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Foreword

This book is an introduction to several active research topics in Foliation Theory.
It is based on lecture notes of some of the courses given at the school Advanced
Course on Foliations: Dynamics, Geometry, Topology, held in May 2010 at the
Centre de Recerca Matemàtica (CRM) in Bellaterra, Barcelona. This school was
one of the main activities of the Research Programme on Foliations, which took
place at the CRM from April to July 2010. The program of that event consisted of
five courses taught by Aziz El Kacimi-Alaoui, Steven Hurder, Masayuki Asaoka,
Ken Richardson, and Elmar Vogt.

These courses dealt with different aspects of Foliation Theory, which is the
qualitative study of differential equations on manifolds. It was initiated by the
works of H. Poincaré and I. Bendixson, and later developed by C. Ehresmann,
G. Reeb, A. Haefliger, S. Novikov, W. Thurston and many others. Since then, the
subject has become a broad research field in Mathematics.

The course of Aziz El Kacimi-Alaoui is an elementary introduction to this
theory. Through simple and diverse examples, he discusses, in particular, the fun-
damental concept of transverse structure.

The lectures of Steven Hurder develop ideas from smooth dynamical systems
for the study and classification of foliations of compact manifolds, by alternating
the presentation of motivating examples and related concepts. The first two lec-
tures develop the fundamental concepts of limit sets and cycles for leaves, foliation
“time” and the leafwise geodesic flow, and transverse exponents and stable mani-
folds. The third lecture discusses applications of the generalization of Pesin Theory
for flows to foliations. The last two lectures consider the classification theory of
smooth foliations according to their types: hyperbolic, parabolic or elliptic.

For a smooth locally free action, the collection of the orbits forms a foliation.
The leafwise cohomology of the orbit foliation controls the deformation of the
action in many cases. The course by Masayuki Asaoka starts with the definition
and some basic examples of locally free actions, including flows with no stationary
points. After that, he discusses how to compute the leafwise cohomology and how
to apply it to the description of deformation of actions.

In the lectures given by Ken Richardson, he investigates generalizations of
the ordinary Dirac operator to manifolds endowed with Riemannian foliations or
compact Lie group actions. If the manifold comes equipped with a Clifford algebra

v



vi Foreword

action on a bundle over the manifold, one may define a corresponding transversal
Dirac operator. He studies the geometric and analytic properties of these operators,
and obtains a corresponding index formula.

We would like to express our deep gratitude to the authors of these Advanced
Courses for their enthusiastic work, to the director, J. Bruna, and the staff of the
CRM, whose help was essential in the organization of these Advanced Courses, and
to C. Casacuberta, editor of this series, for his help and patience. We also thank
the “Ministerio de Educación y Ciencia” and the Ingenio Mathematica programme
of the Spanish government for providing financial support for the organization of
the courses.

Jesús A. Álvarez López and Marcel Nicolau
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Chapter 1

Deformation of Locally Free
Actions and Leafwise
Cohomology

Masayuki Asaoka

Introduction

These are the notes of the author’s lectures at the Advanced Course on Foliations
in the research program Foliations, which was held at the Centre de Recerca
Matemàtica in May 2010. In these notes, we discuss the relationship between
deformations of actions of Lie groups and the leafwise cohomology of the orbit
foliation.

In the early 1960’s, Palais [44] proved the local rigidity of smooth actions of
compact groups. Hence, such actions have no non-trivial deformations. In contrast
to compact group actions, all known R-actions (i.e., flows) fail to be locally rigid,
except for the trivially rigid ones. Moreover, many R-actions change the topological
structure of their orbits under perturbation. Their bifurcation is an important issue
in the theory of dynamical systems.

In the last two decades, it has been found that there exist locally rigid actions
of higher-dimensional Lie groups, and the rigidity theory of locally free actions has
undergone a rapid development. The reader can find examples of locally rigid or
parameter rigid actions in many papers [5, 9–12, 18, 24, 32, 33, 36, 41, 42, 49, 51–
53], some of which will be discussed in this chapter.

A rigidity problem can be regarded as a special case of a deformation problem.
In many situations, the deformation space of a geometric structure is described
by a system of non-linear partial differential equations. Its linearization defines
a cochain complex, called deformation complex, and the space of infinitesimal

 , Advanced Courses.  et al.,
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2 Chapter 1. Deformation of Locally Free Actions and Leafwise Cohomology

deformations is identified with the first cohomology of this complex. For locally
free actions of Lie groups, the deformation complex is realized as the (twisted)
leafwise de Rham complex of the orbit foliation.

The reader may wish to develop a general deformation theory of locally free
actions in terms of the deformation complex, like the deformation theory of com-
plex manifolds founded by Kodaira and Spencer. However, the leafwise de Rham
complex is not elliptic, and this causes two difficulties to develop a fine theory.
First, the leafwise cohomology groups are infinite-dimensional in general, and they
are hard to compute. Second, we need to apply the implicit function theorem for
maps between Fréchet spaces rather than Banach spaces because of loss of deriva-
tives. This requires tameness of splitting of the deformation complex, which is
hard to prove. Thus, we will focus on techniques to overcome these difficulties in
several explicit examples instead of developing a general theory.

The main tools for computation of the leafwise cohomology are Fourier analy-
sis, representation theory, and a Mayer–Vietoris argument developed by El Kacimi
Aloui and Tihami. Matsumoto and Mitsumatsu also developed a technique, based
on ergodic theory of hyperbolic dynamics. We will discuss these techniques in
Section 1.3.

For several actions, the deformation problem can be reduced to a linear one
without help of any implicit function theorem, and hence we can avoid a tame
estimate of the splitting. In Section 1.4 we will see how to reduce the rigidity
problem of such actions to (almost) vanishing of the first cohomology of the leaf-
wise cohomology. The first case is parameter deformation of abelian actions. We
will see that the problem is linear in this case. In fact, the deformation space can
be naturally identified with the space of infinitesimal deformations. The second
case is parameter rigidity of solvable actions. Although the problem itself is not
linear in this case, we can decompose it into the solvability of linear equations for
several examples.

For general cases, the deformation problem cannot be reduced to a linear
one directly. One way to describe the deformation space is to apply Hamilton’s
implicit function theorem. As mentioned above, this requires a tame estimate on
solutions of partial differential equations and is difficult to establish it in general.
However, there are a few examples to which we can apply the theorem. Another
way is to use the theory of hyperbolic dynamics. We offer a brief discussion of
these techniques in Section 1.5.

The author recommends to the readers the survey papers [7] and [39]. The
former contains a nice exposition of applications of Hamilton’s implicit function
theorem to rigidity problems of foliations. The second is a survey about the pa-
rameter rigidity problem, which is one of the sources of the author’s lectures at
the Centre de Recerca Matemàtica.

To end the Introduction, I would like to thank the organizers of the CRM
research program Foliations for inviting me to give these lectures in the program,
and the staff of the CRM for their warm hospitality. I am also grateful to Marcel
Nicolau and Nathan dos Santos for many suggestions to improve the notes.
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1.1 Locally free actions and their deformations

In this section we define locally free actions and their infinitesimal correspondent.
We also introduce the notion of deformation of actions and several concepts of
finiteness of codimension of the conjugacy classes of an action in the space of locally
free actions.

1.1.1 Locally free actions

In these notes, we will work in the C∞-category. So, the term smooth means C∞,
and all diffeomorphisms are of class C∞. All manifolds and Lie groups in these
notes will be connected. For manifolds M1 and M2, we denote the space of smooth
maps from M1 to M2 by C∞(M1,M2). It is endowed with the C∞ compact-open
topology. By F(x) we denote the leaf of a foliation F which contains a point x.

Let G be a Lie group and M a manifold. We denote the unit element of G by
1G and the identity map of M by IdM . We say that a smooth map ρ : M ×G→M
is a (smooth right) action if

(1) ρ(x, 1G) = x for all x ∈M , and

(2) ρ(x, gh) = ρ(ρ(x, g), h) for all x ∈M and g, h ∈ G.

For ρ ∈ C∞(M × G,M) and g ∈ G, we define a map ρg : M→M by ρg(x) =
ρ(x, g). Then ρ is an action if and only if the map g �→ ρg is an anti-homomorphism
from G into the group Diff∞(M) of diffeomorphisms of M . By A(M,G) we denote
the subset of C∞(M ×G,M) that consists of actions of G. It is a closed subspace
of C∞(M ×G,M). For ρ ∈ A(M,G) and x ∈M , the set

Oρ(x) =
{
ρg(x) | g ∈ G

}
is called the ρ-orbit of x.

Example 1.1.1. A(M,G) is non-empty for all M and G. In fact, it contains the
trivial action ρtriv, which is defined by ρtriv(x, g) = x. For every x ∈ M we have
that Oρtriv

(x) = {x}.

Let us introduce an infinitesimal description of actions. By X(M) we denote
the Lie algebra of smooth vector fields on M . Let g be the Lie algebra of G and
Hom(g,X(M)) be the space of Lie algebra homomorphisms from g to X(M). In
these notes, we identify g with the subspace of X(G) consisting of vector fields in-
variant under left translations. Each action ρ ∈ A(M,G) determines an associated
infinitesimal action Iρ : g→X(M) by

Iρ(ξ)(x) =
d

dt
ρ(x, exp tξ)

∣∣∣∣
t=0

.

Proposition 1.1.2. Iρ is a Lie algebra homomorphism from g to X(M).
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Proof. By LXY we denote the Lie derivative of a vector field Y with respect to
(along) another vector field X. Take ξ, η ∈ g and x ∈M . Then,

[Iρ(ξ), Iρ(η)](x) = (LIρ(ξ)Iρ(η))(x)

= lim
t→ 0

1

t

{
Dρexp(−tξ)(Iρ(η)(ρ

exp(tξ)(x)))− Iρ(η)(x)
}

=
d

dt

{
d

ds
(ρexp(−tξ) ◦ ρexp(sη) ◦ ρexp(tξ))(x)

∣∣∣∣
s=0

}∣∣∣∣
t=0

=
d

dt

{
d

ds
ρ(x, exp(tξ) exp(sη) exp(−tξ))

∣∣∣∣
s=0

}∣∣∣∣
t=0

=
d

dt
ρ(x, exp(tAdexp(tξ)η))

∣∣∣∣
t=0

= Iρ([ξ, η])(x). �

Proposition 1.1.3. Two actions ρ1, ρ2 ∈ A(M,G) coincide if Iρ1
= Iρ2

. If G is
simply connected and M is closed, then any I ∈ Hom(g,X(M)) is the infinitesimal
action associated with some action in A(M,G).

Proof. Let ρ1, ρ2 ∈ A(M,G). The curve t �→ ρi(x, exp(tξ)) is an integral curve
of the vector field Iρi(ξ) for all x ∈ M , ξ ∈ g, and i = 1, 2. If Iρ1 = Iρ2 , then
the uniqueness of integral curves implies that ρ1(x, exp(tξ)) = ρ2(x, exp(tξ)) for
all x ∈ M , t ∈ R, and ξ ∈ g. Since the union of one-parameter subgroups of G
generates G, we have ρ1 = ρ2.

Suppose that G is simply connected and M is a closed manifold. Let E be
the subbundle of T (M ×G) given by

E(x, g) =
{
(I(ξ)(x), ξ(g)) ∈ T(x,g)(M ×G) | ξ ∈ g

}
.

For all ξ, ξ′ ∈ g, we have[
(I(ξ), ξ), (I(ξ′), ξ′)

]
=
(
[I(ξ), I(ξ′)], [ξ, ξ′]

)
=
(
I([ξ, ξ′]), [ξ, ξ′]

)
.

By Frobenius’ theorem, the subbundle E is integrable. Let F be the foliation
on M × G generated by E. The space M × G admits a left action of G defined
by g · (x, g′) = (x, gg′). The subbundle E is invariant under this action. Hence,
we have g · F(x, g′) = F(x, gg′). Since M is compact, G is simply connected,
and the foliation F is transverse to the natural fibration π : M × G → G, the
restriction of π to each leaf of F is a diffeomorphism onto G. So, we can define
a smooth map ρ : M × G→M such that F(x, 1G) ∩ π−1(g) = {(ρg(x), g)}. Take
x ∈ M and g, h ∈ G. Then (ρg ◦ ρh(x), g) is contained in F(ρh(x), 1G). Applying
h from the left, we see that (ρg ◦ ρh(x), hg) is an element of F(ρh(x), h). Since
F(ρh(x), h) = F(x, 1G) and {(ρhg(x), hg)} = F(x, 1G)∩π−1(hg) by the definition
of ρ, we have ρg ◦ ρh(x) = ρhg(x). Therefore, ρ is a right action of G. Now it is
easy to check that Iρ = I. �



1.1. Locally free actions and their deformations 5

We say that an action ρ ∈ A(M,G) is locally free if the isotropy group
{g ∈ G | ρg(x) = x} is a discrete subgroup of G for every x ∈ M . By ALF(M,G)
we denote the set of locally free actions of G on M . Of course, the trivial action
is not locally free unless M is zero-dimensional. The following is a list of basic
examples of locally free actions.

Example 1.1.4 (Flows). A locally free R-action is just a smooth flow with no
stationary points. We remark that ALF(M,R) is empty if M is a closed manifold
with non-zero Euler characteristic.

Example 1.1.5 (The standard action). Let G be a Lie group, and Γ andH be closed
subgroups of G. The standard H-action on Γ\G is the action ρΓ ∈ A(Γ\G,H)
defined by ρΓ(Γg, h) = Γ(gh). The action ρ is locally free if and only if g−1Γg ∩H
is a discrete subgroup of H for every g ∈ G. In particular, if Γ itself is a discrete
subgroup of G, then ρΓ is locally free.

Example 1.1.6 (The suspension construction). Let M be a manifold and G be a
Lie group. Take a discrete subgroup Γ of G, a closed subgroup H of G, and a left
action σ : Γ ×M→M . We put M ×σ G = M × G/(x, g) ∼ (σ(γ, x), γg). Then
M ×σ G is an M -bundle over Γ\G. We define a locally free action ρ of H on
M ×σ G by ρ([x, g], h) = [x, gh].

We say that a homomorphism I : g→X(M) is non-singular if I(ξ)(x) �= 0
for all ξ ∈ g \ {0} and x ∈M .

Proposition 1.1.7. An action ρ ∈ A(M,G) is locally free if and only if Iρ is non-
singular.

Corollary 1.1.8. For any ρ ∈ ALF(M,G), the orbits of ρ form a smooth foliation.
If the manifold M is closed, then the map ρ(x, · ) : G→O(x, ρ) is a covering for
any x ∈M , where O(x, ρ) is endowed with the leaf topology.

The proofs of the proposition and the corollary are easy and left to the reader.
If M is closed, then the set of non-singular homomorphisms is an open subset of
Hom(g,X(M)). Hence, ALF(M,G) is an open subset of A(M,G) in this case.

Let F be a foliation on a manifold M . We denote the tangent bundle of
F by TF and the subalgebra of X(M) consisting of vector fields tangent to F
by X(F). Let ALF(F , G) be the set of locally free actions of a Lie group G whose
orbit foliation is F . The subspace ALF(F , G) of ALF(M,G) is closed and consists
of actions ρ such that Iρ is an element of Hom(g,X(F)).

1.1.2 Rigidity and deformations of actions

We say that two actions ρ1 ∈ A(M1, G) and ρ2 ∈ A(M2, G) on manifolds M1

and M2 are (C∞-)conjugate (and write ρ1 	 ρ2) if there exist a diffeomorphism

h : M1→M2 and an automorphism Θ of G such that ρ
Θ(g)
2 ◦ h = h ◦ ρg1 for every

g ∈ G.
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For a given foliation F on M , let Diff(F) be the set of diffeomorphisms of M
which preserve each leaf of F and Diff0(F) be its arc-wise connected component
that contains IdM . We say that two actions ρ1, ρ2 ∈ ALF(F , G) are (C∞-) param-
eter equivalent (and write ρ1 ≡ ρ2) if they are conjugate by a pair (h,Θ) such
that h is an element of Diff0(F). It is easy to see that conjugacy and parameter
equivalence are equivalence relations.

The ultimate goal of the study of smooth group actions is the classification
of actions in ALF(M,G) or ALF(F , G) up to conjugacy or parameter equivalence,
for given G and M , or F . The simplest case is that ALF(M,G) or ALF(F , G)
consists of only one equivalence class. We say that an action ρ0 in ALF(M,G) is
(C∞-)rigid if any action in ALF(M,G) is conjugate to ρ0. We say that an action
ρ0 whose orbit foliation is F is (C∞-)parameter rigid if any action in ALF(F , G)
is parameter equivalent to ρ0.

It is useful to introduce a local version of rigidity. We say that ρ0 is locally
rigid if there exists a neighborhood U of ρ0 such that any action in U is conjugate
to ρ0. We also say that ρ0 is locally parameter rigid if there exists a neighborhood
U of ρ0 in A(F , G) such that any action in U is parameter equivalent to ρ0. As
we mentioned in the Introduction, local rigidity for compact group actions was
settled in the early 1960’s.

There exist actions which are locally parameter rigid, but not parameter
rigid. For example, for k ∈ Z, let ρk be the right action of S1 = R/Z on S1 given
by ρtk(s) = s+kt. It is easy to see that ρ1 is locally parameter rigid. Of course, all
the orbits of ρk coincide with S1 for k ≥ 1. However, ρk is parameter equivalent to
ρ1 if and only if |k| = 1, since the mapping degree of ρk(s, ·) is k. So, ρ1 is locally
parameter rigid, but not parameter rigid.

It is unknown whether every locally parameter rigid locally free action of a
contractible Lie group on a closed manifold is parameter rigid or not.

Theorem 1.1.9 (Palais [44]). Every action of a compact group on a closed manifold
is locally rigid.

As we will see later, many actions of non-compact groups fail to be locally
rigid. Thus, it is natural to introduce the concept of deformation of actions. We
say that a family (ρμ)μ∈Δ of elements of A(M,G) parametrized by a manifold Δ
is a C∞ family if the map ρ̄ : (x, g, μ) �→ ρμ(x, g) is smooth. By ALF(M,G; Δ) we
denote the set of C∞ families of actions in ALF(M,G) parametrized by Δ. Under
the identification with (ρμ)μ∈Δ and ρ̄, the topology of C∞(M×G×Δ,M) induces
a topology on ALF(M,G; Δ). We say that (ρμ)μ∈Δ is a (finite-dimensional) defor-
mation of ρ ∈ A(M,G) if Δ is an open neighborhood of 0 in a finite-dimensional
vector space and ρ0 = ρ.

In several cases, actions are not locally rigid, but their conjugacy class is
of finite codimension in ALF(M,G). Here we formulate two types of finiteness of
codimension. Let (ρμ)μ∈Δ ∈ ALF(M,G; Δ) be a deformation of ρ. We say that
(ρμ)μ∈Δ is locally complete if there exists a neighborhood U of ρ inALF(M,G) such
that any action in U is conjugate to ρμ for some μ ∈ Δ. We also say that (ρμ)μ∈Δ is
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locally transverse1 if any C∞ family in ALF(M,G; Δ) sufficiently close to (ρμ)μ∈Δ

contains an action conjugate to ρ. Roughly speaking, local completeness means
that the quotient space A(M,G)/ 	 is locally finite-dimensional at the conjugacy
class of ρ. Local transversality means that the family (ρμ)μ∈Δ is transverse to the
conjugacy class of ρ at μ = 0.

We define analogous concepts for actions in ALF(F , G). Let F be a foliation
on a manifold M . We say that (ρμ)μ∈Δ ∈ ALF(M,G; Δ) preserves F if all ρμ are
actions in ALF(F , G). By ALF(F , G; Δ) we denote the subset of ALF(M,G; Δ)
that consists of families preserving F . We call a deformation in ALF(F , G; Δ) a
parameter deformation. Let (ρμ)μ∈Δ ∈ ALF(F , G; Δ) be a parameter deformation
of an action ρ. We say that (ρμ)μ∈Δ is locally complete in ALF(F , G) if there
exists a neighborhood U of ρ in ALF(F , G) such that any action in U is parameter
equivalent to ρμ for some μ ∈ Δ. We also say that (ρμ)μ∈Δ ∈ ALF(F , G; Δ) is
locally transverse in ALF(F , G) if any C∞ family in ALF(F , G; Δ) sufficiently close
to of (ρμ)μ∈Δ contains an action parameter-equivalent to ρ.

1.2 Rigidity and deformation of flows

The real line R is the simplest Lie group among the non-compact and connected
ones. Recall that a locally free R-action is just a smooth flow with no stationary
points. In this section, we discuss the rigidity of locally free R-actions as a model
case.

1.2.1 Parameter rigidity of locally free R-actions

Parameter rigidity of a locally free R-action is characterized by the solvability of
a partial differential equation.

Theorem 1.2.1. Let ρ0 be a smooth locally free R-action on a closed manifold M
and X0 the vector field generating ρ0. Then ρ0 is parameter rigid if and only if
the equation

f = X0g + c (1.1)

admits a solution (g, c) ∈ C∞(M,R)× R for any given f ∈ C∞(M,R).

The above equation is called the cohomology equation over ρ0.

Proof. First, we suppose that ρ0 is parameter rigid. Let F be the orbit foliation
of ρ0 and take f ∈ C∞(M,R). Since M is closed, f1 = f + c1 is a positive-
valued function for some c1 > 0. Let ρ be the flow generated by the vector field
X = (1/f1)X0. By the assumption, there exist h ∈ Diff0(F) and c2 ∈ R such
that ρc2t ◦ h = h ◦ ρt0. The diffeomorphism h has the form h(x) = ρ−g(x) for some
g ∈ C∞(M,R). So, we have

ρt0(x) = ρc2t+g◦ρt
0(x)−g(x)(x)

1This terminology is not common. Any suggestion of a better terminology is welcome.
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for any x ∈ M , and hence X0 = (c2 +X0g)X. Since X0 = f1X, this implies that
f1 = c2 +X0g. Therefore, the pair (g, c2 − c1) is a solution of (1.1).

Next, we suppose that equation (1.1) can be solved for every function f .
Take an action ρ ∈ ALF(F ,R). Let X be the vector field generating ρ and f be
the non-zero function satisfying f · X = X0. By assumption, equation (1.1) has
a solution (g, c) for f . Since f is non-zero and X0g(x) = 0 for some x ∈ M , we
have c �= 0. Put h(x) = ρ−g(x). Then ρct ◦ h = h ◦ ρt0. Since the maps t �→ ρt0(x)
and t �→ ρct(h(x)) = h(ρt0(x)) are covering maps from R to F(x) for any x ∈ M ,
the map h is a self-covering of M . Since h is homotopic to the identity, it is a
diffeomorphism. Therefore, ρ is parameter equivalent to ρ0. �

We say that a point x ∈ M is a periodic point of a locally free flow ρ ∈
ALF(M,R) if ρT (x) = x for some T > 0. The orbit of x is called a periodic orbit.
A point x is periodic if and only if the orbit O(x, ρ) is compact.

Corollary 1.2.2. Let ρ be an action in ALF(M,R). Suppose that ρ admits two
distinct periodic orbits. Then ρ is not parameter rigid.

Proof. By the assumption, there exist x1, x2 ∈ M and T1, T2 > 0 such that
O(x1, ρ) �= O(x2, ρ) and ρTi(xi) = xi for each i = 1, 2. Choose a smooth function
f such that f ≡ 0 on O(x1, ρ) and f ≡ 1 on O(x2, ρ). Then there exists no solution
of (1.1) for f . In fact, if (g, c) is a solution, then we have

1

T

∫ T

0

f ◦ ρt(x)dt = c

for all x ∈M and T > 0 with ρT (x) = x. However, the left-hand side should be 0
or 1 for x = x1 or x2. �

There is a classical example of a parameter rigid flow. For N ≥ 1, we denote
the N -dimensional torus RN/ZN by TN . For v ∈ RN , we define the linear flow Rv

on TN by Rt
v(x) = x + tv. The vector field Xv corresponding to Rv is a parallel

vector field on TN .

We say that v ∈ RN is Diophantine if there exists τ > 0 such that

inf
m∈ZN\{0}

∣∣〈m, v〉
∣∣ · ‖m‖τ > 0,

where 〈 , 〉 and ‖ · ‖ are the Euclidean inner product and norm on RN . When v is
Diophantine, we call the flow Rv a Diophantine linear flow and its orbit foliation
a Diophantine linear foliation.

Theorem 1.2.3 (Kolmogorov). The cohomology equation (1.1) over a Diophantine
linear flow on TN admits a solution for any f ∈ C∞(TN ,R). By Theorem 1.2.1,
every Diophantine linear flow is parameter rigid.
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Proof. Take the Fourier expansion of f

f(x) =
∑

m∈ZN

am exp
(
2π〈m,x〉

√
−1
)
.

Since f is a smooth function, we have

sup
m∈ZN

‖m‖k|am| <∞ (1.2)

for k ≥ 1. Fix a Diophantine vector v ∈ RN . Put b0 = 0 and

bm =
am

2π〈m, v〉
√
−1

for m �= 0. Then,

g(x) =
∑

m∈ZN

bm exp
(
2π〈m,x〉

√
−1
)

is a formal solution of f = Xvg+a0. Since v is Diophantine, there exist τ > 0 and
C > 0 such that |bm| ≤ C‖m‖τ |am| for all m ∈ ZN . By (1.2),

sup
m∈ZN

‖m‖k|bm| <∞

for k ≥ 1. This implies that g is a smooth function. �

Diophantine linear flows are the only known examples of parameter rigid
flows.

Conjecture 1.2.4 (Katok). Every parameter rigid flow on a closed manifold is
conjugate to a Diophantine linear flow.

Recently, some partial results on this conjecture were obtained.

Theorem 1.2.5 (F. Rodriguez Hertz–J. Rodriguez Hertz [48]). Let M be a closed
manifold with first Betti number b1. If ρ ∈ ALF(M,R) is parameter rigid, then
there exist a smooth submersion π : M→Tb1 and a Diophantine linear flow Rv on
Tb1 such that π ◦ ρt = Rt

v ◦ π.
In particular, if b1 = dimM , then M is diffeomorphic to Tb1 and ρ is conju-

gate to a Diophantine linear flow.

Theorem 1.2.6 (Forni [20], Kocsard [34], Matsumoto [40]). Every locally free pa-
rameter rigid flow on a three-dimensional closed manifold is conjugate to a Dio-
phantine linear flow on T3.
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1.2.2 Deformation of flows

There is no known example of a locally rigid flow and it is almost hopeless to try
to find it.

Proposition 1.2.7. If ρ ∈ ALF(M,R) is locally rigid, then there exists a neighbor-
hood U of ρ such that no ρ′ ∈ U admits a periodic point.

Proof. Let U be the conjugacy class of ρ. Since ρ is locally rigid, U is a neighbor-
hood of ρ. For ρ′ ∈ ALF(M,R), put

Λ(ρ′) =
{
detDρTx | x ∈M, T ∈ R, ρT (x) = x

}
.

Since it is invariant under conjugacy, Λ(ρ′) = Λ(ρ) for all ρ′ ∈ U .
By the Kupka–Smale theorem (see, e.g., [47]), the set U contains a flow with

at most countably many periodic orbits. The local rigidity of ρ implies that ρ
admits at most countably many periodic orbits. Hence, Λ(ρ) is at most countable.
However, if Λ(ρ) is non-empty, then a small perturbation on a small neighborhood
of a periodic orbit can produce a flow ρ′ ∈ U such that Λ(ρ′) �= Λ(ρ). �

It is unknown whether every open subset of ALF(M,R) contains a flow with
a periodic point or not. On the other hand, any open subset of the set of C1 flows
(with the C1 topology) contains a C∞ flow with a periodic point. This is just an
immediate consequence of Pugh’s C1 closing lemma [45]. The validity of the C∞

closing lemma is a long-standing open problem in the theory of dynamical systems.
The following exercise shows that it is hard to find a locally complete defor-

mation of a flow.

Exercise 1.2.8. Suppose that a flow ρ ∈ ALF(M,R) admits infinitely many periodic
orbits. Show that no deformation (ρμ)μ∈Δ of ρ is locally complete.

On the other hand, every Diophantine linear flow admits a locally transverse
deformation.

Theorem 1.2.9. Let v ∈ RN be a Diophantine vector and E ⊂ RN be its orthogonal
complement. Then the deformation (Rv+μ)μ∈E of Rv is locally transverse.

Remark that the above deformation is not complete. In fact, it is easy to
see that Rv can be approximated by a flow with finitely many periodic orbits and
therefore not conjugate to any linear flow.

The theorem is derived from the following result due to Herman. Fix N ≥ 2
and a point x0 ∈ TN . Let Diff(TN , x0) be the set of diffeomorphisms of TN which
fix x0.

Theorem 1.2.10 (Herman). Suppose that v ∈ RN is Diophantine. Then there exist
a neighborhood U of Xv in X(TN ), a neighborhood V of IdTN in Diff(TN , x0), and
a continuous map w̄ : U →RN which satisfy the following property: for any Y ∈ U ,
there exists a unique diffeomorphism h ∈ V such that Y = h∗(Xv) +Xw̄(Y ).
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Proof. We give only a sketch of proof here; see, e.g., [1] for details. We define a
map Φ: Diff(TN , x0) × RN →X(TN ) by (h,w) �→ h∗(Xv) +Xw. The theorem is
an immediate consequence of the Nash–Moser inverse function theorem if we can
apply it to Φ at (h,w) = (IdTN , v).

Using the solvability of equation (1.1) for any f , we can show that the dif-
ferential DΦ is invertible on a neighborhood of (IdTN , v). Since Diff(TN , x0) is a
Fréchet manifold (not a Banach manifold), the definition of the differential DΦ is
non-trivial and the inverse satisfies a tame estimate. This allows us to apply the
Nash–Moser theorem. �

Proof of Theorem 1.2.9. Let U , V, and w̄ be the neighborhoods and the map in
Herman’s theorem. For ρ ∈ A(TN ,R), we denote the vector field generating ρ
by Yρ. Take neighborhoods U of 0 in E and W of a deformation (Rv+μ)μ∈E in
ALF(TN ,R;E), and a constant δ > 0, such that (1+c)Yρμ ∈ U for all (ρμ)μ∈E ∈ W,
μ ∈ U , and c ∈ (−δ, δ).

For (ρμ)μ∈E ∈ W, we define a map Ψ(ρμ) : U× (−δ, δ)→RN by Ψ(ρμ)(μ, c) =
w̄((1 + c) · Yρμ

). It is a continuous map which depends continuously on (ρμ)μ∈E .
By the uniqueness of the choice of h ∈ Diff0(TN ) in Herman’s theorem, we have
Ψ(Rv+μ)(μ, c) = (1 + c)μ + cv. In particular, Ψ(Rv+μ) is a local homeomorphism
between neighborhoods of (μ, c) = (0, 0) ∈ E × R and 0 ∈ Rn. By the continuous
dependence of Ψ(ρμ) with respect to the family (ρμ), if (ρμ)μ∈E is sufficiently close
to (Rv+μ)μ∈E , then the image of Ψ(ρμ) contains 0. In other words, there exists
(μ∗, c∗) ∈ U × (−δ, δ) such that Ψ(ρμ)(μ∗, c∗) = 0. Hence, there exists h∗ ∈ V
which conjugates Rv with ρμ∗ . �

The above family (Rv+μ)μ∈E is the best possible in the following sense.

Exercise 1.2.11. Let (ρμ)μ∈Δ ∈ ALF(TN ,R; Δ) be a deformation of Rv for v ∈ RN .
Show that if the dimension of Δ is less than N − 1, then (ρμ)μ∈Δ is not a locally
transverse deformation.

1.3 Leafwise cohomology

As we saw in the previous section, the cohomology equation plays an important
role in the rigidity problem of locally free R-actions. For actions of abelian Lie
groups, the solvability of the equation is generalized to the almost vanishing of
the first leafwise cohomology of the orbit foliation. In this section, we give the
definition of leafwise cohomology and show some of its basic properties. We also
compute the cohomology in several examples.

1.3.1 Definition and some basic properties

Let F be a foliation on a manifold M . As before, we denote the tangent bundle of
F by TF . We also denote the dual bundle of TF by T ∗F . For k ≥ 0, let Ωk(F) be
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the space of smooth sections of ∧kT ∗F . Each element of Ω∗(F) is called a leafwise
k-form.

By Frobenius’ theorem, if X,Y ∈ X(F), then [X,Y ] ∈ X(F). Hence, we can
define the leafwise exterior derivative dkF : Ωk(F)→Ωk+1(F) by

(dkFω)(X0, . . . , Xk) =
∑

0≤i≤k

(−1)i
[
Xi, ω(X0, . . . , X̌i, . . . , Xk)

]
+

∑
0≤i<j≤k

(−1)i+jω
(
[Xi, Xj ], X0, . . . , X̌i, . . . , X̌j , . . . , Xk

)
for X0, . . . , Xk ∈ X(F). Similarly to the usual exterior derivative, the leafwise
derivative satisfies dk+1

F ◦ dkF = 0. For k ≥ 0, the kth leafwise cohomology group
Hk(F) is the kth cohomology group of the cochain complex (Ω∗(F), dF ).
Example 1.3.1. H0(F) is the space of smooth functions which are constant on
each leaf of F . Hence, if F has a dense leaf, then H0(F) 	 R.

Example 1.3.2. Suppose that F is a one-dimensional orientable foliation on a
closed manifold M . Let X0 be a vector field generating F . Take ω0 ∈ Ω1(F) such
that ω0(X0) = 1. Then d0Fg = (X0g)·ω0 for any g ∈ Ω0(F) = C∞(M,R). Since d1F
is the zero map, the cohomology equation (1.1) is solvable for any f ∈ C∞(M,R)
if and only if H1(F) 	 R. In this case, [ω0] is a generator of H1(F).

There are two important homomorphisms whose target is H∗(F). The first is
a homomorphism from the de Rham cohomology group. Let Ωk(M) andHk(M) be
the space of (usual) smooth k-forms and the kth de Rham cohomology group ofM .
By Frobenius’ theorem, the restriction of a closed (respectively exact) k-form to
⊗kTF defines a dF -closed (respectively exact) leafwise k-form. So, the restriction
map r : Ωk(M)→Ωk(F) induces a homomorphism r∗ : H

k(M)→Hk(F).
The second is a homomorphism from the cohomology of a Lie algebra when F

is the orbit foliation of a locally free action. Let us recall the definition of the
cohomology group of a Lie algebra. Let g be a Lie algebra. For k ≥ 0, we define
the differential dkg : ∧k g∗→ ∧k+1 g∗ by d0g = 0 and(

dkgα
)(
ξ0, . . . , ξk

)
=

∑
0≤i<j≤k

(−1)i+jα
(
[ξi, ξj ], ξ0, . . . , ξ̌i, . . . , ξ̌j , . . . , ξk

)
for k ≥ 1 and ξ0, . . . , ξk ∈ g. The kth cohomology group Hk(g) is the kth coho-
mology group of the chain complex (∧∗g∗, dg).

Exercise 1.3.3. H1(g) is isomorphic to g/[g, g].

Suppose that F is the orbit foliation of a locally free action ρ of a Lie group G.
Let g be the Lie algebra of G and Iρ ∈ Hom(g,X(M)) be the infinitesimal action
associated with ρ. Then Iρ induces a homomorphism ιρ : ∧∗ g∗→Ω∗(F) by

ιρ(α)x
(
Iρ(ξ1), . . . Iρ(ξk)

)
= α(ξ1, . . . , ξk)
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for all α ∈ ∧kg∗, ξ1, . . . , ξk ∈ g, and x ∈M . Since the map ιρ commutes with the
differentials, it induces a homomorphism (ιρ)∗ : H

∗(g)→H∗(F).
Proposition 1.3.4. The homomorphism (ιρ)∗ : H

1(g)→H1(F) between the first
cohomology groups is injective whenever M is a closed manifold.

Proof. Fix α ∈ Ker d1g such that (ιρ)∗([α]) = 0. Then there exists g ∈ C∞(M,R)
such that ιρ(α) = dFg. For ξ ∈ g, let Φξ be the flow on M generated by Iρ(ξ). For
all ξ ∈ g, T > 0, and x ∈M ,

α(ξ) · T =

∫
{Φt

ξ(x)}0≤t≤T

ιρ(α) = g ◦ ΦT
ξ (x)− g(x).

Since the last term is bounded and T is arbitrary, we have α(ξ) = 0 for all ξ ∈ g.
Therefore, α = 0. �

The same conclusion holds for the homomorphism between higher cohomol-
ogy groups if the action preserves a Borel probability measure; see [50].

Example 1.3.5. Let F be the orbit foliation of a Diophantine linear flow Rv on TN .
By Theorem 1.2.3, H1(F) is isomorphic to R. The above proposition implies that
H1(F) is generated by the dual ωv of the constant vector field Xv. The form ωv

is the restriction of a usual 1-form. So, H1(F) = Im ι∗ = Im r∗. In particular, the
map r∗ is not injective for N ≥ 2.

The vanishing of the first leafwise cohomology group of the orbit foliation
implies the existence of an invariant volume.

Proposition 1.3.6 (Dos Santos [51]). Let G be a simply connected Lie group and
F a foliation on an orientable closed manifold M . If H1(F) 	 H1(g), then any
ρ ∈ ALF(F , G) preserves a smooth volume, i.e., there exists a smooth volume ν on
M such that (ρg)∗ν = ν for all g ∈ G.

Proof. Fix an action ρ ∈ ALF(F , G) and a smooth volume form ν on M . We define
a leafwise 1-form ω ∈ Ω1(F) by LXν = ω(X) · ν for all X ∈ X(F). Then,(

dFω(X,Y )
)
· ν =

{
X · ω(Y )− Y · ω(X)− ω([X,Y ])

}
ν

= LX(LY ν)− LY (LXν)− L[X,Y ]ν

= 0

for all X,Y ∈ X(F). Since H1(F) = Im(ιρ)∗ by assumption and Proposition 1.3.4,
there exists a smooth function f on M and α ∈ g∗ such that ω = ιρ(α) + dFf .
Define a new volume form νf on M by νf = e−f · ν. It satisfies

(LIρ(ξ))νf = ιρ(α)(Iρ(ξ)) · νf = α(ξ) · νf

for all ξ ∈ g. Since M is a closed manifold, α(ξ) must be zero, and this implies
that ρ preserves the volume νf . �
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Remark that the converse of the proposition does not hold. In fact, there is an
easy counterexample. The linear flow associated with a rational vector preserves
the standard volume of the torus. However, the first leafwise cohomology of the
orbit foliation is infinite-dimensional since all points of the torus are periodic.

1.3.2 Computation by Fourier analysis

Theorem 1.2.3 can be generalized to linear foliations of tori. Let B = (v1, . . . , vp) ∈
RpN be a p-tuple of linearly independent vectors in RN . We define the linear action

ρB ∈ A(TN ,Rp) by ρ
(t1,...,tp)
B (x) = x+

∑p
i=1 tivi. We say that B = (v1, . . . , vp) is

Diophantine if there exists τ > 0 such that

inf
m∈ZN\{0}

(
max

{∣∣〈m, v1
〉∣∣, . . . , ∣∣〈m, vp

〉∣∣} · ‖m‖)τ > 0.

If B = (v1, . . . , vp) is Diophantine, the orbit foliation of ρB is called a Diophantine
linear foliation.

Theorem 1.3.7 (Arraut–dos Santos [4]; see also [2, 16]). Let F be a p-dimensional
Diophantine linear foliation on TN . Then H1(F) 	 Rp.

Proof. Let B = (v1, . . . , vp) be a p-tuple of linearly independent vectors in RN

which is Diophantine and whose orbit foliation is F . For each m ∈ ZN\{0}, take
i(m) ∈ {1, . . . , p} such that∣∣〈m, vi(m)〉

∣∣ = max
{∣∣〈m, v1〉

∣∣, . . . , ∣∣〈m, vp〉
∣∣}.

Since (v1, . . . , vp) is Diophantine, there exists τ > 0 such that

inf
m∈ZN\{0}

∣∣〈m, vi(m)

〉∣∣ · ‖m‖τ > 0. (1.3)

In particular, 〈m, vi(m)〉 �= 0 for all m ∈ ZN\{0}.
Let Y1, . . . , Yp be linear vector fields corresponding to v1, . . . , vp, respectively,

and dy1, . . . , dyp be the dual 1-forms in Ω1(F). Take a closed leafwise 1-form
ω =

∑p
i=1 fidyi in Ω1(F). Let

fi(x) =
∑

m∈ZN

ai,m exp
(
2π〈m,x〉

√
−1
)

be the Fourier expansion of fi. Since fi is smooth,

sup
m∈ZN

∣∣ai(m),m

∣∣ · ‖m‖k < +∞ (1.4)

for all k ≥ 1. Since ω is dF -closed, Yifj = Yjfi, and hence〈
m, vi(m)

〉
· ai,m =

〈
m, vi

〉
· ai(m),m (1.5)
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for any i = 1, . . . , p and m ∈ ZN\{0}. Put b0 = 0 and bm = ai(m),m/〈m, vi(m)〉 for
m ∈ ZN\{0}. By the inequalities (1.3) and (1.4),

sup
m∈ZN

∣∣bm∣∣ · ∥∥m∥∥k < +∞

for k ≥ 1. Hence, the function

β(x) =
∑

m∈ZN

bm exp
(
2π
〈
m,x

〉√
−1
)

is well-defined and smooth. Since ai,m = bm〈m, vi〉 by equation (1.5), we have

dFβ =

p∑
i=1

( ∑
m∈ZN\{0}

bm
〈
m, vi

〉
exp
(
2π〈m,x〉

√
−1
))

dyi

= ω −
p∑

i=1

ai,0dyi.

Hence, H1(F) = Im ι∗ρB
	 Rp. �

Arraut and dos Santos also computed the higher leafwise cohomology of
Diophantine linear foliations.

Theorem 1.3.8 (Arraut–dos Santos [4]). Let F be a p-dimensional Diophantine
linear foliation on TN . Then H∗(F) 	 H∗(Tp).

The Fourier expansion can be regarded as the irreducible decomposition
of the regular representation of TN . There is another example of application of
representation theory to the computation of the leafwise cohomology of a foliation.
Let Γ be a cocompact lattice of SL(2,R) and put

u(t) =

(
1 t
0 1

)
for t ∈ R. We define an action ρ ∈ ALF(Γ\SL(2,R),R) by ρ(Γx, t) = Γ(xu(t)).
The R-action ρ is called the horocycle flow. Flaminio and Forni [19] gave a detailed
description of the solution of the cohomology equation over the horocycle flow by
using an irreducible decomposition of the regular right representation of SL(2,R)
on Γ\SL(2,R). When we replace R by C, we obtain a C-action on Γ\SL(2,C). Its
orbit foliation is called the horospherical foliation. Using the result by Flaminio and
Forni, Mieczkowski computed the first cohomology of the horospherical foliation.

Theorem 1.3.9 (Mieczkowski [42]). Let F denote the orbit foliation of the above
C-action on Γ\SL(2,C). Then the image of d0F is a closed subspace of Ker d1F and
there exists a subspace H of Ker d1F such that H 	 H1(M) and

Ker d1F = Im d0F ⊕ Im ιρ ⊕H.

In particular, H1(F) 	 R2 ⊕H1(M).
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Mieczkowski stated only the isomorphism H1(F) 	 R2 ⊕ H1(M) in [42,
Theorem 1]. However, by a careful reading of his proof, we can see that ρ-invariant
distributions on C∞(Γ\SL(2,C)) give the projections associated with the splitting
Ker d1F = Im d0F ⊕ Im ιρ ⊕H.

1.3.3 Computation by a Mayer–Vietoris argument

Let F be a foliation on a manifold M . By F|U we denote the restriction of F to an
open subset U of M . More precisely, the leaf (F|U )(x) is the connected component
of F(x) ∩ U which contains x. For k ≥ 0, we define a sheaf Ωk

F and a pre-sheaf
Hk

F by Ωk
F (U) = Ωk(F|U ) and Hk

F (U) = Hk(F|U ). For open subsets U1 and U2

of M , we can show that the Mayer–Vietoris exact sequence

· · · δ∗−→ Hk
F
(
U1 ∪ U2

) j∗−→ Hk
F
(
U1

)
⊕Hk

F (U2)
i∗−→

Hk
F
(
U1 ∩ U2

) δ∗−→ Hk+1
F
(
U1 ∪ U2

) j∗−→ · · ·

coincides with the one in de Rham cohomology.
Let us compute the leafwise cohomology of a foliation of suspension type,

using the above exact sequence. Let F be a foliation on a manifold M . Suppose
that a diffeomorphism h of M satisfies h(F(x)) = F(h(x)) for all x ∈ M . By Mh

we denote the mapping torus M × R/(x, t+ 1) ∼ (h(x), t). The product foliation
F × R on M × R induces a foliation Fh on Mh. The foliation Fh is called the
suspension foliation of F .

Take the open cover Mh = U1 ∪U2 given by U1 = M × (0, 1) and U2 = M ×
(−1/2, 1/2). Then the natural projection from Ui to M induces an isomorphism
between H∗(F) and H∗

Ui
(Fh). Similarly, H∗

U1∩U2
(Fh) is naturally isomorphic to

H∗(F) ⊕ H∗(F). Under these identifications, the map i∗ is given by i∗(a, b) =
(a− b, a− h∗(b)) for (a, b) ∈ H∗(F)⊕H∗(F). Hence, we have

Ker i∗ 	 Ker
(
Id− h∗), Im i∗ 	 H∗(F)⊕ Im

(
Id− h∗).

The Mayer–Vietoris exact sequence implies that

H∗(Fh) 	 Ker i∗ ⊕ Im δ∗−1 	 Ker i∗ ⊕
[
H∗−1(F)⊕H∗−1(F)

]
/ Im i∗−1.

Therefore,

H∗(Fh) 	 Ker
(
Id− h∗)⊕ [H(∗−1)(F)/ Im

(
Id− h(∗−1)

)]
. (1.6)

We compute H1(Fh) for the suspension of the stable foliation of a hyperbolic
toral automorphism. Let A be an integer-valued matrix with detA = 1. We define
a diffeomorphism FA on T2 by FA(x+Z2) = Ax+Z2. Suppose that the eigenvalues
λ, λ−1 of A satisfy λ > 1 > λ−1 > 0. Let Es be the eigenspace of λ−1 and F s be
the foliation on T2 given by F s(x) = x + Es. Since FA(F s(x)) = F s(FA(x)), the
foliation F s induces the suspension foliation FA on the mapping torus MA.
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Theorem 1.3.10 (El Kacimi Alaoui–Tihami [16]). H1(FA) 	 R.

Proof. It is known that F s is a Diophantine linear foliation. Therefore, H0(F s) 	
H1(F s) 	 R. By a direct computation, we can check that F ∗

A = Id on H0(F s) and
F ∗
A = λ−1 · Id on H1(F s). The isomorphism (1.6) implies H1(F s) 	 R. �

El Kacimi Alaoui and Tihami also computed the first leafwise cohomology
group for the suspension foliation of higher-dimensional hyperbolic toral automor-
phisms; see [16].

As with the de Rham cohomology, the Mayer–Vietoris sequence for the leaf-
wise cohomology is generalized to a spectral sequence. Let U = {Ui} be a locally
finite open cover of M . By the same construction as the Čech–de Rham complex
(see, e.g., [8]), we obtain a double complex (C∗(U ,Ω∗

F ), dF , δ), where

Cp
(
U ,Ωq

F
)
=

⊕
i1<···<ip

Ωq
F
(
Ui1 ∩ · · · ∩ Uip

)
and δ : C∗(U ,Ω∗

F )→C∗+1(U ,Ω∗
F ) is a natural linear map induced by inclusions.

Moreover, we can show that the sequence

0 −→ Ωq
(
F
)
−→ C0

(
U ,Ωq

F
) ∂−→ C1

(
U ,Ωq

F
) ∂−→ C2

(
U ,Ωq

F
)
−→ · · ·

is exact. The following theorem is proved by a standard method.

Theorem 1.3.11 (El Kacimi Alaoui–Tihami [16]). There exists a spectral sequence
{E∗,∗

r } such that Ep,q
1 = Cp(U , Hq

F ), E
p,q
2 = Hp

δ (U , H
q
F ), and {E∗,∗

r } converges to
H∗(F).

The reader can find several applications of the spectral sequence in [16].

1.3.4 Other examples

In this section, we give several examples of foliations whose first leafwise cohomol-
ogy is computed by other methods.

Fix p ≥ 1 and a cocompact lattice Γ of SL(p+ 1,R). Put

MΓ = Γ\SL(p+ 1,R).

By A we denote the subset of SL(p + 1,R) that consists of positive diagonal
matrices. It is a closed subgroup of SL(p + 1,R) isomorphic to Rp. The Weyl
chamber flow is the action ρ ∈ ALF(MΓ, A) given by ρ(Γx, a) = Γ(xa). Let Ap be
the orbit foliation of ρ.

Theorem 1.3.12 (Katok–Spatzier [32]). If p ≥ 2, then H1(Ap) 	 Rp.

The key features of the proof are the decay of matrix coefficients of the regular
representation and the hyperbolicity of the A-action. We remark that Katok and
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Spatzier proved a similar result for a wide class of Lie groups of real-rank larger
than one.

As an application of the above theorem, we compute the first cohomology of
another foliation on MΓ. Let P be the subgroup of SL(p + 1,R) that consists of
upper triangular matrices with positive diagonals. It acts naturally on MΓ from
the right. Let Fp be the orbit foliation of this action.

Theorem 1.3.13. If p ≥ 2, then H1(Fp) 	 Rp.

Proof. Let Eij be the square matrix of size p+1 whose (i, j)-entry is one and the
other entries are zero. For i, j = 1, . . . , p + 1, we define flows Φij and Ψij on MΓ

by Φt
ij(Γg) = Γg exp(t(Eii − Ejj)) and Ψt

ij(Γg) = Γg exp(tEij)). Let Xij and Yij

be the vector fields on MΓ which correspond to Φij and Ψij , respectively. Note
that Ap is generated by Xij and Fp is generated by Xij and Yij with i < j.

Take a dFp
-closed 1-form ω ∈ Ω1(Fp). The restriction of ω to TAp is dAp

-
closed. By Theorem 1.3.12, there exists h ∈ C∞(MΓ,R) such that (ω + dh)(Xij)
is a constant function for any i, j = 1, . . . , p+ 1.

We put ω′ = ω + dh and show that ω′(Yij) = 0 for i < j. Pick i, j, k ∈
{1, . . . , p+ 1} with i < j and k �= i, j. Since [Xik, Yij ] = Yij , dFp

ω′(Xik, Yij) = 0,
and ω′(Xik) is constant, we have Xik(ω

′(Yij)) = ω′(Yij). This implies that

ω′(Yij)(Φ
t
ik(x)) = et · ω′(Yij)(x)

for all t ∈ R and x ∈ MΓ. By the compactness of MΓ, ω
′(Yij) is identically zero.

Therefore, any dFp -closed 1-form is cohomologous to the constant form which
vanishes at Yij for any i < j. �

For p = 1, the Weyl chamber flow is an R-action, and it is naturally identified
with the geodesic flow of a two-dimensional hyperbolic orbifold. It admits infinitely
many periodic points, and hence H1(A1) is infinite-dimensional. By contrast, the
following theorem asserts that H1(F1) is finite-dimensional. Let ρΓ be the natural
right action of P on Γ\SL(2,R). We denote the Lie algebra of SL(2,R) by sl2(R).
Let ιρΓ

: H1(sl2(R))→H1(FΓ) and r∗ : H
1(M)→H1(FΓ) be the homomorphisms

defined in Section 1.3.1.

Theorem 1.3.14 (Matsumoto–Mitsumatsu [41]). The map(
ιρΓ

)
∗ ⊕ r∗ : H

1
(
sl2(R)

)
⊕H1

(
Γ\SL(2,R)

)
−→ H1(F1)

is an isomorphism.

