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Preface

After having worked in the domain of Gaussian queues for about a decade, we got
the idea to look at similar problems, but now in the context of Lévy-driven queues.
That step felt as going from hell to heaven: it was not that we did not like Gaussian
queues, but in that domain almost everything is incredibly hard, whereas in the
Lévy framework so many rather detailed results can be obtained and usually with
transparent and clean arguments.

Fluctuation theory for Lévy processes is an intensively studied topic, perhaps
owing to its direct applications in finance and risk. Over the past, say, 30 years, a
lot of progress has been made, archived in great textbooks, such as Bertoin [43],
Kyprianou [146], Sato [193], and the more general book on applied probability and
queues by Asmussen [19]. The distinguishing feature of this textbook is that we
explicitly draw the connection with queueing theory. To some extent, Lévy-based
fluctuation theory and queueing theory have developed autonomously. Our book
proves that bringing these branches together opens interesting possibilities for both.

This textbook is a reflection of the courses we have been teaching in Wrocław,
Poland, and Amsterdam, the Netherlands, respectively. While Lévy processes had
already been part of the curriculum for a while, we felt there was a need for a
course that more explicitly paid attention to its fluctuation-theoretic elements and
the connection to queues. This course should not only cover the central results (such
as the Wiener–Hopf-based results for the running maximum and minimum and in
particular the resulting explicit formulae for spectrally one-sided cases) but also, e.g.
a detailed analysis of various queueing-related quantities (busy period, workload
correlation function, etc.), asymptotic results (explicitly distinguishing between
light-tailed and heavy-tailed scenarios), queueing networks, and applications in
communication networks and finance (with a specific focus on option pricing).
This has resulted in this book, with a twofold target audience. In the first place, the
book has been written to teach either master’s students or (starting) PhD students.
The required background knowledge consists of Markov chains, some (elementary)
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vi Preface

queueing theory, martingales, and a bit of stochastic integration theory. In addition,
the students should be trained in making their way through some lengthy and
technical but usually nice (and in the end rewarding) computations. The second
target audience consists of researchers with a background in (applied) probability,
but not specifically in the material covered in this book, to quickly learn from—
when we entered this area, we would have loved it if there had been such a book,
and that was precisely the reason why we decided to write it.

We have written this book more or less remotely, each of us locally testing
whether the students liked the way we wrote it. It led to many small and several
very substantial changes in the setup. We believe that the current form is the most
logical and coherent structure that we could come up with. Having said that, there
are quite a number of topics that we could have included, but in the end decided to
leave out. Book projects are never finished. . . .

This book would not have been written without the great help of many people. At
Springer, Joerg Sixt has always been very supportive of our plans and never put any
pressure on us. We also thank Søren Asmussen, Peter Glynn, and Tomasz Rolski,
senior researchers in our field, for their encouragement in the early stages of the
project.

Krzysztof Dębicki would like to thank the coauthors of his ‘Lévy papers’:
Ton Dieker, Abdelghafour Es-Saghouani, Enkelejd Hashorva, Lanpeng Ji, Kamil
Kosiński, Tomasz Rolski, and (last but not least) Michel for the joy of the joint work.
He is also grateful to his former PhD students Iwona Sierpińska-Tułacz and Kamil
Tabiś, for valuable comments on ‘Lévy-driven queues’ courses that have been taught
at the University of Wrocław. He wants to express his special thanks to Enkelejd
Hashorva (University of Lausanne)—warm thanks, Enkelejd, for your exceptional
hospitality and wise words on maths and life.

Michel Mandjes would like to thank his ‘Lévy coauthors’ Lars Nørvang
Andersen, Jose Blanchet, Onno Boxma, Bernardo D’Auria, Ton Dieker,
Abdelghafour Es-Saghouani, Peter Glynn, Jevgenijs Ivanovs, Offer Kella, Kamil
Kosiński, Pascal Lieshout, Zbigniew Palmowski, and Tomasz Rolski (besides
Krzyś, of course) for the great collaboration over the years. He also would like
to extend a special word of thanks to his current PhD students Naser Asghari
and Gang Huang, as well as his (former) master’s students Krzysztof Bisewski,
Sylwester Błaszczuk, Lukáš Drápal, Viktor Gregor, Mariska Heemskerk, Simaitos
Šarūnas, Birgit Sollie, Arjun Sudan, Jan Vlachy, Mathijs van der Vlies, and Dorthe
van Waarden, who made numerous suggestions for improving the text. A special
word of thanks goes to Nicos Starreveld who proofread the manuscript multiple
times. Writing this book benefited tremendously from three quiet periods spent
in New York City (!): one, in August 2011, hosted by Jose Blanchet at Columbia
University, and two, in December 2013 and March 2014, hosted by Mor Armony
and Joshua Reed at New York University—many thanks, Jose, Mor, and Josh!
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We conclude with a few personal words. I (Krzyś) would like to thank my
beloved family: thanks, Asia and Dobroszek, for all the difference you have made
in my life. And I (Michel) would like to use this opportunity to express my deep
gratitude to my ‘home front’: thanks, Miranda, Ester, and Chloe, for giving me the
opportunity to do what I like most.

Wrocław, Poland Krzysztof Dębicki
Amsterdam, The Netherlands Michel Mandjes
December 15, 2014
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Chapter 1
Introduction

The class of Lévy processes consists of all stochastic processes with stationary and
independent increments; here ‘stationarity’ means that increments corresponding to
a fixed time interval are identically distributed, whereas ‘independence’ refers to the
property that increments corresponding to non-overlapping time intervals behave
statistically independently. As such, Lévy processes cover several well-studied
processes (e.g. Brownian motions and Poisson processes), but also, as this book will
show, a wide variety of other processes, with their own specific properties in terms of
their path structure. The process’ increments being stationary and independent, Lévy
processes can be seen as the genuine continuous-time counterpart of the random
walk Sn WD Pn

iD1 Yi, with independent and identically distributed Yi.
Lévy processes owe their popularity to their mathematically attractive properties

as well as their wide applicability: they play an increasingly important role in a
broad spectrum of application domains, ranging from finance to biology. Lévy
processes were named after the French mathematician Paul Lévy (1886–1971), who
played a pioneering role in the systematic analysis of processes with stationary and
independent increments. A brief account of the history of Lévy processes (initially
simply known as ‘processes with stationary and independent increments’) and its
application fields is given in e.g. Applebaum [12].

Application areas—In mathematical finance, Lévy processes are being used
intensively to analyze various phenomena. They are for instance suitable when
studying credit risk, or for option pricing purposes (see e.g. Cont and Tankov
[63]), but play a pivotal role in insurance mathematics as well (see e.g. Asmussen
and Albrecher [21]). An attractive feature of Lévy processes, particularly with
applications in finance in mind, is that this class is rich in terms of possible path
structures: it is perhaps the simplest class of processes that allows sample paths to
have continuous parts interspersed with jumps at random epochs.

Another important application domain lies in operations research (OR). Accord-
ing to the functional central limit theorem, under mild conditions on the distribution
of the increments, a scaled version of discrete-time random walks converges weakly

© Springer International Publishing Switzerland 2015
K. Dębicki, M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext,
DOI 10.1007/978-3-319-20693-6_1

1



2 1 Introduction

to a Brownian motion. In line with this convergence, one can argue that under a
suitable scaling and regularity conditions, there is weak convergence of ‘classical’
GI/G/1 queueing systems (with discrete customers) to a ‘queue with Brownian
input’, usually referred to as reflected Brownian motion [217].

A more specific example, in which the limiting process is not necessarily Brow-
nian motion, relates to the performance analysis of resources in communication
networks. In the mid-1990s it was observed that the distribution of the sizes
of documents transferred over the internet is heavy tailed: the complementary
distribution of the document sizes decays roughly hyperbolically with a tail index
such that the mean document size exists, but the corresponding variance is infinite.
This entails that under particular conditions the aggregate of traffic generated by
many users weakly converges to fractional Brownian motion, but under other
conditions there is weak convergence to (a specific class of) Lévy processes (i.e.
˛-stable Lévy motions); see Mikosch et al. [163], Taqqu et al. [210], or Whitt [217,
Chapter 4]. In the latter regime, the performance of the network element can be
evaluated by analyzing a queue fed by Lévy input.

Relevance of Lévy-driven queues; their construction; fluctuation theory—The
above OR-related considerations underscore the importance of analyzing queues
with Lévy input (or Lévy-driven queues). It should be noticed, though, that it is not
a priori clear what should be understood by such a queue: for instance, in the case
that the Lévy process under consideration is a Brownian motion, the input process
is not increasing, nor is even a difference of increasing functions (i.e. it is not of
finite variation), and therefore the corresponding queue cannot be seen as a storage
system in the classical sense. Relying on a description of the queue as the solution of
a so-called Skorokhod problem [217], however, a formal definition of a Lévy-driven
queue can be given; in fact, any stochastic process satisfying some minor regularity
assumptions can serve as the input of a queueing system, as argued in e.g. [124]. It
is stressed that queues of the ‘classical’ M/G/1 type (i.e. Poisson arrivals, generally
distributed jobs, one server) fit in the framework of Lévy-driven queues. A Lévy-
driven queue is also referred to as a Lévy process reflected at 0, or a regulated Lévy
process.

Interestingly, although queues are seemingly absent in the finance applications
that we mentioned above, Lévy-driven queues are, in disguise, used intensively in
that context as well. The reason for this is that many queueing-related metrics can
be expressed in terms of extreme values attained by the driving (i.e. non-reflected)
Lévy process. Precisely this knowledge about extremes, a body of results usually
referred to as fluctuation theory, plays a pivotal role in finance; think for instance,
in an insurance context, of the analysis of ruin probabilities, but also of techniques
to price various exotic options and to quantify the corresponding sensitivities.

Goal of the book—Having defined Lévy-driven queues, all questions that have
been studied for classical queues now have their Lévy counterpart—the high-level
goal of this book is to address these issues. For instance, a first question relates to the
distribution of the steady-state workload of the queue: imposing the obvious stability
criterion, can we explicitly characterize the stationary workload distribution? A
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second branch of questions relate to the impact of the initial workload; there
the focus lies on determining the queue’s transient workload, but also various
alternative transience-related metrics (such as the busy period and the correlation
of the workload process) can be considered. In addition, just as in the world of
‘classical’ queues, one can think of a variety of variants of the standard Lévy-driven
queue: queues with a finite buffer, queues whose input characteristics are affected
by the current workload level (‘feedback’), queues with vacations and service
interruptions, and Lévy-driven polling models. Finally, under specific conditions
on the Lévy processes involved, one can let the output of a queue serve as the input
for the next queue, and in this way we arrive at the notion of Lévy-driven queueing
networks.

The objective of this textbook is to give a systematic account of the literature on
Lévy-driven queues. In addition, we also intend to make the reader familiar with the
wide set of techniques that has been developed over the past decades. In this survey,
techniques that are highlighted include transform-based methods, martingales, rate-
conservation arguments, change of measure, importance sampling, large deviations,
and numerical inversion.

Complementary reading—A few words on additional recommended literature.
In the first place there are the textbooks by Bertoin [43], Kyprianou [146], and
Sato [193], which provide a fairly general account of the theory of Lévy processes.
All of these have a specific focus, though: they concentrate on fluctuation theory,
that is, the theory that describes the extreme values that are attained by the Lévy
process under consideration, and which is, as argued above, a topic that is intimately
related to Lévy-driven queues. We also mention the book by Applebaum [11], which
concentrates more on techniques deriving from stochastic calculus. Asmussen [19,
Chapter IX] and Prabhu [179, Chapter 4] provide brief introductions to Lévy-driven
queues.

Organization—Our book is organized as follows. Chapters 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, and 13 build up the theory of Lévy-driven queues, whereas Chapters 14
and 15 focus on applications in operations research and finance, respectively; the
book concludes in Chapter 16 with a description of numerical techniques. In more
detail, the topics addressed in this monograph are the following.

Chapter 2 formalizes the notion of Lévy-driven queues; it is argued how in
general queues can be defined without assuming that the input process is necessarily
non-decreasing. We also define the special class of spectrally one-sided Lévy inputs,
that is, Lévy processes with either only positive jumps or only negative jumps; we
will extensively rely on this notion throughout the survey. In addition, this chapter
introduces the class of ˛-stable Lévy motions.

In Chapter 3 we analyze the steady-state workload Q. For spectrally positive
input this is done through its Laplace transform, which is a result that dates back to
Zolotarev [222] and which is commonly referred to as the ‘generalized Pollaczek–
Khintchine formula’. The spectrally negative case can be dealt with explicitly,
resulting in an exponentially distributed stationary workload. To deal with the case
that jumps in both directions are allowed (the spectrally two-sided case), we provide
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a brief introduction to Wiener–Hopf theory. We conclude this chapter by presenting
explicit results for two specific classes of spectrally two-sided processes: the former
is the class in which the jumps have a phase-type distribution, and the second is the
class of meromorphic processes.

Then, in Chapter 4 we characterize (in terms of transforms) the distribution of
the transient workload, that is, the workload Qt at some time t � 0, conditional on
Q0 D x � 0: Again we distinguish between the spectrally two-sided cases (leading
to rather explicit expressions) and the general case (as before relying on Wiener–
Hopf-type arguments).

Chapter 5 addresses the limiting regime in which the drift of the driving Lévy
process is just ‘slightly negative’, commonly referred to as heavy traffic. Resorting
to the steady-state and transient results that were derived in the previous chapters,
it appears that we observe an interesting dichotomy, in that one should distinguish
between two scenarios that show intrinsically different behavior. In the case that the
underlying Lévy process has a finite variance, the appropriately scaled workload
process tends to a Brownian motion reflected at 0 (i.e. a Lévy-driven queue with
Brownian input). If the variance is infinite, on the contrary, we establish convergence
to a Lévy-driven queue fed by an ˛-stable Lévy motion.

Next to the distribution of the (stationary and transient) workload, in queueing
theory much attention is paid to the analysis of the busy period distribution. The
question addressed in Chapter 6 is, given the workload is in stationarity at time 0,
how long does it take for the queue to idle? Explicit results in terms of Laplace
transforms are presented. The last part of this chapter addresses the distribution of
the minimal value attained by the workload process in an interval of given length.

Chapter 7 considers another metric that relates to the transient workload, that
is, the workload correlation function. A variety of techniques are used to analyze
the correlation between Q0 and Qt, again assuming the queue is in stationarity at
time 0. Specifically, the structural result is established that the workload correlation
function is positive, decreasing, and convex (as a function of t), relying on the theory
of completely monotone functions.

Where the full distribution of Q was uniquely characterized in Chapter 3,
Chapter 8 considers the tail asymptotics of the stationary workload. Distinguishing
between Lévy processes with light and heavy upper tails (as well as an intermediate
regime), functions f .�/ are identified such that P.Q > u/=f .u/ ! 1 as u ! 1
(so-called exact asymptotics). A variety of techniques are used, such as change-
of-measure arguments, large deviations, and Tauberian inversion. These techniques
also shed light on how high buffer levels are achieved.

In Chapter 9 we present asymptotics related to the transient metrics that we
defined earlier. Again the distinction between Lévy processes with light and heavy
tails should be made. We also pay attention to the asymptotics of the joint
distribution of the workloads at two different time epochs.

Chapter 10 focuses on simulating Lévy-driven queues. Algorithms are presented
to (efficiently and accurately) simulate various important classes of Lévy processes
and their associated workload processes. In addition, we point out how importance-
sampling-based simulation is of great help when estimating rare-event probabilities
(and small covariances, associated to the workload at times 0 and t, for t large).
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Where the previous chapters considered the standard Lévy-driven queue, Chap-
ter 11 presents results on several variants. In the first place, it is explained how
Lévy-driven queues with a finite buffer can be constructed and analyzed. After that,
we also present results on feedback queues, that is, queues in which the current
buffer level affects the characteristics of the Lévy input, and vacation and polling
types of models. We also include a short account of queues with Markov-additive
input; specializing to the spectrally positive case, we present the transform of the
stationary workload as well as the corresponding tail asymptotics.

Then, Chapter 12 presents results on Lévy-driven tandem queues: the output of
the ‘upstream queue’ serves as input for the ‘downstream queue’. For this model the
joint steady-state workload is determined, and various special cases are dealt with
in more explicit terms (such as the Brownian tandem queue). Also attention is paid
to the joint workload asymptotics, that is, the (bivariate) asymptotics corresponding
to the event that both workloads grow large.

In Chapter 13 the theory of Chapter 12 is extended to a particular class of Lévy-
driven networks. Imposing specific conditions on the network structure and the input
processes involved, the joint distribution of all workloads can be determined. The
techniques featuring here resemble those used to analyze the tandem queue.

