
Mds Constantinides & Navid Mostoufi

*
CD-ROM
INCLUDED

Numerical Methods
for Chemical Engineers
with MAUAB
Applications

Prentice Hall International Series
In the Physical and Chemical
Engineering Sciences

Numerical Methods
for Chemical Engineers

with MATIAB Applications

ISBN
90000

9 780130 138514

PRENTiCE INTERNATIONAL SERIES
IN THE PHYSICAL ANI) CHEMICAL ENGINEERING SCIENCES

NEAl. R. AMUNDSON. SERiES EDITOR, University of Houston

ADVISORY EDITORS

ANDREAS ACRIVOS. University

JOHN DAHLER. Universits ot Minnesota
II. Scoti' FOGLER. University of Michigan

l'i K)M AS J H AN R VErY. C !nivercit v of illinois

JOHN NI. PRUJSN1TZ. Universits of California
L. E. StRIVEN, University qf Minnesota

B ALZHISER, I ELS, AND ELI \SSLN Chemical Engineering Thermodynamics

BE-QUE ITE Proeesc L)vna,nics
BILcLER, GROSSMAN, AND WESTERI3ERG Systematic Methods of Chemical Process Design

('ONSi AN I INIDES AND MOSTOUH Nn,nerical Methods fbr Chemical Engineers stuli MATIAB

%pphcations
C10wL ANt) Loi VAR Chemical Process Safety

CUTLIP ANI) SHACHAs1 Problem Solving in Chemical Engineering with Nwnerical Methodv

DENN Process Fluid Mechaniec
ELLIOT AND IJRA Jntn)ducton Chemical Engineering Thermodynamics
FOGLER Eletnentc of Uhemical Reaction Engineering 3rd edition

1—IANNA AND SANDALL Computational Methods in Chemical Engineering

1IIMMELI3L\1 Basic Piinciple.s iziul ('alculations in Chemical Engineering 6th edition

HINES AND N1AI)DOX Mass Thinsfer
KYLE Chemical and Process 'liiermodvnainicv, 3rd edition
NEWMAN Electrocheinical Systems. 2;zci editnin

PRAUSNITZ. LR'HTENTIIALER, ANI) DL AZEVEI)O Molecular Thermod'snamies ofFhod-Phme Eqialilnia

3rd edition
PRENTICE Elcctrochcmical Engineering Pnnciplec
SI-IULER AND KAROl Bioprocess Engineering
Si EPH \NOPOE 1 05 Chemical Process Control
'lEsTER AND MODELL Thermodynamics and Its App/nations. 3rd edition

'FERTUN. BAIL1E. WIII FING. ANI) SHALl WIT? Anals',siv, Synthesis and Design of Chemical Processes

WILKES Fluid Mechanics for Chemical Engineering

Numerical Methods
for Chemical Engineers

with MATLAB Applications

Alkis Gonstantinides
Department of Chemical and Biochemical Engineering

Rutgers, The State University of New Jersey

Navid Mostoufi
Department of Chemical Engineering

University of Tehran

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

http://www.prenhall. corn

libmey of t7ata/oghTg-in-Pnh/zcation Data

Constantinides, A.

Numerical methods for chemical engineers with MATLAB applications
/ Alkis Constantinides, Navid Mostoufi.

p. cm. -- (Prentice Hall international series in the physical
and chemical engineering sciences)
ISBN 0—13—013851—7 (alk. paper)
1. Numerical analysis--Data processing. 2. Chemical engineering-

-Mathematics--Data processing. 3. MATLAB. I. Mostoufi, Navid.
II. Title. III. Series.
QA297.C6494 1999
660 .01'5194—-dc2I 99—22296

CIP

I±ditor,aI/Productzon Super is/on: Craig Little

Acquicitions 1/detor Bernard Goodwin
/liann,/actnneg Afana,ger Alan Fischer
itlarketing Manqger: Lisa Konzelmann
Corer Des(g,n Director Jerry \'orra

Cover Talar Agasyan

© 1999 h\ Prentice liall Vl,R
Prentice-I lall Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this hook lie
reproduced, in any form or he an) means, without
permission ni writing from the puhlisher

MATLAB is a registered trademark of the Math'Qibrks, Inc. All other prodoet names mennoned herein are the
property of their respeenve owners.

Reprinted with correctIons March, 2000.

The pnhlisher offers discounts on this hook when ordered in bulk quantities.
For more informanon, contact: Corporate Sales Department at 800-382-3419, fax: 201-236-7141,
email: or write Corporate Sales Department, Prennee 1-lall PTR, One Lake Street,
tIpper Saddle Rivet, New Jersey 07458

Printed in the Umted States of America
10 9 8 7 6 5 4 3 2

ISBN 0-13-013851-7

Prentice-Hall International limited, London
Prentice-hall of Australia Ptt Limited, Sydney
Prentice-hall Canada inc., Toronto
Prentice-I Tall Hispanoameriesna, S.A., kiexeco
Prentice-flaIl of Inns Private Limited, Nea' Dc/he
Prentice-Flail of Japan, inc., To/ga
Prennee-Hall (Singapore) Pre. Ltd., Siggapore
Edirora Prentice-Hall do Brasil, Ltda., Rio dejaneine

Dedicated to our wives
Melody Richards Constantinides

and
Fereshteh Rashchi (Mostoufi)

and our children
Paul Constantinides

Kourosh and Soroush Mostoufi

Contents

Preface

Programs on the CD-ROM

General Algorithm for the Software Developed in This Book

Chapter 1 Numerical Solution of Nonlinear Equations 1

1.1 Introduction
1.2 Types of Roots and Their Approximation 4
1.3 The Method of Successive Substitution 8
1.4 TheWegstein Method 9

1.5 The Method of Linear Interpolation (Method of False Position) 10
1.6 The Newton-Raphson Mcthod 12

Example I . I: Solution of the Colebrook Equation 15
Example 1.2: Solution of the Soavc-Redlich-Kwong Equation 28

1.7 Synthetic Division Algorithm 34
1.8 The EigcnvalueMethod 35

Example 1.3: Solution of iith-Degree Polynomials and
Transfer Functions 36

1.9 Newton's Method for Simultaneous Nonlinear Equations 45
Example 1.4: Solution of Nonlinear Equations in

Chcmical Equilibrium 48
Problems 53
Referenccs 61

Chapter 2 Numerical Solution of Simultaneous Linear Algebraic
Equations 63

2.1 Introduction 63

VII

viii Contents

2.2 Review of Selected Matrix and Vector Operations 72
2.2. 1 Matrices and Determinants 72
2.2.2 Matrix Transformations 80
2.2.3 Matrix Polynomials and Power Series 82
2.2.4 Vector Operations 83

2.3 Consistency of Equations and Existence of Solutions 85
2.4 Crame(s Rule #7
2.5 Gauss Elimination Method 88

2.5.1 Gauss Elimination in Formula Form 89
1* 2.5.2 Gauss Elimination in Matrix Form 92

2.5.3 Calculation ol Determinants by the Gauss Method 93
Example 2.1: F feat Transfer in a Pipe 94

2.6 Gauss-Jordan Reduction Method 99
2.6. 1 Gauss-Jordan Reduction in Formula Form 99
2.6.2 Gauss-Jordan Reduction in Matrix Form 102
2.6.3 Gauss-Jordan Reduction with Matrix ersion /04

Examplc 2.2: Solution of a Steam Distribution /05
2.7 Gauss-Seidel Substitution Method /12
2.8 Jacobi Method 113

Example 2.3: Solution of Chemical Reaction and Material
Balance Equations

2.9 Homogeneous Algebraic Equations and the Characteristic-Value
Problem /2/
2.9. 1 The -Leverrier Method 124

* 2.9.2 Elementary Similarity Transformations 126
2.9.3 The QR Algorithm of Factorization /29
Problems /35
References 14/

Chapter 3 Finite Difference Methods and Interpolation 143

3.1 Introduction /43
3.2 Symbolic Operators 144
3.3 Backward Finite Differences 149
3.4 Forward Finite Differences /52
3.5 Central Finite Differences 156
3.6 Difference Equations and Their Solutions 16/
3.7 Interpolating Polynomials 166
3.8 lnterpolation of Equally Spaced Points 168

1 Sections marked s; rh an asterisk) he omitted in all undergi aduate

Contents ix

3.8.1 Gregory-Newton Interpolation 168
Example 3.1: Gregory-Newton Method for Interpolation

of Equally Spaced Data 172
3.8.2 Stirling's Interpolation 176

3.9 Interpolation of Unequally Spaced Points 179
3.9.1 Lagrange Polynomials 179
3.9.2 Spline Interpolation 180

Example 3.2: The Lagrange Polynomials and Cubic Splines 184
3.10* Orthogonal Polynomials 189

Problems 193
References /95

Chapter 4 Numerical Differentiation and Integration 197

4.1 Introduction 197
4.2 Differentiation by Backward Finite Differences 200

4.2. 1 First-Order Derivative in Terms of Backward Finite Differences
with Error of Order h 200

4.2.2 Second-Order Derivative in Terms of Backward Finite Differences
with Error of Order h 201

4.2.3 First-Order Derivative in Terms of Backward Finite Differences
with Error of Order h 202

4.2.4 Second-Order Derivative in Terms of Backward Finite Differences
with Error of Order h2 203

4.3 Differentiation by Forward Finite Differences 205
4.3.1 First-Order Derivative in Terms of Forward Finite Differences

with Error of Order h 205
4.3.2 Second-Order Derivative in Terms of Forward Finite Differences

with Error of Orderh 206
4.3.3 First-Order Derivative in Terms of Forward Finite Differences

with Error of Order h2 206
4.3.4 Second-Order Derivative in Terms of Forward Finite Differences

with Error of Order h2 207
4.4 Differentiation by Central Finite Differences 208

4.4.1 First-Order Derivative in Terms of Central Finite Differences
with Error of Order h2 208

4.4.2 Second-Order Derivative in Terms of Central Finite Differences
with Error of Order h2 210

4.4.3 First-Order Derivative in Terms of Central Finite Differences
with Error of Order h4 210

4.4.4 Second-Order Derivative in Terms of Central Finite Differences
with Error of Order h4 211

x Contents

Example 4.1: Mass Transfer Flux from an Open Vessel 212
Example 4.2: Derivative of Vectors of Equally Spaced Points 220

4.5 Spline Differentiation 228
4.6 Integration Formulas 228
4.7 Newton-Cotes Formulas of Integration 230

4.7.1 The Trapezoidal Rule 230
4.7.2 Simpson's 1/3 Rule 233
4.7.3 Simpson's 3/8 Rule 235

4.7.4 Summary of Newton-Cotes Integration 236
Example 4.3: Integration Formulas—Trapezoidal and

Simpson's 1/3 Rules 238

4.8 * Gauss Quadrature 241
* 4.8.1 Two-Point Gauss-Legendre Quadrature 242
* 4.8.2 Higher-Point Gauss-Legendre Formulas 244

Example 4.4: Integration Formulas—Gauss-Legendre Quadrature 246

4.9 Spline Integration 252
4.10 Multiple Integrals 253

Problems 255
References 258

Chapter 5 Numerical Solution of Ordinary Differential Equations 261

5.1 Introduction 261
5.2 Classification of Ordinary Differential Equations 265

5.3 Transformation to Canonical Form 267
Example 5.1: Transformation to Canonical Form 269

5.4 Linear Ordinary Differential Equations 273
Example 5.2: Solution of a Chemical Reaction System 276

5.5 Nonlinear Ordinary Differential Equations—Initial-Value Problems 282

5.5.1 The Euler and Modified Euler Methods 284
5.5.2 The Runge-Kutta Methods 288

5.5.3 The Adams and Adams-Moulton Methods 291

5.5.4 Simultaneous Differential Equations 295

Example 5.3: Solution of Nonisothermal Plug-Flow Reactor 296

5.6 * Nonlinear Ordinary Differential Equations—Boundary-Value

Problems 308
* 5.6.1 TheShootingMethod 310

Example 5.4: Flow of a Non-Newtonian Fluid 314
* 5.6.2 The Finite Difference Method 321
* 5.6.3 Collocation Methods 323

Example 5.5: Optimal Temperature Profile for Penicillin

Fermentation 331

Contents xi

5.7 Error Propagation, Stability, and Convergence 341
5.7.1 Stability and Error Propagation of Euler Methods 342

* 5.7.2 Stability and Error Propagation of Runge-Kutta Methods 348
* 5.7.3 Stability and Error Propagation of Multistep Methods 350

5.8 * Step Size Control 351
* Stiff Differential Equations 352

Problems 354
References 364

Chapter 6 Numerical Solution of Partial Differential Equations 365

6.1 Introduction 365
6.2 Classification of Partial Differential Equations 368
6.3 Initial and Boundary Conditions 370
6.4 Solution of Partial Differential Equations Using Finite Differences 373

6.4.1 Elliptic Partial Differential Equations 375
Example 6.1: Solution of the Laplace and Poisson Equations 382

6.4.2 Parabolic Partial Differential Equations 394
Example 6.2: Solution of Parabolic Partial Differential

Equations for Diffusion 401
Example 6.3: Solution of Parabolic Partial Differential

Equations for Heat Transfer 411
6.4.3 Hyperbolic Partial Differential Equations 422

* 6.4.4 Irregular Boundaries and Polar Coordinate Systems 426
* 6.4.5 Nonlinear Partial Differential Equations 431

6.5 * Stability Analysis 431
6.6 * Introduction to Finite Element Methods 435

Problems 437
References 446

Chapter 7 Linear and Nonlinear Regression Analysis 449

7.1 * Process Analysis, Mathematical Modeling, and Regression Analysis 449
7.2 * Review of Statistical Terminology Used in Regression Analysis 453

* 7.2.1 Population and Sample Statistics 453
* 7.2.2 Probability Density Functions and Probability Distributions 462
* 7.2.3 Confidence Intervals and Hypothesis Testing 471
* Linear Regression Analysis 476

7.3.1 The Least Squares Method 479
* 7.3.2 Properties of Estimated Vector of Parameters 480
* Nonlinear Regression Analysis 486
* 7.4.1 The Method of Steepest Descent 489

xii Contents

* 7.4.2 The Gauss-Newton Method 490
*743 Newton's Method 49/
*744 The Marquardt Method 493
* 7.4.5 Multiple Nonlinear Regression 494

75 * Analysis of Variance and Other Statistical Tests of the
Regression Results 496

Example 7.1: Nonlinear Regression Using the
Marquardt Method 502

Problems 523
References 528

Appendix A: Introduction to MATLAB 531

A. I Basic Operations and Commands 532
A.2 Vectors, Matrices, and Multidimensional Arrays 534

A.2. 1 Array Arithmetic 535
A.3 Graphics 536

A.3.l 2-DGraphs 536
A.3.2 3-DGraphs 537
A.3.3 2½-D Graphs 538

A.4 Scripts and Functions 539
A.4. 1 Flow Control 540

A.5 Data Export and Import 542
A.6 Where to Find Help 543

References 544

Index 545

The Authors 559

Preface

this hook emphasizes the derivation of a variety
of numerical methods and their application to the solution of engineering problems, with
special attention to problems in the chemical engineering field. These algorithms encompass
linear and nonlinear algebraic equations, eigenvalue problems, finite difference methods,
interpolation, differentiation and integration, ordinary differential equations, boundary value
problems, partial differential equations, and linear and nonlinear regression analysis.
MATLAB2 is adopted as the calculation environment throughout the book. MATLAB is a
high-performance language for technical computing. It integrates computation, visualization,
and programming in an easy-to-use environment. MATLAB is distinguished by its ability to
perform all the calculations in matrix form, its large library of built-in functions, its strong
structural language, and its rich graphical visualization tools. In addition, MATLAB is
available on all three operating platforms: WINDOWS, Macintosh, and UNIX. The reader is
expected to have a basic knowledge of using MATLAB. However, for those who are not
familiar with MATLAB, it is recommended that they cover the subjects discussed in
Appendix A: Introduction to MATLAB prior to studying the numerical methods.

Several worked examples are given in each chapter to demonstrate the numerical
techniques. Most of these examples require computer programs for their solution. These
programs were written in the MATLAB language and are compatible with MATLAB 5.0 or
higher. In all the examples, we tried to present a general MATLAB function that implements

2 MATLAB is a registered trademark of the MathWorks. Inc.

XIII

xiv Preface

the method and that may he applied to the solution of other problems that fall in the same
category of application as the worked example. The general algorithm for these programs is
illustrated iii the section entitled, "General Algorithm for the Software Developed in this
Book." All the programs that appear in the text are included on the CD-ROM that
accompanies this book. There are three versions of these programs on the CD-ROM, one for
each of the major operating systems in which MATLAB exists: WINDOWS, Macintosh, and
UNIX. Installation procedures. a complete list, and brief descriptions of all the programs are
given in the section entitled "Programs on the CD-ROM" that immediately follows this
Preface. In addition. the programs are described in detail in the text in order to provide the
reader with a thorough hackgronnd and understanding of how MATLAB is used to implement
the numerical methods.

It is important to mention that the main purpose of this book is to teach the student
numerical methods and problem solving, rather than to he a MATLAB manual. In order to
assure that the student develops a thorough understanding of the numerical methods and their
implementation, new MATLAB functions have been written to demonstrate each of the
numerical methods covered in this text. Admittedly, MATLAB already has its own built-in
functions for some of the methods introduced in this hook. We mention and discuss the built-
in functions, whenever they exist.

The material in this hook has been used in undergraduate and graduate courses in the
Department of Chemical and Biochemical Engineering at Rutgers University. Basic and
advanced numerical methods are covered in each chapter. Whenever feasible, the more
advanced techniques are covered in the last few sections of each chapter. A one-semester
graduate level course in applied numerical methods would cover all the material in this book.
An undergraduate course (junior or senior level) would cover the more basic methods in each
chapter. To facilitate the professor teaching the course, we have marked with an asterisk (*)
in the Table of Contents those sections that may he omitted in an undergraduate course. Of
course, this choice is left to the discretion of the professor.

Future updates of the software, revisions of the text. and other news about this hook will
be listed on our web site at http:!/sol.rutgers.edu/—constant.

Prentice Hall and the authors would like to thank the reviewers of this book for their
constructive comments and suggestions. NM is grateful to Professor Jamal Chaouki of Ecole
Polytechnique de Montréal for his support and understanding.

Alkis Constantinides
Wand Mostoufi

Programs on the CD-ROM

Brief Description

The programs contained on the CD-ROM that accompanies this book have been written in the
MATLAB 5.0 language and will execute in the MATLAB command environment in all thrcc
operating systems (WINDOWS, Macintosh, and UNIX). There are 21 examples, 29 methods,
and 13 other function scripts on this CD-ROM. A list of the programs is given later in this
section. Complete discussions of all programs arc given in the corresponding chapters of the
text.

MATLAB is a high-performance language for tcchnical computing. It integrates
computation, visualization, and programming in an easy-to-use environment. It is assumed
that the user has access to MATLAB. If not, MATLAB may be purchased from:

The MathWorks, Inc.
24 Prime Park Way
Natick, MA 07 160-1500
Tel: 508-647-7000 Fax: 508-647-7001

E-mail: info@mathworks.com

http://www.mathworks.com

Thc Student Edition of MATLAB may he obtained from:

Prentice Hall PTR, Inc.
One Lake Street
Upper Saddle River, NJ 07458
http://www.prenhall.com

An introduction to MATLAB fundamentals is given in Appendix A of this book.

Program Installation for WINDOWS

To start the installation, do the following:

I. Insert the CD-ROM in your CD-ROM drive (usually d: or e:)
2. Choose Run from the WINDOWS Start menu, type d:\serup (or and click

OK.

xv

xvi Programs on the CD-ROM

3. Follow the instructions on screen.
4. When the installation is complete, run MATLAB and set the MATLAB search path

as described below.

This installation procedure copies all the MATLAB files to the usefs hard disk (the default
destination folder is C:\Program Filcs\Numerical Methods). It also places a shortcut. called
Numerical Methods, on the Start Programs menu of WINDOWS (see Fig. 1). This shortcut
accesses all twenty-one examples from the seven chapters of the book (but not the methods).
In addition, the shortcut provides access to the readme file (in three different formats: pdf.
html, and doe). Choosing an example from the shortcut enables the user to view the
MATLAB script of that example with the MATLAB Editor. Files have been installed on the
hard disk with the "read-only" attribute in order to prevent the user from inadvertently
modifying the program files (see Editing the Programs, below). To execute any of the
examples, see Executing the Programs, below.

Program Installation for Macintosh

The CD-ROM is in ISO format, therefore it can be read by Macintosh computers that have File
Exchange (for System 8 or higher) or PC Exchange (for System 7). If you have not activated
the File Exchange. please do so via the Control Panels before using this CD-ROM. To start
the installation, do the following:

1. Insert the CD-ROM in your CD-ROM drive on a Macintosh computer.
2. Open the folder named MAC on the CD-ROM. This contains a compressed file

(zip file) named NUMMETH ZIP
3. Copy the file NUMMETH ZIP to your computer and uncompress it using zipi! or

St uff it Expander. This will create a folder named Numerical Methods which contains
all the programs of this book.

4. When the installation is complete. run MATLAB and set the MATLAB search
path as described below.

Program Installation for UNIX Systems

To start the installation, do the following:

I. Insert the CD-ROM in your CD-ROM drive on a UNIX workstation.
2. Open the folder named UNIX on the CD-ROM. This contains a compressed file (tar

file) named nrunnzeth.tar.

3. Copy the file nummeth.tar to your computer and uncomprcss it using the tar
command:

tar xf nummeth.tar

Programs on the CD-ROM xvii

This will create a folder named Numerical Merhod3 which contains all the programs
of this book.

4. When the installation is complete. run MATLAB and set the MATLAB search path
as described below.

PC USId,c,

My MATLAB
Edith[

3
My MA1IAB

a' nv

0
5 5

97

—

Ethip
3

:

tIl•%I.tflo
Figure 1 Arrangement of the Numerical Methods programs in the Start menu.

Setting the MATLAB Search Path

It is important that thc search path used by MATLAB is set correctly so that the files may he
found from any directory that MATLAB may be running. In the MATLAB Command
Window choose File. Set Path. This will open the Path Browser. From the menu of the Path
Browser choose Path, Add to Path. Add the directories of your hard disk where the Numerical
Methods programs have heen installed (the default directory for the WINDOWS installation
is C:\Program Files\Numerical Methods\Chapterl. etc.). The path should look as in Fig. 2,
provided that the default directory was not modified by the user during setup.

Executing the Programs

Once the search path is set as described above, any of the examples, methods, and functions
in this hook may he used from anywhere within the MATLAB environment. To execute one

xviii Programs on the CD-ROM

of the examples, simply enter the name of that example in the MATLAB Command Window:

>.Example 1_i

To use any of the methods or functions from within another MATLAB script, invoke the
method by its specific name and provide the necessary arguments for that method or function.
To get a brief description of any program, type help followed by the name of the program:

xhelp Example I_i

To get descriptions of the programs available in each Chapter, type help followed by the name
of the Chapter:

Chapter 1

To find out what topics of help are available in MATLAB, simply type help:

>>help

Editing the Programs

The setup procedure installed the files on the hard disk with the "read-only" attribute in order
to prevent the user from inadvertently modifying the program files. If any of the program files
are modified, they should be saved with a different name. To modify any of the MATLAB
language programs, use the MATLAB Editor. Read the comments at the beginning of each
program before making changes.

Important note for users of the software

Last-minute changes have been made to the software; however, these changes do not appear
in the text or on the CD-ROM that accompanies this book. To download the latest version of
the software, please visit our website:

http://sol.rutgers.edu/—constant

Note for users of MATLAB 5.2

The original MATLAB Version 5.2 had a "bug." The command

linspace(O,O, 100)

which is used in LI.m, NR.m, and Nrpoly.m in Chapter 1, would not work properly in the
MATLAB installations of Version 5.2 which have not yet been corrected. A patch which
corrects this problem is available on the website of Math Works, Inc.:

http://www.mathworks.com

If you have Version 5.2, you are strongly encouraged to download and install this patch, if you
have not done so already.

Programs on the CD-ROM

t Path UrowsEn

SIe gdit seth leols ft&p

aLJiJL!i

nC \Ntr ri a! fl Shod Browse

Path
C:\Progrrun MeShclsChapterl a

C:\Ftograni Flethoos\Chapter2 —
C\PrCCJranI Files\Nun:erioal

C:\Proqrazn F1LesNunorioaI flethodoChapter4
FiLeodOsoerical Methods,Chapter5

C: FiJee\Nuirerioal

C:\Frogran FUes\Numerioai HeI1!cds\ChapterT
D:\SL&flAE\tooJho>\matJah\genera!

D:NAflAF\tooLhc rnatJah\opz
D:\NAflAE\tocLhLx I(O%CJEd! long —
0: \slznasRtoofliox\watlah\elnao
0: \M&flkB\tooLho

0:

0: \M.&TLAF\tooThox\matlahniatfun

D:\NATLAF\tooThoi\s:atlah\polvfu::

0: '1 UAF\ tooLhc r\wstJah\dataf in
lah\fnnfun

0:

Colehrnok is

Colehrookg in

Exl4funo in

Exnnq.lell in

f: Enarnplel2 in

fjj E:cani]el S in

Ecannplel4.:n
LOin
Newton iii

HR iii

NRpoly . in

NRorin.v:eon in

f XGZ.in

Figure 2 The correct MATLAB search path that includes all seven chapters of
the Numerical Methods software.

LISTING AND DESCRIPTION OF PROGRAMS

CHAPTER 1

Name

Examples

Examplel_J. in

Exainplel_2. a!

Example lJ. in

Example l_4.m

Description

Calculates the friction factor from the Colebrook equation using
the Successive Substitution (XGX.m), the Linear interpolation
CL/in), and the Ncwton-Raphson (A'R.m) methods.

Solvcs the Soave-Rcdlich-Kwong equation of statc using thc
N cwton-Raphson mcth od for polynomial equations (NRpolv. in).

Solves oth-degree polynomials aiid transfer functions using the
Newton-Raphson method with synthetic division (NRsdirisioa.m).

Solves simultaneous reactions in chemical equilibrium using
Newton's method for simultaneous nonlinear cquations
(Ne nba. iii).

CurrentDiredorij °des n theaterS

956AM

xx Programs on the CD-ROM

Methods

XGX.m Successive Substitution method to find one root of a nonlinear
equation.

LI. in Linear Interpolation method to find one root of a nonlinear
equation.

NR.m Newton-Raphson method to find one root of a nonlinear equation.

NRpolv.m Newton-Raphson method to find one root of a polynomial
equation.

NRsdivision.m Newton-Raphson method with synthetic division to find all the
roots of a polynomial equation.

Newton.m method for simultaneous nonlinear equations.

Functions

Coiebrookg.m Contains the Colebrook equation in a form so that it can be solved
by Successive Substitution (used in Examplel_I.m).

Colebroolcm Contains the Colebrook equation in a term so that it can be solved
by Linear Interpolation and/or Newton-Raphson (used in

Example l_1.in).

Exl_4junc.m Contains the set of simultaneous nonlinear equations (used in
Example l4.m).

CHAPTER 2

Examples

Example2_1.m Solves a set of simultaneous linear algebraic equations that model
the heat transfer in a steel pipe using the Gauss Elimination
method (Gauss.in).

Exampie2_2.m Solves a set of simultaneous linear algebraic equations that model
the steam distribution system of a chemical plant using the Gauss-
Jordan Reduction method (Jordan.m).

Exampie2_3.m Solves a set of simultaneous linear algebraic equations that
represent the material balances for a set of continuous stirred tank
reactors using the Jacobi Iterative method (Jacobi.m).

Programs on the CD-ROM

Methods

Gauss. in Gauss Elimination method for solution of simultaneous linear
algebraic equations.

Jordan.m Gauss-Jordan Reduction method for solution of simultaneous
linear algebraic equations.

Jaco/n.m Jacobi iterative method for solution of predominantly diagonal
sets of simultaneous linear algebraic equations.

CHAPTER 3

Examples

Exainp/e3_1.rn Interpolates equally spaced points using the Gregory-Newton
forward interpolation formula (Grego ryNewton. in).

Exainple3_2. in Interpolates unequally spaced points using Lagrange polynomials
(Lagrange.in) and cubic splines (NaturaiSPLiNEan).

Methods

GregorvNewton. in Gregory-Newton forward interpolation method.

Lagrange.rn Lagrange polynomial interpolation method.

NaIuraISPLJNE.in Cubic splines interpolation method.

CHAPTER 4

Examples

Exainple4_1.in Calculates the unsteady flux of water vapor from the open top of
a vessel using numerical differentiation of a function (filer, in).

Exarnple4_2.m Calculates the solids volume fraction profile in the riser of a gas-
solid fluidized bed using differentiation of tabulated data
(deriv.rn).

Integrates a vector of experimental data using the trapezoidal rule
(trapz.m) and the Simpson's 113 rule (Siinpson.in).

Example4_4.m Integrates a function using the Gauss-Legendrc quadrature
(GaussLegendre. ni).

xxii Programs on the CD-ROM

Methods

fder.m

deriv.m

Simpson.m

GaussLegendre. m

Functions

Ex4_Lphi.m

Ex4_1_profile.m

Ex4_4Jitnc.m

Chapter 5

Examples

Example5_2.m

Example5_3.m

Example5_4.m

Example5_5.m

Methods

LinearODE.m

Euler. m

Differentiation of a function.

Differentiation of tabulated data.

Integration of tabulated data by the Simpson's 113 rule.

Integration of a function by the Gauss-Legendre quadrature.

Contains the nonlinear equation for calculation of phi (used in
Example4_1.m).

Contains the function of concentration profile (used in

Example4_1.m).

Contains the function to be integrated (used in Exatnple4_4in).

Calculatcs the concentration profile of a system of first-order
chemical reactions by solving the set of linear ordinary differential
equations (LinearODE.m).

Calculates the concentration and temperature profiles of a
nonisothermal reactor by solving the mole and energy balances
(Euler. m, MEuler. m, RK.m, Adams. in. AdamsMoulton. in).

Calculates the velocity profile of a non-Newtonian fluid flowing
in a circular pipe by solving the momentum balance equation
(shooting.m).

Calculates the optimum concentration and temperature profiles in
a batch penicillin fermentor (collocation.m).

Solution of a set of linear ordinary differential equations.

Solution of a set of nonlinear ordinary differential equations by the
explicit Euler method.

Programs on the CD-ROM xxiii

MEn/er, in Solution of a set of nonlinear ordinary differential equations by the
modified Euler (predictor-corrector) method.

RK.m Solution of a set of nonlinear ordinary differential equations by the
Runge-Kutta methods of order 2 to 5.

Adarns.in Solution of a set of nonlinear ordinary differential equations by the
Adams method.

Ada,nsMoulton.m Solution of a set of nonlinear ordinary differential equations by the
Adams-Moulton predictor-corrector method.

shooting.in Solution of a boundary—value problem in the form of a set of
ordinary differential equations by the shooting method using
Newtoifs technique.

col/ocation.in Solution of a boundary-value problem in the form ol' a set of
ordinary differential equations by the orthogonal collocation
method.

Functions

Ex5_3jiinc.in Contains the mole and energy balances (used in Evainp/e5_3.m).

Ex5_4jtmc. in Contains the set of differential equations obtained from the
momentum balance (used in Exainp/e5_4. iii).

Ex5_Sjunc.m Contains the set of system and adjoint equations (used in
Evample5_5. in).

Ex5_5_theta.in Contains the necessary condition for maximum as a function of
temperature (used in Examp/e5_5.rn).

CHAPTER 6

Examples

Excnnp/e6,,,].m Calculates the temperature profile of a rectangular plate solving
the two-dimensional heat balance (eI/iptic.m).

Exarnpleó_2.in Calculates the unsteady-state one-dimensional concentration
profile of gas A diffusing in liquid B (parctho/ic/l).m).

Exarnple6_3.m Calculates the unsteady-state two-dimensional temperature profile
in a furnace wall

xxiv Programs on the CD-ROM

Methods

elliptic.in Solution of two-dimensional elliptic partial differential equation.

parabo/wiDan Solution of parabolic partial differential equation in one space
dimension by the implicit Crank-Nicolson method.

parabolic2D.m Solution of parabolic partial differential equation in two space
dimensions by the explicit method.

Functions

Exó_2.Juncan Contains the equation of the rate of chemical reaction (used in
Example&2. in).

CHAPTER 7

Examples

Example 7_ / in Uses the nonlinear regression program (NLR. in and stati5tics. in) to
determine the parameters of two diffcrential equations that
represent the kinetics of penicillin fermentation. The equations are
fitted to experimental data.

Methods

NLR.m Least squares multiple nonlinear regression using the Marquardt
and Gauss-Newton methods. The program can fit simultaneous
ordinary differential ecluations and/or algebraic equations to
multiresponse data.

slatistics.m Performs a series of statistical tests on the data being fitted and on
the regression results.

Functions

Ex7jJiinc. in Contains the model equations for cell growth and penicillin
formation used in Exainple7J.in.

stad.m Evaluates the Student t distribution.

Data

Ex7j_data.mat The MATLAB workspace containing the data for Example 7.1

General Algorithm for the Software
Developed in this Book

The Algorithm

xxv

Example.m
This is a program that solves the specific example described in the text. It is interactive
with the user. It asks the user to enter, from the keyboard, the parameters that will he used
by the method (such as the name of the function that contains the equations. constants.
initial guesses, convergence criterion).

This program calls the tnethod.m function, passes the parameters to it, and receives back the
results. It writes out the results in a formatted form and generates plots of the results, if
needed.

Met hod.m
This is a general function that implements a method (such as the Newton-Raphson. Linear
Intcrpolation, Gauss Elimination). This function is portable so that it can he called by other
input-output programs and/or from the MATLAB work space (with parameters).

It may call the function.m that contains the specific equations to be solved. It may also call
any of the built-in MATLAB functions. The results of the method may he printed out (or
plotted) here, if they are generic.

Function.m
This function contains the specific equations to be
solved. It may also contain some or all constants that
are particular to these equations.

This function must be provided by the user.

MATLAB functions
Any of the built-in functions
and plotting routines that may
be needed.

CHAPTER

Numerical Solution of Nonlinear Equations

1.1 INTRODUCTiON

problems in engineering and science
require the solution of nonlinear equations. Several examples of such problems drawn from
the field of chemical engineering and from other application areas are discussed in this section.
The methods of solution are developed in the remaining sections of the chapter, and specific
examples of the solutions are demonstrated using the MATLAB software.

In thermodynamics, the pressure-volume-temperature relationship of real gases is
described by the equation of state. There are several semitheoretical or empirical equations,
such as Redlich-Kwong, Soave-Redlich-Kwong, and the Benedict-Wehh-Ruhin equations.

1

2 Numerical Solution of Nonlinear Equations Chapter 1

which have been used extensively in chemical engineering. For example, the Soave-Redlich-
Kwong equation of state has the form

aa
(LI)

V -h V(V - b)

where P. V, and T are the pressure, specific volume, and temperature, respectively. R is the
gas constant, a is a function of temperature, and a and b are constants, specific for each gas.
Eq. (1.1) is a third-degree polynomial in V and can be easily rearranged into the canonical
form for a polynomial, which is

- V + (A - B - B2)Z - AB U (12)

where PVIRT is the compressibility factor, A = aaP/R2T2 and B=bPIRT. Therefore.
the problem of finding the specific volume of a gas at a given tempcrature and pressure
reduces to the problem of finding the appropriate root of a polynomial equation.

In the calculations for multicomponent separations, it is often necessary to estimate the
minimum refiux ratio of a multistage distillation column. A method developed for this
purpose by Underwood [1], and described in detail by Treybal [2], requires the solution of the
equation

- F(l - q) = U (1.3)
a1 -

where F is the molar feed flow rate, a is the number of components in the feed, ;F is the mole
fraction of each component in the feed, q is the quality of the feed, a is the relative volatility
of each component at average column conditions, and 4 is the root of the equation. The feed
flow rate, composition. and quality are usually known, and the average column conditions can
be approximated. Therefore. is the only unknown in Eq. (1.3). Because this equation is a
polynomial in J of degree a, there are a possible values of$ (roots) that satisfy the equation.

The friction factorf for turbulent flow of an incompressible fluid in a pipe is given by
the nonlinear Colebrook equation

PT c/D 2.51
= -O.861n - (1.4)

N f 3.7

where and D are roughness and inside diameter of the pipe, respectively, and NR, is the

1.1 Introduction 3

Reynolds number. This equation does not readily rearrange itself into a polynomial form;
however, it can be arranged so that all the nonzero terms are on the left side of the equation
as follows:

cID 2.51
÷O.861n =0 (15)

N f NRC/f

The method of differential operators is applied in finding analytical solutions of
order linear homogeneous differential equations. The general form of an mb-order linear
homogeneous differential equation is

d"v d''y dv
a + a + —— + a0v = 0 (1 6)

dx' dx -

By defining D as the differentiation with respect to x:

(1.7)
dx

Eq. (1.6) can be written as

a,, 1)" + . . . + ± a0] = 0 (1.8)

where the bracketed term is called the differential operator. In order for Eq. (1 .8) to have a
nontrivial solution, the differential operator must he equal to zero:

± f)' + . . . ÷ a1D + a0 0 (1.9)

This, of course. is a polynomial equation in D whose roots must be evaluated in order to
construct the complementary solution of the differential equation.

The field of process dynamics and control often requires the location of the roots of
transfer functions that usually have the form of polynomial equations. In kinetics and reactor
design, the simultaneous solution of rate equations and energy balances results in

mathematical models of simultaneous nonlinear and transcendental equations. Methods of
solution for these and other such problems are developed in this chapter.

4 Numerical Solution of Nonlinear Equations Chapter 1

1.2 TYPEs OF ROOTS AND THEIR APPROXiMATION

All the nonlinear equations presented in Sec. I. I can he \\ ritten in the general form

f(.v) 0 (1.10)

where x is a single variable that can have multiple values (roots) that satisfy this equation. The
function /(.v) may assume a variety of nonlinear funetionalities ranging from that of a
polynomial equation whose canonical form is

1(x) ÷ . . — a1x — - 0 (1.11)

to the transcendental equations, which involve trigonometric. exponential. and logarithmic
terms. The roots of these functions could he

I. Real and distinct
2. Real and repeated
3. Complex conjugates
4. A combination of any or all of the above.

The real parts of the roots may he positive, negative, or zero.
Fig. I . I graphically demonstrates all the e eases using fourth-degree polynomials.

Fig. lb is a plot of the polynomial equation (t.12):

+ - 6x 8 0 (1.12)

which has four real and distinct toots at -4, -2. -1. and I. as indicated by the intersections of
the function with the i. axis. Fig. 1. lb is a graph of the polynomial equation (1 . 13):

- 7x3 - - 4.v 16 - 0 (1.13)

which has two real and distinct roots at -4 and 1 and two real and repeated roots at -2. The
point of tangency with the A axis indicates the presence of the repeated roots. At this point
.1(x) = 0 and ftx) = 0. Fig. 1 . Ic is a plot of the polynomial equation (1.14):

x4 6x3 - 18A2 — 30v + 25 (1 (1.14)

which has only complex roots at I ± 21 and 2 ± 1. In this ease. no intersection with the x axis
of the Cartesian coordinate system occurs, as all of the roots are located in the complex plane.
Finally, Fig. 1. Id demonstrates the presence of two real and two complex roots with

Figure 1.1 Roots of fourth-degree polynomial equations. (a) Four real distinct.
(b) Two real and two repeated. (c) Four complex. (ci) Two real and two
complex.

the polynomial equation (1.15):

x4+x3-5x2+23x-20=O (1.15)

whose roots are -4, 1, and 1 ± 2i. As expected, the function crosses the x axis only at two
points: -4 and 1.

The roots of an iith-degree polynomial, such as Eq. (1.1 1), may be verified using
Newton's relations, which are:

n
>: xi = -

1.2 Types of Roots and Their Approximation 5

(a) (b)

—5

—10
—4 —2 0 2

(c)

a 10

(d)

1 2 3

x

Newton's 1st relation:

where are the roots of the polynomial.

(1.16)

6 Numerical Solution of Nonlinear Equations Chapter 1

Newton's 2nd relation:

= (1.17)
j•j Ci,,

Newton's 3rd relation:

a
- (1.18)

Newton' s nth relation:

a
x1x2x3.. (1.19)

Li

where I j 1< . . . for all the above equations which contain products of roots.
In certain problems it may be necessary to locate all the roots of the equation. including

the complex roots. This is the case in finding the zeros and poles of transfer functions in
process control applications and in formulating the analytical solution of linear iith-order
differential equations. On the other hand, different problems may require the location of only
one of the roots. For example, in the solution of the equation of state. the positive real root
is the one of interest. In any case, the physical constraints of the problem may dictate the
feasible region of search where only a subset of the total number of roots may be indicated.
In addition, the physical characteristics of the problem may provide an approximate value of
the desired root.

The most effective way of finding the roots of nonlinear equations is to devise iterative
algorithms that start at an initial estimate of a root and converge to the exact value of the
desired root in a finite number of steps. Once a root is located, it may be removed by synthetic
division if the equation is of the polynomial form. Otherwise, convergence on the same root
may be avoided by initiating the search for subsequent roots in different region of the feasible
space.

For equations of the polynomial form. Descartes' rule of sign may he used to determine
the number of positive and negative roots. This rule states: The number of positive roots is
equal to the number of sign changes in the coefficients of the equation (or less than that by an
even integer); the number of negative roots is equal to the number of sign repetitions in the
coefficients (or less than that by an even integer). Zero coefficients are counted as positive
[31. The purpose of the qualifier. than that by an even integer," is to allow for the
existence of conjugate pairs of complex roots. The reader is encouraged to apply Descartes'
rule to Eqs. (1.12)-(l.l5) to verify the results already shown.

If the problem to he solved is a purely mathematical one, that is. the model whose roots
are being sought has no physical origin, then brute-force methods would have to he used to
establish approximate starting values of the roots for the iterative technique. Two categories
of such methods will be mentioned here. The first one is a truncation method applicable to

1.2 Types of Roots and Their Approximation 7

equation of the polynomial form. For example, the following polynomial

a4x4 + a3x3 a1x ± a0 = 0 (1.20)

may have its lower powered terms truncated

a4x4 + a3x3 0 (1.21)

to yield an approximation of one of the roots

a1
X (1.22)

Alternatively, if the higher powered terms are truncated

a1x + 0 (1.23)

the approximate root is

(1.24)
a1

This technique applied to Soave-Redlich-Kwong equation [Eq. (l.2)J results in

Pv
Z I (1.25)

This, of course, is the well-known ideal gas law, which is an excellent approximation of the
pressure-volume-temperature relationship of real gases at low pressures. On the other end of
the polynomial, truncation of the higher powered terms results in

AB
Z (1.26)

A - B - 82

giving a value of Z very close to zero which is the case for liquids. In this case, the physical
considerations of the problem determine that Eq. (1.25) or Eq. (I .26) should he used for gas
phase or liquid phase, respectively, to initiate the iterative search technique for the real root.

Another method of locating initial estimates of the roots is to scan the entire region of
search by small increments and to observe the steps in which a change of sign in the function
f(x) occurs. This signals that the function 1(x) crosses the x axis within the particular step.
This search can be done easily in MATLAB environment using fob! function. Once the

8 Numerical Solution of Nonlinear Equations Chapter 1

function f(x) is introduced in a MATLAJ3 function file_name.rn, the statement
fplor('file_name',[a, bID shows the plot of the function fromx = a to x = b. The values of a and
b may be changed until the plot crosses the x axis.

The scan method may be a rather time-consuming procedure for polynomials whose
roots lie in a large region of search. A variation of this search is the method of bisection that
divides the interval of search by 2 and always retains that half of the search interval in which
the change of sign has occurred. When the range of search has been narrowed down
sufficiently, a more accurate search technique would then be applied within that step in order
to refine the value of the root.

More efficient methods based on rearrangement of the function to x = g(x) (method of
successive substitution), linear interpolation of the function (method offalse position), and the
tangential descent of the function (Newton-Raphson method) will be described in the next
three sections of this chapter.

MATLAB has its own built-in function fzero for root finding. The statement
fzero('file_naine' ,x0) finds the root of the function f(x) introduced in the user-defined
MATLAB function file_name.m. The second argument x0 is a starting guess. Starting with
this initial value, the function fzero searches for change in the sign of the functionf(x). The
calculation then continues with either bisection or linear interpolation method until the
convergence is achieved.

1.3 THE METHOD OF SUCCESSIVE SUBSTITUTION

The simplest one-point iterative root-finding technique can be developed by rearranging the
functionf(x) so that x is on the left-hand side of the equation

x = g(x) (1.27)

The function g(x) is a formula to predict the root. In fact, the root is the intersection of the line

y x with the curve y = g(x). Starting with an initial value of x1, as shown in Fig. l.2a, we
obtain the value of x2:

= g(x1) (1.28)

which is closer to the root than x1 and may be used as an initial value for the next iteration.
Therefore, general iterative formula for this method is

= (1.29)

which is known as the method of successive substitution or the method of x = g(x).

1.4 The Wegstein Method 9

A sufficient condition for convergence of Eq. (1.29) to the root I is that g '(4 <1 for
all x in the search interval. Fig. I .2b shows the case when this condition is not valid and the
method diverges. This analytical test is often difficult in practice. In a computer program it
is easier to determine whether x3 - < - and, therefore, the successive x,7 values
converge. The advantage of this method is that it can be started with only a single point.
without the need for calculating the derivative of the function.

(a) (b)

Figure 1.2 Use of x = g(x) method. (a) Convergence. (b) Divergence.

1.4 THE WEGSTEIN METHOD

The Wegstein method may also be used for the solution of the equations of the form

x = g(x) (1.27)

Starting with an initial value of x1, we first obtain another estimation of the root from

= g(x1) (1.28)

As shown in Fig. 1.3, does not have to be closer to the root than x1. At this stage, we

estimate the function g(x) with a line passing from the points (x1, g(x1)) and (x,, g(x3)

y - g(x1) g(x2)

- (1.30)x-xI

g(x) g(x)

x x

xn.1 =

(a)

x3 =
x1 g(x2) — x2g(x1)

- g(x1) - + g(x,)

n� 2

(b)

(1.31)

(1.32)

10 Numerical Solution of Nonlinear Equations Chapter 1

and find the next estimation of the root, x3, from the intersection of the line (1.30) and the line
y =

It can be seen from Fig. l.3a that x3 is closer to the root than either x1 and x2. In the next
iteration we pass the line from the points (x2, g (x-,)) and (x3, g (x3)) and again evaluate the next
estimation of the root from the intersection of this line with y = x. Therefore, the general
iterative formula for the Wegstein method is

—

— — 4- g(x,2)

The Wegstein method converges, even under conditions in which the method of x = g(x) does
not. Moreover, it accelerates the convergence when the successive substitution method is
stable (Fig. 1.3b).

xl X

Figure 1.3 The Wegstein method.

1.5 THE METHOD OF LINEAR INTERPOLATION

(METHOD OF FALSE POSITION)

This technique is based on linear interpolation between two points on the function that have

been found by a scan to lie on either side of a root. For example, x4 and .r2 in Fig. I .4a are

1.5 The Method of Linear Interpolation (Method of False Position) 11

positions on opposite sides of the root I of the nonlinear functionf(x). The points (x1,f(x1))
and (x2,f(x2)) are connected by a straight line, which we will call a chord, whose equation is

y(x) = ax b (1.33)

Because this chord passes through the two points (x,f(x1)) and (x2,f(x2)), its slope is

f(x2) -f(x1)
a

— (1.34)x2 - x1

and its y intercept is

h = f(x1) - ax1 (1.35)

Eq. (1.33) then becomes

fix2) - fix1) I . f(x2) f(x1)
y(x) = x + f(x1) - (1.36)x2-x1 x2-x1

(a)

f(x)

f(x)

x

(b)

x

Figure 1.4 Method of linear interpolation.

12 Numerical Solution of Nonlinear Equations Chapter 1

Locating x3 using Eq. (1.36), where y(x3) = 0:

f(x1) (x, xl)
= x1

— (1.37)
fix)) - J(x1)

Note that for the shape of curve chosen on Fig. I .4, x3 is nearer to the root I than either x1 or
x,. This, of course, will not always be the case with all functions. Discussion of criteria for
convergence will be given in the next section.

According to Fig. l.4,fix3) has the same sign asf(x7); therefore, x, may be replaced by
x3. Now repeating the above operation and connecting the points (x1, f(x1)) and (.r1, f(x3)) with
a new chord, as shown in Fig. l.4/, we obtain the value of x4:

fix1) —

X4 (1.38)
j(x3) — f(x1)

which is nearer to the root than x3. For general formulation of this method. consider I to he
the value at which fCC) > 0 and I to be the value at which fit) < 0. Next improved
approximation of the root of the function may be calculated by successive application of the
general formula

f(x)(x -
- (1.39)-fix)

For the next iteration, I or I should be replaced by x, according to the sign of fix,,).
This method is known by several names: method of chords, linear interpolation, false

position (regulafa/si). Its simplicity of calculation (no need for evaluating derivatives of the
function) gave it its popularity in the early days of numerical computations. However, its
accuracy and speed of convergence are hampered by the choice of x1, which forms the pivot
point for all subsequent iterations.

1.6 THE NEWTON-RAPHSON METHOD

The best known, and possibly the most widely used, technique for locating roots of nonlinear
equations is the Newton-Raphson method. This method is based on a Taylor series expansion
of the nonlinear functionf(x) around an initial estimate (x1) of the root:

'/1
/ f (x1)(x x1Y f (x1)(x -

f(x) = f(x1) = ,t Cr1) (x - x1) + ' ... (lAO)

Because what is being sought is the value of x that forces the function fix) to assume zero

value, the left side of Eq. (1.40) is set to zero, and the resulting equation is solved for x.

1(x)
x = :r1 -

f (x)

f(x;)
— x,, — f (x,)

1.6 TheNewton-Raphson Method 13

However, the right-hand side is an infinite series. Therefore, a finite number of terms must
be retained and the remaining terms must he truncated. Retaining only the first two terms on
the right-hand side of the Taylor series is equivalent to linearizing the function f(x). This
operation results in

(1.41)

that is, the value of x is calculated from x1 by correcting this initial guess byf(x)/f'(x). The
geometrical significance of this correction is shown in Fig. 1 .5a. The value of x is obtained
by moving from x1 to x in the direction of the tangentf'(x1) of the functionf(x).

Because the Taylor series was truncated, retaining only two terms, the new value x will
not yet satisfy Eq. (1.10). We will designate this value as x7 and reapply the Taylor series
linearization atx, (shown in Fig. l.Sb) to obtain x3. Repetitive application of this step converts
Eq. (1.41) to an iterative formula:

(1.42)

In contrast to the method of linear interpolation discussed in Sec. 1.5, the Newton-Raphson
method uses the newly found position as the starting point for each subsequent iteration.

In the discussion for both linear interpolation and Newton-Raphson methods, a certain
shape of the function was used to demonstrate how these techniques converge toward a root
in the space of search. However, the shapes of nonlinear functions may vary drastically, and
convergence is not always guaranteed. As a matter of fact, divergence is more likely to occur,
as shown in Fig. 1.6, unless extreme care is taken in the choice of the initial starting points.

To investigate the convergence behavior of the Newton-Raphson method, one has to
examine the term '(x,JJ in Eq. (1.42). This is the error term or correction term applied
to the previous estimate of the root at each iteration. A function with a strong vertical
trajectory near the root will cause the denominator of the error term to be large; therefore, the

f(x)

(a) (b)

x x

Figure 1.5 The Newton-Raphson method.

14 Numerical Solution of Nonlinear Equations Chapter 1

convergence will be quite fast. If, however, f(x) is nearly horizontal near the root, the
convergence will be slow. If at any point during the search,f'(x) = 0, the method would fail
due to division by zero. Inflection points on the curve, within the region of search, are also
troublesome and may cause the search to diverge.

A sufficient, but not necessary, condition for convergence of the Newton-Raphson
method was stated by Lapidus [4] as follows: "1ff '(x) and f "(4 do not change sign in the
interval (x1, 2) and iff(x1) have the same sign, the iteration will always converge
to 2." These convergence criteria may he easily programmed as part of the computer program
which performs the Newton-Raphson search, and a warning may be issued or other appropriate
action may he taken by the computer if the conditions are violated.

A more accurate extension of the Newton-Raphson method is Newton' s 2nd-order
method, which truncates the right-hand side of the Taylor series [Eq. (1.40)] after the third
term to yield the equation:

2 /

2'
f -f(x1) 0 (1.43)

where &r1 = x - x1. This is a quadratic equation in &v1 whose solution is given by

± ILRX)]2 - 2f"(x1)f(x1)
(1 4

The general iterative formula for this method would he

+ - 2f"(x,4)J(x,)
= - (I.45a)

f

(b)

Figure 1.6 Choice of initial guesses affects convergence of Newton-Raphson
method. (a) Convergence. (b) Divergence.

(a)

x

Example 1.1 Solution of the Colebrook Equation 15

01

- - 2f"(XF?)f(xfl)
- -

(1 .45h) will be determined by exploring both values of
and and determining which one results in the function f(x,,÷1) or being closer

to zero.

An alternative to the above exploration will be to treat Eq. (1.43) as another nonlinear
equation in Ax and to apply the Newton-Raphson method for its solution:

F(Ax) = +f'(x1)Ax ÷f(x1) = 0 (1.46)

where

F(Ax)
- Ax, - (1.47)

F' (Ax)

Two nested Newton-Raphson algorithms would have to be programmed together as follows:

1. Assume a value ofx1.
2. Calculate Ax1 from Eq. (1.44).
3. Calculate Ax2 from Eq. (1.47).
4. Calculate x, from x, = x1 + Ax,.

5. Repeat steps 2 to 4 until convergence is achieved.

Example 1.1: Solution of the Colebrook Equation by Successive Substitution,
Linear Interpolation, and Newton-Raphson Methods. Develop MATLAB functions to
solve nonlinear equations by the successive substitution method, the linear interpolation, and
the Newton-Raphson root-finding techniques. Use these functions to calculate the friction
factor from the Colebrook equation [Eq. (1.4)] for flow of a fluid in a pipe with c/D = and

= 10'. Compare these methods with each other.

Method of Solution: Eqs. (1.29),(l.39), and(l.42) are used for the method ofx=g(x),
linear interpolation, and Newton-Raphson, respectively. The iterative procedure stops when
the difference between two succeeding approximations of the root is less than the convergence
criterion (default value is 106), or when the number of iterations reaches 100, whichever is
satisfied first. The program may show the convergence results numerically and/or graphically,
if required, to illustrate how each method arrives at the answer.

Program Description: Three MATLAB functions called XGX.m, Urn, and NR.rn are
developed to find the root of a general nonlinear equation using successive substitution [the

16 Numerical Solution of Nonlinear Equations Chapter 1

method of x = g(x)], linear interpolation, and Newton-Raphson methods, respectively. The
name of the nonlinear function subject to root finding is introduced in the input arguments:
therefore, these MATLAB functions may be applied to any problem.

Successive substitution method (XGX.m): This function starts with initialization section in
which input arguments are evaluated and initial values for the main iteration are introduced.
The first argument is the name of the MATLAB function in which the function g (4 is
described. The second argument is a starting value and has to be a scalar. By default,
convergence is assumed when two succeeding iterations result in root approximations with

less than in difference. If another value for convergence is desired, it may he introduced
to the function by the third argument. A value of 1 as the fourth argument makes the function
show the results of each iteration step numerically. If this value is set to 2, the function shows
the results numerically and graphically. The third and fourth arguments are optional. Every
additional argument that is introduced after the fourth argument is passed directly to the
function g(x). In this case, if it is desired to use the default values for the third and fourth
arguments, an empty matrix should be entered in their place. For solution of the problem, the

values of and c/D are passed to the Colebrook function by introducing them in fifth and
sixth arguments.

The next section in the function is the main iteration loop, in which the iteration
according to Eq. (1.29) takes place and the convergence is checked. In the case of the
Colebrook equation, Eq. (1.4) is rearranged to solve forf: The right-hand side of this equation

is taken as g(f) and is introduced in the MATLAB function Colebrookg.m. Numerical results

of the calculations are also shown. if requested, in each iteration of this section.

=g(f)
0.86 In +

3.7

At the end, the MATLAB function plots the function as well as the results of the
calculation, if required, to illustrate the convergence procedure.

Linear interpolation method (Lint): This function consists of the same parts as the XGX.m

function. The number of input arguments is one more than that of XGX.m, because the linear
interpolation method needs two starting points. Special care should be taken to introduce two

starting values in which the function have opposite signs. Eq. (1 .5)is used without change as
the function the root of which is to be located. This function is contained in a MATLAB
function called Colebrook.m.

Newton-Raphson method (NR.m): The structure of this function is the same as that of the two
previous functions. The derivative of the function is taken numerically to reduce the inputs.
It is also more applicable for complicated functions. The reader may simply introduce the

derivative function in another MATLAB function and use it instead of numerical derivation.
In the case of the Colebrook equation, the same MATLAB function Colebrook.m, which

represents Eq. (1.5), may be used with this function to calculate the value of the friction factor.

Example 1.1 Solution of the Colebrook Equation 17

The MATLAB program Example I_Tm finds the friction factor from the Colebrook
equation by three different methods of root finding. The program first asks the user to input
the values for NJ?e and eID. It then asks for the method of solution of the Colebrook equation.
name of the rn-file that contains the Colebrook equation, and the initial value(s) to start the
method. The program then calculates the friction factor by the selected method and continues
asking for the method of solution until the user enters 0.

WARNING: The original MATLAB Version 5.2 had a "bug." The command

linspace(0,0, 100)

which is used in LJ.rn, NR.m, and Nrpolv.rn in Chapter 1, would not work properly in the
MATLAB installations of Version 5.2 which have not yet been corrected. A patch which
corrects this problem is available on the website of Math Works. Inc.:

http://www.mathworks.com

If you have Version 5.2, you are strongly encouraged to download and install this patch, if you
have not done so already.

Program

Examplel_1.rn

% Examplel_l.m
% This program solves the problem posed in Example 1.1.
% It calculates the friction factor from the Colebrook equation
% using the Successive Substitution, the Linear Interpolation,
% and the Newton—Raphson methods.

c] ear

dc
cl f

disp)'Calculating the friction factor from the Colebrook equation)

% Input
Re = input('\n Reynolds No. =

e_over_D = input)' Relative roughness = 'I;
method = 1;
while method

fprintf) '\n'
disp(' 1)

Successive substitution!)
disp(' 2)

Linear Interpolation!)
disp(' 3) Newton Raphson')
disp(' 0) Exit')
method = input)'\n Choose the method of solution
if method

18 Numerical Solution of Nonlinear Equations Chapter 1

fname = input (\n Function containing the Colebrook equation
end
switch method
case 1 % Successive substitution

xO = input(' Starting value =
f = xgx(fname,xO,[J,2,Re,e_over_D);
fprintf('\n f = %6.4f\n',f)

case 2 % Linear interpolation
xl = input(First starting value
x2 = input(' Second starting value =
f = LI(fname,xl,x2,{],2,Re,e_over_D);
fprintf('\n f = %6.4f\n',f)

case 3 % Newton—Raphson
xO input(Starting value =
f =NR(fname,xO,[J,2,Re,e_over_D);
fprintf('\n f = %6.4f\n ,f)

end
end

XGX.m
function x XGX(fnctn,xO, tol,trace,varargin)
%XGX Finds a zero of a function by x=g(x) method.

% XGX(GHXO) finds the intersection of the curve y=g(x)
% with the line y=x. The function g(x) is described by the
% M-file G.M. XO is a starting guess.

% XGX('G' ,XO,TOL,TRACE) uses tolerance TOL for convergence
% test. TRACE=l shows the calculation steps numerically and
% TRACE=2 shows the calculation steps both numerically and
% graphically.

XGX('G' ,XO,TOL,TRACE,PI,P2,...) allows for additional
arguments which are passed to the function G(X,Pl,P2,...).
Pass an empty matrix for TOL or TRACE to use the default
value.

% See also FZERO, ROOTS, NR, LI

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 3 isempty(tol)

tol = le-6;
end
if nargin c 4 isempty(trace)

trace = 0;
end
if tol == 0

tol = le-6;

Example 1.1 Solution of the Colebrook Equation 19

end
if (length(xO) > 1) (—isfinite(xO))

error('Second argument must be a finite scalar.
end
if trace

header = Iteration x g(x)
disp(H
disp (header)
if trace == 2

xpath = ExOl;
ypath = [0];

end
end

x = xO;
xO = x + 1;
iter = 1;
itermax = 100;

% Main iteration loop
while abs(x - xO) > tol & iter c= itermax

x0 =
fnk = feval(fnctn,x0,varargin{:});

% Next approximation of the root
x = fnk;

% Show the results of calculation
if trace

fprintf(%5.Of %l3.6g %13.6g\n ,iter, [xO fnk])
if trace == 2

xpath = [xpath xO
ypath = [ypath fnk x];

end
end
iter = iter + 1;

end

if trace == 2

% Plot the function and path to the root
xmin min(xpath);
nax max(xpath);
dx xmax - xmin;
xi = xmin - dx/l0;
xf = xmax + dx/10;
yc = [I;
for xc = xi (xf — xi)/99 xf

yc=[yc feval(fnctn,xc,varargin(:})J;
end
xc = linspace(xi,xf,100);
plot(xc,yc,xpath,ypath,xpath(2),ypath(2),*,

20 Numerical Solution of Nonlinear Equations Chapter 1

x,fnk,o,[xi xf],[xi,xf],'--')
axis({xi xf min(yc) max(yc)])
xlabel('x')
ylabel('g(x) [-- y=x]')
title('x=g(x) The function and path to the root

initial guess o root))
end

if iter >= itermax
disp('Warning Maximum iterations reached.')

end

Ll.m
function x = LI(fnctn,xl,x2,tol,trace,varargin)
%LI Finds a zero of a function by the linear interpolation method.

% LI('F',Xl,X2) finds a zero of the function described by the
% M-file F.M. Xl and X2 are starting points where the function
% has different signs at these points.

% LI)'F',Xl,X2,TOL,TRACE) uses tolerance TOL for convergence
% test. TRACE=l shows the calculation steps numerically and
% TRACE=2 shows the calculation steps both numerically and
% graphically.

% LI('F',Xl,X2,TOL,TRACE,Pl,P2,...) allows for additional
% arguments which are passed to the function F(X,P1,P2, ...).
% Pass an empty matrix for TOL or TRACE to use the default
% value.

% See also FZERO, ROOTS, XOX, NR

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 4 isempty)tol)

tol le-6;
end
if nargin < 5 isempty(trace)

trace = 0;
end
if tol == 0

tol = le-6;
end
if)length)xl) > 1) Hisfinite(xl)) (length(x2) > 1) .

N—isfinite(x2)
error('Second and third arguments must be finite scalars.')

end
if trace

header = ' Iteration x f)x)

Example 1.1 Solution of the Colebrook Equation 21

disp()

disp (header)
end
fl = feval(fnctn,xl,varargin{:});
f2 = feval(fnctn,x2,varargin{:});

iter = 0;
if trace

% Display initial values
fprintf(%5.Of %l3.6g %l3.Gg \n,iter, [xl flj)
fprintf(%5.Of %l3.6g %l3.6g \n,iter, [x2 f2])
if trace == 2

xpath = [xl xl x2 x2];
ypath = [0 fl f2 0];

end
end

if fl < 0

xxxi = xl;
fm = fl;
xp = x2;
fp = f2;

else
xm = x2;
fm = f2;
xp = xl;
fp = fl;

end

iter = iter + I;
itermax = 100;
x = xp;
xO = xm;

% Main iteration loop
while abs(x - xO) > tol & iter <= itermax

x0 = x;
x = xp - fp * - xp) / (fm - fp);
fnk = feval(fnctn,x,varargin{

if fnk < 0

xm = x;
fin fnk;

else
xp = x;
fp = fnk;

end

% Show the results of calculation
if trace

fprintf(%5.Of %l3.6g %13.6g \n,iter, [x fnk])

22 Numerical Solution of Nonlinear Equations Chapter 1

if trace == 2

xpath = [xpath xm xm xp xp];
ypath = [ypath 0 fm fp 01;

end
end
iter = iter + 1;

end

if trace == 2

% Plot the function and path to the root
xrnin = min(xpath);
xmax = max(xpath)
dx = xmax - xmin;
xi = xrnin - dx/l0;
xf = xrnax + dx/l0;
yc =
for xc = xi : (xf - xi)/99 xf

yc=[yc feval(fnctn,xc,varargin{:fl];
end
xc = linspace(xi,xf,l00);
ax = linspace(0,0,lOO);
plot(xc,yc,xpath,ypath,xc,ax,xpath(2:3),ypath(2:3),*,x,fnk,o)
axis([xi xf min(yc) max(yc)])
xlabel (x')

ylabel (f (x) ')

title('Linear Interpolation The function and path to the root
initial guess ; o root) ')

end

if iter >= itermax
Maximum iterations reached.!)

end

NR.m
function x = NR(fnctn,xO, tol, trace,varargin)
%NR Finds a zero of a function by the Newton-Raphson method.

% NR('F',XO) finds a zero of the function described by the
% M-file F.M. X0 is a starting guess.

% NR('F' ,X0,TOL,TRACE) uses tolerance TOL for convergence
% test. TRACE=l shows the calculation steps numerically and
% TRACE=2 shows the calculation steps both numerically and
% graphically.

% NR('F' ,X0,TOL,TRACE,PI,P2, ..,) allows for additional
% arguments which are passed to the function F(X,Pl,P2, ...)
% Pass an empty matrix for TOL or TRACE to use the default
% value.

% See also FZERO, ROOTS, XOX, LI

Example 1.1 Solution of the Colebrook Equation 23

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 3 isempty(tol)

tol = le-6;
end
if nargin < 4 isempty(trace)

trace = 0;
end
if tol == 0

tol = le-6;
end
if (length(xO) > 1) Nisfinite(xO))

error('Second argument must be a finite scaler.)
end

iter = 0;
fnk = feval(fnctn,xO,varargin{:});
if trace

header = Iteration x f(x)
disp()

disp (header)
fprintf(%5.Od %13.6g %l3.6g \n,iter, [xO fnk])
if trace == 2

xpath = [xO xO];
ypath = [0 fnk];

end
end

x = xO;
xO = x + 1;
itermax = 100;

% Main iteration loop
while abs(x - xO) > tol & iter <= itermax

iter = iter + 1;
xO =

% Set dx for differentiation
if x 0

dx = x/lOO;
else

dx = 1/100;
end

% Differentiation
a = x - dx; fa = feval(fnctn,a,varargin[:});
b = x + dx; fb =
df = (fb - fa)/(b - a);

24 Numerical Solution of Nonlinear Equations Chapter 1

% Next approximation of the root
if df == 0

x = xO + max(abs(dx),l.l*tol);
else

x = xO - fnk/df;
end

fnk = feval (fnctn,x,varargin{ :
% Show the results of calculation
if trace

fprintf('%5.Od %l3.6g %l3.6g \n' ,iter, [x fnk])

if trace == 2

xpath = Ixpath x
ypath = [ypath 0 fnkI;

end
end

end

if trace == 2

% Plot the function and path to the root
xmin = min(xpath);
xmax = max(xpath);
dx = xmax - xmin;
xi = xmin - dx/lO;
xf = xmax + dx/10;
yc = [I;
for xc = xi (xf - xi)/99 xf

yc = [yc feval(fnctn,xc,varargin{:})l;
end
xc = linspace(xi,xf,lOO);
ax = linspace(0,0,100);
plot(xc,yc,xpath,ypath,xc,ax,xpath(l),YPath(2),*,x,fnk,O)
axis([xi xf min(yc) max(yc)])
xlabel(x)
ylabel (f (x))

: The function and path to the root
initial guess ; o root)!)

end

if iter >= itermax
disp(Warning Maximum iterations reached.!)

end

Colebrook.m

function y = Colebrook(f, Re! e)

% Colebrook.m
% This function evaluates the value of Colebrook equation to be
% solved by the linear interpolation or the Nowton-Raphson method.

y = l/sqrt(f) + 0.86*log(e/3.7 + 2.Sl/Re/sqrt(f));

Example 1.1 Solution of the Colebrook Equation 25

Colebrookg.m
tunction y = clbrkg(f, Re, e)

% Colebrookg.m
% This function evaluates the value of the rearranged Colebrook
% equation to be solved by x=g(x) method.

Input and Results

>>Examplel_l

calculating the friction factor from the colebrook equation

Reynolds No. = leS
Relative roughness = le-4

1)
Successive substitution

2)
Linear Interpolation

3)
Newton—Raphson

0) Exit

choose the method of solution 1

Function containing the colebrook equation 'Colebrookg'
Starting value = 0.01

Iteration x g(x)
1 0.01 0.0201683
2 0.0201683 0.0187204
3 0.0187204 0.0188639
4 0.0188639 0.0188491
5 0.0188491 0.0188506
6 0.0188506 0.0188505

f 0.0189

1)
Successive substitution

2)
Linear Interpolation

3) Newton—Raphson
0 3 Exit

choose the method of solution 2

Function containing the colebrook equation 'Colebrook'
First starting value = 0.01
Second starting value = 0.03

Iteration x f(x)

0 0.01 2.9585
0 0.03 —1.68128

26 Numerical Solution of Nonlinear Equations Chapter 1

1 0.0227528 —0.723985
2 0.0202455 —0.282098
3 0.0193536 —0.105158
4 0.0190326 —0.0385242
5 0.0189165 —0.0140217
6 0.0188744 —0.00509133
7 0.0188592 —0.00184708
8 0.0188536 -0.000669888
9 0.0188516 —0.000242924

10 0.0188509 —8.80885e—005

f = 0.0189

1) Successive substitution
2) Linear Interpolation
3) Newton-Raphson
0) Exit

Choose the method of solution : 3

Function containing the Colebrook equation Colebrook
Starting value = 0.01

Iteration x f(x)
0 0.01 2.9585
1 0.0154904 0.825216
2 0.0183977 0.0982029
3 0.0188425 0.00170492
4 0.0188505 6.30113e—007
5 0.0188505 3.79075e—0ll

f = 0.0189

1) Successive substitution
2) Linear Interpolation
3) Newton-Raphson
0) Exit

Choose the method of solution 0

Discussion of Results: All three methods are applied to finding the root of the Colebrook
equation for the friction factor. Graphs of the step-by-step path to convergence are shown in
Figs. E1.la, b, and c for the three methods. It can be seen that Newton-Raphson converges
faster than the other two methods. However, the Newton-Raphsori method is very sensitive
to the initial guess, and the method may converge to the other roots of the equation, if a
different starting point is used. The reader may test other starting points to examine this
sensitivity. The convergence criterion in all the above MATLAB functions is ; -

<106.

Example 1.2 Solution of the Soave-Redlich-Kwong Equation 27

x=g(x) The function and path to the root)' initial gueaa o root)
00204

00202

002

00198

Looige

/

00192

0019

00188

001 0.012 0014 0018 0018 002

Figure ELla Solution using the method of successive substitution.

001 0015 002 0025 003

Figure El.lb Solution using the method of linear interpolation.

28

O.0867RT.
C-

Numerical Solution of Nonlinear Equations

Ntewton—Raphaon The tunction and path to the root initial gueaa o root)

Chapter 1

Figure E1.lc Solution using the Newton-Raphson method.

Example 1.2: Finding a Root of an nth-Degree Polynomial by Newton-Raphson
Method Applied to the Soave-Redlich-Kwong Equation of State. Develop a MATLAB
function to calculate a root of a polynomial equation by Newton-Raphson method. Calculate
the specific volume of a pure gas, at a given temperature and pressure, by using the Soave-
Redlich-Kwong equation of state

RT - aa
V—h V(V÷b)

The equation constants, a and b, are obtained from

a
=

PC.

P
C

where TC and are critical temperature and pressure, respectively. The variable a is an
empirical function of temperature:

a

Example 1.2 Solution of the Soave-Redlich-Kwong Equation 29

The value of S is a function of the acentric factor, to, of the gas:

S = 0.48508 + 1.55171w - 0.15613w2

The physical properties of n-butane are:

Tc=425.2K, 3797 kPa, w=0.1931

and the gas constant is:

R= 8314 J/kmoLK.

Calculate the specific volume of n-butane vapor at 500 K and at temperatures from 1 to 40
atm. Compare the results graphically with the ones obtained from using the ideal gas law.
What conclusion do you draw from this comparison?

Method of Solution: Eq. (1.42) is used for Newton-Raphson evaluation of the root. For
finding the gas specific volume from the Soave-Redlich-Kwong equation of state, Eq. (1.2).
which is a third-degree polynomial in compressibility factor, is solved. Starting value for the
iterative method is Z = 1, which is the compressibility factor of the ideal gas.

Program Description: The MATLAB function NRpoly.m calculates a root of a
polynomial equation by Newton-Raphson method. The first input argument of this function
is the vector of coefficients of the polynomial, and the second argument is an initial guess of
the root. The function employs MATLAB functions polyval and polyder for evaluation of the
polynomial and its derivative at each point. The reader can change the convergence criterion
by introducing a new value in the third input argument. The default convergence criterion is
io6. The reader may also see the results of the calculations at each step numerically and
graphically by entering the proper value as the fourth argument (I and 2, respectively). The
third and fourth arguments are optional.

MATLAB program Example]_2.m solves the Soave-Redlich-Kwong equation of state by
utilizing the NRpoly.m function. In the beginning of this program, temperature, pressure range
and the physical properties of n-butane are entered. The constants of the Soave-Redlich-
Kwong equation of state are calculated next. The values of A and B I used in Eq. (1.2)1 are also
calculated in this section. Evaluation of the root is done in the third part of the program. In
this part, the coefficients of Eq. (1.2) are first introduced and the root of the equation, closest
to the ideal gas, is determined using the above-mentioned MATLAB function NRpolv. The
last part of the program, Example] _2.m, plots the results of the calculation both for Soave-
Redlich-Kwong and ideal gas equations of state. It also shows some of the numerical
results.

30 Numerical Solution of Nonlinear Equations Chapter 1

Program

Examplel.j.m
% Examplel_2.m
% This program solves the problem posed in Example 1.2.
% It calculates the real gas specific volume from the
% SRK equation of state using the Newton-Raphson method
% for calculating the roots of a polynomial.

clear
dc
cif

% Input data
P = input(Input the vector of pressure range (Pa) =

T = input(Input temperature (K) =

R = 8314; % Gas constant (J/lcmol.K)
Tc = input(Critical temperature (K) =

Pc = input(' Critical pressure (Pa) =

omega = input (Acentric factor =

% Constants of Soave-Redlich-Kwong equation of state
a = 0.4278 * R"2 *

/ Pc;

b = 0.0867 * R * Tc / Pc;

sc = [-0.15613, 1.55171, 0.48508];
s = polyval(sc,omega);
alpha = (1 + s * (1 - sqrt(T/Tc))V'2;
A = a * alpha * P / (R"2 *

B = b *
/ (R * T);

for k = l:length(P)
% Defining the polynomial coefficients
coef = [1, -1, _A(k)*B(k)];

vO(k) = R * T / P(k); % Ideal gas specific volume
vol(k) = NRpoly(coef , 1) * R * T / P(k); % Finding the root

end

% Show numerical results
fprintf (\nRESULTS: \n');
fprintf('Pres. = %5.2f Ideal gas vol. %7.4f',P(l),vO(l));
fprintf(' Real gas vol. =%7.4f\n',vol(l));
for k=lO:lO:length(P)

fprintf('Pres. = %5.2f Ideal gas vol. %7.4f',P(k),vO(k));
fprintf(' Real gas vol. =%7.4f\n',vol(k));

end

% plotting the results
loglog(P/l000,vO, ' . ' , P/l000,vol)
xlabel('Pressure, kPa')

Example 1.2 Solution of the Soave-Redlich-Kwong Equation 31

ylabel C Specific Volume, m"3/kmol')
legend (Ideal', SRK')

NRpoly.m

function x NRpoly(c,xO,tol,trace)
%NRPOLY Finds a root of polynomial by the Newton-Raphson method.

% NRPOLy(C,xO) computes a root of the polynomial whose
% coefficients are the elements of the vector C.
% If C has N+l components, the polynomial is
% + ... + C(N)*X + C(N+l).
% XO is a starting point.

I NRPOLy(C,XO,TOL,TRACE) uses tolerance TOL for convergence
I test. TRACE=l shows the calculation steps numerically and
I TRACE'2 shows the calculation steps both numerically and
I graphically.

% See also ROOTS, NRsdivision, NR.

I (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 3 isempty(tol)

tol = le—6;
end
if nargin < 4 isempty(trace)

trace = 0;
end
if tol == 0

tol = le—6;
end
if (length(x0) > 1) (—isfinite(x0))

error('Second argument must be a finite scalar. ')
end

iter = 0;
fnk polyval(c,x0); % Function
if trace
header = ' Iteration x f(x)
disp (header)
disp([sprintf('%5.Of %13.6g %13.6g ',iter, [xO fnk])])
if trace == 2

xpath = [xO x0];

ypath = [0 fnk];
end

end

32 Numerical Solution of Nonlinear Equations Chapter 1

x = xO;
xO = x + .1;
maxiter = 100;

% Solving the polynomial by Newton-Raphson method
while abs(xO - x) > tol & iter c maxiter

iter = iter + 1;
xO = x;
fnkp = polyval(polyder(c) ,xO); % Derivative
if fnkp 0

x = x0 - fnk / fnkp; % Next approximation
else

x = xO ÷ .01;
end

fnk = polyval(c,x); % Function
% Show the results of calculation
if trace

disp([sprintfV%5.Of %13.6g %l3.6g ' ,iter, [x fnk])])
if trace == 2

xpath = [xpath x x];
ypath = [ypath 0 fnkj;

end
end

end

if trace == 2

% Plot the function and path to the root
xmin = min(xpath);
xmax = max(xpath);
dx = xrnax - xmin;
xi = xmin - dx/lO;
xf = xmax + dx/l0;
yc =
for xc xi : (xf - xi)/99 xf

yc = [yc polyval(c,xc)I;
end
xc = linspace(xi,xf,lOO);
ax = linspace(0,0l00);
plot(xc,yc,xpath,ypath,xc,ax,xpath(l)ypath(2),*1,x,fnk,O)
axis([xi xf min(yc) max(yc)])
xlabel('x')
ylabel (f (x)

titleYNewton-RaPhson The function and path to the root (*
initial guess ; o root) ')

end

if iter == maxiter
dispYWarning Maximum iterations reached.')

end

(

'4

Example 1.2 Solution of the Soave-Redlich-Kwong Equation 33

Input and Results

>>Examplel_2

Input the vector of pressure range (Pa) : [1:401*101325
Input temperature (K) : 500
Critical temperature (K) : 425.2
Critical pressure (Pa) : 3797e3
Acentric factor : 0.1931

Pres. = 101325.00 Ideal gas vol. =41.0264 Real gas vol. =40.8111
Pres. = 1013250.00 Ideal gas vol. = 4.1026 Real gas vol. = 3.8838
Pres. 2026500.00 Ideal gas vol. = 2.0513 Real gas vol. = 1.8284
Pres. = 3039750.00 Ideal gas vol. = 1.3675 Real gas vol. = 1.1407
Pres. = 4053000.00 Ideal gas vol. = 1.0257 Real gas vol. 0.7954

Discussion of Results: In this example we use the Examp/el_2in program to calculate
the specific volume of a gas using the Soave-Redlich-Kwong equation of state. Because this
equation can be arranged in the canonical form of a third-degree polynomial, the function
NRpoly.m can be used. Additional information such as temperature, pressure, and physical
properties are entered by the user through the program.

Above the critical temperature, the Soave-Redlich-Kwong equation of state has only one
real root that is of interest, the one located near the value given by the ideal gas law.
Therefore, the latter, which corresponds to Z = I, is used as the initial guess of the root.

Direct comparison between the Soave-Redlich-Kwong and ideal gas volumes is made in
Fig. El .2. It can be seen from this figure that the ideal gas equation overestimates gas volumes
and, as expected from thermodynamic principles, the deviation from ideality increases as the
pressure increases.

Figure E1.2 Graphical comparison

between the Soave-Redlich-Kwong
and the ideal gas equations of state.

34 Numerical Solution of Nonlinear Equations Chapter 1

1.7 SYNTHETIC DIVISION ALGORITHM

If the nonlinear equation being solved is of the polynomial form, each real root (located by one
of the methods already discussed) can be removed from the polynomial by synthetic division,
thus reducing the degree of the polynomial to (n - 1). Each successive application of the
synthetic division algorithm will reduce the degree of the polynomial further, until all real
roots have been located

A simple computational algorithm for synthetic division has been given by Lapidus [41.
Consider the fourth-degree polynomial

f(x) = a4x4 + a3x3 + a2x2 + a1x + = 0 (1.48)

whose first real root has been determined to be 1. This root can be factoredout as follows:

f(x) = (x - + b2x2 + b1x + b0) = 0 (1.49)

In order to determine the coefficients (b) of the third-degree polynomial first multiply out Eq.

(1.49) and rearrange in descending power of x:

f(x) b3x4 + (b2 - b3x*)x3 (b1 - b2x)x2 + (b0 - b,x)x - (1.50)

Equating Eqs. (1.48) and (1.50), the coefficients of like powers of x must be equal to each

other, that is,

a3 = -

a2 = - (1.51)

a1 = -

b1 we obtain:

= a4

= a3 + b3x*
(1.52)

= a1 + b2x*

= a1 +

1.8 The Elgenvalue Method 35

In general notation, for a polynomial of nth-degree, the new coefficients after application
of synthetic division are given by

= a,,

(1.53)
h =a +b x'n-I--r fl r n-r

where r = 1, 2 (n - 1). The polynomial is then reduced by one degree

= n1 - 1 (1.54)

wherej is the iteration number, and the newly calculated coefficients are renamed as shown
by Eq. (1.55):

= a,

(1.55)
+

This procedure is repeated until all real roots are extracted. When this is accomplished, the
remainder polynomial will contain the complex roots. The presence of a pair of complex roots
will give a quadratic equation that can be easily solved by quadratic formula. However, two
or more pairs of complex roots require the application of more elaborate techniques, such as
the eigenvalue method, which is developed in the next section.

L8 THE EIGENVALUE METHOD

The concept of eigenvalues will be discussed in Chap. 2 of this textbook. As a preview of that
topic, we will state that a square matrix has a characteri stic polynomial whose roots are called
the eigenvalues of the matrix. However, root-finding methods that have been discussed up to
now are not efficient techniques for calculating eigenvalues [5]. There are more efficient
eigenvalue methods to find the roots of the characteristic polynomial (see Sec. 2.8).

It can be shown that Eq. (1.11) is the characteristic polynomial of the (n x n) companion
matrix A, which contains the coefficients of the original polynomial as shown in Eq. (1.56).
Therefore, finding the eigenvalues of A is equivalent to locating the roots of the polynomial
in Eq. (1.11).

MATLAB has its own function, roots.m, for calculating all the roots of a polynomial
equation of the form in Eq. (1.11). This function accomplishes the task of finding the roots
of the polynomial equation [Eq. (1.11)] by first converting the polynomial to the companion
matrix A shown in Eq. (1.56). It then uses the built-in function eig.m, which calculates the
eigenvalues of a matrix, to evaluate the eigenvalues of the companion matrix, which are also
the roots of the polynomial Eq. (1.11):

36 -- Numerical Solution of Nonlinear Equations Chapter 1

— a,,_1 —

a,, a,, • ;
1 0 ... 0 0

o 1 ...O 0
(1.56)

o o ... 0

Example 1.3: Solution of nth-Degree Polynomials and Transfer Functions Using
the Method with Synthetic Division and Elgenvalue Method. Consider
the isothermal continuous stirred tank reactor (CSTR) shown in Fig. El .3.

(q-Q) Q

Figure El .3 The continuous stirred tank reactor.

Components A and I? are fed to the reactor at rates of Q and (q - Q), respectively. The

following complex reaction scheme develops in the reactor:

A+R-I3

This problem was analyzed by Douglas in order to illustrate the various techniques
for designing simple feedback control systems. In his analysis of this system, Douglas made

the following assumptions:

Example 1.3 Solution of nth-Degree Polynomials and Transfer Functions 37

1. Component R is present in the reactor in sufficiently large excess so that the reaction
rates can be approximated by first-order expressions.

2. The feed compositions of components B, C, D, and E are zero.
3. A particular set of values is chosen for feed concentrations, feed rates, kinetic rate

constant, and reactor volume.
4. Disturbances are due to changes in the composition of component R in the vessel.

The control objective is to maintain the composition of component C in the reactor as
close as possible to the steady-state design value, despite the fact that disturbances enter the
system. This objective is accomplished by measuring the actual composition of C and using
the difference between the desired and measured values to manipulate the inlet flow rate Qof
component A.

Douglas developed the following transfer function for the reactor with a proportional
control system:

K
2.98(s + 2.25)

= -1
C

(s + l.45)(s + 2.85)2(s ÷ 4.35)

where KC is the gain of the proportional controller. This control system is stable for values
of KC that yield roots of the transfer function having negative real parts.

Using the Newton-Raphson method with synthetic division or eigenvalue method,
determine the roots of the transfer function for a range of values of the proportional gain KC
and calculate the critical value of KC above which the system becomes unstable. Write the
program so that it can be used to solve nth-degree polynomials or transfer functions of the type
shown in the above equation.

Method of Solution: In the Newton-Raphson method with synthetic division, Eq. (1.42)
is used for evaluation of each root. Eqs. (1 .53)-(l .55) are then applied to perform synthetic
division in order to extract each root from the polynomial and reduce the latter by one degree.
When the nth-degree polynomial has been reduced to a quadratic

a2x2 ÷ a1x + a0 = 0

the program uses the quadratic solution formula

- -a1 ± - 4a2a0

12 - 2a2

to check for the existence of a pair of complex roots. In the eigenvalue method, the MATLAB
function roots may be used directly.

The numerator and the denominator of the transfer function are multiplied out to yield

(2.98s +
= -l

+ il.sos3 + + 83.0632s + 51.2327

38 Numerical Solution of Nonlinear Equations Chapter 1

A first-degree polynomial is present in the numerator and a fourth-degree polynomial in the
denominator. To convert this to the canonical form of a polynomial, we multiply through by
the denominator and rearrange to obtain

+ + + 83.0632s + 51.2327] [2.98s + -0

It is obvious that once a value of K is chosen, the two bracketed terms of this equation can
be added to form a single fourth-degree polynomial whose roots can he evaluated.

When = 0. the transfer function has the following four negative real roots. which can
be found by inspcction of the original transfer function:

= -1.45 s2 2.85 = -2.85 s4 = -4.35

These are called the poles of the open-loop transfer function.
The valuc of that causes one or more of the roots of the transfer function to become

positive (or have positive real parts) is called the critical value of the proportional gain. This
critical value is calculated as follows:

1. A range of search for is established.
2. The bisection method is used to search this range.
3. All the roots of the transfer function are evaluated at each step of the bisection search.
4. The roots are checked for positive real part. The range of over which the change

from negative to positive roots occurs, is retained.
5. Steps 2-4 are repeated until successive values of K(change by less than a

convergence criterion, e.

Program Description: The MATLAB function NRsdivisiorun calculates all roots of a
polynomial by the Newton-Raphson method with synthetic division as described in the
Method of Solution. Unlike other functions employing the Newton-Raphson method, this
function does not need a starting value as one of the input arguments. Instead, the function
generates a starting point at each step according to Eq. (1.22). Only polynomials that have no
more than a pair of complex roots can be handled by this function. lf the polynomial has more
than a pair of complex roots, the function roots should be used instead. The function is written
in general form and may be used in other programs directly.

The MATLAB program Exarnplel_3.rn does the search for the desired value of by
the bisection method. At the beginning of the program, the user is asked to enter the
coefficients of the numerator and the denominator of the transfer function (in descending s
powers). The numerator and the denominator may be of any degree with the limitation that
the numerator cannot have a degree greater than that of the denominator. The user should also
enter the range of search and method of root finding. It is good practice to choose zero for the
minimum value of the range; thus, poles of the open-loop transfer function are evaluated in
the first step of the search. The maximum value niust he higher than the critical value,
otherwise the search will not arrive at the critical value.

Example 1.3 Solution of rith-Degree Polynomials and Transfer Functions 39

Stability of the system is examined at the minimum, maximum, and midpoints of the
range of search of That half of the interval in which the change from negative to positive
(stable to unstable system) occurs is retained by the bisection algorithm. This new interval is
bisected again and the evaluation of the system stability is repeated, until the convergence
criterion, which is <0.001, is met.

In order to determine whether the system is stable or unstable, the two polynomials are
combined, as shown in the Method of Solution, using as the multiplier of the polynomial
from the numerator of the transfer function. Function NRsdivision (which uses the Newton-
Raphson method with synthetic division algorithm) or function roots (which uses the
eigenvalue algorithm) is called to calculate the roots of the overall polynomial function and
the sign of all roots is checked for positive real parts. A flag named sthl indicates that the
system is stable (all negative roots: stbl = 1) or unstable (positive root; sthl = 0).

Program

Examplel_3.m
% Examplel_3.m

Solution to the problem posed in Example 1.3. It calculates the
% critical value of the constant of a proportional controller above
% which the system of chemical reactor becomes unstable. This program
% evaluate all roots of the denominator of the transfer function using
I the Newton-Raphson method with synthetic division or eigenvalue
% methods.

clear
dc

I Input data
nun = input(Vector of coefficients of the numerator polynomial =

denom = input V Vector of coefficients of the denominator
polynomial =
dispV V
Kcl = input) Lower limit of the range of search =
Kc2 = input(Upper limit of the range of search =
dispV V
disp)' 1

)
Newton-Raphson with synthetic division)

cUsp) 2)
Eigenvalue method!)

method = input) Method of root finding =

iter = 0;
nl = length(num);
n2 = length)denom);
c)l:n2-nl) = denom (l:n2-nl);

40 Numerical Solution of Nonlinear Equations Chapter 1

% Main loop
while abs(Kcl - Kc2) > 0.001

iter = iter + 1;
if iter == 1

Kc = Kcl; % Lower limit
elseif iter == 2

Ftc = Kc2; % Upper limit
else

Ftc = (Kcl + Kc2) / 2; % Next approximation
end

% Calculation of coefficients of canonical form of polynomial
for m = n2-nl+l n2;

c(m) = denom(m) + Ftc * num(m-n2+nl);
end

% Root finding
switch method
case 1 %Newton-Raphson with synthetic division

root NRsdivision(c);
case 2 % Rigenvalue method

root = roots (c);

end
realpart = real (root);
imagpart imag (root);

% Show the results of calculations of this step
fprintf(\n Ftc = %6.4f\n Roots = ,Kc)
for k = l:length(root)

if isreal(root(k))
fprintf(%7.5g ,root(k))

else
fprintf (. 4g realpart (k))
if imagpart(k) >= 0

fprintf(+%5.4gi ,imagpart(k))
else

fprintf(—%5.4gi ,abs(imagpart(k)))
end

end
end
disp()

% Determining stability or unstability of the system
stbl = I;
for m = 1 length(root)

if realpart(m) > 0

stbl = 0; % System is unstable
break;

end
end

Example 1.3 Solution of nth-Degree Polynomials and Transfer Functions 41

if iter == 1

stbll = stbl;
elseif iter == 2

stbl2 = stbl;
if stbll stbl2

error(Critical value is outside the range of search.')
break

end
else

if stbl == stbll
Rd = Kc;

else
Kc2 = ICc;

end
end

end

NRsdivision.m

function x = NRsdivision(c,tol)
%NRSDIVISION Finds polynomial roots.

% The function NRSDIVISION(C) evaluates the roots of a
% polynomial equation whose coefficients are given in the
% vector C.
%

% NRSDIVISION(C,TOL) uses tolerance TOL for convergence
% test. Using the second argument is optional.

% The polynomial may have no more than a pair of complex
% roots. A root of nth—degree polynomial is determined by
% Newton-Raphson method. This root is then extracted from
% the polynomial by synthetic division. This procedure
% continues until the polynomial reduces to a quadratic.

% See also ROOTS, NRpoly, NR

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 2 isempty(tol)

tol = le—6;
end
if tol == 0

tol = le-6;
end

n = length(c) 1; % Oegree of the polynomial
a = c;

42 Numerical Solution of Nonlinear Equations Chapter 1

% Main loop
for k = n -l 3

xO = -a(2)/a(l);
xl=xO+0 . 1;
iter = 0;
maxiter = 100;

% Solving the polynomial by Newton-Raphson method
while abs(xO - xl) > tol & iter < maxiter

iter = iter + 1;
xO xl;

fnk = polyval(a,xO); % Function
fnkp = polyval(polyder(a),xO); % Derivative
if fnkp -= 0

xl = xO - fnk / fnkp; % Next approximation
else

xl = xO ÷ 0.01;
end

end

x(n-k+1) = xl; % the root

% Calculation of new coefficients
b(l) = a(l);
for r = 2 k

b(r) = a(r) + b(r-l) * xl;
end

if iter == maxiter
: Maximum iteration reached.')

end

clear a
a =
clear b

end

% Roots of the remaining quadratic polynomial
delta = a(2) 2 - 4 * a(l) * a(3);
x(n-l) = (-a(2) - sqrt(delta)) / (2 * a(1));
x(n) = (—a(2) + sqrt(delta)) / (2 * a(l));
x=x'

Input and Results

>>Examplel_3

Vector of coefficients of the numerator polynomial = [2.98, 6.705]

Example 1.3 Solution of nth-Degree Polynomials and Transfer Functions

Vector of coefficients of the denominator polynomial = [1, 11.5,
47.49, 83.0632, 51.2327]

Lower limit of the range of search = 0

Upper limit of the range of search = 100

1) Newton-Raphson with synthetic division

Roots = -4.35

Xc = 100.0000
Roots = -9.851

Xc = 50.0000
Roots = -8.4949

Xc = 75.0000
Roots = -9.2487

Xc 87.5000
Roots = -9.5641

Xc = 81.2500
Roots = -9.4104

Xc = 78.1250
Roots = -9.3306

Xc = 76.5625
Roots = -9.29

Xc = 75.7812
Roots = -9.2694

Xc = 75.3906
Roots = -9.2591

Xc = 75.1953
Roots = -9.2539

Xc = 75.0977
Roots = -9.2513

Xc = 75.1465
Roots = -9.2526

43

2) Eigenvalue method
Method of root finding = 1

Xc = 0.0000
-2.8591 —2.8409 —1.45

-2.248 0.2995÷5.701i 0.2995-5.701i

—2.2459 -0.3796+4.485i —0.3796—4.485i

—2.2473 —0.001993+5.163i -0.00l993—5.163i

-2.2477 0.1559+5.445i 0.1559-5.445i

-2.2475 0.07893+5.308i 0.07893—5.308i

—2.2474 0.039+5.237i 0.039—5.237i

—2.2473 0.01864+5.2i 0.01864—5.2i

—2.2473 0.00836+5.182i 0.00836—5.182i

—2.2473 0.003192+5.l73i 0.003192—5.173i

-2.2473 0.0006016+5.168i 0.0006016-5.168i

-2.2473 -0.0006953+5.166i -0.0006953-5.166i

—2.2473 -4.667e-005+5.167i -4.667e-005-5.167i

44 Numerical Solution of Nonlinear Equations Chapter 1

Kc = 75.1709
Roots = -9.2533 —2.2473 0.0002775÷5.167i 0.0002775-5.1671

= 75.1587
Roots = —9.2529 -2.2473 0.0001154+5.1671 0.0001154-5.167i

= 75.1526
Roots = -9.2528 -2.2473 3.438e-005+5.1671 3.438e-005-5.167i

ICc = 75.1495
Roots -9.2527 —2.2473 -6.147e-006+5.167i —6.147e-006-5.167i

ICc = 75.1511
Roots -9.2527 -2.2473 1.412e-005+5.1671 1.412e—005-5.167i

ICc = 75.1503
Roots = -9.2527 —2.2473 3.985e—006+5.1671 3.985e—006-5.167i

Discussion of Results: The range of search for the proportional gain (Kr) is chosen to
be between 0 and lt)0. A convergence criterion of 0.001 is used aiid may be changed by the
user if necessary. The bisection method evaluates the roots at the low end of the range

= 0) and finds them to have the predicted values of

-4.3500 -2.8591 -2.8409 and -1.4500

The small difference between the two middle roots and their actual values is due to rounding
off the coefficients of the denominator polynomial. This deviation is very small in comparison
with the root itself and it can be ignored. At the upper end of the range (K(= 100) the roots
are

-9.8510 -2.2480 and 0.2995±5.7Olli

The system is unstable because of the positive real components of the roots. At the midrange
= 50) the system is still stable because all the real parts of the roots are negative. The

bisection method continues its search in the range 50-100. In a total of 19 evaluations, the

algorithm arrives at the critical value of in the range

<75.1503

In the event that the critical value of the gain was outside the limits of the original range of
search, the program would have detected this early in the search and would have issued a
warning and stopped running.

IS Newton's Method for Simultaneous Nonlinear Equations 45

1.9 NEWTON'S METHOD FOR SIMULTANEOUS

NONLINEAR EQUATIONS

If the mathematical model involves two (or more) simultaneous nonlinear equations in two (or
more) unknowns, the Newton-Raphson method can be extended to solve these equations
simultaneously. In what follows, we will first develop the Newton-Raphson method for two
equations and then expand the algorithm to a system of k equations.

The model for two unknowns will have the general form

f1(x1 ,x2) = 0
(1.57)

f2(x1,x2) = 0

wheref1 andf2 are nonlinear functions of variables x1 and x2. Both these functions may be
expanded in two-dimensional Taylor series around an initial estimate of and

(1) (1) (1) (1)f1(x1,x2) =f1(x1 ,x2) + — xi) + — x2) +
ax1 ax2
3r (1.58)

(1) (1) (1) UJ2 (1)f2(x1 ,x2) f2(x1 ,x2) + — x1) + — x2) + .

ax1 ax2

The superscript (1) will be used to designate the iteration number of the estimate.
Setting the left sides of Eqs. (1 .58) to zero and truncating the second-order and higher

derivatives of the Taylor series, we obtain the following equations:

(1) .11 (1) (1) (1)

— x1) + — x2) = —!1(x1 ,x2)
ax1 ax2

(1.59)
aj'2 (1) (1) (1) (1)

— x1) + — x2) = —!2(x ,x2)
ax, ax2

If we define the correction variable 8 as

(1) (1)

01 = x1 - x1

(1.60)
Ô(1)

(1)
2

=x2—x2

46 Numerical Solution of Nonlinear Equations Chapter 1

then Eqs. (1.59) simplify to

(1) (1) (1) (1)

I + = —f1(x1 ,x,)
x1 ax2

(1.61)
(1) (1) (I)

+ = —f (x x,)
ax2' -

Eqs. (1.61) are a set of simultaneous linear algebraic equations, where the unknowns are
and These equations can be written in matrix format as follows:

af1 aj1 /1)

ax1 ax2
= - (1.62)

af., af2

f(I)

Because this set contains only two equations in two unknowns, it can be readily solved by the
application of Cramer' s rule (see Chap. 2) to give the first set of values for the correction
vector:

af2 aj

=

-
ax2

af aj'2 - af aj;
ax ax, ax7 ax

(1.63)
- aj2

=

-
ax ax

2
aj7 - af aj,

ax ax2 ax, ax

The superscripts, indicating the iteration number of the estimate, have been omitted from the
right-hand side of Eqs. (1.63) in order to avoid overcrowding.

The new estimate of the solution may now be obtained from the previous estimate by

adding to it the correction vector:

= + (1.64)

1.9 Newton's Method for Simultaneous Nonlinear Equations 47

This equation is merely a rearrangement and generalization to the (n + 1)st iteration of Eqs.
(1.60).

The method just described for two nonlinear equations is readily expandable to the ease
of A simultaneous nonlinear equations in k unknowns:

0

(1.65)

Xk) 0

The linearization of this set by the application of the Taylor series expansion produces Eq.
(1.66).

ô1

= - . (1.66)

34

6k 4

In matrix/vector notation this condenses to

Jo = -f (1.67)

where J is the Jacobian matrix containing the partial derivatives, 0 is the correction vector,
andf is the vector of functions. Eq. (1.67) represents a set of linear algebraic equations whose
solution will be discussed in Chap. 2.

Strongly nonlinear equations are likely to diverge rapidly. To prevent this situation,
relaxation is used to stabilize the iterative solution process. If 0 is the correction vector
without relaxation, then relaxed change is p0 where p is the relaxation factor:

+ p0 (1.68)

A typical value for p is 0.5. A value of zero inhibits changes and a value of one is equivalent
to no relaxation. Relaxation reduces the correction made to the variable from one iteration to
the next and may eliminate the tendency of the solution to diverge.

Example 1.4: Solution of Nonlinear Equations in Chemical Equilibrium Using
Newton's Method for Simultaneous Nonlinear Equations. Develop a MATLAB function

48 Numerical Solution of Nonlinear Equations Chapter 1

to solve n simultaneous nonlinear equations in n unknowns. Apply this function to find the
equilibrium conversion of the following reactions:

2A+B=C K1

C

CA CD

Initial concentrations are

C3015 CDOIO

All concentrations are in kmol/m3.

Method of Solution: Eq. (1.67) is applied to calculate the correction vector in each
iteration and Eq. (1.68) is used to estimate the new relaxed variables. The built-in MATLAB
function mv is used to invert the Jacobian matrix.

The variables of this problem are the conversions, and x2, of the above reactions. The
concentrations of the components can be calculated from these conversions and the initial
concentrations

CA = CAO — 2x1C80 - x2CDQ= 40 - 30x1 - lOx2

C3 = (1 - x1)C30 = 15 - 15x1

= + x1C30 + x2CDO = 15x1 + lOx2

CD = (1 - x2)CDO = 10 - lOx2

The set of equations that are functions of x and x2 are

Cf1(x1,x2) = C - 5x104 = 0

C
= - = 0

CA CD

The values of x1 and x2 are to be calculated by the program so thatf =f2 = 0.

Program Description: The MATLAB function Newton.;n solves a set of nonlinear
equations by Newton's method. The first part of the program is initialization in which the
convergence criterion, the relaxation factor, and other initial parameters needed by the
program are being set. The main iteration loop comes next. In this part, the components of

Example 1.4 Solution of Nonlinear Equations in Chemical Equilibrium 49

the Jacobian matrix are calculated by numeric differentiation [Eq. (1.66)]. and new estimates
of the roots are calculated according to Eq. (1.68). This procedure continues until the
convergence criterion is met or a maximum iteration limit is reached. The convergence
criterion is - < €.

The MATLAB program Exatnplel_4.m is written to solve the particular problem of this
example. This program simply takes the required input data from the user and calls Newton.rn
to solve the set of equations. The program allows the user to repeat the calculation and try
new initial values and relaxation factor without changing the problem parameters.

The set of equations of this example are introduced in the MATLAB function
Exl_4junc.m. It is important to note that the function Newton.rn should receive the function
values at each point as a column vector. This is considered in the function ErI_4jiinc.