Kanai [30] proved the corresponding result for general simple Lie groups of
real-rank one. In both results, the key feature of the proof is the hyperbolicity of
the A-subaction.
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1.4 Parameter deformation

We now come back to the study of deformation of locally free actions. In this
section, we discuss parameter rigidity and existence of locally complete orbit-
preserving deformations. In the case of abelian actions, parameter rigidity is com-
pletely characterized by the (almost) vanishing of the first cohomology of the orbit
foliation. It was first shown by Arraut and dos Santos [2] for linear foliations on
tori, and proved by Matsumoto and Mitsumatsu [41] for general abelian actions. In
Sections 1.4.1 and 1.4.2, we discuss this characterization. Because of non-linearity,
the relationship between parameter rigidity and the vanishing of leafwise cohomol-
ogy is not clear for non-abelian actions in general. However, for several solvable
actions, vanishing of the cohomology implies parameter rigidity. We investigate
such examples in Sections 1.4.3 and 1.4.4.

1.4.1 The canonical 1-form

Let G be a simply connected Lie group and g be its Lie algebra. To simplify the
presentation, we assume that G is linear, i.e., a closed subgroup of GL(N,R) for
some large N ≥ 1. Then each element of g is naturally identified with a square
matrix of size N .

Fix a foliation F on a closed manifold M . A g-valued leafwise 1-form ω ∈
Ω1(F)⊗ g is called non-singular if ωx : TxF → g is a linear isomorphism for every
x ∈ M . For any action ρ ∈ ALF(F , G), the associated infinitesimal action Iρ is
non-singular, i.e., the map (Iρ)x : g→TxF is an isomorphism. Hence, it induces a
non-singular 1-form ωρ ∈ Ω1(F)⊗ g by (ωρ)x = (Iρ)

−1
x . We call ωρ the canonical

1-form of ρ.

Lemma 1.4.1. Let ξ1, . . . , ξp be a basis of g and α1, . . . , αp be its dual basis of g∗.
Then we have

ωρ =

p∑
i=1

ιρ(αi)⊗ ξi,

where ιρ : g
∗→Ω1(F) is the homomorphism defined in Section 1.3.1.

Proof. For ξ =
∑p

i=1 ciξi, we have ωρ((Iρ)x(ξ)) = ξ by definition. On the other
hand,

p∑
i=1

ιρ(αi)
(
(Iρ)x(ξ)

)
⊗ ξi =

p∑
i=1

ciιρ(αi)
(
(Iρ)x(ξi)

)
⊗ ξi =

p∑
i=1

ciξi = ξ. �

The group of automorphisms of G acts (from the left) on ALF(F , G) by
(Θ · ρ)(x, g) = ρ(x,Θ−1(g)).

Exercise 1.4.2. Show that ωΘ·ρ = Θ∗ωρ, where Θ∗ : g→ g is the differential of Θ.

The following proposition characterizes the canonical 1-form.
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Proposition 1.4.3. A g-valued leafwise 1-form ω ∈ Ω1(F) ⊗ g is the canonical
1-form of some action in ALF(F , G) if and only if it is a non-singular 1-form
satisfying the equation

dFω + [ω, ω] = 0, (1.7)

where [ω, ω] is a g-valued leafwise 2-form defined by [ω, ω]x(v, w) = [ω(v), ω(w)]
for v, w ∈ TxF .
Proof. Fix a basis ξ1, . . . , ξl of g. Let {ckij} be the structure constants of g, i.e.,

[ξi, ξj ] =
∑l

k=1 c
k
ijξk.

Take a non-singular 1-form ω ∈ Ω1(F) ⊗ g. Let Xi be a nowhere-vanishing
vector field in X(F) given by Xi(x) = ω−1

x (ξi). Then,

(dFω + [ω, ω])(Xi, Xj) = Xi(ω(Xj))−Xj(ω(Xi))− ω([Xi, Xj ]) + [ω(Xi), ω(Xj)]

= −ω
([
Xi, Xj

])
+
∑
k

ckijξk

= −ω
([
Xi, Xj

])
+
∑
k

ckijω(Xk)

= ω
(∑

k

ckijXk −
[
Xi, Xj

])
.

Since ω is non-singular, dFω+[ω, ω] = 0 if and only if [Xi, Xj ] =
∑

k c
k
ijXk for all

i and j. The latter condition is equivalent to the linear map ξi �→
∑

Xi being a
homomorphism between Lie algebras. Hence, dFω+ [ω, ω] = 0 if and only if there
exists ρ ∈ ALF(F , G) such that Iρ(ξi) = Xi, or equivalently ωρ(Xi(x)) = ξi =
ω(Xi(x)) for all i. �

The following proposition describes how the canonical 1-form is transformed
under parameter equivalence of actions. We denote the constant map from M to
{1G} by b1G .

Proposition 1.4.4. An action ρ ∈ ALF(F , G) is equivalent to ρ0 if and only if there
exists a smooth map b : M→G homotopic to b1G and an endomorphism Θ: G→G
such that

ωρ = b−1 ·Θ∗ωρ0 · b+ b−1dFb. (1.8)

To prove the proposition, we need to introduce cocycles over an action. Let
H be another Lie group and h be its Lie algebra. Fix an action ρ0 ∈ ALF(F , G).
We say that a ∈ C∞(M ×G,H) is an (H-valued) cocycle over ρ0 if a(x, 1G) = 1H
and a(x, gg′) = a(x, g) · a(ρg0(x), g′) for all x ∈ M and g, g′ ∈ G. For a cocycle a,
we define the canonical 1-form ωa ∈ Ω1(F)⊗ h of a by

(ωa)x(X) =
d

dt
a
(
x, exp t(ωρ0

)x(X)
)
|t=0.

Lemma 1.4.5. Two cocycles a1 and a2 over ρ0 coincide if ωa1
= ωa2

.
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Proof. For i = 1, 2, we define Φi : M ×H ×G→M ×H by

Φi((x, h), g) = (ρg0(x), h · a(x, g)).

It is easy to see that Φi is a locally free action and

IΦi
(ξ)(x, h) =

(
Iρ0

(x), h · ωai

(
Iρ0

(ξ)(x)
))
∈ TxM × h · h 	 T(x,g)

(
M ×H

)
.

If ωa1
= ωa2

, then IΦ1
= IΦ2

, and hence Φ1 = Φ2. This implies that a1 = a2. �
Each action in ALF(F , G) defines a G-valued cocycle naturally and its canon-

ical 1-form is the canonical 1-form of the action.

Lemma 1.4.6 (Arraut–dos Santos [3]). For every ρ ∈ ALF(F , G), there exists a
unique G-valued cocycle a over ρ0 which satisfies ρ(x, a(x, g)) = ρ0(x, g) for all
x ∈M and g ∈ G. Moreover, a(x, · ) : G→G is a diffeomorphism for all x ∈M .

Proof. For any x ∈ M , the maps ρ0(x, · ), ρ(x, · ) : G→F(x) are coverings with
ρ0(x, 1G) = ρ(x, 1G) = x. Since G is simply connected, there exists a unique
diffeomorphism ax of G such that ρ(x, ax(g)) = ρ0(x, g) and ax(1G) = 1G. Put
a(x, g) = ax(g). It is easy to see that the map a is smooth and satisfies

ρ(x, a(x, gg′)) = ρ(x, a(x, g) · a(ρ0(x, g), g′)).

By the uniqueness of ax, we have a(x, gg′) = a(x, g) · a(ρ0(x, g), g′), and hence a
is a cocycle. �
Lemma 1.4.7. Let ρ be an action in ALF(F , G) and a : M ×G→G the cocycle in
Lemma 1.4.6. Then ωa is equal to the canonical 1-form of ρ.

Proof. Take the differential of the equation ρ(x, a(x, exp(tξ))) = ρ0(x, exp(tξ)) at
t = 0 for ξ ∈ g. We obtain Iρ(ωa(Iρ0(ξ))) = Iρ0(ξ). Since Iρ0 is non-singular and
(ωρ)x = (Iρ)

−1
x , we have ωa = ωρ. �

Lemma 1.4.8. Let ρ1 and ρ2 be actions in ALF(F , G), Θ an endomorphism of G,
and h a C∞ map which is homotopic to the identity. If h(F(x)) ⊂ F(x) for all

x ∈ M and ρ
Θ(g)
2 ◦ h = h ◦ ρg1 for all g ∈ G, then h is a diffeomorphism and Θ is

an automorphism.

Proof. Since h is homotopic to the identity, it is surjective. This implies that
h(F(x)) = F(x) for all x ∈ M . If the differential Θ∗ : g→ g is not an automor-

phism, then h(F(x)) = {ρΘ(g)
2 (h(x)) | g ∈ G} is a strict subset of F(h(x)) = F(x)

by Sard’s theorem. Hence, Θ∗ must be an automorphism of g. Since G is simply
connected, Θ is an automorphism of G.

The maps ρ1(x, · ) and h ◦ ρ1(x,Θ( · )) = ρ2(h(x), · ) are covering maps from
G to F(x). This implies that h is a self-covering of M . Since h is homotopic to
the identity, h is a diffeomorphism. �

Now we are ready to prove Proposition 1.4.4.
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Proof of Proposition 1.4.4. For an endomorphism Θ: G→G and b ∈ C∞(M,G),
we define a cocycle ab,Θ over ρ0 by ab,Θ(x, g) = b(x)−1 · Θ(g) · b(ρg0(x)). Let ωb,Θ

be its canonical 1-form. By a direct calculation, we have

ωb,Θ = b−1Θ∗ωρ0
b+ b−1dFb.

Suppose that ρ is equivalent to ρ0. Let h be a diffeomorphism in Diff0(F)
and Θ an automorphism of G such that ρΘ(g) ◦ h = h ◦ ρg0(x) for all g ∈ G. Since
h is homotopic to IdM through diffeomorphisms preserving each leaf of F , we
can take a smooth map b : M→G homotopic to b1G such that h(x) = ρb(x)

−1

.

Then ρb(x)
−1Θ(g)(x) = ρb(ρ

g
0(x))

−1 ◦ ρg0(x), and hence ρ0(x, g) = ρ(x, ab,Θ(x, g)). By
Lemma 1.4.6, the cocycle aρ corresponding to ρ is equal to ab,Θ. This implies that
ωaρ = ωb,Θ, and hence ωρ = b−1Θ∗ωρ0b+ b−1dFb.

Suppose that relation (1.8) holds for some Θ and b. Since ωαρ = ωρ = ωb,Θ,
the cocycle aρ corresponding to ρ coincides with ab,Θ. Therefore, ρ(x, ab,Θ(x, g)) =

ρ0(x, g). Put h(x) = ρb(x)
−1

. Then we have ρΘ(g) ◦ h = h ◦ ρg0. By Lemma 1.4.8, Θ
is an automorphism and h is a diffeomorphism. �

The above interpretation in terms of leafwise 1-forms is valid for general
cocycles.

Proposition 1.4.9 (Matsumoto–Mitsumatu [41]). Let G and H be simply connected
Lie groups and g and h their Lie algebras. Let ρ0 be a locally free action of G on
a closed manifold M and F be the orbit foliation of ρ0.

(1) A 1-form ω ∈ Ω1(F) ⊗ h is the canonical 1-form of some H-valued cocycle
over ρ0 if and only if dFω + [ω, ω] = 0.

(2) Let a1 and a2 be H-valued cocycles over ρ0. Let b : M→H be a smooth map
homotopic to b1H , and Θ be an endomorphism of H. Then

a2
(
x, g
)
= b(x)−1 ·Θ

(
a1
(
x, g
))
· b
(
ρg0(x)

)
if and only if

ωa2 = b−1(Θ∗ωa1)b+ b−1dFb,

where ωai
is the canonical 1-form of the cocycle ai.

We can extend Propositions 1.4.3 and 1.4.4 to the case that G may not be
a linear group. In this case, b−1(Θ∗ωρ0

)b is replaced by the adjoint Adb−1Θ∗ωr0 ,
and b−1dFb is replaced by the pull-back b∗θG of the Maurer–Cartan form θG ∈
Ω1(G)⊗ g, where θG(ξ(x)) = ξ for all ξ ∈ g.

1.4.2 Parameter deformation of Rp-actions

Let M be a closed manifold and F a foliation on M . Recall that the first co-
homology group of Rp as a Lie algebra is Rp. Let ρ be an action in ALF(F ,Rp),
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ιρ : Rp→Ω1(F) be the natural homomorphism induced by Iρ, and ωρ be the canon-
ical 1-form. Since Im(ιρ)∗ 	 Rp, Lemma 1.4.1 implies that

Im(ιρ)∗ ⊗ Rp = {Θ∗ωρ | Θ is a endomorphism of G}.

Identify the abelian group Rp and the group of positive diagonal matrices
of size p and apply Propositions 1.4.3 and 1.4.4 for Rp-actions. Then we obtain
the following correspondence between actions in A(F ,Rp) and Rp-valued leafwise
1-forms.

Proposition 1.4.10. An Rp-valued leafwise 1-form is the canonical 1-form of an
action in ALF(F ,Rp) if and only if it is non-singular and closed. Two actions
ρ1, ρ2 ∈ ALF(F ,Rp) are parameter equivalent if and only if the cohomology class
[ωρ2

] is contained in Im(ιρ1
)∗.

As a corollary, we obtain a generalization of Theorem 1.2.1.

Theorem 1.4.11 (Matsumoto–Mitsumatsu [41]; see also [2, 32, 49]). Let ρ be a
locally free Rp-action on a closed manifold and F be its orbit foliation. Then ρ is
parameter rigid if and only if H1(F) 	 Rp.

Example 1.4.12. Diophantine linear actions on TN (Theorem 1.3.7) and the Weyl
chamber flow (Theorem 1.3.12) are parameter rigid. Mieczkowski’s action onMΓ =
Γ\SL(2,C) is also parameter rigid when H1(MΓ) is trivial.

What happens in Mieczkowski’s example whenH1(MΓ) is non-trivial? By the
following general criterion, there exists a locally complete and locally transverse
parameter deformation parametrized by an open subset of H1(MΓ).

Theorem 1.4.13. Let F be a foliation on a closed manifold M and ρ be an action in
ALF(F ,Rp). Suppose that Im d0F is closed and that there exists a finite-dimensional
subspace H of Ker d1F such that Ker d1F = Im d0F ⊕ Im ιρ ⊕H. Then there exist an
open neighborhood Δ of 0 in H ⊗Rp and a locally complete and locally transverse
parameter deformation (ρμ)μ∈Δ ∈ A(F ,Rp; Δ) of ρ.

Proof. Let ωρ be the canonical 1-form of ρ and Δ be the set of 1-forms μ ∈ H⊗Rp

such that ωρ +μ is a non-singular 1-form. For each μ ∈ Δ, there exists the unique
action ρμ ∈ ALF(F ,Rp) whose canonical 1-form is ωρ + μ. The set Δ is an open
neighborhood of 0 and the family (ρμ)μ∈Δ is a parameter deformation of ρ.

Let us prove locally completeness of the deformation. Let πH : Ker d1F →H
be the projection associated with the splitting Ker d1F = Im d0F ⊕ Im ιρ ⊕ H. It
induces a projection π⊗p

H : Ker d1F ⊗ Rp→H ⊗ Rp. It is continuous and

U =
{
ρ′ ∈ ALF

(
F ,Rp

)
| π⊗p

H

(
ωρ′ − ωρ

)
∈ Δ

}
is an open subset of ALF(F ,Rp). For ρ′ ∈ U with π⊗p

H (ωρ′) = μ, the cohomology
class [ωρ′ − (ωρ + μ)] is contained in Im(ιρ)∗. By Theorem 1.4.13, ρ′ is parameter
equivalent to ρμ. Therefore, (ρμ)μ∈Δ is a locally complete deformation.
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Next, we prove local transversality. If a family (ρ′μ)μ∈Δ is sufficiently close

to the original family (ρμ)μ∈Δ, then {π⊗p
H (ωρ′

μ
) | μ ∈ Δ} is a neighborhood of 0

in H ⊗ Rp. Hence, [ωρ′
μ∗
− ωρ] ∈ Im(ιρ)∗ for some μ∗ ∈ Δ. By Theorem 1.4.13

again, ρ′μ∗ is parameter equivalent to ρ. Therefore, (ρμ)μ∈Δ is a locally transverse
deformation. �

1.4.3 Parameter rigidity of some non-abelian actions

As we saw in the previous section, the equations in Propositions 1.4.3 and 1.4.4
are linear equations for Rp-actions. For the general case, the equations are non-
linear and it is unclear whether an action ρ is parameter rigid or not even if we
know that H1(F) = Im(ιρ)∗ for the orbit foliation F . However, we can reduce the
parameter rigidity to the triviality of H1(F) for several actions of solvable groups.

The first example is an action of the three-dimensional Heisenberg group

H =

⎧⎨⎩
⎛⎝1 x1 x3

0 1 x2

0 0 1

⎞⎠ ∣∣∣∣∣∣ x1, x2, x3 ∈ R

⎫⎬⎭ .

We denote the Lie algebra of H by h.

Theorem 1.4.14 (Dos Santos [51]). Let ρ be a locally free H-action on a closed
manifold M . If the orbit foliation F of ρ satisfies that H1(F) 	 H1(h), then ρ is
parameter rigid.

In [51], dos Santos also proved the theorem for higher-dimensional Heisenberg
groups and constructed examples which satisfy the assumption of the theorem.

Proof. Let

ξ1 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ , ξ2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ , ξ3 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠
be a basis of h and α1, α2, α3 be its dual basis. Fix ρ0 ∈ ALF(M,H) and put
ηi = ιρ0(αi) for each i. Since[

ξ1, ξ2
]
= ξ3,

[
ξ1, ξ3

]
=
[
ξ2, ξ3

]
= 0,

we have the equations

dFη1 = dFη2 = 0, dFη3 = η2 ∧ η1.

In particular, Im(ιρ0
)∗ 	 H1(h) is generated by [η1] and [η2]. For

ω =

3∑
i=1

ωi ⊗ ξi ∈ Ω1(F)⊗ h,
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the equation dFω + [ω, ω] = 0 is equivalent to

dFω1 = dFω2 = dFω3 + ω1 ∧ ω2 = 0. (1.9)

Fix ρ ∈ ALF(F , H). Let ωρ =
∑3

i=1 ωi ⊗ ξi be the canonical 1-form of ρ.
First, we will make ω1 and ω2 into forms of Im ιρ0 by the transformation of canon-
ical 1-forms described in Proposition 1.4.4. Since dFω1 = dFω2 = 0 by equa-
tion (1.9) and H1(F) = Im(ιρ0

)∗ by assumption, there exist b1, b2 ∈ C∞(M,R)
and (cij)i,j=1,2 ∈ R4 such that ωi = ci1η1 + ci2η2 + dFbi for each i. Put

b(x) =

⎛⎝1 b1(x) 0
0 1 b2(x)
0 0 1

⎞⎠ .

By a direct calculation, we find that the form ω′ =
∑

i,j=1,2 cijηj ⊗ ξi + ω′
3 ⊗ ξ3

satisfies
b−1ω′b+ b−1dFb = ωρ (1.10)

for a suitable choice of ω′
3 ∈ Ω1(F)⊗ h.

Next we will make ω′
3 into a 1-form in Im ιρ0

. Since ω′ satisfies (1.9),

dFω
′
3 =

(
c11c22 − c12c21

)
η2 ∧ η1 =

(
c11c22 − c12c21

)
· dFη3.

Hence, ω′
3 − (c11c22 − c12c21)η3 is a closed form. By assumption again, there exist

c′1, c
′
2 ∈ R and b′3 ∈ C∞(M,R) such that

ω′
3 = c′1η1 + c′2η2 +

(
c11c22 − c12c21

)
η3 + dFb

′
3.

Put

b(x) =

⎛⎝1 0 b′3(x)
0 1 0
0 0 1

⎞⎠
and

ω′′ =
2∑

i,j=1

cijηj ⊗ ξi +
[
c′1η1 + c′2η2 +

(
c11c22 − c12c21

)
η3
]
⊗ ξ3.

Then we have
b−1ω′′b+ b−1dFb = ω′. (1.11)

Finally, we take an endomorphism Θ of h such that Θ∗(ξj) = c1jξ1 + c2jξ2 +
c′jξ3 for j = 1, 2. It satisfies Θ∗(ξ3) = Θ∗[ξ1, ξ2] = (c11c22 − c12c21)ξ3. Hence,

Θ∗ωρ0 = Θ∗

( 3∑
j=1

ηj ⊗ ξj

)
= ω′′. (1.12)

The equations (1.10), (1.11) and (1.12) imply that

ωρ = (bb′
)−1

Θ∗ωρ0

(
bb′
)
+
(
bb′
)−1

dF
(
bb′
)
.

By Proposition 1.4.4, the action ρ is equivalent to ρ0. �



26 Chapter 1. Deformation of Locally Free Actions and Leafwise Cohomology

Recently, Maruhashi generalized dos Santos’ results to general simply con-
nected nilpotent Lie groups.

Theorem 1.4.15 (Maruhashi [38]). Let G be a simply connected nilpotent Lie group
with Lie algebra g and ρ a locally free G-action on a closed manifold M . If the
orbit foliation F of ρ satisfies that H1(F) 	 H1(g), then ρ is parameter rigid. The
converse is true if F has a dense leaf.

He also gave a family of parameter rigid actions of nilpotent groups by gen-
eralizing dos Santos’ examples for the Heisenberg groups. Ramı́rez gave another
natural action of a nilpotent Lie group which satisfies the above condition.

Theorem 1.4.16 (Ramı́rez [46]). Let U be the nilpotent subgroup of SL(n,R) con-
sisting of upper triangular matrices whose diagonal entries are one, u the Lie
algebra of U , and Γ a cocompact lattice of SL(n,R). If n ≥ 4, then the orbit fo-
liation F of the natural right U -action on Γ\SL(n,R) satisfies H1(F) 	 H1(u).
By Theorem 1.4.15, the action is parameter rigid.

The second example that we discuss is an action of the two-dimensional
solvable group

GA =

{(
et u
0 1

) ∣∣∣∣ u, t ∈ R

}
.

Let A be an element of SL(2,R) such that the eigenvalues λ and λ−1 are real and
λ > 1. Let FA be the diffeomorphism of T2 given by FA(z + Z2) = Az + Z2, and
let MA be the mapping torus

MA = T2 × R/
(
x, s+ log λ

)
∼
(
FA(x), s

)
.

We define an action ρA ∈ ALF(MA, GA) by

ρA

(
[x, s],

(
et u
0 1

))
=
[
x+ (esu) · v, s+ t

]
,

where v is the eigenvector associated with λ−1. Remark that the orbit foliation F
of ρA is diffeomorphic to the second example in Section 1.3.3.

Theorem 1.4.17 (Matsumoto–Mitsumatsu [41]). The action ρA is parameter rigid.

Proof. The Lie algebra ga of GA has a basis

ξ1 =

(
1 0
0 0

)
, ξ2 =

(
0 1
0 0

)
.

Let α1, α2 be the dual basis of ga∗. We put ηi = ιρA
(αi). Then [ξ1, ξ2] = ξ2, and

hence
dFη1 = dFη2 + η1 ∧ η2 = 0.

In particular, we have Im(ιρA
)∗ = [η1].
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Take ρ ∈ ALF(F , GA). Let ωρA
and ωρ be the canonical 1-forms of ρA and

ρ. Then ωρA
= η1 ⊗ ξ1 + η2 ⊗ ξ2 and ωρ = ω1 ⊗ ξ1 + ω2 ⊗ ξ2 for some ω1, ω2 ∈

Ω1(F). Since ωρ satisfies the equation dFωρ + [ωρ, ωρ] = 0, the form ω1 is closed.
By Theorem 1.3.10, H1(F) = Im(ιρA

)∗ = R[η1]. Hence, there exist c1 ∈ R and
b1 ∈ C∞(MA, GA) such that ω1 = c1η1 + dFb. By Proposition 1.3.6, ρ preserves
a smooth volume. As a (not immediate) consequence of this fact, we can obtain
c1 = 1 (see [41, pp. 1863–1864] for details). Put ω′ = η1 ⊗ ξ1 + eb1ω2 ⊗ ξ2 and

b =

(
eb1 0
0 1

)
.

Then, by a direct calculation, we have b−1ω′b+ b−1dFb = ω1 ⊗ ξ1 + ω2 ⊗ ξ2 = ωρ.
Take f, g ∈ C∞(M,R) such that eb1ω2 = fη1 + gη2. Since dFω

′ + [ω′, ω′] = 0, the
pair (f, g) satisfies

Xg = Sf, (1.13)

where X = IρA
(ξ1) and S = IρA

(ξ2).
Let Θ be an endomorphism of GA. Then Θ∗(ξ1) = ξ1 and Θ∗(ξ2) = c2 · ξ2

for some c2 ∈ R. For b′ ∈ C∞(M,GA) of the form

b′(x) =

(
1 h(x)− c2
0 1

)
,

we have

(b′)−1Θ∗(ωρA
)b′ + (b′)−1dFb

′ = η1 ⊗ ξ1 + [(h+Xh)η1 + (Sh− c2)η2]⊗ ξ2.

Hence, the equivalence of ρ and ρA is reduced to the solvability of an inhomoge-
neous system of linear equations{

f = h+Xh,

g = Sh− c2.
(1.14)

In fact, the following proposition guarantees solvability, and this completes the
proof. �
Proposition 1.4.18 (Matsumoto–Mitsumatu [41]). If two smooth functions f , g
satisfy equation (1.13), then system (1.14) has a solution (h, c2).

The group GA is naturally isomorphic to the subgroup of SL(2,R) which
consists of upper triangular matrices by the map

θ :

(
et u
0 1

)
�−→

(
e

t
2 e−

t
2u

0 e−
t
2

)
. (1.15)

Let Γ be a cocompact lattice of SL(2,R) and put MΓ = Γ\SL(2,R). We define
an action ρΓ ∈ ALF(MΓ, GA) by ρΓ(Γx, g) = Γ(x · θ(g)). This is just the second
example in Section 1.3.4. In [41], Matsumoto and Mitsumatsu showed an analogue
of Proposition 1.4.18 for ρΓ.
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Proposition 1.4.19. Let ξ1, ξ2 be the basis of ga given in the proof of Theorem
1.4.17. Put X = IρΓ

(ξ1) and S = IρΓ
(ξ2). If smooth functions f, g ∈ C∞(MΓ,R)

satisfy Sf = Xg, then the system{
f = h+Xh

g = Sh+ c
(1.16)

has a solution (h, c) ∈ C∞(MΓ,R)× R.

When H1(MΓ) is trivial, we have H1(F) 	 R by Theorem 1.3.14. In this
case, we can prove the parameter rigidity of ρΓ by an argument similar to the
above.

Theorem 1.4.20 (cf. [24, 41]). If H1(MΓ) is trivial, then ρΓ is parameter rigid.

1.4.4 A complete deformation for actions of GA

Let Γ be a cocompact lattice of SL(2,R) and put MΓ = Γ\SL(2,R). Let ρΓ ∈
ALF(MΓ, GA) be the action given by ρΓ(Γx, g) = Γ(x · θ(g)), which is discussed
in the last paragraph of the previous section. It is natural to ask whether ρΓ is
parameter rigid or not when H1(MΓ) is non-trivial.

Let F be the orbit foliation of ρΓ. First, we determine the space of infinitesi-
mal parameter deformations in terms of leafwise cohomology. Recall that the space
ALF(F , GA) is identified with the space of solutions of the non-linear equation

dFω +
[
ω, ω
]
= 0 (1.17)

in Ω1(F) ⊗ ga. Two actions are parameter equivalent with trivial automorphism
if and only if the equation

ω2 = b−1ω1b+ b−1dFb (1.18)

admits a smooth solution b : MΓ→GA, where ω1 and ω2 are the canonical 1-forms
of the actions. Let ω0 be the canonical 1-form of ρΓ. Put ωt = ω0 + tω and
bt = exp(tβ) with ω ∈ Ω1(F) ⊗ ga and β ∈ Ω0(F) ⊗ ga. Substitute ωt and bt
into the above equations and take the first-order term with respect to t. Then we
obtain the formally linearized equations

ω2 − ω1 =
[
ω0, β

]
+ dFβ, (1.17L)

dFω +
[
ω, ω0

]
+
[
ω0, ω

]
= 0. (1.18L)

We define the linear maps dkρΓ
: Ωk(F)⊗ ga→Ωk+1(F)⊗ ga, k = 1, 2, by

d0ρΓ
β = [ω0, β] + dFβ, (1.19)

d1ρΓ
ω = dFω + [ω, ω0] + [ω0, ω]. (1.20)

They satisfy d1ρΓ
◦ d0ρΓ

= 0 and the above linearized equations become ω2 − ω1 =
d0ρΓ

β and d1ρΓ
ω = 0. We call the quotient space Ker d1ρΓ

/ Im d0ρΓ
the space of in-

finitesimal parameter deformations of ρΓ and we denote it by H1(ρΓ,F).
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Proposition 1.4.21. H1(ρΓ,F) 	 H1(MΓ).

Proof. Fix the basis

ξX =

(
1/2 0
0 −1/2

)
, ξS =

(
0 1
0 0

)
, ξU =

(
0 0
1 0

)
of the Lie algebra sl(2,R) of SL(2,R). The standard right SL(2,R)-action on MΓ

induces vector fields X, S, and U which correspond to ξX , ξS , and ξU . Let η, σ,
and υ be the dual 1-forms of X, S, and U , respectively. Then Ω1(F) is generated
by η and σ as a C∞(MΓ,R)-module. If ω = ωX ⊗ ξX +ωS ⊗ ξS is dρΓ -closed, then
dFωX = 0 and dFωS = −(ωx(X) + ωS(S))η ∧ σ.

First, we claim that ω = ωX ⊗ ξX + ωS ⊗ ξS is dρΓ
-exact if and only if ωX is

dF -exact. For ϕ ∈ C∞(MΓ,R), we have

d0ρΓ

(
ϕ⊗ ξX

)
=
(
dFϕ

)
⊗ ξX +

(
dFψ + ψ · η − ϕ · σ

)
⊗ ξS .

Hence, if ω is dρΓ
-exact then ωX is dF -exact. Suppose that ωX is dF -exact. Take

ϕ ∈ C∞(MΓ,R) such that dFϕ = ωX . By replacing ω with ω + d0ρΓ
(ϕ ⊗ ξX),

we may assume that ωX = 0. Put ωS = fη + gσ. Since ω is dρΓ -closed, we have
Sf = Xg. Proposition 1.4.19 implies that there exist h ∈ C∞(MΓ,R) and c ∈ R
such that f = h +Xh and g = Sh − c. Hence, ω = d0ρΓ

(−c ⊗ ξX + h ⊗ ξS). This
completes the proof of the claim.

By the claim, H1(ρΓ,F) is isomorphic to{[
ωX

]
∈ H1(F) | d1ρΓ

(
ωX ⊗ ξX + ωS ⊗ ξS

)
= 0 for some ωS ∈ Ω1(F)

}
.

So, it is sufficient to show that for any dF -closed 1-form ωX ∈ Ω1(F) there exists
ωS ∈ Ω1(F) such that ω = ωX ⊗ ξX + ωS ⊗ ξS is d1ρΓ

-closed. Fix a Riemannian
metric on MΓ such that (XΓ, (SΓ+UΓ)/2, (SΓ−UΓ)/2) is an orthonormal framing
of TMΓ. By Theorem 1.3.14, there exists f0 ∈ C∞(MΓ,R) such that ωX + dFf0
extends to a harmonic 1-form with respect to the metric. Replacing ωX with
ωX + dFf0, we may assume that ωX is the restriction of a harmonic form ωh

to TF . Put ωh = fη + gσ + hυ. Since ωh is harmonic and MΓ is compact (hence
L(SΓ−UΓ)ωh = 0), it follows that 2f = (S − U)g and 2Y f = −(S + U)g. Now it is
easy to check that dρΓ

(ωX ⊗ ξX + (−gη + fσ)⊗ ξS) = 0. �
One may expect the existence of a complete deformation whose parameter

space is an open subset of H1(MΓ) 	 H1(ρΓ,F). The author of these notes proved
the existence of a globally complete deformation.

Theorem 1.4.22 (Asaoka, in preparation). There exist an open subset ΔΓ of
H1(MΓ) containing 0 and a parameter deformation (ρμ)μ∈Δ ∈ A(MΓ, GA; ΔΓ)
of ρΓ such that

(1) if ρμ is equivalent to ρν , then μ = ν, and

(2) every ρ ∈ ALF(F , GA) is equivalent to ρμ for some μ ∈ ΔΓ.
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Corollary 1.4.23 (Asaoka [5]). If H1(MΓ) is non-trivial, then ρΓ is not parameter
rigid.

A construction of the deformation (ρμ)μ∈ΔΓ is essentially carried out in [5].
We remark that the proof does not use the computation of H1(ρΓ,F). It heavily
depends on the ergodic theory of hyperbolic dynamics, especially on the existence
of the Margulis measure and the deformation theory of low-dimensional Anosov
systems. To prove smoothness of the family, we also use the smooth dependence
of the Margulis measure, in some sense, with respect to the parameter.

It is natural to expect that an analogous result holds for SL(2,C). However,
the corresponding action for SL(2,C) is locally parameter rigid.

Theorem 1.4.24 (Asaoka [6]). Let Γ be a cocompact lattice of SL(2,C) and GAC

be the subgroup of SL(2,C) which consists of upper triangular matrices. Then the
standard GAC action on Γ\SL(2,C) is locally parameter rigid.

1.5 Deformation of orbits

In this section, we discuss deformations which may not preserve the orbit foliation.
The equations we need to solve are non-linear even for Rp-actions, as the defor-
mations of linear flows on tori discussed in Section 1.2. The main techniques to
describe such deformations are linearization and Nash–Moser type theorems. The
former reduces the problem to computation of bundle-valued leafwise cohomology.
The latter allows us to construct solutions of the original non-linear problem from
the linear one.

1.5.1 Infinitesimal deformation of foliations

In order to study deformations of a given locally free action, it is natural to
investigate deformations of the orbit foliation. In this section, we describe the
space of infinitesimal deformations of a foliation in terms of leafwise cohomology.

Let F be a foliation on a manifold M . To simplify, we assume that F admits
a complementary foliation F⊥, i.e., one which is transverse to F and satisfies
dimF + dimF⊥ = dimM . The normal bundle TM/TF of TF can be naturally
identified with the tangent bundle TF⊥ of F⊥. By π⊥ we denote the projection
from TM = TF ⊕ TF⊥ to TF⊥. Let Ωk(F ;TF⊥) be the space of TF⊥-valued
leafwise k-forms. We define the differential dkF : Ωk(F ;TF⊥)→Ωk+1(F ;TF⊥) by(
dkFω

)(
X0, . . . , Xk

)
=
∑

0≤i≤k

(−1)iπ⊥ (Xiω
(
X0, . . . , X̌i, . . . , Xk

))
+

∑
0≤i<j≤k

(−1)i+jω
([
Xi, Xj

]
, X0, . . . , X̌i, . . . , X̌j , . . . , Xk

)
.

It satisfies dk+1
F ◦dkF = 0. We denote the quotient Ker dkF/ Im dk−1

F byHk(F ;TF⊥).
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Suppose that the foliation F is p-dimensional. For ω ∈ Ω1(F ;TF⊥), we
define a p-plane field Eω on M by

Eω(x) =
{
v + ω(v) | v ∈ TxF

}
.

It gives a one-to-one correspondence between TF⊥-valued leafwise 1-forms and
p-plane fields transverse to TF⊥. By a direct computation in a local coordinate
system adapted to the pair (F ,F⊥), we obtain the following criterion for the
integrability of Eω.

Lemma 1.5.1. The p-plane field Eω generates a foliation if and only if ω satisfies
the equation

dFω +
[
ω, ω
]
= 0.

Fix β ∈ X(F⊥) = Ω0(F ;TF⊥). Let {ht}t∈R be a one-parameter family of
diffeomorphisms such that h0 is the identity map and ht preserves each orbit of
F⊥ for all t. We define a family {ωt}t∈R of 1-forms in Ω1(F ;TF⊥) by Eωt

=
(ht)∗(TF) and a vector field β ∈ Ω0(F ;TF⊥) by β(x) = (d/dt)ht(x)|t=0. By a
direct computation in a local coordinate system adapted to the pair (F ,F⊥) again,
we have

lim
t→ 0

1

t
ωt = d0Fβ.

Thus, one can regard the cohomology group H1(F ;TF⊥) as the space of infinites-
imal deformations of the foliation F . We say that a foliation F is infinitesimally
rigid if H1(F ;TF⊥) = {0}.
Example 1.5.2. Let F be the orbit foliation of a Diophantine linear action in
ALF(TN ,Rp). Since TF⊥ is a trivial bundle, Theorem 1.3.7 implies that

H1
(
F ;F⊥) 	 H1(F)⊗ RN−p 	 RN−p.

In particular, F is not infinitesimally rigid.

Exercise 1.5.3. Let FA be the suspension foliation associated to a hyperbolic auto-
morphism on T2, which is defined in Section 1.3.3. Show that FA is infinitesimally
rigid using a Mayer–Vietoris argument as in Section 1.3.3.

Example 1.5.4 (Kanai [30], Kononenko [35]). Let Ap be the orbit foliation of
the Weyl chamber flow, which is defined in Section 1.3.4. If p ≥ 2, then Ap is
infinitesimally rigid.

1.5.2 Hamilton’s criterion for local rigidity

Let F be a foliation on a closed manifold M and F⊥ be its complementary foli-
ation. We say that F is locally rigid if any foliation F ′ sufficiently close to F is
diffeomorphic to F .

Using Hamilton’s implicit function theorem for non-linear exact sequences
[27, Section 2.6], one obtains the following criterion for local rigidity of a foliation.
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Theorem 1.5.5 (Hamilton [28]). Suppose that there exist continuous linear oper-
ators δk : Ωk+1(F ;TF⊥)→Ωk(F ;TF⊥) for k = 1, 2, an integer r ≥ 1, and a
sequence {Cs}s≥1 of positive real numbers, such that

(1) d0F ◦ δ0 + δ1 ◦ d1F = Id,

(2) ‖δ0ω‖s ≤ Cs‖ω‖s+r and ‖δ1σ‖s ≤ Cs‖σ‖s+r for all s ≥ 1, ω ∈ Ω1(F ;TF⊥),
and σ ∈ Ω2(F ;TF⊥), where ‖ · ‖s is the Cs-norm on Ωk(F ;TF⊥).

Then F is locally rigid. Moreover, we can choose the diffeomorphism h in the
definition of local rigidity so that it is close to the identity map.

Theorem 1.5.6 (El Kacimi Alaoui–Nicolau [18]). Let FA be the suspension foliation
related to a hyperbolic toral automorphism, which is given in Section 1.3.3. Then
FA satisfies Hamilton’s criterion above. In particular, it is locally rigid.

With the parameter rigidity of the action ρA (Theorem 1.4.17), we obtain

Corollary 1.5.7 (Matsumoto–Mitsumatsu [41]). The action ρA is locally rigid.

In [18] and [41], they also proved the corresponding results for higher dimen-
sional hyperbolic toral automorphisms.

It is unknown whether the orbit foliation of the Weyl chamber flow satisfies
Hamilton’s criterion or not. However, Katok and Spatzier proved the rigidity of
the orbit foliation by another method.

Theorem 1.5.8 (Katok–Spatzier [33]). The orbit foliation Ap of the Weyl chamber
flow is locally rigid if p ≥ 2.

With the parameter rigidity of the Weyl chamber flow (Theorem 1.3.12) we
obtain

Corollary 1.5.9. The Weyl chamber flow is locally rigid if p ≥ 2.

1.5.3 Existence of locally transverse deformations

Although deformation theory is well developed for transversely holomorphic foli-
ations, e.g., [13–15, 17, 21–23], there is no general deformation theory for smooth
foliations with non-trivial infinitesimal deformation so far, since we cannot ap-
ply Hamilton’s criterion in this case. However, there are several actions for which
we can find a locally transverse deformation. One example is a Diophantine linear
flow, which we discussed in Section 1.2. In this section, we give two more examples.

The first example is a codimension 1 Diophantine linear action. We denote
by Diff0(S

1) the set of orientation-preserving diffeomorphisms of S1. Let F be a
codimension 1 foliation on Tp+1 which is transverse to {x} × S1 for all x ∈ Tp.

For each i = 1, . . . , p, we can define a holonomy map fi ∈ Diff0(S
1) of F

along the ith coordinate. The family (f1, . . . , fp) is pairwise commuting. On the
other hand, when a pairwise commuting family (f1, . . . , fp) in Diff0(S

1) is given,
then the suspension construction gives a codimension 1 foliation on F , which is
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transverse to {x} × S1 for all x ∈ Tp. Two foliations are diffeomorphic if the
corresponding families (f1, . . . , fp) and (g1, . . . , gp) are conjugate, i.e., there exists
h ∈ Diff0(S

1) such that gi ◦ h = h ◦ fi for every i = 1, . . . , p. So, the local rigidity
problem of F is reduced to a problem for a pairwise commuting family (f1, . . . , fp).

For f ∈ Diff0(S
1), the rotation number τ(f) ∈ R/Z is defined by(

lim
n→∞

f̃n(0)

n

)
+ Z,

where f̃ : R→R is a lift of f . It is known that the map τ : Diff0(S
1)→S1 is

continuous (see, e.g., [31, Proposition 11.1.6]). For θ ∈ S1, let rθ be the rotation
defined by rθ(x) = x+ θ.

Theorem 1.5.10 (Moser [43]). Let (f1, . . . , fp) be a pairwise commuting family in
Diff0(S

1). Suppose that (1, τ̃(f1), . . . , τ̃(fp)) ∈ Rp+1 is a Diophantine vector (see
Section 1.3.2 for the definition), where τ̃(fi) ∈ R is a representative of τ(fi) ∈
R/Z. Then there exists h ∈ Diff0(S

1) such that fi ◦ h = h ◦ rτ(fi) for every
i = 1, . . . , p.

As a consequence of this theorem, we can show the existence of a locally
transverse deformation of a codimension 1 Diophantine linear action.

Theorem 1.5.11. Let ρ be the linear action of Rp on Tp+1 determined by the linearly
independent vectors v1, . . . , vp ∈ Rp+1. Take w ∈ Rp+1 so that v1, . . . , vp, w is a
basis of Rp+1 and define a C∞ family of actions (ρs)s∈Rp ∈ ALF(Tp+1,Rp;Rp) by

ρts(x) = x+

p∑
i=1

ti
(
vi + siw

)
,

for x ∈ M , t = (t1, . . . , tp) and s = (s1, . . . , sp) ∈ Rp. If the linear action ρ0 is
Diophantine, then (ρs)s∈Rp is locally transverse at s = 0.

Exercise 1.5.12. Prove the theorem. One way to do it is a modification of the
proof of Theorem 1.2.9. One can prove ‘local transversality of the orbit foliation’
by continuity of the rotation number and Moser’s theorem, instead of Herman’s
theorem. The local transversality of the action will follow from the parameter
rigidity of Diophantine linear actions.

The second example is a R2-action on Γ\(SL(2,R)×SL(2,R)) by commuting
parabolic elements. Put

ut =

(
1 t
0 1

)
, ut

μ = exp

(
t

(
0 1
μ 0

))
,

and note that ut
0 = ut.

Let Γ be an irreducible cocompact lattice of SL(2,R)× SL(2,R) and put

MΓ = Γ\(SL(2,R)× SL(2,R)).
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For (μ, λ) ∈ R2, we define an action ρμ,λ ∈ ALF(MΓ,R2) by

ρμ,λ
(
Γ(x, y), (s, t)

)
= Γ
(
xus

μ, yu
t
λ

)
.

Let F be the orbit foliation of ρ0,0.

Theorem 1.5.13 (Mieczkowski [42]). H1(F) 	 R2. In particular, the action ρ0,0 is
parameter rigid.

One may wish to prove local transversality of the deformation (ρμ,λ)(μ,λ)∈R2

of ρ0,0 as for Diophantine linear actions. However, we cannot apply techniques
for Diophantine linear actions because of the non-linearity of the space SL(2,R).
Damjanović and Katok developed a new Nash–Moser-type scheme and obtained
local transversality.

Theorem 1.5.14 (Damjanović–Katok [12]). The deformation (ρμ,λ)(μ,λ)∈R2 of ρ0,0
is locally transverse.

In [12] and [42] they also showed parameter rigidity and existence of a trans-
verse deformation for other actions using the same method.

1.5.4 Transverse geometric structures

In this section, we sketch another method for describing deformations of an orbit
foliation which is not locally rigid.

Fix a torsion-free cocompact lattice Γ of PSL(2,R) = SL(2,R)/{±Id}. It
acts on the hyperbolic plane H2 naturally and Σ = Γ\H2 is a closed surface of
genus g ≥ 2. Let T (Σ) be the Teichmüller space of Σ (see, e.g., [29, Chapter 4] for
the definition and basic properties). It can be realized as a set of homomorphisms
μ from Γ to PSL(2,R) whose image Γμ is a cocompact lattice. It is known that
T (Σ) has a natural structure of a (6g − 6)-dimensional smooth manifold.

Let P be the subgroup of PSL(2,R) which consists of upper triangular ma-
trices. For each μ in T (Σ), we define an action ρμ ∈ ALF(Γμ\PSL(2,R), P ) by
ρμ(Γμx, p) = Γμ(x · p). This standard action is essentially the same as in Sections
1.4.3 and 1.4.4. Let Fμ be the orbit foliation of ρμ. To simplify notation, we put
ρΓ = ρIdΓ and FΓ = FIdΓ .

It is well known that the foliation FΓ is not locally rigid. In fact, Mμ1 is
diffeomorphic to Mμ2

for all μ1, μ2 ∈ T (Σ). However, Fμ1
is diffeomorphic to Fμ2

if and only if Γμ1
is conjugate to Γμ2

as a subgroup of PSL(2,R). Hence, the
family {Fμ}μ∈T (Σ) gives a non-trivial deformation of FΓ. Ghys proved that this
is the only possible one.

Theorem 1.5.15 (Ghys [25]). Any two-dimensional foliation on MΓ sufficiently
close to FΓ is diffeomorphic to Fμ for some μ ∈ T (Σ).

He also proved global rigidity.

Theorem 1.5.16 (Ghys [26]). If a two-dimensional foliation F on MΓ has no closed
leaves, then F is diffeomorphic to Fμ for some μ ∈ T (Σ).
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The orbit foliation of a locally free P -action has no closed leaf. Hence,

Corollary 1.5.17. For all ρ ∈ ALF(MΓ, P ), there exists μ ∈ T (Σ) such that the
orbit foliation of ρ is diffeomorphic to Fμ.

The basic idea of the proof is to find a transverse projective structure of
the foliation. Once this is done, it is not so hard to show that F is diffeomorphic
to Fμ for some μ. Ghys constructed the transverse projective structure by using
the theory of hyperbolic dynamical systems. Kononenko and Yue [36] gave an
alternative proof of Theorem 1.5.15. They proved the C3 conjugacy of foliations.
However, it must be C∞ conjugacy, by a regularity theorem of conjugacies between
Anosov flows by de la Llave and Moriyón [37]. They used the vanishing of a twisted
cohomology of the lattice Γ, which is closely related to the leafwise cohomology of
FΓ valued in the symmetric two-forms on the normal bundle of TF . So, it may be
possible to reduce Theorem 1.5.15 to the vanishing of the bundle-valued leafwise
cohomology.

Modifying the construction of a complete parameter deformation of ρΓ (The-
orem 1.4.24), we obtain a globally complete deformation of ρΓ.

Theorem 1.5.18 (Asaoka, in preparation). There exist an open subset Δ of T (Σ)×
H1(MΓ) and a C∞ family (ρμ)μ∈Δ∈ALF(MΓ, P ) such that every ρ ∈ ALF(MΓ, P )
is conjugate to ρμ for some μ ∈ Δ.
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Chapter 2

Fundaments of Foliation Theory

Aziz El Kacimi Alaoui

Foreword

It is well known that there is no general method to solve differential equations
even in the case of the simplest manifold, namely the real line R. Failing that,
mathematicians rather try to study the geometrical and topological properties of
integral manifolds and their asymptotic behavior. This is exactly the purpose of
foliation theory : the qualitative study of differential equations. It was initiated by
the works of H. Poincaré and I. Bendixson, and developed later by C. Ehresmann,
G. Reeb, A. Haefliger, and many other people. Since then the subject has been a
wide field in mathematical research. This motivates this course on Fundaments of
Foliation Theory, which is organized as follows.

Part I is an elementary introduction to foliation theory. We give the basic
definitions and, through various simple examples, we introduce the notion of trans-
verse structure, which plays a key role in the study and classification of foliations.
In Part II we give an elementary exposition of some results on transverse global
analysis, which then thus lead to a discussion of the basic index theory of trans-
versely elliptic operators. Part III is devoted to open questions in some directions
in the theory of foliations.

Part I. Foliations by Example

2.1 Generalities

A foliation is a geometric structure which a manifold can support. As we know,
a manifold is locally a Euclidean space. So to understand what is a foliation, it
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is more convenient to see its local model. Let us examine the Euclidean space
M = Rm+n in the picture below:

Figure 2.1. Trivial foliation on Rm+n defined by the differential system
dy1 = · · · = dyn = 0

It can be viewed as the product Rm × Rn. Its usual topology is the product
of the usual ones on the two factors, and with respect to it Rm+n is a connected
differentiable manifold of dimension m + n. However, if we equip the second fac-
tor Rn with the discrete topology, then M becomes a non-connected manifold of
dimension m; its connected components are the horizontal subspaces defined by
the linear differential system dy1 = · · · = dyn = 0, and these can be seen as leaves.
We then see that M is equipped with two topologies: the usual topology and a
second one, called the leaf topology.

Now let M be a (connected) manifold of dimension m + n. Intuitively, one
can define a foliation of dimension m or codimension n on M as a geometric
structure such that around each point one can cut a small piece (that is, an open
neighborhood) which looks like the picture above. A first definition is the following.

Definition 2.1.1. Let M be a manifold of dimension m + n. A codimension n
foliation F on M is given by an open cover U = {Ui}i∈I and, for each i, a
diffeomorphism ϕi : Rm+n → Ui such that, on each nonempty intersection Ui∩Uj ,
the coordinate change ϕ−1

j ◦ ϕi : (x, y) ∈ ϕ−1
i (Ui ∩ Uj) �→ (x′, y′) ∈ ϕ−1

j (Ui ∩ Uj)
has the form x′ = ϕij(x, y) and y′ = γij(y).

The manifold M is decomposed into connected submanifolds of dimension m.
Each of them is called a leaf of F . A subset U of M is saturated for F if it is a
union of leaves: if x ∈ U , then the leaf passing through x is contained in U .

Coordinate patches (Ui, ϕi) satisfying the conditions of Definition 2.1.1 are
said to be distinguished for the foliation F .

Let F be a codimension n foliation on M defined by a maximal atlas
{(Ui, ϕi)}i∈I as in Definition 2.1.1. Let π : Rm+n = Rm ×Rn → Rn be the second
projection. Then the map fi = π ◦ϕ−1

i : Ui → Rn is a submersion. On Ui∩Uj �= ∅,
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Figure 2.2

we have fj = γij ◦fi. The fibres of the submersion fi are the F-plaques of Ui. The
submersions fi and the local diffeomorphisms γij of Rn give a complete charac-
terization of F .
Definition 2.1.2. A codimension n foliation onM is given by an open cover (Ui)i∈I ,
submersions fi : Ui → T over an n-dimensional transverse manifold T and, for any
nonempty intersection Ui ∩ Uj , a diffeomorphism

γij : fi(Ui ∩ Uj) ⊂ T −→ fj(Ui ∩ Uj) ⊂ T

satisfying fj(x) = γij ◦ fi(x) for x ∈ Ui ∩ Uj . We say that {Ui, fi, T, γij} is a
foliated cocycle defining F .

The foliation F is said to be transversely orientable if T can be given an
orientation preserved by all the local diffeomorphisms γij .

