that speakers in such languages use more simple consonant-vowel syllables, vowels and sonorant (say, nasal " n ", " m " rather than obstruents as " t ", " g ") consonants.
Ember and Ember, 2007, found that number of cold months, as well as the combination of cold climate and sparse vegetation, predicts less sonority. Larger average distance of the baby from its caregivers, as well as higher frequency of premarital and extramarital sex predicts more sonority.

- Vocal deviation

Vocal deviation is (Podos, 2001) the distance of birdsong performance to the upper performance limit. Performance is measured by a variable combining frequency bandwidth and note repetition rate (the number of notes per second).
The vocal deviation of a bird is the minimal point-line distance (Chap.4) of data points of its recordings from the (upper-bound regression) line representing performance limit.

- Acoustics distances

The wavelength of a sound wave is the distance it travels to complete one cycle. This distance is measured perpendicular to the wavefront in the direction of propagation between one peak of a sine wave (sinusoid) and the next corresponding peak. The wavelength of any frequency may be found by dividing the speed of sound $(331.4 \mathrm{~m} / \mathrm{s}$ at sea level) in the medium by the fundamental frequency.
The near field is the part of a sound field (usually within about two wavelengths from the source) where there is no simple relationship between sound level and distance. The far field (cf. Fraunhofer distance in Chap. 24) is the area beyond the near field boundary. It is comprised of the reverberant field and free field, where sound intensity decreases as $\frac{1}{d^{2}}$ with the distance d from the source. This law corresponds to a reduction of $\approx 6 \mathrm{~dB}$ in the sound level for each doubling of distance and to halving of loudness (subjective response) for each reduction of $\approx 10 \mathrm{~dB}$.
The critical distance (or room radius) is the distance from the source at which the direct sound and reverberant sound (reflected echo produced by the direct sound bouncing off, say, walls, floor, etc.) are equal in amplitude.
The pickup distance of a microphone is the effective distance that it can be used at. For an electric guitar, it is the distance from pickup (transducer that captures mechanical vibrations) to strings.
A directional microphone may be placed farther away from a desired sound source than an omnidirectional one of equal quality; the ratio of distances is called the distance factor.

The proximity effect (audio) is the anomaly of low frequencies being enhanced when a directional microphone is very close to the source.
Auditory distance cues (cf. Chap. 28) are based on differences in loudness, spectrum, direct-to-reverb ratio and binaural ones. The closer sound object is louder, has more bass, high-frequencies, transient detail, dynamic contrast. Also, it appear wider, has more direct sound level over its reflected sound and has greater time delay between the direct sound and its reflections.
The acoustic metric is the term used occasionally for some distances between vowels; for example, the Euclidean distance between vectors of formant frequencies of pronounced and intended vowel. Cf. acoustic metric in Physics (Chap. 24).

Chapter 22
 Distances in Networks

22.1 Scale-Free Networks

A network is a graph, directed or undirected, with a positive number (weight) assigned to each of its arcs or edges. Real-world complex networks usually have a gigantic number N of vertices and are sparse, i.e., with relatively few edges.

Interaction networks (Internet, Web, social networks, etc.) tend to be small-world [Watt99], i.e., interpolate between regular geometric lattices and random graphs in the following sense. They have a large clustering coefficient (the probability that two distinct neighbors of a vertex are neighbors), as lattices in a local neighborhood, while the average path distance between two vertices is small, about $\ln N$, as in a random graph.

A scale-free network [Bara01] is a network with probability distribution for a vertex to have degree k being similar to $k^{-\gamma}$, for some constant $\gamma>0$ which usually belongs to the segment [2, 3]. This power law implies that very few vertices, called hubs (connectors, gateways, super-spreaders), are far more connected than other vertices. The power law (or long range dependent, heavy-tail) distributions, in space or time, has been observed in many natural phenomena (both physical and sociological).

- Collaboration distance

The collaboration distance is the path metric of the Collaboration graph, having authors in Mathematical Reviews database as vertices with $x y$ being an edge if authors x and y have a joint publication among the papers from this database. The vertex of largest degree $(1,416)$ corresponds to Paul Erdős; the Erdös number of a mathematician is his collaboration distance to Paul Erdős. An example of a 3-path: Michel Deza-Paul Erdős-Ernst Gabor Straus-Albert Einstein.

- Co-starring distance

The co-starring distance is the path metric of the Hollywood graph, having about 250,000 vertices (actors in the Internet Movie database) with $x y$ being an edge if the actors x and y appeared in a feature film together. The vertices of largest degree are Christopher Lee and Kevin Bacon; the trivia game Six degrees of Kevin Bacon uses the Bacon number, i.e., the co-starring distance to this actor. The Morphy and Shusaku numbers are the similar measures of a chess or Go player's connection to Paul Morphy and Honinbo Shusaku by way of playing games. Kasparov number of a chess-player is the length of a shortest directed path, if any, from him/her to Garry Kasparov; here arc $u v$ means victory of u over v.
Similar popular examples of such social scale-free networks are graphs of musicians (who played in the same rock band), baseball players (as team-mates), scientific publications (who cite each other), mail exchanges, acquaintances among classmates in a college, business board membership.
Among other such studied networks are air travel connections, word co-occurrences in human language, US power grid, sensor networks, worm neuronal network, gene co-expression networks, protein interaction networks and metabolic networks (with two substrates forming an edge if a reaction occurs between them via enzymes).

- WikiDistance

In May 2014, Wikipedia had about 30 million articles in 287 languages and 130,000 active editors. English Wikipedia alone had 4.5 million articles, 4% of estimated number of notable articles needed to cover all human knowledge.
The WikiDistance is the directed path quasi-metric of the Wikipedia digraph, having English Wikipedia articles as vertices, with $x y$ being an arc if the article x contains an hyperlink to the article y; cf. http://software.tanos.co.uk/wikidistance and the Web hyperlink quasi-metric.
Gabrilovich-Markovich, 2007, proposed to measure semantic relatedness of two texts by the cosine distance (cf. Web similarity metrics) between weighted vectors, interpreting texts in terms of affinity with a host of Wikipedia concepts. Crandall et al., 2008, considered the social network of Wikipedia editors: two editors are assumed to be connected if one of them posted to the other's discussion page. Brandes et al., 2009, considered the edit network of a Wikipedia page, where nodes are the authors of this page and edges correspond to undoing each other edits.
The editing depth of Wikipedia is an indicator of its collaborativeness defined as $D=\frac{e}{a+n} \times\left(\frac{n}{a}\right)^{2}$, where e, a, n are the numbers of page edits, articles and nonarticles (redirects, talk, user pages). At April 2013, English Wikipedia had $D=758$.

- Virtual community distance

Largest, in millions of active user accounts in 2012, virtual communities (online social networking services) are: Facebook (1,000), Tencent QQ (712), Skype (280), Google + (235), Twitter (200), Linkedin (161).

In 2012, about 30 billion documents were uploaded on Facebook, 300 million tweets sent on Twitter and 24 petabytes of data processed by Google per day, while mankind published only $\approx 5,000$ petabytes for the 20,000 years before 2003.

A virtual community distance is the path metric of the graph of active users, two of them forming an edge if they are "friends". In Twitter it means that both "follow" each other. In particular, for the Facebook hop distance in November 2011, 99.6% of all pairs of users were connected by paths of length at most 5. The mean distance was 4.74 , down from 5.28 in 2008.
The Twitter friendship distance in Avril 2010 was 4, 5, 6 among $37 \%, 41 \%, 13 \%$ of 5.2 billion friendships. The average distance was 4.67 steps. Cf. mean distance 5.2 in Milgram's (1967) theory of six degrees of separation on a planetary scale. An example of application: analysing linguistically emotional content of tweets and comments, one can obtain an interaction graph of the targeted region mood.

- Distance effect in large e-mail networks

Takhteyev-Gruzd-Wellman, 2012, considered a sample representing Twitter tie (i.e., "follow" relation in both directions) network. They found that distance constrains ties, despite the seeming ease with which they can be formed: 39% of the ties are shorter than 100 km (within the same regional cluster), ties up to $1,000 \mathrm{~km}$ are more frequent than random ones, and ties longer than $5,000 \mathrm{~km}$ are rare. Cf. distance decay in Chap. 28. But the nonlocal ties are predicted better by the frequency of airline connections than by physical proximity.
State et al., 2013, started with a graph of a sample about 10 million users of Yahoo! email with an edge between two users whenever they exchanged at least one email message in both directions, during the observation period in 2012. A weighted complete graph of 141 countries was derived, with edge-weight being the rescaled logarithm of the communication density between countries. For each doubling of distance (between each country centroids) and doubling of the number of direct flights, the density decreased by 66% and increased by 33%, respectively.
But the main (besides colonial link and common language) cultural factor, nearly doubling the density, happens to be the common membership in the same civilization from the list produced by Huntigton in a 1993 article The Clash of Civilizations: Latin American, Islamic, Orthodox, Sinic, Buddist, Western, African, Hindu, Japonic. For Latin American, Islamic, and Orthodox civilization, this factor increases the density by the factor of $5.4,3.1$ and 2.4 , respectively.

- Network's hidden metric

Many social, biologic, and communication networks, including the Internet and Web, are scale-free and strongly clustered (many triangular subgraphs). Greedy routing is a navigation strategy to do always the locally optimal step with the hope of finding a globally shortest path. Krioukov et al., 2009, found that successful greedy paths are shortest, mostly and asymptotically, in the large complex networks.
They explain such efficiency by the existence of a hidden metric space (V, d) on the set V of nodes, so that a node passes information to the neighbor that is
closest in (V, d) to the final destination. Moreover, they suggest that (V, d) is hyperbolic, because the nodes are heterogeneous (can be classified into groups, subgroups, and so on) implying a tree-like structure of such network.

- Sexual distance

Given a group of people, its sexual network is the graph of members two of them forming an edge if they had a sexual contact. The sexual distance is the path metric of a sexual network. Such networks of heterosexual individuals are usually scale-free but not small-world since they have no 3-cycles and very few 4-cycles.
Several sexual networks were mapped in order to trace the spread of sexually infectious diseases. The sexual network of all adults aged 18-35 in Licoma (almost isolated island $18 \mathrm{~km}^{2}$ on lake Malawi) have a giant connected component containing half of nonisolated vertices, and more than one quarter were connected robustly, i.e., by multiple disjoint paths. Also, in the sexual network of students of an Midwestern US high school, 52% of nonisolated vertices belong to a giant connected component. But this graph contains very few cycles and have large diameter (37).
A study of persons at risk for HIV (Colorado Springs, 1988-1992) compared their sexual and geographical distance, measured as the actual distance between their residences. The closest (at mean 2.9 km) pairs were HIV-positive persons and their contacts. The most distant (at mean 6.1 km) pairs were prostitutes and their paying partners. The mean distance between all persons in Colorado Springs was 12.4 km compared with 5.4 km between all dyads the study.
Moslonka-Lefebre et al., 2012, consider weighted sexual networks, where the weight of an edge is the number of sex acts that are actually realized between two individuals per, say, a week. Such model is more consistent with epidemiological data.
The sexual network for the human race have a giant connected component containing a great many vertices of degree 1 and almost all vertices of larger degree.

- Subway network core

Roth et al., 2012, observed that the world's largest subway networks converge to a similar shape: a core (ring-shaped set of central stations) with quasi-1D/linear branches radiating from it. The average degree of core stations is 2.5 ; among them $\approx 20 \%$ are transfer stations and $>60 \%$ have degree 2 .
The average radial (from the geographical barycenter of all stations) distance (in km) to branches stations is about double of such distance to core stations, while the number of branches scales roughly as the square root of the number of stations.
Cf. Moscow metric, Paris metric and subway semimetric in Chap. 19.

- Normalized Google distance

The number of searches on Google in 2013 was 2.16 trillion.
The normalized Google distance between two search terms x and y is defined (Cilibrasi-Vitanyi, 2005) by

$$
\frac{\max \{\log f(x), \log f(y)\}-\log f(x, y)}{\log m-\min \{\log f(x), \log f(y)\}},
$$

where m is the total number of web pages searched by Google search engine; $f(x)$ and $f(y)$ are the number of hits for terms x and y, respectively; and $f(x, y)$ is the number of web pages on which both x and y occur.
Cf. normalized information distance in Chap. 11.

- Drift distance

The drift distance is the absolute value of the difference between observed and actual coordinates of a node in a NVE (Networked Virtual Environment).
In models of such large-scale peer-to-peer NVE (for example, Massively Multiplayer Online Games), the users are represented as coordinate points on the plane (nodes) which can move at discrete time-steps, and each has a visibility range called the Area of Interest. NVE creates a synthetic $3 D$ world where each user assumes avatar (a virtual identity) to interact with other users or computer AI. The primary metric tool in MMOG and Virtual Worlds is the proximity sensor recording when an avatar is within its specified range.
The term drift distance is also used for the current going through a material, in tire production, etc.

- Betweenness centrality

For a geodesic metric space (X, d) (in particular, for the path metric of a graph), the stress centrality of a point $x \in X$ is defined (Shimbel, 1953) by

$$
\sum_{y, z \in X, y \neq x \neq z} \text { Number of shortest }(y-z) \text { paths through } x,
$$

the betweenness centrality of a point $x \in X$ is defined (Freeman, 1977) by

$$
g(x)=\sum_{y, z \in X, y \neq x \neq z} \frac{\text { Number of shortest }(y-z) \text { paths through } x}{\text { Number of shortest }(y-z) \text { paths }},
$$

and the distance-mass function is a function $M: \mathbb{R}_{\geq 0} \rightarrow \mathbb{Q}$ defined by

$$
M(a)=\frac{\mid\{y \in X: d(x, y)+d(y, z)=a \text { for some } x, y \in X\} \mid}{|\{(x, z) \in X \times X: d(x, z)=a\}|} .
$$

[GOJKK02] estimated that $\frac{M(a)}{a} \approx 4.5$ for the Internet AS metric, and ≈ 1 for the Web hyperlink quasi-metric for which the shortest paths are almost unique.

- Distance centrality

Given a finite metric space (X, d) (usually, the path metric on the graph of a network) and a point $x \in X$, we give here examples of metric functionals used to measure distance centrality, i.e., the amount of centrality of the point x in X expressed in terms of its distances $d(x, y)$ to other points.

1. The eccentricity (or Koenig number) $\max _{y \in X} d(x, y)$ was given in Chap. 1; Hage-Harary, 1995, considered $\frac{1}{\max _{y \in X} d(x, y)}$.
2. The closeness (Sabidussi, 1966) is the inverse $\frac{1}{\sum_{y \in X} d(x, y)}$ of the farness.
3. Dangalchev, 2006, introduced $\sum_{y \in X, y \neq x} 2^{-d(x, y)}$ which allows the case $d(x, y)=\infty$ (disconnected graphs).
4. The functions $f_{1}=\sum_{y \in X} d(x, y)$ and $f_{2}=\sum_{y \in X} d^{2}(x, y)$; cf. Fréchet mean in Chap. 1.

In Location Theory applications, $X^{\prime} \subset X$ is a set of positions of "clients" and one seeks points $x \in X$ of acceptable facility positions. The appropriate objective function is, say, $\min \max _{y \in X^{\prime}} d(x, y)$ to locate an emergency service, $\min \sum_{y \in X^{\prime}} d(x, y)$ for a goods delivering facility and $\max \sum_{y \in X^{\prime}} d(x, y)$ for a hazardous facility.

22.2 Network-Based Semantic Distances

Among the main lexical networks (such as WordNet, Framenet, Medical Search Headings, Roget's Thesaurus) a semantic lexicon WordNet is the most popular lexical resource used in Natural Language Processing and Computational Linguistics.

WordNet (see http://wordnet.princeton.edu) is an online lexical database in which English nouns, verbs, adjectives and adverbs are organized into synsets (synonym sets), each representing one underlying lexical concept.

Two synsets can be linked semantically by one of the following links: upwards x (hyponym) IS-A y (hypernym) link, downwards x (meronym) CONTAINS y (holonym) link, or a horizontal link expressing frequent co-occurrence (antonymy), etc. IS-A links induce a partial order, called IS-A taxonomy. The version 2.0 of WordNet has 80,000 noun concepts and 13,500 verb concepts, organized into 9 and 554 separate $I S-A$ hierarchies.

In the resulting DAG (directed acyclic graph) of concepts, for any two synsets (or concepts) x and y, let $l(x, y)$ denote the length of the shortest path between them, using only IS-A links, and let $\operatorname{LPS}(x, y)$ denote their least common subsumer (ancestor) by $I S$ - A taxonomy. Let $d(x)$ denote the depth of x (i.e., its distance from the root in $I S$-A taxonomy) and let $D=\max _{x d}(x)$.

The semantic relatedness of two nouns can be estimated by their ancestral path distance (cf. Chaps. 10 and 23), i.e., the length of the shortest ancestral path (concatenation of two directed paths from a common ancestor) to them). A list of the other main semantic similarities and distances follows. See also [HRJM13].

- Length similarities

The path similarity and Leacock-Chodorow similarity between synsets x and y are defined by

$$
\operatorname{path}(x, y)=(l(x, y))^{-1} \text { and } l c h(x, y)=-\ln \frac{l(x, y)}{2 D}
$$

The conceptual distance between x and y is defined by $\frac{l(x, y)}{D}$.

- Wu-Palmer similarity

The Wu-Palmer similarity between synsets x and y is defined by

$$
w u p(x, y)=\frac{2 d(L P S(x, y))}{d(x)+d(y)}
$$

- Resnik similarity

The Resnik similarity between synsets x and y is defined by

$$
\operatorname{res}(x, y)=-\ln p(L P S(x, y))
$$

where $p(z)$ is the probability of encountering an instance of concept z in a large corpus, and $-\ln p(z)$ is called the information content of z.

- Lin similarity

The Lin similarity between synsets x and y is defined by

$$
\operatorname{lin}(x, y)=\frac{2 \ln p(L P S(x, y))}{\ln p(x)+\ln p(y)}
$$

- Jiang-Conrath distance

The Jiang-Conrath distance between synsets x and y is defined by

$$
j c n(x, y)=2 \ln p(L P S(x, y))-(\ln p(x)+\ln p(y)) .
$$

- Lesk similarities

A gloss of a synonym set z is the member of this set giving a definition or explanation of an underlying concept. The Lesk similarities are those defined by a function of the overlap of glosses of corresponding concepts; for example, the gloss overlap is

$$
\frac{2 t(x, y)}{t(x)+t(y)}
$$

where $t(z)$ is the number of words in the synset z, and $t(x, y)$ is the number of common words in x and y.

- Hirst-St-Onge similarity

The Hirst-St-Onge similarity between synsets x and y is defined by

$$
h s o(x, y)=C-L(x, y)-c k,
$$

where $L(x, y)$ is the length of a shortest path between x and y using all links, k is the number of changes of direction in that path, and C, c are constants.
The Hirst-St-Onge distance is defined by $\frac{L(x, y)}{k}$.

- Semantic biomedical distances

The semantic biomedical distances are the distances used in biomedical lexical networks. The main clinical terminologies are UMLS (United Medical Language System) and SNOMED (Systematized Nomenclature of Medicine) CT.
An example of such distances used in SNOMED and presented in Melton et al., 2006, is given by the interpatient distance between two medical cases (sets X and Y of patient data). It is their Tanimoto distance (cf. Chap. 1) $\frac{|X \Delta Y|}{|X \cup Y|}$.
The conceptual distance between two biomedical concepts in UMLS is (Caviedes and Cimino, 2004) the minimum number of $I S$-A parent links between them in the directed acyclic graph of $I S-A$ taxonomy of concepts.

- Semantic proximity

For the words in a document, there are short range syntactic relations and long range semantic correlations, i.e., meaning correlations between concepts.
The main document networks are Web and bibliographic databases (digital libraries, scientific databases, etc.); the documents in them are related by, respectively, hyperlinks and citation or collaboration.
Also, some semantic tags (keywords) can be attached to the documents in order to index (classify) them: terms selected by author, title words, journal titles, etc.
The semantic proximity between two keywords x and y is their Tanimoto similarity $\frac{|X \cap Y|}{|X \cup Y|}$, where X and Y are the sets of documents indexed by x and y, respectively. Their keyword distance is defined by $\frac{|X \Delta Y|}{|X \cap Y|}$; it is not a metric.

- Dictionary digraph

Dictionary digraph (V, E) have the words of a given dictionary as vertices, and $\operatorname{arcs} u v \in E$ whenever word u is used to define word v. The kernel $\left(V^{\prime}, E^{\prime}\right)$ is its subdigraph induced by the vertices with out-degree $\neq 0$. MF (minimum feedback vertex set) is a smallest set of vertices, from which any $v \in V$ can be reached.
Picard et al., 2013, found that $|V| \approx 10\left|V^{\prime}\right| \approx 20|M F| \approx 20\left|V^{\prime \prime}\right|$ in such digraphs for four English dictionaries; here ($V^{\prime \prime}, E^{\prime \prime}$) is the core (largest strongly connected component) of the kernel. They observed that the words in the kernel V^{\prime} are learned at a much younger age, and are more concrete, imageable and frequent than the words in $V \backslash V^{\prime}$. The same is true, but more so, comparing $V^{\prime \prime}$ with $V \backslash V^{\prime \prime}$ and any MF with $V \backslash M F$. Cf. Swadesh similarity (Chap. 28).

- SimRank similarity

Let D be a directed multigraph representing a cross-referred document corpus (say, a set of citation-related scientific papers, hyperlink-related web pages, etc.) and $I(v)$ be the set of in-neighbors of a vertex v.
SimRank similarity $s(x, y)$ between vertices x and y of D is defined (Jeh and Widom, 2002) as 1 if $x=y, 0$ if $|I(x)||I(y)|=0$ and, otherwise, as

$$
\frac{C}{|I(x)||I(y)|} \sum_{a \in(x), b \in \mid(y)} s(a, b),
$$

where C is a constant, $0<C<1$ (usually, $C=0.8$ or 0.6 is used).

- D-separation in Bayesian network

A Bayesian network is a DAG (digraph with no directed cycles) (V, E) whose vertices represent random variables and arcs represent conditional dependencies; so, the likelihood of each vertex can be calculated from the likelihood of its ancestors. Bayesian networks, including causal networks, are used for modeling knowledge.
A vertex $v \in V$ is called a collider of a trail (undirected path) t if there are two consecutive arcs $u v, v u^{\prime} \in E$ on t. A trail t is active by a set $Z \subset V$ of vertices if every its collider is or has a descendent in Z, while every other vertex along t is outside of Z. If $X, Y, Z \subset V$ are disjoint sets of vertices, then Z is said (Pearl, 1988) to d-separate X from Y if there is no active trail by Z between a vertex in X and a vertex in Y. Such d-separation means that the variable sets, represented by X and Y, are independent conditional on variables, represented by Z, in all probability distributions the DAG (V, E) can represent.
The minimal set which d-separates vertex v from all other vertices is v 's Markov blanket; it consists of v 's parents, its children, and its children's parents. A moral graph of the DAG (V, E), used to find its equivalent undirect form, is the graph $\left(V, E^{\prime}\right)$, where E^{\prime} consists all arcs from E made undirected plus all missing marriages (edges between vertices having a common child).
Cf. the Bayesian graph edit distance in Chap. 15.

- Forward quasi-distance

In a directed network, where edge-weights correspond to a point in time, the
forward quasi-distance (backward quasi-distance) is the length of the shortest directed path, but only among paths on which consecutive edge-weights are increasing (decreasing, respectively).
The forward quasi-distance is useful in epidemiological networks (disease spreading by contact, or, say, heresy spreading within a church), while the backward quasi-distance is appropriated in P2P (i.e., peer-to-peer) file-sharing networks.
Berman, 1996, introduced scheduled network: a directed network (of, say, airports), in which each edge (say, flight) is labeled by departure and arrival times. Kempe-Kleinberg-Kumar, 2002, defined more general temporal network: an edge-weighted graph, in which the weight of an edge is the time at which its endpoints communicated. A path is time-respecting if the weights of its edges are nondecreasing. Besides Scheduling and Epidemiology, such networks occur in Distributed Systems (say, dissemination of information using node-to-node communication).
In order to handle large temporal data on human behavior, Kostakos, 2009, introduced temporal graph: an arc-weighted directed graph, where the vertices are instances $a_{i} t_{k}$ (person a_{i} in point t_{k} of time), and the arcs are $\left(t_{k+1}-t_{k}\right)$ -
weighted ones $\left(a_{i} t_{k}, a_{i} t_{k+1}\right)$ linking time-consecutive pairs and unweighted ones ($a_{i} t_{k}, a_{j} t_{k}$) representing a communication (say, e-mail) from a_{i} to a_{j} at time t_{k}. In order to handle temporally disconnected (not connected by a time-respecting path) nodes, Tang et al., 2009, defined time-varying network: an ordered set $\left\{D_{t}\right\}_{t=1, \ldots, T}$ of directed (or not) graphs $D_{t}=\left(X, E_{t}\right)$, where the arc-sets E_{t} may change in time and the arcs have temporal duration. As real-world examples, they considered brain cortical and social interaction networks.

22.3 Distances in Internet and Web

Let us consider in detail the graphs of the Web and of its hardware substrate, Internet which are small-world and scale-free.

The Internet is the largest WAN (wide area network), spanning the Earth. This publicly available worldwide computer network came from 13-node ARPANET (started in 1969 by US Department of Defense), NSFNet, Usenet, Bitnet, and other networks. In 1995, the National Science Foundation in the US gave up the stewardship of the Internet, and in 2009, US Department of Commerce accepted privatization/internationalization of ICANN, the body responsible for domain names in the Internet.

Its nodes are routers, i.e., devices that forward packets of data along networks from one computer to another, using IP (Internet Protocol relating names and numbers), TCP and UDP (for sending data), and (built on top of them) HTTP, Telnet, FTP and many other protocols (i.e., technical specifications of data transfer). Routers are located at gateways, i.e., places where at least two networks connect.

The links that join the nodes together are various physical connectors, such as telephone wires, optical cables and satellite networks. The Internet uses packet switching, i.e., data (fragmented if needed) are forwarded not along a previously established path, but so as to optimize the use of available bandwidth (bit rate, in million bits per second) and minimize the latency (the time, in milliseconds, needed for a request to arrive).

Each computer linked to the Internet is usually given a unique "address", called its $I P$ address. The new Internet Protocol IPv6 has address space $2^{128} \approx 4.4 \times 10^{38}$. The most popular applications supported by the Internet are e-mail, file transfer, Web, and some multimedia as YouTube and Internet TV. In 2012, 144 billions emails (68.8% of which was spam) were sent daily by 2.2 billions users worldwide. In 2015, global IP traffic will reach 1.0 zettabytes (1000^{7} bytes) per year.

The Internet IP graph has, as the vertex-set, the IP addresses of all computers linked to the Internet; two vertices are adjacent if a router connects them directly, i.e., the passing datagram makes only one hop. The Internet also can be partitioned into ASs (administratively Autonomous Systems). Within each AS the intradomain routing is done by IGP (Interior Gateway Protocol), while interdomain routing is done by BGP (Border Gateway Protocol) which assigns an ASN (16-bit number)
to each AS. The Internet AS graph has ASs (about 42,000 in 2012) as vertices and edges represent the existence of a BGP peer connection between corresponding ASs.

The World Wide Web (WWW or Web, for short) is a major part of Internet content consisting of interconnected documents (resources). It corresponds to HTTP (Hyper Text Transfer Protocol) between browser and server, HTML (Hyper Text Markup Language) of encoding information for a display, and URLs (Uniform Resource Locators), giving unique "addresses" to web pages. The Web was started in 1989 in CERN which gave it for public use in 1993. The Web digraph is a virtual network, the nodes of which are documents (i.e., static HTML pages or their URLs) which are connected by incoming or outcoming HTML hyperlinks, i.e., hypertext links. It was at least 4.64 billion nodes (pages) in the Indexed Web digraph in May 2014.

The number of operating web sites (collections of related web pages found at a single address) reached 634 million in 2012 from 18,957 in 1995. In 2012, 54.7% of websites were in English, followed by 5.9 \%, 5.7 \% in Russian and German. Along with the Web lies the Deep (or Invisible) Web, i.e., content, which is not indexed by standard search engines. This content (say, unlinked, or having dynamic URL, nonHTML/text, technically limited access, or scripted, requiring registration/login) has (Bergman, 2001) about 3,000 times more pages than Surface Web, where Internet searchers are searching.

There are several hundred thousand cyber-communities, i.e., clusters of nodes of the Web digraph, where the link density is greater among members than between members and the rest. The cyber-communities (a customer group, a social network, a concept in a technical paper, etc.) are usually focused around a definite topic and contain a bipartite hubs-authorities subgraph, where all hubs (guides and resource lists) point to all authorities (useful and relevant pages on the topic).

Examples of new media, created by the Web are (we)blogs (digital diaries posted on the Web), Skype (telephone calls), social sites (as Facebook, Twitter, Linkedin) and Wikipedia (the collaborative encyclopedia). Original Web-as-information-source is often referred as Web 1.0 , while Web 2.0 means present Web-as-participation-platform as, for example, web-based communities, blogs, social-networking (and video-sharing) sites, wikis, hosted services and web applications. For example, with cloud servers one can access his data and applications from the Internet rather than having them housed on-site.

Web 3.0 is the third generation of WWW conjectured to include semantic tagging of content. The project Semantic Web by W3C (WWW Consortium) aims at linking to metadata, merging social data and (making all things addressable by the existing naming protocols) transformation of WWW into GGG (Giant Global Graph) of users.

The Internet of Things refers to uniquely identifiable objects (things) and their virtual representations in an Internet-like structure. It would encode geographic location and dimensions of $50-100$ trillion objects, and be able to follow their movement and send data between them. Every human being is surrounded by $1,000-$ 5,000 objects.

On average, nodes of the Web digraph are of size 10 kilobytes, out-degree 7.2, and probability k^{-2} to have out-degree or in-degree k. A study in [BKMR00] of
over 200 million web pages gave, approximately, the largest connected component "core" of 56 million pages, with another 44 million of pages connected to the core (newcomers?), 44 million to which the giant core is connected (corporations?) and 44 million connected to the core only by undirected paths or disconnected from it. For randomly chosen nodes x and y, the probability of the existence of a directed path from x to y was 0.25 and the average length of such a shortest path (if it exists) was 16 , while maximal length of a shortest path was over 28 in the core and over 500 in the whole digraph.

A study in [CHKSS07] of Internet AS graphs revealed the following Medusa structure of the Internet: "nucleus" (diameter 2 cluster of ≈ 100 nodes), "fractal" ($\approx 15,000$ nodes around it), and "tentacles" ($\approx 5,000$ nodes in isolated subnetworks communicating with the outside world only via the nucleus).

The distances below are examples of host-to-host routing metrics, i.e., values used by routing algorithms in the Internet, in order to compare possible routes. Examples of other such measures are: bandwidth consumption, communication cost, reliability (probability of packet loss). Also, the main computer-related quality metrics are mentioned.

- Distance-vector routing protocol

A distance-vector routing protocol (DVRP) requires that a router informs its neighbors of topology changes periodically and, in some cases, when a change is detected in the topology of a network. Routers are advertised as vectors of a distance (say, Internet IP metric) and direction, given by next hop address and exit interface. Cf. displacement in Chap. 24.
Ad hoc on-demand distance-vector routing is a (both unicast and multicast) routing protocol for mobile and other wireless ad hoc networks. It establishes a route to a destination only on demand and avoids the counting-to-infinity problem of other distance-vector protocols by using sequence numbers on route updates. Between nodes of an ad hoc network with end-to-end delay constraints, head-of-line packets compete for access to the shared medium. Each packet with remaining lifetime T and remaining Internet IP metric H to its destination, is associated with a ranking function $\gamma(H, T)=\frac{T^{\alpha}}{H}$, denoting its transmission priority. The number $\alpha \geq 0$ is called lifetime-distance factor; it should be optimized in order to minimize the probability of packet loss due to excessive delay.

- Internet IP metric

The Internet IP metric (or hop count, RIP metric, IP path length) is the path metric in the Internet IP graph, i.e., the minimal number of hops (or, equivalently, routers, represented by their IP addresses) needed to forward a packet of data.
RIP (a distance-vector routing protocol first defined in 1988) imposes a maximum distance of 15 and advertises by 16 nonreachable routes.

- Internet AS metric

The Internet AS metric (or BGP-metric) is the path metric in the Internet $A S$ graph, i.e., the minimal number of ISPs (Independent Service Providers), represented by their ASs, needed to forward a packet of data.

- Geographic distance

The geographic distance is the great circle distance (cf. Chap. 25) on the Earth from the client x (destination) to the server y (source).
However, for economical reasons, the data often do not follow such geodesics; for example, most data from Japan to Europe transits via US.

- RTT-distance

The RTT-distance (or ping time) is the round-trip time (to send a packet and receive an acknowledgment back) of transmission between x and y, measured in milliseconds (usually, by the ping command).
See [HFPMC02] for variations of this distance and connections with the above three metrics. Fraigniaud-Lebbar-Viennot, 2008, found that RTT is a C-inframetric (Chap. 1) with $C \approx 7$.

- Synchcronization distance

In the Network Time Protocol (NTP), the synchcronization distance is the root dispersion (maximum error relative to the primary reference source at the root of the synchronization subnet) plus one half the root delay (total round-trip delay to the primary reference source at the root of the synchronization subnet).

- Administrative cost distance

The administrative cost distance is the nominal number (rating the trustworthiness of a routing information), assigned by the network to the route between x and y. For example, Cisco Systems assigns values $0,1, \ldots, 200,255$ for the Connected Interface, Static Route, ..., Internal BGP, Unknown, respectively.

- DRP-metrics

The DD (Distributed Director) system of Cisco uses (with priorities and weights) the administrative cost distance, the random metric (selecting a random number for each IP address) and the DRP (Direct Response Protocol) metrics. DRP-metrics ask from all DRP-associated routers one of the following distances:

1. The DRP-external metric: the number of BGP (Border Gateway Protocol) hops between the client requesting service and the DRP server agent;
2. The DRP-internal metric: the number of IGP hops between the DRP server agent and the closest border router at the edge of the autonomous system;
3. The DRP-server metric: the number of IGP hops between the DRP server agent and the associated server.

- Reported distance

In a Cisco Systems routing protocol EIGRP, reported distance (or RD, advertised distance) is the total metric along a path to a destination network as advertised by an upstream neighbor. RD is equal to the current lowest total distance through a successor for a neighboring router.

A feasible distance is the lowest known distance from a router to a particular destination. This is RD plus the cost to reach the neighboring router from which the RD was sent; so, it is a historically lowest known distance to a particular destination.

- Network tomography metrics

Consider a network with fixed routing protocol, i.e., a strongly connected digraph $D=(V, E)$ with a unique directed path $T(u, v)$ selected for any pair (u, v) of vertices. The routing protocol is described by a binary routing matrix $A=\left(\left(a_{i j}\right)\right)$, where $a_{i j}=1$ if the arc $e \in E$, indexed i, belongs to the directed path $T(u, v)$, indexed j. The Hamming distance between two rows (columns) of A is called the distance between corresponding arcs (directed paths) of the network.
Consider two networks with the same digraph, but different routing protocols with routing matrices A and A^{\prime}, respectively. Then a routing protocol semimetric [Vard04] is the smallest Hamming distance between A and a matrix B, obtained from A^{\prime} by permutations of rows and columns (both matrices are seen as strings).

- Web hyperlink quasi-metric

The Web hyperlink quasi-metric (or click count) is the length of the shortest directed path (if it exists) between two web pages (vertices in the Web digraph), i.e., the minimal number of necessary mouse-clicks in this digraph.

- Average-clicks Web quasi-distance

The average-clicks Web quasi-distance between two web pages x and y in the Web digraph [YOI03] is the minimum $\sum_{i=1}^{m} \ln p \frac{z_{i}^{+}}{\alpha}$ over all directed paths $x=z_{0}, z_{1}, \ldots, z_{m}=y$ connecting x and y, where z_{i}^{+}is the out-degree of the page z_{i}. The parameter α is 1 or 0.85 , while p (the average out-degree) is 7 or 6 .

- Dodge-Shiode WebX quasi-distance

The Dodge-Shiode WebX quasi-distance between two web pages x and y of the Web digraph is the number $\frac{1}{h(x, y)}$, where $h(x, y)$ is the number of shortest directed paths connecting x and y.

- Web similarity metrics

Web similarity metrics form a family of indicators used to quantify the extent of relatedness (in content, links or/and usage) between two web pages x and y.
Some examples are: topical resemblance in overlap terms, co-citation (the number of pages, where both are given as hyperlinks), bibliographical coupling (the number of hyperlinks in common) and co-occurrence frequency $\min \{P(x \mid y), P(y \mid x)\}$, where $P(x \mid y)$ is the probability that a visitor of the page y will visit the page x.
In particular, search-centric change metrics are metrics used by search engines on the Web, in order to measure the degree of change between two versions x and y of a web page. If X and Y are the set of all words (excluding HTML markup) in x and y, respectively, then the word page distance is the Dice distance

$$
\frac{|X \triangle Y|}{|X|+|Y|}=1-\frac{2|X \cup Y|}{|X|+|Y|} .
$$

If v_{x} and v_{y} are weighted vector representations of x and y, then their cosine page distance is given (cf. TF-IDF similarity in Chap. 17) by

$$
1-\frac{\left\langle v_{x}, v_{y}\right\rangle}{\left\|v_{x}\right\|_{2} \cdot\left\|v_{y}\right\|_{2}}
$$

- Web quality control distance function

Let P be a query quality parameter and X its domain. For example, P can be query response time, or accuracy, relevancy, size of result.
The Web quality control distance function (Chen-Zhu-Wang, 1998) for evaluating the relative goodness of two values, x and y, of parameter P is a function $\rho: X \times X \rightarrow \mathbb{R}$ (not a distance) such that, for all $x, y, z \in X$:

1. $\rho(x, y)=0$ if and only if $x=y$,
2. $\rho(x, y)>0$ if and only if $\rho(y, x)<0$,
3. if $\rho(x, y)>0$ and $\rho(y, z)>0$, then $\rho(x, z)>0$.

The inequality $\rho(x, y)>0$ means that x is better than y; so, it defines a partial order (reflexive, antisymmetric and transitive binary relation) on X.

- Lostness metric

Users navigating within hypertext systems often experience disorientation (the tendency to lose sense of location and direction in a nonlinear document) and cognitive overhead (the additional effort and concentration needed to maintain several tasks/trails at the same time). Smith's lostness metric measures it by

$$
\left(\frac{d}{t}-1\right)^{2}+\left(\frac{r}{d}-1\right)^{2}
$$

where t is the total number of nodes visited, d is the number of different nodes among them, and r is the number of remaining nodes needed to complete a task.

- Trust metrics

A trust metric is, in Computer Security, a measure to evaluate a set of peer certificates resulting in a set of accounts accepted and, in Sociology, a measure of how a member of the group is trusted by the others in the group.
For example, the UNIX access metric is a combination of only read, write and execute kinds of access to a resource. The much finer Advogato trust metric (used in the community of open source developers to rank them) is based on bonds of trust formed when a person issues a certificate about someone else. Other examples are: Technorati, TrustFlow, Richardson et al., Mui et al., eBay trust metrics.

- Software metrics

A software metric is a measure of software quality which indicates the complexity, understandability, description, testability and intricacy of code. Managers use mainly process metrics which help in monitoring the processes that produce the software (say, the number of times the program failed to rebuild overnight).

An architectural metric is a measure of software architecture (development of large software systems) quality which indicates the coupling (interconnectivity of composites), cohesion (intraconnectivity), abstractness, instability, etc.

- Locality metric

The locality metric is a physical metric measuring globally the locations of the program components, their calls, and the depth of nested calls by

$$
\frac{\sum_{i, j} f_{i j} d_{i j}}{\sum_{i, j} f_{i j}}
$$

where $d_{i j}$ is a distance between calling components i and j, while $f_{i j}$ is the frequency of calls from i to j. If the program components are of about same size, $d_{i j}=|i-j|$ is taken. In the general case, Zhang-Gorla, 2000, proposed to distinguish forward calls which are placed before the called component, and backward (other) calls. Define $d_{i j}=d_{i}^{\prime}+d_{i j}^{\prime \prime}$, where d_{i}^{\prime} is the number of lines of code between the calling statement and the end of i if call is forward, and between the beginning of i and the call, otherwise, while $d_{i j}^{\prime \prime}=\sum_{k=i+1}^{j-1} L_{k}$ if the call is forward, and $d_{i j}^{\prime \prime}=\sum_{k=j+1}^{i-1} L_{k}$ otherwise. Here L_{k} is the number of lines in component k.

- Reuse distance

In a computer, the microprocessor (or processor) is the chip doing all the computations, and the memory usually refers to RAM (random access memory). A (processor) cache stores small amounts of recently used information right next to the processor where it can be accessed much faster than memory. The following distance estimates the cache behavior of programs.
The reuse distance (Mattson et al., 1970, and Ding-Zhong, 2003) of a memory location x is the number of distinct memory references between two accesses of x. Each memory reference is counted only once because after access it is moved in the cache. The reuse distance from the current access to the previous one or to the next one is called the backward or forward reuse distance, respectively.

- Action at a distance (in Computing)

In Computing, the action at a distance is a class of programming problems in which the state in one part of a program's data structure varies wildly because of difficult-to-identify operations in another part of the program.
In Software Engineering, Holland's Law of Demeter is a style guideline: an unit should "talk only to immediate friends" (closely related units) and have limited knowledge about other units; cf. principle of locality in Chap. 24.

Part VI
 Distances in Natural Sciences

Chapter 23
 Distances in Biology

Distances are mainly used in Biology to pursue basic classification tasks, for instance, for reconstructing the evolutionary history of organisms in the form of phylogenetic trees. In the classical approach those distances were based on comparative morphology, physiology, mating studies, paleontology and immunodiffusion. The progress of modern Molecular Biology also allowed the use of nuclear- and aminoacid sequences to estimate distances between genes, proteins, genomes, organisms, species, etc.

DNA is a sequence of nucleotides (or nuclei acids) A, T, G, C, and it can be seen as a word over this alphabet of four letters. The (single ring) nucleotides A, G (short for adenine and guanine) are called purines, while (double ring) T, C (short for thymine and cytosine) are called pyrimidines (in RNA, uracil U replaces T).

Two strands of DNA are held together and in the opposite orientation (forming a double helix) by weak hydrogen bonds between corresponding base pair of nucleotides (necessarily, a purine and a pyrimidine) in the strands alignment.

A transition mutation is a substitution of a base pair, so that a purine/pyrimidine is replaced by another purine/pyrimidine; say, GC is replaced by AT. A transversion mutation is a substitution of a base pair, so that a purine/pyrimidine is replaced by a pyrimidine/purine base pair, or vice versa; say, GC is replaced by TA.

DNA molecules occur (in the nuclei of eukaryote cells) in the form of long chains called chromosomes. DNA from one human cell has length/width $\approx 1.8 \mathrm{~m} / 2.4 \mathrm{~nm}$.

Most human cells contain 46 chromosomes (23 pairs, one set of 23 from each parent); the human gamete (sperm or egg) is a haploid, i.e., contains only one set of 23 chromosomes. The (normal) males and females differ only in the 23rd pair: $X Y$ for males, and $X X$ for females. But a male ant Mirmecia pilosula has only 1 chromosome, while a plant Ophioglossum has 1,260. A protozoan Tetrahymena thermophila occurs in seven different variants (sexes) that can reproduce in $\binom{7}{2}=21$ combinations. A fungus Cryptococcus neoformans has two sexes but their ratio is 99.9%. More than 99% of multicellular eukaryotes reproduce sexually, while bacteria only reproduce asexually.

A gene is a segment of DNA encoding (via transcription, information flow to RNA, and then translation, information flow from RNA to enzymes) for a protein or an RNA chain. The location of a gene on its chromosome is called the gene locus. Different versions (states) of a gene are called its alleles.

A protein is a large molecule which is a chain of amino acids; among them are hormones, catalysts (enzymes), antibodies, etc. The protein length is the number of amino acids in the chain; average protein length is around 300 .

The genetic code is a map, universal to all organisms, of $4^{3}=64$ codons (ordered triples of nucleotides) onto 21 messages: 20 standard amino acids and stop-signal. It express the genotype (information contained in genes, i.e., in DNA) as the phenotype (proteins). Some codons have two meanings, one related to protein sequence, and one related to gene control. Slight variations of the code were found for some mitochondria, ciliates, yeasts, etc. The code also was expanded by encoding new amino acids.

Besides genetic and epigenetic (not modifying the sequence) changes of DNA, evolution (heritable changes) can happen by "protein mutations" (prions) or culturally (via behavior and symbolic communication). Holliger et al., 2012, synthesized (replacing the natural sugar in DNA) a new polymer (HNA) capable of replication and evolution.

A genome is the entire genetic constitution of a species or of an organism. The human genome is the set of 23 chromosomes consisting of ≈ 3.1 billion base pairs of DNA and organized into $\approx 20,000$ genes. But the microscopic flea Daphnia pulex has 31,000 genes, and the flower Paris japonica genome contains ≈ 150 billion bp. Only $\approx 1.5 \%$ of human DNA are in protein-coding genes, while at least 80% has some function.

A hologenome is the collection of genomes in a holobiont (host plus all its symbionts), a possible unit of selection in evolution. The human microbiota consists of $\approx 10^{14}$ (mainly, bacterial and fungal) cells of ≈ 500 species with 3 million distinct genes. But chlorinated water and antibiotics changed this. The most common viral, bacterial and fungal pathogens of humans are genera Enterovirus, Staphylococcus and Candida, respectively. The vast majority of emerging diseases hop into humans from other mammals. The estimated number of mammalian virus species is $58 \times$ $5,500 \approx 320,000$.

First known evidence of photosynthetic life, of multicellular organisms and of animals (bilaterians) is dated 3850,2100 and 560 Ma (million years ago), respectively. During the Cambrian Explosion 540-520 Ma, the rate of evolution was $4-5$ times faster than in any other era. Discounting viruses, ≈ 1.9 million extant species are known: 1,200,000 invertebrates, 290,000 plants, 250,000 bacteria/protists, 70,000 fungi and 60,000 vertebrates, including 5,416 mammals. 7-10 million species are living today. The number of living trees, fishes, ants, viruses are about $4 \times 10^{11}, 3.5 \times 10^{12}, 5 \times 10^{17}, 10^{31}$.

About 5,500 species of animals and 29,500 species of plants are protected by (Washington) Convention on International Trade in Endangered Species. But, actually, human-climate-ecosystem interactions already by 2000 significantly altered 75% of the terrestrial habitats (leading to mass extinction of species) by land
use, overharvesting, toxins and invasive species. The tipping point to new geologic epoch, the Anthropocene, passed somewhere between the origin of natural language and the invention of steam engine.

About 80% of species are parasites of others, parasites included; >100 are human-specific ones. The global live biomass is 560 GtC (billion tonnes of organically bound carbon). At least half of it is come from 5×10^{30} prokaryotes. Humans and their main symbionts, domesticated animals and cultivated plants, contribute $0.1,0.7,2 \mathrm{GtC}$.

Ninety-nine percent of species that have ever existed on Earth became extinct. Mean mammalian species' longevity is $\approx 1 \mathrm{Ma}$ (million years); our direct ancestor, Homo erectus, survived from 1.8 to 0.55 Ma ago. Our subspecies is young ($0.2-$ $0.4 \mathrm{Ma}), 6-7 \%$ of all humans that have ever been born are living today, and their median age is 28.4 years.

The world population was about 1 million 0.05 Ma and 5 million 0.01 Ma ago, after the last glaciation. It grew continuously since the end of the Black Death in 1350 , when it was ≈ 370 million, and reached 3 billion in 1960, 7.2 billion in 2013. But the number of children aged ≤ 14 leveled off on 1.9 billion, and global population may peak soon.

Gott, 2007: with a 95% chance, the human race will last anywhere from another 5,000 to $7,800,000$ years; the same doomsday argument by Carter, 1983, gave only 10,000 years for us. Earth's life was only unicellular $3.8-1.3 \mathrm{Ga}$ (billion years) ago and will be so again in $\approx 0.8 \mathrm{Ga}$. But Earth will support some prokaryotes in refuges until mean surface temperature reach $146^{\circ} \mathrm{C}$ in $1.6-2.8 \mathrm{Ga}$. Another Ga life can stay on Mars.

IAM (infinite-alleles model of evolution) assumes that an allele can change from any given state into any other given state. It corresponds to a primary role for genetic drift (i.e., random variation in gene frequencies from one generation to another), especially in small populations, over natural selection (stepwise mutations). IAM corresponds to low-rate and short-term evolution, while SMM corresponds to highrate evolution.

SMM (stepwise mutation model of evolution) is more convenient for (recently, most popular) microsatellite data. A repeat is a stretch of base pairs that is repeated with a high degree of similarity in the same sequence. Microsatellites are highly variable repeating short sequences of DNA; their mutation rate is 1 per $1,000-$ 10,000 replication events, while it is 1 per $1,000,000$ for allozymes used by IAM. Microsatellite data (for example, for DNA fingerprinting) consist of numbers of repeats of microsatellites for each allele.

Evolution, without design and purpose, has increased the life's size, diversity and maximal complexity. (But organisms can evolve to become simpler and thus multiply faster. For the Black Queen model, such evolution pushes microorganisms to lose functions which are performed by another species around.) Evolution has, perhaps, a direction: convergent gene evolution (say, bats/dolphins echolocation, primates/crows cognition), increase of energy flow per gram per second (Caisson, 2003), etc.

Natural selection can favor increased evolvability under environmental pressure. Besides natural selection, some species alter their environment through niche construction. In general, selection can act at genic, cellular, individual, holobiont and group level. Selection of species and even phyla could happen during rare abrupt extreme events.

Locally and over short time spans, macroevolution, is dominated by biotic factors (competition, predation, etc.) as in the Red Queen model. But larger-scale (geographic and temporal) patterns and species diversity are driven largely by extrinsic abiotic factors (climate, landscape, food supply, tectonic events, etc.), as in the Court Jester model. The organisms evolve rapidly (sometimes, by macromutations), but most changes cancel each other out. So, in the longer term, the evolution appears slow. It is not simple accumulation of microevolutionary adaptations, but rather nonlinear (or chaotic).

Besides vertical gene transfer (reproduction within species), the evolution is affected by HGT (horizontal gene transfer), when an organism incorporates genetic material from another one without being its offspring, and hybridization (extraspecies sexual reproduction). HGT is common among unicellular life and viruses, even across large taxonomic distance. It accounts for $\approx 85 \%$ of the prokaryotic protein evolution. HGT happens also in plants and animals, usually, by viruses. $40-50 \%$ of the human genome consists of DNA imported horizontally by viruses. The most taxonomically distant fertile hybrids are (very rare) interfamilial ones, for instance, blue-winged parrot \times cocktatiel, chicken \times guineafowl in birds and (under UV irradiation) carrot with tobacco, rice or barley. In 2012, an RNA-DNA virus hybrid and a virophage of a (giant) virus were found.

The life is not well defined, say, for viruses. DNA could be only its recent attribute. Neither life can be "anything undergoing evolution", since the unit is this evolution (gene, cell, organism, group, species?) is not clear. Lineweaver, 2012, defined life as a far-from-equilibrium dissipative system. For Eigen, life is a type of behavior of matter. An essential feature of life is autopoiesis (self-making); for example, the human body replaces 98% of its atoms every year while maintaining its unique pattern.

Examples of distances, representing general schemes of measurement in Biology, follow.

The term taxonomic distance is used for every distance between two taxa, i.e., entities or groups which are arranged into a hierarchy (in the form of a tree designed to indicate degrees of relationship).

The Linnaean taxonomic hierarchy is arranged in ascending series of ranks: Zoology (Kingdom, Phylum, Class, Order, Family Genus, Species) and Botany (12 ranks). A phenogram is a hierarchy expressing phenetic relationship, i.e., unweighted overall similarity. A cladogram is a strictly genealogical (by ancestry) hierarchy in which no attempt is made to estimate/depict rates or amount of genetic divergence between taxa.

A phylogenetic tree is a hierarchy representing a hypothesis of phylogeny, i.e., evolutionary relationships within and between taxonomic levels, especially the patterns of lines of descent. The phenetic distance is a measure of the difference
in phenotype between any two nodes on a phylogenetic tree; see, for example the biodistances in Chap. 29.

The phylogenetic distance (or cladistic distance, genealogical distance) between two taxa is the branch length, i.e., the minimum number of edges, separating them in a phylogenetic tree. In such edge-weighted tree, the additive distance between two taxa is the minimal sum of edge-weights in a path connecting them. The phylogenetic diversity is (Faith, 1992) the minimum total length of all the phylogenetic branches required to span a given set of taxa on the phylogenetic tree.

The evolutionary distance (or patristic distance) between two taxa is a measure of genetic divergence estimating the temporal remoteness of their most recent coancestor. Their general immunological distance is a measure of the strength of antigen-antibody reactions, indicating their evolutionary distance.

23.1 Genetic Distances

The general genetic distance between two taxa is a distance between the sets of DNA-related data chosen to represent them. Among the three most popular genetic distances below, the Nei standard genetic distance assumes that differences arise due to mutation and genetic drift, while the Cavalli-Sforza-Edwards chord distance and the Reynolds-Weir-Cockerham distance assume genetic drift only.

A population is represented by a vector $x=\left(x_{i j}\right)$ with $\sum_{j=1}^{n} m_{j}$ components, where $x_{i j}$ is the frequency of the i-th allele (the label for a state of a gene) at the j-th gene locus (the position of a gene on a chromosome), m_{j} is the number of alleles at the j-th locus, and n is the number of considered loci. Since $x_{i j}$ is the frequency, we have $x_{i j} \geq 0$ and $\sum_{i=1}^{m_{j}} x_{i j}=1$. Denote by \sum summation over all i and j.

- Shared allele distance

The shared allele distance $D_{S A}$ (Stephens et al., 1992, corrected by Chakraborty-Jin, 1993) between individuals a, b is $1-\operatorname{SA}(a, b)$; for populations x, y it is

$$
1-\frac{\overline{S A(x, y)}}{\overline{S A(x)}+\overline{S A(y)}},
$$

where $\operatorname{SA}(a, b)$ denotes the number of shared alleles summed over all n loci and divided by $2 n$, while $\overline{S A(x)}, \overline{S A(y)}$, and $\overline{S A(x, y)}$ are $S A(a, b)$ averaged over all pairs (a, b) with individuals a, b being in populations x, y, respectively.

- MHC genetic dissimilarity

The MHC genetic dissimilarity of two individuals is defined as the number of shared alleles in their MHC (major histocompatibility complex).
MHC is the most gene-dense and fast-evolving region of the mammalian genome. In humans, it is a 3.6 Mb region containing 140 genes on chromosome 6 and called HLA (human leukocyte antigen system). HLA has the largest polymorphism (allelic diversity) found in the population. Three most diverse loci
(HLA-A, HLA-B,HLA-DRB1) have roughly $1,000,1,600,870$ known alleles. This diversity is essential for immune function since it broadens the range of antigens (proteins bound by MHC and presented to T-cells for destruction); cf. immunological distance.
MHC (and related gut microbiota) diversity allows the marking of each individual of a species with a unique body odor permitting kin recognition and mate selection. MHC-negative assortative mating (the tendency to select MHCdissimilar mates) increases MHC variation and so provides progeny with an enhanced immunological surveillance and reduced disease levels.
While about 6% of the non-African modern human genome is common with other hominins (Neanderthals and Denisovans), the share of such HLA-A alleles is $50 \%, 72 \%, 90 \%$ for people in Europe, China, Papua New Guinea.

- Dps distance

The Thorpe similarity (proportion of shared alleles) between populations x and y is defined by $\sum \min \left\{x_{i j}, y_{i j}\right\}$. The Dps distance between x and y is defined by

$$
-\ln \frac{\sum \min \left\{x_{i j}, y_{i j}\right\}}{\sum_{j=1}^{n} m_{j}}
$$

- Prevosti-Ocana-Alonso distance

The Prevosti-Ocana-Alonso distance (1975) between populations x and y is defined (cf. Manhattan metric in Chap. 19) by

$$
\frac{\sum\left|x_{i j}-y_{i j}\right|}{2 n} .
$$

- Roger distance

The Roger distance D_{R} (1972) between populations x and y is defined by

$$
\frac{1}{\sqrt{2} n} \sum_{j=1}^{n} \sqrt{\sum_{i=1}^{m_{j}}\left(x_{i j}-y_{i j}\right)^{2}}
$$

- Cavalli-Sforza-Edwards chord distance

The Cavalli-Sforza-Edwards chord distance $D_{C H}$ (1967) between populations x and y (cf. Hellinger distance in Chap. 17) is defined by

$$
\frac{2 \sqrt{2}}{\pi n} \sum_{j=1}^{n} \sqrt{1-\sum_{i=1}^{m_{j}} \sqrt{x_{i j} y_{i j}}}
$$

The Cavalli-Sforza arc distance between populations x and y is defined by

$$
\frac{2}{\pi} \arccos \left(\sum \sqrt{x_{i j} y_{i j}}\right) .
$$

Cf. Bhattacharya distance 1 in Chap. 14.

- Nei-Tajima-Tateno distance

The Nei-Tajima-Tateno distance D_{A} (1983) between populations x and y is

$$
1-\frac{1}{n} \sum \sqrt{x_{i j} y_{i j}} .
$$

The Tomiuk-Loeschcke distance (1998) is $-\ln \frac{1}{n} \sqrt{\sum x_{i j} \sum y_{i j}}$.
The Nei standard genetic distance D_{s} (1972) between x and y is defined by

$$
-\ln \frac{\langle x, y\rangle}{\|x\|_{2} \cdot\|y\|_{2}}
$$

Cf. Bhattacharya distances in Chap. 14 and angular semimetric in Chap. 17. Under IAM, D_{s} increases linearly with time; cf. temporal remoteness.
The kinship distance is defined by $-\ln \langle x, y\rangle$. Caballero and Toro, 2002, defined the molecular kinship coefficient between x and y as the probability that two randomly sampled alleles from the same locus in them are identical by state. Computing it as $\langle x, y\rangle$ and using the analogy with the coefficient of kinship defined via identity by descent, they proposed several distances adapted to molecular markers (polymorphisms). Cf. co-ancestry coefficient.
The Nei minimum genetic distance D_{m} (1973) between x and y is defined by

$$
\frac{1}{2 n} \sum\left(x_{i j}-y_{i j}\right)^{2}
$$

- Sangvi χ^{2} distance

The Sangvi χ^{2} (1953) distance between populations x and y is defined by

$$
\frac{2}{n} \sum \frac{\left(x_{i j}-y_{i j}\right)^{2}}{x_{i j}+y_{i j}}
$$

- Fuzzy set distance

The fuzzy set distance $D_{f s}$ between populations x and y (Dubois-Prade, 1983; cf. Tanimoto distance in Chap. 1) is defined by

$$
\frac{\sum 1_{x_{i j} \neq y_{i j}}}{\sum_{j=1}^{n} m_{j}} .
$$

- Goldstein et al. distance

The Goldstein et al. distance (1995) between populations x and y is

$$
(\delta \mu)^{2}=\frac{1}{n} \sum\left(i x_{i j}-i y_{i j}\right)^{2}
$$

It is the loci-averaged value $(\delta \mu)^{2}=\left(\mu(x)_{j}-\mu(y)_{j}\right)^{2}$, where $\mu(z)_{j}=\sum_{i} i z_{i j}$ is the mean number of repeats of allele at the j-th (microsatellite) locus in population z.
The Feldman et al. distance (1997) is $\log \left(1-\frac{\sum_{i}(\delta \mu)_{i}^{2}}{M}\right)$, where the summation is over loci and M is the average value of the distance at maximal divergence. The above two and the next two distances assume high-rate SMM.

- Average square distance

The average square distance between populations x and y is defined by

$$
\frac{1}{n} \sum_{k=1}^{n}\left(\sum_{1 \leq i<j \leq m_{j}}(i-j)^{2} x_{i k} y_{j k}\right)
$$

- Shriver et al. stepwise distance

The Shriver et al. stepwise distance (1995) between populations x and y is

$$
D_{S W}=\frac{1}{n} \sum_{k=1}^{n} \sum_{1 \leq i, j \leq m_{k}}|i-j|\left(2 x_{i k} y_{j k}-x_{i k} x_{j k}-y_{i k} y_{j k}\right)
$$

- Latter F-statistics distance

The Latter F-statistics distance (1972) between populations x and y is defined by the following $F_{S T}$-estimator:

$$
\theta^{*}=\frac{\sum\left(x_{i j}-y_{i j}\right)^{2}}{2(n-\langle x, y\rangle)}
$$

The Latter distance $D_{L}(1973)$ is $-\ln \left(1-\theta^{*}\right)$.

- Reynolds-Weir-Cockerham distance

The Reynolds-Weir-Cockerham distance (1983) between populations x and y is defined by

$$
D_{W}=-\ln (1-\theta)
$$

where θ is their co-ancestry coefficient estimated as $\frac{a}{a+b}$.
Here a is the variance between populations x and y, and b is the variance within them. If the sample size is large, then D_{W} is close to the Latter F-statistics distance. For short-term evolution (i.e., $\frac{t}{N}$ small), $D_{W} \approx \frac{t}{2 N}$, where
N is the population size, and t is the number of generations; cf. temporal remoteness.

- Co-ancestry coefficient

The co-ancestry coefficient (or coefficient of kinship) of two populations (or individuals) x and y is defined (Wright, 1922, and Malécot, 1948) as the probability $\theta(x, y)$ that two alleles, sampled at random from x and y, are $I B D$ (or identical by descent), i.e., descending from the same ancestral allele.
Two genes can be IBS (or identical by state), i.e., similar due to random chance.
Cf. Nei standard genetic distance and coefficient of relationship.
An DNA segment, found consistently to be identical in two related people (or populations) is IBD if it is so due to their common ancestry. The total and mean
IBD segment length of two people g generations since the founding event (i.e., with g meioses on the path of descent) are $\approx \frac{1}{2^{g}}$-th of total genome length and $\approx \frac{50}{g} \mathrm{cM}$, respectively; cf. the map distance. For example, two people are cryptic relatives if those lengths are at least 1,500 and 25 cM .

- $F_{S T}$-based distances

Given a population T of size $|T|$ partitioned into subpopulations S_{1}, \ldots, S_{k}, the F-statistics (or fixation indices) are the measures

$$
F_{I S}=1-\frac{H_{I}}{H_{S}}, \quad F_{S T}=1-\frac{H_{S}}{H_{T}}, \quad F_{I T}=1-\frac{H_{I}}{H_{T}}
$$

of the correlation between genes drawn within subpopulations S_{i}, among them and within the entire T, respectively.
Here H_{I}, H_{S} and H_{T} are the heterozygosity indices over (i)ndividuals, (s)ubpopulations and (t)otal T used to compare observed variation in gene frequencies (partitioned into within and between group components) with the expected one in HWE (Hardy-Weinberg equilibrium, i.e., an ideal state when allele and genotype frequencies in population remain constant from generation to generation). $H_{I}=\frac{\sum_{1 \leq j \leq k}\left|S_{j}\right| H_{o b s j}}{|T|}$ (where $H_{\text {obs } j}$ is the observed heterozygosity, i.e., proportion of heterozygotes, in subpopulation S_{j}) is the mean actual heterozygosity in individuals within subpopulations. $H_{S}=\frac{\sum_{1 \leq j \leq k}\left|S_{j}\right| H_{\text {exp } j}}{|T|}$ (where $H_{\text {exp } j}=1-\sum_{i} p_{i}^{2}$ is the expected, assuming HWE, heterozygosity in S_{j} and p_{i} is the frequency of the i-th allele of the locus) is the mean expected heterozygosity within subpopulations. $H_{T}=1-\sum_{i} \bar{p}_{i}^{2}$ (where \bar{p}_{i} is the frequency of the i-th allele averaged over all subpopulations) is the expected, assuming HWE, heterozygosity in T.
The above Nei's (1973) $F_{S T}$ generalizes Wright's (1951) $F_{S T}$, when there are only two alleles at a locus. This measure is equivalent to the co-ancestry coefficient if all the alleles in the population are different. Nei, 1987, generalized $F_{S T}$ to multi-loci as $G_{S T}=1-\frac{\bar{H}_{S}}{\bar{H}_{T}}$, where H_{S} and H_{T} are averaged across all loci.
The above relative measures underestimate the between-population difference if the within-population diversity is high, such as, say, for microsatellites. Slatkin's $R_{S T}$ is an analog of Wright's $F_{S T}$, adapted for microsatellite loci by assuming

SMM. It is defined by $R_{S T}=\frac{\bar{S}-S_{W}}{\bar{S}}$, where S_{W} is the sum over all loci of twice the weighted mean of the within-population variances $\operatorname{var}(A)$ and $\operatorname{var}(B)$, and \bar{S} is the sum over all loci of twice the variance $\operatorname{var}(A \cup B)$ of the combined population.
In fact, S_{W} and \bar{S} are the average square distance within a subpopulation and the entire population. Slatkin (1995) developed $R_{S T}$ using his (1991) SMM-based F-statistics $F_{S T}=\frac{\bar{t}-t_{0}}{\bar{t}}$, where \bar{t} and t_{0} are the average temporal remoteness to the closest co-ancestor of any two randomly chosen alleles from the entire population and from the same subpopulation, respectively.
Jost's $D_{\text {est }}$ (2008) is an estimator $\frac{k}{k-1} \frac{H_{T}-H_{S}}{1-H_{S}}$ of the actual differentiation based on H 's estimated from allele identities rather than ratios of heterozygosity.
The Weir-Cockerham $\theta_{S T}$ (1984) is an estimation of $F_{S T}$, seen as the correlation of pairs of alleles between individuals within a subpopulation and based on partition of variance rather than heterozygosity. The total variance of allele frequency within a population is the sum $a+b+c$ of variances between subpopulations, between individuals within a subpopulation, and between gametes within individuals. Then $\theta_{S T}$ is defined, generalizing the Reynolds-Weir-Cockerham distance, as $\frac{\sum a}{\sum(a+b+c)}$, where the sum is taken over all alleles and loci.
The genetic $\breve{F}_{S T}$-distance is the pairwise $F_{S T}$ taking account only of the data for the two subpopulations concerned, not all the data simultaneously. Such a measure is valid only if the breeding system is similar for both populations.
Cavalli-Sforza-Menozzi-Piazza, 1994, evaluated, using 120 blood polymorphisms, the doubled genetic $F_{S T}$-distance between 42 native human populations and between 9 resulting clusters. The largest such distances between two continents were Africa-Oceania (0.247) and Africa-Americas (0.226), while the shortest distances were Americas-Asia (0.089) and Americas-Europe (0.095).
The largest distance in Europe, $F_{S T}=0.02-0.023$, was between Finland and Southern Italy; cf. 0.11 (Europeans-Chinese) and 0.153 (Europeans-Africans (Yoruba)). Mbuti Pygmies (the least "Neanderthal") and Papuans (the most "Denisovan") are the two most divergent living humans with $F_{S T}=0.377$.
A similar analysis by Atzmon et al., 2010, of seven Jewish groups indicated a common origin and, 100-150 generations ago, the split into Middle Eastern and European clusters. The most distant and differentiated are among Mizrahim: $F_{S T}$ of Iranian Jews to other Jews is 0.016 . Ashkenazi Jews have the highest admixture with non-Jews but they are not descendants of converted Khazars or Slavs. The closest by $F_{S T}$ to them are Northern Italians, French, Palestinians, and Druze.
Genetic variation in alleles of genes occurs both within (due to mutations and gene exchange during meiosis) and among (due to natural selection and genetic drift, i.e., random gene changes) populations. Human total genetic variation is 0.5% consisting of 0.1% in SNPs (single nucleotide polymorphisms), $\approx 0.4 \%$ in copy number (deletion, duplication or more, in a DNA segment, instead of exactly two copies of DNA per cell) and a small variation in repetitive DNA. Each human is born with about 50 new mutations, rarely noticeable. Besides
mutations, the main mechanisms of our genetic diversity are migrations and hybridization.
The genetic similarity of humans is 99% among them, while it is 99% with Neanderthals and $96-98 \%$ with (having SNP diversity 0.2%) chimpanzees. After initial division, there was interbreeding with chimpanzees and, later, with Neanderthals (in the Middle East 90,000-65,000 years ago), Denisovans (episodes in East Asia) and archaic Africans (in sub-Saharan Africa $\approx 35,000$ years ago). There are 2% of archaic genes in sub-Saharan Africans, 2% of Neanderthal genes in Central Asians and 4% of them in Europeans and Americans. There are 2.5% of Neanderthal and 6-8 \% Denisovan genes in South Asians and Australo-Melanesians.
Seventy-five to 85% of human SNP variation 0.1% is among individuals within any population, $5-10 \%$ between local populations of the same continent, and 6$10 \%$ between large groups from different continents. So, differentiation between continental groups is $F_{S T} \leq 0.1$, less than the threshold 0.25 used to define a subspecies (race).

- Temporal remoteness

The temporal remoteness of most recent common ancestor (or TMRCA, divergence time, time to coalescence) of two taxa is the time (or the number of generations) that has passed since those populations existed as a single one. The molecular clock hypothesis estimates that one unit of Nei standard genetic distance between two taxa corresponds to $18-20 \mathrm{Ma}$ of their TMRCA.
A human phylogenetic tree is derived from matrilineal mitochondrial DNA, or patrilineal nonrecombinant part of the Y-chromosome of (usually blood) protein sequences by measuring accumulated mutations. TMRCA is $0.2-0.19 \mathrm{Ma}$ ago along all-female ancestry lines for the Mitochondrial Eve and 0.24-0.58 Ma ago along all-male lines for the Y-chromosomal Adam.
The resulting phylogenetic tree is rooted in the common ancestor of chimpanzees and humans, which originated in Africa 8-6 Ma ago. The corresponding genetic $F_{S T}$-distance between humans and chimpanzee is about 0.02 , i.e., at least 30 million point mutations affecting 80% of genes.
Our genus Homo had diverged, as a carnivorous scavenger, from the Australopithecines (bipedal ape-like using rudimentary stone tools) $\approx 2.5 \mathrm{Ma}$ ago in East (Homo habilis) or South Africa. Then Homo erectus, the first global and using fire human species, moved to Eurasia 1.8 Ma ago, followed by Denisovans and, later, Neanderthals, the common ancestor of which split from our line 0.8 Ma ago.
Archaic Homo sapiens originated $0.5-0.4 \mathrm{Ma}$ ago. They evolved to anatomically modern humans Homo sapiens sapiens $\approx 0.2 \mathrm{Ma}$ ago, as shown by the temporal remoteness of their mitochondrial most recent common ancestor. Then their mitochondrial lineage L3 (among L0, L1, L2, L3) migrated out of (southern or east) Africa 0.125 and 0.065 Ma ago.
Humans passed via population bottleneck $\approx 0.074 \mathrm{Ma}$ ago (when Toba supervolcano erupted), followed by a rapid expansion. African-Eurasian divergence happened $\approx 0.06 \mathrm{Ma}$ ago. Humans arrived $\approx 0.015 \mathrm{Ma}$ ago in the Americas and
$\approx 2,000$ years ago on Madagascar. The last place on Earth (besides the Antarctic and tiny atolls) humans colonized was New Zealand where they arrived $\approx 1,300$ years ago.
Savanna living, use of fire, speech and sophisticated hand axes appeared about 1.7, 1.6, 0.6, 0.5 Ma ago. Modern human behavior (language, symbolic thought, cultural universals) emerged $0.07-0.05 \mathrm{Ma}$, i.e., $\approx 3,000$ generations, ago.
The main known gene mutations leading to us: improving blood supply to the primate brain, weakening jaw muscle (so skull/brains could expand), speeding up the neuron migration (crucial to intelligence), increasing the production of the salivary enzyme (helping to the emergence of agriculture). Also, noncoding sequence HACNS1 had 16 variations during last 6 Ma ; it led to more fine muscle control allowing bipedality and tool use. The gene miR-941, unique to humans, emerged 6-1 Ma ago; it could initiate our advanced brain functions.

- Pedigree-based distances

A cousin (or blood relative) is a relative with whom one shares a common ancestor. A cousin chart (or table of consanguinity, family tree, pedigree digraph) is a directed tree, where vertices represent relatives (usually humans, show dogs, race horses or cultivars), and the arc $u v$ means that v is a child of u. So, the in-degree of each vertex is at most two (known parents). Moreover, unoriented edges are added with edge $u v$ meaning reproductive affinity, i.e., that u and v are mated.
The genealogical quasi-distance (or, in Anthropology, genealogical distance, degree of relative consanguinity) from the individual x to its relative y is defined (Schneider, 1968) as the number of generations one must go before a common ancestor is found, i.e., it is the length $q(x, y)$ of the shortest directed path to x from a common ancestor of x and y in the family tree. Recently, the value $\min \{q(x, y), q(y, x)\}$ is preferred in English pedigree documents.
An ancestral path between the vertices x and y in a family tree (or any acyclic digraph) is a concatenation of two directed paths from a common ancestor to them. The ancestral path distance is the length of a shortest ancestral path, i.e., it is $q(x, y)+q(y, x)$. Cf. genealogical distance between the vertices x and y (of a phylogenetic tree representing taxa) which is the length of a shortest $(x-y)$ path in the undirected family tree, i.e., also $q(x, y)+q(y, x)$. Cf. ancestral path distance in Chap. 22 and join semilattice distances in Chap. 10.
The ancestral distance of an extant taxon (Hearn and Huber, 2006) is the time (or the number of speciation events) separating it from its most recent ancestor with at least one extant descendant having an independent trait.
Mycielski and Ulam, 1969, called genealogical distances between x and y the value $|S(x) \Delta S(y)|$, where $S(z)$ is the set of ancestors of z in a given family tree, and the Manhattan metric between some vector representations of x and y.
Two cousins are a-removed of degree b if they are separated by a generations and the minimum number of generations between either cousin and their common ancestor is b. The direct relatives are spouses and cousins with $(a, b)=(1,0),(2,0),(1,1),(0,2)$ and $(0,1)$, i.e., parents/children, grandpar-
ents/grandchildren, uncles (aunts)/nieces (nephews), first degree cousins and siblings. Clearly, $a=|q(x, y)-q(y, x)|$ and $b=\min \{q(x, y), q(y, x)\}$. Worldwide, $\approx 10 \%$ of marriages are between closer than third degree cousins; the case of third degree cousins results in progeny only slightly more homozygous than the general population.
The above pedigree notions are important also in some family, inheritance and nationality rules. For example, the Roman Catholic Church prohibits marriage of x with a relative y if $q(x, y)+q(y, x) \leq 4$. The closest legally permissible unions are between double-first cousins, i.e., those sharing four grandparents (in Muslim populations), or uncle-niece (in South India).
Another example: a Jew in Halakha's (Jewish Law) sense is a child born to a Jewish mother or an converted adult. Israel's Law of Return permits independent repatriation to anyone with a nonapostate Jewish grandparent and/or his spouse. In Nazi Germany, a full Jew was anyone with three Jewish grandparents, while part-Jews of first/second degree were those (not practicing Judaism and not having a Jewish spouse) who had two/one Jewish grandparents.
The inbreeding coefficient $F(z)$ of an individual z is the probability of autozygosity, i.e., that z received the same ancestral gene from both its parents; so, $F(z)$ is the co-ancestry coefficient $\theta\left(z_{1}, z_{2}\right)$ of its parents z_{1}, z_{2}. When pedigree data are available, $\theta(x, y)$ is estimated as $\sum_{z \in Z(x, y)} 0.5^{|P(z)|}(1+F(z))$, where $Z(x, y)$ is the set of least common ancestors of x and y in the pedigree digraph, and $|P(z)|$ is the number of vertices in the shortest ancestral path between x and y through z. In practice, ancestors z are counted only up to a given number of generations and not all of them are known.
The coefficient of relationship between two relatives x and y is the fraction of genome inherited from common ancestors. It is almost 1 for identical twins (they differ due to mutations during development and gene copy number variation) and $\approx \frac{3}{4}$ for semi-identical twins inheriting the same genes from only one parent. Otherwise, it is $2 \theta(x, y)$, since any progeny have a risk $\frac{1}{2}$ of inheriting identical alleles from both parents. It is $\frac{1}{2}$ for siblings and for parent-offspring.
The coefficient of relatedness (or genetic similarity) between social partners x, y relative to the population is defined (Hamilton, 1970) by

$$
r(x, y)=\frac{\operatorname{cov}\left(g, g^{\prime}\right)}{\operatorname{cov}(g, g)}=\frac{E\left[(g-E[g])\left(g^{\prime}-E\left[g^{\prime}\right]\right)\right]}{E[(g-E[g])(g-E[g])]},
$$

where g, g^{\prime} are genetic (i.e., heritable) components of the phenotype (for the character of interest) of x, y, respectively, and cov denotes a statistical covariance taken over all individuals in the population. This coefficient quantifies the indirect fitness, i.e., the component of fitness gained from aiding related individuals.
Fitness is an individual's ability to propagate its genes, i.e., to both survive and reproduce. A measure of it is the average contribution to the gene pool of the next generation that is made by an average individual of the specified genotype or
phenotype. The relative reproductive value of an individual is the probability that it is the ancestor of a randomly chosen individual in a distant future generation. Fowler-Christakis, 2013: pairs of nonkin friends are, on average, as genetically similar to one another as fourth cousins,

- Mating distances

Individual migration distances are the distances between birthplaces of paired individuals. If the pairs are spouses (gametes) or siblings, we have marital distance or sib distance, respectively. Also, the parent-offspring distance is used to describe gene migration per generation.
For humans, those distances are measured either in km, or, say, as the number of municipalities crossed by a straight line between municipality midpoints of each pair's birthplaces. The term marital migration distance is also used for the distance between premarital town of a person and town of marriage. Cf. migration distances (in Economics) in Chap. 28.
Until the twentieth century, men usually went courting no more than about 8 km from home (the distance they could walk out and back on their day off from work). According to Fox, 80% of all marriages in history could be between second cousins or closer. Also, young birds, leaving the nest, usually move 45 home ranges away; so, they stay within breeding distance of their cousins.
For a population, critical mating distances, are maximum spatial (physical) and genetic (number of genes bearing different alleles) distances allowed for mating; cf. isolation by distance. For honey bees, the mating distance is the range of queen's nuptial flight from her hive to the drone congregation areas over their hives; it is typically within 7.5 km but can reach 17 km .

- Lasker distance

The Lasker distance between two human populations x and y, characterized by surname frequency vectors $\left(x_{i}\right)$ and $\left(y_{i}\right)$, is the number $-\ln 2 R_{x, y}$, where $R_{x, y}=\frac{1}{2} \sum_{i} x_{i} y_{i}$ is Lasker's (1977) coefficient of relationship by isonymy.
Surname structure is related to inbreeding and (in patrilineal societies) to random genetic drift, mutation and migration. Surnames can be considered as alleles of one locus, and their distribution can be analyzed by Kimura's theory of neutral mutations; an isonymy points to a common ancestry.

- Isolation by distance

Isolation by distance (or ibd, Wright, 1943) is the tendency for most individuals to migrate and find mates between neighbors; so, populations that are a geographically closer are more similar than those that are further apart. It results in a smooth increase in a cline, i.e., the gradual change in a character (say, allele frequency, within- or between-population genetic differentiation) or feature (phenotype) with increasing geographic distance. The above distance can be Euclidean or along a great circle, river, or topographic isocline.
Ibd for humans was studied, for example, via migration patterns and the distribution of surnames (cf. Lasker distance). At both continental and global scales, the genetic $F_{S T}$-distance and differentiation in cranial morphology between populations increases with great circle distance (cf. Chap. 25).

The geographic distance explains $>75 \%$ of the variation between human populations, and this distance from East Africa explains 85% of the smooth decrease in genetic diversity. Atkinson, 2011, claims that phoneme diversity also declines with distance from Africa. The occurrence of alleles $7 R$ and $2 R$, linked to risk-taking, of the dopamine-related gene $D R D 4$ increases with distance from Africa.
A strong Europe-wide (except Basques, Finns and Sardinians isolates) correlation, based on $>300,000$ single nucleotide polymorphisms, between geographic and genetic distance was found. South-to-North was the main smooth gradient.
The ibd model explains the emergence of regional differences (races) and new species by restricted gene flow and adaptive variations. Speciation (branching of new species from an ancestral population) occurs when subpopulations become reproductively isolated. The dominating mode of speciation is allopatry when habitat splits into discontinuous parts by the formation of a physical barrier to gene flow or dispersal. Examples of natural barriers are the Himalayas, Wallace Line, Grand Canyon. All modes, in a continuum from complete (allopatric) to zero (sympatric) spatial segregation of diverging groups, occur, mainly, in marine ecosystems.
In spatially extended population, another mode-topopatric (or distance-forced) speciation can occur via ibd only, without geographic isolation and selection. de Aguiar and Bat-Yam, 2011, gave the conditions for speciation in such population as a function of its density, mutation rate, genome size and critical mating distances. They see such speciation as a case of breakdown of unstable uniform distribution, leading to the self-organization of its members into clusters.
Absolute distances between diverged groups can be, say, tens of meters for pathogen resistance to hundreds of kilometers in marine invertebrates.

- Wright

Dispersal neighborhood (DN) is the geographic area within which individuals and genes regularly move and interact. It is estimated as the area within a radius extending two standard deviations from the mean of species's dispersal distribution.
Richardson et al., 2014, proposed to measure microgeographic adaptive evolution by the wright indicating the phenotypic difference between populations relative to the number of species-specific DN's separating them. It is

$$
w=\frac{\left|x_{1}-x_{2}\right|}{d s_{p}}
$$

where x_{1}, x_{2} are the means of the genetically determined traits of populations, s_{p} is the pooled standard deviation of those trait values across populations, and d is the distance in number of DN's separating the two populations.
The wright is a spatial analog of the haldane, a metric for rate of microevolution defined (Gingerich, 1993, and Lynch, 1990) as $\frac{\left|x_{1}-x_{2}\right|}{g s_{p}}$, where g the number of generations separating the populations (or samples of the same populations).

Haldan, 1949, defined the darwin as $\left|\ln x_{1}-\ln x_{2}\right|$ (or, respectively, $\frac{\left|\ln x_{1}-\ln x_{2}\right|}{t}$), where t is the time in Ma separating samples of the same populations).

- Malécot's distance model

Genealogy, migration and surname isonymy are used to predict kinship (usually estimated from blood samples). But because of incomplete knowledge on ancestors, pedigree-independent methods for kinship assays utilize the distancedependent correlations of any parameter influenced by identity in descent: phenotype, gene frequency, or, say, isonymy.
Malécot's distance model $(1948,1959)$ is expressed by the following kinshipdistance formula for the mean coefficient of kinship between two populations isolated by distance d :

$$
\theta_{d}=a e^{-b d} d^{c},
$$

where $c=0, \frac{1}{2}$ correspond to one-, two-dimensional migration, b is a function of the systematic pressure (joint effect of co-ancestry, selection, mutations and long range migration), and a is the local kinship (the correlation between random gametes from the same locality). In fact, the results in 2D for small and moderate distances agree closely with $c=0$. The model is most successful when the systematic pressure is dominated by migration.
Malécot's model was adapted for the dependency ρ_{d} of alleles at two loci at distance d (allelic association, linkage disequilibrium, polymorphism distance):

$$
\rho_{d}=(1-L) M e^{-\epsilon d}+L,
$$

where d is the distance (say, from a disease gene) between loci along the chromosome (either genome distance on the physical scale in kilobases, or map distance on the genetic scale in centiMorgans), ϵ is a constant for a specified region, $M \leq 1$ is a parameter expressing mutation rate and L is the parameter predicting association between unlinked loci.
Selection generates long blocks of linkage disequilibrium (places in the genome where genetic variations are occurring more often than by chance, as in the genetic drift) across hundreds of kilobases. Using it, Hawks et al., 2007, found that selection in humans much accelerated during the last 40,000 years, driven by exponential population growth and cultural adaptations.
Examples of accelerated (perhaps, under diet and diseases pressures) human evolution and variation include disease resistance, lactose tolerance, skin color, skeletal gracility. A mutation in microcephalin (gene MCPH1) appeared 14,00062,000 years ago and is now carried by 70% of people but not in sub-Saharan Africa. Distinctive traits of East Asians (about 93% of Han Chinese and 70% of Japanese and Tai)—thicker hair shafts, more sweat glands, smaller breasts and specific teeth-are the result of a mutation in gene EDAR that occurred $\approx 35,000$ years ago.

The fastest genetic change ever observed in humans is that the ethnic Tibetans split off from the Han Chinese less than 3,000 years ago and since then evolved a unique ability to thrive at high $(4,000 \mathrm{~m}$ above sea level) altitudes and low oxygen levels. It also come from their gene EPAS1 found only in Denisovans. An example of quick nongenetic evolution: the average height of a European male at age 21 rose from 167 cm in early 1870s to 178 cm in 1980. Crabtree, 2012, argues that our intellectual and emotional abilities diminish gradually (after a peak 2,000-6,000 years ago) because of weakened control of genetic mutations by natural selection.
Over the past 20,000 years, the average volume of the human brain has decreased by 10%. Possible reason: our dwindling intelligence (Geary, 2011), or improved brain efficiency (Hawks, 2011), or social self-domestication (Hood, 2014).

23.2 Distances for DNA/RNA and Protein Data

The main way to estimate the genetic distance between DNA, RNA or proteins is to compare their nucleotide or amino acid, sequences, respectively. Besides sequencing, the main techniques used are immunological ones, annealing (cf. hybridization metric) and gel electrophoresis (cf. read length).

Distances between nucleotide (DNA/RNA) or protein sequences are usually measured in terms of substitutions, i.e., mutations, between them.

A DNA sequence is a sequence $x=\left(x_{1}, \ldots, x_{n}\right)$ over the four-letter alphabet of four nucleotides A, T, C, G (or two-letter alphabet purine/pyrimidine, or 16-letter dinucleotide alphabet of ordered nucleotide pairs, etc.). Let \sum denote $\sum_{i=1}^{n}$.

A protein sequence is a sequence $x=\left(x_{1}, \ldots, x_{n}\right)$ over a 20-letter alphabet of 20 standard amino acids; \sum again denotes $\sum_{i=1}^{n}$.

A short sequence is called nullomer if it do not occur in a given species and prime if it has not been found in nature. Hampikian-Andersen, 2007, lists 80 human DNA nullomers of length 11 and many primes: DNA of length 15 and protein of length 5 .

For a macromolecule, a primary structure is its atomic composition and the chemical bonds connecting atoms. For DNA, RNA or protein, it is specified by its sequence. The secondary structure is the 3D form of local segments defined by the hydrogen bonds. The tertiary structure is the 3D structure, as defined by atomic positions. The quaternary structure describes the arrangement of multiple molecules into larger complexes.

- Number of DNA differences

The number of DNA differences between DNA sequences $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is the number of mutations, i.e., their Hamming metric:

$$
\sum 1_{x_{i} \neq y_{i}} .
$$

- p-distance

The p-distance d_{p} between DNA sequences $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$ is defined by

$$
\frac{\sum 1_{x_{i} \neq y_{i}}}{n} .
$$

- Jukes-Cantor nucleotide distance

The Jukes-Cantor nucleotide distance between DNA sequences x and y is defined, using the p-distance d_{p} with $d_{p} \leq \frac{3}{4}$, by

$$
-\frac{3}{4} \ln \left(1-\frac{4}{3} d_{p}(x, y)\right) .
$$

If the rate of substitution varies with the gamma distribution, and a is the parameter describing the shape of this distribution, then the gamma distance for the Jukes-Cantor model is defined by

$$
\frac{3 a}{4}\left(\left(1-\frac{4}{3} d_{p}(x, y)\right)^{-1 / a}-1\right)
$$

- Tajima-Nei distance

The Tajima-Nei distance between DNA sequences x and y is defined by

$$
\begin{gathered}
-b \ln \left(1-\frac{d_{p}(x, y)}{b}\right), \text { where } \\
b=\frac{1}{2}\left(1-\sum_{j=A, T, C, G}\left(\frac{1_{x_{i}=y_{i}=j}}{n}\right)^{2}+\frac{1}{c} \sum\left(\frac{1_{x_{i} \neq y_{i}}}{n}\right)^{2}\right), \text { and } \\
c=\frac{1}{2} \sum_{i, k \in\{A, T, G, C\}, j \neq k} \frac{\left(\sum 1_{\left.\left(x_{i}, y_{i}\right)=(j, k)\right)^{2}}\right.}{\left(\sum 1_{x_{i}=y_{i}=j}\right)\left(\sum 1_{x_{i}=y_{i}=k}\right)} .
\end{gathered}
$$

Let $\left.\left.P=\frac{1}{n} \right\rvert\,\left\{1 \leq i \leq n:\left\{x_{i}, y_{i}\right\}=\{A, G\}\right.$ or $\left.\{T, C\}\right\} \right\rvert\,$, and $\left.Q=\frac{1}{n} \right\rvert\,\{1 \leq i \leq$ $n:\left\{x_{i}, y_{i}\right\}=\{A, T\}$ or $\left.\{G, C\}\right\} \mid$, i.e., P and Q are the frequencies of, respectively, transition and transversion mutations between DNA sequences x and y.
The following four distances are given in terms of P and Q.

- Jin-Nei gamma distance

The Jin-Nei gamma distance between DNA sequences is defined by

$$
\frac{a}{2}\left((1-2 P-Q)^{-1 / a}+\frac{1}{2}(1-2 Q)^{-1 / a}-\frac{3}{2}\right)
$$

where the rate of substitution varies with the gamma distribution, and a is the parameter describing the shape of this distribution.

- Kimura 2-parameter distance

The Kimura 2-parameter distance $K 2 P$ (Kimura, 1980) between DNA sequences is defined by

$$
-\frac{1}{2} \ln (1-2 P-Q)-\frac{1}{4} \ln \sqrt{1-2 Q}
$$

- Tamura 3-parameter distance

The Tamura 3-parameter distance between DNA sequences is defined by

$$
-b \ln \left(1-\frac{P}{b}-Q\right)-\frac{1}{2}(1-b) \ln (1-2 Q)
$$

where $f_{x}=\frac{1}{n} \left\lvert\,\left\{1 \leq i \leq n: x_{i}=G\right.$ or $\left.C\right\}\left|, f_{y}=\frac{1}{n}\right|\left\{1 \leq i \leq n: y_{i}=\right.\right.$ G or $C\} \mid$, and $b=f_{x}+f_{y}-2 f_{x} f_{y}$. If $b=\frac{1}{2}$, it is the Kimura 2-parameter distance.

- Tamura-Nei distance

The Tamura-Nei distance between DNA sequences is defined by

$$
\begin{aligned}
& -\frac{2 f_{A} f_{G}}{f_{R}} \ln \left(1-\frac{f_{R}}{2 f_{A} f_{G}} P_{A G}-\frac{1}{2 f_{R}} P_{R Y}\right) \\
& \quad-\frac{2 f_{T} f_{C}}{f_{Y}} \ln \left(1-\frac{f_{Y}}{2 f_{T} f_{C}} P_{T C}-\frac{1}{2 f_{Y}} P_{R Y}\right)- \\
& \quad-2\left(f_{R} f_{Y}-\frac{f_{A} f_{G} f_{Y}}{f_{R}}-\frac{f_{T} f_{C} f_{R}}{f_{Y}}\right) \ln \left(1-\frac{1}{2 f_{R} f_{Y}} P_{R Y}\right),
\end{aligned}
$$

where $f_{j}=\frac{1}{2 n} \sum\left(1_{x_{i}=j}+1_{y_{i}=j}\right)$ for $j=A, G, T, C$, and $f_{R}=f_{A}+f_{G}$, $f_{Y}=f_{T}+f_{C}$, while $\left.P_{R Y}=\frac{1}{n} \right\rvert\,\left\{1 \leq i \leq n:\left|\left\{x_{i}, y_{i}\right\} \cap\{A, G\}\right|=\right.$ $\left.\left|\left\{x_{i}, y_{i}\right\} \cap\{T, C\}\right|=1\right\} \mid$ (the proportion of transversion differences), $P_{A G}=$ $\frac{1}{n}\left|\left\{1 \leq i \leq n:\left\{x_{i}, y_{i}\right\}=\{A, G\}\right\}\right|$ (the proportion of transitions within purines), and $P_{T C}=\frac{1}{n}\left|\left\{1 \leq i \leq n:\left\{x_{i}, y_{i}\right\}=\{T, C\}\right\}\right|$ (the proportion of transitions within pyrimidines).

- Lake paralinear distance

Given two DNA sequences $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, denote by $\operatorname{det}(J)$ the determinant of the 4×4 matrix $J=\left(\left(J_{i j}\right)\right)$, where $\left.J_{i j}=\frac{1}{n} \right\rvert\,\{1 \leq$ $\left.t \leq n: x_{t}=i, y_{t}=j\right\} \mid$ (joint probability) and indices $i, j=1,2,3,4$ represent nucleotides A, T, C, G, respectively. Let $f_{i}(x)$ denote the frequency of the i-th nucleotide in the sequence x (marginal probability), and let $f(x)=$ $f_{1}(x) f_{2}(x) f_{3}(x) f_{4}(x)$.

The Lake paralinear distance (1994) between sequences x and y is defined by

$$
-\frac{1}{4} \ln \frac{\operatorname{det}(J)}{\sqrt{f(x) f(y)}}
$$

It is a four-point inequality metric, and it generalizes trivially for sequences over any alphabet. Related are the LogDet distance (Lockhart et al., 1994) $-\frac{1}{4} \ln \operatorname{det}(J)$ and the symmetrization $\frac{1}{2}(d(x, y)+d(y, x))$ of the BarryHartigan quasi-metric (1987) $d(x, y)=-\frac{1}{4} \ln \frac{\operatorname{det}(J)}{\sqrt{f(x)}}$.

- Eigen-McCaskill-Schuster distance

The Eigen-McCaskill-Schuster distance between DNA sequences $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is defined by

$$
\left|\left\{1 \leq i \leq n:\left\{x_{i}, y_{i}\right\} \neq\{A, G\},\{T, C\}\right\}\right| .
$$

It is the number of transversions, i.e., positions i with one of x_{i}, y_{i} denoting a purine and another one denoting a pyrimidine.

- Watson-Crick distance

The Watson-Crick distance between DNA sequences $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is defined, for $x \neq y$, by

$$
\left|\left\{1 \leq i \leq n:\left\{x_{i}, y_{i}\right\} \neq\{A, T\},\{G, C\}\right\}\right|
$$

It is the Hamming metric (number of DNA differences) $\sum 1_{x_{i} \neq \bar{y}_{i}}$ between x and the Watson-Crick complement $\bar{y}=\left(\bar{y}_{1}, \ldots, \bar{y}_{n}\right)$ of y, where $\bar{y}_{i}=$ A, T, G, C if $y_{i}=T, A, C, G$, respectively. Let y^{*} be the reversal $\left(\bar{y}_{n}, \ldots, \bar{y}_{1}\right)$ of \bar{y}.
Hybridization is the process of combining complementary single-stranded nucleic acids into a single molecule. Annealing is the binding of two strands by the Watson-Crick complementation. Denaturation is the reverse process.
A DNA cube is any maximal set of DNA n-sequences, such that, for any two x, y of them, it holds that $H(x, y)=\min _{-n \leq k \leq n} \sum 1_{x_{i} \neq y_{i+k(\bmod n)}^{*}}=0$. The hybridization metric (Garzon et al., 1997) between DNA cubes A and B is

$$
\min _{x \in A, y \in B} H(x, y) .
$$

- RNA structural distances

An $R N A$ sequence is a string over the alphabet $\{A, C, G, U\}$ of nucleotides (bases). Inside a cell, such a string folds in 3D space, because of pairing of nucleotide bases (usually, by bonds $A-U, G-C$ and $G-U$). The secondary structure of an RNA is, roughly, the set of helices (or the list of paired bases) making up the RNA. Such structure can be represented as a planar graph and further, as a rooted tree. The tertiary structure is the geometric form the RNA takes in space; the secondary structure is its simplified/localized model.

An RNA structural distance between two RNA sequences is a distance between their secondary structures. These distances are given in terms of their selected representation. For example, the tree edit distance (and other distances on rooted trees given in Chap. 15) are based on the rooted tree representation.
Let an RNA secondary structure be represented by a simple graph (V, E) with vertex-set $V=\{1, \ldots, n\}$ such that, for every $1 \leq i \leq n,(i, i+1) \notin E$ and $(i, j),(i, k) \in E$ imply $j=k$. Let $E=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}$, and let (ij) denote the transposition of i and j. Then $\pi(G)=\prod_{t=1}^{k}\left(i_{t} j_{t}\right)$ is an involution.
Let $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right)$ be such planar graph representations of two RNA secondary structures. The base pair distance between G and G^{\prime} is the number $\left|E \Delta E^{\prime}\right|$, i.e., the symmetric difference metric between secondary structures seen as sets of paired bases.
The Zuker distance between G and G^{\prime} is the smallest number k such that, for every edge $(i, j) \in E$, there is an edge $\left(i^{\prime}, j^{\prime}\right) \in E^{\prime}$ with $\max \{\mid i-$ $i^{\prime}\left|,\left|j-j^{\prime}\right|\right\} \leq k$ and, for every $\left(k^{\prime}, l^{\prime}\right) \in E^{\prime}$, there is an $(k, l) \in E$ with $\max \left\{\left|k-k^{\prime}\right|,\left|l-l^{\prime}\right|\right\} \leq k$.
The Reidys-Stadler-Roselló metric between G and G^{\prime} is defined by

$$
\left|E \Delta E^{\prime}\right|-2 T
$$

where T is the number of cyclic orbits of length greater than 2 induced by the action on V of the subgroup $\left\langle\pi(G), \pi\left(G^{\prime}\right)\right\rangle$ of the group $S y m_{n}$ of permutations on V. It is the number of transpositions needed to represent $\pi(G) \pi\left(G^{\prime}\right)$.
Let $I_{G}=\left\langle x_{i} x_{j}:\left(x_{i}, x_{j}\right) \in E\right\rangle$ be the monomial ideal (in the ring of polynomials in the variables x_{1}, \ldots, x_{n} with coefficients 0,1 , and let $M\left(I_{G}\right)_{m}$ denote the set of all monomials of total degree $\leq m$ that belong to I_{G}. For every $m \geq 3$, a Liabrés-Roselló monomial metric between $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is

$$
\left|M\left(I_{G}\right)_{m-1} \Delta M\left(I_{G^{\prime}}\right)_{m-1}\right|
$$

Chen-Li-Chen, 2010, proposed the following variation of the directed Hausdorff distance (cf. Chap. 1) between two intervals $x=\left[x_{1}, x_{2}\right]$ and $y=\left[y_{1}, y_{2}\right]$, representing two RNA secondary structures:

$$
\max _{a \in x} \min _{b \in y}|a-b|\left(1-\frac{O(x, y)}{x_{2}-x_{1}+1}\right),
$$

where $O(x, y)=\min \left\{x_{2}, y_{2}\right\}-\max \left\{x_{1}, y_{1}\right\}$, represents the overlap of intervals x and y; it is seen as a negative gap between x and y, if they are disjoint.

- Fuzzy polynucleotide metric

The fuzzy polynucleotide metric (or NTV-metric) is the metric introduced by Nieto, Torres and Valques-Trasande, 2003, on the 12-dimensional unit cube I^{12}. Four nucleotides U, C, A and G of the RNA alphabet being coded as $(1,0,0,0)$, $(0,1,0,0),(0,0,1,0)$ and $(0,0,0,1)$, respectively, 64 possible triplet codons of the genetic code can be seen as vertices of I^{12}.
So, any point $\left(x_{1}, \ldots, x_{12}\right) \in I^{12}$ can be seen as a fuzzy polynucleotide codon with each x_{i} expressing the grade of membership of element $i, 1 \leq i \leq 12$, in the fuzzy set x. The vertices of the cube are called the crisp sets.
The NTV-metric between different points $x, y \in I^{12}$ is defined by

$$
\frac{\sum_{1 \leq i \leq 12}\left|x_{i}-y_{i}\right|}{\sum_{1 \leq i \leq 12} \max \left\{x_{i}, y_{i}\right\}} .
$$

Dress and Lokot showed that $\frac{\sum_{1 \leq i \leq n}\left|x_{i}-y_{i}\right|}{\sum_{1 \leq i \leq n} \max \left\{x_{i}\left|,\left|y_{i}\right|\right\}\right.}$ is a metric on the whole of \mathbb{R}^{n}. On $\mathbb{R}_{\geq 0}^{n}$ this metric is equal to $1-s(x, y)$, where $s(x, y)=\frac{\sum_{1 \leq i \leq n} \min \left\{x_{i}, y_{i}\right\}}{\sum_{1 \leq i \leq n} \max \left\{x_{i}, y_{i}\right\}}$ is the Ruzicka similarity (cf. Chap. 17).

- Genome rearrangement distances

The genomes of related unichromosomal species or single chromosome organelles (such as small viruses and mitochondria) are represented by the order of genes along chromosomes, i.e., as permutations (or rankings) of a given set of n homologous genes. If one takes into account the directionality of the genes, a chromosome is described by a signed permutation, i.e., by a vector $x=\left(x_{1}, \ldots, x_{n}\right)$, where $\left|x_{i}\right|$ are different numbers $1, \ldots, n$, and any x_{i} can be positive or negative.
The circular genomes are represented by circular (signed) permutations $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{n+1}=x_{1}$ and so on.
Given a set of considered mutation moves, the corresponding genomic distance between two such genomes is the editing metric (cf. Chap. 11) with the editing operations being these moves, i.e., the minimal number of moves needed to transform one (signed) permutation into another.
In addition to (and, usually, instead of) local mutation events, such as character indels or replacements in the DNA sequence, the large (i.e., happening on a large portion of the chromosome) mutations are considered, and the corresponding genomic editing metrics are called genome rearrangement distances. In fact, such rearrangement mutations being rarer, these distances estimate better the true genomic evolutionary distance.
The genome (chromosomal) rearrangements are inversions (block reversals), transpositions (exchanges of two adjacent blocks), inverted transpositions (inversions combined with transpositions) in a permutation, and, for signed permutations, signed reversals (sign reversal combined with inversion). The main genome rearrangement distances between two unichromosomal genomes are:
Cayley, reversal and signed reversal metrics (cf. Chap. 11);

ITT-distance: the minimal number of inversions, transpositions and inverted transpositions needed to transform one of them into another.
Given two circular signed permutations $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ (so, $x_{n+1}=x_{1}$, etc.), a breakpoint is a number $i, 1 \leq i \leq n$, such that $y_{i+1} \neq x_{j(i)+1}$, where the number $j(i), 1 \leq j(i) \leq n$, is defined by the equality $y_{i}=x_{j(i)}$. The breakpoint distance (Watterson et al., 1982) between genomes, represented by x and y, is the number of breakpoints.
This distance and the permutation editing metric (the Ulam metric from Chap. 11: the minimal needed number of one-character transpositions) are used for the approximation of genome rearrangement distances.

- Syntenic distance

This is a genomic distance between multi-chromosomal genomes, seen as unordered collections of synteny sets of genes, where two genes are syntenic if they appear in the same chromosome. The syntenic distance (Ferretti-NadeauSankoff, 1996) between two such genomes is the minimal number of mutation moves-translocations (exchanges of genes between two chromosomes), fusions (merging of two chromosomes into one) and fissions (splitting of one chromosome into two)-needed to transfer one genome into another. All (input and output) chromosomes of these mutations should be nonempty and not duplicated. The above three mutation moves correspond to interchromosomal genome rearrangements which are rarer than intrachromosomal ones; so, they give information about deeper evolutionary history.

- Genome distance

The genome distance between two loci on a chromosome is a physical distance: the number of base pairs (bp) separating them on the chromosome.
In particular, the intragenic distance of two neighboring genes is the smallest distance in bp separating them on the chromosome. Sometimes, it is defined as the genome distance between the transcription start sites of those genes.
Nelson, Hersh and Carrol, 2004, defined the intergenic distance of a gene as the amount of noncoding DNA between the gene and its nearest neighbors, i.e., the sum of upstream and downstream distances, where upstream distance is the genome distance between the start of a gene's first exon and the boundary of the closest upstream neighboring exon and downstream distance is the distance between the end of a gene's last exon and the boundary of the closest downstream neighboring exon. If exons overlap, the intergenic distance is 0 .

- Strand length

A single strand of nucleic acid (DNA or RNA sequence) is oriented downstream, i.e., from the 5^{\prime} end toward the 3^{\prime} end (sites terminating at the 5th and 3rd carbon in the sugar-ring; 5^{\prime}-phosphate binds covalently to the 3^{\prime}-hydroxyl of another nucleotide). So, the structures along it (genes, transcription factors, polymerases) are either downstream or upstream. The strand length is the distance from its 5^{\prime} to 3^{\prime} end. Cf. end-to-end distance (in Chap. 24) for a general polymer.

