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PREFACE 

I1 y a, parmi les mathematiciens, un conscensus general pour admettre que la 
combinatoire est devenue un domaine des mathematiques dont la croissance est 
parmi les plus rapides. A preuve, la quantite d’articles et de livres publies ainsi 
que le nombre d’applications, tant en sciences appliquees (informatique, 
Cconomie, genie electrique ou civil, etc.. . ) que dans les autres branches des 
mathematiques (algebre, geometrie, statistique, algorithmes, theorie du codage, 
logique, etc. . . >. La perception de la combinatoire comme un amas de problkmes 
recrtatifs Ctranges et disparates s’estampe gradueilement; cependent la com- 
binatoire a encore besoin, dans une certaine mesure, d’une theorie unificatrice. 
Ceci s’explique par le fait le fait qu’elle se trouve encore dans un etape de 
dkveloppement preliminaire, par la rapidite de sa croissance ainsi que par les 
dimensions de son champ d’investigation. Dans son contexte, il est imperatif de 
reunir periodiquement des mathkmaticiens et des usagers des mathematiques 
interessks par la combinatoire, afin qu’ils mettent en commun leur resultats les 
plus recents. De telles rencontres facilitent aussi des interactions benefiques entre 
speciaiistes et usagers de la combinatoire et contribuent a Cviter la duplication de 
resultats identiques formules differemment. 

Tels etaient donc les objectifs du Colloque Franco-Canadien de Combinatoire 
qui s’est tenu du 11 au 16 juin 1979, a 1’Universitk de Montr6al. Comme son titre 
le suggere, ce colloque visait en particulier h encourager une meilleure 
comprehension, de meilleurs contacts et l’echange de resultats inedits entre 
specialistes franGais et  canadiens de la combinatoire. Leurs ecoles respectives sont 
parmi les meilleures et  ces echanges sont d’autant plus necessaires que la distance 
et - 2 un moindre degre - les barrieres linguistiques, peuvent 2tre un obstacle a 
la communication. 

Le Colloque a finalement etC une conference internationale assez importante, 
ayant rassemblk plus de 160 participants inscrits (dont les noms apparaissent dans 
les Actes). E n  plus de la presence d’un grand nombre de FranGais et de 
Canadiens, nous avons ete heureux d’accueillir un nombre significatif de cher- 
cheurs des Etats-Unis, de m&me que des chercheurs d’Allemange, d’Australie, de 
Belgique, du Chili, de Grande Bretagne, de Hollande, de Hongrie, du Koweit, de 
Mexique, de Suisse et  de Sukde. Et une dklegation de quatre personnes de 
Republique Populaire de Chine-la premiere a participer 5 une rencontre de 
mathematique en Occident, depuis bien longtemps - nous a donne des nouvelles 
de la recherche en combinatoire dans ce pays. 

Ce Colloque a t t C  organist sous les auspices du C.N.R.S. (France), de la Societe 
MathCmatique du Canada, de la SocietC Mathematique de France, de I’UniversitC 
de Montreal ainsi que de 1’Universite de Waterloo. 
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Vi Preface 

Son importance a etk rehaussee par la participation des conferenciers invites 
suivants: 
B. Alspach, A. Astie-Vidal, C. Berge, C. Benzaken, J.-C. Bermond, J.A. Bondy, 
P. Camion, V. Chvatal, M. Deza, J. Edmonds, P. Erdos, A. Kotzig, M. Las 
Vergnas, L. Lovasz, U.S.R. Murty, A. Rosa, I. Rival, I.G. Rosenberg, P. 
Rosenstiehl, G. Sabidussi, R.G. Stanton, W.T. Tutte. (L. Comtet, P.L. Hammer, P. 
Hell and R.C. Mullin, conferenciers invites, n’ont pas pu &tre presents.) 

Beaucoup d’institutions et d’individus ont contribue au succbs de cette 
conference, et nous tenons 2 les remercier. Tout d’abord, nous voulons exprimer 
nos remerciements au Ministbre des Affaires Etrangkres de France, le CNRS 
(France) ainsi qu’aux universites franpises qui ont subventionne la participation 
de quarante de nos collbgues franCais. Nous voulons Cgalement remercier 
1’UniversitC de Waterloo, de msme que MM. A. Kotzig, R.C. Mullin, I. Rosen- 
berg et G. Sabidussi pour leurs contributions. Nous remercions sinckrement 
1’Universite de Montreal de nous avoir fourni le lieu de cette conference. 

Le personnel du Centre de recherche de mathematiques appliquees de 
1’UniversitC de Montreal, nous a Cte d’un grand soutien. En particulier, il faut 
mentionner l’excellent travail de secretariat accompli par Madame Claire 
O’Reilly-Tremblay avant et durant la conference et remercier Mlle Louise 
Letendre pour son aide durant la conference et pendant la preparation des Actes. 
Nous sommes reconaissants envers toutes les personnes qui ont accepte si 
volontiers de presider les diverses sessions. Nous voulons egalement remercier 
P.L. Hammer et North-Holland pour avoir accepte de publier les Actes du 
Colloque et les feliciter pour leur travail efficace et sans accrocs. En dernier lieu, 
nous exprimons nos remerciements tous les participants qui, somme toute, 
constituent le colloque. 

Notre intention de publier des Actes de grande qualite dans un tres court delai 
necessita des arbitrages rapides et exigeants. Les Cditeurs tiennent a exprimer leur 
reconnaissance a tous ceux qui ont participC a cette tlche ingrate. En particulier 
nous remercions Messieurs Bermond, Bondy, Chvatal, Frankl, Jaeger, Las Verg- 
nas et Wolfmann pour leurs conseils et leur aide precieuse. Nous remercions 
sincbrement R.L. Graham qui a preside a la session de problbmes et qui a bien 
voulu editer les sections de problbmes des Actes. 

Les textes des Actes se suivent dans le m&me ordre que lors de leur 
presentation au Colloque. Il y a bien en une tentative de les regrouper de faGon 
“naturelle”, mais toute subdivision formelle des Actes nous est apparue comme 
&ant artificielle. A cause du nombre de textes presentes, il a fallu imposer des 
limites a leur longueur, avec pour consequence que beaucoup d’entre eux 
annoncent des resultats sans en fournir des preuves completes. Beaucoup de ces 
articles sont trks intkressants, ils constituent en presque totalitt de resultats 
nouveaux ou de synthkses de travaux recents. Aussi, nous avons inclu la 
plupart des resumes des conferences presentees au Colloque dont les textes 
n’apparaissent pas dam les Actes. 



PREFACE 

It is a matter of general concensus that combinatorics has become one of the 
fastest growing fields of mathematics, as witnessed by the number of published 
papers, textbooks and applications both in applied sciences (computer science, 
economics, engineering etc.) and in other branches of mathematics (algebra, 
geometry, statistics, algorithms, coding theory, mathematical logic etc.). The 
perception of combinatorics as a collection of odd and largely unrelated recrea- 
tional problems is slowly disappearing but to a certain degree combinatorics still 
lacks a unifying theory. This can be explained by its being in a still early 
development stage, its rapid rate of growth and its very large scope. In this 
situation its seems imperative to bring together periodically mathematicians and 
users of mathematics interested in combinatorics in order to share their most 
recent results. Such meetings also promote mutually beneficial interactions be- 
tween combinatorialists and users of combinatorics and partially help to avoid 
duplication of identical results in different settings. 

This was the main idea behind the organization of the Joint Canada-France 
Combinatorial Colloquium which was held at the Universite de MontrCal from 
June 11-16, 1979. As its name suggests, the colloquium aimed in particular to 
promote better understanding, personal contacts and the sharing of unpublished 
results between the French and Canadian combinatorialists. Their schools rank 
among the best but, due to geographical distance and to a lesser degree language 
barriers, there is plenty of room for improving the dialogue between them. 

The Colloquium turned out to be a substantial international conference with 
about 160 registered participants (whose names are listed in the proceedings). 
Besides a large Canadian and French contingent we were happy to have a 
significant participation from the U.S. as well as researchers from Australia, 
Belgium, Chile, Germany, Great Britain, Holland, Hungary, Kuwait, Mexico, 
Switzerland and Sweden. 

First to attend a mathematical meeting in the West after a long period, the 
four-man delegation from the People’s Republic of China brought news about 
their research. 

The Colloquium was held under the auspices of Centre National de Recherche 
Scientifique-France, Canadian Mathematical Society, Societe Mathematique de 
France, Universitt de MontrCal and University of Waterloo. 

B. Alspach, A. Astie-Vidal, C. Berge, C. Benzaken, J.-C. Bermond, J.A. Bondy, 
P. Camion, V. Chviital, M. Deza, J. Edmonds, P. Erdos, A. Kotzig, M. Las 
Vergnas, L. Loviisz, U.S.R. Murty, A. Rosa, I. Rival, I.G. Rosenberg, P. 

The Colloquium was highlighted by the invited lectures given by: 
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V l l l  Preface 

Rosenstiehl, G. Sabidussi, R.G. Stanton, W.T. Tutte. (L. Comtet, P.L. Hammer, 
P. Hell and R.C. Mullin were also invited but could not attend.) 

There are many institutions and individuals to be thanked for the success of the 
conference. First we wish to thank the Ministkre des affaires ktrangkres de France, 
CNRS-France and French universities for providing financial support for 40 
French participants. Next we would like to thank the University of Waterloo as 
well as A. Kotzig, R.C. Mullin, I.G. Rosenberg and G. Sabidussi for their 
contribution. 

Sincere thanks are due to Universitk de Montreal for providing the excellent 
conference site. We thank the Centre de Recherche de Mathkmatiques 
AppliquCes, Universitk de Montreal, for organizational help. In particular sincere 
thanks are due to Mrs. Claire O’Reilly-Tremblay for her fine secretarial work 
before and during the conference and to Miss Louise Letendre for her help during 
the conference and in preparing the proceedings. We are grateful to all the people 
who so willingly chaired sessions. We wish to thank North-Holland and P.L. 
Hammer for agreeing to publish the proceedings and for their smooth and 
efficient work. Finally we express our thanks to all the participants, who, after all, 
are the colloquium. The intention was to publish high quality proceedings within a 
short period. This required demanding and expedient refereeing and the editors 
want to express their gratitude to all those who helped in this unrewarding 
refereeing process. Among others we would like to thank Drs. Bermond, Bondy, 
Chvital, Frankl, Jaeger, Las Vergnas and Wolfmann for advice and help. Sincere 
thanks are due to R.L. Graham for chairing the problem session and for editing 
the problem sections of the proceedings. 

The papers are presented in the proceedings in the same order in which they 
were presented at the Colloquium. An effort was made then to schedule them in 
natural groups but it is felt that formal subdivisions in the proceedings would be 
artificial. Given the number of papers, restrictions were imposed on the length of 
text of submitted talks and as a result many papers are announcements of results 
without complete proofs. 

There were many exciting papers and almost all of the work in the proceedings 
is new research of surveys of recent results. Also we have included most of the 
abstracts of talks presented at the colloquium but whose text is not in the 
proceedings. 

PARIS and MONTREAL, April 1980 

M. Deza and I.G. Rosenberg 
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LES FACTEURS DES GRAPHES 

W.T. TUTTE 
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Onr. N2L 
3G1, Canada 

J’ai rencontrk la thtorie des graphe-facteurs a l’tcole, il y a presqu’un demi- 
sikcle. Car c’ttait environ en l’an dix-neuf cent trente que j’ai trouvk dans la 
bibliothkque de 1’Ccole un livre de Rouse Ball, intitulC “Mathematical Recreations 
and Essays”. I1 m’a appris le thkorkme de Petersen, qui concerne la rtsolution 
d’un graphe cubique convenable en deux graphes partiels rtguliers, l’un de degr6 
1 et l’autre de degrt 2. J’appelle le premier un 1-fucteur du graphe, et  le second un 
2-facteur. J’ai lu aussi une proposition de P.G. Tait sur trois 1-facteurs, 
kquivalente au thkorkme des quatre couleurs. 

Quelques anntes plus tard, a 1’Universitk de Cambridge, je trouvais une oeuvre 
de M.A. Sainte-Lague intitulke “Les rtseaux (ou graphes)” [ 3 ] .  O n  y trouve une 
dtmonstration du thkorkme de Petersen. J’ai lu. J’ai compris. J’ai rempli les 
lacunes. J’ai meme fait une petite amklioration du rksultat du texte. “Regarde- 
toi” me suis-je dit, “Tu peux travailler sur les rtseaux. Peut-etre la thtorie des 
graphes sera ton sujet de recherche 2 l’avenir!” 

E n  effet aprts quelques annees la guerre passke, je me mis a la recherche dans 
cette thkorie. Une de mes premikres tiches naturellement ktait la gtnkralisation 
du thtorkme de Petersen a tous les graphes finis [4]. Mon rksultat, le thkorkme 
des 1-facteurs, est maintenant bien connu. Permettez-moi de le poser de la 
manikre suivante. 

Soit G un graphe. Un G-couple est une paire ordonnke B = (S, U )  d’ensembles 
complkmentaires S et U de sommets de G. L’ensemble U dktermine un sous- 
graphe Ind(G, U) .  Les sommets de Ind(G, U )  sont ceux de U, et ses aretes sont 
les arttes de G ayant leurs extrkmitts dans U. Nous appelons les composantes de 
Ind(G, U )  cornposantes de U. Nous kcrivons h ( B )  pour le nombre de composantes 
impaires de U, c’est a dire de composantes ayant un nombre impair de sommets. 
Alors nous kcrivons 

et nous appelons l’entier 6 ( B )  la dkficience de B. Le G-couple B s’appelle une 
barritre si sa dificience est positive. 

Voici le thtorkme des 1-facteurs: G a soit un 1-facteur, soit une barritre, mais 
jamais les deux. 

J’ttais trks heureux d’avoir ce rksultat, mais il me semblait que les autres 
mathtmaticiens n’ktaient pas intkressks. Un jour j’ai rencontrk un mathkmaticien 
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Cminent. “Ah, M. Tutte” dit-il, “Comment va votre recherche?”. “J’ai un 
thkoreme general sur les facteurs des graphes, qui contient le theoreme de 
Petersen comme cas particulier”. I1 Ctait mecontent. “Quoi!” dit-il, “Nous avons 
deja assez de preuves du theoreme Petersen!” 

Le theoreme des 1-facteurs resemble au thCoreme plus ancien de P. Hall, sur 
les 1-facteurs des graphes bipartis. Cette resemblance a CtC utilisCe par Tibor 
Gallai pour sa demonstration nouvelle du thtoreme des 1-facteurs [l]. La 
demonstration part d’un graphe hypothetique G minimal, sans 1-facteurs et sans 
barrieres. Elle se decompose en trois parties. Premikrement Gallai montre que G 
a un G-couple B = (S, U )  telle que sa dCficience est zero et l’ensemble S n’est pas 
vide. Puis Gallai trouve un ensemble M d’arCtes de G tel que chaque sommet de 
S est incident a une seule arCte de M, et tel que chaque composante impaire de U 
est incidente a une seule arCte de M. Une application du theoreme de Hall traite 
les composantes impaires de U comme de simples sommets, et a Ia fin Gallai 
ajoute a M quelques aretes des composantes de U, et obtient un 1-facteur de G. 
Contradiction et demonstration. 

I1 y a une thCorie plus genkrale des facteurs des graphes. Soit f une fonction sur 
I’ensemble V(G) des sommets de G, f(x) etant un nombre entier pour chaque 
sommet x. Un f-facfeur de G, est un graphe partiel H tel que 

val(H, x)  = f(x). 

Ici val(H, x)  est le degre‘ (ou ualence) du sommet x dans H. Remarquons que 
chaque boucle incidente a x compte deux fois dans l’tvaluation de val(H, x). 

La thCorie des f-facteurs est par certains c6tCs plus intkressante que celle des 
1-facteurs. Elle a, par exemple, une dualite. Considerons la fonction f ‘ ,  dCfinie par 
I’Cquation 

f’(x) = val(G, x)- f (x) .  (2) 
Soit F un f-facteur de G. Le graphe partiel F‘, dCterminC par les ar&tes de G qui 
n’appartiennent pas a F est un f’-facteur de G. La dualit6 est entre les f-facteurs 
et les f’-facteurs. 

Dans la thCorie des 1-facteurs nous avons utilise les G-couples. Pour les 
f-facteurs nous devions utiliser les G-triples. Un G-triple est un triple ordonnC 
B = (S, T, U )  d’ensembles de sommets, tel que chaque sommet appartient a un 
seul membre de B. 

Nous considerons encore les composantes de U, en les classant comme paires 
ou impaires. Mais avec les f-facteurs la classification est plus difficile. Soit C une 
composante de U. Soit h(T, x)  le nombre d’arCtes joignant un sommet x de C a 
l’ensemble T. Nous posons. 

J(B,  f, C )  = c {f(x)+ h(T ,  x)). ( 3 )  
x 

Nous disons que C est paire ou impaire selon que l’entier J(B, f ,  C )  est pair ou 
impair. Nous Ccrivons h(B, f )  pour le nombre de composantes impaires de U. La 
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dtficience 6(B,  f )  de B est defini de la maniere suivante. 

Ici h(S,  T )  est le nombre d’arctes joignant S a T. 
Le G-triple B est une f-bam‘dre de G si sa dCficience est positif. Et voici le 

grand theorbme des f-facteurs: G a soit un f-facteur, soit une f-barridre, mais jamais 
les deux. 

Revenons a notre dualite. Le G-triple dual de B = ( S ,  T, U )  est par definition 
B ’ =  (T,  S,  U).  On trouve que h(B, f )  = h(B’, f ’ ) .  Donc 6(B,  f )  = 6(B‘ ,  f ’ ) .  La for- 
mule (4) est auto-duale. 

On peut arriver au thtorkme des f-facteurs par beaucoup de chemins. Ma 
premibre demonstration Ctait par la mCthode des chaines alternees, la mCthode de 
Petersen. Plus tard j’ai dtduit le thCorkme en partant du thkorbme des 1-facteurs. 
Aujourd’hui j’ai une dCmonstration nouvelle. Elle est une gtntralisation de la 
mtthode de Gallai pour les 1-facteurs. Au lieu du theorkme de Hall elle fait usage 
d’un thCorbme de Oystein Ore. Ce thCorkme est une gCnCralisation du thCorbme 
de Hall, et il donne une condition, nkcessaire et suffisante, pour qu’un graphe 
biparti ait un f-facteur [8]. 

On a prCtendu que le thtorkme des f-facteurs est trop difficile a appliquer. 
Donc j’ai ecrit un essai pour montrer quelques simplifications [6]. Le message de 
cet article est a peu prks le suivant. “Si vous avez une f-barrikre B = ( S ,  T, U )  
vous pouvez quelquefois transporter un sommet d’un membre de B 2 un autre, 
sans diminuer la dkficience de B”. Par exemple, si x est un sommet de T tel que 
f(x) = 0 ou 1 on peut le transporter dans U. 

A l’aide de telles transports beaucoup d’applications deviennent faciles. Peut- 
&tre voulez-vous dCduire le thCorkme des 1-facteurs du thCorkme gCntral? Eh 
bien vous dites “Pas de f-facteur, donc une f-barriere B = ( S ,  T, U) .  Mais 
f(x) = 1, toujours. Donc tous les sommets de T peuvent Ctre transportCs dans U. 
A la fin T sera vide. Le G-triple ( S ,  T, U )  sera alors un G-couple ( S ,  U)”. 

Que le thtorkme soit difficile ou non, quelques mathkmaticiens ont voulu le 
gCnCraliser. Mais quelquefois, je pense, les rksultats ne sont pas de vraies 
gkneralisations d u  t h k o r h e  mais plutBt des conskquences de celui-ci. 

ConsidCrons par exemple le theorbme de Lovasz [ 2 ] .  A chaque sommet de G 
on associe deux entiers g(x) et f ( x ) ,  tels que 

0 s  g(x)sf(x)<val(G,  x). 

On demande existe-t-il un graphe partiel H tel que, pour chaque x, 

g(x) G val(H, x )  s f ( x ) ?  ( 5 )  

Le theorkme de Lovasz donne une condition necessaire et suffisante pour l’exis- 
tence d’un tel graphe partiel. Le cas f =  g, est le thkorkme des f-facteurs, dont le 
theorbme Lovasz est Cvidemment une gkntralisation. 
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Mais le thCoreme Lovasz est aussi une conskquence du theoreme des f-facteurs! 
Ajoutons ti G un sommet nouveau k. Joignons k a chaque sommet x de G par 
f ( x )  - g(x) nouvelles arttes. Ajoutons de plus rn boucles incidents a k .  Ainsi nous 
avons construit ainsi un graphe L. Maintenant nous Ccrivons f(k) = n, ou n est un 
entier ayant la paritC de la somme des entiers f ( x )  de G. Pour n et rn est assez 
grands, on vCrifie facilement 1’Cquivalence le thtorkme de Lovisz pour G est la 
mEme chose que le thtorkme des f-facteurs pour L. Si nous avons un graphe 
partiel H de G satisfaisant (5) nous pouvons lui ajouter quelques arites de L 
incidentes 2 k et obtenir un f-facteur de L. De cette manikre on va du thCorkme 
des f-facteurs au thCoreme de Lovasz [8]. 

Comment gCnCraliser la theorie des f-facteurs aux matroi‘des? Premierement 
sans doute nous devons faire une Ctude algkbrique des f-facteurs. ConsidCrons 
une fonction p sur les sommets de G, telle que p ( x )  un entier positif, negatif ou 
soit nu1 pour chaque x. Avec C. Berge nous appelons p un potentiel. 

A chaque potentiel p est associCe une tension 6p qui est une fonction sur Ies 
arites de G. Si A est un arete et si x et y sont les sommets incidents nous 
Ccrivons 

(@)(A) = p b )  + P ( Y ) .  ( 6 )  

Si A est une boucle sur A nous Ccrivons x = y et (6p)(A) = 2 p ( x ) .  
“Quoi?” dPtes vous peut-&re, “C’est une dr6le de tension! Elle a une somme la 

ou les tensions vkritables ont une diffkrence”. NCanmoins nos tensions bizarres 
sont les ClCments d’un groupe additif, car 

pour des potentiels quelconques p et 4. Nous appelons ce groupe A(G). 
Nous parlons maintenant des homomorphismes du groupe A(G). Un tel 

homomorphisme h, est une fonction sur les ClCments de A(G) telle que h(T)  soit 
un entier et 

h ( S +  T ) =  h ( S ) + h ( T ) ,  

pour des ClCments arbitraires S et T de A(G). 

A(G), de la manikre suivante: 
I1 faut remarquer que chaque potentiel f dttermine un homomorphisme h, de 

Encore une dkfinition algkbrique; celle d’une solution d’un homomorphisme h. 
C’est une fonction g sur les arttes de G telle que 

h ( 6 p )  = 1 M A )  . (+)(A)} 
A 

pour chaque potentiel p. 
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On vCrifie qu’un f-facteur F dktermine une solution g de l’homomorphisme hf. 
Cette solution est tres spkciale: g(A) vaut 1 si A est une aiete de F, et 0 
autrement. Disons que g est une solution unipositive de h,. 

Ainsi nous arrivons a une formulation algtbrique de la thCorie des f-facteurs: le 
probleme est de trouver une solution unipositive d’un homomorphisme donnC de 

Comme toujours la thtorie est plus facile pour les graphes bipartis. Pour un tel 
G le groupe A(G) est un module totalement unimodulaire, et  nous avons dCja 
une thCorie des homomorphismes de ces modules [5] .  

La thCorie algCbrique pour les graphes gtntraux est moins satisfaisante pour 
l’instant. Elle s’applique naturellement aux modules de la forme A(G), mais elle 
n’a pas de gCnCralisations connues aux autres modules. 

~71. 
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1. Introduction 

The dichromatic polynomial of a graph-now currently called the Tutte 
polynomial-was introduced by Tutte in [32, 331 as a generalization of chromatic 
polynomials considered by Birkhoff and Whitney . The extension to general 
matroids (combinatorial geometries) is due to Crapo [ 121. The Tutte polynomial 
of a matroid M is relevant in a large number of problems involving numerical 
invariants attached to M. We refer the reader to [35, Chapter 1.51 for a survey of 
works on Tutte polynomials and a bibliography. 

Our purpose in the present paper is to give a survey of basic properties of a 
further generaiization introduced by the author in [ 18): Tutte polynomials of pairs 
of matroids related by morphisms (strong maps), or matroid perspectives in our 
terminology. 

The Tutte polynomial t(M, M’) of a matroid perspective (M,  M’) on a set E is a 
polynomial in three variables. We give several definitions: closed expressions as a 
generating function in terms of cardinalities and ranks in M and M’ of subsets of 
E and of flats of M respectively and in terms of activities with respect to a total 
ordering of E, an inductive definition in terms of deletions and contractions of 
elements of E, and an expression as a linear combination of Tutte polynomials of 
the r(M) - r(M’)+ 1 matroids constituting the Higgs factorization of ( M ,  M‘),  
Besides the equivalence of these definitions, the main properties studied in the 
paper concern a combinatorial interpretation of t (M,  M’; 6, q, 1) when M is an 
oriented matroid perspective, and the relationship between t (M, M‘; 0, 0, 1) = 

a(M,  M’) and the connectivity of (M,  M’). Specific applications of t (M,  M’) 
dealing with orientations of graphs and arrangements of hyperplanes in R” and 
with Eulerian circuits of graphs imbedded in surfaces are briefly presented. 

The paper being intended as a survey, no proofs are given. Theorems quoted 
without references are due to the author. The corresponding papers are [21, 221, 
and also [16, 17, 20, 23) for Sections 7, 8 and [24, 2.51 for Section 9. 

We mention two previous works on polynomials associated with strong maps of 
matroids. In [11] Crapo defines the coboundary polynomial and the rank generat- 
ing function of a strong map, both in two variables. The coboundary polynomial 

I 
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does not appear to be directly related to t(M, M’) in general; on the other hand 
the rank generating function is equivalent to a two variables specialization of 
t(M, M’). In [3] Brylawski studies a polynomial associated with a matroid pointed 
by an element. This polynomial is equivalent to t (M,  M’) considered in the case 
r (M)  - r(M’) = 1 (cf. Remark 3.6 below). 

2. Matroid perspectives 

We recall in this section the main properties of matroid strong maps. 
Let M and M’ be two matroids (combinatorial geometries) on a (finite) set E, or 

more generally on two sets E and E’ related by a bijection‘. The given bijection is 
a strong map from M onto M’ if the following equivalent properties are satisfied: 

(i) every flat of M’ is a flat of M, 
(ii) every circuit of M is a union of circuits of M‘, 
(iii) rM,(X) - rM,( Y )  G rM(X)  - rM( Y )  for all Y E  X G E. 
We write M-+ M’ to denote this situation and we say that P = ( M ,  M ’ )  

constitutes a matroid perspective. We call d ( P )  = r ( M ) -  r(M’) the degree of P. 
A basic example of matroid perspective arises from vector spaces: Let V be a 

vector space and u : V + V be a linear transformation. Given E c V the matroids 
of linear dependencies of E and (u(e) /e  E E )  constitute a matroid perspective. 

Applications in Sections 7 and 9 deal with the following examples arising from 
graphs (we denote by C(G) the circuit-matroid of a graph G and by B(G) its 
bond-matroid) : 

(1) Let G = (V, E )  be a graph (undirected, with possibly loops and multiple 
edges) and V =  V, + V2+ * . . + V, be a partition of V. Let G‘= ( V ,  E )  be the 
graph obtained from G by identifying vertices in each V,, i = 1,2, . . . , k .  Then 
C(G) -+ C(G’). 

(2) Let G and G* be two graphs dually imbeedded in a surface. It follows from 
a theorem of Edmonds [13] that B(G*) -+ C(G).  

Let P = ( M ,  M’) be a matroid perspective on a set E. The following properties 
hold: 

P’ = ( M ” ,  M l )  is a matroid perspective. 
Given A , B c E  such that A n B = @ ,  P \ A / B = ( M \ A / B , M ‘ \ A / B ) *  is a 

matroid perspective (for e E  E we write P\e and P / e  instead of P\{e} and P / { e }  
respectively). We say that P \ A / B  is a minor of P. 

If r ( M ) > r ( M ’ )  the flats of M’ together with the flats X of M such that 
r M ( X )  = r M r ( X )  constitute the flats of a matroid L on E of rank r(M’)+ 1, called 

’ An easy construction, using loops and parallel elements, reduces general strong maps to this 

* M\A resp. M / A  denotes the matroid obtained from M by deleting resp. contracting A. We write 
particular case. 

M ( F )  instead of M\(E\F) to denote the submatroid of M on F. 
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the Higgs lift of M’ in M, such that M-+ L -+ M’ [15]. Iterating this construction 
we get a sequence of r ( M )  - r(M’)  + 1 matroids on E such that Mo = M-,  MI -+ 

. . + M,cM)-,(M*) = M’ called the Higgs factorization of (M,  M‘). 
There exists a matroid N on E U A, A disjoint from E, such that M = N\ A 

and M’ = N /  A (Edmonds, cf. [15]). Note that conversely given any matroid N on 
E U A we have N\ A -+ N/ A. A matroid N with this property is called a major 
of (M,  M’). A canonical major of (M, M’) is given by a construction of Higgs [15]: 
let IAl= r ( M )  - r(M’),  we take for N the ( r ( M )  - r(M‘))th lift of M’@O(A) in 
M@[F(A), where O(A) denotes the rank zero matroid on A and F(A) the free 
matroid on A. We denote the Higgs major of P by W(P) or W(M, M’). 

We say that a subset A of E is a factor of P = (M,  M‘) if A is a factor of both M 
and M’. We write P = P(A)@P(E\A). The matroid perspective P is connected if 
its only (non-empty) factor is P itself. Clearly P is connected if and only if the 
components of M and M’ constitute a connected family of sets. 

3. The Tutte polynomial of a matroid perspective 

Let P =  (M,  M’) be a matroid perspective on a finite set E. We define the Tutte 
polynomial of P, denoted by t ( P )  or t(M, M’), as the polynomial in three variables 
given by 

t (M, M’; 5, 77, 5) is a polynomial of degree r(M’) in 5, IEI-r(M) in 77, r ( M ) -  

The following relations are immediate by inspection: 
r(M’)  in 5, r ( M )  in 5 and 5. 

t(M; 5, 77) = t ( M  M ;  5, 77,5), 
w; 5, q) = t(M, M‘; 5, 3, 5- I>,  

More generally the Tutte polynomial of any matroid of the Higgs factorization 
of a matroid perspective P can be calculated from t ( P ) ;  conversely t ( P )  can be 
calculated from these d ( P ) +  1 polynomials: 

We set 

Theorem 3.1. Let P = (M,  M’) be a matroid perspective on a set E and M,  = M, 
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M , ,  . . . , Md = M',  d = r(M) - r(M'),  be the Higgs factorization of P. We have 

k = l  k = d  

t(Ml; 5, 1 ( q - l ) ' - k t k ( p ;  l> 2 (f-l)k-ltk(P; 5, q), 
k = O  k = I + l  

for 1=0,1,  . . . ,  d.  
Conversely 

It follows from Theorem 3.1 that t(Mk, M I )  can be calculated from t(M, M') for 
all k, 1, 0 s k < 1 s d.  

Corollary 3.2. The Tutte polynomial of the Higgs major H(P) of a matroid 
perspective P can be calculated from t ( P ) .  We have 

More generally the Tutte polynomial of a matroid M with a normal subset A 
(in the sense of [18]) can be calculated in a similar way from t(M(A)) and 
t(M\ A, MI A). 

We close this section by several simple but fundamental relations: 

Proposition 3.3. Let P be a matroid perspective. We  have 

Proposition 3.4. Let P be a matroid perspective and A be a factor of P. We have 

t (P)  = t(P(A))t(P\A). 

Proposition 3.5. Let M be a matroid on a set E. We  have 

t (M, WE); 5, rl, 5) = t ( M ;  5 + 1,711, 

t(lF(E), M ;  5, q, 5) = *lE1-r(M)rjM; 5, 
5 
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Remark 3.6. Let M be a matroid on a set E and A be a subset of E. We define 
the Tutte polynomial of M pointed by A as 

(.,-, - l)lXl-rM(X) rM(xUA)-~,,,(X) 
t ( M ;  A ;  c, 7, [)= c (5- l)r(M)-r~(xuA) 5 

X&E\A 

Observe that 

t(M\A, M /  A ;  f ,  q, .$ )=5--r (M)+r(M'A)  t(M; A;  f ,  7), 5)- 
By the decomposition theorem for strong maps it follows from this relation that 

the theory of Tutte polynomials of set-pointed matroids is equivalent to the 
theory of Tutte polynomials of matroid perspectives. We use the language of 
matroid perspectives which turns out to be more convenient in most situations. 

Tutte polynomials of matroids pointed by one element (IAI = 1)  have been 
considered by Brylawski in [3]: Given e E E let tB (M;  e ;  2, x, z', x') denote the 
polynomial considered by Brylawski. No explicit formula is given for te(M; e )  in 
[3], however, from Corollary 6.14 can be derived the identity 

tB(M; e ;  z, x,  z', x') = x't 
X 

4. t(P) in terms of lattices of flats 

The Tutte polynomial of a matroid M can be calculated from the lattice of flats 
F ( M )  of M (see [12]). This property generalizes to matroid perspectives: 

Corollary 4.2. Let (M,  M' )  be a matroid perspective. I f  M has no loops we have 

0, O? 0) = 2 W F ( M ) ( O ,  x), 
x a F ( M )  

rM(X)-rM,(X)= r ( M ) - r ( M ' )  

CLF(M)(O,  X ) .  (- l)rM(X)-rMGO t(M, M' ;  0 ,  0 ,  1) = (- l)"'" c 
X E F ( M )  

The PoincarC polynomial, or chromatic polynomial, p ( M )  of a matroid M is 
defined by 

p ( M ;  f )  = ( - l ) r ( M ) t ( M ;  1 - f ,  0) = c P ~ ( ~ ) ( O ,  X)f"''-r~'X' 1121. 
XEF(M) 
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We define the Poincari polynomial of a matroid perspective ( M ,  M ' )  by 

p ( M ,  M';  5, 5) = ( - l y ) t ( M ,  M'; 1 - 5, 0, -6)  

= c FF(h4) 5 (0 ,  x ) c r ( M ' ) - r M , ( X )  r(M)-r(M')-(rM(X)-rM,(X)) 

XEF(M) 

The function defined on F ( M ) x F ( M )  by 

is a polynomial-valued element of the incidence algebra of the lattice F ( M )  (see 
[29]). Its inverse in this algebra is the function 

(cf. [ I  1, Theorem 81). Some other remarkable identities for p holding in F ( M )  are 
given in [9]. 

Proposition 4.4 (see [9]). Let ( M ,  M ' )  be a matroid perspective. W e  have 

( - l )r~~lX'~lX'- '"' 'X't(M(X);  1, - ) t ( M / X ,  1 M ' / X ;  <, 7, 6)  = 
X t F ( M )  rl 

r ( M ' I  r(Mt-r(M')  = ( < - I )  5 
Stanley's factorization theorem for modular flats [30] generalizes to r(M, M ' ) .  

We recall that a flat A is modular in a matroid M if 

r M ( X n A ) + r M ( X U A ) =  r M ( X ) + r M ( A )  

for all flats X of M.  

Theorem 4.5. Let ( M ,  M ' )  be a matroid perspective and A be a modular flat of M 
such that rM(A) -  rM,(A) = r ( M ) -  r ( M ' ) .  Then p ( M ( A ) ,  M ' ( A ) )  divides p ( M ,  M ' ) .  
More precisely we have 

p(M, M ' ;  <, 5) = p ( M ( A ) ,  M'(A); <, 5)( X t F ( M )  2 F ~ ( ~ , ( O ,  X)<r (M' - 'w 'A' - rw(x '  1. 
XAA=O 

The quotient of p(M, M ' )  by p ( M ( A ) ,  M ' ( A ) )  is equal to the  quotient of p ( M )  
by p(M(A)) (since p ( M ;  6) = p ( M ,  M ' ;  <, 5 ) ) .  This quotient was identified by 
Brylawski as the Poincar6 polynomial of the complete Brown truncation of M 
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relative to A divided by 5- 1 ( [5 ,  Corollary 7.41). Under the hypothesis of 
Theorem 4.5 the complete Brown truncations of M and of M' relative to A are 
isomorphic. 

5. Coefficients of t(P) 

A basic tool of the theory of Tutte polynomials of matroids consists of inductive 
relations in terms of deletion and contraction of one element. These relations 
generalize as follows to perspective pairs: 

Proposition 5.1. Let ( M ,  MI) be a matroid perspective on a set E. 
( 1 )  If e E E is neither an isthmus nor a loop of M 

r (M,M';  5,rl,5)=t(M\e,Mt\e; 5 , . % 5 ) + t ( M / e , M ' / e ;  I ,rl ,5).  

(2) If e E E is an isthmus of M (hence also an isthmus of M )  

t(M, M'; 5, rl, 5 )=  NM\e ,  M'\e; 6, rl,5). 

(3)  If e E E is a loop of M (hence also a loop of M ' )  

t ( M  M'; 5, rl, 5) = rlt(M\ e, M'\ e ;  I, rl, 5). 
(4)  If e E E is an isthmus of M and not an isthmus of M' 

t(M,M';I,rl,5)=5t(M\e,Mf\e;I,rl,5)+t(M/e,Mr/e;I, ~ ~ 5 ) .  

( 5 )  t(B, 8; I ,  %5) = 1. 
Conversely these relations define t (M,  M ' )  uniquely by induction on 1El. 

The main difference with the relations satisfied by Tutte polynomials of 
matroids occurs in (4). This difference disappears when [ =  1: the two variable 
polynomial t(M, M';  5, q, 1 )  satisfies inductive relations almost identical to those 
satisfied by Tutte polynomials of matroids. 

Corollary 5.2. The Tutte polynomial of a matroid perspective is a polynomial with 
non- negatiue integer coefficients. 

Linear dependencies between coefficients of Tutte polynomials of matroids 
have been studied by Crapo [12], extending works of Whitney [37] on chromatic 
polynomials of graphs, and by Brylawski [4]: the linear relations satisfied by Tutte 
polynomial coefficients of almost all matroids (all except a finite number) amount 
to the identity 

1) r ( M ) .  

Similarly the linear relations satisfied by Tutte polynomial coefficients of almost 
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all matroid perspectives amount to the identity 

5 
' f - 1  

t( M, M ' .  ~ 

Theorem 5.3. Let n be a non-negative integer and P be a matroid perspectiue on at 
least n + 1 elements. The coefficients t,,k of t (P) ,  defined by 

t (P;  5, q, 6) = 1 t i j k < ' q ' e k ,  
r , j .kaO 

satisfy the relation 

& + f G n  

For given non-negative integers d ,  r, r', r'G r, the linear forms R,, n = 0,  1 , .  . . 
restricted to variables tilk such that k s d resp. i + k S r, i S rr and k G r - r' constitute 
a basis of the space of linear forms in these variables null for almost all matroid 
perspectives ( M ,  M ' )  with r ( M ) -  r(M') = d resp. r ( M )  = r, r ( M )  = r and r(M') = r'. 

Brylawski has established that Tutte polynomial coefficients of connected 
matroids do not increase when taking minors [4]. This property generalizes to 
matroid perspectives in two different forms: 

Theorem 5.4. Let P be a connected matroid perspective and Q be a non-empty 
minor of P such that d ( P )  = d ( Q ) .  For all indices i, j ,  k 3 0 ,  tiJk(Q)S t;jk(P). 

Theorem 5.5. Let P be a connected matroid perspective and Q be a non-empty 
minor of P. For all indices i, j s 0 ,  

6. Matroid perspectives on an ordered set 

Let M be a matroid on a set E with a total ordering. For X c E we denote by 
E ~ ( X )  the number of elements e E E\X such that X U ( e }  contains at least one 
circuit with greatest element e, and by iM(X) the number of elements e E X such 
that ( E \ X ) U ( e }  contains at least one cocircuit with greatest element e. These 
definitions extend the definitions of external and internal activities of spanning 
trees of graphs given by Tutte in [33] and are equivalent to definitions given by 
Crapo in [12]. 

Theorem 6.1. Let ( M ,  M ' )  be a matroid perspective on a set E with a total ordering. 
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W e  have 

Note that Theorem 6.1 implies that the expression on the right does not depend 
on the ordering. When M = M' Theorem 6.1 contains theorems proved by Tutte 
for graphs [33]  and by Crapo for matroids [12]. The independence on the 
ordering of the coefficient of ( r ( M ) - r ( M ' )  in the expression on the right is (in a 
different language) a result proved by Tutte for graphs in [34, Theorem 6.21. 

The interpretation of the coefficients of the chromatic polynomial of a graph in 
terms of broken circuits, due to Whitney [36], was recently generalized to 
matroids by Brylawski [7]. A similar interpretation holds for the chromatic 
polynomial of a matroid perspective. 

Let M be a matroid on a set E with a total ordering. A subset of E in the form 
C\{e} with C a circuit of M and e the greatest element of C is called a broken 
circuit of M. 

Theorem 6.2. Let (M,  M') be a matroid perspective on a set E with a total ordering. 
We have 

7. Oriented matroid perspectives on an ordered set 

The reader is referred to [2] for definitions concerning oriented matroids. An 
oriented matroid perspective (M,  M' )  consists in two oriented matroids M and M' 
on a set E such that every signed circuit X of M is a union of signed circuits X' of 
M' with X"sXf and XI-c X - .  We write M"". M' to  denote that (M, M') is 
an oriented matroid perspective. Note that M""- M' if and only if 
M ' I o r ' M M I .  In Example 1, Section 2 suppose G directed and let G' be 
obtained from G by identification of vertices. Then Q=(G)>C(G') (@(G) 
denotes now the oriented circuit-matroid of G). In Example 2 suppose the surface 
is orientable and G and G* are directed such that all rotations defined by 
corresponding edges are consistent, then B(G*) or.\ @(G).  

Let M be an oriented matroid on a set E with a total ordering. We denote by 
o ( M )  resp. o*(M) the number of elements of E which are the smallest element of 
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at least one positive circuit resp. cocircuit of M. For A c E we set o M ( A )  = 

o(;iM), where ;iM denotes the oriented matroid obtained from M by reversing 
signs on A. 

Theorem 7.1. Let (M,  M) be an  oriented matroid perspective on a set E with a total 
ordering. W e  have 

t (M, M';  5, q, 1) = 1 ( ; b ) " : . ' " ' ( ; q ) " M ( X ) .  

XLE 

Theorem 7.1 generalizes both a theorem of Berman on the Tutte polynomial of 
a graph (with a different definition of o and 0") [l] and the following theorem of 
the author [20] obtained from Theorem 7.1 for 5 = q = 0). 

Corollary 7.2. Let ( M ,  M') be an  oriented matroid perspective on a set E. Then 
t (M,  M'; 0 ,  0 ,  1 )  is equal to the number of subsets A of E such that ,M is acyclic 
(i.e. contains no positive circuit) and E M  is totally cyclic (i.e. every element is 
contained in some positive circuit). 

Applications of Corollary 7.2 to orientations of graphs and arrangements of 
hyperplanes (or points) in R" include theorems due to Stanley [31], Brylawski- 
Lucas [8], Zaslavsky [38], Greene-Zaslavsky [14], Brylawski [6] and the author 
[16, 17, 201. We have given a detailed discussion of these applications in [23]. 

We mention the following application to graphs imbedded in surfaces: 

Corollary 1.3. Let G, G" be two connected graphs dually imbedded in an orienta- 
ble surface. The number of orientations such that both G and G" (with correspond- 
ing orientations) are strongly connected is equal to t(B(G"), @ ( G ) ;  0.0, 1). 

8. t ( P ;  0, 0,l) and connectivity 

Let P be a matroid perspective. We set a ( P )  = t ( P ;  0 ,  0 ,  1). Note that a ( P )  = 

a(P') ,  and that a ( P )  is invariant under series or parallel extensions. 
The parameter [Y of a matroid perspective can be considered as a generalization 

of the p invariant of a matroid studied by Crapo [lo] as indicated by the following 
lemma: 

Lemma 8.1. Let M be n matroid on a set E. For any e e E  we have 
a ( M ,  M / e @ O ( { e l ) )  = 2p(M). 

We say that a factor A of P = ( M ,  M' )  is preserving if P ( A )  has degree zero 
(hence M ( A )  = M'(A)). 
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Proposition 8.2. Let P be a connected matroid perspective on a set E. For any e E E, 
P\ e has no preserving proper factor or P /  e is connected. 

There exist connected matroid perspectives P such that both P \ e and P/ e are 
separable. 

Theorem 8.3. Let P be a matroid perspective. The parameter a ( P )  = 0 i f  and only i f  
P has a (non-empty) preserving factor. 

If P has no preserving factor we have a ( P )  3 2*(‘), this bound being best possible. 

Theorem 8.4. Let P be a connected matroid perspective. W e  have a ( P ) >  
2d(P)+1 - 2, this bound being best possible, 

We say that a matroid perspective P is a-minimal if it achieves the bound in 
Theorem 8.4, i.e. if P is connected, d ( P ) >  1 and a ( P ) = 2 d ‘ P ’ + ’ - 2 .  

If Q is a connected minor of a connected matroid perspective P there exists a 
sequence of connected matroid perspectives Po = P, P1 ,  . . . , Pk = Q such that Pi+1 
is obtained from Pi by deleting or contracting one element for i = 0, 1, . . . , k - 1 
(the matroid case of this property is due to Brylawski [4, Proposition 6.81). Using 
this lemma we prove: 

Proposition 8.5. Any connected minor of degree >1 of an a-minimal matroid 
perspective is also a-minimal. 

By Proposition 8.5 there is a characterization by excluded minors of a-minimal 
matroid perspectives. The list of excluded minors is infinite: for all n 3 3 (ff :-I,  ‘5 L) 
is not a-minimal but every proper minor is. 

A matroid perspective (M,  M’) is binary, i.e. has a binary major, if and only if 
M and M’ are binary and (M,M’)  has no minor isomorphic to one of 
(‘5::+1, ‘ 5 i k + l )  k 3 1 (see [19]). It follows that an a-minimal matroid perspective is 
binary. Furthermore, using Brylawski’s characterizations of series-parallel mat- 
roids [ 3 ] ,  it can be shown that if (M,  M‘) is a-minimal, then M and M’ are 
series-parallel matroids. We conjecture that an a -minimal matroid perspective is 
series-parallel, and that besides (ff;-‘,F;) n s 3  it suffices to exclude a finite 
number of minors, all having parallel extension of @(KJ as majors. When 
r ( M ) -  r(M’) = 1 (M, M’) is a-minimal if and only if ( M ,  M’) is series-parallel. 

9. Application to Eulerian partition of graphs imbedded in surfaces 

Let G be a graph 2-cellularly imbedded in a surface S, G* the dual graph of G 
and H the common medial graph of G and G*. The graph H is 4-valent, 
2-cellularly imbedded in S with graph of white faces G and graph of black faces 
G*. 
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We denote by m k ( H )  the number of partitions of the edge-set of H, or Eulerian 
partitions of H, into k non-crossing circuits. By circuit we mean a closed tour not 
traversing any edge more than once, considered in the enumeration up to its 
initial vertex and its direction; non-crossing has the obvious topological meaning. 

We set 

and call m ( H )  the Martin polynomial of H imbedded in S .  
The main fact is that m ( H )  can be calculated from the Tutte polynomial of the 

imbedding of G in S, defined by t(G, G*) = t(B(G*), C(G)), when S is the sphere, 
the projective plane or the torus: 

The sphere case is due to Martin [26], the projective plane and torus cases to 
the author [24], see also [25]. (Theorem 9.1 is obtained in [24] as a corollary of a 
stronger result: Theorem 2.1.) 

Let c ( H )  denote the number of circuits crossing at every vertex of H ;  these 
circuits partition the edge-set of H. We have 

m ( H ;  -1) = ( - ~ ) U ( W ( - ~ ) C ( H ) - ~  

[24, Proposition 5.21, where v ( H )  is the number of vertices of H. It follows from 
Theorem 9.1 that c ( H )  can be calculated from the Tutte polynomial of the 
imbedding of G in S,  when S is the sphere, the projective plane or the torus. For 
planar graphs (sphere case) this property 

t(G; -1,  -1) = (-1)u(H)(-2)c(H)-l, 

was found independently by Martin [26,27] and by Rosenstiehl and Read [28]. 
It turns out that except in these three cases C(G) and C(G*) are not sufficient 

in general to determine m(H). The extension of Theorem 9.1 to other surfaces 
requires the consideration of more algebraic invariants attached to the imbedding. 
The nature of these invariants is an open problem. 



On the Tutre polynomial of a morphism of matroids 19 

Appendix. The Tutte polynomial of a matroid perspective sequence 

We call matroid k-perspective a sequence of k + 1 matroids M,, MI, . . . , Mk on 
a set E such that Mi + Mi+,  for i = 0,1, .  . . , k - 1. The Tutte polynomial of a 
matroid k-perspective, in k + 2  variables, can be defined as in [18, Section 31. 
Theorems of Sections 3-8 generalize. However, no details will be given here, 
owing to the fact that the author does no know of any natural application. 
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1. Introduction 

In a finite matroid of rank r, denote by w k  and &, where 0 s  k C r, the number 
of closed sets and the number of independent sets of rank k,  respectively. There 
are a number of interesting conjectures about these sequences. Rota conjectured 
that the sequence (W,) of Whitney numbers is unimodal, and there is evidence to 
support the stronger conjecture that it is logarithmically concave. Another conjec- 
ture is that wk G wr-k when k G r -  k. This is true for k = 1 (see [l, 4,6]), but in 
general we have the weaker inequality [ 3 ]  

W , + W 2 + . . . + W k ~ W r  -1+Wr-2+...+Wr-k. 

Another inequality concerning the (W,) sequence appears in [2]. 

numbers. Mason [5] has in fact proved that 1,s l,-k when k 
unimodal conjecture [7]  for (1,) is 

Analogous conjectures have been made for the sequence (1,) of independent set 
r -  k .  Welsh’s 

I ,  amin{$ I , }  for O s j  < k <  I s r. (1) 

1: a lk-llk+l for 0 < k < r. (2) 

Stronger than (1) is the logarithmic concaviry conjecture of Mason [5]: 

Mason mentions further strengthenings of these conjectures, in particular that the 
ratios %/ W,_,W,+, and l:/lk-,lk+l are minimized among all matroids on n 
elements by the free matroid, for which wk = I, = (E). In this paper we describe a 
different type of strengthening of (2), and prove our conjecture when ks7. 

2. The polynomial conjecture 

Let M be a finite matroid of rank r defined on a set X = { x I ,  x2, . . . , x,,}. We 
consider the polynomial ring R = Z[x,, x2, . . . , x,,] freely generated over the 

*This research was supported in part by NSF Grant No.MCS 78-02880 (OSURF Project. 
No. 71 1179). AMS(M0S) subject classification: 05B35. 
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integers by the elements of X ,  and define a partial order on R as follows: fs  g if 
the coefficient of each term of f does not exceed the coefficient of the correspond- 
ing term of g.  

Define a homomorphism cr : R -+ Z, under which the image of a polynomial is 
the sum of its coefficients. Clearly u is order-preserving with respect to our partial 
order on R and the natural order on Z : f =G g implies u(f) S u ( g ) .  

Now for 0 S k r, let fk = f k ( M )  be the polynomial in R defined by 

where the sum is extended over all independent sets of size k in M. Then fk is 
homogeneous of degree k and cr(fk) = Ik. We may now state our polynomial 
conjecture: 

fEafk-lfk+l for O <  k < r .  (3)  

Observe that (3) implies (2 ) ,  since if (3) holds, then by the order-preserving 
property of u, 

a’(fk) = u(f2k)2 a ( f k - l f k + l )  = u ( f k - l ) u ( f k + l )  = I k - l l k + l .  

We shall obtain an equivalent form of (3) below. To do so, we need the 
following notation and definitions. Given a matroid M on a set X ,  and disjoint 
subsets Y and Z of X ,  we denote by M( Y U Z )  the restriction of M to Y U 2, and 
by M( Y U Z )  / Z the minor of M obtained by contracting 2 in M (  Y U 2). The 
size of the minor M( Y U Z )  / Z is the cardinality of Y, and its depth in M is the 
rank of Z. 

Given a matroid N of size 2 k  on a set Y, and an ordered partition (i, j )  of 2 k ,  
define an independent (i ,  j)-partition of N as an ordered partition (A, El) of Y such 
that A and B are independent in N, (A]  = i, and lB( = j. Let n,,,(N) denote the 
number of independent ( i ,  /)-partitions of N. We then have: 

Proposition 1. Let M be a finite matroid and 1 a positive integer. Then 

if and only i f ,  for every k G 1 and every minor N of M of size 2 k  and depth I - k 

Proof. We interpret the coefficients in the homogeneous polynomials f: and 
f t - l f i+l .  Each term of either is an integer multiple of a monomial of the form 

g =  n X i ’  n x;, 
X , E Y  X , E Z  

where Y and Z are disjoint subsets of X satisfying lY( + 2 ( Z (  = 21. Let (YI = 2k, so 



The independent set numbers of a finite matroid 23 

121 = 1 - k. Then the coefficient of g in f: is the number of ordered pairs 
(A U Z, €3 U 2) of independent sets in the restriction M( Y U Z )  such that (A, €3) is 
an ordered partition of Y and \A\  = IBI = k. These correspond to the independent 
( k ,  k)-partitions of the minor N = M (  Y U 2) / Z of size 2 k and depth 1 - k in M. 
Hence the coefficient is r k T T ( ( N ) .  In like manner, the coefficient of g in f f - l f f + l  is 
n k - l , k + l ( N ) ,  so (5 )  implies (4). 

Conversely, suppose (4) holds and let N = M( Y U 2) / 2 be a minor of size 2 k 
and depth 1 -  k in M. We may assume that Z is independent in M, so that 
(21 = 1 - k. Define a monomial g as above, and observe that the coefficients of g in 
f :  and f f - l f i+l  are given by the left and right sides of (9, respectively, so that ( 5 )  
follows from (4). 

Corollary 2. Let 4 be a class of finite matroids closed under minors, and suppose 
that ( 5 )  holds for every k G 1 and every N in A. Then (4) holds for every M in 4. 

3. The theorem 

We shall prove that (4) holds for 1 ~ 7  for the class of all finite matroids by 
establishing that (5) holds for any matroid on 2k points, when k s 7. For this 
purpose, we need a result on matchings in bipartite graphs. In a simple graph H, 
let x - y  denote the relation that x and y are adjacent vertices, and let v H ( x )  
denote the number of vertices adjacent to x. 

Proposition 3. Let H be a finite simple bipartite graph with bipartition V(H)= 
X U  Y. Suppose that vH(x)  3 1 for all x E X and that 

S 1  
1 1- 

x--y 

for each y E Y. Then G admits a matching of X into Y. 

Proof. Let A be a subset of X and let N ( A )  = {y  E Y :  y - x for some x E A}. By 
Hall’s Theorem, it suffices to show \ A ( <  (N(A)I .  Using (6), we have 

We turn now to our main result. 

Theorem 4. Let M be a matroid on 2k elements, where k s 7 .  Then 

rk,k rk - 1, k + 1 (’). (7) 
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Proof. Let 17i,j = 17,,i(M) denote the set of independent (i, j)-partitions of M, so that 
T,,, = lIIc,ll.  Define a bipartite graph G with bipartition V ( G )  = f l k - l , k + l  U n k , k  

such that (C, D )  E I I k - l ; k + l  and (A,  B )  E f l k , k  are adjacent if C= A -a ,  D = B + a  
for some U E A .  Let K denote the closure operator of M. Then for (C, D)E 
flk-l,k+l, we have (C+ d, D -  d )  E Ilk,k if and only if d E D - K(C),  SO 

Vc(C, D)=ID-K(C)I.  

Similarly, for (A, B ) E I I ~ , ~ ,  we have ( A - a , B + a ) ~ f l ~ - ~ , ~ + ,  if and only if a~ 
A - K ( B ) ,  SO 

uG(A, B )  = \ A  - K ( B ) \ .  

Lemma 5. If r (M)<  k, or r ( M )  = k + 1 and M has a coloop, then ( 7 )  holds. 
Otherwise, 

\ D - K (c)j 3 (8) 

IB - K ( A ) \  2 2 (9) 

for (c, D ) E f l k - l , k + l ,  and 

for (A,  B )  f l k , k .  

Proof of lemma. If r ( M )  s k, then T k - l , k + l =  0 ,  so (7) holds trivially. If r ( M )  = 

k + 1 and p is a coloop of M, then 

Ti , ]  (MI = r t -  *, l (M- P )  + r i , , -  1(M- P ) ,  

as p extends any independent set of M - p  to an independent set of M.  In 
particular, 

T k ,  k (') - T k  - 1, k + 1 (') = r k  - 1 ,  k ( - p) - T k  - 2 , k  + 1 ( M  - p )  9 

which is nonnegative since T ~ - ~ , ~ + ,  = 0 for the rank k matroid M -  p .  
If r ( M )  3 k + 2 ,  of if r ( M )  = k + 1 and M has no coloop, then there are at least 3 

elements not in the closure of an independent ( k  - l)-set, and at least 2 elements 
not in the closure of an independent k-set, so (8) and (9) hold. 

In view of Lemma 5, we may assume henceforth that (8) and (9) hold. Since (7) 
is easily seen to hold for k = 1, we assume k 2 2. 

Two independent (k, k)-partitions of the form (A,  B ) ,  (B,  A )  will be called 
mates. We next define a bipartite graph G' isomorphic to G in which (C, D )  E 

n k - ] , k + l  is adjacent to (B,  A ) E I I ~ , ~  if and only if (C, D )  is adjacent to its mate 
(A,  B )  in G. Since k > 1, G and G' are edge-disjoint. Now let H be the bipartite 
graph with V(H) = n k - - l , k + l  U I lk ,k  given by H = G U G'. We then have 

V,(C, D)=2vG(C,  D ) = 2  l J l -~ (C) l  
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for (c, D )  E n k - i , k + i ,  and 

+r(A, B) = uG(A, B) + uG'(A, B )  

= ~ G ( A ,  B ) + ~ G ( B , A )  

=IB-K(A)I+IA-K(B)I 

for (A, B) E n k . k .  

X =  n k - l , k + l r  Y =  f l k , k .  Proposition 3 will then establish the theorem. 
We shall show that when k s 7 ,  (8) and (9) imply that H satisfies (6) for 

Thus let us fix (A, B )  E n k , k ,  and define sets 

A,=A-K(B)={a1, a2 , . .  .,a,}, 
B, = B - K(A) = {bl, b,, . . . , bs}, 

where r = IAol, s = IBol. Then (A, B )  is adjacent in H to the r +  s vertices 

(A - a,, B + a,), a, E A,, (10) 
(B - b,, A + b,), b, E B,. (11) 

To determine the valence in H of these vertices, we define 

A, = A - K ( B  - b,), 

B, = B -  K(A - a, ) ,  

1 s j s s, 

1 s is r, 

and let r, = ]A,], s, = IB,I. Since A, 2 A, for 1 
have using (9). 

j s and B, 2 B, for 1 4  i r, we 

2 s  r s  r, s k, 2 s  s s s, S k .  (12) 

The vertices adjacent in H to (10) are (A, B), the s, vertices ( A - a , +  b,, 
B + a, - b,) for b, E B,, and the mates of these. Thus 

uH(A - a,, B + a,)  = 2 ( ~ ,  + 1). 

The vertices adjacent in H to (11) are (B, A), the r, vertices (B - b, +a,, A + b, - 
a,) for a, E A,, and the mates of these. Thus 

uH(B - b,, A + b,) = 2(r, + 1). 

We may now express the sum in (6) for y =(A, B )  as 

To establish (6), we must show that 

1 " 1  -+ - S 2 .  
i = l  si + 1 j = l  rj + 1 

Let 2 = C(s,, s2, . . . , s,, r l ,  r2,  . . . , rs) denote the function given by the left side of 
(13) whose domain is the set of admissible (si) and (Ti). 2 is a decreasing function 
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of each si and rj, and so by (12), 

cs---+- 

The right side of (14) is s 2  when 

r S 

s + l  r + I '  

r(r + 1) + s(s + 1) s 2(r + l)(s + l), 

that is, when 

(r - s ) ~  =s r + s + 2. (15) 

We may, without loss of generality, assume that r >  s. Then (15) holds, hence (13), 
for all (r,  s) satisfying (12) with k s 7 except for (r, s) = (6,2),  (7,3),  and (7 ,2) .  To 
deal with these cases, we need the following lemma. 

Lemma 6. For each subset Ic{l,2,. . . , r}, 

If 1 is a proper subset of { 1 , 2 , .  . . , r}, 

Proof. Clearly (16) holds if B is empty, so assume BZg.  Let F be the flat of M 
defined by F = i c I  K(A - ui). Since the sets A - ai are subsets of an independent 
set A, we have that 

a flat of rank k-111. Since B is independent, I F n B I s  k-111. But 

F n B =  (K(A-a,)nB) 
I t 1  

= n (B - B,)  = B - u B,, 
I t 1  I t 1  

so ~ B - u , e I B , ~ ~ k - [ I \ ,  which gives (16). 

therefore spans A - U 
Suppose now that equality holds in (16). Then B -  Urer  B, is a basis of F, and 

a,. Thus 

But K ( B )  n A = A - A,, so A, c U i c I  ai, and we conclude that I = { 1 , 2 ,  . . . , r}. 

Note that (16) is Hall's condition for the existence of a system of distinct 
representatives (SDR) for the family {Bi : 1 s i s r}, while (17) implies that an 
arbitrary element of B can be excluded from an SDR of any proper subfamily. 
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We assume r>s,  and note that (17) implies that at most s-  1 of the Bi equal 
Bo. Hence the upper bound of (14) can be improved to 

s-1 r - s + l  s 

s + l  s + 2  r + l  
zs-+---+-, 

and the right side of (18) is s 2  for (r, s) = (6 ,2) ,  (7,3).  

1 s i s  7, then 
There remains the case (r, s) = (7 ,2) .  Since s = 2, at most one si = 2. If si 3 3 for 

c s ; + ; = 2 .  

z s3+:+5+;<2 .  

If s1 = 2 and at least two si 3 4 ,  then 

The remaining possibility is s1 = 2 and five (at least) si = 3, say si = 3 for 2=z i s 6. 
Then by (17), there are distinct elements ci, 2 s  i s 6 ,  of B - B o  such that 
B1 = {bl,  b2}, Bi = {bl, b,, c i } ,  2 < i s 6. Now B = {bl, b,, c2, c,, c,, c5,  c6}. We claim 
that B, = B. If not, then some c i$  B,, say c 6 k  B,. Then for I =  {1 ,2 ,3 ,4 ,5 ,7} .  we 
have I UiGl  Bil = 111, contradicting (17). Thus s, = 7, and we obtain 

Z S 3 + $ + 4 + f < 2 .  

This completes the proof of the theorem. 

Corollary 7. fEsfk-lfk+l for 1 s k s 7 .  

We conjecture that the bipartite graph H admits a matching of u k - l , k + I  into 
u k , k  for any k .  The following example shows, however, that Proposition 3 cannot 
be applied when k 3 8. Let M be the graphic matroid of a graph with k + 2  
vertices and 2 k  edges consisting of k - 2 triangles and one quadrilateral all 
sharing a common edge e, but otherwise disjoint. Let A consist of edge e, one 
other edge of the quadrilateral, and one other edge of each triangle, and let B be 
the complementary set of edges. Then one can show that 

3 
2 k + 2 ’  

for k 3 8 .  For this matroid, n k k - l , k + l  = (3k+2)2k-3 and n k , k  = 

= $, + ;( k - 2)  + - 1 c 
(C,  D)-(A, B) vH(c, D ,  

which is 
(3 k)2 k-2. 
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Union (or sum) is an operation on (ordinary) matroids that yields great insight into matroid 
structure. It has a wealth of applications and, as pointed out by Mirsky and others, allows the 
treatment without difficulty of problems whose solution has previously required extremely 
complex arguments. For all its power the operation is expressed simply in terms of independent 
sets. In this paper the corresponding operation for oriented matroids is formulated in a 
constructive way by making use of the multiply ordered sets introduced by Gutierrez Novoa, 
and algorithms are given for generating the union matroid. For simple oriented matroids, that 
is, oriented matroids whose underlying matroids are uniform, it is also shown that union yields 
another simple matroid, and that the union operation may be carried out by “concatenation” of 
two set systems. This construction is also useful in obtaining combinatorial types of some 
polytopes and convex polyhedral sets. In particular, concatenation is used to determine the 
polyhedral set found by Klee and Walkup as a counterexample to the (polyhedral) Hirsch and 
d-step conjectures. 

Union (or sum) is an important binary operation on matroids that is finding 
increasing applications in theoretical and practical problems. As pointed out by 
Mirsky [lo] and others, it allows the treatment without difficulty of problems 
whose solution had previously required long and extremely complex arguments. 
For all its power the operation is expressed simply in terms of independent sets. 
For ordinary matroids union is defined by 

A, = A, V A, 

where A, and A, are matroids specified in terms of their independent sets as 
All = (E,  s,), A, = (E,  s2), and A, = (E,  9,) is a matroid whose independent sets 
are given by 

93 = {XI X = X ,  U X,,  where XI E X ,  E s2>. 
Since oriented matroids give promise of interesting applications to engineering 

and science, for example, to linear programming and electrical network theory, 
the natural question then arises whether union can be defined as an operation on  

*While this work was done, this author was a National Academy of Sciences-National Research 
Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D C  
20234. 
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oriented matroids. In [7] Las Vergnas has already given an affirmative answer by 
showing that images of orientable matroids are also orientable. From this it 
follows easily that unions of orientable matroids are orientable. Here, by using the 
multiply ordered sets introduced by Gutierrez Novoa [ l l ] ,  we define a union 
operation for oriented matroids, thereby obtaining this result in a somewhat more 
constructive way. We also use two theorems which describe the image of an 
oriented matroid under a map f : X + Y which simply identifies two points of X .  
In defining the union operation of two oriented matroids in a third in such a way 
that the underlying (ordinary) matroid of the third is the union of the underlying 
matroids of the first two, we show that an ordering must be specified for the 
oriented matroids, and unlike the case for ordinary matroids, the operation is not 
commutative; it is, however, associative. 

We assume the reader is familiar with the basic concepts of matroids [12], and 
is also familiar with oriented matroids; two references for the latter are the papers 
of Bland and Las Vergnas [l] and of Folkman and Lawrence [4]. 

We recall some basic definitions and notation for d-ordered sets [9]. 
If u = ( x , , .  . . , xk) is a ( k +  1)-tuple let lul={x,, . . . , xk}. For O s  i s  k ,  we 

define L;=(x , ,  . . . , x , - ~ ) ,  Rb=(x ,+ , ,  . . . , xk),  and E ; = x , .  Note that L: is the 
unique 0-tuple, as is Rk. Finally if (T~ is a k,-tuple (for 1 < i m)  let (ul, . . . , c,,,) 
be the ( k ,  + * * . + k,)-tuple obtained by their concatenation. In particular, u = 

(Lb, Eb, Rb) for any i with O <  i G k. 
A d-ordered set is a pair (X, +), where X is a set and + is a function on 

( d +  1)-tuples (T = (x", . . . , xd) of elements of X with values in { -  1,0,  l}, not 
identically zero, with the two properties: 

(Al )  4 is alternating; that is, if the (d+l)-tuple (T is obtained from T by 
interchanging two entries, then +(a) = - $ ( T ) ,  and 

(A2) if s EX, u is a d-tuple of elements of X ,  and T is a (d + 1)-tuple from X 
such that (a) +(E*T,  u ) ~ ( L ' T ,  s, R ' T ) ~ O  for each i with 0 s  i s  d, then (b) 

It is shown by Lawrence [9] that for X finite (which we assume henceforth) 
(X, +) is an oriented matroid, and every oriented matroid is a d-ordered set. Thus 
to the best of our knowledge a d-ordered set is the first formulation of an 
oriented matroid (in disguise). Specifically, if ( X ,  +) is a d-ordered set, then the 
collection 93 = { B G  Xlcard B = d + 1 ,  and if Is1 = B, then +(a) # 0} is the set of 
bases of a matroid, called the underlying matroid of ( X ,  4). Its rank is d + 1. Las 
Vergnas [S] had previously defined an alternating function on the bases of an 
oriented matroid, and asked for the characterization of this function. The answer 
to his question is that such a characterization is given by the d-ordered set ( X ,  4). 