Program

Examplel_4.m
% Examplel_4.m
% Solution to the problem posed in Example 1.4. It calculates the
% equilibrium concentration of the components of a system of two
% reversible chemical reactions using the Newton's method.

clear

dc

% Input data
cO = input(' Vector of initial concentration of A, B, C, and D =
Kl=input(' 2A+B=C Kl= ');
1<2 input(' A+D=C 1<2 =

fname = input(' Name of the file containing the set of equations =

repeat = I;
while repeat

% Input initial values and relaxation factor
xO = input ('\n\n Vector of initial guesses =
rho = input(' Relaxation factor =

% Solution of the set of equations
[x,iter] = Newton(fname,xO,rho,{],cO,Kl,K2);

% nisplay the results
fprintf('\n Results :\n xl = %6.4f , x2 = %6.4f' ,x)

fprintf('\n Solution reached after %3d iterations.\n\n',iter)
repeat = input(' Repeat the calculations (0 / 1) ? ');

end

50 Numerical Solution of Nonlinear Equations Chapter 1

Newton.m
function [xnew / iter] = Newton(fnctn , xO rho / tol varargin)

%NEWTON Solves a set of equations by Newtons method.

% NEWTON(F ,X0) finds a zero of the set of equations
% described by the M-file F.M. X0 is a vector of starting
% guesses.

% NEWTON(F,XO,RHO,TOL) uses relaxation factor RHO and
% tolerance TOL for convergence test.

% NEtAITON(F,X0,RHO,TOL,PlP2,...) allows for additional
% arguments which are passed to the function F(X,Pl,P2, ...).

% Pass an empty matrix for TOL or TRACE to use the default

% value.

% (c) by N. Mostoufi & A. Constantinides

% January 1, 1999

% Initialization
if nargin C 4 isempty(tol)

tol = le-6;
end
if nargin < 3

1

isempty(rho)
rho = 1;

end

xO = (xO(:).); % Make sure its a column vector

nx = length(xO);
x = xO * 1.1;
xnew = xO;
iter = 0;
maxiter = 100;

% Main iteration loop
while max(abs(x - xnew)) > tol & iter < maxiter

iter = iter + 1;
x = xnew;
fnk =

% Set dx for derivation
for k = l:nx

if x(k) —= 0

dx(k) = x(k) / 100;

else
clx(k) = 1 / 100;

end

end

Example 1.4 Solution of Nonlinear Equations in Chemical Equilibrium 51

% Calculation of the Jacobian matrix
a =

b = x;
for k = 1 : nx

a(k) = a(k) - clx(k); fa = feval(fnctn,a,varargin{:});
b(k) = b(k) + dx(k); fb = feval(fnctn,b,varargin{:fl;
jacob(:,k) = (fb - fa) / (b(k) - a(k));
a(k) = a(k) + dx(k);

b(k) = b(k) - dx(k);
end

% Next approximation of the roots
if det(jacob) == 0

xnew = x + max([abs(dx), l.l*tol]);
else

xnew = x - rho * inv(jacob) * fnk;
end

end

if iter >= maxiter
disp('Warning Maximum iterations reached.)

end

Exl_4junc.m
function f = Exl_4_func(x,cO,Kl,K2)
% Evaluation of set of equations for example 1.4.
% cO(l) = caD / cD(2) = cb0 / cO(3) = ccO / cO)4) cdO

ca = cO(l) — 2*x(l)*cO(2) — x(2)*cO(4);
cb = (1 - x)l))*cO(2);
cc = cO(3) + x(l)*cQ(2) + x(2)*cO(4);

cd = (1 — x(2))*cO(4);

f(l) = cc / ca"2 / cb - 1(1;
f)2) = cc / ca / cd - K2;
f = f'; % Make it a column vector.

Input and Results

>>Examplel_4

Vector of initial concentration of A, B, C, and D = [40, 15, 0, 10]

2A+B=C Kl=Se-4
A+D=C K2=4e-2
Name of the file containing the set of equations = 'Exl_4_func'

Vector of initial guesses = [0.1, 0.9]

Relaxation factor = 1

52 Numerical Solution of Nonlinear Equations Chapter 1

Results
xl = 0.1203 , x2 = 0.4787
Solution reached after 8 iterations.

Repeat the calculations (0 / 1) ? 1

Vector of initial guesses = fO.l, 0.17

Relaxation factor = 1

Warning Maximum iterations reached.

Results
xl = 32l2963175567844000000000.0000 , x2 =

—697320705642097800000000.0000
Solution reached after 100 iterations.

Repeat the calculations (0 / 1) ? 1

Vector of initial guesses = [0.1, 0.1]

Relaxation factor = 0.7

Results
xl = 0.1203 , x2 = 0.4787
Solution reached after 18 iterations.

Repeat the calculations (0 / 1) ? 0

Discussion of Results: Three runs are made to test the sensitivity in the choice of initial
guesses and the effectiveness of the relaxation factor. In the first run, initial guesses are set
to x1° = 0.1 and x2° = 0.9. With these guesses, the method converges in 8 iterations. By
default, the convergence criterion is mox(7 c I Ot This value may he changed through
the fourth input argument of the function Newton.

in the second run, the initial guesses are set to = 0.1 and x,'°1 = 0.]. The maximum
number of iterations defined in the function Newton is 100, and the method does not converge
in this case, even in JOG iterations. This test shows high sensitivity of Newton's method to the
initial guess. Introducing the relaxation factor p = 0.7 in the next run causes the method to
converge in only 18 iterations. This improvement in the speed of convergence was obtained
by using a fixed relaxation factor. A more effective way of doing this would be to adjust the
relaxation factor from iteration to iteration. This is left as an exercise for the reader.

Problems 53

PROBLEMS

1.1 Evaluate all the roots of the polynomial equations, (a)-(g) given below, by performing the
following steps:
(i) Use Descartes' rule to predict how many positive and how many negative roots each
polynomial may have.
(ii) Use the Newton-Raphson method with synthetic division to calculate the numerical values of
the roots. To do so. first apply the MATLAB function roots.m and then the NRsdivision.nr, which
was developed in this chapter. Why does the NRsdivision.m program fail to arrive at the answers
of some of these polynomials? What is the limitation of this program?
(iii) Classify these polynomials according to the four categories described in Sec. 1.2.

(a) x4- 16x3+96x2-256x+256=0

(b) x4-32x2+256=O

(c) x4+3x3+ l2x- 16=0
(d) x4+4x3+ 18x2-20x+ 125 =0
(e) x5-8x4+35x3- 106x2+l7Ox-200=0

(1) x4-10x3+35x2-5x+24=0
(g)x6- 8x5+ llx4+78x3-382x2+ 800x- 800=0

1.2 Evaluate roots of the following transcendental equations.

(a) sinx- 2exp(-x2)=0
(b)ax-d=0 for a=2,e,or3
(c)ln(1

(d)

1.3 Repeat Example 1.2 by using the Benedict-Webb-Rubin (BWR) and the Patel-Teja (PT) equations
of state. Compare the results with those obtained in Example 1.2.

Benedict-Webb-Rubin equation of state:

i+—I-
V V2 V3 V6 V3T2 V2

where A0, B0, C0, a, b, c, cc, and y are constants. When P is in atmosphere, V is in liters per mole,
and T is in Kelvin, the values of constants for n-butane are:

A0 = 10.0847 B0 = 0.124361 C0 = 0.992830x106

a= 1.88231 b=0.0399983 c=0.316400x106

cc= l.l0132x103 y=3.400x102 R=0.08206

54 Numerical Solution of Nonlinear Equations Chapter 1

Patel-Teja equation of state:

RT a

V-h V(V+h)-c(V-h)

where a is a function of temperature. and h and c are constants

a =){I + F(1

-

h = Q,)(RT/P.)

c =

where

Q I - 3(

=
3(;1

+ 3(1
—

+ 1 - 3(

and is the smallest positive root of the cubic

(2)Q;; + - = 0

F and (are functions of the acentric factor given by the following quadratic correlations

F = 0.452413 + l.309K2co - 0.29593702

= 0.329032 - 0.076799w + 0.021194702

Use the data given in Example 1.2 for n-butane to calculate the parameters of PT equation.

1.4 F moles per hour of an n-component natural gas stream is introduced as feed to the hash
vaporization tank shown in Fig. P1.4. The resulting vapor and liquid streams are ithdrawn at the
rate of V and L moles per hour. respectively. The mole fractions of the components in the teed,
vapor, and liquid are designated by z. v, and x1, respectively (I = 1. 2 a). Assuming vapor-
liquid equilibrium and steady-state operation. we have:

Overall balance F = L + V

Individual component balances c1F = IL + vV i 1. 2 a

Equilibrium relations K = v/v I = 1. 2 a

Here. K is the equilibrium constant for the ith component at the prevailiog temperature and
pressure in the tank. From these equations and the fact that

= =

Problems 55

derive the following equation:

zKF
V(K1 -1) + F

Using the data given in Table P1 .4. solve the above equation for V. Also calculate the values
of L, the v. and the v by using the first three equations given above. The test data in Table P1.4
relates to flashing of a natural gas stream at II MPa and 48°C. Assume that F= 100 mol/h.

What would be a good value for starting the iteration? Base this answer on your
observations of the data given in Table P 1 .4.

Vapor

mol/h

Feed
Flash

F niol/h
Drum

Liquid

L mol/h

Figure P1.4 Flash drum

Table P1.4

Component i z1

Methane 1 0.8345 3.090

Carbon dioxide 2 0.0046 1.650

Ethane 3 0.0381 0.720

Propane 4 0.0163 0.390

i-Butane 5 0.tlOSO 0.210

n-Butane 6 0.0074 0.175

Pentanes 7 0.0287 0.093

Hexanes 8 0.0220 0.065

Heptanes+ 9 0.0434 0.036

1.0000

56 Numerical Solution of Nonlinear Equations Chapter 1

1.5 The Underwood equation for multicomponent distillation is given as

a.z -F - F(l - q) = 0
a1 -

where F = molar feed flow rate
a = number of components in the feed

= mole fraction of each component in the feed

q = quality of the feed
= relative volatility of each component at average column conditions
= root of the equation

It has been shown by Underwood that (a - 1) of the roots of this equation lie between the values
of the relative volatilities as shown below:

4fl1< a 1< < ... c a3 c c 41c a1

Evaluate the (n - I) roots of this equation for the case shown in Table P1.5.

Table P1.5

Component in feed Mole fraction, zg Relative volatility, a-

c1 0.05 10.00

C, 0.05 5.00

C3 0.10 2.05

C4 0.30 2.00

C5 0.05 1.50

C6 0.30 1.00

C7 0.10 0.90

C, 0.10

1.00

F= 100 mol/h q= 1.0 (saturated liquid)

1.6 carbon monoxide from a water gas plant is bumed with air in an adiabatic reactor. Both the
carbon monoxide and air are being fed to the reactor at 25°C and atmospheric pressure. For the
reaction:

co + Co.

Problems 57

the following standard free energy change (at 25°C) has been determined:

= -257 kJ/(gmol of CO)

The standard enthalpy change at 25°C has been measured as

AH.2 = -283 kJ/(gmol of CO)

The standard states for all components are the pure gases at 1 atm.
Calculate the adiabatic flame temperature and the conversion of CO for the following two cases:

(a) 0.4 mole of oxygen per mole of CO is provided for the reaction.
(b) 0.8 mole of oxygen per mole of CO is provided for the reaction.

hunt @apnuiti@c tOt in 1I(gniolJC) with Tin Kclvin
are all of the form

C1, = A, + BTK

For the gases involved here, the constant.s arc as shown in Table P1.6.

Table P1.6

Gas A B C

CO 26.16 8.7SxlO'

07 25.66 12.52x103

CO, 28.67

N7 26.37 7.ôlxlO'

Hint: Combine the material balance. enthalpy balance, and equilibrium relationship to form two
nonlinear algebraic equations in two unknowns: the temperature and conversion.

1.7 Consider the three-mode feedback control of a stilTed-tank heater system (Fig. P1.7).

Hot Product

Cold____

Figure P1.7 Stirred tank heater.

58 Numerical Solution of Nonlinear Equations Chapter 1

The measured output variable is the feedstream temperature [7]. Using classical methods (i.e.,
deviation variables, linearization, and Laplace transforms) the overall closed-loop transfer function
for the control system is given by

— + 1)('r,,s + 1)

(t1s)(çs + l)(ts + + 1) ± K(t1s + 1

where t, = reset time constant

rD = derivative time constant

K =

K = first-order valve constant

first-order measurement constant

K(= proportional gain for the three-mode controller

Laplace transform of the output temperature deviation

= Laplace transform of the input load temperature deviation

= first-order time constants for the process, measurement device, and process valve,

respectively.

For a given set of values, the stability of the system can be determined from the roots of the
characteristic polynomial (i.e, the polynomial in the dcnominator of the overall transfer function).
Thus:

+ + + — (Kr1r0 t1ç, + r1; +

± (t, ± Kt1)s ± K = 0

For the following set of parameter values, find the four roots to the characteristic polynomial when
íç is equal to its "critical" value:

r1=10 rD=l r,,=5 t=5
K,=2 K,,=0.09 K=l.SK,

1.8 In the analytical solution of someparabolic partial differential equations in cylindrical coordinates,
it is necessary to calculate roots of the Bessel function first (for example, see Problem 6. 11). Find
the first N root of the first and the second kind. Use the following approximations for evaluating
the initial guesses:

J,(x) = —cos x - — —
NTrx 2 4

ri.Y(x) = p—sin x - - —
Nmx 2 4

Which method of root finding do you recommend7

Problems 59

1.9 A direct-fired tubular reactor is used in the thermal cracking of light hydrocarbons or naphthas for
the production of olefins, such as ethylene (sec Fig. P1.9). The reactants are preheated in the
cons ection section of the furnace, mixed with steam, and then subjected to high temperatures in
the radiant section of the furnace. Heat transfer in the radiant section of the furnace takes place
through three mechanisms: radiation, conduction, and convection. Heat is transferred by radiation
from the walls of the furnace to the surface of the tubes that carry the reactants, and it is transferred
through the walls of the tubes by conduction and finally to the fluid inside the tubes by convection
[8j.

The three heat-transfer mechanisms are quantified as follows:

I. Radiation: The Stefan-Boltzmann law of radiation may be written as

- - T)
c/A

here is the rate for heat transfer per unit outside surface area of the tubes, TR is the
"effective" furnace radiation temperature. and is the temperature on the outside surtace of the
tube. In furnaces with tube banks irradiated from both sides, a reasonable approximation is

where T0 is the temperature of the floe gas in the reactor. Therefore, the Stefan-Boltzmann
equation is revised to

= - T4)
c/A

o is the Stefan-Boltzmann constant and is the tube geometry emissivity factor, which depends
on the tube arrangement and tube surface emissivity. For single rows of tubes irradiated from both
sides:

c 2Q

H-Q=—_-+arctani —1-i —I

N
D0

N

where e is the cmissivity of the outside surface of the tube and S is the spacing (pitch) of the tubes
(center-to-center) and D0 is the outside diameter of the tubes.

2. Conduction: Conduction through the tube wall is given by Fourier's equation:

k
- 1)

dA0 t1

where is the temperature on the inside surface of the tube. k, is the thermal conductivity of the
tube material, and t, is the thickness of the tube wall

60 Numerical Solution of Nonlinear Equations Chapter 1

3. Convection: Convection through the fluid film inside the tube is expressed by

D
= _.L (7 — T)

Do

where D is the inside diameter of the tube. T, is the temperature of the fluid in the tube. and h is
the heat-transfer film coefficient on the inside of the tube. The film coefficient may be
approximated from the Dittus-Boelter equation NJ:

= 0.023(Ref8Pri4

where Re1 is the Reynolds number, Pr1is the Prandtl number. and the thermal of
the fluid.

Conditions vary drastically along the length of the tube, as the temperature of the fluid insidc
the tube rises rapidly. The rate of heat transfer is the highest at the entrance conditions and lowest
at the exit conditions of the fluid.

Calculate the rate of heat transfer (dQ/dA , the temperature on the outside surface of the tube
(T0), and the temperature on the inside surface of the tube (7) at a point along the length of the tube
where the following conditions exist:

800°C
P =(l.10m
Pr, = 0.660

0.9

P0 = 0.11 m

k7 =216W/m.K

o = W/m2.K4

= 0.006 m

k1 =0.175W/m.K

Figure P1.9 Pyrolysis reactor.

T0 = 1200°C

S °°0.20m
Re,.= 388,000

References 61

1.10 The elementary reaction A B + C is carried out in a continuous stirred tank reactor (CSTR).
Pure A enters the reactor at a flow rate of 12 molts and a temperature of 25°C. The reaction is
exothermic and cooling water at 50°C is used to absorb the heat generated. The energy balance
for this system, assuming constant heat capacity and equal heat capacity of both sides of the
reaction, can be written as

-FAXAHR = FACP(T - T0) + UA(T - T)

where molar flow rate, molts

X = conversion

= heat of reaction, Jtmol A

CPA = heat capacity of A, J/moLK

T = reactor temperature, ° C

= referencetemperature, 25°C

= cooling water temperature, 20°C

U = overall heat transfer coefficient, Wtm2.K

A = heat transfer area, m2

For a first-order reaction the conversion can be calculated from

1 + U
where c is the residence time of the reactor in seconds and k is the specific reaction rate in
defined by the Arrhenius formula:

k = 650 exp[-3800t(T+273)]

Solve the energy balance equation for temperature and find the steady-state operating temperatures
of the reactor and the conversions corresponding to these temperatures. Additional data are:

aHR=-lSOOkJJmol r=IOs C =4SOOJtmol.K UA/F =700W.s/mol.K
PA A0

REFERENCES

1. Underwood, A. J. V., Chem. Eng. Prog., vol. 44, 1948, p. 603.

2. Treybal, R. E., Mass Transfer Operations, 3rd ed., McGraw-Hill, New York, 1980.

3. Salvadori, M. G., and Baron, M. L., Numerical Methods in Engineering, Prentice Hall, Englewood
Cliffs, NJ, 1961.

4. Lapidus, L., Digital Computation for Chemical Engineering, McGraw-Hill, New York, 1962.

62 Numerical Solution of Nonlinear Equations Chapter 1

5. Press, W. H., Teukolsky. S. A., Vetterling. W. T.. and Flannery. B. P.. Numerical Recipe.s in
FORTRAN, 2nd ed.. Cambridge University Press, Cambridge, U.K., 1992.

6. Douglas. J. M.. Process Dynamics and vol. 2, Prentice Hall. Englewood Cliffs. NJ. 1972.

7. Davidson. B. D.. private communication. Department of Chemical and Biuchemical Engineering.
Rutgers University, Piscataway, NJ, 1984.

8. Constantinides, A., Applied Numerical Methods Wi Personal Computers, McGraw-Hill. New York,
1987.

9. Bennett, C. 0.. and Meyers. J. E., Momentum, [teat, and Mass Transtèr, McGraw-Hill, New York,
1973.

CHAPTER 2

Numerical Solution of Simultaneous Linear
Algebraic Equations

2.1 INTRODUCTION

The mathematical analysis of linear physico-
chemical systems often results in models consisting of sets of linear algebraic equations. to
addition, methods of solution of nonlinear systenis and differential equations use the technique
of linearization of the models, thus requiring the repetitive solution of sets of linear algebraic
equations. These problems may range in complexity from a set of two simultaneous linear
algebraic equations to a set involving 1000 or even 10,000 equations. The solution of a set of
two to three linear algebraic equations can be obtained easily by the algebraic elimination of
variables orby the application of Cramer's rule. However, for systems involving five or more

63

64 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

equations, the algebraic elimination method becomes too complex, and Cramer' s rule requires
a rapidly escalating number of arithmetic operations, too large even for today's high-speed
digital computers.

In the remainder of this section, we give several examples of systems drawing from
chemical engineering applications that yield sets of simultaneous linear algebraic equations.
In the following sections of this chapter, we discuss several methods for the numerical solution
of such problems and demonstrate the application of these methods on the computer.

Material and energy balances are the primary tools of chemical engineers. Such balances
applied to multistage or multicomponent processes result in sets of equations that can be either
differential or algebraic. Often the systems under analysis are nonlinear, thus resulting in sets
of nonlinear equations. However, many procedures have been developed that linearize the
equations and apply iterative convergence techniques to arrive at the solution of the nonlinear
systems.

A classical example of the use of these techniques is in the analysis of distillation
columns, such as the one shown in Fig. 2.1. Steady-state material balances applied to the
rectifying section of the column yield the following equations:

Balance around condenser: = + (2.1)

Balance above thejth stage: = L11 + (2.2)

Assuming that the stages are equilibrium stages and that the column uses a total condenser,
the following equilibrium relations apply:

= (2.3)

Substituting Eq. (2.3) in (2.1) and (2.2) and dividing through by DXDI we get

L0
= —X0, + 1 (2.4)

J.JL = + 1 (2.5)
DXDJ

The molal flow rates of the individual components are defined as

= (2.6)

= (2.7)

2.1 Introduction 65

For any stagej, the adsorption ratio is delined as

A
-AE-t-

(2.8a)
ii J

and for the total condenser as

(2.8b)A
Os

D

VII Total

j+1

D

F j=:f

1

B

Figure 2.1 Conventional distillation column.

66 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Substitution of Eqs. (2.6)-(2.8) in (2.4) and (2.5) yields

A01 1 (2.9)

- + 1 2 � j � f - 1 (2.10)

For any given trial calculation the As are regarded as constants. The unknowns in the above
equations are the groups of terms v1 Id,. If these are replaced by x,, and the subscript i,
designating component I is dropped, the following set of equations can be written for a column
containing five equilibrium stages above the feed stage:

=A0+ I
+ x, =

-A2x2 + = 1 (2.11)
-A-,x1 + x4 = I

-A4x1 + =1

This is a set of simultaneous linear algebraic equations. It is actually a special set that has
nonzero terms only on the diagonal and one adjacent element. It is a bidiagonal set.

The general formulation of a set of simultaneous linear algebraic equations is

ax x =c
11 I 1_ 2 In ii

a21x1 + a27x7 . . . + —

(2.12)

ax -'-ax x =cni 1 2 nn P7 7

where all of the coefficients a, could be nonzero. This set is usually condensed in vector-
matrix notation as

Ax = c (2.13)

where A is the coefficient matrix

a1
I

a1, . . .

£/71 a,, . . . a,,,
A - -- - (2.14)

a,,2 . . . a,,,,

2.1 Introduction 67

x is the vector of unknown variables:

x2

(2.15)

and c is the vector of constants:

C

c the zero vector, the set of equations is called homogeneous.
Another example requiring the solution of linear algebraic equations comes from the

analysis of complex reaction systems that have monomolecular kinetics. Fig. 2.2 considers
a chemical reaction between the three species, whose concentrations are designated by Y1, V2.
V. taking place in a batch reactor.

The equations describing the dynamics of this chemical reaction scheme are

dY
= —(k21 + k33Y1 + k12Y2 +

dY

dt2

= k21Y1 - (k12 k32)Y2 + k23Y3 (2.17)

dY

= k31Y + k32Y2 - (k13 +

The above set of linear ordinary differential equations may be condensed into matrix notation

= Ky (2.18)

Y1

y = (2.20)

Y3

(k13 + k23)

The solution of the dynamic problem, which is modeled by Eq. (2.18), would require the
evaluation of the characteristic values (eigenvalues) A1 and characteristic vectors (eigenvectors)
x of the matrix K. It is shown in Chap. 5 that the solution of a set of linear ordinary
differential equations can be obtained by using Eq. (5.53):

y = (5.53)

where Xis a matrix whose columns are the eigenvectors x, of K: /' is a matrix with e
At

on the
diagonal and zero elsewhere; K' is the inverse of X: andy0 is the vector of initial values of the

Figure 2.2 System of chemical reactions.

68 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

where 9 is the vector of derivatives:

d Y,

di

dY
= —.1 (2.19)

d

di
y is the vector of concentrations of the components

and K is the matrix of kinetic rate constants:

-(Ic21 +

Ic2, — (k,2 A'32) (2.21)

k,2

k31

2.1 Introduction 69

variables Y. Methods for calculating eigenvalues and eigenvectors of matrices are developed
in Sec. 2.9.

When a chemical reaction reaches steady state, the vector of derivatives in Eq. (2.18)
becomes zero and Eq. (2.18) simplifies to

Ky 0 (2.22)

This is a set of homogeneous linear algebraic equations whose solution describes the steady-
state situation of the above chemical reaction problem.

Comparison of Eqs. (2.13) and (2.22) reveals that the difference between nonhomo-
geneous and homogeneous sets of equations is that, in the latter, the vector of constants c is
the zero vector. The steady-state solution of the chemical reaction problem requires finding
a unique solution to the set of homogeneous algebraic equations represented by Eq. (2.22).

In the analysis of fermentation processes, the production of the concentration of cell and
metabolic products formed in the fermentor can be accomplished by the technique of material
balance [1]. For example, the stoichiometry of the fermentation of the microorganism
Brevibacteriumfiavum, which produces glutamic acid, may be represented by the following
two chemical reactions:

Biomass formation:

C6H1206 + b'02 + c'NH3 d'CWHXOYNZ + e'C02 ÷f'H20 (2.23)

Glutamic acid synthesis:

C6H1206 + 202 + NH3 C5H904N + CO2 + 31120 (2.24)

C6H1206 is glucose, the basic nutrient in this fermentation, and C5H904N is glutamic acid.
Biomass is represented by where w, x, y, z are the corresponding number of atoms
of each element in the cell. This empirical formula can be determined by analyzing the carbon,
hydrogen, oxygen, and nitrogen contents of the biomass. The inherent assumption is that C,
H, 0, and N are the only atoms of significant quantity in the cell biomass. The cellular
composition is assumed to remain constant during growth.

Let a be the number of moles of glucose used, g be the fraction of glucose converted to
product, and (1 - g) be the fraction of glucose converted to biomass. Then combining Eqs.
(2.23) and (2.24) results in the overall reaction

aC5H12O6 + [b(l -g) + l.SagIO2 + [c(l -g) +ag]NH3

[d(1 -g) +ag]C02 + [f(l -g) +3ag]H20 (2.25)

70 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

The primed coefficients (b', c', d', e',f) have been replaced by unprimed coefficients (b, c,
d, e,f). These are related to each other, as follows:

b=ah' c=ac' d=ad' e=ae' f=af'
Eq. (2.25) contains seven unknown quantities: the stoichiometric coefficients (a, h, c, ci, e, f)
and the fraction of substrate used for product formation (g). Based on Eq. (2.25), four
independent equations are derived from material balances on carbon. hydrogen. oxygen, and
nitrogen, as shown in Table 2.1.

Table 2.1 Elemental material balances

Elemental material balances from Eq. (2.25)

Carbon: 6a=wd(1 -g)+5ag+e(l -g)+ag (2.26)

Hydrogen: 12a+3c(1 -g)+3ag=xd(1 -gH-9ag+2fl] -g)-sOag (227)

Oxygen: 6a + 2,5(1 - + 3ag vd(l - g) + + 2e(I - g) + 2ag + f(1 - g) + 3ag (2.28)

Nitrogen: c(I - g) + ag = zd(I - g) + ag (2.29)

Simplified elemental balance

Carbon: (nd + e - ôa)(1 - g) = 0 (2.30)

Hydrogen: 12a)(1 -g)=() (2.31)

Oxygen: (yd+2e+f- 2h-Oa)(1 -g)=() (2.32)

Nitrogen: (c - :dXl - g) = 0 (2 33)

In order to determine all seven variables, three more independent relationships are
required. This is accomplished by calculating total oxygen consumed (TOTAL 02). total
carbon dioxide released (TOTAL GO2), and total glucose consunied (a). Oxygen and carbon
dioxide contents of inlet and exit gases are measured by means of a paramagnetic gaseous
oxygen analyzer and an IR carbon dioxide analyzer, respectively. These quantities, combined
with gas flow rates, complete the oxygen and carbon balances on the gas stream. The
trapezoidal rule (Chap. 4) is used to calculate total oxygen consumed and total carbon dioxide
released at any time during the fermentation. These quantities are related to the stoichiometric
coefficients of Eq. (2.25) as follows:

TOTAL 0,
h(1 - g) 1.Sag (2.34)

TOTAL CO,- e(l - g) + ag (2.35)

2.2 Review of Selected Matrix and Vector Operations 71

where M0 = molecular weight of 02 (g/mol)

= molecular weight of CO7 (g/mol)

Because this system is a batch process with respect to glucose. the glucose consumption
can be evaluated by subtracting the residual glucose concentration from the initial glucose
conccntration:

a = (GLU0 GLU1)X (2.36)

where a = glucose consumption (mol)
GLU0 = glucose consumption at time 0 (gIL)
GLU1 glucose consumption at time r (gIL)

V = liquid volume (L)
= molecular weight of glucose (g/niol)

The residual glucose concentration can be measured by an on-line enzymatic glucose
analyzer.

The overall system consists of Eqs. (2.30)- (2.36). This is a set of nonlinear simultaneous
algebraic equations that can be solved simultaneously using a combination of Newton's
method (Sec. 1 .9) and the Gauss-Jordan method to he developed iii this chapter (Sec. 2.6).

The solution of some partial differential equations is sometimes carried out by solving
sets of simultaneous finite difference equations (see Chap. 6). These equations are often linear
in nature and can he solved by the methods to he discussed in this chapter.

Optimization of a complex assembly of unit operations. such as a chemical plant. or of
a cluster of interrelated assemblies, such as a group of refineries, can be accomplished by
techniques of linear programming that handle large sets of simultaneous linear equations.

The application of linear and nonlinear regression analysis to fit mathematical models
to experimental data and to evaluate the unknown parameters of these models (see Chap. 7)
requires the repetitive solution of sets of linear algebraic equations. In addition. the ellipse
formed by the correlation coefficient matrix in the parameter hyperspace of these systems must
be searched in the direction of the major and minor axes. The directions of these axes are
defined by the eigenvectors of the correlation coefficient matrix, and the relative lengths of the
axes are measured by the eigenvalues of the correlation coefficient matrix.

In developing systematic methods for the solution of linear algebraic equations and the
evaluation of eigenvalues and eigenvectors of linear systems. we will make extensive use of
matrix-vector notation. For this reason, and for the benefit of the reader, a review of selected
matrix and vector operations is given in the next section.

72 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

2.2 REVIEW OF SELECTED MATRIX AND VECTOR OPERATIONS

2.2.1 Matrices and Determinants

A matrix is an array of elements arranged in rows and columns as

a11 a12 . . .

. . . az,,
A = - -- (2.37)

a,,,1 . . . a,,,,,

The elements a,1 of the matrix may be real numbers, complex numbers, or functions of other
variables. Matrix A has m rows and n columns and is said to be of order (m x a). If the
number of rows of a matrix is equal to the number of columns, that is, if in = a, then the matrix
is a square matrix of nth order. A special matrix containing only a single column is called a
vector:

x1

(2.15)

xfl

Define another matrix B with k rows and I columns:

b11 b12 . . .

b21 b2, . . .

B = (2.38)

bkf bk2 . . .

The two matrices A and B can be added to (or subtracted from) each other if they have the
same number of rows (m = k) and the same number of columns (a = 1). For example, if both
A and B are (3 x 2) matrices, their sum (or difference) can be written as

2.2 Review of Selected Matrix and Vector Operations 73

a11 ±b11 a12 ±b1,

A ± B a71±b,1 a77±b,2 = C (2.39)

a31 ± b31 a37 ±

Matrix C is also a (3 x 2) matrix. The commutative and associative laws for addition and
subtraction apply.

Two matrices can multiply each other, if they are conformable. Matrices A and B would
be conformable in the order AB if A had the same numher of columns as B has rows (a = k).
If A is of order (4 x 2) and B is of order (2 x 3), then the product AB is

a11 a1,

a71 (177 b11 b12 b13

AB =
a31 a3, b71 b72 !223

a41 a47

a11b11 a11b17 a11b13

a21b11 i-a,,b21 a71b17+a77b27 a71b13 a77b73
= = E (2.40)

a31h11 ÷a32h,1 a31b17 a31!)13 a37h,3

a41b11 ±a47b21 a41b1, ÷a47h2, a41b13

The resulting matrix E is of order (4 x 3). The general equation for performing matrix
multiplication is

{ (2A1)

The resulting matrix would he of order (m x 1).
The commutative law is not usually valid for matrix multiplication, that is,

AB BA (2.42)

even if the matrices are conformable. The distributive law for multiplication applies to
matrices, provided that conformability exists:

A(B ÷C)=AB (2.43)

The associative law of multiplication is also valid for matrices:

A(BC) (AB)C (2.44)

74 Numerical Solution of Simultaneous Linear Equations Chapter 2

When working with MATLAB, it should he noted that there is also an element-by-
element multiplication for matrices that is completely different from ordinary multiplication
of matrices described above. The element-by-element multiplication, whose operator is
(a dot before the ordinary multiplication operator) may be applied only to matrices of the same
order, and it simply multiplies corresponding elements of the two matrices. For example, if
A and B are of order (3 x 2), then the element-by-element product A.*B is

a11 a11 b11 a11b].

= —
a,1h21 (2.45)

a31 a31 /23j b3, h31 a33 b3.

If the rows of an (in x n) matrix are written as columns, a new matrix of order (n x in)
is formed. This new matrix is called the transpose of the original matrix. For example, if
matrix A is

12
A= 34 (2.46)

56
then the transpose A / is

/ 135
A - (2.47)246

The transpose of the matrix A is sometimes shown as A'. The transpose of the sum of two
matrices is given by

(A B) = A' + B' (2A8)

The transpose of the product of two matrices is given by

(AB) - B'A' (2.49)

In MATLAB transpose of a matrix is simply obtained by adding a prime sign (') after the
matrix.

The following definitions apply to square matrices only: A symmetric matrix is one that
obeys the equation

A = A' (2.50)

If the symmetrically situated elements of a matrix are complex conjugates of each other, the
matrix is called 1-lermitian.

2.2 Review of Selected Matrix and Vector Operations 75

A diagonal matrix is one with nonzero elements on the principal diagonal and zero
elements everywhere else:

0 ... 0

o dr... 0
D = (2.51)

o 0 . .

The built-in MATLAB function diag(x) creates a diagonal matrix whose main diagonal
elements are the components of the vector x. If x is a matrix, diag(x) is a column vector
formed from the elements of the diagonal of x.

A unit matrix (or identity matrix) is a diagonal matrix whose nonzero elements are unity:

lO...o
o I . . . 0

I - (2.52)

o o . . .

Multiplication of a matrix (or a vector) by thc identity matrix does not alter the matrix (or
vector):

IA A, Ix x (2.53)

In MATLAB. the function eve(n) returns an (a x n) unit matrix.
A tridiagonal matrix is one which has nonzero elements on the principal diagonal and

its two adjacent diagonals, that we will refer to as the subdiagonal (below) and superdiagonal
(above), and zero elements everywhere else:

111 t12 0 0 ... 0 0

t91 17fl t23 0 . . . 0 0

o t32 t33 t34 . . . 0 0

T (2.54)

o 0 . . . 'n-2n-2 2-1 0

o 0 ... 0 t 11
o 0 . . . 0 0 tm

An upper triangular matrix is one that has all zero elements below the principal

76 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

diagonal:

If1 11fl H13 . . .

o U2, 1123 . . .
11)

U (2.55)

o 0 0 . . .

o o 0 ... 0

In MATLAB, the function triu(A) constructs an upper triangular matrix out of the matrix A,
that is, it keeps the elements on the main diagonal and above that unchanged and replaces the
elements located under the main diagonal with zero.

A lower triangular matrix is one that has all zero elements above the principal diagonal:

111 0 0 ... 0 0

'21 'p22
0 . . . 0 0

1! 'n-12 'n 11 'n In 1

'FF1 c2 'F?) 'F! F? I

In MATLAB. the function tril(A) constructs a lower triangular matrix out of the matrix A. that
is, it keeps the elements on the main diagonal and below that unchanged and replaces the
elements located above the main diagonal with zero.

Outputs of the MATLAB function lu(A) are an upper triangular matrix U and a
"psychologically lower triangular matrix", that is. a product of lower triangular and
permutation matrices, in L so that LU = A.

A super! riangulur matrix, also called a Hessenherg matrix, is one that has all zero
elements below the subdiagonal, such as the upper J-lessenberg matrix of Eq. (2.57):

h h, h13 . . . h n-2 n-I h1

2 I

0 /132 . .
.

123
1

- - - (2.57)

0 0 . . . h n-2 hn In-I h In

0 0 . . . 0 'iiI 'inn

2.2 Review of Selected Matrix and Vector Operations 77

or above the superdiagonal, such as the lower Hessenberg matrix of Eq. (2.58):

h11 h12 0 ... 0 0

h21 h,2 h23 ... 0 0

= h,21 h,22
(2.58)

h,1
2

h,,1
.

.

h

Tridiagonal, triangular, and Hessenherg matrices are called banded matrices.
Matrices can be divided into two general categories: dense and sparse matrices. The

dense matrices are usually of low order and may have only few zero elements. The sparse
matrices may be of high order with many zero elements. A special subcategory of sparse
matrices is the group of banded matrices described above.

The sum of the elements on the main diagonal of a square matrix is called the trace:

trA = (2.59)

The sum of the eigenvalues of a square matrix is equal to the trace of that matrix:

A1 - trA (2.60)

The MATLAB function trace(A) calculates the trace of the matrix A.
Matrix division is not defined in the normal algebraic sense. Instead, an inverse

operation is defined, which uses multiplication to achieve the same results. If a square matrix
A and another square matrix B, of same order as A, lead to the identity matrix 1 when
multiplied together:

AB = 1 (2.61)

then B is called the inverse of A and is written as A'. It follows then that

AA1 = A1A = I (2.62)

There are several different ways in MATLAB to calculate the inverse of a square matrix. The
function inv(A) gives the inverse of A. Also, the inverse of the matrix may be obtained by

78 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

A"(-l). The expression A/B in MATLAB is equivalent to AB' and the expression A\B is
equivalent to A'B. Note that the expression A./B (putting "." before division operator) is
element-by-element division of the elements of the two matrices and the expression A/'(-l)
results in a matrix whose elements are the reciprocals of the elements of the original matrix.

The inverse of the product of two matrices is the product of the inverses of these matrices
multiplied in reverse order:

(ABy' (2.63)

This can he generalized to products of more than two matrices:

(ABC...KLM)1 = W'L'K1...C'B'A' (2.64)

A matrix is singular if the determinant of the matrix is zero. Only nonsingulor matrices
have inverse.

The value of the determinant, which exists for square matrices only. can be calculated
from Laplace's expansion theorem, which involves minors and co/dciors of square matrices.
If the row and column containing an element in a square matrix A are deleted. the
determinant of the remaining square array is called the in/nor of and is denoted by M1. The
cofactor of denoted by is given by

- (-l)'M11 (2.65)

Laplace's expansion theorem states that the determinant of a square matrix A. shown as A
is equal to the sum of products of the elements of any row (or column) and their respective
cofactors:

IA (2.66)

for any row i, or

IAI E (2.67)

for any columnj.
Determinants have the following properties:

Property 1. If all the elements of any row or column of a matrix are zero, its determinant is
equal to zero.

Property 2. If the corresponding rows and columns of a matrix are interchanged, its
determinant is unchanged.

2.2 Review of Selected Matrix and Vector Operations 79

Property 3. If two rows or two columns of a matrix are interchanged, the sign of the
determinant changes.

Property 4. If the elements of two rows or two columns of a matrix are equal, the
determinant of the matrix is zero.

Property 5. If the elements of any row or column of a matrix are multiplied by a scalar, this
is equivalent to multiplying the determinant by the scalar.

Property 6. Adding the product of a scalar and any row (or column) to any other row (or
column) of a matrix leaves the determinant unchanged.

Property 7. The determinant of a triangular matrix is equal to the product of its diagonal
elements:

= H (2.68)

Calculating determinants by the expansion of cofactors is a very time-intensive task.
Each determinant has a! groups of terms and each group is the product of a elements; thus the
total number of multiplications is (n - l)(n!). Evaluating the determinant of a matrix of order
(10 x 10) would require 32,659,200 multiplications. More efficient methods have been
developed for evaluating determinants, it will be shown in Sec. 2.5 that the Gauss elimination
method can he used to calculate the determinant of a matrix in addition to finding the solution
of simultaneous linear algebraic equations. To evaluate the determinant of a square matrix A
in MATLAB, the built-in function det(A) may be used.

The inverse of a matrix cannot always be determined accurately. There are many
matrices that are ill-conditioned. An ill-conditioned matrix can he identified using the
following criterion: When the ratio of the absolute values of the largest and smallest
eigenvalues of the matrix is very large. the matrix is ill-conditioned.

The rank r of matrix A is defined as the order of the largest nonsingular square matrix
within A. Consider the (in x a) matrix

a11

a . . .

A = - -- - (2.37)

a,,,7 . . .

where n � in. The largest square submatrix within A is of order (in x in). If the determinant
of this (in x in) submatrix is nonzero, then the rank of A is in (r = in). However, if the
determinant of the (in x in) submatrix is equal to zero, then the rank of A is less than in
(r < in). The order of the next largest nonsingular submatrix that can he located within A
would determine the value of the rank. In MATLAB, the function rank(A) gives the value of
r, the rank of matrix A.

80 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

As an example, let us look at the following (3 x 4) matrix:

3 1 2 -4

A= 5 2 1 3 (2.69)

6 2 4 -8

There are four submatrices of order (3 x 3), whose determinant are evaluated below using
Laplace's expansion theorem:

312 21 51 52
5 2 1

= + +24 64 62624
= (3)(8 -2) - (l)(20 -6) + (2)(I0 - 12) = 0 (2.70)

Similarly,

31-4 32-4 12-4
523=0 513=0 213=0 (2.71)

62-8 64-8 24-8
Because all the above (3 x 3) submatrices are the rank of A is less than 3. It is easy

to find several (2 x 2) submatrices that are nonsingular; therefore r = 2.

The same conclusion, regarding the singularity of the (3 x 3) submatrices, could have
been reached by the application of Properties 4 and 5, which were mentioned earlier in this
section. Property 4 states, "If the elements of two rows or two columns of a matrix are equal,
the determinant of the matrix is zero." Property 5 states, "If the elements of any row or
column of a matrix are multiplied by a scalar, this is equivalent to multiplying the determinant
by a scalar." Careful inspection of the four (3 x 3) submatrices shows that the first and third
rows are multiples of each other. In accordance with Properties 4 and 5, the determinants
are zero.

2.2.2 Matrix Transformations

It is often desirable to transform a matrix to a different form which is more amenable to
solution. There are several such transformations that convert matrices without significantly
changing their properties. We will divide these transformations into two categories:
elementary transformations and similarity transformations.

2.2 Review of Selected Matrix and Vector Operations 81

Elementary transformations usually change the shape of the matrix but preserve the value
of its determinant. In addition, if the matrix represents a set of linear algebraic equations, the
solution of the set is not affected by the elementary transformation. The following series of
matrix multiplications:

L,7 1L,,2. . . L2L1A U (2.72)

represents an elementary transformation of matrix A to an upper triangular matrix U. This
operation can he shown in condensed form as

LA = U (2.73)

where the transformation matrix L is the product of the lower triangular matrices L,. The form
of L matrices will be define in Sec. 2.5, in conjunction with the development of the Gauss
elementary transformation procedure.

Similarity transformations are of the form

Q'AQ - B (2.74)

where Q is a nonsingular square matrix, in this operation, matrix A is transformed to matrix
B. which is said to he similar to A. Similarity in this case implies that:

1. The determinants of A and B are equal:

Al IBI (2.75)

2. The traces of A and B are the same:

trA - trB (2.76)

3. The eigenvalues of A and B are identical:

IA - All = lB - All (2.77)

If columns of matrix Q are real mutually orthogonal unit vectors, then Q is an orthogonal
matrix, and the following relations are true:

Q'Q - I (2.7S)

and

= (2.79)

82 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

In this case, the similarity transformation, represented by Eq. (2.74). can be written as

Q'AQ -B (2.80)

and is caBed an orthogonal transformation. Since an orthogonal transformation is a similarity
transformation, the three identities [Eqs. (2.75)-(2.77)j pertaining to determinants. traccs. and
eigenvalues of A and B are equally valid.

In MATLAB, the function orth(A) gives the matrix Q described above.

2.2.3 Matrix Polynomials and Power Series

The definition of a scalar polynomial was given in Chap. 1 as

1(x) = a,,
1 + a1x a0 (2.81)

Similarly, a matrix polynomial can he defined as

1(A) — aMA" ± a,, A" ± . . . + a1A a0! (2.82)

where A is a square matrix. A" is the product of A by itself a times, and A° = I.
Matrices can he used in infinite series, such as the exponential. trigonometric, and

logarithmic series. For example, the matrix exponential function is defined as

2 3

a ÷— — ... (2.83)
2! 3!

and the matrix trigonometric functions as

A3 g
sinA -A - (2.84)

A2 A4cosA =1-—-—-—- (2.85)
2! 4!

Note that in MATLAB, the functions: exp(A). cos(A). sin(A). are element-by-element
functions and do not obey the above definitions. The MATLAB functions expm(A),
expm/(A), expm2(A), and expm3(A) calculate exponential of the matrix A by different
algorithms. The function expm2(A) calculates exponential of the matrix A as in Eq. (2.83).

2.2 ReviewofSelectedMatrixandVectorOperations 83

2.2.4 Vector Operations

Consider two vectors x andy:

V

x

y - (2.86)

V,,

and their transpose:

t2 ... Y' = b ... y,,} (2.87)

The scalar product (or inner product) of these two vectors is defined as

y
1

x 'y = [.v1 x2 . . . x,] = — x2y2 ± . . . — (2.88)

As the name implies, this is a scalar quantity. The scalar product is sometimes called the dot
product. The d adic product of these two vectors is defined as

84 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

x1y1 . . .

• .1711 .17)7 . . .

xy / = N1 ', . •
. — —

— (2.89)

• x,1V1
•

•

XII

This is a matrix of ordcr (n x n). The element-by-element product of two vectors is a vector:

x1 •v1 X1.y1

x2 h

xy = . (2.90)

x v xv
II

Two nonzero vcctors are orthogonal if their scalar product is zero:

x'y =0 (2.91)

The length of a vector can he calculated from

lxi (2.92)

A unit vector is a vector whose length is unity.
A set of vectors x, y, z. . . . is linearly dependent if there exists a set of scalars c1. c3,. . . so

that

c1X ± C3Z ± ... 0 (2.93)

Otherwise the vectors are linearly independent.

2.3 Consistency of Equations and Existence of Solutions 85

2.3 CoNsisTENCY OF EQUATIONS AND

EXISTENCE OF SOLUTIONS

Consider the set of simultaneous linear algebraic equations represented by

a11x1 + a17x7 + . . . + = c1

a21x1 + a22x2 + . . . a2,,x,, = c2

(2.12)

+ ± . . . ± =

The matrix is A, the vector of unknowns is x, and the vector of constants is c.
The augmented matrix Aa is defined as the matrix resulting from joining the vector c to

the columns of matrix A as shown below:

a11 a12 . . . c1

= (:21.

a22
2

(2.94)

. . . a,,,, c,,

The set of equations has a solution if, and only if, the rank of the augmented matrix is
equal to the rank of the coefficient matrix. If, in addition, the rank is equal to n (r = n), the
solution is unique. If the rank is less than n (r < n), there are more unknowns in the set than
there are independent equations. In that case, the set of equations can be reduced to r
independent equations. The remaining (n - r) unknowns must be assigned arbitrary values.
This implies that the system of n equations has an infinite number of possible solutions,
because the values of (n - r) unknowns are given arbitrary values, and the rest of unknowns
depend on these (n - r) values.

A special subcategory of linear algebraic equations is the set whose vector of constants
c is the zero vector:

Ax = 0 (2.95)

86 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

This is called the homogeneous set of linear algebraic equations. This set always has the
solution

X1 -A1-... X,JO (2.96)

It is called the trivial solution. because it is not of any particular interest. The coefficient
matrix and the augmented matrix of a homogeneous set always have the same rank, as the
vector c is the zero vector. As stated earlier, if the raok of A is equal toii (r= ii), then the set
of equations has a unique solution. However, in the case of the homogeneous equations, this
unique solution is none other than the trivial one. in order for a homogeneous set to have
nontrivizd solutions. the determinant olA must be zero. that is. A must be singular.

In summary. the nonhomogeneotis set has a unique noniti vial solLition if the matrix of
coeficients A is noosingular. It has an infinite number of solutions if the matrix A is singular
and the ranks of A and are equal to each other. It has no solution at all if the rank ofA is
lower than the rank of Ar,.

The homogeneous set has a unique, hut trivial, solution if the matrix of coefficients A
is nonsingular. It has an infinite number of solutions if the matrix A is singular. The rank of
A0 is always equal to the rank of A for a homogeneous system. since the vector of constants
is the zero vector. (See Table 2.2)

Table 2.2 Existence of Solutions

Condition Nonhomogeneous set
Ax=c

Homogeneous set
Ax=O

rank A n Unique solution Unique. hut iri\ ial. solution

utiiik A < ii Infinite number of solLnions

rank A < ii

and lnfinitc number of solutions
ran! A = rank A11

rankA < ii
and No solution

rank A < rank A11

2.4 Cramer's Rule 87

2.4 CRAMER'S RULE

Cramer's rule calculates the solution of nonhomogeneous linear algebraic equations of
the form

Ax = c (2.13)

using the determinants of the coefficient matrix A and the substituted matrix as follows:

IA.I
x. - / — 1.2 a (2.97)

/ [41

The substituted matrix A1 is obtained by replacing columnj of matrix A with the vector c:

£1 . . . a1
I

c1 a1 /1 • .

a11 . . . C., a.,.1 . . . a.,
A1= - (2.98)

• •

/ 1

(1/7 . . .

The set of equations must he nonhomogeneous. as the determinant of A appears in the
denominator of Eq. (2.97); the determinant cannot be zero; that is, matrix A must he
nonsingular.

For a system of a equations. Cramer's rule evaluates (a + 1) determinants and performs
a divisions. The calculation of each determinant requires (n - 1)(n!) multiplications; therefore.
the total number of multiplications and divisions is

(a ÷ I)(n I)(n!) + a (2.99)

Table 2.3 illustrates how the number of operations required by Cramer's rule increases
as the value of ii increases. For a = 3, a total of 5 1 multiplications and divisions are needed.
However, when a = 10, this number climbs to 359.25 1.2 10. For this reason, Cramer's rule is
rarely used for systems with a > 3. The Gauss elimination, Gauss-Jordan reduction, and
Gauss-Seidel methods, to be described in the next three sections of this chapter, are much
more efficient methods of solution of linear equations than Cramer's rule.

88 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Table 2.3 Number of operations needed by Cramer's rule

n (n.s-1)(n-1)(n!)÷n n (n+1)(n-1)(n!)+n

3 51 7 241,927

4 364 8 2,540,168

5 2,885 9 29,030,409

6 25,206 10 359,251,210

2.5 GAUSS ELIMINATION METHOD

The most widely used method for solution of simultaneous linear algebraic equations is the
Gauss elimination method. This is based on the principle of converting the set of n equations
in n unknowns:

a11x1 + a12x2 + . . . + a1,; =

+ a22x2 . . . + a2,; =

(2.12)

+ + . . , + a,,,X,, = C,,

to a triangular set of the form

a11x1 + a12 x2 + a13 x3 + ; + . . .
+ a1,, x,, =

a'22x2 -'-a'23x3 + . . . = C',

a'33x3 ÷a'34x4 + . . . +a'37; = C'3
(2.100)

a + a =

H H

whose solution is the same as that of the original set of equations.
The process is essentially that of converting the set

Ax = c (2.13)

2.5 Gauss Elimination Method 89

to the equivalent triangular set

Ui = c
/ (2.101)

where U is an upper triangular matrix and c 'is the modified vector of constants. Once
triangularization is achieved, the solution of the set can he obtained easily by back substitution
starting with variable n and working backward to variable 1.

2.5.1 Gauss Elimination in Formula Form

The Gauss elimination is accomplished by a series of elementary operations that do not alter
the solution of the equation. These operations are:

1. Any equation in the set can he multiplied (or divided) by a nonzero scalar without
affecting the solution.

2. Any equation in the set can he added to (or subtracted from) another equation without
affecting the solution.

3. Any two equations can interchange positions within the set without affecting the
solution.

Two matrices that can he obtained from each other by successive application of the
above elementary operations are said to be equivalent matrices. The rank and determinant of
these matrices are unaltered by the application of elementary operations.

In order to demonstrate the application of the Gauss elimination method, apply the
triangularization procedure to obtain the solution of the following set of three equations:

3x1 + 18x2 + 9x3 — 18

3x9 + = 117 (2.102)

4x1 + 2x3 = 283

First, form the (3 x 4) augmented matrix of coefficients and constants:

3 18 9 18

2 3 3 117 (2.103)

4 1

Each complete row of the augmented matrix represents one of the equations of the linear set
(2.102). Therefore, any operations performed on a row of the augmented matrix are
automatically performed on the corresponding equation.

90 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

To obtain the solution, divide the first row by 3, multiply it by 2, and subtract it from the
second row to obtain

3 18 9 18

o -9 -3 105 (2.104)

4 1 2j283

Divide the first row by 3, multiply it by 4, and subtract it from the third row to obtain

3 18 9 18

0 -9 -3 105 (2.105)

0 -23 -10 259

Note that the coefficients in the first column below the diagonal have become zero. Continue
the elimination by dividing the second row by -9, multiply it by -23, and subtracting it from
the third row to obtain

3 18 9 18

0 -9 -3 105
(2.106)

0 0-±
3 3

The triangularization of the coefficient part of the augmented matrix is complete, and matrix
(2.106) represents the triangular set of equations

3x1 + l8x1 ± 9x3 = 18 (2.lO7a)

- 9x2 - 3x3 = 105 (2.10Th)

7 28
-

___3__
(2.107c)

whose solution is identical to that of the original set (2.102). The solution is obtained by back
substitution. Rearrangement of (2. 1 07c) yields

= 4

Substitution of the value of x3 in (2. 107b) and rearrangement gives

= - 13

Substitution of the values of x3 and x2 in (2. 107a) and rearrangement yields

= 72

2.5 Gauss Elimination Method 91

The overall Gauss elimination procedure applied on the (a) x (a + 1) augmented matrix
is condensed into a three-part mathematical formula for initialization. elimination, and hack
substitution as shown below:

Initialization formula:

a, = a,
1 .2. . ,, (2.108)

a,1]

Elimination formula:

A-flr a j ii—1,n 1< K 1,2 n—i
—

— i k I . k 2 A-i
A"

(2.109)

where the initialization step places the elements of the coefficient matrix and the vector of
constants into the augmented matrix, and the elimination formula reduces to zero the elements
below the diagonal. The counter k is the iteration counter of the outside loop in a set of nested
loops that perform the ci im i nation.

It should he noted that the element a,1 in the denominator of Eq. (2.109) is always the
diagonal element. It is called the pivot element. This pivot element must not be zero:
otherwise, the computer program will result in overflow. The computer program can he
written so that it rearranges the equations at each step to attain diagonal dominance in the
coefficient matrix, that is. the row with the largest absolLite value pivot element is chosen.
This strategy is called partial pivoting, and it serves two purposes in the Gaussian elimination
procedure: It reduces the possibility of division by zero, and it increases the accuracy of thc
Gauss elimination method by using the largest pivot element. If. in addition to rows, the
columns are also searched for maximum available pivot clement, then the strategy is called
complete pivoting. If pivoting cannot locate a nonzero element to place on the diagonal, the
matrix must he singular. When two columns are interchanged, the corresponding variables
must also be interchanged. A program that performs complete pivoting must keep track of the
column interchanges in order to interchange the corresponding variables.

When triangularization of the coefficient matrix has been completed, the algorithm
transfers the calculation to the hack-substitution formula:

xfl =

a
Ii!?

(_.
- —

— p 1

i n—l, n—2, I

a,,

92 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

The above formulas complete the solution of the equations by the Gauss elimination
method by calculating all the unknowns from to x1. The Gauss elimination algorithm
requires n3/3 multiplications to evaluate the vectorx.

2.5.2 Gauss Elimination in Matrix Form

The Gauss elimination procedure, which was described above in formula form, can also he
accomplished by series of matrix multiplications. Two types of special matrices are involved
in this operation. Both of these matrices are modifications of the identity matrix. The first
type, which we designate as is the identity matrix with the following changes: The unity
at position ii switches places with the zero at position ij, and the unity at positionjj switches
places with the zero at positionji. For example, P23 for a fifth-order system is

10000
00100

P23 0 1 0 0 0 (2.111)

00010
o o 0 0 1

Premultiplication of matrix A by P, has the effect of interchanging rows I and j.
Postmultiplication causes interchange of column I and j. By definition. P = I. and
multiplication of A by P causes no interchanges. The inverse of P11 is identical to F,.

The second type of matrices used by the Gauss elimination method are unit lower
triangular matrices of the form

1 0 0 0 0

0)

--—a— 1 0 0 0
(01

1

(0)

0 1 0

0 0

a11

2.5 Gauss Elimination Method 93

where the superscript (0) indicates that each Lk matrix uses the elements -1) of the previous
transformation step. Premultiplication of matrix A by Lk has the effect of reducing to zero the
elements below the diagonal in column k. The inverse of Lk has the same form as Lk but with
the signs of the off-diagonal elements reversed.

Therefore, the entire Gauss elimination method, which reduces a nonsingular matrix A
to an upper triangular matrix U, can be represented by the following series of matrix
multiplications:

.4.. .L2L,4A = U (2.113)

where the multiplications by P, cause pivoting, if and when needed, and the multiplications
by Lk cause elimination. If pivoting is not performed, Eq. (2.113) simplifies to

.L2L1A = U (2.72)

The matrices Lk are unit lower triangular and their product, defined by matrix L, is also unit
lower triangular. With this definition of L, Eq. (2.72) condenses to

LA = U (2.73)

Because matrix L is unit lower triangular, it is nonsingular. Its inverse exists and is also a unit
lower triangular matrix. If we premultiply both sides of Eq. (2.73) by U', we obtain

A = L'U (2.114)

This equation represents the decomposition of a nonsingular matrix A into a unit lower
triangular matrix and an upper triangular matrix. Furthermore, this decomposition is unique
[2]. Therefore, the matrix operation of Eq. (2.73) when applied to the augmented matrix
[A I c] yields the unique solution:

L[A Ic] [U I (2.115)

of the system of linear algebraic equations

Ax = C (2.13)

whose matrix of coefficients A is nonsingular.

Z5.3 Calculation of Determinants by the Gauss Method

The Gauss elimination method is also very useful in the calculation of determinants of
matrices. The elementary operations used in the Gauss method are consistent with the

94 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

properties of determinants listed in Sec. 2.2. Therefore, the reduction of a matrix to the
equivalent triangular matrix by the Gauss elimination procedure would not alter the value of
the determinant of the matrix. The determinant of a triangular matrix is equal to the product
of its diagonal elements:

IUI Ha11 (2.68)

Therefore, a matrix whose determinant is to be evaluated should first he converted to the
triangular form using the Gauss method. and then its determinant should he calculated from
the product of the diagonal elements of the triangular matrix.

Example 2.1 demonstrates the Gauss elimination method with complete pivoting strategy
in solving a set of simultaneous linear algebraic equations and in calculating the determinant
of the matrix of coefficients.

Example 2.1: Heat Transfer in a Pipe Using the Gauss Elimination Method for
Simultaneous Linear Algebraic Equations. Write a general MATLAB function that
implements the Gauss elimination method, with complete pivoting for the solution of
nonhomogeneous linear algebraic equations. The function should identify singular matrices
and give their rank. Use this function to calculate the interface temperatures in the following
problem:

Saturated steam at 13(3°C is flowing inside a steel pipe having an ID o120 mm (D1) and an OD
of 25 mm (D2). The pipe is insulated with 40 mm — of insulation on the outside.
The convective heat transfer coefficients for the inside steam and outside of the lagging are
estimated as = 170(3 Wfm2.K and h0 = 3 W/m2.K. respectively. The niean thermal
conductivity of the metal is k, = 45 W/m.K and that of the insulation is k1 = 0.064 WIm.K.
Ambient air temperature is 25°C (see Fig. E2.l).

There are three interfaces in this problem. and by writing the energy balance at each
interface, there will he three linear equations and three unknown temperatures:

T -- T,
Heat transfer from steam to pipe: it (T — T1)

= -

ln(D2/D1) 1(2 ii k,)

T -71, T.,-T1
Heat transfer from pipe to insulation: -

ln(D21D1)I(2itk) In(D11D2)I(2 ick.)

T - T.
Heat transfer from insulation to air: — h it D1 (T3 — T

ln(D31D,)I(2rck1) '

where T, = temperature of steam = 130"C
T1 = temperature of inside wall of pipe (unknown)

Example 2.1 Heat Transfer in a Pipe 95

T2 = temperature of outside wall of pipe (unknown)
T3 = temperature of outside of insulation (unknown)

= ambient temperature = 25°C.

Rearranging the above three energy balance equations yields the set of linear algebraic
equations, shown below, which can be solved to find the three unknowns T1. T,, and

k k

ln(D3/D,) - ln(D3/D,)

Ta

Air

Figure E2.1 Insulated pipe.

Method of Solution: The function is written based on Gauss elimination in matrix form.
It applies complete pivoting strategy by searching rows and columns for the maximum pivot
element. It keeps track of column interchanges, which affect the positions of the unknown
variables. The function applies the hack-substitution formula [Eq. (2. 110)1 to calculate the
unknown variables and interchanges their order to correct for column pivoting.

At the beginning, the program checks the determinant of the matrix of coeflicients to see
if the matrix is singular. If it is singular. the program gives the rank of the matrix and
terminates calculations.

Program Description: The MATLAB function Gaus5.Fn consists of three main sections.
At the beginning, it checks the sizes of input arguments (coefficient matrix and vector of
constants) to see if they are consistent. It also checks the coefficient matrix for singularity.

2k5

ln(J)2/f)1)

2k.
+ h1D jT1

- [

s

ln(D7/D1)

k kT-
ln(D,/D1) In(D2ID,)

2k.
T

ln(D1/D,) —

2k1

ln(D3/D2)
h0D3 T3

96 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

The second part of the function is Gauss elimination. In each iteration, the program finds
the location of the maximum pivot element. It interchanges the row and the column of this
pivot element to bring it to diagonal and meanwhile keeps track of the interchanged column.
At the end of the loop, the program reduces the elements below the diagonal at which the pivot
element is placed.

Finally, the function Gauss.m applies the back-substitution formula to evaluate all the
unknowns. It also interchanges the order of the unknowns at the same time to correct for any
column interchanges that took place during complete pivoting.

The program Example2_].m is written to solve the problem of Example 2.1. It mainly
acts as an input file, which then builds the coefficient matrix and the vector of constants, and
finally calls the function Gauss.m to solve the set of equations for the unknown temperatures.

Program

Example2_l.m
% Example 2_l.m
% Solution to Example 2.1. This program calculates the
% interface temperatures in an insulated pipe system.
% It calls the function GAUSS.M to solve the heat transfer
% equations for temperature simultaneously.

dc
clear
% Input data
Ts = input(Temperature of steam (deg C) =

Ta = input(Temperature of air (deg C) =

Dl = Pipe ID (mm) = U;
D2 = le_3*input(Pipe OD (mm) = U;
Ith = le_3*input(Insulation thickness (mm) =

D3 = (D2 + 2*Ith); % Diameter of pipe with insulation
hi input(Inside heat transfer coefficient (W/m2.K) =

ho = input(Outside heat transfer coefficient (W/m2.K) =

ks = input(Heat conductivity of steel (W/m.K) = U;
ki = input(Heat conductivity of insulation (W/m.K) = U;

% Matrix of coefficients
A=
[2*ks/log(D2/Dl)+hi*Dl _2*ks/log(D2/Dl) 0

ks/log(D2/Dl) -(ks/log(D2/Dl)+ki/log(D3/D2)) ki/log(D3/D2)
o / 2*ki/log(D3/D2) / _(2*ki/log(D3/D2)+ho*D3)J;

% Matrix of constants
c = [hi*Dl*Ts

; 0 ;
_ho*D3*Ta];

% Solving the set of equations by Gauss elimination method
T = Gauss (A c);

% Show the results
disp(disp(Results :)
fprintf(' Tl = %4.2f\n T2 = %4.2f\n T3 = %4.2f\n ,T)

Example 2.1 Heat Transfer in a Pipe 97

Gauss.m
function x = Gauss (A c)

%GAUSS Solves a set of linear algebraic equations by the Gauss
% elimination method.

GAUSS(A,C) finds unknowns of a set of linear algebraic
equations. A is the matrix of coefficients and C is the
vector of constants.

% See also JORDAN, JACOBI

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

c =)c(:).); % Make sure its a column vector

n = length)c);
[nr nd size(A);

% Check coefficient matrix and vector of constants
if nr nc

error('Coefficient matrix is not square.
end
if nr n

error(Coefficient matrix and vector of constants do not have the
same length.)

end

% Check if the coefficient matrix is singular
if det(A) == 0fprintf(\n Rank = %7.3g\n,rank(A))

error('The coefficient matrix is singular.)
end

unit = eye(n); % Unit matrix
order = [I n]; % Order of unknowns
aug = [A ci; % Augmented matrix

% Gauss elimination
for k = 1 n - 1

pivot = abs)aug(k k));
prow = k;
pcol = k;

% Locating the maximum pivot element
for row = k : n

for col = k n
if abs(aug(row col)) > pivot

pivot = abs(aug(row col));
prow = row;
pcol = col;

end
end

end

98 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

% Interchanging the rows
pr unit;
tmp = pr(k :);

pr(k :) = pr(prow
pr(prow :) = tmp;
aug = pr * aug;

% Interchanging the columns
PC = unit;
tmp = pc(k :

pc(k) = pc(pcol
pc(pcol /) = tmp;
aug(1 : n 1 : n) = aug(l n 1: n) * pc;
order = order * pc; I Keep track of the co'umn interchanges

% Reducing the elements below diagonal to zero in the column k
1k = unit;
for m = k + 1 : n

lk(m k) = - aug(m / k) / aug(k /

end
aug = 1k * aug;

end

x = zeros(n I);

% Back substitution
t(n) = aug(n $ n + 1) / aug(n n);
x(order(n)) = t(n);
for k = n - 1 -1 1

t(k) = (aug(k,n+l) - sum(aug(k,ki-1:n) / aug(k,k);
x (order(k)) = t(k);

end

input and Results

>> Example2_l

Temperature of steam (deg C) = 130
Temperature of air (deg C) = 25
Pipe ID (rmii) = 20
Pipe GD (curt) = 25
Insulation thickness (mm) = 40
Inside heat transfer coefficient (W/m2.K) = 1700
Outside heat transfer coefficient (W/m2.K) = 3

Heat conductivity of steel (W/m.K) = 45
Heat conductivity of insulation (W/m.K) = 0.064

Results
Tl = 129.79
T2 = 129.77
T3 = 48.12

2.6 Gauss-Jordan Reduction Method 99

Discussion of Results: The Gauss elimination method finds the interface temperatures
as T1 = 129.79°C, T2 = 129.77°C, and T3 = 48.12°C. These values are quite predictable,
because the heat transfer coefficient of steam and the heat conductivity of steel are very high.
Therefore, the temperatures at steam-pipe interface and pipe-insulation interface are very close
to the steam temperature. The main resistance to heat transfer is due to insulation.

The values obtained from the function Gauss.in may be verified easily in MATLAB by
using the original method of solution of the set of linear equations in matrix form, that is,
T= inv(A)*c.

2.6 GAUSS-JORDAN REDUCTION METHOD

The Gauss-Jordan reduction method is an extension of the Gauss elimination method. It

reduces a set of ii equations from its canonical form of

Ax = c (2.13)

to the diagonal set of the form

Ix - (2.116)

where! is the unit matrix. Eq.(2. 116) is identical to

x = (2.117)

that is, the solution vector is given by the c' vector.
The Gauss-Jordan reduction method applies the same series of elementary operations that

are used by the Gauss elimination method. It applies these operations both below and above
the diagonal in order to reduce all the off-diagonal elements of the matrix to zero. In addition,
it converts the elements on the diagonal to unity.

2.6.1 Gauss-Jordan Reduction in Formula Form

We will apply the Gauss-Jordan procedure, without pivoting, to the set of Eqs. (2.102) shown
in Sec. 2.5. 1 in order to observe the difference between the Gauss-Jordan and the Gauss
method. Starting with the augmented matrix

3 18 9 18

2 3 3 117 (2.103)

4 12 283

100 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

normalize the first row by dividing it by 3:

I 63
2 3 3 117 (2.118)

4 1 2 283

Multiply the normalized first row by 2 and subtract it from the second row:

1 63 6

0 9 -3 105 (2.119)

4 1 2 283

Multiply the normalited first row by 4 and subtract it from the third row:

1 6 6

0 -9 -3
[

105 (2.120)

0 23 —10 259

Normalize the second row by dividing it by -9:

1 6 3 6

1 35
0 1 — -— (2.121)

3 3

0 -23 -10 259

Multiply the normalized second row by 6 and subtract it from the first row:

I 0 1 76

1 35
0 1 — (2.122)

3 3

0 -23 -10 259

Multiply the normalized second row by -23 and subtract it from the third row:

1 0 1 76

0 1
±
3 3 (2.123)

0 0
3 3

2.6 Gauss-Jordan Reduction Method 101

Normalize the third row by dividing by -7/3:

1 0 I 76

o 1 (2.124)
3 3

o 0 114
Multiply the third row by 1 and subtract it from the first row:

1 0 0
1

72

o i (2.125)

o 0 1 4

Finally, multiply the third row by 1/3 and subtract it from the second row:

1 0 0 72

0 I 0
I

—13 (2.126)

0 0 114
This reduced matrix [Eq. (2.126)] is equivalent to the set of equations

lx = (2.116)

The vector c', which is the last column of the reduced matrix, is the solution of the original
set of equations (2.102). There is no need for back substitution because the solution is
obtained in its final from in vector c'.

The Gauss-Jordan reduction procedure applied to the (n) x (n + 1) augmented matrix can
be given in a three-part mathematical formula for the initialization, normalization, and
reduction steps as shown below:

Initialization formula:
(0)

a,3 =a,3 {j=1,2 n 1.
(0) .

1 = 1,L (2.127)
a,1 L,

Normalization formula:

k)
1k = 1,2,...,n

=
k

0 (2.128)
akk

102 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Reduction formula:

(k) (k-I) (k-I) 0 . I I = 1,2,....ii j k = 1.2 a
a1 = a,1

1 i Ac

A-H

(2.129)

The initialization formula places the elements of the coefficient matrix iii columns 1 to a and
the vector of constants in column (a + I) of the augmentcd matrix. The normalization formula
divides each row of the augmented matrix by its pivot element and makes this change
permanent, thus caLlsing the diagonal elements of the coefficient segment of the augmented
matrix to become unity. Finally, the reduction formula reduces to zero the off-diagonal
elements in each row and column in the coefficient segment of the augmented matrix, and
converts column (a + I) to the solution vector.

2.6.2 Gauss-Jordan Reduction in Matrix Form

The Gauss-Jordan reduction procedure can also he accomplished by a series of matrix
multiplications, similar to those performed in the Gauss elimination method (Sec. 2.5.2). The
matrix which causes pivoting, is identical to that defined by Eq. (2.111). The matrix LA
must have additional terms above the diagonal to cause the reduction to zero of elements
above, as well as below, the diagonal, and a term on the diagonal in order to normalize the
element on the diagonal of the original matrix. We will designate this matrix as Lk and give
an example for a fourth-order system with Ac = 2. where the superscript (I) indicates that
each Lk matrix uses the elements of the previous transformation step Eq. (2. 130)]:

(I)
a1,

I —--——— 0 0
(I)a,,

0 ._L o

a,,

(2.130)
a

0 1 0
I)a,,

(147

0 ----fl 0
a,,

The Gauss-Jordan algorithm reduces a nonsingular matrix A to the identity matrix I by
the following series of matrix multiplications:

Gauss-Jordan Reduction Method 103

= 1 (2.131)

where the multiplications by cause pivoting, if and when needed, and the multiplications
by Lk cause normaliLation and reduction. If pivoting is not performed. Eq. (2. 1 3 1)
simplifies to

I (2.132)

By defining the product of all the Lk matrices as L, we can condense Eq. (2. 132) to

LA 1 (2.133)

The matrix operation of Eq. (2. 133). when applied to the augmented matrix [A I c}, yields the
unique solution

L[A I cj [1 I ci (2.134)

of the system of linear algebraic equations

Ax = C (2.13)

whose matrix of coefficients A is nonsingular.

2.6-3 Gauss-Jordan Reduction with Matrix Inversion

Matrix L , in Eq. (2.133), is anonsingular matrix: therefore, its inverse exists. Premultiplying
both sides of Eq. (2.133) by U', we obtain

A (2.135)

Taking the inverse of both sides of Eq. (2.135) results in

Li (2.136)

This simply states that the inverse of A is equal to K. This has very important implications in
numerical methods because it shows that the Gauss-Jordan reduction method is essentially a
matrix inversion algorithm. Eq. (2.136), when rearranged, clearly shows that the application
of the reduction operation L on the identity matrix yields the inverse of A:

LI A ' (2.136)

104 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

This observation can be used to extend the formula form of the Gauss-Jordan algorithm
to give the inverse of matrix A every time it calculates the solution to the set of equations

Ax = c (2.13)

This is done by forming the augmented matrix of order (a) x (2n + 1):

[A I C I (2.137)

and applying the Gauss-Jordan reduction to the augmented matrix. In this case, the three-part
mathematical formula for the initialization, normalization, and reduction steps is the
following:

Initialization formula:

(0)

a0 — a,1 = 1 ,2 a

(0)

a (2.138)
a11 =0

(0) .
n+2 2n÷1

1 {i=j

Normalization formula:

1k 1)a. k 1,2 a
= 2n+l,2n k 1) (2.139)

akk
kk

Reduction formula:

(k) (k I) (k-I) (k) Ii = 1,2 (k = 1,2 a
a11 = a,1 - alk akl {j = k

k 1 0

(2.140)

The first two parts of the initialization formula place the elements of the coefficient matrix in
colunms I to a and the vector of constants in column (a + 1) of the augmented matrix. The
last two parts of the initialization step expands the augmented matrix to include the identity
matrix in columns (a + 2) to (2n + 1). The normalization formula divides each row of the
entire matrix by its pivot element, thus causing the diagonal elements of the coefficient
segment of the augmented matrix to become unity. Finally, the reduction formula reduces to
zero the off-diagonal elements in each row and column in the coefficient segment of the
augmented matrix, converts column (a + 1) to the solution vector, and converts the identity
matrix in columns (a + 2) to (2a + 1) to the inverse of A.

Eq.(1) 680psiaheader Eq.(8)
Eq. (2) Desuperheater Eq. (9)
Eq. (3) Alternator turbine Eq. (10)
Eq.(4) l7Opsiaheader Eq.(Il)
Eq.(5) 37psiaheader Eq.(12)
Eq.(6) 2l5psiastearn Eq.(13)
Eq.(7) BFWbalance Eq.(l4)

This problem was adopted from Himmelbtao [Ref. 3j by permission of the authot

Example 2.2 Solution of a Steam Distribution System 105

Example 2.2 demonstrates the use of the Gauss-Jordan reduction method for the solution
of simultaneous linear algebraic equations.

Example 2.2: Solution of a Steam Distribution System Using the Gauss-jordan
Reduction Method for Simultaneous Linear Algebraic Equations. Figure E2.2 represents
the steam distribution system of a chemical plant.' The material and energy balances of this
system are given below:

181.60 — x3 -132.57 — .15 — — .15 * 5.1 (1)

1.17x. — 0 (2)

132.57 -- 0.745x7 61.2 (3)

+ X7 — A5 .19 — A10 + Ah + 99.1 (4)

+ .v1,, + x11 —v7 - —8.4 (5)

A15 — 24.2 (6)

—1.15(181.60) + Xft = l.15v, — + 0.4 —19.7 (7)

181.60 4.594X,2 0.llx,6 = ± 1.0235; - 2.45 35.05 (8)

-0.0423(181.60) = O.O423v, 288 (9)

—0.016(181.60) — 0 (10)

— 0 (II)
A5 0.07x,4 0 (12)

—0.0805(181.60) + — 0 (13)

A1, — A14 ± xft 0.4 V9 —97.9 (14)

There are four levels of steani in this plant: 680, 215, 170, and 37 psia. The 14 x,
= 3 16 are the unknowns, and they1 are given parameters for the system. Both x and v,

have the units of 1000 lb/h.
Use the Gauss-Jordan method to determine the values of the 14 unknown quantities v1,

i=3 16.

Method of Solution: The 14 equations of this problem represent balances around the
following 14 units. respectively:

Condensate quench drum
Blow down flash drum
Boiler atomizing
Treated feedwater pump
Boiler feedwater pump
Boiler fan
Deaerator-quench.

106 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

The set of equations given in the statement of the problem simplifies to a set containing 14
unknowns (I)- 1)5):

+ = 43.93 (1)

1.1713 0 (2)

= 95.798 (3)

± 17 — 15 — + 1)5 — 99.1 (4)

19 ± .V10 — 112 113 = -8.4 (5)

16 - 24.2 (6)

- + 189.14 (7)

+ - 146.55 (W

1)) = 10.56 (9)

14 2.9056 (10)

18 — 0 (Il)

15 - 0.071)4 0 (12)

19 14.6188 (13)

— 1)4 A16 —97.9 (14)

For convenience in programming, we change the numbering order of the variables so that 13
becomes 14 becomes 12, and so forth.

I
+ 13 = 43.93 (1)

14 = 0 (2)

= 95.798 (3)

13 — 16 - 17 — 113 = 99.1 (4)

1(17 1)0 i11— 8.4 (5)

14 - 1)3 24.2 (6)

— 14 1)Q + 1)4 189.14 (7)

4.594111) + 0.111)4 146.55 (8)

19 10.56 (9)

12 2.9056 (10)

15 - = 0 (11)

13 — 0.07112 = 0 (12)

17 14.6188 (13)

110 - 1)2 + 114 = —97.9 (14)

The above set of simultaneous linear algebraic equations can be represented by

Ax = c

Example 2.2 Solution of a Steam Distribution System 107

where A is a sparse matrix containing many zeros. It is not a handed set or a predominantly
diagonal set. The Gauss or Gauss-Jordan methods may he used for the solution of this
problem. The computer program. which is descrihed in the next scction. implements the
Gauss-Jordan algorithm in matrix form. The program uses a complete pivoting strategy.

Program Description: The MATLAB function Jordan.m consists of three main sections.
At the beginning, it checks the sizes of input arguments (coefficient matrix and vector of
constants) to see if they are consistent. It also checks the coefficient matrix br singLilarity.

The second part of the function is the Gauss-Jordan algorithm with application of
complete pivoting strategy. In each iteration. the program finds the location of the maximum
pisot element. It interchanges the row and the column of this pivot clement to bring it to the
diagonal position. meanwhile the program keeps track of the interchanged columns. At the
end of the loop, the program reduces the elements below and above the diagonal position at
which the pivot element is placed.

Finally, the fLinction Jordan.m sets the unknowns equal to the elements of the last column
of the modified augmented matrix. It also interchanges the order of the unknowns at the same
time to correct for any column interchanges that took place during complete pivoting.

Figure E2.2 Steam distribution system of a chemical plant.

108 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

The program Example2_2.m is written to solve the problem of Example 2.2. It builds the
coefficient matrix and the vector of constants and then calls the function .Iordcm.m to solve the
set of equations for the unknown flow rates. Although it is easy to write a few statements at
the beginning of the program to ask the user to input the matrix of coefficients and the vector
of constants. it is not convenient to do so in this problem because the number of equations is
relatively high, and it is not easy to input the data from the screen.

Program

Example2_2.m
% Example2_2.m

Solution to Example 2.2. This program solves the material
and energy balances equations of a steam distribution

% system using the function JORDAN.M.

dc
clear

% Matrix of coefficients
A = [1, 1, 1, 0*14.14]
1.17,0,0, -1, 0*15:14]
0*11:41, 1,0*16:14]
0, 0, 1, 0, 1, -1, -1, -1, 0*19:12], 1, 0

0*11:5], 1, 1, 1, 1, -1, -1, 0*112:14]
0*11:3], 1, 0*15:12], -1,0
1,0*12:31,_i, 0*15:9], 1,0*111:13], 1

0*11:9], 4.594, 0*111:13], 0.11
0*11:8], 1, 0*110:14]
0, 1, 0*13:14]
0*11:5], 1, 0*[7:l3], -0.0147
0, 0, 1, 0*14:11], -0.07, 0, 0

0*11:6], 1,0*18:14]
0*11:9], 1, 0, -1, 0, 1];

I Vector of constants
c= 143.93, 0,95.798, 99.1, -8.4, 24.2, 189.14, 146.55, 10.56,

2.9056,0,0,14.6188-97.9];

I Solution
X = Jordan (A , c)

Jordan.izz

function x = Jordan (A , c)
%JORDAN Solves a set of linear algebraic equations by the
I Gauss-Jordan method.

JORDAN(A,C) finds unknowns of a set of linear algebraic
equations. A is the matrix of coefficients and C is the
vector of constants.

Example 2.2 Solution of a Steam Distribution System 109

% See also GAUSS JACOBI
% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

C = (c(J.')'; % Make sure its a column vector
n = length(c);
[nr nd = size(A);

I Check coefficient matrix and vector of constants
if nr nc

error('Coefficient matrix is not square.')
end
if nr = n

error('Coefficient matrix and vector of constants do not have the
same length.')
end

I Check if the coefficient matrix is singular
if det(A) == 0

fprintf('\n Rank = %7.3g\n',rank(A))
error('The coefficient matrix is singular.')

end

unit = eye(n); % Unit matrix
order = [1 n]; I Order of unknowns
aug = [A ci; % Augmented matrix

I Gauss - Jordan algorithm
for k = 1 : n

pivot = abs(aug(k /

prow = k;
pcol = k;

I Locating the maximum pivot element
for row k : n

for coi = k n
if abs(aug(row , col)) > pivot

pivot = abs(aug(row , col));
prow = row;
pcol = col;

end
end

end

I Interchanging the rows
pr = unit;
tmp = pr(k /

pr(k ,) = pr(prow /

pr(prow /) = tmp;
aug = pr * aug;

% Interchanging the columns
pc = unit;

110 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

tmp = pc(k
pc(k, ;)=
pc(pcol
aug(l n 1

order = order

pc(pcol
= tmp;

n) aug(l n 1 n) * pc;
* pc; % Keep track of the column interchanges

end

% Reducing the elements above and below diagonal to zero
1k = unit;
for m = 1 n

if m == k
lk(m k) = 1 / aug(k k);

else

end
lk(m k) = - aug(m k) / aug(k

end
aug = 1k * aug;

x = zeros(n / 1);

% Solution
for k = 1 n

x(order(k))
end

= aug(k n + 1);

Input and Results

>>Example2_2

20.6854
2.9056
20.3390
24.2020
95.7980
2.4211

14. 6188
-0.0010
10 . 5600
27 . 9567
8. 0422

290.5565
0.0020

164.6998

Discussion of Results: The results are listed in Table E2.2 and show the correspondence
between the program-variable numbering sequence and the problem-variable numbering
sequence.

The units of the above quantities are 1000 lb/h. The values of variables x10 and x15 are
zero, as may he expected from the flow diagram of Fig. E2.2.

2.7Gauss-Seidel Substitution Method 11%

Table E2.2

Program variable Value Problem variable

X(1) 20.7 .i

X(2) 29 x,

X(3) 20.3

X(4) 24.2 ;
X(5) 95.8 x7

X(6) 24

XC) 14.6

X8) 0.0 X/()

X(9) 10.6 x7,

X(10) 28.0 A2

X(1I) 8.0 x,,

X(12) 290.6 x14

X(13) 0.0

X(14) 164.7 x,4

2.7 GAUSS-SEIDEL METHOD

Certain engineering problems yield sets of simultaneous linear algebraic equations that are
precloniinant/v diagonal systems. A predonnnanrlv diagonal system of linear equations has
coefficients on the diagonal that are larger in absolute value than the sum of the absolute
values of the other coefficients. For example, the set of equations:

- IOXL + + = 6

Sx, - 2x3 = 9 (2.141)

-3x1 - A;2 - 7x1 = -33

is a predominantly diagonal set because

1-101> 121 (3!

112 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

and

181>111 + 121

and

1 -71 > I -31 + I -1 I

Each equation in set (2.141) can be solved for the unknown on its diagonal:

6 - (2x7 + 3x1)
= (2.l42a)

- 10

9 - - 2x3)
(2.142h)

8

-33 - - x2)
- (2.l42c)

-7

The Gauss-Seidel substitution method requires an initial guess of the values of the
unknowns x2 and The initial guesses are used in Eq. (2.1 42a) to calculate a new estimate
of x1. This estimate of and the guessed value of x1 are replaced in Eq. (2. 142h) to evaluate
the new estimate of .v,. The new estimate of is then calculated from Eq. (2. 142c). The
iteration continues until all the newly calculated x values converge to within a convergence
criterion of their previous values.

The Gauss-Seidel method converges to the correct solution, no matter what the initial
estimate is, provided that the system of equations is predominantly diagonal. On the other
hand, if the system is not predominantly diagonal, the correct solution may still he obtained
if the initial estimate of the values of x-, to x,, is close with the correct set. The Gauss-Seidel
method is a very simple algorithm to program, and it is computationally very efficient, in
comparison with the other methods described in this chapter, provided that the system is
predominantly diagonal. These advantages account for this wide use in the solution
of engineering problems.

For a general set of ii equations in ii unknowns:

Ax = C (2.13)

the Gauss-Seidel substitution method corresponds to the formula

— c1 a,1x1 i = 1,2 /2 (2.143)
a11

Eq. (2.143) is the Gauss-Seidel method in formula form. Calculation starts with an initial

2MJacobi Method 113

guess of the values x1 to;. Each newly calculated x1 from Eq. (2.143) replaces its previous
value in subsequent calculations. Substitution continues until the convergence criterion is met,

2.8 JAcoBI METHOD

The Jacobi iterative method is similar to the Gauss-Seidel method with the exception that the
newly calculated variables are not replaced until the end of each iteration is reached. In this
section, we develop the Jacobi method in matrix form.

The matrix of coefficients A can be written as

A -D) +D (2.144)

where 1) is a diagonal matrix whose elements are those of the main diagonal of matrix A.
Therefore, the matrix (A - 1)) is similar to A, with the difference that its main diagonal
elements are equal to zero. Replace Eq. (2.144) into Eq. (2.13) and rearrange results in

Dx —D)x (2.145)

from where the vector x can be evaluated:

x D'c - D'(A - D)x

- (LV'A - 1)x (2.145)

In an iterative procedure, Eq. (2.145) should be written as

= D'c - (D'A (2.146)

where superscript (k) represents the iteration number. The Jacobi method requires an initial
guess of all unknowns (rather than one less in the Gauss-Seidel method) and the newly
calculated values of the vector x replace the old ones only at the end of each iteration. The
substitution procedure continues until convergence is achieved.

It is worth mentioning that the solution of a set of equations by the Gauss-Seidel method
in formula form needs fewer iterations to converge than using the Jacobi niethod in matrix
form. This is because the unknowns change during each iteration in the Gauss-Scidel method,
whereas in the Jacobi method they are not changed until the very end of each iteration (see
Problem 2.1).

Example 2.3: Solution of Chemical Reaction and Material Balance Equations Using
the Jacobi Iteration for Predominantly Diagonal Systems of Linear Algebraic Equations.
A chemical reaction takes place in a series of four continuous stirred tank reactors arranged
as shown in Pig. E2.3.

114 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Figure E2.3 Series of continuous stirred tank reactors.

The chemical reaction is a first—order irreversible reaction of the type

A B

1001) lit/h

The conditions of temperature iii each reactor are such that the value of the rate constant A is
different in each reactor. Also, the volunie of each reactor V is different. The values of /c and

are given in Table E2.3. The following assumptions can he made regarding this system:

I. The system is at steady state.
2. The reactions are in the liquid phase.
3. There is no change in volume or density of the liquid.
4. The rate of disappearance of component A in each reactor is by

Table E2.3

i? = V/Sc,, niol/li

Reactor VJ(L) Reactor V(L)

1 1000 0. 1

2 1500 0.2

3 11)0 0.4

4 500 0.3

Respond to the following questions:

a. Set up the material balance equation for each of the four reactors. What type of
equations do you have in this set of material balances?

b. What method do you recommend as the best one to use to solve for the exit

concentration () from each reactor?

ci

Example 2.3 Solution of Chemical Reaction and Material Balance Equations 115

c. Write a MATLAB script to solve this set of equations and find the exit concentration
from each reactor.

Method of Solution: Part (a): The general unsteady-state material balance br each
reactor is

Input = output + disappearance by reaction + accumulation

Because the system is at steady state. the accumulation term is zero: therefore. the material
balance simplifies to

Input = output + disappearance by reaction

This balance applied to each of the four reactors yields the following set of equations:

(l000)(l) = 1000c4 + V1k1c4

+ lOOç1 = 1 + V,k,c4

1100 CA + 100 c = 1200 +

1l00c1 = lIOOc4 + V4k4c4

Substituting the values of V and 1< and rearranging:

1100c1 = 1000

-I400CA+lOOc\ =0

1 — + 100c1 = 0

IIOOCk - 1250c4 =0

The above is a set of four simultaneous linear algebraic equations. It appears to he a
predominantly diagonal system of equations. as the coefficients on the diagonal are larger in
absolute value than the sum of the absolute values of the other coefficients.

Part (I,): From the discussion of the Jacobi method (Sec. 2.8), it would seem that Gauss-
Seidel would be the best method of solution for a predominantly diagonal set. However.
because calculations in MATLAB are based on matrices, the Jacobi method in matrix form is
considerably faster than the Gauss-Seidel method in formula form in the MATLAB
workspace.

Parr (c): The general program, which uses the Jacobi iterative method in matrix form, is
described in the next section. An initial guess of unknowns to CA is needed to start the
Jacobi algorithm. This system of equations is a predominantly diagonal set: therefnre,any
initial guess for LLnknowns will yield convergence. However, the initial guess of 0.6 for all
four unknowns seems to be an appropriate choice based on the fact that c1 = 1 .0. Two cases
will he run in order to test the ability of the Jacobi method to converge. The first case will use
0.6 as the initial values and the second will use 100 as the starting values.

116 Numerical Solution of Simultaneous Linear Aijebraic Equations Chapter 2

Program Description: The MATLAB function Jacobi.m is written to solve a set of
linear algebraic equations by the Jacobi method. Inputs to the function are the
coefficient matrix, the vector of constants. and the vector of initial guesses for all the
unknowns. The default convergence criterion is I v x,A I < 106 However, the user may
change this convergence criterion by introducing another value as the fourth input argument
into the function.

The next step in the program is to build the modified coefficient matrix (D'A - I) and

the modified vector of constants (D 'c). The function then starts the substitution procedure
according to Eq. (2.146), which continues until the convergence criterion is reached for all of
the unknowns.

In the program the coefficient matrix and the vector of constants of the
set oL equations developed in this example are introduced as input data. The program also asks
the user to input the convergence criterion and if the uset wants to see the results of the
calculations at the end of each step. The vector of initial guesses are introduced to the program
in a loop so that the user can redo the calculations with different initial guesses. Then it calls
the ftinction lace/n.m to solve the set of equations. Finally, the program shows the final
results of calculation.

Program

Exainple2_3.m
S Example2_3.m
S Solution to Example 2.3. This program solvos a set of
S linear algebraic equations by the Jacobi iterative
S method, using the function JACOBI.M, to find the
S concentrations of a seres of CSTRs.

dc
clear

S Input data
fprintfl' Solution of set of linear algebraic equations by the
Jacobi method\n\n')
n = input (' Number of equations =
for N = 1 : n

fprintfl'\o Coefficients of eq. %2d =',k)
A(k,l:n) = input(' 'I;

fprintfl' Constant of eq. 52d =' NI
c(k) = ioputt' ');

end
'I

tol = input(' Convergence criterion = 'I;
trace inputl' Show step-by-step path to results (0/1) ? U;

redo = I;
while redo

disp(' U
guess = input)' Vector of initial guess =

Example 2.3 Solution of Chemical Reaction and Material Balance Equations 117

% Solution
ca = Jacobi(A, c, guess, tol, trace);
fprintf('\n\n Results :\n)

for k = 1 n
fprintf(' CA(%2d) = %64g\n',k,ca(k))

end

disp)' ')

redo=input(' Repeat the calculations with another guess (0/1)? H;
disp(' ')

end

Jacobian
function x = Jacobi)A, c, x0, tol, trace)
%JACOBI Solves a set of linear algebraic equations by the
% Jacobi iterative method.

% JACOBI)A,C,X0) finds unknowns of a set of linear algebraic
% equations. A is the matrix of coefficients, C is the vector
% of constants and X0 is the vector of initial guesses.

% JACOEI)A,C,X0,TOL,TRACE) finds unknowns of a set of linear
I algebraic equations and uses TOL as the convergence test.
I A nonzero value for TRACE results in showing calculated
% unknowns at the end of each iteration.

I See also GAUSS, JORDAN

I by N. Mostoufi & A. Constantinides
1 January 1, 1999

I Initialization
if nargin < 4 isempty(tol)

tol = le-6;
end
if nargin >= 4 & tol == 0

tol = le-6;
end
if nargin < 5 isempty(trace)

trace = 0;
end
if trace

fprintf('\n Initial guess :\n')
fprintf('%8.6g ',xO)

end

c = (c(:).'); I Make sure it's a column vector
xO = (xO (:) . ') '; I Make sure it ' s a column vector

o = length(c);
[or nd = size)A);

118 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

% Check coefficient matrix, vector of constants and
% vector of unknowns
if nr nc

error('Coefficient matrix is not square.')
end
if nr n

error('Coefficient matrix and vector of constants do not have the
same length.')
end
if length(xO) n

error('Vector of unknowns and vector of constants do not have the
same length.')
end

Check if the coefficient matrix is singular
if detiA) == 0

fprintf('\n Rank %7.3g\n',rank(A))
error('The coefficient matrix is singular.')

end

% Building modified coefficient matrix and modified
% vector of coefficients
D = diag(diag(A)); % The diagonal matrix
a0 inv(D)*A -- eye(n); % Modified matrix of coefficients
cO inv(D)*c; % Modified vector of constants

x = x0;
x0 x + 2 * tol;
iter = 0;

% Substitution procedure
while max(abs(x - xO)) >= tel

x0 = x;
x = c0 - a0 * xO;
if trace

iter = iter + 1;
fprintf('\n Iteration no. %3d\n' ,iter)
fprintf('%8.6g ' ,x)

end
end

Input and Results

>> Example2_3

Solution of set of linear algebraic equations by the Jacobi method

Number of equations = 4

Coefficients of eq. 1 = [1100, 0, 0, 0]

Constant of eq. 1 = 1000

Coefficients of eq. 2 = [1000, -1400, 100, 0]

Example 2.3 Solution of Chemical Reaction and Material Balance Equations 119

Constant of eq. 2 = 0

Coefficients of eq. 3 = [0, 1100, -1240, 100]
Constant of eq. 3 = 0

Coefficients of eq. 4 = [0, 0, 1100, -1250]
Constant of eq. 4 = 0

Convergence criterion = ic-S
Show step-by-step path to results (0/I) ? 1

Vector of initial guess = 0.6*ones(l,4)

Initial guess
0.6 0.6 0.6 0.6

Iteration no. 1

0.909091 0.471429 0.580645 0.528
iteration no. 2

0.909091 0.690825 0.460783 0.510968
Iteration no. 3

0.909091 0.682264 0.654036 0.405489
Iteration no. 4

0 .909091 0 . 696068 0. 637935 0 . 575552
Iteration no. 5

0.909091 0.694917 0.663895 0.561383
Iteration no. 6

0.909091 0.696772 0.661732 0.584227
Iteration no. 7

0.909091 0.696617 0.665219 0.582324
Iteration no. 8

0.909091 0.696866 0.664928 0.585393
Iteration no. 9

0 . 909091 0 . 696846 0 . 665397 0. 585137
Iteration no. 10

0.909091 0.696879 0.665358 0.585549
Iteration no. 11

0.909091 0.696876 0.665421 0.585515
Iteration no. 12

0.909091 0.696881 0.665416 0.58557
Iteration no. 13

0.909091 0.69688 0.665424 0.585566

Results
CA) 1) = 0.9091
CA(2) = 0.6969
CA(3) = 0.6654
CA(4) = 0.5856

Repeat the calculations with another guess (0/i) ? 1

Vector of initial guess = 100*ones(l,4)

Initial guess
100 100 100 100

Repeat the calculations with another guess (0/1) ? 0

Discussion of Results: The first case uses the value of 0.6 as the initial guess for the
values of the unknowns CA to The Jacobi method converges to the solution in 13
iterations. The convergence criterion, which is satisfied by all the unknowns, is 0.000001.

In the second case, the value of 100 is used as the initial guess for each of the unknowns

CA to CA4. Convergence to exactly the same answer as in the first case is accomplished in 19

iterations.

120 Numerical Solution of Simultaneous Linear Algebraic Equations - Chapter 2

Iteration no. 1

0.909091 78.5714 96.7742 88
Iteration no. 2

0.909091 7.56179 76.7972 85.1613
Iteration no. 3

0.909091 6.13487 13.5759 67.5816
Iteration no. 4

0.909091 1.61906 10.8923 11.9468
Iteration no. 5

0.909091 1.42738 2.39971 9.58527
Iteration no. 6

0.909091 0.820759 2.03923 2.11175
Iteration no. 7

0.909091 0.79501 0.898394 1.79452
Iteration no. 8

0.909091 0.713522 0.84997 0.790587
Iteration no. 9

0.909091 0.710063 0.69672 0.747973
Iteration no. 10

0.909091 0.699116 0.690215 0.613113
Iteration no. 11

0.909091 0.698652 0.669628 0.607389
Iteration no. 12

0.909091 0.697181 0.668755 0.589273
Iteration no. 13

0.909091 0.697119 0.665989 0.588504
Iteration no. 14

0.909091 0.696921 0.665872 0.586071
Iteration no. 15

0.909091 0.696913 0.6655 0.585967
Iteration no. 16

0.909091 0.696886 0.665485 0.58564
Iteration no. 17

0.909091 0.696885 0.665435 0.585626
Iteration no. 18
0.909091 0.696882 0.665433 0.585583
Iteration no. 19

0.909091 0.696882 0.665426 0.585581

Results
CAl 1) = 0.9091
CA) 2) = 0.6969
CA) 3) = 0.6654
CA) 4) = 0.5856

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 121

2.9 HOMOGENEOUS ALGEBRAIC EQUATIONS AND

THE CHARACTERIST1C-VALUE PROBLEM

We mentioned earlier that a homogeneous set of equations

Ax = 0 (2.95)

has a nontrivial solution. if and only if the matrix A is singular: that is, if the rank r ofA is less
than a. The system of equations would consist of r independent equations. r unknowns that
can he evaluated independently, and (a - r) unknowns that mtist be chosen arbitrarily in order
to complete the solution. Choosing nonzero values for the (a — r) unknowns transforms the
homogeneous set to a nonhomogeneous set of order r. The Gauss and Gauss-Jordan methods.
which are applicable to nonhomogeneous systems. can then be used to obtain the complete
solution of the problem. In fact, these methods can be used first on the homogeneous system
to determine the number of independent equations (or the rank of A) and then applied to the
set of r nonhomogeneous independent equations to evaluate the r unknowns. This concept
will be demonstrated later in this section in conjunction with the calculation of eigenvectors.

A special class of homogeneous linear algebraic equations arises in the study of vibrating
systems, structure analysis. and electric circuit system analysis. and in the solution and
stability analysis of linear ordinary differential equations (Chap. 5). This system of equations
has the form

Ax - Ax (2.147)

which can he alternatively expressed as

(A - Aflx 0 (2.148)

where the scalar A is cadled an eigeara/ue (or a charactenstic value) of matrix A. The vector
x is called the eigenveclor (or characteristic vector) corresponding to A. The matrix I is the
identity matrix. The problem often requires the solution of the homogeneous set of equations.
represented by Eq. (2. 148), to determine the values of A and x that satisfy this set. In
MATLAB, eig(A) is a vector containing the eigenvalues of A. The statement I V. D] = eig(A)
produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors, so that A V = VD.

Before we proceed with developing methods of solution, we examine Eq. (2.147) froni
a geometric perspective. The mtiltiplication of a vector by a matrix is a linear transformation
of the original vector to a new vector of different direction and length. For example. matrix
A transforms the vectory to the vector z in the operation

122 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Ay = z (2.149)

In contrast to this, if x is the eigenvector of A, then the multiplication of the eigenvector x by
matrix A yields thc same vector x multiplied by a scalar A. that is, the same vector hut of
different length:

Ax Ax (2.147)

It can be stated that for a nonsingular matrix A of order a. there are a characteristic directions
in which the operation by A does not change the dircction of the vector, hut only changes its
length. More simply stated. matrix A has a eigenvectors and a eigenvalucs. The types of
cigenvalucs that exist for a set of special matrices are listed in Table 2.4.

The homogeneous problem

(A AJ)x = 0 (2.l4S)

possesses nontrivial solutions if the determinant of matrix (A - Lv). called the characteristic
matrix of A, vanishes:

—A a, . . . a1,,

a,1 a,, A . . . a,
IA - All = ,,

= 0 (2.150)

(I,/ . . . a,,,, - A

The determinant can be expanded by minors to yield a polynomial of nth dcgree

A" — aA" — — . . . a,, 0 t2.151)

This polynomial, which is called the characteristic equation of matrix A, has a roots, which
arc the eigenvalues of A. These roots may be real distinct, real rcpcated, or complex.
depending on matrix A (see Table 2.4). A nonsingular real symmetric matrix of has
a real nonzero eigenvalues and ii linearly independent eigenvectors. The eigenvectors of a real
symmetric matrix are orthogonal to each other. The coefficients a1 of the characteristic
polynomial are functions of the matrix elements a,, and must be determined before the
polynomial can be used.

The well-known Cayley-Hamilton theorem states that a square matrix satisfies its own
characteristic equation, that is,

A" — a1A"' a,A"2 — . . . a,, 0 (2.152)

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 123

Table 2.4

Matrix Eigenvalue

Singular. t41 = 0 At least one zero elgen\alue

Nonsingular. Al 0 No zero eigenvalues

Symmetric. A =4' All real eigen\alues

Hermitian All real aloes

Zero matrix. A = I) All zero eigen\ aloes

Identity. A = I All unity eigenvalues

Diagonal. A I) Equal to diagonal elements oUt

ln\erse. A Inverse aloes ofA

Transformed. B = Q AQ Eigenvalues uI B = eigenvalues of A

The problem of evaluating the eigenvalues and eigenvectors of matrices is a complex
multistep procedure. Several methods have been developed for this purpose. Some of these
apply to symmetric matrices. others to tridiagonal matrices, and a few can he used for general
matrices. We can classify these methods into two categories:

a. The methods in this category work with the original matrix A and its characteristic
polynomial tEq. (2.151)1 to evaltiate the coefficients a of the polynomial. One such
method is the Faddeev-Leverrier procedure, which will be described later. Once the
coefficients of the polynomial are known. the methods use root-finding techniques.
such as the Newton-Raphson method. to determine the eigenvalues. Finally, the
algorithms employ a reduction method, such as Gatiss elimination, to calculate the
cigenvectors.