For a molecule of messenger RNA (mRNA), the gene length is the distance from the cap site 5^{\prime}, where post-translational stability is ensured, to the polyadenylation site 3^{\prime}, where a poly(A) tail of 50-250 adenines is attached after translation.

- Map distance

The map distance between two loci on a genetic map is the recombination frequency expressed as a percentage; it is measured in centiMorgans cM (or map units), where 1 cM corresponds to a $1 \%\left(\frac{1}{100}\right)$ chance that a segment of DNA will crossover or recombine within one generation. Genes at map distance 50 cM are unlinked.
For humans, 1.3 cM corresponds to a genome distance of 1 Mb (million bp). In the female this recombination rate (and so map distances) are twice that of the male. In males, the total length of intervals between linked genes is $2,500 \mathrm{cM}$.
During meiosis in humans, there is an average of 2-3 crossovers for each pair of homologous chromosomes. The intermarker meiotic recombination distance (Dib et al., 1992) counts only meiotic crossovers. Mitotic crossover is rare.

- tRNA interspecies distance

Transfer RNA (tRNA) molecules are necessary to translate codons (nucleotide triplets) into amino acids; eukaryotes have up to 80 different tRNAs. Two tRNA molecules are called isoacceptor tRNAs if they bind the same amino acid.
The tRNA interspecies distance between species m and n is (Xue et al., 2003), averaged for all 20 amino acids, the $t R N A$ distance for a given amino acid aa a_{i} which is, averaged for all pairs, the Jukes-Cantor protein distance between each isoacceptor tRNAs of $a a_{i}$ from species m and each isoacceptor tRNAs of the same amino acid from species n.

- PAM distance

There are many notions of similarity/distance (20×20 scoring matrices $)$ on the set of 20 standard amino acids, based on genetic codes, physico-chemical properties, secondary structural matching, structural properties (hydrophilicity, polarity, charge, shape, etc.) and observed frequency of mutations. The most frequently used one is the Dayhoff distance, based on the 20×20 Dayhoff PAM250 matrix which expresses the relative mutability of amino acids.
The PAM distance (or Dayhoff-Eck distance, PAM value) between protein sequences is defined as the minimal number of accepted (i.e., fixed) point mutations per 100 amino acids needed to transform one protein into another.
1 PAM is a unit of evolution: it corresponds to 1 point mutation per 100 amino acids. PAM values $80,100,200,250$ correspond to the distance (in \%) 50, 60, 75,92 between proteins.

- Genetic code distance

The genetic code distance (Fitch and Margoliash, 1967) between amino acids x and y is the minimum number of nucleotides that must be changed to obtain x from y. In fact, it is 1,2 or 3 , since each amino acid corresponds to three bases.

- Miyata-Miyazawa-Yasanaga distance

The Miyata-Masada-Yasanaga distance (or Miyata's biochemical distance, 1979) between amino acids x, y with polarities p_{x}, p_{y} and volumes v_{x}, v_{y}, respectively, is defined by

$$
\sqrt{\left(\frac{\left|p_{x}-p_{y}\right|}{\sigma_{p}}\right)^{2}+\left(\frac{\left|v_{x}-v_{y}\right|}{\sigma_{v}}\right)^{2}}
$$

where σ_{p} and σ_{v} are the standard deviations of $\left|p_{x}-p_{y}\right|$ and $\left|v_{x}-v_{y}\right|$.
This distance is derived from the similar Grantam's chemical distance (Grantam, 1974) based on polarity, volume and carbon-composition of amino acids.

- Polar distance (in Biology)

The following three physico-chemical distances between amino acids x and y were defined in Hughes-Ota-Nei, 1990.
Dividing amino acids into two groups-polar $(C, D, E, H, K, N, Q, R, S$, T, W, Y) and nonpolar (the rest)-the polar distance is 1 , if x, y belong to different groups, and 0 , otherwise. The second polarity distance is the absolute difference between the polarity indices of x and y. Dividing amino acids into three groups-positive (H, K, R), negative (D, E) and neutral (the rest)-the charge distance is 1 , if x, y belong to different groups, and 0 , otherwise.

- Feng-Wang distance

Twenty amino acids can be ordered linearly by their rank-scaled functions $C I, N I$ of $p K_{a}$ values for the terminal amino acid groups COOH and NH_{3}^{+}, respectively. $17 C I$ is $1,2,3,4,5,6,7,7,8,9,10,11,12,13,14,14,15,15,16,17$ for C, H, F, P, N, D, R, Q, K, E, Y, S, M, V, G, A, L, I, W, T, while 18 NI is $1,2,3,4,5,5,6,7,8,9,10,10,11,12,13,14,15,16,17,18$ for $\mathrm{N}, \mathrm{K}, \mathrm{R}, \mathrm{Y}, \mathrm{F}, \mathrm{Q}$, S, H, M, W, G, L, V, E, I, A, D, T, P, C.
Given a protein sequence $x=\left(x_{1}, \ldots, x_{m}\right)$, define $x_{i}<x_{j}$ if $i<j, C I\left(x_{i}\right)<$ $C I\left(x_{i}\right)$ and $N I\left(x_{i}\right)<N I\left(x_{i}\right)$ hold. Represent the sequence x by the augmented $m \times m$ Hasse matrix $\left(\left(a_{i j}(x)\right)\right)$, where $a_{i i}(x)=\frac{C I\left(x_{i}\right)+N I\left(x_{i}\right)}{2}$ and, for $i \neq j$, $a_{i j}(x)=-1$ or 1 if $x_{i}<x_{j}$ or $x_{i} \geq x_{j}$, respectively.
The Feng-Wang distance [FeWa08] between protein sequences $x=$ $\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is defined by

$$
\left\|\frac{\lambda(x)}{\sqrt{m}}-\frac{\lambda(y)}{\sqrt{n}}\right\|_{2},
$$

where $\lambda(z)$ denotes the largest eigenvalue of the matrix $\left(\left(a_{i j}(z)\right)\right)$.

- Number of protein differences

The number of protein differences between protein sequences $x=$ $\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is just the Hamming metric between protein sequences:

$$
\sum 1_{x_{i} \neq y_{i}} .
$$

- Amino p-distance

The amino p-distance (or uncorrected distance) d_{p} between protein sequences $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is defined by

$$
\frac{\sum 1_{x_{i} \neq y_{i}}}{n} .
$$

- Amino Poisson correction distance

The amino Poisson correction distance between protein sequences x and y is defined, via the amino p-distance d_{p}, by

$$
-\ln \left(1-d_{p}(x, y)\right)
$$

- Amino gamma distance

The amino gamma distance (or Poisson correction gamma distance) between protein sequences x and y is defined, via the amino p-distance d_{p}, by

$$
a\left(\left(1-d_{p}(x, y)\right)^{-1 / a}-1\right),
$$

where the substitution rate varies with $i=1, \ldots, n$ according to the gamma distribution with the shape described by the parameter a. For $a=2.25$ and $a=0.65$, it estimates the Dayhoff distance and Grishin distances, respectively. In some applications, this distance with $a=2.25$ is called simply the Dayhoff distance.

- Jukes-Cantor protein distance

The Jukes-Cantor protein distance between protein sequences x and y is defined, via the amino p-distance d_{p}, by

$$
-\frac{19}{20} \ln \left(1-\frac{20}{19} d_{p}(x, y)\right) .
$$

- Kimura protein distance

The Kimura protein distance between protein sequences x and y is defined, via the amino p-distance d_{p}, by

$$
-\ln \left(1-d_{p}(x, y)-\frac{d_{p}^{2}(x, y)}{5}\right)
$$

- Grishin distance

The Grishin distance d between protein sequences x and y can be obtained, via the amino p-distance d_{p}, from the formula

$$
\frac{\ln (1+2 d(x, y))}{2 d(x, y)}=1-d_{p}(x, y)
$$

- k-mer distance

The k-mer distance (Edgar, 2004) between sequences $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ over a compressed amino acid alphabet is defined by

$$
\ln \left(\frac{1}{10}+\frac{\sum_{a} \min \{x(a), y(a)\}}{\min \{m, n\}-k+1}\right),
$$

where a is any $k-m e r$ (a word of length k over the alphabet), while $x(a)$ and $y(a)$ are the number of times a occurs in x and y, respectively, as a block (contiguous subsequence). Cf. q-gram similarity in Chap. 11.

- Whole genome composition distance

Let A_{k} be the set of all $\sum_{i=1}^{k} 4^{i}$ nonempty words of length at most k over the alphabet of four RNA nucleotides. For an RNA sequence $x=\left(x_{1}, \ldots, x_{n}\right)$ and any $a \in A_{k}$, let $g_{a}(x)$ be the number of occurrences of a as a block (contiguous subsequence) in x and $f_{a}(x)$ be $g_{a}(x)$ divided by the number of blocks of the same length in x.
The whole genome composition distance (Wu et al., 2006) between RNA sequences x and y (of two strains of HIV-1 virus) is the Euclidean distance

$$
\sqrt{\sum_{a \in A_{k}}\left(f_{a}(x)-f_{a}(y)\right)^{2}}
$$

The D^{2} distance (Torney et al., 1990) is $\sum_{a \in A_{k} \backslash A_{l}}\left(g_{a}(x)-g_{a}(y)\right)^{2}$ for some $l \leq k$. The D_{2} statistic (Lippert et al. 2002) is the number of k-word matches of x and y.

- Additive stem w-distance.

Given an alphabet \mathcal{A}, let $w=w(a, b)>0$ for $a, b \in \mathcal{A}$, be a weight function on it. The additive stem w-distance between two n-sequences $x, y \in \mathcal{A}^{n}$ is defined (D'yachkov and Voronina, 2008) by

$$
D_{w}(x, y)=\sum_{i=1}^{n-1}\left(s_{i}^{w}(x, x)-s_{i}^{w}(x, y)\right),
$$

where $s_{i}^{w}(x, y)=w(a, b)$ if $x_{i}=y_{i}=a, x_{i+1}=y_{i+1}=b$ and $s_{i}^{w}(x, y)=0$, otherwise. If all $w(a, b)=1$, then $\sum_{i=1}^{n-1} s_{i}(x, y)$ is the number of common 2blocks containing adjacent symbols in the longest common subsequence of x and y; then $D_{w}(x, y)$ is called a stem Hamming distance.

- ACS-distance.

Given an alphabet \mathcal{A}, the average common substring length between sequences $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ over \mathcal{A} is (Ulitsky et al., 2006) $L(x, y)=\frac{1}{m} \sum_{i=1}^{m} l_{i}$, where l_{i} is the length of the longest substring $\left(x_{i}, \ldots, x_{i-1+l_{i}}\right)$ which matches a substring of y. So, $L(x, x)=\frac{m+1}{2}$.
The ACS-distance is defined by

$$
\frac{1}{2}\left(\frac{\log (n)}{L(x, y)}-\frac{\log (m)}{L(x, x)}+\frac{\log (m)}{L(y, x)}-\frac{\log (n)}{L(y, y)}\right)
$$

A similar distance was considered (Haubold et al., 2009) replacing the longest common substring by the shortest absent one.

23.3 Distances in Ecology, Biogeography, Ethology

Main distance-related notions in Ecology, Biogeography and Animal Behavior follow.

- Niche overlap similarities

A niche is environmental space, while a biotope is a geographic space.
Let $p(x)=\left(p_{1}(x), \ldots, p_{n}(x)\right)$ be a frequency vector (i.e., all $p_{i}(x) \geq 0$ and
$\sum_{i} p_{i}(x)=1$) representing an ecological niche of species x, for instance, the proportion of resource $i, i \in\{1, \ldots, n\}$, used by species x.
Four main niche overlap similarities of species x and y are:
Schoener's D, introduced by Renkonen in 1938:

$$
D(x, y)=1-\frac{1}{2} \sum_{i=1}^{n}\left|p_{i}(x)-p_{i}(y)\right| ;
$$

cosine similarity (cf. Chap. 17), called in Ecology (from 1973) Pianka's O:

$$
O(x, y)=\frac{\langle p(x), p(y)\rangle}{\|p(x)\|_{2} \cdot\|p(y)\|_{2}}
$$

Hellinger I (i.e., fidelity similarity, cf. Chap. 14) and Bray-Curtis (or, since $p(x), p(y)$ are frequency vectors, Renkonen percentage) similarity (Chap. 17).

- Ecological distance

Let a given species be distributed in subpopulations over a given landscape, i.e., a textured mosaic of patches (homogeneous areas of land use, such as fields, lakes, forest) and linear frontiers (river shores, hedges and road sides). The individuals move across the landscape, preferentially by frontiers, until they reach a different subpopulation or they exceed a maximum dispersal distance.
The ecological distance between two subpopulations (patches) x and y is defined (Vuilleumier-Fontanillas, 2007) by

$$
\frac{D(x, y)+D(y, x)}{2}
$$

where $D(x, y)$ is the distance an individual covers to reach patch y from patch x, averaged over all successful dispersers from x to y. If no such dispersers exist, $D(x, y)$ is defined as $\min _{z}(D(x, z)+D(z, x))$.
Ecotopes are the smallest ecologically distinct features in a landscape mapping.

Effective ecological distance (or cost-distance) is the Euclidean distance modified for the effect of landscape and behaviour on the dispersal of an organism between locations in the landscape. Such functional distance can be computed as least-cost path using either cost surface (matrix between patches assigning degree of permeability depending on hostile habitat or physical barriers), or resistance surface accounting for costs (resistance per unit distance) of passing through different landscape elements. Cf. resistance distance in Chap. 15. Pinto-Kein, 2009, proposed least-cost corridors formed by multiple paths with similar costs, since animals, even birds, rarely move along straight-line paths in a landscape.

- Biotope distance

The biotopes here are represented as binary sequences $x=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1$ means the presence of the species i. The biotope (or Tanimoto, Jaccard; cf. Chap. 17) distance between biotopes x and y is defined by

$$
\frac{\left|\left\{1 \leq i \leq n: x_{i} \neq y_{i}\right\}\right|}{\left|\left\{1 \leq i \leq n: x_{i}+y_{i}>0\right\}\right|}=\frac{|X \Delta Y|}{|X \cup Y|},
$$

where $X=\left\{1 \leq i \leq n: x_{i}=1\right\}$ and $Y=\left\{1 \leq i \leq n: y_{i}=1\right\}$.

- Prototype distance

Given a finite metric space (X, d) (usually, a Euclidean space) and a selected, as typical by some criterion, vertex $x_{0} \in X$, called the prototype, the prototype distance of every $x \in X$ is the number $d\left(x, x_{0}\right)$.
Usually, the elements of X represent phenotypes or morphological traits. The average of $d\left(x, x_{0}\right)$ over $x \in X$ estimates the corresponding variability.

- Critical domain size

In Spatial Ecology, the critical domain size is (Kierstead and Slobodkin, 1953) the minimal amount of habitat, surrounded by a hostile matrix, required for a population to persist. For example, in the invasion and persistence of algal and insect populations in rivers, such a size is the minimal length of a river (with a given, less than the threshold, flow speed) that supports a population.

- Island distance effect

An island, in Biogeography, is any area of habitat surrounded by areas unsuitable for the species on the island: true islands surrounded by ocean, mountains isolated by surrounding lowlands, lakes surrounded by dry land, isolated springs in the desert, grassland or forest fragments surrounded by human-altered landscapes.
The island distance effect is that the number of species found on an island is smaller when the degree of isolation (distance to nearest neighbor and mainland) is larger. Also, organisms with high dispersal, such as plants and birds, are much more common on islands than are poorly dispersing taxa like mammals.

- Dispersal distance

In Biology, the dispersal distance is a range distance to which a species maintains or expands the distribution of a population. It refers, say, to seed dispersal by pollination and to natal, breeding and migration dispersal. For animals, natal
dispersal is permanent emigration from the natal range to a disjoint adult range, and dispersal distance is the distance between their barycenters.
When outcrossing (gene flow) is used to increase genetic diversity of a plant species, the optimal outcrossing distance is the dispersal distance at which seed production is maximized. It is less than the mean pollen dispersal distance.
Plant height matters more than seed mass for its dispersal distance. Unusual way of wind dispersal include tumbleweeds.
Pollen from Pinus sylvestris can fly 100 km , but oceanic larvae dispersal is at least one order of magnitude greater than that of pollen-dispersing terrestrial biotas.

- Long-distance dispersal

Long-distance dispersal (or $L D D$) refers to the rare events of biological dispersal on distances an order of magnitude greater than the median dispersal distance. For the regional survival of some plants, LDD is more important than local (median-distance) dispersal. The longest recorded distance traveled by a drift seed is $28,000 \mathrm{~km}$ by a Mary's bean from the Marshall Islands to Norway.
LDD emerged in Biogeography as greater factor of biodiversity and species migration patterns than original vicarience theory (dispersal via land bridges) based on continental drift. Such relatively recent chance dispersal explain the fast spread of organisms in new habitats, for example, plant pathogens, invasive species and in paleocolonization events, such as the joining of North and South America 3 Ma ago, or Africa and India with Eurasia 30 and 50 Ma ago.
Human colonization of Madagascar (isolated for 88 Ma) $\approx 2,000$ years ago may have resulted from an accidental transoceanic crossing; other animals arrived by rafting from Africa 60-70 Ma ago. LDD followed traders and explorers, especially, in Columbian Exchange after 1492.
Transoceanic LDD by wind/water currents can explain strong floristic similarities among landmasses in the southern hemisphere. Monkey, rodents, and crocodiles dispersed 50-30 Ma ago to the Americas from Africa via the Atlantic. New fossil primates found in 2012 suggest that anthropoid ancestors originated in Asia and then 40 Ma ago or earlier rafted across the ocean to Africa.
Free-living microbes occupy every niche but their biodiversity is low, because they are carried by wind thousands of km on dust particles protecting them from UV. Extreme example of such (or via underground rivers, before the continents split) LDD: sunlight-independent bacterium Desulforudis audaxviator, living 13.3 km deep in South Africa (the only species known to be alone in its ecosystem and radiation-relying), reached deep boreholes in eastern California.
Some other LDD vehicles are: rafting by water (corals can traverse $40,000 \mathrm{~km}$ during their lifetime), migrating birds, human transport, ship ballast water, and extreme climatic events. Snails can travel hundreds of km inside bird guts: $1-$ 10% of eaten snails survive up to 5 h until being ejected in bird feces.
Also, cancer invasion (spread from primary tumors invading new tissues) can be thought as an invasive species spread via LDD, followed by localized dispersal.

The most invasive mammal species (besides humans) are: rabbits, black rats, gray squirrels, goats, pigs, deers, mice, cats, red foxes, mongooses. Invasive Argentine ants form the largest global insect mega-colony: they do not attack each other.

- Migration distance (in Biogeography)

Migration distance is the distance between regular breeding and foraging areas within seasonal large-scale return movement of birds, fish, insects, turtles, seals, etc.
The longest such recorded round-trip is $71,000 \mathrm{~km}$ pole-to-pole traveled each year by the Arctic tern. The highest migration altitude is 9 km by bar-headed goose. Longest each way migration for a mammal is $\approx 9,800 \mathrm{~km}$, traveled by a humpback whale from the Brazilian coast to Madagascar, and, for an insect, $\approx 4,500 \mathrm{~km}$ by desert locust and Monarch butterfly. One of unsolved problems in Biology is: how do the descendants of Monarch butterfly, migrating from Canada to central Mexico for several generations, manage to return to a few small overwintering spots?
Migration differs from ranging, i.e., the movement of an animal beyond its home range which ceases when a suitable new home range (a resource: food, mates, shelter) is found. It differs also from foraging/commuting as occurs, say, for albatrosses or plankton. Wandering albatrosses, having the largest (3.63 m) wingspan, make several-days foraging round trips of up to $3,000 \mathrm{~km}$. Krill, 1-2 cm long, move up to 500 m vertically each night, to feed in the sunlit waters, where plants are abundant, while avoiding being seen by predators. Mesopelagic (living $0.2-1 \mathrm{~km}$ deep) fish also travel to upper layers at night.

At the population level, migration involves displacement, while ranging/foraging result only in mixing. Entire species migrate slowly by shifting, because of rapid climate change, their geographical or elevation ranges. Root et al., 2003, claim that butterflies, birds and plants move towards the poles by 6.1 km per decade over the past 100 years. Estimated global mean velocities of change for mean annual temperature and rainfall from 2000 to 2100 are 420 and 220 m per year. During ice ages species move to hotspots, say, volcanoes.

- Daily distance traveled

Daily distance traveled D ($\mathrm{m} /$ day) is an important parameter of the energy budget of ranging/foraging mammals.
The foraging efficiency is the ratio $\frac{B}{C}$, where $C, B(\mathrm{~J} / \mathrm{m})$ are the energy costs of travel and of acquiring energy. Over a day, the expected total net energy return is $D(B-C)$. The locomotor cost is the distance traveled per unit energy spent on locomotion. The limb length determines this cost in terrestrial animals but no link with D has been observed. Pontzer, 2011, explains this paradox by high $\frac{B}{C}$ in most taxa: only for $\frac{B}{C}<10$, would selection for limb length be needed.
Within species, over a lifetime, increased D is associated with decreased $B-$ C, reproductive effort and maintenance. But among species, over evolutionary time, it is associated with a greater number of offspring and their total mass per lifetime.

The mean D traveled by carnivores is four times such distance by herbivores. Also, D and feeding/grooming time are much greater in larger groups of primates. Foraging radius, D and annual travel distance of Neanderthal was $\approx 75 \%$ of that of humans.

- Collective motion of organisms

Organisms aggregate to procure resources (pack-hunting), to find mates (plankton, plants) and to lower predation risk (meerkats, schools of sardines, flocks of starlings). Animals moving in large groups at the same speed and in the same direction, tend to have similar size and to be regularly spaced.
The near-constant distance which an animal maintains from its immediate neighbors is called the nearest-neighbor distance (NDD). When NDD decreases, the mode of movement can change: marching locusts align, ants build bridges, etc.
Moving in file when perception is limited to one individual (ants, caterpillars in processions up to 300 , spiny lobsters in parallel chains of $3-30$), animals use tactile cues or just perceive and follow the choice of the preceding individual, such as sheep in mountain path or cows in cattle-handling facilities. Penguins in the huddle move ("traveling wave", like the stop-and-go of cars in a traffic jam) trigger movements in their neighbors as soon as the threshold distance ($\approx 2 \mathrm{~cm}$, i.e., twice the thickness of their compressive feather layer) is formed between two penguins.
The greatest recorded group of moving animals was a swarm in US, 1875, by 12.5 trillion insects (Rocky Mountain locust, extinct by now) covering $510,000 \mathrm{~km}^{2}$. A swarm by extant desert locusts in Kenya, 1954, covered $200 \mathrm{~km}^{2}$. Flights of migratory pest insects occur usually at altitudes up to 1 km , and are downwind; they last for a few hours with displacement up to 400 km . Flocks of red-billed Quelea (the most abundant wild bird species) take up to 5 h to fly past. Herring schools occupy up to $4.8 \mathrm{~km}^{3}$ with density $0.5-1.0$ fish per m^{3}.
Schools of sardines, anchovy and krill, despite being variable in size, share a ratio $\frac{S}{V}=3.3 \mathrm{~m}^{-1}$ of surface area to volume; it has been interpreted as the optimal trade-off between predator avoidance and resource acquisition.
The spatiotemporal movement patterns, emerging from such groups, result from interactions between individuals. This local mechanism can be allelomimesis ("do what your neighbor does"), social attraction (say, to the center of mass of neighbors), or the threat of cannibalism from behind (in running Mormon crickets), mass mate-searching (in burrow-dwelling crabs). Vicsek, 1995, modelled a swarm as a collection of particles moving with a constant speed but adopting, if perturbation, at each time increment the average motion's direction of the neighbors.
Migrating birds tend to fly in a V, J, or W shaped formation. In energy-saving Vformation (or skein), they sync their flapping to hook the former bird's updraft. The birds flying at the front and the tips are rotated.
Most spectacular are aerial displays of flocks of starlings highly variable in shape. Scale-free behavioral correlation was observed: regardless of flock size, the correlations of a bird's orientation and velocity with the other birds did not vary and was near-instantaneous. Cf. SOC in scale invariance (Chap. 18).

Silverberg et al., 2013, discovered self-organized emergent behavior in moshing (when 100-100,000 fans at heavy metal concert form circles and then run together with abandon, bouncing off one another). In fact, the speed distribution of people closely matches that of molecules in a 2 D gas at equilibrium and moshing corresponds to domination of the model's parameters by noise.
Such emerging, when their number increases, collective behavior can be seen as a critical phase transition; it was observed also for simple automatons.
Besides animals, collective directed motion occurs also in cellular populations. Some aggregated bacterial populations (say, foraging swarms of billions of Paenibacillus vortex) can migrate rapidly and coordinately over a surface. A grex is an slug-like aggregate $2-4 \mathrm{~mm}$ long of up to 100,000 amoebas formed when they are under stress. It moves as a unit, only forward, $1 \mathrm{~mm} / \mathrm{h}$.
In a multicellular organism, collective cell migration occurs (usually by chemotaxis: response to chemical concentration) throughout embryonic development, wound healing (fibroplasts and epithelial cells), immune response (leukocytes), and cancerous tumor invasion. Similarly to migration of songbirds, cancerous cells prepare for metastatic travel by gathering proteins near their leading edges. During development, some cells migrate to very long distances. For example, newborn neurons in the adult brain can traverse $\frac{2}{3}$ of its length.

- Distances in Animal Behavior

The first such distance was derived by Hediger for zoos; his interanimal distance is the maximum species-specific distance at which conspecifics approach each other. In 1955, he defined flight distance (run boundary), critical distance (attack boundary), personal distance (at which members of noncontact species feel comfortable) and social distance (at which within-species groups tolerate each other).
The exact such distances are highly context dependent. An example: a tamer manipulate a semi-tamed lion moving in and out of its critical zone.
For humans, flight and critical distances have been, with few exceptions, eliminated. So, Hall adapted above space boundaries; cf. his distances between people in Chap. 28. The main distances in Animal Behavior follow.
The individual distance: the distance which an animal attempts to maintain between itself and other animals. It ranges between "proximity" and "far apart" (for example, $\leq 8 \mathrm{~m}$ and $\geq 61 \mathrm{~m}$ in elephant social calls). Bell et al., 2012, found that gaining and maintaining a preferred interanimal distance, accounts for much of the variability in dodging by rats and field crickets.
The group distance: the distance which a group of animals attempts to maintain between it and other groups. Cf. the nearest-neighbor distance.
The alert distance: the distance from the disturbance source (say, a predator or a dominating conspecific) when the animal changes its behavior (say, turns towards as perception advertisement) in response to an approaching threat.
The flight initiation distance (or FID, escape distance): the distance from the disturbing stimulus when escape begins. FID, corrected for the distance to refuge, is a measure of animal's boldness.

The reaction distance: the distance at which the animal reacts to the appearance of prey; catching distance: the distance at which the predator can strike a prey.
The detection distance: the maximal distance from the observer at which the individual or cluster of them is seen or heard. For example, it is $2,000 \mathrm{~m}$ for an eagle searching for displaying sage-grouse, 200 m for a male-searching female sage-grouse and $1,450 \mathrm{~m}$ for a sage-grouse scanning for a flying eagle.
The social recognition distance: the distance over which a contact call can be identified as belonging to a family.
In the main nonresource-based mating system, lek mating, females in estrous visit a congregation of displaying males, the lek and mate preferentially with males of higher lekking distance rank, i.e., relative distance from male territory (the median of his positions) to the center of the lek. High-ranking individuals have smaller, centrally located (so, less far to travel and more secure) home ranges.
The sleeping distance of a mating pair: for example, it is no further than 0.5 m in Arctic blue fox, but more than $2-2.5 \mathrm{~m}$ one month after copulation.
The distance-to-shore: the distance to the coastline used to study clustering of whale strandings (by distorted echo-location, anomalies of magnetic field, etc.). The gape distance: the width of the widely opened mouth of a vertebrate.

- Animal depth/distance perception

Many animals, including humans, have two eyes with overlapping visual fields that use parallax (cf. parallax distance in Chap. 26) for depth perception and distance estimation. Some animals (for example, pigeons) use motion parallax in which they move head to gain different viewpoints. Another example: the velocity of the mantis's head movement is kept constant during peering. So, the distance to the target (prey) is inversely proportional to the velocity of the retinal image.
All animals have a binocular region (growing as eyes become more forwardfacing) which allows for vision through the clutter, as long as the width of the objects causing clutter is less than the interpupillary distance d.
Changizi-Shimojo, 2008, suggested that the degree of binocular convergence is selected to maximize how much the animal can see. Most animals exist in noncluttered environments or surroundings where the cluttering objects are bigger in size than d. They tend to have sideways-facing eyes allowing panoramic vision. But humans and other large mammals evolved in leafy environments like forests and their forward-facing eyes (and smaller distance d) maximize ability to see. Larvae of the sunburst diving beetle (Thermonectus marmoratus) have 6 pairs of eyes. Four eyes of two frontal pairs (used to scan potential prey) have bifocal lenses and at least two 1D-retinas: distant and close-up. The two focused images produced by the lens sit at different distances and vertically separated.

- Distance-related animal settings

Spatial fidelity zones specific to individuals (say, at a given distance from a colony center, or within a particular zone of the total foraging area) have been observed for some social insect species, molluscan communities, birds, etc.
Home range is the area where an animal (or a group) lives and travels within. Within it, the area of intensive and exclusive use by resident animals is the core
area. The distance between range centroids of two individuals (or groups) is a parameter used in studies of spatially based animal social systems. Cf. dispersal distance.
An animal is territorial if it consistently occupies, marks and defends a territory, i.e., an area with a focused resource (say, a nest, den, mating site or sufficient food resources). Territories are held by an individual, a mated pair, or a group. An extraterritorial foray is the movement of a territorial animal into a conspecific's territory. Dear enemy recognition is the stronger response of a territorial animal to strangers than to its neighbors from adjacent territories.
The defense region is the region that a male must defend in a mating competition to monopolize a female. It can be 1D (burrow, tunnel), 2D (dry land), bounded 3D (tree, coral reef), or open 3D (air, water). Puts, 2010, claims that 1D and 2D (as for humans) mating environments favor the evolution of contests.
The reliability of a threat display in animal contests is maintained by the proximity risk, i.e., the display is credible only within a certain distance of the opponent. This threshold distance is related to weaponry and the species-specific fighting technique. Here, greater formidability and dominance can be reached solely behaviorally; for example, an elephant's musth status overrides its body size and tusks.
The landscape of fear of a foraging animal is defined by the spatial variation of presumed predation risk. Its horizontal and vertical components correspond to terrestrial and aerial predators. It include clearness of sightlines (to spot predators), shrubs/trees/edge cover and the interplay of the distances to food and shelter. For example, small fish stay close to the coral reef when grazing seaweed; this creates "grazing halos" of bare sand, visible from space, around all reefs. Similar natural features are "fairy rings" of green eelgrass (up to $1,500 \mathrm{~m}$ in width, off Denmark's coast), of mushrooms (10-600 m) and of barren sand (2-15 m, in Africa).
The domain of danger (DOD, or Voronoi polygon, cf. Chap. 20) of an animal, risking predation, in aggregation is the area closer to it than to any other group member. Selfish herd theory (Hamilton, 1971) posits that a cover-seeking dominant animal tends to minimize its DOD by occupying the center, thus reducing its risk by placing another individual between itself and a predator or parasite. Moreover, some fish bite a group member, when exposed to a searching predator.
During traveling, dominant animals are closer to the front of the herd. During foraging, their trajectories are shorter, more direct and more aligned both with their nearest neighbors and with the whole herd.
Distance senses include sight, hearing, and smell (they can be in stereo), while contact senses include taste, the senses of pressure, thermoception, and internal senses include the sense of balance and muscle stretch. The buzzard can see small rodents from a height of 4.6 km . The spotted hyena hears noises from predators feeding on carcasses over distances of up to 10 km . The silkmoth detects pheromones up to 11 km distant. The grizzly bear smells food from up to 29 km away.

An example of unexplained distance prediction by animals is given (Vannini et al., 2008) by snails Cerithidea decollata migrating up and down mangrove shores in synchrony with tidal phases. In the absence of visual cues and chemical marks, snails cluster just above the high water line, and the distance from the ground correlates better with the incoming tide level than with previous ones.
Ants initially wander randomly and upon finding food return to their colony while laying down pheromone trails. So, when one ant finds a shortest path to a food source, other (and eventually all) ants are likely to follow it. Inspired by this idea, the ant colony optimization algorithm (ACO) is a probabilistic technique for finding shortest paths through graphs; cf. arc routing problems in Chap. 15. Also, ants routinely find the maximal distance from all entrances to dispose of dead bodies.
The distance effect avoidance is the observed selection of some good distant source of interest over a poor but nearer one in the same direction. For example, females at a chorusing lek of anurians or arthropods may use the lower pitch of a bigger or better distant male's call to select it over a weaker but louder call nearby. High-quality males help them by timing their calls to precede or follow those of inferior males. Ant colonies can (Franks et al., 2007) select a good distant nest over a poorer one in the way, even when it is 9 times closer. Ants compensate for the distance effect by increasing recruitment latencies and quorum thresholds at nearby poor nests.
In land locomotion, animals crawl, walk, run, hop, climb or crawl, slither, undulate. In fluids (water, air) animals swim and fly by beating flagella, tails, wings, undulating their bodies, or actuating pumps. Some animals can switch the medium. Fish Exocoetidae can spend 45 s in flight gliding up to 200 m at altitudes of up to 6 m ; using waves, it can span distances up to 400 m . Some squids fly in shoals covering up to 50 m at 6 m above the water. Squirrels Petauristinae, snakes Chrysopelea and lemurs Dermoptera can glide with small loss of height up to 200, 100 and 70 m , respectively. The deepest dive for a flying bird is 210 m by a thick-billed murre.
Flying and swimming animals can move through volumes with six degrees of freedom: three translational (left/right, forwards/backwards, up/down) and three rotational (pitch, roll, yaw). Surface-constrained animals have only three degrees: left/right, forwards/backwards and yaw; moving in 3D, they have higher place field resolution in the horizontal plane and showed a preference for movement in the horizontal. In terms the number of body lengths per second, a mite Paratarsotomus macropalpis is the fastest known running animal; cf. its 322 body lengths with 16 for the cheetah.
Navigating animals use an egocentric orientation mechanism and simple panoramic views, within which proximal objects dominate because their image on the retina change significantly with displacement. Animals rely on the spatial arrangement of the objects/landmarks across the scene rather than on their individual identification and geometric cues. Humans and, perhaps, chimpanzees and capuchin monkeys, possess, in addition, an allocentric reference system, centered on objects/features of the environment, and a more flexible geometric
representation of space, with true distance and direction, i.e., closer to an abstract mental map.
Gaze monitoring and pointing: four great apes, canids and ravens follow another's head and eye orientation into distant space, even behind an obstacle. Moreover, bonobos and chimpanzees take barrier opacity into consideration. African elephants can use communicative intent of human pointing as a cue to find food. Horses can use their facial expressions (direction of eyes and ears) to "talk" to other horses.
Great apes, dolphins, elephants and magpies recognise themselves in mirrors. Metacognition (cognitive self-awareness) was found in great apes, dolphins and rhesus monkeys. A basic Theory of Mind (ability to attribute mental states), mental time travel, meta-tool use and empathy are expected in primates and corvides. Mammals, birds and octopuses possess neurological substrates generating consciousness. Chimpanzees are the only known non-human animals with a system of intentional communication. But shared intentionality and cumulative culture seems to be uniquely human.

- Animal communication

Only humans, songbirds, hummingbirds, parrots, cetaceans and bats have complex, learned vocalisation. Conceptual generalizations (bottlenose dolphins can transmit up to 9 km identity information independent of the caller's voice/location), syntax (alarm calls of some monkeys and songs of Bengal finches are built as "word sequences") and meta-communication ("play face" and tail-to-the-right signals in dogs that the subsequent aggressive signal is a play) have been observed.
Matters of relevance at a distance (a distant food source or shelter) can be communicated by body language. For example, honeybees dancing convey the polar coordinates (distance D to the goal and angle between the direction towards it and to that of the Sun's azimuth) of locations of interest. The mean number of waggings of bee's waggle phases increases with D. Also, wolves, before a hunt, howl to rally the pack, become tense and have their tails pointing straight. Dogs express their spatial needs by body language and vocalizations. Stiffness, pilorection, aggressive barking/lunging are distance-increasing, while play bow, tail wagging to the right, "positive" barking/lunging are distance-decreasing signals.
A distance pheromone is a soluble (for example, in the urine) and/or evaporable substance emitted by an animal, as a chemosensory cue, in order to send a message (on alarm, sex, food trail, recognition, etc.) to other members of the same species. In contrast, a contact pheromone is such an insoluble nonevaporable substance; it coats the animal's body and is a contact cue. The action radius of a distance pheromone is its attraction (or repulsion) range, the maximum distance over which animals can be shown to direct their movement to (or from) a source. In species, such as carnivores occurring at low densities or having large home ranges, individuals are widely spaced and communicate via chemical broadcast signaling at latrines, i.e., collections of scent marks (feces, urine or glandular secretions), or via visually conspicuous landmarks of the boundary such as
scratches and middens. Herrings communicate by farting. Shelter-dwelling caterpillars ballistically eject faecal pellets great distances (7-39 times their body length) at great speeds, in order to remove olfactory chemical cues for natural enemies.
The communication distance is the maximal distance at which the receiver can still get the signal. Animals can vary the signal amplitude and visual display with receiver distance in order to ensure signal transmission.
For example, baleen whales have been observed calling more loudly to each other in order to compensate for human-generated noise in modern oceans.
Another example of distance-dependent communication is the protective coloration of some aposematic animals: it switches from conspicuousness (signaling nonedibility) to crypsis (camouflage) with increasing distance from a predator. Examples of interspecies communication of nonhuman animals, other than predator-prey signaling, are: eavesdropping, heterospecific alarm calls and cooperative hunting.
The main modes of animal communication are infrasound ($<20 \mathrm{~Hz}$), sound, ultrasound ($>20 \mathrm{kHz}$), vision (light), chemical (odor), tactile, seismic and electrical. Infrasound, low-pitched sound (as territorial calls) and light in air can be long-distance. Some frogs, spiders, insects, small mammals have vibrotactile sense.
A blue whale infrasound could (prior to noise pollution caused by ships) travel over $6,000 \mathrm{~km}$ through the ocean water using the SOFAR channel (Chap. 25).
Most elephant communication is in the form of infrasonic rumbles which may be heard by conspecifics $5-10 \mathrm{~km}$ away. Also, they drum their soles on the ground, and resulting seismic waves can be detected as far as $16-32 \mathrm{~km}$.
Many animals hear infrasound generated by earthquakes, tsunami and hurricanes before they strike. Elephants can hear storms 160-240 km away.
High-frequency sounds attenuate more rapidly with distance, more directional and vulnerable to scattering. But ultrasounds are used by bats (echo-location) and arthropods. Rodents use them to communicate to nearby receivers without alerting predators and competitors. Some anurans shift to ultrasound signals in the presence of continuous background noise (such as waterfall, human traffic). Animals, including frogs, insects, birds and whales, increase the minimum frequency, amplitude or signal-to-noise ratio (Chap.21) in the presence of antropogenic noise.

- Plant long-distance communication

Long-distance signaling was observed from roots and mature leaves, exposed to an environmental stress, to newly developing leaves of a higher plant.
This communication is done cell-to-cell through the plant vascular transpiration system. In this system, macromolecules (except for water, ions and hormones) carry nutrients and signals, via phloem and xylem tissues, only in one direction: from lower mature regions to shoots. The identity of long-distance signals in plants is still unknown but the existence of information macromolecules is expected. Large-scale RNA-based communication between a parasitic plant and its host was found.

Besides the above vascular signaling, plants communicate chemically with each other or with mutualistic animals (pollinators, bodyguards, etc.). For example, plants respond to attack by herbivores or pathogens with the release of volatile compounds, informing neighboring plants and attracting predators of attackers.
Some 80% of plants are colonized by ectosymbiotic fungi that form a network of fine white threads, mycorrhizae, which take in water and minerals from the soil, and hand some over to the plant in exchange for nutrients. A mycorrhizal network can take over an entire forest and tie together plants of different species. Plants use this network as a signaling and kin (or host) detection system too. They assist neighbors or kin in deterring pests, attracting pollinators and nutrient uptake.

- Internodal distance

A node on a plant stem is a joint where a leaf is attached. The internodal distance (or internode length) is the distance between two consecutive nodes.
A ramet is an independent member of a clone. The interramet distance (or propagule dispersal distance) is the internodal distance in plant clonal species.

- Insecticide distance effect

The main means of pest (termites, ants, etc.) control are chemical liquid insecticides and repellents. The efficiency of an insecticide can be measured by its all dead distance, i.e., the maximum distance from the standard toxicant source within which no targeted insects are found alive after a fixed period.
The insecticide distance effect is that the toxicant is spread through the colony because insects groom and feed each other. The toxicant should act slowly in order to maximize this effect and minimize secondary repellency created by the presence of dying, dead and decaying insects. Nearly all animals, when they die, emit the same stench of fatty acids which acts as repellent and it is universal.

- Body size rules

Body size, measured as mass or length, is one of the most important traits of an organism. Food webs, describing "who eat whom" (cf. trophic distance), are nearly interval, i.e., the species can be ordered so that almost all the resources of each consumer are adjacent in the order. Zook et al., 2011, found that ordering by body size is the best proxy to produce this near-interval ordering.
The lower limit (10 kg and 2 g) to body size is set by the size of offspring for marine and by energetic limitations for terrestrial mammals. The largest known sizes for them are 190 and 16 t , but the upper limit is still unclear,
According to Payne et al., 2008, the maximum size of the Earth's organisms increased by 16 orders of magnitude over the last 3.5 billion years. Seventy-five percent of the increase happened in two great leaps (about 1,900 and 600-400 Ma ago: the appearance of eukaryotic cells and multi-cellularity) due to leaps in the oxygen level, and each time it increased about million times.
Smith et al., 2010: the maximum size of mammals increased (from 2 g to 190 t) near-exponentially after the $\mathrm{C}-\mathrm{T}$ (Cretaceous-Paleogene) extinction of the nonavian dinosaurs 65.5 Ma ago; on each continent, it leveled off within 25 Ma . Kurbel, 2013, claims that after this $\mathrm{C}-\mathrm{T}$ event, homeothermic animals (mammals and birds) radiated globally from northern Asia and became dominant.

The maximum size of insects also followed O_{2} level 350-150 Ma ago, reaching 71 cm . Then it dropped (while O_{2} went up) with evolution of birds and 65 Ma ago with their specialization and evolution of bats. Larsson-Dececchi, 2013, explain the origin of birds by a change of body-to-limb length ratio in Maniraptoran dinosaurs: the hind legs shrank, while for elimbs got long enough to work as an airfoil. From 230-220 to 163 Ma ago, theropods shrinked ($\approx 0.5 \%$ of mass) to first birds.
Evans et al., 2012, claim that an increase in size (100, 1000, 5000 times) of land and marine mammals took $1.6,5.1,10$ and $1,1.3,5$ million generations, respectively. Mouse-sized mammals evolved into elephant-sized ones during 24 million generations, but decreasing in size occurred about 30 times faster.
Clauset and Erwin, 2008: 60 Ma of mammalian body size evolution can be explained by simple diffusion model of a trade-off between the short-term selective advantages (Cope's rule, common among mammals: a slight withinlineage drift toward larger masses) and long-term selective risks of increased size. The size has costs as well as benefits; for example, reversals to unicellularity occurred at least five times in cyanobacteria. It favors the individual but renders the clade more susceptible to extinction via, for example, dietary specialization. Large size enhances reproductive success, the ability to avoid predators and capture prey, and improves thermal efficiency. In large carnivores, bigger species dominate better over smaller competitors. Predator-prey mass ratio is typically around 10 . But, for example, cookiecutter shark, only $0.5-1 \mathrm{~m}$ in length, preys on all larger animals in ocean, and the larvae of beetle Epomis preys on amphibians. By mean body size (67 kg now and 50 kg in the Stone Age) humans are a small megafauna $(\geq 44 \mathrm{~kg})$ species. A rapid average decline of $\approx 20 \%$ in size-related traits was observed in human-harvested species. One of main human effects on nature is the decline of the apex consumers (top predators and large plant eaters). Given below are the other main rules of large-scale Ecology involving body size. Foster's (or island) rule is a principle that members of a species get smaller or bigger depending on the resources available in the environment. Damuth, 1993: there is an optimum mammal body size $\approx 1 \mathrm{~kg}$ for energy acquisition, and so island species should, in the absence of the usual competitors and predators, evolve to it.
Insular dwarfism is an evolutionary trend of the reduction in size of large mammals when their gene pool is limited to a very small environment (say, islands). One explanation is that food decline activates processes where only the smaller of the animals survive since they need fewer resources and reproduce faster.
Island gigantism is a form of natural selection where the size of animals isolated on an island increases dramatically over generations due the removal of constraints.
Abyssal gigantism is a tendency of deep-sea species to be larger than their shallow-water counterparts. For example, the colossal squid and the king-ofherrings (giant oarfish) can reach 14 and 17 m in length. It can be adaptation for scarcer food resources (delaying sexual maturity results in greater size), greater pressure and lower temperature.

The ratio $\frac{S}{V}$ (surface area to volume) is the main compactness measure for 3D shapes in Biology. Higher $\frac{S}{V}$ permits smaller cells to gather nutrients and reproduce very rapidly. Also, smaller animals in hot and dry climates lose heat better through the skin and cool the body. But lower $\frac{S}{V}$ (and so, larger size) improves temperature control: slower heat loss or gain. Bergmann's rule is a principle that, within a species, the body size increases with colder climate. For example, Northern Europeans on average are taller than Southern ones.
Also, $1{ }^{\circ} \mathrm{C}$ of warming reduces the adult body mass of cold-blooded organisms by 2.5% on average. For warm-blooded animals, Allen's rule holds: those from colder climates have shorter limbs than the equivalent ones from warmer climates.
Rensch's rule is that males are the larger sex in big-bodied species (such as humans) and the smaller sex in small-bodied species (such as spiders). It holds for plants also. Often, natural selection on females to maximize fecundity results in female-biased sexual size dimorphism, whereas sexual selection for large males promotes male-biased dimorphism. The males in some cichlid fish are up to 60 times larger than that of the females, while tremoctopus females may reach 2 m versus the males, at most a few cm long.
Size-assortative mating (positive correlation between male and female size among couples) has been found in crustaceans, insects, birds, reptiles, fishes and humans, for which it is a part of homophily (tendency to associate and bond with similar others). Humans have by far the largest, among apes, penises and breasts. An allometric law is a relation between the size of an organism and the size of any of its parts or attributes; say, eye, brain and body sizes are closely correlated in vertebrates. Examples of related power laws are, in terms of animal's body mass M (or, assuming constant density of biomass, of body size) are proportionalities of metabolic rate to $M^{0.75}$ (Kleiber's law) and of life span to $M^{0.25}$. Niklas-Enquist, 2001, proposed length-biomass scaling to $M^{0.25}$ for primary producers. Muller et al., 2013, claim that animal's dry matter intake (in kg per day) is $0.026 M^{0.885}$.
A cellular organism (for example, bacteria) of linear size S has, roughly, internal metabolic activity proportional to cell volume (so, to S^{3}) and flux of nutrient and energy dissipation proportional to cell envelope area (so, to S^{2}). Hence, this size S is close to their ratio. For viral particles, there is no metabolism, and their size is, roughly, proportional to the 3rd root of the genome size.
Cognitive and behavioral capacities do not correlate either with body or brain size, nor with their ratio, which is, say, $\frac{1}{7}, \frac{1}{40}, \frac{1}{2496}$ for small $(0.06 \mathrm{mg})$ ant, human and shark. The encephalization quotient is the ratio of actual to predicted brain mass for a given size animal; it is the record 7.4-7.8 for humans. The number of neurons is $302,85 \times 10^{9}, 2 \times 10^{11}$ in a nematode, human and elephant. Fish with smaller brain have more offspring. Echinoderms (say, starfish) lack a brain entirely.
Bromage et al., 2012, found a strong correlation between body mass and RI (repeat interval), i.e., the number of days between adjacent striae of Retzius in primate's enamel. RI is also represented by the lamellae (increments in bone). RI
is an integer within $[1,11]$; the mean RI is $8-9$ in humans. $\mathrm{RI}(>1)$ also correlates with all metabolic rates and common life history traits except estrous cyclicity.

- Size spectrum

The term size spectrum is used generally when comparing objects of a given class, say, shoes or phones. But mainly, it is (Sheldon-Parsons, 1967) the relationship between body size of individuals and their abundance or biomass, regardless of their species, in a given (aquatic or soil) size-based food web.
For a population, the main considered sizes (lengths or masses) are: maximal, asymptotic (which individuals would reach if they were to grow indefnitely), of maximal yield (with highest biomass) and average in maturity. Example of corresponding size-spectrum models: Andersen and Beyer, 2006, derived proportionality of the number of individuals of given species and size to their asymptotic size raised to the power -2.05 .

- Trophic distance

Given an ecosystem, its ecological network is a digraph in which species are (biomass- or abundance-weighted) vertices with two of them being connected by arc or edge if there is a trophic or, respectively, symbiotic interaction. A community food web (or ecological pyramid) is a such digraph with only trophic arcs.
The trophic distance from resource u to consumer v is the length of a shortest food chain (directed $(u-v)$ path) if it exists,
The trophic level of a vertex v is 1 if it is a primary resource (usually, producer as plants, algae, phytoplankton) and 1 plus the trophic level of its principal diet, otherwise. The fractional tropic level of v is (Pauly-Palomares, 2005) 1 plus the weighted average (using stomach contents) trophic level of all its food items.
The mean trophic level for fishery overall catch should be preserved to avoid fishing down the food web, when fisheries in a given ecosystem deplete the large predatory fish and end up with small fish and invertebrates.
In a size-based food web, the layers are defined by body-size class rather than by trophic level. Community-based predator-prey body mass ratios (PPMR) and transfer efficiency (TE) are key parameters in such webs. In marine food webs, typically, $\mathrm{PPMR} \in[100,3000]$ and $\mathrm{TE} \in[0.1,0.13]$, i.e., $10-13 \%$ of prey biomass is converted into predator production.
An energy and functional food webs are weighted digraphs where arcs correspond to energy flow and interaction strength. Consumers at each level convert to tissue about 10% of their food's chemical energy.

23.4 Other Biological Distances

Here we collect the main examples of other notions of distance and distance-related models used in Biology.

- Immunologic distance

An antigen (or immunogen, pathogen) is any molecule eliciting an immune response. Once it gets into the body, the immune system either neutralizes its
pathogenic effect or destroys the infected cells. The most important cells in this response are white blood cells: T-cells and B-cells responsible for the production and secretion of antibodies (specific proteins that bind to the antigen).
When an antibody strongly matches an antigen, the corresponding B-cell is stimulated to divide, produce clones of itself that then produce more antibodies, and then differentiate into a plasma or memory cell. A secreted antibody binds to an antigen, and antigen-antibody complexes are removed.
A mammal (usually a rabbit) when injected with an antigen will produce immunoglobulins (antibodies) specific for this antigen. Then antiserum (blood serum containing antibodies) is purified from the mammal's serum. The produced antiserum is used to pass on passive immunity to many diseases.
Immunological distance procedures (immunodiffusion and, the mainly used now, micro-complement fixation) measure the relative strengths of the immunological responses to antigens from different taxa. This strength is dependent upon the similarity of the proteins, and the dissimilarity of the proteins is related to the evolutionary distance between the taxa concerned.
The index of dissimilarity $i d(x, y)$ between two taxa x and y is the factor $\frac{r(x, x)}{r(x, y)}$ by which the heterologous (reacting with an antibody not induced by it) antigen concentration must be raised to produce a reaction as strong as that to the homologous (reacting with its specific antibody) antigen.
The immunological distance between two taxa is given by

$$
100(\log i d(x, y)+\log i d(y, x))
$$

It can be 0 for two closely related species. It is not symmetric in general.
Earlier immunodiffusion procedures compared the amount of precipitate when heterologous bloods were added in similar amounts as homologous ones, or compared with the highest dilution giving a positive reaction.
The name of the applied antigen (target protein) can be used to specify immunological distance, say, albumin, transferring lysozyme distances. Proponents of the molecular clock hypothesis estimate that one unit of albumin distance between two taxa corresponds to $\approx 0.54 \mathrm{Ma}$ of their divergence time, and that one unit of Nei standard genetic distance corresponds to 18-20 Ma.
Adams and Boots, 2006, call the immunological distance between two immunologically similar pathogen strains (actually, serotypes of dengue virus) their cross-immunity, i.e., 1 minus the probability that primary infection with one strain prevents secondary infection with the other. Lee and Chen, 2004, define the antigenic distance between two influenza viruses to be the reciprocal of their antigenic relatedness which is (presented as a percentage) the geometric mean $\sqrt{\frac{r(x, y)}{r(x, x)} \frac{r(y, x)}{r(y, y)}}$ of two ratios between the heterologous and homologous antibody titers.
An antiserum titer is a measurement of concentration of antibodies found in a serum. Titers are expressed in their highest positive dilution.

- Metabolic distance

Enzymes are proteins that catalyze (increase the rates of) chemical reactions.
The metabolic distance (or pathway distance) between enzymes is the minimum number of metabolic steps separating two enzymes in the metabolic pathways.

- Pharmacological distance

The protein kinases are enzymes which transmit signals and control cells using transfer of phosphate groups from high-energy donor molecules to specific target proteins. So, many drug molecules (against cancer, inflammation, etc.) are kinase inhibitors (blockers). Designed drugs should be specific (say, not to bind to $\geq 95 \%$ of other proteins), in order to avoid toxic side-effects.
Given a set $\left\{a_{1}, \ldots, a_{n}\right\}$ of drugs in use, the affinity vector of kinase x is defined as $\left(-\ln B_{1}(x), \ldots,-\ln B_{n}(x)\right)$, where $B_{i}(x)$ is the binding constant for the reaction of x with drug a_{i}, and $B_{i}(x)=1$ if no interaction was observed. The binding constants are the average of several experiments where the concentration of binding kinase is measured at equilibrium. The pharmacological distance (Fabian et al., 2005) between kinases x and y is the Euclidean distance $\left(\sum_{i=1}^{n}\left(\ln B_{i}(x)-\ln B_{i}(y)\right)^{2}\right)^{\frac{1}{2}}$ between their affinity vectors.
The secondary structure of a protein is given by the hydrogen bonds between its residues. A dehydron in a solvable protein is a hydrogen bond which is solventaccessible. The dehydron matrix of kinase x with residue-set $\left\{R_{1}, \ldots, R_{m}\right\}$ is the $m \times m$ matrix $\left(\left(D_{i j}(x)\right)\right)$, where $D_{i j}(x)$ is 1 if residues R_{i} and R_{j} are paired by a dehydron, and is 0 , otherwise. The packing distance (Maddipati-Fernándes, 2006) between kinases x and y is the Hamming distance $\sum_{1 \leq i, j \leq m} \mid D_{i j}(x)-$ $D_{i j}(y) \mid$ between their dehydron matrices; cf. base pair distance among RNA structural distances. The environmental distance (Chen, Zhang and Fernándes, 2007) between kinases is a normalized variation of their packing distance.

Besides hydrogen bonding, residues in protein helices adopt backbone dihedral angles. So, the secondary structure of a protein much depends on its sequence of dihedral angles defining the backbone. Wang and Zheng, 2007, presented a variation of Lempel-Ziv distance between two such sequences.

- Global distance test

The secondary structures of proteins are mainly composed of the α-helices, β sheets and loops. Protein tertiary structure refers to the 3D structure of a single protein molecule. The α and β structures are folded into a compact globule.
The global distance test (GDT) is a measure of similarity between two (model and experimental) proteins x and y with identical primary structures (amino acid sequences) but different tertiary structures. GDT is calculated as the largest set of amino acid residues' α carbon atoms in x falling within a defined cutoff distance (cf. Chap. 29) d_{0} of their position y.
For proteins, in order for this set to define all intermolecular stabilizing (relevant short range) interactions, $d_{0}=0.5 \mathrm{~nm}$ is usually sufficient. Sometimes, $d_{0}=0.6$ nm , in order to include contacts acting through another atom.

- Migration distance (in Biomotility)

The migration (or penetration) distance, in cattle reproduction and human infertility diagnosis, is the distance in mm traveled by the vanguard spermatozoon during sperm displacement in vitro through a capillary tube filled with homologous cervical mucus or a gel mimicking it. Sperm swim $1-4 \mathrm{~mm} / \mathrm{min}$. 90% of human sperm swim forward with small side-to-side movements, while $\approx 5 \%$ swim in a faster-paced helical pattern and the remaining $\approx 5 \%$ swim in a hyper-helical manner, where the sperm are more active but less directional.
Such measurements, under different specifications (duration, temperature, etc.) of incubation, estimate the ability of spermatozoa to colonize the oviduct in vivo. In general, the term migration distance is used in biological measurements of directional motility using controlled migration; for example, determining the molecular weight of an unknown protein via its migration distance through a gel, or comparing the migration distance of mast cells in different peptide media.

- Penetration distance

The penetration distance is a general term used in (especially, biological) measurements for the distance from the given surface to the point where the concentration of the penetrating substance (say, a drug) in the medium (say, a tissue) had dropped to the given level. Several examples follow.
During penetration of a macromolecular drug into the tumor interstitium, tumor interstitial penetration is the distance that the drug carrier moved away from the source at a vascular surface; it is measured in 3D to the nearest vascular surface. During the intraperitoneal delivery of cisplatin and heat to tumor metastases in tissues adjacent to the peritoneal cavity, the penetration distance is the depth to which the drug diffuses directly from the cavity into tissues. Specifically, it is the distance beyond which such delivery is not preferable to intravenous delivery.
It can be the distance from the cavity surface into the tissues within which drug concentration is, for example, (a) greater, at a given time point, than that in control cells distant from the cavity, or (b) is much higher than in equivalent intravenous delivery, or (c) has a first peak approaching its plateau value within 1% deviation.
The penetration distance of a drug in the brain is the distance from the probe surface to the point where the concentration is roughly half its far field value.
The penetration distance of chemicals into wood is the distance between the point of application and the 5 mm cut section in which the contaminant concentration is at least 3% of the total.
The forest edge-effect penetration distance is the distance to the point where invertebrate abundance ceased to differ from forest interior abundance.
Cf. penetration depth distance in Chap. 9, penetration depth in Chap. 24 and distance sampling in Chap. 17.

- Capillary diffusion distance

One of the diffusion processes is osmosis, i.e., the net movement of water through a permeable membrane to a region of lower solvent potential. In the respiratory system (the alveoli of mammalian lungs), oxygen O_{2} diffuses into the blood and carbon dioxide CO_{2} diffuses out.

The capillary diffusion distance is, similarly to penetration distance, a general term used in biological measurements for the distance, from the capillary blood through the tissues to the mitochondria, to the point where the concentration of oxygen has dropped to the given low level.
This distance is measured as the average distance from the capillary wall to the mitochondria, or the distance between the closest capillary endothelial cell to the epidermis, or in percentage terms, say, the distance where a given percentage (95% for maximal, 50% for average) of the fiber area is served by a capillary.
Another practical example: the effective diffusion distance of nitric oxide NO in microcirculation in vivo is the distance within which N concentration is greater than the equilibrium dissociation constant of the target enzyme for oxide action. Cf. the immunological distance for immunodiffusion and, in Chap. 29, the diffusion tensor distance among distances in Medicine.

- Förster distance

FRET (fluorescence resonance energy transfer; Főrster, 1948) is a distancedependent quantum mechanical property of a fluorophore (molecule component causing its fluorescence) resulting in direct nonradiative energy transfer between the electronic excited states of two dye molecules, the donor fluorophore and a suitable acceptor fluorophore, via a dipole. In FRET microscopy, fluorescent proteins are used as noninvasive probes in living cells since they fuse genetically to proteins of interest.
The efficiency of FRET transfer depends on the square of the donor electric field magnitude, and this field decays as the inverse sixth power of the intermolecular separation (the physical donor-acceptor distance). The distance at which this energy transfer is 50% efficient, i.e., 50% of excited donors are deactivated by FRET, is called the Főrster distance of these two fluorophores.
Measurable FRET occurs only if the donor-acceptor distance is less than ≈ 10 nm , the mutual orientation of the molecules is favorable, and the spectral overlap of the donor emission with acceptor absorption is sufficient.

- Gendron-Lemieux-Major distance

The Gendron-Lemieux-Major distance (2001) between two base-base interactions, represented by 4×4 homogeneous transformation matrices X, Y, is

$$
\frac{S\left(X Y^{-1}\right)+S\left(X^{-1} Y\right)}{2}
$$

where $S(M)=\sqrt{l^{2}+(\theta / \alpha)^{2}}, l$ is the translation length, θ is the rotation angle, and α is a scaling factor between the translation and rotation contributions.

- Spike train distances

A human brain has 85×10^{9} neurons (nerve cells) each communicating with an average 1,000 other neurons dozens of times per second. Most neurons are capable of making $10^{4}-10^{6}$ individual microconnections. One human brain, using $\approx 10^{15}$ synapses, produces $\approx 6.4 \times 10^{18}$ nerve impulses per second.
The neuronal response to a stimulus is a continuous time series. It can be reduced, by a threshold criterion, to a simpler discrete series of spikes (short electrical
pulses). A spike train is a sequence $x=\left(t_{1}, \ldots, t_{s}\right)$ of s events (neuronal spikes, or heart beats, etc.) listing absolute spike times or interspike time intervals. The main distances between spike trains $x=x_{1}, \ldots, x_{m}$ and $y=y_{1}, \ldots, y_{n}$ follow.

1. The spike count distance is defined by

$$
\frac{|n-m|}{\max \{m, n\}}
$$

2. The firing rate distance is defined by

$$
\sum_{1 \leq i \leq s}\left(x_{i}^{\prime}-y_{i}^{\prime}\right)^{2}
$$

where $x^{\prime}=x_{1}^{\prime}, \ldots, x_{s}^{\prime}$ is the sequence of local firing rates of train $x=$ x_{1}, \ldots, x_{m} partitioned in s time intervals of length $T_{\text {rate }}$.
3. Let $\tau_{i j}=\frac{1}{2} \min \left\{x_{i+1}-x_{i}, x_{i}-x_{i-1}, y_{i+1}-y_{i}, y_{i}-y_{i-1}\right\}$ and $c(x \mid y)=$ $\sum_{i=1}^{m} \sum_{j=1}^{n} J_{i j}$, where $J_{i j}=1$ if $0<x_{i}-y_{i} \leq \tau_{i j}$, $=\frac{1}{2}$ if $x_{i}=y_{i}$ and $=0$, otherwise. The event synchronization distance (Quiroga et al., 2002) is defined by

$$
1-\frac{c(x \mid y)+c(y \mid x)}{\sqrt{m n}}
$$

4. Let $x_{i s i}(t)=\min \left\{x_{i}: x_{i}>t\right\}-\max \left\{x_{i}: x_{i}<t\right\}$ for $x_{1}<t<x_{m}$, let $I(t)=\frac{x_{i s i}(t)}{y_{i s i}(t)}-1$ if $x_{i s i}(t) \leq x_{i s i}(t)$ and $I(t)=1-\frac{y_{i s i}(t)}{x_{i s i s}(t)}$, otherwise. The time-weighted and spike-weighted ISI distances (Kreuz et al., 2007) are

$$
\int_{0}^{T}|I(t)| d t \text { and } \sum_{i=1}^{m}\left|I\left(x_{i}\right)\right| .
$$

5. Various information distances were applied to spike trains: the Kullback-Leibler distance, and the Chernoff distance (cf. Chap. 14). Also, if x and y are mapped into binary sequences, the Lempel-Ziv distance and a version of the normalized information distance (cf. Chap. 11) are used.
6. The Victor-Purpura distance (1996) is a cost-based editing metric (i.e., the minimal cost of transforming x into y) defined by the following operations with their associated costs: insert a spike (cost 1), delete a spike (cost 1), shift a spike by time $t(\operatorname{cost} q t)$; here $q>0$ is a parameter. The fuzzy Hamming distance (cf. Chap. 11), introduced in 2001, identifies cost functions of shift preserving the triangle inequality.
7. The van Rossum distance, 2001, is defined by

$$
\sqrt{\int_{0}^{\infty}\left(f_{t}(x)-f_{t}(y)\right)^{2} d t}
$$

where x is convoluted with $h(t)=\frac{1}{\tau} e^{-t / \tau}$ and $\tau \approx 12 \mathrm{~ms}$ (best); $f_{t}(x)=$ $\sum_{0}^{m} h\left(t-x_{i}\right)$. This and above distances are the most commonly used metrics.
8. Given two sets of spike trains labeled by neurons firing them, the Aronov et al. distance (2003) between them is a cost-based editing metric (i.e., the minimal cost of transforming one into the other) defined by the following operations: insert or delete a spike (cost 1), shift a spike by time t (cost $q t$), relabel a spike (cost k), where $q, k>0$ are parameters.

- Bursting distances

Bursts refers to the periods in a spike train when the spike frequency is relatively high, separated by periods when it is relatively low or spikes are absent.
Given neurons x_{1}, \ldots, x_{n} and SBEs (synchronized bursting events) Y_{1}, \ldots, Y_{m} with similar patterns of neuronal activity, let $C^{i j}$ denote the cross-correlation between the activity of a neuron in Y_{i} and Y_{j} maximized over neurons, and let $C_{i j}$ denote the correlation between neurons x_{i} and x_{j} averaged over SBEs.
Baruchi and Ben-Jacob, 2004, defined the interSBE distance between Y_{i} and Y_{j} and the interneuron distance between x_{i} and x_{j} by $\frac{1}{m}\left(\sum_{s=1}^{m}\left(C^{i s}-C^{j s}\right)^{2}\right)^{\frac{1}{2}}$ and $\frac{1}{n}\left(\sum_{s=1}^{n}\left(C_{i s}-C_{j s}\right)^{2}\right)^{\frac{1}{2}}$, respectively.

- Long-distance neural connection

Unlike Computing, neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps. Kaiser and Hilgetag, 2006, showed that, due to the existence of long-distance projections, the total wiring among 95 primate (Macaque) cortical areas could be decreased by 32%, and the wiring of neuronal networks in the nematode C. elegans could be reduced by 48% on the global level. For example, $>10 \%$ of the primate cortical projections connect components separated by $>40 \mathrm{~mm}$, while 69 mm is the maximal possible distance. For the global C. elegans network, some connections are almost as long as the entire organism.
The global workspace theory (Baars, 1988, 1997, 2003) posits that consciousness arises when neural representations of external stimuli are made available widespread to global areas of the brain and not restricted to the originating local areas. Dehaene et al., 2006, showed that distant areas of the brain are connected to each other and these connections are especially dense in the prefrontal, cingulate and parietal regions of the cortex which are involved in planning, reasoning and short-memory. These long-distance and long-lasting connections may be the architecture linking the separate regions/processes together during a single global conscious state.
In autism there are more local connections and more local processing, while the psychosis/schizophrenia spectrum is marked by more long-distance connections.

About $5 \%, 10 \%, 6.7 \%$ of variation in individual intelligence is predicted by activity level in LPFC (lateral prefrontal cortex), by the strength of neural pathways connecting left LPFC to the rest of the brain and by overall brain size.

- Long-distance cell communication

Human cell size is within [4-135] $\mu \mathrm{m}$; typically, $10 \mu \mathrm{~m}$. In gap junctions, the intercellular spacing is reduced from $25-450 \mathrm{~nm}$ to a gap of $1-3 \mathrm{~nm}$, bridged by hollow tubes. Animal cells may communicate locally, either directly through gap junctions, or by cell-cell recognition (in immune cells), or (paracrine signaling) using messenger molecules that travel, by diffusion, only short distances. Mammal's, astrocytes form, via gap junctions, a network of neurons and vasculature. Neurons may use interferon signals transmitted over great distances to fend off viral infection.
In synaptic signaling, the electrical signal along a neuron's axon triggers the release of a neurotransmitter to diffuse across the synapse through a gap junction. Signal transmission through the nervous system is a long-distance signaling. Slower long-distance signaling is done by hormones transported in the blood. A hormone reaches all parts of the body, but only target cells have receptors for it.
Another means of long-distance cell communication, via TNTs (tunneling nanotubes), was found in 1999. TNTs are membrane tubes, $50-200 \mathrm{~nm}$ thick with length up to several cell diameters. Cells can send out several TNTs, creating a network lasting hours. TNTs can carry cellular components and pathogens (HIV and prions). Also, electrical signals can spread bidirectionally between TNTconnected cells (over distances $10-70 \mu \mathrm{~m}$) through interposed gap junctions.
Some bacteria gain energy by oxidizing $\mathrm{H}_{2} \mathrm{~S}$ via electron transfer, hundreds of cell-lengths away. Thousands of Desulfobulbus form cm-long conductive chains, transporting electrons from $\mathrm{H}_{2} \mathrm{~S}$-rich marine sediment to the upper O_{2}-rich one.

- Length constant

In an excitable cell (nerve or muscle), the length constant is the distance over which a nonpropagating, passively conducted electrical signal decays to $\frac{1}{e}$ (36.8%) of its maximum.
During a measurement, the conduction distance between two positions on a cell is the distance between the first recording electrode for each position.

- Ontogenetic depth

The ontogenetic depth (or egg-adult distance) is (Nelson, 2003) the number of cell divisions, from the unicellular state (fertilized egg) to the adult metazoan capable of reproduction (production of viable gametes).
The mitotic length is the number of intervening mitoses, from the normal (neither immortal nor malignant) cells in the immature precursor stage to their progeny in a state of mitotic death (terminal differentiation) and phenotypic maturity.

- Interspot distance

A DNA microarray is a technology consisting of an arrayed series of thousands of features (microscopic spots of DNA oligonucleotides, each containing picomoles of a specific DNA sequence) that are used as probes to hybridize a target
(cRNA sample) under high-stringency conditions. Probe-target hybridization is quantified by fluorescence-based detection of fluorophore-labeled targets to determine the relative abundance of nucleic acid sequences in the target.
The interspot distance is the spacing distance (Chap. 29) between features. Typical values are $375,750,1,500 \mu \mathrm{~m}\left(1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}\right)$.

- Read length

In gene sequencing, automated sequencers transform electropherograms (obtained by electrophoresis using fluorescent dyes) into a four-color chromatogram where peaks represent each of the DNA bases A, T, C, G. Chromosomes stained by some dyes show a 2D pattern of traverse bands of light and heavy staining.
The read length is the length, in the number of bases, of the sequence obtained from an individual clone chosen. Computers then assemble those short blocks into long continuous stretches which are analyzed for errors, gene-coding regions, etc.

- Action at a distance along DNA/RNA

An action at a distance along DNA/RNA happens when an event at one location on a molecule affects an event at a distant (say, more than 2,500 base pairs) location on the same molecule.
Many genes are regulated by distant (up to a million bp away and, possibly, located on another chromosome) or short (30-200 bp) regions of DNA, enhancers. Enhancers increase the probability of such a gene to be transcribed in a manner independent of distance and position (the same or opposite strand of DNA) relative to the transcription initiation site (the promoter).
DNA supercoiling is the twisting of a DNA double helix around its axis, once every 10.4 bp of sequence (forming circles and figures of eight) because it has been bent, overwound or underwound. Such folding puts a long range enhancer, which is far from a regulated gene in genome distance, geometrically closer to the promoter.
The genomic radius of regulatory activity of a genome is the genome distance of the most distant known enhancer from the corresponding promoter; in the human genome it is $\approx 10^{6} \mathrm{bp}$ (for the enhancer of SSH, Sonic Hedgehog gene).
There is evidence that genomes are organized into enhancer-promoter loops. But the long range enhancer function is not fully understood yet.
Similarly, some viral RNA elements interact across thousands of intervening nucleotides to control translation, genomic RNA synthesis and mRNA transcription.
Genes are controlled either locally (from the same molecule) by specialized cis regulators, or at a distance by trans regulators. Comparing genes in key brain regions of human and primates, the most drastic changes were found in transcontrolled genes.

- Length variation in 5-HTTLPR

5-HTTLPR is a repeat polymorphic region in SLC6A4, the gene (on chromosome
17) coding for SERT (serotonin transporter) protein. This polymorphism has
short (14 repeats) and long (16 repeats) variations. So, an individual can have short/short, short/long, or long/long genotypes at this location in the DNA.
A short/short allele leads to less transcription for SLC6A4, and its carriers are more attuned and responsive to their environment; so, social support is more important for their well-being. They have less gray matter, more neurons and a larger thalamus. Whereas $\frac{2}{3}$ of East Asians have the short/short variant, only $\frac{1}{5}$ of Americans and Western Europeans have it.
Other gene variants of central neurotransmitter systems-dopamine receptor (DRD4 7R), dopamine/serotonin breaking enzyme (MAOA VNTR) and μ-opioid receptor (OPRM1 A118G) -are also associated with novelty-seeking, plasticity and social sensitivity. They appeared $<0.08 \mathrm{Ma}$ ago and spread into $20-50 \%$ of the population. They generate anxiety and aggression, but could be selected for extending behavioral range and boosting resilience at the group level.

- Telomere length

The telomeres are the caps of repetitive DNA sequences ($(T T A G G G)_{n}$ in vertebrates cells) at both ends of each linear chromosome in the cell nucleus. They are long stretches of noncoding DNA protecting coding DNA. The number n of TTAGGG repeats is called the telomere length (TL); it is $\approx 2,000$ in humans. TL is a robust indicator of biological age and a prognostic marker of disease risk. A limit of life - about 120 years - can be defined by TL in blood stem cells.
Every time a normal cell divides, its telomeres shorten and eventually they are so short that cell stops dividing, self-destructs, or tries to self-replicate and creates cancer. The Hayflick limit is the maximal number of divisions beneath which a normal cell will stop dividing, because of shortened telomeres or DNA damage, and die; for humans it is about 52.
Human telomeres are $3-20$ kilobases in length, and they lose $\approx 100 \mathrm{bp}$, i.e., 16 repeats, at each mitosis (i.e., every $20-180 \mathrm{~min}$). But telomere length can increase: by transfer of repeats between telomers or by action of enzyme telomerase. In humans, telomerase acts only in germ, stem or proliferating tumor cells.
Hydras, lobsters, planarian flatworms, trees maintain telomere lengths. Also, bacterial colonies and Turritopsis dohrnii, whose medusa form can revert to the polyp stage, are biologically immortal, i.e., there is no aging (sustained increase of mortality rate with age) since the Hayflick limit does not apply. Animals with negligible aging die mainly because of growth: they lose agility to get food. The oldest living animals are some sponges and black corals: 2,000-10,000 years. The oldest known cell line is 11,000 years-old canine transmissible venereal tumor.
Phenoptsis is genetically programmed death of organism. It acts quickly in semelparous (capable of only single reproduction) species, say, Pacific salmon, cicada, mayflies, annual plants and some bamboo, arachnids, squids. Extreme examples: the male praying mantis ejaculates only after being decapitated by the female, and the Adactyllidium tick larvae kill their mother eating her from the inside out.

Aging (or catabiosis) is slow phenoptsis in other, i.e., iteroparous, species. The telomere shortening is one of the main mechanisms of aging. Vascular decease, osteoarthritis, cancer and menopause are other means of human phenoptsis. Mortality rate of people with cancer behave as if the cancer had aged them by 15 years.

- Gerontologic distance

The gerontologic distance between individuals of ages x and y from a population with survival fraction distributions $S_{1}(t)$ and $S_{2}(t)$, respectively, is defined by

$$
\left|\ln \frac{S_{2}(y)}{S_{1}(x)}\right| .
$$

A function $S(t)$ can be either an empirical distribution, or a parametric one based on modeling. The main survival functions $S(t)$ are: $\frac{N(t)}{N(0)}$ (where $N(t)$ is the number of survivors, from an initial population $N(0)$, at time t), $e^{k t}$ (exponential model), $e^{\frac{a}{b}\left(1-e^{b t}\right)}$ (Gompertz model), and $e^{-\frac{a b^{b+1}}{b+1}}$ (Weibull model); here a and b are, respectively, age independent and age dependent mortality rate coefficients. But late-life mortality deceleration was observed for humans and fruit flies: the probability that organism's somatic cells become senescent tends to be independent of its age in the long-time limit. The 1 -year probability of death at advanced age asymptotically approaches 44% for women and 54% for men. Such a plateau is typical for many Markov processes. Human species-specific life span (age at which death rates of different populations converge) is close to 95 years.
Since the 1960s mortality rates among those over 80 years have decreased by 1.5% per year. But the age of super-long livers is linked to their genes rather than their lifestyle; at least 100 genes are linked to longevity.
Distances are used in Human Gerontology also to model the link between geographical distance and contact between adult children and their elderly parents.
Aging/death are adaptive species-specific trade-offs with reproduction. But the Akela effect (long post-reproductory period with intergenerational transfers) was observed, besides humans, in toothed whales and some elephants, primates, birds.

- Distance to death

Eighty percent of the persons who die in any one year are age 65 or older. Elderly persons think and talk readily about death, but perceived temporal nearness of it is not quantified by $\approx 50 \%$ of them. Still this proximity determines one's attitude on it.
Gerstorf et al., 2008: relative to age-related decline, mortality-related one (i.e., distance to death) in reported life satisfaction account for more variance in the change of subjective well-being. At a point about 4 years before death of an old,
i.e., $70+$ years, person, this decline showed a two-fold increase (three-fold for the oldest old, i.e., $85+$ years) in steepness relative to the preterminal phase.
Bosworth et al., 1999: distance to death explains much of the variance in intellectual performance (verbal meaning, psychomotor speed, spatial and reasoning abilities) associated with age. Higher baseline intelligence test scores are associated with reduced risk of mortality and reduced effects of impending death on cognition.
The terminal drop hypothesis (Riegel-Riegel, 1972) states that death is preceded by a decrease in cognitive (especially, verbal) functioning over an ≈ 5 years period.
The cascade model (Birren-Cunningham, 1985) posits primary (normal), secondary (disease-related) and tertiary (distance to death) aging, which influence 3rd, 2-3rd and 1-3rd, respectively, classes of intellectual function: crystallized abilities (to think logically and solve problems knowledge-independently), fluid abilities (to use skills, knowledge and experience) and perceptual speed.
Borjigin et al., 2013, observed neural correlates of heightened conscious processing at near-death: a surge 30 s of coherence and connectivity in the dying rat's brain.
Micromort and microlife are the units of risk: 10^{-6} probability of death and half an hour ($\approx 10^{-6}$-th of 57 years) change of life expectancy, respectively.

- Distance running model

Bipedality is a key behavior of hominins which appeared 6-4.2 Ma ago. It allowed australopithecines to see approaching danger further off, to walk long distances and to use hands for gathering food. Our genus Homo emerged ≈ 2.5 Ma ago.
The distance running model anthropogenesis, proposed in [BrLi04], claims that our capacity to run long distances in the savanna arised, prior to the invention of the spear, as adaptation for persistence hunting (by running prey to exhaustion) and scavenging (allowing to compete for widely dispersed carcasses).
This model specifies how endurance running defined the human body form, producing balanced head, low/wide shoulders, narrow chest, short forearms and heels, large hip, etc. Even now, a good athlete can run at $20 \mathrm{~km} / \mathrm{h}$ for several hours which is comparable to endurance specialists as, say, zebras and antelopes. By sweating we can dissipate body heat faster than any other large mammal and reach large sustainable distance. The capacity of humans to travel vast distances using little energy contributed also to the evolution of their complex social networks.

- Distance coercion model

The distance coercion model [OkBi08] of the origin of uniquely human kinshipindependent cooperation see all complex symbolic speech, cognitive virtuosity, transmission of fitness-relevant information, etc. as elements and effects of this cooperation catalyzed by advances in lethal projectile weapons.
The model argues that such cooperation can arise only as a result of the pursuit of individual self-interest by animals who can project "death from a distance".

Among rare organisms able to project coercive threat remotely, humans are the most efficient on long distances, say, to kill adult conspecifics up to $18-27 \mathrm{~m}$ by throwing a spear and up to 91 m by a bow. The chimpanzee and Neanderthal also could throw objects but not with human's precision.
The model posits that this capacity, permitting to repel predators and scavenge their kills in the African savanna, briefly preceded the emergence of brain expansion and social support. Comparing with Neanderthals, evidence of a huge number of injuries suggests that their hunting involved dangerously close contact with large prey animals; they used conventional spears rather than true projectile weapons.
Throwing and language capacities enabled humans to survive rapid climatic and environmental changes, to spread and to become the dominant large-scale species on the planet. Historical increases in social cooperation could be associated with prior acquisition of a new coercive technology; for instance, the bow and agricultural civilizations, gunpowder weaponry and the modern state.
Humans are most efficient enforcers of cooperation (even relying mainly on indirect cues): our cognitive abilities expanded the range of situations in which cooperation can be favored. Also, while the strong reciprocity (generous thirdparty enforcement) is prevalent in large societies, Marlowe et al., 2012, claim that motivated by the basic emotion of anger, humans-special tendency to retaliate on their own behalf, even at a cost, is sufficient to explain the origin of human cooperation.

- Distance model of altruism

In Evolutionary Ecology, altruism is explained by kin selection, reciprocity, sexual selection, etc. The cooperation between nonrelatives was a driving force in some major transitions (say, from symbiotic bacteria to mitochondria, eukaryotes or multicellular organisms). Individual selection, including social selection in which fitness is influenced by the behaviors of others, interacts with group selection.
The distance model of altruism [Koel00] claims that altruists spread locally, i.e., with small interaction distance and offspring dispersal distance, while the egoists invest in increasing of those distances. The intermediate behaviors are not maintained, and evolution will lead to a stable bimodal spatial pattern.

- Distance grooming model of language

In primates, being groomed produces mildly narcotic effects, because it stimulates the production of the body's natural opiates, the endogenous opioid peptides.
Language, according to Dunbar, 1993, evolved in archaic Homo sapiens as more distance/time efficient replacement of social grooming. Their brain size expanded (as 2.5 Ma ago with Homo habilis) 0.5 Ma ago from $900 \mathrm{~cm}^{3}$ in Homo erectus to $1,300 \mathrm{~cm}^{3}$, and they lived in large groups (over 120 individuals) requiring cohesion. Language allowed them to produce the reinforcing, social-bonding effects of grooming at a distance and to use more efficiently the time available for social interaction.

Language achieves this through information transfer, gossip and emotional means (say, laughter, facial expression, Duchenne smile). Many primate species extensively use contact calls such as the long-distance pant-hoot call of chimpanzees. Dunbar interprets such calls as a grooming-at-a-distance from which language evolved. But gestures are far more likely precursor of language than vocalizations.
He observed the link between group and brain sizes in primates and deduced that human social networks tend to be structured in layers: 5 intimates (support clique), 15 best friends (sympathy group), active network of "persons" (50 good friends and 150 friends), 500 acquaintances, 1500 "people I recognize". One need to be in contact every week, month, half-year, year with groups $1-4$, respectively, A natural group size (Dunbar's number) is 150 for humans and 50 for chimpanzees.
Dunbar explain above sizes by cognitive and time constraints on the number of relationships ego can maintain at a given level of intensity. The clique size correlates with the highest achievable order of intentionality recursion, in which mind states are reflexively attributed to others. 0-order means responses to stimuli (as bacteria and computers); 1st order: belief about the real or imagined world (as most organisms with brains); 2nd order: belief about the mental state of others; i-th order: as, for $i=5$, in the sentence "I think that you believe that I suppose that we understand that Jane wants. ..". We operate usually at 3rd and sometimes at 4th or 5th order. Language is essential for 4th order recursion.

Chapter 24
 Distances in Physics and Chemistry

24.1 Distances in Physics

Physics studies the behavior and properties of matter in a wide variety of contexts, ranging from the submicroscopic particles from which all ordinary matter is made (Particle Physics) to the behavior of the material Universe as a whole (Cosmology).

Physical forces which act at a distance (i.e., a push or pull which acts without "physical contact") are nuclear and molecular attraction and, beyond the atomic level, gravity (completed, perhaps, by anti-gravity), static electricity, and magnetism. Last two forces can be both push and pull, depending on the charges of involved bodies. The nucleon-nucleon interaction (or residual strong force) is attractive but becomes repulsive at very small distances keeping the nucleons apart. Dark matter is attractive while dark energy is repulsive (if they exist).

Distances on a relatively small scale are treated in this chapter, while large distances (as in Astronomy and Cosmology) are the subject of Chaps. 25 and 26.

The distances having physical meaning range from $1.6 \times 10^{-35} \mathrm{~m}$ (Planck length) to $8.8 \times 10^{26} \mathrm{~m}$ (estimated size of the observable Universe). We can see things of about 10^{-4} to $10^{21} \mathrm{~m}$ and measure them within $\left[10^{-18}, 10^{27}\right] \mathrm{m}$. The smallest measurable distance, time and weight are $10^{-18} \mathrm{~m}$ (by LHC), $10^{-17} \mathrm{sec}$ and $10^{-24} \mathrm{~g}$.

The Theory of Relativity, Quantum Theory and Newtonian laws permit us to describe and predict the behavior of physical systems in the range 10^{-15} to $10^{12} \mathrm{~m}$, i.e., from proton to Solar System. Weakened description is still possible up to $10^{25} \mathrm{~m}$.

The world appears Euclidean at distances less than about $10^{25} \mathrm{~m}$ (if gravitational fields are not too strong). Relativity and Quantum Theory effects, governing Physics on very large and small scales, are already accounted for in technology, say, of GPS satellites and nanocrystals of solar cells.

- Moment

In Physics and Engineering, moment is the product of a quantity (usually, force) and a distance (or a power of it) to some point associated with that quantity.

- Momentum

In classical mechanics, momentum $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ is the product $m \mathbf{v}$ of the mass m and velocity vector $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ of an object.
In relativistic 4D mechanics, momentum-energy $\left(\frac{E}{c}, p_{x}, p_{y}, p_{z}\right)$, where c is the speed of light and $E=m c^{2}$ is energy, is compared with space-time ($c t, x, y, z$).

- Displacement

In Mechanics, a displacement (or relative position) vector of a moving particle from its initial position P_{i} to the final position P_{f}, is the vector $\overrightarrow{P_{i} P_{f}}=$ $\overrightarrow{0\left(P_{f}-P_{i}\right)}$, where O is a reference point (usually the origin of a coordinate system).
A displacement is the length $\left\|P_{f}-P_{i}\right\|_{2}$ of this vector, i.e., the Euclidean distance from P_{i} to P_{f}. It is never greater than the distance traveled by a particle.

- Acceleration distance

The acceleration distance is the minimum distance at which an object (or, say, flow, flame), accelerating in given conditions, reaches a given speed.

- Mechanic distance

The mechanic distance is the position of a particle as a function of time t.
For a particle, moving linearly with initial position x_{0} and initial speed v_{0}, which is acted upon by a constant acceleration a, it and the speed are given by

$$
x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \text { and } v(t)=v_{0}+a t .
$$

So, the acceleration distance fallen under uniform acceleration a, in order to reach a speed v, is $\frac{v^{2}}{2 a}$. A body is free falling if it is falling subject only to acceleration g by gravity; the free fall distance (distance fallen by it) is $y(t)=\frac{1}{2} g t^{2}$.

- Terminal distance

The terminal distance is the distance of an object, moving linearly in a resistive medium, from an initial position to a stop.
If object's initial position and speed are x_{0}, v_{0}, and the drag per unit mass in the medium is proportional to speed with constant of proportionality β, then the position and speed of a body are given by

$$
x(t)=x_{0}+\frac{v_{0}}{\beta}\left(1-e^{-\beta t}\right) \quad \text { and } \quad v(t)=x^{\prime}(t)=v_{0} e^{-\beta t} .
$$

The speed decreases to 0 , and the body reaches a maximum terminal distance

$$
x_{\text {terminal }}=\lim _{t \rightarrow \infty} x(t)=x_{0}+\frac{v_{0}}{\beta} .
$$

For a body, moving from initial position $\left(x_{0}, y_{0}\right)$ and speed $\left(v_{x_{0}}, v_{y_{0}}\right)$, the position $(x(t), y(t))$ is $x(t)=x_{0}+\frac{v_{x_{0}}}{\beta}\left(1-e^{-\beta t}\right), y(t)=\left(y_{0}+\frac{v_{y_{0}}}{\beta}-\right.$ $\left.\frac{g}{\beta^{2}}\right)+\frac{v_{y_{0}} \beta-g}{\beta^{2}} e^{-\beta t}$. The horizontal motion ceases at a maximum terminal distance $x_{\text {terminal }}=x_{0}+\frac{v_{x_{0}}}{\beta}$.

- Ballistics distances

Ballistics is the study of the motion of projectiles, i.e., bodies which are propelled (or thrown) with some initial velocity, and then allowed to be acted upon by the forces of gravity and possible drag.
The trajectory, range and height of a projectile are its parabolic path, total horizontal distance traveled and maximum upward distance reached. If projectile is launched on flat ground at velocity v and angle θ to the horizontal, then at the time t of motion, its horizontal and vertical positions are

$$
x(t)=v t \cos \theta \quad \text { and } \quad y(t)=v t \cos \theta-\frac{1}{2} g t^{2} .
$$

So, the range, realized by the time of flight $t_{o f}=\frac{2 v \sin \theta}{g}$, and height are

$$
x_{\max }=x\left(t_{o f}\right)=\frac{v^{2} \sin 2 \theta}{g} \quad \text { and } \quad y_{\max }=y\left(\frac{1}{2} t_{o f}\right)=\frac{v \sin ^{2} \theta}{2 g}
$$

which are maximized when $\theta=\pi / 4$ and $\theta=\pi / 2$, respectively.
The bullet drop is the height it loses, because of gravity, between leaving the rifle and reaching the target. In order to ensure that the "zero" (point at which the bullet's path intersects with the LOS, line of sight, to the target) will be at a specific range, the shooter should set (using a sight, device mounted on the rifle) the bore angle between the rifle bore and the LOS. A properly adjusted rifle barrel and sight are said to be zeroed (or sighted-in). The shooter zeroes rifle at a standard zero range and then adjustments are made for other ranges.
The point-blank range is the distance at which the bullet is expected to strike a target of a given size without adjusting the elevation of the firearm.

- Interaction distance

The impact parameter is the perpendicular distance between the velocity vector of a projectile and the center of the object it is approaching.
The interaction distance between two particles is the farthest distance of their approach at which it is discernible that they will not pass at the impact parameter, i.e., their distance of closest approach if they had continued to move in their original direction at their original speed.
The coefficient of restitution (COR) of colliding objects A, B is the ratio of speeds after and before an impact, taken along its line. The collision is inelastic if COR $<1 . \mathrm{COR}^{2}$ is the ratio of rebound and drop distances if A bounces off stationary B.

- Mean free path (length)

The mean free path (length) of a particle (photon, atom or molecule) in a medium measures its probability to undergo a situation of a given kind K; it is the average of an exponential distribution of distances until the situation K occurs. In particular, this average distance d is called:
nuclear collusion length if K is a nuclear reaction;
interaction length if K is an interaction which is neither elastic, nor quasielastic;
scattering length if K is a scattering event;
attenuation length (or absorption length) if K means that the probability $P(d)$, that a particle has not been absorbed, drops to $\frac{1}{e} \approx 0.368$, cf. BeerLambert law;
radiation length (or cascade unit) if K means that the energy of (high energy electromagnetic-interacting) relativistic charged particles drops by the factor $\frac{1}{e}$;
free streaming length if K means that particles become nonrelativistic.
In Gamma-ray Radiography, the mean free path of a beam of photons is the average distance a photon travels between collisions with atoms of the target material. It is $\frac{1}{\alpha \rho}$, where α is the material opacity and ρ is its density.

- Neutron scattering length

In Physics, scattering is the random deviation or reflection of a beam of radiation or a stream of particles by the particles in the medium.
In Neutron Interferometry, the scattering length a is the zero-energy limit of the scattering amplitude $f=-\frac{\sin \delta}{k}$. Since the total scattering cross-section (the likelihood of particle interactions) is $4 \pi|f|^{2}$, it can be seen as the radius of a hard sphere from which a point neutron is scattered.
The spin-independent part of the scattering length is the coherent scattering length. In order to expand the scattering formalism to absorption, the scattering length is made complex $a=a^{\prime} i a^{\prime \prime}$.
Thomson scattering length is the classical electron radius $\approx 2.818 \times 10^{-15} \mathrm{~m}$.

- Inelastic mean free path

In Electron Microscopy, the inelastic mean free path (or IMFP) is the average total distance that an electron traverses between events of inelastic scattering, while the effective attenuation length (or EAL) is an experimental parameter reflecting the average net distance traveled.
The EAL is the thickness in the material through which electron can pass with probability $\frac{1}{e}$ that it survives without inelastic scattering. It is about 20% less than the IMFP due to the elastic scatterings which deflect the electron trajectories.
Both are smaller than the total electron range which may be 10-100 times greater.

- Sampling distance

In Electron Spectroscopy for chemical analysis, the sampling distance is the lateral distance between areas to be measured for characterizing a surface, i.e., the volume from which the photo-electrons can escape.

- Debye screening distance

The Debye screening distance (or Debye length, Debye-Hückel length) is the distance over which a local electric field affects the distribution of mobile charge carriers (for example, electrons) present in the material (plasmas and other conductors).
Its order increases with decreasing concentration of free charge carriers, from $10^{-4} \mathrm{~m}$ in gas discharge to $10^{5} \mathrm{~m}$ in intergalactic medium.

- Range of a charged particle

The range of a charged particle, passing through a medium and ionizing, is the distance to the point where its energy drops to almost zero.

- Gyroradius

The gyroradius (or cyclotron radius, Larmor radius) is the radius of the circular orbit of a charged particle in the presence of a uniform magnetic field.

- Radius of gyration The radius of gyration of a body about a given axis is the distance from this axis to the centre of gyration. It is the RMS (square root of the mean of the squares) of the distances from the axis of rotation to all the points in the body.
- Inverse-square distance laws

Any law stating that some physical quantity is inversely proportional to the square of the distance from the source that quantity.
Newton's law of universal gravitation (checked above $6 \times 10^{-5} \mathrm{~m}$): the gravitational attraction between two point-like masses m_{1}, m_{2} at distance d is

$$
G \frac{m_{1} m_{2}}{d^{2}}
$$

where $G=6.67384(80) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ is the Newton gravitational constant.
The existence of extra dimensions, postulated by M-theory, will be checked by LHC (Large Hadron Collider at CERN, near Geneva) based on the inverse proportionality of the gravitational attraction in $n \mathrm{D}$ space to the $(n-1)$-th degree of the distance between objects; if the Universe has a 4th dimension, LHC will find out the inverse proportionality to the cube of the small interparticle distance. Coulomb law: the force of attraction or repulsion between two point-like objects with charges e_{1}, e_{2} at distance d is given by

$$
k_{e} \frac{e_{1} e_{2}}{d^{2}}
$$

where k_{e} is the Coulomb constant depending upon the medium that the charged objects are immersed in. The gravitational and electrostatic forces of two bodies with Planck mass m_{P} and $e_{1}=e_{2}=1$ have equal strength.
The intensity (power per unit area in the direction of propagation) of a spherical wavefront (light, sound, etc.) radiating from a point source decreases (assuming that there are no losses caused by absorption or scattering) inversely proportional
to the square d^{2} of the distance from the source (cf. distance decay in Chap. 29). However, for a radio wave, it decrease like $\frac{1}{d}$.

- Range of fundamental forces

The fundamental forces (or interactions) are gravity and electromagnetic, weak nuclear and strong nuclear forces. The range of a force is considered short if it decays (approaches 0) exponentially as the distance d increases.
Both electromagnetic force and gravity are forces of infinite range which obey inverse-square distance laws. The shorter the range, the higher the energy. Both weak and strong forces are very short range (about 10^{-17} and $10^{-15} \mathrm{~m}$, respectively) which is limited by the uncertainty principle.
At subatomic distances, Quantum Field Theory describes electromagnetic, weak and strong interactions with the same formalism but different constants. Quantum Electrodynamics describes electromagnetism via photon exchanges between charged particles and Quantum Chromodynamics describe strong interactions via gluon exchanges between quarks. Strong interaction force grows stronger with the distance. Three forces almost coincide at very large energy, but at large distances they are irrelevant compared with gravity. The number of fundamental particles increases on smaller distance scales. But at macroscopic scales, those particles can collectively create emerging phenomena, say, superconductivity.
General Relativity has been probed from submillimeter up to Solar System scales but at cosmological scale it require the presence of dark matter and dark energy. Maxwell's electromagnetism has been probed from atomic distances up to 1.3 AU (order of the coherence lengths of the magnetic fields dragged by the solar wind) but it does not explain magnetic fields found in galaxies, clusters and voids. The main hypothesis: at cosmological scale the repulsive force of putative dark energy, due to vacuum energy (or cosmological constant) overtakes gravity; cf. the metric expansion of space in Chap. 26. Dark energy is the only substance known to act both on subatomic and cosmological scale. Its effect is measured only on a scale larger than superclusters. Khoury-Weltman, 2004, in order to explain dark energy, conjectured fifth force with range depending on density of matter in its environment, say, 1 mm in Earth's vicinity and 10^{7} light-years in cosmos.
An alternative to dark energy: possible, in String Theory, modifications of gravity at ultra large distances (i.e., small curvatures) due to some specific compactification of, say, δ extra dimensions; their size is expected to be $\sim 10^{16}, 1,10^{10} \mathrm{~mm}$ for $\delta=1,2,5$, respectively. Another alternative is extended, via dropping the Lorenz condition, Maxwell's theory of electromagnetism by Beltrán and Maroto, 2011.

It allow the propagation, in addition to usual photons, the longitudinal (wave in which electric field points along direction of motion) and temporal (wave of pure electric potential) modes of light, produced from quantum fluctuations during inflation. Wavelengths of longitudinal electric waves are longer than the longest (millions of km) observed ones but still less than observable Universe; they generate magnetic fields from subgalactic up to the present Hubble radius.

Wavelengths of temporal waves are many orders of magnitude larger than observable Universe; they may explain the actual quantity of dark energy in the Universe.

- EM radiation wavelength range

The wavelength is the distance $\lambda=\frac{c}{f}$ the wave travels to complete one cycle.
Electromagnetic (EM) radiation wavelength range is infinite and continuous in principle. The limits of short and long waves are the vicinity of the Planck length and the size of Universe, respectively.
The wavelengths are: $<0.01 \mathrm{~nm}$ for gamma rays, $0.01-10 \mathrm{~nm}$ for X-rays, $100-400 \mathrm{~nm}$ for ultraviolet, $400-780 \mathrm{~nm}$ for visible light, $0.78-1,000 \mu \mathrm{~m}$ for infrared (in lasers), $1-330 \mathrm{~mm}$ for microwave, $0.33-3,000 \mathrm{~m}$ for radio frequency radiation, $>3 \mathrm{~km}$ for low frequency, and ∞ for static field.
Besides gamma rays, X-rays and far ultraviolet, the EM radiation is nonionizing, i.e., passing through matter, it only excites electrons: moves them to a higher energy state, instead of removing them completely from an atom or molecule.

- Fraunhofer distance

The Maxwell equations, governing the field strength decay, can be approximated as d^{-3}, d^{-2} and d^{-1} for three regions surrounding an radiating antenna: the reactive near field, the radiating near field (or Fresnel region) and the far field (or Fraunhofer region). The Fresnel region begins about at $0.62\left(\frac{D^{3}}{\lambda}\right)^{\frac{1}{2}}$, where D is the largest dimension of the antenna and λ is the wavelength. The propagating waves start to dominate here, but only in the far field the distribution of the diffracted energy no longer change with distance.
The Fraunhofer (or far field, Rayleigh) distance is $\frac{2 D^{2}}{\lambda}$, the distance where the far field is considered to begin. Cf. the acoustic distances in Chap. 21.
In Optics, beam divergence is defined by its radius, i.e., for a Gaussian beam, the distance from the beam propagation axis where intensity drops to $\frac{1}{e^{2}} \approx 13.5 \%$ of the maximum. The beam's waist (or focus) is the position on its axis where the radius is at its minimum. The imaginary-distance BPM (Jevick-Hermansson, 1989) refers to beam propagating the (complex electric) field along the imaginary axis.
The beam's Rayleigh length (or Rayleigh range) $R l$ is the distance from the waist (in the propagation direction) where the radius increases from w_{0} to $\sqrt{2} w_{0}$, i.e., the beam propagates without diverging much. For Gaussian beams, $R l=\frac{\pi w_{0}^{2}}{\lambda}$, where λ is the vacuum wavelength divided by the refractive index of the material. The Rayleigh length divides the near-field and mid-field; it is the distance from the waist at which the wavefront curvature is at a maximum. The divergence really starts in the far field where the beam radius is at least 10 Rl . The confocal parameter (or depth offocus) of the beam is $2 R l$. Cf. the lens distances in Chap. 28.

- Half-value layer

Ionizing radiation consists of highly-energetic particles or waves (especially, X-rays, gamma rays and far ultraviolet light) which are progressively absorbed during propagation through the surrounding medium, via ionization, i.e., removing an electron from some of its atoms or molecules. The half-value layer is the depth within a material where half of the incident radiation is absorbed.
A basic rule of protection against ionizing radiation exposure: multipliyng the distance from its source by a distance factor r decreases this exposure to $\frac{1}{r^{2}}$ of it. In Maxwell Render light simulation software, the attenuation distance (or transparency) is the thickness of object that absorbs 50% of light energy.

- Compton wavelength

Compton scattering is the scattering of (X-ray or gamma ray) photons by electrons. It results in a decrease in energy (so, increase in wavelength) of the photon.
Compton wavelength $\lambda_{C}(m)$ and reduced Compton wavelength $\bar{\lambda}_{C}(m)$ of a particle with rest mass m (where c is the speed of light, \hbar is the reduced Planck constant $\frac{h}{2 \pi}$ and l_{P}, m_{P} are Planck length and mass) are defined by

$$
\frac{1}{2 \pi} \lambda_{C}(m)=\bar{\lambda}_{C}(m)=\frac{\hbar}{m c}=\frac{m_{P}}{m} l_{P}
$$

- Radiation attenuation with distance

Radiation is the process by which energy is emitted from a source and propagated through the surrounding medium. Radiant energy described in wave terms includes sound and electromagnetic radiation, such as light, X-rays and gamma rays. The incident radiation partially changes its direction, gets absorbed, and the remainder transmitted. The change of direction is reflection, diffraction, or scattering if the direction of the outgoing radiation is reversed, split into separate rays, or randomized (diffused), respectively. Scattering occurs in nonhomogeneous media.
In Physics, attenuation is any process in which the flux density, power amplitude or intensity of a wave, beam or signal decreases with increasing distance from the energy source, as a result of absorption of energy and scattering out of the beam by the transmitting medium. It comes in addition to the divergence of flux caused by distance alone as described by the inverse-square distance laws.
Attenuation of light is caused mainly by scattering and absorption of photons. The primary causes of attenuation in matter are the photoelectric effect (emission of electrons), Compton scattering (cf. Compton wavelength) and pair production (creation of an elementary particle and its antiparticle from a high-energy photon).
In Physics, absorption is a process in which atoms, molecules, or ions enter some bulk phase - gas, liquid or solid material; in adsorption, the molecules are taken up by the surface, not by the volume. Absorption of EM radiation is the process by which the energy of a photon is taken up (and destroyed) by, for example, an
atom whose valence electrons make the transition between two electronic energy levels. The absorbed energy may be re-emitted or transformed into heat.
Attenuation is measured in units of decibels (dB) or nepers $(\approx 8.7 \mathrm{~dB})$ per length unit of the medium and is represented by the medium attenuation coefficient α. When possible, specific absorption or scattering coefficient is used instead.
Attenuation (or loss) of signal is the reduction of its strength during transmission. In Signal Propagation, attenuation of a propagating EM wave is called the path loss. Path loss may be due to free-space loss, refraction, diffraction, reflection, absorption, aperture-medium coupling loss, etc. of antennas. Path loss in decibels is $L=10 n \log _{10} d+C$, where n is the path loss exponent, d is the transmitterreceiver distance in m , and C is a constant accounting for system losses.
The free-space path loss (FSPL) is the loss in signal strength of an EM wave that would result from a line-of-sight path through free space, with no obstacles to cause reflection or diffraction. FSPL is $\left(\frac{4 \pi d}{\lambda}\right)^{2}$, where d is the distance from the transmitter and λ is the signal wavelength (both in m), i.e., in dB it is $10 \log _{10}(F S P L)=20 \log _{10} d+20 \log _{10} f-147.56$, where f is the frequency in Hz .