In the next two chapters the focus is on applications. First, in Chapter 14 the use
of Lévy-driven queues in OR-type applications (related to communication networks)
is pointed out. In particular, it is argued under what conditions and scaling limits
will Lévy processes form a natural candidate to model network traffic. These limits
involve both aggregation over time (so-called horizontal aggregation) and over the
number of network users (vertical aggregation). As a result, the performance of the
network nodes can be evaluated by studying the corresponding Lévy-driven queues.

Financial applications are covered by Chapter 15. First a brief survey is
given on the specific Lévy processes that are frequently used to model financial
processes (such as the evolution of an asset price); special attention is paid to the
normal inverse Gaussian process, the variance gamma process, and the generalized
tempered stable process (which also covers the CGMY process). Then we explain
how Lévy processes can be estimated from data. A substantial part of this chapter
focuses on the computation of prices of exotic options, such as the barrier option
and the lookback option, whose payoff functions can be expressed in terms of
the extreme values (over a given time horizon) that are attained by the price of
the underlying asset. The chapter is concluded by an account of the use of Lévy
fluctuation theory in non-life insurance.

In Chapter 16 it is shown how fluctuation-theoretic quantities can be numerically
evaluated. Many results presented in this book are in terms of transforms, and fast
and accurate algorithms are available to numerically invert these. We describe two
intrinsically different approaches.

Chapter 17 concludes our textbook. A brief discussion of the current state of the
art is given, and we mention a number of topics that need further analysis.
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Exercises

Exercise 1.1 Let .Yn/n2f1;2;:::g be a sequence of i.i.d. random variables. Y1 is
defined by

Y1 WD
�
1 with probability p;
�k with probability q WD 1 � p;

where p 2 .0; 1/.
Consider a sequence of random variables .Xn/n2N defined by X0 WD 0 and

XnC1 WD maxfXn C YnC1; 0g.

(a) Show that .Xn/n2N is an irreducible Markov chain (in discrete time). Give the
state space and the transition matrix P.

(b) Which conditions should be fulfilled by the equilibrium distribution
.�n/n2f0;1;:::g, should it exist?

(c) Let X be a random variable on f0; 1; 2; : : :g distributed according to the
equilibrium distribution of .Xn/n2N; in other words, P.X D n/ D �n; as defined
above. The probability generating function of X is then given by

�.z/ WD E.zX/ D
1X

nD0
�nzn

for z 2 Œ0; 1/. Show that �.z/ can be written as

�.z/ D 1 � #

1 � #z
; for some # 2 .0; 1�:

How can # be characterized? Deduce an expression for the equilibrium
distribution .�n/n2f0;1;:::g; under which conditions, to be imposed on p and k,
does this distribution exist?

(d) Define NS WD supn2f0;1;:::g Sn, where S0 WD 0 and Sn WD Pn
iD1 Yi, with the Yi

independent and all distributed as Y1 as introduced above. Also define

% WD P.9n 2 N W Sn � 1/:

Show that % satisfies % D p C q%kC1:
(e) Show that the distributions of NS and X are equal.

(Note: This is a manifestation of ‘Reich’s principle’, which we will treat in
detail in Chapter 2; cf. Eqn. (2.5)).



Chapter 2
Lévy Processes and Lévy-Driven Queues

In classical queueing systems, there is the notion of customers (or work) arriving,
and subsequently being processed by the server. The class of Lévy processes, being
defined as processes with stationary and independent increments, covers processes
with highly non-regular trajectories (think for instance of Brownian motion). As a
consequence, it is not immediately clear how one should define a queue with Lévy
input. One of the goals of the present chapter is to introduce a sound notion of
Lévy-driven queues.

We do so by first providing an explicit definition of Lévy processes, and then
extending the classical definition of a queue to a notion that can be used for general
input processes as well (i.e. in principle any real-valued stochastic process can
serve as input). For more background, we refer the reader e.g. to Applebaum [11],
Asmussen [19], Kyprianou [146], and Sato [193].

In Section 2.1, as a first step we introduce notation, to be used throughout
this book, together with a number of fundamental properties. As mentioned in
Chapter 1, for the special case of one-sided jumps, the results are more explicit.
Notation related to such spectrally one-sided Lévy processes is given in Section 2.2;
this section also includes a number of frequently used Lévy processes. Another
important class of Lévy processes, that is, ˛-stable Lévy motions, is covered by
Section 2.3. Finally, in Section 2.4 we present the definition of Lévy-driven queues.

2.1 Infinitely Divisible Distributions, Lévy Processes

We say that a continuous-time real-valued stochastic process .Xt/t is a Lévy process
if it has stationary and independent increments, with X0 D 0 and càdlàg sample
paths a.s. (càdlàg meaning ‘continuous from right, limits from left’). The stationary
increments property entails that for given s the distribution of XtCs � Xt is the same
irrespective of the value of t, whereas the independent increments property means

© Springer International Publishing Switzerland 2015
K. Dębicki, M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext,
DOI 10.1007/978-3-319-20693-6_2
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that, for t � 0, the increment XtCs � Xs is independent of the history of the Lévy
process, that is, .Xu/u�s:

The initial condition X0 D 0 together with the stationary increments property
leads, for each t > 0, to the equation

Xt D
nX

iD1

�
Xit=n � X.i�1/t=n

�
;

in which the increments Xit=n � X.i�1/t=n are all distributed as Xt=n. Moreover, by
virtue of the independent increments property, it follows that these increments are
also independent. We thus arrive at the following distributional equality, with X.i/t

i.i.d. copies of Xt:

Xt
dD

nX

iD1
X.i/t=n; (2.1)

for any n 2 N: In this way we see that, for any t, Xt has an infinitely divisible
distribution. Indeed, let us recall that a random variable Z is infinitely divisible if
for any n 2 N there exist independent and identically distributed (i.i.d.) random
variables Z1;n; : : : ;Zn;n such that Z is distributed as

Pn
mD1 Zm;n; see e.g. De Finetti

[70]. Conversely, for each infinitely divisible random variable Z there exists a Lévy

process .Xt/t such that X1
dD Z. This, for example, straightforwardly implies the

existence of a Lévy process with Poisson marginals: if Z has a Poisson distribution
with mean �, it is distributed as the sum of n independent Poisson random variables
with mean �=n: Other examples of infinitely divisible distributions are the normal
distribution, the negative binomial distribution, and the gamma distribution, as is
readily verified.

One can alternatively say that, for any value of t,

�t.s/ WD logEeisXt D t logEeisX1 D t�.s/;

for s 2 R, where �.s/ WD logEeisX1 is referred to as the so-called Lévy exponent.
This equality is a direct consequence of (2.1), as can be seen as follows. Fixing an
s 2 R, we find for any two integers m and n that �m.s/ D n�m=n.s/ and �m.s/ D
m�1.s/. Combining these relations, we obtain �m=n.s/ D .m=n/ �1.s/ D .m=n/ �.s/,
and hence for all t 2 Q it follows that �t.s/ D t�.s/: By using a limiting argument,
it follows immediately that the right continuity of the Lévy process implies that
�t.s/ D t�.s/ for any t 2 R: As a result, one could informally say that each Lévy
process can be associated with an infinitely divisible distribution, and vice versa.

It is immediately seen that the class of Lévy processes contains a number of
canonical stochastic processes. In the first place it can be concluded that the Poisson
process is Lévy. A Poisson process .Xt/t can be defined as follows: with Ym i.i.d.
exponential random variables with mean ��1 2 .0;1/, we let Xt have the value n
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if at the same time
Pn

mD1 Ym � t and
PnC1

mD1 Ym > t: It is well known that Xt has a
Poisson distribution with mean �t, and as a consequence,

logEeisXt D log

 1X

nD0
eisne��t .�t/n

nŠ

!

D �t
�
eis � 1� ;

and hence .Xt/t is indeed Lévy (with Lévy exponent �.s/ D �.eis � 1/ for � > 0).
Likewise, we can show that Brownian motion without drift is Lévy; here �.s/ D
� 1
2
�2s2 for �2 > 0. In Sections 2.2 and 2.3 we mention various other examples.
It is possible to characterize Lévy processes more specifically: it can be shown

that the Lévy exponent �.s/ is necessarily of the form

�.s/ D isd � 1

2
s2�2 C

Z 1

�1
.eisx � 1 � isx1fjxj<1g/˘.dx/; (2.2)

where d 2 R, � � 0, and the spectral measure (or Lévy measure)˘.�/, concentrated
on R n f0g, satisfies

Z

R

minfx2; 1g˘.dx/ < 1:

For a proof of this fundamental representation of Lévy processes (or, in fact, a
stronger version of it), called in the literature the Lévy–Khintchine formula, we refer
e.g. to Kyprianou [146, Chapter II].

The triplet .d; �2;˘/ is commonly referred to as the characteristic triplet, as
it uniquely defines the underlying Lévy process: every Lévy process has its own
specific d, �2, and ˘ . It is noted that in some cases it is possible to extend the
domain of �.s/ to (a subset of) C; we return to this issue in greater detail in
Section 2.2 when we speak about Lévy processes with one-sided jumps.

For obvious reasons, we call the first parameter of the characteristic triplet, d,
the deterministic drift, whereas the term 1

2
s2�2 is often referred to as the Brownian

term. The third term in (2.2) corresponds to the jumps of the Lévy process by the
relation that the jumps of size x occur at intensity ˘.dx/. More precisely, for any
bounded interval M such that 0 … M, the sum of the jumps of size within M in
the time interval Œ0; t/ is distributed as a compound Poisson random variable with
intensity t

R
M ˘.dy/ and the jump-size distribution

˘.dx/1fx2MgR
M ˘.dy/

:

Thus, if the jumps are only in the upward (respectively, downward) direction, then
the support of ˘ is concentrated in .0;1/ (respectively, .�1; 0/). The process
.Xt/t is of bounded variation if and only if both � D 0 and

R 1
�1 jxj˘.dx/ < 1; we

do not provide details on this, but refer to Kyprianou [146, Section 2.6.1].
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α

ϕ(α)

ϑ

ψ(ϑ )

Fig. 2.1 Spectrally positive case: Laplace exponent and its inverse

2.2 Spectrally One-Sided Lévy Processes

Let .Xt/t�0 be a Lévy process, as introduced in Section 2.1. Unless stated otherwise,
we assume throughout the book that the ‘mean drift’ EX1 of the Lévy process is
negative, so as to make sure that the corresponding workload process (to be formally
introduced in Section 2.4) is stable, thus guaranteeing the existence of a proper
stationary workload distribution.

In this monograph, two special cases will often be considered in great detail, that
is, spectrally positive and spectrally negative Lévy processes.

The Lévy process has no negative jumps—Here the Lévy process .Xt/t�0 has no
negative jumps, or is spectrally positive; in the sequel this is denoted by X 2 SC.
In this case the spectral measure ˘.�/ is concentrated on .0;1/.

It turns out, in this case, to be convenient to work with the Laplace exponent,
given by the function '.˛/ WD logEe�˛X1 , rather than the Lévy exponent �.s/. It
is a consequence of the fact that there are only positive jumps that this Laplace
exponent is well defined for all ˛ � 0.

It follows immediately from Hölder’s inequality that the Laplace exponent '.�/
is convex on Œ0;1/; due to the assumption EX1 < 0, and observing that '.�/ has
slope ' 0.0/ D �EX1 at the origin, we conclude that '.�/ is increasing on Œ0;1/,
and hence the inverse  .�/ of '.�/ is well defined on Œ0;1/; see Fig. 2.1. In the
sequel we also require that Xt is not a subordinator, that is, a monotone process;
this means that X1 has probability mass on the negative half-line, which implies that
lim˛!1 '.˛/ D 1:

The Lévy process has no positive jumps—In this case the Lévy process .Xt/t�0
has no positive jumps, or is spectrally negative; throughout this book we denote this
by X 2 S�. Now the spectral measure ˘.�/ is concentrated on .�1; 0/. In this
case, we define the cumulant ˚.ˇ/ WD logEeˇX1 . This function is well defined and
finite for any ˇ � 0 due to the fact that there are no positive jumps. We now rule out
that .Xt/t has decreasing sample paths a.s. Recalling that ˚ 0.0/ D EX1 < 0, we see
that ˚.ˇ/ is not a bijection on Œ0;1/; we define the right inverse through

�.q/ WD supfˇ � 0 W ˚.ˇ/ D qg:
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β
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Ψ (q)

β0 = Ψ (0)

Fig. 2.2 Spectrally negative case: the cumulant and its right inverse

Note that ˇ0 WD �.0/ > 0; this parameter plays a crucial role when analyzing
queues with spectrally negative input; see Fig. 2.2.

The Lévy exponent (or the Laplace exponent for X 2 SC, or cumulant for X 2
S�) contains all information about X1, and hence, due to the infinite divisibility,
also about the whole process .Xt/t. For instance, it enables the computation of all
moments (provided they exist), as follows. For example, for X 2 SC, we have
EXt D �' 0.0/ t and Var Xt D ' 00.0/ t (given that these derivatives are well defined).
It is also noted that

' 0.0/ D �d �
Z

Œ1;1/
x˘.dx/; ' 00.0/ D �2 C

Z

.0;1/
x2˘.dx/;

whereas, for n D 3; 4; : : : ;

'.n/.0/ D .�1/n
Z

.0;1/
xn˘.dx/:

We now treat in greater detail a number of examples of spectrally one-sided Lévy
processes.

(1) Brownian motion with drift. This process has sample paths that are continuous
a.s., and is therefore both spectrally positive and spectrally negative. In this
case Xt has a normal distribution with mean dt and variance �2t: It is readily
verified that, with U denoting a standard normal random variable, Ee�˛Xt D
e�˛dt

Ee�˛
p

t�U ; and

Ee�˛UD
Z 1

�1
e�˛u 1p

2�
e�u2=2du D e˛

2=2

Z 1

�1
1p
2�

e�.uC˛/2=2du D e˛
2=2:

It is concluded that logEe�˛Xt D t.�˛d C 1
2
˛2�2/: We write X 2 Bm.d; �2/

when '.˛/ D �˛d C 1
2
˛2�2. The mean drift of this process is d, which is

assumed to be negative (to make sure that EX1 < 0).
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(2) Compound Poisson with drift. This process corresponds to i.i.d. jobs arriving
according to a Poisson process, from which a deterministic drift is subtracted.
More concretely, we let the jobs B1;B2; : : : be i.i.d. positive-valued random
variables with Laplace transform b.˛/ WD Ee�˛B and .Nt/t be a Poisson process
of rate � (independent of the job sizes). Then the time-changed random walk,
with the parameter r assumed to be positive,

Xt D
NtX

iD1
Bi � rt

(following the convention that
P0

iD1 Bi WD 0) is a spectrally positive Lévy
process which we call a compound Poisson process with drift. We write
X 2 CP.r; �; b.�//:

It can be verified that

Ee�˛Xt D er˛t
1X

nD0
.b.˛//ne��t .�t/n

nŠ
D exp .t.r˛ � �C �b.˛/// :

As a consequence, '.˛/ D r˛ � � C �b.˛/: The mean drift of this process is
EX1 D �EB � r, which we assume to be negative to ensure stability.

Clearly, if the depletion rate r were negative, and the jobs were i.i.d. samples
from a non-positive distribution (i.e. the jumps were downward), then the
resulting process would be spectrally negative.