/. The methods in this category reduce the original matrix A to tridiagonal form (when
A is symmetric) or to Hessenherg form hen A is nonsymmetric) by orthogonal
transformations or elementary similarity transformations. They apply successive
factorization procedures, such as LR or QR algorithms, to extract the eigenval ties.
and, finally, they' use a reduction method to calctdate the eigenvectors.

In the remaining part of this chapter we will discuss the following methods: (a) the
Faddeev—Leverrier procedure for calctilating the coefficients of ihe characteristic polynomial.
(b) the elementary similarity transformation for converting a matrix to Hessenberg form. (c)
the QR algorithm of' sticcessive factorization for the determination of the eigenvalues. aiid
finally, (d) the Gauss elimination method applied for the evaluation of the eigenvcctors.
These methods were chosen for their general applicability to both symmetric and
nonsymmetric matrices. For a complete discussion of these and other methods, the reader is
referred to Ralston and Rabinowitz 121.

124 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

2.9.1 The Method

The Faddeev-Leverrier method [41 calculates the coefficients a1 to of the characteristic
polynomial [Eq. (2.151)1 by generating a series of matrices whose traces are equal to thc
coefficients of the polynomial. The starting matrix and first coefficient are

A1 = A a1 irA1 (2.153)

and the subsequent matrices are evaluated from the recursive equations:

Ak = A(Ak1 1)

1 k=2,3 ...,n
eLk —trAk

k

In addition to this, the Faddcev-Leverrier method yields the inverse of the matrix A by

1(A,,1 - (2.155)a'

To elucidate this method, we will determine thc coefficients of the characteristic
polynomial of the following set of homogeneous equations:

(I X)11 — x3 = 0

311 ± (I - A)x, + 213 - 0 (2.156)

+ (3 ALt3 - 0

The characteristic polynomial for this third-order system is

A3 - a1A2 - a,A - a3 = 0 (2.157)

The matrix A is

121
A = 3 1 2 (2.158)

423
Application of Eq. (2.153) gives

A1 = A and a1 = = 5 (2.159)

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 125

Application of Eq. (2.154). with k = 2. yields

A2 A(A1 -

1 1

2 5

3

6

262

a, —irA2 7 (2.161)

Repetition of Eq. (2. 154), with k = 3, results in

A3 A(A, - a,))

2 1 6 -4 3 7 0 0

= 3 1 2 —! 6 1 - 0 7 0

4 2 3 2 6 2 0 0 7 (2.162)

-! 0 0

= 0 -I 0

0 0 -1

a3 - —irA3 -! (2.163)

Therefore, the characteristic polynomial is

A3 - 5?) 7A 1 = 0 (2.164)

The root-finding techniques described in Chap. I may he used to determine the A values of this
polynomial. The eigenvectors corresponding to each eigenvalue may he calculated using the
Gauss elimination method. The Eaddeev-Leverrier method, the Newton-Raphson method with
synthetic division, and the Gauss elimination method constitute a complete algorithm for the
evaluation of all the eigenvalues and eigenvectors of this characteristic-value problem. This
combination of methods, however, is "fraught with because it is too sensitive to small
changes in the coefficients. Use of the QR algorithm, discussed in Sec. 2.9.3, is preferable.

126 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

2.9.2 Elementary Similarity Transformations

In Sec. 2.5.2. we showed that the Gauss e]imination method can be represented in matrix form
as

LA = 11 (2.73)

Matrix A is nonsingular, matrix L is unit lower triangular, and matrix U is upper triangular.
The inverse of L is also a unit lower triangular matrix. Postmultiplying both sides of Eq.
(2.73) by we obtain

LAL' UL1 B (2.165)

This is a similarity transformation of the type described in Sec. 2.2.2. The transformation
covertsmatrixAtoasimilarmatrixB. The two rnatrices.A have identical eigenvalues,
determinants, and traces.

We, therefore. conclude that if the Gauss elimination method is extended so that matrix
A is postmultiplied by at each step of the operation, in addition to being preniultiplied by
L, the resulting matrix B is similar to A. This operation is called the elementary similar/tv
transformation.

In the determination of eigenvalues, it is desirable to reduce matrix A to a super-
triangular matrix of upper Hessenberg form:

,, 2
h

1123 . . IL)
2 I

o 1133 . . . Ii,
I

= (2.57)

o 0 . . . h, n-I in

o o . . . 0 Ii Ii

This can he done by using the (k + l)st row to eliminate the elements (k + 2) to/i of column
1<. Consequently. the elements of the subdiagonal do nol vanish. The transfomrntion matrices
that perform this elimination are unit lower triangular of the form shown in Eq. (2.166). The
elimination matrix that would eliminate the elements of column 1 below the subdiagonal
is

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 127

1 0 0 0 ... 0

o i o o...o
(0]

o __:___ •
• 0

0]
/12]

K - (2166)
0

/l2]

0
/1

o o 0 ... 1

where the superscript (0) indicates that each matrix uses the elements of the
previous transformation step. The rcader is encouraged to compare with L1 of Eq. (2. 11 2).

The inverse of is given by Eq. (2. 167):

1 0 0 0 ... 0

o i o 0 ... 0

o 1 0 ... 0
(0]

/12]

o o ... o
(2.167)

((1]
112]

1

/7,]

The complete elementary similarity transformation that converts matrix A to the upper
Hessenherg matrix H is shown by

H (2.168)

128 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Each postrnultiplication step by the inverse U' preserves the zeros previously obtained in the
premultiplication step by U1 [5].

For simplicity in the above discussion, the partial pivoting matrices P11 were not applied.
However, use of partial pivoting is strongly recommended in order to reduce roundoff errors.
Premultiplication by P11 interchanges two rows and causes the sign of the determinant to
change. Postmultiplication by (which is identical to P,1) interchanges the corresponding
two columns and causes the sign of the determinant to change again. The premultiplication
step must he followed immediately by the postmultiplication step in order to balance the
symnietry of the transformation and to preserve the form of the transformed matrix.

The elementary similarity transformation to produce an upper Hessenberg matrix in
formula form is as follows:

lnitializatioo step:

-
1

(2. lô9a)

Transformation formula:

(A) ft - n,n - I k (2.16%)
Al

/
(A H i k--2

Premultiplication step:

A-1/2(A1 (A A 1) 1 j n.n - I k k 1.2 n -2
h(

-
A

(2.170)

Postmultiplication step:
(A) (A - 1/2) (A - /2 (A) 11 k - 2 ii (2. 171)

i u.n -I

where the superscript (k - ½) means that only half the complete transformation (that is, only
premultiplication) has been completed at the point.

The QR algorithm, which will be discussed next, utilizes the upper Hessenherg matrix
H to determine its eigenvalues. which are equivalent to the eigenvalues of matrix A.

2.9.3 The OR Algorithm of Successive Factorization

The QR algorithm is based on the possible decomposition of a matrix A into a product of two
matrices

A = QR (2.172)

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 129

where Q is orthogonal and R is upper triangular with nonnegative diagonal elements. The
decom position always exists, and when A is nonsingular, the decomposition is unique (2j.

The above decomposition can be used to form a series of successive matrices Ak that are
similar to the original matrix A: therefore, their eigenvalues are the same. To do this, let us
tirst define A, = A and convert Eq. (2.172) to

= Q1R1 (2.173)

Premultiply each side by Q' and rearrange to obtain

(2.174)

Form a second matrix A2 from the product of R1 with

A2 = R1Q1 (2.175)

and use Eq. (2.174)10 eliminate R1 from Eq. (2. 175)

Q'A1 Q1 (2.176)

Because Q1 is an orthogonal matrix, this is an orthogonal transformation ofA1 to therefore,
these two matrices are similar. They have the same eigenvalues. The inverse of an orthogonal
matrix is equal to its transpose; thus Eq. (2.176) can also he written as

A2 - Q,'A1Q, (2.177)

In the particular case where matrix A is symmetric, an orthogonal transformation of A
can he found that yields a diagonal matrix D:

D Q'AQ (2.178)

whose diagonal elements are the eigenvalues of A. Our discussion, however, will focus on
nonsymmetric matrices that transform to triangular matrices.

The orthogonal matrix Q, is determined by finding a series of / orthogonal
transformation matrices, each of which eliminates one element, in position ij. below the
diagonal of the matrix it is postmultiplying. The complete set of transformations converts
matrix, to upper triangular form with nonnegative diagonal elements:

. . S,,1 '.. 'A1 = (2.179)

where the counter i increases fromj + 1 to n, and the counter j increases from I to (n - 1).

130 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Each of the / matrices is orthogonal. and the product of orthogonal matrices is also
orthogonal. Dircct comparison of Eq. (2.179) with Eq. (2.174) reveals that is equal to the
product of the / matrices:

(2.180)

The transpose of an orthogonal matrix is cqual to its inverse, so it follows that

Q = . . . Si! . (2. 181)

and

S21S31. (2.182)

Therefore, Eq. (2. 176) can he rewritten in terms of the matrices:

A2 '.
.

. . A15,1 S11.. (2.183)

As an example of the orthogonal transformation matrices we give the matrix for
a (6 x 6)-order system, with p = 6 and cj = 3:

1 0 0 0 0 0

o 1 0 0 0 0

o 0 533 0 (1

— (2.184)
o 0 0 1 0 (1

o 0 0 0 1 0

0 0 S(/3 0 0

where the diagonal elements of this matrix are specified as

= = cos 0 (2.185)

5/ 1 for i /3 or çi (2.186)

and the off-diagonal elements as

—

— 5//P
= sinO (2.187)

- 0 everywhere else

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 131

Premultiplication of matrix A by Spq / eliminates the element pq and causes a rotation
of axes in the (p. q) plane. The S1 matrices clearly satisfy the orthogonality requirement that
This is left as an exercise for the reader to verify.

The angle of axis rotation 0, in Eqs. (2.185) and (2. 187), is chosen so that by elementpq:

- 1 (2.189)

of the matrix being transformed, vanishes. It has been shown by Givens [6] that it is not
necessary to actually calculate the value of 0 itself. The trigonometric terms cos 0 and sin 0
can he obtained from the values of the elements of the matrix being transformed. Givens has
determined that the elements of the matrix are calculated as follows:

Diagonal elements:

1 for t p or q (2.191)

Off-diagonal elements:

hi hi
S (lj9fl)

0 everywhere else (2.193)

The superscripts (k - 1) have been used in the above equations to remind the reader that the
elements I

and are those of the matrix from the previous transformation step and
not those of the original matrix.

Givens' method of plane rotations can reduce a nonsymmetric matrix to upper triangular
form and a symmetric matrix to tridiagonal form. However, a large number of computations
is required. It is computationally more efficient to apply first the elementary similarity
transformation to reduce the matrix to upper Hessenherg form. as we described in Sec. 2.9.2,
and then to use plane rotations to reduce it to triangular form. In the rest of this section we
will assume that the matrix A has been already reduced to upper Hessenherg form, H1, and we
will show how QR algorithm further reduces the matrix to obtain its eigenvalues.

If the eigenvalues of matrix H1 are A, then the eigenvalues of matrix (H1 - y 1) are
(A - 'I'). where y1 is called the shift factor. The orthogonal transformation applied toil1 above
can also be applied to the shifted matrix (H1 - y1I) as follows:

Decompose the matrix (H1 - y11) into Q1 and R1 matrices:

- Q1R1 (2.194)

132 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Rearrange the above equation to obtain R4:

- Q;'(111 - y1!) (2195)

Form a new matrix (H, - y11) from the product of R1 and Q1:

H, - RIQ! (2.196)

EliminateR1 using Eq. (2.195):

- (2.197)

Solve for H,:

Q;'(H1 y11)Q1 (2.198)

It has been shown 121 that if the shift factor y is chosen to he a good estimate of one of

the eigenvalues and that if the magnitudes of the eigenvalues are

Ill > 1171 > ... > (2.199)

then the matrix HA will converge to a triangular form with the elements h,,, 0 and h,,, A,,.

Estimation of the shift factor y is relatively easy when the matrix has been reduced to
upper l-lessenberg lorni:

h11 h17 h1, . . . "
1

Ii Ii Ii, Ii Ii, Ii,
-3 — _n

C) /137 /13. . . Ii. /1.

H1 - (2.57)

O 0 1117 113i,,

o 0 . . . 1) h,,,,1 h,,,

The eigenvalues of the lower (2 x 2) suhniatrix:

hn-i n-i h,
(2.200)

/7 /1

can he used to determine the shift factor. The two eigenvalues of this matrix are obtained from
the quadratic characteristic equation

2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 133

— (h,,,, + y + (h,,1,, 1h,,,, — 0 (2.201)

whose solution is given by the quadratic formula

+ h,,,) ±
J

(2.202)

The value of y closest to h,,, is chosen from the two roots. In the case where the roots are
complex conjugates, the real part of the root is chosen as the shift factor.

In the QR iteration procedure the subsequent values of the shift factor, 12
. . are

similarly chosen from matrices H2. . 14.
The steps of the QR algorithm for calculating the eigenvalues and eigenvectors of a

nonsingular nonsymmetric matrix A with real eigenvalues are the following:

1. Use the elementary similarity transformations [Eqs. (2. 168)f to transform matrix A
to the upper 1-lessenherg matrix H1.

2. Utilize the lower (2 x 2) submatrix of H1 IEq. (2.200)1 to estimate the shift factor
from Eq. (2.20 1).

3. Construct the shifted matrix (H1 -
4. Calculate the elements of the transformation matrix S21 from the elements of the

shifted matrix (H1 - using Eqs. (2.l90)-(2.193).
5. Perform the premultiplication '(H1 - which eliminates the elements in

position (2, 1) of the matrix (H, -
6. Repeat steps 4 and 5, calculating the transformation matrix 5pq and eliminating one

element on subdiagonal in each set of steps. The application of steps 4 and 5 for
- 1) times, with the counterq increasing from I to (ii - 1) and the counterp set at

(q + 1), will convert the Hessenherg matrix H1 to a triangular matrix R1:

'... S32 'S2, 'H1 = R, (2.203)

7. Perform the postmultiplication of I?, by to obtain the transformed shifted
matrix(H2- Ill):

H2 - = R, (2.204)

8. Solve Eq. (2.204) for the transformed Hessenherg matrix H2:

H2 = R1S21S32. . + (2.205)

9. Use H2 as the new Hessenberg matrix and repeat steps 2-8 until Ih,,,,11 � c, where
is a small convergence criterion. At this point, the element h,,, will give one
eigenvalue A,,.

10. Deflate the Hk matrix to order (vi - 1) by eliminating the nth row and ;ith column. and
repeat steps 2 to 10 until all the eigenvalues are calculated.

11. Apply the Gauss elimination method with complete pivoting to the matrix (A - Al)
to evaluate the eigenvectors corresponding to each eigenvalue. Several different
possibilities exist when the eigenvalues are real:

134 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

a. Distinct nonzero eigent'alues: Matrix A is nonsingular. and matrix (A - Al) is

singular of rank (a - 1). Application of the Gauss elimination method with
complete pivoting on the matrix (A - Al) triangularizes the matrix and causes the
last row to contain all zero values, because the rank is (a - I). Assume the value
of the nth element of the eigenvector to be equal to unity and reduce the problem
to finding the remaining (a - 1) elements.

b. One zero eigenvalue: Matrix A is singular of rank (n - I). and matrix (A - Al) is

singular of rank (a - 1). Application of the Gauss elimination method proceeds
as in a. One element of each eigenvector vv ill be found to be a zero element.

c. One pair q/repeated eigenvalues: Matrix A is nonsingular. and matrix (A - Al)
is of rank (a - 2). Application of the Gauss elimination method with complete
pivoting on the matrix (A - Al) triangularizes the matrix and causes the last two
rows to contain all zero values, because the rank is (a - 2). Assume the values of
the last two elements in the eigenvector to be equal to unity and reduce the
problem to finding the remaining (a - 2) elements.

The QR algorithm described in this section applies well to both symmetric and
nonsymmetric matrices with real eigenvalues. A more general method, called the double
QR algorithm, which can evaluate complex eigenvalucs, is described by Ralston and
Rabinowitz [21.

PROBLEMS

2.1 Solve the following set of equations by both Gauss-Seidel method and Jacobi method.

v- r=3
-v

In both cases, start the iteration from (0, 0). Compare the results of both mcthods at the end of
each iteration.

2.2 When a pure sample of gas is bombarded by low-energy electrons in a mass spectrometer. the
galvanometer shows peak heights that correspond to individual rn/c (mass-to-charge) ratios for the

resulting mixture of ions. For the ith peak produced by a pure sample j. one can then assign a
sensitivity S/ [peak height per micron (pm) of Hg sample pressurel. These coefficients are unique
for each type of gas.

A distribution of peak heights may also he obtained for an ti-component gas mixture to be
analy7ed for the partial pressures Pi' m of each of its constituents. The height It of a

certain peak is a linear combination of the products of the individual sensitivities and pai tial
pressures:

S,,p1

Problems 135

In general. more than n peaks may be available. However, if the ii most distinct ones are chosen.
we have / = 1. 2 ii. so that the individual partial pressures are gisen by solution of ii
simultaneous linear equations.

Table P2.2

Peak
ndex

I mie

Cornponent index (j)

1

Hydrogen
2

Methane
3

Ethylene
4

Ethane
5

Propylene
6

Propane
7

n-Pentane

1 2 16.87 0 165 0.2019 0.317 0.234 0.182 0.110

2 16 0.0 2770 0.862 0.062 0.073 0.131 0.120

3 26 (Jo 00 22.35 13.05 4.42 6.001 3043

4 30 0.0 0.0 0.0 11.28 0.0 1.110 0.37 1

5 4t) 0.0 0.0 00 t).t) 9.85 1168 2 108

6 44 0.0 0.0 00 0.0 0.299 15.98 2.107

7 72 0.0 0.() 0 0 0.0 t).0 () 0 4 670

The sensitivities given in Table P2.2 were reported by' Carnahan et al. 17) in connection with
the analysis of a hydrogen gas mixture. Write a program that will accept values for the
sensitivities, and the peak heights Ii,, and compute salLies for the individual
partial pressures p1.

.

A particular gas mixture produced the following peak heights: h1 = 17. 1 . 1 86.0.

114 = 82 7. = 84 2. = 63.7. and h7 = 119.7. The measured total pressure of the mixture was
38.78 pm ot Hg. which can be compared with the sum ot the computed partial pressures.

2.3 Aniline is heing remosed from water by solvent extraction using toluene 181. The unit is a
10-stage countercurrent tosser. shown in Fig. P2.3. The equilibrium relationship valid at each
stage is. to a first approximation'

Y.
- 9

where Y, = (lb of aniline in the toluene phase) / (lb of toluene in the toluene phase)
= (lb of aniline in the water phase) / (lb of water in the water phase)

(a) The solution to this problem is a set of 1 0 simultaneous equations. Derive these equations
from material balances around each stage Present these equations using compact notation.

(b) Solve the above set of equations to find the concentration in both the aqueous and organic
phases lea' ing each stage ol the system (X, and Y,).

136 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

Water Phase with Aniline____________ Extract
W= 100 lb water/hr Aniline-rich toluene
with 5 lb aniline/hr

Recycled Solvent 6

F= 13 lbtoluene/hr 7

with 0.003 lb aniline/lb toluene

Raffinate I
Solvent

Aniline-lean water Pure toluene
S= 10 lb/hr Figure P2.3

(c) If thc slope of the equilibrium relationship is replaced by the expression in = 9 + 20X, the
solution becomcs a set of simultaneous nonlinear equations. Describe a procedure that would
solve this problem.

(d) Solve the problem described in (c) above.

2.4 In the study of chemical reaction, Aris [9] developed a technique of writing simultaneous chemical
reactions in the form of linear algebraic equations. For example. the following two simultaneous
chemical equations

C,l-16 C,H4 + H,

2C,H6 + 2CH4

can be rearranged in the form

C2H4 + H, — C2H6 = 0

C,H4 + 2CH4 2C,H6 0

If we identify A1 with C,!!,, A2 with H,, A3 with C!!,, and A4 with C,!!6, the set of equations

becomes

A1 + A, - A4 = 0

A1 + 2A, - 2A4 = 0

This can be generalized to a system of R reactions between S chemical species by the set of

equations represented by

i= 1,2 R
i-i

where a17 are the stoichiometric coefficients of each species A in each reaction 1.

Problems 137

Aris demonstrated that the number of independent chemical reactions in a set of R reactions is
equal to the rank of the matrix of stoichiometric coefficients a/. Using Aris method and the
techniques developed in this chapter. determine the number ol independent chemical reactions iii
the following reaction system:

4NH, - 50, 4N0 611,0

4NH; 302 2N, 6H,()

4NH3 6N0 SN, 61-1,0

2N0 02 2N0,

2N0 N, 02

N, + 202 2N0,

2.5 The multistage distillation tower shown in Fig. P2.5 is equipped with a total condenser and a
partial boiler This tower will he used for the separation of a multicomponent mixture. Assume
that for this particular mixture, the tower contains the equivalent of 10 equilibrium stages.
including the rehoiler; that is. N = 10 andj 11.

B
Figure P2.5

vi
y2i

Total

L D
xi

F j=f

j+ 1

138 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

The feed to the colunin has a rate F= 1000 mol/h. It is a saturated liquid, and it enters
the column on equilibrium stage 5 (j = 6). It contains five components (a 5) whose mole
fractions are

:,=0.06 12=0.17 :,=0.22 ;4=0.20

It is desired to recover a distillate product at a rate of 500 mol/h.
Develop all the material balances for coniponent / for all 10 equilibrium stages and for the

condenser. For this problem make thc following assumptions:

The external rellux ratio is
L

'3

2. Constant molal overflow occurs in each scction of the tower.
3. The initial guesses of the temperatures corresponding to the equilibrium stages are 71 = 140°F.

= l5tYF, T, = l60T. '11, = 170°F. = 150°F, 71 = 190°F. = 200°F, T,= 210°F,
220°F. and T1, = 230°F.

4. The equilibrium constant K,, can be approximated by the equation:

= at1 13,T1

where the temperatures are in degrees Fahrenheit and the coefficients for each individual
component are listed in Table P2.5 1101.

Solve the resulting set of equations in order to determine the following
(a) The molal rates of all vapor and liquid streams in the towei
fb) The mole fraction of each component iii the \apor and liquid streams

Note that the mole fractions in each stage do not add up to unity, because the above solution is
only a single step in the solution of multieomponent distillation problem. Assumptions 2 and 3
are only initial guesses that must he subsequently coriected from energy balances and bubble point
calculations.

Table P2.5

Component i a, 13, v,

1 0.70

0

4 0.86 -097x10 0.46x104

5 0.71 0.42x104

Problems 139

2.6 The iollowmg equations can he shown to relate the temperatures and pressures on either side of
a detonation wave that is oloving into a zone of unhuroed gas [71:

- (y. ± 1 -0
/1/I T, P1 —

iLi - i

T = absolute temperature. P = absolute presswe. = ratio of specilic heat at constant
pressure to that at constant volutite, in = mean molecular weight. All11 = heat of reaction. =
specific heat, and the subscripts I aod 2 refer to the unburned and burned gas. respectively

Write a program that accepts values for m,. 'f2, ALl,11. t,r• 'I' atid P1 as data and that
proceed to compute and print values for T: and P,. Run the program with the ing data.
which appi) to the detonation of a mixture of hydrogen and oxygen:

in1 = 12 gIg mol in, = 18 g/g mol = 30t) K F = 1.31

Al/fl -583f)t) callg mol = 9.86 calI(g niol.K) P1 = 1 atm

2.7 The system of highly coupled chemical ieactions shown in Fig. P2.7 takes place in a batch reactor.
The conditions ol teiiiperature and pressure in the reactor arc such that the kinetic rate constants
attain the following values:

Ic,1 =0.2 1'lI =0.1 1 k1=0 1 L=0.05 k14=0.2 I

0.1 = 0.05 A,, = 0.05 A4, = 0.2 = 0 1 A41, = 0.2 A,,, = 0.1

If the chemical reaction starts with the following initial concentrations:

A,, = I mol/L Dl, = 0

8=0 1.0 molIL
(II = F,, — 0

calculate the steady-state concentration of all components Assume that all reactions are of first
order.

Figure P2.7 System of coupled chemical reactions.

E

nL)

140 Numerical Solution of Simultaneous Linear Algebraic Equations Chapter 2

2.8 A linear mathematical model that has three independent variables, X1. L. and may be
written as

Y b1X1 h2X, + b3X3

where h1. b2. and are parameter constants to be determined from experimental ations It

can be shown that the vector of parameters b may he calculated from

b - (X'X) 'XY

where X is the matrix that contains the vectors ot independent variable observations. X1.

X - lxi X2

and Y is the vector of dependent variable observatinns (see Chap. 7)
Using the experimental observations shown in Table P2.8 determine the values of the

parameters h1. and b; for this linear model.

Table P2.8

x1 x2 x3 Y

1 (12 50 1.0

2 0.6 4.1 5.0

3 0.7 3.0 7.0

4 1.0 2.0 10.0

5 1.5 1.2 12.5

6 2.0 05 150

REFERENCES

Constantinides. A.. and Shao. P., "Material Balancing Applied to the Prediction of Glutamic Acid
Production and Cell Mass Formation." in A. Constantinides, W. R. Vieth. and K.

Venkatasuhramanian (eds.), Biochemical Engineering II. New York Academy of Sciences
Annuals. vol. 369. 1981. p. 167.

2 Ralston. A.. and Rabinowitz. P.. A First Course m Ninnerical Analysis. 2nd ed.. McGraw-Hill. Ness
York. 1978.

3 Himmelblau, D M., Basic and Calculations in Chemical Engineering. 6th ed.. Prentice
Hall. Upper Saddle River. NJ, 1996, p. 602.

References 141

4. Faddeev. D. K.. and Faddeeva, U. N., Computational Methods in Linear Algebra. trans. by R. C.
Williams. W. H. Freeman. New York. 1963.

5. Johnson. L. W.. and Riess, R. D.. NumericolAnalvsi,c, 2nd ed.. Addison-Wesley. Inc.. Reading. MA.
1982.

6. Givens. M., "Computation of Plane Unitary Rotation Transforming a General Matrix to Triangular
Form." I. Soc. Inct AppI. Math., vol 6, 1958. pp. 26-50.

7. Carnahan. B., Luther, H A and Wilkes, J. O..Apphied Numetical Methods. Wiley. New York. 1969,
p.33l.

8 Freeman, R.. private communication. Department of Chemical and Biochemical Engineering. Rutgers
University. Piscataway. N.J.. 1984.

9. Aris. R.. Introduction to the Anal 13i5 of Chemical Reactors. Prentice Hall, Englewood Cliffs. NJ,
1965.

10. Chang. H. Y.. and Over. I. E . Selected Numerical Methods and Computer Program.s for Chemical
Engineers, Sterling Swift. Mancliaca, TX, 1981.

CHAPTER

Finite Difference Methods and Interpolation

3.1 iNTRODUCTION

The most commonly encountered mathematical
models in cnginccring and science are in the form of differential equations. The dynamics of
physical systems that have one independent variable can be modeled by ordinary differential
equations, whereas systems with two, or more, independent variables require the use of partial
differential equations. Several types of ordinary differential equations, and a few partial
differential equations, render themselves to analytical (closed-form) solutions. These methods
have been developed thoroughly in differential calculus. However, the great majority of
differential equations, especially the nonlinear ones and those that involve large sets of

143

144 Finite Difference Methods and Interpolation Chapter 3

simultaneous differential equations, do not have analytical solutions hut require the application
of numerical techniques for their solution.

Several numerical methods for differentiation, integration, and the solution of ordinary
and partial differential equations are discussed in Chaps. 4-6 of this book. These methods are
based on the concept of finite differences. Therefore. the purpose of this chapter is to develop
the systematic terminology used in the calculus of finite differences and to derive the
relationships between finite differences and differential operators, which are needed in the
numerical solution of ordinary and partial differential equations.

The calculus of finite differences may he characterized as a "two-way street" that enables
the user to take a differential equation and integrate it numerically by calculating the values
of the function at a discrete (finite) number of points. Or. conversely, if a set of finite values
is available, such as experimental data, these may he differentiated, or integrated, using the
calculus of finite differences. It should be pointed out, however, that numerical differentiation
is inherently less accurate than numerical integration.

Another very useful application of the calculus of finite differences is in the derivation
of interpolationlextrapolation formulas, the so-called interpolating polynomials, which can he
used to represent experimental data when the actual functionality of these data is not known.
A very common example of the application of interpolation is in the extraction of physical
properties of water from the steam tables. Interpolating polynomials are also used to estimate
numerical derivative and integral of the tabulated data (see Chap. 4). The discussion of several
interpolating polynomials is given in Secs. 3.7-3.10.

3.2 SYMBOLIC OPERATORS

In differential calculus, the definition of the derivative is given as

df(x) / . f(x) —

j (x0) = lim (3.1)
dx At K

In the calculus of finite differences, the value of x - x0 does not approach zero but remains a
finite quantity. If we represent this quantity by h:

h — X - (3.2)

then the derivative may be approximated by

f'(x0)
f(; h)

(3.3)

3.2 Symbolic Operators 145

Under certain circumstances, there is a point, in the interval (a. h) for which the derivative
can be calculated exactly from Eq. (3.3). This is confirmed by the mean-value theorem of
differential calculus:

Mean-value theorem: Let fix) be continuous in the range a � x � b and differentiable
in the range a <x c b; then there exists at least one a < <b, for which

=
(3.4)

This theorem forms the basis for both the differential calculus and the finite difference
calculus.

A function j(x), which is continuous and differentiable in the interval [x0. xj. can he
represented by a Taylor series

(x — x0)2j"(x0)
1(x) — j(x0) + (x - x0)j

2 - +

—

I + + R,jx) (3.5)
11

where is called the remainder. This term lumps together the remaining terms in the
infinite series from (n + I) to infinity; it, therefore, represents the truncation error, when the
function is evaluated using the terms up to, and including, the nth-order term of the infinite
series.

The mean-value theorem can he used to show that there exists a point in the interval
(x0, x) so that the remainder term given by

(x - x
R (x) (3.6)

(n + 1)!
The value of is an unknown function of .v; therefore, it is impossible to evaluate the
remainder, or truncation error, term exactly. The remainder is a term of order(n + I), because
it is a function of (x - ' aiid of the (n + 1)th derivative. For this reason. in our discussion
of truncation errors, we will always specify the order of the remainder term and will usually
abbreviate it using the notation O(h 5.

The calculus of finite differences is used in conjunction with a series of discrete values.
which can he either experimental data, such as

or discrete values of a continuous function y(x):

— 3/i) v(x - 2/i) v(x - h) v(x) v(x + ii) v(x + 2/i) y(A + 3/i)

146 Finite Difference Methods and Interpolation Chapter 3

or, equivalently, values of a function f(s):

fix - 3/7) f(x - 2/i) f(x - Ii) fix) f(x + h) f(x + 2h) fix + 3h)

In all the above cases, the values of the dependent variable. v orf are those corresponding to
equal/v spaced values of the independent variable x. This concept is demonstrated in Fig. 3.1
for a smooth function y(x).

A set of linear symbolic operators drawn from differential calculus and from finite

y

y(x+h) - -

y(x)

y(x-h)

x-h x x÷h - X

Figure 3.1 Values of function y(x) at equally spaced points of the
independent variable x.

difference calculus will be defined in conjunction with the above series of discrete values.
These definitions will then he used to derive the interrelationships between the operators. The
linear symbolic operators are

D = differential operator
I = integral operator
E = shift operator

= forward difference operator
V = backward difference operator
o = central difference operator
p = averager operator.

3.2 Symbolic Operators 147

All these operators may be treated as algebraic variabLes because they satisfy the distributive,
commutative, and associative laws of algebra.

The first two operators are well known from differential calculus. The diffrrentia/
operator D has the following effect when applied to the function

D y(x) d (.k)
= (3.7)

eLi

and the integral operator is

' ii

= f (3.8)

The integral operator is equivalent to the inverse of the differential operator

I = (3.9)

The shift operator causes the function to shift to the next successive value of the
independent variable:

Ey(.i) y(x + Ii) (3.10)

The inverse of the shift operator, E -' causes the function to shift in the negative direction of
the independent variable:

= y(x-hi) (3.11)

Higher powers of the shift operator are defined as

= y(x —n/i) (3.12)

The shift operator can be expressed in terms of the differential operator by expanding
the function y(x + h) into a Taylor series about x:

7 / 7— 1/ 1/fv(x = y(x) v Cr) + —v (v) = — y (x) + ... (3
2L 3L

Using the differential operator D to indicate the derivatives of y. we obtain

± Ii) y(x) = kDy(x) - + + ... (3.14)
1! 2! - 3!

148 Finite Difference Methods and Interpolation Chapter 3

Factoring out the term v(x) from the right-hand side of Eq. (3.14):

= 1 ' ... v(x) (3.15)
1! 2! 3!

The terms in the parentheses are equivalent to the series expansion

/1) /1 1
1 + —D + + —D - (3.16)

1! 2! 3!

Therefore, Eq. (3.15) can he written as

v(v h) e"3v(x) (3.17)

Comparing Eq. (3. 1(J) with (3.17), we conclude that the shift operator can he expressed in
terms of the differential operator by the relation

E (3.18)

Similarly, the inverse of the shift operator can he related to the differential operator by
expanding the function y(x - Ii) into a Taylor series about x:

7 / 1 H

v(x Ii) (x) v (x) + (x) - Lv) ... (3.19)
I! 2! 3!

Replacing the derivatives with the differential operators and rearranging. we obtain

v(x-h) I - - + ..j v(x) (3.20)
1! 2! 3!)

The terms in the parenthesis are equivalent to the series expansion

1/) ii 1? 1 /1
e I - —I) - —D - —13 + (3.21)

2! 3!

Therefore, Eq. (3.19) can he written as

v(x h) e v(x) (3.22)

It follows from a comparison of Eq. (3.1 1) with Eq. (3.22) that

= (3.23)

With these introductory concepts in mind, let us proceed to develop the backward.
forward, and central difference operators and the relationships between these and the
differential operators.

3.3 Backward Finite Differences 149

3.3 BACKWARD FINITE DIFFERENCES

Consider the set of values

1 1 Yi+3

or the equivalent set

y(x - 3h) y(x - 2h) y(x - h) y(x y(x + y(x +

y at i (or 4 is defined as

Vv1 = —

or

Vy(x) — y(x) — y(x—h) (3.24)

The second backward dWèrence of y at i (or 4 is defined as

V2y1 = V(Vy1) = V(y1 -) = -

= - -

= —
+

or

V2y(x) = y(x) -2y(x - h) + y(x - 2h) (3.25)

The third backward difference of y at i is defined as

= = V(y1 - 2)

2

(3.26)
= (y1 - y11) - 2(v1 - + -)/ 3)

— — — —

Higher-order backward differences are similarly derived:

V4y1 = - + - + (3.27)

V5y1 = - 5y11 + - 10Y1-3 ÷ - (3.28)

15Q Finite Difference Methods and interpolation Chapter 3

The coefficients of the terms in each of the e finite differences correspond to those
of the binomial expansion cz — b). where ii is the order of the finite difference. Therefore, the
general formula of the oth-order backward finite difference can he expressed as

V'v = v (3.29)
0

It should also be noted that the sum of the coefficients of the binomial expansion is al\ka)s
equal to zero. This can be used as a check to ensure that higher-order differences have been
expanded correctly.

The relationship between backward difference operators and differential operators can
be established. Combine Eqs. (3.22) and (3.24) to obtain

Vv(') vUv) - v(v - h v(x) - e

- (I e v) (3.30)

which shows that the backward difference operator is given by

V 1 e (3.31)

Using the infinite series expression of e b [Eq. (3.21)[. Eq. (3.31) becomes

hD h'!)V-hD- .__ t332i
2 6

The higher—order backward difference operator. V. V can he obtained h\
the first backward difference operator to higher powers':

V (I — e
21)1)) (3 33)

V3) 1 e 110)5
(1

3e hO
— — e)

— (3.35)

Expansion of the exponential terms and rearrangement) ields the following equations for the
second and third backward difference operators:

V2 hD h1D5 -
. (3.36)

These relationships can also he obtained h) combining the defininons ot the hackss ard dtlieiences [Eq'. 3 2S and
t3.26t) with the delinition of the invetse shift Opeiatoi [Eqs 3 Ii) and 3 23t)

3.3 Backward Finite Differences 151

V3 = - (337)
2 4

Equations (3.32), (3.36), and (3.37) express the backward difference operators in terms
of infinite series of differential operators. In order to complete the set of relationships,
equations that cxpress the differential operators in terms of backward difference operators will
also be derived. To do so, first rearrange Eq. (3.31) to solve for

I-V (3.38)

Take the natural logarithm of both sides of this equation:

me — liD ln(I — V) (3.39)

Utilize the infinite series expansion:

V2 V3 V4ln(l-V)=-V---—-—--—--—-... (3.40)
2 3 4 5

Combine Eq. (3.39) with Eq. (3.40) to obtain:

V2 V V4 V5
1W V ± — + — ..

. (3.41)
2 3 4 5

The higher-order differential operators can be obtained by simply raising both sides of
Eq. (3.41) to higher powers:

hD V + V3 (342)
12 6

h3D3 V3 + - (3.43)

V2 V3 V4 V5
(3.44)

2 3 4 5

The complete set of relationships between backward difference operators and differential
operators is summarized in Table 3.1.

152 Finite Difference Methods and Interpolation Chapter 3

Table 3.1 Backward finite differences

Backward difference operators Differential operators

h2D2 h3D3 V2 V3 V4

2 6 2 3 4

V2 = h2D2 - h3D3 ± - ... h2D2 V2 ± V3 + + +

12 12 6

h3D3 - - h3D3 V3 + + +

2 4 2 4

V' = (I — , V2 V3 V4Ii D = V ± — + — +
2 3 4

3.4 FORWARD FINiTE DIFFERENCES

The development of forward finite differences follows a course parallel to that used in the
development of backward differences.
Consider the set of values

I
V)I+2 Y1±3

or the equivalent set

y(x - 3h) y(x - 2h) y(x - h) y(x) y(x + h) y(x + 2h) v(x + 3h)

The Jirct forward difference of y at i (or 4 is defined as

aye = vj_ —

or

ay(x) = y(x + h) - y(x) (3.45)

The second forward difference of y at i (or 4 is defined as

a2) = = — y1) = —

(3.46)
= - -

3.4 Forward Finite Differences 153

— v11
1

+

or (3.46)

&v(x) v(x - 2/i) 2v(A + Ii)

The rhi rd forward difference of v at I is defined as

2 21i1 -

=

(3.47)
= V1 4 — 2(v1, V1) (y

—
— 3Y

1

V1

Higher-order forward differences are similarly derived:

V.1 + hi., - ± (3.4S)

— lOv, — - (3.49)

In similarity to the backward finite differences. the forward finite cii fferences also have
coefficients which correspond to those of the binomial expansion (a - h)'. Therefore, the
general formula of the nth-order forward finite difference can he expressed as

(-I)W n!
(3.5t))

(a —niflm.

In MATLAB. the function thff(v) returns forward finite differences of v. Values of
,ith-order forward finite difference may he obtained from c/if f(v. n).

The relationship between forward difference operators and differential operators can now
be developed. Combine Eqs. (3.45) and (3.17) to obtain

v(x + /i) —

- (3.51)
which shows that the forward difference operator is given by

— et'0 — 1 (3.52)

154 Finite Difference Methods and Interpolation Chapter 3

Using the infinite series expression of eW [Eq. (3.16)j, Eq. (3.52) becomes

h2I2 h3D3
+ +... (3.53)

2 6

The higher-order forward difference operator. A2, A? can he ohtained by raising the
first forward difference operator to higher powers:

A2 = (e'13 — 1)2 = (e2hT)
— ± 1) (3.54)

A3 - = - 3e21° — 1) (3.55)

A' (c/lI)
— I)" (3.56)

Expansion of the exponential terms and rearrangement yields the following equations
for the second and third forward difference operators:

A2 h2D2 h3D3 ±
. (3.57)

A? h3D3 + + -
. (3.58)

Eqs. (3.53). (3.57), and (3.58) express the forward difference operators in terms of
infinite series of differential operators. In order to complete the set of relationships. equations
that express the differential operators in terms of forward difference operators will also he
derived. To do this, first rearrange Eq. (3.52) to solve for

- 1 + A (3.59)

Take the natural logarithm of both sides of this equation:

= liD = ln(l A) (3.60)

Utilize the infinite series expansion:

A2 A3 A4 A5ln(l +A) =A +— — (3.61)
2 3 4 5

3.4 Forward Finite Differences 155

Combine Eq. (3.60) with Eq. (3.61) to obtain

A2 & A4 &/iD—A-—÷—-—--±-—--... (3.62)
2 3 4 5

The higher-order differential operators can he obtained by simply raising both sides of
Eq. (3.62) to higher powers:

hD2 A2 - A3 - ... (3.63)

h3D4 A4 ... (3.64)

A2 A3 A4 A7h/i A - — + - — .. . (3.65)
2 3 4 5

The complete set of relationships between forward difference operators and differential
operators is sumn1ari7ed in Table 3.2.

Table 3.2 Forward finite differences

Forward difference operators Differential operators

hD2 114/f A4

2 6 2 3 4

A2 + + . . - A - A4
12 12 6

A3 = h3[)3 . j, 4[)4

4 2 4

A" — (C1r 1)"
A — — — —

... F1

2 3 4

156 Finite Difference Methods and Interpolation Chapter 3

3.5 CENTRAL FINITE DIFFERENCES

As their name inip)ies. central finite differences are centered at the pivot position and are
evaluated utilizing the values of the function to the right and to the left of the pivot position,
but located only h12 distance from it.

Consider the series of values used in the previous two sections. but with the additional
values at the midpoints of the intervals

31 1½ 3,-I V,, x 3+

or the equivalent set

v(x - 2h) - 1½h) if x - h) y(x - ½/i) v(x) v(x + ½h) v(.v + h) v(.v + I ½h) v(x + 2h)

The first central difference of3' at i is defined as

Ov,
— 1/2 - 3',- 112

or

Oy(.x) = v(x ½/i) — v(x — ½/i) (3.66)

The second central difference of)' at i (or x) is defined as

= ô(Ov,) = - 3', ÔV1,I/, —

= y,) - (y, -

62y, = —

or

82v(x) ± h) - 2y(x) - v(x - /i) (3.67)

The third central of i at i is defined as

6(623,) = — H

= 6/1 - 26v, + ôv.

= — — 2(Y,-½ — 0, ½ —

— 3', 1½ (3.68)

3.5 Central Finite Differences 157

Higher-order central differences are similarly derived:

= - 4y.1 + 6y. - + (3.69)

=)i-2½ — 1½ + '°Yi ½ -½ — - (3.70)

Consistent with the other finite differences, the central finite differences also have
coefficients that correspond to those of the binomial expansion (a - b). Therefore, the general
formula of the iith-order central linite difference can be expressed as

(-1)"
ii!

X1 n-n/2 (3.71)
a (a —a,)! in!

It should he noted that the odd—order central differences involve values of the function
at the midpoint of the intervals, whereas the even-order central differences involve values at
the full intervals. To fully utilize odd- and even-order central differences. we need a set of
values of the function that includes twice as many points as that used in either backward or
forward differences. This situation is rather uneconomical, especially in the case where these
values must be obtained experimentally. To alleviate this difficulty. we make use of the
aierager operator p. which is defined as

p E 1/21 (172)

The averager operator shifts its operand by a half interval to the right of the pivot and by a half
interval to the left of the pivot, evaluates it at these two positions, and averages the two values.

Application of the averager on the odd central differences gives the first averaged cent ral
difference as follows:

pby. - E
1

2

1 (3.73)

158 Finite Difference Methods and Interpolation Chapter 3

The third averaged central difference is given by

E "2ô3v1)

+
1)

2
/

3y.1 + - v1) +
1

3y. + y. 2)1

+ (3.74)

As expected, the effect of the averager is to remove the midpoint values of the function
y from the odd central differences.

It will he shown in Chap. 4 that central differences are more accurate than either
backward or forward differences when used to evaluate the derivatives of functions.

The relationships between central difference operators and differential operators can now
he developed. ELI. (3.73), representing the first averaged central difference, is combined with
Eqs. (3.17) and (3.22) to yield

pôv(x) [v(x + h) y(x - h)

— e'°v(.v) - e '°y(v)
2

= ±(ehht) - e v(x) (375)
2

which shows that the first averaged central difference operator is given by

p6 !e10 - e4V) sinhhD (3.76)

Using the infinite series expansions of and ehlD, or equivalently the infinite series expansion
of the hyperbolic sine:

sinhhD = hD ÷ (hD)3 (liD)5 + (hD)7 ÷
(3.77)

Eq. (3.76) becomes

h3D3 h5D7 h7D7qô=hD÷ + + ÷ . (3.78)
6 120 5040

3.5 Central Finite Differences 159

Similarly, using Eq. (3.67) for the second central difference. and combining it with Eqs.
(3.17) and (3.22). we obtain

ô2y(x) = y(x + h) - 2y(x) + v(x h)

= e (3.79)

= (e'° - 2 ± e
which shows that the second central difference operator is equivalent to

— + — 2 2(coshliD — I) E + E — 2 (3.81))

Expanding the exponentials into their infinite series, or equivalently the infinite series
expansion of the hyperbolic cosine in Eq. (3.80), we obtain

/ ,
) '1 -, /7 IJ /2

I . (3.81)
12 360 20160

The higher-order averaged odd central difference operators are obtained by taking
products of Eqs. (3.78) and (3.81). The higher-order even central differences are formulated
by taking powers of Eq. (3.8 1). The third and fourth central operators, thus obtained, are listed
below:

3 h7D7p& =hD
4 40 -

(3.82)

h6D6 h8DM
= h4D4 — . .

. (3.83)
6 80

In order to develop the inverse relationships, i.e., equations for the differential operators in
terms of the central difference operators, we niust first derive an algebraic relationship
between p and 6. To do this, we start with Eqs. (3.72) and (3.80). Squaring both sides of Eq.
(3.72), we obtain

p2 - 1(E - 2) (3.84)

Rearranging Eq. (3.80). we get

62 = 2 - E + (3.85)

160 Finite Difference Methods and Interpolation Chapter 3

Combining Eqs. (3.84) and (3.85), and rearranging, we arrive at the desired relationship

(3.86)

Now taking the inverse of Eq. (3.76):

hD - sinh p0 (3.87)

The infinite series expansion of the inverse hyperbolic sine is

(p0)3 3(pO)5
sinh 110 - 110

± (3.88)
6 40

Therefore. Eq. (3.87) expands to

3 S& -... (189)
6 40

The even powers of p are eliminated from Eq. (3.89) by using Eq. (3.86) to obtain the first
differential operator in terms of central difference operators:

liD p(0 - — ...) (190)
6 30

Higher-order differential operators are obtained by raising Eq. (3.90) to the appropriate
power and using Eq. (3.86) to eliminate the even powers of p. The second. third, and lkmrth
differential operators obtained by this way are

6

02 — .
. (3.91)

12 90

h3D3 - ...) (3.92)
4 120

06
h4D1 - + ... (393)

6 240

The complete set of relationships between central difference operators and differential
operators is summarized in Table 3.3. These relationships will he used in Chap. 4 to develop
a set of formulas expressing the derivatives in terms of central finite differences. These
formulas will have higher accuracy than those developed using backward and forward finite
differences.

3.6 Difference Equations and Their Solutions 161

Table 3.3 Central finite differences

Central difference operators Differential operators

-Ih-!)- h!)7
6 120 5040

h4!)4 h6!)6 h6!)862 = h2!)2 + ± + + .

12 360 20160

.

h5!)5 h7!)7
4 40

hônG h6!)8
= h4!)4 +

6 80

hD=p —-—+—---——.(6
•

•
6 30 140

66
h2!)2 62 — —

12 90

- - —hV)8 — +

J4 120

66 768
h4!)4 = -

6 240

3.6 DIFFERENCE EQUATIONS AND THEIR SOLUTIONS

The application of forward, backward, or central finite differences in the solution of
differential equations transforms these equations to difference equations of the form

= 0 (3.94)

In addition, difference equations are obtained from the application of material balances on
multistage operations, such as distillation and extraction.

Depending on their origin, difference equations may be linear or nonlinear, homogeneous
or nonhomogeneous, with constant or variable coefficients. For the purposes of this hook, it
will be necessary to discuss only the methods of solution of homogeneous linear difference
equations with constant coefficients.

The order of a difference equation is the difference between the highest and lowest
subscript of the dependent variable in the equation, that is, it is the number of finite steps
spanned by the equation. The order of Eq. (3.94) is given by

Order (k - n) — k = n (3.95)

The process of obtaining v6 is called solving the difference equation. The methods of
obtaining such solutions are analogous to those used in finding analytical solutions of
differential equations. As a matter of fact, the theory of difference equations is parallel to the
corresponding theory of differential equations. Difference equations resemble ordinary

162 Finite Difference Methods and interpolation Chapter 3

differential equations. For example, Eq. (3.96) is a second-order homogeneous linear ordinary
different/al equation:

y + 3c / — (1 (3.96)

whereas Eq. (3.97) is a second-order homogeneous linear difference equation:

± 3.hi - 0 (3.97)

The solution of the differential equation (3.96) can be obtained from the methods of
differential calculus applied as follows:

1. Replace the derivatives in (3.96) with the differential operators:

D2v 3Dy - 0

2. Factor out the v:

(D2 3D - 4)v 0

3. Find the roots of the character/st/c equat/on:

D2 + 3D 4 0

These roots are called the e/gen values of the differential equation. In this case they
are

and L= -4

4. Construct the solution of the homogeneous differential equation as follows:

v +

(3.98)
= =

4)L

where and C. are constants that must he evaluated from the boundary conditions
of the differential equation.

Similarly. the solution of the difference equation (3.97) can be obtained by using the shift
operator E:

I. Replace each term of Eq. (3.97) with its equivalent using the shift operator:

E2vA = 3Ev/
—

0

2. Factor out the vk:

(E2 + 3E
—

4)Yt - 0

3.6 Difference Equations and Their Solutions 163

3. Find the roots of the characteristic equation:

3E - 4 0

These roots are A1 = I and A, = - 4.

4. Construct the solution of the homogeneous difference equation as follows:

- +

(3.99)
+

where C1 and C, are constants that must he evaluated from the boundary conditions
of the difference equation.

In the above case, both eigenvalues wcre real and distinct. When the cigenvalues are real
and repcated, the solution for a second-order equation with both roots identical is formed as
follows:

(C1 + C,k)Ak (3.100)

Fnr an eith-order equation, which has in repeated roots (A,) and one distinct root (A), the
general formulation of the solution is obtained by superposition:

(C1 C7k + C3k2 ... + (3.101)

In the case where the characteristic equation contains two complex roots

and (3.102)

the solution is

C1(a C7(a — (3.103)

This solution may be also expressed in terms of trigonometric quantities by utilizing the
trigonometric (polar) form of complex numbers:

a ± = r(cosO ± isin6) (3.104)

This is obtained by showing the complex number as a vector in the complex plane represented
in Fig. 3.2. The modulus r of the complex number is obtained from the Pythagorean theorem

r = + (3.105)

The values of a and are expressed in terms of the phase angle 6:

a = rcosO (3.106)

- rsinO (3.107)

164 Finite Difference Methods and Interpolation Chapter 3

and the phase angle is given by

0 tan (3.108)

Substituting Eq. (3.104) in Eq. (3.103) and utilizing de Moivr&s theorem

(cosO ± coskO ± isinkO (3.109)

we obtain the solution of the difference equation as

1A coskO C2 sinkO] (3.110)

where C1' = C1 + C2 and CY - C,)i.

It can he concluded from the above discussion that the solution of homogeneous linear
difference equations with constant coefficients is of the form

vA f(k,A) (3.111)

where k is the forward-marching counter and A is the vector of eigenvalues of the
characteristic equation. The stability and convergence of these solutions depend on the values
of the eigenvalues. The following stability cases apply to the solutions of difference
equations:

The solution is stable, converging without oscillations, when
a. All the eigenva!ues are real distinct and have absolute valucs less than. or equal

to, unity:
A = real distinct
Al � 1.0

Imaginary

Figure 3.2 Representation of a complex

a

Real

number in a plane.

3.6 Difference Equations and Their Solutions 165

h. The eigenvalues are real, but repeated, and have absolute values less than
unity:

A = real repeated
IA! <1.0

2. The solution is stable, converging with damped oscillations, when
a. Complex distinct eigenvalues are present, and the moduli of the eigenvalues are

less than, or equal to, unity:
A = complex distinct
ri � 1.0

Li. Complex repeated eigenvalues are present, and the moduli of the eigenvalues
are less than unity:

A = complex repeated
In

3. The solution is unstable and nonoscillatory, when
a. All the eigenvalues are real distinct, and one or more of these have absolute

values greater than unity:

A = real distinct
IAI > 1.0

b. The eigenvalues are real, but repeated, and one or more of these have absolute
values equal to, or greater than, unity:

A = real repeated
Al � 1.0

4. The solution is unstable and oscillatory, when
a. Complex distinct eigenvalues are present, and the moduli of one or more of

these are greater than unity:

A = complex distinct
ml > 1.0

Li. Complex repeated eigenvalues are present, and the moduli of one or more of
these are equal to, or greater than, unity:

A = complex repeated
In � 1.0

The numerical solutions of ordinary and partial differential equations are based on the
finite difference formulation of these differential equations. Therefore, the stability and
convergence considerations of finite difference solutions have important implications on the
numerical solutions of differential equations. This topic will be discussed in more detail in
Chaps. 5 and 6.

166 Finite Difference Methods and Interpolation Chapter 3

3.7 INTERPOLATING POLYNOMIALS

Engineers and scientists often face the task of interpreting and correlating experimental
observations, which are usually in the form of discrete data. and are called upon to either
integrate or differentiate these data numerically or graphically. This task is facilitated by the
use of interpolation/extrapolation formulas. The calculus of finite differences enables us to
develop interpolating polynomials that can represent experimental data when the actual
functionality of these data is not well known. But, even niore significantly. these polynomials
can he used to approximate functions that are diflicult to integrate or differentiate, thus making
the task somewhat easier, albeit approximate.

Let us assume that values of functions f(s) are known at a set of (n + 1) values of the
independent variables .v:

f (;)

These values are called the base points of the function. They are shown graphically in Fig.
3.3a.

The general objective in developing interpolating polynomials is to choose a polynomial
of the form

P,(x) a0 + a1x ± ± . . . (3.l12)

so that this equation lits exactly the base points of the function arid connects these points with
a smooth curve, as shown in Fig. 3.3h. This polynomial can then be used to approximate the
function at any value of the independcnt variable x between the base points.

For the given set of (n + 1) known base points, the polynomial must satisfy the equation

P,,(x,) i 0. 1 , 2 ii (3.113)

Substitution of the known values of (x, , f(s)) in Eq. (3.112) yields a set of (ii + 1)

simultaneous linear algebraic equations whose unknowns are the coefficients a0, ... , a, of the
polynomial equation. The solution of this set of linear algebraic equations may be obtained
using one of the algorithms discussed in Chap. 2. However, this solution results in an ill-
conditioned linear system; therefore, other methods have been favored in the development of
interpolating polynomials.

3.7 Interpolating Polynomials 167

MATLAB has several functions for interpolation. The function y1 = interpl(x, y, x1)

takes the values of the independent variable x and the dependent variable y (base points) and
does the one-dimensional interpolation based on to find y. The default method of
interpolation is linear. However, the user can choose the method of interpolation in the fourth
input argument from 'nearest' (nearest neighbor interpolation). 'linear' (linear interpolation),

(cubic spline interpolation), and 'cubic' (cubic interpolation). If the vector of
independent variable is not equally spaced, the function interp]q may he used instead. It is
faster than interpi because it does not check the input arguments. MATLAB also has the
function splint' to perform one-dimensional interpolation by cubic splines, using not-a-knot
method. ft can also return coefficients of piecewise polynomials. if required. The functions
interj)2, interp3, and interpn perform two—, three-, and n—dimensional interpolation.
respectively.

(a)

xl x2 x3 xn__i x

Figure 3.3 (a) Unequally spaced base points of the function 1(x).
(b) Unequally spaced base points with interpolating
polynomial.

1(x)

1(x)

0
0

0

0
0

0
0 0

n

(b)

P(x)

x x x x x
1 2 3 n—i n

168 Finite Difference Methods and Interpolation Chapter 3

3.8 INTERPOLAT(ON OF EQUALLY SPACED POINTS

In this section, we will develop two interpolation methods for equally spaced data: (1) the
Jbrmulas, which are based on forward and backward differences, and (2)

Stirling 's interpolation f'onnuia, based on central differences.

3.8.1 Gregory-Newton interpolation

First. we consider a set of known values of the function f(s) at equal/v spaced values oft:

s-Mi f(x-3/i)
x - 2h f(x - 2/i)

s-h fix-h)
x f(s)
x + h f(x + h)
x + 2/i /(x + 2/i)

x + 3/i fix ÷ 3/i)

These points are represented graphically in Fig. 3.4 and are tabulated in Tables 3.4 and 3.5.
The fl;-st, second, and third forward differences of these base points are also tabulated in Table
3.4 and the corresponding backward differences in Table 3.5.

0

f(x

0
0

0

0

x-2h x-h x x+h x+2h

Figure 3.4 Equally spaced base points for interpolating polynomials.

T
ab

le
 3

,4
 F

or
w

ar
d

di
ffe

re
nc

e
ta

bl
e

I
x1

f(
x,

)
A

f(
x1

)
11

21
(x

1)
A

3f
(x

,)

o
x

j(
x)

/(
x+

/f
l-

j(
x)

fl
x+

2h
)-

2f
(r

+
Ji

)+
fi

x)
f(

x+
3h

)-
3f

lx
+

2/
i)

+
3f

(x
+

Ii
)-

jtt
)

I
x+

h
j(x

+
h)

tX
x+

2/
i)-

IX
x+

h)
/(

x-
i-3

h)
-2

f(
x+

2h
)+

j(v
+

h)

2
.v

+
 2

h
f(

x+
 2

/i)
f(

 x
+

 3
/i)

 -
f(

x-
s-

2h
)

3

x
f(

x1
)

V
f(

x,
)

V
2f

(x
1)

V
31

(x
1)

-3
x-

3/
i

!(
x-

3/
i)

—
2

v-
2h

f(
x-

2/
i)

t(
 v

-2
/i

)—
f(

x-
3/

i

-1
x-

/,
j(x

-h
)

t(
x-

h)
-t

(A
-2

h)
flx

-h
)-

2J
(-

2h
)+

J(
x-

3h
)

o
x

f(
i)

f(
x)

-f
(x

-h
)

t(
 v

)-
2f

(
i-h

)+
f(

t-
2h

)
fL

v)
-3

f(
x-

h)
+

3/
(x

-2
h)

-f
(

K
-3

h)

170 Finite Difference Methods and Interpolation Chapter 3

The Gregory-Newton forward interpolation formula can be derived using the forward
finite difference relations derived in Sees. 3.2 and 3.4. Eq. (3.17). written for the funetionf

f(x + h) = e'°f(x) (3.114)

relates the value of the function at one interval forward of the pivot point x to the value of the
function at the pivot point. Applying this equation for ii intervals forward, that is. replacing
h with n/i, we obtain

f(x nh) (3.115)

or equivalently

fix nh))'f(v) (3.116)

We note from Eq. (3.59) that

= I (3.59)

Combining Eqs. (3.116) and (3.59) we obtain

f(x ± n/i) = (1 A)'j(r) (3.117)

The term (1 + i)" can he expanded using the binomial 5cr/es

(1 L\Y = 1 +
+ ui(n — + it(ii — 1)(n —

2! 3!

n(n I)(n - 2)(n ... (3.118)
4!

Therefore, Eq. (3. 117) becomes

nh) f(x) + ,i(n 1 + n(n
-

n(n - 1)(n 2)(n
- + ... (3.119)

4!

When a is a positive integer, the binomial series has (a + 1) terms; therefore, Eq. (3. 119) is a
polynomial of degree a. If (a + I) base-point values of the function J are known, this
polynomial fits all (a + 1) points exactly. Assume that these (a + 1) base-points are (x0,J(x0)).

(x1,f(x1)) (x,,f(x3), where (xe, f(x0)) is the pivot point and x1 is defined as

= x0 + ih (3.120)

3.8 Interpolation of Equally Spaced Points 111

We can now designate the distance of the point of interest from the pivot point as (x - x3. The
value of ii is no longer an integer and is replaced by

.V —

0 = (3.121)
11

These substitutions convert Eq. (3.119) to

(x .v) (x — A0)(x
fix) f(x0) ± ± —__________

11 2!h-

(x — x)(x — x)(x — x,)+ C) 1

3! h3

(x - x0)(x — x1)(x — xj(x — x3)
(3.122)

4!

This is the Gregorv-Newtonjbrward interpolation formula. The general formula of the above
series is

f(x) f(x) ± E (x - (3.123)
k I Id/i

In a similar derivation, using backward differences, the Gregorv-Nenton backward
interpolation formula is derived as

(x — .v
J(x) f(x0) + + \7f(x0)

h 2!h-

(x .v0)(x x1)(x x d
+ - Vflx0) (3.124)

3 ! h1

(x x0)(x - x1)(x — x,)(x —

+ -

4!h4
The general formula of the above series is

fix) (x - A in)) (3.125)

ft was stated earlier that the binomial series [Eq. (3. 11 8)1 has a finite number of terms,
(ii + 1), when n is a positive integer. However, in the Gregory-Newton interpolation formulas,

172 Finite Difference Methods and Interpolation Chapter 3

n is not usually an integer; therefore, these polynomials have an infinite number of terms. It

is known from algebra that if � 1, then the binomial series for (1 + converges to the
value of (1 + M' as the number of terms become larger and larger. This implies that the finite
differences must be small. This is true for a flat, smooth function, or, alternatively, if the
known base points are close together; that is, if h is small. Of course. the number of terms that
can be used in each formula depends on the highest order of finite differences that can be
evaluated from the available known data. It is common sense that for evenly spaced data, the
accuracy of interpolation is higher for a large number of data points that are closely spaced
together.

For a given set of data points, the accuracy of interpolation can he further enhanced by
choosing the pivot point as close to the point of interest as possible. so that x < h. if this is
satisfied. then the series should utilize as many term as possible: that is, the number of finite
differences in the equation should be maximized. The order of error of the formula applied
in each case is equivalent to the order of the finite difference contained in the first truncated
term of the series. Examination of Table 3.4 reveals that points at the top of the table have the
largest available number of forward differences, whereas Table 3.5 reveals that points at the
hottoni of the table have the largest number of backward differences. Therefore. the forward
formula should be used for interpolating between points near the top of the table, and the
backward formula should be used for interpolation near the bottom of the table.

Example 3.1: Gregory-Newton Method for Interpolation of Equally Spaced Data.
An cxothermic, relatively slow reaction takes place in a reactor under your supervision.
Yesterday, after you left the plant, the temperature of the reactor went out of control, for a yet
unknown reason, until the operator put it under control by changing the cooling water flow
rate. Your supervisor has asked you to prepare a report regarding this incident. As the first
step. you must know when the reactor reached its maximum temperature and what was the
value of this maximum temperature. A computer was recording the temperature of the reactor
at one-hour intervals. These time-temperature data arc given in Table E3. I. Write a general
MATLAB function for ti-order one-dimensional interpolation by Gregory-Newton forward
interpolation formula to solve this problem.

Method of Solution: The function uses the general formula of the Gregory-Newton
forward interpolation [Eq. (3.123)1 to perform the ti-order interpolation. The input to the
function specifying the number of base points must be at least (ii + I).

Program Description: The MATLAB function GregorvNewton.nz is developed to
perform the Gregory-Newton forward interpolation. The first and second input arguments are
the coordinates of the base points. The third input argument is the vector of independent
variable at which the interpolation of the dependent variable is required. The fourth input, ii,
is the order of interpolation, If no value is introduced to the function through the fourth
argument. the function does linear interpolation. For obtaining the results of the higher-order
interpolation, this value should be entered as the fourth input argument.

Example 3.1 Gregory-Newton Method for Interpolation of Equally Spaced Data 173

At the beginning, the function checks the inputs. The vectors of coordinates of base
points have to be of the same size. The function also checks to see if the vector of independent
variable is monotonic: otherwise, the function terminates calculations. The order of
interpolation cannot be more than the intervals (number of base points minus one). In this
case, the function displays a warning and continues with the maximum possible order of
interpolation. The function then performs the interpolation according to Eq. (3. 123).

The main program Exarnple3j.m is written to solve the problem of Example 3.1. It asks
the user to input the vector of time (independent variable), vector of temperature of the reactor
(dependent variable), and the order of interpolation. The program applies the function
GregorvNewton.nz to interpolate the temperature between the recorded temperatures and finds
its maximum. The user can repeat the calculations with another order of interpolation.

Table E3.1

Time
(p.m.)

Temperature
(°C)

Time
(p.m.)

Temperature
(SC)

4 70 9 93

5 71 10 81

6 75 11 68

7 83 12 70

8 92

Program

Example3j.tn
% Example3_l.m
% Solution to Example 3.1. It interpolates the time-temperature data
% given in Table E3.l by Gregory-Newton forward interpolation
% formula and finds the maximum temperature and the time this
% maximum happened.

c lc

clear
clf

% Input data
time = input(Vector of time =
temp = input V Vector of temperature =
ti=linspace(min(time),max(time)); % Vector of time for interpolation

174 Finite Difference Methods and Interpolation Chapter 3

redo = 1;
while redo

disp(' ')

n = input(Order of interpolation =
te = GregoryNewton(time,temp,ti,n); % Interpolation
[max_temp,k] = max(te);
max_time = ti(k);
% Show the results
fprintf('\n Maximum temperature of %4.lf C reached at %5.2f.\n',

max_temp,max_time)
% Show the results graphically
plot(time,temp, 'o' ,ti,te)
xlabel (Time (hr) ')

ylabel(Temperature (deg C) ')
disp(' ')

redo = input(Repeat the calculation (1/0)
end

GregoryNewton.m

function yi = GregoryNewton(x,y,xi,n)
%GregoryNewton One dimensional interpolation.

% Yl = GregoryNewton(X,Y,XI,N) applies the Nth-order
% Gregory-Newton forward interpolation to find Yl, the
% values of the underlying function Y at the points in
% the vector XI. The vector X specifies the points at
% which the data Y is given.

% Yl = GregoryNewton(X,Y,XI) is equivalent to the
% linear interpolation.

I See also INTERPI, NATURALSPLINE, Lagrange, SPLINE, INTERP1Q

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin c 3

error('Invalid number of inputs.')
end

% Check x for equal spacing and determining h
if min(diff(x)) max(diff(x))

error('Independent variable is not monotonic. ')
else

h = x(2) - x(1);
end

x = (x(J.')'; I Make sure it's a column vector
y = (y(:).')'; % Make sure it's a column vector

Example 3.1 Gregory-Newton Method for Interpolation of Equally Spaced Data 175

fix = length(x);
ny = length(y);
if fix fly

error('X arid V vectors are riot the same size.');
efid

% Check the order of ifiterpolatiori
if fiargin == 3 ci < 1

fi = 1;
efid

fi = floor(nj;
if fi > fiX
fpriritf(\nNot enough data poifits for %2d-order ifiterpolationi. fi)

ifiterpolatiofi will be performed ifistead.\fi',
fix-l)

fi = fix - 1;
efid

deltax(l,l:length(xi)) = ories(l,length(xi));
% Locatifig the required fiumber of base poifits
for m = l:lefigth(xi)

dx = xi(m) -

% Locatifig xi
[dxm , loc(m)] = mifi(abs)dx));
% locating the first base poifit
if dx(loc(m)) < 0

loc(m) = loc(m) - 1;
efid

if loc)m) < 1

loc(m) = 1;
efid

if loc(m)+fi > fix

loc(m) = fix - fi;
end
deltax(2:fi+l,m) = dx(loc(m):loc(m)+fi-l);
ytemp(l:ni+l,m) = y)loc)m):loc(m)+n);

efid

% Ifiterpolatiofi
yi = y(loc)';
for k = 1

yi = yi + prod(deltax(l:k+l, :)) diff(ytemp(l:k+l, :),k) I..

)gamma(k+l) *

efid

Input and Results

>>Example3_l

Vector of time = [4, 5, 6, 7, 8, 9, 10, 11, 12]

176 Finite Difference Methods and Interpolation Chapter 3

Vector of temperature = [70, 71, 75, 83, 92, 93, 81, 68, 70]

Order of interpolation = 2

Maximum temperature of 94.2 C reached at 8.61.

Repeat the calculation (1/0) : 0

Discussion of Results: Graphical results are shown in Fig. E3. L As can be seen from
this plot and also from the numerical results, the reactorhas reached the maximum temperature
of 94.2°C at 8:37 p.m. The reader can repeat the calculations with other values for order of
interpolation.

Figure E3.1 Interpolation of equally spaced points.

3.8.2 Stirling's Interpolation

Stirling's interpolation formula is based on central differences. Its derivation is similar to that
of the Gregory-Newton formulas and can be arrived at by using either the symbolic operator
relations or the Taylor series expansion of thc function. We will use the latter and expand thc
function fCc + oh) in a Taylor series around x:

f(x + n/i) = f(x) +
+ n2h2fH(

)
+ ifflf()

1! 2! 3!
(3.126)

90

85

a-)

aa

a)

80

a)

8
a)

75 -

4 7
Time (hr)

11

3.8 Interpolation of Equally Spaced Points 177

We replace the derivatives of f(x) with the dilTerential operators to obtain

fix + n/i) fix) + P±Df(x) •.. (3.127)

The odd-order differential operators in Eq. (3. 127) are replaced by averaged central
differences and the even-order differential operators by central differences, all taken from
Table 3.3. Substituting these into Eq. (3.127) and regrouping of terms yield the lormula

J(x n/i) f(x) - npôj(x) + n(n 2 - I)
p Wf(x)

ir(n
- ± ... (3.128)

By applying Eq. (3. 121) into Eq. (3. 128). we obtain the final form of Stirling's niterpolatioii
formula

(x-x) (x—x)2
J(x) f(A)))

°

h 2!h2

(x x)(x x0)(x .v1)

3 ! Ii'

(v x)(x x0)(v x1)
f ... (3.129)

4!

The general formula for determining the higher-order terms containing odd differences in the
above series is

1)12
1 fi (x .v,) (3.13(J)

k! Ii 1k 1)/2

where k = 1, 3, . . ., and the formula for terms with even differences is

(v —)
1k 2112

°
IT (x — x,) ôt(.i3) (3.131)

k! 1? in 11 2112

where k = 2, 4,...
Other forms of Stirling's interpolation lormula exist, which make use of base points

spaced at half intervals (i.e., at li!2). Our choice of using averaged central differences to
replace the odd differential operators eliminated the need for having base points located at the
midpoints. The central differences for Eq. (3.129) are tabulated in Table 3.6.

a,

T
ab

le
 3

.6
 C

en
tr

al
 d

iff
er

en
ce

 ta
bl

e*

I
x,

1(
x1

)
pO

f(
x,

)
62

1(
x,

)
-

-3
i-

3h
f(

x-
3h

)

-2
v-

2h
f(

x-
2/

t)
½

[/
(A

-h
)-

f(
x-

3h
)]

f(
x-

/2
)-

2j
(x

-2
h)

-t
-j

(v
-3

1i
)

-
I

x-
Ii

f(
x-

h)
½

[/
'(x

)-
/tx

-2
h)

]
f(

x)
-2

f(
x-

h)
+

/<
x-

2h
)

0
x

fi
x)

½
[fC

;+
h)

-f
(A

-h
)I

f(
x-

1-
h)

-2
/(

xH
-f

(x
-h

)

1
x-

t-
/,

f(
x-

t-
h)

½
[t(

x-
t-

2h
)-

f(
x)

J
f(

x-
l-2

h)
-2

f(
t+

h)
+

/iv
)

2
i +

2/
i

f(
x+

2h
)

+
3/

i)
-f

(x
+

h)
]

/(
x+

3h
)-

2f
(x

+
2/

fl-
i-f

(x
+

h)

3
x+

3/
z

f(
A

-1
-3

h)

I
ö4

1(
x1

)
-

-2 -I
J(

x÷
/i)

-4
tIx

)+
6f

(x
-h

)-
4f

(x
-2

/i)
±

!(
x-

3h
)

0
½

[f(
x-

t-
2h

)-
2f

(i
-i-

h)
-i-

2f
(x

-/
i)

-f
(

v-
21

i)
J

f(
x+

2h
)-

4f
(A

 +
11

)+
6f

(
t)

-4
f(

x-
h)

-i-
t(

x-
2h

)

I
½

1f
(x

+
 3

h)
-2

f1
x+

2h
)-

i-2
j(-

x
)-

f(
x-

h)
1

fix
-t

-3
h

)-
4f

(
v-

t-
2h

)+
ôf

IA
-f

-h
)-

4f
(x

)+
f(

x-
h)

2 I
pO

5f
(x

1)
66

1(
x,

)
—

0
+

h)
-5

/(
 i-

h)
+

4f
fx

-2
h)

-f
(v

-3
h)

]
t(

x-
t-

31
i)

-6
f(

 v
-i

-2
hH

-
1

5f
(x

+
/i

)-
20

/(
x)

+
 I

 5
f(

x-
h)

-6
j(

x-
2h

)+
j(

x-
3h

)

R
ea

d
th

is
ta

bl
e

fr
om

 le
ft

 to
 r

ig
ht

, s
ta

rt
in

g
w

ith
 to

p
se

ct
io

n
an

d
co

nt
in

ui
ng

 w
ith

m
id

dl
e

an
d

bo
tto

m
 s

ec
tio

ns

3.9 Interpolation of Unequally Spaced Points 179

3.9 INTERPOLATION OF UNEQUALLY SPACED POINTS

In this section, we will develop two interpolation mcthods for unequally spaced data: the
Lagrange polynomials and spline interpolation.

3.9.1 Lagrange Polynomials

Consider a set of unequally spaced base points, such as those shown in Fig. 3.3a. Deline the
polynomial

(3.132)
-4)

which is the sum of the weighted values of the function at all (n + I) base points. The weights
Pk(X) are nth-degree polynomial functions corresponding to each base point. Eq. (3.132) is
actually a linear combination of tith-degree polynomials; therefore, P(x) is also all nth-degree
polynomial.

In order for the interpolating polynomial to fit the function exactly at all the base points.
each particular weighting polynomial most he chosen so that it has the value of unity
when x = xh, and the value of zero at all other base points, that is,

(3.133)

The Lagrange polynomials, which have the forni

Pk(X) = Ck III (x (3.134)

satisfy the first part of condition (3.133), because there will be a term (x1 - in the product
series of Eq. (3.134) whenever .v = x. The constant Ck is evaluated to make the Lagrange
polynomial satisfy the second part of condition (3.133):

1

(3.135)

H
14

180 Finite Difference Methods and Interpolation Chapter 3

Combination of Eqs. (3.134) and (3.135) gives the Lagrange polynomials

fI
C if

i-k

(3.136)

The interpolating polynomial has a remainder term, which can be obtained from Eq.
(3.6):

R,(x) [f (x
— C)

x)
(n 1)!

XC < < (3.137)

3S.2 Spline Interpolation

When we deal with a large number of data points, high-degree interpolating polynomials are
likely to fluctuate between base points instead of passing smoothly through them. This
situation is illustrated in Fig. 3.5a. Although the interpolating polynomial passes through all
the base points. it is not able to predict the value of the function satisfactorily in between these
points. In order to avoid such an undesired behavior of the high-degree interpolating
polynomial. a series of lower-degree interpolating polynomials may be used to connect smaller
number of base points. These sets of interpolating polynomials are called spline functions.
Fig. 3.5h shows the result of such interpolation using third-degree (or cubic) splines.
Compared with the higher-order interpolation illustrated in Fig. 3.5a. third-degree splines
shown in Fig. 3.5h provide a much more acceptable approximation.

(a) (b)

Figure 3.5 (a) Fluctuation of high-degree interpolating polynomials between base
points. (b) Cubic spline interpolation.

3M interpolation of Unequally Spaced Points 181

The most common spline used in engineering problems is the cubic spline. In this
method, a cubic polynomial is used to approximate the curve between each two adjacent base
points. Because there would be an infinite number of third-degree polynomials passing
through each pair of points, additional constraints are necessary to make the spline unique.
Therefore, it is set that all the polynomials should have equal first and second derivatives at
the base points. These conditions imply that the slope and the curvature of the spline
polynomials are continuous across the base points.

The cubic spline of the interval [a, aJ has the following general form

P(a) = a1a3 ' h1a2 + (3.138)

There are four unknown coefficients in Eq. (3. 138) and n such polynomials for the whole
range of data points k1. a,,]. Therefore, there are 4n unknown coefficients and we need 4n
equations to evaluate these coefficients. The required equations come from the following
conditions:

a. Each spline passes from the base points of the edge of its interval (2n equations).
h. The first derivative of the splines are continuous across the interior base points

(a - 1 equations).
c. The second derivative of the splines are continuous across the interior base points

(a - I equations).
d. The second derivative of the end splines are zero at the end base points

(2 equations). This is called the natural condition. Another commonly used
condition is to set the third derivative of the end splines equal to the third derivative
of the neighboring splines. The latter is called not-a-knot condition.

Simultaneous solution of the above 4n linear algebraic equations results in the
determination of all cubic interpolating polynomials. However, for programming purposes.
there is an alternative method of determination of the coefficients that needs simultaneous
solution of only (a - I) algebraic equations. This method is described in detail in this section.

The second derivative of the Eq. (3.138) is a line

P1(a) = ôa1a 2b1 (3.139)

From Eq. (3.139) it can be concluded that the second derivative of the interpolating
polynomial at any point in the interval [a, - , a,] can he given by the first-order Lagrange
interpolation formula

a—al
=

+ (3.140)
al_i - xl a1 -

The expression for the spline can be obtained by twice integrating Eq. (3.140):

(a - aj3 (a — a.)3

y =
')Yi)'. + C, (3.141)

6(a11 — a1) 6(a1 — a1

182 Finite Difference Methods and Interpolation Chapter 3

where the constants C1 and C, in Eq. (3.141) are evaluated from the following boundary
conditions:

) =

(3.142)
= v1

By evaluating the constants C and C, from the conditions (3.142), suhstituting them into Eq.
(3.141), and further rearrangement, we find the following cuhic equation:

I

6

1
(x -

+ — (x1 — x11)(.v .v11) x
6 x1

x
± + Y, (3.143)

1, A1 —

Note that Eqs. (3. 138) and (3.143) are equivalent and the relations between their coefficients
are given by Eq. (3.144):

1 3', i — 3', 1

a. — h. —
6 --x1 ' 2

2' 2

1 — .k'_1\',
I '' V.

= — + —(v1 - x,)(v1) — /

2 x. -x. 6 x. x.
1 i :1

1 1 1 1

± —(x.1 — x1)(x1v1 - x, Lvl)
6 -x1 6

xi_lxi —
± (3.144)

Al_I — Xi

Although Eq. (3.143) is a more complicated expression than Eq. (3.138), it contains only
two unknowns, namely - and . In order to determine the y" values, we apply the
condition of continuity of the first derivative of splines at the interior base points: that is,

(3.145)

3.9 Interpolation of Unequally Spaced Points 183

Differentiating Eq. (3.143) and applying the resulting expression in the condition (3.145),
followed by rearranging of the terms, results in

(x1 — — (x1•1 —

- V. V+ —

— —

(3.146)

where I = 1, 2 n - I and U (natural splinc).
Eq. (3. 146) represents an (ii - 1)-order tridiagonal set of simultaneous equations, which

in matrix form becomes Eq. (3.147):

2((12 —x1) 0 0 0

(x7—x1) 2(x—.v1) (x—.v,) C) . . . 0

0 (xx,) 2(x4—x,) (.x4—x7) . . 0

o 0 . . . 0 (.1, 7-v, 3) -v)

o o . . 0 0 —x,

2
— —

i — A2
—

— — —

xfl — .t,J —

After calculating the values of the second derivatives at each base point, Eq. (3.143) can be
used for interpolating the value of the function in every interval.

0

0

17 —

A. — .11

—

A-1 — A,

V4 —

— .33

— — .10

.11 — .10

— —

—

-- \3
—

—x

-Vi

Yn - 2

6
(3,147)

184 Finite Difference Methods and Interpolation Chapter 3

Example 3.2: The Lagrange Polynomials and Cubic Splines for Interpolation of
Unequally Spaced Data. The pressure drop of a basket-type filter is measured at different
flow rates as shown in Table E3.2. Write a program to estimate pressure drop of the filter at
any flow rate within the experimental range. This program should call general MATLAB
functions for interpolating unequally spaced data using Lagrange polynomials and cubic
splines.

Method of Solution: The Lagrange interpolation is done based on Eqs. (3.132) and
(3.136). The order of interpolation is an input to the function. The cubic spline interpolation
is done based on Eq. (3. 143). The values of the second derivatives at base points, assuming
a natural spline, are calculated from Eq. (3.147).

Program Description: The general MATLAB function Lagran gem performs the
nth-order Lagrange interpolation. This function consists of the following three parts:

At the beginning, it checks the inputs and sets the order of interpolation if necessary. If
not introduced to the function, the interpolation is done by the first-order Lagrange polynomial
(linear interpolation).

In the second part of the function, locations of all the points at which the values of the
function are to be evaluated are found in between the base points. Because matrix operations
are much faster than element-by-element operations in MATLAB, the required number of
independent and dependent variables are arranged in two interim matrices at each location.
These matrices are used at the interpolation section for doing the interpolation in vector form.

The last part of the function is interpolation itself. In this section, suhpolynomials
are calculated according to Eq. (3.136). The terms of summation (3.132) are then calculated,
and, finally, the function value is determined based on Eq. (3.132). In order to be time
efficient, all these calculations are done in vector form and at all the required points
simultaneously.

The MATLAB function Naiura/SPLINE.m also consists of three parts. The first and
second parts are more or less similar to those of Lagrange.tn. However, instead of forming
the interim matrices, the interpolation locations are kept in a vector.

Table E3.2 Pressure drop of a basket-type filter

Flow Rate Pressure drop
(L's) (kPa)

Flow rate Pressure drop
(Us) (kPa)

0.00 0.Ot)O

10.80 0.299

16.03 0.576

22.91 1.036

32.56 1.781

36.76 2.432

39.88 2.846

43.68 3.304

Example 3.2 Lagrange Polynomials and Cubic Splines 185

In the last section of the function, the matrix of coefficients and the vector of constants
are built according to Eq. (3.147), and the values of the second derivatives at the base points
are evaluated. The interpolation is then performed. in the vector form, based on Eq. (3.143).

Program

Example3_2.rn
% Example3_2.m
% Solution to Example 3.2. It uses Lagrange and cubic spline
% interpolations to find the pressure drop of a filter at any
I point in between the experimental data.

c lc

clear
clf

% Input data

Q = input(' Vector of flow rates =
dP = input (' Vector of pressure drops =
disp('
n = input (Order of the Lagrange interpolation =

g = linspace(min(Q) , max(QH;
% Interpolation
dPl = Lagrange(Q , dP / g /

dP2 = NaturalSPLINE(Q / dP g);

I Plotting the results
plot(Q,dP,'o',g,dPl,q,dP2,'.')
xlabel('Flow Rate (lit./s)')
ylabe] ('Pressure Orop (kPa) ')
legend('Experimental Oata', 'Lagrange Interpolation', 'Natural Spline
Interpolation' ,2(

Lagrange.in

function yi = Lagrange(x,y,xi,n)
%Lagrange One dimensional interpolation.

I YI = Lagrange(X,Y,XI,N) applies the Nth-order Lagrange
I interpolation to find Yl, the values of the underlying
I function Y at the points in the vector XI. The vector
I X specifies the points at which the data Y is given.

I Yl = Lagrange(X,Y,XI(is eguivalent to the linear
I interpolation.

% See also NATURALSPLINE, OregoryNewton, SPLINE, INTERP1, INTERP1Q

186 Finite Difference Methods and Interpo)ation Chapter 3

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 3

error(Invalid number of inputs.)
end

x = (x(:).); % Make sure its a column vector
y = (yU).); % Make sure its a column vector
nx length(x);
ny length(y);
if nx ny

error(X and V vectors are not the same size.);
end

% Check the order of interpolation
if nargin == 3 n < I

n = 1;
end
n = floor(n);
if n >= nx
fprintf V \nNot enough data points for %2d-oredr interpolation. / n)
fprintf(\n%2d-order interpolation will be performed instead.\n,

nx-l)
n = nx - 1;

end

lxi = length(xi);
deltax(l,:) = ones(l,lxi);
% Locating the required number of base points
for m = l:lxi

clx = xi(m) - x;
I Locating xi
[dxm bc] = min(abs(dx));
I locating the firsc base point
if dx(loc) < 0

bc = bc - 1;
end
if bc < 1

bc = 1;
end
if boc+n > nx

bc = nx - n;
end
deltax(2;n+2,m) = dx(loc:loc+n);
xtemp(l:n+l,m) = x(boc:boc+n);
ytemp(l:n+l,m) = y(boc:boc+n);

Example 3.2 Lagrange Polynomials and Cubic Splines 187

end
% Interpolation
for k = 1 : n+l

for m = 1 n+l

if k m
den(m,:) = xtemp(k,:) - xtemp(m,:);

else
den(m, :) = ones(l,lxi);

end
end
p(k, :) = prod([deltax(l:k,:) ; deltax(k+2:n+2, :)]) ./ prod(den);
s(k, :) = p(k, :) ytemp(k, U;

end
yi = sum(s);

NaIuraISPLINE.m

function yi = NaturalSPLINE(x,y,xi)
%NATURALSPLINE One dimensional interpolation.

Yl = NATURALSPLINE(X,Y,XI) applies the natural spline
% interpolation to find Yl, the values of the underlying
% function Y at the points in the vector XI. The vector
% X specifies the points at which the data Y is given.

% See also Lagrange, OregoryNewton, INTERP1, INTERPQ, SPLINE

I (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin c 3

error('Invalid number of inputs.')
end

x = (x(:).')'; % Make sure it's a column vector
y = (y(:).')'; % Make sure it's a column vector
xi = (xi):).); % Make sure it's a column vector
nx = length(x);
ny = length(y);
if nx ny

error('X and Y vectors are not the same size.');
end

lxi = length)xi)
% Locating the reguired number of base points
for m = l:lxi

d = xi)m) - x;

188 Finite Difference Methods and Interpolation Chapter 3

% Locating xi
, loc(m)] = min(abs(dfl;

% locating the first base point
if d(loc(m)) c 0

j

loc(m) == nx
loc(m) loc(m) - I;

end
if loc(m) <z 1

loc(m) 1;

end
end

dx = diff (x)

dy = diff(y);
yox = dy ./ dx;
% Matrix of coefficients
A 2 * diag(x(3:nx)-x(l:nx-2)) +

[zeros(nx-2,l) [diag(dx(2:nx-2)) ; zeros(l,nx-3)]J +

[zeros(l,nx-2) ; [diag(dx(2:nx-2)) zeros(nx-3,l)]];
% Vector of constants
c 6 * (yox(2:nx-l) - yox(l:nx-2));
% Solution of the set of linear equations
y2 = [0; inv(A) * c; 0];% Interpolation
yi = (1/6) * ((xi - x(loc+l))

(x(loc) x(loc+l)) (xi - x(loc+l))) .* y2(loc)
+ (1/6) * ((xi - x(loc)) ./ (x(loc+l) - x(loc))
- (x(Ioc+l) - x(loc)) •* (xi - x(loc))) y2(loc+l)
+ (xi - x(loc+l)) .7 (x(loc) - x(loc+l)) y(loc)
+ (xi - x(loc)) ./ (x(loc+l) - x(loc)) y(loc+l);

Input and Results

>>Example3_2

Vector of flow rates = [0, 10.80, 16.03, 22.91, 28.24, 32.56,
36.76, 39.88, 43.68]
Vector of pressure drops = [0, 0.299, 0.576, 1.036, 1.383, 1.781,
2.432, 2.846, 3.304]

Order of the Lagrange interpolation = 3

Discussion of Results: Order of the Lagrange interpolation is chosen to be three for
comparison of the results with that of the cubic splinc, which is also third-order interpolation.
Fig. E3.2 shows the results of calculations. There is no essential difference between the two
methods. The cubic spline, however, passes smoothly through the base points, as expected.
Because the Lagrange interpolation is performed in the subsets of four base points with no
restriction related to their neighboring base points, it can be seen that the slope of the resulting
curve is not continuous through most of the base points.

3.10 ORTHOGONAL POLYNOMIALS

Orthogonal polynomials are a special category of functions that satisfy the following
orthogonality condition with respect to a weighting function w(x) � 0, on the interval [a. b]:

0
1

c(n)>0

This orthogonality condition can he viewed as the continuous analog of the orthogonality
property of two vectors (see Chap. 2)

x'y 0 (2.91)

in n-dimensional space, where n becomes very large, and the elements of the vectors are
represented as continuous functions of some independent variable.

3.10 Orthogonal Polynomials 189

35

0 Experimental Data
Lagrange Interpolation
Natural Spline Interpolation

25

5

0

0

15 20 25
Flow Rate (lit is)

Figure E3.2 Lagrange polynomials and cubic splines.

30 35 40 45

Ii 0!

mf ii iii
(3.14)0

190 Finite Difference Methods and Interpolation Chapter 3

There are many families of polynomials that obey the orthogonality condition. These are
generally known by the name of the mathematician who discovered them: Legendre.
Chehychev. Herinite, and Laguerre polvnorniah are the most widely used orthogonal
polynomials. in this section, we list the Legendre and Chebyshev polynomials.

The Legendre polynomials are orthogonal on the interval [- I, II with respect to the
weighting function w(x) = I. The orthogonality condition is

1 0 if ii m
(P (x)P (x)dx 2 (3.149)

.1
in

if n in

2ii+l

They also satisfy the recurrence relation

(ii I)Pnj(x) - (2n I)xP(x) nP, 1(x) (3.150)

Starting with P0C') = I and P(x) = x. the recurrence formula (3.150) or the orthogonality
condition (3.149) can he used to generate the Legendre polynomials. These are listed in Table
3.7 and drawn on Fig. 3.6.

The Chebyshei' polynomiaLs are orthogonal on the interval [-1, 11 with respect to the
weighting function n(x) 1 x2 . Their orthogonality condition is

0 if a in

ifn = in 0
I

dx (3.151)

if n in > 0
7

and their recurrence relation is

2xTn Tn i
0 (3.152)

Starting with 1)(x)= 1 and T4x)=x, the recurrence formula (3.152) or orthogonality condition
(3.151) can be used to generate the Chebyshev polynomials listed in Table 3.8 and drawn on
Fig. 3.7.

it should he noticed from Figs. 3.6 and 3.7 that these orthogonal polynomials have their
zeros (roots) more closely packed near the ends of the interval of integration. This property
can be used to advantage in order to improve the accuracy of interpolation of unequally spaced
points. This can be done in the case where the choice of base points is completely free. The
interpolation can be performed using Lagrange interpolation method described in Sec. 3.9.1.
but the base points are chosen at the roots of the appropriate orthogonal polynomial. This
concept is demonstrated in Chap. 4 in connection with the development of Gauss quadrature.

- -
n —

(1

)fl)

2?,,i (n ni) (n — 2m) I

The notation [n/2J represents the integer part of ;z/2.

3.10 Orthogonal Polynomials 191

Table 3.7 Legendre polynomials

n

P(x) = x

2 P7(x)

3 -

2

4 P4(x) = 35x4 - 30x 3

8

0 08 i

Figure 3.6 The Legendre orthogonal polynomials.

192 Finite Difference Methods and Interpolation Chapter 3

Table 3.8 Chebyshev polynomials

n Tjx)

0

1 T1(x)=x

2 T2(x)=2i-1

3

4 Tjx) = 8x4 - 8r2 + 1

2m (12
—

)Ifl

(2m)!(n - 2m)!

The notation 1;:/21 represents the integer part of n/2.

-1 —08 -06 —04 —02 0 02 04 06 08 1

Figure 3.7 The Chebyshev orthogonal polynomials.

Problems 193

PROBLEMS

3.1 Show that all the interpolating formulas discussed here reduce to the same formula when a
first-order interpolation is used.

3.2 Derive the Gregory-Newton backward interpolation formula.

3.3 Using the experimental data in Table P3 3:
(a) Develop the forward difference table.
(b) Develop the backward difference table.
(c) Apply the Gregory-Newton interpolation formulas to evaluate the function at

x = 10, St). 90. 130. 170, and 190.

Table P3.3 Data of penicillin fermentation

Time Penicillin concentration
(h) (units/mL)

Time Penicillin concentration
(h) (units/mL)

0 0

20 106

40 1600

60 3000

80 5810

100 8600

120 9430

140 10950

160 10280

180 9620

200 9400

3.4 Write a MATLAB function that uses the Gregory-Newton backward interpolation formula to
evaluate the functiont(x) from a set of (n + 1) equally spaced input values. Write the function in
a general fashion so that n can he any positive integer. Also write a MATLAB script that reads the
data and shows how this MATLAB function fits the data. Use the experimental data of Table 3.3
to verify the program, and evaluate the function at v = 10. 50, 90.130, 170. and 190.

3.5 Using the experimental data of Proh. 3.3.
(a) Develop the central difference table.
(h) Apply Stirling's interpolation formula to evaluate the function at x = I 0. So, 90 . 1 30. 1 70, and

190.

3.6 Write a MATLAB function which uses the Stirling's interpolation formula to evaluate the function
fix) from a set ol (n + 0) equally spaced input values. Write the function in a general fashion so that
n can be any positive integer. Also write a MATLAB script that reads the data and shows how this

194 Finite Difference Methods and Interpolation Chapter 3

MATLAB function Ots the data Use the experimental data of Table 3.3 to verify the program. and

evaluate the function at x = 10, 50. 90 .130, 170. and 190.

3.7 With the set of unequally spaced data points in Table P3.7 use Lagrange polynomials and spline
interpolation to evaluate the function at x 2, 4. 5. 8. 9. and 11.

Table P3.7

x f(x) x f(x)

1 7.0 10 8.2

3 3.5 12 9.0

6 3.2 13 9.2

7 3.9

3.8 Vapor pressure of lithium chloride is given in Table P3.8 141. Use these data to present the vapor
pressure of lithium chloride in the following tables

(a) From 80t)°C to 1350T at SOT increment.
(h) From 10 kPa to 100 kPa at 10 kPa increment.

3.9 The zeta-potential of particles in a suspension is an indication of the sign and the density of the
surface charge of the particles. The iso-electric point (i.e.p.) refers to the pH where zeta-potential
is zero. Use data from Rashchi et al. [51 [Table P3.9] to determine the iso-electric points of silica
in the presence of

3.10 Obtain the solution of the difference equation (3 97) directly from the solution of the differential
equation (3.96) by utilizing the relationship E =

Table P3.8 Vapor pressure of lithium chloride

Pressure
(mm Hg)

Temperature
(t)

Pressure
(mm Hg)

Temperature

1 783 Ot) 1081

S 883 100 1129

10 932 200 1203

20 987 400 1290

40 1045 760 1382

References 195

Table P3.9 Zeta-potential of silica in the presence of 104M Pb(N03)2 as a function of pH

pH zeta-potential (my) pH zeta-potential (my)

1.74 -5.3

2.72 -10.8

3.72 -21.8

4.09 -32.0

4.32 -35.8

4.70 -36.9

5.00 -36.7

5.55 -37.7

6.00 -33.2

6.53 -15.7

6.70 -lOt)

7.29 13.7

8.06 32.2

10.02 24.0

11.12 6.9

12.15 -30.0

REFERENCES

1. Salvadori, M. 0., and Baron, M. L.. Numerical Meilioth in Engineering, Prentice Hall. Englewood
Cliffs. NJ. 1961.

2. Chorlton, F., Ordinan Differential and Difference Equations. Van Nostrand. London. U.K., 1965.

3. Gel'fond. A. 0.. Calculus of Finite Dif/Crences. English trans. of the third Russian edition, Hindustan
Publishing Corp., Delhi, India, 1971.

4. Green, D. W.. and Maloney, J. 0.. Pern s Chemical Engineers' Handbook. 7th ed.. McGraw-Hill.
New York. 1997.

5. Rashchi, F.. Xu, Z., and Finch, J. A.. "Adsorption of Silica in Ph- and Systems." Colloids
and Surface.s A' Phv.sicochemical and EngineeringAspects, sol. 132. 1998. p. 159.

CHAPTER

Numerical Differentiation and Integration

4.1 INTRODUCTION

The solution of many engineering problems requires

calculation of the derivative of a function at a known point or integration of the derivative over
a known range of the independent variable. The simplest example of such problems is root-
finding by the Newton-Raphson method, which needs calculation of the derivative of the
function in each iteration (see Sec. 1.6). Although, in some cases, the analytical derivative of
the function may be derived, it is more convenient to obtain it numerically if the function is
complicated and/or the calculation is done by a computer program. In the following examples,
there is no algebraic expression for the experimental data, or analytical integration does not
exist for the function, therefore, numerical differentiation or integration is inevitable.

197

198 Numerical Differentiation and Integration Chapter 4

In chemical reaction kinetics, one of the methods for determination of the order of a
chemical reaction is the method of initial rates. In this method, the reaction starts with
different initial concentrations of the reactant A, and changes in the concentration of A with
time are measured. For each initial concentration, the initial reaction rate can be calculated
from differentiation of concentration with respcct to time at the beginning of the reaction:

dC1
=

- tM (4.1)

If the reaction rate could bc cxpresscd by

(4.2)

thcn taking the logarithm of both sidcs of this cquation at t = 0 results in

ln (— Ink ± ii In (4.3)

The reaction order can be obtained by calculation of the slope of the line ln (rA) versus

ln(CA).
Experimental determination of the rate of drying of a given material can be done by

placing the moist material in a tray that is exposed to the drying air stream. A balance
indicates the weight of the moist material, which is being recorded at different time intervals,
during drying. The drying rate is calculated for each point by

I dW
R (4.4)

where R is the drying rate, A is the exposed surface area for drying, W is the mass of the moist
material, and t is time.

In the study of hydrodynamics of multiphase reactors, the velocity profiles of solids may
be determined experimentally by Radioactive Particle Tracking (RPT) velocimetry technique
[1]. In this technique, a radioactive tracer is being followed for several time intervals, and
coordinates of this tracer are evaluated at each time interval. Instantaneous velocity of the
tracer can he calculated then from

dx.
V. = (45)

dt
where is the velocity of the tracer in direction 1, x is the ith component of the coordinate of
the tracer, and dt is the time increment used at the time of data acquisition. The steady-state
velocity profile of solid particles in the reactor is calculated by averaging the instantaneous
velocities in small compartments inside the reactor. Once the velocity profile is determined,
solids velocity fluctuation is calculated by

= - cV,> (4.6)

4.1 Introduction 199

where 11/ is velocity fluctuation (a function of time) and <\/1> is the average velocity (a
function of position), both in i-direction. Having the above information, turbulent eddy
diffusivity of solids (D) may he obtained from the Lagrangian autocorrelation integral of
velocity fluctuations:

= f<V1 '(t) V1 '(t)>dt (47)

The height of a cooling tower is calculated from the following equation:

H,

MK0aPJ H-H (4.8)

where is height of tower. G is dry air mass flow. M is molecular weight of air, is overall
mass transfer coefficient. P is pressurc, H is enthalpy of moist air, and H' is enthalpy of moist
air at saturation. The integral in Eq. (4.8) should he calculated from H1 at inlet of thc tower
to H, at its outlet. In order to calculate this integral, enthalpics hetween and H. may be read
from the psyc hrometric chart.

Calculation of the volume of a nonisothermal chemical reactor usually needs the use of
numerical integration. For example. consider the first order reaction A 11 in liquid phase,
taking place in an adiabatic plug flow reactor. Pure A enters the reactor, and it is desired to
have the conversion X1 at the outlet. The volume of' this reactor is given by

V
dX

E
1 10(1 — -—

R T, T

where V is the volume of the reactor, v1 is the inlet volumetric flow rate of A, is the rate
constant at the temperature is the activation energy of the reaction. R is the ideal gas
constant, T is the temperature of the reactor where the conversion is X, and T1 is a reference
temperature.

We must relate X and Tthrough the energy balance to carry out this integration. For an
adiabatic plug flow reactor. assuming constant heat capacities for both A and B, T is given by

R

C ÷X(C -C)
I 1/) /

In this equation, is the heat of' the reaction, C,) and C/) are heat capacities of A and B,
respectively, and T, is a reference temperature.

In order to calculate the volume of the reactor from Eq. (4.9). one has to divide the

200 Numerical Differentiation and Integration Chapter 4

interval [0, X] into small AXs first, and from Eq. (4.10) the temperature in each increment can
be evaluated. Knowing both X and T, the function in the denominator of the integral in Eq.
(4.9) is calculated. Finally, using a numerical technique for integration, the volume of the
reactor can be calculated from Eq. (4.9).

In addition to calculating definite integrals, numerical integration can also be used to
solve simple differential equations of the form

/ dv
= (4.11)

dx

Solution to the differential equation (4.11), after rearrangement, is given as

y v(x0) ÷ fflxdx (4.12)

In this chapter we deal with numerical differentiation in Secs. 4.2-4.5 and integration in
Secs. 4.6-4.10.

4.2 DIFFERENTiATION BY BACKWARD FINITE DIFFERENCES

The relationships between backward difference operators and differential operators, which are
summarized in Table 3.1, enable us to develop a variety of formulas expressing derivatives of
functions in terms of backward finite differences, and vice versa. ln addition, these formulas
may have any degree of accuracy desired, provided that a sufficient number of terms is
retained in the manipulation of these infinite series. This concept will be demonstrated in the
remainder of this section.

4.2.1 First-Order Derivative in Terms of Backward Finite
Differences with Error of Order h

Rearrange Eq. (3.32) to solve for the differential operator B:

I liD2 hD3B = —v ÷ -

÷ ... (4.13)
h 2 6

Apply this operator to the function v at /:

hD2y. h2D3v.
Dy. = —Vv ÷ /

— ÷ ... (4J4)
2 6

4.2 Differentiation by Backward Finite Differences 201

Truncate the series, retaining only the first term, and show the order of the truncation error:

= + 0(h) (4.15)

Express the differential and backward operators in terms of their respective definitions:

dy
i

- - x1) ± 0(h) (4.16)
dx h

Eq. (4. 1 6), therefore, enables us to evaluate the first-order e of s' at position I in terms
of' backward finite differences.

The term 0(h) is used to represent the order of the first term in the truncated portion of
the series. When h < 1 .0 and the function is smooth and continuous, the first term in the
truncated portion of the series is the predominant term. It should he emphasized that for
h< 1.0:

ii >h2>h3>h4> ...
Therefore, when Ii < 1 .0, formulas with higher—order error term. 0(hi"), have smaller truncation
errors, i.e., they are more accurate approximations of derivatives.

On the other hand, when h> 1 .0:

Therefore, formulas with higher-order error terms have larger truncation errors and are less-
accurate approximations of derivatives.

It is obvious then, that the choice of step size h is very important in determining the
accuracy and stability of numerical integration and differentiation. This concept will he
discussed in detail in Chaps. 5 and 6.