- Beer-Lambert law

The Beer-Lambert law is an empirical relationship for the absorbance $A b$ of a substance when a radiation beam of given frequency goes through it:

$$
A b=\alpha d=-\log _{a} T
$$

where $a=e$ or (for liquids) $10, d$ is the path length (distance the beam travels through the medium), $T=\frac{I_{d}}{I_{0}}$ is the transmittance (I_{d} and I_{0} are the intensity of the transmitted and incident radiation), and α is the medium opacity (or linear attenuation coefficient, absorption coefficient); α is the fraction of radiation lost to absorption and/or scattering per unit length of the medium.
The extinction coefficient is $\frac{\lambda_{w}}{4 \pi} \alpha$, where λ_{w} is the same frequency wavelength in a vacuum. In Chemistry, α is given as ϵC, where C is the absorber concentration, and ϵ is the molar extinction coefficient.
The optical depth is $\tau=-\ln \frac{I_{d}}{I_{0}}$, measured along the true (slant) optical path.
The penetration depth (or attenuation length, mean free path, optical extinction length) is the thickness d in the medium where the intensity I_{d} has decreased to $\frac{1}{e}$ of I_{0}; so, it is $\frac{1}{\alpha}$. Cf. half-value layer.
Also, in Helioseismology, the (meridional flow) penetration depth is the distance from the base of the solar convection zone to the location of the first reversal of the meridional velocity. In an information network, the message penetration distance is the maximum distance from the event message traverses in the valid routing region.
The skin depth is the thickness d where the amplitude A_{d} of a propagating wave (say, alternating current in a conductor) has decreased to $\frac{1}{e}$ of its initial value A_{0}; it is twice the penetration depth. The propagation constant is $\gamma=-\ln \frac{A_{d}}{A_{0}}$.

The Beer-Lambert law can describe also the attenuation of solar or stellar radiation. The main components of the atmospheric light attenuation are: absorption and scattering by aerosols, Rayleigh scattering (from molecular oxygen O_{2} and nitrogen Ni_{2}) and (only absorption) by carbon dioxide $\mathrm{CO}_{2}, \mathrm{O}_{2}$, nitrogen dioxide NiO_{2}, water vapor, ozone O_{3}. Cf. atmospheric visibility distances in Chap. 25.
The sea is nearly opaque to light: less than 1% penetrates 100 m deep. Cf. distances in Oceanography in Chap. 25. In Oceanography, attenuation of light is the decrease in its intensity with depth due to absorption (by water molecules) and scattering (by suspended fine particles). The transparency of the water in oceans and lakes is measured by the Secchi depth d_{S} at which the reflectance equals the intensity of light backscattered from the water. Then $\alpha=\frac{10 d_{S}}{17}$ is used as the light attenuation coefficient in the Beer-Lambert law $\alpha d=-\ln \frac{I_{d}}{I_{0}}$, in order to estimate I_{d}, the intensity of light at depth d, from I_{0}, its intensity at the surface.
In Astronomy, attenuation of EM radiation is called extinction (or reddening). It arises from the absorption and scattering by the interstellar medium, the Earth's atmosphere and dust around an observed object.
The photosphere of a star is the surface where its optical depth is $\frac{2}{3}$. energy emitted. The optical depth of a planetary ring is the proportion of light blocked by the ring when it lies between the source and the observer.

- Arago distance

The Arago point is a neutral point (where the degree of polarization of skylight goes to zero) located $\approx 20^{\circ}$ directly above the antisolar point (the point on the celestial sphere that lies directly opposite the sun from the observer) in relatively clear air and at higher elevations in turbid air.
So, the Arago distance, i.e., the angular distance from the antisolar point to the Arago point, is a measure of atmospheric turbidity (effect of aerosols in reducing the transmission of direct solar radiation).
Another useful measure of turbidity is aerosol optical depth, i.e., the optical depth due to extinction by the aerosol component of the atmosphere.

- Sound attenuation with distance

Vibrations propagate through elastic solids and liquids, including the Earth, and consist of elastic (or seismic, body) waves and surface (occurring since it acts as an solid-gas interface) waves. Elastic waves are: primary (P) wave moving in the propagation direction of the wave and secondary (S) wave moving in this direction and perpendicular to it. Surface waves are: the Love wave moving perpendicular to the direction of the wave and the Rayleigh (R) wave moving in the direction of the wave and circularly within the vertical surface perpendicular to it. The attenuation of P - and S -waves is proportional to $\frac{1}{d^{2}}$ or $\frac{1}{d}$, when propagated by the surface or inside of an infinite elastic body. For the R-wave, it is proportional to $\frac{1}{\sqrt{d}}$.
Sound propagates through gas (say, air) as a P-wave and attenuates over a distance, at a rate of $\frac{1}{d^{2}}$. The far field (cf. Fraunhofer distance) is the part of a
sound field in which sound pressure (if it is the same in all directions) decreases according to the inverse distance law $\frac{1}{d}$; but sound intensity decreases as $\frac{1}{d^{2}}$.
In natural media, further weakening occurs from attenuation, i.e., scattering (reflection of the sound in other directions) and absorption (conversion of the sound energy to heat). Cf. critical distance among acoustics distances in Chap. 21.
The sound extinction distance is the distance over which its intensity falls to $\frac{1}{e}$ of its original value. For sonic boom intensities (say, supersonic flights), the lateral extinction distance is the distance where in 99% of cases the sound intensity is lower than $0.1-0.2$ mbar ($10-20$ pascals) of atmospheric pressure. Cf. earthquake extinction length in distances in Seismology (Chap. 25).
Water is transparent to sound. Sound energy is absorbed (due to viscosity) and $\approx 6 \%$ of it is scattered (due to water inhomogeneities). Absorbed less, low frequency sounds can propagate over large distances along lines of minimum sound speed. High frequency waves attenuate more rapidly. So, low frequency waves are dominant further from the source (say, a musical band or earthquake). Attenuation of ultrasound waves with frequency $f \mathrm{MHz}$ at a given distance $r \mathrm{~cm}$ is $\alpha f r$ decibels, where α is the attenuation coefficient of the medium. It is used in Ultrasound Biomicroscopy; in a homogeneous medium (so, without scattering) α is $0.0022,0.18,0.85,20,41$ for water, blood, brain, bone, lung, respectively.

- Lighting distance

Sound travels through air at $330-350 \mathrm{~m}$ per second (depending on altitude, relative humidity, pressure, etc.), while the speed of light is $c \approx 300 \times 10^{6} \mathrm{~m} / \mathrm{s}$.
So, the lighting distance (of a lightning bolt from an observer) in km is $\approx \frac{1}{3}$ of the delay, in seconds, between observer's seeing it and hearing thunder.

- Optical distance

The optical distance (or optical path length) is a distance $d n$ traveled by light, where d is the physical distance in a medium and $n=\frac{c}{v}$ is the medium's refractive index (c, v are the speeds of an EM wave in a vacuum and in the medium). By Fermat's principle light follows the shortest optical path. Cf. optical depth.
The light extinction distance is the distance where light propagating through a given medium reaches its steady-state speed, i.e., a characteristic speed that it can maintain indefinitely. It is proportional to $\frac{1}{\rho \lambda}$, where ρ is the density of the medium and λ is the wavelength, and it is very small for most common media.

- Edge perimeter distance

In semiconductor technology, the edge perimeter distance is the distance from the edge of a wafer (thin slice with parallel faces cut from a semiconductor crystal) in a wafer carrier to the top face of the wafer carrier.

- Proximity effects

In Electronic Engineering, an alternating current flowing through an electric conductor induces (via the associated magnetic field) eddy currents within the conductor. The electromagnetic proximity effect is the "current crowding" which occurs when such currents are flowing through several nearby conductors such as
within a wire. It increases the alternating current resistance (so, electrical losses) and generates undesirable heating.
In Nanotechnology, the quantum $\frac{1}{f}$ proximity effect is that the $\frac{1}{f}$ fundamental noise in a semiconductor sample is increased by the presence of another similar current-carrying sample placed in the close vicinity.
The superconducting proximity effect is the propagation of superconductivity through a NS (normal-superconductor) interface, i.e., a very thin layer of "normal" metal behaves like a superconductor (that is, with no resistance) when placed between two thicker superconductor slices.
In Lithography, if a material is exposed to an electronic beam, some molecular chains break and many electron scattering events occur. Any pattern written by the beam on the material can be distorted by this E-beam proximity effect.
In LECD (localized electrochemical deposition) technique for fabrication of miniature devices, the electrode (anode) is placed close to the tip of a fabricated structure (cathode). Voltage is applied and the structure is grown by deposition. The LECD proximity effect: at small cathode-anode distances, migration overcomes diffusion, the deposition rate increases greatly and the products are porous. In Atomic Physics, the proximity effect refers to the intramolecular interaction between two (or more) functional groups (in terms of group contributions models of a molecule) that affects their properties and those of the groups located nearby. Cf. also proximity effect (audio) among acoustics distances in Chap. 21.
The term proximity effect is also used more abstractly, to describe some undesirable proximity phenomena. For example, the proximity effect in the production of chromosome aberrations (when ionizing radiation breaks double-stranded DNA) is that DNA strands can misrejoin if separated by less than $\frac{1}{3}$ of the diameter of a cell nucleus. The proximity effect in innovation process is the tendency to the geographic agglomeration of innovation activity.

- Hopping distance

Hopping is atomic-scale long range dynamics that controls diffusivity and conductivity. For example, oxidation of DNA (loss of an electron) generates a radical cation which can migrate a long (more that 20 nm) distance, called the hopping distance, from site to site before it is trapped by reaction with water.

- Atomic jump distance

In the solid state the atoms are about closely packed on a rigid lattice. The atoms of some elements (carbon, hydrogen, nitrogen), being too small to replace the atoms of metallic elements on the lattice, are located in the interstices between metal atoms and they diffuse by squeezing between the host atoms.
Interstitial diffusion is the only mechanism by which atoms can be transported through a solid substance while, in a gas or liquid, mass transport is possible by both diffusion and the flow of fluid (for example, convection currents).
The jump distance is the distance an atom is moved through the lattice in a given direction by one exchange of its position with an adjacent lattice site.
Some crystals can jump 1,000 times their own length under light, since light energy rearranges atoms and builds strain, which is then explosively released.

The mean square diffusion distance d_{t} from the starting point which a molecule will have diffused in time t, satisfies $d_{t}^{2}=r^{2} N=r^{2} v t=2 n D t$, where r is the jump distance, N is the number of jumps (equal to $v t$ assuming a fixed jump rate v), $n=1,2,3$ for 1,2,3-dimensional diffusion, and $D=\frac{v r^{2}}{2 n}$ is the diffusivity in $\mathrm{cm}^{2} / \mathrm{s}$.
In diffusion alloy bonding, a characteristic diffusion distance is the distance between the joint interface and the site wherein the concentration of the diffusing substance (say, aluminum in high carbon-steel) falls to zero up to a given error.

- Diffusion length

Diffusion is a process of spontaneous spreading of matter, heat, momentum, or light: particles move to lower chemical potential implying concentration change. In Microfluidics, the diffusion length is the distance from the point of initial mixing to the complete mixing point where the equilibrium composition is reached.
In semiconductors, electron-hole pairs are generated and recombine. The (minority carrier) diffusion length of a material is the average distance a minority carrier can move from the point of generation until it recombines with majority carriers. Also, in electron transport by diffusion, the diffusion length is the distance over which concentration of free charge carriers injected into semiconductor falls to $\frac{1}{e}$ of its original value.
Cf. jump distance and, in Chap. 23, capillary diffusion distance.

- Thermal diffusion length

The heat propagation into material is represented by the thermal diffusion length, i.e., the propagation distance of the thermal wave producing an attenuation of the peak temperature to about 0.1 of the maximum surface value.
For lasers with femtosecond pulse duration, it is so small that the beam's energy, not being absorbed by laser-induced plasma, is fully deposited into the target.
The propagation of the laser-generated shock wave is approximated as blast wave (instantaneous, massless point explosion). The expansion distance is the distance between the surface of the target and the position of a blast wave; it depends on the energy converted into the plasma state.

- Thermal entrance length

In heat transfer at a boundary (surface) within a fluid, the thermal entrance length is the distance required for the Nusselt number (ratio of convective to conductive heat transfer across normal to the boundary) associated with the pipe flow to decrease to within 5% of its value for a fully developed heat flow.

- Distance-to-spot ratio

The distance-to-spot ratio of an infrared temperature sensing device is the ratio of the distance to the object and the diameter of the t° measurement area.

- Bjerrum length

The Bjerrum length is the separation at which the electrostatic interaction between two elementary charges is comparable in magnitude to the thermal energy scale, $k_{B} T$, where k_{B} is the Boltzmann constant and T is the temperature in kelvin.

- Lagrangian radius

The Lagrangian radius of the particle is the distance from the explosion center to a particle at the moment the shock front passes through it. Cf. in Chap. 25 unrelated Lagrangian radii in the item radii of a star system.

- Reynolds number

For an object of a characteristic length (Chap. 29) l, flowing with mean relative velocity v in a fluid (liquid or gas) of the density ρ and dynamic viscosity μ, the Reynolds number is the ratio $R e=\frac{\rho v l}{\mu}$ of inertial forces to viscous forces.
The flow is smooth (or laminar) if $R e$ is low (viscous forces dominate), rough (or turbulent) if $R e$ is high (usually $R e \geq 10^{5}$) and transitional in between. In a Stokes flow (laminar flow with very low Re), the inertial forces are negligible.
The law of the wall (von Kármán, 1930) states that the average velocity of a turbulent flow close to the wall (boundary of the fluid region) is proportional to $\ln y^{+}$, where the wall distance $y^{+}=\frac{u^{\prime}}{v} y$ is the distance y to the wall, made dimensionless with the friction velocity u^{\prime} at the wall and fluid's kinematic viscosity ν.
In swimming, $R e$ is $10^{-5}, 4 \times 10^{-3}, 10^{-1}-10,5 \times 10^{4}$ and 3×10^{8} for bacterium, spermatozoa, small zooplankton, large fish and whale, respectively. In flying, $R e$ is $30-4 \times 10^{4}$ for insects, $10^{3}-10^{5}$ for birds, 1.6×10^{6} for a glider and 2×10^{9} for Boeing 747. Blood flow has $R e=2 \times 10^{-3}, 140,500$ and 3.4×10^{3} in capillary, vein, artery and aorta, respectively. $R e$ is a dimensionless parameter, i.e., the units of measurement in it cancel out. Examples of other such flow parameters follow. The Mach number Ma is a ratio of the speed of flow to the speed of sound in a fluid. $M a$ is ratio of inertia to compressibility (volume change as a response to a pressure). The flow is subsonic, supersonic, transonic or hypersonic if $M a<1$, $M a>1,0.8 \leq M a \leq 1.5$ or $M a \geq 5$, respectively. Ma governs compressible (i.e., those with $M a>0.3$) flows. The Froude number $F r=\frac{v}{g l}$, where g is Earth gravity, is the ratio of the inertia to gravitation; it governs open-channel flows.
The lift L and drag D are perpendicular and, respectively, parallel (to the oncoming flow direction) components of the force fluid flowing past the surface of a body exerts on it. In a flight without wind, the lift-to-drag ratio $\frac{L}{D}$ is the horizontal distance traveled divided by the altitude lost. $\frac{L}{D}$ is $4,17,20,37$ for cruising house sparrow, Boeing 747, albatross, Lockheed U-2, respectively. Küchemann, 1978, found that the maximal (so, range-maximizing) $\frac{L}{D}$ for high $M a$ is $\approx 4+\frac{12}{M a}$.

- Turbulence length scales

Turbulence is the time dependent chaotic behavior of fluid flows. The turbulent field consists of the superposition of interacting eddies (coherent patterns of velocity, vorticity and pressure) of different length scales. The kinetic energy cascades from the eddies of largest scales down to the smallest ones generated from the larger ones through the nonlinear process of vortex stretching.
The turbulence length scales are measures of the eddy scale sizes in turbulent flow. Such standard length scales for largest, smallest and intermediate eddy sizes are called integral length scale, Kolmogorov microscale and

Taylor microscale, respectively. The corresponding ranges are called energycontaining, dissipation and inertial range.
Integral length scale measures the largest separation distance over which components of the eddy velocities at two distinct points are correlated; it depends usually of the flow geometry. For example, the largest integral scale of pipe flow is the pipe diameter. For atmospheric turbulence, this length can reach several hundreds km . On intermediate Taylor microscale, turbulence kinetic energy is neither generated nor destroyed but is transferred from larger to smaller scales. At the smallest scale, the dynamics of the small eddies become independent of the large-scale eddies, and the rate at which energy is supplied is equal to the rate at which it is dissipated into heat by viscosity. The Kolmogorov length microscale is given by $\tau=\left(\frac{v^{3}}{\epsilon}\right)^{\frac{1}{4}}$, where ϵ is the average rate of energy dissipation per unit mass and v is the kinematic viscosity of the fluid. This microscale describe the smallest scales of turbulence before viscosity dominates. Similarly, the Batchelor scale (usually, smaller) describes the smallest length of fluctuations in scalar concentration before molecular diffusion dominates. Quantum turbulence is the chaotic motion of quantum fluids (say, superfluids) at high flow rates and close to absolute zero.
Turbulence is well described by the Navier-Stokes equations. Clay Mathematics Institute list the investigation, whether those equations in 3D always have a nonsingular solution, among the six US $\$ 1,000,000$-valued open problems.

- Meter of water equivalent

The meter of water equivalent (mwe) of a material is the thickness of that material that provides the equivalent shielding of 1 m of water.
Also, the mass balance of a glacier is reported in mwe as the ratio of the volume (of water that would be obtained from melting the snow/ice) and area; it gives the change of thickness in water depth.
Unrelated centimeter of water $\left(\mathrm{cmH}_{2} \mathrm{O}\right)$ is the pressure $\approx 98.1 \mathrm{~Pa}$ (pascals) exerted by a column of water of 1 cm in height at $4^{\circ} \mathrm{C}$ at acceleration g. A similar manometric unit of pressure is the millimeter of mercury $(\mathrm{mmHg}) \approx 1$ Torr $\approx 133.3 \mathrm{~Pa}$.

- Hydraulic diameter

For flow in a (in general, noncircular) pipe or tube, the hydraulic diameter is $\frac{4 A}{P}$, where A is the cross-sectional area and P is the wetted perimeter, i.e., the perimeter of all channel walls that are in direct contact with the flow. So, in open liquid flow, the length exposed to air is not included in P. The hydraulic diameter of a circular tube is equal to its inside diameter.
The hydraulic radius is (nonstandardly) defined as $\frac{1}{4}$ of the hydraulic diameter.

- Hydrodynamic radius

The hydrodynamic radius (or Stokes radius, Stokes-Einstein radius) of a molecule, undergoing diffusion in a solution (homogeneous mixture of two or more substances), is the hypothetical radius of a hard sphere which diffuses with the same rate as the molecule. Cf. the characteristic diameters in Chap. 29.

- Wigner-Seitz radius

The Wigner-Seitz radius is the radius of a sphere whose volume is equal to the mean volume $\frac{V}{N}=\frac{1}{n}$ per particle in a solid; n is the particle density. So, it is $\left(\frac{4}{3 \pi n}\right)^{\frac{1}{3}}$, an estimation of the mean interparticle distance.

- Chromatographic migration distances

In thin layer Chromatography, the solvent migration distance is the distance $d_{s l}$ traveled by the front line of the liquid or gas entering a chromatographic bed for elution (the process of using a solvent to extract an absorbed substance from a solid medium). The migration distance of substance is distance $d_{s b}$ traveled by the center of a spot. The retardation and retention factors are $\frac{d_{s l}}{d_{s b}}$ and $\frac{d_{s b}}{d_{s l}}-1$.
The retention distance is a measure of equal-spreading of the spots on the chromatographic plate, defined via retention factors of sorted compounds.

- Droplet radii

Let A be a small liquid droplet in equilibrium with a supersaturated vapor, i.e., a vapor which will begin to condense in the presence of nucleation centers.
Let ρ_{l}, ρ_{v} be the liquid and vapor density, respectively, and let p_{l}, p_{v} be the liquid and vapor pressure. Let γ and γ_{0} be the actual value at the surface of tension and planar limit value of surface tension.
The capillarity radius R_{c} of A is defined by the Young-Laplace equation $\frac{\gamma_{0}}{R_{c}}=$ $\frac{1}{2}\left(p_{l}-p_{v}\right)$.
The surface of tension radius (or Kelvin-Laplace radius, equilibrium radius of curvature) R_{s} is defined by $\frac{\gamma}{R_{s}}=\frac{1}{2}\left(p_{l}-p_{v}\right)$. The reciprocal of R_{s} is the mean curvature $H=\frac{1}{2}\left(k_{1}+k_{2}\right)$ (cf. Chap. 8) of the Gibbs surface of tension for which the Young-Laplace equation holds exactly for all droplet radii.
The equimolar radius (or Gibbs adsorption radius) R_{e} of A is the radius of a ball of equimolar (i.e., with the same molar concentration) volume. Roughly, this ball has uniform density ρ_{l} in the cubic cell of density ρ_{v}.
The Tolman length and the excess equimolar radius of the droplet A are $\delta=$ $R_{e}-R_{s}$ and $\tau=R_{e}-R_{c}$, respectively.
On the other hand, the cloud drop effective radius is a weighted mean of the size distribution of cloud droplets.

- Dephasing length

Intense laser pulses traveling through plasma can generate, for example, a wake (the region of turbulence around a solid body moving relative to a liquid, caused by its flow around the body) or X-rays. The dephasing length is the distance after which the electrons outrun the wake, or (for a given mismatch in speed of pulses and X-rays) laser and X-rays slip out of phase.

- Healing length

A Bose-Einstein condensate (BEC) is a state of dilute gas of weakly interacting bosons confined in an external potential, and cooled to temperatures near absolute zero (0 K , i.e., $-273.15^{\circ} \mathrm{C}$), so that a large fraction of them occupy the lowest quantum state of the potential, and quantum effects become apparent on a macroscopic scale. Examples of BEC are superconductors (materials loosing all electrical resistance if cooled below critical temperature), superfluids
(liquid states with no viscosity) and supersolids (spatially ordered materials with superfluid properties). A BEC at $4.5 \times 10^{-9} \mathrm{~K}$ was obtained by Leanhardt et al. in 2003.
The healing length of BEC is the width of the bounding region over which the probability density of the condensate drops to zero. For a superfluid, say, it is a length over which the wave function can vary while still minimizing energy.

- Coupling length

In optical fiber devices mode coupling occurs during transmission by multimode fibers (mainly because of random bending of the fiber axis). Between two modes, a and b, the coupling length l_{c} is the length for which the complete power transfer cycle (from a to b and back) take place, and the beating length z is the length along which the modes accumulate a 2π phase difference. The resonant coupling effect is adiabatic (no heat is transferred) if and only if $l_{c}>z$.
Furuya-Suematsu-Tokiwa, 1978, define the coupling length of modes a and b as the length of transmission at which the ratio $\frac{I_{a}}{I_{b}}$ of mode intensities reach e^{2}.

- Localization length

Generally, the localization length is the average distance between two obstacles in a given scale. The localization scaling theory of metal-insulator transitions predicts that, in zero magnetic field, electronic wave functions are always localized in disordered 2D systems over a length scale called the localization length.

- Thermodynamic length

Thermodynamic length (Weinhold, 1975) is a Riemannian metric defined on a manifold of equilibrium states of a thermodynamic system.
It is a path function that measures the distance along a path in the state space. Cf. the thermodynamic metrics in Chap. 7.

- Magnetic length

The magnetic length (or effective magnetic length) is the distance between the effective magnetic poles of a magnet.
The magnetic correlation length is a magnetic-field dependent correlation length.

- Correlation length

The correlation length (or correlation radius) is the distance from a point beyond which there is no further correlation of a physical property associated with that point. It is used mainly in statistical mechanics as a measure of the order in a system for phase transitions (fluid, ferromagnetic, nematic).
For example, in a spin system at high temperature, the correlation length is $-\frac{\ln d \cdot C(d)}{d}$ where d is the distance between spins and $C(d)$ is the correlation function.
In particular, the percolation correlation length is an average distance between two sites belonging to the same cluster, while the thermal correlation length is an average diameter of spin clusters in thermal equilibrium at a given temperature. In second-order phase transitions, the correlation length diverges at the critical point.

In wireless communication systems with multiple antennas, spatial correlation is a correlation between a signal's direction and the average received signal gain.

- Long range order

A physical system has long range order if remote portions of the same sample exhibit correlated behavior. For example, in crystals and some liquids, the positions of an atom and its neighbors define the positions of all other atoms.
Examples of long range ordered states are: superfluidity and, in solids, magnetism, charge density wave, superconductivity. Most strongly correlated systems develop long range order in their ground state.
Short range refers to the finite correlation length, say, to the first- or second-nearest neighbors of an atom.
The system has long range order, quasi-long range order or is disordered if the corresponding correlation function decays at large distances to a constant, to 0 polynomially, or to 0 exponentially. Cf. long range dependency in Chap. 18.

- Spatial coherence length

The spatial coherence length is the propagation distance from a coherent source to the farthest point where an electromagnetic wave still maintains a specific degree of coherence. This notion is used in Telecommunication Engineering (usually, for the optical regime) and in synchrotron X-ray Optics (the advanced characteristics of synchrotron sources provide highly coherent X-rays).
The spatial coherence length is about $20 \mathrm{~cm}, 100 \mathrm{~m}$ and 100 km for helium-neon, semiconductor and fiber lasers, respectively. Cf. temporal coherence length which describes the correlation between signals observed at different moments of time.
For vortex-loop phase transitions (superconductors, superfluid, etc.), coherence length is the diameter of the largest thermally excited loop. Besides coherence length, the second characteristic length (cf. Chap. 29) in a superconductor is its penetration depth. If the ratio of these values (the Ginzburg-Landau parameter) is $<\sqrt{2}$, then the phase transition to superconductivity is of second-order.

- Decoherence length

In disordered media, the decoherence length is the propagation distance of a wave from a coherent source to the point beyond which the phase is irreversibly destroyed (for example, by a coupling with noisy environment).

- Critical radius

Critical radius is the minimum size that must be formed by atoms or molecules clustering together (in a gas, liquid or solid) before a new-phase inclusion (a bubble, a droplet, or a solid particle) is stable and begins to grow.

- Binding energy

The binding energy of a system is the mechanical energy required to separate its parts so that their relative distances become infinite. For example, the binding energy of an electron or proton is the energy needed to remove it from the atom or the nucleus, respectively, to an infinite distance.
In Astrophysics, gravitational binding energy of a celestial body is the energy required to disassemble it into dust and gas, while the lower gravitational
potential energy is needed to separate two bodies to infinite distance, keeping each intact.

- Metric theory of gravity

A metric theory of gravity assumes the existence of a symmetric metric (seen as a property of space-time itself) to which matter and nongravitational fields respond. Such theories differ by the types of additional gravitational fields, say, by dependency or not on the location and/or velocity of the local systems. General Relativity is one such theory; it contains only one gravitational field, the space-time metric itself, and it is governed by Einstein's partial differential equations. It has been found empirically that, besides Nordström's 1913 conformally-flat scalar theory, every other metric theory of gravity introduces auxiliary gravitational fields.
A bimetric theory of gravity is (Rosen, 1973) a metric theory of gravity in which two, instead of one, metric tensors are used for, say, effective Riemannian and background Minkowski space-times. But usually, rather two frames (not two metric tensors) are considered. Cf. multimetric in Chap. 3.
The Brans-Dicke theory is a metric theory of gravity, in which $\frac{1}{G}$, where G is the gravitational constant, is replaced by a scalar field. Another direct competitor of General Relativity is affine Einstein-Cartan-Sciama-Kibble theory relaxing the assumption that the metric be torsion-free and interpreting spin as affine torsion. It supposes (Sakharov, 1967) Induced Gravity with space-time background emerging as a mean field approximation of underlying microscopic degrees of freedom. Such quantum gravity is implied by a World Crystal model of quantum space-time.
Østvang, 2001, proposed a quasi-metric framework for relativistic gravity.
Classical physics adequately describes gravity only for masses of $10^{-23}-10^{30} \mathrm{~kg}$.

- Schwarzschild radius

The Schwarzschild radius of a mass m is the radius $r_{s}(m)=\frac{2 G m}{c^{2}}=\frac{2 m}{m_{P}} l_{P}$ of a sphere S such that, if m is compressed within S, it will become a Schwarzschild (i.e., uncharged and with angular momentum zero) black hole, and so, the escape speed from the surface of S would be the speed c of light.
For such hole, the radii of photon sphere (where photons are forced by gravity to travel in circular orbits), of marginally bound orbit (where a test particle starts to be gravitationally bound) and of marginally stable orbit (smallest circular orbit for material, usually the inner edge of the accretion cloud) are $\frac{3}{2} r_{g}, 2 r_{g}$ and $3 r_{g}$. A typical (stellar) black hole has mass $\approx 6 M_{S u n}$ (where $M_{S u n}=2 \times 10^{30} \mathrm{~kg}$ is the solar mass), diameter $\approx 18 \mathrm{~km}$, temperature $\approx 10^{-8} \mathrm{~K}$ and lifetime $\approx 2 \times 10^{68}$ years. The black holes in our galaxy and in the galaxy NGC 4889 (largest known black hole at 2013) are supermassive: 4×10^{6} and 21×10^{9} suns. The radius of $\operatorname{Sgr} A^{*}$, "our" black hole, is at most 12.5 light-hours (45 AU) since, otherwise, the star S2 would be ripped apart by hole's tidal forces.
Most black holes do not exceed 0.1% of the mass of their host galaxies, but the one in NGC 1277 reached 17×10^{9} suns, i.e., 14% of the mass of this galaxy. The smallest known black holes, XTE J1650-500 and IGR J17091-3624, have mass 3.8 and less than 3 suns. The transition point separating neutron stars and black
holes is expected within 1.7-2.7 $M_{\text {Sun }}$. Neutron stars are composed of the densest known form of matter. The radius of J0348-0432, the largest known (2.04 $M_{\text {Sun }}$) neutron star is $\approx 10 \mathrm{~km}$, i.e., only about twice its Schwarzschild radius.
The "mini" black hole would be a hypothetical Planck particle with mass $\sqrt{\pi} m_{P}$, for which $r_{s}(m)=\lambda_{C}(m)$ (cf. Compton wavelength), and radius $r_{s}\left(\sqrt{\pi} m_{P}\right)=2 \sqrt{\pi} l_{P}$. Cf. planckeon in quantum space-time; it should have radius $l_{P}=\bar{\lambda}_{C}\left(m_{P}\right)$ and mass m_{P}, for which $\bar{\lambda}_{C}(m)=\frac{1}{2} r_{s}(m)$.
A quasar (quasi-stellar radio source) is a compact region in the center of a massive galaxy surrounding its central supermassive black hole; its size is 10-10,000 times the Schwarzschild radius of the black hole.
The Schwarzschild radius of observable Universe is ≈ 10 Gly. So, Pathria and Good, 1972, then Poplawski, from 2010, proposed that the observable Universe is the interior of a black hole existing inside a larger universe, or multiverse.

- Jeans length

The Jeans length (or acoustic instability scale) is (Jeans, 1902) the length scale $L_{J}=v_{s} t_{g}=\frac{v_{s}}{\sqrt{\rho G}}$ of a cloud (usually, of interstellar dust) where thermal energy causing the cloud to expand, is counteracted by self-gravity causing it to collapse. Here v_{s}, t_{g}, ρ are the speed of sound, gravitational free fall time and enclosed mass density. So, L_{j} is also the distance a sound wave would travel in the collapse time.
The Jeans mass is the mass contained in a sphere of Jeans length diameter.

- Acoustic metric

In Acoustics and Fluid Dynamics, the acoustic metric (or sonic metric) is a characteristic of sound-carrying properties of a given medium: air, water, etc.
In General Relativity and Quantum Gravity, it is a characteristic of signalcarrying in a given analog model (with respect to Condensed Matter Physics) where, for example, the propagation of scalar fields in curved space-time is modeled (see, for example, [BLV05]) as the propagation of sound in a moving fluid, or slow light in a moving fluid dielectric, or superfluid (quasi-particles in quantum fluid).
The passage of a signal through an acoustic metric modifies the metric; for example, the motion of sound in air moves air and modifies the local speed of the sound. Such "effective" (i.e., recognized by its "effects") Lorentz metric (cf. Chap. 26) governs, instead of the background metric, the propagation of fluctuations: the particles associated to the perturbations follow geodesics of that metric.
In fact, if a fluid is barotropic and inviscid, and the flow is irrotational, then the propagation of sound is described by an acoustic metric which depends on the density ρ of flow, velocity \mathbf{v} of flow and local speed s of sound in the fluid. It can be given by the acoustic tensor

$$
g=g(t, \mathbf{x})=\frac{\rho}{s}\left(\begin{array}{ccc}
-\left(s^{2}-v^{2}\right) & \vdots-\mathbf{v}^{T} \\
\cdots & \cdots \\
-\mathbf{v} & \vdots & 1_{3}
\end{array}\right)
$$

where 1_{3} is the 3×3 identity matrix, and $v=\|\mathbf{v}\|$. The acoustic line element is

$$
d s^{2}=\frac{\rho}{s}\left(-\left(s^{2}-v^{2}\right) d t^{2}-2 \mathbf{v} d \mathbf{x} d t+(d \mathbf{x})^{2}\right)=\frac{\rho}{s}\left(-s^{2} d t^{2}+(d \mathbf{x}-\mathbf{v} d t)^{2}\right) .
$$

The signature of this metric is $(3,1)$, i.e., it is a Lorentz metric. If the speed of the fluid becomes supersonic, then the sound waves will be unable to come back, i.e., there exists a mute hole, the acoustic analog of a black hole.

The optical metrics are also used in analog gravity and effective metric techniques; they correspond to the representation of a gravitational field by an equivalent optical medium with magnetic permittivity equal to electric one.

- Aichelburg-Sexl metric

In Quantum Gravity, the Aichelburg-Sexl metric (Aichelburg and Sexl, 1971) is a 4D metric created by a relativistic particle (having an energy of the order of the Planck mass) of momentum p along the x axis, described by its line element

$$
d s^{2}=d u d v-d \rho^{2}-\rho^{2} d \phi^{2}+8 p \ln \frac{\rho}{\rho_{0}} \delta(u) d u^{2}
$$

where $u=t-x, v=t+x$ are null coordinates, ρ and ϕ are standard polar coordinates, $\rho=\sqrt{y^{2}+z^{2}}$, and ρ_{0} is an arbitrary scale constant.
This metric admits an nD generalization (de Vega and Sánchez, 1989), given by

$$
d s^{2}=d u d v-\left(d X^{i}\right)^{2}+f_{n}(\rho) \delta(u) d u^{2},
$$

where X^{i} are the traverse coordinates, $\rho=\sqrt{\sum_{1 \leq i \leq n-2}\left(X^{i}\right)^{2}}, f_{n}(\rho)=$ $K\left(\frac{\rho}{\rho_{0}}\right)^{4-n}, k=\frac{8 \pi^{2-0.5 n}}{n-4} \Gamma(0.5 n-1) G P, n>4, f_{4}=8 G P \ln \frac{\rho}{\rho_{0}}, P$ is the particle's momentum.

- Quantum space-time

Quantum space-time is a generalization of the usual space-time in which some variables that ordinarily commute are assumed not to commute, form a different Lie algebra, and, as a result, some variables may become discrete. For example, noncommutative field theory supposes that, on sufficiently small (quantum) distances, the spatial coordinates do not commute, i.e., it is impossible to measure exactly the position of a particle with respect to more than one axis. Any noncommutative algebra with ≥ 4 generators could be interpreted as a quantum space-time.

At Planck scale $l_{P} \approx 1.6 \times 10^{-35} \mathrm{~m}$, "quantum foam" (Wheeler, 1950) is expected: violent warping and turbulence of space-time, which loses the smooth continuous structure (apparent macroscopically) of a Riemannian manifold, to become discrete, fractal, nondifferentiable.
Many models of granular space were proposed. Planckeon is (Markov, 1965) a hypothetical "grain of space" of size l_{P} and Planck rest mass m_{P}. In the World Crystal model, quantum space-time is a lattice with spacing of the order l_{P}, and matter creates defects generating curvature and all effects of General Relativity. A quantum metric is a general term used for a metric expected to describe the space-time at quantum scales. Cf. Rieffel metric space, Fubini-Study distance (Chap. 7), quantum graph (Chap. 15), statistical geometry of fuzzy lumps [ReRo01], quantization of the semimetric cone (Chap. 1) in [IKP90].
Loop Quantum Gravity (LQG), String Theory, Causal Sets and Black Hole Thermodynamics, predict a quantum space-time at Planck scale. LQG predict, moreover, that its geometry (area, volume) is quantized via spin networks (Chap. 15). Analyses of gamma ray bursts rule out quantum graininess at $>10^{-48} \mathrm{~m}$.

- Distances between quantum states

A distance between quantum states is a metric which is preferably preserved by unitary operations, monotone under quantum operations, stable under addition of systems and having clear operational interpretation.
The pure states correspond to the rays in the Hilbert space of wave functions. Every mixed state can be purified in a larger Hilbert space. The mixed quantum states are represented by density operators (i.e., positive operators of unit trace) in the complex projective space over the infinite-dimensional Hilbert space. Let X denote the set of all density operators in this Hilbert space. For two given quantum states, represented by $x, y \in X$, we mention the following main distances on X.
The trace distance is a metric on density matrices defined by
$T(x, y)=\frac{1}{2}\|x-y\|_{t r}=\frac{1}{2} \operatorname{Tr} \sqrt{\left.(x-y)^{*}(x-y)\right)}=\frac{1}{2} \operatorname{Tr} \sqrt{(x-y)^{2}}=\frac{1}{2} \sum_{i}\left|\lambda_{i}\right|$,
where λ_{i} are eigenvalues of the Hermitian matrix $x-y$. It is the maximum probability that a quantum measurement will distinguish x from y. Cf. the trace norm metric $\|x-y\|_{t r}$ in Chap. 12. When matrices x and y commute, i.e., are diagonal in the same basis, $T(x, y)$ coincides with variational distance in Chap. 14.
The quantum fidelity similarity is defined (Jorza, 1994) by

$$
F(x, y)=(\operatorname{Tr}(\sqrt{x} y \sqrt{x}))^{2}=\left(\|\sqrt{x} \sqrt{y}\|_{t r}\right)^{2} .
$$

When the states x and y are classical, i.e., they commute, $\sqrt{F(x, y)}$ is the classical fidelity similarity $\rho\left(P_{1}, P_{2}\right)=\sum_{z} \sqrt{p_{1}(z) p_{2}(z)}$ from Chap. 14.

When x and y are pure states, $F(x, y)$ is called transition probability and $\sqrt{F(x, y)}=\left|\left\langle x^{\prime}, y^{\prime}\right\rangle\right|$ (where x^{\prime}, y^{\prime} are the unit vectors representing x, y) is called overlap. In general, $F(x, y)$ is the maximum overlap between purifications of x and y. Useful lower and upper bounds for $F(x, y)$ are

$$
\operatorname{Tr}(x y)+\sqrt{2\left((\operatorname{Tr}(x y))^{2}-\operatorname{Tr}(x y x y)\right)} \text { (subfidelity) and }
$$

$$
\operatorname{Tr}(x y)+\sqrt{\left.\left.(\operatorname{Tr}(x))^{2}-\operatorname{Tr}\left(x^{2}\right)\right)(\operatorname{Tr}(y))^{2}-\operatorname{Tr}\left(y^{2}\right)\right)} \text { (super-fidelity). }
$$

The Bures-Uhlmann distance is $\sqrt{2(1-\sqrt{F(x, y)})}$. The Bures length (or Bures angle) $\arccos \sqrt{F(x, y)}$; it is the minimal such distance between purifications of x and y. Cf. the Bures metric and Fubini-Study distance in Chap. 7. In general, the Riemannian monotone metrics in Chap. 7 generalize the Fisher information metric on the class of probability densities (classical or commutative case) to the class of density matrices (quantum or noncommutative case). The distances based on the Shannon entropy $H(p)=-\sum_{i} p_{i} \log p_{i}$ are generalized on quantum setting via the von Neumann entropy $S(x)=-\operatorname{Tr}(x \log x)$. The sine distance (Rastegin, 2006) is a metric defined by

$$
\sin \min _{x^{\prime}, y^{\prime}}\left(\arccos \left(\left|\left\langle x^{\prime}, y^{\prime}\right\rangle\right|\right)\right)=\sqrt{1-F(x, y)}
$$

where x^{\prime}, y^{\prime} are purifications of x, y. It holds $1-\sqrt{F(x, y)} \leq T(x, y) \leq$ $\sqrt{1-F(x, y)}$.
Examples of other known metrics generalized to the class of density matrices are the Hilbert-Schmidt norm metric, Sobolev metric (cf. Chap. 13) and MongeKantorovich metric (cf. Chap. 21).

- Action at a distance (in Physics)

An action at a distance is the interaction, without known mediator, of two objects separated in space. Einstein used the term spooky action at a distance for quantum mechanical interaction (like entanglement and quantum nonlocality) which is instantaneous, regardless of distance. His principle of locality is: distant objects cannot have direct influence on one another, an object is influenced directly only by its immediate surroundings.
Alice-Bob distance is the distance between two entangled particles, "Alice" and "Bob". Quantum Theory predicts that the correlations based on quantum entanglement should be maintained over arbitrary Alice-Bob distances. But a strong nonlocality, i.e., a measurable action at a distance (a superluminal propagation of real, physical information) never was observed and is not expected. Salart et al., 2008, estimated that such signal should be 10,000 times faster than light.
At 2012, some quantum information-the polarization property of a photon-to its mate in an entangled pair of photons, was teleported over 143 km . Lee et al., 2011, teleported, preserving superposition states, wave packets of light up to a bandwidth of 10 MHz . Wallraff et al., 2013 designed two atom-like systems,
which formed at $\approx 2 \mathrm{~cm}$ a type of weakly bound molecule, due to the exchange of photons.
Two-particle entanglement occurs in any temperature. Nuclear spins of ions can encode qubits (units of quantum information). Simmons et al., 2013, found that the superposition states (spins) of about 37% of phosphorus ions in a sample (of silicon doped by P) survived 39 min at $25^{\circ} \mathrm{C}$ and 3 h at $-269^{\circ} \mathrm{C}$.
"Mental action at a distance" (say, telepathy, clairvoyance, distant anticipation, psychokinesis) is controversial because it challenge classical concepts of time/causality as well as space/distance.
The term short range interaction is used for the transmission of action at a distance by a material medium from point to point with a certain velocity dependent on properties of this medium. In Information Storage, the term nearfield interaction is used for very short distance interaction using scanning probe techniques. Near-field communication is a set of standards-based technologies enabling short range ($\leq 4 \mathrm{~cm}$) wireless communication between electronic devices.

- Macroscale entanglement/superposition

Quantum superposition is the addition of the amplitudes of wave-functions, occurring when an object simultaneously "possesses" two or more values for an observable quantity, say, the position or energy of a particle. If the system interacts with its environment in a thermodynamically irreversible way (say, the quantity is measured), then quantum decoherence occurs: the state randomly collapses onto one of those values. But it can happen also without any influence from the outside world.
Superposition and entanglement (nonlocal correlation which cannot be described by classical communication or common causes) were observed at atomic scale. Entangling in time (a pair of photons that never existed at the same time) was observed as well. With increasing duration and size/complexity of objects, these quantum effects are lost: decoherence, due to many interactions at the molecular level, occurs. To find out this threshold, if any, is a hot research topic.
Nimmrichter and Hornberger, 2013 assign the macroscopicity μ to a quantum state, if the equivalent (in terms of ruling out even a minimal modification of Quantum Mechanics, which would predict a failure of the superposition principle on the macroscale) superposition state of a single electron last for 10^{τ} seconds. The record score so far is $\mu \approx 12$ and 24 looks reachable. But the Schrödinger's cat (seen as a $4-\mathrm{kg}$ sphere of water) in a superposition, where it sits in two positions spaced 10 cm apart for 1 s , would score unconceivable 57.
Szarek-Aubrun-Ye, 2013, found a threshold $k_{0} \approx \frac{N}{5}$ such that two subsystems of k particles each of a system of N identical particles in a random pure state, typically share entanglement if $k>k_{0}$, and typically do not share it if $k<k_{0}$. "Warm" quantum coherence was observed in plant photosynthesis, animal magnetoreception, our sense of smell and microtubules inside brain neurons. Hameroff and Penrose, 2014: EEG rhythms (brain waves) and consciousness derive from quantum vibrations in microtubules, i.e., on the quantum-realm scale $(\sim 100 \mathrm{~nm})$ rather than, or in addition to, the larger scale of neurons $(4-100 \mu \mathrm{~m})$.

- Entanglement distance

The entanglement distance is the maximal distance between two entangled electrons in a degenerate electron gas beyond which all entanglement is observed to vanish. Degenerate matter (say, a white dwarf star) is matter having so high density that the main contribution to its pressure arises from the Pauli exclusion principle: no two identical fermions may occupy the same quantum state together.

- Tunneling distance

Quantum Tunneling is the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount.
For example, in STM (Scanning Tunneling Microscope), electron tunneling current and a net electric current from a metal tip of STM to a conducting surface result from overlap of electron wavefunctions of tip and sample, if they are brought close enough together and an electric voltage is applied between them.
The tip-sample current depends exponentially (about $\exp \left(-d^{0.5}\right)$) on their distance d, called tunneling distance. Formally, d is the sum of the radii of the electron delocalization regions in the donor and the acceptor atoms.
By keeping the current constant while scanning the tip over the surface and measuring its height, the contours of the surface can be mapped out. The tunneling distance is longer ($<1 \mathrm{~nm}$) in aqueous solution than in vacuum (<0.3 $\mathrm{nm})$.

24.2 Distances in Chemistry and Crystallography

Main chemical substances are ionic (held together by ionic bonds), metallic (giant close packed structures held together by metallic bonds), giant covalent (as diamond and graphite), or molecular (small covalent). Molecules are made of a fixed number of atoms joined together by covalent bonds; they range from small (single-atom molecules in the noble gases) to very large ones (as in polymers, proteins or DNA).

The largest known (55 tons and 12, 4 m in diameter) crystal is a selenite found in Naica Mine, Mexico. The largest stable synthetic molecule is $P G_{5}$ with a diameter of 10 nm and a mass equal to 2×10^{8} hydrogen atoms.

The interatomic distance of two atoms is the distance (in angstroms or picometers, where $1 \AA=10^{-10} \mathrm{~m}=10 \mathrm{pm}$) between their nuclei. The bond between helium atoms in molecules He_{2} is the longest ($54.6 \AA$) and weakest known; it is $0.75 \AA$ in H_{2}.

- Atomic radius

Quantum Mechanics implies that an atom is not a ball having an exactly defined boundary. Hence, atomic radius is defined as the distance from the atomic nucleus to the outermost stable electron orbital in a atom that is at equilibrium.

Atomic radii represent the sizes of isolated, electrically neutral atoms, unaffected by bonding.
Atomic radii are estimated from bond distances if the atoms of the element form bonds; otherwise (like the noble gases), only van der Waals radii are used.
The atomic radii of elements increase as one moves down the column (or to the left) in the Periodic Table of Elements. internuclear distance, Re is the equilibrium internuclear distance (bond length)

- Bond distance

The bond distance (or bond length) is the equilibrium internuclear distance of two bonded atoms. For example, typical bond distances for carbon-carbon bonds in an organic molecule are $0.15,0.13$ and 0.12 pm (picometers $10^{-9} \mathrm{~m}$) for single, double and triple bonds, respectively. The atomic nuclei repel each other; the equilibrium distance between two atoms in a molecule is the internuclear distance at the minimum of the electronic (or potential) energy surface.
Depending on the type of bonding of the element, its atomic radius is called covalent or metallic. The metallic radius is one half of the metallic distance, i.e., the closest internuclear distance in a metallic crystal (lattice of metallic element). Covalent radii of atoms of elements that form covalent bonds are inferred from bond distances between pairs of covalently-bonded atoms. If the two atoms are of the same kind, then their covalent radius is one half of their bond distance. Covalent radii for other elements is inferred by combining the radii of those that bond with bond distances between pairs of atoms of different kind.

- van der Waals contact distance

Intermolecular distance data are interpreted by viewing atoms as hard spheres. The spheres of two neighboring nonbonded atoms (in touching molecules or atoms) are supposed to just touch. So, their interatomic distance, called the van der Waals contact distance, is the sum of radii, called van der Waals radii (of effective sizes), of their hard spheres.
The van der Waals contact distance corresponds to a "weak bond", when repulsion forces of electronic shells exceed London (attractive electrostatic) forces.

- Molecular RMS radius

The molecular RMS radius (cf. radius of gyration in Sect. 24.1) is the root-mean-square distance of a molecule's atoms from their common center of gravity:

$$
\sqrt{\frac{\sum_{1 \leq i \leq n} d_{0 i}^{2}}{n+1}}=\sqrt{\frac{\sum_{i} \sum_{j} d_{i j}^{2}}{(n+1)^{2}}},
$$

where n is the number of atoms in the molecule, $d_{0 i}$ is the Euclidean distance of the i-th atom from the center of gravity of the molecule (in a specified conformation), and $d_{i j}$ is the Euclidean distance between the i-th and j-th atoms.

The mean molecular radius is the number $\frac{\sum_{i} r_{i}}{n}$, where n is the number of atoms, and r_{i} is the Euclidean distance of the i-th atom from the centroid $\frac{\sum_{j} x_{i j}}{n}$ of the molecule (here $x_{i j}$ is the i-th Cartesian coordinate of the j-th atom).

- Molecular sizes

There are various descriptions of the molecular sizes; examples as follows.
The kinetic diameter of a molecule (most applicable to transport phenomena) is its smallest effective dimension.
The effective diameter of a molecule is the general extent of the electron cloud surrounding it as calculated in any of several ways.
Sometimes, it is defined as diameter of the sphere containing 98% of the total electron density; then its half is close to the experimental van der Waals radius. The effective molecular radius is the size a molecule displays in solution. For liquids and solids it is usually defined via packing density.
For a gas, molecular sizes can be estimated from the intermolecular separation, speed, mean free path and collision rate of gas molecules.
For example, in the model of kinetic theory of gases, assuming that molecules interact like hard spheres, the molecular diameter d is $\sqrt{\frac{m}{\pi \sqrt{2} \rho}}$, where m is the mass of molecule, l is mean free path and ρ is density.

- Range of molecular forces

Molecular forces (or interactions) are the following electromagnetic forces: ionic bonds (charges), hydrogen bonds (dipolar), dipole-dipole interactions, London forces (the attraction part of van der Waals forces) and steric repulsion (the repulsion part of van der Waals forces). If the distance (between two molecules or atoms) is d, then (experimental observation) the potential energy function P relates inversely to d^{n} with $n=1,3,3,6,12$ for the above five forces, respectively.
The range (or the radius) of an interaction is considered short if P approaches 0 rapidly as d increases. It is also called short if it is at most $3 \AA$; so, only the range of steric repulsion is short (cf. range of fundamental forces).
An example: for polyelectrolyte solutions, the long range ionic solvent-water force competes with the shorter range water-water (hydrogen bonding) force.
In protein molecule, the range of London van der Waals force is $\approx 5 \AA$, and the range of hydrophobic effect is up to $12 \AA$, while the length of hydrogen bond is $\approx 3 \AA$, and the length of peptide bond is $\approx 1.5 \AA$.

- Chemical distance

Various chemical systems (single molecules, their fragments, crystals, polymers, clusters) are well represented by graphs where vertices (say, atoms, molecules acting as monomers, molecular fragments) are linked by, say, chemical bonding, van der Waals interactions, hydrogen bonding, reactions path.
In Organic Chemistry, a molecular graph $G=(V, E)$ is a graph representing a given molecule, so that the vertices $v \in V$ are atoms and the edges $e \in E$ correspond to electron pair bonds. The Wiener number of a molecule is one half of the sum of all pairwise distances between vertices of its molecular graph. The

Wiener polarity index is the number of unordered vertex pairs at distance 3 in this graph. Cf. Wiener-like distance indices in Chap. 1.
The (bonds and electrons) BE-matrix of a molecule is the $|V| \times|V|$ matrix $\left(\left(e_{i j}\right)\right)$, where $e_{i i}$ is the number of free unshared valence electrons of the atom A_{i} and, for $i \neq j, e_{i j}=e_{j i}=1$ if there is a bond between atoms A_{i} and A_{j}, and $=0$, otherwise.
Given two stoichiometric (i.e., with the same number of atoms) molecules x and y, their Dugundji-Ugi chemical distance is the Hamming metric

$$
\sum_{1 \leq i, j \leq|V|}\left|e_{i j}(x)-e_{i j}(y)\right|,
$$

and their Pospichal-Kvasnička chemical distance is

$$
\min _{\pi} \sum_{1 \leq i, j \leq|V|}\left|e_{i j}(x)-e_{\pi(i) \pi(j)}(y)\right|,
$$

where π is any permutation of the atoms. The above distance is equal to $|E(x)|+|E(y)|-2|E(x, y)|$, where $E(x, y)$ is the edge-set of the maximum common subgraph of the molecular graphs $G(x)$ and $G(y)$. Cf. Zelinka distance in Chap. 15.
The Pospichal-Kvasnička reaction distance, assigned to a molecular transformation $x \rightarrow y$, is the minimum number of elementary transformations needed to transform $G(x)$ onto $G(y)$.

- Molecular similarities

Given two 3D molecules x and y characterized by some structural (shape or electronic) property P, their similarities are called molecular similarities.
The main electronic similarities correspond to some correlation similarities from Chap. 17. For example, the Carbó similarity (Carbó-Leyda-Arnau, 1980) is the cosine similarity (cf. Chap. 17) defined by

$$
\frac{\langle f(x), f(y)\rangle}{\|f(x)\|_{2} \cdot\|f(y)\|_{2}}
$$

where the electron density function $f(z)$ of a molecule z is the volumic integral $\int P(z) d v$ over the whole space.
The Hodgkin-Richards similarity (1991) is defined (cf. the Morisita-Horn similarity in Chap. 17) by

$$
\frac{2\langle f(x), f(y)\rangle}{\|f(x)\|_{2}^{2}+\|f(y)\|_{2}^{2}},
$$

where $f(z)$ is the electrostatic potential or electrostatic field of a molecule z. Petitjean, 1995, proposed to use the distance $V(x \cup y)-V(x \cap y)$, where the volume $V(z)$ of a molecule z is the union of van der Waals spheres of its atoms. Cf. van der Waals contact distance and, in Chap. 9, Nikodym metric $V(x \Delta y)$.

- End-to-end distance

A polymer is a large macromolecule composed of repeating structural units connected by covalent chemical bonds.
For a coiled polymer, the end-to-end distance (or displacement length) is the distance between the ends of the polymer chain. The maximal possible such distance (i.e., when the polymer is stretched out) is called contour length.
The root-mean-square end-to-end distance of ideal linear or randomly branched polymer scales as $n^{0.5}$ or, respectively, $n^{0.25}$ if n is the number of monomers. For a polymer chain following a random walk in 3D, it is also 6 times molecular
RMS radius. The strand length in Chap. 23 is the end-to-end distance for a special linear polymer, single-stranded RNA or DNA.

- Persistence length

The persistence length of a polymer chain is the length over which correlations in the direction of the tangent are lost.
The molecule behaves as a flexible elastic rod for shorter segments, while for much longer ones it can only be described statistically, like a 3D random walk. Cf. correlation length.
Twice the persistence length is the Kuhn length, i.e., the length of hypothetical segments which can be thought of as if they are freely jointed with each other in order to form given polymer chain.

- Bend radius

In Polymer Tubing, the bend radius of a tube is the distance from the center of an imaginary circle on which the arc of the bent tube falls to a point on that arc.

- Intermicellar distance

Micelle is an electrically charged particle built up from polymeric molecules or ions and occurring in certain colloidal electrolytic solutions like soaps and detergents. This term is also used for a submicroscopic aggregation of molecules, such as a droplet in a colloidal system, and for a coherent strand or structure in a fiber.
The intermicellar distance is the average distance between micelles.

- Interionic distance

An ion is an atom that has a positive or negative electrical charge. The interionic distance is the distance between the centers of two adjacent (bonded) ions. Ionic radii are inferred from ionic bond distances in real molecules and crystals.
The ion radii of cations (positive ions, for example, sodium Na^{+}) are smaller than the atomic radii of the atoms they come from, while anions (negative ions, for example, chlorine Cl^{-}) are larger than their atoms.

- Repeat distance

Given a periodic layered structure, its repeat distance is the period, i.e., the spacing between layers (say, lattice planes, bilayers in a liquid-crystal system, or graphite sheets along the unit cell's hexagonal axis).

A crystal lattice, the unit cell in it and cell spacing are called also a repeat pattern, basic repeat unit and cell repeat distance (or lattice spacing, interplaner distance).
The repeat distance in a polymer is the ratio of the unit cell length along its axis of propagation to the number of monomeric units this length covers.

- Metric symmetry

The full crystal symmetry is given by its space group.
The metric symmetry of the crystal lattice is its symmetry without taking into account the arrangement of the atoms in the unit cell.
In between lies the Laue group giving equivalence of different reflexions, i.e., the symmetry of the crystal diffraction pattern. In other words, it is the symmetry in the reciprocal space (taking into account the reflex intensities).
The Laue symmetry can be lower than the metric symmetry (for example, an orthorhombic unit cell with $a=b$ is metrically tetragonal) but never higher.
There are seven crystal systems-triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic (or isometric). Taken together with possible lattice centerings, there are 14 Bravais lattices.

- Homometric structures

Two structures of identical atoms are homometric if they are characterized by the same multiset of interatomic distances; cf. distance list in Chap. 1.
Homometric crystal structures produce identical X-ray diffraction patterns.
In Music, two rhythms with the same multiset of intervals are called homometric.

- Dislocation distances

In Crystallography, a dislocation is a defect extending through a crystal for some distance (dislocation path length) along a dislocation line. It either forms a complete loop within the crystal or ends at a surface or other dislocation.
The mean free path of a dislocation is (Gao et al., 2007), in 2D, the average distance between its origin and the nearest particle or, in 3D, the maximum radius of a dislocation loop before it reaches a particle in the slip plane.
The pinning distance is the distance between two endpoints of a mobile dislocation, where one of the endpoints has to be within the volume. It is a characteristic length for the dislocation microstructure.
The Burgers vector of a dislocation is a crystal vector denoting the direction and magnitude of the atomic displacement that occurs within a crystal when a dislocation moves through the lattice. A dislocation is called edge, screw or mixed if the angle between its line vector and the Burgers vector is $90^{\circ}, 0^{\circ}$ or otherwise, respectively. The edge dislocation width is the distance over which the magnitude of the displacement of the atoms from their perfect crystal position is greater than $\frac{1}{4}$ of the magnitude of the Burgers vector.
The dislocation density ρ is the total length of dislocation lines per unit volume; typically, it is $10 \mathrm{~km} \mathrm{per} \mathrm{cm}^{3}$ but can reach $10^{6} \mathrm{~km} \mathrm{per} \mathrm{cm}^{3}$ in a heavily deformed
metal. The average distance between dislocations depends on their arrangement; it is $\rho^{-\frac{1}{2}}$ for a quadratic array of parallel dislocations. If the average distance decreases, dislocations start to cancel each other's motion.
The spacing dislocation distance is the minimum distance between two dislocations which can coexist on separate planes without recombining spontaneously.

- Dynamical diffraction distances

Diffraction is the apparent bending of propagating waves around obstacles of about the wavelength size. Diffraction from a 3D periodic structure such as an atomic crystal is called Bragg diffraction. It is a convolution of the simultaneous scattering of the probe beam (light as X-rays, or matter waves such as electrons or neutrons) by the sample and interference (superposition of reflections from crystal planes).
The Bragg Law, modeling diffraction as reflexion from crystal planes of atoms, states that waves (with wavelength λ scattered under angle θ from planes at spacing d) interfere only if they remain in phase, i.e., $\frac{2 d \sin \theta}{\lambda}$ is an integer.
The decay of intensity with depth traversed in the crystal occurs by dynamical extinction, redistributing energy within the wave field, and by photoelectric absorption (a loss of energy from the wave field to the atoms of the crystal).
The former kinematic theory works for imperfect crystals and estimates absorption. The dynamical (multiple diffraction) theory is used to model the perfect (no disruptions in the periodicity) crystals. It considers the incident and diffracted wave fronts as coupled/interacting parts of a wave field and the periodically varying electrical susceptibility of the medium so as to satisfy the Maxwell equations.
Dynamical theory distinguishes two cases: Laue (or transmission) and Bragg (or reflexion) case, when the reflected wave is directed toward the inside and outside of the crystal. The wave field is represented by its dispersion surface. The inverse of the diameter of this surface is called (Autier, 2001) the Pendellösung distance Λ_{L} in the Laue case and the extinction distance Λ_{B} in the Bragg case.
At the exit face of the crystal, the wave splits into two single waves with different directions: incident 0-beam and diffracted H-beam. With increasing thickness of the crystal, the wave leaving it will first appear mainly in the 0 -beam, then entirely in the H-beam at thickness $\frac{\Lambda_{L}}{2}$, and then it will oscillate between these beams with a period Λ_{L}, called the Pendellösung length; cf. similar coupling length.
The wave amplitude (and the intensity of the diffracted beam) is transferred back-and-forth once, i.e., the physical distance acquires a phase change of 2π. Pendellösung oscillations happen also in Bragg case, but with very rapidly decaying amplitudes, and Pendellösung fringes are visible only for θ close to 0^{0} or 45^{0}.
Diffraction that involves multiple scattering events is called extinction since it reduces the observed integrated diffracted intensity. Extinction is very significant
for perfect crystals and is then called primary extinction. In the Bragg case, the primary extinction length (James, 1964) is the inverse of the extinction factor (maximum extinction coefficient for the middle of the range of total reflection):

$$
\frac{\pi V \cos \theta}{\lambda r_{e}|F| C}
$$

where F, C (valued 1 or $\cos 2 \theta$) are the structure and polarization factors, V is the volume of unit cell, $r_{e} \approx 2.81794 \times 10^{-15} \mathrm{~m}$ is the classical electron radius and λ is the X-ray beam wavelength. The diffracted intensity with sufficiently large thickness no longer increases significantly with increased thickness.
The extinction length of an electron or neutron diffraction is $\frac{\pi V \cos \theta}{\lambda|F|}$. Half of it gives the number of atom planes needed to reduce the beam to 0 intensity.
The X-ray penetration depth (or attenuation length, mean free path, extinction distance) is (Wolfstieg, 1976) the depth into the material where the intensity of the diffracted beam has decreased e-fold. Cf. penetration depth.
In Gullity, 1956, X-ray penetration depth is the depth z such that $\frac{I_{z}}{I_{\infty}}=1-\frac{1}{e}$, where I_{∞}, I_{z} are the total diffraction intensities given from the whole specimen and, respectively, the range between the surface and the depth, z, from it.

- X-ray absorption length

The absorption edge is a sharp discontinuity in the absorption spectrum of Xrays by an element that occurs when the energy of the photon is just above the binding energy of an electron in a specific shell of the atom.
The X-ray absorption length of a crystal is the thickness s of the sample such that the intensity of the X-rays incident upon it at an energy 50 eV above the absorption edge is attenuated e-fold.
For an X-ray laser, the extinction length is the thickness needed to fully reflect the beam; usually, it is a few microns while the absorption length is much larger. In Segmüller, 1968, the absorption length is $\frac{\sin \theta}{\mu}$, where μ is the linear absorption coefficient, and the beam enters the crystal at an angle θ.

- Diamond-cutting distances

Diamond is the hardest natural gem and the only gemstone composed of a single element-carbon. Diamond takes a fine polish, which makes its surfaces highly reflective. Color in diamond (the rarest being red) is caused by structural irregularities, or trace elements. Diamonds are graded according to carat weight, clarity, color and cut. Diamonds are cut to maximize the play of light within the stone. Their beauty comes from a combination of fire (rainbow flash from within) and brilliance (burst of sparkling light). Both are a direct result of the cut.
A faceted stone can be divided into an upper (crown) and lower (pavilion) section. The perimeter, where both parts meet, is referred to as the girdle. The depth of a gemstone is measured from the table (highest crown facet) to the culet (tip of the pavilion). On a round brilliant diamond, the depth percentage represents the ratio of the table-culet distance to the average girdle diameter.
Normally, the table is the largest surface on a gemstone. On a round brilliantcut diamond it forms an octagon, but some cutting styles do not have a table.

The table percentage of a diamond represents the ratio of table width to overall stone width. A beautiful, well-cut stone will normally have a table percentage 53$64 \%$. A stone's luster (appearance of the surface dependent upon its reflecting qualities) is directly affected by its depth and table percentages.

Chapter 25
 Distances in Earth Science and Astronomy

25.1 Distances in Geography

- Spatial scale

In Geography, spatial scales are shorthand terms for distances, sizes and areas. For example, micro, meso, macro, mega may refer to local (0.001-1), regional ($1-100$), continental $(100-10,000)$, global $(>10,000) \mathrm{km}$, respectively.

- Earth radii

The Earth's maximal and minimal radii (the center-surface distances) are $6,384 \mathrm{~km}$ (the Chimborazo's summit) and $6,353 \mathrm{~km}$ (the Arctic Ocean's floor). An object, moved from the 2 nd spot to the 1 st, will loose $\approx 1 \%$ of its weight.
In the ellipsoidal model, the Earth's equatorial radius (semi-major axis) a, is $6,378 \mathrm{~km}$ and the polar radius (semi-minor axis) b, is $6,357 \mathrm{~km}$. The equatorial and polar radii of curvature are $\frac{b^{2}}{a}$ and $\frac{a^{2}}{b}$. The mean radius is $\frac{2 a+b}{3}=6,371 \mathrm{~km}$. The Earth's authalic and volumetric radius (the radii of the spheres with the same surface area and volume, respectively, as the Earth's ellipsoid) are 6,371 and $6,371 \mathrm{~km}$; cf. the characteristic diameters in Chap. 29.
In Telecommunications, the effective Earth radius is the radius of a sphere for which the distance to the radio horizon, assuming rectilinear propagation, is the same as that for the Earth with an assumed uniform vertical gradient of atmospheric refractive index. For the standard atmosphere, this radius is $\frac{4}{3}$ that of the Earth.

- Great circle distance

The great circle distance (or orthodromic distance, air line) is the shortest distance between points x and y on the Earth's surface measured along a path on this surface. It is the length of the great circle arc, passing through x and y, in the spherical model of the planet. Cf. spherical metric in Chap. 6.

Let δ_{1}, ϕ_{1} be the latitude and the longitude of x, and δ_{2}, ϕ_{2} be those of y; let r be the Earth's radius. Here $2 r^{2}=a^{2}+b^{2}$, where a and b are the equatorial and polar radii of the Earth. Then the great circle distance is equal to

$$
r \arccos \left(\sin \delta_{1} \sin \delta_{2}+\cos \delta_{1} \cos \delta_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right)
$$

In the spherical coordinates (θ, ϕ), where ϕ is the azimuthal angle and θ is the colatitude, the great circle distance between $x=\left(\theta_{1}, \phi_{1}\right)$ and $y=\left(\theta_{2}, \phi_{2}\right)$ is

$$
r \arccos \left(\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right)
$$

For $\phi_{1}=\phi_{2}$, the formula above reduces to $r\left|\theta_{1}-\theta_{2}\right|$.
The tunnel distance between points x and y is the length of the line segment through 3D space connecting them. For a spherical Earth, this line is the chord of the great circle between the points.
The Earth resembles a flattened spheroid with extreme values for the radius of curvature of $6,335.4 \mathrm{~km}$ at the equator and $6,399.6 \mathrm{~km}$ at the poles. The spheroidal distance between points x and y is their distance in this spheroidal model.
The geoid (the shape the Earth would have if it was entirely covered by water and influenced by gravity alone) looks like a lumpy potato; cf. potato radius.

- Loxodromic distance

A loxodrome (or, rhumb line) is a curve on the Earth's surface that crosses each meridian at the same angle. It is the path taken by a ship or plane maintaining a constant compass direction; it is a straight line on the Mercator projection.
The loxodromic distance is a distance between two points on the Earth's surface on the rhumb line joining them. It is never shorter than the great circle distance.
The nautical distance is the length in nautical miles of the rhumb line joining any two places on the Earth's surface. One nautical mile is equal to $1,852 \mathrm{~m}$.

- Continental shelf distance

Article 76 of the United Nations Convention on the Law of the Sea (1999) defined the continental shelf of a coastal state (its sovereignty domain) as the seabed and subsoil of the submarine areas that extend beyond its territorial sea as the natural prolongation of its land territory to the outer edge of the continental margin. It postulated that the continental shelf distance, i.e., the range distance from the baselines from which the breadth of the territorial sea is measured to above the other edge, should be within 200-350 nautical miles ($370-648 \mathrm{~km}$), and gave rules of its (almost) exact determination.
Territorial sea is a belt of coastal waters extending at most 22 km . Next 370 km form the exclusive economic zone; first 22 km of it form the contiguous zone.
Article 47 of the same convention postulated that, for an archipelagic state, the ratio of the area of its waters (sovereignty domain) to the area of its land, including atolls, should be between 1 to 1 and 9 to 1 , and elaborated case-by-case rules.

There is no defined bottom underground and upper airspace limit for sovereignty. The international waters/seabed and celestial bodies are the common heritage of mankind for the signatories of the Law of the Sea and Outer Space (1967) treaties. Among divided islands, the largest one $\left(785,753 \mathrm{~km}^{2}\right)$ is New Guinea and the smallest one is Koiluoto ($200 \mathrm{~m} \times 110 \mathrm{~m}$, shared by Finland and Russia.

- Port-to-port distance

The port-to-port distance is the shortest great circle distance between two ports that does not intersect any land contours.
Officially published distance between ports represent the shortest navigable route or longer routes using favorable currents and/or avoiding some dangers to navigation. Reciprocal distances between two ports may differ.

- Airway distance

An airway is a designated route in the air. Low altitude (or victor) airways are those below 5,500 m AMSL (above mean sea level). High altitudes (or jet) airways are those above $5,500 \mathrm{~m}$ AMSL. Airway distance is the actual (as opposed to straight line) distance flown by the aircraft between two points, after deviations required by air traffic control and navigation along published routes. The stage length is the distance of a nonstop leg of an itinerary. Radar altitude is the height with respect to the terrain below.

- Point-to-point transit

Point-to-point transit is a route structure (common among low-fare airlines) where a plane, bus or train travels directly to a destination, rather than going through a central hub as in a spoke-hub network.
A point-to-point telecommunication is a connection restricted to two endpoints as opposed to a point-to-multipoint link used in hub and switch circuits; cf. flower-shop metric in Chap. 19.

- Lighthouse distance

The lighthouse distance is the distance from which the light from the lighthouse is first seen from of a sailboat. This distance (in feet) is $\approx 1.17\left(\sqrt{h_{e}}+\sqrt{h_{l}}\right)$, where h_{l} is the lighthouse's height above tide level and h_{e} is the observer's eye level above sea. For $h_{l}=0$, it estimates the distance to horizon.

- Optical horizon

Optical (or, say, neutrino, gravitational wave) horizon is the farthest distance that any photon (respectively, neitrino and gravitational wave) can freely streem.

- Distance to horizon

The horizon is the locus of points at which line of sight is tangent to the surface of the planet. At a height h above the surface of a spherical planet of radius R without atmosphere, the line-of-sight distance to the horizon is $d=\sqrt{(R+h)^{2}-R^{2}}$, and the arc length distance to it along the curved planet's surface is $R \cos ^{-1}\left(\frac{R}{R+h}\right)$.
Taking the equatorial radius $6,378 \mathrm{~km}$ of the Earth as a typical value, gives $d \approx$ $357 \sqrt{h} \mathrm{~m}$ for small $\frac{h}{R}$. Allowing for refraction, gives roughly $d \approx 386 \sqrt{h} \mathrm{~m}$.

The middle distance is halfway between the observer and the horizon.

- Radio distances

Marconi's law, 1897, claims that the maximum signalling distance of an antenna in meters is $c H^{2}$, where H is antenna's height and c is a constant.
The electrical length is the length of a transmission medium or antenna element expressed as the number of wavelengths of the signal propagating in the medium.
In coaxial cables and optical fibers, it is ≈ 1.5 times the physical length.
The electrical distance is the distance between two points, expressed in terms of the duration of travel of an electromagnetic wave in free space between the two points. The light microsecond, $\approx 300 \mathrm{~m}$, is a convenient unit of electrical distance. The main modes of electromagnetic wave (radio, light, X-rays, etc.) propagation are direct wave (line-of-sight), surface wave (interacting with the Earth's surface and following its curvature) and skywave (relying on refraction in the ionosphere).
The line-of-sight distance is the distance which radio signals travel, from one antenna to another, by a line-of-sight path, where both antennas are visible to one another, and there are no metallic obstructions.
The radio horizon is the locus of points in telecommunications at which direct rays from an antenna are tangential to the surface of the Earth. The horizon distance is the distance on the Earth's surface reached by a direct wave; due to ionospheric refraction or tropospheric events, it is sometimes greater than the distance to the visible horizon. In television, the horizon distance is the distance of the farthest point on the Earth's surface visible from a transmitting antenna.
The skip distance is the shortest distance that permits a radio signal (of given frequency) to travel as a skywave from the transmitter to the receiver by reflection (hop) in the ionosphere.
If two radio frequencies are used (for instance, 12.5 and 25 kHz in maritime communication), the interoperability distance and adjacent channel separation distance are the range within which all receivers work with all transmitters and, respectively, the minimal distance which should separate adjacent tunes for narrow-band transmitters and wide-band receivers, in order to avoid interference.
DX is amateur radio slang (and Morse code) for distance; DXing is a distant radio exchange (amplifiers required). Specifically, $D X$ can mean distance unknown, short for DXing and a far-away station that is hard to hear.
Radio waves need 138 ms to go round the world and $\approx 2.57 \mathrm{~s}$ to be reflected from the Moon. Long delayed echoes (LDEs) are radio echoes which return to the sender later than 2.7 s after transmission; it is a rare and not explained phenomenon.

- Ground sample distance

In Remote Sensing of the surfaces of terrestrial objects of the Solar System, including the Earth, the ground sample distance (or GSD, ground sampling distance, ground-projected sample interval) is the spacing of areas represented by each pixel in a digital photo of the ground from air or space.

For example, in an image with GSD 22 m , provided by UK-DMC2 (a British Earth imaging satellite), each pixel represents a ground area of $22^{2} \mathrm{~m}^{2}$.

- Map's distance

The map's distance is the distance between two points on the map (not to be confused with map distance from Chap. 23). The length of a curved line feature on a map is usually measured by an opisometer (or curvimeter).
The horizontal distance is determined by multiplying the map's distance by the numerical scale of the map.
Map resolution is the size of the smallest feature that can be represented on a surface; more generally, it is the accuracy at which the location and shape of map features can be depicted for a given map scale.

- Equidistant map

An equidistant map is a map projection of Earth having a well-defined nontrivial set of standard lines, i.e., lines (straight or not) with constant scale and length proportional to corresponding lines on the Earth. Some examples are:
Sanson-Flamsteed equatorial map: all parallels are straight lines;
cylindric equidistant map: the vertical lines and equator are straight lines;
an azimuthal equidistant map preserves distances along any line through the central point; a Werner cordiform map preserves, moreover, distances along any arc centered at that point.
Maurer-Close (or doubly equidistant) map preserves distances from two central points. If those points are identical, the map is azimuthal equidistant.
A gnomonic map displays all great circles as straight lines; so, it preserves the shortest route between two locations.

- Distance cartogram

A distance (or linear) cartogram is a diagram or abstract map in which distances are distorted proportionally to the value of some thematic variable. Typically, it shows the relative travel times and directions from vertices in a network.

- Tolerance distance

In GIS (computer-based Geographic Information System), the tolerance distance is the maximal distance between points which must be established so that gaps and overshoots can be corrected (lines snapped together) as long as they fall within it.

- Space syntax

Space syntax is a set of theories and techniques (cf. Hiller-Hanson, 1984) for the analysis of spatial configurations complementing Transport Engineering and geographic accessibility analysis in a GIS (Geographical Information System). It breaks down space into components, analyzed as networks of choices, and then represents it by maps and graphs describing the relative connectivity and integration of parts. The basic notions of space syntax are, for a given space:
isovist (or visibility polygon), i.e., the field of view from any fixed point;
axial line, i.e., the longest line of sight and access through open space;
convex space, i.e., the maximal inscribed convex polygon (all points within it are visible to all other points within it).

These components are used to quantify how easily a space is navigable, for the design of settings where way-finding is important such as museums, airports, hospitals. Space syntax has also been applied to predict the correlation between spatial layouts and social effects such as crime, traffic flow, sales per unit area, etc.

- Defensible space

In landscape use, defensible space refers to the 30 m zone surrounding a structure that has been maintained/designed to reduce fire danger. The first 9 m (≈ 30 feet) is where vegetation is kept to a minimum combustible mass. The remaining area $9-30 \mathrm{~m}$ is the reduced fuel zone, where fuels and vegetation should be separated (by thinning, pruning, etc.) vertically and/or horizontally.

- Sanitation distances

The drinking distance of a dwelling is its distance from the closest source of water.
A latrine is a communal facility containing (usually many) toilets. It should be at most 50 m away from dwellings to be served and at least 50 m away from communal food-storage and preparation. A latrine should be $\geq 30 \mathrm{~m}$ from water-storage and treatment facilities, as well as from surface water and shallow groundwater sources. A septic tank should be $\geq 15 \mathrm{~m}$ from a water supply well.
The vertical separation distance is the distance between the bottom of the drain field of a sewage septic system and the underlying water table. This separation distance allows pathogens (disease-causing bacteria, viruses, or protozoa) in the effluent to be removed by the soil before it comes in contact with the groundwater.

- Setback distance

In land use, a setback (or buffer) distance is the minimum horizontal distance at which a building or other structure must legally be from property lines, or the street, or a watercourse, or any other place which needs protection. Setbacks may also allow for public utilities to access the buildings, and for access to utility meters. Cf. also buffer distance and clearance distance in Chap. 29.

- Shy distance

Shy distance is the space left between vehicles (or pedestrians and vehicles) as they pass each other.

- Distance-based numbering

The distance-based exit number is a number assigned to a road junction, usually an exit from a freeway, expressing in miles (or km) the distance from the beginning of the highway to the exit. A milestone (or kilometer sign) is one of a series of numbered markers placed along a road at regular intervals.
The Kilometer Zero (or $k m 0$) is a particular location (usually in the nation's capital city), from which distances are traditionally measured. For France, it is on the square facing the entrance of Notre Dame cathedral in Paris. For Russia, it is in a short passage connecting Red Square with Manege Square in Moscow.
Distance-based house addressing is the system when buildings and blocks are numbered according to the distance, i.e., the number of increments (feet or division of miles), from a given baseline. For example, the number 67 W 430
in Naperville, US, can express that the house is 67 miles west of downtown Chicago. One of the GIS-inspired guidelines: to use the address $n=\frac{d}{10}+100$, where d is the distance in feet of the house from the reference point; roughly, $d=\frac{n}{500}$ miles.
Metes and bounds is a traditional system of land description (in Real Estate and town boundary determination) by courses and distances. Metes is a boundary defined by the measurement of each straight run specified as displacement, i.e., by the distance and direction. Bounds refers to a general boundary description in terms of local geography (along some watercourse, public road, wall, etc.). The boundaries are described in a running prose style, all the way around the parcel of land in sequence.
Surveying is the technique of determining the terrestrial and spatial position of points and the distances and angles between them; cf., for example, Surveyor's Chain measures among imperial length measures in Chap. 27.

- Driveway distances

A driveway is a private road giving access from a public way. The main driveway distances follow.
The throat length is the distance between the street and the end of the driveway inside the land development. It should be 200-250 feet (about 61-76 m or 15 car lengths) for shopping centers and 25-28, 9-15 m for small developments with or without signalized access.
The optimal one-way driveway width is $4.5-5 \mathrm{~m}$. Driveways entering a roadway at traffic signals should have two outbound lanes (for right and left turns) at least 7 m and an inbound lane at least 4.5 m wide. The normal width of residential driveways is $4.5-7.5 \mathrm{~m}$.
The turn radius is the extent that the edge of a commercial driveway is "rounded" to permit easier entry/exit by turning vehicles. In urban settings, it is $8-15 \mathrm{~m}$.

- Road sight distances

In Transportation Engineering, the normal visual acuity is the ability of a person to recognize a letter (or an object) of size 25 mm from a distance of 12 m .
The visibility distance of a traffic control device is the maximum distance at which one can see it, while its legibility distance is the distance from which the driver can discern the intended message in order to have time to take the necessary action. For a safety sign, the distance factor is the ratio of the observation distance to the size of the symbol or text.
The clear sight distance is the length of highway visible to a driver. The safe sight distance is the necessary sight distance needed to a driver in order to accomplish a fixed task. The main safe distances, used in Road Design, are:

- the stopping sight distance-to stop the vehicle before reaching an unexpected obstacle;
- the maneuver sight distance--to drive around an unexpected small obstacle;
- the road view sight distance--to anticipate the alignment (eventually curved and horizontal/vertical) of the road (for instance, choosing a speed);
- the passing sight distance--to overtake safely (the distance the opposing vehicle travels during the overtaking maneuver).

The safe overtaking distance is the sum of four distances: the passing sight distance, the perception-reaction distance (between decision and action), the distance physically needed for overtaking and the buffer safety distance.
Also, adequate sight distances are required locally: at intersections and in order to process information on traffic signs. A warning "objects in mirror are closer than they appear" can be required on vehicle's passenger side mirrors.
In a traffic flow, the spacing (or distance headway) is the distance between corresponding points (front to front) of consecutive vehicles moving in the same lane, while the clearance is the spacing minus the length of the leading vehicle. The corresponding time measures are headway and gap.

- Road travel distance

The road travel (or road, driving, wheel, actual) distance between two locations (say, cities) of a region is the length of the shortest road connecting them.
Some GISs (Geographic Information Systems) approximate road distances as the l_{p}-metric with $p \approx 1.7$ or as a linear function of great circle distances; in the US the distance factor (multiplier) is ≈ 1.15 in an east-west direction and ≈ 1.21 in the north-south direction. Several relevant notions of distance follow.
The GPS navigation distance: the distance directed by GPS (Global Positioning System, cf. radio distance measurement in Chap. 29) navigation devices. But this shortest route, from the GPS system point of view, is not always the best, for instance, when it directs a large truck to drive through a tiny village; cf. the Talmudic little boy's paradox among distance-related quotes in Chap. 28.
The official distance: the officially recognized (by, say, an employer or an insurance company) driving distance between two locations that will be used for travel or mileage reimbursement. Distance data (shortest paths between locations) are taken from a large web map service (say, MapQuest, Google, Yahoo or Bing) which uses a variation of the Dijkstra algorithm; cf. Steiner ratio in Chap. 1.
The distance between zip codes (in general, postal or telephone area codes) is the estimated driving distance (or driving time) between two corresponding locations.
Time-distance and cost-distance are time and cost measures of how far apart places are. The journey length is a general notion of distance used as a reference in transport studies. It can refer to, say, the average distance traveled per person by some mode of transport (walk, cycle, car, bus, rail, taxi) or a statutory vehicle distance as in the evaluation of aircraft fuel consumption.
An odometer is an instrument that indicates distance traveled by a vehicle. A hubometer is such device mounted on the axle of a vehicle, while a trip meter is an electronic device recording such distance in any particular journey.
Distance-based (or mileage-based, per-mile) pricing means that vehicle charges are based on the amount a vehicle is driven during a time period.

- Horizontal distance

The horizontal distance (or ground distance) is the distance on a true level plane between two points, such as scaled off the map (it does not take into account the relief between two points). There are two types of horizontal distance: straight line distance (the length of the straight line segment between two points as scaled off the map), and distance of travel (the length of the shortest path between two points as scaled off the map, in the presence of roads, rivers, etc.). The thalweg (valley way) of a river or valley is the deepest inline within it. The stream gradient is the slope measured (say, in m / km) by the ratio of drop in a stream per unit distance; the relief ratio is such average drop. The gradient of a road is the ratio of the vertical to the horizontal distance, measured in m / km or as slop tangent of the angle of the elevation. The pitch (or slope, incline) of a roof is the ratio of the rise to the roof span, expressed in cm / m.

- Slope distance

The slope distance (or slant distance) is the inclined distance (as opposed to the true horizontal or vertical distance) between two points.
In Engineering, the rollout distance is the distance that a boulder or rock took to finally reach its resting point after rolling down a slope. The release height is the height at which a boulder or rock was released in relation to a slope.
Naismith's rule in mountaineering: eight units of walking flat distance are timeequivalent to one unit of climb on a typical decline 12°.
Craeme et al., 2014, claim that the cost for an organism of mass $M \mathrm{~kg}$ to walk uphill, gaining 100 m in altitude, is 2.94 M kJ .
Walking uphill, humans and animals minimize metabolic energy expenditure; so, at critical slopes, they shift to zigzag walking. Langmuir's hiking handbook advises one to do it at 25°. Llobera and Sluckin, 2007, explain switchbacks in hill trails by the need to zigzag in order to maintain the critical slope, $\approx 16^{\circ}$ uphill and $\approx 12.4^{\circ}$ downhill. Skiing and sailing against the wind also require zigzagging.
The west face of Mount Thor, in the Canadian Arctic, is the Earth's greatest vertical drop: a uninterrupted wall $1,250 \mathrm{~m}$, with an average angle of 105°. The world record for the longest rappel (slope descent using ropes), 33 days, was set here in 2006. The world's highest unclimbed mountain is Gangkhar Puensum ($7,570 \mathrm{~m}$) on the Bhutan-Tibet border. The most dangerous by fatality rate mountains are: Annapurna and K2, 10th and 2nd highest ones: 8,091 and 8,611.

- Vertical distance

The vertical distance of a location is its height above or depth below a fixed reference, say, the Earth's surface, mean sea level (MSL) or its model. On other planets, the elevations of solid surface are measured relative to the mean datum.
The terms elevation (or geometric height), altitude (or geopotential height) and depth are used for points/planes on the ground, in the air and below the surface, respectively. $A M S L, A G L, A A E$ and (in Broadcasting) HAAT mean height above MSL, ground level, nearest aerodrome and average (surrounding) terrain, respectively. The height of an aircraft is its AGL, i.e., AMSL plus elevation of the ground.

The orthometric height is the vertical distance of an object above the geoid, i.e., a surface of a constant potential which is the best approximation, in a least-square sense, of the global mean sea level.
The average and maximal land heights are 840 and $8,848 \mathrm{~m}$ (Mount Everest), while the average and maximal depths of the ocean are 3,730 and $10,911 \mathrm{~m}$ (Challenger Deep in Mariana Trench). The surface's points closest ($6,353 \mathrm{~km}$) and farthest $(6,384 \mathrm{~km})$ from the Earth's center are the bottom of the Arctic Ocean and the summit of the Andean volcano Chimborazo (6,268 m).

- Prominence

In Topography, prominence (or autonomous height, relative height, shoulder drop) is a measure of the stature of a summit of a hill or mountain. The prominence of a peak is the minimum height of climb to the summit on any route from a higher peak (called the parent peak), or from sea level if there is no higher peak. The lowest point on that route is the col. So, the prominence of any island or continental highpoint is equal to its elevation above sea level.
The highest mountains of the two largest isolated landmasses, Afro-Eurasia (Mount Everest) and the Americas (Aconcagua), have the most prominent peaks, 8,848 and $6,962 \mathrm{~m}$. But from its ocean base, the elevation of the Hawaiian volcano Mauna Kea ($4,205 \mathrm{~m}$) is $10,203 \mathrm{~m}$, and the mountain with the highest $(5,486 \mathrm{~m})$ elevation from its land base is Mount McKinley ($6,193 \mathrm{~m}$) in Alaska.
The topographic isolation of a summit is the great circle distance to the nearest point of equal elevation; for Everest, it is $40,008 \mathrm{~km}$ (Earth's circumference between the poles). Spire measure (or ORS, short for omnidirectional relief and steepness) is a rough measure of the visual "impressiveness" of a peak. It averages out how high and steep a peak is in all directions above local terrain.

- Special parallels and meridians

A network of parallels and meridians (lines of latitude and longitude, cf. Chap. 25) provides a locational system on Earth, using North Pole, South Pole (parallels $90^{\circ} \mathrm{N}$ and $90^{\circ} \mathrm{S}$), rotation axis, and equatorial plane (an imaginary plane passing through Earth halfway between the poles and perpendicular to rotation axis).
The equator is the imaginary midline, where the equatorial plane intersects Earth's surface. It is the parallel of 0° latitude separating North and South hemispheres.
The Prime meridian and the Date line are internationally agreed at 0° and (with some bends, so as not to cross any land) $\approx 180^{\circ}$ longitude; they form a great circle separating the Eastern and Western hemispheres. The point $0^{\circ}, 0^{\circ}$ is located in the Atlantic Ocean $\approx 614 \mathrm{~km}$ south of Accra, Ghana.
A degree of latitude varies from 110.567 km apart at the equator to 111.699 km at the poles; each minute ($\frac{1}{60}$-th of a degree) is ≈ 1 mile. A degree of longitude shrinks from 111.321 km at the equator to 0 at the poles.
The circle of illumination is the great circle that divides Earth between a light half and a dark half. The land hemisphere is the hemisphere containing the largest possible area, $\approx \frac{7}{8}$, of land. It is centered on $47^{\circ} 13^{\prime} \mathrm{N} 1^{\circ} 32^{\prime} \mathrm{W}$ (in the city of Nantes, France). The other half is the water hemisphere.

The tropic of Cancer and the tropic of Capricorn are parallels at which the Sun is directly overhead at the northern and the southern summer solstice, respectively. Their positions depend on the Earth's axial tilt. The region between them, centered on the equator, is the tropics. The regions around $25-30^{\circ} \mathrm{N}$ and S are subtropics, and the regions $30-35^{\circ} \mathrm{N}$ and S are horse latitudes (or subtropical highs). Equatorial and polar regions are within a few degrees of the equator or a pole. The Arctic circle and the Antarctic circle are parallels at which the Sun does not appear above the horizon at the northern and the southern winter solstice.
The longest land, continuous land, continuous sea latitudes are $48^{\circ} 24^{\prime} 53 \mathrm{~N}$ ($10,726 \mathrm{~km}$ France-Ukraine-Kazakhstan-China), $78^{\circ} 35^{\prime} \mathrm{S}$ (7,958 km Antarctica), $55^{\circ} 59^{\prime} \mathrm{S}(22,471 \mathrm{~km})$. The longest land, continuous land, continuous sea longitudes are $22^{\circ} \mathrm{E}\left(13,035 \mathrm{~km}\right.$ Russia-China-Tailand), $99^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{E}(7,590 \mathrm{~km})$, $34^{\circ} 45^{\prime} 45^{\prime \prime} \mathrm{W}(15,986 \mathrm{~km})$. The longest continuous land and sea distances along a great circle are $13,573 \mathrm{~km}$ (Liberia-Suez Canal-China) and $\approx 32,000 \mathrm{~km}$.
Many parallels and meridians, often named and/or approximated, represent political boundaries. For example, $49^{\circ} \mathrm{N}$ latitude is (much of, from British Columbia to Manitoba) the border between Canada and US, $38^{\circ} \mathrm{N}$ is the boundary between North and South Korea, and $60^{\circ} \mathrm{S}$ is the northern boundary of Antarctica in the Antarctic Treaty. $2^{\circ} 20^{\prime} 14.025^{\prime \prime} \mathrm{E}$ longitude is the Paris meridian (historic rival of the Prime meridian through Greenwich), $52.5^{\circ} \mathrm{E}$ is the official meridian of Iran, and $\approx 70^{\circ} \mathrm{E}$ was agreed in 1941 by Nazi Germany and the Empire of Japan as division of their spheres of interest in Asia. The Brandt Line (Brandt, 1980), represents socio-economic and political divide between the "rich North" and the "poor South". It encircles the world at $\approx 30^{\circ} \mathrm{N}$ latitude, passing between North and Central America, north of Africa and the Middle East, then going north so as to exclude China, Mongolia, Korea and going south so as to include Australia.

- Remotest places on Earth

In medieval geographies, ultima Thule was any distant place located beyond the borders of the known world. Eratosthenes (c. 276-195 BC), measuring the oikoumene (inhabited world), put its northern limit in a mythical island Thule.
The remotest island is uninhabited Bouvet island in the South Atlantic Ocean. Its nearest $(1,600 \mathrm{~km})$ land is Antarctica and nearest inhabited land is Tristan da Cunha, the remotest inhabited archipelago.
Among other remotest (i.e., lacking normal transportation links) places on the Earth are: Kergelen (France), Pitcairn (UK), Svalbard (Norway) archipelagos, Easter (Chili), Foula (UK), Macquarie (Australia) islands, Motuo (China) county, McMurdo Station (Antarctica-US), La Rinconada (Peru, at an altitude of 5,100 km) towns, Alert (Canada, 800 km below the North Pole) village.
The continental pole of inaccessibility (Point Nocean), the point on land farthest $(2,514 \mathrm{~km})$ from any ocean, lies in the Xinjiang, China, around $45^{\circ} 22^{\prime} \mathrm{N} 88^{\circ} 11^{\prime} \mathrm{E}$. The oceanic pole of inaccessibility (Point Nemo), the point farthest ($2,690 \mathrm{~km}$) from any land, lies in the South Pacific Ocean at $48^{\circ} 52.6^{\prime} \mathrm{S} 123^{\circ} 23.6^{\prime} \mathrm{W}$.

The northern pole of inaccessibility $\left(84^{\circ} 03^{\prime} \mathrm{N} 174^{\circ} 51^{\prime} \mathrm{W}\right)$ is the point on the Arctic Ocean pack ice, 661 km from the North Pole, farthest ($1,094 \mathrm{~km}$) from any land mass. The southern pole of inaccessibility $\left(82^{\circ} 06^{\prime} \mathrm{S} 54^{\circ} 58^{\prime} \mathrm{E}\right)$ is the point on the Antarctic, 878 km from the South Pole, farthest $(1,300 \mathrm{~km})$ from the ocean.
For a country, accessibility to its coast from its interior is measured by the ratio of coastline length in meters to land area in km^{2}. This ratio is the highest $(10,100)$ for Tokelau and the lowest nonzero (0.016) for the Democratic Republic of the Congo. Canada has the longest ($202,080 \mathrm{~km}$) coastline.
The largest antipodal (diametrically opposite) land masses are the Malay Archipelago-Amazon Basin, and east China + Mongolia, antipodal to Chile + Argentina. Capitals close to being antipodes are: Buenos Aires-Beijing, Madrid-Wellington, Lima-Bangkok, Quito-Singapore, Montevideo-Seoul.
Politically unaccessed areas include isolated people (as Sentinelese and ≈ 100 tribes in dense forests) and unclaimed areas (antarctic Marie Byrd Land, Bir Tawil).
Counting as different only population centers at $>1,000 \mathrm{~km}$, the point of minimum aggregate travel (or geometric median, cf. Fréchet mean in Chap. 1) of the world's population lies around Afghanistan-Kashmir. This point is closest, $5,200 \mathrm{~km}$ of the mean great circle distance, to all humans, and its antipodal point is the farthest from mankind. But the closest, $5,600 \mathrm{~km}$, point to the world's entire wealth (measured in GNP) lies in southern Scandinavia.
In terms of altitude, the number of people decreases faster than exponentially with increasing elevation (Cohen-Small, 1998). Within 100 m of sea level, lies 15.6% of all inhabited land but 33.5% of the world population live there. Altitude of residence (hypoxia?) is a risk factor for psychological distress and suicide in bipolar disorder.

- Latitudinal distance effect

Diamond, 1997, explained the larger spread of crops and domestic animals along an east-west, rather than north-south, axis by the greater longitudinal similarity of climates and soil types.
Ramachandran and Rosenberg, 2006, confirmed that genetic differentiation increases (and so, cultural interaction decreases) more with latitudinal distance in the Americas than with longitudinal distance in Eurasia. Randler, 2008: within the same time zone, people in the east get up and go to bed earlier than people in the west.
Turchin-Adams-Hall, 2006, observed that $\approx 80 \%$ of land-based, contiguous historical empires are wider in the east-west compared to the north-south directions. Three main exceptions-Egypt (New Kingdom), Inca, Khmer-obey a more general rule of expansion within an ecological zone.
Taylor et al., 2014: polyandry in species is more common in northern latitudes. The latitudinal biodiversity gradient refers to the decrease in in both terrestrial and marine biodiversity, that occurs, the past 30 Ma , from the equator to the poles for most fauna and flora. Mace and Pagel, 1995 and 2004, found the same gradient for the density (number per range) of language groups and cultural variability.

Around 60% of the world's languages are found in the great belts of equatorial forest. Papua New Guinea (14% of languages), sub-Saharan Africa and India have the largest linguistic diversity. The number of phonemes in a language decrease, but the number of color terms increase, from the equator to the poles.

25.2 Distances in Geophysics

- Atmospheric visibility distances

Atmospheric extinction (or attenuation) is a decrease in the amount of light going in the initial direction due to absorption (stopping) and scattering (direction change) by particles with diameter $0.002-100 \mu \mathrm{~m}$ or gas molecules. The dominant processes responsible for it are Rayleigh scattering (by particles smaller than the wavelength of the incident light) and absorption by dust, ozone O_{3} and water. For example, mountains in the distance look blue due to the Rayleigh scattering effect.
In extremely clean air in the Arctic or mountainous areas, the visibility can reach $70-100 \mathrm{~km}$. But it is often reduced by air pollution and high humidity: haze (in dry air) or mist (moist air). Haze is an atmospheric condition where dust, smoke and other dry particles (from farming, traffic, industry, fires, etc.) obscure the sky. The World Meteorological Organization classifies the horizontal obscuration into the categories of fog (a cloud in contact with the ground), ice fog, steam fog, mist, haze, smoke, volcanic ash, dust, sand and snow. Fog and mist are composed mainly of water droplets, haze and smoke can be of smaller particle size.
Visibility of less than 100 m is usually reported as zero. The international definition of fog, mist and haze is a visibility of $<1 \mathrm{~km}, 1-2 \mathrm{~km}$ and $2-5 \mathrm{~km}$.
In the air pollution literature, visibility is the distance at which the contrast of a visual target against the background (usually, the sky) is equal to the threshold contrast value for the human eye, necessary for object identification, while visual range is the distance at which the target is just visible. Visibility can be smaller than the visual range since it requires recognition of the object.
Visibility is usually characterized by either visual range or by the extinction coefficient (attenuation of light per unit distance due to four components: scattering and absorption by gases and particles in the atmosphere). It has units of inverse length and, under certain conditions, is inversely related to the visual range.
Meteorological range (or standard visibility, standard visual range) is an instrumental daytime measurement of the (daytime sensory) visual range of a target. It is the furthest distance at which a black object silhouetted against a sky would be visible assuming a 2% threshold value for an object to be distinguished from the background. Numerically, it is $\ln 50$ divided by the extinction coefficient.

In Meteorology, visibility is the distance at which an object or light can be clearly discerned with the unaided eye under any particular circumstances. It is the same in darkness as in daylight for the same air. Visual range is defined as the greatest distance in a given direction at which it is just possible to see and identify with the unaided eye in the daytime, a prominent dark object against the sky at the horizon, and at night, a known, unfocused, moderately intense light source.
The International Civil Aviation Organization defines the nighttime visual range as the greatest distance at which lights of 1,000 candelas can be seen and identified against an unlit background. Daytime and nighttime ranges measure the atmospheric attenuation of contrast and flux density, respectively.
In Aviation Meteorology, the runway visual range is the maximum distance along a runway at which the runway markings are visible to a pilot after touchdown. It is measured assuming constant contrast and luminance thresholds. Oblique visual range (or slant visibility) is the greatest distance at which a target can be perceived when viewed along a line of sight inclined to the horizontal.

- Atmosphere distances

The atmosphere distances are the altitudes above Earth's surface (mean sea level) which indicate approximately the following specific (in terms of temperature, gravity, electromagnetism, etc.) layers of its atmosphere.
Below 1-2 km: planetary boundary layer, where winds are directly retarded by surface friction. The reminder of the atmosphere: the free atmosphere.
From 8 km : the death zone for human climbers (lack of oxygen).
From the Armstrong line ($18.900-19.350 \mathrm{~km}$) water boils at $37^{\circ} \mathrm{C}$ (low pressure) and a pressure suit is needed.
Below 7-20 km (over the poles and equator, respectively): the troposphere in which temperature decreases with height (the weather and clouds occur here).
Above the troposphere to $\approx 51 \mathrm{~km}$: the stratosphere, where the temperature increases with height (the ozone layer is at $19-48 \mathrm{~km}$). The tropopause (its boundary with the troposphere) occurs at a pressure $\approx 0.1 \mathrm{bar}$; it is observed also on Jupiter, Saturn, Uranus, Neptune and expected on any thick-atmosphere exoplanet.
Above the stratosphere to $80-85 \mathrm{~km}$: the mesosphere, in which temperature again decreases with height. Above the mesosphere to $500-1,000 \mathrm{~km}$: the thermosphere, where the temperature again increases with height.
20-100 km: near space (or upper atmosphere), above airliners but below satellites.
100 km: the Kármán line prescribed by Fédération Aéronautique International as the boundary separating Aeronautics and Astronautics, near and outer space.
Above the thermosphere to $\approx 190,000 \mathrm{~km}$: the exosphere, where molecules are still gravitationally bound but they can escape into space. Below the exosphere: the homosphere, where atmosphere has relatively uniform composition since turbulence causes a continuous mixing. The reminder of the atmosphere: the heterosphere.

From 50-80 to 2,000 km: the ionosphere, an electrically conducting region. From $\approx 160 \mathrm{~km}$ upwards: the anacoustic zone, where distances between air particles are so great that sound can no longer propagate; high-frequency sounds disappear first.
Up to 6-10 Earth radii on the sunward side: the magnetosphere, where Earth's magnetic field still dominates that of the solar wind. Geospace is the region from the beginning of ionosphere to the end of magnetosphere.
The altitude of the International Space Station is $278-460 \mathrm{~km} .35,786 \mathrm{~km}$: the altitude of geostationary (communication and weather) satellites. For observation and science satellites, it is $480-770 \mathrm{~km}$ and $4,800-9,700 \mathrm{~km}$, respectively. Geocentric orbits with altitudes up to $2,000 \mathrm{~km}, 2,000-35,786 \mathrm{~km}$ and more than $35,786 \mathrm{~km}$ are called low, medium and high Earth orbits, respectively.
From 320,000 km: Moon's (at 356,000-406,700 km) gravity exceeds Earth's.
$1,496,000 \mathrm{~km}=0.011$ AU: Earth's Hill radius, where Sun's gravity Earth's.

- Wind distances

Examples of wind-related distances follow.
Monin-Obukhov length: a rough measure of the height over the ground, where mechanically produced (by vertical wind shear) turbulence becomes smaller than the buoyant production of turbulent energy (dissipative effect of negative buoyancy). In the daytime over land, it is usually $1-50 \mathrm{~m}$.
The aerodynamic roughness length (or roughness length) z_{0} is the height at which a wind profile assumes zero velocity.
The wind daily run is the distance that results by integrating the wind speed, measured at a point, over 24 h . The fastest recorded wind speed near Earth's surface was 318 mph (i.e., $511.76 \mathrm{~km} / \mathrm{h}$) in Oklahoma, US, in 1999.
Rossby radius of deformation is the distance that cold pools of air can spread under the influence of the Coriolis force, i.e., the apparent deflection of moving objects when they are viewed from a rotating reference frame. It is the length scale at which effects, caused by Earth's rotation and the inertia of the mass experiencing the effect, become as important as buoyancy or gravity wave effects in the evolution of the flow about some disturbance.
The aerial plankton carried aloft by winds or convection, consists of bacteria, fungi, spores, pollen and small invertebrates. Even in the upper troposphere ($8-15$ km altitude), viable bacteria cells represent $\approx 20 \%$ of $0.25-1 \mu \mathrm{~m}$-sized particles. The jet streams are fast flowing, narrow air currents found in the atmosphere. The strongest jet streams are, both west-to-east and in each hemisphere, the Polar jet, at 7-12 km above sea level, and the weaker Subtropical jet at $10-16 \mathrm{~km}$.
The atmospheric rivers are narrow (a few hundred km across but several thousand km long) corridors of atmospheric water vapor transport over mid-latitude ocean regions. They account for over 90% of such global meridional daily transport.
A teleconnection refers to climate anomalies being related to each other at large, say, thousands of km distances. For example, teleconnection between sea level pressure at Tahiti and Darwin, Australia, defines ENSO (El Niño Southern Oscillation).

