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Preface

This book cmphasizces the derivation of a variety
of numerical methods and their application to the solution of engineering problems, with
special attention to problems in the chemical engineering field. These algorithms encompass
linear and nonlinear algebraic equations, eigenvalue problems, finite difference methods,
interpolation, differentiation and integration, ordinary differential equations, boundary valuc
problems, partial differential equations, and linear and nonlinear regression analysis.
MATLAB? is adopted as the calculation environment throughout the book. MATLAB is a
high-performance language for technical computing. It integrates computation, visualization,
and programming in an easy-to-use environment. MATLAB is distinguished by its ability to
perform all the calculations in matrix form, its large library of built-in functions, its strong
structural language, and its rich graphical visualization tools. In addition, MATLAB is
available on all three operating platforms: WINDOWS, Macintosh, and UNIX. The reader is
expected to have a basic knowledge of using MATLAB. However, for those who are not
familiar with MATLAB, it is recommended that they cover the subjects discussed in
Appendix A: Introduction to MATLAB prior to studying the numerical methods.

Several worked examples are given in each chapter to demonstrate the numerical
techniques. Most of these examples require computer programs for their solution. These
programs were written in the MATLAB language and are compatible with MATLAB 5.0 or
higher. In all the examples, we tried to present a general MATLAB function that implements

MATLAB is a registered trademark of the MathWorks, Inc.
xiii



Xiv Preface

the method and that may be applied to the solution of other problems that fall in the same
category of application as the worked example. The general algorithm for these programs is
illustrated in the section entitled, “General Algorithm for the Software Devcloped in this
Book.” All the programs that appear in the text are included on the CD-ROM that
accompanies this book. There are three versions of these programs on the CD-ROM, one for
each of the major operating systems in which MATLAB cxists: WINDOWS, Macintosh, and
UNIX. Installation procedurcs. a complete list. and brief descriptions of all the programs arc
given in the section entitled “‘Programs on the CD-ROM™ that immediately follows this
Preface. In addition. the programs arc described in detail in the text in order to provide the
reader with a thorough background and understanding of how MATLAB is used to implement
the numerical methods.

It is important to mention that the main purpose of this book is to teach the student
numerical methods and problem solving, rather than to be a MATLAB manual. In order to
assure that the student develops a thorough understanding of the numerical methods and their
implementation, new MATLAB functions have been written to demonstrate each of the
numerical methods covered in this text. Admittedly, MATLAB already has its own built-in
functions for some of the methods introduced in this book. We mention and discuss the built-
in functions, whenever they exist.

The material in this book has been used in undergraduate and graduate courses in the
Department of Chemical and Biochemical Engineering at Rutgers University. Basic and
advanced numerical methods arc covered in each chapter. Whenever feasible, the more
advanced techniques are covered in the last few scctions of each chapter. A one-semester
graduate level course in applied numerical methods would cover all the material in this book.
An undergraduate course (junior or senior level) would cover the more basic methods in cach
chapter. To facilitate the professor teaching the course, we have marked with an asterisk (¥)
in the Tablc of Contents those scctions that may be omitted in an undergraduate course. Of
course, this choice is left to the discretion of the profcssor.

Future updates of the software, revisions of the text. and other news about this book will
be listed on our web site at http://sol.rutgers.edu/~constant.

Prentice Hall and the authors would like to thank the reviewers of this book for their
constructive comments and suggestions. NM is grateful to Professor Jamal Chaouki of Ecole
Polytechnique de Montréal for his support and understanding.

Alkis Constantinides
Navid Mostoufi



Programs on the CD-ROM

Brief Description

The programs contained on the CD-ROM that accompanies this book have been written in the
MATLAB 5.0 language and will execute in the MATLAB command environment in all three
operating systems (WINDOWS, Macintosh, and UNIX). There are 21 examples, 29 methods,
and 13 other function scripts on this CD-ROM. A list of the programs is given later in this
section. Complete discussions of all programs are given in the corresponding chapters of the
text.

MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment. It is assumed
that the user has access to MATLAB. If not, MATLAB may be purchased from:

The MathWorks, Inc.

24 Prime Park Way

Natick, MA 07160-1500

Tel: 508-647-7000 Fax: 508-647-7001
E-mail: info@mathworks.com
http://www.mathworks.com

The Student Edition of MATLAB may be obtained from:

Prentice Hall PTR, Inc.

One Lake Street

Upper Saddle River, NJ 07458
http://www.prenhall.com

An introduction to MATLAB fundamentals is given in Appendix A of this book.

Program Installation for WINDOWS
To start the installation, do the following:

1. Insert the CD-ROM in your CD-ROM drive (usually d: or e:)
2. Choose Run from the WINDOWS Start menu, type d:\setup (or e:\setup) and click
OK.

XV
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3. Follow the instructions on screen.
4. When the installation is complete, run MATLAB and set the MATLAB search path
as described below.

This installation procedure copies all the MATLAB files to the user’s hard disk (the default
destination folder is C:\Program Files\Numerical Methods). It also places a shortcut. called
Numerical Mcthods, on the Start Programs menu of WINDOWS (see Fig. 1). This shortcut
accesses all twenty-onc examples from the seven chapters of the book (but not the methods).
In addition, the shortcut provides access to the readme file (in three different formats: pdf,
html, and doc). Choosing an example from the shortcut enables the user to view the
MATLAB script of that cxample with the MATLAB Editor. Files have been installed on the
hard disk with the “read-only” attribute in order to prevent the user from inadvertently
modifying the program files (scc Editing the Programs, bclow). To execute any of the
cxamples, see Executing the Programs, below.

Program Installation for Macintosh

The CD-ROM is in ISO format, therelore it can be read by Macintosh computers that have File
Exchange (for System 8 or higher) or PC Exchange (for System 7). Il you have not activated
the File Exchange. please do so via the Control Panels before using this CD-ROM. To start
the installation, do the following:

1. Insert the CD-ROM in your CD-ROM drive on a Macintosh computer.

2. Open the folder named MAC on the CD-ROM. This contains a compressed file
(zip file) named NUMMETH.ZIP

3. Copy the file NUMMETH.ZIP to your computer and uncompress it using Zipil or
Stufflt Expander. This will create a folder named Numerical Methods which contains
all the programs of this book.

4. When the installation is complete. run MATLAB and set the MATLAB scarch
path as described below.

Program Installation for UNIX Systems
To start the installation, do the following:

1. Insert the CD-ROM in your CD-ROM drive on a UNIX workstation.
2. Open the folder named UNIX on the CD-ROM. This contains a compressed file (tar
file) named nummeth.tar.
3. Copy the file nummeth.tar to your computer and uncompress it using the rar
command:
tar xf nummeth.tar



Programs on the CD-ROM xvii

This will create a folder named Niumerical Methods which contains all the programs
of this book.

4. When the installation is complete, run MATLAB and sct the MATLAB search path
as described below.

Hlive Piclure

wwindows Update
Lotus SmanSuite

1 -m3Com PC Card Utilitics 4
= o -SAbsoft I’ro Fortran B
My Computer  \\\7 B ! QAccessonas »
Editor _SAdobe >
N .ZtAdube Acrobat »
‘! ,éx .~Adobe Photoshop 4
My MATLAB _DAldus 4
Documents -ZAmenica Online 4
ml SAnm s
T ¢

¥ _,:’;3’ ZiCapcost ’
Network Netscupe S Careers tor Chemical Engineers 4
Neighbarho  Navigator .= ChemCAD for Windaws >
-HCorel WordPerect Suite 8 >
]New Uthice Document _=DLJdirect >
. .~Ludora Pro >
[ Open Office Ducument N b 5 Profess | Fdition *
- svne i ! >

-iAme"cn Ontine 40 SintelhSync 97 fur Winduws
Internet Fxplorer >
»
>
>
»

K% Programs AMathType
- .IMatiab
+ | Favontes » -ZIMediamatics Software MPEG
.ZiMicrosott Reterence »
_§ Documents »  =Microsoft Trial Programs >
B -ZIMS Office >
sxp Betings * .= Netscape Navigotor v
A Eind > NI' ) -
Example?_1
@Holp H0nline Services * -AChnptar?2 » xamplel_2
- .zlProtessional Photos > .SiChapter3 * @iExamplel 3
g Zj_i] Run SPureVaice * .mChuplerd * B Fxamplel_4
- 0uit kBouks » AChapiers *
& Logoft “=1Quick I ime > DChapteré *
* = QuickTime for Windows v .HChapter? *
R jj shyt Down -mRingCentral » =Readme *
_ =Stanup >
[ A WIX & e e . REMBSIeEIT

Figure 1 Arrangement of the Numerical Methods programs in the Start menu.

Setting the MATLAB Search Path

It is important that the scarch path used by MATLAB is set correctly so that the files may be
found from any dircctory that MATLAB may be running. In the MATLAB Command
Window choosc File. Set Path. This will open the Path Browser. From the menu of the Path
Browser choose Path, Add to Path. Add the directories of your hard disk where the Numerical
Methods programs have been installed (the default directory for the WINDOWS installation
is C:\Program Files\Numerical Methods\Chapterl. etc.). The path should look as in Fig. 2,
provided that the default directory was not modified by the user during setup.

Executing the Programs

Once the search path is set as described above, any of the examples, methods. and functions
in this book may be used from anywhere within the MATLAB environment. To execute one
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of the examples, simply enter the name of that example in the MATLAB Command Window:
»Examplel_1

To use any of the methods or functions from within another MATLAB script, invoke the
method by its specific name and provide the necessary arguments for that method or function.
To get a brief description of any program, type help followed by the name of the program:

»help Example!_1

To get descriptions of the programs available in each Chapter, type help followed by the name
of the Chapter:

»help Chapterl

To find out what topics of help are available in MATLAB, simply type help:
»help

Editing the Programs

The setup procedure installed the files on the hard disk with the “read-only” attribute in order
to prevent the user from inadvertently modifying the program files. If any of the program files
are modified, they should be saved with a different name. To modify any of the MATLAB
language programs, use the MATLAB Editor. Read the comments at the beginning of each
program before making changes.

Important note for users of the software

Last-minute changes have been made to the software; however, these changes do not appear
in the text or on the CD-ROM that accompanies this book. To download the latest version of
the software, please visit our website:

http://sol.rutgers.edu/~constant
Note for users of MATLAB 5.2
The original MATLAB Version 5.2 had a “bug.” The command
linspace(0,0,100)

which is used in LL.m, NR.m, and Nrpoly.m in Chapter 1, would not work properly in the
MATLAB installations of Version 5.2 which have not yet been corrected. A patch which
corrects this problem is available on the website of Math Works, Inc.:

http://www.mathworks.com

If you have Version 5.2, you are strongly encouraged to download and install this patch, if you
have not done so already.
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Figure 2 The correct MATLAB search path that includes all seven chapters of
the Numerical Methods software.

LISTING AND DESCRIPTION OF PROGRAMS

CHAPTER 1

Program Name

Examples

Examplel _I.m

Examplel_2.m

Examplel_3.m

Examplel_4.m

Description

Calculates the friction factor from the Colebrook equation using
the Successive Substitution (XGX.m), the Linear Interpolation
(LI.m), and the Newton-Raphson (NR.m) methods.

Solves the Soave-Redlich-Kwong equation of state using the
Newton-Raphson method for polynomial equations (NRpolv.m).

Solves nth-degree polynomials and transfer functions using the
Newton-Raphson method with synthetic division (NRsdivision.m).

Solves simultaneous reactions in chemical cquilibrium using
Newton's method for simultaneous nonlinear cquations
(Newton.m).



XX

Methods
XGX.m

Lim

NR.m

NRpoly.m

NRsdivision.m

Newton.m
Functions

Colebrookg.m

Colebrook.m

Exl_4_func.m

CHAPTER 2
Examples

Example2_l.m

Example2_2.m

Example2_3.m

Programs on the CD-ROM

Successive Substitution method to find one root of a nonlinear
equation.

Linear Interpolation method to find one root of a nonlinear
equation.

Newton-Raphson method to find one root of a nonlincar equation.

Newton-Raphson method to find one root of a polynomial
equation.

Newton-Raphson mcthod with synthetic division to find all the
roots of a polynomial equation.

Newton’s method for simultaneous nonlinear equations.

Contains the Colebrook equation in a form so that it can be solved
by Successive Substitution (used in Examplel _1.m).

Contains the Colebrook equation in a form so that it can be solved
by Linear Interpolation and/or Newton-Raphson (used in
Examplel _I1.m).

Contains the sct of simultaneous nonlinear equations (used in
Examplel _4.m).

Solves a set of simultaneous linear algebraic equations that model
the heat transfer in a steel pipe using the Gauss Elimination
method (Gauss.m).

Solves a set of simultaneous linear algebraic equations that model
the steam distribution system of a chemical plant using the Gauss-
Jordan Reduction method (Jordan.m).

Solves a set of simultancous linear algebraic equations that
represent the material balances for a set of continuous stirred tank
reactors using the Jacobi Iterative method (Jacobi.m).
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Methods

Gauss.m

Jordan.m

Jacobi.m

CHAPTER 3
Examples

Example3_I1.m

Example3_2.m

Methods
GregoryNewton.m
Lagrange.m

NaturalSPLINE.m

CHAPTER 4
Examples

Exampled_1.m

Exampled_2.m

Exampled_3.m

Exampled_4.m

Gauss Elimination method for solution of simultaneous linear
algebraic equations.

Gauss-Jordan Reduction method for solution of simultaneous
linear algebraic equations.

Jacobi Iterative method for solution of predominantly diagonal
sets of simultaneous linear algebraic equations.

Interpolates cqually spaced points using the Gregory-Newton
forward interpolation formula (GregoryNewton.m).

Interpolates unequally spaced points using Lagrange polynomials
(Lagrange.m) and cubic splines (NaturalSPLINE.m).

Gregory-Ncewton forward interpolation method.
Lagrange polynomial interpolation method.

Cubic splines interpolation method.

Calculates the unsteady flux of water vapor {rom the open top of
a vessel using numerical differentiation of a function (fder.m).

Calculates the solids volume fraction profile in the riser of a gas-
solid fluidized bed using differentiation of tabulated data
(deriv.m).

Integrates a vector of experimental data using the trapezoidal rule
(trupz.m) and the Simpson’s 1/3 rule (Simpson.m).

Integrates a function using the Gauss-Legendre quadrature
(GaussLegendre.m).
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Methods

fder.m

deriv.m
Simpson.m
GaussLegendre.m
Functions

Ex4_1_phim

Ex4_1_profile.m

Ex4_4_func.m

Chapter 5
Examples

Example5_2.m

Example5_3.m

Example5_4.m

Example5_5.m

Methods
LinearODE.m

Euler.m
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Differentiation of a function.
Differentiation of tabulated data.
Integration of tabulated data by the Simpson’s 1/3 rule.

Integration of a function by the Gauss-Legendre quadrature.

Contains the nonlinear equation for calculation of phi (used in
Example4_1.m).

Contains the function of concentration profile (used in
Example4_1.m).

Contains the function to be integrated (used in Example4_4.m).

Calculates the concentration profile of a system of first-order
chemical reactions by solving the set of linear ordinary differential
equations (LinearODE.m).

Calculates the concentration and temperature profiles of a
nonisothermal reactor by solving the mole and energy balances
(Euler.m, MEuler.m, RK.m, Adams.m. AdamsMoulton.m).

Calculates the velocity profile of a non-Newtonian fluid flowing
in a circular pipe by solving the momentum balance equation
(shooting.m).

Calculates the optimum concentration and temperature profiles in
a batch penicillin fermentor (collocation.m).

Solution of a set of linear ordinary differential equations.

Solution of a set of nonlinear ordinary differential equations by the
explicit Euler method.
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MEuler.m

RK.m

Adams.m

AdamsMoulton.m

shooting.m

collocation.m

Functions
Ex5_3_func.m

Ex5_4_func.m

Ex5_5_func.m

Ex5_5_theta.m

CHAPTER 6
Examples

Example6_1.m

Example6_2.m

Example6_3.m

Solution of a set of nonlinear ordinary differential equations by the
modified Euler (predictor-corrector) method.

Solution of a set of nonlinear ordinary differential equations by the
Runge-Kutta methods of order 2 to 5.

Solution of a set of nonlinear ordinary differential equations by the
Adams method.

Solution of a set of nonlinear ordinary differential equations by the
Adams-Moulton predictor-corrector method.

Solution of a boundary-value problem in the form of a set of
ordinary differential equations by the shooting method using
Newton's technique.

Solution of a boundary-value problem in the form of a sct of
ordinary differential equations by the orthogonal collocation
method.

Contains the mole and energy balances (used in Example5_3.m).

Contains the set of differential equations obtained (rom the
momentum balance (used in Example5_4.m).

Contains the sct of system and adjoint cquations (used in
Example5_5.m).

Contains the necessary condition for maximum as a function of
temperature (used in Example5_5.m).

Calculates the temperature profile of a rectangular plate solving
the two-dimensional heat balance (elliptic.m).

Calculates the unsteady-state one-dimensional concentration
profile of gas A diffusing in liquid B (parabolic1D.m).

Calculates the unsteady-state two-dimensional temperature profile
in a furnace wall (parabolic2D.m).
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Methods
elliptic.m

parabolic1D.m

parabolic2D.m

Functions

Ex6_2_func.m

CHAPTER 7
Examples

Example7_1.m

Methods
NLR.mm

statistics.m

Functions
Ex7_1_func.m
stud.m

Data

Ex7_I1_data.mat

Programs on the CD-ROM

Solution of two-dimensional elliptic partial differential equation.

Solution of parabolic partial differcntial equation in one space
dimension by the implicit Crank-Nicolson method.

Solution of parabolic partial differential equation in two space
dimensions by the explicit method.

Contains the equation of the rate of chemical reaction (used in
Example6_2.m).

Uses the nonlinear regression program (NLR.m and statistics.m) 10
determine the parameters of two differential equations that
represent the kinetics of penicillin fermentation. The equations are
fitted to experimental data.

Lcast squares multiple nonlincar regression using the Marquardt
and Gauss-Newton methods. The program can (it simultaneous
ordinary differential equations and/or algebraic equations to
multiresponsc data.

Performs a serics of statistical tests on the data being fitted and on
the regression results.

Contains the model equations for cell growth and penicillin
formation used in Example7 _1.m.

Evaluates the Student ¢ distribution.

The MATLAB workspace containing the data for Example 7.1



General Algorithm for the Software
Developed in this Book

The Algorithm

Example.m
This is a program that solves the specific example described in the text. It is interactive
with the user. It asks the user to enter, from the keyboard, the parameters that will be used
by the method (such as the namc of the function that contains the cquations. constants.
initial guesses, convergence criterion).

This program calls the method.m function, passes the parameters to it, and receives back the
results. It writes out the results in a formatted form and generates plots of the results, if
neceded.

!

Method.m
This is a general function that implements a method (such as the Newton-Raphson, Linear
Interpolation, Gauss Elimination). This function is portable so that it can be called by other
input-output programs and/or from the MATLAB work space (with parameters).

It may call the function.m that contains the specific equations to be solved. It may also call
any of the built-in MATLAB functions. The results of the method may be printed out (or
plotted) here, if they are generic.

! 0

Function.m MATLAB functions
This function contains the specific equations to be Any of the built-in functions
solved. It may also contain some or all constants that and plotting routines that may
are particular to thesc cquations. be needed.

This function must be provided by the user.

XXV




CHAPTER 1

Numerical Solution of Nonlinear Equations

1.1 INTRODUCTION

M any problems in engineering and science
require the solution of nonlinear equations. Several examples of such problems drawn from
the field of chemical engineering and from other application areas are discussed in this section.
The methods of solution are developed in the remaining sections of the chapter, and specific
examples of the solutions are demonstrated using the MATLAB software.

In thermodynamics, the pressure-volume-temperature relationship of real gases is
described by the equation of state. There are several semitheoretical or empirical equations,
such as Redlich-Kwong, Soave-Redlich-Kwong, and the Benedict-Webb-Rubin equations.

1
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which have been used extensively in chemical engineering. For example, the Soave-Redlich-
Kwong equation of state has the form

p - RT aco (1L1)
vV -b V(V - b)

where P, V, and T are the pressure, specific volume, and temperature, respectively. R is the
gas constant, & is a function of temperature, and « and b are constants, specific for each gas.
Eq. (1.1) is a third-degree polynomial in V and can be easily rearranged into the canonical
form for a polynomial, which is

Z*-Z7Z>+(A-B -B)Z-AB =0 (1.2)

where Z = PV/RT is the compressibility factor, A = ca P/R*T? and B=bP/RT. Therefore.
the problem of finding the specific volume of a gas at a given tempcrature and pressure
reduces to the problem of finding the appropriate root of a polynomial equation.

In the calculations for multicomponent separations, it is often necessary to estimate the
minimum reflux ratio of a multistage distillation column. A method developed for this
purpose by Underwood [ 1}, and described in detail by Treybal [2], requires the solution of the
equation

n

oI F
Y S F(L-g) =0 (1.3)
/-1 OCj - (b

where F is the molar feed flow rate, n is the number of components in the feed, z;- is the mole
fraction of each component in the feed, ¢ is the quality of the feed, o, is the relative volatility
of each component at average column conditions, and ¢ is the root of the equation. The feed
flow rate, composition. and quality are usually known, and the average column conditions can
be approximated. Therefore, ¢ is the only unknown in Eq. (1.3). Because this equation is a
polynomial in ¢ of degree n, there are n possible values of ¢ (roots) that satisfy the equation.

The friction factor f for turbulent flow of an incompressible fluid in a pipe is given by
the nonlinear Colebrook equation

\JI ) _0_86m[ e/D _ 2.51r] 0
f 37 NieVJ

where € and D are roughness and inside diameter of the pipe, respectively, and N,, is the

DTVRPETST I

ot vk
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Reynolds number. This equation does not readily rearrange itself into a polynomial form:
however, it can be arranged so that all the nonzero terms are on the left side of the equation

as follows:

\/: + 0.86In —?2 . 231 =0 (1.5)
/ 3.7 NR('\/]

The method of differential operators is applied in finding analytical solutions of nth-
order linear homogeneous differential equations. The general form of an nth-order linear
homogeneous differential equation is

d"y . d"'y dy -0
., - ota =t a,y = (1.6)

dt” d\,n-l

a

By defining D as the differentiation with respect to x:

d
p =<
y (1.7)

Eq. (1.6) can be written as

[(I”D"'"a Dni o +(,lD+([()])':0 (]8)

nol

where the bracketed term is called the differential operator. In order for Eq. (1.8) to have a
nontrivial solution, the differential opcrator must be cqual to zero:

a,D" +a,]D”‘ oo+t aD +a; =0 (1.9)

Y

This, of course. is a polynomial equation in D whose roots must be evaluated in order to
construct the complementary solution of the differential equation.

The field of process dynamics and control often requires the location of the roots of
transfer functions that usually have the form of polynomial equations. In kinetics and reactor
design, the simultancous solution of rate equations and cnergy balances results in
mathematical models of simultaneous nonlinear and transcendental equations. Methods of
solution for these and other such problems are developed in this chapter.
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1.2 TYPES OF ROOTS AND THEIR APPROXIMATION

All the nonlinear equations presented in Scc. 1.1 can be written in the general form

Sy =0 (1.10)

wherc x1s a single variable that can have multiple values (roots) that satisfy this equation. The
function f(x) may assume a varicly of nonlinear functionalities ranging from that of a
polynomial equation whose canonical form is

fx) - ax" +a, t oo ax —d, -0 (1.1
to the transcendental equations. which involve trigonometric. exponential, and logarithmic
terms. The roots of these functions could be

[. Real and distinct

2. Real and repeated

3. Complex conjugates

4. A combination of any or all of the above.

The real parts of the roots may be positive. negative. or Zero.
Fig. 1.1 graphically demonstrates all the above cases using fourth-degree polynomials.
Fig. l.1a is a plot of the polynomial equation (1.12):

o6t s Ty -6y 8:=0 (1.12)

which has tour real and distinct roots at -4, -2, -1. and 1. as indicated by the intersections of
the function with the 1 axis. Fig. 1.1bis a graph of the polynomial equation (1.13):

o _3 7.2 4

X Tx" - 12 dx 16 -0 (1.13)
which has two real and distinct roots at -4 and 1 and two real and repeated roots at -2. The
point of tangency with the v axis indicates the presence of the repeated roots. At this point
Fflxy=0and f'(x)=0. Fig. 1.1c is a plot of the polynomial equation (1.14):

¥ 6 - 1827 - 30y + 25 -0 (1.14)

which has only complex roots at 1 + 27 and 2 = /. In this case. no intersection with the x axis
of the Cartesian coordinate system occurs, as all of the roots are located in the complex plane.
Finally, Fig. 1.1d demonstrates the presence of two real and two complex roots with
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(a) (b)
5 5
| / T 2
-4 -2 -1 1
0 /N
-5
z
-10
-5
-15
-10 -20
-4 -2 0 2 -4 -2 0 2
(©) (d)
30 50
20 -4 1
0
X 10
-50
0
-10 -100
0 1 2 3 -4 -2 0 2
X X

Figure 1.1 Roots of fourth-degree polynomial equations. (a) Four real distinct.
(b) Two real and two repeated. (¢} Four complex. (d) Two real and two
complex.

the polynomial equation (1.15):

x¥+x? - 5x2+23x-20=0 (1.15)

whose roots are -4, 1, and 1 = 2i. As expected, the function crosses the x axis only at two
points: -4 and 1.

The roots of an nth-degree polynomial, such as Eq. (1.11), may be verified using
Newton’s relations, which are:

Newton’s 1st relation:

an~l

(1.16)

n
Exi = -
in1

a

n

where x; are the roots of the polynomial.
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Newton’s 2nd relation:

n
e an-2
Y oxx s (1.17)
ijt a,
Newton’s 3rd relation:
n a 3
" . _ n-:
Z XXX -— (1.18)
ijuk=1 (I”
Newton's nth relation:
» fo
XXXy x, = (D) — (1.19)
a
"
where i % j # k = ... for all the above equations which contain products of roots.

In certain problems it may be necessary to locate all the roots of the equation. including
the complex roots. This is the case in finding the zeros and poles of transfer functions in
process control applications and in formulating the analytical solution of linear nth-order
differential equations. On the other hand, diffcrent problems may require the location of only
one of the roots. For example, in the solution of the equation of state. the positive real root
is the one of interest. In any case, the physical constraints of the problem may dictate the
feasible region of scarch where only a subset of the total number of roots may be indicated.
In addition, the physical characteristics of the problem may provide an approximate value of
the desired root.

The most effective way of finding the roots of nonlinear equations is to devise iterative
algorithms that start at an initial estimate of a root and converge to the exact value of the
desired root in a finite number of steps. Once a root is located, it may be removed by synthetic
division if the equation is of the polynomial form. Otherwise, convergence on the same root
may be avoided by initiating the search for subsequent roots in different region of the feasible
space.

For equations of the polynomial form. Descartes’ rule of sign may be used to determine
the number of positive and negative roots. This rule states: The number of positive roots is
equal to the number of sign changes in the coefficients of the equation (or less than that by an
even integer); the number of negative roots is equal to the number of sign repetitions in the
coefficients (or less than that by an even integer). Zero coefficients are counted as positive
[3]. The purpose of the qualifier. “less than that by an cven integer,” is to allow for the
existence of conjugate pairs of complex roots. The reader is encouraged to apply Descartes’
rule to Egs. (1.12)-(1.15) to verify the results already shown.

If the problem to be solved is a purely mathematical one. that is. the model whose roots
are being sought has no physical origin. then brute-force methods would have to be used to
establish approximate starting values of the roots for the iterative technique. Two categories
of such methods will be mentioned here. The first onc is a truncation method applicable to
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equation of the polynomial form. For example, the following polynomial
a,x* + ayx® < a,x? - ayx +ay = 0 (1.20)
may have its lower powered terms truncated
anx4 + a3x3 =~ () (1.21)

to yield an approximation of one of the roots

a;

== (1.22)
a,

Alternatively, if the higher powered terms are truncated
ax +a, =0 (1.23)

the approximate root is

X = (1.24)

This technique applied to Soave-Redlich-Kwong equation |Eq. (1.2)] results in

PV
Z = — -1 2
RT (1.25)
This, of course, is the well-known ideal gas law, which is an excellent approximation of the
pressure-volume-temperature relationship of real gases at low pressures. On the other end of

the polynomial, truncation of the higher powered terms results in

Z«_AB

A-B - B (1.26)
giving a value of Z very close to zero which is the case for liquids. In this case, the physical
considerations of the problem determine that Eq. (1.25) or Eq. (1.26) should be used for gas
phase or liquid phase, respectively, to initiate the iterative search technique for the real root.

Anpother method of locating initial estimates of the roots is to scan the entire region of
search by small increments and to observe the steps in which a change of sign in the function
J(x) occurs. This signals that the function f(x) crosses the x axis within the particular step.
This search can be done easily in MATLAB environment using fplor function. Once the
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function f(x) is introduced in a MATLAB function file_name.m, the statement
folot(‘file_name’ [a, b]) shows the plot of the function from x = a to x = b. The values of a and
b may be changed until the plot crosses the x axis.

The scan method may be a rather time-consuming procedure for polynomials whose
roots lie in a large region of search. A variation of this search is the method of bisection that
divides the interval of search by 2 and always retains that half of the search interval in which
the change of sign has occurred. When the range of search has been narrowed down
sufficiently, a more accurate search technique would then be applied within that step in order
to refine the value of the root.

More efficient methods based on rearrangement of the function to x = g(x) (method of
successive substitution), linear interpolation of the function (merhod of false position), and the
tangential descent of the function (Newton-Raphson method) will be described in the next
three sections of this chapter.

MATLAB has its own built-in function fzero for root finding. The statement
frero(‘file_name’ %) finds the root of the function f(x) introduced in the user-defined
MATLAB function file_name.m. The second argument x, is a starting guess. Starting with
this initial value, the function fzero searches for change in the sign of the function f(x). The
calculation then continues with either bisection or linear interpolation method until the
convergence is achieved.

1.3 THE METHOD OF SUCCESSIVE SUBSTITUTION

The simplest one-point iterative root-finding technique can be developed by rearranging the
function f(x) so that x is on the left-hand side of the equation

x = gx) (1.27)

The function g(x) is a formula to predict the root. In fact, the root is the intersection of the line
y = x with the curve y = g(x). Starting with an initial value of x,, as shown in Fig. 1.2a, we
obtain the value of x,:

x, = gx)) (1.28)

which is closer to the root than x, and may be used as an initial value for the next iteration.
Therefore, general iterative formula for this method is

xn*l = g(xn) (129)

which is known as the method of successive substitution or the method of x = g(x).
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A sufficient condition for convergence of Eq. (1.29) to the root x is that |g (x)| < 1 for
all x in the search interval. Fig. 1.2b shows the case when this condition is not valid and the
method diverges. This analytical test is often difficult in practice. In a computer program it
is easier to determine whether |x; - x,| < |x, - x,| and, therefore, the successive x, values
converge. The advantage of this method is that it can be started with only a single point,
without the need for calculating the derivative of the function.

(@ (b)

g(x) g(x) !

Figure 1.2 Use of x = g(x) method. (a) Convergence. (b) Divergence.

1.4 THE WEGSTEIN METHOD

The Wegstein method may also be used for the solution of the equations of the form
x = gx) (1.27)

Starting with an initial value of x,, we first obtain another estimation of the root from
X, = gl (1.28)

As shown in Fig. 1.3, x, does not have to be closer to the root than x,. At this stage, we
estimate the function g(x) with a line passing from the points (x,, g(x,)) and (x,, g (x,))

y - g(x]) _ g(xz) - g(-f])

x - X X, - X

(1.30)
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and find the next estimation of the root, x;, from the intersection of the line (1.30) and the line
y=x

x]g(-xz) - ng(xl)
X, = (1.31)
Tooxg - g(xy) - x, + glxy) '

It can be seen from Fig. 1.3q that x, is closer to the root than either x, and x,. In the next
iteration we pass the line from the points (x,, g (x,)) and (x;, g (x;)) and again evaluate the next
estimation of the root from the intersection of this line with y = x. Therefore, the general
iterative formula for the Wegstein method is
x, ,8(x,) - x,8(x,_))
X, = n oz
xn 1 g(xn-l) - 'xn f g(xn)

N
(9]

(1.32)

The Wegstein method converges, even under conditions in which the method of x = g (x) does
not. Moreover, it accelerates the convergence when the successive substitution method is
stable (Fig. 1.3b6).

(@) (0)

g(x)i g(x)

Figure 1.3 The Wegstein method.

1.5 THE METHOD OF LINEAR INTERPOLATION
(MeTHOD OF FALSE POSITION)

This technique is based on linear interpolation between two points on the function that have
been found by a scan to lie on either side of a root. For example, x, and x, in Fig. 1.4a are
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positions on opposite sides of the root x~ of the nonlinear function f(x). The points (x,, f(x,))
and (x,, f(x,)) are connected by a straight line, which we will call a chord, whose equation is

yv(x) =ax + b (1.33)
Because this chord passes through the two points (x,, f(x)) and (x,, f(x,)), its slope is
F(x) - fx)
a - ——— (1.34)
X T
and its y intercept is
b :f(.r,) - ax, (1.35)
Eq. (1.33) then becomes
fx) - fx) . flxy) - flx)
Y = | s {fg) - | Ty (1.36)
X, - X X, - X
(a)
f(x)
% X3 - .
(x,,H(x,))
X
(b)
f(x)
% X3 .
: - -7 /Ir e X' X1
(X, f(x,))

Figure 1.4 Method of linear interpolation.
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Locating x, using Eq. (1.36), where y(x;) = 0:
B ‘f(xl) (":2 - X])
Slxy) = flx)

Note that for the shape of curve chosen on Fig. 1.4, x, is nearer to the root x~ than either x, or
x,. This, of course, will not always be the case with all functions. Discussion of criteria for
convergence will be given in the next section.
According to Fig. 1.4, f(x;) has the same sign as f(x,); therefore, x, may be replaced by
x;. Now repeating the above operation and connecting the points (x,, f(x,)) and (x,, f(x,)) with
a new chord, as shown in Fig. 1.4b, we obtain the value of x,:
Flx) (o - x)) .
Xy =X 7 (1.38)
S - flx)
which is nearer to the root than x,. For gencral formulation of this method. consider x* to be
the value at which f(x") > 0 and x to be the value at which f(x') < 0. Next improved
approximation of the root of the function may be calculated by successive application of the
general formula

X3 T X

(1.37)

gy = xr - L) Za) (1.39)
fxD) - flx)
For the next iteration, x or X" should be replaced by x, according to the sign of f(x,).

This method is known by several names: method of chords, linear interpolation, false
position (regula falsi). Its simplicity of calculation (no need for evaluating derivatives of the
function) gave it its popularity in the early days of numerical computations. However. its
accuracy and speed of convergence are hampered by the choice of x,, which forms the pivot
point for all subsequent iterations.

1.6 THE NEWTON-RAPHSON METHOD

The best known, and possibly the most widely used, technique for locating roots of nonlinear
equations is the Newton-Raphson method. This method is based on a Taylor series expansion
of the nonlinear function f(x) around an initial estimate (x,) of the root:

) - x)? . M) - x)’

2! 3!

(1.40)

Qo = Jx) - fl)(x - x) -

Because what is being sought is the value of v that forces the function f(x) to assume zero
value, the left side of Eq. (1.40) is set to zero, and the resulting equation is solved for x.
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However, the right-hand side is an infinite series. Therefore, a finite number of terms must
be retained and the remaining terms must be truncated. Retaining only the first two terms on
the right-hand side of the Taylor series is equivalent to linearizing the function f(x). This
operation results in
‘- fx))
R T (1.41)
fhx)
that is, the value of x is calculated from x, by correcting this initial guess by f(x,)/f “(x,). The
geometrical significance of this correction is shown in Fig. 1.5a. The value of x is obtained
by moving from x, to x in the direction of the tangent f “(x,) of the function f(x).

Because the Taylor series was truncated, retaining only two terms, the new value x will
not yet satisfy Eq. (1.10). We will designate this value as x, and reapply the Taylor series
linearization at x, (shown in Fig. 1.5b) to obtain x,. Repetitive application of this step converts
Eq. (1.41) to an iterative formula:

ACH)
f(x,)

In contrast to the method of linear interpolation discussed in Sec. 1.5, the Newton-Raphson
method uses the newly found position as the starting point for each subsequent iteration.

In the discussion for both linear interpolation and Newton-Raphson methods, a certain
shape of the function was used to demonstrate how these techniques converge toward a root
in the space of search. However, the shapes of nonlinear functions may vary drastically, and
convergence is not always guaranteed. As a matter of fact, divergence is more likely to occur,
as shown in Fig. 1.6, unless extreme care is taken in the choice of the initial starting points.

To investigate the convergence behavior of the Newton-Raphson method, one has to
examine the term [-f(x,)/f "(x,)] in Eq. (1.42). This is the error term or correction term applied
to the previous estimate of the root at each iteration. A function with a strong vertical
trajectory near the root will cause the denominator of the error term to be large; therefore, the

(1.42)

fnel T X”

(@) (b)

0, f0)

f(x)

]
A
[
]
!

Figure 1.5 The Newton-Raphson method.
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convergence will be quite fast. If, however, f(x) is nearly horizontal near the root, the
convergence will be slow. If at any point during the search, f’(x) = 0, the method would fail
due to division by zero. Inflection points on the curve, within the region of search, are also
troublesome and may cause the search to diverge.

A sufficient, but not necessary, condition for convergence of the Newton-Raphson
method was stated by Lapidus [4] as follows: “If f(x) and f “(x) do not change sign in the
interval (x,, x)and if f(x)) and f “(x,) have the same sign, the iteration will always converge
tox.” These convergence criteria may be easily programmed as part of the computer program
which performs the Newton-Raphson search, and a warning may be issued or other appropriate
action may be taken by the computer if the conditions are violated.

A more accurate extension of the Newton-Raphson method is Newton's 2nd-order
method, which truncates the right-hand side of the Taylor series [Eq. (1.40)] after the third
term to yield the equation:

-1/
: z(—fl) (Ax)? () Ax, - fx) = 0 (1.43)

where Ax, = x - x,. This is a quadratic equation in Ax, whose solution is given by

S0 = I )P - 27700 fx)

Ax ; (1.44)
1)
The general iterative formula for this method would be
Fe) )P - 2 ) )
el T g T ! \/ (1.45a)

S flx)

(a) (b)

\
x
X |- - =

X

Figure 1.6 Choice of initial guesses affects convergence of Newton-Raphson
method. (a) Convergence. (b) Divergence.
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ot

Sy )P - 276 )
e - - (1.45b)

nil n f.//(xn) f//(xn)

The choice between (1.45«¢) and (1.45b) will be determined by exploring both values of xn'-]
and x,_, and determining which one results in the function f(x,.,) or f(x,,,) being closer
to zero.

An alternative to the above exploration will be to treat Eq. (1.43) as another nonlinear

equation in Ax and to apply the Newton-Raphson method for its solution:

i
F(Ax) = fz;fl)(Ax)z + fx)Ax + f(x) =0 (1.46)
where
A A F(Ax,)
X - - Xll T .
n-l F/(AX”) (1 47)

Two nested Newton-Raphson algorithms would have to be programmed together as follows:

Assume a value of x,.

Calculate Ax, from Eq. (1.44).

Calculate Ax, from Eq. (1.47).

Calculate x, from x, = x, + Ax,.

Repeat steps 2 to 4 until convergence is achieved.

e

Example 1.1: Solution of the Colebrook Equation by Successive Substitution,
Linear Interpolation, and Newton-Raphson Methods. Develop MATLAB functions to
solve nonlinear equations by the successive substitution method, the linear interpolation, and
the Newton-Raphson root-finding techniques. Use these functions to calculate the friction
factor from the Colebrook equation [Eq. (1.4)] for flow of a fluid in a pipe with €/D = 10 * and
N,, = 10°. Compare these methods with each other.

Method of Solution: Eqs. (1.29), (1.39), and (1.42) are used for the method of x = g (x),
linear interpolation, and Newton-Raphson, respectively. The iterative procedure stops when
the difference between two succeeding approximations of the root is less than the convergence
criterion (default value is 10°®), or when the number of iterations reaches 100, whichever is
satisfied first. The program may show the convergence results numerically and/or graphically,
if required, to illustrate how each method arrives at the answer.

Program Description: Three MATLAB functions called XGX.m, LI.m, and NR.m are
developed to find the root of a general nonlinear equation using successive substitution [the
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method of x = g(x)], linear interpolation, and Newton-Raphson methods, respectively. The
name of the nonlinear function subject to root finding is introduced in the input arguments;
therefore, these MATLAB functions may be applied to any problem.

Successive substitution method (XGX.m): This function starts with initialization section in
which input arguments are evaluated and initial values for the main iteration are introduced.
The first argument is the name of the MATLAB function in which the function g(x) is
described. The second argument is a starting value and has to be a scalar. By default,
convergence is assumed when two succeeding iterations result in root approximations with
less than 10 in difference. If another value for convergence is desired, it may be introduced
to the function by the third argument. A value of 1 as the fourth argument makes the function
show the results of each iteration step numerically. If this value is set to 2, the function shows
the results numericaily and graphically. The third and fourth arguments are optional. Every
additional argument that is introduced after the fourth argument is passed directly to the
function g(x). In this case, if it is desired to use the default values for the third and fourth
arguments, an empty matrix should be entered in their place. For solution of the problem, the
values of N, and €/D are passed to the Colebrook function by introducing them in fifth and
sixth arguments.

The next scction in the function is the main iteration loop, in which the iteration
according to Eq. (1.29) takes place and the convergence is checked. In the case of the
Colebrook equation, Eg. (1.4) is rearranged to solve for f: The right-hand side of this equation
is taken as g(f) and is introduced in the MATLAB function Colebrookg.m. Numerical results
of the calculations are also shown. if requested, in each iteration of this section.

f= ! =g

0.861n( €2 . 251 |
3.7 Ne, \/?
At the end, the MATLAB function plots the function as well as the results of the
calculation, if required, to illustrate the convergence procedure.

Linear interpolation method (LI.m): This function consists of the same parts as the XGX.m
function. The number of input arguments is one more than that of XGX.m, because the linear
interpolation method needs two starting points. Special care should be taken to introduce two
starting values in which the function have opposite signs. Eq. (1.5) is used without change as
the function the root of which is to be located. This function is contained in a MATLAB
function called Colebrook.m.

Newton-Raphson method (NR.m): The structure of this function is the same as that of the two
previous functions. The derivative of the function is taken numerically to reduce the inputs.
It is also more applicable for complicated functions. The reader may simply introduce the
derivative function in another MATLAB function and use it instead of numerical derivation.
In the case of the Colebrook equation, the same MATLAB function Colebrook.m, which
represents Eq. (1.5), may be used with this function to calculate the value of the friction factor.
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The MATLAB program Examplel_I.m finds the friction factor from the Colebrook
equation by three different methods of root finding. The program first asks the user to input
the values for N, and €/D. It then asks for the method of solution of the Colebrook equation,
name of the m-file that contains the Colebrook equation, and the initial value(s) to start the
method. The program then calculates the friction factor by the selected method and continues
asking for the method of solution until the uscr enters 0.

WARNING: The original MATLAB Version 5.2 had a “bug.” The command
linspace(0,0,100)

which is used in LL.m, NR.m, and Nrpoly.m in Chapter 1, would not work properly in the
MATLAB installations of Version 5.2 which have not yet been corrected. A patch which
corrects this problem is available on the website of Math Works. Inc.:

http://www.mathworks.com
If you have Version 5.2, you are strongly encouraged to download and install this patch, if you
have not done so already.

Program

Examplel _1.m
Examplel_1.m

o

% This program solves the problem posed in Example 1.1.

% It calculates the friction factor from the Colebrook equation
% using the Successive Substitution, the Linear Interpolation,
% and the Newton-Raphson methods.

clear

clc

clf

disp('Calculating the friction factor from the Colebrook equation')

% Input
Re = input('\n Reynolds No. = ')
e_over_D = input(' Relative roughness = ');

method = 1;
while method
fprintf('\n")
disp(' 1 ) Successive substitution')
disp(' 2 ) Linear Interpolation')
disp(' 3 ) Newton Raphson')
disp(' 0 ) Exit')
method = input('\n Choose the method of solution : ');
if method
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fname = input('\n Function containing the Colebrook egquation : '):
end
switch method

case 1 % Successive substitution
x0 = input (' Starting value = ');
f = xgx(fname,x0,[],2,Re,e_over_D);
fprintf('\n £ = %$6.4f\n', f)

case 2 % Linear interpolation

x1 = input(' First starting value = ');
x2 = input (' Second starting value = ');
f = LI(fname,x1,x2,[],2,Re,e_over_D);
fprintf('\n £ = %6.4f\n"', )

case 3 % Newton-Raphson
x0 = input(' Starting value = '};
f = NR(fname,x0,[],2,Re,e_over_D);
fprintf('\n £ = %6.4f\n"', )
end
end
XGX.m

function x = XGX(fnctn,x0,tol,trace,varargin)
%$XGX Finds a zero of a function by x=g(x) method.

% XGX('G',X0) finds the intersection of the curve y=g(x)
% with the line y=x. The function g(x) is described by the
% M-file G.M. X0 is a starting guess.
%
% XGX('G',X0,TOL, TRACE) uses tolerance TOL for convergence
% test. TRACE=1 shows the calculation steps numerically and
% TRACE=2 shows the calculation steps both numerically and
% graphically.
%
% XGX('G',X0,TOL, TRACE,P1,P2,...) allows for additional
% arguments which are passed to the function G(X,P1,P2,...).
% Pass an empty matrix for TOL or TRACE to use the default
% value.
%
% See also FZERO, ROOTS, NR, LI
% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999
% Initialization
if nargin < 3 | isempty(tol)
tol = le-6;
end

if nargin < 4 | isempty(trace)

trace = 0;

end
if tol == 0

tol = le-6;
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end
if

end
if

end

X =
x0
ite
ite

% M
whi

mple 1.1 Solution of the Colebrook Equation

(length(x0) > 1) | (~isfinite(x0))
error ('Second argument must be a finite

trace
header = ' Iteration X
disp(' ')
disp (header)
if trace == 2
xpath = [x01];
ypath = [0];
end

x0;

= x + 1;

r = 1;

rmax = 100;

ain iteration loop
le abs(x - x0) > tol & iter <= itermax

x0 = x;

fnk = feval(fnctn,x0,varargin{:});

% Next approximation of the root
b'd

end

if

= fnk;

% Show the results of calculation
if trace
fprintf('%5.0¢f %13.6g %$13.6g\n',ite
if trace ==
xpath = [xpath x0 x];

ypath = [ypath fnk x];
end
end
iter = iter + 1;
trace == 2

% Plot the function and path to the root
xmin = min(xpath);
xmax = max(xpath) ;
dx = xmax - xmin;
Xi = xmin - dx/10;
xf = xmax + dx/10;
yc = [1;
for xc¢ = xi : (xf - xi)/99 : xf
yc=[yc feval (fnctn,xc,varargin{:})];
end
Xc = linspace(xi,xf,100);
plot (xc,yc,xpath, ypath, xpath(2),ypath(2)

scalar.

g(x)"';

r, [x0

ko
’ .

fnk])
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x,ftnk, 'o', [xi xf], [xi,x£],'--")
axis([xi xf min(yc) max(yc)])
xlabel ('x")
yvlabel ('g(x) [-- : y=x]"')
title('x=g(x) : The function and path to the root
(* : initial guess ; o : root)')
end

if iter >= itermax
disp('Warning : Maximum iterations reached.')
end

Li.m

function x = LI(fnctn,xl,x2,tol,trace,varargin)

%$LI Finds a zero of a function by the linear interpolation method.
%

LI('F',X1,X2) finds a zero of the function described by the
M-file F.M. X1 and X2 are starting points where the function
has different signs at these points.

LI('F',X1,X2,TOL, TRACE) uses tolerance TOL for convergence
test. TRACE=1 shows the calculation steps numerically and
TRACE=2 shows the calculation steps both numerically and
graphically.

00 90 90 d° o0 I°

P o0 o°

oe

LI('F',X1,X2,TOL, TRACE,P1,P2,...) allows for additional
arguments which are passed to the function F(X,P1,P2,...).
Pass an empty matrix for TOL or TRACE to use the default
value.

o0

00 90 90 g0

See also FZERO, ROOTS, XGX, NR

% (¢) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization

if nargin < 4 | isempty(tol)
tol = le-6;
end
if nargin < 5 | isempty(trace)
trace = 0;
end
if tol == 0
tol = le-6;
end
if (length(xl) > 1) | (~isfinite(x1)) | (length(x2) > 1) |

(~isfinite(x2))
error ('Second and third arguments must be finite scalars.')
end
if trace
header = ' Iteration X f(x)';
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disp(' ')
disp (header)
end

fl1 = feval(fnctn,xl,varargin{:});
f2 = feval (fnctn,x2,varargin{:});

iter = 0;
if trace
% Display initial values

fprintf('%5.0f %13.6g %13.6g
fprintf('%5.0f£ %$13.6g %13.6g

if trace == 2
xpath = [x1 x1 x2 x2];

ypath = [0 f1 £2 0];

end
end
if f1 < 0
xm = x1;
fm = £1;
Xp = X2;
fp = £2;
else
xXm = X2;
fm = £2;
xp = x1;
fp = £1;
end

iter = iter + 1;
itermax = 100;

X = Xp;

x0 = xm;

% Main iteration loop

\n',iter,
\n',iter,

while abs(x - x0) > tol & iter <= itermax

x0 = x;
X xp - fp * (xm - xp) /

if fnk < O
Xxm = X;
fm = fnk;

else
Xp = X;
fp = fnk;

end

% Show the results of calculation

if trace

fprintf ('%5.0f %$13.6g %13.6g

= (fm - fp);
fnk = feval (fnctn,x,varargin{:});

\n',iter,

[x1 £1])
[x2 £21)

[x fnk])

21
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if trace == 2
xpath = [xpath xm xm xp xpl;
ypath = [ypath 0 fm fp 0];
end
end
iter = iter + 1;
end
if trace ==

% Plot the function and path to the root
xmin = min(xpath);
xmax = max(xpath) ;
dx = xmax - xmin;
x1 = xmin - dx/10;
xf = xmax + dx/10;

yc = [];
for xc¢ = xi : (xf - x1)/99 : x£

ye=[yc feval (fnctn,xc,varargin{:})];
end

xc = linspace(xi,xf,100):

ax = linspace(0,0,100);

plot(xc,yc,xpath, ypath,xc,ax,xpath(2:3),ypath(2:3),'*' ,x,fnk, '0")

axis([xi1 xf min(yc) max(yc)])

xlabel('x")

yvlabel ('f(x) ")

title('Linear Interpolation : The function and path to the root
(* : initial guess ; o : root)')
end

if iter >= itermax
disp('Warning : Maximum iterations reached.')
end

NR.m
function x = NR(fnctn,x0,tol, trace,varargin)
$NR Finds a zero of a function by the Newton-Raphson method.

oP

o

NR('F',X0) finds a zero of the function described by the

arguments which are passed to the function F(X,P1,P2,...).
Pass an empty matrix for TOL or TRACE to use the default
value.

% M-file F.M. X0 is a starting guess.

%

% NR('F',X0,TOL, TRACE) uses tolerance TOL for convergence
% test. TRACE=1 shows the calculation steps numerically and
% TRACE=2 shows the calculation steps both numerically and
% graphically.

%

% NR('F',X0,TOL, TRACE,P1,P2,...) allows for additional

%

%

%

%

o

See also FZERO, ROOTS, XGX, LI
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% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 3 | isempty(tol)

tol = le-6;
end
if nargin < 4 | isempty(trace)
trace = 0;
end
if tol == 0
tol = le-6;
end
if (length(x0) > 1) | (~isfinite(x0))
error ('Second argument must be a finite scalar.')
end
iter = 0;
fnk = feval (fnctn,x0,varargin{:});
if trace
header = ' lteration x fi(x)"';
disp(' ")
disp (header)
fprintf ('%5.0d %$13.6g %13.69g \n',iter, [x0 fnk])
if trace == 2
xpath = [x0 x0};
ypath = [0 fnk];
end
end
x = x0;

x0 = x + 1;
itermax = 100;

% Main iteration loop

while abs(x - x0) > tol & iter <= itermax
iter = iter + 1;
x0 = x;

% Set dx for differentiation

if x ~= 0

dx = x/100;
else

dx = 1/100;
end

% Differentiation

a = x - dx; fa = feval(fnctn,a,varargin{:});
b = x + dx; fb = feval(fnctn,b,varargin{:});
af = (fb - fa)/(b - a);
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% Next approximation of the root

if df ==

x = x0 + max(abs(dx),1l.1*tol);
else

x = x0 - fnk/df;
end

fnk = feval (fnctn,x,varargin{:});
% Show the results of calculation
if trace
fprintf ('%5.0d %$13.6g %$13.6g \n',iter, [x fnk])
if trace ==
xpath = [xpath x x];
ypath = [ypath 0 fnk];

end
end
end
if trace ==
% Plot the function and path to the root
xmin = min{(xpath);
xmax = max(xpath);
dx = xmax - xmin;
xi = xmin - dx/10;
xf = xmax + dx/10;
ye = [1;
for xc = xi : (xf - xi)/99 : xt
yc = [yc feval (fnctn,xc,varargin{:})1];
end

xc = linspace(xi,xf,100);

ax = linspace(0,0,100);

plot (xc,yc,xpath,ypath, xc, ax,xpath(1l),ypath(2),'*',x, fnk, '0")
axis([xi xf min(yc) max(yc)])

xlabel ('x")

ylabel ('f(x)")
title('Newton-Raphson : The function and path to the root
(* : initial guess ; o : root)')
end

if iter >= itermax
disp('Warning : Maximum iterations reached.')
end

Colebrook.m

function y = Colebrook(f, Re, e)

% Colebrook.m

% This function evaluates the value of Colebrook equation to be

% solved by the linear interpolation or the Newton-Raphson method.

y = 1/sqrt(f) + 0.86*log(e/3.7 + 2.51/Re/sqrt(f));
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Colebrookg.m

function y = c¢lbrkg(f, Re, e)

% Colebrookg.m

% This function evaluates the value of the rearranged Colebrook
% equation to be solved by x=g(x) method.

y=1/(0.86*1log(e/3.7+2.512/Re/sqrt(£f)))"2;

Input and Results
>>Examplel_1
Calculating the friction factor from the Colebroock equation

le5
le-4

Reynolds No.
Relative roughness

Successive substitution
Linear Interpolation
Newton-~Raphson

Exit

o W
— e —

Choose the method of solution : 1

Function containing the Colebrook equation : 'Colebrookg!'
Starting value = 0.01

Iteration X g (x)
1 0.01 0.0201683
2 0.0201683 0.0187204
3 0.0187204 0.0188639
4 0.0188639 0.0188491
5 0.0188491 0.0188506
6 0.0188506 0.0188505
f = 0.0189
1 ) Successive substitution
2 ) Linear Interpolation
3 ) Newton-Raphson
0 ) Exit

Choose the method of solution : 2

Function containing the Colebrook eqguation : 'Colebrook’
First starting value = 0.01
Second starting value = 0.03
Iteration b'e f(x)
0 0.01 2.9585

0 0.03 -1.68128
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1 0.0227528 -0.723985
2 0.0202455 -0.282098
3 0.0193536 -0.105158
4 0.0190326 -0.0385242
5 0.0189165 -0.0140217
6 0.0188744 -0.00509133
7 0.0188592 -0.00184708
8 0.0188536 -0.000669888
9 0.0188516 -0.000242924
10 0.0188509 -8.80885e-005
£ = 0.0189
1 ) Successive substitution
2 ) Linear Interpolation
3 ) Newton-Raphson
0 ) Exit

Choose the method of solution : 3

Function containing the Colebrook equation : 'Colebrook’
Starting value = 0.01

Iteration x f(x)
0 0.01 2.9585%
1 0.0154904 0.825216
2 0.0183977 0.0982029
3 0.0188425 0.00170492
4 0.0188505 6.30113e-007
5 0.0188505 3.79075e-011
f = 0.0189
1 ) Successive substitution
2 ) Linear Interpolation
3 ) Newton-Raphson
0 ) Exit

Choose the method of solution : 0

Discussion of Results: All three methods are applied to finding the root of the Colebrook
equation for the friction factor. Graphs of the step-by-step path to convergence are shown in
Figs. El.la, b, and ¢ for the three methods. It can be seen that Newton-Raphson converges
faster than the other two methods. However, the Newton-Raphson method is very sensitive
to the initial guess, and the method may converge to the other roots of the equation, if a
different starting point is used. The reader may test other starting points to examine this
sensitivity. The convergence criterion in all the above MATLAB functions is | x, - x, | < 10,



27

Example 1.2 Solution of the Soave-Redlich-Kwong Equation
x=g(x) The function and path to the root (* initial guess , o root)
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Figure E1.1a Solution using the method of successive substitution

Linear Interpolation The function and path to the root (* initial guess , o root)
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Figure E1.1b Solution using the method of linear interpolation.
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Newton-Raphson The function and path to the root (* initial guess o root)
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Figure E1.1¢ Solution using the Newton-Raphson method.

Example 1.2: Finding a Root of an nth-Degree Polynomial by Newton-Raphson
Method Applied to the Soave-Redlich-Kwong Equation of State. Develop a MATLAB
function to calculate a root of a polynomial equation by Newton-Raphson method. Calculate
the specific volume of a pure gas, at a given temperaturc and pressure, by using the Soave-

Redlich-Kwong equation of state
RT ao
V-b V(V + b)

P:

The equation constants, « and b, are obtained from

0.4278 R T}

PRkt o
P..

0.0867R T,

h = ——— -
P("

where T, and P are critical temperature and pressure, respectively. The variable « is an

empirical function of temperature:
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The value of § is a function of the acentric factor, w, of the gas:

S = 0.48508 + 1.55171 w - 0.15613 w?

The physical properties of n-butane are:
T.=425.2K, P.=3797 kPa, ©=0.1931

and the gas constant is:

R = 8314 J/kmol.K.

Calculate the specific volume of n-butane vapor at 500 K and at temperatures from 1 to 40
atm. Compare the results graphically with the ones obtained from using the ideal gas law.

What conclusion do you draw from this comparison?

Method of Solution: Eq. (1.42) is used for Newton-Raphson evaluation of the root. For
finding the gas specific volume from the Soave-Redlich-Kwong equation of state, Eq. (1.2).
which is a third-degree polynomial in compressibility factor, is solved. Starting value for the
iterative method is Z = 1, which is the compressibility factor of the ideal gas.

Program Description: The MATLAB function NRpoly.m calculates a root of a
polynomial equation by Newton-Raphson method. The first input argument of this function
is the vector of coefficients of the polynomial, and the second argument is an initial guess of
the root. The function employs MATLAB functions polyval and polyder for evaluation of the
polynomial and its derivative at each point. The reader can change the convergence criterion
by introducing a new value in the third input argument. The default convergence criterion is
10, The reader may also see the results of the calculations at each step numerically and
graphically by entering the proper value as the fourth argument (1 and 2, respectively). The
third and fourth arguments are optional.

MATLAB program Examplel_ _2.m solves the Soave-Redlich-Kwong equation of state by
utilizing the NRpoly.m function. In the beginning of this program, temperature, pressure range
and the physical properties of n-butane are entered. The constants of the Soave-Redlich-
Kwong equation of state are calculated next. The values of A and B [used in Eq. (1.2)] are also
calculated in this section. Evaluation of the root is done in the third part of the program. In
this part, the coefficients of Eq. (1.2) are first introduced and the root of the equation, closest
to the ideal gas, is determined using the above-mentioned MATLAB function NRpolv. The
last part of the program, Examplel_2.m, plots the results of the calculation both for Soave-
Redlich-Kwong and ideal gas equations of state. It also shows some of the numerical

results.
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Program

Examplel _2.m

Examplel_2.m

This program solves the problem posed in Example 1.2.
It calculates the real gas specific volume from the
SRK equation of state using the Newton-Raphson method
for calculating the roots of a polynomial.

9C o0 9C 90 of

clear
clc
clf

Input data

= input (' Input the vector of pressure range (Pa) = ');
input (' Input temperature (K) = ');

8314; % Gas constant (J/kmol.K)

Tc = input(' Critical temperature (K) = ');

Pc = input(' Critical pressure (Pa) = ');

omega = input(' Acentric factor = ');

o3 g ool
1

oP

Constants of Soave-Redlich-Kwong equation of state
= 0.4278 * R"2 * T¢”*2 / Pc;

= 0.0867 * R * Tc / Pc;

sc = [-0.15613, 1.55171, 0.48508];

s = polyval (sc,omega) ;

alpha (1 + s * (1 - sqrt(T/Tc)))"2;

A = a alpha * P / (R"2 * T"2});

B =5D P/ (R *T);

lo N+
* %l

for k 1:length(P)
% Defining the polynomial coefficients
coef = [1, -1, A(k)-B(k)-B(k)"2, -A(k)*B(k)];
vO(k) = R * T / P(k); % Ideal gas specific volume

Chapter 1

vol(k) = NRpoly(coef , 1) * R * T / P(k); % Finding the root

end

% Show numerical results
fprintf (' \nRESULTS:\n") ;

fprintf('Pres. = %5.2f Ideal gas vol. =
fprintf (' Real gas vol. =%7.4f\n',vol(l));
for k=10:10:1length(P)

%7.4f',P(1),v0(1));

fprintf('Pres. = %5.2f Ideal gas vol. =%7.4f',P(k),v0(k)};

fprintf(' Real gas vol. =%7.4f\n',vol(k));
end

% plotting the results
loglog(P/1000,v0,'.",P/1000,vol)
xlabel (' Pressure, kPa')
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ylabel ('Specific Volume, m"3/kmol’)
legend('Ideal’', 'SRK"')

NRpoly.m
function x = NRpoly(c,x0,tol, trace)
$NRPOLY Finds a root of polynomial by the Newton-Raphson method.

%
NRPOLY (C,X0) computes a root of the polynomial whose

%

% coefficients are the elements of the vector C.

% If C has N+1 components, the polynomial is

% C(L)*X™N + ... + C(N)*X + C(N+1).

% X0 is a starting point.

%

% NRPOLY (C, X0, TOL, TRACE) uses tolerance TOL for convergence
% test. TRACE=1 shows the calculation steps numerically and
% TRACE=2 shows the calculation steps both numerically and
% graphically.

%

% See also ROOTS, NRsdivision, NR.

of

(c) by N. Mostoufi & A. Constantinides
January 1, 1999

o0

% Initialization
if nargin < 3 | isempty(tol)
tol = le-6;
end
if nargin < 4 | isempty(trace)
trace = 0;
end
if tol ==
tol = le-6;
end
if (length(x0) > 1) | (~isfinite(x0))
error ('Second argument must be a finite scalar.')

end

iter = 0;
fnk = polyval(c,x0); % Function
if trace
header = ' Iteration x f(x)';

disp (header)
disp([sprintf('%5.0f %13.6g %13.6g ',iter, [x0 fnk])])
if trace ==
xpath
ypath
end
end

[x0 x0];
[0 fnk];
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x = x0;
x0 = x + .1;
maxiter = 100;

% Solving the polynomial by Newton-Raphson method
while abs(x0 - x) > tol & iter < maxiter
iter = iter + 1;

x0 = X;
fnkp = polyval(polyder(c),x0); $ Derivative
if fnkp ~= 0

x = x0 - fnk / fnkp; % Next approximation
else

x = x0 + .01;
end

fnk = polyval(c,x); % Function
% Show the results of calculation

if trace
disp(([sprintf('%5.0f %$13.6g %13.6g ', iter,
if trace == 2

xpath = [xpath x x];
ypath = [ypath 0 fnk];
end
end
end

if trace ==
% Plot the function and path to the root
xmin min (xpath) ;
xmax = max(xpath);
dx = xmax - xmin;
xi = xmin - dx/10;
xf = xmax + dx/10;

yc = [1;

for x¢ = xi : (xf - xi)/99 : xf
yc = [yc polyval(c,xc)];

end

xc = linspace(xi,xf,100);
ax = linspace(0,0,100);

[x fnk]l)1)
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plot (xc,yc,xpath, ypath, xc, ax,xpath(l),ypath(2), '*',x, fnk, '0")

axis([xi xf min(yc) max(yc)])
xlabel('x")
ylabel ('f(x) ")

title('Newton-Raphson : The function and path to the root (*

initial guess ; o : root)')
end

if iter == maxiter
disp(’'Warning : Maximum iterations reached.')
end

R T
LR e
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Input and Results

>>Examplel_2

Input the vector of pressure range (Pa) [1:401*101325

Input temperature (K) : 500
Critical temperature (K) : 425.2
Critical pressure (Pa) : 3797e3

Acentric factor : 0.1931

Pres. = 101325.00 Ideal gas vol. =41.0264 Real gas vol. =40.8111
Pres. = 1013250.00 1Ideal gas vol. = 4.1026 Real gas vol. = 3.8838
Pres. 2026500.00 Ideal gas vol. = 2.0513 Real gas vol. = 1.8284
1. 1
1. 0

Pres. = 3039750.00 1Ideal gas vol. = 3675 Real gas vol. = 1.1407
Pres. 4053000.00 TIdeal gas vol. = 0257 Real gas vol. = 0.7954

Discussion of Results: In this example we use the Examplel_2.m program to calculate
the specific volume of a gas using the Soave-Redlich-Kwong equation of state. Because this
equation can be arranged in the canonical form of a third-degree polynomial, the function
NRpoly.m can be used. Additional information such as temperature, pressure, and physical
properties are entered by the user through the program.

Above the critical temperature, the Soave-Redlich-Kwong equation of state has only one
real root that is of interest, the one located near the value given by the ideal gas law.
Therefore, the latter, which corresponds to Z = 1, is used as the initial guess of the root.

Direct comparison between the Soave-Redlich-Kwong and ideal gas volumes is made in
Fig. E1.2. It can be seen from this figure that the ideal gas equation overestimates gas volumes
and, as expected from thermodynamic principles, the deviation from ideality increases as the

pressure increases.

- Ideal
—— SRK

s

Figure E1.2 Graphical comparison
between the Soave-Redlich-Kwong
o, and the ideal gas equations of state.