2.1.1 Induced foliations

Let N and M be two manifolds and suppose that we are given a codimension n
foliation F on M . We say that a map f : N → M is transverse to F , if for each
point x ∈ N the tangent space TyM of M at y = f(x) is generated by TyF and
(dxf)(TxN), where dxf is the tangent linear map of f at x, i.e.,

TyM = TyF + (dxf)(TxN). (2.1)

Equivalently, if we suppose that M is of dimension m+ n, then f is transverse to
F if for each x ∈ N there exists a local system of coordinates

(x1, . . . , xm, y1, . . . , yn) : R
m+n −→ V

around y such that the map gU : (y−1
1 ◦ f, . . . , y−1

n ◦ f) : U = f−1(V ) → Rn is a
submersion. The collection of local submersions (U, gU ) defines a codimension n
foliation denoted f∗(F) on N and called the pull-back foliation of F by f .
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If f is a submersion and F is the foliation by points, then the vector space
TyF is reduced to {0}, dxf is surjective, and then the equality (2.1) is trivially
satisfied, so f is transverse to F . In that case, the leaves of f∗(F) are exactly the
connected components of the fibres of f .

If N = M̂ is a covering of M and f is the covering projection f : M̂ → M ,
then F̂ = f∗(F) has the same dimension as F and the foliations F̂ and F have
the same local properties.

2.1.2 Morphisms of foliations

Let M and M ′ be manifolds endowed with foliations F and F ′, respectively. A
map f : M → M ′ is said to be foliated or a morphism between F and F ′ if, for
every leaf L of F , f(L) is contained in a leaf of F ′. We say that f is an isomorphism
if, in addition, f is a diffeomorphism; in this case the restriction of f to any leaf
L ∈ F is a diffeomorphism onto the leaf L′ = f(L) ∈ F ′.

Suppose now that f is a diffeomorphism of M . Then for every leaf L ∈ F ,
f(L) is a leaf of a codimension n foliation F ′ on M ; we say that F ′ is the image of
F by the diffeomorphism f and we write F = f∗(F ′). Two foliations F and F ′ on
M are said to be Cr-conjugate (topologically if r = 0, differentiably if r =∞, and
analytically in the case r = ω), if there exists a Cr-homeomorphism f : M → M
such that f∗(F ′) = F .

The set of Cr-diffeomorphisms of M which preserve the foliation F is a group
denoted Diffr(M,F).

2.1.3 Frobenius Theorem

Let M be a manifold of dimension m + n. Denote by TM the tangent bundle of
M and let E be a subbundle of rank m. Let U be an open set of M such that
TM is equivalent on U to the product U × Rm+n. At each point x ∈ U , the fibre
Ex can be considered as the intersection of the kernels of n linearly independent
differential 1-forms ω1, . . . , ωn:

Ex =

n⋂
j=1

kerωj(x). (2.2)

The subbundle E is called an m-plane field on M . We say that E is involutive if,
for every two vector fields X and Y tangent to E (i.e., sections of E), the bracket
[X,Y ] is also tangent to E. We say that E is completely integrable if, through
each point x ∈ M , there exists a submanifold Px of dimension m which admits
E|Px (the restriction of E to Px) as tangent bundle. The maximal connected
submanifolds satisfying this property are called the integral submanifolds of the
differential system ω1 = · · · = ωn = 0. They define a partition of M , i.e., a
codimension n foliation. We have the following theorem:
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Theorem 2.1.3. Let E be a subbundle of rank m given locally by a differential
system like in (2.2). Then the following assertions are equivalent:

• E is involutive.

• E is completely integrable.

• There exist differential 1-forms βij, i, j = 1, . . . , n (defined locally) such that
dωi =

∑n
j=1 βij ∧ ωj, i = 1, . . . , n.

Trivial examples

(i) Suppose that E is orientable and of rank 1. Then E has a global section
ζ (a vector field) such that at each point x ∈ M , ζ(x) is a basis of Ex.
In that case, two arbitrary sections X = fζ and Y = gζ satisfy [X,Y ] =
{f(ζ ·g)−g(ζ ·f)}ζ. Consequently, the subbundle E is integrable and defines
a one-dimensional foliation. The leaves are exactly the integral curves of the
vector field ζ. We will see in detail this particular situation.

(ii) Let ω be a non-singular 1-form on M . Then ω defines a codimension 1 fo-
liation if and only if there exists a 1-form β such that dω = β ∧ ω; this is
equivalent to ω ∧ dω = 0. In particular, this is the case if ω is closed.

(iii) On the other hand, the non-singular 1-form on R3 given by ω = dx − zdy
satisfies the relation

ω ∧ dω = dx ∧ dy ∧ dz

and cannot define a foliation. The plane field E ⊂ TR3, the kernel of the
1-form ω, has the following remarkable property: given two points a and b
in R3, there exists a differentiable curve γ : [0, 1] → R3 such that γ(0) = a,
γ(1) = b, and γ is tangent to E at every point. We say that ω defines a
contact structure. Contact structures are the opposite of foliated structures.

2.1.4 Holonomy of a leaf

This is a very important notion in foliation theory. In many situations it determines
completely the structure of the foliation. In this section, we will introduce this
notion. We will give some examples later.

Let F be a codimension n foliation on M , let L be a leaf of F , and x ∈ L.
Let T be a small transversal to F passing through x. Let σ : [0, 1] → L be a
continuous path such that σ(0) = σ(1) = x. Then there exist a finite open cover
Ui, i = 0, 1, . . . , k of M with U0 = Uk, and a subdivision 0 = t0 < t1 < · · · < tk = 1
of [0, 1], such that

• σ([ti−1, ti]) ⊂ Ui, and

• if Ui ∩ Uj �= ∅, then Ui ∪ Uj is contained in a distinguished chart of F .
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We say that {Ui} is a subordinated chain to σ. For i = 0, 1, . . . , k, let Ti be
a small transversal to F passing through σi(t) with T0 = Tk = T . For every point
z ∈ Ti sufficiently close to σ(ti), the plaque of F passing through z intersects
Ti+1 in a unique point fi(z). The domain of fi contains a transversal T ′

i passing
through σ(ti) and homeomorphic to an open ball of Rn. Then it is clear that the
map fσ = fk−1 ◦ fk−2 ◦ · · · ◦ f0 is well defined on an open neighbourhood of x; it is
called the holonomy map associated to σ. We can prove (see [42]) that the germ
of fσ

• does not depend on the chain Ui, i = 1, . . . , k, nor on the choice of σ in its
homotopy class in the group π1(L, x) of homotopy classes of loops based at
x, and

• satisfies fσ(x) = x.

So we get a homomorphism h : [σ] ∈ π1(L, x) �→ fσ ∈ G(T, x), where G(T, x) is
the group of germs of diffeomorphisms of T fixing the point x. This representation
h is called the holonomy of the leaf L at x. The image of π1(L) by h (L is path
connected) is called the holonomy group of the leaf L. The foliation F is said to
be without holonomy if every leaf L of F has a trivial holonomy group.

2.2 Transverse structures

Let us fix some notations. Let F be a codimension n foliation on M . We denote
by TF the tangent bundle to F , and by νF the quotient TM/TF , which is the
normal bundle to F .
• X(F) will denote the space of sections of TF (the elements of X(F) are vector

fields X ∈ X(M) tangent to F).
• A differential form α ∈ Ωr(M) is said to be basic if it satisfies iXα = 0 and
LXα = 0 for every X ∈ X(F). (Here iX and LX denote the interior product
and the Lie derivative with respect to the vector field X, respectively.) For
a function f : M → R, these conditions are equivalent to X · f = 0 for every
X ∈ X(F), i.e., f is constant on the leaves of F . We denote by Ωr(M/F)
the space of basic forms of degree r on the foliated manifold (M,F); this is
a module over the algebra A of basic functions.

• A vector field Y ∈ X(M) is said to be foliated if for every X ∈ X(F) the
bracket [X,Y ] is in X(F). We can easily see that the set X(M,F) of foliated
vector fields is a Lie algebra and an A-module; by definition, X(F) is an
ideal of X(M,F) and the quotient X(M/F) = X(M,F)/X(F) is called the
Lie algebra of basic (or transverse) vector fields on the foliated manifold
(M,F). Also, it has a module structure over the algebra A.

Let M be a manifold of dimension m + n endowed with a codimension n
foliation F defined by a foliated cocycle {Ui, fi, T, γij}, like in Definition 2.1.2.



2.2. Transverse structures 47

Definition 2.2.1. A transverse structure to F is a geometric structure on T invari-
ant under the local diffeomorphisms γij .

This is a very important notion in foliation theory. To make it clear, let us
give the main examples of such structures.

2.2.1 Lie foliations

We say that F is a Lie G-foliation if T is a Lie group G and γij are restrictions
of left translations on G. Such a foliation can also be defined by a 1-form ω on M
with values in the Lie algebra G such that

(i) ωx : TxM → G is surjective for every x ∈M , and

(ii) dω + 1
2 [ω, ω] = 0.

If G is Abelian, then ω is given by n linearly independent closed real 1-forms
ω1, . . . , ωn.

In the general case, the structure of a Lie foliation on a compact manifold is
given by the following theorem due to E. Fédida [17]:

Theorem 2.2.2. Let F be a Lie G-foliation on a compact manifold M . Let M̃
be the universal covering of M and F̃ the lift of F to M̃ . Then there exist a
homomorphism h : π1(M) → G and a locally trivial fibration D : M̃ → G whose

fibres are the leaves of F̃ and such that, for every γ ∈ π1(M), the following diagram
is commutative:

M̃
γ

��

D

��

M̃

d

��

G
h(γ)

�� G,

(2.3)

where the top arrow denotes the deck transformation of γ ∈ π1(M) on M̃ and h(γ)
is left translation by γ.

The subgroup Γ = h(π1(M)) ⊂ G is called the holonomy group of F , al-
though the holonomy of each leaf is trivial. The fibration D : M̃ → G is called the
developing map of F .

This theorem gives also a way to construct Lie foliations. Let us see explicitly
a particular example. Let M be the 2-torus T2; its universal covering M̃ is R2 and
its fundamental group is Γ = Z2. Denote by h the morphism from Γ to the Lie
group G = R given by h(m,n) = n+ αm, where α is a real positive number. For
convenience, we will consider that the action of an element (m,n) = γ ∈ Γ on R2

is given by the map γ : (x, y) ∈ R2 �→ (x − m, y + n) ∈ R2. Let D : R2 → R be
the submersion defined by D(x, y) = y−αx. It is not difficult to see that, for any
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γ ∈ Γ, the diagram

R2 γ
��

D

��

R2

D

��

R
h(γ)

�� R

is commutative, i.e., the fibration D : R2 → R is equivariant under the action of
Γ on R2 and then induces a Lie foliation on T2 transversely modeled on the Lie
group R.

2.2.2 Transversely parallelizable foliations

We say that F is transversely parallelizable if there exist onM foliated vector fields
Y1, . . . , Yn transverse to F and everywhere linearly independent. This means that
the manifold T admits a parallelization (Y1, . . . , Yn) invariant under all the local
diffeomorphisms γij or, equivalently, that the A-module X(M/F) is free of rank n.
The structure of a transversely parallelizable foliation on a compact manifold is
given by the following theorem due to L. Conlon [8] for n = 2 and in general to
P. Molino [49].

Theorem 2.2.3. Let F be a transversely parallelizable foliation of codimension n
on a compact manifold M . Then

(i) The closures of the leaves are submanifolds which are fibres of a locally trivial
fibration π : M →W , where W is a compact manifold.

(ii) There exists a simply connected Lie group G0 such that the restriction F0 of
F to any leaf closure F is a Lie G0-foliation.

(iii) The cocycle of the fibration π : M →W has values in the group of diffeomor-
phisms of F preserving F0.

The fibration π : M → W and the manifold W are called respectively the
basic fibration and the basic manifold associated to F . This theorem says that
if, in particular, the leaves of F are closed, then the foliation is just a fibration
over W . This is still true even if the leaves are not closed: the manifold M is a
fibration over the leaf space M/F , which is, in this case, a Q-manifold in the sense
of [2].

Any Lie foliation is transversely parallelizable. This is a consequence of the
fact that every Lie group is parallelizable and the parallelization can be chosen
invariant under left translations.

2.2.3 Riemannian foliations

The foliation F is said to be Riemannian if there exists on T a Riemannian metric
such that the local diffeomorphisms γij are isometries. Using the submersions
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fi : Ui → T one can construct on M a Riemannian metric which can be written
in local coordinates as

ds2 =

m∑
i,j=1

θi ⊗ θj +

n∑
k,�=1

gk�(y) dyk ⊗ dy�. (2.4)

(This metric is said to be bundle like.) Equivalently, F is Riemannian if any
geodesic orthogonal to the leaves at a point is orthogonal to the leaves everywhere.
See the paper [34] by B. Reinhart who introduced first the notion of Riemannian
foliation.

Let F be Riemannian. Then there exists a Levi–Civita connection transverse
to the leaves which, by a uniqueness argument, coincides on any distinguished
open set with the pull-back of the Levi–Civita connection on the Riemannian
manifold T . This connection is said to be projectable. Let O(n) → M# τ→ M be
the principal bundle of orthonormal frames transverse to F . The following theorem
is due to P. Molino [Mol]:

Theorem 2.2.4. Suppose that M is compact. Then the foliation F can be lifted to
a foliation F# on M# of the same dimension and such that

(i) F# is transversely parallelizable, and

(ii) F# is invariant under the action of O(n) on M# and projects by τ on F .

The basic manifold W# and the basic fibration F# → M# π#

→ W# are
called respectively the basic manifold and the basic fibration of F . They have the
following properties:

• The restriction of τ to a leaf of F# is a covering over a leaf of F . Hence, all
leaves of F have the same universal covering (cf. [34]).

• The closure of any leaf of F is a submanifold of M and the leaf closures
define a singular foliation (the leaves have different dimensions) on M . (For
more details about this notion see [49].)

Another interesting result for Riemannian foliations is the Global Reeb Sta-
bility Theorem, which is valid even if the codimension is greater than 1.

Theorem 2.2.5. Let F be a Riemannian foliation on a compact manifold M. If there
exists a compact leaf with finite fundamental group, then all leaves are compact with
finite fundamental group.

The property ‘F is Riemannian’ means that the leaf space B = M/F is a
Riemannian manifold even if B does not support any differentiable structure!

2.2.4 G/H-foliations

This is a class of foliations which possess interesting transverse properties (see [11]).
Let G be a Lie algebra of dimension d and H a Lie subalgebra of G. We fix
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a basis e1, . . . , ed of G such that en+1, . . . , ed span H and denote by θ1, . . . , θd

the corresponding dual basis. One has [ei, ej ] =
∑

k K
k
ijek, where the structure

constants Kk
ij fulfill the following relations:

Kk
ij = −Kk

ji, (2.5)∑
i

(Kk
ijK

i
rs +Kk

irK
i
sj +Kk

isK
i
jr) = 0 (Jacobi identity), (2.6)

Kk
ij = 0 if k ≤ n and n+ 1 ≤ i, j. (2.7)

The set of constants Kk
ij satisfying (2.5) and (2.6) determine the Lie algebra

structure of G, while (2.7) states that H is a Lie subalgebra of G. We denote by G
the simply connected Lie group with Lie algebra G and by H the connected Lie
subgroup of G corresponding to the Lie subalgebra H.

We shall denote by θ the G-valued 1-form on G which is the identity over
the left invariant vector fields on G, i.e., θ =

∑
k θ

k ⊗ ek. Let ω =
∑

k ω
k ⊗ ek

be a G-valued 1-form on a manifold M . An element g ∈ G transforms ω into the
G-valued form Adg ω, where Adg ω(X) = Adg ·(ω(X)) for any vector field X on
M . Once the basis e1, . . . , ed of G has been fixed, we shall identify ω with the
n-tuple of scalar 1-forms (ω1, . . . , ωd). In particular, θ = (θ1, . . . , θd).

Let a G-valued 1-form ω = (ω1, . . . , ωd) on a connected manifold M be given.
Assume that ω fulfills the Maurer–Cartan equation dω + 1

2 [ω, ω] = 0, i.e.,

dωk = −1

2

d∑
i,j=1

Kk
ij ω

i ∧ ωj (2.8)

and that ω1, . . . , ωn are linearly independent. Then the differential system of equa-
tions ω1 = · · · = ωn = 0 is integrable and defines a codimension n foliation F . We
call F a G/H-foliation defined by the G-valued form ω.

Example 2.2.6 (Main example). Let M = G. Then θ = (θ1, . . . , θd) defines a
G/H-foliation FG,H whose leaves are the left cosets of H.

Remark 2.2.7. The notion of G/H-foliation includes several classes of geometric
structures:

(a) If n = dimM and H is closed, then a G/H-foliation F defines a structure of
locally homogeneous space on M , that is, the manifold M is locally modeled
on the homogeneous space G/H with coordinate changes given by left trans-
lations by elements of G, and F is the foliation by points. The homogeneous
space G/H is endowed with a G/H-foliation when the projection G→ G/H
admits a global section.

(b) When H = 0, G/H-foliations are just Lie foliations modeled over G. For
instance, a non-singular closed 1-form ω on M defines a Lie foliation modeled
over R.
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(c) If H is closed, then a G/H-foliation is a transversely homogeneous foliation
modeled over the homogeneous space G/H. Every transversely homogeneous
foliation is given locally by a collection of 1-forms ω1, . . . , ωd fulfilling (2.8)
(cf. [4]). If these forms are global, then they define a G/H-foliation. This is
the case if H1(M,H) = 0 (cf. [4]).

Let us give a concrete example, constructed by R. Roussarie. It was the
first for which the Godbillon–Vey class is nontrivial. Let G = SL(2,R) be the
linear group of real 2×2 matrices of determinant 1 and Γ a cocompact lattice
(it is well known that these subgroups abound in G); the homogeneous space
M = G/Γ is a 3-dimensional compact orientable manifold. The Lie algebra
G of G has a basis consisting of

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, and Z =

(
1 0
0 −1

)
,

satisfying the relations ⎧⎪⎪⎨⎪⎪⎩
[X,Y ] = Z,

[Z,X] = 2X,

[Z, Y ] = −2Y.

These elements are associated to left invariant vector fields X, Y , and Z
on G, then also on M . Let (α, β, η) be the dual basis of (X,Y, Z). We have
the following relations, which can be derived easily from the above bracket
relations for X, Y and Z: ⎧⎪⎪⎨⎪⎪⎩

dα = −β ∧ η,

dβ = −2α ∧ β,

dη = 2α ∧ η.

Because dη = θ ∧ η (where θ = 2α), we have η ∧ dη = 0. Then by Frobenius’
theorem the 1-form η defines a codimension 1 foliation F on M .

(d) In general, when H is not necessarily closed, a G/H-foliation is a locally
transversely homogeneous foliation as defined in [49].

Let F be a G/H-foliation on M defined by ω. A map ϕ : N →M transverse
to F induces a G/H-foliation ϕ∗F on N , which is defined by ϕ∗ω. We say that

ϕ∗F is the pull-back of F by ϕ. In particular, the universal covering space M̃ of
M is endowed with the G/H-foliation F̃ defined by π∗ω, where π : M̃ →M is the

canonical projection. The following proposition states that the G/H-foliation F̃
on M̃ is a pull-back of the G/H-foliation FG,H on G, which was considered as the
main example.
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Proposition 2.2.8 ([4]). Let F be a G/H-foliation on M defined by ω and F̃ = π∗F
its pull-back to the universal covering space M̃ of M . There exist a map D : M̃ → G
and a group representation ρ : π1(M)→ G, such that

(i) D is π1(M)-equivariant, i.e., D(γ · x̃) = ρ(γ) · D(x̃) for any γ ∈ π1(M), and

(ii) ω̃ = π∗ω = D∗θ, i.e., F̃ = D∗FG,H .

The map D is called the developing map of F and it is uniquely determined up to
left translations by elements of G.

2.2.5 Transversely holomorphic foliations

The foliation F is said to be transversely holomorphic if T is a complex manifold
and the γij are local biholomorphisms. A particular case is a holomorphic foliation:
the manifolds M and T are complex, all the fi are holomorphic and all γij are
local biholomorphisms.

If T is Kählerian and γij are biholomorphisms preserving the Kähler form
on T , we say that F is transversely Kählerian. For example, any codimension 2
Riemannian foliation which is transversely orientable is transversely Kählerian.

Some concrete examples

(i) Let M = S2n+1 = {(z1, . . . , zn+1) ∈ Cn+1 :
∑n+1

k=1 |zk|2 = 1} be the unit
sphere in the Hermitian space Cn+1. Let Z be the holomorphic vector field
on Cn+1 given by Z =

∑n+1
k=1 akzk

∂
∂zk

, where ak = αk + iβk ∈ C.

It is not difficult to see that there exists a good choice of the numbers ak
such that the orbits of Z intersect transversely the sphere M ; then Z induces
on M a real vector field X which defines a foliation F . One can easily verify
that F is transversely holomorphic. It is transversely Kählerian if in addition
αk = 0 for any k = 1, . . . , n+ 1.

(ii) Let M̃ = Cm×Cn\{(0, 0)}. The coordinates of a point (z, w) will be denoted

(z1, . . . , zm, w1, . . . , wn). Define the foliation F̃ by the system of differential

equations dw1 = · · · = dwn = 0; then F̃ is a holomorphic (and then trans-

versely holomorphic) foliation on the complex manifold M̃ . The leaf of F̃
passing through a point (z, w) is the complex vector space Cm for w �= 0 and

L̃0 = Cm \ {0} for w = 0.

Let λ ∈ C∗ be such that |λ| �= 1. The action of the group Γ = Z on

M̃ generated by the transformation γ : (z, w) ∈ M̃ �→ (λz, λw) ∈ M̃ is free,

proper, and preserves the foliation F̃ . Then F̃ induces a holomorphic foli-
ation F of complex dimension m on the quotient manifold M = M̃/Γ; M
is analytically equivalent to S2(m+n)−1 × S1 and the leaves of F are biholo-
morphicaly equivalent to Cm, except the one L0 coming from L̃0, which is
isomorphic to the complex Hopf manifold S2m−1 × S1.
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The foliation F is not Riemannian. However, the complex normal bundle
of F is equipped with the Hermitian metric h =

∑n
k=1 dwk ∧ dwk, which

makes F a transversely conformal foliation.

2.3 More examples

2.3.1 Simple foliations

Two trivial foliations can be defined on a manifold M : the first one is obtained by
considering that the leaves are the points; the second one has only one leaf (if M
is connected), namely M itself.

Every submersion π : M → B with connected fibres defines a foliation, whose
leaves are the fibres π−1(b), b ∈ B. In particular, every product F×B is a foliation
with leaves F ×{b}, b ∈ B. These foliations are transversely orientable if and only
if the manifold B is orientable.

2.3.2 Linear foliation on the torus T2

This example was already differently described in Section 2.2.1. Let M̃ = R2 and
consider the linear differential equation dy − αdx = 0, where α is a real number.
This equation has y = αx+ c, c ∈ R, as general solution. When c varies, we obtain
a family of parallel lines which defines a foliation F̃ in M̃ . The natural action of
Z2 on M̃ preserves the foliation F̃ (i.e., the image of any leaf of F̃ by an integer

translation is a leaf of F̃). Then F̃ induces a foliation F on the torus T2 = R2/Z2.
The leaves are all diffeomorphic to the circle S1 if α is rational and to the real line
if α is not rational (Figure 2.3).

Figure 2.3

In fact, if α is not rational, then every leaf of F is dense. This shows that
even if locally a foliation is simple, globally it can be complicated.
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2.3.3 One-dimensional foliations

Let M be a compact manifold (without boundary) of dimension n. Let X be a
non-singular vector field on M , that is, for every x ∈M the vector Xx is nonzero.
Then its integral curves are leaves of a one-dimensional foliation. This is also the
case for a line bundle on M (not necessarily a vector field). In fact there is a
natural one-to-one correspondence between the set of C∞-line bundles and the set
of one-dimensional C∞-foliations.

The fact that M admits a one-dimensional foliation depends on its topology.
For each r = 0, 1, . . . , n, let Hr(M,R) denote the real rth cohomology space of M ,
which is finite-dimensional. Then the number

χ(M) =

n∑
r=0

(−1)rdim Hr(M,R) (2.9)

is a topological invariant, called the Euler–Poincaré characteristic of M . We have
the following:

Theorem 2.3.1. The manifold M admits a one-dimensional foliation if and only
if χ(M) = 0.

2.3.4 Reeb foliation on the 3-sphere S3

Let M be the 3-dimensional sphere S3 = {(z1, z2) ∈ C2 : |z1|2+ |z2|2 = 1}. Denote
by D the open unit disc in C and by D its closure. The two subsets

M+ =

{
(z1, z2) ∈ S3 : |z1|2 ≤

1

2

}
and M− =

{
(z1, z2) ∈ S3 : |z2|2 ≤

1

2

}
are diffeomorphic to D× S1, they have T2 as common boundary,

T2 = ∂M+ = ∂M− =

{
(z1, z2) ∈ S3 : |z1|2 = |z2|2 =

1

2

}
,

and their union is equal to S3. Then S3 can be obtained by gluing M+ and M−
along their boundaries by the diffeomorphism (z1, z2) ∈ ∂M+ �→ (z2, z1) ∈ ∂M−,
i.e., we identify (z1, z2) with (z2, z1) in the disjoint unionM+

∐
M−. Let f : D→ R

be the function defined by

f(z) = exp

(
1

1− |z|2

)
.

Let t denote the second coordinate in D×R. The family of surfaces (St)t∈R obtained
by translating the graph S of f along the t-axis defines a foliation on D×R. If we
add the cylinder S1 × R, where S1 is viewed as the boundary of D, we obtain a
codimension 1 foliation F̃ on D × R. By construction, F̃ is invariant under the
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transformation (z, t) ∈ D×R �→ (z, t+ 1) ∈ D×R, so it induces a foliation F0 on
the quotient

D× R/(z, t) ∼ (z, t+ 1) 	 D× S1.

It has the boundary T2 = S1 × S1 as a closed leaf. All the other leaves are diffeo-
morphic to R2 (see Figure 2.4).

Figure 2.4

Because M+ and M− are diffeomorphic to D × S1, F0 defines on M+ and
M−, respectively, two foliations F+ and F−, which give a codimension 1 foliation
F on S3 called the Reeb foliation. All the leaves are diffeomorphic to the plane R2

except for one which is the torus, the common boundary L of the two components
M+ and M−.

2.3.5 Lie group actions

Let M be a manifold of dimension m+ n and G a connected Lie group of dimen-
sion m. An action of G on M is a map Φ: G×M →M such that

• Φ(e, x) = x for every x ∈M (where e is the unit element of G), and

• Φ(g′,Φ(g, x)) = Φ(g′g, x) for every x ∈M and every g, g′ ∈ G.

Suppose that, for every x ∈M , the dimension of the isotropy subgroup

Gx = {g ∈ G : Φ(g, x) = x}

is independent of the point x. Then the action Φ defines a foliation F of dimension
m − dimGx and its leaves are the orbits {Φ(g, x) : g ∈ G}. In particular, this is
the case if Φ is locally free, i.e., if for every x ∈ M , the isotropy subgroup Gx
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is discrete. An explicit example is given when M is the quotient H/Γ of a Lie
group H by a discrete subgroup Γ and G is a connected Lie subgroup of H, the
action of G on M being induced by the left action of G on H. We say that F is a
homogeneous foliation. Let us give two examples.

Example 2.3.2. Let A ∈ SL(m + n − 1,Z), where m + n ≥ 3, be a matrix diago-
nalizable on R and having all its eigenvalues μ1, . . . , μm−1, λ1, . . . , λn positive. Let
u1, . . . , um−1, v1, . . . , vn be the corresponding eigenvectors in Rm+n−1. Since we
can think of A as a diffeomorphism of the (m+ n− 1)-torus Tm+n−1, the vectors
u1, . . . , um−1, v1, . . . , vn can be considered as linear vector fields on Tm+n−1 such
that

A∗uj = μjuj , A∗vk = λkvk (for j = 1, . . . ,m− 1 and k = 1, . . . , n).

Let (x1, . . . , xm−1, y1, . . . , yn, t) be the coordinates of a vector in Rm+n−1×R.
Then the vector fields u1, . . . , um−1, v1, . . . , vn, um = ∂/∂t generate the Lie algebra
X(Rm+n) over the ring of C∞-functions. The vector fields

Xi = μt
iui, Yj = λt

jvj , and Xm =
∂

∂t
(for i = 1, . . . ,m− 1 and j = 1, . . . , n)

satisfy the bracket relations

[Xi, X�] = [Xi, Yj ] = [Yj , Yk] = 0, [Xm, Xi] = ln(μi)Xi and [Xm, Yj ] = ln(λj)Yj

(for i, � = 1, . . . ,m − 1 and j, k = 1, . . . , n) and then generate over the field R
a finite-dimensional Lie algebra H. It is the semi-direct product of the Abelian
algebra H0 generated by X1, . . . , Xm−1, Y1, . . . , Yn and the one-dimensional Lie
algebra generated by Xm. The Lie algebra H is solvable and the Lie subalgebra G
defined by X1, . . . , Xm is also solvable and an ideal of H. The simply connected
Lie groups H and G corresponding respectively to H and G can be constructed as
follows. As the eigenvalues of the matrix A are real positive, the group R acts on
Rm+n−1 by

(t, z) ∈ R× Rm+n−1 �−→ Atz ∈ Rm+n−1,

(where z = (x1, . . . , xm−1, y1, . . . , yn)), leaving invariant the eigenspace E corre-
sponding to μ1, . . . , μm−1. This action defines the groups H and G respectively
as the semi-direct products Rm+n−1 � R and E � R. Because the coefficients of
A are in Z, the preceding action restricted to Z preserves the subgroup Zm+n−1;
this gives a subgroup Γ = Zm+n−1 � Z which is a cocompact lattice of H. The
quotient Tm+n

A = H/Γ is a compact manifold of dimension m+ n. As we have al-
ready pointed out, any subgroup of H induces a locally free action on H/Γ which
defines a foliation. In our example we have two subgroups: G and the normal
Abelian subgroup K whose Lie algebra is the ideal generated by Y1, . . . , Yn. Their
actions on Tm+n

A give respectively foliations F and V; the latter is a Lie foliation
transversely modeled on the Lie group G.
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Example 2.3.3. Let Q be the quadratic form on Rn+1 defined by Q(x) = −x2
0 +∑n

i=1 x
2
i and let Hn = {x ∈ Rn+1 : Q(x) = −1 and x0 > 0}. The group of

orientation-preserving linear transformations of Rn+1 which preserve Q is the
group H = SO(1, n). This group acts on Rn+1, the isotropy subgroup of the
point (1, 0, . . . , 0) is K = SO(n), and the quotient H/K is analytically equiva-
lent to Hn. Let Γ be a torsion-free subgroup of H (cf. [5]) such that the quotient
B = Γ \Hn = Γ \H/K is an n-dimensional compact manifold.

Since H is a linear group (it is a subgroup of GL(n,R)), the elements of its
Lie algebra H can be represented by matrices; they are of the form

(
0 A
A∗ B

)
, where

A =
(
a1 . . . an

)
, A∗ is its transpose, and B is an n×n skew-symmetric matrix.

A basis of H is given by the (n + 1) × (n + 1)-matrices Ai with i = 1, . . . , n and
Bk� with k, � = 1, . . . , n, where Ai is symmetric and has 1 at row 0 and column i,
and 0 elsewhere, and Bk� is skew symmetric and has −1 at row k and column �
and 0 elsewhere. Easy computations show that the commutators of these elements
are given by the following formulae:

[
Ai, Aj

]
= −Bij ,

[
Ai, Bk�

]
=

⎧⎪⎨⎪⎩
−A� if i = k,

−Ak if i = �,

0 otherwise,

and [
Bk�, Bk′�′

]
=

{
−Bk�′ if � = k′,

0 otherwise.

The group H acts on the bundle F (Hn) of oriented orthonormal tangent
frames of Hn in such a way that, given two frames ε and ε′, there exists only one
element h ∈ H such that h·ε = ε′; thenH is diffeomorphic to F (Hn). The subgroup

K̂ corresponding to the subalgebra K̂ generated by {Bk� : 2 ≤ k < � ≤ n} fixes a

point of Hn and a unit tangent vector at that point; hence the quotient F (Hn)/K̂
is diffeomorphic to the bundle S(Hn) of unit tangent vectors to Hn, which is of
dimension 2n− 1.

The Lie algebra H has two n-dimensional subalgebras G+ and G− whose
bases are respectively given by the two families{

A1,

√
2

2
(−A2 +B12), . . . ,

√
2

2
(−A2 +B1n)

}

and {
A1,

√
2

2
(−A2 −B12), . . . ,

√
2

2
(−A2 −B1n)

}
.

These subalgebras define two foliations F̃+ and F̃−, both of dimension n. They
are also the foliations defined by the left actions on H of the subgroups G+ and
G− whose Lie subalgebras are respectively G+ and G−. The adjoint action of K̂
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on H leaves the above two foliations invariant and then they pass to the right
quotient F (Hn)/K̂, giving rise to two foliations F̂+ and F̂−.

Now the fundamental group of B is isomorphic to Γ and may be considered
as a subgroup of H. The quotient of S(Hn) by the left action of Γ is the tangent
sphere bundle M of the manifold B; it is a compact manifold of dimension 2n−1.
The two foliations F̂+ and F̂− are left Γ-invariant and induce two foliations F+

and F− on M , both of dimension n and codimension n− 1. Their intersection is
the one-dimensional foliation generated by the vector field A1.

2.4 Suspension of diffeomorphism groups

One of the main class of foliations is obtained by the suspension procedure of
groups of diffeomorphisms. This section will be devoted to the definition of this
procedure and to some examples of groups of diffeomorphisms which give inter-
esting foliations.

2.4.1 General construction

Let B and F be two manifolds of respective dimensions m and n. Suppose that the
fundamental group π1(B) of B is finitely generated. Let ρ : π1(B)→ Diff(F ) be a

representation, where Diff(F ) is the diffeomorphism group of F . Denote by B̃ the

universal covering of B and by F̃ the horizontal foliation on M̃ = B̃ × F , i.e., the
foliation whose leaves are the subsets B̃ × {y}, y ∈ F . This foliation is invariant

under all the transformations Tγ : M̃ → M̃ defined by Tγ(x̃, y) = (γ · x̃, ρ(γ)(y)),
where γ · x̃ is the natural action of γ ∈ π1(B) on B̃; then F̃ induces a codimension
n foliation Fρ on the quotient manifold

M = M̃/(x̃, y) ∼ (γ · x̃, ρ(γ)(y)).

We say that Fρ is the suspension of the diffeomorphism group Γ = ρ(π1(B)). The
leaves of Fρ are transverse to the fibres of the natural fibration induced by

the projection on the first factor B̃ × F → B̃.

Conversely, suppose that F → M
π−→ B is a fibration with compact fibre

F and that F is a codimension n foliation (n = dimension of F ) transverse to
the fibres of π. Then there exists a representation ρ : π1(B) → Diff(F ) such that
F = Fρ.

The geometric transverse structures of the foliation F are exactly the geo-
metric structures on the manifold F invariant under the action of Γ. Hence, to give
examples of foliations obtained by suspension it is sufficient to construct examples
of diffeomorphism groups. This is what we shall do now.



2.4. Suspension of diffeomorphism groups 59

2.4.2 Examples

Example 2.4.1. Let B be the circle S1 and F = R+ = [0,+∞[. Let ρ be the
representation of Z = π1(S1) in Diff([0,+∞[) defined by ρ(1) = ϕ, where ϕ(y) =
λy with λ ∈ ]0, 1[. Because ϕ is isotopic to the identity map of F , the manifold M
is diffeomorphic to S1×R+ and the foliation Fρ has one closed leaf diffeomorphic
to the circle S1, corresponding to the fixed point ϕ(0) = 0 (see Figure 2.5).

Figure 2.5

Example 2.4.2. Let n ≥ 2 be an integer and A a matrix of order n with coefficients
in Z and determinant equal to 1, i.e., A is an element of SL(n,Z). Suppose that A
admits n real positive eigenvalues λ1, . . . , λn such that, for each λ ∈ {λ1, . . . , λn},
the components (v1, . . . , vn) in Rn of an eigenvector v associated to λ are linearly
independent over Q, i.e., for m ∈ Zn, every relation 〈m, v〉 = 0 implies m = 0
(where 〈 , 〉 is the Euclidean product in Rn). Such matrices exist; take for instance
(cf. [13])

A =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 2 0 · · · 0
1 0 3 . . . 0
...

...
...

. . .
...

1 0 0 . . . dn

⎞⎟⎟⎟⎟⎟⎠
with d1 = 1 and di+1 = 1+d1d2 · · · di for i = 1, . . . , n−1. This fact is easy to verify
for n ≤ 3. Let G be the solvable Lie group and Γ its lattice as in Example 2.3.2
in Section 2.3.5. The quotient manifold B = G/Γ is a flat fibre bundle with fibre
the n-torus Tn over the circle S1.

Now let λ ∈ {λ1, . . . , λn} and v be an associated eigenvector. Since

λ〈m, v〉 = 〈m′, v〉,
where A′(m) = m′ ∈ Zn and A′ is the transpose matrix of A, Γ can be embedded
in SL(n,C) as follows: choose integers a1, . . . , an−1, set a = a1 + · · · + an−1, and
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associate to (m, �) ∈ Γ = Zn � Z the n× n matrix

λ− a�
n

⎛⎜⎜⎜⎝
λa1� · · · 0 〈m, v〉
...

. . .
...

...
0 · · · λan−1� 0
0 · · · 0 1

⎞⎟⎟⎟⎠
(only the terms on the diagonal and the term on the first row and the nth column
are nonzero). So we obtain an injective representation

ρ : π1(B) = Γ −→ Aut(Pn−1(C)).

The action of Γ on Pn−1(C) extends to the point ∞ the affine action

(z1, . . . , zn−1) ∈ Cn−1 �−→ (λa1�z1 + 〈m, �〉, λa2�z2, . . . , λ
an−1�zn−1) ∈ Cn−1

for every (m, �) ∈ Γ. The suspension of this representation gives a transversely
holomorphic foliation F of codimension n− 1 on the compact differentiable mani-
fold M , quotient of M̃ = Pn−1(C)×G by the equivalence relation which identifies
(z, x) to (ρ(γ)(z), γx) with γ ∈ Γ (Γ acts on G by left translations). The leaves of
F are homogeneous spaces of G by discrete subgroups. Note that F is not trans-
versely Kählerian because the image of the representation ρ does not preserve the
Kählerian metric on Pn−1(C).

Example 2.4.3. Let SL(n,R) be the group of real matrices of order n and deter-
minant 1. This is a real form of the group SL(n,C) (complex matrices of order n
and determinant 1). This group acts by projective transformations on Pn−1(C)
(complex projective space of dimension n − 1). Then every subgroup of SL(n,C)
acts by the same transformations on Pn−1(C).

The construction of the following group Γ and the study of its properties can
be found in [31]. In the upper half plane H = {z = x+iy : y > 0} with the Poincaré
metric (dx2 + dy2)/y2 we consider a geodesic triangle T (p, q, r) with angles π/p,
π/q, and π/r, such that 1/p + 1/q + 1/r < 1. We denote by σ1, σ2, and σ3 the
reflections associated respectively to the sides of this triangle; they generate an
isometry group Σ∗. The elements which preserve the orientation form a subgroup
Σ of Σ∗ of index 2, called the triangle group and denoted T (p, q, r). It is a subgroup

of SL(2,R) and its pull-back Γ by the projection S̃L(2,R)→ SL(2,R) (S̃L(2,R) is
the universal covering of SL(2,R)) is a central extension 0 → Z → Γ → Σ → 1.
The group Γ has the following presentation:

Γ = 〈γ1, γ2, γ3 | γp
1 = γq

2 = γr
3 = γ1γ2γ3〉.

The quotient B = S̃L(2,R)/Γ is a compact manifold of dimension 3. If the integers
p, q, and r are mutually prime, then the cohomology of B (with coefficients in Z)
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is exactly the cohomology of the sphere S3. Since Γ is a subgroup of S̃L(2,R), it
acts on P 1(C). So we obtain a (non-injective) representation

ρ : π1(B) = Γ −→ Aut(P 1(C)).

The suspension of such representation gives a transversely holomorphic foliation
F of codimension 1 on the differentiable manifold M of dimension 5, which is the
quotient of M̃ = P 1(C) × S̃L(2,R) by the equivalence relation which identifies

(z, x) with (ρ(γ)(z), γx) (Γ acts on S̃L(2,R) by left translation). The leaves of F
are homogeneous spaces of S̃L(2,R) by discrete subgroups.

Example 2.4.4. The 1-dimensional real projective space P 1(R) is obtained by
adding the point ∞ to the real line R; it is also isomorphic to the circle S1.
The group SL(2,R) of 2× 2 real matrices

(
a b
c d

)
with ad− bc = 1 acts analytically

on S1 by ((
a b
c d

)
, x

)
∈ SL(2,R)× S1 �−→ ax+ b

cx+ d
∈ S1.

For any integer m such that m ≥ 2, the elements γ1 = ( 1 m
0 1 ) and γ2 = ( 1 0

m 1 )
generate a free non-Abelian subgroup Γ (cf. [26]) of the group Diff(S1) of diffeo-
morphisms of the circle S1.

Let B1 and B2 be two copies of S2 × S1; each one of them has its funda-
mental group isomorphic to Z. By van Kampen’s theorem, the connected sum
B = B1#B2 (which is a 3-dimensional manifold) has the non-Abelian free group
on two generators α1 and α2 as fundamental group. Let ρ : π1(B) → Γ be the
representation defined by ρ(α1) = γ1 and ρ(α2) = γ2. As usual, the suspension
of this representation gives rise to a codimension 1 foliation on the 4-manifold M
which is a flat bundle S1 → M → B. This foliation is transversely homogeneous
(in fact transversely projective).

2.5 Codimension 1 foliations

The richness of this category of foliations comes from the existence of non-singular
transverse vector fields which give a way to pass from a leaf to another one. Most
of the results in Foliation Theory were first obtained in the codimension 1 case;
we will summarize a few of them.

2.5.1 Existence

Let F be a codimension 1 foliation on a compact manifold M and let ν be a
transverse vector bundle to F . Because ν is of rank one, it is integrable and
defines a foliation V transverse to F . So we clearly have χ(M) = 0. It is natural
to ask if this condition is sufficient for the existence of a codimension 1 foliation
on M . This question was answered by W. Thurston [39].
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Theorem 2.5.1. Let M be a compact manifold. Then M admits a codimension 1
foliation if and only if the Euler–Poincaré characteristic χ(M) is zero.

The regularity property seems to be very important in the existence of folia-
tions on compact manifolds. In particular, there is a big difference in the treatment
between the C∞ case and the real analytic one. In this direction, A. Haefliger
proved in [22] the following important theorem.

Theorem 2.5.2. Let M be a compact manifold with a finite fundamental group.
Then M has no real analytic codimension 1 foliation.

2.5.2 Topological behavior of leaves

Let F be a codimension 1 foliation on a connected manifold M . A subset A ⊂M
is called invariant (for F) if it is saturated, that is, if it contains x, then it contains
the leaf passing through x. A leaf L can be of three types:

(i) Proper : if the topology of L coincides with the topology induced by M (for
instance any closed leaf is proper).

(ii) Locally dense: if there exists an invariant open set O such that L ∩ O = O.

(iii) Exceptional : if it is neither proper, nor locally dense.

A subset K of M is called minimal if it is nonempty, closed, invariant and
minimal for these properties, i.e., if K ′ ⊂ K has the same properties as K, then
K ′ = K. It can be of three types:

(i’) K is a proper leaf (compact if M is compact).

(ii’) K is equal to the whole manifold M ; in this case every leaf of F is dense and
we say that the foliation is minimal.

(iii’) K is a union of exceptional leaves. In this case, we say thatK is an exceptional
minimal set.

The construction of a foliation with prescribed type of minimal set is a far
from trivial problem. Yet, many results and examples were obtained in this direc-
tion. One of them is due to S. Novikov [32] and concerns the existence of compact
leaves on 3-manifolds.

Theorem 2.5.3. Let M be a compact 3-manifold with a finite fundamental group.
Then any codimension 1 foliation on M has a compact leaf diffeomorphic to the
torus T2.

The topology of a compact leaf may determine the nature of the foliation on
its neighborhood. This is described for instance by the following theorem due to
G. Reeb [50].

Theorem 2.5.4 (Local stability). Suppose that F admits a compact leaf L with
finite fundamental group. Then L admits a saturated neighborhood V such that
every leaf contained in V is compact with finite fundamental group.
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This theorem is in fact valid even if the codimension is greater than 1.

The existence of an exceptional minimal set K for a codimension 1 foliation
F forces the holonomy of some leaf L ⊂ K to have a special behavior as stated in
the following theorem due to R. Sacksteder [36].

Theorem 2.5.5. Let F be a codimension 1 foliation on a compact manifold M with
an exceptional minimal set K. Then there exist a leaf L ⊂ K and a closed curve
σ : [0, 1] → L such that if h : ]−ε, ε[ → ]−ε, ε[ is a representative of the germ of
holonomy of σ (the segment ]−ε, ε[ is viewed as a small transversal to F at the
point x0 = σ(0) = σ(1)), then h′(0) < 1. In particular, the holonomy of the leaf L
is nontrivial.

In the same order of ideas, R. Sacksteder has constructed, by the suspension
procedure on the 3-manifold Σ2×S1, a codimension 1 foliation with an exceptional
minimal set. (Here Σ2 denotes the compact orientable surface of genus 2.)

Of course, the value of a mathematical theme is measured by the quantity of
interesting examples it can produce. For instance, one can ask: does there exist a
simply connected manifold M which supports a codimension 1 minimal foliation?
The first example was given by G. Hector:

Theorem 2.5.6. The Euclidean space R3 supports a codimension 1 foliation whose
leaves are all dense.

The construction of this foliation is very laborious. The reader who is more
interested in this example can see the original article [23] or the reference [42],
where it is also treated elementarily and in detail.

Part II. A Digression: Basic Global Analysis

A foliation F on a manifold M is the geometric realization of a completely in-
tegrable differential system S: the leaves of F are exactly the integral manifolds
of S. One passes from a leaf to another by changing the initial condition of S; so
the leaf space B = M/F can be interpreted as a parameter space of the solutions
of S. Even if, in general, B has no differentiable structure, one can define on it
many geometric objects: they correspond to their analogues in the classical sense
‘invariant along the leaves’. Then one can ask: in which sense the space B looks like
a good manifold? The goal of this Part II is to show that if F is Riemannian and
M is compact, then B behaves like a compact Riemannian manifold in the sense of
global analysis. For instance, one can consider elliptic differential equations on B
and solve them under the same conditions as on a compact manifold. This enables
one to show that the cohomological properties of a compact Riemannian manifold
or a compact Kählerian one can be transferred to the space B.
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2.6 Foliated bundles

Let P : G ↪→ P
ι→ M be a principal bundle with structure group G ⊂ GL(n,C).

The group G acts on P on the right and on its Lie algebra G by the adjoint
representation Ad, i.e., for g ∈ G and X ∈ G, Adg(X) = gXg−1. Denote by V the
vector bundle whose fibre Vz at a point z ∈ P is the tangent space at z to the
fibre of P.

Let E : E →M be a complex vector bundle defined by a cocycle {Ui, gij , G},
where {Ui} is an open cover of M and gij : Ui ∩ Uj → G ⊂ GL(n,C) are the
transition functions. To such a vector bundle we can always associate a principal
bundle G → P → M whose fibre is the group G and the transition functions are
exactly the gij (viewed as translations on G).

There are different ways to define a connection on a vector bundle E : either
on E directly, or by using the associated principal bundle. We shall make use of
all these possibilities.

First definition. A connection on P is a subbundle H of TP such that

(a) For every z ∈ P we have TzP = Vz ⊕Hz, where Hz is the fibre of H at z.

(b) For every g ∈ G and every z ∈ P , we have Hzg = (Rg)∗Hz, where Rg is the
right action of g on P and (Rg)∗ is its derivative.

Second definition. A connection on P is a subbundle H given by the kernel
of a G-invariant 1-form ξ on P with values in G. The G-invariance of ξ means
that (Rg)

∗(ξ) = Adg−1(ξ), i.e., for z ∈ P , X ∈ TzP and g ∈ G, one has that
ξzg((Rg)∗(X)) = g−1ξz(X)g.

Third definition. A linear connection on the vector bundle E is a map

∇ : X(M)× C∞(E) −→ C∞(E)

which associates to each (X,α) a section ∇Xα satisfying the following properties:

(c) ∇ is C∞(M)-linear on the first factor, that is, for α ∈ C∞(E), X, Y ∈ X(M)
and functions f , g ∈ C∞(M), we have ∇fX+gY α = f∇Xα+ g∇Y α.

(d) For α ∈ C∞(E), X ∈ X(M), and f ∈ C∞(M) we have ∇X(fα) = f∇Xα +
(Xf)α, where Xf is the derivative of the function f in the direction of the
vector field X.

In fact, the map ∇ is the covariant derivative of the connection. The curvature of
this connection is the 2-formR with values in End(E) (the space of endomorphisms
of E) defined by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].
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Now, suppose that we are given a connection H (like in the first definition
or the second one) on the principal bundle P. It is easy to see that the restriction
of ι∗ (the derivative of ι) to Hz is an isomorphism onto Tι(z)M . Let τ = ι−1

∗ (TF).
We say that P is foliated if τ is integrable. In this case, τ defines a foliation F̃ on
P such that

(e) dim(F̃) =dim(F).

(f) F̃ is invariant under the action of G.

Definition 2.6.1. We say that the connection H is basic if ξ is basic. A foliated
bundle E is said to be an F-bundle if it admits a basic connection. We say that E
is an F-bundle if the associated principal bundle is an F-bundle.

A vector bundle E with a linear connection is foliated if and only if its cur-
vature form R satisfies R(X,Y ) = 0 for X, Y ∈ Γ(F); E is an F-bundle if and
only if iXR = 0 for X ∈ Γ(F) (cf. [24]).

The foliation F
̂E on Ê = P × Cn whose leaves are (leaf of F̃) × (point of

Cn) is invariant under the diagonal action of G; so it induces a foliation FE on
E = P ×G Cn.

An F-morphism ϕ : (E , ξ) → (E ′, ξ′) between two F-bundles is a morphism
of vector bundles such that ξ = ϕ∗(ξ′).

The collection of F-bundles and F-morphisms on M is a category. Thus we
can define the group K(M,F) of foliated K-theory as in the classical case.

2.6.1 Examples

Example 2.6.2. Suppose that we are given a Riemannian metric on M . Let TF⊥

be the subbundle of TM orthogonal to F and Γ(TF⊥) the space of its sections.
Every X ∈ X(M) can be uniquely written as X = XF+Xν , where XF ∈ Γ(F) and
Xν ∈ Γ(TF⊥). Let π : TM → νF be the canonical projection. For every section

Y of the bundle νF we denote by Ỹ a vector field on M which projects onto Y .
For every XF ∈ Γ(F) and every Y ∈ C∞(νF), π([XF , Ỹ ]) is independent of the

choice of Ỹ . Let ∇̂ be any linear connection on νF . We can now define a linear
connection ∇ : X(M)× C∞(νF)→ C∞(νF) on the vector bundle νF by

∇XY = π([XF , Ỹ ]) + ∇̂Xν
Y. (2.10)

It is called a Bott connection of F . A simple calculation, using the integrability
of the subbundle TF and the Jacobi identity, shows that the curvature form R
satisfies the equation R(X,Y ) = 0 for X, Y ∈ Γ(F); this implies that the vector
bundle νF is foliated.

Example 2.6.3. Every flat vector bundle E : E →M (i.e., such that the transition
functions of E are constant) is an F-bundle.
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Example 2.6.4. Let E : E →M be an F-bundle. Then the dual bundle E∗ and all
of its exterior and symmetric powers Λ∗E∗ and S∗E∗ are F-bundles; also H2E =
{Hermitian forms on E} is an F-bundle.

2.7 Transversely elliptic operators

Let E be an F-bundle and denote by C∞(E) the space of its global sections.
Let ∇ denote the covariant derivative X(M)×C∞(E)→ C∞(E) associated to the
connection.

Definition 2.7.1. We say that a section α ∈ C∞(E) is basic if it satisfies the
condition ∇Xα = 0 for every X ∈ Γ(F).

For any F-bundle E , we denote by Ẽ the sheaf of germs of its basic sections.
The space of its global sections C∞(E/F) is an A-module (A is the algebra of
basic functions). Let E and E ′ be two F-bundles of ranks N and N ′, respectively.