It is instructive to express the compound Poisson process in terms of a triplet
.d; �2;˘/. Obviously, because of the lack of a Brownian term, �2 D 0. In
addition, for the Lévy measure we have˘.dx/ D �P.B 2 dx/. It is then readily
verified that

d D �r C �

Z 1

0

x˘.dx/:

(3) Gamma process. This process is characterized by the characteristic triplet
.d; �2;˘/, where �2 D 0 and

˘.dx/ D ˇ

x
e�	xdx for x > 0; d D

Z 1

0

x˘.dx/;

for 	; ˇ > 0. From the above formulation it is clear that the jumps of this
process are non-negative, that is, the gamma process is spectrally positive. In
fact its sample paths are non-decreasing a.s.; we return to this property below.
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The Laplace exponent corresponding to the gamma process can be evaluated
explicitly, but this requires some non-standard computations. These rely on the
well-known Frullani integral: for z 2 C with non-positive real part,

ˇ log

�

1 � z

	

�

D
Z 1

0

.1 � ezx/
ˇ

x
e�	xdxI (2.3)

see e.g. Kyprianou [146, Lemma I.1.7]. The validity of Eqn. (2.3) is a direct
consequence of the identity (given that appropriate regularity conditions are
imposed on the function f .�/)
Z 1

0

f .ax/� f .bx/

x
dx D �

Z 1

0

Z b

a
f 0.xy/dy dx D �

Z b

a

Z 1

0

f 0.xy/dx dy

D
Z b

a

f .0/� f .1/

y
dy D .f .0/� f .1// log

b

a

by picking f .x/ WD e�x, a D 	 , and b D 	 � z:
As a consequence of the above computations, it follows that the correspond-

ing Laplace exponent

'.˛/ D logEe�˛X1 D �˛
Z 1

0

x˘.dx/C
Z 1

�1
.e�˛x � 1C ˛x1Œ0;1/.jxj//˘.dx/;

can now be rewritten as

Z 1

0

.e�˛x � 1/ˇ
x

e�	xdx D ˇ log

�
	

	 C ˛

�

:

From the equation

Z 1

0

�

	e�	x .	x/ˇt�1


 .ˇt/

�

e�˛xdx

D
�

	

	 C ˛

�ˇt Z 1

0

.	 C ˛/e�.	C˛/x
..	 C ˛/x/ˇt�1


 .ˇt/
dx D

�
	

	 C ˛

�ˇt

;

where 
 .z/ WD R1
0 e�xxz�1dx denotes the gamma function, it follows that the

marginals Xt have a gamma distribution with parameters 	 and ˇt. We write
throughout this monograph X 2 G.	; ˇ/:

The gamma process has interesting qualitative properties. Observe that Xt has
the same distribution as the sum of Xs and Xt�s (with s 2 .0; t/), with the
latter two random variables being sampled independently, which are both non-
negative random variables. From this we conclude that .Xt/t is a non-decreasing
process.
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In the second place, it is observed that the gamma process is not compound
Poisson. This is a consequence of the fact that we cannot write ˘.dx/ as
�P.B 2 dx/. To see this, realize that, as a consequence of ˇ=x � e�	x being
roughly ˇ=x for x close to 0,

Z 1

0

˘.dx/ D
Z 1

0

ˇ

x
e�	xdx D 1;

and hence it is not possible to properly define a (finite) jump intensity �. Indeed,
the gamma process is a Lévy process with the remarkable property that it has
infinitely many jumps (almost surely) in any finite amount of time. We refer
to this phenomenon by saying that the gamma process has small jumps, or,
equivalently, infinite activity.
As mentioned above, the gamma process is increasing; to make sure that
EX1 < 0 (so as to guarantee that the corresponding workload process is stable)
a negative drift has to be added.

(4) Inverse Gaussian process. Like the gamma process, this process is increasing.
It is defined as follows. For any X 2 SC, we define the first passage time,

�.x/ WD infft � 0 W Xt < �xgI

this is a notion that will play an important role later in this book. It is
straightforward to observe that e�'.˛/t e�˛Xt is a mean-1 martingale [220]: for
all s � t, using the properties of Lévy processes,

E
�
e�'.˛/t e�˛Xt j fe�'.˛/u e�˛Xu W u � sg�

D E
�
e�'.˛/t e�˛Xt j fXu W u � sg�

D e�'.˛/s e�˛Xs E
�
e�'.˛/.t�s/ e�˛Xt�s

� D e�'.˛/s e�˛Xs :

Considering X 2 Bm.d; �2/, clearly d < 0 implies �.x/ < 1 almost surely.
The a.s. continuous sample paths imply that X�.x/ D �x, which, together with
‘optional sampling’ [220, Chapter A14], leads to

Ee�'.˛/�.x/ D e�˛x:

As a consequence, replacing '.˛/ by # (and hence ˛ by  .#/),

Ee�#�.x/ D exp

0

@�
0

@ d

�2
C
s
�

d

�2

�2
C 2

#

�2

1

A x

1

A :

Conclude that �.x/ is an increasing Lévy process (in x); the class of these
processes we call inverse Gaussian, and we denote it by IG.d; �2/. Again,
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to have EX1 < 0, a negative drift is added. The identification of the spectral
measure ˘.�/ is the subject of one of the exercises. The inverse Gaussian
process has ‘small jumps’, too: it experiences an infinite number of jumps
(almost surely) over any time interval of finite length.

2.3 ˛-Stable Lévy Motions

This section focuses on a subclass of Lévy processes that has attracted substantial
attention in the literature: ˛-stable Lévy motions. This class of processes is
particularly suitable when modeling various sorts of heavy-tailed phenomena [192].

To introduce ˛-stable Lévy motions, we first define the class of stable distribu-
tions. Here we follow the exposition in Samorodnitsky and Taqqu [192], but various
other parameterizations are possible [213]. We say that a random variable Y has a
stable distribution if for any a; b > 0 there exist c > 0 and d 2 R such that

aY 0 C bY 00 dD cY C d;

where Y 0 and Y 00 are independent copies of Y. Due e.g. to Bingham et al. [47,
Thm. 8.3.2], it turns out that the characteristic function of Y can be written in the
form

logEei�Y D
� ��˛j� j˛.1� iˇsign.�/ tan.�˛=2//C im�; ˛ 6D 1I

�� j� j.1C iˇ�=2sign.�/ log j� j/C im�; ˛ D 1I

where ˛ 2 .0; 2�, ˇ 2 Œ�1; 1�, � 2 Œ0;1/, m 2 R, and sign.x/ WD 1.0;1/.x/ �
1.�1;0/.x/: We write that Y is distributed S˛.�; ˇ;m/.

Let us consider the meaning of the parameters in more detail.

• The parameter ˛ is commonly referred to as the index of stability. Later we will
observe that ˛ is directly related to the ‘heaviness’ of the tail distribution. In
particular, if ˛ 2 .0; 1�, then EjYj D 1 (for ˛ D 1 we have the Cauchy
distribution). For ˛ D 2 we obtain the normal distribution.

• The parameter ˇ is known as the skewness. The extreme cases are ˇ D 1,
corresponding to a totally skewed to the right distribution, and ˇ D �1, which
corresponds to a totally skewed to the left distribution. For ˛ < 1, m D 0, and
ˇ D 1 (respectively, ˇ D �1), the support of the distribution is the positive
(respectively, negative) half-line, but this is no longer true for ˛ � 1. The choice
of m D 0 and ˇ D 0 leads to a symmetric distribution.

• For obvious reasons, � is called the scale parameter.
• For ˛ 2 .1; 2�; we have EY D m. This explains why m is called the shift

parameter.
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The following useful property, describing the distribution’s tail asymptotics,
can be found in e.g. Samorodnitsky and Taqqu [192, p. 16]. As before, 
 .z/ WDR1
0

e�xxz�1dx denotes the gamma function. Also, f .x/ � g.x/ as x ! 1 means
that f .x/=g.x/ ! 1 as x ! 1.

Proposition 2.1 Let Y
dD S˛.�; ˇ;m/ with ˇ 2 .�1; 1�. Then, as u ! 1,

P.Y > u/ � C˛;�

�
1C ˇ

2

�

u�˛;

where

C˛;� WD
�
�˛.1 � ˛/= .
 .2 � ˛/ cos.�˛=2// if ˛ 6D 1;
2�=� if ˛ D 1.

The case ˇ D �1 has to be treated separately; see e.g. [192, pp. 17–18].

Proposition 2.2 Let Y
dD S˛.�;�1; 0/.

(i) If ˛ D 1, then as u ! 1,

P.Y > u/ � 1p
2�

exp

�

� .�=2�/u � 1

2
� e.�=2�/u�1

�

:

(ii) If ˛ > 1, then as u ! 1,

P.Y > u/ � 1
p
2�˛.˛ � 1/

�
˛ O�˛

u

�˛=.2.˛�1//
exp

 

�.˛ � 1/
�

u

˛ O�˛
�˛=.˛�1/!

;

where

O�˛ WD �

�

cos

�
�.2 � ˛/

2

���1=˛
:

Having defined stable distributions, we can now introduce ˛-stable Lévy
motions, as follows. We say that .Xt/t is an ˛-stable Lévy motion if .Xt/t has
stationary and independent increments such that the marginals obey

Xt
dD S˛.t

1=˛; ˇ;mt/I

we write X 2 S.˛; ˇ;m/: From the above we conclude that if ˇ D ˙1, then X 2
S˙:

For given ˛ 2 .0; 2� the Lévy measure has the form, for A;B > 0,

˘.dx/ D
�

A

.�x/˛C1
1fx<0g C B

x˛C1
1fx>0g

�

dxI
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it is verified that we again have the property of infinitely many jumps in any finite
time interval, almost surely.

One could say that ˛-stable Lévy motions are self-similar: picking m D 0, and
writing .X.˛/t /t to stress the dependence on ˛, one has that, for M > 0,

�
X.˛/Mt

�

t

dD
�

M1=˛X.˛/t

�

t

(unless ˛ D 1, ˇ 6D 0). In other words, when zooming in, one sees essentially the
same pattern, given that one adjusts the axes in a suitable fashion.

2.4 Lévy-Driven Queues

Having defined Lévy processes, in this section we introduce the notion of queues
with Lévy input (or Lévy-driven queues). It is noticed, however, that these definitions
are by no means restricted to the Lévy framework; based on the formalism defined
below, one can define for any real-valued stochastic process the corresponding
workload process. We provide two types of characterizations.

In the first approach, we define the Lévy-driven queue as the continuous-time
counterpart of the classical discrete-time queue. In discrete time, a queue can be
described through the well-known Lindley recursion: we have that the workload
process .Qn/ satisfies

QnC1 D maxfQn C Yn; 0g;

where Yn is the net input to the queue in slot n (i.e. the input minus the amount that
can potentially be served). Iterating this recursion, we obtain QnC1 D maxfQn�1 C
Yn�1 C Yn;Yn; 0g: With Xn WD Pn

iD0 Yi, and with Q0 D x for x � 0, this eventually
leads to

Qn D Xn C max

�

x; max
0�i�n

�Xi

	

:

In this way we have written the workload process .Qn/n as a functional of the
cumulative net input process .Xn/n, and now the idea is to use the very same
functional to define the workload in continuous time.

More concretely, a queue in continuous time can be defined by just taking the
continuous-time analogue of the above, so that we obtain

Qt D Xt C maxfx;Ltg; t � 0; (2.4)

with

Lt WD sup
0�s�t

�Xs D � inf
0�s�t

XsI
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this increasing (and therefore of bounded variation) process Lt is often referred to
as local time (at zero) or a regulator process; see e.g. Harrison [108]. Assuming the
queue has been running from �1, one can alternatively write

Qt D sup
s�t
.Xt � Xs/:

To ensure the existence of a stationary distribution, it is evident that a stability
condition needs to be fulfilled. In the case of input processes .Xt/t with stationary
increments (as is the case in our Lévy context) it needs to be assumed that EX1 < 0
for the workload process to be stable (which we do throughout this book). If the

input process Xt is reversible, that is, .X.s�t/
�

� Xs/t
dD .�Xt/t for each given s > 0

(which is true in the Lévy case), then we have the following distributional equality
for the stationary workload Q, commonly attributed to Reich [182]:

Q
dD sup

t�0
Xt: (2.5)

Above we constructed the Lévy-driven queue in continuous time analogously to
its discrete-time counterpart. An alternative way of introducing Lévy-driven queues
is by defining them as the solution of a so-called Skorokhod problem, as introduced
by Skorokhod in [201, 202]; then one commonly says that .Qt/t is the reflection of
.Xt/t at 0. This is done as follows. Let .L?t /t be a non-decreasing right-continuous
process such that the following two requirements are fulfilled.

(A) The workload process .Qt/t, defined through Q0 WD x and Qt WD Xt C L?t , is
non-negative for all t � 0.

(B) L?t can only increase when Qt D 0, that is,

Z T

0

QtdL?t D 0; for all T > 0:

Observe that it is natural to impose these conditions on a queueing process. The
process .L?t /t can be informally thought of as the cumulative idle time process; then
(A) indicates by how much Xt should be increased to obtain Qt (to account for the
effect of the boundary at 0), and (B) entails that it is not possible that at the same
time the queue is non-empty and the cumulative idle time grows.

Importantly, it can be proved that the only process satisfying these two conditions
is L?t D maxfx;Ltg, so that Qt D Xt C maxfx;Ltg for t � 0; where Lt is defined as
above; see e.g. Asmussen [19, Prop. IX.2.2] and Robert [185, p. 375]. We conclude
that the expression found in this way coincides with the one obtained when taking
the continuous counterpart of the discrete-time definition, as in (2.4). For the sake
of completeness we include the proof here.
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Proposition 2.3 The process .L?t /t, defined by L?t WD maxfx;Ltg, is the unique
solution to the Skorokhod problem (A)–(B).

Proof There are several ways to prove the statement; we follow the proof of
[19, Prop. IX.2.2]. Let . NL?t /t be another solution to (A)–(B), and . NQt/t be the
corresponding workload process. Defining Dt WD NL?t �L?t , it is our goal to verify that
necessarily Dt � 0. By applying integration by parts for right-continuous processes
of bounded variation, and definingDs WD Ds � Ds�,

D2
t D 2

Z t

0

DsdDs �
X

s�t

.Ds/
2

D 2

Z t

0

. NL?s � L?s /d NL?s � 2
Z t

0

. NL?s � L?s /dL?s �
X

s�t

.Ds/
2

D 2

Z t

0

. NQs � Qs/d NL?s � 2

Z t

0

. NQs � Qs/dL?s �
X

s�t

.Ds/
2;

where the last step is due to Xt D Qt � L?t D NQt � NL?t . Realizing that

Z t

0

NQsd NL?s D
Z t

0

Q?dL?s D 0;

it follows that

D2
t D �2

Z t

0

Qsd NL?s �
Z t

0

NQsdL?s �
X

s�t

.Ds/
2:

As Qs and NQs are non-negative, we conclude that D2
t � 0, and therefore Dt D 0: �

In the case X 2 CP.r; �; b.�//, the queue under study is the well-known M/G/1
queue. We refer to Fig. 2.3 for a pictorial illustration of the evolution of the workload
in time, jointly with the .Xt/t process (where we consider for ease the special case
of Q0 D 0 and r D 1). It is elementary to verify that in the case that

arg inf
0�s�t

.Xt � Xs/

is smaller than t, this time epoch can be interpreted as the start of the busy period
in which t is contained; if it equals t (meaning that Xt is the ‘all-time low’ of the
process so far), then the workload is 0 at time t. It also follows that in this context,
the process L?t is the queue’s cumulative idle time up to time t.

Importantly, however, we would like to stress that this general notion of a
queueing system can be used in settings beyond traditional queues: the process .Xt/t
does not need necessarily to relate to positive quantities of work arriving. In this
sense, we now have developed the concept of a queue fed by for instance Brownian
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t

Xt

t

Qt

Fig. 2.3 Net input process and workload process for a compound Poisson process

t

Xt

t

Qt

Fig. 2.4 Net input process and workload process for an erratic, ‘Brownian-like’ process

motion, or any other real-valued continuous-time stochastic process. In the case
X 2 Bm.d; �2/, the resulting workload process is often referred to as reflected (or
regulated) Brownian motion. We refer to Fig. 2.4 for an illustrative example of such
a workload process.

One of the main objectives in this book is the identification of the distribution of
the transient workload Qt and its stationary counterpart Q WD limt!1Qt. Note that
due to (2.5), as t " 1,

NXt WD sup
0�s�t

Xs " sup
s�0

Xs
dD Q:
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Likewise, .Q0 j Q�t D 0/ increases to Q as t goes to 1: In operations research the
steady-state workload is the natural performance metric when studying queueing
systems that are in operation over long periods of time.

A second frequently used performance measure is the so-called busy period, to
be denoted by � , being the time it takes for the queue to drain (starting from time 0):

� WD infft � 0 W Qt D 0g:

In this book we study the busy period in detail, where we typically assume that the
workload is in stationarity at time 0. Several other metrics are analyzed as well, such
as the workload correlation function Corr.Q0;Qt/ and the infimum attained by the
workload process over a time interval of length t, that is, infs2Œ0;t� Qs, in both cases
assuming the workload is in stationarity at time 0.

Exercises

Exercise 2.1 Prove the Frullani integral equality, Eqn. (2.3), for z 2 C with non-
positive real part.

Hint: In the text a rough sketch was provided. Consider first z � 0. Use that

e�	x � e�.	�z/x

x
D
Z 	�z

	

e�yxdy;

and then change the order of integration. Finally, by analytic extension, show that
the formula is valid for z 2 C with non-positive real part.