P

Specific Volume, m*fikmol

%

10 10°
Pressure, kPa
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1.7 SYNTHETIC DiviSION ALGORITHM

If the nonlinear equation being solved is of the polynomial form, each real root (located by one
of the methods already discussed) can be removed from the polynomial by synthetic division,
thus reducing the degree of the polynomial to (n - 1). Each successive application of the
synthetic division algorithm will reduce the degree of the polynomial further, until all real
roots have been located.

A simple computational algorithm for synthetic division has been given by Lapidus [4].
Consider the fourth-degree polynomial

fx) = a,x* + a;x® + a,x? +ax +a; =0 (1.48)

whose first real root has been determined to be x™. This root can be factored out as follows:

fO) = (x ~ x")(byx? + byx? + byx + by) =0 (1.49)

In order to determine the coefficients (b,) of the third-degree polynomial first multiply out Eq.
(1.49) and rearrange in descending power of x:

flx) = b3x4 + (b, - b3x*)x3 + (b, - bzx’)x2 +(by ~ byxT)x - byx™  (1.50)

Equating Eqgs. (1.48) and (1.50), the coefficients of like powers of x must be equal to each
other, that is,

a, = b, - byx~ (L.51)

b, = a,
b, = a; * byx”
(1.52)
b, = a, + byx’
by =a, +bx"
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In general notation, for a polynomial of nth-degree, the new coefficients after application
of synthetic division are given by

bn—l = all
(1.53)
bn-l—r = an r + bu-rx‘
where r=1,2, ..., (n-1). The polynomial is then reduced by one degree
nyo=n -1 (1.54)

where j is the iteration number, and the newly calculated coefficients are renamed as shown
by Eq. (1.55):

(1.55)

This procedure is repeated until all real roots are extracted. When this is accomplished, the
remainder polynomial will contain the complex roots. The presence of a pair of complex roots
will give a quadratic equation that can be easily solved by quadratic formula. However, two
or more pairs of complex roots require the application of more elaborate techniques, such as
the eigenvalue method, which is developed in the next section.

1.8 THE EIGENVALUE METHOD

The concept of eigenvalues will be discussed in Chap. 2 of this textbook. As a preview of that
topic, we will state that a square matrix has a characteristic polynomial whose roots are called
the eigenvalues of the matrix. However, root-finding methods that have been discussed up to
now are not efficient techniques for calculating eigenvalues [S]. There are more efficient
eigenvalue methods to find the roots of the characteristic polynomial (see Sec. 2.8).

It can be shown that Eq. (1.11) is the characteristic polynomial of the (n x n) companion
matrix A, which contains the coefficients of the original polynomial as shown in Eq. (1.56).
Therefore, finding the eigenvalues of A is equivalent to locating the roots of the polynomial
in Eq. (1.11).

MATLAB has its own function, roots.m, for calculating all the roots of a polynomial
equation of the form in Eq. (1.11). This function accomplishes the task of finding the roots
of the polynomial equation [Eq. (1.11)] by first converting the polynomial to the companion
matrix A shown in Eq. (1.56). It then uses the built-in function eig.m, which calculates the
eigenvalues of a matrix, to evaluate the eigenvalues of the companion matrix, which are also
the roots of the polynomial Eq. (1.11):
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[ a
B .
an al} a'l a'l
1 0 .. 0 0
0 1 .. 0 0
A = (1.56)
0 0 1 0

Example 1.3: Solution of nth-Degree Polynomials and Transfer Functions Using
the Newton-Raphson Method with Synthetic Division and Eigenvalue Method. Consider
the isothermal continuous stirred tank reactor (CSTR) shown in Fig. E1.3.

Qq-Q) Q
sLT
4

I

Figure E1.3 The continuous stirred tank reactor.

Components A and R are fed to the reactor at rates of Q and (g - Q), respectively. The
following complex reaction scheme develops in the reactor:

A+R-B
B+R-C
C+R=D
D+R-E

This problem was analyzed by Douglas [6] in order to illustrate the various techniques
for designing simple feedback control systems. In his analysis of this system, Douglas made
the following assumptions:
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1. Component R is present in the reactor in sufficiently large excess so that the reaction
rates can be approximated by first-order expressions.

2. The feed compositions of components B, C, D, and E are zero.

3. A particular set of values is chosen for feed concentrations, feed rates, kinetic rate
constant, and reactor volume.

4. Disturbances are due to changes in the composition of component R in the vessel.

The control objective is to maintain the composition of component C in the reactor as
close as possible to the steady-state design value, despite the fact that disturbances enter the
system. This objective is accomplished by measuring the actual composition of C and using
the difference between the desired and measured values to manipulate the inlet flow rate Q of
component A.

Douglas developed the following transfer function for the reactor with a proportional
control system:

298 (s + 2.25) -

K. =
(s + 1.45)(s + 2.85)*(s + 4.35)

where K .. is the gain of the proportional controller. This control system is stable for values
of K . that yield roots of the transfer function having negative real parts.

Using the Newton-Raphson method with synthetic division or eigenvalue method,
determine the roots of the transfer function for a range of values of the proportional gain K .
and calculate the critical value of K . above which the system becomes unstable. Write the
program so that it can be used to solve nth-degree polynomials or transfer functions of the type
shown in the above equation.

Method of Solution: In the Newton-Raphson method with synthetic division, Eq. (1.42)
is used for evaluation of each root. Egs. (1.53)-(1.55) are then applied to perform synthetic
division in order to extract each root from the polynomial and reduce the latter by one degree.
When the nth-degree polynomial has been reduced to a quadratic

2 -
a,x* +ax+a,=0
the program uses the quadratic solution formula

2
-a, £ ya, - 4a,a,

2a,

X1 7

to check for the existence of a pair of complex roots. In the eigenvalue method, the MATLAB
function roots may be used directly.
The numerator and the denominator of the transfer function are multiplied out to yield

(2985 + 6.705) K,
s+ 11.508°% + 47.495% + 83.0632s + 51.2327

= -1
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A first-degree polynomial is present in the numerator and a fourth-degree polynomial in the
denorminator. To convert this to the canonical form of a polynomial, we multiply through by
the denominator and rearrange to obtain

[s* + 11.50s% + 474957 + 83.06325 + 51.2327] ~ [2.985s + 6.705] K. - 0
¢

It is obvious that once a value of K, is chosen, the two bracketed terms of this equation can
be added to form a single fourth-degree polynomial whose roots can be evaluated.

When K = 0. the transfer function has the following four negative real roots. which can
be found by inspection of the original transfer function:

s,=-145 5, - 285  s,=-285 5, =-435

These are called the poles of the open-loop transter function.

The value of K that causes one or more of the roots of the transfer function to become
positive (or have positive real parts) is called the critical value of the proportional gain. This
critical value is calculated as follows:

1. A range of search for K . is established.

2. The bisection method is used to search this range.

3. Allthe roots of the transfer function are evaluated at each step of the bisection search.

4. The roots are checked for positive real part. The range of K ., over which the change
from negative to positive roots occurs, is retained.

5. Steps 2-4 are repeated until successive values of K. change by less than a
convergence criterion, €.

Program Description: The MATLAB tunction NRsdivision.m calculates all roots of a
polynomial by the Newton-Raphson method with synthetic division as described in the
Method of Solution. Unlike other functions employing thc Newton-Raphson method. this
function does not need a starting value as one of the input arguments. Instead, the function
generates a starting point at each step according to Eq. (1.22). Only polynomials that have no
more than a pair of complex roots can be handled by this function. If the polynomial has more
than a pair of complex roots, the function roots should be used instead. The function is written
in general form and may be used in other programs directly.

The MATLAB program Examplel _3.m does the search for the desired value of K, by
the bisection method. At the beginning of the program, the user is asked to enter the
coefficients of the numerator and the denominator of the transfer function (in descending s
powers). The numerator and the denominator may be of any degree with the limitation that
the numerator cannot have a degree greater than that of the denominator. The user should also
enter the range of search and method of root finding. It is good practice to choose zero for the
minimum value of the range; thus, poles of the open-loop transfer function are evaluated in
the first step of the search. The maximum value must be higher than the critical value,
otherwise the search will not arrive at the critical value.
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Stability of the system is examined at the minimum, maximum, and midpoints of the
range of search of K .. That half of the interval in which the change from negative to positive
(stable to unstable system) occurs is retained by the bisection algorithm. This new interval is
bisected again and the evaluation of the system stability is repeated, until the convergence
criterion, which is [AK .| < 0.001, is met.

In order to determine whether the system is stable or unstable, the two polynomials are
combined, as shown in the Method of Solution, using K - as the multiplier of the polynomial
from the numerator of the transfer function. Function NRsdivision (which uses the Newton-
Raphson method with synthetic division algorithm) or function roots (which uses the
eigenvalue algorithm) is called to calculate the roots of the overall polynomial function and
the sign of all roots is checked for positive real parts. A flag named stbl indicates that the
system is stable (all negative roots: stbl = 1) or unstable (positive root; stbl = 0).

Program

Examplel _3.m

Examplel_3.m

Solution to the problem posed in Example 1.3. It calculates the
critical value of the constant of a proportional controller above
which the system of chemical reactor becomes unstable. This program
evaluate all roots of the denominator of the transfer function using
the Newton-Raphson method with synthetic division or eigenvalue
methods.

o° P o o o° of

o

clear
clc

% Input data
num = input(' Vector of coefficients of the numerator polynomial =
")

denom = input (' Vector of coefficients of the denominator
polynomial = ');

disp(' ")

Kcl = input(' Lower limit of the range of search = ');

Kc2 = input (' Upper limit of the range of search = ');
disp(' ')

disp(' 1 ) Newton-Raphson with synthetic division')

disp(' 2 ) Eigenvalue method')
method = input(' Method of root finding = ');

iter = 0;

nl = length(num);

n2 = length(denom) ;
¢{(1:n2-nl) = denom (l:n2-nl);
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% Main loop
while abs(Kcl - Kc2) > 0.001
iter = iter + 1;

if iter ==
K¢ = Kcl; % Lower limit
elseif iter ==
Kc = Ke2; % Upper limit
else
Kc = (Kcl + Ke2) / 2; % Next approximation
end

% Calculation of coefficients of canonical form of polynomial
for m = n2-nl+l : n2;

c(m) = denom(m) + Kc * num(m-n2+nl);
end

% Root finding
switch method

case 1 $Newton-Raphson with synthetic division
root = NRsdivision(c);

case 2 % Eigenvalue method
root = roots (c);

end

realpart = real (root);

imagpart = imag (root);

% Show the results of calculations of this step
fprintf('\n Kc = %6.4f\n Roots = ', Kc)
for k = 1:length(root)
if isreal (root(k))
fprintf ('%7.5g ', root (k))
else
fprintf('%6.4g',realpart(k))
if imagpart(k) >= 0

fprintf ('+%5.4gi ', imagpart (k) )
else
forintf('-%5.4gi ', abs{imagpart (k)))
end
end
end
disp(' ')

% Determining stability or unstability of the system
stbl = 1;
for m = 1 : length(root)
if realpart(m) > 0
stbl = 0; % System is unstable
break;
end
end



Example 1.3 Solution of nth-Degree Polynomials and Transfer Functions

if iter == 1
stbll = stbl;
elseif iter ==
stbl2 = stbl;
if stbll == stbl2
error('Critical value is outside the range of search.')

break
end
else
if stbl == stbll
Kcl = Kc;
else
Kc2 = Kc;
end
end
end

NRsdivision.m
function x = NRsdivision(c, tol)
$NRSDIVISION Finds polynomial roots.

P of

The function NRSDIVISION(C) evaluates the roots of a
polynomial equation whose coefficients are given in the
vector C.

oe

NRSDIVISION(C, TOL) uses tolerance TOL for convergence
test. Using the second argument is optional.

0C 9P 0P o

The polynomial may have no more than a pair of complex
roots. A root of nth-degree polynomial is determined by
Newton-Raphson method. This root is then extracted from
the polynomial by synthetic division. This procedure
continues until the polynomial reduces to a quadratic.

00 of o0 O° O P o o

See also ROOTS, NRpoly, NR

% (¢) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 2 | isempty(tol)

tol = le-6;
end
if tol ==
tol = le-6;
end
n = length{(c) - 1; % Degree of the polynomial

a = ¢y
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% Main loop

for k = n : -1 : 3
%0 —a(2)/a(l);
x1=x0+0.1;
iter = 0;
maxiter = 100;

% Solving the polynomial by Newton-Raphson method

while abs(x0 - x1) > tol & iter < maxiter

iter = iter + 1;
x0 = x1;
fnk = polyval(a,x0); % Function
fnkp = polyval (polyder(a),x0); % Derivative
if fnkp ~= 0
x1 = x0 - fnk / fnkp; % Next approximation
else
xl = x0 + 0.01;
end
end
x(n-k+1) = x1; % the root

% Calculation of new coefficients
b(l) = a(l);
for r = 2 : k
b(r) = a(r) + b(r-1) * x1;
end

if iter == maxiter

disp('Warning : Maximum iteration reached.')

end

clear a

a = b;

clear b
end
% Roots of the remaining quadratic polynomial
delta = a(2) ~ 2 - 4 * a(l) * a(3);

x(n-1) = (-a(2) - sgrt(delta)) / (2 * a(l));
x(n) = (-a(2) + sqgrt(delta)) / (2 * a(l));
X=X"';

Input and Results

>>Examplel_3

Vector of coefficients of the numerator polynomial

= [2.98,

Chapter 1

6.705]
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Vectcr of coefficients of the denominator polynomial =
83.0632,

47.49,

Lower limit of the range of search
Upper limit of the range of search

51.2327]

0
100

1 ) Newton-Raphson with synthetic division

2 )

Eigenvalue method

Method of root finding =

Ke =
Roots =

Kec =
Roots =

Kc =
Roots =

Kc =
Roots =

Ke =
Roots =

Ko =
Roots =

Kc =
Roots =

Kc =
Roots =

Kc =
Roots =

Kc =
Roots =

Ke =
Roots =

Kc =
Roots =

Ke =
Roots =

50.

75.

87.

81.

78.

76.

75.

75.

75.

75.

75.

0.0000

-4.35

100.0000

-9.851

0000
-8.4949

0000
-9.2487

5000
-9.5641

2500
-9.4104

1250
-9.3306

5625
-9.29

7812
-9.2694

3906
-9.2591

1953
-9.2539

0977
-9.2513

1465
~-9.2526

-2.8591

~2.248

-2.

2459

L2473

L2477

.2475

L2474

.2473

L2473

L2473

L2473

.2473

L2473

-2.8409

-1.45

0.2995+5.7011 0

-0.3796+4.4851

-0.001993+5.1631

0.1559+5.4451 0

0.07893+5.3081

0.039+5.2371

0.01864+5.21 0.

0.00836+5.1821

0.003192+5.1731

0.0006016+5.1681

-0.0006953+5.1661

-4.667e-005+5.167

43

[1, 11.5,

.2995-5.7011

-0.3796-4.4851

-0.001993-5.1631

.1559-5.4451

0.07893-5.3081

0.039-5.2371

01864-5.21

0.00836-5.1821

0.003192-5.1731

0.0006016~5.1681

~0.0006953-5.1661

i -4.667e-005-5.1671
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Ke = 75.1709
Roots = -9.2533 -2.2473 0.0002775+5.1671 0.0002775-5.1671

Kc = 75.1587
Roots = -9.2529 -2.2473 0.0001154+5.1671 0.0001154-5.1671

Kec = 75.1526
Roots = -9.2528 -2.2473 3.438e-005+5.1671 3.438e-005-5.1671

Kc = 75.1495
Roots = =-9.2527 -2.2473 -6.147e-006+5.1671 -6.147e-006-5.1671

Kc = 75.1511
Roots = -9.2527 -2.2473 1.412e-005+5.1671 1.412e-005-5.1671

Kc = 75.1503
Roots = -9.2527 -2.2473 3.985e-006+5.1671 3.985e-006-5.1671

Discussion of Results: The range of search for the proportional gain (K ) is chosen to
be between ) and 100. A convergence criterion of 0.001 is used and may be changed by the
user if necessary. The bisection method evaluates the roots at the low end of the range
(K . =0) and finds them to have the predicted values of

-4.3500 -2.8591 -2.8409 and -1.4500

The small difference between the two middle roots and their actual values is due to rounding
off the coefficients of the denominator polynomial. This deviation is very small in comparison
with the root itself and it can be ignored. At the upper end of the range (K - = 100) the roots
are

-9.8510  -2.2480 and 0.2995 +£5.7011i

The system is unstable because of the positive real components of the roots. At the midrange
(K = 50) the system is still stable becausc all the real parts of the roots are negative. The
biscction method continues its search in the range 50-100. In a total of 19 evaluations, the
algorithm arrives at the critical value of K in the range

75.1495 < K < 75.1503

In the event that the critical value of the gain was outside the limits of the original range of
scarch, the program would have detected this carly in the search and would have issued a
warning and stopped running.
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1.9 NEWTON’S METHOD FOR SIMULTANEOUS
NONLINEAR EQUATIONS

If the mathematical model involves two (or more) simultaneous nonlinear equations in two (or
more) unknowns, the Newton-Raphson method can be extended to solve these equations
simultaneously. In what follows, we will first develop the Newton-Raphson method for two
equations and then expand the algorithm to a system of k equations.

The model for two unknowns will have the general form

filx;,x,) =0
(1.57)

[}

Slx,x) =0

where f, and f, are nonlinear functions of variables x, and x,. Both these funcuons may be
1)
expanded in two-dimensional Taylor series around an initial estimate of x, " and x( "

9,

1

of,
Xl(l)) + —1IX<1)(.X2 -
X

1
|m(xl— ())+...

(1) (1)
fl(xl’xz f|( 1 ) +

2 (1.58)

7, 9,
H(x,x,) = filx x 0 xly . 2| w(x - xl“)) o =2 (x, - iy
dx dx

2

The superscript (1) will be used to designate the iteration number of the estimate.
Setting the left sides of Egs. (1.58) to zero and truncating the second-order and higher
derivatives of the Taylor series, we obtain the following equations:

af, of,
ll m(’Cl - 1(1)) + a—l m(xa - xz(l) = f]( I(I)’ 2“)
X X
(1.59)
of a1,
2| mx X - ](1) + 8_2[".“)(/‘2 - xz(”) = fz( 1(1)» 2(1)
X
If we define the correction variable & as
o) m
8, =x - x
(1.60)

) _ )
62
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then Egs. (1.59) simplify to

af, of,
—l|;—‘”6(l]) ]l -x,6(“ = -fl(x]“),xem)
X X
(1.61)
%‘t(,,aﬁ” % I Y A S
X X

Egs. ((1 )61) are a set of simultaneous linear algebraic equations, where the unknowns are 6(“
and 8, . These equations can be written in matrix format as follows:

% . %l N 6([1) l(lJ
ox, ! dx, !
= - (1.62)
af,] 6f2X
|, (1
ox, a8 A

Because this set contains only two equations in two unknowns, it can be readily solved by the
application of Cramer’s rule (see Chap. 2) to give the first set of values for the correction
Vector:

af of

fl - f2 :

L ax dx
1 - )
o o _ 3, 35
dx, dx, dx, dx,

(1.63)

af, af.

- h ‘fl 2

U Xy 9x,

dx, dx, dx, 0x

: l% of, 3 3

The superscripts, indicating the iteration number of the estimate, have been omitted from the
right-hand side of Eqs. (1.63) in order to avoid overcrowding.

The new estimate of the solution may now be obtained from the previous estimate by
adding to it the correction vector:

+1
B A (1.64)
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This equation is merely a rearrangement and generalization to the (n + 1)st iteration of Egs.
(1.60).

The method just described for two nonlinear equations is readily expandable to the case
of k simultaneous nonlinear equations in £ unknowns:
filxooooux) =0
(1.65)

fo(xysx) = 0

The linearization of this set by the application of the Taylor series expansion produces Eq.
(1.66).

A LY R
dx, o ox,
....... = - . (1.66)
A
dx, aka 5,“ fH
In matrix/vector notation this condenses to
Jo =-f (1.67)

where J is the Jacobian matrix containing the partial derivatives, & is the correction vector,
and fis the vector of functions. Eq. (1.67) represents a set of linear algebraic equations whose
solution will be discussed in Chap. 2.

Strongly nonlinear equations are likely to diverge rapidly. To prevent this situation,
relaxation is used to stabilize the iterative solution process. If & is the correction vector
without relaxation, then relaxed change is pd where p is the relaxation factor:

x@D x5 (1.68)

A typical value for p is 0.5. A value of zero inhibits changes and a value of one is equivalent
to no relaxation. Relaxation reduces the correction made to the variable from one iteration to
the next and may eliminate the tendency of the solution to diverge.

Example 1.4: Solution of Nonlinear Equations in Chemical Equilibrium Using
Newton’s Method for Simultaneous Nonlinear Equations. Develop a MATLAB function
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to solve n simultaneous nonlinear equations in n unknowns. Apply this function to find the
equilibrium conversion of the following reactions:

c
2A+B=C K, = —< = 5x10*
CiCy
C
A+D=C K, = —5 = 4x107?
CACD

Initial concentrations are
C,o=40 Cpo=15 Cry=0 Cpo= 10
All concentrations are in kmol/m’.

Method of Solution: Eq. (1.67) is applied to calculate the correction vector in each
iteration and Eq. (1.68) is used to estimate the new relaxed variables. The built-in MATLAB
function inv is used to invert the Jacobian matrix.

The variables of this problem are the conversions, x, and x,, of the above reactions. The
concentrations of the components can be calculated from these conversions and the initial
concentrations

C, = Cip - 2%,Cpo - %,Cpo= 40 - 30x, - 10x,
C, = (1 -x)Cpy - 15 - 15x,

Ce = Cep + %,Cpy * 1,Cpp = 15x, + 10x,

Cp = (1 -x)Cphp - 10 - 10x,

The set of equations that are functions of x, and x, are

C

fi(x,,x,) = —S— - 5x10% = 0
CiC,

f(x,x,) = Cc _4x107 = 0

237172 CACD

The values of x, and x, are to be calculated by the program so that f, = f, = 0.

Program Description: The MATLAB function Newton.m solves a set of nonlinear
equations by Newton’s method. The first part of the program is initialization in which the
convergence criterion, the relaxation factor, and other initial parameters needed by the
program are being set. The main iteration loop comes next. In this part, the components of
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the Jacobian matrix are calculated by numeric differentiation [Eq. (1.66)], and new estimates
of the roots are calculated according to Eq. (1.68). This procedure continues until the
convergence criterion is met or a maximum iteration limit is reached. The convergence
criterion is max(|x" - x""|) < €.

The MATLAB program Examplel_4.m is written to solve the particular problem of this
example. This program simply takes the required input data from the user and calls Newton.m
to solve the set of equations. The program allows the user to repeat the calculation and try
new initial values and relaxation factor without changing the problem parameters.

The set of equations of this example are introduced in the MATLAB function
Exl_4_func.m. Itis important to note that the function Newrton.m should receive the function
values at each point as a column vector. This is considered in the function Ex/_4_func.

Program

Examplel _4.m

% Examplel_4.m

% Solution to the problem posed in Example 1.4. It calculates the
% equilibrium concentration of the components of a system of two
% reversible chemical reactions using the Newton's method.

clear

clc

% Input data
input (' Vector of initial concentration of A, B, C, and D = ');

cO =
Kl = input(' 2A + B = C K1 = ');
K2 = input(' A + D = C K2 = ');

fname = input (' Name of the file containing the set of eqguations =
")

repeat = 1;
while repeat
% Input initial values and relaxation factor

]

x0 = input('\n\n Vector of initial guesses = ');
rho = input(' Relaxation factor = ');

% Solution of the set of eguations
[x,iter] = Newton (fname,x0,rho, [],c0,K1,K2);

% Display the results

fprintf('\n Results :\n x1 = %6.4f , x2 = %6.4f', x)

fprintf ('\n Solution reached after %3d iterations.\n\n', iter)
repeat = input (' Repeat the calculations (0 / 1) 2 ');

end
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Newton.m

function [xnew , iter] = Newton(fnctn , x0 , rho , tol , varargin)
FNEWTON Solves a set of equations by Newton's method.

%

% NEWTON('F',X0) finds a zero of the set of equations

% described by the M-file F.M. X0 is a vector of starting

% guesses.

%

% NEWTON( 'F',X0,RHO, TOL) uses relaxation factor RHO and

% tolerance TOL for convergence test.

%

% NEWTON('F',X0,RHO,TOL,P1,P2,...) allows for additional

% arguments which are passed to the function F(X,P1,P2,...}.
% Pass an empty matrix for TOL or TRACE to use the default
% value.

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 4 | isempty(tol)

tol = le-6;
end
if nargin < 3 | isempty(rho)
rho = 1;
end
%0 = (x0(:).')'; $ Make sure it's a column vector
nx = length(x0);

x =x0 * 1.1;
xnew = x0;
iter = 0;
maxiter = 100;

% Main iteration loop

while max(abs(x - xnew)) > tol & iter < maxiter
iter = iter + 1;
X = Xnew;
fnk = feval (fnctn,x,varargin{:}):

g Set dx for derivation
for k = 1:nx
if x(k) ~= 0
dx (k) = x(k) / 100;
else
dx(k) =1 / 100;
end
end
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% Calculation of the Jacobian matrix
=XI'
= X;
or k =1 : nx
a(k) = a(k) - dx(k); fa = feval(fnctn,a,varargin{:});
b(k) = b(k) + dx(k); f£fb = feval(fnctn,b,varargin{:});
jacob(:,k) = (fb - fa) / (b(k) - a(k));
a(k) = a(k) + dx(k);
b(k) = b(k) - dx(k);
end

Hh O

% Next approximation of the roots
if det(jacob) ==
xnew = X + max([abs(dx), 1l.1*toll]);
else
xXnew = x - rho * inv(jacob) * fnk;
end
end

if iter >= maxiter
disp('Warning : Maximum iterations reached.')
end

Ex1_4_func.m

function f = Ex1_4_func(x,c0,K1,K2)

% Evaluation of set of equations for example 1.4.

% ¢c0(1l) = cald / c0(2) = cb0 / c0(3) = ¢ccO0 / c0(4) = cd0

ca = c0(1) - 2*x(1)*c0(2) - x(2)*c0(4);
cb = (1 - x(1))*c0(2);

cc = ¢0(3) + x(1)*c0(2) + x(2)*c0(4);
ced = (1 - x(2))*c0(4);

f(1l) = cc / ca™2 / cb - K1;
£(2) = cc / ca / cd - K2;
£ =f£f£; % Make it a column vector.

Input and Results

>>Examplel_4

Vector of initial concentration of A, B, C, and D = [40, 15, 0, 10]
2A + B = C K1l = 5e-4

A +D-=2C K2 = 4e-2
Name of the file containing the set of equations = 'Ex1_4_func'
Vector of initial guesses = [0.1, 0.9]

Relaxation factor =1
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Regults
%1 = 0.1203 , x2 = 0.4787
Solution reached after 8 iterations.

Repeat the calculations (0 / 1) 2 1

Vector of initial guesses = {0.1, 0.1}
Relaxation factor =1
Warning : Maximum iterations reached.

Results

x1 = 3212963175567844000000000.0000 , x2
-697320705642097800000000.0000

Solution reached after 100 iterations.

Repeat the calculations (0 / 1) 2 1

Vector of initial guesses = [0.1, 0.1]
Relaxation factor = 0.7

Results
x1l = 0.1203 , x2 = 0.4787
Solution reached after 18 iterations.

Repeat the calculations (0 / 1) 2?2 O

Discussion of Results: Three runs are made to test the sensitivity in the choice of initial
guesses and the effectiveness of the relaxation factor. In the first run, initial guesses are set
to x,” = 0.1 and x,” = 0.9. With thesc guesses, the method converges in 8 iterations. By
default, the convergence criterion is max(]Ax,[) < [0™. This value may be changed through
the fourth input argument of the function Newton.

In the second run, the initial guesses are set to x,”’ = 0.1 and x,"” = 0.1. The maximum
number of iterations defined in the function Newton is 100, and the method does not converge
in this case, even in 100 iterations. This test shows high sensitivity of Newton's method to the
initial guess. Introducing the relaxation factor p = 0.7 in the next run causes the method to
converge in only 18 iterations. This improvement in the speed of convergence was obtained
by using a fixed relaxation factor. A more cffective way of doing this would be to adjust the
relaxation factor from iteration to iteration. This is left as an exercise for the reader.
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Problems
PROBLEMS
1.1 Evaluate all the roots of the polynomial equations, (a)-(g) given below, by performing the
following steps:
(i) Use Descartes’ rule to predict how many positive and how many negative roots each
polynomial may have.
(i) Use the Newton-Raphson method with synthetic division to calculate the numerical values of
the roots. To do so. first apply the MATLAB function roots.m and then the NRsdivision.m, which
was developed in this chapter. Why does the NRsdivision.m program fail to arrive at the answers
of some of these polynomials? What is the limitation of this program?
(iii) Classify these polynomials according to the four categories described in Sec. 1.2.
(a) x*- 16 X’ + 96x” - 256x + 256 = 0
(b) x*-32x*+256=0
(©) x*+3x"+12x-16=0
(d) x*+4x° + 18x* - 20x + 125=0
(e) x° - 8x* +35x’ - 106x* + 170x - 200 =0
) x*-10x° + 354 - 5x +24=0
(g) x°- 8x" + 11x* + 78x* - 382¢* + 800x - 800 = 0
1.2 Evaluate roots of the following transcendental equations.
(a) sinx - 2exp(-x*) =0
(b) ax-a"=0 for a=2,e,0r3
(c)In(l +x%) - /lx| =0
(d) e*/(1 +cosx)-1=0
1.3  Repeat Example 1.2 by using the Benedict-Webb-Rubin (BWR) and the Patel-Teja (PT) equations

of state. Compare the results with those obtained in Example 1.2.

Benedict-Webb-Rubin equation of state:

+ —_—

7 VZ V3 V6 V3T2 VZ

2
RT | BRT - Ay - (CJ/TY)  bRT -a  ax | (1+Y)ewvz

where A, B,, C,, a, b, ¢, &, and vy are constants. When P is in atmosphere, V is in liters per mole,
and T is in Kelvin, the values of constants for n-butane are:
A, =10.0847 B,=0.124361 C, = 0.992830x10°

a=1.88231 b =10.0399983 c = 0.316400x10°
o =1.10132x10° y = 3.400x10° R =0.08206
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Patel-Teja equation of state:

RT a

V-b VIV + b) -tV - b)

where « is a function of temperature. and b and ¢ are constants
a = QRTIP)[1 + Fa - [Tl
b = QRT/P)
¢ = Q(RT/IP)

where

Q =1-3¢
Q, = 30+ 301 -20)Q, + O - 1 - 3¢,
and Q, is the smallest positive root of the cubic

3

Q- (2 -30)0 +30Q, - =0
Fand ¢, are functions of the acentric factor given by the following quadratic correlations

F = 0452413 + 1.30982w - 0.295937 w*

¢

Use the data given in Example 1.2 for n-butanc to calculate the parameters of PT equation.

0.329032 - 0.076799w + 0.0211947 "

F moles per hour of an n-component natural gas stream is introduced as feed to the flash
vaporization tank shown in Fig. P1.4. The resulting vapor and liquid streams are withdrawn at the
rate of V and L moles per hour. respectively. The mole {ractions of the components in the teed,
vapor. and liquid are designated by z,. v, and x;, respectively (i = 1.2.. ... n). Assuming vapor-
liquid equilibrium and steady-state operation, we have:

Overall balance F=L+V
Individual component balances SF=al+vV i=1.2..... "
Equilibrium relations K =v/x, i=1.2..... n

Here. K, is the cquilibrium constant for the ith component at the prevailing temperature and
pressure in the tank. From these equations and the fact that

n n
Z;.t[ = E:I‘\*i =1
i [
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derive the following equation:

u oK F
o V‘K,. - ]) + F

Using the data given in Table P1.4. solve the above equation for V. Also calculate the values
of L, the x,. and the v, by using the first three equations given above. The test data in Table P1.4
relates to flashing of a natural gas stream at 1 [ MPa and 48°C. Assume that £ = 100 mol/h.

What would be a good value V, for starting the iteration? Basc this answer on your
observations of the data given in Table P1.4.

Vapor
- Vmol/h
(0
Feed ‘ .
= Flash
F mol/h ‘
‘ Drum
\ )
“’T/Liquid
L. mol/h

Figure P1.4 Flash drum

Table P1.4

Component i z; K.

Methane 1 0.8345 3.090
Carbon dioxide 2 0.0046 1.650
Ethane 3 0.0381 0.720
Propane 4 0.0163 0.390
i-Butane 5 0.0050 0.210
n-Butane 6 0.0074 0.175
Pentanes 7 0.0287 0.093
Hexanes 8 0.0220 0.065
Heptanes+ 9 0.0434 0.036

1.0000
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1.5 The Underwood equation for multicomponent distillation is given as

n -z F
[Eafi -F(1-¢g)=0

j=1 aj -

where F =molar feed flow rate

n = number of components in the feed
z; = mole fraction of each component in the feed
g = quality of the feed
o, =relative volatility of each component at average column conditions
¢ =root of the equation

It has been shown by Underwood that (n - 1) of the roots of this equation lie between the values
of the relative volatilities as shown below:

o, <, ,<a,, <d,<..<o <P, <, <P, <,

Evaluate the (n - 1) roots of this equation for the case shown in Table P1.5.

Table P1.5
Component in feed Mole fraction, z, Relative volatility, «,
C, 0.05 10.00
C, 0.05 5.00
C, 0.10 2.05
C, 0.30 2.00
C, 0.05 1.50
Cs 0.30 1.00
c, 0.10 0.90
C, 0.05 0.10
1.00
F =100 mol/h g = 1.0 (saturated liquid)

1.6 Carbon monoxide from a water gas plant is burned with air in an adiabatic reactor. Both the
carbon monoxide and air are being fed to the reactor at 25°C and atmospheric pressure. For the
reaction:

Cco + %02 « Co,
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the following standard free energy change (at 25°C) has been determined:

AG; = -257 KI/(gmol of CO)

The standard enthalpy change at 25°C has been measured as

AH) = -283 kJ/(gmol of CO)

4

The standard states for all components are the pure gases at 1 atm.
Calculate the adiabatic flame temperature and the conversion of CO for the following two cases:

(a) 0.4 mole of oxygen per mole of CO is provided for the reaction.
(b) 0.8 mole of oxygen per mole of CO is provided for the reaction.
Tha congtant pragoura heat eapacities for the vartous constituente m J(gmol. K) with Tin Kelvin

are all of the form
C, =A, + BTy~ CT;

P, :

For the gases involved here, the constants are as shown in Table P1.6.

Table P1.6
Gas A B C
Cco 26.16 8.75x10™ -1.92x10°*
0, 25.66 12.52x10° -3.37x10°
CoO, 28.67 35.72x10°  -10.39x10°
N, 26.37 7.61x10™ -1.44x10¢

Hint: Combine the material balance. enthalpy balance. and equilibrium relationship to form two
nonlinear algebraic equations in two unknowns: the temperature and conversion.

1.7 Consider the three-mode feedback control of a stirred-tank heater system (Fig. P1.7).

Hot Product

i Fl' Stirred
e Tank
Steam ’J\J Heater

Cold Feed

Figure P1.7 Stirred tank heater.
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The measured output variable is the feedstream temperature [7]. Using classical methods (i.e.,
deviation variables, linearization, and Laplace transforms) the overall closed-loop transfer function

for the control system is given by

(t)(t, s+ 1)(1,s+1)

R NESY
1

(T9)(tps + (s + 1)(T, s+ 1) + K(t,5 +1 +1,7,8%)

m

where 1, =reset time constant
T, = derivative time constant
K =K,KK K,
K= first-order process static gain
K, = first-order valve constant
K, = first-order measurement constant
K = proportional gain for the three-mode controller
T = Laplace transform of the output temperature deviation
Ti= Laplace transform of the input load temperature deviation

TpT,,T, = first-order time constants for the process, measurement device. and process valve,
respectively.
For a given set of values, the stability of the system can be determined from the roots of the

characteristic polynomial (i.e, the polynomial in the denominator of the overall transfer function).
Thus:

4
T,TpT, T80 + (T,T,T

m et

3. 2
+ T+ TT,T,)s (Ktt, + 1,7, + T, + T,T,)S

m P 1 I"m

+ (1, + Kt)s + K =0

For the following set of parameter values, find the four roots to the characteristic polynomial when
K. is equal to its “critical” value:

T, =10 =1 T, =10 T,=95 T,=5
K,=10 K =2 K, =0.09 K = 18K,

In the analytical solution of some parabolic partial differential equations in cylindrical coordinates,
it is necessary to calculate roots of the Bessel function first (for example, see Problem 6.11). Find
the first N root of the first and the second kind. Use the following approximations for evaluating

the initial guesses:
Jn(x) = icos X - ﬂ — E
TX 2 4
Y (x) = isin x-2E_T
X 2 4

Which method of root finding do you recommend?
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1.9

A direct-fired tubular reactor is used in the thermal cracking of light hydrocarbons or naphthas for
the production of olefins, such as ethylene (see Fig. P1.9). The reactants are preheated in the
comvection scction of the furnace. mixed with steam, and then subjected to high temperatures in
the radiant section of the furnace. Heat transfer in the radiant section of the furnace takes place
through three mechanisms: radiation. conduction, and convection. Heat s transferred by radiation
from the walls of the furnace to the surface of the tubes that carry the reactants, and it is transferred
through the walls of the tubes by conduction and finally to the fluid inside the tubes by convection
[8].

The threc heat-transfer mechanisms are quantified as follows:
1. Radiation: The Stefan-Boltzmann law of radiation may be written as

O o1) - TH

dA

o

where dQ/dA | is the rate for heat transfer per unit outside surface area of the tubes, T, is the
“effective” furnace radiation temperaturc, and 7, is the temperature on the outside surtace of the
tube. In furnaces with tube banks irradiated from both sides. a reasonable approximation is

T = T,

where T;; is the temperature of the [lue gas in the reactor. Therefore, the Stefan-Boltzmann
equation is revised to

dQ 14 4

___gt_ = od)(TG - T”)

dA

o

o is the Stefan-Boltzmann constant and ¢ is the tube geometry emissivity factor. which depends
on the tube arrangement and tube surface emissivity. For single rows of tubes irradiated from both
sides:

T

-1+ =

|
€ 2Q

4
¢

> -

Q - - 2] -
D,

S S
— +arctan || —
DU DG
where € is the emissivity of the outside surface of the tube and S is the spacing (pitch) of the tubes
(center-to-center) and D, is the outside diameter of the tubes.

2. Conduction: Conduction through the tube wall is given by Fourier’s equation:

k
LQ— - _f(T” - [l)
dA t

o !

where 7, is the temperature on the inside surface of the tube. k, is the thermal conductivity of the
tube material, and 1, is the thickness of the tube wall



60

Numerical Solution of Nonlinear Equations  Chapter 1

3. Convection: Convection through the fluid film inside the tube is expressed by

D
_‘Q = hi - (7‘1 - 7'1)
dA, D

o

where D, is the inside diameter of the tube. T, is the temperature of the fluid in the tube. and h, is
the heat-transfer film coefficient on the inside of the tube. The film coefficient may be
approximated {rom the Dittus-Boelter equation [9]:

h, = 0.023( ﬁ] Re/*Pr{*
Di
where Re, is the Reynolds number, Pr,is the Prandt]l number. and &, is the thermal conductivity of
the fTuid.

Conditions vary drastically along the length of the tube, as the temperature of the fluid inside
the tube rises rapidly. The rate of heat transfer is the highest at the entrance conditions and lowest
at the exit conditions of the fluid.

Calculate the rate of heat transfer (dQ/dA,), the temperature on the outside surface of the tube
(T,), and the temperature on the inside surface of the tube (7)) at a point along the length of the tube
where the following conditions exist:

T, = 1200°C T, =800°C €=09 0 =5.7x10" W/m" X'
S =020m D, =0.10m D,=0.11m r, = 0.006 m
Re, = 388,000 Pr,=0.660 k, =216 W/mK k; =0.175 W/m.K
FEED oCo Bo | FEED
DB o0q
oMo RoMN,
LI R
S T EﬁM HAA Y OE 5 [=] r,E 1 RO S TE“"
C C
T T }
lynl‘x\Iﬂl]llllllhi\ﬂ\lll ARHHTRITIN 6 (I) l|IIINIUIIIIIHIIIII!MIH] lHmlllilll!lt!ml!ll'"
| N N Ul

lml!lI|I!IIlﬂ\‘mllwll||IIH!MllII||||||lIM\llllIlIIIIHH!]IIInInN\ﬂlllllw
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uf FUEL | [
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Figure P1.9 Pyrolysis reactor.
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1.10 The elementary reaction A - B + C is carried out in a continuous stirred tank reactor (CSTR).
Pure A enters the reactor at a flow rate of 12 mol/s and a temperature of 25°C. The reaction is
exothermic and cooling water at 50°C is used to absorb the heat generated. The energy balance
for this system, assuming constant heat capacity and equal heat capacity of both sides of the
reaction, can be written as

-F,XAH, = F, C, (T - T)) + UA(T - T)

where F 4 = molar flow rate, mol/s
X = conversion

AH, = heat of reaction, J/mol A

C b, = heat capacity of A, J/molL.K
T =reactor temperature, °C
T, = reference temperature, 25°C
T, =cooling water temperature, 20°C
U = overall heat transfer coefficient, W/m*.K

A = heat transfer area, m*

For a first-order reaction the conversion can be calculated from

Tk
1 + tk

where T is the residence time of the reactor in seconds and k is the specific reaction rate in s
defined by the Arrhenius formula:

k = 650exp[-3800/(T +273)]

Solve the energy balance equation for temperature and find the steady-state operating temperatures
of the reactor and the conversions corresponding to these temperatures. Additional data are:

AH, =-1500k}/mol  t=10s CPA =4500 J/mol.K UA/FA0 =700 W.s/mol.K
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CHAPTER 2

Numerical Solution of Simultaneous Linear
Algebraic Equations

2.1 INTRODUCTION

The mathematical analysis of linear physico-
chemical systems often results in models consisting of sets of linear algebraic equations. ln
addition. methods of solution of nonlinear systems and differential equations use the technique
of lincarization of the models, thus requiring the repetitive solution of sets of lincar algebraic
equations. These problems may range in complexity from a set of two simultaneous linear
algebraic equations to a set involving 1000 or even 10,000 equations. The solution of a set of
two to three linear algebraic equations can be obtained easily by the algebraic elimination of
variables or by the application of Cramer’s rule. However, for systems involving five or more
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equations, the algebraic elimination method becomes too complex, and Cramer’s rule requires
a rapidly escalating number of arithmetic operations, too large even for today’s high-speed
digital computers.

In the remainder of this section, we give several examples of systems drawing from
chemical engineering applications that yield sets of simultaneous linear algebraic equations.
In the following sections of this chapter, we discuss several methods for the numerical solution
of such problems and demonstrate the application of these methods on the computer.

Material and energy balances are the primary tools of chemical engineers. Such balances
applied to multistage or multicomponent processes result in sets of equations that can be either
differential or algebraic. Often the systems under analysis are nonlinear, thus resulting in sets
of nonlinear equations. However, many procedures have been developed that linearize the
equations and apply iterative convergence techniques to arrive at the solution of the nonlinear
systems.

A classical example of the use of these techniques is in the analysis of distillation
columns, such as the one shown in Fig. 2.1. Steady-state material balances applied to the
rectifying section of the column yield the following equations:

Balance around condenser: Viyy = Lyxy + Dxp, 2.1)
Balance above the jth stage: Vivi = Lix.,; *Dxy, (2.2)

Assuming that the stages are equilibrium stages and that the column uses a total condenser,
the following equilibrium relations apply:

Yii T Kjixji (2.3)

Substituting Eq. (2.3) in (2.1) and (2.2) and dividing through by Dx,, we get

Vivie Ly i1 4
D xp, D xp, P @9
R/ R vj_lyj_l‘,.) ‘1 (2.5)
D xp, Kj-],ivj-l D x,,

The molal flow rates of the individual components are defined as

vi = Vi, (2.6)

d = Dxp, @7
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For any stage j, the adsorption ratio is defined as

A L
- 2
gt KI'. v (...8(1)
and for the total condenser as
L()
A(),‘ T (28b)
Vi Total
lo1 Condenser
j=1 Reflux Drum
J=0
vji llj-/-i
i L dl -
’ D
Vi+l.i Li
j+1
VI-1i
- T J=f1
F‘:'I P IFi l-i
F I j=f
Tt’ji ‘lj-/.i ‘
]
TVj+1,i Lji
Jj+1
J=N-1
/ Partial
Reboiler

Figure 2.1 Conventional distillation column.
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Substitution of Egs. (2.6)-(2.8) in (2.4) and (2.5) yields

Vii

e Ay ~ 1 (2.9
Vii Vit o .
o A P + 1 2<jsf-1 (2.10)

For any given trial calculation the As are regarded as constants. The unknowns in the above
equations are the groups of terms v, /d,. If these are replaced by x;, and the subscript i,
designating component i is dropped, the following set of equations can be written for a column
containing five equilibrium stages above the feed stage:

X, =A,+1
A+ X =1
A, + X =1 (2.11)
-Ax, + X, =1
A, X =1

This is a set of simultanecous linear algebraic equations. It is actually a special set that has
nonzero terms only on the diagonal and one adjacent element. 1t is a bidiagonal set.
The general formulation of a set of simultaneous linear algebraic equations is

allxl 4 alzxz + o007 tllnX” = (‘]
aleI + 022.762 DI (lzn.\'” - C?_

(2.12)
anl xl * aanZ * ann xn = Cn

where all of the coefficients a,, could be nonzero. This set is usually condensed in vector-
matrix notation as

Ax =¢ (2.13)
where A is the coefficient matrix
ap ap a,,
Ay Gy -- - Gy,
A = (2.14)
_anl anZ a)m ]
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x is the vector of unknown variables:

[ X,
Ro)

x = (2.15)
x”

and ¢ is the vector of constants:

-c,
)

c = (2.16)
C"

When the vector ¢ is the zero vector, the set of equations is called homogeneous.

Another example requiring the solution of linear algebraic equations comes from the
analysis of complex reaction systems that have monomolecular kinetics. Fig. 2.2 considers
a chemical reaction between the three species, whose concentrations are designated by ¥,, ¥,,
Y,, taking place in a batch reactor.

The equations describing the dynamics of this chemical reaction scheme are

dv,
— = (ky kg )Y kY kY

dt

4y,

I = ky Yy - (kyy * k)Y, + kY (2.17)
ay,

ar = ky Y, v kY, - (kpy + ky) Y,

The above set of linear ordinary differential equations may be condensed into matrix notation

y =Ky (2.18)
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where y is the vector of derivatives:

dy,
dt
dy,
dt
dy,

dt |
y is the vector of concentrations of the components

(2.19)

Y,

and K is the matrix of kinetic rate constants:

“(ky + kyy) ki, ki3
K - Ky < (ki k) ko (2.21)
ks ks (kg * ky)
The solution of the dynamic problem, which is modeled by Eq. (2.18), would require the
evaluation of the characteristic values (eigenvalues) A, and characteristic vectors (eigenvectors)

x, of the matrix K. It is shown in Chap. 5 that the solution of a set of linear ordinary
differential equations can be obtained by using Eq. (5.53):

y =1 XeMX 1y, (5.53)

. . . . L
where X is a matrix whose columns are the eigenvectors x, of K: ¢ is a matrix with e * on the
diagonal and zero elsewhere; X' is the inverse of X: and y, is the vector of initial values of the

k2] o
Y < Y,
klz
k
Yi

Figure 2.2 System of chemical reactions.
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variables Y. Methods for calculating eigenvalues and eigenvectors of matrices are developed
in Sec. 2.9.

When a chemical reaction reaches steady state, the vector of derivatives in Eq. (2.18)
becomes zero and Eq. (2.18) simplifies to

Ky = 0 (2.22)

This is a set of homogeneous linear algebraic equations whose solution describes the steady-
state situation of the above chemical reaction problem.

Comparison of Eqgs. (2.13) and (2.22) reveals that the difference between nonhomo-
geneous and homogeneous sets of equations is that, in the latter, the vector of constants ¢ is
the zero vector. The steady-state solution of the chemical reaction problem requires finding
a unique solution to the set of homogeneous algebraic equations represented by Eq. (2.22).

In the analysis of fermentation processes, the production of the concentration of cell and
metabolic products formed in the fermentor can be accomplished by the technique of material
balance [1]. For example, the stoichiometry of the fermentation of the microorganism
Brevibacterium flavum, which produces glutamic acid, may be represented by the following
two chemical reactions:

Biomass formation:

C4¢H,,O4 + b'0, + ¢/NH, - d/CwaOyNZ +¢e'CO, + f'H,0 (2.23)
Glutamic acid synthesis:
C,H,0, + %oz + NH, - C,H,0,N + CO, + 3H,0 (2.24)

CeH,,0q is glucose, the basic nutrient in this fermentation, and C;H;O,N is glutamic acid.
Biomass is represented by C,H O N,, where w, x, y, z are the corresponding number of atoms
of each element in the cell. This erhpirical formula can be determined by analyzing the carbon,
hydrogen, oxygen, and nitrogen contents of the biomass. The inherent assumption is that C,
H, O, and N are the only atoms of significant quantity in the cell biomass. The cellular
composition is assumed to remain constant during growth.

Let a be the number of moles of glucose used, g be the fraction of glucose converted to
product, and (1 - g) be the fraction of glucose converted to biomass. Then combining Egs.
(2.23) and (2.24) results in the overall reaction

aCgH,,0, + [b(1 - g) + 1.5ag]0, + [c(1 -g) +ag]NH, =

[d(1-)IC,H,ON, + agC;H,O,N + [e(1 - g) +ag]CO, + [(1 -g) +3aglH,0  (2.25)
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The primed coefficients (b', ¢, d’, e, f" ) have been replaced by unprimed coefficients (b, c,
d, e, f). Thesc are related to each other, as follows:

b =ab’ ¢ =uc’ d=ad e=ae' f=af'

Eq. (2.25) contains seven unknown quantities: the stoichiometric coefficients (a. b, ¢, d, ¢, f)
and the fraction of substrate used for product formation (g). Based on Eq. (2.25), four
independent equations are derived from material balances on carbon, hydrogen, oxygen, and
nitrogen, as shown in Table 2.1.

Table 2.1 Elemental material balances

Elemental material balances from Eq. (2.25)

Carbon: 6a =wd(l - g)+Sag +e(l -g)+ag (2.26)
Hydrogen: 12a + 3c(1 - @) + 3ag = xd(1 - ) +9ag + 2f() - g) + 6ug (227)
Oxygen: 6a + 2b(1 - ) + 3ag = vd(1 - g) + 4ag + 2e(1 - g) + 2ug + f(1 - g) + 3ug (2.28)
Nitrogen: ol -g)+ag=zd(l - g)+ug (2.29)

Simplified elemental balance

Carbon: (wd +e-6a)l-g)=0 (2.30)
Hydrogen: (xd +2f-3¢-12a)(1 -¢)=0 (2.31)
Oxygen: (yd+2e+f-2b-6a)l-g)=0 (2.32)
Nitrogen: (c-zd)(1-g)=0 (233)

In order to determine all seven variables, three more independent relationships are
required. This is accomplished by calculating total oxygen consumed (TOTAL O,). total
carbon dioxide released (TOTAL CO,), and total glucose consumed («). Oxygen and carbon
dioxide contents of inlet and exit gases are measured by means of a paramagnetic gaseous
oxygen analyzer and an IR carbon dioxide analyzer, respectively. These quantities, combined
with gas flow rates, complete the oxygen and carbon balances on the gas stream. The
trapezoidal rule (Chap. 4) is used to calculate total oxygen consumed and total carbon dioxide
released at any time during the fermentation. These quantities are related to the stoichiometric
coefficients of Eq. (2.25) as follows:

TOTAL 0, b(1 )~ 15
— - =) - &)+~ 1du 2.3«
" g (2.34)
TOTAL CO,
— ~e(l - g) +ag (2.35)

co,
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where M, = molecular weight of O, (g/mol)
M, = molecular weight of CO, (g/mol)

Because this system is a batch process with respect to glucose. the glucose consumption
can be evaluated by subtracting the residual glucose concentration from the initial glucose
concentration:

« - (GLU, - GLU,) - (2.36)

(&3

where a = glucose consumption (mol)
GLU, = glucose consumption at time 0 (g/L)
GLU, = glucose consumption at time 7 (g/L)
V =liquid volume (L)
M = molecular weight of glucose (g/mol)

The residual glucose concentration can be measured by an on-line enzymatic glucose
analyzer.

The overall system consists of Egs. (2.30)- (2.36). This is a set of nonlinear simultaneous
algebraic cquations that can be solved simultancously using a combination of Newton's
method (Sec. 1.9) and the Gauss-Jordan method to be developed in this chapter (Scc. 2.6).

The solution of some partial differential equations is sometimes carried out by solving
sets of simultancous finite difference equations (see Chap. 6). These equations are often linear
in nature and can be solved by the methods to be discussed in this chapter.

Optimization of a complex assembly of unit operations, such as a chemical plant, or of
a cluster of interrelated assemblies. such as a group of refineries, can be accomplished by
techniques of linear programming that handle large sets of simultancous linear equations.

The application of linear and nonlinear regression analysis to fit mathematical models
to experimental data and to evaluate the unknown parameters of these models (see Chap. 7)
requircs the repetitive solution of sets of linear algebraic equations. In addition. the ellipse
tormed by the correlation coefficient matrix in the parameter hyperspace of these systems must
be scarched in the direction of the major and minor axes. The directions of these axes are
defined by the cigenvectors of the correlation coefficient matrix, and the relative lengths of the
axes are measured by the eigenvalues of the correlation coefficient matrix.

In developing systematic methods for the solution of linear algebraic equations and the
evaluation of eigenvalues and eigenvectors of linear systems. we will make extensive use of
matrix-vector notation. For this reason, and for the benefit of the reader, a review of selected
matrix and vector operations is given in the next section.
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2.2 REVIEW OF SELECTED MATRIX AND VECTOR OPERATIONS

2.2.1 Matrices and Determinants

A matrix is an array of elements arranged in rows and columns as

a, 4p iy
a, 4, ... a
21 22 2n
A = (2.37)
L anll am2 to amn ]

The elements a, of the matrix may be real numbers, complex numbers, or functions of other
variables. Matrix A has m rows and n columns and is said to be of order (m x n). If the
number of rows of a matrix is equal to the number of columns, that is, if m = n, then the matrix
is a square matrix of nth order. A special matrix containing only a single column is called a
vector:

x = | (2.15)

L .r'z J

Define another matrix B with k rows and / columns:

11 blZ bl[
b, b, ... b

-2 % L (2.38)
by, bk2 bkl_

The two matrices A and B can be added to (or subtracted from) each other if they have the
same number of rows (m = k) and the same number of columns (n = [). For example, if both
A and B are (3 x 2) matrices, their sum (or difference) can be written as
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a, xby a,*b,
A+ B -|ay,xby, ayzxb,|=C (2.39)

ay £by ay, £ by

Matrix C is also a (3 x 2) matrix. The commutative and associative laws for addition and
subtraction apply.

Two matrices can multiply each other, if they are conformable. Matrices A and B would
be conformable in the order AB if A had the same number of columns as B has rows (n = k).
If A is of order (4 x 2) and B is of order (2 x 3), then the product AB is

ayby rapby aybyvanby, a by anb,y,

ay by tayby, ay by tayby, ay by vayb,,

= = E (2.40)

ay by v ayby ay by, tagby,  ay byt aynb,,

g by raphy aybytapby, ay by aghy
The resulting matrix E is of order (4 x 3). The general equation for performing matrix
multiplication is

{i -1,2,...,m

€y - Z ai/)bp./ 1,2, (2.41)

p=1

The resulting matrix would be of order (m x /).
The commutative law is not usually valid for matrix multiplication. that is,

AB # BA (2.42)

even if the matrices arc conformable. The distributive law for multiplication applies to
matrices, provided that conformability exists:

A(B +C) - AB - AC (2.43)

The associative law of multiplication is also valid for matrices:

A(BC) - (AB)C (2.44)
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When working with MATLAB, it should be noted that there is also an element-by-
element multiplication for matrices that is completely different from ordinary multiplication
of matrices described above. The element-by-element multiplication, whose operator is *“.*"
(a dot before the ordinary muitiplication operator) may be applied only to matrices of the same
order, and it simply multiplies corresponding clements of the two matrices. For example, if
A and B are of order (3 x 2), then the element-by-element product A.*B is

ay 4y by, b, ay by apb,
A.xB = |Gy ay | .= by by | - ay by ayb,, (2.45)
ay di by by, ay by ay,bs,

If the rows of an (/m x n) matrix are written as columns, a new matrix of order (1 x m)
is formed. This new matrix is called the transpose of the original matrix. For example, if
matrix A is

[0S

(2.46)

[© I S

then the transpose A’ is

1 35
2 46

/

A - (2.47)

The transpose of the matrix A is sometimes shown as A'. The transpose of the sum of two
matrices is given by

(A-B) =A"+ B’ (2.48)
The transpose of the product of two matrices is given by

1

(AB) - B'A (2.49)
In MATLAB transpose of a matrix is simply obtained by adding a prime sign (') after the
matrix.

The following definitions apply to square matrices only: A svmmetric matrix is one that
obeys the equation

/

A=A (2.50)

If the symmetrically situated elements of a matrix are complex conjugates of each other., the
matrix is called Hermitian.
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A diagonal matrix is one with nonzero elcments on the principal diagonal and zero
elements everywhere else:

d, 0 ... 0|
0 dy ... 0

D = - (2.51)
0 0 .4,

The built-in MATLAB function diag(x) creates a diagonal matrix whose main diagonal
elements are the components of the vector x. If x is a matrix. diag(x) is a column vector
formed from the elements of the diagonal of x.

A unit matrix (or identity matrix) is a diagonal matrix whose nonzero elements are unity:

1 0 0
01 ...0

1l - (2.52)
0 0 . 1

Multiplication of a matrix (or a vector) by the identity matrix does not alter the matrix (or
vector):

IA - A, Ix —x (2.53)

In MATLAB. the function eye(n) returns an (7 X /) unit matrix.

A tridiagonal matrix is one which has nonzero elements on the principal diagonal and
its two adjacent diagonals, that we will refer to as the subdiagonal (below) and superdiagonal
(above), and zero elements everywhere else:

4 fy 00 0 0]
Ly 1y ty O 0 0
0 1y, 1y 1, 0 0
T - (2.54)
0 0 wan-s law Bya, 0
0 0 - 0 ST S .
0 0 0 0 bont T |

An upper triangular matrix is one that has all zero elements below the principal
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diagonal:

[ ]

Uy Uy Uy oo U, Uy,
O gy Uy o uy, Uy,

U - (2.55)

0 0 o ... “n~l n-i My

i 0O 0 0 ... 0 u,

i J

In MATLAB, the function triu(A) constructs an upper triangular matrix out of the matrix A,
that is, it keeps the elements on the main diagonal and above that unchanged and replaces the
elements located under the main diagonal with zero.

A lower triangular matrix is one that has all zcro clements above the principal diagonal:

L, 0 0 ... 0 0
Ly, L, 0 ... 0 0
L - (2.56)
T R Y A
L, L, 1, by L]

In MATLAB. the function 1ril(A) constructs a lower triangular matrix out of the matrix A. that
is, it keeps the elements on the main diagonal and below that unchanged and replaces the
elements located above the main diagonal with zero.

Outputs of the MATLAB function /u(A) are an upper triangular matrix U and a
“psychologically lower triangular matrix”. that is. a product of lower triangular and
permutation matrices, in L so that LU = A.

A supertriangular matrix, also called a Hessenberg matrix, is one that has all zero
elements below the subdiagonal, such as the upper Hessenberg matrix of Eq. (2.57):

hy, h, h, hyws hy,, h,
hy, hyy By, . hyys hay o hy,
0 hy, hy hy, s hy, o hy,
H, - (2.57)
0 0 R T
0 0 . 0 h,,, h,
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or above the superdiagonal, such as the lower Hessenberg matrix of Eq. (2.58):

b, h, O 0 0
hy hy 0o 0
her 1 hn~22 h’n~23 . hn~2 n-1 0
n-11 hirl? hnf]3 hn»lnfl hnf]n
hn/ hnZ hn_? hnlr[ nn |

Tridiagonal, triangular, and Hessenberg matrices are called banded matrices.

Matrices can be divided into two gencral categorics: dense and sparse matrices. The
dense matrices are usually of low order and may have only few zero elements. The sparse
matrices may be of high order with many zero elements. A special subcategory of sparse
matrices is the group of banded matrices described above.

The sum of the elements on the main diagonal of a square matrix is called the trace:

rA =Y aq, (2.59)
i=1

The sum of the eigenvalues of a square matrix is equal to the trace of that matrix:

Ya -raA (2.60)
i-1

The MATLAB function trace(A) calculates the trace of the matrix A.

Matrix diviston is not defined in the normal algebraic sense. Instead, an inverse
operation is defined, which uses multiplication to achieve the same results. If a square matrix
A and another square matrix B, of same order as A, lead to the identity matrix I when
multiplied together:

AB =1 (2.61)
then B is called the inverse of A and is written as A™". It follows then that
AATT = AT1A =1 (2.62)

There are several different ways in MATLAB to calculate the inverse of a square matrix. The
function inv(A) gives the inverse of A. Also, the inverse of the matrix may be obtained by
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AN(-1). The expression A/B in MATLAB is equivalent to AB™ and the expression A\B is
equivalent to A'B. Note that the expression A./B (putting .” before division operator) is
element-by-element division of the elements of the two matrices and the expression A.A(-1)
results in a matrix whose elements are the reciprocals of the elements of the original matrix.

The inversc of the product of two matrices is the product of the inverses of these matrices
multiplied in reverse order:

(AB)' = B4 (2.63)
This can be generalized to products of more than two matrices:
(ABC..KLM)' = M'L'K'..C'B'A™ (2.64)

A matrix is singular if the determinant of the matrix is zero. Only nonsingular matrices
have inverse.

The value of the determinant, which exists for square matrices only. can be calculated
from Laplace’s expansion theorem, which involves minors and cofactors of square matrices.
If the row and column containing an clement a, in a square matrix A are deleted. the
determinant of the remaining square array is called the minor of a,;and is denoted by M,. The
cofactor of a;, denoted by A, is given by

i

A, - (1M, 2.

"o
ol
hn
-

Laplace’s expansion theorem states that the determinant of a square matrix A. shown as {A |,
is equal to the sum of products of the elements of any row (or column) and their respective
cofactors:

1Al = Y a,A, (2.60)
k1
for any row i, or
1AL =) a4, (2.67)

kol

for any column .
Determinants have the following properties:

Property 1. 1f all the elements of any row or column of a matrix are zcro, its determinant is
equal to zero.

Property 2. 1f the corresponding rows and colummns of a matrix are interchanged. its
determinant is unchanged.
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Property 3. If two rows or two columns of a matrix are interchanged, the sign of the
determinant changes.

Property 4. If the elements of two rows or two columns of a matrix are equal, the
determinant of the matrix is zero.

Property 5. 1f the elements of any row or column of a matrix are multiplied by a scalar, this
is equivalent to multiplying the determinant by the scalar.

Property 6. Adding the product of a scalar and any row (or column) to any other row (or
column) of a matrix leaves the determinant unchanged.

Property 7. The detcrminant of a triangular matrix is equal to the product of its diagonal
elements:

W = If a, (2.68)
i=1

Calculating determinants by the expansion of cofactors is a very time-intensive task.
Each determinant has n! groups of terms and each group is the product of n elements; thus the
total number of multiplications is (n - 1)(n!). Evaluating the determinant of a matrix of order
(10 x 10) would require 32,659,200 multiplications. More efficient methods have been
developed for evaluating determinants. 1t will be shown in Sec. 2.5 that the Gauss elimination
method can be used to calculate the determinant of a matrix in addition to finding the solution
of simultaneous linear algebraic equations. To evaluate the determinant of a square matrix A
in MATLAB, the built-in function det(A) may be used.

The inverse of a matrix cannot always be determined accurately. There are many
matrices that are ill-conditioned. An ill-conditioned matrix can be identified using the
following criterion: When the ratio of the absolute values of the largest and smallest
eigenvalues of the matrix is very large. the matrix is ill-conditioned.

The rank r of matrix A is defined as the order of the largest nonsingular square matrix
within A. Consider the (m x n) matrix

ay ap L
ay Ay ay,
A = (2.37)
_aln[ am.’ o amn ]

where n > m. The largest square submatrix within A is of order (m x m). If the determinant
of this (m x m) submatrix is nonzero, then the rank of A is m (r = m). However, if the
determinant of the (m x m) submatrix is equal to zero, then the rank of A is less than m
(r < m). The order of the next largest nonsingular submatrix that can be located within A
would determine the value of the rank. In MATLAB, the function rank(A) gives the value of
7, the rank of matrix A.
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As an example, let us look at the following (3 x 4) matrix:

3 2 -4
A=|5 2 1 3 (2.69)
6 2 4 -8

There are four submatrices of order (3 x 3), whose determinant are evaluated below using
Laplace’s expansion theorem:

31 2
12 AR 5 2
2 1] =31y + (D(-1y (-1
2 6 6
6 2 4
=38 - 2) - (1)(20 - 6) + (2)(10 - 12) = 0 (2.70)
Similarly,
31 -4 3 2 -4 1 2 -4
2 3|=0 5 1 3]=0 2 1 3(=0 (2.71)
6 2 -8 6 4 -8 2 4 -8

Because all the above (3 x 3) submatrices are singular; the rank of A is less than 3. It is easy
to find several (2 x 2) submatrices that are nonsingular; therefore r = 2.

The same conclusion, regarding the singularity of the (3 x 3) submatrices, could have
been reached by the application of Properties 4 and 5, which were mentioned earlier in this
section. Property 4 states, “If the elements of two rows or two columns of a matrix are equal,
the determinant of the matrix is zero.” Property 5 states, “If the elements of any row or
column of a matrix are multiplied by a scalar, this is equivalent to multiplying the determinant
by a scalar.” Careful inspection of the four (3 x 3) submatrices shows that the first and third
rows are multiples of each other. In accordance with Properties 4 and S, the determinants
are zero.