Definition 2.7.2. A basic differential operator of order m ∈ N from E to E ′ is
a morphism of sheaves D : Ẽ → Ẽ ′ such that, in a local system of coordinates
(x1, . . . , xd, y1, . . . yn), D has the expression

D =
∑

|s|≤m

as(y)
∂|s|

∂ys11 · · · ∂ysnn
,

where s = (s1, . . . , sn) ∈ Nn, |s| = s1+ · · ·+sn, and as are N ×N ′-matrices whose
coefficients are basic functions.

The principal symbol of D at the point z and the covector ζ ∈ T ∗
z M is the

linear map σ(D)(z, ζ) : Ez → E′
z defined by

σ(D)(z, ζ)(η) =
∑

|s|=m

ζs11 · · · ζsnn as(y)(η).

We say that D is transversely elliptic if σ(D)(z, ζ) is an isomorphism for every
z ∈ M and every transverse covector ζ different from 0. If F is Riemannian,
its conormal bundle ν∗F is an F-bundle and is equipped with a foliation F∗. If
in addition M is compact, then σ(D)(z, ζ) defines an element [D] in the group
K(ν∗F ,F∗).

A Hermitian metric on E is a positive definite section h of H2E . If h is
basic, we say that E is a Hermitian F-bundle. If (E , h) is a Hermitian F-bundle
and D : C∞(E/F) → C∞(E/F) is a basic operator of order m = 2�, then we
can define a quadratic form A on E by Az(η) = (−1)� h

(
σ(D)(z, ζ)(η), η

)
, where

η ∈ Ez. We say that D is strongly transversely elliptic if A is positive definite
for every z ∈ M and every transverse covector ζ different from zero. Of course, a
strongly transversely elliptic operator is transversely elliptic.
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Let {Er} (r ∈ {0, . . . , n}) be a sequence of Hermitian F-bundles and basic
operators Dr : E

r = C∞(Er/F)→ C∞(Er+1/F) = Er+1 such that the sequence

0 �� E0 D0 �� · · ·
Dr−1

�� Er Dr �� Er+1
Dr+1

�� · · ·
Dn−1

�� En �� 0 (2.11)

is a differential complex. Let σr = σ(Dr)(z, ζ) : E
r
z → Er+1

z denote the principal
symbol of Dr at the point z ∈ M and the transverse covector ζ. We say that the
complex (2.11) is transversely elliptic if the sequence

0 �� E0
z

σ0 �� · · ·
σr−1

�� Er
z

σr �� Er+1
z

σr+1
�� · · ·

σn−1
�� En

z
�� 0

is exact for every z ∈M and every nonzero transverse covector ζ.
On each C∞(Er/F) we can define an inner product given by (2.12). Let

D∗ be the formal adjoint of D, which is a basic operator from C∞(Er+1/F) to
C∞(Er/F). Then Lr = DD∗ +D∗D is a self-adjoint operator on C∞(Er/F). We
can easily show that the differential complex (2.11) is transversely elliptic if and
only if Lr is strongly transversely elliptic for every r ∈ {0, . . . , n}.

From now on we suppose that M is compact and connected. Assume that the

foliation F is Riemannian and transversely oriented. Let G = SO(n) → M# p→
M be the principal bundle of orthonormal direct frames transverse to F . Then,
the foliation F lifts to a transversely parallelizable foliation F# on M# of the
same dimension and invariant under the action of the group G. Moreover, the leaf
closures of F# are the fibres of a locally trivial fibration F → M# → W , where
W is a compact manifold called the basic manifold of F (cf. Section 2.2.3).

Let E# be the pullback of the bundle E by p; then E# is a G-bundle and a
Hermitian F#-bundle with respect to a Hermitian metric h#. The basic sections
of E are canonically identified with basic sections of E# that are invariant under
the action of G. In particular, if f : M → C is a basic function, then f ◦ p is a
basic function on M# (with respect to F#); moreover, f ◦p is invariant under the
action of G. Because f ◦ p is continuous, it is constant on the leaf closures of F#,
so it induces a G-invariant C∞ function on the basic manifold W . We can prove,
by the converse process, that any G-invariant C∞ function on the basic manifold
W defines a C∞ basic function on M ; so, the algebra A of basic functions on
M is canonically isomorphic to the algebra AG(W ) of functions on W invariant
under G. The transverse metric on M# (which makes F# Riemannian) induces
a Riemannian metric on W for which G acts by isometries. Let μ be the measure
on W associated to this metric (μ is a volume form if W is orientable, otherwise
it is just a density).

On C∞(E/F) we define an inner product as follows. Let α and β be two
elements of C∞(E/F). The function z ∈ M �→ hz(α(z), β(z)) ∈ C is basic, so it
defines a G-invariant function Θ(α, β) on W . We set

〈α, β〉 =
∫
W

Θ(α, β)(w) dμ(w). (2.12)
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For any transversely elliptic operator D from a Hermitian F-bundle E to a
Hermitian F-bundle E ′, denote by N(D) its kernel and R(D) its range. Let D∗

be the formal adjoint of D; hence D∗ is a basic operator from E ′ to E and it is
transversely elliptic.

Theorem 2.7.3. The kernel N(D) of D is finite-dimensional, the range R(D∗) of
D∗ is closed and finite-codimensional, and we have an orthogonal decomposition

C∞(E/F) = N(D)⊕R(D∗). (2.13)

The proof of this theorem is long and can be found in [9]. We will just sketch
the three principal steps. It is not difficult to see that one can restrict attention to
the case where E = F , and D is of even order m = 2� and transversely strongly
elliptic.

Step one. F is a Lie foliation with dense leaves.

This step will be very important even if it is almost immediate.

• The vector space C∞(E/F) is finite-dimensional. Indeed, a basic section
which is zero at a point is zero everywhere by the density of leaves.

• Let E0 = C∞(E/F) and N ′
0 = dimE0. The Hermitian metric on E induces

a Hermitian metric on E0.

• The Hodge decomposition for the operator D is just the decomposition of a
linear operator on a finite-dimensional Hermitian space.

Step two. F is a TP foliation.

• Consider the basic fibration F ↪→ M → W of F . For u ∈ W , let Fu be the
fibre of π over u and Eu = C∞(Eu/Fu), where Eu and Fu are respectively the
restrictions of E and F to Fu. Then, by step one, Eu is a finite-dimensional
complex vector space and one can prove (cf. [9]) that:

• The dimension of Eu is independent of u ∈W .

• The set E =
⋃

u∈W Eu is a Hermitian vector bundle over the manifold W .

The vector bundle E →W is called the useful bundle associated to E . It
is a key ingredient in the proof of the Hodge decomposition for transversely
elliptic operators on Riemannian foliations.

• The linear map ψ : C∞(E/F) → C∞(E) defined by ψ(α)(u) = α|Fu is an
isomorphism of Hermitian vector bundles.

• The operator D : Ẽ → Ẽ induces a strongly elliptic operator D : Ẽ → Ẽ of the
same order and such that, for any open set U ⊂ W trivializing the vector
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bundle E , the diagram

C∞
V (E/F) D ��

ψ

��

C∞
V (E/F)

ψ

��

C∞
U (E) D �� C∞

U (E)

is commutative, where V = π−1(U). Then the classical Hodge decomposition
for D gives the Hodge decomposition for the transversely elliptic operator D.

Step three. The general case.
We suppose that the foliation F is transversely orientable. We denote by

G the group SO(n) and let G → M# ρ→ M be the principal bundle of direct
orthonormal frames transverse to F .
• Denote by E# the pullback of E to M#; E# is also a F#-Hermitian vector
bundle of the same rank as E .

• Let C∞
G (E#/F#) be the subspace of C∞(E#/F#) whose elements are F#-

basic sections of E# which are invariant under the action of G. Then one has
a canonical isomorphism

θ : C∞(E/F) −→ C∞
G (E#/F#).

• By using a basic connection on the principal bundle ρ : M# → M , one can

lift the operator D to a basic differential operator D
#
: Ẽ

#

→ Ẽ
#

which
commutes with the action of G.

• Let Q1, . . . , QN (where N = n(n+ 1)/2) be the fundamental vector fields of
the action ofG onM#. They can be considered as first-order basic differential
operators acting on the space C∞(E#/F#). For each Qj with j ∈ {1, . . . , N},
let Qj denote its complex conjugate and let

Q′ =

⎛⎝ N∑
j=1

QjQj

⎞⎠�

, Q = (−1)�Q′ and D′ = D# +Q.

• Then D′ is a strongly transversely elliptic operator acting on C∞(E#/F#).
Since the restriction of Q to the subspace C∞

G (E#/F#) is zero, one has a
commutative diagram

C∞
G (E#/F#)

D′
��

θ−1

��

C∞
G (E#/F#)

θ−1

��

C∞(E) D �� C∞(E).

(2.14)
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• Now, since G is compact and commutes with D′, the Hodge decomposition
for D′ induces a Hodge decomposition for this same operator on the space
C∞

G (E#/F#). Using diagram (2.14), one obtains a Hodge decomposition for
D acting on C∞(E/F). This ends the sketch of the proof.

2.8 Examples

2.8.1 The basic de Rham complex

We suppose, as in Theorem 2.7.3, that F is Riemannian of codimension n, trans-
versely oriented and that M is compact. For every r ∈ {0, . . . , n}, let Er denote the
vector bundle Λr(ν∗F). Then Er is a Hermitian F-bundle. Its basic sections are
exactly the basic forms of degree r, which form a vector space denoted Ωr(M/F).
The exterior differential d : Ωr(M/F)→ Ωr+1(M/F) is a basic differential opera-
tor of order 1. The differential complex

0 −→ Ω0(M/F) d−→ · · · d−→ Ωr(M/F) d−→ · · · d−→ Ωn(M/F) −→ 0 (2.15)

is called the basic de Rham complex of F ; its homology is the basic cohomology
H∗(M/F) of the foliation F .

To make things simpler, we suppose that F is homologically orientable, that
is, the vector space Hn(M/F) is nontrivial, so it is necessarily one-dimensional
(cf. [12]). This condition is equivalent to the existence of a (real) volume form
on the leaves χ which is F-relatively closed, that is, dχ(X1, . . . , Xd, Y ) = 0 for
X1, . . . , Xd ∈ Γ(F); cf. [28]. (In that case, we can complete the transverse metric
by a Riemannian metric along the leaves to obtain a Riemannian metric on the
whole manifold for which the leaves are minimal and χ is associated to this metric.)
This hypothesis will enable one to define an inner product on Ωr(M/F) without
using the basic manifold W . As in the classical case, we define the Hodge star
operator

∗ : Ω∗(M/F) −→ Ω∗(M/F) (2.16)

in the following way. Let U be an open set on which the foliation is trivial. Let
θ1, . . . , θn be real 1-forms such that (θ1, . . . , θn) is an orthonormal basis of the free
module Ω1(U/F) (over the algebra of basic functions on U). Then define ∗ by

∗(θi1 ∧ · · · ∧ θir ) = εθj1 ∧ · · · ∧ θjn−r ,

where {j1, . . . , jn−r} is the increasing complementary sequence of {i1, . . . , ir} in
the set {1, . . . , n} and ε is the signature of the permutation

{i1, . . . , ir, j1, . . . , jn−r}.

A straightforward calculation shows that ∗ satisfies the identity ∗∗ = (−1)r(n−r)id.
On Ωr(M/F) we define a Hermitian product by

〈α, β〉 =
∫
M

α ∧ ∗β ∧ χ. (2.17)
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Then it is easy to see that the operator δ : Ωr(M/F) → Ωr−1(M/F) defined by
the formula δ = (−1)n(r−1)−1 ∗ d ∗ is the formal adjoint of

d : Ωr−1(M/F) −→ Ωr(M/F),

i.e., for every α ∈ Ωr−1(M/F) and every β ∈ Ωr(M/F) we have 〈dα, β〉 = 〈α, δβ〉.
Indeed,

d(α∧ ∗ β ∧ χ)

= dα ∧ ∗β ∧ χ+ (−1)r−1α ∧ d(∗β) ∧ χ+ (−1)n−1α ∧ ∗β ∧ dχ

= dα ∧ ∗β ∧ χ+ (−1)(2−r)(r−1)−1α ∧ ∗(δβ) ∧ χ+ (−1)n−1α ∧ ∗β ∧ dχ

= dα ∧ ∗β ∧ χ− α ∧ ∗(δβ) ∧ χ+ (−1)n−1α ∧ ∗β ∧ dχ.

Integrating the two sides and using the fact that χ is F-relatively closed, we obtain
the desired equality. In the more general case in which the leaves are not minimal,
the formula for the adjoint has a correction term involving the mean curvature of
the foliation (cf. [1], [33], or [52]). Let Δb : Ω

r(M/F)→ Ωr(M/F) be the operator
Δb = δd+ dδ. The operator Δb is self-adjoint and it is called the basic Laplacian
(on the basic r-forms). A simple calculation, using local coordinates, proves that
Δb is strongly transversely elliptic and therefore the complex (2.15) is transversely
elliptic. Let

Hr(M/F) = kerΔb = {α ∈ Ωr(M/F) : dα = 0 and δα = 0}.

An element of Hr(M/F) is called a basic harmonic form (of degree r). Then,
applying Theorem 2.7.3, we obtain:

(i) dimHr(M/F) < +∞.

(ii) There are orthogonal decompositions

Ωr(M/F) = Hr(M/F)⊕R(Δb) = Hr(M/F)⊕R(d)⊕R(δ). (2.18)

As a consequence, the basic cohomology Hr(M/F) is finite-dimensional and
is represented by Hr(M/F). Moreover, the Hermitian map

(α, β) ∈ Ωr(M/F)× Ωn−r(M/F) �−→
∫
M

α ∧ β ∧ χ ∈ C

induces a non-degenerate pairing Ψ: Hr(M/F)×Hn−r(M/F)→ C, i.e., the basic
cohomology H∗(M/F) satisfies Poincaré duality.

These results were originally obtained by B. Reinhart in [35] without the
assumption that Hn(M/F) is nonzero. However, in 1981 Y. Carrière [7] con-
structed an example of a transversely oriented foliation whose basic cohomology
does not satisfy Poincaré duality; this makes false a part of Reinhart’s theorem.
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One year later F. Kamber and P. Tondeur [25] proved the same result as B. Rein-
hart for Riemannian foliations with minimal leaves (by [28], this is equivalent to
Hn(M/F) �= {0}). We can easily observe that, with this hypothesis, Reinhart’s
proof is still valid. The general case (without any assumption) was completely
established in [12]. But as we have already pointed out, these results are direct
consequences of Theorem 2.7.3.

If n = 2k = 4�, then Ψ defines a non-degenerate quadratic form onHk(M/F);
its signature is called the signature of F and is denoted Sign(F).

Now let E and E ′ be the vector bundles

E =
⊕
i≥0

Λ2i(ν∗F) and E ′ =
⊕
i≥0

Λ2i+1(ν∗F).

They are Hermitian F-bundles and we have

C∞(E/F) =
⊕
i≥0

Ω2i(M/F) and C∞(E ′/F) =
⊕
i≥0

Ω2i+1(M/F).

The operator d+δ : C∞(E/F)→ C∞(E ′/F) is basic and transversely elliptic, and
then it is a Fredholm operator. Its index

indF (d+ δ) =

n∑
i=0

(−1)i dimHi(M/F) (2.19)

is the basic Euler–Poincaré characteristic χ(M/F) of the foliation F . As in the
classical case, it is an obstruction to the existence of a non-singular foliated vector
field transverse to F (cf. [3]).

2.8.2 The basic Dolbeault complex

We now assume that F is Hermitian and, for simplicity, homologically orientable.
Let ν be the complexified normal bundle νF ⊗R C of νF . Let J be the automor-
phism of ν associated to the complex structure; J satisfies J2 = −id and then
it has two eigenvalues, i and −i, with associated eigensubbundles denoted ν10

and ν01, respectively. We have a splitting ν = ν10 ⊕ ν01 which gives rise to a
decomposition

Λrν∗ =
⊕

p+q=r

Λp,q,

where Λp,q = Λpν10
∗ ⊗ Λqν01

∗
. Basic sections of Λp,q are called basic forms of

type (p, q). They form a vector space denoted Ωp,q(M/F). We have

Ωr(M/F) =
⊕

p+q=r

Ωp,q(M/F).

The exterior differential decomposes into a sum of two operators

∂ : Ωp,q(M/F) −→ Ωp+1,q(M/F) and ∂ : Ωp,q(M/F) −→ Ωp,q+1(M/F),
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as in the classical case of a complex manifold. We have ∂
2
= 0, so we obtain a

differential complex

· · · ∂−→ Ωp,q(M/F) ∂−→ Ωp,q+1(M/F) ∂−→ · · · , (2.20)

called the basic Dolbeault complex of F . Its homology Hp,q(M/F) is the basic
Dolbeault cohomology of the foliation F : even though the leaf space is bad, it can
be considered as a ‘complex manifold’ whose Dolbeault cohomology isHp,∗(M/F)!

The star operator ∗ defined in (2.16) induces an isomorphism from the vector
space Ωp,q(M/F) to Ωn−q,n−p(M/F). Moreover, the restriction of the operator δ
to the space Ωp,q(M/F) decomposes into a sum of two operators δ′ = − ∗ ∂ ∗
and δ′′ = − ∗ ∂ ∗, respectively, of types (−1, 0) and (0,−1). We can easily verify
that δ′′ is the formal adjoint of ∂ for the inner product (2.17). Then the operator
Δ′′

b = δ′′∂ + ∂δ′′ is self-adjoint; a simple computation in local coordinates, like for
the basic Laplacian, shows that Δ′′

b is strongly transversely elliptic and that the
complex (2.20) is transversely elliptic. Let

Hp,q(M/F) = kerΔ′′
b = {α ∈ Ωp,q(M/F) : ∂α = 0 and δ′′α = 0}.

Applying again Theorem 2.7.3, we obtain:

(i) dim Hp,q(M/F) < +∞.

(ii) There are orthogonal decompositions

Ωp,q(M/F) = Hp,q(M/F)⊕R(Δ′′
b) = Hp,q(M/F)⊕R(∂)⊕R(δ′′). (2.21)

Consequently, the basic Dolbeault cohomology Hp,q(M/F) is finite-dimen-
sional and is represented by Hp,q(M/F). Moreover, the star operator induces a
unitary isomorphism (of real vector spaces)

∗ : α ∈ Hp,q(M/F) �−→ ∗α ∈ Hn−p,n−q(M/F),

and then an isomorphism

∗ : Hp,q(M/F) −→ Hn−p,n−q(M/F), (2.22)

i.e., the basic Dolbeault cohomology H∗,∗(M/F) satisfies Serre duality.
Suppose now that F is transversely Kählerian with Kähler form ω (it is a

basic differential form of degree 2 that is closed and non-degenerate). In this case,
we can prove that Δb = 2Δ′′

b. Because of the decomposition

Ωr(M/F) =
⊕

p+q=r

Ωp,q(M/F),

every basic differential r-form can be uniquely written as α =
∑

p+q=r αpq, where
αpq ∈ Ωp,q(M/F). Then we have the following assertions:
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(iii) α is Δb-harmonic if and only if each component αpq is Δ′′
b-harmonic. So we

have a direct decomposition

Hr(M/F) =
⊕

p+q=r

Hp,q(M/F). (2.23)

(iv) Complex conjugation induces an isomorphism (of real vector spaces)

Hp,q(M/F) 	 Hq,p(M/F).

(v) For every odd r ∈ {0, . . . , 2n}, the dimension of the space Hr(M/F) is even.
In particular if n = 1 then we have b1(M/F) = 2 dimH0,1(M/F).

The integer dimH0,1(M/F) will be denoted g(F) and called the genus
of the foliation F . It is similar to the genus of a compact Riemann surface;
it counts the number of linearly independent basic holomorphic 1-forms.

(vi) For every p ∈ {0, . . . , n}, the differential form ωp = ω∧
(p)
· · · ∧ω is harmonic.

Thus, the space Hp,p(M/F) is not reduced to zero.

Part III. Some Open Questions

2.9 Transversely elliptic operators

2.9.1 Towards a basic index theory

Theorem 2.7.3 in Part II says that a basic transversely elliptic operator D : Ẽ → Ẽ ′
acting on basic sections is Fredholm over a manifold equipped with a Riemannian
foliation. Then it has an index defined as usual by the formula

indF (D) = dimkerD − dimkerD∗ ∈ Z.

Problem 2.9.1. Compute this integer in terms of invariants of the bundles E
and E ′ and transverse topological invariants of F . More precisely, is there an
Atiyah–Singer Index Theorem for a transversely elliptic operator on a Rieman-
nian foliation on a compact manifold?

For example, in [14] it was shown that the basic cohomology H∗(M/F) is
invariant under homeomorphisms in the category of complete Riemannian folia-
tions. So the basic signature and the Euler–Poincaré characteristic of F (defined
in Section 2.8.1 of Part II) are topological invariants. This reinforces the idea that
it is certainly interesting to attack Problem 2.9.1.

Some progress was made in [21] in solving Problem 2.9.1 in the particular
case of Riemannian foliations whose Molino’s central sheaf is Abelian, that is, the
foliation in the leaf closure of F# is an Abelian Lie foliation.
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2.9.2 Existence of transversely elliptic operators

Differential operators on a open set of the Euclidean space Rn abound, while
globally differential operators on a given manifolds are not so easy to find, except
for the classical well-known ones (Laplacian, Dirac operator. . . ).

During Alberto’s Fest in Cuernavaca in January 2003, we used to make the
trip from the hotel to the institute by bus. Once I sat next to Dennis Sullivan and
I talked a little with him. I told him about transversally elliptic operators on Rie-
mannian foliations. His first reaction was to state that such operators may actually
exist only if the foliation is Riemannian. This was the origin of the following

Question 2.9.2. LetM be a compact manifold with a foliation F which admits non-
constant basic functions. Suppose that there exists a transversely elliptic operator
acting on these functions. Is the foliation F Riemannian?

Suppose that the foliation is defined by a suspension ρ : π1(B)→ Diff(F ) and
let Γ = ρ(π1(B)) and G its closure in Diff(F ) with respect to the C0-topology. In
that case, the operator D is an elliptic operator acting on the C∞-functions on F
and commuting with the action of G. Then by [18] the group G is compact; hence
there exists a Riemannian metric on F for which G is a group of isometries, that
is, F is Riemannian.

2.9.3 Homotopy invariance of basic cohomology

Let M be a manifold equipped with a complete Riemannian foliation F and con-
sider the Riemannian foliation F on M × [0, 1] whose leaves are {leaf of F}× {t}.
Let (M ′,F ′) be another complete Riemannian foliation and let f, g : M → M ′

be continuous maps. A foliated homotopy between f and g is a continuous map
H : M × [0, 1]→M ′ such that

• H( · , 0) = f and H( · , 1) = g, and

• H maps leaves of F into leaves of F ′.

Question 2.9.3. Do two foliated continuous maps f , g : (M,F)→ (M ′,F ′) related
by a foliated homotopy induce the same maps f∗ and g∗ on basic cohomology?
Is basic cohomology a foliated homotopy invariant in the category of complete
Riemannian foliations?

A positive answer to these questions will be very interesting and will complete
(in some sense) the result obtained in [14] on the topological invariance of basic
cohomology in the considered category.

2.10 Complex foliations

Let M be a differentiable manifold of dimension 2m+n endowed with a codimen-
sion n foliation F (then the dimension of F is 2m).
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Definition 2.10.1. The foliation F is said to be complex if it can be defined by an
open cover {Ui} of M and diffeomorphisms φi : Ωi×Oi → Ui (where Ωi is an open
polydisc in Cm and Oi is an open ball in Rn), such that, for every pair (i, j) with
Ui∩Uj �= ∅, the coordinate change φij = φ−1

j ◦φi : φ
−1
i (Ui∩Uj)→ φ−1

j (Ui∩Uj) is

of the form (z′, t′) =
(
φ1
ij(z, t), φ

2
ij(t)

)
with φ1

ij(z, t) holomorphic in z for t fixed.

An open set U of M like one of the cover U is called adapted to the foliation.
Any leaf of F is a complex manifold of dimension m. The notion of complex
foliation is a natural generalization of the notion of holomorphic foliation on a
complex manifold.

Question 2.10.2. Does an odd-dimensional sphere S2n+1 support a complex codi-
mension 1 foliation?

The case of the sphere S3 is immediate. Indeed, a codimension 1 foliation is
of dimension 2 and has a complex structure if in addition it is orientable. It is well
known that such foliations exist on S3.

I already posed this question for higher dimensions in 1995 during a lecture I
gave in a seminar in Lille. A construction of such a foliation on the sphere S5 was
announced in 2002 by L. Meersseman and A. Verjovsky in [29]. But recently, they
have discovered that the manifold supporting this foliation is in fact a bundle over
the circle with a projective Fermat surface as fibre [30]. Even if they have failed
to answer the question for S5, their example is highly nontrivial and interesting.
The question now remains completely open.

2.10.1 The ∂F -cohomology

Let (M,F) be a complex foliation of dimension m. Let Ωp,q(F) be the space of fo-
liated differential forms of type (p, q), that is, differential forms on M which can be
written in local coordinates adapted to the foliation (z, t) = (z1, . . . , zm, t1, . . . , tn)
as

α =
∑

αJK dZJ ∧ dZK ,

where J = (j1, . . . , jp), K = (k1, . . . , kq), αJK is a C∞-function on (z, t), and
dZJ = dzj1 ∧ · · · ∧ dzjp and dZK = dzk1

∧ · · · ∧ dzkq
. Let

∂F : Ωp,q(F) −→ Ωp,q+1(F)

be the Cauchy–Riemann operator along the leaves defined by

∂F
(∑

αJK dZJ ∧ dZK

)
=

m∑
s=1

∂αJK

∂zs
(z, t) dzs ∧ dZJ ∧ dZK ,

where ∂
∂zs

= 1
2

{
∂
∂xs

+ i ∂
∂ys

}
with zs = xs+ iys. It satifies ∂

2

F = 0, hence we obtain
a differential complex

0 −→ Ωp,0(F) ∂F−→ Ωp,1(F) ∂F−→ · · · ∂F−→ Ωp,m−1(F) ∂F−→ Ωp,m(F) −→ 0,
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called the ∂F -complex of (M,F). Its homology Hp,q
F (M) is the foliated Dolbeault

cohomology (or the ∂F -cohomology) of the complex foliation (M,F). Comput-
ing this cohomology is equivalent to determining the conditions for solving the
following:

Problem 2.10.3 (The ∂F -problem). Let q ≥ 1 and ω ∈ Ωp,q(F) such that ∂Fω = 0.
Does there exist α ∈ Ωp,q−1(F) such that ∂Fα = ω?

Question 2.10.4. Let (M,F) be a complex foliation such that every leaf is a Stein
manifold and closed in M . Is H0,q

F (M) = 0 for q ≥ 1?

Question 2.10.5 (Weaker version). Let (M,F) be a complex complete Riemannian
foliation such that every leaf is a Stein manifold and closed in M . Is H0,q

F (M) = 0
for q ≥ 1?

Question 2.10.5 can be reduced to the following one:

Question 2.10.6 (Even weaker version). Let (M,F) be a complex foliation. Suppose
that F is a differentiable product of a Stein manifold Σ by the interval ]−ε, ε[
(where ε > 0), but the complex structure of each leaf Σ × {t} may depend on
t ∈ ]−ε, ε[. Is H0,q

F (M) = 0 for q ≥ 1?

Note that the hypothesis ‘leaves are Stein’ alone is not sufficient to solve
the ∂F -problem (Problem 2.10.3). For explicit computations see, for example, [15]
and [37].

Proposition 2.10.7. If the answer to Question 2.10.6 is positive, then so is the
answer to Question 2.10.5.

Proof. Let F be as in Question 2.10.5. Let O(n) → M̂ → M be the principal

bundle of orthonormal frames transverse to F . By [49], the foliation F lifts to M̂

to a transversely parallelizable foliation F̂ with closed leaves whose dimension is
the same as the dimension of F (M̂ is just a fibration over a complete manifoldW ).

Let π be the projection of M̂ over W . Since the restriction of π to a leaf L̂
of F̂ is a covering over a leaf L of F , L̂ inherits naturally a complex structure for
which it is also a Stein manifold [38]. Since G = O(n) acts on M̂ by automorphisms

of F̂ , the foliated differential forms of type (0, q) on M are forms of type (0, q)

on M̂ which are invariant under G, that is, we have a canonical isomorphism
Ω0,q(F) 	 Ω0,q

G (F̂). Then the cohomology H0,q
F (M) is canonically isomorphic to

the cohomology H0,q
̂F,G

(M̂) of the complex

0 −→ Ω0,0
G (F̂)

∂
̂F−→ Ω0,1

G (F̂)
∂

̂F−→ · · ·
∂

̂F−→ Ω0,m
G (F̂) −→ 0.

Now, because G is compact, there exists a continuous linear map

σ : Ω0,q(F̂) −→ Ω0,q
G (F̂),
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called the averaging map, defined by σ(α) =
∫
G
g∗(α) dμ(g), where μ is the nor-

malized Haar measure on G. This map induces an injection

σ : H0,∗
F (M) ↪→ H0,∗

̂F (M̂).

To prove the nullity of H0,∗
F (M), it is sufficient to prove that of H0,∗

̂F (M̂). Consider

a cover of W by open sets Vj diffeomorphic to an open ball of Rn. Let {ρj} be
a differentiable partition of unity subordinated to this cover. For any j, we set
Uj = π−1(Vj) and ψj = ρj ◦ π. Then Uj is a differentiable product F × Vj (each

factor F × {t} is a Stein manifold), {Uj} is an open cover of M̂ , and {ψj} is a
differentiable partition of unity subordinated to {Uj}; each function ψj is constant

on the leaves of F̂ .
For q ≥ 1, let α ∈ Ω0,q(F̂) such that ∂

̂Fα = 0. Denote by αj the restriction of

α to Uj ; then αj is ∂ ̂F -closed. Since we have supposedH0,q
F (Uj) = 0 for q ≥ 1, there

exists βj of type (0, q − 1) defined on Uj such that ∂
̂Fβj = αj . Let β =

∑
j ψjβj .

Then β is a foliated form of type (0, q− 1) defined globally on M̂ . Moreover, since
∂

̂Fψj = 0 and ∂
̂F is continuous (with respect to the C∞-topology), we have that

∂
̂Fβ = ∂

̂F

⎛⎝∑
j

ψjβj

⎞⎠ =
∑
j

ψj∂ ̂Fβj =
∑
j

ψjαj =

⎛⎝∑
j

ψj

⎞⎠α = α.

This shows that, for any q ≥ 1, the vector space H0,q
̂F (M̂) is zero, and then

H0,q
F (M) = 0. �

Question 2.10.8. Let M be an open set of C× R and F be the complex foliation
whose leaves are the (nonempty) sections Mt = M ∩C×{t}. This foliation on M
is called the complex canonical foliation on M . For which open sets M of C × R
do we have H0,1

̂F (M̂) = 0?

For instance, this is the case for the following class of open sets (cf. [10]). An
open set of C is said to be an open crown if it is of type C(r,R) = {z ∈ C : r <
|z| < R}, where r ∈ R and R ∈ ]0,+∞]. Crowns (open by definition) of C are of
six types:

(i) C(r,R) = C if r < 0 and R = +∞.

(ii) C(r,R) is a disc if r < 0 and R < +∞.

(iii) C(r,R) is a punctured disc if r = 0 and R < +∞.

(iv) C(r,R) = C∗ if r = 0 and R = +∞.

(v) C(r,R) is the complement of a closed disc if r > 0 and R = +∞.

(vi) C(r,R) is an annulus if 0 < r < R < +∞. Two annuli C(r,R) and C(r′, R′)
are holomorphically equivalent if and only if R/r = R′/r′.

An open set M of C × B (B is a differentiable manifold) equipped with its
canonical foliation F is called F-crowned if each leaf Mt is an open crown of C.
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2.11 Deformations of Lie foliations

Almost all the contents of this section are extracted from the paper [11], which is
a joint work with Gregori Guasp and Marcel Nicolau.

We take Example 2.2.6 in Part I with H = 0. Then we have a Lie algebra G
of dimension n, with (e1, . . . , en) a basis of G and (θ1, . . . , θn) the corresponding
dual basis. One has [ei, ej ] =

∑
k K

k
ijek, where the structure constants Kk

ij fulfill
relations (2.5) and (2.6).

We suppose that we are given a G-valued 1-form ω =
∑

k ω
k ⊗ ek on a

connected manifold M defining a codimension n G-foliation F on M . Let (T, 0)
be the germ at 0 of a real analytic set T defined in a neighbourhood of the origin
of a Euclidean space R�.

Definition 2.11.1. A family of deformations Ft of the G-foliation F parametrized
by (T, 0) is given by a collection of 1-forms ω1

t , . . . , ω
n
t on M , depending smoothly

on t ∈ T , and a set of smooth functions Kk
ij(t) such that conditions (2.5), (2.6),

and (2.8) are fulfilled for each t ∈ T . So for every t ∈ T the set of constants Kk
ij(t)

defines a Lie algebra Gt and the forms ωt = (ω1
t , . . . , ω

n
t ) define a Gt-foliation Ft

on M . Moreover, we require that ω0 = ω.

A family of deformations of F parametrized by (T, 0) is called trivial if it is
equivalent to the constant family.

Let Ωr be the space of differential forms on M of degree r. We denote by
R = (R1, . . . ,Rm) the linear map from

∧r G∗ ⊗ G into (Ωr)m given by

Rk(θJ ⊗ ei) = δki ω
J , (2.24)

where J = (j1, . . . , jr) and θJ = θj1 ∧ · · · ∧ θjr .

Given an element σ = (σ1, . . . , σm) ∈ (Ωr)m, we denote by d̂Mσ the element
of (Ωr+1)m whose components are given by

(d̂Mσ)k = dσk +
∑
i,j

Kk
ij ω

i ∧ σj . (2.25)

In a similar way we introduce an operator d̂G :
∧r G∗ ⊗ G →

∧r+1 G∗ ⊗ G acting
on an element ψ ∈

∧r G∗ ⊗ G by

d̂Gψ =
∑
k

⎛⎝dψk +
∑
i,j

Kk
ijθ

i ∧ ψj

⎞⎠⊗ ek, (2.26)

where here d denotes the exterior derivative on the Lie group G. Notice that the
operators d̂M and d̂G are formally the same.

For r ∈ N, let V r denote the space of elements ξ ∈
∧r G∗ ⊗ G. We set

Ar = (Ωr)m ⊕ V r+1 and define D : Ar → Ar+1 by D(σ, ψ) = (d̂Mσ−Rψ,−d̂Gψ).
We can easily prove that D2 = 0; therefore we obtain the differential complex A

0 −→ A0 D−→ A1 D−→ A2 −→ · · ·
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whose cohomology will be denoted by H∗(A). Elements of H1(A) are called in-
finitesimal deformations of F . This vector space space is very crucial in the de-
termination of the space of deformations of the foliation.

Definition 2.11.2. A family of deformations Fs of F parametrized by a smooth
space of parameters (S, 0) will be called versal if for any other family Ft of de-
formations of F parametrized by (T, 0) there is a smooth map ϕ : (T, 0) → (S, 0)
such that Ft and Fϕ(t) are equivalent. Moreover, the differential d0ϕ of ϕ at 0 is
unique. Such a map ϕ, which need not be unique, will be called a versal map.

2.11.1 Example of a deformation of an Abelian foliation

We give here an example of an Abelian Lie foliation with a nilpotent deformation.
Let H be the nilpotent Lie group of real matrices:⎛⎜⎜⎝

1 x z 0
0 1 y 0
0 0 1 0
0 0 0 et

⎞⎟⎟⎠ .

The vector fields Z = ∂
∂z , X1 = ∂

∂x , X2 = ∂
∂y + x ∂

∂z , X3 = ∂
∂t form a basis of the

Lie algebra of left invariant vector fields on H, with dual basis

β = dz − xdy, ω1 = dx, ω2 = dy, and ω3 = dt.

Let Γ be the discrete subroup of H whose elements are the matrices with x, y,
z, t ∈ Z and denote by M the compact manifold Γ \ H. We still denote by Z,
X1, X2, X3 and β, ω1, ω2, ω3 the respective projections of the above vector
fields and 1-forms. The vector field Z defines on M an Abelian Lie foliation F of
codimension 3 which is also defined by the differential system ω1 = ω2 = ω3 = 0.
This foliation can be deformed into the family Fs (with s ∈ R) defined by the
vector field Z+sX3. For s �= 0, Fs is a Lie foliation modeled on the 3-dimensional
Heisenberg group.

It was proved in [11] that the vector space H1(A) of infinitesimal deforma-
tions of F is of dimension 3; it is a direct sum of three copies of the 1-dimensional
space generated by (−β, ω1 ∧ ω2).

2.11.2 Further questions

Question 2.11.3. Is the family (Fs)s∈R a versal deformation of F?
As we have seen, a deformation of a Lie G-foliation (Ft)t∈T (in the space of

Lie foliations) gives rise to a deformation Gt of the Lie algebra G. What about the
converse? More precisely,

Question 2.11.4. Given a deformation Gt of the Lie algebra G, does there exist a
compact manifold M supporting a family of foliations Ft such that Ft is a Lie
Gt-foliation for t ∈ T?
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In Section 2.11.1 we have seen that the deformation of the Abelian algebra
G = R3 into the Heisenberg algebra is realized by a deformation of a Lie foliation
on a 4-compact manifold. Of course, a necessary condition is that every Lie algebra
has to be realized individually. This is the case, for instance, in the following simple
question, which is far from being trivial.

Question 2.11.5. Let Gt be the Lie algebra generated by two vectors X and Y
satisfying the bracket relation [X,Y ] = tY , where t ∈ R. This is a deformation of
the Abelian 2-dimensional algebra into the affine algebra. Can this deformation
be realized by a deformation of a Lie foliation in the sense of Question 2.11.4?
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Chapter 3

Lectures on Foliation Dynamics

Steven Hurder

Introduction

The study of foliation dynamics seeks to understand the asymptotic properties
of leaves of foliated manifolds, their statistical properties such as orbit growth
rates and geometric entropy, and to classify geometric and topological “structures”
which are associated to the dynamics, such as the minimal sets of the foliation.
The study is inspired by the seminal work of Smale [183] (see also the comments
by Anosov [13]) outlining a program of study for the differentiable dynamics for
a Cr-diffeomorphism f : N → N of a closed manifold N , with r ≥ 1. The themes
of this approach included:

(1) Classify dynamics as hyperbolic, or otherwise.
(2) Describe the minimal/transitive closed invariant sets and attractors.
(3) Understand when the system is structurally stable under Cr-perturbations,

for r ≥ 1.
(4) Find invariants (such as cohomology, entropy or zeta functions) characteriz-

ing the system.

Smale also suggested to study these topics for large group actions, which
leads directly to the topics of these notes. The study of the dynamics of foliations
began in ernest in the 1970’s with the research programs of Georges Reeb, Stephen
Smale, Itiro Tamura, and their students.

A strict analogy between foliation dynamics and the theory for diffeomor-
phisms cannot be exact. Perhaps the most fundamental problem is the role played
by invariant probability measures in the analysis of dynamics of diffeomorphisms.
A diffeomorphism of a compact manifold generates an action of the group of in-
tegers Z, which is amenable, so every minimal set carries at least one invariant
measure. Many of the techniques of smooth dynamics use such invariant measures
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to analyze and approximate the “typical dynamics” of the map. In contrast, a
foliation need not have any transverse, holonomy-invariant measures. Moreover,
the dynamics of foliations which do not admit such invariant measures provide
some of the most important examples in the subject.

Even when such invariant measures exist, there is the additional problem
with “time”. In foliation dynamics, the concept of linearly or time-ordered trajec-
tories is replaced with the vague notion of multi-dimensional futures for points, as
defined by the leaves through the points. The geometry of the leaves thus plays a
fundamental role in the study of foliation dynamics, which is a fundamentally new
aspect of the subject, in contrast to the study of diffeomorphisms, or Z-actions.

Issues with other basic concepts also arise, such as the existence of periodic
orbits, which for foliations corresponds most precisely to compact leaves. However,
analogs of hyperbolicity almost never imply the existence of compact leaves, while
this is a fundamental tool for the study of diffeomorphisms. In spite of these
obstacles, there is a robust theory of foliation dynamics.

Another aspect of foliation dynamics is that the collection of examples il-
lustrating “typical behavior” is woefully incomplete. There is a vast richness of
dynamical behaviors for foliations, much greater than for flows and diffeomor-
phisms, yet the construction of examples to illustrate these behaviors is still very
incomplete. We will highlight in these notes some examples of a more novel nature,
with the caveat that those presented are far from being close to a complete set
of representatives. There is much work to be done! The following are some of the
topics we discuss in these notes:

(1) Asymptotic properties of leaves of F .

• How do the leaves accumulate onto the minimal sets?

• What are the topological types of minimal sets? Are they “manifold-
like”?

• Invariant measures: can you quantify the rates of recurrence of leaves?

(2) Directions of “stability” and “instability” of leaves.

• Exponents: are there directions of exponential divergence?

• Stable manifolds: show the existence of dynamically defined transverse
invariant manifolds, and find out how they influence the global behavior
of leaves.

(3) Quantifying chaos.

• Define a measure of transverse chaos —foliation entropy.

• Estimate the entropy using linear approximations.

(4) Dynamics of minimal sets.

• Hyperbolic minimal sets.
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• Parabolic minimal sets.

(5) Shape of minimal sets.

• Matchbox manifolds.

• Approximating minimal sets.

• Algebraic invariants.

The subject of foliation dynamics is very broad and includes many other
topics to study beyond what is discussed in these notes, such as rigidity of the
dynamical system defined by the leaves, the behavior of random walks on leaves
and properties of harmonic measures, and the Hausdorff dimension of minimal
sets, to name a few additional important ones.

This survey is based on a series of five lectures, given May 3–7, 2010, at the
Centre de Recerca Matemàtica, Barcelona. The goal of the lectures was to present
aspects of the theory of foliation dynamics which have particular importance for
the classification of foliations of compact manifolds. The lectures emphasized in-
tuitive concepts and informal discussion, as can be seen from the slides [127]. Due
to their origins, these notes will eschew formal definitions when convenient, and
the reader is referred to the sources [44, 46, 129, 138, 162, 185, 207] for further
details.

Many of the illustrations in the following text were drawn by Lawrence Con-
lon circa 1994. Our thanks for his permission to use them.

The author would like to sincerely thank the organizers of this workshop,
Jesús Álvarez López (Universidade de Santiago de Compostela) and Marcel Nico-
lau (Universitat Autònoma de Barcelona) for their efforts to make this month-long
event happen, and the CRM for the excellent hospitality offered to the partici-
pants.

3.1 Foliation basics

A foliation F of dimension p on a manifold Mm is a decomposition into “uni-
form layers” —the leaves— which are immersed submanifolds of codimension
q = m− p: there is an open covering of M by coordinate charts so that the leaves
are mapped into linear planes of dimension p, and the transition functions preserve
these planes; see Figure 3.1.

More precisely, we require that around each point x there is an open neigh-
borhood x ∈ Ux and a “foliation chart” ϕx : Ux → (−1, 1)m for which each inverse
image Px(y) = ϕ−1

x ((−1, 1)p × {y}) ⊂ Ux, y ∈ (−1, 1)q, is a connected component
of L∩Ux for some leaf L. The foliation F is said to have differentiability class Cr,
with 0 ≤ r ≤ ∞, if the charts ϕx can be chosen to be Cr-coordinate charts for the
manifold M . For a compact manifold M , we can always choose a finite covering
of M by foliation charts with additional nice properties, which will be denoted
by U ≡ {(ϕi, Ui) | i = 1, 2, . . . , k} with the additional property that each chart
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ϕi admits an extension to a foliation chart ϕ̃i : Ũi → (−2, 2)m where the closure

U i ⊂ Ũi.

Figure 3.1: Foliation charts

The subject of foliations tends to be quite abstract, as it is difficult to illus-
trate in full the implications of the above definition in dimensions greater than
two. One is typically presented with a few “standard examples” in dimensions two
and three, that hopefully yield intuitive insight from which to gain a deeper un-
derstanding of the more general cases. For example, many talks with “foliations”
in the title start with the following example, the 2-torus T2 foliated by lines of
irrational slope:

Figure 3.2: Linear foliation with all leaves dense

Never trust a talk which starts with this example! It is just too simple, in
that the leaves are parallel and contractible, hence the foliation has no germinal
holonomy. Also, every leaf of F is uniformly dense in T2 so the topological nature
of the minimal sets for F is trivial to determine. The key dynamical information
about this example is given by the rates of returns to open subsets, which is more
analytical than topological information.

At the other extreme of examples of foliations defined by flows on a surface
are those with a compact leaf as the unique minimal set, such as in Figure 3.3:



3.2. Topological dynamics 91

Figure 3.3: Flow with one attracting leaf

Every orbit limits to the circle, which is the forward (and backward) limit
set for all leaves.

Another canonical example is that of the Reeb foliation of the solid 3-torus
as pictured in Figure 3.4, which has a similar dynamical description:

Figure 3.4: Reeb foliation of solid torus

This example illustrates several concepts: the limit sets of leaves, the exis-
tence of attracting holonomy for the compact toral leaf, and also the (possible)
existence of multiple hyperbolic measures for the foliation geodesic flow, as in
Definition 3.3.10.

We will introduce further examples in the text that illustrate more advanced
dynamical properties of foliations, although, as mentioned above, it becomes more
difficult to illustrate concepts that only arise for foliations of manifolds of more
complicated 3-manifolds, or in higher dimensions. The interested reader should
view the illustrations in the beautiful article by Étienne Ghys and Jos Ley for
flows on 3-manifolds [97] to get some intuitive insights of the complexity that is
“normal” for foliation dynamics in higher dimensions.

3.2 Topological dynamics

The study of the topological dynamics for continuous actions of non-compact
groups on compact spaces is a venerable topic, as in [15, 73, 85, 200], or the more
recent works [3, 4, 142]. The holonomy along leafwise paths of F defines local
homeomorphisms between open subsets of Rq, and many concepts of topological
dynamics adapt to this pseudogroup context.
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Recall the concept of holonomy pseudogroup for a foliation. The point of view
we adopt is best illustrated by starting with the classical case of flows. Recall that
for a non-singular flow ϕt : M →M the orbits define a 1-dimensional foliation F ,
whose leaves are the orbits of points.

Choose a cross-section T ⊂M which is transversal to the orbits and intersects
each orbit (so T need not be connected). Then for each x ∈ T there is some least
τx > 0 so that ϕτx(x) ∈ T . The positive constant τx is called the return time for x;
see the illustration in Figure 3.5 below.

Figure 3.5: Cross-section to a flow

The induced map f(x) = ϕτx(x) is a Borel map f : T → T , called the
holonomy of the flow. The choice of a cross-section for a flow reduces the study of
its dynamical properties to that of the discrete dynamical system f : T → T .

The holonomy for foliations is defined similarly to the case for flows, as local
Cr-diffeomorphisms associated to paths along leaves, starting and ending at a
fixed transversal, except that there is a fundamental difference. For the orbit of
a flow Lw through a point w, there exist two choices of trajectory along a unit
speed path, either forward or backward. However, for a leaf Lw of a foliation F of
dimension at least two, there is no such concept as “forward” or “backward”, and
all directions yield paths along which one may discover dynamical properties of the
foliation. The correct analog is thus the holonomy pseudogroup GF construction,
introduced by Haefliger [105, 106, 107].

We fix the following conventions: M is a compact Riemannian manifold with-
out boundary and F is a codimension q foliation transversally Cr for 1 ≤ r ≤ ∞.
Fix also a finite covering by foliation charts U ≡ {(ϕi, Ui) | i = 1, 2, . . . , k}. The
projections along plaques in each chart define submersions φi : Ui → (−1, 1)q.
When Ui ∩ Uj �= ∅ we say that the pair (i, j) is admissible, and can define the
transition function γi,j : Ti,j → Tj,i, where Ti,j = φi(Ui ∩ Uj) ⊂ Ti = (−1, 1)q.

The finite collection of local diffeomorphisms G(1)
F ≡ {γi,j | (i, j) admissible}

generates a pseudogroup GF of local Cr-diffeomorphisms modeled on the trans-

verse space Rq. The choice of U yielding the collection G(1)
F is analogous to the

notion of a generating set for a group Γ.
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Now we assume, without any loss of generality, that the submanifolds Ti =
ϕ−1
i ({0}×Ti) ⊂ Ui have pairwise disjoint closures, so for each x ∈ T = T1∪· · ·∪Tk

there is a unique i with x ∈ Ti. Also, we assume that there is given a metric on M ,
which restricts via the embedding T ⊂M to a metric dT on T .

Figure 3.6: Holonomy along a leafwise path

Fix w ∈ T , then choose z ∈ Lw ∩ T and a smooth path τw,z : [0, 1] → Lw.
Cover the path τw,z by foliation charts, which determines a plaque chain from w
to z which contains the path τw,z. Then there exists an open subset w ∈ Uw ⊂ Ti
such that every w′ ∈ Uw admits a plaque chain that shadows the one along τw,z

and so defines an image point hτw,z
(w′) ∈Wz ⊂ Tj for some j. This defines a local

homeomorphism hτw,z
: Uw →Wz of open subsets of Rq, and hence the holonomy

pseudogroup GF for F modeled on T , which is compactly generated in the sense of
Haefliger [109]. This most basic concept of foliation theory is developed in detail
in all standard texts [44, 46, 47, 112, 185].

We introduce a notational convention that is quite convenient. For a leafwise
path τw,z : [0, 1] → Lw with w, z ∈ T , let Dom(hτw,z ) ⊂ T denote the largest
domain of definition for hτw,z obtained from some covering of the path τw,z by
foliation charts. Note that this is an abuse of notation, as the domain is well
defined once the covering is chosen, but different coverings may yield distinct
maximal domains, although all such consist of open sets in T containing the initial
point w.

To eliminate the issue of domains, one introduces the germ at w of the lo-
cal homeomorphism hτw,z

, denoted by [hτw,z
]w. The collection of all such germs

{[hτw,z ]w | w ∈ T , z ∈ Lw ∩ T } generates the holonomy groupoid, denoted by ΓF .
We summarize these properties as follows:

Proposition 3.2.1. Let F be a foliation of a manifold M . Then:

(1) [hτw,z ]w depends only on the leafwise homotopy class of the path, relatively
to endpoints.

(2) The maximal sizes of the domain Uw and range Wz representing an equiva-
lence class [hτw,z

]w depend on the path τw,z.
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(3) The collection of all such maps {hτw,z : Uw → Wz | w ∈ T , z ∈ Lw ∩ T }
generates the holonomy pseudogroup GF .

Assume that F is a C1-foliation of a compact Riemannian manifold, with
smoothly immersed leaves. Then for each leaf Lw of F the induced Riemannian
metric on Lw is complete, so there exists a length-minimizing geodesic in each
homotopy class, modulo endpoints, of a path in Lw.

Corollary 3.2.2. Given a leafwise path τw,z : [0, 1] → Lw, let σw,z : [0, 1] → Lw be
a leafwise geodesic segment which is homotopic relatively to the endpoints to τw,z.
Then [hτw,z

]w = [hσw,z
]w.

While the germ γ of the holonomy along a leafwise path τw,z is well defined
up to conjugation, the size of the domain of a representative map hτw,z

∈ GF need
not be. It is a strong restriction on the dynamics of GF or the topology of M
to assume that a uniform estimate on the sizes of the domains exists. This is a
very delicate technical point that arises in many proofs about the dynamics of a
foliation. Our choice of notation for the domains of the holonomy maps suppresses
this technical issue, for the purpose of simplicity of exposition.

In the study of the topological dynamics of group actions, the domains of
definition for the transformations are always well defined. On the other hand,
in the following formulations for pseudogroups we are careful to specify that the
behavior is with respect to domains of the holonomy transformations associated
to leafwise paths. Thus, while we will say that the groupoid GF has a particular
dynamical property, more precisely this is with respect to the subcollection of
transformations in GF defined geometrically by the holonomy parallel transport.