If X E  Rd+',  a set of column vectors, we may view (d + 1)-tuples from X as 
( d  + 1) x (d + 1) matrices. If u is such a (d + 1)-tuple, let 

tp(s, c)+f7) 3 0. 

+(a) = sgn det u. 

Then the pair ( X ,  4) is a d-ordered set, provided that X linearly spans R d + ' ,  so 
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that + is not identically zero. Multiply ordered sets obtainable in this way are 
termed realizable. 

Suppose ( X ,  4) is a d-ordered set. Suppose, further, that u and u are distinct 
elements of X .  Let X ' = X - { u }  and let f : X +  X' be the map 

x if x f  u, 
u if x = u. 

fb)= [ 
Let A be the underlying matroid of ( X ,  +) and let A' be the image of A under f. 
The rank of & is d + 1. The rank of A' is either d or d + 1. If A' has rank d, 
Theorem 1 describes a (d - 1)-ordered set ( X ' ,  5) and A' is its underlying matroid. 
If At' has rank d + 1, Theorem 2 describes the appropriate d-ordered set (XI, 5). 

Theorem 1. If w is  a d-tuple of X', let [ (a)  = +(u, u ) .  Then if [ is not identically 
zero (XI, 5) is  a (d - l)-ordered set. 

Since the proof is short, we give it to render the flavor of proofs in d-ordered 
sets. Clearly 5 is alternating. We verify (A2). Suppose, for a a (d-  1)-tuple 
[(s, ( Y ) [ ( T )  = - 1. Then +(s, a, u ) ~ ( T ,  v )  = - 1, so by (A2) either there is an i with 

or else 

+(U> a, u)+(7,  s) = - 1. 

Clearly the latter is not the case, since +(v, a, u )  = 0 by (Al). The expression on 
the left in the former is 

so (A2) is satisfied. 
We note that A' will have rank d if and only if each base of A contains both u 

and u. In this case the set of bases of A' consists of all the sets I g X' which are 
independent in A and of cardinality d. For any such set I U { u }  is a base of A. It 
follows easily that A' is the underlying matroid of (X' ,  5). 

For A' of rank d + 1 let 5 be defined on (d + 1)-tuples u from X' by 

if CT has u in more than one entry, 
e(c)= '#'(a) if +(a) # 0, or if IcI, (" 4(a') otherwise, where w' is obtained from u by replacing u by u. 

We then have 

Theorem 2. If 5 is not identically zero, then (XI,  5) is a d-ordered set. 

Suppose X is a set of vectors spanning Rd+' and ( X ,  4) is derived as above, so 
that 4(a) = sgn det w. Theorem 2 applies if X - { u }  or X - {v} spans R d c l .  In this 
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case if E is sufficiently small and u’ = u +a, then the d-ordered set ( X ’ ,  6) of 
Theorem 2 is realized by the set X ’ =  ( X - { u ,  v}) U {u’}. Theorem 2 applies if 
neither X - { u }  nor X - { u }  spans Rd+’.  In this case, again letting X ‘ =  
( X - { u ,  u})U{u’} and identifying the subspace spanned by X ’  with R d  by an 
appropriate linear isomorphism, the (d - 1)-ordered set is realized by X’.  

These theorems give a way to identify two points of a multiply ordered set. This 
identification is more complex than its analogue for ordinary matroids in the 
following sense: Here it is important which of the two elements to be identified is 
u and which is v ;  whereas for matroids, interchanging the roles of u and u does 
not change the outcome. 

Since we may obtain any image of a matroid by identifying two of its elements 
at a time, this construction can be used to establish that any image of the 
underlying matroid of a multiply ordered set is also the underlying matroid of 
some multiply ordered set. In general, this construction yields many candidates 
for such a multiply ordered set, depending on how the identifications are carried 
out. 

There is a similar situation for unions of oriented matroids. Next we define a 
‘‘union’’ operation for pairs of “indexed” multiply ordered sets. 

Let X = {x, ,  x,. . . . , x,,}. In what follows, the indexing of X will be important. If 
x = x, E X ,  i is called the index of x. The first element of X is x,; i.e., the elements 
of X are considered to have the ordering induced by their indices. 

An indexed multiply ordered set ( X ,  +) is one in which the set X is indexed by 
a set of positive integers, each pair of distinct elements of X having distinct 
indices. 

and 6, = (X, ,  4,) are multiply ordered sets and suppose 
XI and X ,  are disjoint. Let BI and 3, be the sets of bases of the underlying 
matroids, and suppose they are of ranks d ,  + 1 and d2 + 1. The free join of 0, and 
O2 is the (d, + d,+ 1)-ordered set (XI U X , ,  @), where @ is given by 

Suppose 6, = (XI, 

unless I P l n X , E % ,  and l P l n X , ~ % ~ ;  
( -  l ) ‘ n + l ( ~ ) + 2 ( ~ )  otherwise, where IuI = Ip( n X , ,  

171 = \pi fl X , ,  and rn is the 
number of transpositions required to get 
P from (a, 7). 

@(P)  = 

It is easily verified that this is a multiply ordered set. Furthermore, if 0, and 6, 
are both realizable by sets X ,  and X ,  in real vector spaces, the free join is also 
realizable by viewing these vector spaces as orthogonal complements in a larger 
one. 

Now suppose that 6, = (XI, +,) and 6, = ( X , ,  +2) are multiply ordered sets, as 
above, Suppose further that X ,  and X ,  are indexed by the same set of positive 
integers-say, X ,  ={u , ,  . . . , u,} and X,=(v , , .  . . , v,}. The union O I v 6 ,  of the 
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indexed multiply ordered sets is the outcome of the following construction. Let 
( X ,  U X, ,  @) be the free join of 0, and 0,. Use Theorems 1 and 2 to identify, one 
by one, the pairs u, ,  u , ;  u,, v,; . . . ; and u,, v,. This yields another indexed 
multiply ordered set (XI, 4), the union 0, v 0,. 

The multiply ordered set 0, v 0, depends heavily on the indexing although the 
underlying matroid does not, since it is simply the union of the underlying 
matroids of 6, and 0,. Also O1vO2 is not usually the same as 0,~0~; i.e., this 
operation is not commutative. It is easily shown to be associative, however. 

Suppose the rank of the underlying matroid of 0,v02 is d +  1. If u is a 
( d  + 1)-tuple with IuI E 3, the collection of bases of the underlying matroid, then 
the n identifications will identify +(a) with @(T), for an appropriate ( d ,  + d ,  + 2)- 
tuple T from X,UX,. 

We state the following theorem, to summarize. 

Theorem 3. The union of two indexed multiply ordered sets is another indexed 
multiply ordered set, Its underlying mutroid is the union of those of the originul 
multiply ordered sets. lf the original multiply ordered sets are realizable, so is the 
union. 

In the full paper, we give algorithms to obtain +(c) from @ ( T )  that are based 
on matroid partitioning algorithms [ 2 , 3 ] .  We also show that the union operation 
is particularly simple to describe when the underlying matroids are uniform, and, 
equivalently, for simple oriented matroids. In addition, the cycles of such a union 
are determined easily. It is found that union for simple oriented matroids can be 
given in terms of a concatenation operation. 

We then describe how to use this concatenation operation to construct com- 
binatorial types of some convex polytopes [3].  For instance, the duals of Gale’s 
cyclic polytopes [5] may be obtained in this way. 

Finally, we derive the polyhedral set found by Klee and Walkup [6] as another 
example of the utility of this construction, that is, we derive a counterexampk to 
the Hirsch conjecture which is combinatorially equivalent to that found by Klee 
and Walkup. 

The union operation given in this paper is certain to have many interesting 
applications and opens up a number of questions. 

It would be useful to know if the results on  uniform matroids and polytopes can 
be extended in a reasonable way to all oriented matroids and all polytopes. Also 
of interest would be a characterization of the simple oriented matroids (simple 
polytopes) which can be obtained by starting with those of rank 1 (dimension d ,  
with d + 2 facets) and using concatenation. 

Finally, we wish to acknowledge the many encouraging comments of C. 
Witzgall concerning simple oriented matroids as well as interesting conversations 
with V. Klee concerning the Hirsch conjecture. 
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SOMMES ET PRODUITS LEXICOGRAPHIQUES 

Stephane FOLDES 
I.M.A.G., B.P. 53X, 38041 Grenoble, France 

Abstract 

On considbre differentes gknkralisations du produit lexicographique d’ensem- 
bles ordonnts: 
- produit lexicographique de graphes et d’autres structures relationnelles, 
- sommes relationnells (X-join), 
- produit lexicographique avec un nombre infini de facteurs. 

OPTIMUM ANTICHAIN UNIONS 

K. CAMERON and J. EDMONDS 
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, NZL 
3G1, Canada 

Abstract 

A method is presented for reducing the problem of finding an optimum union 
of k antichains in a poset to a dual transportation linear program. 
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QUELQUES RECENTS RESULTATS SUR CERTAINS 
PROBLEMES COMBINATOIRES 

Anton KOTZIG 
C.R.M.A.,  Uniuersite de Montreal, C.P. 6128, Succ. “A”, Montreal, Quebec, H3C 357, Cunada 

Abstract 

O n  presentera les recents resultats des etudes de certains problemes com- 
binatoires ouverts, trouves par un groupe de chercheurs montrealais en collabora- 
tion avec quelques autres centres et universites, dans les domaines suivants: 
- les carrks magiques et fortement magiques; leurs transformations et leurs 
extensions, 
- les proprietks d’etoiles magiques et complktes et des methodes de leurs 
constructions, 
- les suites additives de permutations et quelques unes de leurs applications en  
factorisation des graphes, extensions de systemes parfaits d’ensembles de 
difference, etc, 
- les systemes parfaits reguliers d’ensembles de differences (surtout les cas 
extremaux), 
- les quasigroupes et les carres latins. 
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BIPARTITE GRAPHS WITH A CENTRAL SYMMETRY AND 
(1,- 1)-MATRICES” 

Abraham BERMAN 
Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel and 
Department ofMathematica1 Sciences, Rensselaer Polytechnic Institute, Troy, N Y  12181, U.S.A. 

Anton KOTZIG 
Centre de Recherches de Mathtmatiques Appliquies, Universite de Montrial, C.P. 6128 Succ. 
“A”, Montreal, Q u i .  H3C 357, Canada 

Bipartite graphs, of diameter 4, with a central symmetry are represented by equivalence 
classes of proper (1, -1)-matrices. This representation is used to compute the number of non- 
isomorphic graphs. 

1. Introduction 

Let G be a finite graph and let u and v be vertices of G. The following notation 
will be used in the paper: 

d,(v)-the degree of v in G, 

A(G)-the diameter of G, i.e. the maximal distance between two vertices of 

V(G)-the set of vertices of G, 

&;(u,v)-the distance in G between K and v, 

G, 

K,,-the complete graph with n vertices, 
K,,,-the complete bipartite graph with m and n vertices. 

Consider a graph G (which contains at least one edge) with the property of 
having a central symmetry, that is 
(*) for every vertex u, there exists exactly one vertex 13 which is more 

remote from v than every vertex adjacent to 5. The vertex V will be 
called the opposite of 21 in G. 

It is known, [7], that such a graph G is connected, i.e. A(G)<m, and has an 

(1) &(v, 5) = A(G) for every v E V(G), 
(2) &(u, u ) + & ( v ,  i i ) = 6 , ( ~ ,  ii) for every U, U E  V(G), 
(3) 6 , ( ~ ,  u)= &(U, 6) for every u, v E V(G). 
(4) d,(u) = dG(6)  for every 21 E V(G), 

even number of vertices and the following properties: 

*Research supported by Grants DGES-FCAC-78 and CNRC-A9232 
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( 5 )  the transformation of vertices to their opposites defines an automorphism in 

The following problem relates graph theory and lattice theory [2]: Determine 

for every vertex v,  the graph G has an orientation which is the Hasse 
diagram of a lattice fulfilling the Jordan-Dedekind conditions and having 
v as its greatest element. 

It is shown in [5] that such a graph must have the above mentioned central 
symmetry (*) and be bipartite. Bipartite graphs with the central symmetry (*) are 
called S-graphs. Not every S-graph has the property (* *), and the question which 
S-graphs do have this property is open. Most known results on S-graphs are 
contained in [l, 3 ,5 ,6] .  

One way to classify S-graphs is by their diameters. The only S-graph of 
diameter 1 is K2. If F and G are S-graphs, then so is H =  F x  G, their Cartesian 
product, and A(H)=A(F)+A(G).  Thus, K,X x K ,  ( n  times), the n-  
dimensional cube, is an S-graph of diameter n. The only S-graph of diameter 2 is 
K,X K2. There is an infinite number of S-graphs of diameter 3. Every such 
S-graph is isomorphic to Kn,n - L, where L is a 1-factor of Kn,n and n > 2. Thus, 
all S-graphs with diameter < 4  are regular. 

In this paper we study S-graphs of diameter 4. This is done by considering 
equivalent classes of ( 1 ,  - 1)-matrices (matrices whose entries are f 1). 

G which is an involution without fixed points. 

the graphs G such that 
(* *) 

2. Proper (1, -1)-matrices 

Two m x n (1, - 1)-matrices, A and €3, are said to be equivalent if B can be 

(a) negation of a row, 
(b) negation of a column, 
(c) reordering of the rows, 
(d) reordering of the columns, 
(e) transposition (if m = n ) .  
A (1, -1)-matrix is defined to be proper if no two of its rows and no two of its 

columns are proportional. Hadamard matrices are examples of proper matrices. If 
B can be obtained from A by using only operations of types (a), (b), (c), and (d), 
then A and B are H-equivalent [8].  We remark that, in general, A and A' are 
not necessarily H-equivalent, so operation (e) is essential in our definition of 
equivalence. An example of an Hadamard matrix of order 16 that is not 
H-equivalent to its transpose is given in [4] (this is the matrix D in [8, p. 4201). 

Let G be an S-graph with color sets U and W. Let U E  U and w E W be 
adjacent. If A(G)=4,  then U E  U and W is adjacent to U .  Thus, both IUI and IWI 
are even, say I UI = 2 m  and 1 WI = 2n, the degree of every vertex in U is n and the 
degree of every vertex in W is m. 

obtained from A by a sequence of the following operations: 
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Examples of S-graphs of diameter 4 are K2 X K2 X K2 X K ,  and (K,," - L )  x K2, 
where n > 2 and L is a 1-factor of Kn+. These graphs are regular. There exist 
non-regular S-graphs of A = 4 and also S-graphs with A = 4, which are primitive, 
that is, cannot be obtained as a Cartesian product of two graphs. In fact, all 
S-graphs of diameter 4 can be obtained in the following way. 

Theorem 1. (a) Let G be a (2m, 2 n )  S-graph of diameter 4. Then the submatrix of 
the 2 m  x 2n incidence matrix of G, that corresponds to pairs of opposite vertices is 

( l  ') or (' 1 0  l)  
0 1  

and the reduced incidence obtained by replacing 

is an m x n proper matrix. 
(b) Isomorphic graphs have equivalent reduced incidence matrices. 
(c) The matrix obtained from a proper matrix by replacing 

is an incidence matrix of a ( 2 m , 2 n )  S-graph. 

S -  graphs. 
(d) Equivalent proper matrices are reduced incidence matrices of isomorphic 

Proof. (a) The first statement follows from the remark preceding the theorem. 
Suppose the reduced incidence matrix is not proper. Then two vertices of G have 
the same neighborhood, but this implies that they have a common opposite 
vertex. 

(b) Isomorphism means reordering of the vertices in the two color sets, which 
transfers the reduced incidence matrix to an H-equivalent one, or, in the case that 
the two sets are equal, replacing one by the other, which transposes the matrix. 

(c) Every column of the (0, I) incidence matrix has exactly m 1's and by the 
properness of the reduced matrix, there is no other column with 1's in the same 
places, and there is exactly one complementary column. This means that for every 
vertex that corresponds to a column of the incidence matrix there are m vertices 
at distance 1, 2 n - 2  vertices (described by columns) at distance 2 ,  m vertices at 
distance 3 and one vertex, the opposite, at distance 4. A similar observation at the 
rows shows that G is an S-graph of diameter 4. 

(d) Reordering or negation of the rows or columns of the reduced incidence 
matrix means a new labelling of the vertices, while a transposition (in the case of 
square matrices) means an exchange of the two color sets. 
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Necessary conditions for matrices A and B to be equivalent are that IAATI and 
IBBTI are cogredient, that is PIAAT(PT = lBBTl for some permutation matrix P, 
where 1x1 denotes the matrix obtained from X by replacing the entries by their 
absolute values. Similar conditions can be stated in terms of IC,(A)( and \C,(B)\ 
where C, denotes the kth compound matrix. In particular, equivalent matrices 
must have the same Smith normal form. 

These conditions are not sufficient, as it is known that there exist 4 non- 
equivalent (and 5 non H-equivalent) Hadamard matrices of order 16 (see [4,8]). 
However, we can apply them to obtain the number +(m, n )  of equivalence classes 
of m x n proper matrices (the number of nonisomorphic (2m, 2 n )  S-graphs) for 
large values of n. 

Theorem 2. (a) +(m, n )  = 0 if n > 2'"-' 
(b) + ( m , 2 " - ' ) = ~ ( m , 2 " ' - ' - 1 ) = 1 .  
(c) +(rn, 2m-1 - 2) = [Im].  

Proof. There are 2'n-' distinct rn-columns of 1's and - 1's with first entry equal 
to 1. Thus, a matrix with m rows and more than 2"-' columns is not proper. Let 
x, denote the column with -1 in the last i entries and +1 in the first rn-i 
entries, i = 1, . . . , [4m], and let A be a proper rn X 2"-' matrix with 1's in the first 
row and x, as the ith column, i = 1,.  . . , [irn]. Clearly A has a positive column. 
Let B be the matrix obtained from A by deleting this column and let C, be the 
matrix obtained from B by deleting the ith column, i = 1, . . . , [ Im] .  Then every 
proper rn x 2"-' matrix is equivalent to A and every proper m x (2m-1  - 1) matrix 
is equivalent to B. Similarly, every proper rn X (2m-1 - 2) matrix is equivalent to 
one of the matiices C,, i = 1, .  . . , [irn], and by the necessary conditions for 
equivalence, no two of the matrices C, are equivalent. 

3. Regular S-graphs 

Let d be a natural number. An open question in [6] is to  compute p(d)-the 
number of nonisomorphic d-regular S-graphs with diameter four. It is shown in 
[6] that p ( l )=O,  p ( 2 ) = p ( 3 ) =  1 and p ( 4 ) = 3 .  By Theorem 1, p ( d ) =  +(d, d). We 
apply this theorem to compute p ( 5 ) .  

Theorem 3. p ( 5 )  = 8. 

Proof. For typographical convenience we shall denote - 1 by -. We shall say 
that a matrix is of type I if its first two rows are 

1 1 1 1 1  
1 1 1 1 - ,  
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of type I1 if its first three rows are 

1 1 1 1 1  
1 1 1 1 -  
1 1 1 - 1 ,  

and of type I11 if its first four rows are 

1 1 1  1 1  
1 1 1  1 - 
1 1 1  - 1  
1 1 - 1  1 .  

Every proper square matrix of order 5 is equivalent to a matrix of type I or to the 
matrix 

1 1 1 1 1  
1 1 - - -  

Every matrix of type I is equivalent to a matrix of type I1 or to one of the matrices 

1 1 1 1 1  1 1 1 1 1  
1 1 1 1 -  1 1 1 1 -  

Every matrix of type I1 is equivalent to a matrix of type I11 or to one of the 
matrices 

1 1 1 1 1  1 1 1 1  

- 1 - 1  1 - - 1 1  

or 1 1 1 1 1  
1 1 1 1 -  
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and every matrix of type I11 is equivalent to one of the matrices 

1 1 1 1  1 1 1 1 1  

1 - 1 - -  1 - 1 1 1  

Of the eight matrices IAATI, (BB'I, . . . , /HHTI, no two are cogredient, thus 
A, B, . . . , H are not equivalent, completing the proof. 
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0. 

The intensive interest in Room squares in late sixties and early seventies and 
the subsequent settling of the existence question for Room squares were followed 
by an introduction of several generalizations of Room squares. The purpose of 
this paper is to  present a survey of these generalizations most of which (but not 
all) have already appeared in the literature. The notion of the Room square is our 
starting point; we do not consider Room squares with additional properties (such 
as skew Room squares, embedded Room squares etc. [39]) but only structures 
that are more general than the Room squares. Our main emphasis is on the 
existence question. Other questions such as enumeration or embedding are 
touched upon only briefly, mainly because there is very little one can say about 
these problems at present. Whenever possible, we indicate connections to other 
combinatorial structures. Finally, we try to point out open problems, especially 
those which in our opinion seem promising (or at least not quite hopeless). 

The considered generalizations of Room squares, and their relationship are 
pictured in Fig. 1 which shows a “Room tree”. An edge is always directed from a 
structure to a more general one, but not all possible directed edges are present. 
Clearly, a quite different scheme could have been employed; the one used 
represents a compromise in that it is trying to reflect, to a certain degree, the 
“historical” development of the various concepts. 

1. 

There is one feature that is common to all the structures considered below: they 
consist of cells that are either empty or contain subsets of a basic n-set N. The set 
of subsets (which may sometimes have an additional structure on them) occurring 
in the nonempty cells forms the set of blocks of a combinatorial design called the 
underlying design of the structure. 

The notion of Room square is central for us. 
A Room square of order n (briefly RS(n)) is a square array such that 
(1) every cell of the array is either empty or contains a 2-subset of an n-set N ;  

43 
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I I 

Fig. 1 

(2) every element of N is contained in exactly one cell of each row (column): 
(3) every 2-subset of N is contained in exactly one cell of the array. 
I t  follows that n must be even, and RS(n) is of side n-1 .  
The existence question for Room squares has been completely settled; this 

distinguishes Room squares (so far) from all the generalizations below. A Room 
square of order t? exists if and only if 17 = 0 (mod 2). n # 4,6. Various techniques. 
some quite involved and ingenious, were needed to achieve this; a brief survey of 
these techniques and a most concise proof of this result up-to-date can be found 
in [27].  A still simpler proof, preferably a direct one. would be very desirable. 
Nevertheless, let us mention some selected methods for Room squares. as most of 
them - suitably modified if necessary - are applicable to generalized structures 
as well. From direct methods, the starter-adder method and its modifications have 
been used extensively (see [39]). A Room square RS(n) exists if and only if there 
exists a pair of orthogonal I-factorizations of the complete graph K,; a 1- 
factorization of K,, is equivalent to a unipotent symmetric quasigroup of order 17.  

or. which is the same. to an idempotent symmetric quasigroup of order t7 ~ 1.  thus 
an RS(ri) is equivalent to a pair of perpendicular symmetric quasigroups of order 
I I  - 1 (sometimes called a Room pair of quasigroups). In particular. a pair of 
perpendicular Steiner quasigroups of order I I  - 1.  or equivalently. a pair of 
orthogonal Steiner triple systems S(7. 3. c) yields an RS(n) (for definition o f  
orthogonal Steiner systems, see Section 3 below). 

Recursive constructions for RS(n) are described in detail in [30]: they include 
Moore-type constructions. and doubling as well as other multiplication construc- 
tions ( the  direct product construction for Room squares fails: the direct product of 
pairs of Room quasigroups is never a pair of Room quasigroups). Finally. Room 
squares are closed under taking painvise balanced designs [39]. 
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It is basically these methods that are (suitably adapted) used when dealing with 
generalized structures. 

2. 

The underlying design of RS(n) is the (trivial, and necessarily complete) BIBD 
with k = 2 and A = 1. If we relax condition (3) (that forces us to have A = 1) and 
replace it with condition (3*), we get the definition of a Howell design. 

A Howell design of side s and order t i  (briefly HD(s. n ) )  is a square array 
satisfying conditions ( I ) .  (2). and 

(3") every 2-subset of N is contained in at most one cell of the array. 
In an HD(s. n ) ,  n must still be even. and for the side s. we have 

f n  s s  s n - 1. 

The existence question for the two extremal cases has been completely settled. 
Of course. HD(n- 1, n )  is the Room square RS(n). On the other hand, 
HD(m, 2 m )  were shown to exist for all ni 2 3  (see [16]). The Howell designs 
HD(2.4). HD(3,4), HD(5,6). HD(S,8) are known not to exist [16]. Hung and 
Mendelsohn [ 161 have given constructions for many classes of Howell designs. 
Their methods were extensions of the starter-adder method for Room squares, as 
well as recursive multiplication theorems. They have shown. for instance, that 
apart from the above exceptions and possibly HD(8, 10). all Howell designs 
HD(m + k .  2m 1, 2 

Another multiplication theorem for HD's was obtained by Anderson in [3]. 
Further results producing new HD's can be found in [ 1, 21. It was conjectured in 
[h] that HD(s. 2m) exists for all odd sides s. with the three abovementioned 
exceptions. However. the near-extremal case s = m + 1 presents difficulties (as 

k s 10. exist. 

HD (11 ,LD) 

Fig. 2. 
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does, incidentally, the other near-extremal case s = 2m - 2 (see [l])). There is no 
HD(S,8) while HD(7, 12) and HD(9, 16) were found by computer [16] (the case 
s = rn + 1 even presents no problem; all such designs HD(m + 1 , 2 m )  were con- 
structed by the starter-adder method [16]). A generalization of the starter-adder 
method was used in [32] to construct HD(l1,20) and HD(13,24). Recently, 
Schellenberg [33] has given two recursive constructions that establish the exis- 
tence of HD(m + 1 , 2 m )  for "half" the even integers m :  an HD(m t 1,2rn) exists 
for all m =0,6 ,8 ,  12, 16, 18 (mod 24) except possibly for rn = 16, 18,24,36. 

3. 

Another generalization is obtained by letting the 2-subsets of the underlying 

A generalized Room square of degree k and order n (briefly GRS(k, n)) is a 

( la)  every cell of the array is either empty or contains a k-subset of an n-set N ;  
(3a) every k-subset of N is contained in exactly one cell of the array. 
It follows that k must divide n, and a GRS(k, n )  is of side (:I:). 
A first example of GRS of degree 3 appears in the note [7] which presents a 

GRS(3,9); this is smallest possible nontrivial GRS that is not a Room square. 
Several infinite families of GRS of degree 3 were obtained in [8, 28. 341. The 
existence question for GRS is far from settled even in the case k = 3. For k = 4 
there are only two orders (12 and 24) for which GRS's are known [9, 17,291. 
Whether there exist (nontrivial) GRS's with k > 4  (or with arbitrarily large k, for 
that matter) is an open question. The known existence results on GRS's include: 

(i) 3 GRS(k, k ) ,  3 GRS(k, 2k) for all k (trivial), 
(ii) 3GRS(3,7" t 2), 3GRS(3, 16" + 2) for every integer a > O  (see [35]) ,  

(iii) 3GRS(3, n), n even 3 3GRS(3, 3n) (see [29]), 
(iv) n = p" t 1, p prime, 6 < n < S O  3 3GRS(3, n) (see [S]), 
(v) 3GRS(3, 15), 3GRS(4, 12) (see [29]), 3GRS(4,24) (see [9, 171). 
(vi) There exists a pair of orthogonal Steiner systems S(k, 2k - 1, n) .$ 

Here, two Steiner systems (V, B,) and (V, B2) of type S ( t ,  k ,  n) are orthogonal if 

(ii) whenever Q, Q' are two blocks of B1 intersecting in a (k - [)-subset P, and 

Many of the above results are based on the following theorem [29] that extends 

A GRS(k, n) exists if and only if there exists a pair of orthogonal 1- 

Of course, two 1-factorizations F, F' of the complete k-uniform n-hypergraph 

design be replaced by k-subsets ( k  3 2). 

square array satisfying condition (2),  and 

3GRS(k, n + 1) (see [26]). 

(i) B ,  n B,  = 9, 

R, R' are such that (Q \ P )  U R E B,, (Q'\P) U R' E B2, then R # R'. 

a similar result for RS(n): 

factorizations of the complete k-uniform n -hypergraph. 
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Kf: are othogonal if two distinct edges (= k-subsets) of K: belong to distinct 
1-factors of F’ whenever they belong to the same 1-factor of F. 

The proof of (vi) above, for instance, follows by showing that the two Steiner 
1-factorizations obtained from two orthogonal S ( k ,  2k - 1, n)’s are orthogonal as 
well [26]. 

The existence problem for GRS with k = 3  appears tractable and it seems 
reasonable to conjecture that a GRS(3, n )  exists whenever n G O  (mod 3), n f  6. 
The smallest values of n for which the existence of GRS(3, n) has not been 
shown, are n = 21,27,39,45. 

4. 

Combining the two previous concepts, one obtains the following generalization 

A generalized Howell design of degree k, side s, and order n (briefly 

(3**> every k-subset of N is contained in at most one cell of the array. 
It follows that one must have, for the side s, 

[31]. Let k 2 2 ,  s, n be positive integers. 

GHD(k, s, n) )  is a square array satisfying conditions (la), (2), and 

n / k < s s (  n - 1  ). 
k - 1  

Unlike in the case of GRS’s, it is relatively easy to show that there exists GHD’s 
of an arbitrarily high degree k. For instance, a GHD(k, n, kn)  exists, for every 
k 2 2 ,  if and only if n is a positive integer, n f  2 (see [31]). 

An example of GHD(3, 12,9) is given in Fig. 3. Several further examples of 
GHD’s as well as constructions for several infinite classes of GHD’s can be found 
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in [12] and [31]. In fact, it can be shown that a GHD(3, s, 9) exists whenever 
3 s s 6 28, except possibly when s = 26. These GHD’s and several others of small 
orders and various sides have been constructed using the following theorem [31]: 

A GHD(k, s, n) exists if and only if there exists a pair of mutually balanced 
orthogonal partial 1-factorizations of Kk, of rank s. 

Here, a partial 1-factorization of K i  of rank s is simply a set of s painvise 
disjoint 1-factors of Kk. Two partial 1-factorizations F,F’ of K ;  are mutually 
balanced if any edge of Kf: belongs to a 1-factor of F if and only if it belongs to a 
1-factor of F’. 

Apart from the trivial case of GHD(k, s. 2k) that clearly cannot exist for any k, 
no set of parameters with k 3 3 is known for which GHD(k, s, n) does not exist. 

5. 

We can generalize the notion of GRS(k, n )  to higher-dimensional structures 
[30]. Let again k 3 2, d 3 2, n be positive integers. 

A multidimensional Room design of degree k, dimension d and order n (briefly 
MRD(k. d, n ) )  is a d-dimensional cubical array satisfying (la), (3a), and 

(2a) every element of N is contained in exactly one cell of any (d - 1 j- 
dimensional cubical subarray. 

It follows that the side of a MRD(k, d, n) is again (:I:). In order to obtain a 
characterization of MRD’s in terms of 1-factorizations, one has to modify the 
definition of orthogonality. 

@,, . . . ,@I,} of 1-factorizations of the complete k-uniform 
n-hypergraph is a d-orthogonal set if for any d 1-factors FL,, E,, . . . . F,d of @ 

A set @ = 

(where E, E @,, 1, 

(Thus. 2-orthogonality means “ordinary” orthogonality.) 
It was shown in [30] that an MRD(k, d, n )  exists if and only if there exists a 

d-orthogonal set of d 1 -factorizations of the complete k-uniform n-hypergraph. 
An example of a 3-orthogonal set of three 1-factorizations of K6 and the 

corresponding MRD(2, 3 , 6 )  can be found in 1301. Unfortunately, every d -  
orthogonal set of 1-factorizations of K,k is also a (d+l)-orthogonal set. The 
problem can therefore be made more interesting by considering MRD’s satisfying 
an additional condition. 

d )  if 
@ is t-orthogonal but contains n o  ( t  - 1)-orthogonal subset of 1 -factorizations. A 
regular MRD(k, d, n) of index t (briefly RMRD(k. d, n;  t ) )  is an MRD(k, d, n )  
such that the corresponding d-orthogonal set of d 1-factorizations of K f :  is regular 
of index t. (Alternatively, the index of an RMRD(k, d. n )  is the smallest t such 

A d-orthogonal set @ of 1-factorizations of K :  is regular of index t (2 G t 
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that a projection of the array onto any t dimensions is still an MRD(k, t, n )  while 
projection on any (t - 1) dimensions is never an MRD.) 

The mentioned example of an MRD(2, 3, 6 )  is in fact an RMRD(2, 3 ,6;  3); 
clearly, there is no RMRD(2,3, 6; 2) since the existence of an RMRD(k, d, n ;  t )  

implies the existence of an RMRD(L, d ' ,  n ; t )  for every d such that t d' d. The 
higher-dimensional Room designs of [39] are RMRD(2, 3, n ;  2)'s. There exists an 
RMRD(2,3, 8:  2) but no  RMRD(2,4, 8; 2) (see [39]). If p is a prime, p = 3  
(mod 4), there exists an RMRD(2, $ ( p  - l ) ,  p + 1; 2) (see [39]). Probably for every 
n 3 4 there exists an RMRD(2, n - 2,2n;  2), and no design of higher dimension. 
In other words, the maximum number of painvise orthogonal 1-factorizations of 
K2,, is probably n-2. Although many people believe that this number cannot 
exceed n - 2, this upper bound has not been shown to hold even under additional 
restrictions (e.g., for Steiner 1-factorizations). The properties of the Steiner 
system S(5,8,24) were used in [17] to construct an RMRD(4, 9,24; 2). Virtually 
nothing is known, however, about the existence of RMRD's of index t 2 3. 

Ganter has shown in [ll] that MRD's are closed under taking t-partitions. (A 
t-partition is a pair (V, B) where V is an n-set and B is a collection of subsets of 
V ( =  blocks) such that every t-subset of V occurs in exactly one member of B.) 
Le., if K is the set of blocks sizes (=cardinalities of members of B )  and if for 
every S E K  there exists an RMRD(k, d ,  s +  1; t), then there exist a 
RMRD(k, d, n + 1; t ) .  

6. 

Another generalization of Room squares is obtained by letting the nonempty 
cells be occupied by ordered (rather than unordered) pairs. 

A generalized Euler square' or order n (briefly GES(n)) is a square array such 
that 

(1") every cell of the array contains at most two ordered pairs of elements of an 
n-set N; 

(2") each element of N occurs as a first coordinate exactly once in each row 
(column). and as a second coordinate exactly once in each row (column); 

(3") each ordered pair of elements of N is contained in exactly one cell of the 
array. 

First of all, given a normalized RS(n) (one in which a specified element, say m, 

occurs in the diagonal cells), we can replace each 2-subset {i, m} by the ordered 
pair (i, i), and each 2-subset {i, j ] ,  i # j ,  in an off-diagonal cell by the two ordered 
pairs (i. j ) ,  ( j ,  i). The resulting square is equivalent to an RS(n) as the whole 
process can be reversed, and thus we may still call it a Room square. Clearly, an 
Euler square (= a pair of superimposed orthogonal Latin squares) is a GES with 
n o  empty cells. 

'This name was suggested by C.C. Lindner 
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Fig. 4. 

Let us call two quasigroups (Q, .), (Q, (8) of order n weakly orthogonal if 

x . y = a ,  

x @ y = b  
(*) 

has at most two distinct solutions in x, y for any a, b E Q. It is easy to see that a 
pair of weakly orthogonal quasigroups yield a GES(n): place the ordered pair 
(x, y )  in the cell (a, b) if and only if x, y satisfy (*); weak orthogonality guarantees 
property (lo), and Q, Q' being quasigroups guarantee properties (2") and (3") for 
GES(n) to be satisfied. Clearly, the converse is also true. 

Since both orthogonal quasigroups and perpendicular (symmetric) quasigroups 
are weakly orthogonal, both Euler squares and Room squares are special cases of 
GES(n). Let us describe a method to manufacture pairs of weakly orthogonal 
quasigroups (i.e. GES's) that are neither orthogonal nor perpendicular. Take an 
RS(n) in its equivalent form of a pair of (symmetric) perpendicular quasigroups, 
say Q1, QZ. A quasigroup can have 1 , 2 , 3  or 6 distinct conjugates [23] but a 
symmetric quasigroup can have only 1 or 3 distinct conjugates. It turns out that 
the pair Q{, Q$ where QI is a conjugate of Q, may still be weakly orthogonal 
even if Q! is actually a conjugate of Q, distinct from 0,. The example of a GES(n) 
in Fig. 4 is obtained in this way from the RS(n) R3 (numbering as in [39, p. 961) 
by replacing Q2 by its (3, 1,2)-conjugate. 

7. 

All the above generalizations of RS(n) were obtained by letting the underlying 
design still to be a complete design. However, since any balanced incomplete 
design with k = 2 is necessarily complete, a whole different line of generalizations 
of RS(n) can be obtained by letting the underlying design to be incomplete. In the 
following definition the underlying design is pairwise balanced. 

A generalized Room square2 (grs) S(r ,  A ;  n )  of side r, index A and order n is a 

'Of the second kind 
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square array satisfying (2), and 
( lb)  each cell of the array contains a subset (possibly empty) of an n-set N ;  
(3b) every 2-subset of N is contained in exactly A cells of the array. 
The considerable interest in grs’s is due in large part to their connection with 

equidistant permutation arrays. 
An equidistant permutation array (EPA) A(r, A ;  n )  is an n x r array in which 

every row is a permutation of integers 1 ,2 ,  . . . , r, and any pair of distinct rows has 
precisely A common column entries. 

The number R(r, A )  is defined as maximum n for which there exists an 
A(r, A ;  n ) .  Since A(r, A ;  n )  exists if and only if there exists S(r, A ;  n )  (see, e.g., 
[15,38]), constructions for grs’s are important for obtaining bounds on R(r, A) .  A 
large number of papers deals with this problem circle [lo, 13, 14, 15, 25, 28, 36, 
381. 

A grs S(r ,  A ;  n) is uniform of degree k if all entries in nonempty cells are 
k-subsets (i.e. if condition (lb) is replaced by (la)); it is denoted by Sk(r, A ;  n ) .  

The underlying design of a uniform grs is a BIBD. This BIBD is not only 
resolvable but doubly resolvable, i.e. there exist two orthogonal resolutions 
R = {Rl, RZ, . . . , R}  and C = {Cl, C1, . . . , C,} with IRi r l  Cil 6 1. Of greatest in- 
terest are uniform grs’s with A = 1; these have as their underlying designs doubly 
resoluable Kirkman systems denoted by &(a).  Until very recently, it was un- 
known whether there exists a uniform grs with A = 1 of degree k a3.  Mathon and 
Vanstone [24] have constructed an infinite class of uniform grs’s with A = 1; they 
have shown that a Dk(k3) exists whenever k is a prime power. Fig. 5 contains 
their example of an S3(13, 1 ;  27). 

Fig. 5. 
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Considering the case k = 3, it is obvious that D3(9) does not exist, and it is not 
difficult to verify that D3( 15) does not exist either. Whether a D3(21) exists is an 
open question. It is shown in [24] that Sk(r. 1; n)’s are PBD-closed, and a D,(n) 
exists for all n = 3 or 27 (mod 312) and n sufficiently large. Several recursive 
constructions and further results on D k ( n )  and more general structures can be 
found in [37]. It is reasonable to expect D,(n) to exist for all n = 3 (mod 6 ) ,  
n 3 2 7 .  

8. 

As mentioned above, the underlying design of a uniform grs with A = 1 is a 
(doubly resolvable) Kirkman system Dk(n). In a Kirkman system we must have 
n = k (mod k ( k  - 1)). If we weaken this condition to n = O  (mod k ) ,  we can 
consider a more general structure called a Wingo square by letting the underlying 
design to be a “maximal” (doubly resolvable) partially balanced incomplete block 
design with A = 1, A, == 0. 

A Wingo square Wk(r, n )  of degree k ,  side r and order n is a square array 
satisfying ( la) ,  (2), (3*). and 

(4) r = L(n - I)/(k - I)]. 
When k = 3 and n 3 0  (mod 6), the underlying design of a Wingo square is a 

(doubly resolvable) nearly Kirkman system, denoted by Vk(n). In [34]. a doubly 
resolvable nearly Kirkman triple system V,(24), or, equivalently, a Wingo square 
W,( 11,24) was constructed. Clearly, a V,(6) or V3(12) cannot exist, and it is not 
known whether a V,(18) exists. A recursive construction given in [37] together 
with the results on D3(21) from Section 7 guarantee the existence of a V,(n) for all 
n = 24 or 288 (mod 312) and n sufficiently large. Again, one would expect V,(n) 
(Wingo squares W&n - 2), n ) )  to exist for all n = 0 (mod 6). n 2 24. 

Very little is known about Wingo squares of degree k 2 4 .  T h e  only example 
seems to be that of a V4(7, 24) (see [24]). 

Let us remark that both the uniform grs’s of Section 7 and the Wingo squares 
represent special types of generalized Howell designs (cf. Section 4). 

9. 

In a manner similar to that of Section 5 ,  the grs’s of Section 7 can be extended 
to higher dimensions. However, we restrict our attention to uniform structures. 

A uniform multidimensional generalized Room design of degree k ,  dimension d, 
index A and order n (briefly UMGRD(k, d, A, n )  is a d-dimensional cubical array 
satisfying conditions (la), 2a), (3b). 

Thus, the underlying design of a UMGRD is a BIBD. The most interesting case 
occurs when h = 1. When k = 2, UMGRD(2, d, 1 ,  n )  coincides with MRD(2, d, n )  
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2 3 

4 5 

considered in Section 5 .  Thus we assume k 2 3. It is easy to see (cf. Section 5 )  that 
a UMGRD(k, d, 1, n )  exists if and only if there exists a d-orthogonal set of d 
resolutions of the underlying BIBD. Again, most interesting examples are those 
for which the corresponding d-orthogonal set of resolutions of the underlying 
BIBD is regular of index t (i.e., is t-orthogonal but contains no ( t -  1)-orthogonal 
subset of resolutions). The corresponding UMGRD(k, d, 1, n )  is said to be regular 
of index t. A regular UMGRD(k, 3, 1, n )  of index 3 is called Kirkman cube and is 
denoted by K,(n). This side of a Kirkman cube is ( n  - l ) / (k  - 1). Clearly, there 
exists n o  K,(9). An example of a K,(15) is given in Fig. 6. 

3 is known 
at present although they are likely to exist. On the other hand, a 
UMGRD(8, 13. 1,24) of index 2 was constructed recently from the Steiner 
system S(5,8,24) (see [21]). 

No  example of a UMGRD(3, d, 1, n )  of index 2 and dimension d 

10. 

The most general structure containing most of the previously discussed two- 
dimensional generalizations of Room squares as special cases was introduced 
recently by Kramer and Mesner [19,20]. 

A Room rectangle 

RR(m. n ;  t - ( v ,  k. A))=RR(m, n;Ct, t,, t21-[u, ul,  u21, k,CA, A x ,  h21) 
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is an m x n array that 
(I): each cell is either empty or contains a block of a t - (0, k, A)-design; 

(11): the blocks in each row (column) form a t ,  - (vl, k, Al)(t2 - (a2, k ,  AJ) 
design; 

(111): each block of the t - (v, k, A)-design appears in exactly one cell. 
For instance, a Room square RS(n) is a 

RR(n-1,n-1;[2,1,  1l-[n7n,n1,2,[1, 1, 11L 

a GRS(k, n )  of Section 3 is 

the uniform grs Sk(r ,  A ;  n )  of Section 7 is 

RR(r, r ;  12, 1, 11-[u, v, ul, k ,  [A, 1, 13, 

and the labeled O R  square LORS(r, m, A, n)  of [26] is an 

However, since the designs in rows and designs in columns are permitted to be 
t-designs for different t, the array is not square in general. Further, the designs in 
rows or columns are not required to be designs on the entire set of elements. On 
the other hand, a Room rectangle can be square although designs in rows are 
quite different from designs in columns. One such example taken from [20] is in 
Fig. 7; several further examples can be found in [20]. 

The above definition of a Room rectangle is quite general; for instance, there 
are over a thousand admissible sets of parameters for Room rectangles with 
u = 10 (see 1201). 

In [20] constructions are given for several infinite families of “proper” (i.e. 
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rectangular, not square) Room rectangles. For example, the existence of a 
resolvable Steiner system S(t, k, n)  with 2t  - k = t” > 0 implies the existence of an 

Several further interesting “sporadic” examples of Room rectangles can be found 
in [19,20]. 

Similarly to the case of generalized Room squares of Sections 3 and 7, the RR’s 
can be extended to higher dimensions. Here we mention only one very restricted 
case of such higher-dimensional structures, the so-called Steiner tableaus that 
have already been described in the literature [18]. 

A Steiner tableau of dimension k and order n (briefly ST(k, n)) is a k- 
dimensional cubical array satisfying (la),  (3a), and 

(2b) the cells of any (k - 1)-dimensional cubical subarray contain the k-subsets 
of a Steiner system S(k - 1, k, n). 

It follows that the side of an ST(k, n )  is n - k + 1 (the degree and dimension 
coincide in ST(k, n)). It is shown in [lS] that an ST(k, n) exists if and only if there 
exists a k-orthogonal set (cf. Section 5) of k large sets of disjoint Steiner systems 
S ( k -  1, k, n)  (a large set of disjoint S ( k -  1, k, n)’s is one that partitions the 
k-subsets of an n-set). 

When k = 3, a Steiner tableau ST(3, n)  is called Steiner cube of order n. Clearly, 
there exists no Steiner cube of order 7 as there is no large set of S(2,3,7)’s. All 
Steiner cubes of order 9 have been found in [18]. Whether there exist Steiner 
cubes of admissible orders n 2 13 is an open question. 

11. 

Existing results concerning enumeration of Room squares and their generaliza- 
tions are truly embryonal. It has been shown that when n = 8 (the smallest order 
for which a nontrivial RS(n) exists), the number of inequivalent RS(8)’s equals six 
[3Y] (two RS’s are equivalent if they are isomorphic or transpose-isomorphic). 
Although it is certain that the number of inequivalent RS(n)’s tend to infinity with 
n, nobody has shown yet even that for all n 3 8 there are at least two inequivalent 
RS(n)’s. Although, of course, it is much easier to  find nonisomorphic 1- 
factorizations than nonisomorphic pairs of orthogonal 1-factorizations of K,,, the 
recent progress on the enumeration of the former should make it possible to 
prove new results concerning the number of Room squares. 

The only other enumeration results known seem to be that there exists - up 
to an isomorphism - a unique MRD(2,3,8; 2) (cf. Section 5) (see [39]), and that 
there are exactly three nonisomorphic Steiner cubes of order 9 (cf. Section 10) (see 
[18]). One will probably see more singular results of this type before any general 



56 A. Rosa 

enumeration results appear. All the above results are obtained by ad hoc 
methods, using the fact that all underlying designs (or 1-factorizations) and their 
groups are known. 

The situation is only slightly better as far as finite embedding of partial 
structures is concerned. It was shown in [22] that a partial RS can be embedded in 
a finite RS. This solves the problem for Howell designs as well. Whether a partial 
GRS of degree k 3 3 can be embedded in a GRS of the same degree k is an open 
problem which probably ranks as next in the level of difficulty. But analogous 
questions can be formulated practically for all structures considered in previous 
sections. Given the fact that suprisingly successful techniques have been used to 
attack finite embedding problems even when adequate existence results were 
missing, these problems may be not quite as hopeless as they may appear. 
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Abstract 

Let G be an abelian group of order mn and H be a subgroup of order n. A 
group divisible (GD) difference set for (G, H) with parameters (m, n, k, Al,  A2) is a 
subset D c G with ID1 = k such that 

A l  if xeH\{O}, 

A2 if X E G \ H .  
/ D  n D + X J  = 

If H = {0} and h2 = A, then a group divisible difference set is a (u, k, A)-difference 
set in the classical sense. Some of the principal contributors to  the theory of 
difference sets are Hall and Mann. Let u = mn and f be an integer such that 
(t, u )  = 1. The integer t is called a multiplier of D iff for some group element g, 
tD = D + g. Difference sets and their multipliers is indeed one of the most elegant 
and deep subjects in combinatorics. Hall proved his beautiful multiplier theorem 
in 1936. We proved a general theorem on the subject of multipliers of group 
divisible difference sets and obtained many interesting results. This theorem 
contains theorems of Hall, Mann, Turyn, Hoffman, Jacobs and Elliott and Butson 
as special cases. A cyclic f i n e  plane of order n is equivalent to  an 
(n + 1, n - 1, n, 0, 1)-DG difference set for g = ZnzP1  and H = (n + l)G. We use the 
multiplier theorems to prove the non-existence of cyclic affine planes of order n, 
n ~ 5 , 0 0 0 ,  n not a prime power. 
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SOME RESULTS ON RELATIVE DIFFERENCE SETS OF 
SMALL SIZE 

Hai-Ping KO and Stuart WANG 
Oakland University, Rochester, MI 48063, USA 

Abstract 

A relative difference set of group G is a subset D of G such that for some 
integer A and some subgroup H of G, \{(dl, d2): d,, d2 E D, d, - d, = g}l= 0 if 
g E H and = X if g E G \ H. For relative difference sets of small size with A = 1, we 
extend some results on the multiplier groups and have a discussion on the 
uniqueness of cyclic planar difference sets and cyclic affine difference sets. 
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We study the connectivity of digraphs having a transitive group of automorphisms. As an 
application we prove that a vertex-transitive digraph of order n and degree 2r has girth not 
exceeding [nlrl .  This result has the following consequence. Let G be a finite group of order n 
and S be a subset of G with cardinality s. Then 1 is the product of a sequence of elements of S 
with length not exceeding [ n / s l .  

1. Atoms of a digraph 

We use notations of [ 2 ] .  A digraph G = ( V ,  E )  is said to be strongly h -  
connected if I VI 2 h + 1 and for every X c  V, with 1x1 < h, Gv-x is strongly 
connected. The connectivity of G is K ( G )  = Max{h I G is strongly h-connected}. 
Let G = (V, E )  be a digraph which is not symmetric-complete and F c V. We say 
that F is a positive (resp. negative) fragment of G if N+(F)  = T'(F)- F (resp. 
N - ( F )  = T-(F)  - F )  is a minimum cut-set of G. A fragment of minimal cardinality 
is called an atom. A fundamental property of atoms is the following. 

Theorem 1.1 (see [6]). Let G = (V, E )  be a strongly connected digraph, F be a 
positive fragment of G and A be positive atom of G. Then A F or A n F = 9. 

Theorem 1.1 generalises a theorem of Mader. Our proof is simpler than that 
given by Mader for the undirected case [8]. 

Corollary 1.2 (see [6]). Let G be a strongly connected arc-transitif digraph. Then 
K(G)  = d'(G).  

Corollary 1.3 (see [6]). Let G = (V, E )  be a connected vertex-transitive digraph 
having a positive atom. Then the positive atoms of G are isomorphic vertex- 
transitive digraphs and form a partition of V. 

Corollary 1.4 (see [6]). Let G be a vertex-transitive digraph with a non null set of 
edges. If G is of prime order, then K ( G )  = d'(G). 

We proved in [7] the following. 
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Theorem 1.5 (see [7]). Let G be a connected vertex-transitive digraph. Then the 
arc-connectivity of G is d'(G). 

2. Girth of a vertex-transitive digraph 

The girth of a digraph G will be denoted by g(G). We say that G is di-regular 
if all the vertices of G have the same indegree and outdegree. Let r be a real 
number. The greatest (resp. least) integer not exceeding (resp. not less than) r will 
be denoted by Lr] (resp. [rl) .  

It is conjectured in [l] that every di-regular digraph of order n and degree 2r 
has girth not exceeding [nlrl.  This conjecture is proved for r = 3 (see [ 3 ] ) .  

Let G = (V, E) be a digraph, A and B be two disjoint subsets of V. A family 
{L,[a,, b,]; j EJ} is said to be an A +. B-fan if 

(1) a,EA and b , E B ; j E J ;  
(2) L , n L , c A U B , i f j , i , j E J ;  
( 3 )  L, n (A  U B) = {a,, b,}, j E J ;  

(4) A UBc UJEJLJ* 
We need the following theorem proved for the undirected case by Menger and 

for the directed case by Dirac [4]. 

Theorem A (Menger-Dirac). Let G be a strongly h-connected digraph, A and B 
be two disjoint subsets of G such that 1 s ( A / ,  (B( s h. Then there is a n  A +. B-fan 
with h paths. 

Lemma B. Let n and r be two natural numbers such that 0 < r < n. Then there is a 
vertex-transitive digraph of order n, degree 2r and girth [n/rl.  

These digraphs are constructed in [1] for n = 1 (mod r). This construction can 
be adapted for every n. 

Lemma 2.1. Let G = (V, E) be a strongly h-connected digraph of order n. Then 
g ( G ) s  [nlhl .  

Proof. Consider a vertex v of G and a subset B of N-(v) with cardinality h. By 
Theorem A, there is a v -+ B-fan {Li; 1 s is h). We have IL,[s  g(G) (where ]Lil 
is the number of vertices of the path Li); for 1 s i s  h. Hence 

n = I V / r ( U  I L i l a h ( g ( G ) - l ) + l .  

It follows that 
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Theorem 2.2. Let G = (V, E )  be a vertex-transitive digraph of order n and degree 
2r ( r z 2 ) .  Then g ( G ) s  rn/r l .  

Proof. The theorem is true for n s 3 .  Suppose it is false and consider a digraph 
G = (V, E )  of minimal order such that 

We verify easily that every strongly connected component of G is a vertex- 
transitive digraph satisfying the above condition. Hence G is strongly-connected. 
The above relation implies g ( G ) s 3 .  Therefore G is not symmetric. Let A be an 
atom of G. We can assume without loss of generality that A is a positive atom 
(observe that a negative atom of G is a positive atom of its inverse digraph). We 
have /A\  2 2 ,  otherwise K(G) = d + ( G )  and we obtain a contradiction using Lemma 
2.1 .  By Corollary 1.3, GA is a vertex-transitive digraph. Obviously g(G)S g(G,). 
By the minimality of the order of G, we have l A l * ( g - l ) r ' + l ,  where g =  g(G) 
and rf = d'(GA). Put n = IVl and r = d'(G). 

Take T = N + ( A )  and choose a vertex a E A. Clearly we have "(a)  c A U T. Put 
B = N + ( a ) - A  and C = N - ( a ) - A .  We have CnB=fl ,  since g z 3 .  We verify 
easily that IB( = ICI = r - r f .  Hence r -  r f  = IBI s IT1 = K ( G ) .  By Theorem A, there 
is a B +  C-fan{Li; ~EI},  where I I \=K(G) .  Let J = { i ~ I l L ~ n A # f l } .  Weobserve 
that Lin(T-B)#f l  for every i E J .  Therefore IJ(sIT-BI.  Hence II-JIsJBI.  We 
see easily that lLil 2 g - 1 ,  i E I.  It follows that 

1 v - A 1 * 1 (L, 1 z (g - 1 )  / B I  = ( r  - r')(g - 1 ) .  
i t 3  

Therefore 

n = IVI = IA(+ I V- A1 2 ( 8 -  l ) r ' +  1 + ( r  - r')(g - 1 )  = r ( g  - 1 )  + 1 .  

This contradiction proves the theorem. 

Theorem 2.2 and Lemma B imply that the maximal value of the girth of 
transitive digraph of order n and degree 2r is [n l r l .  

3. A combinatonal property of finite groups 

Let G be a finite group and s(G) be the minimal integer s such that every 
sequence of elements of G with length as contains a subsequence whose product 
is equal to 1 .  Results on s ( G )  are obtained by Mann and Olson [9].  Olson 
determined s ( G )  for any finite abelian p-group G (see [ l o ] )  and for the product 
of two cyclic finite groups [ l l ] .  A problem of the above type is considered by 
Erdos and Heilbronn [ 5 ] .  
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Let S be a given subset of G. How large must be k to ensure that 1 is the 
product of a sequence of elements of S with length C k ?  An answer to this 
question is contained in the following theorem. 

Theorem 3.1. Let G be a finite group of order n and S be a subset of G with 
cardinality s. Then 1 is the product of a sequence of elements of S with length 
s [ n / s l .  

Proof. Consider the digraph D = (G, U ) ,  where U = {(x, y) I x, y E G and 
xy-I E S}. We verify easily that D is a vertex-transitive digraph. Therefore D has 
a circuit of minimal length containing 1, say [l, xl, . . . , x,, 11. Take xo = x,+~ = 1. 
We have clearly 

1 = n (xix;+',) and X~X;:~ E S, 0 s  i s m .  
0 G i - m  

By Theorem 2.2, we have m + 1 S [n/sl. 

Remark. The bound of Theorem 3.1 is reached. Consider a generator a of a 
cyclic group G of order n. Let rn be a natural number such that 1 m s n. Take 
S = {a' I 1 S r 6 m}.  We see easily that every non null sequence of elements of S 
with length < [ n / m l  has a product # 1. 
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It has been established by Kotzig in 1966 that any Euler tour in a regular multigraph of 
degree 3 can be obtained from any other Euler tour of this multigraph by a finite number of 
very simple transformations (called K -transformations). The purpose of this paper is to extend 
the validity of this result to the case of Euler tours in an arbitrary eulerian multigraph. 

1. Preliminaries 

For the definition of a multigraph (in which multiple edges are permitted) and 
of an Euler tour, the reader is referred to [2].  The terminology being far from 
uniform. what we call an Euler tour is called an eulerian line in [4], an eulerian 
trail in [3] .  and an eulerian cycle in [ 11. Moreover, the term “graph” in [2] and [4] 
corresponds to a multigraph in this paper. Only undirected multigraphs without 
loops will be considered throughout the paper. 

An Euler tour E of an eulerian multigraph G passes through any vertex of 
degree 2 k  exactly k times. By a trunsition of E through u vertex u E V(G) we mean 
a triple (e.  u. e ’ )  where e. e’E E ( G )  are edges incident with v. I f  the vertex u has 
been specified in advance the transition may also be denoted by (e .  e ’ ) .  Since G is 
not directed the triples ( e ,  u, e ’ )  and ( e ‘ .  u, e) describe the same transition. 

Any part of an Euler tour of G between two specified transitions of E through 
a given vertex v E V(G) (i.e. a part starting and ending in u )  will be referred to as 
a segment of E corresponding to u. It should be noted that a segment does not  
have to be “simple” at u, i.e. that it can pass through 2: several times; in 
particular, E is its own segment corresponding to any vertex v E V(G). 

Let E be an Euler tour in G and let ( e ,  v, e ’ ) ,  (f, u, f’) be two transitions of E 
through u (hence degva4) ’ ;  let S be the segment of E between these two 
transitions begining at e‘ and ending at f ;  that means that E can be described by 
the following sequence of vertices and edges of G:  

. . . e . u e r . .  . fvf‘. . . hIu 
L . 1  

s 

‘:‘This work was done while J.  Abrham was on sabbatical leave at Centre d e  Recherche de 

‘The symbol deg u denotes the degree of the vertex t’. i.e. the number of edges of G incident with u. 

MathCmatiques Appliquees. Universite d e  MontrCal. 
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where h, h’E E(G).  We will then say that an Euler tour F is obtained from E by a 
~-trunsformution at u on the segment S (or: on the edges e’, f )  if F is obtained 
from E by changing the direction of travel in each edge of S. F can therefore be 
described by the sequence 

vh . . . evf . . . e’vf‘ . . . h’v. 

The reader will observe that in F, the transitions (e, v, e’), (f3 v, f ’ )  are replaced by 
(e,  v. f )  and (e’, v, f’); all other transitions of F through v and through any other 
vertex are unchanged (although the direction used in a description of F may be 
changed). We may sometimes speak only about a K-transformation of E at a 
vertex v ;  by this we will always mean a K-transformation on some segment of E 
corresponding to v. 

2. Lemmas 

In the lemmas below, the notion of a “prohibited” transition will have to be 
used. Let E be an Euler tour of G, let v E V ( G )  and let (e,  v,  e’), (f, v, f ’ )  be two 
different transitions of E through u. These two transitions define a decomposition 
of E into two segments S , ,  S, (see Fig. 1) described by the following sequence: 

ve’ . . . fuf‘ . . . ev. -- 
S ,  s2 

Fig. 1. Fig. 2. 

The K-transformation at v on S, (or S,) would replace the above transitions by 
the transitions (e, v, f ) ,  (e’, v, f ’ ) .  Using at v the transitions (e,  v,  f’) and (f, v, e’) 
would mean a decomposition of E into two independent cycles coinciding with 
S,,  &--and such transitions which would decompose an Euler tour E into two or 
more cycles are referred to as transitions prohibited €or E. 

Lemma 1. Let E be an Euler tour in G and let v E V(G) ,  deg v = 2 k ,  k 3 2 .  Let 
( a , ,  a2), (a3 ,  a4), . . . , ( a 2 k - , ,  a 2 k )  be the successive transitions of E through v and 
let (a2. a3), (a4, as) ,  . . . , ((Z2k-2, aZk-,). (aZk, a,) be the “prohibited” transitions of 
E through v . ~  Let (4. a,) be any transition through v not prohibited for E. Then E 
can be transformed by one or two K-transformations in v into an Euler tour which 
has (a,, a,) for one of its transitions through v. 

’For k = 3, the situation is illustrated in Fig. 2 
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Proof. Since the starting edge of E can be chosen arbitrarily we can assume that 
the desired transition is of the form (al, v, aj) where j is fixed and 2 s j s 2 k .  Let 
us now distinguish two possibilities: 

(a) j is odd (j = 2r- 1 ) .  
E can be described by the sequence 

u a 2 .  . . a3ua4. . . a2r-1uaZr . . . a2k-1va2k . . . alv. 

If we apply a K-transformation at v on the segment v a 2 .  . . a2,-,v we get a new 
Euler tour F described by the sequence 

va2,-, . . . a4va3.  . . a2va2r . . . a,u. 

and has (al, u, a2r-1) = (a , ,  v, a;) as one of its transitions through v. 
(b) j is even ( j  = 2r). 
E can now be described by the sequence 

v a 2 .  . . a3ua4. . . a2r-1va2r . . . a2r+lva2r+2. . ' a,u. 

We apply first a K-transformation at u on the segment ~ ) a ~ ~  . . . a2r+lv and in the 
resulting sequence, we apply a  transformation on the segment u a 2 .  . . a2,u. We 
obtain the sequence 

which describes an Euler tour F with the required property. 

Lemma 2. Let E, F be two Euler tours of an eulerian multigraph G which have no 
common transitions through a vertex v E V(G) of degree 2k .  Then there exist Euler 
tours E , F  of  G such that E can be obtained from E by a finite number of  
K-transformations at v, can be obtained from F by a finite number of K -  
transformations at v, and E, F have at least one common transition through u. 

va2r . . . a2r+lva2r-1 . . . a2va2r+2. . . a l v  

Proof. The reader will observe that k 3 2. We are going to distinguish two cases. 
(a) At least one of the transitions of F through v is not prohibited for E. Then, 

by Lemma 1, E can be transformed by one or two K-transformations at u into an 
Euler tour E which has this transition as one of its transitions through u. We put 
then p =  F. 

(b) Each transition of F through v is prohibited for E and vice versa. 
Since there are exactly k prohibited transitions for every Euler tour it suffices to 

apply to F an arbitrary  t transformation at u ;  the resulting Euler tour F ,  will 
necessarily have at least one transition through v which is not prohibited for E. 
The proof is completed by applying case (a) to the tours E, F,. 

3. K-transformations of Euler tours 

Theorem. Let E, F be two Euler tours of an eulerian multigraph E. Then there 
exists a finite sequence of K-transformations at the vertices of G which transforms E 
into F. 
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Proof. Let us first examine any vertex v, E V(G). If E, F use the same transition 
(a,, ui. bi) through ui we will replace vi by a pair of vertices u:, v': (not joined by an 
edge) such that u :  will be incident only with the edges (a,, bi) (hence deg ui = 2) 
and cy will be incident with all other edges which are incident with ui. Repeating 
this procedure at any vertex of G we will transform G into a multigraph G,  and 
the two Euler tours E. F into two Euler tours El .  F ,  of G, with the following 
properties: 

( 1 )  G, is eulerian. 
(2) The two Euler tours E , ,  F ,  of G I  have n o  common transitions through any 

vertex c of G I  such that deg v > 2. 
The proof will now be carried out by mathematical induction with respect to p 

where 3p is the highest of the degrees of vertices in G,. 
For [ I  = 2. the validity of the theorem follows from [4. Theorem 71. (This 

theorem is formulated for regular graphs of degree 4 but remains valid without 
any changes in its proof for eulerian multigraphs in which the degree of each 
vertex is at most 4.) Let us therefore assume that p 3 3. that the theorem is valid 
for every eulerian multigraph in which each vertex has a degree not  exceeding 
2 p -  3. and let U E  V(G,)  be an arbitrary vertex of degree 2p. Let E,. 6, be  the 
two Euler tours constructed from E, .  F ,  according to  Lemma 2 (observe that the 
transitions of the tours through any vertex other than G remain unchanged). 
Similarly as above. we replace u by c'. c" such that deg u' = 2. deg c "=  2 p  - 2 and 
that t h e  two Euler tours have no common transitions through 2"'. (If E, .  F, have 
more than one transition in common. c will be replaced by several vertices of 
degree 2 -one for each common transition - and one vertex of degree less than 
2p through which the two Euler tours have n o  common transition.) Let us  denote 
the resulting multigraph 6 and the resulting Euler tours E. fi. If G has at least 
o n e  more vertex of degree 2p we repeat the above procedure for each such 
vertex. As a result. we obtain a multigraph G'" and two Euler tours E"'. F'" such 
that each vertex of G:': is o f  the degree at most 2 p  ~ 7 (and that E'". F':: have n o  
common transitions through any vertex of G of degree higher than 2 ) .  By our 
induction assumption. E:': can be transformed into F': by a finite number of 
K -transformations. To complete the proof it suffices to "splice" back the vertices 
c'. C" obtained by splitting a vertex of G (preserving. of course, the transitions of 
the tours) and observe that if E'" is obtained from E by finite number of 
K-transformations. F" is obtained from F in a similar way, and so is F::: from E:::. 
then F is obtained from E in a finite number of K-transformations. 
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Le but du prtsent article est de fournir une dtmonstration du thtorbme suivant, 
qui est une gtntralisation de la Proposition 2.2 de [2]. 

Theoreme. Tout systkme parfait d’ensembles de diffe‘rences confient au moins une 
composante de grandeur s4. 

1. Definitions 

Soient m, n , ,  n 2 , .  . . , n, et c des entiers positifs. Soient A,, A,, . . . ,A,,, des 
suites d’entiers 

A, = ( a , , < a , , < .  . - < a , n t ) ;  i = 1, 2 , .  . . , m 

et soient 

Di = { a i i - a i ,  I 1 s  k < j <  n,}; i = 1 , 2 , .  . . , m 

leurs ensembles de differences. Alors S = {Dl, D,, . . . , D,} est un sysdme parfait 
d’ensembles de diffe’rences pour c si 

m 

D ,  U D, U . . . U D, = C ,  c + 1, . . . , c - 1 + C 
i = l  

Les ensembles D, sont apples les composantes de S et la grandeur de Di est 
(ni - 1). On trouvera des exemples de systemes parfaits d’ensembles de difftrences 
dans [l-61. 