- Distances in Oceanography

Sea-surface height (SSH) is the height of the ocean's surface. Decay distance: the distance through which ocean waves travel after leaving the generating area.
Wavelength is the distance between the troughs at the bottom of consecutive waves. A wave's height and amplitude are its trough-crest and rest-crest distances.
The significant wave height (SWH) is the mean height $H_{1 / 3}$ of the highest third of waves. More modern and very close value is four times the root-mean-square of the surface elevation. Unusual rogue waves are defined as those with height $>2 H_{1 / 3}$; the tallest recorded one (by ship USS Ramapo in 1933) was 34 m . A wave up to $11 H_{\frac{1}{3}}$ is possible. Large internal waves occur at thermoline and salwater-freshwater interface. A hundred-year wave is a statistically projected water wave, the height of which, on average, is met or exceeded once in a 100 years for a given location.
The maximum horizontal distance inland and height reached there by tsunami waters are called the run-up (or inundation) distance and run-up height. It was 1,100 and 524 m for the 1958 Lituya Bay, Alaska, megatsunami, the largest recorded.
Deep water (or short, Stokesian) wave: a surface ocean wave that is traveling in water depth greater than one-quarter of its wavelength; the velocity of deep water waves is independent of the depth. Shallow water (or long, Lagrangian) wave: a surface ocean wave of length 25 or more times larger than the water depth.
Littoral (or intertidal): the zone between high and low water marks. Sometimes, littoral refers to the zone between the shore and water depths of $\approx 200 \mathrm{~m}$.
Oceanographic (or thermal) equator: the zone of maximum sea surface temperature located near (generally, north) the geographic equator. Sometimes, it is defined more specifically as the zone within which the sea surface temperature exceeds $28^{\circ} \mathrm{C}$. Below about 500 m , all of the world's oceans are at about $1.1^{\circ} \mathrm{C}$. Standard depth: a depth below the sea surface at which water properties should be measured and reported (in m): $0,10,20,30,50,75,100,150$, $200,250,300,400,500,600,800,1,000,1,200,1,500,2,000,2,500$, $3,000,4,000, \ldots, 9,000,10,000$.
Charted depth: the recorded vertical distance from the lowest astronomical tide (LAT, the lowest low water that can be expected in normal circumstances) to the seabed. Drying height: the vertical distance of the seabed that is exposed by the tide, above sea level at LAT. Actual depth of water is height of tide + charted depth or height of tide-drying height. Tidal range: the difference between the heights of high water and low water at any particular place. The empirical rule of twelfths assigns 6 h for it and subdivides the range into $1,2,3,3,2,1$ twelfths per hour.
The thermocline, halocline and pycnocline: the layers where the water temperature, salinity and density, respectively, change rapidly with depth.
Depth of no motion: a reference depth in a body of water at which it is assumed that the horizontal velocities are practically zero. On a horizontal scale, ocean fronts are the boundaries between water masses with different properties.

Plankton (viruses, bacteria, phytoplankton, zooplankton and small pelagic larvae) aggregate at the clines, depth of no motion and persistent ocean fronts. $\approx 75 \%$ of the water column's biomass consist of plankton organized in thin ($<3-4 \mathrm{~m}$) layers $1-12 \mathrm{~km}$ in horizontal extent. Standard proxies for phyto- and zooplankton abundance are chlorofill-a imagery and sound attenuation. Giant (up to $130,000 \mathrm{~km}^{2}$) bacterial mats float in the oxygen minimum zone off Chili and Peru.
Depth of the effective sunlight penetration: the depth at which $\approx 1 \%$ of solar energy penetrates; in general, it does not exceed 100 m . The ocean is opaque to electromagnetic radiation with a small window in the visible spectrum. But it is transparent to acoustic transmission.
Depth of compensation: the depth at which illuminance has diminished to the extent that oxygen production through photosynthesis and oxygen consumption through respiration by plants are equal. The maximum depth for photosynthesis depends on plants and weather. Within the epipelagic zone there is enough light for photosynthesis, and thus plants and animals are largely concentrated here.
Below the mesopelagic zone lies the aphotic zone which is not exposed to sunlight. Organisms there depend on "marine snow" (a continuous shower of mostly organic detritus, decaying creatures and feces, falling from above) and chemosynthesis. The deep sea is the layer in the ocean below thermocline, at the depth $1,800 \mathrm{~m}$ or more.
The pelagic zone consists of all the sea other than that near the coast or the sea floor, while the benthic zone is the ecological region at the very bottom of the sea.
The ocean is divided into the following horizontal layers from the top down.

- From the surface down 200 m : epipelagic (sunlit zone);
- 200-1,000 m: mesopelagic (twilight zone);
- 1,000-4,000 m: bathypelagic (dark zone);
- 4,000-6,000 m: abyssopelagic (abyss);
- below 6,000 m: hadalpelagic (trenches).

Fast-flowing floods of turbid water form abyssal channels in sea floor.
The deep sound (or SOFAR, i.e., SOund Fixing And Ranging) channel is a layer of ocean water where the speed of sound is at a minimum $(\approx 1,480 \mathrm{~m} / \mathrm{s})$, because water pressure, temperature and salinity cause a minimum of water density. Sound waves of low frequency, caught and bent here, can travel hundreds of km . In low and middle latitudes, the SOFAR channel axis lies $600-1,200 \mathrm{~m}$ below the sea surface; it is deepest in the subtropics and comes to the surface in high latitudes.
The SLD (sonic layer depth) is the depth of maximum sound speed above this axis. The best depth for a submarine to avoid detection is SLD plus 100 m .
Mixing length: the distance at which an eddy (a circular movement of water) maintains its identity until it mixes. An eddy can reach 500 km across and persist for months. Cf. the mean free path and diffusion length in Chap. 24.

Mixed layer depth: the depth of the bottom of the mixed layer, i.e., a nearly isothermal surface layer of $40-150 \mathrm{~m}$ depth where water is mixed through wave action or thermohaline convection.
Depth of exponential mixing or depth of homogeneous mixing refers to a surface turbulent mixing layer in which the distribution of a constituent decreases exponentially, or is constant, respectively, with height.
Depth of frictional resistance: the depth at which the wind-induced current direction is 180° from that of the true wind.
The fetch (or fetch length): the horizontal distance along open water over which wave-generating wind or waves have traveled uninterrupted. In an enclosed body of water, the fetch is the distance between the points of minimum and maximum water-surface elevation. In Meteorology, the fetch is the distance upstream of a measurement site, receptor site, or region of interest that is relatively uniform.
The total volume of Earth's water is ≈ 1.39 billion km^{3} (0.2% Earth's mass) of which $\approx 96 \%$ is liquid. For each $1{ }^{\circ} \mathrm{C}$ increase, in temperature, the sea level could rise by $5-20 \mathrm{~m}$. Global sea level rose at 1.7 mm per year over 1950-2009.

- River length

Meaning of river length, i.e., the distance between source and mouth, depend on their definitions, anabranches (multiple channels), map scale, etc.
The maximal river length is the length of the longest continuous river channel in a given river system, regardless of name. Here, a river's "true source" is considered to be the source of whichever tributary is farthest from the mouth.
The world's longest rivers are Nile-Kagera ($\approx 6,650-6,853 \mathrm{~km}$), Amazon-Ucayali-Apurmac ($\approx 6,400-6,992 \mathrm{~km}$) and Yangtze ($\approx 6,300-6,418 \mathrm{~km}$).

- Soil distances

Soil is composed of particles of broken rock that have been altered by chemical and environmental processes that include weathering and erosion. It is a mixture of mineral and organic constituents that are in solid, gaseous and aqueous states. A soil horizon is a specific layer in the land area that is parallel to the soil surface and possesses physical characteristics which differ from the layers above and beneath. Each soil type usually has three to four horizons.

- A Horizon (or topsoil): the upper layer (usually 5-20 cm) with most organic matter accumulation and soil life.
- B Horizon (or subsoil): the deeper layer accumulating by illuviation (action of rainwater), iron, clay, aluminum and organic compounds.
- C Horizon: the layer which is little affected by soil forming processes.
- R Horizon: the layer of partially weathered bedrock at the base of the soil profile.

The pedosphere is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It lies below the vegetative cover of the biosphere and above the groundwater and lithosphere (outermost shell of the Earth).

Larger Critical Zone includes vegetation, the pedosphere, groundwater aquifer systems and ends in the bedrock where the biosphere and hydrosphere (combined mass of Earth's water) cease to make significant changes to the chemistry.
The water table (or phreatic surface) is the level at which the groundwater pressure is equal to atmospheric pressure.
The cryosphere is the part of the hydrosphere describing the Earth's ice: sea/lake/river ice, snow cover, glaciers, ice caps, ice sheets and frozen ground including permafrost. The Bentley Subglacial Trench in Antarctica is the world's deepest, $2,555 \mathrm{~m}$, ice.
The Earth is now in a warm phase of the 5th (Quaternary) major Ice Age. This Age started 2.58 Ma ago and the last glacial expansion ended $\approx 11,500$ years ago with the start of the Holocene. Next one is expected within coming 1,500-10,000 years unless anthropogenic global warming will delay it. The planet has warmed by only $0.74^{\circ} \mathrm{C}$ since the early 1900s.

- Frost line (in Earth Science)

The frost line (or freezing depth) is the depth to which the groundwater in soil is expected to freeze. In polar locations with year-round permafrost, the thaw depth is the depth to which the permafrost is expected to thaw each summer.
In tropical regions, frost line may refer to the vertical geographic elevation below which frost does not occur. The climatic snow line is the point above which snow and ice cover the ground throughout the year; seasonally, snow occurs much lower. Cf. frost line (in Astrophysics).

- Moho distance

The Earth's oceanic crust (or sima for Si and Mg in basaltic rocks) is the surface, $5-10 \mathrm{~km}$ thick, of the ocean basins. The continental crust (or sial for Si and Al) is the layer of granitic rocks, $20-90 \mathrm{~km}$ thick, forming continents and continental shelves. The Moho interface (or Mohorovicić seismic discontinuity) is the boundary between the crust and the mantle, where the velocity of seismic P-waves increases. The Moho distance is the crustal thickness, i.e., the distance from a surface's point to the Moho interface beneath it.
The world's lowest sea-drilled point was 10,680 m-deep (in the Gulf of Mexico) under $1,259 \mathrm{~m}$ of water. The Japanese research vessel Chikyu, aiming to the Moho interface, drilled $7,740 \mathrm{~m}$ below the sea level and $2,466 \mathrm{~m}$ below the seafloor. Cf. the lowest point on dry land (the shore of Dead Sea: 418 m), deepest cave (Krubera, Caucasus: $2,191 \mathrm{~m}$), deepest mine (Mponeng gold mine, South Africa: about 4 km) and deepest drill (Kola Superdeep Borehole: 12,262 m). The temperature rises usually by 1° every 33 m .
The Curie depth is the depth (usually $10-50 \mathrm{~km}$) at which the temperature reaches the Curie point at which rocks lose their ferromagnetic properties.
The Earth's mantle extends from the Moho interface to the mantle-core boundary at a depth of $\approx 2,890 \mathrm{~km}$. The liquid outer core of radius $3,480 \mathrm{~km}$ contains a solid inner core (expanding $\approx 0.5 \mathrm{~mm}$ per year) of radius $1,220 \mathrm{~km}$. The mantle is divided into the upper and the lower mantle at about 660 km . Main other seismic boundaries are at about 60-90 km (Hales discontinuity), 50-150 km (Gutenberg discontinuity), 220 km (Lehmann discontinuity), $410 \mathrm{~km}, 520 \mathrm{~km}$, and 710 km .

The lithosphere comprises the crust and the rigid portion of the upper mantle that behaves elastically on large time scales. Its thickness is the depth of the isotherm $\approx 1,000^{\circ}$ of the transition between brittle and viscous behavior. The lithosphere is broken into tectonic plates which float on the more plastic part of the mantle, the asthenosphere, $100-200 \mathrm{~km}$ deep.
The Eurasian and African plates are moving at the rates of 2 and 2.15 cm per year. The maximum earthquakes occur on the boundaries of the major moving plates. The eastern part of Indo-Australian plate is moving north 5.6 cm per year while the western part (India) is moving (north-east) only 3.7 cm per year due to impediment by Himalayas. The sequence of rare intraplate earthquakes in April 2012 off the coast of Sumatra, may eventually split this plate in two.

- Distances in Seismology

The Earth's crust is broken into tectonic plates that move around (at some cm per year) driven by the thermal convection of the deeper mantle and by gravity. At their boundaries, plates stick most of the time and then slip suddenly.
An earthquake, i.e., a sudden (several seconds) motion or trembling in the Earth, caused by the abrupt release of slowly accumulated strain, was, from 1906, seen mainly as a rupture (the sudden appearance, nucleation and propagation of a new crack or fault) due to elastic rebound. However, from 1966, it is seen within the framework of slippage along a pre-existing fault or plate interface, as the result of stick-slip frictional instability. One of most important parameters controlling fault instability is the slip-weakening distance D_{c} over which a fault weakens during its seismogenic motion. The coefficient of friction degrades linearly with slip until D_{c} is reached; then it stays constant.
So, an earthquake happens when dynamic friction becomes less than static friction. The advancing boundary of the slip region is called the rupture front. The standard approach assumes that the fault is a definite surface of tangential displacement discontinuity, embedded in a liner elastic crust.
Most earthquakes occur at near-vertical faults but a magnitude 6.0 earthquake at Kohat, Pakistan, in 1992, moved a $80 \mathrm{~km}^{2}$ swath of land 30 cm horizontally. Almost all (81 and 17%) world's largest earthquakes occur along the Ring of Fire (circum-Pacific seismic belt) and the Alpide belt (from Java to Sumatra through the Himalayas, the Mediterranean, and out into the Atlantic).
90% of earthquakes are of tectonic origin, but they can also be caused by volcanic eruption, nuclear explosion and work in a large dam, well or mine. Earthquakes can be measured by focal depth, speed of slip, intensity (modified Mercali scale of earthquake effects), magnitude, acceleration (main destruction factor), etc.
The Richter scale of magnitude is computed from the amplitude and frequency of shock waves received by a seismograph, adjusted to account for the epicentral distance. An increase of 1.0 of this magnitude corresponds to an increase of 10 times in amplitude of the waves and ≈ 31 times in energy; the largest recorded value is 9.5 (Chile, 1960). Asteroid's impact in Yucatan 66 Ma ago was 12.55.

An earthquake first releases energy in the form of shock pressure waves that move quickly through the ground with an up-and-down motion. Next come shear S-waves which move along the surface, causing much damage: Love waves in a side-to-side fashion, followed by Rayleigh waves which have a rolling motion. The earthquake extinction length is the distance over which the S-wave energy is decreased by $\frac{1}{e}$.
Distance attenuation models (cf. distance decay in Chap. 29), used in Earthquake Engineering for buildings and bridges, postulate acceleration decay with an increase of some site-source distance, i.e., the distance between seismological stations and the crucial (for the given model) "central" point of the earthquake. The simplest model is the hypocenter (or focus), i.e., the point inside the Earth from which an earthquake originates (the waves first emanate, the seismic rupture or slip begins). The epicenter is the point of the Earth's surface directly above the hypocenter. This terminology is also used for other catastrophes, such as an impact or explosion of a nuclear weapon, meteorite or comet but, for an explosion in the air, the term hypocenter refers to the point on the Earth's surface directly below the burst. A list of the main Seismology distances follows.
The focal depth: the distance between the hypocenter and epicenter. Earthquake is shallow-, mid- or deep-focus if it is $<70,70-300$ or $300-700 \mathrm{~km}$.
The hypocentral distance: the distance from the station to the hypocenter. The epicentral distance (or earthquake distance): the great circle distance from the station to the epicenter.
The Joyner-Boore distance (1981): the distance from the station to the closest point, located over the rupture surface (rupturing portion of the fault plane).
The rupture distance: the distance from the station to the closest point on the rupture surface. The seismogenic depth distance: the distance from the station to the closest point of the rupture surface within the seismogenic zone, i.e., the depth range where the earthquake may occur; usually at depth $8-12 \mathrm{~km}$.
The crossover distance: the distance on a seismic refraction survey time-distance chart at which the travel times of the direct and refracted waves are the same.
Also used are the distances from the station to:

- the center of static energy release and the center of static deformation of the fault plane;
- the surface point of maximal macroseismic intensity, i.e., of maximal ground acceleration (it can be different from the epicenter);
- the epicenter such that the reflection of body waves from the Moho interface (the crust-mantle boundary) contribute more to ground motion than directly arriving shear waves (it is called the critical Moho distance);
- the line extending the fault trace (top edge of the rupture) in both directions;
- the sources of noise and disturbances: oceans, lakes, rivers, railroads, buildings.

The space-time link distance between two earthquakes x and y is defined by

$$
\sqrt{d^{2}(x, y)+C\left|t_{x}-t_{y}\right|^{2}}
$$

where $d(x, y)$ is the distance between their epicenters or hypocenters, $\left|t_{x}-t_{y}\right|$ is the time lag, and C is a scaling constant needed to connect distance and time.
The earthquake distance effect: at greater distances from its center, the perception of an earthquake weaken and lower frequency shaking dominates it. Many animals hear infrasound of imminent earthquakes and feel primary P-waves.
Another space-time measure for catastrophic events is distance between landfalls for hurricanes hitting a US state. It is (Landreneau, 2003) the length of state's coastline divided by the number of hurricanes which have affected it from 1899.

- Plume height

In a volcanic eruption, plume height refers to the highest point the eruptive cloud reaches before it flattens out and begins to drift downwind.
The Volcanic Explosivity Index (VEI) is a scale measuring known eruptions by their volume of ejecta and plume height from VEI $0\left(1,000 \mathrm{~m}^{3},<100 \mathrm{~m}\right)$ to mega-colossal (or super-volcano) VEI $8\left(1,000 \mathrm{~km}^{3},>50 \mathrm{~km}\right)$.

- Weather distance records

For a tornado, maximum width of damage, highest elevation, longest path: 4,000 $\mathrm{m}, 3,650 \mathrm{~m}, 472 \mathrm{~km}$. The longest transport of a surviving human and of an object: 398 m and 359 km (personal check).
Longest path of a tropical cyclone: 13,500 km; highest storm surge: 13 m .
Largest snowflake and hail diameter: 38 and 20 cm . Longest lighting bolt: 190 km.
Greatest minute, hour, day, month, year rainfall: $31.2 \mathrm{~mm}, 0.3 \mathrm{~m}, 1.82 \mathrm{~m}$, $9.3 \mathrm{~m}, 26.47 \mathrm{~m}$. Lowest and highest mean annual precipitation: 0.762 mm and 11.872 m .

- Extent of Earth's biosphere

Life has adapted to every (except, perhaps, ocean vent locales $>130^{\circ} \mathrm{C}$) ecological niche possessing liquid water and a source of free energy (say, sunlight, plate tectonics, water-rock chemistry). The main physical factors are temperature and pressure; their range for known active life as $\left[-20^{\circ}, 122^{\circ}\right] \mathrm{C}$ and $\left[5 \times 10^{-2}, 1.3 \times\right.$ $\left.10^{3}\right]$ bar. But the range, say, $\left[-30^{\circ}, 135^{\circ}\right] \mathrm{C}$ looks possible. The acidity/alkalinity range of known life is $[1,11]$ on the pH scale, from acidic hot springs to soda lakes.
In Jones-Lineweaver, 2010, the depth $5-10 \mathrm{~km}$ of the $122^{\circ} \mathrm{C}$ isotherm and the altitude $10-15 \mathrm{~km}$ (a tropopause boundary of the vertical movement of particles) are the boundaries of active life. In Nussinov-Lysenko, 1991, the boundaries of biosphere are Moho interface (say, -30 km) and Kármán line (100 km).
For humans, the typical bounds for main physiologic factors are: core temperature $35-38^{\circ} \mathrm{C}$, serum $\mathrm{pH} 7,35-7.45$, plasma osmolality $270-290 \mathrm{mOsm} / \mathrm{kg}$, fasting plasma glucose $3.3-5.6 \mathrm{mmol} / \mathrm{l}$ and serum calcium $2.2-2.6 \mathrm{mmol} / \mathrm{l}$. But
there are permanent human habitations at mean annual temperatures of $34.4^{\circ} \mathrm{C}$, $-19.7^{\circ} \mathrm{C}$ and at an altitude of 5.1 km . Birds usually fly at altitudes $0.65-1.8 \mathrm{~km}$ but a vulture collided, at 11.3 km , with an aircraft. Deepest multicellular life are worms found at depths up to 3.6 km in gold mines and at a depth of 7.7 km in the Japan Trench.
Microbes, supported by chemosynthesis, have been found in cores drilled 5.3 km , in hydrothermal vents at 11 km depth and below 400 m of basalt rock +265 m of sediment +2.6 km ocean. Such deep biosphere ($1-10 \%$ of the world's biomass and the Earth vastest) is expected below the surface of continents and the bottom of the ocean. The same 19 deep-rock bacteria found to be similar worldwide.
The ranges for latent life (cryptobiosis: reversible state of low or undetectable metabolism) are much larger. Fungi and bacterial spores were found at an altitude $18-41 \mathrm{~km}$. Examples of survival limits follow.
Some frogs, turtles and snakes survive the winter by freezing solid. A brine shrimp Artemia tolerates salt amounts of 25%. Tardigrades, in cryptobiosis, survive $-272^{\circ} \mathrm{C}, 151^{\circ} \mathrm{C}$ (a few minutes), pressure 6,000 bar, radiation 6,200 g (gray) and 120 years without water. Fly's larva Polypedilium vanderplanki dehydrates, in dry period, to 3% water content, and it can survive $-270^{\circ} \mathrm{C}$, $102^{\circ} \mathrm{C}$, radiation $7,000 \mathrm{~g}$ and 18 months in outer space vacuum. A parasitic leach Ozobranchus jantseanus survives $-196^{\circ} \mathrm{C}(24 \mathrm{~h})$ and $-90^{\circ} \mathrm{C}$ during 32 months. Archea Thermococcus gammatolerans survive 30,000 gray of gamma rays. A bacterium survived 30 months on the Moon. Bacteria growing under hypergravity $403,627 \mathrm{~g}$ were cultivated.
Deinococcus radiodurans can survive extreme cold, dehydration, vacuum, radiation and acid; it has been listed by Guinness as the world's toughest bacterium. A bacteria Tersicoccus phoenicis has only been found in two spacecraft assembly clean rooms and is resistant to the methods used to clean such facilities.
Millions of years old (nondormant, just slow metabolizing) microbs, reproducing only every 10,000 years, were found in ocean floor. Bacterial spores were revived after 34,000 years of stasis; it was claimed also for 40 Ma old spores. A 1,300 years old lotus seed and 2,000 year old seed from extinct Judean date palm were germinated. Silene stenophylla was grown from 31,800 years old fruit.
Among the proponents of panspermia (the hypothesis that life, via extremophile bacteria and crystallized viruses surviving in space, propagates throughout the Universe) Yang et al., 2009, expect microbe density to be $10^{-3}-10^{-2}$ cells $/ \mathrm{m}^{3}$ at altitude 100 km and $10^{-6}-10^{-4}$ at 500 km . A large amount is expected at the altitude of the ISS (278-460 km). Napier-Wickramasinghe, 2010, claim that $10^{14}-10^{16}$ microorganisms (≈ 10 tonnes) per year are ejected from Earth at survivable temperatures. Organics preserved in cometary amorphous ice and meteorite-formed glass can be transported from one planet to another.

A total of 7.5×10^{15} terrestrial microbes could reach the Moon per year, and the Solar System could be surrounded by an expanding biosphere of radius >5 parsecs containing $10^{19}-10^{21}$ microbes. Wainwright et al., 2010, point out that no ubiquitous ultrasmall bacteria (passing through $0.1-0.2 \mu$ filters) were found but large Bacillus and eukaryotes ($5-100 \mu$ fungal spores) have been isolated from the stratosphere. So, some viable but nonculturable microbes could be incoming from space. Hoover, 2011, found microfossils similar to filamentous prokaryotes in CI1 (Alais, Ivuna and Orgueil) and CM2 (Murchison and Murray) meteorites. Life on Mars, if any, is expected to be of the same origin (and, perhaps, earlier) as that on Earth, but it would have to be under at least 1 m of soil/rock to survive. Impact of icy comets crashing into Earth billions of years ago could have produced a variety of prebiotic or life-building compounds, including amino acids.
Interstellar panspermia, when the Sun passes a star-forming cloud, and even intergalactic panspermia, when galaxies collide, are debated. But on a cosmic scale, even enthusiasts of panspermia see it as a local, "a few megaparsec", phenomenon.

25.3 Distances in Astronomy

A celestial object (or celestial body) is a term describing astronomical objects such as stars and planets. The celestial sphere is the projection of celestial objects into their apparent positions in the sky as viewed from the Earth. The celestial equator is the projection of the Earth's equator onto the celestial sphere. The celestial poles are the projections of Earth's North and South Poles onto the celestial sphere. The hour circle of a celestial object is the great circle of the celestial sphere, passing through the object and the celestial poles.

The ecliptic is the intersection of the plane, containing the Earth's orbit, with the celestial sphere: seen from the Earth, it is the path that the Sun appears to follow over the course of a year. The vernal equinox point (or the First point in Aries) is one of the two points on the celestial sphere, where the equator intersects the ecliptic: it is the position of the Sun at the time of the vernal equinox.

In Astronomy, the horizon is the horizontal plane through the eyes of the observer. The horizontal coordinate system is a celestial coordinate system using the observer's local horizon as the fundamental plane, the locus of points having an altitude of 0°. The horizon is the line separating Earth from sky; it divides the sky into the upper hemisphere that the observer can see, and the lower hemisphere that he cannot. The pole of the upper hemisphere (the point of the sky directly overhead) is called the zenith; the pole of the lower hemisphere is called the nadir.

In general, an astronomical distance is a distance from one celestial body to another measured in light-years (ly), parsecs (pc), or astronomical units (au). The average distance between stars (in a galaxy like our own) is several ly; it is ≈ 6.57
ly in the solar neighborhood. The average distance between galaxies (in a cluster) is only about 20 times their diameter, i.e., several megaparsecs (Mpc). The separation between clusters of galaxies is typically of order 10 Mpc .

The large structures are groups of galaxies, clusters, galaxy clouds (or groups of clusters), superclusters, and supercluster complexes (or galaxy filaments, great walls). The Universe appears as a collection of giant bubble-like voids separated by great walls, with the superclusters appearing as relatively dense nodes. In the Universe, the average density of stars is about 1.4 per 100 billion cubic light-years, i.e., the average distance between them is about 4,150 light-years. The mean density of visible matter (i.e., galaxies) in the Universe is estimated as $\sim 10^{-31} \mathrm{~g} / \mathrm{cm}^{3}$, while $1 \mathrm{~g} / \mathrm{cm}^{3}$ is the mass density of water.

- Latitude

In spherical coordinates (r, θ, ϕ), the latitude is the angular distance δ from the $x y$ plane (fundamental plane) to a point, measured from the origin; $\delta=90^{\circ}-\theta$, where θ is the colatitude.
In a geographic coordinate system (or earth-mapping coordinate system), the latitude is the angular distance from the Earth's equator to an object, measured from the center of the Earth. Latitude is measured in degrees, from -90° (South Pole) to $+90^{\circ}$ (North Pole). Parallels are the lines of constant latitude. The colatitude is the angular distance from the Earth's North Pole to an object.
The celestial latitude is an object's latitude (measured in degrees) on the celestial sphere from the intersection of the fundamental plane with the celestial sphere in a given celestial coordinate system. In the equatorial coordinate system the fundamental plane is the plane of the Earth's equator; in the ecliptic coordinate system the fundamental plane is the plane of the ecliptic; in the galactic coordinate system the fundamental plane is the plane of the Milky Way; in the horizontal coordinate system the fundamental plane is the observer's horizon.
Geomagnetic latitude is a parameter analogous to geographic latitude, except that bearing is with respect to the magnetic poles. The intersection between the magnetic and rotation axes of the Earth is located $\approx 500 \mathrm{~km}$ North from its centre.

- Longitude

In spherical coordinates (r, θ, ϕ), the longitude is the angular distance ϕ in the $x y$ plane from the x axis to the intersection of a great circle, that passes through the point, with the $x y$ plane.
In a geographic coordinate system (or Earth-mapping coordinate system), the longitude is the angular distance measured eastward along the Earth's equator from the Greenwich meridian (or Prime meridian) to the intersection of the meridian that passes through the object. Longitude is measured in degrees, from 0° to 360°. A meridian is a great circle, passing through Earth's North and South Poles; the meridians are the lines of constant longitude.
The celestial longitude is the longitude of a celestial object (measured in units of time) on the celestial sphere measured eastward, along the intersection of the fundamental plane with the celestial sphere in a given celestial coordinate system, from the chosen point. In the equatorial coordinate system the fundamental plane
is the plane of the Earth's equator; in the ecliptic coordinate system it is the plane of the ecliptic; in the galactic coordinate system it is the plane of the Milky Way; and in the horizontal coordinate system it is the observer's horizon.

- Declination

In the equatorial (or geocentric) coordinate system, the declination δ is the celestial latitude of a celestial object on the celestial sphere, measured from the celestial equator. Declination is measured in degrees, from -90° to $+90^{\circ}$.

- Right ascension

In the equatorial (or geocentric) coordinate system, fixed to the stars, the right ascension $R A$ is the celestial longitude of a celestial object on the celestial sphere, measured eastward along the celestial equator from the First point in Aries to the intersection of the hour circle of the celestial object. RA is measured in units of time with 1 h approximately equal to 15°.
The time needed for one complete cycle of the precession of the equinoxes is called a Platonic (or Great) year); it is 257-258 centuries and slightly decreases. This cycle is important in Astrology. Also, it is close to the Maya calendar's longest cycle-5 Great Periods of 5,125 years; cf. distance numbers in Chap. 29.
The time (225-250 million Earth years) it takes the Solar System to revolve once around the center of the Milky Way (Solar circle) is called the Galactic year.

- Hour angle

In the equatorial (or geocentric) coordinate system, fixed to the Earth, the hour angle HA is the celestial longitude of a celestial object on the celestial sphere, measured along the celestial equator from the observer's meridian to the intersection of the hour circle of the celestial object.
HA gives the time elapsed since the celestial object's last transit at the observer's meridian (for $H A>0$), or the time until the next transit (for $H A<0$).

- Polar distance (in Geography)

In the equatorial (or geocentric) coordinate system, the polar distance (or codeclination) $P D$ is the colatitude of a celestial object, i.e., the angular distance from the celestial pole to a celestial object on the celestial sphere. Similarly as the declination δ, it is measured from the celestial equator: $P D=$ $90^{\circ} \pm \delta$. An object on the celestial equator has $P D=90^{\circ}$.

- Ecliptic latitude

In the ecliptic coordinate system, the ecliptic latitude is the celestial latitude (in degrees) of a celestial object on the celestial sphere from the ecliptic.
The object's ecliptic longitude is its celestial longitude on the celestial sphere measured eastward along the ecliptic from the First point in Aries.

- Zenith distance

In the horizontal (or Alt/Az) coordinate system, the zenith distance (or North polar distance, zenith angle) $Z A$ is the object's colatitude, measured from the zenith.

- Altitude

In the horizontal (or Alt/Az) coordinate system, the altitude $A L T$ is the celestial latitude of an object from the horizon. It is the complement of the zenith distance $Z A: A L T=90^{\circ}-Z A$. Altitude is measured in degrees.

- Azimuth

In the horizontal (or Alt/Az) coordinate system, the azimuth is the celestial longitude of an object, measured eastward along the horizon from the North point. Azimuth is measured in degrees, from 0° to 360°.

- Elliptic orbit distance

The elliptic orbit distance is the distance from a mass m which a satellite body has in an elliptic orbit about the mass M at the focus. This distance is given by

$$
r(\theta)=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}
$$

where a is the semi-major axis (half of the major diameter), e is the eccentricity $\frac{c}{a}$ (where c is half the distance between the foci), and θ is the orbital angle.
The periapsis distance and apoapsis distance are the closest and farthest distances $r_{-}=r(0)=a(1-e)$ and $r_{+}=r(\pi)=a(1+e)$. An anomaly (in Astronomy) is a quantity measured with respect to an apsis, usually the periapsis. The orbital distance is mean $r(\theta)$ over the eccentric anomaly, i.e., $\frac{1}{2}\left(r_{+}+r_{-}\right)=$ a, while such mean distance over the true anomaly (the angular distance of a point in an orbit past the point of periapsis) is the semi-minor axis $b=$ $a \sqrt{1-e^{2}}$.
For orbital period T, Newton made precise the 3rd Kepler's law ($T^{2} \sim a^{3}$) by

$$
T^{2}=\frac{4 \pi^{2}}{G(M+m)} a^{3}
$$

The near-Earth objects are asteroids, comets, spacecraft and large meteoroids whose perigee is closer than 1.3 AU ; the largest such asteroids are 1036 Ganymede and 433 Eros, about 34 km across. The perigee and apogee are the points at periapsis and apoapsis distances of an elliptical orbit around the Earth, while the perihelion and aphelion are such points around the Sun.
The periastron and apastron of a double star are the closest and farthest points of the smaller star to its primary.

- Minimum orbit intersection distance

The minimum orbit intersection distance (MOID) between two bodies is the distance between the closest points of their gravitational Kepler orbits (ellipse, parabola, hyperbola or straight line).
An asteroid or comet is a potentially hazardous object (PHO) if its Earth MOID is less than 0.05 AU and its diameter is at least 150 m . Impact with a PHO occurs on average around once per 10,000 years. The only known asteroid whose hazard could be above the background is 1950 DA (of mean diameter 1.2 km) which can,
with probability $\frac{1}{300}$, hit Earth on March 16, 2880. The closest known geocentric distance for a comet was 0.0151 AU (Lexell's comet on July 1, 1770).

- Impact distances

After an impact event, the falling debris forms an ejecta blanket, i.e., a generally symmetrical apron of ejecta that surrounds crater. About half the volume of ejecta falls within 2 radii from the center of the crater, and over 90% falls within ≈ 5 radii. Beyond it, the debris are discontinuous and are called distal ejecta.
Main parameter of an impact crater is the ratio of rim-to-floor depth d to the rim-to-rim diameter D. The simple craters are small with $\frac{1}{7} \leq \frac{d}{D} \leq \frac{1}{5}$ and a smooth bowl shape. If $D>D_{0}$, where the transitional diameter D_{0} scales as the inverse power of the planet's surface gravity, the initially steep crater walls collapse gravitationally downward and inward, forming a complex structure. On Earth, $2 \leq D_{0} \leq 4 \mathrm{~km}$ depending on target rock properties; on the Moon, $15 \leq$ $D_{0} \leq 20 \mathrm{~km}$.
The largest known (diameter of 300 km) and old (2,023 Ma ago) astrobleme (meteorite impact crater) is Vredefort Dome, 120 km south-west of Johannesburg. It was the world's greatest known single energy release event and largest asteroid known to have impacted the Earth ($\approx 10 \mathrm{~km}$). The diameter of MAPCIS crater in Australia is 600 km , but it is not confirmed impact crater.
Sometimes, the term impact distance is used more generally as a setback distance from some possible hazard (say, explosion, toxic chemical release, odor from swine facilities) or from the action of some equipment (say, laser, homogenizer); Cf. standoff distance and protective action distance in Chap. 29.

- Elongation

Elongation (or digression) is the angular distance in longitude of a celestial body from another around which it revolves (usually a planet from the Sun).

- Lunar distance

The lunar distance is the angular distance between the Moon and another celestial object.
In Astronomy, new moon (or dark moon) is a lunar phase that occurs at the moment of conjunction in ecliptic longitude with the Sun. If, moreover, the Sun, Moon, and Earth are aligned exactly, a solar eclipse occurs. Full moon occurs when the Moon is on the opposite side of the Earth from the Sun. If, moreover, the Sun, Earth, and Moon are aligned exactly, a lunar eclipse occurs.
A supermoon (or perigee-syzygy of the Earth-Moon-Sun system) is the nearcoincidence of a full moon or a new moon with the closest approach the Moon makes to the Earth on its orbit, resulting in its largest apparent size.

- Sun-Earth-Moon distances

The Sun, Earth and Moon have masses $1.99 \times 10^{30}, 5.97 \times 10^{24}, 7.36 \times 10^{22} \mathrm{~kg}$ and equatorial radii $695,500,6,378,1,738 \mathrm{~km}$, respectively.
Earth's axial tilt varies $22.1-24.5^{\circ}$ about every 41,000 years, its rotation occurs about every 19,000 years and eccentricity cycles $0.003-0.058$ about every 0.1 Ma .

The Earth and the Moon are at a mean distance of $1 \mathrm{AU} \approx 1.496 \times 10^{8} \mathrm{~km}$ from the Sun. This distance increases at the present rate $\approx 15 \mathrm{~cm}$ per year.
The Moon, at distance $0.0026 \mathrm{AU}\left(\approx 60\right.$ Earth radii $\left.R_{\oplus}\right)$, is within the Hill radius ($1,496,000 \mathrm{~km}$) of the Earth, but well outside of the Roche radius ($9,496 \mathrm{~km}$).
Asimov argued that the Earth-Moon system is a double planet because their diameter and mass ratios ($\approx 4: 1$ and $\approx 81: 1$) are smallest for a planet in the Solar System. Also, the Sun's gravitational effect on the Moon is more than twice that of Earth's. But the barycenter (common center of mass) of the Earth and Moon lies well inside the Earth, $\approx \frac{3}{4}$ of its radius.
The Moon has a greater tidal influence on the Earth than the Sun. Because of tidal forces, the Moon is receding from the Earth at $\approx 3.8 \mathrm{~cm}$ per year. So, Earth's rotation is slowing, and Earth's day increases by $\approx 23 \mathrm{~s}$ every million years (excluding glacial rebounds). At present rate, the Moon's orbital distance will reach, $\approx 1 \mathrm{Ga}$ from now, $67 R_{\oplus}$, and Earth's axial tilt will become chaotic.

- Opposition distance

A syzygy is a straight line configuration of three celestial bodies A, B, C. Then, as seen from A, B and C are in conjunction, and the passage of B in front of C is called occultation if the apparent size of B is larger, and transit, otherwise. Appulse is the closest approach of B and C as seen from A.
If B and C are planets orbiting the star A, then C said to be in opposition to A, and the distance between B and C (roughly, their closest approach) is called their opposition distance. It can vary at different oppositions.
The closest possible distance between Earth and a planet is 38 million km: the minimal opposition distance with Venus. The closest known distance between two stars is $80,000 \mathrm{~km}$ in the binary HM Cancri; their orbital period is 5.4 min . The orbital period of exoplanet OPH 11 b around OPH 11 is $1,000-3,000$ years. The largest and smallest known orbits of a planet around a single star are $\sim 650 \mathrm{AU}$ (by HD 106906b) and 0.006 AU (by Kepler-70b). The closest known approach between planets is $0.0016 \mathrm{AU} \approx 240,000 \mathrm{~km}$ (by Kepler-70b and Kepler-70c).

- Planetary aspects

In Astrology, an aspect is an angle (measured by the angular distance of ecliptic longitude, as viewed from Earth) the planets make to each other and other selected points in the horoscope, i.e., a chart representing the apparent positions and selected angles of the celestial bodies at the time of an event, say, a person's birth. Astrology claims a link between aspects and events in the human world.
Major aspects are $1-10^{\circ}$ (conjunction) and 90° (square), 180° (opposition) for which an orb (error) of 5-10 is usually allowed. Then follow $120 \pm 4^{\circ}$ (trine), $60 \pm 4^{\circ}$ (sextile) and (with orb 2°) 150° (quincunx), $45^{\circ}, 135^{\circ}, 72^{\circ}, 144^{\circ}$. Other aspects are based on the division of the zodiac circle by $7,9,10,11,14,16$ or 24 .

- Primary-satellite distances

Consider two celestial bodies: a primary M and a smaller one m (a satellite, orbiting around M, or a secondary star, or a comet passing by).
Let ρ_{M}, ρ_{m} and R_{M}, R_{m} be the densities and radii of M and m. The Roche radius (or Roche limit, tidal radius) of the pair (M, m) is the maximal distance between them within which m will disintegrate due to the tidal forces of M exceeding the gravitational self-attraction of m. This distance is $\approx 1.26 R_{M} \sqrt[3]{\frac{\rho_{M}}{\rho_{m}}}$ or $\approx 2.423 R_{M} \sqrt[3]{\frac{\rho_{M}}{\rho_{m}}}$ if m is rigid or fluid. The Roche lobe of a star is the region of space around the star within which orbiting material is gravitationally bound to it.
The tidal locking radius of M is the distance at which the axial and orbital rotations of m become synchronized, i.e., the same side of m always faces M. The Moon is tidally locked by the Earth. Pluto and Charon are mutually tidally locked.
Let $d(m, M)$ denote the mean distance between m and M, i.e., the arithmetic mean of their maximum and minimum distances; let S_{m} and S_{M} denote the masses of m and M. The barycenter of (M, m) is the point (in a focus of their elliptical orbits) where M and m balance and orbit each other. The distance from M to the barycenter is $d(m, M) \frac{S_{m}}{S_{m}+S_{M}}$. For the (Earth, Moon) system, it is 4,670 $\mathrm{km}(1,710 \mathrm{~km}$ below the Earth's surface). Pluto and Charon, the largest of its five moons, form rather a binary system since their barycenter lies outside of either body.
The Hill sphere of a body is the region in which it dominates the attraction of satellites. The Hill radius of m in the presence of M is $\approx d(m, M) \sqrt[3]{\frac{S_{m}}{3 S_{M}}}$; within it m can have its own satellites. The Earth's Hill radius is 0.01 AU ; in the Solar System, Neptune has the largest Hill radius, 0.775 AU.
The pair (M, m) can be characterized by five Lagrange points $L_{i}, 1 \leq i \leq 5$, where a third, much smaller body (say, a spacecraft) will be relatively stable because its centrifugal force is equal to the combined gravitational attraction of M and m. These points are:
L_{1}, L_{2}, L_{3} lying on the line through the centers of M and m, so that $d\left(L_{3}, m\right)=$ $2 d(M, m), d\left(M, L_{2}\right)=d\left(M, L_{1}\right)+d\left(L_{1}, m\right)+d\left(m, L_{2}\right), d\left(L_{1}, m\right)=$ $d\left(m, L_{2}\right)$ (the satellite SOHO is at the point L_{1} of the Sun-Earth system, where the view of the Sun is uninterrupted; the satellites WMAP and Planck are at L_{2}); L_{4} and L_{5} lying on the orbit of m around M and forming equilateral triangles with the centers of M and m. (These points are more stable; each of them forms with M and m a partial solution of the unsolved gravitational 3-body problem. Objects orbiting at L_{4} and L_{5} are called Trojans of Greek or Trojan camp, respectively. The Moon was created 4.5 Ga ago by impact of a Mars-sized Trojan planetoid on the Earth. The first known Sun-Earth Trojan asteroid is 2010 TK7, $\approx 300 \mathrm{~m}$ across.)

Other instances of the circular restricted 3-body problem are provided by planet-co-orbital moons and star-planet-quasi-satellite systems. Co-orbital moons are natural satellites that orbit at a very similar distance from their parent planet. Only Saturn's system is known to have them; it has three sets.
Orbital resonance occurs when the bodies orbital periods are in a close-tointeger ratio. For example, Pluto-Neptune are in a $2: 3$ ratio and Jupiter's moons Ganymede-Europa-Io are in a 1:2:4 ratio. Earth and Venus are in a quasiresonance only 0.032% away from $8: 13$. A quasi-satellite is an object in a $1: 1$ orbital resonance with its planet that stays close to the planet over many orbital periods. The largest of four known Earth's quasi-satellites is 3753 Cruithne, ≈ 5 km across.
The most tenuously linked long-distance binary in the Solar System is 2001 QW322: two icy bodies ($\approx 130 \mathrm{~km}$ in diameter) in the Kuiper belt, at mean distance $>10^{5} \mathrm{~km}$, orbiting each other at $3 \mathrm{~km} / \mathrm{h}$.
The elliptic restricted 3-body problem treats the circumbinary (orbiting two stars) planets such as Kepler-16b. A planet PH1 was found in a quadruple (binary pair) star system Kepler-64. Systems with up to 7 stars are known.

- Dynamical spacing

Let M, m_{1}, m_{2} be the masses of a star and two adjacent planets orbiting it with semi-major axes a_{1} and a_{2}. The mutual Hill radius of two planets is

$$
R_{H}=\frac{a_{1}+a_{2}}{2} \sqrt[3]{\frac{m_{1}+m_{2}}{3 M}}
$$

and their dynamical spacing is (Gladman, 1993; Chambers et al., 1996)

$$
\Delta=\frac{\left|a_{2}-a_{1}\right|}{R_{H}}
$$

Fang-Margot, 2013, claim that on average $\Delta=21.7$, and $\Delta<10$ leads to instability in giga-year time span. In the Solar System, $\Delta>26$ for terrestrial planets.

- Titius-Bode law

The Titius-Bode law, 1766, is an empirical rule approximating the mean distance d_{i} of i-th planet from the Sun (its orbital semi-major axis) by $\frac{3 k+4}{10}$ AU.
Here $1 \mathrm{AU} \approx 1.5 \times 10^{8} \mathrm{~km}$ and $k_{1}=0=2^{-\infty}$ (for Mercury), $k_{i}=2^{i-2}$ for $i \geq 2$, i.e., Venus, Earth, Mars, Ceres (the largest one in the Asteroid belt, $\approx \frac{1}{3}$ of its mass), Jupiter, Saturn, Uranus, Pluto. (But Neptune does not fit in the law while Pluto fits Neptune's spot $k=2^{7}$.) The best fit for the form (Wurm, 1787) $d_{i}=A C^{i-2}+B$ is given by $C \approx 1.925, A \approx 0.334, B=0.382$. Cf. elliptic orbit distance.
In the Solar System, the period ratios between adjacent orbits scatter around the dominant 5:2 ratio; it is $3: 2$ for Earth-Venus and $2: 1$ for Mars-Earth.

A generalized Titius-Bode relation $d_{i}=A C^{i}$ for some A, C fits even better for many other exoplanet systems showing such preference towards near mean motion resonance; cf. dynamical spacing. It helps to locate undetected exoplanets.
Hamano et al., 2013, claim that between 108 (as Venus) and 150 (as Earth) million km from the Sun, there is a critical distance explaining their difference. Venus has a similar size and bulk composition to those of Earth, but it lacks water. Earth solidified from its molten magma state within several million years, trapping water in rock and under its hard surface, while Venus got more of the Sun's heat and remained in molten state for ≈ 100 Ma giving time for any water to escape.

- Planetary distance ladder

The scale of interstellar-medium dust, chondrules (round grains found in stony meteorites, the oldest solid material in the Solar System), boulders (rock with grain size of diameter $\geq 256 \mathrm{~mm}$), planetesimals (kilometer-sized solid objects in protoplanetary disks) and protoplanets (internally melted Moon-to-Mars-sized planetary embryos) is $10^{-6}, 10^{-3}, 10^{0}, 10^{3}$ and $10^{6} \mathrm{~m}$.
In the Solar System's protoplanetary gas/dust disk, the binary electrostatic coagulation of dust/ice grains resulted in the creation, of planetesimals. Then gravity took over the accretion process. The growth was runaway (when $T_{1}<T_{2}$, for growth time scales of the first and second most-massive bodies) at first and then (with $T_{1}>T_{2}$ at some transition radius) it became oligarchic. A few tens of protoplanets were formed and then, by giant impacts, they were transformed into Earth and the other rocky planets. The process took $\approx 90 \mathrm{Ma}$ from ≈ 4.57 to $\approx 4.48 \mathrm{Ga}$ ago.
The free-floating planet with lowest mass known, six Jupiters, is PSO J318.5-22.

- Potato radius

The basic shape-types of objects in the Universe are: an irregular dust, rounded "potatoes" (asteroids, icy moons), spheres (planets, stars, black holes), disks (Saturn's rings, galactic disks) and halos (elliptic galaxies, globular star clusters). At mean radius $R<$ few km, objects (dust, crystals, life forms) have irregular shape dominated by nonmass-dependent electronic forces. Solid objects with $R>200-300 \mathrm{~km}$ are gravity-dominated spheres. If both energy E and angular momentum L are exported (by some dissipative processes), the object, if large enough, collapses into a sphere. If only E is exported, the shape is a disk. If neither E, nor L is exported, the shape is a halo, i.e., the body is spheroidal.
If $R(R>$ few km$)$ increases, there is a smooth size-dependent transition to more and more rounded potatoes until $\approx 200-300 \mathrm{~km}$, where gravity begins to dominate. Ignoring surface tension, erosion and impact fragmentation, the potato shape comes mainly from a compromise between electronic forces and gravity. It also depends on the density and the yield strength of the (rocky or icy) material. Lineweaver and Norman, 2010, define the potato radius $R_{p o t}$ as this potato-to-sphere transition radius. They derived $R_{p o t}=300 \mathrm{~km}$ for asteroids (Vesta, Pallas, Ceres have $R=265,275,475 \mathrm{~km}$, respectively) and $R_{p o t}=200$
km for icy moons (Hyperion, Mimas, Miranda have $R=140,198,235 \mathrm{~km}$, respectively).
In 2006, the IAU (International Astronomical Union) defined a planet as a orbiting body which has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape and cleared the neighborhood around its orbit. If the body has not cleared its neighborhood, it is called a dwarf planet. The potato radius, at which self-gravity makes internal overburden pressures equal to the yield strengths of the material, marks the boundary of hydrostatic equilibrium used in above IAU definition. Buchhave et al., 2014: planets smaller than 1.7 Earths are likely to be completely rocky, while those larger than 3.9 Earths are probably gas giants.

- Frost line (in Astrophysics)

In Astrophysics, by analogy with frost line (in Earth Science), the frost (or snow, ice) line is the distance from a star (or a nebula's protostar) where hydrogen compounds such as water, ammonia, methane condense into ice grains. It separates an inner region of rocky objects from an outer region of icy objects.
Water and methane condensate at 180 and 40 K , respectively. Sun's water-frost and methane-frost lines are roughly at 2.7 and 48 AU , i.e., in the Asteroid belt (between the orbits of Mars and Jupiter) and the Kuiper belt (at 30-55 AU). On the other hand, inside of $\approx 0.1 \mathrm{AU}$, rocky grains cannot exist: dust evaporates.
Martin and Livio, 2012, claim that a giant planet like Jupiter should be in the right location outside of the frost line to produce an asteroid belt of the appropriate size, offering the potential for life on a nearby rocky planet like Earth.

- Solar distances

Following a supernova explosion 4,570 Ma ago in our galactic neighborhood, the Sun was formed $4,567 \mathrm{Ma}$ ago by rapid gravitational collapse of a fragment (about 1 parsec across) of a giant (about 20 parsecs) hydrogen molecular cloud.
The mean distance of the Sun from Earth is $1 \mathrm{AU} \approx 1.496 \times 10^{8} \mathrm{~km}$. The mean distance of the Sun from the Milky Way core is 27,200 light-years.
The Sun is more massive than 95% of nearby stars and its orbit around the Galaxy is less eccentric than $\approx 93 \%$ of similar (i.e., of spectral types F, G, K) stars within 40 parsecs. The Sun's mass (99.86% of the Solar System) is $1.988 \times 10^{30} \mathrm{~kg}$.
The Sun's radius is $6.955 \times 10^{5} \mathrm{~km}$; it is measured from its center to the edge of the photosphere ($\approx 500 \mathrm{~km}$ thick layer below which the Sun is opaque to visible light). The Sun will expand ≈ 256 times in $5.4-8 \mathrm{Ga}$ and then become a white dwarf.
The Sun does not have a definite boundary, but it has a well-defined interior structure: the core extending from the center to ≈ 0.2 solar radii, the radiative zone at $\approx 0.2-0.8$ solar radii, where thermal radiation is sufficient to transfer the intense heat of the core outward, the tachocline (transition layer) and the convection zone, where thermal columns carry hot material to the surface (photosphere) of the Sun.

The principal zones of the solar atmosphere (the parts above the photosphere) are: temperature minimum, chromosphere, transition region, corona, and heliosphere.
The chromosphere, a $\approx 3,000 \mathrm{~km}$ deep layer, is more visually transparent. The corona is a highly rarefied region continually varying in size/shape; it is visible only during a total solar eclipse. The chromosphere-corona region is much hotter than the Sun's surface. Extending further, the corona becomes the solar wind, a very thin gas of charged particles that travels through the Solar System.
The heliosphere is the teardrop-shaped region around the Sun created by the solar wind and filled with solar magnetic fields and outward-moving gas. It extends from ≈ 20 solar radii (0.1 AU) outward $86-100 \mathrm{AU}$ past the orbit of Pluto to the heliopause, its outermost edge, where the interstellar medium and solar wind pressures balance. The interstellar medium and solar wind are moving supersonically in opposite directions, towards and away from the Sun. The points, ≈ 80 and $\approx 230 \mathrm{AU}$ from the Sun, where the solar wind and interstellar medium become subsonic, are the termination shock and bow shock, respectively.
The tidal truncation radius ($100,000-200,000 \mathrm{AU}$, say, ≈ 2 ly from the Sun) is the outer limit of the Oort cloud. It is the boundary of the Solar System, i.e., Sun's Hill/Roche sphere, where its gravity is overtaken by the galactic tidal force.

- Dyson radius

The Dyson radius of a star is the radius of a hypothetical Dyson sphere around it, i.e., a megastructure (say, a system of orbiting star-powered satellites) meant to completely encompass a star and capture a large part of its energy output. The solar energy, available at distance d (measured in AU) from the Sun, is $\frac{1366}{d^{2}}$ watts $/ \mathrm{m}^{2}$. The inner surface of the sphere is intended to be used as a habitat.
For example, at Dyson radius $300 \times 10^{6} \mathrm{~km}$ from the Sun a continuous structure with ambient temperature $20^{\circ} \mathrm{C}$ (on the inner surface) and efficiency 3% of power generation (by a heat flux to $-3^{\circ} \mathrm{C}$ on the outer surface) is conceivable.

- Star's radii

The corotation radius of a star is the distance from it where the centrifugal force on a particle corotating with it balances the gravitational attraction, i.e., the accretion disk rotates at the same angular velocity as the star.
The Bondi-Hoyle accretion radius is the radius where star's gravitational energy is larger than the kinetic energy and, so, at which material is bound to star.
The Hayashi radius (or Hayashi limit) of a star is its maximum radius for a given mass. A star within hydrostatic equilibrium (where the inward force of gravity is matched by the outward pressure of the gas) cannot exceed this radius.
The Eddington radius (or Eddington limit) of a star is the radius where the gravitational force inwards equals the continuum radiation force outwards, assuming hydrostatic equilibrium and spherical symmetry. A star exceeding it would initiate a very intense continuum driven stellar wind from its outer layers. The largest and smallest known stars, the red hypergiant UY Scuti and red dwarf OGLE-TR-122b, have respective radii 1708 ± 192 and 0.12 solar radii.

- Galactocentric distance

A star's galactocentric distance (or galactocentric radius) is its range distance from the galactic center; it may also refer to a distance between two galaxies. The galactic anticenter is the point lying opposite, for an observer on Earth, this center.
The Sun's present galactocentric distance is nearly fixed ≈ 8.4 kiloparsec, i.e., 27,400 light-years, but it may have been $2.5-5 \mathrm{kpc}$ in the past. Einasto's law, 1963, claims that the density $\rho(r)$ of a spherical stellar system (say, a galaxy or its halo) varies as $\exp \left(-A r^{\alpha}\right)$, where r is the distance from the center.

- M31-M33 bridge

Braun and Thilker, 2004, discovered that the distance 782,000 light-years between Andromeda (M31) and Triangulum (M33) galaxies is spanned by a link consisting of about 500 million Sun's masses of ionized hydrogen.
A third of all baryonic matter is in stars and galaxies; another $\frac{1}{3}$ is diffuse and thought to be in filamentary networks spread through space. Remaining $\frac{1}{3}$, called warm-hot intergalactic medium (WHIM), is expected to be of intermediate density. The M31-M33 bridge consists of WHIM, the first evidence of this medium. Such WHIM bridges are likely remnants of collisions between galaxies.

- Radii of a star system

Given a star system (say, a galaxy or a globular cluster), its half-light radius (or effective radius) $h r$ is the distance from the core within which half the total luminosity from the system, assumed to be circularly symmetric, is received. The core radius $c r$ is the distance from the core at which the apparent surface luminosity has dropped by half; so, $c r \leq h r$. In general, isophotal radius is the size attributed to the system corresponding to a particular level of surface brightness.
The half-mass radius $r_{0.5}$ is the radius from the core that contains half the total mass of the system. In general, the Lagrangian radii are the distances from the center at which various percentages of the total mass are enclosed.
The tidal radius of a globular cluster is the distance from its center at which the external gravitation of the galaxy has more influence over the stars in the cluster than does the cluster itself.
Unlike a star cluster, all galaxies are filled with and surrounded by a halo of dark matter acting as a sort of glue within and between galaxies. Thin tendrils of dark matter connect nodes of galaxy clusters, creating a cosmic web.
The virial radius $R_{v i r}$ of a galaxy is the radius centered on it containing matter at 200 (sometimes, $18 \pi^{2} \approx 178$ or 130) times the critical (or, mean) density of the Universe. The mass within $R_{v i r}$ is a measure of the total mass inside a dark matter halo. Kravtsov, 2011, claim that $r_{0.5} \approx 0.015 R_{\text {vir }}$. Also, Harris, 2013, explains speed anomalies of Earth's satellites by $0.005-008 \%$ increase of its mass due to a dark matter's disk, 191 km thick and $70,000 \mathrm{~km}$ across, around the equator.

- Habitable zone radii

A maximally Earth-like mean temperature is expected at the distance $\sqrt{\frac{L_{\text {star }}}{L_{\text {sun }}}} \mathrm{AU}$ from a star, where L is the total radiant energy.
The habitable zone radii of a star are the minimal and maximal orbital radii r, R such that liquid water may exist on a terrestrial (i.e., primarily composed of silicate rocks or metals) planet orbiting within this range, so that life, constructed from carbon and reliant on liquid water, could develop there in a similar way as on the early Earth. For Sun, $[r, R]$ is $[0.99,1.70]$ AU; it includes Earth and Mars. For best candidates-orange dwarf stars- HZ is within [0.5, 1] AU.
The Kasting distance (or habitable zone distance) of an exoplanet, at distance d from its star, is an index defined by

$$
H Z D(d)=\frac{2 d-(R+r)}{R-r}
$$

So, $-1 \leq H Z D(d) \leq 1$ correspond to $r \leq d \leq R$.
The above notion of surface habitability is modeled from temperature/humidity; the edges r, R of HZ are determined by loss of water and, respectively, by the maximum greenhouse provided by a CO_{2} atmosphere. Among known exoplanets of 2-10 Earth's mass, the best candidates for Earth-like habitability are GJ 667 Cc, HD-85512b, Kepler-22b (22, 36, 600 ly away) orbiting, respectively, stars Gliese 667C, Gliese 370, Kepler-22 in the constellations Scorpius, Vela, Cygnus of our galaxy.
Habitable zones are 10-14 times wider for subsurface life. Protected inside a warm mineral-rich rocks, it can be much more typical than Earth's surface life.
Petigra et al., 2013: eta-Earth of our galaxy, i.e., fraction of Sun-like stars with an Earth-size (1-2 Earth's radii) planet orbiting in habitable zones, is $22 \pm 8 \%$, depending on the definition of HZ. There could be 40 billion habitable Earth-size planets in the Milky Way with the nearest one being within 12 ly. They found 603 Earths 2.0, i.e., rocky planets with an atmosphere circling in HZ of a Sun-like star in 200-400 days and receiving $0.25-4$ of stellar energy coming to Earth.
But for Heller-Armstrong, 2014, planet or moon habitability should not be defined by the stellar HZ, since, for example, tidal heating can render terrestrial or icy worlds habitable, even more than Earth, beyond it. They expect such superhabitable objects around orange dwarfs, including Alpha Centauri B, thirdnearest star.
Our galactic habitable zone is (Lineweaver et al., 2004) a slowly expanding region between 7 and 9 kpc of galactocentric distance; so, the minimal and maximal radii are 22,000 and 28,000 ly. They used 4 prerequisites for complex life: the presence of a host star, enough heavy elements to form terrestrial planets, sufficient time $(4 \pm 1 \mathrm{Ga})$ for biological evolution and an supernovae-free environment.

- Earth similarity index

The Earth similarity index of a planet P is (Schulze-Makuch et al., 2011):

$$
E S I(P)=\prod_{i=1}^{n}\left(1-\left|\frac{x_{i}(P)-x_{i}(E)}{x_{i}(P)+x_{i}(E)}\right|\right)^{\frac{w_{i}}{n}},
$$

where $x_{i}(P)$ is a planetary parameter (including surface temperature, escape velocity, mean radius, bulk density), $x_{i}(E)$ is the reference value for Earth (i.e., $\left.14.85^{\circ} \mathrm{C}, 1,1,1\right), w_{i}$ is a weight $(5.58,0.70,0.57,1.07)$ and n is the number of parameters. $\mathrm{ESI}(\mathrm{P})=1,0.84,0.83,0.78,0.64$ for Earth, GJ-667Cc, Kepler-62e and Venus, Mars. Many exomoons and unconfirmed NASA Kepler candidates rank within $[0.76,0.90]$. Terrestrial, but only simple extremophilic, life might be possible if $\mathrm{ESI}(\mathrm{P})>0.6$, while plants/animals may require >0.8.
The same authors proposed a planetary habitability index based on the presence of a stable substrate, atmosphere, magnetic field, available energy, appropriate chemistry and the potential for holding a liquid solvent, such as $100-\mathrm{km}$ deep ocean beneath the surface of Jupiter's moon Europa and hydrocarbon lakes on Saturn's moon Titan. Unicellular life has been found in the most adverse conditions on Earth. So, the presence of extremophiles on Mars and, with very different biochemistry, on Europa and Titan is plausible. For primary producers (plants), Earth was more habitable 500 Ma ago, with less seasonal ice and deserts. Observing oxygen in a planet's atmosphere will indicate photosynthetic life since the photosynthesis is the only known process able to release O_{2} in any real quantity. But the importance of oxygen and carbon can be a peculiarity of Earth life. For Oze et al., 2012, low (<40) hydrogen/methane ratio indicate that life is likely present. Also, infrared, or heat, radiation can indicate an alien civilization.

- SETI detection ranges

SETI (Search for Extra Terrestrial Intelligence) involves using radio telescopes to search for a possible alien radio transmission. The recorded signals are mostly random noise but in 1977 a strong signal (called WOW!) was received at ≤ 10 kHz of the frequency $\approx 1420.406 \mathrm{MHz}(21 \mathrm{~cm})$ of the hydrogen line. Also, a puzzling radio source $\mathrm{SHGb} 02+14 \mathrm{a}$ was observed three times in 2003 at ≈ 1420 MHz.
SETI detection ranges are the maximal distances over which detection is still possible using given frequency, antenna dish size, receiver bandwidth, etc. They are low for broadband signals from Earth (from 0.007 AU for AM radio up to 5.4 AU for EM radio) but reach 720 light-years for the S-Band of the world's largest (with dish's diameter 305 m) single-aperture radio telescope at Arecibo.
SETI searches in the microwave window $1-10 \mathrm{GHz}$ (the part of the radio spectrum that can pass through the atmosphere), especially around the "waterhole" $1,420-1,666 \mathrm{MHz}(21-18 \mathrm{~cm})$ between hydrogen, H, and hydroxyl, $O H$.
All known signals with spectral width $<5 \mathrm{~Hz}$ arise from artificial sources; so, such extraterrestrial signal will indicate an intelligent civilization. SETI searched those narrow band signals in L-band (1.1-1.9 GHz) from 86 stars in the Kepler field of view hosting most life-promising exoplanets, but not found none. Tarter et al., 2013, deduce from it that the number of Kardashev type II (using all energy from their star; our total power consumption today is $\approx 0.01 \%$ of the sunlight
falling on Earth) civilizations in the Milky Way loud in L-band, is less than 1 in a million per sun-like star. The volume V of our galaxy is about $\pi\left(50000^{2}\right) 1000 \approx$ $7.9 \times 10^{12}(\mathrm{ly})^{3}$. If N civilizations are distributed there uniformly with spacing d, then $d^{3}=\frac{V}{N}$.
Active SETI (or METI) consists of sending radio or optical signals into space hoping that they will be picked up by an alien intelligence. The first radio signals from Earth to reach space were produced around 1940 but TV and radio signals decompose into static within 1-2 ly. In 1974 Arecibo telescope sent an elaborate radio signal aimed at the star cluster M13 located 25,000 ly away.
About the perceived risk of revealing the location of the Earth to an alien civilization, METI enthusiasts reply that an advanced civilization within a radius of 100 ly already knows of our existence due to electromagnetic signals leaking from TV, radio and radar. But now, with digital transmissions replacing analogue ones and virtually no radiation escaping into outer space, the Earth become electronically invisible to aliens. Still, a civilization even slightly more advanced than ours could detect the lights of our big cities from up to 500 light years away, using its sun as a gravitational lens. Also, some life (plants, lichens, algae, bacterial mats) can be recognized by its light signature from space.
Besides radio signals and light, nonmicrobial alien life can be discovered by analyzing the output of methane or oxygen in the atmosphere of exoplanets.

- Voyager 1 distance

The Voyager 1 is a $722-\mathrm{kg}$ robotic space probe launched by NASA in 1977; it has power to operate its radio transmitters until 2025 but only 68 kB of memory. It is currently the farthest man-made object from Earth, the first probe to leave the Solar System (in 2013) and the fastest probe (moving at $\approx 17 \mathrm{~km} / \mathrm{s}$ or 3.6 AU/year). As of May 2014, Voyager 1 distance from Earth was $1.9 \times 10^{10} \mathrm{~km}$ ≈ 127 while for Voyager 2 , it was $\approx 104.7 \mathrm{AU} \approx 14.5$ light-hours.
The NASA Stardust spacecraft (1999-2006) achieved the longest distance (30 AU) traveled by a return mission and the farthest distance (2.7 AU) solar powered spacecraft has traveled from the Sun. Amino acid glycine was found in its comet sample.
The Earth-Moon distance (≈ 1.28 light-seconds) can be covered, with current technologies, in $\approx 8 \mathrm{~h}$. The distance from Earth to other planets ranges from 3 light-minutes to ≈ 4 light-hours. At Voyager 1's current rate, a journey to Proxima Centauri (the nearest known star, 4.24 ly away) would take 72,000 years.
Interstellar travel will be possible only with new technology, say, beamed-light sails, hydrogen-fuelled ramjet, nuclear pulse propulsion, warp drive, wormholes. Human spaceflight beyond the close neighborhood in the Solar System looks, as now, unlikely, because of duration, cost and health threat due to microgravity, radiation and isolation. Also, long (more than a month) sojourns in space produce potentially serious brain anomalies and severe eyesight problems. Still, the project Inspiration Mars will send a crew of two for a 501 days fly-by mission to Mars, using its next closest approach (57.6 million km) in 2018; cf. opposition distance.

- Earth in space

The Earth, spinning $0.5 \mathrm{~km} / \mathrm{s}$, orbits the Sun at $30 \mathrm{~km} / \mathrm{s}$. The Sun orbits the galactic center at $219 \mathrm{~km} / \mathrm{s}$ and it moves at $16.5 \mathrm{~km} / \mathrm{s}$, with respect to the motion of its galactic neighborhood, towards Vega, a star in the constellation Lyra.
The Local Bubble is a cavity, 300-800 ly across (with hydrogen density 0.05 atoms per cm^{3}, one tenth of the galactic density) in the Local (or Orion-Cygnus) Arm of the Milky Way. The Solar System has been traveling through this Bubble for the last $5-10 \mathrm{Ma}$ and is located now close to its inner rim, about half-way along the Arm's length. From $0.044-0.15 \mathrm{Ma}$ ago and for another $0.01-0.02 \mathrm{Ma}$, the Sun is traversing the Local Interstellar Cloud 30 ly across at $23 \mathrm{~km} / \mathrm{s}$.
The Milky Way (0.1 Mly across and 1 kly thick) and Andromeda galaxies are 2.5 Mly apart and are approaching at $100-140 \mathrm{~km} / \mathrm{s}$. In $4+1.3+0.1 \mathrm{Ga}$ (3 consecutive collisions) they will merge to form the Milkomeda, new elliptical galaxy in which our Solar System would remain intact but Sun's galactocentric distance will be 0.16 Mly. Their stars will not collide but central black holes will merge.
Our Local Group (LG) is a poor (small and not centered) cluster, 10 Mly across, consisting of Andromeda (M31), Milky Way (MW), Triangulum and about 50 small galaxies. It lies in the outskirts (on a small filament connecting the Fornax and Virgo clusters) of our small Local Supercluster (LSC), 110 Mly across and with a mass 10^{15} suns. The number of galaxies per unit volume, in the LSC, falls off with the square of the distance from its center, near the Virgo cluster.
The LSC belongs to the Pisces-Cetus supercluster complex, 1 Gly long and 150 Mly (46 Mpc) wide; its mass is 10^{18} suns. Fairall, 1994, proposed to unite the LSC and (the nearest) Centaurus superclusters via the zone, obscured by the Milky Way, with the Fornax Wall, creating the Centaurus Great Wall.
The Extended Local Group is the LG plus the "nearby" (3.9 Mpc) Maffei and Sculptor groups. It belongs to our Local Filament (LF, or Coma-Sculptor Cloud), a branch of the Fornax-Virgo filament of the LSC.
The LF bounds the Local Void (LV), extending 60 Mpc from the edge of the LG. The Local Sheet (LS) is all LF's matter within 7 Mpc. The Milky Way and Andromeda are encircled by 12 large galaxies arranged in a ring about 24-Mly across.
With respect to the CMBR (cosmic microwave background radiation) filling the Universe almost uniformly, the Solar System, Milky Way, and LG velocities are $369,600,627 \mathrm{~km} / \mathrm{s}$. Peculiar velocities $V_{\text {pec }}$ are the deviations from the Hubble expansion, i.e., $V_{p e c}=V_{o b s}-H_{0} d$, where $V_{o b s}$ is the observed velocity, d is the distance and H_{0} is the Hubble constant, $\approx 72 \mathrm{~km} / \mathrm{s}$ for every Mpc. The Hubble flow, dominating at large distances, is negated by gravity at smaller distances; for example, its recession velocity is $<1 \mathrm{~mm} / \mathrm{s}$ at the edge of the Solar System.
According to Tully et al., 2007, the Local Sheet is moving as a unit with low internal dispersion; the LG moves at only $66 \mathrm{~km} / \mathrm{s}$ with respect to the LS. The bulk flow of the LS is sharply discontinuous from the flows of other
nearby structures. The vector of this flow has, with respect to the CMBR, amplitude $631 \mathrm{~km} / \mathrm{s}$. It can be decomposed into a vector sum of three quasiorthogonal components: local ($259 \mathrm{~km} / \mathrm{s}$ away from the center of the Local Void), intermediate ($185 \mathrm{~km} / \mathrm{s}$ to the Virgo cluster) and large ($455 \mathrm{~km} / \mathrm{s}$ towards the Great Attractor (GrAt)).
All matter within 4.6 Mpc moves away from the Local Void at $268 \mathrm{~km} / \mathrm{s}$. It will collide, in $\approx 10 \mathrm{Ga}$, with the nearest adjacent filament, the Leo Spur. The Local Sheet moves toward the Virgo cluster, at the distance 17 Mpc . All matter within 50 Mpc moves at $600 \mathrm{~km} / \mathrm{s}$ towards overdensities at 200 Mly (GrAt dominated by the Norma cluster) and 600 Mly (Shapley supercluster, roughly behind GrAt).

Chapter 26
 Distances in Cosmology and Theory of Relativity

26.1 Distances in Cosmology

The Universe is defined as the whole space-time continuum in which we exist, together with all the energy and matter within it.

Cosmology is the study of the large-scale structure of the Universe. Specific cosmological questions of interest include the isotropy of the Universe (on the largest scales, the Universe looks the same in all directions, i.e., is invariant to rotations), the homogeneousness of the Universe (any measurable property of the Universe is the same everywhere, i.e., it is invariant to translations), the density of the Universe, the equality of matter and antimatter, and the origin of density fluctuations in galaxies.

Hubble, 1929, discovered that all galaxies have a positive redshift, i.e., all galaxies, except for a few nearby galaxies like Andromeda, are receding from the Milky Way. By the Copernican principle (that we are not at a special place in the Universe), we deduce that all galaxies are receding from each other, i.e., we live in an expanding Universe, and the further a galaxy is away from us, the faster it is moving away (this is now called the Hubble law). The Hubble flow is the general outward movement of galaxies and clusters of galaxies resulting from the expansion of the Universe. It occurs radially away from the observer, and obeys the Hubble law. The gravitation in galaxies can overcome this expansion, but the clusters and superclusters (largest gravitationally bound objects) only slow the rate of their expansion.

In Cosmology, the prevailing scientific theory about the early development and shape of the Universe is the Big Bang Theory. The observation that galaxies appear to be receding from each other, combined with the General Theory of Relativity, leads to the construction that, as one goes back in time, the Universe becomes increasingly hot and dense, then leads to a gravitational singularity, at which all distances become zero, and temperatures and pressures become infinite.

The term Big Bang is used to refer to a hypothesized point in time when the observed expansion of the Universe began. Based on measurements of this expansion, it is currently believed that the Universe has an age of $\approx 13.82 \mathrm{Ga}$ (billion years).

In Cosmology (or, more exactly, Cosmography, the measurement of the Universe) there are many ways to specify the distance between two points, because in the expanding Universe, the distances between comoving objects are constantly changing, and Earth-bound observers look back in time as they look out in distance. The unifying aspect is that all distance measures somehow measure the separation between events on radial null trajectories, i.e., trajectories of photons which terminate at the observer. In general, the cosmological distance is a distance far beyond the boundaries of our Galaxy.

The geometry of the Universe is determined by several cosmological parameters: the cosmic scale factor a, the Hubble constant H, the density ρ and the critical density $\rho_{\text {crit }}$ (the density required for the Universe to stop expansion and, eventually, collapse back onto itself), the cosmological constant Λ, the curvature k of the Universe. Many of these quantities are related under the assumptions of a given cosmological model. The most common cosmological models are the closed and open Friedmann-Lemaître cosmological models and the Einstein-de Sitter cosmological model.

This model assumes a homogeneous, isotropic, constant curvature Universe with zero cosmological constant Λ and pressure p. For constant mass M of the Universe, $H^{2}=\frac{8}{3} \pi G \rho, t=\frac{2}{3} H^{-1}, a=\frac{1}{R_{C}}\left(\frac{9 G M}{2}\right)^{\frac{1}{3}} t^{\frac{2}{3}}$, where $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ is the gravitational constant, $R_{C}=|k|^{-\frac{1}{2}}$ is the radius of curvature, and t is the age of the Universe.

The scale factor $a=a(t)$ is an expansion parameter, relating the size of the Universe $R=R(t)$ at time t to its size $R_{0}=R\left(t_{0}\right)$ at time t_{0} by $R=a R_{0}$.

The Hubble constant H is the constant of proportionality between the speed of expansion v and the size of the Universe R, i.e., $v=H R$. This equality is just the Hubble law with the Hubble constant $H=\frac{a^{\prime}(t)}{a(t)}$. This is a linear redshift-distance relationship, where redshift is interpreted as recessional velocity v, typically expressed in km / s.

The current value of the Hubble constant is $H_{0}=71 \pm 4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, where the subscript 0 refers to the present epoch because H changes with time. The Hubble time and the Hubble distance are defined by $t_{H}=\frac{1}{H_{0}} \approx 13.82 \mathrm{Ga}$ and $D_{H}=$ $\frac{c}{H_{0}} \approx 4.24 \mathrm{Gpc}$. The Hubble volume (or Hubble sphere) is the region of the Universe surrounding an observer beyond which the recessional velocity exceeds the speed c of light, i.e., any object beyond particle horizon $\left(4.4 \times 10^{26} \mathrm{~m}=47\right.$ light- Ga$)$, is receding (due to the expansion of the Universe itself) at a rate greater than c.

The volume of observable Universe is the volume $\approx 4.1 \times 10^{34}$ cubic light-years, or $\approx 3.4 \times 10^{80} \mathrm{~m}^{3}$, of Universe with a comoving size of $\frac{c}{H_{0}}$, i.e., a sphere with radius $\approx 14 \mathrm{Gpc}$ (about 3 times larger than that of Hubble volume). It has mass $\approx 1.6 \times 10^{53}$ kg and contains $\approx 10^{23}$ stars (in at least 8×10^{10} galaxies) and $\approx 10^{80}$ atoms.

The mass density ρ (ρ_{0} in the present epoch) and the value of the cosmological constant Λ are dynamical properties of the Universe; today $\rho \sim 9.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m}^{-3}$ and $\Lambda \sim 10^{-52} \mathrm{~m}^{-2}$. They can be made into dimensionless parameters Ω_{M} and Ω_{Λ} by $\Omega_{M}=\frac{8 \pi G \rho_{0}}{3 H_{0}^{3}}, \Omega_{\Lambda}=\frac{\Lambda}{3 H_{0}^{3}}$. A third parameter $\Omega_{R}=1-\Omega_{M}-\Omega_{\Lambda}$ measures the "curvature of space". These parameters determine the geometry of the Universe if it is homogeneous, isotropic, and matter-dominated.

The velocity of a galaxy is measured by the Doppler effect, i.e., the fact that light emitted from a source is shifted in wavelength by the motion of the source. (The Doppler shift is reversed in some metamaterials: a light source moving toward an observer appears to reduce its frequency.) A relativistic form of the Doppler shift exists for objects traveling very quickly, and is given by $\frac{\lambda_{\text {obser }}}{\lambda_{\text {enit }}}=\sqrt{\frac{c+v}{c-v}}$, where $\lambda_{\text {emit }}$ is the emitted wavelength, and $\lambda_{\text {obser }}$ is the shifted (observed) wavelength. The change in wavelength with respect to the source at rest is called the redshift (if moving away), and is denoted by the letter z. The relativistic redshift z for a particle is given by $z=\frac{\Delta \lambda_{\text {obser }}}{\lambda_{\text {enit }}}=\frac{\lambda_{\text {obser }}}{\lambda_{\text {enit }}}-1=\sqrt{\frac{c+v}{c-v}}-1$.

The cosmological redshift is directly related to the scale factor $a=a(t): z+1=$ $\frac{a\left(t_{o}\right)}{a\left(t_{e}\right)}$. Here $a\left(t_{o}\right)$ is the value of the scale factor at the time the light from the object is observed, and $a\left(t_{e}\right)$ is its value at the time it was emitted. It is usually chosen $a\left(t_{o}\right)=1$, where t_{o} is the present age of the Universe.

- Metric expansion of space

The metric expansion of space is the averaged increase of measured distances between objects in the Universe with time.
It is not a motion of space and not a motion into pre-existing space. Only distances expand (and contract). The expansion has no center: all distances increase by the same factor, and every observer sees the same expanding cosmos. The observed Hubble law quantifies expansion from an observer. Expansion rate between two points in free space 1 m apart is $2.2 \times 10^{-18} \mathrm{~m} / \mathrm{s}$.
The mean distances between widely separated galaxies increase by $\approx 1 \%$ every 140 million years. FLRW metric models, at large (superclusters of galaxies) scale, this expansion. On the scales of galaxies, there is no expansion since the metric of the local Universe has been altered by the presence of the mass of the galaxy. Full expansion, at the Hubble rate $\approx 7,000 \mathrm{~km} / \mathrm{s}$, commences only at distances $\approx 100 \mathrm{Mpc}$. Superclusters are expanding but remain gravitationally bound, i.e., their expansion rate is decelerated.
Expansion is thought to start due to cosmic inflation and then, due mainly to inertia. Its rate decelerated about 12 Ga ago due to gravity and then, from about 6 Ga ago when putative dark energy took over, accelerated. Now, for every megaparsec of distance from the observer, the rate of expansion increases by about $74 \mathrm{~km} / \mathrm{s}$. When the Universe doubles in volume, the dark energy doubles too. In 10^{11} years our galaxy will be the only one left in the observable Universe. The Universe was radiation-dominated with the scale factor $a(t) \sim t^{\frac{1}{2}}$ first $\approx 70,000$ years, then matter-dominated with $a(t) \sim t^{\frac{2}{3}}$ until ≈ 4.5 Ma ago, then dark-energy-dominated with $a(t) \sim \exp (H t)$ and the Hubble constant
$H=\sqrt{\frac{8 \pi G \rho}{3}}=\sqrt{\frac{\Lambda}{3}}$. In fact, its expansion caused the matter surpass the radiation in energy density and further, when matter and radiation dropped to low concentrations, the repulsive dark energy (or vacuum energy) overtook the gravity of matter.
The most commonly accepted scenario for the future is the Big Freeze: continued expansion results in a universe that asymptotically approaches 0 K and the Heat Death, a state of maximum entropy in which everything is evenly distributed. Caldwell, 2003, claimed that the scale factor a will became infinite in the finite future, resulting in Big Rip, final singularity in which all distances diverge to ∞.

- Zero-gravity radius

For a cluster of mass M, its zero-gravity (or zero-velocity, turnover) radius R_{V} is (Sandage, 1986, and Chernin-Teerikorpi-Baryshev, 2006) the distance r from the cluster's barycenter, where the radial force $\frac{G M}{r^{2}}$ of the point mass M gravity become equal to the radial force $\left(G 2 \rho_{V} \frac{4 \pi}{3} r^{3}\right.$ divided by r^{2}) of vacuum antigravity. So,

$$
R_{V}^{3}=\frac{3 M}{8 \pi \rho_{V}}
$$

Here G is the gravitational constant and $\rho_{V} \approx 7 \times 10^{-30} \mathrm{~g} / \mathrm{cm}^{3}$ is the constant density of dark energy inferred from global observations of supernovae 1 a .
The Einstein-Straus radius R_{M} is the radius besides which expansion rate reach the global level. It is estimated that $\frac{R_{M}}{R_{V}}$ is $1.5-1.7$ if the ratio of local and global density of dark energy is $0.1-1$. If above ration is 1 , then $R_{M}=$ $R_{V}\left(1+z_{V}\right)$, where $z_{V} \approx 0.7$ is the global zero-acceleration redshift.
For the Local Group (LG), containing Milky Way and of mass $2-3.5 \times 10^{12}$ suns, above model corresponds to observed $R_{V}=1.3-1.55 \mathrm{Mpc}$ and $R_{M}=$ $2.2-2.6 \mathrm{Mpc}$. The Virgo cluster, dominating Local supercluster, contains over 1,000 galaxies in a volume slightly larger than LG; its mass is $\approx 10^{15}$ suns and $R_{V}=10.3 \mathrm{Mpc}$.

- Hubble distance

The Hubble distance (or cosmic light horizon, Hubble radius) is an increasing maximum distance $D_{H}=c t_{H}$ that a light signal could have traveled since the Big Bang, the beginning of the Universe. Here c is the speed of light and t_{H} is the Hubble time (or age of the Universe). It holds $t_{H}=\frac{1}{H_{0}}$, where H_{0} is the Hubble constant which is estimated as $71 \pm 4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ at present. So, at present, $t_{H} \approx 4.32 \times 10^{17} \mathrm{~s} \approx 13.82 \mathrm{Ga}$, and $D_{H}=\frac{c}{H_{0}} \approx 13.82$ billion light-years $\approx 1.31 \times 10^{26} \mathrm{~m} \approx 4.24 \mathrm{Gpc}$, i.e., 4.6×10^{61} Planck lengths.
But we are observing now, due to the space expansion, objects much farther away than a static distance 13.82 Gly.
For small $\frac{v}{c}$ or small distance d in the expanding Universe, the velocity is proportional to the distance, and all distance measures, for example, angular diameter
distance, luminosity distance, etc., converge. In the linear approximation, this
reduces to $d \approx z D_{H}$. But for large $\frac{v}{c}$, the relativistic Lorentz length contraction $L=L_{0} \sqrt{1-\left(\frac{v}{c}\right)^{2}}$, where L_{0} is a proper length, of an object traveling at velocity v relative to an observer, become noticeable to that observer.
Above Hubble radius was measured (by the Wilkinson Microwave Anisotropy Probe) as a light travel distance to the source of cosmic background radiation. Other estimations: 13.1 Gly (calibrating the distances to supernovae of a standard brightness), 14.3 Gly (measuring radio galaxies of a standard size) and 14.5 Gly (basing on the abundance ratio of uranium/thorium chondritic meteorites, [Dau05]).

- Cosmic sound horizon

Cosmic background radiation (CMB) is thermal radiation (strongest in the microwave region of the radio spectrum) filling the observable Universe almost uniformly. It originated $t_{r} \approx 380,000$ years after the Big Bang (or at a redshift of $z=1,100$), at recombination, when the Universe (ionized plasma of electrons and baryons, i.e., protons and neutrons) cooled to below 3,000 K. (Now, the Universe's temperature is $\approx 1,100$ times cooler and its size is $\approx 1,100$ times larger.)
The electrons and protons start to form neutral hydrogen atoms, allowing photons (trapped before by Thomson scattering) to travel freely. During next $\approx 100,000$ years radiation decoupled from the matter and the Universe became transparent. The plasma of photons and baryons can be seen as a single fluid. The gravitational collapse around "seeds" (point-like overdensities produced during inflation) into dark matter hierarchical halos was opposed by outward radiation pressure from the heat of photon-matter interactions. This competition created longitudinal (acoustic) oscillations in the photon-baryon fluid, analogic to sound waves, created in air by pressure differences, or to ripples in a pond.
At recombination, the only remaining force on baryons is gravitation, and the pattern of oscillations (configuration of baryons and, at the centers of perturbations, dark matter) became frozen into the CMB. Baryon radiative cooling into gas and stars let this pattern of seeds to grow into structure of the Universe.
More matter existed at the centers and edges of these waves, leading eventually to more galaxies there. Today, we detect the sound waves (regular, periodic fluctuations in the density of the visible baryonic matter) via the primary CMB anisotropies.
These baryon acoustic oscillations (BAO) started at $t=0$ (post-inflation) and stopped at $t=t_{r}$ (recombination). The cosmic sound horizon is the distance sound waves could have traveled. At recombination, it was $\approx c_{s} t_{r} \sim 100 \mathrm{kpc}$, approximating the speed c_{s} of sound as $\frac{c}{\sqrt{3}}$.
Expanding by factor $1+z=1100$, it is $120-150 \mathrm{Mpc}$ today. It is a standard ruler; an excess of galaxy pairs separated by this horizon was confirmed. Cf. cosmological distance ladder and, in Chap. 24, acoustic metric.

- GZK-horizon

Greisen and Kuzmin-Zatsepin, 1966, computed that a cosmic ray with kinetic energy over GZK-limit ($5 \times 10^{19} \mathrm{eV}$) traveling from its distant, over

GZK-horizon ($50 \mathrm{Mpc} \approx 163 \mathrm{Mly}$) source, will be absorbed (due to slowing interaction with photons of the CMB and associated mean path) and so never observed on Earth.
Several cosmic rays apparently exceeding GZK-limit were observed; this GZKparadox is still unexplained.

- Comoving distance

The standard Big Bang model uses comoving coordinates, where the spatial reference frame is attached to the average positions of galaxies. With this set of coordinates, both the time and expansion of the Universe can be ignored and the shape of space is seen as a spatial hypersurface at constant cosmological time. The comoving (or cosmological) distance is a distance (denoted χ or $d_{\text {comov }}$) in comoving coordinates between two points in space at a single cosmological time, i.e., the distance between two nearby (close in redshift z) objects, which remains constant with epoch if these objects are moving with the Hubble flow.
The (cosmological) proper distance $d_{\text {proper }}$ is a distance between two nearby events in the frame in which they occur at the same time. It is the distance measured by a ruler at the time t_{o} of observation. It holds

$$
d_{\text {comov }}(x, y)=d_{\text {proper }}(x, y) \cdot \frac{a\left(t_{o}\right)}{a\left(t_{e}\right)}=d_{\text {proper }}(x, y) \cdot(1+z)
$$

where $a(t)$ is the scale factor. In the time t_{o}, i.e., at the present, $a=a\left(t_{o}\right)=1$, and $d_{\text {comov }}=d_{\text {proper }}$, In general, $d_{\text {proper }}(t)=a(t) d_{\text {comov }}$, for a cosmological time t.
The total line-of-sight comoving distance D_{C} from us to a distant object is computed by integrating the infinitesimal $d_{\text {comov }}(x, y)$ contributions between nearby events along the time ray from the time t_{e}, when the light from the object was emitted, to the time t_{o}, when the object is observed:

$$
D_{C}=\int_{t_{e}}^{t_{o}} \frac{c d t}{a(t)} .
$$

In terms of redshift, D_{C} from us to a distant object is computed by integrating the infinitesimal $d_{\text {comov }}(x, y)$ contributions between nearby events along the radial ray from $z=0$ to the object: $D_{C}=D_{H} \int_{0}^{z} \frac{d z}{E(z)}$, where D_{H} is the Hubble distance, and $E(z)=\left(\Omega_{M}(1+z)^{3}+\Omega_{R}(1+z)^{2}+\Omega_{\Lambda}\right)^{\frac{1}{2}}$.
In a sense, the comoving distance is the fundamental distance measure in Cosmology, since all other distances can simply be derived in terms of it.

- Proper motion distance

The proper motion distance (or transverse comoving distance, contemporary angular diameter distance) D_{M} is a distance from us to a distant object defined as the ratio of the actual transverse velocity (in distance over time) of the object to its proper motion (in radians per unit time). It is given by

$$
D_{M}=\left\{\begin{array}{cc}
D_{H} \frac{1}{\sqrt{\Omega_{R}}} \sinh \left(\sqrt{\Omega_{R}} D_{C} / D_{H}\right), & \text { for } \Omega_{R}>0 \\
D_{C}, & \text { for } \Omega_{R}=0 \\
D_{H} \frac{1}{\sqrt{\left|\Omega_{R}\right|}} \sin \left(\sqrt{\left|\Omega_{R}\right|} D_{C} / D_{H}\right), & \text { for } \Omega_{R}<0
\end{array}\right.
$$

where D_{H} is the Hubble distance, and D_{C} is the line-of-sight comoving distance. For $\Omega_{\Lambda}=0$, there is an analytic solution (z is the redshift):

$$
D_{M}=D_{H} \frac{2\left(2-\Omega_{M}(1-z)-\left(2-\Omega_{M}\right) \sqrt{1+\Omega_{M} z}\right)}{\Omega_{M}^{2}(1+z)}
$$

The proper motion distance D_{M} coincides with the line-of-sight comoving distance D_{C} if and only if the curvature of the Universe is equal to zero. The comoving distance between two events at the same redshift or distance, but separated in the sky by some angle $\delta \theta$, is equal to $D_{M} \delta \theta$.
The distance D_{M} is related to the luminosity distance D_{L} and the angular diameter distance D_{A} by $D_{M}=(1+z)^{-1} D_{L}=(1+z) D_{A}$.

- Luminosity distance

The luminosity distance D_{L} is a distance from us to a distant object defined by the relationship between the observed flux S and emitted luminosity L :

$$
D_{L}=\sqrt{\frac{L}{4 \pi S}} .
$$

This distance is related to the proper motion distance D_{M} and t the angular diameter distance by $D_{L}=(1+z) D_{M}=(1+z)^{2} D_{A}$, where z is the redshift. The luminosity distance does take into account the fact that the observed luminosity is attenuated by two factors, the relativistic redshift and the Doppler shift of emission, each of which contributes an $(1+z)$ attenuation: $L_{\text {obser }}=$ $\frac{L_{\text {emiss }}}{(1+z)^{2}}$.
The corrected luminosity distance D_{L}^{\prime} is defined by $D_{L}^{\prime}=\frac{D_{L}}{1+z}$.

- Distance modulus

The distance modulus is $D M=5 \ln \left(\frac{D_{L}}{10 p c}\right)$, where D_{L} is the luminosity distance. The distance modulus is the difference between the absolute magnitude (the brightness that star would appear to have if it was at a distance of 10 parsec) and apparent magnitude (the actual brightness) of an astronomical object.
Distance moduli are most commonly used when expressing the distances to other galaxies. For example, the Andromeda Galaxy's $D M$ is 24.5 , and the Virgo cluster has $D M$ equal to 31.7. For a much smaller object (planet, comet or asteroid), the absolute magnitude is its apparent visual magnitude at zero phase angle and at unit (1 AU) heliocentric and geocentric distances. The brightest (with peak apparent magnitude -7.5) recorded stellar event was the supernova in 1006.

- Angular diameter distance

The angular diameter distance (or angular size distance) D_{A} is a distance from us to a distant object defined as the ratio of an object's physical transverse size to its angular size (in radians). It is used to convert angular separations in telescope images into proper separations at the source. It is special for not increasing indefinitely as $z \rightarrow \infty$; it turns over at $z \sim 1$, and so more distant objects actually appear larger in angular size. D_{A} is related to the proper motion distance D_{M} and the luminosity distance D_{L} by $D_{A}=\frac{D_{M}}{1+z}=\frac{D_{L}}{(1+z)^{2}}$, where z is the redshift. The distance duality $\frac{D_{L}(z)}{D_{A}(z)}=(1+z)^{2}$ links D_{L}, based on the apparent luminosity of standard candles (for example, supernovae) and D_{A}, based on the apparent size ("visual diameter" measured as an angle) of standard rulers (for example, cosmic sound horizon). It holds for any general metric theory of gravity (cf. Chap. 24) in any background in which photons travel on unique null geodesics. If the angular diameter distance is based on the representation of object diameter as angle \times distance, the area distance is defined similarly according the representation of object area as solid angle \times distance 2.

- Einstein radius

General Relativity predicts gravitational lensing, i.e., deformation of the light from a source (a galaxy or star) in the presence of a gravitational lens, i.e., a body of large mass M (another galaxy, or a black hole) bending it.
If the source S, lens L and observer O are all aligned, the gravitational deflection is symmetric around the lens. The Einstein radius is the radius of the resulting Einstein (or Chwolson) ring. In radians it is

$$
\sqrt{M \frac{4 G}{c^{2}} \frac{D(L, S)}{D(O, L) D(O, S)}}
$$

where $D(O, L)$ and $D(O, S)$ are the angular diameter distances of the lens and source, while $D(L, S)$ is the angular diameter distance between them.

- Light travel distance

The light travel (or look-back) distance is a distance from us to a distant object, defined by $D_{l t}=c D_{t}$, where D_{t} is the difference $t_{o}-t_{e}$ between the time, when the object was observed, and the time, when the light from it was emitted. The look-back time D_{t} is a proper time, but $D_{l t}$ is not a proper distance.
$D_{l t}$ is not a very useful distance, because it is hard to determine t_{e}, the age of the Universe at the time of emission of the light which we see. Cf. Hubble radius.

- Parallax distance

Given an object O viewed along two different lines of sight, its parallax is the angle $p=A O B$ between its directions of view from the two ends of a baseline $A B$. If $A O \approx B O$ and $p, A B$ are small, the distance $A O$ can be easily estimated. Animals use their two eyes (stereoopsis) or two positions of moving head (motion parallax) as points A, B. Cf. animal depth/distance perception in Chap. 23.

In Astronomy, the parallax distance is a distance D_{P} from us to a distant object (say, a star) defined from measuring of stellar parallaxes, i.e., its apparent changes of position in the sky caused by the motion of the observer on the Earth. Usually, it is the annual parallax, i.e., p is the angle Earth-star-Sun (in arsec) subtended at a star by the mean radius of the Earth's orbit around the Sun, and this distance (in parsecs, corresponding to $p=1 \operatorname{arcsec}$) is given by $D_{P}=\frac{1}{p}$.

- Kinematic distance

The kinematic distance is the distance to a galactic source, which is determined from differential rotation of the galaxy: the radial velocity of a source directly corresponds to its galactocentric distance. But the kinematic distance ambiguity arises since, in our inner galaxy, any given galactocentric distance corresponds to two distances along the line of sight, near and far kinematic distances.
This problem is solved, for some galactic regions, by measurement of their absorption spectra, if there is an interstellar cloud between the region and observer.

- Radar distance

The radar (or target) distance D_{R} is a distance from us to a distant object, measured by a radar, i.e., a high frequency radio pulse sent out for a short interval of time. When it encounters a conducting object, sufficient energy is reflected back to allow radar to detect it. Since radio waves travel in air at close to their speed c (of light) in vacuum, one can calculate the distance D_{R} of the detected object from the round-trip time t between the transmitted and received pulses as

$$
D_{R}=\frac{1}{2} c t .
$$

In general, Einstein protocol is to measure the distance between two objects A and B as $\frac{1}{2} c\left(t_{3}-t_{1}\right)$. Here a light pulse is sent from A to B at time t_{1} (measured in A), received at time t_{2} (measured in B) and immediately sent back to A with a return time t_{3} (measured with A).

- Cosmological distance ladder

For measuring distances to astronomical objects, one uses a kind of "ladder" of different methods; each method applies only for a limited distance, and each method which applies for a larger distance builds on the data of the preceding methods.
The starting point is knowing the distance from the Earth to the Sun; this distance is called one astronomical unit $(A U)$, and is roughly 150 million km. Distances in the inner Solar System are measured by bouncing radar signals off planets or asteroids, and measuring the time until the echo is received.
The next step in the ladder consists of simple geometrical methods; with them, one can go to a few hundred ly. The distance to nearby stars can be determined by their parallaxes: using Earth's orbit as a baseline, the distances to stars are measured by triangulation. This is accurate to about 1% at $50 \mathrm{ly}, 10 \%$ at 500 ly . Using data acquired by the geometrical methods, and adding photometry (measurements of the brightness) and spectroscopy, one gets the next step in the ladder
for stars so far away that their parallaxes are not measurable yet. The distanceluminosity relation is that the light intensity from a star is inversely proportional to the square of its distance; cf. distance modulus.
The distance to the stellar cluster Pleiades is thought to be 135 parsecs. But satellite Hipparcos gave, by measuring the parallax of stars in the cluster, only 118 parsecs. This Hipparcos anomaly is a major unsolved problem in Astronomy. For even larger distances, are used standard candles, i.e., several types of cosmological objects, for which one can determine their absolute brightness without knowing their distances. Primary standard candles are the Cepheid variable stars. They periodically change their size and temperature. There is a relationship between the brightness of these pulsating stars and the period of their oscillations, and this relationship can be used to determine their absolute brightness. Cepheids can be identified as far as in the Virgo cluster (60 Mly).
Secondary standard candles are supernovae 1a (having equal peak brightness), red giant branch stars, active galactic nuclei and entire galaxies. Main other techniques to estimate the angular diameter distance to galaxies are gravitational lensing (cf. Einstein radius) and using baryon acoustic oscillations matter clustering (cf. cosmic sound horizon) as a standard ruler.
For very large distances (hundreds of Mly or several Gly), the cosmological redshift and the Hubble law are used. A complication is that it is not clear what is meant by "distance" here, and there are several types of distances used here:
luminosity distance, proper motion distance, angular diameter distance, etc. Depending on the situation, there is a large variety of special techniques to measure distances in Cosmology, such as light echo distance, Bondi radar distance, RR Lyrae distance and secular, statistical, expansion, spectroscopic parallax distances. For example, NASA's Chandra X-ray Observatory measures since 2000 the distance to a distant source via the delay of the halo of scattering material (interstellar dust grains) between it and the Earth.

26.2 Distances in Theory of Relativity

The Minkowski space-time (or Minkowski space, Lorentz space-time, flat spacetime) is the usual geometric setting for the Einstein Special Theory of Relativity. In this setting the three ordinary dimensions of space are combined with a single dimension of time to form a 4D space-time $\mathbb{R}^{1,3}$ in the absence of gravity. See, for example, [Wein72] for details.

Vectors in $\mathbb{R}^{1,3}$ are called 4-vectors (or events). They can be written as ($c t, x, y, z$), where the first component is the unidirectional time-like dimension (c is the speed of light in vacuum, and t is the time), while the other three components are bidirectional spatial dimensions. Formally, c is a conversion factor from time to space.

In fact, c is the speed of gravitational waves and any massless particle: the photon (carrier of electromagnetism), the gluon (carrier of the strong force) and the graviton
(theoretical carrier of gravity). It is the highest possible speed for any physical interaction in nature and the only speed independent of its source and the motion of an observer.

In the spherical coordinates, the events can be written as $(c t, r, \theta, \phi)$, where r $(0 \leq r<\infty)$ is the radius from a point to the origin, $\phi(0 \leq \phi<2 \pi)$ is the azimuthal angle in the $x y$ plane from the x axis (longitude), and $\theta(0 \leq \theta \leq \pi)$ is the polar angle from the z axis (colatitude). 4 -vectors are classified according to the sign of their squared norm:

$$
\|v\|^{2}=\langle v, v\rangle=c^{2} t^{2}-x^{2}-y^{2}-z^{2} .
$$

They are said to be time-like, space-like, and light-like (isotropic) if their squared norms are positive, negative, or equal to zero, respectively. The set of all light-like 4 -vectors forms the light cone. If the coordinate origin is singled out, the space can be broken up into three domains: domains of absolute future and absolute past, falling within the light cone, whose points are joined to the origin by time-like vectors with positive or negative value of time coordinate, respectively, and the domain of absolute elsewhere, falling outside of the light cone, whose points are joined to the origin by space-like vectors.

A world line of an object is the sequence of events that marks its time history. A world line is a time-like curve tracing out the path of a single point in the Minkowski space-time, i.e., at any point its tangent vector is a time-like 4 -vector. All world lines fall within the light cone, i.e., the curves whose tangent vectors are light-like 4 -vectors correspond to the motion of light and other particles of zero rest mass.

World lines of particles at constant speed (equivalently, of free falling particles) are called geodesics. In Minkowski space they are straight lines. A geodesic in Minkowski space which joins two given events x and y, is the longest curve among all world lines which join these two events. This follows from the Einstein time triangle inequality (cf. inverse triangle inequality and, in Chap. 5, reverse triangle inequality):

$$
\|x+y\| \geq\|x\|+\|y\|,
$$

according to which a time-like broken line joining two events is shorter than the single time-like geodesic joining them, i.e., the proper time of the particle moving freely from x to y is greater than the proper time of any other particle whose world line joins these events. It holds also in Minkowski space extended to any number of spatial dimensions, assuming null or time-like vectors in the same time direction. It is called twin paradox.

The space-time is a 4D manifold which is the usual mathematical setting for the Einstein General Theory of Relativity, which is the generalization of Special Relativity to include gravitation. Here the three spatial components with a single time-like component form a 4D space-time in the presence of gravity. Gravity is equivalent to the geometric properties of space-time, and in the presence of gravity the geometry of space-time is curved. (Bean, 2009, found evidence that over
extragalactic distances gravity exerts a greater pull on time than on space.) So, the space-time is a 4D curved manifold for which the tangent space to any point is the Minkowski space, i.e., it is a pseudo-Riemannian manifold-a manifold, equipped with a nondegenerate indefinite metric (called pseudo-Riemannian metric in Chap. 7) of signature $(1,3)$.

In the General Theory of Relativity, gravity is described by the properties of the local geometry of space-time. In particular, the gravitational field can be built out of a metric tensor, a quantity describing geometrical properties space-time such as distance, area, and angle. Matter is described by its stress-energy tensor, a quantity which contains the density and pressure of matter. The strength of coupling between matter and gravity is determined by the gravitational constant G.

The Einstein field equation is an equation in the General Theory of Relativity, that describes how matter creates gravity and, conversely, how gravity affects matter. A solution of the Einstein field equation is a certain Einstein metric appropriated for the given mass and pressure distribution of the matter.

A black hole is an astrophysical object that is theorized to be created from the collapse of a neutron or "quark" star. The gravitational forces are so strong in a black hole that they overcome neutron degeneracy pressure and, roughly, collapse to a singularity (point of infinite density and space-time curvature). Even light cannot escape the gravitational pull of a black hole within the black hole's its event horizon.

Uncharged black holes are called Schwarzschild or Kerr black holes if their angular momentum is zero or not, respectively. Charged black holes are called KerrNewman or Reissner-Nordström black holes if they are spinning or not, respectively.

Universe and black hole both have singularities-in time and space, respectively. Naked (not surrounded by a black hole) singularities were not observed but they might exist also. Kerr metric and Reissner-Nordström metric below admit such case. Also, a kugelblitz is a putative black hole formed from energy as opposed to mass.

Experimentally, General Relativity is still untested for strong fields (such as near neutron-star surfaces or black-hole horizons) or over distances on a galactic scale and larger. Neither Newton law of gravitation was tested below $6 \times 10^{-5} \mathrm{~m}$.