2.2.2 Matrix Transformations

It is often desirable to transform a matrix to a different form which is more amenable to
solution. There are several such transformations that convert matrices without significantly
changing their properties. We will divide these transformations into two categories:
elementary transformations and similarity transformations.
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Elementary transformations usually change the shape of the matrix but preserve the value
of its determinant. In addition, if the matrix represents a set of lincar algebraic equations, the
solution of the set is not affected by the elementary transformation. The following serics of
matrix multiplications:

L, L,, L,LLLA-=U (2.72)
represents an elementary transformation of matrix A to an upper triangular matrix U. This
operation can be shown in condensed form as

LA =U (2.73)

where the transformation matrix L is the product of the lower triangular matrices L,. The form
of L, matrices will be define in Sec. 2.5, in conjunction with the development of the Gauss
clementary transformation procedure.

Similarity transtormations are of the form

0'A0 - B (2.74)

where @ is a nonsingular square matrix. In this operation, matrix A is transformed to matrix
B. which is said to be similar to A. Similarity in this case implies that:

l. The determinants of A and B are equal:
Al = IBI (2.75)
2. The traces of A and B are the same:
trA - wrB (2.76)
3. The eigenvalues of A and B are identical:
A - All =B - All (2.77)

[f columns of matrix @ are real mutually orthogonal unit vectors, then Q is an orthogonal
matrix, and the following relations are true:

0'0 -1 (2.78)
and

Q -0 (2.79)
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In this case, the similarity transformation. represented by Eq. (2.74). can be written as
Q'AQ - B (2.80)
and is called an orthogonal transformation. Since an orthogonal transformation is a similarity
transformation, the three identitics [Egs. (2.75)-(2.77)] pertaining to determinants, traces. and

eigenvalues of A and B are equally valid.
In MATLAB, the function orth(A) gives the matrix @ described above.

2.2.3 Matrix Polynomials and Power Series

The definition of a scalar polynomial was given in Chap. | as
8= e [ \ -
f) =ax" +a, X"+ ... ax+a, (2.81)
Similarly, a matrix polynomial can be defined as
PA) - o, A" +a, A" "+ v A - o] (2.82)
where A is a square matrix. A" is the product of A by itself n times, and A" = I.

Matrices can be used in infinite series, such as the exponential, trigonometric, and
logarithmic scries. For example, the matrix cxponential function is defined as

, A AY
e"IfA+?‘-3—'r... (2.83)
and the matrix trigonometric functions as
: At A
smA-A—;+5' - (2.84)
2 4
cosAr-I¥%-f:—'f... (2.85)

Note that in MATLAB, the functions: exp(A). cos(A). sin(A). are element-by-element
functions and do not obey the above definitions. The MATLAB functions expm(A),
expmi(A), expm2(A), and expm3(A) calculate exponential of the matrix A by different
algorithms. The function expm2(A) calculates exponential of the matrix A as in Eq. (2.83).
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2.2.4 Vector Operations
Consider two vectors x and y:

-xl ,.“l.

X ¥
X = y - (2.86)

X, "‘HJ

and their transpose:

R T A sy =y v ] (2.87)

The scalar product (or inner product) of these two vectors is defined as

/
xy =[x x ... x] =XV T XY, f s T XY, (2.88)

As the name implies, this is a scalar quantity. The scalar product is sometimes called the dor
product. The dvadic product of these two vectors is defined as
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[x
i
[
X, XY X XYy
; LY XY, X2V
xy' = [y, ¥ v, (2.89)
xn-\l xn»\z Xn-an
XHJ

This is a matrix of order (n x n). The element-by-element product of two vectors is a vector:

XL Xy
R N N PR

xy = || =] (2.90)
_x” “‘I' X" "Y” ]

Two nonzero vectors are orthogonal if their scalar product is zero:
xy =0 (2.91)
The length of a vector can be calculated from

!l - xx (2.92)

A unit vector is a vector whose length is unity.
A setof vectors x, y, z. . . . is linearly dependent if there exists a set of scalars ¢, ¢,, ¢3,. . . S0

that

X + 6y -6z ... =10 (2.93)

Otherwise the vectors are linearly independent.
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2.3 CONSISTENCY OF EQUATIONS AND
EXISTENCE OF SOLUTIONS

Consider the set of simultaneous linear algebraic equations represented by

apXy *apky, * ..ot apx, = ¢
Ay X+ QypXy * oy X, =0

(2.12)
anlxl + anZ'x2 e " annxn - Cn

The coefficient matrix is A, the vector of unknowns is x, and the vector of constants is c.
The augmented matrix A, is defined as the matrix resulting from joining the vector ¢ to
the columns of matrix A as shown below:

a4, a, 4
a da ... a C
21 22 2n 2
A, = (2.94)
_anl anZ ot amz Cn ]

The set of equations has a solution if, and only if, the rank of the augmented matrix is
equal to the rank of the coefficient matrix. If, in addition, the rank is equal to n (r = n), the
solution is unique. If the rank is less than n (r < n), there are more unknowns in the set than
there are independent equations. In that case, the set of equations can be reduced to r
independent equations. The remaining (n - r) unknowns must be assigned arbitrary values.
This implies that the system of n equations has an infinite number of possible solutions,
because the values of (n - r) unknowns are given arbitrary values, and the rest of unknowns
depend on these (n - r) values.

A special subcategory of linear algebraic equations is the set whose vector of constants
¢ is the zero vector:

Ax =0 (2.95)
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This is called the homogeneous set of linear algebraic equations. This set always has the
solution

X, - X = ...=x =0 (2.96)

It is called the trivial solution. because it is not of any particular interest. The coefficient
matrix and the augmented matrix of a homogeneous set always have the same rank. as the
vector ¢ is the zero vector. As stated carlier, if the rank of A4 is equal to 12 (= n), then the set
of equations has a unique solution. However. in the case of the homogeneous equations, this
unique solution is none other than the trivial one. In order for a homogeneous set to have
nontrivial solutions. the determinant of A must be zero. that is, A must be singular.

In summary. the nonhomogeneous sct has a unique nontrivial solution it the matrix of
coefficients A is nonsingular. It has an infinite number of solutions if the matrix A is singular
and the ranks of A and A, arc cqual to each other. It has no solution at all if the rank ot A is
lower than the rank of A,

The homogeneous set has a unigue, but trivial. solution if the matrix of coefficients A
is nonsingular. [t has an infinite number of solutions if the matrix A is singular. The rank of
A, is always cqual to the rank of A for a homogeneous system, since the vector of constants
is the zero vector. (See Table 2.2)

Table 2.2 Existence of Solutions

Condition Nonhomogeneous set Homogeneous set

Ax=c Ax=0
rank A =n Unigue solution Unique. but trivial. solution
rank A <n Infinite number of solutions

rank A <n
and Infinite number of solutions
rank A = rank A,

rank A < n
and No solution
rank A < rank A,
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2.4 CRAMER’S RULE

Cramer’s rule calculates the solution of nonhomogeneous linear algebraic equations of
the form

Ax =¢ (2.13)

using the determinants of the coefficient matrix A and the substituted matrix A; as follows:

! 1A

The substituted matrix A, is obtained by replacing column j of matrix A with the vector ¢:

joolo20. n (2.97)

ap Qi G 4y @,
a, N £ P ¢ day . Ceead
21 251 2 2501 2
A = (2.98)
J
L (I”/ Cl” ;| n an/ | (l"”

The set of equations must be nonhomogeneous, as the determinant of A appears in the
denominator of Eq. (2.97); the determinant cannot be zero; that is, matrix A must be
nonsingular.

For a system of n equations. Cramer’s rule evaluates (n + 1) determinants and performs
ndivisions. The calculation of each determinant requires (n - 1)(n!) multiplications; thercfore.
the total number of multiplications and divisions is

(nm+ 1) - 1)(n') +n (2.99)

Table 2.3 illustrates how the number of operations required by Cramer’s rule increases
as the value of n increases. For n =3, a total of 51 multiplications and divisions are needed.
However, when n = 10, this number climbs to 359.251.210. For this reason, Cramer’s rule is
rarely used for systems with n > 3. The Gauss elimination, Gauss-Jordan reduction, and
Gauss-Seidel methods, to be described in the next three sections of this chapter, are much
more efficient methods of solution of linear equations than Cramer’s rule.
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Table 2.3 Number of operations needed by Cramer’s rule

n (ne1)(n-1)(n)+n n (n+1)(n-1)(n)+n
3 51 7 241,927

4 364 8 2,540.168

5 2,885 9 29,030,409

6 25,206 10 359,251,210

2.5 GAUSS ELIMINATION METHOD

The most widely used method for solution of simultaneous linear algebraic equations is the
Gauss elimination method. This is based on the principle of converting the set of » equations
in n unknowns:

Ap Xy * apXx, ¥ ..ot apx, = q
Gy Xy * ApXy 7 oo Y Ay X, =G
(2.12)
anlxl + aanz oot annxn = Cn
to a triangular set of the form
ApXy * A Xy F Ay Xy T A Xyt A, X, =
a' x, va'.x, va',x, + va' x =c¢’
22%2 23%3 2%yt T A X, 2
/ / / o
A 33X ¥ A 34X T .. A X T 0y
(2.100)
/ R 4 a/ . /
a n—l,n»l“‘nfl n-lnxn = C g
/ _ .
P T

whose solution is the same as that of the original set of equations.
The process is essentially that of converting the set

Ax =c¢ (2.13)
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to the equivalent triangular set

Ux =c¢’ (2.101)

where U is an upper triangular matrix and ¢ ’is the modified vector of constants. Once
triangularization is achieved, the solution of the set can be obtained easily by back substitution

starting with variable n and working backward to variable 1.

2.5.1 Gauss Elimination in Formula Form

The Gauss elimination is accomplished by a series of clementary operations that do not alter
the solution of the cquation. These operations are:
1. Any equation in the set can be multiplied (or divided) by a nonzero scalar without

affecting the solution.
2. Any equation in the set can be added to (or subtracted from) another equation without

affecting the solution.
3. Any two equations can interchange positions within the set without affecting the

solution.
Two matrices that can be obtained from each other by successive application of the
above elementary operations are said to be equivalenr matrices. The rank and determinant of

these matrices are unaltered by the application of elementary operations.
In order to demonstrate the application of the Gauss elimination method, apply the

triangularization procedure to obtain the solution of the following sct of three equations:
3x, + 18x, + 9x, - I8
2x, + 3x, + 3xy = 117 (2.102)
4x, + x, + 2x, = 283

First, form the (3 x 4) augmented matrix of cocflicients and constants:

318 9 I8
2 33117 (2.103)
4 1 2283

Each complete row of the augmented matrix represents one of the equations of the linear set
(2.102). Therefore, any operations performed on a row of the augmented matrix are

automatically performed on the corresponding equation.
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To obtain the solution, divide the first row by 3, multiply it by 2, and subtract it from the
second row to obtain

3 18 918
0 -9 -3 1105 (2.104)
4 1 2283

Divide the first row by 3, multiply it by 4, and subtract it from the third row to obtain

318 9 |18
0 -9 -3 |105 (2.105)
0 -23 -10 | 259

Note that the coefficients in the first column below the diagonal have become zero. Continue
the elimination by dividing the second row by -9, multiply it by -23, and subtracting it from
the third row to obtain

318 9 |18
0 -9 -3 | 105
| (2.106)
00A1|_§
3 3

The triangularization of the coefficient part of the augmented matrix is complete, and matrix
(2.106) represents the triangular set of equations

3x;, « 18x, + 9x; = 18 (2.107a)
- 9x, -~ 3x, = 105 (2.107b)

28
- =X, = Y (2.107¢)

whose solution is identical to that of the original set (2.102). The solution is obtained by back
substitution. Rearrangement of (2.107¢) yields

x, =4
Substitution of the value of x; in (2.107b) and rearrangement gives
X, = -13

Substitution of the values of x; and x, in (2.1074) and rearrangement yields

x, =72
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The overall Gauss elimination procedure applied on the (n) X (n + 1) augmented matrix
is condensed into a three-part mathematical formula for initialization. elimination. and back

substitution as shown below:

Initialization formula:

a = a, j=1.2,....n
o {f 1.2 (2.108)
i T Gy J=n=-1

Elimination formula:

th-1 .
¥ " wn o Gy an {j*n'l.n.....k {k-'l,2.....n*l
a, -4 a(kv],akj i — k1. kv2,...,n “1::—“ 0
Kk (2.109)

where the initialization step places the elements of the coefficient matrix and the vector of
constants into thc augmented matrix, and the elimination formula reduces to zero the elements
below the diagonal. The counter & is the iteration counter of the outside loop in a set of nested
loops that perform the elimination.

It should be noted that the element ¢, in the denominator of Eq. (2.109) is always the
diagonal clement. It is called the pivot element. This pivot element must not be zero:
otherwise, the computer program will result in overflow. The computer program can be
written so that it rearranges the equations at each step to attain diagonal dominance 1 the
coefticient matrix, that is. the row with the largest absolute value pivot element is chosen.
This strategy is called partial pivoting, and it serves two purposcs in the Gaussian elimination
procedure: [t reduces the possibility of division by zero, and it increases the accuracy of the
Gauss elimination method by using the largest pivot element. If. in addition to rows, the
columns are also searched for maximum available pivot element. then the strategy is called
complete pivoting. 1f pivoting cannot locate a nonzero element to place on the diagonal, the
matrix must be singular. When two columns are interchanged, the corresponding variables
must also be interchanged. A program that performs complete pivoting must keep track of the
column interchanges in order to interchange the corresponding variables.

When triangularization of the coefficient matrix has been completed, the algorithm
transfers the calculation to the back-substitution formula:

(l” n-l

a

nn

- 2.110
ai nel Z aij"ﬁj (2110
X - jou i-n-1,n-2,....1

a4
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The above formulas complete the solution of the equations by the Gauss ¢limination
method by calculating all the unknowns from x, to x,. The Gauss elimination algorithm
requires n°/3 multiplications to evaluate the vector x.

2.5.2 Gauss Elimination in Matrix Form

The Gauss elimination procedure, which was described above in formula form, can also be
accomplished by series of matrix multiplications. Two types of special matrices are involved
in this operation. Both of these matrices are modifications of the identity matrix. The first
type, which we designate as P, is the identity matrix with the following changes: The unity
at position ii switches places with the zero at position ij, and the unity at position jj switches
places with the zero at position ji. For example, P,, for a fifth-order system is

(1 0 0 0 0]
00100
P,=0 1000 (2.111)
00010
00 0 0 1]

Premultiplication of matrix A by P, has the effect of interchanging rows /i and j.
Postmultiplication causes interchange of column i and j. By definition. P, = I, and
multiplication of A by P, causes no interchanges. The inverse of P, is identical to P,

The second type of matrices used by the Gauss elimination method are unit lower
triangular matrices of the form

)

a
2L 1 0 0 0
(0
(I”
[(0)]
201 00
)
L =| 4 (2.112)

0)

29 0 10
)]
(l”

(%]

d

20 00 01
(0)

ay,
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where the superscript (0) indicates that each L, matrix uses the elements a,.;f’ " of the previous
transformation step. Premultiplication of matrix A by L, has the effect of reducing to zero the
elements below the diagonal in column k. The inverse of L, has the same form as L, but with
the signs of the off-diagonal elements reversed.

Therefore, the entire Gauss elimination method, which reduces a nonsingular matrix A
to an upper triangular matrix U, can be represented by the following series of matrix
multiplications:

L Ln—2"'Pij"'L2LlPijA =U (2.113)

n-1

where the multiplications by P, cause pivoting, if and when needed, and the multiplications
by L, cause elimination. If pivoting is not performed, Eq. (2.113) simplifies to

L,,L,, ..LLA=U (2.72)

The matrices L, are unit lower triangular and their product, defined by matrix L, is also unit
lower triangular. With this definition of L, Eq. (2.72) condenses to

LA =U (2.73)

Because matrix L is unit lower triangular, it is nonsingular. Its inverse exists and is also a unit
lower triangular matrix. If we premultiply both sides of Eq. (2.73) by L™, we obtain

A=L"'U (2.114)
This equation represents the decomposition of a nonsingular matrix A into a unit lower
triangular matrix and an upper triangular matrix. Furthermore, this decomposition is unique
[2]. Therefore, the matrix operation of Eq. (2.73) when applied to the augmented matrix
[A | ¢] yields the unique solution:
L[Alc]=1{Ulc’] (2.115)
of the system of linear algebraic equations

Ax =c¢ (2.13)

whose matrix of coefficients A is nonsingular.

2.5.3 Calculation of Determinants by the Gauss Method

The Gauss elimination method is also very useful in the calculation of determinants of
matrices. The elementary operations used in the Gauss method are consistent with the
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properties of determinants listed in Sec. 2.2. Therefore, the reduction of a matrix to the
equivalent triangular matrix by the Gauss elimination procedure would not alter the value of
the determinant of the matrix. The determinant of a triangular matrix is equal to the product
of its diagonal elements:

i = 1] a, (2.68)
i-1

Therefore, a matrix whose determinant is to be evaluated should first be converted to the
triangular form using the Gauss method. and then its determinant should be calculated from
the product of the diagonal elements of the triangular matrix.

Example 2.1 demonstrates the Gauss elimination method with complete pivoting strategy
in solving a set of simultaneous linear algebraic equations and in calculating the determinant
of the matrix of coetficients.

Example 2.1: Heat Transfer in a Pipe Using the Gauss Elimination Method for
Simultaneous Linear Algebraic Equations. Write a gencral MATLAB function that
implements the Gauss elimination method, with complete pivoting for the solution of
nonhomogeneous linear algebraic equations. The function should identify singular matrices
and give their rank. Use this function to calculate the interface temperatures in the following
problem:

Saturated steam at 130°C is flowing inside a steel pipe having an ID of 20 mm (D) and an OD
of 25 mm (D,). The pipe is insulated with 40 mm [(D,- D,)/2] of insulation on the outside.
The convective heat transfer coefficients for the inside steam and outside of the lagging are
estimated as h, = 1700 W/m>.K and 4, = 3 W/m’.K. respectively. The mean thermal
conductivity of the metal is k, = 45 W/m.K and that of the insulation is &, = 0.064 W/m.K.
Ambient air temperature is 25°C (see Fig. E2.1).

There are three interfaces in this problem. and by writing the energy balance at each
interface, there will be three linear equations and three unknown temperatures:

T, - T,

Heat transfer from steam to pipe: hnD (T -T)) =
In(D,/D)) /(2 71k)

_ ) ) ) T, - T, T, - T,
Heat transfer from pipe to insulation: > = - :
In(D,/D )Y/ (2mk)  In(D,/D,)/(27k,)

T, - T,
In(D,/D,)/ (2 k,)

Heat transfer from insulation to air: -h nD(T, - T,

where T, = temperature of steam = 130°C
T, = temperature of inside wall of pipe (unknown)
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T, = temperature of outside wall of pipe (unknown)
T, = temperature of outside of insulation (unknown)
T, = ambient temperature = 25°C.

Rearranging the above three cnergy balance equations yields the set of linear algebraic
equations, shown below. which can be solved to find the three unknowns 7. 7. and 7’

2k, 3
— s nD T, - | ———|T, - D, T,
n n(D,
In(D,/D,) In(D,/D,) | *
k k k, k
— 7, - L f—7, =0
In(D,/D)) | In(D,/D,)  In(D,/D,) | ° | In(D/D,) ! "

2k,

2k,
' 1, D,

v /o Tl - 7/7411)17-11
In(D,/D,) : )

T,
In(D,/D,) | ~

Ta
Ailr

Steel

Insulation Figure E2.1 Insulated pipe.

Method of Solution: The function is written based on Gauss elimination in matrix form.
It applies complete pivoting strategy by searching rows and columns for the maximum pivot
element. It keeps track of column interchanges, which affect the positions of the unknown
variables. The function applies the back-substitution formula [Eq. (2.110)] to calculate the
unknown variables and interchanges their order to correct for column pivoting.

At the beginning, the program checks the determinant of the matrix of cocfficients to see
if the matrix is singular. If it is singular, the program gives the rank of the matrix and
terminates calculations.

Program Description: The MATLAB function Gauss.m consists of three main sections.
At the beginning, it checks the sizes of input arguments (coefficient matrix and vector of
constants) to see if they are consistent. It also checks the coefficient matrix for singularity.
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The second part of the function is Gauss elimination. In each iteration, the program finds
the location of the maximum pivot element. It interchanges the row and the column of this
pivot element to bring it to diagonal and meanwhile keeps track of the interchanged column.
At the end of the loop, the program reduces the elements below the diagonal at which the pivot
element is placed.

Finally, the function Gauss.m applies the back-substitution formula to evaluate all the
unknowns. It also interchanges the order of the unknowns at the same time to correct for any
column interchanges that took place during complete pivoting.

The program Example2_1.m is written to solve the problem of Example 2.1. It mainly
acts as an input tile, which then builds the coefficient matrix and the vector of constants, and
finally calls the function Gauss.m to solve the set of equations for the unknown temperatures.

Program

Example2_1.m

% Example 2_1.m

% Solution to Example 2.1. This program calculates the

% interface temperatures in an insulated pipe systemn.

% It calls the function GAUSS.M to solve the heat transfer
% equations for temperature simultaneously.

clc

clear

% Input data

Ts = input(' Temperature of steam (deg C) = ');

Ta = input(' Temperature of air (deg C) = ')

D1 = le-3*input(' Pipe ID (mm) = ');

D2 = le-3*input(' Pipe OD (mm) = ');

Ith = le-3*input(' Insulation thickness (mm) = ');

D3 = (D2 + 2*Ith); % Diameter of pipe with insulation
hi = input (' Inside heat transfer coefficient (W/m2.K) = ');
ho = input(' Outside heat transfer coefficient (W/m2.K) = ');
ks = input (' Heat conductivity of steel (W/m.K) = ');

ki = input(' Heat conductivity of insulation (W/m.K) = ');

% Matrix of coefficients

A= ...

[2*ks/log(D2/D1)+hi*D1l , -2*ks/log(D2/Dl) , O

ks/log(D2/D1) , -(ks/log(D2/D1l)+ki/log(D3/D2)) , ki/log(D3/D2)
0 , 2*ki/log(D3/D2) , -(2*ki/log(D3/D2)+ho*D3)];

% Matrix of constants
¢ = [hi*D1*Ts ; 0 ; -ho*D3*Tal;

% Solving the set of equations by Gauss elimination method
T = Gauss (A , ¢);

% Show the results
disp(' '), disp(' Results :')
fprintf (' Tl = %4.2f\n T2 = %4.2f\n T3 = %4.2f\n',T)
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Gauss.m
function x = Gauss (A , <¢)
%GAUSS Solves a set of linear algebraic equations by the Gauss

% elimination method.

%

% GAUSS (A,C) finds unknowns of a set of linear algebraic
% equations. A is the matrix of coefficients and C is the
% vector of constants.

% See also JORDAN, JACORBI

% (c) by N. Mostoufi & A. Constantinides

% January 1, 1999

c = (c(:).")"; % Make sure it's a column vector

n = length(c);
[nr nc] = size(A);

% Check coefficient matrix and vector of constants

if nr ~= nc

error ('Coefficient matrix is not square.')
end
if nt ~= n

error ('Coefficient matrix and vector of constants do not have the
same length.')
end

% Check if the coefficient matrix is singular
if det(A) ==

fprintf('\n Rank = %7.3g\n',rank(A))

error ('The coefficient matrix is singular.')

end

unit = eye(n); % Unit matrix

order = [1 : n]; % Order of unknowns
aug = [A c]; % Augmented matrix

% Gauss elimination
for k =1 :n -1
pivot = abs(aug(k , k));
prow = k;
pcol = k;
% Locating the maximum pivot element
for row = k : n
for col =k : n
if abs(aug(row , col)) > pivot
pivot = abs(aug(row , col));
row;
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% Interchanging the rows
pr = unit;

tmp = pr(k , :);
prik , : ) = pr{prow , : );
pri(prow , : ) = tmp;

% Interchanging the columns
pc = unit;

tmp = pc(k , : );

pclk , : ) = pci{pcol , : );

pcipcol , : ) = tmp;

aug(l : n, 1 : n) = aug(l : n, 1 : n) * pc;

order = order * pcC; % Keep track of the column interchanges

% Reducing the elements below diagonal to zero in the column k
lk = unit;
form =k + 1 :n
lk(m , k) = - aug(m , k) / aug(k , k);
end
aug = 1k * aug:
end

x = gzeros(n , 1);

% Back substitution

t(n) = aug(n , n + 1) / aug(n , n);

x{order(n)) = t(n);

for k =n -1 : -1 : 1
t(k) = (aug(k,n+l) - sum(aug(k,k+1l:n) .* t(k+1l:n))) / aug(k,k);
X (order(k)) = t(k};

end

Input and Results

>> Example2_1

Temperature of steam (deg C) = 130

Temperature of air (deg C) = 25

Pipe ID (mm) = 20

Pipe OD (mm) = 25

Insulation thickness (mm) = 40

Inside heat transfer coefficient (W/m2.K) = 1700
Outside heat transfer coefficient (W/m2.K) = 3
Heat conductivity of steel (W/m.K) = 45
Heat conductivity of insulation (W/m.K) = 0.064
Results :

Tl = 129.79

T2 = 129.77

T3 48.12
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Discussion of Results: The Gauss climination method finds the interface temperatures
as T, = 129.79°C, T, = 129.77°C, and T = 48.12°C. These values are quite predictable,
because the heat transfer coefficient of steam and the heat conductivity of steel are very high.
Therefore, the temperatures at steam-pipe interface and pipe-insulation interface are very close
to the steam temperature. The main resistance to heat transfer is due to insulation.

The values obtained from the function Gauss.m may be verified easily in MATLAB by
using the original method of solution of the set of linear equations in matrix form, that is,

T = inv(A)*c.

2.6 GAUSS-JORDAN REDUCTION METHOD

The Gauss-Jordan reduction method is an extension of the Gauss elimination method. [t
reduces a set of n equations from its canonical form of

Ax =c¢ (2.13)

to the diagonal set of the form

Ix - ¢’ (2.116)

where I is the unit matrix. Eq.(2.116) is identical to

x=c¢’ (2.117)

that is, the solution vector is given by the ¢’ vector.

The Gauss-Jordan reduction method applies the same series of elementary operations that
are used by the Gauss elimination method. It applies these operations both below and above
the diagonal in order to reduce all the off-diagonal elements of the matrix to zero. In addition,

it converts the elements on the diagonal to unity.

2.6.1 Gauss-Jordan Reduction in Formula Form

We will apply the Gauss-Jordan procedure, without pivoting, to the set of Egs. (2.102) shown
in Sec. 2.5.1 in order to observe the difference between the Gauss-Jordan and the Gauss
method. Starting with the augmented matrix

3 18 9 | 18

2 33 | 117 (2.103)
4 1 2 | 283
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normalize the first row by dividing it by 3:
I 6 3 6
2 3 3 117 (2.118)
4 1 2 | 283
Multiply the normalized first row by 2 and subtract it from the second row:
I 6 3 | 6
0 9 -3 ;105 (2.119)
4 1 2 ] 283
Multiply the normalized tirst row by 4 and subtract it {rom the third row:
1 6 3| 6
0 -9 -3 | 105 (2.120)
0 23 -10 | 259

Normalize the second row by dividing it by -9:

1 6 3 6
1 35
o 1 — | -= 2.121
; 13 (2.121)
0 -23 -10 | 259
Multiply the normalized second row by 6 and subtract it from the first row:
| 0 I 176
1 35
0 1 - I -= (2.122)
3 3
0 -23 -10 | 259
Multiply the normalized second row by -23 and subtract it from the third row:
| 0 1 76
0 1 1 | SER)
3 3 (2.123)
2
o o L -2
3 3
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Normalize the third row by dividing by -7/3:

1 35
o 1 - |- 2.124
3 3 ( )
0o 0 1 | 4
Multiply the third row by 1 and subtract it from the first row:
1 0 0} 72
1 35
o 1 - |-= 2.125
3 |73 (2.125)
0 O I | 4

Finally, multiply the third row by 1/3 and subtract it from the second row:

1 0 0| 72
0 1 0 |-13 (2.126)
0 0 1| 4

This reduced matrix [Eq. (2.126)] is equivalent to the set of equations
Ix = ¢’ (2.116)

The vector ¢’, which is the last column of the reduced matrix, is the solution of the original
set of equations (2.102). There is no need for back substitution because the solution is
obtained in its final from in vector ¢’.

The Gauss-Jordan reduction procedure applied to the (n) X (n + 1) augmented matrix can
be given in a three-part mathematical formula for the initialization, normalization, and
reduction steps as shown below:

Initialization formula:
o _ )
a; =a; {j=1,2,...,n {t.

o _ .
aij - C,‘ {J

=1,2,....n (2.127)

n+l

Normalization formula:

%D k=1,2,...,n

W _ % o {
akj = D {] = n+1,n,...,k a]:,/:-l) 0 (2128)
kk
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Reduction formula:

aW o gk ke {j=n+l.n k i=1
U i ko Gy U R i=k a, *0

The initialization formula places the elements of the coetficient matrix in columns 1 to # and
the vector of constants in column (n + 1) of the augmented matrix. The normalization lormula
divides each row of the augmented matrix by its pivot element and makes this change
permanent, thus causing the diagonal clements of the coefficient segment of the augmented
matrix to become unity. Finally, the reduction formuta reduces to zero the off-diagonal
elements in each row and column in the coetficient scgment of the augmented matrix. and
converts column (11 + 1) to the solution vector.

2.6.2 Gauss-Jordan Reduction in Matrix Form

The Gauss-Jordan reduction procedure can also be accomplished by a series of matrix
multiplications, similar to those performed in the Gauss elimination method (Sec. 2.5.2). The
matrix P;. which causes pivoting. is identical to that defined by Eq. (2.111). The matrix L,
must have additional terms above the diagonal o cause the reduction to zero of elements
above, as well as below, the diagonal, and a term on the diagonal in order to normalize the
element on the diagonal of the original matrix. We will designate this matrix as Z:.- and give
an example for a fourth-order system with & = 2. where the superscript (1) indicates that
cach L, matrix uses the elements u,.‘: " of the previous transformation step [Eq. (2.130)]:

[ oy
y,

I -—— 0 0

(391
Uy

0 —— 0 o

{
A

2 h
32
0 -

th

s

Iﬁf)

[

42

0 -— 0 1
h
6132

The Gauss-Jordan algorithm reduces a nonsingular matrix A to the identity matrix I by
the following series of matrix multiplications:
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Z"Z"_,...PA...‘ZZEIPUA =1 (2.131)

if
where the multiplications by P, cause pivoting, if and when needed, and the multiplications
by L, cause normalization and reduction. If pivoling is not performed. Eq. (2.131)
simplifies to
an_‘n-l"'ZZZIA =1 (2132)
By defining the product of all the Zk matrices as L, we can condense Eq. (2.132) to

LA -1 (2.133)

The matrix operation of Eq. (2.133), when applicd to the augmented matrix [A | ¢], yields the
unique solution

LlAlcl—=(Ilc'] (2.134)
ol the system of linear algebraic equations
Ax =¢ (2.13)

whose matrix of coeflicients A is nonsingular.

2.6.3 Gauss-Jordan Reduction with Matrix Inversion

Matrix L ,in Eq. (2.133). is anonsingular matrix: therefore, its inverse exists. Premultiplying
both sides of Eq. (2.133) by L™, we obtain

A-=L'I (2.135)
Taking the inverse of both sides of Eq. (2.135) results in

A' - LI (2.136)
This simply states that the inverse of A is equal to L. This has very important implications in
numerical methods because it shows that the Gauss-Jordan reduction method is essentially a
matrix inversion algorithm. Eq. (2.136), when rearranged, clearly shows that the application

of the reduction operation L on the identity matrix yields the inverse of A:

LI - A! (2.136)
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This observation can be used to extend the formula form of the Gauss-Jordan algorithm
to give the inverse of matrix A every time it calculates the solution to the set of equations

Ax =¢ (2.13)

This is done by forming the augmented matrix of order (n) x 2n + 1):
[Alec!T] (2.137)

and applying the Gauss-Jordan reduction to the augmented matrix. In this case, the three-part
mathematical formula for the initialization, normalization, and reduction steps is the

following:

Initialization formula:

0) .
g -4 {(j=1,2,...,n
l;(n - (j=n+l
o {1’ =1,2,....n (2.138)
a; =0 {i#)
J=n+2,...,2n+1
aiim =1 {i=j {
Normalization formula:
* 1)
; k=1,2,...,n
W _ %y ; 2L
@ s {j -2n+1,2n,...,k {a/:/f b (2.139)
Ay
Reduction formula:
103 * D -1y k) . i=1,2,...,n[k=1,2.....n
a, =a; S ay o ay {J_2n+l’2n""’k{i¢k {tl,f:"¢0

(2.140)

The first two parts of the initialization formula place the elements of the coefficient matrix in
columns 1 to n and the vector of constants in column (n + 1) of the augmented matrix. The
last two parts of the initialization step expands the augmented matrix to include the identity
matrix in columns (n + 2) to (2n + 1). The normalization formula divides each row of the
entire matrix by its pivot element, thus causing the diagonal elements of the coefficient
segment of the augmented matrix to become unity. Finally, the reduction formula reduces to
zero the off-diagonal elements in each row and column in the coefficient segment of the

augmented matrix, converts column (n + 1) to the solution vector, and converts the identity
matrix in columns (n + 2) to (2n + 1) to the inverse of A.
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Example 2.2 demonstrates the use of the Gauss-Jordan reduction method for the solution

of simultaneous linear algebraic cquations.

Example 2.2: Solution of a Steam Distribution System Using the Gauss-jordan
Reduction Method for Simultaneous Linear Algebraic Equations. Figure E2.2 represents
the steam distribution system ol a chemical plant.' The material and energy balances of this

system are given below:

181.60 - x; -132.57 - x; - x5 - -y — ¥y, = ¥ + 3, ~ 5.1 (H

117x; - x, - 0 (2)

132.57 - 0.745x, - 61.2 (3)

Vgt X, T X Xy T Xt X -V, Ty~ vy = 9901 4)

Xy © Xy v Xy f X X, X, T ooy, - -84 (5)

Xo X5 -V, - vy - 242 (6)

SLIS(I81.60) « xy - xg + x5+ x = LISy, - vy + 04 - -19.7 (7)

181.60 - 459 x, - O.1lx,, = -y, + 10235y, - 2.45 = 35.05 (8)

-0.0423(181.60) + x;, = 0.0423y, = 288 9

-0.016(181.60) ~+ x, (10)

X - 0.147x, (1

xg o 0.07x, (12)

-0.0805(181.60) + x, (13)

Xpa — Xy F X, =04 -y = =979 (14)
There are four levels of stcam in this plant: 680, 215, 170, and 37 psia. The 14 x,
i=3,..., 16 arc the unknowns, and the y, are given parameters for the system. Both x, and y,

have the units of 1000 Ib/h.

Usc the Gauss-Jordan method to determine the values of the 14 unknown quantities x,

i=3,....16.

Method of Solution: The 4 equations of this problem represent balances around the

following 14 units. respectively:

Eq. (1) 680 psia header Eq. (8) Condensate quench drum
Eq. (2) Desuperheater Eq. (9) Blow down flash drum
Eqg. (3) Alternator turbine Eq. (10) Boiler atomizing

Eq. (4) 170 psia header Eq. (11) Treated fecdwater pump
Eq. (5) 37 psia header Eq. (12) Boiler feedwater pump
Eq. (6) 215 psia steam Eq. (13) Boiler fan

Eq.(7) BFW balance Eq. (14) Deaerator-quench.

" This problem was adopted from Himmelblau [Ref. 3| by permission of the author
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The set of equations given in the statement of the problem simplifies to a set containing 14
unknowns (x;- x,,):
Xy +x, +xg = 4393 (1)
117x, - x, - 0 (2)
X, = 95.798 3)

Xy v Xy T Xg T Xy T Xt X T 99 4)
Ay Xyt Ay T X X, — A,y = -84 (5)
X, - Xxy = 242 (6)

Xy m X, X, tx - 18904 (7)
4.59%4.x,, + 011y, - 146.55 (8)
5, = 1056 (9)

x, ~ 29056  (10)

v - 0.0147x, =0  (11)
X - 007x, =0 (12)
x, = 14.6188  (13)

-x, *x, - -979 (14)

% 14 16

12
For convenience in programming, we change the numbering order of the variables so that x,
becomes x|, x, becomes x,, and so forth.

Xt x, v x, = 4393 (1)

L17x, x, =0 (2)

x; = 95.798 3)

Xy Xy T X S Xy Xyt oxy = 99 4)
Xg * Xy Xy T Xy -x, - ox, = -84 %)

X, - x;,; ~ 242 (6)

X T xy X, o, - 189.14 (7)
4.594x,, + 0.11x,, = 146.55 (8)
Xy = 10.56 9

X, ~ 2.9056 (10)

X, - 0.0147x, = 0 (11)

x; - 0.07x, =0 (12)

X, - 14.6188 (13)

Xig ~ Xpp ¥ X, = -979 (14)

The above set of simultaneous linear algebraic equations can be represented by

Ax =c¢
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where A is a sparse matrix containing many zeros. It is not a banded set or a predominantly
diagonal set. The Gauss or Gauss-Jordan methods may be used for the solution of this
problem. The computer program. which is described in the next scction, implements the
Gauss-Jordan algorithm in matrix form. The program uses a complete pivoting strategy.

Program Description: The MATLAB function Jordan.n consists of three main sections.
At the beginning, it checks the sizes of input arguments (coefficient matrix and vector of
constants) to see if they are consistent. It also checks the coefficient matrix for singularity.

The second part of the function is the Gauss-Jordan algorithm with application of
complete pivoting strategy. In each iteration. the program {inds the location of the maximum
pivot element. It interchanges the row and the column of this pivot clement to bring it to the
diagonal position, mecanwhile the program keeps track of the interchanged columns. At the
end of the loop, the program reduces the elements below and above the diagonal position at
which the pivot element 1s placed.

Finally, the function Jordan.m sets the unknowns equal to the elements of the last column
ot the moditied augmented matrix. Italso interchanges the order of the unknowns at the same
Lime to correct for any column interchanges that took place during complete pivoting.

352 208 84 78 20
OROp~ia 680psia
Process Steamn
B"Ic' Steim External
Desuper Generator Soutce
Heater » =181 60 l_\ =08 () l\ =024 680 psia Headet
IES g hY RIS N )
215 paia x =132 57 Vv =1518 X X F:Il?
Steam
Generator v Alternatot Compressor Boilet Boilet Process
V=176 Turbine Turbine Atomizing TFeed W ater Users
- Steam Pump
y =418 . N =8 1 Tuwibine
) — 9 : .
215 psia I X 170 psia Header
Steam N 7
l\ =23838 l\ =84 lk X X
Uer i '
Process Compressot Treated T eed Boiler
Users Auxiliaries Water Pump Fan
Turbines Tutbine
< X1
3677 y =84 ‘m Vent N
X 37 psia Header ‘x. [ Ven=04
Blow Blow Down b Boiler
——! act:
Down Flash Drum eaetitor Feed Watct
O 1075(x+y ) vy =172
Tieated 12793 Trcated Water N Condensate y =98 3
Make-up Quench
Water y =072y Drum

Figure E2.2 Steam distribution system of a chemical plant.
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The program Example2_2.m is written to solve the problem of Example 2.2. It builds the
coefficient matrix and the vector of constants and then calls the function Jordan.m to solve the
set of equations for the unknown flow ratcs. Although it is easy to write a few statements at
the beginning of the program to ask the user to input the matrix of coefficients and the vector
of constants. it is not convenient to do so in this problem because the number of equations is
relatively high, and 1t is not casy to input the data from the screen.

Program

Example2_2.m

Example2_2.m

Solution to Example 2.2. This program solves the material
and energy balances equations of a steam distribution
system using the function JORDAN.M.

¢ 0P of of

clc
clear

% Matrix of coefficients
A= [1, 1, 1, 0*[4:14]

1.17, 0, 0, -1, 0*[5:14]

0*[1:4], 1, 0*[6:14]

0o, 0, 1, 0, 1, -1, -1, -1, 0*[9:12], 1, O
0*({1:5], 1, 1, 1, 1, -1, -1, 0*[12:14)
0*{1:31, 1, 0*[s5:121, -1, O

1, 0*{2:3], -1, 0*[5:9], 1, 0*(11:13], 1

0*{1:9]1, 4.594, 0*[11:13], 0.11
0*[1:8], 1, 0*[10:14]

0, 1, 0*[3:14]

0*(1:5]1, 1, O0*(7:13], -0.0147
0, 0, 1, 0*{4:11], -0.07, 0, O
0*[1:6], 1, 0*[8:14]

0*{1:91, 1, 0, -1, 0, 11;

% Vector of constants

c = [43.93, 0, 95.798, 99.1, -8.4, 24.2, 189.14, 146.55, 10.56,
2.9056, 0, 0, 14.6188, -97.9];

% Solution

X = Jordan (A , c)

Jordan.m

function x = Jordan (A , c)

2 JORDAN Solves a set of linear algebraic equations by the
Gauss-Jordan method.

JORDAN (A,C) finds unknowns of a set of linear algebraic
equations. A is the matrix of coefficients and C is the
vector of constants.

o0 g ¢C 0 A0 of
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See also GAUSS, JACOBI
(¢) by N. Mostoufi & A. Constantinides
January 1, 1999

@ o o

c (c(:z).") ' % Make sure it's a column vector
n length(c);
[nr nc] = size(A);

% Check coefficient matrix and vector of constants

if nr ~= nc

error ('Coefficient matrix is not square.')
end
if nr ~=n

error ('Coefficient matrix and vector of constants do not have the
same length.')
end

% Check if the coefficient matrix is singular
if det(A) ==

fprintf('\n Rank = %7.3g\n',rank(A))

error ('The coefficient matrix is singular.')

end
unit = eye(n); % Unit matrix
order = [1 : n]; % Order of unknowns
aug = [A cl; % Augmented matrix
% Gauss - Jordan algorithm
for k =1 : n
pivot = abs(aug(k , k)):
prow = k;
pcol = k;

% Locating the maximum pivot element
for row = k : n
for col =k : n
if abs(aug(row , col)) > pivot

pivot = abs(aug(row , col));
prow = row;
pcol = col;

end

end
end

% Interchanging the rows
pr = unit;

tmp = pr(k , :};
pr{k , : ) = pr(prow , : );
pri{prow , : ) = tmp;

aug = pr * aug;

% Interchanging the columns
pc = unit;
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tmp = pc(k , : );

pc(k , : ) = pc(pcol , : );

pci{pcol , : ) = tmp;

aug(l : n, 1 : n) = aug(l : n , 1 : n) * pc;

order = order * pc; % Keep track of the column interchanges

% Reducing the elements above and below diagonal to zero
1k = unit;
form =1 : n
if m == k
lk(m , k)
else
lk(m , k) = - aug{m , k) / aug(k , k);
end
end
aug = lk * aug;
end

1 / aug(k , k);

X = zeros(n , 1);

% Solution
for k =1 : n

x(order(k)) = aug(k , n + 1);
end

Input and Results
>>Example2_2

X =
20.6854
2.9056
20.3390
24.2020
95.7980
2.4211
14.6188
-0.0010
10.5600
27.9567
8.0422
290.5565
0.0020
164.6998

Discussion of Results: The results are listed in Table E2.2 and show the correspondence
between the program-variable numbering sequence and the problem-variable numbering
sequence.

The units of the above quantities are 1000 Ib/h. The values of variables x,, and x,, are
zero, as may be expected from the flow diagram of Fig. E2.2.
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Table E2.2
Program variable Value Problem variable
X1 20.7 X,
X(2) 29 X,
X(3) 20.3 Xs
Xi4) 24.2 X,
X(5) 95.8 X
X(6) 24 X,
X(7) 14.6 X,
X(8) 0.0 X0
X(9) 10.6 X,
X(10) 28.0 X
X(11) 8.0 X,
X(12) 290.6 X,
X(13) 0.0 A
X(14) 164.7 X

2.7 GAUSS-SEIDEL SUBSTITUTION METHOD

Certain engineering problems yield sets of simultaneous Jinear algebraic equations that are
predominantly diagonal systems. A predominantly diagonal system of linear equations has
coeflicients on the diagonal that are larger in absolute value than the sum of the absolute
values of the other coefficients. For example, the set of equations:

-10x + 2x, + 3x, = 6
X, +8x, - 2x; =9 (2.141)
-3x, - x, - Txy = -33
is a predominantly diagonal set because

=101 > 121 + 13|
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and
[81> 111 + 121
and
[=7t>1-31+1-11
Each equation in set (2.141) can be solved for the unknown on its diagonal:

~ 6 - (2x, + 3xy)

X, = (2.142a)
-10
9 - (x, - 2x
x, - 2o n T (2.1425)
: 8
=33 - (-3x, - x,)
X - - — (2.142¢)

The Gauss-Seidel substitution method requires an initial guess of the values of the
unknowns x, and x;. The initial guesses are uscd in Eq. (2.142¢) to calculate a new estimate
of x,. This estimate of x, and the guessed value of x; are replaced in Eq. (2.1425) to evaluate
the new estimate of x,. The new estimate of x, is then calculated from Eq. (2.142¢). The
iteration continues until all the newly calculated x values converge to within a convergence
criterion € of their previous values.

The Gauss-Seidel method converges to the correct solution, no matter what the initial
estimate is, provided that the system of equations is predominantly diagonal. On the other
hand, if the system is not predominantly diagonal, the correct solution may still be obtained
if the initial estimate of the values of x, to x, is close with the correct set. The Gauss-Seidel
method is a very simple algorithm to program, and it is computationally very efficient. in
comparison with the other methods described in this chapter, provided that the system is
predominantly diagonal. These advantages account for this method’s wide use in the solution
of engineering problems.

For a general set of 1 equations in n unknowns:

Ax =¢ (2.13)

the Gauss-Seidel substitution method corresponds to the formula

1 .
X, = —|c¢. - a.x, i1 =1,2,...,n 4
T E i (2.143)

Eq. (2.143) is the Gauss-Seidel method in formula form. Calculation starts with an initial
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guess of the values x, to x,. Each newly calculated x, from Eq. (2.143) replaces its previous
value in subsequent calculations. Substitution continues until the convergence criterion is met.

2.8 JAcoBI METHOD

The Jacobi iterative method is similar to the Gauss-Seidel method with the exception that the
newly calculated variables are not replaced until the end of each iteration is reached. In this
section, we develop the Jacobi method in matrix form.

The matrix of coefficients A can be written as

A-(A-D)+D (2.144)

where D is a diagonal matrix whose elements are those of the main diagonal of matrix A.
Therefore, the matrix (A - D) is similar to A, with the difference that its main diagonal
elements are cqual to zero. Replace Eq. (2.144) into Eq. (2.13) and rcarrange results in

Dx -¢c - (A - D)x (2.145)

from where the vector x can be evaluated:
x D¢ -DYA - D)x

-D'%¢ - (DA - Dx (2.145)

In an iterative procedure, Eq. (2.145) should be written as
O =D le - (DT'A - Dx* (2.146)

where superscript (k) represents the iteration number. The Jacobi method requires an initial
guess of all unknowns (rather than one less in the Gauss-Seidel method) and the newly
calculated values of the vector x replace the old ones only at the end of each iteration. The
substitution procedure continues until convergence is achieved.

It is worth mentioning that the solution of a set of equations by the Gauss-Seidel method
in formula form nceds fewer iterations to converge than using the Jacobi method in matrix
form. This is because the unknowns change during each iteration in the Gauss-Scidel method,
whereas in the Jacobi method they are not changed until the very end of each iteration (sce
Problem 2.1).

Example 2.3: Solution of Chemical Reaction and Material Balance Equations Using
the Jacobi Iteration for Predominantly Diagonal Systems of Linear Algebraic Equations.
A chemical reaction takes place in a series of four continuous stirred tank reactors arranged
as shown in Fig. E2.3.
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1000 lit/h 100 1it/h

100 lit/h
C, =1 mol/lit ’j|
4 v, v,
C\. (v\x — C\-l =
k, K, K, 1000 livh
G, c, C. .,

Figure E2.3 Series of continuous stirred tank reactors.

The chemical reaction is a first-order irreversible reaction of the type

k

1

A B

The conditions of temperature in each reactor are such that the value of the rate constant &, is
different in each reactor. Also, the volume of cach reactor V, is different. The values of &, and
V, are given in Table E2.3. The following assumptions can be made regarding this system:

The system is at steady state.

The reactions are in the liquid phase.

There is no change in volume or density of the Liquid.

The rate of disappearance of component A in each reactor is given by

Rl e

R =Vkec, mol/h

Table E2.3

Reactor V(L) k,(h') | Reactor Vv, (L) k, (h")

I 1000 0.1 3 100 0.4

2 1500 0.2 4 500 0.3

Respond to the following questions:

«. Set up the material balance cquation for each of the tour reactors. What type of
equations do you have in this set of material balances?
b. What method do you recommend as the best one to use to solve for the exit

concentration (¢, ) from each reactor?
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c. Write a MATLAB script to solve this set of equations and find the exit concentration
from each reactor.

Method of Solution: Parr (¢): The general unsteady-state material balance for each
reactor is
Input = output + disappecarance by reaction + accumulation

Because the system is at steady state, the accumulation term is zero: therefore. the material
balance simplifies to
Input = output + disappearance by reaction

This balance applied to each of the four reactors yields the following sct of equations:
(1000)(1) lO()Oc4 + Vik, Cy,
1000¢, +100¢, =1100c, +Vikyc,
1100¢, + l()Oc‘J = 12()001\1 +Vikie,
1100c, =1100c, + Ve

Substituting the values of V, and &, and rearranging:

ll()()c'\l = 1000
IOOO("I - 1400(‘,L +100¢, =(
1100c¢, -1240¢, + 100¢, =0

1300¢, -1250c, =0

The above is a set of four simultancous linear algebraic equations. It appears (o be a
predominantly diagonal system of equations, as the coefficients on the diagonal are larger in
absolute value than the sum of the absolute values of the other coefficients.

Part (b): From the discussion of the Jacobi method (Sec. 2.8), it would seem that Gauss-
Seidel would be the best method of solution for a predominantly diagonal set. However,
because calculations in MATLARB are based on matrices, the Jacobi method in matrix form is
considerably faster than the Gauss-Seidel method in formula form in the MATLAB
workspace.

Part (¢): The general program, which uses the Jacobi iterative method in matrix form, is
described in the next section. An initial guess of unknowns ¢, (o Cy, is needed to start the
Jacobi algorithm. This system of equations is a predommam]y dlaﬂonal set; therefore,any
initial guess for unknowns will yield convergence. However, the initial guess of 0.6 for all
four unknowns seems to be an appropriate choice based on the fact that ¢, =1.0. Two cases
will be run in order to test the ability of the Jacobi method to converge. The first case will use
(0.6 as the initial values and the second will use 100 as the starting values.
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Program Description: The MATLAB function Jacobi.m is written to solve a set of
linear algebraic equations by the Jacobi iterative method. Inputs to the function are the
coeflicient matrix. the vector of constants. and the vector of initial guesses for all the
unknowns. The default convergence critetion is | x-,‘“ .x',(A ' 1< 10°. However, the user may
change this convergence criterion by introducing another value as the fourth input argument
into the function.

The next step in the program is to build the modified coefficient matrix (D'A - I) and
the modified vector of constants (D 'c). The function then starts the substitution procedure
according to Eq. (2.146), which continues until the convergence criterion 1s reached for all of
the unknowns.

In the program Example2_3.m, the coefficient matrix and the vector of constants of the
set of equations developed in this example are introduced as input data. The program also asks
the user to input the convergence criterion and if the user wants to sec the results of the
calculations at the end of each step. The vector of initial guesses are introduced to the program
in a loop so that the user can redo the calculations with different initial guesses. Then it calls
the function Jacobi.m 1o solve the sct of equations. Finally. the program shows the final
results of calculation.

Program
Example2_3.m

Example2_3.m
gsolution to Example 2.3. This program solves a set of

30 et

% linear algebraic equations by the Jacobi iterative
% method, using the function JACOBI.M, to find the

% concentrations of a seres of CSTRs.

clce

clear

% Input data
fprintf(' Solution of set of linear algebraic equations by the
Jacobi method\n\n')

n = input (' Number of eguations = ');
for k=1 : n
fprintf('\n Coefficients of eg. %2d =', k)

A(k,1:n) = input(' ');
fprintf (' Constant of eq. %2d =',6k)
c(k) = input(' ');
end
disp(' ")
tol = input(' Convergence criterion = ');
trace = input(' Show step-by-step path to results (0/1) ? ');

redo = 1;
while redo
disp(' ")
guess = input(' Vector of initial guess = ');
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% Solution

ca = Jacobi(A, c, guess, tol, trace);

fprintf ('\n\n Results :\n')

for k =1 : n

fprintf (' CA(%2d) = %6.4g\n',k,ca(k))

redo=input (' Repeat the calculations with another guess (0/1)?

end
disp(' ")
disp(' ")
end
Jacobi.m

function x = Jacobi(A, ¢, x0, tol, trace)
%$JACOBI Solves a set of linear algebraic equations by the

Jacobi iterative method.

o0 ¢ of Id° o o°

90 A 0 P of

See also GAUSS, JORDAN

o¢

% by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 4 | isempty(tol)

tol = le-6;

end

if nargin >= 4 & tol == 0
tol = le-6;

end

if nargin < 5 | isempty(trace)
trace = 0;

end

if trace

fprintf('\n Initial guess :\n')
fprintf('%8.6g ',x0)

end
c = (cl:).")";
x0 = (x0(:).")"; % Make sure it's a column vector

n = length(c);
[nr nc] = size(A);

JACOBI (A,C,X0) finds unknowns of a set of linear algebraic
equations. A is the matrix of coefficients,
of constants and X0 is the vector of initial guesses.

C is the vector

JACOBI (A,C, X0, TOL, TRACE) finds unknowns of a set of linear
algebraic equations and uses TOL as the convergence test.
A nonzero value for TRACE results in showing calculated
unknowns at the end of each iteration.

% Make sure it's a column vector

117
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% Check coefficient matrix, vector of constants and
% vector of unknowns
if nr ~= nc
error ('Coefficient matrix is not square.')
end
if nr ~= n
error ('Coefficient matrix and vector of constants do not have the
same length.')
end
if length(x0) ~=n
error('Vector of unknowns and vector of constants do not have the
same length.')
end

% Check if the coefficient matrix is singular
if det(d) == 0

fprintf ('\n Rank = %7.3g\n‘,rank(a))

error ('The coefficient matrix is singular.')
end

% Building modified coefficient matrix and modified
% vector of coefficients

D = diag({diag(A}); The diagonal matrix

%
a0 = inv(D)*A - eye(n); % Modified matrix of coefficients
cO0 = inv (D) *c; % Modified vector of constants
x = x0;
x0 = x + 2 * tol;
iter = 0;

% Substitution procedure
while max(abs(x - x0)) >= tol

x0 = x;
x = c0 - a0 * x0;
if trace

iter = iter + 1;
fprintf('\n Iteration no. %3d\n', iter)
fprintf('%8.6g ',x)
end
end

[nput and Results

>> Example2_3
Solution of set of linear algebraic equations by the Jacobi method
Number of equations = 4

Coefficients of egq. 1 = [1100, 0, 0, 0]
Constant of eq. 1 = 1000

Coefficients of eq. 2 = [1000, -1400, 100, 0]
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Constant of egq. 2 = 0

Coefficients of eg. 3
Constant of eq. 3 = 0

(0, 1100, -1240, 100]

Coefficients of eq. 4 = [0, 0, 1100, -1250]

Constant of eq. 4 = 0

Convergence criterion = le-5
Show step-by-step path to results (0/1)

Vector of initial guess = (O.6*ones(1,4)

Initial guess

0.6 0.6 0.6 0.6
Iteration no. 1
0.909091 0.471429 0.580645 0.528
lteration no. 2

0.909091 0.690825 0.460783 0.510968
Tteration no. 3
0.909091 0.682264 0.654036 0.405489

Iteration no. 4
0.909091 0.696068 (0.637935 0.575552
Iteration no. 5

0.909091 0.694917 0.663895 0.561383
Iteration no. 6

0.909091 0.696772 0.661732 0.584227
Iteration no. 7

0.909091 0.696617 0.665219 0.582324
Iteration no. 8

0.909091 0.696866 0.664928 0.585393
Iteration no. 9

0.909091 0.696846 0.665397 0.585137
Iteration no. 10

0.909091 0.696879 0.665358 0.585549
Iteration no. 11

0.909091 0.696876 0.665421 0.585515

Iteration no. 12
0.909091 0.696881 0.665416 0.58557
Iteration no. 13

0.909091 0.69688 0.665424 0.585566

Results :

CA( 1) = 0.9091
CA( 2) = 0.6969
CA( 3) = 0.6654
CA( 4) = 0.5856

Repeat the calculations with another guess

Vector of initial guess = 100*ones(1,4)

Initial guess
100 100 100 100

? 1

(0/1)

119
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Iteration no. 1

0.909091 78.5714 96.7742 88
Iteration no. 2

0.909091 7.56179 76.7972 85.1613
Iteration no. 3

0.909091 6.13487 13.5759 67.5816
Iteration no. 4

0.909091 1.61906 10.8923 11.9468
Jteration no. 5

0.909091 1.42738 2.39971 9.58527
Iteration no. 6

0.909091 0.820759 2.03923 2.11175
Iteration no. 7

0.909091 0.79501 0.898394 1.79452
Iteration no. 8

0.909091 0.713522 0.84997 0.790587
Iteration no. 9

0.909091 0.710063 0.69672 0.747973
Iteration no. 10

0.909091 0.699116 0.690215 0.613113
Iteration no. 11

0.9039081 0.698652 0.669628 0.607389
Iteration no. 12

0.909091 0.697181 0.668755 0.589273
Iteration no. 13

0.909091 0.697119 0.665989 0.588504
Iteration no. 14

0.909091 0.696921 0.665872 0.586071
Iteration no. 15

0.909091 0.696913 0.6655 0.585967
Iteration no. 16

0.909091 0.696886 0.665485 0.58564
Iteration no. 17

0.909091 0.696885 0.665435 0.585626
Iteration no. 18

0.909091 0.696882 0.665433 0.585583
Iteration no. 19

0.909091 0.696882 0.665426 0.585581
Results :

CA( 1) = 0.9091

ca( 2) = 0.6969

CA( 3) = 0.6654

CA( 4) = 0.5856

Repeat the calculations with another guess (0/1) ? 0

Discussion of Results: The first case uses the value of 0.6 as the initial guess for the
values of the unknowns ¢, to c, . The Jacobi method converges to the solutionin 13
iterations. The convergence criterion, which is satisfied by all the unknowns, is 0.000001.

In the second case, the value of 100 is used as the initial guess for each of the unknowns

¢, to ¢, . Convergence to exactly the same answer as in the first casc is accomplished in 19
1 4

A
iterations.
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2.9 HOMOGENEOUS ALGEBRAIC EQUATIONS AND
THE CHARACTERISTIC-VALUE PROBLEM

We mentioned carlicr that a homogeneous sct of equations
Ax =0 (2.95)

has a nontrivial solution. if and only if the matrix A is singular: that is, if the rank r of A is less
than n. The system of equations would consist of » independent equations. » unknowns that
can be evaluated independently. and (n - ) unknowns that must be chosen arbitrarily in order
to complete the solution. Choosing nonzero values for the (n - r) unknowns transforms the
homogencous set to a nonhomogeneous set of order r. The Gauss and Gauss-Jordan methods.
which are applicable to nonhomogencous systems, can then be used to obtain the complete
solution of the problem. In fact, these methods can be used [irst on the homogeneous system
to determine the number of independent equations (or the rank of A) and then applied to the
set of r nonhomogencous independent equations to evaluate the » unknowns. This concept
will be demonstrated later in this section in conjunction with the calculation of eigenvectors.

A special class ol homogencous linear algebraic equations arises in the study of vibrating
systems, structure analysis, and electric circuit system analysis. and in the solution and
stability analysis of lincar ordinary differential equations (Chap. 5). This system of equations
has the form

Ax - Ax (2.147)
which can be alternatively expressed as
(A - ADx -0 (2.148)

where the scalar A is called an eigenvalue (or a characteristic value) of matrix A. The vector
x is called the eigenvector (or characteristic vector) corresponding to A. The matrix 7 is the
identity matrix. The problem often requires the solution of the homogeneous set of equations,
represented by Eq. (2.148), to determine the values of A and x that satisfy this set. In
MATLAB, eig(A) is a vector containing the eigenvalues of A. The statement |V, D] = eig(A)
produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors, so that AV = VD.

Before we procecd with developing methods of solution, we examine Eq. (2.147) from
a geometric perspective. The multiplication of a vector by a matrix is a linear transformation
of the original vector to a new vector of different direction and length. For cxample, matrix
A transforms the vector y to the vector z in the operation
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Ay = 2 (2.149)

In contrast to this, if x is the eigenvector of A, then the multiplication of the eigenvector x by
matrix A yields the same vector x multiplied by a scalar A. that is, the same vector but of
different length:

Ax - Ax (2.147)

It can be stated that for a nonsingular matrix A of order . there are n characteristic directions
in which the operation by A does not change the dircction of the vector. but only changes its
length. More simply stated. matrix A has n eigenvectors and n eigenvalues. The types of
cigenvalues that exist for a set of special matrices are listed in Table 2.4,

The homogeneous problem

(A ADx =0 (2.148)

possesses nontrivial solutions if the determinant of matrix (A - Ax). called the characteristic
matrix of A, vanishes:

a A a, a,,
Uy, Uy Aoy,
1A - Al = =0 (2.150)
(lnl an? (l”” - )“

The determinant can be expanded by minors to yield a polynomial of nth degree
Mmoo A T - s, = 0 (2.151)

This polynomial, which is called the characteristic equation of matrix A, has n roots. which
arc the eigenvalues of A. These roots may be real distinct, real repeated, or complex.
depending on matrix A (see Table 2.4). A nonsingular real symmetric matrix of order 1 has
nreal nonzero eigenvalues and n linearly independent eigenvectors. The eigenvectors of areal
symmetric matrix are orthogonal to each other. The coefficients «, of the characteristic
polynomial are functions of the matrix elements ¢, and must be determined before the
polynomial can be used.
The well-known Cayley-Hamilton theorem states that a square matrix satisfies its own
characteristic equation, that is,
A" - A w,ATE - -, - 0 (2.152)

n
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Table 2.4
Matrix Eigenvalue
Singular. A1 =0 At least one zero eigeny alue
Nonsingular. Al = () No zero eigenvalues
Symmetric. A = A’ All real cigenyalues
Hermitian All real cigenvalues
Zero matrix. A =0 All zero eigenyalues
Identity. A =1 All unity eigenvalues
Diagonal. A =D Equal to diagonal clements of' A
Inverse. A Inverse cigenvalues of A
Transformed. B = 0 'AQ Eigenvalues of B = cigenvalucs of A

The problem of evaluating the cigenvalues and eigenvectors of matrices is a complex
multistep procedure. Several methods have been developed for this purpose. Some of these
apply to symmetric matrices. others to tridiagonal matrices, and a few can be used for general
matrices. We can classify these methods into two categories:

o,

b.

The methods in this category work with the original matrix A and its characteristic
polynomial [[iq. (2.151)] to evaluate the coefticients &, of the polynomial. One such
method is the Faddeev-Leverrier procedure, which will be described later. Once the
coefficients of the polynomial are known. the methods usc root-finding techniques,
such as the Newton-Raphson method. to determine the eigenvalues. Finally. the
algorithms employ a reduction method, such as Gauss elimination, to calculate the
cigenvectors.

The methods in this category reduce the original matrix A to tridiagonal form (when
A Is symmetric) or to Hessenberg form (when A is nonsymmetric) by orthogonal
transformations or clementary similarity transformations. They apply successive
factorization procedures, such as LR or QR algorithms. to cxtract the eigenvalues.
and, finally, they use a reduction method to calculate the cigenvectors.

In the remaining part of this chapter we will discuss the following methods: (a) the
Faddeev-Leverrier procedure for calculating the coetficients of the characteristic polynomial.

(h) the

elementary similarity transformation for converting a matrix to Hessenberg form. (¢)

the QR algorithm of successive factorization for the determination of the eigenvalues, and
finally, (d) the Gauss elimination method applied for the evaluation of the eigenvectors.

These

methods were chosen for their general applicability to both symmetric and

nonsymmetric matrices. For a complete discussion of these and other methods, the reader is
referred to Ralston and Rabinowitz |2].
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2.9.1 The Faddeev-Leverrier Method

The Faddeev-Leverrier method [4] calculates the coefficients o, to o, of the characteristic
polynomial [Eq. (2.151)] by generating a series of matrices A, whose traces are equal to the
coefticients of the polynomial. The starting matrix and first coefficient are

A = A o, = A, (2.153)
and the subsequent matrices are evaluated from the recursive equations:

Ay =AA - D)
ak*—l-T"Ak k;2,3,....l’l (2154)
k

In addition to this, the Faddeev-Leverrier method yields the inverse of the matrix A by

At - L
o

n

-, D (2.155)

n-1

To elucidate this method, we will determine the coetficients of the characteristic
polynomial of the following set of homogeneous equations:

(1 - Ay, = 2x, * x5, =0
34, + (1 = A)x, +2x, - 0 (2.156)

dx; ¢« 2x, = (3 - Ay, - 0

The characteristic polynomial for this third-order system is

Ao - -y =0 (2.157)
The matrix A is
1 2 1
A=13 1 2 (2.138)
4 2 3

Application of Eq. (2.153) gives

A=A and o, = 1rA; =5 (2.159)



2.9 Homogeneous Algebraic Equations and the Characteristic-Value Problem 125

Application of Eq. (2.154). with k = 2. yields
A, =AM, - o)

12 1 12 1 5 0 0
=13 1 2|43 1 2(-10 5 O
4 2 3|4 2 3 0 0 5 (2.160)
6 -4 3
--1 6 |
2 6 2
_ .
% = Ay =7 (2.161)
Repetition of Eq. (2.154), with k = 3, results in
A, - A(A, - o)
12 1]([e -4 3] [7 0o o0
=3 1 2{[-1 6 1|-|l0 7 0
4 2 3 2 6 2 0 0 7 (2.162)
-1 0 0
=10 -1 0
0 0 -l
|
I (2.163)
Therefore, the characteristic polynomial is
AP -S5A TA -1 =0 (2.164)

The root-finding techniques described in Chap. 1 may be used to determine the A values of this
polynomial. The eigenvectors corresponding to cach eigenvalue may be calculated using the
Gauss elimination method. The Faddeev-Leverrier method, the Newton-Raphson method with
synthetic division, and the Gauss elimination method constitute a complete algorithm for the
evaluation of all the eigenvalues and eigenvectors of this characteristic-value problem. This
combination of methods, however, is “fraught with peril,” because it is too sensitive to small
changes in the coefficients. Use of the QR algorithm, discussed in Sec. 2.9.3, is preferable.
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2.9.2 Elementary Similarity Transformations

In Sec. 2.5.2. we showed that the Gauss elimination method can be represented in matrix form
as
LA =U (2.73)

Matrix A is nonsingular, matrix L is unit lower triangular, and matrix U is upper triangular.
The inverse of L is also a unit lower triangular matrix. Postmultiplying both sides of Eg.
(2.73) by L™ we obtain

LAL' -UL' - B (2.163)

This is a similarity transformation of the type described in Sec. 2.2.2. The transformation
coverts matrix A to a similar matrix B. The two matrices. A and B, have identical eigenvalues,
determinants, and traccs.