* Recherche subventionn6e par le FCAC (EQ-539) et le CNRC (9232). 
t Recherche subventionnke par le FCAC (EQ-539) et le CNRC (A-4089) 
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Par triangle des diffe‘rences d’une composante D, on entendra l’arrangement 
triangulaire suivant: 

/at2-a,, I a13-ui2 ] at4-aL3J . . . \ a , ,  - a , , - ,  I 
La grandeur d’une composante est donc le nombre de lignes de son triangle de 
differences. Dans une composante de grandeur 2 k  ou 2 k  + 1, on appellera 
diffe‘rences supe‘rieures celles des k lignes du haut et diffe‘rences infe‘rieures celles 
des k lignes du bas. 

2. Demonstration du theoreme 

Soit S un systeme parfait d’ensembles de differences. Soit cg le nombre des 
composantes de grandeur g dans S. Nous supposerons que c ,=O (autrement le 
theoreme est dcja demontre). Nous voulons donc demontrer que c2 ,  c3 et c4 ne 
sont pas tous nuls. 

Une composante de grandeur 2 k  comporte 
2 k  

i = 2 k 2 + k  
I =  1 

differences, tandis qu’une composante de grandeur 2k + 1 en contient 
2 k + l  

1 i = 2 k 2 + 3 k + l .  
, = I  

Le nombre total de differences dans S est donc 
c s  r 

d =  1 c 2 , ( 2 k 2 + k ) +  c 2 , + , ( 2 k 2 + 3 k + 1 )  
k =  1 k = l  

et l’ensemble des diffirences du systeme S est 

( c , c + l ,  . . . ,  c + d - l } .  

Les differences superieures d’une composante de grandeur 2 k  ou 2 k  + 1 sont au 
nombre de 

k 

i = i ( k 2 +  k ) .  
i = l  

Le nombres des differences inferieures est de 
2k 
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dans une composante de grandeur 2 k  et de 
Z k + l  2 i = i ( 3 k 2 + 3 k )  

i = k + Z  

dans une composante de grandeur 2 k +  1. Le nombre total des differences 
superieures dans S est donc 

et le nombre total des differences infkrieures est 

S = i  1 C2k(3k2+k)+i  1 czk+1(3k2+3k). 
k = l  k = l  

La somme des diffirences supirieures est plus petite ou &gale a 

i=c+d-r  ‘ 
tandis que la somme des differences infkrieures est plus grande ou Cgale B 

S 
C + S - l  

q =  1 i = - ( 2 c + s - 1 ) .  
, = c  2 

Mais la somme de toutes les differences superieures de S est egale a la somme de 
toutes ses diffkrences infkrieures (voir [2, Proposition 1.11). On aura donc 
l’inkgalitk 

On vCrifiera facilement que cette inkgalitk peut s’kcrire 

p - q z o .  

k = l  J 

L k = l  k = l  J 
rn 

X 4 c - 2 +  CZk(3k2+k)+  1 ~ , ~ + , ( 3 k ~ + 3 k ) ] ~ O .  (1) 

Dans (l), soit b, le coefficient de cg et soit bgh le coefficient de c,ch. Pour 
[ k y l  k=l 

k , j =  1 , 2 , .  . . ; k f  j, on a alors 
bZk = ( k 2 +  k)(4c -2 ) - (3k2+  k) (4c-2)=-2k2(4c-2) ,  
b 2 k + l = ( k 2 +  k)(4c-2) - (3k2+3k)(4c-2)=-2(k2+ k ) ( 4 ~ - 2 ) ,  
b2k,2k = ( k 2 +  k)(7k2 + 3 k)-  (3 k 2 +  k)’ = - 2 k 4 + 4 k 3  + 2kZ,  
b2k+1,2k+l = ( k Z  + k)(7k2 + 11 k +4) -  (3  k 2  + 3 k)’ = -2k4+ 6 k 2 + 4 k ,  

b2k,2j = ( k 2  + k)(7jz+ 3j) + (j’+ j)(7 k2  + 3k)-2(3  k Z +  k)(3 j2+j )  

= 4kj(-kj+ k + j +  l), 
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b2k,21+1 = ( k 2 +  k ) (7 j2+ l l j+4 )+( j2+ j ) (7k2+3k) -2 (3k2+  k) (3 j2+3j)  

= 4(- k 2  j’ + kj2 + k 2  + 2 kj + k ) ,  

b2k+1,2j+l = ( k 2 +  k)(7j2+ l l j  +4)+(j2+ j ) (7k2+ 11 k + 4 ) - 2 ( 3 k 2 + 3 k )  
x ( 3 j 2 + 3 j )  

= 4(k + l)( j+ l ) ( k  + j -  k j) .  

On notera que b,, et b,,,, sont negatifs pour tout k > O ;  b,,zk est negatif pour 
tout k > 2  et b2k+1,2k+,  est nu1 pour k = 2  et ntgatif pour tout k > 2 ;  b2k,2j et 
b2k,2i+1 sont nuls pour k = 2, j = 3 et pour k = 3,  j = 2 et nkgatifs pour k 2 2 ,  j 2 2, 
k + j  > 5 ;  b2k+1,21+1 est nu1 pour k = j = 2 et negatif pour k S 2 ,  j a 2 ,  k + j >4. 

On sait que cg 3 0, pour tout g. Supposons que c2 = c j  = c4 = 0. Alors aucun 
terme du membre de gauche de l’intgalitt (1) n’est positif. Le systcme S ne 
satisferait donc pas a cette intgalitt; contradiction. 

Pour donner une idCe plus concrete des coefficients b, et b,,, nous en donne- 
rons les valeurs pour 1 < k ,  j < 5 dans les Tableaux 1-4. 

Tableau 1 

k 1 2 3 4  5 

-2 -8 -18 -32 -50 b,, 

b2k+l 
4c-2 

-4 -12 -24 -40 -60 
4~ -2  
b 2 k , Z k  4 8 -36 -224 -700 
b 2 k + , , 2 k + l  8 0 -96 -400 -1080 

Tableau 2. Valeurs de bzk,zl 

8 16 24 32 40 
16 16 0 -32 -80 
24 0 -72 -192 -360 
32 -32 -192 -448 -800 
40 -80 -360 -800 -1400 

I 

Tableau 3. Valeurs de b,,,,,,, 

16 24 32 40 4X 
32 24 0 -40 -96 
48 0 -96 -240 -432 
64 -48 -256 -560 -960 
80 -120 -480 -1000 -1680 
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2 
3 
4 
5 
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16 24 32 40 48 
24 0 -48 -120 -216 
32 -48 -192 -400 -672 
40 -120 -400 -800 -1320 
48 -216 -672 -1320 -2160 

Tableau 4. Valeurs de bZk+, ,2j+l  

A la suggestion de l’arbitre, nous signalons que, dam le cas c = 1, le thtorkme 
revient B dire que le graphe form6 de m graphes complets Knt, i = 1,2, . . . , m, 
ayant exactement un point e n  cornmun n’est pas gracieux si tous les ni sont 2 6 .  
Nous remercions l’arbitre pour cette suggestion. 
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CARACTERISATION DES TOURNOIS 
PRESQU’HOMOGENES 

Claudette TABIB 
Uniuersitt de Montrial, Montrial, Qut., Canada 

Nous dkfinissons la notion de presqu’homogtntitt d’un tournoi a 4 k  + 1 sommets, qui est tres 
proche de l’homogtntitt dttinie par A. Kotzig. Nous obtenons, parallelement a la 
caractkrisation d’un tournoi homogene a I’aide de la regularit6 des Ccoulements des sommets du 
tournoi, qui est due K.B. Reid et E. Brown, une caractkrisation d’un tournoi 
presqu’homogene, en dkmontrant que notre definition d’un tournoi presqu’homogene est 
tquivalente B la suivante: le tournoi est regulier et. pour tout sommet u du tournoi, I’affluent en 
u et I’kcoulement de u dans T sont des tournois presque rkguliers. Notons que la connaissance 
de cette Cquivalence a permis de decouvrir des methodes nouvelles (combinatoires) et de 
rtsoudre ainsi quelques problemes ouverts. 

Un tournoi T = ( V ( T ) , E ( T ) )  est un graphe fini, complet et  sans boucles, oh 
chacune de ses aretes est remplacke par un seul arc. Par conskquent, 

V u, u E V (  T) ,  u f- u : ( u, u )  E E ( T )  (u, u )  & E( T).  

L’afpuent Q, en un sommet u dans un tournoi T est le sous-tournoi de T 
engendrk par { w  E V ( T ) :  (w, u )  E E(T)}. L‘dcoulement P, d’un sommet u duns un 
tournoi T est le sous-tournoi de T engendrk par {u  E V(T): (u,  u )  E E(T)} .  Le degrt 
d’afpuence d,(u) en un sommet u dans un tournoi T est le nombre de sommets 
dans Q,. Le degri d’tcoulement d;(u)  d’un sommet u dans un toumoi T est le 
nombre de sommets dans P,. 

Un tournoi T est rtguZier si, pour tout u E V(T), d,(u) = d;(u) .  Le nombre de 
sommets d’un tournoi rCgulier est donc impair. Un tournoi T, B 2n somrnets, est 
presque rkgulier si, pour tout u E V(T), [d;(u)  - d,(u)l= 1. Par consCquent, il 
existe une partition T U  f des 2n sommets d’un tournoi presque rkgulier T telle 
clue 

(1) IT\ = = n, 
(2 )  d;(ic)= n, V U E T ,  
(3)  d;( i i )= n - 1 ,  V G E T  

Le compltmentaire T d’un tournoi T est le tournoi obtenu en posant V ( T ) =  
V(T) et 

(u,  u )  E E ( T )  (u, u )  E E(T) ,  

pour toute paire de sommets distincts u, u de T. 
77 
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Un tournoi T 2 n sommets est rotatif si l’on peut numtroter ses sommets par 
u l ,  u2. . . . , u, de telle sorte que l’on ait pour toute paire i, j E { 1 , 2 .  . . . , n}: 

(% U,)E E m  3 ( % + I ,  U,+J E E ( T )  

(on suppose que ur, = uq e p =q (mod n)). 
Nous entendons par cycle, un circuit tlkmentaire tel que defini dans Berge [l], 

et par k-cycle, un cycle de longueur k.  Un tournoi homogene est, selon la 
dtfinition de Kotzig [3], un tournoi muni d’au moins un cycle tel que tout arc 
appartient a un m2me nombre de 3-cycles. Nous dCsignons par T ~ ( u ,  u )  le nombre 
de  3-cycles dans T qui contiennent l’arc (u, v). 

Soit H un tournoi homogene dans lequel ~ ~ ( u ,  v) = k, pour un certain k 3 1, et 
tout arc (u, v)  de H. Kotzig a demontrt que H est un tournoi regulier a 4 k  - 1 
sommets (voir [3]). 

Comme un tournoi regulier a 2n + 1 sommets ( n  3 1) et muni d’au moins un 
cycle ne peut 2tre homogene que si n est impair, nous allons definir une notion 
qui est trks proche de l’homogentitt. Un tournoi T B 4 k  + 1 sommets, k 1, est 
presqu’homogkne si tout arc de T appartient a k ou k + 1 3-cycles. 

Thhreme 1. Tout toumoi presqu’homogene est rigulier. 

Demonstration. Soit T un tournoi presqu’homogene a 4 k  + 1 sommets. k 2 1. 
ConsidCrons un sommet quelconque u de T. Comme, d’une part, pour tout 
sommet v de P,, T ~ ( u ,  u) = k ou k + 1, alors 

/{(u, w )  E E ( T ) :  u E V(P,) et w E V(Q,)}/ = kdq(u)  ou ( k  + 1)d;(u). 

Comme, d’autre part, pour tout sommet w de Q,, T=(w, u)  = k ou k + 1 ,  alors 

\{(u, w )  E E ( T ) :  u E V(P,) et w E V(Q,)}/ = kd;(u)  ou ( k  + l)d;(u). 

I1 s’ensuit que 

kdg(u)  ou ( k + l ) d g ( ~ ) = k ( 4 k - d ; ( ~ ) )  ou ( k +  1 ) ( 4 k - d ; ( ~ ) ) .  

Comme 

(2k + l)dG(u) f 4 k ( k )  

et 

( 2 k  + l)dG(u) # 4 k ( k  + l), 
alors d;(u) = 2k. Le tournoi T est donc regulier. 

Soit T un tournoi presqu’homogene a 4 k  + 1 sommets, k Z= 1. Pour tout sommet 
u de T, dCsignons par V, l’ensemble des sommets v de P, tels que rT(u, v) = i, 
i = k ou k + 1. Nous remarquons que Vku V:+l est une partition des 2k sommets 
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de P, telle que 

1 Vil= I Vi + 1 = k. 
Reid et  Brown ont caracttrist les tournois homogknes dkmontrant qu'un 

tournoi rtgulier T a 4k - 1 sommets est homogkne si et seulement si, pour tout 
sommet u de T, l'tcoulement P, de u dam T est rkgulier (voir [5] et [4];.une 
dtmonstration directe et tres courte de ce fait est aussi donnke dans [6]). 

Avant d'ttablir la nouvelle caractkrisation des tournois presqu'homogknes, 
nous prtsentons, en premier lieu, des particularitks des sommets d'un sous- 
tournoi P, d'un tournoi presqu'homogene. 

Theoreme 2. Soit T un toumoi presqu'homogtne a 4k + 1 sommets, k 2 1. Alors, 
pour tout sommet u de T,  l'icoulement P, de u dans T e s t  presque rigulier; de plus, 

V: = P, et v:+' = F,. 

Demonstration. Soit T un tournoi presqu'homogkne a 4k + 1 sommets, k 3 1. 
Considtrons un sommet quelconque u de T. Pour tout sommet v de P,, 

d:"(u) = d X v )  - T A U ,  U) 

= 2k - T ~ ( u ,  u) 

= k  ou k-1,  

selon que v E Vi ou v E V;+'. I1 s'ensuit que P, est presque rkgulier. De plus, tout 
sommet de V," appartient a Pu tandis que tout sommet de V;+' appartient 2 F,. 
Comme 

IV,"l= \Vi+'\ = IP,l = I@,,l= k, 

on a v,"= P, et v:+' = P,. 

Thbreme 3. Soit T un toumoi a 4k + 1 sommets, k 3 1 .  Le toumoi T est 
presqu'homogtne si et seulement si T est rigulier et, pour tout sommet u de T, 
l'e'coulement P, de u dans T est presque rigulier. 

Demonstration. Un tournoi presqu'homogene est rkgulier, d'aprks le Thkoreme 
1, e t  l'tcoulement P, d'un sommet quelconque u dans un tournoi 
presqu'homogkne est presque rtgulier, d'aprks le ThCorkme 2. 

RCciproquement, considtrons un tournoi regulier T 2 4 k  + 1 sommets, k 2 1, 
tel que P, est presque rtgulier, pour tout sommet u de T. Soit (u,  v) un arc 
quelconque de T. Alors 

T T ( ~ ,  u )  = d 2 u )  - dGu(u) 

= 2k - d:-(u) 

= k  ou k t l ,  

selon que v E P, ou v E F,. I1 s'ensuit que T est presqu'homogkne. 
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Thhreme 4. Duns un toumoi rkgulier T a 4 k +  1 sommets, k 2 1 ,  Zes tnonces 
suivants sont kquivalents: 

( 1 )  L’afPuent Q, en un sommet quelconque u dans T est presque rkgulier. 
(2)  L’tcoulement P,, d’un sommet quelconque u dans T est presque rtgulier. 

Demonstration. Considerom un tournoi regulier T 4 k  + 1 sommets, k 3 1. Soit 
u un sommet quelconque de T. L’affluent en u dans T est presque rkgulier si et 
seulement si l’kcoulement de u dans le complementaire T de T est presque 
regulier. Ce dernier CnoncC equivaut a dire que T est presqu’homogbne, d’aprbs 
le ThCorbme 3,  ou encore que T est presqu’homogkne. Cet CnoncC est equivalent 
B I’enonce (2),  selon le Theorbme 3. 

Corollaire. Soit T un tournoi a 4 k  + 1 sommets, k 21. Le toumoi T est 
presqu’homog2ne si et seulement si T est rkgulier et, pour tout sommet u de T, 
Z’afPuent Q, en u et l’ecoulement P, de u dans T sont presque rkguliers. 

I1 est a noter que cette caracterisation des tournois presqu’homogenes, qui a etC 
presentee pour la premibre fois dans la thbse de Ph.D. de I’auteur (voir [6, 
Chapitre 3]),  devient encore plus efficace lorsqu’on Ctudie les tournois rotatifs; il 
suffit, en effet, d’examiner un seul ecoulement d’un sommet quelconque dans un 
tournoi rotatif. Nous avons ainsi demontre l’existence d’un et d’un seul tournoi 
rotatif presqu’homogbne a 4 k  + 1 sommets (a un isomorphisme prbs, bien en- 
tendu), pour k = 1 , 2  et  3 (voir Fig. 1). Cependant, pour k = 4, nous avons 
dtmontre qu’il n’existe aucun tournoi rotatif presqu’homogkne 5 dix-sept som- 
mets (voir [6]).  

Remarquons que la definition d’homogeneite, concernant l’appartenance de 
tout arc a un mCme nombre de 3-cycles, menait presque toujours vers l’utilisation 
des matrices d’Hadamard (voir [5] ) ;  sa caractkrisation a l’aide de la rkgularite des 
affluents et  Ccoulements nous a permis, en utilisant plut6t des mCthodes com- 
binatoires tres efficaces, d’ameliorer, par exemple, l’estimation d’Erdos-Moser 
concernant les sous-tournois transitifs (dCpourvus de cycle) et stipulant que le plus 
grand nombre nature1 u(n)  tel que tout tournoi B n sommets contient au moins un 
sous-tournoi transitif a u sommets satisfait 

[log, n ~ + l ~ u ( n ) s [ [ 2 l o g ,  n l + l  

(voir [2] et [6, Chapitre 51). En outre, cette nouvelle caractkrisation. ainsi que le 
Theoreme 2, nous a permis de demontrer aisement ce qui suit (voir [6, Chapitre 
41 et [ 7 ] ) :  

“Soit T un tournoi rkgulier a 2n + 1 sommets. AZors le nombre minimal de 
3-cycles dans T (soit 

$(2n + l ) n ( n  - l ) ( n  + l), si n = 1 (mod 2) 
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k = 2  

k = 3  

Fig. 1. Toumois rotatifs presqu’homogknes i 4k  + 1 sommets. 

ou 

i (2n  + l ) n 3 ,  si n = 0 (mod 2) )  

est atteint si et seulement si T est homogtne ou presqu’homogkne, selon que n est un 
nombre impair ou pair.” 
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ON TUlTE’S CHARACTERIZATION 
OF GRAPHIC MATROIDS 

P.D. SEYMOUR 
Merron College, Oxford, England and University of Waterloo, Waterloo, Ont., Canada 

The main theorem of [4] was proved using several lemmas developed for that purpose. 
However, some of these lemmas can be used in a different way, to give a “graph-theoretic” 
proof of Tutte’s excluded minor characterization of graphic matroids, and in this paper we 
explain how. 

1. Introduction 

In this paper we presuppose a knowledge of matroid theory. Our terminology is 
basically that of Welsh [8], but we begin with a brief review. E = E ( M )  denotes 
the set of elements of M. For X E E, the restriction M x X of M to X is the 
matroid M’ with E ( M ’ )  = X ,  in which Y G  X is independent just when it is 
independent in M. The dual of M is denoted by M*. We abbreviate M X  ( E - X )  
by M \ X ,  and (M* \ X)* by M / X ;  also, M\ x abbreviates M\ {x}, etc. A matroid 
is graphic if it is the polygon matroid of some graph, and binary if it is 
representable over GF(2). The polygon matroid of a graph G is denoted by 
JU(G), and the bond matroid by JU*(G). The Fano matroid F7 is the binary 
matroid represented by the seven non-zero 3-tuples over GF(2). 

A partition ( X ,  Y )  of E ( M )  is a k-separation of M (where k 2 1 is an integer) if 
lXl, \  YI 2 k and 

r ( X )  + r( Y )  s r ( E )  + k - 1. 

(Here r : 2 E  3 Z +  is the rank function of M.) M is k-connected if it has no 
k’-separation for any k ‘ c  k.  M is a series contraction of N if there exists 
x, y E E ( N ) ,  distinct, so that {x, y} is a cocircuit of N and M = N /  x. If M can be 
obtained from N by a sequence of series contractions, N is a subdivision of M. 

Tutte [7] proved the following. 

Theorem 1.1. A matroid is  graphic i f  and only i f  i t  is  binary and has no F7, e, 
A * ( K 5 )  or JU*(K,,,) minor. 

A “short” proof of this was given by Ghouila-Houri [l]. But in this paper we 
show that Theorem 1.1 can be derived from lemmas proved in [4] together with 
an easy graph-theoretic argument. The lemmas from [4] which we need are also 
fairly easy, but their proofs are omitted from this paper to avoid repetition. 
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2. Grafts 

When G is a graph and e E E(G), G \  e and G/  e denote the graphs obtained 
from G by deleting and contracting e respectively. A graph is 3-connected if it has 
at least four vertices and the deletion of any two leaves a connected graph. 

A graft is a pair (G, T) where G is a graph and T G  V(G) with IT1 even. For 
e E E ( G ) ,  we define (G, T)\e to be (G\e,  T),  and we define (G, T ) / e  to be 
( G /  e, T’) where T’ is defined as follows: 

(i) if e is a loop, T‘= T, 
(ii) if e has distinct ends u, v and ITn{u, v}l is even, then T’= T - { u ,  v } ,  

(iii) if ITn{u, v}l is odd, then T’= ( 7 ’ - { u ,  v } )  U { w } ,  where w is the vertex 
made by identifying u, v under contraction of e. 

The minors of (G, T )  are those grafts which can be produced using these 
operations (repeatedly). If we extend our notation in the obvious way, every 
minor of (G, T) is expressible in the form (G, T)\X/ Y, where X ,  Y are disjoint 
subsets of E(G). We require the following theorem. 

Theorem 2.1. If G is a 3-connected graph and T c V(G) has I TI a 4 and even, 
then (G, T) has one of the grafts of Fig. 1 as a minor. 

Proof. We use induction on IE(G)I. We may clearly assume that G is simple. 
Now IV(G)(a4, and if IV(G)l=4, then G =  K4 and we have the first graft of Fig. 
1. We assume then that I V( G)I 2 5 .  

For any e E E(G), let Goe be the graph obtained from G as follows: delete e ;  
and for every vertex v of this graph with valency 2, pick an edge incident with it 
and contract that edge. (G \ e has at most two vertices of valency 2, and if it has 
two, then they are not adjacent, and so this is a good definition.) The following is 
proved in [4]. 

For each e E E(G),  either G/ e or Goe  is 3-connected. 

Now for each e E E(G), if G/ e is 3-connected we may assume that the following 
holds, where e has ends u, v :  

(i) ITI=4 and u, U E  T. 
For otherwise (G, T ) / e  is a smaller graft satisfying the hypotheses of the 

Fig. 1 
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theorem, and the conclusion would follow by induction. On the other hand, if Goe 
is 3-connected, we may assume that one of the following holds: 

(ii) IT( = 4, u E T, u is cubic and T contains both its neighbours different from 
V ,  

(iii) \TI = 4, u E T, v is cubic and T contains both its neighbours different from 
u, 

(iv) IT1 = 6, u, v are cubic and T contains u, 21 and all their neighbours, which 
are all distinct. 

For in any other situation, we could choose the set F of edges to be contracted 
in forming Goe in such a way that (G\e ,  T ) / F =  (Gee, T’) where IT’I 3 4 .  

In any case, \TI< 6. Suppose first that IT\ = 6. Then alternatively (iv) holds for 
every choice of e, and so G is cubic and V(G) = T. Moreover, (i) is false for every 
choice of e, and so for all e E E(G), G/ e is not 3-connected. By examining the 
(two) simple cubic graphs with six vertices, we see that this is impossible. 

Thus IT( = 4. Now one of (i), (ii), (iii) is true for every edge e, and so every edge 
has at least one end in T. We claim that there is at most one vertex not in T. For if 
there is more than one, then there are at least six edges with just one end in T, 
and so some v E T is adjacent to at least two vertices u l ,  u2 not in T. Let e, have 
ends u, ul .  One of (i) (ii), (iii) holds for e l ,  and we deduce that v is cubic, and its 
two neighbours different from u1 are in T. But u2 $ T, a contradiction, which 
proves the claim. Hence IV(G)IS5, and now the result follows by case examina- 
tion. 

Let us say that grafts (G, T) and (G’, T’) are equivalent if there is a bijection 
C#I : E(G) -+ E(G’) such that for every FE E(G), if V E  V(G) and V’E V(G’) are 
the sets of vertices of G, G’ incident with an odd number of edges in F, +(F)  
respectively, then 

(i) V =  $J if and only if V‘= 8, 
(ii) V =  T if and only if V’= T‘. 
In fact, we only need a simple special case of equivalence, as follows. Let G be 

a simple graph, and let ZI E T have valency 2 in G; let el,  e2 be the edges incident 
with it, and let ul ,  u2 be their other ends. Let G‘ be the graph obtained from G 
by exchanging el and e2, and let T‘= TA{u,, uz}. [ X A Y  denotes 
( X -  Y ) U ( Y - X ) . ]  It is easy to see that (G, T) and (G’, T )  are equivalent, a 
suitable bijection 4 being the identity function on E(G) = E(G‘). For example, 
the grafts of Fig. 2 are equivalent (a suitable C#I is given by the edge-labelling), and 
this equivalence arises from our construction, iterated three times. 

T -  T’ . 

T /YLT 1 /-\ 

T T T  
Fig. 2. 
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If (G, T )  is equivalent to a graft (G’, T’) with IT’Is2, we say that (G, T )  is 
graphic. When G is a graph, a line of G is an induced subgraph which is a path 
(with at least two vertices) of which the end-vertices have valency z 3  in G and 
the interior vertices have valency 2 in G. 

Theorem 2.2. Suppose that (G, T )  is a graft, and that there are two lines L , ,  L, of 
G such that T E  V ( L , ) U  V(L,) and such that if V (L , )n  V ( L , ) =  $3, then 
ITn V(L,)I is odd. Then (G, T )  is graphic. 

We leave the proof of this as an exercise for the reader. (Hint: show that 
(G, T )  is equivalent to (G, T’), where IT’IG2 and T’E  V(L,)U V(L,), by choosing 
4 to be a reordering of the edges in L, and in L2.) This is implicit in [4]. The 
following is proved explicitly. 

Theorem 2.3. Let (G, T )  be a graft, where G is a subdivision of a simple 
3-connected graph. Then one of the following is true: 

(i) (G, T )  is graphic, 
(ii) there exists FE E ( G )  such that F contains just one edge from each line of G, 

so that (G, T ) / ( E ( G ) - F ) = ( G ’ ,  T’) where IT’Ia4, 
(iii) there are three distinct vertices v , ,  v,, v3 of G, and lines L,, L,, L, of G so 

that Li has ends vi+,, vi+* ( i  = 1,2,3),  reading suffices modulo 3, and such that 
T z  V(L, )  U V(L,) U V(L,), and T contains an interior vertex of each L,. 

From this we deduce the following. 

Theorem 2.4. Let (G, T )  be a graft, where G is a subdivision of a simple 
3-connected graph. Then one of the following is true: 

(i) (G, T )  is graphic, 
(ii) (G, T )  has one of the grafts of Fig. 1 as a minor, 

(iii) (G, T )  has one of the grafts of Fig. 3 as a minor. 

Proof. We apply Theorem 2.3 to (G, T) .  If Theorem 2.3(i) holds, then Theorem 
2.4(i) holds. If Theorem 2.3(ii) holds, then (G, T )  has a minor satisfying the 
hypotheses of Theorem 2.1, and hence has a minor satisfying the conclusion of 
Theorem 2.1, and Theorem 2.4(ii) holds. If Theorem 2.3(iii) holds, let v, ,  v,, v3,  
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Fig. 4. 

L,, L,, L, be as in Theorem 2.3(iii); let vo be a fourth vertex of G of valency 2 3 ;  
choose three paths P,, P2,  P3 of G linking vo to v l ,  02, u3 respectively, 
vertex-disjoint except for uo; and then suitable deletion and contradiction of 
edges clearly produces one of the grafts of Fig. 3, and Theorem 2.4(iii) holds. 

We need one other observation about grafts. Let K: be the graph with two 
vertices and three edges, parallel. 

Theorem 2.5. Let G be a subdivision of K: and let (G, T )  be a graft. Then either 
(G, T )  is graphic, or (G, T )  has the graft of Fig. 4 as a minor. 

Proof. Let L,, L,, L, be the three paths of G joining its vertices of valency 3. If 
for some i, T contains no interior vertex of Li, then (G, T )  is graphic by Theorem 
2.2. If T contains an interior vertex of each Li, then the graft of Fig. 4 may be 
produced by contraction. 

3. Proof of the main theorem 

Let (G, T )  be a graft. We construct a matrix A as follows. Take the incidence 
matrix of G (that is, a V ( G ) x  E ( G )  matrix with entries in GF(2) in which the 
(v, e )  entry is 1 i f  e is not a loop and e is incident with v, and 0 otherwise). Add 
one more column of 0’s and l’s, in which the 1’s occur just in the rows 
corresponding to vertices in T. This is A. We define A((G, T ) )  to be the matrix 
represented by the columns of A over GF(2). 

The following assertions are easily verified: 

Theorem 3.1. For e E E ( G ) ,  A( (G,  T ) \ e ) = A ( ( G ,  T))\e and A((G, T ) / e ) =  
A/U((G, W e .  

Theorem 3.2. If (GI, T,) and (G2, T2) are equivalent, then A((G,,  TI)) and 
A((G2, T2)) are isomorphic. In particular, if (G, T )  is graphic, then JCC((G, T) )  is  
graphic. 
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Theorem 3.3. I f  M is binary and e E E ( M ) ,  and M \ e = A( G )  for some graph G, 
then M = &((G, T ) )  for some TE V(G), unless e is a coloop of M. 

(To see Theorem 3.3, let C be any circuit of M with eEC.  Then C - { e } c  
E ( G ) ;  let T s  V(G) be the set of vertices incident with an odd number of edges in 
C-{e}.  Then M = A ( ( G ,  T)).) 

These results allow us to derive Tutte's Theorem 1.1 from the graft excluded 
minor result, Theorem 2.4. The proof is in several steps. 

Step 1 : If M is graphic, then M is binary and has no F7, c, JU*(K,) or JU*(K,,,) 
minor. 

This is easy, because being graphic is preserved under taking minors. It remains 
to prove the converse. Suppose then that M is binary and has no F7, c, JU*(K,) 
or &*(K3,J minor. We prove that M is graphic by induction on (E(M)I .  

Step 2: We may assume M is 2-connected. 

For if it is not, the result follows by our inductive hypothesis applied to its 
components. 

Step 3 :  We may assume M is 3-connected. 

For if it has a 2-separation but not a 1-separation, then there are matroids M I ,  
M2 both with fewer elements than M and both isomorphic to minors of M ,  and 
non-loop elements el E E(M, ) ,  e2 E E(M,),  such that 

E ( W  = ( E ( M l )  - {e l ) )  U - { e l )  
and such that the circuits of M are the circuits of M,\e,, the circuits of M,\e,, 
and those sets X ,  U X ,  where X ,  U {ei}  is a circuit of Mi ( i  = 1,2). (For a proof, see 
e.g. [4].) By induction, M ,  and M2 are graphic and hence so is M. (For if 
Mi = JIC(Gi) ( i  = 1,2), where G,, G, are vertex-disjoint, construct G by making 
the identifications u1 = u2, v1 = v 2  where ei has ends ui, u, ( i  = 1,2)  and deleting 
e,, e2. Then M=JIC(G).) 

Step 4:  We  may assume that for some Z c E ( M ) ,  M x Z  is isomorphic to a 
subdivision of A(K2).  

Otherwise M is obviously graphic. 

Step 5:  There exists e E E ( M )  and Z s E ( M ) - { e )  such that M\e is a subdiui- 
sion of a 3-connected matroid and such that M x Z is isomorphic to a subdivision of 
JU(K3. 
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To prove this, we apply the following matroid generalization of a theorem of 
Kelmans [3], proved in [4]. 

Theorem 3.4. Let M be a subdivision of a 3-connected matroid, such that for some 
Z E  E ( M ) ,  M x  Z is isomorphic to a subdivision of A ( K ; ) .  Then there is a sequence 
Z,  c Z ,  c . . . c Z, for some k 2 1 such that M x Z ,  is isomorphic to a subdiuision 
of A(Kz) ,  for each i M x Z, is a subdivision of a 3-connected matroid, for each i > 1 
the elements in Z, - are in series in M x Z,, and zk = E(M) .  

(We remark that A ( K : )  can be replaced here by any other 3-connected 
matroid.) 

To prove Step 5, we apply Theorem 3.4 to M. We see that k > 1, since by Step 
4 M is not isomorphic to a subdivision of &(K:);  and we see that (Zk - zk-ll= 1, 
since no two elements of M are in series. Put Z, - Z,-, = { e }  say, and Z1 = 2;  and 
then Step 5 is satisfied. 

By induction M\ e is graphic. Let N be a 3-connected matroid of which M \ e is 
a subdivision, and then N too is graphic. Let H be a connected graph with 
N = &(El), and let G be a graph obtained by subdividing (in the sense of graph 
theory) edges of H, so that M\e =&(GI. Then by Theorem 3.3, M = &((G, T ) )  
for some 2-G V(G) .  

Step 6: Either H = K ;  or H is a simple 3-connected graph. 

For Z E E ( G ) ,  and so H has a vertex of valency 33. A ( H )  is 3-connected and 
so by a theorem of Tutte [5,6], either H = K $  or H is simple and 3-connected. 

Step 7 :  W e  may assume H + K ; .  

For otherwise, G is a subdivision of K:, and so by Theorem 2.5, either (G, T )  is 
graphic or (G, T )  has the graft of Fig. 4 as a minor. In the first case M is graphic 
as required, and in the second, M has a f l  minor, contrary to hypothesis. 

Thus G is a subdivision of a simple 3-connected graph. 

Step 8 .  M is graphic. 

For by Theorem 2.4, either (G, T )  is graphic or (G, T )  has one of the grafts of 
Figs. 1 and 3 as a minor. These grafts give matroid minors F,, &*(K3,3), &*(K,) 
and A*(K,) respectively, which is impossible; thus (G, T )  is graphic and hence so 
is M. This completes the proof of Theorem 1.1. 

During the conference, Louis Weinberg kindly pointed out to me that Tutte’s 
theorem can be proved with the methods of [2], using Tutte’s “wheels and whirls” 
theorem [6] instead of my matroid extension of Kelmans’ theorem. 
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A special case of a Lovasz’s conjecture is the following: if a graph is such that, by deleting 
any pair of adjacent vertices, its chromatic number drops from k to k - 2, then this graph is the 
k complete graph. 

The author was led to it independently from his previous work on a new concept of critical 
hypergraphs. Two characterizations of them have been given; the first one is directly related to 
the Lovasz’s conjecture and the second is given in terms of a unique reconstruction theorem. 
From this last one, an attempt is made in order to approach the conjecture. 

1. Introduction 

1 .l. La conjecture de Lovasz 

A partir d’un travail [ 11 sur un nouveau concept d’hypergraphe critique 
relativement au nombre chromatique (faible), I’auteur a CtC conduit de manikre 
indkpendante une conjecture, dCja formulCe par Lovasz [2] en 1966 sous une 
forme plus gtnkrale. Cette conjecture, belle et fascinante dans son CnoncC, est la 
suivante: 

Conjecture. Si un graphe G ve‘rifie la proprie‘te‘ suivante ‘LEn e‘liminant toute paire 
de sommets adjacents de G, le nombre chromatique de G diminue de deux”, c’est 
que G est un graphe complet. 

Cette conjecture est trivialement vCrifiCe pour les nombres chromatiques 2 et 3 
et, par un argument un peu moins Cvident pour le nombre chromatique 4. 

Avant d’introduire et de rCsumer l’essentiel de la thCorie qui l’a amen6 a cette 
conjecture, I’auteur voudrait dans un premier temps faire quelques rappels et 
prCciser ses notations. 

1.2. Notations et rappels 

Un hypergraphe H sera considCrC comme un ensemble d’ensembles (tous finis) 
et ceci sans restriction. 

H = {el, e2, . . . , em}.  

Les membres de H sont appelCs les ardtes de H. 
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L’ensemble des sommets de H, not6 V, n’est autre que: 
m 

V, = U e,. 
1 

Nous eliminons ainsi le concept d’hypergraphe avec sommeh isole‘s mais cela est 
sans constquence pour le nombre chromatique. 

Nous adopterons une notation multiplicative pour les arCtes de sorte que, par 
exemple, l’hypergraphe 

sera not6 plus simplement 

H = {123,14,235,245}. 

Nous nous permettrons mCme de factoriser certains sommets de sorte que ce 
mCme hypergraphe pourra Ctre note 

H = 1{23,4} U 25{3,4}. 

Le nombre chromatique (faible) de H est not6 x ( H ) .  C’est le plus petit entier k 
tel qu’on puisse colorer les sommets de H avec k couleurs de manibre que chaque 
arCte porte au moins deux couleurs distinctes. Quand un hypergraphe H (dit 
singulier) posskde 1’arCte vide ou une boucle (arkte singleton), il est avantageux de 
poser x ( H )  = 00 cependant qu’un hypergraphe re‘gulier (non singulier) a un nombre 
chromatique fini. 

Un hypergraphe partiel de H est un hypergraphe H’ tel que H ’ E  H. Eliminer 
une arCte e de H conduit a l’hypergraphe partiel not6 H\{e} ou abusivement 
H\e. 

Le sous-hypergraphe de H engendre‘ par un sous-ensemble S de sommets 
(SG V,) est not6 Hs et est dtfini par 

H , = { e l e E H  et e c S } .  

Eliminer un ensemble S de sommets de H dtfinit I’hypergraphe: 

H,- oii S =  VH\S. 

Si e E H on notera la difftrence entre H\e et HE 
Les concepts (complkmentaires) de stable et transversal de H sont rappelks ici: 
- Un stable est un sous-ensemble S de sommets de H ne contenant aucune 

arCte de H. Le nombre chromatique de H apparait alors comme le plus petit 
entier k tel qu’il existe une partition de V, en k stables de H. 

Un transversal (complkmentaire de stable) est un sous-ensemble T de som- 
mets de H tel que Tn e # P, pour toute ar&e e E H.  

L’ensemble des transversaux de H, minimaux (pour l’inclusion), constitue 
l’hypergraphe transversal de H et est not6 =H. 
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Lorsque H est de Sperner c’est a dire lorsqu’aucune relation d’inclusion n’est 
vtrifiCe entre deux ar&tes distinctes de H alors 

? T ~ = ~ .  

2. Hypergraphes critiques 

Les concepts classiques de graphe critique pour le nombre chromatique, sont 
d’une part celui de graphe sommet-critique et d’autre part de graphe artte- 
critique. 11s peuvent i t re  repris, tels quels, pour les hypergraphes. On definit donc 
-un hypergraphe sommet-critique comme un hypergraphe (de Sperner) H tel que 

VX E V, x(H,) = x ( H )  - 1 ,  

-un hypergraphe arPte-critique comme un hypergraphe (de Sperner) H tel que 
pour tout hypergraphe H’ 

H ‘ c  H J x ( H ’ ) < x ( H ) .  

11 est connu que le deuxikme concept conduit a une classe plus restreinte que 
celle associCe au premier. 

Cependant, l’auteur considkre dans ce qui suit un nouveau concept encore plus 
restreint d’hypergraphe critique, et  d’une certaine manikre plus naturel et plus 
adapt6 2 la notion gtntrale d’hypergraphe. 

2.1. L’ordre naturel sur les hypergraphes de Sperner 

La premikre constatation naturelle qu’on peut faire est la suivante: 

Si l’on enltve d’un hypergraphe H les argtes non minimales (pour l’inclusion) 
l’hypergraphe partiel obtenu a mPme nombre chromatique que H. 

Si on note aH l’hypergraphe de Sperner obtenu en ne conservant de H que 
l’ensemble de ses aretes minimales (a  est appelCe simplification de Sperner) et si 
l’on definit I’tquivalence suivante: 

def 
H = H’ (j CTH = aH’ 

alors il est clair que 

H = H’J x ( H )  = x(H‘)  = x(uH) .  

Or sans “calculer” a H  on verifie sans peine que: 

H=H’@[VeEH 3e’EH’ e z e ’ ]  et [Ve’EH’ 3 e ~ H e ’ z e I  

de sorte que cette tquivalence est celle associte au prtordre: 

H S  H ’ g  w e  E H3e’E H’ e 2 e’] 

qui devient un ordre pour les hypergraphes de Sperner. 
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Cet ordre est a l’origine du nouveau concept d’hypergraphe critique. Donnons, 
auparavant, quelques unes de ses propriktks. 

Pour cet ordre, 1”‘ensemble” des hypergraphes (de Sperner) est le treillis 
distributif libre engendrk par une base infinie dknombrable (l’opkration du 
passage d’un hypergraphe a son transversal est celle de dualitk dans le treillis). 
Cela nous amkna a quelques notations et dkfinitions. Soient H et H’ deux 
hypergraphes de Sperner. On notera: 

H v H ’ = o ( H U H ’ ) ,  

H - H’ = o { e  U e‘ I e E H,  e’ E H’} .  

Exemple. 
H = (ab, acd} ,  
H v  H’ = {ab, ac, ad,  bcd), 

H’ = { ac, ad, bcd}, 
H - H’ = {abc, abd, acd} .  

Ces deux opkrations correspondent respectivement a celles de borne supkrieure 
et infkrieure dans le treillis. 

Pour cet ordre, un pre‘de‘cesseur immddiat d’un hypergraphe s’obtient de la 
manikre suivante: on choisit une ar6te e de H qu’on enlkve de H et qu’on 
remplace par l’ensemble des arCtes ex(xE VH\e); on simplifie enfin par 
l’opkration o. En d’autres termes tout hypergraphe predkcesieur immkdiat de H a 
la forme: 

(H\{e}) v {ex  1 vH\e) ( e  

Dans le meme ordre d’idte, un successeur immediat de H consite a prendre un 
stable maximal S de H et de I’adjoindre comme nouvelle ar&te a H, puis 
simplifier par o. 

Exemple. H = {12,16,235,24,36}. 
- Un prkdkcesseur immediat de H (construit a partir de e = 12) est 

H’={123,125, 16,235,24,36}. 

+ Un successeur immediat de H (construit a partir du stable maximal 23) est: 

HI’= (12, 16,23,24,36}. 

Sauf mention expresse, nous conside‘rons dans la suite que tous les hypergraphes 
sont de Sperner. 

2.2. Hypergraphes critiques 

OR constate aiskment que l’ordre preckdemment introduit a la bonne propriktk 
suivante ; 

H G  H ’ + x ( H ) C x ( H ’ ) .  

Ceci est a l’origine du nouveau concept d’hypergraphe critique. 
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Definition. Un hypergraphe H est dit critique lorsque, pour tout hypergraphe HI: 

[ H ’ < H  et VH,s  V,]+x(H’)<x(H). 

La condition V H , s  V, que nous introduisons ne se dCduit pas en gtnkral de 
H‘CH comme cela se passe pour les concepts usuels de sommet ou arete- 
criticalitt. Exemple: (126,234, 124}<{12,234, 15}. 

Cependant (cf. [l]) d&s l’instant ou x(H)>3,  on peut montrer que H est 
critique si et seulement si 

H’<H+x(H’ )<x(H) .  

Pour bien situer ce nouveau concept d’hypergraphe critique, remarquons que: 

H s  H’+ H s  H’. 

Cela implique que si H est critique alors H est argte-critique. 
La rtciproque est fausse en gCnCral: 

Exemple. Considerons l’hypergraphe H qui est un graphe rCduit un cycle 
impair sur 5 sommets; il est clair que H est arCte-critique. Considtrons I’hyper- 
graphe H’ 3-uniforme complet, sur cet ensemble de 5 sommets. H‘ a mtme 
nombre chromatique que H et vCrifie H‘<H. Donc H n’est pas critique. 

2.3. Deux caracte‘risations des hypergraphes critiques 

Les deux CaractCrisations (ThCorkmes 1 et 2) ainsi que les rCsultats que nous 
allons rappeler maintenant sont prouvCs dans [l]. S’ils ne conduisent pas a une 
connaissance intime de la structure des hypergraphes critiques, ils prtsentent 
cependant deux intkrtts. 

(1) La premikre caractkrisation nous relie directement a la conjecture de 
LOVBSZ. 

(2) La seconde dCfinit une prockdure de reconstruction unique des hyper- 
graphes critiques. 

Si, d’un point de vue strictement logique, la seconde a CtC prouvee d’abord et la 
premikre dCduite ensuite, nous prCfCrons les prksenter dam cet ordre, compte- 
tenu de l’objet de cette communication. 

Theoreme 1. U n  hypergraphe eon singulier H est critique si et seulement si pour 
toute ar2te e de H 

x(H,) = X(H) - 2. 

La conjecture de Lovasz peut alors s’Cnoncer: 

Les graphes complets sont les seuls hypergraphes critiques qui soient des graphes. 
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La deuxieme caracterisation part du concept suivant d’hypergraphe bloc 
chromatique 

Une bonne coloration (e d’un hypergraphe k-chromatique H est une k-partition 
de V, en stables S , ,  Sz, . . . , S,. Nous consid6rons Ce = {Sl, Sz, . . . , S,} comme un 
hypergraphe. Soient (ei ( i  = 1 ,  . . . , q )  l’ensemble des bonnes colorations de H. 
L’hypergraphe H“ est alors dCfini par 

associe a un hypergraphe H. 

Ho= (e,vCe,v.. .VVq. 

Une autre maniere de voir egalement Ha est la suivante. Si on nomme regulier 
(resp. singulier) tout stable S de H tel que 

X ( H d  = X(H)  - 1 (resp. X(Hd = X(H) )  

alors Ho est l’ensemble des stables reguliers de H, minimaux pour l’inclusion. 

Proposition 1. Soient H et K deux hypergraphes k-chromatiques. Alors 

H s K K K ’ s M ’ .  

Proposition 2. Soit K un hypergraphe k-chromatique. En ajoutant un nouveau 
sommet x ( x $  VK), l’hypergraphe H = xQ U K est k + I-chromatique si et seulement 
si KO== Q. 

Theoreme 2. L’hypergraphe H est critique si et seulement si 

v x  E v, H = x(H,)” u HE. 

Un hypergraphe critique est donc reconstructible a partir de n’importe lequel 
de ses restes HE ( X E  V H ) .  

2.3. Une nouvelle caracte‘risation des hypergraphes critiques 

Dans [l] nous avons 6tabli qu’un hypergraphe H non singulier, est 3- 
chromatique et critique si et seulement si H==H.  Nous gCn6ralisons ici ce 
rksultat. 

Theoreme 3. Soit H un hypergraphe non singulier et TH son transversal. Alors H 
est k + 1-chromatique et critique si et seulement si la famille Hy ( Y  E ~ H )  est la 
famille de tous les sous hypergraphes engendre‘s de H qui sont k-chromatiques et 
sommet-critiques. 

Preuve. Posons X =  V,. 
C.N. Tout stable de H est rkgulier. Soit Y E ~ H  et S = X\Y; alors Hg = Hy est 

k-chromatique mais en outre sommet-critique sinon H,, resterait k -  
chromatique pour au moins un x E X\S; comme S U x n’est plus stable, il contient 
e E H. D’ou Hz 2 Hs- et x(H,)  = k (une contradiction). Par ailleurs si H y  est 
k-chromatique alors X \  Y est necessairement stable (Theoreme 1) et Y est un 
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transversal. La sommet-criticalit6 de H y  implique enfin que Y est un transversal 
minimal de H. 

C.S. I1 existe au moins dans tout hypergraphe H un stable maximal rCgulier. 
Donc en vertu des hypothbes x(H) = k + 1.  Soit e E H ;  Hz ne peut Ctre ni k + 1 ni 
k-chromatique sinon on peut trouver Y X\e avec H y  k-chromatique, sommet- 
critique; Y n'est pas alors un transversal de H (contradiction). Donc x ( H z ) =  
k - 1 .  

3. Conjecture de Lovasz 

Les Theoremes 1 et 3 sont tres voisins et liCs directement a la conjecture de 
LovBsz. Le T h t o r h e  2, en vue d'2tre exploit6 pour cette conjecture, appelle la 
question suivante: 

Soit K un hypergraphe k-chromatique. Que doit verifier K pour que xKo U K 
soit critique? 

Un hypergraphe K repondant a cette propriCt6 sera appele ge'ne'ratif. 
Clairement, si K est lui-m&me critique alors il est generatif (preuve Cvidente a 

partir du ThCorkme 1). La rtciproque est fausse comme le montre I'exemple 
suivant (un graphe): 

Fig. 1 

3.1. Premitres conditions et premitres tentatives 

C1. Si K est ge'ne'ratif alors Ve E K x(&) < x ( K ) .  

Cela est evident d'aprgs le Theorkme 1. Si cette condition est suffisante lorsque 
k = 2, elle ne l'est plus en gCnCral comme le montre l'exemple suivant: 

Fig. 2 
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C’2. Si K esf ge‘ne‘ratif aiors VKDvK = V,. 

L’exemple precedent, precisement, ne verifie pas C‘2. Nous omettrons la 
preuve de C’2 car nous trouverons une condition C2 qui avec C1 implique C‘2. 
Notons que C1 et C 2  ne sont pas suffisantes [exemple du cycle impair (un graphe) 
sur 5 sommets]. 

A ce stade on est tent6 de poser la conjecture suivante: “Si K est generatif 
alors V,O= VK” qui d’une part est plus forte que c‘2 mais en plus equivaut B 
“Deux sommets distincts d’un hypergraphe critique sont adjacents (i.e. contenus 
dans une meme artte)” ce qui impliquerait la conjecture de Lovasz. Malheureuse- 
ment, il n’en est rien comme le montre I’exemple suivant: 

H =  5{12,34}U6{13, 14,23,24}U{123,124, 134,234) 

representant un hypergraphe (3-uniforme) 3-chromatique critique, avec 5 et 6 
non adjacents, exemple a partir duquel on peut, pour tout k 3 3, construire un 
hypergraphe k-chromatique critique avec deux sommets non adjacents. 

3.2. Une nouvelle condition et ses consequences 

Soit K un hypergraphe k-chromatique. On pose V =  V,. Considerom la famille 
K, ( i  = 1 , 2 ,  . . . , r )  des sous-hypergraphes engendrks de K qui soient k- 
chromatiques et sommet-critiques. 

Nous noterons V ,  = V, et disignerons par K ’  l’hypergraphe suivant: 

K’ = { V,, V,, . . . , Vr}. 

Propriete. S c V est un transversal de K’  si et seulement si x(K,-) < k. 

Preuve Cvidente. 

Consequence. Si a E KO alors a est transversal minimal de K’.  
Si K ve‘rifie C1 alors toute argte e de K est un transversal de K1.  

C2. Si K est ge‘ne‘ratif et si Ki ( i  = 1,2 ,  . . . , r )  est la famille pre‘ce‘demment de‘finie 
alors, pour tout choix d’hypergraphes L, ( i  = 1, 2, . . .) k-chromatiques, critiques, 
ve‘rifiant L, =s K ,  et VLz = V,, nous avons: 

Preuve. Posons L = L,  v L2 v .  ’ . v L,. I1 est clair que Li 
Prouvons que Lo E KO U K (KO U K n’est pas forcement de Sperner). 

L c K,  donc x ( L )  = k. 

Soit /3 E Lo. Si x(K6)  = k alors /3 n’est pas transversal de K’ et donc pour un 
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certain i :  V, G p d'oh Li = (L,)p d Lp contredisant p E Lo. Donc x (Kp)  =z k - 1 et /3 
est transversal de K ' .  

Si a est un sous-ensemble strict de p alors a $  Lo et x(L,) = k et donc 
x(K,) = k ( L ,  s K6) .  

Donc p est un transversal minimal de K' .  
Si p n'est pas stable il contient une arCte e et d'aprks la consCquence plus haut 

Si p est stable, il est rkgulier (et par minimalitC) p E K". Donc /3 E K U KO. Cela 

Par suite xLoU L c x K o U K ;  or K est gCnCratif et x ( x L o U L ) =  k +  1. I1 e n  

p = e. 

prouve Lo G KO U K. 

rCsulte que xL" U L = xK" U K d'oh L = K. 

Corollaire. Soit H un hypergraphe auec TH= { Y l ,  Yz ,  . . . , Y,}. Si H est k + 1- 
chromatique et critique alors H = H ,  v H 2 v .  . . v H, ou chaque Hi est k-chromatique 
critique auec V, = Yi et Hi G Hy,. 

La preuve rCsulte du Theorkme 3 et de la condition C2 appliquCe a tous les 
restes H: (x E VH). 

L'ensemble des conditions C1 et C2 est trks fort de sorte qu'on peut poser la 

Dans cet ordre d'idCe nous allons prouver deux propositions: 
question: est-ce que C1 et C2 caracterisent les hypergraphes gkntratifs? 

Proposition 3. L'ensemble des conditions C1 et C2 implique la condition C'2. 

Preuve. Soit x E V. D'apres C2, x E V, pour un certain i. L'ensemble (V\  V,) U { x }  
est un transversal de K' contenant un transversal minimal p. I1 est clair que x E p. 

Si p n'est pas stable, alors d'aprks la conskquence ci-dessus, p E K et ne peut 
contenir un  ClCment de K". Donc p E K v  KO. 

Si p est stable, p E KO et (ne contenant aucune argte de K )  p EKOVK. En 
dkfinitive V x  E V x E VpvK ce qui achkve la preuve. 

Proposition 4. Soit K un hypergraphe k-chromatique ge'ne'ratif et K ,  ( i  = 

1 ,2 , .  . . , r )  la famille de ses sous-hypergraphes engendre's, k-chromatiques et 
sonamet-critiques. Alors pour toute ar2te a de K il existe i tel que X ( ( K , ) ~ )  = k - 2. 

Preuve. Soit a E K et soit {1,2, . . . , m }  ( m  
tels que a E K,. Supposons en outre que: 

r )  l'ensemble de tous les indices i 

pour is m x( (K , )* )  = k - 1. 

ConsidCrons le predkcesseur immediat K :  de K, selon l'arste a (cf. Section 2.1): 

K :  = (K,\{a})v{ax; x E V,\a}. 

Nous avons (K:)* = ( K , ) m  d'ou x( (K:)*)  = k - 1. Si ,y(K:) f k c'est qu'alors 
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x ( K : ) =  k - 1 .  Soit une ( k -  1) bonne coloration de K : .  Si les sommets a ont la 
meme couleur, c’est que les sommets V,\a ont CtC color& avec k - 2 couleurs et 
donc X ( ( K : ) ~ )  = k - 2 (absurde). 

Si les sommets a ont au moins deux couleurs la coloration reste bonne pour K, 
et x ( K , )  = k - 1 (absurde). Donc x(K: )  = k ( i  < m ) .  

On peut donc choisir des hypergraphes critiques L, ( i  = 1,2 ,  . . . , r )  avec 

V i G m  L,<K:<K, .  

Clairement a $ L ,  pour tout i = 1 , 2 , .  . . , r et K #  L ,  v L , v -  . -vL,, contredisant 
c 2 .  

Cette dernikre proposition rend plus pausible la conjecture suivante: 

Conjecture. Si K est ge‘ne‘ratif alors l’un au moins K ,  des hypergraphes engendre‘s 
sommet-critiques (de  mdme nombre chromatique que K )  est lui-mfme critique. 

Une preuve de cette conjecture entrainerait Cvidemment la preuve de la 
conjecture de Lovasz, cependant qu’un contre-exemple non graphique laisserait la 
conjecture de Lovhsz, provisoirement comme une pure question de graphe. 

L’auteur tient a remercier ici, les rapporteurs anonymes pour leurs suggestions 
et remarques constructives. 
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We survey some aspects of the complexity of graph isomorphism testing and its relation to 
the size and structure of the automorphism group. We formulate results from the following 
areas: reducibility, random graphs, strongly regular graphs, graphs with primitive automorphism 
groups, cubic graphs, graphs with bounded eigenvalue multiplicities. graphs with colored 
vertices with small color-classes. We have polynomial time Monte-Carlo algorithms for the last 
two classes of graphs. 

1. 

Isomorphism testing is believed not to be NP-complete, yet no good characteri- 
zation (in the sense of Edmonds) of pairs of isomorphic graphs has been found so 
far. (A good characterization would give a quick answer to the question of why 
are two graphs not isomorphic.) In other words, non-isomorphism is not known to 
belong to NP. In particular, a polynomial time isomorphism testing algorithm 
seems to be out of reach. The known algorithms require exp(cn1og n )  steps in 
worst case, where n is the number of vertices; no essential theoretical improve- 
ment on the brute force method has been achieved so far. Zemlyatshenko [33] and 
independently Colbourn [ 113 proved that graph isomorphism testing can be 
performed in C" time assuming the Kelly-Ulam reconstruction conjecture. 

2. 

The algorithmic problem of graph isomorphism testing is closely related to the 
effective solution of certain problems on the automorphism groups of graphs. The 
determination of the order of the group Aut X ( X  a graph) is polynomial time 
equivalent to isomorphism testing [2,2 13. (Equivalently, this is the problem of 
counting isomorphisms between two given graphs. Therefore it can be interpreted 
as evidence to support that isomorphism is not NP-complete. For NP-complete 
problems, it is believed existence and counting are not equivalent (cf. [29]).) 
Finding a set of generators of Aut X is also equivalent to isomorphism testing. It 
is no surprise that much of the literature on automorphism groups of graphs has 
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immediate relevance to the complexity of isomorphism testing (e.g. 
[13, 14, 15,9]), though this has been largely overlooked in some papers. 

It is likely that even a n  e.xp(cn”.”’) algorithm will require a much deeper insight 
in the structure of the automorphism groups of graphs than what we have at 
present. For convenience, we shall use the term frexponential for O(exp(n I - - (  )) 
order of magnitude where c is a positive constant [6]. Frexponential isomorphism 
testing algorithms are now available for strongly regular graphs and, more 
generally, primitive coherent configurations (see below), as well as for graphs with 
bounded valences. 

3. 

The strongest possible information about a group is that it has only one 
element. Merely knowing that a graph has no nonidentity automorphisms does 
not seem to help, but an “explicit” asymmetry makes isomorphism testing easier. 
There exists a canonical labelling algorithm with linear average time (Babai and 
KuEera [8]). (The average is taken over all the 2‘3 graphs on given n vertices.) 
The strong and easily verified asymmetry of random graphs plays a role here. 

On the other end of the spectrum are the strongly regular graphs. Despite their 
apparently high symmetry, they admit a frexponential canonical labelling, in 
exp(2n1’* log’ n )  steps [3]. Imprimitive strongly regular graphs are the disjoint 
unions of isomorphic complete graphs and the complements of such graphs. All 
other strongly regular graphs are called primitive. From the proof in [3] we obtain 
that all automorphisms of a primitive strongly regular graph can be eliminated by 
fixing a set of 2n“‘ log n vertices. For certain classes of strongly regular graphs, 
even a much smaller (O(1og n ) )  subset of vertices suffices (Latin square graphs, 
line graphs of Steiner triple systems [26],  strongly regular graphs of valence p 
where c , n < p < c , n  (O<c,<c,< 1, constants) [ 3 ] ) .  The same is true for cubic 
s-transitive graphs [ 191. 

We obtain a similar result under more general conditions. 
A colored complete graph is a set V of vertices together with a partition 

V X  V =  E ,  U. . . U El of the pairs of vertices. (1, . . . . f are the colors.) Such a 
configuration is coherent if for any (x, y ) ~ E k ,  the number C,,k = 

l { z :  (x, Z ) E  E,, ( 2 ,  y ) ~ E , } l  depends on i, j ,  k only and not on the particular choice 
of the pair (x, y ) .  (The term is due to Higman [16].) 

A simple refinement procedure shows that isomorphism testing for graphs is 
polynomial time equivalent to isomorphism testing for coherent configurations 
(Weisfeiler and Lehman [31], see [30]). 

A coherent configuration is primitive if El is the diagonal {(x, x): x E V} and the 
directed graphs (V, E, )  are connected ( i  = 2, . . . , t ) .  (For instance, a primitive 
strongly regular graph is a primitive coherent configuration with r = 3 and E,  the 
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adjacency and E ,  the non-adjacency relation. In the refinement procedure, 
automorphism groups are preserved. Consequently graphs with primitive au- 
tomorphism groups lead to primitive coherent configurations. The converse does 
not hold.) We are able to prove that a canonical labelling of primitive coherent 
configurations can be obtained in exp(4n’” log’ n)  steps [5].  

Again, a moderate asymmetry came to our rescue. Fixing 4n1/’ log n vertices, 
our coherent configuration is left without automorphisms. The performance time 
bounds are actually bounds on the order of the automorphism group. Paradoxi- 
cally, the strong symmetry conditions imply an exp(o(n)) upper bound on the 
number of symmetries. A purely group theoretic consequence of the result is that 
the order of a primitive but not doubly transitive permutation group is less than 
exp(4n”’log’n). This bound is best possible up to a factor of 4 l o g n  in the 
exponent, as shown by Aut(L(K,,,)), n = m2. The result answers a problem of 
Wielandt [32, p. 421. 

4. 

In general, however, we may have exp(cn) or more automorphisms, too many 

Still, there may be some asymmetry in the graph that helps us. 
Coincidence of eigenvalues is a kind of (geometrical) symmetry. Therefore, a 

bound on the multiplicites of the eigenvalues of the adjacency matrix can be 
viewed as an asymmetry condition. It would be no surprise if for fixed k the 
graphs with at most k-tuple eigenvalues admitted a polynomial time isomorphism 
test. We are unable to prove this for k 3 2 .  Nevertheless, the situation here is 
satisfactory. The problem can be reduced to a problem of generating a certain 
subgroup of the direct product of small groups [7] ,  and there is a polynomial time 
Las Vegas (coin flipping) algorithm to solve this group theoretic problem. The 
combined algorithm uses a random number generator and has three possible 
outputs after O(nZktc) steps: either it decides that the input graphs are isomor- 
phic and displays an isomorphism, or it decides (and proves) that the graphs are 
not isomorphic, or else it outputs “?” (failure). For any given pair of graphs, the 
probability of failure is less than i. Repeating the procedure t times (using 
independent coin tosses) the probability of reaching no  decision is less than 2-l. 
Once a decision has been made, no error can occur. We call such an algorithm 
“Las Vegas” [6] as opposed to Monte Carlo algorithms where decision is always 
made but there is a positive chance of error (see e.g. [28]). 

Adleman and Manders call the class of NP-problems solvable by 
polynomial time Las Vegas algorithms AR (see [l]). AR is a subclass of NP n coNP 
(well characterized sets). This, in particular, means that non-isomorphism in the 
class of graphs with bounded eigenvalue multiplicities belongs to NP. 

to list. We have to tell something about the structure of the automorphism group. 
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5. 

A less abstract kind of asymmetry is the following. Suppose that the vertices of 
our graphs are colored such that each color occurs at most k times in each of the 
graphs. (This may be the result of a very efficient vertex classification algorithm, 
for instance. Note that now every orbit of the automorphism group has length at 
most k.)  This time we are faced with ( , ! ) " I k  possible mappings rather than n ! ,  still 
an exponentially large number. It is frustrating that even for k = 3 no polynomial 
time algorithm is known to decide whether two such graphs are isomorphic 
(although each vertex has been distinguished from most of the other vertices). 
(The case k = 2 is trivial.) Nevertheless, for k constant this problem can be shown 
to belong to A R  by observing that it reduces to the above mentioned problem of 
generating a certain subgroup of a direct product of small groups [6]. The 
algorithm requires O(k4kn3) time. 

6. 

The edge stabilizer of the automorphism group of a connected cubic graph is a 
2-group. This is a severe restriction on the structure of a group and is just one of 
the reasons why we expect that cubic graph isomorphism is easier than the general 
problem. Other-not unrelated-arguments were found by KuEera [ 171 and Miller 

It is not true, in general, that fixing o ( n )  vertices we could eliminate all 
automorphisms of a connected cubic graph. Nevertheless, one can always fix at 
most vertices such that all orbits become smaller than &. In fact, the naive 
vertex classification algorithm splits the graph into pieces of size s J ~ .  This is 
sufficient in order to obtain an exp(cn"* log n )  Las Vegas isomorphism testing for 
cubic graphs (c < 5) .  The argument generalizes to graphs with bounded valence 
161. The cost of our Las Vegas isomorphism test for graphs of valencesd is 
bounded by 

[251. 

where ~ ( x )  denotes the number of primes not exceeding x. 

7. 

In cases 4, 5 and 6 there was no exp(o(n)) upper bound on the orders of the 
automorphism groups of the graphs in question, but the automorphism group (or 
the stabilizer of a subset of moderate size) was combined from small groups in 
some way, namely, it was a subgroup of the direct product of small groups. This 
fact is exploited in the Las Vegas algorithm of [6]. 
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Hopefully, a subexponential algorithm for cubic graphs and a frexponential 
algorithm for the general case could be obtained if one could modify our method 
so as to apply to subgroups of repeated wreath products of small groups (actualIy, 
of groups of order 2, in the cubic case). 

8. 

Does symmetry help or hinder isomorphism testing? If an algorithm, with some 
luck, detects a few automorphisms of a graph, these can be used to accelerate 
isomorphism testing. As far as I know such ideas are built in the algorithms used 
mainly for highly symmetric structures by Mathon in Toronto [22], Bussemaker in 
Eindhoven [lo], McKay in Melbourne [23] and Faradzhev in Moscow (cf. [30]). 

The problem is that we don't know in advance if our nice-looking graph really 
possesses a lot of automorphisms; maybe, it has no non-trivial automorphism at 
all. Most easily recognizable classes of graphs, such as cubic graphs and strongly 
regular graphs, contain both kinds of graphs. Two graphs may have quite similar 
looks, defined in terms of combinatorial parameters, and still have entirely 
different sizes of automorphism groups. If a class K of graphs is recognizable by a 
fast algorithm (unlike, for example, the class of automorphism free graphs), what 
we may be interested in is structural information about the potential group of 
automorphisms of members of K. Even if most of the members of the class have 
much smaller automorphism groups, their resemblance to highly symmetric 
members of K may cause a lot of trouble. There doesn't seem to be a fast way of 
telling true symmetry from hidden asymmetry. 

9. 

Back to mathematics. Sections 4 and 5 show that we can handle graphs with 
even a potentially exponential number of automorphisms provided sufficient 
information is available about the structure of the automorphism groups. 

In looking for this structure, answers to the following problems would be of 
particular interest. 

Problem 1. Suppose a graph X has exp(n'1) automorphisms. Does Aut X have a 
subgroup of order at least exp(n"2) all orbits of which have sizes not exceeding 
nl-'.? (Is this statement true for some choice of the constants O<c i< l  and 
n > n,?). 

Problem 2. Suppose a graph X-has more than 4" automorphisms. Does this imply 
that X has at least nc disjoint automorphisms-or at least two disjoint au- 
tomorphisms? (c > 0, constant.) (A set of permutations is disjoint if every point is 
displaced by at most one of them.) 
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We mention two more problems. 