4.2.2 Second-Order Derivative in Terms of Backward
Finite Differences with Error of Order h

Rearrange Eq. (3.36) to solve for D:

J I 7) 4
= —V- ± - —h-D (4 17)

hi2 12

Apply this operator to the function y at I:

Dv1 - - lhuD4\ - ... (4.18)

202 Numerical Differentiation and Integration Chapter 4

Truncate the series, retaining only the first term, and express the operators in terms of their
respective definition:

d2y.
= - 2yy1 + + 0(h) (4.19)

dx2 h2

This equation evaluates the second-order derivative of y at position /, in terms of backward
finite differences, with error of order h.

4.2.3 First-Order Derivative in Terms of Backward
Finite Differences with Error of Order h2

Rearrange Eq. (3.32) to solve for hD:

h2D2 /'i3D3hD=V+

- +... (4.20)
2 6

Rearrange Eq. (3.36) to solve for h2D2:

h2D2 = V2 ± h3D3 - ± ... (4.21)

Combine these two equations to eliminate h2D2:

hD = V + V2 + h3D3 - +
- h3D3

2 12 6

= v ±V2 + -
(4.22)

2 3

Divide through by h, and apply this operator to the function y at i:

1 1 h2D3v.
Dy1 = + —V2y1

+ -
... (4.23)

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

dy. i
= —(y1 -y.1) + —(y1 - 2y1 + 0(h2)

dx h 2h

= - + y12) + 0(h2) (4.24)

4.2 Differentiation by Backward Finite Differences 203

In this section, the first derivative of v is obtained with error of order h. For the case
where h c 1.0, Eq. (4.24) is a more accurate approximation of the first derivative than Eq.
(4.16). To obtain the higher accuracy, however, a larger number of terms is involved in the
calculation.

4.2.4 Second-Order Derivative in Terms of Backward
Finite Differences with Error of Order h2

Rearrange Eq. (3.36) to solve for h2D2:

h2D2 V2 h3D3 - ... (4.25)

Rearrange Eq. (3.37) to solve for h3D3:

h3D3 = V3 + - (4.26)

Combine these two equations to eliminate h3D3:

h2D2 = V2 + V3 + - + ... -
2 4 12

3 144
- . (4.27)

Divide through by h2 and apply the operator to the function y at i:

I 1 11
± —Vy1 + —luD

— (4.28)
h 12

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

1 1
-

2 - - 0(1/2)
dx2

= 1(2v, - + 0(h2) (4.29)

204 Numerical Differentiation and Integration Chapter 4

it should be noted that this same equation could have been derived using Eq. (3.42) and an
equation for V4 (not shown here). This statement applies to all these examples. which can be
solved utilizing both sets of equations shown in Table 3.1.

The formulas for the first- and second-order derivatives, developed in the preceding four
sections, together with those of the third- and fourth-order derivative, are summarized in Table
4.1. It can be concluded from these examples that any derivative can be expressed in terms
of finite differences with any degree of accuracy desired. These formulas may be used to
differentiate the function y(x) given a set of values of this function at equally spaced intervals
of x, such as a set of experiment data. Conversely, these same formulas may be used in the
numerical integration of differential equations, as shown in Chaps. 5 and 6.

Table 4.1 Derivatives in terms of backward finite differences

Error of order h

-y) + 0(h)
dx Ii

d2v.
I—(ye - + - 0(h)

dx h

I

= 3v. + 3y.1 + 0(h)
dx3 h3 - -

d4y I

= —('a 2
4v, y1 4) ÷ 0(h)

dx4

Error of order h2

dx.
=

dx

i—(3j;
2h

+
-,- 0(h)

-

d2v I
=

dx h2

i - + ÷ 0(h)

d4v.

cLx4

- -
h4

14v1 + ÷ 1 1v14 - 2v19) + 0(h)

4.3 Differentiation by Forward Finite Differences 205

4.3 DIFFERENTIATION BY FORWARD FINITE DIFFERENCES

The relationships between forward difference operators and differential operators, which are
summarized in Table 3.2, enable us to develop a variety of formulas expressing derivatives of
functions in terms of forward finite differences and vice versa. As was demonstrated in Sec.
4.2, these formulas may have any degree of accuracy desired, provided that a sufficient
number of terms are retained in the manipulation of these infinite series. A set of expressions,
parallel to those of Sec. 4.2. will be derived using the forward finite differences.

4.3.1 First-Order Derivative in Terms of Forward
Finite Differences with Error of Order h

Rearrange Eq. (3.53) to solve for the differential operator D:

hD2 h2D3
(4.30)

h 2 6

Apply this operator to the function v at 1:

hDv. h2D3v.
Dv — —LIv.

—

- (4.31)
h 2 6

Truncate the series, retaining only the first term:

0(h) (4.32)

Express the differential and forward operators in terms of their respective definitions:

d v.
= - v.) - 0(h) (4.33)

dx h

Eq. (4.33) enables us to evaluate the first-order derivative of at position / in terms of forward
finite differences with error of order h.

206 Numerical Differentiation and Integration Chapter 4

4.3.2 Second-Order Derivative in Terms of Forward
Finite Differences with Error of Order h

Rearrange Eq. (3.57) to solve for D2:

= 1A2 - hD3 - - (434)
h2 12

Apply this operator to the function y at 1:

D2y1 = lA2 - hD3y1 - - ... (435)

Truncate the series, retaining only the first term, and express the operators in terms of their
respective definitions:

d2y.
1

= —(v1.7 - + 0(h) (4.36)
dx2 h2

This equation evaluates the second-order derivative of y at position i, in terms of forward finite
differences, with error of order h.

4.3.3 First-Order Derivative in Terms of Forward
Finite Differences with Error of Order h2

Rearrange Eq. (3.53) to solve for hD:

h2D2 h3D3hD=LX- - -... (4.37)
2 6

Rearranging Eq. (3.57) to solve for h2D2:

h2D2 = - h3D3 - - (4.38)

4.3 Differentiation by Forward Finite Differences 207

Combine these two equations to eliminate h!)2:

hD = A - ± & - h3!)3 - - -

2 12 6

2 3

Divide through by h, and apply this operator to the function y at i:

I
h2!)3y.

Dy. —Ay. - —&y ± + ... (4.40)
h 2h 3

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

I

= - - + + 0(h)
dx h 2h

= + - 3v.) + 0(h2)
2h

4.3.4 Second-Order Derivative in Terms of Forward
Finite Differences with Error of Order h2

Rearrange Eq. (3.57) to solve for h2!)2:

h2!)2 - A2 - - ... (4A2)

Rearrange Eq. (3.58) to solve for h3!)1:

= A3 - - - ... (4.43)

Combine these two equations to eliminate h3!)3:

h2!)2 = A2 - A3 - - - ... - -
2 4 12

= A2 - & - (4.44)
12

208 Numerical Differentiation and Integration Chapter 4

Divide through by h and apply the operator to the function)' at i:

D2y. = 1&v. +

h2 12

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

d2y. i
+ - + 0(h2) (4.46)

dx2

The formulas developed in these sections for the first- and second-order derivatives are
summarized in Table 4.2, together with those of the third- and fourth-order derivatives.

It should be pointed out that all the finite difference approximations of derivatives
obtained in this section and the previous section have coefficients that add up to zero. This
is a rule of thumb that applies to all such combinations of finite differences.

From a comparison between Tables 4.1 and 4.2, we conclude that derivatives can be
expressed in their backward or forward differences, with formulas that are very similar to each
other in the number of terms involved and in the order of truncation error. The choice between
using forward or backward differences will depend on the geometry of the problem and its
houndary conditions. This will be discussed further in Chaps. 5 and 6.

4.4 DIFFERENTIATION BY CENTRAL FINITE DIFFERENCES

The relationships between central difference operators and differential operators. which are
summarized in Table 3.3, will be used in the following sections to develop a set of formulas
expressing the derivatives in terms of central finite differences. These formulas will have
higher accuracy than those developed in the previous two sections using backward and
forward finite differences.

4.4.1 First-Order Derivative in Terms of Central
Finite Differences with Error of Order h2

Rearrange Eq. (3.78) to solve for D:

h4D5D=—pô- -... (4.47)
h 6 f20

dy. j
= F 3v.) + 0(ir)

dx 2/;

d

dx

ci

dr3

d4v

dx

h2D3v. h4D7v.
Dv. I -

h 6 120

4.4 Differentiation by Central Finite Differences

Table 4.2 Derivatives in terms of forward finite differences

Error of order h

dv.
— —y.) ± 0(h)

d2v.
+ y) + 0(h)

dx3

I +3v1 —y1) +0(h)

d4y.

dx4

1—(v
—

+ v1) 0(h)

Error of order h2

209

(4.48)

(4.49)

2
- + 0(h)

/1 —

+

2
0(h2

Apply this operator to the function v at i:

Truncate the series, retaining only the first terni:

0(h2)

210 Numerical Differentiation and Integration Chapter 4

Express the differential and averaged central difference operators in terms of their respective
definitions:

dy.
1

-)H) + 0(h2) (4.50)
dx 2h

Eq. (4.50) enables us to evaluate the first-order derivative of y at position i in terms of central
finite differences. Comparing this equation with Eq. (4.16) and Eq. (4.33) reveals that use of
central differences increases the accuracy of the formulas, for the same number of terms
retained.

4.4.2 Second-Order Derivative in Terms of Central
Finite Differences with Error of Order h2

Rearrange Eq. (3.81) to solve for D2:

1 2 hD h4D6-

- - (451
12 360

Apply this operator to the function y at 1:

1 h2D4y. h4D6v.
D2y. = —ô2v. - - (4.52)

h2 12 360

Truncate the series, retaining only the first term:

= + 0(h2) (4.53)

Express the differential and central difference operators in terms of their respective definitions:

d2y. 1

=
- + + 0(h2) (4.54)

dx2 h2

4.4.3 First-Order Derivative in Terms of Central
Finite Differences with Error of Order h4

Rearrange Eq. (3.78) to solve for hD:

h3D3 h'D5 -... (4.55)
6 120

4.4 Differentiation by Central Finite Differences 211

Rearrange Eq. (3.82) to solve for h3D3:

h3D3 =
h5D5 - h7D7 -

(4.56)
4 40

Combine these two equations to eliminate h3D3:

hD - h5D5 h7D7

-)

h5D5 -

4' 40 120

= -— + +... (4.57)pa
h5D5

30

Divide through by h and apply this operator to the function y at i:

Dy. !pov - (4.58)
Ii 6/i 30

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

= - y11) - - 2v.1 2y1 0(h4)
dx 2h 12h

(4.59)

+ 8y1
I + y, + 0(h4)

12h

4.4.4 Second-Order Derivative in Terms of Central
Finite Differences with Error of Order h4

Rearrange Eq. (3.81) to solve for h2D2:

h2D2 = a2
- h4D4 h6D6

(4.60)
12 360

Rearrange Eq. (3.83) to solve for h4D4:

h4D4 = a4
— h6D6 — hMD5

— (4.61)
6 80

212 Numerical Differentiation and Integration Chapter 4

Combine these two equations to e]iminate h4D4:

1 6

h2D2 62 — _L. M
LI — 11 II • — fl —

12 6 80 360

- 62 - + h6D6 -
• R62)

12 90

Divide through by h2 and apply this operator to function v at i:

2 1 I h4!)6Dy1 —&v. - —6 Y1 - ••• (463)
h2 12h2 90 -

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

- — + y1) - - 6y1 — I + +

clx /i2 12/,2

+ 165/I - + 0(h4) (4.64)
12/i -

The formulas derived in Sec. 4.4. 1-4.4.4 for the first- and second-order derivatives are
summarized in Table 4.3, along with those for the third- and fourth-order derivatives.
Development of formulas with higher accuracy and for the higher-order derivatives are left
as exercises for the reader (see Problems).

Example 4.1: Mass Transfer Flux from an Open Vessel. Develop a MATLAB
function for numerical differentiation of a functionf(x) over the range [x0, with truncation
error of order h2. Apply this function to evaluate the unsteady-state flux of water evaporated
into air at I atm and 25°C from the top of an open vessel. Consider the distance between
water level and the open top of the vessel to he 0.1, 0.2, and 0.3 m. The flux of water vapor
at a level z above the level of water is given by Bird et al. 121:

N. - eD —H0
l—x0

where t'L is the flux of water vapor at level z, c is the total concentration of the gas phase, I)
is the diffusion coefficient of water vapor in air, .v is the mole fraction of water vapor, and v11
indicates the value of x at = 0.

The unsteady-state concentration profile for this problem, assuming no air flow at the
top of the vessel, is obtained from

= I - erf(Z p)
I +

Example 4.1 Mass Transfer Flux from an Open Vessel 213

where

x z

where t is time and p is obtained from the solution of the following nonlinear equation:

= 1 +
(4)

For the air-water system,

I) = m2/s, = (25°C)/P, = 0.0312. c = P,/RT= 0.0409 Kmol/m3

Table 4.3 Derivatives in terms of central finite differences

Error of order h2

-) + O(h)
(IA 2h

— + = 0(/r)
dx- Ir

1

- - 2y1 + - + O(Ir)
dx3 - -

1

- —(v-, + óv - 4v + ,) O(h)
dx4 h4 - -

Error of order h4

dv.
—(-v±2 - 8v + ,)

dx i2h -

d2v. I

= ± 16v11 - 30y,. + 0(h4)
dx]2h

1

= —(+
2 l3v1 - ±

dx1 Rh

d4v.
= + - + - + 12)

2 - ±

dx4 6h4

214 Numerical Differentiation and Integration Chapter 4

Method of Solution: In order to calculate the flux of water vapor, first we have to

determine the value of p from the solution of the nonlinear Eq. (4). The concentration of
water vapor is then obtained from Eqs. (2) and (3). Having the concentration profile. its
derivatives at the water surface level (z = 0) and any desired level the surface of water
can be evaluated. Finally, the mass transfer flux is calculated from Eq. (1).

Differentiation of the function)' =f(x) is done based on equations shown in Tables 4. 1-
4.3. According to the chosen method of finite difference, the equation for derivation with
truncation error of order h2 will be employed. If the method of finite difference is not
determined by the user, central finite difference will be used for differentiation.

Program Description: The MATLAB function fr/en in evaluates the derivative of a
function. The first part of the program is initialization, where inputs to the function are
examined and default values for differentiation increment (h) and method of finite difference
are applied, if required. Introducing these two inputs to the function is optional. The program
then switches to a different part of the program. according to the choice of method of finite
difference, and then it switches to the proper section according to the order of differentiation,

The first input argument should he a string variable giving the name of the m-file that
contains the function whose derivative is to be evaluated. The second input argument is the
order of derivation, which has to be less than or equal to 4. The third input argument may he
a scalar or a vector at which the derivative is to he evaluated. The fourth and fifth input
arguments are optional and represent the increment of the independent variable and the method
of finite differences, respectively. The default value of h is 1/100 of the minimum value of
the independent variable or 0.001 if this minimum is zero. If the assigned value for Ii is
smaller than the floating point relative accuracy, eps, the function assumes the relative
accuracy as the differentiation increment. The user may specify the value of -1, 0. or + 1 for
method of finite difference if it is required to evaluate the derivative based on backward,
central, or forward finite difference, respectively. The default method is the central difference.
Any additional argument will be carried directly to the rn-file that represents the function and
may contain parameters (such as constants) needed for the function.

To solve the problem posed in this example, three more MATLAB programs are written.
The main program, named Example4_].m, does the necessary calculations and plots the
results. The function Ex4j_prqfi/e.m represents the concentration profile of this problem
[Eqs. (2) and (3)j. The independent variable of this function and other variables necessary
to evaluate the function are entered as parameters. The function Ex4_],phi.ni is the nonlinear
function from which the value of p is calculated [Eq. (4)J.

Program

Example4_1.m
% Example4_l.m
I This program solves Example 4 . 1. It calculates and plots the unsteady
% flux of water vapor from the open top of a vessel. The program uses

Example 4.1 Mass Transfer Flux from an Open Vessel 215

% the function EDER to obtain the concentration gradient.

clear
dc
cl f

% Input data
zO = 0;
t = input) Vector of time (s) =

z = input) Vector of axial positions (m) =

D = input(Diffusion coefficient of the vapor in air (m2/s) =

T = 273.15 + input) System Temperature (deg C) =

P = input(System pressure (Pa) =

Psat = input(Vapor pressure at the system temperature (Pa) =

xO = Psat/P; % Mole fraction
R = 8314; % Gas constant
c = P/(R*T); % Gas concentration
phifile = input(Name of the m-file containing the equation for phi

profile = input(Name of the m-file containing the concentration
profile =

% Solving the nonlinear equation for phi
phi = fzero(phifile,l,le—6,0,xO);
% Concentration gradient at z=zO
dxdzo = fder(profile,l,z0,{],[],t,xOD,phi);
for k = 1 : length(z)

% Concentration gradient
dxdz(k,:) = fder(profile,l,z(k),[],[],t,xO,D,phi);
% Mole fraction profile
x(k,:) =

I Molar flux
Nz(k, :) = _c*D*dxdz(k, :)-x(k, :)*c*D/(l_xO) .*dxdzo;

end

% Plotting the results
figure(l)
plot (t/60,Nz*3600*18*l000)
xlabel(t (mm.))
ylabelLN_z (gr/m2.hr))legend(z_l,z_2,z_3,l)
figure (2)

plot(t/60,x)
xlabel(t (mm.))
ylabel(Mole fraction of the Vapor)
legend(z_l, z_2, z3,2)

216 Numerical Differentiation and Integration Chapter 4

Ex4_Lprofile.m
function x = Ex4_l_profile(z,t,xO,D,phi)
% Function Ex4_l_profile.m
% Concentration profile evaluation in Example 4.1.

Z = z./sqrt(4*D*t) % Dimensionless axial position
X = (l-erf(Z--phi)) / (l+erf (phi)) % Dimensionless concentration
x = xO*X; % Mole fraction

Ex_4jhi.m
function phif = Ex4_l_phi(x , xO)
% Function Ex4_l_phi.m
% Nonlinear equation for calculation of phi in Example 4.1.

fder.m

function df = fder(fnctn, order, x, h, method, varargin)
%FDER Evaluates nth-order derivative (nc=4) of a function
% with truncation error of the order
%

FDERVF',N,X) evaluates Nth order derivative of the
function described by the M—file F.M at X. X may be a
scalar or a vector.

FDER('F' ,N,X,H,METHOD,PARAMETER) evaluates Nth order
derivative of the function using H as increment of X used
in differentiation.
METHOD is the finite difference method used

Use METHOD -l for backward finite difference
Use METHOD = 0 for central finite difference
Use METHOD = 1 for forward finite difference

% PARAMETER is a scalar or a vector of parameters that are
passed to the function F.M. Pass an empty matrix for H
or METHOD to use the default values.

% See also DERIV

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin == 3

1

isempty(h)
method = 0;
h = min(abs(x))/lOO;
if h == 0

h = 0.001;
end
if h c eps

Example 4.1 Mass Transfer Flux from an Open Vessel 217

end
end

h = eps;

if nargin<5 isempty(method)
method = 0;

end

if (order c 1((order > 4(
error(Invalid input.)
break

end

df =
case 2

yi =
df =

case 3

yim2
yip2
df =

(h c= 0)

difference

yim3
yim4
yim5
df =

switch method
case -1 Backward finite

yi = feval(fnctn / x / varargin{:)(;
yiml = feval(fnctn / x-h / vararginU});
yim2 = feval(fnctn / x_2*h

/ varargin{:fl;
switch order
case 1 % 1st order derivative

df = (3*yi_4*yiml+yim2)/(2*h);
case 2 2nd order derivative

yim3 = feval(fnctn / vararginj:});
df =

case 3 % 3rd order derivative
yim3 = feval(fnctn / vararginf:}(;
yim4 = feval(fnctn $

$ varargin{:}(;
df =

case 4 4th order derivative
= feval(fnctn $

/ varargin{:});
= feval(fnctn / x_4*h varargin{:});
= feval(fnctn / x_5*h

/ varargin{:fl;

end
case 0 % Central finite

yiml = feval(fnctn x-h varargin(:}(;
yipl = feval(fnctn x+h $ varargin{:}(;
switch order
case 1 % 1st order derivative

(yipl-yiml) / (2*h(;

% 2nd order derivative
feval(fnctn x varargin(:}(;
(yipl_2*yi÷yiml)

3rd ordet derivative
= feval(fnctn $ x_2*h

/ vararginf:}(;
= feval(fnctn $ x+2*h

$ varargin{:});
(yip2_2*yipl+2*yiml_yim2(/(2Th"3)

case 4 1 4th order derivative
yim3 = feval(fnctn $ x_3*h

$ varargin(:}(;

difference

218 Numerical Differentiation and Integration Chapter 4

yim2 = feval)fnctn , x-2"h , varargin{:});
yi = feval(fnctn x , varargin{:});
yip2 = feval(fnctn / x+2*h

, varargin{:});
yip3 = feval)fnctn , x+3"h , varargin{:});

= (_yip3+l2*yip2_39*yipl+56*yi_39*yiml+l2*yiln2_yim3) /

end
case 1 % Forward finite difference

yi = feval(fnctn , x , varargin{:});
yipl = feval(fnctn , x+h varargin{:});
yip2 = feval(fnctn ,

, varargin{:});
switch order
case 1

df =
case 2

end

Input and Results

% 1st order derivative
(_yip2+4*yipl_3*yi) / (2*h);

% 2nd order derivative
= feval(fnctn ,

, varargin(:});
(_yip3+4*yip2_5*yipl+2*yi) /h"2;

% 3rd order derivative
= feval(fnctn x+3*h varargin(:});
= feval(fnctn , x+4*h

, varargin{:});
(_3*yip4+l4*yip3_24*yip2±l8*yipl_s*yi)/)2*h/\3);

5 4th order derivative
= feval(fnctn , x+3*h

, varargin{:});
= feval(fnctn ,

, varargin{:});
= feval(fnctn ,

, varargin{:});
(_2*yips+ll*yip4_24*yip3+26*yip2_14*yipl+3*yi) /h"4;

>>Example4_l

Vector of time (s) = eps:3600
Vector of axial positions (m) = [0.1. 0.2, 0.3]
Diffusion coefficient of the vapor in air)m2/s) = 2.2e-5
System Temperature (deg C) = 25
System pressure)Pa) = 101325
Vapor pressure at the system temperature (Pa) = 3161
Name of the rn-file containing the equation for phi = 'Ex4_l_phi'
Name of the m-file containing the concentration profile
'Ex4l_pro file'

Discussion of Results: Fig. E4.la shows the unsteady diffusive mass transfer flux from
the open top of the vessel.' The concentration profiles with respect to time are also plotted in

When running Erornple4j rn. solution results will he shown on the screen by solid lines of different color
However, results for three different levels chosen here are illustrated by different signs in Figs. E4. In and b in order
to he discriminated

yip3
df =

case 3

yip3
yip4
df =

case 4

yip3
yip4
yip5
at =

end

Example 4.1 Mass Transfer Flux from an Open Vessel

to>
at

C

C

to

0)
C

Figure E4.lb Mole fraction versus time.

219

(mm.)

Figure E4.la Flux versus time.

30
(mm)

220 Numerical Differentiation and Integration Chapter 4

Fig. E4. I b. Fig. E4. Ia shows that the mass flux rises at the beginning and reaches a
maximum. The flux of water vapor then decreases constantly. This behavior is due to the fact
that at the beginning of the process, there is dry air above the water level, and mass transfer
is taking place faster because of high driving force, which is the concentration gradient.
However, the mass transfer rate decreases, after enough time has passed and the water vapor
concentration moves closer to saturation and the driving force decreases. Vapor concentration
decreases with increasing height.

In the program Exarnple4 _1 rn, defaults are used for choice of method of finite difference
and differentiation increment. The defaults are central finite difference and h = 0.001.
respectively. The reader is encouraged to repeat the calculation using the other methods of
finite differences and with different increments.

Example 4.2: Derivative of Vectors of Equally Spaced Points. Write a general
MATLAB function to calculate first- to fourth-order derivatives of a series of data presented
numerically in a matrix whose columns represent vectors of dependent variable. The user
should he able to choose between backward, forward. or central differentiation as well as the
order of the truncation error. Apply this function to calculate the solids volume fraction in a
riser of a bench-scale gas-solid fluidized bed whose axial pressure profile is given in Tahle
E4.2. Assume fully developed solids flow in the riser and neglect wall shear and solids stress.
The densities of gas and solids phases are 1.2 kg/ni3 and 2650 kg/ni3, respectively.

Table E4.2

Axial position (m) Pressure (kPa g)

0.0 1.80

t).5 1.38

1.0 1.09

1.5 0.63

2.0 0.18

Method of Solution: The equations in Tables 4.1-4.3 are used to differentiate the
columns of the matrix y with the desired order of truncation error. Differentiation is done
based on equally spaced segments of the independent variable.

Writing the momentum balance equation for the two-phase flow, we lind that pressure
drop in the above-mentioned conditions is balanced by the weight of the bed, that is:

dP
= [Pg(l - - (1)

Example 4.2 Derivative of Vectors of Equally Spaced Points 221

where P is the pressure, z is the axial position, and p, are the densities of gas and solids,
respectively, is the volume fraction of the solids, and g is the gravitational acceleration.
Eq. (1) can be solved for

(—dPIdz) — p,g
(2)

(ps - pç)g

The solids volume fraction profile can be calculated from Eq. (2) once the pressure gradient
is extracted from the data tabulated in Table E4.2.

Program Description: The MATLAB function cteriv.m is written to calculate first- to
fourth-order derivatives of a matrix of input data. The first part of the program is initialization
in which the values of h, order of derivative, method of finite difference used, and order of
truncation error are assigned if not entered as input to function. If onlyy is givcn as input to
the function, the program calculates the central finite differences of y as the output. The
second input argument is the increment of the indcpcndent variable. The third one is the order
of derivative. A value of - 1, 0, or I as the fourth input argument results in calculation of the
derivative based on backward, central, or forward finite differences, respectisely. The fifth
argument is the value of the order of truncation error (I or 2 for backward and forward
differences and 2 or 4 for central differences).

The derivative matrix returned by the function deriv.m has the same number of elements
as the vector of input data itself. However, it is important to note that, depending on the
method of finite difference used, some elements at one or both ends of the derivative vector
are evaluated by a different method of differentiation. For example, in first-order
differentiation with the forward finite difference method with truncation error 0(h), the last
element of the returned derivative vector is calculated by backward differences. Another
example is the calculation of the second-order derivative of a vector by the central finite
difference method with truncation error 0(h2), where the function evaluates the first two
elements of the vector of derivatives by forward differences and the last two elements of the
vector of derivatives by backward differences. The reader should pay special attention to the
fact that when the function calculates the derivative by the central finite difference method
with the trtincation error of the order the starting and ending rows of derivative
values are calculated by forward and backward finite differences, with truncation error of
the order 0(h2).

The main program Example4_2.m asks the reader to input the data from the keyboard.
It then applies the function deriv.m to evaluate the pressure gradient and calculates the solids
volume fraction from Eq. (2). At the end, the program plots the result of the above
calculations.

Program

Exainple4_2. in
% Example4_2.m
% This program solves Example 4.2. It calculates and plots

222 Numerical Differentiation and Integration Chapter 4

% the volume fraction profile in a gas-solid fluidized bed.
% The program uses the function DERIV to obtain the pressure
% gradient.

clear
dc
clf

% Input data
P = input) Vector of pressures)kPa) =)*1e3;
dz input)' Axial distance between pressure probes)m) =

= inputç Density of the gas ckg(mU =
rhos = input) Density of solids (kg/m3) =
g = 9.81;
% Pressure gradient
dP = deriv(P,dz);
% Solids concentration
epsilon_s = (_dP_O*rhog*g) / (g*)rhosrhog));
fprintf('\n Average solids concentration = %4.2f%% \n,

lOO*mean(epsilon_s))

% Plotting the results
z = [O:length(P)_l]*dz;
plot (z, 100*epsilon_s)
xlabel)'z (m)')
ylabel)'Solids volume fraction (%)')

deriv.,n

function dy = deriv(y, h, order, method, err)
%DERIV Differentiates a matrix of data numerically

% DERIV)Y) calculates the central differences of each vector
% of matrix

% OERIV(Y,H) calculated the first-order derivative of y by
% central finite differences using H as the independent

variable interval.

% DY = DERIV)Y,H,ORDER,METHOD,ERR) returns the derivative
% of columns of the matrix Y where
% H is the independent variable interval
% ORDER is the order of differentiation)up to 4th order)
% METHOD is the finite difference method used

Use METHOD = -l for backward finite difference
Use METHOD = 0 for central finite difference
Use METHOD = 1 for forward finite difference

% ERR is the order of error of calculation. ERR may be
1 or 2 for backward and forward finite difference
and 2 or 4 for central finite difference.

Example 4.2 Derivative of Vectors of Equally Spaced Points 223

% See also FDER, 01FF

% (c) N. Nostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin == 1 isempty(h)

h = 1;
end

if nargin < 3
1

isempty(order)
order = 1;

end

if nargin < 4 isempty (method)

method = 0;
err = 2;

end

if nargin == 4

if method == 0

err = 2;
else

err = 1;
end

end
if abs(method) == I & (err < 1

I

err > 2)
err = 1;
warning(Order of truncation error is set to 1.)

end
if method ==0 & -(err 2

I

err —= 4)
err = 2;
warning) Order of truncation error is set to 2.!)

end

Er ci = size(y);
if r == 1 % If y is a row vector

y = y!; % Make it a column vector
r = c;
c = 1;

end
n = r; % Number of points
dy = zeros(r c);

% Oifferentiation
switch method
case -l % Backward finite differences

switch err
case 1 % 0(h)
switch order

224 Numerical Differentiation and Integration Chapter 4

end
case 2

switch order
case 1
dy (3 n

dy (1 : 2

case 2
dy (4: n

÷ y(1:n-2
y(1:2

+ 3*y(2:n_2
:) .

+
/

case 1 % 1st order derivative
dy(2:n / :) = (y(2:n / :) - y(1:n-1 / :))/h;
dy(1 / :) = (y(2 / :) - y(l / fl/h;

case 2 % 2nd order derivative
dy(3:n / :)=(y(3:n :) -

dy(1:2 :)=(y(3:4 / :)
- 2*y(2:3

/ : (+
case 3 % 3rd order derivative

dy(4:n / : (=(y(4:n / :)
-

— y(1:n—3
dy(1:3 / : (=(y(4:6 :)

- 3*y(3.5
/ :) +

— y(1:3 :fl/h"3;
case 4 % 4th order derivative

dy(5:n / :)=(y(5:n :) - 4*y(4:n_1
/

- 4*y(2:n_3 :) + y(1:n-4 /

dy(1:4 :)=(y(5:8 / :)
- 4*y(4.7

:)
+ 6*y(3:6

/ :) .

- 4*y(2:5 :) + y(l:4 /

% O(h"2(

% 1st order derivative
:)(3*y(3:n :) - 4*y(2:n_1

/ :)+y(1:n-2, :fl/(2*h);

:)(-y(3:4 :) + 4*y(2:3 :) - 3*y(l:2 :fl/(2*h);
% 2nd order derivative

/ :
)
÷ 4*y(2:n_2 :)

- y(1:n-3
dy(1:3 / :) = (-y(4:6 :)

+ 4)/y(3.5 :) 5*y(2:4
/ :) .

+ 2*y(l:3
/

case 3 % 3rd order derivative
dy(5:n / :)=(5*y(5:n / :)_18*y(4:n_l :)+24*y(3:n_2

/ : (

- 14*y(2:n_3 :) + 3*y(1:n_4
/

dy(1:4 / :)—(3*y(5.8 / :)
+ l4*y(4:7

:)
— 24*y(3:6

:) . -

+ 18*y(2:5
/ :) - 5*y(1:4 :fl/(2*h/\3);

case 4 % 4th order derivative
dy(6:n / :)=(3*y(6:n / :)_14ky(5:n_] / :)+26*y(4:n_2

/ :)
- 24*y(3:n_3 :) + 11*y(2:n_4

/ :) - 2*y(1:n_5
dy(1:5 :)_(2*y(6.lO :)+llky(5:9 :) — 24*y(4:8

/ :) -

+ 26*y(3:7
/ :) - 14*y(2.6 :) + 3*y(1:5

/

end
end

case 0 % Central finite differences
switch err
case 2 %

switch order
case 1 % 1st order derivative
dy(1 / :) = (-y(3 :) + 4*y(2

/ :) - 3*y(l /

dy(2:n-l / :) = (y(3:n / :(- y(1:n-2 / :))/(2*h);
dy(n :) = (3*y(n / :) - 4*y(n_l

/ :) + y(n-2
case 2 % 2nd order derivative
dy(1 / :)=(-y(4 / :)+4*y(3 / :)_5*y(2 / :)+2*y(l

/

dy(2:n-l / :)=(y(3:n / :)_2*y(2:n_1
/ :)+y(1:n-2 /

Example 4.2 Derivative of Vectors of Equally Spaced Points 225

dy(n)
= (2*y(n

)
- 5*y(n_1

)
+

/ •

- y(n-3 /

case 3 % 3rd order derivative
dy(1:2 / :)(_3*y(5:6

:)
+ 14*y(4.5 - 24*y(3:4

)

+ i8*y(2:3
/

- 5*y(i:2
dy(3:n-2 / :)=(y(5:n /)

—
/) +

. *

-y(i:n-4
dy(n—1:n /

= (5*y(n_1:n
/) - 18*y(n_2:n_i :)

+ 24*y(n_3:n_2
/)

- i4*y(n_4:n_3
/) *

+ 3*y(n_5:n_4
case 4 % 4th order derivative
dy(1:2 /

)=(_2*y(6:7
:) + ll*y(5:6

/) - 34*y(4;5
)

+ 26*y(3:4
/

- 14*y(2:3
/ :) + 3*y(i:2

dy(3:n—2 :)=(y(5:n :)
— 4*y(4:n_i

/ :) + 6*y(3:n_2
/

- 4*y(2:n3 :) + y(1:n-4
dy(n—i:n / :) = (3*y(n_1:n

/
- 14*y(n_2:n_i

) .

+ 26*y(n_3:n_2
/ :) - 24*y(n_4:n_3

/ :) .

+ ii*y(n_5:n_4 - 2*y(n_6:n_5
/

end
case 4 %
switch order
case I
dy(1:2 :)(-y(3:4 + 4*y(2:3 :) - 3*y(l:2 :))/(2*h);

dy(3:n-2 / :)=(-y(5:n)+8*y(4:n_1 /)
-

)

+y(1:n-4 /

dy(n—1:n :)(3*y(n_1:n :)_4*y(n_2:n_1 / :) .

+y(n-3:n-2 /

case 2

dy(1:2 / :) = (-y(4:5 :)
+ 4*y(3:4

)

— 5*y(2:3
:) .

+ 2*y(l:2
/

dy(3:n-2 :)=(-y(5:n / :)_30*y(3:n_2
+ 16*y(2:n_3

/ - y(I:n-4
dy(n—1:n = :)

- 5*y(n_2:n_1
:)

+ / :) - y(n-4:ri-3
case 3
dy(1:3 /

)=(_3*y(5.7
/) + 14ky(4:6

)
—

) .

+ - 5*y(I:3 /

dy(4:n-3 / :)=(-y(7:n :)+8*y(6:n_1
)

-
/

+ 13*y(3:n_4
/ :) - 8*y(2:n_5 :) + y(1:n-6

dy(n—2:n /
= (5*y(n_2:n

/ :) - 18*y(n_3:n_1
/) . *

+ 24*y(n_4:n_2
/)

- 14*y(n_5:n_3
/

+ 3*y(n_6:n_4
/ :))/ (2*h/\3);

case 4
dy(1:3 /) = (_2*y(6:S

/ :)

+ 11*y(5.7
/) * . *

— 24*y(4:6
/ :) + 26*y(3:5

/ * *

- 14*y(2:4
/

:) + 3*y(l:3
/

dy(4:n—3
/

:) (—y(7:n
/) + 12*y(6:n_1

/ :) *

— 39*y(5:n2
/)

+ 56*y(4:n_3
/) — 39*y(3:n4

/) * .

+ 12*y(2:n_5
/

- y(1:n-6 /

dy(n-2:n / :) = (3*y(n_2;n
/

- 14*y(n_3:n_1
/

226 Numerical Differentiation and Integration Chapter 4

26*y(n_4:n_2 :)
- :)

± 11*y(n_6:n_4 :) - 2*y(n_7:n_5
end

end
case 1 % Forward finite differences

switch err
case 1 % 0(h)
switch order
case I % 1st order derivative
dy(1:n—1 :) = (y(2:n - y(1:n-1
dy(n :) = (y(n :) - y(n-1
case 2 % 2nd order derivative
dy(1:n—2 :)=(y(3:n - 2*y(2:n_1 :) + y(1:n-2
dy(n-1:n :) = (y(n-1:n :) - 2*y(n_2:n_1

/ :)
+ y(n—3:n-2 /

case 3 % 3rd order derivative
dy(1:n—3 /) = (y(4:n / :) — 3*y(3:n_1

/ :) .

+ 3*y(2:n_2
/ U — y(1:n—3 /

dy(n-2:n :) = (y(n—2:n / :) - 3*y(n_3:n_1
/ :)

+ 3*y(n_4:n_2
/ U - y(n—5:n-3 /

case 4 % 4th order derivative
dy(1:n—4 / :)=(y(5:n / :) - 4*y(4:n_1 U + :) .

— 4*y(2:n_3 :) + y(1:n—4 /

dy(n—3:n :) = (y(n-3:n :) - 4*y(n_4:n_1
/ :) .

+ 6*y(n_5:n_2 / :) - 4*y(n_6:n_3 :) + y(n—7:n—4
end
case 2 %
switch order

case 1 % 1st order derivative
dy(1:n—2 / :) = (—y(3:n)

+ 4*y(2:n_1
/) .

- 3*y(1:n_2
dy(n—1:n)

= (3*y(n_1:n
/ :)

- 4*y(n_2:n_1
) .

+ y(n-3:n-2 :))/(2*h);

case 2 % 2nd order derivative
dy(1:n-3)=(-y(4:n /

)+4*y(3:n_1
/

)_s*y(2:n_2
+ 2*y(1:n_3

/

dy(n—2:n /) = (2*y(n_2:n
/)

— s*y(n_3:n_1
/) .

+ 4*y(n_4:n_2
/ :) - y(n-5:n-3

case 3 % 3rd order derivative
dy(1:n—4 :)

= (_3*y(5:fl
/ :) +

/ :) .

- 24*y(3:n_2
/)

+
:)

- 5*y(1:n_4
dy(n—3:n :) = (5*y(n_3:n

/ :) — 18*y(n_4:n_1 :)

+ 24*y(n_5;n_2 :) - 14*y(n_6:n_3
/ :)

+ 3*y(n_7:n_4 /

case 4 % 4th order derivative
dy(1:n—5 /) = (_2*y(6:n

/ :) + 11*y(5:n_1
)

- 24*y(4:n_2
/ :) + 26*y(3:n_3

/) - 14*y(2:n_4
/ :) .

+ 3*y(1:n_5
/

dy(n-4:n / :) = (3*y(n_4:n
/ :) - 14*y(n_5:n_1 :) . .

Example 4.2 Derivative of Vectors of Equally Spaced Points 227

+ 25*y(n_6:n_2
:)

- 24*y(n_7:n_3
:)

+ 1l*y(n_8:n_4 :) - 2*y(n_9:n_5
,

end
end

end

Input and Results

>>Example4_2

Vector of pressures (kPa) = [1.80, 1.38, 1.09, 0.63, 0.18]
Axial distance between pressure probes (m) = 0.5
Density of the gas (Kg/m3) = 1.2
Density of solids (Kg/m3) = 2650

Average solids concentration = 3.26%

Discussion of Results: Fig. E4.2 shows the results graphically. It can he seen from this

figure that the solids fraction does not change appreciably with height. The value of €, varies
between 2.7% and 3.8% (approximately) with its mean value at 3.26%. This confirms the
assumption made at the beginning that the measurements are done in the fully developed zone
where the solids move with a constant velocity.

02 06 06 1 16
z (m)

Figure E4.2 Solids volume fraction versus height.

228 Numerical Differentiation and Integration Chapter 4

4.5 SPLINE DIFFERENTIATION

In some situations, tabulated function values are available, instead of their algebraic
expression, and it is desired to evaluate the derivative of the function at a point (or points)
between the tabulated values. A practical method in this situation is to interpolate the base
points first and calculate the value of the derivative from differentiating the interpolating
polynomial. Among different interpolating polynomials, cubic splines have the advantage of
continuity of the first derivative through all base points.

By cubic spline interpolation of the function, its derivative at any point x in the interval
[x1 ,x1] can be calculated from differentiating Eq. (3.143):

dv I (x - x1)2
1 (x -

y.
dx 2x11 —x1 2 x1 —x1

V.
- —(x1 -)

1

(4.65)
6 x1

Prior to calculating the derivative from Eq. (4.65), the values of the second derivative at the
base points should be calculated from Eq. (3.147). Note that if a natural spline interpolation
is employed, the second derivatives for the first and the last intervals are equal to zero.

The reader can easily modify the MATLAB function Natura/SPLINE.rn (see Example 3.2)
in order to calculate at any point the first derivative of a function from a series of tabulated
data. It is enough to replace the formula of the interpolation section with the differentiation
formula, Eq. (4.65). Also, the MATLAB function spline.m is able to give the piecewise
polynomial coefficients from which the derivative of the function can be evaluated. A good
example of applying such a method can he found in Hanselman and Littlefleld [31. As
mentioned before, spline.rn applies not-a-knot algorithm for calculating the polynomial
coefficients.

4.6 INTEGRATiON FORMULAS

In the following sections we develop the integration formulas. This operation is represented
by

I - fJ(x)dx (4.66)
vu

4.6 Integration Formulas 229

which is the integral of the function y =f(x), or integrand, with respect to the independent
variable x, evaluated between the limits x = x0 to x = If the functionf(x) is such that it can
be integrated analytically, the numerical methods are not needed for this problem. However,
in many cases, the function 1(u) is very complicated, or the function is only a set of tabulated
values of x and y, such as experimental data. Under these circumstances, the integral in Eq.
(4.66) must be developed numerically. This operation is known as numerical quadrature.

It is known from differential calculus that the integral of a functionf(x) is equivalent to
the area between the function and the x axis enclosed within the limits of integration, as shown
in Fig. 4. Ia. Any portion of the area that is below the x axis is counted as negative area (Fig.
4.lb). Therefore, one way of evaluating the integral

fydx

is to plot the function graphically and then simply measure the area enclosed by the function.
However, this is a very impractical and inaccurate way of evaluating integrals.

A more accurate and systematic way of evaluating integrals is to perform the integration
numerically. In the next two sections, we derive Newton-Cotes integration formulas for
equally spaced intervals and Gauss quadrature for unequally spaced points.

(a)

y

(b)

Figure 4.1 Graphical representation of the integral. (a) Positive area only
(b) Positive and negative areas.

xo

xo x C

230 Numerical Differentiation and Integration Chapter 4

4.7 NEWTON-COTES FORMULAS OF INTEGRATiON

This method is accomplished by first replacing the function = fix) with a polynomial
approximation, such as the Gregory-Newton forward interpolation formula [Eq. (3. 1 22)j. In
practice, the interval [r0,;] is being divided into several segments. each of width h, and the
Gregory-Newton forward interpolation formula becomes (note that x + h):

(x x0) (x x0)(x — x1)
Yo

Ii 2!h2

(x - x0)(x - VL)(x — .v,)
+ + ... (4.67)

3! h3

Because this interpolation formula fits the function exactly at a finite number of points (a +
1), we divide the total interval of integration [v0, x] into n segments, each of width I,. In the
next step, by using Eq. (4.67), Eq. (4.66) can be integrated. The upper limits of integration
can be chosen to include an increasing set of segments of integration, each of width Ii. In each
case, we retain a number of finite differences in the finite series of Eq. (4.67) equal to the
number of segnients of integration. This operation yields the well-known Neuton-Coies
formulas of integration. The first three of the Newton-Cotes formulas are also known by the
names trapezoidal rule, Simpson 's 1/3 rule and Simpson 's 3/8 rule, respectively. These are
developed in the next three sections.

4.7.1 The Trapezoidal Rule

In developing the first Newton-Cotes formula, we use one segment of width h and fit the
polynomial through two points (x0, .v0) and (see Fig. 4.2). This is tantamount to fitting
a straight line between these points. We retain the first two terms of the Gregory-Newton
polynomial (up to, and including, the first forward finite difference) and group together the
rest of the terms of the polynomial into remainder term. Thus, the integral equation becomes

(x — x)

= f Y0
— h

zàY() dx fR(A)dx (4.68)

4.7 Newton-Cotes Formulas of Integration 231

The first integral on the right-hand side is integrated with respect to x and the first forward
difference is replaced with its definition of Av3 = - y0, to obtain

11

I] + y1) ± fR,(x)dx

The remainder term is evaluated as follows:

f R,(x)dx

(4.69)

(x — x0)(x X])

2!h2

- l/A2
12

(x - .v1)(x

3!

-
24

A2). +

(4.7(J)

The forward difference operators, A2, &,...,are replaced by their equivalent in terms of
differential operators [Eqs. (3.57) and (3.58)1. and the remainder term becomes

y

Figure 4.2 Enlargement of segment showing the
application of the trapezoidal rule.

XL)

232 Numerical Differentiation and Integration Chapter 4

JR,Jx)dx = _1h3D2y0 - + (4.71)

The remainder series can be replaced by one term evaluated at therefore,

= (4.72)

This is a term of order h3 and is abbreviated by 0(h3). Therefore, Eq. (4.69) can be written as

= ± y1) + 0(h3) (4.73)

This equation is known as the trapezoidal rule, because the term (h12)(y0 + y1) is
essentially the formula for calculating the area of a trapezoid. In this case, the segment of
integration is a trapezoid standing on its side. It was mentioned earlier that fitting a
polynomial through only two points is equivalent to fitting a straight line through these points.
This causes the shape of the integration segment to be a trapezoid, shown as the shaded area
in Fig. 4.2. The area between y =f(x) and the straight line represents the truncation error of
the trapezoidal rule. If the functionf(x) is actually linear, then the trapezoidal rule calculates
the integral exactly, because = 0, which causes the remainder term to vanish.

The trapezoidal rule in the form of Eq. (4.73) gives the integral of only one integration
segment of width h. To obtain the total integral, Eq. (4.68) must be applied over each of the
n segment (with the appropriate limits of integration) to obtain the following series of
equations:

- ± y1) + 0(h3) (4.73)

'2 = + y2) + 0(h3) (4.74)

J = + + 0(h3) (4.75)

Addition of all these equations over the total interval gives the multiple-segment trapezoidal
rule:

=

+ 2E y1 + + nO(h3) (4.76)

4.7 Newton-Cotes Formulas of Integration 233

For simplicity, the error term has been shown as iio(W). This is only an approximation
because the remainder term includes the second-order derivative of v evaluated at unknown
values of each heing specific for that interval of integration. The absolute value of the
error term cannot he calculated, hut its relative magnitude can he measured by the order of the
term. Because n is inversely proportional to h:

k

a (4.77)

the error term for the multiple-segment trapezoidal rule becomes

0(h3) 0(h2) (4.78)

That is, the repeated application of thc trapezoidal rule over multiple segments has lowered
the error term by approximately one order of magnitude. A more rigorous analysis of the
truncation error is given in the next chapter.

4.7.2 Simpson's 1/3 Rule

in the derivation of the second Newton-Cotes formula of integration we use two segments of
width h (see Fig. 4.3) and fit the polynomial through three points, (x0, v1). (.v1, v1). and (x,. .\'3).

This is equivalent to fitting a parabola through these points. We retain the first three terms of
the Gregory-Newton polynomial (up to, and including, the second forward finite difference)
and group together the rest of the terms of the polynomial into the remainder term. The
integral equation becomes

(x x)
I]

—

y
+ 0

Ay()
+ 0

v0 dx
+

J I?, (.x) dx (4.79)
11 2!h2

Integration ofEq. (4.79) and substitution of the relevant finite difference relations simplify this
equation to

1 + + v1) - (4.80)
3 - 90

The error term is of order h5 and may he abbreviated by 0(hs). We would have expected to
obtain an error term of 0(h4) because three terms were retained in the Gregory-Newton
polynomial. However, the term containing h4 in the remainder has a iero coefficient, thus
giving this fortuitous result. The final form of the second Newton-Cotes formula, which is

234 Numerical Differentiation and Integration Chapter 4

better known as Simpson's 1/3 rule, is

'1 = + 4Y1 Y2) + 0(h5) (4.81)

This equation calculates the integral over two segments of integration. Repeated
application of Simpson's 1/3 rule over subsequent pairs of segments, and summation of all
formulas over the total interval, gives the multiple-segment Simpson's 1/3 rule:

n/2 - I

J = + + 0(h4) (4.82)

Simpson's 1/3 rule fits pairs of segments, therefore the total interval must be subdivided into
an even number of segments. The first summation term in Eq. (4.82) sums up the odd-
subscripted terms, and the second summation adds up the even-subscripted terms.

The order of error of the multiple-segment Simpson's 1/3 rule was reduced by one order
of magnitude to 0(h4) for the same reason as in Sec. 4.7.1. Simpson's 1/3 rule is more
accurate than the trapezoidal rule but requires additional arithmetic operations.

Figure 4.3 Application of Simpson's 1/3 rule over two
segments of integration.

xo xl x2

4.7 Newton-Cotes Formulas of Integration 235

41.3 Simpson's 3/8 Rule

In the derivation of the third Newton-Cotes formula of integration we use three segments of
width h (see Fig. 4.4) and fit the polynomial through four points, (x0, y0), (x1, y]), (x1, v2),

and (x3, vs). This, in fact, is equivalent to fitting a cubic equation through the four points. We
retain the first four terms of the Gregory-Newton polynomial (up to. and including, the third
forward finite difference) and group together the rest of the terms of the polynomial into the
remainder term. The integral equation becomes

(x x0) (x — X(J)(X — x1)
2

f Y0 + AY() + A
h 2!h2

y

+ fR,(x)dx

Figure 4.4 Application of Simpson's 318 rule over
three segments of integration.

(4.83)

(x x0)(x — x1)(x
—

3! h

xo xl x2 x3

236 Numerical Differentiation and Integration Chapter 4

Integration of Eq. (4.83) and substitution of the relevant finite difference relations simplify the
equation to

+ (4.84)

The error tern] is of order If and may he abbreviated by O(hs). The final form of this equation,
which is better known as Simpson's 318 rule, is given by

/ ' •'i) - (4.85)

The inultiple-segmentSimp3on 's318 rule is obtained by repeated application of Eq. (4.83)
over triplets of segments and summation over the total interval of integration:

/1/3 ,,/3 I

-
•v0 - +) 2 v;] ± (4.86)

Comparison of the error terms of Simpson's 1/3 rule and Simpson's 3/8 rule shows that
they are both of the same order, with the latter being only slightly more accurate. For this
reason, Simpson's 1/3 rule is usually preferred, because it achieves the same orderof accuracy
with three points rather than the four points required by the 3/8 rule.

4.7.4 Summary of Newton-Cotes integration

The three Newton-Cotes forn]ulas of integration derived in the previous sections are
sumn]arized in Table 4.4.

In the derivation of the Newton-Cotes formulas, the function)' =J(x) is approximated by
the Gregory-Newton polynomial P,,(x) of degree ii with remainder R,,(x). The evaluation of
the integral is performed:

Jvdx = fP,,(x)dx ± JR(x)c/v (4.87)

This results in a formula of the general form:

fvcLv E + 01/i" (4.88)

where the x, are (n + 1) equally spaced base points in the interval [a, h]. The weights w1 are
determined by fitting the F,,(x) po]ynon3ial to (n + 1) base points. The integral is exact,
that is,

4.7 Newton.Cotes Formulas of Integration 237

fYdx = (4.89)

for any function y = f(x) that is of polynomial form up to degree n, because the derivative
is zero for polynomials of degree �n; thus, the error term vanishes.

There are three functions in MATLAB, trapz.m, quad.m, and quad8.m, that numerically
evaluate the integral of a vector or a function using different Newton-Cotes formulas:
• The function trapz(x, y) calculates the integral of)' (vector of function values) with

respect to x (vector of variables) using the trapezoidal rule.
• The function quad('file_narne' , a, h) evaluates the integral of the function represented in

the m-filefile_narne.m, over the interval [a, hi by Simpson's 113 rule.
• The function quad8('flle_narne' , a, h) evaluates the integral of the function introduced
• in the m-filefilejiarne.rn from a to b using 8-interval (9-point) Ncwton-Cotes formula.

Table 4.4 Summary of the Newton-Cotes numerical integration formulas

Trapezoidal rule fvdx - +
-

Simpson's 1/3 rule - v2) -
i 3 - 90

Simpson's 3/8 rule 3y, + —

8 - 80

General quadrature formula dx + Oihh2

vu

238 Numerical Differentiation and Integration Chapter 4

Example 4.3: Integration formulas-Trapezoidal and Simpson's 1/3 Rules. Write a
general MATLAB function for integrating experimental data using Simpson's 1/3 rule.
Compare the results of this function and the existing MATLAB function rrapz (trapezoidal
rule) for solution of the following problem:

Two very important quantities in the study of fermentation processes are the carbon
dioxide evolution rate and the oxygen uptake rate. These are calculated from experimental
analysis of the inlet and exit gases of the fermentor, and the flow rates, temperature, and
pressure of these gases. The ratio of carbon dioxide evolution rate to oxygen uptake rate
yields the respiratory quotient, which is a good barometer of the metabolic activity of the
microorganism. In addition, the above rates can he integrated to obtain the total amounts of
carbon dioxide produced and oxygen consumed during the fermentation. These total amounts
form the basis of the material balancing technique described in Sec. 2.1. Table E4.3a shows
a set of rates calculated from the fermentation of Penicillium chrysogenum, which produces
penicillin antibiotics.

Using Simpson's 1/3 rule, calculate the total amounts of carbon dioxide produced and
oxygen consumed during this 10-h period of fermentation. Repeat this using the trapezoidal
rule and compare the results obtained from the two methods.

Table E4.3a Fermentation data

Time of fermentation
(h)

Carbon dioxide evolution rate
(glh)

Oxygen uptake rate
(gih)

140 15.72 15.49

141 15.53 16.16

142 15.19 15.35

143 16.56 15.13

144 16.21 14.20

145 17.39 14.23

146 17.36 14.29

147 17.42 12.74

148 1760 14.74

149 17.75 13.68

150 18.95 14.51

Example 4.3 Integration Formulas-Trapezoidal and Simpson's 113 Rules 239

Method of Solution: In this problem. the carbon dioxide evolution rate data and the
oxygen uptake rate data are integrated separately. There are 11 data points (10 intervals) for
each rate; therefore, we can use either the trapezoidal rule or Simpson's 113 rule for this
integration. We first use Simpson's 1/3 rule and then repeat using the trapezoidal rule, as the
problem specifies.

Program Description: The MATLAB function Simpson.in first tests the input
arguments, which are the vector of independent variable (x) and the vector of function values
(y). These two vectors should he of the same length. Elements of vector x have to he equally
spaced values. Also, the number of elements of these vectors (n) should be odd (even number
of intervals). If the vectors contain an even number of elements (odd number of intervals), the
function calculates the value of the integral up to the point (ii - 1) and adds the value of the
integral, approximated by the trapezoidal rule, for the last interval. The user should pay
special attention to this case because the truncation errors for Simpson's 1/3 rule and
trapezoidal rule are not of the same order. After checking the above conditions, the function
calculates the value of the integral based on Eq. (4.82). If necessary, the function adds the
value of the integral for the last segment according to Eq. (4.75).

The main program Examp/e4_3.m asks the user to input the data from the keyboard, calls
the functions trapz and Simpson for integration, and displays the results.

Program

Exarnple4_3.rn
% Example4_3.m
% Solution to Example 4.3. It calculates carbon dioxide evolved and
I oxygen uptaken in a fermentation process using TRPIPZ (trapezoidal
I rule) and SIMPSON (Simpson's 1/3 rule) functions.

clear
dc

I Input data
t = input)' Vector of time =
r_C02 = input)' Carbon dioxide evolution rate)g/h) =

r_02 = input)' Oxygen uptake rate)g/h) =

I Integration
mlCO2 = trapz)t,r_C02);
m2CO2 = Simpson)t,r_C02);

mlO2 = trapz)t,r_02);
m202 = Simpson)t,r_02);

% Output
fprintf)\n Total carbon dioxide evolution = %9.4f (evaluated by
the trapezoidal rule) ',mlCO2)
fprintf)'\n Total carbon dioxide evolution = %9.4f (evaluated by
the Simpson 1/3 rule) , m2CO2)

240 Numerical Differentiation and Integration Chapter 4

fprintf('\n Total oxygen uptake = %9.4f (evaluated by
the trapezoidal rule) ,m102)
fprintf('\n Total oxygen uptake = %9.4f (evaluated by
the Simpson 1/3 rule)\n' ,m202)

Simpson. in

function Q = Simpson(x , y)
%SIMPSON Numerical evaluation of integral by Simpson's 1/3 rule.

% SIMPS0N(x,y) numerically evaluates the integral of the
vector of function values Y with respect to X by
Simpson's 1/3 rule. X is the vector of equally spaced

% independent variable. Length of y has to be odd (even
number of intervals) . If length of Y is even, the function
calculates the integral for [LENGTH(Y)-l] points by

% Simpson's 1/3 rule and adds to it the value of the
integral for the last interval by trapezoidal rule.

See also TRAPZ , QUAD , QUAD8, GAUSSLEGENDRE

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

points = length(x);
if length(y) -= points

error('x and y are not of the same length')
break

end

dx = diff (x)

maxi = max([min(abs(x))/l000 , le-lO]);
if max(dx)-min(clx) > maxi

error('X is not equally spaced.')
break

end
h = dx(l);

if mod(points,2) == 0

warning('Odd number of intervals; Trapezoidal rule will be used
for the last interval. ')

n = points - 1;
else

n = points;
end

% Integration
yl = y(2 2 n — 1);
y2 = y(3 : 2 n — 2);
Q = (y(1) + 4 * sum(yl) + 2 * sum(y2) + y(n)) * h /3;

if n points
Q = Q + (y(points) + y(n)) * h / 2;

end

4.8 Gauss Quadrature 241

Input and Results

>>Example4_3

Vector of time = [140:150]
Carbon dioxide evolution rate (g/h) = [15.72, 15.53, 15.19, 16.56,
16.21, 17.39, 17.36, 17.42, 17.60, 17.75, 18.95]
Oxygen uptake rate (g/h) = [15.49, 16.16, 15.35, 15.13, 14.20,
14.23, 14.29, 12.74, 14.74, 13.68, 14.51]

Total carbon dioxide evolution = 168.3450 (evaluated by the
trapezoidal rule)
Total carbon dioxide evolution = 168.6633 (evaluated by the
Simpson 1/3 rule)
Total oxygen uptake = 145.5200 (evaluated by the
trapezoidal rule)
Total oxygen uptake = 144.9733 (evaluated by the
Simpson 1/3 rule)

Discussion of Results: The integration of the experimental data. using both Simpson's
1/3 rule and the trapezoidal rule, yield the total amounts of carbon dioxide and oxygen shown
in Table E4.3h.

Table E4.3b

Simpson's 1/3 Trapezoidal

Total CO2 (9) 168.6633 168.3450

Total 02 (g) 144.9733 145.5200

4.8 GAUSS QUADRATURE

In the development of the Newton-Cotes formulas, we have assumed that the interval ol
integration could be divided into segments of equal width. This is usually possible when
integrating continuous functions. However, if experimental data are to be integrated, such data
may be used with a variable-width segment. It has been suggested by Chapra and Canale 14i
that a combination of the trapezoidal rule with Simpson's rules may be feasible for integrating
certain sets of unevenly spaced data points.

Gauss quadrature is a powerful method of integration that employs unequally spaced base
points. This method uses the Lagrange polynomial to approximate the function and then
applies orthogonal polynomials to locate the loci of the base points. If no restrictions are
placed on the location of the base points, they may he chosen to he the locations of the roots

242 Numerical Differentiation and Integration Chapter 4

of certain orthogonal polynomials in order to achieve higher accuracy than the Newton-Cotes
formulas for the same number of base points. This concept is used in the Gauss quadrature
method, which is discussed in this section.

4.8.1 Two-Point Gauss-Legendre Quadrature

In order to illustrate the approach, we first develop the integration formula for the two-point
problem. In Newton-Cotes method, the location of the base points is determined,
and integration is done based on the values of the function at these base points. This
is shown in Fig. 4.2, for the trapezoidal rule that approximates the integral by taking the area
under the straight line connecting the function values at the ends of the integration interval.

Now, consider the case that the restriction of fixed points is withdrawn, and we are able
to estimate the integral from the area under a straight line that joins any two points on the
curve. By choosing these points in proper positions, a straight line that balances the positive
and negative errors can he drawn, as illustrated in Fig. 4.5. As a result, we obtain an improved
estimate of the integral.

xl x xo

Figure 4.5 Application of two-point Gauss quadrature to improve
integral estimation.

4.8 Gauss Quadrature 243

In order to derive the two-point Gauss quadrature, the function y =J'(x) is replaced by a
linear polynomial and a remainder:

XX XX()
y

=

+ + R(x) (4.90)
x0 -x1 X1

The integral J y dx is evaluated by

h b h

fydx
= + x ±

fRdx (4.91)

Without loss of generality, the interval [a, hi is changed to [-1, 1]. The general transformation
equation for converting between x in interval (a, hi and z in interval [c, ci] is the following:

2x - (a + b)
Z = (4.93)b-a

For converting to the interval (-1, 1], this equation becomes
Using Eq. (4.93), the transformed integral is given by

fv(x)dx = b a1
(4.94)

and

fYdz = w0Y0 + w1Y1 fR(z)dz (4.95)

where use of Y (instead of y) indicates that the function value at the variable z (rather than x)
should be used. The weights w0 and w1 are calculated from

I

z

= f dz = (4.96)
-I

— — zI

and

Z - -2;)
w)

= f dz (4.97)
Z0 Z1 Z()

244 Numerical Differentiation and Integration Chapter 4

Up to this point, the development of this method is equivalent to that of the trapezoidal
rule. The Gauss quadrature method goes a step beyond this in order to make the error term
in Eq. (4.95) vanish. To do so, the integral of the error term is expanded in terms of 2nd-
degree Legendre polynomial (see See. 3.1(J):

fR(z)dz ±z2 (4.98)

The values of and are chosen as the root of the 2nd-degree Legendre polynomial, that is,

zo1 =

This choice of roots causes the error term to vanish. Therefore, Eq. (4.95) becomes

f Ydz ± ± (499)

Calculation of the integral through Eqs. (4.94) and (4.98) imply that instead of evaluating
the function at = - I and z1 I (using function values at base points), which is the case in the
trapezoidal rule. function values at = -l/v3 and = should he used in the Gauss
quadrature method. This results in improving the precision of calculation, as illustrated in Fig.
4.5. This is roughly equivalent to the application of trapezoidal rule.

The Gauss quadrature formula developed in this section is known as the Gauss-Legendre
quadrature because of the use of the Legendre polynomials. Other orthogonal polynomials,
such as Chehychev. Laguerre, or Hermite, may he used in a similar manner to develop a
variety of Gauss quadrature formulas.

4.8.2 Higher-Point GaussLegendre Formulas

The function i = Jçv) is replaced by the Lagrange polynomial (see Sec. 3.9.1) and its
remainder.

v = E

L
- (4.101)

4.8 Gauss Quadrature 245

and

C

R,1(x) = fl (x - a cb (3J37)
(n + 1)!

The integral f y dx is evaluated by

h b b

fydx
=

+ fR,1(x)dx (4.102)

Converting the interval from [a, bi to [-1, 1] through Eqs. (4.92) and (4.93), the

transformed integral is given by

f
Ydz

=

+ (4.103)

where the weights are calculated from

= fL1(z)dz
=

(4.104)

and the error term is given by

= (z - (4.105)

The and fl (z - z) are polynomials of degree n and (a + 1), respectively.

Up to this point, the development of this method is different from that of the Newton-
Cotes formulas in only one respect: the use of Lagrange interpolation formula for unequally
spaced points instead of the Gregory-Newton formula. The Gauss quadrature method goes a
step beyond this in order to make the error term [Eq. (4.105)] vanish. To do so, the two
polynomials in the error term are expanded in terms of Legendre orthogonal polynomials (see
Sec. 3.10). The values of z1 are chosen as the roots of the (a + 1)st-degree Legendre
polynomial. This choice of roots combined with the orthogonality property [Eq. (3.149)]
of the Legendre polynomials causes the error term to vanish. Therefore, Eq. (4.103)
becomes

f Ydz = E (4.106)

246 Numerical Differentiation and Integration Chapter 4

Since tile vanishing error term was of degree (a + 1). Eq. (4.106) yields the integral of the
function Yexactlv when Yis a polynomial of degree (2,i + 1) or less. In effect, the judicious
choice of the (a + I) base points at the (a + 1) roots of the Legendre polynomial has increased
the accuracy of the integration from n to(2a + 1). As usual, however, the increase in accuracy
has heen obtained at the cost of having to perform a larger number of arithmetic calculations.
The error of Gauss-Legendre formulas is given by [5 1

92n

f R,(x) dx - J.J r2' a < b (4.107)
(2ii + 3) [(2a ± 2)! 3

The roots :, of the Legendre polynomials can he evaluated after calculating the
coefficients of the polynomial from the formula given in Table 3.7. The values of the weights
w1 corresponding to these roots have been calculated for the integration interval [-I, ii. Table
4.5 lists the roots and weights of the Gauss-Legendre quadrature for selected values of a.

Example 4.4: Integration Formulas - Gauss-Legendre Quadrature. Write a general
MATLAB function for integrating a function using a general Gauss-Legendre quadrature.
Apply this function for the solution of the following problem:

A cold liquid film, initially at temperature To, is falling down (in z-direction) a vertical
solid wall (c-plane). The solid wall is maintained at a temperature (T0) higher than that of the
falling Ohm. It is desired to know the temperature profile of the fluid as a function and:.
near the wail. The partial differential equation that describes the temperature of the liquid for
this problem is

3T 32TpC r—
1' -,

uZ

where p is the density of the liquid. 1) is heat capacity of the liquid. is the velocity
of the liquid. 1< is the thermal conductivity of the liquid, and T is the temperature of the liquid.

The velocity profile of the falling liquid is given by Bird et al. [2]:

2

2p ô 5

where S is thickness of the film, gis gravity acceleration, and p is the viscosity of the liquid.
Therefore. near the wail, where y c< 5, the velocity simplifies to:

p

Putting this velocity profile into the energy balance equation, we get

- 82T

dz V3v2

Two-point formula

(ii + 1 = 2)

±0.57735026918926 1.000000000000000

Three—point t'onnula

(ii + 1 =3)

0

±0.774596669241483

0.888888888888888

0.555555555555555

Four-point formula

1=4)

±0.339981043584856

±0.861136311594053

0.652145154862546

0.347854845137454

Five-point torrnula

(ii + I = 5)

0

±0 5384693] 0105683

±0.906179845938664

0.568888888888889

0.478628670499366

0,236926885056189

Six-point formula

(n + 1 =6)

±0.2386191 86083 197

±0.661 209386466265

±0 932469514203152

0.4679 1393457269 1

0.36076! 573048139

0.171324492379170

Ten—point formula

(n + I = 10)

±0.148874338981631

±0 433395394129247

±0.679409568299024

±0.865063366688985

±0.973906528517172

0.295524224714753

0.269266719309996

0.2190863625 15982

0. 14945] 349 15058

0.066671344308688

Fifteen-point formula

(ii + 1 = 15)

0

±0.201194093997435

±0.394151347077543

±0.570972172608539

±0.7244 1773 1360 170

±0.848206583410427

±0.937273392400706

±0.9879925 18020485

0202578241925561

0.198431485327111

0. 186 16 1000 1 15562

0.166269205816994

0.139570677926154

0.107159220467172

0.070366047488108

0.030753241996 1 17

Example 4.4 Integration Formulas Gauss-Legendre Quadrature 247

Table 4.5 Roots of Legendre polynomials and the weight factors
for the Gauss-Legendre quadrature

Number of points Roots (z,) Weight factors (w,)

248 Numerical Differentiation and Integration Chapter 4

in which = For short contact time, we may write the boundary conditions as

Atz=O, fory>0
Aty=0, forz>O
Aty=c'o, T=T0 forzfinite

The analytical solution to this problem is [2]

T-T I0= -
-

3

where - y/ is a dimensionless variable, and the Gamma function F(x) is defined as

17(x) = ft' e 'cit x > 0

Using Gauss-Legendre quadrature calculate the above temperature profile and plot it

against

Method of Solution:, In order to evaluate the temperature profile (0). we first have to
integrate the function e for several values of 'i � 0. The temperature profile itself, then,
can be calculated from the equation described above.

Program Description: The function GaussLegendre.in numerically evaluates the
integral of a function by n-point Gauss-Legendre quadrature. The program checks the inputs
to the function to be sure that they have valid values. If no value is introduced for the
integration step, the function sets it to the integration interval. Also, the default value for the
number of points of the Gauss-Legendre formula is two.

The next step in the function is the calculation of the coefficients of the nth degree
Legendre polynomial. Once these coefficients are calculated, the program evaluates the roots
of the Legendre polynomial (z1 to using the MATLAB function roots. Then, the function
calculates the coefficients of the Lagrange polynomial terms (L, to L,,) and evaluates the
weight factors, iv1, as defined in Eq. (4.104). Finally, using the values of z, and w1, the integral
is numerically evaluated by Eq. (4.106).

In order to solve the problem described in this example, the main program Example4_4.tn
is written to calculate the temperature profile for specific range of the dimensionless number

n. The function to be integrated is introduced in the MATLAB function Ex4_4,Jitnc.rn.

Program

Example4_4.m
% Example4_4.m
% Solution to Example 4.4. It calculates and plots the temperature

Example 4.4 Integration Formulas - Gauss-Legendre Quadrature 249

% profile of a liquid falling along a wall of different temperature.
% The program uses GAUSSLEGENDRE function to evaluate the integral.

clear
dc
cl f

% Input data
eta = input(Vector of independent variable (eta) = U;
h = eta(2) — eta(l); % Step size
fname = input(Name of m-file containing the function subject to
integration =

% Calculation of the temperature profile
for k = 1 length(eta)

theta(k) = GaussLegendre(fname,O,eta(k),h);
end
theta = 1 - theta / gamma(4/3);

% Plotting the results
plot (eta, theta)

xlabel (\eta')
ylabel (\theta

Ex4_4junc.rn

function y = Ex4_4_func(x)
% Function Ex4_4_func.m
% Function to be integrated in Example 4.4.

y =

GaussLegendre.rn
function Q = GaussLegendre(fnctn,a,b,h,n,varargin)
%GAUSSLEGENDRE Gauss-Legendre quadrature

% GAUSSLEGENDRE('F',A,B,H,N) numerically evaluates the
% integral of the function described by M-file F.M from A to B,
% using interval spacing H, by a N-point Gauss-Legendre
% quadrature.

% GAUSSLEGENDRE(F,A,B,[],[],P1,P2,...) calculates the
% integral using interval spacing H=B-A and N=2 and also allows
% parameters P1, P2, ... to pass directly to function F.M

% See also QUAD, QUADS, TRAPZ, SIMPSON

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

250 Numerical Differentiation and Integration Chapter 4

% Checking input arguments
if nargin c 4 isempty(h) h == 0 abs(b - a) c abs(h)

h = b - a;
end
if nargin < 5 isempty(n) n < 2

n = 2;
end
if sign(h) sign(b-a)

h = - h;
end
n fix(n);

% Coefficients of the Legendre polynomial
for k = 0 n/2

cl(2*k+l) = (-lflk * gamrna(2*n - 2*k + 1) /

* gamrna(k + 1) * garnrna(n - k + 1) * gamma(n - 2*k + 1));
if k c n/2

cl(2*k+2) = 0;
end

end
z = roots(cl); % Roots of the Legendre polynomial (Zi)
% Weight factors
for p = 1 n

B [1 0];

k = 0;
denom = 1;
A(l) =

% Constructing vector of coefficients of the
% Lagrange polynomial (coefficients of Li)
for q = 1 n

if q -c p
k = k + 1;
for r = 2 k+l

A(r) = B(r) - B(r-l) * z(g); % Vector of coefficients
end
denom = denom * (z(p) - z(q)); % Denominator of Li

end
B = [A 0];

end
% Vector of coefficients of integral of Lagrange polynomial
for k = 1 : n

% are coefficients of the integral polynomial
Ai(k) = A(k) / (n - k + 1);

end
Ai(n + 1) = 0;
% weight factor Wi
w(p) = (polyval(Ai / 1) - polytral(Ai / -1)) / denom;

clear A
end

4.9 Spline integration 251

Q = 0;
% Integration
for x = a : h : b - h

for p = 1 : n

xp = x + (z(p) + 1) * h / 2;

Q = Q + w(p) * feval(fnctn xp varargin(:}) * h /2;

end
end

% Integral of the remainder interval (if (b-a)/h is not an integer)
xr = x + h;
hr = h - xr;
if hr > 0

for p = 1 n

xp = xr + (z(p) + 1) * hr / 2;

Q = Q + w(p) * feval(fnctn xp varargin{:}) * hr /2;

end
end

Input and Results

>>Example4_4

Initial value of Vector of independent variable (eta) = [0: 0.2: 2]
Name of m-file containing the function subject to integration =

Ex4_4_func

Discussion of Results: The temperature profile of the liquid near the wall is calculated
by the program Exarnple4_4.n'i for 0 � � 2 and is plotted in Fig. E4.4. We can verify the
solution at the boundaries of y and z from Fig. E4.4:

The results represented in Fig. E4.4 show that at = 0, the temperature of the liquid is
identical to that of the plate (that is, e = 1, therefore. T = T3. The variable attains a
value of zero at only two situations:

a. In the liquid next to the wall (at v = 0 and at all values of z).
h. After an infinite distance from the origin of flow (at z = and at all values of y).

Situation a is consistent with the boundary conditions given in the statement of the
problem whereas situation b is an expected result, since passing a long-enough distance
along the wall, all the liquid will be at the same temperature as the wall.

• Fig. E4.4 also shows that at high-enough dimensionless number the temperature of the
liquid is equal to the initial temperature of the liquid, that is,

lime = 0

• The variable n becomes infinity under the following circumstances:
a. In the fluid far away from the wall (at y = and at all values of z).
h. At the origin of the flow (at z = 0 and at all values of y).

Both these situations are specified as boundary conditions of the problem.

252 Numerical Differentiation and Integration Chapter 4

\\\
06

:05

0 02 04 06 08 1 12 14 16 18 2

Figure E4.4

4.9 SPLINE INTEGRATION

Another method of integrating unequally spaced data points is to interpolate the data using a
suitable interpolation method, such as cubic splines, and then evaluate the integral from the
relevant polynomial. Therefore, the integral of Eq. (4.66) may be calculated by integrating Eq.
(3.143) over the interval [x,1, .v] and summing up these terms for all the intervals:

fvdx E - + v1) - (4.108)

Prior to calculating the integral from Eq. (4.108), the values of the second derivative at the
base points should be calculated from Eq. (3.147). Note that if a natural spline interpolation
is employed, the second derivatives for the first and the last intervals are equal to zero. Eq.
(4.108) is basically an improved trapezoidal formula in which the value of the integral by
trapezoidal rule [the first term in the bracket of Eq. (4.108)] is corrected for the curvature of
the function [the second term in the bracket of Eq. (4. 108)].

The reader can easily modify the MATLAB functionNaturalSPLlNE.rn (see Example 3.2)
in order to calculate the integral of a function from a series of tabulated data. It is enough to
replace the formula of the interpolation section with the integration formula, Eq. (4.108).
Also, the MATLAB function spline.m is able to give the piecewise polynomial coefficients
from which the integral of the function can be evaluated. A good example of applying such
a method can be found in Hanselman and Littlefield [3]. Remember that spline.rn applies the
not-a-knot algorithm for calculating the polynomial coefficients.

4.10 Multiple Integrals 253

4.10 MULTIPLE INTEGRALS

In this section, we discuss the evaluation of double integrals. Evaluation of integrals with
more than two dimensions can be obtained in a similar manner. Let us start with a simple case
of double integral with constant limits, that is, integration over a rectangle in the xy plane:

I

a

(4.109)

dx

The inner integral may be calculated by one of the methods described in Secs. 4.7-4.9. We
use the trapezoidal rule [Eq. (4.76)] for simplicity:

(I in - I

f(x,c) + 2Ef(x,v1) ÷f(x,d) (4.110)

where in is the number of divisions and k is the integration step in the v-direction, and x is
considered to be constant. Replacing Eq. (4.110) into Eq. (4.109) results in

Ii in-I b I,

I = + kE - kff(x,d)dx (4.111)

Now we apply the trapezoidal rule to each of the integrals of Eq. (4.111):

h n-I
= (4.112)

Here n is the number of divisions and h is the integration step in the x-direction, and is

considered to be constant.

254 Numerical Differentiation and Integration Chapter 4

Finally, we combine Eqs. (4.111) and (4.112) to calculate the estimated value of the
integral (4.109):

/ J(a,c) + +f(b,c)

1 ui 1 1 iii— 1

+ - 2E +

ii —

hk
f(a,d) 2E f(.x,d) f(h.d) (4.113)

The method described above may he slightly modified to be applicable to the double
integrals with variable inner limits of the form

I) ill I

- f f f(x,v)dydx (4.114)
ii u (1

Because the length of the integration interval for the inner integral (that is, [c dI) changes with
the value oft, we may either keep the number of divisions constant in the v-direction and let
the integration step change with .v 1k = kCvfl or keep the integration step in the v-direction
constant and use different number of divisions at each x value [in = m(41. However, in order
to maintain the same order of error throughout the calculation, the second condition (that is.
constant step size) should be employed. Therefore, Eq. (4. 110) can be written at each position

in the following form to count for the variable limits:

u/(I,)
u

f f(.v1,v)dy + 2 f(x1,v,) + (4.115)

where rn indicates that the number of divisions in the v-direction is a function of .v. In

practice. at each .v value, we may have to change the step size k slightly to obtain an integer
value for the number of divisions. Although this does not change the order of magnitude of

Problems 255

the step size, we have to acknowledge this change at each step of outer integration; therefore,
the approximate value of the integral (4.114) is calculated from

h/c
I = f(a,c(a)) + + f(b,c(h))

+

[f(a,\) +f(b.v.)]}

h/c
÷

4U f(a ,d(a)) - 2E f(x + f(h,d(h)) (4.116)

If writing a computer program for evaluation of double integrals, it is not necessary to
apply Eqs. (4.113) and (4.115) in such a program. As a matter of fact, any ordinary integration
function may be applied to evaluate the inner integral at each value of the outer variable; then
thc same function is applied for the second time to calculatc the outer integral. This algorithm
can be similarly applied to the multiple integrals of any dimension. The MATLAB function
dhlquad evaluates double integral of a function with fixed inncr intcgral limits.

PROBLEMS

4.1 Derive the equation that expresses the third-order derivathe of v in terms of backward finite
differences, with

(a) En-or of order h
(b) Error of order h2.

4.2 Repeat Prob. 4. 1. using forward finite differences.

4.3 Derive the equations t'or the first, second, and third derivatives of v in terms of backward finite
differences with error of order h1.

4.4 Repeat Prob. 4.3, using forward tinite differences.

4.5 Derive the equation which expresses the third-order derivative of v in terms of central finite
differences, with

(a) Error of order h2
(b) Error of order h4

4.6 Derive the equations for the first, second, and third derivatives of v in terms ot central finite
differences with error of order h6

256 Numerical Differentiation and Integration Chapter 4

4.7 Velocity profiles of solids in a bed of sand particles fluidized with air at the superficial velocity
of 1 mIs are given iii Tables P4.7a and b. Calculate the axial gradient of velocities (that is, 6V/3z
and 3V/3;) Plot the z-averagcd gradients vcrsus radial position and compare their order of
magnitude.

Table P4.7a Radial velocity profile (mm/s)

Radial position (mm)

— 4.7663 142988 23.8313 33.3638 42.8962 52.4288 61.9612 71.4938

A 25 -13.09 -3766 -52.41 -54.44 -58.21 -41.35 -23.97 -7.21
x

75 -15.81 -15.99 -25.37 -22.3 -11.1 -2.26
a

125 1.77 117 3.45 5.5 1.63 -1.79 -0.26 1 09

p 175 1.43 -057 4.86 244 0.2 -0.65 0.35 2.21
0

225 -5.07 -7.26 -18.43 18.17 -17.3 -10 -2.65 029

275 13 11 16.51 19.32 21 20.29 15.64 0.98 -9.81

o 325 117 34.5 583 71.44 73.49 64.88 50.91 19.14
n

375 8.18 2529 31.18 37.07 30.05 2.61 -17.06 -15.88
m
m 425 3.35 -0.39 -18 -42.22 -57.42 -8236 -69.34 -17.35

475 -27.05 -22.25 -4945 -7945 -110.08 -116.62 -128.25 -76.49

4.8 In studying the mixing characteristics of chemical reactors, a sharp pulse of a nonreacting tracer is
injected into the Teactor at time = 0 The concentration of material in the effluent from the reactor is
measured as a function of time c(t). The residence time distribution (RTD) function for the reactor is
defincd as

E(I) c(t)

dr

and the cumulative distribution function is defined as

E(t) - fE(r)dt

The mean residence time of the reactor is calculated from

t = Y = ftE(t)clt
q

Problems 257

Table P4.7b Axial velocity profile (mm/s)

Radial position (mm)

o2 f(t -

The exit concentration data shown in Table P4.8 were obtained from a tracer experiment studying
the mixing characteristics of a continuous flow reactor. Calculate the RTD function. cumulative
distribution function, mean residence time, and the variance of the RID function of this reactor.

Table P4.8

Time (s) c(t) (mg/L) Time (s) c(t) (mg/L)

0 0 5 5

1 2 6 2

2 4 7 1

3 7 8 0

4 6

4.7663 14.2988 23.8313 33.3638 42.8962 52.4288 61.9612 71.4938

25

75

125

175

225

275

325

375

425

475

93.33

244.73

304.34

308.81

379.66

416.08

184.46

55 74

-67.81

-136.25

p
0
5

0
n

m

m

74.12

217.07

260.58

281.67

328.52

366.96

157.25

-12.28

-118.77

-32.33

69.35

177.09

201.15

209.18

279.3

314.09

111.99

-18.74

-108.46

-65.5

43.68

103.79

118.82

133.9

165.61

203.08

63.23

-47.26

-89.68

-111.72

18.8

16.87

22.76

53.88

53 25

44.97

1.03

-42 1

9.24

38.74

-6.9

-39.74

-52.23

-51.92

-65.97

-76.93

-63.66

-9.95

61 78

115.6

-21.56

-74.91

-82.86

-98.47

-133 92

-160.04

-71.23

125.57

175.43

84.88

-22.65

-59.48

-51.9

-41.94

-46.69

-91.33

-3t.4

271.16

309.21

191.37

where V is the volume of the reactor and q is the how rate. The variance of the RID function is
defined by

258 Numerical Differentiation and Integration Chapter 4

4.9 The following catalytic reaction is carried out in an isothermal circulating fluidized bed reactor:

A °B
(g}

For a surface-reaction limited mechanism. in which both A and B are absorbed on the surface of
the catalyst. thc rate law is

k1C4
— r

/ I + k1C3

where r1 is the rate of the reaction in C1 and C3 are concentrations of A and B,
respectively, in kmol/m3, and k1, k2, and are constants.

Assume that the solids move in plug flow at the same velocity of the gas (U). Evaluate the height
of the reactor at which the conversion of A is 60%. Additional data are as follows:

U=7.5m/s
= 8 s' = 3 mVkmol k3 = 0.01 mVkmol

4.10 A gaseous feedstock containing 40% A, 40% B. and 20% inert will be processed in a reactor,
where the following chemical reaction takes place.

A 2B —> C

The reaction rate is

where k= 0.01 s1(gmol/L12 at 500°C
C1 = concentration of A, gmol/L
C3 = concentration of B. gmol/L

Choose a basis of 100 gmol of feed and assume that all gases behave as ideal gases. Calculate the
following:

(a) The time needed to produce a product containing 1 1.8% B in a batch reactor operating at 500°C
and at constant pressure of 10 atm.
(b)The time needed to produce a product containing 11.8% B in a batch reactor operating at 500°C
and constant volume. The temperature of the reactor is 500°C and the initial pressure is 10 atm.

4.11 Derive the numerical approximation of double integrals using Simpson's 1/3 rule in both
dimensions.

REFERENCES

1. Larachi, F.. Chaouki, J, Kennedy. 0.. and Dudukovië. M. P.. "Radioactive Particle Tracking in
Multiphase Reactors: Principles and Applications." in Chaouki. J.. Larachi. F.. and Dudukovid, M.
P., (eds.). Noo-Jnvasire Monitoring of Multipha3e Elsevier, Amsterdam. 1997.

References 259

2. Bird. R. B.. Stewart. W. E.. and Lightfoot, E. N., Transport Phenomena, Wiley, New York. 1960.

3. Hanselman, D., and Littlefield, B., Mastering MATLAB 5. A Comprehensive Tutorial and Reference,
Prentice Hall, Upper Saddle River, NJ, 1998

4. Chapra, S. C., and Canale, R. P., Numerical Methods fbr Engineers, 3rd ed., McGraw-Hill, New York,
1998.

5. Carnahan. B., Luther, H. A., and Wilkes, J. O..Applied Numerical Methods, Wiley. New York, 1969.

CHAPTER

Numerical Solution of Ordinary
Differential Equations

5.1 INTRODUCTION

0rdinaiy differential equations arise from the
study of the dynamics of physical and chemical systems that have one independent variable.
The latter may be either the space variable x or the time variable t depending on the geometry
of the system and its boundary conditions.

For example, when a chemical reaction of the type

(5.1)

261

CHAPTER

Numerical Solution of Ordinary
Differential Equations

5.1 INTRODUCTION

0rdinaiy differential equations arise from the
study of the dynamics of physical and chemical systems that have one independent variable.
The latter may be either the space variable x or the time variable t depending on the geometry
of the system and its boundary conditions.

For example, when a chemical reaction of the type

(5.1)

261

262 Numerical Solution of Ordinary Differential Equations Chapter 5

takes place in a reactor, the material balance can he applied:

Input + Generation = Output + Accumulation (5.2)

For a batch reactor, the input and output terms are zero: therefore, the material balance
simplifies to

Accumulation = Generation (5.3)

Assuming that reaction (5. 1) takes place in the liquid phase with negligible change in volume.
Eq. (5.3) written for each component of the reaction will have the form

c/C
= +

c/i

c/C
h2C(C/)

c/i

dC
k1 k7C(C1) (5.4)

c/C
_jfL kIC4CI? - k2CCCD -

dC
k1C[CJ)

where C, represent the concentrations of the five chemical components of
this reaction. This is a set of simultaneous firsi-orc/er nonlinear ordinary c/ifferentia/
equalious. which describe the dynamic behavior of the chemical reaction. With the methods
to be developed in this chapter. these equations, with a set of initial conditions, can be
integrated to obtain the time profiles of all the concentrations.

Consider the growth of a microorganism. say a yeast, in a continuous fermentor of the
type shown in Fig. 5.1. The volume of the liquid in the fermentor is V. The flow rate of
nutrients into the fermentor is and the flow rate of products out of the fermentor is F,,,.
The material balance for the cells X is

Input + Generation = Output + Accumulation

d(VX)F.X. -rV=F X + (SS)in iii X (ii!! 01+1

c/t

The material balance for the substrate S is given by

d(VS)
F in5 in

+ r5 V — F,,,S0,,
dt

(5.6)

5.1 Introduction 263

The overall volumetric balance is

dV
(57)

If we make the assumption that the fermentor is perfectly mixed, that is, the concentrations at
every point in the fermentor are the same, then

X =

(5.8)
S =

and the equations simplify to

d(VX)
(F117X,, - (5.9)

d(VS)
- - POUTS) + isv (5.10)

- (5.11)

Further assumptions are made that the flow rates in and out of the fermentor are identical, and
that thc rates of cell formation and substrate utilization are given by

X K÷ s
(5.12)

Figure 5.1 Continuous fermentor.

1 PrnaxSX
=

K + S

- X) +

K±S

— 5) — I PiflaX
K + S

This is a set of simultaneous ordinary differential equations, which describe the dynamics of
a continuous culture fermentation.

The dynamic behavior of a distillation column may be examined by making material
balances around each stage of the column. Fig. 5.2 shows a typical stage n with a liquid flow
into the stage + and out of the stage L,, and a vapor flow into the stage V, - and out of the
stage The liquid holdup on the stage is designated as Hfl. There is no generation of
material in this process, so the material balance [Eq. (5.2)] becomes

Accumulation = input - Output

dH,
+ - V, - L,, (5.16)

The liquids and vapors in this operation are multicomponent mixtures of k components.
The mole fractions of each component in the liquid and vapor phases are designated by x1 and
y1, respectively. Therefore, the material balance for the ith component is

(5.17)

Figure 5.2 Material balance around
stage n of a distillation column.

264 Numerical Solution of Ordinary Differential Equations Chapter 5

and

The set of equations becomes

dX - (
(X

dt

dS - (

cit t\ Vj

(5.13)

(5.14)

(5.15)

dt

d(I-I fix

di
= Vfl1y1fl1 + — VflYjfl — Lflx1fl

vn

y

Stage n-I

XII

5.2 Classification of Ordinary Differential Equations 265

The concentrations of liquid and vapor are related by the equilibrium relationship

f(x) (5.18)

If the assumptions of constant molar overflow and negligible delay in vapor flow are made,
then V,, = V,. The delay in liquid flow is

dL
- (5.19)

where 'r is the hydraulic time constant.
The above equations applied to each stage in a multistage separation process result in a

large set of simultaneous ordinary differential equations.
In all the above examples, the systems were chosen so that the models resulted in sets

of simultaneous irst-o rder ordinary differential equations. These are the most commonly
encountered types of problems in the analysis of multicomponent and/or multistage operations.
Closed-form solutions for such sets of equations are not usually obtainable. However,
numerical methods have been thoroughly developed for the solution of sets of simultaneous
differential equations. In this chapter, we discuss the most useful techniques for the solution
of such problems. We first show that higher-order differential equations can he reduced to
first order by a series of substitutions.

5.2 CLASsIFIcATIoNS OF ORDINARY DIFFERENTIAL

EQUATIONS

Ordinary differential equations are classified according to their order, their linearity, and their
boundary conditions.

The order of a differential equation is the order of the highest derivative present in that
equation. Examples of first-. second-, and third-order differential equations are given below:

First order: d
+

(5.20)
dx

dv dv
Second order: ±

v dv clvThirdorder: —- a—— ± h - kv (5.22)
dx3 dx2 dx

266 Numerical Solution of Ordinary Differential Equations Chapter 5

Ordinary differential equations may be categorized as linear and nonlinear equations.
A differential equation is nonlinear if it contains products of the dependent variable or its
derivativcs or of both. For example, Eqs. (5.21) and (5.22) are nonlinear because they contain
the terms y(dv/dx) and (dy/dx)2 , respectively, whereas Eq. (5.20) is linear. The general form
of a linear differential equation of order n may be written as

d'2v dyb0(x)—-- b,(x) ... + b, ,(x)— + b,,(x)y R(x) (5.23)dx'' dx

If R(x) = 0, the equation is called homogeneous. If R(x)t0, the equation is nonhomogeneous.
The coefficients { b I i = 1,. . . , ii } are called variable coefficients when they are functions of
x and constant coefficients when they are scalars. A differential equation is autonomous if the
independent variable does not appear explicitly in that equation. For example, if Eq. (5.23)
is homogeneous with constant coefficients, it is also autonomous.

To obtain a unique solution of an nth-order differential equation or of a set of ii
simultaneous first-order differential equations, it is necessary to specify n values of the
dependent variables (or their derivatives) at specific values of the independent variable.

Ordinary differential equations may be classified as initial-value problems or boundary-
value problems. In initial-value problems, the values of the dependent variables and/or their
derivatives are all known at the initial value of the independent variable.' In boundary-value
problems, the dependent variables and/or their derivatives are known at more than one point
of the independent variable. If some of the dependent variables (or their derivatives) are
specified at the initial value of the independent variable, and the remaining variables (or their
derivatives) are specified at the final value of the independent variable, then this is a two-point
boundary-value problem.

The methods of solution of initial-value problems are developed in Sec. 5.5, and the
methods for boundary-value problems are discussed in Sec. 5.6.

A problem whose dependent variables and/or their derivatives are all known at the final value of the independent
variable (rather than the initial value) is identical to the initial-value problem, because only the direction of integration
must he reversed. Therefore, the tenn initial-value problem refers to both cases.

5.3 Transformation to Canonical Form 267

5.3 TRANSFORMATION TO CANONiCAL FORM

Numerical integration of ordinary differential equations is most conveniently perlormed when
the system consists of a set of ii simultaneous first-order ordinary differential equations of the
form:

dy1
J1(v1, v2 v,. x)

dx

dy9
= f2(.v, v2 v,. x)

dx
(5.24)

dv,
= v2, . . \,,, x)

dx
This is called the canonical form of the equations. When the initial conditions are given at a
common point x0:

v1 (x0) =

(5.25)

y,, (x0) =

then the system equations (5.24) have solutions of the form

F1(x)

= F2(x)

(5.26)

F,,(.x)

The above problem can be condensed into matrix notation, where the system equations are
represented by

dy = f(x, y) (5.27)
dx

268 Numerical Solution of Ordinary Differential Equations Chapter 5

the vector of initial conditions is

y(x0) = Y0 (5.28)

and the vector of solutions is

y F(x) (5.29)

Differential equations of higher order. or systems containing equations of mixed order.
can be transformed to the canonical form by a series of substitutions. For example, consider
the nit-order differential equation

= G z, d2z (5.30)
dx' dx dx'

The following transformations

=

dz'
— '2

dx dx -

d2z dv,
- - y3

dx dx
(5.31)

d 'z —

dx ' dx

when substituted into the nit-order equation (5.30), give the equivalent set of n first-order
equations of canonical form

dv1
'2

dx -

dv2

dx (5.32)

dv
- G(y, ..., x)

dx

Example 5.1 Transformation to Canonical Form 269

If the right-hand side of the differential equations is not a function of the independent
variable, that is,

dy
(5.33)

dx

then the set is autonomous. A nonautononious set may be transformed to an autonomous set
by an appropriate substitution. See Example 5.1(h) and (d). If the functionsf(y) are linear
in terms of y, then the equations can be written in matrix form:

y / Ay (5.34)

as in Example 5.1 (a) and (h). Solutions ft)r linear sets of ordinary differential equations are
developed in Sec. 5.4. The methods for solution of nonlinear sets are discussed in Secs. 5.5
and 5.6.

A more restricted form of differential equation is

dy =f(x) (5.35)

where f(x) are functions of the independent variable only. Solution methods for these
equations were developed in Chap. 4.

The next example demonstrates the technique for converting higher-order linear and
nonlinear differential equations to canonical form.

Example 5.1: Transformation of Ordinary Differential Equations into Their
Canonical Form: Apply the transformations defined by Eqs. (5.31) and (5.32) to the
following ordinary differential equations:

j4 A-.
LI LI Z a

(a) +j L 0
dt4 dt

d4z d3z d2z dz
(h) + 5— - 2— - 6— f 3z - e

dt4 dt3 dt2 dt

d3z 7d2z dz
(c) - -2z=O

dx3 dx2 dx

d3z 3d2z 2dz
(d) + fl— — t + 5Z = 0

dt3 dt2 dt

270 Numerical Solution of Ordinary Differential Equations Chapter 5

Solution: (a) Apply the transformation according to Eqs. (5.31):

-vi

dz
=

—

dt di
d2z dy,

= =

dt2 dt

d3z (1Y3

d4z

cit4 cit

Make these substitutions into Eq. (a) to obtain the following four equations:

dt
dy2

dt
dy7

= Y4
di

dv
= + + — 5Y4

This is a set of linear ordinary differential equations which can be represented in matrix form

y / = Ay (5.34)

where matrix A is given by

0100
0 0 1 0

0001
-3 6 2 -5

The method of obtaining the solution of sets of linear ordinary differential equations is
discussed in Sec. 5.4.

(b) The presence of the term e' on the right-hand side of this equation makes it a
nonhomogeneous equation. The left-hand side is identical to that of Eq. (a), so that the

Example 5.1 Transformation to Canonical Form 271

transformations of Eq. (a) are applicable. An additional transformation is needed to replace
the e1 term. This transformation is

C
-t

dv3

di

Make the substitutions into Eq. (h) to obtain the following set of five linear ordinary
differential equations:

dy1

di 2

di
dv1

- 34di
dv4

— --3 + 652 -- 2v3 554 + 55

- -vs
di

which also condenses into the matrix form of Eq. (5.34), with the matrix A given by

0 1 0 0 0

O 0 1 0 0

A 0001 0

-3 6 2 -5

C) 0 0 0 —l

(c) Apply the following transformations:

=

dz dv1
-

dx dx -2

d2z — dv7
—

dx2 dx

d3z — dy3

dx3 di

272 Numerical Solution of Ordinary Differential Equations Chapter 5

Make the substitutions into Eq. (c) to obtain the set

dy1
—

dx
dy2

—

dx
dy1 3 2

= — y1y3
dx

This is a set of nonlinear differential equations which cannot he expressed in matrix
form. The methods of solution of nonlinear differential equations are developed in Sees.
5.5 and 5.6.

(d) Apply the following transformations:

-:

ci: dY1
17

dt di -

d2z dv,
= = 17

cit2 cit

dY3

cit3 cit

:13 1

dt

Make the substitutions into Eq. (d) to obtain the set

dy1
17

di
dy2

17
dt

ciy7 2 3

c
+ Y-t Y3

dt
This is a set of autonomous nonlinear differential equations. Note that the above set of
substitutions converted the nonautonomous Eq. (d) to a set of autonomous equations.

5.4 Linear Ordinary Differential Equations 273

5.4 LINEAR ORDINARY DIFFERENTIAL EQUAT1ONS

The analysis of many physicochemical systems yields mathematical models that are sets of
linear ordinary differential equations with constant coefficients and can be reduced to the form

y / Ay (5.34)

with given initial conditions

y(O) Y0 (5.36)

Such examples abound in chemical engineering. The unsteady-state material and energy
balances of multiunit processes, without chemical reaction, often yield linear differential
equations.

Sets of linear ordinary differential equations with constant coefficients have closed-form
solutions that can be readily obtained from the eigenvalues and eigenvectors of the matrix A.

In order to develop this solution, let us first consider a single linear differential equation
of the type

dy— ay (5.37)("

with the given initial condition

y() (5.38)

Eq. (5.37) is essentially the scalar form of the matrix set of Eq. (5.34). The solution of the
scalar equation can be obtained by separating the variables and integrating both sides of the
equation

fad!

v (5.39)
ln—-—-- — at

v — eUty()

In an analogous fashion, the matrix set can he integrated to obtain the solution

y = eAty0 (5.40)

274 Numerical Solution of Ordinary Differential Equations Chapter 5

In this case. y and y0 are vectors of the dependent variables and the initial conditions,
respectively. The term is the matrix exponential function, which can he obtained from
Eq. (2.83):

A2t2 A3t3
e = 1 + At ' + + . (541)

2! 3!

It can he demonstrated that Eq. (5.40) is a solution of Eq. (5.34) by differentiating it:

=

dt dt
2 2 tS 3

dt 2! 3!

,
=

A 1 + At - ± ... y0

= A(e")y0

= Ay

The solution of the set of linear ordinary differential equations is very cumbersome
to evaluate in the form of Eq. (5.40), because it requires the evaluation of the infinite series
of the exponential term However, this solution can be modified by further
algebraic manipulation to express it in terms of the eigenvalues and eigenvectors of the
matrix A.

In Chap. 2. we showed that a nonsingular matrix A of order ii has n eigenvectors and ii
nonzero eigenvalues, whose definitions are given by

Ax1 = A1x1

Ax2 = A7x2

(5.42)

Ax =Ax
Si H ii

All the above eigenvectors and eigenvalues can be represented in a more compact form as
follows:

AX = XA (5A3)

5.4 Linear Ordinary Differential Equations 275

where the co]umns of matrix X are the individual eigenvectors:

[x1.x7.x3 (544)

and A is a diagonal matrix with the eigenvalues of A on its diagonal:

A 0 0 ... 0

o A, 0 ... 0

A— C) 0 ... 0 (5.45)

o o 0 ... A

If we postmu!tiply each side of Eq. (5.43) by X1, we obtain

AXX' - A - XAX' (5.46)

Squaring Eq. (5.46):

A2 IXAX'liXAX1I
(5.47)

XA2X'

Similarly, raising Eq. (5.46) to any power ii we obtain

4fl XA"X' (5A8)

Starting with Eq. (5.41) and replacing the matrices .4, A2 A" with their equivalent from
Eqs. (5.46)-(5.48), we obtain

eAt - I + XAX't + XA2XIL ... (5.49)

The identity matrix I can be premultiplied by X and postmultiplied by X' without changing
it. Therefore, Eq. (5.49) rearranges to

A22=X I ÷At + ... (5.50)7!

276 Numerical Solution of Ordinary Differential Equations Chapter 5

which simplifies to

XeMX 1 (5.51)

where the exponential matrix is defined as

o o ... o

o 0 . . . 0

o o (5.52)

o 0 0 ...

The solution of the linear differential equations can now he expressed in terms of
eigenvalues and eigenvectors by combining Eqs. (5.40) and (5.51):

y - 1Y0 (5.53)

The eigenvalues and eigenvectors of matrix A can he calculated using the techniques
developed in Chap. 2 or simply by applying the built-in function eig in MATLAB. This is
demonstrated in Example 5.2.

Example 5.2: Solution of a Chemical Reaction System. Develop a general MATLAB
function to solve the set of linear differential equations. Apply this function to determine the
concentration profiles of all components of the following chemical reaction system:

k1 1c3

A r C
k, k4

Assume that all steps arc first-order reactions and write the set of linear ordinary differential
equations that describe the kinetics of these reactions. Solve the problem numerically for the
lollowing values of the kinetic rate constants:

1 min' k1 0 miii = 2 min' k1 = 3 min'

The value of k = 0 reveals that the first reaction is irreversible in this special case. The initial
concentrations of the three components are

— I C8 0 0

Plot the graph of concentrations versus time.

Example Solution of a Chemical Reaction System 277

Method of Solution: Assuming that all steps are first-order reactions, the set of
differential equations that give the rate of formation of each compound is:

dC
__..A

= -k1CA + k2C8

dC

—
= - k2C8 - k3C8 +

-
3 8 4 C

In matrix form, this set reduces to
é=Kc

where

d

di
LA

dC C-C8
di

Cc

di

and

1<, 0

K= -k,-k3 1<4

o 1<3 -1<4

The solution of a set of linear ordinary differential equations can be obtained either by
applying Eq. (5.40):

c =

orbyEq. (5.53):

c =

where the matrix X consists of the eigenvectors of K and c0 is the vector of initial
concentrations:

CA

= C8

C(.