First, recall that a minimal set for F is a closed, saturated subset Z ⊂M for
which every leaf L ⊂ Z is dense. In terms of the pseudogroup GF , a subset X ⊂ T
is minimal if it is invariant under the action of GF and every orbit is dense.

A related notion is that of a transitive set for F , which is a closed saturated
subset Z ⊂ M such that there exists at least one dense leaf L0 ⊂ Z. In other
words, these are the subsets of a foliated manifold which are the closure of a single
leaf.

The concept of an equicontinuous action is classical for the dynamics of group
actions.

Definition 3.2.3. The dynamics of F restricted to a saturated subset Z ⊂ M is
equicontinuous if for all ε > 0 there exists δ > 0 such that for all w �= w′ ∈ Z ∩ T
and for any leafwise path τw,z : [0, 1] → Lw starting at w and ending at some
z ∈ Z ∩ T with w,w′ ∈ Dom(hτw,z

), if dT (w,w
′) < δ, then

dT (hτw,z (w), hτw,z (w
′)) < ε.

The typical example is provided by the foliation defined by a flow with dense
orbits on the 2-torus given at the start of these notes. This is a special case of a
Riemannian foliation, which admits a transverse metric so that all the holonomy
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maps hτw,z are isometries. We note that equicontinuity is a strong hypothesis on
a pseudogroup. In particular, we have:

Theorem 3.2.4 (Sacksteder [173]). If GF is an equicontinuous pseudogroup acting
on a compact Polish space X , then there exists a Borel probability measure μ on
X which is GF -invariant. �

The concept of a distal action is closely related to the above.

Definition 3.2.5. The dynamics of F restricted to a saturated subset Z ⊂ M is
distal if for all w �= w′ ∈ X = Z ∩ T , there exists δw,w′ > 0 so that, for any
leafwise path τw,z : [0, 1] → Lw starting at w and ending at some z ∈ X , with w,
w′ ∈ Dom(hτw,z ), one has dT (hτw,z (w), hτw,z (w

′)) ≥ δw,w′ .

In other words, the metric distortion of the distance between two points in
X ⊂ T under the action of leafwise holonomy transformations is bounded from
below. The typical examples are provided by the foliations defined by an action of
a parabolic subgroup on a compact quotient of a nilpotent Lie group by a lattice
subgroup. Distal and equicontinuous pseudogroups are closely related [4, 74, 85,
142, 200].

The concept of a proximal action is opposite to that of a distal action.

Definition 3.2.6. The dynamics of F restricted to a saturated subset Z ⊂ M is
proximal if there exists ε > 0 so that if w �= w′ ∈ Z ∩ Ti for some 1 ≤ i ≤ k with
dT (w,w

′) < ε, then for all 0 < δ ≤ ε there exists a leafwise path τw,z : [0, 1]→ Lw

starting at w and ending at some z ∈ Z ∩ T with w,w′ ∈ Dom(hτw,z
) such that

dT (hτw,z
(w), hτw,z

(w′)) ≤ δ.

Proximality asserts that for any pair of points that are sufficiently close to
one another there is a holonomy map for which the distance between their images
can be made arbitrarily close. The typical examples are provided by the foliations
defined by an action of a Borel subgroup on a compact quotient of a simple Lie
group by a lattice subgroup. Examples of this special case are the weak-stable
foliations associated to the geodesic flows of compact hyperbolic manifolds.

Finally, there is the fundamental concept of an expansive action.

Definition 3.2.7. The dynamics of F restricted to a saturated subset Z ⊂ M is
expansive, or more precisely ε-expansive, if there exists ε > 0 so that if w �= w′ ∈
Z ∩ Ti for some 1 ≤ i ≤ k with dT (w,w

′) < ε, then there exists a leafwise path
τw,z : [0, 1] → Lw starting at w and ending at some z ∈ Z ∩ T with w,w′ ∈
Dom(hτw,z

) such that dT (hτw,z
(w), hτw,z

(w′)) ≥ ε.

The simplest approach to classifying foliation topological dynamics is to ask
if a given closed invariant set Z ⊂M is either equicontinuous, distal, proximal, or
expansive. There are many interesting examples of foliations with invariant sets
exhibiting each of these dynamics.
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3.3 Derivatives

The properties of foliation dynamics introduced above have been topological in na-
ture. However, it has been known at least since the discovery of the Denjoy-type
examples [63] that the topological dynamics of flows, and more generally folia-
tions, are strongly influenced and restricted by the degree of differentiability of
their holonomy maps. A deeper understanding of foliation dynamics necessarily
proceeds with a more detailed study of the differential properties of the holonomy
pseudogroups.

To begin, we introduce the transverse differentials for the holonomy groupoid.
Consider first the case of a foliation F defined by a smooth flow ϕ : R×M →M
generated by a non-vanishing vector field �X. Then TF = 〈 �X〉 ⊂ TM .

For z = ϕt(w), consider the Jacobian matrix Dϕt : TwM → TzM . The flow

satisfies the group law ϕs ◦ ϕt = ϕs+t, which implies the identity Dϕs( �Xw) = �Xz

by the chain rule for derivatives. Introduce the normal bundle to the flow Q =
TM/TF . For each w ∈M , we identify Qw = TwF⊥. Thus, Q can be considered as
a subbundle of TM , and thereby the Riemannian metric on TM induces metrics
on each fiber Qw ⊂ TwM . The derivative transformation preserves the normal
bundle Q→M , so it defines the normal derivative cocycle

Dϕt : Qw −→ Qz, t ∈ R.

We can then define the norms of the normal derivative maps∥∥Dϕt

∥∥ = ∥∥Dϕt : Qw −→ Qz

∥∥.
It is also useful to introduce the symmetric norm∥∥Dϕt |w

∥∥± = max
{∥∥Dϕt : Qw −→ Qz

∥∥, ∥∥Dϕ−1
t : Qz −→ Qw

∥∥} .
For M compact and t fixed, the norms ‖Dϕt|w‖± are uniformly bounded for
w ∈M .

The maps Dϕt : Qw → Qz can be thought of as “non-autonomous local
approximations” to the transverse behavior of the flow ϕt. The actual values of
these derivatives are only well defined up to a global choice of framing of the normal
bundle Q, so extracting useful dynamical information from transverse derivatives
presents a challenge. One solution to this problem was solved by seminal work of
Pesin in the 1970’s. “Pesin theory” is a collection of results about the dynamical
properties of flows, based on defining non-autonomous linear approximations of the
normal behavior to the flow. Excellent discussions and references for this theory
are in [19, 145, 163]. We use only a small amount of the full Pesin theory in the
discussion in these notes.

First, let us recall a basic fact for the dynamics induced by a linear map.
Given a matrix A ∈ GL(q,R), let LA : Rn → Rn be the linear map defined by
multiplication by A. We say the action LA is partially hyperbolic if A has an
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eigenvalue of norm not equal to 1. In this case, there is an eigenspace for A which
is defined dynamically as the direction of maximum rate of expansion (or minimum
contraction) for the action LA. If A is conjugate to an orthogonal matrix, then
we say that A is elliptic. In this case, the action LA preserves ellipses in Rn, and
all orbits of LA and its inverse are bounded. Finally, if all eigenvalues of A have
norm 1, but A is not elliptic, then we say that A is parabolic. In this case, A
is conjugate (over C) to an upper triangular matrix with all diagonal entries of
norm 1, and so the norm ‖A�‖ grows as a polynomial function of the power �. The
dynamics of LA in this case is distal, which is also a dynamically defined property.

One key idea of Pesin theory is that the hyperbolicity property is well defined
also for non-autonomous linear approximations to smooth dynamical systems, so
we look for this behavior on the level of derivative cocycles. This is provided by
the following concept.

Definition 3.3.1. A point w ∈M is a hyperbolic point of the flow if

eϕ(w) ≡ lim sup
T→∞

{
1

T
·max
s≤T

{
ln
{∥∥(Dϕs : Qw −→ Qz)

∥∥±}}} > 0.

Lemma 3.3.2. The set of hyperbolic points H(ϕ) = {w ∈ M | eϕ(w) > 0} is
flow-invariant.

One of the first basic results is that if the set of hyperbolic points is non-
empty, then the flow itself has hyperbolic behavior on special subsets where the
“lim sup” is replaced by a limit:

Proposition 3.3.3. Let ϕ be a C1-flow. Then the closure H(ϕ) ⊂ M supports an
invariant ergodic probability measure μ∗ for ϕ, for which there exists λ > 0 such
that, for μ∗-a.e. w,

eϕ(w) = lim
s→∞

{
1

s
· ln{

∥∥Dϕs : Qw −→ Qz

∥∥} = λ.

Proof. This follows from the continuity of the derivative and its cocycle property,
the definition of the asymptotic Schwartzman cycle associated to a flow [180], plus
the usual subadditive techniques of Oseledets theory [19, 163, 165]. �

We want to apply the ideas behind Proposition 3.3.3 to the derivatives of
the maps in the holonomy pseudogroup GF . The difficulty is that the orbits of the
pseudogroup are not necessarily ordered into a single direction along which the
leaf hyperbolicity is to be found, and hence along which the integrals are defined
in obtaining the Schwartzman asymptotic cycle as in the above. One approach is
to associate a flow to a foliation F , such that this flow captures the dynamical
information for F . Such a flow exists, and was introduced in the papers [120, 205].

Let w ∈ M and consider Lw as a complete Riemannian manifold. For �v ∈
TwF = TwLw with ‖�v‖w = 1, there is a unique geodesic τw,�v(t) starting at w with
τ ′w,�v(0) = �v.
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Define the map ϕw,�v : R → M by ϕw,�v(w) = τw,�v(t). Let M̂ = T 1F denote
the unit tangent bundle to the leaves. Then the maps ϕw,�v define the foliation
geodesic flow

ϕF
t : R× M̂ −→ M̂.

Let F̂ denote the foliation on M̂ whose leaves are the unit tangent bundles to
leaves of F . Then the following is immediate from the definitions:

Lemma 3.3.4. ϕF
t preserves the leaves of the foliation F̂ on M̂ , and hence DϕF

t

preserves the normal bundle Q̂→ M̂ for F̂ .
Lemma 3.3.4 makes it possible to give an extension of Definition 3.3.1 to the

case of the normal derivative cocycle for the foliation geodesic flow. Consider the
following three possible cases for the asymptotic behavior of this cocycle.

Definition 3.3.5. Let ϕF
t be the foliation geodesic flow for a C1-foliation F . Then

ŵ ∈ M̂ is

(H) hyperbolic if

eF (ŵ) ≡ lim sup
T→∞

{
1

T
·max
s≤T

{
ln
∥∥(DϕF

s : Q̂ŵ −→ Q̂ẑ)
∥∥±}} > 0,

(E) elliptic if eF (ŵ) = 0 and there exists κ(ŵ) such that∥∥(DϕF
t : Q̂ŵ −→ Qẑ)

∥∥± ≤ κ(ŵ) for all t ∈ R,

(P) parabolic if eF (ŵ) = 0 and ŵ is not elliptic.

There is a variation on this definition which is also very useful, which takes
into account the fact that for foliation dynamics one does not necessarily have a
preferred direction for the foliation geodesic flow, but one considers all possible
directions simultaneously in Definition 3.3.1.

Let ‖γ‖ denote the minimum length of a geodesic σ whose holonomy hσw,z

defines the germ γ = [hσw,z
]w ∈ ΓF . Let Dwγ = Dwhσw,z

denote the derivative
at w.

Definition 3.3.6. The transverse expansion rate function for GF at w is

e
(
GF , T, w

)
= max

‖γ‖≤T

{
ln
{∥∥Dwγ

∥∥±}} . (3.3.1)

Note that e(GF , d, w) is a Borel function of w ∈ T , as each norm function
‖Dw′hσw,z

‖ is continuous for w′ ∈ D(hσw,z
) and a maximum of Borel functions is

Borel.

Definition 3.3.7. The asymptotic transverse expansion rate at w ∈ T is

eF (w) = e
(
GF , w

)
= lim sup

T→∞

{
1

T
· e
(
GF , T, w

)}
≥ 0. (3.3.2)
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Every limit of Borel functions is Borel, and each e(GF , d, w) is a Borel function
of w, hence e(GF , w) is Borel. The value eF (w) can be thought of as the “maximal
Lyapunov exponent” for the holonomy groupoid at w. Analogously to the flow
case, the chain rule and the definition of eF (w) imply:

Lemma 3.3.8. For all z ∈ Lw ∩ T we have that eF (z) = eF (w). Moreover, the
value of eF (w) is independent of the choice of Riemannian metric on TM . Hence,
the expansion function e(w) is constant along leaves of F , and it is a dynamical
invariant of F .

There is a trichotomy for the expansion rate function e(GF , d, w) analogous
to that in Definition 3.3.6. Thus, there is a decomposition of the manifold M into
those leaves which satisfy one of the three types of asymptotic behavior for the
normal derivative cocycle:

Theorem 3.3.9 (Dynamical decomposition of foliations). Let F be a C1-foliation
on a compact manifold M . Then M has a decomposition into disjoint saturated
Borel subsets,

M = EF ∪PF ∪HF , (3.3.3)

which are the leaf saturations of the sets defined by:

(1) Elliptic: ET = {w ∈ T | ∀ T ≥ 0, e(GF , T, w) ≤ κ(w)}.
(2) Parabolic: PT = {w ∈ T \EF | e(GF , w) = 0}.
(3) Hyperbolic: HT = {w ∈ T | e(GF , w) > 0}.

Note that w ∈ ET means that the holonomy Dwγ has bounded image in
GL(q,R), contained in a ball of radius exp{κ(w)} = sup{‖Dwγ‖ | γ ∈ Gw

F},
where Gw

F denotes the germs of holonomy transport along paths starting at w.
The nomenclature in Theorem 3.3.9 reflects the trichotomy for the dynamics of a
matrix A ∈ GL(q,R) acting via the associated linear transformation LA : Rq → Rq.
The elliptic points are the regions where the infinitesimal holonomy transport “pre-
serves ellipses up to bounded distortion”. The parabolic points are those where the
infinitesimal holonomy acts similarly to that of a parabolic subgroup of GL(q,R);
for example, the action is “infinitesimally distal”. The hyperbolic points are those
where the infinitesimal holonomy has some degree of exponential expansion. Per-
haps more properly, the setHF should be called “non-uniform, partially hyperbolic
leaves”. The study of the dynamical properties of the set of hyperbolic leaves HF
has close analogs with the study of non-uniformly hyperbolic dynamics for flows,
as in [36].

The decomposition in Theorem 3.3.9 has many applications to the study of
foliation dynamics and classification results, as discussed for example in [126], and
also [118, 120, 123]. We illustrate some of these applications with examples and
selected results. Here is one important concept.

Definition 3.3.10. An invariant probability measure μ∗ for the foliation geodesic
flow on M̂ is said to be transversally hyperbolic if eF (ŵ) > 0 for μ∗-a.e. ŵ.
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The function eF (ŵ) is constant on orbits, so it is constant on the ergodic
components of μ∗. Thus, if μ∗ is an ergodic invariant measure for the foliation
geodesic flow, then μ∗ transversally hyperbolic means that there is some constant
λ(μ∗) > 0 with λ(μ∗) = eF (ŵ) for μ∗-a.e. ŵ.

Also, note that the support of a transversally hyperbolic measure μ∗ is con-
tained in the unit tangent bundle M̂ , and not M itself. A generic point ŵ in the
support of μ∗ specifies both a point in a leaf and the direction along which to
follow a geodesic to find infinitesimal normal hyperbolic behavior.

Theorem 3.3.11. Let F be a C1-foliation of a compact manifold. If HF �= ∅, then
the foliation geodesic flow has at least one transversally hyperbolic ergodic measure,
which is contained in the closure of the unit tangent bundle over HF .

Proof. The proof is technical, but basically follows from calculus techniques ap-
plied to the foliation pseudogroup, as in Oseledets theory. The key point is that
if Lw ⊂ HF , then there is a sequence of geodesic segments of lengths going to
infinity on the leaf Lw, along which the transverse infinitesimal expansion grows
at an exponential rate. Hence, by continuity of the normal derivative cocycle and
the cocycle law, these geodesic segments converge to a transversally hyperbolic
invariant probability measure μ for the foliation geodesic flow. The existence of an
ergodic component μ∗ for this measure with positive exponent then follows from
the properties of the ergodic decomposition of μ. �

Corollary 3.3.12. Let F be a C1-foliation of a compact manifold with HF �= ∅.
Then there exist w ∈ HF and a unit vector �v ∈ TwF such that the forward orbit
of the geodesic flow through (w,�v) has a transverse direction which is uniformly
exponentially contracting.

Let us return to the examples introduced earlier, and consider what the
trichotomy decomposition means in each case.

For the linear foliation of the 2-torus in Figure 3.1, every point is elliptic, as
the foliation is Riemannian. However, if F is a C1-foliation which is topologically
semi-conjugate to a linear foliation —so it is a generalized Denjoy example— then
MP is not empty! Shigenori Matsumoto has given a new construction of Denjoy-
type C1-foliations on the 2-torus for which the exceptional minimal set consists of
elliptic points, and the points in the wandering set are all parabolic [135].

Consider next the Reeb foliation of the solid torus, as in Figure 3.3. Pick
w ∈ M on an interior parabolic leaf, and a direction �v ∈ TwLw. Follow the
geodesic σw,�v(t) starting from w. It is asymptotic to the boundary torus, so it
defines a limiting Schwartzman cycle on the boundary torus for some flow. Thus,
it limits on either a circle or a lamination. This will be a hyperbolic measure if
the holonomy of the compact leaf is hyperbolic. Note that the exponent of the
invariant measure for the foliation geodesic flow depends on the direction of the
geodesic used to define it.
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One of the basic problems about the foliation geodesic flow is to understand
the support of its transversally hyperbolic invariant measures whose generic start-
ing points lie in HF , and if the leaves intersecting the supports of these measures
have “chaotic” behavior.

3.4 Counting

The decomposition of the foliated manifold M = EF ∪PF ∪HF uses the asymp-
totic properties of the normal “derivative cocycle” D : GF → GL(n,R), where the
transverse expansion is allowed to “develop in any direction” when the leaves are
higher dimensional.

A basic question is then how do you tell whether one of the Borel, F-saturated
components, such as the hyperbolic set HF , is non-empty? Moreover, it is natural
to speculate whether the “geometry of the leaves” influences the structure of the
sets in the trichotomy (3.3.3). To this end, we consider in this section the notion of
the growth rates of leaves. This leads to a variety of “counting type” invariants for
foliation dynamics, and various insights into the behavior of the derivative cocycle.

Let us first consider some examples with more complicated leaf geometry
than seen above. Figure 3.7 depicts what is called the “Infinite Jungle Gym” in
the foliation literature [46, 166].

The surface in Figure 3.7 can be realized as a leaf of a circle bundle over a
compact surface, where the holonomy consists of three commuting linearly inde-
pendent rotations of the circle. Thus, even though this is a surface of infinite genus,
the transverse holonomy is just a generalization of that for the Denjoy example,
in that it consists of a group of isometries with dense orbits for the circle S1.

Figure 3.7: The “Infinite Jungle Gym”

The next manifold L in Figure 3.8 does not have a cute name, but has the
interesting property that its space of ends E(L1) has non-empty derived set, yet
the second derived set is empty.
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Figure 3.8: A leaf of “Level 2”

This manifold can be realized as a leaf in a smooth foliation which is asymp-
totic to a compact surface of genus two. The construction of the foliation in which
this occurs is given in [46]. It is just one example of a large class of foliations with
a proper leaf of finite depth [48, 49, 113, 197, 199]. As with the Reeb foliation,
the hyperbolic invariant measures for the flow are concentrated on the limiting
compact leaf. The dynamics is not chaotic.

Figure 3.9: A leaf with Cantor endset

The manifold in Figure 3.9 has endset E(L2) which is a Cantor set, equal to
its own derived set.

We present in more detail the construction of a foliated manifold containing
this as a leaf, called the “Hirsch foliation”, introduced in [116], as it illustrates a
basic theme of the lectures and the elementary construction yields sophisticated
dynamics. See [32] for generalizations of this construction.

Step 1. Choose an analytic embedding of S1 in the solid torus D2 × S1 so that
its image is twice a generator of the fundamental group of the solid torus. Remove
an open tubular neighborhood of the embedded S1, resulting in the manifold with
boundary in Figure 3.10.



3.4. Counting 103

Figure 3.10: Solid torus with tube drilled in it

Step 2. What remains is a three-dimensional manifold N1 whose boundary is two
disjoint copies of T2. D2 × S1 fibers over S1 with fibers the 2-disc. This fibration
—restricted to N1— foliates N1 with leaves consisting of 2-disks with two open
subdisks removed.

Identify the two components of the boundary of N1 by a diffeomorphism
which covers the map h(z) = z2 of S1 to obtain the manifold N . Endow N with
a Riemannian metric; then the punctured 2-disks foliating N1 can be viewed as
pairs of pants, as in Figure 3.11.

Figure 3.11: A “pair of pants”

Step 3. The foliation of N1 is transverse to the boundary, so the punctured
2-disks assemble to yield a foliation F on N , where the leaves without holonomy
(corresponding to irrational points for the chosen doubling map of S1) are in-
finitely branching surfaces, decomposable into pairs-of-pants which correspond to
the punctured disks in N1.

A basic point is that this works for any covering map f : T2 → T2 homotopic
to the doubling map h(z) along a meridian. In particular, as Hirsch remarked in
his paper, the proper choice of such a “bonding map” results in a codimension
1, real analytic foliation, such that all leaves accumulate on a unique exceptional
minimal set.
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Figure 3.12: Leaf for eventually periodic orbit

The Hirsch foliation always has a leaf Lw pictured as in Figure 3.12, corre-
sponding to a forward periodic orbit of the doubling map g : S1 → S1. Consider
the behavior of the geodesic flow, starting at the “bottom point” w ∈ Lw. For each
radius R � 0, the terminal points of the geodesic rays of length at most R will
“jump” between the μR ends of this compact subset of the leaf, for some μ > 1.
Thus, for these examples, a small variation of the initial vector �v will result in a
large variation of the terminal end of the geodesic σw,�v.

The constant μ appearing in the above example seems to be an “interesting”
property of the foliation dynamics, and a key point is that it can be obtained by
“counting” the complexity of the leaf at infinity, following a scheme introduced
by Joseph Plante for leaves of foliations [167].

Recall the holonomy pseudogroup GF constructed in Section 3.1, modeled on
a complete transversal T = T1 ∪ · · · ∪ Tk associated to a finite covering of M by
foliation charts. Given w ∈ T and z ∈ Lw ∩ T and a leafwise path τw,z joining
them, we obtain an element hτw,z ∈ GF .

The orbit of w ∈ T under GF is

O(w) = Lw ∩ T =
{
z ∈ T | g(w) = z, g ∈ GF , w ∈ Dom(g)

}
.

We introduce the word norm on elements of GF . Given open sets Ui∩Uj �= ∅
in the fixed covering of M by foliation charts, they define an element hi,j ∈ GF .
By the definition of holonomy along a path, for each τw,z : [0, 1] → Lw there is a
sequence of indices {i0, i1, . . . , i�} such that[

hτw,z

]
w
=
[
hi�−1,i� ◦ · · · ◦ hi1,i0

]
w
.

That is, the germ of the holonomy map hτw,z at w can be expressed as the com-
position of � germs of the basic maps hi,j . We then say that γ = [hτw,z ]w has word
length at most �. Let ‖γ‖ denote the least such � for which this is possible. The
norm of the identity germ is defined to be 0.
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Define the “orbit of w of radius � in the groupoid word norm” to be

O�(w) =
{
z ∈ T | g(w) = z, g ∈ GF , w ∈ Dom(g),

∥∥[g]w∥∥ ≤ �
}
.

Definition 3.4.1. The growth function of an orbit is defined as Gr(w, �) = #O�(w).

Of course, the growth function for w depends upon many choices. However,
its “growth type function” is independent of choices, as observed by Plante. This
follows from one of the basic facts of the theory, that the word norm on GF is
bounded above by a multiple of the length of geodesic paths.

Proposition 3.4.2 ([156, 167]). Let F be a C1-foliation of a compact manifold M .
Then there exists a constant Cm > 0 such that for all w ∈ T and z ∈ Lw ∩ T ,
if σw,z : [0, 1] → Lw is a leafwise geodesic segment from w to z of length ‖σw,z‖,
then ∥∥[hσw,z

]
w

∥∥ ≤ Cm ·
∥∥σw,z

∥∥.
In order to obtain a well-defined invariant of growth of an orbit, one in-

troduces the notion of the growth type of a function. The one which we use
(there are many —see [16, 71, 111]) is essentially the weakest one. Given functions
f1, f2 : [0,∞) → [0,∞), we say that f1 � f2 if there exist constants A,B,C > 0
such that for all r ≥ 0 we have that f2(r) ≤ A · f1(B · r) +C. We write f1 ∼ f2 if
both f1 � f2 and f2 � f1 hold. This defines an equivalence relation on functions,
which defines their growth class.

One can consider a variety of special classes of growth types. For example,
note that if f1 is the constant function and f2 ∼ f1, then f2 is constant too.

We say that f has exponential growth type if f(r) ∼ exp(r). Observe that
exp(λ · r) ∼ exp(r) for any λ > 0, so there is only one growth class of “exponential
type”. A function has nonexponential growth type if f � exp(r), but exp(r) �� f .

We also have a subclass of uniform nonexponential growth type, referred to
in the author’s papers as subexponential growth type, if for any λ > 0 there exist
A,C > 0 so that f(r) ≤ A · exp(λ · r) + C.

Finally, f has polynomial growth type if there exists d ≥ 0 such that f � rd.
The growth type is exactly polynomial of degree d if f ∼ rd.

Definition 3.4.3. The growth type of an orbit O(w) is the growth type of its growth
function Gr(w, �) = #O�(w).

A basic result of Plante is the following:

Proposition 3.4.4. Let M be a compact manifold. Then for all w ∈ T we have that
Gr(z, �) � exp(�). Moreover, if z ∈ Lw ∩ T , then Gr(z, �) ∼ Gr(w, �). Thus, the
growth type of a leaf Lw is well defined, and we say that Lw has the growth type
of the function Gr(w, �).

We can thus speak of a leaf Lw of F having exponential growth type, and
so forth. For example, the Infinite Jungle Gym manifold in Figure 3.7 has growth
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type exactly polynomial of degree 3, while the leaves of the Hirsch foliations (in
Figures 3.10 and 3.12) have exponential growth type.

Before continuing with the discussion of growth types of leaves, we note
the correspondence between these ideas and a basic problem in geometric group
theory. Growth functions for finitely generated groups are a basic object of study
in geometric group theory.

Let Γ = 〈γ0 = 1, γ1, . . . , γk〉 be a finitely generated group. Then γ ∈ Γ has
word norm ‖γ‖ ≤ � if we can express γ as a product of at most � generators,
γ = γ±

i1
· · · γ±

id
. Define the ball of radius � about the identity of Γ by

Γ� ≡
{
γ ∈ Γ |

∥∥γ∥∥ ≤ �
}
.

The growth function Gr(Γ, �) = #Γ� depends upon the choice of generating set
for Γ, but its growth type does not. The following is a celebrated theorem of
Gromov:

Theorem 3.4.5 ([104]). Suppose Γ has polynomial growth type for some generating
set. Then there exists a subgroup of finite index Γ′ ⊂ Γ such that Γ′ is a nilpotent
group.

In general, one asks to what extent does the growth type of a group determine
its algebraic structure?

Questions of a similar nature can be asked about leaves of foliations; espe-
cially, to what extent does the growth function of leaves determine how they are
embedded in a compact manifold, and the dynamical properties of the foliation?

Note that there is a fundamental difference between the growth types of
groups and for leaves. The homogeneity of groups implies that the growth rate
is uniformly the same for balls in the word metric about any point γ0 ∈ Γ. That
is, one can choose the constants A,B,C > 0 in the definition of growth type
independently of the center γ0. For foliation pseudogroups, there is a basic question
about the uniformity of the growth function as the basepoint within an orbit varies:

Question 3.4.6. How does the function d �→ Gr(w, d) behave as a Borel function
of w ∈ T ?

Examples of Ana Rechtman [9, 170] (see also [131]) show that even for smooth
foliations of compact manifolds, this function is not uniform as a function of w ∈ T .
If one requires uniformity of the growth function � �→ Gr(w, �) as a function of
w ∈ T , then one can ask if there is some form of analog for foliation pseudogroups
of the classification program for finitely generated groups.

3.5 Exponential complexity

Section 3.3 introduced exponential growth criteria for the normal derivative co-
cycle of the pseudogroup GF acting on the transverse space T , and Section 3.4
discussed growth types for the orbits of the groupoid. In both cases, exponential
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behavior represents a type of exponential complexity for the dynamics of GF . These
examples are part of a larger theme, that when studying classification problems,
exponential complexity is simplicity. In this section, we develop this theme further.
First, we give an aside, presenting a well-known phenomenon for map germs.

Recall a simple example from advanced calculus. Let f(x) = x/2, and let
g : (−ε, ε)→ R be a smooth map with g(0) = 0 and g′(0) = 1/2. Then g ∼ f near
x = 0. That is, for δ > 0 sufficiently small, there is a smooth map h : (−ε, ε)→ R
such that (h−1 ◦ g ◦ h)(x) = f(x) for all |x| < δ.

This illustrates the principle that for exponentially contracting maps, or more
generally hyperbolic maps in higher dimensions, the derivative is a complete in-
variant for their germinal conjugacy class at the fixed point. For maps which are
“completely flat” at the origin, where g(0) = 0, g′(0) = 1 and gk(0) = 0 for
all k > 1, their “classification” is much more difficult [150, 209]. So, in contrast,
subexponential complexity is most nettlesome. On the other hand, there are invari-
ants for foliations which are only defined for amenable systems, as discussed later,
so the real point is that this distinction between exponential and subexponential
complexity pervades classification problems.

Analogously, for foliation dynamics, and the related problem of studying the
dynamics of a finitely generated group acting smoothly on a compact manifold,
exponential complexity in the dynamics often gives rise to hyperbolic behavior for
the holonomy pseudogroup. Hyperbolic maps can be put into a standard form,
and so one obtains a fundamental tool for studying the dynamics of the pseu-
dogroup. The problem is thus, how does one pass from exponential complexity to
hyperbolicity?

One issue with the “counting argument” for the growth of leaves is that
just counting the growth rate of an orbit ignores fundamental information about
expansivity of the dynamics. The orbit growth rate counts the number of times the
leaf crosses a transversal T in a fixed distance within the leaf, but does not take into
account whether these crossings are “nearby” or “far apart”. For example, there
are Riemannian foliations with all leaves of exponential growth type; see [171],
for example. Thus, exponential orbit growth rate need not imply transversally
hyperbolic behavior.

On the other hand, in the Hirsch examples, the handles at the end of each ball
of radius � in a leaf appear to be widely separated transversally, so somehow this
is different. The holonomy pseudogroup GF of the Hirsch example is topologically
semi-conjugate to the pseudogroup generated by the doubling map z �→ z2 on S1.
After � iterations, the inverse map to h(z) = z2

�

has derivative of norm 2�, and so,
for a Hirsch foliation modeled on this map, every leaf is transversally hyperbolic.

The geometric entropy for pseudogroup C1-actions, introduced by Ghys,
Langevin, and Walczak [94], gives a measure of their exponential complexity which
combines the two types of complexity. It has found many applications in the study
of foliation dynamical systems. One example of this is the surprising role of these
invariants in showing that certain secondary classes of C2-foliations are zero in
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cohomology if the entropy vanishes [51, 118, 119, 124].
We begin with the basic notion of ε-separated sets, due to Bowen [39] for

diffeomorphisms, and extended to groupoids in [94]. Let ε > 0 and � > 0. A subset
E ⊂ T is said to be (ε, �)-separated if for all w,w′ ∈ E ∩ Ti there exists g ∈ GF
with w,w′ ∈ Dom(g) ⊂ Ti and ‖g‖w ≤ � so that dT (g(w), g(w

′)) ≥ ε. If w ∈ Ti
and w′ ∈ Tj for i �= j then they are (ε, �)-separated by default.

The “expansion growth function” counts the maximum of this quantity:

h
(
GF , ε, �

)
= max

{
#E | E ⊂ T is

(
ε, �
)
-separated

}
.

If the pseudogroup GF consists of isometries, for example, then applying
elements of GF does not increase the separation between points, so the growth
functions h(GF , ε, �) have polynomial growth of degree equal to the dimension of
T as functions of �. Thus, if the functions h(GF , ε, �) have greater than polynomial
growth type, then the action of the pseudogroup cannot be elliptic, for example.

We introduce the measure of the exponential growth type of the expansion
growth function:

h
(
GF , ε

)
= lim sup

d→∞

ln {max{#E | E is (ε, d)-separated}}
d

, (3.5.1)

h
(
GF
)
= lim

ε→0
h(GF , ε). (3.5.2)

Then we have the fundamental result of Ghys, Langevin, and Walczak [94]:

Theorem 3.5.1. Let F be a C1-foliation of a compact manifold M . Then h(GF ) is
finite. Moreover, the property h(GF ) > 0 is independent of all choices.

For example, if F is defined by a C1-flow φt : M → M , then h(GF ) > 0
if and only if htop(φ1) > 0. Note that h(GF ) is defined using the word growth
function for orbits, while the topological entropy of the map φ1 is defined using
the geodesic length function (the time parameter) along leaves. These two notions
of “distance along orbits” are comparable, which can be used to give estimates,
but not necessarily any more precise relations. This point is discussed in detail
in [94].

In any case, the essential information contained in the invariant h(GF ) is
simply whether the foliation F exhibits exponential complexity for its orbit dy-
namics or not. Exploiting further the information contained in this basic invariant
of C1-foliations has been one of the fundamental problems in the study of foliation
dynamics since the introduction of the concept of geometric entropy in 1988.

One aspect of the geometric entropy h(GF ) is that it is a “global invariant”,
which does not indicate “where” the chaotic dynamics is happening. The author
introduced a variant of h(GF ) in [126], the local geometric entropy h(GF , w) of
GF , which is a refinement of the global entropy. The local geometric entropy is
analogous to the local measure-theoretic entropy for maps introduced by Brin and
Katok [43, 101].
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Given a subset X ⊂ T , in the definition of (ε, �)-separated sets above we
can demand that the separated points be contained in X, yielding the relative
expansion growth function

h
(
GF , X, ε, �

)
= max

{
#E | E ⊂ X is

(
ε, �
)
-separated

}
.

Form the corresponding limits as in (3.5.1) and (3.5.2), to obtain the relative
geometric entropy h(GF , X).

Now, fix w ∈ T and let X = B(w, δ) ⊂ T be the open δ–ball about w ∈ T .
Perform the same double limit process as used to define h(GF ) for the sets B(w, δ),
but then also let the radius of the balls tend to zero, to obtain:

Definition 3.5.2. The local geometric entropy of GF at w is

hloc

(
GF , w

)
= lim

δ→0

{
lim
ε→0

{
lim sup
�→∞

ln{h(GF , B(w, δ), �, ε)}
�

}}
. (3.5.3)

The quantity hloc(GF , w) measures the amount of “expansion” by the pseu-
dogroup in an open neighborhood of w. The following estimate is elementary to
show.

Proposition 3.5.3 (Hurder [126]). Let GF be a C1-pseudogroup. Then hloc(GF , w)
is a Borel function of w ∈ T , and hloc(GF , w) = hloc(GF , z) for z ∈ Lw ∩ T .
Moreover,

h
(
GF
)
= sup

w∈T
hloc

(
GF , w

)
. (3.5.4)

It follows that there is a disjoint Borel decomposition of T into GF -saturated
subsets T = ZF ∩ CF , where CF = {w ∈ T | h(GF , w) > 0} consists of the
“chaotic” points for the groupoid action, and ZF = {w ∈ T | h(GF , w) = 0} are
the “tame” points.

Corollary 3.5.4. h(GF ) > 0 if and only if CF �= ∅.

We will discuss in the next section the relationship between local entropy
h(GF , w) > 0 and the transverse Lyapunov spectrum of ergodic invariant measures
for the leafwise geodesic flow on the closure Lw.

Next, we consider some examples where h(GF ) > 0.

Proposition 3.5.5. The Hirsch foliations always have positive geometric entropy.

Proof. The idea of the proof is as follows. The holonomy pseudogroup GF of the
Hirsch examples is topologically semi-conjugate to the pseudogroup generated by
the doubling map z �→ z2 on S1.

After � iterations, the inverse map to z �→ z2
�

has derivative of norm 2� so
we have a rough estimate h(GF , ε, �) ∼ (2π/ε) · 2�. Thus, h(GF ) ∼ ln 2. �

For these examples, the relationship between “orbit growth type” and ex-
pansion growth type is transparent. Observe that in the Hirsch example, as we
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wander out the tree-like leaf, the exponential growth of the ends of the typical leaf
yields an exponential growth for the number of ε-separated points along the “core
circle” representing the transversal space T . This is suggested by comparing the
two illustrations below, where the ends of the left side wrap around the core, with
a branching of a pair of pants corresponding to a double covering of the core:

Figure 3.13: Comparing orbit with endset

It is natural to ask whether there are other classes of foliations for which this
phenomenon occurs, that exponential growth type of the leaves is equivalent to
positive foliation geometric entropy. It turns out that for the weak stable foliations
of Anosov flows, this is also the case in general. First, let us recall a result of
Anthony Manning [146]:

Theorem 3.5.6. Let B be a compact manifold of negative curvature, let M = T 1B
denote the unit tangent bundle to B, and let φt : M →M denote the geodesic flow
of B. Then htop(φ) = Gr(π1(B, b0)). That is, the entropy for the geodesic flow of
B equals the growth rate of the volume of balls in the universal covering of B.

Proof. The idea of proof for this result is conveyed by the illustration Figure 3.14,
representing the fundamental domains for the universal covering. The assumption
that B has non-positive curvature implies that its universal covering B̃ is a disk,
and we can “tile” it with fundamental domains.

From the center basepoint, there is a unique geodesic segment to the cor-
responding basepoint in each translate. The number of such segments in a given
radius is precisely the growth function for the fundamental group π1(B, b0). On
the other hand, the negative curvature hypothesis implies that these geodesics
separate points for the geodesic flow as well. �

We include this example, because it is actually a result about foliation en-
tropy! The assumption that B has uniformly negative sectional curvatures implies
that the geodesic flow φt : M →M defines a foliation on M , its weak-stable folia-
tion. Then, by a result of Pugh and Shub, the weak-stable manifolds Lw form the
leaves of a C1-foliation of M , called the weak-stable foliation for φt. Moreover, the
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Figure 3.14: Tiling by fundamental domains for hyperbolic manifold cover

orbits of the geodesic flow φt(w) are contained in the leaves of F . Then again one
has h(GF ) ∼ htop(φ1), which equals the growth type of the leaves.

Besides special cases such as for the Hirsch foliations and their generalizations
in [32] where one has uniformly expanding holonomy groups, and the weak stable
foliations for Anosov flows, how does one determine when a foliation F has positive
entropy?

There is a third case where h(GF ) > 0 can be concluded, as noted in [94],
when the dynamics of GF admits a “ping-pong game”. The term “ping-pong game”
is adopted from the paper [62], which gives a more geometric proof of Tits’ Theo-
rem [192] for the dichotomy of the growth types of countable subgroups of linear
groups. To say that the dynamics of GF admits a ping-pong game means that
there are disjoint open sets U0, U1 ⊂ V ⊂ T and maps g0, g1 ∈ GF such that, for
i = 0, 1,

• the closure V ⊂ Dom(gi) for i = 0, 1, and
• gi(V ) ⊂ Ui.

It follows that for each w ∈ V the forward orbit

O+
g0,gi(w) =

{
gI(w) | I =

(
i1, . . . , ik

)
, i� ∈ {0, 1}, gI = gik ◦ · · · ◦ gi1

}
consists of distinct points, and so the full orbit O(w) has exponential growth
type. Moreover, if ε > 0 is less than the distance between the disjoint closed
subsets g0(V ) and g1(V ), then the points in O+

g0,gi(w) are all (ε, �)-separated for
appropriate � > 0, and hence h(GF ,K) > 0.

For codimension 1 foliations, the existence of ping-pong game dynamics for
its pseudogroup is equivalent to the existence of a “resilient leaf”, which in turn
is analogous to the existence of homoclinic orbits for a diffeomorphism. It is a
well-known principle that the existence of homoclinic orbits for a diffeomorphism
implies positive topological entropy.

We conclude with a general question:

Question 3.5.7. Are there other canonical classes of C1-foliations where positive
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entropy is to be “expected”? For example, if F has leaves of exponential growth,
when does there exist a C1-close perturbation of F with positive entropy?

3.6 Entropy and exponent

Three aspects of “exponential complexity” for foliation dynamics have been in-
troduced: Lyapunov spectrum for the foliation geodesic flow, exponential growth
of orbits, and the geometric entropy which measures the transverse exponential
expansion. In this section, we discuss the relationships between these invariants,
as is currently understood. The theme is summarized by:

Positive Entropy ←→ Chaotic Dynamics ←→ ???

As always, we assume that F is a Cr-foliation of a compact manifold M , for
r ≥ 1. We formulate three problems illustrating the themes of research.

Problem 3.6.1. If h(GF ) > 0, what conclusions can we reach about the dynamics
of F?

Problem 3.6.2. What hypotheses on the dynamics of F are sufficient to imply that
h(GF ) > 0?

Problem 3.6.3. Are there cohomology hypotheses on F which would “improve” our
understanding of its dynamics? How does leafwise cohomology H∗(F) influence
dynamics? How are the secondary cohomology invariants for F related to entropy?

The solutions to Problems 3.6.1 and 3.6.2 are well known for foliations defined
by a C2-flow, due to work of Margulis and Mané [145]. The problem with extending
these results to foliations of higher dimensions is that a foliation rarely has any
holonomy-invariant measures, and if such exist, there still do not exist methods
for estimating recurrence of leaves to the support of the measure, so that the
techniques in [145] do not directly apply. Thus, given asymptotic data about either
the transverse derivative cocycle, or the transverse expansion growth function, one
has to develop new techniques to extract from such data dynamical conclusions.

On the other hand, there are examples supporting the hope that such re-
lationships as suggested in Problems 3.6.1–3.6.3 should exist, and remain to be
discovered. We discuss below some “deterministic” techniques, based on the orbit
behavior of the foliation geodesic flow, which relate transverse expansion growth
with the transverse Lyapunov spectrum of the foliation geodesic flow, and in
special cases to the foliation geometric entropy. Another approach —an active
area of current research— is to study the relation between exponent and re-
currence for “typical” orbits of appropriately chosen leafwise harmonic measures
[45, 64, 65, 66, 90, 91].

We begin by recalling a result of Ghys, Langevin, and Walczak [94] which
gives a straightforward conclusion valid in all codimensions.
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Theorem 3.6.4 (Ghys–Langevin–Walczak). Let M be compact with a C1-foliation
F of codimension q ≥ 1, and X ⊂ T a closed subset. If h(GF , X) = 0, then the
restricted action of GF on X admits an invariant probability measure.

The idea of the proof is to interpret the condition h(GF ) = 0 as a type of
equi-distribution result, and form averaging sequences over the orbits, which yield
GF -invariant probability measures on X.

Corollary 3.6.5. Let M be compact with a C1-foliation F of codimension 1, and
suppose that Z ⊂ M is a minimal set for which the local entropy h(GF ,Z) = 0.
Then the dynamics of GF on X = T ∩ Z is semi-conjugate to the pseudogroup of
an isometric dense action on S1. If F is C2, and M is connected, then Z = M
and the action is conjugate to a rotation group.

Proof. Theorem 3.6.4 implies that there exists an invariant probability measure
for the action of GF on X, so the conclusions follow from Sacksteder [173]. �

In the remainder of this section, we discuss three results of the author on
geometric entropy. Note that the works [29, 208] by Walczak and Bís also study
the entropy and orbit growth rates of distal groupoids and group actions.

Theorem 3.6.6 ([123]). Let M be compact with a Cr-foliation F of codimension q.
If q = 1 and r ≥ 1, or q ≥ 2 and r > 1, then GF distal implies that h(GF ) = 0.

Theorem 3.6.7 ([123]). Let M be compact with a codimension 1 C1-foliation F .
Then h(GF ) > 0 implies that F has a resilient leaf.

Theorem 3.6.8 ([124]). Let M be compact with a codimension 1 C2-foliation F .
Then 0 �= GV(F) ∈ H3(M,R) implies that h(GF ) > 0, where GV(F) ∈ H3(M,R)
is the Godbillon–Vey class of F .

The proofs of all three results are based on the existence of stable transverse
manifolds for hyperbolic measures for the foliation geodesic flow. The first step is
the following:

Proposition 3.6.9. Let M be compact with a C1-foliation F , and suppose that Z ⊂
M is a minimal set for which the relative entropy h(GF ,Z) is positive. Then there
exists a transversally hyperbolic invariant probability measure μ∗ for the foliation
geodesic flow with the support of μ∗ contained in the unit leafwise tangent bundle
to Z.
Proof. We give a sketch of the proof. Let X = Z ∩ T . The assumption λ =
h(GF , X) > 0 implies there exists ε > 0 so that λε = h(GF , X, ε) > 3

4λ > 0.
Thus, there exists a sequence of subsets {E� ⊂ X | � → ∞} such that E� is
(ε�, r�)-separated, where ε� → 0 and r� ≥ �, and #E� ≥ exp{3r�λ/4}.

We can assume without loss of generality that E� is contained in the transver-
sal for a single coordinate chart, say E� ⊂ T1. As T1 has bounded diameter, this
implies that there exist pairs {x�, y�} ⊂ E� such that

dT
(
x�, y�

)
� exp

{
− 3r�λ/4

}
· diam

(
T1
)



114 Chapter 3. Lectures on Foliation Dynamics

and leafwise geodesic segments σ� : [0, 1]→ Lx�
with ‖σ�‖ ≤ r� such that

dT (hσ�
(x�), hσ�

(y�)) ≥ ε.

By the mean value theorem, there exists z� ∈ BT (x�, exp{−3r�λ/4} · diam(T1))
such that ‖Dz�hσ�

‖ � exp{3r�λ/4}.
Noting that ε� → 0 and choosing appropriate subsequences, the resulting

geodesic segments σ� define an invariant probability measure μ∗ for the geodesic
flow, with support in Z. Moreover, by the cocycle equation and continuity of the
derivative, the measure μ∗ will be hyperbolic. In fact, with careful choices as above,
the exponent can be made arbitrarily close to h(GF , X), modulo the adjustment
for the relation between geodesic and word lengths. See [123] for details. �

The construction sketched in the proof of Proposition 3.6.9 is very “lossy” —
at each stage, information about the transverse expansion due to the assumption
that h(GF , X) > 0 gets discarded, especially in that for each n we only consider a
pair of points (x�, y�) to obtain a geodesic segment σ� along which the transverse
derivative has exponentially increasing norm. We will return to this point later.

The next step in the construction of stable manifolds is to assume we are
given a transversally hyperbolic invariant probability measure μ∗ for the foliation
geodesic flow. Then for a typical point x̂ = (x,�v) ∈ M̂ in the support of μ∗
the geodesic ray at (x,�v) has an exponentially expanding norm of its transverse

derivative, and hence the Lyapunov spectrum of the leafwise geodesic flow on M̂
contains a non-trivial expanding eigenspace. By reversing the time flow (via the

inversion �v �→ −�v of M̂) we obtain an invariant probability measure μ−
∗ for the

foliation geodesic flow for which the Lyapunov spectrum of the flow contains a
non-trivial contracting eigenspace.

If we assume that the flow is C1+α for some Hölder exponent α > 0, then
there exist non-trivial stable manifolds in M̂ for almost every (x,�v) in the support
of μ−

∗ . Denote this stable manifold by S(x,�v) and note that its tangent space

projects non-trivially onto Q̂. Moreover, for points ŷ, ẑ ∈ S(x,�v) the distance
d(ϕt(ŷ), ϕt(ẑ)) converges to 0 exponentially fast as t → ∞. Thus, the images
y, z ∈M of these points converge together exponentially fast under the holonomy
of F .

Combining these results we obtain:

Theorem 3.6.10. Let F be C1+α and suppose that h(GF ) > 0. Then there exists a
transversally hyperbolic invariant probability measure μ∗ for the foliation geodesic
flow. Moreover, for a typical point x̂ = (x,�v) in the support of μ−

∗ there is a
transverse stable manifold S(x,�v) for the geodesic ray starting at x̂.

If the codimension of F is one, then the differentiability is just required to
be C1, as the stable manifold for ϕt consists simply of the full transversal to F̂ .
Observe that Theorem 3.6.10 implies Theorem 3.6.6.

The assumption that h(GF ) > 0 has much stronger consequences than simply
implying that the dynamics of GF is not distal, but obtaining these results requires
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much more care. We sketch next some ideas for analyzing these dynamics in the
case of codimension 1 foliations.

In the proof of Proposition 3.6.9, instead of choosing only a single pair of
points (x�, y�) at each stage, one can also use the pigeonhole principle to choose a
subset E ′� ⊂ E contained in a fixed ball BT (w, δ�), where #E ′� grows exponentially
fast as a function of �, and the diameter δ� of the ball decreases exponentially fast,
although at a rate less than λε. This leads to the following notion.

Definition 3.6.11. An (ε�, δ�, �)-quiver is a subset

Q� = {(xi, �vi) | 1 ≤ i ≤ k�} ⊂ M̂

such that xj ∈ BT (xi, δ�) for all 1 ≤ j ≤ k� and, for the unit-speed geodesic
segment σi : [0, si]→ Lxi of length si ≤ d, we have

dT
(
hσi

(xi), hσi
(xj)
)
≥ ε for all j �= i.

An exponential quiver is a collection of quivers {Q� | � = 1, 2, . . .} such that the
function � �→ #Q� has exponential growth rate.

The idea is that one has a collection of points {xi | 1 ≤ i ≤ k�} contained
in a ball of radius δ� along with a corresponding geodesic segment based at each
point whose transverse holonomy separates points. The term “quiver” is based on
the intuitive notion that the collection of geodesic segments emanating from the
δ�-clustered set of basepoints {xi} is like a collection of arrows in a quiver. It is
immediate that h(GF , ε, d) ≥ #Q�.

Proposition 3.6.12. If F admits an exponential quiver, then h(GF ) > 0.

For codimension 1 foliations, the results of [120] and [139] yields the converse
estimate:

Proposition 3.6.13. Let F be a C1-foliation of codimension 1 on a compact man-
ifold M . If h(GF ) > 0, then there exists an exponential quiver.

It is an unresolved question whether a similar result holds for higher codi-
mension. The point is that, if so, then h(GF ) is estimated by the entropy of the
foliation geodesic flow, and most of the problems we address here can be resolved
using a form of Pesin theory for flows relative to the foliation F . (See [120] for
further discussion of this point.)

The existence of an exponential quiver for a codimension 1 foliation of a
compact manifold M has strong implications for its dynamics. The basic idea is
that the basepoints of the geodesic rays in the quiver are tightly clustered, and
because the ranges of the endpoints of the geodesic rays lie in a compact set, one
can pass to a subsequence for which the endpoints are also tightly clustered. From
this observation, one can show:
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Theorem 3.6.14 ([123]). Let F be a C1-foliation of codimension 1 on a compact
manifold M . If h(GF ) > 0, then GF acting on T admits a ping-pong game, which
implies the existence of a resilient leaf for F .

This result is a C1-version of one of the main results concerning the dynamical
meaning of positive entropy given in [94]. In their paper, Ghys, Langevin, and
Walczak require the foliations to be C2, as they invoke the Poincaré–Bendixson
theory for codimension 1 foliations, which is only valid for C2-pseudogroups.

There is another approach to obtaining exponential quivers for a foliation
F , which is based on cohomology assumptions about F . For a C1-foliation F ,
there exists a leafwise closed, continuous 1-form η on M whose cohomology class
[η] ∈ H1(M,F) in the leafwise foliated cohomology group is well defined. The form
η has the property that its integral along a leafwise path gives the logarithmic
infinitesimal expansion of the determinant of the linear holonomy defined by the
path. Thus, for codimension 1 foliations, this integral is the expansion exponent
of the holonomy.