Exercise 2.2 Consider X 2 IG.�1; 1/. Prove that

˘.dx/ D 1p
2�x3

e�x=2:

Exercise 2.3 Let X 2 S.˛1; ˇ1;m/ and Y 2 S.˛2; ˇ2;m2/ be independent.

(a) Check that X1 is infinitely divisible.
(b) Characterize when Zt D Xt C Yt has a stable distribution. Find the parameters

of Zt.
(c) Assume that m1 D 0 and check that X is self-similar, that is, show that

.XMt/t
dD .M1=˛1Xt/t:

(d) Characterize 	 for which E.X1/	 < 1.
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Exercise 2.4 Let X
dD S˛.�; ˇ;m/ with ˛ 2 .1; 2/. Check that

(a) aX
dD S˛.jaj�; sign.a/ˇ; am/, for a ¤ 0;

(b) �X
dD S˛.�;�ˇ;�m/;

(c) X is symmetric if and only if ˇ;m D 0.

Exercise 2.5 Let X
dD S˛.�; ˇ; 0/ with ˛ 2 .1; 2/. In addition, we have the

processes X.1/
dD S˛.�; 1; 0/, X.2/

dD S˛.�;�1; 0/, which we assume to be mutually
independent. Check that

X
dD
�
1C ˇ

2

�1=˛
X.1/ C

�
1 � ˇ

2

�1=˛
X.2/:

Exercise 2.6 Prove that the sum of independent compound Poisson processes is a
compound Poisson process. Find its parameters.

Exercise 2.7 Let X and Y be two independent Lévy processes; assume Y is
increasing.

(a) Show that .XYt /t�0 is a Lévy process as well.
(b) Let X be a (standard) Brownian motion, and Y 2 G.ˇ; 	/. Determine the Lévy

exponent of .XYt /t�0.

(Note: With a specific choice of the parameters, this process is called a variance
gamma process; see also Chapter 15.)

Exercise 2.8 Prove Prop. 2.1.

Exercise 2.9 For a given Lévy process X with EX1 < 0, let Q0 obey the stationary
workload distribution, and let L be the regulator process, with

Lt WD sup
0�s�t

�Xs D � inf
0�s�t

Xs:

Then, according to the definition of the workload process, for t � 0,

Qt D Xt C maxfQ0;Ltg:

Show that Qt D sup�1<s�t.Xt � Xs/, and that Qt is stationary.



Chapter 3
Steady-State Workload

In this chapter we analyze the distribution of the stationary workload Q associated
with the workload process .Qt/t that was defined in the previous chapter. We first
treat (in Section 3.1) the spectrally positive and (in Section 3.2) the spectrally
negative case, for which we derive fairly explicit results. We then provide (in
Section 3.3) an account of the general case (i.e. the case in which the jumps are
not necessarily one sided), relying on Wiener–Hopf theory; in this spectrally two-
sided case the results are substantially less clean.

The last two sections of this chapter treat two special cases with two-sided
jumps for which the analysis can be done relatively explicitly, owing to specific
assumptions imposed on the jumps. In Section 3.4 we consider the queue fed by a
compound Poisson input with positive as well as negative jumps (in addition to a
drift and a Brownian term), where these jumps have a phase-type distribution. We
conclude the chapter in Section 3.5, where we briefly sketch results in the case that
the queue’s input process is a meromorphic Lévy process.

3.1 Spectrally Positive Case

The objective of this section is to characterize the stationary workload distribution
Q of a queue fed by a spectrally positive Lévy process. More specifically, we find an
explicit expression for the Laplace transformEe�˛Q in terms of the model primitives
'.�/ and  .�/. Our approach is first to derive this expression for queues with
compound Poisson input, and then to approximate any spectrally positive process
by a compound Poisson. Using the fact that this can be done arbitrarily accurately,
we thus find the desired result. We conclude this section by presenting an alternative
derivation of the expression for Ee�˛Q, based on martingale techniques.

As mentioned, we first consider the special case of compound Poisson input;
the system under study is then a so-called M/G/1 queue. Jobs arrive according to

© Springer International Publishing Switzerland 2015
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a Poisson process with rate �, the jobs are i.i.d. and distributed as a non-negative
random variable B (independent of the interarrival times), and the system is drained
at a constant rate. Calling this depletion rate r, we impose the condition �EB < r
so as to guarantee that the queueing system is stable.

First observe that the queue is empty during exponentially distributed periods
with mean ��1: as soon as the workload reaches value 0, it takes this exponentially
distributed time before the next job arrives. We let p0 WD P.Q D 0/ be the long-run
fraction of time that the system is idle. For any x > 0, a rate conservation argument
(also often referred to as a ‘level-crossing argument’) yields that the density fQ.�/
(assumed to exist) of the steady-state workload satisfies the equation

rfQ.x/ D �

�Z

.0;x/
fQ.y/P.B > x � y/dy C p0P.B > x/

�

:

Here the left-hand side represents the ‘probability flux’ into the set Œ0; x/, whereas
the right hand-side is the flux out of Œ0; x/ (where there are two possibilities: crossing
level x by a job arriving when the workload is at level y 2 .0; x/, and crossing level
x by a job arriving when the queue is empty). Hence,

N�.˛/ WD
Z

.0;1/
e�˛xfQ.x/dx

D 1

r

Z

.0;1/
e�˛x�

�Z

.0;x/
fQ.y/P.B > x � y/dy C p0P.B > x/

�

dx: (3.1)

Interchanging the integrals, we obtain

Z

.0;1/
e�˛x

Z

.0;x/
fQ.y/P.B > x � y/dy dx

D
Z

.0;1/
e�˛yfQ.y/

Z 1

y
e�˛.x�y/

P.B > x � y/dx dy

D
Z

.0;1/
e�˛yfQ.y/dy

Z 1

0

e�˛x
P.B > x/dx

D N�.˛/ 1 � b.˛/

˛
;

where the last step relies on an elementary integration-by-parts argument. It is now
easily verified that (3.1) reduces to

r N�.˛/ D � . N�.˛/C p0/
1 � b.˛/

˛
:

Realizing that �.˛/ WD Ee�˛Q D p0 C N�.˛/ and that �.˛/ ! 1 as ˛ # 0, we
conclude that p0 D .1 � �EB=r/, so that we arrive at the following theorem,
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attributed to Pollaczek [177] and Khintchine [133], usually referred to as the
Pollaczek–Khintchine formula.

Theorem 3.1 Let X 2 CP.r; �; b.�//. For ˛ � 0,

�.˛/ WD Ee�˛Q D r˛p0
r˛ � �.1 � b.˛//

D ˛.r � �EB/

r˛ � �.1 � b.˛//
:

Remark 3.1 Let Bres
1 ;B

res
2 ; : : : be i.i.d. samples from the residual lifetime distribution

of B, defined by

P.Bres � x/ D 1

EB

Z x

0

P.B > y/dyI

from EB D R1
0

P.B > y/dy we know that the right-hand side of the previous
display corresponds to a genuine distribution function. Realizing that bres.˛/ WD
Ee�˛Bres D .1 � b.˛//=.˛ EB/ (which follows directly, using integration by parts),
Thm. 3.1 can alternatively be written as

�.˛/ D
�

1 � �EB

r

� 1X

nD0

�
�EB

r

�n

.bres.˛//
n
:

As a consequence, with % WD �EB=r,

P.Q � x/ D P

 
NX

nD1
Bres

n � x

!

; (3.2)

where P.N D n/ D .1 � %/ %n. This means that the steady-state workload Q can be
interpreted as a geometric number of residuals of the job size B. }

Now the idea is to ‘bootstrap’ our findings for the compound Poisson case to
the general spectrally positive case. Our goal is to find an expression for �.˛/ D
Ee�˛Q for any X 2 SC, by approximating '.˛/ by a sequence 'n.˛/ of terms
that correspond to compound Poisson processes, then apply Thm. 3.1 for these
compound Poisson processes, and finally take the limit n ! 1:

In the spectrally positive case we have, for a certain d, �2 � 0, and measure
˘'.�/ such that

R
.0;1/ minf1; x2g˘'.dx/ < 1; that the Laplace exponent reads

'.˛/ D ˛d C 1

2
˛2�2 C

Z

.0;1/
.e�˛x � 1C ˛x 1fx2.0;1/g/˘'.dx/:
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Now define, for a sequence "n such that "n # 0 as n ! 1, the approximating
Laplace exponent

'n.˛/ WD
�

d C
Z 1

"n

x˘'.dx/C �2

"n

�

˛

C �2

"2n
.e�˛"n � 1/C

Z 1

"n

.e�˛x � 1/˘'.dx/: (3.3)

It is easily verified that 'n.˛/ ! '.˛/ as n ! 1, whereas, for all n 2 N, ' 0n.0/ D
' 0.0/.

Importantly, 'n.˛/, as given in (3.3), is the Laplace exponent of a compound
Poisson process. This is seen as follows. The drift term of this compound Poisson
process is

dn WD d C
Z 1

"n

x˘'.dx/C �2

"n
> 0:

Then, the term �2="2n �.e�˛"n � 1/ can be interpreted as the contribution of a Poisson
stream (arrival rate �1;n WD �2="2n) of jobs of deterministic size ˇ1;n WD "n: Finally,

Z 1

"n

.e�˛x � 1/˘'.dx/ D ˘'.Œ"n;1//

Z 1

"n

.e�˛x � 1/ ˘'.dx/

˘'.Œ"n;1//
;

which is the contribution of a Poisson stream (arrival rate �2;n WD ˘'.Œ"n;1//) of
jobs, whose sizes are i.i.d. samples from a ‘truncated distribution’. This distribution
has density ˘'.dx/=˘'.Œ"n;1//, for x � "n, and mean

ˇ2;n WD
Z 1

"n

x
˘'.dx/

˘'.Œ"n;1//
:

Let Qn be the steady-state workload of the queue fed by a compound Poisson
process with Laplace exponent 'n.˛/: Due to 'n.˛/ ! '.˛/ it is conceivable that
Ee�˛Qn ! Ee�˛Q: From Thm. 3.1, we find that Ee�˛Qn equals

˛.dn � �1;nˇ1;n � �2;nˇ2;n/


�

dn˛ � �2

"2n
.1 � e�˛"n/�

Z 1

"n

.1 � e�˛x/˘'.dx/

�

:

It is a matter of straightforward calculus now to show that

Ee�˛Qn ! ˛' 0.0/
'.˛/

as n ! 1I (3.4)

the convergence follows from straightforward algebra. In other words, under the
proviso that we can prove that Ee�˛Qn ! Ee�˛Q, we have established the following
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result. Thm. 3.2 is often attributed to Zolotarev [222]; it is sometimes referred to as
the generalized Pollaczek–Khintchine formula.

Theorem 3.2 Let X 2 SC. For ˛ � 0,

�.˛/ WD Ee�˛Q D ˛' 0.0/
'.˛/

:

The convergence Ee�˛Qn ! Ee�˛Q is a technical issue that lies beyond the scope
of this textbook; we refer to [139, 207] for related results.

Thm. 3.2 provides us with the Laplace–Stieltjes transform of the random variable
under consideration, but it is noticed that there are powerful techniques to numeri-
cally invert these transforms. Besides the classical contribution by Abate and Whitt
[2], we wish to draw attention to novel ideas developed by den Iseger, reported on
in [79]; we return to this topic in Chapter 16.

Alternative proofs of Thm. 3.2 rely on martingale techniques, most notably
the celebrated Kella–Whitt martingale [130]; see also [146, Section 4.4] and [19,
Section IX.3]. With

Lt.x/ WD maxf0;Lt � xg D max

�

0;� inf
0�s�t

Xs � x

	

;

it can be shown using stochastic integration theory that, for X 2 SC,

Kt WD '.˛/

Z t

0

e�˛Qs ds C e�˛x � e�˛Qt � ˛Lt.x/

is a martingale. Below we provide the skeleton of the proof of this claim; after
this proof we show how the martingale .Kt/t can be applied to obtain a compact
derivation of the generalized Pollaczek–Khintchine formula.

Proposition 3.1 .Kt/t is a martingale.

Proof (sketch) Consider an adapted continuous process .Yt/t that we assume to be
of locally bounded variation, and define the process Zt WD x C Xt C Yt: In addition,
we introduce the processes Mt WD e�˛Xt e�t'.˛/ (which we have proved to be a
martingale), and Bt WD e�˛Yt et'.˛/.

From stochastic integration theory [117], it is known that

NKt WD
Z t

0

Bs�dMs

is a local martingale. Then we apply integration by parts. Using that .Yt/t is
continuous, we have

MtBt � M0B0 D
Z t

0

Ms�dBs C
Z t

0

Bs�dMs D
Z t

0

Ms�dBs C NKt;
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and also

NKt D MtBt � M0B0 �
Z t

0

MsdBs:

Now plugging in the definitions, we obtain

NKt D e˛.x�Zt/ � 1 �
Z t

0

e�˛Xs e�s'.˛/d
�
e�˛Ys es'.˛/

�
:

Realizing that

d
�
e�˛Ys es'.˛/

� D �
e�˛Ys es'.˛/

� � .�˛ dYs C '.˛/ ds/ ;

it is seen that NKt D �e˛x LKt, with

LKt WD
�

'.˛/

Z t

0

e�˛Zs ds C e�˛x � e�˛Zt � ˛
Z t

0

e�˛Zs dYs

�

:

In other words, . LKt/t is a local martingale.
Now take for .Yt/t the process .Lt.x//t, so that Zt D Qt (with initial condition

Q0 D x). Notice that the above requirements for .Yt/t are fulfilled; it is continuous
due to the fact that X 2 SC, and in addition it is non-decreasing. As Lt.x/ (as a
function of t) only increases when Qt D 0, we have

Z t

0

e�˛Qs dLs.x/ D Lt.x/:

It now follows that .Kt/t is indeed a local martingale. It is actually even a martingale
[19, Lemma IX.3.3]; we do not prove this property. �

As mentioned earlier, we now use the martingale .Kt/t to prove the generalized
Pollaczek–Khintchine formula. Assume that the queue is in stationarity at time 0.
Stopping the martingale at time 1, realizing that the martingale has mean 0, and
using that the stationarity of .Qt/t implies that E

R 1
0

e�˛Qs ds D Ee�˛Q, we obtain
the identity

0 D EK1 D '.˛/Ee�˛Q C Ee�˛Q � Ee�˛Q � ˛EL1.Q/;

so that

Ee�˛Q D ˛ EL1.Q/

'.˛/
:
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Now realizing that Ee�˛Q ! 1 as ˛ # 0, we retrieve Thm. 3.2. In passing, we have
shown that, in stationarity, the ‘mean amount of local time per time unit’ equals
' 0.0/:

Example 3.1 Consider the case of reflected Brownian motion, that is, we suppose
X 2 Bm.d; �2/ for some d < 0. Then, with � WD �2d=�2 > 0,

Ee�˛Q D ˛' 0.0/
'.˛/

D �

� C ˛
:

We conclude that the steady-state workload in a Brownian queue has an exponential
distribution with mean 1=�: Observe that the steady-state workload of this queue
has no atom at 0. }
Example 3.2 Consider the case of X 2 S.˛; 1;�r/ with ˛ 2 .1; 2/ and r > 0; recall
that X 2 SC as the underlying stable distribution is totally skewed to the right.
Then, using that according e.g. to Furrer [96, Prop. 2.25],

'.s/ D rs C 1

cos .�.˛=2� 1//
s˛;

one can invert the transform of Thm. 3.2 to obtain [96, Prop. 3.3]

P .Q > u/ D
1X

nD0

.�r cos .�.˛=2 � 1///n

 .1C .˛ � 1/n/ u.˛�1/n:

It is concluded that Q has a so-called Mittag–Leffler distribution. }
Thm. 3.2 reveals all moments of the steady-state workload Q, and in particular

its mean and variance:

� WD EQ D � d

d˛

˛' 0.0/
'.˛/

ˇ
ˇ
ˇ
ˇ
˛#0

D ' 00.0/
2' 0.0/

; (3.5)

and similarly,

v WD Var Q D 1

4

�
' 00.0/
' 0.0/

�2
� 1

3

' 000.0/
' 0.0/

; (3.6)

provided that these objects are well defined. As a general rule, Q has a finite nth
moment if and only if X1 has a finite .n C 1/st moment; for details on this property,
we refer to Kyprianou [146, Exercise 7.1].
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3.2 Spectrally Negative Case

For spectrally negative input, the reasoning is substantially simpler. First observe
that eˇ0Xt is a martingale, with ˇ0 WD �.0/ > 0; this is a direct consequence of the
fact that ˚.ˇ0/ D 0.

Note that, by virtue of ‘Reich’s identity’ (see Eqn. (2.5)), we have

P.Q � u/ D P

 

sup
t�0

Xt � u

!