278 Numerical Solution of Ordinary Differential Equations Chapter 5

Program Description: The MATLAB function LineczrODE.m solves a set of linear
ordinary differential equations. The first part of the function checks the number of inputs and
their sizes, or values. The next section of the function performs the solution of the set of
ordinary differential equations, which can be done by either the matrix exponential method
[Eq. (5.40)] or the eigenvector method [Eq. (5.53)]. The method of solution may be
introduced to the function through the fifth input argument. The default method of solution
is the matrix exponential method.

The main program Exarnple5_2.m solves the particular problem posed in this example
by applying LinearODE.rn. This program gets the required input data, including the rate
constants and initial concentrations of the components, from the keyboard. Then, it builds the
matrix of coefficients and the vector of times at which the concentrations are to be calculated.
ln the last section, the program asks the user to select the method of solution and calls the
function LinearODE to solve the set of equations for obtaining the concentrations and plots
the results. The reader may try another method of solution and repeat solving the set of linear
differential equations in this part.

Program

Example5_2.m
% Example5_2.m
% Solution to Example 5.2. This program calculates and plots
% concentrations of the components of the system vs
% time. It calls the function LinearOflE to solve the set of
% linear ordinary differential equations.

clear
dc
clf

% Input data
kl = input(A->B kl

k2 = input(B->A k2

k3 = input(B->C k3

k4 = input(C—>B / k4
disp()

cO(l) = input(Initial
cO(2) = input(Initial

cOt3) input(Initial
disp()

tmax = input(Maximum time =
dt = input Time interval =
disp()

% Matrix of coefficients

concentration of A =
concentration of B =
concentration of C =

Example 5.2 Solution of a Chemical Reaction System 279

K [-kl, k2, 0; kl, —k2-k3, k4; 0, k3, -k4];
t = [O:dt:tmax]; % Vector of time
if t)end) tmax

t(end+l) = tmax;
end

1) Matrix exponential method)
2)

Eigenvector method)
0)

Exit!)

= input (

! \n Choose the method of solution

Solution
method = 1;
while method

c = IinearODE(K,cO,t, [],method);% Solving the set of
plot)t,c(l, :),t,c)2, :), ! ._!,t,c(3, :), Plotting
xlabel) ! Time!)
ylabel (! Concentration!)
legend)C_A, 'CE', 'C_C')
method = input('\n Choose the method of solution

end

Liii earODE.m

function y = LinearODE(A,yO,t,tO,method)
% LINEARODE Solves a set of linear ordinary differential equations.

S Y=LINEAR0DE)A,yO,T) solves a set of linear ordinary
S differential equations whose matrix of coefficients
% is A and its initial conditions are YO. The function
S returns the values of the solution Y at times T.

S Y=LINEARODE)A,YO,T,TO,METHOD) takes TO as the time in
S which the initial conditions YO are given. Default value
S for TO is zero. METHDD is the method of solution.
S Use METHOD = 1 for matrix exponential method
S Use METHOD = 2 for eigenvector method
S Default value for METHOD is 1.

See also 0DE23, 0DE45, ODE113, ODE15S, 0DE235, EULER, MEULER,
RK, ADAMS, ADANSMOULTON

%)c) N. Mostoufi & A. Constantinides
5 January 1, 1999

S Checking inputs
if narginc3 isempty)t)

disp)'
disp)'

disp)'

disp)'
method

equa t ions

the results

280 Numerical Solution of Ordinary Differential Equations Chapter 5

error(Vector of independent variable is empty.!)
end

if nargin<4 isempty(tO)

tO 0;

end
t = t - to;
nt = length(t);

if nargin<5 isempty(method) method < 1 method > 2

method = I;
end

nA length(A);
if nA length(yO)

error(Matrix of coefficients and vector of initial values are
not of the same order. !)

end

yO = (yO(:).); % Make sure its a column vector

switch method
case I % Matrix exponential method

for k = l;nt
if t(k) > 0

y(:,k) = expm(A*t(k))*yO;
else

y(:,k) = yO;
end

end
case 2 % Eigenvector method

[X,D] = eig(A); % Eigenvectors and elgenvalues

IX = inv(X);
e_lambda_t = zeros(nA,nA,nt);
% Building the matrix exp(LANBDA.t)
for k = l:nA

e_lambda_t(k,k,:) = exp(D(k,k) *

end
% Solving the set of equations
for k = l:nt

if t(k) > 0

y(;,k) = X * e_lambda_t(:, :,k) * IX * yO;
else

y(:,k) = yO;
end

end
end

Example 5.2 Solution of a Chemical Reaction System 281

Input and Results

>>Example5_2

A->B , kl = 1

B->A k2 = 0

B->C / k3 = 2

C->B , k4 = 3

Initial concentration of A = 1

Initial concentration of B = 0

Initial concentration of C 0

Maximum time = 5

Time interval = 0.1

1) Matrix exponential method
2) Eigenvector method
0) Exit

Choose the method of solution 2

Choose the method of solution 0

Discussion of Results: The results of solution of this problem are shown in Fig. E5.2.
It is seen from this figure, as expected for this special case, that after long enough time, all the
component A is consumed and the components B and C satisfy the equilibrium condition
CJJCC = These results also confirm the conservation of mass principle:

C4 C8 = C4 I
I

Because both methods of solution are exact, results obtained by these methods would he
identical. However, when dealing with a large number of equations and/or a long time vector,
the matrix exponential method is appreciably faster in the MATLAB environment than the
eigenvector method. This is because the exponential of a matrix is performed by the built-in
MATLAB function expin, whereas the eigenvector method involves several element-by-
element operations when building the matrix c'". The reader is encouraged to verify the
difference between the methods by repeating the solution and choosing a smaller time interval.
say 0.001, and applying this to both solution methods.

282 Numerical Solution of Ordinary Differential Equations Chapter 5

o 5L
0

05-
0
U

04

03

1

0•

05 15 2 25
Time

3 35 4 4,5

Figure E5.2 Concentration profiles.

5.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS-

INITIAL-VALUE PROBLEMS

In this section, we develop numerical solutions for a set of ordinary differential equations in
their canonical form:

dy -f(x,y) (5.27)

with the vector of initial conditions given by

y(x0) Y9 (5.28)

In order to be able to illustrate these methods graphically. we treaty as a single variable rather
than as a vector of variables. The formulas developed for the solution of a single differential
equation are readily expandable to those for a set of differential equations, which must bc
solved simultaneous/v. This concept is demonstrated in Sec. 5.5.4.

5.5 Nonlinear Ordinary Differential Equations-Initial-Value Problems 283

We begin the development of these methods by first rearranging Eq. (5.27) and integrating
both sides between the limits of x � x � and v � �

dv - f.tix. v) dx (5.54)

The left side integrates readily to obtain

- - v)dx (555)

One method for integrating Eq. (5.55) is to take the left-hand side of this equation and use
finite differences for its approximation. This technique works directly with the tangential
trajectories of the dependent variable v rather than with the areas under the functionf(x. v).
This is the technique applied in Sees. 5.5.1 and 5.5.2.

In Chap. 4, we developed the integration formulas by first replacing the functionf(.v) with
an interpolating polynomial and then evaluating the integral f(x)dx between the appropriate
limits. A similar technique could be followed here to integrate the right-hand side of Eq.
(5.55). This approach is followed in Sec. 5.5.3.

There are several functions in MATLAB for the solution of a set of ordinary differential
equations. These solvers, along with their method of solution, are listed in Table 5. 1.
The solver that one would want to try first on a problem is ode45. The statement
[x, vi = ode45('v..prirne'. [x0, x,j, solves the set of ordinary differential equations described
in the MATLAB function from x0 to x1. with the initial values given in the vector
v0, and returns the values of independent and dependent variables in the vectors x and v,
respectively. The vector of dependent variable, x. is not equally spaced. because the function
controls the step size. If the solution is required at specified points of x, the interval [x0, x,J
should be replaced by a vector containing the values of the independent variable at these

Table 5.1 Ordinary differential equation solvers in MATLAB

Solver Method of solution

o4e23 Runge-Kutta lower-order (2nd ordei -3 stages)

ode45 Runge-Kutta higher-order (4th order— 5 stages)

odeII3 Adanis-Bashforth-Moulton of varying order (1-13)

ode2is Modified Rosenbrock of order 2

odel5s Implicit, multistep of varying order (1-5)

284 Numerical Solution of Ordinary Differential Equations Chapter 5

points. For example, ft yI = ode45('v._prime', h: x1J, y0) returns the solution of the set of
ordinary differential equations from x0 to x at intervals of the width 1i. The vector x in this
case would be monotonic (with the exception of. perhaps, its last interval). The basic syntax
for applying the other MATLAB ordinary differential equation solvers is the same as that
described above for ode45.

The function v_prime.m should return the value of derivative(s) as a column vector. The
first input to this function has to be the independent variable, x, even if it is not explicitly used
in the definition of the derivative. The second input argument to flprinie is the vector
of dependent variable, y. it is possible to pass additional parameters to the derivative
function. It should be noted, however, that in this case. the third input to v_prime.m has
to be an empty variable, flag, and the additional parameters are introduced in the fourth
argument.

5.5.1 The Euler and Modified Euler Methods

One of the earliest techniques developed for the solution of ordinary differential equations is
the Eu/er method. This is simply obtained by recognizing that the left side of Eq. (5.55) is the
first forward finite difference of v at position 1:

(5.56)

which, when rearranged, gives a "forward marching" formula for evaluating v:

Y1 + (5.57)

The forward difference term Av, is obtained from Eq. (3.53) applied to v at position i:

hD2y. h3D3v+

2 6
(5.58)

In the Euler method, the above series is truncated after the first term to obtain

= + 0(h2) (5.59)

The combination of Eqs. (5.57) and (5.59) gives the explicit Eu/er forinu/a for integrating
differential equations

hDv + (5.60)

5.5 Nonlinear Ordinary Differential Equations-Initial-Value Problems 285

The derivative Dy, is replaced by its equivalent V, orj(x, y) to give the more commonly used
form of the explicit Euler method2

- + + 0(h 2)
(5.61)

This equation simply states that the next value of)' is obtained from the previous value by
moving a step of width h in the tangential direction of y. This is demonstrated graphically in
Fig 5.3a. This Euler formula is rather inaccurate because it has a truncation error of only
0(h2). If h is large the trajectory of y can quickly deviate from its true value, as shown in Fig.
5 .3h.

x x

Figure 5.3 The explicit Euler method of integration. (a) Single step. (b) Several steps.

The accuracy of the Euler method can be improved by utilizing a combination of forward
and backward differences. Note that the first forward difference of v at i is equal to the first
backward difference of v at (i + 1):

y = \7y1 (5.62)

Therefore, the forward marching formula in terms of backward differences is

Vv. (5.63)

y

yI+1

yi

Exact y

(a) (b)

y

yi+3

yi+2

yi+1

yi

x x
I i+1

x x x x
I 1+1 +2 1+3

2 From heieon the terms' and f(x, v,) will be used interchangeably. The reader should iememher that these are equal
to each other through the differential equation (5.27)

286 Numerical Solution of Ordinary Differential Equations Chapter 5

The backward difference term Vv, is obtained from Eq. (3.32) applied to v at position
(1+ 1):

h2D2v. h3D3v.
- - ... (5.64)

2 6

Combining Eqs. (5.63) and (5.64):

+) 0(/i) (5.65)

This is called the implicit Euler ,tbrinula (or backward Euler), becausc it involves the
calculation of functionf at an unknown value . Eq. (5.65) can he viewed as taking a
step forward from position ito (i + I) in a gradient dircction that must he evaluated at (i + 1).

Implicit equations cannot be solved individually but must be set up as sets of simultaneous
algebraic equations. When these sets are linear, the problem can he solved by the application
of the Gauss elimination niethods developed in Chap. 2. If the set consists of nonlinear
equations. the problem is much more difficult and must he solved using Newton's method for
simultaneous nonlinear algebraic equations developed in Chap. I

ln the case of the Euler methods. the problem can he simplified by first applying the
explicit method to predict a value v.f

(Y1, v,) 0(1/2) (5.66)

and then using this predicted value in the implicit method to get a corrected value:

± ,),,,) 0(h) (5.67)

This combination of steps is known as the Euler predictor-corrector (or mochticd Euler)

method, whose application is demonstrated graphically in Fig. 5.4. Correction by Eq. (5.67)
may he applied more than once until the corrected value converges, that is, the difference
between the two consecutive corrected values becomes less than the convergence criterion.
However, not much more accuracy is achieved after the second application of the corrector.

The explicit, as well as the implicit, forms of the Euler methods have error of order
However, when used in combination, as predictor-corrector, their accuracy is enhanced,
yielding an error of order This conclusion can he reached by adding Eqs. (5.57)
and (5.63):

= - Vv11) (5.68)

and utilizing (5.58) and (5.64) to obtain

= + + 0(h3) (5.69)

5.5 Nonlinear Ordinary Differential Equations-Initial-Value Problems 287

The terms of order (h) cancel out because they have opposite sign, thus giving a formula of
higher accuracy. Eq. (5.69) is essentially the same as the trapezoidal rule [Eq. (4.73)], the only
diffcrence being in the way the function is evaluated at , v,÷).

It has been shown [11 that the Euler implicit formula is more stable than the explicit one.
The stability of these methods will be discussed in Sec. 5.7.

It can be seen by writing Eq. (5.69) in the form

+ i) + 1/if(v + 0(h3) (5.70)

that this Euler method uses the weighted trajectories of the function v evaluated at two
positions that arc located one full step of widthh apart and weighted equally. In this form, Eq.
(5.70) is also known as the Crank-Nicolson method.

Eq. (5.70) can he wntten in a more general form as

where, in this case:

I

2- w,k, (5.71)

y1)

hf(x1 + c71i , y cz,1k1)

(5.72)

(5.73)

The choice of the weighting factors and w2 and the positions I and (i + 1) at which to
evaluate the trajectories is dictated by the accuracy required of the integration formula. that
is. by the number of terms retained in the infinite series expansion.

(b)

Figure 5.4 The Euler predictor-corrector method. (a) Value of y,1 is predicted and
1

is calculated. (b) Value of Y÷ 1
is corrected.

(a)

Exact y

yl

y

yi

Exact y

x. x.1 x x.

288 Numerical Solution of Ordinary Differential Equations Chapter 5

This concept forms the basis for a whole series of integration formulas, with increasingly
higher accuracies, for ordinary differential equations. These are discussed in the following
section.

5.5.2 The Runge-Kutta Methods

The most widely used methods of integration for ordinary differential equations are the series
of methods called Runge-Kutta second, third, and fourth order, plus a number of other
techniques that are variations on the Runge-Kutta theme. These methods are based on the
concept of weighted trajectories formulated at the end of Sec. 5.5.1. In a niore general fashion,
the forward marching integration formula for the differential equation (5.27) is given by the
recurrence equation

y. y. + k1 + w2k, wk (5.74)

where each of the trajectories k, are evaluated by

k1 hf(x,,

k, hf(x1 --c7h,

k3 hf(x1 + c3h, y1 a31/c1 -'- ark7) (5.75)

— hj(x + c,,h. +
k1 + + . . . +

These equations can be written in a compact form as

= + w1k1 (5.76)

= hf(xi + c1h, y, a1iki) (5.77)

where c1 = 0 and a11 = 0. The value of m, which determines the complexity and accuracy of
the method, is set when (in + 1) terms are retained in the infinite series expansion of

h2y- " h3y.+ 1

(5.78)
2! 3!

5.5 Nonlinear Ordinary Differential Equations-Initial-Value Problems 289

or

h2D2v. h3D3v.
+

(5.79)
2! 3!

The procedure for deriving the Runge-Kutta methods can be divided into Ove steps which
are demonstrated below in the derivation of the second-order Runge-Kutta formulas.

Step I: Choose the value of m, which fixes the accuracy of the formula to be obtained. For
second-order Rungc-Kutta, in = 2. Truncate the series (5.79) after the (in + 1) term:

-1) - v.
+ hDv. — 0(h') (5.80)

2!

Step 2: Replace each derivative of) in (5.80) by its equivalent int remembering that f is a
function of both x and y(x):

Dy, (5.81)

dx Bxdx dydx

= (5.82)

Combine Eqs. (5.80) to (5.82) and regroup the terms:

= + ht
h2

± 0(h3) (5.83)

Step 3: Write Eq. (5.76) with in terms in the summation:

+ w1k1 w7k, (5.84)

where

hfXx,, y,) (5.85)

— hf(x, + c7h, v, + ci,1k1) (5.86)

Step 4: Expand the f function in Taylor series:

f(x, c,h, +u,1k1) = + + 0(h) (5.87)

290 Numerical Solution of Ordinary Differential Equations Chapter 5

Combine Eqs. (5.84) to (5.87) and regroup the terms:

1
= - + + (w2c2)h2f\ — (u'2a21)h2t.f\ + Q(h3) (5.88)

Step 5: In order for Eqs. (5.83) and (5.88) to be identical, the coefficients of the corresponding
terms must he equal to one another. This results in a set of simultaneous nonlinear algebraic
equations in the unknown constants c1, and For this second-order Runge-Kutta method,
there are three equations and four unknowns:

= 1

W,C, = —
- 2 (5.89)

-

lt turns out that there are always more unknowns than equations. The degree of freedom
allows us to choose some of the parameters. For second-order Runge-Kutta, there is one
degree of freedom. For third- and fourth-order Runge-Kutta, there are two degrees of
freedom. For fifth-order Runge-Kutta, there are at least five degrees of freedom. This

freedom nf choice of parameters gives rise to a very large number of different forms of the
Runge-Kutta formulas. It is usually desirable to first choose the values of the c1 constants, thus
fixing the positions along the independent variable, where the functions

+ c1h, ajiki)

are to be evaluated. An important consideration in choosing the free parameters is to minimize
the rowidqff error of the calculation. Discussion of the effect of the roundoff error will he
given in Sec. 5.7.

For the second-order Runge-Kutta method, which we are currently deriving, let us
choose c, = 1. The rest of the parameters are evaluated from Eqs. (5.89):

W1 fl, — 1 (5.90)

With this set of parameters. the second-order Runge-Kutta formula is

= —(/c1 k,)

k1 = /if(x,
)

o(h 3) (5.91)

= hf(x + h. y. + k1)

This method is essentially identical to the Crank-Nicolson method see Eq. (5.70)].

5.5 Nonlinear Ordinary Differential Equations-Initial-Value Problems 291

A different version of the second-order Runge-Kutta is obtained by choosing to evaluate
the function at the midpoints (that is, c = 1/2). This yields the formula

= + 1<,

= hf(x.. v)
1 (5.92)

v1 1k1)

Higher-order Runge-Kutta formulas are derived in an analogous manner. Several of these are
listed in Table 5.2. The fourth-order Runge-Kutta, which has an error of O(fr), is probably
the most widely used numerical integration method for ordinary differential equations.

5.5.3 The Adams and Adams-Moulton Methods

The Runge-Kutta family of integration techniques, developed above, are called single-step
methods. The value of is obtained from and the trajectories of y within the single step
from (x,v1) This procedure marches forward, taking single step of widthh, over
the entire interval of integration. These methods are very suitable for solving initial-value
problems because they are self -starting from a given initial point of integration.

Other categories of integration techniques. called multiple-step methods, have been
developed. These compute the value of + utilizing several previously unknown, or
calculated, values of y (v, v1, vb2, etc.) as the base points. For this reason, the multiple-step
methods are nonself- starting. For the solution of initial-value problems, where only
\ is known, the multiple-step methods must he "primed" by first utilizing a self-starting
procedure to obtain the requisite number of base points. There are several multiple-step
methods, two of these, the Adams and Adams-Moulton methods. will he covered in this
section.

Once again, let us start by evaluating by integrating the derivative function over the
interval

- v)dx (5.55)

In order to evaluate the right-hand side of Eq. (5.55), [Cv. y) may he approximated by an
nth-degree polynomial. In the Adams method. a quadratic polynomial is passed through the
three past points, that is, (xi,, y,). (x ,v,), and Cv, and is used to extrapolate the value

292 Numerical Solution of Ordinary Differential Equations Chapter 5

Table 5.2 Summary of the Runge-Kutta integration formulas

Second order

+ - k,) + 0(h3)
2 -

k1 ht(x,

hf(x ÷h, v +k1)

Third order

si-i - + 1(k1 ÷ 4k, + k3) 0(h4)

k1 = hJ(x . v)

-

k4 — h/(x h, y 2k, —k1)

Fourth order

= + 1(k1 + 2k, + + k4) ÷ 0(hs)

= /&t(

k
k, hi

7 7

h
- hf t+—. \+—

2 2

k4 - + h, y + Ic4)

5.5 Nonlinear Ordinary Differential Equations-Initial-Value Problems 293

Table 5.2 Summary of the Runge-Kutta integration formulas (cont'd)

Fifth order

= + ---(7k1 + 32k1 + 12k4 + 32k5 + 7k6) + 0(h6)
90

k, = hf(x1,

k, =
2 2)

k3
-- 3k

+ I +

1 16 16)

k4 =

(3h 3k2 6k3 9k4)
k5 = hflx1+—.

k. 4 16 16

1c6 hf(t ±h
k1 4k, 6k5 12k4 8k5)

=

- 7 7 7 7 7)

Runge-Kutta-Fehlberg

1 25 1408 2197 1

)
+ 0(h5)= + —/(1 ÷ —k3 + ——-—k

216 2565 4104
- —k5

k1 = hf(x1,

k2 hf(
h k1)

x-4-—-, v±—I
4 .' 4)

= v÷—k ÷—k
8 - 32 322)k3

ht(

k4 hf(
12 1932 7200 7296

= x1÷—h,
13 2197 2197 2197

k5 hf(439 3860 845
= x1--h, -8k ÷—k5—

216
1 2

513

k ±2k -—————k ±—_kk6 =
8 3544 1859 11

)27
2

2565 4104

TE = - -2!—k3 - 2197
k4 + -'-k5 ±

360 4275 75240 50 55

294 Numerical Solution of Ordinary Differential Equations Chapter 5

of v1÷ 3. If we choose a uniform step size, a second-degree backward Gregory-Newton
interpolating polynomial may be applied to this problem and Eq. (5.55) becomes

v1
(x x+) (.r — x.)(x x.

=
+ J

f1 vj; + V-f, dx
+ Jh

—. (5.93)

wheret, =j(x,, v1), and it may be considered a function of x only. Noting that (x,÷ - x1) = h,

Eq. (5.93) reduces to

= h[J; !vf, I ± 0(h4) (5.94)

This equation would be easier to use by expanding the backward differences in terms of the
function values given in Table 3.5. Replacing the backward differences followed by further
rearrangements results in the following formula known as the Adams method for solution of
the ordinary differential equations:

h 4
= [23f(x1,y1) 16f(x,1,y1) + Sf(x1 + 0(h) (595)

Eq. (5.95) shows that prior to evaluating the values of the function at three points
before that have to he known. Because in an initial-value problem only the value of the
function at the start of the solution interval is known, another two succeeding values should
be calculated by a single-step method, such as Runge-Kutta. Solution of the ordinary
differential equation from the fourth point may then be continued with Eq. (5.95).

In order to derive the Adams-Moulton technique. we repeat the same procedure by
applying a third-degree interpolating polynomial (using four past points) instead of a second-
degree polynomial to approximate fix, y) in Eq. (5.55). This procedure results in prediction
of

± 155f(x1,y1) - 59J(x1) +
3

+ 0(h') (5.96)

In the Adams-Moulton method, we do not stop here and correct v,÷1 before moving to the next
step. The value of

1

calculated from Eq. (5.96) is a good approximation of the dependent
variable at position (i + 1): therefore, almost the correct value off(x,÷) may he evaluated
fromf(x,

+ + at this stage. We now interpolate the functionf(x, v). using a cuhic
Gregory-Newton backward interpolating polynomial over the range from x, 2 to + and

calculate the corrected value of by the integral of Eq. (5.55):

= I k[9f(x, + y,) — Sf(x1) +j(x,

+ 0(h5) (5.97)

5.5 Nonlinear Ordinary Differential Equations- initial-Value Problems 295

Eqs. (5.96) and (5,97) should be used as predictor and corrector, respectively. Correction
by Eq. (5.97) may be applied more than once until the corrected value converges: that is, the
difference between the two consecutive corrected value becomes less than the convergence
criterion. Howevcr, two applications of the corrector is probably optimum in terms of
computer time and the accuracy gained. Once again, solution of the ordinary differential
equation by this technique may start from the fifth point; therefore, sonic other technique
should be applied at the beginning of the solution to evaluate to v,.

5.5.4 Simultaneous Differential Equations

It was mentioned at the beginning of Sec. 5.5 that the methods of solution of a sing!e
differential equation are readily adaptable for solving sets of simultaneous differential
equations. To illustrate this. we use the set of ii simultaneous ordinary differential equations:

dv
f1(x, v1 ,

(Ix

dv,
= .

dx
(5.98)

dv
- f;1(x, y1

, y, v,)
dx

and expand, for example. the fourth-order Runge-Kutta formulas to

- 1(k11 2k,1 2k1. + k41) j - I 2

=

h k k, k
k,1 = hj5

.1
j1,2 fl (5.99)

/ k k k,
k31 lit v1 j=l,2 n

-= hj(x1 ± + k,1 , + hz,, + k,,) j 1 .2 n

This method is easily programmable using nested ioops. In MATLAB, the values of k
and y, can be put in vectors and easily perform Eq. (5.99) in matrix form.

296 Numerical Solution of Ordinary Differential Equations Chapter 5

Example 5.3: Solution of Nonisothermal Plug-Flow Reactor. Write general
MATLAB functions for integrating simultaneous nonlinear differential equations using the
Euler. Euler predictor-corrector (modified Euler), Runge-Kutta, Adams, and Adams-Moulton
methods. Apply these functions 11w the solution of differential equations that simulate a
nonisotherm plug flow reactor, as described below.

Vapor-phase cracking of acetone, described by the following endothermic reaction:

CH3COCH3 CH,CO + CH4

takes place in a jacketed tubular reactor. Pure acetone enters the reactor at a temperature of
1) = 1035 K and pressure of P0 = 162 kPa, and the temperature of external gas in the heat
exchanger is constant at = 1150 K. Other data are as follows:

Volumetric how rate: = 0.002 m3is

Volume of the reactor: i/k = 1 nY

Overall heat transfer coefficient: U = 110 WInY.K

Heat transfer area: a = 150 m2/m' reactor

Reaction constant: = 3.58 exp 34222 1 s

1035 T
Heat of reaction:

= 80770 6.8(T - 298)- 5.75xl03(T2-2982) - l.27x10 (T3 - J/mol

Heatcapacity of acetone: C1, = 26.63 + 0.1830T - 45.86x10 6T2 J/mol.K

Heat capacity of ketene: C1, = 20.04 + 0.0945T - 30.9SxlO 6T J/mol.K

Heatcapacity of methane: 13.39 0.0770T - 18.7lxlO J/mol.K

Determine the temperature profile of the gas along the length of the reactor. Assume constant
pressure throughout the reactor.

Method of Solution: In order to calculate the temperature profile in the reactor, we have
to solve the material balance and energy balance equations simultaneously:

dX 1AMole balance: =

dV F4

dT Ua(T - T) +
Energy balance:

= a

dV FA(C +flC)
a PA P

'This problem was adopted from Fogler [21 by permission of the author.

Example 5.3 Solution of Nonisothermal Plug-Flow Reactor 297

where X is the conversion of acetone, V is the volume of the reactor, 14 - r0 is the molar
flow rate of acctonc at the inlet, T is the temperature of the reactor. C,, - C,, C1,, C,,4.

and is the concentration of acetone vapor at the inlet. The reaction rate is given as

kC4
'1 -X T

In order to introduce the pair of differential equations as a MATLAB function the
following definitions are assumed:

Program Description: Five general MATLAB functions are written for the solution of
a set of simultaneous nonlinear ordinary differential equations. They are Euler. ni. MEuler.m.
RK.m, Adams.;n, andAdamsMoulton.m. All these functions consist of two main sections. The
first part is initialization, in which specific input arguments are checked. and some vectors to
be used in the second part are initiated. The next section of the function is solution of the set
of nonlinear ordinary differential equations according to the specified method, which is done
simultaneously in vector form. Brief descriptions of the method of solution of these five
functions are given below:

Euler.m —The Euler method: This function solves the set ofdi fferential equations based on Eq.
(5.61).

MEuler.m —The Euler predictor-corrector (moe///led Euler) method: This function solves the
set of differential equations based on Eqs. (5.66) and (5.67).

RK.in The Runge-Kutta methodv: This function is capable of solving the set of differential
equations by a second-, third-. fourth-, or fifth-order Runge-Kutta method. The formulas that
appeared in Table 5.2 are used for calculating a Runge-Kutta solution of the differential
equations.

Adams.m —The Adams method: This function solves the set of differential equations using Eq.
(5.95). The required starting points are evaluated by the third-order Runge-Kutta (using the
function RK.m) which has the same order of truncation error as the Adams method.

AdamsMoulton.m The Adams-Moulton method: This function solves the set of differential
equations using Eqs. (5.96) and (5.97). The required starting points are evaluated by the
fourth-order Runge-Kutta method (using the function RK.m), which has the same order of
truncation error as the Adams-Moulton method.

The first input argument to all the above method functions is the name of the MATLAB
function containing the set of differential equations. Note that the first input argument to this
function has to he the independent variable, even if it is not used explicitly in the equations.
It is important that this function returns the values of the derivatives (.1;) as a column vector.
The other inpufs to the method functions are initial and final values of the independent

298 Numerical Solution of Ordinary Differential Equations Chapter 5

variable, interval width, and the initial value of the dependent variable. In RK.m. the order of
the method may also be specified. It is possible to pass, through the above functions,
additional arguments to the M-file describing the set of differential equations.

Program

ExainpleSj. in
S Example5_3.m
S Solution to Example 5.3. This program calculates and plots
% the temperature and conversion profile of a plug-flow reactor
S in which the endothermic cracking of acetone takes place.
% It can call Euler, MEuler, RK, Adams, or AdamsMoulton solvers
S for solution of the pair of energy and material balances.
S It is also capable of comparing different solvers.

dc
S Input data
TO = input(' =

PS = input(' =

vS = input(' =

XO = input(' =

VR = input(' =

Ta = input(' =

U = input(' =

a = input(' =

CAO = P0 * (l-X0) / (8.314 * T0);% Input concentration (mol/m3(
FAQ vS * CAO; S Input molar flow rate (mol/s)
fprintf('

fname=input(' M-file containing the set of differential eguations

h = input(' Step size =

met = 1;
while met
dc
fprintf ('\n')
disp(' 1) Euler')
disp(' 2) Modified Euler')
disp(' 3) Runge—Kutta')
disp(' 4) Adams')
disp(' 5) Adams-Moulton')
disp(' 6) comparison of methods')
disp(' 0

)
End')

change = 1;
while change

clear

Inlet temperature (K)
Inlet pressure (Pa)
Inlet volumetric flow rate (m3/s)
Inlet conversion of acetone
Volume of the reactor (m3)
External gas temperature (K)
Overall heat transfer coefficient (VJ/m2.K)
Heat transfer area (m2/m3)

Example 5.3 Solution of Nonisothermal Plug-Flow Reactor 299

met = input ('\n Choose the method of solution
if met == 6

method=input('\n Input the methods to be compared, as a
vector ');

else
method = met;

end
lgnd = 'legend(';
lmethod = length(method);
for k = l:lmethod

switch method(k)
case 1 5 Euler

[V,y] = Euler(fname,O,VR,h,[XO,TO],TO,CAO,EAO,O,a,Ta);
if k > I

lgnd = [lgnd ', '];
end
lgnd = [lgnd '''Euler'''];

case 2 % Modified Euler
[V,y] = MEuler(fname,O,VR,h,[XO,TO],TO,CAO,FAO,U,a,Ta);
if k > 1

lgnd = [lgnd ', '1;
end
lgnd = [lgnd ''Modified Euler'''];

case 3 % Runge-Kutta
n = input('\n Order of the Runge-Kutta method (2-5) = ');
if n < 2

1

n > 5

n = 2;
end

= RK(fname,O,VR,h,D(O,TO],n,TO,CAO,FAO,U,a,Ta);
if k > 1

lgnd = tlgnd ','];

end
lgnd = [lgnd ' ' 'RK' int2str(n) ' ' '

case 4 5 Adams
[V,y] Adams(fname,O,VR,h,[XO,TO],TO,CAO,FAO,U,a,Ta);
if k > 1

lgnd = [lgnd ', '];
end
lgnd = [lgnd '''Adams'''];

case 5 5 Adams-Moulton
[V,y] = AdamsMoulton(fname,O,VR,h,[XO,TO],TO,CAO,

FAO,U, a,Ta);
if k > I

lgnd = [lgnd ', '];
end
lgnd = [lgnd '''Adams-Moulton'''];

end
x(k, :) = y(l, :); % Conversion

300 Numerical Solution of Ordinary Differential Equations Chapter 5

t(k, :) y(2, :);
end
if met

% Temperature

clf
% Plotting the results
subplot(2,l,l), plot(V/VR,x(l:lmethod,:))
ylabel('Conversion, X(%))

title('(a) Acetone Conversion Profile)
subplot(2,l,2), plot(V/VR,t(l:lmethod,:))
xlabel (V/V_R')
ylabel('Temperature, T(K)')
title('(b) Temperature Profile)
lgnd= [lgnd ')'];
eval (lgnd)

end
end
change=input('\n\n Do you want to repeat the solution with

different input data (0/1)? ');
end

Ex5_3Junc.zn

function fnc =
% Function Ex5_3_func.M
% This function contains the pair of ordinary differential
% equations introduced in Example 5.3. The name of this function
% is an input to the main program Example5_3.m and will be called
by the selected ODE solver.

X = y(l); % Conversion
T = y(2); % Temperature
k = 3.58*exp(34222*(l/1035_l/T)); % Rate constant
dHR =

% Heat of reaction
CpA = 26.63 + .l83*T - % Heat capacity of A

CpB = 20.04 + .0945*T - 30.95e_6*T/'2; % Heat capacity of H
CpC = 13.39 + .077*T - lB.7le_6*T?'2; % Heat capacity of C

dCp = CpB + CpC - CpA;
rA = -k * CAO * (l-X)/(l+X) * T0/T; % Reaction rate
% Mole balance and energy balance
fnc = [-rA/FAO; (U*a*(Ta_T)+rA*dHR)/(FAO*(CpA+X*dCp))];

Euler. m

function [x,y] = Euler(ODEfile,xi ,xf, h,yi,varargin)
% EULER Solves a set of ordinary differential equations by
% the Euler method.

% {x,y]=RULER('F',XI,XF,H,YI) solves a set of ordinary
% differential equations by the Euler method, from XI to XE.

Example 5.3 Solution of Nonisothermal Plug-Flow Reactor 301

% The equations are given in the M-file F.M. H is the length
% of interval and Yl is the vector of initial values of the
% dependent variable at XI.

% [X,Y]=EULERYF' ,XI,XF,H,YI,P1,P2, ...) allows for additional
% arguments which are passed to the function F(X,Pl,P2, ...)

% See also 0DE23, 0DE45, ODEI13, ODE15S, ODE23S, MEULER, RE,
ADAMS, ADAMSMOULTON

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if isempty (h) h == 0

h = linspace(xi,xf);
end

yi = (yi(:).')'; % Make sure its a column vector

x = [xi:h:xf]; % Vector of x values
if x(end) xf

x(end+l) = xf;
end
d = diff (x); % Vector of x-increments

y(:,1) = yi; % Initial condition
% Solution
for i = l:Iength(x)-1

y):,i-i-l) = y(:,i) + d(i) *

feval (DDEfile,x(i) ,y(, i) ,varargin(
end

MEuler. in
function [x,y] = MEuler(DDEfile,xi,xf, h,yi, varargin)
% MEULER Solves a set of ordinary differential equations by
% the modified Euler (predictor-corrector) method.

% [X,Y]=MEULER)'F' ,XI,XF,H,YI) solves a set of ordinary
% differential equations by the modified Euler (the Euler
% predictor-corrector) method, from XI to XF.
% The equations are given in the M-file F.M. H is the length of
% interval and Yl is the vector of initial values of the dependent
% variable at XI.

[X,Y]=MEULER('F',XI,XF,H,YI,Pl,P2,...) allows for additional
arguments which are passed to the function F)X,Pl,P2, ...)

302 Numerical Solution of Ordinary Differential Equations Chapter 5

% See also 0DE23, ODE4S, ODEll3, ODE1SS, ODE23S, EULER, RK,
ADAMS, ADAMSMOULTON

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if isempty (h) h == 0

h = linspace(xi,xf);
end

yi = (yi U) . ') '; % Make sure it's a column vector

x = [xi:h:xf]; % Vector of x values
if x(end) -= xf

x(end+l) = xf;
end
d = diff(x); % Vector of x-increments

y(:,l) = yi; % Initial condition
% Solution
for i = l:length(x)-1
% Predictor
y(:,i+l)=y(:,i) + d(i) * feval(DDEfile,x(i),yU,i), varargin{:});
% Corrector
y(:,i+l)=yU,i)+d(i) *

end

RK.m
function {x,y] = RK(ODEfiIe,xi,xf,h,yi,n,varargin)
% RN Solves a set of ordinary differential equations by the
% Runge-Kutta method.

% [x,Y]=RK('F' ,xI,xF,H,yI,N) solves a set of ordinary differential
% equations by the Nth-order Runge-Kutta method, from XI to XF.
% The equations are given in the M-file F.M. H is the length of
% interval. yi is the vector of initial values of the dependent
% variable at XI. N should be an integer from 2 to 5. If there
% are only five input arguments or the sixth input argument is an
% empty matrix, the 2nd-order Runge-Kutta method will be
% performed.

% {x,Y)=RK('F',xI,XF,H,YI,N,Pl,P2,...) allows for additional
% arguments which are passed to the function F(X,PI,P2, ...).

% See also 0DE23, ODE4S, ODE113, ODE15S, 0DE235, EULER, MEULER,
ADAMS, ADAMSMDULTON

Example 5.3 Solution of Nonisothermal Plug-Flow Reactor 303

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% initialization
if isempty (h) h == 0

h = linspace(xi,xf);
end

if nargin == 5
1

isempty(n) n < 2 n > 5

n = 2;
end
n = fix(n);

yl (yl (U . U U Make sure it s a column vector

x = [xi:h:xf]; % Vector of x values
if x(end) —= xf

x(end+l) = xf;
end
d = diff(x); % Vector of x-increments

= yi; % initial condition
% Solution

switch n
case 2 % 2nd-order Runge-Kutta

for i = l:length(x)-l
kl = d(i) * feval(ODEfile,x(i),y(:,iLvarargin{:});
k2 = d(i) * feval(ODEfile,x(i÷l),y(:i)+klvarargin{:});
y(:,i+l) =y(:,i) +(kl+k2)/2;

end
case 3 % 3rd-order Runge-Kutta

for i = l:length(x)-l
kl = d(i) *

k2 = d(i) feval(ODEfiIe,x(i)÷d(i)/2,y(:,i)+kl/2,...
vaxargin{ :

k3 = d(i) * feval(ODEfile,x(i+l),y(:,i)÷2*k2_klvarargin{:});
y(:,i+l) =y(:,i(+ (kl+4*k2+k3)/6;

end
case 4 % 4th-order Runge-Kutta

for i = l:length(x(-l
kl = d(i) *

k2 = d(i) * feval(ODEfile,x(i)+d(i)/2,y(:,i)+kl/2,
varargin{ :));

k3 = d(i) *

varargint: });
k4 = d(i) * feval(ODEfile,x(i÷l),y(:,i)+k3varargin(:});
y(:,i+l) = y(:,i) + (kl+2*k2+2*k3+k4)/6;

304 Numerical Solution of Ordinary Differential Equations Chapter 5

end
case 5 % 5th-order Runge-Kutta

for i = l:length(x)-l
kl = d(i) * feval(ODEfile,x(i),y(:,i),varargin{:});
k2 = d(i) * feval(ODEfile,x(i)+d(i)/2,y(:,i) +kl/2,

k3 = d(i) * feval(ODEfile,x(i)+d(i)/4,yU,i)+3*kl/16+k2/16,...
varargin{

k4 = d(i) * feval(ODEfile,x(i)+d(i)/2,y(:,i)+k3/2,
vararginC

k5 = d(i) * feval(ODEfile,x(i)+3*d(i)/4,y(:,i)_3*k2/16+
6*k3/16+9*k4/l6, varargin{:});

k6 = d(i) * feval(ODEfile,x(i+l),y(:,i)+kl/7+4*k2/7±
6*k3/7_l2*k4/7+8*k5/7, varargin(: })

y(:,i+l) = y(:,i) + (7*kl+32*k3+l2*k4+32*k5+7*k6)/90;
end

end

Adams.m
function [x,y] = Adams(ODEfile,xi,xf,h,yi,varargin)
I ADAMS Solves a set of ordinary differential equations by the
% Adams method.

I [X,Y]=ADAMSVF',XI,XF,H,YI) solves a set of ordinary
I differential equations by the Adams method, from Xi to XE.
I The equations are given in the M-file F.M. H is the length
I of the interval and Yl is the vector of initial values of
I the dependent variable at XI.

I [X,Y]=ADAMS('F',XI,XF,H,YI,Pl,P2, ...) allows for additional

I arguments which are passed to the function F(X,Pl,P2, ..

See also 0DE23, ODE4S, ODE113, ODE1SS, 0DE235, EULER, MEULER,
RK, ADAMSMOULTON

I (c) N. Mostoufi & A. Constantinides
1 January 1, 1999

I Initialization
if isempty (h) h == 0

h = linspace(xi,xf);
end

yi = (yi (:)
!); 1 Make sure it 5 a row vector

x = [xi:h:xf] I Vector of x values
if x(end) xf

x(end+l) = xf;

Example 5.3 Solution of Nonisothermal Plug-Flow Reactor 305

end
d = diff(x); % Vector of x-increments

% Starting values
[a ,h] =11K (ODEfile, x (1) , x(3) ,h,yi, 3, :

y(:,l:3) = b;
for i = 1:3

f(:,i) feval(ODEfile,x(i),y(:,i),varargin{:fl;
end

% Solution
for i = 3:length(x)-l

y(:,i+l)y(:,i)+d(i)/l2* (23*f(:,i)
5*f (: , i—2)

f(:,i+l) = feval(ODEfile,x(i+l),y(:,i+l),vararginUl);
end

AdamsMoulton.m

function [x,y] = AdamsMoulton(ODEfile,xi,xf,h,yi,varargin)
% ADAMSMOULTON Solves a set of ordinary differential equations by
I the Adams—Moulton method.

I [X,Y]=ADAMSMOULTON('F',XI,XF,H,Yl) solves a set of ordinary
I differential equations by the Adams-Moulton method, from XI to
% XF. The equations are given in the M-file F.M. H is the
I length of interval and yi is the vector of initial values of
I the dependent variable at XI.

I [X,Y]=ADAMSMOULTON('F',XI,XF,H,YI,Pl,P2,...) allows for

I additional arguments which are passed to the function
I F(X,Pl,P2, ...).

% See also 0DE23, ODE4S, ODEll3, ODE15S, 0DE235, EULER, MFULER,
I RE, ADAMS

I (c) N. Mostoufi & A. Constantinides
1 January 1, 1999

% Initialization
if isempty (h) h == 0

h = Iinspace(xi,xf);
end

yi = (yi(:).'); I Make sure its a column vector

x = [xi:h:xf] '; % Vector of x values
if x(end) —= xf

x(end÷l) = xf;

306 Numerical Solution of Ordinary Differential Equations Chapter 5

end
d = diff(x); % Vector of x-increments

I Starting values
[ab] = RK(ODEfile,x(l),x(4)h,yi,4,varargin{:});
y(:,l:4) =
for i = 1:4

f(:,i) = feval(ODEfile,x(i)y(:,i),varargin[:});
end

I Solution
for i = 4:length(x)-l

I Predictor
y(:,i+l) =y(:,i) +d(i)/24* (55*f(:,i) _59*f(:,i_fl

9*f(:,i3));
f(:,i+l) = feval(ODEfiIe,x(i+l),y(:,i+1),varargin{:});
I Corrector
y(:,i+1) y(:,i) +d(i)/24* (9*f(:,i+1) +19*f(:,i)

_5*f(:,i_1) +f(:,i—2));
f(:,ii-l) = feval(ODEfile,x(i+1),y(:,i+l),varargin[:));

end

I Solution
for i = 4:length(x)-l

I Predictor
y(:,i+1) = y(:,i) + d(i)/24 * (55*f(:,i) - 59*f(:,il)

+37*f(:,i_2) _9*f(:i3));
f(:,i+l) = feval(ODEfile,x(i+1),y(:,i+1),varargin{:));
I Corrector
y(:,i+1) =y(:,i) +d(i)/24* (g*f(:,i+1) +19*f(:,i)

_5*f(:,il)+f(:,i2));
f(:i+1) = feval(ODEfile,x(i+1),y(:,i+1),varargin{:));

end

Input and Results

>>Example5_3

Inlet temperature (K) = 1035
Inlet pressure (Pa) = 162e3
Inlet volumetric flow rate (m3/s) = 0.002
Inlet conversion of acetone = 0

Volume of the reactor (m3) = 0.001
External gas temperature (K) = 1200
Overall heat transfer coefficient (W/m2.K) = 110
Heat transfer area (m2/m3) = 150

M-file containing the set of differential equations :
Ex5_3_func

Example 5.3 Solution of Nonisothermal Plug-Flow Reactor 307

Step size = 0.00003

I) Euler
2) Modified Euler
3) Runge-Kutta
4) Adams
5) Adams-Moulton
6) Comparison of methods
0) End

Choose the method of solution 6

Input the methods to be compared, as a vector : [1, 3, 4]

Order of the Runge-Kutta method (2-5) = 2

1) Euler
2) Modified Euler
3 1 Runge-Kutta
4

) Adams
5 1 Adams-Moulton
6) Comparison of methods
0) End

Chooso the method of solution 0

Do you want to repeat the solution with different input data (0/1)? 0

Discussion of Results: The mole and energy balance equations are solved by three
different methods of different order of error: Euler [0(h2)]. second-order Runge-Kutta [0(h3)],
and Adams [0(h4)]. Graphical results are given in Figs. E5.3a and b.4 At the beginning the
temperature of the reactor decreases because the reaction is endothennic. However, it starts
to increase steadily at about 10% of the length of the reactor, due to the heat transfer from the
hot gas circulation around the reactor.

It can be seen from Figs. E5.3a and h that there are visible differences between the three
methods in the temperature profile where the temperature reaches minimum. This region is
where the change in the derivative of temperature (energy balance formula) is greater than the
other parts of the curve, and as a result, different techniques for approximation of this
derivative give different values for it. The reader is encouraged to repeat this example with
different methods of solution and step sizes.

When running Exomple53.in, solution results will he shown on the screen by solid lines ol different eoloi,
results for the three different methods used here are illustrated by different line type in Figs. E5 3(1 and S

in order to make them identifiable.

308 Numerical Solution of Ordinary Differential Equations Chapter 5

(a) Acetone Conversion Profile

(b) Tomperature Profile

_________-

-

H

0 02 03 04 05 06 07 06 09 1

V/VA

Figure E5.3 Conversion and temperature profiles for Example 5.3.

5.6 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS-

BOUNDARY-VALUE PROBLEMS

Ordinary differential equations with boundary conditions specified at o or more points of
the independent variable are classified as boundary—value problems. There are nianv chemical
engineering applications that result in ordinary differential equations of the boundary—value
type. To mention onl a examples:

1. Diffusion chemical reaction in the of chemical catal',sis or enzyme
cat alv Si5

2. Fleat and mass transfer in boundary-layer problems
3. Application of rigorous optimization methods, such as Pontryagin' s maximum

principle or the calculus of variations
4. Discretization of nonlinear elliptic partial differential equations 131.

5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 309

The diversity of problems of the boundary-value type have generated a variety of
methods for their solution. The system equations in these problems could be linear or
nonlinear, and the boundary conditions could be linear or nonlinear, separated or mixed, two-
point or multipoint. Comprehensive discussions of the solutions of boundary-value problems
are given by KubIôek and Hlaváãek [3] and by Aziz [4]. In this section, we have chosen to
discuss algorithms that are applicable to the solution of nonlinear (as well as linear) boundary-
value problems. These are the shooting method, the finite difference method, and the
collocation methods. The last two methods will be discussed again in Chap. 6 in connection
with the solution of partial differential equations of the boundary-value type.

The canonical form of a two-point boundary-value problem with linear boundary
conditions is

dv.
...L± =J(x, v1, x, y,) x x1 j = 1,2 n (5.100)
dx

where the boundary conditions are split between the initial point x0 and the final point Xf. The
first r equations have initial conditions specified and the last (n - r) equations have final
conditions given:

= V10 j — 1,2 ,...,r (5.101)

y1(x1) = v11 J = r÷ln (5.102)

A second-order two-point boundary-value problem may be expressed in the form:

d2v dv
= f x, y, —-- � x � (5.103)

dx2 dx

subject to the boundary conditions

a0y(x0) h0y '(x0) = (5.104)

aty(x,) h1v
= (5.105)

where the subscript 0 designates conditions at the left boundary (initial) and the subscriptf
identifies conditions at the right boundary (final).

This problem can be transformed to the canonical form (5.100) by the appropriate
substitutions described in Sec. 5.3.

310 Numerical Solution of Ordinary Differential Equations Chapter 5

5.6.1 The Shooting Method

The shooting method converts the boundary-value problem to an initial-value one to take
advantage of the powerful algorithms available for the integration of initial-value problems
(see Sec. 5.5). In this method, the unspecified initial conditions of the system differential
equations are guessed and the equations are integrated forward as a set of simultaneous initial-
value differential equations. At the end, the calculated final values are compared with the
boundary conditions and the guessed initial conditions are corrected if necessary. This
procedure is repeated until the specified terminal values are achieved within a small
convergence criterion. This general algorithm forms the basis for the family of shooting
methods. These may vary in their choice of initial or final conditions and in the integration
of the equations in one rlirection or two directions. In this section. we develop Newton's
technique. which is the most widely known of the shooting methods and can be applied
successfully to boundary-value problem of any complexity as long as the resulting initial-value
problem is stable and a set of good guesses for unspecified conditions can he made 131.

We develop the Newton method for a set of two differential equations

d v
y1, vD)

dx
(5.106)

(1v7

d.v

with split boundary conditions

= (5.107)

— (5.108)

We guess the initial condition

v7(x0) — 1 (5.109)

If the system equations are integrated forward, the two trajectories may look Like those in Fig.
5.5. Since the value of v(x0) was only a guess, the trajectory misses its target atx,; that
is, it does not satisfy the boundary condition of (5.108). For the given guess of y, the
calculated value of v2 at is designated as y). The desirable objective is to find the
value of y which forces v2(x7, y) to satisfy the specified boundary condition, that is,

v,(x1, = (5.110)

Rearrange Eq. (5.110) to

- Y2.t = 0 (5.111)

-0
(5.113)

Therefore, Eq. (5.112) becomes

Truncation and rearrangement gives

-

By

5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 311

The function can be expressed in a Taylor series around y:

04) 7- - O[(Ay)-I (5.112)a1

In order for the system to converge, that is, for the trajectory
of

0 - +

By
(5.114)

(5.115)

y2

yl

O

y)

Xf

Figure 5.5 Forward integration using a guessed initial condition y.
The designates the known boundary points.

312 Numerical Solution of Ordinary Differential Equations Chapter 5

The reader should be able to recognize this equation as a form of the Newton-Raphson
equation of Chap. I. Using the definition of [Eq. (5.111)1, taking its partial derivative,
and combining with Eq. (5.115), we obtain

Y) - ôv
=

= (5.116)
ayyx1, y) y)

where ôy is the difference between the specified final boundary value Y:j and the calculated
final value y) obtained from using the guessed y:

= (5.117)

The value of is the correction to he applied to the guessed y to obtain a new guess:

(y) - + (5.118)

ln order to avoid divergence it may sometimes be necessary to take a fractional correction step
by using relaxation, that is,

(y) - p&y 0 < p � 1 (5.119)

Solution of the set of differential equations continues with the new value of y [calculated
by Eq. (5.1 19)] until 1&y1 � c.

The algorithm can now be generalized to apply to a set of ii simultaneous system
equations:

=f1(x, y1 , V7 x0 � x � x1 j 1,2 ii (5.100)
dx -

whose boundary conditions are split between the initial point and the final point. The first r
equations have mum! conditions specified, and the last (n - r) equations haveJina! conditions
gi yen:

= j 1 ,2 ,...,r (5.101)

j = 1 ,. . . (5.102)

In order to apply Newton's procedure to integrate the system equations forward. the missing
(n - r) initial conditions are guessed as follows:

y1(x0) = j = r÷1 n (5.120)

5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 313

The system equations (5. 100) with the given initial conditions (5. 101) and the guessed initial
conditions (5.120) are integrated simultaneously in the forward direction. At the right-hand
boundary (x1), the Jacobian matrix [equivalent to the derivative term iii Eq. (5. 116)1 is
evaluated:

dy dv,

dY,

J(x1,y) (5.121)

Cfl ""
F

1

a1,

The correction of thc guessed initial values is implemented by the equation

= 'Oy (5.122)

where the vector ày is thc difference between the specified final boundary values and the
calculated final values using the guessed initial conditions

— v,1

oy - (5.123)

v,,(v1, y) v,

The new estimate of the guessed initial conditions is then evaluated from Eq. (5.118) in the
vector form.

- (iL' p 1 (5.119)

The shooting method algorithm using the Newton technique is outlined in the following
five steps:

I. The missing initial conditions of the system equations are guessed by Eq. (5. 1 20).
2. The system equations (5.100) are integrated forward simultaneously.
3. Evaluate the Jacobian matrix from Eq. (5. 121) either numerically or analytically.
4. The correction y is calculated from Eq. (5.122). The new value

of y is obtained from Eq. (5.119).
5. Steps 2 and 3 are repeated, each time with a corrected value of y, until

min(IAy,l) e. where c is the convergence criterion.

Note that the number of differential equations with final boundary conditions is not in any case
more than half of the total number of equations. In the case when final conditions are
specified for more than half the total number of diflèrential equations! we may simply reverse

314 Sotution of Ordinary Differential Equations Chapter 5

the integrating direction and as a result obtain fewer number of final conditions. The
application of the Newton technique in the shooting method by the above algorithm is
demonstrated in Example 5.4.

Example 5.4: Flow of a Non-Newtonian Fluid. Write a general MATLAB function
for solution of a boundary value problem by the shooting method using the Newton's
technique. Apply this function to find the velocity profile of a non-Newtonian fluid that is
flowing through a circular tube as shown in Fig. E5.4a. Also calculate the volumetric flow
rate of the fluid. The viscosity of this fluid can he described by the Carreau model 151:

IL. +
- 1)12

PU

where p is thc viscosity of the fluid, is the zero shear rate viscosity, is the shear rate.
is the characteristic time, and n is a dimensionless constant.

The momentum balance for this flow, assuming the tube is very long so that end effect
is negligible, results in

d tiP—(it j - (I)
L

where tiP/I. is the pressure drop gradient along thc pipe and the shear stress is expressed as

dvjr)
TI: - -P

(Ii.

Therefore, Eq. (1) is a second-order ordinary differential cquation. which should be solved
with the following boundary conditions:

No slip at the wall: r = R. v, = 0

dv.
Symmetry: r=0. = 0

(I I

The reqLlired data for the solution of this problem are:

p0 = 102.0 Pa.s t1 = 4.36 s a = 0.375 R = 0.1 m -tiPIL = 20 kPa/m

rL

Figure E5.4a

Example 5.4 Flow of a Non-Newtonian Fluid 315

Method of Solution: First we define the following two variables:

Dimensionless distance: = rIR
Dimensionless velocity: $ = v

where v = Eq. (l)can he expanded and rearranged in its dimensionless form
into the following second-order differential equation:

(1 -

1 ± A2 âik -

d24 - - tin
(7)

(1 - n)A
1-

A2

2

ciq

where A =

In order to obtain the canonical form of Eq. (2), we apply the following transformation:

The canonical form of Eq. (2) is the given as

1 n 2 1 - 1)12
I - Av1

dy1
-

- I

- (I (3)

[i + A2v2]

- (4)

The set of nonlinear ordinary differential equations (3) and (4) should he solved with the
following boundary conditions:

v1(0) = = 0 (5)

=)2j (6)

The initial value y1(O) is known, but the initial value .\2(0) must be guessed. We designate this
guess, in accordance with Eq. (5.120), as follows:

y(O) =y = = 1/4 (7)

316 Numerical Solution of Ordinary Differential Equations Chapter 5

The right-hand side of Eq. (7) corresponds to the velocity of the fluid at the center of the pipe
if it was a Newtonian fluid with the viscosity p0.

The complete set of equations for the solution of this two-point boundary-value problem
consists of:

I. The four system equations with their known boundary values Eqs. (3)-(6)1
2. The guessed initial condition for)7 [Eq. (7)1
3. Eq. (5.12 1) for construction of the Jacobian matrix
4. Eq. (5.123) for calculation of the &c vector
5. Eqs. (5. 122) and (5.119) for correcting the guessed initial conditions.

Once the velocity profile is determined, the flow rate of the fluid can he calculated from the
following integral formula:

Q

Program Description: The MATLAB function shooting.m is developed to solve a set

of first-order ordinary differential equations in a boundary-value problem using the shooting
method. The structure of this function is very similar to that of the function Neu'ton.m
developed in Example 1.4.

The function shootin g.m begins with checking the input arguments. The inputs to the
function are the name of the file containing the set of differential equations, lower and upper
limits of integration interval, the integration step size, the vector of initial conditions, the
vector of final conditions, the vector of guesses of initial conditions for those equations who
have final conditions, the order of Runge-Kutta method, the relaxation factor, and the
convergence criterion. From the above list, introducing the integration step size, the order of
Runge-Kutta method, the relaxation factor. and the convergence criterion are optional. and the
function assumes default values for each of the above variables, if necessary. The number of
guessed initial conditions has to be equal to the number of final conditions: also, the number
of equations should be equal to the total number of boundary conditions (initial and final). If
these conditions are not met, the function gives a proper error message on the screen and stops
execution.

The next section in the function is Newton's technique. This procedure begins with
solving the set of differential equations by the Runge-Kutta method, using the known and
guessed initial conditions, in forward direction. It then sets the differentiation increment for
the approximate initial conditions and consequently evaluates the elements of the Jacobian
matrix, column-wise, by differentiating using forward finite differences method. At the end
of this section, the approximate initial conditions are corrected according to Eqs. (5.119) and
(5. 1 22). This procedure is repeated until the convergence is reached for all the final
conditions.

It is important to note that the function shoot/n gin requires to receive the values of the
set of ordinary differential equations at each point in a column vector with the values of the

Example 5.4 Flow of a Non-Newtonian Fluid 317

equations whose initial conditions are known to be at tile tOp. followed by those whose final
conditions are fixed. It is also important 10 pass the initial and final conditions to the function
in the order corresponding to the order of equations appearing in the file that introduces the
ordinary differential equations.

The main program ExampleS _4 an asks the reader to input the parameters required for
solution of the problem. The program then calls the function shooting to solve the set of
equations and finally, it shows the value of the flow rate on the screen and plots the calculated
velocity profile. The default values of the relaxation factor and the convergence criterion are
used in this example.

The function Ex5_4junc.m evaluates the values of the set of Eqs. (3) and (4) at a given
point. The first function evaluated is that of Eq. (3), the initial condition of which is known.

Program

Exarnple5_4.m
% Example5_4.m

Solution to Example 5.4. This program calculates and plots
% the velocity profile of a non-Newtonian fluid flowing in a
% circular pipe. It uses the function SHOOTING to solve the
I one-dimentional eguation of motion which is rearranged as
% a set of boundary-value ordinary differential eguations.

clear
dc
ci f

I Input data
R = input(Inside diameter of the pipe (m) =

dP = input(' Pressure drop gradient (Pa/m) =

muG = input)' Zero shear rate viscosity of the fluid)Pa.s) =tl = input) Characteristic time of the fluid (s) =

n = input) The exponent n from the power-law =
fname = input)'\n M-file containing the set of differential
equations
order = input)! Order of Runge-Kutta method =
h = input)' Step size =

vmaxO = I Initial guess of velocity
vstar =
lambda =

I Solution of the set of differential equations
[eta,y] = shooting)fname,h/lGO,l,h,O,O,vmaxG/vmax, order,

[1 , [I ,n, lambda)
r = eta*R; I Radial position
vs = y)2,)*vstar; I Velocity profile

318 Numerical Solution of Ordinary Differential Equations Chapter 5

Q = 2*pi*trapz(r,r.*vz); % Flow rate
fprintf('\n Volumetric flow rate = %4.2f lit/s \n,Q*l000)

I Plotting the results
piot)l000*r,vz)

ylahel('v_z (m/s)')
xlabel('r (mm))

ExS_4junc. in
function f = Ex5_4_func(eta,y,n, lambda)
I Function 5x5_4_func.M
I This function introduces the set of ordinary differential
I equations used in Example 5.4.

f(l) =
(1- (1-n) /)

f(2) =

f I Make it a column vector

shooting. in
function [x,y] = shooting(ODEfile,xO,xf,h,yO,yf,gammaO,order,

rho, tol,varargin)
ISHOOTING Solves a boundary value set of ordinary differential
I oquations by shooting method using Newton's technique.

I [X,Y]=SHOOTING)'F',XO,XF,H,YO,YF,GAMMA) integrates the set of
I ordinary differentiai equations from XO to XF, using the
I 4th-order Runge-Kutta method. The equations are described in
I the P4-file F.M. H is the step size. TO, FR, and GAMMA are the
I vectors of initia] conditions, final conditions, and starting
I guesses, respectively. The function returns the independent
I variablo in the vector X and the set of dependent variables in
I the matrix F.

I [x,T]=SHOOTING('F',xO,xF,H,YO,YF,GANNA,0RDER,RH0,TOL,Pl,P2,...)
I applies the ORDERth-order Runge-Kutta method for forward
I integration, and uses relaxation factor RHO and tolerance TOL
% for convergence test. Additional parameters P1, P2, . . . are
I passed directly to the function F. Pass an empty matrix for
I OROER, RHO, or TOL to use the defau]t value.

I See also COLLOCATION, RK

I (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if isempty)h) h == 0

Example 5.4 Flow of a Non-Newtonian Fluid 319

h = (xf - xi)/99;
end
if nargin c 8 isempty(order)

order = 4;
end
if nargin < 9 isempty(rho)

rho = 1;
end
if nargin < 10 isempty(tol)

tol = le-6;
end

yQ = (yC (:)
!;

% Make sure it s a column vector
yf = (yf(:).); % Make sure its a column vector
gamma0 = (gammaO (J . ; I Make sure it s a column vector

I Checking the number of guesses
if length(yf) length(gamrnaO)

error(The number of guessed conditions is not equal to the
number of final conditions.)

end

r = length(yO); I Number of initial conditions
n = r + length(yf); I Number of boundary conditions
I Checking the number of equations
ftest = feval(ODEfile,xO, [yO ; gammaO],varargin{:});
if length(ftest) n

error(The number of equations is not equal to the number of
boundary conditions.
end

gammal = gamma0 * 1.1;
gammanew = gamma0;
iter = 0;
maxiter = 100;

I Newtons technique
while max(abs(gammal - gammanew)) > tol & iter c maxiter

iter = iter + 1;
garnrnal = gammanew;
[x,y] = RK(ODEfile,xO,xf,h, [yO ; gammal],ordervarargin{:fl;
fnk = y(r+l:n,end);

I Set d(gamma) for derivation
for k = l:length(gammal)

if gammal(k) -= 0

dgamma(k) = gammal(k) / 100;

else
dgarnma(k) = 0.01;

320 Numerical Solution of Ordinary Differential Equations Chapter 5

end
end

% Calculation of the Jacobian matrix
a = gammaf;
for k = l:n-r

a(k) = gammal(k) + dgamma(k);
{xaya] = RK(ODEfile,xO,xf,h,[yO

;

fnka = ya(r+l:n,end);
jacobUk) = (fnka - fnk) / dgamma(k);
a(k) = gammal(k) - dgamma(k);

end

S Next approximation of the roots
if det(jacob) == 0

gammanew = gammal + max([abs(dgamma), l.l*tol]);

else
gammanew = gammal - rho * inv(jacob) * (fnk - yf);

end
end

if iter >= maxiter
disp(Warning Maximum iteraLions reached. U

end

Input and Results

>>Hxample54

Inside diameter of the pipe (m) = 0.1
Prcssure drop gradient (Palm) = 20e3
Zero shear rate viscosity of the fluid)Pa.s) = 102
Characteristic time of the fluid)s) = 4.36
The exponent n from the powcr-law 0.375

M-file containing the set of differential equations Ex5_4_func

Order of Runge-Kutta method = 4

Step size = 0.01

Volumetric flow rate = 2.91 lit/s

Discussion of Results: The volumetric flow rate of the fluid in this condition is
calculated to be 2.91 L/s, and the velocity profile is shown in Fig. E5.4b. It should be noted
that because there is the term I/q in Eq. (2), the lower limit of numerical integration cannot
be zero; instead, a very small value close to zero should he used in such a situation. In the
main program Exampie5j, the lower limit of integration is set to h/lOU, which is negligible
with respect to the dimension of the pipe.

5.6 Nonlinear Ordinary Differential Equations- Problems 321

Figure E5.4b Velocity profile for non-Newtonian fluid.

5.6.2 The Finite Difference Method

The finite-dWerence method replaces the derivatives in the differential equations with finite
difference approximations at each point in the interval of integration, thus converting the
differential equations to a large set of simultaneous nonlinear algebraic equations. To
demonstrate this method, we use, as before, the set of two differential equations:

with split boundary conditions:

- , y2)
dx

v1.
dx

(5.106)

x (x0) — (5.107)

YJxt) y2., (5.108)

0-

10 20 30 40 50
r(mm)

60 70 80 90 100

322 Numerical Solution of Ordinary Differential Equations Chapter 5

Next, we express the derivatives of v in terms of forward finite differences using Eq. (4.33):

dv. i
- 0(h) (5.124a)

dx h

dy.
- y. 0(h) (5.124h)

dx h -,

For higher accuracy, we could have used Eq. (4.41), which has error of order (h2). instead of
Eq. (4.33). Tn either case, the steps of obtaining the solution to the boundary-value problem
are identical.

Combining Eqs. (5.124) with (5.106) we obtain

- hf1(x. Y2.i) (5.l25a)

- h/(x. y2•1)

We divide the interval of integration into n segments of equal length and write Eqs. (5.125)
for 1 0, 1, 2 ii - 1. These form a set of 2n simultaneous nonlinear algebraic equations
in (2,i + 2) variables. The two boundary conditions provide values for two of these variables:

vjx0) = (5.107)

y2(x1) (5.108)

Therefore, the system of 2n equations in 2n unknown can he solved using Newton's method
for simultaneous nonlinear algebraic equations, described in Chap. 1. It should he
emphasized. however, that the problem of solving a large set of nonlinear algebraic equations
is not a trivial task. It requires, first, a good initial guess of all the values of and it involves

the evaluation of the (2n x 2n) Jacobian matrix. and Hlavdãek [31 state that
computational experience with the finite difference technique has shown that, for a practical
engineering problem, this method is more difficult to apply than the shooting method. They
recommend that the finite difference method be used only for problems that are too unstable
to integrate by the shooting methods. On the other hand, if the differential equations are
linear, the resulting set of simultaneous algebraic equations will also be linear. In such a case.
the solution can be obtained by straightforward application of matrix inversion or the Gauss
elimination procedure.

5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 323

5.6.3 Collocation Methods

These methods are based on the concept of interpolation of unequally spaced points: that is.
choosing a function, usually a polynomiaL that approximates the solution of a differential
equation in the range of integration. x0 � x � and determining the coefficients of that
function from a set of base points.

Let us again consider the set of two differential equations:

, , Vi
dx

(5. 106)
dv,

= f,(x, ï1. v,)
dx

with split boundary conditions:

X, (.ç1) Y10 (5.107)

v,(x,) V2 / (5.108)

Suppose that the solutions y1(x) and vAx) of Eq. (5. 106) can be approximated by the following
polynomials, which we call trial junctions:

P1 = = c11x2 + . . . + c1,x' (5.126a)

y, (x) P, ,,(x) C2 C2 A F C,,.k 2
-F . . . C, (5.12614

We take the derivatives of both sides of Eq. (5. 126) and substitute in Eqs. (5.106):

P ,(x) P1,(x). in 1 .2 (5.127)

We then form the residuals:

- P ',,(X) - P1 ,(x), P,,(x)) in = I . 2 (5.128)

324 Numerical Solution of Ordinary Differential Equations Chapter 5

The objective is to determine the coefficients {c, I i = 0, 1. . . ., n; in = 1, 2) of the
polynomials to make the residuals as small as possible over the range of integration of
the differential equation. This is accomplished by making the following integral vanish:

fW1R,(.k)dx 0 (5.129)

where are weighting functions to he chosen. This technique is called the nietliod of
weigh ted residuals.

The collocation method chooses the weighting functions to he the I)irac delta (ti/ut
impulse) function:

WA ô(.x — x0 (5.130)

which has the property that

fa(x)ô(A - XA)d.k a(.kA) (5.131)

Therefore. the integral (5. 1 29) becomes

f ([V — 0 (5.132)

Combining Eqs. (5.128) and (5.132), we have

- P1 P,,,(xk)) 0 in 1 .2 (5.133)

This implies that at a given number of collocation points, (xk I k = 0, 1 n}, the
coefficients of the polynomials (5.126) are chosen so that Eq. (5. 133) is satisfied: that is. the
polynomials are exact solutions of the differential equations at those collocation points (note
that x,, = The larger the number of collocation points, the closer the trial function would
resemble the true solution v,,,(x) of the differential equations.

Eq. (5.133) contains the (2uu + 2) yet—to—he—determined coefficients (c,,, I i = 0. 1

in = I, 2} of the polynomials. These can he calculated by choosing (2iu + 2) collocation points.
Because it is necessary to satisfy the boundary conditions of the problem. two collocation
points are already fixed in this case of boundary-value problem. At x = V0

y1 (x0) — + c1 X0 . . . (5.134)
(1

5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 325

and at x =

= + c21 ± . * . + c2
=

C,1X (5.135)

Therefore, we have the freedom to choose the remaining (2ii) intemal collocation points and
then write Eq. (5.133) for each of these points:

,(X) — f1(x1 , P11(x1), P,,(x1)) = 0

(5.136a)

P 'l(x,?) — Ptfl(X,)

P 0

P '21(x,) , P117(x0 P2 ,(x,, = 0

Note that we have also written Eq. (5. 133) forx = = x in Eq. (5. 136a) and for .v =; in Eq.

(5.136h) hecause the values YI.U and y,1 are yet unknown. Eqs. (5.134)-(5.136) constitute a

complete set of (2n + 2) simultaneous nonlinear equations in (2n + 2) unknowns. The solution
of this problem requires the application of Newton's method (see Chap. 1) for simultaneous
nonlinear equations.

If the collocation points are chosen at equidistant intervals within the interval of
integration, then the collocation method is equivalent to polynomial interpolation of equally
spaced points and to the finite difference method. This is not at all surprising, as the
development of interpolating polynomials and finite differences were all based on expanding
the function in Taylor series (see Chap. 3). It is not necessary, however, to choose the
collocation points at equidistant intervals. In fact, it is more advantageous to locate the
collocation points at the roots of appropriate orthogonal polynomials, as the following
discussion shows.

The orthogonal collocation method, which is an extension of the method just described,
provides a mechanism for automatically picking the collocation points by making use of
orthogonal polynomials.5 This method chooses the trial functions y1(x) and y,(x) to be the
linear combination

17 + 1

= > a,,1P1(x) m = 1 .2 (5.137)

For a more complete discussion of orthogonal collocation methods see Finlayson [11.

326 Numerical Solution of Ordinary Differential Equations Chapter 5

of a series of orthogonal polynomials P(x):

P0(x) = c0

P1(x) = + x

P1(x) — Cfl() C. X C, ,X2 (5.138)

This set of polynomials can he written in a condensed form:

P1(x) = i 0.1.... -1 (5.139)

The coefficients are chosen so that the polynomials obey the orthogonality condition
defined in Sec. 3.10:

fw(v)P(x)P(v)dv 0 1 (5.140)

When P(x) is chosen to be the Legendre set of orthogonal polynomials see Table 3.71,
the weight ic(s) is unity. The standard interval of integration for Legendre polynomials is
[— 1, 11. The transformation equation (4.92) is used to transform the Legendre polynomials
to the interval fx). which applies to our problem at hand

(x (x1
x = z ± (5.141)

2 2

Eq. (5.141) relates the variables x and z so that every value of .v in the interval A,.]

corresponds to a value of z in the interval -1, 1] and vice versa. Therefore, using or as

independent variables is equivalent. 1-lereafter. we use as the independent variable of the
Legendre polynomials to stress that the domain under study is the interval [1. 11. The

derivatives with respect to x and z are related to each other by the following relation:

dv 2 c/v
— In= (5.142)

dx — .t,,) dz

The two-point boundary-value problem given by Eqs. (5.106)-(5. 108) has (2,; + 2)

collocation points, {z, Ij = 0, 1 n + I }. including the two known boundary values = 1

and + = 1). The location of the n internal collocation points (z to zn) are determined from

&6Nonlinear Ordinary Differential Equations-Boundary-Value Problems 327

the roots of the polynomial 0. The coefficients a in Eq. (5. 137) must he determined
so that the boundary conditions are satisfied. Eq. (5.137) can be written for the (a + 2) points

(z0 to as
- 1

y1(z1) = E d1z3 (5.143a)

>
— 0

where the terms of the polynomials have been regrouped. Eqs. (5.143) may he presented in
matrix notation as

y1 = Qd1 (5.144a)

y2 Qd2 (5.144h)

where d, and d2 are the matrices of coefficients and

0,1 it—I

o.i,... (5.145)

Solving Eqs. (5.144) ford1 andd2, we find

d1 Q'y1 (5.146a)

d2 - (5.146b)

The derivatives of vs are taken as

y1(c.) .
1 1

— (5.147a)
ctz

— > (5.147b)

which in matrix form become

dy
= CQ'y1 = Ày1 (5.148a)

dy
= = CQ'y, = Ày2 (5.1481)

328 Numerical Solution of Ordinary Differential Equations Chapter 5

where

•1 i — 0.1
= izi j 0.1 ti+1 (5.149)

The two-point boundary-value problem of Eq. (5.106) can now he expressed in terms of
the orthogonal collocation method as

Ay1 =f1(z,y1,y2)
(5.150)

Ay2 -f2(z.y1.y,)

or

E .1
y1 (5. lSla)

j

H —

E L (z1, y,1) (5.15 lh)

with the boundary conditions

y(z0) = and Y: i = = (5.152)

Eqs. (5. 151) and (5. 152) constitute a set of (2,i + 4) simultaneous nonlinear equations whose
solution can be obtained using Newton's method for nonlinear equations. It is possible to
combine Eqs. (5.151) and present them in matrix form:

A2Y - F (5.153)

where

AO
A2 (5.154)

OA

y1

y2

= (5.155)

5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 329

f1(c11, Y20)

Li1 .f1 (z,,
F = (5.156)

[12 t2(z0. Y1 y2

v1, 3

The bold zeros in Eq. (5.154) are zero matrices of size (n + 2) x (ii + 2), the same size as that
of matrix A.

It should be noted that Eq. (5.153) is solved for the unknown collocation points which
means that we should exclude the equations corresponding to the boundary conditions. in the
problem described above, the first and the last equations in the set of equations (5.153) will
not be used because the corresponding dependent values are determined by a boundary
condition rather than by the collocation method.

The above formulation of solution for a two-equation boundary-value problem can be
extended to the solution of m simultaneous first-order ordinary differential equations. For this
purpose. we define the following matrices:

A 0.0
OA...0

(5.157)

00...A
Y [y1,y2 ym]' (5.158)

F - {fl'f2 (5.159)

Note that the matrix A in Eq. (5.157) is defined by Eq. (5.148) and appears in times on the
diagonal of the matrix Am. The values of the dependent variables {v1, / = 1, 2

330 Numerical Solution of Ordinary Differential Equations Chapter 5

j = 0, 2 ii + I } are then evaluated from the simultaneous solution of the following set of
nonlinear equations plus boundary conditions:

F 0 (5.160)

The equations corresponding to the boundary conditions have to be excluded from Eq. (5. 160)
at the time of solution.

If the problem to be solved is a second-order two-point boundary-value problem in the
form

y f(x. y, y') (5.161)

with the boundary conditions

and (5.162)

we may follow the similar approach as described above and approximate the function v(x) at
(a + 2) points, after transforming the independent variable from x to :, as

y(z1) E (5.163)

The derivatives of y are then taken as

(_)
d: —

d1z1' (5.164)

i2v() =

d1i(i - l)z 2

(5.165)
dz

These equations can be written in matrix form:

= CQ'y = Ay (5.166)

dy -'
= DQ y By (5.167)

dz -

where

-D 1
1 = 0,1 fl-hi

= i(i - 1)z - (5.168)j = 0.1 n--i

Example 5.5 Optimal Temperature Profile for Penicillin Fermentation 331

The two-point boundary-value problem of Eq. (5.161) can now be expressed in terms of
the orthogonal collocation method as

By -f(z.y,Ay) (5.169)

Eq. (5.169) represents a set of (ii + 2) simultaneous nonlinear equations. two of which
correspond to the boundary conditions (the first and the last equation) and should be neglected
when solving the set. The solution of the remaining ii nonlinear equations can be obtained
using Newton's method for nonlinear equations.

The orthogonal collocation method is more accurate than either the finite difference
method or the collocation method. The choice of collocation points at the roots of the
orthogonal polynomials reduces the error considerably. In fact, instead of the user choosing
the collocation points, the method locates them automatically so that the best accuracy is
achieved.

Example 5.5: Solution of the Optimal Temperature Profile for Penicillin
Fermentation. Apply the orthogonal collocation method to solve the two-point boundary-
value problem arising from the application of the maximum principle of Pontrvagin to a hatch
penicillin fermentation. Obtain the solution of this problem, and show the profiles of the state
variables, the adjoint variables, and the optimal temperature. The equations that describe the
state of the system in a batch penicillin fermentation, developed by Constantinides et al.[61,
are:

dy1
2

Cell massproduction: — — —v1 (0) = 0.03 (1

cu2
Penicilhnsynthesis: = v7(0) 0.0 (2)

cit - -

where = dimensionless concentration of cell mass
= dimensionless concentration of penicillin
= dimensionless time, 0 � i � 1.

The parameters b, are functions of temperature, 0:

1.0 — w,(0 — w3)2 1.0 — w2(0 — w1)2
li —

—
-

1.0 — w2(25 — n)2 1.0 — w,(25 —

(3)

1.0 — w2(0 — O(
1)3 = n-'5 - � 0

1.0 n-2(25 -

332 Numerical Solution of Ordinary Differential Equations Chapter 5

where w = 13.1 (value of at 25°C obtained from fitting the model to experimental data)
fl2_O.005

= 0.94 (value of b, at 25°C)
1.71 (value of at 25°C)

= 20°C
0 = temperature, °

These parameter-temperature functions are inverted paraholas that reach their peak at 30°C
for and /22, at 20°C (1w The values of the parameters decrease by a factor of 2 over a
1 0°C change in temperature on either side of the peak. The inequality, /2 � 0, restricts the
values of the parameters to the positive regime. These functions have shapes typical of those
encountered in microbial or enzyme-catalyzed reactions.

The maximum principle has been applied to the above model to determine the optimal
temperature profile (see Ref. [7]), which maximizes the concentration of penicillin at the linal
time of the fermentation, = I. The maximum principle algorithm when applied to the state
equations, (1) and (2), yields the following additional equations:

The adjoint equations:

dv2
2—v1v3 - v1(l) 0 (4)

di

(I V4
= 0 1.0 (5)

The 1—lainiltonian:

1-I
—

— - v,(b1.v1)
'22

The necessary condition for maximtim:

8H
ao

Eqs. (I)-(6) form a two-point boundary-value problem. Apply the orthogonal collocation
method to obtain the solution of this problem, and show the profiles of the state variables, the
adloint variables, and the optimal temperature.

Method of Solution: The fundamental numerical problem of optimal control theory is
the solution of the two-point boundary-value problem, which invariably arises from the
application of the maximum principle to determine optimal control profiles. The state and

'.. -

Example 5.5 Optimal Temperature Profile for Penicillin Fermentation 333

adjoint equations, coupled together through the necessary condition for optimality. constitute
a set of simultaneous differential equations that arc often unstable. This dilTiculty is further
complicated, in certain problems. when the necessary condition is not solvable explicitly for
the control variable 6. Several numerical niethods have been developed for the solution of this
class of problems.

We first consider the second adjointeqtiation. Eq. (5), which is independent of the other
variables and, therefore. may be integrated directly:

I O� sI (7)

This reduces the number of differential equations to be solved by one. The remaining three
differential equations. Eqs. (1), (2), and (4). are solved by Eq. (5.160), where in = 3.

Finally, we express the necessary condition f Eq. (6)1 in terms of the system variables:

8H 8/21 2
c(b1/b))

= v1 v1v4 0 (8)
86 86 86 86

The temperature 6 can be calculated from Eq. (8) once the system variables have been
determined.

Program Description: The MATLAB function collocaiion.m is developed to solve a set
of first-order ordinary differential equations in a boundary-value problem by the orthogonal
collocation method. It starts with checking the input arguments and assigning the default
values, if necessary. The number of guessed initial conditions has to be equal to the number
of final conditions. and also the number of equations should he equal to the total number of
boundary conditions (initial and final). If these conditions are not met, the function gives a
proper error message on the screen and stops execution.

In the next section, the function builds the coefficients of the Lagrange polynomial and
finds its roots, :. The vector of x, is then calculated from Eq. (5.141). The function applies
Newton's method for solution of the set of nonlinear equations (5. I 60). Therefore. the starting
values this technique are generated by the second-order Runge-Kutta method, using the
guessed initial conditions. The function continues with building the matrices Q. C, A. A,,,, and

vectors Y and F.
Just before entering the Newton's technique iteration loop, the function keeps track of the

equations to be solved; that is, all the equations excluding those corresponding to the boundary
conditions. The last part of the function is the solution of the set of equations (5.160) by
Newton's method. This procedure begins with evaluating the differential equations function
values followed by calculating the Jacobian matrix, by differentiating using forward finite
differences method and, finally, correcting the dependent variables. This procedure is repeated
until the convergence is reached at all the collocation points.

It is important to note that the collocation.m function must receive the values of the set
of ordinary differential equations at each point in a column vector, with the initial value
equations at the top, followed by the final value equations. It is also important to pass the

334 Numerical Solution of Ordinary Differential Equations Chapter 5

initial and final conditions to the function in the order corresponding to the order of equations
appearing in the file that introduces the ordinary differential equations.

The main program Example5_5.ni asks the reader to input the parameters required for
solution of the problem. The program then calls the function collocation to solve the set of
equations. Knowing the system variables, the program calls the function to find the
temperature at each point. At the end, the program plots the calculated cell concentration,
penicillin concentration, first adjoint variable, and the temperature against time.

The function Ex5ijunc.m evaluates the values of the set of Eqs. (1), (2), and (4) at a
given point. It is important to note that the first input argument to Ex5_Sjunc is the
independent variable, though it does not appear in the differential equations in this case. This
function also calls the MATLAB function fzero to calculate the temperature from Eq. (8),
which is introduced in the function Ex5heta.m.

Program

ExarnpleS_im
% Example5_5.m
% Solution to Example 5.5. This program calculates and plots
% the concentration of cell mass, concentration of penicillin,
% optimal temperature profile, and adjoint variable of a batch
% penicillin fermentor. It uses the function COLLOCATION to
% solve the set of system and adjoint equations.

clear
dc
clf

% Input data
w = input(' Enter w' 's as a vector
yO = input(' Vector of known initial conditions =
yf = input(' Vector of final conditions =
guess = input(' Vector of guessed initial conditions =
fname = input('\n M-file containing the set of differential
equations
fth=input(' N-file containing the necessary condition function
n = input(' Number of internal collocation points =
rho = input(' Relaxation factor =

% Solution of the set of differential equations
[t,y] = collocation(fname,O,l,yO,yf,guess,n,rho,[],w,fth);
% Temperature changes
for k = l:n+2

theta(k) =
end

% Plotting the results

Example 5.5 Optimal Temperature Profile for Penicillin Fermentation 335

subplot(2,2,l), plot(t,y(l,:))
xlabel (Time
ylabel('Cell)
title) (a) ')

subplot)2,2,2), plot)t,y)2,:))
xlabel) Time')
ylabel) 'Penicillin')
title)')b) ')

subplot)2,2,3), plot)t,y)3,J)
xlahel) 'Time')
ylahe] ('First Adjoint')
title)')c)

subplot)2,2,4), plot)t,theta)
xlabel) 'Time')
ylabel)'Temperature (deg C)')
title)')d) ')

ExSSJunc.m
function f = Ex55func)t,y,w,fth)
% Function Ex5_5_func.M
% This function introduces the set of ordinary differential
% equations used in Example 5.5.

% Temperature
theta = fzero)fth,30,le—6,O,y,w);

% Calculating the b's
bl = w)l) *

/

if bl<O, b10; end
b2 = w)4) *)l_w)2)*)theta_w)3))'\2) /

if b2<O, b2=le-6; end
b3 = w)5) *)l_w)2)*)theta_w)6))'\2) /

if b3<O, b30; end

I Evaluating the function values
f)l) = bl*y)l) - bl/b2*y)l)'\2;
f (2) = b3*y)l)
f)3) = _bl*y)3) + 2*bl/b2*y)l)*y)3) - b3;

f = f'; I Make it a column vector

ExS_5_theta.rn

function ftheta = Ex5_5_theta)theta,y,w)
I Function Ex5_5_theta.M
I This function calculates the value of the necessary condition
I as a function of the temperature (theta) . It is used in solving
I Example 5.5.

336 Numerical Solution of Ordinary Differential Equations Chapter 5

% Calculating the bs
bl = w(l) *

/

dbl = w(l)*(_w(2))*2*(theta_w(3)) I (l_w(2)*(25_w(3)V2);

b2 =w(4) *
/

db2 = w(4)*(_w(2))*2*(theta_w(3)) / (l_w(2)*(25_w(3)V2);

b3 = w(5) *
/

db3 = w(5)*(_w(2))*2*(theta_w(6)) / (l_w(2)*(25_w(6)V2);

% The function
ftheta — y(3)*(y(l)*dbl_y(lfl2*(dbl*b2db2*bl)/b2/\2)÷y(l)*db3.

collocation.rn

function [x,y] = collocation(ODEfile,xO,xf,yO,yf,guess,n, rho,
tol , varargin)

%COLLOCATION Solves a boundary value set of ordinary differential
% equations by the orthogonal collocation method.

% [X,Y]=COLLOCATION('F',XO,XF,yO,YF,QAEVIIVIA,N) integrates the set of
% ordinary differential equations from XO to XF by the Nth-degree

orthogonal collocation method. The equations are contained in
% the M-file F.M. YO, YF, and GAMMA are the vectors of initial
I conditions, final conditions, and starting guesses respectively.
I The function returns the independent variable in the vector X
I and the set of dependent variables in the matrix Y.

I [X,Y]=COLLOCATION('F',XO,XF,YC,YF,GAMMA,N,R1-JO,TOL,Pl,p2,...)
I uses relaxation factor RHO and tolerance TOL for convergence
I test. Additional parameters P1, P2, ... are passed directly to
I the function F. Pass an empty matrix for RHO or TOL to use the
I default value.

I See also SHOOTING

I (c) N. Mostoufi & A. Constantinides
1 January 1, 1999

I Initialization
if nargin c 7 isempty(n)

n = 1;
end
if nargin c 8 isempty(rho)

rho = 1;
end
if nargin c 9 isempty(tol)

tol = le-6;
end

Example 5.5 Optimal Temperature Profile for Penicillin Fermentation 337

yO =
% Make sure its a column vector

yf = (yf (:)
.

% Make sure it s a column vector
guess = (guess(d.); % Make sure its a column vector

% Checking the number of guesses
if length(yf) length(guess)

errorL The number of guessed conditions is not equal to the
number of final conditions. ')
end

r = length(yO); % Number of initial conditions
m = r + length(yf); % Number of boundary conditions
% Checking the number of equations
ftest = feval(ODEfile,xO, [yO guessjvarargin{:});
if length(ftest) m

error(The number of equations is not equal to the number of
boundary conditions.
end

fprintf(\n Integrating. Please wait. \n\n(

% Coefficients of the Legendie polynomial
for k = 0 n/2

cl(2*k+l) = (—l)"k *
/ .

* gamma(k+l) * gamma(n—k+l) * gamma(n_2*k+l));
if k < n/2

c] (2*k+2) = 0;
end

end
zl = roots(cl); % Roots of the Legendre polynomial
z = [-1; sort(zl); 1]; % Collocation points (z)
x = % Collocation points (x)

% Bulding the vector of starting values of the dependent variables
[p,q] = RK(ODEfile,x0,xf,(xf-x0)/20[yO ; guess],2,varargin{:});
for k = l:m

y(k, :(= spline(p,q(k, :),x);
end
y(r+l:m,end) = yf(l:m—r);

% Building the matrix A
Q(:,l) = ones(n+2l);
C(:,l) =zeros(n+2,l);
for i = l:n+l

Q(:,i+l) =

C(:,i+l) =

end
A = C*inv(Q);
for k = l:m

kl = (k_l)*(n+2)+l;

338 Numerical Solution of Ordinary Differential Equations Chapter 5

k2 = ki + n+l;
Arn(kl:k2,kl:k2) = A; % Building the matrix Am
Y(kl:k2) = y(k, :); % Building the vector Y

end
= F'; % Make it a column vector

Yl = Y * 1.1;
iter = 0;
maxiter = 100;
F =
Fa = zeros(m*(n+2),l);
dY = zeros(m*(n+2),l);

position [1; 1 Collocation points excluding boundary conditions
for k = l:m

if k <= r
position = [position, (k_l)*(n+2)+[2:n+2]];

else
position = [position, (k_l)*(n+2)+[l:n+l] 1;

end
end

1 Newton's method
while max(abs(Y1 - Y)) > tol & iter c maxiter

iter = iter + 1;
fprintf(Iteration %3d\n' ,iter)
Yl = Y;
I Building the vector F
for k = l:n+2

F(k n+2 (m_l)*(n+2)+k) = feval(QDBfile,x(k),
Y(k n+2 (m_1)*(n+2)+k),varargin{:});

end
fnk = Am * 'f - F;

I Set dY for derivation
for k = 1:m*(n+1)

if Y(position(k)) —= 0

dY(position(k)) = Y(position(k)) / 100;

else
dY(position(k)) = 0.01;

end
end

% Calculation of the Jacobian matrix
for k = l:m

for kk = 1:n+1
a = Y;
nc = (k_1)*(n+1)+kk;
a(position(nc)) = Y(position(nc)) + dY(position(ncfl;
for kkk = 1:n+2

Example 5.5 Optimal Temperature Profile for Penicillin Fermentation 339

Fa(kkk n#2 tm_l)*(n÷2)+kkk) =

feval(ODEfile,x(kkk),a(kkk:n+2:
end
fnka = Am * a - Fa;
jacob(:,nc) = (fnka(position) - fnk(position))

/ dY(position(nc))
end

end

% Next approximation of the roots
if det(jacob) == 0

Y(position) = Y(position) + max([abs(dY(position)); 1.1*tol]);
else

Y(position) = Y(position) - rho * inv(jacob) * fnk(position);
end

end

% Rearranging the ys
for k = l:m

kl = (k_l)*(n+2)+l;
k2 = kl + n+l;
y(k,:) = Y(kl:k2)';

end
x = x';

if iter >= maxiter
disp('Warning : Maximum iterations reached. U

end

Input and Results

> > Example5_S

Enter ws as a vector [13.1, 0.005, 30, 0.94, 1.71, 20]
Vector of known initial conditions = [0.03, 0]

Vector of final conditions = 0

Vector of guessed initial conditions = 3

M-file containing the set of differential equations 'Ex5_5_func
M-file containing the necessary condition function 'ExS_S_theta'
Number of internal collocation points = 10
Relaxation factor = 0.9

Integrating. Please wait.

Iteration I

Iteration 2

Iteration 3

Iteration 4

340 Numerica' Solution of Ordinary Differential Equations Chapter 5

Iteracion 5

Iteration 6

Iteration 7

Iteration B

Iteration 9

Iteration ID

Iteration 11

I)iscussion of Results: The choice of the valLie of thc missing initial condition for is

an important factor in the convergence of the collocation method, because it generates the
starting values to the technique. The value of v3(0) = 3 was chosen as the guessed initial
condition after some trial and error. The collocation method converged to the correct solution
in II iterations.

Figs. E5.5a to E5.5d show the profiles of the system and the optimal control
variahle (temperature). For this particular formulation of the penicillin fermentation, the
maximum principle indicates that the optimal temperature profile varies from 30 to 20°C in
the pattern shown in Fig. E5.5d.

C)
U

Figure E5.5 Profiles of the system variables and the optimal control variable for
penicillin fermentation.

(a) (b)

C

0
C
a
3-

Time Time

(c)

04 0.6
Time

0 02 04 06 08
Time

5.7 Error Propagation, Stability, and Convergence 341

5.7 ERROR PROPAGATION, STABILITY, AND CONVERGENCE

Topics of paramount importance in the numerical integration of differential equations are the
error propagation, stability, and convergence of these solutions. Two types of stability
considerations enter in the solution of ordinary differential equations: inherent stability (or
instability) and nwnerical stability (or instability). Inherent stability is determined by the
mathematical formulation of the problem and is dependent on the eigenvalues of the Jacobian
matrix of the differential equations. On the other hand. numerical stability is a function of the
error propagation in the numerical integration method. The behavior of error propagation
depends on the values of the characteristic roots of the difference equations that yield the
numerical solution. In this section. we concern ourselves with numerical stability
considerations as they apply to the numerical integration of ordinary differential
equations.

There are three types of errors present in the application of numerical integration methods.
These are the truncation error, the roandoff erro;; and the propagation error The truncation
error is a function of the number of terms that are retained in the approximation of the solution
from the infinite series expansion. The truncation error may be reduced by retaining a larger
number of terms in the series or by reducing the step size of integration h. The plethora of
available numerical methods of integration of ordinary differential equations provides a choice of
increasingly higher accuracy (lower truncation error), at an escalating cost in the number of
arithmetic operations to be performed, and with the concomitant accumulation of roundoff errors.

Computers carry numbers using a finite number of significant figures. A roundoff error
is introduced in the calculation when the computer rounds up or down (or just chops) the
number to n significant figures. Roundoff errors may be reduced significantly by the use of
double precision. However, even a very small roundoff error may affect the accuracy of the
solution, especially in numerical integration methods that march forward (or backward) for
hundreds or thousands of steps, each step being performed using rounded numbers.

The truncation and roundoff errors in numerical integration accumulate and propagate,
creating the propagation error, which, in some cases, may grow in exponential or oscillatory
pattern, thus causing the calculated solution to deviate drastically from the correct solution.

Fig. 5.6 illustrates the propagation of error in the Euler integration method. Starting with
a known initial condition y0, the method calculates the value v, which contains the truncation
error for this step and a small roundoff error introduced by the computer. The error has been
magnified in order to illustrate it more clearly. The next step starts with y1 as the initial point
and calculates But because y1 already contains truncation and roundoff errors, the value
obtained fory2 contains these errors propagated, in addition to the new truncation and roundoff
errors from the second step. The same process occurs in subsequent steps.

Error propagation in numerical integration methods is a complex operation that depends
on several factors. Roundoff error, which contributes to propagation error, is entirely
determined by the accuracy of the computer being used. The truncation error is fixed by the

dv
= Xv (5.170)

Figure 5.6 Error propagation of the Euler method.

342 Numerical Solution of Ordinary Differential Equations Chapter 5

ys

V2

V0

choice of method being applied, by the step size of integration, and by the values of the
derivatives of the functions heing integrated. For these reasons, it is necessary to examine
the error propagation and stability of each method individually and in connection with the
differential equations to be integrated. Some techniques work well with one class of
differential equations hut fail with others.

In the sections that follow, we examine systematically the error propagation and stability
of several numerical integration methods and suggest ways of reducing these errors by the
appropriate choice of step size and integration algorithm.

5.7.1 Stability and Error Propagation of Euler Methods

Let us consider the initial-value differential equation in the linear form.

dx

where the initial condition is given as

Y(X[)) = y0 (5.171)

We assume that A is real and y0 is finite. The analytical solution of this differential
equation is

y(x) = (5.172)

5.7 Error Propagation, Stability, and Convergence 343

This solution is inherent/v stable for A <0. Under these conditions:

hm y(x) -
(5.173)

Next, we examine the stability of the numerical solution of this problem obtained from
using the explicit Euler method. Momentarily we ignore the truncation and roundoff errors.
Applying Eq. (5.60), we obtain the recurrence equation

- + hAy (5.174)

which rearranges to the following first-order homogeneous difference equation

- (I - 0 (5.175)

Using the methods described in Sec. 3.6. we obtain the characteristic equation

E-(l hA) =0 (5.176)

whose root is
(I hA) (5.177)

From this, we obtain the solution of the difference equation (5.175) as

C(l hA) (5.178)

The constant C is calculated from the initial condition. at x =

n 0 v, - V0 - C (5.179)

Therefore, the final form of the solution is

= v0(l + hAY (5.180)

The differential equation is an initial-value problem; therefore, n can increase without hound.
Because the solution is a function of (I + hA)', its behavior is determined by the value of
(1 + hA). A numerical solution is said to he absolutely stable if

in 0 (5.181)

The solution of the differential equation (5.170) using the explicit Euler method is absolutely
stable if

II + hAl � 1 (5.182)

Because (1 + hA) is the root of the characteristic equation (5.176), an alternative definition of
absolute stability is

I i 1,2 k (5.183)

344 Numerical Solution of Ordinary Differential Equations Chapter 5

where more than one root exists in the multistep numerical methods.
Returning to the problem at hand, the inequality (5.182) is rearranged to

-2 � hA � 0 (5.184)

This inequality sets the limits of the integration step size for a stable solution as follows:
Because h is positive, then A <0 and

2
/1 �

lAl
(5.185)

Inequality (5.185) is a finite genetal stability boundary, and for this reason, the explicit
EuLer method is catted conditionally stable. Any method with an infinite general stahilhy
boundary can be called unconditionally stable.

At the outset of our discussion, we assumed that A was real in order to simplify the
derivation. This assumption is not necessary: A can he a complex number. In the earlier
discussion of the stability of difference equations (Sec. 3.6). we mentioned that a solution is
stable, converging with damped oscillations, when complex roots are present, and the moduli
of the roots are less than or equal to unity:

C
E

Irl � I

Figure 5.7 Stability region in the complex plane for Runge-Kutta methods of
order 1 (explicit Euler), 2, 3, 4, and 5.

(5.186)

Re(hX)

5.7 Error Propagation, Stability, and Convergence 345

The two inequalities (5.184) and (5.186) describe the circle with a radius of unity on the
complex plane shown in Fig. 5.7. Since the explicit Euler method can be categorized as a first-
order Runge-Kutta method, the corresponding curve in this figure is marked by RKI. The set
of values of hA inside the circle yields stable numerical solutions of Eq. (5. 1 70) using the
Euler integration method.

We now return to the consideration of the truncation and roundoff errors of the Euler
method and develop a difference equation. which descrihcs thc propagation of the error in the
numerical solution. We work with the nonlinear form of the initial-value prohlem

c/v - f(x, x) (5.27)
dx

where the initial condition is given by

(5.28)

We define the accumulated error of the numerical solution at step (a + I) as

1

=
1

- v(x,,1) (5.187)

where y(x11 1) is the exact value of v. and v, is the calculated value of v at v, . We then
write the exact solution) as a Taylor series expansion, showing as many terms as needed
for the Euler method:

± hf(x,,, v(x,,)) + (5.188)

where ,, — is the local truncation error for step (n + I). We also write the calculated value
v, obtained from the implicit Euler formula

Sn I
— y,, + hJ(A,,, Yn) ,, 1

(5.189)

where RL,,+ is the roundoff error introduced by the computer in step (a + 1).

Combining Eqs. (5.1 87)-(5. 1 89) we have

- + h [fUr,,. y,,) J(x,,. v(x,,))
I n- 1 (5.190)

which simplifies to

c, + h[f(x,,, v,,) — j(xn, y(x,,fl[- ,, - (5.191)

The mean-value theorem

f(x,, ,y,,) - f(xn ,v(A,,)) - — v(x,,)I v, < a < y(x,,) (5.192)

can he used to further modify the error equation (5.19 1) to

-
- - (5.193)

346 Numerical Solution of Ordinary Differential Equations Chapter 5

This is aJirst-order nonhomogeneous thjjèrence equation wi/li varying coefficients, which can
be solved only by iteration. However, by making the following simplifying assumptions:

T6/,÷ = TJ. constant

1

= constant (5.194)

at 6= A=eonstant

Eq. (5.193) simplifies to

CnI — (1 + = RL (5.195)

whose solution is given by the sum of the homogeneous and particular solutions [8]:

+ R
C1(l +

6 £
(5.196)

1 — (1 1 hA)

Comparison of Eqs. (5.175) and (5.195) reveals that the characteristic equations for the
solution y, and the error c are identical. The truncation and roundoff error terms in Eq.
(5.195) introduce the particular solution. The constant C1 is calculated by assuming that the
initial condition of the differential equation has no error; that is, €() = 0. The final form of the
equation that describes the behavior of the propagation error is

-T R- 6 ER! + hAY 11 (5.197)

A great deal of insight can be gained by thoroughly examining Eq. (5.197). As expected,
the value of (1 + hA) is the determining factor in the behavior of the propagation error.
Consider first the case of a fixed finite step size h, with the number of integration steps
increasing to a very large n. The limit on the error as n -, is

-T ±R
lim I€,I =

6 for Ii hAl C 1 (5.198)
hA

lim 1€/I = for Il ± hAl > 1 (5.199)

In the first situation [Eq. (5.198)]. A <0, 0 < h < 2/RI. the error is hounded, and the
numerical solution is stable. The numerical solution differs from the exact solution by only
the finite quantity (-TF + R6)/hA, which is a function of the truncation error, the roundoli error,
the step size, and the eigenvalue of the differential equation.

6 Under this assumption. Eq (5 27) becomes identical Lu Eq (5. 1 70).

5.7 Error Propagation, Stability, and Convergence 347

In the second situation [Eq. (5.199)]. A > 0. Ii > 0, the enor is unbounded and the
numerical solution is unstable. For A > 0, however, the exact solution is unstable.
For this reason we introduce the concept of relative error defined as

relative error - (5.200)

Utilizing Eqs. (5. 180) and (5.197), we obtain the relative error as

—Ti. RE— - I (5.201)
)'0hA (1 + hAY'

The relative error is bounded for A > 0 and unbounded for A <0. So we conclude that for
inherently stable differential equations, the absolute propagation error is the pertinent criterion
for numerical stability, whereas for inherently unstable differential equations. the relative
propagation error must he investigated.