Problem 3. A labelled graph is a lexicographic leader if none of the (n ! - 1) 
relabelled versions of the graph dominate it in lexicographic order. (The lexico- 
graphic order of labelled graphs is the lexicographic order of the lower triangle of 
their adjacency matrices; (a21a31a32a41a42a43 . . . will be the word used to 
encode the n X n symmetric 0-1 matrix [a,]. This way, all initial segments of a 
lexicographic leader are lexicographic leaders.) 

The class of lexicographic leaders belongs to coNP. Is it coNP-complete? (If it 
belonged to P, then isomorphism would be well characterized, i.e. belong to 
coNP.) 

Problem 4. Given a set of permutations, decide whether a given permutation is 
generated by them. 

Does this problem belong to NP? Is it in COW? 
A related recent result by Lubiw [20] is the NP-completeness of determining if 

a given set of commuting involutions generates a fixed-point-free permutation. 
(Involution = permutation of order 2.) 

Actually, Lubiw proved that the following problem is NP-complete. 

(*) Given a graph, does it have a fixed-point-free automorphism (of order 2)? 

10. 

The star system problem, due to Sabidussi and Vera S ~ S ,  was also included in the 
first version of this paper. In a graph, the star of a vertex is the set of its neighbors. 
Given n subsets of an n-set, decide if there exists a graph for which they form the 
set of stars. 

It is easy to prove [4] that this problem is at least as hard as the isomorphism 
problem and that it is equivalent to the following automorphism problem. 

Given a bipartite graph, decide if it has an automorphism of order 2 such that 
each vertex is adjacent to its image. 

In the first version of the present paper I pointed out that there may be some 
similarity between this problem and Lubiw’s NP-complete problem (*), but I did 
not believe there was a deeper relationship. Shortly afterwards Lalonde [ 181 
reduced (*) to the star system problem, thus proving that the star system problem 
is  NP-complete. As a by product of his proof, the following problem turns out to 
be NP-complete: 

(N) Given a bipartite graph, decide if it has an automorphism of order 2 which 
interchanges the color-classes. 

Frighteningly close to (N) is the following problem, clearly equivalent to graph 
isomorphism. 
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(I) Given a bipartite graph, decide if it has an automorphism which interchanges 
the color-classes. 
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Added in proof. The author's paper [6] has stirred activity in the field and within 
8 months of writing [6], most of its results have been superseded. 

E.M. Luks has pointed out to me that classical coset enumeration algorithms 
solve Problem 4 in polynomial time. The same (deterministic) algorithms can be 
used to replace the author's Las Vegas algorithms mentioned in Sections 4, 5, 6. 
It seems, however, that our Las Vegas algorithms are faster than the correspond- 
ing deterministic algorithms. 

C.M. Hoffmann [34] was able to  use the method of [6] recursively and so 
essentially solve the problem for subgroups of wreath products of groups of order 
2, mentioned in Section 7. His work was then used by Furst et al. [35] to obtain 
an nclogn algorithm for cubic graphs. A major breakthrough came shortly 
afterwards by E.M. Luks' surprisingly simple and elegant polynomial time al- 
gorithm for cubic graphs. His work links the isomorphism problem to group 
theory in substantial depth. A few months later Luks was able to work out some 
results on primitive permutation groups that enabled him to extend his method to 
graphs with bounded valence [37] (in polynomial time) thus obliviating Section 6.  
The key observation he made on the structure of automorphism groups of graphs 
of bounded valence is that only a finite number of finite simple groups occur as 
composition factors of the stabilizer subgroups. More specifically, if G is the 
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edge-stabilizer in the automorphism group of a connected graph of valence s d  
and H is one of the composition factors of G, then H is isomorphic to a subgroup 
of Sdp1 the symmetric group of degree d - 1. 

The importance of the following problem emerges from Luks’ work. 

Problem 5. Given two subgroups G, H of S,, (by a set of generators for each), 
determine a set of generators for G n H .  

This problem is equivalent (in polynomial time) to the following: 

Problem. 6. Is the intersection of the cosets Ga and Hb nonempty? 

(The equivalence can be proven along the lines of the proof that the isomorph- 
ism problem is equivalent to  finding a set of generators for the automorphism 
group, see [21].) 

Problem 6 is in NP and it is easy to see that it is at least as hard as the 
isomorphism problem. Are they equivalent? 

Does Problem 6 belong to COW? (i.e., is there a short proof that the 
intersection is empty?) A positive answer would imply a good characterisation of 
graph isomorphism. 

E.M. Luks has solved Problems 5 and 6 in polynomial time for the case when all 
composition factors of G are bounded [37]. 

[34] C.M. Hoffmann, Testing isomorphism of cone graphs, Roc. 12th Annu. Symp. on Theory of 
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IDENTIFICATION OF GRAPHS 

A. J. W. DUIJVESTIJN 
Twente Uniuersity of Technology, Enschede, The Netherlands 

Abstract 

Two algorithms for graph identification are presented. With each graph a 
number is associated, which is called the identification number. Two graphs have 
the same identification number if and only if they are isomorphic. 

The first algorithm is only applicable to 3-connected planar graphs (so-called 
c-nets). A code is developed for a rooted c-net. Then a canonical representation 
is given. Also the order of the automorphism group can be obtained. 

The second algorithm can be used for arbitrary graphs, not necessarily planar or 
connected. 

Results are given for 3-connected planar graphs up to order 22 and for all 
graphs on 8 points. 
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THE COMPLEXITY OF COMBINATORIAL ISOMORPHISM 
PROBLEMS 

Marlene J. COLBOURN and Charles J. COLBOURN 
Department of Computer Science, University of Toronto, Toronto, Ont. (Canada) 

A continuing trend in design theory is to focus attention on questions of 
enumeration, as well as those of existence. The most widely used enumeration 
technique is to generate an exhaustive list of designs with given parameters, and 
then create a list in which each isomorphism class of designs is represented exactly 
once. Deciding whether two designs are isomorphic is a fundamental step in this 
approach; when there are many designs, it becomes the critical step. 

When first presented with this problem, our goal is to find a good (polynomial 
time bounded) algorithm to solve it. Despite many attempts [3,8,13], the current 
best algorithm for isomorphism testing requires time exponential in the number of 
elements in the design. In certain special cases, algorithms for deciding isomorph- 
ism in subexponential (but still superpolynomial) time have been described: for 
example, groups, quasigroups, Steiner triple systems and projective planes [ 121, 
and t - (u, f + 1, l )  designs [5 ] .  

Computational complexity theory has examined problems which are of equival- 
ent complexity up to a polynomial; the most famous example is, of course, that of 
the NP-complete problems [ 101. An NP-completeness proof for a problem 
constitutes strong evidence that no good algorithm to solve the problem exists. 
One approach to “resolving” the complexity status of a problem is to show that it 
belongs to the same complexity class as a problem which is widely believed to be 
difficult. In this research we show that deciding isomorphism of balanced incom- 
plete block designs is polynomial time equivalent to deciding graph isomorphism, 
or isomorphism complete. Graph isomorphism is widely believed to be difficult, 
although there is evidence that it is not NP-complete [9]. 

We will first sketch proofs that deciding isomorphism of (r, A)-systems, exact set 
packings, painvise balanced designs, and partially balanced incomplete block 
designs are all isomorphism complete problems. Further details about these 
constructions can be found in [ 2 ] .  We shall then outline a construction demon- 
strating that BIBD isomorphism is isomorphism complete; a detailed version will 
appear in L71. 

For a class C of structures, demonstrating that isomorphism testing of struc- 
tures in C is isomorphism complete may be done by transforming the isomorph- 
ism problem for a class D of structures which is known to be isomorphism 
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complete. One describes a transformation T: D + C satisfying 

(1) for d l ,   ED, d , = d 2  if and only if T ( d , ) = T ( d , ) ,  
(2) T ( d )  can be computed from d in polynomial time. 

In the concise presentation here, we just describe the required transformation, 
and omit proofs that it satisfies the conditions. 

’Iheorem 1. Isomorphism of ( r ,  A)-systems is isomorphism complete. 

Proof. Given a graph G, let T(G)  be an (r, A)-system with element set V(G)  U 
{x}. The blocks of T(G)  are: (x, ui, ui) for (ui, u j )  in E(G) ,  sufficient blocks of size 
2 to ensure that every pair appears the same number of times, and sufficient 
blocks of size 1 to ensure that each element appears the same number of times. 

Theorem 2. Isomorphism of exact set packings is isomorphism complete. 

Proof. Since ( r ,  A)-systems are isomorphism complete, we transform ( r ,  A)-  
systems into exact set packings. To do this, we note that the dual of an 
( r ,  A)-system is an exact set packing. 

Theorem 3. Isomorphism of PBIBD’s is isomorphism complete. 

Proof. Regular graph isomorphism is isomorphism complete [l, 111. G‘ iven a 
regular graph G, construct P(G) ,  a PBIBD, with elements E(G).  For each vertex 
u of G, the edges containing u form a block in P( G ) .  This PBIBD has A = 0 or 1. 

Prior to considering PBD’s, we require the following known result. 

Theorem 4 [4,6]. Isomorphism of regular self-complementary graphs is isomorph- 
ism complete. 

Theorem 5. Isomorphism of PBD’s is isomorphism complete. 

Proof. By Theorem 4, it suffices to transform regular self-complementary graphs 
to PBD’s. Given an n-vertex q-edge regular self-complementary graph G which 
is regular of degree d ,  construct a PBD B ( G )  with elements V(G)UZ,,, and 
blocks as follows. For each edge (v, w )  of G and each pair ( i , j )  of distinct 
elements of Z,,, (u, w, i ,  j )  is a block. For each non-edge (x, y ) ,  x f  y ,  of G, (x, y )  is 
a block; it is repeated 2q times. Each pair of distinct elements ( i ,  j) of Z,, forms a 
block which is repeated q times. Finally, for each element i of Z,  and each vertex 
u of G, ( i ,  u )  is a block repeated 2 q - 2 d Z  times. 

We conclude with the most powerful theorem, that BIBD isomorphism is 
isomorphism complete. This resolves a longstanding open question concerning 
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isomorphism, posed in [ti]. We shall use the following observation. An easy 
extension of Theorem 4 shows that isomorphism testing of edge-coloured com- 
plete graphs having three colours, each colour inducing an isomorphic regular 
graph, is isomorphism complete. We call such “graphs” regular colour- 
complementary (rcc) 3-graphs. The detailed proof of this extension is omitted; see 
[71. 

Theorem 5. BIBD isomorphism is isomorphism complete. 

Proof. Since rcc 3-graph isomorphism is isomorphism complete, we will trans- 
form rcc 3-graphs into BIBD’s. Given an n-vertex rcc 3-graph G with three 
colour-classes of edges El, E,, and E,, a BIBD BD(G) is constructed with 
elements V(G)  U { x i j  I 1 =S i =S d, 1 s j s 3) where d = f( n - 1). The blocks of BD( G) 
are 

(1) for 1 =S i G d and (u, w )  E E,, (x i i ,  u, w )  is a block. 
(2) Let 5% be the blocks of a Steiner triple system with element set {x,}. Each 

block of 5% is included in BD(G) d times. 

In [7], we also describe a construction which does not contain repeated blocks. 
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1. Introduction 

The structure of an idealized river network containing no lakes, islands, or 
junctions of more than two streams may be represented by a trivalent planted 
plane tree, or channel network [5,7]. The root of the tree corresponds to the 
outlet of the river, the other nodes of degree one correspond to the sources of the 
river, and the remaining nodes correspond to junctions where two streams flow 
together. The main branches of a non-trivial network are the two sub-networks 
which merge at the first junction upstream from the outlet; two non-trivial 
networks are considered the same if they have the same ordered pair of main 
branches. A kth order stream in a network N is a path that starts at a source if 
k = 1 or at the junction of two (k  - 1)st order streams if k > 1, and stops at a 
junction with another stream of order at least k or at the outlet. The kth stream 
number ofX  is the number s k  = sk ( X )  of kth order streams in N. The order of N is 
the order of the highest-ordered stream in X. 

Horton’s law [3] states that the stream numbers s k  of a natural river network 
tend to approximate a geometric series; the ratio sk / sL+1  usually falls in the range 
from 2.5 to  5 with the modal value near 4 (see [7, p. 17581). Shreve [5] generated 
the stream numbers of large channel networks and found that these numbers 
displayed a similar behaviour. He also showed [6] that the probability of selecting 
a kth order stream from the set of all streams in an infinite random channel 
network is 3/4k. 

Let +(n, k)  and a2(n, k )  denote the mean and variance of s,(X) over all 
channel networks X with n sources. Werner [8] showed that 

+(a 2) = 4(n),/(2n - 3) and a2(n,  2) = i(n),/(2n - 3)’(2n - 5). 
Our main object here is to show that 

p ( n ,  k)/n + 4lWk and u2(n, k)/n + (4)41-k(1-41-k) 

for each fixed integer k as n+m. 

2. Preliminaries 

Let y ( x )  = 1 ynxn where yn denotes the number of channel networks with n 
sources. Then y = x + y2, since y1 = 1 and the number of sources in any non-trivial 
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network is the sum of the number of sources in its two main branches. Conse- 
quently, 

a familiar result going back to Cayley [ 13. 
Let & ( x )  =c F(n, k)x" where F(n, k)  denotes the number of channel networks 

with n sources and order at most k. If f k ( x )  = F k x ) - F k - l ( X ) ,  then fl(x) = x and 

fk (x) = f f  - 1 + 2fk Fk - 1 (x) (2.2) 
for k a 2, since a non-trivial network has order k if (i) both main branches have 
order k - 1, or (ii) one main branch has order k and the other has order less than 
k (cf. [5, p. 291). 

For each integer k the function Fk(x) enumerates a proper subset of the 
channel networks, so Ifk(x)I < Iy(x)l S y(4) = $ when 0 < 1x1 si. It follows, there- 
fore, that 

fk (x) = ff-l(X)(l -2Fk- l (x ) ) -1  

is regular in the neighbourhood of x =a. It also follows from (2.2) that fk($) = 

(i)k+l and flk(i) = 4(2k + 21-k ). 

3. Main results 

Let 

y k  = y k ( x ,  z ) = c  y(n, k, t ) Z ' X " ,  

where y(n, k, t )  denotes the number of networks X with n sources such that 
S k ( X )  = t .  

Theorem 1. If k z=2, then Yk = x + Y f  + (z - l)fj--l(x). 

This follows readily from the observation that the kth stream number of a 
non-trivial network X is the sum of the kth stream numbers of the main branches 
of X except when a stream of order k is created at the junction of the main 
branches; this occurs only when both main branches are of order k - 1. The term 
(z - l)f2,-,(x) corrects the exponent of z in x + YE in this exceptional case. 

Let M j ( x )  = C pj(n, k)y,xn, where pj(n, k )  denotes the jth factorial moment of 
sk(X) over all networks X with n sources for a given value of k where k z 2 .  

This follows upon using Theorem 1 to expand Yk in powers of x and z - 1, and 
then picking off the coefficient of ( z  - l)j/j!. 
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Corollary 2. Let pk = 41-k. For each positive integer k,  

p(n ,  k )  = pkn + i ( l  - p , ) + O ( n - ' )  and u2(n ,  k)=$np,(l -pk )+O( l )  

We may suppose k 3 2. It follows from a theorem of Darboux [8,2] that if 

1 hnxn = A(x)( l -4~)- ' ,  

where A(x) is regular in the neighbourhood of x =a, A(:)# 0, and s f  
0, -1, -2 , .  . . , then 

r(~)4-~h, ,  = aOns-I +(;a,,s + a,)(s - l)ns-2+O(ns-3) 

as n+m,  where ao=A($)  and a , = - ; A ' ( $ ) .  If we apply this result to the 
functions 

M,(x) =f2,-,(x)(1-4x)-i and M2(x)  = 2f4,-, (x)(1-4x)-g, 

as we may in view of the observations in Section 2, and bear in mind that 

we obtain the required formulas for p(n,  k) and d ( n ,  k) = pz(n, k) + p(n,  k) - 

Notice that p ( n ,  k)/p(n, k + 1) = 4-4'/2n +O(n-') for each fixed value of k as 
n + m. For natural river networks the ratios sk/sk+l tend to decrease somewhat as 
k increases [5, p. 241. 

It follows from Corollary 1 and (2.1) that pi(n, 2)= (n-  1)j(n)2j/(2n-2)2j from 
which explicit formulas for the first few central moments of sz(X) may be derived. 
Furthermore, it follows from Theorem 3.1 that the probability that sk(X) = t is 
y,/y, times the coefficient of X" in f;(x) (1-2Fk-,(x))'-'. When k = 2  this 
probability is 

P 2 h  k). 

Yt n - 2  2"-2t 4 yn 2t-2 ) ' 

a result derived by Shreve [5, p. 291 in another way. 

sources, then 
If s ( n )  denotes the expected total number of streams in a network with n 

from which it follows that 
m 

n-rn 

Shreve [6, p. 1851 established an analogous result for infinite networks. 



120 J .  W. Moon 

4. Ambilateral networks 

Let Yn, Y b ) ,  Y k ( x ,  Z), f k ( x ) ,  F n ( x ) ,  p ( n ,  k ) ,  and M ( x )  be defined as before 
except that now they pertain to the family of ambilateral, or non-isomorphic, 
channel networks in which the order of the branches is not taken into account in 
distinguishing between different networks [ 7 ] .  It is known [ 2 ]  that y ( x )  = 

x +%y* (x )  + y(x") }  and that y, - cn-;p-" where p = 0.4026 . . . and c = 

( (p  + p2y'(p2))/2.rr): = 0.3187 - - - . This implies that y ' ( x ) ( l  - y ( x ) )  = 1 + xy ' (x2)  and 
that 1 - y(x ' )  = 2 x  + (1 - y(x) ) ' ,  so 1 - y ( p Z k )  = (Ykp2'+' where a. = 1 and ( Y ~ + ~  = 2 + 
a; for k 30. 

When we adapt the arguments in Sections 2 and 3 to ambilateral networks, we 
find that 

y k  ( x ,  2) = x + 8 y ' , (x ,  2) + Yk (x', 2')) + (2 - 1) gk (x) 

where gk(X)=~{f2k-1(X)+fk_l(X2)} with f l ( X ) = X  and fk(x)' g k ( X ) { l - F k - l ( X ) } - l .  
Consequently, 

a 
M ( x ) =  - yk(x, 2)) =(1-y(x))-'(g,(x)+M(X2)) (a, z = l  

= (1 + x y ' ( x ' ) ) - ' ( g k ( x ) + M ( x ' ) ) y ' ( x ) .  

It follows from this that 

e ( k ) =  lim p ( n ,  k ) / n  = (27TC2) -1 {&(p )+M(p2) }  
n-m 

m 

= p(27TC2)-' Ct&(p2')p-2' 
i = o  

for each fixed integer k 3 2 ,  where co = 1 and c;' = alaz . . . a, for t 3 1. The first 
few values of the numbers e ( k )  and b ( k ) = e ( k - l ) / e ( k ) ,  t rhca ted  after four 
digits, are given in Table 1. 

Table 1 

2 3 4 5 

4 k )  0.3065 0.0839 0.021 1 0.0052 
b ( k )  3.262 3.650 3.906 3.999 

We remark in closing that the behaviour of the stream numbers of some other 
families of networks has been considered in [9] and [4]. 
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1. Introduction 

1.1. Spaces 

Let E be a finite non-empty set; 9 ( E )  (the set of all subsets of E )  is considered 
as a vector space over GF(2) (the addition is the symmetric difference of sets); if 
5$ c B(E) we shall denote by (%) the subspace of 9 ( E )  generated by the elements 
of 8; if 9 is a subspace of P ( E ) ,  the subspace of B(E) orthogonal to 9 is: 
9l = {A E 9 ( E )  1 V F  E 9, \A n F (  = 0 (mod 2)); the support of 9 is the subset 

A space is any pair ( E , 9 )  where E is a finite non-empty set and 9 is a 
subspace of B(E) with a ( 9 ) = E ;  two spaces (E,  9) and (E‘,9’) are called 
isomorphic if there exists a bijection rp : E + E’ such that {cp(F) 1 F E  S} = 9; in 
this case we shall write (E, 9) = (E’, 9’). Clearly = is an equivalence relation. 

~(9) = U FFES of E. 

1.2. Spaces and graphs 

A graph G is a pair ( V ( G ) , E ( G ) )  where V ( G )  is a finite non-empty set of 
vertices, E ( G )  is a finite non-empty set of edges, and to each edge corresponds an 
unordered pair of vertices called its ends. 

For every S E V ( G )  let wG(S)  be the set of edges of G with exactly one end in 
S; let X ( G )  = (0 E E ( G )  1 3s E V(G)  : 0 = o G ( S ) } ;  X ( G )  is a subspace of 
9 ( E ( G ) )  and u ( X ( G ) )  is the set of edges of G which are not loops (a loop  is 
an edge with two identical ends); (u (X(G) ) ,  X ( G ) )  is the cocycle space of G and 
will be denoted for short by X ( G ) .  

Let %(G) = [ X ( G ) ] l ;  a(%(G)) is the set of edges of G which are not bridges 
( e E E ( G )  is a bridge if { e } E X ( G ) ) ;  (a(%(G)) ,  %(G) )  is the cycle space of G and 
will be denoted for short by %(G). 

Other definitions on graphs will be found in [l]. 
A space will be said to be cographic (respectively: graphic) if it is isomorphic to 

A space will be said to be planar if it is both graphic and cographic. 
the cocycle space (respectively: cycle space) of some graph. 
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1.3. Series-extension and series-reduction 

Let (E,  9) be a space; we shall say that the space (E’, 9’) is a series-extension 
of ( E , 9 )  if there exists a mapping cp from E’ onto E such that 9’= 
{F’ c E’ 1 ~ F E  9 with F’ = CesF cp-’(e)}; equivalently we shall say that (E, 9‘) is a 
series-reduction of (E‘, 9‘). 

1.4. A preorder relation for spaces 

Let (E,  9) be a space; a covering subspace of (E, 9) is any space of the form 
(E, 9’) where 9’ is a subspace of 9 (note that we must have ~(9’) = o(9) = E ) .  

Let (E, 9) and (E’,  sl) be two spaces. We shall write: (E, 9) <(E’, 9’) iff 
(E, 9) is a series-reduction of some covering subspace of (E’,  F). 

It is clear that < is a preorder relation; the associated equivalence relation 
is 2- ; if (E, 9) s (E’ ,  9’) and (E, 9) # (E’, 9) we shall write (E, 9) < (E’, 9’). 

Let % be a class of spaces; a space (E,  9) will be said to be %-minimal if it 
belongs to % and no space (E’ ,  9’) with (E’, 9’) < (E, $) belongs to %. 

For every space ( E , 9 )  in % there exists a %-minimal space (E’,9’) with 
(E’, 9’) (E, 9). 

A space will be said to be minimal (respectively: cographic-minimal, graphic- 
minimal, planar-minimal) if it is %-minimal, where % is the class of all spaces 
(respectively: of cographic, graphic, planar spaces). 

2. Minimal spaces and the critical number 

For any integer n a l  let E, = 9 ( { 1 , .  . . , n} ) - {g } ;  V i ~ ( 1 , .  . . , n}  let x, = 

{A E E,, 1 i E A}; let X,, be the space (En, ({x i  1 i = 1 ,  . . . , n})) .  

Proposition 1. A space is minimal i f  it is isomorphic to some X ,  ( n  3 1 ) .  

The critical number of the space (E, 9) is the smallest integer C 3  1 such that E 
is the union of C elements of 9 (see [ 2 , 5 ] ) .  

Proposition 2. The critical number of the space (E, 9) is the smallest integer n 2 1 
such that X,, s ( E ,  9). 

3. cogrrrphic- * - 1 spaces and the chromatic number 

Let C, be the complete graph (with no loops or multiple edges) on n vertices 
( n  3 2) .  

Proposition 3. A space is  cographic-minimal if i t  is isomorphic to some X(C,,) 
( n 2 2 ,  n f 4 ) .  
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Proposition 4. Let G be a loopZess graph, let y ( G )  be its chromatic number and let 
v(G) be the smallest integer n ( n a 2 ,  n f 4 )  such thatX(C,,)SX(G). Then v (G)S  
y ( G )  < 2{"'Jb("(G))}. 

4. Planar-minimal spaces and the Four-Cdor Theorem 

Proposition 5. A space is planar-minimal i f f  it is isomorphic to X1 or X,. 

Remark. This is an equivalent formulation of the Four-Color Theorem; the Four- 
Color-Theorem can be stated as follows: 
(F-C-T) Every planar space has critical number at most 2. 

By Proposition 2 this is equivalent to: 
For every planar space (E, 9): X ,  G(E,  5F) or X , S ( E ,  9). Since X, and X ,  are 
planar (XI = X(C,); X ,  = X ( C J )  this is equivalent to Proposition 5. 

5. Graphic-minimal spaces and a conjecture of Fulkerson 

Proposition 6. X, ,  X ,  and %(P) ,  where P is the Petersen graph, are graphic- 
minimal spaces; every graphic-minimal space which is not isomorphic to one of 
these is  isomorphic to some %(G),  where G is a loopless cubic 3-edge-connected 
graph which can not be edge-colored with 3 colors and such that %(P)$%(G).  

Conjecture 1. Every graphic-minimal space is isomorphic to XI, X ,  or % ( P ) .  

A snark is a loopless cyclically 4-edge-connected cubic graph which cannot 
be edge-colored with 3 colors. Conjecture 1 is equivalent to: 

Conjecture 1'. For every mark G, % ( P ) s % ( G ) .  

In [3], Fulkerson has proposed the following conjecture: 

Conjecture 2. For every bridgeless cubic graph G, by replacing every edge of G by 
two parallel edges one obtains a 6-regular graph which is edge-6-colorable. 

Let z e ( P )  be the space of cycles of even cardinality of the Petersen graph, i.e. 
%e(P) = ( E ( P ) ,  n (E(P))I) .  

Proposition 7. Conjecture 2 is equivalent to: 

Conjecture 2'. For every graphic space %, XI S % or X ,  S % or %,(P) G %. 
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Since %,(P)s%(P), it follows that Conjecture 1 implies Conjecture 2.  Since 
X 3 s % ( P ) ,  Conjecture 1 also implies the following result proved in [4]: 

Proposition 8. Every graphic space has critical number at most 3 .  
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A PROPOS D'UN PROBLEME D'ALGEBRE DE BOOLE 

Jean-Marie LABORDE 
CNRS, Laboratoire IMAG, B.P. 53X, 38041 Grenoble Ce'dex, France 

A short survey on the following question is presented: if we associate at each subset F of a 
hypercube the number c ( F )  of subhypercubes included in F and maximal for this inclusion, 
what can be said about rnax,c(F)? Or  in other words which are the boolean functions of n 
variables with maximum number of prime implicants and what is this maximum? 

ConsidCrons l'hypergraphe des faces du n-cube C,, = (X = (0, l}", Mi) dont les 
sommets en sont les 2" points et  les arCtes les 3" faces (ou sous-hypercubes). 

A une partie F c  X associons c(F) le nombre d'arCtes Mi c F et maximales 
pour cette inclusion. Le problkme est de dtterminer c,, =max,,,c(F) et 
Cventuellement les F correspondantes. On voit facilement qu'il revient au m$me 
de dkterminer la ou les fonctions booliennes de n variables admettant le 
maximum de mon8mes premiers ainsi que le maximum correspondant. 

Ce problkme date des annCes 50 et se trouve partiellement rCsolu au moins 
dans [ 2 ]  mais contrairement 5 ce que j'avais annonct en juin 79, il n'a r e p  encore 
aujourd'hui que des rCponses trks incomplktes: 

Dans le cas ge'ne'ral on ne connait pratiquement que les rCsultats suivants: 

L'inegalitC asymptotique de gauche correspond au fait que le problkme peut i3re 
completement rCsolu si l'on se limite aux parties F c X "symCtriques" c'est h dire 
dont le groupe des automorphismes contient le groupe symCtrique d'ordre n (voir 
[4]). Celle de droite admet une preuve simple fondCe sur le thCorkme de 
Konig-Hall [3 ] ,  elle semble dQe a Vikoulin [4] mais a Ct6 publike en premier par 
Iablonski [ 2 ] .  

Une conjecture, semble-t-il anonyme, pose 

3J3 3" cn--- 
271 n '  

A I'appui de cette conjecture se trouvent les 
Re'sultats particuliers pour n s 6: De fagon immediate co = 1 ,  c1 = 1, c2 = 2 ,  

c j  = 6 .  On montre encore c4 = 13 et Gadjiev [ l ]  a prouvC c5 = 32,  c6 = 9 2  et que 
de plus en dimension 5 seule une fonction symCtrique (unique h une isom6trie 
prks) rtalise c ( F ) = 3 2 .  Laborde [ 3 ]  Ctablit qu'en dimension 5, c ( F ) = 3 1  ( 2  
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solutions) et c ( F )  = 30 (2 solutions) ne sont rkalides aussi que par des fonctions 
symktriques; ceci permet alors d’affirmer qu’en dimension 6 encore, seule une 
fonction symktrique (unique . . . ) rCalise le maximum. 

Remarque. Les mkthodes employtes montrent qu’il existe un saut considkrable 
de n = 6 a n = 7 (de meme que de n = 3 a n = 4), ce qui laisse penser que la 
conjecture reste tout a fait ouverte. 
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GRAPHES DE NOMBRE FACIAL 3 OU 4 
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The regional number of a connected graph G is the maximum number of faces of 2-cell 
embeddings of G into orientable surfaces. Graphs of regional number 1 or 2 are known [2]. In 
this paper, we characterize the graphs of regional number 3 or 4. Complete proofs can be found 
in [9]. 

1. Introduction 

Une immersion d’un graphe connexe G dans une surface M est dite 2-cellulaire 
[ 121 lorsque les composantes connexes de M - G (appelkes faces de l’immersion) 
sont homkomorphes a un disque ouvert. I1 en rksulte que le nombre de faces 
d’une telle immersion vtrifie la relation d’Euler: 

n - rn + f = X(M) 

oG n = nombre de sommets de G, rn = nombre d’arstes de G, x ( M ) =  
caracteristique de M. Dans [2], Duke a defini le nombre facial de G, f ( G ) ,  comme 
&ant le nombre maximum de faces d’une immersion de G dans une surface 
orientable. I1 a ete Ctabli par Duke [2] que: 

f (G)= 1 ssi P(G)= 0, 
f(G) = 2 ssi @ ( G )  = 1 ,  

ou P(G) reprksente le nombre de Betti de G. 
Cet article a pour but la caractkrisation des graphes de nombre facial 3 ou 4. Ce 

resultat nous servira ultkrieurement pour prolonger un rksultat de Nordhaus et al. 
~71. 

2. Resultats intennediaires 

2.1. 

Nous utilisons la technique bien connue des rotations pour immerger un graphe 
dans une surface orientable [lo]. E n  particulier, pour un graphe G muni d’une 
rotation p, nous notons par f(G, p )  le nombre de faces de I’immersion determinee 
Par P. 
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2.2. 

Dbignons par c(G) le nombre maximum de cycles de G deux a deux disjoints 

E n  notant par p ( G )  la longueur d’un plus court cycle de G, on a, lorsque G est 
au sens des ar2tes. Pour 1’Ctude de c(G), voir [4,5,6,8]. 

un graphe cubique: 

si c ( G ) ~ 2  
si c ( G ) s 3  

alors n(G)S18 e t  p(G)S6,  
alors n(G)S34 et p(G)==8. 

2.3. 

Lemme 1. f ( G ) z c ( G ) +  1. 

Lemme 2. Soit G = ( X ’ ,  E’U{e}) un graphe obtenu en ajoutant une arzte e au 
graphe connexe G’= (X’ ,  E’). On a: 

lf(G) - f(G’)I = 1. 

Lemme 3. Soient x, y, z, t quatre sommets d’un graphe connexe G’ = ( X ‘ ,  E’). Si G’ 
admet une rotation p’ telle que x, z d’une part et, y ,  t d’autre part, se trouvent sur le 
bord d’une m&me face, alors le graphe G = (X‘, E‘ U{e, f)) (ou e = {x, y }  et f = { z ,  t}) 
admet une rotation p telle que: 

f(G, p )  - f(G’, p’) = 0 ou 2. 

Lemme 4. Soient x, y, z trois sommets d’un graphe connexe G‘= ( X ’ ,  E’). Si G‘ 
admet une rotation p’ telle que x, y ,  z se trouvent sur le bord d’une mZme face alors 
le graphe G = (X’  U { t } ,  E‘ U {e, f, g } )  (ou e = {t, x}, f = {t, y}, g = { t ,  z})  admet une 
rotation p telle que: 

f(G P )  - f(G’, PO = 2. 

3. Camctkisation des graphes de nombre facial 3 

Nous commenGons par Ctudier les graphes cubiques: 

Thbreme 1. Un graphe cubique connexe est de nombre facial 3 ssi il est isomorphe 
a Pun des 3 graphes suivants: 

H, H 2  

Fig. 1. 
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La condition suffisante Ctant kvidente, nous ne donnons que le principe de la 

D’aprbs la formule d’Euler et le Lemme 1 alors: 

f(G) = 3 entraine n(G) = 2 (mod 4) 

Si c(G) = 1 on trouve les graphes H2 et K3,3 [4]. 
Si c(G) = 2 on examinera deux cas: 
ler cas: l ~ p ( G ) S 3 :  on trouve le graphe HI. 
%&me cas: 4 < p ( G )  s 6: considCrons dans G un cycle de longueur p (G): 

dkmonstration de la condition nkcessaire. 

et c(G) G 2. 

D’ou, d’aprb Section 2.2 n(G)G18 et p ( G ) ~ 6 .  

p W = 5  

Fig. 2. 

Soit G’ le graphe cubique homkomorphe B G -{e, f). On peut montrer que 
l’hypothbe p (G)24  entraine la connexitC de G’. 

Remarquons que dans toute immersion de G - {e ,  f) les sommets x et z (resp. y 
et t )  se trouvent sur le bord d’une m$me face. Par conskquent, d’aprks le Lemme 
3, pour que f(G) = 3 il est nCcessaire que f(G -{e, f)) = f(G’) = 3. 

Sachant que 10 C n(G) C 18 et n(G) = 2 (mod 4) nous allons Ctudier G‘ suivant 
les diffkrentes valeurs de n(G): 

(a) n(G)= 10. NCcessairement p ( G ) s 5 .  G‘ a 6 sommets, par consequent, 
f (  G’) = 3 ssi G’ = K3,3 (d’apres le ler cas). 

Mais alors: 
si p(G) = 4: G est isomorphe B l’un des 3 graphes suivants: 

Fig. 3. 

qui sont de nombre facial 5. 

nombre facial 5. 

prkckde, f ( G ’ ) ~ = 5 .  D’ou f ( G ) a 5 ,  d’aprb le Lemme 3. 

si p(G)=5:  G est isomorphe au graphe de Petersen [ll] qui est, lui aussi, de 

(b) n(G) = 14 ou 18. Dans ce cas, G‘ a 10 ou 14 sommets. D’aprbs ce qui 
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Thhreme 2. Soit G un graphe connexe de degrt? minimum 2 2 .  Alors f ( G )  = 3 ssi 
G est homkomorphe a l’un des 4 graphes suivants: 

Ho Hi H* K3a 

Fig. 4. 

La demonstration se fait a partir du Thkoreme 1 en utilisant la transformation 
suivante: 

Fig. 5.  

pour se ramener au cas des graphes homkomorphes a des graphes cubiques. 

4. Caracterisation des graphes de nombre facial 4 

Dans ce paragraphe, le raisonnement (quoique beaucoup plus complexe) est en 
tout point semblable 21 celui du paragraphe prkcedent. 

Thhreme 3. U n  graphe cubique connexe est de nombre facial 4 ssi i l  est isomorphe 
ii l’un des 9 graphes suivants: 

@ Fig. 6.  
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Thbreme 4. Soit G un graphe connexe de degre' minimum 2 2 .  Alors f(G) = 4 ssi G 
est home'omorphe a l'un des 25 graphes suivants: 

9 

8 

Fig. 7 
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5. Cons6quences 

Soit G un graphe connexe. Designons par: 
D(G):  un graphe homeomorphe 5 G, 
P ( G ) :  un graphe obtenu 2 partir de G en rajoutant une ari3e pendante, 
G + e :  un graphe obtenu a partir de G en rajoutant une arZte e (il n'est pas 
interdit que e soit une boucle). 

Soient les 3 graphes suivants: 

HI 

Fig. 8. 

Cordlaire 1. Soit Sk la classe des graphes connexes de nombre facial k .  Alors: 
(i) S3 est definie de la maniere suivante: 

Ho, H1, H2, K3,3 E 9 3 ,  

G E 2F3 j P(G)  E S3, 

G E S3 + D( 6 )  E S3. 

(ii) G E S4 ssi G = H + e ou HE %3. Symboliquement: 

5F4= 9 3 + e .  

Remarque. On peut mettre le resultat de Duke [2] sous une forme analogue. Soit 
Go le graphe se rkduisant tt un seul sommet. Sl est definie par: 

G" E 9 1 ,  

G E 9 1 j P ( G ) E 9 1 ,  

G E Sl + D(G)  E P1. 

De m6me 

s 2 = S , + e .  

Corollaire 2. Soit G un graphe connexe possedant n ( G )  sommets et m ( G )  ar6tes. 
A lors: 

y (  G )  3 2 + m ( G )  3 n ( G )  + 7. 

En particulier, si G est un graphe cubique alors: 

y ( G ) > 2 +  n ( G ) > 1 4 .  
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GRAPHES D’INTERVALLE D’IMMERSION 1 

Charles PAYAN et Nguyen Huy XUONG 
IMAG, BP 53 X ,  38041 Grenoble Cedex. France 

The genus of a connected graph G, -y(G), and maximum genus, T ( G ) ,  are the smallest and 
largest numbers - y (S ) ,  respectively, where S is an orientable surface in which G has a 2-cell 
embedding. 

The embedding range [12] of G, R ( G ) .  is defined by: 

R ( G ) =  T ( G ) -  r(G).  

In  [7], Nordhaus et al. characterize the graphs of embedding range 0. In this paper, we 
characterize graphs of embedding range 1. Complete proofs can be found in “91. 

1. Introduction 

Soit X(G)  la classe des surfaces orientables dans lesquelles un graphe connexe 
G admet une immersion 2-cellulaire [16]. E n  notant par y(S) le genre d’une 
surface orientable S, on pose: 

r (G)  = min{r(S) 1 S E -X(G)), 

T ( G )  = max(y(S) 1 S E C(G)}  [6]. 
y ( G )  (resp. T(G) )  s’appelle le genre (resp. genre maximum) du graphe G. Griice 2 
un rtsultat de Duke [3 ]  on sait que SEZ‘(G) ssi y ( G ) S y ( S ) S r ( G ) .  A tout 
graphe connexe G, on peut donc associer un intervalle [ y ( G ) ,  T(G)]  de N, appelC 
intervalle d’immersion de G. Posons i (G) = T ( G ) -  y ( G ) .  

Par abus de langage, nous dirons que G est d’intervalle d’imrnersion k lorsque 
i ( G ) =  k [12]. Dans [7 ] ,  Nordhaus et  al. ont caracttrisi les graphes d’intervalle 
d’immersion 0. Le but de cet article est de caracttriser les graphes G tels que 
i (G) = 1. 

2. Graphes sup-immergeables 

2.1. 

Soit G un graphe connexe a n sommets et  m arCtes. Lorqu’on immerge G 
dans une surface orientable S de genre y(S), le nombre de faces f de l’immersion 
est donnt par la formule d’Euler: 

Lorsque y ( S )  = y ( G )  (resp. y ( S )  = T ( G ) ) ,  
on pose f(G) = f (resp. F ( G )  = f [3], [lo]). 
On a: 
Lorsque 

n - m + f = 2 ( 1 - y ( S ) ) .  

f ( G )  - F ( G )  = 2(r(G) - y ( G ) ) .  
F ( G )  = 1 ou 2. G est dit sup-irnmergeable [6]. 
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2.2. 

Soit G un graphe connexe. Un ensemble S de sommets est dit cycliquement 
stable [4,8] lorsque G, est une for2t. Le nombre de stabilite cyclique s(G) est le 
cardinal maximum d’un ensemble cycliquement stable. 
Lorsque G est un graphe cubique on a [4,8]: 

s(G) < L$(3n - 2 ) ) .  

On a de plus [5]: 

T ( G ) = s ( G ) + l - $ n .  

Lemme 1 (voir [5]). Un graphe cubique connexe est sup-immergeabte ssi s(G)= 
L$(3n - 2)J. 

Lemme 2 (voir [8.  151). Tout graphe cubique G tel que ch (G)>4  est sup- 
immergeable. ( c h ( G )  est le cardinal minimum d’un cocycle de G sdparant le graphe 
en deux composantes comportant chacune un cycle au moins.) 

Lemme 3. Soit G un graphe cubique simple 2-connexe ayant au plus 20 sommets. 
Si G n’a pas 18 sommets, G est sup-immergeable. 

Lemme 4. Soit GI un graphe cubique simple a 6 sommets. Soit G, un graphe 
cubique 2-connexe a 8 sommets possddant au plus une arcte double. Soit G un 
graphe cubique simple de la forme: 

Alors G est sup-immergeable. (On remarquera que G a 18 sommets.) 

Lemme 5. Tout graphe cubique sans triangle, 3-connexe, a 18 sommets est 
sup-immergeable. 

Lemme 6. Soient G, et G, deux graphes cubiques 2-connexes a 8 sommets ayant 
au plus une ar2te double. Si G est un graphe cubique simple, sans triangle, de la 
forme: 

alors G est sup-immergeable. (On remarquera que G a 22 sommets.) 
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3. Caractensation des graphes d’intervalle d’immersion 1 

3.1. Graphes e‘le‘mentaires 

Soit G un graphe connexe. I1 est evident qu’en ajoutant a G des arttes 
pendantes (sommets de degrC 1) ou des sommets de degrC 2, ou des sommets de 
degrC 3 comportant une boucle (i.e. de la forme -0) on obtient un graphe ayant 
le mCme intervalle d’immersion que G. Cette constatation justifie la dkfinition 
suivante: 

Definition. Un graphe connexe est dit dlementaire s’il est sans sommets de degrC 
$2 et sans sommets de degrC 3 comportant une boucle, ou s’il est isomorphe a 
I’un des deux graphes suivants: 

a 0 
L’Ctude des graphes d’intervalle d’immersion k se ramkme 2 celle des graphes 
ClCmentaires de mZme intervalie d’immersion. 

3.2. 

Soit G un graphe connexe. Designons par S(G) un graphe obtenu a partir de G 
en additionnant une ou plusieurs arttes multiples ou/et boucles sur une art te de 
G. 

Soit T(G)  un graphe de degrC minimum 3 3  homeomorphe a un graphe qui 
s’obtient en rajoutant une ar&e ou une boucle a un graphe homeomorphe a G. 

3.3. Graphes ilementaires d’intervalle d’immersion 1 

Theoreme. Soient GI,  G,, G3, les trois graphes suivants: 

8 
9 02 G3 

U n  graphe tlementaire est d’intervalle d’immersion 1 ssi i l  est isomorphe a Gi ou a 
S(Gi) ou 21 T(Gi )  ( i ~ ( 1 ,  2,3}). 
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Principe de la demonstration (condition nkcessaire). Soit G un graphe d’inter- 
valle d’immersion 1. On a f (G)  - F ( G )  = 2. 

Donc f(G) = 3 ou 4. 
Dans ce cas l’application des Thkoremes 1 et 2 de [lo] donne le rksultat. 

(a) G est sup-immergeable (F(G)= 1 ou 2). 

(b) G n’est pas sup-immergeable. 

Cas  des graphes cubiques. 
La dkmonstration se fait par rkcurrence sur le nombre de sommets. 
D’apres le Lemme 2 on a: ch ( G )  s 3. 
On etudie separkment les 3 cas c h ( G )  = 1 , 2  et 3. 
Nous donnons 5 titre d’exemple la demonstration pour le cas ch(G)  = 3. 

contractant le triangle e n  un sommet t 
( 1 )  G posstde un triangle. Soit G‘ le graphe cubique obtenu a partir de G e n  

@ G - Pt G’ 

r (G)  = y(G’) .  

E n  calculant s ( G ‘ )  a partir de s ( G )  on trouve que i(G’) = 1. Comme c h ( G )  = 3. 
G‘ est simple. 

Par hypothese de recurrence, G‘ est donc isomorphe a Gi ou a T ( G , ) .  i E ( I .  2). 
D’ou G a au plus 10 sommets et est donc sup-immergeable d’aprks le 

On arrive ainsi a une contradiction. 
(2) G est sans triangle. G est de la forme: 

Lemme 3. 

oil X , # Y l # Z l  et x ,#y ,#z , .  
Designons par H ;  et H i  les graphes cubiques homeomorphes respectivement B 

H ,  et H,. H ;  et H i  sont simples et 2-connexes. On a: 

y ( G )  y(W)  + r (W + 2. 

E n  calculant s(G) a partir de s ( H ; )  et s(H2) on e n  dkduit que H {  et H ;  sont 
d’intervalle d’immersion 1. 

Sachant que HI et H2 sont simples, ils sont donc, par hypothkse de recurrence, 
isomorphes Gi ou T(Gi) .  
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G a donc au plus 22 sommets. Mais alors, d’aprks 1es Lemmes 3,  5 ,  6, G serait 
sup-immergeable. O n  arrive ainsi a une contradiction. 

Cas des graphes non cubiques. On se r a m h e  au cas des graphes cubiques par la 
transformation suivante (voir [I I]). 

I 
I 

Corollaire. Tout graphe connexe de genre 2 2  est d’intervalle d’immersion 3 2 .  

Remarque. Le thCor&me de Nordhaus et al. [7] peut se mettre sous la forme 
suivante: Les seuls graphes 61Cmentaires d’intervalle d’immersion 0 sont: 

0 
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Structural rigidity of tensegrity (i.e. bar, cable and strut) frameworks is studied. The 
frameworks are  fixed in space so that n o  euclidean or  rigid motions may occur. A rigidity 
criterion reduces the problem tn the check whether an infinite system of equations has trivial 
solutions only. Several natural consequences are introduced. The paper concludes with the 
infitesimal rigidity of tensegrity frameworks. 

1. Introduction 

This is the first paper of an intended series on  structural rigidity. The field or, 
more appropriately, problem area has drawn its inspiration from both geometry 
and structural engineering. The former really started with (and to some extent still 
revolves around) Cauchy’s celebrated rigidity theorem (1 813), flourished around 
the turn of the century, when it attracted the attention of Maxwell, Cremona, 
Lebesgue and Hadamard, and has witnessed a revival in the recent years. A 
slightly different but closely related type of definition of rigidity arises in mechani- 
cal engineering and architecture. In  the design of wooden trusses and bolted 
ironwork (for commercial and industrial buildings, arenas, exhibition halls, 
geodesic domes, bridges, towers, etc.) we encounter rods (bars or beams) joined 
together at their endpoints. Although the beams can be made reasonably sturdy, 
the angles at the joints cannot. Yet the mutual angles of joined bars need to be 
maintained and the problem is to eliminate by proper design the possibility of 
deformation. From this point of view, 4 rods forming a tetrahedron are acceptable 
while 12 rods making up a cube are not (to make the latter rigid some wall or 
interior diagonal braces are needed). Claims have been made that the actual 
collapse of some frameworks was due to the flaws in the basic design. 

Abstracting, we are led to the system of points whose pairwise distances remain 
constant under all continuous deformations preserving the distances correspond- 
ing to rods. This abstract rigidity does not seem to be quite adequate for actual 
design because, for example, it allows long bars or joins at very acute or obtuse 
angles. Moreover, designs should probably be optimal in some sense but it seems 
that the constraints and goal involved have yet to be formulated by structural 
engineers. But the theory of abstract rigidity is interesting on  its own, nicely 
combining elementary linear algebra, geometry and combinatorics. Until fairly 
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recently. as witnessed by most engineering textbooks, structural rigidity was a 
rather neglected and confused domain (for a vivid analysis see [lo]) but even now 
it is just past its “embryonic state” [17] in many respects and most problems 
remain unsolved. 

Tensegrity frameworks, introduced in the fifties (mainly for ornamental pur- 
poses) allow cables in addition to bars. In the model the distance corresponding to 
a cable is required not to exceed the distance given by the initially fully stretched 
cable. It is common to admit as well “anticables”, called struts, by stipulating that 
the distance will not shorten. Although presently we lack genuine physical struts, 
they can be included in the theoretical model at no extra cost in complexity. On 
the other hand we skip entirely more exotic frameworks like those using sliding 
joints. 

This paper partially takes up the challenge of Grunbaum and Shephard [lO] by 
studying the  rigidity of tensegrity frameworks (as opposed to the common but 
more restrictive infinitesimal rigidity), It slightly differs from other papers in the 
area by eliminating euclidean (rigid) motions from the very outset. This approach, 
indispensable for its methods, requires a brief recapitulation of basic definitions 
and results, making the paper largely selfcontained but rather long. The core of 
the paper is a rigidity criterion which reduces to  checking whether a certain 
infinite system of equations has a nontrivial solution. Admittedly, this criterion is 
not easy to  apply in general but it still may prove preferable to the (often 
fallacious) alternatives of model building or intuitive reasoning. For example, in 
the next paper of the series the criterion will be applied to bar frameworks that 
are almost infinitesimally rigid in the sense that their rigidity matrix is of rank one 
less than full. We discuss several natural consequences, in particular. Connelly’s 
closely related second order rigidity [6]. The last part of the paper is devoted to 
the infinitesimal rigidity of tensegrity frameworks. The paper was essentially 
completed early in 1979 (and its main results reported in [15]) but for its final 
version we profited much from the relevant parts of Roth and Whiteley’s recent 
preprint [ 181. Although current practices seem to favor drawing board more than 
calculations, this paper (implicitly but deliberately) is geared towards possible 
computer algorithms, some of which presently should not be all that complex. For 
this reason we shy away from convex polyhedra and other geometrical aspects. 
Given the confusion in the not so distant past, an effort has been made to  make 
the paper readable even at the expense of length, contributing thus unwillingly to 
the existing series of lengthy papers. 

Finally this is an appropriate place to thank J. Baracs for the introduction to the 
topic and the authors of the papers [l-8, 10, 12, 16, 17, 191, V. Chvatal, P. 
Vincent and R. Antonius for stimulating conversations. I would like to thank the 
referees for very valuable comments and R. Connelly for important suggestions. 
The financial support from the Ministere de 1’Education du Qukbec FCAC grant 
E-539 and Natural Sciences and Engineering Research Council Canada grant 
A-9128 is gratefully acknowledged. 
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2. Deformable and rigid frameworks 

2.1. The abstract model of the structural engineering problem discussed in 
Section 1 is the following. Let v be a positive integer and V={ l ,  . . . , v}. A 
bigraph (graph for short) is a triple G := (V; C, S) where both the set C of cables 
and the set S of struts are sets of unordered pairs ij of elements of V. (We prefer 
the notation ij to the more customary [i, j ]  or ( i ,  j } . )  The sets V and E : = C U S 
are the sets of vertices and edges of G. The edges from B : = C n S are called bars. 
(The abstract tensegrity framework defined in [17] is the quadruple 
(V, B, C \ B, S \ B )  in our notation.) A framework in R" (other names: linkwork, 
linkage or truss) is a pair G(p) := (G: p) where p := (Pl, . . . , P,) is a sequence of 
points in the euclidean n-space R" (we shall often identify p with the correspond- 
ing element of ,",). The original case of interest are n = 3 (space) and to some 
extent the simpler and better understood case n = 2 (plane) but most of the results 
presented here hold for any n (with exactly the same proof) and therefore are 
settled right away. We call G(p) a bar, tensegrity, pure tensegrity and cabled 
framework if C = S = B, C U S # B, C U S # g =  B and C# !a= S respectively (the 
terminology varies, e.g. bar frameworks are sometimes called bar & joint 
frameworks, rod structures or simply frameworks while tensegrity frameworks are 
said to be tensed). To simplify our formulations we assume that the affine 
dimension of {PI,. . . , P,} is n (i.e. the vectors P2-P1, .  . . , P,-P, span R"). 

A continuous map p(f) = (Pl( t ) ,  . . . , P,(t)) from [0, 13 into R" such that 
(i) p ( 0 )  = p and 

(ii) the euclidean distance d,, ( t )  = lip, ( t )  - P, (t)ll in [w" takes its maximum 
(minimum) on  [O, 11 at t = 0 for every i j  E C (ij E S), 
is called a motion of G ( p ) .  A motion p ( t )  is a flex (other names: flexing, finite 
motion or deformation) if it satisfies: 

(iii) at least one distance d, , ( t )  is not constant on  [0, 13 (1  S i < j s u ) .  
Thus a motion which is not a flex (called sometimes a trivial flex) is simply 

induced by an euclidean or rigid motion of R". We say that a framework is 
deformable (flexible, moveable or a mechanism) if it has a flex and rigid other- 
wise. 

'Note that for i j  E B the condition (ii) means d,, is constant on [0, 11. 

2.2. The condition (iii) above states that for at least one 0 < t S 1 (or, equival- 
ently, for all t ~ ( 0 ,  1) (see [9])) the sequence p ( t )  is not obtainable from p by 
euclidean or rigid motions. As we shall see this condition is somewhat inconven- 
ient. Moreover, it often does not quite correspond to the reality because usually 
structures in space are constructions having some points fixed to the ground and 
so are not freely floating in space. Of course, the translations can be simply 
eliminated by fixing a single vertex. Quite often we can fix or freeze more points 
than one. For notational convenience we shall assume that the fixed points, 
hereafter called a base of G(p), are the points Pk+l , .  . . , P, (1 s k < v). The 
grounded points may be selected in any way provided the natural (i.e. induced) 
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restriction of G ( p )  to the base is known to be rigid by itself (for the more 
restricted kinds of rigidity introduced later, like the infinitesimal one. it should be 
assumed that the restriction to the base enjoys it too). Set V ' = { k  + 1 . .  . . , u} ,  
G' = (V'; C n VI2, S n Vf2) and p' = {Pk+l. . . . , P,}. We say that the framework is 
grounded if the affine dimension of P k t l r .  . . , P, is at least n - 1 and G'(p') is 
rigid. The points PI , .  . . . Pk as well as the vertices 1 , .  . . , k of G of a grounded 
framework are called free. For example, in a plane framework any non-  
degenerate rod can be grounded (i.e. k = u - 2, u - 1. u E B and PUpl # P,). Obvi- 
ously this applies to all frameworks in the plane except the pure tensegrity ones. 
Similarly in the 3-space we can certainly ground every framework with at least 
one non-degenerate bar triangle. 

2.3. Our intention is to eliminate completely the euclidean (rigid) motions. This is 
usually not done in the literature (except sometimes at the concrete level of 
examples) leading to formulations modulo a certain vector space. Although there 
is n o  essential difference, the grounded frameworks can be handled more easily 
on  the formal level permitting thus often smoother formulations than for the free 
ones. With this in mind, we look at frameworks the grounding of which is either 
impossible or unknown to us. The full motivation will become clearer in Sections 
3 and 4. 

To start out, we consider a pure tensegrity framework G(p) in the plane. We 
choose the orthogonal coordinate system so that the already fixed point P, is the 
origin (0,O) and P,-, = ( 1 , O ) .  We shall eliminate the euclidean motions by 
properly rotating the coordinate system. Given a motion p ( t )  = ( P , ( t ) .  . . . , Po(?) )  
(with P , ( t )  = ( 0 , O )  for all t )  we continuously rotate the coordinate system (more 
explicitly: at the time t the new coordinates of a point (x, y )  are x, = x cos c p ( t )  + 
y sin q ( t )  and y, = - x  sin q ( t )  + y cos q ( t )  for a continuous map cp : [O .  I ]  + [w) so 
that the point P,-,(t) stays o n  the x-axis for all t~ [O. 1 J (i.e. P,-,(t) = (x,, 0) for all 
t ) .  An observer tied to  the rotating coordinate system perceives p(t) as p * ( t ) =  
(P f ( t ) ,  . . . ,e(t)) such that P:-l(t) is restricted to the x-axis and e(t) = (0,O). 
Moreover, p is a rotation if and only if p"' is constant. The point P,-, is called a 
restricted point of the motion p with PUpl(t) = (x(t), 0) for all f E [O, I ]  while the 
points P,,  . . . , Pu-z are called free (and, as before, P, is fixed). 

Applying the same approach to a pure tensegrity framework G(p) in 3-space 
we may assume that PuPZ(t) = (x(t), 0, 01, PUpl(t) = ( x ' ( r ) ,  y'(t), 0 )  and P, ( t )  = 

(0,0, 0 )  for all t and suitable continuous x, x', y '  from [O, 13 into R (to see it ,  
rotate the coordinate system so that Pu-,(t) stays on  the x-axis and PUp2(r)  stays in 
the xy-plane). Consider now a framework G ( p )  with two fixed points PU-, and P, 
choose the order of the points and the coordinate system so that both Pu-l and P, 
are o n  the z-axis and P,-,=(x,O,O). Proceeding as above we may restrict 
ourselves to motions with PuP2(t) = (x(t), 0 ,  z ( t ) )  for all t E [0, I ]  and suitable 
x, 2 : [O ,  l]-+R. 
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In the general case let r be the affine dimension of the set of fixed points. Set 
m = k + r -  n + 2  and suppose that we have ordered the points and chosen the 
orthogonal coordinate system so that PI = ( x , ~ ,  . . . , x,,) satisfy x,,~-,,, # 0 = 

x ,,,- m + 2 = . . . = x , n - - r  for i = m  , . . . ,  k a n d x , l = . . . =  x , , , - ,=Ofor i=k+ l ,  . . . ,  u. 
A restrzcted motion of G(p)  is a p ( t ) = ( P , ( t ) ,  . . . , P,(t)> such that 
Pk+l(f), . . . , P,(t) are constant on [O, 11 and P,( t )  = (ql(f), . . . , x,,,(t)) on [0, 11, 
where the q,(t) are continuous maps from [0,1] into R such that ~ , . , - , , , + ~ ( t )  =. * - = 

~ ~ , , - ~ ( t )  = 0 for all t E [O, 11 and i = m, . . . , k. The vertices 1 s i < m, m zz i s k, and 
k < t sv as well as the corresponding points are called free, restricted and fixed, 
respectively. 

Summing up we have: 

2.4. Proposition. A framework G(p) is rigid i f  and only i f  every restricted motion is 
constant. 

2.5. It should be noted that the grounding of a framework G(p)  or the selection 
of fixed and restricted points depend on p as well as on  G and therefore cannot 
be expected to be very helpful in studying generic properties, i.e. properties of 
G(p)  independent of p. 

The edges between fixed points are not needed and therefore we assume that 
each i j E C U S  has either i s k  or j s k .  For simplicity of exposition we deal 
primarily with grounded frameworks and leave the modification for the non- 
grounded case to the reader. 

3. Power series expansions 

3.1. Let G ( p )  be a grounded framework and let p ( t )  = (P,(t) ,  . . . , P,(t)) be a 
motion such that Pk+l(t), . . . , P,(t) are constant on [0, 11. I f  d,, denotes the 
distance of P, and PI, the condition (ii) from 2.1 means that the dot square 
( P , ( t )  - P,( t))’ is at most d: for ij E C and is at least d:  for i j  E S.  For reasons to 
become apparent soon (see also [6, Remark 4.1;17,3.2]) for a moment it is more 
convenient to deal with equations instead of inequalities. In a routine fashion we 
introduce 

(a) the multipliers 

-1 for i jEC\B, 
P,, := 0 for i j E B ,  

1 for i jES\B,  

(L,)  

i 
(b) artificial real functions y,(t) on [0, I]  ( i j E  E )  such that p ( t )  satisfies (ii) if 

and only if the system of equations 

(P, ( t ) - P, (t))’ - d: - F,,u:( t )  = 0, il E E 
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has continuous solutions uij(t) such that %,(O) = 0 for all i j E  E and y,(t) is 
constant for all ij E B. 

This formulation invites the application of the implicit function theorem but, 
more importantly, it shows that if p(t) satisfies (ii), then 

lies in a real algebraic variety and as such may be assumed to be analytic. In other 
words, because the system (1) is so nice, the points q(0) and q(1) (connected by a 
continuous path in the variety) are connected by a path possessing all derivatives. 
(Milnor's curve selection lemma [13, 3.11, see also [ l X ,  18.31.) The ideal of 
applying it was first brought forward in [9]. 

For example, let n = 3, u = 4, k = 1 and C = S = B = { 12} (i,e. we have 3 fixed 
points P2, P3, P4 in the 3-space and the free point PI is joined to P, by a bar of 
length dI2). Clearly the variety is the sphere with the center P2 and radius d12. 
Although two points on the sphere may be connected by a nowhere differentiable 
continuous path, there is always a circle on the sphere joining them. Note that an 
analytic path may contain cusps (e.g. the path x = t", y = t 2  in the plane), be 
selfintersecting, etc. 

3.2. We shall assume that P,( t )  ( f =  1. . . . , v )  and ui,(t) (ij E E) are power series in 
t ,  i.e. that there exists points P f l E R " ( f =  1,.  . . , u :  I = 0, 1, . . . ) and reals ulll 
( i j ~ E .  1 = 0 ,  1 , .  . . )  such that 

P,(t)=CPflt' ( f = I ,  . . . ,  v). u , ( t ) = ~ u , l t *  ( i j E E )  
I 1 

for all t t [O. I ]  (if not otherwise indicated the summations are over nonnegative 
integers). 

We introduce (2) into (1). Since the power series (2) is absolutely convergent 
for all t ~ [ 0 ,  11, we may rearrange the terms obtaining 

c ( t (ptW - P ~ ~ ) < P , , ~ - ~  - PI, , - , )  - ~ , l ~ , I w U , I , l - w  t' - d~ = 0 
I w = o  i 

for every ij E E and t E [O, 11. Here the constant term 

(P," - p,o) ' -  f,,u:,, - 4 
vanishes because yJo = 0 (on account of u,,(0) = 0). P,, = Pl(0)  = P' ( 1  = 1. . . . , n )  
and (P, - P,)* = d:. It is well-known that (3[,)  holds for every t E [O. 11 if and only if 
all its coefficients vanish: 

I I -  I 
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for all ij E E and 1 = 1, 2, . . . . Set u[ = ( u , ~ [ :  i j  E E )  and E = ( E ~ ~  : i j  E E )  and ab- 
breviate the system of equations (4ij1), i j  E E by 

w = o  W = l  

For a bar ij we have E,, = 0 and therefore (4,1f) simplifies to  

i ( P t W  - ~,,)(P,,f-, - p , , , - w )  = 0. 
w = o  

Let e = IEl (the number of edges) and let 0 denote the row or column zero vector 
of an appropriate dimension. 

The necessary conditions so far obtained lead to the following criterion. 

3.2. Proposition. A grounded framework G(p) has a flex i f  and only i f  there exist 
pf =: (PI,, . . . , PUl) E R “ ~  ( l  = 0, 1, . . . ) and uf = (ur l l :  ij E E )  E W ( ~  = 1,  2, . . . ) such 
that 

(9 Po = P. 
(ii) P k + l , m  = . . . =  pvm = O  for m = 1,2 , .  . . , 

(iii) u,,,,, = 0 for i j  E B and rn = 1,2,  . . . , 
(iv) at least one pm # 0 (m 2 l), and 
(v) (4,1m) hold for all i j  E E and m = 1. 2,  . . . . 

In other words, G(p) is rigid iff the infinite system of equations (4) with the 
“boundary” conditions (i)-(iii) has only trivial solutions pm = 0 ( m  = 1,2,  . . . ). 

Proof. We have already derived the necessity. 
Suficiency. The conditions guarantee the existence of a formal power series 

solution of (1). Then by [22, Theorem 1.21 there exists a convergent solution 
which is the required flex of G(p). 

The basic idea, borrowed from the classical theory of differential equations, 
allows a transformation of a metric problem into a problem which, although far 
from transparent, is at least a system (albeit infinite) of equations. The rather 
stringent conditions for a flex seem to corroborate the general belief that movable 
frameworks are uncommon and may occur for quite special graphs or particular 
positions. 

The following two simple examples illustrate the application of 3.2 and show 
that it may be tedious even in an intuitively transparent case. 

3.3. Example. Let n = 2, u = 3 ,  k = 2. 
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The framework (with the free point PI and the fixed points P2 and P3)  is patently 
rigid. Set PII =(xl,  y,)  ( I =  1, 2 , .  . . ) .  Clearly (4;) is 2p0*p ,=2p*p ,=0 ,  i.e. 

2(P, - P,)(PI 1 - P21) = 0, 

2(P,  - q,)(P,, - P31) = 0. 

Since P,, = = (0,0), this reduces to 2(1,0)(x1, y l )  = 0, 2(-1,0)(x,, y l )  = 0 and 
(4;) has the solution p1 = ( (0 ,  yl ) ,  (0 ,0) ,  ( 0 , O ) ) .  Next (49 is 2p*p2+p,*p1 =0, i.e. 

2(1,0)(x2, Y 2 )  + (0, y m ,  y , )  = 0, 
2(-1,())(x2, Y 2 ) + ( 0 ,  y1)(0, y 1 ) = 0 .  

Here 2x2 + y: = -2x2 + y: = 0 shows y t  = x2 = 0 and therefore the solution of (49 
is p1 = 0, p2 = ((0, y2), (0 ,  0) ,  ( 0 , O ) ) .  Proceeding by induction it is easy to show that 

( i  = t + 1, . . . . rn) where t = Lim] and yt+ ,, . . . , y, are arbitrary reals. 
the solution of (4h) are p1 = .  . . =  pt  = 0 ,  p, = ((0, y,), (0% 0). (0, 0)) 

3.4. Example-Let n = 2 ,  v = 7 ,  k = 3 ,  C=S=B={{l,2},  {1,4}, {1,5}, {2,3), 
{3,61, {3,7H and P = ((LO), (1, I), (0, O), (2, O), (O,2) ,  (2,2)).  The frame- 
work is patently rigid. For rn integer set a = L$m] and b = Lirn]. By induction 
on rn we show that the solution of (49-(4;) has the form: 

p l =  . . .  = p a = ( ) ,  (*I  
p,=(O,O,c,,O ,..., 0), q = a + l ,  . . . ,  b, (**) 

pq = (0, d, + e,, c,, dq, 0 ,  d, - e,, 0, . . . , 0), q = b + 1, . . . , rn, (***) 

for arbitrary reals cq, d, and 

,T-' cwcq-w. 
eq =z w = a + l  

To start out let rn = 1. The system (4J, multiplied by 4, is 

- x l12+  x212 = O, - x212+x312 O 
X , l l  = 0, - X I 1 1  = 0 ,  xgl l=  0 ,  -x3,1 = 0. 

setting c ,  = xZz, and observing that trivially d, = 0 we obtain the required equa- 
tion (***). 

Suppose that rn > 1 and the statement is true for rn - 1. We have three cases: 
(1) rn = 4a, (2) rn = 4a + 2 and ( 3 )  rn odd. 

(1) Let rn = 4a. We compute the dot products 

Aijw := (P tw - Pjw)(Pt,rn-w - P,,m-w) 

for i j tE and w = 1 , .  . . , b. In view of (*) we have A,,, = O  for w = 1 , .  . . , a -  1. 
From (**) and (***) (valid for rn - 1) we obtain 

h12q = (cq, 0)(crn-,, -e,) = c, . cm-, for a =s q < 2a 
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and 
2 -  2 2 

A1,2 ,2a  = ( C Z a ,  -e2a) - C 2 a  + e2a. 