For a C2-foliation F of codimension q the form η can be chosen to be C1,
and thus the exterior form η ∧ dηq is well defined. As observed by Godbillon and
Vey [102], the form η ∧ dηq is closed and yields a well-defined cohomology class
GV(F) ∈ H2q+1(M,R). One of the basic problems of foliation theory has been to
understand the “dynamical meaning” of this class. A fundamental breakthrough
was made by Gerard Duminy in the unpublished manuscripts [67, 68], where the
study of this problem “entered its modern phase”. (See also the reformulation of
these results by Cantwell and Conlon in [51].) Based on this breakthrough, the
papers [114, 119] showed that if GV(F) �= 0, then there is a saturated set of
positive measure on which η is non-zero, and hence the set of hyperbolic leaves
HF has positive Lebesgue measure. This study culminated in the following result
of the author with Rémi Langevin from [124]:

Theorem 3.6.15. Let F be a C2-foliation of codimension 1 on a compact manifold.
If HF has positive Lebesgue measure, then F admits exponential quivers, and in
particular the dynamics of GF admits ping-pong games. Thus, h(GF ) > 0.

Combining Theorem 3.6.15 with the previous remarks yields Theorem 3.6.8.
Theorem 3.6.15 is the basis for the somewhat-cryptic Problem 3.6.3 given at the
start of this section. The assumption that the class [η] ∈ H1(M,F) is non-trivial
on a set of positive Lebesgue measure leads to positive entropy, and raises the
question whether there are other leafwise cohomology classes, possibly of higher
degree, which if non-trivial have implications for the foliation dynamics.

In general, the results of this section are just part of a more general “Pesin
theory for foliations” as sketched in the author’s overview paper [120], whose study
continues to yield new insights into the dynamical properties of foliations for which
HF is non-empty. There is much work left to do!
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3.7 Minimal sets

Every foliation of a compact manifold has at least one minimal set, and possibly a
continuum of them. Can they be described? What are their topological properties?
When does the dynamics restricted to a minimal set have a “canonical form”? Is
it possible to give an effective classification of the dynamics of foliation minimal
sets, at least for some particular classes?

For non-singular flows, this has been a major theme of research beginning
with Poincaré’s work concerning periodic orbits for flows, and continuing to the
work in the 1960’s and 70’s of Smale [183] and others, and to more modern ques-
tions about which continua arise as invariant sets for flows [134]. Of notable inter-
est for foliation theory (in higher codimensions) is Williams’ work on the topology
of attractors for Axiom A systems [210, 212], including the introduction of the
so-called Williams solenoids.

In this section, we discuss the differentiable dynamics properties of minimal
sets, applying the concepts of the last section. In Sections 3.9 and 3.10, we gen-
eralize this discussion to the classification problem for “matchbox manifolds” and
their relevance to the study of foliation dynamics.

Recall that a minimal set for F is a closed, saturated subset Z ⊂ M for
which every leaf L ⊂ Z is dense. A transitive set for F is a closed saturated
subset Z ⊂ M such that there exists at least one dense leaf L0 ⊂ Z; that is,
the transitive sets are the closures of the leaves. Very little is known in general
about the transitive sets for foliations; a well-developed theory for transitive sets
would include a generalization of the Poincaré–Bendixson theory for codimension
1 foliations.

Traditionally, the minimal sets are divided into three classes. A compact leaf
of F is a minimal set. If every leaf of F is dense, then M itself is a minimal set.
The third possibility is that the minimal set Z has no interior, but contains more
than one leaf, hence the intersection Z ∩T is always a perfect set. This third case
can be subdivided into further cases: if the intersection Z ∩ T is a Cantor set,
then Z is said to be an exceptional minimal set, and otherwise if Z ∩ T has no
interior but is not totally disconnected, then it is said to be an exotic minimal
set. For codimension 1 foliations, the case of exotic minimal sets cannot occur,
but for foliations with codimension greater than one there are various types of
constructions of exotic minimal sets [32, 33].

Definition 3.7.1. An invariant set Z is said to be elliptic if Z ⊂ EF .

For example, if F is a Riemannian foliation, then all holonomy maps are
isometries for some smooth transverse metric. Therefore, the expansion function
e(GF , T, w) defined in Definition 3.3.6 is bounded. It follows that every minimal
set for a Riemannian foliation is elliptic.

Problem 3.7.2. Does there exist an elliptic minimal set Z for a smooth foliation
F , such that Z is not a compact leaf and F is not Riemannian in some open
neighborhood of Z?
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No such example has been constructed, to the best of the author’s knowledge.
Note that, as remarked previously, the Denjoy minimal sets are parabolic, but not
elliptic.

Definition 3.7.3. A minimal set Z is said to be parabolic if Z ⊂ EF ∪ PF , but
Z �⊂ EF . In particular, Z ∩HF = ∅.

Various examples of parabolic minimal sets are known, such as the well-
known Denjoy minimal sets for C1-diffeomorphisms in codimension 1. The con-
struction by Pat McSwiggen in [154, 155] of Ck+1−ε-diffeomorphisms of Tk+1 uses
a generalization of Smale’s “DA” (derived from Anosov) construction to obtain
parabolic minimal sets.

Recall that a compact foliation is one for which every leaf is compact [75,
184, 202, 203, 204].

Proposition 3.7.4. Let F be a C1-foliation of a compact manifold M with all leaves
of F compact. Then every leaf of F is a parabolic minimal set.

Proof. A compact foliation is clearly distal, so by the proof of Theorem 3.6.6 we
have that HF = ∅. �

The embedding theorems for solenoids in [55] yield another class of parabolic
minimal sets for foliations in arbitrary dimension.

This list of examples exhaust the constructions of parabolic minimal sets of
C1-foliations, as known to the author. It would be very interesting to have further
constructions.

Note that we have seen previously that h(GF ,Z) > 0 implies Z ∩HF �= ∅,
so the parabolic minimal sets include the zero entropy case. Also, a minimal set
for a foliation for which GF acts distally will be parabolic, hence this provides a
guide for further constructions.

Definition 3.7.5. A minimal set Z is said to be hyperbolic if Z ∩HF �= ∅.

As remarked above, h(GF ,Z) > 0 implies that Z is hyperbolic, and by Propo-
sition 3.6.9 there exists a transversally hyperbolic invariant probability measure
μ∗ for the foliation geodesic flow restricted to Z. One of the main open problems
in foliation dynamics is to obtain a partial converse to this:

Problem 3.7.6. Let F be a Cr-foliation of codimension q ≥ 1 on a compact man-
ifold M , and let Z be a hyperbolic minimal set. Find conditions on r ≥ 1, the
topology of Z, and/or the Hausdorff dimension of Z ∩HF ∩T which are sufficient
to imply that h(GF ,Z) > 0.

This is easy to show in a very special case:

Theorem 3.7.7. Let F be a C2-foliation of codimension q ≥ 1 on a compact mani-
fold M , and let Z be a hyperbolic minimal set. If the holonomy of GF is conformal,
then h(GF ,Z) > 0.
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Proof. The hyperbolic hypothesis implies that the geodesic flow has a stable man-
ifold for some hyperbolic measure. The conformal hypothesis implies that the
holonomy is actually transversally contracting for this measure. That is, the sta-
ble manifold for this measure has dimension equal to the transverse dimension
of F . Minimality of the dynamics then implies there is a ping-pong game for the
action of GF restricted to Z ∩ T , and thus h(GF ,Z) > 0. �

The difficulty with proving results of the kind in Problem 3.7.6 is that, in
general, the stable manifolds of the hyperbolic measure for the geodesic flow on Z
will have dimension less than the codimension of F , and hence the “trapping” ar-
gument employed above requires some additional hypotheses. Exactly what those
hypotheses might be, that is the question.

Note that the construction of Bís, Nakayama, and Walczak in [31] gives a
C0-foliation with an exotic minimal set Z that has h(GF ,Z) > 0. Their technique
does not extend to smooth foliations, though perhaps some modification of the
method may yield C1-foliations.

There is another construction of foliations such that the hypotheses of The-
orem 3.7.7 are always satisfied. Let N be a Riemannian manifold of dimension q
with metric dN . Let C ⊂ N be a convex subset for the metric. A diffeomorphism
f : N → N is said to be contracting on C if f(C) ⊂ C and for all x, y ∈ C we have
dN (f(x), f(y)) < dN (x, y). Then define

Definition 3.7.8. An iterated function system (IFS) on N is a collection of diffeo-
morphisms {f1, . . . , fk} of N and a compact convex subset C ⊂ N such that each
f� is contracting on C, and for � �= �′ we have f�(C) ∩ f�′(C) = ∅.

Note that, since C is assumed compact, the contracting assumption implies
that for each map f� the norm of its differential Df� is uniformly less than 1. That
is, the maps f� are infinitesimal contractions.

The suspension construction [44, 46] yields a foliation F on a fiber bundle
M over a surface of genus k with fiber N , for which the maps {f1, . . . , fk} define
the holonomy of F . If the manifold N is compact, then M will also be compact.

The relevance of this construction is that such a system admits a minimal set
Z ⊂ C, which is necessarily hyperbolic. In fact, Z is the unique minimal set for the
restriction of the action to C and is called the Markov minimal set associated to
the IFS (see [33]). It is an exercise to show that h(GF ,Z) > 0 for these examples.

The traditional construction of an IFS is for N = Rq and the maps f� are
assumed to be affine contractions. The compact convex set C can then be chosen
to be any sufficiently large closed ball about the origin in Rq. There is a vast
literature on affine IFS’s, as well as beautiful computer-generated illustrations in
articles and books of the invariant sets for various systems.

Note that every affine map of Rq extends to a conformal map of Sq, so
these constructions also provide examples of hyperbolic minimal sets for smooth
foliations of compact manifolds. The construction of affine minimal sets via this
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method has many generalizations and leads to a variety of interesting examples,
which can be considered from the foliation point of view.

3.8 Classification schemes

After introducing several dynamical invariants of C1-foliations, it is time to ask:
How to “classify” all the foliations of fixed codimension q on a given closed mani-
fold M?

It all depends on the meaning of the word “classify” —modulo homeomor-
phism? diffeomorphism? concordance? Borel orbit equivalence? measurable orbit
equivalence? These are just some of the notions of equivalence that have been used
to approach this issue; see the surveys [125, 126, 137, 138]. We discuss the role of
the invariants introduced in the previous sections for the study of this problem.

Invariants of foliation dynamics such as orbit growth type, transverse expan-
siveness, or local entropy are constant on leaves, and thus are associated in some
fashion with the “leaf space” M/F . The question is what notions of equivalence
preserve the leaf space M/F and have enough additional restrictions to preserve
these invariants, yet are not so restricted as to be effectively uncomputable.

Given foliated manifolds (M1,F1) and (M2,F2), and r ≥ 0, the most basic
equivalence relation is to be Cr-conjugate; that is, there exists a Cr-diffeomorphism
f : M1 →M2 such that the leaves of F1 are mapped to the leaves of F2. If r = 0,
then the map f is just a homeomorphism, and we say the foliations are topologically
conjugate. Certainly, two foliations which are Cr-conjugate have “conjugate leaf
spaces”. Most invariants in foliation theory are preserved by C1-conjugation, and
some such as leaf growth rate are preserved by topological conjugation. However,
conjugation is an extremely strong equivalence relation.

The introduction of secondary classes for C2-foliations in the 1970’s sug-
gested classification modulo “concordance”, a weaker form of equivalence than
C2-conjugation. Two foliations F1 and F2 of codimension q on a manifold M are
concordant if there exists a foliation F on M ×R, also of codimension q, so that F
is transverse to the slices M × {t} for t = 1, 2, and the restrictions F|M×{t} = Ft

for t = 1, 2. The lecture notes by Milnor [157], or the survey by Lawson [138],
discuss this concept further.

Concordance is the natural notion of equivalence associated to the study
of homotopy classes of maps from M into a foliation classifying space, such as
BΓr

q introduced in [106]. The celebrated results by Thurston on classification of
foliations are formulated in terms of homotopy classes of maps into the classifying
spaces BΓr

q. (See [106, 107, 190, 191, 194, 195] and the surveys [126, 138].)
On the other hand, it is unknown if any of the invariants of dynamics dis-

cussed in these lectures are preserved, in some fashion, by concordance. For exam-
ple, given any two linear foliations of T2, they are concordant [157, Lemma 8.5],
so that a foliation whose leaves have linear growth rate can be concordant to one
with compact leaves. There appears to be no relation between concordance of F1
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and F2 and some form of equivalence of the leaf spaces M/F1 and M/F2.

Question 3.8.1. Given concordant foliations F1 and F2 of a compact manifold M ,
does this imply any relationship between their dynamically defined invariants?

At the other extreme from conjugation is the notion of orbit equivalence (OE).
Recall that the equivalence relation on T defined by F is the Borel subset

RF ≡
{
(w, z) | w ∈ T , z ∈ Lw ∩ T

}
⊂ T × T .

Two foliations F1 and F2 with complete transversals T1 and T2, respectively,
are Borel orbit equivalent (bOE) if there exists a Borel map h : T1 → T2 which
induces a Borel isomorphism RF1

∼= RF2
. Note that a Borel orbit equivalence

h : T1 → T2 induces a Borel “isomorphism” h∗ : M1/F1 →M2/F2. If two foliations
are topologically conjugate, then they are bOE. On the other hand, the assumption
that F1 and F2 are bOE does not imply that their leaves have the same dimensions,
so this is a much weaker equivalence than conjugation.

The foliations F1 and F2 are said to be measurably orbit equivalent (mOE)
if there exists a Borel measurable map h : T1 → T2 which induces a Borel orbit
equivalence up to sets of Lebesgue measure zero. See the works [73, 79, 117, 133,
161] for more background on this topic.

For example, a foliation is said to be (measurably) hyperfinite if it is mOE
to an action of the integers Z on the interval [0, 1]. The celebrated result of Dye
[69, 70, 136] implies:

Theorem 3.8.2 (Dye, 1957). A C1-foliation defined by a non-singular flow is always
hyperfinite.

Caroline Series generalized this result in [182] to foliations whose leaves have
polynomial growth.

Theorem 3.8.3 (Series, 1980). Let F be a C1-foliation of a compact manifold M .
If the growth types of all functions Gr(w, �) are uniformly of polynomial type, then
the equivalence relation on T defined by GF is hyperfinite.

The most general form of such results is due to Connes, Feldman, and Weiss
[60], and implies:

Theorem 3.8.4 (Connes–Feldman–Weiss, 1981). Let F be a C1-foliation of a com-
pact manifold M . If the equivalence relation RF is amenable, then the equivalence
relation on T that it defines is hyperfinite. In particular, if the growth types of
all functions Gr(w, �) are uniformly of subexponential type, then the equivalence
relation on T that it defines is hyperfinite.

One conclusion of these results is that measurable orbit equivalence preserves
neither the growth rates of leaves nor many other “usual” invariants of smooth
foliations. For example, all ergodic actions of Zn which preserve a probability
measure are mOE for all n ≥ 1, yet have polynomial orbit growth rates of degree
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n. Also, the weak-stable foliation for a geodesic flow of a closed manifold with
constant negative curvature has leaves of exponential growth, has an amenable
equivalence relation [41], has positive entropy [94], and has non-trivial Godbillon–
Vey class [102].

Two foliations F1 and F2 on manifolds M1 and M2 with complete transver-
sals T1 and T2, respectively, are said to be restricted orbit equivalent (rOE) if
there exists a Borel isomorphism f : M1 → M2 which maps leaves of F1 homeo-
morphically to leaves of F2, and such that its restriction to transversals induces
a Borel map h : T1 → T2 which induces a Borel isomorphism RF1

∼= RF2
. Thus,

a restricted orbit equivalence “permutes” the leaves of the foliations. If the re-
striction of such a map induces a quasi-isometry between the leaves, then we say
the foliations are quasi-isometric orbit equivalent (qiOE). It is then obvious, for
example, that the growth rate of a leaf is an invariant of qiOE. It is not known if
these refined notions of equivalence preserve the other invariants.

Question 3.8.5. Suppose that C1-foliations F1 and F2 are qiOE. Does h(GF1
) > 0

imply h(GF2
) > 0?

Question 3.8.6. Suppose that C1-foliations F1 and F2 are rOE. If L1 ⊂ M1 is a
leaf of F1, and L2 ⊂ M2 is the corresponding leaf for F2 under a rOE, must L1

and L2 have the same growth rate?

There are many variants of these questions, whose answers are essentially un-
known. These sorts of questions seem of fundamental importance to the study of
foliations. While the topological classification of foliations is surely an unsolvable
problem, in any sense of the word “unsolvable”, a variation on the Borel classi-
fication problem might be possible when restricted to special subclasses, such as
for foliations with uniformly polynomial growth, or amenable foliations.

In the late 1970’s and early 1980’s, Cantwell and Conlon, Hector, Nishimori,
Tsuchiya in particular [48, 49, 113, 197, 199], developed a Poincaré–Bendixson
theory of levels for codimension 1 C2-foliations. For real analytic foliations with
all leaves of polynomial growth type, their results give an algorithmic description
of the limit sets of leaves.

Problem 3.8.7. Classify the restricted orbit equivalence classes of codimension 1
real analytic foliations with all leaves of polynomial growth type.

For the general case of codimension 1 C2-foliations, the theory of levels be-
comes much more complicated, as there are numerous counter-examples which
have been constructed to show that the conclusions in the analytic case do not
extend so easily. The theory of levels is even more problematic for C1-foliations of
codimension 1, and non-existent for foliations of codimension q > 1.

The concept of measurable amenable has a generalization to amenable Borel
equivalence relations, as given for example by Anantharaman-Delaroche and Re-
nault in [11]. The class of foliations in Problem 3.8.7 is amenable in this sense.
Of course, every 1-dimensional foliation also has this property, and the papers
[85, 99, 186, 211] give classification schemes for special cases of flows (see also [58]).



3.9. Matchbox manifolds 123

Problem 3.8.8. Find subclasses of amenable foliations for which restricted orbit
equivalence gives a good classification.

The conclusion is that the two notions of equivalence of foliations discussed
above, concordance and orbit equivalence, yield classification schemes that are
at least somewhat effectively computable, but do not preserve the dynamically
defined invariants discussed previously.

There is another invariant for measurable equivalence relations, their “cost”,
as introduced by Gilbert Levitt [141]. The “cost” is mOE, essentially by definition.
All measurably amenable foliations have cost equal to zero, so this invariant does
not distinguish a large class of foliation dynamics. On the other hand, Gaboriau’s
work in [86] showed that “cost” is a very effective invariant of mOE for non-
amenable foliations, and has led to spectacular results such as that by Gaboriau
and Popa in [87]. Other applications of the cost of an equivalence relation can be
found in the literature, for example in [5, 133, 164], but further discussion takes
us too far away from our theme.

Bounded cohomology invariants can be used to distinguish measurable orbit
equivalence classes, as in [160]. As with the cost invariant, these classes vanish
for measurable amenable group actions and foliations. On the other hand, the
bounded cohomology classes are often non-zero for the same classes of foliations
which have non-trivial secondary classes (see [118]), suggesting that their study
will have further applications to classifying foliations with exponential complexity.

Problem 3.8.9. Find classes of foliations with exponential complexity for which
there are non-trivial bounded cohomology invariants.

3.9 Matchbox manifolds

Let M be a foliated manifold, with foliation F . If S ⊂ M is a closed saturated
subset, then it is an example of a foliated space, as discussed for example in [162],
[46, Chapter 11], or [55, 56].

Definition 3.9.1. S is a Cr-foliated space if it admits a covering by foliated coordi-
nate charts U = {ϕi : Ui → [−1, 1]n × Ti | 1 ≤ i ≤ k}, where Ti are compact metric
spaces. The transition functions between overlapping charts are assumed to be Cr

along leaves, for 1 ≤ r ≤ ∞, and the derivatives depend uniform-continuously on
the transverse parameter.

In particular, the minimal sets of a foliation F can be studied “indepen-
dently” as foliated spaces. An exceptional minimal set for a foliation can be
considered as a transversally zero-dimensional foliated space. For flows, these
spaces have been called “matchbox manifolds” in the topological dynamics lit-
erature [1, 2, 80]. The author, in the works with Alex Clark and Olga Lukina
[55, 56, 58], proposed the term matchbox manifold for the more general case:
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Definition 3.9.2. An n-dimensional matchbox manifold M is a continuum (i.e., a
connected and compact metrizable space) which is a smooth n-dimensional foliated
space with codimension 0.

For a matchbox manifoldM the transverse model spaces Ti in Definition 3.9.1
are totally disconnected. We consider their disjoint union T = T1 ∪ · · · ∪ Tk, and
call it a total transversal for FM.

The path connected components ofM are precisely the leaves of FM, and thus
the foliation of M is defined by the topology. In particular, any homeomorphism
h : M → M′ between two such spaces maps leaves to leaves. We often abuse
notation and refer to M implying its foliated structure FM.

We say that M is minimal if every leaf is dense. In this case, the transverse
model spaces Ti are Cantor sets, and their disjoint union T is again a Cantor set.

Essentially, the concept of a matchbox manifold is the same as that of a
lamination, except that such manifolds are not regarded as embedded in any man-
ifold. In fact, whether a given matchbox manifold M embeds as a minimal set of
a compact foliated manifold is an important question.

The holonomy groupoid GM is generated as in Section 3.2, with object space
T, and the transition functions γi,j between open subsets of transversal spaces Ti

and Tj are defined when the open sets intersect, Ui ∩ Uj �= ∅. By a careful choice
of the open covering by foliation charts of M, we can assume that the domains
and ranges of the generating maps γi,j are clopen subsets.

A matchbox manifold is said to be a suspension if there exist

• a compact manifold B0 with fundamental group G0 = π1(B0, b0) for some
basepoint b0 ∈ B0;

• a continuous action ρM : G0 → Homeo(T) on a totally disconnected space T;

• a homeomorphism M ∼= B̃0 ×ρM
T.

The holonomy pseudogroup GM is then equivalent to that generated by the action
of G0 on T.

If B0 = Tn so G0 = Zn, then the suspension foliation is defined by an action
of Rn on M.

In general, if G0 is generated by m > 1 elements, then the fundamental
group of a surface Σ2m of genus 2m maps onto G0, so the representation ρM lifts
to an action of the surface group π1(Σ2m, x0) on T. Then the resulting suspension
foliation has all leaves isometric to some quotient of the hyperbolic disk. This
matchbox manifold has holonomy groupoid determined by ρM, so the “general
suspension case” is a 2-dimensional matchbox manifold with hyperbolic leaves,
though the leaves certainly need not be simply connected.

Analogously to the case for foliated manifolds, for a matchbox manifold M
one can define the growth rates of leaves, geometric entropy, and also the foliation
geodesic flow. The one missing property is the infinitesimal transverse behavior,
as the transverse zero-dimension hypothesis implies that there are no transverse
vectors. This issue will be discussed in Section 3.11.
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Next, we consider a selection of examples where matchbox manifolds arise
naturally. The reader will note that whereas Section 3.1 of these notes introduced
some of the simplest examples of foliated manifolds, the examples below are at
the opposite extreme, in that they are essentially impossible to visualize.

If M ⊂ M is an exceptional minimal set in a compact foliated manifold M ,
then, with the restricted foliation, M is a matchbox manifold. For foliations of
codimension 1, the study of exceptional minimal sets was started in 1960’s with
work of Sacksteder [172, 173, 174], and Hector’s thesis [110] introduced many of
the subsequent themes for their study [46, 47, 52, 122, 124, 125, 152, 167, 206].
The dynamical and topological properties of exceptional minimal sets in higher
codimensions are not well-understood. The case of exceptional minimal sets will
be discussed further in the next section.

Another source of examples of matchbox manifolds is provided by the space
of tilings associated to a given quasi-periodic tiling Δ of Rn. If Δ satisfies the con-
ditions: it is repetitive, aperiodic, and has finite local complexity, then the “hull
closure” ΩΔ of the translates of Δ by the action of Rn defines a matchbox man-
ifold. These assumptions can be relaxed somewhat, as discussed by Franks and
Sadun [83]. The tiling space ΩΔ was introduced by Bellisard in his study of math-
ematical models of electron transport [20]. This construction is the subject of
many papers, as for example [12, 21, 22, 82, 100, 121, 181]. The results have been
generalized to quasi-periodic tilings of G-spaces in [23]. Sadun and Williams [176]
showed that the space ΩΔ associated to a tiling of Rn is always a Cantor bundle
over Tn, associated to a minimal free action of Zn. A striking result of Marcy
Barge and Beverly Diamond [18] classifies 1-dimensional tiling spaces in terms of
cohomology.

For a few classes of quasi-periodic tilings of Rn, the codimension 1 canonical
cut and project tiling spaces [81], it is known that the associated matchbox man-
ifold ΩΔ is a minimal set for a C1-foliation of a torus Tn+1, where the foliation is
a generalized Denjoy example.

The “Ghys–Kenyon” construction, introduced by Ghys in [96], associates a
matchbox manifold to translates of subgraphs of a fixed graph G. This construction
has been studied by E. Blanc in [34, 35], and by F. Alcalde Cuesta, A. Lozano Rojo,
and M. Macho Stadler in [6, 143]. This class of examples provides a wide variety
of dynamical behavior, related to the properties of the graph G. For example, in
contrast to the tiling spaces, constructions of Lukina [144] yield graph matchbox
manifolds which are not minimal, and can have leaves with non-trivial holonomy.

Next, we discuss a very general (and very abstract) procedure for obtaining
Cantor bundle examples, which has a variety of important special cases. Let Γ be
a countable group, and choose an integer M ≥ 1. Set Nm ≡ {1, 2, . . . ,m} with the
discrete topology. Then the product space

ΩΓ,m ≡
∏
γ∈Γ

Nm

is compact. For a “word” ω ∈ Ω, which is considered as a function ω : Γ → Nm,
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and for δ ∈ Γ, define δ · ω(γ) = ω(γ · δ). This yields a continuous action of Γ
on ΩΓ,m.

For a word ω0 let Ωω0 = Γ · ω0 denote the closure of the translates of the
“basepoint” ω0. Then Ωω0 is compact and totally disconnected, and the action
of Γ restricts to an action on Ωω0

, clearly with a dense orbit. If Ωω0
is minimal

and not periodic for the Γ-action, then it is expansive. Otherwise, it is essentially
impossible to predict the dynamical properties of the restricted action of Γ on Ωω0

.

If Γ is finitely generated, then the choice of a Riemann surface Σ whose funda-
mental group maps onto Γ yields, via the suspension construction, a 2-dimensional
matchbox manifold M whose holonomy pseudogroup is defined by the action of
Γ on Ωω0

. This construction is clearly related to both of the above constructions,
using graphs and using translates of tiles. In these cases, the dynamical properties
are related to either the structure of the graph, or the geometry of the tiling.

For the case where Γ = Zn there is an alternate approach to choosing invari-
ant closed subsets of Ωσ ⊂ ΩΓ,m, using translation-invariant pattern rules. When
Ωσ is non-empty, this yields generalized subshifts of finite type, which are called
algebraic dynamical systems. There is an extensive literature on these examples,
especially relating their dynamical properties to commutative algebra and number
theory. For example, the textbooks by Graham Everest and Thomas Ward [76] and
Klaus Schmidt [178] give introductions to the dynamics of algebraically defined
actions of Zn, and the papers [42, 72] lead to the more recent works, following the
citations to these papers.

Finally, we discuss a class of examples of matchbox manifolds, the gener-
alized solenoids, which have a more dynamical origin and geometric interpreta-
tions. The classical “Vietoris solenoid”, introduced in [201], provides examples of
1-dimensional matchbox manifolds. Given a sequence of smooth covering maps
p� : S1 → S1 of degree d� > 1, form the inverse limit space S = lim←−←−

{p� : S1 → S1}.

Then S has a smooth flow, whose flow boxes give S a matchbox manifold struc-
ture. An application of Pontryagin duality [17, 168] implies that the space S is
determined up to foliated homeomorphism by the sequence of integers {d� | � =
1, 2, . . .}, modulo “tail equivalence”.

The existence of 1-dimensional Vietoris solenoids as minimal sets of smooth
flows has an extensive history in topological dynamics. See, for example, [40, 88, 89,
132, 149, 183, 186]. The existence is generally shown via an iterated perturbation
argument, which is essentially folklore. That is, starting with a closed orbit, M0

∼=
S1, it is modified in an open neighborhood of M0 so that the flow now has a
nearby closed orbit M1

∼= S1 which covers M0 with degree d1 > 1. This process
is inductively repeated for all subsequent closed orbits M� with � > 1. With
suitable care in the choices, the resulting flow will be C∞ and has a minimal set
homeomorphic to the inverse limit of the system of closed orbits resulting from
the construction.

A generalization of the Vietoris solenoid construction was introduced by Bob
Williams in [210, 211] to describe the topology of a 1-dimensional attractor of
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an Axiom A diffeomorphism f : N → N , are again matchbox manifolds. A 1-
dimensional “Williams solenoid” is the inverse limit of the iterations of a single
expanding map f : B → B of a special form, where B is a branched 1-manifold.
Williams generalized this construction to higher dimensional branched manifolds
in [212], which again gives rise to matchbox manifolds. Farrell and Jones showed
in [77, 78] that a bizarre topology can arise in higher dimensions, even in this
special case where the maps p� are dynamically defined.

Finally, we discuss the class of “weak solenoids” introduced by McCord in
[153]. For � ≥ 0, let B� be compact, orientable connected manifolds without bound-
ary of dimension n ≥ 1 . Assume there are given orientation-preserving, smooth,
proper covering maps P = {p� : B� → B�−1 | � > 0}. Then the inverse limit
topological space

SP ≡ lim
←−

{
p� : B� → B�−1

}
⊂

∞∏
�=0

B�
π0−→ B0 (3.9.1)

is said to be a weak solenoid with base B0. The p� are the bonding maps for the
weak solenoid. If S denotes the homeomorphism class of SP , then the collection
P defining the space SP is said to be a presentation for S.

Theorem 3.9.3 (McCord [153]). SP has a natural structure as an orientable,
n-dimensional smooth matchbox manifold, with every leaf dense.

The foliated homeomorphism types of weak solenoids are determined by the
algebraic structure of the inverse limit of the maps on fundamental groups [57,
61, 147, 153, 179]. These maps are induced by the bonding maps in the given
presentation P, which we consider in more detail.

Choose a basepoint b0 ∈ B0 and inductively choose b� ∈ B� with p�(b�) =
b�−1. LetG� = π1(B�, b�) denote the corresponding fundamental groups. We obtain
a descending chain of groups and injective maps

P# ≡
{
· · · p�+1−→ G�

p�−→ G�−1
p�−1−→ · · · p2−→ G1

p1−→ G0

}
.

Set q�,k = p� ◦ · · · ◦ pk+1 : B� → Bk. We say that SP is a McCord solenoid
if for some fixed �0 ≥ 0, for all � ≥ �0 the image (q�,�0)# : G� → H� ⊂ G�0 is a
normal subgroup of G�0 . Replacing B0 with B�0 , we can reduce ourselves to the
case where �0 = 0. Then define

ΓP = lim←−←−

{
G0/G� −→ G0/G�−1

}
,

which is a Cantor group. Then the space SP is homeomorphic to the principal
ΓP -bundle over B0 defined by the canonical representation G0 → ΓP . Thus, the
McCord solenoids are the “natural” generalizations of the Vietoris solenoids to
higher dimensions.



128 Chapter 3. Lectures on Foliation Dynamics

Note that, if the base manifold B0 satisfies that G0 = π1(B0, b0) is abelian,
then every weak solenoid over B0 is a McCord solenoid. In particular, this is the
case when B0

∼= Tn.
Unlike the case of Vietoris solenoids, very little is known about when an

n-dimensional weak solenoid is homeomorphic to an exceptional minimal set for a
Cr-foliation, for n ≥ 2 and r ≥ 1. A discussion of this question, and some partial
realization results for the case G0

∼= Zk, are given in [55].

Problem 3.9.4. Let P be a presentation of a weak solenoid SP . Find conditions
on P such that SP is foliated homeomorphic to an exceptional minimal set of a
Cr-foliation, for r > 1.

The variety of examples of matchbox manifolds described above shows that
they form a large class of interesting foliated spaces, certainly deserving further
study. We can ask the same questions for matchbox manifolds as for foliations,
and foliation minimal sets: find invariants of their foliated homeomorphism type,
and find classification schemes for their topological dynamics.

Note that a 1-dimensional oriented matchbox manifold is defined by a non-
singular flow, and all such examples can be obtained by the suspension of a Z-
action on a 0-dimensional space [1, 2, 186]. The minimal 1-dimensional matchbox
manifolds thus correspond to suspensions of minimal Cantor systems, which have
been extensively studied, and even classified up to orbit equivalence and homeo-
morphism—see for example [18, 25, 26, 98, 115]. Thus, the questions we pose below
can be considered as asking for extensions of these results from 1-dimensional flows
to higher dimensions.

Minimal Cantor systems are classified by the “full groups” [26, 98, 99, 115],
which suggests the introduction and study of an analogous concept for matchbox
manifolds. Define the closed topological subgroup of all leaf-preserving homeomor-
phisms

Inner(M,FM) = Homeo(FM) ⊂ Homeo(M,FM).

That is, h ∈ Inner(M,FM) maps each leaf of FM to itself. This is a normal
subgroup of Homeo(M,FM). In analogy with the full group concept, and also
group theoretic constructions, we introduce

Definition 3.9.5. The group of outer automorphisms of a matchbox manifold M
is the quotient topological group

Out(M) = Homeo(M,FM)/Inner(M,FM). (3.9.2)

One can think of Out(M) as the group of automorphisms of the leaf space
M/FM and thus should reflect many aspects of the space M —its topological,
dynamical and algebraic properties. Very little is known, in general, concerning
some basic questions in higher dimensions:

Problem 3.9.6. Let M be a matchbox manifold with foliation FM. Study Out(M).



3.9. Matchbox manifolds 129

(1) If Out(M) is not discrete, must it act transitively? If not, what are the
examples?

(2) If Out(M) is discrete and infinite, what conditions on M imply that it is
finitely generated?

(3) Suppose that M is minimal and expansive. Must Out(M) be discrete?
(4) For what hypotheses on M must Out(M) be a finite group?

A matchbox manifoldM is said to be homogeneous if the group of homeomor-
phismsHomeo(M) ofM acts transitively. For a matchbox manifold, every homeo-
morphism is a foliated homeomorphism, so Homeo(M) = Homeo(M,FM). A re-
sult of Bing [27] showed that if M is a homogeneous matchbox manifold of dimen-
sion 1, then M is homeomorphic to a Vietoris solenoid. The higher dimensional
versions of this result have been an open problem, with one direction proven by
McCord:

Theorem 3.9.7 (McCord [153]). Let M be homeomorphic to a McCord solenoid SP .
Then M is homogeneous, and the pseudogroup associated to it is equicontinuous.

Results of the author with Alex Clark give a converse to this, which gener-
alizes Bing’s Theorem.

Theorem 3.9.8 (Clark–Hurder [56]). Let M be a smooth, oriented matchbox mani-
fold. If the pseudogroup associated to M is equicontinuous, then M is minimal
and it is homeomorphic to a weak solenoid. If M is homogeneous, then M is
homeomorphic to a McCord solenoid.

That is, if Out(M) acts transitively on M/FM, then M is homeomorphic to
a McCord solenoid.

Problem 3.9.9. For what hypotheses on M does the isomorphism class of Out(M)
characterize the homeomorphism class of M?

There is an analogy between Theorem 3.9.8 and the classification theory
for Riemannian foliations [158, 159]. Recall that a Riemannian foliation F on a
compact manifold M is said to be transversally parallelizable (or TP) if the group
of foliation-preserving diffeomorphisms of M acts transitively. In this case, the
minimal sets for F are principal H-bundles, where H is the structural Lie group
of the foliation. Theorem 3.9.8 is the analog of this result for matchbox manifolds.
It is interesting to compare this result with the theory of equicontinuous foliations
on compact manifolds, as in [10].

However, if M is equicontinuous, but not homogeneous, then the analogy
becomes more tenuous. Clark, Fokkink, and Lukina introduce in [54] the Schreier
continuum for weak solenoids, an invariant of the topology of M, which they use
to calculate the end structures of leaves. In particular, they show that there exist
weak solenoids for which the number of ends of leaves can be between 2 and
infinity, which is impossible for Riemannian foliations (see also [95]).
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The classification of equicontinuous matchbox manifolds implies a classifica-
tion of weak solenoids, and this appears far from being understood, if not simply
impossible [117, 133, 187, 188].

As in Definitions 3.2.5, 3.2.6 and 3.2.7, one can likewise define distal, proxi-
mal, and expansive matchbox manifolds. Here is a basic question:

Problem 3.9.10. Give an algebraic classification for minimal expansive matchbox
manifolds, analogous to the classification of weak solenoids by the tower of the
fundamental groups P#.

In the case whenM is a Cantor bundle associated to a free minimal Zn-action,
all such actions are affable Borel equivalence relations by work of Giordano, Matui,
Putnam, and Skau [98, 100, 169]. This concept generalizes to the Borel category
the notion of hyperfinite discussed in Section 3.8 above. The authors prove that,
with the above hypotheses, the equivalence relation associated to M is affable.
Again, for the case of minimal Zn-actions, it then follows that M is classified up
to foliated homeomorphism by the directed K-theory groups associated to the
affable structure [100, 193].

Following along these lines, one approach to a partial algebraic classification
would be to first show the following:

Problem 3.9.11. Let M be a Cantor bundle associated to a free minimal action of
a countable amenable group Γ. Show that the equivalence relation associated to
M is affable.

Another approach to classification, in the special case of 2-dimensional match-
box manifolds and using the leafwise Euler class, was given by Bermúdez and
Hector in [24].

The definition of the geometric entropy for a C1-foliation extends to the
pseudogroup associated to a matchbox manifold, except that one does not know
a priori that the geometric entropy h(GF ,M) is finite. Nonetheless, the following
extension of a result of Ghys, Langevin, and Walczak holds:

Theorem 3.9.12 (Ghys–Langevin–Walczak [94]). Let M be a matchbox manifold
with h(GF ,M) = 0. Then the holonomy pseudogroup associated to M admits an
invariant probability measure. Thus, if M does not admit a transverse invariant
measure, then h(GF ,M) > 0.

It seems that very little is known about the classification of matchbox man-
ifolds with h(GF ,M) > 0. The works on expansive algebraic dynamical systems
cited above provide a source of questions and conjectures about this case.

After discussing the variety of examples and properties of matchbox mani-
folds, we introduce the concept of a “resolution” of a foliated space by a matchbox
manifold.

Definition 3.9.13. Let S be a foliated space with foliation FS . A resolution for
(S,FS) consists of a matchbox manifold M with foliation FM and a foliated con-
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tinuous surjection ρ : M → S such that the restriction of ρ to a leaf of FM is a
covering of a leaf of FS .

Note that we do not assume that S is transversally totally disconnected, so
the hypothesis that the map is foliated is required.

If S is an exceptional minimal set for a foliation F of a compact manifold M ,
then S equipped with the restricted foliation FS = F|S is a resolution of itself.
There are many further examples.

Let Fα be a foliation of Tn+1 by linear hyperplanes of codimension 1, associ-
ated to an injective representation α : Zn → S1. Select a leaf L0 ⊂ Tn+1 and apply
the “inflation” technique as in the construction of the Denjoy examples to obtain
a C1-foliation F on Tn+1 of codimension 1, which then has a unique exceptional
minimal set S ⊂ Tn+1. Let M = S as above. Then using the collapse map, which
is the inverse of inflation, we obtain a resolution ρ : M→ S → Tn+1. This exam-
ple is motivated by a standard technique employed in the study of the spectrum
of quasi-crystals, and can be generalized to any linear foliation of a torus with
contractible leaves.

Another example is provided by the “semi-Markov” examples of foliations
constructed in [32, 33], for which there exists a unique exotic minimal set S. The
notation “semi-Markov” refers to the property that, in these examples, both the
resolving matchbox manifold M and the fibers of the resolution map ρ : M → S
admit descriptions as Markovian dynamics.

The following problem thus appears quite interesting:

Question 3.9.14. Which minimal sets, or foliated spaces more generally, admit
resolutions?

Note that if ρ : M → S is a resolution of a minimal set S ⊂ M for the
foliation F of the compact manifold M , and the leaf L ⊂M is a dense leaf, then
ρ(L) ⊂ S is a dense leaf of F . One version of Question 3.9.14 is to ask, given a leaf
L ⊂M of a Cr-foliation F , under what hypotheses on F does the closure SL = L
admit a resolution? A solution to this question, along with a better understanding
of how the topology and dynamics of matchbox manifolds behave for resolutions,
yields a new approach to the study of the Cr-embedding problem.

3.10 Topological shape

Next, we discuss the classical notion of shape for topological spaces, and apply
these ideas to minimal sets of foliations.

The concept of shape for a compact metric space was introduced by Bor-
suk [37] and “modern shape theory” develops algebraic topology of the shape
approximations of spaces [147, 148]. The Conley index of invariant sets for flows
is one traditional application of shape theory to the dynamics of flows.
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Definition 3.10.1. Let Z ⊂ X be a compact subset of a complete metric space X.
The shape of Z is the equivalence class of any descending chain of open subsets
X ⊃ V1 ⊃ · · · ⊃ Vk ⊃ · · · ⊃ Z with Z =

⋂∞
k=1 Vk.

The notion of equivalence referred to in the definition is defined by a “tower
of equivalences” between such approximating neighborhood systems. The reader
is referred to [147, 148] for details and especially the subtleties of this definition.
One property of shape theory is that the shape of Z is independent of the space
X and the embedding Z ⊂ X. We recall an important notion:

Definition 3.10.2. Let Z ⊂ X be a compact subset, and let x0 ∈ Z be a fixed
basepoint. Then Z has stable shape if the pointed inclusions (Vk+1, x0) ⊂ (Vk, x0)
are homotopy equivalences for all k � 0.

The shape fundamental group of Z defined by

π̂1(Z, x0) = lim
←−

{
π1

(
Vk+1, x0

)
−→ π1

(
Vk, x0

)}
(3.10.1)

is then well defined. Note that if Z has stable shape, then for k � 0 we have
π̂1(Z, x0) ∼= π1(Vk, x0).

The following example from [59] is perhaps the simplest non-trivial example
of stable shape. Consider a Denjoy flow on the 2-torus T2, obtained by applying
inflation to an orbit of the flow, as illustrated in Figure 3.15 below. Let Z be
the unique minimal set for the flow. Then Z is stable and it is shape-equivalent
to the pointed wedge of two circles, Z ∼= S1 ∨x0 S1. Consequently, π̂1(Z, x0) ∼=
π1(S1 ∨x0 S

1, x0) ∼= Z ∗ Z.

Figure 3.15: Inflating an orbit to obtain a Denjoy flow

As another example, let F be a codimension 1 foliation with an exceptional
minimal set M ⊂ M . Then M has stable shape if and only if the complement
M�M consists of a finite union of connected open saturated subsets. In the shape
framework, one of the long-standing open problems for codimension 1 foliation
theory is then:

Problem 3.10.3. Let F be a codimension 1, C2-foliation of a compact manifold M .
Show that an exceptional minimal set M for F must have stable shape.
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More generally, one can ask whether there are other classes of foliations with
codimension greater than one for which the minimal sets are “expected” to have
stable shape?

Now let M be a matchbox manifold, with metric dM defining the topology.
Choose a basepoint x0 ∈ M and let L0 be the leaf containing x0. For ε > 0, let
τx0,z : [0, 1]→ L0 be a leafwise path such that dM(x0, z) < ε. Define an equivalence

relation on such loops by τ0
ε∼ τ1 if there is a leafwise homotopy τt from τ0 to τ1

such that τt(0) = x0 and dM(τt(1), x0) < ε for all 0 ≤ t ≤ 1. The collection of all
such approximate loops up to equivalence is denoted by

πε
1

(
M, x0

)
=
{
τ̂ | τ̂ ε∼ τ̂ ′

}
. (3.10.2)

The sets πε
1(M, x0) do not have a group structure, as concatenation of paths is not

necessarily well defined. In any case, there are always maps πε′
1 (M, x0) ⊂ πε

1(M, x0)
for 0 < ε′ < ε.

Note that the sets πε
1(M, x0) may depend strongly on the choice of the base-

point x0.
Next, suppose that ρ : M→ Z ⊂M is a resolution of a closed invariant sub-

set Z for a foliation F of a foliated manifold M . Let δ0 > 0 be a Lebesgue number
for a covering of M by foliation charts, and let ε0 > 0 be a modulus of continuity
for ρ. That is, if x, y ∈ M satisfy dM(x, y) < ε0, then dM (ρ(x), ρ(y)) < δ0. Set
xρ = ρ(x0).

Lemma 3.10.4. If ε < ε0, then there is a well-defined map

ρ# : πε
1(M, x0) −→ π1(M,xρ).

Proof. The assumption dM(τt(1), x0) < ε < ε0 for all 0 ≤ t ≤ 1 implies that
the endpoints satisfy dM (ρ(τt(1), xρ) < δ0, hence are joined by a family of paths
contained in a foliation chart. �

There is also a well-defined map from the shape fundamental group

ρ# : π̂1(M, x0) −→ π1(M,xρ).

For example, suppose that M is a McCord solenoid, which is resolution of
a minimal set Z ⊂ M . Then the shape of M is not stable, and π̂1(M, x0) is a
non-trivial inverse limit. Since π1(M,xρ) is always finitely presented, it is a count-
able group. Thus, the kernel of ρ# : π̂1(M, x0) → π1(M,xρ) must be non-trivial.
We conclude this technical digression with a basic question:

Problem 3.10.5. Let ρ : M → Z be a resolution of a closed saturated subset of
the foliated manifold M . How are the subgroups of π1(M,xρ) given by the images

ρ#(π̂1(M, x0)) and ρ#(π
ε′
1 (M, x0)) related to the dynamics of F and the topology

of M?
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It is natural to ask why this problem, and whether these abstract notions
have any applications? One point is that such related ideas have already been
introduced in the foliation literature by Haefliger [108] in his study of Riemannian
pseudogroups, and in the study of approximate orbits in foliation dynamics [28,
130, 139, 140]. We include the above discussion, as the author believes that such
considerations are a fundamental part of the study of shape theory of minimal
sets, and these ideas have not been explored. For example, any difference between
the subgroups appearing in Problem 3.10.5 will be a measure of how far the set Z
is from being stable.

3.11 Shape dynamics

Finally, we introduce the notion of shape dynamics, which is a refinement of the
notion of shape for a closed saturated subset Z ⊂M of the foliated manifold M .
The shape dynamics of a foliated space Z studies the germinal dynamics of a
sequence of coverings of Z which define its shape, and where the open sets are the
union of foliation charts associated to a Γr

q-cocycle over the fundamental groupoid
of FZ . We illustrate this concept with an example.

Let Z ⊂ M be a closed saturated set. Given ε > 0, we can choose a finite
covering of Z by foliation charts of M , whose diameters are bounded above by ε.
Taking the union of these open sets which intersect Z, we obtain a shape approx-
imation Z ⊂ Vε ⊂ M . The shape of Z can then be defined by the collection of
open neighborhoods {Vε | ε = 1/�, � = 1, 2, . . .} for example.

Associated to each leafwise path τ : [0, 1]→ Z, its holonomy map hτ can be
defined using a covering of Z by foliation charts. In particular, defining the shape
approximations of Z using foliation charts yields well-defined germinal holonomy
along all leafwise paths in Z. The collection of all such holonomy maps defines the
shape dynamics of Z.

In terms of the sheaf-theoretic approach to foliations of Haefliger’s thesis
[105, 107], the foliation F defines a Γr

q-cocycle over the fundamental groupoid ΓF
of F . A closed saturated subset Z ⊂ M induces a subgroupoid ΓF|Z ⊂ ΓF given
by the germinal holonomy along leafwise paths of F which lie in Z. That is, a
shape approximation to a closed saturated subset of M yields more than just the
topological shape of Z: it also yields a ΓF -cocycle on the shape approximations.

Now consider the restriction of the ΓF -cocycle defined by F to the elements
of πε

1(M, x0). This is well defined, as the germinal holonomy depends only on the
leafwise homotopy class of the path. We thus obtain the holonomy along “almost
closed leafwise paths”, a concept that has a long tradition in foliation folklore.
Shape theory simply adds some additional formal structure to their consideration.

This notion is closely associated to the concept of “germinal holonomy” in-
troduced by Timothy Gendron [92, 93]. A related construction has been used by
André Haefliger in his study of the isometry groups associated to the holonomy
along a fixed leaf of a Riemannian foliation [108].
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The study of foliation entropy, at its most technical level, often relies on
the transformations induced by restriction of the ΓF -cocycle to the elements of
πε
1(M, x0), for ε > 0 sufficiently small. This is seen in the works [28, 130, 139, 140],

and also in the proof of Theorem 3.6.15 in [124].
Motivated by these examples, we state a very general problem:

Problem 3.11.1. Given a minimal set M, what can we say about the “shape dy-
namics” of M?

For example, the local entropy hloc(GF , w) introduced in Definition 3.5.2 is
an invariant of the shape dynamics of Z with w ∈ Z. What other dynamical
invariants can be formulated in terms of shape?

The ΓF -cocycle defined by F is functorial, so if we are given a resolution
ρ : M→ Z, then the ΓF -cocycle over Z lifts to a ΓF,ρ-cocycle over M. Moreover,
the derivative of the holonomy maps defines a functor D : ΓF → GL(q,R), thus a
resolution ρ yields a GL(q,R)-valued cocycle D ◦ ρ over the homotopy groupoid
of M. We can then define, exactly as in Section 3.3, the normal exponents for the
geodesic flow in shape dynamics.

We say that the shape dynamics for ρ : M → Z ⊂ M has hyperbolic type if
ρ(M)∩HF �= ∅. The normal cocycle for the leafwise geodesic flow on M then has
non-zero exponents. What restrictions does this place on the dynamics of M and
the map ρ?

Finally, we reveal the point of our fascination with the formulation of the
dynamics of a foliation in terms of the shape approximations of its closed in-
variant sets. Recall that the simplicial geometric realization functor (as described
for example in [138]) yields a classifying map ν : M → BGL(q,R) ∼= BO(q) of
the normal bundle to F , and hence induces the universal normal bundle maps
ν̂ : BΓr

q → BO(q) for all r ≥ 1. The celebrated Bott vanishing theorem [38] and
the very deep works of Tsuboi [194, 195] show that, in fact, there is a strong
interaction between the degree of differentiability Cr, the topology of the classi-
fying map ν̂, and the dynamics of foliations. One of the deepest open problems of
foliation theory is to understand these relationships for r > 1.

The functoriality of the construction of classifying maps implies that if

ρ : M −→ Z ⊂M

is a resolution of Z, then we obtain a universal classifying map

HM : BΓF,M −→ BΓr
q

which depends only on the shape dynamics of M. We can then formulate a very
general version of the “Sullivan conjecture” concerning the non-triviality of the
Godbillon–Vey classes, extended to the shape dynamics of matchbox manifolds.

Question 3.11.2. How is the homotopy class of HM related to the shape dynamics
of M?
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The point of this problem is the folklore concept conveyed to the author
by Hans Sah around 1981, that the topology of the space BΓr

q is somehow re-
lated to algebraic K-theory invariants of number fields, and the maps HM rep-
resent the sort of generalized cycles for such a theory. The motivation for this is
the celebrated Mather–Thurston theorem [151, 189], which states that the coho-
mology of the pointed iterated loop space ΩqBΓr

q is naturally isomorphic to the
group cohomology of the group of compactly supported diffeomorphisms of Rq, so
H∗(ΩqBΓr

q;Z) ∼= H∗(Diffr
c(R

q);Z). The point of Question 3.11.2, is to ask whether
the “cycles” represented by matchbox manifolds resolving a minimal set fit into
this scheme, and if so, how the homology classes obtained are related to dynamics
in a germinal neighborhood of the minimal set. (For more on this, see [128, 129].)

Appendix A. Homework

Monday

Characterize the transversally hyperbolic invariant probability measures μ∗ for
the foliation geodesic flow of a given foliation.