Let us now consider a fixed interval of integration. 0 � x � a, so that

a
h — (5.202)

a

and we increase the number of integration steps to a very large a. This, of course, causes
11 0. A numerical method is said to he convergent if

lim Ie,,l 0
(5.21)3)

In the absence of roundoff error, the Euler method, and most other integration methods, are
convergent because

lim - 0 (5.204)

and

hm l€flI 0
(5.203)

However, roundoff enor is never absent in numerical calculations. As h 0 the roundoff error
is the crucial factor in the propagation of error:

(I + hA)" - 1
Em 1€,,! = (5,205)
h o i, o hA

Application of L'Hôpital's rule shows that the roundoff error propagates unbounded as the
number of integration steps becomes very large:

urn c, = (5206)

This is the "catch 22' of numerical methods: A smaller step size of integration reduces the
truncation enor hut requires a large number of steps, thereby increasing the roundoff error.

348 Numerical Solution of Ordinary Differential Equations Chapter 5

A similar analysis of the implicit Euler method (backward Euler) results in the following
Iwo equations, for the solution

(5.207)
(1 - hA)'

and the propagation error

-T÷R= hA) (5.208)
hA (I hA)"

For A <0 and 0 < h <on, the solution is stable:

lim ', = 0 (5.209)

and the error is bounded:

-T. + R
urn = - /A

- Ah) (5.210)

No limitation is placed on the step size; therefore, the implicit Euler method is unconditionally
stable for A < 0. On the other hand, when A > 0, the following inequality must be true for a
stable solution:

II hAl � 1 (5.211)

This imposes the limit on the step size:

-2 � hA � 0 (5.212)

It can he concluded that the implicit Euler method has a wider range of stability than the
explicit Euler method (see Table 5.3).

5.7.2 Stability and Error Propagation of Runge-Kutta Methods

Using methods parallel to those of the previous section, the recurrence equations and the
corresponding roots for the Runge-Kutta methods can be derived [9]. For the differential
equation (5.170), these are:

Second-order Runge-Kutta:

= - hA - !h2A2)vn (5.213)

- I hA + ±h2A2 (5.214)

5.7 Error Propagation, Stability, and Convergence 349

Third-order Runge-Kutta:

= hA + ±h2A2 + (5.215)

p1 1 hA - (5.216)

- 1 hA — ±/j 1A4 v
2 6 24

p1 I hA IhA?
2 6 24

Boundary

-2 hA

(5.2 17)

(5.2 18)

Table 5.3 Real stability boundaries

Method

Explicit Euler

Implicit Euler

Modilic.l Euler
(predictor-corrector)

Second-order Runge-Kutta

Third-order Runge-Kutta

Fourth-order Runge-Kuna

Fifth-order Runge-Kutta

Adams

Adanis-Moulton

-1.077 hA 0

-2 hA < 0

-2.5 hA 0

-2.785 hA 0

-5.7 hA < 0

-0546 hA 0

-1.285 hA sO

Fourth-order Runge-Kutta:

forA<0

-2 < hA < 0 for A > 0

350 Numerical Solution of Ordinary Differential Equations Chapter 5

Fifth-order Runge-Kutta:

v = I hA - 'h2x2 + - OS625
h6A6

2 6 24 120 720
(5.2 19)

P - + hA - l/,2A2 !hlAl + *h5A5 °S62Sh6A6
2 6 24 120 720

(5.220)

The last term in the right-hand side of Eqs. (5.2 19) and (5.220) is specific to the fifth-order
Runge-Kutta, which appears in Table 5.2 and varies for different fifth-order formulas. The
condition for absolute stability:

1 i 1,2 k (5.183)

applies to all the above methods. The absolute real stability boundaries for these methods are
listed in Table 5.3, and the regions of stability in the complex plane are shown on Fig. 5.7.
In general, as the order increases, so do the stability limits.

5.7.3 Stability and Error Propagation of Multistep Methods

Using methods parallel to those of the previous section. the recurrence equations and the
corresponding roots for the modified Euler. Adams. and Adams-Moulton methods can be
derived 91. For the differential equation (5.170), these are:

Modified Euler (combination of predictor and corrector)'

(1 + hA + (5.221)

p1 = 1 + hA h2A2 (5.222)

Adams:

23 4hA 5hA
2

= 1 + —hA v, — —Vu
1

+ 2 (5.223)

- (I + p2 + p - = 0 (5.224)

5.8 Step Size Control

Adams-Moulton (combination of predictor and corrector):

351

hA 37h2A2—+
24 64

7hA 55h212l—
6 64

ShA 59h2A2-
64

9h2A2

64

ShA 59h2A2 2

24 64

7hA 55h2A2)
—(1 ±

6 64

(5.225)

(5.226)

(5.183)

hA 37hA2 9hA2—I -o
24 64 64

The condition for absolute stability,

1p1I � 1 1— 1.2 k

applies to all the above methods. The absolute real stability boundaries for these methods are
also listed in Table 5.3, and the regions of stability in the complex plane are shown on Fig. 5.8.

E

Re(hX)

Figure 5.8 Stability region in the complex plane for the modified Euler
(Euler predictor-corrector), Adams, and Adams-Moulton
methods.

352 Numerical Solution of Ordinary Differential Equations - Chapters

5.8 STEP SIZE CONTROL

The discussion of stahility analysis in the previous sections made the simplifying assumption
that the value of A remains constant throughout the integration. This is true for linear
equations such as Eq. (5. 170); however, for the nonlinear equation (5.27), the value of A may
vary considerahly over the interval of integration. The step size of integration must he chosen
using the maximum possible value of A. thus resulting in the minimum step size. This, of
course, will guarantee stability at the expense of computation time. For problems in which
computation time becomes excessive, it is possible to develop strategies for automatically
adjusting the step size at each step of the integration.

A simple test for checking the step size is to do the calculations at each interval twice:
Once with the full step size, and then repeat the calculations over the same interval with a
smaller step size. usually half that of the first one. If at the end of the interval, the difference
between the predicted value of v by both approaches is less than the specified convergence
criterion, the step size may he increased. Otherwise. a larger than acceptable difference
between the two calculated v values suggests that the step size is large. and it should he
shortened in order to achieve an acceptable truncation error.

Another method of controlling the step size is to obtain an estimation of the truncation
error at each interval. A good example of such an approach is the Runge-Kutta-Fehlherg
method (see Table 5.2), which provides the estimation of the local truncation error. This error
estimate can he easily introduced into the computer program. and let the prograni
automatically change the step size at each point until the desired accuracy is achieved.

As nientioned before. the optimum number of application of corrector is two. Therefore,
in the case of using a predictor—corrector method, if the convergence is achieved before the
second corrected value, the step size may he increased. On the other hand. if the

convergence is not achieved after the second application of the corrector. the step size should
he reduced.

5.9 STIFF DIFFERENTIAL EQUATIONS

In Sec. 5.7, we showed that the stability of the numerical solution of differential equations
depends on the value of hA, and that A together with the stability boundary of the method
determine the step size of integration. In the case of the linear differential equation

c/v
= Ay (5.170)dx

5.9 Stiff Differential Equations 353

A is the eigenvalue of that equation, and it remains a constant throughout the integration. The
nonlinear differential cquation

dv— t(x, (5.27)
dx

can he linearized at each step using thc mean-value theorem (5.192), so that A can he obtained
from the partial derivative of the function with respect to v:

dv (5.227)

The value of A is no longer a constant hut varies in magnitudc at each stcp of the integration.
This analysis can be extended to a set of simultancous nonlinear differential equations:

dv1
')2'dx

dv,
- f,(x, v1 .v,

dx
(5.98)

dv
- .

dx

Linearization of the set produces the Jacobian matrix

8f1 aj;

ay! ' dy,,

(5.228)

aj;, at;

The eigenvalues { A I i = 1. 2 ii } of the Jacobian matrix are the determining factors in the
stability analysis of the numerical solution. The step size of integration is determined by the
stability boundary of the method and the maximum eigenvalue.

When the eigenvalues of the Jacobian matrix of the differential equations are all of the
same order of magnitude, no unusual problems arise in the integration of the set. However,
when the maximum eigenvalue is several orders of magnitude larger than the minimum
eigenvalue, the equations are said to he st?/j. The stjffiiess ratio (SR) of such a set is
defined as

354 Numerical Solution of Ordinary Differential Equations Chapter 5

max IReal(A.)I

SR
=

(5229)
mm IReaI(A1)I
- un

The step size of integration is determined by the largest eigenvalue, and the final time of
integration is usually fixed by the smallest eigenvalue; therefore, integration of differential
equations using explicit methods may be time intensive. Finlayson [I] recommends using
implicit methods for integrating stiff differential equations in order to reduce computation
time.

The MATLAB functions ode23s and ode 15s arc solvers suitable for solution of stiff
ordinary differential equations (see Table 5.1).

PROBLEMS

5.1 Dense the second-order Runge-Kutta method of Eq. (5.92) using central differences.

5.2 The solution of the following second-order linear ordinary differential equation should he
determincd using numerical techniques:

dx -
- lOx = 0

dt cit

The initial conditions for this equation are, at t = 0:

dx
= 3 and —H0 15

cit

(a) Transform the above differential equation into a set of first-order linear differential
equations with appropriate initial conditions.
(b) Find the solution using eigenvalues and eigenvectors, and evaluate the variables in die

range 0 � � 1 .0

(c) Use the fourth-order Runge-Kutta method to verify the results of part (b).

5.3 A radioactive material (A) decomposes according to the series reaction:

k,

A B C

where k1 and k2 are the rate constants and B and C are the intermediate and final products.
respectively. The rate equations are

A

= k1C
cit

ciC
= k1C4 - k1C11

cit
dC.

=
dt -

Problems 355

where C8. C8, and arc the concentrations of materials A, 13, and C. respectively. The values of
the rate constants are

1

Initial conditions are

C4(O) = I moUrn3 C8(0) 0 (0) 0

(a) Use thc eigenvalue-eigenvector method to determine the concentrations C8. and

as a function of time t.
(b) At time t = 1 s and t = 1 0 s, what are the concentrations of A, B. and C?
(c) Sketch the concentration profiles for A, B, and C.

5.4 (a) Integrate the following differential equations:

dC
- = 100.0

di
c/C8

= - 4C8 C8(0) = 0.0
c/i.

for the time period 0 � t s 5. using (1) the Euler predictor-corrector method, (2) the fourth-order
Runge-Kutta method
(h) Which method would give a solution closer to the analytical solution?
(e) Why do these methods give different results?

5.5 In the study of fermentation kinetics, the logistic law

dv .11
= I - —

di.

has been used frequently to describe the dynamics of cell growth. This equation is a modification
of the logarithmic law

dy1
= k v1

di.

The terni (1 - v1//c,) in the logistic law accounts for cessation of growth due to a limiting nutrient.
The logistic law has been used successfully in modeling the growth of penicilliurn

chryscogenum, a penicillin-producing organism [61. In addition. the rate of production of
penicillin has been mathematically quantified by the equation

ci
= —

cii

Penicillin (v2) is produced at a rate proportional to the concentration of the cell and is degraded
by hydrolysis, which is proportional to the concentration of the penicillin itself.

356 Numerical Solution of Ordinary Differential Equations Chapter 5

(a) Discuss other possible interpretations of the logistic law
(b) Show that is equi\alent to the maximum cell concentration that can be reached undei
given conditions.

(c) Apply the fourth—order Runge—Kotta integration method to find the numerical solution ol
the cell and penicillin equations. Use the ing constants and initial conditions:

k =003120 /c)=-177() k4=0.0126S

at i = 0, 5 0. and = 0.0: the range oft is 0 212 h.

5.6 The conversion of glucose to glueonie acid is a simple oxidation of the aldehyde group of the sugar
to a earboxyl group. This transforInation can he a mici ooi ganisin in a fermentation
pioeess. The enzyme glucose oxidase. present in the microorganism. eon\erts glucose to
glueonolaeione. Iii turn, the gluconolaetone hydrolyzes to lorm the glucoiuic acid. The ovei all
mechanism of the fermentation process that pci lou us this transformation can he desci ihed as
follows:

Cell growth:

Glucose + Cells -, Cells

Glucose oxidation:

G liieose ±o2 Glucose oxiclase Gluconolactone ±H202

Gluconolactone hydrolysis:

Gluconolactone±I 120 Glueonic acid

Peroxide decomposition:

st
1-1202

A mathematical iiuodel rut tile fermentation of the bacteri iim Pseo(/oowoo.s oua/,s, which llrOduces
gliiconic acid, has been de\ eloped by Rai and Constantinides [10]. This model, which desci ihes the
dynamics of the logarithmic growth phases. can he summarized as follows.

Rate (If cell growth:

C/V1
I

b1•v1 I

Rate of gloconolactone formation:

d. h31h1.\4
0.90821Lv

c/I —

Problems 357

Rate of gluconic acid formation:

= b5v,
di -

Rate of glucose consumption:

= -1.011
h3v1v4

1)4

where v1 = concentration of cell

concentration of glucononctone
= concentration of gluconic acid
= concentration of glucose

= parameters of the system which arc functions of temperature and pH.

At the operating conditions of 30°C aod pH 6.6. thc values of the five parameters were determined
from experimental data to he

h10.949 b2=3.439 1K72 h437.51 bç 1.169

At these conditions, develop the time profiles of all variables. y1 to %4. for the period

0 � 9 h. The initial conditions at the start of this period are

v1(0) = 0.5 tJ.O.D./mL v3(0) 0.0 mg/mL

\2(0) = 0.0 mg/mI. v4(O) = 50.0 mg/mL

5.7 The best-known mathematical representation of population dynamics between interacting species
is the Lokta-Volterra model 1111 For the case of two competing species, these equations take the
general form

dN
- f1(N1.N,) =

N1di - N,di - -

where N1 is the population density of species 1 and N, is the population density of species 2. The
functions J and /2 describe the specific growth rates of the two populations. Under certain
assumptions, these functions can be expressed in terms of N1, N,, and a set of constants whose
values depend on natural birth and death rates and on the interactions between the two species.
Numerous examples of such interactions can be cited from ecological and microbiological studies.
The predator-prey problem, which has been studied extensively, presents a very interesting
ecological example of population dynamics. On the other hand, the interaction between bacteria
and phages in a fermentor is a well-known nemesis to industrial microhiologists.

Let us now consider in detail the classical predator-prey problem, that is, the interaction
between two wild-life species, the prey, which is a herbivore, and the predator, a carnivore. These
two animals coinhabit a region where the prey have an abundant supply of natural vegetation for
food, and the predators depend on the prey for their entire supply of food. This is a simplification
of the real ecological system where more than two species coexist. and where predators usually
feed on a variety of prey. The Lotka-Volterra equations have also been formulated for such

358 Numerical Solution of Ordinary Differential Equations Chapter 5

complex systems: however, for the sake of this problem. our ecological system will contain only
two interacting species An excellent example of such an ecological system is Isle Royale National
Park, a 21(1-square mile archipelago in Lake Superior. The park comprises a single large island
and many small islands which extend off the main island. According to a very interesting article
in National Geographic [12], moose arrived on Isle Royale around 1900. probably swimming in
from Canada. By 193(1. their unchecked numbers approached 3000. ravaging vegetation In 1949,
across an ice bridge from Ontario. came a predator- the wolf Since 1 958. the longest study of its
kind [I 3]-[l 5) still seeks to define the complete cycle in the ebb and flow of predator and prey
populations. with wolses fluctuating from 11 to 50 and moose from 500 to 2400 [see Table P5.7cij.

In order to formulate the predator-prey prohleiii. we make the following assumptions:

(a) In the absence of the predator, the piey has a ilatLiral birth rate h and a natural death rate ci
Because au abundant supply of natural vegetation for food is available, and assuming that no
catastrophic diseases plague the prey. the birth rate is higher than the death rate: therefore.
the net specific growth rate a is positise; that is,

cINII = h-cl a
N1 cit

(h) In the presence of the predator the prey is consumed at a rate proportional to the number of
predators present

tIN
a

N1d11 -

(e) In the absence of the prey. the predator has a negative specific growth rate (-y). as the
inevitable consequence of such a situation is the stars ation of the predator:

cIN,
- -Y

N,clt

(d) In the presence of the prey. the predator has an ample supply of food. s; hieh enables it to
survive and produce at a rate proportional IC) the abundance of the prey. Under these
circumstances, the specific growth rate of the predator is

tIN,
-y-ôN1

N cli

The equations in parts (b) and (d) constitute the Lokta-Volterra model for the one-predator-one-
prey problem. Rearranging these two equations to put them in the canonical form.

tIN
(I)

cli

dN
= -yN,÷hN1N, (2)

cit

This is a set of simultaneous first-order nonlinear ordinary differential equations. The solution of
these equations first requires the determination of the constants a, y. and 6, and the specification

Problems 359

Table P5.7a Population of moose and wolves on Isle Royale

Year Moose Wolves Year Moose Wolves

1959 522 20

1960 573 22

1961 597 22

1962 603 23

1963 639 20

1964 726 26

1965 762 28

1966 900 26

1967 1008 22

1968 1176 22

1969 1191 17

197() 1320 18

1971 1323 20

1972 1194 23

1973 1137 24

1974 1026 3!

1975 915 41

1976 708 44

1977 573 34

1978 905 41)

1979 738 43

1980 705 50

1981 544 30

1982 972 14

1983 90(1 23

1984 1041 24

1985 1062 22

1986 1025 20

11)87 1380 16

1988 1653 12

1')89 1397 11

1991) 1216 15

1991 1313 12

1992 1596 12

1993 1880 13

1994 1770 17

1995 2422 16

1996 1 200 22

1997 500 24

998 700 14

of boundary conditions The latter coUld be either initial or final conditions. In population
d) namics. it is more customaiv to specify initial population densities, because actual numei ical
values of the population densities may he known at some point in time, which can he called the
initial starting time. ever, it is conceivable that one may want to specify final values of the
population densities to he accomplished as targets in a well-managed ecological system. In this
problem. e ill specity the initial poptil ation densities of the prey and predator to he

N1(t)) and N:(t()) = (3)

360 Numerical Solution of Ordinary Differential Equations Chapter 5

Equations (1)-(3) constitute the complete mathematical formulation of the predator-prey
problem based on assumptions (a) to (cIt. Different assumptions ield another set of
differential equations see Problem t In addition, the choice of constants and initial
eoiiditions influence the solution of the differential equations and generate a dis erse set of
qualitative behavior patterns fot the two populations. Depending on the form ol the differential
equations and the s alues of the constants chosen, the solution patterns may s aIy from stable,
datnped oscillations, where the species reach their respective stable symbiotic population densities,
to highly unstable situations, tn one of the species is drixen to extinction the other
explodes to extreme population density.

The literature on the solution of the Lotka—Volteria problems is Several

teterences on this topic we gis cii at the end of this chapter. A closed—lortn analyttcal solution of
this system of nonlinear ordinary differential equations is not possible. The equations must be
integrated I)ut))erically using of the numei cal integration methods covered in this chapter

I lowever, before ical iiitegratioo is attenipted. the stability of these equatioI)s must he

examtiied thoioughly In a recent tieatise Ot) this subject, Vanderineet (16] examined the stahilits
of the solutions ot these eqtiattons around equilibrium points. These points are located by settitig
the dens atms es in Eqs. (I) arid (2) to iemo'

txA' -f3N1N.))

(It
(INfl

- -yN, ô/V1N, = U

(It — -

and rearranging these eqitations to obtain the valttes of N1 and N at the eqitilibrmuiii potnt ii) tertns
of the cotistants

iV1 - I
ss heI e denotes the Ctlli i libri iim '. al ties of the P01)ti I anon denstttes. Vandermeer stated that:
"Sometimes only one point N.') ss ill satisfs the eqitilibrium equations. At other times,

nitiltiple points will satisfy the equilibrium equations . . The neighborhood stability analysts is
undei'taken in the neighborhood of a sing Ic eq nil ibni Lii)) point.'' The stahi lit) is determined

examining the eigenvalties of the Jacobian matrix evaluated at eqtti]ihriutn:

(21; ' at

1 and are the right-hand sides of' Eqs. (I) and (2). respectively.
The eigenvalues of the Jacobian matrix can be obtained by the solution of the following

equation (as described in Chap. 2):

= 0

Problems 361

For the problem of two differential equations. there are two alues that can possibly have
both real and imaginary parts. These eigenvalues take the general form

A =
+

A7 = 02

where i = The values of the real parts and imaginary parts (h1, h2) determine the
nature of the stability (or instability) in the neighborhood of the equilibrium points. These
possibilities are summarized in Table P5Th.

Table P5.7b

81, 82 "2 Stability analysis

Negative Zero Stable. nonoscillatory

Positive Zero Unstable. nonoscillatory

One positive,
.

one negative
Zero

.

Metastable, saddle point

Negative Nonzero Stable. oscillatory

Positive Nonzero Unstable, oscillatory

Zero Nonzero Neutral 1)' stable, ose ill aior)

Many combinations of values of constants and initial conditions exist that would generate
solutions to Eqs. (I) and (2). order to obtain a realistic solution to these equations. we utilize
the data of Allen [13] and Peterson 1141 on the moose—wolf populations of Isle Royale National
Park given in Table P5.7a. From these data, which cover the period 1959- 1998. we estimate the
average salues of the moose and wolf populations (over the entire 40-year period) and use these
as equilibrium values:

N'=-1-I045 N16 -

In addition. we estimate the period of oscillation to be 25 years. This was based on the moose
data: the wolf data show a shorter period. For this reason. we predict that the oredator equation
may not he a good representation of the data. Lotka has shown that the period of oscillation
around the equilibrium point is approximated by

2r
'C

Va y

362 Numericat Solution of Ordinary Differential Equations Ctiapter5

These three equations have four unknowns. By assuming the value of a to be 0.3 (this is an
estimate of the net specilic growth rate of the prey in the absence of the predator). the complete
set of constants is

a 0.3 0.0130
y = 0.2106 6 = 0.0002015

This initial conditions are taken from Allen [13] for 1959. the earliest date for which coniplete data
are available. These are

N1(1959) 522 and N,(1959) = 20

Integrate the predator-prey equations for the period 1 959 1 999 using the above constants and
initial conditions and compare the simulation with the actual data. Draw the phase plot ol N1
versus N,, and discuss the stability of these equations with the aid of the phase plot.

5.8 It can he shown that whenever the Lotka-Volterra problem has the form of Eqs. (I) and (2) in Proh.
5.7. the real parts of the eigenvalues of the Jacobian matrix are zero. This implies that the soltition
always has neutrally stable nscillatory behavior. This is explained by the fact that assumptions
(a) to (d) of Prob. 5.7 did not incltide the crowding effect each population may have on its own
fertility or mortality. For example, Eq. (1) can he rewritten with the additional term eN12.

dN
= aN1 - cN1

di

The new term introduces a negative density-dependency of the specific growth rate of the piey on
its own population. This term can be viewed as either a contribution to the death rate or a
reduction of the birth rate caused by overcrowding of the species.

In this problem, modify the Lotka—Volterra equations by iIitrodticing the effect ol
overcrowding, account for at least one additional source of food for the predator (a second prey).
or attempt to quantify other interfereiices you believe are important in the life cycle of these two
species. Choose the constants and initial conditions of your equations carefully in order to obtain
an ecologically feasible situation. Integrate the resulting equations and obtain the time profiles of
the populations of all the species involved. In addition, draw phase plots ofN1 versus N,. N1 versus
N1. and so oii, and discuss the stability considerations with the aid of the phase plots.

5.9 The steady-state siniulation of continuous contact countercurrent processes involving simultaneous
heat and mass transfer may he described as a nonlinear boundary-value problem 3J. For instance.
for a continuous adiabatic gas absorption contaetor unit. the model can he written in the following
form:

dY4 XIJA A4
= N—exp -— —

dt P T1

U x4)J13 A8
- GN— exp -

di P TL

Problems 363

dT.
—k HN(T, -
di

(Ii RCL di RCL di C3 di

di di di

dx1 - (JR

di P di P (Ii

Thermodynamic and physical property data for the system ammonia-air-watei are

J1 = l.36x10'' N/m2 q5 = l.08xl07J/kniol

A1 4.212x103 K - l.36x107 J/kmol

6.23x 1 N / in2 fi 0.0 J / mnl

A13 = 5.003x K C3 232 J I kmol

C 1.4! 03 J/kmol
1-1 1.11 P = los N/nY

N = 10

The inlet conditions are

y1(0) — 0.05 Y,3(O) = 0.0 298

TL(l) = 293 R(l) 1 0 VA(l) = 0.0

Calculate the profiles of all dependent variahles using the shooting method.

5.10 A plug-flow reactor is to be designed to produce the product I) from A according to the following
reaction:

A ' 1) €Oç nioleD/L.s

In the operating condition of this reactor, the following undesired reaction also takes place:

0.003C1
A — U = moleUlL.s

105C3

The undesired pioduct U is a pollutant and it costs 10 5/mol U to dispose it. whereas the desired
product D has a value of 35 S/niol I). What size of reactor should he chosen in order to obtain an
effluent stream at its maximum value?

Pure reactant A with volumetric flow rate of 15 U/s and molar flow rate of 0.] mol/s enters
the reactor. Value of A is 5 $/mol A.

364 Numerical Solution of Ordinary Differential Equations Chapter 5

REFERENCES

1. Finlayson. B A.. in Chemical Lngniecnnç. McGraw—Hill. New York. fY80

2. Foglet. Fl S.. of Chemical Reaction Lnginecring. 3rd ed.. Prentice Hall. tipper Saddle Ris ci.
NJ,

3. M . and V . .Solunon of Nonlinear Mount/on Value PcohIe,o.s wit!,
.4pplicationc. Prentice Hall. York. 1975.

4 An,. A. K. ted.). Nioncriutl Solunon\ of Pi'ohlciia On/huet [)iffcrcntiol
Equations. Academic. New York. 1975.

5. Cart can. P. .1.. Dc Kee. F) C R . and Chhahra, R P . Rheology of Polvineru .Svstcnis: l'rmciples ooil
.lp/'/uatums. I lanser. Munich. 1998.

6. Constantinides. A.. Spencer. .1 L.. and (laden. F F.. Pr.. "Optrnuiation of I3atch Fermentation
Processes. 1. elopment oC Mathematical Models for Batch Penicillin Biotci Ii

Biocng.. sol. 12, 1970. p. 8(13.

7. ('onstantinides. A.. Spencer. J. L. and Gadcii, F F.. Ji . "Optiniiiation of Batch Fermentation
Processes. II. Optimum Temperature Pt ofiles for I-latch Penicillin Fermentations." Biotech Bioeng..

vol 12. 1970. p. 1081.

8. Lapidus. F.. l)rgito! Computation for Chemical Engioeeuiii,g. McGraw-Hill, New York. 1962.

9. Lapidns. I. . and Sien feLl. J. Il.. Numerh of Solution of Oh Dil(creu mu Ecjuotiou.s. Academic.
Yoik. 1971

1 Ct Rat. V. R., and Constantinides. A.. hematical Modeling and Opti miiat ion of the (iluconic Acid
Fermentation." .4/C/il: St nip. Sw,.. S ol. 69. no. 132. 1973. p. 114

11 1 ot ka. A J .. Eh'mcnts of Mathematical liiolog y. Dos er. I ic . Ness \ork. 1 956

1 2 Elliot. J. I ... "Isle ale: A North Woods Park Primeval." National Geograp/uc. ol 167. April
1985. p. 534

13 Allen. D I ,.. Wolves of Minong. Houghton Mifflin. Boston. 1973.

14 Peter soil. R. 0.. 'he lloli'e,s of Isle Rovalc. .1 JImA en Balance. Willoss Creek Ptess. Minocqua. Wi.
1995

15. Peterson. R. 0.. Ecological Studies of Wolves on Isle Ros'afc, Annual Repotts. Michigan

Technological linisersity. l-loughton. Ml. 1984— 998.

1 6. Vandermect, J.. Fleuicutors Vlorhicirrorii a! !: o!ogv. Wiley. Ne\\ 'jork. 198 1

CHAPTER

Numerical Solution of Partial
Differential Equations

6.1 INTRODUCTION

he laws of conservation of mass, momentu iii,

and energy form the basis of the field of transport phenomena. These laws applied to the flow
of fluids result in the equations qf change, which describe the change of velocity, temperature,
and concentration with respect to time and position in the system. The dynamics of such
systems, which have more than one independent variable, are modeled by partial differential
equations. For example, the mass balance:

Rate of mass Rate of Rate of
= - (6.1)

accumulation mass in mass out

365

366 Numerical Solution of Partial Differential Equations Chapter 6

applied to a stationary volume element AxAyz\z, through which pure fluid is flowing (Fig. 6.1)
results in the equation of continuity1:

ap a a a
= - —Pr, —pu ± —pv (6.2)

at ax ay az

where p is the density of the fluid, and v,, v,, and v are the velocity components in the three
rectangular coordinates.

The application of a momentum halance:

Rate of Rate of Rate of Sum of forces

momentum momentum - momentum acting on (6.3)

accumulation in out system

on the volume element Athy&, for isothermal flow of fluid, yields the equation of motion iii
the three directions:

a a a a—pt'1 — —pv,v1 ' _pVl'1
at ax av az

a a a ap
— —t -F —t + —t — + pg. j x V orz (64)

ax ay V az a]
(J

where are the components of the shear-stress tensor, p is pressure, and g1 arc the components
of the gravitational acceleration.

y

(x,y,z)

N.'
Figure 6i Volume element for fluid flow.

'For detailed derivation of these equations see Rd [1]

6.1 Introduction 367

The application of the following energy balance:

Rate of Rate of Rate of

accumulation = energy in - energy out

of energy by convection by convection

Net rate of Net rate of work

+ heat addition - done by system (65)
by conduction on surroundings

on the volume element for nonisothermal flow of fluid, results in the equation of
energy:

aT aT aq1. aq.
pC. ____+v—+v—---+v----- = —

at 'ax 'ay az

ax ay az

av av av av av-t +t —---f——— 66" ax az ax av

where T is the temperature, is the heat capacity at constant volume, and q, are the
components of the energy flux given by Fourier's law of heat conduction:

aT
q. —k——— 1 = x,y,orz (6.7)

where k is the thermal conductivity.
For heat conduction in solids, where the velocity terms are zero, Eq. (6.6) simplifies

considerably. When combined with Eq. (6.7), it gives the well-known three-dimensional
unsteady-state heat conduction equation

a2T a2TpC—=k (6.8)
" at ax2 ay2 az2

where the heat capacity at constant pressure, replaces and k has been assumed to he
constant within the solid.

368 Numerical Solution of Partial Differential Equations Chapter 6

The equation of continuity for component A in a binary mixture (components A and B)
of constant fluid density p and constant diffusion coefficient DAN is

aCA aCA ac4 aCA a-CA a-CA a2c4
+ v + + = DAB + + ± (6.9)

at ' ax ay ax2 a12 az2
where CA = molar concentration of A, and RA = molar rate of production of component A. This
equation reduces to Fick's second law of diffusion when R1 = 0 and = = = 0:

7 7 7ac a-c a-cs a-c
- ± (6.10)

at /

ax2 av2 az2

Eq. (6. 10) is the three-dimensional unsteady-state diffusion equation, which has the same form
as the respective heat conduction equation (6.8).

The most commonly encountered partial differential equations in chemical engineering
are of first and second order. Our discussion in this chapter focuses on these two categories.
In the next two sections, we attempt to classify these equations and their boundary conditions,
and in the remainder of the chapter we develop the numerical methods, using finite difference
and finite element analysis, for the numerical solution of first- and second-order partial
differential equations.

6.2 CLAssIFIcATIoN OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations are classified according to their order, linearity, and boundary
COilditiofls.

The order of a partial differential equation is determined by the highest-order partial
derivative present in that equation. Examples of first-, second-, and third-order partial
differential equations are:

Firstorder: - 0 (6.11)
ax av
a2a au

Second order: + ii— = 0 (6.12)
ax2 a)

a- a—ti au
Third order: + + 0 (6.13)

ax3 axay a\

Partial differential equations are categorized into linear, quasilinear. and nonlinear
equations. Consider, for example, the following second-order equation:

7 2 7a-u a u a-u
+ 2h(.) - + d(.) = 0 (6.14)

ay2 axav ax2

6.2 Classification of Partial Differential Equations 369

lithe coefficients are constants or functions of the independent variables only I (.)— v. v) I, then
Eq. (6.14) is linear. If the coefficients are functions of the dependent ariable and/or any of
its derivatives of lower order than that of the differential equation I(.): (k. y. ii. do/civ)].

then the equation is quasilinear. Finally, if the coefficients are functions of clerk cc of the
same order as that of the equation [(.) (t. a. c2a/dv. then the equation
is nonlinear. In accordance with these definitions. Eq. (6.11) is linear, (6. 1 2) is quasilinear.
and (6.13) is nonlinear.

Linear second—order partial differential equations in two independent variables are
further classified into three canonical forms: elliptu, parabola, and . The general
form of this class of equations is

82o 8o do do -a— 2/i - - ci— e— - to • g I) (6.b)
2 dx dv - 8A

where the coefficients are either constants or functions of the independent \ ariables only The
three canonical fornm are determined by the following criterion:

- <0. elliptic (6. 16a

— ac = 0. parabolic (6. 16/')

ac> 0. hyperbolic. (6. 16e)

If g = 0. then Eq. (6. 15) is a homogeneoas differential equation.
The classic examples of second—order partial differential equations that conform to the

three canonical forms are

Laplace's equation (elliptic):

du &a
- () (6.17)

cJ.x 8v

I-Teat conduction or diffusion equation

82o ciaa— (6.18)
8A 31

Wave equation (hyperbolic):

8o 8o
(6.19)

A similar classification for second—order partial differential equations with three
independent ariahles is en by Tychonov and Samarski [2[. This classification includes
elliptic, parabolic, hyperbolic, and ultrahvperholic. The majority of partial differential
equations in engineering and physics are of second—order with two. three. or four independent

370 Numerical Solution of Partial Differential Equations Chapter 6

variables. Most of these equations have canonical forms; however, the names elliptic,
parabolic, and hyperbolic have been also applied to equations that are not of second-order but
which possess similar properties [3j.

The methods of solution of partial differential equations depend on their canonical form,
as will be demonstrated in the rest of this chapter. Because the coefficients of these equations
can be functions of the independent variables, it is possible that an equation may shift from
one canonical form to another over the range of integration of (x, y).

&3 INITIAL AND BOUNDARY CONDITIONS

The initial and boundary conditions associated with the partial differential equations must be
specified in order to obtain unique numerical solutions to these equations. In general.
boundary cunditions for partial differential equations are divided into three categories. These
are demonstrated below, using the one-dimensional unsteady-state heat conduction equation

82T 8T
(6.20)

This is identical to Eq. (6. 1 8). It is derived from Eq. (6.8) by assuming that the temperature
gradients in the y and z dimensions arc zero. Eq. (6.20) essentially describes the change in
temperature within a solid slab (e.g., the wall of a furnace), where heat transfer takes place in
the x-direction (see Fig. 6.2).

Following are the three categories of conditions:

Dirichiet conditions (first kind): The values of the dependent variable are given at fixed
values of the independent variable. Examples of Dirichlet conditions for the heat conduction
equation are

T=f(x)

or T=T0

These are alternative initial conditions that specify that the initial temperature inside the slab
(wall) is a function of position [(4 or a constant T0 (Fig. 6.2a).

Boundary conditions of the first kind are expressed as

T=f(t) atx=Oandt>0

and atx=landt>0

Classification of Partial Differential Equations 371

Solid
slab

t>O t>O
T=f(t) T=T1

T0

(a)

Solid Perfect

slab insulation

t>O
t>O aT
T=f(t) —=0

ax

T0

o 1

(b)

t>O Solid
slab

k
ax

Fluid_____
film

o 1 x

(c)

Figure 6.2 Examples of initial and boundary conditions for the heat conduction problem.
(a) Dirichlet conditions. (b) Cauchy conditions (Dirichlet and Neumann).
(c) Robbins condition.

372 Numerical Solution of Partial Differential Equations Chapter 6

These boundary conditions specify the value of the independent variable at the left boundary
as a function of time (this may he the condition inside a furnace that is maintained at a
preprogrammed temperature profile) and at the right boundary as a constant T1 (e.g., the room

temperature at the outside of the furnace) (Fig. 6.2a).

Neumann conditions (second kind): The derivative of the dependent variable is given as a
constant or as a function of the independent variable. For example:

c3T -0 atx=landt�0

This condition specifies that the temperature gradient at the right boundary is zero. In the heat
conduction problem, this can he theoretically accomplished by attaching perfect insulation at
the right boundary (Fig. 6.2b).

Cauchy conditions: A problem that combines both Dirichlet and Neumann conditions is said
to have Cauchy conditions (Fig. 6Th).

Robbins conditions (third kind): The derivative of the dependent variable is given as a

function of the dependent variable itself. For the heat conduction problem, the heat flux at the
snlid-fluid interface may be related to the difference between the temperature at the interface
and that in the fluid, that is,

- h(T
-

atx=Oandt�()
Sx

where his the heat transfer coefficient of the fluid (Fig. 6.2c).

On the basis of their initial and boundary conditions, partial differential equations may
be further classified into initial-value or boundary-value problems. In the first case, at least
one of the independent variables has an open region. In the unsteady-state heat conduction
problem, the time variable has the range 0 � t � co, where no condition has been specified at

oc; therefore, this is an initial-value problem. When the region is closed for all independent
variables and conditions are specified at all boundaries, then the problem is of the boundary-
value type. An example of this is the three-dimensional steady-state heat conduction problem
described by the equation

82T 82T a2T
+ (6.21)

8v dl:-

6.4 Solution of Partial Differential Equations Using Finite Differences 373

with the boundary conditions given at all boundaries:

T(O,v,z)
T(l,y, z)

?'
= specified. (6.22)

T(x,y, 0)
T(x,v, 1)

6.4 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS USING

FINITE DIFFERENCES

In Chaps. 3 and 4, we developed the methods of finite differences and dcmonstrated that
ordinary derivatives can he approximated, with any degree of desired accuracy, by replacing
the differential operators with finite difference operators.

In this section, we apply similar procedures in expressing partial derivatives in terms of
finite differences. Since partial differential equations involve more than one independent
variable, we first establish two-dimensional and three-dimensional grids, in two and three
independent variables, respectively, as shown in Fig. 6.3.

The notation (Li) is used to designate the pivot point for the two-dimensional space and
(i, J' k) for the three-dimensional space, where i, j, and k are the counters in the x, v, and z
directions, respectively. For unsteady-state problems, in which time is one of the independent
variables, the counter ii is used to designate the time dimension. In order to keep the notation
as simple as possible, we add subscripts only when needed.

The distances between grid points are designated as &v, &, and When time is one
of the independent variables, the time step is shown by

We now express llrst, second, and mixed partial derivatives in terms of finite differences.
We show the development of these approximations using central differences, and in addition
we summarize in tabular form the formulas obtained from using forward and backward
differences.

The partial derivative of ii with respect to x implies that v and are held constant;
therefore:

do do
i.1.k (6.23)

dx

Using Eq. (4.50), which is the approximation of the first-order derivative in terms of central
differences, and converting it to the three-dimensional space, we obtain

do 1

L.1 k
- - uIJk) + O(Ax) (6.24)

374

i,j.k

Numerical Solution of Partial Differential Equations Chapter 6

(a)

V

x

A

V

Ax
A...

Figure 6.3 Finite difference grids. (a) Two-dimensional grid. (b) Three-dimensional grid.

Similarly, the first-order partial derivatives in the y- and z-directions are given by

311 1

i.j.A ± (6.25)
By Thy

Ba 1

i.j.k - Ujik) + (6.26)

in an analogous manner, the second-order partial derivatives are expressed in terms of
central differences by using Eq. (4.54):

= ± + (6.27)Ar

6.4 Solution of Partial Differential Equations Using Finite Differences 375

82i, 1 2

2 i.j.k = Th(Ui.i 1.k A ± 11)1k) + (628)
- -

8-11, i

/ A = 1111k 1
2U1/k + k-I) + (6.29)

Finally, the mixed partial derivative is developed as follows:

82u
H k —H k (6.30)

8y8x "
dv ax

This is equivalent to applying 8itidv at points (i,j + 1, k) and (i, J - 1, k), so

2
(i-U

dydx .j.k

- 11.) -
.) + +

2Av 2Ax I.j1.k / 1,j1.1 t 1.j l.A / 1.j-lk

1 1 A 1 1k 1 IA +
1 -1 O(Ax2

.1 1 .1 . .1

(6.31)

The above central difference approximations of partial derivatives are summarized in
Table 6.1. The corresponding approximations obtained from using forward and backward
differences are shown in Tables 6.2 and 6.3, respectively. Equivalent sets of formulas, which
are more accurate than the above, may he developed by using finite difference approximations
that have higher accuracies [such as Eqs. (4.59) and (4.64) for central differences, Eqs. (4.41)
and (4.46) for forward differences, and Eqs. (4.24) and (4.29) for backward differencesi.
However, the more accurate formulas are not commonly used, because they involve a larger
number of terms and require more extensive computation times.

The usc of finite difference approximations is demonstrated in the following sections of
this chapter in setting up the numerical solutions of elliptic, parabolic, and hyperbolic partial
differential equations.

6.4.1 Elliptic Partial Differential Equations

Elliptic differential equations are often encountered in steady-state heat conduction and
diffusion operations. For example, in three-dimensional steady-state heat conduction in solids,
Eq. (6.8) becomes

376 Numerical Solution of Partial Differential Equations Chapter 6

Table 6.1 Finite difference approximations of partial derivatives using central differences

Derivative Central difference Error

- UIlJk) O(Ax2)

ij,k - u,J1k) O(Ay2)

I
- u11k])

1

i,j.k k
- 2u1 U1 U k) O(&r)

Exx

iJ.k ,k 2tuiJ,k + U1,1

+ I
+ O(Az2)

ax
:.j.h

(it1
+ l,k - 11+1k 1 k +

I / - +

32T 32T a2T =0 (6.21)
dx- ay

Similarly, Fick's second law of diffusion [Eq. (6.10)1 simplifies to

82c d2c 82c+__A±__Li=0 (6.32)
2 2dx dy dz

when steady state is assumed.
We begin our discussion of numerical solutions of elliptic differential equations by first

examining the two-dimensional problem in its general form (Laplace's equation):

82u 32u =0 (6.17)
3x2 c3y2

6.4 Solution of Partial Differential Equations Using Finite Differences 377

Table 6.2 Finite difference approximations of partial derivatives using forward differences

Derivative Forward difference Error

do
11k ilk 01

dx

do I

— —(uI/+lh — O(Av)
di

Bit
L / - 0i O(&)

B-u - 21ç Ijk O(ax)
ox- Ar

20/ 1k O(Av)Ac

i,/,k — 211111 I

+ 0(A2)
B:- Az'

(i1 1,j- 1.1 — 1111
I I I / hA) 0(&x + Si)

We replace each second-order partial derivative hy its approximation iii central differences,
Eqs. (6.27) and (6.28), to obtain

1/k 211k x / I 1,1) - (6.33)

which rearranges to

1 1 1 1 1-2 ii. + ii. + u. I + u =0
ax av ax2

a linear algebraic equation involving the value of the dependent variable at five
adjacent grid points.

A rectangular-shaped object divided into p segments in the x-direction
and q segments in the v-direction has (p + I) x (q + I) total grid points and (p - 1) x (q - I)

378 Numerical Solution of Partial Differential Equations Chapter 6

Table &3 Finite difference approximations of partial derivatives using backward differences

Derivative Backward difference Error

du
ij.A

I

A
- U11

dti
i/A

1

K—(Ui/ A - 1 A) O(&)

Bu
i,/.A

1—(u11
A — UI/A) O(&)

3-ti
/ A

3x

1

2ti,
1 A

+
2Ar O(Ax)

3m
ij

/15 -

1

A
2ti,

1 I A
+

/

-
O(Av)

3-11
, ij.A

1

1,A
— 2ti /A

1 111/A
Ar

O(Az)

3-u

dvox

1

(u, /,A — l.A A +
I

O(Ax + Av)

internal grid points. Eq. (6.34), written for each of the internal points, constitutes a set of
(p 1) x (q 1) simultaneous linear algebraic equations in (p + I) x (cj + 1)—4 unknowns (the
four corner points do not appear in these equations). The boundary conditions provide the
additional information for the solution of the problem. If the boundary conditions are of
Dirichlet type the values of the dependent variable arc known at all the external grid points.
On the other hand, if the boundary conditions at any of the external surfaces are of the
Neumann or Robbins type, which specify partial derivatives at the boundaries, these
conditions must also he replaced by finite difference approximations.

We demonstrate this by specifying a Neumann condition at the left boundary, that is.

atx=Oandallv (6.35)
c_v

where is a constant. Replacing the partial derivative in Eq. (6.35) with a central difference
approximation, we obtain

- U1 1/) - P (6.36)

Solution of Partial Differential Equations Using Finite Differences 379

This is valid only at x = 0 where i = 0; therefore, Eq. (6.36) becomes

a11 - (6.37)

The points (-I, j) are located outside the object; therefore, u!
/
have fictitious values. Their

calculation, however, is necessary for the evaluation of the Neumann boundary condition. Eq.
(6.37), written for all y (J = 0, 1 q), provides (q + 1) additional equations but at the same
time introduces (q + I) additional variables. To counter this, Eq. (6.34) is also written
for (q + 1) points along this boundary (at x = 0), thus providing the necessary number of
independent equations for the solution of the problem.

Replacing the partial derivative in Eq. (6.35) with a forward difference does not require
the use of fictitious points. However, it is important to use the forward difference formula
with the same accuracy as the other equations. In this case, Eq. (4.41) should he used for
evaluation of the partial derivative at x = 0 (i = 0):

/
3u01) (6.38)

or

—3u31 + - a21 - (6.39)

Eq. (6.39) provides (q + 1) additional equations without introducing additional variables.
In the case of Robbins condition at the left boundary in the form

- + yu atx=0 and ally (6.40)
dx

where and y are constants, a similar derivation as above shows that the following equation
should be used at the boundary:

—(3 + 2y&v)u31 + - 2Mx (6.41)

Eq. (6.34) and the appropriate boundary conditions constitute a set of linear algebraic
equations, so the Gauss methods for the solution of such equations may be used. Eq. (6.34)
is actually a predominantly diagonal system; therefore, the Gauss-Seidel method (see Sec. 2.7)
is especially suitable for the solution of this problem. Rearranging Eq. (6.34) to solve for a,:

+ a, j) + + u/Fl)
15,

=
. (6.42)

2
zXx2

380 Numerical Solution of Partial Differential Equations Chapter 6

which can be used in the iterative Gauss-Seidel substitution method. An initial estimate
of all u, is needed, hut this can he easily obtained from the Dirichlet boundar)
conditions.

The Gauss-Seidel method is guaranteed to converge for a predominantly diagonal system
of equations. However, its convergence may be quit slow in the solution of elliptic differential
equations. The overrelaxatwn niethod can he used to accelerate the rate of the convergence.
This technique applies the following weighting algorithm iii evaluating the new values of u
at each iteration of the Gauss-Seidel method:

(a11 ii(U1
/ Eq 642) + (1 — a') (a1

/ (6.43)

Special care should be taken when processing the nodes at the boundaries, if at these nodes
is calculated by a different method of finite differences. in such a case, when calculating the
new value of the proper equation should he applied instead of Eq. (6.42). The relaxation
parameter a' can he assigned values from the following ranges:

U < w c 1 br underrelaxation

1 < i.e < 2 for overrelaxation

When a' = I . this method is exactly the same as the unmodified Gauss-Seidel. Methods for
estimating the optimal a are given Lapidus and Pinder 141. who also show that the
overrelaxation method is five- to one-hundred times faster (depending on step size and
convergence criterion) than the Gauss-Seidel method.

In the case when an equidistant grid can he used. that is, when = Eq. (6.42)
simplifies to

U + If + wH - 1 i i 1 i,i 1

(6.44)

which simply shows that the value of the dependent variable at the ph otal point (i. i) in the
Laplace equation is the arithmetic average of the values at the grid points to the right and left
of and above and below the pivot point. This is demonstrated by the computational molecule
ol' Fig. 6.4. which is sometimes referred to as a "5-point star."

The three-dimensional elliptic partial differential equation

a a
(6.45)

0X av- a:-
can he similarly converted to linear algebraic equations using finite difference approximations
in three-dimensional space. Applying Eqs. (6.27)-(6.29) to replace the three partial derivatives
of Eq. (6.45), we obtain

6.4 Solution of Partial Differential Equations Using Finite Differences 381

jk JA +
1 A k

— j-I

— + k-I) (6.46)

For the equidistant grid (LXx = = Az), the above equation reduces to

U ± 0+ + U ± 11 + 11.
j A 1 j k ./ -1 A

/
1 A i j k-I ij A 1

(6 47)
6

In parallel with the two-dimensional case, the value of the dependent variable at the pivot
point (/, j, k) is the arithmetic average of the values at the grid points adjacent to thc pivot
point. The computational moleculc for the three-dimensional elliptic equation is shown in Fig.
6.5.

The nonhomogeneous form of the Laplace equation is the Poisson equation
2 2a-u a-u =f(x,v) (ÔAS)

ax2 av2

which also belongs to the class of elliptic partial differential equations. A form of the Poisson
equation

c3T (x, v)-
. (6/19)

ax2 av2

is used to describe heat conduction in a two-dimensional solid plate with an internal heat
source. Q(x, y) is the heat generated per unit volume per time and k is the thermal
conductivity of the material. The finite difference formulation of the Poisson equation is

—2 11+ 0
1

0
I + — I + + I

Ax
/

Ax2
/

Ax2 Av Ax2
/

(6.50)

Figure 6.4 Computational molecule for the
Laplace equation using equidistant grid. The
number in each circle is the coefficient of that
point in the difference equation.

382 Numerical Solution of Partial Differential Equations Chapter 6

or

The numerical solution of the Laplace and Poisson elliptic partial differential equations
is demonstrated in Example 6.1.

Example 6.1: Solution of the Laplace and Poisson Equations. Write a general
MATLAB function to determine the numerical solution of a two-dimensional elliptic partial
differential equation of the general form:

a.v2 8y2

for a rectangular ohject of variable width and height. The object could have Dirichlet,
Neumann, or Robbins boundary conditions. The value of J' should he assumed to be a
constant. Use this function to find the solution of the following problems (u = T):

(a) A thin square metal plate of dimensions I m x 1 m is subjected to four heat sources
which maintain the temperature on its four edges as follows:

T(0. v) = 250° C

T(l, x) = 100°C

T(x, 0) = 500°C

T(x. l)=25°C

The flat sides of the plate are insulated so that no heat is transferred through these sides.
Calculate the temperature profiles within the plate.

Figure 6.5 Computational molecule for
the three-dimensional elliptic differential
equation using equidistant grid.

.1

1

/
+ a111) a11

- Ar
2

r- y

j;. /

1 1

2
Ax2 Ay2

(6.51)

Example 6.1 Solution of the Laplace and Poisson Equations 383

(b) Perfect insulation is installed on two edges (right and top) of the plate of part (a). The
other two edges are maintained at constant temperatures. The set of Dirichlet and
Neumann boundary conditions is

T(0,y) 250 C

H = 0
ax

T(x,0) = 500 C

=0

Calculate the temperature profiles within the plate and compare these with the results of
part (a).

(c) The thin metal plate of part (a) is made of an alloy that has a melting point of 800°C and
a thermal conductivity of 16 W/m.K. The plate is subject to an electric current that
creates a uniform heat source within the plate. The amount of heat generated is Q' = 100

All four edges of the plate are in contact with a fluid at 25°C. The set of
Rohhins boundary conditions is

L = 5[T(0,y) 251
ax

5[25 - T(l,y)]
ax

5[T(x,0) 251

5[25 - T(x,l)1

Examine the temperature profiles within the plate to ascertain whether the alloy will
begin to melt under these conditions.

Method of Solution: We solve this problem by matrix inversion because matrix
operations are much faster than element-by-element operations in MATLAB, especially when
a large number of equations are to he solved. In order to solve the set of equations in matrix
format, u11 values have to be rearranged as a column vector. Therefore, we put in order all the
dependent variables in a vector and renumber them from I to (p + l)(q + I), as illustrated in
Fig. E6. I a. Using this single numbering systeni, Eq. (6.50) can be written as

1 1

a + a + a a -j
2 2 7 fl! 2 7 fl—f)!Ar Av Ar Ar Av

384 Numerical Solution of Partial Differential Equations Chapter 6

(q-l)(p+l)+1

(q-2)(p+I)+t

2p+3

p+2

Figure E6.la Scheme of renumbering values of to
convert to a column vector.

When the Laplace equation is being solved,j is zero, which makes Eq. (6.50) equivalent to
Eq. (6.34). For the Poisson equation, the value off is assumed constant throughout the plate.

At each boundary, if the condition is of the Dirichlet type, the values of ii remain
unchanged. provided that the related equation at this point is

= constant

where N is a node at the boundary with Dirichlet condition. However, if the condition is of
the Neumann or Robbins type, forward or backward difference is used for evaluating the first-
order derivative of the order 0(h2) at the boundaries:

Lower x boundary (forward differences):

— 3ti 11v2)
ax 2Ax

where N is a node on the line x = 0.

Upper x boundary (backward differences):

au
=

ax

where N is a node on the line x = L.

q(p+1)+2 (q+I)(p+I)-1
(q+1)(p+l)

Example 6.1 Solution of the Laplace and Poisson Equations 385

Lower v boundary (forward differences):

- —(-3u\ 4u — 1(\ •

dv" -F' -

where N is a node on the line v = 0.

Upper)' hoondary (backward differences):

do
-L - -

I + ttv U
dv '

" —

where N is a node on the line v = L.

The value of the dependent variable at the tour corner grid points cannot be calculated by this
method. The arithmetic average of the values of the dependent variables at the two adjacent
points on the boundaries is assigned to the dependent variable at each corner point.

Program Description: The MATLAB l'unction elliptic, in is written for the solution of
the Laplace equation. or the Poisson equation with constant right hand side valLie, for a
rectangular plate. The first part of the function is initialization and checking of the input
arguments. lf the last input argument. which introduces the constant of the right-hand side of
the elliptic equation to the l'unction, is omitted, it is assumed to he zero and the l'unction solves
Laplace's equation. The input argument that carries boundary conditions should consist of
four rows, one for each boundary. In each row, the first element is a flag that indicates the
type of condition (1 for Dirichlet. 2 for Neumann. and 3 for Robbins). followed by the
boundary condition value or parameters.

Next in the function are several sections dealing with building the matrix of coefficients
and the vector ol' constants according to what is discussed in the method of' solution. Finally.
the function calculates all the n values by matrix inversion method using the built—in
MATLAB function The outputs of elliptic.in are the ectors of and v and the matrix of
u, values.

The main program E.vuniple6J.m asks the user to input all the necessary paranieters for
solving the elliptic equation from the keyboard. It then calls the function ellipiic.in to solve
the equation and finally plots the results in a three—dimensional graph.

Program

J?xample6_J. in
I Example6_l.m
I Solution to Example 6.1. This program calculates and plots
I the temperature profiles of a rectangular plate by solving
I Laplace or Poisson equation by finite difference method,
I using the function ELLIPTIC.M.

386 Numerical Solution of Partial Differential Equations Chapter 6

clear
dc
cl f

disp(Solution of elliptic partial differential equation. H
bcdialog = H Lower x boundary condition:

Upper x boundary condition:
Lower y boundary condition:
Upper y boundary condition:

redo = 1;
while redo

disp(H
length = inputH Length of the plate (x-direction) (m) =

width = inputH Width of the plate (y-direction) (m) = H;
p = inputH Number of divisions in x-direction = H;
q = input(Number of divisions in y-direction = H;
f = input(Right hand side of the equation (f) = H;
disp(H disp(H
disp(Boundary conditions:)
for k = 1:4

disp(H
disp(bcdialog(k,:))
disp(1 - Dirichlet)
disp(2 - Neumann)
disp(3 - Robbins)
bc(k,l) = input(Enter your choice : H;
if bc(k,l) c 3

bc(k,2) = input(Value = H;
else

disp(u = (beta) + (gamma)*u)
bc(k2) = input(Constant (beta) = H;
bc(k,3) = input(Coefficient (gamma) = H;

end
end
[x,y,T] = elliptic(p,q,length/p,width/q,bc,f);
surf (y, x, T)

xlabel(y (m))
ylabel(x (m))
zlabel(T (deg C))
colorbar
view(135, 45)
disp(H
redo = input(Repeat calculations (Oil) ? H;
dc

end

elliptic.m

function [x,y,U] = elliptic(nx,ny,dx,dy,bc,f)

Example 6.1 Solution of the Laplace and Poisson Equations 387

%ELLIPTIC solution of a two-dimensional elliptic partial
% differential equation

% [X,Y,U]=ELLIPTIC(NX,NY,DX,DY,BC) solves the Laplace
% equation for a rectangular object where

X = vector of x values
Y = vector of y values

% U = matrix of dependent variable [U)X,Y)]
NX = number of divisions in x-direction
NY = number of divisions in y-direction

% DX = x-increment
% DY = y-increment

BC is a matrix of 4x2 or 4x3 containing the types
and values of boundary conditions. The order of
appearing boundary conditions are lower x, upper x,
lower y, and upper y in rows 1 to 4 of the matrix
BC, respectively. The first column of BC determines
the type of condition:

1 for Dirichlet condition, followed by the set
value of U in the second column.

% 2 for Neumann condition, followed by the set value
of U in the second column.
3 for Robbins condition, followed by the constant
and the coefficient of U in the second and third
columns, respectively.

% [X,Y,U]=ELLIPTIC(NX,NY,DX,DY,BC,F) solves the Poisson
% equation for a rectangular object where F is the constant
% at the right-hand side of the elliptic partial differential
% equation.

% See also ADAPTNESH, ASSEMPDE, PDENONLIN, POISOLV

% (c) N. Nostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 5

error)' Invalid number of inputs.')
end

[a,b]=size(bc)

if a —= 4

error)' Invalid number of boundary conditions.')
end

388 Numerical Solution of Partial Differential Equations Chapter 6

if b < 2 b > 3

error(Invalid boundary condition. H
end

if b == 2 & max(bc(:,l)) c= 2

bc [bc zeros(4,l)];

end

if nargin c 6 isempty(f)

f = 0;
end

nx = fix(nx)
x = [0:nx]*dx;
ny = fix(ny);
y = [0:ny]*dy;
dx2 =

dy2 =

% Building the matrix of coefficients and the vector of constants
n = (nx+l)*(ny+l);
A = zeros(n);
c = zeros(n,l);
onex = diag(diag(ones(nx-l)));
oney = diag(diag(ones(ny-l)));

% Internal nodes
i = [2:nx];
for j = 2;ny

md = (j_l)*(nx+l)+i;
A(ind,ind) =

A(ind,ind+l) = A(ind,ind+l) + dx2*onex;
A(ind,ind-l) = A(ind,ind-l) + dx2*onex;
A(ind,ind+nx+l) = A(ind,ind+nx+l) + dy2*onex;
A(ind,ind-nx-i) A(ind,ind-nx-l) + dy2*onex;
c(ind) = f*ones(nx_i,i);

end

% Lower x boundary condition
switch bc(l,l)

case 1
md = ([2:ny]_l)*(nx+l)+l;
A(ind,ind) = A(ind,ind) + oney;
c(ind) = bc(l,2)*ones(ny_l,l);

case {2, 3}

md = ([2:ny]_l)*(nx+l)+l;

Example 6.1 Solution of the Laplace and Poisson Equations 389

A(ind,ind) A(ind,ind) - (3/(2*dx) + bc(1,3))*oney;
A(ind,ind+1) = A(ind,ind+1) + 2/dx*oney;
A(ind,ind+2) = A(ind,ind+2) - 1/(2*dx)*oney;
c(ind) = bc(1,2)*ones(ny_1,1);

end

% Upper x boundary condition
switch bc(2,1)

case 1
md [2:nyj*(nx+1);

A(ind,ind) = A(ind,ind) + oney;
c(ind) = bc(2,2)*ones(ny_1,1);

case {2, 3)

md [2:ny]*(nx+1);

A(ind,ind) = A(ind,ind) + (3/(2*dx) - bc(2,3))*oney;
A(ind,ind-1) = A(ind,ind-1) - 2/dx*oney;
A(ind,ind-2) = A(ind,ind-2) + 1/(2*dx)*oney;
c(ind) = bc(2,2)*ones(ny_1,1);

end

% Lower y boundary condition
switch bc(3,1)

case 1
md = [2:nx];
A(ind,ind) = A(ind,ind) + onex;
c(ind) = bc(3,2)*ones(nx_1,1);

case {2, 3)
md = [2:nx];
A(ind,ind) = A(ind,ind) - (3/(2*dy) + bc(3,3))*onex;
A(ind,ind+nx+1) = 2/dy*onex;
A(ind,ind+2*(nx+1)) = _1/(2*dy)*onex;
c(ind) = bc(3,2)*ones(nx_1,1);

end

% Upper y boundary condition
switch bc(4,1)
case 1

md =
A(ind,ind) = A(ind,ind) + onex;
c(ind) = bc(4,2)*ones(nx_1,1);

case 3)

md = ny*(nx+1)+[2:nxj;
A(ind,ind) = A(ind,ind) + (3/(2*dy) - bc(4,3))*onex;
A(ind,ind-(nx+1)) = A(ind,ind-(nx+1)) - 2/dy*onex;
A(ind,ind_2*(nx+1)) = A(ind,ind_2*(nx+1)) + 1/(2*dy)*onex;

390 Numerical Solution of Partial Differential Equations Chapter 6

c(ind) = bc(4,2)*ones(nx_l,l);
end

% Corner points
A(l,l) = 1;
A(l,2) = -1/2;
A(l,nx+2) = —1/2;
c(l) = 0;

A(nx-Vl,nx-i-1) = 1;
A(nx+1,nx) = -1/2;
A(nx+1,2*(nx+l)) —1/2;

c(nx+l) = 0;

A(ny*(nx+l)+l,ny*(nx+1)+l) = 1;
A(ny* (nx+l)+l,ny*(nx+l)+2) = -1/2;
A(ny*(nx+l)+l,(ny_l)*(nx+l)+l) = -1/2;
c(ny*(nx+l)+l) = 0;

A(n,n) = 1;
A(n,n-l) = -1/2;
A(n,n-(nx+l)) = -1/2;
c(n) = 0;

u = inv(A)*c; % Solving the set of equations

% Rearranging the final results into matrix format
for k l:ny+l

U(l:nx+l,k) =
end

Input and Results2

>>Example6_l

Solution of elliptic partial differential equation.

Length of the plate (x-direction) (m) = 1

Width of the plate (y-direction) (m) = 1

Number of divisions in x-direction = 20

2 Users of the Student Edition of MATLAB will encounter an array size limitation if they use 20 divisions in each

direction They should use 10 divisions instead.

Example 6.1 Solution of the Laplace and Poisson Equations 391

Number of divisions in y-direction = 20
Right-hand side of the equation (f) = 0

Boundary conditions:

Lower x boundary condition:
1 - Dirichiet
2 - Neumann
3 - Robbins
Enter your choice : 1

Value = 250

Upper x boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 1

Value = 100

Lower y boundary condition:
1 - Dirichiet
2 - Neumann
3 - Robbins
Enter your choice : 1

Value = 500

Upper y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : I
Value = 25

Repeat calculations (0/1) ? 1

Length of the plate (x-direction) (m) = 1

Width of the plate (y-direction) (m) = 1

Number of divisions in x-direction = 20
Number of divisions in y-direction = 20
Right-hand side of the equation (f) = 0

Boundary conditions:

Lower x boundary condition:
1 - Dirichlet
2 — Neumann
3 - Robbins
Enter your choice : 1

392 Numerical Solution of Partial Differential Equations Chapter 6

Value 250

Upper x boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 2

Value = 0

Lower y boundary condition:
I - Dirichlet
2 — Neumann
3 - Robbins
Enter your choice : I
Value 500

Upper y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 2

Value = 0

Repeat calculations (0/1) 3 1

Length of the plate (x-direction) (m) = 1

Width of the plate (y-direction) (m) = 1

Number of divisions in x-direction = 20
Number of divisions in y-direction = 20
Right-hand side of the equation (f) = -100e3/16

Boundary conditions:

Lower x boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 3

u' = (beta) + (gamma)*u
Constant (beta) = 5*25
Coefficient (gamma) = 5

Upper x boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 3

u' = (beta) + (gamma)*u

Example 6.1 Solution of the Laplace and Poisson Equations 393

Constant (beta) = 5*25
Coefficient (gamma) = -5

Lower y boundary condition:
1 - Dirichiet
2 - Neumann
3 - Robbins
Enter your choice : 3

u' = (beta) + (gamma)*u
Constant (beta) = _5*25
Coefficient (gamma) 5

Upper y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 3

u' = (beta) + (gamma)*u
Constant (beta) = 5*25
Coefficient (gamma) -5

Repeat calculations (0/i) ? 0

Discussion of Results: Part (a) By entering 1= 0 as input to the program. the Laplace
equation with Dirichiet boundary conditions is solved, and the graphical result is shown in Fig.
E6. lb.

Part (b) The result of this part is shown in Fig. E6. 1 c. The effect of insulation on the right
and top edges of the plate is evident. The gradient of the temperature near these boundaries
approaches zero to satisfy the imposed boundary conditions. Because the insulation stops the
flow of heat through these boundaries, the temperature along the insulated edges is higher than
that of part (a).

Part (c) The Poisson equation is solved with a Poisson constant determined from Eq.
(6.49):

1- - 100000

k 16

The solution is shown in Fig. E6. Id. It can be seen from this figure that the temperature within
the plate rises sharply to its highest value of 824.9°C at the center point. Under these
circumstances, the metal will begin to melt at the center core. Increasing the heat removed
from the edges by convection, by either lowering the fluid temperature or increasing the heat
transfer coefficient, lowers the internal temperature and can prevent melting of the plate.

900

800

700

o 600.
C)

a 500
H-

400

300.

200

0

a2T a2T a2Ta I I Iax- av az- t

1
au a-it= a—
at ax2

6.4 Solution of Partial Differential Equations Using Finite Differences

1800

•

• .1600

0

1 1
x(m)

y(rn)

395

Figure E6.1 d Solution of the Poisson equation with Robbins conditions.

6.4.2 Parabolic Partial Differential Equations

Classic examples of parabolic differential equations are the unsteady-state heat conduction
equation

(6.52)

and Fick's second law of diffusion

a2c a2CA a2c ac.
DAB __.A + + —i (6.10)

ax2 av2 az2 at

with Dirichlet, Neumann, or Cauchy boundary conditions.
Let us consider this class of equations in the general one-dimensional form:

(6.18)

In this section, we develop several methods of solution of Eq. (6.18) using finite differences.

396 Numerical Solution of Partial Differential Equations Chapter 6

Explicit methods: We express the derivatives in terms of central differences around the
point (i, n), using the counter i for the x-direction and n for the t-direction:

= + ,,) O(Ax) (6.53)
ax-

U I

= UI,,]) + O(At-) (6.54)
dt 2At

Combining Eqs. (6.18), (6.53), and (6.54) and rearranging:

2at
U1 '-1 uh, I + — + ri.1) + O(Ax ± Ar) (6.55)Ar

This is an explicit algebraic formula, which calculates the value of the dependent variable at
the next time step (u, ,,+) from values at the current and earlier time steps. Once the initial and
boundary conditions of the problem are specified, solution of an explicit formula is usually
straightforward. However, this particular explicit formula is unstable, because it contains
negative terms on the right side.3 As a rule of thumb, when all the known values are arranged
on the right side of the finite difference formulation, if there are any negative coefficients, the
solution is unstable. This is stated more precisely by the positivity rule 151: "For

= + Bu11, + Cry11, (6.56)

if A, B, Care positive andA + B + C � I, then the numerical scheme is stable."
In order to eliminate the instability problem, we replace the first-order derivative in Eq.

(6.1 8) with the forward difference:

- - u11) 0(M) (6.57)
At

Combining Eqs. (6.1 8), (6.53), and (6.57) we obtain the explicit formula:

ccAt czAt czAt 7

it. — U. + I — 2— ii. it. + 0(Ax + At)in i In
2

''' I

Ax Ax (6.58)

For a stable solution. the positivity rule requires that

aMI -2-——�0 (6.59)
Ax -

Rearranging Eq. (6.59), we get
aM 1

F (6.60)

A rigorous discussion ui stability analysis is gisen in Sec. 6.5.

6.4 Solution of Partial Differential Equations Using Finite Differences 397

This inequality determines the relationship between the two integration steps, Ax in the
x-direction and At in the i-direction. As Ax gets smaller, At becomes much smaller, thus
requiring longer computation times.

If we choose to work with the equality part of Eq. (6.59) or (6.60), that is,

aAi I
= (6.61)

then Eq. (6.58) simplifies to

= in + + At) (6.62)

This explicit formula calculates the value of the dependent variable at position i of the next
time step (ii + I) from values to the right and left of i at the present time step n. The
computational molecule for this equation is shown in Fig. 6.6.

It should be emphasized that using the forward difference for the first-order derivative
introduces the error of order O(At); therefore, Eq. (6.58) is of order O(At) in the time direction
and O(Ax2) in the x-direction. However, the advantage of gaining stability outweighs the loss

of accuracy in this case.
The finite difference solution to the nonhomogeneous parabolic equation

du 32u
= (6.63)

is given by the following explicit formula

aAt aAt ccAt
= + I — + + (6.64)

Ax- Ax- Ax

We encounter equations of the type in Eq. (6.63) when there is a source or sink in the physical
problem.

t
Figure 6.6 Computational
molecule for Eq. (6.62).

i-1,n i,fl i+1,n

398 Numerical Solution of Partial Differential Equations Chapter 6

The same treatment for the two-dimensional parabolic formula:

a a2 a2u= a + +f(x,y,t) (6.65)
at ax2 ay2

results in

aLit aLit
= (it + u11 (u1111 +

Ax Ay

aLit aLit
÷ I - 2— - 2— + (6.66)

Ax Ay

The stability condition is obtained from the positivity rule:

1 11-2aAt —+—_— �0 (6.67)Ar Ay

which can be rearranged to

1 1

+

2aAt (6.68)

We also know that

(Ax2 � 0 (6.69)

By adding 4Ax2Ay2 to both sides of (6.69), we get

(Ax2 ± Ay2)2 � 4Ax2Ay2 (6.70)

or

4 1 1�— +—
7 7 7 2Ax + Ay Ax- Av

Combining inequalities (6.68) and (6.71) followed by further rearrangement simplifies the
stability condition to

aLit
7 2± a)'

The formula for the three-dimensional parabolic equation can be derived by adding to Eq.
(6.66) the terms that come from a2u/az2. The right-hand side of the stability condition in this
case is 1/18.

Parabolic partial differential equations can have initial and boundary conditions of the
Dirichiet, Neumann, Cauchy, or Robbins type. These were discussed in Sec. 6.3. Examples

6.4 Solution of Partial Differential Equations Using Finite Differences 399

i-l,n+1 i,n+l i+1,n+1

i, n+1/2

i—I, ii i+1, n

Figure 6.7 Finite difference grid for derivation of implicit formulas.

of these conditions for the heat conduction problem are demonstrated in Fig. 6.2. The
boundary conditions must be discretized using the same finite difference grid as used for the
differential equation. For Dirichlet conditions, this simply involves setting the values of
the dependent variable along the appropriate boundary equal to the given boundary condition.
For Neumann and Robbins conditions, the gradient at the boundaries must be replaced by
finite difference approximations. resulting in additional algebraic equations that must he
incorporated into the overall scheme of solution of the resulting set of algebraic equations.

Implicit methods: Let us now consider some implicit methods for solution of parabolic
equations. We utilize the grid of Fig. 6.7, in which the half point in the i-direction (1, 11 + ½)
is shown. Instead of expressing in terms of forward difference around (i, n), as it was
done in the explicit form, we express this partial derivative in terms of central difference
around the half point:

Au
i,n-½ = — u111) (6.73)

In addition, the second-order partial derivative is expressed at the half point as a weighted
average of the central differences at points (i, ii + 1) and (i, n):

= + (1 -n—I (1?
Ax2 Ax2 Ar

= nfl — +

+ (I - U) —(ti11 — n ± a,1 3 (6.74)
ax2

where U is in the range 0 � U � 1. A combination of Eqs. (6.18), (6.73), and (6.74) results in
the variable-weighted implicit approximation of the parabolic partial differential equation:

400 Numerical Solution of Partial Differential Equations Chapter 6

1 1
aO In- I — + 1) —

I

Ax2 At

= -a(I - - + u11 - (6.75)

This formula is implicit because the left-hand side involves more than one value at the
(/1 + I) position of the difference grid (that is, more than one unknown at any step in the time
domain).

When 6=0, Eq. (6.75) becomes identical to the classic explicit formula Eq. (6.64). When
6 = 1, Eq. (6.75) becomes

aAt aAt aAt
— ii. + 1 ± 2— a. — a. — a.

A
, il.iil n--I -In--I in

x_

This is called the backward implicit approximation, which can also be obtained by
approximating the first-order partial derivative using the backward difference at (1, a + 1) and
the second-order partial derivative by the central difference at (i, a + I).

Finally, when 6 = ½, Eq. (6.75) yields the well-known Crank-Nicolson implicit fimnala:

ccAt ccAt aAt
— a. ± 2 1 + a. — a.

— 1 .n l 1 fi 1 i - ii
Ax Ax Ax

aAt aAt czAt
= a. +2 1 + tti-i.n (6.77)

Ax Ax- Ax

For an implicit solution to the nonhomogeneous parabolic equation

dLI 82a
= a— =f(x,t) (6.63)

by the above method, we also need to calculate the value off at the midpoint (i, a + ½) which
we take as the average of the value off at grid points (i, a + 1) and (i, n)

J,n÷½ = (6.78)

Putting Eqs. (6.73), (6.74) (considering 6 = ½), and (6.78) into Eq. (6.63) results in

aAt aM aAi
— a. ± 2 1 ± a. — a- — (At)f.

A 2 i — 1 .n — 1 1.11— 1 -, 1 ii I i.n
x

aAt aAt aM
= -, ui_I_n + 2 1

— a1
±

± (At)f (6.79)Ar Ax- Ax

6.4 Solution of Partial Differential Equations Using Finite Differences 401

Eq. (6.79) is the Crank-Nicolson implicit formula for the solution of the nonhomogeneous
parabolic partial differential equation (6.63).

When written for the entire difference grid, implicit formulas generate sets of
simultaneous linear algebraic equations whose matrix of coefficients is usually a tridiagonal
matrix. This type of problem may be solved using a Gauss elimination procedure. or more
efficiently using the Thomas algorithm [4], which is a variation of Gauss elimination.

Implicit formulas of the type described above have been found to be unconditionally
stable. It can be generalized that most explicit finite difference approximations are
conditionally stable, whereas most implicit approximations are unconditionally stable. The
explicit methods, however, are computationally easier to solve than the implicit techniques.

Method of lines: Another technique for the solution of parabolic partial differential
equations is the method of lines. This is based on the concept of converting the partial
differential equation into a set of ordinary differential equations by discretizing only the spatial
derivatives using finite differences and leaving the time derivatives unchanged. This concept
applied to Eq. (6.18) results in

dii a
— 2u. +

dt

There will be as many of these ordinary differential equations as there are grid points in
the x-direction (Fig. 6.8). The complete set of differential equations for U i � N would be

do0 a
— —U' — 2u0 — "1) (6.SUa)

dO a
= - 2u. + (6.80h)

dt &r2

dii a
= (uN - I

— 2 0v +) (ôSUc)

The two equations at the boundaries, (6.80a) and (6.80c), would have to be modified
according to the boundary conditions that are specified in the particular problem. For
example, if a Dirichlet condition is given at x 0 and t > 0, that is,

00 = (constant) fort > 0 (6.81)

402 Numerical Solution of Partial Differential Equations Chapter 6

i>O

Direction of integration

Figure 6.8 Method of lines.

dii dii

di di

dii, dii dii,,

di di dt

dii
u(0)=f3

au —

=0
ox 2Ax

—

dt Ax

i=O
i-2 i-i j i+1 i+2

then Eq. (6.80a) is modified to

(6.82)
di

On the other hand, if a Neumann condition is given at this boundary, that is,

(it = atx=Oandt > 0 (6.83)
ax

the partial derivative is replaced by a central difference approximation:

(6.84)

Then Eq. (6.80a) becomes

(6.85)

The complete set of simultaneous differential equations must he integrated forward in
time (the n-direction) starting with the initial conditions of the problem. This method gives
stable solutions for parabolic partial differential equations.

Example 6.2: Solution of Parabolic Partial Differential Equation for Diffusion.
Write a general MATLAB function to determine the numerical solution of the parabolic partial
differential equation

a2ui= + J(x,t) (6.63)
at ax2

Example 6.2 Solution of Parabolic Partial Differential Equation for Diffusion 403

using the Crank-Nicolson implicit formula. The function f may be a constant value or linear
with respect to a. Apply this MATLAB function to solve the following problems (In this
problem, a CA and z is used instead of x to indicate the length):

(a) The stagnant liquid B in a container that is 10 cm high (L = 10 cm) is exposed to the
nonreactant gas A at time t = 0. The concentration of A, dissolved physically in B, reaches
£4 = 0.01 mol/mZ at the interface instantly and remains constant. The diffusion

of A in B is D411 = 2x i m2/s. Determine the evolution of concentration of
A within the container. Plot the flux of A dissolved in B against time.

(h) Repeat part (a), but this time consider that A reacts with B according to the following
reaction

A + B C -r1 2x10 mol/s.m3

Method of Solution: The physical problem is sketched in Fig. E6.2a. The mole balance
of A for part (a) leads to

a2c
= (1)

az2

The boundary and initial conditions for Eq. (1) are:

IC. = 0 forz>0 (2)

B.C. I r4(0,t) = C1 for 1 0 (3)
3C

B.C.2 aLL 0 fort2O (4)

For part (h), moles of A are consumed by the liquid B while diffusing in it. Assuming that
the concentration of the product C is negligible, so that the diffusion coefficient remains
unchanged, the mole balance of A results in

82r
= (5)

Gas A

Figure E6.2a Diffusion ofAthrough B.

404 Numerical Solution of Partial Differential Equations Chapter 6

Initial and boundary conditions remain the same Eqs. (2)-(4fl.
Once the concentration profile of A is known, the molar flux of A entering the liquid B can

he calculated from Fick's law for both parts (a) and (h):

dc
N4(t)

2=11 (6)

The Crank-N icolson implicit formula (6.74) is used for the solution of this problem:

aAtui_in 2 1 + 'cu-i ii —

ctzXt czzXt
li ± 2 1

-
in - - (At)f, (6.79)

Because the functionf is linear with respect to a. Eq. (6.79) represents a set of linear algebraic
equations that may he solved by the matrix inversion method, at each time step.

When a Neumann or Robbins condition is specified, a forward or backward finite
difference approximation of the first derivative of order 0(h2) is applied at the start or end
point of the x-direction, respectively.

Program Description: The MATLAB functionparaholiclD.m is developed to solve the
parabolic partial differential equation in an unsteady-state one-dimensional problem. The
boundary conditions are passed to the function in the same format as that of Example 6.1, with
the exception that they are given in only the .v-direction. The function also needs the initial
condition. a11, which is a vector containing the of the dependent variable for alIx at time
t=O.

The first part of the function is initialization, which checks the inputs and sets the values
required in the calculations. The solution of the equation follows next and consists of an outer
loop on time interval. At each time interval, the matrix of coefficients and the vector of
constants of the set of Eq. (6.79) is formed. The function then solves the set of linear algebraic
equations that gives the value of dependent variable in this time interval. This procedure
continues until the limit time is reached. If the problem in hand is nonhomogeneous. the name
of the MATLAB function containing the functionf should he given as the 8th input argument.
Because this function is assumed to he linear with respect to a. the set of algebraic equations
(6.79) remain linear. The function corrects the matrix of coefficients and the vector of
constant in this case accordingly.

The main program Exampleó_2.m asks the user to input all the necessary parameters for
solving the problem from the keyboard. It then calls the function paraboliclD.ni to solve the
partial differential equation and finally plots the contour line graph of concentration profiles
and the plot of molar flux of A entering the container versus time.

The function ExO_2Jimc.m contains the rate law equation for the reaction of part (h). It
is important to note that the first to third input arguments to this function have to be a, x. and
t. respectively, esen if one of them is not used in the functionf

Example 6.2 Solution of Parabolic Partial Differential Equation for Diffusion 405

Program

Example6_2.m
% Example6_2.m
% Solution to Example 6.2. This program calculates and plots
% the concentration profiles of a gas A diffusing in liquid B
% by solving the unsteady-state mole balance equation using
% the function PARABOLIC1D.M.

clear
redo = 1;
dc
disp(Solution of parabolic partial differential equation.')
while redo

disp(' ')

h = input (' Depth of the container (m) = ');
tmax = input(' Maximum tine (s) ');

p = input(' Number of divisions in z-direction = ');
q = input(' Number of divisions in t-direction = ');
Dab = input)' Diffusion coefficient of A in B =
disp(' ')

disp(' 1 - No reaction between A and B')
disp(' 2 - A reacts with B')
react = input(' Enter your choice : ') - 1;
if react

disp(' ')

k = input)' Rate constant = ');
f = input)' Name of the file containing the rate law =

end
disp(' '), disp(' ')

disp (' Boundary conditions:')
disp(' ')

caD = input)' Concentration of A at interface (mol/m3) = ');
bc(l,l) = 1;
bc(l,2) = caD;
disp(' ')

disp(' Condition at Bottom of the container:')
disp(' 1 - Dirichlet')
disp(' 2 - Neumann')
disp(' 3 - Robbins')
bc(2,l) = input(' Enter your choice : ');if bc(2,l) < 3

bc(2,2) = input(' Value = ');
else

disp(' u' ' = (beta) + (garnrna)*u)
bc(2,2) = input)' Constant (beta) = ');
bc)2,3) = input)' Coefficient (gamma) = ');

end

406 Numerical Solution of Partial Differential Equations Chapter 6

u0 = [caO; zeros(p,l)];
% Calculating concentration profile
if react

[z,L,ca] = paraboliclfl(p,q,h/p,tmax/q,Dab,uO,bc,f,k);
else

[z,t,ca] = paraboliclD(p,q,h/p,tmax/q,Dab,uO,bc);
end
% Calculating the flux of A
Naz _Dab*diff(ca(l:2J)/diff(z(l:2));
% Plotting concentration profile
tt[]; % Making time matrix from time vector
for kk = 1 p+l

tt itt; t];
end

zz = [1; % Making height matrix from height vector
for kk 1 : q+l

zz [zz 5];
end
figure(l)
[a,b]=contour(zz*l000,ca/cao,tt/3600/24,[0:5;tmax/3600/24]);
clabel(a,b, [l0:l0:tmax/3600/24])
xlabel(z (mm)')
ylabel (C_A/C_A_0)title(t (days))
% Plotting the unsteady-state flux
figure (2)
loglog(t/3600/24,Naz*3600*24)

xlabel(t (days))
ylabel(N_{Az}
disp()

redo input(Repeat calculations (0/1) ?);

dc
end

Ex6_2junc.rn

function f = Ex6_2_func(ca,x,t,k)
% Function Ex6_2_func.M
% This function introduces the reaction rate equation
% used in Example 6.2.

f = _k*ca;

paraboliclD.rn

function [x,t,u] = paraboliclD(nx,nt,dx,dt,alpha,uO,bc,func,...
varargin)

%PARABOLIC1D solution of a one-dimensional parabolic partial
% differential equation

Example 6.2 Solution of Parabolic Partial Differential Equation for Diffusion 407

% [X,T,U]=PARABOLIC1D(NX,NT,DX,DT,ALPHA,uQ,BC) solves the
% homogeneous parabolic equation by Crank-Nicolson implicit
% formula where
% X = vector of x values

T = vector of T values
U = matrix of dependent variable [U(X,T)]
NX = number of divisions in x-direction
NT = number of divisions in t-direction

% DX = x-increment

fill =

ALPHA = coefficient of equation
% UO vector of U-distribution at T=O

BC is a matrix of 2x2 or 2x3 containing the types
and values of boundary conditions in x-direction.
The order of appearing boundary conditions are lower
x and upper x in rows 1 and 2 of the matrix BC,
respectively. The first column of BC determines the
type of condition;

1 for Dirichlet condition, followed by the set
value of U in the second column.
2 for Neumann condition, followed by the set value

I of U' in the second column.
% 3 for Robbins condition, followed by the constant

and the coefficient of U in the second and third
column, respectively.

[X,T,U]=PARABOLIC1D(NX,NT,DX,DT,ALPHA,UO,BC,F, P1, P2,...) solves
the nonhomogeneous parabolic equation where F(U,X,T) is a
constant or linear function with respect to U, described in
the N-file F.M. The extra parameters P1, P2, ... are passed
directly to the function F(U,X,T,P1,P2,...).

See also PARABDLIC2D, PARABDLIC

% (c) N. Mostoufi & A. Constantinides
1 January 1, 1999

I Initialization
if nargin < 7

error)' Invalid number of inputs.')
end

nx = fix(nx)
x = [O;nx]*dx;
nt = fix(nt);
t [C;nt]*dt;

r =

408 Numerical Solution of Partial Differential Equations Chapter 6

u3 = (uO (:) . U ; % Make sure it s a column vector
if length(uO) nx+l
error(Length of the vector of initial condition is not correct.)
end

[a,bJ=size(bc);
if a 2

error(Invalid number of boundary conditions.)
end
if b c 2 b > 3

error(Invalid boundary condition. U
end
if b == 2 & max(bc(:,l)) <= 2

bc [bc zeros(2,l)];
end

u(:,l) = uO;

c = zeros(nx+l,l);
% Iteration on t
for n = 2:nt+l

% Lower x boundary condition
switch bc(l,l)
case 1

A(l,l) = 1;
c(l) = bc(l,2);

case {2, 3}

A(l,l) = _3/(2*dx) —bc(1,3);
A(l,2) = 2/dx;
A(l,3) = _l/(2*dx);
c(l) = bc(1,2);

end

% Internal points
for i = 2:nx

A(i,i—l) = -r;
A(i,i) = 2*(l+r);
A(i,i+l) = -r;
c(i) = r*u(i_l,n_l) + 2* (l-r) *u(i,n_l) + r*u(i+l,n_l)
if nargin >= 8 % Nonhomogeneous equation

intercept = feval(func,O,x(i),t(nhvarargin{:});
slope = feval(func,l,x(iht(n),varargin{:)) - intercept;
A(i,i) = A(i,i) - dt*slope;
c(i) =c(i)+dt*feval(func,u(i,n_l),x(i),t(n_l),

varargin{ }) +dt*intercept;
end

end

Example 6.2 Solution of Parabolic Partial Differential Equation for Diffusion 409

% Upper x boundary condition
switch bc(2,l)
case 1

A(nx+l,nx+l) = I;
c(nx+l) = bc(2,2);

case (2, 3}

A(nx+l,nx+l) = 3/(2*dx) - bc(2,3);
A(nx+l,nx) = -2/dx;
A(nx+l,nx-l) = l/(2*dx);
c(nx+l) = bc(2,2);

end

u(:,n) = inv(A)*c; % Solving the set of equations
end

Input and Results

>>Example6_2

Solution of parabolic partial differential equation.

Depth of the container (m) = 0.1
Maximum time (s) = 70*3600*24
Number of divisions in z-direction = 10
Number of divisions in t-direction = 500
Diffusion coefficient of A in B = 2e-9

1 - No reaction between A and B
2 - A reacts with B
Enter your choice : 1

Boundary conditions:

Concentration of A at interface (mol/m3) = 0.01

Condition at Bottom of the container:
1 - Dirichlet
2 - Neumann
3 - Robbins

Enter your choice : 2

Value = 0

Repeat calculations (0/1) ? 1

Depth of the container (m) = 0.1
Maximum time (s) = 70*3600*24

410 Numerical Solution of Partial Differential Equations Chapter 6

Number of divisions in z-direction 10

Number of divisions in t-direction = 500
Diffusion coefficient of A in B = 2e-9

1 - No reaction between A and B
2 - A reacts with B
Enter your choice : 2

Rate constant = 2e-7
Name of the file containing the rate law = Ex6_2_func

Boundary conditions:

Concentration of A at interface (mol/m3) = 0.01

Condition at Bottom of the container:
1 - Dirichlet
2 - Neumann
3 - Robbins

Enter your choice : 2

Value = 0

Repeat calculations (0/1) ? 0

Discussion of Results: Part (a) The unsteady-state concentration profile is plotted in Fig.
E6.2b. The steady-state concentration profile is = 0.01 molIm3 at all levels. The unsteady-
state mole flux of A entering the container is shown in Fig. E6.2c. This flux decreases with
time and reaches zero at steady-state.

Part (b) The unsteady-state concentration profile is plotted in Fig. E6.2d. Like part (a),
the steady-state concentration profile is

(z/L)I

where -
The unsteady-state mole flux of A entering the container is shown in Fig. E6.2e. This flux

decreases with time at the beginning. However, it reaches the steady-state value of 1 .3x
mol/m3day. This happens because A is constantly consumed by B in the container. In fact. the
steady-state flux at top of the container is equal to the consumption of A in the container by
reaction:

L

= f(—rA)dz
L

t

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 411

(b) (c)

(d) (c)

Figure E6.2 Unsteady-state concentration and flux profiles with and without reaction.
(b) Concentration profile of A with no reaction. (c) Flux profile of A with no
reaction. (d) Concentration profile of A with reaction. (e) Flux profile of A with
reaction.

Example 6.3: Two-Dimensional Parabolic Partial Differential Equation for Heat
Transfer. Write a general MATLAB function to determine the numerical solution of the
parabolic partial differential equation

= a + +f(x,y,t) (6.65)
8x2 ay2

by explicit method. Apply this function to solve the following problems (ii = T):

cr

412 Numerical Solution of Partial Differential Equations Chapter 6

(a) The wall of a furnace is 20 cm thick (x-direction) and 50 cm long &-dircction) and
is made of brick, which has a thermal diffusivity of 2x107 m2/s. Thc temperature of
the wall is 25°C when the furnace is off. When the furnace is fired, the temperature on
the inside face of the wall (x = 0) reaches 500°C quite rapidly. The temperature of
the outside face of the wall is maintained at 25°C. The other two faces of the wall
(y-direction) are assumed to be perfectly insulated. Determine the evolution of
temperature profiles within the brick wall.

(h) Insulation is placed on the outside surface of the wall. Assume this is also a perfect
insulation and show the evolution of the temperature profiles within the wall when the
furnace is fired to 500°C.

(c) The furnace wall of part (a) is initially at a uniform temperature of 500°C. Both sides of
the wall are exposed to forced air circulation at 25°C and the heat transfer coefficient is
20 W1m2 °C. The faces of the wall in the y-direction are assumed to be perfectly
insulated. Show the temperature profiles within the wall.

Method of Solution: The explicit formula (6.66) is used for the solution of this problem:

aAt ccAt
= lJfl lit) + (u11 ,, + i,,)

aAt aAt
+ 1 — 2— - 2— u11, + (6.66)

The value of the time increment At for a stable solution is calculated from Eq. (6.72):

IAx ±

When Neumann or Robbins conditions are specified, for example, (for Neumann condition

+ yu(0,y,t)

a forward difference approximation of the condition is used at this boundary

+ 4u1 - 3u11) = ± yu11

from which the dependent variable at the boundary, u0, can be obtained:

— u9 + 4u1
LI =

0 3÷2yAx

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 413

Similarly, if the Neumann or Robbins condition is at the upper boundary, the dependent
variable can be calculated from

= — — 4u,

-3 - 2yAx

The same discussion applies for y-direction boundaries.

Program Description: The MATLAB function paraholic2D.m is written for solution
of the parabolic partial differential equation in an unsteady-state two-dimensional problem.
The boundary conditions are passed to the function in the same format as that of Example 6. 1.
Initial condition, u9, is a matrix of the values of the dependent variable for all x and v at time

= 0. If the problem at hand is nonhomogeneous, the name of the MATLAB function
containing the function [should he given as the 10th input argument.

The function starts with the initialization section. which checks the inputs and sets the
values required in the calculations. The solution of the equation follows next and consists of
an outer loop on time interval. At each time interval, values of the dependent variable for
inner grid points are being calculated based on Eq. (6.66). followed by calculation of the grid
points on the boundaries according to the formula developed in the previous section. The
values of the dependent variable at comer points are assumed to he the average of their
adjacent points on the converging boundaries.

In the main program Example6_3.m, all the necessary parameters for solving the problem
are introduced from the keyboard. The program then asks for initial and boundary conditions.
builds the matrix of initial conditions, and calls the function paraholic2D.m to solve the partial
differential equation. lt is possible to repeat the same problem with different initial and
boundary conditions.

The last part of the program is visualization of the results. There are two ways to look at
the results. One way is dynamic visualization, which is an animation of the temperature
profile evolution of the wall. This method may he time consuming because it makes
individual frames of the temperature profiles at each time interval and then shows them one
after another using movie command. Instead, the user may select the other option, which is
to see a summary of the results in nine succeeding chronological frames.

Program

Example63.m
% Example6_3.m
% Solution to Example 6.3. This program calculates and plots
% the temperature profiles of a furnace wall by solving the
% two-dimensional unsteady-state energy balance equation using
% the function PARABOLIc2D.M.

clear

414 Numerical Solution of Partial Differential Equations Chapter 6

bcdialog = fl Lower x boundary condition:
Upper x boundary condition:
Lower y boundary condition:
Upper y boundary condition:'];

dc
disp(' Solution of two-dimensional parabolic')
disp(' partial differential equation.')
disp(' ')

width = input (' Width of the plate (x-direction) (m) =

length = input(' Length of the plate (y-direction) (m) =

tmax = input(' Maximum time (hr) = (*3600;
p = input(' Number of divisions in x-direction =
q = input(' Number of divisions in y-direction =
r input(' Number of divisions in t-direction =
alpha = input(' Thermal diffusivity of the wall =

redo = 1;
while redo

dc
clf
TO = input(' Initial temperature of the wall (deg C) =

uO = TO*ones(p+l,q+l); % Matrix of initial condition

disp(' P
disp(' Boundary conditions:')
for k 1:4

disp(' ')

disp(bcdialog(k, :))

disp (' 1 - Dirichlet')
disp(' 2 - Neumann')
disp(' 3 - Robbins')
bc(k,l) = input(' Enter your choice : ');if bc(k,fl c 3

bc(k,2) = input(' Value =
end
switch bc(k,l)
case 3

disp(' u' ' = (beta) + (gamma)*u)
= input(' Constant (beta) = ');

bc(k,3) = input(' Coefficient (gamma) = ');
case 1

switch k
case 1

uO(1,:) = bc(k,2)*ones(lq+1);
case 2

uO(p+l,:) =
case 3

uO(:,1) =bc(k,2)*ones(p+1,l);
case 4

uO(:,q÷l) = bc(k,2)*ones(p+l,l);

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 415

end
end

end

% Calculating concentration profile
[x,y,t,T] = parabolic2D(p,q,r,width/p,length/q,tmax/r,...

alpha,uO,bc);
r = max(size(t))—l; % Time step may be changed by the solver

disp(' ')

disp(' Which version of MATLAB are you using?)
disp(' 0 - The Student Edition')
disp(' 1 - The Complete Edition')
ver = input(' Choose either 0 or 1:);

maxt = max(max(max(T)));
mint = min(min(min(T)));
switch ver
case 0

for kr = 1:3
for kc = 1:3

ml =
m2 = fix(r/8*(ml_l)+l);
subplot(3,3,ml), surf(y/length,x/width,T(:, :,m2))
view(135, 45)
axis([0 1 0 1 0 maxt])
if kr == 2 & kc == 1

zlabel('Temperature (deg C)!)
end
if kr == 3 & kc == 2

xlabel(y/Length!)
ylabel ('x/Width')

end
ttl = [num2str(t(m2)/3600) h];
title(ttl)

end
end

case 1
disp(')

disp(' Are you patient enough to see a movie of temperature!)
my = input(' profile evolution (0/1)?
if my

% Making movie of temperature profile evolution
M = moviein(r);
for k = l:r+1

surf (y/length,x/width,T(: / : ,k))
axis([0 1 0 1 0 maxt])
view (135 , 45)
shading interp
ylabel (x/Width')
xlabel(y/Length)
zlabel('Temperature (deg C)!)

416 Numerical Solution of Partial Differential Equations Chapter 6

M(:,k) = getframe;
end
movie (M, 5)

else % Show results in 9 succeeding frames
for kr = 1:3

for kc = 1:3
ml = (kr_l)*3+kc;
m2 = fix(r/S*(ml_l)+l);
subplot(3,3,ml), surf(y/length,x/width,T(:, :,m2))
view(135, 45)
axis([O 1 0 1 0 maxt])
if kr == 2 & kc == 1

zlabel(Temperature (deg C))
end
if kr == 3 & icc == 2

xlabel(y/Length)
ylabel(x/Sjidth)

end
ttl = [num2str(t(m2)/3600) h];
title(ttl)

end
end
end

end
disp(H
redo = input H Repeat with different initial and boundary conditions

(0/1)? H;
end

pare bolic2D.m

function [x,y,t,u] = parabolic2D(nxny,nt,dx,dy,dt,alpha...
uO,bc, func,varargin)

%PARASOLIC2D solution of a two-dimensional parabolic partial
% differential equation

% [X,Y,T,U]=PARASOLIC2D(NXNY,NT,DX,DY,DT,ALPHA,U0,SC) solves
I the homogeneous parabolic equation by Crank-Nicolson implicit
I formula where
I X = vector of x values
I Y = vector of y values
I T = vector of T values
% U = 3D array of dependent variable [U(X,Y,T)]
I NX = number of divisions in x-direction
% NY = number of divisions in y-direction
I NT = number of divisions in t-direction
I DX = x-increment
% DY = y-increment
% DT = t-increment (leave empty to use the default value)
I ALPHA = coefficient of equation
I U0 = matrix of U-distribution at T=0 [U0(X,Y)]
I BC is a matrix of 4x2 or 4x3 containing the types and values

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 417

of boundary conditions in x- and y-directions. The order of
appearing boundary conditions are lower x, upper x, lower y,
and upper y in rows 1 to 4 of the matrix BC, respectively.
The first column of BC determines the type of condition:

1 for Dirichlet condition, followed by the set
value of U in the second column.
2 for Neumann condition, followed by the set value
of U, in the second column.
3 for Robbins condition, foLlowed by the constant
and the coefficient of U in the second and third
column, respectively.

% Pl,P2,...)
% solves the nonhomogeneous parabolic equation where F(U,X,Y,T)
% is a function described in the M—file F.M. The extra
% parameters P1, P2, ... are passed directly to the function
% F(U,X,Y,T,P1,P2,...).

% See also PARABOLIC1D, PARABOLIC

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 9

error(' Invalid number of inputs.')
end

nx = fix(nx)
x = [O:nx]*dx;
ny = fix(ny);
y = [O:ny]*dy;

% Checking dt for stability(use 1/16 instead of 1/8 of Eq. 6.72)
tmax = dt*nt;
if isempty)dt) dt >

dt =
nt = tmax/dt+l;
fprintf('\n dt is adjusted to %6.2e (nt=%3d) ',dt,fix(nt))

end

nt = fix(nt);
t = [O:nt]*dt;
rx =
ry =

[rO,cO] = size(uO);
if rO nx+1 cO ny+l

error(' Size of the matrix of initial condition is not correct.')
end

418 Numerical Solution of Partial Differential Equations Chapter 6

[a,b]=size(bc)
if a 4

error) Invalid number of boundary conditions.)
end
if b < 2 b > 3

error(Invalid boundary condition.)
end
if b == 2 & max(bc(:,l)) <= 2

bc = {bc zeros(4,l));
end

% Solution of differential equation
u(:, 1) uO;
for n = l:nt % Iteration on t

for i = 2:nx % Iteration on x
for j = 2:ny % Iteration on y

u(i,j,n+l) = rx*(u(i+l,j,n)+u(i_l,j,n))+ ry*(u(i,j+l,n)...
+ u(i,j—l,n)) +

if nargin >= 10
u(i,j,n+l) = u(ij,n+l) +...

dt*feval (func,u(i, j ,n) ,x(i) ,y(j) / t(n) ,varargin{:))
end

end
end

% Lower x boundary condition
switch bc(l,l)
case 1

u(l,2:ny,n+l) = bc(I,2) * ones(l,ny-l,I);
case {2, 3)

u(l,2:ny,n+l) = (_2*bc(l,2)*dx + 4*u(2,2:ny,n+I)
- u(3,2:ny,n+l)) / (2*bc(l,3)*dx+ 3);

end

% Upper x boundary condition
switch bc(2,l)
case 1

u(nx+l,2:ny,n+1) = bc(2,2) * ones(l,ny-l,l);
case {2, 3)

u(nx+l,2:ny,n+l) = (_2*bc(2,2)*dx _4*u(nx,2:ny,n+l)...
+u(nx-l,2:ny,n+l)) / (2*bc(2,3)*dx -3);

end

I Lower y boundary condition
switch bc(3,l)
case 1

u(2:nx,l,n+I) = bc(3,2) * ones(nx-l,l,l);
case {2, 3)

u(2:nx,l,n+l) = (_2*bc(3,2)*dy + 4*u(2:nx,2,n+I)...
- u(2:nx,3,n+l)) / (2*bc(3,3)*dy+ 3);

end

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 419

% Upper y boundary condition
switch bc(4,l)
case 1

u(2:nx,ny+l,n+l) = bc(4,2) * ones(nx-l,i,l);
case {2, 3)

u(2:nx,ny+l,n+l) = (_2*bc(4,2)*dy _4*u(2:nx,ny,n+l)...

+u(2:nx,ny-l,n+l)) / (2*bc(4,3)*dy -3);
end

end

% Corner nodes
u(l,l,:) =)u(l,2,:) + u(2,l,:)) / 2;

u(nx+l,l, :) = (u(nx+l,2, :) + u(nx,l, :)) / 2;

u(l,ny+1, :) =)u(l,ny, :) + u(2,ny+l, :)) / 2;

u(nx+l,ny+1,:) = (u(nx+1,ny, :) + u(nx,ny+l,:)) / 2;

Input and Results

>>Example6_3

Solution of two-dimensional parabolic
partial differential equation.