D P.9t � 0 W Xt � u/:

Now consider the stopping time �.u/ WD infft � 0 W Xt � ug; obviously, the
event f�.u/ < 1g coincides with f9t � 0 W Xt � ug: ‘Optional sampling’ (see e.g.
Williams [220, Chapter A14]) thus gives, for any positive u,

1 D eˇ0X0 D E
�
eˇ0X�.u/1f�.u/<1g

� D eˇ0uP.�.u/ < 1/ D eˇ0u
P.Q � u/I

here we use that, due to the fact that there are no jumps in the upward direction,
given a certain level u > 0 is reached, it is attained with equality. We conclude that
P.Q > u/ D P.Q � u/ D e�ˇ0u.

Theorem 3.3 Let X 2 S�. Then Q is exponentially distributed with mean 1=ˇ0.

It is noted that a similar argument can be used for the waiting time in the classical
G/M/1 queue; it entails that the waiting time distribution in that model is exponential
(with an atom at 0).

It can be intuitively understood that Q is exponentially distributed. Recall that,
according to (2.5), Q is distributed as supt�0 Xt. Observe that, due to the fact that
there are no positive jumps, the running supremum process NXt WD sup0�s�t Xs attains
any value between 0 and supt�0 Xt. It is seen that, using that the increments of X are
stationary and independent,

P

 

sup
t�0

Xt > x C y

ˇ
ˇ
ˇ
ˇ
ˇ

sup
t�0

Xt > x

!

D P

 

sup
t�0

Xt > y

!

;

which implies that supt�0 Xt is memoryless.

3.3 Spectrally Two-Sided Case

In this section, we consider the stationary workload in the situation that the input
process is not necessarily spectrally one sided. We use, as we did earlier, ‘Reich’s
identity’ (see Eqn. (2.5)), in the sense that we analyze the all-time supremum
attained by the Lévy process .Xt/t. The body of theory related to these results is
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known as Wiener–Hopf theory. In this monograph we do not provide an in-depth
treatment of Wiener–Hopf results, but restrict ourselves to a brief introduction. For
a detailed description we refer e.g. to Kyprianou [146, Chapter 6], and for a compact
but fairly complete account, to Kyprianou [147]; see also [102, 187], as well as the
textbooks [43, 193].

In this section we highlight the main results from Wiener–Hopf theory. We
do so by predominantly concentrating on the discrete-time case (i.e. the situation
of a discrete-time random walk); we state the associated Wiener–Hopf result and
sketch the crucial elements of the proof. The continuous-time case can be dealt with
essentially analogously (albeit that a number of technical complications have to be
addressed); we restrict ourselves to just stating the main result in this continuous-
time case.

Discrete time—Consider the random walk Sn WD Pn
iD1 Yi, with the Yi being i.i.d.,

distributed as a generic random variable Y: Let NSn be the running maximum process:

NSn WD sup
i2f1;:::;ng

SiI

Gn denotes the (first) epoch at which that running maximum is attained. Let T be an
(independent) geometric random variable, that is, P.T D k/ D p.1 � p/k, for some
p 2 .0; 1/ and k 2 f0; 1; : : :g. Our goal is to study the joint distribution of the pairs
.NST ;GT/ and .ST � NST ;T � GT/:

• First consider the pair .NST ;GT/. Observe that the number of record values attained
before T is a geometric random variable; let us denote this number by N. It
follows that both NST and GT can be written as the sum of N i.i.d. non-negative
random variables. It is an elementary exercise that such ‘geometric sums’ of i.i.d.
random variables are infinitely divisible (to this end, realize that a geometric
random variable with success probability p can be written as the sum of n
negative-binomial random variables with parameters n�1 and p). It is concluded
that NST and GT are infinitely divisible.

• Then observe that .ST � NST ;T � GT/ is independent of .NST ;GT/. This can be
intuitively understood from the fact that, by virtue of the memoryless property of
the geometric distribution, neither the position of the running maximum (i.e. NST)
nor the epoch at which this is attained (i.e. GT ) has any impact on the amount by
which the process has gone down between GT and T (i.e. NST � ST ), nor the time
elapsed until the ‘killing epoch’ T (i.e. T � GT ).

• It can then be seen that ST � NST has the same distribution as the running minimum
process (draw a picture!); in addition, T � GT corresponds to the time epoch that
this minimum is attained. Using the same argumentation as before, these two
random variables are infinitely divisible.

• It is a straightforward computation that, with s 2 .0; 1� and ˛ 2 R,

E sT e˛iST D p

1 � .1 � p/sEe˛iY
: (3.7)
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At the same time,

exp

 

�
Z 1

�1

1X

nD1

1

n
.1 � sne˛ix/.1 � p/nP.Sn 2 dx/

!

D exp

 

�
1X

nD1

1

n
.1 � sn

Ee˛iSn/.1 � p/n
!

D exp

 

�
1X

nD1

1

n

�
.1 � p/n � �

.1 � p/sEe˛iY
�n
�
!

D exp
�
log p � log

�
1 � s.1 � p/Ee˛iY

��
;

which evidently equals (3.7).
• Hence .ST ;T/ can be written as the sum of two independent terms, that is,
.NST ;GT/ and .ST � NST ;T �GT/, which are both infinitely divisible. Also, observe
that NST is non-negative and ST � NST is non-positive. As a result, applying standard
Wiener–Hopf arguments,

E sGT e˛iNST D exp

 

�
Z 1

0

1X

nD1

1

n
.1 � sne˛ix/.1 � p/nP.Sn 2 dx/

!

;

and

E sT�GT e˛i.ST�NST / D exp

 

�
Z 0

�1

1X

nD1

1

n
.1 � sne˛ix/.1 � p/nP.Sn 2 dx/

!

:

We have thus found the distribution of the running maximum NST , and, in fact, a set
of more refined results as well, such as the distribution of the running maximum (i.e.
NST) jointly with the value of the process at the killing epoch (i.e. ST). Intuitively, by
letting the success probability p # 0, the random variable T becomes infinitely large.
This means that we obtain the distribution of the all-time supremum NS by inserting
p D 0 (and obviously s D 1) in the expression above; we thus obtain

Ee˛iNS D exp

 

�
Z 1

0

1X

nD1

1

n
.1 � e˛ix/P.Sn 2 dx/

!

: (3.8)

The stationary workload being distributed as the all-time maximum NX of the driving
Lévy process .Xt/t, our objective in this section is to find the continuous-time
counterpart of (3.8).

Continuous time—Let us therefore proceed with analyzing the continuous-time
setting; from now on T is exponentially distributed with mean 1=# , independently
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of the Lévy process .Xt/t. Trivially, for ˇ � 0 and ˛ 2 R,

Ee�ˇTC˛iXT D #

# C ˇ � logEe˛iX1
: (3.9)

But on the other hand, using the Frullani integral identity (2.3), we also have

exp

�

�
Z 1

0

Z 1

�1
1

t

�
e�#t � e�.#Cˇ/te˛ix�

P.Xt 2 dx/dt

�

D exp

�

�
Z 1

0

1

t

�
e�#t � e�.#Cˇ/tEe˛iXt

�
dt

�

D exp

�

�
Z 1

0

1

t

�
e�#t � e�.#Cˇ�log Ee˛iX1 /t

�
dt

�

D #

# C ˇ � logEe˛iX1
:

Define the following two functions that play a crucial role in Lévy fluctuation
theory:

k.#; ˛/ WD exp

�

�
Z 1

0

Z

.0;1/
1

t

�
e�t � e�#t�˛x

�
P.Xt 2 dx/dt

�

I (3.10)

Nk.#; ˇ/ WD exp

�

�
Z 1

0

Z

.�1;0/
1

t

�
e�t � e�#tCˇx

�
P.Xt 2 dx/dt

�

: (3.11)

Mimicking the line of reasoning for the discrete-time random walk case, we
obtain the following result; a graphical illustration is provided in Fig. 3.1.

Theorem 3.4 The pairs . NXT ;GT/ and .XT � NXT ;T � GT/ are independent. Also,
with k.� ; �/ as defined in (3.10), for ˇ � 0 and ˛ 2 R,

Ee�ˇGTC˛i NXT D k.# C ˇ;�˛i/

k.#; 0/

D exp

�

�
Z 1

0

Z 1

0

1

t

�
e�#t � e�.#Cˇ/te˛ix�

P.Xt 2 dx/dt

�

;

and, with Nk.� ; �/ as defined in (3.11), for ˇ � 0 and ˛ 2 R,

Ee�ˇ.T�GT /C˛i.XT�NXT / D Nk.# C ˇ; ˛i/
Nk.#; 0/

D exp

�

�
Z 1

0

Z 0

�1
1

t

�
e�#t � e�.#Cˇ/te˛ix�

P.Xt 2 dx/dt

�

:
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TGT

XT

X̄T

t

Xt

Fig. 3.1 Graphical representation of the Wiener–Hopf result; the maximum value NXT is attained
at time GT . The pairs . NXT ;GT/ and .XT � NXT ; T�GT/ are independent, with T being exponentially
distributed

This theorem also provides us with the joint transform of the all-time supremum
NX WD limt!1 NXt and the corresponding epoch G WD limt!1Gt, simply by taking
# D 0 in the formulas.

It is noted that in the spectrally one-sided cases, the function k.� ; �/ can be
computed explicitly. For X 2 S�, we have k.q; ˇ/ D 1=.�.q/ C ˇ/, whereas
for X 2 SC,

k.#; ˛/ D  .#/ � ˛

# � '.˛/
:

Also, for X 2 S�,

Nk.q; ˇ/ D �.q/� ˇ

q � ˚.ˇ/
;

and for X 2 SC, we have Nk.#; ˛/ D 1=. .#/C ˛/:

We can now use Thm. 3.4, so as to obtain an expression for Ee�˛Q, by plugging
in ˇ D 0, and by letting the parameter # go to 0. We thus obtain the following
result.

Theorem 3.5 Let X be a general Lévy process. For ˛ � 0,

Ee�˛Q D exp

�

�
Z 1

0

Z

.0;1/
1

t
.1 � e�˛x/P.Xt 2 dx/dt

�

D k.0; ˛/

k.0; 0/
:
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It is noted that in the case that .Xt/t is compound Poisson, there is a minor subtlety
that needs to be taken into account, essentially relating to the case that at time t no
jobs have arrived, for which this formula needs to be slightly adapted; we refer for
details to Kyprianou [146, pp. 167–168].

Example 3.3 Suppose X 2 Bm.d; �2/ for some d < 0; we recover the result of
Example 3.1. For ease we consider the case that d D �1 and �2 D 1, but the
general case works analogously. We have to evaluate

exp

�

�
Z 1

0

Z 1

0

1

t
.1 � e�˛x/

1p
2�t

exp

�

� .x C t/2

2t

�

dx dt

�

:

First change the order of integration, and then apply [146, Exercise 1.6(iii)], to
obtain

Ee�˛Q D exp

�

�
Z 1

0

1

x

�
e�2x � e�x.2C˛/� dx

�

:

Then, with the Frullani integral identity, the last expression can be rewritten as
2=.2C ˛/, as desired: Q is exponentially distributed with mean 1

2
: }

Example 3.4 Interestingly, the result stated in Thm. 3.5 allows us to deal with
specific situations that are not in SC or S�. Consider for instance the queue with
compound Poisson input; the jobs arrive according to a Poisson process with rate
�, and the job sizes are i.i.d. samples from a normal distribution with mean d < 0

and variance �2. In this case, we have to evaluate, by conditioning on the number of
jobs that have entered the system in .0; t/,

exp

 

�
Z 1

0

Z 1

0

1

t
.1 � e�˛x/

1X

kD1

e��t.�t/k

kŠ

1p
2�k�2

exp

�

� .x � kd/2

2k�2

�

dx dt

!

I

note that the k D 0 term can be omitted. First perform the integration over t; it leads
to (recognize the gamma function!)

exp

 

�
1X

kD1

Z 1

0

.1 � e�˛x/
1p
2�k�2

1

k
exp

�

� .x � kd/2

2k�2

�

dx

!

D exp

 

�
1X

kD1

1

k

 

�N

 

�d
p

k

�

!

�
�

e�˛dC 1
2 ˛

2�2
�k
�N

 

�d
p

k

�
C �˛

p
k

!!!

;

with �N.�/ denoting the complementary distribution function of a standard normal
random variable. It is observed that � cancels (which could be a priori expected;
why?); a similar procedure can be executed in the case that a deterministic drift is
added, but then � obviously does not cancel. }



36 3 Steady-State Workload

Phase-type jumps in one direction—As demonstrated earlier in this section, for X 2
SC or X 2 S�, the transform Ee�˛Q can be evaluated in an explicit form in terms
of the model primitives (i.e. in terms of the functions '.�/;  .�/ for X 2 SC, and
the functions ˚.�/ and �.�/ for X 2 S�). Wiener–Hopf theory shows that this
is not possible if the jumps are not one sided (except for particular special cases;
see e.g. Example 3.4): if the driving Lévy process is not spectrally one sided, one
has not succeeded in expressing Ee�˛Q explicitly in terms of the Lévy exponent of
the input process (and related quantities). Instead, Thm. 3.5 expresses the Laplace
transform of the stationary workload in terms of a double integral involving the
density P.Xt 2 dx/, which is for many Lévy processes not known in closed form.

There are spectrally two-sided Lévy processes in which rather explicit analysis is
possible, though: those for which either the upward jumps or the downward jumps
have a phase-type distribution. We start our exposition by giving the definition of
phase-type distributions; see Asmussen [19, Section III.4] for more background.

Definition 3.1 Let .Jt/t denote a continuous-time Markov jump process on the
finite state space f1; : : : ; ng[�, where states 1; : : : ; n are transient and � is absorbing.
Let (the row vector) a denote a distribution on f1; : : : ; ng, to be interpreted as the
initial distribution. Defining � as the first entrance time of the process .Jt/t to state �,
a non-negative random variable P is said to be of phase type if P.� � t/ D P.P � t/;
for all t � 0: The transition matrix of .Jt/t is given by

�
T t
0T 0

�

;

where t WD �T1; and 0 and 1 denote an n-dimensional all-zeros vector and an n-
dimensional all-ones vector, respectively.

Phase-type random variables, to be informally thought of as sums and mixtures
of independent exponentially distributed random variables, are particularly useful
because they may serve as accurate approximations of general distributions on the
positive half-line. They have the attractive property that they are at the same time
relatively easy to work with. Let us proceed by providing a number of classical
examples of phase-type distributions.

• Erlang distribution. In this case the phase-type random variable P corresponds
to the sum of n 2 f1; 2; : : :g independent exponentially distributed random
variables, say each having mean 1=ˇ > 0: In the language of the above definition,
we have a1 D 1, Ti;iC1 D �Tii D ˇ for i D 1; : : : ; n � 1, Tnn D �tn D ˇ, while
the other entries of a, T, and t are 0. Figure 3.2 pictorially illustrates the Erlang
distribution (characterized by the parameters n and ˇ).

• Hyperexponential distribution. Here the phase-type random variable P corre-
sponds to probability ai to an exponentially distributed random variable with
mean 1=ˇi, for i D 1; : : : ; n; we obviously require

Pn
iD1 ai D 1: This distribution

can, in the notation introduced above, be represented by ti D �Tii D ˇi for
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1 2 · · · n †

Fig. 3.2 Graphical representation of an Erlang distribution

1

...

n

†

Fig. 3.3 Graphical representation of a hyperexponential distribution

i D 1; : : : ; n, while all other entries of T are 0. Figure 3.3 provides an illustration
of this distribution (characterized by the n-dimensional vectors a and ˇ).

As mentioned above, phase-type distributions have several attractive properties.
Using standard Markov-chains theory, it is readily verified that the distribution is
P.P � x/ D 1 � aeTx1I the nth moment is E.Pn/ D .�1/nnŠ aT�n1; the Laplace
transform is

Ee�˛P D a .˛I � T/�1t:

We have already noted that phase-type distributions have the potential to provide
accurate approximations of any distribution on the positive half-line. More precisely,
the class of phase-type distributions is dense (in the sense of weak convergence)
in the set of all probability distributions on the positive half-line; see Asmussen
[19, Thm. III.4.2]. In fact even the smaller class of mixtures of Erlang distributions
already has this property; in this case P corresponds to an Erlang distribution with
parameters nk and ˇk with probability pk, for k D 1; : : : ;m:

In the sequel we let PC be the class of Lévy processes whose jumps in the
upward direction are of phase type; likewise,P� are the Lévy processes with phase-
type downward jumps. We denote by P the class of Lévy processes whose jumps in
one direction are of phase type, that is, P WD PC [ P�. As we mentioned above,
for X 2 P the Wiener–Hopf factors can still be given relatively explicitly, that is,
in terms of the roots of a given equation; the key results of Wiener–Hopf theory for
X 2 P are presented in e.g. [22, 149, 150]. We do not include these results in this
book, but the case of X 2 PC\P�, that is, phase-type jumps in both directions, is
treated in detail in the Section 3.4. As an aside we remark that, in great generality,
the results for X 2 P carry over to a larger class of processes, that is, the class of
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Lévy processes of which the jumps in at least one direction have a rational Laplace
transform.