We, therefore. conclude that if the Gauss climination method is extended so that matrix
A is postmultiplied by L™, at cach step of the operation, in addition to being premultiplied by
L, the resulting matrix B is similar to A. This operation is called the elementary similarity
transformation.

In the determination of eigenvalues, it is desirable to reduce matrix A to a super-
triangular matrix of upper Hessenberg form:

hy hyy b hy,s hy,o hy,
hy hyy hyy s hy, o hyy o hy,
0 hy, hyy e hy, s Ny, h,
H, - » ‘ ‘ (2.57)
0 0 e hu I n-2 hn ta-1 hn— In
00 o k., h,

This can be done by using the (k + [)st row to eliminate the elements (k + 2) to n of column
k. Consequently. the elements of the subdiagonal do not vanish. The transformation matrices
that perform this elimination are unit lower triangular of the form shown in Eq. (2.166). The
elimination matrix that would eliminate the elements of column | below the subdiagonal
is
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0

where the superscript (0) indicates that each

0y
/31
} 0y

2]

(O
hy,

(¢}

hs,

(83}
hn/

()

hy,

0

0

0

0

0

matrix uses the elements
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(2.166)

of the

previous transformation step. The reader is encouraged to compare with L, of Eq. (2.112).
The inverse of is given by Eq. (2.167):

0

0

0

0

0]
0

0

(2.167)

The complete elementary similarity transtormation that converts matrix A to the upper

Hessenberg matrix H is shown by

7 -1

Z.ufll_‘an' ’ 'ZZZIAZI_ILZ c '_

(2.168)
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Each postmultiplication step by the inverse Z;l preserves the zeros previously obtained in the
premultiplication step by L, [5].

For simplicity in the above discussion. the partial pivoting matrices P; were not applied.
However, use of partial pivoting is strongly recommended in order to reduce roundoff errors.
Premultiplication by P; interchanges (wo rows and causes the sign of the determinant to
change. Postmultiplication by P,’" (which is identical to P;) interchanges the corresponding
two columns and causes the sign of the determinant to change again. The premultiplication
step must be followed immediately by the postmultiplication step in order to balance the
symmetry of the transformation and to preserve the form of the transformed matrix.

The clementary similarity transformation to produce an upper Hessenberg matrix in
formula form is as follows:

Initialization step:

() i - 1.2,....n ‘
- o 7 .
hu 4, {j - 1L2,....n (2 169a)
Transformation formula:
/ k-1
P L J - nn-1,...k (2.169b)
ik T i - k+2,....n
Ty

Premultiplication step:

k112 Rl kD J-nmn-1.... k k= 1.2....n 5
/1'-’ - h(g m .. \/7ka 1y { i- ka2, n hA 0 0 (2.170)
Postmultiplication step:

(k) *h-172) 112y iy Jo- k-2, n (2.171)
B = i Mk { i=nn-1....1 (

where the superseript (k - %2) means that only half the complete transformation (that is, only
premultiplication) has been completed at the point.

The QR algorithm, which will be discussed next, utilizes the upper Hessenberg matrix
H to determine its eigenvalues, which arc cquivalent to the eigenvalues of matrix A.

2.9.3 The QR Algorithm of Successive Factorization

The QR algorithm is based on the possible decomposition of a matrix A into a product of two
matrices

A - QR (2.172)
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where @ is orthogonal and R is upper triangular with nonnegative diagonal elements. The
decomposition always exists, and when A is nonsingular, the decomposition is unique [2].
The above decomposition can be used to form a series of successive matrices A, that are
similar to the original matrix A: therefore, their eigenvalues are the same. To do this, let us
tirst define 4, = A and convert Eq. (2.172) to

A, = O\R (2.173)

Premultiply each side by @, "and rearrangc to obtain

R, - 0,'A, (2.174)

Form a second matrix A, from the product of R, with Q,:

A, = R Q, (2.175)

and use Eq. (2.174) to eliminate R, from Eq. (2.175)

A, - 0,'A,0, (2.176)

Because @, is an orthogonal matrix, this is an orthogonal transformation of A, to A, therefore,
these two matrices are similar. They have the same eigenvalues. The inverse of an orthogonal
matrix is equal to its transpose; thus Eq. (2.176) can also be written as

A, - 0Q,'A,0, (2.177)

In the particular case where matrix A is symmetric, an orthogonal transformation of 4
can be found that yields a diagonal matrix D:

D-0'AQ (2.178)

whose diagonal elements are the cigenvalues of A. Our discussion, however, will focus on
nonsymmetric matrices that transform to triangular matrices.

The orthogonal matrix @, is determined by finding a series of Sy " orthogonal
transformation matrices, each of which eliminates one element, in position ij. below the
diagonal of the matrix it is postmultiplying. The complete set of transformations converts
matrix A, to upper triangular form with nonnegative diagonal elements:

Syma S .8, .88, A, = R, (2.179)

n,n-1 Yy ]

where the counter i increases from j + 1 to n, and the counter j increases from ! to (n - 1).
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Each of the S;; " matrices is orthogonal. and the product of orthogonal matrices is also
orthogonal. Dircct comparison of Eq. (2.179) with Eq. (2.174) reveals that @, is cqual to the
product of the S; " matrices:

0

LS, S Sy Sy, (2.180)

nn-1 i 2
The transpose of an orthogonal matrix is equal to its inverse, so it follows that

0, =8, -8 ..8,'S,’ (2.181)
and

Q, = Sy Sy -Si S, ., (2.182)

y
Therefore, Eq. (2.176) can be rewritten in terms of the S,.j matrices:

Ay =S, Sy Sy Sy TALS, Sy S S, L (2.183)

n.n-1 if

As an example of the orthogonal transformation matrices S; we give the §,, matrix for
a (6 x 6)-order system, with p =6 and ¢ =3:

(1 0 0 0 0 0
O 1 0 0 0 0

0O 0 s

S, - (2.184)
S doo0o 0 1 0 0

0O 06 0 0 1 0
0 s, 0 0 s

H

63
where the diagonal elements of this matrix are specitied as

=5 =cosO

Spp » (2.185)
s, =1 fori*porg (2.186)

and the off-diagonal elements as
Spg T TS T sin 6 (2.187)

s, " 0 everywhere else (2.188)
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Premultiplication of matrix 4 by §,, " eliminates the element pg and causes a rotation
of axes in the (p. ¢) plane. The S, matrices clearly satisfy the orthogonality requirement that
This is left as an exercise for the reader to verify.

The angle of axis rotation 0, in Eqs. (2.185) and (2.187), is chosen so that by clement pg:

S;'S; -1 (2.189)
of the matrix being transformed, vanishes. It has been shown by Givens [6] that it is not
necessary to actually caleulate the value of 8 itself. The trigonometric terms cos © and sin 0

can be obtained from the values of the elements of the matrix being transformed. Givens has
determined that the elements of the matrix S, are calculated as follows:

Diagonal elements:

k1
(A) kY g
Sop T Sag T (2.190)
A-Tra th-1) .2
‘ﬂaw ;o )
s -1 fori#porg (2.191)
1"
Off-diagonal elements:
t
IS kY ap(/
Spg T Sep (2.192)
f(l‘k Ib)g " ((l(,\ Il)z
qq P
s;" = 0 everywhere else (2.193)

The superscripts (k - 1) have been used in the above equations to remind the reader that the
elements czlff/"’ and ‘C;: " are those of the matrix from the previous transtormation step and
not those of the original matrix.

Givens’ method of plane rotations can reduce a nonsymmetric matrix to upper triangular
form and a symmetric matrix to tridiagonal form. However, a large number of computations
is required. It is computationally more efficient to apply first the elementary similarity
transformation to reduce the matrix to upper Hessenberg form. as we described in Sec. 2.9.2,
and then 10 use plane rotations to reduce it to triangular form. In the rest of this section we
will assume that the matrix A has been already reduced to upper Hessenberg form, H,, and we
will show how QR algorithm further reduces the matrix to obtain its cigenvalues.

If the eigenvalues of matrix H, are A, then the eigenvalues of matrix (H, - v,I) are
(A-v)). where y, is called the shift factor. The orthogonal transformation applied to A, above
can also be applied to the shifted matrix (H, - y,1) as follows:

Decompose the matrix (H, - y,I) into @, and R, matrices:

H -y 1 -0QR (2.194)
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Rearrange the above cquation to obtain R :
R, - Q' (H, -y D) (2.195)

Form a new matrix (H, - y,I) from the product of R, and Q,:

H, - v 1 -RQ (2.196)
Eliminate R, using Eq. (2.195):
H, v, 1 - Q/'(H - v,DQ, (2.197)
Solve for H,:
H, - Q' (H v DQ, -1 (2.198)

It has been shown | 2] that if the shift factor v, 1s chosen (o be a good estimate of one of
the eigenvalues and that if the magnitudes of the eigenvalues are

A, 1> 14,0 > o> 14 (2.199)

then the matrix H, will converge to a triangular form with the elements i1, ~ Oand /1, - A .

Estimation of the shift factor y, is relatively casy when the matrix has been reduced to
upper Hessenberg lorm:

Dy by hys hy, oo hy,hy,
hyy hyy By, S hy, o hay, by,
0 hy Dy .. h, Iy hy
Hl B 32 3 n X no b " (257)
() O v hn In?2 hn Pl hll | n
0 0 . o h., h,

The eigenvalues of the lower (2 x 2) submatrix:

h h

w-ln-l

h

n o ba

(2.200)
h

nn ol nn

can be used to determine the shift factor. The two cigenvalues of this matrix are obtained trom
the quadratic characteristic equation

THEE Y ] e
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Py

'Y_ - (hn—l.n 1 + hnn)y * (h h B hnnflh;r].n) = 0 (220])

n-lan 1"%nn

whose solution is given by the quadratic formula

Y'. = % (hn ln-1 +hnn) * \/Ehn-l.n 1 * hnn)2 _4(]711 l.n-lhnn —hnn-lhn l.n)J (2202)

The value of y closest to /1, is chosen from the two roots. In the case where the roots are
complex conjugates, the real part of the root is chosen as the shift factor.

In the QR iteration procedure the subsequent values of the shift factor. v, . . . y,. are
similarly chosen from matrices H,. . . H,.

The steps of the QR algorithm for calculating the eigenvalues and eigenvectors of a

nonsingular nonsymmetric matrix A with real eigenvalues are the following:

1. Use the elementary similarity transformations [Eqgs. (2.168)] to transform matrix A
to the upper Hesscnberg matrix H,.

2. Utilize the lower (2 x 2) submatrix of H, [Eq. (2.200)] to estimate the shift factor y,

from Eq. (2.201).

Construct the shifted matrix (H, - y,1).

4. Calculate the elements of the transformation matrix S,, from the elements of the
shifted matrix (H, - v,I) using Eqs. (2.190)-(2.193).

5. Perform the premultiplication S,, (H, - y,I). which eliminates the elements in
position (2, 1) of the matrix (H, - y,I).

6. Repeat steps 4 and 5, calculating the transformation matrix S, and eliminating one
element on subdiagonal in cach set of steps. The application of steps 4 and 5 for
(n - 1) times, with the counter g increasing from 1 to (n - 1) and the counter p set at
(g + 1), will convert the Hessenberg matrix H, to a triangular matrix R:

Sy 8,8, H, =R, (2.203)

nn-1 °

iad

7. Perform the postmultiplication of R, by S, to obtain the transformed shifted
matrix(H,- v 1):

Hy - v,I =R S,Sy,...8 (2.204)

-1
8. Solve Eq. (2.204) for the transformed Hessenberg matrix H,:
HZ = Rl S21 S}Z e Sn,u—l * YI 1 (2205)

9. Use H, as the new Hessenberg matrix and repeat steps 2-8 until Iz, || < €, where €
is a small convergence criterion. At this point, the element A, will give one
eigenvalue A,

10. Deflate the H, matrix to order (n - 1) by eliminating the nth row and nth column. and
repeat steps 2 to 10 until all the eigenvalues are calculated.

1. Apply the Gauss elimination method with complete pivoting to the matrix (4 - Al
to evaluate the eigenvectors corresponding to each eigenvalue. Several different
possibilities exist when the eigenvalues are real:
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a. Distinct nonzero eigenvalues: Matrix A is nonsingular, and matrix (4 - Al) is
singular of rank (n - 1). Application of the Gauss elimination method with
complete pivoting on the matrix (A - AI) wiangularizes the matrix and causes the
last row to contain all zero values, because the rank is (/1 - 1). Assume the value
of the nth element of the eigenvector to be equal to unity and reduce the problem
to finding the remaining (n - 1) clements.

b. One zero eigenvalue: Matrix A is singular of rank (7 - 1). and matrix (A - AI) is
singular of rank (n - 1). Application of the Gauss climination method proceeds
as in a. One clement of each eigenvector will be found to be a zero clement.

¢. One pair of repeated eigenvalues: Matrix A is nonsingular. and matrix (A - A
is of rank (1 - 2). Application of the Gauss elimination method with complete
pivoting on the matrix (A - Al) triangularizes the matrix and causes the last two
rows 1o contain all zero values, because the rank is (n7 - 2). Assume the values of
the last two elements in the cigenvector to be equal to unity and reduce the
problem to finding the remaining (# - 2) elements.

The QR algorithm described in this section applies well to both symmetric and

nonsymmetric matrices with rcal eigenvalucs. A more general method, called the double
QR algorithm, which can evaluate complex eigenvalues, is described by Ralston and
Rabinowitz [2].

PROBLEMS

2.1

2.2

Solve the following set of equations by both Gauss-Seidel method and Jacobi method.

-y o+ 2v =0

In both cases, start the iteration from (0, 0). Compare the results of both methods at the end of
each iteration.

When a pure sample of gas is bombarded by low-energy electrons in a mass spectrometer. the
galvanometer shows peak heights that correspond to individual m/e (mass-to-charge) ratios for the
resulting mixture of ions. For the ith peak produced by a pure sample j. one can then assign a
sensitivity S, [peak height per micron (um) of Hg sample pressure]. These coefficicents are unique
for each type of gas.

A distribution of peak heights may also be obtained for an n-component gas mixture to be
analyzed for the partial pressures p, p,. . . . . p, of each of its constituents. The height /4, of a
certain peak is a linear combination of the products of the individual sensitivities and partial
pressures:

n
Z S,p; = h
il
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In general, more than n peaks may be available. However, if the » most distinct ones are chosen.
we have 7 = [. 2, .. ., n, so that the individual partial pressures are given by solution of n
simultaneous linear cquations.

Table P2.2
Peak Component index ()
index
1 2 3 4 5 6 7

i mie Hydrogen Methane Ethylene Ethane Propylene Propane n-Pentane
| 2 16.87 0165 0.2019 0.317 0.234 0.182 0.110
2 16 0.0 2770 0.862 0.062 0.073 0.131 0.120
3 26 00 00 22.35 13.05 4.42 6.001 3043
4 30 0.0 0.0 0.0 11.28 0.0 1110 0.371
5 40 0.0 0.0 00 0.0 9.85 I 168 2108
6 44 0.0 0.0 00 0.0 0.299 15.98 2.107
7 72 0.0 0.0 00 0.0 0.0 00 4670

23

The sensitivities given in Table P2.2 were reported by Carnahan et al. [7] in connection with
the analysis of a hydrogen gas mixture. Write a program that will accept values for the
sensitivites, S,,. .., S,, and the peak heights /1, . . ., h, and compute values tor the individual
partial pressures p. .. p,.

A particular gas mixture produced the following peak heights: 7, = 17.1. /1, =65.1, h,= 186.0.
hy=827.hy=842 h =637 and h, = 119.7. The measured total pressure of the mixture was
33.78 um of Hg. which can be compared with the sum of the computed partial pressures.

Aniline is being removed from water by solvent extraction using toluenc [8]. The unit is a
10-stage countercurrent tower. shown in Fig. P2.3. The equilibrium relationship valid at each
stage 1s. to a first approximation:

m-—-9
where Y, = (Ib of aniline in the toluene phase) / (Ib of toluene in the toluene phase)
X, = (Ib of aniline in the water phase) / (Ib of water in the water phase)

(a) The solution to this problem is a set of 10 simultaneous equations. Derive these equations
from material balances around each stage Present these equations using compact notation.

(b) Solve the above set of cquations to find the concentration in both the aqueous and organic
phases leaving cach stage of the system (X, and Y)).
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Water Phase with Aniline

Extract
W =100 Ib water/hr l I Aniline-rich toluene
with 5 1b aniline/hr |
2
3
4
5
Recycled Solvent 6
F =13 Ib toluene/hr 7
with 0.003 b aniline/Ib toluene 5
10
Raffinate | | Solvent
Aniline-lean water Pure toluene
S =10 Ib/hr Figure P2.3

(¢) If the stope of the equilibrium relationship is replaced by the expression m =9 + 20X, the
solution becomes a set of simultaneous nonlinear equations. Describe a procedure that would
solve this problem.

(d) Solve the problem described in (¢) above.

2.4 Inthe study of chemical reaction, Aris [9] developed a technique of writing simultaneous chemical
reactions in the form of linear algebraic equations. For example. the following two simultaneous
chemical equations

C,H, = C,H, + H,

2C,H, = C,H, + 2CH,
can be rearranged in the form
C,H, +H, -CH, =0

C,H, - 2CH, - 2C,H, = 0

If we identify A, with C,H,, A, with H,, A, with CH,, and A, with C,H,, the set of equations
becomes

i

A + A, - A, =0

A, + 24, - 24, =0

This can be generalized to a system of R reactions between S chemical species by the set of
equations represented by

where o, are the stoichiometric coefficients of each species A, in each reaction /.
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Aris demonstrated that the number of independent chemical reactions in a sct of R reactions is
equal to the rank of the matrix of stoichiometric coefficients e, Using Aris® method and the
techniques developed in this chapter. determine the number of independent chemical reactions in

the following reaction system:

4NH, - 50,

4NH, - 30,

4NH, + 6NO

2NO -« 0,
2NO
N, + 20,

2.5 The multistage distillation tower shown in Fig. P2.5 is equipped with a total condenser and a
partial boiler This tower will be used for the separation of a multicomponent mixture. Assume
that for this particular mixture, the tower contains the cquivalent of 10 equilibrium stages.

= 4NO - 6H,0

= 2N, - 6H,0

. 5N, + 6H,0

= 2NO,

=N, -0,

= 2NO,

including the reboiler; that is. N =10 and j = 11.

v Total
v2>i Condenser
j=2 Reflux Dium
V| | j-_-'l
Yi X |
V)~1 1, L D
Yisti Xii j+| Xii X
k7 Vi
F | ’:t
V) L'
J
V'|+I L'|
j+l
Partial
Reboiler by
j=N+1
B

Figure P2.5
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The feed to the column has a flow rate F = 1000 mol/h. It is a saturated liquid. and it enters
the column on equilibrium stage 5 (j = 6). It contains five components (n = 5) whose mole
fractions are

2, =0.06 =017 =022 2,=0.20 2=035

It is desired to recover a distillate product at a rate of 500 mol/h.
Develop all the material balances for component i for all 10 equilibrium stages and for the
condenser. For this problem make the following assumptions:

1. The external reflux ratio is

]

Constant molal overflow oceurs in cach section ot the tower.

3. The initial guesses of the temperatures corresponding to the equilibrium stages are T, = 140°F,
To=150"F. T, = 160°TF. T, = 170°F. T, = 180°F. T. = 190°F. T = 200°F. T,= 210°F.
T,,=220°F.and T,, = 230°F.

4. The equilibrium constant K, can be approximated by the foltowing equation:

K=o, - BT, v

where the temperatures are in degrees Fahrenheit and the coefficients for each individual

component are listed in Table P2.5 [10].

Solve the resulting set of equations in order to determine the following:

(a) The molal flow rates of all vapor and liquid strcams in the tower

(b) The mole fraction of each component in the vapor and liquid streams
Note that the mole tractions in each stage do not add up to unity, becausce the above solution is
only a single step in the solution of multicomponent distillation problem. Assumptions 2 and 3
are only initial guesses that must be subsequently cortected from energy balances and bubble point
calculations.

Table P2.5
Component i o B, Yi
| 0.70 0.30x107 0.65x10™
2 2.21 1.95%10~ 0.90x10"
3 1.50 -1.60x10~ 0 80x10™
4 0.86 -097x10° 0.46x10™

5 0.71 -0.87x107 0.42x10"
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2.6 The following equations can be shown to relate the temperatures and pressures on either side of
a detonation wave that is moving into a zone of unburned gas [7]:

¥, T P, : P,

— | = (Y, == +1-0

m T, \ P, . P,
AH,, ’ L o ty, - Vym,| P, Sl m TP,
e, T T, 2y,m, P, m, T, P,

Here. T = absolute temperature, P = absolute pressuie. y, = ratio of specific heat at constant
pressure to that at constant volume, m = mean molecular weight. AH,, = heat of reaction. ¢, =
specific heat. and the subscripts | and 2 refer o the unburned and burned gas. respectively '

Write a program that accepts values for m,. m,. y.. AH,,. ¢,o. 7. and P, as data and that will
proceed to compute and print values for T, and P,. Run the program with the following data,
which apply to the detonation of a mixture of hydrogen and oxygen:

ny =12 g/g mol m, = 18 g/g mol 7, =300K Y. =131
AH,, =-58,300 cal/g mol €, =9.806 cal/(g mol.K) P, =1atm

2.7 Thesysiem ot highly coupled chemical reactions shown in Fig. P2.7 tukes place in a batch reactor.
The conditions of temperature and pressure in the reactor are such that the kinetic rate constants
attain the ftollowing values:

2 hy=001 ky=01 k=01 ky=005 k,=02 k. =01

k=005 k=005 £=02 k=01 £, =02 £k, =01

If the chemical reaction starts with the following initial concentrations:

A, = 1.0 mol/L D,=0
B,=0 E,=1.0mol/L
C,=0 Fy=0

calculate the steady-state concentration of all components  Assume that all reactions are of first
order.

Figure P2.7 System of coupled chemical reactions.
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2.8 A linear mathematical model that has thrcc independent variables, X|. X,. and X,. may be
written as
Y - b X, - bX, + DX
where b, b,. and b, are parameter constants to be determined from experimental observations It
can be shown that the vector of parameters b may be calculated from

b-(X'X)'Xx'y

where X is the matrix that contains the vectors of independent variable observations, X, X,. X,
as columns:

X - 1X, X, X
and Y is the vector of dependent variable observations (see Chap. 7)

Using the experimental observations shown in Table P2.8 determine the values of the
parameters . b,. and b, for this linear model.

Table P2.8

X, X, X, Y

1 0.2 50 1.0
2 0.6 4.1 5.0
3 0.7 3.0 7.0
4 1.0 2.0 10.0
S 1.5 1.2 12.5
6 2.0 05 150
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CHAPTER 3

Finite Difference Methods and Interpolation

3.1 INTRODUCTION

The most commonly encountered mathematical
models in engincering and science are in the form of differential equations. The dynamics of
physical systems that have one independent variable can be modeled by ordinary differential
equations, whereas systems with two, or more, independent variables require the use of partial
differential equations. Several types of ordinary differential equations, and a few partial
differential equations, render themselves to analytical (closed-form) solutions. These methods
have been developed thoroughly in differential calculus. However, the great majority of
differential equations, especially the nonlinear ones and those that involve large sets of

143
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simultaneous differential equations, do not have analytical solutions but require the application
of numerical techniques for their solution.

Several numerical methods for differentiation, integration, and the solution of ordinary
and partial differential equations are discussed in Chaps. 4-6 of this book. These methods are
based on the concept of finite differences. Therefore. the purpose of this chapter is to develop
the systematic terminology used in the calculus of finite differences and to derive the
relationships between finite differences and differential operators, which are needed in the
numerical solution of ordinary and partial differential equations.

The calculus of finite differences may be characterized as a “two-way street” that enables
the user to take a differential equation and integrate it numerically by calculating the values
of the function at a discrete (finite) number of points. Or. conversely, if a set of finite values
is available, such as experimental data, these may be differentiated. or integrated, using the
calculus of finite differences. It should be pointed out, however, that numerical differentiation
is inherently less accurate than numerical integration.

Another very useful application of the calculus of finite differences is in the derivation
of interpolation/extrapolation formulas, the so-called interpolating polynomials, which can be
uscd to represent experimental data when the actual functionality of these data is not known.
A very common example of the application of interpolation is in the extraction of physical
properties of water from the steam tables. Interpolating polynomials are also used to estimate
numerical derivative and integral of the tabulated data (see Chap. 4). The discussion of several
interpolating polynomials is given in Secs. 3.7-3.10.

3.2 SymBoLIC OPERATORS

In differential calculus. the definition of the derivative is given as

dZ(X)‘,\( - f/(x()) = lim 1) - fx) 3.hH
A,. )

X3y X - X’O

In the calculus of finite differences, the value of x - x,, does not approach zero but remains a
finite quantity. If we represent this quantity by /:

h - x-x (3.2)

then the derivative may be approximated by

, flx, = h) - flx,)
f (x()) - 0 h 0
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Under certain circumstances, there is a point, €, in the interval (a. b) for which the derivative
can be calculated exactly from Eq. (3.3). This is confirmed by thc mean-value theorem of
differential calculus:

Mean-value theorem: Let f(x) be continuous in the range « < x < b and differentiable
in the range a < x < b; then there exists at least one £, « < & < b, for which

/ _ fUb) - fla)
1© P (3.4)

This theorem forms the basis for both the differential calculus and the finite difference
calculus.

A function f(x). which is continuous and differentiable in the interval [x,. x]. can be
represented by a Taylor series

o v V2 _7..3»//,’..
F) - F) + (- ) (ay) (x .\07)|f (xy) X (a \(,:'f (xy)

(_\ - )ll./'(n)('\. )
D — 4R, (0) (3.5)
n.

where R, (x) is called the remainder. This term lumps together the remaining terms in the
infinite series from (n + 1) to infinity; it, thercfore, represents the rruncation error, when the
function is evaluated using the terms up to, and including, the nth-order term of the infinite
series.

The mean-value thcorem can be used to show that there exists a point € in the interval
(%, X) 50 that the remainder term given by

A L A RN}
R (v) - (x = x)" fE) 3.6)
(n + 1)!

The value of & is an unknown function of x; therefore, it is impossible to evaluate the
remainder, or truncation error, term exactly. The remainder is a term of order (1 + 1), because
itis a function of (x - x,)"* ' and of the (n + I)th derivative. For this reason. in our discussion
of truncation errors, we will always specify the order of the remainder term and will usually
abbreviate it using the notation O(h"" ).

The calculus of finite differences is used in conjunction with a series of discrete values.
which can be either experimental data, such as

Vi3 Y2 Yo Yi Yie1

e

or discrete values of a continuous function y(x):

y(a-3h)y  v(x-2h)  y(x-h) y(x) v(x + h) v(x+2h)  y(+3h)
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or, cquivalently, values of a function f(1):
fe-3h)  f(x-2h)  f(x-h) ) fe+h) fx+2h)  f(x+3h)

In all the above cases, the values of the dependent variable. v or £, are those corresponding to
equally spaced values of the independent variable x. This concept 1s demonstrated in Fig. 3.1
for a smooth function y(x).

A set of linear symbolic operators drawn from differential calculus and from finite

Figure 3.1 Values of function y(x) at equally spaced points of the
independent variable x.

difference calculus will be defined in conjunction with the above series of discrete values.
These definitions will then be used to derive the interrelationships between the operators. The
linear symbolic operators arc

D = differential operator
I = integral opecrator
E = shift operator

A = forward difference operator
V = backward difference operator
& = central difference operator

{ = averager operator.
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All these operators may be treated as algebraic variables because they satisfy the distributive,
commutative, and associative laws of algebra.

The first two operators are well known from differential calculus. The differential
operator D has the following effect when applied to the function y(1):

Dy(x) - Dy (3.7
dx
and the integral operator is
v h
Iy(x) = f,v(x)d.\' (3.8)

1

The integral operator is equivalent to the inverse of the differential operator
/=D (3.9)
The shift operator causes the function to shift to the next successive value of the
independent variable:

Ey(y) = y(x+h) (3.10)

The inverse of the shift operator, E ' causes the function to shift in the negative direction of
the independent variable:

E'y(x) = y(x-h) (3.11)
Higher powers of the shift operator arc defined as

E"y(x) = y(x-nh) (3.12)

The shift operator can be expressed in terms of the differential operator by expanding
the function y(x + &) into a Taylor series about x:

2z

h

2 3
-y ) - ”—,.v “yy - A ¥y

3!

y(x+h) = y(x) = (x) + ... (3.13)

Using the differential operator D to indicate the derivatives of y. we obtain

h

i

2 3
y(x+h) = y(x) - Dy(x) - Z—‘Dz_v(.\') + —l;—lDy(.\') o (3.14)
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Factoring out the term y(x) from the right-hand side of Eq. (3.14):

h h? ﬂ

yx-h)=|1+ =D+ —D? DY+ ] v(x) (3.15)
I! 2! 3!
The terms in the parentheses are equivalent to the series expansion
ShD . i + /1_2 2 E 3L
e 1 I!D o D<o+ 3!D (3.16)

Therefore, Eq. (3.15) can be wrillen as

y(v+h) - e"”_\‘(,\') (3.17)

Comparing Eq. (3.10) with (3.17), we conclude that the shift operator can be expressed in
terms of the differential operator by the relation

E = ¢"? (3.18)

Similarly. the inverse of the shift opcrator can be related to the differential operator by
expanding the function y(x - /1) into a Taylor series about x:

h?

/ i I 2 r it
Yx-h) s ax) - v e 2y ) - v - (3.19)
1! 2! 3!
Replacing the derivatives with the differential operators and rearranging. we obtain
n2 3
vy (x-h) - |1 - —/Ll) + /I—D" - —h—D‘ + ) y(x) (3.20)
1! 2! 3!
The terms in the parenthesis are equivalent to the series expansion
2 3
e oy Ay e (3.21)
I 2! 3!
Therefore, Eq. (3.19) can be written as
y(x-h) = e "D (x) (3.22)

It follows from a comparison of Eq. (3.11) with Eq. (3.22) that
E' =¢e P (3.23)

With these introductory concepts in mind. let us proceed to develop the backward.
forward, and central difference operators and the relationships between these and the

differential operators.
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3.3 BACKWARD FINITE DIFFERENCES

Consider the set of values
Yiaa Yioa i Yi Vit
or the equivalent set
v(x-3h)  y(x-2h) yx-h) ¥(x) V(x + h)

The first backward difference of y at i (or x) is defined as

or
Vy(x) - y(x) - y(x-h)

The second backward difference of y at i (or x) is defined as

149

Yise2 Viss

v(x+2h)  v(x+3h)

(3.24)

iy, = V(Vy) = V(y, = ¥ ) = Yy, - Vy,,

= (,\',' B y,u]) - ()’,»., - .)','_2)

or

Viy(x) = y(x) -2¥(x - h) + y(x - 2h)

The third backward difference of y at i is defined as

Vy, = (V) =V, = 2y + ¥ s)

= Vy, = 2Vy, + Vy,

(3.25)

(3.26)

==y S 20 7y ) O )

Py =¥ 7 3y 7 3 T Vi

Higher-order backward differences are similarly derived:

V4)'i =y Ay t Oy, m 4yt

Yi-a

VEy =y = Sy ¢ 10y, — 10y, + Sy - Y (3.28)
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The coefficients of the terms in each of the above finite differences correspond to those
of the binomial expansion (« - b)". where i is the order of the finite difference. Therctore. the
general formula of the nth-order backward linite difference can be cxpressed as

n
" m n! .
vy = z (-—x (3.29)
m 0 (n-nm)'m!

[t should also be noted that the sum of the coetficients of the binomial expansion is always
equal to zero. This can be used as a check to ensure that higher-order differences have been
expanded correctly.

The relationship between backward difference operators and differential operators can
now be established. Combine Egs. (3.22) and (3.24) to obtain

Try(v) = vx) - v(x=-h) = y(x) - e "y
S (L= "y (3.30)
which shows that the backward dilference operator is given by
V 1™ (3.31)
Using the infinite series expression of ¢ " [Eq. (3.21)]. Eq. (3.31) becomes

’n? N
vthilzD Chl 330
2 6

The higher-order backward difference operator. T, V'L .. . can be obtained by rusing
the first backward difference operator to higher powers':

v] ( 1 - ¢ iy )3 - 1 - 2(, h . e _‘h[)) (x 33)
v.‘ (1 ¢ hl))‘ (1 - 3¢ LT . 3¢ 2 e ‘\l;])) (3.34
Vsl o= e Py (3.35)

Expansion of the exponential terms and rearrangement yiclds the following equatons for the
second and third backward difference operators:

5

R - ADY %/}‘DJ - (3.36)

" These relationships can also be obtained by combining the definitions ot the backward difleiences [Egs (3 25) and
13.261} with the delinition of the inverse shift operator [Egs (3 1 and (3 23)]
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V' = h'D? - %h‘D* - %hﬁlﬁ - (3.37)

Equations (3.32), (3.36), and (3.37) express the backward difference operators in terms
of infinite series of differential operators. In order to complete the set of relationships,

equations that cxpress the differential operators in terms of backward difference operators will

also be derived. To do so, first rearrange Eq. (3.31) to solve for ¢

e -1 -v (3.38)

Take the natural logarithm of both sides of this equation:

Ine "™ - hD = In(l - V) (3.39)

Utilize the intinite series expansion:

VAR VAR VAR VA
In(l -V)=-V- — - — - — - - ... 3.4
2 3 4 5 (3.40)
Combine Eq. (3.39) with Eq. (3.40) to obtain:
AR VAR VAR v
hD -V - — + —  — + — 3.
2 3 4 5 (34D

The higher-order differential operators can be obtained by simply raising both sides of
Eq. (3.41) to higher powers:

- 5 Il 505
h*D? -V + v-§ + FVJ - EV o (342)
DY - e %v-‘ %\7‘ - (3.43)

vz 3 v-l VS
Y.YLY LY (3.44)
2 3 4 S

The complete sct of relationships between backward difference operators and differential
operators is summarized in Table 3.1.

n

hipDn = v +
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Table 3.1 Backward finite differences

Backward difference operators Differential operators
22 3n3 2 3 4
v=hD'hD+hD‘... hD=V+2+z+V_+
6 2 3 4
V2 = k2D - hPD + Lpipt - . R2D? - .V s Mygs o Dps
12 12 6
V- D - pipt o 2psps Rt e 2vd s Tys,
2 4 2 4
v o= ~ ~hD) \n 2 3 4 "
(' € ) h'"D" = vfl+_v_+z_+”,
3 4

3.4 FORWARD FINITE DIFFERENCES

The development of forward finite differences follows a course parallel to that used in the
development of backward differences.
Consider the set of values

Yis Yio2 Yo Y, Yien Yiva Viss
or the equivalent set
yx-3h)  y(x-2h)  y(x-h) y(x) y(x + h) yix+2h)  v(x+3h)

The first forward difference of y at i (or x) is defined as

Ay, = vy -y
or
Ay(x) = y(x + h) - y(x) (3.45)

The second forward difference of y at i (or x) is defined as

Ay, = A(Ay) = Ay, - y) = Ay, - By,
(3.46)
= Vg = Vi) — iy =)
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or (3.46)
Azb\f(,\‘) = vy = 2h) - 2y(x + ) - v(x)
The third forward difference of y at i is defined as
Ay, = A(Az\'i) A(y, 5 - 2y, = v)

= Ay, , - 2Ay,, - A

P2 -

(3.47)
= (Vg Ve 20y, v )yt )
Aly, = v, - K A
Higher-order forward differences are similarly derived:
Af\'i ) PR VO e USSR S U (3.48)
AMv, = v =5y, = 10y, = 10v, ., = 5y, -y, (3.49)

[n similarity to the backward finite differences. the forward finite differences also have
coefficients which correspond to those ot the binomial expansion (¢ - b)". Therefore, the
general formula of the nth-order forward finite difference can be expressed as

Ay - X Cyr—— (3.50)

m oo (n-m)ytm!

In MATLAB. the function diff(v) returns forward finite differences ot y. Values of
nth-order forward finite difference may be obtained from diff(v. n).

The relationship between forward difference operators and ditferential operators can now
be developed. Combine Eqgs. (3.45) and (3.17) to obtain

Ay(x) - y(x + h) - v(x)
= e"™y(x) - y(1)

- ("™ - Dy (3.51)
which shows that the forward difference operator is given by

A - e - (3.52)
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Using the infinite series expression of "’ [Eq. (3.16)], Eq. (3.52) becomes
h’p*  h'D’
2 6

The higher-order forward difference operator. A%, A*. . . ., can be obtainced by raising the
tirst forward difference operator to higher powers:

A=hD ~+ . (3.53)

AZ - (e/ID _ 1)2 - (elhf) _ 2()/11) + ] ) (354)
A3 _ (elzﬂ 1 )3 - (()3111) _ 3p2hl) _ 3(,/1[) _ 1) (355)
A” - (({/l/) _ l )n (356)

Expansion of the exponential terms and rearrangement yields the following cquations
for the second and third forward difference operators:

9 5 7

A - h2D? < hID? B/141)4 - (3.57)
3 5.5

A - DY 5/1*1)4 + Zh DS - ... (3.58)

Egs. (3.53), (3.57), and (3.58) express the forward difference operators in terms of
infinite series of differential operators. In order to complete the set of relationships, equations

that express the differential operators in terms of forward difference operators will also be

derived. To do this, first rearrange Eq. (3.52) to solve for ¢":

e <1+ A (3.59)
Take the natural logarithm of both sides of this equation:

Ine™ = AD = In(l + A) (3.60)
Utilize the infinite series expansion:

2 3 4 N
1n(1+A)_-A-A+% AT A

S =T (3.61)
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Combine Eq. (3.60) with Eq. (3.61) Lo obtain

2 3 4 5
hp -4 - A, A A A (3.62)
23 4 s

The higher-order differential operators can be obtained by simply raising both sides of
Eq. (3.62) to higher powers:

Yo Ll 5 45
R (3.63)
Dt oA 2an %A‘ - (3.64)

Dt LA -

2 3 4 5 "
ESE N 365

The complete set of relationships between forward ditference operators and differential
operators is summarized in Table 3.2

Table 3.2 Forward finite differences

Forward difference operators Differential operators
2R 2443 2 3 4
A:/'[)-u)__+u_+‘_. hD = A -A p_A_ aA_ +
2 6 2 3 4
2 22 Tyt 7 ip 22 2 x Iy 5.5
A= h=D- - W'D+ —h"DY + h-D- - A~ - A+ —A A L
12 12 6
\ <. 3 s N . 3
A= RDY - 2t - 2pps L DY - A - 3at e Tas
2 4 2 4
A” _ , D I 7 2 3 4 n
e : pepr - Ao A A AT
2 3 4
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3.5 CENTRAL FINITE DIFFERENCES

As their name implies, central finite differences are centered at the pivot position and are
evaluated utilizing the values of the function to the right and to the left of the pivot position,
but located only #/2 distance from it.

Consider the series of values used in the previous two sections, but with the additional
values at the midpoints of the intervals

Yioa Y A Yoy Y, Yien Yisn Yien, Vi
or the equivalent set
y(x-2h) y(x - 1V2h) y(x - h) y(x-Y2h) v(x) yx+%2h) y(x+h) v+ 1Y2h) y(x + 2h)
The first central difference of y ati (or 1) is defined as
Oy, = Vip T Vip

or

Oy(x) = y(x = Yah) - v(x - Y2h) (3.66)

The second central difference of y at i (or x) is defined as

¥y, = d(dy) = By, ~ viyy) - Oy, - By,
= (v oY) -y )
Oy, = vy — 2y, 7
or
8 y(x) = v(x + h) - 2v(x) - v(x - h) (3.67)

The third central difference of v at i is defined as
8%y, = 8(8%y,) =8y, -2y, 4y, )

-5, - 28y, + by,

il B B
= Vs = Niae) 7 2000, T V) (Y T )
(3.68)

v =3V, 3V )

T i E Jiotva
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Higher-order central differences are similarly derived:

8% = v - AN, 6y - AN (3.69)
‘55«",' = Ve T 0w 20X L N = SNt Y, (3.70)

Consistent with the other finite differences, the central finite differences also have
coefficients that correspond to those of the binomial expansion (u - b)". Therefore, the general
formula of the nth-order central finite difference can be expressed as

" |
6" v\‘i - E ( ‘] )’” i -\'i - nl2 (37])

m 0 (n-=m)'m!

It should be noted that the odd-order central differences involve values of the function
at the midpoint of the intervals. whereas the even-order central differences involve values at
the full intervals. To fully utilize odd- and even-order central differences. we need a set of
values of the function y that includes twice as many points as that used in either backward or
forward differences. This situation is rather uneconomical, especially in the case where these
values must be obtained experimentally. To alleviate this difficulty. we make use of the
averager operator p, which is defined as

T [EI/2 « E IIZI (372)

1
2
The averager operator shifts its operand by a half interval to the right of the pivot and by a half
interval to the left of the pivot, evaluates it at these two positions, and averages the two values.

Application of the averager on the odd central differences gives the first averaged central
difference as follows:

udy, - —(E'8y, - £ 8y

1

2
1

= —(0y,.,, * Ov,.,,)
2

Vi ) (v o))

P
S Wi ) (3.73)
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The third averaged central difference is given by

“63",' - %(51/253-\.’. v E |/263.“,‘)

- 1(61-‘3‘4: CHN

2
1
= =y = 3y =3y -y ) 2 (v - 3y 3y -y )]
> 2 2
Lo s o
- 5(-‘,'—2 2y 2y ) (3.74)

As expected, the ceffect of the averager is to remove the midpoint values of the function
v from the odd central diffcrences.

[t will be shown in Chap. 4 that central differences are more accurate than either
backward or forward differcnces when used to evaluate the derivatives of functions.

The relationships between central difference operators and differential operators can now
be developed. Eq. (3.73), representing the first averaged central difference. is combined with
Egs. (3.17) and (3.22) to yicld

udv(x) = —[v(x + h) - v(x - h)]

1 | -

_ %Iehl)y('\,) - e /1/))_(‘\.)|

= i((}hl)

- e yy(x)
> ) (3.75)

which shows that the first averaged central difference operator is given by
ud - %w"" ¢y _ sinh hD (3.76)

. e . . D
Using the infinite series expansions of ¢

of the hyperbolic sine:

and ¢"”, or equivalently the infinite series expansion

(hD)* _ (hD)' _ (hD) |
315 7!

sinhhD = hD +

(3.77)

Eq. (3.76) becomes

3 3 5 A 7 7
§-pp + O RDT RD 3.78
m (3.78)
6 120 5040
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Similarly, using Eq. (3.67) for the second central difference. and combining it with Eqs.
(3.17) and (3.22). we obtain
O y(x) = y(x + h) - 2y(x) + x(x - h)
= e"™y(x) - 2v(x) + e "y(x) (3.79)
- (eh/J S J e*/}l)).‘,(x)
which shows that the second central difference operator is equivalent to

8 - e" e -2 = 2coshhD - 1) = E+E"' -2 (3.80)

Expanding the exponentials into their infinite series, or equivalently the infinite series
cxpansion of the hyperbolic cosine in Eq. (3.80), we obtain
4y 67y6 AR
8 - nip? + h*D ' h®D®  h°D . 381
12 360 20160

The higher-order averaged odd central difference operators are obtained by taking
products of Eqs. (3.78) and (3.81). The higher-order even central differences are tormulated
by taking powers of Eq. (3.81). The third and fourth central operators, thus obtained. are listed
below:

kDY h'D’

pé% . hBD* 2 + 20 - . (382)
6796 37y 8
& = hint . ,L.%)Q_ - —h-gr()g— - .. (3.83)

In order to develop the inverse relationships, i.e.. equations for the differential operators in
terms of the central difference operators, we must first derive an algebraic relationship
between wand 8. To do this, we start with Egs. (3.72) and (3.80). Squaring both sides of Eq.
(3.72), we obtain

1 ;
T JEE t-2) (3.84)
Rearranging Eq. (3.80). we get

8 «2 -E +E! (3.85)
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Combining Egs. (3.84) and (3.85), and rcarranging, we arrive at the desired relationship

, &
[T " =1 (3.86)

Now taking the inverse of Eq. (3.76):

hD - sinh 'pd (3.87)

The infinite series expansion of the inverse hyperbolic sine is

o (ud)*  3(udy
sinh' ud - ud - + - ... 3
u H 6 10 (3.88)
Therefore. Eq. (3.87) expands to
I 38
hD - pd - Y . 2K - 3
' 6 40 (3.89)

The even powers of p are eliminated from Eq. (3.89) by using Eq. (3.86) to obtain the first
differential operator in terms of central difference operators:
o 8’
hD = pu(d - — + — - ...) 3.90
6 30 5=
Higher-order ditferential operators are obtained by raising Eq. (3.90) to the appropriate
power and using Eq. (3.86) to eliminate the even powers of y. The second. third, and fourth
differential operators obtained by this way are

4 0O
pipr g o 8 (3.91)
2 90
5 7
RDY = u(d %* 17—;30- ) (3.92)
6 8
,74,)4:54_%+;T‘3() (3.93)

The complete set of relationships between central difference operators and differential
operators is summarized in Table 3.3. Thesc relationships will be used in Chap. 4 to develop
a set of formulas cxpressing the derivatives in terms of central finite differences. These
formulas will have higher accuracy than those developed using backward and forward finite
differences.
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Table 3.3 Central finite differences

Central difference operators Differential operators
3 3 5 5 7 7 3 S 7
W6 - hp s MDY RDS DT SN P S A
6 120 5040 6 30 140
§ - pipe . IR RODSRtDY pip? -5 O, 8
12 360 20160 12 90
Snys in7 3 7
;,151 S DY+ h'D>  h'D . Bipd - “[ & - é_ . 78" -
4 40 4 120
6 - pipt . hepS L htDY pips -5t . 9018
6 80 B 6 240

3.6 DIFFERENCE EQUATIONS AND THEIR SOLUTIONS

The application of forward, backward, or central finite differences in the solution of
differential equations transforms these equations o difference equations of the form

SOy ey, =0 (3.94)

In addition, difference equations are obtained from the application of material balances on
multistage operations, such as distillation and extraction.

Depending on their origin, difference equations may be linear or nonlinear, homogeneous
or nonhomogeneous, with constant or variable coefficients. For the purposes of this book, it
will be necessary to discuss only the methods of solution of homogeneous linear difference
equations with constant coefficients.

The arder of a ditference equation is the difference between the highest and lowest
subscript of the dependent variable in the equation, that is, it is the number of finite steps
spanned by the equation. The order of Eq. (3.94) is given by

Order = (k ~ n) -k =n (3.95)
The process of obtaining v, is called solving the difference equation. The methods of
obtaining such solutions are analogous to those used in finding analytical solutions of

differential equations. As a matter of fact, the theory of difference equations is parallel to the
corresponding theory of differential equations. Difference equations resemble ordinary
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differential equations. For example, Eq. (3.96) is a second-order homogeneous linear ordinary
differential equation:
v 3y -4y -0 (3.96)
whercas Eq. (3.97) is a sccond-order homogeneous linear difference equation:
Vea v 3y 4y 0 (3.97)
The solution of the differential equation (3.96) can be obtained from the methods of
differential calculus applied as follows:

1. Replace the derivatives in (3.96) with the differential operators:
D3y 3Dy - 4y = 0
2. Factor out the »:
(D? + 3D - 4)y -0
3. Find the roots of the characteristic equation:
D?+3D -4 -0
These roots are called the eigenvalues of the differential equation. In this case they

are

A= and  A,= -4
4. Construct the solution of the homogeneous differential equation as follows:

¥y o= C,el" + Czel""
(3.98)

- C1 L,H)\ - CZC’( 4
where C, and C, are constants that must be evaluated from the boundary conditions
of the differential equation.
Similarly. the solution of the difference equation (3.97) can be obtained by using the shift

operator E:
I. Replacc each term of Eq. (3.97) with its equivalent using the shift operator:
Ey, ~3Ey, -4y, =0
2. Factor out the y,:

(E* + 3E - 4)y, 0
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3. Find the roots of the characteristic equation:

E?-3E-4=0

These roots are A, = 1 and A, = - 4.
4. Construct the solution of the homogeneous difference equation as follows:

AV Cl)\"; * Cz)‘;
(3.99)
= C () + Cy(-4)

where C, and C, are constants that must be evaluated from the boundary conditions
of the difference equation.

In the above case, both eigenvalues were real and distinct. When the eigenvalues are real
and repeated, the solution for a second-order equation with both roots identical is formed as
follows:

v, = (C, + Ch)Af (3.100)

For an nth-order equation, which has m repeated roots (1,) and one distinct root (A,), the
general formulation of the solution is obtained by superposition:

¥, = (C, =~ Gk + Cyk> v ...+ C k" YAk - C AL (3.101)

m non

In the case where the characteristic equation contains two complex roots
Ao=o+Bi and Ay=a-Bi (3.102)
the solution is

v = Cla + i) + Cyla - Bi) (3.103)

This solution may be also expressed in terms of trigonometric quantities by utilizing the
trigonometric (polar) form of complex numbers:

o+ Bi = r(cosO % isin0) (3.104)

This is obtained by showing the complex number as a vector in the complex plane represented
in Fig. 3.2. The modulus r of the complex number is obtained from the Pythagorcan theorem

r=ya + B2 (3.105)
The values of « and [ are expressed in terms of the phase angle 9:

o = rcos 9 (3.106)

B - rsind (3.107)
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and the phase angle is given by
0 - tan ' B
o
Substituting Eq. (3.104) in Eq. (3.103) and utilizing de Moivre's theorem
(cos O = isinB)} - coskO = isink
we obtain the solution of the difference equation as

v, - rHC, cosk® o+ C, sink0)

where C,'=C, + C, and C," = (C, - C,)i.

Chapter 3

(3.108)

(3.109)

(3.110)

It can be concluded from the above discussion that the solution of homogencous linear

difference cquations with constant coefficients is of the form

i - f(k’)\')

(3.111)

where & is the forward-marching counter and A is the vector of eigenvaluces of the
characteristic equation. The stability and convergence of these solutions decpend on the values

of the cigenvalues.
equations:

1. The solution is stable, converging without oscillations, when

The following stability cases apply to the solutions of difference

a. All the eigenvalues are real distinct and have absolute values less than. or equal

to, unity:
A = real distinct
Al < 1.0
Imaginary
Figure 3.2 Representation of a complex
p number in a plane.
v
0 Real
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h. The eigenvalues are real, but repeated, and have absolute values less than
unity:
A = real repeated
IAl<1.0
2. The solution is stable, converging with damped oscillations, when
a. Complex distinct eigenvalues are present, and the moduli of the eigenvalues are
less than, or equal to, unity:
A = complex distinct
Irl < 1.0
b. Complex repeated eigenvalues are present, and the moduli of the eigenvalues
are less than unity:
A = complex repeated
rl < 1.0
3. The solution is unstable and nonoscillatory, when
a. All the eigenvalues are real distinct, and one or more of these have absolute
values greater than unity:
A = real distinct
[Al>1.0
b. The eigenvalues are real, but repeated, and one or more of these have absolute
values equal to, or greater than, unity:
A = real repeated
A2 1.0
4. The solution is unstable and oscillatory, when
a. Complex distinct eigenvalues are present, and the moduli of one or more of
these are greater than unity:
A = complex distinct
1> 1.0
b. Complex repeated eigenvalues are present, and the moduli of one or more of
these arc equal to, or greater than, unity:
A =complex repeated
Irl > 1.0

The numerical solutions of ordinary and partial differential equations are based on the
finite difference formulation of these differential equations. Therefore, the stability and
convergence considerations of finite difference solutions have important implications on the
numerical solutions of differential equations. This topic will be discussed in more detail in
Chaps. 5 and 6.
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3.7 INTERPOLATING POLYNOMIALS

Engineers and scientists often face the task of interpreting and correlating experimental
observations, which are usually in the form of discrete data. and arc called upon to either
integrate or differentiate these data numerically or graphically. This task is facilitated by the
use of interpolation/extrapolation formulas. The calculus of finite differences cnables us to
develop interpolating polynomials that can represent cxperimental data when the actual
functionality of these data is not well known. But, even more significantly. these polynomials
can be used to approximate functions that are difficult to integrate or differentiate, thus making
the task somewhat easier, albeit approximate.

Let us assume that values of functions f(x) are known at a set of (n + 1) values of the

independent variables x:

Yo SF(xy)
X / ‘(-\‘[ )
A J(xy)
Xy j( AY ;)
.l'” /("\u)

These values are called the base points of the function. They arc shown graphically in Fig.
3.3a.
The general objective in developing interpolating polynomials is to choose a polynomial
of the form
P (x) -a, +ax~a, x? o+ ax.x“x s dax” (3.112)
so that this equation fits exactly the base points of the function and connects these points with
a smooth curve, as shown in Fig. 3.3b. This polynomial can then be used to approximate the

function at any value of the independent variable x between the base points.
For the given sct of (n + 1) known base points. the polynomial must satisfy the equation

P(x)=flx) i-0.1,2,....n (3.113)

Substitution of the known values of (x, , f(x)) in Eq. (3.112) yields a set of (n + 1)
simultaneous linear algebraic equations whose unknowns are the coefficients ¢, , ... , a, of the
polynomial equation. The solution of this set of linear algebraic equations may be obtained
using one of the algorithms discussed in Chap. 2. However, this solution results in an ill-
conditioned linear system,; therefore, other methods have been favored in the development of

interpolating polynomials.
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MATLAB has several functions for interpolation. The function y; = interpl(x, y, x,)
takes the values of the independent variable x and the dependent variable y (base points) and
does the one-dimensional interpolation based on x; to find y. The default method of
interpolation is linear. However. the user can choose the method of interpolation in the fourth
input argument from ‘nearest’ (nearcst neighbor interpolation). ‘linear’ (linear interpolation),
‘spline’ (cubic spline interpolation). and ‘cubic’ (cubic interpolation). If the vector of
independent variable is not equally spaced, the function interplq may be used instead. It is
faster than inzerpl because it does not check the input arguments. MATLAB also has the
function spline to perform one-dimensional interpolation by cubic splines, using not-a-knot
method. [t can also return coefficients of piecewise polynomials. if required. The functions
interp2, interp3. and interpn perform two-, three-. and n-dimensional interpolation.

respectively.
(@) B B
f(x)
o
o o
o
o
e}
© o
X1 X2 X3 Xn—1 Xn
(b)
f(x)
P(x)
5% *3 Xno1 %

Figure 3.3 (a) Unequally spaced base points of the function f(x).
(b) Unequally spaced base points with interpolating
polynomial.
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3.8 INTERPOLATION OF EQUALLY SPACED POINTS

In this section, we will develop two interpolation methods for equally spaced data: (1) the
Gregory-Newton formulas, which are based on forward and backward differences, and (2)
Stirling’s interpolation formula, based on central differences.

3.8.1 Gregory-Newton Interpolation

First. we consider a set of known values of the function f(x) at equally spaced values of x:

x-3h f-3h)
x-2h flx-2h)
x-h fx-h)
X S

X+ h f(x+h)
x+2h S+ 2h)
X+ 34 Sflx + 3h)

These points are represented graphically in Fig. 3.4 and are tabulated in Tables 3.4 and 3.5.
The first, second, and third forward differences of these base points are also tabulated in Table
3.4 and the corresponding backward differences in Table 3.5.

f(x)

x-2h x-h X o X+h x+éh

Figure 3.4 Equally spaced base points for interpolating polynomials.
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The Gregory-Newton forward interpolation formula can be derived using the forward
finite difference relations derived in Secs. 3.2 and 3.4. Eq. (3.17). written for the function f,

flx + h) = e"Pf(x) (3.114)

relates the value of the function at one interval forward of the pivot point x to the value of the
function at the pivot point. Applying this cquation for » intervals forward, that is, replacing

h with nh, we obtain

flx + nh) - e"Pf(x) (3.115)
or equivalently
flx + nh) = (e"”)”f(.x) (3.116)
We note from Eq. (3.59) that
e =1+ A (3.59)
Combining Egs. (3.116) and (3.59) we obtain
f(x = nh) = (1 + A)"f(x) (3.117)
The term (1 + A)" can be expanded using the binomial series
(1 +A) =1 +nA + nin - l)Az . nn - 1)y(n - 2)A3
21! 3!
on(n - 1) - 2)n 73)A4 . G.118)
4!
Therefore, Eq. (3.117) becomes
f(x - nh) 7/'(,\') + nAf(x) + "an—'ﬁA:j(,\) . n(n - ]’),)'(" - 2)A‘f(\)
Lcnn - 1)(n 2)(n - 3)A4‘/(x) . (3.119)

41

When n is a positive integer, the binomial series has (n + 1) terms; therefore, Eq. (3.119) is a
polynomial of degree n. If (n + 1) base-point values of the function f are known, this
polynomial fits all (n + 1) points exactly. Assume that these (1 + 1) base-points are (x,, f(x,)).
(), fOx oo (X, f(x,), where (x, f(x,)) is the pivot point and x; is defined as

(3.120)

X, =Xy +ih
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We can now designate the distance of the point of interest from the pivot point as (x - x,). The
value of n is no longer an integer and is replaced by

X - X
n=—-2 (3.121)
h

These substitutions convert Eq. (3.119) to

‘ (x - x,) (v - x)(x - x))
flx) = flag) + ——LAf(x,) + : LA (x,)
h 21 R
. (x = x))x = x )y - '\Az)A'xf(r )
3140 Y
(x - x)x - x)x - X)) ~-x) |
- ¥ ' - A < 3122

41p?
This is the Gregoryv-Newton forward interpolation formula. The general formula of the above
series is
kpooo
A%Cxy)

(3.123)
k'ht

n Aol
fx) = flxg) + Y ( IT «x - --w]

kol m-0

In a similar derivation, using backward differences, the Gregorv-Newton backward
interpolation formula is derived as

) ‘ (x - x,)_ (x —x)(x -x ) .
J(x) = flx,) + —LVJ(A‘”) + 0 1 V(x,)
h 2'h?
(v = x)) - x )(x - x,)
v : ‘ =V f(x,) (3.124)
3th?
(v = X - x ) x - x (e - xy)
. o) N x DX - Vi) -
41p?
The general formula of the above series is
n ko1 vl\f(.\' )
flx) = flxg) + Y [ I x -« ,,,)) — (3.125)
k-1 m-0 k'hk

It was stated earlier that the binomial series [Eq. (3.118)] has a finite number of terms,
(n+ 1), when nis a positive integer. However, in the Gregory-Newton interpolation formulas,
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n is not usually an integer; therefore, these polynomials have an infinite number of terms. [t
is known from algebra that if IAl < I, then the binomial series for (1 + A)" converges 1o the
value of (1 + A)" as the number of terms become larger and larger. This implies that the finite
differences must be small. This is true for a flat, smooth function, or, alternatively. if the
known base points are close together; that is, if /2 is small. Of course. the number of terms that
can be used in cach formula depends on the highest order of finite differences that can be
evaluated from the available known data. It is common sense that for evenly spaced data, the
accuracy of interpolation is higher for a large number of data points that are closely spaced
together.

For a given set of data points, the accuracy of interpolation can be further enhanced by
choosing the pivot point as close to the point of interest as possible, so that x < A, If this is
satisfied. then the series should utilize as many term as possible; that is, the number of finite
differences in the equation should be maximized. The order of error of the formula applied
in each case is equivalent to the order of the finite difference contained in the first truncated
term of the scrics. Examination of Table 3.4 reveals that points at the top of the table have the
largest available number of forward differences. whereas Table 3.5 reveals that points at the
bottom of the table have the largest number of backward differences. Therefore. the forward
formula should be used for interpolating between points near the top of the table, and the
backward formula should be used for interpolation near the bottom of the table.

Example 3.1: Gregory-Newton Method for Interpolation of Equally Spaced Data.
An exothermic, relatively slow reaction takes place in a reactor under your supervision.
Yesterday, after you left the plant, the temperature of the reactor went out of control. for a yet
unknown reason, until the operator put it under control by changing the cooling water flow
rate. Your supervisor has asked you to prepare a report regarding this incident. As the first
step, you must know when the reactor reached its maximum temperaturc and what was the
value of this maximum temperature. A computer was recording the temperature of the reactor
at one-hour intervals. These time-temperaturc data arc given in Table E3.1. Write a general
MATLAB function for n-order one-dimensional interpolation by Gregory-Newton forward
interpolation formula to solve this problem.

Method of Solution: The function uses the general formula of the Gregory-Newton
forward interpolation [Eq. (3.123)] to perform the n-order interpolation. The input to the
{function specifying the number of base points must be at least (n + 1).

Program Description: The MATLAB function GregoryNewton.m is developed to
perform the Gregory-Newton forward interpolation. The first and second input arguments are
the coordinates of the base points. The third input argument is the vector of independent
variable at which the interpolation of the dependent variablc is required. The fourth input, n,
is the order of interpolation. If no value is introduced to the function through the fourth
argument, the function does linear interpolation. For obtaining the results of the higher-order
interpolation, this value should be entered as the fourth input argument.
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At the beginning, the function checks the inputs. The vectors of coordinates of base
points have to be of the same size. The function also checks to see if the vector of independent
variable is monotonic; otherwise, the function terminates calculations. The order of
interpolation cannot be more than the intervals (number of base points minus one). In this
case, the function displays a warning and continues with the maximum possible order of
interpolation. The function then performs the interpolation according to Eq. (3.123).

The main program Example3_1.m is written to solve the problem of Example 3.1. It asks
the user to input the vector of time (independent variable), vector of temperature of the reactor
(dependent variable), and the order of interpolation. The program applies the function
GregorvNewton.m to interpolate the temperature between the recorded temperatures and finds
its maximum. The user can repeat the calculations with another order of interpolation.

Table E3.1

Time Temperature Time Temperature

(p.m.) (°C) (p.m.) (°C)
4 70 9 93
5 71 10 81
6 75 11 68
7 83 12 70
8 92

Program

Example3_1.m

Example3_1.m

Solution to Example 3.1. It interpolates the time-temperature data
given in Table E3.1 by Gregory-Newton forward interpolation
formula and finds the maximum temperature and the time this
maximum happened.

o€ o€ of of

oe

clc
clear
clft

% Input data

time = input(' Vector of time = ');

temp = input (' Vector of temperature = ');

ti=linspace(min(time) ,max(time)); % Vector of time for interpolation
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redo = 1;
while redo

disp(' ")

n = input(' Order of interpolation = ');

te = GregoryNewton(time,temp,ti,n); % Interpolation

[max_temp, k] = max(te);

max_time = ti(k);

% Show the results

fprintf (*\n Maximum temperature of %4.1f C reached at %5.2f.\n',
max_temp,max_time)

% Show the results graphically

plot(time, temp, '0',ti, te)

xlabel ('Time (hr)')

vlabel ( ' Temperature (deg C)')

disp(' ")

redo = input(' Repeat the calculation (1/0) : ');
end

GregoryNewton.m
function yi = GregoryNewton(x,y,xi,n)
%GregoryNewton One dimensional interpolation.

o0

% YI = GregoryNewton(X,Y,XI,N) applies the Nth-order

% Gregory-Newton forward interpolation to find YI, the
% values of the underlying function Y at the points in
% the vector XI. The vector X specifies the points at
% which the data Y is given.

%

% YI = GregoryNewton(X,Y,XI) is equivalent to the

% linear interpolation.

%

% See also INTERP1, NATURALSPLINE, Lagrange, SPLINE, INTERPI1Q
% (c) by N. Mostoufi & A. Constantinides

% January 1, 1999

% Initialization
if nargin < 3

error('Invalid number of inputs.')
end

% Check x for egual spacing and determining h
if min(diff(x)) ~= max(diff(x))
error (' Independent variable is not monotonic.')
else
h = x(2) - x(1};
end

X = (x(:).")"; % Make sure it's a column vector

Q

v o= (y(:).")": % Make sure it's a column vector
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nx = length(x);
ny = length(y):
if nx ~= ny
error('X and Y vectors are not the same size.');
end

% Check the order of interpolation

if nargin == 3 | n < 1
n=1;
end
n = floor(n);
if n >= nx
fprintf (' \nNot enough data points for %2d-order interpolation.', n)

fprintf('\n%2d-order interpolation will be performed instead.\n’,
nx-1)

n=nx - 1;
end

deltax(1l,1:length(xi)) = ones(l,length(xi));
% Locating the required number of base points
for m = l:length({xi)
dx = xi(m) - x;
% Locating xi
[dxm , loc(m)] = min(abs(dx)):;
% locating the first base point
if dx(loc(m)) < O
loc(m) = loc(m) - 1;
end
if loc(m)
loc (m)
end
if loc(m)+n > nx
loc(m) = nx - n;
end
deltax(2:n+1,m) = dx(loc(m):loc(m)+n-1);
vtemp(l:n+1l,m) = y(loc(m):loc(m)+n);

A

1
1;

Interpolation

= y(loc)';

or k=1 :n
yi = yi + prod(deltax(l:k+1,:)) .* diff(ytemp(l:k+1,:),k) /...
(gamma (k+1) * h"k);

end

Input and Results
>>Example3_1

Vector of time = (4, 5, 6, 7, 8, 9, 10, 11, 12]
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Vector of temperature = [70, 71, 75, 83, 92, 93, 81, 68, 70]
Order of interpolation = 2

Maximum temperature of 94.2 C reached at 8.61.