Note that czar computed at the stage m - 1, equals ic?. Quite analogously we have 
AZDq = Al,, for O s q  s 2 a .  Next 

A,,, =h15q=(0,0)(0,d,pq+e,_q)=0 ( O s q < 2 a )  

and 

A i 4 b  = A i 5 b  = (0, d z ~  + eza)2 = ( d 2 Q  + eza)'- 

Similarly A,, = = 0 for 0 < q < b and h 3 6 b  =z h37b = ( d b  - eb) ' .  Set y = 
c ~ c ~ ~  +.  . . + cZaplcZa+l. The system (4,) becomes 

2( - xlm2 + xZm2 + Y )  + CL + e L  = 0, 
2 ( - X 2 m 2 + X 3 m ~ + y ) + c ~ a + e ~ , =  0, 

2~1,1+ ( d 2 Q  + e 2 a ) 2  = 0, 

2~~~~ + (dzQ - e,J2 = 0, 

-2~1rnl-t + eza12 = 0, 
-2x3,, + (dZQ - e2a)2 = 0.  

From the last 4 equations we obtain xlml = = dZa = eZa =ic:= 0. Solving the 
two first equations we obtain that xlml and x~~~ have the required form (with 
d, := x,,,) completing thus the proof in this case. 

The case (2)  rn = 4a + 2 is analogous but simpler (because eZatl = 0 by assump- 
tion). Similarly, in the case (3) the system (4k) is much simpler and yields directly 
the required results. 

3.5. We discuss briefly the modifications of 3.2 to non grounded frameworks. For 
simplicity we mention only the cases pertinent to n = 2 or n = 3. We have seen in 
2.3 that a motion of a planar non grounded framework may be restricted by 
assuming P,-,(t) = ( x ( t ) ,  0) and P,(t) = (0,O) for all t E [O, 11. To adapt 3.2 to our 
situation it suffices to replace (ii) by the condition: 

(ii') Pv-,,,,, = (x,, 01, 
Similarly for a pure tensegrity framework in 3-space we replace (ii) by the 

P,, = (0,O) for rn = 0,1, . . . 

condition 

(ii") P u - 2 . m  = (xm, O , O ) ,  p o - 1 , m  = (xL, YL, O), 
P,, = (0,0, 0) for m = 0,1, . . . . 

For frameworks in 3-space with two fixed points we have the condition: 

(iii''') P,--Z,m = (x,,,, 0, z,), P,-l,m = (XL, O , O ) ,  
P,,=(0,0,0) forrn=O,I , . . .  

3.6. Section 4 is devoted to applications of 3.2. Now we derive a slightly different 
criterion that avoids the artificial variables u. 
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Theorem. Let G(p) be a grounded framework in [w" with fixed vertices 
Pk+l,. . . , P,. Then G(p) has a flex i f  and only i f  there exist points PI = 

(Pli, . . . , PUf)  ( I  = 0, 1, . . . ) that satisfy the conditions (i), (iii), (iv) from 3.2, the 
equations (4$ hold for every i j  E B and the values 

I 

Q L J ~  = ELI c ( p r w  - P j w ) ( p t , l - w  -p~.l-w) 
w =o 

satisfy 

O = Q  11 1 = . . . = Q  L , l , f - l  f Q,, 3 1 even and Q,,J.l > 0. ( 5 )  

Proof. Necessity. Let i j  E E \ B and let 0 = Q,, = . . . = Qi,i,L-l # Qij,. By (4ii2) we 
have 0 = Qij2= us1, next O =  QiJ4= u;, etc. It follows that 1 must be even and 
Qiji > 0. 

Suficiency. To prove that p,, p,, . . . satisfy the conditions of 3.2 we must show 
that for i j  E E\B such that 0 = Q,, = * . . = Qii,2h-l, Q,,, >0  there exist hjl, . . . so 
that all (4ijl) hold. We set kjl = - + . = y,i,h-l = 0, y j h  = Ja,, and then compute 
from (4ijl) successively 

ui,j.h+l = Q i j , 2 h + l / ( 2 ~ i j h ) ~  h , j ,h+Z = (Qi,j,*h+2- U:j,h+l)/(2Uijh) etc. 

4. Truncated equations 

4.1. Let G(p) be a grounded framework. The system (43  ( I  = 1,2,  . . . ) from 3.2 
is an infinite system of equations in an infinite number of unknowns 
p,, p2, . . . ; ul ,  u,, . . . It would be more convenient if we would deal only with its 
finite part. For this purpose let the 1-truncated system (67) consist of the equations 
(43,  . . . , (47) in unknowns pr, . . . , pi; u,, . . . , alp1 together with the conditions ( i )  
and (ii) from 3.2 ( l  = 1,2 ,  . . . ). The examples 3.3 and 3.4 suggest the following 
definition of a selfmap f of N* = { 1,2,  . . .} associated to G(p). For x = 1,2,  . . . set 
f ( x )  = x + 1 if ( 6 3  has only the trivial solution 0, . . . : . . . , 0, else let f ( x )  denote 
the least integer 1 for which there is a solution 0 = p1 = . . . = pl-l # p ~ ,  . . . , p x ;  
u,. . . . . CL-, of ( 6 3 .  The function f has the following basic property: 

4.2. Proposition. The function f is monotonic non-decreasing. Moreover f is 
bounded from above i f  and only i f  G(p) has a flex. 

Proof. If p l , .  . . , px; u l , .  . . , ux-l is a solution of (63, then clearly pl ,  . . . , 
u l ,  . . . , u,-, satisfies (6z-1) proving f ( x  - 1) s f ( x ) .  If G(p)  has a flex 0 = pI = 

. . . =  ~ , - ~ f  pi, p i + l r . .  . : u I ,  u2, . . . then p l , .  . . , p x :  u l , .  . . , u , - ~  is a solution of 
(62) and therefore f ( x ) S i .  To prove the converse suppose f is bounded from 
above. Clearly then f ( x )  = cy for all x sufficiently big. By [23, Theorem 6.11, there 
exists p > a  such that to every solution p,, . . . , p,; ul.  . . . , ugPl of (63  there is a 
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solution p l , .  . . , p a ,  P & + ~ ,  . . . , u l , .  . . , u,, u:, . . . of the infinite system (47) 
( I  = 1, 2, . . . ). In  particular there is such a solution with pa # 0 proving that G(p) 
has a flex. 

4.3. Consider the case f(1) = 2. By definition this means that the homogeneous 
system of linear algebraic equations po  * p1 = 0 has only the trivial solution p1 = 0. 
For bar frameworks (4;) reduces to  po * p 2  = 0 which again has only the trivial 
solution p2 = 0. Continuing in this way we obtain G(p) rigid. The very important 
frameworks with f(1) = 2 are discussed in the next chapter. 

In the remainder of this section we assume f ( 1 )  = 1 (i.e. G(p)  is not infinitesi- 
mally rigid). If f(2) > 1 the framework is said to be second order rigid [6, $33. For 
bar frameworks second order rigidity implies rigidity. Indeed suppose a second 
order framework G(p)  has a flex corresponding to 0 = pl = . . . = # 

pl, p ~ + ~ ,  . . . . Then the equations (43  and (4;l) reduce to po*pl = 0, p O * p z l  + 
ipl  * p, = 0 hence p i  = p1 # 0 and p i  = p Z 1  satisfy (6;) contradicting f(2) 2 1. 

The situation is less clear for frameworks with f(2) = 1. Connelly calls a 
framework Ith order rigid if f ( 1 -  1) = 1 but f(l) > 1 .  It is tempting to think that for 
a rigid framework the truncated system (63  eventually has only the trivial 
solution, i.e. for 1 large enough f(1) = 1 + 1. We show that this is not the case and 
at the same time prove that f ( l )  does not grow too fast. For this we need the 
following “blow-up” lemma. 

4.4. Lemma. Let l s r s s  and let O =  p1 = .  * .=  pr, pr+l , .  . . , p s ;  u , ,  . . . , be a 
solution of ( 6 3 .  Let 1 6  t s and z = ( s  + l ) ( t  + 1) - 1 .  For at, . . . , a, reals set 
(yo = .  . . = a,+, = 0, 

w = 1,. . . , z, where w#=min(w, s ) .  Then p i , .  . . , p i ;  u;, . . . , u:+,  is a solution of 
( 6 3  such that p ;  = . . . = p:ct+l)-l = 0. 

Proof. We start by showing that p ;  = . . . = prc t+ l ) - l  = 0. Indeed pr may appear 
first time in pIy if in (7) the equation x1 +.  . . + x, = w - r has solution ( t ,  . . . , t ) ,  i.e. 
if rt = w - r leading to w = r ( t  + 1 )  (by direct check Prt+,,,= a3. Note that Pwh = 0 
for z 3 w 2 h 3 s + 1 because the existence of a solution of x l  +.  . . + x h  = w - h 
with xi 2 t ( i  = 1, . . . , h )  leads to the contradiction 

( S +  l ) t S h t < X , + * .  * + ~ , , = w - h S ~ - s -  1 = ( ~ +  1 ) t -  1. 
To simplify the proof set pi = 0 ,  ui = 0 for j > s and Boo = 1, Pi, = 0 for i >O.  Let 



154 I.G. Rosenberg 

1 s q s z. Using the obvious bilinearity of * and setting i = h, + h, we obtain 

q+h,-i 

= (Ph,*Pi-h,)  @wh,pq--w,i-h, 
i = O  hl=O w = h l  

Denote the inside sum in (9) by s k i .  Using (7) it is not difficult to verify that 
S h r  = pqi for 0 < h < i. Moreover, by the definition of pi0 we have Soi = Sii = pqi for 
i > 0. Finally SO,) = 0 = pqo and (9) simplifies to 

Observe that (10) effectively contains n o  pi with i > s because, as noted before, 

The argument just presented is based only upon the bilinearity of * and 
therefore it applies to the scalar (inner) product uLu&, as well. Setting u,, = 0 we 
obtain 

pqi = 0. 

w = l  i = O  h=O 

Since p l , .  . . , p , ;  u l ,  . . . , uSp1 satisfy ( 6 3  this proves that p { ,  . . . , p : ;  u',, . . , uL-, 
satisfy (6:). 

Now we use 4.4 to show that for a given s the values f(x,) computed at a 
fairly rapidly growing sequence x, are bounded by a linear function with slope 
f ( s ) l ( s  + 1). 

4.5. Proposition. Let 1 <f(s) s r c s and x, = (s + 1)'" - 1 ( n  = 0, 1, . . . ). Then the 
values f(x,) are bounded by the linear function r(x, + l)/(s + 1). 

Proof. Direct computation shows that x : + x ,  =x,+~ for all n s 0 .  Choosing s = t 

and aT # 0 in 4.4 we obtain f(xl) = f(s'+ s) G r(s + 1). Here by definition xI + 1 = 

( s  + 1)* and therefore f(x,) r(xl + l)/(s + 1). Suppose n s 1 and f(x,) s 
r(x, + l)/(s + 1). Choosing r' = r(x, + l)/(s + 1), s' = x,, and a,, = 0 in 4.4 we obtain 

f(x,+,) = f(x:+ x,) G r'(s'+ 1) = r(x, + 1)'/(s + 1). 

(x, + 1)' = (s + 1)'"'' = x,+1+ 1 

Here by definition 

proving f(x,+J =S r(x,+l + l)/(s + 1). 
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4.6. Example. Let f (2 )=  1. Applying repeatedly 4.4 one obtains the upper 
bounds b ( x )  for f ( x )  listed in Table 1. For example b(5) is obtained for s = 2, 
t = 1, r = 1 and b(1) for s = 5 ,  t = 1, r = 2. The ratio b(x)/x seems to be consis- 
tently around 4 which is the limit value at the points x,, from 4.5 ( r  = 1, s = 2). 

Table 1 

X 5 8 11 17 23 26 35 44 47 53 59 
b ( x )  2 3 4 6 8 9 12 15 16 18 20 
X 62 71 80 83 89 95 107 119 125 131 134 143 
b ( x )  21 24 27 28 30 32 36 40 42 44 45 48 
X 161 167 179 188 191 215 224 239 242 251 263 269 287 296 
b ( x )  54 56 60 63 64 72 75 80 81 84 88 90 96 99 

4.7. Let s 6 1. To capture the intuitive notion that for 1 > s n o  (67) contributes a 
“new” solution to ( 6 3  we introduce the following definition based on 4.5. We say 
that G(p) is rigid of rank s if f(x) ’-f(s)(x + l)/(s + 1) for all x 2 s and s is the least 
integer with this property. In other words G(p) is rigid of rank s if for all x 3 s  
every solution of ( 6 3  has p1 = . . . = p, = 0 where u 2 f ( s ) ( x  + l)/(s + 1) but the 
statement is not true for 0 < s’ < s. From 4.1 it follows that a framework rigid of 
rank s is rigid. Presently there is no evidence for the converse (a rigid framework 
is rigid of a rank s). 

5. Inf-rigid frameworks 

5.1. We consider now the grounded bar frameworks with f ( l ) = 2 .  Let pi = 

(xil.. . . , x,,,) ( i  = 1, . . . , v). The system ( ), multiplied by $, is 

(Pi - P,)(Pil - P i l )  = 0, ( i j  E El .  

For given points P , ,  . . . , P, this is a system of linear homogeneous equations in 
unknowns xll lr  . . . , xlln, . . . , xk 11, . . . , &In. The e x k n  matrix of the system, 
called the rigidity matrix of G(p)  [6] (coordinatizing matrix [8 ] ) ,  plays a crucial 
role in the theory. Its rows are indexed by E, columns by pairs 4r with 1 s 4  s k ,  
1 G r 6 n and the entry in row ij and column q r  is xi, - xir if q = i, xi, - x,, if q = j 
and 0 otherwise. Thus row ij with 1 i, j G k corresponding to an edge connecting 
free vertices contains at most 2n nonzero entries coupled in pairs with the same 
absolute value and opposite sign. Similarly row i j  with 1 i s k < j s v corres- 
ponding to an edge linking a free to a fixed vertex, has at most n nonzero entries. 
Because some vertices are fixed, we enjoy the advantage of having the simpler 
rows of the second type which do not appear in the standard rigidity matrix. 
Hence, the rigidity matrix is very sparse for big k .  Moreover, the distribution of its 
possibly nonzero entries depends solely on the graph G while the points 
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PI, .  . . , P,, manifest themselves only through certain differences of their coordi- 
nates. 

For a framework of rank 1 the system (11) has only the trivial solution and 
therefore the rigidity matrix has full column rank kn. Such bar frameworks, 
studied more intensively than the others, bear a variety of names. The most 
common is infinitesimally rigid but names statically or completely rigid, stiff and 
firm have also been used. The natural tendency is to drop the adverb leading to 
confusion on reader’s-and sometimes author’s-side (for a lively discussion see 
[lo]). It would take a consensus to change well entrenched terminology and so we 
compromise by using the abbreviation inf-rigid [6].  The fact that inf-rigidity 
implies rigidity, proved in 4.1, has been more or less explicitly known from the 
beginning of the last century. Some engineering claims have been made that 
inf-rigid frameworks are safer than rigid ones but it seems that inf-rigidity has 
been studied more extensively because it is tractable by linear algebra methods. 

5.2. We briefly mention two easy applications of linear algebra. An internally 
resolved stress [19] is a row e-vector A = (Aij: ij E E )  such that ARG,,, = 0. A closer 
look at RG(,, reveals that A is an internally resolved stress if and only if 

hi i (P i -P , )=O ( i = l ,  . . . ,  k) 
j ’ i j G E  

( i . c  h,,(=hl,) are real weights on edges such that the forces h,,(P, - P I )  sum to 0 at 
each vertex i). Since the column and row ranks of a matrix agree, we obtain the 
well-known result: a grounded bar framework is inf-rigid if and only if it has only 
the trivial internally resolved stress. 

We mention in passing that inf-rigidity is invariant under projective transforma- 
tions (for a proof see [16]). If a grounded bar framework G ( p )  is inf-rigid for 
some p €Rnu we say that the graph G is generically inf-rigid in R”. Clearly G(p) is 
not inf-rigid if and only if the sum of the squares of the (&) subdeterminants of 
order nk of the rigidity matric vanishes. Thus for a generically inf-rigid graph G 
the points p E R” such that G(p) is not inf-rigid satisfy a nontrivial polynomial 
equation and therefore form a subset of measure 0 in R”” [l]. Roughly speaking, 
for a generically inf-rigid graph G the bar frameworks G ( p )  are inf-rigid “almost 
everywhere” or “in general position”. The generically inf-rigid graphs in R2 where 
described in [ll] (complete proof in [16]) but there are only partial results €or R3. 
The relation with connectivity and polymatroids has been brought forward in [ 121. 

5.3. We consider grounded tensegrity frameworks with f(2) = 3. For a bigraph G 
set G = (V, C U S,  C U S ) .  The framework c(p) is obtained from G(p)  by replac- 
ing both cables and struts by bars [17] and may be viewed as the “ossification” of 
G(p) .  It is well known and obvious that the rigidity of G(p) is a necessary 
condition for the rigidity of G(p) .  



Strucrurd rigidity I 157 

A grounded tensegrity framework is inf-rigid if f(2) = 3 and the grounded bar 
framework G(p)  is inf-rigid. (This definition is just a "grounded" version of a 
similar one in [17; 4.11.). Inf-rigid frameworks are rigid. Indeed let 0 = p1 = . . . = 

pf- l#p, ,  pf+l ,  . . . ; u l ,  u 2 , .  . . be a flex. It follows that u l = - .  ' = u h  = O  where 
h = Lil]. The assumption / odd contradicts (43: p *ph = 0 and G(p) inf-rigid. Thus 
we have l = 2 h .  However now Ph,  P 2 h ;  uh satisfy (63  contradicting f (2)=3.  To 
characterize inf-rigidity in terms of inequalities (cf. [17]) we introduce the 
following tensegrify matrix TGip). Let C' = C x {0}, S' = S x (11, E' = C' U S' (dis- 
joint union of C and S) and e' = IE'1. The rows of the e' x kn matrix T = TG(p) are 
indexed by E'.  The i j  row is the i j  row r,j of RG(p) if i j  E S' and the row -r,, if 
i j  E C'. Note that TG(p) contains both r,j and -r,j if i j E  B. The rows of the 
tensegrity matrix are those of R G ( ~ )  multiplied by i l  and therefore TG(p) is of the 
special form discussed in 5.1. 

We need more notation. For two real vectors x = ( x , ,  . . . ,x,,,) and y =  
( y l ,  . . . , y,) set x << y if x1 < y l ,  . . . , x, < y,. Following [17] a stress (proper stress) 
of a tensegrity framework G(p)  (or the matrix TG(p)) is a row e'-vector s 3 0  
(s >>O) such that sTGlp) = 0. In other words, a stress is an assignment of nonposi- 
tive reals A,, to cables and nonnegative reals A,, to struts such that (12) holds. 
Here cables and struts are understood as elements of C' and S and therefore two 
coefficients are assigned to each bar with no restriction on the sign of their sum. A 
proper stress requires A,j positive for i j  E S' and negative for i j  E C'. Following 
[17; 4.21 we say that G(p)  is statically rigid if every vector in Rk" is a nonnegative 
linear combination of the rows of TGcp). 

Because rank TG(p) = rank &(p) = kn we may rearrange the rows of T = TGCp) 
so that the matrix U consisting of the first kn rows of T is nonsingular. Denote by 
L the matrix consisting of the last t := e'-  kn rows of T. The dependency of the 
rows of L on the rows of U defines a unique 1 x kn matrix U such that L = MU. 
Set N = - M T  and let 1 denote the vector (1,. . . , 1) or (1,. . . , l)T of an 
appropriate size. The following proposition uses basic linear programming (i.e. 
convexity) techniques only (see e.g. [211) and, in particular, completely ignores 
the very special nature of TG(p). The conditions (A)-(D) and the proof of their 
equivalence are essentially adopted from [ 171. 

5.4. Proposition. Let G(p)  be a grounded tensegrity framework such that G(p) is 
inf-rigid. Then the following conditions are equivalent: 

(A) G ( p )  is inf-rigid, 
(B) the inequality system TG(p)x 3 0  has only the trivial solution, 
(C)  G ( p )  is statically rigid, 
(D) G(p) has a proper stress, 
(E) Nx >>O has a solution x "0, 
(F) Nx 2 1  is feasible. 

(An inequality system is feasible if it has a nonnegative solution.) 
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Proof. ( A ) e  (B). Since the bar framework G(p)'is inf-rigid, equation (4:) implies 
p 1 = 0. Thus (4:) reduces to 2 p  * p2 = u1 * u1 and (4;) has only the trivial solution 
p l =  p 2 = 0 ,  u , = O  just when (B) holds. 

(B)+(C). The inequalities xi 3 0  and - x , a 0  are consequences of T x 3 0  and 
therefore there exist non-negative row e-vectors a: and (T': such that a:T= 

(C) 3 (D). For each row t of T there is non-negative row e'-vector T such that 
- t = TT. Let (T be the sum of all these 7's and let w = 1 + (T. A direct check shows 
that w is a proper stress. 

( D ) 3  (B). L e t  w be a proper stress and x satisfy Tx 2 0 .  Then 0 = (wT)x = 

~ ( T x )  shows Tx = O .  Now since G(p) is inf-rigid, the matrix T has rank kn, 
proving x = 0. 

(D)e(E) .  Let sT = 0. Writing s' = (s,, . . . , s k , )  and s'' = (Skn+l. . . . . sea) we can 
transform sT = 0 into (s'+ s"M) U = 0. Since the rows of U are independent, this 
amounts to s'+ s"M = 0 which is essentially the condition (E). 

(E) 3 (F). Let a = Nx" >> 0 for some xo >> 0 and let a be the least coordinate of a. 
Clearly x = a-lx" is a feasible solution of Nx 2 1. 

(F)+(E). If N x " 2 l  for some ~ " 3 0 ,  then for x'>>O, close enough to x", we 
have Nx'>>O. 

(0,. . . , 0, 1 ,0 , .  . . , O )  = -a:'T. 

5.5. Remarks. It may happen that a column of N is nonpositive. This means that 
the corresponding row of M is nonnegative and therefore one row r of L is a 
nonnegative combination of the rows of U. However then the inequality rx a0 is 
superfluous in T x a O  and the row may be eliminated. Thus without loss of 
generality we may assume that N has no columns S O .  

Observe that (F) is a standard linear programming problem for which there are 
well tried computer algorithms. Note also the following fact. If the bar framework 
G(p) is inf-rigid and N*x 21 is feasible for every ( I +  1) x 1 submatrix of N" of N. 
then G(p)  is inf-rigid. Unfortunately this standard linear programming result 
seems to have n o  direct interpretation in the framework. Consider the linear 
program: minimize 1. x subject to Nx a 1. Its dual is: maximize 1. y subject to 
y N ~ 1 .  Since the dual is always feasible, (F) holds if and only if the dual is 
bounded. This leads to the following equivalent condition 

(G) The coordinate sums of the non-negative solutions y of yN 6 1 are bounded. 

For G = (V, C, S) let G" = (V, S, C )  be the bigraph obtained by interchanging 
the cables and struts. As observed in [ 171 it follows from (B) that G(p) is inf-rigid 
iff G"(p) is. 

5.6. Remark. Consider frameworks that are not pure tensegrity frameworks. So 
far we have not even exploited the fact that the system Tx 2 0  contains de facto 
an equation for each bar. Eliminating as many variables as possible from these 
equations we can reduce Tx 3 0  to a smaller system T'x2-O. Note that the  
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Fig. 1 .  

conditions (€3)-(F) refer to the inequality system Tx 3 0  only and will remain valid 
if Tx S O  is replaced by the equivalent system T’x 20.  More precisely, let Z be the 
submatrix of T consisting of rows indexed by B x ( 0 ) .  Let r = r a n k Z .  For 
simplicity of notation suppose that we can eliminate x l , .  . . , x, from Zx = O .  
Introducing xl, . . . , x, into the inequalities indexed by E\(B x(0, 1)) we obtain 
the equivalent system T’x’aO where x’= ( x , + ~ ,  . . . , xkn)=. We may even assume 
that T’ has n o  zero rows. Note that this corresponds to the elimination of cables 
or struts that are “dependent” on the bar structure (e.g. the cable in the planar 
framework on Fig. 1). Let U‘, L’, M’ and N‘ be the matrices defined for T’ in the 
same way as U, L, M and N were for T. Since T‘ is the result of elimination of 
variables, a simple linear algebra argument shows that N’ is the submatrix of N 
situated in the rows and columns that were not deleted. The condition (D) may be 
reformulated : 

(D‘) T‘ has a proper stress. 

To obtain the conditions (E‘) and (F’) replace N by N‘ in (E) and (F). 

5.7. Remarks. It may happen that (E) or (E’) is easy to verify. For example G ( p )  
is inf-rigid if N(or N‘) has a column >>O. Similarly G(p) is not inf-rigid if N (or N’) 
has a row <O (i.e. S O  but # O ) .  If N or N’ happens to have a few rows or N’ has a 
few columns only (i.e. if r is big) then (F) or (F’) is easily verified. 

To move a little bit closer to the exploitation of the particular structure of T we 
note the following fact. Let H = ( V ,  BY, BY) be a bar bigraph with kn bars. 
Suppose that B* is ordered. The determinant IH(p) : = det R,(,, (whose rows are 
the rows of the rigidity matrix of H ( p )  in the given order) is called the indicator of 
H ( p ) .  For our framework G let E, denote the set of edges corresponding to the 
first kn rows of TGCp). By assumption U is nonsingular and therefore we may 
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order the edges of H = (V, E,, E,) so that ZH(p) (= det U )  is negative. The rows of 
the matrix L are denoted Gj where i j  runs through an I-element subset El of E’. 
For qrEEl let M,, denote the row of M satisfying M,,U=L,,. The system of 
equations M,,U = L,, in unknowns Mqrii ( i j  E E,) (the coordinates of the row 
vector M,,) has determinant d := det U = I H ( p ) .  By Cramer’s rule Mqn, = d-’ det A 
where A is the matrix obtained from U by replacing its i j  row by Lqr. Now det A 
in its turn is the indicator of the following bigraph. For a c E ,  and b E E l  set 
Eab = ( E ,  U{b})\{a}. The underlying order on Eab is the old one with the edge b 
replacing the edge a throughout. Setting Gab = (V, Eabr Eab) we see that det A is 
the indicator IG,,Q,(,,l .  The matrix N in (E) or (F) (4.8) may be replaced by the 
matrix N* having the entry IGr,qr(p) in its i j  IOW and qr column (because N = - MT 
and we can multiply every inequality by the positive number - d )  and therefore 
the inf-rigidity of a tensegrity framework depends o n  the associated indicators. 

Let EL and Ei be the edge sets corresponding to U‘ and L‘ Since N’ is a 
submatrix of N (4.11) we may replace E, and El by EL and EI. We illustrate that 
approach on three special cases. It is assumed that the bar framework G(p)  is 
inf-rigid and E,  ordered so that IH(p)<O. 

5.8. corolliuy. I f  for some qr E el (qr  E E;)  the indicators IGi,q,(p) are positive for all 
i jEE,  (i jEEL), then G(p) is inf-rigid. 

Proof. Clearly Nx 3 1 ( N ‘ x  3 1) for an x with large enough i j  coordinate and all 
other coordinates 0. 

5.9. Corollary. The framework G(p) is not inf-rigid i f  for some i j  E E, the indi- 
cators IGa,q,(p) are nonpositive for all i j  E E f .  

Proof. The i j  inequality is not solvable. 

5.10. Corollary. Suppose El(Ei) is the singleton {qr}.  Then G(p) is inf-rigid i f  and 
only i f  the indicator IGt,q,(p) i s  positive for every i j  E E, ( i j  E EL). 

Proof. Since N is a column vector, the system Nx 3 1 (N’x 3 1) is feasible if and 
only if N >>O (N’ >>O). 
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PREDICTIONS 
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1. Historical background 

Every combinatorist knows the fundamental book of Macmahon; but the result 
I shall discuss today is not found there. Nor will it be found in the Complete Works 
which are currently being edited by George Andrews at Penn State; George tells 
me that he has found n o  references to this result anywhere among Macmahon’s 
papers. So we have to rely on indirect evidence, evidence which is most readily 
available in a 1950 paper by Kendall and Stuart [l] in the British Journal of 
Sociology. 

Let us now imagine ourselves back in time some 70 years: we are hearing 
evidence before a British parliamentary committee on elections. The speaker is a 
semi-anonymous civil servant: indeed, his name is Mr. J.P. Smith. Smith himself 
has a reasonably good mathematical background, but is under no  illusions about 
the mathematical attainments of the honourable members whom he is addressing. 
He is explaining to them that, in a British election, if the majority party win p% 
of the votes, then it will win much more than pa% of the seats. 

Now we must digress to a simpler electoral situation than is current today. 
Edwardian Britain had “first-past-the-post’’ voting, as both Britain and Canada 
still have. The country was divided into constituencies, and the winner in any 
constituency was the candidate who received the most votes in the constituency. 
Today, “the most votes” could be a plurality only; but, 70 years ago, it would 
have been a majority, since there were only two parties involved (one just 
imagines the situation of the Canadian election of 1979 if only Liberal and 
Conservative parties existed, with n o  competition from the other major national 
parties such as the New Democratic Party, the Social Credit Party, and the 
Rhinoceros Party). 

Smith used n o  mathematics in his presentation to the parliamentary committee. 
Instead, he had them imagine an enormous room full of red and blue marbles, 
with more red marbles than blue marbles. Then he suggested that one come along 
with a shovel and remove a shovelful; the shovelful would represent one consti- 
tuency. To model a second constituency, one just took another shovelful. And the 
whole election thus became shovelful after shovelful after shovelful. 

163 
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Since we have just completed a federal election, we may feel that Smith’s 
imagery was peculiarly apt. However, he is unlikely to have been moved by levity 
in the grave atmosphere of Westminster. He did assure the honourable members 
that, if p% of the marbles were red ( p  > 50),  the percentage of shovelfuls in which 
red dominated would be much greater than p. 

It is here that Macmahon enters; just like civil servants today, Smith felt the 
need to quote an outside expert, and he stated that Macmahon had shown that if 
red and blue appear in the proportions of p% and qo/o, and if R and B are the 
number of seats won by red and blue respectively, then 

-2- R P 3  
B q3’ 

A simple algebraic manipulation allows one to rewrite this result as 

R P 3  
B + R  p 3 + q 3 ’  
-2- 

Thus, if a party wins two-thirds of the votes, we see that Macmahon’s law predicts 
that it will win at least 

of the seats. 

2. The judgment of Kendall and Stuart 

Kendall and Stuart give a rather strange judgment on Macmahon; they state 
that he could not have derived the law from empirical evidence; they also state 
that he could not have derived it mathematically. One is less puzzled by their 
claims when one notes that they claim that “equality operates only in the 
neighbourhood of p = i”; and further that “for any fixed p ,  RIB + X  as the size of 
the constituencies increases, so that the winning party is virtually certain of 
gaining all the seats”. We shall see that the first of these statements is wrong, and 
the second statement is irrelevant, in that it ignores a well-known statistical 
analogy, an analogy which may have led Macmahon to the “law of cubic 
proportions”. 

Let us recall the well-known fact that the probability of r successes in n 
occurrences of an event, with probability p of success and q of failure, is given by 
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For even modest values of n, if n and p = n p  are both reasonably large, then this 
expression is well approximated by the normal approximation 

1 
- exp( - (x - p)’/2S2) 

6J2rr 

where 6 = &G. However, if n is large but p = np remains small (that is, we are 
dealing with a rare event), then the relevant approximation is due to Poisson, 
namely, 

e - w p r / r !  

This approximation is neither normal nor symmetrical. 
A similar situation arises if we consider the Smith-Macmahon “shovelful 

model”. Certainly, if one takes an infinite number of infinite shovelfuls, then 
Kendall and Stuart are right, and “the winning party is virtually certain of gaining 
all the seats”. But, if one takes an infinite number of finite shovelfuls, then 
another situation (apparently ignored by Kendall and Stuart) arises. 

3. The “small shovelful” model 

For simplicity, we take n constituencies. each with a voters ( n  large, a small). 
We shall discuss the realism of this model in the next section, We further assume 
that the majority party receives b votes which are scattered randomly among the 
na voters; so the number of vote distributions is (”:). 

However, we can distribute the votes by choosing how many majority votes are 
obtained in each riding, and then choosing which voters in the riding vote for the 
majority party. Clearly, the number of arrangements in which xi ridings have i 
votes for the majority party f i  = 0,1,. . . , a )  is 

where zx, = n. C, ,  = b. It is then easy to calculate the expected value of xI as 

If we now assume that the majority party wins a proportion of seats equal to S, 
and if we take a = 2 k  + 1 (if a is even, we handle ties in the usual way by giving 
the win to the majority party half the time), then 

Xi 1 

t = k + l  
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and we can calculate the expected value of S as 
1 2 k + l  

E ( S ) = -  C E ( x ~ )  
i = k + l  

k i l  ( b  - i )  - - 

This can be simplified. since b = nap = n ( 2 k  + 1)p. Also, in our model, p and k are 
fixed. and we let n + X .  The result is 

We give a table of this quantity for a = 13, that is, E J S :  a = 13)= 
p13 + 13p”q + . . . + (7)p7q6 (Table 1). 

There is remarkably good agreement between the “law of cubic proportions” 
and EJS). This is because E,(S) can be rewritten in the form 

Since the expression 

Table 1 

P p3/(p’+q3) EJS: a = 13) 

0.50 0.5000 
0.52 0.5597 
0.54 0.6180 
0.56 0.6734 
0.58 0.7248 
0.60 0.7714 
0.62 0.8129 
0.64 0.8489 
0.66 0.8797 
0.68 0.9057 
0.70 0.9270 

0.5000 
0.5584 
0.6 15 8 
0.67 10 
0.7230 

0.8147 
0.85 32 
0.8865 
0.9146 
0.9376 

0.7712 
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is monotone increasing in k, we also see that Macmahon’s result 

-2- R P 3  
B + R  p 3 + q 3  

holds whenever 2k + 1 > 13 (at 13, we have seen that there is approximate 
equality). 

4. Penrose’s bloc model 

In the last section, we allowed n to become infinite, but we held the number of 
voters per riding at a small value, 2k + 1. This may appear artificial, but a totally 
independent source provides illuminating information. 

Penrose [2, Chapter 71 gives a detailed discussion of bloc voting in a two-party 
system. Thus, in American elections, the media constantly refer to “the black 
vote”, “the labour vote”, “the Catholic vote”, “the Jewish vote”, “the Ukrainian 
vote”, “the environmentalist vote”, “the women’s vote”, etc. Penrose’s study 
shows that the raw figures for American Presidential elections “are consistent 
with the hypothesis that, up till 1900, the American public acted as 245 indiffer- 
ent equal blocs of voters, and since then it has acted as 28 blocs. It may be that, as 
a population grows larger, it coagulates into blocks more readily”. Actually, I 
would surmise that the decrease in number of blocs is due to the improvements in 
modern communications. 

Of course. Penrose is not claiming that there are only 28 blocs in the American 
electorate; h e  is observing that the electorate can be modelled by an urn with 28 
balls. This is undoubtedly partly due to high correlations among voter groups. 

Penrose himself cites Macmahon’s law of cubic proportions, and states that in 
British elections “each constituency behaves as though it contained N random 
voters”, where N is about 14. He does not reveal the source of his estimate, but it 
certainly agrees with the table of the preceding section. 

In the light of these remarks about bloc voting, the idea of modelling con- 
stituencies as possessing only a small number of voters does appear realistic, and 
this model does produce an approximate cube law. I believe this may have been 
Macmahon’s procedure. 

References 

[l] M.G. Kendall and A. Stuart, The law of the cubic proportion in election results, Br. J. Sociol. 1 

[2] L.S. Penrose, On the Objective Study of Crowd Behaviour (H.K. Lewis & Co. Ltd., London, 
(1950) 183-196. 

1!)52). 



This Page Intentionally Left Blank



Annals of Discrete Mathematics 8 (1980) 169 
@ North-Holland Publishing Company. 

NESTED DESIGNS 
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Abstract 

Nested designs are introduced. These are balanced incomplete block designs D 
with parameters (b; v ;  r, r‘; k ,  k’; A, A‘). There are b blocks of cardinality k’ taken 
from a set of v treatments. Each block has a distinguished subset of cardinality k. 
The blocks form a (b, v, r’, k’, A’)-design and the distinguished subsets form a 
(b, v, r, k, A)-design. Several infinite classes are constructed, and the case k’ = k + 1 
and v = ak  + 1 is analyzed. 

In practical applications, the user of any confounded design must choose her 
interactions for confounding as ones she can afford to  sacrifice completely. In 
using these designs, the same set of observations is considered in both forms, so 
that at the expense of some slight further confounding, a solid check may be made 
on the tightness of the data. 
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SOME DESIGNS USED IN CONSTR 
SQUARES 

CTIP G SKEW ROOM 

D.R. STINSON and W.D. WALLIS 
Ohio State University and University of Newcastle 

In this paper we shall define frames, a class of arrays which are useful in the construction of 
skew Room squares. We prove the existence of two infinite families of these arrays. 

1. Frames 

A frame of order f is a 2f x 2 f  array whose cells are empty or contain 
unordered pairs of the symbols 1 , 2 , .  . . , f, l’, Z‘, . . . , f’, satisfying the following 
rules: 

(i) cells (2i  - 1 ,2 i  - l), (2i  - 1 ,2 i ) ,  (2i ,  2i  - 1)  and (2i, 2 i )  contain the 2 x 2 
block 

(ii) every possible unordered pair of the form {i, j } ,  {i, j ’ )  or {i’, j’j, where i f  j ,  

(iii) every symbol occurs exactly once per row and once per column; 
(iv) at most one of the cells (a ,  b )  and (b,  a )  is occupied, where a#  b. 
(It follows that exactly one of the cells (a ,  b )  and (b,  a )  is occupied, outside the 

The array of Fig. 1, taken from [l], is a frame of order 5 .  
Frames may be used in the construction of skew Room squares. The following 

theorem was proven in the case f =  5 in [l] (see also [4]), and the proof in the 
general case follows similarly. 

occurs precisely once in the array; 

diagonal blocks described in (i).) 

Theorem 1. If there is a frame of order f ,  and there is a skew Room square of side s 
with a skew subsquare of side t, where s - t f  12, then there is a skew Room square 
of  side f ( s  - t ) +  t, containing skew subsquares of sides s and t. 

Theorem 1 is especially useful in the case s - t = 6 (that is, s = 7, t = 1) where 
other constructions break down. Further discussion of the application of Theorem 
1 will appear in [3]. 
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Fig. 1. Frame of order 5.  (Brackets and commas are omitted for convenience.) 

2. Special frames 

Our direct constructions for frames both yield frames of a particular kind, 
which we shall now discuss. 

Given an unordered pair P = { x ,  y} we define an arrangement of P to be a 2 x 2 
array with two empty cells and two cells, either in the diagonal or the back- 
diagonal position, which either contain { x ,  y} and (x’, y’} or contain {x, y’} and 
{x’, y}. The arrangement is called diagonal or back-diagonal according to the 
positions of the occupied cells. An arrangement containing {x, y} and { x ’ ,  y’} is 
even; the other type is odd. 

Suppose L is an array whose elements are unordered pairs on  { 1,2, . . . , f}, such 
that: every pair of distinct elements occurs twice in the array; the pairs { i ,  i }  occur 
once each, on the diagonal; and every element occurs just twice per row and twice 
per column. By a special frame based on L we mean an array obtained from L by 
replacing the diagonal entry { i ,  i }  by the 2 x 2 block (1) and replacing every other 
entry by an arrangement of the pair it contains, so that the two entries {x, y} are 
replaced by one odd arrangement and one even arrangement of { x ,  y}, so that if 
the cell in position ( i ,  j )  contains a diagonal arrangement, then the cell in position 
( j ,  i) contains a back-diagonal arrangement, and conversely. 

Theorem 2. There can exist no special frame of order f when f = 2 or 3 (mod 4). 

Proof. Suppose there is a special frame of order f ,  based on an array L. Without 
loss of generality we can assume that the first row of L contains the pairs (1, l}, 
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{ 2 , 3 } ,  {3,4}, . . . , {g, 2}, {g + 1, g + 21, {g + 2, g + 31, . . . , {g + h, g + 11, {g + h + 
l}, . . . , { g +  h +  . - .  + j + k } ,  { g + h +  +j+l},  where g + h +  . . *  + j + k = f ,  in 
some order. Consider the pairs {2 ,3 } ,  {3,4}, . . . , {g, 2}, and the corresponding 
arrangements in the special frame. Define a, = 1 if i’ appears in the upper row of 
the arrangement Ai of {i, i + 1) and a, = 0 if i appears without a dash. Similarly 
define bi = 1 or 0 according as ( i + l ) ’  or i + l  appears in the upper row of Ai. 
(Here b, records the condition of 2 in the arrangement A, of (g,2}.) Then 
necessarily bi = a,+l + 1 (mod 2), with ag+l = a2, and Ai is even if and only if 
a , + a , + , = l .  So the number of even arrangements among A,,A,, . . . ,A,  is 
congruent (mod 2) to 

g c (a,+q+1)=2 2 a,=0; 
i = l  i = l  

the number of even arrangements is even. It must follow that the number of even 
arrangements in the whole array (excluding those on the main diagonal) must be 
even. (There must be just as many odd arrangements as even ones off the main 
diagonal, by the skewness property (iv), so the total number of arrangements must 
be divisible by 4.) S o  4 divides fCf -  l), and f -  0 or 1 (mod 4). 

We know of no frame, special or otherwise, whose order is not congruent to 1 
modulo 4. 

3. Starters 

Let G be a finite abelian group of odd order f .  We define a frame starter on G 
to be a set of unordered pairs of non-zero elements of G which between them 
contain each element precisely twice, such that the set of all the differences 
between two members of a pair also includes every non-zero element precisely 
twice. Given a frame starter S = {xl, y l } ,  {x,, y,} ,  . . . , (x+~, Y~-~}, and adder for S 
is a way a, ,  a 2 , .  , . , of ordering the non-zero elements of G so that the 
elements {xi + q, yi + q : 1 s i sf- 1) covers all the non-zero elements of G pre- 
cisely twice. Just as in the case of Room squares, we define a frame starter to be 
strong if a suitable adder is formed by putting q = - xi - yi, for 1 G i sf- 1. 

We shall be considering arrangements of the pairs occurring in a frame starter. 
If A is an arrangement of (x, y } ,  A + g will mean the arrangement obtained from 
A by replacing x by x + g  and y by y + g ,  respecting dashes. 

Suppose a frame starter and adder are known in a group G of odd order f .  
Take any ordering gl, g,, . . . , g, of the elements of G in which g, is the identity 
element 0. Then the array L with (i, j )  entry { x k  + gi, Y k  + gi}, where ak = gi - gj, 
and ( i ,  i) entry { g i ,  g,}, is a suitable array upon which a special frame could be 
based. If it is possible to replace {xi, yi} in the starter by an arrangement Ai such 
that: 

(i) every non-zero element of G occurs exactly once with and once without a 
dash in the upper-rows of Al, A,, . . . , AfPl; 
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(ii) every non-zero element of G occurs exactly once with and once without a 
dash in the left-hand column of A, +a,, A, + a,, . . . , Af-l + 4-,; 

(iii) if the two pairs in the starter with difference f g are {x, x + g} and {y, y + g}, 
then one of the two corresponding arrangements is even and the other is odd; 

(iv) of the arrangements Ak and A,,,, where a, + a,,, = 0, one has diagonal form 
and the other has back-diagonal form; 
then there is a special frame of order f, formed by replacing the entry (x, + gi, y k  + 
gi} in cell (i, j )  of L by A, + gi, for all i and j. 

4. Families of frame starters 

First construction. Suppose f =  16d2+ 1, where d is any integer. For 1 
O c j c d - 1 ,  write 

i <2d, 

A, = i + 4jd, B.. = j - 4id 

C, = 2d(4d + 1) + 4jd + 1, Dii = 2d ( 1 - 4d) - 4id + j ,  

where all symbols are members of the cyclic group G of order f. Then it is easy to 
check that the set of the following pairs for all i and j is a strong frame starter: 

- B k J } >  { B t J ,  -cL]}> {cI,? -DLj}> i D 1 J ?  -AIJ}7 

’tj}, { - B I J 9  ‘Ej}, {-‘Ej> DtJ}> k D l j 2  

In order to generate a frame, one may use the following arrangements (subscripts 
are omitted; a = -A, b = -8, c = -C, d = -D):  

TI, 
D’a’ 

, 

The above construction is closely related to the construction of Chong and Chan 
[2] for a skew Room square of order 16d2+ 1. In [2] it is stated that 16d2+ 1 must 
be a prime, but this is not necessary to their proof, and in fact their theorem 
actually establishes the existence of a skew Room square of every side of the form 
16d2+ 1; in particular, there is a skew Room square of side 65. 
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Second construction. Our other construction takes place in the Galois field of 
order f = 4 m  + 1, a prime power. Suppose x is a primitive element of GFV); write 
xi for xi, 0 6  i s 4 m  - 1. Then it is easy to verify that the {xi, for 0 s  i 6 

4 m  - 1, form a strong frame starter. Suitable arrangements are: 

for i = 1 , 3 , .  . . , 2 m - 1 ;  
xfx’ 

for i = 0 , 2 , .  . . , 2 r n - 2 ;  

for i = 2 m ,  2 m + 1 ,  . . . ,  4 m - 1 .  

So we have 

Theorem 3. There is a frame of every prime power order congruent to 1 modulo 4, 
and of every order 16d2+ 1, d an integer. 
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INFINITE CLASSES OF CYCLIC STEINER 
QUADRUPLE SYSTEMS 

K.T. PHELPS 
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A. 

A Steiner quadruple system of order n is said to be cyclic if it has an n-cycle as an 
automorphism. Infinite classes of Steiner quadruple systems are established by exploiting the 
structure of PGL(2, q )  (the projective linear group) for various prime powers q. Other recent 
results are surveyed and the known spectrum of cyclic Steiner quadruple systems for small 
orders is established. Several new systems are included in this discussion. 

1. Introduction 

A Steiner system S ( t ,  k, n) is a pair (Q, b)  where Q is an n-set and b is a 
collection of k element subsets of Q, usually called blocks, such that every 
t-element subset of Q is contained in exactly one block of q. A Steiner system 
S(3,4, n) is called a quadruple system and they exist for all n = 2 or 4 mod 6. The 
automorphism group of (0, b )  is naturally a permutation group acting on Q which 
applied to the blocks of b permutes these k-subsets amongst themselves. An 
S(3,4, n) is said to be cyclic then, if it has a n-cycle as an automorphism. Without 
loss of generality, we can assume that Q = Z,, and that (Q, b)  has (Z,,, +), the 
integers mod n under addition as a subgroup of its automorphism group. 

A primary purpose of this article is to establish the existence of infinite classes 
of cyclic Steiner quadruple systems (briefly SQS). This is done by using known 
inversive planes and exploiting the structure of their automorphism group. 
Following this we present some new cyclic SQS and utilizing material from the 
previous section along with other recent results we give an up to date picture of 
the known spectrum of cyclic S(3,4, n) when n s 100. 

2. Infinite classes of cyclic SQS 

A Steiner system S(3, q f 1, q2 + 1) is also called an inversive plane among other 
things. The only known finite models have highly transitive automorphism groups. 
The particular planes that are of interest here are the Miquelian inversive planes 
which exist for prime powers q. The automorphism group for these designs will be 
the projective semi-linear group, PTL(2,q') consisting of permutations 

a x a  + b 
C X a  + d' 

x--,- ad - bcf  0 ,  a,b,c,d E GF(q2) 
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and a an automorphism of GF(q2) which has the projective general linear group 
PGL(2, q2) as a normal subgroup [2]. In general one can construct S(3, q + 1, q k  + 
1) in a similar manner; choose a base block B = {w} U GF(q) then its orbit under 
PGL(2, qk)  will be a S(3, q + 1, qk  + 1) since PGL(2, q k )  is sharply triple transi- 
tive. The permutation group PGL(2, qk) has numerous (qk + 1)-cycles [6, p. 1871 
all of which are conjugates and thus these designs S(3, q + 1, q k  + 1) will always be 
cyclic. 

Theorem 2.1 If there exists a n  S(3,4, q + l ) ,  q a prime power, then there exists a 
cyclic S(3,4, q2 + 1) containing S(3,4, q + 1) as a subdesign. 

Proof. The design S(3, q + 1, q2 + 1) having PGL(2, q2) as its automorphism group 
will contain a (q2 f 1)-cycle. Under the action of this automorphism there will be q 
orbits of blocks, choosing a representative B, from each orbit we construct any 
S(3,4, q + l), (Bi, bi) we wish. Replacing each block Bi with the collection of 
blocks bi and applying the cyclic automorphism to Up=1 bi we will get a cyclic 
S(3,4, q2+ 1). It is important to  note that each orbit is full (ie. has q2+ 1 blocks 
in it). This is due to the fact that the normalizer of the cyclic subgroup is dihedral. 

Corollary 2.2. Every finite partial Steiner quadruple system can  be embedded in a 
finite cyclic Steiner quadruple system. 

Proof. B. Ganter has proved that every finite partial quadruple system can be 
embedded in a S(3,4,2') for some t 3 2 (see [9] for a detailed discussion of this). 
By using the standard product construction, this system can be embedded in an 
S(3,4, n) for n 2.2' such that n - 1 is a prime power. By our previous theorem 
this can in turn be embedded in a cyclic quadruple system. 

The Steiner systems S(3, q + 1, qk  + 1) constructed from PGL(2, q k )  will always 
be cyclic but the block orbits will not always be full. In particular when k is odd, 
there will be one short orbit having (qkil + l)/(q + 1) blocks. To construct cyclic 
SQS from these designs we need a cyclic SQS(3,4, q + 1). If p is the (qk + 1)-cyclic 
automorphism, and q k  + 1 = t(q + l ) ,  then 8' will be a cyclic automorphism 
mapping each block of the short orbit into itself. Hence the design constructed on 
the representative block €or this short orbit must be cyclic and its cyclic au- 
tomorphism must coincide with p'. Summarizing this we have: 

Theorem 2.2. If there exists a cyclic S(3,4, q + l), where q is a prime power, then 
there exists a cyclic S(3,4, qk + 1) for all k > 0. 

As an example we construct a cyclic S(3,4,28). This design is constructed from 
PGL(2,27) where x3 + 2x + 1 is the irreducible polynomial over GF(3) used to 
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Table 1 .  Base blocks for cyclic SQS(28) 

construct GF(27) and a = x + 1 is a primitive element. Then u + l / (a2u  + 1) is a 
cyclic automorphism in PGL(2,27). The base blocks listed in Table 1, however, 
have the integers mod 28 as the cyclic automorphism. 

It is worth noting that the above constructions allow for numerous non- 
isomorphic cyclic S(3,4,  q k  + 1); the exact number being determined in part by 
the number of distinct S(3,4,  q + 1). 

Before moving on, consider the automorphisms of (Z,,, +); they will be 
additional autorphisms of these cyclic quadruple systems or they will give distinct 
isomorphic copies. As was pointed out in [l I], it is of some interest to know when 
these group automorphisms will be additional automorphisms of the designs. For 
this reason we point out that the normalizer of a cyclic subgroup in PGL(2, q k )  is 
dihedral and since all cyclic subgroups of PGL(2,qk) are conjugate and 
PGL(2, qk l  is normal in PTL(2, q)  we conclude that the cyclic subgroups will have 
a normalizer of order 2e(qk + 1) where e is the index of PGL(2, q k )  in PTL(2, q k ) .  

3. Spectrum for small orders 

Turning from the construction of infinite classes we consider the effect of recent 
results on the known spectrum for cyclic S(3,4, n) for n G 100. In particular there 
is a recent result which complements the results of Section 2. 

Theorem 3.1 (Cho [l]). If there exists a cyclic S(3,4,  n) where n = 2 or 10 mod 12, 
then there exists a cyclic S(3,4,2n).  

Since many of the quadruple systems constructed above were in these congru- 
ence classes we see that this result almost doubles the spectrum. 

Other recent activity has centered on the construction and enumeration of 
cyclic quadruple systems of various orders. Several authors (Jain [7], Phelps [lo], 
Cho [l], and Griggs and Grannell [4]) have constructed examples of cyclic 
S(3,4,20). Quite recently the author [ 111 has established that there are exactly 
29 nonisomorphic cyclic S(3,4,20).  Using the same computer program, the 
author ran a short test search for cyclic S(3,4,22) and in the process generated 7 
nonisomorphic ones. We list two examples in Table 2. 

Recent information received by the author indicates that Immo Diener (of 
Lehrstiile fur Numerische und Angewandte Mathematik, Universitat Gottingen) 
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Table 2 

Example 1 -(Base blocks) 

has enumerated all cyclic S(3,4,22). There are exactly 21 nonisomorphic cyclic 

Rosa and Guregova [5] have established that for n s 1 6 ,  the only cyclic 
quadruple system (other than the trivial one of order 4) is the unique S(3,4,10). 
The known spectrum for cyclic quadruple systems of orders less than 100 is given 
in tabular form below. 

S(3,4,22). 

Table 3 

Order Existences #Nonisomorphic References 

20 
22 
26 
28 
32 
34 
38 
40 
44 
46 
50 
52 
56 
58 

62,64 
68 
70 
74 

76,80 
82 

86,88,92, 
94,98 

100 

29 
21 
?a5 
? a 1  

? a 1  

? 3 8  

? a 2  
a5 

?a1 

Phelps [ l l ]  
Diener (see above) 
Fitting [3], Rosa and Guregova [5] 

(see above) 

Fitting [3] ,  Kohler [8] 

Apply Theorem 3.1 (Cho) 

Theorem 2.1, also [8, 91 
Apply Theorem 3.1 (Cho) 

Kohler [8] 

Apply theorem 3.1 (Cho) 

Kohler [8] 

Theorem 2.1, also [8J 

Apply Theorem 3.1 (Cho) 
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DISOINT STABLE SETS IN A GRAPH 

F. MULLA 
Kuwait University, P.O. Box 5969, Kuwait 

Abstract 

Let G = (V, E) be a non-complete simple, finite graph such that 2 S d e g  x S 3 
for every x E V. Then V has a partition (V,, V,, V,) such that V, and V, are 
maximal stable sets and V, is a stable set. 
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DEGREES IN HOMOGENEOUSLY TRACEABLE GRAPHS 

z. SKUPIEN 
Mathematics Department, Kuwait University, P. 0. Box 5969, Kuwait 

It is proved that if G is a non-Hamiltonian homogeneously traceable graph of order n 3 3 ,  
then for each vertex u of G there exists a u - w Hamiltonian path whose end-vertices u and w 
have the sum of degrees less than or equal to n -2. Hence A(G)+G(G)Cn -2. Open related 
problems are stated. 

1. Preliminaries 

Homogeneously traceable (HT) graphs, introduced by the present author in 
1975, attracted attention of some specialists and since then some interesting 
related results have been obtained. This note suggests a new direction of studying 
HT graphs. 

Throughout the note, we shall use standard notation and terminology. G stands 
for a simple graph of order 1 V(G)J = n and k(G) denotes the number of 
components of G. 

Following Skupied [6], G is called homogeneously traceable (HT) graph if, for 
each vertex x of G, there is a Hamiltonian path with the end-vertex x .  If G is 
non-Hamittortian (NH) and HT graph, then G is called HTNH graph. Notice that 
the class of HTNH graphs contains all hypohamiltonian graphs as well as graphs 
K 1  and K,. Following Jung [4], the invariant 

s(G)=max{k(G-S)-ISI: S s  V(G) and k(G-S)# 1) 

is called the scattering number of G. 
Let P = [u,, u,, . . . , uk] be a path of G. If uit lv l  is an edge in G, the path 

al(P, i ) :=[v i ,  ui- lr .  . . , v l ,  ui t l , .  . . , S t ]  is called a (simple) at-transform of P. 
Similarly, if vj-luk is an edge of G, the path a , ( P , j ) : = [ v , ,  u2,. . . , 
uj - l ,  U k ,  uk-1,. . . , uj ]  is called a (simple) a,-transform of P (cf. Skupien [5]). 

The following three simple results will be used. 

Theorem 1.1 (Skupieh [ S ] ) .  If  G is a HT graph, then 
(i) its scattering number S(G)=SO; 

(ii) G is 2-connected (whence 6(G)  3 2)  i f  K ,  # Gf K2. 

Proposition 1.2 (Skupieh [5]). Each vertex of a HTNH graph has at most one 
neighbour of degree ~ 2 .  
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Theorem 1.3. If P = [v,, u2, . . . , v,,] is a Hamiltonian path of a NH graph G of 
order n 3 3, then 

(i) d(v,) + d(u,) s n - 1;  
(ii) the equality d(v,) + d(v,) = n - 1 - k with k ~ ( 0 ,  1,  . . . , n - 3) is equivalent to 

the fact that, for exactly k values of i from the set (2,  3, . . . , n}, none of and, for 
remaining values of i, exactly one of the two edges vlvi and v ~ - ~ v , ,  belongs to G. 

2. Main result 

Now we are going to prove the following main result. 

Theorem 2.1. For every vertex v1 of a HTNH graph G of order n 3 3, there exists a 
vertex w connected to v1 by a Hamiltonian path and such that 

d ( v J  + d ( w )  s n - 2. (1) 

Proof. Suppose, if possible, that G is a HTNH graph of order n 3 3 with a vertex 
u1 such that, for each vertex w connected to v1 by a Hamiltonian path, the 
inequality (1) does not hold. Then according to Theorem 1.3(i), 

d ( u l )  + d ( w )  = n - 1 ( 2 )  

for every v , - w  Hamiltonian path of G. Let 

P = [v* ,  v*, . . . , v, = w ]  

be a Hamiltonian path with a fixed w = v,. Now d ( v , ) 2 3  and d(v,,) 3 3 .  In fact, 
suppose d(v,)<3.  Then, by Theorem l.l(ii), there exists k >1 such that both v ,  
and vk are adjacent to Vk+l. Hence, by Proposition 1.2, d ( v k ) a 3 .  

Consequently, a,-transform v , (P ,  k) of G violates Theorem 1.3(i). Similarly, 
possibly making use of a corresponding a,-transform of P, we deduce that 
d(v,) z= 3. 

Now let Z be the set of vertices different from and non-adjacent to u ,  and let 
TZ be the set of vertices each of which is adjacent to a vertex in 2. Hence and 
from (2) we have IZ/ = d ( w )  ( 2 3 ) .  Moreover, by Theorem 1.3(ii) with k = 0, vi E Z 
iff vi-, is adjacent to v,. Thus a,.(P, i )  exists and is a Hamiltonian path connecting 
v ,  and v, iff vi E Z. Now let 

p = mini k : vku, E E ( G ) }  = min{k : vkil E 2). 

Hence we have v , , ~  E Z and 

if V ~ E Z ,  then i > p .  

Moreover 

if v, E rZ, then s 3 p. 
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In fact, otherwise u1us+ ,~E(G)  and if ~ E Z  and v , u J ~ E ( G ) ,  then 
usul Uul(u,(P, j ) ,  s) is a Hamiltonian circuit of G, a contradiction. Let q = 

max{k: q z ' k  E E(G)}. Then p + 1 < q. In fact, otherwise q S p, so that, owing to (3) ,  
Z = {v, : i > p} and therefore q = p. So, by (4), k(G - v,) = 2, contrary to  Theorem 
l.l(i). Therefore p + 1 < q. 

Now suppose that there exists k such that consecutive vertices u k ,  u k + l  on P 
belong to Z and let j be the smallest k with this property. Then either j = q + 1 or 
j < q  - 1. If j = q + 1, ulun E E ( G )  because v , + ~  E Z. Now let u, be such a vertex that 
p < i <q, u, E 2 and ~ ~ u , , ~  E E(G).  Then, by Theorem 1.3(ii) applied to the path 
ur(P, i) satisfying (2) with w = v,, we have v,ujtl E E(G).  Hence, 

P u {u  1 ui + 1 3 uivj+ 1 > vjvn 1 - hiui + 1,  ujvj + 1) 

is a Hamiltonian circuit of G, a Contradiction. Similarly, if j < q  - 1, then vj-,un E 

E(G) and considering u,(P, q + 1) we see that vivq+l E E(G).  Now 

P U un, ujuq + 1 1  211 vq I - {uj- 1uj9 uquq+ 11 

is a Hamiltonian circuit of G, a contradiction. 
Consequently, any two vertices nonadjacent to u1 (i.e., belonging to Z) are 

separated on P by a vertex adjacent to u l .  Hence q = n - 1 and, by Theorem 1.3, 
on, the end-vertex of P, is nonadjacent to each vertex in Z. But any vertex vj in Z 
is an end-vertex of a Hamiltonian path, ur(P,j),  starting at v1 and therefore 
Z U{uJ is an independent set of vertices of G. 

Now (TZ( 2 IZI + 1 because otherwise lTZl= IZI, TZ fl (Z U{v,}) = fl and 
k(G - TZ)  3 IZI + 1 > ITZl, contrary to Theorem l.l(i). Thus, by (4), the subgraph 
S : =  P [ U ~ + ~ ,  V , - ~ ] - Z  of P contains a non-trivial component, say P[?&, u,] with 
k < m. Hence the edges v I u k + 1  and v,vrnp, are in G. Now suppose m = n - 1. 
Then because 1Zl33, up+l and Uk-1 are different elements in Z and therefore 
k -- 2 > p + 1. Hence p + 4 s k. Moreover, Theorem 1.3(ii) applied to each ur(P, s) 
with s E { k  - 1, p + 1, n} implies that edges U , U ~ - ~ ,  vp+luk and Uk-Zu, are in G. 
Consequently G contains the following Hamiltonian circuit 

u b I u k + l >  vpvk- 1 > up+luk,  vk-2un}  - {vpup+lj  uk-Zuk- l?  ukUk+l}> 

a contradiction. 
Now suppose that un-l forms a trivial component of S.  Hence rn S n - 3 .  Now 

vmtl E Z. Moreover, one can see that besides u , u r n ~ ,  also edges v , ~ ~ + ~ ,  V , + ~ Z ) ~ + ~ ,  

u,u, are in G. Therefore G contains the Hamiltonian circuit 

P U ( 8 1  urn - 1 > upurn+ 1 ,  up+ 1 urn + 2 r  v m v n  1 - (upup+ 1, urn -1 urn, 'Urn+ 1 urn + d r  
a contradiction. 

Thus the proof has been completed. 

Theorems l.l(ii) and 2.1 imply the following results. 



188 2. Skupien 

Corollary 2.2. If G is a HTNH graph of order n 3 3, then 
(i) A(G) + 6(G) 

(ii) A(G)Sn-4. 
n - 2, 

Notice that result of Corollary 2.2(ii) was proved in [2] and independently in 
[7].  Corollary 2.2 is sharp iff n a 1 0  because then there exist graphs G with 
A(G)= n-4 (and 6(G)=2). 

3. Problems and concluding remarks 

Gould [3] proved that each set S of integers with the minimum element at least 
2 but Sf (2)  is the degree set of a HTNH graph. 

Problem 3.1. Find either bounds for or the value of n ( S ) ,  the minimum order of a 
HTNH graph for which S is the degree set. 

Problem 3.2. Improve Corollary 2.2. What is the upper bound for A(G) of a 
HTNH graph with 6(G) 3 3? 

Problem 3.3. Determine the collection of degree sets (or degree sequences) of 
HTNH graphs of order n. 

Notice that, similarly as it is with connectivity, a few kinds of homogeneous 
traceability in digraphs can be considered. For instance, paper [ 11 deals with 
HTNH digraphs which are actually homogeneously out-traceable. HT digraphs 
will be the subject of another paper by the author. 
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S U R  UNE APPLICATION DU PRINCIPE POUR 
MINIMISER L’INTERDEPENDANCE DANS 
LES AUTOMATES PROBABILISTES” 

Louise MARTIN et Corina REISCHER 
Dipartement de Mathdmatiques, Universitk du Qutbec a Trois Rivibres, Trois Rivibres, Q&., 
Canada 

Nous prtsentons ici une construction du modde le plus “large” d u n  automate probabiliste 
de  type Mealy dans les conditions suivantes: trois familles finies de variables alkatoires dtfinies 
respectivement sur l’alphabet d‘entrke, l’alphabet de sortie et  I’ensemble des ttats de I’auto- 
mate probabiliste sont donnks.  De plus, on connait les covariances entre certains couples de 
variables altatoires. Puisque les familles de correspondances alkatoires qui caractkrisent la 
structure d’un automate probabiliste sont des probabilitts conditionnelles, il s’agit de trouver de 
la “meilleure” fagon, des distributions, compatibles avec les covariances donnkes, dans des 
espaces produits de probabilitk. Dans ce but nous avons utilisk le principe de variation pour 
minimiser Ia mesure entropique de I’interdkpendance. 

1. 

Un automate probabiliste est un 4-uple, .d = [I, S, 0, F],  ou I, S, 0 sont des 
ensembles finis non-vides, I = {il, . . . , in} est l’alphabet d’entrke, S = {sl, . . . , s,,} 
est l’ensemble des ktats, 0 = {ol, . . . ,om} est l’alphabet de sortie et F est une 
famille de correspondances alkatoires: F = {Ps(si, ok I i,)} pour chaque s E S, j = 

1, h; k = 1, m; v = 1, n oij 
~ ~ ~ 

sont des correspondances alkatoires [4,5]. 

2. 

On peut associer a d = [I, S, 0, F] trois familles d’espaces finis de probabilitk 

*Subventionne par CRSNGC, A4063. 
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de la maniere suivante: Pour tout s E S, considerons les kvtnements Clkmentaires 
(a) %, = {[iJ Is], iJ E I; j = fi}, avec les probabilites Ps = {p([i, I s]), i, E I; 

j = 1, n}, OD p( [ i ,  Is]) represente la probabilite que l’automate probabiliste j B  se 
trouvant dans l’ktat s refoive B l’entrke le signal i,. Evidemment p( [ i ,  I s]) 2 0 et 
I;=, p([i, 1 s]) = 1. Notons cet espace fini de probabilite par O., = {%,, PS}. 

(b) ~ 0, = {[o, I s], oj E 0 ;  j = 1, m} avec les probabilitks 2lS = {q([o, I s]), oJ E 0;  
j = 1, m}. Notons Ds = {Q, 2&}. 

(c) .Ys = {[s, I s], sJ E S; j = 1,) avec les probabilitks F, = { t ( [s ,  1 s]), s, E S ;  
j = n}. Notons Es = {Ys, F,}. 

Dtfinissons maintenant sur chaque espace de probabilitk O.,, G, et E,, les 
variables alkatoires respectives X,, Y, et Z,, s E S. 

Soit donc Xs : %, +Iw, avec les valeurs X,(Z$) = {x:, . . . , xi(,,} ou n(s) s n. La 
distribution de probabilitk de la variable altatoire X ,  est complbtement 
dkterminee par les nombres 

- 

3. 

Nous nous proposons de trouver la meilleure caracterisation d’un automate 
probabiliste de type Mealy quand on connait seulement les covariances C(X, ,  Y,) 
et C(X,, Z,), pour tout s E S, c.-a-d. nous nous proposons de trouver les “meil- 
leures” correspondances alkatoires (1). 

Si les variables alkatoires X,, Y, et Z, sont injectives (i.e. n(s) = n, m(s) = m et 
h ( s )  = h)  alors tout revient a determiner de la meilleure fagon les distributions 
conjointes (Xs,  Z,) et (Xs,  Ys), s E S. 