Any Lévy process X can be accurately approximated by a Lévy process X.app/ 2
P; in fact, the ‘denseness result’ mentioned above entails that the ‘fit’ can be made
arbitrarily precise (which is typically achieved by increasing the dimension n of the
phase-type distribution). As a result, also an explicit approximation Ee�˛Q.app/

for
Ee�˛Q can be found, using the Wiener–Hopf results for X 2 P mentioned above.
We now sketch one possible procedure to explicitly identify an approximating
process X.app/ 2 P .

We restrict ourselves for the moment to the jump part of the Lévy process X; let
˘.�/ be the corresponding spectral measure.

(A) Suppose the jumps of X are not of compound Poisson type (recall e.g. the
gamma process introduced in Section 2.2, which has ‘small jumps’, that is,
infinitely many jumps in a finite time interval). That is, we are in the situation
that

Z 1

�1
˘.dx/ D 1:

It is evident that, for any " > 0, we can write X D X.1/ C X.2/, where the
spectral measure of X.1/, say ˘.1/, equals the restriction of ˘.�/ to .�"; "/,
and the spectral measure of X.2/, say ˘.2/, equals the restriction of ˘.�/ to
.�1;�"�[Œ";1/. Clearly X.2/ is of compound Poisson type, which is covered
by step (B), so we are left with dealing with X.1/:
To this end, define

�" WD
� R "
�" x˘.dx/ if

R1
�1 jxj˘.dx/ < 1;

0 otherwise;
�" WD

Z "

�"
x2˘.dx/:

Then, due to Asmussen and Rosiński [30], if ˘.x/ has the form L.x/=jxj˛C1
for x ! 0, the function L.�/ being slowly varying at 0 and ˛ 2 .0; 2/, then, as
" # 0,

�
X.1/.t/ � �"t

�"

�

t

d! .Bt/t; (3.12)

where ‘
d!’ stands for weak convergence in the space DŒ0; 1� equipped with

the uniform metric, and .Bt/t denotes standard Brownian motion. As a con-
sequence, we can approximate X.1/ by a Brownian motion with drift: X.1/t �
�"t C �"Bt; for some small " > 0.

(B) Based on step (A), we can approximate our general Lévy process by the sum
of a drift, a Brownian motion, and a compound Poisson process; we have
eliminated the ‘small jumps’. To generate an approximating Lévy process
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X.app/ in the class P , we have to approximate either the upward jumps or the
downward jumps of the Poisson process by phase-type jumps; as mentioned
above, in principle this can be done arbitrarily accurately. There are various
algorithms to generate phase-type fits; see e.g. [28, 91, 112].

Observe that after performing the steps (A) and (B) we have found an (accurately)
approximating Lévy process X.app/ in P; hence the transform Ee�˛Q can be
approximated by Ee�˛Q.app/

, which can be found in (semi-)explicit form. It is
stressed that there is an obvious trade-off between accuracy and computational
effort needed. The smaller ", the better the approximation of the small jump
process X.2/ by a Brownian motion with drift, but the larger the arrival rate �"
of the compound Poisson process X.1/. The approach described above resembles
the procedure proposed by Jeannin and Pistorius in [116]; there the jumps in both
directions are approximated by means of a generalized hyperexponential model.

3.4 Spectrally Two-Sided Case: Phase-Type Jumps

In the previous section we briefly touched on results related to the case X 2
PC [ P� (i.e. phase-type jumps in at least one direction). This section provides
a more detailed account of the case X 2 PC \ P� (i.e. phase-type jumps in both
directions). We follow the exposition of Asmussen [20], to which we refer for a
complete treatment.

The Lévy exponent for X 2 PC \ P� reads

�.s/ D isd � 1

2
s2�2 C

Z 0

�1
�
eisx � 1�˘�.dx/C

Z 1

0

�
eisx � 1�˘C.dx/;

where

˘�.dx/ D �� fB
�

.�x/ dx; ˘C.dx/ D �C fB
C

.x/ dx:

Here �� > 0 (respectively, �C > 0) is the Poisson arrival rate of negative
(respectively, positive) jumps. The downward jumps, the absolute values of which
have density fB

�

.�/, are assumed to be of phase type; using the terminology of
Definition 3.1, the underlying random variable B� is characterized by the dimension
n�, the initial distribution a�, and the transition rate matrix T�: Likewise, the
upward jumps are distributed as a random variable BC, corresponding to a phase-
type distribution with density fB

C

.�/; this distribution is characterized by dimension
nC, initial distribution aC, and transition rate matrix TC:
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In the sequel it turns out to be convenient to work with the cumulant L�.s/ WD
�.�is/, given by

L�.s/ D ds C 1

2
s2�2 C

��
�

a� .sI� � T�/�1 t� � 1
�

C �C
�

a�
��sIC � TC

��1
tC � 1

�
; (3.13)

where I� and IC are identity matrices of dimension n� and nC, respectively. Relying
on expression (3.13), it follows that L�.s/ can be written as L�n.s/= L�d.s/, where the
functions in both the numerator and the denominator are polynomials in s. The
degree of the denominator is clearly n� C nC (use e.g. Cramer’s rule). Focusing
on the case that �2 > 0, which we assume throughout the rest of this section, the
degree of the numerator is n� C nC C 2; the case that �2 D 0 can be dealt with
analogously, but is left out for brevity.

The primary objective of this section is to evaluate `.u j #/ WD P. NXT � u/,
for T being exponentially distributed with mean 1=# (independently of the driving
Lévy process X). Having identified an expression for `.u j #/, we have found
k.#; ˛/=k.#; 0/ D Ee�˛ NXT as well; to see this realize that, applying integration by
parts,

Z 1

0

e�˛u`.u j #/du D
Z 1

0

`.u j #/d
�

�e�˛u

˛

�

D 1 � Ee�˛ NXT

˛

D 1

˛

�

1 � k.#; ˛/

k.#; 0/

�

:

Two-sided exit—To finally be able to evaluate `.u j #/, we first set up a procedure
to determine the two-sided exit probability

`.u; v/ WD P
�
X�Œu;v/ � v

�
; (3.14)

where �Œu; v/ WD infft � 0 W Xt 62 Œu; v/g, for u � 0 � v: This procedure can
then be used to develop an algorithm to determine `.u/ WD P. NX � 0/, and finally
`.u j #/ D P. NXT � u/. We have decided to first concentrate on the two-sided
exit probability (3.14) for two reasons. First, the ideas behind the procedure to
determine (3.14) are a natural step when developing the analogous procedure for
the one-sided counterpart

`.u/ D P.9t � 0 W Xt � u/:

Second, the quantity `.u; v/ is of independent interest, as it plays an important role
in the theory of finite-buffer queues; see Section 11.1.

Define the following events. For i D 1; : : : ; nC we let ECi .u; v/ correspond to
the event that the interval Œu; v/ is first left because there is a time epoch t such that
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Xt > v while the phase-type distribution is in state i. Likewise, for j D 1; : : : ; n�
in the event ECi .u; v/ the interval Œu; v/ is first left because there is a time epoch t
such that Xt < u while the phase-type distribution is in state j. The event EC0 .u; v/
corresponds to the event that the interval Œu; v/ is first left due to a t such that Xt D v

(i.e. u is exceeded not because of a jump, but due to the Brownian part of the Lévy
process); E�0 .u; v/ is defined analogously. We define the probabilities pCi .u; v/ WD
ECi .u; v/ and p�i .u; v/ WD E�i .u; v/, for i D 0; : : : ; nC and j D 0; : : : ; n�. Notice
that these are n� C nC C 2 unknowns that we wish to identify.

We introduce the following (mean-0) martingale:

L�.s/
Z t

0

esXr dr C 1 � esXt

(where verification of this process being a martingale is standard). Note that this is a
variant of the Kella–Whitt martingale that we introduced for the spectrally positive
case, but focusing on the Lévy process .Xt/t rather than the workload process .Qt/t
(and therefore not taking reflection at 0 into account). The idea is that we apply
‘optional sampling’, with the stopping time �Œu; v/; for considerations regarding the
justification of this procedure, we refer to the in-depth treatment in [20]. We thus
arrive at

0 D L�.s/
 Z �Œu;v/

0

esXr dr

!

C 1

�
nC

X

iD0
E

�
esX� Œu;v/1fEC

i .u;v/g
�

�
n�

X

jD0
E

�
esX� Œu;v/1fE�

j .u;v/g
�
:

Now realize that for i D 0 the random variable X�Œu;v/ on the event ECi .u; v/ equals
the deterministic quantity v; for i D 1; : : : ; nC this v should be increased by the
phase-type random variable BC but now with initial distribution eCi rather than aC;
the initial distribution eCi corresponds to starting in state i with probability 1. A
similar reasoning applies to E�j .u; v/, with j D 0; : : : ; n�: As a consequence, with

bCi .s/ WD eCi .�sIC C TC/�1tC; b�j .s/ WD e�j .sI� C T�/�1t�;

we arrive at

0 D L�.s/
 Z �Œu;v/

0

esXr dr

!

C 1

� esv

0

@pC0 .u; v/C
nC

X

iD1
bCi .s/p

C
i .u; v/

1

A � esu

0

@p�0 .u; v/C
n�

X

jD1
b�j .s/p�j .u; v/

1

A :
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From Ivanovs et al. [114] it now follows that there are (in the complex plane) n� C
nC C 2 solutions to the equation L�.s/ D 0, say s.1/; : : : ; s.n

�CnCC2/ (one of which
equals 0). Hence we obtain the following n� C nC C 2 equations, solving equally
many unknowns: for k D 1; : : : ; n� C nC C 2,

1 D es.k/v

0

@pC0 .u; v/C
nC

X

iD1
bCi .s

.k//pCi .u; v/

1

A

C es.k/u

0

@p�0 .u; v/C
n�

X

jD1
b�j .s.k//p�j .u; v/

1

A :

Finally, `.u; v/ follows from

`.u; v/ D pC0 .u; v/C
nC

X

iD1
pCi .u; v/:

One-sided exit—We now consider the one-sided exit probability, exploiting the
techniques deployed above. Let �.u/ be the first time the level u > 0 is exceeded
(realize this is a defective random variable!), and define the stopping time �t.u/ WD
minft; �.u/g. Also introduce pi;t.u/, for i D 1; : : : ; nC, as the probabilities that u
is exceeded before time t while the jump (which has phase-type distribution, and
is distributed as the random variable BC) is in state i. In addition, p0;t.u/ is the
probability that level u is exceeded before time t without an ‘overshoot’ (i.e. u
is exceeded due to the Brownian part: �.u/ < t and X�.u/ D u). Application of
‘optional sampling’ yields

0 D L�.s/
 Z �t.u/

0

esXr dr

!

C 1

� esu

0

@p0;t.u/C
nC

X

iD1
bCi .s/pi;t.u/

1

A� E
�
esXt1ft<�.u/g

�
: (3.15)

Appealing again to [114], it follows that there are nC C 1 roots with a positive real
part, which we call Ns.1/; : : : ; Ns.nCC1/; it can be argued [20, Section 4] that (3.15)
applies to all these roots. Again the number of unknowns equals the number of
equations: we have for k D 1; : : : ; nC C 1, when sending t ! 1,

1 D eNs.k/u
0

@p0.u/C
nC

X

iD1
bCi .Ns.k//pi.u/

1

A ;
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where pi.u/ WD pi;1.u/, for i D 0; : : : ; nC. Finally, it is observed that we have now
identified the steady-state workload distribution:

`.u/ WD P. NX � u/ D P.Q � u/ D
nC

X

iD0
pi.u/:

Now that we have identified the distribution of the all-time supremum, we
proceed by focusing on `.u j#/ WD P. NXT � u/, where we recall that T is
exponentially distributed with mean 1=#: To this end, the idea is to work with the
(mean-0) martingale

� L�.s/ � #
� Z t

0

esXr�#rdr C 1 � esXt�#t; (3.16)

and again we apply ‘optional sampling’ with stopping time �t.u/: From [114] it
follows that there are nCC1 roots to the equation L�.s/ D # that have a positive real
part, for any # > 0, say Ns.1/.#/; : : : ; Ns.nCC1/.#/.

Analogously to the events we introduced before, let Ei.u/ be the event in which
level u is crossed due to an upward jump, while the underlying phase-type random
variable is in state i (for i D 1; : : : ; nC), and E0.u/ be its counterpart in which
crossing level u is due to the Brownian part of the Lévy process (i.e. X�.u/ D u).
Observe that

`.u j#/ D P.�.u/ � T/ D E
�
e�#�.u/1f�.u/<1g

� D
nC

X

iD0
`i.u j#/;

where

`i.u j#/ WD E
�
e�#�.u/1f�.u/<1;Ei.u/g

�
:

Now the `i.u j#/ can be determined as before. ‘Optional sampling’ with stopping
time �t.u/ applied to Eqn. (3.16) (after subsequently taking t ! 1 and plugging in
the roots Ns.1/.#/; : : : ; Ns.nCC1/.#/) leads to the following nC C 1 equations:

1 D eNs.k/.#/ u

0

@`0.u j#/C
nC

X

iD1
bCi .Ns.k/.#//`i.u j#/

1

A :
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From this system of equations, it is easily seen that the `i.u j#/ can be written as
linear combinations of the wk.u/ WD exp.�Ns.k/.#/ u/: for a (known) square matrix
Mik.#/ (where i runs from 0 to nC and k from 1 to nCC1) we have for i D 0; : : : ; nC,

`i.u j#/ D
nCC1X

kD1
Mik.#/wk.u/;

leading to

Ee�˛ NXT D k.#; ˛/

k.#; 0/
D 1 �

nC

X

iD0

nCC1X

kD1
Mik.#/

˛

˛ C Ns.k/.#/ :

An expression for Nk.q; ˇ/=Nk.q; 0/ follows similarly.
We remark that in the above analysis we continuously assumed that all roots

involved are simple; for an in-depth analysis of the consequences of non-unique
roots, we refer to D’Auria et al. [67].

3.5 Spectrally Two-Sided Case: Meromorphic Processes

In this section we study the case that the process X corresponds to a so-called
meromorphic Lévy process; Wiener–Hopf theory for this class of processes has
attracted substantial attention during the past decade. We do not include all proofs
and details, but instead we restrict ourselves to presenting the most important
concepts and results. For a full treatment we refer to Kuznetsov et al. [145] and
its predecessor [144].

In Section 3.4 we saw that the class of Lévy processes with phase-type jumps,
that is, PC \ P�, is relatively easy to work with, in that the Wiener–Hopf factors
(and related quantities) could be given in a fairly explicit way. It is noted, however,
that class fails to incorporate ‘small jumps’: the models considered are of the
compound Poisson type, possibly with an additional Brownian term. The class
of meromorphic Lévy processes remedies this deficiency: it has the potential to
include small jumps (for an example of this see the ˇ-class in Section 15.1), while
the Wiener–Hopf factors still allow a relatively explicit form. It is noted that, at a
structural level, there is a strong level of similarity between the framework described
in the present section on the one hand, and that of the phase-type jumps highlighted
in Section 3.4 on the other hand.