Repeat the calculation (1/0) : O

Discussion of Results: Graphical results are shown in Fig. E3.1. As can be seen from
this plot and also from the numerical results, the reactor has reached the maximum temperature
of 94.2°C at 8:37 p.m. The reader can repeat the calculations with other values for order of
interpolation.

95 T T T

S~

%0+ -
85~ \\ i

80~ -

Temperature (deg C)

75~ !

8
Time (hr)

Figure E3.1 Interpolation of equally spaced points.

3.8.2 Stirling’s Interpolation

Stirling’s interpolation formula is based on central differences. Its derivation is similar to that
of the Gregory-Newton formulas and can be arrived at by using either the symbolic operator
relations or the Taylor series expansion of the function. We will use the latter and expand the
function f(x + nk) in a Taylor series around x:

nh

f(x + nh) = flx) + Ff’()C) +

nzhzf”(r) . )131'13.
2! 3!

F(x) v (3.126)
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We replace the derivatives of f(x) with the differential operators to obtain

27,2 REAK]
flx + nh) = flx) + %’Dﬂx) - n?l‘: D f(x) %

D3f(x) = ... (3.127)

The odd-order differential operators in Eq. (3.127) are replaced by averaged central
differences and the even-order ditferential operators by central differences, all taken from
Table 3.3. Substituting these into Eq. (3.127) and regrouping of terms yicld the formula

Jor iy - f) = ndf e« Dty
. ”""4'" Dsirxy + . (3.128)

By applying Eq. (3.121) into Eq. (3.128). we obtain the final form of Stirling’s interpolation
formulu

. (x - x) (x =5 .
AX)3ﬂ%)*——7—LuWUm b))

1 2Vh-

(x  x )x - x ) - x))

- : uof(x,)
3th”
(v - x )x - x) (v X)) )
. ! 0 LSt (xy) v (3.129)
4tp?

The general formula for determining the higher-order terms containing odd difterences in the
above series is

(k-142

1

KVh* e 0 0

(x  x,) KO, (3.130)

where k =1, 3, .. ., and the formula for terms with even differences is

¢ 2/2

C o (k
{(\7“’) H (x - x,)

k!/’lA mo (k22

8 fx,) (3.131)

where k=2,4, ...

Other forms of Stirling's interpolation formula cxist, which make use of base points
spaced at half intervals (i.e., at //2). Our choice of using averaged central differences to
replacce the odd differential operators eliminated the need for having base points located at the
midpoints. The central differences for Eq. (3.129) are tabulated in Table 3.6.
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3.9 INTERPOLATION OF UNEQUALLY SPACED POINTS

In this section, we will develop two interpolation methods for unequally spaced data: the
Lagrange polynomials and spline interpolation.

3.9.1 Lagrange Polynomials

Consider a set of unequally spaced base points, such as those shown in Fig. 3.3a. Define the
polynomial

n

P.(x) = Y p(x0)f(x,) (3.132)

k-0

which is the sum of the weighted values of the function at all (n + 1) base points. The weights
p.(x) are nth-degree polynomial functions corresponding to each basc point. Eq. (3.132) is
actually a lincar combination of nth-degree polynomials; therefore, P (x) is also an nth-degree
polynomial.

In order for the interpolating polynomial to fit the function exactly at all the base points.
each particular weighting polynomial p,(x) must be chosen so that it has the value of unity
when x = x;, and the value of zero at all other base points, that is,

0 i#k
Xx) - 3.133
p(x) { Lok ( )

The Lagrange polynomials. which have the form

() = C I (¢ x) (3.134)
i 0
i+h
satisfy the first part of condition (3.133), because there will be a term (v, - x;) in the product
series of Eq. (3.134) whenever x = x,. The constant C, is evaluated to make the Lagrange
polynomial satisfy the second part of condition (3.133):

1
C, = —— (3.135)

n
H (X = x)
i-0
ik
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Combination of Egs. (3.134) and (3.135) gives the Lagrange polynomials

n X -
poo = I1 [ ] (3.136)

0
ik

The interpolating polynomial P (x) has a remainder term, which can be obtained from Eq.
(3.6):

n (1 ])
R(x) - [T (x .\-,,)~——-/ ()

o D x, <& <x, (3.137)
i0 + 1)

3.9.2 Spline Interpolation

When we deal with a large number of data points, high-degrec interpolating polynomials are
likely to fluctuate between base points instead of passing smoothly through them. This
situation is illustrated in Fig. 3.54. Although the interpolating polynomial passes through all
the base points, it is not able to predict the value of the function satisfactorily in between these
points. In order to avoid such an undesired behavior of the high-degree interpolating
polynomial. a series of lower-degree interpolating polynomials may be used to connect smaller
number of base points. These sets of interpolating polynomials are called spline functions.
Fig. 3.5h shows the result of such interpolation using third-degrec (or cubic) splines.
Compared with the higher-order interpolation illustrated in Fig. 3.5a. third-degree splines
shown in Fig. 3.5h provide a much more acceptable approximation.

(a) (b)

|
|
| .

Figure 3.5 (a) Fluctuation of high-degree interpolating polynomials between base
points. (b) Cubic spline interpolation.
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The most common spline used in engineering problems is the cubic spline. In this
method, a cubic polynomial is used to approximate the curve between each two adjacent base
points. Because there would be an infinite number of third-degree polynomials passing
through each pair of points, additional constraints are necessary to make the spline unique.
Therefore, it is set that all the polynomials should have equal first and second derivatives at
the base points. These conditions imply that the slope and the curvature of the spline
polynomials are continuous across the base points.

The cubic spline of the interval {x,_,, x,] has the following general form

P(x) = ai)c3 : b,.x"' ex o+ d, (3.138)
There are four unknown coefficients in Eq. (3.138) and n such polynomials for the whole
range of data points [x,, x,]. Therefore, there are 4n unknown coefficients and we need 4n
equations to evaluate these coefficients. The required equations come from the following
conditions:
a. Each spline passes from the base points of the edge of its interval (2n equations).
b. The first derivative of the splines are continuous across the interior base points
(n - 1 equations).
¢. The second derivative of the splines are continuous across the interior base points
(n - 1 equations).
d. The second derivative of the end splines are zero at the end base points
(2 equations). This is called the natural condition. Another commonly used
condition is to set the third derivative of the end splines equal to the third derivative
of the neighboring splines. The latter is called not-a-knot condition.
Simultaneous solution of the above 4n linear algebraic equations results in the
determination of all cubic interpolating polynomials. However, for programming purposes.
there is an alternative method of determination of the coefficients that needs simultaneous
solution of only (n - 1) algebraic equations. This method is described in detail in this section.
The second derivative of the Eq. (3.138) is a line

P (x) =y = 6ax + 2b, (3.139)

From Eq. (3.139) it can be concluded that the second derivative of the interpolating
polynomial at any point in the interval |x, |, x,] can be given by the first-order Lagrange
interpolation formula

A T R (3.140)

The expression for the spline can be obtained by twice integrating Eq. (3.140):

(x-x) o (x-x )t
y - Ty — Ly, + Cx - C, (3.141)
6(x,_, - x;) 6(x, - x; )
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where the constants C, and C, in Eq. (3.141) are evaluated from the following boundary
conditions:

YO ) = v
(3.142)

|
-

yx) =y,

By evaluating the constants C, and C, from the conditions (3.142), substituting them into Eq.
(3.141), and further rearrangement, we find the following cubic equation:

(x = x)

—l_ B (xl [ .X’)(X - '\/1) Vi
6| x, , - x

Pix) =y =

X - x X - x
v | — ¥ (3.143)
X1 T AT X

Note that Egs. (3.138) and (3.143) are cquivalent and the relations between their coefticients
are given by Eq. (3.144):

I B IR oLy TNy
a,. = — b‘. = ;
61 %, " x < X T
2 2 "
1l X7y, - xoy ] . . AV W
¢, = — PR B L + —(x X )(\', -y, ) B
i 2 i . 6 -1 (AN Jil . |
i ™A 0 N N
3 " 3
LEox oy -y ] ‘
d = | —————| + —(x;_, - X)Xy, - x )
i i i i il
6 X, - X 6
i-1 i
X, V. - _X.)
[ i7i-1
O L (3.144)
X, - X,

Although Eq. (3.143) is a more complicated expression than Eq. (3.138), it contains only
two unknowns, namely y;_, and y; . In order to determine the y” values, we apply the
condition of continuity of the first derivative of splines at the interior base points: that is,

Yo ey, (3.145)
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Differentiating Eq. (3.143) and applying the resulting expression in the condition (3.145),
followed by rearranging of the terms, results in

(G~ Dy = 200, - x5y (g0 = X))y

Yii (3.146)

wherei=1,2,...,n-land y, = y,;' = 0 (natural spline).

Eq. (3.146) represents an (n - 1)-order tridiagonal set of simultaneous equations, which
in matrix form becomes Eq. (3.147):

[ 2(x,mx,)  (vy-x)) 0 0 . 0 0
(x,=x)) 2(x;-x))  (xy-x,) 0 0 0
0 (Xy7%) 2(x,7x,) (xy-xq) .. 0 0
0 0 e 0 (Xn 27y, 3) 2(".11 1Y 3) (Xn li\n 2)
0 0 .. 0 0 (x, ,=x,,) 2(x,-x, 5)
N [ . o]
¥, ? 2O TN
Kz - A\I \'I - .\'U
. VTV, Ya TN
Y -
Xy 7 X,y nooon
Vi 7 )3 Vi 7 M
AL
X -6 Xy X Ay Ty,
(3.147)
. Y1 Vu 2 _ o Ve-2 T a3
y -2
e nol n-2 .\'” 2 a-3
Yn T yn [ '\‘Il T )n 2
l—)‘"_” X, - xu-l X" i X2 J

After calculating the values of the second derivatives at each base point, Eq. (3.143) can be
used for interpolating the value of the function in every interval.
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Example 3.2: The Lagrange Polynomials and Cubic Splines for Interpolation of
Unequally Spaced Data. The pressure drop of a basket-type filter is measured at different
flow rates as shown in Table E3.2. Write a program to estimate pressure drop of the filter at
any flow rate within the experimental range. This program should call general MATLAB
functions for interpolating unequally spaced data using Lagrange polynomials and cubic
splines,

Method of Solution: The Lagrange interpolation is done based on Egs. (3.132) and
(3.136). The order of interpolation is an input to the function. The cubic spline interpolation
is done based on Eq. (3.143). The values of the second derivatives at base points, assuming
a natural spline, are calculated from Eq. (3.147).

Program Description: The gencral MATLAB function Lagrange.m performs the
nth-order Lagrange interpolation. This function consists of the following three parts:

At the beginning, it checks the inputs and sets the order of interpolation if necessary. If
not introduced to the function, the interpolation is done by the first-order Lagrange polynomial
(linear interpolation).

In the second part of the function, locations of all the points at which the values of the
function are to be evaluated are found in between the base points. Because matrix operations
are much faster than element-by-element operations in MATLAB, the required number of
independent and dependent variables are arranged in two interim matrices at each location.
These matrices are used at the interpolation section for doing the interpolation in vector form.

The last part of the function is interpolation itself. In this section, p,(.x) subpolynomials
are calculated according to Eq. (3.136). The terms of summation (3.132) are then calculated,
and, finally, the function value is determined based on Eq. (3.132). In order to be time
efficient, all these calculations are done in vector form and at all the required points
simultaneously.

The MATLAB function NaturalSPLINE.m also consists of three parts. The first and
second parts are morc or less similar to those of Lagrange.m. However, instead of forming
the interim matrices, the interpolation locations are kept in a vector.

Table E3.2 Pressure drop of a basket-type filter

Flow Rate Pressure drop Flow rate Pressure drop
(L/s) (kPa) (Us) (kPa)
0.00 0.000 32.56 1.781
10.80 0.299 36.76 2,432
16.03 0.576 39.88 2.846
2291 1.036 43.68 3.304
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In the last section of the function, the matrix of coefficients and the vector of constants
are builtl according to Eq. (3.147), and the values of the second derivatives at the base points
are evaluated. The interpolation is then performed. in the vector form, based on Eq. (3.143).

Program

Example3_2.m

Example3_2.m

Solution to Example 3.2. It uses Lagrange and cubic spline
interpolations to find the pressure drop of a filter at any
point in between the experimental data.

° o° 0P

¢

clc
clear
clf

% Input data
Q = input (' Vector of flow rates = ');

dP = input (' Vector of pressure drops = ');

disp(' ")

n = input(' Order of the Lagrange interpolation = ');
g = linspace(min(Q) , max(Q));

% Interpolation

dP1 = Lagrange(Q , dP , g , n);
dP2 = NaturalSPLINE(Q , 4dP , q);

% Plotting the results
plot(Q,dP, 'o',q,dPl,q,dP2,"'.")
xlabel ('Flow Rate (lit./s)')
ylabel ('Pressure Drop (kPa)')

legend ('Experimental Data', 'Lagrange Interpolation', 'Natural Spline
Interpolation', 2)

Lagrange.m

function yi = Lagrange(x,y,xi,n)

%Lagrange One dimensional interpolation.

%

% YI = Lagrange(X,Y,XI,N) applies the Nth-order Lagrange
% interpolation to find YI, the values of the underlying
% function Y at the points in the vector XI. The vector
% X specifies the points at which the data Y is given.

%

% YI = Lagrange(X,Y,XI) is equivalent to the linear

% interpolation.

%

% See also NATURALSPLINE, GregoryNewton, SPLINE, INTERP1, INTERPLQ
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% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if nargin < 3
error('Invalid number of inputs.')

end
X = (x(:).")"; % Make sure it's a column vector
y = (y(:).")"; % Make sure it's a column vector
nx = length(x);
ny = length(y);
if nx ~= ny

error (‘X and Y vectors are not the same size.');
end

% Check the order of interpolation
if nargin == | n <1
n=1;
end
n = floor(n);
if n >= nx
fprintf ('\nNot enough data points for %$2d-oredr interpolation.', n)
fprintf('\n%2d-order interpolation will be performed instead.\n',
nx-1)
n =nx - 1;
end

1xi = length(xi);
deltax(l,:) = ones(l,1lxi);
% Locating the required number of base points
for m = 1:1xi

dx = xi(m) - x;

% Locating xi

[dxm , loc] = min{abs(dx));

% locating the firsct base point

if dx(loc) < O

loc = loc - 1;

end

if loc < 1
loc = 1;

end

if loc+n > nx
loc = nx - n;

end
deltax(2:n+2,m) = dx(loc:loc+n);
xtemp(l:n+1,m) = xX(loc:loc+n);

ytemp(l:n+l1,m) = y(loc:loc+n);
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end

% Interpolation

for k = 1 : n+l
for m = 1 : n+1

if k ~=m
den(m, :) = xtemp(k,:) - xtemp(m,:);
else
den(m,:) = ones(l,1xi);
end
end
pl(k,:) = prod([deltax(l:k,:) ; deltax(k+2:n+2,:)]) ./ prod(den);
s(k,:) = p(k,:) .* ytemp(k, :);
end
yi = sum(s);
NaturalSPLINE.m

function yi = NaturalSPLINE(x,y,xi)
%NATURALSPLINE One dimensional interpolation.

N0 o

YI = NATURALSPLINE(X,Y,XI) applies the natural spline
interpolation to find YI, the values of the underlying
function Y at the points in the vector XI. The vector
X specifies the points at which the data Y is given.

00 of o0 of

e

See also Lagrange, GregoryNewton, INTERP1, INTERPQ, SPLINE

% (c) by N. Mostoufi & A. Constantinides
% January 1, 1999

% Tnitialization
if nargin < 3
error ('Invalid number of inputs.')

end
X = (xX(:).")'; % Make sure it's a column vector
y = {y(:).")"; % Make sure it's a column vector
xi = (xi(:).')'; % Make sure it's a column vector
nx = length(x);
ny = length(y);
if nx ~= ny

error('X and Y vectors are not the same size.');
end

1xi = length(xi);
% Locating the required number of base points
for m = 1:1xi

d = xi(m) - x;
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% Locating xi

[dm , loc(m)] = min(abs(d));

% locating the first base point

if d(loc(m)) < 0 | loc(m) == nx
loc(m) = loc(m) - 1;
end
if loc(m) < 1
loc(m) = 1;
end
end
dx = diff(x);
dy = diff(y);

yox = dy ./ dx:
% Matrix of coefficients
A = 2 * diag(x(3:nx)-x(1:nx-2)) +

[zeros(nx-2,1) [diag(dx{(2:nx-2)) ; zeros(l,nx-3)]1] +
[zeros(1,nx-2) ; [diag(dx(2:nx-2)) zeros(nx-3,1)]1];
% Vector of constants
c = 6 * (yox{(2:nx-1) - yox(l:nx-2));

% Solution of the set of linear equations

v2 [0; inv(a) * ¢; 0];% Interpolation

yi (1/6) * ((xi - x(loc+1l)).”3 ./ (x(loc) - x(loc+l))
- (x(loc) - x(loc+l)) .* (xi - x(loc+l))) .* vy2(loc)
+ (1/6) * ((xi - x(loc)).”3 ./ (x(loc+l) - x(loc))
- (x(loc+l) - x(loc)) .* (xi - x(loc))) .* yZ(loc+l)
+ (xi - x(loc+1l)) ./ (x(loc) - x(loc+l)) .* y(loc)
+ (xi - x(loc)) ./ (x(loc+l) - x(loc)) .* y(loc+l);

Input and Results

>>Example3_2

Chapter 3

Vector of flow rates = [0, 10.80, 16.03, 22.91, 28.24, 32.56,

36.76, 39.88, 43.68]
Vector of pressure drops = [0, 0.299, 0.576, 1.036, 1.383,
2.432, 2.846, 3.304]

Order of the Lagrange interpolation = 3

1.781.,

Discussion of Results: Order of the Lagrange interpolation is chosen to be three for
comparison of the results with that of the cubic spline, which is also third-order interpolation.
Fig. E3.2 shows the results of calculations. There is no esscential difference between the two
methods. The cubic spline, however, passes smoothly through the base points. as expected.
Because the Lagrange interpolation is performed in the subsets of four base points with no
restriction related to their neighboring base points. it can be seen that the slope of the resulting

curve 15 not continuous through most of the base points.
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Figure E3.2 Lagrange potynomials and cubic splines.

3.10 ORTHOGONAL POLYNOMIALS

Orthogonal polvnomials are a special category of functions that satisfy the following
orthogonality condition with respect to a weighting function w(x) > 0, on the interval [a. b]:

/ ,
’ if n=m

0
fw(x) g, (x)g, (x)dx = (3.148)
c(n)>0 if n=m

a

This orthogonality condition can be viewed as the continuous analog of the orthogonality
property of two vectors (see Chap. 2)
x'y =0 (2.91)

in n-dimensional space, where n becomes very large, and the elements of the vectors are
represented as continuous functions of some independent variable.
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There are many tamilies of polynomials that obey the orthogonality condition. These are
generally known by the name of the mathematician who discovered them: Legendre.
Chebyshev. Hermite, and Laguerre polynomiuls are thc most widely used orthogonal
polynomials. In this section, we list the Legendre and Chebyshev polynomials.

The Legendre polvnomials are orthogonal on the interval [-1, 1] with respect to the
weighting function w(x) = 1. The orthogonality condition is

! 0 if n=m
[Pn(x) P (x)dx = 2 . - (3.149)
. if n=m
! 2n + 1
They also satisfy the recurrence relation
(n+ P, ((x) - (2n + 1)xP, (x) - nP, _,(x) =0 (3.150)

Starting with P(x) = I and P,(x) = x, the recurrence formula (3.150) or the orthogonality
condition (3.149) can be used (o generate the Legendre polynomials. These arc listed in Table
3.7 and drawn on Fig. 3.6.

The Chebysheyv polynomials are orthogonal on the interval [-1, 1] with respect to the
weighting function w(x) = 1/y1  x?. Their orthogonality condition is

0 ifn+m
| | T ifn=m-=20
f T (x) T (x)dx - (3.151)
Cyl -t I itn —m>0

2

and their recurrence relation is

S2xT, < T, , =0 (3.152)

nel n n

Starting with 7,(x) = | and T, (x) = .x, the recurrence formula (3.152) or orthogonality condition
(3.151) can be used to generate the Chebyshev polynomials listed in Table 3.8 and drawn on
Fig. 3.7.

[t should be noticed from Figs. 3.6 and 3.7 that these orthogonal polynomials have their
zeros (roots) more closely packed near the ends of the interval of integration. This property
can be used to advantage in order to improve the accuracy of interpolation of unequally spaced
points. This can be done in the case where the choice of base points is completely free. The
interpolation can be performed using Lagrange interpolation method described in Sec. 3.9.1.
but the base points are chosen at the roots of the appropriate orthogonal polynomial. This
concept is demonstrated in Chap. 4 in connection with the development of Gauss quadrature.
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Table 3.7 Legendre polynomials

n Pi(x)
0 Py(x) =1
I P(x)=x
2 pyxy - 221
. 2

3 .
3 Pz(x) - _5,(—3\

4 2
4 Pyxy = X2 307 - 3

8
" ” (277 - 2/71)! N

n P,,(X) - Z ( -1 ) yoAm

m A}

2%m'(n - m)'(n - 2m)!

" The notation {n/2] represents the integer part of n/2.

08

086

04f

02F

i
\
\

-1 -08 -06 -04 -02 0

X

02 04 06 08 1

Figure 3.6 The Legendre orthogonal polynomials.
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Table 3.8 Chebyshev polynomials

n T.(x)

0 Tx) =1

1 T,(x)=x

2 Ty(x)=2x - 1

3 T.(x) =4y - 3x

4 T(x) = 82" - 8x7 + |

T (3) - Z pla™ 2 x? - )"
mo  (2m)l(n - 2m)!

“ The notation [n/2] represents the integer part of 1/2.

T(x)

08

08
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X

Figure 3.7 The Chebyshev orthogonal polynomials.
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PROBLEMS

3.1 Show that all the interpolating formulas discussed here reduce to the same formula when a

first-order interpolation is used.

3.2 Derive the Gregory-Newton backward interpolation formula.

3.3 Using the experimental data in Table P3 3:

34

3.6

(a) Develop the forward ditference table.

(b) Develop the backward difference table.

(¢) Apply the Gregory-Newton interpolation formulas to evaluate the function at
x =10, 50.90. 130, 170, and 190.

Table P3.3 Data of penicillin fermentation

Time Penicillin concentration Time Penicillin concentration
(h) (units/mL) (h) (units/mL.)
0 0 120 9430
20 106 140 10950
40 1600 160 10280
60 3000 180 9620
80 5810 200 9400
100 8600

Write a MATLAB function that uses the Gregory-Newton backward interpolation formula to
evaluate the function f(x) from a set of (n + 1) equally spaced input values. Write the function in
a general fashion so that # can be any positive integer. Also write a MATLAB script that reads the
data and shows how this MATLAB function fits the data. Use the experimental data of Table 3.3
to verify the program, and evaluate the function at x = 10, 50, 90.130, 170, and 190.

Using the experimental data of Prob. 3.3,

(a) Develop the central difference table.

(b) Apply Stirling"s interpolation formula to evaluate the function at x = 10. 50, 90 .130. 170, and
190.

Write a MATLAB function which uses the Stirling’s interpolation formula to evaluate the function
f(x) from asetof (n+ 1) equally spaced input values. Write the function in a general fashion so that
n can be any positive integer. Also writc a MATLAB script that reads the data and shows how this
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MATLAB function fits the data Use the experimental data of Table 3.3 to verify the program. and
evaluate the function at x = 10, 50. 90,130, 170, and 190.

3.7 With the set of unequally spaced data points in Table P3.7 use Lagrange polynomials and spline
interpolation to evaluate the functionat x=2,4,5.8.9.and 11.

Table P3.7
X f(x) X f(x)
1 7.0 10 8.2
3 35 12 9.0
6 3.2 13 9.2
7 39

3.8 Vapor pressure of lithium chloride is given in Table P3.8 [4]. Use these data to present the vapor
pressure of lithium chloride in the following tables
(a) From 800°C to 1350°C at 50°C increment.
(b) From 10 kPa to 100 kPa at 10 kPa increment.

3.9 The zeta-potential of particles in a suspension is an indication of the sign and the density of the
surface charge of the particles. The iso-electric point (i.e.p.) refers to the pH where zeta-potential
is zero. Use data from Rashchi et al. [5] [Table P3.9] to determine the iso-electric points of silica
in the presence of 10™"M Pb(NO,),.

3.10 Obtain the solution ot the difference equation (3 97) directly from the solution of the ditferential
equation (3.96) by utilizing the relationship E = ",

Table P3.8 Vapor pressure of lithium chloride

Pressure Temperature Pressure Temperature
(mm Hg) (°C) (mm Hg) (°C)
1 783 60 1081
5 883 100 1129
10 932 200 1203
20 987 400 1290
40 1045 760 1382
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Table P3.9 Zeta-potential of silica in the presence of 10°M Pb(NO,), as a function of pH

pH zeta-potential (mV) pH zeta-potential (mV)
1.74 -5.3 6.00 -33.2
2.72 -10.8 6.53 -15.7
372 -21.8 6.70 -10.0
4.09 -32.0 7.29 13.7
4.32 -35.8 8.06 322
4.70 -36.9 10.02 24.0
5.00 -36.7 11.12 6.9
5.55 -37.7 12.15 -30.0
REFERENCES

1. Salvadori, M. G., and Baron, M. L.. Numerical Methods in Engineering, Prentice Hall. Englewood

Cliffs. NJ. 1961.

2. Chorlton, F., Ordinary Differential and Difference Equations. Van Nostrand, London, U K., 1965.

3. Gel’fond, A. O.. Calculus of Finite Differences. English trans. of the third Russian edition, Hindustan
Publishing Corp., Delhi, India, 1971.

4. Green, D. W.. and Maloney, J. O.. Perrny’s Chemical Engineers’ Handbook. Tth ed.. McGraw-Hill.

New York, 1997.

5. Rashchi, F.. Xu, Z., and Finch, J. A.. “Adsorption of Silica in Pb- and Ca-SO,-CO, Systems."” Colloids
and Surfaces A+ Physicochemical and Engineering Aspects, vol. 132, 1998, p. 159.



CHAPTER 4

Numerical Differentiation and Integration

4.1 INTRODUCTION

The solution of many engineering problems requires
calculation of the derivative of a function at a known point or integration of the derivative over
a known range of the independent variable. The simplest example of such problems is root-
finding by the Newton-Raphson method, which needs calculation of the derivative of the
function in each iteration (see Sec. 1.6). Although, in some cases, the analytical derivative of
the function may be derived, it is more convenient to obtain it numerically if the function is
complicated and/or the calculation is done by acomputer program. In the following examples,
there is no algebraic expression for the experimental data, or analytical integration does not
exist for the function, therefore, numerical differentiation or integration is inevitable.

197
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In chemical reaction kinetics, one of the methods for determination of the order of a
chemical reaction is the method of initial rates. In this method, the reaction starts with
different initial concentrations of the reactant A, and changes in the concentration of A with
time are measured. For each initial concentration, the initial reaction rate can be calculated
from differentiation of concentration with respect to time at the beginning of the reaction:

ac, . il
-F, = - — )
Aq PR 4.1
If the reaction rate could be expressed by
—ry = kCY 4.2)

then taking the logarithm of both sides of this equation at f = 0 results in
In(-r,) - Ink + nlnC, (4.3)

The reaction order can be obtained by calculation of the slope of the line In( - ry,) versus
In(C A”) .

Experimental determination of the rate of drying of a given material can be done by
placing the moist material in a tray that is exposed to the drying air stream. A balance
indicates the weight of the moist material, which is being recorded at different time intervals,
during drying. The drying rate is calculated for each point by

1dw
A dt

(4.4)

where R is the drying rate, A is the exposed surface area for drying, W is the mass ot the moist
material, and ¢ is time.

In the study of hydrodynamics of multiphase reactors, the velocity profiles of solids may
be determined experimentally by Radioactive Particle Tracking (RPT) velocimetry technique
[1]. In this technique, a radioactive tracer is being followed for several time intervals, and
coordinates of this tracer are evaluated at each time interval. Instantaneous velocity of the
tracer can be calculated then from

dx,
V.= — (4.5)
dt
where V, is the velocity of the tracer in direction 7, x, is the ith component of the coordinate of
the tracer, and dt is the time increment used at the time of data acquisition. The stcady-state
velocity profile of solid particles in the reactor is calculated by averaging the instantaneous
velocities in smal)l compartments inside the reactor. Once the velocity profile is determined,
solids velocity fluctuation is calculated by

V.=V -<V> (4.6)
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where V" is velocity fluctuation (a function of time) and <V > is the average velocity (a
function of position), both in i-direction. Having the above information, turbulent eddy
diffusivity of solids (D,) may be obtained from the Lagrangian autocorrelation integral of
velocity fluctuations:

I
D,(1) = f<v,, (V. (1)>dr 4.7)
0
The height of a cooling tower is calculated from the following equation:
H-

B G f dH 48)
MKGaPHI H - H

where - is height of tower, (7 is dry air mass flow. M is molecular weight of air, K, is overall
mass transfer coefficient. P is pressure. H is enthalpy of moist air. and H~ is enthalpy of moist
air at saturation. The integral in Eq. (4.8) should be calculated from H, at inlet of the tower
to H, atits outlet. Inorder to calculate this integral, enthalpies between 4, and H, may be read
from the psychrometric chart.

Calculation of the volume of a nonisothermal chemical reactor usually needs the use of
numerical integration. For example, consider the first order reaction A - B 1n liquid phase,
taking place in an adiabatic plug flow rcactor. Pure A enters the reactor, and it is desired to
have the conversion X, at the outlet. The volume of this reactor is given by

X,
V- i f' dX
k, 0 E [ | I (4.9)
(I X)exp|—| — - —
R\ T T

where Vis the volume of the reactor, v, is the inlet volumetric flow rate of A, &, is the rate
constant at the temperature 7). E, is the activation energy of the reaction. R is the ideal gas
constant, I'is the temperature of the reactor where the conversion is X, and 7, is a reference
temperature.

We must relate X and T through the energy balance to carry out this integration. For an
adiabatic plug flow reactor. assuming constant heat capacities for both A and B, T is given by

I X(-AH,)
- +
'C, +X(C, -C,) (4.10)

[)\ /)\

In this equation, AH,, is the heat of the reaction, €, and C,, arc heat capacities of A and B,
. . - 1 i
respectively, and T, 1s a reference temperature.
In order to calculate the volume of the reactor from Eq. (4.9). one has to divide the
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interval [0, X] into small AXs first, and from Eq. (4.10) the temperature in each increment can
be evaluated. Knowing both X and 7, the function in the denominator of the integral in Eq.
(4.9) is calculated. Finally, using a numerical technique for integration, the volume of the
reactor can be calculated from Eq. (4.9).

In addition to calculating definite integrals, numerical integration can also be used to
solve simple differential equations of the form

vi= S ) @.11)

Solution to the differential equation (4.11), after rearrangement, is given as

o= ov(xy) + ]‘j(.\')d,\' (4.12)

Yo

In this chapter we deal with numerical differentiation in Secs. 4.2-4.5 and integration in
Secs. 4.6-4.10.

4.2 DIFFERENTIATION BY BACKWARD FINITE DIFFERENCES

The relationships between backward difference operators and differential operators, which are
summarized in Table 3.1, enable us to develop a variety of formulas expressing derivatives of
functions in terms of backward finite differences. and vice versa. In addition, these formulas
may have any degree of accuracy desired, provided that a sufficient number of terms is
retained in the manipulation of these infinite series. This concept will be demonstrated in the
remainder of this section.

4.2.1 First-Order Derivative in Terms of Backward Finite
Differences with Error of Order h

Rearrange Eq. (3.32) to solve for the differential operator D:

I hD®> _h’D’ |

D = ;V " A (4.13)
Apply this operator to the function y at i:
1 hD%y,  h’D7y,
Dy, = =Vy -+ - 4oL (4.14)

gt 2 6
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Truncate the series, retaining only the first term, and show the order of the truncation error:

Dy, = -/l—V,\‘,. + O(h) (4.15)
1

Express the differential and backward operators in terms of their respective definitions:

i L ) + O(h) 4
— =~y = y.,) * O 16
dx  h o T (=-16)

Eq. (4.16), therefore. enables us to evaluate the first-order derivative of y at position { in terms
of backward finite differences.

The term O() is used to represent the order of the first term in the truncated portion of
the series. When /£ < 1.0 and the function is smooth and continuous, the first term in the
truncated portion of the series is the predominant term. It should be emphasized that for
h<1.0:

h>hE>hP>nhs>... >k

Therefore, when /1 < 1.0, formulas with higher-order error term. Q(h"), have smaller truncation
errors, i.e., they are more accurate approximations of derivatives.
On the other hand, when /1 > 1.0:

h<W<h<hi<. . <k

Therefore, formulas with higher-order error terms have larger truncation errors and are less-
accurate approximations of derivatives.

It is obvious then, that the choice of step size / is very important in determining the
accuracy and stability of numerical integration and differentiation. This concept will be
discussed in detail in Chaps. 5 and 6.

4.2.2 Second-Order Derivative in Terms of Backward
Finite Differences with Error of Order h

Rearrange Eq. (3.36) to solve for D

) I 7
D<= FV' + hD? - —:}-t’?ZD"l S (4.17)
Apply this operator to the function v at i:
D3y, - vy DYy - Lpipty -
v i Yy, 1Dy, Ez N, (4.18)
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Truncate the series, retaining only the first term, and express the operators in terms of their
respective definition:

p 2i = %(,\”,‘ - 2}‘,‘_| + )",‘_2) + O(h) (419)
X -

This equation evaluates the second-order derivative of y at position , in terms of backward
finite differences, with error of order A.

4.2.3 First-Order Derivative in Terms of Backward
Finite Differences with Error of Order h?2

Rearrange Eq. (3.32) to solve for hD:

h2D2 hﬁDA
hD =V + - L. 4.20
2 6 ( )

Rearrange Eq. (3.36) to solve for h*D*:

h2D? = V2 « B3D3 - %h*D4 . @21)

Combine these two equations to eliminate #°D’:

I3
WD =V + L[ ¥ w3 - Lpipt . _ D
2 12 6
33
TSRS I A (4.22)
2 3

Divide through by 4, and apply this operator to the function y at i

1 I 2 h 2D3)"~
Dy, = =Vy, + —V7y, + - ... (4.23)
h 2h 3
Truncate the series, retaining only the first rwo terms, and express the operators in terms of

their respective definitions:

dy, 1 1
—_— = —'( ‘,' - .,'_ ) + _"( :,' - 2.\’, -V ) + ()(hz)
ax  pn ) g : 2

1
5(3):, -4y, + ¥y, + Oh?) (4.24)
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In this section, the first derivative of y is obtained with error of order 4”. For the case
where h < 1.0, Eq. (4.24) is a more accurate approximation of the first derivative than Eq.

(4.16). To obtain the higher accuracy, however, a larger number of terms is involved in the
calculation.

4.2.4 Second-Order Derivative in Terms of Backward
Finite Differences with Error of Order h?

Rearrange Eq. (3.36) to solve for /°D’:
h:D? - ¥ + DY - %;1404 . (4.25)

Rearrange Eq. (3.37) to solve for h'D™:

R3DP =V« Spipt - 2psps o 4.26)
2 4
Combine these two equations to eliminate 1°D’:
D2 = |9 2pipt - 2psps o - Lpipr e
2 4 12
_ SI | RN
=V-+ V'« —h7DT - . (4.27)

Divide through by 4* and apply the operator to the function y at i:

2 1 1 1,
D-y. = —Vy o+ _v3-’\‘i + E/I'D4_)‘i - (4.28)

‘ EE h?

Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

dzyi I 1 ,
S =0y -2y ) =0y 3y 23y, ) - O
dx*  h? h?

) #(2“'? =Sy Ay, Y 00 (4.29)
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1t should be noted that this same equation could have been derived using Eq. (3.42) and an
equation for V* (not shown here). This statement applies to all these examples, which can be
solved utilizing both sets of equations shown in Table 3.1.

The formulas for the first- and second-order derivatives, developed in the preceding four
sections, together with those of the third- and fourth-order derivative, are summarized in Table
4.1. It can be concluded from these examples that any derivative can be expressed in terms
of finite differences with any degree of accuracy desired. These formulas may be used to
differentiate the function y(x) given a set of values of this function at equally spaced intervals
of x, such as a set of experiment data. Conversely. these same formulas may be used in the
numerical integration of differential equations, as shown in Chaps. 5 and 6.

Table 4.1 Derivatives in terms of backward finite differences

Error of order h

dy,
=L Ly, Ot
dx ]
diy,
l - - F()}f - 2)7[ Lty 2) - 0(/1)
dx- ‘
diy,
I3 i 7—‘(-“" “3y v 3. ) Ot
dx 1
(l"\', 1
- 7(“ S Ay, 6y, - Ay, my )+ O(h)
dx 17
Error of order h?
d.\.,’ | 2
de 57(3-“: T4V Yy - 00
dx 1
(IZ», 2
= —2y; = Sy 74y, o vy H OhY)
dx* h-
dy, 1 2
3 3(5)'; - 18y + 24y, - 14y, + 3y,,) + O(h7)
dx 2h
dy, 1

Ty = LAy 26y, - 24y Ty - 2y O(h?)
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4.3 DIFFERENTIATION BY FORWARD FINITE DIFFERENCES

The relationships between forward difference operators and differential operators, which are
summarized in Table 3.2, enable us to develop a variety of formulas expressing derivatives of
functions in terms of forward finite differences and vice versa. As was demonstrated in Sec.
4.2, these formulas may have any degree of accuracy desired, provided that a sufficient
number of terms are retained in the manipulation of these infinite series. A set of expressions,
parallel to those of Sec. 4.2, will be derived using the forward finite differences.

4.3.1 First-Order Derivative in Terms of Forward
Finite Differences with Error of Order h

Rearrange Eq. (3.53) to solve for the differential opcrator D:

1 hD?>  hD3
D= A - (4.30)
h 2 6

Apply this operator to the function y at i:

1 hD 3_\',. h*D 3.\',
Dy, - /—A.\',. T S - (4.31)
h 2

Truncate the series, retaining only the first term:

Dy, - llA_v,. - 0(h) (4.32)
1

Express the differential and forward operators in terms of their respective definitions:
> 1
—_— = /_(‘\li'l - .\l,') - O(h) (433)
¢ h

Eq. (4.33) enables us to evaluate the first-order derivative of y at position 7 in terms of forward
finite ditferences with error of order A.
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4.3.2 Second-Order Derivative in Terms of Forward
Finite Differences with Error of Order h

Rearrange Eq. (3.57) to solve for D*:

7

2 1A 3 294 _
D* = ;A hD E/’l D (4.34)
Apply this operator to the function y at i
D%y, = LA, - Dy, - La2D4y
Yi = p Yi T Yi T I D7y - ... (4.35)

Truncate the series, retaining only the first term, and express the operators in terms of their
respective definitions:

= %(V,z - 2,",‘.[ - _y,') + O(h) (436)

This equation evaluates the second-order derivative of y at position /, in terms of forward finite
differences, with error of order 4.

4.3.3 First-Order Derivative in Terms of Forward
Finite Differences with Error of Order h?

Rearrange Eq. (3.53) to solve for hD:

hZD2 h3D3
AD <A - - e (4.37)

Rearranging Eq. (3.57) to solve for A*D*:

7

2D = A? - B3D3 - —2h4D"‘ - .. (4.38)
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Combine these two equations to eliminate /"D":

3 3
wp = A - M Ao pipy o Lpips o | DD
2 12 6
3 3
:A—%A2+h:) ... (4.39)

Divide through by £, and apply this operator to the function y at i

213
1 I h=D"y,
Dy, = —Ay, - — A%y, + Lo+
h 2h 3
Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

(4.40)

dy,

1 1 s
/1 = i T 'i) - __..(.\*i‘ = 2.\:1,* + y‘_) + O(h~)
dx pot 0T g :

= L(-.v,-u + Ay, - 3y) + O(h?) (4.41)
2h :

4.3.4 Second-Order Derivative in Terms of Forward
Finite Differences with Error of Order h?

Rearrange Eq. (3.57) to solve for /°D*:
7

h:D? - A’ - h*D? - Eh*D" - ... (4.42)
Rearrange Eq. (3.58) to solve for A’'D":
WDV =AY - Spipt - 2pps - (4.43)
2 4
Combine these two equations to eliminate h’D™:
B2D> = A - | 8% - 2pipt - Spips - | - Latpt -
2 4 12
Ao a e Mypepe o (4.44)

12
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Divide through by /4 and apply the operator to the function y at i:
I S IR U <IN § I S
D7y, 2 ¥ e Y 12/1 D%y, - ... (4.45)
Truncate the series, retaining only the first two terms, and express the operators in terms of
their respective definitions:

dz)’i 1 2
o = F(—ym + 4y, 5, -5y, +2y) - O(h?) (4.46)
X~ 1”

The formulas developed in these sections for the first- and second-order derivatives are
summarized in Table 4.2, together with those of the third- and fourth-order derivatives.

It should be pointed out that all the finite difference approximations of derivatives
obtained in this section and the previous section have coefficients that add up to zero. This
is a rule of thumb that applies to all such combinations of finite differences.

From a comparison between Tables 4.1 and 4.2, we conclude that derivatives can be
expressed in their backward or forward differences, with formulas that are very similar to cach
other in the number of terms involved and in the order of truncation error. The choice between
using forward or backward differences will depend on the geometry of the problem and its
boundary conditions. This will be discussed further in Chaps. 5 and 6.

4.4 DIFFERENTIATION BY CENTRAL FINITE DIFFERENCES

The relationships between central difference operators and differential operators. which are
summarized in Table 3.3, will be used in the following sections to develop a set of formulas
expressing the derivatives in terms of central finite differences. These formulas will have
higher accuracy than those developed in the previous two sections using backward and
forward finite differences.

4.4.1 First-Order Derivative in Terms of Central
Finite Differences with Error of Order h?

Rearrange Eq. (3.78) to solve for D:

23 NS
p-Llys MDD wDT

4.47
h 6 120 (447
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Table 4.2 Derivatives in terms of forward finite differences

Error of order h

dy, |
d_ N /—(_\’,., Vi) O(h)
X 1
dz_\‘, I
= (¥, = 2y, *¥) + O(h)
dx? h:
d’y, 1
- = W 73y, 3y, -y 2 Oh)
dx” h
d-'lyi I
= —(v, , -4y, r 6y, -4y + ) 4 00h)
dx*  n? .
Error of order h?
dy, | 2
— = ;(j\',,z Fdy., - 3v) s Oh7)
dx i
Ay, :
= — (v, 4y, -5y, = 2y) + O(hT)
dx? h? A )
d”‘_v,. 1 5
T w-—1(~3_\,,4 + 14y, - 24y, < 18y, Sy) + O(h”)
dx- 2h
(I")', ] >
= ——4(*2‘\',. s ¢ My, = 24y, + 26y, , - 14y |+ 3)) - O(h)
dx? h ’ ‘ )

Apply this operator to the function y at i

1 l12D3yi h"DS.\‘i
Dy, - —udy, - - - .. (4.48)
h 6 120

Truncate the series, retaining only the first term:

Dy, - Illlé.‘} - 0(h?) (4.49)
1
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Express the differential and averaged central difference operators in terms of their respective
definitions:

DLy, - Vi) + O(h?) (4.50)
dx 24 Jivl i-1 .~

Eq. (4.50) enables us to evaluate the first-order derivative of y at position i in terms of central
finite differences. Comparing this equation with Eq. (4.16) and Eq. (4.33) reveals that use of
central differences increases the accuracy of the formulas, for the same number of terms
retained.

4.4.2 Second-Order Derivative in Terms of Central
Finite Differences with Error of Order h?

Rearrange Eq. (3.81) to solve for D*:

2 1 2 /?2D4 _ h-lD6 _
e (@.51)
Apply this operator to the function y at i:
h2D4’. h4D6\-'-
D%y, = —1—62_\;. - i — - ... (4.52)
o2 12 360
Truncate the series, retaining only the first term:
1
D%y, = —8%, + O(h?) (4.53)

h
Express the differential and central difference operators in terms of their respective definitions:
d?y,

i 1
— = ;(ym -2y, +v,) + O(h?) (4.54)

4.4.3 First-Order Derivative in Terms of Central
Finite Differences with Error of Order h*

Rearrange Eq. (3.78) to solve for hD:

kD> _ R’D’

hD = pd
" 6 120

e (4.55)
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Rearrange Eq. (3.82) to solve for #'D’:

WD h'D’
h3D? = pd® - - - 4.56
H 4 20 (4.56)
Combine these two equations to eliminate /'D*:
515 7 S
hp s - Lo o APD_AD)_RDT
6 4 s 40 120
1 h°D’
- ud - —udt s L2 4.57)
g 6u 30
Divide through by # and apply this operator to the function y at
i I h*D?%,
Dy, = —pdy, - —udy, - Lo (4.58)
’ h 6/7}‘l ! 30

Truncate the series, retaining only the first rwo terms, and express the operators in terms of
their respective definitions:

dy, 1 1 4
— ==y V) Oy 7 2y 7 2y ) 2 O
dx 2h 12h - -
(4.59)
= —l_('\ 5 * 8_",--1 - 8."; 1 )y, 5) 0(I74)
12h -
4.4.4 Second-Order Derivative in Terms of Central
Finite Differences with Error of Order h*
Rearrange Eq. (3.81) to solve for /°D*:
4 4 66
wp? - - PP RDT (4.60)
12 360
Rearrange Eq. (3.83) to solve for 2'D™:
66 8 8
pipt -t - DR DT @61)

6 80
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Combine these two equations to eliminate /'D*:

66 S8 66
pep? - - L o DT DT hDT
12 6 80 360
Gy6
S N N A O (4.62)
12 90
Divide through by 4~ and apply this operator to function y at i:
4796
D%y, - %63\', — &y, + hD (4.63)
h* 12h? 90

Truncate the series. retaining only the first nve terms, and express the operators in terms of
their respective definitions:
d’y, 1 1 .
-y, m 2y vy ) - (3,5 =4y, =6y, =4y, vy, ,) + O(h”)
) 2 b3 - 2
dx~ h= 12h°

1
12h°

(-v,, + 16y, =30y, + 16y, | - ¥, ,) + O(h?) (4.64)

The formulas derived in Sce. 4.4.1-4.4.4 for the first- and second-order derivatives are
summarized in Table 4.3, along with those for the third- and fourth-order derivatives.
Development of formulas with higher accuracy and for the higher-order derivatives are left
as exercises for the reader (see Problems).

Example 4.1: Mass Transfer Flux from an Open Vessel. Develop a MATLAB
function for numerical differentiation of a function f(1) over the range |x,, x,] with truncation
error of order 2°. Apply this function to evaluate the unsteady-state flux of water evaporated
into air at 1 atm and 25°C from the top of an open vessel. Consider the distance between
water level and the open top of the vessel to be 0.1, 0.2, and 0.3 m. The flux of water vapor
at a level z above the level of water is given by Bird et al. [2]:

N. = —c[)ﬂ - X

-
kY

D2, (1
a: 20

- Xy

where M. is the [lux of water vapor at level z, ¢ is the total concentration of the gas phase, D
is the diffusion coefficient of water vapor in air, x is the mole fraction of water vapor, and x,
indicates the value of x at 7 =0.

The unsteady-state concentration profile for this problem, assuming no air flow at the
top of the vessel, is obtained from

y - L -af(Z - ¢)
1+ erf@
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where

Z
X== Z- 3)
Xo V4Dt

where ¢ is time and ¢ is obtained from the solution of the following nonlinear equation:

1
o = - (4)
U [Vra - erfo)gexpg?]”

For the air-water system,

D=22x10"m"s, x,=P™(25°C)/P,=0.0312. ¢ =P/RT=0.0409 Kmol/m’

Table 4.3 Derivatives in terms of central finite differences

Error of order h?

TG ) o+ Oh?)

d?y, 1 5

- = _,(-", LT 2.\'1. )t O(h~)
dx- -
'y, :

3 _‘;(\'1‘2 B 2~v1~l + 2—le B .\',,2) * O(h-)
dx 2h
(14,\'1 1 ,

T — (¥, — 4y, + 6y -4y L) - OhY)
dx h

Error of order h*

d)',- 1 4
— e T B T B ) = O
dx
a’z_v,. 1 R

: D) (=¥, * 16y, = 30y, + 16y, - y,,) + O(h7)
dx* 12h-
'y, ;
I’ ) F(_"‘i-.‘» 8y, - Dy s B3y - 8y, - xe) + O
dx 1
d'y,

= L(—_\'w + 12y, = 39y, + 56v, - 39y | + 12y, , - v, ) + oh)
dx" 6}14 1 1z 1 1 1 i< 1
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Method of Solution: In order to calculate the flux of water vapor. first we have to
determine the value of ¢ from the solution of the nonlinear Eq. (4). The concentration of
water vapor is then obtained from Eqgs. (2) and (3). Having the concentration profile. its
derivatives at the water surface level (z = 0) and any desired level above the surface of water
can be evaluated. Finally, the mass transfer flux is calculated from Eq. (1).

Differentiation of the function y = f(x) is done based on equations shown in Tables 4.1-
4.3. According to the chosen method of finite difference, the equation for derivation with
truncation error of order 4° will be employed. If the method of finite difference is not
determined by the user, central finite difference will be used for differentiation.

Program Description: The MATLAB function fder.m evaluates the derivative of a
function. The first part of the program is initialization, where inputs to the function are
examined and default values for differentiation increment (k) and method of finite difference
are applied, if required. Introducing these two inputs to the function is optional. The program
then switches to a different part of the program. according to the choice of method of finite
difference, and then it switches to the proper section according to the order of differentiation.

The first input argument should be a string variable giving the name of the m-file that
contains the function whose derivative is to be evaluated. The second input argument is the
order of derivation, which has 1o be less than or equal to 4. The third input argument may be
a scalar or a vector at which the derivative is to be evaluated. The fourth and fifth input
arguments arc optional and represent the increment of the independent variable and the method
of finite differences, respectively. The default value of 4 is 1/100 of the minimum value of
the independent variable or 0.001 if this minimum is zero. If the assigned value for £ is
smaller than the floating point relative accuracy, eps, the function assumes the relative
accuracy as the differentiation increment. The user may specify the value of -1, 0. or +1 for
method of finite difference if it is required to evaluate the derivative based on backward,
central, or forward finite difference, respectively. The default method is the central difference.
Any additional argument will be carried directly to the m-file that represents the function and
may contain parameters (such as constants) needed for the function.

To solve the problem posed in this example, three more MATLAB programs are written.
The main program, named Exampled_1.m, does the necessary calculations and plots the
results. The function Ex4_1_profile.m represents the concentration profile of this problem
(Egs. (2) and (3)]. The independent variable of this function : and other variables necessary
to evaluate the function are entered as parameters. The function Ex4_1_phi.m is the nonlinear
function from which the value of ¢ is calculated [Eq. (4)].

Program

Exampled_1.m
% Exampled_1.m
% This program solves Example 4.1. It calculates and plots the unsteady

% flux of water vapor from the open top of a vessel. The program uses
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% the function FDER to obtain the concentration gradient.

clear
clc

clf

% Input data

z0 = 0;

t = input(' Vector of time (s) = ');

z = input (' Vector of axial positions (m) = ');

D = input(' Diffusion coefficient of the vapor in air (m2/s) = ')
T = 273.15 + input(' System Temperature (deg C) = ');

P = input (' System pressure (Pa) = '};

Psat = input(' Vapor pressure at the system temperature (Pa) = ')
x0 = Psat/P; % Mole fraction

R = 8314; % Gas constant

¢ = P/(R*T); % Gas concentration

phifile = input(' Name of the m-file containing the equation for phi
= ')

profile = input(' Name of the m-file containing the concentration
profile = ');

% Solving the nonlinear equation for phi
phi = fzero(phifile,1l,1le-6,0,x0);
% Concentration gradient at z=z0
dxdz0 = fder (profile,1,z0,[],[],t,x0,D,phi);
for k = 1 : length(z)

% Concentration gradient

dxdz (k, :) = fder(profile,l,z(k),[],[],t,x0,D,phi);

% Mole fraction profile

x{k,:) = feval(profile,z(k),t,x0,D,phi);

% Molar flux

Nz (k,:) = -c*D*dxdz(k, :)-x(k,:)*c*D/(1-x0) .*dxdz0;
end

% Plotting the results
figure(1l)

plot (t/60,Nz*3600*18*1000)
xlabel ('t (min.)"')

yvlabel ('N_z (gr/m2.hr)")
legend('z_1','z_2"','2_3",1)
figure(2)

plot(t/60, %)

xlabel ('t (min.)"')

ylabel ('Mole fraction of the Vapor')
legend('z_1"','z_2','z_3"',2)
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Ex4_1_profile.m

function x = Ex4_1_profile(z,t,x0,D,phi)

% Function Ex4_1_profile.m

% Concentration profile evaluation in Example 4.1.

Z=2./sqgrt(4*D*t) ; % Dimensionless axial position
X = (l-erf(z-phi))/(l+erf(phi)); % Dimensionless concentration
x = xX0*X; % Mole fraction

Ex_4_phi.m

function phif = Ex4_1_phi(x , x0)
% Function Ex4_1_phi.m
% Nonlinear equation for calculation of phi in Example 4.1.

phif=1/(1+1/(sqgrt(pi)*(l+erf(x))*x*exp(x"2)))-x0;

fder.m

function df = fder (fnctn, order, x, h, method, varargin)
$FDER Evaluates nth-order derivative (n<=4) of a function
% with truncation error of the order h"2.

o of

FDER('F',N,X) evaluates Nth order derivative of the
function described by the M-file F.M at X. X may be a
scalar or a vector.

90 of o0 of

FDER('F',N, X, H,METHOD, PARAMETER) evaluates Nth order
derivative of the function using H as increment of X used
in differentiation.
METHOD is the finite difference method used

Use METHOD = -1 for backward finite difference

Use METHOD 0 for central finite difference

Use METHOD = 1 for forward finite difference
PARAMETER 1s a scalar or a vector of parameters that are
passed to the function F.M. Pass an empty matrix for H
or METHOD to use the default values.

dC oF P IC O° of o° I° o0

o0

See also DERIV

o0

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization

if nargin == 3 | isempty(h)
method = 0;
h = min(abs(x))/100;
if h == 0
h = 0.001;
end

if h < eps
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end
end
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eps;

if nargin<5 | isempty(method)

method
end

1f (order
erroxr ('
break
end

=O;

< 1) | (order > 4) | (h <= 0)
Invalid input.')

switch method

case -1

3

yi = feval(fnctn , x , varargin{:});

yiml =
yim2 =

feval (fnctn , x-h , varargin{:});
feval (fnctn , x-2*h , varargin{:});

switch order

case 1
daf =
case 2
yim3
daf =
case 3
yim3
yimé
df =
case 4
yim3
yimd
yim5
daf =
end
case 0
yiml =
vipl =

o,

% 1lst order derivative
(3*yi-4*yiml+yim2) /(2*h);

% 2nd order derivative
= feval (fnctn , x-3*h , varargin{:});
(2*yi-5*yiml+4*yim2-yim3)/h"2;

% 3rd order derivative
feval (fnctn , x-3*h , varargin{:});
feval (fnctn , x-4*h , varargin{:});
(5*yi-18*yiml+24*yim2-14*yim3+3*yimd) ;

% 4th order derivative
= feval(fnctn , x-3*h , varargin{:});
= feval(fnctn , x-4*h , varargin{:});
= feval (fnctn , x-5*h , varargin{:});

i}

f

(3*yi-14*yiml+26*yim2-24*yim3+11*yimd-2*yim5) /h"4;

Q.

% Central finite difference
feval (fnctn , x-h , varargin{:});
feval (fnctn , x+h , varargin{:});

switch order

case 1
df =
case 2
vi =
daf =
case 3
yim2
yip2
df =
case 4
yim3

% lst order derivative
(yipl-yiml)/(2*h);

% 2nd order derivative
feval (fnctn , x , varargin{:});
(yipl-2*yi+yiml)/h"2;

% 3rd order derivative
feval (fnctn , x-2*h , varargin{:});
feval (fnctn , x+2*h , varargin{:});
(yip2-2*yipl+2*yiml-yim2) / (2*h"3);

% 4th order derivative

= feval (fnctn , x-3*h , varargin{:});

% Backward finite difference

217
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yim2 = feval (fnctn , x-2*h , varargin{:});

vi = feval(fnctn , x , varargin{:});

yip2 = feval(fnctn , x+2*h , varargin{:});

yip3 = feval(fnctn , x+3*h , varargin{:});

df = (-yip3+12*yip2-39*yipl+56*yi-39*yiml+12*yim2-yim3)/ (6*h"4);
end
case 1 % Forward finite difference

yi = feval(fnctn , x , varargin{:});
yvipl = feval({fnctn , x+h , varargin{:});
vip2 = feval(fnctn , x+2*h , varargin{:});
switch order
case 1 % lst order derivative

df = (-yip2+4*yipl-3*yi)/(2*h);
case 2 % 2nd order derivative

yip3 = feval(fnctn , x+3*h , varargin{:});

df = (-yip3+4*yip2-5*yipl+2*yi)/h"2;
case 3 % 3rd order derivative

vip3 = feval(fnctn , x+3*h , varargin{:});

yipd = feval(fnctn , x+4*h , varargin{:});

df = (-3*yipd+14*yip3-24*yip2+18*yipl-5*yi)/ (2*h"*3);
case 4 % 4th order derivative

yip3 = feval(fnctn , x+3*h , varargin{:}):

yip4 = feval(fnctn , x+4*h , varargin{:});

yvip5 = feval(fnctn , x+5*h , varargin{:});

Af = (-2*yipS+11l*yipd-24*yip3+26*yip2-14*yipli+3*yi)/h"4;
end

end

Input and Results

>>Exampled_1

Vector of time (s) = eps:3600

Vector of axial positions (m) = [0.1, 0.2, 0.3]

Diffusion coefficient of the vapor in air (m2/s) = 2.2e-5
System Temperature (deg C) = 25

System pressure (Pa) = 101325

Vapor pressure at the system temperature (Pa) = 3161

Name of the m-file containing the equation for phi = ‘Ex4_1_phi’

Name of the m-file containing the concentration profile =
‘Ex4_1_profile’

Discussion of Results: Fig. E4.1a shows the unsteady diffusive mass transfer flux from
the open top of the vessel.' The concentration profiles with respect to time are also plotted in

" When running Exampled_] m. solution results will be shown on the screen by solid lines of different color
However, results for three different levels chosen here are illustrated by different signs in Figs. E4.1a and b in order
1o be discriminated
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Mole fraction of the Vapor
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Figure E4.1a Flux versus time.
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Figure E4.1b Mole fraction versus time.

60

219



220 Numerical Differentiation and Integration  Chapter 4

Fig. E4.15. Fig. E4.1a shows that the mass flux rises at the beginning and reaches a
maximum. The flux of water vapor then decreases constantly. This behavior is due to the fact
that at the beginning of the process, there is dry air above the water level, and mass transfer
is taking place faster because of high driving force, which is the concentration gradient.
However, the mass transfer rate decreases, after enough time has passed and the water vapor
concentration moves closer to saturation and the driving force decreases. Vapor concentration
decreases with increasing height.

[nthe program Example4_1.m, defaults are used for choice of method of finite difference
and differentiation increment. The defaults are central finite difference and & = 0.001.
respectively. The reader is encouraged to repeat the calculation using the other methods of
finite differences and with different increments.

Example 4.2: Derivative of Vectors of Equally Spaced Points. Writc a general
MATLAB function to calculate first- to fourth-order derivatives of a series of data presented
numerically in a matrix whose columns represent vectors of dependent variable. The user
should be able to choose between backward, forward. or central ditferentiation as well as the
order of the truncation error. Apply this function to calculate the solids volume fraction in a
riser of a bench-scale gas-solid fluidized bed whose axial pressure profile is given in Table
E4.2. Assume fully developed solids flow in the riser and neglect wall shear and solids stress.
The densities of gas and solids phases are 1.2 kg/m” and 2650 kg/m’, respectively.

Table E4.2

Axial position (m) Pressure (kPa g)

0.0 1.80
0.5 1.38
1.0 1.09
1.5 0.63
2.0 0.18

Method of Solution: The equations in Tables 4.1-4.3 are used to differentiate the
columns of the matrix y with the desired order of truncation error. Differentiation is done
based on equally spaced segments of the independent variable.

Writing the momentum balance equation for the two-phase flow, we find that pressure
drop in the above-mentioned conditions is balanced by the weight of the bed, that is:

_dp

b [p (1 - ¢) - pelg (1)
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where P is the pressure, : is the axial position, p, and p, are the densities of gas and solids,
respectively, €, is the volume fraction of the solids, and g is the gravitational acceleration.
Eq. (1) can be solved for €:

(-dPldz) - p,g

€ = 2
‘ (p, - P8 @

The solids volume fraction profile can be calculated from Eq. (2) once the pressure gradient
is extracted from the data tabulated in Table E4.2.

Program Description: The MATLAB function deriv.m is written to calculate first- to
fourth-order derivatives of a matrix of input data. The first part of the program is initialization
in which the values of A, order of derivative, method of finite difference used, and order of
truncation error are assigned if not entered as input to function. If only y is given as input to
the function, the program calculates the central finite differences of y as the output. The
second input argument is the increment of the independent variable. The third one is the order
of derivative. A value of -1, 0, or | as the fourth input argument results in calculation of the
derivative based on backward. central, or forward finite differences, respectively. The fifth
argument is the value of the order of truncation error (1 or 2 for backward and forward
differences and 2 or 4 for central differences).

The derivative matrix returned by the function deriv.m has the same number of clements
as the vector of input data itself. However. it is important to note that, depending on the
method of finite difference used, some clements at one or both ends of the derivative vector
are evaluated by a different method of differentiation. For example. in first-order
differentiation with the forward finite difference method with truncation error O(h), the last
clement of the returned derivative vector is calculated by backward differences. Another
cxample is the calculation of the second-order derivative of a vector by the central finite
difference method with truncation error O(/°), where the function evaluates the first two
elements of the vector of derivatives by forward differences and the last two elements of the
vector of derivatives by backward differences. The reader should pay special attention to the
fact that when the function calculates the derivative by the central finite difference method
with the truncation error of the order O(h'). the starting and ending rows of derivative
values are calculated by forward and backward finite differences, with truncation error of
the order O(h?).

The main program Example4_2.m asks the reader to input the data from the keyboard.
It then applies the function deriv.m to evaluate the pressure gradient and calculates the solids
volume fraction from Eq. (2). At the end, the program plots the result of the above
calculations.

Program

Exampled4_2.m
% Exampled_2.m
% This program solves Example 4.2. It calculates and plots
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% the vclume fraction profile in a gas-solid fluidized bed.
% The program uses the function DERIV to obtain the pressure
% gradient.

clear
clc
clf

% Input data

P = input (' Vector of pressures (kPa) = ')*le3;

dz = input(' Axial distance between pressure probes (m) = ');

rhog = input (' Density of the gas (kg/m3) = ');

rhos = input(' Density of solids (kg/m3) = ');

g = 9.81;

% Pressure gradient

dP = deriv(P,dz);

% Solids concentration

epsilon_s = (-dP-0*rhog*g) / (g*(rhos-rhog));

fprintf (*'\n Average solids concentration = %4.2f%% \n', ...
100*mean (epsilon_s))

% Plotting the results

4 [0:1length(P)-1]*dz;

plot (z,100*epsilon_s)

xlabel ('z (m) ")

ylabel('Solids volume fraction (%) ')

deriv.m
function dy = deriv(y, h, order, method, err)
%$DERIV Differentiates a matrix of data numerically

DERIV(Y) calculates the central differences of each vector
of matrix Y.

DERIV(Y,H) calculated the first-order derivative of Y by
central finite differences using H as the independent
variable interval.

DY = DERIV(Y,H,ORDER,METHOD, ERR) returns the derivative
of columns of the matrix Y where

H is the independent variable interval

ORDER is the order of differentiation (up to 4th order)
METHOD is the finite difference method used

Use METHOD = -1 for backward finite difference
Use METHOD = 0 for central finite difference
Use METHOD = 1 for forward finite difference

ERR is the order of error of calculation. ERR may be
1 or 2 for backward and forward finite difference
and 2 or 4 for central finite difference.