On va utiliser, dans ce but, le principe pour minimiser la mesure entropique de 
l’interdependance introduit en 1978 par GuiaSu [2 ] .  D’api5s ce principe on choisit 
la distribution de probabilitk conjointe de (X,, Y,) qui minimise la mesure 
entropique de l’interdkpendance entre les variables alkatoires X ,  et Y, (voir [6]), 
et qui est compatible avec la covariance C(X, ,  Y,) donnee; on fait de m2me pour 
(Xs,  Zs ) .  Ce principe a l’avantage de fournir “la distribution la plus large” dans 
I’espace de probabilitk produit, et de plus, il n’introduit pas arbitrairement 
d’autres interdkpendances entre les parties composantes que les interdkpendances 
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exprimtes par les moments mixtes donnks & priori (dam notre cas la covariance). I1 
a t t t  utilist aussi dans [3].  

Soient 

mg=min{x;-E(X,); j =  1, n(s)} ,  Mg=max{x;-E(X,);j= 1, n(s)} ,  

et de mEme m$ et MG. Notons 

mg,,= min{mkMY, M“,m“,)<O et M&= max{m&mQ, MRM”,)>O. 

Nous avons: 

Theoreme. Etant donnt les covariances C(X,, Y,) et C(X,, Z,), telles que 

et 

alors la structure de l’automate probabiliste de type Mealy dttermint en utilisant le 
principe pour minimiser 1’ interdtpendance entre les variables altatoires injectives X ,  
et Y, compatible avec la covariance C(X,, Y,) et entre les variables altatoires 
injectives X, et Z, compatible avec la covariance C(X,, Z,) est donnte par 

et 

ps(sk  li,)= t;[l+ c(xs’ zs) (r;-E(X,))(z;-E(Z,))]. 
V ( X J V ( Z )  

Demonstration. La covariance entre X ,  et Y, est complktement dtterminte par 
la distribution .- __ de probabilitt conjointe de (Xs, Y,), s E S, i.e. par pik = p”(x ; ,  y;), 
j = 1 ,  n; k = 1,  m, parce que 

j = l  k = l  

D’autre part, il y a une infinitk de distributions de probabilitt conjointes 
compatibles avec une covariance C(X,,  Y,) donnte. On choisit la meilleure 
distribution d’aprks le principe pour minimiser l’interdtpendance [2].  

La connexion ou l’interdtpendance entre X, et  Y, est mesurte par la mesure 
entropique de connexion introduite par Watanabe [6], i.e. par 

On a W ( X , @ Y , ;  X,, YS)zO,  OG l’tgalitt est vkrifite si et  seulement si les 
variables altatoires X ,  et Y, sont indtpendantes [l]. 
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Pour trouver la distribution de probabilitk 

j = 1  k = l  

qui minimise la mesure d'interdkpendance W, compatible avec la covariance (6), 
on peut utiliser les multiplicateurs a, p de Lagrange. Utilisant l'inkgalitk In x s 
x - 1, ou l'kgalite est verifike si et seulement si x = 1, on  a 

" I n  

p;kln (pfq; e - u - 8 ( x ; - E ( X ~ ) ) ( ~ C - E ( Y , ) )  - w, -a - PC(X,,  Y,)  = 1 c 
j = 1  k = l  p ;k 

j = l  k = l  

oh l'egalitk est verifiee si et seulement si 

D 'aprb  (7),  nous avons e-" = 1/@'(@), ou 
n m  

@ s ( p )  c c p ; 4 ; e - B ( ~ : - E ( X * ) ) ( ~ ~ - E ( Y ) )  

j = 1  k = l  

Alors, de (8), on trouve 

Le multiplicateur 6 peut Ctre dktermine en utilisant (8) et la condition (6). On a 
alors 

Cquation qui, en gknkral, est difficile ?i resoudre et par la suite il est donc difficile 
de trouver la solution exacte (10). On va appliquer le principe pour minimiser 
l'interdkpendance en approchant ex par 1 + x. Alors de (9), nous avons 

et en utilisant (lo), on obtient 

En introduisant __ (11) dans ~ (6), on obtient p = - C(X, ,  Y , ) / V ( X , ) V ( Y , )  et par la 
suite, pour j = 1, n; k = 1, rn; s E S, on a 
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Parce que p y k a O ,  de (12) on trouve les restrictions (2) sur C(X,,  Ys). O n  
prodde de la m2me manibre pour obtenir (5 ) .  

Mentionnons enfin que le mzme principe peut Ctre utilisk pour caractkriser, 
dans des conditions donnkes, la structure du plus ‘‘large’’ automate probabiliste 
de type Moore. 
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A BRIEF ACCOUNT OF MATROID DESIGNS 

U.S.R. MURTY 
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 

Abstract 

A matroid design is a matroid in which all the hyperplanes have the same 
cardinality. A matroid design is perfect if it has the property that any two of its 
flats which have the same rank are equicardinal. 

The aim of this talk is to give a brief account of the known construction of 
matroid designs and perfect matroid designs and to call the attention to some of 
the outstanding problems in this area. 
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ESPACES METRIQUES PLONGEABLES DANS UN HYPER- 
CUBE: ASPECTS COMBINATOIRES 

P. ASSOUAD 
Centre d’Orsay, Uniu. Paris-Sud, 91405 Orsay Ckdex, France 

M. DEZA 
CNRS, 75008 Pans, France 

Pour un espace mCtrique, on montre les liens existant entre diverses possibilitts de plonge- 
ment isomttrique: dans un hypercube, dam H” ou dans un espace L’. On ttudie des conditions 
(surtout nCcessaires) de plongeabilitt, notamment l’intgalitt hypermttrique. On applique ces 
notions aux graphes avec leur distance uselle ou tronqute (notamment) aux polytopes 
rtguliers). On examine aussi rapidement plusieurs examples de caracthe non combinatoire et 
les liens avec d’autres problkmes classiques (copositivitt, adresses ternaires, thtorime de 
Grothendieck). 

0. Introduction 

On a voulu grouper ici de nombreux rCsultats sur les proprietks mCtriques des 
hypercubes provenant soit de la combinatoire, soit de l’analyse fonctionnelle. De 
ce fait on ne donne pas les dkmonstrations en gCnCral, mais les rCfCrences sont 
Cventuellement prkcistes. Les dCmonstrations seront de toute faGon dCtaillCes 
dans un livre B paraitre des deux auteurs [2]. 

On s’interesse ici aux espaces mktriques plongeables isometriquement soit dans 
un hypercube ou dans Z“ (avec la distance C:=l 1% - yiI), soit dans un espace L’. 

La premikre CventualitC a des liens avec certains problbmes d’existences en 
combinatoire (adresses, “line graphs”, “intersection patterns”). 

La seconde possibilitC de plongement aurait plutbt des liens avec les espaces 
normCs et  l’analyse fonctionnelle. 

Donnons une idCe rapide du plan: 
(1) introduction de notions de base et de leurs liens les plus Cvidents; 
(2) Ctude des conditions (surtout nkcessaires) de plongeabilitk; 
(3) cas des graphes avec distance tronqute; 
(4) cas des graphes avec distance usuelle (on ktudie notamment les polytopes 

(5) examen d’examples de nature non combinatoire; 
(6) quelques sujets connexes (“intersection patterns”, copositivitC, adresses 

Par ailleurs, prkcisons tout de suite un certain nombre de notations. 

rkguliers et les “regular honeycombs” ou pavages rkguliers); 

ternaires, thCorkme de Grothendieck). 
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Pour noter les graphes on usera des notations K,, (graphe complet a n 
sommets), En (graphe sans arbte a n sommets), P,, (chemin a n aretes), C,, (cycle 
a n aretes), K,\T ( n  sommets, ensemble d'aretes complementaire de celui du 
graphe T )  et S,, (Ctoile avec un centre et  n sommets peripheriques). 

D'autre part, si G = ( X ,  E )  est un graphe connexe, on considere X comme un 
espace mktrique muni de la distance du plus court chemin (chaque arbte &ant 
prise de longueur 1) qu'on notera parlois dG et qu'on appellera la distance de 
graphe usuelle. 

Enfin si GI = ( X I ,  El) et G,= (X2 ,  E,) sont des graphes on note GIG, leur 
produit direct: l'ensemble des sommets est XI x X,. ((xl, x2), ( y l ,  yz)) est une arete 
si et seulement si: x 1  = y,, ( x 2 ,  y , ) € E 2  ou x2 = y2, (x,, yl) €El; si G est un 
graphe, n un entier 3 1, on note G" le produit direct de n facteurs egaux a G. 

1. Notions de bases 

On rappelle d'abord la definition de trois espaces metriques fondamentaux: 
(1) (K2)" l'hypercube de Iw" (produit direct (K2)" avec sa distance de graphe 

usuelle): l'espace sous-jacent est (0, ly, c'est-a-dire I'ensemble des parties de 
(1, . . . , n} et on pose d(A, B )  = IAAB( pour toutes parties A, B de (1, . . . , n} (on 
voit donc que ce n'est autre que le graphe des sommets et des aretes d'un 
hypercube de Iw" avec la distance du plus court chemin, ou de faqon equivalente 
l'ensemble des mots binaires de longueur n avec la distance de Hamming). 

(2) Z" Ee pavage cubique rigulier de Iw" (produit direct (Z)" avec sa distance de 
graphe usuelle; naturellement les arbtes de Z sont les ( j ,  j +  1) pour tout ~ E Z ) :  
l'espace sous-jacent est Z" et on pose d(x ,  y )  = I:=, Ix, - y,l ou les x,  sont les 
coordonnees entieres de x (on voit donc que ce n'est autre que le graphe des 
sommets et  des aretes du r6seau cubique rkgulier de Iw" avec la distance du plus 
court chemin). 

( 3 )  espace L ' 0 ,  d, p ) :  0 est un ensemble, d une cT-algebre de parties de 0, p 

une mesure 3 0 sur (0, d); L' (0 ,  d, p) est alors l'espace vectoriel des applica- 
tions mesurables f :  (0, d) -+ Iw telles que If(w)l p(dw) < 00; il est muni de la 
norme f -+ l l f l l =  Jn If(o)l p(dW) et donc de la distance f,, f, + \ I f i  - f211 (en fait 
tout cela aprbs passage au quotient pour 2tre strict). 

On notera que l'hypercube (K,)" est un sous-espace mCtrique du pavage Z". 
D'autre part le pavage H" est le sous-espace metrique des elements B valeurs 
entieres de l'espace L1(O", do, po)  suivant: 0" = (1, . . . , n}, do = 2O, po est la 
cardinalitt, c'est-a-dire Ia mesure qui a une masse 1 en chaque point (cet espace 
est l'espace 1' de dimension n ) .  

Definitions. (1) On dira qu'un espace mktrique ( X ,  d )  est plongeable dans un 
hypercube (resp. h -plongeable, resp. plongeable dans L ') s'il peut Ctre consider6 
com'me un sous-espace metrique d'un hypercube (resp. d'un pavage cubique 
regulier, resp. d'un espace L1). 
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On dira qu’un Ccart d sur un ensemble X est plongeable dans un hypercube 
(resp. h -plongeable, resp. plongeable dans L1) si l’espace metrique quotient 
correspondant a cette propriete. 

(2) Soient X un ensemble et  d un kcart plongeable dans un hypercube (resp. 
h-plongeable) sur X ;  on appelle h-contenu (resp. h-rang) de d et on note ~ , , ( d )  
(resp. h ( d ) )  le plus petit n tel que d puisse 2tre plongC dans un hypercube (KJ” 
(resp. un pavage cubique h”). 

(3) Soient X un ensemble et d un Ccart sur X plongeable dans un hypercube; 
on appelle h-rdalisation de d tout plongement de d dans un hypercube c’est-a- 
dire la donnee d’un ensemble fini 0 et pour chaque x E X d’une partie A(x)  de 0 
vkrifiant : 

v x ,  Y EX, a x ,  Y )  = IA(X)AA(Y)I. 

Lemme 1. Soit X un ensemble jini. On a alors: 

hypercube ; 

rationnel tel que Ad soit h-plongeable. 

(1) un k a r t  sur X est h-plongeable si et seulernent si il est plongeable dans un 

(2) si un kart  sur X est a valeurs entikres et plongeable dans L’, alors il existe A 

Definition. Soient X un ensemble et  d un ecart sur X a valeurs entibres. O n  
appelle tchelle de d et on note q(d) le plus petit rationnel A tel que Ad soit 
h -plongeable. 

2. Conditions de plongeabiliite 

On cherche a reconnaitre les distances plongeables dans L’ par un certain 
nombre d’inCgalitCs simples. M2me en presence de structures additionnelles 
(graphes, stationnaritk) on ne sait pas le faire. 

Cependant il faut signaler que pour les espaces norm6s (avec la distance de la 
norme d(x, y )  = I)x - yll), on a la caractkrisation suivante [lo]: d est plongeable 
dans L’ si et seulement si d est de type nCgatif (voir ci-dessous). (Rappelons aussi 
qu’un espace mttrique (X ,  d )  est plongeable dans L2 si et seulement si d2 est de 
type nCgatif .) 

En fait on ne dispose principalement que de l’importante condition nkcessaire 
suivante (introduite dans [13]): 

Definitions. (1) Soient ( X ,  d )  un espace mttrique et n un entier 3 1, on dit que d 
est (2n + 1)- (resp. 2n-) polygonale si on a: 

VX’, . . . , x, EX, VY,, . . . , Yn+lEX ( rap .  VY,, . . . , y ,  E X ) ,  

1 d(xi, xi) + 1 d(Yi, Y j )  2 d ( h ,  ~ 1 ) -  
i <i i< j  i,i 

(on notera que les xi et yi ne sont pas supposts distincts). 
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Fig. 1 

On parle de pentagonal au lieu de 5-polygonal (naturellement l’inegalite 

(2) On dit que d est hypermttrique (resp. de type ntgatif) si d est 2n + 1- (resp. 
3-polygonale est simplement l’inkgalite triangulaire). (Voir la Fig. 1.) 

2n-) polygonale pour tout entier n 2 1. 

Proposition 2. Un tcart plongeable dans L’ est hypermetrique. Un ecart (2n + 1)- 
polygonal est (2n - 1)- et (2n + 2)-polygonal. 

Un k a r t  (2n + 2)-polygonal est 2n-polygonal. 
Un kcart hypermttrique est de type ntgatif. 

(Noter qu’une fonction symktrique hypermktrique est nkcessairement un kcart.) 
Le cone des Ccarts plongeables dans L1 sur un ensemble fini fixe X est un 

polytope, donc caractkrist en principe par un nombre fini d‘inegalites (les 
ClCments extremaux du cone dual). Ces inkgaliths ne sont pas connues explicite- 
ment en gCnCral. En particulier des que l’ensemble X a 7 points, on montre que 
l’usage des inkgalit& polygonales ne suffit pas. De faGon precise on a: 

Proposition 3. (1) [13] Une distance sur un ensemble h 4 points est plongeable 
dans L’. 

(2)  [13] Une distance pentagonale sur un ensemble a 5 points est plongeable 
dans L’. 

(3) [ 5 , 6 ]  Sur un ensemble a 7 points, il existe des distances hypermttriques et non 
plongeables dans L I. 

Dans le cas d’un ensemble B 7 points precisons le contre exemple donne dans 
[6]: c’est le graphe K,\P2 avec sa distance de graphe usuelle; le contre exemple 
donne dans [ S ]  est dual et consiste en une inegaiite satisfaite par les &carts 
plongeables dans L’ et ne se ramenant pas a des inkgalites polygonales (Noter 
que sur un ensemble B 6 points il semble qu’une distance 7-polygonale soit 
plongeable dans L1, mais la question demeure ouverte). 

Le cas ou X est fini est d’une importance particuliere car on a le resultat de 
finitude suivant: 

Proposition 4 ([lo] et aussi [4]). Soit (X, d )  un espace mttrique. Pour que d soit 
plongeable dans L1 il  faut et il suffit que la restriction de d a chaque partie finie de X 
soit plongeable dans L’. 
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[lo] donne en fait un rCsultat gtntral  de finitude pour les distances plongeables 
dans Lp, pour p ~ [ l ,  4; plus tard [4] prtsente ce m2me rtsultat pour L’ comme 
un cas particulier d’un rCsultat de finitude pour les covariances M-rtalisables 
(pour le point de vue des covariances et “intersection patterns” voir cidessous, 
chapitre VI). 

Le problkme de la reconnaissance des distances h-plongeables est plus 
compliquk. On doit ajouter aux inCgalitCs qui assureraient le plongement dans L’ 
des conditions de nature diffCrente. 

On doit avoir la condition de paritC suivante: 

Lemma 5. Soit (X,  d )  un espace mttrique. Si d est h-plongeable, alors le pirim2tre 
de tout triangle est pair. 

On note que cette condition n’est pas suffisante pour qu’une distance plonge- 
able dans L1 soit h-plongeable: ainsi pour le graphe &\PI (avec d sa distance de 
graphe usuelle) 2d est plongeable dans L’ mais non h-plongeable. 

Cependant on a: 

Proposition 6 [13]. Sur un ensemble a 5 points un kcart plongeable dans L1 est 
h-plongeable d2s que le pirirnttre de tout triangle est pair. 

3. Grsphes avec distance tronquee 

On fait d‘abord l’observation suivante: soit X un ensemble, une fonction 
symttrique sur X x X 2 2 valeurs (0 sur la diagonale et tventuellement ailleurs et  
1) est toujours un kcart plongeable dans L’ (car apres quotient on se r a m h e  a un 
graphe complet, voir cidessous). 

Soit X un ensemble. Une fonction symttrique sur X X X  a 3 valeurs (0 sur et  
seulement sur la diagonale, 1 et  2)  est toujours une distance. Cela amene a poser 
la dtfinition suivante: 

Definition. Soit G = (X, E) un graphe. On appelle distance tronqute sur l’ensem- 
ble des sommets de G la distance dCfinie ainsi: 

0 si x = y, 
1 tlx, y E X ,  db(x, y)  = si ( x ,  y )  E E, 1 2 sinon. 

( d k  n’est autre que inf(dG, 2) avec l’adaptation Cvidente si G n’est pas connexe.) 

Notations. Soit G = (X ,  E )  un graphe, x O c  X et Go le sousgraphe induit sur 
X\{xo}. on dira que G est suspension de Go si (xo ,  x )  E E pour tout x E X\{xo}. 
D’autre part, pour abreger, on utilise l’expression anglaise “line graph” pour 
dCsigner le graphe representatif des aretes d’un graphe. 
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Proposition 7. Soit G = ( X ,  E )  un graphe. 
(a) d b  est h-plongeable si et seulement si elle est h-plongeable chaque fois qu’elle 

est restreinte a 5 points (en fait cela rkduit G a ttre S,, ou 
(b) Si G est un “line graph’’ ou une suspension de “line graph”, alors 2db est 

h - plongeable. 
(c) Si 1x1 6, 2db est h-plongeable si et seulement si G ne contient pas comme 

sous-graphe induit un des 8 graphes exhibe‘s dans la Fig. 2. 

ou En). 

Demonstration. (a) Soit G tel que d b  soit h-plongeable. Supposons d’abord 
1x1 = 3. Le Lemme 5 implique G = P2 ou K,. Supposons maintenant (XI = 4 ou 5, 
les sous-graphes induits sur 3 points doivent &re P2 ou K,. Par ailleurs rappelons 
que K2,3 n’est pas pentagonal. Donc G = S,, S,, (K2)’, K4 ou 17,. Si 1x1 = n a6,  
les sous-graphes induits sur 5 points doivent &tre S,  ou I?,. On vtrifie aiskment 
que si G = S,, (K2)’, En, alors d& est h-plongeable. D o h  le rksultat. 

Fig. 2 
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(b) Soit r = (Y, F) un graphe. Soit Go = (F, E,) le “line graphe” de r((a, b) E E, 
si, a, b E F, la n b J  = 1). Soit G = (X, E) la suspension de Go (c’est-&-dire: X =  
F U { x , }  et E =E,U{(a, x,) 1 a EF}). Pour obtenir une h-rkalisation de 2 d b  (et 
donc aussi de 2d& par restriction) on prend: 

O =  Y, A ( x , ) = @  et A ( a ) = a  pour tout ~ E F .  

(c) Les graphes a 5 sommets ou moins sont tous des “line graphes” ou des 
suspensions de “line graphs” except6 6 graphes 5 5 sommets: les graphes (l), (2) ,  
(3), (4)  de l’enoncb et les graphes 

Fig. 3 

On v6rifie ais6ment que pour les quatre premiers (resp. les deux derniers) 2 d b  
n’est pas pentagonale (resp. est h -plongeable). 

Les graphes a 6 sommets qui ne contiennent pas ( l ) ,  (2) ,  (3) ou ( 4 )  comme 
sous-graphe induit (ce qui exclut dkja 48 graphes) sont tous des “line graphs” ou 
des suspensions de “line graphs” except6 27 graphes. Pour ces 27 graphes, 2 d b  
est toujours h-plongeable sauf pour les graphes ( 5 ) ,  (6), (7) et (8) de l’bnonce. On 
notera que pour (5) et (6) (resp. pour (7) et (8)) 2 4  n’est pas L1-plongeable 
(resp. 4dL est h-plongeable). 0 

Remarques. (1) On peut poser la question suivante: la reconnaissance des 
graphes G pour lesquels 2 d b  est h-plongeable est-elle un problLme d’ordre fini, 
c’est & dire existe-t-il un entier p tel que, pour chaque graphe G, 2 d b  est 
h-plongeable dbs qu’elle est h-plongeable toutes les fois qu’elle est restreinte & p 
points? 

(En d’autres termes, la h -plongeabilitC de 2d& peut-elle t t re  caracterisbe par 
un nombre fini de configurations interdites?) E n  fait, on peut mettre en evidence 
un graphe G & 9 sommets avec 2 d b  non h-plongeable bien que h-plongeable dbs 
qu’on enlbve un sommet quelconque, donc p 3 9. 

(2) On peut rapprocher ce problbme des suivants (pour lesquels la question est 
rbolue): 
- reconnaitre les graphes tels que dG est h-plongeable: ordre 5, [17,6]; 
- reconnaitre les “line graphs”: ordre 6, [7]. 
On peut aborder le problbme (1) (reconnaitre si 2 d b  est h-plongeable) comme 

un probleme de “line graph” d’hypergraphe trbs particulier. 
Rappelons qu’en gCnCral (cf. [S]) la reconnaissance d’un “line graph” d’hyper- 

graphe (mtme assez pr6cisC) ne peut se faire par un nombre fini de configurations 
interdites. 
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(3)  Signalons aussi un resultat de “finitude” de [25]: soit E un espace norm6 de 
dimension finie dont la boule unite est un polytope; pour que E (muni de la 
distance de la norme) soit plongeable dans L1, il suffit que tout sous-espace norm6 
de  E de dimension 3 soit plongeable dans L’. 

(4) Soient G = (X ,  E )  un graphe et n un entier 3 1. On definit sur l’ensemble 
des sommets de G la distance d g )  suivante: 

i n +  1 sinon. 

0 si x = y, 
n Vx,  y EX, dgn)(x,  y) = si ( x ,  y)  E E, 

Cette distance est 2n + 1-polygonale. Si k est un entier 2 1, la reconnaissance des 
graphes G tels que kd‘,“’ soit h-plongeable est-elle un problkme d’ordre fini? 

(5) Notons enfin (c’est un resultat de [ll] sur la reconnaissance des “intersec- 
tion patterns”) que la reconnaissance des distances h -plongeables a 4 valeurs 
(0,2,4,6) est un problkme NP complet donc ne saurait Etre un problkme d’ordre 
fini que si NP = P (Plut6t que de preciser ces termes, on renvoie au livre de Garey 
et Johnson 1191). 

4. Graphes avec distance usuelle 

On considhe desormais des graphes connexes G = (X ,  E ) .  L‘ensemble des 
sommets X est muni de la distance de graphe usuelle dG (distance du plus court 
chemin). On a l’important resultat suivant: 

Proposition 8. [17] Soit G = (X ,  E )  un graphe connexe. Alors d ,  est h-plongeable 
si et seulement si: 

(a) G est bipartite 
(b) pour rout ( s ,  t ) E  E, l’ensemble G(s, f) = {x E X I d(x ,  s )  < d(x,  t ) }  est 

mdtriquement fermd (c’est-a-dire pour tout x, y E G(s,  t )  tout chemin de longueur 
minimale entre x et y est contenu dans G(s, t ) ) .  

On voit aisement que la condition (a) (graphe bipartite) n’est autre que la 

Avis [6] remarque que la condition (b) n’est autre que I’inCgalite pentagonale. 
condition du Lemme 5 (pkrimktre pair pour les triangles). 

En dautres termes: 

Corollaire 9. Soit G = (X ,  E )  un graphe connexe. Alors dG est h-plongeable si et 
seulement si elle est h-plongeable toutes les fois qu’elle est restreinte a 5 points 
(probleme d’ordre 5 ) .  

On va maintenant donner des examples (chaque graphe est muni de la distance 
usuelle dG et on donnera le cas Ccheant la valuer de 7 = q ( d G ) ) .  
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Fig. 4 

On note d’abord que les graphes K2.3, K2,3 plus une arkte (ce qui se fait de deux 
faqons) et K,\P2 fournissent des exemples de graphes non plongeables dans L’ 
(les trois premiers sont les exemples (l) ,  (3), (4) de la proposition 7 pour lesquels 
d ,  = db;  le dernier est le contre exemple de [6]). 

L‘exemple (2) de la Proposition 7 pour lequel d b  diffkre de dG (4 est 
h-plongeable, d’, = inf(&,2) n’est pas plongeable dans L’) peut s’interpreter de 
la facon suivante: Le graphe du cube tronque autour d’un sommet (c’est-a-dire le 
graphe des sommets et des arktes de ce polyedre) n’est pas plongeable dans L’ 
(voir la Fig. 4). Pour finir, nous prtcisons dans le Tableau 1 (voir page suivante) la 
possibilite de plongements pour les graphes de polytopes et pavages rkguliers. 
On va maintenant envisager le graphe (c’est-2-dire le graphe des sommets et  des 
arbtes) de chaque polytope rkgulier, de chaque pavage rkgulier de R” et  de 
certains pavages rkguliers du plan hyperbolique. (Voir le Tableau 1.) Pour chacun 
d’eux on  donnera la valeur de l’tchelle q ( d G ) .  Enfin on notera chacun par son 
symbole de Schaffli (voir le livre de Coxeter [12]). 

(En dehors des cas les plus simples, les polyedres rkguliers viennent de [21], 
l’ktude de I’echelle de K,,,,, \ P, B l’aide de matrices de Hadamard provient de [9] 
et  le reste de [3]; la Proposition 8 sert de critkre lorsque q = 1 et la Proposition 4 
pour les pavages du plan hyperbolique.) 

5. Plongements dans L’ de quelques espaces metriques infinis 

On se propose de donner des exemples sans detail (et sans repeter ceux de 

(1) Semigroupes. Soit S un semi groupe abklien note additivement avec une 
origine 0; on  suppose soit que S est un grpupe, soit qu’il existe un entier n avec 
2 n s = s  pour tout S E S .  Soit f : S +  R, o n  pose alors: Vs, t ~ s ,  d(s,  t ) =  

W1). 

2f( s + t )  - f(2s) - f (2 t ) .  

Proposition 10 [4]. Soit d la fonction dkfinie ci-dessus. Si d est de type ntgatif, 
alors d est une distance plongeable dans L L .  

Corollaire 11 [4]. Soit 4 une capacitk m-alternde de CFoquet. Alors la fonction 
d ( A ,  B )  = 24(A U B) - 4(A)  - + ( B )  est une distance plongeable dans L’ .  
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Tableau 1 

Symbole de Nom Plongeabilitt 
Schaffli usuel Graphe et Cchelle 

polygone a n cBtes 
pavage "cubique" de R 
tktrakdre 
cube 
octakdre 
dodCcaedre 
icosakdre 
pavage "cubique" de R2 
pavage triangulaire de R2 
pavage hexagonal de R2 

c, 
z q = l  

K4 q = 2  
q = 1  
q = 2  
q = 4  
4 = 4  

z2 q = l  
q = 2  
q = l  

q = 1 ( n  pair), = 2 (sinon) 

{P, q1 (pavage regulier du graphe plongeable dans L' 
planaire si p est pair 
de degre 
q mail- 
les de 
longueur p 

(partie finie q = 1) 

{m, 91 (pavage rtgulier du 
plan hyperbolique) 

{3> 43 31 
{3,3,51 
{5,3.31 
{3,3,4,3) 

{3,4,3,31 

polytope a 24 faces de R4 
polytope a 600 faces de R4 
polytope a 120 faces de R4 
pavage de R4 par des 
polytopes en croix 
pavage de R4 par des 
polytopes a 24 faces 

arbre plongeable dans L 1  
infini de 
degrC q 

(partie finie q = 1) 

non plongeable dans L' 
non plongeable dans L' 
? 
q = 2  

non plongeable dans L' 

(les symboles qui suivent sont de longueur (n ~ 1) avec n 3 4 )  
{3,. . ,131 simplexe dans R" K,,, q = 2  
{4,3, . . . 1 3) hypercube dans R" (K2)" n = 1  
(3,. . . ,3,41 polytope en croix dans R" contient q n G q < n  

{4, . . . ,41 pavage cubique de R"-' z"-' q = l  
Knil \PI (cf. matrices de Hadamard) 

(2) Anneaux. Donnons seulement le rCsultat suivant pour l'anneau des entiers 
(mais il s'etend aux anneaux factoriels). 

Proposition 12 [4]. Pour tous p ,  q entiers > O  on pose 

Alors d est une distance plongeable dans L' 

(3)  Distance des biofopes. Cette distance est introduite dans [23]. 
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Proposition 13 [4]. Soit un ensemble fini. Pour tous A, B c 0, on pose 6 ( A ,  B )  = 

(AABI I [A UBI (distance des biotopes). Alors S est une distance plongeable dans 
L’. 

Plus gtntralement, soient ( X ,  d )  un espace mttrique plongeable dans L1  et xo un 
point de X .  Alors 

est plongeable dans L’. 

(4) Calcul fonctionnel. I1 s’agit d’un analogue d’un rksultat de [24]. 

Proposition 14 [4]. Soit ( X ,  d )  un espace mttrique plongeable dans L’. Alors d P  
(pour chaque p E 10, 13) et 1-exp( - Ad) (pour chaque h >0) sont des distances 
plongeables dans L1. 

( 5 )  Espaces normts. 

Proposition 15 [24]. Un espace L p  est plongeable dans L1 si p E [1, 21. Un espace 
L p  n’est pas plongeable en gkntral dans L’ si p €12, m]. 

(6)  Espaces hyperboliques. Rappelons la prksentation due a Klein: soit X la 
boule ouverte (euclidienne) de R”; pour tous x, y E X ,  x f  y ,  on pose 

oii u et IJ sont les intersections de la droite x, y avec la sphere. 
( X ,  d )  est l’espace hyperbolique de dimension n. 

Proposition 16 [l]. Le plan hyperbolique est plongeable dans L’ 

I1 semble vraisemblable qu’en gCnCral l’espace hyperbolique de dimension n 
soit plongeable dans L’. En effet on montre dans [18] que sa distance est de type 
nkgatif. 

(Signalons que la sphere de R” avec sa distance gkodksique est plongeable dans 
L1, PI].) 

4. Covariances et dive= questions connexes 

Soient X un ensemble, k et d des fonctions symktriques de X x X dans [w et 
x 0 e X .  On dCfinit alors K,d et Lk de la faGon suivante: 

V X ,  Y E X ,  & , d ( x ,  Y ) = $ [ ~ ( x ,  xo)+d(y, xo)-d(x, Y)I, 

Vx ,  Y EX, Lk(x ,  ~ ) = k ( x ,  x>+ k(y ,  ~ ) - 2 k ( x ,  Y).  
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On a: LK,d = d. On va voir que les operateurs K, et L permettent le passage 
entre les distances h-plongeables e t  les “intersection patterns” (ainsi que le 
passage correspondant pour les distances plongeables dans L1). Pour cela don- 
nons d’abord les definitions suivantes: 

Definitions. Soient X un ensemble et  k une fonction symetrique de X x X dans R. 
(a) On dit que k est un “intersection pattern” s’il existe un ensemble 0 et une 

famille ( A ( X ) ) ~ ~ ~  de parties de 0 telles qu’on ait: 

V x ,  Y E X ,  k ( x ,  y ) = I A ( x ) n A ( y ) l .  

(b) On dit que k est une convariance (0, 1)-realisable (ou “intersection pattern” 
continu) s’il existe un espace mesure (0, d, p )  avec p 20 et une famille c f (x ) ) , , ,  
de  fonctions mesurables sur 0 a valeurs dans {0,1} tels que: 

k ( x ,  Y )  = (f(x> I ~ ( Y ) ) L ~ ( O , ~ P , ~ )  

(06 (. I - ) L ~ ( n , s B , w L )  designe le produit scalaire dans L2(0 ,  d, p ) ) .  

(9 V X ,  Y E X, 

Remarques. (a) Les ”intersection patterns” sont la forme naturelle de certains 
problemes d’existence en combinatoire. L’extension a n variables (cardinal des 
intersections n a n )  est ktudiee dans [16]. 

(b) Si on pose pour chaque x EX: A ( x )  = {w 1 f ( x ) ( w )  = l} on peut ecrire aussi 
bien (i) sous la forme: 

V x ,  Y EX, k ( x ,  Y )  = ~ . ( A ( x )  ~ A ( Y ) )  

ce qui justifie la denomination d”‘intersection pattern” continu. 
(c) I1 est intkressant de remplacer dans (i) les fonctions a valeurs dans (0, 1) par 

des fonctions a valeurs dans M (ou M est une partie de Iw ou mGme d’un espace 
de Hilbert auxiliaire). On obtient ainsi: pour M={-1, l} la classe des 
“covariances of unit processes”, pour M = R’ la classe des matrices completement 
positives (objet dual de la classe des matrices copositives). 

Un examen systematique pour M quelconque en est donne dans [2]. (Tout cela 
dans le cas reel; dans un travail en cours, le cas complexe est considere, avec 
M = U ). Le passage entre distance et covariance est immediat: 

Proposition 17. Soient ( X ,  d)  un espace mttrique et xo E X .  Alors d est plongeable 
dans L‘ (resp. h-plongeable) si et seulement si Kxod est une covariance (0, 1)- 
re‘alisable (resp. un “intersection pattern”). 

Enfin on va montrer les liens existant entre les questions qui precedent et deux 
problemes classiques (en fait surtout pour rappeler l’importance de ces 
problemes). 

Rappelons d’abord la notion de contenu: ( X  est un ensemble) 
(a) (voir plus haut) soit d une distance h-plongeable; on appelle h-contenu de 
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d (note q , ( d ) )  le plus petit des entiers n tels que d puisse s’tcrire d(x,  y )  = 
IA(x)AA(y) (  pour des A ( x )  inclus dans un ensemble R avec (R(  = n. 

(b) de m&me soit d une distance plongeable dans L1; on appelle contenu de d 
(note o ( d ) )  le plus petit des rCels a tels que d puisse s’kcrire d(x,  y ) =  
p ( A ( x ) A A ( y ) )  pour des A ( x )  inclus dans un espace measure (0, d, p) avec 

On utilisera la notion de contenu (resp. h-contenu), sans preciser les adapta- 
tions tvidentes, dans des cas oii des reprksentations diff krentes sont utilides: par 
example pour p ( A ( x )  fl A ( y ) ) ,  pour les covariances M-rtalisables et ci-dessous. 

(1)  Adresses ternaires et conjecture de Graham et Pollack (cf. [20]). Soient X un 
ensemble et d une distance B valeurs entikres sur X .  On dit qu’on s’est donnt des 
adresses ternaires si on s’est donne pour chaque x EX, deux parties A ( x )  et A ( x )  
d’un ensemble R de facon que: 

V x  E X ,  A(x) c A ( x ) ,  
Vx ,  Y EX, d fx ,  Y ) =  ([A(x)\~(y)lUCA(y)\A(x)11. 

p 3.0, p ( R )  = a. 

Une telle representation est toujours possible (noter que si on prenait A ( x ) =  
A ( x ) ,  ce ne serait plus le cas que pour les distances h-plongeables). La notion 
inttressante ici est le h-contenu (ou longueur minimale des adresses ternaires) 
c’est-&dire la valeur minimale de Ill( dans une telle representation. 

Conjecture de Graham et Pollack. Soit G = ( X , E )  un graphe connexe n 
sommets. Alors la longueur minimale des adresses temaires pour ( X ,  a&) est 
inferieure ou tgale a n - 1. 

(Yao [26] donne une bonne Cvaluation de cette longueur). 

(2)  Thiorkme et constante de Grothendieck (on renvoie entierement 5 [22]). Un 
rCsultat important en analyse fonctionnelle (du a Grothendieck) est le suivant: 

Soit X la sphbre unite d’un espace de Hilbert H, c’est-a-dire l’ensemble des 
e‘ttments de norme 1; on peut se donner un espace mesure (0, .#, p )  avec p 2 0  et 
w(R) fini, et pour chaque x E X deux fonctions measurables f ( x )  et g(x)  de (0, d )  
dans {-1,1> de f q o n  que: 

VX, Y EX ,  (x I Y ) H  = ( fb )  I g(Y)>LZ(n,d,p)  

(ou (. I * ) H  et (. I . ) L 2 ( n , d , p )  de‘signent les produits scalaires respectifs dans les espaces 
de Hilbert H et Lz(R, d, p)) .  

L’assertion importante ici est que p(R) est fini et on appelle constante de 
Grothendieck la plus petite valeur possible de p ( R )  dans une telle representation, 
autrement dit le contenu de ce problkme. Notons-la &. L’kvaluation suivante 
seule est connue [22]. 

7F IT 
-SICG< 
2 2 Argsh 1 
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We present some problems related to right- (or bi-)invariant metrics d on the symmetric 
group of permutations S,. Characterizations and constructions of bi-invariant extremal (in the 
corresponding convex cone) metrics are given, esp. for n 6 5 .  We also consider special 
subspaces of the metric space (S,,, d ) :  unit balls, sets with prescribed distances (L-cliques), 
"hamiltonian" sets. 

Here we give (for proofs, see [ 3 ] )  some results and problems arising by analogy with extremal 
set systems. Related problems of coding type (with Hamming metric) are considered in [l ,  41. 

1. Invariance 

S,, is the symmetric group of degree n whose elements (permutations) are 
denoted a, 0, y, . . . , with 1 being the identity. It is endowed with an integer 
metric d :  S, x S, +N which will always be in this paper right-invariant, i.e. 
V a ,  P, y d ( a y ,  By) = d(a, p). Then d(a, p )  = d(ap-', 1) = p d ( a P - ' )  is the weight 
of ap- ' .  We will denote d(1, a) by d(a). 

Examples. H ( u )  = l ( i :  u(i) # i } ;  L,(u) = 1 lu(i)- i l ;  Lm(u) =Max la(i)- i l ;  T(u)  = 

min. number of transpositions t, such that tit, . 3 . cr = I. If d is also left-invariant, 
i.e. Va,  p, y d(~a, yp)  = d(a ,  p), it is said to be bi-invariant. 

Proposition 1. The bi-invariance of d is equivalent to any of the following 
conditions : 

(1) Va, P d ( a B )  = d ( B a ) ,  
(2) Va,  P d ( a ,  P )  = d(a-' ,  p-l), 
(3)  Va,  P d ( a )  = d(Pa0- l ) .  

Calling N i ( a )  the number of cycles of length i in a, with 2 "(a) = n, and 8- 
the conjugacy class of a, i.e. Zu = {aaa-', a E S,} we get 

Corollary. H and T are bi-invariant. 

* Ce travail a 6tC effectue pendant le sejour des auteurs au Centre de Recherche de Mathematiques, 
Appliquees, UniversitC de Montreal. 
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It comes from the fact that H ( a )  = n - Ni(a) ,  T(u) = n - C Ni(a)  (Cayley) and 
(3) of Proposition 1. 

2. Graphic distance 

The distance d is graphic i f  d (a ,  B) is the length of the shortest path joining a 
and p in the graph whose vertex set is S,, and edge-set {(a,  13): d ( u ,  0) = l } .  This is 
equivalent to saying: V a ,  p d ( a ,  p ) ~ - 2 + 3 y  between a and P, i.e. such that 
d ( a ,  S) = d ( a ,  Y) + d(r, P )  (see [lo]). 

Proposition 2. I f  d is a graphic distance (connected graph), then Ed = {a:  d ( a )  = l} 
generates S,,. Reciprocally, i f  E is a symmetric set (i.e. e E E 3 eCIE E) ,  then the 
distance dE (defined by d E ( l )  = 0 ,  dE(e)  = 1 (Ye E E ) ,  d E ( a )  is the smallest number 
of ei E E, such that a = eiei, . . . , dE(a)  = 00 when such a writing is impossible) is a 
graph weight, finite when E generates S,,. 

Proposition 3. dE is  bi-invariant iff E is stable by conjugacy, ie .  E = U Ern,. 

Some constructions. Let d E , , E 2  be graph distances as in Proposition 2. Denote: 

(1) dEi  A dE, = d E , U E Z I  

(2) d E ,  " d E Z  = d E I ~ E Z >  

(3)  where E l o E , = { a l ~ , ,  ~,EE, ,c ,EE,} .  

They are graph weights, bi-invariant if d E ,  and d E ,  are bi-invariant. This is a 
partial answer to a question of [ 5 ] .  

3. Extremal bi-invariant metrics 

Bi-invariant metrics form a convex cone over R. 

Proposition 4. If E is exactly one conjugacy class, i.e. E = 8,, then d ,  is an 
extreme ray of the cone of bi-invariant metrics. 

Examples. E = ZCl2., the set of all transpositions; then dE = T is extremal. Let ci 
denote a cycle of length i ,  Ei = {Ci} generates S, for even i. The associated 
distance d,,, is extremal. We have 

m 

H = T+ A d o , .  
i = 2  

Thus H is not an extreme ray. 
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Proposition 5. Let E ,  = E,  = go, then d E ,  and d E ,  are Lipschitz-isomorph, i.e. 

k;'dE, S dEZG k,dE, 

with k ,  = P E , ( P ) ,  k ,  = PE,(a)  independent of n. 

The characterization of extremal bi-invariant metrics (graphic or not) seems a 
diflicult problem. 

Examples. A few bi-invariant metrics on S5 (see Table 1). 

Table 1 

Cycle structure 

H 2 3 4 4 5 5 
T 1 2 3 2 4 3 

2 1 2 2 3 
1 2 2 2 2 

4C41 3 
TA(4c4 r 1 

1 1 2 1 2 

4. Some special subspaces of the metric space (S", d) 

4.1. Hamiltonian sets 

Let E be a set of transformations, then [12]  (S,,, d E )  has a hamiltonian circuit if 
the graph GE with vertex set 11, 2, . . . , n}  and edge set { ( i ,  j ) :3 t  E E, t ( i )  = j ,  t ( j )  = 

i} is connected. 

Examples. G, = K,,, then d, = T. 
GE is the path of length n (i.e. 1 ,2 , .  . . , n ) ,  then dE is noted 1. 
GE is the star with center 1, then dE is noted U. 

From L,  s I,  one deduces that (S,,, L,) is also hamiltonian. 

Proposition 6. If (S,,, d E , )  and (S,,, d E 2 )  are hamiltonian, then (A,,, d,, o d E z )  is 
ham iltonian. 

Example. (A", U o  U )  is hamiltonian, with 

U o U = d , ,  where E = { t , o t , :  t i = ( l i ) ,  t i = ( l j ) } .  

That is, one can generate A,, by performing permutations which are cycles of 
length 3 of the form ( j i l ) .  Hence (A,,, d{C3J is hamiltonian. 
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In  [9] a similar question is investigated. Ring n bells in a "good" way, which 
may be restated as follows: find a hamiltonian circuit in (S,, L,) with the extra 
condition that q(up;:,) n q(c~,+~u:+'~) = la, where q(a) is the set of fixed points of 
a. and a,, a,+l, are any three consecutive nodes of the circuit. 

4.2. Metric basis and symmetries 

A d-metric basis B is a set B c S, such that Vu.  r r  E S,. if V p  E B d ( u ,  0 )  = 

d ( r .  p) .  then u = r. 
It is shown in [ S ]  that 1 U {C2} U {C,} is a H-metric basis and this is used to 

prove that GH, the group of isometries of (S,,, H )  has order 2(r1!)~ and contains as 
normal subgroup F = { fa , :  fuT(a) = car- '}. For any bi-invariant d. it is easy to 
see that G, 3 GH. It would be interesting to find minimal d-metric basis for other 
d's.  

3 .3 .  Spheres and balls 

Let S ( d , n , r ) = { a E S , :  d ( a ) = r } ,  B ( d , n , r ) = { a E S , , :  d ( u ) s r }  then 

5. L-cliques in (&, d )  

Let d be a right-invariant distance on S,. Let L be a subset of {l .  2. . . . , n} .  We 
call a subset A of S, a L-clique (denote d ( L ) )  if d ( x .  y ) € L  for any x, Y E A .  
x f  y. We call d ( L )  1-code if L = { I ,  1 +  1,. . . , n } ,  I-anticode if L = 

{ 1, 2 , .  . . . I - I}, [-equidistant code if L = { I }  for some integer 1. Let us fix a 
L-clique A. 

For any subset S c S, denote sds(L) any subset B E S such that B is a L-clique. 

Proposition 7. Let S c S,, then 
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i f  either d is bi-invariant or A is symmetric. 

Proposition 7 follows from density bound 

Let q(a. 0) be a right-invariant function q : S, x S,, + R such that 
(a) matrix (q(a, p ) )  of order n!  has only nonnegative eigenvalues and 
(b) q(a, @ ) S O  whenever d ( a ,  P)E L. 

Proposition 8. 

Proposition 8 follows from averaging bound [8] 

Denote L = ( 1 , 2 , .  . . , n}-L.  

Proposition 9. 

i f  either d is bi-invariant or A is symmetric. 

Proposition 9 follows from duality bound [7] 

INL)I . I a ) I  <lS"l. 

We give now two applications of Proposition 9 for the case L = { I ,  1 + 1, . . . , n } ,  
i.e. L-clique A is a l-code. 

Denote A, = B ( d ,  n, [$(f- 1)J). Of course, Al is a symmetric f-anticode. Denote 
A, the stabilizator of a smallest subset M c (1,2, . . . , n}  such that this stabilizator 
is a L-clique (i.e. l-anticode); of course, A, is symmetric. 

Corollary. For L = { I + l ,  1+2, .  . . ,  n}  
6) IAl n!/lAll, 

(ii) \A\  n!/\A,\. 

Explicit values for some IA,( are derivable from Section 4.3. For (ii) one 
obviously has IA21=(n-IMI)! but a general relation between IMI and 1 is 
complicated (see [21). 
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Two well-known upper bounds for codes in (F,)” with Hamming distance 
(Hamming-Rao and Singelton’s bounds) corresponds to (i), (ii). For d = H :  we 
have equality in (ii) iff A is a sharply (n - 1 + 1)-transitive subset of S,,; equality in 
(i) will give the analog of perfect codes. 
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1. Introduction 

The set of all metrics on n points forms a convex polyhedral cone called the 
metric cone, M,,, in (,")-dimensional euclidean space. An extremal metric is a metric 
that is contained on one of the finitely many extreme rays of this cone. It is known 
[l] that almost all graphs induce extremal metrics under the usual graph metric 
induced by the shortest paths in the graph. Thus there are at least 2n2'2-0(n2) 
extreme rays of the metric cone. It has also been shown that there are n o  more 
than 6.59"'such extreme rays [2]. In this note we give a new constructive proof of 
the former result by explicitly exhibiting a family of extremal graphs on n nodes 
that has cardinality 2"2'2-0("3'2). In  particular, for each k-partite graph with parts of 
size m, ,  m2, . . . , mk, we will exhibit an extremal graph with rn, + m,+ . . . + r n k  + 
2k nodes that contains it as an induced subgraph. 

For each connected graph G = (V,  E )  on n vertices, we denote by dG the metric 
induced by the lengths of the shortest paths between pairs of vertices. By the 
truncated metric, &, we mean the metric defined by 

Let F = (V,, E , )  be a subgraph of G. Then F is called an isometric subgraph under 
the metric dG (respectively &) if 

d d i ,  i) = dG(h j )  (respectively &(i, i) = JG(i, j ) )  for all i, j~ V,. 

Clearly, F is an isometric subgraph of G under dG if and only if F is an induced 
subgraph of G. Under dG, it is necessary but not sufficient that F be an induced 
subgraph of G for it to be an isometric subgraph. G is called an extremal graph 
whenever dG induces an extreme ray. 

"This research was supported by N.S.E.R.C. grant A3013 
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2. The construction 

Consider the following equivalence relation defined on the edges of a graph G. 
The equivalence classes will be denoted by colors, so that all equivalent edges 
receive the same color. An isometric cycle coloring of G is defined by the 
following procedure : 

(i) Initially all edges of G are uncolored. Pick any edge and give it color 1, set 
k = 1. 

(ii) Find an uncolored edge that is opposite an edge colored k in some even 
isometric cycle of G. If there is n o  such edge go to step (iii), otherwise color the 
edge k and repeat step (ii). 

(iii) If G is not completely colored, pick any uncolored edge, give it color k + 1. 
set k to k + 1 and go to step (ii). 

A graph is k-ic-colorable if exactly k colors are used in the above procedure. It 
is easy to see that the above procedure will give the same color classes, regardless 
of how the uncolored edges are chosen. We will require the following basic result 
from [I]. 

Theorem 2.1. If G is 1-ic-colorable, then dG is an extremal metric of M,,. 

In particular, we will need the fact that this theorem implies that the complete 
bipartite graph K3,2 induces an extremal metric. 

Let k 2 2  and m,, . . . , mk be fixed positive integers. Let G(m, . . . mk)  = 

( v ~ ,  . . . , v k ,  E, be any k-partite graph with parts v,, . . . , v k  of size m,, . . . , mk 
respectively. We define the graph G = (V .  E)  on rn, + m2 + . . . + mk + 2k nodes as 
follows: 

V = V,  U V, U . . ' U v k  where V, = { u l ,  u,. u2, u2, . . 

and V,, . . . , v k  are as above. 
The edges are defined as follows: (i. j )  E E if and only if 
(a) i, j E V, and ( i ,  j) # (u,, u,) for any t, or 
(b) i = u, or u, for some t and j~ V,. or 
(c) (i, j ) E E .  

Fig. 2.1 contains an example of the construction for k = 2. 

Theorem 2.2. dG is an extremal metric of M,. 

Proof. The proof consists of applying Theorem 2.1 to G. Let t be any integer 
between 1 and k and consider edges (ut, j )  and (q, j )  of type (b). These edges form 
part of the K3.2 induced by the vertices {us, us, ul, v,, j } ,  where s is any integer in 
the range (I ,  k )  different from t. Thus all the edges of this K3,2 will be assigned to 
the same color class, say color 1.  A repetition of this argument shows that all 
edges of type (b) will be assigned color 1. Similarly, all edges of type (a) will be 
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G ( 3 , Z )  G 

Fig. 2.1. 

assigned color 1, since each edge in this class appears in many of the K3,*'s 
described above. Finally, consider an edge (i, j )  of type (c) with i E V, and j E V,. 
This edge forms part of the C, induced by the vertices {i, j ,  us, k} and hence gets 
the color assigned to edge (us, ut ) .  namely color 1. Thus G is 1-ic-colorable and 
the theorem follows. 

Corollary 2.3. M,, has at least 2n2i2p0(n'i2) extreme rays.  

Proof. Consider a multipartite graph on  m 2  nodes with m parts each containing 
m nodes. By Theorem 2.2, each such graph can be embedded into an extrernal 
graph on  m2+2m nodes. Further, the number of such multi-partite graphs is 
2(?)"". Setting n = m2+ 2m we have: 

J n - l s m s J n ,  

hence 

and the corollary follows for these values of n. It is a simple matter to extend the 
result for all values of n. 

In view of the remarks in Section 1, we have shown that every k-partite graph 
can be isometrically embedded under the truncated metric into an extremal graph. 
[l] contains a construction for isometrically embedding any graph under dG into a 
larger extreme ray. This construction is repeated here for completeness. 

For any graph G, define a total order on the vertices and construct the graph 
F ( G )  as follows: 

(i) Make two copies GI and G, of G and join each vertex in GI with its twin 
in G2. 



220 D. Avis 

G F ( G )  

Fig. 2.2. 

(ii) For each edge u,vl of G, with u, < v ,  and its twin u2v2 of G2 with u2<v2, 

Fig. 2.2 contains an example of the construction. It can be shown with the aid 
insert a new vertex x and connect it to u1 and v2. 

of Theorem 2.1 that dF(G) induces an extreme ray. 
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Two properties for integral polyhedra are defined and proved to be equivalent. This 
equivalence serves to prove some old and some new results. It is proved that polyhedra arising 
from flows, integral polymatroids and claw-free graphs have these properties. 

1. Introduction 

An independence system is a pair (E ,  F )  where E is a finite set and F is a family 
of subsets such that if A E F and B E A then B EF. Let c be a weight function 
defined over E and for S G E  let c(S) denote the sum of the weights of the 
elements of S. We say that (E,  F )  has the concavity property if for every weight 
function c, the function 

fc(k)=max{c(S): SEF, IS/= k} 

defined for 0 s  k srnaxssFISI, is concave. 
There are several results which establish this property for some independence 

systems. This paper deals with this property and another one which is equivalent 
but usually easier to establish. 

The properties are defined and proved equivalent in the more general setting of 
polyhedra. In this way the concavity property is obtained for flows, polymatroid 
intersections and claw-free graphs. 

2. Main result 

Let P be a bounded polyhedron whose vertices are integer-valued. Let i (P )  
denote all the integer-valued points of P. Let q be an integer-valued point of [WE 

such that the g.c.d. of its components is one. For every integer k let Hk = 
{x:qx=k}.  Let K={k:  i (P )nH,#q} .  

We say that P has the concauiry property if for all c €RE the function fc : K -+ R 
defined as 

fc(k)=max{cx: x E i ( P )  n Elk} (1) 
is concave in k .  
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We say that P has the intersection property if, for every k E K ,  the vertices of 
P n Hk are integer-valued. 

Theorem 1. P has the concavity property i f  and only i f  i t  has the intersection 
property. 

Proof.' Assume that P has the concavity property. Let k E K and let xi' be a 
vertex of P n Hk. Since Hk is a hyperplane, there exists an edge e of P such that 
x" = Hk fl e. Let x 1  and x2 be the vertices of e. Then 

4x2 - qx" 
qxz-qxi .  

x" = Ax' + (1  - A)x' with A = 

Let C E R ~  be such that cx is maximized over P n H ,  only by xO. Let X * E  

i ( P ) n H k  such that cx*=fc(k).  Then 

cxO3 ex*. ( 3 )  

cx ') = Acx + ( 1 - A )  cx d Af, (qx I )  + ( 1 - A )f, (qx ') 4 f c  ( k ) = cx * . 
Moreover, by the concavity property and (2) we have that 

(4) 

Thus (3) and (4) imply exo = ex* and consequently x" = x*, by the construction 

Assume, now, that P has the intersection property. Let xi,  x2 and x' be vertices 
of c, proving that X " E  i ( P ) ,  and that P has the intersection property. 

of P such that 

ex' = f,(qx') i = 1 , 2 , 3 .  ( 5 )  

Let k = qx2 and 

qx < 4x2 < qx'. 

Let 

4x3 - qx2 
qx3-qx' 

x O =  Ax i+ ( l  -A)x',  A = ( 7 )  

It is easy to prove that xo E P n Hk. By the intersection property we have that 
the maximum of cx over P n Hk is attained at an integer-valued point of P f3 Hk 
and consequently 

ex2 = max{cx: x E i ( P )  n Hk} = max{cx: x E P n H k } 3  cx'). ( 8 )  

Then (7) and (8) imply that 

CX" = Acx ' + (1 - A)cx' = Af, (qx ') + (1 - A)f, (qx') S ex2 = fc (qx2) 

proving that P has the concavity property. 

' This proof assumes that P is bounded, however, it seems that the result IS true even I f  P IS 

unbounded 
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3. Applications of Theorem 1 

3.1. Flows 

Let G = (V, E )  be a digraph with arc set E and node set V and let e be a 

(9) 

distinguished arc. Consider the problem 

Max cx, Ax = 0, a G x s b. 

Where A is the incidence matrix of G, c is a weight function, x is the flow 
function and a and b are integer-valued lower and upper bound vectors for the 
flow. Assume be =a. Let P = { x :  Ax = 0,  a G x < b }  and let q be the incidence 
vector of { e } .  Let us prove that P has the intersection property; with respect to 
this q. Let K and Hk be as defined above. For any k E K we have that 

P n H , = f x :  Ax=O, a s x s b ,  x , = k }  

is the set of flows of size k. Clearly the coefficient matrix which define PnH, is 
totally unimodular and since a, b and k are integer-valued then all vertices of 
P n Hk are integer-valued. That is to say, P has the intersection property. Then 
by Theorem 1 P has the concavity property. 

3.2. Integral polymatroids 

RF = { x  € [ W E :  x 2 0) such that 
An integral polymatroid P in space RE is a compact non-empty subset 

( if O s x 0 ~ x '  and ~ ' E P ,  then ~ ' E P .  

and 

of 

for every integer-valued a ERT, every maximal integer-valued x, such 
that x E P and x a,  has the same sum CltE x j  = r ( a ) ,  called the rank of a 
relative to P. 

An important theorem about polymatroids is the following 

Theorem 2 (Edmonds). For any two integral polymatroids PI and P2 in Ry, the 
vertices of P, n P2 are integer-valued. 

Using this theorem we obtain the following result: 

Theorem 3. If P is the intersection of two integral polymatroids P ,  and P2, then P 
has the intersection property. 

To prove Theorem 3 we need a lemma: 

Lemma 4. If Q is an integral polymatroid, then Qk = { x  E 0: CjeE xj 
integral polymatroid for any integer k such that Qk # 8. 

k }  is an 
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Proof. Clearly Qk is compact and satisfies (10). Let a be an integer-valued 
element of RF and let x be a maximal integer-valued element of Qk such that 
x S a .  Let r(a) denote the rank of a in Q. By the construction of Qk, there is a 
maximal element x 1  of Q such that x s x ' ~  a. If r ( a ) <  k it is clear that 
CitE xi = r (a ) .  If r ( a ) a  k ,  let m = C j c E  xi and let x2 = Ax +(1 - h ) x '  with A = 

( r ( a ) -  k ) / ( r ( a ) - m ) .  Clearly x < x 2 s x 1 ,  X ~ E Q  and C j c E x f =  k therefore ~ ' € 0 ~ .  
But since x is maximal in Qk then x2 = x and therefore CieE xi = k. Thus 

1 x, = min{k, r (a ) } ,  
I G E  

but this expression does not depend on x. Consequently Qk is an integral 
polymatroid with rank 

#(a )  = min{k, r(a)}.  (12) 

Proof of Theorem 3. Let q be the vector of all ones. Let HGk ={x  € I R E :  q x  S k). 
By Lemma 4 we know that Pi =Pi n H s k ,  i = 1,  2 are integral polymatroids. 
Then, by Theorem 2, all the vertices of P', f l  P; are integer-valued. Thus, the 
vertices of P fl H s k  are integer-valued since P n Hsk = Pi n P;. Finally, the 
vertices of P f l  Hk are integer-valued since Pn Hk is a face of P n  H G k .  

Theorem 3 and Theorem 1 give the following result: 

Corollary 5. If P is the intersection of two integral polymatroids and q is  the vector 
of all ones, then P has the concavity property relative to this q. 

A natural particular case of Theorem 3 is obtained when the polymatroids are 
the convex hulls of the incidence vectors. of independent sets of two matroids. 
Thus we have the following result due to Lawler [2]. 

Corollary 6. If M ,  = ( E ,  F,)  and M2 = (E,  F2) are matroids, then for every c €RE 
the function 

is concave. 

It is worth noting that Lawler's proof of Corollary 6 is not convincing. This fact 
was the one that motivated me to find an alternative proof. 
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3.3. Stable sets of nodes in claw-free graphs 

Consider the graph G = (V, A) shown in Fig. 1. A is the arc’ set and V the 
node set of G. Let F be the family of stable subsets of nodes of G. Let q be the 
vector of all ones and let c :  V + R  be the weight function where ci = 1, i = 

1 ,  . . . , 3  and c4 = 3. Let P be the convex hull of incidence vectors of F. Fig. 2 
shows clearly that fc as defined in (1) is not concave. The graph of Fig. 1 is Kl,3 
and has been baptized by Minty [3] as a claw. The exclusion of this type of graph 
gives the class of graphs for which the convex hull of stable sets of nodes has the 
concavity and intersection properties. 

P cl=’ 
G :  

0 1 2 3  k 

Fig. I .  Fig. 2 

Let G = (N, A )  be a graph, let S be the set of stable subsets of nodes of G and 
let CONV(S) denote the convex hull of incidence vectors of stable sets. For 
S G N, I s  will denote the incidence vector of S. Let q be the vector of all ones. 

Theorem 7 .  CONV(S) has the intersection and concavity properties relative to q i f  
and only i f  it is claw-free. 

Proof. Assume G contains a claw as an induced subgraph. Then by the previous 
example CONV(S) does not have the concavity property. 

Assume G is a claw-free graph. The idea is to take any two vertices of 
CONV(S), say I* and IB, such that IBI>IAI+ 1, and prove that the line joining 
I* and I s  is not an edge of CONV(S). Note that this is equivalent to the 
intersection property. 

Let H be the subgraph of G induced by A U B. Since A and B are independent 
sets of nodes, H is bipartite. Moreover, since G is claw-free, all the nodes of H 
are at most of degree 2. The nodes in A n B are isolated and do not play an 
important role in the proof. Therefore assume that 

A n B = f l .  

The word arc is used instead of the word edge which is reserved to denote a face of dimension one 
of a polyhedron. 
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Construct partitions {Ai}, {Bi}, i = 1, , . . , t of A and B respectively with the 

(13) 

(14) 

following two properties: 

1 Bi 1 = 1 Ai 1 + 1 , 

All the neighbors of Ai are in Bi and vice versa. 

Note that several sets Ai may be empty. 
The existence of such partitions follows easily from the fact that all nodes of H 

have degree at most 2 .  

Fig. 3 

We claim that for every integer k between (A1 + 1 and lB( - 1 the vector 

x k  = AIB +(1- h ) l A ,  

where A = ( k  - (A/)/(IBI - IAI), is a convex combination of incidence vectors of 
stable sets of cardinality k. This shows that the line joining I* and IE is not an 
edge. 

To obtain a stable set of size k it is enough to take k - IAl elements of partition 
{B,},  say B1, .  . . , Bk-lA,;  to take the elements of A, whose indices have not been 
considered, i.e. A k - I A l + l , .  . . , A, and to make the union of all these sets. The set 
constructed in this way is independent because by property (14) A, U B,, i f  j ,  is 
independent. To see that such a set is of cardinality k ,  let I be the set of k - / A /  
indices of the elements of €3, which were considered. Then the size of the set we 
are considering is 

Consider all possible independent sets of size k obtainable in the manner 
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described above. Let C denote the family of all such sets. Then 

(" -" ) (k  - n )  ( m - n ) ( m  - k )  
IA 

k - n  
IS + 

m - n  m - n  
k - n  c I - ' =  

I'C 

where m = lBl and n = IAl. Thus 

1 1'. 
1 

Xk =- 

(;::I J E C  

This proves that the line joining I* and I s  is not an edge and consequently 
CONV(S) has the intersection property. Then, by Theorem 1, CONV(S) has the 
concavity property too. 

It is well-known that the problem of finding a maximum-weight matching in a 
graph is equivalent to finding a maximum-weight stable set in the line graph of the 
original graph. Thus we have as a corollary of Theorem 7 a result about 
matchings. 

Corollary 8. The convex hull of the incidence vectors of the matchings of a graph 
has the concavity and intersection properties, relative to the vector q of all ones. 

Proof. It suffices to show that the line graph of any graph is claw-free. This is true 
since k , , 3  is one of the forbidden graphs which characterize line graphs. 

Using Corollary 8 we obtain a similar result concerning b-matchings. Let 
G = (A, N )  be a graph and let b be an integer-valued vector of Ry. An integer-valued 
vector x of R$ is called a b-matching of G if 

1 x , s b ,  V i E N  
J E 1, 

where I ,  = { / € A :  j meets i } .  

Theorem 9. The convex hull P of b-matchings of G has the intersection and 
concavity properties relative to the vector q of a11 ones. 

Proof. Let C E R ~ ,  the problem 

Max{cx: x is a b-matching, qx = k } ,  
x 

can be made equivalent to a I-matching problem as follows: 
Consider one arc j € A  which joins nodes n,  and n2. Replace n ,  and n2 by sets 

of nodes N ,  and N2 of cardinalities b,, and bn2 respectively. Replace j by a set of 
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edges J which join every node in N1 with every node in N2. To each arc in  J 
associate the weight ci. Doing the same thing for all arcs of G generates a new 
graph G‘= (A‘, N’) and a new vector of weights c’. 

Any 1-matching in G’ corresponds to a b-matching in G and any b-matching in 
G corresponds to several 1-matchings in G’ by identification of every j in A with 
its corresponding set J in A‘. Moreover, it is easily seen that for a given 
b-matching x in G anyone of the corresponding 1-matching in G’ has weight 
equal to cx. Thus if q’ is the vector of all ones in RA’, then 

f;.(k)-max{c’x: x is a I-matching of G’ and q’x = k }  

=max{cx: x is a b-matching of G and qx = k ) = f , ( k ) .  

Thus f:. and fc are the same function and by Corollary 8 f:. is concave, thus f, is 
concave and consequently P has the concavity property and by Theorem 1 it has 
the intersection property too. 
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UNE CLASSE PARTICULIERE DE MATROIDES PARFAITS 

Lucien BENETEAU 
UER de Mathkmatiques, Uniuersite Paul Sabatier. 118, route de Narbonne, 31077 Toulouse 
Cedex, France 

The Hall Triple Systems (HTS) are Steiner triple systems in which any three non-collinear 
points generate an affine plane. Such a space may be provided with a structure of perfect 
rnatroid design having as basis the minimal generating subsets. A comp1,ete list of HTSs of order 
S729 may be given: there exist four HTSs of order 729, two HTSs of order 243 and also two 
HTSs of order 81, so that there are exactly eleven HTSs of order ~ 7 2 9  (including the six affine 
ones). 

1. Matroides parfaits 

Dans un matroide, ou gComCtrie combinatoire, nous dirons k-fermC de rang k. 
Un matroide est dit parfait Iorsque deux fermCs de m2me rang ont toujours 
mCme cardinal. Dans un tel matroide de rang r, nous aurons donc pour chaque k 
compris entre 0 et r un entier ak tel que tout k-fermC soit de cardinal ak. Nous 
dirons alors que le matroide parfait consid6rC est de type (ao, a, ,  . . . , a,). Si, 
partant d’un matroide parfait, on enlbve les boucles, c.2.d. les ClCments qui 
figurent dans tout fermC non vide, on obtient un nouveau matroide qui est encore 
parfait, de type (0, a1 - a,,, . . . , a, -ao, . . . . a, - ao). 