Width of the plate (x-direction) (m) = 0.2
Length of the plate (y-direction) (m) = 0.5
Maximum time (hr) = 12
Number of divisions in x-direction = 8

Number of divisions in y-direction = 8

Number of divisions in t-direction = 30
Thermal diffusivity of the wall = 2e-7

Part (a)

Initial temperature of the wall (deg C) = 25

Boundary conditions:

Lower x boundary condition:
1 - Dirichlet
2 — Neumann
3 - Robbins
Enter your choice : I

Value = 500

Upper x boundary condition:
1 - Dirichlet
2 - Neumann
3 - Bobbins
Enter your choice : 1

Value = 25

420 Numerical Solution of Partial Differential Equations Chapter 6

Lower y boundary condition:
1 - Dirichlet
2 Neumann
3 — Robbins
Enter your choice : 2

Value = 0

Upper y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbing
Enter your choice : 2

Value = 0

Which version of MATLAB are you using?
0 - The Student Edition
1 - The Complete Edition
Choose either 0 or 1: 1

Are you patient enough to see a movie of temperature
profile evolution (0/1)? 0

Repeat with different initial and boundary conditions (0/1)? 1

Part (s5)

Initial temperature of the wall (deg C) = 25

Boundary conditions:

Lower x boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : I
Value = 500

Upper x boundary condition:
1 — Dirichlet
2 — Neumann
3 - Robbins
Enter your choice : 2

Value 0

Lower y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 2

Value = 0

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 421

Upper y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 2

Value = 0

Which version of MATLAB are you using?
0 - The Student Edition
1 - The Complete Edition
Choose either 0 or 1: 1

Are you patient enough to see a movie of temperature
profile evolution (0/1)? 0

Repeat with different initial and boundary conditions (0/1)? 1

Part (c)

Initial temperature of the wall (deg C) = 500

Boundary conditions:

Lower x boundary condition:
1 - Dirichlet
2 — Neumann
3 - Robbins
Enter your choice : 3

= (beta) + (garnma)*u
Constant (beta) = _25*20
Coefficient (gamma) = 20

Upper x boundary condition:
1 - Dirichlet
2 — Neumann
3 - Robbins
Enter your choice : 3

u' = (beta) + (gamma)*u
Constant (beta) = 25*20
Coefficient (gamma) = -20

Lower y boundary condition:
1 - Dirichlet
2 - Neumann
3 - Robbins
Enter your choice : 2

Value = 0

Upper y boundary condition:
I - Dirichlet

422 Numerical Solution of Partial Differential Equations Chapter 6

2 - Neumann
3 - Robbins
Enter your choice 2

Value = 0

Which version of MATLAB are you using?
0 - The Student Edition
1 - The Complete Edition
Choose either 0 or 1: 1

Are you patient enough to see a movie of temperature
profile evolution (0/1)? 0

Repeat with different initial and boundary conditions (0/1)? 0

Discussion of Results: Part (a) Heat transfers from the inside of the furnace (left
boundary), where the temperature is 500°C, towards the outside (right houndary), where the
temperature is maintained at 25°C. Therefore, the temperature profile progresses from the
left of the wall toward the right, as shown in Fig. E6.3a. If the integration is continued for a
sufficiently long time, the profile will reach the steady-state, which for this case is a straight
plane connecting the two Dirichiet conditions. This is easily verified from the analytical
solution of the steady-state problem:

dx2 8y2

Because the two faces of the wall in the v-direction are insulated, this becomes essentially a
one-dimensional problem that yields the equation of a straight line:

T + 500

calculated using the Dirichlet conditions.

Part (h) In this case, the insulation installed on the outside surface of the furnace wall
causes the temperature within the wall to continue rising, as shown in Fig. E6.3b. The steady-
state temperature profile would be T = 500°C throughout the solid wall. This is also verifiable
from the analytical solution of the steady-state problem in conjunction with the imposed
boundary conditions.

Part (c) The cooling of the wall occurs from both sides, and the temperature profile
moves, symmetrically, as shown in Fig. E6.3c. The final temperature would be 25°C.

The reader is encouraged to repeat this example and choose the movie option to see the
temperature profile evolutions dynamically. It should be noted that the rate of evolution
of the temperature profile on the screen is not the same as that of the heat transfer process
itself.

Example 6.3 Solution of Parabolic Differential Equation for Heat Transfer 423

C
0)
C)
-Q

C)

CC

C)a
8
C)

500

1 1 y/Length

6.4.3 Hyperbolic Partial Differential Equations

7 2
a-u a-tip— - +f(vt)
at- ax-

7 7

a-u , a-it -
- i(x,t)

at2 ax

1 2h 2 8h

0

11
4 4h

11
6h

0

11
8 8h

0

10 4h I 2h

0

Figure E6.3a Evolution of temperature within the wall of the furnace with no
insulation. The length and width have been normalized to be in the
range of(O, 1).

Second-order partial differential equations of the hyperbolic type occur principally in physical
problems connected with vibration processes. For example the one-dimensional wave
equation

describes the transverse motion of a vibrating string that is subjected to tension and

external force tix, 0. In the case of constant density p. the equation is written in the form

(6.86)

(6.87)

424 Numerical Solution of Partial Differential Equations Chapter 6

2 Sh

Figure E6.3b

where

Evolution of temperature within the wall of the furnace with insulation.
The length and width have been normalized to be in the range of (0, 1).

T0
=

p

F(x,t) = 1f(xj)

2 82a=a
6t2 3x2

Oh 1.2h

500

OJ
0

0
500

0 0

0

11
1

11 1 1 y/Length 11

p

If no external force acts on the string, Eq. (6.87) becomes a homogeneous equation:

The two-dimensional extension of Eq. (6.87) is

2 vU vU=a +—
dt2 ax2 ay2

(6.88)

(6.89)

C-)

a)
a)-a.
a)

a)a
a
0)

F-

Evolution of temperature within the wall of the furnace with cooling
from both sides. The length and width have been normalized to be in
the range of (0, 1).

which describes the vibration of a membrane subjected to tension and external force
f(x, y, t).

To find the numerical solution of Eq. (6.88) we expand each second-order derivative in
terms of central finite differences to obtain

I

— +
11L1) 1 a2(

Rearranging to solve for

1 1

a - At -

ii. — 2 1 u.
n 1 1_n

Ax -

1 1

+

(a1 Lu a1 + O(Ax2 At)

(6.91)

This is an evplicir numerical solution of the hyperbolic equation (6.88).

6.4 Solution of Partial Differential Equations Using Finite Differences 425

12h 28h

500

4 4h

500

0
0
0

6h

11
8 8h 10 4h

500

0
0 0

500 500

05 0.5

x/width 1 1 y/Length

0

0

0

1 2h

11

Figure E6.3c

11

Ar2

2t. -h a. in + O(Ax2 At2)
Ax2

(6.90)

426 Numerical Solution of Partial Differential Equations Chapter 6

The positivity rule [Eq. (6.56)1 applied to Eq. (6.91) shows that this solution is stable if
the following inequality limit is obeyed:

a2At2 � 1 (6.92)

Similarly, the homogeneous form of the two-dimensional hyperbolic equation:

i32u S2ii
(6.93)

7 7dx- ay-

is expanded using central finite difference approximation to yield

u. - 2ti. . U.
—1 i j u 1.) it

— 2ti. + U. . U. — 2a. . U.
2 l'i.jn t.j.tt t—i.j.n 2 tj'iai .j—in—a

7 7Ar Av

+ O(Ax2 + Ay2 + &2) (6.94)

Rearranging this equation to the explicit form, using an equidistant grid in x- and v-directions,
results in

7a- /
U+ = 2 1 2 U. - U.

t.j ii 1

Ax 2
1./at t fit — 1

a 2 2

+
(U1, + + a11 — U/Fl (6.95)Ar

This solution is stable when

a2At2 I

Ax2
(6.96)

Implicit methods for solution of hyperbolic partial differential equations can he developed
using the variable-weight approach, where the space partial derivatives are weighted at
(n + 1), a, and (a I). The implicit formulation of Eq. (6.88) is

U. 2U. + U. 2
1 tt+1 t.tt t.tt 1 U

At2 Ar2
(11/

itt—i)

+ (I — 20)(ti it - 2U1 + ti1_111)
..'.

1
— + (6.97)

6.4 Solution of Partial Differential Equations Using Finite Differences 427

where 0 � U � 1. When U = 0, Eq. (6.97) reverts back to the explicit method [Eq. (6.91)].
When U = ½, Eq. (6.97) is a Crank-Nicolson-type approximation. Implicit methods yield
tridiagonal sets of linear algebraic equations whose solutions can he obtained using Gauss
elimination methods.

6.4.4 Irregular Boundaries and Polar Coordinate Systems

The finite difference approximations of partial differential equations developed in this chapter
so far were based on regular Cartesian coordinate systems. Quite often, however, the objects,
whose properties are being modeled by the partial differential equations, may have circular,
cylindrical, or spherical shapes, or may have altogether irregular boundaries. The finite
difference approximations may he modified to handle such eases.

Let us first consider an object which is well described by Cartesian coordinates
everywhere except near the boundary, which is of irregular shape, as shown in Fig. 6.9. There
are two methods of treating the curved boundary. One simple method is to reshape the
boundary to pass through the grid point closest to it. For example, in Fig. 6.9, the point (i.M
can he assumed to be on the boundary instead of the point (i + l,j) on the original boundary.
Although it is a simple method, the approximation of the boundary introduces an error in the
calculations, especially at the boundary itself

A more precise method of expressing the finite difference equation at the irregular
boundary is to modify it accordingly. We may use a Taylor series expansion of the dependent
value at the point (i, .1) in the x-direction to get (see Fig. 6.9)

7 7 7
drt (crLIx) dii+ (aix)— H

+
+ Q(Av) (6.9S)

2. 8x

a2it
= U + —H + O(LXx) (6.99)' dx 2! 8x2

'

Figure 6.9 Finite difference
grid for irregular boundaries.

428 Numerical Solution of Partial Differential Equations Chapter 6

Eliminating (aii/ax2) from Eqs. (6.98) and (6.99) results in

- l 1
[u. - (1 - a2)LL -

1 (6.100)
8x ' Ax .J

and eliminating (au/ax) from Eqs. (6.98) and (6.99) gives

1 2
-

/
(1 + (6.101)

ax- Ax a(l +a)

Similarly, in the v-direction:

p(
11± - (1 -

1 (6.102)

a2u 1 2

— Ay2 13(1 + 13)

(1 + 13)u. 13u1, ii (6.103)

When a = 13 = 1, Eqs. (6. 1 00)-(6. 103) become identical to those developed earlier in this
chapter for regular Cartesian coordinate systems. Therefore, for objects with irregular
boundaries, the partial differential equations would he converted to algebraic equations using
Eqs. (6.100)-(6.103). For points adjacent to the boundary, the parameters a and 13 would
assume values that reflect the irregular shape of the boundary, and for internal points away
from the boundary. the value of a and 13 would be unity.

Eqs. (6.l00)-(6.l03) can be used at the boundaries with Dirichlet condition where the
dependent variable at the boundary is known. Treatment of Neumann and Rohhins conditions
where the normal derivative at the curved or irregular boundary is specified is more
complicated. Considering again Fig. 6.9, the normal derivative of the dependent variable at
the boundary can he expressed as

au au au
1cosy 1siny (6.104)

aiz ax ay

where n is the unit vector normal to the boundary and y is the angle between the vector ii and
x-axis. The derivatives with respect to x andy in Eq. (6.104) can he approximated by Taylor
series expansions

au au a2u
= - (6.105)

a—ri= ± (aAx) (6.106)
av av axav

6.4 Solution of Partial Differential Equations Using Finite Differences 429

The derivatives at the grid point (i, J) should be known in order to calculate the normal
derivative at the boundary. For the particular configuration of Fig. 6.9, we may use backward
finite differences to evaluate the derivatives in Eqs. (6.105) and (6.106) (see Table 6.3):

du - - UI P (6.107)

82u
/

= - 2it1 1/ + u1 2) (6.108)

8U,
= - Uf]) (6.109)

aU2
(U11 — Ui]

1
+ .j 3 (6.110)

axay

Combining Eqs. (6.105), (6.107), and (6.108) gives

all —((1 - (1 (6.111)
ax ax

and combination of Eqs. (6.106), (6.109), and (6.110) results in

/
*[(l -' a)ie1 - (1 -a)U1] + au1 (6.112)

ay

Replacing Eqs. (6.11 1) and (6.112) into Eq. (6.104) provides the normal derivative which can

be used when dealing with Neumann or Robbins conditions at an irregular boundary.
Similarly in the v-direction:

aU aU aU
= cosy H siny (6.113)

an ax av

where

au,air! - —[(1 - (1 + (6.114)

aU = —[(1 + f3)U11 - (1 + 13U11,I (6.115)

It is important to remember that Eqs. (6.111), (6.112), (6.114), and (6.115) are specific

to the configuration shown in Fig. 6.9. For other possible configurations, forward differences,
or a combination of forward and backward differences (in different directions), may be used
to treat the derivative boundary condition.

430 Numerical Solution of Partial Differential Equations Chapter 6

y

y

x Figure 6.10 Transformation to
polar coordinates

Cylindrical-shaped objects are more conveniently expressed in polar coordinates. The
transformation from Cartesian coordinate to polar coordinate systems is performed using the
following relationships, which are based on Fig. 6.10:

x = rcosO y = rsin6

(6.116)
6

The Laplacian operator in polar coordinates becomes

2 7 7 7
a a-u a-u 1 di, 1 a-it

7 7 7 .2. 7 7ax- ay- ar- ao-

Fick's second law of diffusion [Eq. (6.10)] in polar coordinates is

2 7ac ac 1ac 1a-c a-c
= DAB ± (6.118)

at ar2 r ar r2 ao2 az2

Using the finite difference grid for polar coordinates shown in Fig. 6.11, the partial derivatives
are approximated by

a2u 1
= - 2u11 + (6.119)

ar L\r

a2u 1
= — + it1 L) (6—120)

au
- - u11) (6-121)

where j and i are counters in r- and 6-directions, respectively. Partial derivatives in z- and
t-dimensions (not shown in Fig. 6. 11) would be similarly expressed through the use of

u(x, y) = u(r, 0)

x

Figure 6.11 Finite difference
grid for polar coordinates.

6.4.5 Nonlinear Partial Differential Equations

The discussion in this chapter has focused on linear partial differential equations that yield sets
of linear algebraic equations when expressed in finite difference approximations. On the other
hand, if the partial differential equation is nonlinear, for instance,

32u d2tia— + u— — J(u)
8x2 8v2

In this section, we discuss the stability of finite difference approximations using the
well-known von Neumann procedure. This method introduces an initial error represented by
a finite Fourier series and examines how this error propagates during the solution. The von
Neumann method applies to initial-value problems: for this reason it is used to analyze the
stability of the explicit method for parabolic equations developed in Sec. 6.4.2 and the explicit
method for hyperbolic equations developed in Sec. 6.4.3.

6.4 Solution of Partial Differential Equations Using Finite Differences 431

+1

additional subscripts.

(6.122)

The resulting finite difference discretization would generate sets of nonlinear algebraic
equations. The solution of this problem would require the application of s method
for simultaneous nonlinear equations (see Chap. I).

6.5 STAB1LITY ANALYSIS

432 Numerical Solution of Partial Differential Equations Chapter 6

Define the error as the difference between the solution U,,, of the finite difference
approximation and the exact solution u,,,, of the differential equation at step (m, n):

un,,, — ii,,,,, (6.123)

The explicit finite difference solution (6.58) of the parabolic partial differential equation (6.18)
can be written for and s,,,,, as follows:

aAt aAt czAt
u,n,,÷J = U,,,

+ i,,, + 1 — + U,,,
,, + RE (6.124)

- ccAt - ccAt - ctAt -
Umn+i

= T + 1 2— U,,,,, + U,,,j,, + TE (6.125)

where RE and TE are the roundoff and truncation errors, respectivcly, at step (in, /2+1).

Combining Eqs. (6.123)-(6.125) we obtain

aAt czAt aLit1-2——--€ - —c
Ax2

In
Ax2

""
Ax2

In I.n It),,,,1

(6.126)

This is a nonhomogeneous finite difference equation in two dimensions, representing the
propagation of error during the numerical solution of thc parabolic partial differential equation
(6.18). The solution of this finite differencc cquation is rather difficult to obtain. For this
reason, the von Neumann analysis considers the homogeneous part of Eq. (6.126):

aLit aLit aLit
• 1

— in — I — j 0 (6.127)
Ax Ax Ar

which represents thc propagation of the error introduced at the initial point (n = 0) only and
ignores truncation and roundoff errors that enter the solution at n > 0.

The solution of the homogeneous finite difference equation may be written in the
separable form

= c e ynat
e

,p,,,a,
(6.128)

where i fT and c, y, and f3 are constants. At n = 0:

= (6.129)

which is the error at the initial point. Therefore, the term is the amplification factor of the
initial error. In order for the original error not to grow as n increases, the amplification factor
must satisfy the von Neumann condition for stability:

� 1 (6.130)

and

Eq. (6.132) becomes

+

- (6.133)

1 cosI3LXv

fLAt . d3Ax Isnr— �—
Ax2 2 2

(6.134)

6.5 Stability Analysis 433

The amplification factor can have complex values. In that case, the modulus of the
complex numbers must satisfy the above inequality, that is,

In � 1 (6.131)

Therefore the stability region in the complex plane is a circle of radius = 1, as shown in
Fig. 6.12.

The amplification factor is determined hy substituting Eq. (6.128) into Eq. (6.127) and
rearranging to obtain

- I - + + e -lMk)
(6.132)

Ax2 Ax2

Using the trigonometric identities

2

Imaginary

Unstable

- I - (6.135)

Combining this with the von Neumann condition for stability, we obtain the stability bound

(6.136)

Figure 6.12 Stability region in the complex plane.

_11
Real

434 Numerical Solution of Partial Differential Equations Chapter 6

The sin2Q3Ax/2) term has its highest value equal to unity; therefore:

aAt 1

(6.137)

is the limit for conditional stability for this method. It should he noted that this limit is
identical to that obtained by using the positivity rule (Sec. 6.4.2).

The stability of the explicit solution (6.91) of the hyperbolic equation (6.88) can be
similarly analyzed using the von Neumann method. The homogeneous equation for the error
propagation of that solution is

7 2cc t a t
C/fl

//
— 2 1 —

2
C/fl —

7
(C/fl +

-
± — 0 (6.138)

Ax Ax

Substitution of the solution (6.128) into (6.138) and use of the trigonometric identities (6.133)
and (6.134) give the amplification factor as

= [1 2
a2At2 ± (I - 2 aAt

- 1 (6.139)

The above amplification factor satisfies inequality (6.131) in the complex plane, that is,
when

(1 -
1 � 0 (6.140)

which converts to the following inequality:

7 7cc c
(6.141)

Ax2

The sin2(I3Ax/2) term has its highest value equal to unity; therefore,

a 2A 2

Ax2
� 1 (6.142)

is the conditional stability limit for this method.
In a similar manner the stability of other explicit and implicit finite difference methods

may he examined. This has been done by Lapidus and Pinder [41, who conclude that "most

6.6 Introduction to Finite Element Methods 435

explicit finite difference approximations are conditionally stable, whereas most implicit
approximations are unconditionally stable."

6.6 INTRODUCTION TO FINITE ELEMENT METHODS

The finite element methods are powerful techniques for the numerical solution of differential
equations. Their theoretical formulation is based on the variational principle. The
minimization of the functional of the form

au auJ(U)
=

dD (6.143)dx av
I)

must satisfy the Euler-Lagrange equation

3

(6A44)
dx d(dU/dx) ay

a partial differential equation with certain natural boundary conditions.
It has been shown that many differential equations that originate from the physical

sciences have equivalent variational formulations.4 This is the basis for the well-known
Rayleigh-Ritz procedure which in turn forms the basis for the finite element methods.

An equivalent formulation of finite element methods can be developed using the concept
of weighted residuals. In Sec. 5.6.3, we discussed the method of weighted residuals in
connection with the solution of the two-point boundary-value problem. In that case we chose
the solution of the ordinary differential equation as a polynomial basis function and caused the
integral of weighted residuals to vanish:

fVVkR(x)dx - (5.129)

We now extend this method to the solution of partial differential equations where the desired
solution u(.) is replaced by a piecewise polynomial approximation of the form

u(.) (6.145)

For a complete discussion of the variational foroiulation of the finite element method, see Vichnevetsky [31 and
Vemuri and Karplus 161.

436 Numerical Solution of Partial Differential Equations Chapter 6

The set of functions {4/.) I j = 1, 2, . . , NJ are the basis functions and the {a, Ij = 1, 2,

N} are undetermined coefficients. The integral of weighted residuals is made to vanish:

f fw,(.)R(.)dvdt (6.146)
/ V

The choice of basis functions and weighted functions W/.) determines the particular
finite element method. The Galerkin method 1131 chooses the hasis and weighted functions
to be identical to each other. The orthogonal collocation method uses the Dirac delta function
for weights and orthogonal polynomials for basis functions. The subdomain method chooses
the weighted function to be unity in the subregion V,, for which it is defined, and zero
elsewhere. A complete discussion of the finite element methods is outside the scope of this
hook. The interested reader is referred to Lapidus and Pinder [41, Reddy 17], Huehner et al.
[8], and Pepper and Heinrich [9] for detailed developments of these methods.

MATLAB has a powerful toolbox for solution of linear and nonlinear partial differential
equations which is called Partial Equation (or PDE) TOOLBOX. This toolbox
uses the finite element method for solution of partial differential equations in two space
dimensions. The basic equation of this toolbox is the equation

—V.(cVu) + au — j (6.147)

where c, a, and f are complex-valued functions in the solution domain and may also he a
function of ii. The toolbox can also solve the following equations:

- V.(cVu) + au J (6.148)

and

V.(cVu) + an f (6.149)

where d, c, a, and f are complex-valued functions in the solution domain and also can be
functions of time. The symbol V is the vector differential operator (not to be confused with
V. the backward difference operator).

In the PDE toolbox Eqs. (6.147)-(6.l49) are named elliptic, parabolic, and hyperbolic,
respectively, regardless of the values of the coefficients and boundary conditions.

In order to solve a partial differential equation using the PDE toolbox, one may simply
use the graphical user interfrice by employing the pdetool command. In this separate
environment, the user is able to define the two-dimensional geometry, introduce the boundary
conditions. solve the partial differential equation, and visualize the results. In special cases
where the problem is complicated or nonstandard, the user may wish to solve it using
command-line functions. Some of these functions (solvers only) are listed in Table 6.4.

Problems 437

Table 6.4 Partial differential equation solvers in MATLAB's PDE TOOLBOX

Solver Description

adaptmesh Adaptive mesh generation and solution of elliptic partial differential equation

assempde Assembles and solves the elliptic partial differential equation

hyperbolic Solves hyperbolic partial differential equation

parabolic Solves parabolic partial differential equation

pdenonlin Solves nonlinear elliptic partial differential equation

poisolv Solves the Poisson equation on a rectangular grid

PROBLEMS

6.1 Modify elliptic.m in Example 6.1 to solve for the three-dimensional problem

a-it a-u a2u

ax2 ay2 a-2

Apply this function to calculate the distribution of the dependent within a solid body
which is subject to the following boundary conditions:

u(0,v,z) = 100 u(l,v,z) - 100

u(x,0,z) 0 u(x.l,z) = 0

u(x,y,0) 50 u(x,v,l) = 50

6.2 Solve Laplace's equation with the following boundary conditions and discuss the results:

u(0,y) = 100 = 10
ax

=0
ay ay

6.3 The ambient temperature surrounding a house is 50°F. The heat in the house had been turned off;
therefore, the internal temperature is also at 50°F at t = 0. The heating system is turned on and
raises the internal temperature to 70°F at the rate of 4°F/h. The ambient temperature remains at
50°F. The wall of the house is 0.5 ft thick and is made of material that has an average thermal
diffusivity = 0.0! ft2/h and a thermal conductivity k = 0.2 Btu/(h.ft2.°F) The heat transfer
coefficient on the inside of the wall is = 1.0 Btu/(h.ft2. °F), and the heat transfer coefficient on

438 Numerical Solution of Partial Differential Equations Chapter 6

the outside is hm = 2.0 Btu/(h.ft2. °F). Estimate how long it will take to reach a steady-state
temperature distribution across thc wall.

6.4 Develop the finite difference approximation of Fick s second law of diffusion in polar coordinates.
Write a MATLAB program that can be used to solve the following problem [10]:

A wet cylinder of agar gel at 278 K with a uniform concentration of urea of 0. 1 kgmol/rn3 has a
diameter of 30.48 mm and is 38.1 mm long with flat parallel ends. The diffusivity is 4.72x101°
m2/s. Calculate the concentration at the midpoint of the cylinder after lOOh for the following cases
if the cylinder is suddenly imniersed in turbulent pure water:

(a) For radial diffusion only
(h) Diffusion that occurs radially and axially.

6.5 Express the two-dimensional parabolic partial differential equation

32u 32u
= a —÷————

dt 3x2 8y2

in an explicit finite difference formulation. Determine the limits of conditional stability for this
method using

(a) The von Neumann stability
(b) The positivity rule.

6.6 Consider a first-order chemical reaction being out under isothermal steady-state conditions
in a tubular-flow reactor. On the assumptions of laminar flow and negligible axial diffusion, the
material balance equation is

r
2 82c I Bc-v 1 - — +—-— -kc = 0

R Bz Br2 rBr
where v0 = velocity of central stream line

R = tube radius
k = reaction rate constant
c = concentration of reactant
D = radial diffusion constant

z axial distance along the length of tube
r = radial distance from center of tube.

Upon defining the following dimensionless variables:

c D rC=— a=— U=—
V0 C0 kR2 R

the equation becomes

-c
BA ou2 UBU

Problems 439

where is the entering concentration of the reactant to the reactor.

(a) Choose a set of appropriate boundary conditions for this problem. Explain your choice.
(h) What class of PDE is the above equation (hyperbolic, parabolic, or elliptic)?
(c) Set up the equation for numerical solution using finite difference approximations.
(d) Does your choice of finite differences result in an explicit or implicit set of equations?
Give the details of the procedure for the solution of this set of equations.
(e) Discuss stability considerations with respect to the method you have chosen.

6.7 A 1 2-in-square membrane (no bending or shear stresses), with a 4-in-square hole in the middle.
is fastened at the outside and inside boundaries as shown in Fig. P6.7 [11]. If a highly stretched
membrane is subject to a pressure p, the partial differential equation for the deflection a' in the
c-direction is

f)

6x By2 T

where T is the tension (pounds per linear inch). For a highly stretched membrane, the tension T
may he assumed constant for small defiections. Utilizing the following values of pressure and
tension:

p = S psi (uniformly distributed)
T = 100 lb/in

(a) Express the differential equation in finite difference form to obtain the deflection a' of the
membrane.

(b) List all the boundary conditions needed for the numerical solution of the problem. Utilize
some or all of these boundary conditions to simplify the finite difference equations of part (a)
(c) Solve the equation numerically.

4 in.
.

E

12 in.

Figure P6.7 Stretched membrane.

440 Numerical Solution of Partial Differential Equations Chapter 6

6.8 Figure P6.8 shows a cross section of a long cooling fin of width W, thickness t, and thermal
conductivity k that is bonded to a hot wall, maintaining its base (at x = 0) at a temperature T [12].
Heat is conducted steadily through the fin in the plane of Fig. P6.8 so that the fin temperature T
obeys Laplace's equation, d2Tidx2 + d2 Tidy2 = 0. (Temperature variations along the length of the
fin in the z-direction are ignored.)

Heat is lost from the sides and tip of the fin by convection to the surrounding air (radiation
is neglected at sufficiently low temperatures) at a local rate q = h(T, — Btu/(h.ft2). Here, and

in degrees Fahrenheit, are the temperatures at a point on the fin surface and of the air,
respectively. If the surface of the fin is vertical, the heat transfer coefficient h obeys the
dimensional correlation h = -

(a) Set up the equations for a numerical solution of this problem to determine the temperature
at a finite number of points within the fin and at the surface.

(b) Describe in detail the step-by-step procedure for solving the equation of part (a) and
evaluating the temperature within the fin and at the surface.
(c) Solve the problem numerically using the following quantities:

T,, = 200°F 1;, = 70°F

= 0.25 in k = 25.9 Btu/(h.ft.°F)
= 0.5 in

Air at Ta

Wall at Tw
T(x, y)

r
Vt)

Figure P6.8 Cooling fin.

6.9 Consider a steady-state plug flow reactor of length z through which a substrate is flowing with a
constant velocity v with no dispersion effects. The reactor is made up of a series of collagen
membranes, each impregnated with two enzymes catalyzing the sequential reaction [141:

A
haae 2

The membranes in the reactor are arranged in parallel, as shown in Fig. P6.9. The nomenclature
for this problem is shown in Table P6.9.

For a substrate molecule to encounter the immobilized enzymes. it must diffuse across a
Nernst diffusion layer on the surface of the support and then some distance into the membrane.
The coupled reaction takes place in the membrane and the product, the unreacted intermediate, and
substrate diffuse back into the bulk fluid phase. No inactivation of the enzymes occurs, and it is
assumed that the enzymes behave independently of each other.

y

[

Problems 441

Immobilized enzyme
membrane

2L

Direction of flow

Figure P6.9 Biocatalytic reactor.

Since the membrane can accommodate 0111) a finite number of enzymes molecules per unit
weight, it becomes ncccssary to introduce a control parameter that measures the ratio of molar
concentration of enzyme I to molar coiiceiitratioil of Enzymes I plus 2. It is implicitly assumed
that tile binding sites on collagen do not discriminate between the lies. Thus, when both
enzymes are present. the maximum reaction velocities reduce to €V1 and (1 - c)V2. The control
is constrained between the hounds of 0 (only Enzyme 2 present) and I (only Enzyme 1 present).

The reaction rates for the two sequential reactions are given by the Michaelis-Menten
relationship:

cV Y

(1 -

C41

Material balance for the species A. B, and C in the membrane yield the following diflerential
eqLiatioils:

dY
—:

%WR =0
L ?X

— —R1 t)

U 5X

1) 1w
+ B, 0

L ax -

442 Numerical Solution of Partial Differential Equations Chapter 6

Table P6.9 Nomenclature for problem 6.9

CAt = concentration of A in feed, mol/L

0 = molecular diffusivity of reactants or products in membrane, cm2/s

kL = overall mass transfer coefficient in the fluid phase, cm/s

KM1, = Michaelis-Menten constant for Enzymes 1 and 2, mol/L

L = half thickness of membrane, mils

v = superficial fluid velocity in reactor, cm/s

V1, V2 = maximumreactionvelocityforEnzymesl and2,mol/(L.s)

X = variable axial distance from center of membrane to surface, cm

x0 = half distance between two consecutive membranes, cm

X = x'L, dimensionless distance

= bulk concentration of species A, B, or C divided by the feed
concentration of A (CA,), dimensionless

t'Am' '?'Cm = membrane concentration of species A, B, or C divided by the feed
concentration of A (CA,), dimensionless

= surface concentration of species A, B, or C divided by the feed
concentration of A (CA,), dimensionless

z = variable longitudinal distance from entrance of reactor, cm

e = control, ratio of molar concentration of enzyme 1 to total molar
concentration of enzymes 1 plus 2, dimensionless

e = z/v,spacetime,s

In the bulk fluid phase. the material balances for species A, B. and C can be defined as follows:

dY k0) - = U
dO x0

dY k
+ - Y8) = 0

dO X0

dY k
= 0

dO

Problems 443

Since each membrane is symmetric about X = 0, the boundary conditions at X = 0 and X =
become

ay av ay.AmlhnCin0 atx=0
ax ax ax

= at K

The surface concentrations are determined by equating the surface flux to the bulk transport flux.
that is,

D

L dx -

D

L 8K

D
= - YC)

L ax

Finally at the entrance of the reactor, that is, at 0 = 0:

1 Y(-o

Develop a numerical procedure for sok ing the above set of equations and write a coilipLiter
program to calculate the concentration profiles in the membranes and in the hulk fluid for the
following set of kinetic and transport parameters:

V1 = 4.4x10 1mol/L.s V. 12.OxlO 3mol/L.s

- 0.022mo1/L 0.OlOmol/L

I) = 5.7x10 5cm2/s = l.Omol/L

l.2x10 4cmfs x0 23mils

0.75 2L 3 mils

6.10 Coulet et al. [15] have developed a glucose sensor that has glucose oxidase enzyme immobilized
as a surface layer on a highly polymerized collagen membrane. In this system. glucose (analyte)
is converted to hydrogen peroxide, which is subsequently detected on the membrane face (that is
not exposed to the analyte solution) by an amperometric electrode. The hydrogen peroxide flux
is a direct measure of the sensor response [161.

The physical model and coordinates system are shown in Fig. P6.10. The local analyte
concentration at the enzyme surface is low so that the reaction kinetics are adequately described
by a first-order law. This latter assumption ensures that the electrode response is proportional to
the analyte concentration.

444 Numerical Solution of Partial Differential Equations Chapter 6

The governing dimensionless equation describing analyte transport within the membrane is

ac - 32c
3(3(2

where the dimensionless time (and penetration (variables are defined as

a2

a

where ô is the membrane thickness and D the diffusion coefficient. The initial and boundary
conditions are

C=0 (=0
C=l (>0

ac (>0 (=1

where is the Darnkoehler number, defined as

k"ô
I)

The surface rate constant k is related to the surface concentration of the enzyme [K']. the
turnover number and the intrinsic Michaelis-Menten constant K,,, by

immobilize
Enzyme Layer

=

Figure P6.10 Schematic description of an
anisotropic enzyme electrode. The membrane

Electrode
(exaggerated) has active enzyme deposited

Sensor as a surface layer at the electrode sensor
interface. The product flux is the result of the
reaction involving analyte diffusing through the
membrane.

Product

K

c
c=1

Bulk Analyte
Solution

Analyte
.* ac

inert Membran
Support

Problems 445

(a) Predict the electrode response as a function of the dimensionless
membrane with the analyte diffusion coefficient D = cm2/s and immobilized enzyme
with the surface rate constant k" 0.24 cm/h.
(b) Repeat part (a) for the reaction kinetics defined by the Michaelis-Menten law.

6.11 The radial dispersion coefficient of solids in a fluidized bed can be evaluated by the injection of
tracer particles at the center of the fluidized bed and monitoring the unsteady-state dispersion
of these particles [17J Assuming instantaneous axial mixing of solids and radial mixing
occurring by dispersion. the governing partial differential equation of the model, in cylindrical
coordinates, is

= I) ±±
at s' r or Or

where C is the concentration of the tracer, t is time, r is the radial position. and I) is the radial
solid dispersion coefficient The appropriate initial and boundary conditions are

t=0 C= 100Sf

a Ct>0 r=0 —-0
a

a C
i > 0 r - R t)

a

where a is the radius of the tracer injection tube and R is the radius of the column. The analytical
solution ol the dispersion equation, subject to these conditions, is

C 2 2- 1

C, a

where C is the concentration of the traeei at the steady-state condition, J is the Bessel lunetion
of the first kind, and A1 is calculated from

J1(A1R) = t)

(a) Use the analytical solution of the dispersion equation to plot the unsteady-state
concentration profiles of the tracer.
(b) Solve the dispersion equation numerically and compare it with the exact solution.

Additional data:

2R 0.27m 2a l9nim = 2x ltY4m2/s

446 Numerical Solution of Partial Differential Equations Chapter 6

REFERENCES

1. Bird. R. B., Stewart, W. E., and Lightfoot, E. N.. Transport Phenomena, Wiley, New York. 1960.

2. Tychonov. A. N , and Samarski. A. A., Partial Diffrrential Equations of Mathematical Physics.
Holden-Day, San Francisco, 1964.

3. Vichnevetsky. R.. Computer Methods for Partial Differential Equations. vol. 1, Prentice Hall.
Englewood Cliffs, NJ. 1981.

4. Lapidus. L., and Pinder, G. F., Numerical Solution of Partial Diflerential Equations in Science and
Engineering, Wiley, New York, 1982.

5. Finlayson, B. A., NonlinearAnalysis in Chemical Engineering. McGraw-Hill. New York. 1980.

6. Vemuri. V.. and Karplus, W. J., Digital Computer Treatment of Partial Differential Equations.
Prentice Hall. Englewood Cliffs. NJ. 1981.

7. Reddy, J. N., An introduction to the Finitc Element Method. 2nd ed., McGraw-Hill, New York, 1993.

8. Huchner. K. H.. Thornton, E. A , and Byroni, T. G.. The Finite Element Method frr Engineers. 3rd ed..
Wiley. New York, 1995.

9. Pepper. D. W. and Heinrich, J. C.. The Finite Element Method: Basic Concepts and Applications.
Heniisphere, Washington. DC, 1992.

10. Geankoplis. C. J.. Transport Processes and Unit Operations. 3rd ed.. Prentice Hall. Englewood
Cliffs, NJ. 1993

11 . James, M. L.. Smith. G. M., and Wolford J. C., Applied Numerical Methods' fbr J)igital Computation
with FORTRAN and CSMP. 2nd ed., Harper & Row. New York, 1977.

l2.Carnahan,B.. Luther. H.A.,andWilkes.J.O..AppliedNumerkalMethods,Wiley,NewYork. 1969.

13. Fairweather, G., Finite Element Galerkin Methods fbr Differential Equations. Marcel Dekker, New
York, 1978.

14. Fernandes. P. M.. Constantinidcs. A.. Vieth, W. R.. and Venkatasuhramanian, K.. 'Enzyme
Engineering: Part V. Modeling and Optimizing Multi-Enzyme Reactor Systems," Chenitech, July
1975, p.438.

References 447

15. Coulet, P. R . Sternberg, R., and Thevenot, D. R., 'Electrochemical Study of Reactions at interfaces
of Glucose Oxidase Collagen Membranes," Biochim. Biophys. Acta. vol. 612, 1980. p. 317.

1 6. Pedersen, FL. and Chotani, G. K., 'Analysis of a Theoretical Model for Anisotropic Enzyme
Membranes: Application to Enzyme Electrodes," Appi. Biochem. Biorech., ol. 6. 1981. p. 309.

17. Berruti, F.. Scott, D. S.. and Rhodes, E.. "Measurement and Modelling Lateral Solid Mixing in a
Three-Dimensional Batch Gas-Solid Fluidized Bed Reactor," Canadian J. C/inn. Eng., vol. 64.

1986, p. 48.

CHAPTER 7

Linear and Nonlinear Regression Analysis

7.1 PROCESS ANALYSIS, MATHEMATICAL MODELING, AND

REGRESSION ANALYSIS

Engineers and scientists are often required to
analyze complex physical or chemical systems and to develop mathematical models which
simulate the behavior of such systems. Process analysis is a term commonly used by chemical
engineers to describe the study of complex chemical, biochemical, or petrochemical processes.
More recently coined phrases such as systems engineering and systems analysis are used by
electrical engineers and computer scientists to refer to analysis of electric network and
computer systems. No matter what the phraseology is, the principles applied are the same.

449

450 Linear and Nonlinear Regression Analysis Chapter 7

According to Himmelblau and Bischoff [lj: 'Process analysis is the application of scientific
methods to the recognition and definition of problems and the development of procedures for
their solution. In more detail, this means (1) mathematical specification of the problem for the
given physical solution, (2) detailed analysis to obtain mathematical models, and (3) synthesis
and presentation of results to ensure full comprehension."

In the heart of successful process analysis is the step of mathematical modeling. The
objective of modeling is to construct, from theoretical and empirical knowledge of a process,
a mathematical formulation that can be used to predict the behavior of this process. Complete
understanding of the mechanism of the chemical, physical, or biological aspects of the process
under investigation is not usually possible. However, some information on the mechanism of
the system may be available; therefore, a combination of empirical and theoretical methods
can be used. According to Box and Hunter [2]: "No model can give a precise description of
what happens. A working theoretical model, however, supplies information on the system
under study over important ranges of the variables by means of equations which reflect at least
the major features of the mechanism."

The engineer in the process industries is usually concerned with the operation of existing
plants and the development of new processes. In the first case, the control, improvement, and
optimization of the operation are the engineer's main objectives. In order to achieve this. a
quantitative representation of the process, a model, is needed that would give the relationship
between the various parts of the system. In the design of new processes, the engineer draws
information from theory and the literature to construct mathematical models that may be used
to simulate the process (see Fig. 7.1). The development of mathematical models often requires
the implementation of an experimental program in order to obtain the necessary information
for the verification of the models. The experimental program is originally designed based on
the theoretical considerations coupled with a priori knowledge of the process and is
subsequently modified based on the results of regression analysis.

Regression analysis is the application of mathematical and statistical methods for the
analysis of the experimental data and the fitting of the mathematical models to these data by
the estimation of the unknown parameters of the models. The series of statistical tests, which
normally accompany regression analysis, serve in model identification, model verification, and
efficient design of the experimental program.

Strictly speaking, a mathematical model of a dynamic system is a set of equations that
can be used to calculate how the state of the system evokes through time under the action of
the control variables, given the state of the system at some initial time. The state of the
system is described by a set of variables known as state variables. The first stage in the
development of a mathematical model is to identify the state and control variables.

The control variables are those that can be directly controlled by the experimenter and
that influence the way the system changes from its initial state to that of any later time.
Examples of control variables in a chemical reaction system may he the temperature. pressure,
and/or concentration of some of the components. The state variables are those that describe
the state of the system and that are not under direct control. The concentrations of reactants
and products are state variables in chemical systems. The distinction between state and control

7.1 Process Analysis, Mathematical Modeling, and Regression Analysis 451

Simulation
—, and Process

Control

and
Literature

• Mathematical

Modeling

Parameter
Estimation

Regression I

Analysis
J

Statistical U
Analysis

Figure 7.1 Mathematical modeling and regression analysis.

variables is not always fixed hut can change when the method of operating the system
changes. For example, if temperature is not directly controlled, it becomes a state variable.

The equations comprising the mathematical model of the process are called the
perJhrmance equations. These equations should show the effect of the control variables on
the evolution of the state variables. The performance equation may be a set of differential
equations and/or a set of algebraic equations. For example, a set of ordinary differential
equations describing the dynamics of a process may have the general form:

= g(xj,O,b) (7.1)
dx

452 Linear and Nonlinear Regression Analysis Chapter 7

where x = independent variable
y = vector of state (dependent) variables
0 = vector of control variables
b = vector of parameters whose values must be determined.

In this chapter, we concern ourselves with the methods of estimating the parameter vector b
using regression analysis. For this purpose. we assume that the vector of control variables 0
is fixed; therefore, the mathematical model simplifies to

dy
(7.2)dx

In their integrated form, the ahove set of performance equations convert to

y =f(x,b) (7.3)

For regression analysis, mathematical models are classified as linear or nonlinear with
respect to the unknown parameters. For example. the following differential equation:

d v
ky (7.4)

which we classified earlier as linear with respect to the dependent variable (see Chap. 5), is
nonlinear with respect to the parameter k. This is clearly shown by the integrated form of Eq.
(7.4):

(7.5)

where v is highly nonlinear with respect to k.
Most mathematical models encountered in engineering and the sciences are nonlinear

in the parameters. Attempts at linearizing these models, by rearranging the equations and
regrouping the variables, were common practice in the precomputer era, when graph paper and
the straightedge were the tools for fitting models to experimental data. Such primitive
techniques have been replaced by the implementation of linear and nonlinear regression
methods on the computer.

The theory of linear regression has been expounded by statisticians and econometricians.
and a rigorous statistical analysis of the regression results has been developed. Nonlinear
regression is an extension of the linear regression methods used iteratively to arrive at the
values of the parameters of the nonlinear models. The statistical analysis of the nonlinear
regression results is also an extension of that applied in linear analysis but does not possess
the rigorous theoretical basis of the latter.

In this chapter, after giving a brief review of statistical terminology, we develop the basic
algorithm of linear regression and then show how this is extended to nonlinear regression. We
develop the methods in matrix notation so that the algorithms are equally applicable to fitting
single or multiple variables and to using single or multiple sets of experimental data.

7.2 Review of Statistical Terminology Used in Regression Analysis 453

7.2 REVIEW OF STATISTICAL TERMINOLOGY USED IN

REGRESSION ANALYSIS

It is assumed that the reader has a rudimentary knowledge of statistics. This section serves as
a review of the statistical definitions and terminology needed for understanding the application
of linear and nonlinear regression analysis and the statistical treatment of the results of this
analysis. For a more complete discussion of statistics, the reader should consult a standard text
on statistics, such as Bethea [3] and Ostle et a!. [4].

7.2.1 Population and Sample Statistics

A population is defined as a group of similar items, or events, from which a sample is drawn
for test purposes: the population is usually assumed to he very large. sometimes infinite. A
sample is a random selection of items from a population, usually made for evaluating a
variable of that population. The variable under investigation is a characteristic property of the
population.

A random variable is defined as a variable that can assume any value from a set of
possible values. A statistic or stativtical parameter is any quantity computed froni a sample:
it is characteristic of the sample, and it is used to estimate the characteristics of the population
variable.

Degrees offreedoni can be delined as the number of observations made in excess of the
minimum theoretically necessary to estimate a statistical parameter or any unknown quantity.

Let us use the notation N to designate the total number of items in the population under
study, where 0 N s oo, and a to specify the number of items contained in the sample taken
from that population, where 0 < a s N. The variable being investigated will be designated as
X; it may have discrete values, or it may be a continuous function, in the range -oo <\<
For specific populations, these ranges may he more limited, as will be mentioned below.

For the sake of example and in order to clarify these terms, let us consider for study the
entire human population and examine the age of this population. The value of N, in this case,
would be approximately 6 billion. The age variable would range from 0 to possibly 150 years.
Age can he considered either as a continuous variable, because all ages are possible, or more
commonly as a discrete variable, because ages are usually grouped by year. In the continuous
case, the age variable takes an infinite number of values in the range 0 c x � 150. and in the
discrete case it takes a finite number of values x,. wherej = 1, 2,3,..., M and M � 150.

Assume that a random sample of a persons is chosen from the total population (say a =
million) and the age of each person in the sample is recorded.

454 Linear and Nonlinear Regression Analysis Chapter 7

The frequency at which each value of the variable (age, in the above example) may occur
in the population is not the same; some values (ages) will occur more frequently than others.
Designating m1 as the number of times the value of x, occurs, we can define the concept of
probability of occurrence as

Probability of number of occurrences of x.
Pr{X = x.} = occurrencc of =

1 total number of observations

lit!
= lim = (7.6)

F? N Ii

For a discrete random variable, j'(x1) is called the probability floicrion, and it has the
following properties:

o p(x1) 1

M (7.7)
- I

The shape of a typical probability function is shown iii Fig. 7.2a.
For a continuous random variable, the probability of occurrence is measured by the

continuous function p(4, which is called the probability density function, so that

Pr{x C X < x + dx} = p(x)dx (7.8)

The probability density function has the following properties:

o � p(x) 1

(7.9)

f p(x)dx =

The smooth curve obtained from plotting p(x) versus x (Fig. 7.3o) is called the continuous
probability density distribution.

The cumulative distribution function is defined as the probability that a random variable
X will not exceed a given value x, that is:

Pr{X � x} = P(x) fPxdx (7.10)

7.2 Review of Statistical Terminology Used in Regression Analysis 455

The equivalent of Eq. (7.10) for a discrete random variable is

Pr{X � x1} = E p(x) (7.11)I'
The cumulative distribution functions for discrete and continuous random variables are
illustrated in Figs. 7.2/ and 7.3h, respectively.

It is obvious from the integral of Eq. (7.10) that the cumulative distribution function is
obtained from calculating the area under the density distribution function. The three area
segments shown in Fig. 7.3a correspond to the following three probabilities:

Pr{ X = fPxdx (7.12)

(7.13)

Figure 7.2 (a) Probability function and (b) cumulative distribution function for discrete

Pr(x1 C X � Xh } fP-v)dx

p(x)

1 .0

P(x.)

(b)

0

random variable.

K

456 Linear and Nonlinear Regression Analysis Chapter 7

Pr{X>xa} = (7.14)

The population mean, or expected value, of a discrete random variable is defined as

= E[X] = E x1p(x1) (7.15)

and that of a continuous random variable as

p E[Xj fxp(x)dx (7.16)

p(x)

1.0

P(x)

0

0

(a)

x

Figure (a) Probability density function and (b) cumulative distribution function
for a continuous random variable.

x x
a b

(b)

x

7.2 Review of Statistical Terminology Used in Regression Analysis 457

The usefulness of the concept of expectation, as defined above, is that it corresponds to our
intuitive idea of average, or equivalently to the center of gravity of the probability density
distribution along the x-axis. It is easy to show that combining Eqs. (7. 15) and (7.6) yields the
arithmetic average of the random variable for the entire population:

P = E[X] = (7.17)

In addition, the integral of Eq. (7. 16) can he recognized from the field of mechanics as the first
noncentral moment of X.

The sample mean. or arithmetic average, of a sample of observations is the value
obtained by dividing the sum of observations by their total number:

I (7.18)

The expected value of the sample mean is given by

E[i1 E - P = P (7.19)
n n1

1 111-1

that is, the sample mean is an unbiased estimate of the population mean.
In MATLAB the built-in function mean(x) calculates the mean value of the vector x

Eq. (7.18)j. if x is a matrix, mean(x) returns a vector of mean values of each column.
The population variance is defined as the expected value of the square of the deviation

of the random variable X from its expectation:

- V[X)

= EL(X EIXJ)2]

= EI(X - p)21 (7.20)

For a discrete random variable, Eq. (7.20) is equivalent to

=

E (x1 - p)2p(x) (7.21)

458 Linear and Nonlinear Regression Analysis Chapter 7

When combined with Eq. (7.6), Eq. (7.21) becomes

- P)2
2 (7.22)

N

which is the arithmetic average of the square of the deviations of the random variable from its
mean. For a continuous random variable, Eq. (7.20) is equivalent to

= p)2p(x)dx (7.23)

which is the second central moment of X about the mean.
It is interesting and useful to note that Eq. (7.20) expands as follows:'

V[X] = E[(X - E[Xj)2] = EIX2 (E[Xj)2 - 2XE[X]J

= E[X2] E[(E[XI)21 - 2E[XE[X]]

E[X2] ± (E[X1)2 - 2(E[X1)2

= E[X2J - (EIX1)2

- E[X2] - p2 (7.24)

The positive square root of the population variance is called the population standa,-d
deviation:

(7.25)

The sample variance is defined as the arithmetic average of the square of the deviations
of x, from the population mean p:

(x1 -

- n
(7.26)

However, since p is not usually known, I is used as an estimate of ji, and the sample variance
is calculated from

E(x, _i)2

(7.27)n-i

The expected value of a constant is that constant The expected value of X isa constant: therefore. E[E[X]] = L[XI

7.2 Review of Statistical Terminology Used in Regression Analysis 459

where the degrees of freedom have been reduced to (a - 1), because the calculation of the
sample mean consumes one degree of freedom. The sample variance obtained from Eq. (7.27)
is an unbiased estimate of population variance, that is,

E[s21 — (7.28)

The positive square root of the sample variance is called the sample standard deviation:

(7.29)

In MATLAB, the built-in function std(x) calculates the standard deviation of the vector
x [Eq. (7.29)]. If x is a matrix, .sid(x) returns a vector of standard deviations of each column.

The covariance of two random variables X and Y is defined as the expected value of the
product of the deviations of X and Y from their expected values:

Cov[X,Y] — E[(X — E[X])(Y - E[Y])] (7.30)

Eq. (7.30) expands to

Cov]X,Y] YE[X] -XE]Yj

E[X]E[Y] (7.31)

The covariance is a measurement of the association between the two variables. If large
positive deviations of X are associated with large positive deviations of V. and likewise large
negative deviations of the two variables occur together, then the covariance will be positive.
Furthermore, if positive deviations of X are associated with negative deviations of V. and vice
versa, then the covariance will he negative. On the other hand, if positive and negative
deviations of X occur equally frequently with positive and negative deviations of Y, then the
covariance will tend to zero.

In MATLAB, the built-in function cov(x, y) calculates the covariance of the vectors of
the same length x andy [Eq. (7.30)]. If x is a matrix where each row is an observation and
each column a variable, cov(x) returns the covariance matrix.

The variance of X, defined earlier in Eq. (7.20), is a special case of the covariance of the
random variable with itself:

Cov[X,Xj = E[(X - ELXI)(X - E[X])]

E[(X - E[X])2] = V[X] (7.32)

The magnitude of the covariance depends on the magnitude and units of X and Y and

could conceivably range from to To make the measurement of covariance more
manageable, the two dimensionless standardized variables are formed:

460 Linear and Nonlinear Regression Analysis Chapter 7

X - E[X} and V - E[Y]

The covariance of the standardized variables is known as the correlation coefficient:

X-E[X1 V—ElY!
= Cot' , (7.33)

Using the definition of covariance reduces the correlation coefficient to

- CovlX,Yl
Pxy - (7.34)

Vvixivyi
If = 0, we say that X and V are uncorrelated, and this implies that

CovlX, Yj - 0 (7.35)

We know from probability theory that if X and Y are independent variables, then

p(x,y} = pjx)pjy) (7.36)

from which it follows that

E[XY] - E[XIE[Y] (7.37)

Combining Eqs. (7.37) and (7.31) shows that

Cov[X,Y] = 0 (7.38)

and from Eq. (7.34)

- 0 (7.39)

Thus independent variables are uncorrelated.
In MATLAB, the built-in function corrcoef(x,y) calculates the matnx of the correlation

coefficients of the vectors of the same lengthx andy [Eq. (7.34)]. If x is a matrix where each
row is an observation and each column a variable, corrcoef(x) also returns the correlation
coefficients matrix.

The population and sample statistics discussed above are summarized in Table 7.1.

T
ab

le
 7

.1
 S

um
m

ar
y

of
 p

op
ul

at
io

n
an

d
sa

m
pl

e
st

at
is

tic
s

P
op

ul
at

io
n

S
ta

tis
tic

s
C

on
tin

uo
us

 v
ar

ia
bl

e
D

is
cr

et
e

va
ria

bl
e

S
am

pl
e

M
ea

n
=

E
{X

1
E

x1
p(

x,
)

E
[X

]
f x

p(
x)

dx

V
ar

ia
nc

e
V

[X
1

=
E

I(
X

-
E

IX
})

]
=

V
[X

J
E

[(
X

 -
E

[X
J)

21
=

(x
1

-

or

=
J(

x
-

p)
2p

(x
)d

x
=

(x
-

(x
1

n—
I1

j

S
ta

nd
ar

d
de

vi
at

io
n

C
ov

ar
in

nc
e

C
ov

[X
,Y

J
=

E
J(

X
-

E
[X

J)
(Y

-
E

[Y
])

j

C
ov

[X
,Y

J
C

or
re

la
tio

n
=

co
ef

fic
ie

nt

462 Linear and Nonlinear Regression Analysis Chapter 7

7.2.2 Probability Density Functions and Probability Distributions

There are many different probability density functions encountered in statistical analysis. Of
particular interest to regression analysis are the normal, and F distributions, which will
be discussed in this section. The normal or Gaussian density function has the form:

2
I Ip(x) = exp -— (7.40)

2 0

where <x c co. The cumulative distribution function of the normal density function is

P(x) 1 Jexp -! x P dx (7.41)
2 0

which involves an integral that does not have an explicit form and must be integrated
numerically (see Chap. 4). The normal probability distributions are illustrated in Fig. 7.4.

The expected value of a variable that has a normal distribution is

E[X] = (7.42)

and the variance is

VEXI = o2 (7.43)

For this reason, the normal density function is usually abbreviated as N(p, and the notation

X iV(p, 02) (7.44)

means that the variable X has normal distribution with expected value p and variance o2.
A normal density function can he transformed to the standard normal density function

by the substitution
x -M

U = (7.45)
0

which transforms Eq. (7.40) to

= (7A6)

The expected value of the standardized variable u is

E[u] = 0 (7.47)

and the variance is

Viul = 1 (7.48)

11

U — I

= fexP[-_jdu

Figure 7.4 (a) Normal probability density function and (b) normal cumulative distribution
function for a continuous random variable.

7.2 Review of Statistical Terminology Used in Regression Analysis 463

Therefore

ii N(0, 1) (7.49)

The standard normal density function and its cumulative distribution function

(7.50)

are shown in Fig. 7.5.

The function 4(u) is symmetrical about zero; therefore, the area in the left tail, below -ii,
is equal to the area in the right tail, above +u (shaded area in Fig. 7.5). The unshaded area
between - 1.960 and 1 .960 is equivalent to 95 percent of the total area under the density
function. This area is designated as (1 - a) and the area under each tail as a/2. Application
of Eqs. (7.12)-(7.14) shows that

(a)

p(x)

10

P (x)

x

(b)

x

464 Linear and Nonlinear Regression Analysis Chapter 7

Pr(u � -1.960) = = 0.025

Pr(-1.960 cc u � 1.960} = 1 - a = 0.95 (7.51)

Pr{u> 1.960} =! = 0.025

If a set of normally distributed variables X1, where

2
Xk — NQlk,ok) (7.52)

0 1 2

Figure 7.5 (a) Standardized normal probability density function.
(b) Standardized normal cumulative distribution function.

(a)

is linearly combined to form another variable I', where

V akxk
(7.53)

x

(b)

—2 —1
x

7.2 Review of Statistical Terminology Used in Regression Analysis 465

then Y is also normally distributed, that is,

V , (7.54)

The sample mean [Eq. (7.18)] of a normally distributed population is a linear combination of
normally distributed variables; therefore, the sample mean itself is nommlly distributed:

(7.55)

It follows then, from Eqs. (7.45) and (7.49), that

XP
(7.56)

If we wish to test the hypothesis that a sample. whose mean is could come from a
normal distribution of mean p and known variance n, the procedure is easy, because the
variable (1 - is normally distributed as N(O, 1) and can readily be compared
with tabulated values. However, if is unknown and must be estimated from the
sample variance then Student 's distribution, which is described later in this section, is
needed.

Now consider a sequence X, of identically distributed, independent random variables (not
necessarily normally distributed) whose second-order moment exists. Let

E[Xkj P (7.57)

and

- =
=

(7.58)

for every k. Consider the random variable defined by

-X1 ÷X2 ±... +X (7.59)

where

= np (7.60)

and, by independence of X:

- np)2] no2 (7.61)

Let

- (7.62)

466 Linear and Nonlinear Regression Analysis Chapter 7

then the distribution of Z, approaches the standard normal distribution, that is.

urn P,(z) = f exp dz (7.63)
2

This is the central limit theorem, a proof of which can he found in Sienfeld and Lapidus [5].
This is a very important theorem of statistics, particularly in regression analysis where
experimental data are being analyzed. The experimental error is a composite of many separate
errors whose probability distributions are not necessarily normal distributions. However, as
the number of components contributing to the error increases, the central limit theorem
justifies the assumption of normality of the error.

Suppose we have a set of v independent observations., x1,...,x1 from a normal
distribution N(p, The standardized variables

=
(7.64)

will also be independent and have distribution N(O, 1). The variable x2(v) is defined as the
sum of the squares of u1:

x2(v)
-

2

a2
(7.65)

The r(v) variable has the so-called x2 (chi -square) distribution jitnction, which is given by

= 1

e x2/2(x2yv/2) (7.66)

where x2 0 and

F(v12) - fe 1dx (7.67)

The x2 distribution is a function of the degrees of freedom v, as shown in Fig. 7.6. The
distribution is confined to the positive half of the x2-axis, as the u12 quantities are always
positive.

The expected value of x2 variable is

p = = v (7.68)

7.2 Review of Statistical Terminology Used in Regression Analysis 467

and its variance is

o2 V[x2] = 2v (7.69)

The x2 distribution tends toward the normal distribution N(v, as v becomes large. The x2
distribution is widely used in statistical analysis for testing independence of variables and the
fit of probability distributions to experimental data.

We saw earlier that the sample variance was obtained from Eq. (7.27):

S =
- (7.27)

x2

Figure 7.6 The x2 distribution function.

468 Linear and Nonlinear Regression Analysis Chapter 7

with (ii - 1) degrees of freedom. When I is assumed to be equal to p then

E — 1.1)2

= —

(7.70)

Combining Eqs. (7.65) and (7.70) shows that

- (1? (7.71)

with v = (ii - I) degrees of freedom. This equation will be very useful in Sec. 7.2.3 in
constructing confidence intervals for the population variance.

Let us define a new random variable I. so that

U
(7.72)

where u N(0, I) and x2 is distributed as chi-square with v degrees of freedom. It is assumed
that u and x2 are independent of each other. The variable 1 is called Students t and has the
probability density function

i (V 1)12
1 F[(v + l)/2J rp(t) = I + (7.73)

F(v12)

with v degrees of freedom. The shape of the t density function is shown in Fig. 7.7.
The expected value of the 1 variable is

p, - E[i] - ftP(t)dt 0 for V> 1 (7.74)

and the variance is

2 v
Viti = tp(t)dt — for v>2 (7.75)v-2

The t distribution tends toward the normal distribution as v becomes large.
Conibining Eq. (7.72) with (7.56) and (7.71) gives

x-p
(7.76)

7.2 Review of Statistical Terminology Used in Regression Analysis 469

The quantity on the right-hand side of Eq. (7.76) in independent of a and has a t distribution.
Therefore, the t distribution provides a test of significance for the deviation of a sample mean
from its expected value when the population variance is unknown and must be estimated from
the sample variance.

Finally, we define the ratio

2

xF(v1,v2)
2

(7.77)
x21v2

where x
2 and x22 are two independent random variables of chi-square distribution with v1 and

v7 degrees of freedom, respectively. The variable v7) has the F distribution density
function with v1 and v7 degrees of freedom:

p(t)

—3 —2 —1 0 1 2

Figure 7.7 The Student's tdistribution function.

470 Linear and Nonlinear Regression Analysis Chapter 7

v112
V1 V1

— F 1÷—F
F

- V2

"()
1

(7.78)
r v1/2) 1 1(1 —x) - dx

C)

The F distribution is very useful in the analysis of variance of populations. Consider two
normally distributed independent random samples:

,...,x1

and

I
'

2 2

The first sample which has a sample variance 5)2, is from a population with mean p1 and
variance Q)2• The second sample which has a sample variance .s22 is from a population with
mean and variance 022. Using Eq. (7.71), we see that

= - l)—1- (7.79)

and

= (7.80)
0,

Combining Eq. (7.77) with (7.79) and (7.80) shows that

- 1)
F(n1 — 1,02 — 1) (7.81)

x/(n2 — 1)

with (01 1) and (n, 1) degrees of freedom. Furthermore, if the two populations have the
same variance, that is, if 0)2 = 022, then

F(n1 - 1 -
=

(7.82)

Therefore, the F distribution provides a means of comparing variances, as will he seen in
Sec. 7.2.3.

7.2 Review of Statistical Terminology Used in Regression Analysis 471

7.2.3 Confidence Intervals and Hypothesis Testing

The concept of confidence interval is of considerable importance in regression analysis. A
confidence interval is a range of values defined by an upper and a lower limit, the confidence
limits. This range is constructed in such a way that we can say with certain confidence that
the true value of the statistic being examined lies within this range. The level of confidence
is chosen at 100(1 - a) percent, where a is usually small, say. 0.05 or 0.01. For example, when
a = 0.05, the confidence level is 95 percent. We demonstrate the concept of confidence
interval by first constructing such an interval for the standard normal distribution, extending
the concept to other distributions, and then calculating specific confidence intervals for the
mean and variance.

We saw earlier that the standard normal variable a has a density function [Eq.
(7.46)1 and a cumulative distribution function [Eq. (7.50)] and is distributed with
N(0, I). Applying Eqs. (7.12) and (7.13) to standard normal distribution:

Pr{u
= f (7.83)

Pr{a a1 -a/2} - a/2) = - (7.84)

and

a12

Pr{
0cL12 < a � 0i -a/2 f cf(u) do

a/2
(7.85)

= -cc/2) —

= I-a

The inequality
< a/2 (7.86)

defines the 100(1 - a) precent interval for the variable a. If a = 0.05, then the 95 percent
confidence interval for the standard normal variable is

-1.96 cc a � 1.96 (7.87)

472 Linear and Nonlinear Regression Analysis Chapter 7

Let us now determine a confidence interval for the mean of a normally distributed
population. We saw earlier that the sample mean I of a normally distributed population is
also normally distributed:

(7.55)

and that this can be converted to the standard normal distribution so that

V

Since the quantity [(I - is equivalent to ii, Eq. (7.85) can be written as

i-UtPriu < =1-acz/2 (1-cx/2) (7.88)

or rearranged to

Fr{i - U11 <1 - = I - a (7.89)

The inequality2

I — < I + (7.90)

is the 100(1 - a) percent confidence interval for the population mean. For a = 0.05, the 95
percent confidence interval of the mean of a normally distributed population is

I � <I
+

(7.91)

where I is the sample mean and is the population variance. This simply says that we can
state with 95 percent confidence that the true value of the population mean is in the range
defined by the inequality (7.91).

If the population variance cr2 is not known, it will be estimated from the sample
variance s2. Replacing with s2 in the quantity [(I we obtain the variable

t (7.76)

2 Note that the density distribution of u is symmetrical around u = 0, so that = This substitution has been
made in obtaining (7.90).

Review of Statistical Terminology Used in Regression Analysis 473

which has a Studenfs t distribution with v = (ii - 1) degrees of freedom, as shown in Sec.
7.2.2. The confidence interval in this case is obtained from

-I-a (792)

which rearranges to

Pr{X-ti 1 -a (7.93)

to yield the 100(1 - a) percent confidence interval3

- � <A t1 (7.94)

In Sec. 7.2.2 we showed that the sample variance and the population variance & were
related through the x2 distribution:

(n - l)L (7.71)

with v = (a - I) degrees of freedom. This relation can now he used to construct the confidence
interval for the variance from

< (a — I)— < = 1 — a (7.95)

which gives the 100(1 - a) percent confidence interval for o2 as

- 2 (a I)?sO < (7.96)
Xl a/2

This discussion leads us to the concept of hvpothesi.s testing. This consists of making
an assumption about the distribution function of a random variahle, very often about the
numerical values of the statistical parameters of the distribution function (mean and variance),
and deciding whether those values of the parameters are consistent with our sample of
observations on that random variable.

For example, suppose that a sample of a1 = 10 observations has a sample mean. .f, - 2.0,
and a sample variance, s = 4. Let us make the assumption that this sample came from a
population that has a normal distribution with p 0 and unknown, that is. X N(0,

The density distribution of thc t vai iahle is 5) mnietrieal around r = 0. so that ç. = This substitution has been
made in obtaining (7.94)

474 Linear and Nonlinear Regression Analysis Chapter 7

In order to test this assumption, we formalize it by stating the tin/i hypothesis:

and the alternative hypothesis:

H0: MM00 (7.97)

HA : p = p4 0 (7.98)

We recall from Eq. (7.76) thatthequantity - has atdistribution, and from
Eq. (7.92) that

Pr{ç12 C t = 1 a (7.99)

For 95 percent probability and v = (n1 - I) = 9 degrees of freedom, the above equation is

Pr{-2.045 cc / � 2.045} 0.95 (7.100)

The region defined by Eq. (7.100) is shown in Fig. 7.8 as the region of acceptance. wheras
the regions outside this range are labeled regions Based on the assumption that
the null hypothesis is true, if the statistic calculated from the experimental sample falls outside
the region of acceptance, the null hypothesis is rejected and HA is accepted. Otherwise, H0 is
accepted and HA is rejected. In this example, we calculate

p(t)

= = 2.0 - 0
3.16

N 10

(7.11)1)

I Region of acceptance

Figure 7.8 Hypothesis test for the mean.

—2 045 0 2.045

Region of

rejection

Region of

rejection

7.2 Review of Statistical Terminology Used in Regression Analysis 475

We see that t0 is outside the region of acceptance defined by Eq. (7.100); therefore, we reject
the null hypothesis.

We can generalize this test by saying that if

- > tup) (7.102)

then the null hypothesis that = must be rejected. This is the well-known two-side I lest,
which is used extensively in regression analysis to test the values of regression parameters.

Let us now examine the variance of the sample. We draw a second sample of /1, = 21

observations and find that 2.0 and s22 = 3. We ask the question: "Is the second sample
taken from the same population as the first sample, or from one that has a different variance
than the first?" We state that null hypothesis:

0
H3: = 1 (7.103)

a,

and the altemative hypothesis:

CI

114 : 1 (7.104)

an

We recall from Eq. (7.81) that the ratio (s12/012)/(s22/022) has an F distribution with (v1, v,)
degrees of freedom. From the probability distribution function

Pr{Fai,(vi,v2) <F � .v7)} = 1 a (7.105)

To test the null hypothesis at the 95 percent confidence level, obtain the values of F0075(9, 20)
and F0975(9, 20) for this example from the F distribution tables.4 Therefore, the interval of
acceptance is given by

2 2s Ia
Fr 0.272 < ' � 2.84 0.95 (7.106)

The null hypothesis assumes that a2 = a,, therefore, the inequality becomes

0.272
<

� 2.84 (7.107)

The value of /',a:(V,. i',) is obtained from the relationship: v,. i,) = l!F1 i,)

476 Linear and Nonlinear Regression Analysis Chapter 7

For this example:

4— = — = 1.33 (7.108)

therefore, the null hypothesis can he accepted.
This is the iwo-side F test used in the analysis of variance of regression results to test the

adequacy of a model in fitting the experimental data (see Sec. 7.5).
Hypothesis testing is an involved procedure, which we have briefly introduced here. It

is outside the scope of this chapter to discuss hypothesis testing in more depth. The interested
reader is referred to Bethea [3] and Ostle et al. [4] for further discussion.

7.3 LINEAR REGRESSION ANALYSiS

Most mathematical models in engineering and science are nonlinear in the parameters.
However, for a complete understanding of nonlinear regression methods, it is necessary to
develop first the linear regression case and show how this extends to nonlinear models.

The exact representation of a linear relationship may he shown as

y = a ± (7.109)

where y represents the true value of the dependent variable, x is the true value of the
independent variable, is the slope of the line, and a is the v-intercept of the line. This
deterministic relationship is not useful in this form because it requires knowledge of the true
values of and x. Instead, the linear model is rewritten in terms of the observations of the
values of the variables

Y*=a+13X±u (7.110)

where Y is the vector of observations of the dependent variable, X is the vector of
observations of the independent variable, and u is the vector of disturbance terms. The
purpose of the u term is to characterize the discrepancies that emerge between the true values
and the observed values of the variables. These discrepancies can be attributed mainly to
experimental error. Later in this section, u will be assumed to be a stochastic variable with
some specified probability distribution.

Eq. (7.110) can he extended to include more than one independent variable:

1.7* = 131X1 ± 132X2 ± ... ± IlkXk ± U (7.111)

where X1, X2 Xk are the vectors of observations of k independent variables. To allow for
a y-intercept, the vector X1 can be taken as a vector whose components are all unity; thus,
becomes the parameter specifying the value of the y-intercept.

7.3 Linear Regression Analysis 477

Eq. (7.111) can he condensed to matrix form

17* = I u (7.112)

where (n x 1) vector of observations of the dependent variable
X = (n x k) matrix of observations of the independent variables

= (k x 1) vector of parameters
u = (n x 1) vector of disturbance terms
n = number of observations.

Given a set of ii observations in the Y variable and in each of the k independent variables, the
problem now is to obtain an estimate of the vector.

The basic assumptions made in the derivation of the method for estimating the
parameters are the following:

1. The disturbance terms, represented by the vector ii. are random variables with zero
expectation, that is,

E[uJ - ii = 0 (7.113)

Because the variable it is the sum of errors from several sources. the central limit
theorem implies that the distribution of u tends toward the normal distribution as the
number of factors contributing to u increases.

V[u1] o2

Viz,2] = E[(u2 ft,)2] -

(7.114)

V[u,21 E[(u,, —
=

2. The variance of the distribution of u is constant and independent of X, that is,
In addition, the values of it for each set of observations are independent of one
another, that is,

— E{u1] E[u1] / (7.115)

From assumption I and from Eqs. (7.31) and (7.37), we also conclude that the
covariance of ii is zero:

Cov[u,,u1] = 0 / (7.116)

478 Linear and Nonlinear Regression Analysis Chapter 7

The variance-covariance matrix is defined as

V[u1 Cov[u1 , a2] . . . CovI

Cov[u2,u1] V[u21 ... Cov[u2,u,,I
Var—CovIuI

Cov[u,1 ,u1 I Cov[u,, , . . . V[u,7]

E[(u - E[ul)(u E[u])'] (7.117)

Combining Eqs. (7.113), (7.114), (7.116), and (7.117), we obtain

Var-Cov{u] = E[uu'J

02 0 ... 0

o ... o (7.118)
-cr1

o o ...

In summary, Eq. (7.118) says that each a distribution has the same variance, and that
all distributions are pairwise uncorrelated.

3. The matrix X is a set of fixed numbers. that is, the values of X do not contain error.
4. The rank of the matrix K is equal to A', and k <ii. The first part of this assumption

ensures that k variables are linearly independent. The second part requires that
the number of observations exceeds the number of parameters to be estimated.

This is essential in order to have the necessary degrees of freedom for parameter
estimation.

5. The vector a has a multivariate normal distribution

a = N(O,o21) (7.119)

These assumptions are not overly restrictive. Since the value of a is due to many factors
acting in opposite directions, it should be expected that small values of a occur more
frequently than large values, and that a is a variable with a probability distribution centered
at zero and having a finite variance This is true when the form of Eq. (7.112) is close to
the correct relationship. Because of the many factors involved, the central limit theorem
would further suggest that a has a normal distribution, which gives the parameter estimates
the desirable property of being maximum-likelihood estimates. Later on in the discussion, it
will be shown that the regression method can handle cases where o2 is not constant, and where
a is not independent of X.

7.3 Linear Regression Analysis 479

7.3.1 The Least Squares Method

Let us consider the hypothesized linear model

r = + u (7.112)

Let b denote a k-element vector that is an estimate of the parameter vector We use this
estimate to define a vector of residuals:

€=Y Xb=Y*_Y (7.120)

These residuals are the differences between the experimental observations V and the
calculated values of Y using the estimated vector b. A common way for evaluation of the
unknown vector b is the least squares method, which minimizes the sum of the squared
residuals

= 1€ =
- Xb) - Xb) (7.121)

In order to calculate the vector b, which minimizes we take the partial derivative of
with respect to b and set it equal to zero:

= - Xb) t - Xb?(-X) 0 (7.122)

We simplify this utilizing the matrix-vector identity A'v =y'A:

-2X'(r - Xb) = 0 (7.123)

Eq. (7.123) can be further rearranged to yield

(X7X)b = (7.124)

The above constitute a set of simultaneous linear algebraic equations, called the normal
equations. The matrix (X'X) is a (k x k) symmetric matrix. Assumption 4 made earlier
guarantees that (X'X) is nonsingular; therefore, its inverse exists. Thus, the normal equations
can be solved for the vector b:

b = (XX) (7.125)

The values of the elements ofvectorb can be obtained readily from Eq. (7.125), because the
right-hand side of this equation contains the matrix of observations of the independent
variables X and the vector of observations of the dependent variable V. all of which are
known.

480 Linear and Nonlinear Regression Analysis Chapter 7

Polynomial regression may be considered as a special case of linear regression. In such
a case the relationship between independent and dependent variables is expressed by the
following (k - I) degree polynomial:

y - + b2x + h3x2 + ... (7.126)

We may considerx°, x', x ,...,t1 as independent variables X1 to Xk and construct the matrix
X for the polynomial regression as

2 A-I
I x1 x1

2 k-I
I x2 . . .- -

- (7.127)

1

The vector of coefficients of the polynomial (7.126) is then calculated from Eq. (7.125).
In MATLAB, the function polyf ii does the polynomial regression. The statement

polvflt(X, Y, N) evaluates the coefficients of the Nth order polynomial fitted to the data points
given in the vectors X (independent variable) and Y (dependent variable). Note that polyfit
returns the coefficients in the descending order, which is the opposite of what is shown in Eq.
(7.126).

7.3.2 Properties of the Estimated Vector of Parameters

The vector b is an estimate of which minimizes the sum of the squared residuals,
irrespective of any distribution properties of the residuals. In addition, b is an unbiased
estimate of To show this, we combine Eqs. (7.125) and (7.112):

b = + u)

= (X'X)'(X'X)13 (X'X) X'u (7.128)

- + (X'X) ru
and take the expected value of b:

E[b] = E[13] + (7.129)

but because E[u] = 0 (assumption 1) and is constant, then

E[b] = (7.130)

that is, the expected value of b is

7.3 Linear Regression Analysis 481

Furthermore, the variance of b can he obtained as follows. Rearranging Eq. (7.128):

— = (7.131)

and utilizing Eq. (7.130), we obtain

b E[bj = (7.132)

From the definition of the variance-covariance matrix I Eq. (7.117)]:

Var—Cov[b} = E[(b — EjbJ)(b E[b])'] (7.133)

Using Eq. (7.132) in Eq. (7.133)!

Var-Cov[b] E[(X'X)

= (7.134)

but from Eq. (7.118) E[uu'] = 02J; therefore the variance-covariance of b simplifies to

Var-Cov[b] (7.135)

where is the variance of ii, as defined by Eq. (7.114).
The elements of the matrix are designated as a,3. Therefore, the variance of b, is

given by

- (7.136)

and the covariance of b, with b3 by

- a2 a11 (7.137)

Therefore, if the variance of u is known, or can be estimated, then the variance-covariance of
the estimated parameter vector b can be calculated.

It can be seen from Eq. (7.134) that the variance-covariance matrix of b can still be
calculated even if assumption 2 is not made. In that case, the matrix EIuu'] would not be a
diagonal matrix.

We can now draw an important conclusion regarding the distribution of b. Eq. (7.128)
shows that b is a linear combination of u. If u is a multivariate normal distribution
(assumption 5, Sec. 7.3), then b is also a multivariate normal distribution, that is,

b — (7.138)

Note that(X'X) isa symmetric matrix, therefore, its (XX) 'is also symmetric The transpose of a symmetric
matrix is the same as the original matrix

482 Linear and Nonlinear Regression Analysis Chapter 7

For each individual parameter:

N((7.139)

where is the /th element on the principal diagonal of (X'X)* The normal distribution can
be converted to the standard normal distribution

- N(0, 1)
(7.140)

The variance of the distribution term is not usually known unless a large number of
repetitive experiments have been performed. The value of Q2 can he estimated from

- c/c (7.141)a - k

where c'c is the sum of squared residuals [see Eq. (7.121)], and (ii k) is the number of
degree of freedom. If there is no lack of fit of the mode] to the data (see analysis of variances,
Sec. 7.5), then s2 is an unbiased estimate of that is,

E[s2] = (7.142)

If lack of fit cannot be tested, using as an estimate of rn implies an assumption that the
model is correct.

We saw earlier that the ratio of s2/o2 has a chi-square distribution:

2 S
= (7.71)

and that the t variable is given by

- u - N(0,l)

-
(7.72a)

We can, therefore, combine Eqs. (7.140), (7.71), and (7.72a) to form the t variable

- b1 - p1
= = - t(n -k) (7.143)

Eq. (7.143) shows that the quantity [(b1 - 1 has a tdistribution with (n k) degrees
of freedom. This is a very important equation, because it enables us to construct confidence

7.3 Linear Regression Analysis 483

intervals of the parameters from quantities that can he calculated from the regression analysis.
For example, the 100(1 — a) percent confidence interval for parameter ft can he obtained from

- ftPr ta/2 < � = 1 - a (7.144)

which yields the interval

— t1 � ft c b1 t0 (7.145)

The above are individual parameter confidence intervals. Fig. 7.9a demonstrates these
intervals for and ft, in a two-parameter model.

Furthermore, Eq. (7.143) enables us to perform the t test for hypothetical values of (see
Sec. 7.2.3). Forcxample, if itis suspcctcd that the value ofl3 is not significantly different than
zero. then null hypothesis can he stated as

0 (7.146)

and the alternative hypothesis as

HA : ft 0 (7.147)

When Eq. (7.146) is substituted in Eq. (7.143), the resulting expression

= (7.148)

is calculated. If this value of t lies within the region of acceptance given by the distribution
for a two-sided test at the required confidence level, then the null hypothesis that ft = 0 is
accepted. This is a very useful test in deciding the significance of a parameter in a model and
in helping the experimenter discriminate between competing models.

in most mathematical models, the covariance between parameters, as measured by Eq.
(7.137), is nonzero, that is. the parameters are correlated with each other. Careful
experimental design may reduce, but never completely eliminate, this correlation. The
individual confidence intervals calculated by Eq. (7.145) do not reflect the covariance. To do
so, it is necessary to construct the joint confidence region of parameters. Using the
multivariate normal distribution of b [Eq. (7.138)1, we form the standardized normal variable:

t'/(0,J) (7.149)

484 Linear and Nonlinear Regression Analysis Chapter 7

We recall that the chi-square variahle is the sum of the squares of standardized normal
variables [Eq. (7.65)]; therefore we can form the x variable from (7.149):

= (h [3) (X'X)(b
(7.150)

with k degrees of freedom. We can also form another chi-square variable from the ratio of s
and [see Eq. (7.71)]:

(a k)L (7.151)

From Eq. (7.77) we recall that

v
F(v1,v2)

I (7.77)

Therefore, combining Eqs. (7.150), (7.151), and (7.77) we obtain

F(k,n - k) [(b [3)'(X'X)(b [3)}/ko2 (b [3)'(X'X)(b -
(7.152)

[(a - k)c2]/[(n - k)o] ks2

Finally, the joint 100(1 - a) percent confidence region for all the parameters can be obtained
from

[3)'(X'X)(b - F k) = 1 - a (7.153)
kc

where a k) is the (1 a) point of the F distribution with k and (n — k) degrees of
freedom. The inequality in (7.153) defines a hyperellipsoidal region in the k-dimensional
parameter space. For a two-parameter model, this joint confidence region is shown in Fig.
7.9b as an elongated tilted ellipse.

In the rare case where the parameters are uncorrelated. the matrix (XX)' is diagonal.
the axes of the confidence ellipsoid would be parallel to the coordinates of the parameter
space, and the individual parameter confidence intervals would hold for each parameter
independently. However, since the parameters are usually correlated, the extent of the
correlation can he measured from the correlation coefficient inatitv, R. This is obtained by
applying Eq. (7.34) to the matrix (7.135):

Cor[b, ,-

V

Figure 7.9 Confidence intervals for parameters.
(a) Individual confidence intervals.
(b) Joint confidence region.

1.0 0.98

0.98 1.0

-0.56 0.85

0.92 -0.97

7.3 Linear Regression Analysis 485

(a)

b2+t1siä; L

b2 ------- (b1,b2)

P2

b-t sir b b+t siU
I 1 I l-a/2 11

(b)

Matrix R is a (k x k) symmetric matrix, and its elements r11 have all their values in the range
1.0.

A typical correlation coefficient matrix may look like this:

-0.56 0.92

0.85 -0.97

1.0 0.35

0.35 1.0

(7.155)

A negative correlation between two parameters implies that the errors that cause the estimate
of one to be high also cause the estimate of the other to be low. The higher the correlation
between two parameters, the closer the value of lr,) is to 1.0. Consequently, the diagonal
elements r11, which measure the correlation of each parameter with itself, are equal to +1.0.

486 Linear and Nonlinear Regression Analysis Chapter 7

The correlation between parameters causes the axes of the confidence ellipsoids of the
linear model to be at an angle to the coordinates of the parameter space. Therefore, the
individual paramctcr confidence limits will not represent the true interval within which a
parameter b1 may lie and still remain within the confidence ellipsoid.

In nonlinear models, the confidence hyperspace is no longer a hyperellipsoid. The
amount of distortion depends on the extent of the nonlinearity of the model. Therefore, the
calculation of the confidence intervals is not as rigorous an exercise as in the linear model.
Still, a lot of valuable information can be extracted from the correlation coefficient matrix that
approximates the maximum-likelihood hyperspace in the vicinity of the solution where the
model is nearly linear. If the absolute values of the off-diagonal elements of R are close to 1.0,
the parameters associated with those elements are highly correlated with each other. Davies
[61 tests the values of against a normal distribution with zero mean, that is, no correlation.
He classifies the correlation as "significant" and "highly significant" if the value of r7 is higher
than the 0.05 and 0.Oi significance points of the normal distribution, respectively. High
correlation between parameters implies that it is very difficult to obtain separate estimates of
these parameters with the available data.

The eigenvectors w of the matrix R give the direction of the major and minor axes of the
hyperellipsoidal confidence region of the parameter space. The length of the axes are
proportional to the square root of the eigenvalues A of the matrix. Box 171 calculated the
values of the parameters at the ends of the axes by

h. ± w +{A (s2a+)kF (k n (7156)ii (1—cc)

where r=l,2 k

k = number of parameters
n = number of points used in estimating b1

it k) = value of the F distribution with k and (ii k) degrees of freedom.

Subsequently, he uses these parameter values to calculate the sum of squares at each end of
the axes and to compare them with the sum of squares at the center of the hyperellipsoid. This
sum-of-squares search, which is based on a linear model, may give vital information for
nonlinear models as well. In the case where the solution has only converged on a local
minimum sum of squares, it is very likely that the search in the direction of one of the axes
will produce a lower sum of squares. In such a case, the regression must be repeated, starting
from a different initial position, so that the local minimum may he bypassed.

7.4 NONLINEAR REGRESSiON ANALYSIS

We have stated this earlier in the chapter, and we state it again: The mathematical models
encountered in engineering and science are often nonlinear in their parameters. Consider, for
example. the analysis of a chemical reaction such as

7.4 Nonlinear Regression Analysis

k1 k2

A

487

C+A E÷F

where the rate of formation of each component may be written as

d

dt

Li C8

dt

= -

= - k2C8

k,C11

Figure 7.10 Simulated data for batch reactor experiment.

(7.157)

d

dt

Time (t)

488 Linear and Nonlinear Regression Analysis Chapter 7

This is only one possible formulation of the reaction mechanism. It contains five
unknown parameters, k1, k2, k3, n, and m, which must be calculated by fitting the model to
experimental data. Suppose that experiments for this chemical system are carried out in a
batch reactor and data of the form shown in Fig. 7.10 are collected. Because experimental data
are available for all four dependent variables, CA, C11, and CE, multiple nonlinear regression
can be performed by simultaneously fitting all four equations of (7.157) to the data.

A model consisting of differential equations, such as Eq. (7.157), may be shown in the
form:

dY -g(x,Y,b) (7.158)
dx

where dY/dx = vector of derivatives of Y
g = vector of functions
x = independent variable
Y = vector of dependent variables
b = vector of parameters.

We assume that if the boundary conditions are given and if the vector b can be estimated, then
the differential equations (7.158) can be integrated numerically or analytically to give the
integrated results, which are

V =f(x,b) (7.159)

For the simple case where the model consists of only one dependent variable, the sum
of squared residuals is given by

= = (}7* - y)/(y* - Y) (7.160)

where Vt = vector of experimental observations of the dependent variable
V = vector of calculated values of the dependent variables obtained from

Eq. (7.159).

There are several techniques for minimization of the sum of squared residuals described
by Eq. (7.160). We review some of these methods in this section. The methods developed in
this section will enable us to fit models consisting of multiple dependent variables, such as the
one described earlier, to multiresponse experimental data, in order to obtain the values of the
parameters of the model that minimize the overall (weighted) sum of squared residuals. In
addition, a thorough statistical analysis of the regression results will enable us to

1. Decide whether the model gives satisfactory fit within the experimental error of the
data.

2. Discriminate between competing models.

7.4 Nonlinear Regression Analysis 489

3. Measure the accuracy of the estimation of the parameters by constructing the
confidence region in the parameter space.

4. Measure the correlation between parameters by examining the correlation coefficient
matrix.

5. Perform tests to verify that repeated experimental data come from the same
population of experiments.

6. Perform tests to verify whether the residuals between the data and the model are
randomly distributed.

MATLAB does the single nonlinear regression calculation by applying the function
curvejit. which comes with the Optimization TOOLBOX of MATLAB. The statement
b = curv4It(lfile_name', b9, x, y) starts the regression calculations at the vector of initial
guesses of the parameters b0 and uses the least squares technique to find the vector
of parameters b that best fit the nonlinear expression, introduced in the MATLAB
function Jule_name.m, to the data y. Inputs to the function file_name should he the vector
of parameters b and the vector of independent variable x. The function filename should
return the vector of dependent variabley. The default algorithm is Marquardt (see Sec. 7.4.4).
A Gauss-Newton method (see Sec. 7.4.2) may be selected via the options input to the function.

7.4.1 The Method of Steepest Descent

A simple method, which has been used to arrive at the minimum sum of squares of a nonlinear
model, is that of steepest descent. We know that the gradient of a scalar function is a vector
that gives the direction of the greatest increase of the function at any point. In the steepest
descent method, we take advantage of this property by moving in the opposite direction to
reach a lower function value. Therefore, in this method, the initial vector parameter
estimates is corrected in the direction of the negative gradient of

= -K((7.161)

Where K is a suitable constant factor and is the correction vector to be applied to the
estimated value of b to obtain a new estimate of the parameter vector:

— + (7.162)

where in is the iteration counter. Combining Eqs. (7.160) and (7.161) results in

- 2KJ/(Y* Y) (7.163)

where J is the Jacobian matrix of partial derivatives of Y with respect to b evaluated at all ii
points where experimental observations are available:

490 Linear and Nonlinear Regression Analysis Chapter 7

db1 •

(7.164)

dY,

8b1

The steepest descent method has the advantage that guarantees moving toward the
minimum sum of squares without diverging, provided that the value of K, which determines
the step size, is small enough. The value of K may he a constant throughout the calculations,
changed arbitrarily at each calculation step, or obtained from optimization of the step size [81.
However, the rate of convergence to the minimum decreases as the search approaches this
minimum, and the method loses its attractiveness because of this shortcoming.

7.4.2 The Gauss-Newton Method

Once again, we restate that in the least squares method, our ohjective is to find the vector of
parameters b such that it minimizes the sum of squared residuals Thus, the vector b may
be found by taking the partial derivative of with respect to b and setting it to zero:

..

= (7.165)

Because Y is nonlinear with respect to the parameters, Eq. (7.165) will yield a nonlinear
equation that would be difficult to solve for b. This problem was alleviated by Gauss, who
determined that fitting nonlinear functions by least squares can be achieved by an iterative
method involving a series of linear approximations. At each stage of the iteration, linear
squares theory can be used to obtain the next approximation.

This method, known as the Gauss-Newton method, converts the nonlinear problem into
a linear one by approximating the function Y by a Taylor series expansion around an estimated
value of the parameter vector b:

Y(x,b) = Y (7.166)

where the Taylor series has been truncated after the second term. Eq. (7.166) is linear in zXb.
Therefore, the problem has been transformed from finding b to that of finding the correction
to b, that is, Ab, which must he added to an estimate of b to minimize the sum of squared
residuals. To do this we replace Yin Eq. (7.160) with the right-hand side of Eq. (7.166) to get

= (Y* - Y - JL\b) - Y - JAb) (7.167)

7.4 Nonlinear Regression Analysis 491

Taking the partial derivative of with respect to setting it equal to zero, and solving for
we obtain

= (J1Jy1J1(r - Y) (7.168)

The Gauss-Newton method applies to hoth the one-variable model and the multiple
regression case (see Sec. 7.4.5). The algorithm of the Gauss-Newton method involves the
following steps:

2. Assume initial guesses for the parameter vector b.
3. If the model is in the form of differential equation(s), then use the vector b and the

boundary condition(s) to integrate the equation(s) to obtain the profile(s) of Y. If the
model is in the form of algebraic equation(s), then simply use the vector b to evaluate
Y from the equation(s).

4. Evaluate the Jacobian matrix J from the equation(s) of the model.
5. Use Eq. (7.168) to obtain the correction vector z\b.
6. Evaluate the new estimate of the parameter vector from Eq. (7.162):

+ (7.162)

7. It is also possible to apply the relaxation factor in order to prevent the calculation
from diverging (see Sec. 1.8).

8. Repeat steps 2-5 until either (or both) of the following conditions are satisfied:
a. does not change appreciably.
b. Ab becomes very small.

The Gauss-Newton method is based on the linearization of a nonlinear model; therefore,
this method is expected to work well if the model is not highly nonlinear, or if the initial
estimate of the parameter vector is near the minimum sum squares. The contours of constant
1 in the parameter space of a linear model are ellipsoids (Fig. 7.11 a). For a nonlinear model.
these contours are distorted (Fig. 7.1 lb), but in the vicinity of the minimum the contours
are very nearly elliptical. Therefore, the Gauss-Newton method is quite effective if the initial
starting point for the search is in the nearly elliptical region. On the other hand, this method
may diverge if the starting point is in the highly distorted region of the parameter hyperspace.

7.4.3 Newton's Method

Eq. (7.165) represents a set of nonlinear equations; therefore. Newton's method may he
applied to solve this set of nonlinear equations. First, let us expand 't' by Taylor series up to
the third term:

492 Linear and Nonlinear Regression Analysis Chapter 7

(
= +

k Sb)
+

2

Taking the partial derivative of both sides of Eq. (7169) with respect to b gives

— zXb
Sb Sb2

a2

Sb Sb2Sb[

a b, Sb1

SbkShj ShkSh, Sb?

Sb Shk

52ct

SI)2Sbk

Figure 7.11 Contours for constant sum of squares in parameter space. (a) Linear
model. (b) Nonlinear model.

(7.169)

(7.170)

The first derivative of with respect to b can be calculated by differentiating Eq. (7.160):

(in)

= -2J'(r - 1') (7.171)
Sb

and the second derivative of with respect to b is called the Hessian matrix of the second-
order partial derivatives of with respect to b evaluated at all a points where experimental
observations are available:

1-I = (7.172)

(b)(a)

b2

(I)

b1

7.4 Nonlinear Regression Analysis 493

By applying the necessary condition of having a local minimum of Eq. (7.165). into
Eq. (7.170) and combining with Eqs. (7.171) and (7.172). we can evaluate the correction
vector zTh:

2H Y) (7.173)

It is interesting to note that in the case of single parameter regression, Eq. (7.165) becomes

0
(ii,

and Eq. (7.173) simplifies to

Ah -

which is the Newton-Raphson solution of the nonlinear equation = 0.

The calculation procedure for Newton's method is almost the same as that of
Gauss-Newton method with the exception that the vector of corrections to the parameters
is calculated trom Eq. (7.173). If is quadratic with respect to b (that is, linear regression),
Newton's method converges in only one step. Like all other methods applying Newton's
technique for the solution of the set of nonlinear equations, a relaxation factor may he used
along with Eq. (7. 173) when correcting the parameters.

7.4.4 The Marquardt Method6

Marquardt [91 has developed an interpolation technique een the Gauss-Newton and the
steepest descent methods. This interpolation is achieved by adding the diagonal matrix (Al)
to the matrix (Jj) in Eq. (7.168):

zXb - (J1J + AIy'J(r - 1') (7.174)

The wduc of A is chosen, at each iteration, so that the corrected parameter vector will result
in a lower sum of squares in the following iteration. lt can be easily seen that the value
of A is small in comparison with the elements of matrix (J'J). the Marquardt method
approaches the Gauss-Newton method: when A is very large, this method is identical to
steepest descent, with the exception of a scale factor that does not affect the direction of the
parameter correction \ ector but that gis es a small step size.

According to Marquardt. it is desired to minimize in the maximum neighborhood over
which the linearized function will give adequate representation of the nonlinear function.

Also known as the method

494 Linear and Nonlinear Regression Analysis Chapter 7

Therefore, the method for choosing A must give small values of A when the Gauss-Newton
method would converge efficiently and large values of A when the steepest descent method
is necessary.

The Marquardt method may likewise be applied to Newton's method. In this case, the
diagonal matrix Al is added to the Hessian matrix in Eq. (7.173):

= 2(H + Al) Y) (7.175)

The Marquardt method consists of the following steps:

1. Assume initial guesses for the parameter vector b.
2. Assign a large value, say 1000, to A. This means that in the first iteration the steepest

descent method is predominant and would assure that the method is moving toward
the lower sum of squared residuals.

3. Evaluate the Jacobian matrix J from the equation(s) of the model. Also evaluate the
Hessian matrix H if using Newton's method.

4. Use either Eq. (7.174) or Eq. (7.175) to obtain the correction vector LIb.
5. Evaluate the new estimate of the paramctcr vcctor from Eq. (7.162).

= + (7.162)

6. Calculate the new value of If reduce the value of A, by a factor
of 4, for cxample. If keep the old parameters = and increase
the value of A, by a factor of 2, for example.

7. Repcat stcps 3-6 until either (or both) of the following conditions are satisfied:
a. does not change appreciably.
b. becomes very small.

7.4.5 Multiple Nonlinear Regression

In the previous four sections, the sum of squared residuals that was minimized was that given
by Eq. (7.160). This was the sum of squared residuals determined from fitting one equation
to measurements of one variable. However, most mathcmatical models may involve
simultaneous equations in multiple dependent variables. For such a case, when more than one
equation is fitted to multircsponse data, where there are v dependent variables in the model,
the weighted sum qf squared residuals is given by

= w141

= E w1(Y - Y1) '(Y; - Y1) (7.176)

7.4 Nonlinear Regression Analysis 495

where a', = weighting factor corresponding to the jth dependent variable
= sum of sqtiared residuals corresponding to the,/th dependent variable.

To minimize by the Gauss-Newton method, we first linearize the models using Eq. (7.166)
and combine with Eq. (7.176) to obtain

w(Y - V1 J1Ab) '(V - - JAb) (7.177)

Taking the partial derivative of with respect to setting it equal to zero. and solving for
we obtain

it(j. "H v - vi) (7 178)

Eq. (7.178) gives the correction of the parameter vector when fitting multiple dependent
variables simultaneously. Eq. (7.178) becomes identical to Eq. (7.168) when v = I, that is.
when only one dependent variable is fitted. When using the Marquardt method. the correction
of the parameter vector is calculated from

Ab u(j1 n.j. '(Y7 (7.179)

The weighting factors are determined as follows: The basic assumption in the
derivation of the regression algorithm that the variance rn of the distribution of the error
in the measurements was constant throughout the profile of a single dependent variable.
However, in the case of multiple regression, it is "cry unlikely that the ariance of all the
curves will he the same. Therefore, in order to form an unbiased weighted sum of squared
residuals, the individual sum of squares must be multiplied by a weighting factor that is
proportional to 1/u,'. The equation for evaluating the 'Aeighting factors is given by

1/02
a'1 (7.180)

1 1

where a,' or = variance for each curse
= number of experimental points available for each curve

= number of variables being fitted.

496 Linear and Nonlinear Regression Analysis Chapter 7

The denominator of Eq. (7.180) accounts for the possibility that each curve may have a
different number of experimental points a and weighs that accordingly. If the assumption that

is constant within one curve does not hold, then Eq. (7.180) can he extended so that
weighting factor can he calculated at each point with the appropriate value of o/.

ln most cases, the values of O[would not he known; however, the estimates of these
variances Sf2 can be obtained from repeated experiments, and the values of .s1 are then used in
Eq. (7.180) to calculate the weighting factors. Tn the worst case, where no repeated
experiments are made and no a priori knowledge of o is available, then the values of must
he guessed. Otherwise, the nonlinear regression algorithm would introduce a bias toward
fitting more satisfactorily the curve with the highest and partially ignoring the curves with
low

The nonlinear regression can also be extended to fit multiple experimental values of the
dependent variable at each value of the independent variable. This can he done by changing
Eq. (7.176) so that the squared residuals are also summed up within each group of points.
Finally, if the value of the variance of the error is proportional to the value of the dependent
variable, the residual in the sum-of-squares calculation must be divided by the theoretical
(calculated) value of the dependent variable at each point in the calculation.

7.5 ANALYSIS OF VARIANCE AND OTHER STATISTiCAL TESTS

OF THE REGRESSION RESULTS

The t test on parameters, described in Sec. 7.3.2, is useful in establishing whether a model
contains an insignificant parameter. This information can be used to make small adjustments
to models and thus discriminate between models that vary from each other by one or two
parameters. This test, however, does not give a criterion for testing the adequacy of this
model. The residual sum of squares, calculated by Eq. (7.160), contains two components.
One is due to the scatter in the experimental data and the other is due to the lack of fit of the
model. In order to test the adequacy of the fit of a model, the sum of squares must he
partitioned into its components. This procedure is called analysis of variance, which is
summarized in Table 7.2. To maintain generality, we examine a set of nonlinear data and
assume the availability of multiple values of the dependent variable vd at each point of the
independent variable x1 (see Fig. 7.12).

In Table 7.2, p is the number of points of the independent variable at which there are
experimental (observed) values of the dependent variable, a1 are the numbers of repeated
experiments available at each point of the independent variable, is the mean value of each
group of repeated experiments, are the calculated values of the dependent variable, v if are

7.5 Analysis of Variance and Other Statistical Tests of the Regression Results 497

the experimental values of the dependent variable, and k is the number of parameters being
estimated. It should be realized that the total sum of squares shown in Table 7.2:

Total SS = (v1 — (7.181)

is merely a generalization of Eq. (7.160) to apply to both linear and nonlinear models and an
extension of that relationship to account for the presence of repeated experimental data.

The ratio of the variances s12/s22 has an F distribution with v1 and v, degrees of freedom.
This ratio must be tested against the F statistic in order to test the hypothesis that the
experimental points are adequately represented by the predicted line. For a good fit, this ratio
should be small, that is, to accept the hypothesis the following must be true:

<F1 a(Vi v1) (7.182)

This would mean that the component of the variance due to the lack of fit is small when
compared with the variance of the of the experimental error. In that case, the model
adequately represents the data. It is obvious that if the experimental data have a large scatter,
then s22 is high, and the requirements on the model are less stringent. Stating this more simply,
almost anything can be fitted through very noisy or sloppy data, hut the value of such a model
would he marginal.

If more than one model is found to satisfy the above test, the choice of the best one can
be facilitated by performing an F test between the values s1 of pairs of models. If the fit of
any one of these models is significantly better than that of the others, it will be discovered by
this test.

Table 7.2 Analysis of variance

Source of variance Sum of squares Deg rees of freedom Variance

Lack of fit - v1 = p - k

Experimental error

Total

E v2

= [
/li] -p s22

EE -v)2 v

=

-k

498 Linear and Nonlinear Regression Analysis Chapter 7

Furthermore, the F test may he used to determine if an experiment whose results deviate
from those of other experiments performed under identical conditions should be grouped
together with the other ones. To do this, the model is first fitted to each experiment separately.
The individual sum of squares from each regression are pooled together as follows:

2 (individual sum of squares)
Spooled (7.183)L (degrees of freedom)

Then the model is fitted to the grouped set of experiments to find the variance Finally,
an F test is performed hetween the pooled and grouped variances. If the inequality

wiped <F1 a (7.184)

is not satisfied, it means that the model fits the experiments better individually than when
grouped together.

A final test can be performed to investigate the lack of fit of the model. In the least
squares regression, the assumption is niade that the model being fitted is the correct one, and
that the observations deviate from the model in a random fashion. The residuals between the

a*
*

* * a

* ** a a a

a

a a

a

X, X2 X3 X4 X5

Figure 7.12 Set of nonlinear data where multiple values of the
dependent variable are available from repeated
experiments (p = 6, n1 = 3, n2 = 4, n3 = 2, n4 = 4,

= 2, n5 = 3).

7.5 Analysis of Variance and Other Statistical Tests of the Regression Results 499

observations and the model can he either positive or negative, but if these are tru]y random,
the sign of the residuals should change in a random fashion. The randomness (or lack of fit)
can be detected visually by plotting the residuals - v) versus the independent variable .v and
also versus the dependent variable y. Figs. 7.13-7.16 show several different cases of
distribution of residuals. Fig. 7.13 demonstrates the case where the values of the residuals are
randomly distributed around zero. This seems to be a satisfactory fit that would probably pass
the randomness test (runs test) described later in this section.

On the other hand, Fig. 7.14 shows a definite trend in the value of the residuals from
positive to negative. The model gives a low prediction of v for low values of x and a high
prediction of y for high values of x. A correction to the model to remedy this trend seems to
be warranted. At first sight. Fig. 7.15 may seem to give a case of a well-fitting model, but
careful examination of the residuals shows that there is an oscillation pattern in the distribution
of these residuals around zero. The addition of a term that introduces oscillatory behavior in
the model may considerably improve the fit of the model to the data.