00 OC 00 0 OO0 O0 OC O° P 0P O° O° Of Of 9P O IO OO of of
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% See also FDER, DIFF

% (c) N. Mostoufi & A. Constantinides

% January 1,

1999

% Initialization

if nargin ==
h = 1;
end

if nargin < 3
order = 1;

end

if nargin < 4

| isempty(h)

| isempty{order)

| isempty (method)

method = 0;
err = 2;
end
if nargin == 4
if method == 0
err = 2;
else
err = 1;
end
end
if abs(method) == 1 & (err < 1 | err > 2)
err = 1;
warning (' Order of truncation error is set to 1.')
end
if method ==0 & ~(err ~= 2 | err ~= 4)
err = 2;
warning (' Order of truncation error is set to 2.')
end
[r , c) = size(y);
if r == 1 % If vy is a row vector
y = vy'; % Make it a column vector
r = C;
c = 1;
end
n = r; % Number of points

dy = zeros(r

, C)s

% Differentiation

switch method

case -1 % Backward finite differences

switch err
case 1

% O(h)

switch order

223
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case 1 % 1lst order derivative
dy(2:n , :) = (y{(2:n , :) - y(l:n-1 , :))/h;
dy(l , :) = (y(2 , ) - y(1 , :))/h;
case 2 % 2nd order derivative
dy(3:n , :)=(y(3:n , :) - 2*y(2:n-1 , :) + y(1:n-2 , :))/h"2;
Ay (1:2 , :)=(y(3:4 , :) - 2*y(2:3 , :) + y(1:2 , :))/h"2;
case 3 % 3rd order derivative
dy(4d:n , :)=(y(4:n , :) - 3*y(3:n-1 , :) + 3*y(2:n-2 , :)
- yv{(l:n-3 , :))/h"3;
dy (1:3 , :)=(y(4:6 , :) - 3*y(3:5 , :) + 3*vy(2:4 , :)
- y{(l:3 , :))/h"3;
case 4 % 4th order derivative
dy(5:n , :)=(y(5:n , :) - 4*y(4d:n-1 , ) + 6*y(3:n-2 , )
- 4*y(2:n-3 , :) + y{l:n-4 , :))/h"4;
dy(l:4 , :)=(y(5:8 , ) - 4d*y(4:7 , :) + 6*y(3:6 , :)
- 4*y(2:5 , ) + y(l:4 , :))/h"4;
end
case 2 % O0(h"2)
switch order
case 1 % lst order derivative
dy(3:n , :)=(3*y(3:n , :) - 4*y(2:n-1 , :)+y{l:n-2, :))/(2*h);
Ay (1:2 , :)=(-y(3:4 , :) + 4*y(2:3 , :) = 3*y(1:2 , :))/(2*h);
case 2 % 2nd order derivative
dy(d:n , :)=(2*y{(4:n , :)-5*y(3:n-1 , :) + 4*y(2:n-2 , :)
- y(1l:n-3 , :))/h"2;
dy(1:3 , =) = (-y(4:6 , ) + 4*y(3:5 , :) - 5*y(2:4 , :)
+ 2*y(1:3 , :))/h"2;
case 3 % 3rd order derivative
dy(5:n , :)=(5*y{(5:n , :)-18*y(4d:n-1 , :})+24*y(3:n-2 , :)
- 14*y(2:n-3 , :) + 3*y(l:n-4 , :))/(2*h"3);
Ay (1:4 , :)=(=-3*y(5:8 , :) + 14*y(4:7 , :) - 24*y(3:6 , :)
+ 18*y(2:5 , :) - 5*y(1:4 , :))/(2*h"3);
case 4 % 4th order derivative
dy(6:n , :)=(3*y(6:n , :)-14*y(5:n-1 , :)+26*y{(4:n-2 , :) ...
- 24*y(3:n-3 , :) + 11l*y(2:n-4 , :) - 2*y(l:n-5 , :))/h"4;
dy(1l:5 , :)=(-2*y(6:10 , :)+11*y(5:9 , :) - 24*y(4:8 , :)
+ 26*y(3:7 , ) - 1ld*y(2:6 , :) + 3*y(1:5 , :))/h"4;
end
end

case 0 % Central finite differences
switch err
case 2 % 0(h"2)
switch order

case 1 % lst order derivative

dy(l , ) = (-y(3 , ) + 4*y(2 , ) - 3*y(1 , :))/(2*h);
dy(2:n-1 , :) = (y(3:n , :) - y(l:n-2 , :))/(2*h);

dy(n , :) = (3*y(n , :) - 4*y(n-1 , :) + y(n-2 , :))/(2*h);
case 2 % 2nd order derivative

dy (1l , :)=(-y(4 , :)+4*y(3 , :)=5*y(2 , :)+2*y{(1 , :))/h"2;

dy(2:n-1 , :)=(y(3:n , :)-2*y(2:n-1 , :)+y(l:n-2 , :))/h"2;
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dy(n , :) = (2*y(n , :) - 5*y(n-1 , :) + 4*y(n-2 , :)
- y(n-3 , :))/h"2;
case 3 % 3rd order derivative
dy(1:2 , :)=(-3*y(5:6 , :) + 14*y(4:5 , :) - 24*y(3:4 , )
+ 18*y(2:3 , ) - 5*y(1:2 , :))/(2*h"3);
dy(3:n-2 , :)=(y(5:n , :) - 2*y(4:n-1 , :) + 2*y(2:n-3 , :)
- y{(l:n-4 , :))/(2*h"3);
dy(n-1:n , :) = (5*y(n-1:n , :) - 18*y(n-2:n-1 , :)
+ 24*y(n-3:n-2 , :) - 14*y(n-4:n-3 , :)
+ 3*y(n-5:n-4 , :))/{(2*h"3);
case 4 % 4th order derivative
Ay (1:2 , :)=(-2*y(6:7 , :)} + 1l*y(5:6 , :) - 24*y(4:5 , :)
+ 26*y(3:4 , :) - 14*y(2:3 , :) + 3*y(l:2 , :))/h"4;
dy(3:n-2 , :)=(y(5:n , :) - 4*y(4:n-1 , :) + 6*y(3:n-2 , :)
- 4*y(2:n-3 , :) + y(l:n-4 , :))/h"4;
dy(n-1:n , :) = (3*y(n-1:n , :) - 1l4*y(n-2:n-1 , :)
+ 26*y(n-3:n-2 , :) - 24*y(n-4:n-3 , :) ...
+ 11*y(n-5:n-4 , :) - 2*y(n-6:n-5 , :))/h"4;
end
case 4 % O0(h"4)
switch order
case 1
Ay (1:2 , :)=(-y(3:4 , :) + 4*y(2:3 , :) - 3*y(1:2 , :))/(2*h);
dy(3:n-2 , :)=(-y(5:n , :)+8*y(4:n-1 , :) - 8*y(2:n-3 , :)
+ y(l:n-4 , :))/(12*h);
dy(n-1:n , :)=(3*y(n-1:n , :)-4*y(n-2:n-1 , :)
+y (n-3:n-2 , :))/(2*h);
case 2
dy(1:2 , :) = (-y(4:5 , :) + 4*y(3:4 , :) - 5*y(2:3 , :)
+ 2%y (1:2 , :))/h"2;
dy(3:n-2 , :)={(-y(5:n , :)+16*y(4:n-1 , :)-30*y(3:n-2 , :)
+ 16*y(2:n-3 , :) - y(l:n-4 , :))/(12*h"2);
dy(n-1:n , :) = (2*y(n-1:n , :) - 5*y(n-2:n-1 , :)
+ 4*y(n-3:n-2 , :) - y(n-4:n-3 , :))/h"2;
case 3
dy(1:3 , :)=(-3*y(5:7 , :) + ld*y(4:6 , :) - 24*y(3:5 , :)
+ 187y (2:4 , :) - 5*y(1:3 , :))/(2*h"3);
dy(4:n-3 , :)=(-y(7:n , :)+8*y(6:n-1 , :) - 13*y(5:n-2 , :) ...
+ 13*y(3:n-4 , :) - 8*y(2:n-5 , :) + y(l:n-6 , :))/(8*h"3);
dy(n-2:n , :) = (5*y(n-2:n , :) - 18*y(n-3:n-1 , :)
+ 24*y(n-4:n-2 , :) - l4*y(n-5:n-3 , :)
+ 3*y(n-6:n-4 , :))/ (2*h"3);
case 4
Ay (1:3 , ) = (-2*y(6:8 , :) + 1l*y(5:7 , :)
- 24*y(4:6 , :) + 26*y(3:5 , ) ..
- 14*y(2:4 , :) + 3*y(l:3 , :))/h"4;
dy(4:n-3 , :) = (-y(7:n , :) + 12*y(6:n-1 , :)

- 39*y(5:n-2 , :) + 56*y(4:n-3 , :) - 39*y(3:n-4 , :)
+ 12*y(2:n-5 , :) - y{(l:n-6 , :))/(6*h"4);
dy(n-2:n , :) = (3*y(n-2:n , :) - l4*y(n-3:n-1 , :)
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+ 26*y(n-4:n-2 , :) - 24*y(n-5:n-3 , :) ...
+ 11*y(n-6:n-4 , :) - 2*y(n-7:n-5 , :))/h"4;

end
end
case 1 % Forward finite differences
switch err
case 1 % O(h)
switch order

case 1 % lst order derivative
dy(l:n-1 , :) = (y(2:n , :) - y(l:n-1 , :)})/h;

dy(n , :) = (y(n , ) - y(n-1

. :))/h;

case 2 % 2nd order derivative

dy(l:n-2 , :)=(y(3:n , :) - 2*y(2:n-1 , :) + y(l:n-2

dy(n-1:n , :) = (y{n-1l:n , :)
+ y(n-3:n-2 , :))/h"2;

- 2*y(n-2:n-1 ,

case 3 % 3rd order derivative

dy(l:n-3 , :) = (y(4d:n , :) -

+ 3*y(2:n-2 , :) - y(l:n-

dy(n-2:n , :) = (y(n-2:n , :)

+ 3*y(n-4:n-2 , :) - y(n-

case 4 % 4th order derivative

dy(l:n-4 , :)=(y(5:n , :) - 4*y(4:n-1 , :) + 6*y(3:n-2
- 4*y(2:n-3 , :) + y(l:n-

dy{(n-3:n , :) = (y(n-3:n , :)

end

case 2 % O(h"2)

switch order

case 1 % 1lst order derivative

dy(l:n-2 , :) = (-y(3:n , :) +
- 3*y(l:n-2 , :))/(2*h);
dy(n-1:n , :) = (3*y(n-1:n , :)
+ y(n-3:n-2 , :))}/(2*h);
case 2 % 2nd order derivative
dy(1l:n-3 , :)=(-y(d:n , :)+4*y(
+ 2*y(1l:n-3 , :))/h"2;
dy(n-2:n , :) = (2*y(n-2:n , :)
+ 4*y(n-4:n-2 , :) - y(n-

case 3 % 3rd order derivative
dy(l:n-4 , :) = (-3*y(5:n , :)

3*y(3:n-1 , :)
3, :))/h"3;

- 3*y(n-3:n-1 ,
5:n-3 , :))/h"3;

4 , :))/h"4;
- 4*y(n-4:n-1 ,

4*y(2:n-1 , :)

- 4*y(n-2:n-1 ,

3:n-1 , :)-5*y(2:n-2

- 5*y(n-3:n-1 ,

5:n-3 , :))/h"2;

+ l4*y(4:n-1 ,

- 24*y(3:n-2 , :) + 18*y(2:n-3 , :)

- 5*y(l:n-4 , :))/(2*h"3);
dy(n-3:n , :) = (5*y(n-3:n , :)

- 18*y(n-4:n-1

+ 24*y(n-5:n-2 , :) - l4*y(n-6:n-3 , :)
+ 3*y(n-7:n-4 , :))/(2*h"3);

case 4 % 4th order derivative
dy(l:n-5 , :) = (-2*y(6:n , =)

+ 3*y(l:n-5 , :))/h"4;
dy(n-4:n , :) = (3*y(n-4:n , :)

+ 11*y(5:n-1 ,

- 1l4*y(n-5:n-1

)

)

2 I
+ 6*y(n-5:n-2 , :) - 4*y(n-6:n-3 , :) + y(n-7:n-4 , :))/h"4;

1)

.

D RN
- 24*y(4:n-2 , :) + 26*y(3:n-3 , :) - 1l4*y(2:n-4

’

2)

)

)

1)

’

’

)

’
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:))/h"2;
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+ 26*y(n-6:n-2 , :) - 24*y(n-7:n-3 , :) ...
+ 11*y(n-8:n-4 , :) - 2*y(n-9:n-5 , :))/h"4;
end
end
end

Input and Results

>>Exampled_2

Vector of pressures (kPa) = [1.80, 1.38, 1.09, 0.63, 0.18]
Axial distance between pressure probes (m) = 0.5

Density of the gas (Kg/m3) = 1.2

Density of solids (Kg/m3) = 2650

9

Average solids concentration = 3.26%
Discussion of Results: Fig. E4.2 shows the results graphically. It can be seen from this
figure that the solids fraction does not change appreciably with height. The value of € varies
between 2.7% and 3.8% (approximately) with its mean value at 3.26%. This confirms the

assumption made at the beginning that the measurements are done in the fully developed zone
where the solids move with a constant velocity.
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Figure E4.2 Solids volume fraction versus height.
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4.5 SPLINE DIFFERENTIATION

In some situations, tabulated function values are available, instead of their algebraic
expression, and it is desired to evaluate the derivative of the function at a point (or points)
between the tabulated values. A practical method in this situation is to interpolate the base
points first and calculate the value of the derivative from differentiating the interpolating
polynomial. Among different interpolating polynomials, cubic splines have the advantage of
continuity of the first derivative through all base points.

By cubic spline interpolation of the function, its derivative at any point x in the interval
[x; ., x;] can be calculated from differentiating Eq. (3.143):

dy 1 (x - xi)2 " 1 (x - -"i—])3 -
- T A Yoot~ Yi
dx 2 x| - x 2 x, - x
I : . Yier 7V
- —(X[. I x,')()",‘q -V ) B — (465)
6 X, , - X

Prior to calculating the derivative from Eq. (4.65), the values of the second derivative at the
base points should be calculated from Eq. (3.147). Note that if a natural spline interpolation
is employed, the second derivatives for the first and the last intervals are equal to zero.

The reader can easily modify the MATLAB function Natural SPLINE.m (see Example 3.2)
in order to calculate at any point the first derivative of a function from a series of tabulated
data. It is enough to replace the formula of the interpolation section with the differentiation
formula, Eq. (4.65). Also, the MATLAB function spline.m is able to give the piccewise
polynomial coefficients from which the derivative of the function can be evaluated. A good
example of applying such a method can be found in Hanselman and Littlefield [3]. As
mentioned before, spline.m applies not-a-knot algorithm for calculating the polynomial
coefficients.

4.6 INTEGRATION FORMULAS

In the following sections we develop the integration formulas. This operation is represented
by

v

I - fj(x)d.\' (4.66)

Yo
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which is the integral of the function y = f(x), or integrand, with respect to the independent
variable x, evaluated between the limits x = x, to x = x,. If the function f(x) is such that it can
be integrated analytically, the numerical methods are not needed for this problem. However,
in many cases, the function f(x) is very complicated, or the function is only a set of tabulated
values of x and y, such as experimental data. Under these circumstances, the integral in Eq.
(4.66) must be developed numerically. This operation is known as numerical quadrature.

It is known from differential calculus that the integral of a function f(x) is equivalent to
the area between the function and the x axis enclosed within the limits of integration. as shown
in Fig. 4.1a. Any portion of the area that is below the x axis is counted as negative area (Fig.
4.1b). Therefore, one way of cvaluating the integral

1 »”
[ vdx
Yy

is to plot the function graphically and then simply measure the area enclosed by the function.
However, this is a very impractical and inaccurate way of evaluating integrals.

A more accurate and systematic way of evaluating integrals is to perform the integration
numerically. In the next two sections, we derive Newton-Cotes integration formulas for
equally spaced intervals and Gauss quadrature for unequally spaced points.

g X X

4]

Figure 4.1 Graphical representation of the integral. (a) Positive area only
(b) Positive and negative areas.
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4.7 NEWTON-COTES FORMULAS OF INTEGRATION

This method is accomplished by first replacing the function ¥ = f(x) with a polynomial
approximation, such as the Gregory-Newton forward interpolation formula [Eq. (3.122)]. In
practice, the interval [x,, x,] is being divided into several scgments. each of width A, and the
Gregory-Newton forward interpolation formula becomes (note that x,_, = x, + h):

(x - xy) (x  x)(x - x))
Yooy, 0 A.vn | 0 | A_)'o
h 20 h?
(x - x ) - x))x - )
* - ' ZAy, ¢ (4.67)

3R

Because this interpolation formula fits the function exactly at a finite number of points (1 +
1), we divide the total interval of integration [x,, x,] into n scgments, each of width /i. In the
next step, by using Eq. (4.67), Eq. (4.66) can be integrated. The upper limits of integration
can be chosen to include an increasing set of segments of integration, each of width /. In each
case, we retain a number of finite differences in the finite series of Eq. (4.67) equal to the
number of segments of integration. This operation yields the well-known Newton-Cotes
formulas of integration. The first three of the Newton-Cotes formulas are also known by the
names rapezoidal rule, Simpson’s 113 rule and Simpson’s 3/8 rule, respectively. These are
developed in the next three sections.

4.7.1 The Trapezoidal Rule

In developing the first Newton-Cotes formula, we use one segment of width 4 and fit the
polynomial through two points (x,, ¥,) and (x, v,) (see Fig. 4.2). This is tantamount to fitting
a straight line between these points. We retain the first two terms of the Gregory-Newton
polynomial (up to, and including, the first forward finite difference) and group together the
rest of the terms of the polynomial into remainder term. Thus, the integral equation becomes

1

dx + f R, (x)dx (4.68)

Y

(x - x,)
I = f{-"n - _'_I%A.Vo

Yo
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The first integral on the right-hand side is integrated with respect to x and the first forward
difference is replaced with its definition of Ay, =y, - y,, to obtain

h )
]] - E(.\'O * )I) * .[R”(.\')dx (469)

The remainder term 1s evaluated as follows:

1
|

f R (x)dx

l

Y
(x = x))(x = x,) (x = x)x - X )(x - x,) .
= [ 0 - L A%y, 2 l — A%y, + ... |dx
. 2V h- 3ht
= —leA?\'ﬂ + LhA"_\'n - . (4.70)
12 24
The forward difference operators, A*, A', .. ., are replaced by their cquivalent in terms of

differential operators [Egs. (3.57) and (3.58)]. and the remainder term becomes

o~ ,

/
// / /// 7
/ //////// //\\
W //, ///

Figure 4.2 Enlargement of segment showing the
application of the trapezoidal rule.
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X

1,32
R (x)dx = ——h°D*y, -
f,,(t)x 2 Yo

Yo

1

§h4D3yo . 4.71)

The remainder series can be replaced by one term evaluated at &,; therefore,
*
1
fRn(x)dx = A—Eh‘*sz(El) 4.72)

0

This is a term of order /4 and is abbreviated by O(h’). Therefore, Eq. (4.69) can be written as
l’l X 3
I = 5()*0 *y) + O(h) (4.73)

This equation is known as the trapezoidal rule, because the term (h/2)(y, + y,) is
essentially the formula for calculating the area of a trapezoid. In this case, the segment of
integration is a trapezoid standing on its side. It was mentioned earlier that fitting a
polynomial through only two points is equivalent to fitting a straight line through these points.
This causes the shape of the integration segment to be a trapezoid, shown as the shaded area
in Fig. 4.2. The area between y = f(x) and the straight line represents the truncation error of
the trapezoidal rule. If the function f(x) is actually linear, then the trapezoidal rule calculates
the integral exactly, because D*f(&,) = 0, which causes the remainder term to vanish.

The trapezoidal rule in the form of Eq. (4.73) gives the integral of only one integration
segment of width A. To obtain the total integral, Eq. (4.68) must be applied over each of the
n segment (with the appropriate limits of integration) to obtain the following series of
equations:

I/

1 - Ez()'o Tyt 0(h3) (4.73)
h 3

L = _2_(y| +y,) + O(hY) (4.74)
h 3

1, - E(y"" +y,) + O(h?) (4.75)

Addition of all these equations over the total interval gives the multiple-segment trapezoidal
rule:

+ no(h? (4.76)

h n 1
L=y 2} 5+,
2 i=1
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For simplicity, the error term has been shown as nO(/'). This is only an approximation
because the remainder term includes the second-order derivative of y evaluated at unknown
values of €, each &, being specific for that interval of integration. The absolute value of the
error term cannot be calculated, but its relative magnitude can be measured by the order of the
term. Because n is inversely proportional to h:

X
n- — 4.77)
h

the error term for the multiple-segment trapezoidal rule becomes

N ) 3 2
nOh?) ——/——-—O(h ) ~ O(h?) (4.78)
(]

That is, the repeated application of the trapezoidal rule over multiple segments has lowered
the error term by approximately one order of magnitude. A more rigorous analysis of the
truncation error is given in the next chapter.

4.7.2 Simpson’s 1/3 Rule

In the derivation of the second Newton-Cotes formula of integration we use two segments of
width # (see Fig. 4.3) and fit the polynomial through three points, (x,, v,). (x,, ¥,). and (x5, ¥,).
This is equivalent to fitting a parabola through these points. We retain the first three terms of
the Gregory-Newton polynomial (up to, and including, the second forward finite difference)
and group together the rest of the terms of the polynomial into the remainder term. The
integral equation becomes

" (x %) (x = x)(x = 1,)
1, - j Yo —UA)*O + ¢ - ' Ay, |dx + /R"(.\)d.\' (4.79)
h 21h? :

Yo Y

Integration of Eq. (4.79) and substitution of the relevant tinite difference relations simplify this
equation to

h |
1= =y, =4y, + vy) - —NI"Df(E) 4.80
1T 3o Ay 2 9 l (4.30)
The error term is of order A° and may be abbreviated by O(/*). We would have expected to
obtain an error term of O(h") because three terms were retained in the Gregory-Newton
polynomial. Howecver, the term containing /" in the remainder has a zero coefficient, thus
giving this fortuitous result. The final form of the second Newton-Cotes formula, which is
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better known as Simpson’s 1/3 rule, is
h 5
I o= 50’0 4yt yy) 2 Oh) (4.81)

This equation calculates the integral over two segments of integration. Repeated
application of Simpson’s 1/3 rule over subsequent pairs of segments, and summation of all
formulas over the total interval, gives the multiple-segment Simpson’s 113 rule:

nf2 nf2 -1

= g Yot 44X Yoy * 23 ¥y vy, |t ORY) (4.82)
il i1

Simpson’s 1/3 rule fits pairs of segments, therefore the total interval must be subdivided into
an even number of segments. The first summation term in Eq. (4.82) sums up the odd-
subscripted terms, and the second summation adds up the even-subscripted terms.

The order of error of the multiple-segment Simpson’s 1/3 rule was reduced by one order
of magnitude to O(h*) for the same reason as in Sec. 4.7.1. Simpson’s 1/3 rule is more
accurate than the trapezoidal rule but requires additional arithmetic operations.

%o X % x

Figure 4.3 Application of Simpson’s 1/3 rule over two
segments of integration.
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4.7.3 Simpson’s 3/8 Rule

In the derivation of the third Newton-Cotes formula of integration we use three segments of
width A (see Fig. 4.4) and fit the polynomial through four points, (x,, v,), (x,, ¥,), (x5, ¥y),
and (x;, v,). This, in fact, is equivalent to fitting a cubic equation through the four points. We
retain the first four terms of the Gregory-Newton polynomial (up to, and including, the third
forward finite difference) and group together the rest of the terms of the polynomial into the
remainder term. The integral equation becomes

(x - x (x - x,)(x - x,) (x - x)(x - x,)(x - xy)
: f Yo F __O)A-VO * - I 2“’0* : l - A3.Vn dx
‘ h 21h? 31h?
Al
+ fR"(x)dx (4.83)
y
X X -x X x—

Figure 4.4 Application of Simpson’s 3/8 rule over
three segments of integration.
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Integration of Eq. (4.83) and substitution of the relevant finitc diffcrence relations simplify the
equation to

3h 3 5 .
I| - ?(.\.() * 3)'1 + 3.\‘3 + ,"‘3) - Eh DJ’f(E]) (4.84)

The error term is of order /” and may be abbreviated by O(/°). The final form of this equation,
which is better known as Simpson’s 3/8 rule, is given by

I, = —(y, * 3»

L3y, ) - O (4.85)
The multiple-segment Simpson’s 318 rule is obtained by repeated application of Eq. (4.83)
over triplets of segments and summation over the total interval of integration:

nl3 n/3 |
3h

L ? Yo ° 32(-\‘31"2 * ALY l) « 2 Z Y3 7, N 0(,74) (486)
il il
Comparison of the error terms of Simpson’s 1/3 rule and Simpson’s 3/8 rule shows that
they arc both of the same order, with the latter being only slightly more accurate. For this
reason, Simpson’s 1/3 rule is usually preferred, because it achieves the same order of accuracy
with three points rather than the four points required by the 3/8 rule.

4.7.4 Summary of Newton-Cotes Integration

The three Newton-Cotes formulas of integration derived in the previous scctions are
summarized in Table 4.4

In the derivation of the Newton-Cotes formulas, the function y = f(x) is approximated by
the Gregory-Newton polynomial P (x) of degree n with remainder R (x). The evaluation of
the integral is performed:

}_\' dx = } P (x)dx + }R,,(x)cl.t (4.87)

This results in a formula of the general form:

b

f_vdx = E wy, + Olh" 2. D"(E)) (4.88)
i 0
where the x, are (n + 1) equally spaced base points in the interval [a, b]. The weights w; are
determined by fitting the P (x) polynomial to (n + 1) base points. The integral is exact,
that is,
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b n

[rdx =3 wy, (4.89)

; i=0

for any function y = f(x) that is of polynomial form up to degree n, because the derivative

D"*'f(E) is zero for polynomials of degree <n; thus, the error term O[h"*?, D"*'f(E)] vanishes.
There are three functions in MATLAB, trapz.m, quad.m, and quad8.m, that numerically

evaluate the integral of a vector or a function using different Newton-Cotes formulas:

»  The function rrapz(x, y) calculates the integral of y (vector of function values) with
respect to x (vector of variables) using the trapezoidal rule.

e The function quad(‘file_name’, a, b) evaluates the integral of the function represented in
the m-file file_name.m, over the interval [a, b| by Simpson’s 1/3 rule.

*  The function quadS(‘file_name’, a, b) evaluates the integral of the function introduced

* in the m-file file_name.m from a to b using 8-interval (9-point) Newton-Cotes formula.

Table 4.4 Summary of the Newton-Cotes numerical integration formulas

Trapezoidal rule f‘. dx - ﬁ(y“ oy - Lthzf(E)
) 2 ’ 12 '
Simpson’s 1/3 rule vdy = ﬁ Voo« 4y - y.) - L/ SDFE)
j.‘[r 3(.() ¥ .3) 907 f&
Simpson’s 3/8 rule , . 3h . 3 sy
p : f_\'(l.\ = ?(}'0 + 3y 2 3y, ) - —(h D*f(E)

" n

General quadrature formula f". dx - Z Wy, O|h"2, D" 'HE)]
i-0
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Example 4.3: Integration formulas-Trapezoidal and Simpson’s 1/3 Rules. Write a
general MATLAB function for integrating experimental data using Simpson’s 1/3 rule.
Compare the results of this function and the existing MATLAB function rrapz (trapezoidal
rule) for solution of the following problem:

Two very important quantities in the study of fermentation processes are the carbon
dioxide evolution rate and the oxygen uptake rate. These are calculated from experimental
analysis of the inlet and exit gases of the [ermentor, and the flow rates, temperature, and
pressure of these gases. The ratio of carbon dioxide evolution rate to oxygen uptake rate
yields the respiratory quotient, which is a good barometer of the metabolic activity of the
microorganism. In addition, the above rates can be integrated to obtain the total amounts of
carbon dioxide produced and oxygen consumed during the fermentation. These total amounts
form the basis of the material balancing technique described in Sec. 2.1. Table E4.3a shows
a st of rates calculated from the fermentation of Penicillium chrysogenum, which produces
penicillin antibiotics.

Using Simpson’s 1/3 rule, calculate the total amounts of carbon dioxide produced and
oxygen consumed during this 10-h period of fermentation. Repeat this using the trapezoidal
rule and compare the results obtained from the two methods.

Table E4.3a2 Fermentation data

Time of fermentation Carbon dioxide evolution rate Oxygen uptake rate
(h) (g/h) (g/h)
140 15.72 15.49
141 15.53 16.16
142 15.19 15.35
143 16.56 15.13
144 16.21 14.20
145 17.39 14.23
146 17.36 14.29
147 17.42 12.74
143 17 60 14.74
149 17.75 13.68

150 18.95 14.51
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Method of Solution: In this problem. the carbon dioxide evolution rate data and the
oxygen uptake rate data are integrated separately. There are 11 data points (10 intervals) for
each rate; therefore, we can use either the trapezoidal rule or Simpson's 1/3 rule for this
integration. We first use Simpson’s 1/3 rule and then repeat using the trapezoidal rule, as the
problem specifies.

Program Description: The MATLAB function Simpson.m first tests the input
arguments, which are the vector of independent vartable (x) and the vector of function values
(). These two vectors should be of the same length. Elements of vector x have to be equally
spaced values. Also, the number of elements of these vectors (1) should be odd (even number
of intervals). If the vectors contain an cven number of elements (odd number of intervals), the
function calculates the value of the integral up to the point (1 - 1) and adds the valuc of the
integral, approximated by the trapezoidal rule, for the last interval. The user should pay
special attention to this case because the truncation errors for Simpson’s 1/3 rule and
trapezoidal rule are not of the same order. After checking the above conditions, the function
calculates the value of the integral based on Eq. (4.82). If necessary, the function adds the
value of the integral for the last segment according to Eq. (4.75).

The main program Example4_3.m asks the user to input the data from the keyboard, calls
the functions trapz and Simpson for integration, and displays the results.

Program

Exampled4_3.m

% Exampled_3.m

% Solution to Example 4.3. It calculates carbon dioxide evolved and
% oxygen uptaken in a fermentation process using TRAPZ (trapezoidal
% rule) and SIMPSON (Simpson's 1/3 rule) functions.

clear

clc

% Input data

t = input(' Vector of time = ');

r_CO2 = input(' Carbon dioxide evolution rate (g/h) = ');
r_02 = input(' Oxygen uptake rate (g/h) = ');

Q

% Integration
mlCO02 = trapz(t,r_CO02);
m2C02 = Simpson(t,r_CO2);

ml102 trapz(t,r_02);
m202 = Simpson(t,r_02);

% Output

fprintf ('\n Total carbon dioxide evolution
the trapezoidal rule)',mlCO2)

fprintf ('\n Total carbon dioxide evolution
the Simpson 1/3 rule)',m2C02)

%9.4f (evaluated by

%9.4f (evaluated by
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fprintf ('\n Total oxygen uptake
the trapezoidal rule)',ml02)
fprintf ('\n Total oxygen uptake
the Simpson 1/3 rule)\n', m202)

%$9.4f (evaluated by

%9.4f (evaluated by

Simpson.m
function Q = Simpson(x , Vv)
%$SIMPSON Numerical evaluation of integral by Simpson's 1/3 rule.

SIMPSON(X,Y) numerically evaluates the integral of the
vector of function values Y with respect to X by

Simpson's 1/3 rule. X is the vector of equally spaced
independent variable. Length of Y has to be odd (even
number of intervals). If length of Y is even, the function
calculates the integral for [LENGTH(Y)-1] points by
Simpson's 1/3 rule and adds to it the value of the
integral for the last interval by trapezoidal rule.

90 O° OP OO P AP o P P o° of

See also TRAPZ , QUAD , QUADS8, GAUSSLEGENDRE

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

points = length(x);

if length(y) ~= points
error('x and y are not of the same length')
break

end

dx = diff(x);

maxi = max([min(abs(x))/1000 , le-10]);
if max(dx)-min(dx) > maxi
error('X is not equally spaced.')
break
end
h = dx(1);

if mod(points,2) == 0
warning ('0Odd number of intervals; Trapezoidal rule will be used
for the last interval.')

n = points - 1;
else

n = points;
end

% Integration

vl =y(2 : 2 : n- 1);

v2 = y(3 : 2 : n - 2);

Q = (y(1) + 4 * sum(yl) + 2 * sum(y2) + y(n)) * h /3;

if n ~= points
Q = Q + (y(points) + y(n)) * h / 2;
end
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Input and Results
>>Examnpled 3

Vector of time = [140:150]

Carbon dioxide evolution rate (g/h) = [15.72, 15.53, 15.19, 16.56,
16.21, 17.39, 17.36, 17.42, 17.60, 17.75, 18.95]

Oxygen uptake rate (g/h) = [15.49, 16.16, 15.35, 15.13, 14.20,
14.23, 14.29, 12.74, 14.74, 13.68, 14.51)

Total carbon dioxide evolution = 168.3450 (evaluated by the
trapezoidal rule)
Total carbon dioxide evolution = 168.6633 (evaluated by the

Simpson 1/3 rule)
Total oxygen uptake
trapezoidal rule)
Total oxygen uptake
Simpson 1/3 rule)

145.5200 (evaluated by the

I

144.9733 (evaluated by the

Discussion of Results: The integration of the experimental data. using both Simpson’s
1/3 rule and the trapezoidal rule, yield the total amounts of carbon dioxide and oxygen shown
in Table E4.3b.

Table E4.3b
Simpson’s 1/3 Trapezoidal
Total CO, (g) 168.6633 168.3450
Total O, (g) 144.9733 145.5200

4.8 GAUSS QUADRATURE

In the development of the Newton-Cotes formulas, we have assumed that the interval of
integration could be divided into segments of cqual width. This is usually possible when
integrating continuous functions. However, if experimental data are to be integrated, such data
may be used with a variable-width segment. It has been suggested by Chapra and Canale (4]
that a combination of the trapezoidal rule with Simpson’s rules may be feasible for integrating
certain sets of unevenly spaced data points.

Gauss quadrature is a powerful method of integration that employs unequally spaced base
points. This method uses the Lagrange polynomial to approximate the function and then
applies orthogonal polynomials to locate the loci of the base points. [f no restrictions arc
placed on the location of the base points, they may be chosen to be the locations of the roots
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of certain orthogonal polynomials in order to achieve higher accuracy than the Newton-Cotes
formulas for the same number of base points. This concept is used in the Gauss quadrature
method, which is discussed in this section.

4.8.1 Two-Point Gauss-Legendre Quadrature

In order to illustrate the approach, we first develop the integration formula for the two-point
problem. In Newton-Cotes method, the location of the base points is determined,
and integration is done based on the values of the function at these base points. This
is shown in Fig. 4.2, for the trapezoidal rule that approximates the integral by taking the area
under the straight line connecting the function values at the ends of the integration interval.
Now, consider the case that the restriction of fixed points is withdrawn, and we are able
to estimate the integral from the area under a straight line that joins any two points on the
curve. By choosing these points in proper positions, a straight line that balances the positive
and negative errors can be drawn, as illustrated in Fig. 4.5. As aresult, we obtain an improved

estimate of the integral.
1 X

X

%o

Figure 4.5 Application of two-point Gauss quadrature to improve
integral estimation.
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In order to derive the two-point Gauss quadrature, the function y = f(x) is replaced by a
linear polynomial and a remainder:

X - x X - X,
y = Yo * Y|+ R(x) (4.90)
R X T %
b
The integral ] v dx is evaluated by
b b v - x X - x b
[ydx =] Yo Oy, ldx + [RGx)dx (4.91)
g Lo TN AT Xy g

Without loss of generality, the interval [a, ] is changed to [-1, 1]. The general transformation
equation for converting between x in interval [a, b} and z in interval [c, d] is the following:

_2x - (a +b) 403
b -a (4.93)
For converting to the interval [-1, 1], this equation becomes
Using Eq. (4.93), the transtormed integral is given by
b ) !
f.v(X)dx = a f Y(z)dz (4.94)
1 2 -1
and
1 1
f Ydz = wyY, + wY, + fR(z)dz (4.95)
i i

where use of Y (instead of y) indicates that the function value at the variable z (rather than x)
should be used. The weights w, and w, are calculated from

1
Z -2 -2z
wo = [ -dz = —— (4.96)
TR T4
and
7% -2z,

dz = (4.97)
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Up to this point. the development of this method is equivalent to that of the trapezoidal
rule. The Gauss quadrature method goes a step beyond this in order to make the error term
in Eq. (4.95) vanish. To do so, the integral of the error term is expanded in terms of 2nd-
degree Legendre polynomial (see Sec. 3.10):

l[R(z)d: =237 -
o

(4.98)

oW
N | —

The values of 7, and z, are chosen as the root of the 2nd-degree Legendre polynomial, that is,

1
S
J3

This choice of roots causes the error term to vanish. Therefore, Eq. (4.95) becomes
1
f Ydz = wy¥y v wY, =Y, + Y (4.99)
-1

Calculation of the integral through Eqs. (4.94) and (4.98) imply that instead of evaluating
the function at z,=-1 and z, = | (using function values at basc points), which is the case in the
trapezoidal rule. function values at g, = -1/v3 and z, = 1/V3 should be used in the Gauss
quadrature method. This results in improving the precision of calculation, as illustrated in Fig.
4.5. This is roughly equivalent to the application of five-point trapezoidal rule.

The Gauss quadrature formula developed in this section is known as the Gauss-Legendre
quadrature because of the use of the Legendre polynomials. Other orthogonal polynomials,
such as Chebychev. Laguerre, or Hermite, may be used in a similar manner to develop a
variety of Gauss quadrature formulas.

4.8.2 Higher-Point Gauss-Legendre Formulas

The function y = f(x) is replaced by the Lagrange polynomial (see Sec. 3.9.1) and its
remainder,

¥ o= ) Ly ¢ R(x) (4.100)
i 0
where
n .X‘ _ X
L. _ J
’ ,1-.! X - X (4.101)

jei
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and

(n-1)
R,(x) = H (-l ace<o (3.137)

b
The integral f y dx is evaluated by

b

Ly;|dx + [R,(x)dx (4.102)

b

frac- 3

Converting the interval from [a, b] to [-1, 1] through Egs. (4.92) and (4.93), the
transformed integral is given by

II

n 1
dez =Y wy, fR,,(z)dz (4.103)
i-0 1

where the weights w; are calculated from

w—fL(z)dz f - ’d7 (4.104)

and the error term is given by

L n

1
fR,,(z)dz = [H (z - z)q,(2)dz (4.105)
-1 0

The ¢g,(z) and H (z - z;) are polynomials of degree n and (n + 1), respectively.
i=0

Up to this point, the development of this method is different from that of the Newton-
Cotes formulas in only one respect: the use of Lagrange interpolation formula for unequally
spaced points instead of the Gregory-Newton formula. The Gauss quadrature method goes a
step beyond this in order to make the error term [Eq. (4.105)] vanish. To do so, the two
polynomials in the error term are expanded in terms of Legendre orthogonal polynomials (see
Sec. 3.10). The values of z; are chosen as the roots of the (n + I)st-degree Legendre
polynomial. This choice of roots combined with the orthogonality property [Eq. (3.149)]
of the Legendre polynomials causes the error term to vanish. Therefore, Eq. (4.103)
becomes

dez = W,~Y,- (4.106)

i=0



246 Numerical Differentiation and Integration  Chapter 4

Since the vanishing error term was of degree (1 + 1). Eq. (4.106) yields the integral of the
function Y exactly when Y is a polynomial of degree (2n + 1) or less. In effect, the judicious
choice of the (1 + 1) base points at the (n + 1) roots of the Legendre polynomial has increased
the accuracy of the integration from nto (2n + 1). As usual, however, the increase in accuracy
has been obtained at the cost of having to perform a larger number of arithmetic calculations.
The error of Gauss-Legendre formulas is given by [5]

lf’R“(.\')dx

a

22 M (n o+ DY

SPE a<E<b (4.107)
(2n + 3)[2n + 2)1)}

The roots z, of the Legendre polynomials can be evaluated after calculating the
coeflicients of the polynomial from the formula given in Table 3.7. The values of the weights
w, corresponding 1o these roots have been calculated for the integration interval (-1, 1]. Table
4.5 lists the roots and weights of the Gauss-Legendre quadrature for selected values of n.

Example 4.4: Integration Formulas - Gauss-Legendre Quadrature. Write a general
MATLAB function for integrating a function using a general Gauss-Legendre quadrature.
Apply this function for the solution of the following problem:

A cold liquid film, initially at temperature T, is falling down (in z-direction) a vertical
solid wall (xz-plane). The solid wall is maintained at a temperature (7T) higher than that of the
falling film. Itis desired to know the temperature profile of the fluid as a function of y and z.
near the wall. The partial differential equation that describes the temperature of the liquid for
this problem is

or _ K FT
dz dy 2

p CP v

where p is the density of the liquid. C, is heat capacity of the liquid, v_is the velocity
of the liquid. & is the thermal conductivity of the liquid, and T is the temperature of the liquid.
The velocity profile of the falling liquid is given by Bird et al. [2]:
_ ¥pg

2 2}
2u o o)

where 0 is thickness of the film, g is gravity acceleration, and p is the viscosity of the liquid.
Therefore. near the wall, where y << 0, the velocity simplifies to:

V.

B pg&y
u

V.,

Putting this velocity profile into the energy balance equation, we get

2
et =BE)T
cz ay-
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Table 4.5 Roots of Legendre polynomials P,,,(2) and the weight factors
for the Gauss-Legendre quadrature

247

Number of points

Roots (z)

Weight factors (w)

Two-point formula
n+1=2)
Three-point formula

(n+1=3)

Four-point formula
n+1=4)
Five-point tormula

n+1=5)

Six-point formula

(n+1=0)

Ten-point formula

(n+1=10)

Fifteen-point formula

(n+1=15)

+0.57735026918926

0
+0.77459666924 1483

+0.339981043584856
+(0.861 136311594053

0
+0 538469310105683

+0.906179845938664

+0.238619186083197
+0.661209386466265
+( 932469514203152

+0.148874338981631
+0 433395394129247
+0.679409568299024
+0.865063366688985
+(.973906528517172

0
+0.201194093997435
+(0.394151347077543
+(.570972172608539
+0.724417731360170
+().848206583410427
+(0.937273392400706
+0.987992518020485

1.000000000000000

0.888888888888888
0.555555555555555

0.652145154862546
0.347854845137454

0.568888888888889
0.478628670499366
0.236926885056189

0.467913934572691
0.360761573048139

0.171324492379170

0.295524224714753
0.269266719309996
0.219086362515982
0.149451349150581
0.06667 1344308688

0202578241925561
0.198431485327111
0.186161000115562
0.166269205816994
0.139570677926154
0.107159220467172
0.070366047488108
0.030753241996117
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in which = uk/p°C ,80. For short contact time, we may write the boundary conditions as

Atz=0, T=T, fory>0
Aty=0, T=T, forz>0
Aty=w, T=T, for z finite

The analytical solution to this problem is [2]

T-T, P
0 - o - - 1 fendn
T, - T, I‘(%)o

3
where 1 - v/ y9Bz is a dimensionless variable, and the Gamma function I'(x) is defined as

T'(x) = j't‘ e 'dt x>0

0

Using Gauss-Legendre quadrature calculate the above temperature profile and plot it
against 1.

Method of Solution: In order to evaluate the temperature profile (®). we first have to
integrate the function e ™ for several values of 1 > 0. The temperature profile itself, then,
can be calculated from the equation described above.

Program Description: The function GaussLegendre.m numerically evaluates the
integral of a function by n-point Gauss-Legendre quadrature. The program checks the inputs
to the function to be sure that they have valid values. If no value is introduced for the
integration step, the function sets it 1o the integration interval. Also, the default value for the
number of points of the Gauss-Legendre formula is two.

The next step in the function is the calculation of the coefficients of the nth degree
Legendre polynomial. Once these coefficients are calculated, the program evaluates the roots
of the Legendre polynomial (z, to z,) using the MATLAB function roots. Then, the function
calculates the coefficients of the Lagrange polynomial terms (L, to L,) and evaluates the
weight factors, w, as defined in Eq. (4.104). Finally, using the values of z;, and w,, the integral
is numerically evaluated by Eq. (4.106).

In order to solve the problem described in this example, the main program Example4_4.m
is written to calculate the temperature profile for specific range of the dimensionless number
1. The function to be integrated is introduced in the MATLAB function Ex4_4_func.m.

Program

Exampled_4.m
% Exampled_4.m
% Solution to Example 4.4. It calculates and plots the temperature
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% profile of a liguid falling along a wall of different temperature.
% The program uses GAUSSLEGENDRE function to evaluate the integral.

clear
clc
clf

% Input data

eta = input(' Vector of independent variable (eta) = ');

h = eta(2) - eta(l); % Step size

fname = input(' Name of m-file containing the function subject to
integration = ');

% Calculation of the temperature profile
for k = 1 : length(eta)
theta(k) = GaussLegendre(fname, 0,eta(k),h);
end
theta = 1 - theta / gamma(4/3);

% Plotting the results
plot (eta, theta)

xlabel ('\eta')

ylabel ('\theta')

Ex4_4_func.m
function y = Ex4_4_func(x)

% Function Ex4_4_func.m
% Function to be integrated in Example 4.4.

y = exp(-x"3);
GaussLegendre.m

function Q = GaussLegendre(fnctn,a,b,h,n,varargin)
$GAUSSLEGENDRE Gauss-Legendre quadrature

e

o

GAUSSLEGENDRE('F',A,B,H,N) numerically evaluates the
integral of the function described by M-file F.M from A to B,
using interval spacing H, by a N-point Gauss-Legendre

o

e P

quadrature.
%
% GAUSSLEGENDRE('F',A,B, [],(].P1,P2,...) calculates the
% integral using interval spacing H=B-A and N=2 and also allows
% parameters Pl, P2, ... to pass directly to function F.M
%
% See also QUAD, QUAD8, TRAPZ, SIMPSON

% (c¢) N. Mostoufi & A. Constantinides
% January 1, 1999



250 Numerical Differentiation and Integration = Chapter 4
% Checking input arguments
if nargin < 4 | isempty(h) | h == 0 | abs(b - a) < abs(h)
h=D>b - a;
end
if nargin < 5 | isempty(n) | n < 2
n = 2;
end
if sign(h) ~= sign(b-a)
h = - h;
end
n = fix(n);

% Coefficients of the Legendre polyncmial
for k = 0 : n/2
cl(2*k+1l) = (-1)"k * gamma(2*n - 2*k + 1) / ...
(2"n * gamma(k + 1) * gamma(n - k + 1) * gamma(n - 2*k + 1));
if k < n/2
cl(2*k+2) = 0;
end
end
z = roots(cl); % Roots of the Legendre polynomial (Z1i)
% Weight factors
for p =1 : n

B = [1 0];
k = 0;
denom = 1;
A(l) = B(1l);

% Constructing vector of coefficients of the
% Lagrange polynomial (coefficients of Li)
for g =1 : n

if g ~=p
k =k + 1;
for r = 2 k+1

A(r) = B(r) - B(r-1) * z(q); % Vector of coefficients

end
denom = denom * (z(p) - z(q)); % Denominator of Li

end

B = [A 0];

end

% Vector of coefficients of integral of Lagrange polynomial
for k =1 : n
% Al are coefficients of the integral polynomial
Ai(k) = A(k) / (n - k + 1);
end
Ai(n + 1) = 0;
% weight factor Wi
w(p) = (polyval(Ai , 1) - polyval(Ai , -1)) / denom;
clear A
end
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Q = 0;
% Integration
for x =a : h : b-h
for p =1 :n
Xp = x + (z(p) + 1) * h / 2;
Q = Q + w(p) * feval(fnctn , xp , varargin{:}) * h /2;
end
end

% Integral of the remainder interval (if (b-a)/h is not an integer)
Xr = X + h;
hr = b - xr;
if hr > 0
for p =1 : n
Xp = Xr + (z(p) + 1) * hr / 2;
Q =0Q + w(p) * feval(fnctn , xp , varargin{:}) * hr /2;
end
end

Input and Results
>>Exanpled_4

Initial value of Vector of independent variable (eta) = [0: 0.2: 2]
Name of m-file containing the function subject to integration =
'Ex4_4_func'

Discussion of Results: The temperature profile of the liquid near the wall is calculated
by the program Example4_4.m for 0 < n < 2 and is plotted in Fig. E4.4. We can verify the
solution at the boundaries of y and z from Fig. E4.4:

»  The results represented in Fig. E4.4 show that at n = 0, the temperature of the liquid is
identical to that of the plate (that is, ® = 1, therefore. T=T,). The variable 7 attains a
value of zero at only two situations:

a. In the liquid next to the wall (at y = 0 and at all values of z).
bh. After an infinite distance from the origin of flow (at z = «» and at all values of y).

Situation a is consistent with the boundary conditions given in the statement of the

problem whereas situation b is an expected result, since passing a long-enough distance

along the wall, all the liquid will be at the same temperature as the wall.

+  Fig. E4.4 also shows that at high-enough dimensionless number 1 the temperature of the
liquid is equal to the initial temperature of the liquid, that is,

lim® =0
N e
*  The variable n becomes infinity under the following circumstances:
a. In the fluid far away from the wall (at y = « and at all values of z).
b. At the origin of the flow (at z =0 and at all values of y).
Both these situations are specified as boundary conditions of the problem.
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0 02 04 06 08 1 12 14 16 18 2
n

Figure E4.4

4.9 SPLINE INTEGRATION

Another method of integrating unequally spaced data points is to interpolate the data using a
suitable interpolation method, such as cubic splines, and then evaluate the integral from the
relevant polynomial. Therefore, the integral of Eq. (4.66) may be calculated by integrating Eq.
(3.143) over the interval [x, |, x| and summing up these terms for all the intervals:

f.‘" dx = ; [%(Xf )y ) %(xi Py ) (4.108)
Prior to calculating the integral from Eq. (4.108), the values ot the second derivative at the
base points should be calculated from Eq. (3.147). Note that if a natural spline interpolation
is employed. the second derivatives for the first and the last intervals are equal to zero. Eq.
(4.108) is basically an improved trapezoidal formula in which the value of the integral by
trapezoidal rule (the first term in the bracket of Eq. (4.108)] is corrected for the curvature of
the function [the second term in the bracket of Eq. (4.108)].

The reader can easily modify the MATLAB function NaturalSPLINE.m (see Example 3.2)
in order to calculate the integral of a function from a series of tabulated data. It is enough to
replace the formula of the interpolation section with the integration formula, Eq. (4.108).
Also, the MATLAB function spline.m is able to give the piecewise polynomial coefficients
from which the integral of the function can be evaluated. A good example of applying such
a method can be found in Hanselman and Littlefield [3]. Remember that spline.m applies the
not-a-knot algorithm for calculating the polynomial coefficients.
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4.10 MULTIPLE INTEGRALS

In this section, we discuss the evaluation of double integrals. Evaluation of integrals with
more than two dimensions can be obtained in a similar manner. Let us start with a simple case
of double integral with constant limits, that is, integration over a rectangle in the xy plane:

bd
I = fff(x,y)dydx

a

(4.109)
b d

= f ]‘ﬂx,y)d,v dx

a

The inner integral may be calculated by one of the methods described in Secs. 4.7-4.9. We
use the trapezoidal rule [Eq. (4.76)] for simplicity:

d m-

[fexmdy = é— flx,e) + 23 flx,y) + flx.d) (4.110)

j-1
«

where m is the number of divisions and k is the integration step in the y-direction, and x is
considered to be constant. Replacing Eq. (4.110) into Eq. (4.109) results in

b m-1 b b
k . k
= N x.c)dy + k x.v)dx - & X, \
I 2ff(r,c) X 15_; ‘/f(x v)dx 2ff(x d)dx “A.111)

Now we apply the trapezoidal rule to each of the integrals of Eq. (4.111):

n-1

b
[fxoydx - %f(a,yj) . 22; fCxv) + fb.y) 4.112)

Here n is the number of divisions and 4 is the integration step in the x-direction, and y; is
considered to be constant.
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Finally. we combine Eqs. (4.111) and (4.112) to calculate the estimated value of the
integral (4.109):

: nol
I~ % fla.c) +2Y flx,.0) +/(b,<-)}

i-t

w1 m 1| -1
+ % Yo flay) =233 [(x.x) + Zf(b.vj)}
. il

j-1 i1

n-i

- fta,dy - 2% f(x..d) v [ d)

113
1 o (4.113)

The method described above may be slightly modified to be applicable to the double
integrals with variable inner limits of the form

b div)
I - / ] fix.,vdvdx (4.114)

a ()

Because the length of the integration interval for the inner integral (that is, [¢. d]) changes with
the value of x. we may either keep the number of divisions constant in the y-direction and let
the integration step change with x [k = k(x)] or keep the integration step in the y-direction
constant and use different number of divisions at each x value [ = m(x)]. However, in order
to maintain the same order of error throughout the calculation, the second condition (that is.
constant step size) should be employed. Therefore. Eq. (4.110) can be written at each position
X, in the following form to count for the variable limits:

div)

j' fle,,yv)dy =

)

mo |

fxee)) + 230 flx,y,) + flx.d(x) (4.115)

i-1

o | =

where m, indicates that the number of divisions in the y-direction is a function of x. In
practice, at each x value, we may have to change the step size k slightly to obtain an integer
value for the number of divisions. Although this does not change the order of magnitude of
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the step size, we have to acknowledge this change at each step of outer integration; therefore,
the approximate value of the integral (4.114) is calculated from

w1

hk,
I=—\fla.c(a)) +2Y flx;.c(x)) + f(b,c(b))

i=1

m -1

1
gZ k3 [flasy) = 2f(x.5) + fb.y)]

il i

h n
+ fla,d(a)) - 22 flx,,d(x)) + fb,d(b)) (4.116)

i=1

If writing a computer program for evaluation of double integrals, it is not necessary to
apply Egs. (4.113) and (4.115) in such a program. Asa matter of fact, any ordinary integration
function may be applied to evaluate the inner integral at each value of the outer variable; then
the same function is applied for the second time to calculate the outer integral. This algorithm
can be similarly applied to the multiple integrals of any dimension. The MATLAB function
dblguad evaluates double integral of a function with fixed inner integral limits.

PROBLEMS

4.1 Derive the equation that expresses the third-order derivative of v in terms of backward finite
differences, with

(a) Error of order &
(b) Error of order #°.

4.2 Repeat Prob. 4.1, using forward finite differences.

4.3  Derive the equations for the first, second, and third derivatives of v in terms of backward finite
differences with error of order h'.

4.4 Repeat Prob. 4.3, using forward finite differences.

4.5 Derive the equation which expresses the third-order derivative of v in terms of central finite
differences, with

(a) Error of order #*
(b) Error of order &*

4.6 Derive the equations for the first, second, and third derivatives of y in terms of central finite
differences with error of order /°
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4.7  Velocity profiles of solids in a bed of sand particles fluidized with air at the superficial velocity
of I m/s are given in Tables P4.7«¢ and b. Calculate the axial gradient of velocitics (that is. 6V./ ¢z
and ¢V,/dz)  Plot the z-averaged gradients versus radial position and compare their order of

magnitude.

Table P4.7a Radial velocity profile (mm/s)

Radial position (mm)

4.7663 142988 | 23.8313 | 33.3638 | 42.8962 | 52.4288 | 61.9612 | 71.4938

A 25 -13.09 -37 66 -52.41 -54.44 -58.21 -41.35 -23.97 -7.21
X

; 75 -15.81 -15.99 -27.81 -25.37 2223 -11.1 -2.26 1.63

| 125 1.77 117 3.45 5.5 1.63 -1.79 -0.26 109

2 175 1.43 -057 4.86 244 0.2 -0.65 0.35 2.21

? 225 -5.07 -7.26 -18.43 -18.17 -17.3 -10 -2.65 029

: 275 13 11 16.51 19.32 21 20.29 15.64 0.98 -9.81

: 325 17 345 583 71.44 73.49 64.88 50.91 19.14

n’1 375 8.18 2529 31.18 37.07 30.05 2.61 -17.06 -15.88

m1 425 3.35 -0.39 -18 -42.22 -57.42 -82 36 -69.34 -17.35

475 -27.05 -22.25 -49 45 =79 45 -110.08 -116.62 -128.25 -76.49

4.8 In studying the mixing characteristics of chemical reactors. a sharp pulse of a nonreacting tracer is

injected into the reactor at time 7 = 0 The concentration of material in the effluent from the reactor is
measured as a function of time ¢(r). The residence time distribution (RTD) function for the reactor is

defined as

E(,) - i

f(' (t)dt
0
and the cumulative distribution function is defined as

it

F(r) - f’E(z)z!t
0

The mean residence time of the reactor is calculated from

tm -

< |<

= ftE(t)dt
0
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Table P4.7b Axial velocity profile (mm/s)
Radial position (mm)
4.7663 14.2988 | 23.8313 | 33.3638 | 42.8962 | 52.4288 | 61.9612 | 71.4938
Al 25 93.33 74.12 69.35 43.68 18.8 -6.9 -21.56 -22.65
)i( 75 244.73 217.07 177.09 103.79 16.87 -39.74 -74.91 -59.48
a
' 125 304.34 260.58 201.15 118.82 22.76 -52.23 -82.86 -51.9
g 175 308.81 281.67 209.18 133.9 53.88 -51.92 -98.47 -41.94
? 225 379.66 328.52 279.3 165.61 5325 -65.97 -13392 -46.69
: 275 416.08 366.96 314.09 203.08 44.97 -76.93 -160.04 -91.33
: 325 184.46 157.25 111.99 63.23 1.03 -63.66 -71.23 2314
r;1 375 5574 -12.28 -18.74 -47.26 -42 1 -9.95 125.57 271.16
m 1 425 -67.81 -118.77 -108.46 -89.68 9.24 6178 175.43 309.21
475 | -136.25 -32.33 -65.5 -111.72 38.74 115.6 84.88 191.37

where V is the volume of the reactor and ¢ is the flow rate. The variance of the RTD function is

defined by

o = f(/ -1, VE()dt

0

The exit concentration data shown in Table P4.8 were obtained from a tracer experiment studying
the mixing characteristics of a continuous flow reactor. Calculate the RTD function. cumulative
distribution function, mean residence time, and the variance of the RTD function of this reactor.

Table P4.8
Time (s) c(t) (mg/L) Time (s) c(t) (mg/L)
0 0 5 S
1 2 6 2
2 4 7 ]
3 7 8 0
4 6
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4.9

4.10

4.11
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The following catalytic reaction is carried out in an isothermal circulating fluidized bed reactor:

A > B

$3] L)
For a surface-reaction limited mechanism. in which both A and B are absorbed on the surface of
the catalyst. the rate law is
kl CA
I+ k,C, + kG

Ty

where r, is the rate of the reaction in kmol/m's, C, and C, are concentrations of A and B,
respectively. in kmol/m*, and k,. k,, and , are constants.

Assume that the solids move in plug flow at the same velocity of the gas (U). Evaluate the height
of the reactor at which the conversion of A is 60%. Additional data are as follows:

Cy=0.2 kmol/m’ Cpo=0 U=75m/s
k=85 ky=3m'kmol  k,=0.01 m/kmol

A gaseous feedstock containing 40% A, 40% B. and 20% inert will be processed in a reactor,
where the following chemical reaction takes place.

A-2B~C

The reaction rate is

—ry =kC4C}
where k= 0.01s"(gmol/L)? at 500°C

C, = concentration of A, gmol/L

Cy = concentration of B. gmol/L

Choose a basis of 100 gmol of feed and assume that all gases behave as ideal gases. Calculate the
following:

(a) The time needed to produce a product containing 11.8% B in a batch reactor operating at 500°C
and at constant pressure of 10 atm.

(b) The time needed to produce a product containing 1 1.8% B in a batch reactor operating at 500°C
and constant volume. The temperature of the reactor is 500°C and the initial pressure is 10 atm.

Derive the numerical approximation of double integrals using Simpson’s 1/3 rule in both
dimensions.
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CHAPTER 5

Numerical Solution of Ordinary
Differential Equations

5.1 INTRODUCTION

Ordinaly differential equations arise from the
study of the dynamics of physical and chemical systems that have one independent variable.
The latter may be either the space variable x or the time variable ¢ depending on the geometry
of the system and its boundary conditions.

For example, when a chemical reaction of the type

k, ky
A+B=C+D - E (5.1)
k,

261



CHAPTER 5

Numerical Solution of Ordinary
Differential Equations

5.1 INTRODUCTION

Ordinaly differential equations arise from the
study of the dynamics of physical and chemical systems that have one independent variable.
The latter may be either the space variable x or the time variable ¢ depending on the geometry
of the system and its boundary conditions.

For example, when a chemical reaction of the type

k, ky
A+B=C+D - E (5.1)
k,

261



262 Numerical Solution of Ordinary Differential Equations Chapter 5

takes place in a reactor, the material balance can be applied:
Input + Generation = Output + Accumulation (5.2)

For a batch reactor. the input and output terms are zero: therefore, the material balance
simplifies to

Accumulation = Generation (5.3)

Assuming that reaction (5.1) takes place in the liquid phase with negligible change in volume.
Eq. (5.3) written for each component of the reaction will have the form

dC, L. y

= KC,C, + K CLC,
drt
dC, L.

*klc»x(fﬁ - /‘:(<(1>

dt
('IC n n
d: - k,C,C, - k,C.C, - k,C/lC) (5.4)
dCI . n m
d[) -k C,Cy - k,C.C,y - K CEC
dC[; I\ (, nCm
a1 WLebn

where C, C,. C,.. C,, and C, represent the concentrations of the five chemical components of
this reaction. This is a set of simultaneous first-order nonlinear ordinary differential
equations. which describe the dynamic behavior of the chemical reaction. With the methods
10 be developed in this chaptier. these equations. with a set of initial conditions, can be
integrated to obtain the time profiles of all the concentrations.

Consider the growth of a microorganism. say a yeast, in a continuous fermentor of the
type shown in Fig. 5.1. The volume of the liquid in the fermentor is V. The flow rate of
nutrients into the termentor is F,, and the flow rate of products out of the fermentor is F .

in?®

The material balance for the cells X is

Input + Generation = OQutput + Accumulation

d(vX
FinXin - )'XV - Foutxoul ( ) (55)
dt
The material balance for the substrate S is given by
FinSin * r.SV - F,S - d( VS) (56)

out™ our
dt
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The overall volumetric balance is

L4V .
in out di (~ . )

If we make the assumption that the fermentor is perfectly mixed, that is, the concentrations at
every point in the fermentor arc the same, then

X = Xtml
(5.8)
'S = S(llll
and the equations simplify to
(Vv
d( X) - (FinXm - FnulX) ! )“X,V (59)
dt ’
d(v :
u - (FiuSin - Fuur“s) * ’.SV (510)
dt
dv .
— - - (5.1

in el
dt

Further assumptions are made that the flow rates in and out of the fermentor are identical, and
that the rates of cell formation and substrate utilization are given by

_ lVllllé\.\ S X

5.12
K -+S 612

F.
X,
S n
o—t—0o
\Y%
o—1——ox
o—1 &S

ovut
out

S Figure 5.1 Continuous fermentor.
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and Fg = m—m — A3
TN K o
The set of equations becomes
F L SX
aX | Low (X, - X) + Hmax> 2 (5.14)
dt % K +S
F SX
1§ — out (Si” _ S) _ _];_ “max (5. 15)
dt 14 Yo K + S

This is a set of simultaneous ordinary differential equations, which describe the dynamics of
a continuous culture fermentation.

The dynamic behavior of a distillation column may be examined by making material
balances around each stage of the column. Fig. 5.2 shows a typical stage n with a liquid flow
into the stage L, , , and out of the stage L, and a vapor flow into the stage V, _, and out of the
stage V,. The liquid holdup on the stage is designated as H,. There is no generation of
material in this process, so the material balance [Eq. (5.2)] becomes

Accumulation = Input - Output

— = v-I + L - Vn - Ln (516)

n+1l

The liquids and vapors in this operation are multicomponent mixtures of k components.
The mole fractions of each component in the liquid and vapor phases are designated by x, and
¥, respectively. Therefore, the material balance for the ith component is

d(ani n)
. - Vn~1yi n-1 + Ln~lxi nel V/zyi n Lnxi n (517)
dt ' ' ' '
Ln+l Vn
xn+l Yn
Stage n
Vn—l L“
I Yn-1 Xn
Stage n-1 l
Figure 5.2 Material balance around
stage n of a distillation column.
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The concentrations of liquid and vapor are related by the equilibrium relationship

-\‘i.u - f(xi‘n) (518)

If the assumptions of constant molar overflow and negligible delay in vapor flow are made,
then V, , = V.. The delay in liquid flow is

- L 5.19
a1 | ( )

where T is the hydraulic time constant.

The above equations applied to each stage in a multistage separation process result in a
large set of simultaneous ordinary differential equations.

In all the above examples, the systems were chosen so that the models resulted in sets
of simultaneous first-order ordinary differential equations. These are the most commonly
encountered types of problems in the analysis of multicomponent and/or multistage operations.
Closed-form solutions for such sets of equations are not usually obtainable. However,
numerical methods have been thoroughly developed for the solution of sets of simultaneous
differential equations. In this chapter, we discuss the most useful techniques for the solution
of such problems. We first show that higher-order differential equations can be reduced to
first order by a series of substitutions.

5.2 CLASSIFICATIONS OF ORDINARY DIFFERENTIAL
EQUATIONS

Ordinary differential equations are classified according to their order, their linearity, and their
boundary conditions.

The order of a differential equation is the order of the highest derivative present in that
equation. Examples of first-, second-. and third-order differential equations are given below:

First order: dy v = ka (5.20)
dx
Second order: dy , \ﬂ - kx (5.21)
dx’ dx

3, 2. )2
Third order: d’y , .47 b(d—-‘] ke (5.22)
dx? dx’ dx
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Ordinary differential equations may be categorized as linear and nonlinear equations.
A differential equation is nonlinear if it contains products of the dependent variable or its
derivatives or of both. For example, Egs. (5.21) and (5.22) are nonlinear because they contain
the terms y(dy/dx) and (dv/dx)*, respectively, whereas Eq. (5.20) is linear. The general form
of a linear differential equation of order n may be written as

ny, n-1., |
bo(_x)-d—" + b](x)d Yoo b, I(x)%y— + b (x)y = R(x) (5.23)
X

dx" dxn—]

If R(x) = 0, the equation is called homogeneous. 1f R(x)#0, the equation is nonhomogeneous.
The coefficients {b,1i=1, ..., n} are called variable coefficients when they are functions of
x and constant coefficients when they are scalars. A differential equation is autonomous if the
independent variable does not appear explicitly in that equation. For example, if Eq. (5.23)
is homogeneous with constant coefficients, it is also autonomous.

To obtain a unique solution of an nth-order differential equation or of a set of n
simultaneous first-order differential equations, it is necessary to specify n values of the
dependent variables (or their derivatives) at specific values of the independent variable.

Ordinary differential equations may be classified as initial-value problems or boundary-
value problems. In initial-value problems, the values of the dependent variables and/or their
derivatives are all known at the initial value of the independent variable.' In boundary-value
problems, the dependent variables and/or their derivatives are known at more than one point
of the independent variable. If some of the dependent variables (or their derivatives) are
specified at the initial value of the independent variable, and the remaining variables (or their
derivatives) are specified at the final value of the independent variable, then this is a two-point
boundary-value problem.

The methods of solution of initial-value problems are developed in Sec. 5.5, and the
methods for boundary-value problems are discussed in Sec. 5.6.