E n  dehors des matroides associCs aux espaces affines, vectoriels, projectifs, on 
peut citer comme exemples de matro‘ides parfaits les systemes de Steiner Y (  t ,  k. v) 
(i.e. les t-(v, k ,  I )  bloc designs): dans un tel systbme, les blocs sont les hyperplans 
d’un matroi’de parfait de type (0, 1 ,2 ,  . . . , t -2, t -  1, k, v). L u n e  des propriCtCs 
les plus remarquables des matroides parfaits est le fait que, dans un tel matroide, 

et Fk &ant des fermds de rungs respectifs i et k avec fi  c Fk, pour chaque entier 1 
tel que i C j  < k le nombre de j-ferrnds compns entre F, et Fk est un entier t,,,k 

independant du choix de F, et Fk (Murty et al. [6]). E n  fait, G,,,k ne depend que du 
type du matroide parfait consider6 (et non du rnatroide hi-mCme) comme on le 
vtrifie aiskment par rCcurrence sur j - i. Les matroi’des que nous Ctudierons dans 
la suite auront un type trCs proche de celui des espaces affines ou vectoriels. 
Signalons un exemple “61Cmentaire” de matroide parfait que l’on obtient en 
complttant le classique “thkorbme des bases de Burnside” (cf. M. Hall Jr, The 
Theory of Groups, New York, 1968 par exemple). 

Theoreme 1. Soit p un nombre premier. Dans un p-groupe G, les syst2mes 
g2ndrateurs minimaux sont les bases d’un matroide parfait sur [’ensemble sousja- 
cent a G. Si O(G) = ps, le rang r du matroi’de virijie r 4 s, avec dgalitd seulement 
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lorsque G est un p-groupe abtlien tltmentaire. Enfin, le matroide considire est sans 
isthme, et ses boucles constituent le sous-groups de Frattini 0 de G.  

O n  montre que les fermks de ce matroi’de ne sont autres que les sous-groupes 
contenant @, de sorte que si O(@) = p” le matroide est de rang s - 6 et de type 
(p”, p‘+l, .  . . , pi, pi-c1,.  . , , p’)). Du reste ce matroide est isomorphe celui que 
I’on obtient B partir d’un 3-groupe abklien elkmentaire d’ordre ps en prenant 
pour fermes les sous-groupes contenant un sous-groupe donne d’ordre ps. 

2. Systemes Triples de Hall 

Les Syst2mes Triples de Hall (STH) sont les systemes triples de Steiner ou tout 
triplet de points non colineaires engendre un plan affine-ou encore: oij toute 
symetrie par rapport a un point est un automorphisme. Precisions qu’un systtme 
triple de Steiner est un couple (E, 9) ou E est un ensemble dont les elements sont 
appelks. “points” et 9 une famille de parties de E appelees “droites” telle que 
tout couple de points distincts est contenu dans une droite unique, cha’que droite 
comportant 3 points. Dans un tel systeme la symktrie associee B un point x de E 
est l’involution de E qui, laissant fixe x, associe B chaque y E E\{x} le troisieme 
point de la droite (xy). Hall Jr  montra [ 5 ]  que pour un systeme triple de Steiner 
les deux proprietts suivantes sont kquivalentes: (i) toute symetrie est un  automor- 
phisme (autrement dit: la symetrisee d’une droite est encore une droite); et (ii) 
tout sous-systkme engendre par un triplet de points non colineaires est un plan 
affine B neuf points ( = IF, x IF,, ou [F, est le corps B trois elements). 

Disons qu’un STH est abtlien-ou afine-Iorsque la famille de ses droites est 
associee B une structure d’espace affine sur 5,. De nombreux auteurs ont montri. 
que, mCme lorsqu’un STH est non abklien, son ordre est une puissance de 3. Soit 
donc un STH non rkduit un plan, disons ( E ,  2) avec \El = 3” > 9. On peut munir 
E de deux structures de matroi’de parfait ayant chacune leur intertt propre. La 
plus connue-disons ici, la “structure base”-consiste a prendre comme famille 
d’hyperplans les plans du systeme initial, i.e. les sous-systbmes engendres par 3 
points non colinkaires (cf. Young [7]).  Les bases sont alors les quadruplets de 
points non coplanaires. Le matroide de rang 4 ainsi obtenu est par definition 
mCme des STH un matroide parfait de type (0 ,1 ,3 ,9 ,3”)  * .  . . Plus riche en 
propriktes est ici la “structure haute”: on montre que les sous-systhmes maximaux 
de (E,  2) sont, eux aussi, les hyperplans d’un matroi‘de sur E, lequel admet pour 
bases les parties gineratrices minimales de (E, 3). Precisom: 

Thhreme 2. Dans un STH d’ordre 3“, disons (E,Lf), les parties gtne‘ratrices 
minimales sont les bases d’un matroi’de parfait sur E, sans boucle ni isthme, de rang 
d + 1 avec d s .  On a d = s seulement dans le cas abklien. E n  toufe ge‘ne‘ralite‘, le 
matroi‘de parfait considire‘ est de type  (0,3’, 3’+’, . . . .3’, 3i+’, . . . .3”)  avec 6 =  
s - d. 
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Retenons que d ,  que nous appellerons par la suite la dimension du STH 
considkrk, est caractbid par le fait que toute partie genkratrice minimale 
comporte d + 1 points. 

3, Classification des petits STH 

Nous allons commencer ici la rkpartition en classes d’isomorphie des STH de 
petite cardinalitk. Pour chaque n a l ,  I’espkce de structure des STH admet un 
objet libre en n + 1 gknkrateurs, soit L,,, qui se rCvkle &re de dimension n. On sait 
par [2] que \Ls\ = 349, (L4( = 3” et (L,( = 3, = 81. Hall Jr montra que L3 ktait le 
seul STH non abklien d’ordre 81 (voir [S]). Une situation semblable apparait ZI 
l’ordre suivant, 243 (voir ci-aprbs). I1 est en outre bien connu que les ordres des 
STH non abkliens sont les puissances de 3 supkrieures 5 81: pour chaque n 2 3 le 
produit direct En de L, par le STH abklien de dimension n - 3, disons F;-3, 
constitue un STH non abClien de dimension n et d’ordre 3”+’. 

Theoreme 3.1 (STH de dimension 4). 
(i) Tout STH d’ordre >81 est de dimension 3 4 .  

(ii) Pour v = 3’(resp. 36, resp. 37) il existe un et un seul STH d’ordre v et de 

(iii) II y a exactement quatre STH d’ordre 3’ et de dimension 4. 
(iv) Un. STH de dimension 4 contient au plus 312 kltments. 

dimension 4. 

Un STH sera dit rtductible lorsqu’il peut s’kcrire sous forme d’un produit d’un 
STH d’ordre strictement infCrieur par un STH abklien. A I’ordre 243 apparait 
une situation exceptionnelle: 

Theoreme 3.2. (i) I1 n’y a aucun STH irrgductible d’ordre 243. Donc il n’existe 
qu’un seul STH non abklien d’ordre 243, a savoir E, = 5, x L,. 

(ii) Par contre pour v = 3s avec s = 4 ou s > S  il existe au moins un STH 
irriductible d’ordre 3” et de dimension s - 1 (la plus klevte possible. . .). 

D’aprks ThCorkme 3.2(i), tout STH irrkductible de dimension 2 4  est dordre 
3 729 = 36. Or: 

Theoreme 3.3. (i) I1 existe un et un seul STH irrtductible d’ordre 729 et de 
dimension 4 (resp. S ) ,  soit I,  (resp. I s ) .  

(ii) E n  dehors du STH abe‘lien de dimension 6 ,  il y a exactement trois STH 
d’ordre 729, h savoir I,, I ,  et E, = f f G  x L,. 
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Voici donc le tableau des STH d‘ordre ~ 7 2 9 .  abstraction faite des trois STH 
(abCliens) d’ordre ~ 2 7 ,  F,, Fg et F;: 

Ordre I 
Dimension “---1 

3 
4 
5 

6 

S’agissant des STH d’ordre 37 ils sont tous de dimension comprise entre 4 et 7: 
il en  existe un seul de dimension 4, soit J4, et aussi un seul de dimension 7. F:. En 
outre il  y a exactement quatre STH reductibles, et I’on peut construire pour 
chaque d avec 4 G d < 7 au moins un STH irreductible de dimension d .  d’ou le: 

Thhreme 3.4. I1 exisre au moins sept STH non isomorphes d’ordre 37. 

La preuve des thtoremes de cet articles de survol. assortie des desctriptions 
explicites des STH consider&, figure dans: L. Bknkteau. These d’ktat (partie 
cornbinatoire). Univ. de Provence, Marseille, France-a paraitre. Deux outils 
algebriques y jouent un r6le preponderant: les algebres anticommutatives de 
caracteristique 3 et surtout les boucles de Moufang commutatives d’exposant 3. 
Ces dernieres n e  sont autres que les “boucles”--entendre ici: quasigroupes 
unitaires-qui apparaissent dans I’ensemble sousjacent a un STH lorsque, ayant 
choisi u n e  origine u, on  considere la loi interne qui a tout  couple de points x. y 
associe le quatrigme sommet x + y du parallClogramme (u ,  x, x + y. y )  (voir [I]). 
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ON EDGE-COLORATION OF MULTIGRAPHS 
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Abstract 

We prove some theorems on edge-coloration of multigraphs which generalize 
earlier results due to L.D. Anderson, M.K. Goldberg, Vizing and the author. 
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1. Introduction 

It is very natural to investigate the structure of a graph of connectivity k 
through the collection of its ( k +  1)-connected subgraphs. For example it is 
well-known that any graph of connectivity 1 is characterized by its decomposition 
in blocks and bridges. 

In this paper, we introduce the notion of primitive decomposition of a graph G 
of connectivity k to extend such a decomposition to graphs of higher connectivity. 
The primitive decomposition is induced by the collection of all the k-separating 
sets of G which are themselves k-inseparable. We call k-slackly connected any 
graph of connectivity k with no such k-separating sets; these graphs have a trivial 
primitive decomposition. 

The primitive decomposition of a graph G can be regarded as the coarsest 
decomposition showing off the ( k  + 1)-connected subgraphs of G preserved by 
isomorphism. So, such a decomposition is very interesting for investigating graph 
isomorphism problems [2, 31. 

Then, we give necessary conditions for graphs to be k-slackly connected. It is 
very easy to verify that the graph reduced to an edge is the only 1-slackly 
connected graph and that the cycles are the only 2-slackly connected graphs. But, 
the k-slackly connected are not yet characterized when k 2 3 .  

Although the primitive decomposition of a graph of connectivity 2 has only 
slight visible differences with the decomposition elaborated by Cunningham, 
Hopcroft and Tarjan [ 3 ]  from the ideas of MacLane [4] and Tutte [7] it is very 
different in its natural quality: in the first place, its definition does not depend on a 
constructing process; in the second place, all the fragments of the decomposition 
of a simple graph are simple graphs themselves, we don’t need bonds. This notion 
of primitive decomposition of a graph, though it is very natural, was not already 
used, even for graphs of connectivity 2. 

2. Basic definitions 

We assume for this paper that G = (V, E )  is a simple non-oriented connected 
graph: V and E are respectively the set of vertices and the set of edges of G. 
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A proper subset S of V is a separating set of G iff the subgraph generated by 
V- S is not connected. From now, we suppose that G is not a complete graph to 
be sure that the collection Y of all the separating sets of G is not void. Let k be 
the cardinality of the minimal separating sets of G. Then, G has connectivity k 
and Yk denotes the collection of all the k-separating sets of G. 

All the paths we are concerned with are elementary paths. If a path joins two 
vertices u and v,  the vertices u and v are the end vertices of the path and the 
other vertices the middle vertices. A family of paths joining two vertices is openly 
disjoint if any two paths of the family have only in common their end vertices. 

Two vertices are S-inseparabze ( S E Y )  if they are the end vertices of a path 
having its middle vertices in V-S;  if not, they are S-separable. 

The attachment vertices of a subgraph H of G are the vertices of H adjacent to 
at least a vertex out of H. 

The vertices of H which are not attachment vertices generate a subgraph called 
the interior of H. 

3. The decomposition of a graph G in its 9-blocks 

Let 9 be a subcollection of 9’. The term %-set will be used for a set of the 
collection 9. 

3.1. The %-inseparability relation 

Two vertices of G are 9-inseparable iff they are S-inseparable for every %-set 
S.  The 9-inseparability relation so defined on the set of vertices of G is denoted 
by I ( 9 ) .  This relation is always reflexive and symmetric, but one can readily 
verify that it needs not be transitive. 

Denote by 9-critical the vertices of G belonging to an 9-set. So, we can state a 
trivial useful lemma: 

Lemma. Let u, v, w be three distinct vertices of G. If u Z ( 9 )  v and v I ( 9 )  w, then 
either v is 9-critical or u I ( 9 )  w. 

3 .2 .  

The %-inseparability relation can be extended to the subsets of vertices. A 
subset U of V is 9-inseparable iff any pair of vertices of U are %-inseparable. In 
the same way, two subsets of V are $-inseparable iff their union is 
9-inseparable. So, an 9-se t  S separates two subsets U and W of V if there exists a 
vertex u of U and a vertex w of W which are S-separable. 

3.3. %-pieces 

An 9-piece of G is a subgraph of G generated by a maximal 9-inseparable 
subset of vertices. If 9 consists in only one separating set of G, we find back the 
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usual definition of a piece of a graph with respect to a separating set. So, the 
k-pieces of G are the pieces of G with respect to a k-separating set. 

In general, we must make some assumptions on the family 9 to be sure that the 
%-pieces are significant for the structure of G. 

First of all, we must assume that n o  9’-set is properly included in an $-set; this 
means that 9 must be a subcollection of 9 ’ k .  By this assumption, we get the 
following property: 

Lemma. If 4 is a subcollection of Yk, the 9-critical vertices of an $-piece are 
exactly its attachment vertices. 

Proof. Each attachment vertex v of an %-piece P is adjacent to at least one 
vertex w of G - P .  So, by Lemma 3.1, either v is $-critical or PU{w} is 
9-inseparable; but, the second assumption is contrary to the definition of an 
@-piece. So, we conclude that v is $-critical. 

Conversely, a vertex v which belongs to an 9-set  S is adjacent to at least one 
interior vertex of each S-piece, as S is a minimal separating set by hypothesis. So, 
u is an attachment vertex of any %-piece it belongs. 

3.4. Nested subcollections of Y 

A subcollection 9 of Y is nested iff every %-set is itself 9-inseparable. 
So, any collection consisting in a unique set is nested. Another example is given 

by the collection S; of all the .Y,-inseparable sets of 9,. We will study later on the 
properties of this specific collection. 

We have the following property for any nested subcollection of Y :  

Lemma. Let 9 be a nested subcollection of Y and P, Q two %-inseparable subsets 
of V. The subcollection of all $-sets which separates P and Q {S,, . . . , S,} can be 
ordered such that 

PI(9 )S1 ,  S i f ( 9 ) S i + ,  ( l s i s p - 1 )  and S P 1 ( 9 ) Q .  

Proof. As any %-set Si separates the collection of sets {P,  S,, . , . , Sip,, 
Si+l,  . . . , S,, Q} in two S,-inseparable subsets and as Si is itself %-inseparable, the 
lemma can be proved by induction on p. 

3.5. 

We have as an immediate corollary of this property the following assumptions 
for the pieces of G :  

Corollary. Let 9 be a nested subcollection of 9, A n y  vertex 9-separable from an 
9-p iece  P is separated from P by an %-set included in P. 
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3.6. 

As any @-piece is at least separated from one vertex of G, we have also the 
following corollary: 

Corollary. Every 9-piece with respect to a nested subcollection of 9, contains at 
least k + 1 vertices. 

3.7. 

So, when 9 is a nested subcollection of 9,, the structure of the 9-pieces is 
given by the following proposition: 

Proposition. Let P be an %-piece with respect to a nested subcollection 9 of 9,. The 
set of attachment vertices of P is the union of vertices of a maximal $-inseparable 
subcollection of 9-se ts .  The interior of P is the union of connected components of the 
subgraph of G generated by non 9-critical vertices. 

Proof. Let v be an attachment vertex of P; by Lemma 2.3, v belongs to an 9-set  
S. If S is not included in P, there exists a vertex w of S - P separated from P by 
an %-set. Then, w is separated from P by an $-set included in P (Corollary 3.5). 
As v I ( 9 )  w, this %-set must contain v. We conclude that every attachment vertex 
of P belongs to an %-set included itself in P. In fact, the collection 9 ( P )  of all the 
$-sets included in P is a maximal $-inseparable subcollection of separating sets, 
as any other $-set contains a vertex out of P which is separated from P. 

The assumption concerning the interior of P is only a direct corollary of the 
Lemma 3.3. 

3.8. %-blocks 

Even when 9 is a nested subcollection of Yk, the 9-pieces do not always 
generate connected subgraphs; this fact is shown by the following example: let G 
be the graph having the integers modulo 9 as vertices and the pairs (i, i + 1 mod 9) 
(0 s i s 8) and { i ,  i f 2 mod 9) ( i  = 0, 3 ,  6) as edges. G is a graph of connectivity 2 
whose separating pairs are {0,3}, {3 ,6}  and ( 6 ,  O}.  9, is here nested and the set 
{ 0 , 3 , 6 }  generates a non-connected Y,-piece. 

To avoid this trouble, we consider the 9-completed graph of G, denoted by 
Gi(9). G(9)  is obtained from G by adding edges between vertices of a same 
9-set  when they do not exist in G; these edges are called virtual edges. 

An 9-block  of G is the subgraph of G ( 9 )  generated by the vertices of an 
$-piece of G. 

The following proposition is an obvious consequence of the definitions: 

Proposition. Every nested subcollection 9 of 9, is also a nested subcollection of 
minimaZ separating sets of G(9). The $-pieces of G ( 9 )  are the 9-blocks of G. 
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3.9. 

The main properties of the 9-blocks are a consequence of the following 
lemma: 

Lemma. If 9 is a nested subcollection of Yk, two vertices of a same %-block B 
joined in G by a path non-reduced to an edge and having its middle vertices in 
G -  B belong to a same $-set included in B. 

Proof. Let (uo, u l , .  . . , up) be a path such that p z 2 ,  u,,EB, ui E G - B  
(1 6 i s p - 1) up E B. So uo and up are attachment vertices of B. As u1 is not in B, 
there exists an 9-set S which separates B from ul.  We can assume that S is 
included in B (Corollary 3.5). So, uo belongs to S.  As an S-piece is connected, the 
whole path is in a given S-piece distinct from the one containing B; thereby, up is 
also in S. 

3.10. 

Proposition. Every @-block B with respect to a nested subcollection 9 of Yk is 
k-connected and every k-separating set of B belongs to Y,. 

Proof. As a direct consequence of Lemma 3.9, it is possible to extract from every 
path of G joining two vertices of B a path joining them entirely in G. So, as two 
non-adjacent vertices of B do not belong to the same %-set, it is even possible to 
extract from a family of k openly disjoint paths of G joining these two vertices a 
family of k openly disjoint paths of B joining them. Thereby, B is k-connected. 

The second property is only a consequence of the definition of the 9-blocks. 

3.1 1. Decomposition of G in its 9-blocks 

A set of connected graphs {G, : i E I }  defines a decomposition of a graph G iff G 
is a partial graph of the union of the G,. The graphs G, are the fragments of the 
decomposition. 

So, the set of 9-blocks defined by a nested subcollection of .Yk induces a 
decomposition of G called the decomposition of G in its 9-blocks. As soon as the 
family 9 has an intrinsic definition, the decomposition of G in its %-blocks is 
itself canonical. 

It is very convenient to introduce the notion of $-reduced graph to be able to 
reconstruct G from its decomposition. Given a subcollection of 9, the $-reduced 
graph is the following bipartite graph: its vertices are in a one-to-one correspon- 
dence with the @-sets and the %-blocks; an $-set S is adjacent to an 9-block B 
iff S is included in B. 
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It is an immediate corollary of Lemma 3.4 that: 

Proposition. The $-reduced graph associated to a nested subcollection of 9, is a 
tree. 

So, the $-reduced graph can be considered as a generalization of the well- 
known concept of block-cutvertex tree. 

By using a suitable labelling of the @-sets and of the $-blocks, it is possible to 
reconstruct G up to an isomorphism from its decomposition in its $-blocks and 
from its $-reduced graph. It is even possible to implement this reconstruction 
through a polynomial algorithm. In the next section, we show the use of this 
decomposition for a specific subcollection of separating sets. 

4. The primitive decomposition of a graph 

By definition, the primitive decomposition of a graph G is its decomposition in 
its 9;-blocks where 9; is the subcollection of all the Yk-inseparable sets of Yk. A 
graph G of connectivity k is k-slackly connected iff the collection 9’; is void. If G 
is k-slackly connected, we consider that its primitive decomposition is equal to G 
itself. It is also convenient to consider that the complete graph on k + 1 vertices 
Kk + , is k -slackly connected. 

4.1. 

The following proposition is a straightforward corollary of Proposition 3.10: 

Proposition. 9; is the smallest nested subcollection of y k  inducing a decomposition 
whose fragments are either ( k  + 1)-connected graphs or k-slackly connected graphs. 

Such a proposition can be formulated also in terms of the size of the decompos- 
ition. The interest in such a decomposition comes not only from the fact that it is 
canonic and preserved under isomorphism, but also from the fact that the 
k -slackly connected graphs have specific properties. It is very easy to characterize 
them for k = 1 or k = 2. 

4.2. 

Proposition. The complete graph K2 is the only 1-slackly connected graph. 

Proof. For the graphs of connectivity 1, 9, = 91. K,  is the only graph of 
connectivity 1 with 9, void. 
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One can verify that the primitive decomposition of a graph of connectivity 1 is 
exactly its usual decomposition in blocks which are either 2-connected graphs or 
bridges [l]. 

4.3. 

Proposition. The cycles are the only 2-slackly connected graphs. 

Proof. It is a consequence of the following property: every graph of connec- 
tivity 2 which is not a cycle contains at least a cut pair consisting in two vertices 
joined by at least three openly disjoint paths. There is very simple proof of this by 
induction on the number of vertices of the graph. 

The primitive decomposition of a graph G of connectivity 2 is a decomposition 
of G in fragments which are either 3-connected graphs or cycles. This decomposi- 
tion looks like the decomposition of G in its triconnected components introduced 
by Cunningham, Hopcroft and Tarjan [3] following ideas developed by MacLane 
[4] and Tutte [7]. In fact, it is only a coincidence that these two decompositions 
are very similar as they have been introduced in an essentially different way. We 
must notice that the primitive decomposition of a graph has an intrinsic definition 
which gives directly its uniqueness and that all the fragments of the decomposition 
are simple graphs when G is simple, we don't need to use bonds. 

4.4. 

Unfortunately, we are not able to characterize the k-slackly connected graphs 
when k 3 3 .  For k =3, it is obvious to verify that the wheels are 3-slackly 
connected graphs and that 3-slackly connected graphs are not all 3-critically 
connected graphs. At present, we have only partial results for 3-slackly connected 
graphs. 

It is only possible to deduce from a classical result of Mader [5] on the atoms of 
a graph or from other related results of Fontet [2] the following theorem: 

Theorem. Every k-slackly connected graph contains a vertex of degree less or equal 
to [$k]-l.' 

5. Conclusion 

The concepts of primitive decomposition of a graph and of k-slackly connected 
graphs introduced in this paper seem to play a crucial role in the investigation of 
the structure of a graph through its connectivity properties. Any further results 
concerning these objects may prove very important for an answer to the graph 
isomorphism problem [2, 61. 

[x] denote the integer part of x. 
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Un car16 siamois S(n, p) est un tableau n x n dont les cases contiennent un ou deux elements 
d’un ensemble d e  p symboles ( n  < p < 2n). Chaque symbole apparait une fois e t  une seule dans 
chaque ligne e t  dans chaque colonne, tous les symboles figurent dans le m&me nombre d d e  
cases doubles. Un tel cam6 existe si e t  seulement si p divise 2n(p - n ) ,  d est alors le quotient 
2n(p-  nUp. 

A Siamese square S ( n ,  p) is a n x n array whose cells contain one or two entries from a set of 
p symbols (n < p < 2n). Every symbol occurs in precisely one cell of each row and of each 
column, and in precisely d pairs. Such a square exists if and only if p divides 2n(p - n ) ,  then d 
equals 2n(p - n)/p. 

1. Introduction 

Un can6 siarnois S(n,p) reprCsente le planning de n sCances de travaux 
pratiques sur n machines pour p Ctudiants. Les lignes correspondent aux sCances, 
les colonnes aux machines, les cases contiennent les noms des Ctudiants 
concernb. A chaque sbance, chaque machine est utilide par un ou deux 
Ctudiants. On repartit Cquitablernent le nombre de fois ou les Ctudiants travaillent 
21 deux. 

Definition. Un carrk siamois S ( n , p )  est un tableau n x n  dont chaque case 
contient un ou deux elements d’un ensemble de p symboles, tel que: 

(1) chaque symbole apparaisse une fois et  une seule dans chaque ligne et dans 
chaque colonne de S ;  

(2) il existe un entier d tel que chaque symbole figure dans d couples de S; 
(3) n<p<2n.  

Exemple. 

n 
P 
d 

= 6  
= 8  
= 3  

1 2 3 4  5 6 7 8 
6 1 5  3 2 4 8  7 

78 6 1 2  5 3 4 
4 7 8 1 5 6 2 3  
3 2 4 7 8  1 5 6  
5 8 6 7 3 4  2 1 

Fig. 1. 
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O n  demontre que l’entier d est Cgal a 2n(p - n)/p. Pour qu’il existe un carrC 
siamois S(n ,  p), il faut donc que p divise 2n(p-  n).  Nous verrons que cette 
condition est suffisante. Toutes les dtmonstrations se trouvent dans [4]. 

2. Existence des c a d s  siamois 

Dkfbition. U n  couple siarnois (n, p )  est und couple ordonne d’entiers n et p 
vtrifiant: 

(1) p divise 2n(p - n ) ;  
(2)  n<p<2n. 

Proposition. L’ensemble des couples siamois est l’ensemble des couples (abk, b2k)  
et (abk, 2a2k)  ou a, b et k sont des entiers positifs tels que: 

( 1 )  a<b<2a;  
(2)  b impair et premier auec a ;  
(3)  k a l .  

En construisant deux carres siamois S(ab, b2) et S(ab, 2a2) pour tout couple 
d’entiers a et b tels que a < b < 2a, puis, a partir d‘un carrt siamois S(n,  p), en 
construisant un carre siamois S(nk, pk)  pour tout entier k 2 1, on dtmontre la 
condition d’existence des carrts siamois: 

T h b t b e .  I1 existe un cam6 siamois S(n,  p )  si et seulement si (n, p )  est un couple 
siamois. 

3. Invariants associb a un carre siamois 

Si deux symboles apparaissent dans une mCme case du carre siamois S(n,  p )  on  
appelle couple l’ensemble de ces deux symboles. 

Le graphe des couples est un graphe non orient6 dont les sommets sont les p 
symboles, et  qui a autant d‘arktes (x, y )  qu’il existe de couples {x, y} dans S. I1 est 
rkgulier, de degrt d = 2n(p - n)/p. 

La Fig. 2 decrit le graphe des couples du carre siamois de la Fig. 1. 

1= 2-3= 4 

Fig. 2 

Le dessin est un hypergraphe ( p  - n)-uniforme et 2-rkgulier dont les sommets 
sont les couples du carrt siamois, et dont les arktes contiennent les couples d’une 
mCme rangee. 
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Le cycle C(x, y)  associC 2 deux symboles differents est un graphe non orient& 
dont les sommets sont les cases contenant x ou y. Deux cases de C(x, y )  sont 
relikes par une ar2te si elles se trouvent sur une mZme rangee et  si l’une contient 
x et l’autre y. Les composantes connexes de C(x, y )  sont des boucles doubles et 
des cycles disjoints de longueur paire 24. Si C(x, y )  a au moins deux composantes 
connexes qui ne soient pas des boucles doubles, chacune s’appelle un cycle partiel 
cp (x, Y). 

4. Op6rations sur les carres siamois 

Deux carrCs siamois sont isornorphes si on peut obtenir I’un en permutant les 
lignes, les colonnes et les symboles de l’autre. 11s sont iquiualents si I’un est 
isomorphe 2 l’autre ou a son transposC. 

Les graphes des couples, les dessins et  les cycles de deux carrCs siamois 
Cquivalents sont isomorphes, c’est pourquoi on les appelle des invariants. 

Soient A,, A2, .  . . , Ak k ensembles disjoints de p symboles; soit L un carrC 
latin k x k dont les symboles sont 1,2, . . . , k ;  soient k2 carrks siamois n x n S{ 
(i, j = 1,2, . . . , k )  dont l’ensemble des symboles est Al tel que L{ = 1. On appelle 
carrelage l’opkration qui consiste ii remplacer la case Li de L par le carrk siamois 
Si. Le resultat est un carr6 siamois S(nk, pk) .  

On appelle permutation partielle des symboles x et y 1’6change de x et de y dans 
toutes les cases d’un cycle partiel CP(x, y) d’un carrk siamois S. Si, dans CP(x, y), 
x et y figurent dans le mCme nombre de couples, le rCsultat est un carrt siamois 
qui n’est gtnkralement pas Cquivalent a S car le graphe des couples e t  certains 
cycles peuvent Ctre modifib. 

Une ligne partielle (resp. colonne partielle) d’un carrC siamois est dCfinie par un 
indice de ligne (resp. colonne) et par un ensemble d’indices de colonnes (resp. 
lignes). L’union des cases d’une rangCe partielle, ligne ou colonne, dCfinit un 
ensemble de symboles. Si deux lignes (resp. colonnes) partielles dCfinies par les 
mCme indices de colonnes (resp. lignes) reprksentent les mCmes symboles, on peut 
les Cchanger et obtenir un nouveau carrC siamois. La permutation de rangies 
partielles peut modifier le dessin et  certains cycles. 

Une ligne incomplkte (resp. colonne incomplkte) d’un carrC siamois est dCfinie 
par un indice de ligne (resp. colonne) et un sous-ensemble de symboles. Si le 
rQultat de la permutation de rangies incomplktes est un carrC siamois, ce qui est 
assez rare, les invariants sont le plus souvent modifiks. 

5. Carrb gaulois 

Un carrk gaulois G(n, p )  est un tableau n X n dont les Cltments sont des 
sous-ensembles (eventuellement vides) d’un ensemble de p symboles, tel que 
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chaque symbole figure une fois et une seule dans chaque ligne et dans chaque 
colonne. 

Les carrCs latins et  grCco-latins [l], les carrCs de Room [6], les carr6s de Room 
g6nCralisCs [2], les carrCs de Howell generalids [5] et  les car& siamois sont des 
carrCs gaulois. I1 existe une correspondance biunivoque entre l’ensemble des 
carres gaulois G(n, p) et  l’ensemble des tableaux de p permutations d’ordre n. Le 
tableau de permutations associC a un carre siamois S ( n ,  p) est un A(n, < d ;  p) 
avec les notations de [3] .  

Les operations sur les carres siamois sont applicables aux carrts gaulois, le 
resultat est un carrC gaulois qui n’est generalement pas equivalent au carrt initial. 
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COVERING THREE EDGES WITH A BOND 
IN A NONSEPARABLE GRAPH 

Neil ROBERTSON 
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Kamal CHAKRAVARTI 
Regional College of Education, Orissa, India 

Abstract 

Suppose G is a nonseparable graph and A, B, C are distinct edges of G. 
Necessary and sufficient conditions are given concerning when A, B, C are 
contained in some bond (minimal cut-set of edges) of G. These include a good 
characterization of when A, B, C are not contained in a bond of G. In the special 
case where G is vertex-4-connected this implies that (A, B, C) is a circuit or G is 
planar and A, B, C are coincident in the planar dual of G. 
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RECOGNIZING INTERSECTION PA’ITERNS 

v. CHVATAL 
Department of Computer Science, McGill Uniuersity, Montreal, Que., Canada 

Many combinatorial problems have the following form: given an n x n matrix 
A = (q,) decide whether there are sets S1, S,,  . . . , S,, such that IS, n S,l= 4, for all 
choices of i and j .  If the answer is affirmative, then A is called an intersection 
pattern. Recognizing intersection patterns does not seem easy: for example, 
deciding whether there is a projective plane of order ten amounts to deciding 
whether a certain matrix of size 112 x 112 is an intersection pattern. The purpose 
of this note is to prove that, in a certain well-defined sense, recognizing intersec- 
tion patterns is difficult indeed, and that it remains difficult even when all the 
entries a,, are quite small. More precisely, recognizing intersection patterns with 
a,, = 3 for all i is an NP-complete problem. (Readers unfamiliar with this notion 
are referred to [5]. Roughly speaking, “NP-complete” means “as hard as the 
problem of finding the chromatic number of a graph, the problem of finding the 
largest clique in a graph, etc.”.) In a sense, the bound a,, s 3  is as severe as one 
can impose and still expect NP-completeness: recognizing intersection patterns 
with a,, = 2 for all i amounts to  recognizing line-graphs, which is known to be easy 

It will be convenient to represent each would-be intersection pattern A = (4,) 
with 4, = 3 for all i by a multigraph H in which every two distinct vertices w,, wJ 
are joined by precisely q, edges. By an admissible partition of H, we shall mean a 
partition of its edge-set into disjoint cliques (that is, edge-sets of complete 
subgraphs) such that every vertex belongs to at most three of these cliques. It is an 
easy exercise to show that A is an intersection pattern if and only if there is an 
admissible partition of H.  We shall present an efficient algorithm which, given a 
regular graph G of degree four, constructs a multigraph H such that G is 
three-colorable if and only if there is an admissible partition of H. Since the 
problem of recognizing three-colorable graphs is NP-complete even when the 
input is restricted to regular graphs of degree four [6], it will follow that 
recognizing intersection patterns with q, = 3 for all i is also an NP-complete 
problem. 

The two basic blocks used in building up H are shown in Fig. 1. We shall use 
one copy of R(w,  c )  for each vertex w of G and for each c = 1,2,3.  In addition, 
we shall use one copy of S(w)  for each vertex w of G. The four labels (ek. c )  in 
R ( w , c )  refer to the four edges e, incident with w. Note that each label ( e , c )  

c11,21. 
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( W . C )  

S ( w )  

Fig. 1 

appears in two different building blocks, R(u,  c) and R(v, c) such that e = uv. 
Similarly, each label (w, c) appears in R(w,  c )  as well as in S(w). Identifying 
vertices with the same labels we obtain the multigraph H. 

Before verifying that H has the desired properties, let us examine admissible 
partitions of the individual building blocks. It is easy to construct an admissible 
partition of R(w, c) in which (w, c) belongs to two cliques whereas each (ek, c) 
belongs to only one clique. However, as soon as (w, c) belongs to only one clique, 
each (ek, c) must belong to two cliques. In the former case, we shall say that the 
partition is passive on R(w,  c); in the latter case, the partition is active. Admissi- 
ble partitions of S(w) are simple: two of the vertices (w, c) belong to one clique 
each whereas the third belongs to two cliques. 

Now consider an admissible partition of the entire multigraph H. For each 
vertex w of G there is a color f(w) such that (w,f(w)) belongs to two cliques in 
S(w). It follows that the partition is active on each R(w, f(w)). On the other hand, 
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if u and v are adjacent in G, then the partition cannot be active on both R(u,  c) 
and R(v ,  c): that would force (uv, c) into four different cliques. Hence f is a 
coloring of G. Conversely, let f be a coloring of G by three colors. Partition each 
S(w) so that (w,f(w)) appears in two cliques, add an active partition of each 
R(w,  f(w)) and passive ones on all remaining blocks R(w, c ) .  The result is an 
admissible partition of H.  

The problem of recognizing intersection patterns has been considered by Deza 
[lo] and Kelly [7] .  Additional information can be found, for example, in 
[I, 3,4,8,91. 
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1. Introduction 

If a graph G contains a cycle of length I ,  then clearly G also contains a path of 
length at least 1 - 1 (and this is best possible if G is hamiltonian). In this paper, 
we discuss the converse question. Suppose that one knows that a certain graph G 
contains a path of length I .  What can one say about the length of a longest cycle in 
G? This question was first studied by Dirac [2], who proved that if G is a 
2-connected graph which contains a path of length 1, then G must contain a cycle 
of length at least (2I)f. As Dirac noted, by more careful reasoning one can prove 
that such a graph does, in fact, contain a cycle of length at least 2Z; (see, also, 
Voss [5]). Thus if fk( l )  denotes the largest integer rn such that every k-connected 
graph which contains a path of length I also contains a cycle of length at least m, 
we have 

That this bound is sharp is demonstrated by examples such as the one shown in 
Fig. 1. 

We shall outline here some techniques for dealing with graphs of connectivity 
greater than two; full details may be found in [l, 31. Using these techniques one 
can prove that, for k 2 3  

There is thus a striking difference in the behaviour of the functions f 2 ( Z )  and f3(Z). 
In the special case of 3-regular 3-connected graphs, the lower bound in (2) can be 
substantially improved. Let g ( l )  denote the largest integer rn such that every 
3-regular 3-connected graph which contains a path of length I also contains a 
cycle of length at least m. Then we have 

9 + 2 s  g ( I ) = s g I + 3 .  

253 

(3) 
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Fig. 1 

2. vine 

Let L = wowl . . . w, be a path of length l in a k-connected graph G. Our 
strategy will be to first identify a subgraph H of G which contains L and whose 
structure is relatively simple. We shall then establish the existence of a set of 
cycles in H which between them cover every edge of L a certain number of times, 
thereby yielding a lower bound on the average length of these cycles. 

If u and u are vertices of L we write u < u on L to indicate that u precedes 2, 
on L. The notation P[u,  v] will be used to describe a path P with origin u and 
terminus u. A vine on L is a set 9 ={Pi [&,  vi]: l s i  s m }  of internally-disjoint 
paths such that 

(1) Pi n L = { u , , v i } , l s i s r n ;  
( 2 )  w , = u , ~ u , ~ v , ~ ~ , < v ~ ~ u ~ ~ ~ ~ ~ s ~ , < v ~ ~ ~ ~ < v ,  = w, on L. 
An example of a vine on a path is given in Fig. 2. The graph of Fig. 1 may also 

be regarded as a vine on a path, where the paths of the vine are just single edges. 
Roughly speaking, a vine is a sequence of paths proceeding along L from its 
origin to its terminus in such a way that each path “overlaps” the preceding and 
succeeding paths but no others. It can also be regarded as a minimal set 
{Pi[u,, vi]: 1 < i c m) of internally-disjoint paths which satisfy (1) and for which 
L U (u 

We call vines 9 = ( P i [ y ,  vi]: 1 s i =S m} and 9 = {Qi[xi, yj]: 1 G j s n}  on L dis- 
joint if 

(1) Pi nQ,z V ( L )  for all z, j ,  l s i s r n ,  L c j s n ;  

I Pi) is 2-connected. 

(2) ui = xj 3 u, = w,; 
( 3 )  ui = yi 3 ui = W[. 

Furthermore, we say that such vines are totally-disjoint if they are disjoint and 
there exist no integers i ,  j ,  k such that 

ui+l < y j  s xi+k < ui or < u, s v , , ~  < yj on L (4) 

~ , + ~ < x ~ + , < y < y ~  or X ~ , ~ < U , + ~ < ~ ~ < V ~  on L. (51 
or 

L 

Fig. 2. 
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1 Q2 Q3 Q4 

Fig. 3 .  

Fig. 3 depicts two totally-disjoint vines on a path. 

relies on Menger's theorem. 
The following lemma is the basis of our approach. Its proof, which we omit, 

Lemma. Let L be a path in a k-connected graph G. Then there exist k - 1 
pairwise-disjoint vines PI, P2,. . . , Pk-l on L. 

Having established the existence of k - 1 pairwise-disjoint vines, we modify 
them by relabelling and removing paths so as to end up with k - 1  pairwise 
totally-disjoint vines on L. We denote by H the subgraph of G determined by L 
and these k - 1 vines. 

It now remains to find an appropriate set of cycles in H. For the time being, we 
restrict our attention to the simplest case, that of 3-regular 3-connected graphs. 
Later, we shall touch on the additional complications which arise in dealing with 
k -connected graphs in general. 

Let G be a 3-regular 3-connected graph, let L = wowl . . . wf be a path in G 
and let 8 = { P I [ y , v l ] : l ~ i ~ r n }  and L 2 = { Q J [ ~ , y f ] : l ~ j s n }  be two totally- 
disjoint vines on L. Since G is 3-regular, the subgraph H determined by L, 8 and 
L2 has no vertices of degree greater than three. The absence of arrangements (4) 
and (5) implies that the set 

{uz, u17 u3, v27.. .,%, vm-,1u{x2, Y l ,  x33 Y 2 , .  . . ?  &> Yn-11 

( 4 + 1 ?  V l ) ,  (%+l .  Y,) (6) 

YJ7 ' C ) ?  (%+I? 'J, yl) (7) 

can be partitioned into ordered pairs 

and ordered quadruples 

such that the members of each pair or quadruple occur in that order on L and are 
not separated by the members of any other pair or quadruple. 

We now define three cycles C1, Cz, C, which together cover every edge of H 
exactly twice. It will suffice to  describe how each cycle meets w,, and how each 
traverses a pair or quadruple of the above type. This is most conveniently done 
through diagrams. Fig. 4 shows how the three cycles meet wo. Fig. 5(a) shows 
how, for each possible input, the cycles traverse a pair ( Y + ~ ,  q), and Fig. 5(b) how 
the cycles traverse a quadruple (u,+~, %+1, yJ, q); pairs y,) and quadruples 
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c2 

Fig. 4. 

c3 

Fig. 5 .  

Fig. 6.  
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Fig. 7 

(xi+,, v,, yi) are traversed similarly (the diagrams being reflected in a 
horizontal line). 

Since the cycles together use all three possible inputs at each stage, one sees 
that every edge of H, and hence every edge of L, is covered exactly twice. Thus at 
least one of the cycles must include at least f l  edges of L. 

Fig. 6 depicts a subgraph H, consisting of a path and two totally-disjoint vines, 
and the cycles C,, C,, C, in H. 

We summarise the preceding discussion as a theorem. 

Theorem 1. Let G be a 3-regular 3-connected graph which contains a path L of 
length 1. Then G contains a cycle which includes a t  least $ 1  edges of L. 

The lower bound in (3) is, of course, an immediate corollary to this theorem. 
Although that bound is probably not sharp, examples show that the constant 3 in 
Theorem 1 is sharp. The upper bound in (3) follows from examples such as the 
one depicted in Fig. 7. 

3. k-connected graphs 

We now briefly mention the additional problems one encounters in dealing with 
k-connected graphs. If G is a 3-connected graph in which some vertices have 
degree four or more, the subgraph H determined by L, 9 and 2 may contain 
vertices of degree four. The problem here is that, even though the pairs (6) and 
quadruples (7) can be defined as before, they are not necessarily disjoint - the 
last vertex of one may coincide with the first vertex of the next, as in Fig. 3.  
Therefore the routes used to traverse the pairs and quadruples in the 3-regular 
case may not now combine to form cycles. The solution is to consider various 
other routes in addition to the ones displayed in Fig. 5, and to impose conditions 
as to which routes may follow which. 

In the case of k-connected graphs, k 3 4, further complications arise because 
one cannot simply group the internal vertices of L whose degrees in H are at least 
three into pairs and quadruples. Ordered sets of other lengths must be considered, 
too. Fig. 8 shows the various possibilities that need to be taken into account when 
k =4. 



258 J.A. Bondy, S.C. Locke 

Fig. 8 

For details of how these difficulties are dealt with, we refer the interested 
reader to [l, 31. The theorem from which the lower bound in (2) is deduced reads 
as follows. 

Theorem 2. Let G be a k-connected graph, k a 3 ,  which contains a path L of 

length 1. Then G contains a cycle which includes at least (2k -4 )1 / (3k -4 )  edges 
of L. 

A construction due to Wormald [6] yields the upper bound, valid for all 12 2k, 

One takes the complete bipartite graph & k + l  and replaces all vertices of degree 
k by complete graphs as equal in size as possible. 

To obtain the upper bound in (2), which is better than (8) for large values of I ,  
one iterates the above construction, replacing each vertex of degree k in Kk,k+l by 
the previous graph in the sequence. This idea, the precise details of which we 
omit, is due to  Thomassen [ 4 ] .  

4. Conclusion 

The method that we have employed to derive lower bounds on f k ( l )  and g(/)  

(i) the construction of totally-disjoint vines on the given path; 
(ii) the description of a set of cycles which together cover every edge of the 

path a certain number of times. 
One can show that the limitations of our method lie in stage (i). It follows, 

therefore, that the connectivity hypothesis needs to be exploited more successfully 
if improvements in the lower bounds are to be found. 

consists of two stages: 

We conclude with a conjecture on the function f k ( l ) .  
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Conjecture. There exists a sequence of constants cg ,  c 4 , .  . . , Ck,  . . . such that 
1imkem ck = 1 and 

f k  ( 1 )  ckl 

for all k and I .  
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Let G = G ( X ,  Y )  c_ Kn,n be a bipartite graph with bipartition X ,  Y where 
X={xl , .  . . , x,,} and Y ={yl,. . . , y,}. We associate with G a hypergraph H f ( G )  
whose vertices are the edges of G and whose edges are the 1-factors of G. We 
assume throughout that every edge of G belongs to a 1-factor and for simplicity 
that G is connected. Let A = [u,~] be the n x n matrix of 0’s and 1’s where a,, = 1 
if and only if [xi, x,] is an edge of G. The vertices of Hf(G) correspond to the 1’s 
of A and the edges to the positive diagonals of A. This hypergraph has been the 
subject of two recent investigations [l, 21 and has been called the diagonal 
hypergraph of A. We partially report on these investigations in terms of G rather 
than A. 

A set S of vertices of a hypergraph N is strongly stable if each edge intersects S 
in at most one vertex. In a hypergraph every vertex belongs to at least one edge; 
thus a strongly stable set S has the property that for each x E S there is an edge Ex 
such that Ex nS={x}.  Any set of vertices with this latter property is called 
separable. It follows that a strongly stable set is separable, but the converse need 
not hold. The strong stability number of H, the largest number of vertices in a 
strongly stable set, is denoted by a ( H ) ,  while the separability number, the largest 
number of vertices in a separable set, is denoted by A ( H ) .  Clearly, a ( H ) s A ( H ) .  
It follows that a ( H f ( G ) )  is the largest number of edges no pair of which belong to 
a 1-factor, while A(H,(G))  is the largest number of edges such that each is in a 
1-factor containing no other. Let o ( G )  denote the number of edges of G. 

Theorem 1 (See[1]). a ( H f ( G ) ) ,  A ( H f ( G ) ) s o ( G ) - 2 n + 2 .  Moreover, equality oc- 
curs for a(H,(G)) (respectively, A(H,(G)) )  if and only if there exists X ,  c X and 
Y1 5 Y with IX,I + 1 Y1l = n - 1 such that XI U Y1 is a stable set of G and each 
vertex in XI U Y ,  has degree 2. 

If we allow G to vary over all spanning subgraphs of K,,,, we obtain the 
following . 

Theorem 2 (see [l]). 
if n = 1, 
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Equality occurs i f  and only i f  G = K,,,,, or n = 3 and G is obtained from K3,3 by 
deleting any edge. 

Let S be a strongly stable set of vertices of Hf(G). Then it follows from Konig’s 
theorem that for el, e 2 c  S with el# e2 there exists X ,  G X ,  Y ,  c Y such that 
( X , /  + /Y,I = n - 1, XI U Yl is a stable set of G, and e,, e2 do not meet any vertex 
in X ,  U Y , .  Indeed we have the following. 

Theorem 3 (see [l]). S is a strongly stable set of H,(G) i f  and only i f  there exists 
X ,  c X ,  Y ,  s Y such that \XI( + lY,( = n - 1, XI U Y 1  i s  a stable set of G, and no 
edge of G in S meets a vertex in XI U Y,. 

Corollary 4 (see [l]). a ( H f ( G ) )  = max a(G(X, ,  7,)) where the maximum is taken 
over all stable sets X ,  U Y ,  of G with (X,I + 1 Y,\ = n - 1. 

Corollary 5 (see [l]). 

($(n + l)), 
+.(in + I )  

i f  n is odd, 

if n is even. 

Equality holds i f  and only i f  there exists X ,  ~r X ,  Y ,  c_ Y with / X I \ =  lY,\ = 

i ( n  - 1) ( n  odd) or { lX , ( ,  1 Y,I} = {+n, in - l}  ( n  even) such that X ,  U Y ,  is a stable set 
of G and G(?7,, 7,) is a complete graph. 

a(H, (G))  =s 

Other invariants of H f ( G )  are investigated in [I]. 
We now turn to the isomorphism problem investigated in [2].  Let G,. G, c K,, 

be connected bipartite graphs such that each edge belongs to a 1-factor. If GI and 
G ,  are isomorphic, then it follows readily that H f ( G l )  and Hf(G,)  are isomorphic. 
But the converse need not hold as the following example [2] shows. Let 

0 0 a 0 a b c  d e  
0 0 0 i 

The edges of G,  and G, are labelled a. h, . . . , r~ and an edge joins vertices x, and 
y, of G,  (respectively, G,) provided it occurs in row i and column j of A ,  
(respectively, A2). Since the 1-factors of both G, and G2 are afhlm. bfhjm. cfhjk. 
dghjk, egijk, it follows that Hf(G,) and H,(G,) are isomorphic, but GI  and G, are 
n o t  isomorphic since G,, but not G I ,  has a vertex of degree S .  

Two other hypergraphs can be associated with the bipartite graph G 5 K ,  n.  

These are the strongly stable hypergraph H, (G)  whose edges are the strongly 
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stable sets of Hf(G) and the cycle hypergraph H,(G) whose edges are the sets of 
edges of G which constitute an elementary cycle. Let cp be a bijection between 
the edges of GI and those of G,. According to [2]: cp is an isomorphism of H,(G,) 
and Hf(G,) if and only if cp is an isomorphism of H,(G,) and H,(G,); if cp is an 
isomorphism of Hf(G,) and Hf(G,), then cp is an isomorphism of Hc(Gl) and 
Hc(G,); if cp is an isomorphism of H c ( G , )  and Hc(G,) and there exists a 1-factor 
F of G1 such that p ( F )  is a 1-factor of G,, then cp is an isomorphism of Hf(G,) 
and Hf(G,). 

Let L, denote the set of edges of G which meet vertex z .  Then L, is a 
(maximal) strongly stable set of H,(G) which we call linear. If L is a linear set of 
GI and cp an isomorphism of Hf(GI) and H,(G,), then cp(L) need not be linear as 
the example above with L ={a ,  b, c, d, e }  shows. A set P of edges of G is 
linearizable if there exists G, and an isomorphism cp of Hf(G) and H,(G,) such 
that cp(P) is a subset of a linear set of G,. 

Theorem 6 (see [2]).  If P is a linearizable set of G, then P is a strongly stable set of 
Hf(G), contains no edge of Hc(G) ,  and \PI s n. (Actually the third condition is a 
consequence of the first two.) 

Suppose { 1, . . . , n }  = N U  M where IN n MI = 1, and suppose that 
{x,: i E R } U { y , : j E i % }  and {xl: i E i % } U { y , : j E N }  are stable sets of G. Let G’ be 
the bipartite graph obtained from G by replacing each edge of the form 
[x,, y,], i, j E N, with [x,, y ,] .  Then by [2] the mapping 8 from the edges of G to 
those of G’ defined by: 8[x,, y,]  = [x,, y , ]  if i, j E N and e[x,, y,] = [x,, y ,]  otherwise 
is an isomorphism of Hf(G) and Hf(G’). The graph G’ is said to be obtained from 
G by a partial interchange of X and Y. 

Theorem 7 (see [2]). Let S be a set of n edges of G. Then S is linearizable if and 
only if there exists X1 G X,  Y1 E Y with lXll + YIJ = n - 1 such that the following 
hold: 

(i) X ,  U Y ,  is a stable set of G. 
(ii) S consists exactly of those edges of G which join a vertex in X, and a vertex 

(iii) S contains no edge of H c ( G ) .  
(iv) For each vertex x E XI the number of vertices u of X ,  such that L,, c L, 

equals IL,\- I .  
(v) For each vertex y of Y ,  the number of vertices w of Y ,  such that L, s L, 

equals I& 1 - 1 .  
Moreover if GI is a bipartite graph and 9 an isomorphism of Hf(G) and H,(G,) 
such that Q(S) is a linear set of GI,  then G ,  is unique up to isomorphism and 4 is a 
composition of  isomorphisms induced by graph isomorphisms and partial inter- 
change. 

in Y,. 
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Investigations are continuing to determine if isomorphisms of H,(G) are always 
induced by graph isomorphisms and partial interchanges. 
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Abstract 

Fisher (1928) introduced a combinatorial method €or obtaining the sampling 
moments/cumulants of k-statistics in terms of population cumulants. His method 
for infinite populations was modified €or finite populations by Tracy (1963). 
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This paper surveys how certain programming problems may be related to some concepts and 
results in algebraic topology, especially, how the graphic method for solving the Chinese 
postman problem and that for solving the transportation problem may be considered as special 
cases of programming problems on I-complexes. 

1. Introduction 

In China, the graphic method for solving the transportation problem [11] was 
originally an empirical method. Theoretical studies [4-7, 111 of this method led 
gradually to use tools in algebraic topology to prove theorems about optimization 
problems on  simple graphs. Then these can be considered as programming 
problems on 1 -complexes and generalizations to n-complexes are straightforward 
[ 3 ,  121. This paper is a survey of old results [12] supplemented with a few new 
results, showing how certain programming problems may be related to concepts 
and results in algebraic topology. 

2. A programming problem on K" 

Problem 1. Given a n-dimensional finite and complete complex K". Find an 
r-chain 

0' 

x r =  2 X~A; ( l s r s n )  (2.1) 
j = l  

with a given boundary [1] 

A,, = br--l = biA!-' 
i = l  

to minimize the objective function 
a' 

f(x')= c (xi( u(Af), 
j = l  

(2.3) 

where ar is the number of r-dimensional simplexes of K", xj is the coefficient of 
the oriented r-dimensional simplex Aj, u(AJ) is the "volume" (a positive number) 
of AJ ( j  = 1,2, . . . , ar) ,  and bi is the coefficient of the (r - 1)-dimensional oriented 

267 
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simplex A:-' ( i  = 1 , 2 , .  . . , arpl). The coefficient group G may be the group R of 
reals or the group J of rational numbers or the group I of integers or the group 
G, of integers modulo 2. We confine G to be one of the groups just mentioned, 
although G may be a group other than these. When G = GZ, the absolute value 
\xi\ is defined to be 0 or 1 in the obvious way. 

Example 1. A transportation problem is shown in Fig. 1.  We may think of the 
edges of this undirected graph as 1-simplexes oriented arbitrarily. Consider the 
0-chain 

b = b" = -9A- B -4C+ D -E+ 7F- 4G + 2H + 31 + 6M, (2.4) 

which may be interpreted as that the quantity of supply at the origin A is 9, the 
quantity of demand at the destination M is 6, and so on [c)]. The index of b" is 
zero, which means that the total demand equals the total supply. A feasible 
solution shown in the figure may be expressed as a 1-chain 

x = X '  = BC+ 5CD+ 4DE- 8FE- 2FG + 2GH + 3AE+ 3FI + 6AM, (2.5) 

which means that the quantity shipped along CD is 5 and is from C to D, and that 
along FG is 2 and is from G to F, and so on.'  (Quantities shipped from opposite 
directions along the same route are excluded in the graphic method.) We have 

(2.6) 

which affirms the feasibility of x = x'. Let ti ( j  = 1,2, . . . , 11) denote the oriented 
1-simplexes in Fig. 1. and let v( t ; )  be the corresponding lengths. Then our 

A X ' =  C- B + 5(D-C) + 3(E- D) - 8(E-F) - .  . . = b, 

+6M +3 I 

\ - 9 A  -+ -: a + 7 F  ,/ 
3 

- 0  

y - + D  +2H - 4 G  

Fig. 1 

' As we know, a I-chain x such as (2.7) is a function defined o n  the given set S of oriented 
1-simplexes with values in G such that to each ti in S there corresponds an element ~ ( t ; )  = a, in G 
satisfying the condition x(-t;) = - x ( t ; )  = -a, : it may be expressed as a linear form (2.7) in which each 
a,( is a 1-chain whose value on t i  is a, and whose values on any * t :  other than *ti are all zero. (see [l .  
pp. 259-2621). The reason for thinking of a flow o n  a graph as a 1 -chain lies in that one can then make 
use of operations among chains. For example, the difference x - y of two 1-chains x and y satisfying 
(2.8) is a I-cycle, since A ( x - y ) = A x - A y = b - b = O .  
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D C  B A  

Fig. 2. 

transportation problem is to find 
11 

x = a;t; 
j = 1  

satisfying 

Ax = b 

and minimizing the total cost of shipments 
11 

f(x) = C IajI v(t;). 
;=1 

Example 2. A post route problem [6] (the so called Chinese postman problem 
[2]) is shown in Fig. 2. The odd points in this graph form a 0-chain modulo 2: 

d = B + C + E + G + H + I .  

The problem is to add some arcs to make the odd points even, i.e., to  find 
1 3  

x = 1 ajti (mod 2) 
, = 1  

satisfying 
A x = d  (mod2) 

(2.10) 

(2.11) 

and minimizing the total lengths of the added arcs 
13 

f(x) = C Ia,I v(t:). (2.12) 
i = l  

Example 3. A solid transportation problem may be formulated as an example for 
Problem 1 in the case n = r = 2 (see [12]). 

3. Subchains and subcycles 

Let 
OL' Q' 

x r =  1 4 A f  and Z'= 1 z,A; 
; = 1  j = l  

be two r-chains on K". 
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Subchains. If the coefficient group G = R, J or I and if 
(a) Izjlslxi/  
(b) x,zj > 0  for each zj# 0, 

( j =  1 ,2 , ,  . . , ar) ,  

then we say that x' contains Z' or Z' is a subchain of x', in symbols x r  3 Z'. If at 
least one x i#  0 corresponds to zj = 0, then Z' is called a proper subchain of xr. 
Furthermore, if Z' is a r-cycle, then Z' is said to be a subcycle of xr. When 
G = GZ, the definitions are the same except that the condition (b) is deleted. 

Simple cycles. If a r-cycle Z' does not contain any non-zero r-cycle as its proper 
subcycle, then it is called a simple cycle. If a r-cycle Z' with integral coefficients 
has n o  subcycle with integral coefficients other than 0 and itself, then Z' is called 
a primitive cycle. 

Cycles normal to x'. Let 

Q =  1 / z l /  v(Af), u =  C u(Aj). 

When G = R, J or I ,  we will say that a r-cycle Z' is normal with respect to xr, if 

x, =o X,Z,#O 

Z,#O 

A = Q + p - q s O  and A ' = Q + q - p s O .  (3.3) 

In case G = G,, we will say that Z' is normal with respect to x', if Q - u 3 0  (in 
the computation of Q and u all the expressions xI = 0, zI # 0 and x,z, # 0 are 
understood to be modulo 2). 

4. Optimality criterion 

For the sake of simplicity, we confine G to be one of the fields R, J and G, in 
this section. 

Theorem 1. In  order that a feasible r-chain xr of Problem 1 is optimal it is 
necessary and sufjLicient that every primitiue r-cycle (or, equivalently, every non-zero 
r-cycle) is normal with respect to x'. 

When n = r = 1, this theorem becomes the fundamental theorem of the said 
graphic method (when G = R) [ll] as well as the main theorem for the Chinese 
postman problem (when G = G2) [6]. As an example, suppose, in Fig. 1, that 

u(AB) = v(BC) = v(DH) = v(HG) = 1 
and the lengths of the remaining edges are all equal to 1. Then, the 1-cycle 

Z = AB + BC+ C D +  3DE+ EA+ 2EF+ 2FG+ 2GH + 2HD 
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is not normal with respect to x’ given in (2.5), since p = 7 &  q = 3 ,  Q =  
1+, Q + p - q > O  but Q + q - p < 0. From x’ and 2 we obtain a new feasible chain 

y = x’- Z = -AE3 + 4CD + DE+ 6EF- 4FG + 4AE- 2HD + 3FI+ 6AM 

with f ( y )  = 29;< f(x’) = 32;. It is easily seen that y is optimal, since each of the 
three primitive 1-cycles in Fig. 1 is normal. 

Theorem 2. Let 

z;= 5 zijAJ (i = 1,2, . . . , s) (4.1) 

be a given base of the group of r-cycles on K”. Suppose that xr is a basic feasible 
chain of Problem 1, i.e., it is feasible and it satisfies the condition that if ziizki # 0 for 
some i f  k ,  then xi# 0. If each r-cycle Zf in the base (4.1) is normal with respect to 
xr, then xr  is optimal. 

; = 1  

This theorem is not only a generalization of the main theorem in the improved 
Graphic Method [7], but also an improved theorem for the Chinese postman 
problem [6]. For example, suppose, in Fig. 2, that v(G1) > v(IB), then the 1-chain 
x = EH + GH + HC + IB satisfies (2.11). This basic feasible chain is optimal, since 
the four primitive cycles corresponding to  the rectangles DCHED, EHGFE, 
CBIGHC and BAJIB form a base and are all normal. Thus we need only to 
examine 4 primitive cycles instead of 12 required in [6]. 

Applying algebraic topology tools the proofs of the above theorems [12] are 
simpler than those in [6,7, 111 which deal with the special cases. From these 
theorems an algorithm for solving Problem 1 may be obtained whenever feasible 
r-chains exist. Firstly, by introducing the concept “imaginary flow” one can 
always obtain a basic feasible chain y from a feasible chain x satisfying f(y) c f ( x ) .  
Then, one make interations among basic feasible chains until an optimal one is 
obtained [7, 121. (But it is left to be perfected for the degenerate case.) When 
n = r = 1 and G = R or J,  this algorithm (i.e., the so called “graphic method”) is 
quite effective for the case of a graph in which there are dozens or hundreds of 
vertices and edges but only a few cycles. A lot of transhipment problems on a 
graph are of this nature. 

5. Dual problems 

Let 

xr = 1 xiAf and y r  = y,A; 

be two r-chains of K“. If for each j ,  ( x j  1 =z (yi(, then we write x r  yr. 
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Problem 2. On K" find a (r - 1)-chain 

y'-' c b iAf - l  
i = l  

with coboundary Vy'-l satisfying 
a' 

Vy'-' v(A;)Aj 
j = 1  

to maximize the objective function 

i = l  

(5.1) 

(5.2) 

(5.3) 

Potential chain of x'. Let ~ ( 3 )  be the sign of 3. If there exists a (r- 1)-chain 
yr-'  such that 

(Vy'-' - Aj) = &(xj)v(Aj) 

for each xi # 0, then we say that y'-' is a potential chain of the r-chain xr  

Theorem 3. Suppose that G = R, J or I .  Let X' be a basic feasible chain of Problem 
1 and y'-' be a potential chain of xr. If yr-' is a feasible chain of Problem 2, then 
xr  is an optimal solution for Problem 1. 

6. Subcomplexes as chains modulo 2 

In this section we suppose that G = G2 and 1 S r S n. Let A' and B' be any two 
r-dimensional simplexes on K". If there exists an r-chain cr  which may be written 
in the form 

c r =  f Aik (mod2) ( m s l ) ,  
k = l  

A' =A;, ,  B' = Aim 

and if any two consecutive A;, and A;,+, have at least a (r- 1)-face in common. 
then we say that c' connects A' and B'. 

If a r-chain x r  (mod 2) does not contain any r-cycle other than 0 and it is not a 
proper subchain of any other r-chain with the same property, then xr  is called a 
r-dimensional spanning forest of K". Furthermore, if any two A' and B' (viewed 
as chains) contained in xr  are connected by a subchain c' of XI, then x r  is called a 
r-dimensional spanning tree of K". (For n = 1, a 1-dimensional spanning tree just 
defined is a spanning tree in the usual sense only if K" contains no isolated 
vertex .) 
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Example. In the usual triangulation both the ring surface and the Mobius tape are 
2-dimensional trees while the torus is not. 

7. Minimum spanning r-dimensional forest on K" 

Problem. On K" find a spanning r-dimensional forest 
a' 

x r =  xiAj (mod2) ( l e r s n )  
j = l  

to minimize the function 
a, 

f(x')= 1 Ixjl u(Aj). 
i = l  

(7.1) 

(7.2) 

An algorithm. Suppose that a base of the r-cycles (mod 2) of K" is given: 
a' 

z;= c zijAf, AZf=O (mod 2), (i = 1,2, .  . . , s). (7.3) 
j = l  

Let h = 1 ,2 , .  . . , s. We start with h = 1. 
(a) Find the simplex A;h contained in Z;  with greatest volume. 
(b) Change the base (7.3) by substracting ZL from each Zl(i# h )  which 

contains A;h, if any such Zl exists. The new base is still denoted by (7.3) as in a 
computer program. 

(c) If h < s, increase the value of h by 1 and return to (a). If h = s, then stop. 

After s iterations, we get an r-chain 

x r =  A;- t A;,, (mod2) 
a' 

!=I h =  1 

which can be proved2 to be a minimum spanning r-dimensional forest (or tree, if 
it exists) of K". 

This algorithm is a generalization of [S] and [lo]. 

8. Contracting branches 
In Fig. 1, if we contract AM and FI, respectively, into A and F and replace 

-9A+6M and 7F+31, respectively, by -3A and 10F in the 0-chain bo, we will 
get a new transportation problem whose optimal feasible chain corresponds to 
that of the old problem. This construction can be generalized to n-dimensional 
complexes by the use of suitable simplicia1 mapping [12]. 

'To appear soon in an article in The Natural Science Journal of Shandong University 
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PATHS AND CYCLES IN ORIENTED GRAPHS 

Bill JACKSON 
University of Reading, Reading, England. 

We define an oriented graph to be a directed simple graph and a tournament to 
be a directed complete graph. Let D be an oriented graph. If each vertex of D 
has in-degree and out-degree equal to k ,  we shall say that D is k-diregular, or 
more simply, that D is diregular. Our initial reason for considering oriented 
graphs was the following conjecture of Kelly (see Moon [ 3 ] ) .  

Kelly’s Conjecture. Every diregular tournament is decomposable into Hamilton 
cycles. 

It follows from a theorem of Meyniel [ I ]  that every diregular tournament is 
hamiltonian. We have tried to show that a diregular tournament contains several 
edge-disjoint Hamilton cycles by proving that all diregular oriented graphs of 
large degree are hamiltonian. Our only success to date, however, is the following. 

Theorem 1 (Jackson [2]). I f  D is an oriented graph on at most 2k  + 2 vertices such 
that each vertex has in-degree and out-degree at least k ,  then D is hamiltonian. 

A conjecture of Thomassen indicates that Theorem 1 is far from being best 
possible. 

Conjecture 1 (Thomassen [ 4 ] ) .  If D is an oriented graph on at most 3 k  vertices 
such that each vertex has in-degree and out-degree at least k, then D is hamilto- 
nian. 

We feel that a still stronger result may hold for the special case of diregular 
graphs. 

Conjecture 2. For k 
hamiltonian. 

3 ,  every k-diregular oriented graph on at most 4 k  vertices is 

We note, however, that the oriented graphs of Fig. 1 illustrate that the 
conclusion of Conjecture 2 is false when k = 2. 

Conjectures 1 and 2 would imply that a diregular tournament on 2k + 1 vertices 
contained [ f (k  + 2)], and [:(2k + 3)]  edge-disjoint Hamilton cycles respectively. 

The techniques used to prove Theorem 1 also yield the following result. 
275 
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Fig. 1. 

Theorem 2 (Jackson, [2]). Every diregular oriented complete bipartite graph is 
hamiltonian. 

We conjecture, again, that Theorem 2 is far from being best possible. 

Conjecture 3. Every diregular oriented complete bipartite graph is decomposable 
into Hamilton cycles. 

Recently, we have proved the following result concerning the existence of long 
paths in oriented graphs. 

Theorem 3 (Jackson, [ 2 ] ) .  Every oriented graph of minimum in-degree and 
out-degree at least k contains a path of length at least 2 k .  