Putative gravitational waves (fluctuations in the curvature of space-time propagating as a wave, predicted by Einstein), have been detected in 2014. Also predicted frame-dragging effect (the spinning Earth pulls space-time around with it) is under probe. The geodetic effect, confirming that space-time acts on matter, was found.

- Minkowski metric

The Minkowski metric is a pseudo-Riemannian metric, defined on the Minkowski space $\mathbb{R}^{1,3}$, i.e., a 4D real vector space which is considered as the pseudo-Euclidean space of signature (1,3). It is defined by its metric tensor

$$
\left(\left(g_{i j}\right)\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The line element $d s^{2}$ of this metric are given by

$$
d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}
$$

In spherical coordinates $(c t, r, \theta, \phi)$, one has $d s^{2}=c^{2} d t^{2}-d r^{2}-r^{2} d \theta^{2}-$ $r^{2} \sin ^{2} \theta d \phi^{2}$.
The pseudo-Euclidean space $\mathbb{R}^{1,3}$ of signature $(1,3)$ with the line element

$$
d s^{2}=-c^{2} d t^{2}+d x^{2}+d y^{2}+d z^{2}
$$

can also be used as a space-time model of the Special Theory of Relativity. Above notion of space-time (Minkowski, 1908) was the first application of geometry to a nonlength-like quantity. But there were some precursors of such union of space and time. Lagrange, 1797, observed that with time as a 4th coordinate, "one can regard mechanics as 4-dimensional geometry". Schopenhauer wrote in On the Fourfold Root of the Principle of Sufficient Reason (1813): ". . . it is only by the combination of Time and Space that the representation of coexistence arises." Poe wrote "Space and Duration are one" in Eureka: A Prose Poem (1848). Wells wrote on the first page of The Time Machine (1895): ‘Clearly,' the Time Traveler proceeded, 'any real body must have extension in four directions: it must have Length, Breadth, Thickness, and Duration ... There is no difference between Time and any of the tree dimensions of Space except that our consciousness moves along it". Quechua, the language of Inca and eight to ten million modern speakers, have a single concept, pacha, for the location in time and space.

- Proper distance and time

In Relativistic Physics, proper distance and proper time between any two events are true physical distance and time difference: the spatial distance between them when the events are simultaneous and the temporal distance between them when the events occur at the same spatial location. They are the invariant (with respect to Lorentz transformations, describing a transition to a coordinate system associated with a moving body) intervals of a space-like path or pair of spacelike separated events, and, respectively, of a time-like path or pair of time-like separated events.
In General Relativity, proper time is the pseudo-Riemannian arc length of world lines in 4D-spacetime. In particular, in SR (Special Relativity), it is

$$
\tau=\int_{P} \sqrt{d t^{2}-c^{-2}\left(d x^{2}+d y^{2}+d z^{2}\right)}
$$

where t and x, y, z are time and spatial coordinates, while P is the path of the clock in space-time. In the subcase of inertial motion, it become

$$
\Delta \tau=\sqrt{\left.(\Delta t)^{2}-c^{-2}\left((\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}\right)\right)}
$$

where Δ means "the change in" between two events. Cf. the kinematic metric.

In SR, the proper distance between two space-like separated events is

$$
\Delta \sigma=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}-c^{2}(\Delta t)^{2}}
$$

- Proper length

In Special Theory of Relativity, the proper (or rest) length between two spacelike separated events is the distance between them, such as measured in an inertial frame of reference in which the events are simultaneous. In contrast to invariant proper distance, such simultaneity depends on the observer.
In a flat space-time, the proper length between two events is the proper length of a straight path between them. General Relativity consider the curved space-times in which may be more than one straight path (geodesic) between two events.
So, the general proper length is defined as the path integral $\int_{P} \sqrt{-g_{i j} d x^{i} d x^{j}}$, where $g_{i j}$ is the metric tensor for the space-time with signature $(1,3)$, along the shortest curve joining the endpoints of the space-like path P at the same time.

- Affine space-time distance

Given a space-time $\left(M^{4}, g\right)$, there is a unique affine parametrization $s \rightarrow \gamma(s)$ for each light ray (i.e., light-like geodesic) through the observation event p_{o}, such that $\gamma(0)=p_{o}$ and $g\left(\frac{d \gamma}{d t}, U_{o}\right)=1$, where U_{o} is the 4-velocity of the observer at p_{o} (i.e., a vector with $\left.g\left(U_{o}, U_{o}\right)=-1\right)$. In this case, the affine space-time distance is the affine parameter s, viewed as a distance measure.
This distance is monotone increasing along each ray, and it coincides, in a small neighborhood of p_{o}, with the Euclidean distance in the rest system of U_{o}.

- Lorentz metric

A Lorentz metric is a pseudo-Riemannian metric (i.e., nondegenerate indefinite metric, cf. Chap. 7) of signature ($1, p$).
The curved space-time of the General Theory of Relativity can be modeled as a Lorentzian manifold (a manifold equipped with a Lorentz metric) of signature $(1, p)$. The Minkowski space $\mathbb{R}^{1, p}$ with the flat Minkowski metric is a model of it, in the same way as Riemannian manifolds can be modeled on Euclidean space.
Given a rectifiable non-space-like curve $\gamma:[0,1] \rightarrow M$ in the space-time M, the length of the curve is defined as $l(\gamma)=\int_{0}^{1} \sqrt{-\left\langle\frac{d \gamma}{d t}, \frac{d \gamma}{d t}\right\rangle} d t$. For a space-like curve, we set $l(\gamma)=0$ and define the Lorentz distance between two points $p, q \in M$ as

$$
\sup _{\gamma \in \Gamma} l(\gamma),
$$

if $p \prec q$, i.e., if the set Γ of future directed non-space-like curves from p to q is nonempty; otherwise, this distance is 0 .
The Lorentz-Minkowski distance is a pseudo-Euclidean distance (Chap. 7) $\sqrt{D(x, y)}$, where $D(x, y)=\left|x_{1}-y_{1}\right|^{2}-\sum_{2 \leq i \leq n}\left|x_{i}-y_{i}\right|^{2}$. The points are called
time-, space-, null-separated if $D(x, y)$ is more, less or equal to 0 , respectively, i.e., if they can be joined by a time-like, space-like or null path.

- Distances on causal sets

Causal Set Theory is a fundamentally discrete approach to quantum gravity. A causal set (or causet) is a partially ordered set (X, \preceq), which is locally finite, i.e., the interval $(x, y)=\{z \in X: x \prec z \prec y\}$ is finite for any $x, y \in X$. A link is a pair $x, y \in X$ such that $x \prec y$ and $(x, y)=\emptyset$. A chain is a subcauset such that $x \prec y$ or $y \prec x$ for any two its elements x, y.
Given $x, y \in X$ with $x \prec y$, their time-like distance $d_{t}(x, y)$ is (BrightwellGregory, 1991) the length (number of links) in any geodesic between them, i.e., longest chain between and including x and y. Given two unrelated elements $x, y \in X$, their naive space-like distance is defined (Brightwell-Gregory, 1991) as

$$
d_{n s}(x, y)=\min _{u, v \in X: u<(x, y)<v} d_{t}(u, v) .
$$

Rideout-Wallden, 2013, modified $d_{n s}(x, y)$, replacing the minimum above with an average over suitably selected minimumizing pairs.
The elements of X can be seen as events in a discrete space-time, where the partial order represent causal relationship. In a causet embedded in Minkowski space-time, the distance $d_{t}(x, y)$ is proportional to the proper time. A related discrete space-time is a random poset obtained by sampling from a compact domain in a space-time manifold. Cf. also D-separation in Bayesian network in Chap. 22.

- Kinematic metric

Given a set X, a kinematic metric (or abstract Lorentzian distance) is (Pimenov, 1970) a function $\tau: X \times X \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ such that, for all $x, y, z \in X$:

1. $\tau(x, x)=0$;
2. $\tau(x, y)>0$ implies $\tau(y, x)=0$ (antisymmetry);
3. $\tau(x, y), \tau(y, z)>0$ implies $\tau(x, z)>\tau(x, y)+\tau(y, z)$ (inverse triangle inequality or anti-triangle inequality).

The space-time set X consists of events $x=\left(x_{0}, x_{1}\right)$ where, usually, $x_{0} \in \mathbb{R}$ is the time and $x_{1} \in \mathbb{R}^{3}$ is the spatial location of the event x. The inequality $\tau(x, y)>0$ means causality, i.e., x can influence y; usually, it is equivalent to $y_{0}>x_{0}$ and the value $\tau(x, y)>0$ can be seen as the largest (since it depends on the speed) proper time of moving from x to y.
If the gravity is negligible, then $\tau(x, y)>0$ implies $y_{0}-x_{0} \geq\left\|y_{1}-x_{1}\right\|_{2}$, and $\left.\tau_{p}(x, y)=\left(\left(y_{0}-x_{0}\right)^{p}-\left\|y_{1}-x_{1}\right\|_{2}^{p}\right)\right)^{\frac{1}{p}}$ (as defined by Busemann, 1967) is a real number. For $p \approx 2$ it is consistent with Special Relativity observations.
A kinematic metric is not our usual distance metric; also it is not related to the kinematic distance in Astronomy.
But Zapata, 2013, proved that $\sup _{z} \max (|\tau(x, z)-\tau(y, z)|,|\tau(z, x)-\tau(z, y)|)$ is a continuous metric on a compact part of space-time and it generates
the same topology as a nonphysical coordinate-dependent Euclidean distance $\sqrt{\sum_{i=2}^{4}\left|x_{i}-y_{i}\right|^{2}}$.

- Galilean distance

The Galilean distance is a distance on \mathbb{R}^{n} defined by

$$
\left|x_{1}-y_{1}\right| \quad \text { if } x_{1} \neq y_{1},
$$

and by

$$
\sqrt{\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} \text { if } x_{1}=y_{1} .
$$

The space \mathbb{R}^{n}, equipped with the Galilean distance, is called Galilean space.
For $n=4$, it is a setting for the space-time of classical mechanics according to Galilei-Newton in which the distance between two events taking place at the points p and q at the moments of time t_{1} and t_{2} is defined as the time interval $\left|t_{1}-t_{2}\right|$, while if $t_{1}=t_{2}$, it is defined as the distance between the points p and q.

- Einstein metric

In the General Theory of Relativity, describing how space-time is curved by matter, the Einstein metric is a solution to the Einstein field equation

$$
R_{i j}-\frac{g_{i j} R}{2}+\Lambda g_{i j}=\frac{8 \pi G}{c^{4}} T_{i j}
$$

i.e., a metric tensor $\left(\left(g_{i j}\right)\right)$ of signature $(1,3)$, appropriated for the given mass and pressure distribution of the matter. Here $E_{i j}=R_{i j}-\frac{g_{i j} R}{2}+\Lambda g_{i j}$ is the Einstein curvature tensor, $R_{i j}$ is the Ricci curvature tensor, R is the Ricci scalar, and $T_{i j}$ is a stress-energy tensor. Empty space (vacuum) is the case of $R_{i j}=0$.
Einstein introduced in 1917 the cosmological constant Λ to counteract the effects of gravity on ordinary matter and keep the Universe static, i.e., with scale factor always being 1. He put $\Lambda=\frac{4 \pi G \rho}{c^{2}}$. The static Einstein metric for a homogeneous and isotropic Universe is given by the line element

$$
d s^{2}=-d t^{2}+\frac{d r^{2}}{\left(1-k r^{2}\right)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where k is the curvature of the space-time. The radius of this curvature is $\frac{c}{\sqrt{4 \pi G \rho}}$ and numerically it is of the order 10 Gly. Einstein from 1922 call this model his "biggest blunder" but Λ was reintroduced in modern dynamic models as dark energy.

- de Sitter metric

The de Sitter metric is a maximally symmetric vacuum solution to the Einstein field equation with a positive cosmological constant Λ, given by the line element

$$
d s^{2}=d t^{2}+e^{2 \sqrt{\frac{\pi}{3}} t}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right) .
$$

Expansion of Universe is accelerating at the rate consistent with $\Lambda \sim 10^{-123}$, but Hartie-Hawking-Hertog, 2012, gave a quantum model of it with $\Lambda<0$.
The most symmetric solutions to the Einstein field equation in a vacuum for $\Lambda=0$ and $\Lambda<0$ are the flat Minkowski metric and the anti de Sitter metric. The n-dimensional de Sitter space $d S_{n}$ and anti de Sitter space $A d S_{n}$ are Lorentzian manifold analogs of elliptic and hyperbolic space, respectively. In order to explain the hierarchy problem (why the weak nuclear force is 10^{32} times stronger than gravity?), Randall and Sundram, 1999, proposed that Universe is 5D anti de Sitter space $A d S_{5}$ with elementary particles, except for the graviton, being on a $(3+1)$-D brane or branes. This Randall-Sundrum metric is $d s^{2}=e^{-2 k y} g_{a b} d x^{a} d y^{b}+d y^{2}$, where k is of order the Planck scale $\left(\sim 10^{-35} \mathrm{~m}\right)$ and x^{a}, y are coordinates in 4D and extra-dimension.

- BTZ metric

The BTZ metric (Banados, Teitelboim and Zanelli, 2001) is a black hole solution for $(2+1)$-dimensional gravity with a negative cosmological constant Λ.
There are no such solutions with $\Lambda=0$. BTZ black holes without any electric charge are locally isometric to anti de Sitter space.
This metric is given by the line element

$$
d s^{2}=-k^{2}\left(r^{2}-R^{2}\right) d t^{2}+\frac{1}{k^{2}\left(r^{2}-R^{2}\right)} d r^{2}+r^{2} d \theta^{2}
$$

where R is the black hole radius, in the absence of charge and angular momentum.

- Schwarzschild metric

The Schwarzschild metric is a vacuum solution to the Einstein field equation around a spherically symmetric mass distribution; this metric represents the Universe around a black hole of a given mass, from which no energy can be extracted.
It was found by Schwarzschild, 1915, only a few months after the publication of the Einstein field equation, and was the first exact solution of this equation.
The line element of this metric is given by

$$
d s^{2}=\left(1-\frac{r_{g}}{r}\right) c^{2} d t^{2}-\frac{1}{\left(1-\frac{r_{g}}{r}\right)} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $r_{g}=\frac{2 G m}{c^{2}}$ is the Schwarzschild radius and m is the mass of the black hole. This solution is only valid for radii larger than r_{g}, as at $r=r_{g}$ there is a coordinate singularity. This problem can be removed by a transformation to a different choice of space-time coordinates, called Kruskal-Szekeres coordinates. As $r \rightarrow+\infty$, the Schwarzschild metric approaches the Minkowski metric.

- Kottler metric

The Kottler metric is the unique spherically symmetric vacuum solution to the Einstein field equation with a cosmological constant Λ. It is given by
$d s^{2}=-\left(1-\frac{2 m}{r}-\frac{\Lambda r^{2}}{3}\right) d t^{2}+\left(1-\frac{2 m}{r}-\frac{\Lambda r^{2}}{3}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$.
It is called also the Schwarzschild-de Sitter metric for $\Lambda>0$ and Schwarzschild-anti de Sitter metric for $\Lambda<0$. Cf. Delaunay metric in Chap. 7.

- Reissner-Nordström metric

The Reissner-Nordström metric is a vacuum solution to the Einstein field equation around a spherically symmetric mass distribution in the presence of a charge; it represents the Universe around a charged black hole. This metric is given by

$$
d s^{2}=\left(1-\frac{2 m}{r}+\frac{e^{2}}{r^{2}}\right) d t^{2}-\left(1-\frac{2 m}{r}+\frac{e^{2}}{r^{2}}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where m is the mass of the hole, e is the charge $(e<m)$, and we have used units with the speed c of light and the gravitational constant G equal to one.

- Kerr metric

The Kerr metric (or Kerr-Schild metric) is an exact solution to the Einstein field equation for empty space (vacuum) around an axially symmetric, rotating mass distribution, This metric represents the Universe around a rotating black hole. Its line element is given (in Boyer-Lindquist form) by
$d s^{2}=\rho^{2}\left(\frac{d r^{2}}{\Delta}+d \theta^{2}\right)+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}-d t^{2}+\frac{2 m r}{\rho^{2}}\left(a \sin ^{2} \theta d \phi-d t\right)^{2}$,
where $\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta$ and $\Delta=r^{2}-2 m r+a^{2}$. Here m is the mass of the black hole and a is the angular velocity as measured by a distant observer.
The Schwarzschild metric is the Kerr metric with $a=0$. A black hole is rotating if radiation processes are observed outside its Schwarzschild radius (the event horizon radius as dependent on the mass only) but inside its Kerr radius (where the rotational kinetic energy is comparable with the rest energy). For the Earth, those radii are about 1 cm and 3 m , respectively.
In 2013, the spin of a black hole was directly measured for the first time: the central black hole of the galaxy NGC 1365 rotates at 84% of the speed c of light.

- Kerr-Newman metric

The Kerr-Newman metric is an exact, unique and complete solution to the Einstein field equation for empty space (vacuum) around an axially symmetric, rotating mass distribution in the presence of a charge, This metric represents the Universe around a rotating charged black hole. Its line element is given by
$d s^{2}=-\frac{\Delta}{\rho^{2}}\left(d t-a \sin ^{2} \theta d \phi\right)^{2}+\frac{\sin ^{2} \theta}{\rho^{2}}\left(\left(r^{2}+a^{2}\right) d \phi-a d t\right)^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}$,
where $\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta$ and $\Delta=r^{2}-2 m r+a^{2}+e^{2}$. Here m is the mass of the black hole, e is the charge, and a is the angular velocity.
The Kerr-Newman metric becomes the Kerr metric if the charge is 0 and the Reissner-Nordström metric if the angular momentum is 0 .

- Ozsváth-Schücking metric

The Ozsváth-Schücking metric (1962) is a rotating vacuum solution to the field equations having in Cartesian coordinates the form

$$
d s^{2}=-2\left[\left(x^{2}-y^{2}\right) \cos (2 t)-2 x y \sin (2 t)\right] d t^{2}+d x^{2}+d y^{2}-2 d t d z
$$

- Static isotropic metric

The static isotropic metric is the most general solution to the Einstein field equation for empty space (vacuum); this metric can represent a static isotropic gravitational field. The line element of this metric is given by

$$
d s^{2}=B(r) d t^{2}-A(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $B(r)$ and $A(r)$ are arbitrary functions.

- Eddington-Robertson metric

The Eddington-Robertson metric is a generalization of the Schwarzschild metric which allows that the mass m, the gravitational constant G, and the density ρ are altered by unknown dimensionless parameters α, β, and γ (all equal to 1 in the Einstein field equation). The line element of this metric is given by

$$
\begin{aligned}
d s^{2}= & \left(1-2 \alpha \frac{m G}{r}+2(\beta-\alpha \gamma)\left(\frac{m G}{r}\right)^{2}+\ldots\right) d t^{2} \\
& -\left(1+2 \gamma \frac{m G}{r}+\ldots\right) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{aligned}
$$

- Janis-Newman-Wincour metric

The Janis-Newman-Wincour metric is the most general spherically symmetric static and asymptotically flat solution to the Einstein field equation coupled to a massless scalar field. It is given by the line element

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 m}{\gamma r}\right)^{\gamma} d t^{2}+\left(1-\frac{2 m}{\gamma r}\right)^{-\gamma} d r^{2} \\
& +\left(1-\frac{2 m}{\gamma r}\right)^{1-\gamma} r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
\end{aligned}
$$

where m and γ are constants. For $\gamma=1$ one obtains the Schwarzschild metric. In this case the scalar field vanishes.

- FLRW metric

The FLRW (Friedmann-Lemaître-Robertson-Walker) metric is a exact solution to the Einstein field equation for a simply connected, homogeneous, isotropic expanding (or contracting) Universe filled with a constant density and negligible pressure. This metric represents a matter-dominated Universe filled with a dust (pressure-free matter); it models the metric expansion of space.
Its line element is usually written in the spherical coordinates $(c t, r, \theta, \phi)$:

$$
d s^{2}=c^{2} d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)
$$

where $a(t)$ is the scale factor and k is the curvature of the space-time.

- Vaidya metric

The Vaidya metric is a inhomogeneous solution to Einstein field equation describing a spherically symmetric space-time composed purely of radially propagating radiation. It has been used to describe the radiation emitted by a shining star, by a collapsing star and by evaporating black hole.
The Vaidya metric is a nonstatic generalization of the Schwarzschild metric and the radiation limit of the LTB metric. Let $M(u)$ be the mass parameter; the line element of this metric (Vaidya, 1953) is given by

$$
d s^{2}=-\left[1-2 \frac{M(u)}{r}\right] d u^{2}+2 d u d r+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

- LTB metric

The LTB Lemaitre-Tolman-Bondi) metric is a solution to the Einstein field equation describing a spherical (finite or infinite) cloud of dust (pressure-free matter) that is expanding or collapsing under gravity.
The LTB metric describes an inhomogeneous space-time expected on very large (Gpc) scale. It generalizes the FLRW metric and the Schwarzschild metric.
The line element of this metric in the spherical coordinates is:

$$
d s^{2}=d t^{2}-\frac{\left(R^{\prime}\right)^{2}}{1+2 E} d r^{2}-R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $R=R(t, r), R^{\prime}=\frac{\partial R}{\partial r}, E=E(r)$. The shell $r=r_{0}$ at a time $t=t_{0}$ has an area $4 \pi R^{2}\left(r_{0}, t_{0}\right)$, and the areal radius R evolves with time as $\frac{\partial R}{\partial t}=2 E+$ $\frac{2 M}{R}$, where $M=M(r)$ is the gravitational mass within the comoving sphere at radius r.

- Kantowski-Sachs metric

The Kantowski-Sachs metric is a solution to the Einstein field equation, given by the line element

$$
d s^{2}=-d t^{2}+a(t)^{2} d z^{2}+b(t)^{2}\left(d \theta^{2}+\sin \theta d \phi^{2}\right)
$$

where the functions $a(t)$ and $b(t)$ are determined by the Einstein equation. It is the only homogeneous model without a 3D transitive subgroup.
In particular, the Kantowski-Sachs metric with the line element

$$
d s^{2}=-d t^{2}+e^{2 \sqrt{\Lambda} t} d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

describes an anisotropic Universe with two spherical dimensions having a fixed size during the cosmic evolution and exponentially expanding 3rd dimension.

- Bianchi metrics

The Bianchi metrics are solutions to the Einstein field equation for cosmological models that have spatially homogeneous sections, invariant under the action of a 3D Lie group, i.e., they are real 4D metrics with a 3D isometry group, transitive on 3-surfaces. Using the Bianchi classification of 3D Lie algebras over Killing vector fields, we obtain the nine types of Bianchi metrics.
Each Bianchi model B defines a transitive group G_{B} on some 3D simply connected manifold M; so, the pair (M, G) (where G is the maximal group acting on X and containing G_{B}) is one of eight Thurston model geometries if M / G^{\prime} is compact for a discrete subgroup G^{\prime} of G. In particular, Bianchi type IX corresponds to the geometry S^{3}. Only the model geometry $S^{2} \times \mathbb{R}$ is not realized in this way.
The Bianchi type I metric is a solution to the Einstein field equation for an anisotropic homogeneous Universe, given by the line element

$$
d s^{2}=-d t^{2}+a(t)^{2} d x^{2}+b(t)^{2} d y^{2}+c(t)^{2} d z^{2}
$$

where the functions $a(t), b(t)$, and $c(t)$ are determined by the Einstein equation. It corresponds to flat spatial sections, i.e., is a generalization of the FLRW metric.
The Bianchi type IX metric, or Mixmaster metric (Misner, 1969), exhibits chaotic dynamic behavior near its curvature singularities.

- Kasner metric

The Kasner metric is a Bianchi type I metric, which is a vacuum solution to the Einstein field equation for an anisotropic homogeneous Universe, given by

$$
d s^{2}=-d t^{2}+t^{2 p_{1}} d x^{2}+t^{2 p_{2}} d y^{2}+t^{2 p_{3}} d z^{2}
$$

where $p_{1}+p_{2}+p_{3}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=1$.
The equal-time slices of Kasner space-time are spatially flat, but space contracts in one dimension (i with $p_{i}<0$), while expanding in the other two. The volume of the spatial slices is proportional to t; so, $t \rightarrow 0$ can describe either a Big Bang or a Big Crunch, depending on the sense of t.

- GCSS metric

A GCSS (i.e., general cylindrically symmetric stationary) metric is a solution to the Einstein field equation, given by the line element

$$
d s^{2}=-f d t^{2}+2 k d t d \phi+e^{\mu}\left(d r^{2}+d z^{2}\right)+l d \phi^{2}
$$

where the space-time is divided into two regions: the interior, with $0 \leq r \leq R$, to a cylindrical surface of radius R centered along z, and the exterior, with $R \leq r<$ ∞. Here f, k, μ and l are functions only of r, and $-\infty<t, z<\infty, 0 \leq \phi \leq 2 \pi$; the hypersurfaces $\phi=0$ and $\phi=2 \pi$ are identical.

- Lewis metric

The Lewis metric is a cylindrically symmetric stationary metric which is a solution to the Einstein field equation for empty space (vacuum) in the exterior of a cylindrical surface. The line element of this metric has the form

$$
d s^{2}=-f d t^{2}+2 k d t d \phi-e^{\mu}\left(d r^{2}+d z^{2}\right)+l d \phi^{2}
$$

where $f=a r^{-n+1}-\frac{c^{2}}{n^{2} a} r^{n+1}, k=-A f, l=\frac{r^{2}}{f}-A^{2} f, e^{\mu}=r^{\frac{1}{2}\left(n^{2}-1\right)}$ with $A=\frac{c r^{n+1}}{n a f}+b$. The constants n, a, b, and c can be either real or complex, the corresponding solutions belong to the Weyl class or Lewis class, respectively. In the last case, such metrics form a subclass of the Kasner type metrics.

- van Stockum dust metric

The van Stockum dust metric is a stationary cylindrically symmetric solution to the Einstein field equation for empty space (vacuum) with a rigidly rotating infinitely long dust cylinder. The line element of this metric for the interior of the cylinder is given (in comoving, i.e., corotating, coordinates) by

$$
d s^{2}=-d t^{2}+2 a r^{2} d t d \phi+e^{-a^{2} r^{2}}\left(d r^{2}+d z^{2}\right)+r^{2}\left(1-a^{2} r^{2}\right) d \phi^{2},
$$

where $0 \leq r \leq R, R$ is the radius of the cylinder, and a is the angular velocity of the dust particles. There are three vacuum exterior solutions (i.e., Lewis metrics) that can be matched to the interior solution, depending on the mass per unit length of the interior (the low mass case, the null case, and the ultrarelativistic case). Under some conditions (for example, if $a r>1$), the existence of closed time-like curves (and, hence, time-travel) is allowed.

- Levi-Civita metric

The Levi-Civita metric is a static cylindrically symmetric vacuum solution to the Einstein field equation, with the line element, given (in the Weyl form) by

$$
d s^{2}=-r^{4 \sigma} d t^{2}+r^{4 \sigma(2 \sigma-1)}\left(d r^{2}+d z^{2}\right)+C^{-2} r^{2-4 \sigma} d \phi
$$

where the constant C refers to the deficit angle, and σ is a parameter.
In the case $\sigma=-\frac{1}{2}, C=1$ this metric can be transformed either into the Taub's plane symmetric metric, or into the Robinson-Trautman metric.

- Weyl-Papapetrou metric

The Weyl-Papapetrou metric is a stationary axially symmetric solution to the Einstein field equation, given by the line element

$$
d s^{2}=F d t^{2}-e^{\mu}\left(d z^{2}+d r^{2}\right)-L d \phi^{2}-2 K d \phi d t
$$

where F, K, L and μ are functions only of r and $z, L F+K^{2}=r^{2}, \infty<t, z<$ $\infty, 0 \leq r<\infty$, and $0 \leq \phi \leq 2 \pi$; the hypersurfaces $\phi=0$ and $\phi-2 \pi$ are identical.

- Bonnor dust metric

The Bonnor dust metric is a solution to the Einstein field equation which is an axially symmetric metric describing a cloud of rigidly rotating dust particles moving along circular geodesics about the z axis in hypersurfaces of $z=$ constant. The line element of this metric is given by

$$
d s^{2}=d t^{2}+\left(r^{2}-n^{2}\right) d \phi^{2}+2 n d t d \phi+e^{\mu}\left(d r^{2}+d z^{2}\right)
$$

where, in Bonnor comoving (i.e., corotating) coordinates, $n=\frac{2 h r^{2}}{R^{3}}, \mu=$ $\frac{h^{2} r^{2}\left(r^{2}-8 z^{2}\right)}{2 R^{8}}, R^{2}=r^{2}+z^{2}$, and h is a rotation parameter.
As $R \rightarrow \infty$, the metric coefficients tend to Minkowski values.

- Weyl metric

The Weyl metric is a general static axially symmetric vacuum solution to the Einstein field equation given, in Weyl canonical coordinates, by the line element

$$
d s^{2}=e^{2 \lambda} d t^{2}-e^{-2 \lambda}\left(e^{2 \mu}\left(d r^{2}+d z^{2}\right)+r^{2} d \phi^{2}\right)
$$

where λ and μ are functions only of r and z such that $\frac{\partial^{2} \lambda}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial \lambda}{\partial r}+\frac{\partial^{2} \lambda}{\partial z^{2}}=0$, $\frac{\partial \mu}{\partial r}=r\left(\frac{\partial \lambda^{2}}{\partial r}-\frac{\partial \lambda^{2}}{\partial z}\right)$, and $\frac{\partial \mu}{\partial z}=2 r \frac{\partial \lambda}{\partial r} \frac{\partial \lambda}{\partial z}$.

- Zipoy-Voorhees metric

The Zipoy-Voorhees metric (or γ-metric) is a Weyl metric, obtained for $e^{2 \lambda}=$ $\left(\frac{R_{1}+R_{2}-2 m}{R_{1}+R_{2}+2 m}\right)^{\gamma}, e^{2 \mu}=\left(\frac{\left(R_{1}+R_{2}+2 m\right)\left(R_{1}+R_{2}-2 m\right)}{4 R_{1} R_{2}}\right)^{\gamma^{2}}$, where $R_{1}^{2}=r^{2}+(z-m)^{2}$, $R_{2}^{2}=r^{2}+(z+m)^{2}$. Here λ corresponds to the Newtonian potential of a line segment of mass density $\gamma / 2$ and length $2 m$, symmetrically distributed along the z axis.
The case $\gamma=1$ corresponds to the Schwartzschild metric, the cases $\gamma>1$ ($\gamma<1$) correspond to an oblate (prolate) spheroid, and for $\gamma=0$ one obtains the flat Minkowski space-time.

- Straight spinning string metric

The straight spinning string metric is given by the line element

$$
d s^{2}=-(d t-a d \phi)^{2}+d z^{2}+d r^{2}+k^{2} r^{2} d \phi^{2}
$$

where a and $k>0$ are constants. It describes the space-time around a straight spinning string. The constant k is related to the string's mass-per-length μ by $k=1-4 \mu$, and the constant a is a measure of the string's spin. For $a=0$ and $k=1$, one obtains the Minkowski metric in cylindrical coordinates.

- Tomimatsu-Sato metric

A Tomimatsu-Sato metric [ToSa73] is one of the metrics from an infinite family of spinning mass solutions to the Einstein field equation, each of which has the form $\xi=U / W$, where U and W are some polynomials.
The simplest solution has $U=p^{2}\left(x^{4}-1\right)+q^{2}\left(y^{4}-1\right)-2 \operatorname{ipqxy}\left(x^{2}-y^{2}\right)$, $W=2 p x\left(x^{2}-1\right)-2 \operatorname{iqy}\left(1-y^{2}\right)$, where $p^{2}+q^{2}=1$. The line element for it is given by

$$
d s^{2}=\Sigma^{-1}\left((\alpha d t+\beta d \phi)^{2}-r^{2}(\gamma d t+\delta d \phi)^{2}\right)-\frac{\Sigma}{p^{4}\left(x^{2}-y^{2}\right)^{4}}\left(d z^{2}+d r^{2}\right)
$$

where $\alpha=p^{2}\left(x^{2}-1\right)^{2}+q^{2}\left(1-y^{2}\right)^{2}, \beta=-\frac{2 q}{p} W\left(p^{2}\left(x^{2}-1\right)\left(x^{2}-y^{2}\right)+\right.$ $2(p x+1) W), \gamma=-2 p q\left(x^{2}-y^{2}\right), \delta=\alpha+4\left(\left(x^{2}-1\right)+\left(x^{2}+1\right)(p x+1)\right)$, $\Sigma=\alpha \delta-\beta \gamma=|U+W|^{2}$.

- Gödel metric

The Gödel metric is an exact solution to the Einstein field equation with cosmological constant for a rotating Universe, given by the line element

$$
d s^{2}=-\left(d t^{2}+C(r) d \phi\right)^{2}+D^{2}(r) d \phi^{2}+d r^{2}+d z^{2}
$$

where (t, r, ϕ, z) are the usual cylindrical coordinates.
The Gödel Universe is homogeneous if $C(r)=\frac{4 \Omega}{m^{2}} \sinh ^{2}\left(\frac{m r}{2}\right), D(r)=$ $\frac{1}{m} \sinh (m r)$, where m and Ω are constants. The Gödel Universe is singularityfree. But there are closed time-like curves through every event, and hence time-travel is possible here. The condition required to avoid such curves is $m^{2}>4 \Omega^{2}$.

- Conformally stationary metric

The conformally stationary metrics are models for gravitational fields that are time-independent up to an overall conformal factor. If some global regularity conditions are satisfied, the space-time must be a product $\mathbb{R} \times M^{3}$ with a (Hausdorff and paracompact) 3-manifold M^{3}, and the line element of the metric is given by

$$
d s^{2}=e^{2 f(t, x)}\left(-\left(d t+\sum_{\mu} \phi_{\mu}(x) d x_{\mu}\right)^{2}+\sum_{\mu, v} g_{\mu \nu}(x) d x_{\mu} d x_{v}\right)
$$

where $\mu, v=1,2,3$. The conformal factor $e^{2 f}$ does not affect the lightlike geodesics apart from their parametrization, i.e., the paths of light rays are completely determined by the Riemannian metric $g=\sum_{\mu, \nu} g_{\mu \nu}(x) d x_{\mu} d x_{\nu}$ and the one-form $\phi=\sum_{\mu} \phi_{\mu}(x) d x_{\mu}$ which both live on M^{3}.
In this case, the function f is called the redshift potential, the metric g is called the Fermat metric. For a static space-time, the geodesics in the Fermat metric are the projections of the null geodesics of space-time.

In particular, the spherically symmetric and static metrics, including models for nonrotating stars and black holes, wormholes, monopoles, naked singularities, and (boson or fermion) stars, are given by the line element

$$
d s^{2}=e^{2 f(r)}\left(-d t^{2}+S(r)^{2} d r^{2}+R(r)^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)
$$

Here, the one-form ϕ vanishes, and the Fermat metric g has the special form

$$
g=S(r)^{2} d r^{2}+R(r)^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

For example, the conformal factor $e^{2 f(r)}$ of the Schwartzschild metric is equal to $1-\frac{2 m}{r}$, and the corresponding Fermat metric has the form

$$
g=\left(1-\frac{2 m}{r}\right)^{-2}\left(1-\frac{2 m}{r}\right)^{-1} r^{2}\left(d \theta^{2}+\sin \theta d \phi^{2}\right)
$$

- pp-wave metric

The pp-wave metric is an exact solution to the Einstein field equation, in which radiation moves at the speed c of light. The line element of this metric is given (in Brinkmann coordinates) by

$$
d s^{2}=H(u, x, y) d u^{2}+2 d u d v+d x^{2}+d y^{2}
$$

where H is any smooth function. The term " pp " stands for plane-fronted waves with parallel propagation introduced by Ehlers-Kundt, 1962.
The most important class of particularly symmetric pp-waves are the plane wave metrics, in which H is quadratic. The wave of death, for example, is a gravitational (i.e., the space-time curvature fluctuates) plane wave exhibiting a strong nonscalar null curvature singularity which propagates through an initially flat space-time, progressively destroying the Universe.
Examples of axisymmetric pp-waves include the Aichelburg-Sexl ultraboost modeling the motion past a spherically symmetric gravitating object at nearly c, and the Bonnor beam modeling the gravitational field of an infinitely long beam of incoherent electromagnetic radiation. The Aichelburg-Sexl wave is obtained by boosting the Schwarzschild solution to the speed c at fixed energy, i.e., it describes a Schwarzschild black hole moving at c. Cf. Aichelburg-Sexl metric (Chap. 24).

- Bonnor beam metric

The Bonnor beam metric is an exact solution to the Einstein field equation which models an infinitely long, straight beam of light. It is an pp-wave metric. The interior part of the solution (in the uniform plane wave interior region which is shaped like the world tube of a solid cylinder) is defined by the line element

$$
d s^{2}=-8 \pi m r^{2} d u^{2}-2 d u d v+d r^{2}+r^{2} d \theta^{2}
$$

where $-\infty<u, v<\infty, 0<r<r_{0}$, and $-\pi<\theta<\pi$. This is a null dust solution and can be interpreted as incoherent electromagnetic radiation.
The exterior part of the solution is defined by

$$
d s^{2}=-8 \pi m r_{0}^{2}\left(1+2 \log \left(r / r_{0}\right)\right) d u^{2}-2 d u d v+d r^{2}+r^{2} d \theta^{2}
$$

where $-\infty<u, v<\infty, r_{0}<r<\infty$, and $-\pi<\theta<\pi$.

- Plane wave metric

The plane wave metric is a vacuum solution to the Einstein field equation, given by the line element

$$
d s^{2}=2 d w d u+2 f(u)\left(x^{2}+y^{2}\right) d u^{2}-d x^{2}-d y^{2}
$$

It is conformally flat, and describes a pure radiation field. The space-time with this metric is called the plane gravitational wave. It is an pp-wave metric.

- Wils metric

The Wils metric is a solution to the Einstein field equation, given by

$$
d s^{2}=2 x d w d u-2 w d u d x+\left(2 f(u) x\left(x^{2}+y^{2}\right)-w^{2}\right) d u^{2}-d x^{2}-d y^{2}
$$

It is conformally flat, and describes a pure radiation field which is not a plane wave.

- Koutras-McIntosh metric

The Koutras-McIntosh metric is a solution to the Einstein field equation, given by the line element
$d s^{2}=2(a x+b) d w d u-2 a w d u d x+\left(2 f(u)(a x+b)\left(x^{2}+y^{2}\right)-a^{2} w^{2}\right) d u^{2}-d x^{2}-d y^{2}$.

It is conformally flat and describes a pure radiation field which, in general, is not a plane wave. It gives the plane wave metric for $a=0, b=1$, and the Wils metric for $a=1, b=0$.

- Edgar-Ludwig metric

The Edgar-Ludwig metric is a solution to the Einstein field equation, given by

$$
\begin{aligned}
d s^{2}= & 2(a x+b) d w d u-2 a w d u d x \\
& +\left(2 f(u)(a x+b)\left(g(u) y+h(u)+x^{2}+y^{2}\right)-a^{2} w^{2}\right) d u^{2}-d x^{2}-d y^{2}
\end{aligned}
$$

This metric is a generalization of the Koutras-McIntosh metric. It is the most general metric which describes a conformally flat pure radiation (or null fluid) field which, in general, is not a plane wave. If plane waves are excluded, it has the form

$$
d s^{2}=2 x d w d u-2 w d u d x+\left(2 f(u) x\left(g(u) y+h(u)+x^{2}+y^{2}\right)-w^{2}\right) d u^{2}-d x^{2}-d y^{2} .
$$

- Bondi radiating metric

The Bondi radiating metric describes the asymptotic form of a radiating solution to the Einstein field equation, given by the line element

$$
\begin{aligned}
d s^{2}= & -\left(\frac{V}{r} e^{2 \beta}-U^{2} r^{2} e^{2 \gamma}\right) d u^{2}-2 e^{2 \beta} d u d r-2 U r^{2} e^{2 \gamma} d u d \theta \\
& +r^{2}\left(e^{2 \gamma} d \theta^{2}+e^{-2 \gamma} \sin ^{2} \theta d \phi^{2}\right)
\end{aligned}
$$

where u is the retarded time, r is the luminosity distance, $0 \leq \theta \leq \pi, 0 \leq \phi \leq$ 2π, and U, V, β, γ are functions of u, r, and θ.

- Taub-NUT de Sitter metric

The Taub-NUT de Sitter metric (cf. de Sitter metric) is a positive-definite (i.e., Riemannian) solution to the Einstein field equation with a cosmological constant Λ, given by the line element
$d s^{2}=\frac{r^{2}-L^{2}}{4 \Delta} d r^{2}+\frac{L^{2} \Delta}{r^{2}-L^{2}}(d \psi+\cos \theta d \phi)^{2}+\frac{r^{2}-L^{2}}{4}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$,
where $\Delta=r^{2}-2 M r+L^{2}+\frac{\Lambda}{4}\left(L^{4}+2 L^{2} r^{2}-\frac{1}{3} r^{4}\right), L$ and M are parameters, and θ, ϕ, ψ are the Euler angles.
If $\Lambda=0$, one obtains the Taub-NUT metric (cf. Chap. 7).

- Eguchi-Hanson de Sitter metric

The Eguchi-Hanson de Sitter metric (cf. de Sitter metric) is a positive-definite (i.e., Riemannian) solution to the Einstein field equation with a cosmological constant Λ, given by the line element

$$
\begin{aligned}
d s^{2}= & \left(1-\frac{a^{4}}{r^{4}}-\frac{\Lambda r^{2}}{6}\right)^{-1} d r^{2}+\frac{r^{2}}{4}\left(1-\frac{a^{4}}{r^{4}}-\frac{\Lambda r^{2}}{6}\right)(d \psi+\cos \theta d \phi)^{2}+ \\
& +\frac{r^{2}}{4}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
\end{aligned}
$$

where a is a parameter, and θ, ϕ, ψ are the Euler angles.
If $\Lambda=0$, one obtains the Eguchi-Hanson metric.

- Barriola-Vilenkin monopole metric

The Barriola-Vilenkin monopole metric is given by the line element

$$
d s^{2}=-d t^{2}+d r^{2}+k^{2} r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

with a constant $k<1$. There is a deficit solid angle and a singularity at $r=0$; the plane $t=$ constant, $\theta=\frac{\pi}{2}$ has the geometry of a cone.

This metric is an example of a conical singularity; it can be used as a model for monopole, i.e., a hypothetical isolated magnetic poles. It has been theorized that such things might exist in the form of tiny particles similar to electrons or protons, formed from topological defects in a similar manner to cosmic strings.
Cf. Gibbons-Manton metric in Chap. 7.

- Bertotti-Robinson metric

The Bertotti-Robinson metric is a solution to the Einstein field equation in a universe with a uniform magnetic field. The line element of this metric is

$$
d s^{2}=Q^{2}\left(-d t^{2}+\sin ^{2} t d w^{2}+d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where Q is a constant, $t \in[0, \pi], w \in(-\infty,+\infty), \theta \in[0, \pi]$, and $\phi \in[0,2 \pi]$.

- Wormhole metric

A wormhole is a hypothetical region of space-time containing a world tube (the time evolution of a closed surface) that cannot be continuously deformed to a world line (the time evolution of a point).
Wormhole metric is a theoretical distortion of space-time in a region of the Universe that would link one location or time with another, through a "shortcut", i.e., a path that is shorter in distance or duration than would otherwise be expected. A wormhole geometry can only appear as a solution to the Einstein equations if the stress-energy tensor of matter violates the null energy condition at least in a neighborhood of the wormhole throat.
Einstein-Rosen bridge (1935) is a nontraversable wormhole formed from either black hole or spherically symmetric vacuum regions; it possesses a singularity and impenetrable event horizon. Traversable wormholes, as well as warp drive (faster-than-light propulsion system) and time machines, permitting journeys into the past, require bending of space-time by exotic matter (negative mass or energy).
Whereas the curvature of space produced by the attractive gravitational field of ordinary matter acts like a converging lens, negative energy acts like a diverging lens. The negative mass required for engineering, say, a wormhole of throat diameter 4.5 m , as in Stargate's inner ring (from TV franchise Stargate), is $\approx-3 \times 10^{27} \mathrm{~kg}$. But oscillating warp and tweaking wormhole's geometry (White, 2012) can greatly reduce it. Also, negative energy can be created (Butcher, 2014) at the centre of a wormhole if its throat is orders of magnitude longer than its mouth.
Lorentzian wormholes, not requiring exotic matter to exist, were proposed, using higher-dimensional extensions of Einstein's theory of gravity, by BronnikovKim, 2002, and Kanti-Kleihaus-Kunz, 2011. Still, only atomic-scale wormholes would be practical to build, using them solely for superluminal information transmission.
Lorentzian wormholes can be seen as maximally entangled states of two black holes in a Einstein-Podolsky-Rosen correlation, i.e., nonclassical one (it cannot be approximated by convex combinations of product states). MaldacenaSusskind, 2013: any two entangled quantum subsystems (cf. Chap.24) are
connected by a such wormhole. For Sonner, 2013, gravity might emerge from quantum entanglement.

- Morris-Thorne metric

The Morris-Thorne metric (Morris-Thorne, 1988) is a traversable wormhole metric which is a solution to the Einstein field equation with the line element

$$
d s^{2}=e^{\frac{2 \Phi(w)}{c^{2}}} c^{2} d t^{2}-d w^{2}-r(w)^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
$$

where $w \in[-\infty,+\infty], r$ is a function of w that reaches some minimal value above zero at some finite value of w, and $\Phi(w)$ is a gravitational potential allowed by the space-time geometry. It is the most general static and spherically symmetric metric able to describe a stable and traversable wormhole.
Morris-Thorne-Yurtsever, 1988, stated that two closely spaced ($10^{-9}-10^{-10} \mathrm{~m}$) concentric thin charged hollow spheres the size of 1 AU can create negative energy, required for engineering this wormhole, using the quantum Casimir effect.

- Alcubierre metric

The Alcubierre metric (Alcubierre, 1994) is a wormhole metric which is a solution to the Einstein field equation, representing warp drive space-time where the existence of closed time-like curves is allowed. The Alcubierre construction corresponds to a warp (i.e., faster than light) drive in that it causes space-time to contract in front of a spaceship bubble and expand behind, thus providing the spaceship with a velocity that can be much greater than the speed of light relative to distant objects, while the spaceship never locally travels faster than light.
In this case, only the relativistic principle that a space-traveler may move with any velocity up to, but not including or exceeding, the speed of light, is violated. The line element of this metric has the form

$$
d s^{2}=-d t^{2}+(d x-v f(r) d t)^{2}+d y^{2}+d z^{2}
$$

where $v=\frac{d x_{s}(t)}{d t}$ is the apparent velocity of the warp drive spaceship, $x_{s}(t)$ is spaceship trajectory along the coordinate x, the radial coordinate is $r=((x-$ $\left.\left.x_{s}(t)\right)^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$, and $f(r)$ an arbitrary function subject to the conditions that $f=1$ at $r=0$ (the location of the spaceship) and $f(\infty)=0$.
Another warp drive space-time was proposed by Krasnikov, 1995. Krasnikov metric in the 2D subspace t, x is given by the line element

$$
d s^{2}=-d t^{2}+(1-k(x, t)) d x d t+k(x, t) d x^{2}
$$

where $k(x, t)=1-(2-\delta) \theta_{\epsilon}(t-x)\left(\theta_{\epsilon}(x)-\theta_{\epsilon}(x+\epsilon-D)\right), D$ is the distance to travel, θ_{ϵ} is a smooth monotonic function satisfying $\theta_{\epsilon}(z)=1$ at $z>\epsilon, \theta_{\epsilon}(z)=0$ at $z<0$ and δ, ϵ are arbitrary small positive parameters.

- Misner metric

The Misner metric (Misner, 1960) is a metric, representing two black holes, instantaneously at rest, whose throats are connected by a wormhole. The line element of this metric has the form

$$
d s^{2}=-d t^{2}+\psi^{4}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

where the conformal factor ψ is given by

$$
\psi=\sum_{n=-N}^{N} \frac{1}{\sinh \left(\mu_{0} n\right)} \frac{1}{\sqrt{x^{2}+y^{2}+\left(z+\operatorname{coth}\left(\mu_{0} n\right)\right)^{2}}}
$$

The parameter μ_{0} is a measure of the ratio of mass to separation of the throats (equivalently, a measure of the distance of a loop in the surface, passing through one throat and out of the other). The summation limit N tends to infinity.
The topology of the Misner space-time is that of a pair of asymptotically flat sheets connected by a number of wormholes. In the simplest case, it can be seen as a 2 D space $\mathbb{R} \times S^{1}$, in which light progressively tilts as one moves forward in time, and has closed time-like curves (so, time-travel is possible) after a certain point.

- Rotating C-metric

The rotating C-metric is a solution to the Einstein-Maxwell equations, describing two oppositely charged black holes, uniformly accelerating in opposite directions. The line element of this metric has the form

$$
d s^{2}=A^{-2}(x+y)^{-2}\left(\frac{d y^{2}}{F(y)}+\frac{d x^{2}}{G(x)}+k^{-2} G(X) d \phi^{2}-k^{2} A^{2} F(y) d t^{2}\right)
$$

where $F(y)=-1+y^{2}-2 m A y^{3}+e^{2} A^{2} y^{4}, G(x)=1-x^{2}-2 m A x^{3}-e^{2} A^{2} x^{4}$, m, e, and A are parameters related to the mass, charge and acceleration of the black holes, and k is a constant fixed by regularity conditions.
This metric should not be confused with the C-metric from Chap. 11.

- Myers-Perry metric

The Myers-Perry metric describes a 5D rotating black hole. Its line element is

$$
\begin{gathered}
d s^{2}=-d t^{2}+\frac{2 m}{\rho^{2}}\left(d t-a \sin ^{2} \theta d \phi-b \cos ^{2} \theta d \psi\right)^{2}+ \\
+\frac{\rho^{2}}{R^{2}} d r^{2}+\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}+\left(r^{2}+b^{2}\right) \cos ^{2} \theta d \psi^{2}
\end{gathered}
$$

where $\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$, and $R^{2}=\frac{\left(r^{2}+a^{2}\right)\left(r^{2}+b^{2}\right)-2 m r^{2}}{r^{2}}$. Above black hole is asymptotically flat and has an event horizon with S^{3} topology.

Emparan and Reall, 2001, using the possibility of rotation in several independent rotation planes, found a 5D black ring, i.e., asymptotically flat black hole solution with the event horizon's topology of $S^{1} \times S^{2}$.

- Ponce de León metric

The Ponce de León metric (1988) is a 5D metric, given by the line element

$$
d s^{2}=l^{2} d t^{2}-\left(t / t_{0}\right)^{2} p l^{\frac{2 p}{p-1}}\left(d x^{2}+d y^{2}+d z^{2}\right)-\frac{t^{2}}{(p-1)^{2}} d l^{2}
$$

where l is the 5 th (space-like) coordinate. This metric represents a 5D apparent vacuum. It is not flat but embed the flat 4D FLRW metric.

- Kaluza-Klein metric

The Kaluza-Klein metric is a metric in the Kaluza-Klein model of 5D spacetime which seeks to unify classical gravity and electromagnetism.
Kaluza, 1921 (but sent to Einstein in 1919), found that, if the Einstein theory of pure gravitation is extended to a 5D space-time, the Einstein field equation can be split into an ordinary 4D gravitation tensor field, plus an extra vector field which is equivalent to the Maxwell equation for the electromagnetic field, plus an extra scalar field known as the dilation (or radion).
Klein, 1926, assumed that the 5th dimension (i.e., 4th spatial dimension) is curled up in a circle of an unobservable size, below $10^{-20} \mathrm{~m}$. Almost all modern higherdimensional unified theories are based on Kaluza-Klein approach.
An alternative proposal is that the extra dimension(s) is extended, and the matter is trapped in a 4D submanifold. In a model of a such large extra dimension, the 5D metric of a universe can be written in Gaussian normal coordinates as

$$
d s^{2}=-\left(d x_{5}\right)^{2}+\lambda^{2}\left(x_{5}\right) \sum_{\alpha, \beta} \eta_{\alpha \beta} d x_{\alpha} d x_{\beta},
$$

where $\eta_{\alpha \beta}$ is the 4 D metric tensor and $\lambda^{2}\left(x_{5}\right)$ is any function of the 5 th coordinate.
In particular, the $S T M$ (space-time-matter) theory (Wesson and Ponce de León, 1992) relate the 5th coordinate to mass via either $x_{5}=\frac{G m}{c^{2}}$ or $x_{5}=\frac{h}{m c}$, where G is the Newton gravitational constant and h is the Planck constant.
The Ponce de León metric is a STM solution. In STM (or induced matter) theory, the 4D curvature arises not due to the distribution of matter in the Universe (as claims Relativity Theory) but because the Universe is embedded in some higher-dimensional vacuum manifold M, and all the matter in our world can be thought of as being manifestations of the geometrical properties of M. Wesson and Seahra, 2005, claim that the Universe may be a 5D black hole. Life is not excluded since in 5D there is no physical plughole and the "tidal" forces are negligible. Suitable manifolds for such STM theory are given by two isometric solutions of the 5D vacuum field equations: Liu-Mashhoon-Wesson metric and Fukui-Seahra-Wesson metric; both embed 4D FLRW metric.

- Carmeli metric

The Carmeli metric (Carmeli, 1996) is given by the line element

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}-\tau^{2} d v^{2}
$$

where $\tau=\frac{1}{H}$ is the inverse of Hubble constant and v is the cosmological recession velocity. So, comparing with the Minkowski metric, it has τ and velocity v, instead of c and time t. This metric was used in Carmeli's Relativity Theory which is intended to be better than General Relativity on cosmological scale.
The Carmeli metric produces the Tulli-Fisher type relation in spiral galaxies: 4th power of the rotation speed is proportional to the mass of galaxy; it obviate the need for dark matter. This metric predicts also cosmic acceleration.
Including icdt component of the Minkowski metric, gives the Kaluza-KleinCarmeli metric (Harnett, 2004) defined by

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}-c^{2} d t^{2}-\tau^{2} d v^{2} .
$$

- Prasad metric

A de Sitter Universe can be seen as the sum of the external and internal space. The internal space has a negative constant curvature $-\frac{1}{r^{2}}$ and can be characterized by the symmetry group $S O_{3,2}$. The Prasad metric of this space is given, in hyperspherical coordinates, by the line element

$$
d s^{2}=r^{2} \cos ^{2} t\left(d \chi^{2}+\sinh ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)-r^{2} d t^{2}
$$

The value $\sin \chi$ is called adimensional normalized radius of the de Sitter Universe.
The external space has constant curvature $\frac{1}{R^{2}}$ and can be characterized by the symmetry group $\mathrm{SO}_{4,1}$. Its metric has the line element of the form

$$
d s^{2}=R^{2} \cosh ^{2} t\left(d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)-R^{2} d t^{2} .
$$

Part VII
 Real-World Distances

Chapter 27
 Length Measures and Scales

The term length has many meanings: distance, extent, linear measure, span, reach, end, limit, etc.; for example, the length of a train, a meeting, a book, a trip, a shirt, a vowel, a proof. The length of an object is its linear extent, while the height is the vertical extent, and width (or breadth) is the side-to-side distance at 90° to the length, wideness. The depth is the distance downward, distance inward, deepness, profundity, drop.

The ancient Greek mathematicians saw all numbers as lengths (of segments), areas or volumes. In Mathematics, a length function is a function $l: G \rightarrow \mathbb{R}_{\geq 0}$ on a group $(G,+, 0)$ such that $l(0)=0$ and $l(g)=l(-g), l\left(g+g^{\prime}\right) \leq l(g)+l\left(g^{\prime}\right)$ for $g, g^{\prime} \in G$.

In Engineering and Physics, "length" usually means "distance". Unit distance is a distance taken as a convenient unit of length in a given context.

In this chapter we consider length only as a measure of physical distance. We give selected information on the most important length units and present, in length terms, a list of interesting physical objects.

27.1 Length Scales

The main length measure systems are: Metric, Imperial (British and American), Japanese, Thai, Chinese Imperial, Old Russian, Ancient Roman, Ancient Greek, Biblical, Astronomical, Nautical, and Typographical.

There are many other specialized length scales; for example, to measure cloth, shoe size, gauges (such as interior diameters of shotguns, wires, jewelry rings), sizes for abrasive grit, sheet metal thickness, etc.

Many units express relative or inverse distances. Quantities measured in reciprocal length include: radius of curvature, density of a linear feature in an area (say, km per km^{2}), magnitude of vectors (in Crystallography and Spectroscopy),
optical power (cf. lens distances in Chap. 29), absorption (or attenuation) coefficient (cf. Chap. 24), gain (in Laser Physics). Common units used for this measurement include inverse meter m^{-1} (called diopter in Optics), cm^{-1} and cycles per unit length (for spatial frequency)

Some units express nonlength quantities in length terms. For example, the denudation rate (wearing down of the Earth's surface) is measured in cm per 1,000 years. Cf. also meter of water equivalent in Chap. 24.

- International Metric System

The International Metric System (or SI, short for Système International), also known as MKSA (meter-kilogram-second-ampere), is a modernized version of the system of units, established by the Treaty of the Meter from 20 May 1875, which provides a logical and interconnected framework for all measurements in science, industry and commerce. The system is built on a foundation consisting of the following seven SI base units, assumed to be mutually independent:
(1) length: meter (m); it is equal to the distance traveled by light in a vacuum in $1 / 299,792,458$ of a second; (2) time: second (s); (3) mass: kilogram (kg); (4) temperature: kelvin (K); (5) electric current: ampere (A); (6) luminous intensity: candela (cd); (7) amount of substance: mole (mol).
Meter is defined as a proper length (the length of the object in its rest frame, cf. Sect. 26.2). So, it is well defined only over short distances where relativistic effects are negligible (cf. Lorentz length contraction in Sect. 26.1), and all cosmic distances, given in meters, are approximations.
Originally, on March 26, 1791, the mètre (French for meter) was defined as $\frac{1}{10000000}$ of the distance from the North Pole to the equator along the DunkirkBarcelona meridian. The name mètre was derived from the Greek metron (measure). In 1799 the standard of mètre became a meter-long platinum-iridium bar kept in Sèvres, a town outside Paris, for people to come and compare their rulers with. (The metric system, introduced in 1793, was so unpopular that Napoleon was forced to abandon it and France returned to the mètre only in 1837.) In 1960-1983, the meter was defined in terms of wavelengths.

The initial metric unit of mass, the gram, was defined as the mass of one cubic centimeter of water at its temperature of maximum density. A metric ton (or metric tonne, tonne) is a unit of mass equal to $1,000 \mathrm{~kg}$; this non-SI unit is used instead of the SI term megagram ($10^{6} \mathrm{~g}$). For capacity, the litre (liter) was defined as the volume of a cubic decimeter.

- Metrication

The metrication is an ongoing (especially, in US, UK and Caribbean countries) process of conversion to the International Metric System, SI. Only US, Liberia and Myanmar have not fully switched to SI. For example, US uses only miles for road distance signs (milestones). Altitudes in aviation are usually described in feet, and resolutions of output devices are specified in dpi (dots per inch). In shipping, nautical miles and knots are used; both are accepted for use with SI.
Hard metric means designing in the metric measures from the start and conformation, where appropriate, to internationally recognized sizes and designs.

Soft metric means multiplying an inch-pound number by a metric conversion factor and rounding it to an appropriate level of precision; so, the soft converted products do not change size. The American Metric System consists of converting traditional units to embrace the uniform base 10 used by the Metric System.
Such SI-Imperial hybrid units, used in soft metrication, are, for example, kiloyard $(914.4 \mathrm{~m})$, kilofoot $(304.8 \mathrm{~m})$, mil or milli-inch $(25.4 \mu \mathrm{~m})$, and min or microinch $(25.4 \mathrm{~nm})$. The metric inch ($2.5 \mathrm{~cm} \approx 1 \mathrm{inch}$) and metric foot $(30 \mathrm{~cm})$ were used in some Soviet computers when building from American blueprints.
In athletics and skating, races of 1,500 or $1,600 \mathrm{~m}$ are often called metric miles. Examples of traditional units adapted to the meter are Chinese $l i=500 \mathrm{~m}=$ 1,500 chi (Chinese feet), Thai $w a=2 \mathrm{~m}=4$ sok, Vietnamese xich $=1 \mathrm{~m}=$ 1,000 ly.

- Meter, in Poetry and Music

In Poetry, meter (or cadence) is a measure of rhythmic quality, the regular linguistic sound patterns of a verse or line in it. The meter of a verse is the number of lines, the number of syllables in each line and their arrangement as sequences of feet. Each foot is a specific sequence of syllable types-such as unstressed/stressed or long/short. Fussell, 1965, define four types of meter: syllabic, accentual, accentual-syllabic and quantitative, where patterns are based on syllable weight (number and/or duration of segments in the rhyme) rather than stress.
Hypermeter is part of a verse with an extra syllable; metromania is a mania for writing verses and metrophobia is a fear/hatred of poetry.
In Music, meter (or metre) is the regular rhythmic patterns of a musical line, the division of a composition into parts of equal time, and the subdivision of them. It is derived from the poetic meter of song. Different tonal preferences in voiced speech are reflected in music; it explains why Eastern and Western music differ.
Metrical rhythm is where each time value is a multiple or fraction of a fixed unit (beat) and normal accents re-occur regularly providing systematic grouping (measures). Isometre is the use of a pulse (unbroken series of periodically occurring short stimuli) without a regular meter, and polymetre is the use of two or more different meters simultaneously, whereas multimetre is using them in succession.
A rhythmic pattern/unit is either intrametric (confirming the pulses on the metric level), or contrametric (syncopated, not following the beat/meter), or extrametric (irregular with respect to the metric structure of the piece). Rhythms/chords with the same multiset of intervals/distances are called homometric.
A temporal pattern is metrically represented if it can be subdivided into equal time intervals. A metronome is any device that produces regular, metrical ticks (beats); metronomy: measurement of time by a metronome or, in general, an instrument.

- Meter-related terms

We present this large family of terms by the following examples (besides the unit of length and use in Poetry and Music).
Metrograph: a device attached to a locomotive to record its speed and the number and duration of its stops. Cf. unrelated metrography in Medicine (Chap. 29).
Metrogon: a high resolution, low-distortion, extra-wide field photographic lens design used extensively in aerial photography.
The names of various measuring instruments contain meter at the end, say, ammeter, gas meter, multimeter (or volt-ohm meter).
Metrosophy: a cosmology based on strict number correspondences.
Metrology: the science of, or a system of, weights and measures.
A metric meterstick is a rough rule of thumb for comprehending a metric unit; for example, 5 cm is the side of a matchbox, and 1 km is ≈ 10 minutes' walk.
Metering: an equivalent term for a measurement (assignment of numbers to objects or events); micrometry: measurement under the microscope; hypsometry: measurement of heights; telemetry: technology that allows remote measurement; archeometry: the science of exact measuring referring to the remote past.
Hedonimetry: the study of happiness as a measurable economic asset; psychometry: alleged psychic power enabling one to divine facts by handling objects.
Psychometrics: the theory and technique of psychological measurement; psychrometrics: the determination of physical and thermodynamic properties of gasvapor mixtures; biometrics: the identification of humans by their characteristics or traits; cliometrics: the systematic application of econometric techniques and other formal or mathematical methods to the study of history.
Metric, as a nonmathematical term, is a standard unit of measure (for example, font metrics refer to numeric values relating to size and space in the font) or, more generally, part of a system of parameters; cf. quality metrics in Chap. 29. Antimetric matrix: a square matrix A with $A=-A^{T}$; an antimetric electrical network is one that exhibits antisymmetrical electrical properties.
Isometropia: equality of refraction in both eyes; hypermetropia is farsightedness. Isometric particle: a virus which (at the stage of virion capsid) has icosahedral symmetry. Isometric process: a thermodynamic process at constant volume.
Metrohedry: overlap in 3D of the lattices of twin domains in a crystal.
Multimetric crystallography: to consider (Janner, 1991), in addition to the Euclidean metric tensor, pseudo-Euclidean tensors (hyperbolic rotations) attached to the same basis; cf. pseudo-Euclidean distance in Chap. 7 and multimetric in Chap. 3.
Metria: a genus of moths of the Noctuidae family.
Metrio: Greek coffee with one teaspoon of sugar (medium sweet). In Anthropology, metriocranic means having a skull that is moderately high compared with its width, with a breadth-height index 92-98.
Metroid: the name of a series of video games produced by Nintendo and metroids are a fictional species of parasitic alien creatures from those games.

Examples of companies with a meter-related name are: Metron, Metric Inc., MetaMetrics Inc., Metric Engineering, Panametric, Prometric, Unmetric, World Wide Metric. Metric is also a Canadian New Wave rock band.

- Metric length measures

kilometer $(\mathrm{km})=1,000 \mathrm{~m}=10^{3} \mathrm{~m}$;
meter $(\mathrm{m})=10 \mathrm{dm}=10^{0} \mathrm{~m}$;
decimeter $(\mathrm{dm})=10 \mathrm{~cm}=10^{-1} \mathrm{~m}$;
centimeter $(\mathrm{cm})=10 \mathrm{~mm}=10^{-2} \mathrm{~m}$;
millimeter $(\mathrm{mm})=1,000 \mu \mathrm{~m}=10^{-3} \mathrm{~m}$;
micrometer $($ or non-SI micron; $\mu \mathrm{m})=1,000 \mathrm{~nm}=10^{-6} \mathrm{~m}$;
nanometer (or non-SI 10 angstroms $\AA ; \mathrm{nm})=1,000 \mathrm{pm}=10^{-9}$;
picometer $(\mathrm{pm})=1,000 \mathrm{fm}=10^{-12} \mathrm{~m}$;
femtometer $($ or non-SI fermi $; \mathrm{fm})=1,000$ attometers $=10^{-15} \mathrm{~m}$.
The numbers $10^{3 t}(t=-8, \ldots,-1,1, \ldots, 8)$ are given by metric prefixes: yocto-(y), zepto-(z), atto-(a), femto-(f), pico-(p), nano-(n), micro-(μ), milli-(m), kilo-(k), mega-(M), giga-(G), tera-(T), peta-(P), exa-(E), zetta-(Z), yotta-(Y), respectively, while $10^{t}(t=-2,-1,1,2)$ are given by centi-(c), deci-(d), deca(da), hecto-(h).
In computers, a bit (binary digit) is the basic unit of information, a byte (or octet) is 8 bits, and $10^{3 t}$ bytes for $t=1, \ldots, 8$ are kilo-(KB), mega-(MB), giga-(GB), \ldots, yottabyte (YB), respectively. Sometimes (because of $2^{10}=1,024 \approx 10^{3}$) the binary terms kibi-(KiB), mebi-(MiB), gibibyte (GiB), etc., are used for $2^{10 t}$ bytes.

- Imperial length measures

The Imperial length measures (as slightly adjusted by a treaty in 1959) are:
(land) league $=3$ international miles;
(international) mile $=5,280$ feet $=1,609.344 \mathrm{~m}$;
(US survey) mile $=5,280$ US feet $\approx 1,609.347 \mathrm{~m}$;
data $($ or tactical $)$ mile $=6,000$ feet $=1,828.8 \mathrm{~m}$ and radar mile $=12.204 \mu \mathrm{~s}$
(time it takes a radar pulse to travel one data mile forth and back);
(international) yard $=0.9144 \mathrm{~m}=3$ feet $=\frac{1}{2}$ fathom;
(international) foot $=0.3048 \mathrm{~m}=12$ inches;
(international) inch $=2.54 \mathrm{~cm}=12$ lines;
(a unit of measure of height of equipment) rack unit $=\frac{7}{4}$ inch;
(a unit of measure in advertising space) agate line $\approx \frac{1}{14}$ inch;
(a unit of computer mouse movement) mickey $=\frac{1}{200}$ inch;
mil $($ British $t h o u)=\frac{1}{1,000}$ inch; mil is also an angular measure $\frac{\pi}{3,200} \approx 0.001$ radian.
In addition, Surveyor's Chain measures are: furlong $=10$ chains $=\frac{1}{8}$ mile; chain $=100$ links $=66$ feet; rope $=20$ feet; $\operatorname{rod}($ or pole $)=16.5$ feet; link $=7.92$ inches. Mile, furlong and fathom come from the slightly shorter Greco-Roman milos (milliare), stadion and orguia, mentioned in the New Testament.
For measuring cloth, old measures are used: bolt $=40$ yards; goad $=\frac{3}{2}$ yard; ell $=\frac{5}{4}$ yard $=45$ inches; quarter $=\frac{1}{4}$ yard; finger $=\frac{1}{8}$ yard; nail $=\frac{1}{16}$ yard .

Other old English units of length: barleycorn $=\frac{1}{3}$ inch; digit $=\frac{3}{4}$ inches and palm, hand, shaftment, span, cubit $=3,4,6,9,18$ inches, respectively.

- Cubit

The cubit, originally the length of the forearm from the elbow to the tip of the middle finger, was the ordinary unit of length in the ancient Near East which varied among cultures and with time. It is the oldest recorded measure of length. The cubit was used, in the temples of Ancient Egypt from at least 2,700BC, as follows: 1 ordinary Egyptian cubit $=6$ palms $=24$ digits $=45 \mathrm{~cm}$ (18 inches), and 1 royal Egyptian cubit $=7$ palms $=28$ digits $\approx 52.6 \mathrm{~cm}$. Relevant Sumerian measures were: $1 \mathrm{ku}=30$ shusi $=25$ uban $=50 \mathrm{~cm}$, and $1 \mathrm{kus}=36$ shusi.
Biblical measures of length are the cubit and its multiples by $4, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}$ called fathom, span, palm, digit, respectively. But the length of this cubit is unknown; it is estimated now as $\approx 44.5 \mathrm{~cm}$ (as Roman cubitus) for the common cubit, used in commerce, and $51-56 \mathrm{~cm}$ for the sacred one, used for building.
The Talmudic cubit is $48-57.6 \mathrm{~cm}$. The pyramid cubit (25.025 inches $\approx 63.567 \mathrm{~cm}$), derived in Newton's Biblical studies, is supposed to be the basic one in the dimensions of the Great Pyramid and far-reaching numeric relations on them.
Thom, 1955, claim that the megalithic yard, 82.966 cm , was the basic unit used for stone circles in Britain and Brittany c. 3,500BC. Butler-Knight, 2006, derived this unit as $1 /\left(360 \times 366^{2}\right)$-th of $40,075 \mathrm{~km}$ (the Earth's equatorial circumference), linking it to the putative Megalithic 366-degree circle and Minoan 366-day year. Such a " 366 geometry" is a part of the pseudoscientific metrology

- Nautical length units

The main nautical length units (also used in aerial navigation) are:
sea league $=3$ sea (nautical) miles;
nautical mile $=1,852 \mathrm{~m}$ (originally defined as 1 min of arc of latitude);
geographical mile $\approx 1855.32 \mathrm{~m}$ (the average distance on the Earth's surface, represented by 1 min of arc along the Earth's equator);
(international) short cable length $=\frac{1}{10}$ nautical mile
(US customary) cable length $=120$ fathoms $=720$ feet $=219.456 \mathrm{~m}$;
fathom $=6$ feet $=1.8288 \mathrm{~m}$.

- Preferred design sizes

Objects are often manufactured in a series of sizes of increasing magnitude. In Industrial Design, preferred numbers are standard guidelines for choosing such product sizes within given constraints of functionality, usability, compatibility, safety or cost. Preferred design sizes are such lengths, diameters and distances. Four basic Renard's series of preferred numbers divide the interval from 10 to 100 into $5,10,20$, or 40 steps, with the factor between two consecutive numbers being constant (before rounding): the $5,10,20$, or 40 th root of 10 . Since the International Metric System (SI) is decimally-oriented, the International Organization for Standardization (ISO) adopted Renard's series as the main
preferred numbers for use in setting metric sizes. But, for example, the ratio between adjacent terms (i.e., notes) in the Western musical scale is 12 th root of 2 .
In the widely used ISO paper size system, the height-to-width ratio of all pages is the Lichtenberg ratio, i.e., $\sqrt{2}$. The system consists of formats An, Bn and (used for envelopes) Cn with $0 \leq n \leq 10$, having widths $2^{-\frac{1}{4}-\frac{n}{2}}, 2^{-\frac{n}{2}}$ and $2^{-\frac{1}{8}-\frac{n}{2}}$, respectively. The above measures are in m ; so, the area of An is $2^{-n} \mathrm{~m}^{2}$. They are rounded and expressed usually in mm ; for example, format A4 is 210×297 and format B7 (used also for EU and US passports) is 88×125.

- Typographical length units

PostScript point $=\frac{1}{72}$ inch $=100$ gutenbergs $=0.3527777778 \mathrm{~mm}$;
TeX point (or printer's point) $=\frac{1}{72.27}$ inch $=0.3514598035 \mathrm{~mm}$;
ATA point (or Anglo-Saxon point) $=\frac{1}{72.272}$ inch $=0.3514598 \mathrm{~mm}$;
point $($ Didot, European $)=0.37593985 \mathrm{~mm}$, cicero $=12$ points Didot;
pica $($ Postscript, TeX or ATA $)=12$ points in the corresponding system;
$t w i p=\frac{1}{20}$ of a point in the corresponding system.
In display systems, twip is $\frac{1}{1440} \mathrm{inch}$, and himetric is 0.01 mm .

- Astronomical length units

The Hubble distance (cf. Chap. 26) or Hubble length is $D_{H}=\frac{c}{H_{0}} \approx 1.31 \times$ $10^{26} \mathrm{~m} \approx 4.237 \mathrm{Gpc} \approx 13.82 \mathrm{Gly}$ (used to measure distances $d>\frac{1}{2} \mathrm{Mpc}$ in terms of redshift $z: d=z D_{H}$ if $z \leq 1$, and $d=\frac{(z+1)^{2}-1}{(z+1)^{2}+1} D_{H}$, otherwise). gigaparsec $(\mathrm{Gpc})=10^{3}$ megaparsec $(\mathrm{Mpc})=10^{6}$ kiloparsec $(\mathrm{kpc})=10^{9}$ parsecs;
hubble (or light-gigayear, light-Ga, Gly) $=10^{3}$ million light-years (Mly);
siriometer $=10^{6} \mathrm{AU} \approx 15.813$ ly (about twice the Earth-Sirius distance);
$\operatorname{parsec}(\mathrm{pc})=\frac{648000}{\pi}=\cot \left(\frac{1}{3600}\right) \approx 206,265 \mathrm{AU} \approx 3.262$ light-years $=$ $3.08568 \times 10^{16} \mathrm{~m}$ (the distance from an imaginary star, when the lines drawn from it to the Earth and Sun form the maximum angle of one arcsecond; SIaccepted);
light-year (ly, the distance light travels in vacuum in 365.25 days) $\approx 9.46053 \times$ $10^{15} \mathrm{~m} \approx 5.2595 \times 10^{5}$ light-minutes $\approx \pi \times 10^{7}$ light-seconds ≈ 0.3066 parsec; spat (used formerly) $=10^{12} \mathrm{~m}=10^{3}$ gigameters $\approx 6.6846 \mathrm{AU}$;
astronomical unit $(\mathrm{AU})=149,597,870.69 \pm 0.03 \mathrm{~km} \approx 499$ light-seconds (mean Earth-Sun distance; used to measure distances within the Solar System; SIaccepted);
light-second $\approx 2.998 \times 10^{8} \mathrm{~m}$ (the Earth-Moon distance is ≈ 1.28 light-seconds); radii of Moon, Earth, Jupiter and Sun: 1,737, 6,371, 69,911 and 695,510 km; picoparsec $\approx 30.86 \mathrm{~km}$; cf. other funny units such as sheppey 1.4 km (closest distance at which sheep remain picturesque), beard-second 5 nm (distance that a beard grows in a second), microcentury $\approx 52.5 \mathrm{~min}$ (length of lectures), nanocentury $\approx \pi$ sec.

- Natural length units

Natural units are units of measurement based only on physical constants, for example, the speed c of light, gravitational constant G, reduced Planck constant \hbar, Boltzmann constant k_{B}, Coulomb's constant k_{e}, proton's elementary charge e, fine-structure constant $\alpha=\frac{e^{2} k_{e}}{\hbar c} \approx \frac{1}{137}$ and masses m_{e}, m_{p} of electron and proton.
Planck length (smallest measurable length) is $l_{P}=\sqrt{\frac{\hbar G}{c^{3}}} \approx 1.6162 \times 10^{-35} \mathrm{~m}$. (The Stoney length, used formerly, is $\sqrt{\alpha} l_{P}$.) l_{P} is the reduced Compton wavelength $\bar{\lambda}_{C}(m)=\frac{m_{P}}{m} l_{P}$, and also half of the Schwarzschild radius $r_{s}(m)=2 G m c^{-2}$ (Chap. 24) for $m=m_{P}($ Planck mass $)=\sqrt{\frac{\hbar c}{G}} \approx 2.18 \times 10^{-8}$ $\mathrm{kg} \approx 22 \mathrm{mg}$.
The remaining base Planck units are Planck time $t_{p}=\frac{l_{P}}{c} \approx 5.39 \times 10^{-44} \mathrm{~s}$, Planck temperature $T_{P}=\frac{m_{P} c^{2}}{k_{B}} \approx 1.42 \times 10^{32} \mathrm{~K}$, and Planck charge $q_{P}=$ $\sqrt{\frac{\hbar c}{k_{e}}}=\frac{e}{\sqrt{\alpha}} \approx 1.88 \times 10^{-18} \mathrm{C}$. The Planck area A_{P} is l_{P}^{2}, Planck energy E_{P} is $m_{P} c^{2} \approx 1.22 \times 10^{28} \mathrm{eV} \approx 500 \mathrm{kWh}$, and Planck density ρ_{P} is $m_{P} l_{P}^{-3} \approx$ $5.16 \times 10^{96} \mathrm{~kg} / \mathrm{m}^{3}$. Only black holes exceed ρ_{P}; some theories (for example, Landau poles) allow to exceed T_{P}.
The Planck units come by a normalization of the geometrized units for the expressing SI units second, kilogram, kelvin and coulomb as $c, \frac{G}{c^{2}}, \frac{G k_{B}}{c^{4}}$ and $\frac{\sqrt{G k_{e}}}{c^{2}} \mathrm{~m}$, respectively.
The length unit of Quantum Chromodynamics (or strong interactions) is $\bar{\lambda}_{C}\left(m_{p}\right) \approx 2.103 \times 10^{-16} \mathrm{~m}$. The majority of lengths, used in experiments on nuclear fundamental forces, are integer multiples of $\lambda_{C}\left(m_{p}\right)=2 \pi \bar{\lambda}_{C}\left(m_{p}\right) \approx$ 1.32 fm .
X unit $\approx 1.002 \times 10^{-13} \mathrm{~m} \approx 0.1 \mathrm{pm}$ measures wavelengths of X - and gamma rays. The atomic unit of length is the Bohr radius (or bohr) $\alpha_{0} \approx 5.292 \times 10^{-11} \mathrm{~m}$ $\approx 53 \mathrm{pm}=0.53 \AA$, the most probable distance between the proton and electron in a hydrogen atom. It is $\alpha^{-1} \bar{\lambda}_{C}\left(m_{e}\right)=\alpha^{-2} r_{e}$, where $r_{e} \approx 2.818 \times 10^{-15} \mathrm{~m}$ is the Thomson scattering length (Chap. 24), i.e., the classical electron radius.
In the units of Particle Physics, $1 / \mathrm{eV}=10^{-9} / \mathrm{GeV}$ is $\frac{\hbar c}{\mathrm{eV}}=\frac{E_{P}}{\mathrm{eV}} l_{P} \approx 1.97 \times$ $10^{-7} \mathrm{~m}$.

- Length scales in Physics

In Physics, a length scale (or distance scale) is a distance range determined with the precision of a few orders of magnitude, within which given phenomena are consistently described by a theory. Roughly, the scales $<10^{-15}, 10^{-15}-10^{-6}$, $10^{-6}-10^{6}$ and $>10^{6} \mathrm{~m}$ are called subatomic, atomic to cellular (microscopic), human (macroscopic) and astronomical, respectively.
Bacteria (and human ovums) are roughly on the geometrical mean ($10^{-4} \mathrm{~m}$) of Nature's hierarchy of sizes. Dawkins, 2006, used term middle world for our realm between two counterintuitive extreme levels of existence: the microscopic world of quarks/atoms and the Universe at the galactic/universal level. The limit scales correspond to the Planck length l_{P} and Hubble distance $\approx 4.6 \times 10^{61} l_{P}$.

In terms of their constituents, Chemistry (molecules, atoms), Nuclear (say, proton, electron, photon), Hadronic (exited states) and Standard Model (quarks and leptons) are applicable at scales $\geq 10^{-10}, \geq 10^{-14}, \geq 10^{-15}$ and $\geq 10^{-18} \mathrm{~m}$.
At the meso- (or nanoscopic) scale, $10^{-9}-10^{-7} \mathrm{~m}$, materials and phenomena can be described continuously and statistically, and average macroscopic properties (say, temperature and entropy) are relevant. At the atomic scale, $\sim 10^{-10} \mathrm{~m}=$ $1 \AA$, the atoms should be seen as separated. The electroweak scale, $\sim 10^{-18} \mathrm{~m}$ ($100-1,000 \mathrm{GeV}$, in terms of energy) will be probed by the LHC (Large Hadron Collider). The Planck scale (Quantum Gravity), $\sim 10^{-35} \mathrm{~m}\left(\sim 10^{19} \mathrm{GeV}\right)$ is not yet accessible.
Both, uncertainty principle from Quantum Mechanics and gravitational collapse (black hole formation) from classical General Relativity, indicate some minimum length of order the Planck length l_{P} where the notion of distance loses operational meaning. Also, doubly special relativity adds minimum length and maximum energy scales to observer-independent maximum velocity c.
At short distances, classical geometry is replaced by "quantum geometry" described by 2D conformal field theory (CFD). As two points are getting closer together, the vacuum fluctuations of the gravitational field make the distance between them fluctuate randomly, and its mean value tends to a limit, of the order of l_{P}. So, no two events in space-time can ever occur closer together.
In String Theory, space-time geometry is not fundamental and, perhaps, it only emerges at larger distance scales. The Maldacena duality is the conjectured equivalence between an M-theory defined on a ("large, relativistic") space, and a (quantum, without gravity) CFD defined on its (lower dimensional) conformal boundary.
The Big Bang paradigm supposes a minimal length scale and a smooth distribution (homogeneous and isotropic) at a large scale. For Vilenkin et al., 2011, the main theories admitting "before the Big Bang" (cyclical universe, eternal inflation, multiverse, cosmic egg) still require a beginning. For Hartle-Hawkings, 1983, time emerged continuously from space after the Universe was at the age t_{P}.

- Glashow's snake

Uroboros, the snake that bites in its own tail, is an ancient symbol representing the fundamental in different cultures: Universe, eternal life, integration of the opposite, self-creation, etc. Glashow's snake is a sketch of the cosmic uroboros by Glashow, 1982, arraying four fundamental forces and the distance scales over which they dominate (62 orders of magnitude from the Planck scale $\sim 10^{-35} \mathrm{~m}$ to the cosmological scale $\sim 10^{26} \mathrm{~m}$) in clock-like form around the serpent. The dominating forces are:

1. gravity: in the macrocosmos from cosmic to planetary distances;
2. electromagnetism: from mountains to atoms (say, within $\left[10^{-10}, 2 \times 10^{5}\right] \mathrm{m}$);
3. weak and strong forces: in the microcosmos inside the atom (say, $<10^{-12} \mathrm{~m}$).

No objects are known within $\left[10^{-14}, 10^{-10}\right] \mathrm{m}$ (the largest nucleus and smallest atom). As distances decrease and energies increase, the last three forces become
equivalent around the length $10^{-28} \mathrm{~m}$. Then gravity is included (super-unification happens) linking the largest and smallest: the snake swallows its tail.
Also, a symmetry between small and large distances, called T-duality, claims: two superstring theories are T-dual if one compactified on a space of large volume is equivalent to the other compactified on a space of small volume.
Cosmic inflation (expansion by a factor of at least 10^{78} in volume, to the size of a grain of sand, from 10^{-36} to $\approx 10^{-32}$ second after the Big Bang) may have created the large scale of the Universe out of quantum-scale fluctuations. Strong and weak forces describe both atomic nuclei and energy generation in stars. Cf. range of fundamental forces in Chap. 24.
In Conformal Cyclic Cosmology (Penrose, 2010), the Universe is a sequence of aeons (space-times with FLRW metrics g_{i}), where the future time-like singularity of each aeon is the Big Bang singularity of the next. In an eaon's beginning and end, distance and time do not exist; only conformal (preserving angles) geometry holds. Any eaon is attached to the next one by a conformal rescaling $g_{i+1}=\Omega^{2} g_{i}$.

27.2 Orders of Magnitude for Length

In this section we present a selection of such orders of length, expressed in meters.
$1.616252(81) \times 10^{-35}$: Planck length;
10^{-34} : length of a putative string in M-theory which supposes that all forces and elementary particles arise by vibration of such strings (but there is no even agreement that there are smallest fundamental objects);
$1.01 \times 10^{-25}:$ Schwarzschild radius $\left(\frac{2 G m}{c^{2}}\right.$: the value below which mass m collapses into a black hole) of an average (68 kg) human;
$10^{-24}=1$ yoctometer: effective cross-section radius of 1 MeV neutrinos is 2×10^{-23};
10^{-22} : a certain quantum roughness starts to show up, while the space appears completely smooth at the scale of 10^{-14};
$10^{-21}=1$ zeptometer: preons, hypothetical components of quarks/leptons;
$10^{-18}=1$ attometer: size of up quark and down quarks; sizes of strange, charm and bottom quarks are $4 \times 10^{-19}, 10^{-19}$ and 3×10^{-20};
$10^{-15}=1$ femtometer (or fermi);
1.75×10^{-15} and 1.5×10^{-14} : diameter of the smallest (H, hydrogen) and largest (U, uranium-234) nucleus;
1.68×10^{-15} : diameter of proton, range of the weak nuclear force;
$10^{-12}=1$ picometer: distance between atomic nuclei in a white dwarf star;
10^{-11} : wavelength of the hardest (shortest) X-rays and longest gamma rays;
0.62 and $5.2 \AA$: diameter of the smallest (helium) and largest (caesium) atom; $10^{-10}=1 \AA$ (angstrom): diameter of a typical atom;
$0.74 \AA$ and $1,000 \AA$: diameter of the smallest $\left(\mathrm{H}_{2}\right)$ and largest (a SiO_{2}) molecule;
$1.54 \AA$: length of a typical covalent bond (C-C);
$3.4 \AA$: distance between base pairs in a DNA molecule;
$10^{-9}=1$ nanometer: diameter of typical molecule;
10^{-8} : wavelength of softest X-rays and most extreme ultraviolet;
1.1×10^{-8} : diameter of prion (smallest self-replicating biological entity);
in 2012 ;
9×10^{-8} : human immunodeficiency virus, HIV; in general, capsid sizes of known viruses range from 1.7×10^{-8} (Porsine circovirus) to 1.5×10^{-6} (pithovirus sibericum);
10^{-7} : size of chromosomes and largest particle fitting through a surgical mask;
2×10^{-7} : limit of resolution of the light microscope;
$3.8-7.6 \times 10^{-7}$: wavelength of visible (to humans) light;
$10^{-6}=1$ micrometer (or micron);
$10^{-6}-10^{-5}$: diameter of a typical bacterium; known (nondormant) bacteria range from $2-3 \times 10^{-7}$ (Mycoplasma genitalium) to 7.5×10^{-4} (Thiomargarita Namibiensis);
8.5×10^{-6} : size of Ostreococcus, the smallest free-living eukaryotic unicellular organism, while the length of a nerve cell of the Colossal Squid can reach 12 m ; 10^{-5} : typical size of (a fog, mist, or cloud) water droplet;
$10^{-5}, 1.5 \times 10^{-5}$, and 2×10^{-5} : widths of cotton, silk, and wool fibers;
2×10^{-4} : approximately, the lower limit for the human eye to discern an object;
$5 \times 10^{-4}:$ diameter of a human ovum, grain of salt;
$10^{-3}=1$ millimeter;
5×10^{-3} : length of average red ant; in general, insects range from 1.39×10^{-4}
(Dicopomorpha echmepterygis, the smallest animal) to 5.67×10^{-1} (Phobaeticus chani);
$7.7 \times 10^{-3}, 5 \times 10^{q-2}$ and 9.2×10^{-2} : length of the smallest ones: vertebrate (frog Paedophryne amauensis), warm-blooded vertebrate (bee hummingbird Mellisuga helenae) and primate (lemur Microcebus berthae);
8.9×10^{-3} : Schwarzschild radius of the Earth;
$10^{-2}=1$ centimeter;
5.8×10^{-2} : length of uncoiled sperm of the fruit fly Drosophila bifurca (it is 20 fly's bodylengths and the longest sperm cell of any known organism);
$10^{-1}=1$ decimeter: wavelength of the lowest microwave and highest UHF radio frequency, 3 GHz ;
1 meter: wavelength of the lowest UHF and highest VHF radio frequency, 300 MHz;
1.5: average ground level of the Maldives above sea level;
2.77-3.44: wavelength of the broadcast radio FM band, $108-87 \mathrm{MHz}$;
5.5 and ≈ 3 : height of the tallest animal (giraffe) and extinct primate Gigantopithecus;
$10=1$ decameter: wavelength of the lowest VHF and highest shortwave radio frequency, 30 MHz ;

20, 33, 37, 55: lengths of the longest animals (tapeworm Diphyllobothrium Klebanovski, blue whale, lion's mane jellyfish, bootlace worm Lineus longissimus);
99.6: height of the world's tallest flowering plant, a tasmanian Eucalyptus Centurion (after 100 m , the distribution of the products of photosynthesis become impossible);
$100=1$ hectometer: wavelength of the lowest HF (high radio frequency) and highest MF (medium radio frequency), 3 MHz ;
115.5: height of the world's tallest living tree, a californian sequoia Hyperion;
$139,324,541,830$ and 8.5: heights of the Great Pyramid of Giza, Eiffel Tower in Paris, One World Trade Center in New York, Burj Khalifa skyscraper in Dubai and 11,000 years-old Tower of Jericho;
187-555: wavelength of the broadcast radio AM band, 1,600-540 kHz;
340: distance which sound travels in air in one second;
$10^{3}=1$ kilometer;
2.954×10^{3} : Schwarzschild radius of the Sun;
$10^{4}=1$ miriameter (used formerly): scandinavian mile (Norwegian/Swedish mil);
8,848 and 10,911: the highest (Mount Everest) and deepest (Mariana Trench) points on the Earth's surface;
$5 \times 10^{4}=50 \mathrm{~km}$: the maximal distance at which the light of a match can be seen (at least 10 photons arrive on the retina during 0.1 s);
$1.11 \times 10^{5}=111 \mathrm{~km}$: one degree of latitude on the Earth;
$1.5 \times 10^{4}-1.5 \times 10^{7}$: wavelengths of sound audible to humans (20 Hz to 20 kHz); 1.37×10^{5} and 1.9×10^{6} : length of the world's longest tunnel, Delaware Aqueduct, New York, and of longest street, Jounge Street, Ontario;
2×10^{5} : wavelength of a typical tsunami;
$10^{6}=1$ megameter, thickness of Earth's atmosphere;
2.22×10^{6} : diameter of Typhoon Tip (northwest Pacific Ocean, 1979), the most intense tropical cyclone on record;
$2.33 \times 10^{6}:$ diameter of the plutoid Eris, the largest (together with Pluto itself) dwarf planet, at 67.67 AU from the Sun; the smallest dwarf planet is Ceres (the largest asteroid in the Asteroid belt) of diameter 9.42×10^{5} and at 2.77 AU ;
3.48×10^{6} : diameter of the Moon;
9.3×10^{6} and 2.1×10^{7} : length of Trans-Siberian Railway and China's Great Wall;
1.28×10^{7} and 4.01×10^{7} : Earth's equatorial diameter and length of the equator; 4.5×10^{7} : distance from which Earth's good-looking photograph, The Blue Marbre, was taken in 1972 by the Apollo 17 mission. Other famous Earth's images are Earthrise (1968, by the Apollo 8), Pale Blue Dot (0.12 pixel against the space's vastness; 1990, by Voyager 1) and one from Saturn's neighborhood (2013, by NASA's Cassini).
1.4×10^{8} : mean diameter of Jupiter;
1.67×10^{8} : diameter of OGLE-TR-122b, the smallest known star;
$\approx 3 \times 10^{8}(299,792.458 \mathrm{~km})$: distance traveled by light in one second;
3.84×10^{8} : Moon's orbital distance from the Earth;
4.002×10^{8} : the farthest distance a human has ever been from Earth (Apollo 13 mission, 1970, passed over the far side of the Moon);
$10^{9}=1$ gigameter;
1.39×10^{9} : Sun's diameter and orbital distance of a planet with 3, 3-h "year";
6.37×10^{9} : distance at which Earth's gravity becomes $\frac{1}{1,000,000}$ of that on its surface;
5.83×10^{10} : orbital distance of Mercury from the Sun;
1.496×10^{11} (1 astronomical unit, AU): mean Earth-Sun distance;
$\approx 2.8 \mathrm{AU}$ (near the middle of the Asteroid belt): Sun's water frost line (the distance where it is cold enough, $\approx-123^{\circ} \mathrm{C}$, for water to condense into ice), separating terrestrial and jovian planets; it is the radius of the inner Solar System;
5.7×10^{11} : length of the longest observed comet tail (Hyakutake, 1996); the Great Comet of 1997 (Hale-Bopp) has biggest known nucleus ($>60 \mathrm{~km}$);
$10^{12}=1$ terameter (formerly, spat);
15.8 AU: diameter of the largest known star, red supergiant UY Scuti;
30.1 AU: radius of the outer Solar System (orbital distance of Neptune);

50 AU : distance from the Sun to the Kuiper cliff, the abrupt outer boundary of the Kuiper belt (the region of trans-Neptunian objects around Sun). Only three Solar System objects (dwarf planets) are known to have a perihelion of greater than 50 AU: 2012 VP113 (80 AU), 90377 Sedna (76 AU) and 2004 XR190 (51 AU);
937 AU: aphelion of Sedna, the farthest known Solar System object (its orbital period is about 11,400 years);
$10^{15}=1$ petameter;
1.1 light-year $\approx 10^{16}$: the closest passage (in 1.36 Ma) of Gliese-710, a star expected to perturb dangerously the Oort cloud of long-period comets;
$50,000-100,000 \mathrm{AU}$: distance from the Sun to the boundaries of the Oort cloud; 1.3 parsec $\approx 4 \times 10^{16} \approx 4.24$ ly: distance to Proxima Centauri, the nearest star; $\approx 6.15 \times 10^{17}$: radius of humanity's radio bubble, caused by high-power TV broadcasts leaking through the atmosphere into outer space;
$10^{18}=1$ exameter;
$1.57 \times 10^{18} \approx 50.9 \mathrm{pc}, \approx 250 \mathrm{pc}, 46 \mathrm{pc}$: distances to supernova 1987A, to pulsar (a rapidly rotating neutron star) Geminga (remains of a supernova 0.3 Ma ago which created the Local Bubble), to IK Pegasi B, the nearest known supernova candidate;
$2.59 \times 10^{20} \approx 8.4 \mathrm{kpc} \approx 27,400 \mathrm{ly}$: distance from the Sun to the geometric center of our Milky Way galaxy (in Sagittarius A^{*}, a putative supermassive black hole); 12.9 kpc and 52.8 kpc : distances to the closest (Canis Major Dwarf) and the largest (Large Magellanic Cloud) of 26 satellite galaxies of the Milky Way; $9.46 \times 10^{20} \approx 30.66 \mathrm{kpc} \approx 10^{5}$ ly: diameter of the Milky Way. The largest known galaxy, C 1101, at the center of the cluster Abell 2029, is ≈ 6 Mly across;
$10^{21}=1$ zettameter;
$2.23 \times 10^{22}=725 \mathrm{kpc}=2.54 \mathrm{Mly}$: distance to Andromeda (M31), the closest (and approaching at $100-140 \mathrm{~km} / \mathrm{s}$) large galaxy; also, it is the farthest naked eye object;
$5.7 \times 10^{23}=59$ Mly: distance to Virgo, the nearest (and approaching) major cluster;
$10^{24}=1$ yottameter;
$2 \times 10^{24}=60 \mathrm{Mpc}=110 \mathrm{Mly}:$ diameter of the Local (or Virgo) supercluster; Cold Spot Supervoid, the largest known;
4 Gly: length of the wall $U 1.27$ of quasars, the largest known superstructure;
12.7 Gly: distance to the quasar (very active distant galactic nucleus) CFHQS J2329-0301 $(z=6.43$, while 6.5 is the "Wall of Invisibility" for visible light);
13.14 Gly ($z \approx 9.4$): the most distant gamma ray burst observed, GRB 090429B (possibly, the farthest object, ever seen in the Universe);
13.3 Gly: distance to the farthest and earliest ($\approx 420 \mathrm{Ma}$ after Big Bang) known galaxy MACS0647-JD $(z \approx 10.7)$. The formation of the first stars (at the end of the "Dark Age", when matter consisted of clouds of cold hydrogen) corresponds to $z \approx 20$ when the Universe was $\approx 200 \mathrm{Ma}$ old;
$1.3 \times 10^{26}=13.82$ Gly $=4.24 \mathrm{Gpc}$: Hubble radius of the Universe measured as the light travel distance to the source of CMB radiation;
$4.4 \times 10^{26}=47 \mathrm{Gly}=14.4 \mathrm{Gpc}$: particle horizon (present radius of the Universe measured as a comoving distance); it is larger than the Hubble radius, since the Universe is expanding). It is $\approx 2 \%$ larger than the radius of the visible universe including only signals emitted later than $\approx 380,000$ years after the Big Bang;
The size of whole Universe can be now much larger than the size of the observable one, even infinite, if its curvature is 0 . If the Universe is finite but unbounded or if it is nonsimply connected, then it can be smaller than the observable one.
Projecting into the future: the scale of the Universe will be 10^{31} in 10^{14} years (last red dwarf stars die) and 10^{37} in 10^{20} years (stars have left galaxies). If protons decay, their half-life is $\geq 10^{35}$ years; their estimated number in the Universe is 10^{77};
The Universe, in the current Heat Death scenario, achieves beyond 10^{1000} years such a low-energy state that quantum events become major macroscopic phenomena, and space-time loses its meaning again, as below the Planck time/length;
The hypothesis of parallel universes estimates that one can find another identical copy of our Universe within the distance $10^{10^{118}} \mathrm{~m}$.

Chapter 28
 Distances in Applied Social Sciences

In this chapter we present selected distances used in real-world applications of Human Sciences. In this and the next chapter, the expression of distances ranges from numeric (say, in m) to ordinal (as a degree assigned according to some rule) and nominal.

Depending on the context, the distances are either practical ones, used in daily life and work outside of science, or uncountable ones, used figuratively, say, as metaphors for remoteness (being apart, being unknown, coldness of manner, etc.).

28.1 Distances in Perception and Psychology

- Distance ceptor

A distance ceptor is a nerve mechanism of one of the organs of special sense whereby the subject is brought into relation with his distant environment.

- Oliva et al. perception distance

Let $\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of stimuli, and let $q_{i j}$ be the conditional probability that a subject will perceive a stimulus s_{j}, when the stimulus s_{i} was shown; so, $q_{i j} \geq 0$, and $\sum_{j=1}^{n} q_{i j}=1$. Let q_{i} be the probability of presenting the stimulus s_{i}.
The Oliva et al. perception distance [OSLM04] between stimuli s_{i} and s_{j} is

$$
\frac{1}{q_{i}+q_{j}} \sum_{k=1}^{n}\left|\frac{q_{i k}}{q_{i}}-\frac{q_{j k}}{q_{j}}\right| .
$$

- Visual space

Visual space refers to a stable perception of the environment provided by vision, while haptic space (or tactile space) and auditory space refer to such internal representation provided by the senses of pressure perception and audition. The
geometry of these spaces and the eventual mappings between them are unknown. But Lewin et al., 2012, found that sensitivity to touch is heritable, and linked to hearing. The main observed kinds of distortion of vision and haptic spaces versus physical space follow; the first three were observed for auditory space also.

- Distance-alleys: lines with corresponding points perceived as equidistant, are, actually, some hyperbolic curves. Usually, the parallel-alleys are lying within the distance-alleys and, for visual space, their difference is small at $>1.5 \mathrm{~m}$.
- Oblique effects: performance of certain tasks is worse when the orientation of stimuli is oblique rather than horizontal or vertical.
- Equidistant circles: the egocentric distance is direction-dependent; the points perceived as equidistant from the subject lie on egg-like curves, not on circles.

These effects and size-distance invariance hypothesis should be incorporated in a good model of visual space. In a visual space the distance d and direction are defined from the self, i.e., as the egocentric distance. There is evidence that visual space is almost affine and, if it admits a metric d, then d is a projective metric, i.e., $d(x, y)+d(y, z)=d(x, z)$ for any perceptually collinear points x, y, z.
The main models for visual space are a Riemannian space of constant negative curvature (cf. Riemannian color space in Chap. 21), a general Riemannian/Finsler space, or an affinely connected (so, not metric, in general) space [CKK03].
An affine connection is a linear map sending two vector fields into a third one. The expansion of perceived depth on near and its contraction at far distances hints that the mapping between visual and physical space is not affine.
Amedi et al., 2002, observed the convergence of visual and tactile shape processing in the human lateral occipital complex. The vOICe technology (OIC for "Oh I see!") explores cross-modal binding for inducing visual sensations through sound (mental imagery and artificial synesthesia). Some blind people "see" by echolocation. The cane extends peri-hand space of blind users and, in general, extrapersonal or far space can remap as peripersonal or near space when using tools.

- Length-related illusions

The most common optical illusions distort size or length. For example, in the Müller-Lyer illusion, one of two lines of equal length appear shorter because of the way the arrows on their ends are oriented. Pigeons and parrots also are susceptible to it. Segall et al., 1963, found that the mean fractional misperception varies cross-culturally from 1.4 to 20.3% with maximum for Europeans. Also, urban residents and younger subjects are much more susceptible to this illusion. In the Luckiech-Sander illusion (1922), the diagonal bisecting the larger, lefthand parallelogram appears to be longer than the diagonal bisecting the smaller, right-hand parallelogram, but is in fact of the same length.
The perspective created in Ponzo illusion (1911) increases the perceived distance and so, compliant with Emmert's size-distance law, perceived size increases.
The Moon illusion (mentioned in clay tablets at Nineveh in the seventh century BC) is that the Moon, despite the constancy of its visual angle $\left(\approx 0.52^{\circ}\right)$, at the
horizon may appear to be about twice the zenith Moon. This illusion (and similar Sun illusion) could be cognitive: the zenith moon is perceived as approaching. (Plug, 1989, claim that the distance to the sky, assumed unconsciously, is about 10-40 m cross-culturally and independent of the consciously perceived distance.) The Ebbenhouse illusion: the diameter of the circle, surrounded by smaller circles, appears to be larger than one of the same circle nearby, surrounded by larger circles.
In vista paradox (Walker-Rupich-Powell, 1989), a large distant object viewed through a window appears to both shrink in size and recede in distance as the observer approaches; a similar framing effect works in the coffee cup illusion (Senders, 1966). In the Pulfrich depth illusion (1922), lateral motion of an object is interpreted as having a depth component.
An isometric illusion (or ambiguous figure) is a shape that can be built of samelength (i.e., isometric) lines, while relative direction between its components are not clearly indicated. The Necker Cube is an example.
The Charpentier size-weight illusion (1891): the larger of two graspable/liftable objects of equal mass is misperceived to be less heavy than the smaller.