Another ease is demonstrated in Fig. 7.16, which shows that the value of the residuals
grow proportionately to the value of y. In such a case, it would be more appropriate to
normalize the residuals by dividing them by the appropriate value that is:

C - (7.185)

and then minimize the sum of normalized squared residuals:

(7.186)

The randomness of the distribution of the residuals can be quantified, measured, and
tested by the so-called runs test. In this test, the total number of positive residuals is
represented by n1 and that of negative residuals by '12. The number of times the sequence of
residuals changes sign is r, which is called the number of runs. The distribution of r is
approximated by the normal distribution. Brownlee 1101 finds the mean and standard
deviation of this variable to he

— 2n1n2
r =

+ 1 (7.187)
111

— n1 —

0- - - - (7.188)

N
+ n1 — 1)

The standardized form of the variable is

Z
= r

(7.189)

y

y.—y

y.—y

Linear and Nonlinear Regression Analysis Chapter 7

x

Figure 7.13 Analysis of residuals showing a random trend.

*
*

x

*

Figure 7.14 Analysis of residuals showing trend from positive
to negative.

500

*

*

* *
* *

*
*

*
* *

*
* *

*
*

y

y.-y

*
* *

x

y

y —y

y —y

7.5 Analysis of Variance and Other Statistical Tests of the Regression Results 501

*

*

x

* * * *

Figure 7.15 Analysis of residuals showing oscillatory trend.

*
* *

* *
* *

*

*
*

Figure 7.16 Analysis of residuals showing trend of increasing
residuals in proportion to y.

502 Linear and Nonlinear Regression Analysis Chapter 7

which is distributed with zero mean and unit variance. To test the hypothesis that the
deviations are random, Z is compared with the standard normal distribution. A two-sided test
must be performed, because if the value of Z is too low, the model is inadequate; and if Z is
too high, then the data contain oscillations that must be accounted for by the model. On the
other hand, if the value of Z falls in the region of acceptance for this test, then the hypothesis
that the model is the correct one and that the residuals are randomly distributed can he
accepted.

Example 7.1: Nonlinear Regression Using the Marquardt Method. In Prob. 5.5, we
described the kinetics of a fermentation process that manufactures penicillin antibiotics. When
the microorganism Penicilliwn chrysogenwn is grown in a batch fermentor under carefully
controlled conditions, the cells grow in a rate that can he modeled by the logistic law

dv1
= 1 -

di • b,

where y1 is the concentration of the cell expressed as percent dry weight. In addition, the rate
of production of penicillin has been mathematically quantified by the equation

dv,
= —

di

where j, is the concentration of penicillin in units/mL.
The experimental data in Table E7. 1 were obtained from two penicillin fermentation runs

conducted at essentially identical operating conditions. Using the Marquardt method, fit the
above two equations to the experimental data and determine the values of the parameters b.
lx,. b3, and b4, which minimize the weighted sum of squared residuals.

Method of Solution: The Marquardt method using the Gauss-Newton technique,
described in Sec. 7.4.4, and the coneeptof multiple nonlinear regression. covered in See. 7.4.5.
have been combined together to solve this example. Numerical differentiation by forward
finite differences is used to evaluate the Jacobian matrix defined by Eq. (7.164).

The initial conditions of the model equations were chosen to be the average values of the
corresponding experimental data at t = 0; that is, y1(O) = 0.29 and 32(0) = 0.0.

Program Description: Two separate MATLAB functions are written for evaluating the
fitting parameters and performing the statistical tests on the parameters. These functions,
NLR.m and statistics/n, are described below:

NLR.rn: This function evaluates the fitting parameters by the Marquardt method. At the
beginning, the function examines the length of the input arguments and sets the default value,
if necessary. The experimental independent and dependent variables should be introduced to
the function by matrices of the same size (column vectors in the case of single independent

Example

Table E7.1

7.1 Nonlinear Regression Using the Marquardt Metho

Experimental data for penicillin fermentation

d 503

Run No. 1 Run No. 2

Time Cell Penicillin Cell Penicillin
(hours) concentration concentration concentration

(percent dry (units/mL) (percent dry
weight) weight)

concentration
(units/mL)

0 0.40 0 0.18 0

10 0 0.12 0

22 0.99 0.0089 0.48 0.0089

34 0.0732 1 46 0.0062

46 1.95 0.1446 1.56 0.2266

58 0.523 1.73 0.4373

70 2.52 0.6854 1.99 0.6943

1.2566 2.62 1.2459

94 3.09 1.6118 2.88 1.4315

106 1.8243 3.43 2.0402

118 4.06 2.217 337 1.9278

130 2.2758 3.92 2.1848

142 4.48 2.8096 3.96 2.4204

154 2.6846 3.58 2.4615

166 4.25 2.8738 3.58 2.283

178 2.8345 3.34 2.7078

190 4.36 2.8828 3.47 2.6542

variable), each column of which corresponding to a dependent variable. For example, the first
column of X and)' matrices contain the data points of the first variable, the second column
those of the second variable, and so on. It is not important to give the independent value in
order (ascending or descending), but obviously it is important to give matrices of independent
and dependent variables such that each element of the latter corresponds to the same element
of the former. Because there may be different number of experimental data points for each
independent variable, these numbers should be given to the function as a vector. The structure
of matrices x andy and relations between these matrices are illustrated in Fig. E7. I a.

504 Linear and Nonlinear Regression Analysis Chapter 7

The function NLR.m can handle both algebraic and ordinary differential equations as the
model equations. If the model consists of only one type of equation, an empty matrix should
be passed to the function in the place of the file name for the other one. It is important to note
that both functions evaluating algebraic and differential equations return the function or
derivative values as a column vector. The functions should also perform the calculations on
an element-by-element manner; that is, using dotted operators (".*", ".1", and ".") where
necessary. The boundary conditions passed to the function have to be the initial conditions
of the dependent variables.

For multiple regression, the variances are used in Eq. (7.180) to determine the unbiased
weighting factors, w1 which are in turn used in Eq. (7.176) to determine the unbiased weighted
sum of squared residuals. In the case where repeated experimental data are available, the
program searches for repeated experimental points and evaluates the variance of each
dependent variable by dividing the sum of squared differences by the number of degrees of
freedom of each dependent variable (see Table 7.2). The degrees of freedom of each variable

Experimental data
of variable 1

dependent variable(s)

Figure E7.1 a Structure of the matrices x (independent variable)
and y (dependent variables) and their relation. Each column of the matrix
corresponds to a dependent variable. The number of dependent variables
is shown by v, and the number of experimental data points for each
dependent variable is given in the vector n.

Experimental data

Matrix of
independent variable

Matrix of

Example 7.1 Nonlinear Regression Using the Marquardt Method 505

is calculated by the total number of experimental points available for the variable minus the
number of means of groups of repeated data that have been calculated:

degreev of freedooi = E ° —

In the statistical analysis of the lack of lit, the degrees of freedom is (p - k), where k is the
number of parameters associated with that variable. However, in the case where several
dependent variables are fitted, and the same parameter appears in the model equation of more
than one variable, it is not so easy to decide exactly how many parameters correspond to each
variable. For this reason, the NLR.m computer program apportions the parameters equally to
each variable (that is, k/v degrees of freedom are deducted from each curve).

The main iterative procedure consists of two nested loops. The inner loop evaluates the
parameters, whereas weighting factors. evaluated in the outer loop, are assumed constant.
Starting with the initial guess of parameters, the function calculates the sum of squared
residuals from Eq. (7.176). If the model contains ordinary differential equations. the function
first solves the equations by the MATLAB function odc23 and then evaluates by interpolation
the calculated dependent variables corresponding to the vector of the independent variable.
We use this procedure because the input may contain repeated experimental data, hut ode23
can handle only ascending or descending vector of independent variables. The Jacobian
matrix is then determined numerically, followed by evaluating the vector of corrections to the
parameters from Eq. (7.179) for the Marquardt method or its equivalent for the Gauss-Newton
method. If applicable, the value of A is adjusted according to the new sum of squared
residuals, and the iterative procedure continues until

5.
.cc, if

hi I

or

c c,, if = 0

Or

<

When the inner iteration loop is complete, the function reevaluates the weighting factors from
Eq. (7.141) and repeats the above procedure until the increment of all the weighting factors
satisfy the convergence condition

< c

By default, c = 0.001 and = 1 xl 06, and their values may be changed through the 10th
input argument (tol) to the function.

506 Linear and Nonlinear Regression Analysis Chapter 7

statisticsan: This function performs statistical analysis of the data and the regression rcsults
calculated in NLR.m. First, the data are analyzed, and for each set of data the following
statistical information is calculated: total number of points, degrees of freedom, sum of
squares, variance, and standard deviation. Next. statistical analysis of the regression results
is performed. The standard deviations of the parameters are calculated from Eq. (7.136),
where the value of is approximated from Eq. (7.141), and a are the diagonal elements of
the matrix

A [EwA

In order to calculate the 100(1 - a) percent confidence intervals of the parameters, first
the value oft1

- cc/2 is calculated by the Newton-Raphson method. using the following iteration
formula:

f p(x.n-k)dx -

(in + 1) — (in)
+-a12) — nfl) (in)

p(-nfl) ,nk)

where p(t,v) is the Student's t density function defined in Eq. (7.73). The confidence limits
of the parameters then can he evaluated by Eq. (7.145). The Student's t density function is
given in the function stud.ni.

A significance test (t test) is performed, as descrihed in Sec. 7.2.3 [(Eq. (7.102)], on
the parameters to test the null hypothesis that any one of the parameters might be qual to
zero. The 95% confidence intervals of each measured variable are calculated. The
variance-covariance matrix and the matrix of correlation coefficients of the parameters are
calculated according to Eqs. (7.135) and (7. 154), respectively. The analysis of variance of the
regression results is performed as shown in Table 7.2. Finally, the randomness tests are
applied to the residuals to test for the randomness of the distribution of these residuals.

The results of the statistical analysis are stored in an output file so that they may be
viewed and edited by the user.

Exarnple7_I.rn: The main program is written to get all the required inputs from the keyboard,
perform regression analysis, and display the results both numerically and graphically. It is
written in such a general form that it can be used in any other regression calculation as well
as the problem in this example.

Ex7_/Janc.m: The model equations of this problem are given in this MATLAB function.
Note that this function returns values of the derivatives as a column vector.

Example 7.1 Nonlinear Regression Using the Marquardt Method 507

Program

Example7_1.m
% Example7_1.m
% Solution to Example 7.1. This program gets the data
% from the keyboard, and/or from a data file, performs the
% nonlinear regression (using NLR.M) and the statistical
% analysis of the results (using STATISTICS.M). The program
% gives the results of the calculations numerically and
% graphically.

clear
dc
close all
disp(' Nonlinear Regression Analysis'), disp('
fout = input (' Name of output file for storing results = ');if exist(fout)

error(' Output file already exists. Use another name.')
end
% Input experimental data
disp(' ')

disp(' Experimental data input:')
disp(' 1 - Enter data from keyboard (point-by-point)
disp(' 2 - Enter data from keyboard (in vector form)')
disp(' 3 - Read data from data file (prepared earlier)')
datain = input (' Enter your choice : ');

disp(' ')

switch datain
case 1

fdata = input(' Name of file for storing the data = ');if exist ([fdata, ' .mat'])
error(' Data file already exists. Use another name.')

end
v = input(' Number of dependent variables =
for m = l:v

countpoints=O;
fprintf('\n Variable %2d\n',m)
datasets=input(' How many data sets for this variable? =
for nset = l:datasets
fprintf('\n Data set %2d\n' ,nset)
npoints = input(' How many points in this set? = ');
disp(' ')

for np = l:npoints
countpoints=countpoints+l;
fprintf(' Point %2d\n',np)
xm = input (' Enter independent value = ');
ym = input(' Enter dependent value =

x(countpoints,m) =xm;

y(countpoints,m) =ym;
end

508 Linear and Nonlinear Regression Analysis Chapter 7

end
n(m) = countpoints;

end
eval([save ,fdata nxy])

case 2
fdata = input(Name of file for storing the data =
if exist ([fdata, .mat'])

error(Data file already exists. Use another name.)
end
v = input(Number of independent variables =
for m = l:v

fprintf(\n Variable %2d\nm)
xrn = input (Vector of independent variable =
x(l:length(xm),m) =
ym = input(Vector of dependent variable =
y(l:length(ym),m) =
n(m) = length(ym);

end
eval([save ,fdata nxy])

case 3
fname = input(Name of file containing the data =
eval([load fname])
[r,v] = size(y);

end

disp()

namex = input (Name of independent variable = H;
for m = l:v

nam = input([Name of dependent variable int2str(m), =

namey (m, 1 length (nam)) = nam;

end

% Input type of equation(s)
disp(H
disp(Type of equation(s))
disp(1 - Algebraic equation)
disp(2 - Ordinary differential equation)
disp(3 - Both 1 and 2)
eqin = input V Enter your choice
disp(H
switch eqin
case 1 % Algebraic equation

fnctn=input(Name of N-file containing algebraic equation(s)=);
ODEfile = [1; xO = [1; yO =

case 2 % ODE
ODEfile = input(Name of N-file containing differential

equation(s) =

disp(H
xO=input(Value of independent variable at boundary condition=

Example 7.1 Nonlinear Regression Using the Marquardt Method 509

yO=input(Value(s) of dependent variable(s) at boundary condition

fnctn =
otherwise % Algebraic and ODE

fnctn=input(Name of M-file containing algebraic equation(s)=
ODEfile=input(' Name of M-file containing differential equation(s)

disp(')

xO=input(' Value of independent variable at boundary condition=

yO=input(' Value(s) of dependent variable(s) at boundary condition

end
% Input method of solution
disp()

disp(Method of solution)
disp)' 1 - Marquardt)
disp(' 2 - Gauss-Newton)
method = input)' Enter your choice

disp(' ')

bO = input(' Vector of initial guess of fitting parameters =
disp('
trace = input(show results of each iteration (0/i) ?

);

if trace == 0

disp('
disp(' Please wait for final results!)

end

% Regression
{b, yc, w, JTJ] = NLR(bO, n, x, y, fnctn, ODEfile, xO, yO,

method, trace);
if trace == 1

disp(' ')

disp(Please wait for final results!)
end
% Statistical properties
[sd, cl] = statistics(b, n, x, y, yc, w, JTJ, 95, fout);

% Displaying final results
disp('
di (

' *

disp(' Final Results!)
disp('
disp(')

disp(No. Parameter Standard 95% Confidence interval)

disp(' deviation for the parameters
disp(' lower value upper value')
for m = l:length(b)

fprintf(' %2d %l0.4e %l0.4e %lO.4e %l0.4e\n', . .

m,b(m),sd(m),cl(m, :))

510 Linear and Nonlinear Regression Analysis Chapter 7

end
disp(')

disp(**

% Plotting the results
for m = l:v

figure (m)

[xx,loc] = sort(x(l:n(mLmH;
plot(x(l:n(m),m),y(l:n(m),m),o,xx,yc(loc,m))
xlabel (namex)
ylabel(namey(m,:))

end

NOTE: The program NLR.m is not listed here because of its length.
The user is encouraged to examine the program using the MATLAB Editor.

statistics.m

NOTE: The program statistics.m is not listed here because of its
length. The user is encouraged to examine the program using the MATLAB
Editor.

stud.,;z

function p = stud)t, nu)

% Student t distribution
p = l/sqrt(nu*pi) * gamma((nu+l)/2)/gamma(nu/2) *

(1 + + 1)72);

Ex7_fjunc.m
function dy = Ex7_l_func(x,y,flag,b)
% Function Ex7_l_func.M
% Model equations for Example 7.1.
dy = [b(l)*y(l)*(l_y(l)/b(2));

b(3) *y(l) -b(4) *y(2)];

Input and Results

>>Example7_1

Nonlinear Regression Analysis

Name of output file for storing the results = Ex7_l_results

Experimental data input:
1 - Enter data from keyboard (point-by-point)
2 - Enter data from keyboard (in vector form)
3 - Read data from data file (prepared earlier)

Example 7.1 Nonlinear Regression Using the Marquardt Method 511

Enter your choice 1

Name of data file for storing the data = Ex7_l_data
Number of dependent variables = 2

Variable 1

How many data sets for this variable? = 2

Data set 1

How many points in this set? = 9

Point 1

Enter independent value = 0

Enter dependent vatue = 0.40
Point 2

Enter independent value = 22
Enter dependent value = 0.99
Point 3

Enter independent va'ue = 46
Enter dependent value = 1.95
Point 4

Enter independent value = 70
Enter dependent value = 2.52
Point 5

Enter independent value = 94
Enter dependent value = 3.09
Point 6

Enter independent value = 118
Enter dependent value = 4.06
Point 7

Enter independent value = 142
Enter dependent value = 4.48
Point 8

Enter independent value = 166
Enter dependent value = 4.25
Point 9

Enter independent value = 190
Enter dependent value = 4.36

Data set 2

How many points in this set? = 17

Point 1

Enter independent value = 0

Enter dependent value = 0.18
Point 2

Enter independent value = 10

512 Linear and Nonlinear Regression Analysis Chapter 7

Enter dependent value = 0.12
Point 3

Enter independent value = 22
Enter dependent value = 0.48
Point 4

Enter independent value = 34
Enter dependent value = 1.46
Point S

Enter independent value = 46
Enter dependent value = 1.56
Point 6

tnter independent value = 58
Enter dependent value = 1.73
Point 7

Enter independent value = 70
Enter dependent value = 1.99
Point 8

Enter independent value = 82
Enter dependent value = 2.62
Point 9

Enter independent value = 94
Enter dependent value = 2.88
Point 10
Enter independent value = 106
Enter dependent value = 3.43
Point 11
Enter independent value = 118
Enter dependent value = 3.37
Point 12
Enter independent value = 130
Enter dependent value = 3.92
Point 13
Enter independent value = 142
Enter dependent value = 3.96
Point 14
Enter independent value = 154
Enter dependent value = 3.58
Point 15
Enter independent value = 166
Enter dependent value = 3.58
Point 16
Enter independent value = 178
Enter dependent value = 3.34
Point 17
Enter independent value = 190
Enter dependent value = 3.47

Example 7.1 Nonlinear Regression Using the Marquardt Method 513

Variable 2

How many data sets for this variable? = 2

Data set 1

How many points in this set? = 17

Point 1

Enter independent value = 0

Enter dependent value = 0

Point 2

Enter independent value = 10
Enter dependent value = 0

Point 3

Enter independent value 22

Enter dependent value = 0.0089
Point 4

Enter independent value = 34
Enter dependent value = 0.0732
Point 5

Enter Independent value = 46
Enter dependent value = 0.1446
Point 6

Enter independent value = 58
Enter dependent value = 0.5230
Point 7

Enter independent value = 70
Enter dependent value = 0.6854
Point 8

Enter independent value = 82
Enter dependent value = 1.2566
Point 9

Enter independent value = 94
Enter dependent value = 1.6118
Point 10
Enter independent value = 106
Enter dependent value = 1.8243
Point 11
Enter independent value = 118
Enter dependent value = 2.2170
Point 12
Enter independent value = 130
Enter dependent value = 2.2758
Point 13
Enter independent value = 142
Enter dependent value = 2.8096
Point 14
Enter independent value = 154

514 Linear and Nonlinear Regression Analysis Chapter 7

Enter dependent value = 2.6846
Point 15
Enter independent value = 166
Enter dependent value = 2.8738
Point 16
Enter independent value = 178
Enter dependent value = 2.8345
Point 17
Enter independent value = 190
Enter dependent value = 2.8828

Data set 2

How many points in this set? = 17

Point 1

Enter independent value = 0

Enter dependent value = 0

Point 2

Enter independent value = 10
Enter dependent value = 0

Point 3

Enter independent value = 22
Enter dependent value = 0.0089
Point 4

Enter independent value = 34
Enter dependent value 0.0642

Point 5

Enter independent value = 46
Enter dependent value = 0.2266
Point 6

Enter independent value = 58
Enter dependent value = 0.4373
Point 7

Enter independent value = 70
Enter dependent value = 0.6943
Point 8

Enter independent value = 82

Enter dependent value = 1.2459
Point 9

Enter independent value = 94
Enter dependent value = 1.4315
Point 10
Enter independent value = 106
Enter dependent value = 2.0402
Point 11
Enter independent value = 118
Enter dependent value = 1.9278

Example 7.1 Nonlinear Regression Using the Marquardt Method 515

Point 12
Enter independent value = 130
Enter dependent value = 2.1848
Point 13
Enter independent value = 142
Enter dependent value = 2.4204
Point 14
Enter independent value = 154
Enter dependent value = 2.4615
Point 15
Enter independent value = 166
Enter dependent value = 2.2830
Point 16
Enter independent value = 178
Enter dependent value = 2.7078
Point 17
Enter independent value = 190
Enter dependent value = 2.6542

Name of independent variable = 'Time, hours'

Name of dependent variable I = 'Cell concentration, % dry weight
Name of dependent variable 2 = 'Penicillin concentration, units/mL'

Type of equation(s)
1 - Algebraic equation
2 - Ordinary differential equation
3 - Both I and 2

Enter your choice : 2

Name of M-file containing differential equation(s) = 'Ex7_l_func'

Value of independent variable at boundary condition = 0

Value(s) of dependent variable(s) at boundary condit)on = [0.29 0]

Method of solution
1 - Marquardt
2 - Oauss-Newton

Enter your choice 1

Vector of initial guess of fitting parameters = 10.1,4,0.02,0.02]

Show results of each iteration (0/1) ? 1

Iteration on weights = 1

Variable Weight
1 2.4241e-001
2 l.5793e+000

516 Linear and Nonlinear Regression Analysis Chapter 7

Starting values
Parameter Value

1 l.0000e-OOl
2 4.0000e+000
3 2.0000e-002
4 2.0000e—002

Sum of squares = 6.9923e+OOl
Lambda = l.0000e+003

Iteration on parameters =
Parameter Value

1 6.8498e-002
2 3.9970e+000
3 7.3256e—003
4 l.1040o—002

Sum of squares = l.5563e+OOl
Lambda = 2.5000e+002

Iteration on parameters = 2

Parameter Value
1 3.9016e-002
2 3.9926e+000
3 l.2042e—002
4 l.5427e—002

Sum of squares = S.3942e+000
Lambda = 6.2500e+OOl

Iteration on parameters = 3

Parameter Value
1 4.2387e-002
2 3.9898e+000
3 l.8434e-002
4 2.5628e—002

Sum of squares = 2.75I5e+000
Lambda = l.5625e+OOl

Iteration on parameters = 4

Parameter Value
1 4.2834e—002
2 3.9817e+000
3 l.7434e—002
4 2.lS75e-002

Sum of squares = 2.2976e+000
Lambda = 3.9063e+000

Iteration on parameters = 5

Example 7.1 Nonlinear Regression Using the Marquardt Method 517

Parameter Value
1 4.2922e—002
2 3.9623e+000
3 l.77l3e—002
4 2.2475e—002

Sum of squares = 2.2858e+000
Lambda = 9.7656e-OOl

Iteration on parameters = 6

Parameter Value
1 4.3208e—002
2 3.9368e+000
3 l.7425e-002
4 2.1858e-002

Sum of squares = 2.2832e+000
Lambda = 2.44l4e-OOl

Iteration on parameters = 7

Parameter Value
1 4.3257e-002
2 3.9278e+000
3 l.7413e-002
4 2.1794e—002

Sum of squares = 2.2830e+000
Lambda = 6.1035e-002

Iteration on parameters = 8

Parameter Value
1 4.3260e-002
2 3.9270e+000
3 l.7409e—002
4 2.1783e-002

Sum of squares 2.2830e+000
Lambda = l.5259e-002

Iteration on weights = 2

Variable Weight
1 3.7508e—OOl
2 l.4779e+000

Starting values
Parameter Value

1 4.3260e—002
2 3.9270e+000
3 l.7409e-002

518 Linear and Nonlinear Regression Analysis Chapter 7

4 2.1783e-002
Sun of squares = 2.5720e+000
Lambda l.0000e+003

Iteration on parameters =
Parameter Value

1 4.2944e-002
2 3.9270e+000
3 l.76l8e-002
4 2.2063e-002

Sum of squares 2.5706e+000
Lambda = 2.5000e+002

Tteration on parameters = 2

Parameter Value
1 4.29l3e—002
2 3.9269e+000
3 l.7686e-002
4 2.2174e—002

Sum of squares = 2.5705e+000
Lambda = 6.2500e÷OOl

Iteration on parametors = 3

Parameter Value
1 4.2916e-002
2 3.9267e+000
3 l.7682e-002
4 2.2165e—002

Sum of squares = 2.5705e+000
Lambda = l.5625e+OOl

Iteration on weights = 3

Variable Weight
1 3.7808e-OOl
2 l.4756e+000

Starting values
Parameter Value

1 4.2916e-002
2 3.9267e+000
3 l.7682e-002
4 2.2165e—002

Sum of squares = 2.5770e+000
Lambda = l.0000e+003

Example 7.1 Nonlinear Regression Using the Marquardt Method 519

Iteration on parameters = 1

Parameter Value
1 4.2916e—002
2 3.9267e÷000
3 l.7682e-002
4 2.2165e—002

Sum of squares = 2.5770e+000
Lambda = 2.0000e+003

Please wait for final results

** * *********** **** ******* **** **** ****** ** ******* * ******** k

Statistical analysis of the experimental data
********************************* *********** k*********** k*

Unweighted statistics

Variable No. 1

Total points 26

Degrees of freedom 9

Sum of squares 1.387

Variance 0.1541

Standard deviation 0.3925

Variable No. 2

Total points 34

Degrees of freedom 17

Sum of squares 0.402

Variance 0.02365
Standard deviation 0.1538

Weighted statistics

Total points 60

Total degrees of freedom 26

Weighted sum of squares 1.117

Weighted variance 0.04298
Weighted stand. dev. 0.2073

*** ************ *****

Statistical analysis of the regression
** ***-k****

No. Parameter Standard 95% Confidence interval
deviation for the parameters

lower value upper value
1 4.29l6e-002 2.3579e—003 3.8l92e-002 4.7639e-002

520 Linear and Nonlinear Regression Analysis Chapter 7

2 3.9267e+000 l.2059e—OOl
3 l.7682e-002 2.6767e-003
4 2.2l65e-002 4.7113e-003

Degrees of freedom = 56

3.6845e+000 4.1689e+000
l.2320e—002 2.3044e—002
l.2727e—002 3.1603e—002

Total (weighted) sum of squared residuals =

Combined (weighted) residual variance (sA2) =

Significance tests

2.577

0 . 04602

No. Parameter

1 4.2916e—002
2 3.9267e+000
3 l.7682e—002
4 2.2l65e—002

t-calculated

I. 8200e÷00l

3 .2482e+00l

6. 606le+000

4. 7047e+000

Is parameter significantly
different from zero?

Yes

Yes
Yes
Yes

Confidence limits of regressed variables

Covariance analysis

Variance-covariance matrix: transpose J)

5. 5599e—006

-1. 5722e-004

—4. 6564e-006

-7. 7490e-006

-1. 5722e-004

1. 4614e-002

1 . 2934e-004
2. 8603e-004

-4. 6564e—006

1.293 4e-004

7. l645e-006

1. 2369e-005

—7. 7490e—006

2 . 8603e—004
1 .2369e—005

2 .2l96e—005

Matrix of correlation coefficients

Analysis of variance

Source of
variance

Sum of squares Degrees of
freedom

Variance

Measured Degrees of Residual 95% Confidence limit
variable freedom variance for each measured variable

1 24 l.217le-001 7.2005e—OOl
2 32 3.llB6e-002 3.597le—001

1 -0.5515 —0.7378 —0.6975
—0.5515 1 0.3997 0.5022
-0.7378 0.3997 1 0.9809
-0.6975 0.5022 0.9809 1

Example 7.1 Nonlinear Regression Using the Marquardt Method 521

Lack of fit l.4596e+000 30 4.8654e—002

Experimental error t.1l74e+000 26 4.2979e-002

Total 2.577le÷000 56 4.60l9e—002

Randomness test

Variable 1

Number of positive residuals 9

Number of negative rosiduals S

Number of runs (changes of sign(8

-0.7395

Random at 95% level of confidence

Variable 2

Number of positive residuals 8

Number of negative residuals 9

Number of runs (changes of sign(3

-3.254

Not random at 95% level of confidence

A************************A

A

of statistical analysis have been stored
in the output file you specified. This file is located
in the default directory you have operated from. You may
open and view this file using any editor.

*******A **** A ***-k****

Final Results
***************************fl**************** A ***A -A *******

No. Parameter Standard 95% Confidence interval
deviation for the parameters

lower value upper value
I 4.2916e-002 2.3579e-003 3.8192e-002 4.7639e-002
2 3.9267e+000 l.2089o-00l 3.6845e+000 4.1689e+000
3 L.7682e-002 2.6767e-003 J.2320e-002 2.3044e—002
4 2.2165e—002 4.7113e-003 l.2727e-002 3.1603e-002

522 Linear and Nonlinear Regression Analysis Chapter 7

Discussion of Results: The experimental and calculated values of y and y, are shown
in Figs. E7.lb. The final values of the parameters are calculated as

h1=O.0429 h2=3.9244 b4=O.0221

The program starts out with the weighting factors calculated from the variances of the
experimental data and the Marquardt method converges after eight iterations on the
parameters. The weighting factors are then adjusted and the function repeats the iteration on
the parameters and converges in three iterations. Finally, the weighing factors are changed for
the third time and the method converges in one iteration. The reader is encouraged to repeat
the calculations with different methods and different starting guesses of parameters. A had
guess may cause the Gauss-Newton method to diverge. If the Marquardt method is chosen,
the method does not diverge. However, a bad guess may require a large number of iterations
to converge, and may possibly exceed the maximum limit of iterations defined in the function.

The program gives a complete statistical analysis of the experimental data and the
regression results. For the experimental data, the program calculates the following statistics
for each dependent variable being fitted: total points, degrees of freedom, sum of squares,
variance, and standard deviation. These statistics are shown for both unweighted and weighted
data. For the regression results, the program evaluates the standard deviation and 95%
confidence intervals of the parameters, it performs a significance test (t test) on each parameter
to determine whether the value of that parameter is different than zero, it calculates the 95%
confidence limit for each fitted variable, it lists the variance-covariance matrix and the matrix
of correlation coefficients of the parameters, performs a complete analysis of variance, and
does a randomness test on the distribution of the residuals.

Do
-

00 00 00

Figure E7.lb Results of the regression of cell and penicillin experimental data.

100 200

Problems 523

PROBLEMS

7.1 The heat capacity of gases and liquids is a function of temperaturc. Various forms of polynomial
equations have been used to represent this functionality. Two such equations are shown below:

=

=

Using the heat capacity data of Table P7 1, determine the coefficients of these cquations. Discuss
your results and recommend which cquation gives the bcst representation of the data.

Table P7.1 Simulated heat capacity data

Heat capacity
(J/gmol °C)

Temperature
(°C)

Set no. 1 Set no. 2 Set no. 3

lOt) 29.38 30.04 28 52

200 29.88 29.08 29.79

300 30.42 30.18 31.41

400 30.98 30.14 31.18

500 31.57 32.27 31.16

600 32.15 31.79 32.81

700 32.73 32.97 32.38

800 33.29 32.56 34.26

900 33.82 3424 34.72

1000 34.31 35.27 33.69

7.2 A mathematical model of the fermentation of the bacterium Pseuciomonas ova/is, which produces
gluconic acid. was given in Proh. 5.6 This model, which describes the dynamics of the logarithmic
growth phase. can be summarized as follows:

Rate of cell growth

— /7i.'ii 1

cit

Rate of gluconolactone formation
/) \•- -0.9082h5v.

cit 64 -

524 Linear and Nonlinear Regression Analysis Chapter 7

Rate of glLiconic acid formation
c/v

h5v)
cit —

Rate of glucose consumption:

c/v4
= -1.011

cii 1)4 +

where y1 = concentration of cell

= concentration of gluconolactone
= concentration of gluconic acid

y4 = concentration of glucose
b4-b. parameters of the system that are functions of temperature and pH.

Using the batch fermentation data given in P7.2. determine the values of the parameters.
at the three different temperatures of 25°, 28°. and 30°C.

7.3 Accurate vapor-liquid equilibrium measurements can be used to compute liquid-phase activity
coefticients and excess Gibbs free energies Consider the data in Table P7.3 for benzene-2.2.4-
trimethylpentane (B-TMP) mixtures at constant temperature of 55°C.

(a) Assume that the gas phase is ideal and neglect any fugacity and Poynting coneetions foi the
liquid phase. Calculate the activity coefficients foi B and TMP and the molar excess Gibbs free
energy at each temperature point. The vapor pressure of pure B at 55°C is 327.05 mmHg and of
pure TMP at 55°C is 178.08 mmHg.
(b) If a three-coiotant Redlich-Kister expansion for the excess molar Gibbs free energy is assumed
see Denbigh. Ref. 11. p. 286]. evaluate the constants that appear using the data of part (a); that is.
find fits' for A. A. and A2 (Denbigh notation).
(c) Calculate the activity coefficients trom your expressions in part (b) for B and TMP. (Hint; First
derive an expression for the activity coefficients assuming a three-constant Redlieh-Kister
expansion
(d) Plot the theoretical excess molar Gibbs tree energy and the theoretical activity coefficients with
the experimental data as well.

7.4 Use the data of Prob. 5.7 to fit the Lotka-Volterra predator-prey equations (shown below) in order
to obtain accurate estimates of the parameters of the model. Modify the Lotka-Volterra equations
as recommended in Prob. 5.8. and determine the parameters of your new models. Compare the
results of the statistical analysis for each model, and choose the set of equations that gives the best
representation of the data

The Lotka-Volterra equations:

c/N
= aN1 -

cit

c/N,

cit

Problems

Table P7.2 Data obtained by varying the temperature at pH 7.0

525

Time Cell concentration Gluconolactone Gluconic acid Glucose
(hour) (UOD/ml) concentration concentration

(mglml) (mg/mI)
concentration

(mg/mI)

Experiment No. 34, batch fermentation data at 25.0°C

0.0 0.56 1.28 0.16 45.00

1.0 0.86 2.20 1.56 43.00

2.0 1.60 3.50 5.00 38.00

3.0 2.60 5.60 9.50 33.00

4.0 3.20 7.00 16.00 25.00

5.0 3.30 7.80 24.50 16.50

6.0 3.50 7.20 32.00 9.00

7.0 3.40 6.30 45.50 4.00

8.0 3.40 3.20 45.80 2.00

Experiment no. 33. batch fermentation data at 28.0°C

0.0 0.66 - - 48.00

1.0 1.00 1.96 0.15 45.00

2.0 1.60 6.67 7.00 37.50

3.0 2.60 10.50 15.00 28.00

4.0 3.20 10.50 25.00 18.00

5.0 3.30 7.58 35.00 8.00

6.0 3.30 2.05 42.50 3.00

7.0 3.30 1.90 45.50 -

Experiment no. 32, batch fermentation data at 30.0°C

0.0 0.80 1.34 0.95 44.50

1.0 1.50 4.00 4.96 37.50

2.0 2.60 7.50 16.10 25.00

3.0 3.50 8.00 32.10 9.00

4.0 3.50 5.00 43.70 3.00

5.0 3.50 2.42 44.50 2.00

Source: V. R. Rai, "Mathematical Modeling and Optimization of the Gluconic Acid Fermcntation,"
Ph.D. dissertation, Rutgers - The State University of New Jersey, Piscataway, NJ., 1973.

526 Linear and Nonlinear Regression Analysis Chapter 7

Table P7.3 Vapor-liquid equilibrium data

Liquid phase Vapor phase Equilibrium total pressure
mole fraction x8 mole fraction YB P (mmHg)

0.0819 0.1869 202.74

0.2192 0.4065 236.86

0.3584 0.5509 266.04

0.3831 0.5748 270.73

0.5256 0.6786 293.36

0.8478 0.8741 324.66

0.9872 0.9863 327.39

Source: S. Weissman and S. E. Wood, "Vapor-Liquid Equilibrium of Benzene-2,2.4-
trimethylpentane Mixtures," J. Chem. 32, 1960, p.1'53.

7.5 Svirbcly and Blaner [1 2] modeled a set of chemical reactions represented by

A+B

A+C

A+D -. E+F

using the following differential equations

di -

-
di

= k1AB -

- kAC-k$D

di

Estimate the coefficients k1, k-, , and k1 (all positive) from the data of Table P7.5. and the following
initial conditions:

C(0)=D(0)=0.0

Problems 527

A(0) = 0.02090 mol/L
8(0) = (l/3)A(0)

The estimates reported in the article were:

= 14.7

= 1.53

k3=O.294

Could estimates he obtained if the initial conditions were not known?

Table P7.5 Experimental reaction data

Time
(mm)

Ax103

(mol/L)
Time
(mm)

Ax103

(mol/L)

450 1540 7675 8395

8.67 1422 90.00 7.891

1267 13.35 102.00 7.510

17.75 12.32 10800 7.370

22.67 1 81 14792 6.646

27.08 11.39 198.00 5883

3200 10.92 241 75 5.322

36.00 10.54 270.25 4960

46.33 9.780 326.25 4518

57.00 9157 41800 4.075

69.00 8.594 501.00 3.715

7.6 Choose one of the equations given in Prob. 7.1 and perform the following:
(a) Fit the equation to the specific heat data given in Prob. 7.1.
(b) Add random error (r.e.) to the data, where this error is in the range -1.0 s r.e. � 1 .0, and fit the
equation to the noisy data.
(c) Repeat part (b) with -5.0 < r.e. � 5.0

(d) Repeat part (h) with -10.0 � r.e. � 10.0.

Compare the results of the statistical analysis in parts (a) to (d). What conclusions do you draw?

7.7 Solids mixing in fluidized beds is assumed to he described by the dispersion model which is a
diffusion-type model. Based on this model, axial dispersion of solids is represented by the
differentia equation

at 8z2

528 Linear and Nonlinear Regression Analysis Chapter 7

where C is the concentration of tagged particles at axial position z and time t, and D is the axial
dispersion coefficient of the solids. In an experiment in a gas-solid fluidized bed, a certain amount
of tagged particles (1000 units) is injected at the top of thc bed (z 350 mm) at the beginning of the
experiment. The tagged particles are not added or taken out during the experiment. Therefore, the
diffusion equation in this case should be solved subject to the following initial and boundary
conditions:

C = C0 = 1000 for z = L 350mm
at t -0,

1 C=0 for:<L
oc

at r 0. —L 0

at t � 0. 0

Concentration of tagged particles at different heights and times are measured during the experiment
and are given in Table P7.7.

Table P7.7 Experimental concentration of tagged
particles as a function of time and height

t(s) z=300mm z=250mm z=200mm

0.0 0 0 0

01 20 5 0

0.2 63 22 6

0.3 72 40 24

0.4 57 53 36

0.5 30 56 38

0.6 29 32 48

0.8 26 25 40

1.0 25 23 25

1.5 17 21 16

2.0 29 20 23

References 529

Develop a MATLAB function to calculate the dispersion coefficient in the above partial differential
equation from C(t. I data by using a least squares technique. Apply this function to the data of
Table P7.7 to aluate the dispersion coefficient at the conditions of this experiment.

REFERENCES

• Hitnnielblau. D. M., and Bischoff. K. B., Process Analysis and Simulation: Determnints/ic Systems.
Wley. New York, 1968.

2. Box. (1. E. P and Hunter, W. U.. "A Useful Method for Model-Building." Technomnetrics, vol. 4, no.
3.1962. p. 301.

3 Bethea, R. M.. Statistical Methods for Engineers and Scientists. 3rd ed.. Marcel Dekker. York,
1995.

4. Ostle. B.. Turner. K. V.. Hicks. C. it. and McEleath. U. W.. Engineering Statistics: The Industrial
Evperience. Durburg Press, Belmont. 1996.

5. Seinfeid, J. H., and Lapidus, L., lvi athematical Methods in Chemical Engineering, vol. 3. Process
Mode/mg. Estimation. and Identification. Prentice Hall. Englewood Cliffs. NJ. 1974.

6. ies. 0. L.. Statistical Methods in Research and Proc/nc lion. Hafner. New York. 1 957.

7. Box. U. E. P., "Fitting Empirical Data," Ann. N.Y. Acad. Sci., vol. 86, 1960, p. 792.

8. Edgar, T. F., and Himmelblau, D. M., Optimization ot Chemnic ctl Processes. McGraw-Hill. New York.
198K

9. Maiquardt. D. W.. "An Algorithm for Least Squares Estimation of Nonlinear Parameters." J Soc. 1mW.
App/. Math.. vol. 11. 1963. p. 431.

ID. nice. K. A.. Stcmtistical Theory and Methodology in Science antI Engineering. 2nd ed.. Wiley.

New York, 1965.

11 . Denhigh. K., The Principles of Chemical Equi/ihriion, 3rd ed.. Cambridge University Press,
Cambridge. U.K.. 1971.

12. Svirhely. W. J. and Blaner. J. A.. J. Amer. C/mon. Soc. vol. 83. 1961. p.4118. (Problem reproduced
from D. M. Himmclblau. Process Anal si.s Irs Statistical Methods. Wiley. Ness York. 1970).

APPENDIX

Introduction to MATLAB

this appendix is intended to help the reader get staned

with MATLAB and should not be considered as a complete reference. We have introduced
in this section the MATLAB features that are essential to understanding the software
developed throughout the text. A good detailed MATLAB tutorial is given by Hanselman and
Littlefield [1, 2]. It is assumed that the reader reads this appendix and practices each
command while sitting at a computer running MATLAB. For this reason, the outputs to each
command are not printed here. Many commands may fail to convey the intended lesson if the
user is not practicing them on the computer. In the following, ">Y' is MATLAB ' s prompt.
You do not need to type it.

531

532 Introduction to MATLAB Appendix A

A.1 BASIC OPERATIONS AND COMMANDS

The four elementary arithmetic operations in MATLAB are done by the operators +, -,

and I, and A stands for power operator:

-1/5)

The operator \ is for left division. For example, try

MATLAB easily handles complex and infinite numbers:

1/0

Both i andj stand for the complex number [I unless another value is assigned to them. Also
the variable pi represents the ratio of the circumference of a circle to its diameter (i.e.,
3.141592653. . .). If an expression cannot be evaluated, MATLAB returns NaN, which stands
for Not-a-Number:

The equality sign is used to assign values to variables:

= 2

= 3*a

If no name is introduced, result of the expression is saved in a variable named ans:

If you do not want to see the result of the command, put a semicolon at the end of it:

>>a+b;

You can see the value of the variable by simply typing it:

MATLAB is case sensitive. This means MATLAB distinguishes between upper and lower
case variables:

A.1 Basic Operations and Commands 533

In MATLAB all computations are done in double precision. However, the result of
calculation is normally shown with only 5 digits. Thefbrinat command may he used to switch
between different output display formats:

= exp(pi)

>>t'orrnat long. c

>format short e, c
long e, c

>>format short, c

Use the command who to see names of the variables, currently availablc in the workspace:

who

and to see a list of variables together with information about their size. density. etc., use the
command nlios:

In order to delete a variable from the memory use the clear command:

>>clear a, who

Using clear alone deletes all the variables from the workspace:

>clear, ;tho

The dc command clears the command window and homes the cursor:

>>dld

Remember that by using the up arrow key you can see the commands you have entered so far
in each session. If you need to call a certain command that has been used already. just type
its first letter (or first letters) and then use the up arrow key to call that command.

Several navigational commands from DOS and UNIX may be executed from the
MATLAB Command Window, such as cd, dir, ,nkdir, pwd, is. For example:

>>cd d:\matlab\toolbox

>>cd 'c:\Program Files\Numerical Methods\Chapterl'

The single quotation mark U) is needed in the last command because of the presence of blank
spaces in the name of the directory.

534 Introduction to MATLAB Appendix A

A.2 VECTORS, MATRICES, AND MULTIDIMENSIONAL ARRAYS

MATLAB is designed to make operations on matrices as easy as possible. Most of the
variables in MATLAB are considered as matrices. A scalar number is a 1 x I matrix and a
vector is a lxn (or nxl) matrix. Introducing a matrix is also done by an equality sign:

>>m=[l 2 3;4,5,6]

Note that elements of a row may be separated either by a space or a comma, and the rows may
be separated by a semicolon or carriage return (i.e., a new line). Elements of a matrix can he
called or replaced individually:

>>m(1,3)

>>m(2,1) = 7

Matrices may combine together to form new matrices:

= Im; ml

= [n, ni

The transpose of a matrix results from interchanging its rows and columns. This can be done
by putting a single quote after a matrix:

= [m; 7, 8, 9]'

A very useful syntax in MATLAB is the colon operator that produces a row vector:

= - 1:4

The default increment is 1, but the user can change it if required:

= [-1:0.5:4; 8:-l:—2; 1:11]

A very common use of the colon notation is to refer to rows, columns, or a part of the matrix:

>>w(2:3,4:7)

Multidimentional arrays (i.e., arrays with more than two dimensions) is a new feature in
MATLAB 5. Let us add the third dimension to the matrix w:

= ones(3,l 1)

540 Introduction to MATLAB Appendix A

Now you can develop a script by editing the file 'mydiary" (no extension is added by
MATLAR), deleting the unnecessary lines, and saving it as a in-file.

You can develop your own function and execute it just like other built-in functions in
MATLAB. A function takes some data as input. performs required calculations. and returns
the results of calculations back to you. As an example. let us write a function to do the ideal
gas volume calculations that we have already done in a script. We make this function more
gencral so that it would he able to calculate the volume at multiple pressures and multiple
temperatures:

function v = niyfunction(t,p)
Function "myfunction.ni"

Yr This function calculates the specific volume of an ideal gas

R = 83 14; Gas constant
for k = l:lcngth(p)

vtk.:) = R*t!p(k): C/c Ideal gas law

end

This function must he saved as "myfiwction.m". You can now use this function in thc
workspace, in a script, or in another function. For example:

= 1:10: t = 300:10:400:
>>vol = myfunction(t.p):
>>.surfl t,p,vol)
>riew(135.45). (v/or/Jar

The first line of a function is called function declaration line and should start with the word
function followed by the output argumcnt(s). equality sign. name of the function, and input
argument(s), as illustrated in the example. The first set of continuous comment lines
immediately after the function declaration line is the help for the function and can he reviewed
separately:

>>help mylunction

A.4.1 Flow Control

MACLAB has several flow control structures that allow the program to make decisions or
control its execution sequence. These structures are frr. if while, and coUch which we
describe briefly below:

if. . . (else .
. .) end The command enables the program to make decision about what

commands to execute:

A.4 Scripts and Functions 541

x = input(' x = ');
if x >= 0

y = xA2

end

You can also define an else clause, which is executed if the condition in the if statement is not
true:

x = input(' x = ');
if x >= 0

y = xA2

else

y =
end

Jhr... end - Thefor command allows the script to cause a command, or a series of commands,
to be executed several times:

k=0;
for x = 0:0.2:1

k = k+ 1

y(k) = exp(-x)
end

while ... end — The while statement causes the program to execute a group of commands until
some condition is no longer true:

x = 0;

while xci
y = sin(x)
x = x+0.l;

end

switch... case.. . end When a variable may have several values and the program has to
execute different commands based on different values of the variable, a switch-case structure
is easier to use than a nested if structure:

a = input('a = ');
switch a

case 1

disp('One')
case 2

disp('Two')

542 Introduction to MATLAB Appendix A

case 3

disp('Three')
end

Two useful commands in programming are break and pause. You can usc the break
command to jump out of a loop before it is completed. The pause command will cause the
program to wait for a key to he pressed before continuing:

k=0;
forx = 0:0.2:1

if k>3

break
end
k = k+l
y(k) = exp(-x)
pause

end

A.5 DATA EXPORT AND IMPORT

There are different ways you can save your data in MATLAB. Let us first generate some data:

= magic(3); b = magic(4);

The following command saves all the variables in the MATLAB workspace in the file
I. mat":

>>save fi

If you need to save just some of the variables, list their names after the file name. The
following saves only a in the file "f2.mat":

f2 a

The files generated above have the extension "mat" and could be retrieved only by MATLAB.
To use your data elsewhere you may want to save your data as text:

f3 b -ascii

Here, the file "[3" is a text file with no extension. You can also use fprint[command to save

your data into a file using a desired format.

A.6 Where to Find Help 543

You can load your data into the MATLAB workspace using the load command. If the
file to he loaded is generated by MATLAB (carrying "mat" extension), the variables will
appear in the workspace with their name at the time they were saved:

>>clear

>>loadfl

whys

However, if the file is a text file, the variables will appear in the workspace under the name
of the file:

>>load f3. whos

A.6 WHERETO FIND HELP

As a beginner, you may want to see a tutorial about MATLAB. This is possible by typing
demo at the command line to see the available demonstrations. In the MATLAB demo
window you may choose the subject you are interested in and then follow the lessons.

If you know the name of the function you want help on you can use the help
command:

>>heip sign

Typing help alone lists the names of all directories in the MATLAB search path. Also, if you
type a directory name in the place of the flle name, MATLAB lists contents of the directory
(if the directory is a directory in the MATLAB path search and contains a contents.;n file):

>> help

matlah\general

If you are not sure of the function name, you can try to find the name using the look/br
command:

x'iookfor absolute

Extensive MATLAB help and manuals may be found on the following websites:

http://www.mathworks.com
http://www.owlnet.riee.edu/—eeng3O3

Index

A

Acentric factor, 29, 54
Acetone. 296, 297
Activation energy. 199
Activity coefficient, 524
Adams method, 291, 294. 296, 297, 307. 350
Adams-Moulton method, 291, 294, 296-298,

350

Adiabatic flame temperature, 57
Adsorption ratio. 65

Allen, D. L., 359. 360, 364
Amperometric electrode, 444
Amplification factor, 432-434
Analysis of variancc, 470. 476. 482, 496.

5(16. 522

Analyte, 444, 445
Aniline, 135
Aris, R.. 136, 137, 141

Arrhenius, 61
Average, 457-459
Averager operator, 146,157, 158
Aziz. A. K., 309, 363

B

Backward difference, 149, 150. 152, 153, 157,

158. 160, 16!, 168, 171, 172. 193,
200-203, 208, 214. 220, 221, 255,
285, 294, 373, 375, 384, 385, 400,
404. 429

Backward difference operator. 146. 148. 15(1,
151, 200, 201, 436

Baron. M. L.. 61. 195

Base point, 167, 168, 170, 172, 173. 77.
179-185, 188, 193. 228, 236. 241, 244.
245, 252. 29!, 323

Basis function. 435, 436

Basket-type filter, 184
Batch process. 7 1

Bennett, C. 0.. 62
Benzene. 524

Berruti, F.. 447

Bessel function, 58. 446
Bethea, R. M., 453, 476. 528
Binomial expansion. 150. 153. 157. 170-172
Biomass, 69
Bird, R. B., 212,246.259.446
Bischoff, K. B , 450. 528

Biscction method, 8, 38. 39, 44
Blaner. J. A.. 526, 529
Boundary condition, 162, 163, 181. 208. 246.

25!. 261, 265, 308-310, 312-316,
321-324, 327-33!. 333. 358. 368. 370,
372. 378. 379. 382, 383. 385. 393. 396.
398. 399, 41)2-404. 413. 423. 430. 435.
437, 439. 440. 443, 445. 488. 49!, 504,
527

Boundary-layer, 308

Boundary-value problem. 266. 308-310. 314.
316. 322. 324, 326. 328-333. 362. 372,
435

545

546 Index

Box, (1. F. p., 450. 486. 528, 529
Brevihacteriurn tiavum, 69
Brownlee, K. A.. 499. 529
Bubble point, 1 38

Byrorn, T. C., 447

C

Canale. R. P, 241. 259
Carnahan,B., 135. 141.259,447
Carreau model. 314
Carrcau, P. J., 363
Cartesian coordinate. 4. 366, 427, 428, 430
Catalytic reaction, 258
Cauchy condition, 372, 395. 399
Cayley-Harnilton theorem. 1 22
Central difference, 156-160, 168. 176, 177. 194,

208. 210. 211, 214, 220. 221. 255,
354

averaged, 157. 158. 177
Central difference operator, 146, 148, 158- 160,

208, 210. 373-376. 378, 396. 399.
400, 402. 426

averaged, 158. 159. 209
Central limit theorem. 466, 477. 478
Chang, H Y. 141
Chaouki. J.. 258
ChapncS C.. 241,259
Characteristic time, 314
Chaiacteristic value, 68, 121
Characteristic vector, 121, 122
Characteristic-value problem. 125
Chebyshev polynomial. 190. 244

recurrence relation. 190
Chhabra, R. p., 363
Chi-square distribution, 461. 468. 469, 473, 482
Chi-square distribution function, 467
Choriton. F.. 195
Chotani, C. K.. 447
Cofactor, 78. 79
Colebrook equation, 2, 15-17, 26

Collocation. 309

Collocation Method. 322. 324. 328. 329. 331.
340

orthogonal. 325, 330-333. 436
trial function. 323, 324

Collocation point. 324-326. 329. 331. 333
Complete pivoting, 91, 94-96. 107. 134
Compressibility factor, 2, 29
Computational molecule, 380, 381. 397
Concentration profile. 214, 218, 276, 354. 41)4.

405.410,411,444,446
Condenser, 137

total. 64, 65
Confidence ellipsoid, 484. 486
Confidence hyperspace. 486
Confidence intenal. 468, 471-473, 482, 484.

486, 488, 506. 522
individual. 483, 486
joint, 483, 484

Confidence level, 471, 475, 483
Confidence limit, 471, 506, 522
Constantinides. A., 62, 140. 331, 356, 363. 364,

447

Control variable, 45t)-452
Cooling tower, 199
Correlation coeflicient, 460. 461. 484-486. 506
Coulet, P R.. 444. 447
Covariance, 459. 460. 477. 481. 483
Cramer's nile, 46, 63. 64, 87
Crank-Nicolson tnethod. 287. 291. 400, 401,

403, 404. 427
Cumtdative distribution function. 454-456, 461,

464, 471

Cylindrical coordinates, 58. 445

D

Kee, D. C. R.. 363
Damkoehler number. 445
Davidson, B. D., 62
Davies, 0. L.. 486, 529
Degree of freedom, 290. 453. 459. 467-470.

473-475, 478, 482. 484. 497. 504-506.
522

Index 547

Denhigh. K., 524, 529

Density distribution function, 456
Dcscartes' rule of sign, 6, 53
Determinant. 78-82, 87, 89. 93. 94. 122. 126,

536
DilTerence equation, 161-164. 194, 343

characteristic equation. 162-164. 343. 346
characteristic root. 341
homogeneous, 161-164, 343
linear, 161. 162. 164

nonhomogeneous. 161. 345

nonlinear. 161

order. 161

Differential equation. 3. 6. 161. 194

homogeneous. 3

linear, 162
Differential operator. 3. 144. 146-148. 150, 151.

153-155, 158-160, 162, 177,200,201,
205. 208-2 10. 231. 373. 436

Differentiation. 166. 183, 197, 198, 200-208.
210-212. 214. 220. 221, 228. 274,
316, 333, 502

Diftusion. 308, 375. 403, 438. 527

coetiicient, 212, 367, 403. 404, 438. 445
equation. 368, 369, 527

Diffusivity. 438
Dirac delta (unit impulse). 324. 436
Dinchlet conditions (first kind), 370. 372. 378.

380, 382-385, 393. 395, 399. 402.
422. 423. 428

Dispersion, 441. 445. 446. 527

coefficient. 445. 527, 528

Distillation, 2, 137, 138. 161

column. 64, 66. 264
dynamic hehavor. 264
multicomponent. 56

Disturbance term, 476, 477
Dittus-Boelter equation. 60
DOS. 533
Dotted operator, 74. 78, 503. 536
Double precision, 532

Douglas. J. M.. 36. 37. 62
Drying. 198

Dudukovié, M. p.. 258
Dynamic 413

E

Edgar, T. F., 529
Eigenvalue. 35-37. 39, 68. 69. 71. 77. 79. 81.

82. 121-123. 125. 126. 128. 129.
131-134. 162-165. 273-276. 341. 346.
352-354, 359. 486. 536

Eigenvector. 68. 69, 71. 121-123, 125, 133. 134.

273-278. 281, 354. 486, 536

Elliot, J. L.. 364

Emissivity. 59

Endothermic reaction. 307

Energy balance. 3. 61, 64. 94, lOS. 138. 199.
246, 273. 296. 307

Enthalpy balance, 57
Enzyme. 308, 332. 441. 444, 445
Equation of change. 365
Equation of continuity. 366. 367
Equation of energy. 367
Equation of motion, 3
Equation of state. 1

Benedict-Webb-Rubin. 1. 53
ideal gas, 7. 29. 33

53. 54
Redlieh-Kwong. 1
Soave-Redlieh-Kwong. 1, 2. 7. 28. 29. 33

Euler-Lagrange equation. 435
Euler method for ordinary nonlinear differential

equation. 284-287. 296, 297. 307.
341. 344, 345, 347

absolutely stable, 343

backward, 347

conditionally stable, 344
explicit formula, 284-287, 343. 344. 348
implicit formula. 286. 287. 345, 347, 348
modified, 286. 296. 297. 350
predictor-corrector, 286. 296, 297. 355
stability, 287, 348
stable. 348

unconditionally stable, 344. 348

548 index

Expectation. 457
Expected value, 457, 459, 461
Exothermic reaction, 61, 172
Extraction, 161

F

F distribution, 461. 470, 475. 484, 497
F distribution density function, 469
Ftest, 476. 498

141

Faddeev-Leverricr procedure. 123-125
Faddeeva, U. N., 141

Fairweather, G.. 447

False position. 8, 10. 12
Feedback control. 36, 57
Fennentation, 69, 70. 237, 238
Fcrmentor. 69, 237, 262. 263. 357

hatch. 502

Fernandes. P. M.. 447
Ficks second law of diffusion. 368. 376. 395.

404. 430. 438

Final condition. 309. 310. 312. 313. 316. 333.
334. 358

Finch. 1. A.. 196

Finite difference,71, 144-146, 150, 157, 165.

166, 172. 193. 208. 214. 220. 221.
230. 234. 235. 283, 309, 321. 322.
325. 331. 368. 373. 375, 378. 380.
396, 397. 399, 401. 427, 430-432.
435. 438-440

Finite difference equation. 432
homogeneous. 432
nonhomogeneous, 432

Finite element. 368. 435. 436
Finlayson. B. A.. 325, 353. 363. 446
First noncentral moment, 457
Flannery. B. P.. 61
Flash vaporization. 54
Fluidized bed. 255. 445. 527

circulating. 258
gas-solid, 220

Fogler. H. S.. 363

Forward difference, 152, 153. 157, 158. 160.

161. 168. 170. 172. 2t)5-208. 214.
22t), 221. 230. 234. 235. 255, 284.
285. 316. 321. 333, 373. 375. 379.
384. 385, 396. 397. 399. 404. 412.
429. 502

Foiwarddiffeienceopeiator, 146. 148. 153-
155. 205. 231

Fourier series, 431

Fourier's law of heat conduction. 59. 367

Freeman. R . 141

Friction factor. 2. 16. 26
Fugacity. 524

Function declaration, 540

G

Gadcn, F. L.. Jr.. 363
Galerkin method. 436

Galvanometer. 134

Gamma function. 248

Gas absorption contactor. 362
Gauss elimination, 79. 87-96. 99. 102. 107. 121.

123. 125. 126. 134. 286. 322, 379,
401. 427

Gauss-Jordan, 71. 87. 99. 101-105. 107. 121

Gauss-Newton method. 489-491. 493. 495. 502.
505. 522

Gauss-Seidel, 87, 112, 113. 115, 134. 379, 380

Gauss quadrature. 193. 229. 241. 243-245

higher point. 244
two—point. 242

Gaussian density function. 461

Geankoplis. C. 1.. 447

GeI'fond, A. 0.. 195
Genera] stability boundary. 344
Gibbs free energy. 56. 524
Givens, M.. 131. 14]
Gluconic acid. 355, 356. 523. 524
Gluconolactone, 355, 356. 523
Glucononctone, 356

Glucose, 69-71. 355. 356. 444. 524

Glucose oxidase. 355. 444

Index 549

Glutamic acid, 69
Green. 196
Gregory-Newton interpolation formula, 168,

170-172, 176, 193, 230. 234-236, 245.
291, 294

H

Hamiltonian, 332
Hanselman, D., 228, 252, 259, 531, 544

Heat capacity, 57, 61. 199, 296. 367. 523
Heat conduction. 367-370. 372. 375, 381, 395.

399

Heat conductivity, 99

Heat exchanger, 296

Heat generation, 383
Heatofreaction.61. 139, 199,296
Heat source. 381, 382

Heat transfer, 59-61, 94, 307, 308. 362, 370.
382, 412. 422, 423, 440

area, 296

coefficient, 61, 94, 99, 296, 372. 393,

412, 438. 440

conduction, 59

convection, 60, 94, 393
radiation. 59

Heinrich. J, C., 436, 447

Hermite polynomial, 190, 244

Hicks, C. R.. 528

Himmelblau, D. M., 140, 450, 528, 529

Hlavàöek, V.. 309, 322. 363

Fluebner, K. H., 436, 447

Hunter, W. G., 450, 528

Hydrogen peroxide, 444
Hyperellipsoidal region, 484, 486
Hyperspace, 71, 491
Hypothesis, 465, 497, 502

alternative, 474. 475, 483
null, 474-476, 483, 506

testing, 473. 476, 497, 502

I

Ideal gas. 199, 258. 539, 540

Incompressible fluid. 2

Inflection point. 14
Initial condition. 262. 267. 273, 274. 282. 283.

309. 310, 312. 313. 316, 317. 333.
334, 340-343, 345, 346. 354. 355,
357-360. 370. 372. 398. 41)2, 403,
413, 445. 502, 504, 526. 527

Initial rates (method of). 198
Initial-value problem, 266. 291, 294. 310, 342,

343, 345. 372, 431

Integral operator, 146, 147

Integrand, 229

Integration, 166, 181, 193. 197. 199-201,204,

228-230, 232. 234-236. 242. 245, 246,
248. 252-255, 266, 283. 287, 288,
291, 310. 313, 316, 320-323. 325,
326, 341, 342, 344. 346, 347, 351-
353, 355. 358. 370. 397, 422, 488

double, 253-255, 258

multiple, 253. 255

Newton-Cotes formula, 229, 230, 233.

234, 236, 237, 241. 245

Simpson's 1/3 rule. 230. 234. 236-239, 241

Simpsons 3/8 rule, 230. 235, 236
trapezoidal rule, 70. 230. 232-234.

236-239, 241-244, 252. 253. 287
Interpolating polynomial. 144. 166. 167,

179-181. 193, 228. 283, 294. 325

Interpolation, 167, 168, 170-173, 176. 177.

179-181, 183-185, 188. 193. 194, 228.
252, 322, 325, 493, 505

cubic, 167

backward Gregory-Newton, 171, 193, 291.

294

forward Gregory-Newton. 170-172, 230

Gregory-Newton formula, 168. 171, 172,

176, 193. 230, 234-236, 245

linear, 167. 172. 184

nearest, 167

spline. 167. 179, 194,228,252
formula, 168, 176. 177, 194

550 Index

Interval of acceptance. 475
Irregular boundary. 427-429

Iso-electric point. 194
Iterative algorithm, 6-8, 10, 13-15, 29

J

Jacobi. 2 13-1)6. 120, 234
Jacobian, 47, 48. 313. 316. 322. 333. 341. 353.

359, 361, 489. 491, 494, 502, 505
James, M L., 447
Johnson. L. W.. 141

K

Karplus. W. J.. 435, 447

Kennedy, U., 258
Ketene, 296
Kinetics, 3. 67
Kuhiãek. M., 309. 322. 363

L

Lack of fit, 496-499
Lagrange polynomial. 179-181. 184. 188. 193.

194, 241, 244, 245. 248, 333

Lagrangian autocorrelation integral. 199

Laguerre polynomial, 190, 244
Lapidus, 14. 34, 61. 363, 380, 435. 436. 446,

466, 529

Laplace's equation. 369. 376. 380-383. 385,
393, 437, 440

Laplace's expansion theorem. 78. 80
Laplace transform, 58
Laplacian operator, 430
Larachi, F., 258
Least squares method, 479. 490. 498, 528
Left division, 532
Legendre polynomial, 190, 243-246, 248. 326

recurrence relation, 190

Levenberg-Marquardt method, 493

L'Hôpitals rule, 347

Lightfoot, E. N., 259. 446
Linearinterpolation method. 8, 10. 12, 13. 15,

16

Lincar programming, 71
Linear symbolic opcrator. 146
Linearization. 13, 47. 58. 63, 64. 452, 491. 493,

495

Linearly independent. 122, 478
Liquid holdup, 264
Lithium chloride, 194
Littlefield. B.. 228. 252. 259, 531, 544
Logistic law, 355
Lotka. A. J., 36(1. 364

Lotka-Volterra problem. 357-358. 361. 362, 524

LR algorithm. 123
Luther, H. A.. 141,259.447

M

M-file, 17. 214. 237. 298, 539. 540

Maloney, J. 0.. 196
Marquardt. D W.. 493. 529
Marquardt method. 489. 493-495. 502. 505. 522
Mass spectrometer. 134
Mass transfer. 220. 308. 362

coefficient, 199
diffusive. 218

flux, 212, 214. 218

rate, 22t)

Material balance. 57, 64, 69. 70. 105. 114. 115.

135, 138, 161. 237. 262, 264. 273.
296, 307. 365. 403. 404. 438. 441.
443

MATLAB, 1,8, 15, 16, 26, 28. 74, 77, 94. 99,
115. 167, 172, 184. 193. 194,212.
220. 237. 246. 276. 281. 283. 284.
295-298. 314. 382, 383, 403. 405.
412. 413. 436. 438. 489, 502. 528.
53 1-534. 536. 539. 540. 542. 543

editor, 539

function. 539. 540
graphical user interface. 437
optimization toolbox. 489

Index 551

MATLAB
partial differential equation toolbox. 436.

437

script. 539
student edition, 390

MATI.AB command
(colon operator). 534

ans. 532

area, 537

(L515, 537

bar, 537

break, 542

case. 541, 542

cd, 533

c/abel. 538
c/c. 533
('lear, 533, 543
cI,C 537

calarbar. 538, 54t)

('aotOit/'. 538

demo, 543

than'. 539. 540
ciii', 533

disp. 539. 541. 542
else. 541

end, 534, 540-542
eps. 214
jigore. 537
for. 540-542
format. 533

format long. 533

faratat lang 533

format sliom'i, 533

fannat short e. 533

,fprintf 542
function, 540
grul, 536
gtext, 536
help. 540, 543
i. 532

if, 540-542

input, 541

7. 532

load. 543
/0gb5. 537
lao/for. 543
Is. 533

mesh, 538

mlcdir, 533

532

pamice, 542

polor. 538
pdetooi. 437
pi. 532, 533. 537
plot. 536, 537. 539
plot3. 537
pa/ar. 537

phd. 533

quiver. 538
stn'e. 542

cenmilagi'. 537

semm/og'i. 537

shading. 538

dig. 537

subplot. 537
surf. 538. 54t)

VOjU h, 540. 541

te.',t, 536

title. 539

lieu'. 538. 540
'(brIe. 540. 541
uho. 533

who,s, 533. 535. 543

xlahel, 536, 537. 539

v/abel. 536, 537. 539

c/abel. 537
MATLAB function

Adams, 297, 304
AdamsMoolton, 297. 305

Colebm'ook, 16. 24

Colehraokg, 16. 24
ca/location, 333. 334. 336
comet. 537

contents. 543

corrcoef 461

cm, 537, 538

552 Index

MATLAB function (cont'd)
coy. 460

curvefit, 489

c/b/quad, 255

c/eric. 221

c/ct, 79. 536

diag, 75
duff. 153

eig, 35, 121. 276, 536
elliptic. 385, 387. 437
Euler, 297, 300
Ex/_4Jiinc. 49, 51
Ex4_I_phi, 214, 216
Ex4_/jrofi/e, 214, 215
Ex4_4junc, 248, 249
ExS3Jirnc. 300
Ei5_4Jiinc, 317, 318
ExS_Sjunc. 334. 335

Ex5_5_thera, 334. 335

EsO_2junc, 405, 407
Ex7jJunc. 506, 510
exp, 82, 533. 536, 537, 541. 542
expin. 82. 281

expnz/. 82

expm2, 82

expm3, 82

eye, 75, 535
ft/er, 214. 216
jplot, 8. 537
frero, 8, 334

Gauss. 95-97, 99
GaussLegendre. 248. 249
GregorvNewton, 172-174
mv. 48, 77. 99, 385, 536
interp/, 167
interplq, 167
interp2. 167
interp3, 167
interpn, 167
Jacobi. 116, 117

Jordan, 107, 108

Lagrange, 184. 185

length, 535, 540

LL 15, 16,20
LinearODE. 278. 279
linspace. 535. 536
log, 532

logspace. 535
lii. 76

illogic, 542

mean. 457
ineshgrid, 537
MEuler, 297. 301

413

iVaturalSPLJNK 184. 187. 228, 252
Newton. 48-50. 52. 3 16

NLR, 502. 503. 505. 506. 510
NR. 15. 16.22
NRpoh. 29, 31. 33
iVKsdivisron. 38. 39. 41. 53

ode/5s. 353

ode23, 505
ode23s. 353
ode45, 283. 284

ones. 534, 535

on/i, 82

paraholiciD. 404, 405. 407
paraholic2D. 413. 416

536

polvder, 29
polyfit. 480
polvva/. 29
quad. 236, 237
quad8, 236, 237
rand. 535
rank. 79. 536
RK. 297. 298. 302

roots. 38. 39. 53, 248

shooting. 316-318
sign, 543

Simpson, 238, 239

sin. 536. 537. 541

vize. 535

splint'. 167, 228. 252

sqrt. 532

statistics. 505. 506. 510

Index 553

MATI.AB function (contd)
459

siad, 506. 5 10

536

trace. 77
Ira/i:. 236. 237. 239
i/il. 76
trio. 76
XGX. 15. 16. 18

zeros. 535

MAILAB program. 29
Examplel_J. 17
Exaioplel_2. 29. 33

Exam/i/el_i. 38. 39
Evamp/e /_4. 49
Eiamp/e2_l. 96
Exwnp/e2_2. 108
livaiople2_3. 116

Frump/eu. 173
Exwnp/e3_2. 1 85

Examp/e4j. 214. 220
b vomp/e4_2. 221

Evamp/e4 3. 239
hsaiiip/e4_4. 248. 25 1

Evwnp/e5_2. 278
Frump/eS_i. 298
Examp/eS_4. 317. 32(1

Evamp/e5_S. 334

Examp/eO_l. 385
ExampleO_2. 405

Evamp/e63. 413. 414
Examp/e7_/, 506. 507

Matrix, 68, 486
addition. 72. 73
augmented. 85. 86. 89-91. 93. 99. 101-104.

107

banded. 77
characteristic. 1 22

characteristic equation. 1 22

characteristic polynomial. 35. 58, 122-125.
132. 536

companion. 35
conlormahle. 73

conelation coefficient. 71. 461. 484. 489.
522

dense. 77
diagonal. 75, 113. 121. 129. 275. 481.484,

493, 494
empty. 16. 503
equis alent. 89
Hermitian, 74

llessenherg. 76. 77. 123. 126-128. 131-133
Hessian. 492. 494
identity. 75. 77. 92. 102-lt)4. 121. 275. 535
ill-conditioned. 79
ins ersion. 77-79. 11)3. 104. 124. 383. 385.

404. 536

Jacobian. 47, 48.313. 316. 322. 333. 341.
353. 359. 361. 489. 491, 502. 505

asset triangular. 76. 81, 92. 93. 126
multiplication. 73-75. 77, 78. #1, 92. 93,

102. 535

nonsingular. 78-81. 86. 87. 93. 102, 103.
122. 126. 129. 133. 134, 274. 479

nons\mmetric. 123. 129. 131. 133. 134
orthogonal. #1. 1 28—130

predominantl) diagonal. 1(16
similar. 126. 129
singular. 78. 80. 86. 91. 94-96. 121. 134
sparse. 77. 1(16

substituted. 87
suhstraction, 72. 73
supertriangular. 76. 1 26

s\inmetric. 74. 122. 123. 129. 131, 134.
479. 485

transpose. 74. 1 29

triangular. 79. 94. 1 29. 13 1 -133

triangularization. 89-91. 134
tridiagonal. 75. 77. 123. 131. 401
unit. 75. 99

upper triangular. 75. 76. 81. 89. 93. 126.
128. 129. 131

477. 481. 484. 506.
522

Matrix exponential. 82
Matrix polynomial. 82

554 Index

Matrix transforniation. 80. 81

elementary, 80. 8 1

elementary similarity. 123. 126-128. 131.
133

orthogonal. 82, 123, 129-131
similarity. 80-82. 126

Matrix trigonometric function. 82
McEleath. G. W.. 528
Mean. 470-473. 499
Mean-value theorem, 145. 345, 352
Methane, 296
Method of lines. 40J
Meyers. J. E.. 62
Michaelis-Menien constant. 445
Miehaelis-Menten relationship. 441, 445
Minor. 78
Moduhis. 163

theorem. 164

Momentum balance, 22t), 314, 366

Multieomponent separation, 2
Multidinientional anay. 534
Multistage separation process. 265

N

Nernst diffusion layer, 441

Neumann conditions (second kindh 372. 378,
379. 382-385. 395. 399. 4(12, 404,

412, 413. 428. 429

Newton-Cotes i ntegrati 011 formula. 229. 230.

233. 234. 236. 237. 241. 245

Newton-Raphson method, 8, 12-16. 26. 28. 29.

36-39. 45. 53. 123. 125. 197, 312.
493, St)6

Newton's 2nd-order niethod. 14
Newton' s method in boundary-s alue prob 1cm.

309. 310. 312-314. 316. 333
Newton's method iii n 0111 near regression, 49 1.

493. 494
Newton's method iii simultaneous nonlinear

equa000s. 45. 47. 18. 52. 7), 286. 322,

325. 328, 331. 333. 431. 493

Newton's relations. 5. 6

Newtonian fluid. 31 5

Non—Newtonian fluid. 314

Nontrivial solution. 3
Normal density function. 461. 462. 47 1

Normal distribution. 461. 465, 466. 468-470.
474. 477. 478. 48 1-483. 486. 499

Normal equations. 479
Normal probability distribution. 461
Normally distributed population. 465. 471. 472

0
Ordinary diffetential equation. 63. 64. 138. 144.

162. 165. 2t)l). 261. 265. 266. 268.
269. 282. 284. 288. 291. 294-297.
308. 313-317. 322-324. 334. 341-343.
346. 348, 350, 352-355. 40), 403.
435. 488. 491. 5t)3

absolute stability. 343. 35t), 35 1

absolutely stable, 343

autonomous. 266, 269. 272

canonical form. 267-269. 282. 309. 3)5
characteristic equation. 162

convergence. 341

error propagation. 341
homogeneous. 1 6 I . I 62. 266
inherent 341. 342. 347
inherently unstable, 346. 347
linear. 67. 68. 121. 161. 266. 269-271. 273.

274. 276-278. 322. 342. 352. 354. 452
linearization. 352. 353
multiple-step method of solution. 29 1
notiautonomous. 269, 272

nonhomogeneous. 266. 27(1

nonlinear. 262. 266, 269, 272. 297. 315.

329. 352. 358
11011 self—starting solution, 291

numerical stabilit) . 341

order, 265

self-starting solution. 291

simultaneous 262, 264-266. 277. 278.
282-284. 295-298. 310. 312. 316. 323.
329. 333. 352. 358. 402. 451.526

Index 555

Ordinary differential equation teont'd)
single-step method of solution. 29)
stability. 341. 342. 344. 346. 348. 350-352
stiff. 352, 353
unstable. 346

Orthogonal polynomial. 189. 190. 193. 241.
244. 245. 325, 326. 331. 436

Orthogonalitv. 189. l9t). 245. 326
Ostle. B.. 453. 476, 528
Overrelaxation factor, 380

P

Partial hoilei. 137

Partial differential equation. 71. 138. 144, 165.

246. 309. 365. 368-370. 372. 373.
401, 427. 428. 435-437. 439. 440.
445. 527. 528

conditional stability. 401. 434. 435. 438

elliptic. 308. 369. 370. 375. 376. 380-382.

385. 437

explicit solution for hyperbolic. 426. 427.
431. 434. 435

explicit solution for parabolic. 396. 397.
399-401. 412. 431. 432. 438

homogeneous. 369. 425. 426, 434

hyperbolic. 369. 370. 375. 424. 426. 427.

434. 437
iniplicit solution for by perholic. 427. 435
implicit solution for parabolic. 399—4tl I

linear. 368. 369, 43 I. 436

nonhomogeneous. 381. 397. 400. 401. 405.
413

nonlinear, 308. 368. 369. 431. 436
order. 368
parabolic. 58. 369. 370. 375. 395. 397-402.

404. 405. 412. 413. 432. 437. 438

positis ity rule. 396

quasilinear. 368. 369
stability. 396-398. 427. 431, 433. 434

ultrahyperholic. 369

unconditionally stable, 401. 435

unstahility. 396

Partial 91. 128

Pederseo. H.. 447
Penicillin. 238. 331. 332. 334. 340. 355. 502

Pen icillium chrvsogenum. 238. 355. St)2
Pepper. I). W.. 436. 447
Performance equation. 45 1

Peterson. R. 0.. 359. 364
Phase angle. 163. 164
Phase plot. 360
Pinder. G. F.. 38(1. 435. 436. 446
Pivot. 1 2

Pivot element. 91. 95. 96. 102. 104. 107

Pi\oting. 103
Plot. 536. 537

bar graph. 537

filled area. 537

full logarithmic. 537
polar coordinate. 537
semilogarithniic. 537

three-dimensional. 537

Poisson constant. 393

Poisson equation. 381. 382. 384. 385, 393

Polar coordinate. 430. 438

Pomryagins maximum principle. 3t)8. 331

Population. 453. 454. 457. 461. 470. 474. 475.

489

density. 357-359

dynamics. 357. 358

mean. 457. 459. 472
standard deviation. 458
variance. 457-459. 468. 469. 472. 473

Positivity rule, 396. 398, 426. 434. 438
Poynting corrections. 524
Prandtl number, 60
Predator-prey problem. 357. 358. 360. 524
Press. W. H.. 61
Pressure drop. 220. 314

Pressure profile. 220

Probability density' distribution. 454. 457
Probability density function. 454. 461
Probability distribution function, 475
Probability function. 454
Probability of occurrence. 454

556 Index

Process anahsis, 459, 450
Process control, 3, 6
Process dynamics, 3, 451
Propagation error, 341, 342, 345-348. 432, 434
Proportional control, 37
Proportional gain, 37, 38, 44, 58
Pseudoinonas ovalis, 356, 523
Psychrometric chart, 199
Pythagorean theorem, 163

Q

QRalgorithm, 123, 126, 128, 131, 133, 134
Quadrature, 229

Gauss, 229, 24 1-245

Gauss-Legendre, 242, 244-246, 248

R

Rabinowitz, P., 123, 140
Radioactive Particle Tracking, 198
Rai, V. R., 356, 364
Ralston, A,, 123, 134. 140

Random variable, 453-455, 457, 458, 460, 465,
466, 468, 473. 477

Randomness, 499, 506

Randomness test. 499, 506, 522

Rank, 79, 80, 85, 86, 89, 94, 95, 121, 134, 137,

478, 536

Rashchi,F., 194, 196

Rate constant, 199

Rayleigh-Ritz procedure, 435

Reactor, 172. 199, 200, 256-258, 262, 296, 307,
439, 441, 443

adiabatic, 199

batch, 67, 139, 258, 262, 488
circulating fluidized bed, 258

continuous stirred tank, 36, 60, 114

multiphase, 198

nonisothermal, 199, 296

plug flow, 59, 199, 258, 296. 363, 438, 441
Reactor design, 3

Real gas, 1,7

Reboiler, 138
Reddy, 1. N., 436, 447
Redlich-Kister expansion, 524
Reflux ratio, 2. 138
Region of acceptance, 474, 475. 483
Region of rejection, 474
Regression analysis, 71, 450, 452, 461, 466.

471, 475. 482, 493, 495, 498, 505,
506, 522

linear, 452, 453, 476, 479, 493

multiple, 488, 491, 494, 495, 502, 504

nonlinear, 71, 452. 453, 476, 486, 488,

494, 496, 502

polynomial, 479. 480

Regula falsi, 12
Relative volatility, 2, 56
Relaxation factor, 47-49, 52. 312, 316, 317,

380, 491, 493

Residence time. 61, 256, 257
Residence time distribution (RTD). 256. 257
Reynolds number. 3, 60
Rhodes, E., 447
Riess, R. D.. 141
Robbins conditions (third kind). 372. 378. 379.

382-385, 399, 404, 412. 413, 428, 429

Roughness, 2

Roundoff error, 290, 34 1-347, 432

Runge-Kutta method. 288-291. 294-298. 307.

316, 333, 344. 348-350, 354, 355

Runge-Kutta-Fehlberg method, 352

Runs test, 499

S

Salvadori, M. G., 61, 195
Samarski, A. A., 369, 446
Sample, 453, 454, 457, 461, 465. 473, 475

mean, 457. 459. 465, 47 1-473
standard deviation. 459
variance, 459, 465, 469. 470, 472, 473

Scalar product, 84

Scott. D. S., 447

Second central moment, 458, 465

Index 557

Shao. p.. 140
Shear rate. 314

Shear stress. 314

Shift factor, 131-133

Shill operator. 146-148. 162

Shooting method. 310. 313. 314. 316. 322. 362

Sienteld. J. 11.. 363.466. 529

Significance test. 469. 506. 522

Simpson's 1/3 rule. 2311. 234. 236-238. 241

Simpson's 3/8 rule. 230. 235. 236

Simultaneous aleehraic elluations. 451
hidiagonal. 66

homoeencous. 67. 69. #5. 86. 121. 124

ill—conditioned. 167

hneai. 63. 64. 66. 67. 71. 79, 80. 85. 87.

88. 93-95. 99. 103-106. 111. 113. 115.
116. 122. 135. 136. 167. 181. 286.
322. 377-379. 399 4(11. 41)4. 4t)5.
427. 431.479

nonhomogeneous. 69. 86. 87. 94. I 2 1

nonlinear. 3.45.47.71. 136. 286. 29t).
321.322.325.328,331.431.493

nontris ial soluoon. 86. 121. 122
ptcdominantly diagonal. Ill. 112. 114.

115. 379. 38(1

tridiaconal. 1 83

solution. 86
Singular salue decomposition. 536
Sink. 397
Smith. G 447

Solid mixing. 527
Solvent extraction. 1 35

Source. 397

Spencer, J. L., 363

Spline. 180. 228

Spline function, I #t)— 1 82

cubic. 180. 181. 184. 188

natural condition. I 8 1 . 183. 1 #4. 228. 252

not—a—knot condition. 167, 181 . 228. 252

analysis. 453

Standard deviation, 459. 499. 506. 522
Standard normal densit\ function. 462. 464. 466

Standaixl normal distribution. 47 1. 472. 482.

502

State of the system. 450
State 450-452

Static gain. 58

Statistical anal\ sis. 452. 461. 468. 488. 505.
506. 522. 524. 527

Statistical pai anictei . 453

Statistics. 502
Steady state. 37. 54. 64. 69. 114. 139. 362. 472.

375. 376. 4 1(1. 422. 423. 438. 441.
446

Steepest descent method. 489. 493. 494
Stefan—Boltzmann coimstani. 59

Step sue contiol. 283. 351. 352
Sternherg. R.. 447

W. F . 259 . 446

Stillness ratio tSRt. 353
Stirling's inteipolatioit formula. 168. 176. 177.

194

Stoit hiotnetr\ . h9 711

Student's / disti ihution, 461. 465. 469, 473. 474.
482. 483. 506

Student's i fuimction. 468.

506

Suhdomai ii method.

Suhsti ate. 70. 262. 441

Sulcessive substitution, 8-1(1. 15. 16
J.. 526. 529

nthetic division, 6. 34-39, 53
Svstcnis analssis, 459
System'ns engineei-ii-ig. 459

T

/test. 475. 483. 496. 5(16. 522
Tangential descent. 8
Ta\lorscries. 12-14. 45. 47. 145. 147. 148. 176.

289.311.325.427.428.490.491
fempematume profile. 246. 248. 25 I. 296. 307.

331. 34(1. 372. 382. 383. 412. 413.
422. 423

558 index

Teukolsky, S. A.. 61
Thermal conductivity. 59. 60, 94. 246. 367. 381.

383. 438, 440
Thermal 412, 438
Thermodynamics. 1 . 33. 362

Thevenot, D. R.. 447
Thomas algorithm. 401
Thornton, E. A., 447
Toluene. 1 35

Transcendental equation. 4. 53
Transfer function. 3. 6. 37-39, 58
Transport phenomena. 365
Trapeioidal rule, 70, 230. 232-234. 237. 238.

241-244. 253. 287
Treyhal. R. E.. 2. 61
Trimethylpentane (2.2.4-), 524
Truncation error. 145. 21)1. 208. 212. 214. 220,

221, 232, 233. 239. 285. 297. 298,
341-347. 352. 432

Turbulent eddy diffusivity. 199
Turner. K. V.. 528
lurnover number. 445
Two-phase flov. 221)

Tyehonov. A. N.. 369. 446

U

Unbiased estimate. 457, 459
Underrelax ation factor. 380
Underwood, A. J. V., 2, 56. 61
UNIX. 533

Unsteady state, 115,212.218.273.367.368.
370. 372, 373, 395. 404, 410, 411.
413. 445, 446

V

Vandermeer. J., 359. 364
Vapor-liquid equilibrium. 54, 524
Vapor pressure, 524
Variance. 257, 460-462. 468-471, 473. 475.

477. 478, 481. 482. 495-498, 502.
504. 506. 522

\'ariational formulation. 435
Variational principle, 435
Vector

chaiacteristie. 68
cross product. 84
dot product. 83
dyadie product. 83
inner product. 83
linearly dependent. 84
linearl) independent. 84
orthogonal. 81. 84
scalar product. 83
transpose. 83
unit normal. 428

Velocinietry. 198
Velocity profile. 198. 246. 255. 314, 316, 317,

321). 538

Veniuri. V.. 435, 447
Venkatasubranianian. K.. 140 . 447

Vetterling. W. T.. 61
Vichnevetsky. R., 435. 446
Vieth, W. R.. 140.447
Viscosity 246. 314,315

zero shear rate, 3 14

Von Neumann condition for stability, 433. 434
Von Neumann procedure. 43 1. 432. 434. 438

w
Wave equation. 369
Wegstein method. 9. 10
Weighted residuals method. 323. 435. 436
Wilkes. J. 0.. 141, 259. 447
Wolford. .1. C.. 447

x
Xu.Z., 196

z

Zeta-potential. 194

THE AUTHORS

We sincerely hope that \ou base en)Oyed reading this hook and using the software that
accompanies it. For updates of the are and other ness about the book please sit our
website: http://sol.rutgers.edLi/—constant. If ou have any questions or comments. von skill be
able to e-mail us sia the ss ebsite.

Alkis Constantinides is Professor and Chairman
of the Department of Chemical and Biochemical
Engineeriiig at Rtitgers. The State Universit\ ol New
Jerse. He ssa.s born in C\ prtis. here he us ed until he
graduated horn high school. in I he came to the
United States to attend Ohio State
Columbus. and ieceived the B.S. and MS. decrees in
chemical engineering in 196.1. For the next tsso sears
he worked at Exxon Research and Engineering
Company in Florhani Park. NJ. In 1969. lie receis ed
the Ph.D. degree in chemical engineering from
Columbia Unis , Ness York, NY. He then joined
the Department of Chemical Engineering at Rutgers

ni' ersity where lie helped establish the biochemical
engineering curriculum ol the department.

Professor Constantinides has 31) experience
teaching graduate and undergraduate courses in

chemical and biochemical engineering. His research
interests are in the fields ol computer applications in
chemical and biochemical engineering. process

modeling and optimization. artificial intelligence. biotechnology , t ermentations. and enzyme
engineering Professor ('onstanti nides has industrial experience in process development and
design ol large petrochemical Plants and in pilot plant research. lie has served as consultant
to industry in the areas of fermentation processes. enz\ nie engineering. application of ai ti ficial
intelligence in chemical process planning. design and economics of chemical processes.
technology assessment, modeling, and optimization. 1—Ic is the author of the textbook .4 pp/led
Numerical Methods nit/i Personal Conipater.s. published McGrass—Hill in 1987. He is the
editor aiid co—editor of three volumes of Biochemical Enç'mneei lug, published hs the NY
Academy of Sciences. and the author of more than papers in professional journals. He
ser\ ed as the I)irector of the Graduate Program in Cheimeal and Biochemical Engiiieering
troni 1976 to 1985. In addition to being the Chairman, lie is also the I)irector of the
Microcomputer Laboratory of the department.

559

The Authors 560

Professor Constantinides is the recipient of Rutgers University's prestigious Warren I.
Susman Award for Excellence in Teaching (1991) and the 1998 Teaching Excellence Award
given by the Graduating Senior Class of the Chemical and Biochemical Engineering
I)epartment.

Alkis Constantinides is a member of the American Institute of Chemical Engineers and
the American Chemical Society.

Navid Mostoufi is Assistant Professor of Chemical
Engineering at the University of Tehran, Iran. He was
born in Ahadan, Iran. He received the B.S. and M.S.
degrees in chemical engineering from the University of
Tehran. From 1989 to 1994 he worked as process
engineer with Chagalesh Consulting Engineers and
Farazavaresh Consulting Engineers, Tehran. In 1999 he
received the Ph.D. degree in chemical engineering from
Ecole Polytechnique de Montréal and then joined the
Department of Chemical Engineering in the Faculty of
Engineering, University of Tehran. His areas of active
investigation are multi phase reactors and numerical
methods. Professor Mostoufi has five publications in
Chemical Engineering Science and other majorjourn�ds.
He is a member of the Iranian Society for Chemical
Engineering and the Iranian Petroleum Institute.

CHEMfCAL.

Numerical Methods for Chemical
Engineers with MAUAB Applications
Alkis Constantinides & Navid Mostoufi

Master numerical methods using MATLAB, today's leading software for problem solving

This complete guide to numerical methods in chemical engineering is the first to take full advantage
of MATLAB's powerful calculation environment. Every chapter contains several examples using
general MATLAB functions that implement the method and can also be applied to many other
problems in the same category.

The authors begin by introducing the solution of nonlinear equations using several standard
approaches, including methods of successive substitution and linear interpolation; the Wegstein
methcd; the Newton-Raphson method; the Eigenvalue method; and synthetic division algorithms.
With these fundamentals in hand, they move on to simultaneous linear algebraic equations,
covering matrix and vector operations; Cramer's rule; Gauss methods; the Jacobi method; and
the characteristic-value problem. Additional coverage includes:

• Finite difference methods, and interpolation of equally and unequally spaced points
• Numerical differentiation and integration, including differentiation by backward, forward, and

central finite differences; Newton-Cotes formulas; and the Gauss Quadrature
• Two detailed chapters on ordinary and partial differential equations
• Linear and nonlinear regression analyses, including least squares, estimated vector of parameters,

method of steepest descent, Gauss-Newton method, Marquardt Method, Newton Method,
and multiple nonlinear regression

The numerical methods covered here represent virtually all of those commonly used by practicing
chemical engineers. The focus on MATL.AB enables readers to accomplish more, with less complexity,
than was possible with traditional FORTRAN. For those unfamiliar with MATLAB, a brief introduction is
provided as an Appendix.

The accompanying CD-ROM contains MATLAB 5.0 (and higher) source code for more than 60
/ examples, methods, and function scripts covered in the book. These programs are compatible
with all three operating systems:

a member of the faculty in the Department of Chemical and Biochemical
Engineering at Rutgers, The State University of New Jersey.

NAVIO MOSTOUFI is a member of the faculty in the Department of Chemical Engineering, University
of Tehran, Iran.

ISBN 0-13-013851-7
90000

PRENTICE HALL
Upper Saddle River, NJ 07458

http://www.phptr.com 780130 138514

	Cover
	S Title
	Editors
	Title: Numerical Methods for Chemical Engineers with MATLAB Applications
	Copyright
	© 1999 by Prentice liall Vl,R
	ISBN 0-13-013851-7
	QA297.C6494 1999 660 .01'5194—-dc2I

	Dedication
	Contents
	Preface
	Programs on the CD-ROM
	General Algorithm for the Software Developed in this Book
	CHAPTER 1: Numerical Solution of Nonlinear Equations
	1.1 INTRODUCTiON
	1.2 TYPES OF ROOTS AND THEIR APPROXIMATION
	1.3 THE METHOD OF SUCCESSIVE SUBSTITUTION
	1.4 THE WEGSTEIN METHOD
	1.5 THE METHOD OF LINEAR INTERPOLATION (METHOD OF FALSE POSITION)
	1.6 THE NEWTON-RAPHSON METHOD
	Example 1.1 Solution of the Colebrook Equation
	Example 1.2 Solution of the Soave-Redlich-Kwong Equation

	1.7 SYNTHETIC DIVISION ALGORITHM
	1.8 THE EIGENVALUE METHOD
	Example 1.3: Solution of nth-Degree Polynomials and Transfer Functions

	1.9 NEWTON'S METHOD FOR SIMULTANEOUS NONLINEAR EQUATIONS
	Example 1.4: Solution of Nonlinear Equations in Chemical Equilibrium

	PROBLEMS
	REFERENCES

	CHAPTER 2: Numerical Solution of Simultaneous Linear Algebraic Equations
	2.1 INTRODUCTION
	2.2 REVIEW OF SELECTED MATRIX AND VECTOR OPERATIONS
	2.2.1 Matrices and Determinants
	2.2.2 Matrix Transformations
	2.2.3 Matrix Polynomials and Power Series
	2.2.4 Vector Operations

	2.3 CoNsisTENCY OF EQUATIONS AND EXISTENCE OF SOLUTIONS
	2.4 CRAMER'S RULE
	2.5 GAUSS ELIMINATION METHOD
	2.5.1 Gauss Elimination in Formula Form
	2.5.2 Gauss Elimination in Matrix Form
	2.5.3 Calculation of Determinants by the Gauss Method
	Example 2.1: Heat Transfer in a Pipe Using the Gauss Elimination Method forSimultaneous Linear Algebraic Equations

	2.6 GAUSS-JORDAN REDUCTION METHOD
	2.6.1 Gauss-Jordan Reduction in Formula Form
	2.6.2 Gauss-Jordan Reduction in Matrix Form
	2.6-3 Gauss-Jordan Reduction with Matrix Inversion
	Example 2.2: Solution of a Steam Distribution System

	2.7 GAUSS-SEIDEL SUBSTITUTION METHOD
	2.8 JAcoBI METHOD
	Example 2.3: Solution of Chemical Reaction and Material Balance Equations

	2.9 HOMOGENEOUS ALGEBRAIC EQUATIONS AND THE CHARACTERIST1C-VALUE PROBLEM
	2.9.1 The Faddeev-Leverrier Method
	2.9.2 Elementary Similarity Transformations
	2.9.3 The OR Algorithm of Successive Factorization

	PROBLEMS
	REFERENCES

	CHAPTER 3: Finite Difference Methods and Interpolation
	3.1 INTRODUCTION
	3.2 SYMBOLIC OPERATORS
	3.3 BACKWARD FINITE DIFFERENCES
	3.4 FORWARD FINITE DIFFERENCES
	3.5 CENTRAL FINITE DIFFERENCES
	3.6 DIFFERENCE EQUATIONS AND THEIR SOLUTIONS
	3.7 INTERPOLATING POLYNOMIALS
	3.8 INTERPOLAT(ON OF EQUALLY SPACED POINTS
	3.8.1 Gregory-Newton interpolation
	Example 3.1: Gregory-Newton Method for Interpolation of Equally Spaced Data.
	3.8.2 Stirling's Interpolation

	3.9 INTERPOLATION OF UNEQUALLY SPACED POINTS
	3.9.1 Lagrange Polynomials
	3.9.2 Spline Interpolation
	Example 3.2: The Lagrange Polynomials and Cubic Splines for Interpolation of Unequally Spaced Data

	3.10 ORTHOGONAL POLYNOMIALS
	PROBLEMS
	REFERENCES

	CHAPTER 4: Numerical Differentiation and Integration
	4.1 INTRODUCTION
	4.2 DIFFERENTiATION BY BACKWARD FINITE DIFFERENCES
	4.2.1 First-Order Derivative in Terms of Backward Finite Differences with Error of Order h
	4.2.2 Second-Order Derivative in Terms of Backward Finite Differences with Error of Order h
	4.2.3 First-Order Derivative in Terms of Backward Finite Differences with Error of Order h^2
	4.2.4 Second-Order Derivative in Terms of Backward Finite Differences with Error of Order h^2

	4.3 DIFFERENTIATION BY FORWARD FINITE DIFFERENCES
	4.3.1 First-Order Derivative in Terms of Forward Finite Differences with Error of Order h
	4.3.2 Second-Order Derivative in Terms of Forward Finite Differences with Error of Order h
	4.3.3 First-Order Derivative in Terms of Forward Finite Differences with Error of Order h^2
	4.3.4 Second-Order Derivative in Terms of Forward Finite Differences with Error of Order h^2

	4.4 DIFFERENTIATION BY CENTRAL FINITE DIFFERENCES
	4.4.1 First-Order Derivative in Terms of Central Finite Differences with Error of Order h2
	4.4.2 Second-Order Derivative in Terms of Central Finite Differences with Error of Order h2
	4.4.3 First-Order Derivative in Terms of Central Finite Differences with Error of Order h4
	4.4.4 Second-Order Derivative in Terms of Central Finite Differences with Error of Order h4
	Example 4.1: Mass Transfer Flux from an Open Vessel.
	Example 4.2: Derivative of Vectors of Equally Spaced Points

	4.5 SPLINE DIFFERENTIATION
	4.6 INTEGRATiON FORMULAS
	4.7 NEWTON-COTES FORMULAS OF INTEGRATiON
	4.7.1 The Trapezoidal Rule
	4.7.2 Simpson's 1/3 Rule
	4.7.3 Simpson's 3/8 Rule
	4.7.4 Summary of Newton-Cotes integration
	Example 4.3: Integration formulas-Trapezoidal and Simpson's 1/3 Rules

	4.8 GAUSS QUADRATURE
	4.8.1 Two-Point Gauss-Legendre Quadrature
	4.8.2 Higher-Point GaussLegendre Formulas
	Example 4.4: Integration Formulas - Gauss-Legendre Quadrature

	4.9 SPLINE INTEGRATION
	4.10 MULTIPLE INTEGRALS
	PROBLEMS
	REFERENCES

	CHAPTER 5: Numerical Solution of Ordinary Differential Equations
	5.1 INTRODUCTION
	5.2 CLASsIFIcATIoNS OF ORDINARY DIFFERENTIAL EQUATIONS
	5.3 TRANSFORMATION TO CANONiCAL FORM
	Example 5.1: Transformation of Ordinary Differential Equations into Their Canonical Form

	5.4 LINEAR ORDINARY DIFFERENTIAL EQUAT1ONS
	Example 5.2: Solution of a Chemical Reaction System

	5.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS INITIAL-VALUE PROBLEMS
	5.5.1 The Euler and Modified Euler Methods
	5.5.2 The Runge-Kutta Methods
	5.5.3 The Adams and Adams-Moulton Methods
	5.5.4 Simultaneous Differential Equations
	Example 5.3: Solution of Nonisothermal Plug-Flow Reactor.

	5.6 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS BOUNDARY-VALUE PROBLEMS
	5.6.1 The Shooting Method
	Example 5.4: Flow of a Non-Newtonian Fluid.

	5.6.2 The Finite Difference Method
	5.6.3 Collocation Methods
	Example 5.5: Solution of the Optimal Temperature Profile for Penicillin Fermentation.

	5.7 ERROR PROPAGATION, STABILITY, AND CONVERGENCE
	5.7.1 Stability and Error Propagation of Euler Methods
	5.7.2 Stability and Error Propagation of Runge-Kutta Methods
	5.7.3 Stability and Error Propagation of Multistep Methods

	5.8 STEP SIZE CONTROL
	5.9 STIFF DIFFERENTIAL EQUATIONS
	PROBLEMS
	REFERENCES

	CHAPTER 6: Numerical Solution of Partial Differential Equations
	6.1 INTRODUCTION
	6.2 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS
	6.3 INITIAL AND BOUNDARY CONDITIONS
	6.4 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS USING FINITE DIFFERENCES
	6.4.1 Elliptic Partial Differential Equations
	Example 6.1: Solution of the Laplace and Poisson Equations.

	6.4.2 Parabolic Partial Differential Equations
	Example 6.2: Solution of Parabolic Partial Differential Equation for Diffusion.
	Example 6.3: Two-Dimensional Parabolic Partial Differential Equation for Heat Transfer.

	6.4.3 Hyperbolic Partial Differential Equations
	6.4.4 Irregular Boundaries and Polar Coordinate Systems
	6.4.5 Nonlinear Partial Differential Equations

	6.5 STAB1LITY ANALYSIS
	6.6 INTRODUCTION TO FINITE ELEMENT METHODS
	PROBLEMS
	REFERENCES

	CHAPTER 7: Linear and Nonlinear Regression Analysis
	7.1 PROCESS ANALYSIS, MATHEMATICAL MODELING, AND REGRESSION ANALYSIS
	7.2 REVIEW OF STATISTICAL TERMINOLOGY USED IN REGRESSION ANALYSIS
	7.2.1 Population and Sample Statistics
	7.2.2 Probability Density Functions and Probability Distributions
	7.2.3 Confidence Intervals and Hypothesis Testing

	7.3 LINEAR REGRESSION ANALYSiS
	7.3.1 The Least Squares Method
	7.3.2 Properties of the Estimated Vector of Parameters

	7.4 NONLINEAR REGRESSiON ANALYSIS
	7.4.1 The Method of Steepest Descent
	7.4.2 The Gauss-Newton Method
	7.4.3 Newton's Method
	7.4.4 The Marquardt Method
	7.4.5 Multiple Nonlinear Regressio

	7.5 ANALYSIS OF VARIANCE AND OTHER STATISTiCAL TESTS OF THE REGRESSION RESULTS
	Example 7.1: Nonlinear Regression Using the Marquardt Method

	PROBLEMS
	REFERENCES

	APPENDIX A: Introduction to MATLAB
	A.1 BASIC OPERATIONS AND COMMANDS
	A.2 VECTORS, MATRICES, AND MULTIDIMENSIONAL ARRAYS
	A.2.1 Array Arithmatic

	A.3 GRAPHICS
	A.3.1 2-D Graphs
	A.3.2 3-D Graphs
	A.3.3 21/2-D Graphs

	A.4 SCRIPTS AND FUNCTIONS
	A.4.1 Flow Control

	A.5 DATA EXPORT AND IMPORT
	A.6 WHERETO FIND HELP

	Index
	THE AUTHORS
	Alkis Constantinides is
	Navid Mostoufi

	Back Cover
	TrUe LiAr