Tuesday

Classify the foliations with subexponential orbit complexity and distal transverse
structure.

Wednesday

Find conditions on the geometry of a foliation such that exponential orbit growth
implies positive entropy.

Thursday

Find conditions on the Lyapunov spectrum and invariant measures for the geodesic
flow which imply positive entropy.

Friday

Characterize the exceptional minimal sets of zero entropy.

Extra Credit

Which matchbox manifolds are homeomorphic to an inverse limit of covering maps
of branched n-manifolds?
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[24] M. Bermúdez and G. Hector, Laminations hyperfinies et revêtements, Er-
godic Theory Dynam. Systems 26 (2006), 305–339.

[25] S. Bezuglyi, J. Kwiatkowski and K. Medynets, Approximation in ergodic
theory, Borel, and Cantor dynamics, In: Algebraic and Topological Dynamics,
39–64, Contemp Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005.

[26] S. Bezuglyi and K. Medynets, Full groups, flip conjugacy, and orbit equiva-
lence of Cantor minimal systems, Colloq. Math. 110 (2008), 409–429.

[27] R.H. Bing, A simple closed curve is the only homogeneous bounded plane
continuum that contains an arc, Canad. J. Math. 12 (1960), 209–230.



Bibliography 139

[28] A. Bís and P. Walczak, Pseudo-orbits, pseudoleaves and geometric entropy
of foliations, Ergodic Theory Dynam. Systems 18 (1998), 1335–1348.

[29] A. Bís and P. Walczak, Entropy of distal groups, pseudogroups, foliations
and laminations, Ann. Polon. Math. 100 (2010), 45–54.

[30] A. Bís, H. Nakayama and P. Walczak, Locally connected exceptional minimal
sets of surface homeomorphisms, Ann. Inst. Fourier (Grenoble), 54 (2004),
711–731.

[31] A. Bís, H. Nakayama and P. Walczak, Modelling minimal foliated spaces
with positive entropy, Hokkaido Math. J. 36 (2007), 283–310.

[32] A. Bís, S. Hurder, and J. Shive, Hirsch foliations in codimension greater
than one, In: Foliations 2005, 71–108, World Scientific Publishing Co. Inc.,
River Edge, N.J., 2006.

[33] A. Bís and S. Hurder, Markov minimal sets of foliations, in preparation,
2011.

[34] E. Blanc, Propriétées Génériques des Laminations, Ph.D.Thesis, Université
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[96] É Ghys, Laminations par surfaces de Riemann, Panor. Synthèses, 8 (1999),
49–95.



Bibliography 143
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[107] A. Haefliger, Groupöıdes d’holonomie et classifiants Asterisque 116 (1984),
70-97.

[108] A. Haefliger, Leaf closures in Riemannian foliations, In: A Fête of Topology,
3–32, Academic Press, Boston, MA, 1988.

[109] A. Haefliger, Foliations and compactly generated pseudogroups, In: Folia-
tions: Geometry and Dynamics (Warsaw, 2000), 275–295, World Sci. Publ.,
River Edge, NJ, 2002.
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[208] P. Walczak, Expansion growth, entropy and invariant measures of distal
groups and pseudogroups of homeo- and diffeomorphisms, Discrete Contin.
Dyn. Syst. 33 (2013), 4731–4742.

[209] C.T.C. Wall, Lectures on C∞-stability and classification, In: Proceedings of
Liverpool Singularities Symposium, I (1969/70), 178–206, Lecture Notes in
Math. vol. 192, Springer-Verlag, 1971.

[210] R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967),
473–487.

[211] R. F. Williams, Classification of one dimensional attractors, In: Global Anal-
ysis (Proc. Sympos. Pure Math., vol. XIV, Berkeley, 1968), 341–361, Amer.
Math. Soc., Providence, RI, 1970.

[212] R. F. Williams, Expanding attractors, Publ. Math. Inst. Hautes Études Sci.
43 (1974), 169–203.



Chapter 4

Transversal Dirac Operators on
Distributions, Foliations, and
G-Manifolds

Ken Richardson

Foreword

In these lectures, we investigate generalizations of the ordinary Dirac operator to
manifolds with additional structure. In particular, if the manifold comes equipped
with a distribution and an associated Clifford algebra action on a bundle over the
manifold, one may define a transversal Dirac operator associated to this struc-
ture. We investigate the geometric and analytic properties of these operators, and
we apply the analysis to the settings of Riemannian foliations and of manifolds
endowed with Lie group actions. Among other results, we show that although a
bundle-like metric on the manifold is needed to define the basic Dirac operator on
a Riemannian foliation, its spectrum depends only on the Riemannian foliation
structure.

Using these ideas, we produce a type of basic cohomology that satisfies
Poincaré duality on transversally oriented Riemannian foliations. Also, we show
that there is an Atiyah–Singer type theorem for the equivariant index of operators
that are transversally elliptic with respect to a compact Lie group action. This
formula relies heavily on the stratification of the manifold with group action and
contains eta invariants and curvature forms.

These notes contain exercises at the end of each section and are meant to be
accessible to graduate students.
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152 Chapter 4. Transversal Dirac Operators

4.1 Introduction to ordinary Dirac operators

4.1.1 The Laplacian

The Laplace operator (or simply, Laplacian) is the famous differential operator Δ
on Rn defined by

Δh = −
n∑

j=1

∂2h

∂x2
j

, h ∈ C∞(Rn).

The solutions to the equation Δh = 0 are the harmonic functions. This operator
is present in both the heat equation and wave equation of physics.

Heat equation:
∂u(t, x)

∂t
+Δxu(t, x) = 0,

Wave equation:
∂2u(t, x)

∂t2
+Δxu(t, x) = 0 .

The sign of the Laplacian is chosen so that it is a nonnegative operator. If 〈u, v〉
denotes the L2 inner product on complex-valued functions on Rn, by integrating
by parts, we see that 〈

Δu, u
〉
=

∫
Rn

(
Δu
)
u =

∫
Rn

∣∣∇u
∣∣2

if u is compactly supported, where ∇u =
(

∂u
∂x1

, . . . , ∂u
∂xn

)
is the gradient vector.

The calculation verifies the nonnegativity of Δ.
The same result holds if instead the Laplace operator acts on the space of

smooth functions on a closed Riemannian manifold (compact, without boundary);
the differential operator is modified in a natural way to account for the metric.
That is, if the manifold is isometrically embedded in Euclidean space, then the
Laplacian of a function on that manifold agrees with the Euclidean Laplacian
above, if that function is extended to be constant in the normal direction in a
neighborhood of the embedded submanifold. One may also define the Laplacian
on differential forms in precisely the same way. The Euclidean Laplacian on forms
satisfies

Δ[u(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxip ] = (Δu)(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxip .

These standard formulas for the Laplace operator suffice if the Riemannian
manifold is flat (for example, flat tori), but it is convenient to give a coordinate-free
description for this operator. If (M, g) is a smooth manifold with metric g = ( · , · ),
then the volume form on M satisfies dvol =

√
det g dx. The metric induces an

isomorphism vp → v�p between vectors and 1-forms at p ∈M , given by

v�p(wp) = (vp, wp), wp ∈ TpM.
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Thus, given an orthonormal basis {ej : 1 ≤ j ≤ n} of the tangent space TpM ,
we declare the corresponding dual basis {e�j : 1 ≤ j ≤ n} to be orthonormal, and

in general we declare {e�α = e�α1
∧ · · · ∧ e�αr

}|α|=k to be an orthonormal basis of
r-forms at a point. Then the L2 inner product of r-forms on M is defined by

〈γ, β〉 =
∫
M

(γ, β) dvol.

Next, if d : Ωr(M)→ Ωr+1(M) is the exterior derivative on smooth r-forms,
we define δ : Ωr+1(M)→ Ωr(M) to be the formal adjoint of d with respect to the
L2 inner product. That is, if ω ∈ Ωr+1(M), we define δω by requiring

〈γ, δω〉 = 〈dγ, ω〉

for all γ ∈ Ωr(M). Then the Laplacian on differential r-forms on M is defined to
be

Δ = δd+ dδ : Ωr(M) −→ Ωr(M).

It can be shown that Δ is an essentially self-adjoint operator. The word essentially
means that the space of smooth forms needs to be closed with respect to a certain
Hilbert space norm, called a Sobolev norm.

We mention that in many applications vector-valued Laplacians and Lapla-
cians on sections of vector bundles are used.

Exercise 1. Explicitly compute the formal adjoint δ for d restricted to compactly
supported forms in Euclidean space, and verify that the δd + dδ agrees with the
Euclidean Laplacian on r-forms.

Exercise 2. Show that a smooth r-form α ∈ Ωr(M) is harmonic, meaning that
Δα = 0, if and only if dα and δα are both zero.

Exercise 3. Explicitly compute the set of harmonic r-forms on the 2-dimensional
flat torus T 2 = R2/Z2. Verify the Hodge Theorem in this specific case; that is,
show that the space of harmonic r-forms is isomorphic to the r-dimensional de
Rham cohomology group Hr(M).

Exercise 4. Suppose that α is a representative of a cohomology class in Hr(M).
Show that α is a harmonic form if and only if α is the element of the cohomology
class with minimum L2-norm.

Exercise 5. If (gij) is the local matrix for the metric with gij =
(

∂
∂xi

, ∂
∂xj

)
, show

that the matrix (gij) defined by gij = (dxi, dxj) is the inverse of the matrix (gij).

Exercise 6. If α =
∑n

j=1 αj(x) dxj is a one-form on a Riemannian manifold of

dimension n, where gij = (dxi, dxj) is the local metric matrix for one-forms,
verify that the formal adjoint δ satisfies

δ(α) = − 1
√
g

∑
i,j

∂

∂xi
(gij

√
g αj).
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Exercise 7. Show that if f ∈ C∞(M), then∫
M

Δf dvol = 0.

4.1.2 The ordinary Dirac operator

The original motivation for constructing a Dirac operator was the need of a
first-order differential operator whose square is the Laplacian. Dirac needed such
an operator in order to make some version of quantum mechanics that is com-
patible with special relativity. Specifically, suppose that D =

∑n
j=1 cj

∂
∂xj

is a

first-order, constant-coefficient differential operator on Rn such that D2 is the
ordinary Laplacian on Rn. Then one is quickly led to the equations

c2i = −1,
cicj + cjci = 0, i �= j.

Clearly, this is impossible if we require each cj ∈ C. However, if we allow matrix
coefficients, we are able to find such matrices; they are called Clifford matrices. In
the particular case of R3, we may use the famous Pauli spin matrices

c1 =

(
0 i
i 0

)
, c2 =

(
0 1

−1 0

)
, c3 =

(
i 0
0 −i

)
.

The vector space Ck on which the matrices and derivatives act is called the vector
space of spinors. It can be shown that the minimum dimension k satisfies that
k = 2�n/2�. The matrices can be used to form an associated Clifford multiplication
of vectors, written c(v), defined by

c(v) =

n∑
j=1

vjcj ,

where v = (v1, . . . , vn). Note that c : Rn → End(Ck) satisfies

c(v)c(w) + c(w)c(v) = −2(v, w), v, w ∈ Rn.

If M is a closed Riemannian manifold, we desire to find a Hermitian vec-
tor bundle E → M and a first-order differential operator D : Γ(E) → Γ(E) on
sections of E such that its square is a Laplacian plus a lower-order differential
operator. This implies that each Ex is a Cl(TxM)-module, where Cl(TxM) is the
subalgebra of EndC(Ex) generated by Clifford multiplication of tangent vectors.
Then the Dirac operator associated to the Clifford module E is defined for a local
orthonormal frame (ej)

n
j=1 of TM to be

D =

n∑
j=1

c(ej)∇ej ,
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where c denotes Clifford multiplication and where ∇ is a metric connection on E
satisfying the compatibility condition

∇V (c(W )s) = c(∇V W )s+ c(W )∇V s

for all sections s ∈ Γ(E) and vector fields V,W ∈ Γ(TM). We also require that
Clifford multiplication of vectors is skew-adjoint with respect to the L2 inner
product, meaning that

〈c(v)s1, s2〉 = −〈s1, c(v)s2〉

for all v ∈ Γ(TM) and s1, s2 ∈ Γ(E). It can be shown that the expression for D
above is independent of the choice of orthonormal frame of TM . In the case where
E has the minimum possible rank k = 2�n/2�, we call E a complex spinor bundle
and D a spinc Dirac operator. If such a bundle exists over a smooth manifold M ,
we say that M is spinc. There is a mild topological obstruction to the existence of
such a structure: the third integral Stiefel–Whitney class of TM must vanish.

Often the bundle E comes equipped with a grading E = E+ ⊕ E− such
that D maps Γ(E+) to Γ(E−) and vice versa. In these cases, we often restrict our
attention to D : Γ(E+)→ Γ(E−).

Examples of ordinary Dirac operators are as follows:

• The de Rham operator is defined to be

d+ δ : Ωeven(M) −→ Ωodd(M)

from even forms to odd forms. In this case, the Clifford multiplication is given
by c(v) = v� ∧−i(v), where v ∈ TxM and i(v) denotes interior product, and
∇ is the ordinary Levi-Civita connection extended to forms.

• If M is even-dimensional, the signature operator is defined to be

d+ δ : Ω+(M) −→ Ω−(M)

from self-dual to anti-self-dual forms. This grading is defined as follows. Let
∗ denote the Hodge star operator on forms, defined as the unique endomor-
phism of the bundle of forms such that ∗ : Ωr(M)→ Ωn−r(M) and

α ∧ ∗β = (α, β) dvol, α, β ∈ Ωr(M).

Then observe that the operator

� = ir(r−1)+n
2 ∗ : Ωr(M) −→ Ωn−r(M)

satisfies �2 = 1. Then it can be shown that d+ δ anticommutes with � and
thus maps the +1 eigenspace of �, denoted Ω+(M), to the −1 eigenspace
of �, denoted Ω−(M). Even though the bundles have changed from the
previous example, the expression for Clifford multiplication is the same.
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• If M is complex, then the Dolbeault operator is defined to be

∂ + ∂
∗
: Ω0,even(M) −→ Ω0,odd(M),

where the differential forms involve wedge products of dzj and the differential
∂ differentiates only with respect to the zj variables.

• The spinc Dirac operator has already been mentioned above. The key point
is that the vector bundle S → M in this case has the minimum possible
dimension. When M is even-dimensional, the spinor bundle decomposes as
S+ ⊕ S−, and D : Γ(S+) → Γ(S−). The spinor bundle S is unique up to
tensoring with a complex line bundle.

For more information on Dirac operators, spin manifolds, and Clifford alge-
bras, we refer the reader to [38] and [53]. Often the operators described above
are called Dirac-type operators, with the word “Dirac operator” reserved for the
special examples of the spin or spinc Dirac operator. Elements of the kernel of a
spin or spinc Dirac operator are called harmonic spinors.

Exercise 8. Let the Dirac operator D on the two-dimensional torus T 2 = R2/Z2

be defined using c1 and c2 of the Pauli spin matrices. Find a decomposition of
the bundle as S+ ⊕ S−, and calculate ker(D|S+) and ker(D|S−). Find all the
eigenvalues and corresponding eigensections of D+ = D|S+ .

Exercise 9. On an n-dimensional manifold M , show that ∗2 = (−1)r(n−r) and
�2 = 1 when restricted to r-forms.

Exercise 10. On R4 with metric ds2 = dx2
1 + 4dx2

2 + dx2
3 + (1 + exp(x1))

2dx2
4, let

ω = x2
1x2dx2 ∧ dx4. Find ∗ω and �ω.

Exercise 11. Calculate the signature operator on T 2, and identify the subspaces
Ω+(T 2) and Ω−(T 2).

Exercise 12. Show that −i ∂
∂θ is a Dirac operator on S1 = {eiθ : θ ∈ R}. Find all

the eigenvalues and eigenfunctions of this operator.

Exercise 13. Show that if S and T are two anticommuting linear transformations
from a vector space V to itself, and Eλ denotes the eigenspace of S corresponding
to an eigenvalue λ, then TEλ is the eigenspace of S corresponding to the eigen-
value −λ.
Exercise 14. Show that if δr is the adjoint of d : Ωr−1(M)→ Ωr(M), then

δr = (−1)nr+n+1 ∗ d ∗

on Ωr(M).

Exercise 15. Show that if the dimension of M is even and δr is the adjoint of
d : Ωr−1(M)→ Ωr(M), then

δr = −�d�
on Ωr(M). Is this true if the dimension is odd?



4.1. Introduction to ordinary Dirac operators 157

Exercise 16. Show that d+ δ maps Ω+(M) to Ω−(M).

Exercise 17. Show that, if we write the Dirac operator for R3

D = c1
∂

∂x1
+ c2

∂

∂x2
+ c3

∂

∂x3

using the Pauli spin matrices in geodesic polar coordinates

D = Z

(
∂

∂r
+DS

)
,

then ZDS restricts to a spinc Dirac operator on the unit sphere S2, and Z is
Clifford multiplication by the vector ∂

∂r .

Exercise 18. Show that d + δ =
∑n

j=1 c(ej)∇ej with the definition of Clifford
multiplication given in the notes.

Exercise 19. Show that the expression
∑n

j=1 c(ej)∇ej for the Dirac operator is
independent of the choice of orthonormal frame.

4.1.3 Properties of Dirac operators

Here we describe some very important properties of Dirac operators. First, Dirac
operators are elliptic. Both the Laplacian and Dirac operators are examples of such
operators. Very roughly, the word elliptic means that the operators differentiate
in all possible directions. To state more precisely what this means, we need to
discuss what is called the principal symbol of a differential (or pseudodifferential)
operator.

Very roughly, the principal symbol is the set of matrix-valued leading order
coefficients of the operator. If E → M and F → M are two vector bundles, and
P : Γ(E) → Γ(F ) is a differential operator of order k acting on sections, then in
local coordinates of a local trivialization of the vector bundles we may write

P =
∑
|α|=k

sα(x)
∂k

∂xα
+ lower order terms,

where the sum is over all possible multi-indices α = (α1, . . . , αk) of length |α| = k,
and each sα(x) ∈ Hom(Ex, Fx) is a linear transformation. If ξ =

∑
ξjdxj ∈ T ∗

xM
is a nonzero covector at x, we define the principal symbol σ(P )(ξ) of P at ξ to be

σ(P )(ξ) = ik
∑
|α|=k

sα(x)ξ
α ∈ Hom(Ex, Fx),

with ξα = ξα1ξα2 · · · ξαk
(some people leave out the ik). It turns out that by

defining it this way, it is invariant under coordinate transformations. One coor-
dinate-free definition of σ(P )x : T

∗
x (M) → Hom(Ex, Fx) is as follows. For any
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ξ ∈ T ∗
x (M), choose a locally-defined function f such that dfx = ξ. Then we define

the operator

σm(P )(ξ) = lim
t→∞

1

tm
(e−itfPeitf ),

where (e−itfPeitf )(u) = e−itf (P (eitfu)). Then the order k of the operator and its
principal symbol are defined to be

k = sup {m : σm(P )(ξ) <∞} and σ(P )(ξ) = σk(P )(ξ).

With this definition, the principal symbol of any differential (or even pseudo-
differential) operator can be found. Pseudodifferential operators are more general
operators that can be defined locally using the Fourier transform and include such
operators as the square root of the Laplacian.

An elliptic differential (or pseudodifferential) operator P on M is defined to
be an operator such that its principal symbol σ(P )(ξ) is invertible for all nonzero
ξ ∈ T ∗M .

From the exercises at the end of this section, we see that the symbol of any
Dirac operator D =

∑
c(ej)∇ej is

σ(D)(ξ) = ic(ξ#),

and the symbol of the associated Laplacian D2 is

σ(D2) = (ic(ξ#))2 = ‖ξ‖2 ,

which is clearly invertible for ξ �= 0. Therefore both D and D2 are elliptic.
We say that an operator P is strongly elliptic if there exists c > 0 such that

σ(D)(ξ) ≥ c |ξ|2

for all nonzero ξ ∈ T ∗M . The Laplacian and D2 are strongly elliptic.
Following are important properties of elliptic operators P , which now apply

to Dirac operators and their associated Laplacians.

• Elliptic regularity. If the coefficients of P are smooth and Pu is smooth, then
u is smooth. As a consequence, if the order of P is greater than zero, then
the kernel and all other eigenspaces of P consist of smooth sections.

• Elliptic operators are Fredholm when the correct Sobolev spaces of sections
are used.

• Ellipticity implies that the spectrum of P consists of eigenvalues. Strong
ellipticity implies that the spectrum is discrete and has the only limit point
at infinity. In particular, the eigenspaces are finite-dimensional and consist of
smooth sections. This now applies to any Dirac operator, because its square
is strongly elliptic.
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• If P is a second-order elliptic differential operator with no 0-th order terms,
strong ellipticity implies the maximum principle for the operator P .

• Many inequalities for elliptic operators follow, like G̊arding’s inequality, el-
liptic estimates, etc.

See [53], [54], and [57] for more information on elliptic differential and pseudo-
differential operators on manifolds.

Next, any Dirac operator D : Γ(E) → Γ(E) is formally self-adjoint, mean-
ing that when restricted to smooth compactly-supported sections u, v ∈ Γ(E) it
satisfies

〈Du, v〉 = 〈u,Dv〉 .

Since D is elliptic, if M is closed then it follows that D is essentially self-adjoint,
meaning that there is a Hilbert space H1(E) such that Γ(E) ⊂ H1(E) ⊂ L2(E)
and the closure of D in H1(E) is a truly self-adjoint operator defined on the whole
space. In this particular case, H1(E) is an example of a Sobolev space, which is the
closure of Γ(E) with respect to the norm ‖u‖1 = ‖u‖+ ‖Du‖, where ‖ · ‖ denotes
the ordinary L2-norm.

We now show the proof that D is formally self-adjoint. If the local bundle
inner product on E is ( · , · ), we have

(Du, v) =
∑

(c(ej)∇eju, v) =
∑

−(∇eju, c(ej)v)

=
∑(

− ej(u, c(ej)v) + (u,∇ej (c(ej)v))
)
,

since c(ej) is skew-adjoint and ∇ is a metric connection. Using the compatibility
of the connection, we have

(Du, v) =
∑(

− ej(u, c(ej)v) + (u, c(∇ejej)v) + (u, c(ej)∇ejv)
)
.

Next, we use the fact that we are allowed to choose the local orthonormal frame in
any way we wish. If we are evaluating this local inner product at a point x ∈ M ,
we choose the orthonormal frame (ei) so that all covariant derivatives of ei vanish
at x. Now, the middle term above vanishes, and

(Du, v) = (u,Dv) +
∑

−ej(u, c(ej)v).

Next, if ω denotes the one-form defined by ω(X) = (u, c(X)v) for X ∈ Γ(TM),
then an exercise at the end of this section implies that

(δω)(x) =
(∑

−ej(u, c(ej)v)
)
(x),

with our choice of orthonormal frame. Hence,

(Du, v) = (u,Dv) + δω,
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which is a general formula now valid at all points of M . After integrating over M
we have

〈Du, v〉 = 〈u,Dv〉+
∫
M

δω dvol

= 〈u,Dv〉+
∫
M

(d(1), ω) dvol

= 〈u,Dv〉 .

Thus, D is formally self-adjoint.

Exercise 20. Find the principal symbol of the wave operator ∂2

∂t2 −
∂2

∂x2 on R2, and
determine if it is elliptic.

Exercise 21. If P1 and P2 are two differential operators such that the composition
P1P2 is defined, show that

σ(P1P2)(ξ) = σ(P1)(ξ)σ(P2)(ξ).

Exercise 22. Prove that if D =
∑

c(ej)∇ej is a Dirac operator, then

σ(D)(ξ) = ic(ξ#) and σ(D2)(ξ) = ‖ξ‖2

for all ξ ∈ T ∗M . Use the coordinate-free definition.

Exercise 23. Show that if ω is a one-form on M , then

(δω)(x) = −

⎛⎝ n∑
j=1

ej(ω(ej))

⎞⎠ (x),

if (e1, . . . , en) is a local orthonormal frame of TM chosen so that

(∇ejek)(x) = 0

at x ∈M , for all j, k ∈ {1, . . . , n}.

4.1.4 The Atiyah–Singer Index Theorem

Given Banach spaces S and T , a bounded linear operator L : S → T is called
Fredholm if its range is closed and its kernel and cokernel T/L(S) are finite-di-
mensional. The index of such an operator is defined to be

ind(L) = dimker(L)− dim coker(L),

and this index is constant on continuous families of such L. In the case where S
and T are Hilbert spaces, this is the same as

ind(L) = dimker(L)− dimker(L∗).
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The index determines the connected component of L in the space of Fredholm
operators. We will be specifically interested in this integer in the case where L is
a Dirac operator.

For the case of the de Rham operator, we have

ker(d+ δ) = ker(d+ δ)2 = kerΔ,

so that
Hr(M) = ker((d+ δ)|Ωr )

is the space of harmonic forms of degree r, which by the Hodge theorem is iso-
morphic to Hr(M), the r-th de Rham cohomology group. Therefore,

ind((d+ δ)|Ωeven) = dimker((d+ δ)|Ωeven)− dimker((d+ δ)|Ωeven)∗

= dimker((d+ δ)|Ωeven)− dimker((d+ δ)|Ωodd)

= χ(M),

the Euler characteristic of M .
In general, suppose that D is an elliptic operator of order m on sections of a

vector bundle E± over a smooth, compact manifold M . Let Hs(Γ(M,E±)) denote
the Sobolev s-norm completion of the space of sections Γ(M,E) with respect
to a chosen metric. Then D can be extended to be a bounded linear operator
Ds : H

s(Γ(M,E+))→ Hs−m(Γ(M,E−)) that is Fredholm, and ind(D) = ind(Ds)
is well defined and independent of s. In the 1960s, M. F. Atiyah and I. Singer
proved that the index of an elliptic operator on sections of a vector bundle over a
smooth manifold can be calculated by the formula ([5, 6])

ind(D) =

∫
M

ch(σ(D)) ∧ Todd(TCM)

=

∫
M

α(x) dvol(x),

where ch(σ(D)) is a form representing the Chern character of the principal symbol
σ(D), and Todd(TCM) is a form representing the Todd class of the complexified
tangent bundle TCM ; these forms are characteristic forms derived from the theory
of characteristic classes and depend on geometric and topological data. The local
expression for the relevant term of the integrand, which is a multiple of the volume
form dvol(x), can be written in terms of curvature and the principal symbol and
is denoted α(x) dvol(x).

Typical examples of this theorem are some classic theorems in global analysis.
As in the earlier example, let D = d+δ from the space of even forms to the space of
odd forms on the manifold M of dimension n, where as before δ denotes the L2-
adjoint of the exterior derivative d. Then the elements of ker(d + δ) are the even
harmonic forms, and the elements of the cokernel can be identified with the odd
harmonic forms. Moreover,

ind(d+ δ) = dimHeven(M)− dimHodd(M) = χ(M),
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and ∫
M

ch(σ(d+ δ)) ∧ Todd(TCM) =
1

(2π)n

∫
M

Pf,

where Pf is the Pfaffian, which is, suitably interpreted, a characteristic form ob-
tained using the square root of the determinant of the curvature matrix. In the case
of 2-manifolds (n = 2), Pf is the Gauss curvature times the area form. Thus, in
this case the Atiyah–Singer Index Theorem yields the generalized Gauss–Bonnet
Theorem.

Another example is the operator D = d+d∗ on forms on an even-dimensional
manifold, this time mapping the self-dual to the anti-self-dual forms. This time the
Atiyah–Singer Index Theorem yields the equation (called the Hirzebruch Signature
Theorem)

Sign(M) =

∫
M

L,

where Sign(M) is the signature of the manifold M , and L is the Hirzebruch
L-polynomial applied to the Pontryagin forms.

If a manifold is spin, then the index of the spin Dirac operator is the Â genus
(“A-roof ” genus) of the manifold. Note that the spin Dirac operator is an example
of a spinc Dirac operator where the spinor bundle is associated to a principal
Spin(n) bundle. Such a structure exists when the second Stiefel–Whitney class is

zero, a stronger condition than the spinc condition. The Â genus is normally a
rational number, but must agree with the index when the manifold is spin.

Different examples of operators yield other classical theorems, such as the
Hirzebruch–Riemann–Roch Theorem, which uses the Dolbeault operator.

All of the first-order differential operators mentioned above are examples of
Dirac operators. If M is spinc, then the Atiyah–Singer Index Theorem reduces to
a calculation of the index of Dirac operators (twisted by a bundle). Because of this
and the Thom isomorphism in K-theory, the Dirac operators and their symbols
play a very important role in proofs of the Atiyah–Singer Index Theorem. For
more information, see [6, 38].

Exercise 24. Prove that if L : H1 → H2 is a Fredholm operator between Hilbert
spaces, then coker(L) ∼= ker(L∗).

Exercise 25. Suppose that P : H → H is a self-adjoint linear operator, and H =
H+ ⊕H− is an orthogonal decomposition. If P maps H+ into H− and vice versa,
prove that the adjoint of the restriction P : H+ → H− is the restriction of P toH−.
Also, find the adjoint of the operator P ′ : H+ → H defined by P ′(h) = P (h).

Exercise 26. Prove that if D is an elliptic operator and Eλ is an eigenspace of
D∗D corresponding to the eigenvalue λ �= 0, then D(Eλ) is the eigenspace of DD∗

corresponding to the eigenvalue λ. Conclude that the eigenspaces of D∗D and
DD∗ corresponding to nonzero eigenvalues have the same (finite) dimension.
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Exercise 27. Let f : C → C be a smooth function, and let L : H → H be a
self-adjoint operator with discrete spectrum. Let Pλ : H → Eλ be the orthogonal
projection to the eigenspace corresponding to the eigenvalue λ. We define the
operator f(L) to be

f(L) =
∑
λ

f(λ)Pλ,

assuming that the right-hand side converges. Assuming f(L), g(L), and f(L)g(L)
converge, prove that f(L)g(L) = g(L)f(L). Also, find the conditions on a function
f such that f(L) = L.

Exercise 28. Show that if P is a self-adjoint Fredholm operator, then

ind(D) = tr(exp(−tD∗D))− tr(exp(−tDD∗))

for all t > 0, assuming that exp(−tD∗D), exp(−tDD∗), and their traces converge.

Exercise 29. Find all homeomorphism types of surfaces S such that a metric g
on S has Gauss curvature Kg that satisfies −5 ≤ Kg ≤ 0 and volume that satisfies
1 ≤Volg(S) ≤ 4.

Exercise 30. Find an example of a smooth closed manifold M such that every
possible metric on M must have nonzero L (the Hirzebruch L-polynomial applied
to the Pontryagin forms).

Exercise 31. Suppose that on a certain manifold the Â-genus is 3
4 . What does this

imply about Stiefel–Whitney classes?

4.2 Transversal Dirac operators on distributions

This section contains some of the results in [46], joint work with I. Prokhorenkov.
The main point of this section is to provide some ways to analyze operators

that are not elliptic, but behave in some ways like elliptic operators on sections
that behave nicely with respect to a designated transverse subbundle Q ⊆ TM .

A transversally elliptic differential (or pseudodifferential) operator P on M
with respect to the transverse distribution Q ⊆ TM is defined to be an operator
such that its principal symbol σ(P )(ξ) is required to be invertible only for all
nonzero ξ ∈ Q∗ ⊆ T ∗M . In later sections, we will be looking at operators that
are transversally elliptic with respect to the orbits of a group action, and in this
case Q is the normal bundle to the orbits, which may have different dimensions at
different points of the manifold. In this section, we will restrict to the case where
Q has constant rank.

Now, let Q ⊂ TM be a smooth distribution, meaning that Q → M is a
smooth subbundle of the tangent bundle. Assume that a Cl(Q)-module structure
on a complex Hermitian vector bundle E is given. We will now define transverse
Dirac operators on sections of E. Similar to the above, M is a closed Riemannian
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manifold, c : Q→ End(E) is the Clifford multiplication on E, and ∇E is a Cl(Q)
connection that is compatible with the metric onM ; that is, Clifford multiplication
by each vector is skew-Hermitian, and we require

∇E
X(c(V )s) = c(∇Q

XV )s+ c(V )∇E
Xs

for all X ∈ Γ(TM), V ∈ ΓQ and s ∈ ΓE.

Remark 4.2.1. For a given distribution Q ⊂ TM , it is always possible to obtain
a bundle of Cl(Q)-modules with Clifford connection from a bundle of Cl(TM)-
Clifford modules, but not all such Cl(Q) connections are of that type.

Let L = Q⊥, let (f1, . . . , fq) be a local orthonormal frame for Q, and let
π : TM → Q be the orthogonal projection. We define the Dirac operator AQ

corresponding to the distribution Q as

AQ =

q∑
j=1

c(fj)∇E
fj . (4.2.1)

This definition is again independent of the choice of orthonormal frame; in fact,
it is the composition of the maps

Γ(E)
∇E

−→ Γ(T ∗M ⊗ E)
∼=−→ Γ(TM ⊗ E)

π−→ Γ(Q⊗ E)
c−→ Γ(E).

We now calculate the formal adjoint of AQ, in precisely the same way that we
showed the formal self-adjointness of the ordinary Dirac operator. Letting (s1, s2)
denote the pointwise inner product of sections of E, we have

(AQs1, s2) =

q∑
j=1

(c(πfj)∇E
fjs1, s2) = −

q∑
j=1

(∇E
fjs1, c(πfj)s2).

Since ∇E is a metric connection,

(AQs1, s2) =
∑(

− fj(s1, c(πfj)s2) + (s1,∇E
fjc(πfj)s2)

)
=
∑(

− fj(s1, c(πfj)s2) + (s1, c(πfj)∇E
fjs2) + (s1, c(π∇M

fj πfj)s2)
)
,

(4.2.2)

by the Cl(Q)-compatibility. Now, we do not have the freedom to choose the frame
so that the covariant derivatives vanish at a certain point, because we know nothing
about the distribution Q. Hence we define the vector fields

V =

q∑
j=1

π∇M
fj fj , HL =

n∑
j=q+1

π∇M
fj fj .

Note that HL is precisely the mean curvature of the distribution L = Q⊥. Further,
letting ω be the one-form defined by

ω(X) = (s1, c(πX)s2),
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and letting (f1, . . . , fq, fq+1, . . . , fn) be an extension of the frame of Q to be an
orthonormal frame of TM ,

δω = −
n∑

j=1

i(fj)∇fjω

= −
n∑

j=1

(fjω(fj)− ω(∇fjfj))

=

n∑
j=1

(
− fj(s1, c(πfj)s2) + (s1, c(π∇M

fj fj)s2)
)

= (s1, c(V +HL)s2) +

n∑
j=1

(−fj(s1, c(πfj)s2))

= (s1, c(V +HL)s2) +

q∑
j=1

(−fj(s1, c(πfj)s2)).

From (4.2.2) we have

(AQs1, s2) = δω − (s1, c(V +HL)s2)

+ (s1, AQs2) + (s1, c(V )s2)

= δω + (s1, AQs2)− (s1, c(H
L)s2).

Thus, by integrating over the manifold (which sends δω to zero), we see that the
formal L2-adjoint of AQ is

A∗
Q = AQ − c(HL).

Since c(HL) is skew-adjoint, the new operator

DQ = AQ −
1

2
c(HL) (4.2.3)

is formally self-adjoint.
A quick look at [15] yields the following.

Theorem 4.2.2 ([46]). For each distribution Q ⊂ TM and every bundle E of
Cl(Q)-modules, the transversally elliptic operator DQ defined by (4.2.1) and (4.2.3)
is essentially self-adjoint.

Remark 4.2.3. In general, the spectrum of DQ is not necessarily discrete. In the
case of Riemannian foliations, we identify Q with the normal bundle of the foli-
ation, and one typically restricts to the space of basic sections. In this case, the
spectrum of DQ restricted to the basic sections is discrete.
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Exercise 32. Let M = T 2 = R2/Z2, and consider the distribution Q defined
by the vectors parallel to (1, r) with r ∈ R. Calculate the operator DQ and its
spectrum, where the Clifford multiplication is just complex number multiplication
(on a trivial bundle Ex = C). Does it make a difference if r is rational?

Exercise 33. With M and Q as in the last exercise, let E be the bundle ∧∗Q∗.
Now calculate DQ and its spectrum.

Exercise 34. Consider the radially symmetric Heisenberg distribution, defined as
follows. Let α ∈ Ω1(R3) be the differential form

α = dz − 1

2
r2 dθ = dz − 1

2
(x dy − y dx).

Note that

dα = −r dr ∧ dθ = −dx ∧ dy,

so that α is a contact form because

α ∧ dα = −dx ∧ dy ∧ dz �= 0

at each point of H. The two-dimensional distribution Q ⊂ R3 is defined as Q =
kerα. Calculate the operator DQ.

Exercise 35. Let (M,α) be a manifold of dimension 2n + 1 with contact form α;
that is, α is a one-form such that

α ∧ (dα)n

is everywhere nonsingular. The distribution Q = kerα is the contact distribution.
Calculate the mean curvature of Q in terms of α.

Exercise 36 (This example is in the paper [46]). Consider the torus M = (R/2πZ)2

with the metric e2g(y)dx2 + dy2 for some 2π-periodic smooth function g. Consider
the orthogonal distributions L = span {∂y} and Q = span {∂x}. Let E be the
trivial complex line bundle over M , and let Cl(Q) and Cl(L) both act on E via
c(∂y) = i = c(e−g(y)∂x). Show that the mean curvatures of these distributions are

HQ = −g′(y)∂y and HL = 0.

From formulas (4.2.1) and (4.2.3),

AL = i∂y and DL = i(∂y +
1

2
g′(y)).

Show that the spectrum σ(DL) = Z is a set consisting of eigenvalues of infinite
multiplicity.
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Exercise 37. In the last example, show that the operator

DQ = ie−g(y)∂x

has spectrum

σ(DQ) =
⋃
n∈Z

n[a, b],

where [a, b] is the range of e−g(y).

4.3 Basic Dirac operators on Riemannian foliations

The results of this section are joint work with G. Habib and can be found in [25]
and [26].

4.3.1 Invariance of the spectrum of basic Dirac operators

Suppose a closed manifold M is endowed with the structure of a Riemannian
foliation (M,F , gQ). The word Riemannian means that there is a metric on the
local space of leaves —a holonomy-invariant transverse metric gQ on the normal
bundle Q = TM/TF . The phrase holonomy-invariant means that the transverse
Lie derivative LXgQ is zero for all leafwise vector fields X ∈ Γ(TF).

We often assume that the manifold is endowed with the additional struc-
ture of a bundle-like metric [47], i.e., the metric g on M induces the metric on
Q 	 NF = (TF)⊥. Every Riemannian foliation admits bundle-like metrics that
are compatible with a given (M,F , gQ) structure. There are many choices, since
one may freely choose the metric along the leaves and also the transverse sub-
bundle NF . We note that a bundle-like metric on a smooth foliation is exactly a
metric on the manifold such that the leaves of the foliation are locally equidistant.
There are topological restrictions to the existence of bundle-like metrics (and thus
Riemannian foliations). Important examples of requirements for the existence of
a Riemannian foliation may be found in [32, 35, 43, 55, 56, 58]. One geometric
requirement is that, for any metric on the manifold, the orthogonal projection

P : L2(Ω(M)) −→ L2(Ω(M,F))

must map the subspace of smooth forms onto the subspace of smooth basic
forms [45]. Recall that basic forms are forms that depend only on the transverse
variables. The space Ω(M,F) of basic forms is defined invariantly as

Ω(M,F) = {β ∈ Ω(M) : i(X)β = 0 and i(X)dβ = 0 for all X ∈ Γ(TF)} .

The basic forms Ω(M,F) are preserved by the exterior derivative, and the result-
ing cohomology is called basic cohomology H∗(M,F). It is known that the basic
cohomology groups are finite-dimensional in the Riemannian foliation case. See
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[18, 19, 21, 30, 33, 35] for facts about basic cohomology and Riemannian folia-
tions. For later use, the basic Euler characteristic is defined to be

χ(M,F) =
∑

(−1)j dimHj(M,F).

We now discuss the construction of the basic Dirac operator, a construction
which requires a choice of bundle-like metric. See [12, 13, 17, 22, 24, 25, 28, 29, 30,
33, 35, 46] for related results. Let (M,F) be a Riemannian manifold endowed with
a Riemannian foliation. Let E → M be a foliated vector bundle (see [32]) that is
a bundle of Cl(Q)-Clifford modules with compatible connection ∇E . This means
that the foliation lifts to a horizontal foliation in TE. Another way of saying this
is that the connection is flat along the leaves of F . When this happens, it is always
possible to choose a basic connection for E —that is, a connection for which the
connection and curvature forms are actually (Lie algebra-valued) basic forms.

Let ANF and DNF be the associated transversal Dirac operators as in the
previous section. The transversal Dirac operator ANF fixes the basic sections
Γb(E) ⊂ Γ(E) (i.e., Γb(E) = {s ∈ Γ(E) : ∇E

Xs = 0 for all X ∈ Γ(TF)}), but is not
symmetric on this subspace. Let Pb : L

2(Γ(E)) → L2(Γb(E)) be the orthogonal
projection, which can be shown to map smooth sections to smooth basic sections.
We define the basic Dirac operator to be

Db = PbDNFPb = ANF −
1

2
c(κ�

b) : Γb(E) −→ Γb(E),

PbANFPb = ANFPb, Pbc(κ
�
b)Pb = c(κ�

b)Pb.

Here, κb is the L2-orthogonal projection of κ onto the space of basic forms as
explained above, and κ�

b is the corresponding basic vector field. Then Db is an
essentially self-adjoint, transversally elliptic operator on Γb(E). The local formula
for Db is

Dbs =

q∑
i=1

ei · ∇E
eis−

1

2
κ�
b · s,

where {ei}i=1,...,q is a local orthonormal frame of Q. Then Db has discrete spec-
trum ([13, 17, 22]).

An example of the basic Dirac operator is as follows. Using the bundle ∧∗Q∗

as the Clifford bundle with Clifford action e · = e∗ ∧ −e∗� in analogy to the
ordinary de Rham operator, we have

Db = d+ δb −
1

2
κb�−

1

2
κb∧ = d̃+ δ̃.

One might have incorrectly guessed that d + δb is the basic de Rham opera-
tor, in analogy to the ordinary de Rham operator, for this operator is essentially
self-adjoint, and the associated basic Laplacian yields basic Hodge theory that
can be used to compute the basic cohomology. The square D2

b of this operator and
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the basic Laplacian Δb do have the same principal transverse symbol. In [25], we
showed the invariance of the spectrum of Db with respect to a change of metric
on M in any way that keeps the transverse metric on the normal bundle intact
(this includes modifying the subbundle NF ⊂ TM , as one must do in order to
make the mean curvature basic, for example). That is,

Theorem 4.3.1 ([25]). Let (M,F) be a compact Riemannian manifold endowed
with a Riemannian foliation and basic Clifford bundle E → M . The spectrum of
the basic Dirac operator is the same for every possible choice of bundle-like metric
that is associated to the transverse metric on the quotient bundle Q.

We emphasize that the basic Dirac operator Db depends on the choice of
bundle-like metric, not merely on the Clifford structure and Riemannian folia-
tion structure, since both projections T ∗M → Q∗ and P depend on the leafwise
metric. It is well-known that the eigenvalues of the basic Laplacian Δb (closely
related to D2

b) depend on the choice of bundle-like metric; for example, in [52,
Corollary 3.8], it is shown that the spectrum of the basic Laplacian on functions
determines the L2-norm of the mean curvature on a transversally oriented folia-
tion of codimension 1. If the foliation were taut, then a bundle-like metric could be
chosen so that the mean curvature is identically zero, and other metrics could be
chosen where the mean curvature is nonzero. This is one reason why the invariance
of the spectrum of the basic Dirac operator is a surprise.

Exercise 38. Suppose that S is a closed subspace of a Hilbert space H, and let
L : H → H be a bounded linear map such that L(S) ⊆ S. Let LS denote the
restriction LS : S → S defined by LS(v) = L(v) for all v ∈ S. Prove that the ad-
joint of LS satisfies L∗

S(v) = PSL
∗(v), where L∗ is the adjoint of L and PS is the

orthogonal projection of H onto S. Show that the maximal subspace W ⊆ S such
that L∗

S |W = L∗|W satisfies

W = (S ∩ L(S⊥))⊥S ,

where S⊥ is the orthogonal complement of S in H and the superscript ⊥S denotes
the orthogonal complement in S.
Exercise 39. Prove that the metric on a Riemannian manifold M with a smooth
foliation F is bundle-like if and only if the normal bundle NF with respect to that
metric is totally geodesic.

Exercise 40. Let (M,F) be a transversally oriented Riemannian foliation of codi-
mension q with bundle-like metric, and let ν be the transversal volume form. The
transversal Hodge star operator ∗ : ∧∗ Q∗ → ∧∗Q∗ is defined by

α ∧ ∗β = (α, β)ν

for α, β ∈ Ωk(M,F), so that ∗1 = ν and ∗ν = 1. Let the transversal codifferential
δT be defined by

δT = (−1)qk+q+1∗ d ∗ : Ωk(M,F) −→ Ωk−1(M,F).
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As above, let δb be the adjoint of d with respect to L2(Ω(M,F)). Prove the
following identities:

• ∗2 = (−1)k(q−k) on basic k-forms.

• If β is a basic one-form, then (β�) = (−1)q(k+1)∗(β∧)∗ as operators on basic
k-forms.

• δb = δT + κb�.
• δbν = ∗κb.

• dκb = 0. (Hint: compute δ2bν.)

• ∗d̃ = ±δ̃∗, with d̃ = d− 1
2κb∧ and δ̃ = δb − 1

2κb�.

4.3.2 The basic de Rham operator

From the previous section, the basic de Rham operator is Db = d̃ + δ̃ acting on
basic forms, where

d̃ = d− 1

2
κb∧, δ̃ = δb −

1

2
κb�.

Unlike the ordinary and well-studied basic Laplacian, the eigenvalues of Δ̃ = D2
b

are invariants of the Riemannian foliation structure alone and independent of the
choice of compatible bundle-like metric. The operators d̃ and δ̃ have the following
interesting properties.

Lemma 4.3.2. δ̃ is the formal adjoint of d̃.

Lemma 4.3.3. The maps d̃ and δ̃ are differentials; that is, d̃2 = 0 and δ̃2 = 0. As
a result, d̃ and δ̃ commute with Δ̃ = D2

b, and ker(d̃+ δ̃) = ker(Δ̃).

Let Ωk(M,F) denote the space of basic k -forms (either the set of smooth

forms or the L2-completion thereof), let d̃k and δ̃kb be the restrictions of d̃ and δ̃b
to k-forms, and let Δ̃k denote the restriction of D2

b to basic k-forms.

Proposition 4.3.4 (Hodge decomposition). We have

Ωk(M,F) = im(d̃k−1)⊕ im(δ̃k+1
b )⊕ ker(Δ̃k),

an L2-orthogonal direct sum. Also, ker(Δ̃k) is finite-dimensional and consists of
smooth forms.

We call ker(Δ̃) the space of Δ̃-harmonic forms. In the remainder of this sec-
tion, we assume that the foliation is transversally oriented, so that the transversal
Hodge ∗ operator is well defined.

Definition 4.3.5. We define the basic d̃-cohomology H̃∗(M,F) by

H̃k(M,F) = ker d̃k

im d̃k−1
.
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The following proposition follows from standard arguments and the Hodge
decomposition theorem (Theorem 4.3.4).

Proposition 4.3.6. The finite-dimensional vector spaces H̃k(M,F) and ker Δ̃k =

ker(d̃+ δ̃)k are naturally isomorphic.

We observe that for every choice of bundle-like metric, the differential d̃ =
d − 1

2κb∧ changes, and thus the cohomology groups change. However, note that
κb is the only part that changes; for any two bundle-like metrics gM , g′M and
associated κb, κ

′
b compatible with (M,F , gQ), we have κ′

b = κb+dh for some basic
function h (see [2]). In the proof of the main theorem in [25], we essentially showed
that the basic de Rham operator Db is then transformed by D′

b = eh/2Dbe
−h/2.

Applying this to our situation, we see that (kerD′
b) = eh/2 kerDb, and thus the

cohomology groups have the same dimensions, independent of choices. To see this
in our specific situation, note that if α ∈ Ωk(M,F) satisfies d̃α = 0, then

(d̃)′(eh/2α) =

(
d− 1

2
κb ∧ −

1

2
dh∧
)
(eh/2α)

= eh/2dα+
1

2
eh/2dh ∧ α− eh/2

2
κb ∧ α− eh/2

2
dh ∧ α

= eh/2dα− eh/2

2
κb ∧ α = eh/2(d− 1

2
κb∧)α = eh/2d̃α = 0.

Similarly as in [25], one may show that ker(δ̃)′ = eh/2 ker(δ̃) through a slightly
more difficult computation. Thus, we have

Theorem 4.3.7 (Conformal invariance of cohomology groups). Given a Rieman-
nian foliation (M,F , gQ) and two bundle-like metrics gM and g′M compatible with

gQ, the d̃-cohomology groups H̃k(M,F) are isomorphic, and the isomorphism is
implemented by multiplication by a positive basic function. Further, the eigenval-
ues of the corresponding basic de Rham operators Db and D′

b are identical, and
the eigenspaces are isomorphic via multiplication by that same positive function.

Corollary 4.3.8. The dimensions of H̃k(M,F) and the eigenvalues of Db (and

thus of Δ̃ = D2
b) are invariants of the Riemannian foliation structure (M,F , gQ),

independent of the choice of a compatible bundle-like metric gM .

Exercise 41. Show that if α is any closed form, then (d+ α∧)2 = 0.

Exercise 42. Show that δ̃ is the formal adjoint of d̃.

Exercise 43. Show that a Riemannian foliation (M,F) is taut if and only if

H̃0(M,F) is nonzero. (A Riemannian foliation is taut if there exists a bundle-like
metric for which the leaves are minimal submanifolds and thus have zero mean
curvature.)
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Exercise 44 (This example is contained in [26]). This Riemannian foliation is
the famous Carrière example from [14] in the 3-dimensional case. Let A be a
matrix in SL2(Z) of trace strictly greater than 2. We denote respectively by V1

and V2 the eigenvectors associated with the eigenvalues λ and 1
λ of A, with λ > 1

irrational. Let the hyperbolic torus T3
A be the quotient of T2×R by the equivalence

relation which identifies (m, t) to (A(m), t+ 1). The flow generated by the vector
field V2 is a transversally Lie foliation of the affine group. We denote by K the
holonomy subgroup. The affine group is the Lie group R2 with multiplication
(t, s) · (t′, s′) = (t+ t′, λts′ + s), and the subgroup K is

K =
{
(n, s), n ∈ Z, s ∈ R

}
.

We choose the bundle-like metric (letting (x, s, t) denote the local coordinates in
the V2 direction, V1 direction, and R direction, respectively) as

g = λ−2tdx2 + λ2tds2 + dt2.

Prove that:

• The mean curvature of the flow is κ = κb = log(λ)dt.

• The twisted basic cohomology groups are all trivial.

• The ordinary basic cohomology groups satisfyH0(M,F) ∼= R,H1(M,F) ∼= R
and H2(M,F) ∼= {0}.

• The flow is not taut.

4.3.3 Poincaré duality and consequences

Theorem 4.3.9 (Poincaré duality for d̃-cohomology). Suppose that the Riemannian
foliation (M,F , gQ) is transversally oriented and is endowed with a bundle-like
metric. For each k such that 0 ≤ k ≤ q and any compatible choice of bundle-like
metric, the map ∗ : Ωk(M,F) → Ωq−k(M,F) induces an isomorphism on the

d̃-cohomology. Moreover, ∗ maps ker Δ̃k isomorphically onto ker Δ̃q−k, and it maps
the λ-eigenspace of Δ̃k isomorphically onto the λ-eigenspace of Δ̃q−k, for all λ ≥ 0.

This resolves the problem of the failure of Poincaré duality to hold for stan-
dard basic cohomology (see [34, 56]).

Corollary 4.3.10. Let (M,F) be a smooth transversally oriented foliation of odd
codimension that admits a transverse Riemannian structure. Then the Euler char-
acteristic associated to H̃∗(M,F) vanishes.