- Size-distance invariance hypothesis

The SDIH (size-distance invariance hypothesis) by Gilinsky, 1951, is that $\frac{S^{\prime}}{D^{\prime}}=C \frac{S}{D}$ holds, where S, D are the physical and S^{\prime}, D^{\prime} are perceived size and distance of visual stimulus, while C is an observer constant. A simplified formula is $\frac{S^{\prime}}{D^{\prime}}=2 \tan \frac{\alpha}{2}$, where α is the angular size of the stimulus.
A version of SDIH is the Emmert's size-distance law: $S^{\prime}=C D^{\prime}$. This law accounts for size constancy: object's size is perceived to remain constant despite changes in the retinal image (more distant objects appear smaller because of perspective). The Müller-Lyer and Ponzo illusions are examples of size constancy.
The Moon and Ebbenhouse illusions are called size-distance paradoxes since they unbalance SDIH. They are misperceptions of visual angle and examples of distance constancy: distance is perceived constant despite changes in the retinal image.
If an observer's head translates smoothly through a distance K as he views a stationary target point at pivot distance D_{p}, then the point will appear to move through a displacement W^{\prime} when it is perceived to be at a distance D^{\prime}. The apparent distance/pivot distance hypothesis (Gogel, 1982): it holds $\frac{D^{\prime}}{D_{p}}+\frac{W^{\prime}}{K}=1$.
The size-distance centration is the overestimation of the size of objects located near the focus of attention and underestimation of it at the periphery.
Hubbard and Baiard, 1988, gave to subjects name and size S of a familiar object and asked imaged distances d_{F}, d_{O}, d_{V}. Here the object mentally looks to be of the indicated size at the first-sight distance d_{F}. The object become, while mentally walking (zooming), too big to be seen fully with zoom-in at the overflow distance d_{O}, and too small to be identified with zoom-out at the vanishing point distance d_{V}. Consistently with SDIH, d_{F} was linearly related to S. For d_{O} and d_{V}, the relation were the power functions with exponents about 0.9 and 0.7 . The
time needed to imagine d_{O} increased slower than linearly with the scan distance $d_{O}-d_{F}$.
Konkle and Oliva, 2011, found that the real-world objects have a consistent visual size at which they are drawn, imagined, and preferentially viewed. This size is proportional to the logarithm of the object's assumed size, and is characterized by the ratio of the object and the frame of space around it. This size is also related to the first-sight distance d_{F} and to the typical distance of viewing and interaction. A car at a typical viewing distance of 9.15 m subtends a visual angle of 30°, whereas a raisin held at an arm's length subtends 1°. Cf. the optimal eye-to-eye distance and, in Chap. 29, the TV viewing distance in the vision distances.
Similarly, Palmer et al., 1981, found that in goodness judgments of photographs of objects, the $\frac{3}{4}$ perspective (or 2.5 view, pseudo-3D), in which the front, side, and top surfaces are visually present, were usually ranked highest. Cf. the axonometric projection in the representation of distance in Painting.

- Egocentric distance

The egocentric distance is the perceived absolute distance from the self (observer or listener) to an object or a stimulus; cf. subjective distance. Usually, such visual distance underestimates the actual physical distance to far objects, and overestimates it for near objects. Such distortion decreases in a lateral direction.
In Visual Perception, the action space of a subject is $1-30 \mathrm{~m}$; the smaller and larger spaces are called the personal space and vista space, respectively.
The exocentric distance is the perceived relative distance between objects.

- Distance cues

The distance cues are cues used to estimate the egocentric distance.
For a listener at a fixed location, the main auditory distance cues include: intensity, direct-to-reverberant energy ratio (in the presence of sound reflecting surfaces), spectrum and binaural differences; cf. acoustics distances in Chap. 21.

For an observer, the main visual distance cues include:

- relative size, relative brightness, light and shade;
- height in the visual field (in the case of flat surfaces lying below the level of the eye, the more distant parts appear higher);
- interposition (when one object partially occludes another from view);
- binocular disparities, convergence (depending on the angle of the optical axes of the eyes), accommodation (the state of focus of the eyes);
- aerial perspective (distant objects become bluer and paler), distance hazing (distant objects become decreased in contrast, more fuzzy);
- motion perspective (stationary objects appear to a moving observer to glide past).

Examples of the techniques which use the above distance cues to create an optical illusion for the viewer, are:

- distance fog: a $3 D$ computer graphics technique such that objects farther from the camera are progressively more blurred (obscured by haze). It is used, for example, to disguise the too-short draw distance, i.e., the maximal distance in a 3D scene that is still drawn by the rendering engine;
- forced perspective: a technique to make objects appear either far away, or nearer depending on their positions relative to the camera and to each other.
- lead room: space left in the direction the subject is facing or moving.

- Subjective distance

The subjective distance (or cognitive distance) is a mental representation of actual distance molded by an individual's social, cultural and general life experiences; cf. egocentric distance. Cognitive distance errors occur either because information about two points is not coded/stored in the same branch of memory, or because of errors in retrieval of this information.
For example, the length of a route with many turns and landmarks is usually overestimated. In general, the filled or divided space (distance or area) appears greater than the empty or undivided one. Also, affective signals of threat and disgust increase and decrease, respectively, perceived proximity.
Human mental maps, used to find out distance and direction, rely mainly, instead of geometric realities, on real landscape understanding, via webs of landmarks.
Ellard, 2009, suggests that this loss of natural navigation skills, coupled with the unique ability to imagine themselves in another location, may have given modern humans the freedom to create a reality of their own.

- Geographic distance biases

Sources of distance knowledge are either symbolic (maps, road signs, verbal directions) or directly perceived ones during locomotion: environmental features (visually-perceived turns, landmarks, intersections, etc.), travel time/effort.
They relate mainly to the perception and cognition of environmental distances, i.e., those that cannot be perceived in entirety from a single point of view but can still be apprehended through direct travel experience.
Examples of geographic distance biases (subjective distance judgments) are:

- observers are quicker to respond to locations preceded by locations that were either close in distance or were in the same region;
- distances are overestimated when they are near to a reference point; for example, intercity distances from coastal cities are exaggerated;
- subjective distances are often asymmetrical as the perspective varies with the reference object: a small village is considered to be close to a big city while the big city is likely to be seen as far away from it;
- traveled routes segmented by features are subjectively longer than unsegmented routes; moreover, longer segments are relatively underestimated;
- increasing the number of pathway features encountered and recalled by subjects leads to increased distance estimates;
- structural features (such as turns and opaque barriers) breaking a pathway into separate vistas strongly increase subjective distance (suggesting that distance
knowledge may result from a process of summing vista distances) (turns are often memorized as straight lines or right angles);
- Chicago-Rome illusion: belief that some European cities are located far to the south of their actual location; in fact, Chicago and Rome are at the same latitude $\left(42^{\circ}\right)$, as are Philadelphia and Madrid (40°), etc.;
- Miami-Lima illusion: belief that US east coast cities are located to the east of the west coast cities of South America; in fact, Miami is 3° west of Lima.

Such illusions could be perceptually based mental representations that have been distorted through normalization and/or conceptual nonspatial plausible reasoning.
Thorndyke and Hayes-Roth, 1982, compared distance judgments of people with navigation- and map-derived spatial knowledge. Navigation-derived route distance estimates were more accurate than Euclidean judgments, and this difference diminished with increased exploration. The reverse was true for map subjects, and no improvement was observed in the map learning.
Turner-Turner, 1997, made a similar experiment in a plane virtual building. Route distances were much underestimated but exploration-derived Euclidean judgments were good; repeated exposure did not help. The authors suggest that exploration of virtual environments is similar to navigation in the real world but with a restricted field of view, as in tunnels, caves or wearing a helmet, watching TV.
Krishna et al., 2008, compared spatial judgments of self-focused ("Western") and relationship-focused ("Eastern") people. The former ones were more likely to misjudge distance (when multiple features should be considered), to pay attention to only focal aspects of stimuli and ignore the context and background information.

- Psychogeography

Psychogeography is (Debord, 1955) the study of the precise laws and specific effects of the geographical environment, consciously organized or not, on the emotions and behavior of individuals. An example of related notions is a desire path (or social trail), i.e., a path developed by erosion caused by animal or human footfall, usually the shortest or easiest route between an origin and destination.
Also, the psychoanalytic study of spatial representation within the unconscious construction of the social and physical world is called psychogeography. In general, depth psychology refer to unconscious-accounting approaches to therapy and research.

- Psychological Size and Distance Scale

The CID (Comfortable Interpersonal Distance) scale by Duke and Nowicky, 1972, consists of a center point 0 and eight equal lines emanating from it. Subjects are asked to imagine themselves on the point 0 and to respond to descriptions of imaginary persons by placing a mark at the point on a line at which they would like the imagined person to stop, that is, the point at which they would no longer feel comfortable. CID is then measured in mm from 0 .

The GIPSDS (Psychological Size and Distance Scale) by Grashma and Ichiyama, 1986, is a 22 -item rating scale assessing interpersonal status and affect. Subjects draw circles, representing the drawer and other significant persons, so that the radii of the circles and the distances between them indicate the thoughts and feelings about their relationship. These distances and radii, measured in mm , represent the psychological distance and status, respectively. Cf. related questionnaire on http://www.surveymonkey.com/s.aspx?sm=Nd8c_ 2fazsxMZfK9ryhvzPlw_3d_3d.

- Visual Analogue Scales

In Psychophysics and Medicine, a Visual Analogue Scale (or VAS) is a selfreport device used to measure the magnitude of internal states such as pain and mood (depression, anxiety, sadness, anger, fatigue, etc.) which range across a continuum and cannot be measured directly. Usually, VAS is a horizontal (or vertical, for Chinese subjects) 10 cm line anchored by word descriptors at each end.
The VAS score is the distance, measured in mm, from the left hand (or lower) end of the line to the point marked by the subject. The VAS tries to produce ratio data, i.e., ordered data with a constant scale and a natural zero.
Amongst scales used for pain-rating, the VAS is more sensitive than the simpler verbal scale (six descriptive or activity tolerance levels), the Wong-Baker facial scale (six grimaces) and the numerical scale (levels $0,1,2, \ldots, 10$). Also, it is simpler and less intrusive than questionnaires for measuring internal states.

- Psychological distance

CLT (construal level theory) in Liberman-Trope, 2003, defines psychological distance from an event or object as a common meaning of spatial ("where"), temporal ("when"), social ("who") and hypotheticality ("whether") distance from it.
Expanding spatial, temporal, social and hypotheticality horizons in human evolution, history and child development is enabled by our capacity for mental construals, i.e., abstract mental representations. Any event or object can be represented at lower-level (concrete, contextualized, secondary) or higher-level (abstract, more schematic, primary) construal.
More abstract construals lead to think of more distant (spatially, temporally, socially, hypothetically) objects and vice versa. People construe events at greater, say, temporal distance in terms of their abstract, central, goal-related features and pro-arguments, while nearer events are treated situation-specifically at a lower level of counter-arguments. Examples are: greater moral concern over a distant future event, more likely victim's forgiveness of the earlier transgression, more intense affective consumer's reaction when a positive outcome is just missed.
CLT implied that the four dimensions are functionally similar. For example, increase of distance in only one dimension leads to greater moral concern. Zhang and Wang, 2008, observed that stimulating people to consider spatial distance influences their judgments along three other dimensions, but the reverse is not true.

It is consistent with a claim by Boroditsky, 2000, that the human cognitive system is structured around only concepts emerging directly out of experience, and that other concepts are then built in a metaphorical way. Williams and Bargh, 2008, also claim that psychological distance is a derivative of spatial distance. Spatial concepts such as "near/far" are present at 3-4 months of age since the relevant information is readily available to the senses, whereas abstract concepts related to internal states are more difficult to understand. Also, spatial relations between oneself, one's caretakers and potential predators have primary adaptive significance.

- Time-distance relation (in Psychology)

People often talk about time using spatial linguistic metaphors (a long vacation, a short concert) but much less talk about space in terms of time. This bidirectional but asymmetric relation suggests that spatial representations are primary, and are later co-opted for other uses such as time.
Casasanto and Boroditsky, 2008, showed that people, in tasks not involving any linguistic stimuli or responses, are unable to ignore irrelevant spatial information when making judgments about duration, but not the converse. So, the metaphorical space-time relationship observed in language also exists in our more basic representations of distance and duration. Mentally representing time as a linear spatial path may enable us to conceptualize abstract (as moving a meeting forward, pushing a deadline back) and impossible (as time-travel) temporal events.
In Psychology, the Kappa effect is that among two journeys of the same duration, one covering more distance appears to take longer, and the Tau effect is that among two equidistant journeys, one taking more time to complete appears to have covered more distance. Jones-Huang, 1982, see them as effects of imputed velocity (subjects impute uniform motion to discontinuous displays) on judgments of both time and space, rather than direct effect of time (distance) on distance (time) judgment.
Fleet-Hallet-Jepson, 1985, found spatiotemporal inseparability in early visual processing by retinal cells. Maruya-Sato, 2002, reported a new illusion (the time difference of two motion stimuli is converted in the illusory spatial offset) indicating interchangeability of space and time in early visual processing. Simner-Mayo-Spiller, 2009, tested ten individuals with time-space synesthesia. The differences appear at the level of higher processing because of different representations: space is represented in retinotopic maps within the visual system, while time is processed in the cerebellum, basal ganglia and cortical structures. Evidence from lesion and human functional brain imaging/interference studies point towards the posterior parietal cortex as the main site where spatial and temporal information converge and interact with each other. Cf. also spatialtemporal reasoning.
In human-computer interaction, Fitts's law claims that the average time taken to position a mouse cursor over an on-screen target is $a+b \log _{2}\left(1+\frac{D}{W}\right)$, where D is the distance to the center of the target, W is the width (along the axis of motion) of the target and a, b represent the start/stop time and device's speed.

People in the West construct mental timelines going from the left; those with damaged right side of their brain have trouble imagining past, i.e., timeline's left side. Núñez, 2012, found that our spatial representation of time is not innate but learned. The Aymara of the Andes place the past in front and the future behind. The Pormpuraaw of Australia place the past in the east and the future in the west. Some Mandarin speaker have the past above and future below.
For the Yupno of Papua New Guinea, past and future are arranged as a nonlinear 3D bent shape: the past downhill and the future uphill of the local river. Inside of their homes, Yupno point towards the door when talking about the past, and away from the door to indicate future. Yupno also have a native counting system and number concepts but they ignore the number-line concept. They place numbers on the line but only in a categorical manner, ignoring line's extension.

- Symbolic distance effect

In Psychology, the brain compares two concepts (or objects) with higher accuracy and faster reaction time if they differ more on the relevant dimension. For example, the performance of subjects when comparing a pair of positive numbers (x, y) decreases for smaller $|x-y|$ (behavioral numerical distance effect).
The related magnitude effect is that performance decreases for larger $\min \{x, y\}$. For example, it is more difficult to measure a longer distance (say, 100 m) to the nearest mm than a short distance (say, 1 cm). Those effects are valid also for congenitally blind people; they learn spatial relation via tactile input (interpreting, say, numerical distance by placing pegs in a peg board).
A current explanation is that there exists a mental line of numbers which is oriented from left to right (as 2,3,4) and nonlinear (more mental space for smaller numbers). So, close numbers are easier to confuse since they are represented on the mental line at adjacent and not always precise locations. Possible mental lines, explaining such confusion, are linear-scalar (the psychological distance $d(a, a+1)$ between adjacent values is constant but the amount of noise increases as $k a$) or logarithmic (amount of noise is constant but $d(a, a+1)$ decreases logarithmically).
Related SNARC (spatial-numerical association of response codes) effect is that smaller (or larger) numbers are responded to more easily with responses toward a left (or, respectively, right) location. Also, smaller numbers promote a leftoriented gaze-direction whereas the opposite is true for higher numbers. Similar spatial-musical association SMARC and a mental line of pitches were observed.

- Law of proximity

Gestalt psychology is a theory of mind and brain of the Berlin School, in which the brain is holistic, parallel and self-organizing. Perceptual organization is composed of grouping and segregation. The visual grouping of discrete elements is determined by proximity, similarity, common fate, good continuation, closure (Wertheimer, 1923), and, more recently, common region, connectedness or synchrony.
In particular, the law of proximity is that spatial or temporal proximity of elements may induce the mind to perceive a collective or totality.

- Emotional distance

The emotional distance is the degree of emotional detachment (toward a person, group or events), aloofness, indifference by personal withdrawal, reserve.
The Bogardus Social Distance Scale (cf. social distance) measures the distance between two groups by averaged emotional distance of their members.
Spatial empathy is the awareness that an individual has to the proximity, activities, and comfort of people surrounding him.
The propinquity effect is the tendency for people to get emotionally involved with those who have higher propinquity (physical/psychological proximity) with them, i.e., whom they encounter often. Walmsley, 1978, proposed that emotional involvement decreases as $d^{-\frac{1}{2}}$ with increasing subjective distance d.

- Psychical distance

Psychical (or psychic) distance is a term having no commonly accepted definition. In several dictionaries, it is a synonym for the emotional distance. This term was introduced in [Bull12] to define what was called later the aesthetic distance (cf. the antinomy of distance) as a degree of the emotional involvement that a person, interacting with an aesthetic artifact or event, feels towards it.
In Marketing, the psychic distance mean the level of attraction or detachment to a particular country resulting from the degree of uncertainty felt about it.

- Distancing

Distancing (from the verb to distance, i.e., to move away from or to leave behind) is any behavior or attitude causing to be or appearing to be at a distance.
Uncountable noon distantness (or farness) is the state or quality of being distant, remote, far-off, way in the distance. Archaic meaning: distant parts or regions.
Distancy, farawayness, distaunce are rare/obsolete synonyms for distance, while indistancy is either nearness, or lack (or want) of distance (or separation). Self-distance is the ability to critically reflect on yourself and your relations from an external perspective; not to confound with mathematical notions of selfdistance in Chaps. 1 and 17.
Outdistancing means to outrun, especially in a long-distance race, or, in general, to surpass by a wide margin, especially through superior skill or endurance.
In Martial Arts, distancing is the selection of an appropriate combat range, i.e., distance from the adversary. For other examples of spatial distancing; cf. distances between people and, in Chap. 29, safe distancing from a risk factor. Social distancing during pandemic refers to focused measures to increase the physical distance between individuals, or activity restrictions, such as increasing distance between student desks, canceling sports activities, and closing schools. In Mediation (a form of alternative dispute resolution), distancing is the impartial and nonemotive attitude of the mediator versus the disputants and outcome. In Psychoanalysis, distancing is the tendency to put persons and events at a distance. It concerns both the patient and the psychoanalyst.
In Developmental Psychology, distancing (Werner-Kaplan, 1964, for deafblind patients) is the process of establishing the individuality of a subject as an essential phase (prior to symbolic cognition and linguistic communication)
in learning to treat symbols and referential language. For Sigel (1970, for preschool children), distancing is the process of the development of cognitive representation: cognitive demands by the teacher or the parent help to generate a child's representational competence. Distancing from role identities is the first step of 7th (individualistic) of nine stages of ego development in Loevinger, 1976.

In the books by Kantor, distancing refers to APD (Avoidant Personality Disorder): fear of intimacy and commitment in confirmed bachelors, "femmes fatales", etc. Associational distancing refers to individual's dissociation with those in the group inconsistent with his desired social identity.
The distancing language is phrasing used by a person to avoid thinking about the subject or content of his own statement (for example, referring to death).
Distancing by scare quotes is placing quotation marks around an item (single word or phrase) to indicate that the item does not signify its literal or conventional meaning. The purpose could be to distance the writer from the quoted content, to alert the reader that the item is used in an unusual way, or to represent the writer's concise paraphrasing. Neutral distancing convey a neutral writer's attitude, while distancing him from an item's terminology, in order to call attention to a neologism, jargon, a slang usage, etc; sometimes italics are used for it.
Cf. technology-related distancing, antinomy of distance, distanciation.

28.2 Distances in Economics and Human Geography

- Technology distances

The technological distance between two firms is a distance (usually, χ^{2} - or cosine distance) between their patent portfolios, i.e., vectors of the number of patents granted in (usually, 36) technological subcategories. Other measures are based on the number of patent citations, co-authorship networks, etc.
Granstrand's cognitive distance between two firms is the Steinhaus distance $\frac{\mu(A \triangle B)}{\mu(A \cup B)}=1-\frac{\mu(A \cap B)}{\mu(A \cup B)}$ between their technological profiles (sets of ideas) A and B seen as subsets of a measure space $(\Omega, \mathcal{A}, \mu)$.
Olsson, 2000, defined the metric space (I, d) of all ideas (as in human thinking), $I \subset \mathbb{R}_{+}^{n}$, with some intellectual distance d. The closed, bounded, connected knowledge set $A_{t} \subset I$ extends with time t. New elements are, normally, convex combinations of previous ones: innovations within gradual technological progress. Exceptionally, breakthroughs (Kuhn's paradigm shifts) occur.
The similar notion of thought space (of ideas/knowledge and relationships among them in thinking) was used by Sumi et al., 1997, for computer-aided thinking with text; they proposed a system of mapping text-objects into metric spaces.
Introduced by Patel, 1965, the economic distance between two countries is the time (in years) for a lagging country to catch up to the same per capita income level as the present one of an advanced country. Introduced by Fukuchi-Satoh,

1999, the technology distance between countries is the time (in years) when a lagging country realizes a similar technological structure as the advanced one has now. The basic assumption of the Convergence Hypothesis is that the technology distance between two countries is smaller than the economic one.

- Production Economics distances

In quantitative Economics, a technology is modeled as a set of pairs (x, y), where $x \in \mathbb{R}_{+}^{m}$ is an input vector, $y \in \mathbb{R}_{+}^{m}$ is an output vector, and x can produce y. Such a set T should satisfy standard economical regularity conditions.
The directional distance function of input/output x, y toward a (projected and evaluated) direction $\left(-d_{x}, d_{y}\right) \in \mathbb{R}_{-}^{m} \times \mathbb{R}_{+}^{m}$ is (Chambers-Chung-Färe, 1996)

$$
\sup \left\{k \geq 0:\left(\left(x-k d_{x}\right),\left(y+k d_{y}\right)\right) \in T\right\}
$$

For $d_{x}=x, d_{y}=y$, it is a scaled version of the Shephard input distance function (Shephard, 1953 and 1970) $\sup \left\{k \geq 0:\left(x, \frac{y}{k}\right) \in T\right\}$.
The frontier $f_{s}(x)$ is the maximum feasible output of a given input x in a given system (or year) s. The distance to frontier (Färe-Crosskopf-Lovell, 1994) of a production point (x, y), where $\left.y=g_{s}(x)\right)$, is $\frac{g_{s}(x)}{f_{s}(x)}$.
The Malmquist index measuring the change in TFP (total factor productivity) between periods s, s^{\prime} (or comparing to another unit in the same period) is $\frac{g_{s}^{\prime}(x)}{f_{s}(x)}$. The distance to frontier is the inverse of TFP in a given industry (or of GDP per worker in a given country) relative to the existing maximum (the frontier, usually, US). In general, the term distance-to-target is used for the deviation in percentage of the actual value from the planned one.
Consider a production set $T \subset \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ (input, output). The measure of the technical efficiency, given by Briec-Lemaire, 1999, is the point-set distance $\inf _{y \in w e(T)}\|x-y\|$ (in a given norm $\|$.$\| on \mathbb{R}^{n_{1}+n_{2}}$) from $x \in T$ to the weakly efficient set we (T). It is the set of minimal elements of the poset (T, \preceq) where the partial order $\preceq\left(t_{1} \preceq t_{2}\right.$ if and only if $\left.t_{2}-t_{1} \in K\right)$ is induced by the cone $K=\operatorname{int}\left(\mathbb{R}_{>0}^{n_{1}} \times \mathbb{R}_{>0}^{n_{2}}\right)+\{0\}$.

- Distance to default

A call option is a financial contract in which the buyer gets, for a fee, the right to buy an agreed quantity of some commodity or financial instrument from the seller at a certain time (the expiration date) for a certain price (the strike price). Let us see a firm's equity E as a call option on the firm's assets A, with the total liabilities (debt) L being the strike price, i.e., $E=\max (0, A-L)$ with $A<L$ meaning the firm's default. Applying Black-Sholes, 1973, and Merton, 1974, option pricing formulas, the distance to default t periods ahead is defined by

$$
D 2 D_{t}=\frac{\ln \frac{A_{t}}{D}+t\left(\mu_{A}-\frac{1}{2} \sigma_{A}^{2}\right)}{\sigma_{A} \sqrt{t}},
$$

where μ_{A} is the rate of growth of A and σ_{A} is its volatility (standard deviation of yearly logarithmic returns). A Morningstar's credit score is $c s=\frac{7}{2}(D 2 D+S S)+$
$8 B R+C C \times \max (D 2 D, S S, B R)$, where $S S, B R$ and $C C$ are the solvency, business risk and cash flow cushion scores. The resulting credit rating $A A A, A A, A, B B B$ etc., corresponds to $c s$ within $[16,23),[23,61),[61,96)$, etc.

- Action distance

The action distance is the distance between the set of information generated by the Active Business Intelligence system and the set of actions appropriate to a specific business situation. Action distance is the measure of the effort required to understand information and to effect action based on that information. It could be the physical distance between information displayed and action controlled.

- Effective trade distance

There is large border effect of political boundaries on the volume of trade and on relative prices. The border introduces costs related to tariffs, market regulations, differences in product packages and languages.
Engel-Rogers, 1996, showed that the dispersion of prices within a country is orders of magnitude smaller than across countries, and estimated that the USCanadian border was equivalent to a distance of $120,000 \mathrm{~km}$. McCallum, 1995, found that inter-provincial trade within Canada was, on average, 22 times larger that the trade of any province with any State from US. Cf. impact of distance on trade.
Borraz et al., 2012, showed that the "online border" in E-commerce is equivalent to the average distance from the online warehouse to the offline stores.
[HeMa02] defined the effective trade distance between countries x and y with populations x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} of their main agglomerations as

$$
\left(\sum_{1 \leq i \leq m} \frac{x_{i}}{\sum_{1 \leq t \leq m} x_{t}} \sum_{1 \leq j \leq n} \frac{y_{j}}{\sum_{1 \leq t \leq n} y_{t}} d_{i j}^{r}\right)^{\frac{1}{r}}
$$

where $d_{i j}$ is the bilateral distance (in km) of the corresponding agglomerations x_{i}, y_{i}, and r measures the sensitivity of trade flows to $d_{i j}$.
As an internal distance of a country, measuring the average distance between producers and consumers, Head and Mayer [HeMa02] proposed $0.67 \sqrt{\frac{\text { area }}{\pi}}$.

- Impact of distance on trade

Bilateral trade decreases with distance; this effect slightly increased over the last century. Webb, 2007, claims that an average distance of trade in 1962 of 4,790 km changed only to $4,938 \mathrm{~km}$ in 2000.
The relationship between shipments and distance, found in Hillberry-Hummels, 2008, is highly nonlinear: at the beginning, there is a sharp reduction in value with distance; but, once a distance-threshold is achieved the negative effect vanishes.
An example of used measures is the average distance traveled by heavy trucks between actual origins and destinations in their deliveries of commodities.
Frankel-Rose, 2000, estimated impact of certain distance variables on trade, for example, $+340,+200,+80,+0.8,-0.2,-1.1 \%$ for common currency, com-
mon language, common border, economic size (1% GDP increase), physical size (1% increase), physical distance (1% increase), respectively.
Using the gravity models with 16 CAGE (cultural, administrative, geographic, economic) distances between countries, Ghemawat, 2004, developed CAGE Distance Framework for managers considering international strategies. His distances are cultural (different languages, ethnicities, religions, social norms), administrative (absence of shared monetary or political association, institutional weakness), geographic (physical remoteness, different climates, lack of common border or waterway access, weak transportation or communication links) and economic (difference in consumer incomes, cost and quality of natural, financial, human resources).
Most affected industries are: meat, cereals, tobacco (by linguistic ties), gold, electricity, textile (by preferential trading agreements), electricity, gas, live animals (by physical remoteness). The wealth difference decreases trade in metals, fertilisers, meat, but increases trade in coffee, tea, animal oils, office machines.

- Long-distance trade routes

Examples of such early historic routes are the Amber Road (from northern Africa to the Baltic Sea), Via Maris (from Egypt to modern day Iran, Iraq, Turkey, Syria), the route from the Varangians to the Greeks (from Scandinavia across Kievan Rus' to the Byzantine Empire), the Incense Road (from Mediterranean ports across the Levant and Egypt through Arabia to India), Roman-Indian routes, Trans-Saharan trade, Grand Trunk Road (from Calcutta to Peshawar) and the Ancient Tea Route (from Yunnan to India via Burma, to Tibet and to central China).
The Silk Road was, from the second century BC, a network of trade routes connecting East, South, and Western Asia with the Mediterranean world, North/Northeast Africa and Europe. Extending $6,500 \mathrm{~km}$, it enabled traders to transport goods, slaves and luxuries such as silk, other fine fabrics, perfumes, spices, medicines, jewels, as well as the spreading of knowledge, ideas, cultures, plants, animals and diseases. But the Silk Road became unsafe and collapsed in the tenth century after the fall of the Tang Dynasty of China, the destruction of the Khazar Khaganate and, later, the Turkic invasions of Persia and the Middle East.
During fifth to tenth centuries, the Radhanites (medieval Jewish merchants) dominated trade between the Christian and Islamic worlds, covering much of Europe, North Africa, Middle East, Central Asia and parts of India and China. They carried commodities combining small bulk and high demand (spices, perfumes, jewelry, silk). The Maritime Republics (mercantile Italian city-states, especially Genoa, Venice, Pisa, Amalfi) dominated long-distance trade during tenth to thirteenth centuries. The spice trade from Asia to Europe became, via new sea routes, a Portuguese monopoly (fifteenth to seventeenth centuries) replaced by the Dutch, and soon after the English and the French. During thirteenth to seventeenth centuries, the Hanseatic League v(an alliance of trading cities and their guilds) dominated trade along the coast of Northern Europe.

- Relational proximity

Economic Geography considers to nongeographical types of proximity (organizational, institutional, cognitive, etc.). In particular, relational proximity (or trust-based interaction between actors) is an inclusive concept of the benefits derived from spatially localized sets of economic activities. It generates relational capital through the dynamic exchange of locally produced knowledge.
The five dimensions of relational proximity are proximity: of contact (directness), through time (continuity, stability), in diversity (multiplicity, scope), in mutual respect and involvement (parity), of purpose (commonality).
Individuals are close to each other in a relational sense when they share the same interaction structure, make transactions or realize exchanges. They are cognitively close if they share the same conventions and have common values and representations (including knowledge and technological capabilities).
Bouba-Olga and Grossetti, 2007, divide socio-economic proximity into relational one (role of social networks) and mediation proximity (role of newspapers, directories, Internet, agencies, etc.). Tranos and Nijkamp, 2013: physical distance and relational proximities have a significant impact on Internet's infrastructure.

- Migration distance (in Economics)

The migration distance, in Economic Geography, is the distance between the geographical centers of the municipalities of origin and destination.
Ravenstein's 2nd and 3rd laws of migration (1880) are that the majority of migrants move a short distance, while those move longer distances tend to choose big-city destinations. About 80% of migrants move within their own country.
Migration tends to be an act of aspiration; it generally improves migrant's wealth and lifestyle. Existential migrants refer to voluntary noneconomic expatriates with "existential wanderlust". Madison, 2006, defines them as seeking greater possibilities for self-actualising, exploring foreign cultures in order to assess own identity, and ultimately grappling with issues of home/belonging in the world generally.

- Commuting distance

The commuting distance is the distance (or travel time) separating work and residence when they are located in separated places (say, municipalities).

- Consumer access distance

Consumer access distance is a distance measure between the consumer's residence and the nearest provider where he can get specific goods or services (say, a store, market or a health service). For example, food miles refers to the distance food is transported from the time of its production until it reaches consumers.
Measures of geographic access and spatial behavior include distance measures (map's distance, road travel distance, perceived travel time, etc.), distance decay (decreased access with increasing distance) effects, transportation availability and activity space (the area of $\approx \frac{2}{3}$ of the consumer's routine activities). For example, by US Medicare standards, consumers in urban, suburban, rural areas should have a pharmacy within $2,5,15$ miles, respectively. The patients residing outside of a 15 -miles radius of their hospital are called distant patients.

Food grown within 100 miles of its point of purchase or consumption is local food.
Similar studies for retailers revealed that the negative effect of distance on store choice behavior was (for all categories of retailers) much larger when this behavior was measured as "frequency" than when it was measured as "budget share".

- Distance decay (in Spatial Interaction)

In general, distance decay or the distance effect (cf. Chap. 29) is the attenuation of a pattern or process with distance. In Spatial Interaction, distance decay is the mathematical representation of the inverse ratio between the quantity of obtained substance and the distance from its source.
This decay measures the effect of distance on accessibility and number of interactions between locations. For example, it can reflect a reduction in demand due to the increasing travel cost. The quality of streets and shops, height of buildings and price of land decrease as distance from the center of a city increases.
The bid-rent distance decay induces, via the cost of overcoming distance, a class-based spatial arrangement around a city: with increasing distance (and so decreasing rent) commercial, industrial, residential and agricultural areas follow. In location planning for a service facility (fire station, retail store, transportation terminal, etc.), the main concerns are coverage standard (the maximum distance, or travel time, a user is willing to overcome to utilize it) and distance decay (demand for service decays with distance).
An example of related size effect: doubling the size of a city leads usually to a 15% decrease of resource use (energy, roadway amount, etc.) per capita, a rise of $\approx 15 \%$ in socio-economic well-being (income, wealth, the number of colleges, etc.), but also in crime, disease and average walking speed. Bettencourt et al., 2007, observed that "social currencies" (information, innovation, wealth) typically scale superlinearly with city size, while basic needs (water and household energy consumption) scale linearly and transportation/distribution infrastructures scale sublinearly.
Distance decay is related to friction of distance which posits that in Geography, the absolute distance (say, in km) requires some amount of effort, money, time and/or energy to overcome. The corresponding cost is called relative distance; it describes the amount of social, cultural, or economic connectivity between two places.

- Gravity models

The general gravity model for social interaction is given by the gravity equation

$$
F_{i j}=a \frac{M_{i} M_{j}}{D_{i j}^{b}},
$$

where $F_{i j}$ is the "flow" (or "gravitational attraction", interaction, mass-distance function) from location i to location j (alternatively, between those locations),
$D_{i j}$ is the "distance" between i and j, M_{i} and M_{j} are the relevant economic "masses" of i and j, and a, b are parameters. Cf. Newton's law of universal gravitation in Chap. 24, where $b=2$. The first instances were formulated by Reilly (1929), Stewart (1948), Isard (1956) and Tinbergen (1962).
If $F_{i j}$ is a monetary flow (say, export values), then M is GDP (gross domestic product), and $D_{i j}$ is the distance (usually the great circle distance between the centers of countries i and j). For trade, the true distances are different and selected by economic considerations. But the distance is a proxy for transportation cost, the time elapsed during shipment, cultural distance, and the costs of synchronization, communication, transaction. The distance effect on trade is measured by the parameter b; it is 0.94 in Head, 2003, and 0.6 in Leamer-Levinsohn, 1994.
If $F_{i j}$ is a people (travel or migration) or message flow, then M is the population size, and $D_{i j}$ is the travel or communication cost (distance, time, money).
If $F_{i j}$ is the force of attraction from location i to location j (say, for a consumer, or for a criminal), then, usually $b=2$. Reilly's law of retail gravitation is that, given a choice between two cities of sizes M_{i}, M_{j} and at distances D_{i}, D_{j}, a consumer tends to travel further to reach the larger city with the equilibrium point defined by

$$
\frac{M_{i}}{D_{i}^{2}}=\frac{M_{j}}{D_{j}^{2}} .
$$

- Nearness principle

The nearness principle (or Zipf's least effort principle, in Psychology) is the following basic geographical heuristic: given a choice, a person will select the route requiring the least expenditure of effort, i.e., path of least resistance.
This principle is used, for example, in transportation planning and locating of serial criminals: they tend to commit their crimes fairly close to where they live. The first law of geography (Tobler, 1970) is: "Everything is related to everything else, but near things are more related than distant things".

- Distances in Criminology

Geographic profiling (or geoforensic analysis) aims to identify the spatial behavior (target selection and likely offender's heaven, i.e., the residence or workplace) of a serial criminal as it relates to the spatial distribution of linked crime sites.
The offender's buffer zone is an area surrounding the offender's heaven, from which little or no criminal activity will be observed; usually, such a zone occurs for premeditated personal offenses. The primary streets and network arterials that lead into the buffer zone tend to intersect near the estimated offender's heaven. A 1 km buffer zone was found for UK serial rapists. Most personal offenses occur within about 2 km from the offender's heaven, while property thefts occur further away.
Given n crime sites $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$ (where x_{i} and y_{i} are the latitude and longitude of the i-th site), the Newton-Swoope Model predicts the offender's
heaven to be within the circle around the point $\left(\frac{\sum_{i} x_{i}}{n}, \frac{\sum_{i} y_{i}}{n}\right)$ with the search radius being

$$
\sqrt{\frac{\max \left|x_{i_{1}}-x_{i_{2}}\right| \cdot \max \left|y_{i_{1}}-y_{i_{2}}\right|}{\pi(n-1)^{2}}}
$$

where the maxima are over $\left(i_{1}, i_{2}\right), 1 \leq i_{1}<i_{2} \leq n$. The Ganter-Gregory Circle Model predicts the offender's heaven to be within a circle around the first offense crime site with diameter the maximum distance between crime sites.
The centrographic models estimate the offender's heaven as a center, i.e., a point from which a given function of travel distances to all crime sites is minimized; the distances are the Euclidean distance, the Manhattan distance, the wheel distance (i.e., the actual travel path), perceived travel time, etc. Many of these models are the reverse of Location Theory models aiming to maximize the placement of distribution facilities in order to minimize travel costs. These models (Voronoi polygons, etc.) are based on the nearness principle (least effort principle).
The journey-to-crime decay function is a graphical distance curve used to represent how the number of offenses committed by an offender decreases as the distance from his/her residence increases. Such functions are variations of the center of gravity functions; cf. gravity models.
For detection of criminal, terrorist and other hidden networks, there are many data-mining techniques which extract latent associations (distances and nearmetrics between people) from graphs of their co-occurrence in relevant documents, events, etc. In, say, drug cartel networks, better to remove betweeners (not well-connected bridges between groups, as paid police) instead of hubs (kingpins).
Electronic tagging consist of a device attached to a criminal or vehicle, allowing their whereabouts to be monitored using GPS. An ankle monitor (or tether) is a such tracking device that individuals under house arrest or parole are often required to wear. The range of a tether (or inclusion zone, 10-50 m) depends usually on the gravity of the crime; it is set by the offender's probation officer.

- Drop distance

In judicial hanging, the drop distance is the distance the executed is allowed to fall. In order to reduce the prisoner's physical suffering (to about a third of a second), this distance is pre-determined, depending on his/her weight, by special drop tables. For example, the (US state) Delaware protocol prescribes, in pounds/feet, about 252,183 and 152 cm for at most 55,77 and at least 100 kg. Unrelated hanging distance is the minimum (horizontal) distance needed for hanging a hammock.
In Biosystems Engineering, a ventilation jet drop distance is defined as the horizontal distance from an air inlet to the point where the jet reaches the occupational zone. In Aviation, an airlift drop distance (or drop height) is the vertical distance between the aircraft and the drop zone over which the airdrop is executed.

- Distance telecommunication

Distance telecommunication is the transmission of signals over a distance for the purpose of communication. In modern times, this process almost always involves the use of electromagnetic waves by transmitters and receivers.
Nonelectronic visual signals were sent by fires, beacons, smoke signals, then by mail, pigeon post, hydraulic semaphores, heliographs and, from the fifteenth century, by maritime flags, semaphore lines and signal lamps.
Audio signals were sent by drums, horns (cf. long-distance drumming in Chap. 21) and, from nineteenth century, by telegraph, telephone, and radio.
Advanced electrical/electronic signals are sent by television, videophone, fiber optical telecommunications, computer networking, analog cellular mobile phones, SMTP email, Internet and satellite phones.

- Distance supervision

Distance supervision refers to the use of interactive distance technology (landline and cell phones, Email, chat, text messages to cell phone and instant messages, video teleconferencing, Web pages) for live (say, work, training, psychological umbrella, mental health worker, administrative) supervision.
Such supervision requires tolerance for ambiguity when interacting in an environment that is devoid of nonverbal information.

- Distance education

Distance education is the process of providing instruction when students and instructors are separated by physical distance, and technology is used to bridge the gap. Distance learning and distance (or online) degrees are the desired outcomes. A semi-distance program is one combining online and residential courses.
The transactional distance (Moore, 1993) is a perceived degree of separation during interaction between students and teachers, and within each group. This distance decreases with dialog (a purposeful positive interaction meant to improve the understanding of the student), with larger autonomy of the learner, and with lesser predetermined structure of the instructional program.
Vygotsky's zone of proximal development is the distance between the actual developmental level as determined by independent problem solving and the level of potential development as determined through problem solving under adult guidance, or in collaboration with more capable peers.

- Distance selling

Distance selling, as opposed to face-to-face selling in shops, covers goods or services sold without face-to-face contact between supplier and consumer but through distance communication means: press adverts with order forms, catalog sales, telephone, tele-shopping, e-commerce (via Internet), m-commerce (via mobile phone). Examples of the relevant legislation are Consumer Protection (Distance Selling) Directive 97/7/EC and Regulations 2000 in EU.
The main provisions are: clear prior information before the purchase, its confirmation in a durable medium, delivery within 30 days, "cooling-off" period of seven working days during which the consumer can cancel the contract without any reason and penalty. Exemptions are: Distance marketing (financial services
sold at distance), business-to-business contracts and some purchases (say, of land, or at an auction, or from vending machines).

- Approximative human-scale distances

An arm's length is a distance (about 0.7 m , i.e., within personal distance) sufficient to exclude intimacy, i.e., discouraging familiarity or conflict; its analogs are: Italian braccio, Turkish pik, and Old Russian sazhen.
The reach distance is the difference between the maximum reach and arm's length distance. The striking distance is a short, easily reachable distance.
The whiffing (or spitting, poking) distance is a very close distance.
A stone's throw is a distance of about 25 fathoms (46 m).
The hailing (or shouting, calling) distance is the distance within which the human voice can be heard. Far cry: distance estimated in audibility's terms.
The walking distance is the context-depending distance normally reachable by walking. In Japan, its standard unit is 80 m , i.e., 1 min walking time. Some UK high schools define 2 and 3 miles as the statutory walking distance for children younger and older than 11 years. Typical urban walking distance to transit is 400 m . Pace out means to measure distance by pacing (walking with even steps).
The acceptable commute distance, in Real Estate, is the distance that can be covered in an acceptable travel time and increases with better connectivity.

- Optimal eye-to-eye distance

The optimal eye-to-eye distance between two persons was measured for some types of interaction. For example, such an optimal viewing distance between a baby and its mother's face, with respect to the immature motor and visual systems of the newborn, is $20-30 \mathrm{~cm}$. During the first weeks of life the accommodation system does not yet function and the lens of the newborn is locked at the focal distance of about 19 cm . At ages $8-14$ months, babies are judging distances well; they fear a distance with mother (separation anxiety stage) and strangers. Also, left-sided cradling/holding preference have been found in humans and great apes.

- Language style matching

During conversation, texting, emailing, and other forms of interactive communication, people unconsciously mimic their partners' language use patterns.
The $L S M$ (language style matching) score of a dyad $(1,2)$ of persons, with respect to a function word type $k, 1 \leq k \leq 9$, is $L S M_{i}=2 \frac{\min \left(l_{1 k}, l_{2 k}\right)}{l_{1 k}+l_{2 k}}$, where $l_{i k}$ ($i=1,2$) is the percentage of person i 's words of type k. Each dyad's total $L S M$ is the mean of its $L S M_{i}$ across the nine types of function words: auxiliary verbs (say, am, will, have), articles, common adverbs (say, hardly, often), personal pronouns, indefinite pronouns, prepositions, negations, conjunctions (say, and, but) and quantifiers.
LSM is high within the first $15-30 \mathrm{~s}$ of any interaction and is generally unconscious. Women use conjunctions at much higher rates.
LSM predicts successful hostage negotiations (Taylor-Thomas, 2008), task group cohesiveness (Gonzales-Hancock-Pennebaker, 2010), and the formation and persistence of romantic relationships (Ireland et al., 2011).

However (Manson et al., 2013), the probability of diad's cooperation in a postconversation one-shot prisoner's dilemma, is positively related, instead of LSM, to the convergence of their speech rates (mean syllable duration).

- Distances between people

In [Hall69], four interpersonal bodily distances were introduced: the intimate distance for lovers, childrens, pets (from touching to 46 cm), the personal-casual distance for conversations among friends ($46-120 \mathrm{~cm}$), the social-consultative distance for conversations among acquaintances (1.2-3.7 m), and the public distance for public speaking (over 3.7 m). To each of those proxemics distances, there corresponds an intimacy/confidence degree and appropriated sound level. The distance which is appropriate for a given social situation depends on culture, gender and personal preference. For example, under Islamic law, proximity (being in the same room or secluded place) between a man and a woman is permitted only in the presence of their mahram (a spouse or anybody from the same sex or a pre-puberty person from the opposite sex). For an average westerner, personal space is about 70 cm in front, 40 cm behind and 60 cm on either side.
In interaction between strangers, the interpersonal distance between women is smaller than between a woman and a man. The bonding hormone oxytocin discourages partnered (but not a single) men from getting close to a female stranger; they, if were given oxytocin, stayed $10-15 \mathrm{~cm}$ farther from the attractive woman.
An example of other cues of nonverbal communication is given by angles of vision which individuals maintain while talking. The people angular distance
in a posture is the spatial orientation, measured in degrees, of an individual's shoulders relative to those of another; the position of a speaker's upper body in relation to a listener's (for example, facing or angled away). Speaker uses 45° open position in order to make listener feel comfortable and direct body point in order to exert pressure. In general, to approach men directly from the front or women from behind is rude. Also, this distance reveals how one feels about people nearby: the upper body unwittingly angles away from disliked persons and during disagreement.
Eye-contact decreases with spatial proximity. Persons stand closer to those whose eyes are shut. The Steinzor effect is the finding that members of leaderless discussion groups seated in circles, are most apt to address remarks to or to get responses from persons seated opposite or nearly opposite them, while in the presence of a strong leader, it happens with persons seated alongside or nearly alongside.
Distancing behavior of people can be measured, for example, by the stop distance (when the subject stops an approach since she/he begins to feel uncomfortable), or by the quotient of approach, i.e., the percentage of moves made that reduce the interpersonal distance to all moves made.
Humans and monkeys with amygdala lesions have much smaller than average preferred interpersonal distance. Peripersonal, i.e., within reach of any limb of
an individual, space is located dorsally in the parietal lobe whereas extrapersonal (outside his reach) space is located ventrally in the temporal lobe.

- Death of Distance

Death of Distance is the title of the influential book [Cair01] arguing that the telecommunication revolution (the Internet, mobile telephones, digital TV, etc.) initiated the "death of distance" implying fundamental changes: threeshift work, lower taxes, prominence of English, outsourcing, new ways of government control and citizens communication, but also management-at-adistance and concentration of elites within the "latte belt". Physical distance (and so, Economic Geography) do not matter; we all live in a "global village". Friedman, 2005, announced: "The world is flat". Gates, 2006, claimed: "With the Internet having connected the world together, someone's opportunity is not determined by geography". The proportion of long-distance relationships in foreign relations increased.
Similarly (see [Ferg03]), steam-powered ships and the telegraph (as railroads previously and cars later) led, via falling transportation/communication costs, to the "annihilation of distance" in the nineteenth and twentieth centuries. Heine wrote in 1843: "Space is killed by the railways, and we are left with time alone". Further in the past, archaeological evidence points out the appearance of longdistance trade ($\approx 0.14 \mathrm{Ma}$ ago), and the innovation of projectile weapons and traps ($\approx 0.04 \mathrm{Ma}$ ago) which allowed humans to kill large game (and other humans) from a safe distance.
But already Orwell, 1944, dismissed as "shallowly optimistic" the the phrases "airplane and radio have abolished distance" and "all parts of the world are now interdependent". Heidegger wrote in 1950: "All distances in time and space are shrinking...The peak of this abolition of every possibility of remoteness is reached by television..." but "The frank abolition of all distances brings no nearness". Edgerton, 2006, claims that new technologies foster self-sufficiency and isolation instead.
Modern technology eclipsed distance only in that the time to reach a destination has (usually) shrunk. Distances still matter for, say, a company's strategy on the emerging markets (cf. impact of distance on trade) and for political legitimacy. "Tyranny of distance" still affects small island states in the Pacific.
Partridge et al., 2007, report that proximity to higher-tiered urban centers (with their higher-order services, urban amenities, higher-paying jobs, lower-cost products) increasingly favors local job growth. Increased access to services and knowledge exchange requires more face-to-face interaction and so, an increase in the role of distance. Economic and innovation activity are highly localized spatially and tend to agglomerate more. Also, the social influence of individuals, measured by the frequency of memorable interactions, is heavily determined by distance. Goldenberg-Levy, 2009, show that the IT (Information Technology) revolution which occurred in the 1990s, increased local social interactions (as email, Facebook communication, baby name diffusion) to a greater degree than long-distance ones.

In military affairs, Boulding, 1965, and Bandow, 2004, argued that twentieth century technology reduced the value of proximity for the projection of military power because of "a very substantial diminution in the cost of transportation of armed forces" and "an enormous increase in the range of the deadly projectile". It was used as partial justification for the withdrawal of US forces from overseas bases in 2004. But Webb, 2007, counter-argues that any easing of transport is countered by increased strain put upon its modes since both sides will take advantage of the falling costs to send more supplies. Also, the greatest movement of logistics continues to be conducted by sea, with little improvement in speed since 1900.

- Technology-related distancing

The Moral Distancing Hypothesis postulates that technology increases the propensity for unethical conduct by creating a moral distance between an act and the moral responsibility for it.
Print technologies divided people into separate communication systems and distanced them from face-to-face response, sound and touch. TV involved audiletactile senses and made distance less inhibiting, but it exacerbated cognitive distancing: story and image are biased against space/place and time/memory.
This distancing has not diminished with computers but interactivity has increased. In terms of Hunter: technology only re-articulates communication distance, because it also must be regarded as the space between understanding and not. The collapsing of spatial barriers diminishes economic but not social and cognitive distance.
The Psychological Distancing Model in [Well86] relates the immediacy of communication to the number of information channels: sensory modalities decrease progressively as one moves from face-to-face to telephone, videophone, and e-mail. Skype communication is rated higher than phone since it creates a sense of co-presence. People phone with bad news but text with good news.
Online settings tend to filter out social and relational cues. The lack of instant feedback (since e-mail communication is asynchronous) and low bandwidth limit visual/aural cues. For example, moral and cognitive effects of distancing in online education are not known at present. Also, the shift from face-to-face to online communication can diminish social skills, lead to smaller and more fragmented networks and so, increase feeling of isolation and alienation. But it can be only a bias, based on traditional spatiotemporal assumptions that farness translates into an increase in mediation and results in blurring of the communication.
Virtual distance is the perceived distance between individuals when their primary way of communication is not face-to-face. The main markers of virtual distance are physical, operational and affinity distances.
Mejias, 2005, define epistemological distance and ontological distance between things as the difference, respectively, in degree of knowledge justification and in ability of subjects to act upon things. He argue that we should strive towards ontological nearness, using modern information and communication technologies to manipulate temporal/spatial and epistemological distances to attain this goal.

Mejias, 2007, see some new advantages in "uniform distancelessness", deplored by Heidegger. Networked proximity (nearness mediated through new technology) provides shift from physical proximity to informational availability as the main measure of social relevance. It facilitates new kinds of spatially unbound community, and these emerging forms of sociality could be no less meaningful than the older ones. Networked sociality reconfigures distance rather than eliminates it.

28.3 Distances in Sociology and Language

- Sociometric distance

The sociometric distance refers to some measurable degree of mutual or social perception, acceptance, and understanding. Hypothetically, greater sociometric distance is associated with more inaccuracy in evaluating a relationship.

- Social distance

In Sociology, the social distance is the extent to which individuals or groups are removed or excluded from participating in one another's lives; a degree of understanding and intimacy which characterize personal and social relations generally. This notion was originated by Simmel in 1903; in his view, the social forms are the stable outcomes of distances interposed between subject and object. For example (Mulgan, 1991), the centers of global cities are socially closer to each other than to their own peripheries. In general, the notion of social distance is conceptualized in affective, normative or interactive way, i.e., in terms of sympathy the members of a group feel for another group, norms to define inand outsider, or the frequency/intensity of interactions between two groups.
The Social Distance Scale by Bogardus, 1947, offers the following response items: would marry, would have as a guest in my household, would have as next door neighbor, would have in neighborhood, would keep in the same town, would keep out of my town, would exile, would kill; cf. emotional distance. The responses for each (say, ethnic/racial) group are averaged across all respondents which yields (say, racial) distance quotient ranging from 1.00 to 8.00 .
Dodd and Nehnevasja, 1954, attached distances of $10^{t} \mathrm{~m}, 0 \leq t \leq 7$, to eight levels of the Bogardus scale. Many studies on conflicts in ex-Yugoslavia consider ethnic distance defined via some modified Bogardus scale, i.e., in terms of acceptance of a particular relation with an abstract person from the other group. Caselli and Coleman, 2012, defined ethnic distance as the cost to be born by a member of one group to successfully pass himself as a member of the other group.
An example of relevant models: Akerlof [Aker97] defines an agent x as a pair $\left(x_{1}, x_{2}\right)$ of numbers, where x_{1} represents the initial, i.e., inherited, social position, and the position expected to be acquired, x_{2}. The agent x chooses the value x_{2} so as to maximize

$$
f\left(x_{1}\right)+\sum_{y \neq x} \frac{e}{\left(h+\left|x_{1}-y_{1}\right|\right)\left(g+\left|x_{2}-y_{1}\right|\right)},
$$

where e, h, g are parameters, $f\left(x_{1}\right)$ represents the intrinsic value of x, and $\mid x_{1}-$ $y_{1}\left|,\left|x_{2}-y_{1}\right|\right.$ are the inherited and acquired social distances of x from any agent y (with the social position y_{1}) of the given society.
Hoffman, Cabe and Smith, 1996, define social distance as the degree of reciprocity that subjects believe exists within a social interaction.

- Rummel sociocultural distances
[Rumm76] defined the main sociocultural distances between two persons as follows.
- Personal distance: one at which people begin to encroach on each other's territory of personal space.
- Psychological distance: perceived difference in motivation, temperaments, abilities, moods, and states (subsuming intellectual distance).
- Interests-distance: perceived difference in wants, means, and goals (including ideological distance on socio-political programs).
- Affine distance: degree of sympathy, liking or affection between the two.
- Social attributes distance: differences in income, education, race, sex, etc.
- Status-distance: differences in wealth, power, and prestige (including power distance).
- Class-distance: degree to which one person is in general authoritatively superordinate to the other.
- Cultural distance: differences in meanings, values and norms reflected in differences in philosophy-religion, science, ethics, law, language, and fine arts.

- Cultural distance

The cultural distance between countries $x=\left(x_{1}, \ldots, x_{5}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{5}\right)$ (usually, US) is derived (in [KoSi88]) as the following composite index

$$
\sum_{i=1}^{5} \frac{\left(x_{i}-y_{i}\right)^{2}}{5 V_{i}}
$$

where V_{i} is the variance of the index i, and the five indices represent [Hofs80]:

1. Power distance (preferences for equality);
2. Uncertainty avoidance (risk aversion);
3. Individualism versus collectivism;
4. Masculinity versus femininity (gender specialization);
5. Confucian dynamism (long-term versus short-term orientation).

The above power distance measures the extent to which the less powerful members of institutions and organizations within a country expect and accept that
power is distributed unequally, i.e., how much a culture has respect for authority. For example, Latin Europe and Japan fall in the middle range.
But for Shenkar-Luo-Yeheskel, 2008, above distance is merely a measure of how much a country strayed from the core culture of the multinational enterprise. They propose instead (especially, as a regional construct) the cultural friction linking goal incongruity and the nature of cultural interaction.
In order to explain multinational enterprise behavior, Kostova, 1999, introduced the institutional distance between its home and host countries as the difference in their regulative, cognitive, and normative institutions. Habib-Zurawicki, 2002, consider effects of the corruption distance, i.e., such difference in corruption levels.
Wirsing, 1973, defined social distance as a "symbolic gap" between rulers and ruled designed to set apart the political elite from the public. It consists of reinforced and validated ideologies (a formal constitution, a historical myth, etc.). Davis, 1999, theorized social movements (in Latin America) in terms of their shared distance from the state: geographically, institutionally, socially (class position and income level) and culturally.
The Inglehart-Welzel cultural map of the world represent countries as points on \mathbb{R}^{2}, in which the two dimensions (traditional/secular-rational and survival/selfexpression) explain $>70 \%$ of cross-national variance in 10 indicators.

- Political distance

A finite metric space $\left(X=\left\{x_{1}, \ldots, x_{n}\right\}, d\right)$ can be seen as a political space with the points and distance seen as positions (policy proposals) and some ideological distance, respectively. Usually, (X, d) is a subspace of $\left([0,1]^{m},\|x-y\|_{2}\right)$.
Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the vote shares of all candidates $\left\{c_{1}, \ldots, c_{n}\right\}$ of an election or, say, allocated seat shares of all competing parties; so, $\sum_{i=1}^{n} v_{i}=1$. The index of political diversity (Ortuño-Ortin and Weber, 2008) is $\sum_{1 \leq i<j \leq n} v_{i} v_{j} d\left(x_{i}, x_{j}\right)$.
The mean minimum political distance, cf. http://wiki.electorama.com/wiki, is (the case $m=1$ of) $\sum_{i=1}^{n} v_{i} \min _{j \in E} d\left(x_{i}, y\right)$, where $E=\{1 \leq i \leq n$: c_{i} is elected $\}$. Cf. distance-rationalizable voting rule in Chap. 11.

- Surname distance model

A surname distance model was used in [COR05] in order to estimate the preference transmission from parents to children by comparing, for 47 provinces of mainland Spain, the 47×47 distance matrices for surname distance with those of consumption distance and cultural distance.
The distances were l_{1}-distances $\sum_{i}\left|x_{i}-y_{i}\right|$ between the frequency vectors $\left(x_{i}\right)$, (y_{i}) of provinces x, y, where z_{i} is, for the province z, either the frequency of the i-th surname (surname distance), or the budget share of the i-th product (consumption distance), or the population rate for the i-th cultural issue, say, rate of weddings, newspaper readership, etc. (cultural distance), respectively. Other (matrices of) distances considered there are:

- geographical distance (in km, between the capitals of two provinces);
- income distance $|m(x)-m(y)|$, where $m(z)$ is mean income in the province z;
- climatic distance $\sum_{1 \leq i \leq 12}\left|x_{i}-y_{i}\right|$, where z_{i} is the average temperature in the province z during the i-th month;
- migration distance $\sum_{1 \leq i \leq 47}\left|x_{i}-y_{i}\right|$, where z_{i} is the percentage of people (living in the province z) born in the province i.

Strong vertical preference transmission, i.e., correlation between surname and consumption distances, was detected only for food items.

- Distance as a metaphor

Lakoff and Núñez, 2000, claim that mathematics emerged via conceptual metaphors grounded in the human body, its motion through space and time, and in human sense perceptions: change is motion, arithmetic is motion along a path, etc.
For them, the mathematical idea of distance comes from the activity of measuring, and the corresponding technique consists of rational numbers and metric spaces. The idea of proximity/connection comes from connecting and corresponds to topological space. The idea of subtraction mathematizes the ordinary idea of distance.

- Metaphoric distance

A metaphoric distance is any notion in which a degree of similarity between two difficult-to-compare things is expressed using spatial notion of distance as an implicit bidirectional and understandable metaphor. Some examples are:
Internet and Web bring people closer: proximity in subjective space is athandiness;
professional distance: teacher-student, therapist-patient, manager-employee;
financial distance: degree of separation in couple's money/property arrangements;
competitive distance (incomparability) between two airline product offerings;
metaphoric distance that a creative thinker takes from the problem, i.e., degree of intuitivity, required to evolve/reshape concepts into new ideas.
The distance-similarity metaphor (Montello et al., 2003) is a design principle, where relatedness in nonspatial data is projected onto distance, so that semantically similar documents are placed closer to one another in an information space. It is the inverse of the Tobler's first law of geography; cf. nearness principle. This metaphor is used in Data Mining, Pattern Recognition and Spatialization. Comparing the linguistic metaphor proximity \rightarrow similarity with its mental counterpart, Casasanto (2008), found that stimuli (pairs of words or pictures) presented closer together on the computer screen were rated more similar in conceptual judgments of abstract entities or unseen object properties but, less similar in perceptual judgments of visual appearance of faces and objects.

- Spatial cognition

Spatial cognition concerns the knowledge about spatial properties of objects and events: location, size, distance, direction, separation/connection, shape, pattern, and movement. For instance, it consider navigation (locomotion and way-finding) and orientation during it: recognition of landmarks and path
integration (an internal measuring/computing process of integrating information about movement).
Spatial cognition addresses also our (spatial) understanding of the World Wide Web and computer-simulated virtual reality.
Men surpass women on tests of spatial relations, mental rotation and targeting, while women have better fine motor skills and spatial memory for immobile objects and their location. Such selection should come from a division of labor in Pleistocene groups: hunting of mobile prey for men and gathering of immobile plant foods for women. Women's brains are $10-15 \%$ smaller than men's, but their frontal lobe (decision-making, problem-solving), limbic cortex (emotion regulation) and hippocampus (spatial memory) are proportionally larger, while the parietal cortex (spatial perception) and amygdala (emotional memory) are smaller. Men's brains contain stronger front-to-rear connections (suggesting greater synergy between perception and action) while those of women are better connected from left to right (facilitating emotional processing and the ability to infer others' intentions).
One of the cultural universals (traits common to all human cultures) is that men on average travel greater distances over their lifetime. They are less likely than women to migrate within the country of their birth but more likely to emigrate.

- Size representation

Konkle and Oliva, 2012, found that object representations is differentiated along the ventral temporal cortex by their real-world size. Both big and small objects activated most of temporal cortex but fMRI voxels with a big- or small-object preference were consistently found along its medial or, respectively, lateral parts. These parts overlapped with the regions known to be active when identifying spaces to interact with (say, streets, elevators, cars, chairs) or, respectively, processing information on tools, ones we usually pick up.
Different-sized objects have different action demands and typical interaction distances. Big/small preferences are object-based rather than retinotopic or conceptual. They may derive from systematic biases, say, eccentricity biases and size-dependent biases in the perceptual input and in functional requirements for action. For example, over the viewing experience, in the lifetime or over evolutionary time, the smaller objects tend to be rounder, while larger objects tend to extend more peripherally on the retina. Cf. the size-distance invariance hypothesis and, in Chap. 29, neurons with spatial firing properties.

- Spatialization

Spatialization (Lefebvre, 1991) refer to the spatial forms that social activities and material things, phenomena or processes take on. It includes cognitive maps, cartography, everyday practice and imagination of possible spatial worlds.
One of the debated definitions of consciousness: it is a notion of self in space and an ability to make decisions based on previous experience and the current situation. Self-awareness permits to evaluate the distance that separates one from his objectives and to adjust his behavior in order to approach those aims.
We usually give the upper face or upper torso as egocenter (spatial seat of self). The term spatialization is also used for information display of nonspatial data.

- Spatial reasoning

Spatial reasoning is the domain of spatial knowledge representation: spatial relations between spatial entities and reasoning based on these entities and relations.
As a modality of human thought, spatial reasoning is a process of forming ideas through the spatial relationships between objects (as in Geometry), while verbal reasoning is the process of forming ideas by assembling symbols into meaningful sequences (as in Language, Algebra, Programming). Spatial intelligence is the ability to comprehend 2D and 3D images and shapes.
Luria, 1973, called the ability to derive the abstract concepts from spatially organized heteromodal information, the quasi-spatial synthesis.
Spatial-temporal reasoning (or spatial ability) is the capacity to visualize spatial patterns, to manipulate them mentally over a time-ordered sequence of spatial transformations and to draw conclusions about them from limited information.
Specifically, spatial visualization ability is the ability to manipulate mentally 2D and 3D figures. Spatial skills is the ability to locate objects in a 3D-world using sight or touch. Spatial acuity is the ability to discriminate two closely-separated points or shapes (say, two similar polygons with different numbers of sides).
Visual thinking (or visual/spatial learning, picture thinking) is the common (about 60% of the general population) phenomenon of thinking through visual processing. Spatial-temporal reasoning is prominent among visual thinkers, as well as among kinesthetic learners (who learn through body mapping and physical patterning) and logical thinkers (mathematical/systems thinking) who think in patterns and relationships and may work without this being pictorially.
In Computer Science, spatial-temporal reasoning aims at describing, using abstract relation algebras, the common-sense background knowledge on which human perspective of physical reality is based. It provides rather inexpensive reasoning about entities located in space and time.

- Spatial language

Spatial language consists of natural-language spatial relations used to indicate where things are, and so to identify or refer to them. It usually expresses imprecise and context-dependent information about space.
Among spatial relations there are topological (such as on, to, in, inside, at), path-related (such as across, through, along, around), distance-related and more complex ones (such as right/left, between, opposite, back of, south of, surround). A distance relation is a spatial relation which specifies how far the object is away from the reference object: near, far, close, etc.
The distance concept of proximity (Pribbenow, 1992) is the area around the RO (reference object) in which it can be used for localization of the LO (local object), so that there is visual access from RO and noninterruption of the spatial region between objects, while LO is less directly related to a different object. Such proximity can differ with physical distance as, for example, in "The Morning Star is to the left of the church". The area around RO, in which a particular relation
is accepted as a valid description of the distance between objects, is called the acceptance area.
Pribbenow, 1991, proposed five distance distinctions: inclusion (acceptance area restricted to projection of RO), contact/adjacency (immediate neighborhood of RO), proximity, geodistance (surroundings of RO) and remoteness (the complement of the proximal region around RO).
For Jackendorff-Landau, 1992, there are three degrees of distance distinctions in English: interior of RO (in, inside), exterior but in contact (on, against), proximate (near), plus corresponding negatives, such as outside, off of, far from. A spatial reference system is mainly egocentric, or relative (such as right, back) for the languages spoken in industrialized societies, while the languages spoken in small scale societies rely rather on an allocentric, or absolute set of coordinates.
Semantics of spatial language is considered in Spatial Cognition, Linguistics, Cognitive Psychology, Anatomy, Robotics, Artificial Intelligence and Computer Vision. Cognitively based common-sense spatial ontology and metric details of spatial language are modeled for eventual interaction between Geographic Information Systems and users. An example of far-reaching applications is Grove's clean space, a neuro-linguistic psychotherapy based on the spatial metaphors produced by (or extracted from) the client on his present and desired "space" (state).

- Language distance from English

Such measures are based either on a typology (comparing formal similarities between languages), or language trees, or performance (mutual intelligibility and learnability of languages). For example, Rutheford, 1983, defined distance from English as the number of differences from English in the following three-way typological classification: subject/verb/object order, topic-prominence/subjectprominence and pragmatic word-order/grammatical word-order. It gives distances 1, 2, 3 for Spanish, Arabic/Mandarin, Japanese/Korean.
Borland, 1983, compared several languages of immigrants by their acquisition of four areas of English syntax: copula, predicate complementation, negation and articles. The resulting ranking was English, Spanish, Russian, Arabic, Vietnamese.
Elder-Davies, 1998, used ranking based on the following three main types of languages: isolating, analytic or root (as Chinese, Vietnamese), inflecting, synthetic or fusional (as Arabic, Latin, Greek), agglutinating (as Turkish, Japanese). It gave ranks 1, 2, 4, 5 for Romance, Slavic, Vietnamese/Khmer, Japanese/Korean, respectively, and 3 for Chinese, Arabic, Indonesian, Malay.
The language distance index (Chiswick-Miller, 1998) is the inverse of the language score of the average speaking proficiency, after 24 weeks of instruction, of English speakers learning this language. This score was measured at regular intervals by increments of 0.25 ; it ranges from 1 (hardest to learn) to 3 (easiest to learn). The score was, for example, $1.00,1.25,1.50,1.75,2.00,2.25,2.50,2.75,3.00$ for Japanese, Cantonese, Mandarin, Hindi, Hebrew, Russian, French, Dutch, Afrikaans.

In addition to the above distances, based on syntax, and linguistic distance, based on pronunciation, see the lexical semantic distances in Chap. 22.
Cf. clarity similarity in Chap. 14, distances between rhythms in Chap. 21, Lasker distance in Chap. 23 and surname distance model in Chap. 28.
Translations of the English noun distance, for example, into French, Italian, German, Swedish, Spanish, Interlingua, Esperanto are: distance, distanza, distanz, distans, distancia, distantia, distanco.
The word distance has Nr. 625 in the list (Wiktionary:Frequency lists/PG/2006/04) of the common English words in the books found on Project Gutenberg. It has Nrs. 835, 1035, 2404 in contemporary poetry, fiction, TV/movie and overall Nrs. 1513 (written), 1546 (spoken). It comes from Latin distantia (distance, farness, difference) and distans, present participle of distare: di (apart) + stare (to stand). The longest English word (noncoined and nontechnical) is antidisestablishmentarianism (28 letters). Examples of funny distance-related words in Urban Dictionary (Web-based dictionary of slang in English) are: distading (start and give up on many goals in quick succession), distarnated (having no friends and being hated by everyone), distanitus (illness one suffer from spotting a person which looks really good from across the room but is a butterface at 5 feet distance), distance (space provided when someone is dissing, i.e., show disrespect for, someone else).

- Editex distance

The main phonetic encoding algorithms are (based on English language pronunciation) Soundex, Phonix and Phonex, converting words into one-letter three-digit codes. The letter is the first one in the word and the three digits are derived using an assignment of numbers to other word letters. Soundex and Phonex assign:
0 to $a, e, h, i, o, u, w, y ; \quad 1$ to $b, p, f, v ; \quad 2$ to $c, g, j, k, q, s, x, z ; \quad 3$ to d, t; 4 to $l ; \quad 5$ to $m, n ; \quad 6$ to r.
Phonix assigns the same numbers, except for 7 (instead of 1) to f and v, and 8 (instead of 2) to s, x, z.
The Editex distance (Zobel-Dart, 1996) between two words x and y is a cost-based editing metric (i.e., the minimal cost of transforming x into y by substitution, deletion and insertion of letters). For substitutions, the costs are 0 if two letters are the same, 1 if they are in the same letter group, and 2 , otherwise. The syllabic alignment distance (Gong-Chan, 2006) between two words x and y is another cost-based editing metric. It is based on Phonix, the identification of syllable starting characters and seven edit operations.

- Phone distances

A phone is a sound segment having distinct acoustic properties, and is the basic sound unit. A phoneme is a minimal distinctive feature/unit in the language (a set of phones which are perceived as equivalent to each other in a given language).
The number of phonemes (consonants) range, among about 6,000 languages spoken now, from 11 (6) in Rotokas to 112 (77) in Taa (languages spoken by about 4,000 people in Papua New Guinea and Botswana, respectively).
The main classes of the phone distances (between two phones x and y) are:

- Spectrogram-based distances which are physical-acoustic distortion measures between the sound spectrograms of x and y;
- Feature-based phone distances which are usually the Manhattan distance $\sum_{i}\left|x_{i}-y_{i}\right|$ between vectors $\left(x_{i}\right)$ and $\left(y_{i}\right)$ representing phones x and y with respect to a given inventory of phonetic features (for example, nasality, stricture, palatalization, rounding, syllabicity).

The Laver consonant distance refers to the improbability of confusing 22 consonants among ≈ 50 phonemes of English, developed by Laver, 1994, from subjective auditory impressions. (Chen-Wang-Jia-Dang, 2013, considered similar perception distance between two types of Chinese initials.) The smallest distance, 15%, is between phonemes $[p]$ and $[k]$, the largest one, 95%, is, for example, between $[p]$ and $[z]$. Laver also proposed a quasi-distance based on the likelihood that one consonant will be misheard as another by an automatic speech-recognition system.
Each vowel can be represented by a pair (F_{1}, F_{2}) of resonant frequencies of the vocal tract (first and second formants). For example, $[u],[a],[i]$ are represented by $(350,800),(850,1150),(350,1700)$ in mels (cf. Chap. 21). The International Phonetic Alphabet identifies 7 levels of height $\left(F_{1}\right)$ and 5 levels of backness $\left(F_{2}\right)$. Chang et al., 2013, produced English language map of the brain; they found the set of neurons in the sensorimotor cortex which controls muscles (in the tongue, lips, jaw, larynx) and fires in unique combination for each sound.

- Phonetic word distance

The phonetic word (or pronunciation, Levenstein phonological) distance between two words x and y seen as strings of phones is the Levenstein metric with costs (cf. Chap. 11): the minimal cost of transforming x into y by substitution, deletion and insertion of phones. Given a phone distance $r(u, v)$ on the International Phonetic Alphabet with the additional phone 0 (silence), the cost of substitution of phone u by v is $r(u, v)$, while $r(u, 0)$ is the cost of insertion or deletion of u.
Levenstein orthographic distance (or $L P D$) is the same measure, but operating on letters instead of phonemes. Words with larger mean LPD to (but smaller mean frequency of) its 20 closest neighbors are easier to recognize.
The average adult has a vocabulary of about $40,000-50,000$ words.

- Linguistic distance

The linguistic distance between two languages is a term loosely used to describe their difference. The mutual intelligibility of the two languages depends on the degree of their lexical, phonetical, morphological, and syntactical similarity.
The lexical similarity is the percentage of common (similar in form and meaning) words in their standardized wordlists. English was evaluated to have a lexical similarity of $60 \%, 27 \%, 24 \%$ with German, French and Russian, respectively. Cf. language distance index, language distance effect, Swadesh similarity.
Specifically, the linguistic (dialectal) distance between language varieties X and Y is the mean, for a fixed sample S of notions, phonetic word distance between
cognate (i.e., having the same meaning) words s_{X} and s_{Y}, representing the same notion $s \in S$ in X and Y, respectively.
One example of a dialect continuum (as ring species in Biology) is DutchGerman: their mutual intelligibility is small but a chain of dialects connects them.

- Swadesh similarity

The Swadesh word list of a language (Swadesh, 1940-1950) is a list of vocabulary with (usually, 100) basic words which are acquired by the native speakers in early childhood and supposed to change very slowly over time. The Swadesh similarity between two languages is the percentage of cognate (having similar meaning and sound) words in their Swadesh lists. Glottochronology is a method of assessing the temporal divergence of two languages based on this similarity.
The first 12 items of the original final Swadesh list: I, you, we, this, that, who?, what?, all, many, one, two. Cf. the first 12 most frequently used English words: the, of, and, a, to, in, is, you, that, it, he, was in all printed material and I, the, and, to, a, of, that, in, it, my, is, you across both spoken and written texts.
Acerbi et al., 2013: the frequency of emotional words declined in Englishlanguage books over twentieth century, but the use of fear-related words increased from 1980. The half-life of a word is the number of years after which it has a 50% probability of having been replaced by a new noncognate word; roughly, it is within 750-20,000 years, say, 9,000, 3,200, 1,900. stab, bird, we. Pagel et al., 2013, suggest existence of a proto-Eurasian mother tongue. For example, they list 15,000 years old words cognate in at least 4 Eurasiatic language families: thou, I, not, that, we, to give, who, this, what, man/male, ye, old, mother, to hear, hand, fire, to pull, black, to flow, bark, ashes, to spit, worm.

- Language distance effect

In Foreign Language Learning, Corder, 1981, conjectured the existence of the following language distance effect: where the mother tongue (L1) is structurally similar to the target language, the learner will pass more rapidly along the developmental continuum (or some parts of it) than where it differs; moreover, all previous learned languages have a facilitating effect.
Ringbom, 1987, added: the influence of the L1 is stronger at early stages of learning, at lower levels of proficiency and in more communicative tasks. But such correlation could be indirect. For example, the written form of modern Chinese does not vary among the regions of China, but the spoken languages differ sharply, while spoken German and Yiddish are close but have different alphabets.

- Long-distance dependence (in Language)

In Language, long-distance dependence (or syntactic binding) is a construction, including wh-questions (such as "Who do you think he likes"), topicalizations (such as "Mary, he likes"), easy-adjectives (such as "Mary is easy to talk to"), relative clauses (such as "I saw the woman who I think he likes")—which permits an element in one position (filler) to fulfill the grammatical role associated with another nonadjacent position (gap). The filler-gap distance, in terms of
the number of intervening clauses or words between them in a sentence, can be arbitrary large. Cf. long range dependence in Chap. 18.
An anaphora is a subsequent reference to an entity already introduced in discourse. In order to be interpreted, anaphora must get its content from an antecedent in the sentence which in English is usually syntactically local as in "Mary excused herself". A long-distance anaphora is an anaphora with antecedent outside of its local domain, as in "The players told us stories about each other". Its resolution (finding what it refers to) is a hard problem of machine translation.
The anaphoric distance is (Ariel, 1990) the number of words between an anaphora and its antecedent. The referential distance (or textual distance) is (Givón, 1983) the amount of clauses between them. In general, each text can be represented as a tree in which discourse units (normally, clauses) are vertices and rhetorical relations (sequence, joint, cause, elaboration, etc.) are edges.
The rhetorical distance between two discourse units is (Fox, 1987) the minimal number of "sequence"-edges on a path between them.

28.4 Distances in Philosophy, Religion and Art

- Zeno's distance dichotomy paradox

This paradox by the pre-Socratic Greek philosopher Zeno of Elea claims that it is impossible to cover any distance, because half the distance must be traversed first, then half the remaining distance, then again half of what remains, and so on.
The paradoxical conclusion is that travel over any finite distance can neither be completed nor begun, and so all motion must be an illusion.
But, in fact, dividing a finite distance into an infinite series of small distances and then adding the all together gives back the finite distance one started with.

- Space (in Philosophy)

The present Newton-Einstein notion of space was preceded by Democritus's (c. 460-370 BC) Void (the infinite container of objects), Plato's (c. 424-348 BC) Khora (an interval between being and nonbeing in which Forms materialize) and Aristotle's (380-322 BC) Cosmos (a finite system of relations between objects). Cf. Minkowski metric (Chap. 26) for the origin of the space-time concept.
Like the Hindu doctrines of Vedanta, Spinoza (1632-77) saw our Universe as a mode under two (among an infinity of) attributes, Thought and Extension, of God (unique absolutely infinite, eternal, self-caused substance, without personality and consciousness). These parallel (but without causal interaction) attributes define how substance can be understood: to be composed of thoughts and physically extended in space, i.e., to have breadth and depth. So, the Universe is deterministic.
For Newton (1642-1727) space was absolute: it existed permanently and independently of whether there is any matter in it. It is a framework of creation,
stage setting within which physical phenomena occur. For Leibniz's (16461716) space was a collection of relations between objects, given by their distance and direction from one another, i.e., an idealized abstraction from the relations between individual entities or their possible locations which must therefore be discrete.
For Kant (1724-1804) space is not substance or relation, but a part of an unavoidable systematic framework used by the humans to organize their experiences. Disagreement continues between philosophers over whether space is an entity, a relationship between entities, or part of a conceptual framework.
In biocentic cosmology (Lanza, 2007), build on quantum physics, space is a form of our animal understanding and does not have an observer-independent reality, while time is the process by which we perceive changes in the Universe. Also, space-time could be not fundamental, but emerging from a deeper quantum reality.
Free space refers to a perfect vacuum, devoid of all particles; it is excluded by the uncertainty principle. The quantum vacuum is devoid of atoms but contains subatomic short-lived particles-photons, gravitons, etc.
A parameter space is the set of values of parameters in a mathematical model.
In Mathematics and Physics, the phase space (Gibbs, 1901) is a space in which all possible states of the system are represented as unique points; cf. Chap. 18.

- Kristeva nonmetric space

Kristeva, 1980, considered the basic psychoanalytic distinction (by Freud) between pre-Oedipal and Oedipal aspects of personality development. Narcissistic identification and maternal dependency, anarchic component drives, polymorphic erotogenicism, and primary processes characterize the pre-Oedipal. Paternal competition and identification, specific drives, phallic erotogenicism, and secondary processes characterize Oedipal aspects.
Kristeva describes the pre-Oedipal feminine phase by an enveloping, amorphous, "nonmetric" space (Plato's khora) that both nourishes and threatens; it also defines and limits self-identity. She characterizes the Oedipal male phase by a metric space (Aristotle's topos); the self and the self-to-space are more precise and well defined in topos. Kristeva insists also on the fact that the semiotic process is rooted in feminine libidinal, pre-Oedipal energy which needs channeling for social cohesion.
Deleuze-Guattari, 1980, divide multiplicities (networks, manifolds, spaces) into striated (metric, hierarchical, centered, numerical) and smooth ("nonmetric, rhizomic, those that occupy space without counting it and can be explored only by legwork").
The above French post-structuralists use the metaphor of nonmetric in line with a systematic (but generating controversy) use of topological terms by the psychoanalyst Lacan. In particular, he sought the space J (of Jouissance, i.e., sexual relations) as a metric space and used metaphorically the Heine-Borel theorem (that closed and bounded subspaces of Euclidean spaces are their only compact subspaces).

Back to Mathematics, when a notion, theorem or algorithm is extended from metric to general distance space, the latter is called nonmetric space.

- Emerson distance between persons

We call the Emerson distance between persons the separation between "gods", which was required by an American poet and philosopher Ralph Waldo Emerson (1803-82) in his Essay 16 Manners: "Let the incommunicable objects of nature and the metaphysical isolation of man teach us independence...We should meet each morning, as from foreign countries, and spending the day together, should depart at night, as into foreign countries. In all things I would have the island of a man inviolate. Let us sit apart as the gods, talking from peak to peak all round Olympus. .. Lovers should guard their strangeness...Every natural function can be dignified by deliberation and privacy." At the end of his 1836 book Nature, Emerson also wrote: "Every spirit builds itself a house; and beyond its house, a world; and beyond its world a heaven... Build, therefore, your own world."
Similar dignified separation is mentioned in quotes from the Russian philosopher Mikhail Bakhtin (1895-1975): "The feeling of respect creates a distance, both in relation to the other person, and in relation to one's own self" and the BohemianAustrian poet Rainer Maria Rilke (1875-1926) wrote: "Once the realization is accepted that even between the closest human beings infinite distances continue, a wonderful living side by side can grow, if they succeed in loving the distance between them which makes it possible for each to see the other whole against the sky."

- Nietzsche's Ariadne distance

The German philosopher Friedrich Wilhelm Nietzsche (1844-1900), treated distance in a sensual/erotic way. In "On the Genealogy of Morals" (1887) he wrote:
"The pathos of nobility and distance...the fundamental total feeling on the part of a higher ruling nature in relation to a lower nature, to a 'beneath'-that is the origin of the opposition between 'good' and 'bad."'
His Zarathustra favors fernstenliebe (love of the farthest) over Christian love of the neighbor. Moreover, fernstenliebe is to love neither objects, nor ends-but rather, distance/endlessness itself, which makes all distances recur and perpetuate themselves.
The courtly troubadours of the twelfth century valued eroticization of the unattainable object, while for German romanticism (for example, Novalis, Schopenhauer, Wagner) there can be no satisfaction in erotic relations, or in life itself, as long as distance remains. In Wagner's opera, Tristan laments: "Blessed nearness, tedious distance."
Kuzma, 2013, claims that Nietzsche, by the early 1880s, "rehabilitated erotic distance", in response to its denigration and the consummatory idealism and passive nihilism of the German romantic tradition. This rehabilitation of courtly love culminated in the concept of an absolute separation and eternal recurrence. According to Kuzma, Ariadne in 'Thus Spoke Zarathustra (1883-1885) is not only the symbol of the human soul and life, but Nietzsche's privileged name for absolute, infinite spatially and eternal distance itself, for an eternity conceived in
the absence of every end, any possible object to attain and every Other to love. To desire Ariadne, is to desire the incessant prolongation of longing in the absence of all fulfilment. Zarathustra does not seek rest, consummation, and release, but affirms a sort of metaphysical coitus reservatus, the eternal prolongation of boundless and unresolved desire, implying "voluptuousness of the future" and "love of fate".
The eternal recurrence requires spatial or temporal infinity. Nietzsche, in his posthumous notes, posits finite matter and infinite cyclical time.

- Heidegger's de-severance distance

The German philosopher Martin Heidegger (1889-1976), sought space in terms of limit and event of placing, not merely a location. He wrote: "space is something that has been spaced, or made room for, and that which is let into its bounds".
His main notion, Dasein (Being there), means Being-in-the-world, as opposed to the Cartesian abstract agent, a subject, or the objective world alone. Dasein is revealed by projection into, and engagement with, a personal world, one's environment. It is ontically (in factual existence) closest to itself yet ontologically farthest.
For Heidegger, Dasein dwells spatially in the world, but in the equipmental space (functional places, defined by Dasein-centered totalities of involvements) rather than in physical, Cartesian space, and this spatiality is characterized by de-severance, where "de-severing amounts to making the farness vanish-that is, making the remoteness of something disappear, bringing it close". Not only reducing physical distance, de-severance is the reach of Dasein's skilled practical activity.
An entity is nearby if it is readily available for some such activity, and far away if it is not. Nearness comes into being when the thing is examined. We reach it through things; it is nearness that makes the thingness of the thing appear. Cf . Heidegger's Topology (MIT Press, 2007) by Malpas. The following quotes (of 1924, 1954, 1966, 1971) illustrate Heidegger's de-severance distance:
"Man, as existing transcendence abounding in and surpassing toward possibilities, is a creature of distance. Only through the primordial distances he establishes toward all being in his transcendence does a true nearness to things flourish in him."
"Longing is the agony of the nearness of the distant."
"Then thinking would be coming-into-the-nearness-of distance."
"What is this uniformity in which everything is neither far nor near - is, as it were, without distance? Everything gets lumped together into uniform distancelessness."
Cf. the technology-related distancing and death of distance in Sect. 28.2.
French philosopher/writer Maurice Blanchot (1907-2003) considered Nietzsche, Heidegger and Lévinas via their metaphorics of distance. For example, he wrote: "A distance is synonymous with extreme non-coincidence."
"Far and near are dimensions of what escapes presence as well as absence under attraction of [impersonal] 'it'. It draws away, draws close, the same ghostly affirmation, the same premises of non-presence."
"To the proximity of the most distant, to the pressure of what is lightest, . . . to the contact of that which is never arrives, it is by friendship that I can respond, ... the response of passivity to the non-presence of unknown [stranger]".

- Lévinas distance to Other

We call the Lévinas distance to Other a primary distance between the individuals in their face-to-face encounter, which the French philosopher and Talmudic scholar Emmanuel Lévinas (1906-95) discusses in his book Totality and Infinity, 1961.

Lévinas considers the precognitive relation with the Other: the Other, appearing as the Face, gives itself priority, its first demand even before I react to, love or kill it, is: "thou shalt not kill me". This Face is not an object but pure expression affecting me before I start meditating on it and passively resisting the desire that is my freedom. In this asymmetrical relationship-being silently summoned by the exposed Face of the Other ("widow, orphan, or stranger") and responding by responsibility for the Other without knowing that he will reciprocate-Lévinas (in line of Misnagdim Judaism ethics) finds the meaning of being human and concerned about justice. For him, this ethical duty is prior to pursuit of knowledge and ontology of nature.
According to him, before covering the distance separating the existent (the lone subject) from the Other, one must first go from anonymous existence to the existent, from "there is" (swarming of points) to the Being (lucidity of consciousness localized here-below). Lévinas's ethics spans the distance between the foundational chaos of "there is" and the objective or intersubjective world. Ethics marks the primary situation of the face-to-face whereas morality comes later as a set of rules emerging in the social situation if there are more than two people face-to-face. And, for Lévinas, the scriptural/traditional God is the Infinite Other.

- Distant suffering

Normally, physical distance is inversely related to charitable inclinations. But the traditional morality of "universal" proximity (geographic, age, character, habits, or familial) and pity looks inadequate in our contemporary life. In fact, most important actions happen on distance and the mediation (capacity of the media to involve us emotionally and culturally) address our concern for the "other".
The nonuniversal quality of humanity should be constructed. So, mass media, NGO's, aid agencies, live blogs, and celebrity advocacy use imagery in order to encourage audiences to acknowledge, care and act for far away vulnerable others. But, for Chouliaraki, 2006, the current mediation replaced earlier claims to our "common humanity" by artful stories that promise to make us better people. As suffering becomes a spectacle of sublime artistic expression, the inactive spectator can merely gaze in disbelief. Arising voyeuristic altruism is motivated by self-empowerment: to realize our own humanity while keeping the humanity of the sufferer outside the remit of our judgement and imagination,
i.e., keeping moral distance. Chouliaraki calls it narcissistic self-distance or improper distance.
Silverstone's (2002) proper distance in mediation refers to the degree of proximity required in our mediated interrelationships if we are to create a sense of the other sufficient not just for reciprocity but for a duty of care, obligation and understanding. It should be neither too close to the particularities or the emotionalities of specific instances of suffering, nor too far to get a sense of common humanity as well as intrinsic difference. Cf. Lévinas distance and antinomy of distance.
Silverstone and Chouliaraki call us to represent sufferers as active, autonomous and empowered individuals. They advocate agonistic solidarity, treating the vulnerable other as other with her/his own humanity. It requires "an intellectual and aesthetic openness towards divergent cultural experiences, a search for contrasts rather than uniformity" (Hannerz, 1990). For Arendt, 1978, the imagination enables us to create the distance which is necessary for an impartial judgment, But for Dayan, 2007, a climactic Lévinasian encounter with Other is not dualistic: there are many others awaiting my response at any given moment. So, proper distance should define the point from which I am capable of equitably hearing their respective claims, and it involves the reintroduction of actual distance.

- Moral distance

The moral distance is a measure of moral indifference or empathy toward a person, group of people, or events. Abelson, 2005, refers to moral distance as the emotional closeness between agent and beneficiary.
But Aguiar, Brañas-Garza and Miller, 2008, define it as the degree of moral obligation that the agent has towards the recipient. So, for them the social distance is only a case of moral distance in which anonymity plays a crucial, negative role.
The ethical distance is a distance between an act and its ethical consequences, or between the moral agent and the state of affairs which has occurred.
The (moral) distancing is a separation in time or space that reduces the empathy that a person may have for the suffering of others, i.e., that increases moral distance. In particular, distantiation is a tendency to distance oneself (physically or socially, by segregation or congregation) from those that one does not esteem. Cf. distanciation. On the other hand, the good distancing (Sartre, 1943, and Ricoeur, 1995) means the process of deciding how long a given ethical link should be.

- Simone Weil distance

We call Simone Weil distance a kind of moral God-cross radius of the Universe which the French philosopher, Christian mystic, social activist and self-hatred Jewess, Simone Weil (1909-1943) introduced in "The Distance", one of the philosophico-theological essays comprising her Waiting for God (Putnam, New York, 1951).
She connects God's love to the distance; so, his absence can be interpreted as a presence: "every separation is a link" (Plato's metaxu). She wrote: "God did not create anything except love itself, and the means to love... Because no other
could do it, he himself went the greatest possible distance, the infinite distance. This distance between God and God, this supreme tearing apart, this agony beyond all others, this marvel of love, is the crucifixion."
In her peculiar Christian theodicy, "evil is the form which God's mercy takes in this world", and the crucifixion of Christ (the greatest love/distance) was necessary "in order that we should realize the distance between ourselves and God ... for we do not realize distance except in the downward direction". Weil's God-cross (or creator-creature) distance recalls the old question: can we equate distance from God with proximity to Evil? Her main drive, purity, consisted of maximizing moral distance to Evil, embodied for her by "the social, Rome and Israel".
Cf. Irenaeus (second century) God-humans epistemic distance, which must be far enough that belief in God remains a free choice. In Irenaean teodicy, God created both, evil/suffering and free will, allowing us moral choices and development.
Cf. Pascal's (1669) God-man-nothing distances in Pensées, note 72: " . . . what is man in Nature? A nothing in relation to infinity, all in relation to nothing, a central point between nothing and all and infinitely far from understanding either".
Cf. Montaigne's (1580) nothing-smallest and smallest-largest distances in Essais, III:11 On the lame: "Yet the distance is greater from nothing to the minutest thing in the world than it is from the minutest thing to the biggest."
Cf. Tipler's (2007) Big Bang-Omega Point time/distance with Initial and Final singularities seen as God-Father and God-Son. Tipler's Omega point (technological singularity) is a variation of prior use of the term (Teilhard de Chardin, 1950) as the supreme point of complexity and consciousness: the Logos, or Christ.
Calvin's (1537) Eucharistic theology (doctrine on the meaning of bread and vine that Christ offered to his disciples during the last supper before his arrest) also relies on spatial distance as a metaphor that best conveys the separation of the world from Christ and of the earthly, human from the heavenly, divine.
Weil's approach reminds that of the Lurian (about 1570) kabbalistic notions: tzimtzum (God's concealment, withdrawal of a part, creation by self-delimitation) and shattering of the vessels (evil as impure vitality of husks, produced whenever the force of separation loses its distancing function and giving man the opportunity to choose between good and evil). The purpose is to bridge the distance between Infiniteness of God (or Good) and the diversity of existence, without falling into the facility of dualism (as manicheanism and gnosticism). It is done by postulating intermediate levels of being (and purity) during emanation (unfolding) within the divine and allowing humans to participate in the redemption of the Creation.
So, a possible individual response to the Creator is purification and ascent, i.e., the spiritual movement through the levels of emanation in which the coverings of impurity, that create distance from God, are removed progressively.

Besides, the song "From a Distance", written by Julie Gold in 1985 , is about how God is watching us and how, despite the distance (physical and emotional) distorting perceptions, there is still a little peace and love in this world.

- Golgotha distance

The exact locations of the Praetorium, where Pilate judged Jesus, and Golgotha, where he was crucified, as well as of the path that Jesus walked, are not known. At present, the Via Dolorosa (600 m from the Antonia Fortress west to the Church of the Holy Sepulchre) in the Old City of Jerusalem, held to be this path.
The first century Jerusalem was about 500 m east to west and $1,200 \mathrm{~m}$ north to south. Herod's palace (including Praetorium) was about 600 m from Golgotha and 400 m from the Temple. The Golgotha distance (total distance from Gethsemane, where Jesus was arrested, to the Crucifixion) was about $1,500 \mathrm{~m}$.
Another New Testament's distance is mentioned in Apocalypse: "And the angel thrust in his sickle into the earth, and gathered the vine of the earth, and cast it into the great winepress of the wrath of God. And the winepress was trodden without the city [Jerusalem], and blood came out of the winepress, even unto the horse bridles, by the space of 1,600 furlongs [200 miles]" (Revelation 14:19-20). It can hint to the whole length of the land of Israel, computable as 1,600 studia.

- Distance to Heaven

Below are given examples of distances and lengths which old traditions related (sometimes as a metaphor) to such notions as God and Heaven.
In the Hebrew text Shi'ur Qomah (The Measure of the Body), the height of the Holy Blessed One is 236×10^{7} parasangs, i.e., 14×10^{10} (divine) spans. In the Biblical verse "Who has measured the waters in the hollow of his hand and marked off the heaven with a span" (Isaiah 40:12), the size of the Universe is one such span.
The age/radius of the Universe is 13.82 billion ly. Sefer HaTemunah (by Nehunia ben Hakane, first century) and Otzar HaChaim (by Yitzchok deMin Acco, thirteenth century) deduced that the world was created in thought 42,000 divine years, i.e., $42,000 \times 365,250 \approx 15.3$ billion human years, ago. It counts, using the 42-letter name of the God at the start of Genesis, that now we are in the 6th of the 7 cosmic sh'mitah cycles, each one being 7,000 divine years long. Tohu $v a$-bohu (formless and empty) followed and 6,000 years ago the creation of the world in deed is posited.
In the Talmud (Pesahim, 94), the Holy Spirit points out to "impious Nebuchadnezzar" (planning "to ascend above the heights of the clouds like the Most High"): "The distance from earth to heaven is 500 year's journey alone, the thickness of the heaven again 500 years...". This heaven is the firmament plate, and the journey is by walking. Seven other heavens, each 500 years thick, follow and the feet of the holy Creatures are equal to the whole...Their ankles, wings, necks, heads and horns are each consecutively equal to the whole." Finally, "upon them is the Throne of Glory which is equal to the whole". The resulting journey of $4,096,000$ years amounts, at the rate of 80 miles $(\approx 129 \mathrm{~km})$ per day, to $\approx 2,600 \mathrm{AU}$, i.e., $\approx \frac{1}{100}$ of the actual distance to Proxima Centauri, the nearest other star. Also, in Talmud, the width of Jacob's Ladder (bridge to Heaven that

Jacob dreams about, described in the Book of Genesis) is computed as 8,000 parasangs.
On the other hand, Baraita de Massechet Gehinom affirms in Section VII. 2 that Hell consists of 7 cubic regions of side 300 year's journey each; so, 6,300 years altogether. According to the Christian Bible (Chap. 21 of the Book of Revelation), New Heavenly Jerusalem (a city that is or will be the dwelling place of the Saints) is a cube of side 12,000 furlongs ($\approx 2,225 \mathrm{~km}$), or a similar pyramid or spheroid.
Islamic tradition (Dawood, Book 40, Nr. 470) also attributes a journey of 71-500 years (by horse, camel or foot) between each samaa'a (the ceiling containing one of the seven luminaries: Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn). Besides 7 heavens (as in Judaism and Hinduism), Shia Islam and Sufism have 7 depths of esoteric meanings of Quran, with only God knowing the 4th meaning. The Vedic text (Pancavimsab Brahmana, c. 2000 BC) states that the distance to Heaven is 1,000 Earth diameters and the Sun (the middle one among seven luminaries) is halfway at 500 diameters. A similar ratio 500-600 was expected till the first scientific measurement of 1 AU (mean Earth-Sun distance) by Cassini and Richter, 1672 . The actual ratio is $\approx 11,728$.
The sacred Hindu number $108\left(=6^{2}+6^{2}+6^{2}=\prod_{1 \leq i \leq 3} i^{i}\right)$, connected to the Golden Ratio as the interior angle 108° of a regular pentagon, is traced to the following Vedic values: 108 Sun's diameters for the Earth-Sun distance and 108 Moon's diameters for the Earth-Moon distance. The actual values are (slightly increasing) ≈ 107.6 and ≈ 110.6; they could be computed during an eclipse, since the angular size of the Moon and Sun, viewed from the Earth, is almost identical. Also, the ratio between the Sun and Earth diameters is ≈ 108.6, but it is unlikely that Vedic sages knew this. In Ayurveda, the devotee's distance to his "inner sun" (God within) consists of 108 steps; it corresponds to 108 beads of mala (rosary): by saying beads, the devotee does a symbolic journey from his body to Heaven.

- Swedenborg heaven distances

The Swedish scientist and visionary Emanuel Swedenborg (1688-1772), in Section 22 (Nos. 191-199, Space in Heaven) of his main work Heaven and Hell (1952, first edition in Latin, London, 1758), posits: "distances and so, space, depend completely on interior state of angels". A move in heaven is just a change of such a state, the length of a way corresponds to the will of a walker, approaching reflects similarity of states. In the spiritual realm and afterlife, for him, "instead of distances and space, there exist only states and their changes".

- Safir distance

According to Islamic law, a traveler may shorten the prayers, combine them, and be permitted to break the fast of Ramadan if the travel (safir) exceeds some minimum distance. Hanafi, the largest Sunni school of jurisprudence, define such safir distance as 3 days of continuous journey (in the great part of the day and at a moderate speed) or 15 farsakh (ancient unit of length, called also parasang).
Three other main schools define it as 2 days of such journey or as 16 farsakh, computed differently. This distance is usually approximated as 80 or 83 km and applied for travel by camel, car, plane or ship. Another strong opinion, by Ibn

Taymiyya, claims that safir is not merely a distance but also a state of mind, an exposure to the wilderness; so, any distance customarily considered traveling is safir.

- Sabbath distance

The Sabbath distance (or rabbinical mile) is a range distance: 2,000 Talmudic cubits ($960-1,1152 \mathrm{~m}$, cf. cubit in Chap. 27) which an observant Jew should not exceed in a public thoroughfare from any given private place on the Sabbath day. It is about the distance covered by an average man in 18 min .
Other Israelite/Talmudic length units are: a day's march, parsa, stadium (40, 4, $\frac{2}{15}$ of the rabbinical mile, respectively), and span, hasit, palm, thumb, middle finger, little finger $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{1}{24}, \frac{1}{30}, \frac{1}{36}\right.$ of the Talmudic cubit, respectively).

- Bible code distance

Witztum, Rips and Rosenberg, 1994, claimed to have discovered a meaningful subtext of the Book of Genesis, formed by uniformly spaced letters. The text was seen as written on a cylinder on which it spirals down in one long line. Many reactions followed, including criticism by McKay, Bar-Natan, Bar-Hillel and Kalai, 1999, in the same journal Statistical Science.
The following Bible code distance d_{t} between two letters, that are t positions apart in the text, was used. Let h be the circumference of the cylinder, and let q and r be the quotient and reminder, respectively, when t is divided by h, i.e., $t=q h+r$ with $0 \leq r \leq h-1$. Then $d_{t}=\sqrt{q^{2}+r^{2}}$ if $2 q \leq h$, and $d_{t}=\sqrt{(q+1)^{2}+(r-h)^{2}}$, otherwise. It is, approximatively, the shortest distance between those letters along the cylinder surface; cf. cylindrical distance (Chap. 20).

- Distance numbers

On Maya monuments usually only one anchor event is dated absolutely, in the linear Mesoamerican Long Count calendar by the number of days passed since the mythical creation on August 11, 3114 BC of the fourth world, which completed a Great Period of 13 b'ak'tuns ($\approx 5,125$ years) on December 21, 2012. The other events were dated by adding to or subtracting from the anchor date some distance numbers, i.e., periods from the cyclical 52-year Calendar Round.

- Antinomy of distance

The antinomy of distance, as introduced in [Bull12] for aesthetic experiences by the beholder and artist, is that both should find the right amount of emotional distance (neither too involved, nor too detached), in order to create or appreciate art. The fine line between objectivity and subjectivity can be crossed easily, and the amount of distance can fluctuate in time.
The aesthetic distance is a degree of emotional involvement of the individual, who undergoes experiences and objective reality of the art, in a work of art. It refers to the gap between the individual's conscious reality and the fictional reality presented in a work of art. It means also the frame of reference that an artist creates, by the use of technical devices in and around the work of art, to differentiate it psychologically from reality; cf. distanciation.

Some examples are: the perspective of a member of the audience in relation to the performance, the psychological/emotional distance between the text and the reader, the actor-character distance in the Stanislavsky system of acting.
Antinomy between inspiration and technique (embracement and estrangement) in performance theory is called the Ion hook since Ion of Ephesus (a reciter of rhapsodic poetry, in a Platon's dialog) employed a double-consciousness, being ecstatic and rational. The acting models of Stanislavsky and Brecht are, respectively, incarnating the role truthfully and standing artfully distanced from it. Cf. role distance.
[Morg76] defines pastoral ecstasy as the experience of role-distancing, or the authentic self's supra-role suspension, i.e., the capacity of an individual to stand outside or above himself for purposes of critical reflexion. Morgan concludes: "The authentic self is an ontological possibility, the social self is an operational inevitability, and awareness of both selves and the creative coordination of both is the gift of ecstasy". Cf. Lévinas distance to Other.
The historical distance, in terms of [Tail04], is the position the historian adopts vis-à-vis his objects-whether far-removed, up-close, or somewhere in between; it is the fantasy through which the living mind of the historian, encountering the inert and unrecoverable, positions itself to make the material look alive. The antinomy of distance appears because historians engage the past not just intellectually but morally/emotionally. The formal properties of historical accounts are influenced by the affective, ideological and cognitive commitments of their authors.
A variation of the antinomy of distance appears in critical thinking: the need to put some emotional and epistemic (intellectual) distance between oneself and ideas, in order to better evaluate their validity and avoid illusion of explanatory depth (to fail see the trees for the forest). A related problem is how much distance people must put between themselves and their pasts in order to remain psychologically viable; Freud showed that often there is no such distance with childhoods.

- Role distance

In Sociology, Goffman, 1961, using a dramaturgical metaphor, defined role distance (or role distancing) as actions which effectively convey some disdainful detachment of the (real life) performer from a role he is performing. An example of social role distancing is when a teacher explains to students that his disciplinary actions are due only to his role as a teacher.
Goffman observed that children are able to merge doing and being, i.e., embracement of the performer's role, only from 3 to 4 years. Starting from about 5, their role distance (distinguishing being from doing) appears and expands, especially, at age 8,11 and adult years.
Besides role embracement and role distance, one can play a role cynically in order to manage the outcomes of the situation (impression management). The most likely cause of role distancing is role conflict, i.e., the pressure exerted from another role to act inconsistently from the expectations of the first role.

A frame is a type of role (participant, observer, authority, critic, artist, etc.) given to a person in relation to a given event. The frame distance, introduced by Heathcote, 1980, in teaching drama, refer to a specific (implied by the frame) responsibility, interest, attitude and behavior of a person/student in this event/drama.