Theorem 3 is, in a trivial sense, best possible because of the existence of 
diregular tournaments on 2 k  + 1 vertices. We feel, however, that a still stronger 
result is true. 

Conjecture 4. Every diconnected oriented graph of minimum in-degree and out- 
degree at least k contains either, a Hamilton path, or else a path of length at least 
3 k .  

A construction, essentially due to Thomassen, shows that the bound on  the 
length of a longest path in Conjecture 4 cannot be increased. Consider an 
oriented graph D whose vertices are partitioned into three sets A , ,  A,, and A, 
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such that a vertex x in Ai dominates a vertex y in Ai if and only if j i + 1 
(mod 3). If \A, \  = \A2\ = k and ]A,/ 3 k + 1, then D has minimum in-degree and 
out-degree k, and its longest path has length 3k.  

In the light of Theorem 3, we feel that Conjecture 4 is the most hopeful of the 
conjectures given in this talk. If true, Conjecture 4 would imply that a diregular 
tournament on 2 k  + 1 vertices at least contained [ i k ] +  1 edge disjoint Hamilton 
paths. 
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ON A DIGRAPH DIMENSION 

Olivier COGIS 
Insritur de Programmation, Uniuersite' Pierre et Marie Curie, 4, place Jussieu. 75230 Paris, Cedex 
05, France 

The Ferrers dimension d , ( G )  of a digraph G being the smallest number of Ferrers diagraphs 
whose intersection is G (the Ferrers dimension is known to generalize the poset dimension), 
two characterizations of d , ( G )  are given. In particular, the problem of finding the Ferrers 
dimension of a digraph is shown to be polynomially reducible to the problem of finding the 
threshold dimension of a graph. 

1. Introduction 

Among the different possible ways to define a dimension for a digraph, there is 
one, which has been introduced by Bouchet [l] and which we call the Ferrers 
dimension, that has the interesting property of being a generalization of the usual 
poset dimension (the dimension of a partially ordered set P is the smallest number 
of totally ordered sets whose intersection is P ) .  

The two results we state in this paper show that the problem of finding the 
Ferrers dimension of a digraph is polynomially equivalent to the problem of 
finding a specific covering, with minimum cardinality, of a bipartite graph, which, 
in turn, is polynomially equivalent to the problem of finding the threshold 
dimension, introduced by Chvatal and Hammer [2], of a split graph. In particular, 
the problem of finding the usual dimension of a poset is polynomially reducible to 
the problem of finding the threshold dimension of a graph. 

2. Definitions 

In order to be more specific, we need the following definitions. 
All throughout this paper, a digraph may have loops but no multiple directed 

edge, and a graph has no loop and no  multiple edge. If G is a digraph (resp. a 
graph), V(G)  is the set of its vertices and E(G) is the set of its directed edges 
(resp. edges). 

A digraph G induces a 4-alternated-anticycle where there exist ab, cd E E ( G )  
while cb, a d $ E ( G ) ;  note that one might have a = c  or b = d .  

A Ferrers digraph is a digraph that induces no 4-alternated-anticycle. 
A graph G induces a 4-alternated-cycle when there exist ah, cd E E(G)  while 

bc, d a g  E(G);  note that a, b, c and d are necessarily distinct vertices. 
279 
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A threshold graph is a graph that induces no 4-alternated-cycle. 
For more information about Ferrers digraphs, threshold graphs and some of 

their connections, see [6], [2 ]  and [31. 
The Ferrers dimension of a digraph G, denoted by d , (G) ,  is the smallest 

number of Ferrers digraphs whose intersection is G. If P is a poset, then its 
dimension as a poset is equal to its Ferrers dimension [l]. 

The threshold dimension of a graph G, denoted by d , (G) ,  is the smallest 
number of threshold graphs whose union is G. 

A split graph G is a graph such that V(G) can be partitioned into two sets K 
and I so that any two vertices of K are adjacent and any two vertices of I are not 
adjacent. 

We say that G is a tightened bipartite graph when G is a bipartite graph such 
that for any two non adjacent edges of G there exists at least one edge of G that 
is adjacent to both of them. 

3. Results 

Given any digraph G, we denote by Gb the bipartite graph defined, up to 
isomorphism, in the following way: 

. V ( G b )  is the union of two disjoint sets V, and V, such that there exists two 

. a , b , E E ( G b )  with a,= fl(a) and b,=  f 2 (b )  iff a b & E ( G ) .  

(Note that given any bipartite graph H, there exists a digraph G such that 
H =  G’.) 

It is known, and easily seen, that a digraph is a Ferrers digraph iff its 
complementary is also a Ferrers digraph, and therefore, given any digraph G, 
d , ( G )  is the smallest number of Ferrers digraphs whose union is the complemen- 
tary of G. 

As G is a Ferrers digraph iff Gb is a tightened bipartite graph, one can show 
that: 

bijections f ,  : V(G) -+ V, and f2: V(G) -+ V,. 

Theorem 1. Given any digraph G, d,(G) is the smallest number of tightened 
bipartite graphs whose union is  Gb.  

Given any digraph G, we denote by Gs the split graph obtained from Gb by 
adding any necessary edge so that any two vertices of V, are adjacent (note that 
given any split graph H, there exists a digraph G such that H = G”). 

Now, considering that the transformation used to obtain G” from Gb is in fact a 
correspondence between tightened bipartite graphs and threshold graphs, one can 
prove that: 

Theorem 2. Given any digraph G, d , ( G )  = d , ( G s ) .  
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As a conclusion, let us point out that Theorem 2 and its proof establish a strong 
link between the Ferrers dimension of digraphs and the threshold dimension of 
split graphs. For example, graphs of threshold dimension 2 have been charac- 
terized in two particular cases [5],  one of them being the case of splits graphs. 
This result, together with Theorem 2, yields a characterization of digraphs of 
Ferrers dimension 2, which has been independently proved [4]. 
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1. Introduction 

Partially ordered sets, in short, ordered sets, arise in many branches of mathema- 
tics and its applications. Still, the problems in which they occur may deal only 
peripherally with order. This remark notwithstanding, there are some fundamental 
(albeit simple) results concerning ordered sets which are far-reaching and well- 
known. Among the trade names that are likely to come to mind are Cantor, 
Dilworth, Hausdorff, Knaster, Szpilrajn and Tarski. 

From time to time rudimentary facts about ordered sets have been amplified, 
enriched, and extended by detailed, and often deep, investigations. For instance, 
the recent work of several authors [15, 18, 19, 291 (cf. [24 ] )  on  the dimension of 
ordered sets has at its foundation Szpilrajn’s well-known “linear extension 
theorem” [27]. Lately such work is either spurred by, or an outgrowth of, the 
current combinatorial vogue. 

The “fixed point theorem” of Knaster and Tarski goes back more than fifty 
years [20] although it was only in 1955 that it was published by Tarski [28] in the 
context of lattices’: every order-preserving map f [x f ( y ) ]  of a 
complete lattice I. to itself has a fixed point [f(x) = x for some x EL]. Efforts to 
generalize the Knaster-Tarski theorem over the next two decades were little more 
than lackluster variations of its beautiful and incisive proof. 

Indeed, only very recently has the issue been resurrected in the general context 
of ordered sets: characterize those ordered sets P for which every order-preserving 
map of P to itself has a fixed point. While a satisfactory solution to this problem 
would at this time seem to be remote there have recently emerged several 
encouraging perspectives on the problem. some quite innovative and unexpected. 
It is the purpose of this paper to survey some of the highlights of recent work on 
this “fixed point problem” and certain of its cognates. 

y implies f ( x )  

*The work presented here was supported in part by the N.S.E.R.C. Operating Grant No. A4077. 
‘It  seems, retrospectively at least, that this important result has remained largely within the 

jurisdiction of lattice theory, whence. primarily of algebra (cf. [6]) .  With Davis’ companion paper [8 ]  in 
1955 the scope of order-theoretic fixed point questions seemed largely prescribed: i f  every order- 
preseruing map of a lattice to itself has a fixed point. then the lattice is complete. 
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I 

Fig. 1 .  Complete lattices have the fixed point property. 

2. Fixed points 

An ordered set P has the fixed point property if every order-preserving map of P 
to itself has a fixed point; otherwise. P is said to be fixed point free. 

Problem 1. Characterize those ordered sets with the fixed point property. 

We shall review the  approaches used for several important classes of ordered 
sets. notably, (i) lattices, and (ii) ordered sets of length one. 

(a) Completeness. The best known result o n  this topic of fixed points is con- 
cerned with lattices, that is, ordered sets in which every pair of elements has both 
supremum and infimum. A luttice has the fixed point property i f  arid only i f  it is 
complefe2 [8,  2x1. The theme of “completeness’ in an ordered set is central to 
much of the work on the fixed point property. As the idea is simple and its use 
widespread”, we repeat it here for the record. 

‘ In  his 1 9 S 5  paper Tarski illustrated the elemental role played by the fixed point property 
(especially for the complete lattice of all subsets of a set) in various branches of mathematics (cf. r2.31). 
An elegant proof of the Bernstein theorem concerning equivalence of sets can be fashioned o n  the 
basis of the fixed point property for complete lattices. Indeed, this approach to the Bernstein theorem 
was conceived already i n  1924 by Banach [4]. 
’ Early examples of its use are found in [ I ]  and [2]. A more recent example is the result of H. Hiift 

and M. Hoft 1173 that an ordered set P has the fixed point property if (i) euery tnuxir~zul chain of P is a 
complete sublattice. (ii) inf, S exists for every nonempcy subset S of max ( P )  and (iii) ma4 ( P i  is finite. 
where max (P) denotes the maximal elements of P. This result has since been successively extended in 
[3]. [lo] and 1211. In [3]. (iii) is replaced bv (iii)’ every element of P is contained in some maximal 
element of P ;  in [ 101 and [21] (i) is replaced by (iii)’ and (ii) is replaced by (ii)’ the set of common lower 
bounds of euery nonempty subset S of max ( P )  has the fixed property. 
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Antichoin Crown Infinite Fence 

Fig. 2. 

Let L be a complete lattice [that is, an ordered set in which every subset has 
supremum and infimum]. Let f be an order-preserving map of L to itself, set 
A = {x E L 1 x ~ f ( x ) } ,  and let a =sup, A (cf. Fig. 1). Then x ~ f ( x ) s f ( a )  
whenever x E A and especially, a S f (a ) .  From this it follows that f ( a )  sf(f(a)) ,  
whence f ( a ) S a ,  that is, a is a fixed point of f. 

(b) Retractions. The fixed point property for ordered sets of length one [every 
chain has at most two elements] was first investigated by the author in [25] and 
later with R. Nowakowski in [22]:  A n  ordered set P of length one has the fixed 
point property if and only if (i) P is connected, (ii) P contains no crowns, and (iii) P 
contains no infinite fence4 (see Fig. 2).  

While conceptually transparent this formulation conceals the central idea of its 
proof: retraction. For ordered sets P and Q. Q is a retract of P if there are 
order-preserving maps f of Q to P and g of P to Q such that gof is the identity 
map of Q. As Q is, in this case, isomorphic to a subset of P we may equivalently 
reformulate this concept as follows: a subset Q of P is a retract of P if there is an 
order-preserving map g of P to Q satisfying g 1 Q =id,. We call g a retraction 
map. (In Fig. 3 we illustrate a typical application of this concept: the retraction 
map of the ordered set onto the &crown [shaded elements] followed by the fixed 
point free automorphism of the 6-crown, yields an order-preserving map with n o  
fixed points. I 

Retraction Fixed point F m  Fixed h i n t  Free 
Autornorphtsm mop 

Fig. 3 

The theme of “completeness” is here replaced by “crowns”. In fact, this result tends to confirm the 
impression that crowns should play a central role in the description of fixed point free ordered sets. 
While this role has not yet been precisely delineated a rather more general concept emerges as 
unmistakably essential: “retraction”. 
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With this concept in hand a more discerning solution to the fixed point problem 
for ordered sets of length one can be formulated: A n  ordered set of length one has 
the fixed point property i f  and only i f  no two-element antichain, no crown'. and no 
infinite fence, is a retract (see Fig. 2). 

A solution for the length two case, while likely difficult, can be expected to shed 
new light on the general problem. Unpublished work of Duffus and the author has 
uncovered the following seemingly tractable conjecture. 

Problem 2. An ordered set of length at most two has the fixed point property if 
and only if it contains no retract isomorphic to A2, C,, ( n  22), P-, B,, C2n,2n 
( n Z 3 ,  odd), 0, ( n 3 2 ) ,  and E,, ( n 3 3 )  (see Fig. 4). 

(c) Order complexes. A quite remarkable approach has recently been initiated 
by Baclawski and Bjorner [I]. They apply trade techniques of algebraic topology 

1 2 3 4 

1 2 3 n 

1 2 3  i i+l n 

Fig. 4. 

' A crown is an ordered set { x , ,  y I ,  x 2 ,  y2. . . . , x,,.  y,,}, n 2 2. in which x, G y,. x, , I s y,. for i = 

y, are the only comparability relations and, in the case tt = 2, there is 1 ~ 2. . . . . n - I .  x ,  
no z E P satisfying x,  < z < y, for i. j = 1. 2. 

y, and x,, 
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to uncover classes of finite ordered sets which have the fixed point property, some 
familiar and others unexpected. 

The principal idea in their investigations is the order complex of an ordered set 
P, that is, the simplicia1 complex whose vertices are the elements of P and whose 
faces (simplices) are the chains of P. The order of P induces an orientation on 
each face of the order complex of P and an order-preserving map of P to itself 
induces an orientation-preserving simplicia1 map of the order complex of P to 
itself. Their central result maintains that a finite ordered set with the homology of 
a point has the fixed point property. One intriguing instance of this result 
concerns finite “truncated lattices”. I f  L is a finite noncomplemented lattice, then 
L \{O, l} has the fixed point property6. At present there is n o  proof known of this 
fact which circumvents the methods of algebraic topology (cf. Edelman [16]). 

3. Retracts 

It is natural to associate with an order-preserving map of an ordered set to 
itself its set of fixed points. We call a subset Q of an ordered set P a fixed point 
set of P if there is an order-preserving map f of P to P such that Q =  
{x E P I f(x) = x). 

Problem 3. Characterize those subsets of an ordered set that are fixed point sets. 

Again, for complete lattices the answer is at hand. It is a standard matter to 
verify that. for a complete lattice L and a subset K of  L, K is a fixed point set of L if 
and only if K is a complete lattice. Actually, a subset K of a complete lattice L is a 
retract of L i f  and only i f  K is a complete lattice7. 

While every retract of an ordered set is. of course, a fixed point set, the 
converse need not hold (see Fig. 5 ) .  Still, in at least one important instance the 
twin concepts of fixed point set and retract are identical. Duffus and the author 
have shown in [12] that a subset Q of a finite, connected ordered set P which 
contains no crowns, is a fixed point set if and only i f  Q is a retract of P. 

Fig. 5 .  Fixed point sets that are not retracts. 

A lattice L is noncomplemented if there is a E L  such that, for each x E L  either sup,{a, x }  < 1 or 
inf,{a, x}>O, where 0, 1 denote the least, respectively greatest, elements of L. 
’ This fact is implicit in an early paper of Birkhoff [5 .  pp. 30 1-3021. 
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The study of retracts (and especially fixed point free retracts) is a central theme 
in the current work on the fixed point problem. For finite ordered sets, retracts 
arise primarily because a finite ordered set is fixed point free if and only if it has a 
retract with a fixed point free autornorphisrn [lo]. 

Problem 4. Characterize those subsets of an ordered set that are retracts. 

We shall conlcude this section with the proof of a new result which, while 
interesting in its own right, illustrates in its proof the use which may be made of 
the concept of "retract". 

For a subset S of an ordered set P let 

S * = { x ~ P l x ~ s  for each ~ E S } .  

Theorem. Let P be an ordered set with the fixed point property. Then, for every 
chain C of P, C" has the fixed point property. 

Of course, if P is finite, then C* is a finite ordered set with a least element 
whence C" obviously has the fixed point property. The theorem is, however, less 
trivial if P is infinite (see Fig. 6) .  

An important tool in the proof is the following general result (see Fig. 7): every 
maximal chain C of an ordered set P is a retract [14]. Briefly, for each x E P set 
N,-(X)=(CECI x noncomparable with c}. Then Nc(x)=(4 if and only if X E C .  
Now, let a be a well-ordering of C and define a map g, of P onto C as follows: 
g,(x)=x, if X E  C ;  g,-(x) is the least element of N,-(x) with respect to the 
well-ordering a, if N,-(x) # $3. It is straightforward to verify that g, is a retraction 
map. 

We are ready now to prove the theorem. Let C be a chain of an ordered set P 
with the fixed point property. Let D be a maximal chain of P which contains C. 
Let d =sup, C, if it exists. In  case it does then, evidently, d = inf,* C" = inf P '  C" 
Set 

0 0  A 
I 
I 

Fig. 6 .  
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Fig. 7 .  Every maximal chain is a retract. 

and 

Three simple observations are needed: 
(a) C* G { x  E P j N , ( X )  s C*}; 
(b) C* = (C')"; 
(c) C' is a maximal chain of P'. 
The main observation, however, is that C'U C* is a retract of P. Indeed, it is not 

hard to verify that the map g of P to C' U C* defined by g 1 P' = gc, (the retraction 
map of P' onto C') and g 1 c* = i d s  is a retraction of P onto C'U C*. 

Let us suppose that C" is fixed point free. Then c* is also fixed point free. If C' 
were fixed point free, then it would follow that C' U C* is fixed point free whence 
P would be fixed point free. Otherwise, C' has the fixed point property. Since C' 
is a lattice it must be complete; in particular, sup,. C'= e exists. It follows that 
e = d. Now, the map which sends each element of C' to d while fixing the 
elements of C* is a retraction map of C' U C" onto C*; that is, C" is a retract of 
P. As C* is fixed point free it now follows that P, too, is fixed point free, which is 
a contradiction. 

4. Constructions and examples 

Dismantlable ordered sets. For elements a and b of an ordered set P a is an 
upper cover of b (or b is a lower cover of a )  if, for each c E P satisfying a 2 c > b, 
then a = c .  An element a of an ordered set P is irreducible if either a has 
precisely one upper cover or a has precisely one lower cover. Let I ( P )  denote the 
set of irreducible elements of P. Call P dismantlable if its elements can be labelled 
P = { a , , a , , .  . . ,  %} such that a i ~ I ( P \ { a , ,  a,,. . . , u ~ - ~ } ) ,  i =  1 ,2 , .  . . ,  n - 1  (see 
Fig. 8). The importance of dismantlable ordered sets, in the first place, lies in the 
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Fig. 8.  Dismantlable ordered sets 

fact that each such ordered set has the fixed point property [25]. The converse, of 
course, cannot hold (see Fig. 9). The problem of characterizing dismantlable 
ordered sets (or their retracts) remains unsolved (cf. [ l l ,  101). 

“Dismantlability” plays a valuable heuristic role in fixed point investigations. 
There are instances where it even provides the entire solution. We turn to such a 
case. 

Exponentiation. For ordered sets P and Q, PQ denotes the set of all order- 
preserving maps of Q to P ordered by f s g if and only if f ( x )  < g(x), for each 
x E Q. 

We may well inquire after the “fixed point” status of P p .  In  fact, for a finite 
ordered set P, Pp has the fixed point property i f  and only i f  P is dismantlable. 
Moreover, P p  is fixed point free i f  and only i f  P p  is disconnected [13]. 

The “fixed point” status of PQ, where Q + P ,  is much more elusive*. In fact. 
even the case in which Q is totally unordered remains unsolved. It is curious that 
the following related problem has for some time remained unsettled. 

Problem 5. If the (finite) ordered sets P and Q have the fixed point property, 
then does the direct product P X  Q also have the fixed point property?’ 

Face lattices of polyhedra. Baclawski and Bjorner [ 3 ]  have shown that the 
incidence structures of polyhedra often provide important examples of ordered 

Fig. 9. Non-dismantlable ordered sets with the fixed point property 

’ If, however, P is dismantlable, then, for each finite ordered set Q, Po does have the fixed point 
property [3. 131. 

‘’ Duffus has shown that P X  Q cannot have a fixed point free auromorphism [9] (cf. Sabidussi 1261). 
Baclawski and Bjorner have answered the question in the affirmative if, in addition, one of P or Q is 
dismantlable [3] .  
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Polyhedra Incidence Structum 

Fig. 10. 

sets with the fixed point property. With the points, lines, and faces of a polyhed- 
ron there is an associated incidence structure (which is a lattice if least and 
greatest elements are adjoined). Each of the incidence structures associated with 
the polyhedra in Fig. 10 is not dismantlable; still, only one of these is fixed point 
free: the incidence structure associated with the “tetrahedron” (earlier designated 
as B4). 

Another important class of “truncated” lattices has been considered by Bjorner 
and Rival in [7]. Indeed, ifL is a semimodular lattice offinire length, then L \{O, 1) 
has the fixed point property if and only if L is a noncomplemented lattice. 
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CHEMINS ET CIRCUITS DANS LES GRAPHES ORIENTES 
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Uniuersitk de Paris Sud, 91405 Orsay, Batiment 490, France 

A. GERMA and M.C. HEYDEMANN 
Uniuersite‘ de Paris Sud, 91405 Orsay, Biitiment 425, France 

Let D be a digraph with n vertices: we give sufficient conditions and conjectures on the 
number of arcs of D to insure that D has a directed cycle or a directed path of given length I ,  
with more emphasis on the cases I = n, n - 1 or 1 small. 

We study the case where D is any digraph and the case where D is strong. 

Dans cet article nous Ctudions des conditions suffisantes portant sur le nombre 
d’arcs d’un 1-graphe (orient&) D afin que ce graphe admette des chemins 
ClCmentaires de longueur 1 ou des circuits ClCmentaires de longueur suptrieure ou 
Cgale a k.  

Dans la fere partie nous dtcrivons 5 familles d’exemples qui nous serviront 
dans la suite, soit pour prouver que les bornes trouvCes sont les meilleures 
possibles, soit pour fonder les conjectures. 

Dans la 26me partie nous donnons des conditions assurant l’existence de 
circuits hamiltoniens pour des graphes orient& quelconques ou fortement con- 
nexes, et des conditions pour qu’un graphe soit hamilton-connect&. 

Dans la 3dme partie nous donnons des conditions assurant l’existence de circuit 
de longueur 3 n - 1 dans un graphe fortement connexe et nous formulons une 
conjecture sur l’existence de circuits de longueur 3 k pour un entier k donnC 
2 ~ k ~ n .  

Dans la 46me partie nous donnons des conditions assurant l’existence de 
chemins en particulier de chernins hamiltoniens et nous formulons une conjecture 
sur l’existence de chemins de longueur 1, pour un entier f donnC, 2 G 1 G n - 1, 
dans un graphe quelconque et  dans un graphe fortement connexe. 

Les notations et dkfinitions utiliskes dans cet article non prCcisCes ci-dessous 
figuren t dans [ 11. 

Dans ce qui suit D represente toujours un 1-graphe (graphe orient6 sans boucle 
ni arc multiple). 

V(D) est l’ensemble des sommets de D, n = I V(D)l. 
E ( D )  est I’ensemble des arcs de D. 
(x, y)  dtnote l’arc de D d’origine x et d’extrCmitC y. 

Deux sommets x et y de D sont dits adjacents si (x, y) ou (y, x) appartient a E(D) .  

r-w = {Y E v(D), (y, x) E EP)};  d - w  = ir-wi, 
d+(x) = lr+(x)l. T’b) = { Y  E V(DL (x, Y )  E E(D)l; 

293 



294 J.C. Bermond et al. 

Soit x un sommet n’appartenant pas B V(D). On note D(x) le graphe dCfini par 

V(D(X)) = V(D) u {XI ,  

E(D(x)) = E(D) UHx, Y> et (Y, x), Y E V(D)I. 

Soit A une partie de V(D). D - A  reprksente le sous-graphe induit par 

Soient A et B deux parties disjointes de V(D), 
V(D)-A.  Lorsque A est rCduit a un sommet x on note D - A  par D - x .  

E(A -+ B) = {(x, Y )  I x E A, Y E B, (x, Y )  E E(D)},  

E(A, B) = E(A + B) U E(B + A) ,  

On appelle longueur d’un chemin dam D le nombre d’arcs du chemin. Tous les 
chemins et circuits considCrCs sont 616mentaires. D est dit hamilton connect6 si, 
quelque soit le couple x, y de sommets de D il existe un chemin hamiltonien (ou 
de longueur n - 1) d’origine x d’extrkmite y. 

On appelle symttrisk d’un graphe non oriente G et on note G” le graphe 
oriente obtenu en substituant a toute ar2te (x, y)  les arcs (x, y)  et (y ,  x). Par 
exemple, K: est le graphe orient6 complet symttrique h n sommets. 

On appelle opposC d’un graphe orient6 D le graphe obtenu en remplagant tout 
arc (x, y)  de D par l’arc (y, x). Un graphe et son opposC ayant le mZme nombre 
d’arcs et les m2mes proprittes d’existence de chemins et circuits, tous les 
theoremes que nous Cnongons ci-apres, vrais pour un graphe, le sont aussi pour 
son oppos6. 

Dans une figure, on reprksente par une flbche -+ les arcs simple et par un trait 
gras - les arcs doubles, c’est-&-dire une paire d’arcs (x, y)  et (y, x). 

1. Exemples 

(1) Soient n et 1 deux entiers, q et r les entiers dkfinis par n = ql + r, 0 c r 
1-1.  

Nous designom par D,(n,  1) le 1-graphe B n sommets, form6 de 1 stables 
GI, ..., Gt, avec IV(G,)I=q+l, l s i s r ,  et IV(G,)l=q pour r + l s i s l ,  et de 
tous ies arcs (x, y )  tels que x E V(Gi), y E V(G,), i < j. 

Ce graphe a f(n, I )  arcs avec 

r(r-I)  - n2(l-1) r ( l - r )  
2 2 21 21 . 

- 
$1(1  - 1) 

+rq(l-l)+- f(n, 1 )  = 

I1 n’admet pas de chemin de longueur 1. 
(2) Soit D,(n, 1 )  le 1-graphe forme d’un graphe complet symetrique a 1 - 1 

sommets GI, d’un stable G, B n - 1 + 1 sommets et de tous les arcs (x, y )  tels que 
x E V(G,), y E V(G,). Ce graphe a g(n, 1) arcs avec g ( n ,  I ) =  ( n - l ) ( l -  1) et 
n’admet pas de chemin de longueur 1. 
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D, (n,e) 

Remarque. f(n, Z ) S g ( n ,  I )  pour n S 2 l - 1 ,  f (n ,  I )Sg (n ,  I) pour n 2 2 Z - 1 .  
(3) Soient n et 1 deux entiers, 3 S IS n + 1. Nous dtsignons par D,(n, I )  le 

1-graphe D2(n - 1, I - 2) (a). Ce graphe est fortement connexe, a +(n, I )  arcs avec 
+(n, 1)  = ( I  - 1)n - 21 +4. Il n’admet ni chemin de longueur 1, ni circuit de lon- 
gueur supCrieure ou Cgale B I. 

(4)  Soit k un entier 2 3 ,  soit D,(n, k )  le 1-graphe D,(n- 1, k -2 )  (b). Ce 
graphe a n sommets avec n = q ( k - 2 ) + r + 1 ,  O<r<k-2.  I1 est fortement 
connexe, a q(n, k )  arcs avec 

n *( k - 3)  + 2n(k  - 1) - ( k  - 2)( r + 3)  + r2 - 1 
q ( n ,  k )  = 

2 ( k - 2 )  

I1 ne posskde pas de chemin de longueur 2 k - 3 ,  ni de circuit de longueur 
supCrieure ou Cgale B k. 

Remarque. Pour k c n c 2 k - 4 ,  on a q ( n ,  k )=z+(n ,  k); pour n a 2 k - 4 ,  on a 
q ( n ,  k )  3 +(n, k ) .  

(5) Soit k un entier, k 2 3 .  Soit D,(n, k )  le 1-graphe form6 de D,(n - 1, k ) ,  
d’un sommet c, de I’arc (b, c) et de tous les arcs (c, x) oh x dCcrit V(D,(n - 1), k) ) .  

Ce graphe est fortement connexe, a n sommets avec n = q(k  - 2) + r + 2, 0 s r < 
k - 2 et q’(n, k )  arcs avec 

n2(k - 3) + 2nk - ( k  - l ) ( r  + 4 )  + r2+  r 
2(k -2) 

(P‘(n, k )  = 

I1 n’admet pas de chemin de longueur 2k - 2. 
Remarque. Pour n 2 4 k - 8 ,  on a q ( n ,  k)z=+(n,2k-3);  pour n S 4 k - 8 ,  on a 

q ( n ,  k ) ~ + ( n , 2 k - 3 ) .  Pour n 2 4 k - 6 ,  on a q’(n ,  k ) z + ( n , 2 k - 2 ) ;  pour n <  
4k  - 6,  on a q’(n,  k )  s +(n, 2k - 2). 
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2. Circuits hamiltoniens 

Dans [6] Lewin donne des conditions suffisantes, les meilleures possibles en un 
certain sens, portant sur le nombre d’arcs d’un 1-graphe D, pour que D soit 
hamiltonien. Nous prkcisons ici ce rbultat avec le thkorkme suivant: 

2.1. Thhreme. Soit D un 1-graphe a n sornmets n 2 2 .  Alors 
(a) Si JE(D)( > ( n  - 1)’ D est harniltonien, 
(b) Si lE(D)I = ( n  - 1)’ et si D n’est pas isomorphe a D,(n, n )  ou h son oppost 

(c) Si IE(D)I = ( n  - l)*- 1 et si D n’est pas isornorphe B D,(n, n )  rnoins un arc, 
i 5 )  reprtsentis 

pour n 3 3, ni a KT,* pour n = 3, D est harniltonien. 

ou son oppost, pour n 3 3, ni, pour n = 4, a un des graphes Gi ( 1  
dans la Fig. I, D est harniltonien. 

Preuve. (a) Voir [6]. 

Pour tout sommet x de D lE(D-x) l=(n- l ) ’ -d(x)  et donc ( n - 1 ) 2 - d ( x ) S  
(n  - l ) ( n  - 2). On a donc d ( x )  

Si pour tout x de D on a d ( x )  3 n, alors D n’est pas fortement connexe sinon D 
serait hamiltonien, d’aprb le thkoreme de Ghouila-Houri [4]. 

On peut alors dkcomposer V(D)  en A U B  avec E(B -+A) = P), [A( = p, IB( = 

n - p. 
On a p 2 2 et n - p 3 2 car d ( x )  b n pour tout n. Alors 

(b) Supposons D non hamiltonien et \E(D)I = ( n  - 1)2. 

n - 1. 

IE(D)I s P(P - 1) + ( n  - p)(n - P - 1) + p(n  - P I ,  
lE(D)I s n2 - n(p + 1) + p2. 

Comme lE(D)\=(r~-l)~,  on a donc n ( p - 1 ) s p P 2 - 1  et, puisque p f l ,  n S p + l ,  
ce qui contredit n - p 2 2. 

I1 existe donc dans D un sommet x de degre n -  1. Alors IE(D-x) l=  
( n  - 1)’ - ( n  - 1) = ( n  - 1)( n - 2) et par suite D - x est le graphe complet 
symetrique it ( n  - 1) sommets, K:-l. 

D- 
m 

Fig. 1 
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D Ctant non hamiltonien l’ensemble E ( D )  est alors d6fini par 

E(D)  = E ( D  - X) U((X, y), y E D - x}. 

Pour n = 3 ,  on a de plus le graphe KF,, (Fig. 1). 
(c) Soit D non hamiltonien B (n - 1)*- 1 arcs. Comme dans (b) on montre alors 

que tout point de D est de degrC supCrieur ou Cgal h n - 2. 
Cas 1. I1 existe dans D un sommet x de degrC n - 2 .  Alors IE(D-x)l= 

( n - l ) , - l - ( n - 2 ) = ( n - l ) ( n - 2 )  et donc D - x  est un graphe K:-,. D Ctant 
non hamiltonien, l’ensemble E(D)  est alors dCfini par 

E(D)=E(D-x)U{(x ,  y), Y E  V(D)-{x ,  x’}} oij X ’ E  V ( D - x ) .  

Ceci pour n 3 2. Pour n = 4 on a de plus le graphe G, de la Fig. 1. 
Cas 2. Pour tout x de D, d(x) 2 n - 1. 
Si D est fortement connexe, comme D est non hamiltonien il existe un point x 

tel que d(x) = n - 1 et IE(D - x)l= ( n  - l)(n - 2 ) -  1 ,  donc D - x est un graphe 
K:-l moins un arc et est donc hamilton connect6 pour tout n tel que n - 1 3 4; 
comme D est fortement connexe d’(x) > O  et  d - ( x )  > 0; comme de plus d(x) = 

n -  1 3 3  pour n ~ 4 ,  D est hamiltonien, ce qui est contraire B l’hypothkse. 
Dans le cas n - 1 = 3, les seuls graphes fortement connexes, non hamiltoniens, a 

8 arcs, vkrifiant pour tout x, d ( x ) 2 3  sont les graphes G3, G4, G, de la Fig. 1. 
Pour n - 1 = 2 il n’existe pas de graphe fortement connexe 5 3 arcs non hamilto- 
nien . 

Si D n’est pas fortement connexe, comme dans (b) on peut partitionner V ( D )  
en deux ensembles A et B avec E(B + A) = 8, IA( = p, IBI = n - p. On obtient ici 
n ’ - n ( p + l ) + ~ ~ > ( n - l ) ~ - - l  soit n(p-1)G(p2-1)+1 ce qui donne, pour n f 4 ,  
p = l  ou n - p = l ,  et pour n = 4 ,  p = 2 = n - p .  

Le cas p = 1 donne alors, si A = {x}: d(x) = n - 1, le sous-graphe induit par B 
est le graphe complet K:-l moins un arc, et E(D)  est dCfini par 

E ( D )  = E(D - X) U {(x, y) ,  Y E B }  

Le cas p = n - 1 donne le graphe oppose du prCcCdent. 
Pour le cas p = 2, y1 = 4, le seul graphe D non fortement connexe h 8 arcs, non 

hamiltonien est le graphe G, de la Fig. 1. 

En vue de la dCmonstration du ThCoreme 2.3 nous allons 6tablir un lemme: 

2.2. Lemme. Soit x un sommet d’un 1-gruphe D tel que d ( x ) a n + l  et D - x  
hamilton connect&: alors D est hamilton connect&. 

Preuve. Soit y un sommet de D - x. Comme d(x) 2 n + 1 implique d-(x) 2, il 
existe z dans r-(x)-{y}. ConsidCrons dans D - x  un chemin hamiltonien 
d’origine y et d’extrCmitC z :  il se prolonge en un chemin hamiltonien de D 
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d’origine y, d’extrCmitC x .  Symetriquement, on peut construire un chemin hamil- 
tonien dans D, de x B y. Soient y et z deux sommets de D - x .  Considerons un 
chemin hamiltonien 

Posons 
x 1  = y, x2,  . . . , x , _ ~  = z dans D - x .  
I = { i  I l ~ i ~ n - 2 ; ( x ~ , x ) ~ E ( D ) } ,  
J = { i  1 1 s i s n - 2 ;  ( x ,  x i t l )  E E(D)} .  

On a d - ( x )  = (11 + 1, d + ( x )  = IJI + 1, d’oii 
I I n ~ I + 2 s n + ( i n ~ I ,  ce qui prouve z n J # @  
consider6 en un chemin hamiltonien de y 2 z 

n + 1 s d ( x )  s IZI + IJI + 2 s l Z U J (  + 
on peut donc allonger le chemin 
dans D. 

Dans le ThCoreme 2.3 nous retrouvons un rtsultat de Lewin [6] en le precisant 
(la preuve donnee ici est differente de la sienne). 

2.3. Thhreme. Soit D un 1-graphe tel que IE(D)I 3 ( n  - 1)’+ 1, n 2 2 .  Alors D 
est hamilton connectt, sauf si IE(D)( = ( n  - 1)’+ 1 et D est le graphe D,(n, n + 1 )  ou 
son oppost, pour n 3 2 ,  ou si n = 4 et D est le graphe de la Fig. 2 .  

Preuve. Par recurrence sur n 
- les cas n = 2  et n = 3  sont kvidents, 
- supposons n 2 4  et soit D tel que ( E ( D ) (  z ( n  - 1)’+ 1 
Remarquons que pour tout sommet x on a d ( x )  2 n car 

d ( x )  = IE(D) ( -  ( E ( D - x ) l a  n2-2n + 2 - ( n  - l ) (n  -2)  = n. 

Cas 1. I1 existe un sommet x ,  de degrk n :  alors il existe au moins un sommet 
x1 tel que (x,,, x , )  et ( x ] ,  xo )  soient des arcs de D. D’oii, comme 

d ( x J  = IE(D)I - n + 2 - IE(D - { x o ,  x J ) l  

2n - 2 2 d ( x 1 ) 2  n2-  3n +4- IE(D-{x, ,  x l } )  12 n 2 - 3 n  + 4 - ( n  - 2 ) ( n  - 3). 

O n  en dCduit d ( x l ) = 2 n - 2 ,  IE(D)l= n 2 - 2 n + 2 ,  ~ E ( D - { x o , x , } ) ~ = ( n - 2 ) ( n - 3 ) .  
Ceci montre que D - x ,  est un graphe K:-,. 

Si d+(x,,) = 1 ou d-(x,)  = 1, D est un graphe D3 (n, n + 1) ou son opposC. 
Sinon, si on a d + ( x , ) > 2  et d - ( x , ) 3 3  ou d+(x,)>3 et d - ( x o ) 3 2  (ce qui est 

toujours le cas pour n 3 3, on vkrifie aisement que D est hamilton connectt. 
I1 reste le cas n = 4, d+(xo) = d-(x,) = 2 .  Le seul graphe vCrifiant toutes ces 

hypothbses et non hamilton connecte est celui de la Fig. 2 .  
Cas 2 .  Pour tout x, d ( x ) a n + l .  

Fig. 2. 
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Si D est complet, il est hamilton connect& Sinon il existe x, d ( x )  s 2n - 3, d’ou 
IE(D - x ) l z  1E(D)( - 2n + 3. Si lE(D)I a n2- 2n + 3 alors IE(D - x ) l z  ( n  - 2)’+ 2, 
et, par hypothbse de rkcurrence, D - x  est hamilton connectk; le lemme permet 
alors de conclure que D est hamilton connect&. 

Si IE(D)I = n2-2n +2  et s’il existe x tel que d ( x ) s 2 n  -4  on conclut de meme. 
I1 reste donc le cas IE(D)( = n2- 2n + 2 et, pour tout sommet x, d ( x )  3 2n - 3. Mais 
on a alors JE(D)12in(2n-3)  ou n 2 - 2 n + 2 2 n 2 - $ n  ou n S 4 .  

Supposons alors n = 4, JE(D)I = 10, pour tout x, d ( x )  3 5:  nkcessairement d ( x )  = 

5, IE(D - x)l = 5: on vCrifie alors aisement que D est hamilton connect& 
En vue de la preuve des Thtorkmes 2.6 et 2.7 nous aurons besoin des lemmes 

suivants dont le premier est bein connu: 

2.4. Lemme. Si C est un circuit maximal d’un 1-graphe D et si z $  V(C) alors 

lE(z, C)l c I V(C>I. 
2.5. Lemme. Soit D un 1-graphe. Si D est fortement connexe, non hamiltonien, si 
C est un circuit de D contenant au moins 3 sommets et si pour tout sommet z de 
V(D)-  V(C), d ( z ) z n ,  alors lE(D)ISn2-4n+8.  

Preuve du Lemme 2.5. Par rkcurrence sur n. Pour n s 4  le lemme est trivialement 
vrai. Soit n > 5 et supposons le lemme vrai pour tout n’< n. 

(a) Soit Co un circuit tel que V(Co) contienne V(C) et soit maximal pour cette 
propriCtC. Posons no = lV(Co)l. Puisque C, est maximal on a, d’aprks le Lemme 
2.4, pour z n’appartenant pas V(Co), lE(z, Co)lSno. Puisque D n’est pas 
hamiltonien, et que pour tout z n’appartenant pas a V(Co), d ( z ) s n ,  ceci 
implique n o s  n - 2. 

(b) DCsignons par C1, C,, . . . , C, les composantes fortement connexes de 
0 - C o  et posons ni=IV(Ci)l, l s i s p .  Pour chaque paire i , j ,  l s i C j 6 p  on a, 
soit 

E(V(Ci) + V(Cj)) = @, soit E(V(Cj) + V(Ci)) = 9. 

D’oii (E(z ,  C,)lc nj si z E V(Ci) i f  i. 

C, vers C,. I1 convient alors de distinguer 2 cas: 

alors 

(c) Cas p = 1. D Ctant fortement connexe, il existe des arcs de C,, vers C,  et de 

(1) Tous les arcs en question ont leur extRmitC dans C,, commune. On a 

IE(D)I s n,,(no- I ) +  ( n  - no)(n - no- I )+  2(n - no) 

et il suffit de prouver I’inCgalitk 

no(no - 1) + ( n  - no)(n - no - 1)  + 2 ( n  - no) s n 2 -  4n + 8 

ou encore n (2n, - 5 )  3 2ng - 2n0 - 8. Comme no 2 3, 2n0 - 5 z= 0. Comme n 3 no + 2, 
n(2no-5)3(no+2)(2n,-5). Or  (n0+2)(2n0-5)= 2r1 i -n~-  1022ng-2n0-8 
dbs que no>2. 
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(2) I1 existe un arc de C,, vers C,  et un arc de C, vers C, dont les extremit6s 
dans C, sont distinctes. Comme C,  est fortement connexe il existe un chemin 
zoz,  . . . z,, m 2 2 ,  z ,  et z ,  dans C,, z 1  . . . z,-~ dans C,. Remarquons que si C, 
etait hamilton connect6 il serait possible de construire un circuit contenant V(C,) 
et  le chemin zOz, . . . z,: ceci contredit l’hypothkse de maximalit6 de C,. 

D’aprks le ThCorkme 2.3, on en deduit 

IE(C0)lSng-2n,+2. 

D’aprks (a), on a IE(C,, C,)( s non,. Par ailleurs, IE(C,)( S nl(nl - l), 

[E(D)j<n2-n,n+nz-n-n,+2.  

Or, I‘in6galit6 n2 - nun + ng - n - n,  + 2 G n - 4 n + 8  est Bquivalente B 
( n  - n, - 2)(no - 3) 2 0  qui est vraie d’aprks (a) pour n, 3 3. 

(d) Cas p ~ 2 .  Montrons qu’il existe i tel que le sous-graphe induit par 
V(C,) U V(Ci),  not6 C, U Ci verifie 

(E(C,  u Ci)( s (no + ni)’ - 4(n, + ni) + 8. 

S’il existe i tel que C,uCi soit fortement connexe alors on peut appliquer 
l’hypothbse de r6currence a C,UCi. En  effet, n,+ni < n ,  CoUCi n’est pas 
hamiltonien puisque C, est maximal et, d’aprks (a) et (b) pour tout z de Ci, 

(E( z ,  C, U Ci)l 3 n - f: E(z ,  C;) 3 n - f: n; = n, + n, .  
j = 1  j = l  
i # i  i f i  

Sinon, il existe i tel que E(V(C,) -+ V(Ci) )  = fl et E((  V(Ci)  --+ V(C,)) # 8. 
Puisque D est fortement connexe il existe un chemin zo ,  zl, . . . , z,, m 3 2  tel que 

Le graphe H obtenu en adjoignant B C,,U Ci l’arc (z,, 2,) est fortement 
connexe. I1 n’est pas hamiltonien car s’il admettait un circuit hamiltonien ce 
circuit contiendrait l’arc (z,, 2,) que l’on pourrait remplacer par le chemin 
zo,  z , ,  . . . , z,, ce qui contredit l’hypothkse de maximatit6 de C,. O n  peut appli- 
quer ici encore l’hypothkse de r6currence B H et par suite prouver que 

2()€V(C<,), Z,EV(C,), 2 ,  . . . 2 ,~ ,EV(D) -V(C”UCI) .  

I E(  C, U Ci)l = 1E( H ) (  - 1 s (n, + ni)* - 4( no + ni) + 7.  

O n  peut donc supposer, au besoin en changeant les indices, que 

IE(C,, U Cl)l s ( n o  + n,)2-4(n0+ n , )  + 8. 

(e) D’aprks (a) on a IE(C,, C j ) l ~ n , n j  pour 2 S j s p .  
D’aprbs (b) on a lE(Ci, Ci)l s rq? pour 1 S i < j G p. 
On a, par ailleurs, toujours lE(Ci)( s n i ( q  - 1). On en deduit 
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soit encore 
P 

\E(D)I  s n2 - C n,n, - (no + 1) C n, -4(n0+ n,) + 8. 
1GLCIGP I = ,  

Pour prouver ( E ( D ) I s n 2 - 4 n + 8  il suffit de montrer 
P 

- 1 np, - ( n o + l )  1 n , - 4 ( n o + n l ) s - 4 n  
I G , < l S p  I =2 

soit 

Comme no 2 3 I’inCgalitC est vCrifiCe ce qui achbve la dCmonstration du lemme. 

2.6. Theoreme. Soit D un 1-graphe tel que deux sommets quelconques appartien- 
nent a un mime circuit. Si 

(E(D)I a n2 - 4n + 9 alors D est hamiltonien sauf si n 2 5 ,  
lE(D)) = n 2 -  4n + 9, et si D est le graphe D‘ de‘crit ci-dessous ou son oppose‘. 

V (D’ )  = V(D,(n, n - 1)) ,  
E(D‘) = E(D,(n, n - 1)) U { ( x ,  b) ,  x E G,} 

oh b est un sommet de G,, b # a. 
D,(n, n - l ) ,  GI G, et a sont dkfinis dans les Exemples 2 et 3. 

Preuve. Soit D un 1-graphe, non hamiltonien, ayant la propriCtC que deux 
sommets quelconques sont sur un m2me circuit: D est donc fortement connexe. 
Montrons qu’alors \E (D) )<  n2-4n + 8 ,  sauf pour l’exception dtfinie dans 
1’CnoncC du thkorbme. 

D’aprbs le thCorbme de Meyniel [7,3] il existe deux sommets x et y non 
adjacents tels que d ( x ) + d ( y ) s 2 n - 2 .  Nous distinguons 3 cas. 

Cas. 1. Pour tout z E V(D) - {x ,  y}, d ( z ) a n .  Par hypothbse, il existe un circuit 
C contenant x et y. Ces sommets &ant non adjacents )V(C)I>4. On peut donc 
appliquer le Lemme 2.5 pour conclure. 

Cas 2. I1 existe z E V ( D ) - { x ,  y}, d ( z )  n -2.  On a 

IE(D)I 

IE(D)I s ( n  - 3)(n -4 )  + 2n - 2+ n - 2 = n2-4n + 8. 

IE(D -{x, Y ,  z})l+ d ( x )  + d ( y )  + d ( z ) ,  

Cas 3.  I1 existe z E V(D) - {x ,  y } ,  d ( z )  = n - 1. Les inCgalitCs prkckdentes mon- 
trent que I’on a IE(D)( s n2-4n + 9 et que 1’CgalitC n’a lieu que si 

I E P )  -{x, Y ,  zHl = ( n  - 3)(n - 4),  
d (x )+d(y )=2n-2 ,  
{x, y, z }  est un ensemble stable. 

Supposons IE(D)I = n2 - 4n + 9. D’aprbs (1), D -{x,  y ,  z }  est isomorphe ?I K:-3. 
ConsidCrons le circuit C’ contenant y et z. Si l’on avait d ( x )  2 n, alors, pour tout 
point s de D-C‘ on aurait d ( s ) a n  (ceci est evident pour n>8 puisque s 
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appartient 2 un K:-3 et se vkrifie aiskment pour n = 5,6,7], on pourrait appliquer 
le lemme, et  en dkduire IE(D)I s n2-4n  + 8. Par consequent d ( x ) S  n - 1. 
Symktriquement d ( y )  =s n - 1, et d‘aprbs (2) d ( x )  = d(y) = n - 1. 

Puisque d ( x )  = n - 1 et que {x,  y, z} est stable, il existe au moins deux sommets 
a, b E D - {x, y, z} tels que IE(x, a)l = IE(x, b)l = 2. Par suite n 3 5. S’il existe 
c E D  -{x, y, z,  a, b} et lE(y, c)l = 2, il est facile de voir que, quels que soient les 
points r et s de D -{x, y, z} ,  il existe dans G - { z }  un chemin hamiltonien 
d’extrCmitks r et s, ce qui contredit le fait que D est non hamiltonien. Donc 
nkcessairement, les seuls arcs doubles possibles entre {x,  y, z} et  D -{x, y, z }  sont 
ceux qui joignent x, y, z aux sommets a et b. Soit encore, pour tout sommet 
t E D - {x,  y, z, a, b} lE(t, x)l = IE(t, y)I = lE(t, z)l = 1. Par ailleurs, s’il existe t, u E 

D -{x,  y ,  z ,  a, b }  avec ( t ,  z)  E U et (y, u )  E U, le chemin t, z, b, x, a, y ,  u peut Ctre 
agrandi en un circuit hamiltonien de D si t f  u, ou bien est un circuit si t = u, 
auquel on peut appliquer le lemme. Ceci est donc impossible. Ceci prouve que 
l’on a, soit 

Y, z>  -+ D - {x,  Y, z,  a, b}) = fk 

E ( D  - b, Y, 2, a, b l +  b, Y, z>> = B 

soit 

et  ceci achbve de prouver que, lorsque E ( D )  = n2 - 4 n  + 9,  D a la structure dCfinie 
dans l’knonce du thkorbme. 

Dans [6] Lewin donne des condition suffisantes, les meilleures possibles en un 
certain sens, portant sur le nombre d’arcs d’un 1-graphe D fortement connexe 
pour que D soit hamiltonien: nous prkcisons ici ce rksultat avec le theorbme 
suivant : 

2.7. Thhrhme. Soit D fortement connexe. Si IE(D)I>n2-3n+4,  alors D est 
hamiltonien sauf si  lE(D)l= n 2 - 3 n + 4  et D est soit le graphe D,(n, n )  ou son 
oppost!, pour n 2 3, soit Ee graphe D,(n) de la Fig. 3 pour n 3 3, soit le graphe G, de 
la Fig. 1 pour n = 4 ,  soit le graphe G, de la Fig. 3 pour n = 5 .  

Fig. 3. 
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Preuve. Lewin a prouvk dans [6] que si IE(D)I>n2-3n+4 alors 0, s’il est 
fortement connexe, est hamiltonien. 

I1 nous reste donc 2 caracteriser les graphes D fortement connexes non 
hamiltoniens avec IE(D)l= n2-3n +4. D’aprbs le thkorbme de Meyniel il existe 
deux sommets x et y non adjacents avec d ( x ) + d ( y ) s 2 n - 2  et donc 
IE(D-{x,  y})(>n2-3n+4-(2n-2)=(n-2)(n-3) .  Par suite D-{x ,  y} est le 
graphe K:-z et d ( x )  + d(y) = 2n - 2. 

Cas 1. d ( x ) s  n. Comme D est fortement connexe et {x, y} stable E ( y ,  D -  
{x, y}) # $I et E ( D  -{x, y}, y)  # 8. Si IT+(y) U T-(y)I > 1, D - x est hamiltonien et, 
d’aprbs le Lemme 2.4, D est hamiltonien. Si IT+(y) U T-(y) l=  1, 1E(D - y)I = 

n2-3n+4-2=(n- l ) (n-2) .  Par suite, D - y  est le graphe K:-l et D est le 
graphe D6(n) reprksentk dans la Fig. 3. 

Cas 2 .  d ( x )  < n et, par symttrie, d(y) < n:  on a nkcessairement d ( x )  = d(y) = 

n -  1. Pour n 3 6 ,  on laisse au lecteur le soin de vkrifier que le seul graphe 
repondant aux conditions est le graphe D,(n, n)  ou son opposC. Pour n = 4 ou 5 
on trouve, en plus des graphes p&ddents, les graphes G5 de la Fig. 1 ou G6 de la 
Fig. 3. 

2.8. Remarque. On obtient en corollaire de ce thkorbme, dans le cas des graphes 
non orient&, le thkorbme analogue de J.A. Bondy [ 2 ] :  les graphes D, et G6 sont 
les symktrists des seuls graphes B ;(n’ - 3n + 4) ar2tes non hamiltoniens. 

3. Circuits de longueur 2 k 

Pour gknkraliser les thkorbmes prkckdents sur les hamiltoniens on peut se poser 
le problkme de trouver des conditions suffisantes les meilleures possibles portant 
sur le nombre d’arcs d’un 1-graphe D pour assurer l’existence d’un circuit de 
longueur 2 k dans D pour k < n. Dans [5] Haggkvist et Thomassen ont rksolu ce 
problbme dans le cas d’un graphe D quelconque avec le thCorbme suivant: 

3.1. Thihreme. Soient k un entier s n ,  r et q dkfinis par 

n = q ( k  - 1) + r, 0 s r < k - 1. 

Si J E ( D ) l > $ ( n 2 + n ( k - 3 ) + r ( r - l ) - r ( k - 2 ) )  alors D contient un circuit de lon- 
gueur > k et cette borne est la meilleure possible. 

Remarque. Les m2mes conditions assurent en fait l’existence d’un circuit de 
Iongeur k exactement. 
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Dans le cas d’un 1-graphe D fortement connexe le problbme n’est pas rksolu. 
Toutefois, pour k = n - 1 nous avons montrC le theorkme suivant: 

3.2. Thbreme. Soit D un 1-graphe fortement connexe, n Z 7 .  Si lE(D)lZ 
n2-4n +6 alors D contient un circuit de longueur 2 n - 1 sauf si IE(D)I = 

n2-4n +6 et D est le graphe D,(n, n - 1) ou son oppost. 

Preuve. D’aprb le theorkme de Meyniel, si pour tout couple de sommets (x, y )  
non adjacents d(x)+d(y)>2n-1 ,  D est hamiltonien et  le theorkme est vCrifiC. 
Sinon il existe dans D deux sommets x et y non adjacents avec d(x)+ d(y) S 

2n-2. Soit D’=D-{x ,  y}: on a alors IE(D’)I>n2-4n+6-2n+2 soit IE(D’)I> 
[ ( n  - 2) - 13’ - 1 Puisque n - 2 2 2, d’aprks le Thc5or6m 2.1 on est dans I’un des cas 
suivants: 

Cas 1. D’ est hamiltonien. D posskde donc un circuit C de longueur n - 2 avec 
2 sommets x et y extCrieurs h C non adjacents. D - x  et D - y  sont fortement 
connexes. Si d(x) (ou d(y)) est superieur ou egal a n - 1, d‘aprks le Lemme 2.4 on 
peut rallonger C et le thCorkme est vCrifiC. 

Reste donc le cas d ( x )  G n - 2. On a donc 

\ E ( D -  x ) \ z  n2-4n +6- (n -2)  = ( n  - 1)2-3(n - 1 ) + 4  

et, d’aprks le Theorkme 2.7, ou bien D - x est hamiltonien ou bien lE(D - x)l = 

( n -  l )2-3(n-  1 ) + 4  (ce qui impose d(x)= n - 2 )  et D - x  est le graphe 
D,(n - 1, n - 1) (ou son opposC) ou le graphe D,(n - 1). 

Si D - x est le graphe D,(n - l), n - 1) (ou son opposC), comme D est forte- 
men? connexe, ou bien D a un circuit de longueur > n - 1 ou bien D est le graphe 
D,(n, n - 1) (ou son oppod) .  

Si D - x est le graphe D,(n - I), D a un circuit de longueur z n - 1. 
Cas 2. D‘ est le graphe D,(n -2,  n - 2) (ou son opposk) ou D,(n -2, n -2) 

moins un arc (ou son oppost). La forte connexitC de D permet de montrer 
l’existence d’un circuit de longueur 3 n - 1 dans le graphe D construit 2 partir du 
graphe D’. 

3.3. Remarque. Si n = 3, D Ctant fortement connexe contient un circuit de 
longueur G2. 

Si n = 4 et si IE(D)( 2 n2 - 4 n  + 6 = 6 ,  on dkmontre, de manikre analogue au cas 
n 3 7 ,  que D contient un circuit de longueur 3 ou 4 sauf si D est D,(4, 3)(=  K7.3) 
ou P$ (voir Fig. 4). 
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Pour n = 5 ,  si lE(D)I 3 n2- 4 n  + 8 = 13, par une dkmonstration analogue au cas 
n Z 7, on montre que D contient un circuit de longueur 4 ou 5 .  Mais il existe de 
nombreux graphes fortement connexes avec au plus 12 arcs, ne contenant pas de 
circuit de longueur 3 4 ,  par exemple D3(5, 4)  et les deux graphes de la Fig. 5. La 
liste de tous ces graphes est trop longue pour figurer ici. 

Fig. 5.  

Pour n = 6,  si IE(D)lZ n2-4n +7  = 19, on montre que D contient un circuit de 
longueur 5 ou 6. LB encore, il existe de nombreux graphes ?i 6 sommets et 18 arcs 
sans circuit de longueur 3 5 ,  et nous ne donnons comme exemples que D3(6,5) et 
les deux graphes de la Fig. 6. 

Fig. 6.  

E n  ce qui concerne le problkme gkntral de l’existence de circuits de longueur 
3 k (k 3 3), pour des graphes fortement connexes, nous proposons la conjecture 
suivante. 

3.4. Conjecture. Soient D un 1-graphe fortement connexe, avec n > 4  et k un 
entier, k < n. 

Si k s n s 2 k - 4  et IE(D)\>$(n,  k )  
ou 

si n 3 2 k - 4  et IE(D)I>q(n, k)  

alors D contient un circuit de longueur 3 k. (4 et q sont respectivement d6finis 
dans les Exemples 3 et 4). 

Cette conjecture, si elle est vCrifiCe, est la meilleure possible comme le 
montrent les graphes D3(n, k )  et D,(n, k) ,  dont le nombre d’arcs est, respective- 
ment, $(n,  k) et q ( n ,  k).  

Les ThCorttmes 2.7 et 3.2 montrent que cette conjecture est vraie pour k = n et 
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k = n - 1. Elle est aussi vraie pour k = 3 d’aprts le theoreme suivant, dont la 
demonstration, tres simple, est laissee au lecteur: 

3.5. Thisreme. Soit D un 1-graphe fortement connexe, n 3 4. 

2n - 2 et D est le symttrist d’un arbre. 
Si IE(D)IS 2n - 2 alors D contient un circuit de longueur 3 3,  sauf si (E(D)I = 

4. Existence de chemins de longueur 1 

De maniere analogue 21 celle du Paragraphe 3, nous cherchons quel est le 
nombre minimum d’arcs assurant l’existence d’un chemin de longueur 3 1, ou ce 
qui est kquivalent, de longueur 1 dans un 1-graphe D quelconque ou fortement 
connexe. 

Tout theoreme assurant l’existence d’un circuit de longueur 31 dans un 
1 -graphe fortement connexe a, c o m e  corollaire, un theoreme sur l’existence de 
chemins dans un 1-graphe quelconque, que l’on obtient de la maniere suivante: 

Etant donnC un 1-graphe D et un sommet x n’appartenant pas a V ( D )  le 
graphe D(x)  est fortement connexe et  il contient un circuit de longueur 2 l si et 
seulement si D contient un chemin de longueur 3 1 - 2. 

4.1. Thhreme. Soit D un 1-graphe. 
Si l E ( D ) ( a ( n - l ) ( n - 2 )  alors D est chemin hamiltonien sauf si IE(D)\= 

( n  - l ) (n  - 2 )  et D est un graphe D,(n, n - l ) ,  ou son oppose‘, ou bien D est la 
rkunion du  graphe K:-* et d’un sommet isole‘, ou bien n = 4 et D = KF3. 

Preuve. On a \E(D)I 3 ( n  - l ) ( n  - 2) et donc ( E ( D ( x ) ) I a  ( n  - l ) ( n  - 2)  + 2n ou 
encore IE(D(x))l ==(n + 1)’- 3(n + 1) + 4. D’aprts le Theoreme 2.7, D ( x )  est 
hamiltonien sauf si IE(D(x))l= ( n  + 1)* - 3(n  + 1) + 4 et D(x) a une des formes 
prCcisCes dans le ThCorBme 2.7. Par consequent, D est chemin hamiltonien sauf si 
(E(D) (  = ( n  - l ) (n  - 2) et  D est d’une des formes annoncees. 

4.2. Thisreme. Soit D un I-graphe. 

sauf si IE(D)I = ( n  - l ) (n  - 3) et D est un graphe D,(n, n - 2) ou son oppose‘. 
Si IE(D)I 3 ( n  - l)(n - 3) et n 3 6 alors D contient un chemin de longueur n - 2 

Preuve. On a (E(D)1 3 ( n  - l ) ( n  - 3 )  et donc IE(D(x))l a n2- 2n + 3 ou encore 
( E ( D ( x ) ) l z  ( n  + 1)*-4(n + 1) + 6. Le Theoreme 3.2 applique D(x)  permet alors 
d’achever la demonstration de maniere analogue B celle du Theoreme 4.1. 

4.3. Thisreme. Soit D un 1-graphe. 
Si n 2 3 et IE(D)I >an’, alors D posst.de un chemin de longueur 2. 

Preuve. Si D n’a pas de chemin de longueur 2, le graphe non oriente sous-jacent 
n’a pas de cycle impair: il est donc biparti. Le graphe D hi-m2me est donc 
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biparti. Posons 

V ( D ) = A U B  avec IAlSIBl, E(D)=( (x ,  y) ,  ( y , x ) ,  X E A ,  YEB).  

Puisqu’il n’y a pas de chemin de longueur 2 dans D, on a pour tout sommet x E A, 
) r (x) l=  1 ou r+(x) = (a ou r-b) = (a. D’OG d ( x )  ssup(2,  IBI), et  I E ( D ) I  s 

sup(21Al, IAl IBI). 
Pour n pair, on en dtduit, J E ( D ) [ s s u p ( n , ~ n 2 ) = i n 2  ( n 3 4 ) .  
Pour n impair, \E(D)I s sup(n  - 1, in2)  = i n 2  ( n  3 3 ) .  

Remarque. Le graphe D,(n,2) montre que la borne trouviie est la meilleure 
possible. 

4.4. Theoreme. Soit D un 1-graphe a n sommets. 
Si n 3 5 et IE(D)I >in2,  alors D contient un chemin de longueur 3. 

La dkmonstration cas par cas est trop longue pour figurer ici. La borne est la 

Les thtorkmes prkctdents nous amknent B formuler la conjecture suivante: 
meilleure possible comme le montre l’example D,(n, 3 ) .  

4.5. Conjecture. Soient D un 1-graphe et 1 un entier, 1 s n - 1, 

si / + l S n S 2 1 - 1  e t  IE(D) \>g(n , l ) ,  

ou 

si n 3 21 - 1 et IE(D)( > f ( n ,  11, 

alors D contient un chemin de longueur 1 (g et f ktant respectivement dtfinis dans 
les Exemples 2 et 1). 

4.6. Remarque. Si la Conjecture 3.4 est vkrifike alors la Conjecture 4.5 s’en 
dkduit, comme dans les dkmonstrations des Thkorkmes 4.1 et 4.2, par application 
de 3.4 B D(x) .  

4.7. Remarque. Nous savons dkmontrer la Conjecture 4.5 dans de nombreux cas 
particuliers, par exemple si D est antisymktrique ou si n S 7 .  De plus, nous avons 
prouvk que si la conjecture est vraie pour n 5 21 - 1, alors elle est vraie pour 
n 321. 

Le Thkorkme 3.2 admet aussi comme corollaire un thiiorkme sur l’existence de 
chemins hamiltoniens dans un graphe fortement connexe. 

4.8. Theoreme. Soit D un 1-graphe fortement connexe. 

IE(D)( = n2-4n  + 6  et D est le graphe D,(n, n - 1) ou son oppose‘. 
Si n Z- 7 et IE(D)I 3 n 2 - 4 n  + 6, alors D est chemin hamiltonien, sauf dans le cas 
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Preuve. Supposons jE(D)l z= n2- 4n + 6 et n 3 7. 
D’aprks le Theorkrne 3.2, D contient un circuit de longueur 3 n - 1 sauf si D 

est le graphe D,(n, n - 1) ou son opposC. 
Si D contient un circuit de longueur n, il contient un chemin de longueur n - 1. 

S’il contient un circuit C de longueur n - 1, et si a est le somrnet de D non sur C, 
d’aprks la forte connexitk de D, il existe un arc de a vers C et donc un chernin de 
longueur n - 1 dans D. 

4.9. Remarque. On peut rnontrer B l’aide du theorerne de Meyniel et du 
ThCorerne 2.3 que l’on a le rCsultat suivant: 

Si n = 4,5 ,6  et si IE(D)( 2 n 2 -  4n + 6, D Ctant un 1-graphe fortement connexe, 
alors D est chemin harniltonien sauf si ( E ( D ) [  = n2-4n +6  et D est le graphe 
D,(n, n - 1) ou son oppose, ou, si n = 6 et D est le graphe G, de la Fig. 6. 

4.10. Theoreme. Soit D un 1-graphe fortement connexe a n sommets, n 3 6.  
Si IE(D)I 3 n2-  5n + 9 alors D admet un chemin de longueur n - 2. 

Preuve. Nous en donnons seulernent une idee ici. 
Si D n’est pas chernin harniltonien, d’aprbs un corollaire du t h e o r h e  de 

Ghouila-Houri, il existe dans D un somrnet x de degrC d(x) n - 2. On considbre 
alors D - x. S’il est forternent connexe, on lui applique le ThCorerne 4.8. Sinon, 
on considkre le graphe des cornposantes fortement connexes, et on etudie cas par 
cas suivant l’existence de circuits ou chernins hamiltoniens dans ces cornposantes 
forternent connexes. 

Les rCsultats prkcedents incitent a forrnuler la conjecture suivante: 

4.11. Conjecture. Soient D un 1-graphe forternent connexe et I un entier 
3 1 S n. Alors D contient un chemin de longueur 1 dans les trois cas suivants: 

(a) n ~ 2 1 , -  2, lE(D)l> $(n, 0, 
(b) n 3 2 1 - 2 ,  1 pair, 1=2k-2 ,  lE(D)l>cp’(n, k ) ,  
(c) n 3 21 - 2, 1 impair, I = 2k - 3,  IE(D)I > cp(n, k ) ,  

4, cp l  et cp Ctant respectivernent dkfinis dans les Exemples 3, 5,4. 

4.12. Remarques. (a) Tout graphe forternent connexe a n 3 3 sornrnets contient 
un chernin de longueur 2. 

(b) Les bornes donnees dans la Conjecture 4.11 sont les rneilleures possibles 
cornme le prouvent les graphes D J n ,  l ) ,  D,(n, k ) ,  D,(n, k ) .  

(c) Si la conjecture 3.4 Ctait vCrifiCe elle permettrait de  prouver avec 
une dtrnonstration analogue B celle du ThCoreme 4.8, la Conjecture 4.11 dans le 
cas (a). 

(d) D’apres le Theorernes 4.8 et 4.9 la Conjecture 4.11 est vraie pour 1 = n - 1 
et l = n - 2 .  
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Note. Recemment il a Cte dCmontr6 dans [S] que si la Conjecture 3.4 est vraie 
pour n = 2k -4, alors eile est vraie pour n > 2k - 4. Ceci implique, d'aprks les 
ThCorkmes 2.7 et 3.2 que la Conjecture 3.4 est vraie pour k = 4 et k = 5 .  
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