As in the previous section, it is convenient to consider the cumulant L�.s/ WD
�.�is/: For the class of meromorphic Lévy processes, denoted by M , we have

L�.s/ D ds C 1

2
s2�2 C

Z 0

�1
.esx � 1 � sx/˘�.dx/C

Z 1

0

.esx � 1 � sx/˘C.dx/;
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where

˘�.dx/ D
 1X

nD1
a�n b�n eb�

n x

!

dx; ˘C.dx/ D
 1X

nD1
aCn bCn e�bC

n x

!

dx;

with a�n ; aCn ; b�n ; bCn all positive, the sequences b�n and bCn both increasing in n, in
such a way that b�n ! 1 as well as bCn ! 1 as n ! 1: It is noted that, as
explained in detail in [145, Section 2], there is an interesting link between the class
of meromorphic Lévy processes and the concept of completely monotone functions
(where we mention, as an aside, that the latter plays a key role in Chapter 7 of this
textbook). It is readily checked that L�.s/ can be alternatively written as

L�.s/ D ds C 1

2
s2�2 C s2

1X

nD1

a�n
b�n .b�n C s/

C s2
1X

nD1

aCn
bCn .bCn � s/

:

We thus conclude that there are poles at the locations �b�n , bCn , for n D 1; 2; : : : :

Now consider (again in line with the setup of the previous section) the roots of
the equation L�.s/ D # , for a given # > 0: [145, Thm. 1(v)] entails that these roots
are real and interlace with the poles b�n , bCn . More precisely, calling the positive
roots sCn � sCn .#/ and the negative roots s�n � s�n .#/, for n D 1; 2; : : : ; we have
the ordering

� � � � b�2 < �s�2 < �b�1 < �s�1 < 0 < sC1 < bC1 < sC2 < bC2 < � � � :

[145, Thm. 1(v)] also states that, for all # > 0,

# � L�.s/ D #

 1Y

nD1

1 � �
s=sCn .#/

�

1 � s=bCn

! 1Y

nD1

1C �
s=s�n .#/

�

1C s=b�n

!

:

Observing that, with T being exponentially distributed with mean 1=# , we have
EesXT D #=.# � L�.s//; it is found that, for ˛ � 0,

Ee�˛ NXT D k.#; ˛/

k.#; 0/
D
 1Y

nD1

1C ˛=bCn
1C �

˛=sCn .#/
�

!

;

and likewise, for ˇ � 0,

Ee�ˇ. NXT�XT / D Nk.#; ˇ/
Nk.#; 0/ D

 1Y

nD1

1C ˇ=b�n
1C �

ˇ=s�n .#/
�

!

:

The transform Ee�˛Q of the stationary workload now follows from the above
expression for Ee�˛ NXT by passing # to 0.
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In Section 15.1 we describe the so-called ˇ-class of Lévy processes; this class,
but also several other examples of Lévy processes in the class M , can be found in
[145, Section 3].

Exercises

Exercise 3.1 Prove for ˛ � 0 that 'n.˛/ ! '.˛/ as n ! 1, with 'n.�/ given in
Eqn. (3.3). Also, prove the convergence in (3.4).

Exercise 3.2 Let X be the sum of Bm.d; �2/ and CP.r; �; b.�// (which we assume
to be independent), where the jumps of the compound Poisson process stem from
an Erlang distribution with parameters n and �. Under what condition is the queue
stable? Suppose this stability condition is fulfilled; what is the Laplace–Stieltjes
transform of Q? Does this distribution have an atom in 0?

Exercise 3.3 Let X 2 CP.r; �; b.�//, with r < 0 and the random variable B taking
values in .�1; 0� only: a compound Poisson with positive drift, and negative jumps.
(Recall that in the definition of CP.r; �; b.�// the drift was subtracted, so that a
positive drift corresponds to r < 0.)

(a) Under what condition is the corresponding Lévy-driven queue stable?
(b) Let fQ.�/ be the density of the stationary workload. Show that this density

satisfies, for x > 0,

�rfQ.x/ D �

Z

.x;1/
fQ.y/P.B � x � y/dy:

(c) Does this distribution have an atom in 0?
(d) Define b�.ˇ/ WD E eˇB: Show that there is a unique positive ˇ0 such that �rˇ0�

�C �b�.ˇ0/ D 0:

(e) Combine your answers to questions (b) and (d) to prove that

1 � b�.ˇ0/
ˇ0

fQ.x/ D
Z 0

�1
fQ.x � y/P.B � y/dy:

(f) Use the representation b�.ˇ/ D R 0
�1 eˇx

P.B 2 dx/ and integration by parts to
obtain, for all x > 0,

fQ.x/
Z 0

�1
eˇ0y

P.B � y/dy D
Z 0

�1
fQ.x � y/P.B � y/dy;

and show that, for all x > 0 and y � 0,

fQ.x/e
ˇ0y D fQ.x � y/:
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(g) Argue that fQ.x/ D ˇ0e�ˇ0x, for x � 0:

(h) Show that this answer is in line with Thm. 3.3.

Exercise 3.4 Suppose that X 2 CP.r; �; b.�//, with the jumps being distributed
exponentially with mean 1=# . Let Q be the corresponding stationary workload.

(a) Derive explicit expressions for EQ and Var Q.
(b) Find the distribution of N and Bres

1 in the representation

P.Q � x/ D P

 
NX

nD1
Bres

n � x

!

:

Exercise 3.5 Let X 2 Bm.d; �2/. Prove that the stationary workload distribution
exists only if d < 0.

Exercise 3.6 Let X be spectrally negative. Prove that eˇ0Xt , with ˇ0 WD �.0/, is a
martingale.

Exercise 3.7 Let X be a Lévy process with EX1 > 0. Show that the queue fed by X
is unstable, that is,

lim
t!1Qt D 1

a.s., regardless of the value of Q0.
Hint: Realize that Qt increases in Q0, and that Qt � Xt:

Exercise 3.8 Let X 2 S.˛;�1;�r/, with ˛ 2 .1; 2/ and r > 0. Find the distribution
of the steady-state workload Q of a queue fed by X.

Exercise 3.9 Let X correspond to a Poisson(�C) stream of upward jumps with an
exponentially distributed size with mean 1=�C, superimposed by a Poisson(��)
stream of downward jumps with an exponentially distributed size with mean 1=��.
Determine the distribution of Q.



Chapter 4
Transient Workload

This chapter focuses on characterizing the transient workload. The structure is the
same as that of the previous chapter: in terms of Laplace–Stieltjes transforms, we
subsequently address the transient workload for the spectrally positive case, the
spectrally negative case, and the general (i.e. spectrally two-sided) case. Notice
that in this chapter the requirement EX1 < 0 is not needed: the notion of transient
workload is well defined without assuming the underlying queueing system is stable.

4.1 Spectrally Positive Case

In this section we characterize the workload at time t, for the spectrally positive
case, in terms of a so-called double transform, that is, we find an expression for

Exe�˛QT WD E
�
e�˛QT j Q0 D x

� D
Z 1

0

#e�#t
E
�
e�˛Qt j Q0 D x

�
dtI

in other words, we consider the transform of the transient workload after an
exponential amount of time (with mean #�1). We present three approaches that
find an expression for this double transform, which uniquely defines the distribution
of Qt, conditional on Q0 D x.

In a first approach, we use an argument reminiscent of the level-crossing
procedure that we introduced for the steady-state workload, and which is due e.g.
to Beneš [39] and Takács [208]. As in the previous chapter, we first focus on
X 2 CP.r; �; b.�//; for ease we normalize time such that r D 1 (which can be
done without losing any generality). Define Ft.y/ as the probability that Qt does not
exceed y:

Ft.y/ WD P.Qt � y j Q0 D x/:

© Springer International Publishing Switzerland 2015
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Now consider the event that at time tCt the workload is at most y, for some y > 0.
This means that (i) either the workload was below y C t at time t, and there was
no job arriving between t and t C t, or (ii) the workload was z 2 Œ0; y/ at time t,
but between t and t C t a job arrived of size at most y � z; events corresponding
to more than one arrival have a probability that is o.t/: This reasoning yields the
following equation:

FtCt.y/ D Ft.y Ct/.1 � �t/

C �t

�Z y

0

ft.z/P.B � y � z/dz C Ft.0/P.B � y/

�

C o.t/:

Subtracting Ft.y/ from both sides, dividing the whole equation by t, and then
letting t # 0, leads to the partial differential equation

@

@t
Ft.y/ D ft.y/� �Ft.y/C �

�Z y

0

ft.z/P.B � y � z/dz C Ft.0/P.B � y/

�

;

(4.1)

for y > 0, with ft.�/ WD F0t.�/ denoting the density of Qt.
The next step is to convert this partial differential equation into an explicit

expression for the double transform. To make the notation more compact, we
introduce �T.˛/ WD Exe�˛QT , and

N�T.˛/ WD
Z 1

0

#e�#t
Z

.0;1/
e�˛yft.y/dy dt D �T.˛/ � P.QT D 0/:

The basic idea is now to take the double transform of the whole partial differential
equation (4.1). We do this term by term. To this end, first notice that standard
calculus yields that

Z 1

0

#e�#t
Z

.0;1/
e�˛y

�
@

@t
Ft.y/

�

dy dt D #

˛
.�T.˛/ � e�˛x/ I (4.2)

this is found by first interchanging the order of the integrals, and then using the
identity

Z 1

0

#e�#t

�
@

@t
Ft.y/

�

dt D �#1fy>xg C #2
Z 1

0

e�#tFt.y/dt;

which can be obtained by an elementary integration-by-parts argument. Similarly,
we find

Z 1

0

#e�#t
Z

.0;1/
e�˛yFt.y/dy dt D 1

˛
�T.˛/; (4.3)
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and also
Z 1

0

#e�#t
Z

.0;1/
e�˛y

�Z y

0

ft.z/P.B � y � z/dz C Ft.0/P.B � y/

�

dy dt

D b.˛/

˛
�T.˛/: (4.4)

Upon combining Eqns. (4.2), (4.3), and (4.4), we thus obtain the following equation
in �T.˛/ and N�T.˛/:

#

˛
.�T.˛/ � e�˛x/ D N�T.˛/ � �

˛
�T.˛/C �b.˛/

˛
�T.˛/:

Now using N�T.˛/ D �T.˛/ � P.QT D 0/, and recalling the expression for the
Laplace exponent in the compound Poisson case (i.e. '.˛/ D ˛ � �C �b.˛/), we
can isolate �T.˛/:

�T.˛/ D #

# � '.˛/
�

e�˛x � ˛

#
P.QT D 0/

�
:

Now the double transform has been expressed in terms of the model primitives (i.e.
the Laplace exponent'.�/), apart from the term P.QT D 0/. Observe thatP.QT D 0/

is a function of # and x only (i.e. independent of ˛); call this function G.#; x/. As
�T.˛/ is a transform, we should have that for all .˛; #/ for which the denominator
vanishes (i.e. ˛ D  .#/), the numerator vanishes too (as otherwise the transform
equals 1). As a consequence, we have that for all x � 0,

e� .#/x
#

 .#/
D G.#; x/:

We have now identified an explicit expression for the double transform �T.˛/ for
the case of compound Poisson input.

As before, the next step is to approximate any X 2 SC by a compound Poisson
process. This procedure eventually yields the following result.

Theorem 4.1 Let X 2 SC, and let T be exponentially distributed with mean 1=# ,
independently of X. For ˛ � 0, x � 0,

Exe�˛QT D #

Z 1

0

e�#t
Exe�˛Qt dt D #

# � '.˛/
�

e�˛x � ˛

 .#/
e� .#/x

�

:

Remark 4.1 It can be seen that this transform which characterizes the workload’s
time-dependent behavior is in line with the generalized Pollaczek–Khintchine
formula (see Thm. 3.2), in at least two ways. First we can check what happens when
we let # # 0: then the exponentially distributed time T lies infinitely far in the
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future. Indeed,

lim
##0

#

# � '.˛/

�

e�˛x � ˛

 .#/
e� .#/x

�

D ˛

'.˛/
� lim
##0

#

 .#/
D ˛' 0.0/

'.˛/
;

using that #= .#/ ! 1= 0.0/ D ' 0.0/ as # # 0:
Second we can check what the transform is of the workload after an exponentially

distributed amount of time, starting in the workload’s stationary distribution;
obviously this transform should correspond to the stationary distribution, too. This
turns out to be indeed the case:
Z 1

0

Exe�˛QTP.Q0 2 dx/ D
Z 1

0

�
#

# � '.˛/
�

e�˛x � ˛

 .#/
e� .#/x

��

P.Q0 2 dx/

D #

# � '.˛/
�

Ee�˛Q0 � ˛

 .#/
Ee� .#/Q0

�

D #

# � '.˛/
�
˛' 0.0/
'.˛/

� ˛

 .#/

 .#/' 0.0/
#

�

D ˛' 0.0/
'.˛/

;

as expected. }
Remark 4.2 Thm. 4.1 can also be used to determine the joint distribution of the
workload at time 0 and at an exponential time T, assuming that the workload is in
stationarity at time 0. Relying on the arguments used in Remark 4.1, in self-evident
notation,

Ee�N̨Q0�˛QT D #' 0.0/
# � '.˛/

�
˛ C N̨
'.˛ C N̨ / � ˛

 .#/

 .#/C N̨
'. .#/C N̨ /

�

:

As is easily verified, inserting ˛ D 0 or N̨ D 0 yields the transform of the steady-
state workload, as identified in Thm. 3.2. }

A second approach to identifying the double transform associated to the transient
workload works as follows. Similarly to the first approach, it addresses the
compound Poisson case first, and then the usual procedure is used to extend the
result to the general spectrally positive case. Define �x.˛/ WD Exe�˛QT . Starting at
0, one should distinguish between (i) the clock T expiring before the first jump of
the compound Poisson process, and vice versa, and (ii) whether or not the buffer has
become empty. One thus obtains

�x.˛/ D
Z 1

0

Z x

0

�e�.�C#/y�x�yCz.˛/dy dP.B � z/

C #

# C � � ˛
.e�˛x � e�.�C#/x/

C �

# C �
e�.�C#/x

Z 1

0

�z.˛/dP.B � z/C #

# C �
e�.�C#/xI (4.5)
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for instance, the last term corresponds to the scenario that no job arrives before
the exponential clock T expires. It is a lengthy though elementary verification that
�x.˛/ D Ke�kx C Le�`x satisfies this equation, when picking k D ˛, ` D  .#/,
K D #=.# � '.˛//, and L D �K˛= .#/, which corresponds to the solution stated
in Thm. 4.1. As we mentioned above, approximating the spectrally positive process
by a compound Poisson process leads to the result.

A third approach, which we detail now, relies on application of the Kella–Whitt
martingale .Kt/t—see e.g. Asmussen [19, Thm. IX.3.10] and Kella et al. [125], and
the brief account in Section 3.1. Let T again be exponentially distributed with mean
1=# , which is obviously a stopping time. ‘Optional sampling’ thus provides us with

0 D EK0 D EKT D '.˛/

Z 1

0

Z t

0

#e�#te�˛Qs ds dt � e�˛x � Exe�˛QT � ˛ELT .x/:

The first term of the right-hand side can alternatively be written as

'.˛/

Z 1

0

Z 1

s
#e�#te�˛Qs dtds D '.˛/

#

Z 1

0

#e�#se�˛Qs ds D'.˛/

#
Exe�˛QT :

Now Exe�˛QT can be solved, and we obtain an expression in which the unknown
term ELT.x/ appears in the numerator, and in which the denominator equals # �
'.˛/. Then use the fact that the root of the denominator (i.e. ˛ D  .#/) should be
a root of the numerator as well, as otherwise the transform equals 1 at ˛ D  .#/.
This enables us to solve ELT.x/, and finally we obtain the result of Thm. 4.1.

The special case of X 2 Bm.d; �2/ can be solved explicitly. We state without
proof that

P.Qt � y j Q0 D x/ D 1 � ˚N

��y C x C dt

�
p

t

�

� e2dy=�2˚N

��y � x � dt

�
p

t

�

;

(4.6)

with ˚N.�/ WD 1 � �N.�/ denoting the distribution function of a standard normal
random variable; see e.g. Harrison [108, p. 49].

Above we pointed out how to characterize the workload distribution after an
exponentially distributed amount of time. This procedure can be extended to
cover phase-type [19, Section III.4] amounts of time; we demonstrate how such
a procedure works by considering, as an example, the case that T is distributed as
T1 C T2, with T1 and T2 independent, and Ti exponentially distributed with mean
1=#i, for i D 1; 2.