- Distanciation

In scenic art and literature, distanciation (Althusser, 1968, on Brecht's alienation effect) consists of methods to disturb purposely (in order to challenge basic codes and conventions of spectator/reader) the narrative contract with him, i.e., implicit clauses defining logic behavior in a story. The purpose is to differentiate art psychologically from reality, i.e., to create some aesthetic distance.
For Bakhtin, the mandate to "be outside" that which you create is a matter of subject-subject (as opposed to subject-object) relations. For Shklovsky the distancing of an object sharpens our perception and stimulates senses, thereby arousing us to artistic (as opposed to dull everyday) experience.
One of the distanciation devices is breaking of the fourth wall, when the actor/author addresses the spectators/readers directly through an imaginary screen separating them. The fourth wall is the conventional boundary between the fiction and the audience. It is a part of the suspension of disbelief between them: the audience tacitly agrees to provisionally suspend their judgment in exchange for the promise of entertainment. Cf. distancing and distantiation.

- Narrative distance

The author creates a persona of narrator, who tell the story, usually, from the point of view of first- or third-person. Narrative distance is (Genette, 1980) the distance between the narrator and the story's characters, setting, events and objects.
The closest possible distance-the narrator reports on the thoughts and feeling (even unconscious ones) of the characters, while the farthest distance-reporting only actions and situations. The author can vary this distance; say, the thirdperson omniscient narrator can zoom in and out of character's perspectives.

- Ironic distance

Rhetorical writer or speaker does not allow audience to maintain an objective or fixed distance from the story. He intrude to distance himself from characters in a story or from his own remarks. Ironic distance refers to the narrative irony: distance of knowledge between author/narrator/character/reader.
As a literary device, irony implies a distance between what is said and what is meant. Irony is also the art of juxtaposing incongruous parts; so, an ironic distance also mean the closeness between two things that never meet.

- Epistemic distance

Epistemic (or intellectual) distance from something refers to the degree of difficulty involved in knowing it. For example, conditional rhetorical constructions are used in discourse, in order to indicate this distance. Mejias (2005) epistemological distance between things is the difference in degree of knowledge justification.

- Representation of distance in Painting

In Western Visual Arts, the distance is the part of a picture representing objects which are the farthest away, such as a landscape; it is the illusion of 3D depth on a flat picture plane. The middle distance is the central part of a scene between the foreground and the background (implied horizon).
Perspective projection draws distant objects as smaller to provide additional realism by matching the decrease of their visual angle; cf. Chap, 6. A vanishing point (or point of distance) is a point at which parallel lines receding from an observer seem to converge. (For a meteor shower, the radiant is the point in the sky, from which meteors appear to originate.) Linear perspective is a drawing with $1-3$ vanishing points; usually, they are placed on the horizon and equipartition it.
In a curvilinear perspective, there are ≥ 4 vanishing points; usually, they are mapped into and equipartition a distance circle. 0-point perspective occurs if the vanishing points are placed outside the painting, or if the scene (say, a mountain range) does not contain any parallel lines. Such perspective can still create a sense of depth (3D distance) as in a photograph of a mountain range.
In a parallel projection, all sets of parallel lines in 3D object are mapped to parallel lines in 2D drawing. This corresponds to a perspective projection with an infinite focal length (the distance from the image plane to the projection point). Axonometric projection is parallel projection which is orthographic (i.e., the projection rays are perpendicular to the projection plane) and such that the object is rotated along one or more of its axes relative to this plane. The main case of it, used in Engineering Drawing, is isometric projection in which the angles between three projection axes are the same, or $\frac{2 \pi}{3}$.
In Chinese Painting, the high-distance, deep-distance or level-distance views correspond to picture planes dominated, respectively, by vertical, horizontal elements or their combination. Instead of the perspective projection of a "subject", assuming a fixed position by a viewer, Chinese classic hand scrolls (up to 10 m in length) used axonometric projection. It permitted them to move along a continuous/seamless visual scenario and to view elements from different angles. It was less faithful to appearance and allowed them to present only three (instead of five) of six surfaces of a normal interior. But in Chinese Painting, the focus is rather on symbolic and expressionist representation.

- Scale in art

In drawing, the scale refers to the proportion or ratio that defines the size relationships. It is used to create the illusion of correct size relationships between objects and figures. The relative scale is a method used to create and determine the spatial position of a figure or object in the 3D picture plane: objects that are more distant to the viewer are drawn smaller in size. In this way, the relative size of an object/figure creates the illusion of space on a flat 2D picture.
In an architectural composition, the scale is the two-term relationship of the parts to the whole which is harmonized with a third term-the observer. For example, besides the proportions of a door and their relation to those of a wall, an observer measures them against his own dimensions.

The scale of an outdoor sculpture, when it is one element in a larger complex such as the facade of a building, must be considered in relation to the scale of its surroundings. In flower arrangement (floral decoration), the scale indicates relationships: the sizes of plant materials must be suitably related to the size of the container and to each other.
The hierarchical scale in art is the manipulation of size and space in a picture to emphasize the importance of a specific object. Manipulating the scales was the theme of Measure for Measure, an art/science exhibition at the Los Angeles Art Association in 2010. Examples of the interplay of the small and the large in literature are Swift's Gulliver's Travels and Carrol's Through the Looking Glass. In the cinema, the spectator can easily be deceived about the size of objects, since scale constantly changes from shot to shot.
In Advertising and Packaging, the size changes the meaning or value of an object. The idea that "bigger is better" is validated by the sales of sport utility vehicles, super-sized soft drinks and bulk food at Wal-Mart.
In reverse, the principle "small is beautiful" is often used to champion small, appropriate objects and technologies that are believed to empower people more. For example, small-sized models sell the benefits of diet programs and fitness regimes designed to scale back people's proportions. Examples of Japanese miniaturization culture are bonsai and many small/thin portable devices.

- Distances in Interior Design

In Interior Design, the scale refer to how an item relates to the size of the room or the owner, and the proportion refer to the shape of an item and how it relates to other objects in the room. The vertical, horizontal, diagonal and curved lines give a room a feeling of formalness, casualness, transition and sensuality, respectively. Other required space relationships are balance (equal weight between objects on either side of a room) and rhythm (repetition of patterns, color, or line).
Workplane is the height at which an activity takes place; it is about 90, 75-90 and 75 cm for a kitchen, bath and a dining room or desk. In a kitchen, the perimeter of the work triangle formed by sink, cooking surface and refrigerator ideally should be $3.5-7.5 \mathrm{~m}$. In a living room, the triangle of focal points to emphasize is formed usually at the door or fireplace, TV, big window, sofa. Other examples of recommended distances are: $35-45 \mathrm{~cm}$ between the sofa (or chairs) and coffee table, 60 cm between dining chairs and at least 90 cm for traffic lanes.
Used in lighting calculations, the room cavity ratio (or RCR) is $\frac{5 h P}{2 A}$, where h, P, A are the ceiling height, perimeter and area of the room. So, $R C R=\frac{5 h(l+w)}{l w}$ for a rectangular room of length l and width w.

- Spatialism

Spatialism (or Spazialismo) is an art movement founded by Lucio Fontana in Milan in 1947, intended to synthesize space, color, sound, movement and time into a new "art for the Space Age". Instead of the illusory virtual space of traditional easel (i.e., of a size and on a material suitable for framing) painting, he proposed to unite art and science to project color and form into real space by the use of up-to-date techniques, say, TV and neon lighting. His Spatial

Concept series consisted of holes or slashes, by a razor blade, on the surface of monochrome paintings.

- Spatial music

Spatial music refers to music and sound art (especially, electroacoustic), in which the location and movement of sound sources, in physical or virtual space, is a primary compositional parameter and a central feature for the listener.
Space music is gentle, harmonious sound that facilitates the experience of contemplative spaciousness. Engaging the imagination and generating serenity, it is particularly associated with ambient, New Age, and electronic music.

- Distance-named cultural products

Far Near Distance is the name of the program of the House of World Cultures in Berlin which presents contemporary positions of Iranian artists. Examples of similar use of distance terms in modern popular culture follow.
"Some near distance" and "Zero/Distance" are the titles of art exhibitions of Mark Lewis (Bilbao, 2003) and Jim Shrosbree (Des Moines, Iowa, 2007). "A Near Distance" is a paper collage by Perle Fine (New York, 1961); "Quiet Distance" is a fine art print by Ed Mell. "Distance" is a Windows/Mac/Linux survival racing game; "Dream Drop Distance" is a video game for Nintendo.
"Distance" is a Japanese film directed by Hirokazu Koreeda (2001) and an album of Utada Hikaru (her famous ballad is called "Final Distance"). It is also a song by Christina Perry, the stage name of a musician Greg Sanders and the name of the rock/funk band led by Bernard Edwards. "The Distance" is a US film directed by Benjamin Busch (2000), an album by the band "Silver Bullet" and a song by the band "Cake". "Near Distance" is a musical composition by Chen Yi (New York, 1988) and lyrics by the quartet "Puressence".
"Distance to Fault", "Distance from Shelter", "Long Distance Calling" are the rock bands. Among popular albums are "The Tyranny of Distance", "The Great Cold Distance", "Close the Distance", "The Distance to Here", "Love and Distance", "Long Distance Voyager" and "The Crawling Distance", "This Magnificent Distance" by the bands "Washington, D.C.", "Katatonia", "Go Radio", "Live", "The Helio Sequence", "The Moody Blues" and Robert Pollard, Chris Robinson.
The terms near distance and far distance are also used in Ophthalmology and for settings in some sensor devices.

- Distance-related quotes

- "Respect the gods and the devils but keep them at a distance." (Confucius)
- "Sight not what's near through aiming at what's far." (Euripides)
- "It is when suffering seems near to them that men have pity." (Aristotle)
- "Distance in space or time weakened all feelings and all sorts of guilty conscience." "Distance is a great promoter of admiration." (Denis Diderot)
- "Our main business is not to see what lies dimly at a distance, but to do what lies clearly at hand." (Thomas Carlyle)
- "We can only see a short distance ahead, but we can see plenty there that needs to be done." (Alan Turing)
- "The foolish man seeks happiness in the distance; the wise grows it under his feet."(Julius Robert Oppenheimer)
- "The very least you can do in your life is to figure out what you hope for. And the most you can do is live inside that hope. Not admire it from a distance but live right in it, under its roof." (Barbara Kingsolver)
- "Better is a nearby neighbor, than a far off brother." (Proverbs 27:10, Bible)
- "These [patriarchs] all died in faith without receiving the things promised [Canaan, Messiah, Gospel], but they saw them and welcomed them from a distance, admitting that they were strangers and pilgrims on the earth." (Hebrews 11:13, Bible)
- "By what road", I asked a little boy, sitting at a cross-road, "do we go to the town?"-"This one", he replied, "is short but long and that one is long but short". I proceeded along the "short but long road". When I approached the town, I discovered that it was hedged in by gardens and orchards. Turning back I said to him, "My son, did you not tell me that this road was short?"-"And", he replied, "Did I not also tell you: "But long"?" (Erubin 53b, Talmud)
- "The Prophet Muhammad was heard saying: "The smallest reward for the people of paradise is an abode where there are 80,000 servants and 72 wives, over which stands a dome decorated with pearls, aquamarine, and ruby, as wide as the distance from Al-Jabiyyah [a Damascus suburb] to Sana'a [Yemen]." (Hadith 2687, Islamic Tradition)
- "The closer the look one takes at the world, the greater distance from which it looks back." (Karl Kraus)
-"Telescopes and microscopes are designed to get us closer to the object of our studies. That's all well and good. But it's as well to remember that insight can also come from taking a step back." (New Scientist, March 31, 2012)
- "Where the telescope ends, the microscope begins. Which of the two has the grander view?" (Victor Hugo)
- "Nature uses only the longest threads to weave her patterns." (Richard Feynman)
- "We're about eight Einsteins away from getting any kind of handle on the universe." (Martin Amis)
- "It is true that when we travel we are in search of distance. But distance is not to be found. It melts away. And escape has never led anywhere ... What are we worth when motionless, is the question." (Antoine de Saint-Exupéry)
- "If you want to build a ship, don't drum up people to collect wood and don't assign them tasks and work, but rather teach them to long for the endless immensity of the sea." (Antoine de Saint-Exupéry)
- "Ships at a distance have every man's wish on board." (Zora Neale Hurston)
- "If you've never stared off in the distance, then your life is a shame." (Adam Duritz)
- "Every once in a while, people need to be in the presence of things that are really far away." (Ian Frazier)
- "Only those who will risk going too far can possibly find out how far one can go." (Thomas Stearns Eliot)
- "Distance is to love like wind is to fire ... it extinguishes the small and kindles the great." (source unknown)
- "I could never take a chance of losing love to find romance In the mysterious distance between a man and a woman." (Performed by U2)
- "In true love the smallest distance is too great, and the greatest distance can be bridged." (Hans Nouwens)
- "Love is like a landscape which doth stand Smooth at a distance, rough at hand." (Robert Hegge)
- "Life is like a landscape. You live in the midst of it but can describe it only from the vantage point of distance." (Charles Lindbergh)
- "Distance between two people is only as one allows it to be." (source unknown)
- "It is only the mountains which never meet." (french proverb)
- "Nothing makes Earth seem so spacious as to have friends at a distance; they make the latitudes and longitudes." (Henri David Thoreau)
- "Distance can endear friendship, and absence sweeteneth it." (James Howell)
- "The word is distance within non-distance, that is, the width of a gap that every letter stresses while bridging it. What is said is always said in relation to what will never be expressed. At these limits we recognize ourselves." (Edmond Jabès)
- "Sad things are beautiful only from a distance ...From a distance of 130 years i'm going to distance myself until the world is beautiful..." (Tao Lin)
- "Dying away into the distance, prose turns into poetry, speech into vocalise, language into music." (Berthold Hoeckner)
- "Everything becomes romantic and poetic, if one removes it to a distance ...Distant philosophy sounds like poetry - for each call into the distance becomes a vowel ... Everything becomes poetry - poem from afar." (Novalis)
- "The appropriated way to determine whether a painting is melodious is to look at it from a distance so as to be unable to comprehend its subject or its lines." (Charles Baudelaire)
- "There is no object so large ... that at great distance from the eye it does not appear smaller than a smaller object near." (Leonardo da Vinci)
- "Distance lends enchantment to the view, And robes the mountain in its azure hue." (Thomas Campbell)
- "There are charms made only for distant admiration." "Distance has the same effect on the mind as on the eye." (Samuel Johnson)
- "Age, like distance, lends a double charm." (Oliver Wendell Holmes)
- "Distance not only gives nostalgia, but perspective, and maybe objectivity." (Robert Morgan)
- "It is the just distance between partners who confront one another, too closely in cases of conflict and too distantly in those of ignorance, hate and scorn, that sums up rather well, I believe, the two aspects of the act of judging. On the one hand, to decide, to put an end to uncertainty, to separate the parties; on the other, to make each party recognize the share the other has in the same society." (Paul Ricoeur)
- "Authority doesn't work without prestige, or prestige without distance." (Charles de Gaulle)
- "The human voice can never reach the distance that is covered by the still small voice of conscience." (Mohandas Gandhi)
- "A smile is the shortest distance between two people." (Victor Borge)
- "The shortest distance between two points is under construction." (Leo Aikman)
- "A straight line may be the shortest distance between two points, but it is by no means the most interesting." (Third Doctor from BBC TV series Doctor Who)
- "In politics a straight line is the shortest distance to disaster." (John P. Roche)
- "Fret not where the road will take you. Instead concentrate on the first step. That is the hardest part and that is what you are responsible for. Once you take that step let everything do what it naturally does and the rest will follow. Do not go with the flow. Be the flow." (Shams Tabrisi)
- "The distance is nothing; only the first step that is difficult." (Marie du Deffand)
- "A perfect run has nothing to do with distance. It's when your stride feels comfortable." (Sean Astin)
- "Fill the unforgiving minute with sixty seconds worth of distance run." (Rudyard Kipling)
- "The distance between dreams and reality is called Discipline." (Albert Wright)
- "Everywhere is within walking distance if you have the time." (Steven Wright)
- "Time is the longest distance between two places." (Tennessee Williams)
- "There is an immeasurable distance between late and too late." (Og Mandino)
-"They couldn't hit an elephant at this distance." (last words of John Sedgwick, seconds before he was mortally wounded)
- "The distance that the dead have gone does not at first appear; Their coming back seems possible for many an ardent year." (Emily Dickinson)
- "A vast similitude interlocks all ... All distances of place however wide, All distances of time, all inanimate forms, all souls ..." (Walt Whitman)

Chapter 29
 Other Distances

In this chapter we group together distances and distance paradigms which do not fit in the previous chapters, being either too practical (as in equipment), or too general, or simply hard to classify.

29.1 Distances in Medicine, Anthropometry and Sport

- Distances in Medicine

Some examples from this vast family of physical distances follow.
In Dentistry, the interocclusal distance: the distance between the occluding surfaces of the maxillary and mandibular teeth when the mandible is in a physiologic rest position. The interarch and interridge distances: the vertical distances between the maxillary and mandibular arches, or, respectively, ridges. The intercanine distance: the distance between the distal surfaces of the maxillary canines on the curve (the circumference of 6 maxillary anterior teeth).. interincisor distance: the distance between the upper and lower incisors.
The interproximal distance: the spacing distance between adjacent teeth; mesial drift is the movement of the teeth slowly toward the front of the mouth with the decrease of the interproximal distance by wear.
The biologic width: the distance between the deepest point of the gingival sulcus and the alveolar bone crest. The crown-to-root-ratio: the ratio of the length of the part of a tooth that appears above the alveolar bone versus what lies below it.
The interbrow distance: the distance between the eyebrows.
The interaural (or biauricular) distance: the distance between the ears.
The rectosacral distance: the shortest distance from the rectum to the sacrum (triangular bone at the base of the spine, inserted between the two hip bones) between the 3 rd and 5th sacral vertebra. It is at most 10 mm in adults.

The anogenital distance (or AGD): the length of the perineum, i.e., the region between the anus and genital area (the anterior base of the penis for a male). For a male it is 5 cm in average (twice what it is for a female). ARD is a measure of physical masculinity and, for a male, lower ARD correlates with lower fertility.
The internipple distance: the distance between nipples. "Ideally", the nipples and sternal notch form an equilateral triangle with a side of 21 cm , and the nipples are at the middle of the humeral shoulder-elbow distance. The average areolar diameter is 38 mm for a mature woman and 25 mm for a male.
The intercornual distance: the distance between uterine horns $(2-4 \mathrm{~cm})$. The C-V distance: clitoris-vagina distance ($2.3-3 \mathrm{~cm}$); $<2.5 \mathrm{~cm}$ tend to yield reliable orgasms from intercourse alone, while $>3 \mathrm{~cm}$ almost exclude it. The clitoral index (CI) : product of the crosswise ($3-4 \mathrm{~mm}$) and lengthwise ($4-5 \mathrm{~mm}$) widths of the external portion of the clitoris; CI is a measure of virilization in women. The mean length of an erect penis is $13-15 \mathrm{~cm}$ or, counting its root, ≈ 22 cm .
A pelvic diameter is any measurement that expresses the diameter of the birth canal in the female. For example, the diagonal conjugate (13 cm) joins the posterior surface of the pubis to the tip of the sacral promontory, and the true (or obstetric, internal) conjugate $(11.5 \mathrm{~cm})$ is the anteroposterior diameter of the pelvic inlet.
In Obstetrics, the fundal height is the size the mother's uterus (the distance between the tops of uterus and pubic bone) used to assess fetal growth and development during pregnancy. The crown-rump length is the length of human embryos/fetuses (the distance, determined from ultrasound imagery, from the top of the head to the bottom of the buttocks) used to estimate gestational age.
Metra and uterus are (Greek and Latin) medical terms for the womb. Metropathy is any disease of the uterus, say, metritis (inflammation), metratonia (atony), metrofibroma. Metrometer is an instrument measuring the womb's size. Metrography (or hysterography) is a radiographic examination of the uterine cavity filled with a contrasting medium. Cf. meter-related terms in Chap. 27.
In Radiography, the teardrop distance: the distance from the lateral margin of the pelvic teardrop to the most medial aspect of the femoral head; a widening of $\geq 1 \mathrm{~mm}$ indicates excess hip joint fluid and so inflammation. The intertrochanteric distance: the distance between femurs. The interpediculate distance: the distance between the vertebral pedicles. The source-skin distance: the distance from the focal spot on the target of the X-ray tube to the subject's skin.
In Intubation (insertion of a tube into a body canal or hollow organ, to maintain an opening or passageway), the insertion distance: the distance from the body aperture at which the tubing is advanced. The French size of a catheter with external diameter D is $\pi D \approx 3 D$; so, 20 F means $D=6.4 \mathrm{~mm}$.
In Anesthesia, the thyromental distance (or TMD): the distance from the upper edge of the thyroid cartilage (laryngeal notch) to the menton (tip of the chin). The sternomental distance: the distance from the upper border of the manubrium sterni to the menton. The mandibulo-hyoid distance: mandibular length from
menton to hyoid. When the above distances are less than 6-6.5, 12-12.5 and 4 cm , respectively, a difficult intubation is indicated.
The depth of anesthesia is a number expressing the likelihood of awareness by the degree of slowing and irregularity in electroencephalogram (EEG) signals. Also, at loss of consciousness, high frequency $(12-35 \mathrm{~Hz})$ brain waves are replaced by two (low, $<1 \mathrm{~Hz}$, and alpha, $8-12 \mathrm{~Hz}$) superimposed waves. Even beyond a flat line EEG, some neuronal spikes come to the cortex from the hippocampus.
The sedimentation distance (or ESR, erythrocyte sedimentation rate): the distance red blood cells travel in 1 h in a sample of blood as they settle to the test tube's bottom. ESR indicates inflammation and increases in many diseases.
The stroke distance: the distance a column of blood moves during each heart beat, from the aortic valve to a point on the arch of the aorta.
The distance between the lesion and aortic valve being $<6 \mathrm{~mm}$, is an important predictor, available before surgical resection of DSS (discrete subaortic stenosis), or reoperation for recurrent DSS. The aortomesenteric distance (between aorta and superior mesenteric artery) correlates with the body mass index.
The aortic diameter: the maximum diameter of the outer contour of the aorta. It, as well as the cross-sectional diameter of the left ventricle, varies between the ends of the systole (the time of ventricular contraction) and diastole (the time between contractions). The smallest and largest cardiac dimensions are LVE (left ventricle end-) systolic and diastolic diameters; the strain is the ratio between them.
The dorsoventral interlead distance of an implanted pacemaker or defibrillator: the horizontal separation of the right and left ventricular lead tips on the lateral chest radiograph, divided by the cardiothoracic ratio (ratio of the cardiac width to the thoracic width on the posteroanterior film).
The distance factor is a crude measure $\frac{l}{d}-1$ of arterial tortuosity, where l is the vessel length and d is the Euclidean distance between its endpoints.
In Nerve Regeneration by transplantation of cultured stem cells, the regeneration distance is the distance between the point of insertion of the proximal stump and the tip of the most distal regenerating axon.
The small-for-size syndrome (SFSS) is acute liver failure resulting from the transplantation of a too small (usually $<0.8 \%$ of recipient weight) graft (donor liver).
A distant flap is a procedure moving tissue (skin, muscle, bone, or some combination) from one part of the body, where it is dispensable, to another part.
The length of the alimentary (mouth-to-anus) tract is $\approx 9 \mathrm{~m}$ in a dead and, due to muscle tone, $5-6 \mathrm{~m}$ in a leaving human. Transit takes $30-50 \mathrm{~h}$.
In Laser Treatments, the extinction length and absorption length of the vaporizing beam are the distances into the tissue along the ray path over which 90% (or 99%) and 63%, respectively, of its radiant energy is absorbed.
In Ophthalmic Plastic Surgery, the marginal reflex distances $M_{1} D_{1}$ and $M R D_{2}$ are the distances from the center of the pupil (identified by the corneal reflex created by shining a light on the pupil) to the margin of the upper or lower eyelid, while the vertical palperbal fissure is the distance between these eyelids.

The main distances used in Ultrasound Biomicroscopy (for glaucoma treatment) are the angle-opening distance (from the corneal endothelium to the anterior iris) and the trabecular ciliary process distance (from a particular point on the trabecular mesh-work to the ciliary process).
In Medical Statistics, length bias is a selection bias that can occur when the lengths of intervals are analyzed by selecting random intervals in space or time. This process favors longer intervals, thus skewing the data. For example, screening over-represents less aggressive disease, say, slower-growing tumors.

- Distances in Oncology

In Oncology, the tumor radius is the mean radial distance R from the tumor origin (or its center of mass) to the tumor-host interface (the tumor/cell colony border). The cell proliferation along $[0, R]$ is ≈ 0 up to some r_{0}, then increases only linearly up to some r_{1}, and it happens mainly within $\left[r_{1}, R\right]$.
The tumor diameter is the greatest vertical diameter of any section; the tumor growth is the geometric mean of its three perpendicular diameters. The average diameter is $\frac{L+W+H}{3}$ where L, W, H are the longest length, width and height.
Tubiana, 1986, claims that for each tumor type a critical tumor diameter and mass for metastatic spread exists and this threshold may be reached before the primary tumor is detectable. For breast cancer, metastases were found in 50% of the women whose primary tumor had a diameter of 3.5 cm , i.e., a mass $\approx 22 \mathrm{~g}$. In the tumor, node, metastasis (TNM) classification, describing the stage of cancer in a patient's body, the parameter T is the tumor size (direct extent of the primary tumor) by the categories $\mathrm{T}-1, \mathrm{~T}-2, \mathrm{~T}-3, \mathrm{~T}-4$. In breast cancer, $\mathrm{T}-1, \mathrm{~T}-2$, T-3 are $<2,2-5,>5 \mathrm{~cm}$ and T-4 is a tumor of any size that has broken through the skin, or is attached to the chest wall. A clinical size is $10^{9}-10^{11}$ cells.
In Oncological Surgery, the margin distance (or margins of resection) is the distance between a tumor and the ink-marked edge of tumor bed, i.e., normalappearing tissue surrounding tumor that is removed along with it in order to prevent local recurrence. If the margins, as checked by a pathologist under microscope, are positive (cancer cells are found in the ink), then more surgery is needed. The margins are negative (or clear, clean) if no cancer cells are found "close" to the ink.
The perfusion distance is the shortest distance between the infusion outlet and the surface of the electrodes during radio-frequency tumor ablation.
In Radiation Oncology, the maximum heart distance MHD is the maximum distance of the heart contour (as seen in the beam's eye view of the medial tangential field) to the medial field edge, and the central lung distance CLD is the distance from the dorsal field edge to the thoracic wall. An "L-bar" armrest, used to position the arm during breast cancer irradiation, decreases these distances.
A distant cancer (or relapse, metastasis) is a cancer that has spread from the original (primary) tumor to distant organs or distant lymph nodes. It can happen by long-distance dispersal (cf. Chap. 23) and by dividing of cancer stem cell. DDFS (Distant Disease-free Survival) is the time until such an event.

According to Hanahan-Weinberg, 2000, tumor progress via evolutionlike process of genetic changes which can be grouped into six hallmarks. Tumorigenesis requires a mutation pathway of four to six events among them to occur in the lineage of one cell. Spencer et al., 2006, define tumor heterogeneity as

$$
\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq p} n_{i} n_{j} d_{i j},
$$

where $n=\sum_{1 \leq i \leq p} n_{i}, p, n_{i}$ are the numbers of cells in a tumor, of distinct pathways, of cells with i-th pathway, and $d_{i j}$ is the ancestral path distance (cf. pedigree-based distances in Chap. 23) between i-th and j-th pathways.
Similarly, the distance to flu pandemic is, say, the length of mutation pathway for a virus strain to become airborne transmissible among humans.

- Distances in Rheumatology

The main such distances (measured in cm to the nearest 0.1 cm) follow.
Occiput wall distance: the distance from the patient's occiput to the wall during maximal effort to touch the head to the wall, without raising the chin above its usually carrying level (when heels and, if possible, the back are against the wall).
Modified Schober test: the distance between two marked points (a point over the spinous process of $L 5$ and the point 10 cm above) measured when the patient is extending his lumbar spine in a neutral position and then when he flexes forward as far as possible. Normally, the 10 cm distance increases to $\geq 16 \mathrm{~cm}$.
Lateral spinal flexion: the distance from the middle fingertip to the floor in full lateral flexion without flexing forward or bending the knees or lifting the heels and attempting to keep the shoulders in the same place.
Chest expansion: the difference between full expiration and full inspiration, measured at the nipples.
Intermalleolar distance: the distance between the medial malleoli when the patient (supine, the knees straight and the feet pointing straight up) is asked to separate the legs as far as possible.

- Distance healing

Distance (or distant, remote) healing is defined (Sicher-Targ, 1998) as a conscious, dedicated act of mentation attempting to benefit another person's physical or emotional well-being at a distance. Cf. action at a distance in Chap. 24.
It includes prayer (intercessory, supplicative and nondirected), spiritual/mental healing and strategies purporting to channel some supra-physical energy (noncontact therapeutic touch, Reiki healing, external qigong).
Distant healing is part of popular alternative/complementary medicine but it is highly controversial: some positive results are attributed to a placebo effect. Still, such rejection (as well as for homeopathy) is also a matter of belief.
In Chinese Medicine, the life-energy, qi, flow through 20 meridians connecting about 400 acupuncture points. In Ayurveda, the life force, prana, flow
through $>72,000$ nadis connecting chakras (intensity points); it also lists 13 internal srotas (physical body channels) and, by the number of orifices, 9 external ones for males and 12 for females. Many trigger points (hyperirritable muscle spots) and pressure points in martial arts are related to above points. Many meridians are located along connective-tissue planes between muscles or muscle and bone.
Distance medicine technologies are used to transmit/treat patient information, to submit prescriptions, to create distributive patient care and distributive learning. Examples of telephonic communication with patients are in: follow-up care, reminders, interactive systems, screening and access in hospital use.

- Brain distances

Diffusion MRI (Magnetic Resonance Imaging) noninvasively produces in vivo images of brain tissues weighted by their water diffusivity. The image intensities at each position are attenuated proportionally to the strength of diffusion in the direction of its gradient. Diffusion in tissues is described by a diffusivity tensor. Tensor data are displayed, for each voxel, by ellipsoids; their length in any direction is the diffusion distance molecules cover in a given time in this direction. The diffusion tensor distance is the length from the center to the surface of the diffusion tensor.
In brain MRI, the distances considered for cortical maps (i.e., outer layer regions of cerebral hemispheres representing sensory inputs or motor outputs) are: MRI
distance map from the GW (gray/white matter) interface, cortical distance (say, between activation locations of spatially adjacent stimuli), cortical thickness (the shortest distance between the GW the boundary and the innermost surface of pia mater enveloping the brain) and lateralization metrics. In fact, language, for example, tends to be on the left, attention more on the right side of the brain. The cortical thickness of Einstein's brain is 2.1 mm , while the average one is 2.6 mm ; the resulting closer packing of neurons may speed up communication between them. This brain had a relatively larger (and more intricately folded) prefrontal cortex and an unusually high glia-to-neuron ratio. Also, the corpus callosum is thicker in many areas, indicating greater connectivity between the two hemispheres.
Stereotaxic coordinates of a point p in the human brain are given by a triple (x_{p}, y_{p}, z_{p}) in mm (Talairach-Tournoux, 1988), where the anterior commissure is the origin $(0,0,0)$. The dimensions x, y, z refer to the left-right (LR), posterior-anterior (PA) and ventro-dorsal (VD or inferior-superior) orthogonal axes with positive values for the right hemisphere, anterior part and dorsal part.
The Talairach distance of a point p is its Euclidean distance $\sqrt{x_{p}^{2}+y_{p}^{2}+z_{p}^{2}}$ from the origin.
Among proto-humans, only Neanderthals had a (11.6\%) larger brain than Homo sapiens; we got from them the brain-size increasing gene 0.037 Ma ago. However over the last 0.03 Ma our brains have been shrinking, while our craniums have been increasing. The human brain reaches its full size by age 20 and then shrinks
(faster for men) by about 1% per year. It accounts for $\frac{1}{5}$ of the total ($\approx 100 \mathrm{~W}$) body energy consumption.

- Dysmetria

Dysmetria is a symptom of a cerebellar disorder or syndrome, expressed in a lack of coordination of movement typified by the undershoot (hypometria) or overshoot (hypermetria) of the intended position with the hand, arm, leg, or eye. More generally, dysmetria can refer to an inability to judge distance or scale, which is also one of symptoms of dyscalculia. The distance constancy (cf. Chap. 28) is poor in schizophrenics; so, their visual perception is lacking in depth. Alice in Wonderland syndrome, affecting mainly children, is that objects appear either much smaller (micropsia) or larger (macropsia) than they are. Micropsia appear also in Charles Bonnet syndrome, affecting mainly vision-impaired elderly.

- Space-related phobias

Several space-related phobias have been identified: agoraphobia, astrophobia, claustrophobia, cenophobia, and acrophobia, bathophobia, gephyrophobia, megalophobia which are, respectively, fear of open, celestial, enclosed, empty spaces, and heights, depths, bridges, large/oversized objects. Autoscopy (or out-of-body experience) is the hallucination of seeing one's own body at a distance.
Among neuropsychological spatial disorders are: Balint's syndrome (inability to localize objects in space), hemispatial neglect (bias of attention to and awareness of the side of the hemispheric lesion) and allochiria (left-right disorientation).
Topographical disorientation is the inability to orient in the surrounding as a result of focal brain damage. Such agnosia with respect to self, to landmarks, to external environment, to new environments is called egocentric, landmark, heading, anterograde, respectively. Dromosagnosia is the loss of direction while driving.
In Chap. 28, among applications of spatial language is mentioned Grove's clean space: a neuro-linguistic psychotherapy based on the spatial metaphors produced by the client on his present and desired "space" (state).

- Neurons with spatial firing properties

Known types of neurons with spatial firing properties are listed below; cf. also spike train distances in Chap. 23.
Many mammals have in several brain areas head direction cells: neurons which fire only when the animal's head points in a specific direction.
Place cells are principal neurons in the hippocampus that fire strongly whenever an animal is in a specific location (the cell's place field) in an environment.
Grid cells are neurons in the entorhinal cortex that fire periodically and at very regular distances as an animal walks. Grid cells measure distance while place cells indicate location. But only place cells are sensitive (albeit weakly) to height. Spatial view cells are neurons in the hippocampus which fire when the animal views a specific part of an environment. They differ from head direction cells since they represent not a global orientation, but the direction towards a specific object. They also differ from place cells, since they are not localized in space.

Border cells are neurons in the entorhinal cortex that fire when a border is present in the proximal environment.
Mirror cells are neurons that fire both when an animal acts and when it observes the same action performed by another.
Head direction cells of rats are fully developed before pups open their eyes and become mobile. Next to mature are place cells followed by grid cells. All navigational cell types mature before rat adolescence (about 30 days of age).
The smallest processing module of cortical neurons is a minicolumn-a vertical column (of diameter $28-40 \mu \mathrm{~m}$) through the cortical layers of the brain, comprising $80-120$ neurons that seem to work as a team. There are about 2×10^{8} minicolumns in humans. Smaller minicolumns (as observed in scientists and in people with autism) mean that there are more processing units within any given cortical area; it may allow for better signal detection and more focused attention.

- Vision distances

The interocular distance is the distance between the centers of rotation of the eyeballs of an individual or between the oculars of optical instruments.
The interpupillary distance (or binocular pupillary distance) is the distance ($50-75 \mathrm{~mm}$) between the centers of the pupils of the two eyes. The monocular pupillary distance is the distance from the center of the nose to the pupil. Stereoacuity is the smallest detectable depth difference that can be seen in binocular vision.
The near acuity is the eye's ability to distinguish an object's shape and details at a near distance such as 40 cm ; the distance acuity is the ability to do it at a far distance such as 6 m . The distance vision is a vision for objects that are at least 6 m from the viewer. Optical near devices are designed for magnifying close objects and print; distance devices are for magnifying things in the distance.
The near distance is the distance between the object and spectacle (eyeglasses) planes. The vertex distance: the distance between a person's glasses (spectacles planes) and their eyes (the corneal). The infinite distance: a distance of at least 6 m ; so called because rays entering the eye from an object at that distance are practically as parallel as if they came from an infinitely far point.
The default accommodation distance (or resting point of accommodation, RPA distance) is the distance at which the eyes focus if there is nothing to focus on.
The RPV distance (or resting point of vergence) is the distance at which the eyes are set to converge (turn inward toward the nose) when there is no close object to converge on. It averages about 1.15 m when looking straight ahead and in to about 0.9 m with a 30° downward gaze angle. Ergonomists recommend the RPV distance as the eye-screen distance in sustained viewing, in order to minimize eyestrain.
The least distance of distinct vision (or reference seeing distance) is the minimum comfortable distance (usually, 25 cm) between the eye and a visible object. Ideal focus distances for reading and writing are within $37-62 \mathrm{~cm}$ from the eyes.
The Harmon distance (or elbow distance) is the optimal visual distance for reading and other near work. It is the distance from the elbow on the desk to the first knuckle (prominence of a joint connecting the finger to the hand).

The ideal TV viewing distance is 1.9 times the screen width, since then this width occupies a 30° angle from the viewing position. For multiple-row seating in the home theater, a viewing angle $26-36^{\circ}$ is recommended.
The Lechner distance is the optimal viewing distance at which the human eye can best process the details given by High Definition TV resolution. For example, it is about 1.7 or 2.7 m for a 1080 HD TV with a screen size of 42 or 69 inches.
Lateral masking (or crowding) is impairment of peripheral object identification by flankers (nearby objects). Critical spacing (or crowding distance) is the minimum target-flanker distance that does not produce crowding of a target of fixed size.
The throw distance is the distance that the projector needs to be from the screen to project the optimum image. The viewing-distance factor is a ratio of the width of a projected image to the maximum acceptable viewer's distance from it.
The laser hazard distance is the safe viewing distance for direct exposure to visible laser beams.

- Gait distances

Gait stride is the distance traveled between successive footfalls of the same foot. It is the double of the step length (distance traveled while a foot is on the ground). Stride width (or walking base) is the side-to-side distance between the line of the two feet. Normally, it is $3-8 \mathrm{~cm}$ for adult but it increases with gait instability.
The Gait Deviation (from normality) Index GDI is (Schwartz-Rosumalski, 2008) the standardized Euclidean distance (cf. Chap. 17) in the 15D gait feature space between the abnormal state vector of a patient and the closest matching normal (mean of controls) state vector.
The length of cane, when it is needed, should extend the distance from the distal wrist crease to the ground, when the person is placing arms at the sides.
The average walking speed is $1-1.5 \mathrm{~m} / \mathrm{s}$; above $2 \mathrm{~m} / \mathrm{s}$, it is more efficient to run. Cadence for normal adults is $100-117$ steps $/ \mathrm{min}$ at preferred speed. As the body moves forward, its center of gravity moves vertically and laterally, with average displacement 5 and 6 cm , in a smooth sinusoidal pattern.
Wearing high heels by women exaggerate some sex specific elements of female gait: greater pelvic rotation, increased lateral pelvic tilt, shorter strides and higher cadence. Millipedes (in fact, no species with more than 750 legs is known) have smooth wave-like polypedal gait.
Most insects have a tripod gait, with front and back legs on one side moving in sync with the middle leg on the other side. But some dung beetles can gallop.
Humans, birds and (occasionally) apes walk bipedally. Humans, birds, many lizards and (at their highest speeds) cockroaches run bipedally. But (Alexander, 2004) no animal walks or runs as we do: the trunk erect, almost straight knees at mid-stance, striking the ground with the heel alone and two-peaked force pattern in fast walking. Our walking, but not running, is relatively economical metabolically.

- Biodistances for nonmetric traits

In Physical Anthropology and Human Osteology (including Forensic Anthropology and Paleoanthropology), the biodistances (or biological distances) are the measures of relatedness between and within human groups, living or past, based on human cranial, skeletal or dental variation.
Nonmetric traits are skeletal nonmetric data (binary, nominal or ordinal, cf. Chap. 17). The main distance statistics used to compare them between populations x and y are Mahalanobis D^{2} statistics, i.e., squareMahalanobis distance (Chap. 17) and, when the data are incomplete, the mean measure of divergence:

$$
M M D=\frac{1}{n} \sum_{i=1}^{n}\left(\left(\phi_{x i}-\phi_{y i}\right)^{2}-4 \frac{N_{x i}+N_{y i}+1}{\left(2 N_{x i}+1\right)\left(2 N_{y i}+1\right)}\right) .
$$

Here n is the number of traits used in the comparison, $\phi_{x i}$ and $\phi_{y i}$ are the transformed frequencies in radians of the i-th trait in the groups x, y, and $N_{x i}$ and $N_{y i}$ are the numbers of individuals scored for the i-th trait in the two groups. The frequencies ϕ are obtained (in radians) from observed trait frequencies $\frac{k}{n}$ by the Freeman-Tukey arcsine transformation. The MMD can be negative. The standardized MMD (SMMD) is obtained by dividing MMD by its standard deviation.

- Body distances in Anthropometry

Besides weight and circumference, the main metric (i.e., linear continuous, cf. Chap. 17) measurements in Anthropometry are between some body landmark points or planes. The main vertical distances from a standing surface are:

- stature (to the top of the head);
- C7 level height (to the first palpable vertebra from the hairline down, C7);
- acromial height (to the acromion, i.e., the lateral tip of the shoulder);
- L5 level height (to the first palpable vertebra from the tailbone up, L5);
- knee height (to the patella, i.e., kneecap plane).

The genotype gives 60% of the phenotypic variation of human height (stature). It was about 1.63 and 1.83 m for Neanderthal 0.07 Ma ago and Homo erectus 1.8 Ma ago. The height of the average modern man ranges from 1.37 (Mbuti people of the Democratic Republic of the Congo) to 1.84 m (the Dutch). There is small (0.15-0.20) correlation between IQ and height within national populations.

Examples of other body distances are:

- sitting height: the distance from the top of the head to the sitting surface;
- popliteal (or stool) height (seated): the distance between the underside of the foot to the underside of the thigh at the knee;
- hip breadth (seated): the lateral distance at the widest part of the hips;
- biacromial breadth: the distance between the acromions;
- buttock-knee length : the distance from the buttocks to the patella;
- total foot length: the maximum length of the right foot;

In the thigh, there are the longest ones in the human body: bone (femur), muscle (sartorius) and nerve (sciatic).

- Head and face measurement distances

The main linear dimensions of the cranium in Archeology are: lengths (of temporal bone, of tympanic plate, glabella-opistocranion), breadths (maximum cranial, minimum frontal, biauricular, mastoid), heights (of temporal bone, basion-bregma), thickness of the tympanic plate, and bifrontomolar-temporal distance.
Main viscerocranium measurements in Craniofacial Anthropometry are the head width, i.e., the (horizontal) maximum breadth of the head above the ears, and the head length (or head depth): the horizontal distance from the nasion (the top of the nose between the eyes) to the opistocranion (the most prominent point on the back of the head). The cephalic index of a skull is the percentage of width to length.
The face length FL: the distance between the trichion (midpoint on the forehead) and the gnathion (the lowest point of the midline of the lower jaw). It is divided by nasion and subnasale lines into three ("ideally", equal) parts.
The intercanthal distance (medial MC or lateral $L C$): the distance between (inner or outer) canthi (corners of eyes). The face width $F W$ (or bizygomatic width) is the maximum distance between lateral surfaces of the zygomatic arches (cheeks). Let EW be the eye width and $N W$ be the nose width (or interalar distance). "Ideally", it holds $N W=E W=M C$ and $F W=5 E W$.
The upper face height UFH is the distance between the nasion and the prosthion (midpoint on the alveolar arch between the median upper incisor teeth). The superior facial index is $\frac{U F H}{F W}$; its closeness to the Fibonacci number $\frac{1+\sqrt{5}}{2} \approx$ 1,618 is one of proposed cues of female's beauty. According to Lefevre et al., 2013, the ratios $\mathrm{fWHR}=\frac{F W}{U F H}$ and $\frac{F W}{L F H}$, where $L F H$ is the lower face height, correlate with "maleness" (testosterone in mating context, aggression, statusstriving etc.). On average, men have much larger faces (below the pupils), lips and chins; wider cheekbones, jaws and nostrils; and longer lower faces, but much lower eyebrows.
In Face Recognition, the sets of (vertical and horizontal) cephalofacial dimensions, i.e., distances between fiducial (standard of reference for measurement) facial points, are used. For example, the following five independent facial dimensions are derived in [Fell97] for facial gender recognition: $L C, N W, F W$ and (vertical ones) eye-to-eyebrow distance $E B$ and distance $E M$ between eye midpoint and horizontal line of mouth. "Femaleness" relies on large $L C, E B$ and small $N W, F W, E M$. In general, a face with larger $E B$ is perceived as baby-like and less dominant.
Humans have the innate ability to recognize and distinguish (friend from foe) between faces from a distance. Facial attractiveness is a cultural construct found in all extant societies, and males strongly prefer neotenous facial features in females. Pallett-Link-Lee, 2009, claim that Caucasian females with $E M \approx 36 \%$ of $F L$ and the interpupillary distance $\approx 46 \%$ of $F W$, have the both, most
attractive and average, faces. Cunningham et al., 1995, claim that the ideal attractive female face tends to feature: $3 F W=5 E W$, chin length $\frac{h}{5}$ (where h is the height of the face), middle of eye to bottom of the eyebrow $\frac{h}{10}$, height of the visible eyeball $\frac{h}{14}$, pupil width $\frac{1}{14}$ the distance between cheekbones, nose area $<5 \%$ the total area of the face. But those standards could be too Westernoriented.
For example, Japanese standards of beautiful eyes changed with Westernization (comparing Meiji and modern portraits): the mean ratios to corneal diameter (horizontal white-to-white distance) of eye height and upper lid-to-eyebrow distance are moved from 0.62 and 2.21 to 0.82 and 1.36 .
Modifying traditional canons of Facial Plastic Surgery (based on horizontal and vertical planes in 2D), Young, 2008, asserts that the iris, nasal tip and lower lip are the most prominent structures within the eye, nose and mouth. All distances which he proposed as elements of facial beauty are multiples of the diameter of the iris.
Comparing 3D facial scans with their mirror images, Djordjevic et al., 2011, found that on average, males and females have 53.5 and 58.5% symmetry of the whole face. Cf. distances from symmetry in Chap. 21. Alare and pogonio were the most and the least symmetric landmark.

- Gender-related body distance measures

The main gender-specific body configuration features are:
for females, WHR (waist-to-hip ratio), LBR (leg-to-body ratio) and BMI (body mass index), i.e., the ratio of the weight in kg and squared height in m^{2};
for males, height, SHR (shoulder-to-hip ratio) and WCR (waist-to-chest ratio);
androgen equation (three times the shoulder width minus one times the pelvic width) which is higher for males;
second-to-fourth digit (index to ring finger) ratio $2 D-4 D$ which is lower (as well as prenatal testosterone is higher) for males in the same population;
anogenital distance (cf. distances in Medicine) which is larger for males;
person's center of mass (slightly below the belly button) which is higher for males.
The female pelvis is more rounded. The sciatic notches are broader, the greater pelvis is shallower, the lesser pelvis is wider, the pelvic inlet and outlet are larger. The mean footprint ridge density is higher among females.
The main predictor for developmental instability, increasing with age, is FA (fluctuating asymmetry), i.e., the degree to which the size of bilateral body parts deviates from the population mean, aggregated across several traits. At age 7983 men (but not women) with lower facial FA have better cognitive ability and reaction time. Women prefer the odors, faces and voices of men with lower FA. BMI and WHR indicate the percentage of body fat and fat distribution, respectively; they are used in medicine to assess risk factors. A WHR of 0.7 for women and 0.9 for men correlates with general health and fertility. As a cue to female body attractiveness for men, the ideal WHR varies from 0.6 in China to 0.85 in Africa. But Rilling et al., 2009, claim that abdominal depth (the depth of
the lower torso at the umbilicus) and WC (waist circumference) are stronger predictors.
In Fan et al., 2005, the main visual cue to male body attractiveness is VHI (volume-to-height index), i.e., the ratio of the volume in liters and squared height in m^{2}. Mautz et al., 2013, claim that women prefer taller men with higher SHR and FPL (flaccid penis length), but attractiveness increased quickly until FPL reached 7.6 cm and then began to slow down. Stulp et al., 2013, found that on average among speed-daters, women choose 25 cm taller men, while men choose only 7 cm shorter women, resulting in suboptimal $(19 \mathrm{~cm})$ pair formation.
In terms of somatotype, women prefer mesomorphs (muscular men) followed by ectomorphs (lean men) and endomorphs (heavily-set men).
In terms of the vital statistics BWH (bust-waist-hips), the average Playboy centrifold $1955-1968$ has $(90.8,58.6,89.3) \mathrm{cm}$, close to the ideal hourglass figures $(90,60,90) \mathrm{cm}$ and $(36,24,36)$ inch. The British Association of Model Agents prefers model around $(86,60,86) \mathrm{cm}$ and at least 1.73 m tall. But dietitians found these proportions unhealthy and advocate waistline $80-85 \mathrm{~cm}$ and at most half-height.
In conversation, women are better at detecting mismatch between meaning and prosody (intonation and rhythm of speech), but worse at vocabulary's variety. Men's vocal cords are larger and their vocal tracts are longer than women's; so, they speak about an octave lower. In English, women use less nonstandard forms and often use different color terms and descriptive phrases from men. Pirahã (Amazon's tribe) men use larger articulatory space and, say, only men use " s ". Used as obesity indices, WC, $\mathrm{ICO}=\mathrm{WC} /$ height and (proposed by KrakauerKrakauer, 2012) $\mathrm{ABSI}=\mathrm{WC} /\left(\mathrm{BMI}^{\frac{2}{3}}\right.$ height $\left.{ }^{\frac{1}{2}}\right)$ are better predictors of mortality than BMI.

- Sagittal abdominal diameter

Sagittal abdominal diameter (SAD) is the distance between the back and the highest point of the abdomen, measured while standing. It is a measure of visceral obesity. Normally, SAD should be under $25 \mathrm{~cm} . S A D>30 \mathrm{~cm}$ correlates to insulin resistance and increased risk of cardiovascular and Alzheimer's diseases. A related measurement is SAH , the abdominal height as measured in the supine position. Inter-recti distance (IRD) is the width of the linea alba (a fibrous structure that runs down the midline of the abdomen).

- Body distances for clothes

Humans lost body hair around 1 Ma ago and began wearing clothes $\approx 0.17 \mathrm{Ma}$ ago.
The European standard EN 13402 "Size designation of clothes" defined, in part EN 13402-1, a standard list of 13 body dimensions (measured in cm) together with a method for measuring each one on a person. These are: body mass, height, foot length, arm length, inside leg length, and girth for head, neck, chest, bust, under-bust, waist, hip, hand. Examples of these definitions follow.

Foot length: horizontal distance between perpendiculars in contact with the end of the most prominent ones, toe and part of the heel, measured with the subject standing barefoot and the weight of the body equally distributed on both legs. Arm length: distance from the armscye/shoulder line intersection (acromion), over the elbow, to the far end of the prominent wrist bone (ulna), with the subject's right fist clenched and placed on the hip, and with the arm bent at 90°. Inside leg length: distance between the crotch and the soles of the feet, measured in a straight vertical line with the subject erect, feet slightly apart, and the weight of the body equally distributed on both feet.
For clothes where a larger step size is sufficient to select the right product, the standard also defines a letter code: XXS, XS, S, M, L, XL, XXL, 3XL, 4XL or 5XL. This code represents the bust girth for women and the chest girth for men. Vanity sizing (or size deflation) is the marketing phenomenon of ready-to-wear clothing of the same nominal size becoming bigger in physical size over time.

- Distance handling

Distance handling refers to the training of gun dogs (to assist hunters in finding and retrieving game) or sport dogs (for canine agility courses) where a dog should be able to work away from the handler.
In agility training, the lateral distance is the distance that the dog maintains parallel to the handler, and the send distance is the distance that the dog can be sent straight away from the handler.

- Racing distances

In Racing, length is an informal unit of distance to measure the distance between competitors; for example, in boat-racing it is the average length of a boat.
The horse-racing distances and winning margins are measured in terms of the lengths of a horse, i.e., ≈ 8 feet (2.44 m), ranging from half the length to the distance, i.e., more than 20 lengths. The length is often interpreted as a unit of time equal to $\frac{1}{5}$ second. Smaller margins are: short-head, head, or neck. A distance flag is a flag held at a distance pole in a racecourse.
The distances a horse travels without stops ($15-25 \mathrm{~km}$) and it travels in a day ($40-50 \mathrm{~km}$) or hour (6 km) were used as Tatar and Persian units of length.

- Triathlon race distances

The Ironman distance (or Ultra distance) started in Hawaii, 1978, is a 3.86 km swim followed by a 180 km bike and a 42.195 km (marathon distance) run.
The international Olympic distance started in Sydney, 2000, is 1.5 km (metric mile), 40 km and 10 km of swim, cycle and run, respectively.
Next to it are the Sprint distance $0.75,20,5 \mathrm{~km}$, the Long Course (or Half Ironman) 1.9, 90, 21.1 km and the ITU long distance 3, 80, 20 km .

- Running distances

In Running, usually, sprinting is divided into $100,200,400 \mathrm{~m}$, middle distance into $800,1,500,3,000 \mathrm{~m}$ and long distance into $5,10 \mathrm{~km}$.
$L S D$ (long slow distance) is a is a form of aerobic endurance training in running and cycling, in which distances longer, than those of races, are covered, but at a slower pace.

Fartlek (or speed play) is an approach to distance-running training involving variations of pace and aimed at enhancing the psychological aspects of conditioning. Race-walking is divided into $10,20,50 \mathrm{~km}$, and relay races into $4 \times$ $100,4 \times 200,4 \times 300,4 \times 400 \mathrm{~m}$. Distance medley relay is made up of 1200, 400, 800, 1,600 m legs.
Besides track running, runners can compete on a measured course, over an established road (road running), or over open or rough terrain (cross-country running).
Roughly, 4 units of running distance are time-equivalent to 1 unit of swimming distance. Also, one have to walk about twice the distance to burn the same amount of calories as running it. Running workout times should be multiplied by 3.5 when aiming for a similar training effect from cycling. A multiple of $0.75-1$ should be used for an indoor rowing-to-running ratio.

- Distance swimming

Distance swimming is any swimming race $>1.5 \mathrm{~km}$; usually, within $24-59 \mathrm{~km}$. $D P S$ (distance per swim stroke) is a metric of swimming efficiency used in training. In Rowing, run is the distance the boat moves after a stroke.

- Distance jumping

The four Olympic jumping events are: long jump (to leap horizontally as far as possible), triple jump (the same but in a series of three jumps), high jump (to reach the highest vertical distance over a horizontal bar), and pole vault (the same but using a long, flexible pole).
The world's records, as in 2013: $8.95,18.29,2.45$, and 6.14 m , respectively.

- Distance throwing

The four Olympic throwing events are: shot put, discus, hammer, and javelin.
The world's records, as in 2013: $23.12,74.08,86.74 \mathrm{~m}$, and 98.48 m , respectively.
As in 2013, the longest throws of an object without any velocity-aiding feature are 427.2 m with a boomerang and 406.3 m with a flying ring Aerobie.
Distance casting is the sport of throwing a fishing line with an attached sinker (usually, on land) as far as possible.
Darts is a sport and a pub game in which darts are thrown at a dartboard (circular target) fixed to a wall so that the bullseye is 172.72 cm from the floor. The oche (line behind which the throwing player must stand) is 236.86 cm from the dartboard.

- Archery target distances

FITA (Federation of International Target Archery, organizing world championships) target distances are $90,70,50,30 \mathrm{~m}$ for men and $70,60,50,30 \mathrm{~m}$ for women, with 36 arrows shot at each distance. Farthest accurate shot is 200 m .

- Bat-and-ball game distances

The best known bat-and-ball games are bowling (cricket) and baseball. In cricket, the field position of a player is named roughly according to its polar coordinates: one word (leg, cover, mid-wicket) specifies the angle from the batsman, and this word is preceded by an adjective describing the distance from the batsman.

The length of a delivery is how far down the pitch (central strip of the cricket field) towards the batsman the ball bounces.
This distance is called deep (or long), short and silly distance if it is, respectively, farther away, closer and very close to the batsman. The distance further or closer to an extension of an imaginary line along the middle of the pitch bisecting the stumps, is called wide or fine distance, respectively.
In baseball, a pitch is the act of throwing a baseball toward home plate to start a play. The standard professional pitching distance, i.e., the distance between the front (near) side of the pitching rubber, where a pitcher start his delivery, and home plate is 60 feet 6 inches $(\approx 18.4 \mathrm{~m})$. The distance between bases is 90 feet.

- Three-point shot distance

In basketball, the three-point line is an arc at a set radius, called three-point shot distance, from the basket. A field goal made from beyond this line is worth three points. In international basketball, this distance is 6.25 m .
Goals in indoor soccer are worth 1, 2 or 3 points depending upon distance.

- Football distances

In association football (or soccer), the average distance covered by a player in a men's professional game is $9-10 \mathrm{~km}$. It consists of about 36% jogging, 24% walking, 20% cruising submaximally, 11% sprinting, 7% moving backwards and 2% moving in possession of the ball. The ratio of low- to high-intensity exercise is about 2.2:1 in terms of distance, and 7:1 in terms of time.
In American football, one yard means usual yard (0.9144 m) of the distance in the direction of one of the two goals. A field is 120 yards long by 53.3 yards wide. A team possessing the ball should advance at least the distance (10 yards) in order to get a new set of $(4$ or 3$)$ downs, i.e., periods from the time the ball is put into play to the time the play is whistled over by the officials. Yardage is the amount of yards gained or lost during a play, game, season, or career.

- Golf distances

In golf, carry and run are the distances the ball travels in the air and once it lands. The golfer chooses a golf club, grip, and stroke appropriate to the distance. The drive is the first shot of each hole made from the area of tees (peg markers) to long distances. The approach is used in long- to mid-distance shots.
The chip and putt are used for short-distance shots around and, respectively, on or near the green. The maximum distance a typical golfer can hit a ball with a particular club is the club's hitting distance.
A typical par (standard score) $3,4,5$ holes measure $229,230-430, \geq 431 \mathrm{~m}$. The greatest recorded drive distance, carry, shot with one hand are 471, 419, 257 m .
Some manufacturers stress the large range of a device in the product name, say, Ultimate Distance golf balls (or softball bates, spinning reels, etc.).

- Fencing distances

In combative sports and arts, distancing is the appropriate selection of the distance between oneself and a combatant throughout an encounter.
For example, in fencing, the distance is the space separating two fencers, while the distance between them is the fencing measure.

A lunge is a long step forward with the front foot. A backward spring is a leap backwards, out of distance, from the lunge position.
The following five distances are distinguished: open distance (farther than advance-lunge distance), advance-lunge distance, lunging distance, thrusting distance and close quarters (closer than thrusting distance).
In Japanese martial arts, maai is the engagement distance, i.e., the exact position from which one opponent can strike the other, after factoring in the time it will take to cross their distance, angle and rhythm of attack. In kendo, there are three maai distances: to-ma (long distance), chika-ma (short distance) and, in between, itto-ma $\approx 2 \mathrm{~m}$, from which only one step is needed in order to strike.

- Distance in boxing

The distance is boxing slang for a match that lasts the maximum number (10 or 12) of scheduled rounds. The longest boxing match (with gloves) was on April 6-7, 1893, in New Orleans, US: Bowen and Burke fought 110 rounds for 7.3 h.

- Soaring distances

Soaring is an air sport in which pilots fly unpowered aircraft called gliders (or sailplanes) using currents of rising air in the atmosphere to remain airborne.
The Silver Distance is a 50 km unassisted straight line flight. The Gold and Diamond Distance are cross-country flights of 300 km and over 500 km , respectively.
Possible courses-Straight, Out-and-Return, Triangle and 3 Turnpoints Distance-correspond to 0,1,2 and 3 turnpoints, respectively.
Using open class gliders, the world records in free distance, in absolute altitude and in gain of height are: $3,008.8 \mathrm{~km}$ (by Olhmann and Rabeder, 2003), $15,460 \mathrm{~m}$ (by Fossett and Enevoldson, 2006) and 12,894 m (by Bikle, 1961). The distance record with a paraglider is 501.1 km (by Hulliet, 2008).
Baumgartner jumped in 2012 from a balloon at 39.04 km , opening his parachute at 2.52 km . He set records in altitude and unassisted speed $373 \mathrm{~m} / \mathrm{s}=1.24$ Mach, but his free-fall was 17 s shorter than 4 min 36 s by Kittinger, 1960. The longest genuine, i.e., without the use of a drogue chute, free fall record is by Andreev, 1962: 24,500 m from an altitude of $25,458 \mathrm{~m}$. A stewardess Vesna Vulović survived in 1972 a fall of $10,000 \mathrm{~m}$, when JAT Flight 367 was brought down by explosives.

- Aviation distance records

Absolute general aviation world records in flight distance without refueling and in altitude are: $41,467.5 \mathrm{~km}$ by Fossett, 2006, and $37,650 \mathrm{~m}$ by Fedotov, 1977.
Distance and altitude records for free manned balloons are, respectively: 40,814 km (by Piccard and Jones, 1999) and 39,068 m (by Baumgartner, 2012).
The general flight altitude record is $112,010 \mathrm{~m}$ by Binnie, 2004, on a rocket plane.
The longest ($15,343 \mathrm{~km}$ during 18.5 h) nonstop scheduled passenger route is Singapore Airline's flight 21 from Newark to Singapore.
The Sikorsky prize (US $\$ 250,000$) will be awarded for the first flight of a humanpowered helicopter which will reach an altitude of 3 m , stay airborne for at least 1 min remaining within $10 \mathrm{~m} \times 10 \mathrm{~m}$. In 2012, a craft (32.2 kg) by a team at the University of Maryland flew 50 s at 61 cm up.

- Amazing greatest distances

Examples of such distances among Guinness world records are the greatest distances:

- goal scored in football (91.9 m),
- being fired from a cannon (59 m),
- walked unsupported on tightrope (130 m),
- run on a static cycle in $1 \mathrm{~min}(2.04 \mathrm{~km})$,
- moon-walked (as Michael Jackson) in $1 \mathrm{~h}(5.125 \mathrm{~km}$),
- covered three-legged (the left leg of one runner strapped to the right leg of another runner) in 24 h (33 km),
- jumped with a pogo stick (37.18 km),
- walked with a milk bottle balanced on the head (130.3 km),
- covered by a car driven on its side on two wheels (371.06 km),
- hitchhiked with a fridge ($1,650 \mathrm{~km}$).

Amazing race The 2904 is to drive the 2,904 miles from New York City to San Francisco for $\$ 2,904$ including the vehicle, fuel, food, tolls, repairs and tickets.

- Isometric muscle action

An isometric muscle action refers to exerting muscle strength and tension without producing an actual movement or a change in muscle length.
Isometric action training is used mainly by weightlifters and bodybuilders. Examples of such isometric exercises: holding a weight at a certain position in the range of motion and pushing or pulling against an immovable external resistance.

29.2 Equipment Distances

- Motor vehicle distances

The safe following distance: the reglementary distance from the vehicle ahead of the driver. For reglementary perception-reaction time of at least 2 s (the twosecond rule), this distance (in m) should be $0.56 \times v$, where v is the speed (in km / h). Sometimes the three-second rule is applied. The stricter rules are used for heavy vehicles (say, at least 50 m) and in tunnels (say, at least 150 m).
The perception-reaction distance (or thinking distance): the distance a vehicle travels from the moment the driver sees a hazard until he applies the brakes (corresponding to human perception time plus reaction time). Physiologically, it takes $1.3-1.5 \mathrm{~s}$, and the brake action begins 0.5 s after application.
The braking distance: the distance a motor vehicle travels from the moment the brakes are applied until the vehicle completely stops.
The (total) stopping distance: the distance a motor vehicle travels from where the driver perceives the need to stop to the actual stopping point (corresponding to the vehicle reaction time plus the vehicle braking capability).
The crash distance: (or crushable length): the distance between the driver and the front end of a vehicle in a frontal impact (or, say, between the pilot and the first part of an airplane to impact the ground).

The skidding distance (or length of the skid mark): the distance a motor vehicle skidded, i.e., slid on the surface of the road (from the moment of the accident, when a wheel stops rolling) leaving a rubber mark on the road.
The cab-to-frame (or cab-to-end, $C F, C E$): the distance from back of a truck's cab to the end of its frame.
The distance to empty (or $D T E$) displays the estimated distance the vehicle can travel before it runs out of fuel. The warning lamp start blinking at 80 km .
The acceleration-deceleration distance of a vehicle, say, a car or aircraft, is (Drezner-Drezner-Vesolowsky, 2009) the cruising speed v times the travel time. For a large origin-destination distances d, it is $d+\frac{v^{2}}{2}\left(\frac{1}{a}+\frac{1}{b}\right)$, where a is the acceleration at the beginning and $-b$ is the deceleration at the end.

- Aircraft distances

The maximum distance the aircraft can fly without refueling is called the maximum range if it fly with its maximum cargo weight and the ferry range if it fly with minimum equipment.
For a warplane, the combat range is the maximum distance it can fly when carrying ordnance, and the combat radius is a the maximum distance it can travel from its base, accomplish some objective, and return with minimal reserves.
The FAA lowest safe altitude: 1,000 feet (305 m) above the highest obstacle within a horizontal distance of 2,000 feet.
A ceiling is the maximum density altitude (height measured in terms of air density) an aircraft can reach under a set of conditions.
A flight level (FL) is specific barometric pressure, expressed as a nominal altitude in hundreds of feet, assuming standard sea-level pressure datum of 1013.25 hPa .
The transition altitude is the altitude above sea level at which aircraft change from the use of altitude to the use of FL's; in US and Canada, it is 18,000 feet ($5,500 \mathrm{~m}$).
The gust-gradient distance: the horizontal distance along an aircraft flight path from the edge of the gust (sudden, brief increase in the speed of the wind) to the point at which the gust reaches its maximum speed.
The distance-of-turn anticipation: the distance, measured parallel to the anticipated course and from the earliest position at which the turn will begin, to the point of route change.
The landing distance available (LDA): the length of runway which is declared available and suitable for the ground run of an airplane landing. The landing roll: the distance from the point of touchdown to the point where the aircraft can be brought to a stop or exit the runway. The actual landing distance (ALD): the distance used in landing and braking to a complete stop (on a dry runway) after crossing the runway threshold at 50 feet $(15.24 \mathrm{~m})$; it can be affected by various operational factors. The FAA required landing distance (used for dispatch purposes): a factor of 1.67 of ALD for a dry runway and 1.92 for a wet runway.
The takeoff run available (TORA): the runway distance (length of runway) declared suitable for the ground run of an airplane takeoff. The takeoff distance
available (TODA): TORA plus the length of the clearway, if provided. The emergency distance (ED or accelerate-stop distance): the runway plus stopway length (able to support the airplane during an aborted takeoff) declared suitable for the acceleration and deceleration of an airplane aborting a takeoff.
The arm's distance: the horizontal distance that an item of equipment is located from the datum (imaginary vertical plane, from which all horizontal measurements are taken for balance purposes, with the aircraft in level flight attitude).
In the parachute deployment process, the parachute opening distance is the distance the parachute system dropped from pulling to full inflation of the canopy, while the inflation distance is measured from line stretch (when the suspension lines are fully extended) to full inflation.
Wing's aspect ratio (of an aircraft or bird) is the ratio $A R=\frac{b^{2}}{S}$ of the square of its span to the area of its planform. If the length of the chord (straight line joining the leading and trailing edges of an airfoil) is constant, then $A R$ is length-to-breadth aspect ratio; cf. Chap. 1. A better measure of the aerodynamic efficiency is the wetted aspect ratio $\frac{b^{2}}{S_{w}}$, where S_{w} is the entire surface area exposed to airflow.

- Ship distances

Endurance distance: the total distance that a ship or ground vehicle can be selfpropelled at any specified endurance speed.
Distance made good: the distance traveled by the boat after correction for current, leeway (the sideways movement of the boat away from the wind) and other errors that may be missed in the original distance measurement.
Log: a device to measure the distance traveled which is further corrected to a distance made good. Hitherto, sea distances were measured in units of a day's sail.
Leg (nautical): the distance traveled by a sailing vessel on a single tack.
Berth: a safety margin to be kept from another vessel or from an obstruction.
Length overall (LOA): the maximum length of a vessels's hull along the waterline.
Length between perpendiculars (LPP): the length of a vessel along the waterline from the main bow perpendicular member to the main stern perpendicular member.
Freeboard: the height of a ship's hull above the waterline. Draft (or draught): the vertical distance between the waterline and the keel (bottom of the hull).
GM-distance (or metacyclic height) of a ship: the distance between its center of gravity G and the metacenter, i.e., the projection of the center of buoyancy (the center of gravity of the volume of water which the hull displaces) on the centerline of the ship as it heels. This distance, $1-2 \mathrm{~m}$, determines ship's stability. Distance line (in Diving): a marker (say, 50 m of thin polypropylene line) of the shortest route between two points. It is used, as Ariadne's thread, to navigate back to the start in conditions of low visibility, water currents or penetration diving into a space (cave, wreck, ice) without vertical ascent back.

- Distance-to-fault

In Cabling, DTF (distance-to-fault) is a test using time or frequency domain reflectometers to locate a fault, i.e., discontinuity caused by, say, a damaged cable, water ingress or improperly installed/mated connectors.
The amount of time a pulse (output by the tester into the cable) takes for the signal (reflected by a discontinuity) to return can be converted to distance along the line and provides an approximate location of the reflection point.
Protective distance relays respond to the voltage and current. The impedance (their ratio) per km being constant, these relays respond to the relay-fault distance.

- Distances in Forestry

In Forestry, the diameter at breast height (d.b.h.) is a standard measurement of a standing tree's diameter taken at 4.5 feet $(\approx 1.37 \mathrm{~m})$ above the ground. The diameter at ground line (d.g.l.) is the diameter at the estimated cutting height. The diameter outside bark (d.o.b.) is a measurement in which the thickness of the bark is included, and d.i.b. is a measurement in which it is excluded.
The crown height is the vertical distance of a tree from ground level to the lowest live branch of the crown. The merchantable height is the point on a tree to which it is salable. A \log is a length of tree suitable for processing into a wood product. Optimum road spacing is the distance between parallel roads that gives the lowest combined cost of skidding (log dragging) and road construction costs per unit of \log volume. The skid distance is the distance logs are dragged.
A yarder is a piece of equipment used to lift and pull logs by cable from the felling site to a landing area or to the road's side. The yarding distance is the distance from which the yarder takes logs. The average yarding distance is the total yarding distance for all turns divided by the total number of turns.
A spar tree is a tree used as the highest anchor point in a cable logging setup. A skyline is a cableway stretched between two spar trees and used as a track for a log carriage. The distance spanned by a skyline is called its reach.
Understory is the area of a forest which grows at the lowest height level between the forest floor and the canopy (layer formed by mature tree crowns and including other organisms). Perhaps, a half of all life on Earth could be found in canopy. The emergent layer contains a small number of trees which grow above the canopy.

- Distance in Military

In the Military, the term distance usually has one the following meanings: the space between adjacent individual ships or boats measured in any direction between foremasts;
the space between adjacent men, animals, vehicles, or units in a formation measured from front to rear;
the space between known reference points or a ground observer and a target, measured in m (artillery), or in units specified by the observer. This distance along an imaginary straight line from the spotter is called observer-target distance.

In amphibious operations, the distant retirement area is the sea area located to seaward of the landing area, and the distant support area is the area located in the vicinity of the landing area but at considerable distance seaward of it.
Strategic depth refers to the distances between the front lines and the combatants' industrial and population core areas.
In military service, a bad distance of the troop means a temporary intention to extract itself from war service. This passing was usually heavily punished and equated with that of desertion (an intention to extract itself durably).
In US military slang, BFE (Big Fucking Empty) is an extremely distant or isolated deployment or location; used mostly about the disgust at the distance or remoteness. Also, a klick means a distance of 1 km .

- Interline distance

In Engineering, the interline distance is the minimum distance permitted between any two buildings within an explosives operating line, in order to protect buildings from propagation of explosions due to the blast effect.

- Scaled distance

The scaled distance $(S D)$ is the parameter used to measure the level of vibration from a blast, when effects of the frequency characteristics are discounted.
The minimum safe distance from a blast to a monitoring location is $S D \times \sqrt{W}$, where W denotes the maximum per delay (instantaneous) charge weight.

- Standoff distance

The standoff distance is the distance of an object from the source of an explosion (in Warfare), or from the delivery point of a laser beam (in laser material processing). Also, in Mechanics and Electronics, it is the distance separating one part from another; for example, for insulating (cf. clearance distance), or the distance from a noncontact length gauge to a measured material surface.

- Buffer distance

In Nuclear Warfare, the horizontal buffer distance is the distance which should be added to the radius of safety in order to be sure that the specified degree of risk will not be exceeded. The vertical buffer distance is the distance which should be added to the fallout safe-height of a burst, in order to determine a desired height of burst so that militari significant fallout will not occur.
The term buffer distance is also used more generally as, for example, the buffer distance required between sister stores or from a high-voltage line.
Cf. clearance distance and, in Chap. 25, setback distance.

- Offset distance

In Nuclear Warfare, the offset distance is the distance the desired (or actual) ground zero is offset from the center of the area (or point) target.
In Computation, the offset is the distance from the beginning of a string to the end of the segment on that string. For a vehicle, the offset of a wheel is the distance from its hub mounting surface to the centerline of the wheel.
The term offset is also used for the displacement vector (cf. Chap. 24) specifying the position of a point or particle in reference to an origin or to a previous position.

- Range of ballistic missile

Main ranges of ballistic missiles are short (at most $1,000 \mathrm{~km}$), medium ($1,000-$ $3,500 \mathrm{~km}$), long ($3,500-5,500 \mathrm{~km}$) and intercontinental (at least 5,500 km).
Tactical and theatre ballistic missiles have ranges $150-300$ and $300-3,500 \mathrm{~km}$.

- Proximity fuse

The proximity fuse is a fuse that is designed to detonate an explosive automatically when close enough to the target.

- Sensor network distances

The stealth distance (or first contact distance): the distance traveled by a moving object (or intruder) until detection by an active sensor of the network (cf. contact quasi-distances in Chap. 19); the stealth time is the corresponding time.
The first sink contact distance: the distance traveled by a moving object (or intruder) until the monitoring entity can be notified via a sensor network.
The miss distance: the distance between the lines of sight representing estimates from two sensor sites to the target (cf. the line-line distance in Chap. 4).
The sensor tolerance distance: a range distance within which a localization error is acceptable to the application (cf. the tolerance distance in Chap. 25).
The actual distances between some pairs of sensors can be estimated by the time needed for a two-way communication. The positions of sensors in space can be deduced (cf. Distance Geometry Problem in Chap. 15) from those distances.

- Proximity sensors

Proximity (or distance) sensors are varieties of ultrasonic, laser, photoelectric and fiber optic sensors designed to measure the distance from itself to a target. For such laser range-finders, a special distance filter removes measurements which are shorter than expected, and which are therefore caused by an unmodeled object. The blanking distance is the minimum range of an ultrasonic proximity sensor.
The detection distance is the distance from the detecting surface of a sensor head to the point where a target approaching it is first detected. The maximum operating distance is its maximum detection distance from a standard modeled target, disregarding accuracy. The stable detection range is the detectable distance range in which a standard detected object can be stably detected with respect to variations in the operating ambient temperature and power supply.
The resolution is the smallest change in distance that a sensor can detect. The span is the working distance between measurement range endpoints over which the sensor will reliably measure displacement. The target standoff is the distance from the face of the sensor to the middle of the span.
Distance constant of a metereological sensor is the length of fluid flow past required to cause it to respond to 63.2% (i.e., $1-\frac{1}{e}$) of a step change in speed.

- Precise distance measurement

The resolution of a TEM (transmission electronic microscope) is about 0.2 nm $\left(2 \times 10^{-10} \mathrm{~m}\right)$. This resolution is 1,000 times greater than a light microscope and about 500,000 times greater than that of a human eye which is 576 mega pixel. However, only nanoparticles can fit in the vision field of an electronic microscope.

The methods, based on measuring the wavelength of laser light, are used to measure macroscopic distances nontreatable by an electronic microscope. But the uncertainty of such methods is at least the wavelength of light, say, 633 nm .
The recent adaptation of Fabry-Perot metrology (measuring the frequency of light stored between two highly reflective mirrors) to laser light permits the measuring of relatively long (up to 5 cm) distances with an uncertainty of only 0.01 nm .

The main devices used for low accuracy distance measurement are the rulers, engineer's scales, calipers and surveyor's wheels.

- Laser distance measurement

Lasers measure distances without physical contact. They allow for the most sensitive and precise length measurements, for extremely fast recording and for the largest measurement ranges. The main techniques used are as follows.
Triangulation (cf. laterations) is useful for distances from 1 mm to many km. Pulse measurements, used for large distances, measure the time of flight of a laser pulse from the device to some target and back. The phase shift method uses an intensity-modulated laser beam. Frequency modulation methods involve frequency-modulated laser beams. Interferometers allow for distance measurements with an accuracy which is far better than the wavelength of the light used.
The main advantage of laser distance measurement is that laser light has a very small wavelength, allowing one to send out a much more concentrated probe beam and thus to achieve a higher transverse spatial resolution.

- Radio distance measurement

DME distance measuring equipment) is an air navigation technology that measures distances by timing the propagation delay of UHF signals to a transponder (a receiver-transmitter that will generate a reply signal upon proper interrogation) and back. DME will be phased out by global satellite-based systems: GPS (US), GLONASS (Russia), BeiDou (China) and Galileo (EU).
The GPS (Global Positioning System) is a radio navigation system which permits one to get her/his position on the globe with accuracy of 10 m . It consists of 32 satellites and a monitoring system operated by the US Department of Defense. The nonmilitary part of GPS can be used by the purchase of an adequate receiver. The GPS pseudo-distance (or pseudo-range) is an approximation (since the receiver clock is not so perfect as the clock of a satellite) of the distance between a satellite and a GPS receiver by the travel time of a satellite time signal to a receiver multiplied by the propagation time of the radio signal.
The receiver uses trilatelation in order to calculate its position (latitude, longitude, altitude) and speed by solving a system of equations using its pseudodistances from 4 to 7 satellites and their positions. Cf. radio distances in Chap. 25.

- Laterations

Lateration (or ranging) is the determination of the distance from one location or position to another one. Usually, the term ranging is used for moving objects, while surveying is used for static terrestrial objects. Active ranging systems
operate with unilateral transmission and passive reflections, such as SONAR (SOund Navigation And Ranging), RADAR (RAdio Detection) and LIDAR (Light Detection).
A rangefinder is a device for measuring distance from the observer to a target. Among applications are surveying, navigation, ballistics and photography.
Triangulation is the process of locating a point P as the third point of a triangle with one known side (say, $[A, B]$ of length l) and two known angles (say, $\angle P A B=\alpha$ and $\angle P B A=\beta$). In \mathbb{R}^{2}, the perpendicular distance between P (say, a ship) and $[A, B]$ (say, a shore) is $\frac{l \sin \alpha \sin \beta}{\sin (\alpha+\beta)}$. Cf. point-line distance in Chap.4.
Technically more complicated, trilateration is locating a (possibly, moving) object P, using only its distances to known locations A_{1}, A_{2} and A_{3} (for example, to stations, beacons or satellites), as the overlap of $2 D$ or $3 D$ spheres, centered on them and having radii $d\left(P, A_{1}\right), d\left(P, A_{2}\right), d\left(P, A_{3}\right)$, respectively. Using additional stations, as in GPS, permits double-checking of the measurements. Cf. the metric basis in Chap. 1.
More accurate generally, multilateration is locating a moving object P, using only two pairs $\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right)$ of known locations, as the intersection of two curves defined by the relative distances $d\left(P, A_{1}\right)-d\left(P, A_{2}\right)$ and $d\left(P, B_{1}\right)-$ $d\left(P, B_{2}\right)$, respectively.

- Transmission distance

The transmission distance is a range distance: for a given signal transmission system (fiber optic cable, wireless, etc.), it is the maximal distance the system can support within an acceptable path loss level.
For a given network of contact that can transmit an infection (or, say, an idea with the belief system considered as the immune system), the transmission distance is the path metric of the graph, in which edges correspond to events of infection and vertices are infected individuals. Cf. forward quasi-distance in Chap. 22.

- Delay distance

The delay distance is a general term for the distance resulting from a given delay. For example, in a meteorological sensor, the delay distance is the length of a column of air passing a wind vane, such that the vane will respond to 50% of a sudden angular change in wind direction. When the energy of a neutron is measured by the delay (say, t) between its creation and detection, the delay distance is $v t-D$, where v is its velocity and D is the source-detector distance. In evaluations of visuospatial working memory (when the subjects saw a dot, following a $10-, 20-$, or 30 -s delay, and then drew it on a blank sheet of paper), the delay distance is the distance between the stimulus and the drawn dot.

- Master-slave distance

Given a design (say, remote manipulation, surveillance, or data transmission system) in which one device (the master) fully controls one or more other devices (the slaves), the master-slave distance is a measure of distance between the master and slave devices. Cf. also Sect. 18.2.

- Flow distance

In a manufacturing system, a group of machines for processing a set of jobs is often located in a serial line along a path of a transporter system.

The flow distance from machine i to machine j is the total flow of jobs from i to j times the physical distance between machines i and j.

- Single row facility layout

The SRFLP (or single row facility layout problem) is the problem of arranging (finding a permutation of) n departments (disjoint intervals) with given lengths l_{i} on a straight line so as to minimize the total weighted distance $\sum_{i=1}^{n-1} \sum_{i=j+1}^{n} w_{i j} d_{i j}$ between all department pairs. Here $w_{i j}$ is the average daily traffic between two departments i and j, and $d_{i j}$ is their centroid distance.
Among applications of SRFLP, there are arranging machines in a manufacturing system, rooms on a corridor and books on a shelf.

- Distance hart

In Technical Drawing, the distance hart means the distance from the center (the heart) of an object, as, for example, the distance hart of the toilet seat to the wall. The center-to-center distance (or on-center, O.C.) is the distance between the centers of two adjacent members (say, columns or pillars). Cf. centroid linkage, centroid distance in Chaps. 17, 19 and center gear distance.

- Push distance

Precise machining of bearing rings should be preceded by part centering. In such a centering system, the push distance is the distance the slide must move towards the part in order to push it from its off-center position to the center of rotation.

- Engine compression distance

Piston motors convert the compressed air energy to mechanical work through motion. Engine compression distance (or compression height) is the distance from the centerline of the wrist pin to the top deck of the piston.

- Shift distance

A penetrometer is a device to test the strength of a material, say, soil. The penetrometer (usually cone-shaped) is pressed against material and the depth of the resulting hole is measured. The shift distance (or friction-bearing offset) is the distance between the cone's base and the mid-height of the friction sleeve above it.

- Throat distance

The swing (size) of a drill/boring press is twice the throat distance, the distance from the center of the spindle to the column's edge.

- Collar distance

In Mining, the collar distance is the distance from the top of the powder column to the collar of the blasthole, usually filled with stemming.

- Quenching distance

Quenching is the rapid cooling of a workpiece; the quenching distance is the diameter of smallest hole a flame can travel through.
The run-up length is the distance between initiation of a flame and onset of detonation (supersonic combustion wave). Markstein number is the Markstein length, measuring the effect of curvature on a flame, divided by the flame thickness.

- Feeding distance

Carbon steel shrinks during solidification and cooling. In order to avoid resulting porosity, a riser (a cylindric liquid metal reservoir) provides liquid feed metal until the end of the solidification process.
A riser is evaluated by its feeding distance which is the maximum distance over which a riser can supply feed metal to produce a radiographically sound (i.e., relatively free of internal porosity) casting. The feeding length is the distance between the riser and the furthest point in the casting fed by it.

- Etch depth

Laser etching into a metal substrate produces craters. The etch depth is the central crater depth averaged over the apparent roughness of the metal surface.

- Approach distance

In metal cutting, the approach distance is the linear distance in the direction of feed between the point of initial cutter contact and the point of full cutter contact.

- Input and output distances

The input distance $d_{i n}$ of a machine M is a distance machine is moved by the input (applied on it) force $F_{\text {in }}$. The output distance $d_{\text {out }}$ is a distance the output (exerted by it) force $F_{\text {out }}$ results in. The mechanical advantage of M is $\frac{F_{\text {out }}}{F_{\text {in }}}=$ $\frac{d_{\text {in }}}{d_{\text {out }}}$.
For example, the effort (or resistance) distance and load distance on a lever are the distances from the fulcrum to the resistance and load, respectively.

- Instrument distances

Examples of such distances follow.
The K-distance: the distance from the outside fiber of a rolled steel beam to the web toe of the fillet of a rolled shape.
The end distance and edge distance are the distances from a fastener (say, bolt, screw, rivet, nail) to the end and, respectively, edge of treated material.
The calibration distance: the standard distance used in the process of adjusting the output or indication on a measuring instrument.

- Gear distances

Given two meshed gears, the distance between their centers is called the center distance. Examples of other distances used in basic gear formulas follow.
Pitch diameter: the diameter of the pitch circle (the circle whose radius is equal to the distance from the center of the gear to the pitch point).
Addendum: the radial distance between the pitch circle and the top of the teeth.
Dedendum: the depth of the tooth space below the pitch line. It should be greater than the addendum of the mating gear to provide clearance.
Whole depth: the total depth of a tooth space, equal to addendum plus dedendum.
Working depth: the depth of engagement (i.e., the sum of addendums) of two gears.
Backlash: the play between mating teeth.

- Threaded fastener distances

Examples of distances applied to nuts, screws and other threaded fasteners, follow.

Pitch: the nominal distance between two adjacent thread roots or crests.
Ply: a single thickness of steel forming part of a structural joint.
Grip length: the total distance between the underside of the nut to the bearing face of the bolt head.
Effective nut radius: the radius from the center of the nut to the point where the contact forces, generated when the nut is turned, can be considered to act.
Effective diameter (or pitch diameter): the diameter of an imaginary cylinder coaxial with the thread which has equal metal and space widths.
Virtual effective diameter: the effective diameter of a thread, allowing for errors in pitch and flank angles. Nominal diameter: the external diameter of the threads. Major and minor diameters are the diameters of imaginary cylinders parallel with the crests of the thread (i.e., the distance, crest-to-crest for an external or root-toroot for an internal thread), or, respectively, just touching the roots of an external (or the crests of an internal) thread.
Thread height: the distance between thread's minor and major diameters measured radially. Thread length: the length of the portion of the fastener with threads.

- Distance spacer

A distance spacer is a device for holding two objects at a given distance from each other. Examples of such components are: male-female distance bolt, distance bush, distance ring, distance plate, distance sleeve, distance finger, distance gauge.

- Sagging distance

The brazeability of brazing sheet materials is evaluated by their sagging distance, i.e., the deflection of the free end of the specimen sheet after brazing.

- Deflection

In Engineering, deflection is the degree, in distance or angle, to which a structural part is displaced under a load/stress.
In general, it can be a specified amount of deviation, say, the distance an elastic body or spring moves when subjected to a force, the amount by which a propagating wave or a projectile's trajectory is bent, and so on.

- Haul distance

In Engineering, the haul distance is the average distance material is transported from where it originates to where it is deposited.

- Distances in Structural Engineering

Examples of such distances related to superstructures (mainly, bridges and buildings) follow; cf. also bar-and-joint framework in Chap. 15.
For a building, its length is the distance between out ends of wall steel lines, width is the distance from outside of eave strut (piece spanning columns at roof's edge) of one sidewall to outside of eave strut of the opposite sidewall, height is the distance from finished floor level to the top outer point of the eave strut.
A bay refers the space between architectural elements. Bay depth is the distance from the building's corridor wall to the outside window. End bay length is the distance from outside of the outer flange (longitudinal part of a beam) of endwall
columns to centerline of the first interior frame column. Interior bay length is the distance between the centerlines of two adjacent interior main frame columns.
Clear height (or head room) is the vertical distance from the floor to the bottom of the lowest hanging overhead obstruction, allowable for passage.
A beam is a structural element that is capable of withstanding load primarily by resisting bending; girder is a support beam used in construction. A truss is a framed or jointed structure designed to act as a beam while each of its members is primarily subjected to longitudinal stress only. Given a truss or girder, its effective length is the distance between the points of support, effective depth is the perpendicular distance between the gravity lines, and economic depth is the depth, which will give satisfactory results from all standpoints and involving the least expenditure of money for properly combined first cost, operation, maintenance and repairs.
Effective span is the distance between supports (centres of bearings) in any structure. The bearing distance is the length of a beam between its bearing supports.
For a bridge, its effective span is the center-to-center distance of end pins, structural height is the maximum vertical distance from the uppermost point down to the lowest visible point, while the deck height is the maximum vertical distance from the deck (road bed) down to the ground or water surface.
Clear headway: the vertical distance from the lowest part of the superstructure to the ground or water surface; it is the measure of height of the tallest vehicle that could pass through the bridge. Clear waterway: the horizontal distance over the water, measured perpendicularly to the centrelines of adjacent piers.

- Clearance distance

A clearance distance (or separation distance, clearance) is, in Engineering and Safety, a physical distance or unobstructed space tolerance as, for example, the distance between the lowest point on the vehicle and the road (ground clearance). For vehicles going in a tunnel or under a bridge, the clearance is the difference between the structure gauge (minimum size of tunnel or bridge) and the vehicles' loading gauge (maximum size). A clearance distance can be prescribed by a code or a standard between a piece of equipment containing potentially hazardous material (say, fuel) and other objects (buildings, equipment, etc.) and the public. Or, say, no vehicle should parked nearer than 15 feet (4.6 m) from a fire hydrant. In general, clearance refers to the distance to the nearest "obstacle" as defined in a context. It can be either a tolerance (the limit of an acceptable unplanned deviation from the nominal or theoretical dimension), or an allowance (planned deviation). Cf. buffer distance and setback distance in Chap. 25.

- Creepage distance

The creepage distance is the shortest path distance along the surface of an insulation material between two conductive parts.
The shortest (straight line) distance between two conductive parts is called the clearance distance; cf. the general term above.

- Spark distance

The simplest way of measuring high voltages is by their spark distance (or maximum spark length). It is the length d of the gap between two electrodes
in a gas, at which given voltage V becomes the breakdown voltage, i.e., starts a discharge or electric arc (a spark jumps over). Spark distance depends on the pressure p of gas and many other factors. The Paschen's law estimate V as a function of $p d$.

- Humidifier absorption distance

The absorption distance of a (water centrifugal atomizing) humidifier is the list of minimum clearance dimensions needed to avoid condensation.

- Spray distance

The spray distance is the distance maintained between the nozzle tip of a thermal spraying gun and the surface of the workpiece during spraying.

- Protective action distance

The protective action distance is the distance downwind from an incident (say, a spill involving dangerous goods which are considered toxic by inhalation) in which persons may become incapacitated.
The screening distance in a forest fire is the downwind distance which should be examined for possible smoke-sensitive human sites. The spot fire distance is the maximum distance between a source of firebrands (a group of burning trees) and a potential spot fire (a fire started by flying sparks or embers from the main fire). The response distance is the distance to fire traveled by fire companies.
The notion of mean distance between people and any hazardous event operates also at a large scale: expanding the living area of human species (say, space colonization) will increase this distance and prevent many human extinction scenarios.

- Fringe distance

Usually, the fringe distance is the spacing between fringes, for example, components into which a spectral line splits in the presence of an electric or magnetic field (Stark and Zeeman effects, respectively, in Physics) or dark and light regions in the interference pattern of light beams (cf., in Chap. 24, Pendellösung fringes in dynamical diffraction distances).
For an interferometer, the fringe distance is the value $\frac{\lambda}{2 \sin \alpha}$, where λ is the laser wavelength and α is the beam angle, while the shear distance is the spacing between two, due to the thickness of the plate, reflections.
In Image Analysis, there is also the fringe distance (Brown, 1994) between binary images (cf. pixel distance in Chap. 21).

- Shooting distance

The shooting distance (or shot distance) is the distance achieved by, say, a bullet or a golf ball after a shot. The range of a Taser projectile delivering an incapacitating shock is called the shocking distance. Longest confirmed sniper kill at 2013 was $2,475 \mathrm{~m}$. The effective weapon distance is the actual distance (as opposed to maximal range) over which it is usually deployed. For given game and rifle type, the effective hunting distance (or killing distance) is the maximal range of a "clean kill".
For a shooting range, firing distance is the distance between the firing line and the target line. In shooting incident reconstruction, firing distance
(or muzzle-to-target distance) is the distance from the muzzle of the firearm to the victim's clothing.
In photography, the shooting distance is the camera-subject distance.

- Lens distances

A convex lens is converging/magnifying; a concave one is diverging/reducing.
The focal distance (effective focal length): the distance from the optical center of a lens (or a curved mirror) to the focus (to the image). Its reciprocal measured in m is called the diopter and is used as a unit of measurement of the (refractive) power of a lens; roughly, the magnification power of a lens is $\frac{1}{4}$ of its diopter.
The lens effective diameter is twice the longest lens radius measured from its center to the apex of its edge. The back focal length is the distance between the rear surface of a lens and its image plane; the front focal length is the distance from the vertex of the first lens to the front focal point.
Depth of field (DoF): the distance in the object plane (in front of and behind the object) over which the system delivers an acceptably sharp image, i.e., the region where blurring is tolerated at a particular resolution.
The depth of focus: the range of distance in the image plane (the eyepiece, camera, or photographic plate) over which the system delivers an acceptably sharp image.
The vertex depth (or sagitta) is the depth of the surface curve on a lens measured over a specific diameter. Given a circle, the apothem is the perpendicular distance from the midpoint of a chord to the circle's center; it is the radius minus the sagitta.
The working distance: the distance from the front end of a lens system to the object when the instrument is correctly focused; it is used to modify the DoF. For a flashlight, it is the distance at which the illuminance (maximum light falling on a surface) would fall to 0.25 lux as, say, a full moon on a clear night.
The register distance (or flange distance): the distance between the flange (protruding rim) of the lens mount and the plane of the film image.
The conjugate image distance and conjugate object distance: the distances along the optical axis of a lens from its principal plane to the image and object plane, respectively. When a converging lens is placed between the object and the screen, the sum of the inverses of those distances is the inverse focal distance.
A circle of confusion (CoC) is an optical spot caused by a cone of light rays from a lens not coming to a perfect focus; in photography, it is the largest blur circle that will still be perceived as a point when viewed at a distance of 25 cm .
The close (or minimum, near) focus distance: the closest distance to which a lens can approach the subject and still achieve focus.
The hyper-focal distance: the distance from the lens to the nearest point (hyperfocal point) that is in focus when the lens is focused at infinity; beyond this point all objects are well defined and clear. It is the nearest distance at which the far end of the depth of field stretches to infinity (cf. infinite distance).
Eye relief: the distance an optical instrument can be held away from the eye and still present the full field-of-view. The exit pupil width: the width of the cone of light that is available to the viewer at the exact eye relief distance.

- Distances in Stereoscopy

A method of 3D imaging is to create a pair of 2D images by a two-camera system.
The convergence distance is the distance between the baseine of the camera center to the convergence point where the two lenses should converge for good stereoscopy. This distance should be 15-30 times the intercamera distance.
The intercamera distance (or baseline length, interocular lens spacing) is the distance between the two cameras from which the left and right eye images are rendered.
The picture plane distance is the distance at which the object will appear on the picture plane (the apparent surface of the image). The window is a masking border of the screen frame such that objects, which appear at (but not behind or outside) it, appear to be at the same distance from the viewer as this frame. In human viewing, the picture plane distance is about 30 times the intercamera distance.

- Distance-related shots

A film shot is what is recorded between the time the camera starts (the director's call for "action") and the time it stops (the call to "cut").
The main distance-related shots (camera setups) are:

- establishing shot: a shot, at the beginning of a sequence which establishes the location of the action and/or the time of day;
- long shot: a shot taken from at least 50 yards (45.7 m) from the action;
- medium shot: a shot from 5 to 15 yards ($4.6-13.7 \mathrm{~m}$), including a small entire group, which shows group/objects in relation to the surroundings;
- close-up: a shot from a close position, say, the actor from the neck upwards;
- two-shot: a shot that features two persons in the foreground;
- insert: an inserted shot (usually a close up) used to reveal greater detail.

29.3 Miscellany

- Range distances

In Mathematics, range is the set of values of a function or variable; specifically, it means the difference (or interval, area) between a maximum and minimum.
The range distances are practical distances emphasizing a maximum distance for effective operation such as vehicle travel without refueling, a bullet range, visibility, movement limit, home range of an animal, etc. For example, the range of a risk factor (toxicity, blast, etc.) indicates the minimal safe distancing.
The operating distance (or nominal sensing distance) is the range of a device (for example, a remote control) which is specified by the manufacturer and used as a reference. The activation distance is the maximal distance allowed for activation of a sensor-operated switch.

- Spacing distances

The following examples illustrate this large family of practical distances emphasizing a minimum distance; cf. minimum distance, nearest-neighbor distance in Animal Behavior, first-neighbor distance in Chaps. 16, 23, 24, respectively. The miles in trail: a specified minimum distance, in nautical miles, required to be maintained between airplanes. Seat pitch and seat width are airliner distances between, respectively, two rows of seats and the armrests of a single seat.
The isolation distance: a specified minimum distance required (because of pollination) to be maintained between variations of the same species of a crop in order to keep the seed pure (for example, $\approx 3 \mathrm{~m}$ for rice).
The legal distance: a minimum distance required by a judicial rule or decision, say, a distance a sex offender is required to live away from school.
In a restraining order, stay away means to stay a certain distance (often 300 yards, i.e., 275 m) from the protected person. A general distance restriction: say, a minimum distance required for passengers traveling on some long distance trains in India, or a distance from a voting facility where campaigning is permitted.
The stop-spacing distance: the interval between bus stops; such mean distance in US light rail systems ranges from 500 (Philadelphia) to 1,742 m (Los Angeles).
The character spacing: the interval between characters in a given computer font. The just noticeable difference (JND): the smallest perceived percent change in a dimension (for distance/position, etc.); cf. tolerance distance in Chap. 25).

- Cutoff distances

Given a range of values (usually, a length, energy, or momentum scale in Physics), cutoff (or cut-off) is the maximal or minimal value, as, for example, Planck units.
A cutoff distance is a cutoff in a length scale. For example, infrared and ultraviolet cutoff (the maximal and minimal wavelength that the human eye takes into account) are long-distance and short-distance cutoff, respectively, in the visible spectrum. Cutoff distances are often used in Molecular Dynamics.
A similar notion of a threshold distance refers to a limit, margin, starting point distance (usually, minimal) at which some effect happens or stops. Some examples are the threshold distance of sensory perception, neuronal reaction or, say, upon which a city or road alters the abundance patterns of the native bird species.

- Quality metrics

A quality metric (or, simply, metric) is a standard unit of measure or, more generally, part of a system of parameters, or systems of measurement. This vast family of measures (or standards of measure) concerns different attributes of objects. In such a setting, our distances and similarities are rather "similarity metrics", i.e., metrics (measures) quantifying the extent of relatedness between two objects.
Examples include academic metrics, crime statistics, corporate investment metrics, economic metrics (indicators), education metrics, environmental metrics
(indices), health metrics, market metrics, political metrics, properties of a route in computer networking, software metrics and vehicle metrics.
For example, the site http://metripedia.wikidot.com/start aims to build an Encyclopedia of IT (Information Technology) performance metrics. Some examples of nonequipment quality metrics are detailed below.
Landscape metrics evaluate, for example, greenway patches in a given landscape by patch density (the number of patches per km^{2}), edge density (the total length of patch boundaries per hectare), shape index $\frac{E}{4 \sqrt{A}}$ (where A is the total area, and E is the total length of edges), connectivity, diversity, etc.
Morphometrics evaluate the forms (size and shape) related to organisms (brain, fossils, etc.). For example, the roughness of a fish school is measured by its fractal dimension $2 \frac{\ln P-\ln 4}{\ln A}$ where P, A are its perimeter (m) and surface $\left(\mathrm{m}^{2}\right)$.
Management metrics include: surveys (say, of market share, sales increase, customer satisfactions), forecasts (say, of revenue, contingent sales, investment), R\&D effectiveness, absenteeism, etc.
Risk metrics are used in Insurance and, in order to evaluate a portfolio, in Finance.
Importance metrics rank the relative influence such as, for example:

- PageRank of Google ranking web pages;
- ISI (now Thomson Scientific) Impact Factor of a journal measuring, for a given two-year period, the number of times the average article in this journal is cited by some article published in the subsequent year;
- Hirsch's h-index of a scholar: the largest number h such that h of his/her publications have at least h citations;
- and his/her $i 10$-index: the number of publications with at least ten citations.

- Heterometric and homeometric

The adjective heterometric means involving or dependent on a change in size, while homeometric means independent of such change.
Those terms are used mainly in Medicine; for example, heterometric and homeometric autoregulation refer to intrinsic mechanisms controlling the strength of ventricular contractions that depend or not, respectively, on the length of myocardial fibers at the end of diastole; cf. distances in Medicine.

- Distal and proximal

The antipodal notions near (close, nigh) and far (distant, remote) are also termed proximity and distality.
The adjective distal (or peripheral) is an anatomical term of location (on the body, the limbs, the jaw, etc.); corresponding adverbs are: distally, distad.
For an appendage (any structure that extends from the main body), proximal means situated towards the point of attachment, while distal means situated around the furthest point from this point of attachment. More generally, as opposed to proximal (or central), distal means: situated away from, farther from a point of reference (origin, center, point of attachment, trunk). As opposed to mesial it means: situated or directed away from the midline or mesial plane of the body.

Proximal and distal demonstratives are words indicating place deixis, i.e., a spatial location relative to the point of reference. Usually, they are two-way as this/that, these/those or here/there, i.e., in terms of the dichotomy near/far from the speaker. But, say, Korean, Japanese, Spanish, and Thai make a three-way distinction: proximal (near to the speaker), medial (near to the addressee) and distal (far from both). English had the third form, yonder (at an indicated distance within sight), still spoken in Southern US. Cf. spatial language in Chap. 28.
A distal stimulus is an real-word object or event, which, by some physical process, stimulates the body's sensory organs. Resulting raw pattern of neural activity is called the proximal stimulus. Perception is the constructing mental representations of distal stimuli using the information available in proximal stimuli.
A proximate cause is an event which is closest to, or immediately responsible for causing, some observed result. This exists in contrast to a higher-level ultimate (or distal) cause which is usually thought of as the "real" reason something occurred.
Tinbergen's (1960) proximate and ultimate questions about behavior are "how" an organism structures function? and "why" a species evolved the structures it has?

- Distance effect

The distance effect is a general term for the change of a pattern or process with distance. Usually, it is the result of distance decay. For example, a static field attenuates proportionally to the inverse square of the distance from the source.
Another example of the distance effect is a periodic variation (instead of uniform decrease) in a certain direction, when a standing wave occurs in a time-varying field. It is a wave that remains in a constant position because either the medium is moving in the opposite direction, or two waves, traveling in opposite directions, interfere; cf. Pendellösung length in Chap. 24.
The distance effect, together with the size (source magnitude) effect determine many processes; cf. island distance effect, insecticide distance effect in Chap. 23 and symbolic distance effect, distance effect on trade in Chap. 28.

- Distance decay

The distance decay is the attenuation of a pattern or process with distance. Cf. distance decay (in Spatial Interaction) in Chap. 28.
Examples of distance-decay curves: Pareto model $\ln I_{i j}=a-b \ln d_{i j}$, and the model $\ln I_{i j}=a-b d_{i j}^{p}$ with $p=\frac{1}{2}, 1$, or 2 (here $I_{i j}$ and $d_{i j}$ are the interaction and distance between points i, j, while a and b are parameters). The Allen curve gives the exponential drop of frequency of all communication between engineers as the distance between their offices increases, i.e., face-toface probability decays.
A mass-distance decay curve is a plot of "mass" decay when the distance to the center of "gravity" increases. Such curves are used, say, to determine an offender's heaven (the point of origin; cf. distances in Criminology) or the galactic mass within a given radius from its center (using rotation-distance curves).

- Distance factor

A distance factor is a multiplier of some straight-line distance needed to account for additional data. For example, 10% increase of aircraft weight implies 20% increase, i.e., a distance factor of 1.2, in needed take-off distance.

- Propagation length

For a pattern or process attenuating with distance, the propagation length is the distance to decay by a factor of $\frac{1}{e}$.
Cf. radiation length and the Beer-Lambert law in Chap. 24.
A scale height is a distance over which a quantity decreases by a factor of e.

- Incremental distance

An incremental distance is a gradually increasing (by a fixed amount) one.