The following fact is a new result for ordinary basic cohomology of Rieman-
nian foliations. Ordinary basic cohomology does not satisfy Poincaré duality; in
fact, the top-dimensional basic cohomology group is zero if and only if the foliation
is not taut. Also, leaf closures of a transversally oriented foliation can fail to be
transversally oriented, so orientation is also a tricky issue.
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Corollary 4.3.11. Let (M,F) be a smooth transversally oriented foliation of odd
codimension that admits a transverse Riemannian structure. Then the Euler char-
acteristic associated to the ordinary basic cohomology H∗(M,F) vanishes.
Proof. The basic Euler characteristic is the basic index of the operator

D0 = d+ δb : Ω
even(M,F) −→ Ωodd(M,F).

See [7, 12, 17, 18] for information on the basic index and basic Euler characteristic.
The crucial property for us is that the basic index of D0 is a Fredholm index
and is invariant under perturbations of the operator through transversally elliptic
operators that map the basic forms to themselves. In particular, the family of
operators Dt = d + δb − t

2κb� − t
2κb∧ for 0 ≤ t ≤ 1 meets that criterion, and

D1 = Db is the basic de Rham operator

Db : Ω
even(M,F) −→ Ωodd(M,F).

Thus, the basic Euler characteristic of the basic cohomology complex is the same
as the basic Euler characteristic of the d̃-cohomology complex. The result follows
from the previous corollary. �
Exercise 45. Prove that the twisted cohomology class [κb] is always trivial.

Exercise 46. Prove that if (M,F) is not taut, then the ordinary basic cohomology
satisfies dimH1(M,F) ≥ 1.

Exercise 47. Prove that there exists a monomorphism from H1(M,F) to H1(M).

Exercise 48. True or false: dimH2(M,F) ≤ dimH2(M)?

Exercise 49. Under what conditions is it true that dim H̃1(M,F) ≥ dimH1(M,F)?
Exercise 50 (Hard). Find an example of a Riemannian foliation that is not taut
and whose twisted basic cohomology is nontrivial. (If you give up, find an answer
in [26].)

4.4 Natural examples of transversal Dirac operators on
G-manifolds

The research content of this section is joint work with I. Prokhorenkov, from [46].

4.4.1 Equivariant structure of the orthonormal frame bundle

We first make the important observation that if a Lie group acts effectively by
isometries on a Riemannian manifold, then this action can be lifted to a free
action on the orthonormal frame bundle. Given a complete, connected Riemannian
G-manifold, the action of g ∈ G onM induces an action of dg on TM , which in turn
induces an action of G on the principal O(n)-bundle p : FO → M of orthonormal
frames over M .
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Lemma 4.4.1. The action of G on FO is regular, and the isotropy subgroups cor-
responding to any two points of FO are the same.

Proof. Let H be the isotropy subgroup of a frame f ∈ FO. Then H also fixes
p(f) ∈ M , and since H fixes the frame, its differentials fix the entire tangent
space at p(f). Since it fixes the tangent space, every element of H also fixes every
frame in p−1(p(f)); thus every frame in a given fiber must have the same isotropy
subgroup. Since the elements of H map geodesics to geodesics and preserve dis-
tance, a neighborhood of p(f) is fixed by H. Thus, H is a subgroup of the isotropy
subgroup at each point of that neighborhood. Conversely, if an element of G fixes
a neighborhood of a point x in M , then it fixes all frames in p−1(x), and thus
all frames in the fibers above that neighborhood. Since M is connected, we may
conclude that every point of FO has the same isotropy subgroup H, and H is the
subgroup of G that fixes every point of M . �

Remark 4.4.2. Since this subgroup H is normal, we often reduce the group G to
the group G/H so that our action is effective, in which case the isotropy subgroups
on FO are all trivial.

Remark 4.4.3. A similar idea is also useful in constructing the lifted foliation and
the basic manifold associated to a Riemannian foliation (see [43]).

In any case, the G-orbits on FO are diffeomorphic and form a Riemannian
fiber bundle in the natural metric on FO defined as follows. The Levi-Civita connec-
tion on M determines the horizontal subbundle H of TFO. We construct the local
product metric on FO using a biinvariant fiber metric and the pullback of the met-
ric onM toH; with this metric, FO is a compact Riemannian (G×O(n))-manifold.
The lifted G-action commutes with the O(n)-action. Let F denote the foliation
of G-orbits on FO, and observe that π : FO → FO/G = FO/F is a Riemannian
submersion of compact O(n)-manifolds.

Let E → FO be a Hermitian vector bundle that is equivariant with respect
to the (G×O(n))-action. Let ρ : G→ U(Vρ) and σ : O(n)→ U(Wσ) be irreducible
unitary representations. We define the bundle Eσ →M by

Eσx = Γ(p−1(x), E)σ,

where the superscript σ is defined for an O(n)-module Z by

Zσ = eval(HomO(n)(Wσ, Z)⊗Wσ),

where eval : HomO(n)(Wσ, Z) ⊗Wσ → Z is the evaluation map φ ⊗ w �→ φ(w).
The space Zσ is the vector subspace of Z on which O(n) acts as a direct sum of
representations of type σ. The bundle Eσ is a Hermitian G-vector bundle of finite
rank over M . The metric on Eσ is chosen as follows. For any vx, wx ∈ Eσx , we define

〈vx, wx〉 =
∫
p−1(x)

〈vx(y), wx(y)〉y,E dμx(y),
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where dμx is the measure on p−1(x) induced from the metric on FO; see [12] for
a similar construction.

Similarly, we define the bundle T ρ → FO/G by

T ρ
y = Γ(π−1(y), E)ρ,

and T ρ → FO/G is a Hermitian O(n)-equivariant bundle of finite rank. The metric
on T ρ is

〈vz, wz〉 =
∫
π−1(y)

〈vz(y), wz(y)〉z,E dmz(y),

where dmz is the measure on π−1(z) induced from the metric on FO.
The vector spaces of sections Γ(M, Eσ) and Γ(FO, E)σ can be identified via

the isomorphism
iσ : Γ(M, Eσ) −→ Γ(FO, E)σ,

where for any section s ∈ Γ(M, Eσ), s(x) ∈ Γ(p−1(x), E)σ for each x ∈M , and we
let

iσ(s)(fx) = s(x)|fx
for every fx ∈ p−1(x) ⊂ FO. Then i−1

σ : Γ(FO, E)σ → Γ(M, Eσ) is given by

i−1
σ (u)(x) = u|p−1(x).

Observe that iσ : Γ(M, Eσ) → Γ(FO, E)σ extends to an L2 isometry. Given
u, v ∈ Γ(M, Eσ),

〈u, v〉M =

∫
M

〈ux, vx〉 dx =

∫
M

∫
p−1(x)

〈ux(y), vx(y)〉y,E dμx(y) dx

=

∫
M

(∫
p−1(x)

〈iσ(u), iσ(v)〉E dμx(y)

)
dx

=

∫
FO

〈iσ(u), iσ(v)〉E = 〈iσ(u), iσ(v)〉FO
,

where dx is the Riemannian measure on M ; we have used the fact that p is a
Riemannian submersion. Similarly, we let

jρ : Γ(FO/G, T ρ) −→ Γ(FO, E)ρ

be the natural identification, which extends to an L2-isometry.
Let

Γ(M, Eσ)α = eval(HomG(Vα,Γ(M, Eσ))⊗ Vα).

Similarly, let

Γ(FO/G, T ρ)β = eval(HomG(Wβ ,Γ(FO/G, T ρ))⊗Wβ).
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Theorem 4.4.4. For any irreducible representations ρ : G→ U(Vρ) and σ : O(n)→
U(Wσ), the map j−1

ρ ◦ iσ : Γ(M, Eσ)ρ → Γ(FO/G, T ρ)σ is an isomorphism (with
inverse i−1

σ ◦ jρ) that extends to an L2-isometry.

Exercise 51. Prove that if M is a Riemannian manifold, then the orthonormal
frame bundle of M has trivial tangent bundle.

Exercise 52. Suppose that a compact Lie group acts smoothly on a Riemannian
manifold. Prove that there exists a metric on the manifold such that the Lie group
acts isometrically.

Exercise 53. Let Z2 act on T 2 = R2/Z2 with an action generated by (x, y) �→
(−x, y) for x, y ∈ R/Z.

• Find the quotient space T 2/Z2.

• Find all the irreducible representations of Z2. (Hint: they are all homomor-
phisms ρ : Z2 → U(1).)

• Find the orthonormal frame bundle FO and determine the induced action of
Z2 on FO.

• Find the quotient space FO/Z2 and determine the induced action of O(2) on
this manifold.

Exercise 54. Suppose that M = S2 is the unit sphere in R3. Let S1 act on S2 by
rotations around the x3-axis.

• Show that the oriented orthonormal frame bundle FSO can be identified with
SO(3), which in turn can be identified with RP 3.

• Show that the lifted S1-action on FSO can be realized by the orbits of a
left-invariant vector field on SO(3).

• Find the quotient FSO/S
1.

Exercise 55. Suppose that a compact, connected Lie group acts by isometries on a
Riemannian manifold. Show that all harmonic forms are invariant under pullbacks
by the group action.

4.4.2 Dirac-type operators on the frame bundle

Let E → FO be a Hermitian vector bundle of Cl(NF)-modules that is equivariant
with respect to the (G× O(n))-action. With notation as in previous sections, we
have the transversal Dirac operator ANF defined by the composition

Γ(FO, E)
∇−→ Γ(FO, T

∗FO ⊗ E)
proj−→ Γ(FO, N

∗F ⊗ E)
c−→ Γ(FO, E).

As explained previously, the operator

DNF = ANF −
1

2
c(H)
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is an essentially self-adjoint (G×O(n))-equivariant operator, where H is the mean
curvature vector field of the G-orbits in FO.

From DNF we now construct equivariant differential operators on M and
FO/G, as follows. We define the operators

Dσ
M = i−1

σ ◦DNF ◦ iσ : Γ(M, Eσ) −→ Γ(M, Eσ)

and

Dρ
FO/G = j−1

ρ ◦DNF ◦ jρ : Γ(FO/G, T ρ) −→ Γ(FO/G, T ρ).

For an irreducible representation α : G→ U(Vα), let

(Dσ
M )α : Γ(M, Eσ)α −→ Γ(M, Eσ)α

be the restriction of Dσ
M to sections of G-representation type [α]. Similarly, for an

irreducible representation β : G→ U(Wβ), let

(Dρ
FO/G)

β : Γ(FO/G, T ρ)β −→ Γ(FO/G, T ρ)β

be the restriction of Dρ
FO/G to sections of O(n)-representation type [β]. The propo-

sition below follows from Theorem 4.4.4.

Proposition 4.4.5. The operator Dσ
M is transversally elliptic and G-equivariant,

and Dρ
FO/G is elliptic and O(n)-equivariant, and the closures of these operators are

self-adjoint. The operators (Dσ
M )ρ and (Dρ

FO/G)
σ have identical discrete spectrum,

and the corresponding eigenspaces are conjugate via Hilbert space isomorphisms.

Thus, questions about the transversally elliptic operator Dσ
M can be reduced

to questions about the elliptic operatorsDρ
FO/G for each irreducible ρ : G→ U(Vρ).

In particular, we are interested in the equivariant index, which we will explain
in detail the next section. In the following theorem, indG( · ) denotes the virtual
representation-valued index as explained in [3] and in Section 4.5.1; the result is a
formal difference of finite-dimensional representations if the input is a symbol of
an elliptic operator.

Theorem 4.4.6. Suppose that FO is G-transversally spinc. Then for every transver-
sally elliptic symbol class [u] ∈ Kcpt,G(T

∗
GM) there exists an operator of type D1

M

such that indG(u) = indG(D1
M ).

Exercise 56 (Continuation of Exercise 53).

• Determine a Dirac operator on the trivial C2 bundle over the three-dimen-
sional FO. (Hint: use the Dirac operator from R3.)

• Find the induced operator D1
T 2 on T 2, where 1 denotes the trivial representa-

tion 1 : O(2)→ {1} ∈ U(1). This means the restriction of the Dirac operator
of FO to sections that are invariant under the O(2)-action.



178 Chapter 4. Transversal Dirac Operators

• Identify all irreducible unitary representations of O(2). (Hint: they are all
homomorphisms σ : O(2)→ U(1).)

• Find kerD1
T 2 and kerD1∗

T 2 , and decompose these vector spaces as direct sums
of irreducible unitary representations of O(2).

• For each irreducible unitary representation ρ : Z2 → U(1) of Z2, determine
the induced operator Dρ

FO/Z2
.

Exercise 57 (Continuation of Exercise 54).

• Starting with a transversal Dirac operator on the trivial C2 bundle over
SO(3), find the induced operator D1

S2 on S2.

• Identify all irreducible unitary representations of S1.

• Find kerD1
S2 and kerD1∗

S2 , and decompose these vector spaces as direct sums
of irreducible unitary representations of S1.

Exercise 58 (Continuation of Exercise 55). Suppose that a compact, connected
Lie group G acts on a Riemannian manifold. Show that ker(d+ δ) is the same as
the G-invariant part ker(d + δ)1 of ker(d + δ), and ker(d + δ)ρ = 0 for all other
irreducible representations ρ : G→ U(Vρ).

Exercise 59. Suppose that G = M acts freely on itself. Construct a transversal
Dirac operator acting on a trivial spinor bundle on the orthonormal frame bundle.
Determine the operator D1

G for 1 being the trivial representation of O(n), and
find kerD1

G and ker D1∗
G .

4.5 Transverse index theory for G-manifolds and
Riemannian foliations

The research content and some of the expository content in this section are joint
work with J. Brüning and F.W. Kamber, from [12] and [13].

4.5.1 Introduction: the equivariant index

Suppose that a compact Lie group G acts by isometries on a compact, connected
Riemannian manifold M , and let E = E+ ⊕ E− be a graded, G-equivariant Her-
mitian vector bundle over M . We consider a first-order G-equivariant differential
operator D = D+ : Γ(M,E+) → Γ(M,E−) which is transversally elliptic (as ex-
plained at the beginning of Section 4.4.2). Let D− be the formal adjoint of D+.

The group G acts on Γ(M,E±) by (gs)(x) = g · s(g−1x), and the (possibly
infinite-dimensional) subspaces ker(D) and ker(D∗) are G-invariant. Let ρ : G →
U(Vρ) be an irreducible unitary representation of G, and let χρ = tr(ρ) denote its
character. Let Γ(M,E±)ρ be the subspace of sections that is the direct sum of the
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irreducible G-representation subspaces of Γ(M,E±) that are unitarily equivalent
to the ρ representation. The operators

Dρ : Γ(M,E+)ρ −→ Γ(M,E−)ρ

can be extended to be Fredholm operators, so that each irreducible representation
of G appears with finite multiplicity in kerD±. Let a±ρ ∈ Z+ be the multiplicity
of ρ in ker(D±).

The virtual representation-valued index of D (see [3]) is

indG(D) =
∑
ρ

(a+ρ − a−ρ ) [ρ] ,

where [ρ] denotes the equivalence class of the irreducible representation ρ. The
index multiplicity is

indρ(D) = a+ρ − a−ρ =
1

dimVρ
ind
(
D|Γ(M,E+)ρ−→Γ(M,E−)ρ

)
.

In particular, if 1 is the trivial representation of G, then

ind1(D) = ind
(
D|Γ(M,E+)G−→Γ(M,E−)G

)
,

where the superscript G implies restriction to G-invariant sections.
There is a relationship between the index multiplicities and Atiyah’s equi-

variant distribution-valued index indg(D) (see [3]); the multiplicities determine the
distributional index, and vice versa. Because the operator D|Γ(M,E+)ρ→Γ(M,E−)ρ

is Fredholm, all of the indices indG(D), indg(D), and indρ(D) depend only on the
homotopy class of the principal transverse symbol of D.

The new equivariant index result (in [12]) is stated in Theorem 4.5.13. A large
body of work over the last twenty years has yielded theorems that express indg(D)
in terms of topological and geometric quantities (as in the Atiyah–Segal Index
Theorem for elliptic operators or the Berline–Vergne Theorem for transversally
elliptic operators —see [4, 8, 9]). However, until now there has been very little
known about the problem of expressing indρ(D) in terms of topological or geo-
metric quantities which are determined at the different strata

M([H]) =
⋃

Gx∈[H]

{x}

of the G-manifold M . The special case when all of the isotropy groups are fi-
nite was solved by M. Atiyah in [3], and this result was utilized by T. Kawasaki
to prove the Orbifold Index Theorem (see [37]). Our analysis is new in that the
equivariant heat kernel related to the index is integrated first over the group and
second over the manifold, and thus the invariants in our index theorem (Theo-
rem 4.5.13) are very different from those seen in other equivariant index formulas.
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The explicit nature of the formula is demonstrated in Theorem 4.5.14, a special
case where the equivariant Euler characteristic is computed in terms of invariants
of the G-manifold strata.

One of the primary motivations for obtaining an explicit formula for indρ(D)
was to use it to produce a basic index theorem for Riemannian foliations, thereby
solving a problem that has been open since the 1980s (it is mentioned, for exam-
ple, in [18]). In fact, the basic index theorem (Theorem 4.5.16) is a consequence
of the equivariant index theorem. We note that a recent paper of Gorokhovsky
and Lott addresses this transverse index question on Riemannian foliations. Using
a different technique, they are able to prove a formula for the basic index of a
basic Dirac operator that is distinct from our formula, in the case where all the
infinitesimal holonomy groups of the foliation are connected tori and if Molino’s
commuting sheaf is abelian and has trivial holonomy (see [23]). Our result requires
at most mild topological assumptions on the transverse structure of the strata of
the Riemannian foliation and has a similar form to the formula above for ind1(D).
In particular, the analogue for the Gauss–Bonnet Theorem for Riemannian folia-
tions (Theorem 4.5.17) is a corollary and requires no assumptions on the structure
of the Riemannian foliation.

There are several new techniques used in the proof of the equivariant index
theorem that have not been explored previously, and we will briefly describe them
in upcoming sections. First, the proof requires a modification of the equivariant
structure. In Section 4.5.2, we describe the known structure of G-manifolds. In
Section 4.5.3, we describe a process of blowing up, cutting, and reassembling the
G-manifold into what is called desingularization. The result is a G-manifold that
has less intricate structure and for which the analysis is simpler. We note that
our desingularization process and the equivariant index theorem were stated and
announced in [50] and [51]; recently Albin and Melrose have taken it a step fur-
ther in tracking the effects of desingularization on equivariant cohomology and
equivariant K-theory [1].

Another crucial step in the proof of the equivariant index theorem is the
decomposition of equivariant vector bundles over G-manifolds with one orbit type.
We construct a subbundle of an equivariant bundle over a G-invariant part of
a stratum that is the minimal G-bundle decomposition that consists of direct
sums of isotypical components of the bundle. We call this decomposition the fine
decomposition and define it in Section 4.5.4. More detailed accounts of this method
are in [12, 31].

Exercise 60. Let Z : C∞(S1,C)→ {0} denote the zero operator on complex-valued
functions on the circle S1. If we consider Z to be an S1-equivariant operator on the
circle, find indρ(Z) for every irreducible representation ρ : S1 → U(1). (Important:
the target bundle is the zero vector bundle). We are assuming that S1 acts by
rotations.

Exercise 61. In Exercise 60, calculate instead each indρ(Z), in the case that
Z : C∞(S1,C)→ C∞(S1,C) is multiplication by zero.
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Exercise 62. Let D = i d
dθ : C

∞(S1,C) → C∞(S1,C) be an operator on complex-
valued functions on the circle S1 = {eiθ : θ ∈ R/2πZ}. Consider D to be a
Z2-equivariant operator, where the action is generated by θ �→ θ+π. Find indρ(Z)
for every irreducible representation ρ : Z2 → U(1).

Exercise 63. Let D = i d
dθ : C

∞(S1,C) → C∞(S1,C) be an operator on com-
plex-valued functions on the circle S1 =

{
eiθ : θ ∈ R/2πZ

}
. Consider the Z2-action

generated by θ �→ −θ. Show that D is not Z2-equivariant.

Exercise 64. Let Z2 act on T 2 = R2/Z2 with an action generated by (x, y) �→
(−x, y) for x, y ∈ R/Z. Calculate indρ(D) for every irreducible representation
ρ : Z2 → U(1), where D is the standard Dirac operator on the trivial C2 bundle.

4.5.2 Stratifications of G-manifolds

In the following, we will describe some standard results from the theory of Lie
group actions (see [11, 36]). As above,G is a compact Lie group acting on a smooth,
connected, closed manifold M . We assume that the action is effective, meaning
that no g ∈ G fixes all of M . (Replace G with G/ {g ∈ G : gx = x for all x ∈M}
otherwise.) Choose a Riemannian metric for which G acts by isometries.

Given such an action and x ∈M , the isotropy or stabilizer subgroup Gx < G
is defined to be {g ∈ G : gx = x}. The orbit Ox of a point x is defined to be
{gx : g ∈ G}. Since Gxg = gGxg

−1, the conjugacy class of the isotropy subgroup
of a point is fixed along an orbit.

On any such G-manifold, the conjugacy class of the isotropy subgroups along
an orbit is called the orbit type. On any such G-manifold, there are a finite number
of orbit types, and there is a partial order on the set of orbit types. Given subgroups
H and K of G, we say that [H] ≤ [K] if H is conjugate to a subgroup of K, and we
say that [H] < [K] if [H] ≤ [K] and [H] �= [K]. We may enumerate the conjugacy
classes of isotropy subgroups as [G0] , . . . , [Gr] where [Gi] ≤ [Gj ] implies that
i ≤ j. It is well-known that the union of the principal orbits (those with type
[G0]) form an open dense subset M0 of the manifold M , and the other orbits are
called singular.

As a consequence, every isotropy subgroup H satisfies [G0] ≤ [H]. Let Mj

denote the set of points of M of orbit type [Gj ] for each j; the set Mj is called
the stratum corresponding to [Gj ]. If [Gj ] ≤ [Gk], it follows that the closure of
Mj contains the closure of Mk. A stratum Mj is called a minimal stratum if
there does not exist a stratum Mk such that [Gj ] < [Gk] (equivalently, such that
Mk � Mj). It is known that each stratum is a G-invariant submanifold of M , and
in fact a minimal stratum is a closed (but not necessarily connected) submanifold.
Also, for each j, the submanifold M≥j =

⋃
[Gk]≥[Gj ]

Mk is a closed, G-invariant
submanifold.

Now, given a proper G-invariant submanifold S of M and ε > 0, let Tε(S)
denote the union of the images of the exponential map at s for s ∈ S restricted
to the open ball of radius ε in the normal bundle at S. It follows that Tε(S) is
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also G-invariant. If Mj is a stratum and ε is sufficiently small, then all orbits in
Tε(Mj) \ Mj are of type [Gk], where [Gk] < [Gj ]. This implies that if j < k,
Mj ∩Mk �= ∅, and Mk � Mj , then Mj and Mk intersect at right angles, and
their intersection consists of more singular strata (with isotropy groups containing
conjugates of both Gk and Gj).

Fix ε > 0. We now decompose M as a disjoint union of sets Mε
0 , . . . ,M

ε
r . If

there is only one isotropy type on M , then r = 0, and we let Mε
0 = Σε

0 = M0 = M .
Otherwise, for j = r, r − 1, . . . , 0, let εj = 2jε, and let

Σε
j = Mj \

⋃
k>j

Mε
k , Mε

j = Tεj (Mj) \
⋃
k>j

Mε
k .

Thus,

Tε(Σ
ε
j) ⊂Mε

j , Σε
j ⊂Mj .

The following facts about this decomposition are contained in [36, pp. 203ff ]:

Lemma 4.5.1. For sufficiently small ε > 0, we have, for every i ∈ {0, . . . , r}:

(1) M =

r⊔
i=0

Mε
i (disjoint union).

(2) Mε
i is a union of G-orbits; Σε

i is a union of G-orbits.

(3) The manifold Mε
i is diffeomorphic to the interior of a compact G-manifold

with corners; the orbit space Mε
i /G is a smooth manifold that is isometric

to the interior of a triangulable, compact manifold with corners. The same is
true for each Σε

i .

(4) If [Gj ] is the isotropy type of an orbit in Mε
i , then j ≤ i and [Gj ] ≤ [Gi].

(5) The distance between the submanifold Mj and Mε
i for j > i is at least ε.

Exercise 65. Suppose G and M are as above. Show that if γ is a geodesic that
is perpendicular at x ∈ M to the orbit Ox through x, then γ is perpendicular to
every orbit that intersects it.

Exercise 66. With G and M as above, suppose that γ is a geodesic that is orthog-
onal to a particular singular stratum Σ. Prove that each element g ∈ G maps γ to
another geodesic with the same property.

Exercise 67. Prove that if S is any set of isometries of a Riemannian manifold
M , then the fixed point set MS = {x ∈M : gx = x for every g ∈ S} is a totally
geodesic submanifold of M .

Exercise 68. Prove that if Σ is a stratum of the action of G on M corresponding
to isotropy type [H], then the fixed point set ΣH is a principal N(H)/H bundle
over G\Σ, where N(H) is the normalizer of the subgroup H.
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Exercise 69. Let Z2 ×Z2 act on S2 ⊂ R3 via (x, y, z) �→ (−x, y, z) and (x, y, z) �→
(x,−y, z). Determine the strata of this action and the isotropy types.

Exercise 70. Let O(2) act on S2 ⊂ R3 by rotations that fix the z-axis. Determine
the strata of this action and the isotropy types.

Exercise 71. Let M be the rectangle [0, 1] × [−1, 1] along with identifications
(s, 1) ∼ (s,−1) for 0 ≤ s ≤ 1, (0, x) ∼ (0, x + 1

2 ) for 0 ≤ x ≤ 1
2 , and (1, x) ∼

(1, x+ 1
2 ) for 0 ≤ x ≤ 1

2 .

• Show that M is a smooth Riemannian manifold when endowed with the
standard flat metric.

• Find the topological type of the surface M .

• Suppose that S1 = R/2Z acts on M via (s, x) �→ (s, x+ t), with x, t ∈ R/2Z.
Find the strata and the isotropy types of this action.

4.5.3 Equivariant desingularization

Assume that G is a compact Lie group that acts on a Riemannian manifold M
by isometries. We construct a new G-manifold N that has a single stratum (of
type [G0]) and that is a branched cover of M , branched over the singular strata.
A distinguished fundamental domain of M0 in N is called the desingularization
of M and is denoted M̃ . We also refer to Albin and Melrose’s paper [1] for their
recent related explanation of this desingularization (which they call resolution).

A sequence of modifications is used to construct N and M̃ ⊂ N . Let Mj be
a minimal stratum. Let Tε(Mj) denote a tubular neighborhood of radius ε around
Mj , with ε chosen sufficiently small so that all orbits in Tε(Mj) \Mj are of type
[Gk], where [Gk] < [Gj ]. Let

N1 = (M \ Tε(Mj)) ∪∂Tε(Mj) (M \ Tε(Mj))

be the manifold constructed by gluing two copies of (M \Tε(Mj)) smoothly along
the boundary (the codimension 1 case should be treated in a slightly different way;
see [12] for details). Since Tε(Mj) is saturated (a union of G-orbits), the G-action
lifts to N1. Note that the strata of the G-action on N1 correspond to strata in
M \ Tε(Mj). If Mk ∩ (M \ Tε(Mj)) is nontrivial, then the stratum corresponding
to isotropy type [Gk] on N1 is

N1
k = (Mk ∩ (M \ Tε(Mj))) ∪(Mk∩∂Tε(Mj)) (Mk ∩ (M \ Tε(Mj))).

Thus, N1 is a G-manifold with one fewer stratum than M , and M \Mj is dif-

feomorphic to one copy of (M \ Tε(Mj)), denoted M̃1 in N1. In fact, N1 is a
branched double cover of M , branched over Mj . If N

1 has one orbit type, then

we set N = N1 and M̃ = M̃1. If N1 has more than one orbit type, we repeat
the process with the G-manifold N1 to produce a new G -manifold N2 with two
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fewer orbit types than M and that is a 4-fold branched cover of M . Again, M̃2

is a fundamental domain of M̃1 \ {a minimal stratum}, which is a fundamental
domain of M with two strata removed. We continue until N = Nr is a G-manifold
with all orbits of type [G0] and is a 2r-fold branched cover of M , branched over

M \M0. We set M̃ = M̃r, which is a fundamental domain of M0 in N .
Further, one may independently desingularize M≥j , since this submanifold

is itself a closed G-manifold. If M≥j has more than one connected component, we
may desingularize all components simultaneously. The isotropy type of all points

of M̃≥j is [Gj ], and M̃≥j/G is a smooth (open) manifold.

Exercise 72. Find the desingularization M̃j of each stratum Mj for the G-manifold
in Exercise 69.

Exercise 73. Find the desingularization M̃j of each stratum Mj for the G-manifold
in Exercise 70.

Exercise 74. Find the desingularization M̃j of each stratum Mj for the G-manifold
in Exercise 71.

4.5.4 The fine decomposition of an equivariant bundle

Let XH be the fixed point set of H in a G-manifold X with one orbit type [H].
For α ∈ π0(X

H), let XH
α denote the corresponding connected component of XH .

Definition 4.5.2. We denote Xα = GXH
α , and call Xα a component of X relative

to G.

Remark 4.5.3. The space Xα is not necessarily connected, but it is the inverse
image of a connected component of G\X under the projection X → G\X. Also,
note that we have Xα = Xβ if there exists n in the normalizer N = N(H) such
that nXH

α = XH
β . If X is a closed manifold, then there are a finite number of

components of X relative to G.

We now introduce a decomposition of a G-bundle E → X. Let Eα be the
restriction E|XH

α
. For any irreducible representation σ : H → U(Wσ), we define

for n ∈ N the representation σn : H → U(Wσ) by σn(h) = σ(n−1hn). Let Ñ[σ] =

{n ∈ N : [σn] is equivalent to [σ]}. If the isotypical component E
[σ]
α is nontrivial,

then it is invariant under the subgroup Ñα,[σ] ⊆ Ñ[σ] that leaves in addition the
connected component XH

α invariant; again, this subgroup has finite index in N .
The isotypical components transform under n ∈ N as

n : E[σ]
α

∼=−→ E
[σn]
n(α),

where n denotes the residue class of n ∈ N in N/Ñα,[σ]. Then a decomposition of

E is obtained by ‘inducing up’ the isotypical components E
[σ]
α from Ñα,[σ] to N .

That is,
EN

α,[σ] = N ×
˜Nα,[σ]

E[σ]
α
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is a bundle containing E
[σ]
α |XH

α
. This is an N -bundle over NXH

α ⊆ XH , and a

similar bundle may be formed over each distinct NXH
β , with β ∈ π0(X

H). Further,

observe that since each bundle EN
α,[σ] is anN -bundle overNXH

α , it defines a unique

G bundle EG
α,[σ] (see Exercise 75).

Definition 4.5.4. The G-bundle EG
α,[σ] over the submanifold Xα is called a fine

component or the fine component of E → X associated to (α, [σ]).

If G\X is not connected, one must construct the fine components separately
over each Xα. If E has finite rank, then E may be decomposed as a direct sum of
distinct fine components over each Xα. In any case, EN

α,[σ] is a finite direct sum of

isotypical components over each XH
α .

Definition 4.5.5. The direct sum decomposition of E|Xα into subbundles Eb that
are fine components EG

α,[σ] for some [σ], written

E|Xα
=
⊕
b

Eb ,

is called the refined isotypical decomposition (or fine decomposition) of E|Xα
.

We comment that if [σ,Wσ] is an irreducible H-representation present in Ex

with x ∈ XH
α , then E

[σ]
x is a subspace of a distinct Eb

x for some b. The subspace

Eb
x also contains E

[σn]
x for every n such that nXH

α = XH
α .

Remark 4.5.6. Observe that, by construction, for x ∈ XH
α the multiplicity and

dimension of each [σ] present in a specific Eb
x are independent of [σ]. Thus, E

[σn]
x

and E
[σ]
x have the same multiplicity and dimension if nXH

α = XH
α .

Remark 4.5.7. The advantage of this decomposition over the isotypical decom-
position is that each Eb is a G-bundle defined over all of Xα, and the isotypical
decomposition may only be defined over XH

α .

Definition 4.5.8. Now, let E be aG-equivariant vector bundle overX, and let Eb be
a fine component as in Definition 4.5.4 corresponding to a specific componentXα =
GXH

α ofX relative toG. Suppose that anotherG-bundleW overXα has finite rank
and has the property that the equivalence classes of Gy-representations present in
Eb

y, y ∈ Xα, exactly coincide with the equivalence classes of Gy-representations
present in Wy, and that W has a single component in the fine decomposition.
Then we say that W is adapted to Eb.

Lemma 4.5.9. In the definition above, if another G-bundle W over Xα has finite
rank and has the property that the equivalence classes of Gy-representations present
in Eb

y, y ∈ Xα, exactly coincide with the equivalence classes of Gy-representations
present in Wy, then it follows that W has a single component in the fine decom-
position and hence is adapted to Eb. Thus, the last phrase in the corresponding
sentence in the above definition is superfluous.



186 Chapter 4. Transversal Dirac Operators

Exercise 75. Suppose that X is a G-manifold, H is an isotropy subgroup, and
E′ → XH is an N(H)-bundle over the fixed point set XH . Prove that E′ uniquely
determines a G-bundle E over X such that E|XH = E′.

Exercise 76. Prove Lemma 4.5.9.

4.5.5 Canonical isotropy G-bundles

In what follows, we show that there are naturally defined finite-dimensional vec-
tor bundles that are adapted to any fine components. Once and for all, we enu-
merate the irreducible representations {[ρj , Vρj ]}j=1,2,... of G. Let [σ,Wσ] be any
irreducible H-representation. Let G ×H Wσ be the corresponding homogeneous
vector bundle over the homogeneous space G/H. Then the L2-sections of this
vector bundle decompose into irreducible G-representations. In particular, let
[ρj0 , Vρj0

] be the equivalence class of irreducible representations that is present in

L2(G/H,G×H Wσ) and that has the lowest index j0. Then Frobenius reciprocity
implies

0 �= HomG(Vρj0
, L2(G/H,G×H Wσ)) ∼= HomH(VRes(ρj0 )

,Wσ),

so that the restriction of ρj0 to H contains the H-representation [σ]. Now, for
a component XH

α of XH , with Xα = GXH
α its component in X relative to G,

the trivial bundle Xα × Vρj0
is a G-bundle (with diagonal action) that contains a

nontrivial fine component Wα,[σ] containing XH
α × (Vρj0

)[σ].

Definition 4.5.10. We call Wα,[σ] → Xα the canonical isotropy G-bundle associated

to (α, [σ]) ∈ π0(X
H) × Ĥ. Observe that Wα,[σ] depends only on the enumeration

of irreducible representations of G, the irreducible H-representation [σ] and the
componentXH

α . We also denote the following positive integers associated toWα,[σ]:

• mα,[σ] = dimHomH(Wσ,Wα,[σ],x) = dimHomH(Wσ, Vρj0
) (the associated

multiplicity), independent of the choice of [σ,Wσ] present in Wα,[σ],x x ∈ XH
α

(see Remark 4.5.6).

• dα,[σ] = dimWσ (the associated representation dimension), independent of
the choice of [σ,Wσ] present in Wα,[σ],x, x ∈ XH

α .

• nα,[σ] =
rank(Wα,[σ])

mα,[σ]dα,[σ]
(the inequivalence number), the number of inequivalent

representations present in Wα,[σ],x, x ∈ XH
α .

Remark 4.5.11. Observe that Wα,[σ] = Wα′,[σ′] if [σ
′] = [σn] for some n ∈ N such

that nXH
α = XH

α′ .

Lemma 4.5.12. Given any G-bundle E → X and any fine component Eb of E over
some Xα = GXH

α , there exists a canonical isotropy G-bundle Wα,[σ] adapted to

Eb → Xα.
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Exercise 77. Prove Lemma 4.5.12.

Exercise 78. Suppose G is a compact, connected Lie group, and T is a maximal
torus. Let G act on the left on the homogeneous space X = G/T .

• What is (G/T )T ?

• Let σa be a fixed irreducible representation of T (on C), say

σa(t) = exp(2πi(a · t)) with a ∈ Zm and m = rank(T ).

Let E = G ×σa C → G/T be the associated line bundle. Is E a canonical
isotropy G-bundle associated to ( · , [σa])?

• Is it true that every complexG-bundle overG/T is a direct sum of equivariant
line bundles?

4.5.6 The equivariant index theorem

To evaluate indρ(D), we first perform the equivariant desingularization as de-
scribed in Section 4.5.3, starting with a minimal stratum. In [12], we precisely
determine the effect of the desingularization on the operators and bundles, and
in turn the supertrace of the equivariant heat kernel. We obtain the following re-
sult. In what follows, if U denotes an open subset of a stratum of the action of
G on M , U ′ denotes the equivariant desingularization of U , and Ũ denotes the
fundamental domain of U inside U ′, as in Section 4.5.3. We also refer the reader
to Definitions 4.5.2 and 4.5.10.

Theorem 4.5.13 (Equivariant Index Theorem [12]). Let M0 be the principal stratum
of the action of a compact Lie group G on the closed Riemannian manifold M ,
and let Σα1 , . . . ,Σαr denote all the components of all singular strata relative to
G. Let E → M be a Hermitian vector bundle on which G acts by isometries. Let
D : Γ(M,E+) → Γ(M,E−) be a first-order, transversally elliptic, G-equivariant
differential operator. We assume that, near each Σαj

, D is G-homotopic to the
product DN ∗Dαj , where DN is a G-equivariant, first-order differential operator
on BεΣ that is elliptic and has constant coefficients on the fibers, and Dαj is
a global transversally elliptic, G-equivariant, first-order operator on the Σαj . In
polar coordinates,

DN = Zj

(
∇E

∂r
+

1

r
DS

j

)
,

where r is the distance from Σαj , Zj is a local bundle isometry (dependent on the
spherical parameter), and the map DS

j is a family of purely first order operators
that differentiates in directions tangent to the unit normal bundle of Σj. Then the
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equivariant index indρ(D) satisfies

indρ(D) =

∫
G\˜M0

Aρ
0(x) |̃dx|+

r∑
j=1

β(Σαj
),

β(Σαj
) =

1

2 dimVρ

∑
b∈B

1

nbrank(W b)

(
−η(DS+,b

j ) + h(DS+,b
j )

)∫
G\˜Σαj

Aρ
j,b(x) |̃dx|,

where

(1) Aρ
0(x) is the Atiyah–Singer integrand, the local supertrace of the ordinary

heat kernel associated to the elliptic operator induced from D′ (blown-up and
doubled from D) on the quotient M ′

0/G, where the bundle E is replaced by
the finite rank bundle Eρ of sections of type ρ over the fibers.

(2) Similarly, Aρ
i,b is the local supertrace of the ordinary heat kernel associated

to the elliptic operator induced from (1⊗Dαj )′ (blown-up and doubled from
1 ⊗ Dαj , the twist of Dαj by the canonical isotropy bundle W b → Σαj ) on
the quotient Σ′

αj
/G, where the bundle is replaced by the space of sections of

type ρ over each orbit.

(3) η(DS+,b
j ) is the eta invariant of the operator DS+

j induced on any unit normal

sphere SxΣαj , restricted to sections of isotropy representation types in W b
x;

see [12]. This is constant on Σαj .

(4) h(DS+,b
j ) is the dimension of the kernel of DS+,b

j , restricted to sections of

isotropy representation types in W b
x, again constant on Σαj

.

(5) nb is the number of different inequivalent Gx-representation types present in
each W b

x, x ∈ Σαj .

As an example, we immediately apply the result to the de Rham operator
and in doing so we obtain an interesting equation involving the equivariant Euler
characteristic. In what follows, let LNj → Σj be the orientation line bundle of
the normal bundle to the singular stratum Σj . The relative Euler characteristic is
defined for X a closed subset of a manifold Y as χ(Y,X,V) = χ(Y,V)− χ(X,V),
which is also the alternating sum of the dimensions of the relative de Rham co-
homology groups with coefficients in a complex vector bundle V → Y . If V is
an equivariant vector bundle, then the equivariant Euler characteristic χρ(Y,V)
associated to the representation ρ : G→ U(Vρ) is the alternating sum

χρ(Y,V) =
∑
j

(−1)j dimHj(Y,V)ρ,

where the superscript ρ refers to the restriction of these cohomology groups to
forms ofG-representation type [ρ]. An application of the equivariant index theorem
yields the following result.
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Theorem 4.5.14 (Equivariant Euler Characteristic Theorem [12]). Let M be a com-
pact G-manifold, with G a compact Lie group and principal isotropy subgroup Hpr.
Let M0 denote the principal stratum, and let Σα1

, . . . ,Σαr
denote all the compo-

nents of all singular strata relative to G. We use the notations for χρ(Y,X) and
χρ(Y ) as in the discussion above. Then

χρ(M) = χρ(G/Hpr) χ(G\M,G\singular strata)

+
∑
j

χρ(G/Gj ,LNj ) χ(G\Σαj , G\lower strata),

where LNj is the orientation line bundle of the normal bundle of the stratum
component Σαj

.

Exercise 79. Let M = Sn and let G = O(n) acting on latitude spheres (principal
orbits, diffeomorphic to Sn−1). Show that there are two strata, with the singular
strata being the two poles. Show without using the theorem, by identifying the
harmonic forms, that

χρ(Sn) =

{
(−1)n if ρ = ξ,
1 if ρ = 1,

where ξ is the induced one-dimensional representation of O(n) on the volume
forms.

Exercise 80. In the previous example, show that

χρ(G/Hpr) = χρ(Sn−1) =

{
(−1)n−1 if ρ = ξ,
1 if ρ = 1,

and χ(G\M,G\singular strata) = −1. Show that, at each pole,

χρ(G/Gj ,LNj ) = χρ(pt) =

{
1 if ρ = 1,
0 otherwise,

and χ(G\Σαj
, G\lower strata) = 1. Demonstrate that Theorem 4.5.14 produces

the same result as in the previous exercise.

Exercise 81. If instead the group Z2 acts on Sn by the antipodal map, prove that

χρ(Sn) =

⎧⎨⎩ 0 if ρ = 1 or ξ and n is odd,
1 if ρ = 1 or ξ and n is even,
0 otherwise,

both by direct calculation and by using Theorem 4.5.14.

Exercise 82. Consider the action of Z4 on the flat torus T 2 = R2/Z2, where the
action is generated by a π/2 rotation. Explicitly, k ∈ Z4 acts on ( y1

y2 ) by

φ(k)

(
y1
y2

)
=

(
0 −1
1 0

)k (
y1
y2

)
.
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Endow T 2 with the standard flat metric. Let ρj be the irreducible character defined
by k ∈ Z4 �→ eikjπ/2. Prove that

χ1(T 2) = 2, χρ1(T 2) = χρ3(T 2) = −1, χρ2(T 2) = 0,

in two different ways. First, compute the dimensions of the spaces of harmonic
forms to determine the equations. Second, use the Equivariant Euler Characteristic
Theorem.

4.5.7 The basic index theorem for Riemannian foliations

Suppose that E is a foliated Hermitian Cl(Q)-module with metric basic Cl(Q)
connection ∇E over a Riemannian foliation (M,F). Let

DE
b : Γb(E

+) −→ Γb(E
−)

be the associated basic Dirac operator, as explained in Section 4.3.1.
In the formulas below, any lower order terms that preserve the basic sections

may be added without changing the index. Note that

Definition 4.5.15. The analytic basic index of DE
b is

indb(D
E
b ) = dimkerDE

b − dimker(DE
b )

∗.

As shown explicitly in [13], these dimensions are finite, and it is possible to
identify indb(D

E
b ) with the invariant index of a first order, G-equivariant differen-

tial operator D̂ over a vector bundle over a basic manifold Ŵ , where G is SO(q),
O(q), or the product of one of these with a unitary group U(k). By applying the
Equivariant Index Theorem (Theorem 4.5.13) to the case of the trivial representa-
tion, we obtain the following formula for the index. In what follows, if U denotes
an open subset of a stratum of (M,F), then U ′ denotes the desingularization of

U very similar to that in Section 4.5.3, and Ũ denotes the fundamental domain of
U inside U ′.

Theorem 4.5.16 (Basic Index Theorem for Riemannian Foliations [13]). Let M0

be the principal stratum of the Riemannian foliation (M,F), and let M1, . . . ,Mr

denote all the components of all singular strata, corresponding to O(q)-isotropy
types [G1] , . . . , [Gr] on the basic manifold. With notation as in the discussion
above, we have

indb(D
E
b ) =

∫
˜M0/F

A0,b(x) |̃dx|+
r∑

j=1

β(Mj),

β(Mj) =
1

2

∑
τ

1

nτ rank(W τ )

(
−η(DS+,τ

j ) + h(DS+,τ
j )

)∫
˜Mj/F

Aτ
j,b(x) |̃dx|,

where the sum is over all components of singular strata and over all canonical
isotropy bundles W τ , only a finite number of which yield nonzero Aτ

j,b, and where
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(1) A0,b(x) is the Atiyah–Singer integrand, the local supertrace of the ordinary

heat kernel associated to the elliptic operator induced from D̃E
b (a desingu-

larization of DE
b ) on the quotient M̃0/F , where the bundle E is replaced by

the space of basic sections over each leaf closure.

(2) η(DS+,b
j ) and h(DS+,b

j ) are defined in a similar way as in Theorem 4.5.13,

using a decomposition DE
b = DN ∗DMj

at each singular stratum.

(3) Aτ
j,b(x) is the local supertrace of the ordinary heat kernel associated to the

elliptic operator induced from (1⊗DMj
)′ (blown-up and doubled from 1⊗DMj

,

the twist of DMj
by the canonical isotropy bundle W τ ) on the quotient M̃j/F ,

where the bundle is replaced by the space of basic sections over each leaf
closure.

(4) nτ is the number of different inequivalent Gj-representation types present in
a typical fiber of W τ .

An example of this result is the generalization of the Gauss–Bonnet The-
orem to the basic Euler characteristic. Recall from Section 4.3.1 that the basic
forms Ω(M,F) are preserved by the exterior derivative, and the resulting coho-
mology is called basic cohomology H∗(M,F). The basic cohomology groups are
finite-dimensional in the Riemannian foliation, and the basic Euler characteristic
is defined to be

χ(M,F) =
∑

(−1)j dimHj(M,F).
We have two independent proofs of the following Basic Gauss–Bonnet The-

orem; one proof uses the result in [7], while the other is a direct consequence of
the basic index theorem stated above (proved in [13]). We express the basic Euler
characteristic in terms of the ordinary Euler characteristic, which in turn can be
expressed in terms of an integral of curvature. We extend the Euler characteristic
notation χ(Y ) for Y any open (noncompact without boundary) or closed (compact
without boundary) manifold to mean

χ(Y ) =

{
χ(Y ) if Y is closed,
χ(one-point compactification of Y )− 1 if Y is open.

Also, if L is a foliated line bundle over a Riemannian foliation (X,F), we define
the basic Euler characteristic χ(X,F ,L) as before, using the basic cohomology
groups with coefficients in the line bundle L.
Theorem 4.5.17 (Basic Gauss–Bonnet Theorem, announced in [49], proved in [13]).
Let (M,F) be a Riemannian foliation. Let M0, . . . ,Mr be the strata of the Rie-
mannian foliation (M,F), and let OMj/F denote the orientation line bundle of

the normal bundle to F in Mj. Let Lj denote a representative leaf closure in Mj.
With notation as above, the basic Euler characteristic satisfies

χ(M,F) =
∑
j

χ(Mj/F)χ(Lj ,F ,OMj/F ).
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Remark 4.5.18. In [23, Corollary 1], the authors show that in special cases the
only term that appears is one corresponding to a most singular stratum.

We now investigate some examples through exercises. The first example is a
codimension 2 foliation on a 3-manifold. Here, O(2) acts on the basic manifold,
which is homeomorphic to a sphere. In this case, the principal orbits have isotropy
type ({e}), and the two fixed points obviously have isotropy type (O(2)). In this
example, the isotropy types correspond precisely to the infinitesimal holonomy
groups.

Exercise 83 (From [13, 48, 52]). Consider the one-dimensional foliation obtained
by suspending an irrational rotation on the standard unit sphere S2. On S2 we use
the cylindrical coordinates (z, θ), related to the standard rectangular coordinates
by x′ =

√
1− z2 cos θ, y′ =

√
1− z2 sin θ, z′ = z. Let α be an irrational multiple of

2π, and pick the three-manifold M = S2× [0, 1]/ ∼, where (z, θ, 0) ∼ (z, θ+α, 1).
Endow M with the product metric on Tz,θ,tM ∼= Tz,θS

2 × TtR. Let the foliation
F be defined by the immersed submanifolds Lz,θ =

⋃
n∈Z
{z}×{θ+α}× [0, 1] (not

unique in θ). The leaf closures Lz for |z| < 1 are two-dimensional, and the closures
corresponding to the poles (z = ±1) are one-dimensional. Show that χ(M,F) = 2,
using a direct calculation of the basic cohomology groups and also by using the
Basic Gauss–Bonnet Theorem.

The next example is a codimension 3 Riemannian foliation for which all of
the infinitesimal holonomy groups are trivial; moreover, the leaves are all simply
connected. There are leaf closures of codimension 2 and codimension 1. The codi-
mension 1 leaf closures correspond to isotropy type (e) on the basic manifold, and
the codimension 2 leaf closures correspond to an isotropy type (O(2)) on the ba-
sic manifold. In some sense, the isotropy type measures the holonomy of the leaf
closure in this case.

Exercise 84 (From [13]). This foliation is a suspension of an irrational rotation
of S1 composed with an irrational rotation of S2 on the manifold S1 × S2. As
in Example 83, on S2 we use the cylindrical coordinates (z, θ), related to the
standard rectangular coordinates by x′ =

√
1− z2 cos θ, y′ =

√
1− z2 sin θ, z′ = z.

Let α be an irrational multiple of 2π, and let β be any irrational number. We
consider the four-manifold M = S2×[0, 1]×[0, 1]/ ∼, where (z, θ, 0, t) ∼ (z, θ, 1, t),
(z, θ, s, 0) ∼ (z, θ + α, s + β mod 1, 1). Endow M with the product metric on
Tz,θ,s,tM ∼= Tz,θS

2 × TsR × TtR. Let the foliation F be defined by the immersed
submanifolds Lz,θ,s =

⋃
n∈Z
{z} × {θ + α} × {s + β} × [0, 1] (not unique in θ

or s). The leaf closures Lz for |z| < 1 are three-dimensional, and the closures
corresponding to the poles (z = ±1) are two-dimensional. By computing the basic
forms of all degrees, verify that the basic Euler characteristic is zero. Next, use
the Basic Gauss–Bonnet Theorem to see the same result.

The following example is a codimension 2 transversally oriented Riemannian
foliation in which all the leaf closures have codimension 1. The leaf closure foliation
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is not transversally orientable, and the basic manifold is a flat Klein bottle with
an O(2)-action. The two leaf closures with Z2 holonomy correspond to the two
orbits of type (Z2), and the other orbits have trivial isotropy.

Exercise 85. This foliation is the suspension of an irrational rotation of the flat
torus and a Z2-action. Let X be any closed Riemannian manifold such that
π1(X) = Z∗Z , the free group on two generators {α, β}. We normalize the volume

of X to be 1. Let X̃ be the universal cover. We define M = (X̃ ×S1×S1)/π1(X),

where π1(X) acts by deck transformations on X̃ and by α(θ, φ) = (2π− θ, 2π−φ)
and β(θ, φ) = (θ, φ+

√
2π) on S1×S1. We use the standard product-type metric.

The leaves of F are defined to be sets of the form {(x, θ, φ)∼ |x ∈ X̃}. Note that
the foliation is transversally oriented. Show that the basic Euler characteristic is 2,
in two different ways.

The following example (from [14]) is a codimension 2 Riemannian foliation
that is not taut.

Exercise 86. For the example in Exercise 44, show that the basic manifold is a
torus, and the isotropy groups are all trivial. Verify that χ(M,F) = 0 in two
different ways.
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