" A problem whose dependent variables and/or their derivatives are all known at the final value of the independent
variable (rather than the initial value) is identical to the initial-value problem, because only the direction of integration
must be reversed. Therefore, the term initial-value problem refers to both cases.
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5.3 TRANSFORMATION TO CANONICAL FORM

Numerical integration of ordinary differential equations is most conveniently performed when
the system consists of a set of n simultaneous first-order ordinary differential equations of the
form:

dy,
— = [0 ¥, oy, X)
dx 1 | 2
d.
22 00 Yoo oo ¥ye X)
o (5.24)
dy, £ )
= = L0 Yy s Y X
dx -2

This is called the canonical form of the equations. When the initial conditions arc given at a
common point x,:

(5.25)
V(X)) =y,
then the system equations (5.24) have solutions of the form
y = Fi(x)
vy = Fiylx)
(5.26)
yu B F:l("}

The above problem can be condensed into matrix notation, where the system equations are
represented by

d
s fx, ) (5.27)

dx
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the vector of initial conditions is

yixy) =¥, (5.28)
and the vector of solutions is

Differential equations of higher order. or systems containing equations of mixed order.
can be transformed to the canonical form by a series of substitutions. For example, consider
the nth-order differential equation

n, - 2, n-l
d’z L g dz d= 4z, (5.30)
dx" dy dx? dx"!
The following transformations
Iy
d- dy,
—_— - — —\‘7
dx dx
d?- dy,
- —y
dx? d :
(5.31)
d" ]Z _ d\'" 1
dx'rl dx n

dr; _dy,

dx"” dx

when substituted into the nth-order equation (5.30), give the equivalent set of n first-order
equations of canonical form

dy,
_ = -\‘7
dx N
dy,
oy,
dx (5.32)
dy

n R ) )
—— = Gy Yyr Yy oeen Yo X)
dx
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If the right-hand side of the differential equations is not a function of the independent
variable, that is,

dy _
. fy) (5.33)

then the set is autonomous. A nonautonomous sct may be transformed to an autonomous set
by an appropriate substitution. See Example 5.1 (b) and (d). If the functions f(y) are linear
in terms of y, then the equations can be written in matrix form:

y' - Ay (5.34)

as in Example 5.1 (¢) and (b). Solutions for linear sets of ordinary differential equations are
developed in Sec. 5.4. The methods for solution of nonlinear sets are discussed in Secs. 5.5
and 5.6.

A more restricted form of differential equation is

CARE S(x) (5.35)
dx

where f(x) are functions of the independent variable only. Solution methods for these
equations were developed in Chap. 4.

The next example demonstrates the technique for converting higher-order linear and
nonlinear differential equations to canonical form.

Example 5.1: Transformation of Ordinary Differential Equations into Their
Canonical Form: Apply the transformations defined by Egs. (5.31) and (5.32) to the
following ordinary differential equations:

d*z dz

d*z d*z

(@) + 5 -2 3"6——*3:70
. de? dr’ dt? di
4 3, 2
(b) dz, gdz _pd7z _ dz 5,
de? de? de? dt
3. 2 AR
(c) e - I P
dx? dx? dx
3 v
(d) ﬂ + {3& - ;zﬂ +5z2=20
dr? dr? dt
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Solution: (a) Apply the transformation according to Egs. (5.31):

Z=)

dz 4y

— T e— — ’\‘2

dt dt

d*z _ dy,

_, = —_— = /\,‘x

dt? dt :

diz dys
S e— = .)4

dr? dt

d*z dy,

det dt

Make these substitutions into Eq. (a) to obtain the following four equations:

dy,

— = \.'

dr °

dy,

—2 -y

dt !

_% =y

a7

dy

—3 - -3y, + 6y, + 2y, - Sy,
dt B ;

This is a set of linear ordinary differential equations which can be represented in matrix form

/

y' = Ay (5.34)
where matrix A is given by
0O 10 0
0O 01 0
A =
0 00 1
-3 6 2 -5

The method of obtaining the solution of sets of linear ordinary differential equations is
discussed in Sec. 5.4.

{b) The presence of the term ¢” on the right-hand side of this equation makes it a
nonhomogeneous equation. The left-hand side is identical to that of Eq. (a), so that the
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transformations of Eq. (a) are applicable. An additional transformation is needed to replace
the ¢” term. This transformation is

ys = e

dys
dt

Make the substitutions into Eq. (») to obtain the following set of five linear ordinary
differential equations:
dy,

dt -
dy,

dt
dy,

dt

dy,
di
dys

dt

- =3y, ¢ 6y, ¥ 2y - Sy, * oy

- - '\!5

which also condenses into the matrix form of Eq. (5.34), with the matrix A given by

[0 10 0 0]
1 0 0
A - 0 1 0
-3 6 2 -5 1
L0 00 0 -1
(¢) Apply the following transformations:
NI
dz 4y
—_— T — = \"
dx dx 7
d?z  dy,
— = — = )’I.]
dx? dx ’
d3z  dy,

dx’ dt
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Make the substitutions into Eq. (¢) to obtain the set

dy, ‘
ax
5,
dx T
i 2y =y -yl
dx 1 72 173

This is a set of nonlinear differential equations which cannot be expressed in matrix
form. The methods of solution of nonlinear differential equations are developed in Secs.
5.5 and 5.6.

(d) Apply the following transformations:

z =)
d- dy,
R - —— - \‘7
dt dt .
d*z dy,

= =)

de? dt ’
diz  dy
de? dt

Yy, 71
dy, |
dt

Make the substitutions into Eq. (d) to obtain the set
dy,
I 2
dy,
dr
dy, .
7[‘ 21
dy,
dr

This is a set of autonomous nonlinear differential equations. Note that the above set of
substitutions converted the nonautonomous Eq. (d) to a set of autonomous equations.

1
]
]

I
-
-
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5.4 LINEAR ORDINARY DIFFERENTIAL EQUATIONS

The analysis of many physicochemical systems yields mathematical models that are sets of
linear ordinary differential equations with constant coefficicnts and can be reduced to the form

y - Ay (5.34)

with given initial conditions
Y(0) = yy (5.36)

Such examples abound in chemical engineering. The unsteady-state material and energy
balances of multiunit processes, without chemical reaction, often yield linear differential
equations.
Sets ol linear ordinary differential cquations with constant coetficients have closed-form
solutions that can be readily obtained from the eigenvalues and eigenvectors of the matrix A.
In order to develop this solution, let us first consider a single linear differential equation
of the type

ay ay 5.37
di ’ (5.37)

with the given initial condition
y(0) = Yo (5.38)

Eq. (5.37) is essentially the scalar form of the matrix set of Eq. (5.34). The solution of the
scalar equation can be obtained by separating the variables and integrating both sides of the
equation

i

‘ﬂ - fadt

v
Vi 0
ln- t (539
= - a
Yo
N ar,
Y- ey,

In an analogous fashion, the matrix set can be integrated to obtain the solution

y =y, (5.40)
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In this case. y and y, are vecrors of the dependent variables and the initial conditions,
respectively. The term ¢*' is the matrix exponential function, which can be obtained from

Eq. (2.83):

et =1 + Ar - + (5.41)

It can be demonstrated that Eq. (5.40) is a solution of Eq. (5.34) by differentiating it:

dy d Ar
— = —(e™)y
dt dt 0
2.2 3.3
:il*rAl*A’ S AT + .. Y
dt 2! 3!
2 A"l'
-[A + ATt o+ Y + ..]yo
2.2
-A[1+At SAT A.)yo
2!
= A(e'y,
:Ay

The solution of the set of linear ordinary differential equations is very cumbersome
1o evaluate in the form of Eq. (5.40), because it requires the evaluation of the infinite series
of the cxponential term e*.  However, this solution can be modified by further
algebraic manipulation to express it in terms of the eigenvalues and eigenvectors of the
matrix A.

In Chap. 2, we showed that a nonsingular matrix A of order n has n eigenvectors and n
nonzero eigenvalues, whose definitions are given by

Ax, = Ax,
Ax, = d,x,

(5.42)
Ax =Ax

n non

All the above cigenvectors and eigenvalues can be represented in a more compact form as
follows:

AX - XA (5.43)
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where the columns of matrix X are the individual eigenvectors:
X = [x;.x,.x5.....x,] (5.44)

and A is a diagonal matrix with the eigenvalues of A on its diagonal:

(%, 0 0 ... 0]
0 4 0 ... 0

A-|0 0 A ... 0 (5.45)
0 0 0 A,

If we postmultiply each side of Eq. (5.43) by X', we obtain
AXX' - A - XAX! (5.46)

Squaring Eq. (5.46):

A? = | XAX VI XAX 1)

(5.47)
= XA*x!
Similarly, raising Eq. (5.46) to any power n we obtain
A" - XA'X! (5.48)
Starting with Eq. (5.41) and replacing the matrices A, A%, . . ., A" with their equivalent from
Eqs. (5.46)-(5.48), we obtain
e -1+ XAX '+ XAZX"% - (5.49)

The identity matrix / can be premultiplicd by X and postmultiplied by X' without changing
it. Therefore, Eq. (5.49) rearranges to

e = X| I~ At + D & (5.50)
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which simplifies to

et~ XelMXx ! (5.51)

where the exponential matrix e™ is defined as

00 0
0 = 0 0

S 0 (5:52)
0 0 0 .. "

The solution of the linear differential equations can now be expressed in terms of
eigenvalues and eigenvectors by combining Egs. (5.40) and (5.51):

y - [ XeMX My, (5.53)

The eigenvalues and cigenvectors of matrix A can be calculated using the techniques
developed in Chap. 2 or simply by applying the built-in function eig in MATLAB. This is
demonstrated in Example 5.2.

Example 5.2: Solution of a Chemical Reaction System. Develop a general MATLAB
function to solve the set of lincar differential equations. Apply this function to determine the
concentration profiles of all components of the following chemical reaction system:

kK
AeB~-C

ky  k,

Assumc that all steps arc first-order reactions and write the set of linear ordinary differential
equations that describe the kinetics of these reactions. Solve the problem numerically for the
following values of the kinetic rate constants:

k, =1 min" k, =0 min' c, =2 min’ k, =3 min
I 2 1

The value of k, = 0 reveals that the first reaction is irrcversible in this special case. The initial
concentrations of the three components are

-1 C, -0 C. -0

Ay o G,

Plot the graph of concentrations versus time.
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Method of Solution: Assuming that all steps are first-order reactions. the set of
differential equations that give the rate of formation of each compound is:

ﬁ =~k Cy + kCy
dt
dC
_3—3 = k,C, - k,Cy - k,Cp + k,C,.
t
9Cc k,C, - k,C,
dt i
In matrix form, this set reduces to
¢ = Kc
where
dcC,
dt
A
dCy
¢ - | — c -
dt #
C.
dC. ¢
dt
and
-k, k, 0

K-=|k ~k-k Kk
0

The solution of a set of linear ordinary differential equations can be obtained either by
applying Eq. (5.40):

L’K

- '
¢ = Co

or by Eq. (5.53):
¢ = [XeMX e,

where the matrix X consists of the eigenvectors of K and ¢, is the vector of initial
concentrations:
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Program Description: The MATLAB function LinearODE.m solves a set of linear
ordinary differential equations. The first part of the function checks the number of inputs and
their sizes, or values. The next section of the function performs the solution of the set of
ordinary differential equations, which can be done by either the matrix exponential method
[Eq. (5.40)] or the eigenvector method [Eq. (5.53)]. The method of solution may be
introduced to the function through the fifth input argument. The default method of solution
is the matrix exponential method.

The main program Example5_2.m solves the particular problem posed in this example
by applying LinearODE.m. This program gets the required input data, including the rate
constants and initial concentrations of the components, from the keyboard. Then, it builds the
matrix of coefficients and the vector of times at which the concentrations are to be calculated.
In the last section, the program asks the user to sclect the method of solution and calls the
function LinearODE to solve the set of equations for obtaining the concentrations and plots
the results. The reader may try another method of solution and repeat solving the set of linear
differential equations in this part.

Program

Example5 2.m

Example5_2.m

Solution to Example 5.2. This program calculates and plots
concentrations of the components of the system A<->B<->C vs
time. It calls the function LinearODE to solve the set of
linear ordinary differential equations.

of ¢ of o¢

o0

clear
cle
clf

% Input data

kl = input(' A->B , k1 = ');
k2 = input(' B->A , k2 = ');
k3 = input(' B->C , k3 = ');
k4 = input(' C->B , k4 = ');
dlsp ')

(!
0(1) input (' Initial concentration of A
0(2) = input(' Initial concentration of B
)
(

0(3) = input(' Initial concentration of C

dlSp )
tmax = input(' Maximum time = ');
dt = input (' Time interval = ');
disp(' ')

% Matrix of coefficients
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K = [-k1, k2, 0; k1, -k2-k3, k4; 0, k3, -k4};
t = [0:dt:tmax]; % Vector of time
if t(end) ~= tmax

t{end+1l) = tmax;
end
disp(' ")
disp(' 1 ) Matrix exponential method')
disp(' 2 ) Eigenvector method')
disp(' 0 ) Exit")

n

method = input{'\n Choose the method of solution : ');

% Solution

method = 1;

while method
¢ = LinearODE(K,cO,t, [],method);% Solving the set of equations
plot(t,c(l,:),t,c(2,:),"'.-",£,c(3,:),'--'")1% Plotting the results
xlabel ('Time"')
ylabel ('Concentration')
legend('C_A','C_B','C_C")
method = input('\n Choose the method of solution : '});

end

LinearODE.m
function y = LinearODE(A,y0,t,t0,method)
LINEARODE Solves a set of linear ordinary differential equations.

e

%

% Y=LINEARODE(A,Y0,T) sclves a set of linear ordinary

% differential equations whose matrix of coefficients

% is A and its initial conditions are Y0. The function

% returns the values of the solution Y at times T.

%

% Y=LINEARODE(A,Y0,T,TO,METHOD) takes TO as the time in

% which the initial conditions Y0 are given. Default value
% for TO is zero. METHOD is the method of solution.

% Use METHOD = 1 for matrix exponential method

% Use METHOD = 2 for eigenvector method

% Default value for METHOD is 1.

% See also ODE23, ODE45, ODEl1l13, ODE15S, ODE23S, EULER, MEULER,
% RK, ADAMS, ADAMSMOULTON

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Checking inputs
if nargin<3 | isempty(t)
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error {'Vector of independent variable is empty.')
end

if nargin<4 | isempty(tO)
t0 = 0;

end

t =t - t0;

nt = length(t);

if nargin<5 | isempty(method) | method < 1 | method > 2
method = 1;
end

nA = length(A);
if nA ~= length(y0)
error ( 'Matrix of coefficients and vector of initial values are
not of the same order.');
end

v0O = (y0(:).")"; % Make sure it's a column vector
switch method

case 1 % Matrix exponential method
for k = 1l:nt

if t(k) > 0
y{:,k) = expm(A*t(k))*y0;
else
y(:,k) = y0;
end
end
case 2 % Eigenvector method
[X,D] = eig(A); % Eigenvectors and eigenvalues
IX = inv(X);

e_lambda_t = zeros(nA,nA,nt);
% Building the matrix exp(LAMBDA.t)
for k = 1:nA
e_lambda_t(k,k,:) = exp(D(k,k) * t);
end
% Solving the set of egquations
for k = 1l:nt

if t(k) > 0

y{:,k) = X * e_lambda_t(:,:,k) * IX * yO0;
else

y(:,k) = y0;
end

end
end
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Input and Results

>>Exampleb_2

A->B , k1 =1
B->A , k2 =0
B->C , k3 =2
cC->B , k4 =3
Initial concentration of A =1
Initial concentration of B = 0
Initial concentration of C = 0

Maximum time = 5
Time interval = 0.1

1 ) Matrix exponential method

2 ) Eigenvector method

0 ) Exit
Choose the method of solution : 2
Choose the method of solution : 0

Discussion of Results: The results of solution of this problem are shown in Fig. E5.2.
It is seen from this figure, as expected for this special case, that after long enough time, all the
component A is consumed and the components B and C satisfy the equilibrium condition
C,/Ce = klk,. These results also confirm the conservation of mass principle:

CA() ’ CBn ! CCU - C/\ ' CB ! C('

Because both methods ot solution arc exact, results obtained by thesc methods would be
identical. However, when dealing with a large number of equations and/or a long time vector,
the matrix exponential method is appreciably faster in the MATLAB environment than the
cigenvector method. This is because the exponential of a matrix is performed by the built-in
MATLAB function expm, whereas the eigenvector method involves several element-by-
clement operations when building the matrix ¢*. The reader is encouraged to verify the
difference between the methods by repeating the solution and choosing a smaller time interval,
say 0.001, and applying this to both solution methods.
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Figure E5.2 Concentration profiles.

5.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS-
INITIAL-VALUE PROBLEMS

In this section, we develop numerical solutions for a set of ordinary differential cquations in
their canonical form:

d
2y (5.27)
dx

with the vector of initial conditions given by
y(xo) - y(; (528)

In order to be able to iflustrate these methods graphically. we treat y as a single variable rather
than as a vector of variables. The formulas developed for the solution of a single differential
equation are readily expandable to those for a set of differential equations, which must be
solved simultaneously. This concept is demonstrated in Sec. 5.5.4.
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We begin the development of these methods by first rearranging Eq. (5.27) and integrating
both sides between the limits of x, < x < x,,,and y, < y <y,

1

’fl dy - Iflf(x. ydx (5.54)

The left side integrates readily to obtain

1

Yooy - ] flx, v)dx (5.55)

One method for integrating Eq. (5.55) is to take the left-hand side of this equation and use
finite differences for its approximation. This technique works directly with the tangential
trajectories of the dependent variable v rather than with the areas under the function f(x. v).
This is the technique applied in Secs. 5.5.1 and 5.5.2.

In Chap. 4, we developed the integration formulas by first replacing the function f(x) with
an interpolating polynomial and then evaluating the integral f(x)dx between the appropriate
limits. A similar technique could be followed here to integrate the right-hand side of Eq.
(5.55). This approach is followed in Sec. 5.5.3.

There are several functions in MATLAB for the solution of a set of ordinary differential
equations. These solvers. along with their method of solution, are listed in Table 5.1.
The solver that one would want to try first on a problem is ode45. The statement
[x, ¥] = oded45(‘v_prime’. [x, x,], ¥,) solves the set of ordinary differential equations described
in the MATLAB function y_prime.m, from x, to x, . with the initial values given in the vector
v,, and returns the values of independent and dependent variables in the vectors x and v,
respectively. The vector of dependent variable, x. is not equally spaced. because the function
controls the step size. If the solution is required at specified points of x, the interval [x,. x/]
should be replaced by a vector containing the values of the independent variable at these

Table 5.1 Ordinary differential equation solvers in MATLAB

Solver Method of solution

ode23 Runge-Kutta lower-order (2nd order - 3 stages)
ode45 Runge-Kutta higher-order (4th order- 5 stages)
odel 13 Adams-Bashtorth-Moulton of varying order (1-13)
ode23s Modified Rosenbrock of order 2

odelSs Implicit, multistep of varying order (1-5)
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points. For example, [x, y] = ode45("y_prime’, [x,: h: x,], v,) returns the solution of the set of
ordinary differential equations from x, to x, at intervals of the width 4. The vector x in this
case would be monotonic (with the exception of, perhaps, its last interval). The basic syntax
for applying the other MATLAB ordinary differcntial equation solvers is the same as that
described above for ode45.

The function y_prime.m should return the value of derivative(s) as a column vector. The
first input to this function has to be the independent variable, x, even if it is not explicitly used
in the definition of the derivative. The second input argument to y_prime is the vector
of dependent variable, y. It is possible to pass additional parameters to the derivative
function. It should be noted, however, that in this case. the third input to y_prinme.m has
to be an emply variable, flag, and the additional parameters arc introduced in the fourth
argument.

5.5.1 The Euler and Modified Euler Methods

One of the earliest techniques developed for the solution of ordinary ditferential equations is
the Euler method. This is simply obtained by recognizing that the left side of Eq. (5.55) is the
first forward finite difference of y at position i:

Yoy © ¥ 7 Ay, (5.56)
which, when rearranged, gives a “forward marching” formula for evaluating y:

Yoo ©Y

ivl

. Ay, (5.57)

The forward difference term Ay, is obtained from Eq. (3.53) applied to y at position i:

h2D?y,  h*D?y,
Ay, - hDy, + 5 - A L (5.58)

In the Euler method, the above series is truncated after the first term to obtain

Ay, = hDy, + O(h?) (5.59)

The combination of Egs. (5.57) and (5.59) gives the explicit Euler formula for integrating
differential equations
=y, + hDy, + O(h?) (5.60)

yl'l
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The derivative Dy, is replaced by its equivalent ¥', or f(x,, ¥,) to give the more commonly used
form of the explicit Euler method”

Yoo =yt hf(x, y) + O(h?) (5.61)

This equation simply states that the next value of y is obtained from the previous value by
moving a step of width / in the tangential direction of y. This is demonstrated graphically in
Fig 5.3a. This Euler formula is rather inaccurate because it has a truncation error of only
O(I"). If h is large the trajectory of v can quickly deviate from its true value, as shown in Fig.
5.3b.

(a) (b)
y y
Exacty
yi+1
Yi
X Xy X oo % Y2 X X

Figure 5.3 The explicit Euler method of integration. (a) Single step. (b) Several steps.

The accuracy of the Euler method can be improved by utilizing a combination of forward
and backward differences. Note that the first forward difference of y at i is equal to the first
backward difference of v at (i + 1):

Ay, =y — v = Vv (5.62)

Vi =NtV (5.63)

* From hete on the term v/, and f(x,, v,) will be used interchangeably. The reader should temember that thesc are cqual
to each other through the differential equation (5.27)
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The backward difference term Vv, _ | is obtained from Eq. (3.32) applied to y at position
(i+ 1)

thz.\‘,».[ h‘D".\'i_l
Vg T DY e T e (5.64)

Combining Eqs. (5.63) and (5.64):

Vo T Ry ) O (5.65)

This is called the implicit Euler formula (or backward Euler), becausc it involves the
calculation of function fat an unknown value of v, , . Eq. (5.65) can be viewed as taking a
step forward from position 7 to (i + 1) in a gradient dircction that must be evaluated at (i + 1).

Implicitequations cannot be solved individually but must be set up as sets of simultaneous
algebraic equations. When these sets are linear, the problem can be solved by the application
of the Gauss elimination methods developed in Chap. 2. If the set consists of nonlincar
equations, the problem is much more difficult and must be solved using Newton's method for
simultaneous nonlincar algebraic equations developed in Chap. 1.

In the casc of the Euler methods. the problem can be simplified by first applying the
explicit method to predict a value v,

(3, p = ¥, Wf(x, v) = OCh?) (5.66)

and then using this predicted value in the implicit method to get a corrected value:
Ve = ¥ R Oy ) O(h?) (5.67)

This combination of steps is known as the Euler predictor-corrector (or modified Euler)
method, whose application is demonstrated graphically in Fig. 5.4. Correction by Eq. (5.67)
may be applied more than once until the corrected value converges, that is, the difference
between the two consecutive corrected values becomes less than the convergence criterion.
However. not much more accuracy is achieved after the second application of the corrector.

The explicit, as well as the implicit, forms of the Euler methods have error of order (7).
However, when used in combination, as predictor-corrector, their accuracy is enhanced,
yielding an error of order (h"). This conclusion can be reached by adding Egs. (5.57)
and (5.63):

1
\I*I =87 E(A}r * vyi—l) (568)
and utilizing (5.58) and (5.64) to obtain
h .
Yooy Tt E[f(x” ¥) - fx v O (5.69)
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The terms of order (4°) cancel out because they have opposite sign, thus giving a formula of
higher accuracy. Eq. (5.69) is essentially the same as the trapezoidal rule [Eq. (4.73)], the only
difference being in the way the function is evaluated at (x,, |, ¥, ).

It has been shown [ 1] that the Euler implicit formula is more stable than the explicit one.
The stability of these methods will be discussed in Sec. 5.7.

It can be seen by writing Eq. (5.69) in the form

¥,

L, . 1
AT R Ehj(xi. ¥+ —z-hf(x,_,, Yoo+ O(h*) (5.70)
that this Euler method uses the weighted trajectories of the function v evaluated at two
positions that are located one full step of width / apart and weighted equally. In this form, Eq.
(5.70) is also known as the Crank-Nicolson method.
Eq. (5.70) can be written in a more general form as

Yiog Ty, 0wk = owk, (5.71)

where, in this case:
k= hf(x, ¥) (5.72)
ky = 1f(x v eyhy y - aq k) (5.73)

The choice of the weighting factors w, and w, and the positions / and (i + 1) at which to
evaluate the trajectories is dictated by the accuracy required of the integration formula. that
is. by the number of terms retained in the infinite series expansion.

(a) (b)
y y
Vit Exact y
Vierpr
Yi
Yi
S ]
%; i1 x %, Xir1 X

Figure 5.4 The Euler predictor-corrector method. (a) Value of y,, , is predicted and y’,, ,
is calculated. (b) Value of y,, , is corrected.
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This concept forms the basis for a whole series of integration formulas, with increasingly
higher accuracies, for ordinary differential equations. These are discussed in the following
section.

5.5.2 The Runge-Kutta Methods

The most widely used methods of integration for ordinary differential equations are the series
of methods called Runge-Kutta second, third, and fourth order, plus a number of other
techniques that are variations on the Runge-Kutta theme. These methods are based on the
concept of weighted trajectories formulated at the end of Sec. 5.5.1. Ina more general fashion,
the forward marching integration formula for the differential equation (5.27) is given by the
recurrence equation

Yoo Ty row kg owaky s owiky 4w k) (5.74)
where each of the trajectories k; are evaluated by
L= hf(xs )
ky = hf(x;+cyh, ¥, +ay k)

ky = hf(x;+ csho v vag k- agk,) (5.75)

k, - hf(x +c h.y, ~a, k +a,.k+...+a

n m272 m.m lkm I)

These equations can be written in a compact form as

Vi =Wt Z w.k; (5.76)
i-1
il
ki = hf| x;+c;h, oy~ ; a,k, (5.77)

where ¢, = 0 and a,; = 0. The value of m, which determines the complexity and accuracy of
the method, is set when (m + 1) terms are retained in the infinite series expansion of y; |

Vi =y = hy! + s (5.78)
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or

thz.\'l lzBD"_\f,.
PR P hD)‘i + + oo (5.79)

Y
2! 3!

The procedure for deriving the Runge-Kutta methods can be divided into five steps which
are demonstrated below in the derivation of the second-order Runge-Kutta formulas.

Step 1. Choose the value of m, which fixes the accuracy of the formula to be obtained. For
second-order Runge-Kutta, m = 2. Truncate the series (5.79) after the (m + 1) term:

h>D?y, .
- 0(h”) (5.80)

¥ =y, + hDy, +

[

Step 2: Replace each derivative of y in (5.80) by its equivalent in f, remembering that fis a
function of both x and y(x):

Dy, - f. (5.81)

dx

pry - A [ dx, ordy
o Oxdx dydx],

= ) (5.82)
Combine Eqs. (5.80) to (5.82) and regroup the terms:

2 2
Yooy =yt hfie %f\, : "Tf,f\, = O(h?) (5.83)

Step 3: Write Eq. (5.76) with m terms in the summation:

Voo =y towk, T owok, (5.84)
where

k, = hf(x,, ¥) (5.85)

ky = hf(x; +cyh, ¥y, +ay k) (5.86)

Step 4. Expand the ffunction in Taylor serics:

flx; = csh, v, +ay k) = f, + c,hf + ayhf f, + oh?) (5.87)
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Combine Egs. (5.84) to (5.87) and regroup the terms:

Yoo =y 0 (wpew)hf + (wyey)h zf‘l = (wyay)h Zf,f\ + O(h?) (5.88)
Step 5: In order for Egs. (5.83) and (5.88) to be identical, the coefficients of the corresponding
terms must be equal to one another. This results in a set of simultaneous nonlinear algebraic
equations in the unknown constants w, ¢, and a,,. For this second-order Runge-Kutta method.
there are three equations and four unknowns:

wyorow, = 1
w,C, = 1
-T2 (5.89)
Wols - L
T 2

It turns out that there are always more unknowns than equations. The degree of freedom
allows us to choose some of the parameters. For second-order Runge-Kutta, there is one
degree of freedom. For third- and fourth-order Runge-Kutta, there are two degrees of
freedom. For fifth-order Runge-Kutta, there are at least five degrees of freedom. This
freedom of choice of parameters gives rise to a very large number of different forms of the
Runge-Kutta formulas. Itis usually desirable to first choose the values of the ¢; constants. thus
fixing the positions along the independent variable, where the functions

J- 1
flx tchyy, - Z aj,k,

-1
are to be evaluated. Animportant consideration in choosing the free parameters is to minimize
the roundoff error of the calculation. Discussion of the effect of the roundoft error will be
given in Sec. 5.7.

For the second-order Runge-Kutta method, which we are currently deriving, let us

choose ¢, = 1. The rest of the parameters are evaluated from Egs. (5.89):

1
Wy omonn T E ay - | (5.90)
With this set of parameters. the second-order Runge-Kutta formula is

“ k)

Yoy =Moo (kl 2

1

2
3

= hf(x ) o(n?) (5.90)

ky = hf(x, + hoy + kl)

This method is essentially identical to the Crank-Nicolson method [see Eq. (5.70)].
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A different version of the second-order Runge-Kutta is obtained by choosing to evaluate
the function at the midpoints (that is, ¢, = 1/2). This yiclds the formula

=
I

] hf(x,.. ,\',.) oln?) (5.92)

>
9
1

1 [
hf| x, ~ =h, v. + —k
j i 2 i 2 1

Higher-order Runge-Kutta formulas are derived in an analogous manner. Scveral of these are
listed in Table 5.2. The fourth-order Runge-Kutta, which has an error of O(h"), is probably
the most widely used numerical integration method for ordinary differential equations.

5.5.3 The Adams and Adams-Moulton Methods

The Runge-Kutta family of integration techniques, developed above, are called single-step
methods. The value of y,,, is obtained from y, and the trajectories of y within the single step
from (x, y) to (x,,,,», ). This procedure marches forward, taking single step of width &, over
the entire interval of integration. These methods are very suitable for solving initial-value
problems because they are self-starting from a given initial point of integration.

Other categories of integration techniques. called multiple-step methods, have been
developed. These compute the value of y, , , utilizing several previously unknown, or
calculated, values of y (v,, »,_,, ¥, », clc.) as the base points. For this reason, the multiple-step
methods are nonself-starting. For the solution of initial-value problems, where only
¥, 1s known, the multiple-step methods must be “primed” by first utilizing a self-starting
procedure to obtain the requisite number of basc points. There are several multiple-step
methods, two of these, the Adams and Adams-Moulton methods. will be covered in this
section.

Once again, let us start by evaluating v, _, by integrating the derivative function over the
interval [x, x;, ]

1

Yot - j flx, Vdx (5.55)

In order to evaluate the right-hand side of Eq. (5.55), f(x. ¥) may bc approximated by an
nth-degree polynomial. In the Adams method. a quadratic polynomial is passed through the
three past points, that is, (x; 5, ¥, ,). (x,_,. ¥, ), and (x,, ¥;), and 1s used to extrapolate the value
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Table 5.2 Summary of the Runge-Kutta integration formulas

Second order

Ve Sk k) - oY
> 2
k,  hf(x,. v)

ky = hf(x,;+h, v +k)

Third order
Yooy ooyt —l(l([ + 4k, + ky) ¢ O(h*)
6 2
k= hf(x,.v)

k
ky - hf| x, + h s ¥ -
- 2

ky - hf(x +h, ¥ +2k, - k)

Fourth order

Yo m e ks 2k, ¢ 2k s k) - O(hY)
" st 2k,

>~

y = RGO

1 k
k. hf[.\".*rﬁ. \'l’—l)
2 5 5

h ks
ky - /’/["1":~ \ﬁ—;]

P

ky - hf(x,+h, ¥y, +ky)
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Table 5.2 Summary of the Runge-Kutta integration formulas (cont’d)

293

Fifth order

R 9—'0(7k, 32k, + 12k, + 32k + Thy) + O(h®)

k, = hf(x;, ¥,)
k
ky = hf| x,+ 2 v,+—‘]
° 2 2
3k k,
k% = h}‘ _x‘_+£, y,+_].+_.z]
’ 4 16 16
h ks
k4:h4f Xi""z"’ )',*7]
3k, Ok, 9k
ke = hf xifﬂ. _Vi__2+_3+_4
) 4 16 16 16

ky
kg = hf| x,+h, _\',.+7*

7 7

|

4k, 6k, 12k, 8k,
+ - + —=
77

Runge-Kutta-Fehlberg

\r’_‘I = ‘.i + ( £k1 + .&Os.kz + ,,21_97](4 - lks] + O(hS)
216 2565 4104 5
kl = hf(x," \,)
h k.]
k, = hfl x. + —, v. +—
2 f i 4 B 4
ky = hf| x; —3—h. v +ik1 +_9_k,
8 20 32
12 1932, 7200, . 7296
k, = hf| x +—=h, y,+ —=k, - k, + k
s TR 2197 ' 2197 * 2197 3)
439 3860, 845
kg = hf] x +h, y,+ 22k, -8k, + - k
s = M| Yol T 513 4104 “)
h 8 3544, 1859, 11
k =hf X‘."‘—, y,«_—k +2k, - —— + —" -
‘ 2 277" 77 2565 0 4104 1 40 5]
poe Ly o 12,2097, 1, 2
360 4275 75240 50 55
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of Ax,,,, ¥..,)- If we choose a uniform step size, a second-degree backward Gregory-Newton
interpolating polynomial may be applied to this problem and Eq. (5.55) becomes

A (x x) (x = x)(x - x ) vl
via s [ SV, = VS |dx o [ R, (x)dx
h 20 h?
Y Y (593)
where f; = f(x, y,), and it may be considered a function of x only. Noting that (x,,, - x,) = h,
Eq. (5.93) reduces to

o 5
Vi =yt h| S0 =V V|« Ok 5.94
Vi [f 5 = f) (5.94)

1

This equation would be casier to use by expanding the backward differences in terms of the
function valucs given in Table 3.5. Replacing the backward differences followed by further
rearrangements results in the following formula known as the Adams method for solution of
the ordinary differential equations:

Vi =00 -1}1—2[23‘/(/\'[’.‘)) S A6f(x oy )+ S Ly )] O(h*) (5.95)

Eq. (5.95) shows that prior to evaluating y,, ,. the values of the function at three points
before that have to be known. Because in an initial-value problem only the value of the
function at the start of the solution interval is known, another two succeeding values should
be calculated by a single-step method, such as Runge-Kutta. Solution of the ordinary
differential equation from the fourth point may then be continued with Eq. (5.95).

In order to derive the Adams-Moulton technique, we repeat the same procedure by
applying a third-degree interpolating polynomial (using four past points) instead of a second-
degree polynomial to approximate f(x, y) in Eq. (5.55). This procedure results in prediction
of y

Jitl

k .
SNP I 2_;I55-f(xi’-vi) =59/ Q) 3T 5a Y ) - 9 gy

+ O(h?) (5.96)

In the Adams-Moulton method, we do not stop here and correct v,, | before moving to the next
step. The value of v, | calculated from Eq. (5.96) is a good approximation of the dependent
variable at position (i + 1): therefore, almost the correct value of f(x,, ,. y;, ) may be evaluated
from f(x,, ,. (»,, ,)p) at this stage. We now interpolate the function f(x, v). using a cubic
Gregory-Newton backward interpolating polynomial over the range from x, , to x,, , and
calculate the corrected value of y,, , by the integral of Eq. (5.55):

O Do = ¥ —2}'—419.f(x,-.1, (viop) = 19f(x., y) = 5f(x; oy )+ flx; 5.0

+ O(h?) (5.97
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Eqgs. (5.96) and (5.97) should be used as predictor and corrector, respectively. Correction
by Eq. (5.97) may be applied more than once until the corrected value converges: that is, the
difference between the two consecutive corrected value becomes less than the convergence
criterion. However, two applications of the corrector is probably optimum in terms of
computer time and the accuracy gained. Once again. solution of the ordinary differential
equation by this technique may start from the fifth point; therefore, some other technique
should be applied at the beginning of the solution to evaluate y, to v;.

5.5.4 Simultaneous Differential Equations

It was mentioned at the beginning of Sec. 5.5 that the methods of solution of a single
differential equation are readily adaptable for solving sets of simultaneous differential
equations. To illustrate this. we use the set of n simultaneous ordinary differential equations:

dy,
— =[x,y vy, oY)
dx
dv,
= =Ly Yo y)
dx (5.98)
dy, Y :
— - XN, Y.y,
dX n Bl 2

and expand, tor example, the fourth-order Runge-Kutta formulas to

Vi - vy - %(k,j+2kz/ 2k, ky) jo1.20
Ky, = RECx Yie Y oo yy,) j-1,2,..., n
k,,:hf.(xﬂﬁ,y.]Jrf‘_‘, I\~_7+k'2,...,_\-‘. *h] J=1,2,0000n (5.99)
- A2 2 772 "2 o
ks, = hf/( xi-l—;‘ ¥ +%, _x‘i2+%. . Vi *%] j=1,2,...,n
k4i = hj}(,\'i\'-h. Vot kys Yotk o vy k) Jj=1.2.....n

This method is easily programmable using nested loops. In MATLAB, the values of k
and y, can be put in vectors and easily perform Eq. (5.99) in matrix form.
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Example 5.3: Solution of Nenisothermal Plug-Flow Reactor. Write general
MATLAB functions for integrating simultaneous nonlinear differential equations using the
Euler. Euler predictor-corrector (modified Euler), Runge-Kutta, Adams, and Adams-Moulton
methods. Apply these functions for the solution of differential equations that simulate a
nonisotherm plug flow reactor, as described below.’

Vapor-phase cracking of acetone, described by the following endothermic reaction:

CH,COCH, - CH,CO + CH,
takes place in a jacketed tubular reactor. Pure acctonc enters the reactor at a temperature of

T, = 1035 K and pressure of P, = 162 kPa, and the temperature of external gas in the heat
exchanger is constant at 7, = 1150 K. Other data are as follows:

Volumetric flow rate: v, = 0.002 m'/s
Volume of the reactor: Ve= 1m’

Overall heat transfer coefficient: U= 110W/m'K
Heat transfer area: a = 150 m*/m’ reactor

Reaction constant: k 3.58 exp

34222 1 g !
1035 T
Heat of reaction:

AH, = 80770 «6.8(T - 298)- 5.75x10*(T*-298%) - 1.27x10 (7" - 298%) J/mol

Hcat capacity of acetone: C, =26.63 + 0.18307 - 45.86x10 °T* J/mol.K

Py

I

Heat capacity of ketene: 20.04 + 0.0945T - 30.95x10 °*T* J/mol K

Py

It

Heat capacity of methane: C 13.39 + 0.0770T - 18.71x10 °T? J/mol.K

Pe
Determine the temperature profile of the gas along the length of the reactor. Assume constant
pressure throughout the reactor.

Method of Solution: In order to calculate the temperature profile in the reactor, we have
to solve the material balance and energy balance equations simultaneously:

dv

Mole balance:
“n

dT Ua(T, - T) + r,AH,
dv FAO(CPA + XACp)

Energy balance:

* This problem was adopted from Fogler [2] by permission of the author.
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where X is the conversion of acetone, V is the volume of the reactor, F, - C, v, is the molar
0 i

flow rate of acetone at the inlet, T is the temperature of the reactor. AC, -C, -+ C,~ C, .
B « 4
and C, is the concentration of acetone vapor at the inlet. The reaction rate is given as
0

1 -x T,

kC, ——.—
4 Wl LY T

In order to introduce the pair of differential equations as a MATLAB f{unction the
following definitions are assumed:

Program Description: Five general MATLAB functions are written for the solution of
a set of simultaneous nonlinear ordinary differential equations. They are Euler.m, MEuler.m.
RK.m, Adams.m, and AdamsMoulton.m. All these functions consist of two main sections. The
first part is initialization, in which specific input arguments are checked. and some vectors to
be uscd in the second part are initiated. The next section of the function is solution of the set
of nonlinear ordinary differential equations according to the specitied method, which is done
simultaneously in vector form. Brief descriptions of the method of solution of these five
functions are given below:

Euler.m-The Euler method: This function solves the set of differential equations based on Eq.
(5.61).

MEuler.m -The Euler predictor-corrector (modified Euler) method: This function solves the
set of differential cquations based on Eqs. (5.66) and (5.67).

RK.m The Runge-Kutta methods: This function is capable of solving the sct of differential
equations by a second-, third-. fourth-, or fifth-order Runge-Kutta method. The formulas that
appeared in Table 5.2 are used for calculating a Runge-Kutta solution of the differential
equations.

Adams.m -The Adams method: This function solves the set of differential equations using Eq.
(5.95). The required starting points are evaluated by the third-order Runge-Kutta (using the
function RK.m) which has the same order of truncation error as the Adams method.

AdamsMoulton.m The Adams-Moulton method: This function solves the set of differential
equations using Eqs. (5.96) and (5.97). The required starting points are cvaluated by the
fourth-order Runge-Kutta method (using the function RK.m). which has the same order of
truncation error as the Adams-Moulton method.

The first input argument to all the above method functions is the name of the MATLAB
function containing the set of differential equations. Note that the first input argument to this
function has to be the independent variable, even if it is not used explicitly in the cquations.
It is important that this function returns the values of the derivatives (f;) as a column vector.
The other inputs to the method functions are initial and final values of the independent
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variable, interval width, and the initial value of the dependent variable. In RK.in. the order of
the method may also be specified. It is possible to pass, through the above functions,
additional arguments to the M-file describing the set of differential equations.

Program

Example5_3.m

Example5_3.m

Solution to Example 5.3. This program calculates and plots
the temperature and conversion profile of a plug-flow reactor
in which the endothermic cracking of acetone takes place.

It can call Buler, MEuler, RK, Adams, or AdamsMoulton solvers
for solution of the pair of energy and material balances.

It is also capable of comparing different solvers.

90 of g

o

o¢ o0 o®

change = 1;

while change
clear
clce
% Input data
TO0 = input(' Inlet temperature (K) = ');
PO = input (' Inlet pressure (Pa) = ');
v0 = input(' Inlet volumetric flow rate (m3/s) = ');
X0 = input (' Inlet conversion of acetone = ');
VR = input(' Volume of the reactor (m3) = ')
Ta = input(' External gas temperature (K) = ")
U = input(' Overall heat transfer coefficient (W/m2.K) = ');
a = input(' Heat transfer area (m2/m3) = ');

CcAQ = PO * (1-X0) / (8.314 * TO);% Input concentration (mol/m3)
FAO = v0 * CAQ; % Input molar flow rate (mol/s)
fprintf('\n")

fname=input (' M-file containing the set of differential equations
")

h = input(' Step size = ');

met = 1;

while met
clc
fprintf('\n")
disp(' 1 ) Euler')

disp(' 2 ) Modified Euler')

disp(' 3 ) Runge-Kutta')

disp(' 4 ) Adams')

disp(' 5 ) Adams-Moulton')

disp(' 6 ) Comparison of methods')
disp(' 0 ) End")
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met =

input ('\n Choose the method of solution
if met ==

")
method=input ('\n Input the methods to be compared,
vector : ');

as a
else
method = met;
end
ignd = 'legend(';

Imethod = length(method) ;
for k = 1:1lmethod
switch method (k)
case 1 %
[V,y] = RBuler(fname,0,VR,h, [X0,T0O],TC,CAO0,FAQ,U,a,Ta);
if k > 1

lgnd = [1lgnd ', '];

Euler

end
lgnd = [lgnd

"'"'Euler'''];
case 2 % Modified Euler
[V,y] = MEuler (fname,0,VR,h, [X0,T0],T0,CAQ0,FAQ0,U,a,Ta);
if k > 1
lgnd = [lgnd ', '];
end
lgnd [lgnd

"' 'Modified Euler'''];

case 3 % Runge-Kutta

n = input('\n Order of the Runge-Kutta method (2-5) = ');
ifn<2 | n>5
n = 2;
end
v,yl =

RK (fname, 0,VR,h, [X0,T0]1,n,T0,CAQ,FAD,U,a,Ta);
if k > 1

lgnd = [lgnd ', "']};
end
lgnd = [1lgnd '''RK’

int2str(n) ''''];
case 4 % Adams

[V,vy] Adamns (fname, 0,VR,h, [X0,T0],TO,CAQ,FAQ,U,a,Ta);
if k > 1

lgnd = [lgnd ', '];
end

lgnd = [lgnd
case 5 %

[v,yl =

"'AdamS"'];
Adams-Moulton

AdamsMoulton (fname, 0,VR, h, [X0,T0],T0,CAQ,
FAQ,U, a,Ta);

if k > 1

lgnd = [lgnd ','];

end
lgnd = [lgnd '''Adams-Moulton'''];

end

x(k,:) = y(l,:);

)

% Conversion
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t(k,:) = y(2,:); % Temperature
end
if met
clf
% Plotting the results
subplot(2,1,1), plot(V/VR,x(1l:1lmethod, :))
ylabel ('Conversion, X(%)')
title('(a) Acetone Conversion Profile')
subplot(2,1,2), plot(V/VR,t(1l:1lmethod, :))
xlabel ('V/V_R")
ylabel ('Temperature, T(K)')
title('(b) Temperature Profile')
lgnd = [lgnd ')'];
eval (1gnd)
end
end
change=input ('\n\n Do you want to repeat the solution with
different input data (0/1)? ');
end

Ex5_3_func.m

function fnc = Ex5_3_func(Vv,y,T0,CA0,FAC,U,a,Ta)

Function ExS5_3_func.M

This function contains the pair of ordinary differential
equations introduced in Example 5.3. The name of this function

0P o¢

o¢

% is an input to the main program Example5_3.m and will be called
% by the selected ODE solver.

X = y(l); % Conversion

T yi(2); % Temperature

k = 3.58%*exp(34222*(1/1035-1/T)); % Rate constant
dHR = 80770+6.8*(T-298)-5.75e-3*(T"2-298"2)-1.27e-6*(T"3-298"3);

o0

Heat of reaction

Heat capacity of 2
Heat capacity of B
Heat capacity of C

CpA = 26.63 + .183*T - 45.86e-6*T"2;
CpB = 20.04 + .0945*T - 30.95e-6*T"2;
CpC = 13.39 + .077*T - 18.71le-6*T"2;
dCp = CpB + CpC - CpA;

rA = -k * CAO * (1-X)/(1l+X) * TO/T;

% Mole balance and energy balance

fnc = [-rA/FAQ; (U*a* (Ta-T)+rA*dHR)/ (FAO* (CpA+X*dCp))];

o0 of

o°

o

Reaction rate

Euler.m

function [x,y] = Euler(ODEfile,xi,xf,h,yi,varargin)

% EULER Solves a set of ordinary differential equations by
the Euler method.

oe

[X,Y]=EULER('F',XI,XF,H,YI) solves a set of ordinary
differential equations by the Euler method, from XI to XF.

o° o o
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The equations are given in the M-file F.M. H is the length
of interval and YI is the vector of initial values of the
dependent variable at XI.

[X,Y]=EULER('F"',XI,XF,H,YI,P1,P2,...) allows for additional
arguments which are passed to the function F(X,P1,P2,...).

I P 0 of 00 of oP

See also ODE23, ODE45, ODE113, ODEl5S, ODE23S, MEULER, RK,
ADAMS, ADAMSMOULTON

e of

o

(c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization
if isempty (h) | h ==
h = linspace(xi, xf);

end
yi = (yi(:).")"; % Make sure it's a column vector
x = [xi:h:xf]; % Vector of x values
if x(end) ~= xt
x{end+1) = xf;
end
d = diff (x); % Vector of x-increments

o

y(:,1) = yi; Initial condition
% Solution
for i = 1:length(x)-1

yi:,1i+1) = y(:,1) + d(i) *
feval (ODEfile,x(1i),y(:,1),varargin{:});
end

MEuler.m
function [x,y] = MEuler (ODEfile,xi,xf,h,yi,varargin)
MEULER Solves a set of ordinary differential equations by

e

% the modified Euler (predictor-corrector) method.

%

% [X,Y]=MEULER('F',XI,XF,H,YI) solves a set of ordinary

% differential equations by the modified Euler (the Euler

% predictor-corrector) method, from XI to XF.

% The equations are given in the M-file F.M. H is the length of

% interval and YI is the vector of initial values of the dependent

% variable at XI.

%

% [X,Y]=MEULER('F',6XI,XF,H,YI,P1,P2,...) allows for additional
arguments which are passed to the function F(X,P1,P2,...).

o0 oe
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% See also ODE23, ODE45, ODEl11l3, ODE1l5S, ODE23S, EULER, RK,
% ADAMS, ADAMSMOULTON

% (c) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization

if isempty (h) | == 0
h = linspace(xi,xf);
end
yvi = (yi(:).")"'; % Make sure it's a column vector
X = [xi:h:xf]; % Vector of x values
if x(end) ~= xf
x(end+1) = xf;
end
d = diff(x); % Vector of x-increments
yvi{:,1) = yi; % Initial condition
% Solution

for 1 = 1l:length(x)-1
% Predictor
vi{:,i+1l)=y(:,1) + d(i) * feval(ODEfile,x(i),y(:,1), varargin{:});
% Corrector
y(:,i+1)=y(:,1)+d(i) * feval(ODEfile,x(i+1),y(:,i+1),varargin{:});
end

RK.m

function [x,y}] = RK(ODEfile,xi,xf,h,yi,n,varargin)

% RK Solves a set of ordinary differential equations by the
% Runge-Kutta method.

%

% [X,Y]=RK('F',XI,XF,H,YI,N) solves a set of ordinary differential
% equations by the Nth-order Runge-Kutta method, from XI to XF.

% The equations are given in the M-file F.M. H is the length of
% interval. YI is the vector of initial values of the dependent

variable at XI. N should be an integer from 2 to 5. If there
are only five input arguments or the sixth input argument is an
empty matrix, the 2nd-order Runge-Kutta method will be
performed.

[X,Y]=RK('F',XI,XF,H,YI,N,P1,P2,...) allows for additional
arguments which are passed to the function F(X,P1,P2,...).

See also ODE23, ODE45, ODEl113, ODEl1l5S, ODE23S, EULER, MEULER,
ADAMS, ADAMSMOULTON

A0 o0 00 P O IC O o° 0O o
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(c) N. Mostoufi & A. Constantinides
January 1, 1999

% Initialization
if isempty (h) | ==
h = linspace(xi,xf);

end
if nargin == 5 | isempty(n) | n< 2 | n > 5
n = 2;
end
n = fix(n);
yi = (yi{(:).'})"; % Make sure it's a column vector
x = [xi:h:xf]; % Vector of x values
if x(end) ~= xf
x(end+1) = xf;
end
d = diff(x); % Vector of x-increments
vi:, 1) = yi; % Initial condition
% Solution
switch n
case 2 % 2nd-order Runge-Kutta
for i = l:length(x)-1
k1 = d(i) * feval (ODEfile,x(1),y(:,1i),varargin{:});
k2 = d(i) * feval(ODEfile,x(i+1),y(:,1)+kl,varargin{:});
vi{:,1+1) = y(:,1) + (k1l+k2)/2;
end
case 3 % 3rd-order Runge-Kutta
for i = l:length(x)-1
k1l = d(1) * feval (ODEfile,x(i),y(:,1),varargin{:});
k2 = d(i) * feval(ODEfile,x(i)+d(1)/2,y(:,1)+kl/2,...
varargin{:});
k3 = d(i) * feval (ODEfile,x(i+1),y(:,1)+2*k2-kl,varargin{:
y(:,i+1) = y(:,1) + (kl+4*k2+k3)/6;
end
case 4 % 4th-order Runge-Kutta
for i = l:length(x)-1
k1 = d(i) * feval(ODEfile,x(i),y(:,1i),varargin{:});
k2 = d(i) * feval (ODEfile,x(1)+d(i)/2,y(:,1)+kl/2,

k3

k4

varargin{:)});
= d(i) * feval(ODEfile,x(1)+d(i)/2,y(:,1i)+k2/2,
varargin{:});

= d(i) * feval (ODEfile,x(i+1),y(:,1)+k3,varargin{:});

y(:,i+1) = y(:,i) + (kl+2*k2+2*k3+kd)/6;

303
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end
case 5 % 5th-order Runge-Kutta
for i = 1l:length(x)-1
k1l = d(i) * feval(ODEfile,x(i),y(:,1),varargin{:});
k2 = d(i) * feval (ODEfile,x(i)+d(i)/2,y(:,1i) +kl1l/2,

varargin{:});

k3 = d(i) * feval (ODEfile,x(i)+d(i)/4,y(:,1)+3*kl/16+k2/16,...
varargin{:});

k4 = d(1i) * feval(ODEfile,x(1i)+d(1)/2,y(:,1)+k3/2,
varargin{:}):

k5 = d(1i) * feval(ODEfile,x(i)+3*d(i)/4,y(:,1)-3*k2/16+
6*k3/16+9*k4/16, varargin{:});

k6 = d(i) * feval (ODEfile,x(i1+1),y(:,1)+kl/7+4*k2/7+
6*k3/7-12*k4/7+8*k5/7, varargin{:});

yi(:,i+1) = y(:,1) + (7*k1+32*k3+12*k4+32*k5+7*k6)/90;

end
end

Adams.m

function [x,y] = Adams(ODEfile,xi,xf,h,yi,varargin)

ADAMS Solves a set of ordinary differential equations by the
Adams method.

o o

o¢

[X,Y]=ADAMS('F',XI,XF,H,YI) solves a set of ordinary
differential equations by the Adams method, from XI to XF.
The equations are given in the M-file F.M. H is the length
of the interval and YI is the vector of initial values of
the dependent variable at XI.

o€ oo

[X,Y]=ADAMS('F',XI,XF,H,YI,P1,P2,...) allows for additional
arguments which are passed to the function F(X,P1,P2,...).

o0 00 g0 @ of P of ¢°

See also ODE23, ODE45, ODEl113, ODEl5S, ODE23S, EULER, MEULER,
RK, ADAMSMOULTON

oC

(c) N. Mostoufi & A. Constantinides
% January 1, 1999

ol

% Initialization

if isempty (h) | h == 0
h = linspace(xi,xf);
end
yvi = (yi(:).'); % Make sure it's a row vector
x = [xi:h:xf]'; % Vector of x values
if x(end) ~= xf

x(end+1l) = xf;
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end
d = diff(x); % Vector of x-increments

% Starting values

[a,b]=RK(ODEfile,x(1),x(3),h,yi,3,varargin{:});

y(:,1:3) = b;

for i = 1:
L(:,1)

end

n w

feval (ODEfile,x(1),y(:,1},varargin{:});

% Solution
for i = 3:length(x)-1
yi(:,i+1) = y(:,1) + A(i)/12 * (23*f(:,1) - 16*f(:,i-1) +...
5*f(:,1-2));
E(:,i+1) = feval(ODEfile,x(i+1),y(:,1i+1),varargin{:});
end

AdamsMoulton.m

function [x,y] = AdamsMoulton(ODEfile,xi,xf, h,yi,varargin)

% ADAMSMOULTON Solves a set of ordinary differential equations by
the Adams-Moulton method.

0@ o°

20

[X,Y]=ADAMSMOULTON('F',XI,XF,H,YI) solves a set of ordinary
differential equations by the Adams-Moulton method, from XI to
XF. The equations are given in the M-file F.M. H is the
length of interval and YI is the vector of initial values of

o o

o

See also ODE23, ODE45, ODE113, ODE1l5S, ODE23S, EULER, MEULER,
RK, ADAMS

% the dependent variable at XI.

%

% [X,Y]=ADAMSMOULTON('F',XI,XF,H,YI,P1,P2,...) allows for
% additional arguments which are passed to the function

% F(X,P1,P2,...).

%

%

%

o

(c¢) N. Mostoufi & A. Constantinides
% January 1, 1999

% Initialization

if isempty (h) | ==
h = linspace(xi,xf):
end
yvi = (yi(:).')"; % Make sure it's a column vector
x = [xi:h:xf]"'; % Vector of x values
if x(end) ~= x£

x(end+1) = xf;
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end
d = diff(x); % Vector of x-increments

% Starting values
[a,b] = RK(ODEfile,x(1),x(4),h,vi, 4,varargin{:});
y(:,1:4) = b;

f(:,1) = feval(ODEfile,x(1),y(:,1),varargin{:});

% Solulion
for i = 4:length(x)-1

[s

% Predictor

yi:,i+1) = y(:,1) + A(i)/24 * (55*f(:,1) - 59*f(:,i-1)
+ 37*£(:,1-2) - 9*f(:,1-3));
f(:,i+1) = feval (ODEfile,x(i+1),y(:,1+1),varargin{:});

% Corrector
yvi:,i+1) = y(:,1) + d(i)/24 * (9*f(:,i+1) + 19*f(:,1)
- S5*f(:,1-1) + £(:,1-2));

f(:,1+1) = feval(ODEfile,x(i+l),y(:,i+1),varargin{:});
end
% Solution
for i = 4:length(x)-1

% Predictor

yvi(:,i+1l) = y(:,1) + d(i)/24 * (55*f(:,1) - 59*f(:,1i-1)

+ 37*£(:,1-2) - 9*f(:,1-3)):
f(:,i+1) = feval (ODEfile,x(i+1),y(:,1+1),varargin{:});

% Corrector
yi{:,i+1) = y(:,1) + A(1)/24 * (9*f(:,i+1) + 19*f(:,1)
- 5%f(:,i-1) + f£(:,1-2));
f(:,1i+1) = feval (ODEfile,x(i+1),y(:,1+1),varargin{:});
end

Input and Results

>>Example5_3

Inlet temperature (K) = 1035
Inlet pressure (Pa) = 162e3
Inlet volumetric flow rate (m3/s) = 0.002
Inlet conversion of acetone =0
Volume of the reactor (m3) = 0.001
External gas temperature (K) = 1200
Overall heat transfer coefficient (W/m2.K) = 110
Heat transfer area (m2/m3) = 150

M-file containing the set of differential equations : 'Ex5_3_func'
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Step size = 0.00003

1 ) Euler

2 ) Modified Euler

3 ) Runge-Kutta

4 ) Adams

5 ) Adams-Moulton

6 ) Comparison of methods

0 ) End
Choose the method of solution : 6

Input the methods to be compared, as a vector : [1, 3, 4]

Order of the Runge-Kutta method (2-5) = 2

Euler

Modified Euler
Runge-Kutta

Adams

Adams-Moulton
Comparison of methods
End

Choose the method of solution : 0
Do you want to repeat the solution with different input data (0/1)? 0

Discussion of Results: The mole and energy balance equations are solved by three
different methods of different order of error: Euler | O(h%)]. second-order Runge-Kutta | O(h")],
and Adams [O(h")]. Graphical results are given in Figs. E5.3a and b.* At the beginning the
temperature of the reactor decreases because the reaction is endothermic. However, it starts
to increase steadily at about 10% of the length of the reactor, due to the heat transfer from the
hot gas circulation around the reactor.

It can be seen from Figs. ES.3a and b that there are visible differences between the three
methods in the temperature profile where the temperature reaches minimum. This region is
where the change in the derivative of temperature (energy balance formula) is greater than the
other parts of the curve, and as a result, different techniques for approximation of this
derivative give different values for it. The reader is encouraged to repeat this example with
different methods of solution and step sizes.

* When running Example5_3.m, solution results will be shown on the screen by solid lines of different color.
However, results for the three different methods used here are illustrated by different line type in Figs. ES 3¢ and b
in order to make them identifiable.
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(a) Acetone Conversion Profile

100' L -1 -1 v i T ‘
_ 8of 1
0
<
x
= 607
S
a
S 40+
Q
© ]
20 - H
0/——_L~— — PO R N ! .
0 01 02 03 04 05 06 07 08 09 1
(b) Temperature Profile
1080——— — — ———————— - . —— —
1070’— N
< ' - Euler
= meo"— P RK2 -
@ : ’ - Adams ‘
£ 1050 . — -
2
Q
£ 1040 - 4
O |
= \ - \
1030‘“\ . ._.—,:/ ’
1020' — L L [ i S . ]
0 01 02 03 04 05 06 07 08 09 1
ViV
R

Figure E5.3 Conversion and temperature profiles for Example 5.3.

5.6 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS-
BoOUNDARY-VALUE PROBLEMS

Ordinary dif

ferential equations with boundary conditions specified at two or more points of

the independent variable are classified as boundary-vatue problems. There are many chemical
engincering applications that result m ordinary differential equations of the boundary-value
type. To mention only a few examples:

1. Diffusion with chemical reaction in the study of chemical catalysis or enzyme
catalysis

2

Heat and mass transfer in boundary-layer problems
Application of rigorous optimization methods. such as Pontryagin’s maximum

principle or the cateulus of variations

Discretization of nonlincar elliptic partial differential equations [ 3].
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The diversity of problems of the boundary-value type have generated a variety of
methods for their solution. The system equations in these problems could be linear or
nonlinear, and the boundary conditions could be linear or nonlinear, separated or mixed, two-
point or multipoint. Comprehensive discussions of the solutions of boundary-value problems
are given by Kubi¢ek and Hlavacek [3] and by Aziz [4]. In this section, we have chosen to
discuss algorithms that are applicable to the solution of nonlinear (as well as linear) boundary-
value problems. These are the shooting method, the finite difference method, and the
collocation methods. The last two methods will be discussed again in Chap. 6 in connection
with the solution of partial differential equations of the boundary-value type.

The canonical form of a two-point boundary-value problem with linear boundary
conditions is

dy.
T'X'— = [, Y Yy e ) g s xsx b j=1,2,0, n (5.100)
¢

where the boundary conditions are split between the initial point x, and the final point.x,. The
first r equations have initial conditions specified and the last (n - r) equations have final

conditions given:

vi{x) = ¥ Joo20 r (5.101)

y(x) =y, j=Ereloon (5.102)

A second-order two-point boundary-value problem may be expressed in the form:

d’y dy
— = flx,y, —= X, £ X <X 5.103
dx? dx 0 f ( )
subject to the boundary conditions
agy(x,) * byy'(x9) = ¥, (5.104)
a,y(x) + by '(x) = v, (5.105)

where the subscript 0 designates conditions at the left boundary (initial) and the subscript f
identifies conditions at the right boundary (final).

This problem can be transformed to the canonical form (5.100) by the appropriate
substitutions described in Sec. 5.3.
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5.6.1 The Shooting Method

The shooting method converts the boundary-value problem to an initial-value one to take
advantage ot the powerful algorithms available for the integration of initial-value problems
(see Sec. 5.5). In this method, the unspecified initial conditions of the system differential
equations are guessed and the equations are integrated forward as a set of simultaneous initial-
value differential cquations. At the end, the calculated final values are compared with the
boundary conditions and the guessed initial conditions are corrected if necessary. This
procedure is repeated until the specified terminal values are achieved within a small
convergence criterion. This general algorithm forms the basis for the family of shooting
methods. These may vary in their choice of initial or final conditions and in the integration
ol the equations in one direction or two directions. In this section. we develop Newton's
technique. which is the most widely known of the shooting methods and can be applicd
successtully to boundary-value problem of any complexity as long as the resulting initial-value
problem is stable and a set of good guesses for unspecified conditions can be made [3].
We develop the Newton method for a set ot two differential equations

D )
—  filxoyey
Je AT
(5.106)
dy,
= = fla, voys)
dx
with split boundary conditions
Vi) =y (5.107)
ya(x) - vy, (5.108)
We guess the initial condition for y,
V(X)) - Y (5.109)

If the system equations are integrated forward, the two trajectories may look like those in Fig,
5.5. Since the value of v,(x,;) was only a guess, the trajectory of v, misses its target at.x,; that
is, it does not satisty the boundary condition of (5.108). For the given guess of vy, the
calculated value of y, at x, is designated as y,(x,, Y). The desirable objective is to find the
value of y which forces y,(x;, v) to satisfy the specified boundary condition, that is,

Vol ) = sy (5.110)
Rearrange Eq. (5.110) to
dy) = »lxy) -y, =0 (5.111)



5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 311

The function ¢(y) can be expressed in a Taylor series around v:

o1+ a1 = den) - Sy - opayy (5.112)

In order for the system to converge, that is, for the trajectory of v, to hit the specified boundary
value of x;:

lim ¢(y +Ay) - 0 (5.113)

Ay -0

Theretore, Eq. (5.112) becomes

0 - dy) - Ly« orayy) (5.114)
oy
Truncation and rearrangement gives
“ey)
Ay - ¢
ED) (5.115)
ay
T 0 Yoy
7 ]
A
YolXp. 1)
AN \ /
- ¥, ’//
—~—
X, X

Figure 5.5 Forward integration using a guessed initial condition vy.
The < designates the known boundary points.
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The reader should be able to recognize this equation as a form of the Newton-Raphson
equation of Chap. 1. Using the definition of ¢(y) [Eq. (5.111)], taking its partial derivative,
and combining with Eq. (5.115), we obtain

[y (s ¥) = 3y 4] 5y
Ay = ! = - . (5.116)
ayz(x/’ Y) 3)’2(x 5 Y)
oy oy

where 3y is the difference between the specified final boundary value y,, and the calculated
final value y,(x,, y) obtained from using the guessed y:
By = ~[v,(x,, v) = ¥y ) (5.117)

The value of Ay is the correction to be applied to the guessed y to obtain a new guess:

(Y)ncu - (Y)llltl * AY (5”8)

In order to avoid divergence it may sometimes be necessary to take a fractional correction step
by using relaxation, that is,

(Y)neu - (Y)(1][I ! pAY 0< p = 1 (51]9)

Solution of the set of differential equations continues with the new value of y [calculated
by Eq. (5.119)] until 1Ayl < €.

The algorithm can now be generalized to apply to a set of n simultaneous system
equations:

dyj - - o)
L = j;(x, AUTRUSN Yo x<x, 5 j 12000 N (5.100)
dx

whose boundary conditions are split between the initial point and the final point. The first r
equations have initial conditions specified, and the last (n - r) equations have final conditions
given:

vi(x) =y J=1.2.0000 (5.101)

y/(xf) <Y,y j=r+l,....n (5.102)

In order to apply Newton’s procedure to integrate the system equations {forward. the missing
(n - r) initial conditions are guessed as follows:

yj(x()) 7 j=r+l,....n (5.120)
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The system equations (5.100) with the given initial conditions (5.101) and the guessed initial
conditions (5.120) are integrated simultaneously in the forward direction. At the right-hand
boundary (x,), the Jucobian matrix [equivalent to the derivative term in Eq. (5.116)] is
evaluated:

L‘ ay, ay, [
ay,., " ay, ., "7 ay, "
Joyy | (5.121)
A | av, ’ ay, ‘
3y, , 8y,_3“’ dy,

The correction of the guessed initial values is implemented by the equation
Ay = [J,.y)] ' by (5.122)

where the vector Ov is the difference between the specified final houndary values and the
calculated final values using the guessed initial conditions

yooalyay) -y
oy - - | ... (5.123)
YY)
The new estimate of the guessed initial conditions is then evaluated from Eq. (5.118) in the
vector form.
(Y - (Y ~ PAY 0<p <l (5.119)

The shooting method algorithm using the Newton technique is outlined in the following
five steps:

1. The missing initial conditions of the system cquations are guessed by Eq. (5.120).
2. The system equations (5.100) are integrated forward simultancously.