- Distance curve

A distance curve is a plot (or a graph) of a given parameter against a corresponding distance. Examples of distance curves, in terms of a process under consideration, are: time-distance curve (for the travel time of a wave-train, seismic signals, etc.), height-run distance curve (for the height of tsunami wave versus wave propagation distance from the impact point), drawdown-distance curve, melting-distance curve and wear volume-distance curve.
A force-distance curve is, in SPM (scanning probe microscopy), a plot of the vertical force that the tip of the probe applies to the sample surface, while a contact-AFM (Atomic Force Microscopy) image is being taken. Also, frequencydistance and amplitude-distance curves are used in SPM.
The term distance curve is also used for charting growth, for instance, a child's height or weight at each birthday. A plot of the rate of growth against age is called the velocity-distance curve; this term is also used for the speed of aircraft. Example of a constant rate of growth: in a month, human (hear or body) hair grow 15 and 8.1 mm , while nails (finger and toe) grow 3.5 and 1.6 mm .

- Distance sensitivity

Distance sensitivity is a general term used to indicate the dependence of something on the associated distance. It could be, say, commuting distance sensitivity of households, traveling distance sensitivity of tourists, distance sensitive technology, distance sensitive products/services and so on.

- Characteristic diameters

Let X be an irregularly-shaped 3D object, say, Earth's spheroid or a particle.
A characteristic diameter (or equivalent diameter) of X is the diameter of a sphere with the same geometric or physical property of interest. Examples follow. The authalic diameter and volumetric diameter (equivalent spherical diameter) of X are the diameters of the spheres with the same surface area and volume. The Heywood diameter is the diameter of a circle with the same projection area.
Cf. the Earth radii in Chap. 25 and the shape parameters in Chap. 21.
The Stokes diameter is the diameter of the sphere with the same gravitational velocity as X, while the aerodynamic diameter is the diameter of such sphere of unit density. Cf. the hydrodynamic radius in Chap. 24.

Equivalent electric mobility, diffusion and light scattering diameters of a particle X are the diameters of the spheres with the same electric mobility, penetration and intensity of light scattering, respectively, as X.

- Characteristic length

A characteristic length (or scale) is a convenient reference length of a given configuration, such as the overall length of an aircraft, the maximum diameter or radius of a body of revolution, or a chord or span of a lifting surface.
In general, it is a length that is representative of the system (or region) of interest, or the parameter which characterizes a given physical quantity in, say, heat transfer or fluid mechanics. For complex shapes, it is defined as the volume of the body divided by the surface area. For example, for a rocket engine, it is the ratio of the volume of its combustion chamber to the area of the nozzle's throat, representing the average distance that the products of burned fuel must travel to escape.

- True length

In Engineering Drawing, true length is any distance between points that is not foreshortened by the view type. In 3D, lines with true length are parallel to the projection plane, as, for example, the base edges in a top view of a pyramid.

- Path length

In general, a path is a line representing the course of actual, potential or abstract movement. In Topology, a path is a certain continuous function; cf. parametrized metric curve in Chap. 1.
In Physics, path length is the total distance an object travels, while displacement is the net distance it travels from a starting point. Cf. displacement, inelastic mean free path, optical distance and dislocation path length in Chap. 24. In Chemistry, (cell) path length is the distance that light travels through a sample in an analytical cell.
In Graph Theory, path length is a discrete notion: the number of vertices in a sequence of vertices of a graph; cf. path metric in Chap. 1. Cf. Internet IP metric in Chap. 22 for path length in a computer network. Also, it means the total number of machine code instructions executed on a section of a program.

- Middle distance

The middle distance is a general term. For example, it can be a precise distance (cf. running distances), the halfway between the observer and the horizon (cf. distance to horizon in Chap. 25), implied horizon of a scene (cf. representation of distance in Painting in Chap. 28), or the place that you can see when you are not quite focusing on the world around you (Urban Dictionary of slang).
The Great Declaration by Simon Magus (first Gnostic and Gnostic Christ) claims: "Of the universal Aeons spring two shoots, without beginning or end, stemming forth from the Root, which is the invisible Power, unknowable Silence. Of these shoots, one appears from above. It is the Great Power, Universal Mind ordering all things, male. The other appears from below. It is the Great Thought, female, producing all things. They paired, uniting and appearing in the Middle Distance, the Incomprehensible Air, without beginning or end. Here is
the Father by whom all those things, having a beginning and end, are sustained and nourished..."

- Long-distance

The term long-distance usually refers to telephone communication (longdistance call, operator) or to covering large distances by moving (long-distance trail, running, swimming, riding of motorcycles or horses, etc.) or, more abstractly: long-distance migration, commuting, supervision, relationship, etc. For example, a long-distance relationship (LDR) is typically an intimate relationship that takes place when the partners are separated by a considerable distance.
For example, a long-distance (or distance) thug has two meanings: (1) a person that is a coward in real life, but gathers courage from behind the safety of a computer, phone, or through e-mail; and (2) a hacker, spammer, or scam artist that takes advantage of the Internet to cause harm to others from a distance.
Cf. long-distance dispersal, animal and plant long-distance communication, long range order, long range dependence, action at a distance (in Computing, Physics, along DNA).
$D D D$ (or direct distance dialing) is any switched telecommunication service (like $1+, 0++$, etc.) that allows a call originator to place long-distance calls directly to telephones outside the local service area without an operator.
The term short-distance is rarely used. Instead, the adjective short range means limited to (or designed for) short distances, or relating to the near future. Finally, touching, for two objects, is having (or getting) a zero distance between them.

- Long-distance intercourse

Long-distance intercourse (coupling at a distance) is found often in Native American folklore: Coyote, the Trickster, is said to have lengthened his penis to enable him to have intercourse with a woman on the opposite bank of a lake.
A company Distance Labs has announced the "intimate communication over a distance", an interactive installation Mutsugoto which draws, using a custom computer vision and projection system, lines of light on a body of a person. Besides light, haptic technology provides a degree of touch communication between remote users. A company Lovotics created Kissinger, a messaging device wirelessly sending kisses. Sports over distance is another example of implemented computer-supported movement-based interaction between remote players.
In Nature, the acorn barnacle (small sessile crustacean) have the largest penisbody size ratio (up to 10 when extended) of any animal. The squid Onykia ingens have largest ratio among mobile animals. The male octopus Argonauta use a modified arm, the hectocotylus, to transfer sperm to the female at a distance; this tentacle detaches itself from the body and swims-under its own power-to the female.
Also, many aquatic animals (say, coral, hydra, sea urchin, bony fish) and amphibians reproduce by external fertilization: eggs and sperm are released into the water. Similar transfer of sperm at a distance is pollination (by wind
or organisms) in flowering plants. Another example is in vitro fertilization in humans.
The shortest range intercourse happens in anglerfish. The male, much smaller, latches onto a female with his sharp teeth, fuses inside her to the blood-vessel level and degenerates into a pair of testicles. It releases sperm when the female (with about six males inside) releases eggs. But female-male pairings of a parasitic worm Schistosoma mansoni is monogamous: the male's body forms a channel, in which it holds the longer and thinner female for their entire adult lives, up to 30 years. Two worms Diplozoon paradoxum fuse completely for lifetime of cross-fertilization.

- Go the distance

Go the (full) distance is a general distance idiom meaning to continue to do something until it is successfully completed.
An unbridgeable distance is a distance (seen as a spatial or metaphoric extent), impossible to span: a wide unbridgeable river, chasm or, in general, differences.

References

[Abel91] Abels H. The Gallery Distance of Flags, Order, Vol. 8, pp. 77-92, 1991.
[AAH00] Aichholzer O., Aurenhammer F. and Hurtado F. Edge Operations on Non-crossing Spanning Trees, Proc. 16-th European Workshop on Computational Geometry CG’2000, pp. 121-125, 2000.
[AACLMP98] Aichholzer O., Aurenhammer F., Chen D.Z., Lee D.T., Mukhopadhyay A. and Papadopoulou E. Voronoi Diagrams for Direction-sensitive Distances, Proc. 13th Symposium on Computational Geometry, ACM Press, New York, 1997.
[Aker97] Akerlof G.A. Social Distance and Social Decisions, Econometrica, Vol. 65-5, pp. 1005-1027, 1997.
[Amar85] Amari S. Differential-geometrical Methods in Statistics, Lecture Notes in Statistics, Springer-Verlag, 1985.
[Amba76] Ambartzumian R. A Note on Pseudo-metrics on the Plane, Z. Wahrsch. Verw. Gebiete, Vol. 37, pp. 145-155, 1976.
[ArWe92] Arnold R. and Wellerding A. On the Sobolev Distance of Convex Bodies, Aeq. Math., Vol. 44, pp. 72-83, 1992.
[Badd92] Baddeley A.J. Errors in Binary Images and an L^{p} Version of the Hausdorff Metric, Nieuw Archief voor Wiskunde, Vol. 10, pp. 157-183, 1992.
[BaFa07] Baier R. and Farkhi E. Regularity and Integration of Set-Valued Maps Represented by Generalized Steiner Points Set-Valued Analysis, Vol. 15, pp. 185-207, 2007.
[Bara01] Barabási A.L. The Physics of the Web, Physics World, July 2001.
[Barb12] Barbaresco F. Information Geometry of Covariance Matrix: Cartan-Siegel Homogenous Bounded Domains, Mostow-Berger Fibration and Fréchet Median, in Matrix Information Geometry, Bhatia R. and Nielsen F. (eds.) Springer, 2012.
[Barb35] Barbilian D. Einordnung von Lobayschewskys Massenbestimmung in either Gewissen Allgemeinen Metrik der Jordansche Bereiche, Casopis Mathematiky a Fysiky, Vol. 64, pp. 182-183, 1935.
[BLV05] Barceló C., Liberati S. and Visser M. Analogue Gravity, Living Rev. Rel. Vol. 8, 2005; arXiv: gr-qc/0505065, 2005.
[BLMN05] Bartal Y., Linial N., Mendel M. and Naor A. Some Low Distortion Metric Ramsey Problems, Discrete and Computational Geometry, Vol. 33, pp. 27-41, 2005.
[Bass89] Basseville M. Distances measures for signal processing and pattern recognition, Signal Processing, Vol. 18, pp. 349-369, 1989.
[Bass13] Basseville M. Distances measures for statistical data processing - An annotated bibliography, Signal Processing, Vol. 93, pp. 621-633, 2013.
[Bata95] Batagelj V. Norms and Distances over Finite Groups, J. of Combinatorics, Information and System Sci., Vol. 20, pp. 243-252, 1995.
[Beer99] Beer G. On Metric Boundedness Structures, Set-Valued Analysis, Vol. 7, pp. 195208, 1999.
[BGLVZ98] Bennet C.H., Gács P., Li M., Vitánai P.M.B. and Zurek W. Information Distance, IEEE Transactions on Information Theory, Vol. 44-4, pp. 1407-1423, 1998.
[BGT93] Berrou C., Glavieux A. and Thitimajshima P. Near Shannon Limit Errorcorrecting Coding and Decoding: Turbo-codes, Proc. of IEEE Int. Conf. on Communication, pp. 1064-1070, 1993.
[BFK99] Blanchard F., Formenti E. and Kurka P. Cellular Automata in the Cantor, Besicovitch and Weyl Topological Spaces, Complex Systems, Vol. 11, pp. 107123, 1999.
[Bloc99] Bloch I. On fuzzy distances and their use in image processing under unprecision, Pattern Recognition, Vol. 32, pp. 1873-1895, 1999.
[BCFS97] Block H.W., Chhetry D., Fang Z. and Sampson A.R. Metrics on Permutations Useful for Positive Dependence, J. of Statistical Planning and Inference, Vol. 62, pp. 219-234, 1997.
[Blum70] Blumenthal L.M. Theory and Applications of Distance Geometry, Chelsea Publ., New York, 1970.
[Borg86] Borgefors G. Distance Transformations in Digital Images, Comp. Vision, Graphic and Image Processing, Vol. 34, pp. 344-371, 1986.
[BrLi04] Bramble D.M. and Lieberman D.E. Endurance Running and the Evolution of Hoто, Nature, Vol. 432, pp. 345-352, 2004.
[O'Bri03] O'Brien C. Minimization via the Subway metric, Honor Thesis, Dept. of Math., Ithaca College, New York, 2003.
[BKMR00] Broder A.Z., Kumar S. R., Maaghoul F., Raghavan P., Rajagopalan S., Stata R., Tomkins A. and Wiener G. Graph Structure in the Web: Experiments and Models, Proc. 9-th WWW Conf., Amsterdam, 2000.
[BGL95] Brualdi R.A., Graves J.S. and Lawrence K.M. Codes with a Poset Metric, Discrete Math., Vol. 147, pp. 57-72, 1995.
[Brya85] Bryant V. Metric Spaces: Iteration and Application, Cambridge Univ. Press, 1985.
[BuHa90] Buckley F. and Harary F. Distance in Graphs, Redwood City, CA: AddisonWesley, 1990.
[Bull12] Bullough E. "Psychical Distance" as a Factor in Art and as an Aesthetic Principle, British J. of Psychology, Vol. 5, pp. 87-117, 1912.
[BBI01] Burago D., Burago Y. and Ivanov S. A Course in Metric Geometry, Amer. Math. Soc., Graduate Studies in Math., Vol. 33, 2001.
[BuKe53] Busemann H. and Kelly P.J. Projective Geometry and Projective Metrics, Academic Press, New York, 1953.
[Buse55] Busemann H. The Geometry of Geodesics, Academic Press, New York, 1955.
[BuPh87] Busemann H. and Phadke B.B. Spaces with Distinguished Geodesics, Marcel Dekker, New York, 1987.
[Cair01] Cairncross F. The Death of Distance 2.0: How the Communication Revolution will Change our Lives, Harvard Business School Press, second edition, 2001.
[CSY01] Calude C.S., Salomaa K. and Yu S. Metric Lexical Analysis, Springer-Verlag, 2001.
[CaTa08] Cameron P.J. and Tarzi S. Limits of cubes, Topology and its Appl., Vol. 155, pp. 1454-1461, 2008.
[CHKSS07] Carmi S., Havlin S., Kirkpatrick S., Shavitt Y. and Shir E. A model of internet topology using k-shell decomposition, Proc. Nat. Acad. Sci., Vol. 104, pp. 1115011154, 2007.
[Cha08] Cha S.-H. Taxonomy of nominal type histogram distance measures, Proc. American Conf. on Appl, Math., World Scientific and Engineering Academy and Society (WREAS) Stevens Point, Wisconsin, US, pp. 325-330, 2008.
[ChLu85] Cheng Y.C. and Lu S.Y. Waveform Correlation by Tree Matching, IEEE Trans. Pattern Anal. Machine Intell., Vol. 7, pp. 299-305, 1985.
[Chen72] Chentsov N.N. Statistical Decision Rules and Optimal Inferences, Nauka, Moscow, 1972.
[ChFi98] Chepoi V. and Fichet B. A Note on Circular Decomposable Metrics, Geom. Dedicata, Vol. 69, pp. 237-240, 1998.
[ChSe00] Choi S.W. and Seidel H.-P. Hyperbolic Hausdorff Distance for Medial Axis Transform, Research Report MPI-I-2000-4-003 of Max-Planck-Institute für Informatik, 2000.
[CLMNWZ05] Coifman R.R., Lafon S., A.B., Maggioni M., Nadler B., Warner F., Zucker S.W. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. of the National Academy of Sciences, Vol. 102, No. 21, pp. 7426-7431, 2005.
[COR05] Collado M.D., Ortuno-Ortin I. and Romeu A. Vertical Transmission of Consumption Behavior and the Distribution of Surnames, mimeo, Universidad de Alicante, 2005.
[Cops68] Copson E.T. Metric Spaces, Cambridge Univ. Press, 1968.
[Cora99] Corazza P. Introduction to metric-preserving functions, Amer. Math. Monthly, Vo. 104, pp. 309-323, 1999.
[Corm03] Cormode G. Sequence Distance Embedding, PhD Thesis, Univ. of Warwick, 2003.
[CPQ96] Critchlow D.E., Pearl D.K. and Qian C. The Triples Distance for Rooted Bifurcating Phylogenetic Trees, Syst. Biology, Vol. 45, pp. 323-334, 1996.
[CCL01] Croft W. B., Cronon-Townsend S. and Lavrenko V. Relevance Feedback and Personalization: A Language Modeling Perspective, in DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, pp. 49-54, 2001.
[CKK03] Cuijpers R.H., Kappers A.M.L and Koenderink J.J. The metrics of visual and haptic space based on parallelity judgements, J. Math. Psychology, Vol. 47, pp. 278-291, 2003.
[DaCh88] Das P.P. and Chatterji B.N. Knight's Distance in Digital Geometry, Pattern Recognition Letters, Vol. 7, pp. 215-226, 1988.
[Das90] Das P.P. Lattice of Octagonal Distances in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 663-667, 1990.
[DaMu90] Das P.P. and Mukherjee J. Metricity of Super-knight's Distance in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 601-604, 1990.
[Dau05] Dauphas N. The U/Th Production Ratio and the Age of the Milky Way from Meteorites and Galactic Halo Stars, Nature, Vol. 435, pp. 1203-1205, 2005.
[Day81] Day W.H.E. The Complexity of Computing Metric Distances between Partitions, Math. Social Sci., Vol. 1, pp. 269-287, 1981.
[DeDu13] Deza M.M. and Dutour M. Voronoi Polytopes for Polyhedral Norms on Lattices, arXiv:1401.0040 [math.MG], 2013.
[DeDu03] Deza M.M. and Dutour M. Cones of Metrics, Hemi-metrics and Super-metrics, Ann. of European Academy of Sci., pp. 141-162, 2003.
[DeHu98] Deza M. and Huang T. Metrics on Permutations, a Survey, J. of Combinatorics, Information and System Sci., Vol. 23, Nrs. 1-4, pp. 173-185, 1998.
[DeLa97] Deza M.M. and Laurent M. Geometry of Cuts and Metrics, Springer, 1997.
[DPM12] Deza M.M., Petitjean M. and Matkov K. (eds) Mathematics of Distances and Applications, ITHEA, Sofia, 2012.
[DiGa07] Ding L. and Gao S. Graev metric groups and Polishable subgroups, Advances in Mathematics, Vol. 213, pp. 887-901, 2007.
[EhHa88] Ehrenfeucht A. and Haussler D. A New Distance Metric on Strings Computable in Linear Time, Discrete Appl. Math., Vol. 20, pp. 191-203, 1988.
[EM98] Encyclopedia of Math., Hazewinkel M. (ed.), Kluwer Academic Publ., 1998. Online edition: http://eom.springer.de/default.htm
[Ernv85] Ernvall S. On the Modular Distance, IEEE Trans. Inf. Theory, Vol. 31-4, pp. 521522, 1985.
[EMM85] Estabrook G.F., McMorris F.R. and Meacham C.A. Comparison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary Units, Syst. Zool, Vol. 34, pp. 193-200, 1985.
[FaMu03] Farrán J.N. and Munuera C. Goppa-like Bounds for the Generalized Feng-Rao Distances, Discrete Appl. Math., Vol. 128, pp. 145-156, 2003.
[Faze99] Fazekas A. Lattice of Distances Based on 3D-neighborhood Sequences, Acta Math. Academiae Paedagogicae Nyiregyháziensis, Vol. 15, pp. 55-60, 1999.
[FeWa08] Feng J. and Wang T.M. Characterization of protein primary sequences based on partial ordering, J. Theor. Biology, Vol. 254, pp. 752-755, 2008.
[Fell97] Fellous J-M. Gender Discrimination and Prediction on the Basis of Facial Metric Information, Vision Research, Vol. 37, pp. 1961-1973, 1997.
[Ferg03] Ferguson N. Empire: The Rise and Demise of the British World Order and Lessons for Global Power, Basic Books, 2003.
[FoSc06] Foertsch T. and Schroeder V. Hyperbolicity, CAT(-1)-spaces and the Ptolemy Inequality, Math. Ann., Vol. 350, pp. 339-356, 2011.
[FrSa07] Frankild A. and Sather-Wagstaff S. The set of semidualizing complexes is a nontrivial metric space, J. Algebra, Vol. 308, pp. 124-143, 2007.
[Frie98] Frieden B.R. Physics from Fisher information, Cambridge Univ. Press, 1998.
[GaSi98] Gabidulin E.M. and Simonis J. Metrics Generated by Families of Subspaces, IEEE Transactions on Information Theory, Vol. 44-3, pp. 1136-1141, 1998.
[Gile87] Giles J.R. Introduction to the Analysis of Metric Spaces, Australian Math. Soc. Lecture Series, Cambridge Univ. Press, 1987.
[GoMc80] Godsil C.D. and McKay B.D. The Dimension of a Graph, Quart. J. Math. Oxford Series (2), Vol. 31, pp. 423-427, 1980.
[GOJKK02] Goh K.I., Oh E.S., Jeong H., Kahng B. and Kim D. Classification of Scale Free Networks, Proc. Nat. Acad. Sci. US, Vol. 99, pp. 12583-12588, 2002.
[Gopp71] Goppa V.D. Rational Representation of Codes and (L, g)-codes, Probl. Peredachi Inform., Vol. 7-3, pp. 41-49, 1971.
[Goto82] Gotoh O. An Improved Algorithm for Matching Biological Sequences, J. of Molecular Biology, Vol. 162, pp. 705-708, 1982.
[GKC04] Grabowski R., Khosa P. and Choset H. Development and Deployment of a Line of Sight Virtual Sensor for Heterogeneous Teams, Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, 2004.
[Grub93] Gruber P.M. The space of Convex Bodies in Handbook of Convex Geometry, Gruber P.M. and Wills J.M. (eds.), Elsevier Sci. Publ., 1993.
[HSEFN95] Hafner J., Sawhney H.S., Equitz W., Flickner M. and Niblack W. Efficient Color Histogram Indexing for Quadratic Form Distance Functions, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17-7, pp. 729-736, 1995.
[Hall69] Hall E.T. The Hidden Dimension, Anchor Books, New York, 1969.
[Hami66] Hamilton W.R. Elements of Quaternions, second edition 1899-1901 enlarged by C.J. Joly, reprinted by Chelsea Publ., New York, 1969.
[HRJM13] Harispe S., Ranwez S., Janaqi S. and Montmain J. Semantic Measures for the Comparison of Units of Language, Concepts or Instances from Text and Knowledge Base Analysis, arXiv:1310.1285[cs.CL], 2013.
[HeMa02] Head K. and Mayer T. Illusory Border Effects: Distance mismeasurement inflates estimates of home bias in trade, CEPII Working Paper No 2002-01, 2002.
[Hemm02] Hemmerling A. Effective Metric Spaces and Representations of the Reals, Theoretical Comp. Sci., Vol. 284-2, pp. 347-372, 2002.
[High89] Higham N.J. Matrix Nearness Problems and Applications, in Applications of Matrix Theory, Gover M.J.C. and Barnett S. (eds.), pp. 1-27. Oxford University Press, 1989.
[Hofs80] Hofstede G. Culture's Consequences: International Differences in Work-related Values, Sage Publ., California, 1980.
[Hube94a] Huber K. Codes over Gaussian Integers, IEEE Trans. Inf. Theory, Vol. 40-1, pp. 207-216, 1994.
[Hube94b] Huber K. Codes over Eisenstein-Jacobi Integers, Contemporary Math., Vol. 168, pp. 165-179, 1994.
[HFPMC02] Huffaker B., Fomenkov M., Plummer D.J., Moore D. and Claffy K., Distance Metrics in the Internet, Proc. IEEE Int. Telecomm. Symp. (ITS-2002), 2002.
[InVe00] Indyk P. and Venkatasubramanian S. Approximate Congruence in Nearly Linear Time, Proc. 11th ACM-SIAM symposium on Discrete Algorithms, pp. 354-260, San Francisco, 2000.
[Isbe64] Isbell J. Six Theorems about Metric Spaces, Comment. Math. Helv., Vol. 39, pp. 65-74, 1964.
[IKP90] Isham C.J., Kubyshin Y. and Penteln P. Quantum Norm Theory and the Quantization of Metric Topology, Class. Quantum Gravity, Vol. 7, pp. 1053-1074, 1990.
[IvSt95] Ivanova R. and Stanilov G. A Skew-symmetric Curvature Operator in Riemannian Geometry, in Symposia Gaussiana, Conf. A, Behara M., Fritsch R. and Lintz R. (eds.), pp. 391-395, 1995.
[JWZ94] Jiang T., Wang L. and Zhang K. Alignment of Trees - an Alternative to Tree Edit, in Combinatorial Pattern Matching, Lecture Notes in Comp. Science, Vol. 807, Crochemore M. and Gusfield D. (eds.), Springer-Verlag, 1994.
[Klei88] Klein R. Voronoi Diagrams in the Moscow Metric, Graphtheoretic Concepts in Comp. Sci., Vol. 6, pp. 434-441, 1988.
[Klei89] Klein R. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Comp. Sci., Springer-Verlag, 1989.
[K1Ra93] Klein D.J. and Randic M. Resistance distance, J. of Math. Chemistry, Vol. 12, pp. 81-95, 1993.
[Koel00] Koella J.C. The Spatial Spread of Altruism Versus the Evolutionary Response of Egoists, Proc. Royal Soc. London, Series B, Vol. 267, pp. 1979-1985, 2000.
[KoSi88] Kogut B. and Singh H. The Effect of National Culture on the Choice of Entry Mode, J. of Int. Business Studies, Vol. 19-3, pp. 411-432, 1988.
[KKN02] Kosheleva O., Kreinovich V. and Nguyen H.T. On the Optimal Choice of Quality Metric in Image Compression, Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, 7-9 April 2002, Santa Fe, IEEE Comp. Soc. Digital Library, Electronic edition, pp. 116-120, 2002.
[LaLi81] Larson R.C. and Li V.O.K. Finding Minimum Rectilinear Distance Paths in the Presence of Barriers, Networks, Vol. 11, pp. 285-304, 1981.
[LCLMV04] Li M., Chen X., Li X., Ma B. and Vitányi P. The Similarity Metric, IEEE Trans. Inf. Theory, Vol. 50-12, pp. 3250-3264, 2004.
[LuRo76] Luczak E. and Rosenfeld A. Distance on a Hexagonal Grid, IEEE Trans. on Comp., Vol. 25-5, pp. 532-533, 1976.
[MaMo95] Mak King-Tim and Morton A.J. Distances between Traveling Salesman Tours, Discrete Appl. Math., Vol. 58, pp. 281-291, 1995.
[Mart00] Martin K. A foundation for computation, Ph.D. Thesis, Tulane University, Department of Math., 2000.
[MaSt99] Martin W.J. and Stinson D.R. Association Schemes for Ordered Orthogonal Arrays and (T, M, S)-nets, Can. J. Math., Vol. 51, pp. 326-346, 1999.
[Masc04] Mascioni V. Equilateral Triangles in Finite Metric Spaces, The Electronic J. Combinatorics, Vol. 11, 2004, R18.
[Matt92] S.G. Matthews, Partial metric topology, Research Report 212, Dept. of Comp. Science, University of Warwick, 1992.
[McCa97] McCanna J.E. Multiply-sure Distances in Graphs, Congressus Numerantium, Vol. 97, pp. 71-81, 1997.
[Melt91] Melter R.A. A Survey of Digital Metrics, Contemporary Math., Vol. 119, 1991.
[Monj98] Monjardet B. On the Comparison of the Spearman and Kendall Metrics between Linear Orders, Discrete Math., Vol. 192, pp. 281-292, 1998.
[Morg76] Morgan J.H. Pastoral ecstasy and the authentic self: Theological meanings in symbolic distance, Pastoral Psychology, Vol. 25-2, pp. 128-137, 1976.
[MLLM13] Mucherino A., Lavor C., Liberti L. and Maculan N. (eds.) Distance Geometry, Springer, 2013.
[Mura85] Murakami H. Some Metrics on Classical Knots, Math. Ann., Vol. 270, pp. 35-45, 1985.
[NeWu70] Needleman S.B. and Wunsh S.D. A general Method Applicable to the Search of the Similarities in the Amino Acids Sequences of Two Proteins, J. of Molecular Biology, Vol. 48, pp. 443-453, 1970.
[NiSu03] Nishida T. and Sugihara K. FEM-like Fast Marching Method for the Computation of the Boat-Sail Distance and the Associated Voronoi Diagram, Technical Reports, METR 2003-45, Dept. Math. Informatics, The University of Tokyo, 2003.
[OBS92] Okabe A., Boots B. and Sugihara K. Spatial Tessellation: Concepts and Applications of Voronoi Diagrams, Wiley, 1992.
[OkBi08] Okada D. and M. Bingham P.M. Human uniqueness-self-interest and social cooperation, J. Theor. Biology, Vol. 253-2, pp. 261-270, 2008.
[OSLM04] Oliva D., Samengo I., Leutgeb S. and Mizumori S. A Subjective Distance between Stimuli: Quantifying the Metric Structure of Representations, Neural Computation, Vol. 17-4, pp. 969-990, 2005.
[OnGi96] Ong C.J. and Gilbert E.G. Growth distances: new measures for object separation and penetration, IEEE Transactions in Robotics and Automation, Vol. 12-6, pp. 888-903, 1996.
[Ophi14] Ophir A. and Pinchasi R. Nearly equal distances in metric spaces, Discrete Appl. Math., Vol. 174, pp. 122-127, 2014.
[Orli32] Orlicz W. Über eine Gewisse Klasse von Raumen vom Typus B', Bull. Int. Acad. Pol. Series A, Vol. 8-9, pp. 207-220, 1932.
[OASM03] Ozer H., Avcibas I., Sankur B. and Memon N.D. Steganalysis of Audio Based on Audio Quality Metrics, Security and Watermarking of Multimedia Contents V (Proc. of SPIEIS and T), Vol. 5020, pp. 55-66, 2003.
[Page65] Page E.S. On Monte-Carlo Methods in Congestion Problem. 1. Searching for an Optimum in Discrete Situations, J. Oper. Res., Vol. 13-2, pp. 291-299, 1965.
[Petz96] Petz D. Monotone Metrics on Matrix Spaces, Linear Algebra Appl., Vol. 244, 1996.
[PM] PlanetMath.org, http://planetmath.org/encyclopedia/
[Rach91] Rachev S.T. Probability Metrics and the Stability of Stochastic Models, Wiley, New York, 1991.
[ReRo01] Requardt M. and Roy S. Quantum Spacetime as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces, Class. Quantum Gravity, Vol. 18, pp. 3039-3057, 2001.
[Resn74] Resnikoff H.I. On the geometry of color perception, AMS Lectures on Math. in the Life Sciences, Vol. 7, pp. 217-232, 1974.
[RiYi98] Ristad E. and Yianilos P. Learning String Edit Distance, IEEE Transactions on Pattern Recognition and Machine Intelligence, Vol. 20-5, pp. 522-532, 1998.
[RRHD10] Rocher T., Robine M., Hanna P. and Desainte-Catherine M. A Survey of Chord Distances With Comparison for Chord Analysis, Proc. Int. Comp. Music Conf., pp. 187-190, New York, 2010.
[RoPf68] Rosenfeld A. and Pfaltz J. Distance Functions on Digital Pictures, Pattern Recognition, Vol. 1, pp. 33-61, 1968.
[RTG00] Rubner Y., Tomasi C. and Guibas L.J. The Earth Mover's Distance as a Metric for Image Retrieval, Int. J. of Comp. Vision, Vol. 40-2, pp. 99-121, 2000.
[Rumm76] Rummel R.J. Understanding Conflict and War, Sage Publ., California, 1976.
[ScSk83] Schweizer B. and Sklar A. Probabilistic Metric Spaces, North-Holland, 1983.
[Selk77] Selkow S.M. The Tree-to-tree Editing Problem, Inform. Process. Lett., Vol. 6-6, pp. 184-186, 1977.
[ShKa79] Sharma B.D. and Kaushik M.L. Limits intensity random and burst error codes with class weight considerations, Elektron. Inform.-verarb. Kybernetik, Vol. 15, pp. 315-321, 1979.
[Tai79] Tai K.-C. The Tree-to-tree Correction Problem, J. of the Association for Comp. Machinery, Vol. 26, pp. 422-433, 1979.
[Tai104] Tailor B. Introduction: How Far, How Near: Distance and Proximity in the Historical Imagination, History Workshop J., Vol. 57, pp. 117-122, 2004.
[Tymo06] Tymoczko D. The Geometry of Musical Chords, Science, Vol. 313, Nr. 5783, pp. 72-74, 2006.
[ToSa73] Tomimatsu A. and Sato H. New Exact Solution for the Gravitational Field of a Spinning Mass, Phys. Rev. Letters, Vol. 29, pp. 1344-1345, 1972.
[Vard04] Vardi Y. Metrics Useful in Network Tomography Studies, Signal Processing Letters, Vol. 11-3, pp. 353-355, 2004.
[VeHa01] Veltkamp R.C. and Hagendoorn M. State-of-the-Art in Shape Matching, in Principles of Visual Information Retrieval, Lew M. (ed.), pp. 87-119, SpringerVerlag, 2001.
[Watt99] Watts D.J. Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton Univ. Press, 1999.
[Wein72] Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972.
[Weis99] Weisstein E.W. CRC Concise Encyclopedia of Math., CRC Press, 1999.
[Weis12] Weiss I. Metric 1-spaces, arXiv:1201.3980[math.MG], 2012.
[Well86] Wellens R.A. Use of a Psychological Model to Assess Differences in Telecommunication Media, in Teleconferencing and Electronic Communication, Parker L.A. and Olgren O.H. (eds.), pp. 347-361, Univ. of Wisconsin Extension, 1986.
[WFE] Wikipedia, the Free Encyclopedia, http://en.wikipedia.org
[WiMa97] Wilson D.R. and Martinez T.R. Improved Heterogeneous Distance Functions, J. of Artificial Intelligence Research, Vol. 6, p. 134, 1997.
[WoPi99] Wolf S. and Pinson M.H. Spatial-Temporal Distortion Metrics for In-Service Quality Monitoring of Any Digital Video System, Proc. of SPIE Int. Symp. on Voice, Video, and Data Commun., September 1999.
[Yian91] Yianilos P.N. Normalized Forms for Two Common Metrics, NEC Research Institute, Report 91-082-9027-1, 1991.
[Youn98] Young N. Some Function-Theoretic Issues in Feedback Stabilisation, Holomorphic Spaces, MSRI Publication, Vol. 33, 1998.
[YOI03] Yutaka M., Ohsawa Y. and Ishizuka M. Average-Clicks: A New Measure of Distance on the World Wide Web, J. Intelligent Information Systems, Vol. 20-1, pp. 51-62, 2003.
[Zeli75] Zelinka B. On a Certain Distance between Isomorphism Classes of Graphs, Casopus. Pest. Mat., Vol. 100, pp. 371-373, 1975.

Index

Note: For the sake of clarity and convenience, items explained in the book with bullet points are capitalized, while regular index entries are listed in lower case letters.
(1,2) - B-metric, 47
$(2 k+1)$-gonal distance, 11
$(2 k+1)$-gonal inequality, 11
(3, 4)-metric, 392
(α, β)-metric, 145
(c, p)-norm metric, 238
(h, Δ)-metric, 171
(p, q)-relative metric, 101
0 -protometric, 6
1-sum distance, 90
2-metric, 72
2-nd differential metric, 405
$2 k$-gonal distance, 10
$2 k$-gonal inequality, 10
$2 n$-gon metric, 364
$3 D$-chamfer metric, 392
4-metric, 361
6-metric, 370
8-metric, 370
C-distance, 119
C-inframetric, 8
C-metric, 200
D-distance graph, 290
D-separation in Bayesian network, 421
Dps distance, 436
F-norm metric, 95
F-rotation distance, 300
F-space, 96
F^{*}-metric, 96
F^{*}-space, 96
$F_{S T}$-based distances, 439
G-distance, 171
G-invariant Riemannian metric, 139
G-invariant metric, 198
G-norm metric, 202
G-space, 111
G-space of elliptic type, 112
J-metric, 74
L_{1}-rearrangement distance, 216
L ∞-rearrangement distance, 216
L_{p}-Hausdorff distance, 54
L_{p}-Wasserstein distance, 271
L_{p}-metric, 102
L_{p}-metric between densities, 260
L_{p}-space, 102
M-relative metric, 101
$M S$ - 2-metric, 72
P-metric, 11
Q-metric, 171
Q_{0}-difference, 334
$\mathrm{SO}(3)$-invariant metric, 159
$\operatorname{Sym}(n, \mathbb{R})^{+}$and $\operatorname{Her}(n, \mathbb{C})^{+}$metrics, 240
T_{0}-space, 64
T_{1}-space, 64
T_{2}-space, 64
T_{3}-space, 64
T_{4}-space, 65
T_{5}-space, 65
T_{6}-space, 65
W-distance on building, 81
Λ-metric, 170
\sum-Hausdorff distance, 398
§-metric, 279
α-divergence, 266
α-metric, 362
χ^{2}-distance, 267
δ-bolic metric space, 114
δ-hyperbolic metric, 9
ϵ-neighborhood, 34
ϵ-net, 34
γ-metric, 69
$\mathbb{Z}\left(\eta_{m}\right)$-related norm metrics, 231
μ-metric, 305
p-Manhattan metric, 231
\#-Gordian distance, 179
\#-inversion distance, 179
τ-distance space, 97
a-fault diameter, 278
a-wide distance, 278
b-burst metric, 314
c-isomorphism of metric spaces, 42
c-transportation distance, 271
c-uniformly perfect metric space, 49
f-divergence, 265
f-potential energy, 31
g-transform metric, 88
k-ameter, 33
k-cocomparability graph, 288
k-diameter, 33
k-distant chromatic number, 289
k-geodetically connected graph, 285
k-mer distance, 457
k-oriented distance, 189
k-power of a graph, 284
k-radius sequence, 222
k-th minimum distance, 312
lp-metric, 100
m-dissimilarity, 72
m-hemimetric, 71
m-simplex inequality, 71
m-th root pseudo-Finsler metric, 147
n-manifold, 67
$n D$-neighborhood sequence metric, 372
p-adic metric, 228
p-average compound metric, 280
p-difference metric, 52
p-distance, 447
p-smoothing distance, 86
p-th order mean Hausdorff distance, 398
q-Loewner space, 13
q-gram similarity, 218
r-locating-dominating set, 289
s-energy, 31
t-bottleneck distance, 400
t-distance chromatic number, 36
t-irredundant set, 288
t-scaled metric, 86
t-spanner, 293
t-truncated metric, 86
w-distance, 75
3D point cloud distance, 353

A

Absolute moment metric, 259
Absolute summation distance, 315
absolute value metric, 229
acceleration-deceleration distance, 679
Acceleration distance, 488
ACME distance, 318
Acoustic metric, 506
Acoustics distances, 410
ACS-distance, 457
Action at a distance (in Computing), 428
Action at a distance (in Physics), 509
Action at a distance along DNA/RNA, 480
Action distance, 621
activation distance, 692
additive distance, 435
Additively weighted distance, 379
Additively weighted power distance, 379
additive metric, 8
Additive stem ω-distance, 457
Administrative cost distance, 425
aesthetic distance, 651
affine diameter, 186
Affine distance, 122
Affine metric, 122
Affine pseudo-distance, 122
Affine space-time distance, 574
Agmon distance, 143
Agmon metric, 143
Ahlfors q-regular metric space, 12
Aichelburg-Sexl metric, 507
Aircraft distances, 679
Airlift distance, 381
Airway distance, 523
Aitchison distance, 268
Albanese metric, 204
Albert quasi-metric, 5
Alcubierre metric, 589
alert distance, 463
Alexandrov space, 66
Alice-Bob distance, 509
Alignment distance, 304
Ali-Silvey distance, 269
all dead distance, 469
Altitude, 547

Amazing greatest distances, 678
Amino gamma distance, 456
Amino p-distance, 456
Amino Poisson correction distance, 456
Analytic metric, 169
anaphoric distance, 642
ancestral path distance, 442
Anderberg similarity, 333
Anderson-Darling distance, 261
Angle distances between subspaces, 243
angle-opening distance, 664
Angular diameter distance, 568
Angular distance, 369
angular semimetric, 336
Animal communication, 467
Animal depth/distance perception, 464
anogenital distance, 662
Anthony-Hammer similarity, 218
anti de Sitter metric, 577
Antidistance, 215
antimedian metric space, 15
Antinomy of distance, 651
antipodal extension distance, 89
Antonelli-Shimada metric, 147
apoapsis distance, 547
Apollonian metric, 129
Appert partially ordered distance, 83
Approach distance, 687
Approach space, 76
approximate midpoints, 19
Approximative human-scale distances, 628
Arago distance, 496
Archery target distances, 675
Arc routing problems, 293
Area deviation, 181
area distance, 568
Arithmetic codes distance, 314
Arithmetic r-norm metric, 227
arm's distance, 680
aspect ratio, 33
Asplund metric, 184
Assouad-Nagata dimension, 25
as-the-crow-flies distance, 100
astronomical distance, 544
Astronomical length units, 544
Asymptotic dimension, 26
asymptotic metric cone, 39
Atanassov distances, 59
Atiyah-Hitchin metric, 159
Atmosphere distances, 534
Atmospheric visibility distances, 533
Atomic jump distance, 498
Atomic radius, 511
Attributed tree metrics, 306

Average-clicks Web quasi-distance, 426
Average color distance, 389
average distance property, 29
Average square distance, 438
average yarding distance, 681
Aviation distance records, 677
Azimuth, 547
Azukawa semimetric, 162

B

Baddeley-Molchanov distance function, 77
bad distance, 682
Bag distance, 216
Baire metric, 216
Baire space, 66
Baire space of weight $\kappa, 220$
Ball convexity, 19
Ballistics distances, 489
Banach-Mazur compactum, 104
Banach-Mazur distance, 55
Banach-Mazur metric, 184
Banach space, 99
Bandwidth of a graph, 292
Bar-and-joint framework, 290
Barbaresco metrics, 242
Barbilian metric, 129
Barbilian semimetric, 47
Bark spectral distance, 405
Baroni-Urbani-Buser similarity, 327
Bar product distance, 311
Barriola-Vilenkin monopole metric, 587
Barry-Hartigan quasi-metric, 450
Bartlett distance, 241
Barycentric metric space, 56
base pair distance, 451
Bat-and-ball game distances, 675
Bayesian distance, 260
Bayesian graph edit distance, 298
beeline distance, 100
Beer-Lambert law, 495
belt distance, 276
Bend radius, 515
Benjamini-Schramm metric, 295
Berger metric, 140
Bergman metric, 158
Bergman p-metric, 248
Bertotti-Robinson metric, 588
Berwald metric, 146
Berwald-Moör metric, 147
Besicovitch distance, 247
Besicovitch semimetric, 343
Besov metric, 248
Betweenness centrality, 417

Bhattacharya distance 1, 266
Bhattacharya distance 2, 266
Bianchi metrics, 581
Bible code distance, 651
Bi-discrepancy semimetric, 263
Biholomorphically invariant semimetric, 161
Bi-invariant metric, 198
bi-Lipschitz equivalent metrics, 42
Bi-Lipschitz mapping, 41
bimetric theory of gravity, 505
Binary Euclidean distance, 329
Binary relation distance, 300
Binding energy, 504
Biodistances for nonmetric traits, 670
Biotope distance, 459
biotope transform metric, 86
Birnbaum-Orlicz distance, 264
Bjerrum length, 499
Blaschke distance, 53
Blaschke metric, 143
Bloch metric, 248
Block graph, 288
Boat-sail distance, 382
Bochner metric, 247
Body distances for clothes, 673
Body distances in Anthropometry, 670
Body size rules, 469
Bogolubov-Kubo-Mori metric, 152
Bohr metric, 247
Bohr radius, 602
Bombieri metric, 234
Bond distance, 512
Bondi radar distance, 570
Bondi radiating metric, 587
Bonnor beam metric, 585
Bonnor dust metric, 583
Boolean metric space, 82
Borgefors metric, 392
Bottleneck distance, 399
Boundary of metric space, 114
Bounded box metric, 352
Bounded metric space, 49
Bourdon metric, 114
Box metric, 90
Brain distances, 666
braking distance, 678
Braun-Blanquet similarity, 332
Bray-Curtis similarity, 326
breakpoint distance, 453
Bregman divergence, 265
Bregman quasi-distance, 251
British Rail metric, 364
Bryant metric, 146
BTZ metric, 577

Buffer distance, 682
Bundle metric, 155
Bunke-Shearer metric, 296
Burago-Burago-Ivanov metric, 364
Burbea-Rao distance, 265
Bures metric, 152
Bures-Uhlmann distance, 509
Bursting distances, 478
Busemann convexity, 18
Busemann metric, 111
Busemann metric of sets, 94
Bushell metric, 189
bush metric, 9

C

Calabi metric, 159
Calabi-Yau metric, 157
Cameron-Tarzi cube, 92
Canberra distance, 327
Cantor connected metric space, 13
Cantor metric, 343
Cantor space, 48
Capillary diffusion distance, 475
Carathéodory metric, 162
Carmeli metric, 592
Carnot-Carathéodory metric, 141
Cartan metric, 166
Catalan surface metric, 177
Category of metric spaces, 44
caterpillar metric, 364
CAT (κ) inequality, 113
CAT(к) space, 112
Cauchy completion, 48
Cavalli-Sforza arc distance, 436
Cavalli-Sforza-Edwards chord distance, 436
Cayley-Klein-Hilbert metric, 127
Cayley-Menger matrix, 21
Cayley metric, 224
CC metric, 141
Cellular automata distances, 34
c-embedding, 41
Center of mass metric, 352
center-to-center distance, 686
central lung distance, 664
Central Park metric, 365
centroid distance, 366
Cepstral distance, 406
Chain metric, 224
Chamfering distances, 392
Chamfer metric, 373
Characteristic diameters, 696
Characteristic length, 697
charge distance, 455

Chartrand-Kubicki-Schultz distance, 294
Chaudhuri-Murthy-Chaudhuri metric, 393
Chaudhuri-Rosenfeld metric, 58
Chebotarev-Shamis metric, 281
Chebyshev center, 37
Chebyshev metric, 361
Chebyshev radius, 37
Chebyshev set, 37
Chemical distance, 513
Chernoff distance, 269
chessboard metric, 370
Chess programming distances, 375
Chinese checkers metric, 362
chordal distance, 243
Chordal metric, 232
chord metric space, 111
Chromatic numbers of metric space, 35
Chromatographic migration distances, 502
Circle metric, 368
circle-packing metric, 192
circular cut semimetric, 282
circular decomposable semimetric, 283
Circular-railroad quasi-metric, 369
City-block metric, 361
City distance, 381
cladistic distance, 435
Clarity similarity, 269
Clark distance, 329
Clearance distance, 689
Closed metric interval, 15
Closed subset of metric space, 13
CMD-distance, 334
Co-ancestry coefficient, 439
Coarse embedding, 43
coarse isometry, 43
coarsely equivalent metrics, 43
Coarse-path metric, 7
coefficient of relatedness, 443
coefficient of relationship, 443
Collaboration distance, 413
Collar distance, 686
Collective motion of organisms, 462
Collision avoidance distance, 365
Color component distance, 390
Color distances, 389
colored distances, 289
combinatorial dimension, 46
common subgraph distance, 296
common supergraph distance, 296
communication distance, 468
Commuting distance, 623
Commutation distance, 201
commuting time metric, 281
Comoving distance, 566

Compact metric space, 50
Compact space, 67
Completely normal space, 65
Completely regular space, 64
Complete metric, 48
complete metric space, 48
Complete Riemannian metric, 139
Complex Finsler metric, 160
Complex modulus metric, 230
Compoundly weighted distance, 380
Compton wavelength, 494
Computable metric space, 61
conceptual distance, 419
conditional diameter, 33
conduction distance, 479
Cone distance, 385
Cone metric, 81
Cones over metric space, 190
configuration metric, 350
Conformally invariant metric, 171
Conformally stationary metric, 584
conformal mapping, 138
Conformal metric, 137
Conformal metric mapping, 41
Conformal radius, 130
Conformal space, 138
Congruence order of metric space, 36
configuration metric, 350
Connected metric space, 13
Connected space, 66
Connes metric, 153
constrained edit distance, 214
Constructive metric space, 61
Consumer access distance, 623
Contact quasi-distances, 368
Continental shelf distance, 522
Continued fraction metric on irrationals, 229
Continuous dual space, 255
continuum, 50
Contraction, 44
Contraction distance, 298
Contractive mapping, 44
Convex distance function, 37
convex metric, 170
Convolution metric, 263
Cook distance, 338
correlation distance, 335
Correlation length, 503
correlation triangle inequality, 11
cortical distance, 666
cosh distance, 406
cosine distance, 336
Cosine similarity, 335
cosmic light horizon, 564

Cosmic sound horizon, 565
cosmological distance, 562
Cosmological distance ladder, 569
Co-starring distance, 414
Countably-normed space, 68
Coupling length, 503
Covariance similarity, 335
covariance triangle inequality, 10
covering radius, 34
Cramér-von Mises distance, 261
crash distance, 678
Creepage distance, 689
critical distance, 410
Critical domain size, 459
critical mating distances, 444
Critical radius, 504
Crnkovic-Drachma distance, 261
cross-bin histogram distance, 363
Cross-difference, 10
Crossing-free transformation metrics, 300
crossover distance, 541
crossover metric, 305
cross-ratio, 10
Crowding distance, 355
crystalline metrics, 100
Cubit, 600
Cultural distance, 633
Cut norm metric, 239
Cutoff distances, 693
Cutpoint additive metric, 278
Cut semimetric, 282
C-V distance, 662
Cycloidal metric, 140
Cygan metric, 204
Cylindrical distance, 385
Czekanowsky-Dice distance, 326

D

Daily distance traveled, 461
Damerau-Levenstein metric, 214
Daniels-Guilbaud semimetric, 224
Dayhoff distance, 454
Dayhoff-Eck distance, 454
Death of Distance, 630
Debye screening distance, 491
Declination, 546
Decoherence length, 504
Decomposable semimetric, 283
Defensible space, 526
Deflection, 688
degenerate metric, 137
Degree-2 distance, 304
degree distance, 30

Degree of distance near-equality, 20
Dehornoy-Autord distance, 221
Delaunay metric, 157
Delay distance, 685
Delone set, 33
delta distance, 179
Demyanov distance, 186
Dephasing length, 502
depth of a gemstone, 518
Depth of field, 691
Desarguesian space, 111
Design distance, 311
de Sitter metric, 576
detection distance, 464
Detour distance, 277
DeWitt supermetric, 148
Diagonal metric, 137
diameter at breast height, 681
diametrical metric space, 33
Diamond-cutting distances, 518
dictionary-based metric, 218
Dictionary digraph, 420
diff-dissimilarity, 58
Diffusion length, 499
diffusion tensor distance, 666
digital metric, 370
Digital volume metric, 371
dilated metric, 86
Dilation of metric space, 39
Dimension of a graph, 290
Dinghas distance, 183
Dirac distance, 46
directed Hausdorff distance, 53
Directed-metric, 7
Direction distance, 80
Dirichlet metric, 248
Discrepancy metric, 263
discrete Fréchet distance, 246
Discrete metric, 46
Discrete topological space, 70
Disjoint union metric, 90
Dislocation distances, 516
Dispersal distance, 459
Dispersion similarity, 333
Displacement, 488
displacement function, 38
dissimilarity, 3
Distal and proximal, 694
Distance, 3
Distance as a metaphor, 635
distance automaton, 342
distance-balanced graph, 286
Distance-based numbering, 526
Distance between consecutive primes, 228

Distance between edges, 289
distance between landfalls, 542
distance between ports, 523
Distance cartogram, 525
Distance casting, 675
Distance centrality, 418
Distance ceptor, 609
Distance coercion model, 483
distance concept of proximity, 637
distance constancy, 611
Distance constant of operator algebra, 255
Distance constrained labeling, 291
Distance convexity, 19
distance correlation, 335
Distance cues, 312
Distance curve, 696
Distance decay, 695
Distance decay (in Spatial Interaction), 624
Distance decoder, 321
Distance-decreasing semimetric, 161
Distance-defined surfaces and curves, 177
distance degree, 31
distance degree-regular graph, 286
Distance distribution, 313
Distance education, 627
Distance effect, 695
Distance effect in large e-mail networks, 415
distance effect on trade, 625
distance energy, 31
Distance factor, 696
Distance Fibonacci numbers, 228
Distance from irreducible polynomials, 234
Distance from measurement, 83
Distance function, 36
Distance Geometry problem, 293
distance graph, 290
Distance grooming model of language, 484
Distance handling, 674
Distance hart, 686
Distance healing, 665
Distance-hereditary graph, 287
Distance in a river, 382
Distance in boxing, 677
Distance inequalities in a triangle, 360
Distance in Military, 681
Distance-invariant metric space, 12
Distance jumping, 675
distance- k edge-coloring, 289
distance- k matching, 289
Distance κ-sector, 22
distance labeling scheme, 321
distance language, 406
Distance line, 680
Distance list, 20

Distance made good, 680
Distance magic graph, 288
Distance map, 38
Distance matrix, 20
distance measuring equipment, 684
Distance metric learning, 338
Distance model of altruism, 484
Distance modulus, 567
Distance monotone metric space, 15
Distance-named cultural products, 656
Distance-number of a graph, 290
Distance numbers, 651
Distance of negative type, 11
distance of travel, 529
Distance-perfect graph, 288
distance pheromone, 467
Distance polynomial, 30
Distance-polynomial graph, 287
distance power, 290
Distance product of matrices, 20
Distance-rationalizable voting rule, 225
Distance-regular digraph, 286
Distance-regular graph, 285
distance-regularized graph, 286
Distance-related animal settings, 464
Distance-related graph embedding, 291
Distance-related quotes, 656
Distance-related shots, 692
distance relation, 637
Distance-residual subgraph, 284
Distance running model, 483
Distance sampling, 338
Distances between belief assignments, 271
distances between chords, 408
Distances between graphs of matrices, 242
Distances between people, 629
Distances between quantum states, 508
Distances between rhythms, 409
distance scale, 602
Distance selling, 627
Distance sensitivity, 696
distance set, 20
Distances from symmetry, 397
distance similarity, 22
distance-similarity metaphor, 635
Distances in Animal Behavior, 463
Distances in Criminology, 624
Distances in Forestry, 681
Distances in Interior Design, 655
Distances in Medicine, 661
Distances in Musicology, 365
Distances in Oceanography, 407
Distances in Oncology, 664
Distances in Rheumatology, 665

Distances in Seismology, 540
Distances in Stereoscopy, 692
Distances in Structural Engineering, 688
Distances on causal sets, 575
distance space, 3
Distance spacer, 688
distance spectrum, 31
Distance supervision, 627
Distance swimming, 675
Distance telecommunication, 627
Distance throwing, 675
distance to crowding, 338
Distance to death, 482
Distance to default, 620
distance to empty, 679
Distance-to-fault, 681
distance to frontier, 620
Distance to Heaven, 649
Distance to horizon, 523
distance to infeasibility, 240
distance to instability, 349
Distance to normality, 268
distance topology, 69
distance to regularity, 337
distance to singularity, 240
Distance to uncontrollability, 349
Distance transform, 395
distance-transitive graph, 286
Distance-two labeling, 291
distance unknown, 524
Distance up to nearest integer, 94
Distance-vector routing protocol, 424
distance vision, 668
Distance-weighted mean, 32
Distanciation, 653
Distancing, 618
distancing language, 619
Distancy, 618
distant flap, 663
distantiation, 647
distantness, 618
Distant suffering, 646
distortion, 42
divergence, 258
Diversity, 35
Dodge-Shiode WebX quasi-distance, 426
Dogkeeper distance, 246
Dominating metric, 47
Doubling dimension, 25
doubling metric, 25
Douglas metric, 146
Drápal-Kepka distance, 207
drastic distance, 46
draw distance, 613

Drift distance, 417
Driveway distances, 527
Drop distance, 626
Droplet radii, 502
DRP-metrics, 425
Dual distance, 311
Dual metrics, 103
Dudley metric, 262
Dugundji-Ugi chemical distance, 514
Duncan metric, 220
DXing, 524
Dynamical diffraction distances, 517
Dynamical spacing, 551
Dynamical system, 344
Dysmetria, 667
Dyson radius, 554

E

Earth in space, 559
Earth Mover's distance, 391
earthquake distance, 541
Earth radii, 521
Earth similarity index, 556
eccentric distance sum, 30
Eccentricity, 34
Ecliptic latitude, 546
Ecological distance, 458
Eddington-Robertson metric, 579
Edgar-Ludwig metric, 586
Edge distance, 298
Edge flipping distance, 299
Edge jump distance, 299
Edge move distance, 298
Edge perimeter distance, 497
Edge rotation distance, 299
Edge shift distance, 299
edge slide distance, 299
edit distance, 214
edit distance function of a property, 297
Edit distance with costs, 215
Editex distance, 639
Editing compression metric, 214
Editing metric, 50, 213
Editing metric with moves, 214
Effective free distance, 313
Effective trade distance, 621
Effect size, 329
Eggleston distance, 184
Egocentric distance, 612
Eguchi-Hanson de Sitter metric, 587
Eguchi-Hanson metric, 160
Ehrenfeucht-Haussler semimetric, 368
Eigen-McCaskill-Schuster distance, 450

Einstein metric, 576
Einstein radius, 568
Einstein-Straus radius, 564
Einstein time triangle inequality, 571
electrical distance, 524
element of best approximation, 37
Ellenberg similarity, 325
Ellipsoid metric, 174
Elliptic metric, 123
Elliptic orbit distance, 547
Elongation, 548
Emerson distance between persons, 644
Emmert's size-distance law, 611
Emotional distance, 618
EM radiation wavelength range, 493
End-to-end distance, 515
Endurance distance, 680
Energy distance, 262
Engine compression distance, 686
Engineer semimetric, 261
Enomoto-Katona metric, 52
Entanglement distance, 511
entropy metric, 270
environmental distances, 613
epicentral distance, 541
Epistemic distance, 653
equicut semimetric, 282
Equidistant map, 525
Equidistant metric, 47
equilibrium distance, 512
Equivalent metrics, 14
Erdős distinct distances problem, 360
Erdös space, 104
Etch depth, 687
ethical distance, 647
Euclidean metric, 100
Euclidean rank of a metric space, 28
Euclidean space, 100
Euler angle metric, 352
even cut semimetric, 282
evolutionary distance, 435
exocentric distance, 612
expansion distance, 499
Exponential distance, 378
exponential divergence, 267
Extended metric, 4
Extended real line metric, 230
Extended topology, 70
Extension distances, 89
Extent of Earth's biosphere, 542
Extremal metric, 172

F

Facebook hop distance, 415
Facility layout distances, 366
factor distance, 215
Factorial ring semimetric, 206
Fahrenberg-Legay-Thrane distances, 342
Faith similarity, 332
Falconer distance problem, 360
Fano metric, 319
farawayness, 618
farness, 618
Farris transform metric, 88
feasible distance, 426
Feeding distance, 687
Feldman et al. distance, 438
Fencing distances, 676
Feng-Rao distance, 312
Feng-Wang distance, 455
Feret's diameters, 396
Fermat metric, 584
Fernández-Valiente metric, 297
Ferrand metric, 129
Főrster distance, 476
Fidelity similarity, 266
flight initiation distance, 463
Finite l_{p}-semimetric, 283
Finite nuclear norm metric, 253
Finite subgroup metric, 209
Finsler metric, 144
firing rate distance, 477
first contact quasi-distance, 368
First-countable space, 65
first law of geography, 625
first sink contact distance, 683
Fisher information metric, 150
Fisher-Rao metric, 151
Fixed orientation metric, 365
Flag metric, 119
Flat metric, 170
Flat space, 39
Florian metric, 182
Flow distance, 685
Flower-shop metric, 364
FLRW metric, 580
focal distance, 691
Football distances, 676
Forbes-Mozley similarity, 332
force-distance curve, 696
forest-fire distance, 383
formation metric, 354
Fortet-Mourier metric, 271
Forward quasi-distance, 421
four-point inequality, 8
Four-point inequality metric, 8

Fractal, 345
fractal dimension, 24
fractional $l p$-distance, 328
frame distance, 653
Frankild-Sather-Wagstaff metric, 206
Fraunhofer distance, 493
Fréchet mean, 31
Fréchet median, 31
Fréchet metric, 53
Fréchet-Nikodym-Aronszyan distance, 52
Fréchet permutation metric, 225
Fréchet product metric, 91
Fréchet space, 68
Fréchet surface metric, 172
Fréchet V-space, 83
Free distance, 312
free fall distance, 488
free space metric, 354
Fremlin length, 27
French Metro metric, 363
friction of distance, 624
Fringe distance, 690
Frobenius distance, 243
Frobenius norm metric, 237
frontier metric, 354
Frost line (in Astrophysics), 553
Frost line (in Earth Science), 539
Fubini-Study distance, 158
Fubini-Study metric, 158
full triangle inequality, 5
functional transform metric, 86
fundal height, 662
Funk distance, 37
Fuzzy Hamming distance, 219
Fuzzy metric spaces, 78
Fuzzy polynucleotide metric, 452
Fuzzy set distance, 437

G

Gabidulin-Simonis metrics, 317
Gait distances, 669
Gajić metric, 229
Galactocentric distance, 555
Galilean distance, 576
Gallery distance oflags, 210
gallery distance on building, 81
Gallery metric, 51
gap distance, 243
gape distance, 464
Gap metric, 348
gate extension distance, 89
gauge metric, 204
GCSS metric, 581

Gear distances, 687
Gehring metric, 129
Gender-related body distance measures, 672
Gendron-Lemieux-Major distance, 476
genealogical distance, 435
genealogical quasi-distance, 442
generalized absolute value metric, 229
Generalized biotope transform metric, 86
Generalized Cantor metric, 220
generalized chordal metric, 232
generalized Delaunay metric, 157
generalized Fano metric, 320
Generalized G-Hausdorff metric, 54
generalized Hilbert space, 104
generalized Lagrange metric, 148
Generalized Lee metric, 316
generalized Menger space, 78
Generalized metric, 80
Generalized Riemannian space, 138
Generalized torus semimetric, 203
generalized ultrametric, 82
General linear group semimetric, 203
Generational distance, 354
Genetic code distance, 454
genetic $F_{S T}$-distance, 440
Genome distance, 453
Genome rearrangement distances, 452
Geodesic, 16
Geodesic convexity, 17
Geodesic distance, 110
Geodesic metric space, 110
geodesic segment, 16
geodesic similarity, 276
Geodetic graph, 285
Geographic distance, 425
Geographic distance biases, 613
Gerontologic distance, 482
Gibbons-Manton metric, 164
Glashow's snake, 603
Gleason distance, 127
Gleason similarity, 326
Global correlation distance, 337
Global distance test, 474
Gödel metric, 584
Godsil-McKay dimension, 26
Goldstein et al. distance, 438
Golf distances, 676
Golgotha distance, 649
Golmez partially ordered distance, 83
Goppa designed minimum distance, 312
Gordian distance, 179
Go the distance, 699
Gower-Legendre similarity, 333
Gower similarity 2, 334

GPS navigation distance, 528
GPS pseudo-distance, 684
Graev metrics, 222
Gram matrix, 21
Graph boundary, 278
Graph diameter, 278
Graph edit distance, 297
graph-geodetic metric, 278
graphic metric, 276
Graph of polynomial growth, 287
Gravity models, 624
Gray-scale image distances, 391
Great circle distance, 521
Grenander distance, 186
Grid metric, 370
Grishin distance, 456
Gromov-Hausdorff metric, 54
Gromov hyperbolic metric space, 112
Gromov product similarity, 10
ground distance, 529
Ground sample distance, 524
Group norm metric, 95
Growth distances, 185
Grushin metric, 143
Grzegorzewski distances, 60
gust-gradient distance, 679
GV fuzzy metric space, 79
Gyroradius, 491
GZK-horizon, 565

H

Habitable zone radii, 556
Hadamard space, 113
Half-Apollonian metric, 129
Half-plane projective metric, 117
half-space parabolic distance, 131
Half-value layer, 494
Hamann similarity, 331
Hamming cube, 91
Hamming metric, 51
Hamming metric on permutations, 223
Handwriting spatial gap distances, 401
haptic space, 609
Hard metric, 596
Hardy metric, 248
Harmon distance, 668
Harmonic mean similarity, 266
Harnack metric, 128
Haul distance, 688
Hausdorff dimension, 24
Hausdorff distance up to G, 400
Hausdorff-Lipschitz distance, 54
Hausdorff metric, 53

Hausdorff space, 64
having midpoints, 19
Hawaiian Earring, 18
Head and face measurement distances, 671
Healing length, 502
heavy luggage metric, 366
hedgehog metric, 363
Heidegger's de-severance distance, 645
Heisenberg metric, 204
Hejcman length, 27
Helical surface metric, 176
Hellinger distance, 330
Hellinger metric, 266
Helly semimetric, 205
hemimetric, 5
Hempel metric, 173
Hermitian elliptic metric, 124
Hermitian G-metric, 74
Hermitian hyperbolic metric, 125
Hermitian metric, 155
Hessian metric, 157
Heterogeneous distance, 339
Heterometric and homeometric, 694
hexagonal Hausdorff metric, 371
Hexagonal metric, 370
Hilbert cube metric, 91
Hilbert metric, 103
Hilbert projective metric, 118
Hilbert projective semimetric, 188
Hilbert-Schmidt norm metric, 254
Hilbert space, 103
Hilditch-Rutovitz metric, 392
Hill radius, 550
Hirst-St-Onge similarity, 419
Histogram diffusion distance, 391
Histogram intersection quasi-distance, 390
Histogram quadratic distance, 391
historical distance, 652
Hitting time quasi-metric, 281
Hodge metric, 157
Hofer metric, 165
Hölder mapping, 41
Hölder metric, 250
Hölder near-metric, 7
Homeomorphic metric spaces, 40
Homogeneous metric space, 38
Homometric structures, 516
Hopping distance, 498
Horizontal distance, 529
Hour angle, 546
Hsu-Lyuu-Flandrin-Li distance, 282
Hubble distance, 564
Hubble radius, 564
Humidifier absorption distance, 690

Hurwitz metric, 233
Hutchinson metric, 271
hybridization metric, 450
Hydraulic diameter, 501
Hydrodynamic radius, 501
Hyperbolic dimension, 26
Hyperbolic Hausdorff distance, 400
Hyperbolic metric, 125
Hyperboloid metric, 175
Hyperconvexity, 20
hypercube metric, 276
hyper-focal distance, 691
Hypermetric, 11
hypermetric inequality, 11
Hyperspace, 69
hyperspace of metric space, 53
hypocentral distance, 541

I

IBD segment length, 439
Identifying code, 321
Image compression L_{p}-metric, 392
Immunologic distance, 472
Impact distances, 548
Impact of distance on trade, 621
impact parameter, 489
Imperial length measures, 599
inflation distance, 680
Incremental distance, 696
Indefinite metric, 73
Indel distance, 318
Indel metric, 214
Indicator metric, 259
Indiscrete semimetric, 47
Indiscrete topological space, 70
Indivisible metric space, 13
induced diversity metric, 35
Induced metric, 47
Inelastic mean free path, 490
infinitesimal distance, 133
information metric, 270
Injective envelope, 45
Injective metric space, 45
injectivity radius, 18
inner metric, 88
Inner product space, 103
Input and output distances, 687
Insecticide distance effect, 469
insertion distance, 662
Instrument distances, 687
Integral metric, 245

Interaction distance, 489
interalar distance, 671
interatomic distance, 511
intercanine distance, 661
intercanthal distance, 671
intercept quasi-distance, 368
intercornual distance, 662
inter-distance, 324
interincisor distance, 661
Interionic distance, 515
interior metric, 88
interkey distance, 408
Interline distance, 682
Intermalleolar distance, 665
Intermicellar distance, 515
Internal metric, 88
International Metric System, 596
Internet AS metric, 425
Internet IP metric, 424
internipple distance, 662
Internodal distance, 469
interocclusal distance, 661
interpediculate distance, 662
interproximal distance, 661
interpupillary distance, 668
interramet distance, 469
Intersection distance, 326
Interspot distance, 479
Interval distance, 319
Interval distance monotone graph, 285
Interval norm metric, 200
interval-ratio distance, 409
Interval-valued metric space, 80
intra-distance, 324
intragenic distance, 453
Intrinsic metric, 110
Invariant distances on symmetric cones, 187
Inverse distance weighting, 32
Inverse-square distance laws, 491
inverse triangle inequality, 575
inverse weighted path metric, 277
inversion distance, 179
Inversive distance, 369
Involution transform metric, 89
Ironic distance, 653
ISI distances, 477
Island distance effect, 459
Isolation by distance, 444
isometric embedding, 38
Isometric muscle action, 678
isometric projection, 654
Isometric subgraph, 284
Isometry, 38
isoperimetric number, 278
Itakura-Saito quasi-distance, 406
ITT-distance, 453
Ivanov-Petrova metric, 140

J

Jaccard distance, 326
Jaccard similarity of community, 325
Janis-Newman-Wincour metric, 579
Janous-Hametner metric, 230
Jaro similarity, 218
Jaro-Winkler similarity, 218
Jeans length, 506
Jeffrey distance, 268
Jensen-Shannon divergence, 268
Jiang-Conrath distance, 419
Jin-Nei gamma distance, 448
Johnson distance, 52
Join semilattice distances, 209
Joint angle metric, 353
journey length, 528
Joyner-Boore distance, 541
Jukes-Cantor nucleotide distance, 448
Jukes-Cantor protein distance, 456
jungle river metric, 363

K

Kadets distance, 54
Kähler-Einstein metric, 157
Kähler supermetric, 165
Kalmanson semimetric, 283
Kaluza-Klein metric, 591
Kantowski-Sachs metric, 580
Karlsruhe metric, 362
Kasner metric, 581
Kasting distance, 556
Katĕtov mapping, 47
Katz similarity, 279
Kaufman semimetric, 244
Kawaguchi metric, 147
Kelvin-Laplace radius, 502
Kemeny distance, 207
Kendall shape distance, 396
Kendall τ distance, 223
Kerr metric, 578
Kerr-Newman metric, 578
Kerr-Schild metric, 578
Kimura 2-parameter distance, 449
Kimura protein distance, 456
Kinematic distance, 569
Kinematic metric, 575
king-move metric, 370
kinship distance, 437
Klamkin-Meir metric, 101
Klein metric, 141
Klement-Puri-Ralesku metric, 59
KM fuzzy metric space, 78
Knight metric, 374
Knot complement hyperbolic metric, 180
Kobayashi-Busemann semimetric, 162
Kobayashi metric, 161
Kobayashi-Royden metric, 161
Kolmogorov-Smirnov metric, 261
Kolmogorov-Tikhomirov dimension, 23
Korányi metric, 204
Koszul-Vinberg metric, 187
Kottler metric, 577
Koutras-McIntosh metric, 586
Krakus metric, 190
Krasnikov metric, 589
Kristeva nonmetric space, 643
Kropina metric, 145
Kruglov distance, 264
KS fuzzy metric space, 79
Kuiper distance, 261
Kulczynski similarity 1, 327
Kulczynski similarity 2, 327
Kullback-Leibler distance, 267
Kurepa-Fréchet distance, 83
Ky Fan k-norm metric, 238
Ky Fan metric $K^{*}, 259$
Ky Fan metric $K, 259$

L
Lagrange metric, 148
Lagrangian radius, 500
Lake paralinear distance, 449
Language distance effect, 641
Language distance from English, 638
Language style matching, 628
Lanzon-Papageorgiou quasi-distance, 349
Larsson-Villani metric, 244
Laser distance measurement, 684
Lasker distance, 444
Laterations, 684
Latitude, 545
Latitudinal distance effect, 532
Latter F-statistics distance, 438
Lattice metric, 370
Lattice valuation metric, 209
Laver consonant distance, 640
Law of proximity, 617
Lebesgue covering dimension, 25
Lebesgue space, 102
Le Cam distance, 263

Lechner distance, 669
Lee metric, 52
left-invariant metric, 198
lekking distance rank, 464
Lempel-Ziv distance, 217
Length constant, 479
length function, 595
length metric, 110
length of a curve, 16
Length of metric space, 27
Length-related illusions, 610
Length scales in Physics, 602
Length similarities, 419
length space, 110
Length spectrum, 17
Length variation in 5-HTTLPR, 480
Lens distances, 691
Lerman metric, 244
Lesk similarities, 419
Levenstein metric, 214
Levenstein orthographic distance, 640
Levi-Civita metric, 582
Lévinas distance to Other, 646
Levy-Fréchet metric, 271
Levy-Sibley metric, 262
Lévy walks in human mobility, 346
Lewis metric, 582
Lexicographic metric, 224
Lift metric, 363
light echo distance, 570
light extinction distance, 497
Lighthouse distance, 523
Lighting distance, 497
Light travel distance, 568
linear contact quasi-distance, 368
Linearly additive metric, 51
linearly rigid metric space, 50
Line-line distance, 93
line metric, 229
line-of-sight comoving distance, 566
line-of-sight distance, 524
Linguistic distance, 640
linkage metric, 324
Link distance, 365
Lin similarity, 419
Lipschitz distance, 56
Lipschitz distance between measures, 56
Lipschitz mapping, 41
Lipschitz metric, 56
Lissak-Fu distance, 260
local isometry, 39
Locality metric, 428
Localization length, 503
localization metric, 354
locally $\operatorname{CAT}(k)$ space, 113
Locally compact space, 67
Locally convex space, 67
Locally finite metric space, 49
locally geodesic metric space, 110
Locating chromatic number, 289
location number, 22
Logarithmic distance, 378
LogDet distance, 450
Log-likelihood distance, 337
Log-likelihood ratio quasi-distance, 406
Long-distance, 698
long-distance anaphora, 642
Long-distance cell communication, 479
Long-distance dependence (in Language), 641
Long-distance dispersal, 460
Long-distance drumming, 409
Long-distance intercourse, 698
Long-distance neural connection, 478
Long-distance trade routes, 622
longest English word, 639
Longitude, 545
Long range dependence, 345
Long range order, 504
Lorentz distance, 574
Lorentz length contraction, 565
Lorentz metric, 574
Lorentz-Minkowski distance, 574
Lostness metric, 427
Lovász-Szegedy semimetric, 296
lower Minkowski dimension, 23
Loxodromic distance, 522
LRTJ-metric, 318
LTB metric, 580
Lukaszyk-Karmovski metric, 258
Luminosity distance, 567
Lunar distance, 548
Lund-Regge supermetric, 149

M

maai, 677
MacAdam metric, 389
Macbeath metric, 184
Machida metric, 211
Macroscale entanglement/superposition, 510
Magnetic length, 503
Mahalanobis distance, 330
Mahalanobis semimetric, 260
Malécot's distance model, 446
Manhattan metric, 361
Manifold edge-distance, 192
Manifold triangulation metric, 192
Mannheim distance, 315

Map's distance, 525, 623
marginal reflex distances, 663
margin distance, 664
marital distance, 444
Marking metric, 216
Martin cepstrum distance, 407
Martin distance, 243
Martin metric, 220
Martin's diameter, 396
Master-slave distance, 685
Matching distance, 57
Mating distances, 444
Matrix nearness problems, 239
Matrix norm metric, 236
Matrix p-norm metric, 236
Matsumoto slope metric, 145
Matusita distance, 266
Maximal agreement subtree distance, 307
maximum distance design of size $m, 34$
maximum heart distance, 664
Maximum polygon distance, 186
maximum scaled difference, 331
MBR metric, 362
McClure-Vitale metric, 182
Mean censored Euclidean distance, 329
mean character distance, 328
Mean free path (length), 490
mean measure of divergence, 670
Mean width metric, 182
measurement triangle inequality, 84
measure metric, 52
Mechanic distance, 488
Medial axis and skeleton, 395
Median graph, 285
Median metric space, 15
Meehl distance, 330
Melnikov distance, 344
Menger convexity, 18
Metabolic distance, 474
metallic distance, 512
Metametric space, 74
Metaphoric distance, 635
meter, 596
Meter, in Poetry and Music, 597
Meter of water equivalent, 501
Meter-related terms, 598
Metra, 662
Metric, 4
Metric aggregating function, 87
Metrically almost transitive graph, 287
Metrically discrete metric space, 49
metrically homogeneous metric space, 39
Metrically regular mapping, 43
metric antimedian, 34
metric association scheme, 286
Metrication, 596
Metric ball, 12
Metric basis, 22
Metric between angles, 369
Metric between directions, 369
Metric between games, 205
Metric between intervals, 205
Metric betweenness, 14
Metric bornology, 77
Metric bouquet, 90
metric capacity, 35
metric center, 34
metric compactum, 50
Metric compression, 42
Metric cone, 39
metric connection, 155
Metric convexity, 19
Metric curve, 15
metric data, 323
metric database, 323
metric derivative, 16
Metric diameter, 33
Metric dimension, 23
metric disk, 12
Metric end, 287
metric entropy, 35
Metric expansion of space, 563
metric extension, 47
metric fan, 21
Metric fibration, 39
metric frame, 4
Metric generating function, 87
Metric graph, 277
metric great circle, 16
Metric hull, 12
metric identification, 4
metric independence number, 23
metric lattice, 209
Metric length measures, 599
metric-like function, 4
metric mapping, 41
Metric measure space, 50
metric median, 34
metric meterstick, 598
Metric of bounded curvature, 170
Metric of motions, 203
Metric of nonnegative curvature, 170
Metric of nonpositive curvature, 169
Metric on incidence structure, 51
Metric outer measure, 27
Metric-preserving function, 86
Metric projection, 37
metric property, 38

Metric quadrangle, 15
metric radius, 34
Metric Ramsey number, 42
metric ray, 16
metric recursion, 320
Metric recursion of a MAP decoding, 320
Metrics between fuzzy sets, 58
Metrics between intuitionistic fuzzy sets, 59
Metrics between multisets, 58
Metrics between partitions, 207
metric segment, 16
metric signature, 136
metric singularity, 191
Metrics on determinant lines, 165
Metrics on natural numbers, 227
Metrics on quaternions, 232
Metrics on Riesz space, 211
Metric 1-space, 73
Metric space, 4
Metric space having collinearity, 15
Metric space of roots, 235
metric sphere, 12
Metric spread, 33
metric straight line, 16
metric subspace, 47
Metric symmetry, 516
Metric tensor, 136
Metric theory of gravity, 505
Metric topology, 14
Metric transform, 48, 85
metric tree, 323
Metric triangle, 15
Metric with alternating curvature, 170
Metrizable space, 68
Metrization theorems, 14
MHC genetic dissimilarity, 435
Middle distance, 697
Midpoint convexity, 19
Midset, 22
Migration distance (in Biogeography), 461
Migration distance (in Biomotility), 475
Migration distance (in Economics), 623
Millibot train metrics, 353
Milnor metric, 165
minimax distance design of size $m, 34$
Minimum distance, 311
Minimum orbit intersection distance, 547
minimum spanning tree, 294
Minkowskian metric, 118
Minkowski-Bouligand dimension, 23
Minkowski difference, 185
Minkowski distance function, 37
Minkowski metric, 572
Minkowski rank of a metric space, 28

Mirkin-Tcherny distance, 207
Misner metric, 590
miss distance, 683
mitotic length, 479
Mixmaster metric, 581
Miyata-Miyazawa-Yasanaga distance, 454
M31-M33 bridge, 555
Möbius mapping, 40
Möbius metric, 130
Model distance, 334
modified Banach-Mazur distance, 55
Modified Hausdorff distance, 399
Modified Minkowskian distance, 351
Modular distance, 202
Modular metric space, 15
Modulus metric, 130
Moho distance, 539
Molecular RMS radius, 512
Molecular similarities, 514
Molecular sizes, 513
Moment, 488
Momentum, 488
Monge-Kantorovich metric, 271
Monjardet metric, 221
Monkey saddle metric, 177
monomial metric, 451
Monomorphism norm metric, 200
monophonic distance, 277
Monotone metrics, 152
Monotonically normal space, 65
Montanari metric, 392
Moore space, 65
Moral distance, 647
Morisita-Horn similarity, 336
Morris-Thorne metric, 589
Moscow metric, 362
motion planning metric, 349
Motor vehicle distances, 678
Motyka similarity, 326
Mountford similarity, 333
Multicut semimetric, 283
Multidistance, 72
Multimetric, 72
multimetric space, 72
multiplicative distance function, 126
Multiplicatively weighted distance, 379
multiplicative triangle inequality, 95
Multiply-sure distance, 282
Myers-Perry metric, 590

N

Narrative distance, 653
Natural length units, 602

Natural metric, 229
Natural norm metric, 236
nautical distance, 522
Nautical length units, 600
nearest-neighbor distance, 462
Nearest neighbor interchange metric, 305
Near-metric, 7
Nearness principle, 625
Nearness space, 76
necklace editing metric, 213
Needleman-Wunsch-Sellers metric, 219
negative reflection distance, 179
negative type inequality, 11
Neighborhood sequence metric, 371
Nei minimum genetic distance, 437
Nei standard genetic distance, 437
Nei-Tajima-Tateno distance, 437
Network distances, 381
network metric, 366
Network's hidden metric, 415
Network tomography metrics, 426
Neurons with spatial firing properties, 667
Neutron scattering length, 490
Neyman χ^{2}-distance, 267
Nice metric, 367
Niche overlap similarities, 458
Nietzsche's Ariadne distance, 644
Nikodym metric, 183
non-Archimedean quasi-metric, 7
noncommutative metric space, 154
noncontractive mapping, 44
Nondegenerate metric, 137
Nonlinear elastic matching distance, 394
Nonlinear Hausdorff metric, 400
nonmetricity tensor, 136
nonmetric space, 644
normalized compression distance, 217
normalized edit distance, 215
normalized Euclidean distance, 331
Normalized Google distance, 416
Normalized information distance, 217
Normalized l_{p}-distance, 329
Normal space, 65
norm-angular distance, 97
Norm metric, 50, 97
Norm transform metric, 101
NRT metric, 318
NTV-metric, 452
Nuclear norm metric, 253
Number of DNA differences, 447
Number of protein differences, 455

0

obstacle avoidance metric, 354
Ochiai-Otsuka similarity, 336
octagonal metric, 372
odd cut semimetric, 282
official distance, 528
Offset distance, 682
Oliva et al. perception distance, 609
Ontogenetic depth, 479
open metric ball, 12
Open subset of metric space, 14
operating distance, 692
Operator norm metric, 252
Opposition distance, 549
optical depth, 495
Optical distance, 497
Optical horizon, 523
optical metrics, 507
Optimal eye-to-eye distance, 628
Optimal realization of metric space, 294
orbital distance, 547
orbit metric, 198
Order norm metric, 200
ordinal distance, 328
Orientation distance, 301
Oriented cut quasi-semimetric, 284
oriented diameter, 278
Oriented multicut quasi-semimetric, 284
oriented triangle inequality, 5
Orlicz-Lorentz metric, 249
Orlicz metric, 249
Orloci distance, 336
Ornstein \bar{d}-metric, 271
orthodromic distance, 521
orthometric height, 530
oscillation stable metric space, 13
Osserman metric, 139
Osterreicher semimetric, 266
Outdistancing, 618
Overall nondominated vector ratio, 355
Ozsváth-Schücking metric, 579

P

Packing dimension, 24
packing distance, 474
packing radius, 34
PAM distance, 454
Parabolic distance, 131
parachute opening distance, 680
Paracompact space, 66
Paradoxical metric space, 39
Parallax distance, 568
Parameterized curves distance, 394

Parentheses string metrics, 221
parent-offspring distance, 444
Parikh distance, 221
Paris metric, 363
Partial cube, 285
Partial Hausdorff quasi-distance, 399
Partially ordered distance, 82
Partial metric, 5
partial semimetric, 5
Part metric, 249
path-connected metric space, 13
Path distance width of a graph, 292
Path-generated metric, 373
path isometry, 38
Path length, 697
Path metric, 50, 276
path metric space, 110
Path quasi-metric in digraphs, 278
Patrick-Fisher distance, 260
patristic distance, 435
Pattern difference, 334
Pearson correlation similarity, 335
Pearson distance, 335
Pearson ϕ similarity, 334
Pearson χ^{2}-distance, 267
Pedigree-based distances, 442
Peeper distance, 382
pelvic diameter, 662
Pendellösung length, 517
penetration depth, 495
Penetration depth distance, 185
Penetration distance, 475
Penrose shape distance, 329
Penrose size distance, 328
perception-reaction distance, 678
Perelman supermetric proof, 149
Perfectly normal space, 64
Perfect matching distance, 306
Perfect metric space, 48
perfusion distance, 664
periapsis distance, 547
Perimeter deviation, 182
perimeter distance, 366
Periodicity p-self-distance, 338
Periodic metric, 367
perm-dissimilarity, 58
permutation editing metric, 224
Permutation metric, 47
Permutation norm metric, 203
perpendicular distance, 93
Persistence length, 515
Pe-security distance, 313
Pharmacological distance, 474
phenetic distance, 434

Phone distances, 639
Phonetic word distance, 640
phylogenetic distance, 435
piano movers distance, 365
pinning distance, 516
pitch distance, 407
Pixel distance, 398
pixel pitch, 398
Planck length, 602
Planetary aspects, 549
Planetary distance ladder, 552
Plane wave metric, 586
Plant long-distance communication, 468
Plume height, 542
Poincaré metric, 126
Poincaré-Reidemeister metric, 165
pointed metric space, 4
Point-line distance, 93
Point-plane distance, 93
Point-set distance, 57
Point-to-point transit, 523
Polar distance (in Biology), 455
Polar distance (in Geography), 546
Polish space, 65
Political distance, 634
poloidal distance, 176
polygonal distance, 365
Polyhedral chain metric, 192
polyhedral distance function, 37
polyhedral metric, 191
Polyhedral space, 191
polynomial bracket metric, 234
Polynomial metric space, 60
Polynomial norm metric, 234
Pompeiu-Eggleston metric, 183
Pompeiu-Hausdorff-Blaschke metric, 182
Ponce de León metric, 591
Port-to-port distance, 523
Pose distance, 352
Poset metric, 316
Positively homogeneous distance, 198
positive reflection distance, 179
Pospichal-Kvasnička chemical distance, 514
Post Office metric, 364
Potato radius, 552
Power distance, 378
Power (p, r)-distance, 328
Power series metric, 106
Power transform metric, 87
pp-wave metric, 585
prametric, 5
Prasad metric, 592

Pratt's figure of merit, 398
Precise distance measurement, 683
Preferred design sizes, 600
Prefix-Hamming metric, 218
premetric, 5
Prevosti-Ocana-Alonso distance, 436
Primary-satellite distances, 550
prime distance, 370
Prime number distance, 93
principle of locality, 509
Probabilistic metric space, 78
Probability distance, 259
Procrustes distance, 395
Production Economics distances, 620
Product metric, 90
Product norm metric, 201
Projective determination of a metric, 120
Projectively flat metric space, 115
Projective metric, 116
Prokhorov metric, 262
Prominence, 530
Propagation length, 696
Proper distance and time, 573
proper distance in mediation, 647
Proper length, 574
Proper metric space, 50
Proper motion distance, 566
proportional transport semimetric, 393
Protective action distance, 690
protein length, 432
Protometric, 6
Prototype distance, 459
proximinal set, 37
proximity, 75
Proximity effects, 497
Proximity fuse, 683
Proximity graph, 294
Proximity sensors, 683
Proximity space, 75
pseudo-distance, 8
Pseudo-elliptic distance, 124
Pseudo-Euclidean distance, 142
pseudo-Finsler metric, 145
Pseudo-hyperbolic distance, 127
pseudo-metric, 4
Pseudo-Riemannian metric, 141
Pseudo-sphere metric, 176
Psychical distance, 618
Psychogeography, 614
Psychological distance, 615
Psychological Size and Distance Scale, 614

Ptolemaic graph, 288
Ptolemaic inequality, 9
Ptolemaic metric, 9
Pullback metric, 88
punctured plane, 16
Push distance, 686
Pythagorean distance, 100

Q

Quadrance, 88
quadratic distance, 330
quadratic-form distance, 330
Quadric metric, 173
Quality metrics, 693
quantum fidelity similarity, 508
quantum graph, 277
quantum metric, 508
Quantum space-time, 507
Quartet distance, 306
quasi-conformal mapping, 41
quasi-convex metric space, 16
Quasi-distance, 5
quasi-Euclidean rank of a metric space, 28
Quasi-hyperbolic metric, 128
Quasi-isometry, 43
Quasi-metric, 6
Quasi-metrizable space, 69
quasi-Möbius mapping, 40
Quasi-semimetric, 5
Quasi-symmetric mapping, 40
quaternion metric, 233
quefrency-weighted cepstral distance, 407
Quenching distance, 686
Quickest path metric, 366
Quillen metric, 165
Quotient metric, 105
Quotient norm metric, 201
Quotient semimetric, 94

R

Racing distances, 674
Radar discrimination distance, 368
Radar distance, 569
Radar screen metric, 364
radial metric, 363
Radiation attenuation with distance, 494
Radii of a star system, 555
Radii of metric space, 34
Radio distance measurement, 684
Radio distances, 524
radius of convexity, 18
Radius of gyration, 491

Rainbow distance, 289
Rajski distance, 270
Ralescu distance, 219
Randall-Sundrum metric, 577
Randers metric, 145
random graph, 61
Rand similarity, 331
Range distances, 692
Range of a charged particle, 491
Range of ballistic missile, 683
Range of fundamental forces, 492
Range of molecular forces, 513
Rank metric, 316
Rank of metric space, 28
Rao distance, 151
Rayleigh length, 493
Ray-Singler metric, 165
Read length, 480
Real half-line quasi-semimetric, 230
Real tree, 46
reciprocal length, 595
Rectangle distance on weighted graphs, 295
Rectilinear distance with barriers, 365
rectilinear metric, 361
rectosacral distance, 661
recursive metric space, 62
referential distance, 663
Reflection distance, 394
regeneration distance, 663
Regular G-metric, 74
Regular metric, 169
Regular space, 64
Reidemeister metric, 165
Reidemeister-Singer distance, 173
Reignier distance, 208
Reissner-Nordström metric, 578
Relational proximity, 623
Relative metrics on $\mathbf{R}^{2}, 362$
Relaxed four-point inequality metric, 9
relaxed metric, 4
relaxed tree-like metric, 279
remoteness, 34
Remotest places on Earth, 531
Rendez-vous number, 29
Rényi distance, 269
Repeat distance, 515
Reported distance, 425
Representation of distance in Painting, 654
Resemblance, 75
Resistance metric, 280
Resistor-average distance, 268
Resnikoff color metric, 390
Resnik similarity, 419
Resolving dimension, 22

Restricted edit distance, 303
Retract subgraph, 285
Reuse distance, 428
Reversal metric, 224
Reverse triangle inequality, 97
Reynolds number, 500
Reynolds-Weir-Cockerham distance, 438
rhetorical distance, 642
Ricci-flat metric, 139
Rickman's rug metric, 364
Rieffel metric space, 153
Riemannian color space, 390
Riemannian distance, 137
Riemannian metric, 51, 137
Riemann-type (α, β)-metric, 145
Riesz norm metric, 104
right-angle metric, 361
Right ascension, 546
right-invariant metric, 198
right logarithmic derivative metric, 152
Rigid motion of metric space, 38
River length, 538
RMS \log spectral distance, 405
RNA structural distances, 450
Road sight distances, 527
Road travel distance, 528
Roberts similarity, 325
Robinson-Foulds metric, 304
Robinson-Foulds weighted metric, 304
Robinsonian distance, 8
Robot displacement metric, 351
Roche radius, 550
Roger distance, 436
Roger-Tanimoto similarity, 332
Role distance, 652
rollout distance, 529
Rook metric, 375
Rotating C-metric, 590
rotation distance, 350
Rotation surface metric, 175
Rough dimension, 24
Roundness of metric space, 28
routing protocol semimetric, 426
RR Lyrae distance, 570
RTT-distance, 425
Rubik cube, 92
Rummel sociocultural distances, 633
Running distances, 674
Ruppeiner metric, 150
rupture distance, 541
Russel-Rao similarity, 332
Ruzicka similarity, 325

S

Sabbath distance, 651
safe distancing, 692
safe following distance, 678
Safir distance, 650
Sagging distance, 688
Sagittal abdominal diameter, 673
Sampling distance, 490
Sangvi χ^{2} distance, 437
Sanitation distances, 526
Sasakian metric, 166
Scalar and vectorial metrics, 210
Scaled distance, 682
scale factor, 562
scale-free network, 413
scale height, 696
Scale in art, 654
Scale invariance, 345
scale metric transform, 85
Schatten norm metric, 238
Schatten p-class norm metric, 254
Schattschneider metric, 101
Schechtman length, 28
Schellenkens complexity quasi-metric, 221
Schoenberg transform metric, 88
Schwartz metric, 251
Schwarzschild metric, 577
Schwarzschild radius, 505
search-centric change metrics, 426
Second-countable space, 65
sedimentation distance, 663
seismogenic depth distance, 541
self-distance, 5
Selkow distance, 303
Semantic biomedical distances, 420
Semantic proximity, 420
semidistance, 4
Semimetric, 4
Semimetric cone, 21
semimetrizable space, 69
Seminorm semimetric, 98
Semi-pseudo-Riemannian metric, 144
Semi-Riemannian metric, 143
sendograph metric, 59
Sensor network distances, 683
sensor tolerance distance, 683
Separable metric space, 49
separable space, 65
Separation distance, 184
Separation quasi-distance, 267
Setback distance, 526
SETI detection ranges, 557
Set-set distance, 57
Sexual distance, 416

Sgarro metric, 211
Shankar-Sormani radii, 17
Shannon distance, 270
Shantaram metric, 367
Shape parameters, 396
Shared allele distance, 435
Sharma-Kaushik metrics, 314
shear distance, 690
Shen metric, 145
Shephard metric, 183
Shift distance, 686
Ship distances, 680
Shooting distance, 690
shortest path distance, 110
Shortest path distance with obstacles, 380
Short mapping, 44
Shriver et al. stepwise distance, 438
shuttle metric, 364
Shy distance, 526
sib distance, 444
Sibony semimetric, 163
Siegel distance, 241
Siegel-Hua metric, 241
Sierpinski metric, 227
signed distance function, 38
Signed reversal metric, 224
Similarity, 3
Similarity ratio, 336
similar metric, 86
Simone Weil distance, 647
Simplicial metric, 191
simplicial supermetric, 149
Simpson similarity, 332
SimRank similarity, 420
sine distance, 509
Single row facility layout, 686
size-distance centration, 611
Size-distance invariance hypothesis, 611
Size function distance, 394
Size representation, 636
Size spectrum, 472
Skew distance, 383
skidding distance, 679
skin depth, 495
skip distance, 524
Skorokhod-Billingsley metric, 264
Skorokhod metric, 264
Skwarczynski distance, 158
slant distance, 529
slip-weakening distance, 540
Slope distance, 529
slope metric, 405
SNCF metric, 364
Snowmobile distance, 382

SNR distance, 404
Soaring distances, 677
Sober space, 66
Sobolev distance, 183
Sobolev metric, 250
Social distance, 632
Sociometric distance, 632
Soergel distance, 325
Soft metric, 597
Software metrics, 427
Soil distances, 538
Sokal-Sneath similarities, 332
Solar distances, 553
sonic metric, 506
Sonority distance effect, 410
Sorgenfrey quasi-metric, 230
sorting distance, 46
Sound attenuation with distance, 496
sound extinction distance, 497
source-skin distance, 662
Space (in Philosophy), 642
Space of constant curvature, 138
Space of Lorentz metrics, 149
Space over algebra, 82
Space-related phobias, 667
Space syntax, 525
space-time link distance, 542
Spacing, 355
Spacing distances, 693
spanning distance, 57
Spark distance, 689
Spatial analysis, 337
Spatial cognition, 635
Spatial coherence length, 504
spatial correlation, 504
Spatial dependence, 337
Spatial graph, 292
Spatialism, 655
Spatialization, 636
Spatial language, 637
Spatial music, 656
Spatial reasoning, 637
Spatial scale, 521
Spatial-temporal reasoning, 637
Spearman footrule distance, 223
Spearman rank correlation, 336
Spearman ρ distance, 223
Special parallels and meridians, 530
Spectral distances, 405
Spectral magnitude-phase distortion, 404
spectral phase distance, 404
Sphere metric, 174
Sphere of inuence graph, 294
spherical extension distance, 89
spherical gap distance, 242
Spherical metric, 123
Spheroid metric, 175
spike count distance, 477
Spike train distances, 476
Spin network, 277
spin triangle inequality, 277
split semimetric, 282
Splitting-merging distance, 304
Spray distance, 690
spreading metric, 47
squared Euclidean distance, 328
Stable norm metric, 204
standardized Euclidean distance, 331
Standoff distance, 682
Star's radii, 554
Static isotropic metric, 579
stealth distance, 683
Steiner distance of a set, 293
Steiner ratio, 35
Steinhaus distance, 53
stem Hamming distance, 457
Stenzel metric, 159
Stepanov distance, 247
Stiles color metric, 390
stochastic edit distance, 215
Stop-loss metric of order $m, 261$
stopping distance, 678
stopping sight distance, 527
Straight G-space, 112
straight line distance, 529
Straight spinning string metric, 583
Strand length, 453
Strand-Nagy distances, 372
Strength of metric space, 29
String-induced alphabet distance, 222
Strip projective metric, 117
stroke distance, 663
Strong distance in digraphs, 279
strongly metric-preserving function, 87
strong triangle inequality, 5
structural Hamming distance, 298
Subgraph metric, 295
Subgraphs distances, 613
Subgraph-supergraph distances, 296
Subjective distance, 613
submetric, 47
submetry, 44
sub-Riemannian metric, 141
Subspace metric, 317
Subtree prune and regraft distance, 305
Subway network core, 416
subway semimetric, 367
sum of minimal distances, 399

Sun-Earth-Moon distances, 548
Super-knight metric, 374
supermetric, 148
sup metric, 246
Surname distance model, 634
suspension metric, 190
Swadesh similarity, 641
Swap metric, 215
Swedenborg heaven distances, 650
swept volume distance, 350
Symbolic distance effect, 617
symmetric, 3
Symmetric difference metric, 52
Symmetric metric space, 38
symmetric surface area deviation, 184
Symmetric χ^{2}-distance, 330
Symmetric χ^{2}-measure, 330
Symmetrizable space, 69
symmetry distance, 397
Synchcronization distance, 425
Syntenic distance, 453
Systole of metric space, 17
Szulga metric, 262

T

Tajima-Nei distance, 448
Takahashi convexity, 20
Talairach distance, 666
Tamura-Nei distance, 449
Tamura 3-parameter distance, 449
Tangent distance, 397
tangent metric cone, 39
Tanimoto distance, 326
Taub-NUT de Sitter metric, 587
Taub-NUT metric, 160
taxicab metric, 361
taxonomic distance, 434
TBR-metric, 305
teardrop distance, 662
Technology distances, 619
Technology-related distancing, 631
Teichmüller metric, 163
Telomere length, 481
template metric, 181
Temporal remoteness, 441
tensegrity structure, 290
Tensor norm metric, 105
Terminal distance, 488
textual distance, 642
TF-IDF similarity, 336
Thermal diffusion length, 499
Thermal entrance length, 499
Thermodynamic length, 503

Thermodynamic metrics, 150
thinking distance, 678
Thompson's part metric, 188
Thomson scattering length, 490
Thorpe similarity, 436
Threaded fastener distances, 687
Three-point shot distance, 676
threshold distance, 693
Throat distance, 686
Thurston quasi-metric, 164
thyromental distance, 662
Tight extension, 45
Tight span, 45
Time-distance relation (in Psychology), 616
time-like distance, 575
time metric, 366
Time series video distances, 401
Titius-Bode law, 551
Tits metric, 114
token-based similarities, 218
Tolerance distance, 525
Tolman length, 502
Tomimatsu-Sato metric, 584
Tomiuk-Loeschcke distance, 437
Topological dimension, 25
topological vector space, 67
Topsøe distance, 269
Toroidal metric, 368
Torus metric, 176
Totally bounded metric space, 49
Totally bounded space, 66
totally Cantor disconnected metric, 13
totally convex metric subspace, 18
totally disconnected metric space, 13
Trace-class norm metric, 254
trace metric, 242
trace norm metric, 237
train metric, 363
transactional distance, 627
Transduction edit distances, 215
Transfinite diameter, 32
Transformation distance, 216
Transform metric, 86
translated metric, 86
Translation discrete metric, 198
translation distance, 350
translation invariant metric, 96
translation proper metric, 199
Transmission distance, 685
Transportation distance, 270
transposition distance, 224
transverse comoving distance, 566
Traveling salesman tours distances, 301
Tree bisection-reconnection metric, 305

Tree edge rotation distance, 299
Tree edit distance, 303
Tree-length of a graph, 292
Tree-like metric, 279
Tree rotation distance, 306
triangle equality, 14
triangle function, 78
triangle inequality, 4
Triathlon race distances, 674
Triples distance, 306
trivial metric, 46
tRNA interspecies distance, 454
Trophic distance, 472
True length, 697
Truncated metric, 282
Trust metrics, 427
tunnel distance, 522
Tunneling distance, 511
Turbulence length scales, 500
Turning function distance, 394
Tversky similarity, 333
Twitter friendship distance, 415
two-way distance in digraph, 286
Type of metric space, 29
Typographical length units, 601

U

Uchijo metric, 147
UC metric space, 50
Ulam metric, 224
ultrahomogeneous space, 39
Ultrametric, 8
ultrametric inequality, 8
Underlying graph of a metric space, 15
Unicity distance, 313
Uniform metric, 246
Uniform metric mapping, 42
uniform orientation metric, 365
Uniform space, 76
Unitary metric, 101
unit cost edit distance, 303
Unit distance, 595
Unit quaternions metric, 352
Universal metric space, 61
Urysohn space, 61

V

Vaidya metric, 580
Vajda-Kus semimetric, 266

Valuation metric, 105
van der Waals contact distance, 512
van Stockum dust metric, 582
Variable exponent space metrics, 251
variational distance, 260
Varshamov metric, 215
vector distance function, 38
Vertical distance, 529
Verwer metric, 392
Video quality metrics, 400
Vidyasagar metric, 348
Vietoris-Rips complex, 191
Vinnicombe metric, 348
Virtual community distance, 414
Virtual distance, 631
Visibility shortest path distance, 380
Vision distances, 631
Visual Analogue Scales, 615
visual distance, 114
Visual space, 609
Viterbi edit distance, 215
Vocal deviation, 410
voisinage of two points, 83
Vol'berg-Konyagin dimension, 25
Volume of finite metric space, 28
Voronoi distance for arcs, 384
Voronoi distance for areas, 384
Voronoi distance for circles, 384
Voronoi distance for line segments, 383
Voronoi distances of order $m, 385$
Voronoi generation distance, 378
Voronoi polytope, 377
Voyager 1 distance, 558
Vuorinen metric, 129

W

walk distance, 279
walk-regular graph, 286
wall distance, 500
Ward linkage, 324
Warped product metric, 92
Wasserstein metric, 271
Watson-Crick distance, 450
Wave-Edges distance, 325
weak Banach-Mazur distance, 55
weak metric, 8
weak partial semimetric, 6
weak quasi-metric, 5
Weak ultrametric, 8
Weather distance records, 542
Web hyperlink quasi-metric, 426

Web quality control distance function, 427
Web similarity metrics, 426
Weierstrass metric, 128
weightable quasi-semimetric, 5
Weighted cut metric, 374
Weighted Euclidean distance, 330
Weighted Euclidean \mathbb{R}^{6}-distance, 350,
Weighted Hamming metric, 219
weighted likelihood ratio distance, 406
Weighted Manhattan distance, 351
weighted Manhattan quasi-metric, 328
Weighted Minkowskian distance, 251
Weighted path metric, 276
weighted tree metric, 279
Weighted word metric, 199
Weil-Petersson metric, 164
Weinhold metric, 150
Weyl distance, 247
Weyl metric, 583
Weyl-Papapetrou metric, 582
Weyl semimetric, 343
Wheeler-DeWitt supermetric, 148
Whole genome composition distance, 457
Width dimension, 26
Wiener-like distance indices, 29
Wigner-Seitz radius, 502
Wigner-Yanase-Dyson metrics, 152
Wigner-Yanase metric, 153
WikiDistance, 414
Wils metric, 586
Wind distances, 535
wire length, 291
Wobbling of metric space, 39
Word metric, 199
word page distance, 426
working distance, 691
workspace metric, 350
Wormhole metric, 588
Wright, 445
Wu-Palmer similarity, 419

X

X-ray absorption length, 518

Y

Yegnanarayana distance, 407
Yule similarities, 333

Z

Zelinka distance, 296
Zelinka tree distance, 297
Zenith distance, 546
Zeno's distance dichotomy paradox, 642
Zero bias metric, 229
Zero-gravity radius, 564
Zipoy-Voorhees metric, 583
Zoll metric, 140
Zolotarev semimetric, 263
Zuker distance, 451

[^0]: © Springer-Verlag Berlin Heidelberg 2009, 2013, 2014
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

 Printed on acid-free paper
 Springer is part of Springer Science+Business Media (www.springer.com)