3. Evaluate the Jacobian matrix from Eq. (5.121) either numerically or analytically.
4. The correction Ay 1o be applied to y is calculated from Eq. (5.122). The new value

of v is obtained from Eq. (5.119).
5. Steps 2 and 3 are repeated, cach time with a corrected value of vy, until
min(lAy|) < €. where ¢ is the convergence criterion.
Note that the number of differential equations with final boundary conditions is not in any case

more than half of the total number of equations. In the case when final conditions are
specified for more than half the total number of differential cquations. we may simply reverse
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the integrating direction and as a result obtain fewer number of final conditions. The
application of the Newton technique in the shooting method by the above algorithm is
demonstrated in Example 5.4.

Example 5.4: Flow of a Non-Newtonian Fluid. Write a gencral MATLAB function
for solution of a boundary value problem by the shooting method using the Newton's
technique. Apply this function to find the velocity profile of a non-Newtonian fluid that is
flowing through a circular tube as shown in Fig. ES.4a. Also calculate the volumetric flow
rate of the fluid. The viscosity of this fluid can be described by the Carreau model [5]:

i _ {‘ . (HY)Z]“I - /2
Hy
where p is the viscosity of the fluid, p, is the zero shear rate viscosity, y is the shear rate, 1,
is the characteristic time, and n is a dimensionless constant.
The momentum balance for this flow, assuming the tube is very long so that end effect
is negligible, results in

‘_/(rf_) - —Ml'

1z

(1)

dr
where AP/L is the pressure drop gradient along the pipe and the shear stress is expressed as
dv.(r)

dr

T,. ~ MY - -u

Thercfore, Eq. (1) is a seccond-order ordinary differential equation. which should be solved
with the following boundary conditions:

Noslip atthe wall: r=R. v,=0

dv.
Symmetry: r=0. — =0
dr

The required data for the solution of this problem are:

y=102.0Pas =436 n=0375 R=0.Im -AP/L=20kPa/m

o

Figure E5.4a
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Method of Solution: First we define the following two variables:

Dimensionless distance: n=r/R
Dimensionless velocity: ¢ =v, /v

where v’ = (-AP)R*/Ly,. Eq.(1)can be expanded and rearranged in its dimensionless form
into the tfollowing second-order differential equation:

N - n)/2
i@ a1+ A2 £]_(P_ i
d’¢ _ _ madn dn o
dn’ (1 - n)}»:( @]
| - dn
| - )ﬁ(ﬂ)-
dn

where A =1,v'/R.
In order to obtain the canonical form of Eq. (2), we apply the following transformation:

_do
.\‘| -
dn

y, = ¢

The canonical form of Eq. (2) is the given as

i."\ - [l - )\.2)‘]2}” i

o

dn . (1 n)kzv\'] 3)
[l + )\,:.\']2]

dyv,

dT{ - N 4)

The set of nonlinear ordinary differential equations (3) and (4) should be solved with the
following boundary conditions:

WO =y,=0 (5)
() =y, =0 (6)

The initial value y (0) is known, but the initial value y,(0) must be gucssed. We designate this
guess, in accordance with Eq. (5.120), as follows:

v =y =[(-AP)R/4Lp, /v =1/4 (7
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The right-hand side of Eq. (7) corresponds to the velocity of the fluid at the center of the pipe
if it was a Newtonian fluid with the viscosity .
The complete set of equations for the solution of this two-point boundary-value problem
consists of:
1. The four system equations with their known boundary values |Eqgs. (3)-(6)]
The guessed initial condition for y, [Eq. (7)]
Eq. (5.121) for construction of the Jacobian matrix
Eq. (5.123) for calculation of the dv vector
Eqs. (5.122) and (5.119) for correcting the guessed initial conditions.

wom

e

Once the velocity profile is determined, the flow rate of the fluid can be calculated from the
following integral formula:
R
Q0 - j.ZTCI‘\"?dI'
0

Program Description: The MATLAB function shooting.m is developed to solve a set
of first-order ordinary differential equations in a boundary-value problem using the shooting
method. The structure of this function is very similar to that of the function Newton.m
developed in Example 1.4,

The function shooting.im begins with checking the input arguments. The inputs to the
function are the name of the file containing the set of differential equations, lower and upper
limits of integration interval, the integration step size, the vector of initial conditions, the
vector of final conditions, the vector of guesses of initial conditions for those equations who
have final conditions, the order of Runge-Kutta method. the relaxation factor, and the
convergence criterion. From the above list, introducing the integration step size. the order of
Runge-Kutta method, the relaxation factor. and the convergence criterion are optional. and the
function assumes default values for each of the above variables, if necessary. The number of
guessed initial conditions has to be equal to the number of final conditions: also, the number
of equations should be equal to the total number of boundary conditions (initial and final). If
these conditions are not met, the function gives a proper error message on the screen and stops
execution.

The next section in the function is Newton's technique. This procedure begins with
solving the set of differential equations by the Runge-Kutta method, using the known and
guessed initial conditions, in forward direction. It then sets the differentiation increment for
the approximate initial conditions and consequently evaluates the elements of the Jacobian
matrix, column-wise, by differentiating using forward finite differences method. At the end
of this section, the approximate initial conditions are corrected according to Egs. (5.119) and
(5.122). This procedure is repeated until the convergence is reached for all the final
conditions.

[t is important to note that the function shooting.m requires to receive the values of the
set of ordinary differential equations at each point in a column vector with the values of the
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equations whose initial conditions are known to be at the top, followed by those whose final
conditions are fixed. Itis also important to pass the initial and final conditions to the function
in the order corresponding to the order of equations appearing in the file that introduces the
ordinary differential equations.

The main program Example5_4.m asks the reader to input the parameters required for
solution of the problem. The program then calls the function shooting to solve the set of
equations and finally, it shows the value of the flow rate on the screen and plots the calculated
velocity profile. The default values of the relaxation factor and the convergence criterion are
used in this example.

The function £x5_4_func.m evaluates the values of the set of Egs. (3) and (4) at a given
point. The first function evaluated is that of Eq. (3), the initial condition of which is known.

Program

Example5_4.m

% bBxample5_4.m

% Solution to Example 5.4. This program calculates and plots
% the velocity profile of a non-Newtonian fluid flowing in a
% circular pipe. It uses the function SHOOTING to solve the
% one-dimentional equation of motion which is rearranged as
% a set of boundary-value ordinary differential equations.

% Input data

R = input (' Inside diameter of the pipe (m) = ');

dP = input (' Pressure drop gradient (Pa/m) = ');

rmul = input(' Zero shear rate viscosity of the fluid (Pa.s) = ');
tl = input(' Characteristic time of the fluid (s) = ');

n = input(' The exponent n from the power-law = ');

fname = input('\n M-file containing the set of differential
equations : '});

order = input (' Order of Runge-Kutta method = ');

h = input(' Step size = ');

vmax0 = dP*R"2/(4*mul) ; % Initial guess of velocity
vstar = 4*vmax0;
lambda = tl*vstar/R;

% Solution of the set of differential equations

[eta,y] = shooting(fname,h/100,1,h,0,0,vmax0,/vmax, order,
[1,0],n, lambda) ;

r = eta*R; % Radial position

vz = y(2,:)*vstar; % Velocity profile
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Q = 2*pi*trapz(r,r.*vz); % Flow rate
fprintf('\n Volumetric flow rate = %4.2f lit/s \n',0*1000)

% Plotting the results
plot (1000*r,vz)
ylabel('v_z (m/s)"')
xlabel ('r (mm) ')

Ex5_4_func.m

function £ = Ex5_4_func(eta,y,n, lambda)
% Function Ex5_4_ func.M

This function introduces the set of ordinary differential

equations used in Example 5.4.

N

30

f(l) = -(y(l)/eta+{ltlambda™2*y(1)"2)"((1-n)/2))/
(1-(1-n)*lambda”2*y (1) /(l+lambda”2*y(1)"2));

£(2) = y(1);

f = £ % Make it a column vector

shooting.m

function [x,y] = shooting(ODEfile,x0,xf,h,y0,yf,gammal, order,
rho, tol,varargin)

SHOOTING Solves a boundary value set of ordinary differential
eguations by shooting method using Newton's technique.

P e

@

[X,Y]=SHOOTING('F',6X0,XF,H,Y0,YF,GAMMA) integrates the set of
ordinary differential equations from X0 to XF, using the
4th-order Runge-Kutta method. The equations are described in
the M-file F.M. H is the step size. Y0, YF, and GAMMA are the
vectors of initial conditions, final conditions, and starting
guesses, respectively. The function returns the independent
variable in the vector X and the set of dependent variables in
the matrix Y.

@ 0 0 ot g

of of o 30

¢

[X,Y]=SHOOTING('F',X0,XF,H, Y0, YF,GAMMA, ORDER, RHO, TOL, P1,P2,...)
applies the ORDERth-order Runge-Kutta method for forward
integration, and uses relaxation factor RHO and tolerance TOL
for convergence test. Additional parameters Pl, P2, ... are
passed directly to the function I'. Pass an empty matrix for
ORDER, RHO, or TOL to use the default value.

o

[

IO o° 99 o0 I°

See also COLLOCATION, RK

o

(c) N. Mostoufi & A. Constantinides
January 1, 1999

o0

% Initialization
if isempty(h) | h == 0
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h = (xf - x1)/99;

end

if nargin < 8 | isempty(order)
order = 4;

end
if nargin < 9 | isempty(rho)
rho = 1;
end
if nargin < 10 | isempty(tol)
tol = le-6;
end
vO = (yO(:).")"; % Make sure it's a column vector
vE = (yE(:).") " % Make sure 1t's a column vector
gammal = (gammalO(:).')"'; % Make sure it's a column vector

% Checking the number of guesses
if length(yf) ~= length(gammaO)
error (' The number of guessed conditions is not equal to the
number of final conditions.')
end

r length(yO0); % Number of initial conditions
n = r + length(yf); % Number of boundary conditions
% Checking the number of equations
ftest = feval (ODEfile,x0, [y0 ; gammal],varargin{:});
if length(ftest) ~= n

error (' The number of equations is not equal to the number of
boundary conditions. ')
end

n

gammal = gammal * 1.1;
gammanew = gammal;
iter = 0;

maxiter = 100;

% Newton's technigue

while max(abs(gammal - gammanew)) > tol & iter < maxiter
iter = iter + 1;
gammal = gammanew;
[x,y] = RK(ODEfile,x0,xf,h, [y0 ; gammal],order,varargin{:}):

fnk = y(r+l:n,end);

% Set d(gamma) for derivation
for k = 1l:1length(gammal)

if gammal (k) ~= 0
dgamma (k) = gammal (k) / 100;
else

dgamma (k) = 0.01;
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end
end

% Calculation of the Jacobian matrix
a = gammal;
for Xk = l:n-r
a(k) = gammal (k) + dgamma (k) ;
[xa,yal = RK(ODEfile,x0,xf,h,{y0 ; al],order,varargin{:});
fnka = ya(r+l:n,end);
jacob(:,k) = (fnka - fnk) / dgamma(k);
a(k) = gammal (k) - dgamma (k) ;
end
% Next approximation of the roots
if det(jacob) ==
gammanew = gammal + max([abs(dgamma), 1.1*tol]);
else
gammanew = gammal - rho * inv(jacob) * (fnk - yf);
end
end

1f iter >= maxiter
disp('Warning : Maximum ileralions reached.')
end

Input and Results

>>kxample5_4

Inside diameter of the pipe (m) = 0.1

Pressure drop gradient (Pa/m) = 20e3

Zero shear rate viscosity of the fluid (Pa.s) = 102
Characteristic time of the fluid (s) = 4.36

The exponent n from the power-law = 0.375

M-file containing the set of differential equations : 'Ex5_4_ func'
Order of Runge-Kutta method = 4
Step size = 0.01

Volumetric flow rate = 2.91 lit/s

Discussion of Results: The volumetric flow rate of the fluid in this condition is
calculated to be 2.91 L/s, and the velocity profile is shown in Fig. E5.4b. It should be noted
that because there is the term 1/n in Eq. (2), the lower limit of numerical integration cannot
be zero; instead, a very small value close to zero should be used in such a situation. In the
main program Example5_4, the lower limit of integration is set to 4/100, which is negligible
with respect to the dimension of the pipe.
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Figure E5.4b Velocity profile for non-Newtonian fiuid.

5.6.2 The Finite Difference Method

The finite-difference method replaces the derivatives in the differential equations with finite
difference approximations at each point in the interval of integration, thus converting the
differential equations to a large set of simultaneous nonlinear algebraic equations. To
demonstrate this method, we use, as before, the set of two differential equations:

dy, I )
— Ly y,
dx J1 S 02
(5.106)
e B )
=L,y 0y
dx 2 ] 2
with split boundary conditions:
¥(x) Ty (5.107)

ya(x) = vy, (5.108)
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Next, we express the derivatives of v in terms of forward finite differences using Eq. (4.33):

dy, ; 1 .
dx - 7](.\'|.,',| - .\']A,) - 0(/1) (5124(1)
dy, ; 1

2L (v, = e 2 O(h) (5.124b)
dx h

For higher accuracy, we could have used Eq. (4.41), which has error of order (). instead of
Eq. (4.33). In cither case, the steps of obtaining the solution to the boundary-value problem
are identical.

Combining Egs. (5.124) with (5.106) we obtain

Yiiar TV Ry o) (5.125a)

Voior T~ Xy~ hf:(\~ Mo .\'1.,') (5.125h)

We divide the interval of integration into n segments of equal length and write Egs. (5.125)
fori=0,1,2,...,n-1. These form a set of 2n simultaneous nonlinear algebraic equations
in (2n + 2) variables. The two boundary conditions provide values for two of these variables:

vi(x) = v (5.107)

VoX)) 7y, T Y, (5.108)

Therefore, the system of 2n equations in 2n unknown can be solved using Newton’s method
for simultancous nonlinear algebraic equations, described in Chap. 1. It should be
emphasized. however, that the problem of solving a large set of nonlinear algebraic equations
is not a trivial task. It requires, first, a good initial guess of all the values of y,. and it involves
the evaluation of the (2n x 2n) Jacobian matrix. Kubiek and Hlavacek [3] state that
computational experience with the finite difference technique has shown that, for a practical
engincering problem, this method is more difficult to apply than the shooting method. They
recommend that the finite difference method be used only for problems that are too unstable
to integrate by the shooting methods. On the other hand, if the differential equations are
linear, the resulting set of simultancous algebraic equations will also be linear. In such a case.
the solution can be obtained by straightforward application of matrix inversion or the Gauss
elimination procedure.
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5.6.3 Collocation Methods

These methods are based on the concept of interpolation of unequally spaced points: that is,
choosing a function, usuaily a polynomial. that approximates the solution of a differential
equation in the range of integration, x, < x < x,, and determining the coefficients of that
function from a set of basc points.

Let us again consider the set of two dilfcrential equations:

dy,
— - [iay v n)
dx
(5.106)
dy, |
= = ’?(~Ys -\\l N _\‘2)
dy
with split boundary conditions:
i) = v (5.107)
volx) = vy, (5.108)

Suppose that the solutions y,(x) and y.(x) of Eq. (5.106) can be approximated by the following
polynomials, which we call trial functions:

N
P (x) =c¢ gy +c 8=,y .+ x" (5.126a)

in

Al (x) 1 n

Yo(x) = Py (X) = ¢y 7 ¢y A F ('4_,.x2 .+ 0, x” (5.126b)

We take the derivatives of both sides of Eq. (5.126) and substitute in Egs. (5.106):

P X)) = f(x, P (x). Py (X)) m - 1.2 (5.127)
We then form the residuals:
R, (x) =P’ (x)-[(x.P (x), P, (x)) m=1.2 (5.128)
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The objective is to determine the coefficients {¢,, i =0, 1.. .., nim =12} of the
polynomials P, (x) to make the residuals as small as possible over the range of integration of

mn

the differential equation. This is accomplished by making the following integral vanish:

Y

/’ WR (\)dx = 0 (5.129)
where W, are weighting functions to be chosen. This technique is called the merhod of
weighted residuals.

The collocation method chooses the weighting functions to bhe the Dirac delta (unit
impulse) function:

W, = 8(n - x)  x <o <y (5.130)

which has the property that

‘I

fa(,\‘)f)(.\ - x0dyalyy) (5.131)
Therefore. the integral (5.129) becomes

f W,R (x)dx - R

Yy

W) 0 (5.132)

Combining Eqgs. (5.128) and (5.132), we have

P = L Py Py () - 0 m- 1.2 (5.133)

2.n

This implies that at a given number of collocation points, {x, | k =0, 1, . ... n}, the
coefficients of the polynomials (5.126) arc chosen so that Eq. (5.133) is satistied: that is, the
polynomials are exact solutions of the differential equations at those collocation points (note
that x, = x). The larger the number of collocation points. the closer the trial function would
resemblc the true solution y, (x) of the differential equations.

Eq. (5.133) contains the (21 + 2) yet-to-be-determined coefficients {c,, 1i=0.1... ., n
m= 1,2} of the polynomials. Thesc can be calculated by choosing (2n + 2) collocation points.
Because it is necessary to satisfy the boundary conditions of the problem. two collocation
points are already fixed in this case of boundary-value problem. Atx= vy

n
" t
V(X)) =¥ g = Clg O Xy T Gy - Z ¢ i (5.134)

-0
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and at x = x;:
ya(x,) = Yoy T Cag T Oy Xt ot G "x," = Z cz_,.xfi (5.135)
(=0

Thercfore, we have the freedom to choose the remaining (2n) internal collocation points and
then write Eq. (5.133) for each of these points:

Pll n(XI) a fl(xl * I. n(’\ ) P’ n('XI)) =0

(5.136a)
P/l,n(xn) B fl(xn’ PLn P" ”(X )) = 0
Plz.n(/"o) - hHlxgs PLxg) s Py () = 0

(5.136b)

P/’l.n('xu—l) j:_’(xn 1 In(rn l) P’ n(‘xn-l)) =0

Note that we have also written Eq. (5.133) for x = x, = x, in Eq. (5.136a) and for x = x; in Eq.
(5.136h) because the values y,; and y,, are yet unknown. Eqgs. (5.134)-(5.136) constitute a
complete set of (2n + 2) simultaneous nonlinear equations in (212 + 2) unknowns. The solution
of this problem requires the application of Newton’s method (see Chap. 1) for simultaneous
nonlinear equations.

If the collocation points are chosen at equidistant intervals within the interval of
integration, then the collocation method is equivalent to polynomial interpolation of equally
spaced points and to the finite difference method. This is not at all surprising, as the
development of interpolating polynomials and finite differences were all based on expanding
the function in Taylor series (see Chap. 3). It is not necessary, however, to choose the
collocation points at equidistant intervals. In fact, it is more advantageous to locate the
collocation points at the roots of appropriate orthogonal polynomials, as the following
discussion shows.

The orthogonal collocation method, which is an extension of the method just described,
provides a mechanism for automatically picking the collocation points by making use of
orthogonal polynomials.” This method chooses the trial functions y,(x) and y,(x) to be the
linear combination

n+l

Yul¥) = X a, P(x) m=1.2 (5.137)
i-0

* For a more complete discussion of orthogonal collocation methods see Finlayson [1].
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of a series of orthogonal polynomials P (x):

Py(x) = ¢4y

Pix) = ¢yt x

ki

Py(x) = ¢y g = Ca (X 4 CyaX (5.138)

2

Px) = ¢ g+ € X % ¢ X~ * ... %¢ X

I

This set of polynomials can be written in a condensed form:
P(x) =Y ¢t i= 001 n-t (5.139)
k0

The coefticients ¢, are chosen so that the polynomials obey the orthogonality condition
defined in Sec. 3.10:
b

f w()P(OP () dx 0 i+ (5.140)

a

When P (x) is chosen to be the Legendre set of orthogonal polynomials [see Table 3.7],
the weight w(x) is unity. The standard interval of integration for Legendre polynomials is
[- 1, 1]. The transformation equation (4.92) is used to transtorm the Legendre polynomials
to the interval [, x,|. which applies to our problem at hand

(x, = xy) (x, 1+ x,)

X = T 5.141
5 5 ( )

Eq. (5.141) relates the variables x and z so that every value of x in the interval [x, A/
corresponds to a value of z in the interval -1, 1] and vice versa. Therefore, using x or = as
independent variables is equivalent. Hereafter. we use 7 as the independent variable of the
Legendre polynomials to stress that the domain under study is the interval [ 1. 1]. The
derivatives with respect to x and z are related o each other by the following relation:

d~\~m 2 li'\‘lﬂ

B 5.142
dx  (x, - ) dz ( !

The two-point boundary-value problem given by Egs. (5.106)-(5.108) has (2n + 2)
collocation points, {z,1j=0, I, ..., n + 1}, including the two known boundary values (5, = -1
and z,,, = 1). The location of the n internal collocation points (z, to z,) arc determined from

S+l



5.6 Nonlinear Ordinary Differential Equations-Boundary-Value Problems 327

the roots of the polynomial P,(z) = 0. The coefficients a,,, in Eq. (5.137) must be determined
so that the boundary conditions are satisfied. Eq. (5.137) can be written for the (1 + 2) points
(zt0 7, as

n-l

vz =Y d,s, (5.143a)
i 0
n-1

215 =Y dy,z) (5.143b)

-0

where the terms of the polynomials have been regrouped. Egs. (5.143) may be presented in
malrix notation as

¥, = 04, (5.144q)

y, = Qd, (5.144b)

where d, and d, are the matrices of coefficients and

i = j= 010l (5.145)

Solving Egs. (5.144) for d, and d,, we find

d Qy, (5.146a)

d, - Q'y, (5.146b)

The derivatives of vs are taken as

d),l(:/) nel

- Z du"z," l (5.147a)
dz i-0
dy,(z) "X ,
—LE - Y dy iz (5.147h)
dz i-0
which in matrix form become
dy
_d—-l' = Cdl = CQ -lyl = Ayl (5148(1)

2 -0Cd, - CQ'y, = Ay, (5.148b)
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where

Jj=0.1...., n+1 (5.149)

The two-point boundary-value problem of Eq. (5.106) can now be expressed in terms of
the orthogonal collocation method as

Ay, = fi(z, ¥, 7,)

(5.150)
Ay, - [,(z. 5. ;)
or

n-l
Auvyy = NGy o)) (5.151a)

10

n-1
Ava, ~h(E v vy (5.151bh)

i=0

with the boundary conditions
YWz =)0 and Yo=Y Z,-) =Y.y (5.152)

Eqs. (5.151) and (5.152) constitute a set of (2n + 4) simultaneous nonlinear equations whose
solution can be obtained using Newton's method for nonlinear equations. It is possible to
combine Eqs. (5.151) and present them in matrix form:

A, Y - F (5.153)
where
A 0
, (5.154)
0 A

Y1
Y

. . . /
Yror oo Y Y00 oo .‘2.»141] (5.155)
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fi(Zos ¥ior Ya)

fi Fi s Yo Yaen)
F - = (5.156)

2 £(25+ Y1 00 ¥20)

_fl(:/rl‘ yl‘n 1 .\': n-l)_

The bold zeros in Eq. (5.154) are zero matrices of size (n + 2) X (n + 2), the same size as that
of matrix A.

It should be noted that Eq. (5.153) is solved for the unknown collocation points which
means that we should exclude the equations corresponding to the boundary conditions. In the
problem described above, the first and the last equations in the set of equations (5.153) will
not be used because the corresponding dependent values are determined by a boundary
condition rather than by the collocation method.

The above formulation of solution for a two-equation boundary-valuc problem can be
extended to the solution of m simultaneous first-order ordinary differential equations. For this
purpose, we define the following matrices:

A0 ... 0
0A ... 0
Y (5.157)
00 A
Y - [ydees Y’ (5.158)
F - [fl ’fZ """ fm]( (5.159)

Note that the matrix A in Eq. (5.157) is defined by Eq. (5.148) and appcars m times on the
diagonal of the matrix A,,. The values of the dependent variables {y, i=1,2...., m;
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j=0,2,..., n + 1} are then evaluated from the simultaneous solution of the following set of
nonlinear equations plus boundary conditions:

A,Y - F -0 (5.160)

The equations corresponding to the boundary conditions have to be excluded from Eq. (5.160)
at the time of solution.

If the problem to be solved is a second-order two-point boundary-value problem in the
form

v/ foyoyh (5.161)
with the boundary conditions
Y =¥, and M) =y, (5.162)

we may follow the similar approach as described above and approximate the function y(x) at
(1 + 2) points, after transforming the independent variable from x to z, as

y(z;) = dz (5.163)
i 0
The derivatives of y are then taken as
d ZV) n+l i
LA Y diz) ! (5.164)
d: in
d 2),(:) net .
L= Y di(i - 1)z ° (5.165)
(122 ¢t 0
These equations can be written in matrix form:
d -
L-coly < Ay (5.166)
d’ ;
; 2 -DQ'y - By (5.167)
az-

where

i=0,1,...,n+1

e = 1) 5
J-Liel / F-0.1,. . nel (5.168)
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The two-point boundary-value problem of Eq. (5.161) can now be expressed in terms of
the orthogonal collocation method as

By - f(z.y. Ay) (5.169)

Eq. (5.169) rcpresents a set of (n + 2) simultancous nonlinear equations, two of which
correspond to the boundary conditions (the first and the last equation) and should be neglected
when solving the set. The solution of the remaining n nonlinear equations can be obtained
using Newton’s method for nonlincar cquations.

The orthogonal collocation mcthod is more accurate than either the finite difference
method or the collocation method. The choice of collocation points at the roots of the
orthogonal polynomials reduces the error considerably. In fact, instead of the user choosing
the collocation points, the method locates them automatically so that the best accuracy is
achieved.

Example 5.5: Solution of the Optimal Temperature Profile for Penicillin
Fermentation. Apply the orthogonal collocation method to solve the two-point boundary-
value problem arising from the application of the maximum principle of Pontrvagin to a batch
penicillin fermentation. Obtain the solution of this problem, and show the profiles of the state
variables, the adjoint variables, and the optimal temperature. The equations that describe the
state of the system in a batch penicillin fermentation, developed by Constantinides et al.|{6],
are:

dy, b

Cell mass production: — - by, - —'\',2 ¥, (0) = 0.03 (N
dr b,
. . dy,
Penicillin synthesis: 1’ = by, w(0) = 0.0 2)
dt . -

where y, = dimensionless concentration of cell mass
¥, = dimensionless concentration of penicillin
t = dimensionless time, 0 < r < I.

The parameters b, are functions of temperature, 0:

10 - wy(8 - wy) |
1O - wy(25 - w,)?

LO - w,(6 - »1'3)2
1O - wy(25 - w3)2

by —w

(3)
1.0 - w,(0 - \'1‘6)2

1O - wy(25 - wy)
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where w, = 13.1 (value of b, at 25°C obtained from fitting the model to experimental data)
w, = 0.005
w,=30°C
w, = 0.94 (value of b, at 25°C)
ws = 1.71 (value of b, at 25°C)
we = 20°C
0 = temperature, °C.

These parameter-temperature functions are inverted parabolas that reach their peak at 30°C
for b, and b, at 20°C for b,. The valucs of the paramcters decrease by a factor of 2 over a
10°C change in temperature on either side of the peak. The inequality, b, > 0, restricts the
values of the parameters to the positive regime. These functions have shapes typical of those
encountered in microbial or enzyme-catalyzed reactions.

The maximum principle has been applied to the above model to determine the optimal
temperature profile (see Ref. [7]), which maximizes the concentration of penicillin at the final
time of the fermentation, 7,= 1. The maximum principle algorithm when applied to the state
cquations, (1) and (2), yields the following additional equations:

The adjoint equations:

dy,

— - ~bpyy 22—y - by »( -0 (4)
di N

dy,

— =0 y (1) = 1.0 (3)
dt

The Hamiltonian:
b, ,
H -y by - =y |+ vbyy)
; b, ;

The necessary condition for maximum:

dH

DL 6

30 (6)
Egs. (1)-(6) form a two-point boundary-value problem. Apply the orthogonal collocation
method to obtain the solution of this problem, and show the profiles of the state variables. the
adjoint variables, and the optimal temperature.

Method of Selution: The fundamental numerical problem of optimal control theory is
the solution of the two-point boundary-value problem, which invariably arises from the
application of the maximum principle to determine optimal control profiles. The state and

VRS R e et
W

e A s
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adjoint equations, coupled together through the necessary condition for optimality. constitute
a set of simultaneous differential equations that arc often unstable. This difficulty is further
complicated, in certain problems, when the necessary condition is not solvable explicitly for
the control variable 8. Several numerical methods have been developed for the solution of this
class of problems.

We first consider the second adjoint equation, Eq. (5), which is independent of the other
variables and, therefore. may be integrated directly:

v, =1 O< 1 <l (7

This reduces the number of differential equations to be solved by one. The remaining three
differential equations. Egs. (1), (2), and (4). are solved by Eq. (5.160). where m = 3.
Finally, we express the necessary condition [Eq. (6)] in terms of the system variables:

OH ab, 2 (b, /by) db,

=Wy = AN N -0 (8)
a0 a0

a0 BT
The temperature O can be calculated from Eq. (8) once the system variables have been
determined.

Program Description: The MATLAB function collocation.m is developed to solve a set
of first-order ordinary differential equations in a boundary-value problem by the orthogonal
collocation method. It starts with checking the input arguments and assigning the default
values, if necessary. The number of guessed initial conditions has to be equal to the number
of final conditions. and also the number of equations should be equal to the total number of
boundary conditions (initial and final). If these conditions are not met, the function gives a
proper error message on the screen and stops exccution,

In the next section, the function builds the coefficients of the Lagrange polynomial and
finds its roots, .. The vector of x, is then calculated from Eq. (5.141). The function applies
Newton's method for solution of the set of nonlinear cquations (5.160). Therefore. the starting
values for this technique are generated by the second-order Runge-Kutta method, using the
guessed initial conditions. The function continues with building the matrices Q. C,A.A,,, and
vectors Y and F.

Just before entering the Newton’s technique iteration loop, the function keeps track of the
equations to be solved; that is, all the equations excluding those corresponding to the boundary
conditions. The last part of the function is the solution of the set of equations (5.160) by
Newton’s method. This procedure begins with evaluating the differential equations function
values followed by calculating the Jacobian matrix, by differentiating using forward finite
differences method and, finally, correcting the dependent variables. This procedure is repeated
until the convergence is reached at all the collocation points.

It is important to note that the collocation.m function must receive the values of the set
of ordinary differential equations at each point in a column vector, with the initial value
equations at the top, followed by the final value equations. It is also important to pass the
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initial and final conditions to the function in the order corresponding to the order of equations
appearing in the file that introduces the ordinary differential equations.

The main program Example5_5.m asks the reader to input the parameters required for
solution of the problem. The program then calls the function collocation to solve the set of
equations. Knowing the system variables, the program calls the function fzero to find the
temperature at each point. At the end, the program plots the calculated cell concentration,
penicillin concentration, first adjoint variable, and the temperature against time.

The function Ex5_5_func.m evaluates the values of the set of Egs. (1), (2), and (4) at a
given point. It is important to note that the first input argument to Ex5_5_func is the
independent variable, though it does not appear in the differential equations in this case. This
function also calls the MATLAB function fzero to calculate the temperature from Eq. (8),
which is introduced in the function Ex5_5_theta.m.

Program

ExampleS_5.m

% ExampleS5_5.m

% Solution to Example 5.5. This program calculates and plots

% the concentration of cell mass, concentration of penicillin,
% optimal temperature profile, and adjoint variable of a batch
% penicillin fermentor. It uses the function COLLOCATION to

% solve the set of system and adjoint equations.

clear

clc

clf

% Input data
w = input (' Enter w''s as a vector : ');

y0 = input (' Vector of known initial conditions = ');

yf = input(' Vector of final conditions = ');

guess = input (' Vector of guessed initial conditions = ');

fname = input('\n M-file containing the set of differential
equations : ');

fth=input (' M-file containing the necessary condition function : ');
n = input(' Number of internal collocation points = ');

rho = input(' Relaxation factor = ');

% Solution of the set of differential equations
[t,y] = collocation(fname,0,1,y0,yf, guess,n,rho, [],w,fth);
% Temperature changes
for k = 1:n+2
theta(k) = fzero(fth,30,1le-6,0,y(:, k), w);
end

% Plotting the results
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subplot(2,2,1),
xlabel ('Time")
ylabel('Cell")
title(' (a)")

plot(t,y(1l,:))

subplot(2,2,2),
xlabel ('Time"')
ylabel('Penicillin')
title(' (b))

plot(t,y(2,:))

subplot(2,2,3),
xlabel ('Time")
ylabel ('First Adjoint')
title(' (c) ")

plot{t,y(3,:))

subplot(2,2,4),
xlabel ('Time')
ylabel ( ' Temperature
title('(d) ")

plot(t, theta)
(deg C) ")
Ex5_ 5 func.m

function £ = Ex5_5_func(t,y,w, fth)
Function Ex5_5_func.M

o€ o

o0

equations used in Example 5.5.

% Temperature
theta = fzero(fth,30,1e-6,0,y,w);

% Calculating the b's

bl = w(l) * (1-w(2)*(theta-w(3))"2)
if bl<0, bl=0; end

b2 = w(4) * (1-w(2)*(theta-w(3))"2)
if b2<0, b2=le-6; end

b3 = w(5) * (l-w(2)*(theta-w(6))"2)
if b3<0, b3=0; end

% Evaluating the function values
f(1) = bl*y (1) - bl/b2*y(1)"2;

£(2) = b3*y(1);

£(3) = -bl*y(3) + 2*bl/b2*y (1) *y(3)

f = f'; % Make it a column vector
Ex5_5_thetam
function ftheta =

% Function Ex5_5_theta.M

as a function of the temperature
Example 5.5.

oC o0 @

This function introduces the set of

This function calculates the value of the
(theta) .

ordinary differential

(1-w(2)*(25-w(3))"2);
(1-w(2)*(25-w(3))"2);

(1-w(2)*(25-w(6))"2);

b3;

Ex5_5_theta(theta,y,w)

necessary condition
It is used in solving

335
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% Calculating the b's
bl = w(l) * (1-w(2)*(theta-w(3))"2) / (1-w(2)*(25-w(3))"2);
dbl = w(l)*(-w(2))*2* (theta-w(3)) / (1-w(2)*(25-w(3))"2);

b2 = w(4) * (1-w(2)*(theta-w(3))"2) / (1-w(2)*(25-w(3))"2);
db2 = w(4)*(-w(2))*2* (theta-w(3)) / (1l-w(2)*(25-w(3))"2);

b3 = w(5) * (1-w(2)*(theta-w(6))"2) / (1-w(2)*({25-w(6))"2);
db3 = w(5)*(-w(2))*2*(theta-w(6)) / (1-w(2)*(25-w(6))"2);

% The function
ttheta = y(3)*(y(1)*dbl-y (1) "2* (dbl*b2-db2*bl) /b2°2)+y (1) *db3;

collocation.m

function [x,y] = collocation(ODEfile,x0,xf,y0,vf,guess,n, rho,
tol,varargin)

$COLLOCATION Solves a boundary value set of ordinary differential

equations by the orthogonal collocation method.

[X,Y]=COLLOCATION('F',X0,6XF,Y0,YF,GAMMA,N) integrates the set of
ordinary differential equations from X0 to XF by the Nth-degree
orthogonal collocation method. The equations are contained in
the M-file F.M. YO0, YF, and GAMMA are the vectors of initial
conditions, final conditions, and starting guesses respectively.
The function returns the independent variable in the vector X
and the set of dependent variables in the matrix Y.

® of oC of

of o0 of of ¢of

o

[X,Y]=COLLOCATION('F',6X0,XF, Y0, YF,GAMMA,N, RHO,TOL,P1,P2,...)
uses relaxation factor RHO and tolerance TOL for convergence
test. Additional parameters Pl, P2, ... are passed directly to
the function F. Pass an empty matrix for RHO or TOL to use the
default value.

O° € O° o° o of o

See also SHOOTING

o

(c) N. Mostoufi & A. Constantinides
January 1, 1999

o°

% Initialization

if nargin < 7 | isempty(n)
n = 1;

end

if nargin < 8 | isempty(rho)
rho = 1;

end

if nargin < 9 | isempty(tol)
tol = le-6;

end
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vO = (yO(:).")"; % Make sure it's a column vector
yvE = (yE(:).")"; % Make sure it's a column vector
guess = (guess(:).')'; % Make sure it's a column vector

% Checking the number of guesses
it length(yf) ~= length(guess)

error (' The number of guessed conditions is not equal to the
number of final conditions.')

end

r = length(y0); % Number of initial conditions
m = r + length(yf); % Number of boundary conditions
% Checking the number of equations

ftest = feval (ODEfile,x0, [y0 ; guess],varargin{:});
if length(ftest) ~=
error (' The number of equations is not equal to the number of
boundary conditions.')
end

fprintf ('\n Integrating. Please wait.\n\n')

% Coefficients of the Legendre polynomial
for k =0 : n/2

cl(2*k+1) = (-1)"k * gamma(2*n-2*k+1) /
(2”n * gamma(k+1) * gamma(n-k+1) * gamma(n-2*k+1));
if k < n/2
cl (2*k+2) = 0;
end
end
z1l = roots(cl); % Roots of the Legendre polynomial
z = [-1; sort(zl); 11; % Collocation points (z)
X = (xf-x0)*z/2+(x0+x£f)/2; % Collocation points (x)

% Bulding the vector of starting values of the dependent variables

[p,g)] = RK(ODEfile,x0,xf, (xf-x0)/20, [y0 ; guess],2,varargin{:});
for k = 1:m

yv(k,:) = spline(p,q(k,:),x"');
end

y(r+l:m,end) = yf(l:m-r);

% Building the matrix A

Q(:,1) = ones(n+2,1);
C(:,1) = zeros(n+2,1);
for i = 1l:n+1
Q{:,i+1l) = x."1;
C(:,1+1) = i*x."(i-1);
end

A = C*inv(Q);
for k = 1:m
k1l = (k-1)*(n+2)+1;
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k2 = k1l + n+1;

Am(kl:k2,kl:k2) = A; % Building the matrix Am
Y(kl:k2) = y(k,:); % Building the vector Y
end
Y = Y'; % Make it a column vector
Yl =Yy * 1.1;
iter = 0;
maxiter = 100;
F = zeros{(m*(n+2),1);
Fa = zeros(m*(n+2),1);
dYy = zeros(m*(n+2),1);
position = []; % Collocation points excluding boundary conditions
for k = 1:m
if k <= r
position = [position, (k-1)*(n+2)+([2:n+2] 1;
else
position = ([position, (k-1)*(n+2)+([1l:n+1] 1;
end
end

% Newton's method

while max(abs (Yl - Y)) > tol & iter < maxiter
iter = iter + 1;
fprintf (' Iteration %3d\n', iter)
Yl = Y;

% Building the vector F
for k = 1:n+2
F(k : nt2 : (m-1)*(n+2)+k) = feval (ODEfile,x(k),...
Y(k : n+2 : (m-1)*(n+2)+k),varargin{:});
end
fnk = Am * Y - F;

% Set 4dY for derivation

for k = 1:m*(n+1)
if Y{(position(k)) ~= 0
dY (position(k)) = Y(position(k)) / 100;
else
dY (position(k)) = 0.01;
end
end

% Calculation of the Jacobian matrix
for k = 1:m
for kk = 1:n+1

a = Y;
nc = (k-1)*(n+1)+kk;
a(position(nc)) = Y(position(nc)) + dY(position(nc));

for kkk = 1:n+2
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Fa(kkk : n+2 : {(m-1)*(n+2)+kkk) =
feval (ODEfile, x (kkk) ,a(kkk:n+2: (m-1)* (n+2) +kkk) ,varargin{:});

end
fnka = Aam * a - Fa;
jacob(:,nc) = (fnka(position) - fnk(position))
/ Y {position(nc));
end
end

% Next approximation of the roots
if det(jacob) ==

Y (position) = Y{position) + max([abs(dY(position)); 1.1*toll]);
else

Y(position) = Y(position) - rho * inv(jacob) * fnk(position);
end

end

% Rearranging the y's
for k = 1:m

kl = (k-1)*(n+2)+1;
k2 = k1 + n+1;
yvik,:) = Y(kl:k2)"';
end
X = x';

if iter >= maxiter

disp('Warning : Maximum iterations reached.')
end
Input and Results

>>Example5_5

Enter w's as a vector : [13.1, 0.005, 30, 0.94, 1.71, 20]

Vector of known initial conditions = [0.03, 0]

Vector of final conditions = 0

Vector of guessed initial conditions = 3

M-file containing the set of differential equations : 'Ex5_5_func'
M-file containing the necessary condition function : ‘'Ex5_5_theta"

Number of internal collocation points = 10
Relaxation factor = 0.9

Integrating. Please wait.

Iteration 1
Iteration 2
Iteration 3
Iteration 4
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Iteration
Iteration
Iteration
Iteration
Iteration
Iteration 1
Iteration 1

= O W~ o Ul

Discussion of Results: The choice of the value of the missing initial condition for v, is
an important factor in the convergence of the collocation method, because it generates the
starting values to the technique. The value of v,(0) = 3 was chosen as the guessed initial
condition after some trial and error. The collocation method converged to the correct solution
in 11 iterations.

Figs. ES.5a to ES.5d show the profiles of the system variables and the optimal control
-ariable (temperature). For this particular formulation of the penicillin fermentation. the
maximum principle indicates that the optimal temperature profile varies from 30 to 20°C in
the pattern shown in Fig. ES.5d.
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Figure E5.5 Profiles of the system variables and the optimal control variable for
penicillin fermentation.
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5.7 ERROR PROPAGATION, STABILITY, AND CONVERGENCE

Topics of paramount importance in the numerical integration of differential equations are the
error propagation, stability, and convergence of these solutions. Two types of stability
considerations enter in the solution of ordinary differential equations: inherent stability (or
instability) and numerical stability (or instability). Inherent stability is determined by the
mathematical formulation of the problem and is dependent on the eigenvalues of the Jacobian
matrix of the differential equations. On the other hand. numerical stability is a function of the
error propagation in the numerical integration method. The behavior of error propagation
depends on the values of the characteristic roots of the difference equations that yield the
numerical solution. In this section. we concern ourselves with numerical stability
considerations as they apply to the numerical integration of ordinary differential
equations.

There are three types of errors present in the application of numerical integration methods.
These are the truncation error, the roundoff error, and the propagation error. The truncation
error is a function of the number of terms that are retained in the approximation of the solution
from the infinite series expansion. The truncation error may be reduced by retaining a larger
number of terms in the series or by reducing the step size of integration #. The plethora of
available numerical methods of integration of ordinary differential equations provides a choice of
increasingly higher accuracy (lower truncation error), at an escalating cost in the number of
arithmetic operations to be performed, and with the concomitant accumulation of roundoft errors.

Computers carry numbers using a finite number of significant figures. A roundoff error
is introduced in the calculation when the computer rounds up or down (or just chops) the
number to 7 significant figures. Roundoftf errors may be reduced significantly by the use of
double precision. However, even a very small roundoff error may affect the accuracy of the
solution, especially in numerical integration methods that march forward (or backward) for
hundreds or thousands of steps, each step being performed using rounded numbers.

The truncation and roundoff errors in numerical integration accumulate and propagate,
creating the propagation error, which, in some cases, may grow in exponential or oscillatory
pattern, thus causing the calculated solution to deviate drastically from the correct solution.

Fig. 5.6 illustrates the propagation of error in the Euler integration method. Starting with
a known initial condition y,, the method calculates the value y,, which contains the truncation
error for this step and a small roundoff error introduced by the computer. The error has been
magnified in order to illustrate it more clearly. The next step starts with y, as the initial point
and calculates y,. But because y, already contains truncation and roundoff errors, the value
obtained for y, contains these errors propagated, in addition to the new truncation and roundotf
errors from the second step. The same process occurs in subsequent steps.

Error propagation in numerical integration methods is a complex operation that depends
on several factors. Roundoff error, which contributes to propagation error, is entirely
determined by the accuracy of the computer being used. The truncation error is fixed by the
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Figure 5.6 Error propagation of the Euler method.

choice of method being applied, by the step size of integration, and by the values of the
derivatives of the functions being integrated. For these reasons, it is necessary to examine
the error propagation and stability of each method individually and in connection with the
differential equations to be integrated. Some techniques work well with one class of
differential equations but fail with others.

In the sections that follow, we examine systematically the crror propagation and stability
of several numerical integration methods and suggest ways of reducing these errors by the
appropriate choice of step size and integration algorithm.

5.7.1 Stability and Error Propagation of Euler Methods

Let us consider the initial-value differential equation in the linear form.

dy
—_— = A'\v fi
dx ; (5.170)

where the initial condition is given as

y(x) = ¥y (5.171)
We assume that A is real and y, is finite. The analytical solution of this differential
equation is

y(x) = y,et" (5.172)
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This solution is inherently stable for A < 0. Under these conditions:

I\m: v(x) -0 (5.173)
Next, we examine the stability of the numerical solution of this problem obtained from
using the explicit Euler method. Momentarily we ignore the truncation and roundoff errors.

Applying Eq. (5.60), we obtain the recurrence equation

Yooy T ¥, Ay, (5.174)
which rearranges to the following first-order homogeneous difference equation
A O hk).\‘" 0 (5.175)
Using the methods described in Sec. 3.6, we obtain the characteristic equation
E- (1 +hX)=0 (5.176)
whose root is
- (1« hd) (5.177)

From this, we obtain the solution of the difference cquation (5.175) as

v, = C(l + hAY (5.178)

The constant C is calculated from the initial condition. at v = x,;

n -0 v, -y, - C (5.179)

Therefore, the final form of the solution is

Yy = Yol o+ hAY (5.180)
The differential equation is an initial-value problem; thercfore, n can increase without bound.
Because the solution y, is a function of (1 + #4)", its behavior is determined by the value of

(1 +hA). A numerical solution is said to be absolutely stable if

linj v, =0 (5.181)

n

The solution of the ditferential equation (5.170) using the explicit Euler method is absolutely
stable if

1T+ hAl < 1 (5.182)
Because (1 + hA) is the root of the characteristic equation (5.176), an alternative definition of
absolute stability is

gl s 1 0= 1,2,k (5.183)
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where more than one root exists in the multistep numerical methods.
Returning to the problem at hand, the inequality (5.182) is rearranged to

2<hr <0 (5.184)

This inequality sets the limits of the integration step size for a stable solution as follows:
Because £ is positive, then A < 0 and

2
Y

h <

(5.185)

Inequality (5.185) is a finite general stability boundary. and for this reason, the explicit
Euler method is called conditionally stable. Any method with an infinite general stability
boundary can be called unconditionally stable.

At the outset of our discussion, we assumed that A was real in order to simplify the
derivation. This assumption is not necessary: A can be a complex number. In the carlier
discussion of the stability of difference equations (Sec. 3.6). we mentioned that a solution is
stable, converging with damped oscillations, when complex roots are present, and the moduli
of the roots are less than or equal to unity:

irl < 1 (5.186)
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Figure 5.7 Stability region in the complex plane for Runge-Kutta methods of
order 1 (explicit Euler), 2, 3, 4, and 5.
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The two inequalities (5.184) and (5.186) describe the circle with a radius of unity on the
complex plane shown in Fig. 5.7. Since the explicit Euler method can be categorized as a first-
order Runge-Kutta method, the corresponding curve in this figure is marked by RK1. The set
of values of AA inside the circle yields stable numerical solutions of Eq. (5.170) using the
Euler integration method.

We now return to the consideration of the truncation and roundoff errors of the Euler
method and develop a difference equation, which describes the propagation of the error in the
numerical solution. We work with the nonlinear form of the initial-value problem

% - flxoy) (5.27)
where the initial condition is given by
v(ix,) 7, (5.28)
We define the accumulated error of the numerical solution at step (n + 1) as
€ TN T NG ) (5.187)

where y(x,, ) is the exact value of v. and y, , | is the calculated value of y at x, We then

ntlr
write the exact solution y(x, , ) as a Taylor series expansion, showing as many terms as needed
for the Euler method:

e+l

.\‘('\‘n-l) - -\v('\‘u) N hf('\.n‘ -\‘("_n)) * TF no) (5188)

where T, _, is the local truncation error for step (n + ). We also write the calculated value
¥, ., obtained from the implicit Euler formula

Yoo = Y * hj("\n’ -\.u) - R,‘:. n-l (5189)

where R, ,,, is the roundoft error introduced by the computer in step (n + 1).
Combining Eqgs. (5.187)-(5.189) we have

€u N -\'n 7 ~\‘(“\.n) + h [f(xn : «"‘n) B -/('\-n N -\'(')‘.n) )] N Tlf nol RE n-l (5 190)
which simplifies to
Eu'vl - 6” * /l[f‘(.\'”, \‘n) V‘/(Xn‘ 4\(‘”))' - Tb w1 Rb.n-l (5191)

The mean-value theorem

N
flx,,v) - flx,,v(x,) - ;’—j\a v, - ovx)] y, < o< v(x,) (5.192)
Dy O

can be used to further modify the error equation (5.191) to

€., - {] 1 h

ap
(f‘oc.\ }eu - —77" nel Rl? nel (5.193)
dy
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This is a first-order nonhomogeneous difference equation with varyving coefficients, which can
be solved only by iteration. However, by making the following simplifying assumptions:

T, .+ = T;=constant
R, .1 =R, = constant (5.194)

%“ .= A=constant’
MRS

Eq. (5.193) simplifies to

€, - (1 +hie, = -T, - R, (5.195)

n

whose sofution is given by the sum of the homogeneous and particular solutions {8):

-T, + R,

€, = C/(1 « hA)y - m (5.196)
Comparison of Eqs. (5.175) and (5.195) reveals that the charactcristic equations for the
solution y, and the error €, are identical. The truncation and roundoff error terms in Eq.
(5.195) introduce the particular solution. The constant C, is calculated by assuming that the
initial condition of the differential equation has no error; that is, €,= 0. The final form of the
equation that describes the behavior of the propagation error is

Ty Ry "
€, — ——[(1 + hA)" - 1] (5.197)
hA
A great deal of insight can be gained by thoroughly examining Eq. (5.197). As expected,
the value of (1 + hA) is the determining factor in the behavior of the propagation error.
Consider first the case of a fixed finite step size h, with the number of integration steps
increasing to a very large n. The limit on the error as n -~ = is

. T, + R,

lim le,l = ——— for 11 = hAl <1 (5.198)
noo /1)\.

lim le | = o for |1 + hAl > 1 (5.199)

In the first situation [Eq. (5.198)]. A < 0, 0 < & < 2/IAl, the error is bounded, and the
numerical solution is stable. The numerical solution differs from the exact solution by only
the finite quantity (-7 + R, )/hA, which is a function of the truncation error, the roundoft error,
the step size, and the eigenvalue of the differential equation.

¢ Under this assumption. Eq (5 27) becomes identical to Eq (5.170).
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In the second situation [Eq. (5.199)]. A > 0. & > 0, the error is unbounded and the
numerical solution is unstable. For A > (), however, the exact solution is inherently unstable.
For this reason we introduce the concept of relative error defined as

relative error - —= (5.200)
)

Utilizing Eqs. (5.180) and (5.197), we obtain the relative error as
“Tp + Ry I 1
Yoh A (1 + hA)

e)l
- - (5.201)
—\11
The relative error is bounded for A > 0 and unbounded for A < 0. So we conclude that for
inherently stable ditferential equations, the absolute propagation error is the pertinent criterion
for numerical stability, whereas for inherently unstable differential equations, the relative
propagation error must be investigated.
Let us now consider a fixed interval of integration. 0 < x < «, so that
o
h - = (5.202)

n

and we increase the number of integration steps to a very large n. This, of course, causes
h - 0. A numerical method is said to be convergent if

lim le,l - 0
h 0

(5.203)

[n the absence of roundoff error, the Euler method, and most other integration methods. are
convergent because

}im T, -0 (5.204)
1 -0
and

limlel =0 (5.203)

0
However, roundoff error is never absent in numerical calculations. As /2 - 0 the roundoff error
is the crucial factor in the propagation of error:

lim le,| = R, lim (L2 AA 2 1 (5.205)

hoo “hoo hA

Application of L"Hopital's rule shows that the roundoff error propagates unbounded as the
number of integration steps becomes very large:

o e Rel] (5.206)
This is the “catch 22" of numerical methods: A smaller step size of integration reduces the
truncation error but requires a large number of steps, thereby increasing the roundoft error.
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A similar analysis of the implicit Euler method (backward Euler) results in the following
two equations, for the solution

Yo
Yoo T T (5.207)
(1 - hd)
and the propagation error
-T, + R,
€, = ——=(1 = hd) — (5.208)
hA (1 - hA)
For A <0 and 0 < & < «, the solution is stable:
hmy, =0 (5.209)
and the error is bounded:
_ T, + R,
lime, = - ———=(1 - Ah) (5.210)
no-o /?}L

No limitation is placed on the step size; therefore, the implicit Euler method is unconditionally
stable for L. < 0. On the other hand, when A > 0, the following inequality must be true for a
stable solution:

It hAl <1 (5211

This imposes the limit on the step size:

-2 <hA <0 (5.212)

It can be concluded that the implicit Euler method has a wider range of stability than the
explicit Euler method (see Table 5.3).

5.7.2 Stability and Error Propagation of Runge-Kutta Methods

Using methods parallel to those of the previous section, the recurrence equations and the
corresponding roots for the Runge-Kutta methods can be derived [9]. For the differential
equation (5.170), these are:

Second-order Runge-Kutta:

-\.11 -

1 -ma - éh?xz v, (5.213)

M, - L+ hA + %/‘12}3 (5.214)

&
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Third-order Runge-Kutta:

A (] + hA + lh:}»: + l11“)»3]‘\'” (5.215)
2 6

u, =1 = hk - lhzkz - lh})»" (5.216)

I > P 5.2

Fourth-order Runge-Kutta:
ST Y L) L AL T (5.217)
2 6 24

T VS Lpear s L e (5.218)

2 6 24 T

Table 5.3 Real stability boundaries

Method Boundary

Explicit Euler -2 hA <0

O<h<o forA<O

Implicit Euler
mphent e D <hA<O0 forA>0

Modified Euler

. -1.077 < ha < 0
(predictor-corrector)

Second-order Runge-Kutta 2« ha <0
Third-order Runge-Kutta 25<hi <0
Fourth-order Runge-Kutta 22785 < h < 0
Fifth-order Runge-Kutta 5.7 <hi <0
Adams 0546 < I <0

Adams-Moulton -1.285 < hh <0
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Fifth-order Runge-Kutta:

, . 2
vl ona - demr s L L Lgsps 2 99923 6500
2 6 24 120 720

(5.219)
oL pear e Lo e e L o 096254656
2 6 24 120 720
(5.220)

The last term in the right-hand side of Eqs. (5.219) and (5.220) is specific to the fifth-order
Runge-Kutta, which appears in Table 5.2 and varies for different {ifth-order formulas. The
condition for absolute stability:

ITHRES i-1,2....,k (5.183)

applies to all the above methods. The absolute real stability boundaries for these methods are
listed 1in Table 5.3, and the regions of stability in the complex plane are shown on Fig. 5.7.
In general, as the order increases, so do the stability limits.

5.7.3 Stability and Error Propagation of Multistep Methods

Using methods parallel to those of the previous section. the recurrence equations and the
corresponding roots for the modified Euler. Adams, and Adams-Moulton methods can be
derived {9]. For the differcntial equation (5.170), these are:

Modified Euler (combination of predictor and corrector):

v, - (L= hd + P Ay, (5.221)
T B VA A S (5.222)
Adams:
Yot (1 : 2117»).\‘,, L L L (5.223)
12 3 12

23 4 5
o+ A+ ZhAln - =hA =0 5.224
! ( 12 )p (3 )“ 12 (.224)
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Adams-Moulton (combination of predictor and corrector):

B Thh  55hM*) ShA  S9h>A°
v“n i e —— \n N ’ "n |
6 64 24 64

. (5.225)

L[ A, 3Th7A - 9/7276\_
24 64 " 64 "

R Thi  55h°A°) 5 [ 5hA _ 590°A%)
6 64 24 64

2142 292
| hA | 37h7A " - 9h"A° 0 (5.226)
24 64 64
The condition for absolute stability,
It <1 i b2,k (5.183)

applies to all the above methods. The absolute real stability boundaries for these methods are
also listed in Table 5.3, and the regions of stability in the complex plane are shown on Fig. 5.8.

| unstable

Modified Euler

I Im(hky |

Adams~Moulton

Adams /’

/ stable
I

-15 -1 -05 0 05
Re(hi)

Figure 5.8 Stability region in the complex plane for the modified Euler
(Euler predictor-corrector), Adams, and Adams-Moulton
methods.
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5.8 STEP Si1zE CONTROL

The discussion of stability analysis in the previous sections made the simplifying assumption
that the value of A remains constant throughout the integration. This is true for linear
cquations such as Eq. (5.170); however, for the nonlincar equation (5.27), the value of A may
vary considerably over the interval of integration. The step size of integration must be chosen
using the maximum possible value of A. thus resulting in the minimum step size. This, of
course, will guarantee stability at the expense of computation time. For problems in which
computation time becomes excessive, it is possible to develop strategies for automatically
adjusting the step size at each step of the integration.

A simplc test for cheeking the step size is to do the calculations at cach interval twice:
Once with the full step size, and then repeat the calculations over the same interval with a
smaller step size. usually half that of the first one. If at the end of the interval, the difference
between the predicted value of v by both approaches is less than the specified convergence
criterion. the step size may be increased. Otherwise. a larger than acceptable difference
between the two calculated v values suggests that the step size is large, and it should be
shortened in order to achieve an acceptable truncation error.

Another method of controlling the step size is to obtain an estimation of the truncation
error at each interval. A good cxample of such an approach is the Runge-Kutta-Fehlberg
method (sec Table 5.2), which provides the estimation of the local truncation error. This crror
estimaic can be casily introduced mto the computer program. and let the program
automatically change the step size at cach point until the desired accuracy is achieved.

As mentioned before. the optimum number of application of corrector is two. Therefore,
in the case of using a predictor-corrector method. if the convergence is achieved before the
second corrected value, the step size may be increased. On the other hand. il the
convergence is not achicved after the second application of the corrector. the step size should
be reduced.

5.9 STIFF DIFFERENTIAL EQUATIONS

In Sec. 5.7, we showed that the stability of the numerical solution of differential equations
depends on the value of 4A, and that A together with the stability boundary of the method
determine the step size of integration. In the case of the linear differential equation

—= = Ay (5.170)
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A is the eigenvalue of that equation, and it remains a constant throughout the integration. The
nonlinear differential cquation

dy .
— - flx.y) 5.27
dx (5.27)
can be linearized at each step using the mean-value theorem (5.192), so that A can be obtained
from the partial derivative of the function with respect to v:
3 = 9
dvig (5.227)

The value of A is no longer a constant but varies in magnitude at each step of the integration.
This analysis can be extended to a set of simultancous nonlinear differential equations:

“, f,( )

— = XL Y Y. Y,

pp | 1 Y2

dy, £ )

SRR Y SO I O

dx (5.98)

dy, |

— - Ly Yy, )

dx

Linearization of the set produces the Jacobian matrix

af, af
a-vl o a-yn

J - oo (5.228)
af, a/,
ay o ay,

The eigenvalues {A,1i=1.2,..., n} of the Jacobian matrix are the determining factors in the
stability analysis of the numerical solution. The step size of integration is determined by the
stability boundary of the method and the maximum eigenvalue.

When the eigenvalues of the Jacobian matrix of the differential equations are all of the
same order of magnitude, no unusual problems arise in the integration of the set. However,
when the maximum cigenvalue is several orders of magnitude larger than the minimum
eigenvalue, the equations are said to be stiff. The stiffness ratio (SR) of such a set is
defined as



354 Numerical Solution of Ordinary Differential Equations Chapter 5

max |Real (4,)]

SR = Jefem )
min |Real (4,)I (5.229)

I izn

The step size of integration is determined by the largest eigenvalue, and the final time of
integration is usually fixed by the smallest eigenvalue; therefore, integration of differential
equations using explicit methods may be time intensive. Finlayson [1] recommends using
implicit methods for integrating stiff ditferential equations in order to reduce computation
time.

The MATLAB functions ode23s and odelSs arc solvers suitable for solution of stiff
ordinary differential equations (see Table 5.1).

PROBLEMS

5.1 Derive the second-order Runge-Kutta method of Eq. (5.92) using central differences.

5.2 The solution of the following second-order linear ordinary differential equation should be
determincd using numerical techniques:

dx3dx oy - g

dr? dt

The initial conditions for this equation are, at 1 = 0

xl, =3 and %IUZIS

(a) Transform the above ditferential equation into a set of first-order linear differential
equations with appropriate initial conditions.

(b) Find the solution using eigenvalues and eigenvectors, and evaluate the variables in the
range 0 <7< 1.0

(¢) Use the fourth-order Runge-Kutta method to verify the results of part (b).

5.3 A radioactive material (A) decomposes according to the series rcaction:
k, k,
A » B - C

where k, and k, are the rate constants and B and C are the intermediate and final products.
respectively. The rate equations are

dC
— = -k C,
dt
dC,
=k C, - k,C,
dt
dcC,.
— = kG,

dt )
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where C,. C,, and C, are the concentrations of materials A, B, and C. respectively. The values of
the rate constants are

Initial conditions are
C,(0) =1 mol/m’ C0)=0 C0)=0

(a) Use the eigenvalue-eigenvector method to determine the concentrations C,, Cy. and C,
as a function of time ¢.

(b) Attime t =1 s and + = 10 s, what are the concentrations of A, B, and C?

(¢) Sketch the concentratian profiles for A, B, and C.

(a) Integrate the following ditterential equations:

dc
. -4C,-C, C,(0) = 100.0
dt
dc

for the time period 0 < ¢ < 5. using (1) the Euler predictor-corrector method, (2) the fourth-order
Runge-Kutta method

(b) Which method would give a solution closer to the analytical solution?

(¢) Why do these methods give different results?

In the study of fermentation kinetics. the logistic law
dy, »
— = kv - =
dr k.,

has been used frequently to describe the dynamics of cell growth. This equation is a modification
of the logarithmic law
dy,
= Ky
dr
The term (1 - y,/k,) in the logistic law accounts for cessation of growth due to a limiting nutrient.
The logistic law has been used successfully in modeling the growth of penicillium
chryscogenum, a penicillin-producing organism (6]. In addition. the rate of production of
penicillin has been mathematically quantified by the equation
dy,
— = kY -k
dt :
Penicillin (v,) is produced at a rate proportional to the concentration of the cell (v,) and is degraded
by hydrolysis, which is proportional to the concentration of the penicillin itself.
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(a) Discuss other possible interpretations of the logistic law

(b) Show that 4, is equivalent to the maximum cell concentration that can be reached under
given conditions.

(c) Apply the fourth-order Runge-Kutta integration method to find the numernical solution of
the ccll and penicillin equations. Use the following constants and initial conditions:

k,=003120  k,=4770 ko= 3374 k,=0.01268

3

at /=0, v(0)=50.and v,(0) =0.0: the range of 7is 0 = 7= 212 h.

The conversion of glucose to gluconic acid is a simple oxidation of the aldehyde group of the sugar
to a carboxyl group. This transformation can be achieved by a microorganism in a fermentation
process.  The enzyme glucose oxidase. present in the microorganism. comverts glucose to
gluconolactone.  In turn, the gluconolactone hydrolyzes to form the gluconic acid. The overall
mechanism of the fermentation process that performs this transformation can be described as
follows:

Cell growth:

Glucose + Cells -+ Cells
Glucose oxidation:

Glucose +0,  Glucoseoxidase | Glyconolactone +H,0,
2 2

Gluconolactone hydrolysis:

Gluconolaclonc+|l20 —— Gluconic acid
Peroxide decomposition:
H,0, S, 0410,

A mathematical model of the termentation of the bacterium Psendomonas ovalis. which produces
gluconic acid. has been deyeloped by Rai and Constantinides [10]. This model. which describes the
dynamics of the logarithmic growth phases. can be summarized as follows,

Rate of cell growth:

dv,
— = byl
di b,

Rate of gluconolactone formation:

dy, 8

= 2104 ().9082}’;\'3

dt by,
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Rate of gluconic acid formation:

dy, )
—— = b,y
di 2

Rate of glucose consumption:
dy byy,y
B R 1 Y B | RS S
dt by+y,

where v, = concentration of cell
¥, = concentration of glucononctone
v, = concentration of gluconic acid
v, = concentration of glucose
b,-b, = parameters of the system which are functions of temperature and pH.

At the operating conditions of 30°C and pH 6.6. the values of the five parameters were detcrmined
from experimental data to be

b, =0.949 b, =3.439 h,=18.72 b, =375l b,=1.169
At these conditions, develop the time profiles of all variables. y, to y, for the period
0 < r < 9 h. The initial conditions at the start of this period are

v,(0)=0.5U.0.D./mL v,(0)=0.0 mg/mL
vy(0) = 0.0 mg/mL. v(0) =50.0 mg/mL

5.7 The best-known mathematical representation of population dynamics between interacting species
is the Lokta-Volterra model [ 11]  For the case of two competing species, these equations take the
general form

dN dN,

—L - [(N.N) 2 = £(N,,Ny)
Ndt N dr

where N, is the population density of species 1 and N, is the population density of species 2. The
functions f, and /, describe the specific growth rates of the two populations. Under certain
assumptions, these functions can be expressed in terms of N,, N,, and a set of constants whose
values depend on natural birth and death rates and on the interactions between the two species.
Numerous examples of such interactions can be cited from ecological and microbiological studies.
The predator-prey problem, 