Suppose we wish to evaluate the joint distribution of the workloads at T1 and
T1 C T2, by considering the transform

Ex e�˛1QT1�˛2QT1CT2 :



54 4 Transient Workload

Conditioning on the value of QT1 , this quantity can be rewritten as

Z 1

0

e�˛1y
Eye�˛2QT2 Px .QT1 2 dy/ ;

which, due to Thm. 4.1, reads

Z 1

0

e�˛1y

�
#2

#2 � '.˛2/

�

e�˛2y � ˛2

 .#2/
e� .#2/y

��

Px .QT1 2 dy/ :

Observe that the above display can be interpreted as

#2

#2 � '.˛2/

�

Ex e�.˛1C˛2/QT1 � ˛2

 .#2/
Ex e�.˛1C .#2//QT1

�

:

Again applying Thm. 4.1, we obtain

#2

#2 � '.˛2/

�
#1

#1 � '.˛1 C ˛2/

�

e�.˛1C˛2/x � ˛1 C ˛2

 .#1/
e� .#1/x

�

� ˛2

 .#2/

#1

#1 � '.˛1 C  .#2//

�

e�.˛1C .#2//x � ˛1 C  .#2/

 .#1/
e� .#1/x

��

:

From this formula we can compute the transform of the workload after an Erlang(2)-
distributed time. To this end, we set #1 D #2 D # , so that the univariate transform
Ex e�˛QT1CT2 equals

�
#

# � '.˛/

�2 �

e�˛x � ˛

 .#/
e� .#/x

�

C #

# � '.˛/˛# � lim
�!#

�
e� .�/x

 .�/
� e� .#/x

 .#/

�


.� � #/:

A straightforward application of ‘L’Hôpital’ yields, with T having an Erlang(2)
distribution, that the transform Ex e�˛QT can be rewritten as

�
#

# � '.˛/

�2 �

e�˛x � ˛

 .#/
e� .#/x

�

� ˛#2

# � '.˛/
 0.#/e� .#/x.1C x .#//

. .#//2
:

Letting # # 0, Thm. 3.2 is recovered, as is readily verified.
Evidently, the case of T having an Erlang(n) distribution, for n 2 f3; 4; : : :g, can

be dealt with analogously (but the expressions become cumbersome). For ‘large’ n,
and replacing # by #n, such a procedure yields an approximation for the transform
of the transient workload after a deterministic amount of time 1=# .
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4.2 Spectrally Negative Case

We now turn to the spectrally negative case. In this case computation of the double
transform Exe�˛QT , for a given value of x � 0, turns out to be infeasible. To resolve
this, the idea now is to consider a transform not only with respect to time t, but in
addition with respect to the initial position x. The main result of this section is that
we uniquely characterize the transient workload distribution by finding an explicit
expression for the resulting triple transform, with T representing an exponentially
distributed random variable with mean q�1:

Z 1

0

e�ˇx
Exe�˛QT dx D

Z 1

0

Z 1

0

qe�qte�ˇx
Exe�˛Qt dx dt

D
Z 1

0

Z 1

0

Z 1

0

qe�qte�ˇxe�˛y
P.Qt 2 dy/ dx dt;

in terms of the model primitives ˚.�/ and �.�/.
Following the setup of Kyprianou [146, Chapter VIII], we first introduce, for

spectrally negative Lévy processes, families of functions W.q/.�/ and Z.q/.�/ as
follows. Let W.q/.x/, with q � 0, be a strictly increasing and continuous function
whose Laplace transform satisfies, for x � 0,

Z 1

0

e�ˇxW.q/.x/dx D 1

˚.ˇ/ � q
; ˇ > �.q/; (4.7)

and W.q/.x/ D 0 for negative x; such a function exists, as follows from [146,
Thm. 8.1(i)]. In addition,

Z.q/.x/ WD 1C q
Z x

0

W.q/.y/dy: (4.8)

The functions W.q/.�/ and Z.q/.�/ are usually referred to as the q-scale functions; for
their numerical evaluation, see e.g. [188, 206].

As mentioned, our objective is to analyze the transient workload distribution. A
first characterization is the following. With T being exponentially distributed with
mean q�1, we have the density of QT , given that Q0 D x:

Px.QT 2 dy/ D �
e��.q/y�.q/Z.q/.x/� qW.q/.x � y/

�
dyI (4.9)

see [175, Eqn. (19)], and also [84].
Considering the case that q # 0, we find that, due to Z.0/.x/ � 1 for all x � 0,

QT has an exponential distribution with mean 1=�.0/—this was to be expected,
because this limiting regime corresponds to the stationary situation. Likewise, we
obtain that QT equals x with probability 1 as q ! 1:
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The validity of Eqn. (4.9) results from the following line of reasoning.

• First it is observed that, using a reversibility argument,

.QT j Q0 D 0/ D XT � inf
0�s�T

Xs
dD sup
0�s�T

Xs DW NXT :

Now NXT has an exponential distribution with mean 1=�.q/, which can be seen
as follows. Observe that e�.q/Xt�qt is a martingale, and recall the stopping time
�.x/ D infft � 0 W Xt � xg (see Section 3.2) as the (potentially defective) random
variable corresponding to the first epoch that Xt exceeds x. ‘Optional sampling’
yields

E
�
e�q�.x/1f�.x/<1g

� D e��.q/x:

Using the obvious duality of the events f�.x/ � tg and f NXt � xg, we find that

E
�
e�q�.x/1f�.x/<1g

� D
Z 1

0

e�qt
P.�.x/ 2 dt/

D
Z 1

0

qe�qt
P.�.x/ � t/dt

D
Z 1

0

qe�qt
P. NXt � x/dt D P. NXT � x/;

and hence, as desired, in obvious notation,

P0.QT 2 dx/ D P. NXT 2 dx/ D �.q/e��.q/xdx: (4.10)

• Define X0t WD �Xt. The goal of this step is to verify that

P. NX0T 2 dx/ D q

�.q/
W.q/.dx/� qW.q/.x/dx: (4.11)

Relation (4.11) follows by first combining the facts that (i) X0 2 SC, and (ii) the
distributional quality

NX0T dD X0T � inf
0�s�T

X0s;

which can be interpreted as the workload of a queue fed by �X, started empty, at
time T. Then we can use Thm. 4.1 to compute the Laplace transform E0e�˛ NX

0

T of
NX0T . Using the definition of the q-scale function, we can also compute the Laplace
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transform
Z 1

0

e�˛x

�
q

�.q/
W.q/.dx/� qW.q/.x/dx

�

:

After some calculus, it turns out that both transforms coincide. This means that
we have shown (4.11).

• We now find an explicit expression for Px.QT 2 dy;T < �/, with � defined as the
stopping time infft � 0 W Qt D 0g; see e.g. [42, 205] and [146, Thm. 8.7]. With
X0 as defined above, it holds that

Px.QT 2 dy;T < �/ D P.. NX0T � X0T/ � NX0T 2 dy � x; NX0T � x/: (4.12)

From Wiener–Hopf theory (see Section 3.3), we know that NX0T � X0T and NX0T are
independent. Elementary manipulations, and applying (4.10) and (4.11), yields
that (4.12) equals

Z x

zDx�y
�.q/e��.q/.yCz�x/

�
q

�.q/
W.q/.dz/� qW.q/.z/dz

�

dy

D q
�
e��.q/yW.q/.x/� W.q/.x � y/

�
dy;

using integration by parts.
• Using the strong Markov property,

Px.QT 2 dy/ D Px.QT 2 dy;T < �/C P.�.x/ < T/P0.QT 2 dy/I (4.13)

where �.x/ is, as throughout this monograph, defined as the first epoch that the
process .Xt/t (started at 0) drops below �x: Recalling that T is exponentially
distributed with mean q�1, it is readily verified that P.�.x/ < T/ D Ee�q�.x/:

Integrating (4.13) over positive y now yields

1 D
Z 1

0

q
�
e��.q/yW.q/.x/ � W.q/.x � y/

�
dy C Ee�q�.x/

D q

 .q/
W.q/.x/�

Z x

0

qW.q/.y/dy C Ee�q�.x/;

and hence, using the relation between Z.q/.�/ and W.q/.�/,

Ee�q�.x/ D Z.q/.x/� q

�.q/
W.q/.x/: (4.14)

Plugging all expressions into (4.13) then yields density (4.9), as desired.

We now derive a second characterization of the transient workload. It is a matter of
straightforward calculus to show that Eqn. (4.9) leads to an explicit expression for
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the triple transform of the transient workload Qt:

Z 1

0

e�ˇx
Exe�˛QT dx D I1.˛; ˇ; q/ � I2.˛; ˇ; q/; (4.15)

where the integrals I1.˛; ˇ; q/ and I2.˛; ˇ; q/ are given by

I1.˛; ˇ; q/ WD
Z 1

0

Z 1

0

qe�ˇxe�˛ye��.q/y
�.q/

q
Z.q/.x/dx dy;

I2.˛; ˇ; q/ WD
Z 1

0

Z 1

0

qe�ˇxe�˛yW.q/.x � y/dx dy:

It turns out that it is possible to compute I1.˛; ˇ; q/ and I2.˛; ˇ; q/ explicitly in terms
of ˚.�/ and �.�/. Using (4.7) and (4.8), we obtain

I1.˛; ˇ; q/ D �.q/

�.q/C ˛

Z 1

0

e�ˇxZ.q/.x/dx

D �.q/

�.q/C ˛

�
1

ˇ
C
Z 1

0

Z 1

y
qW.q/.y/e�ˇxdx dy

�

D �.q/

�.q/C ˛

1

ˇ

�

1C q

˚.ˇ/ � q

�

D �.q/

�.q/C ˛

1

ˇ

˚.ˇ/

˚.ˇ/ � q
:

Likewise,

I2.˛; ˇ; q/ D
Z 1

0

qe�.˛Cˇ/y
1

˚.ˇ/ � q
dy D q

˛ C ˇ

1

˚.ˇ/ � q
:

This leads to the following result that uniquely characterizes the distribution of Qt,
conditional on Q0 D x, in terms of the model primitives.

Theorem 4.2 Let X 2 S�, and let T be exponentially distributed with mean 1=q,
independently of X. For ˛ � 0 and ˇ > 0,

Z 1

0

e�ˇx
Exe�˛QT dx D 1

ˇ

�
�.q/

�.q/C ˛
C q

˚.ˇ/ � q

�.q/� ˇ

�.q/C ˛

˛

˛ C ˇ

�

:

Remark 4.3 It is a trivial exercise to verify that the joint distribution of the workload
at times 0 and T, given the workload is in stationarity at time 0, equals

Ee�N̨Q0�˛QT D
Z 1

0

ˇ0e
�. N̨Cˇ0/xExe�˛QT dx;
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which further simplifies to

ˇ0

N̨ C ˇ0

�
�.q/

�.q/C ˛
C q

˚. N̨ C ˇ0/� q

�.q/� N̨ � ˇ0

�.q/C ˛

˛

˛ C N̨ C ˇ0

�

:

It is readily checked that by inserting ˛ D 0 or N̨ D 0 we obtain the exponential
stationary distribution, as expected. }

As in the spectrally positive case, we can characterize the workload in the
spectrally negative case at a phase-type distributed time. With Ti having an
exponential distribution with mean 1=qi (i D 1; 2), independent of each other and
the Lévy process X, we now point out how to determine

Z 1

0

e�ˇx
Exe�˛QT1CT2 dx D

Z 1

0

e�ˇx
Eye�˛QT2 Px.QT1 2 dy/ dx: (4.16)

To this end, first observe that, relying on (4.9),

Eye�˛QT2 D
Z 1

0

e�˛z
�
e��.q2/z�.q2/Z.q2/.y/� q2W

.q2/.y � z/
�

dz

D �.q2/Z.q2/.y/

˛ C �.q2/
� q2

Z 1

0

e�˛zW.q2/.y � z/dz:

Using (4.9) again, we conclude that (4.16) equals J1 � J2 � J3 C J4, with the Ji �
Ji.˛; ˇ; q1; q2/, for i D 1; : : : ; 4, given by

J1 WD
Z 1

0

Z 1

0

e�ˇx
�
e��.q1/y�.q1/Z.q1/.x/

�
�
�.q2/Z.q2/.y/

�.q2/C ˛

�

dy dx;

J2 WD
Z 1

0

Z 1

0

e�ˇx
�
q1W

.q1/.x � y/
�
�
�.q2/Z.q2/.y/

�.q2/C ˛

�

dy dx;

J3 WD
Z 1

0

Z 1

0

e�ˇx
�
e��.q1/y�.q1/Z.q1/.x/

�
�

q2

Z 1

0

e�˛zW.q2/.y � z/

�

dz dy dx;

and

J4 WD
Z 1

0

Z 1

0

e�ˇx
�
q1W

.q1/.x � y/
�
�

q2

Z 1

0

e�˛zW.q2/.y � z/

�

dz dy dx:

When evaluating these integrals, the following identity is extensively used (and is
derived similarly to the calculation of I1.˛; ˇ; q/):

Z 1

0

e�ˇxZ.q/.x/dx D 1

ˇ

˚.ˇ/

˚.ˇ/ � q
D ˚.ˇ/

ˇ

Z 1

0

e�ˇxW.q/.x/dx:
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After substantial calculus,

J1 D 1

ˇ

�.q2/

�.q2/C ˛

˚.ˇ/

˚.ˇ/ � q1

q1
q1 � q2

;

J2 D 1

ˇ

�.q2/

�.q2/C ˛

˚.ˇ/

˚.ˇ/ � q2

q1
˚.ˇ/ � q1

;

J3 D 1

ˇ

�.q1/

�.q1/C ˛

˚.ˇ/

˚.ˇ/ � q1

q2
q1 � q2

;

and

J4 D 1

˛ C ˇ

q1
˚.ˇ/ � q1

q2
˚.ˇ/ � q2

:

Now consider the special case that q1 D q2 D q, so that T1 C T2 has an Erlang(2)
distribution. It turns out that in that case J1 � J2 � J3 C J4 equals, by applying
‘L’Hôpital’ again,

1

ˇ

˚.ˇ/

˚.ˇ/ � q

�.q/� q� 0.q/
�.q/C ˛

� 1

ˇ

�.q/

�.q/C ˛

˚.ˇ/

˚.ˇ/ � q

q

˚.ˇ/ � q

C 1

˛ C ˇ

�
q

˚.ˇ/ � q

�2
:

Observe that when inserting q D 0 one obtains the transform corresponding to the
exponential steady-state distribution (with mean 1=ˇ0), that is,

Z 1

0

e�ˇx
Exe�˛QT1CT2 dx D 1

ˇ

�.0/

�.0/C ˛
D 1

ˇ

ˇ0

ˇ0 C ˛
;

as desired.

4.3 Spectrally Two-Sided Case

The Wiener–Hopf results, as presented in Section 3.3, facilitate an analysis of the
transform of the transient workload for the case that the underlying process X is not
necessarily in SC or S�; we follow the line of reasoning of Kella and Mandjes
[126].

As before, let T be an exponentially distributed random variable with mean 1=# .
We focus on computing the triple transform

Z 1

0

e�ˇx
Exe˛iQT dx D

Z 1

0

Z 1

0

#e�#te�ˇx
Exe˛iQt dx dt: (4.17)
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With, as before, X0t WD �Xt, we have that QT D �X0T C maxfx; NX0Tg: It means that
we can rewrite expression (4.17) as

Z 1

0

e�ˇx
Z x

yD0

Z 1

zD�1
e˛i.�zCx/

P. NX0T 2 dy;X0T 2 dz/dx

C
Z 1

0

e�ˇx
Z 1

yDx

Z 1

zD�1
e˛i.�zCy/dP. NX0T 2 dy;X0T 2 dz/dx:

Interchanging the order of integration, this can be rewritten as

1

ˇ

˛i

ˇ � ˛i
Ee.˛i�ˇ/ NX0

T�˛iX0

T C 1

ˇ
Ee˛i NX0

T�˛iX0

T

D 1

ˇ

�
˛i

ˇ � ˛i
Ee�ˇ NX0

T C 1

�

Ee˛i. NX0

T�X0

T /:

Using the results presented in Section 3.3, this can be written in terms of the Wiener–
Hopf factors, as follows.

Theorem 4.3 Let X be a general Lévy process, and let T be exponentially dis-
tributed with mean 1=# , independently of X. For ˛; ˇ � 0,

Z 1

0

e�ˇx
Exe�˛QT dx D 1

ˇ

�

1 � ˛

˛ C ˇ

Nk.#; ˇ/
Nk.#; 0/

�
k.#; ˛/

k.#; 0/
:

Notice that when sending # to 0, we indeed obtain the transform of the stationary
workload, that is,

Z 1

0

ˇe�ˇx
Exe�˛Qdx D k.0; ˛/

k.0; 0/
;

and by sending # to 1, as expected,

Z 1

0

ˇe�ˇx
Exe�˛Q0dx D ˇ

ˇ C ˛
:

As a second sanity check, one could verify whether the result is in line with
Thms. 4.1 and 4.2, which address the spectrally one-sided situations. For X 2 SC,
Thm. 4.1 yields that

Z 1

0

e�ˇx
Exe�˛QT dx D 1

˛ C ˇ

#

# � '.˛/ � ˛

 .#/

1

 .#/C ˇ

#

# � '.˛/ ;
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whereas Thm. 4.3 leads to
Z 1

0

e�ˇx
Exe�˛QT dx D 1

ˇ

�

1 � ˛

˛ C ˇ

 .#/

 .#/C ˇ

�
#

 .#/

 .#/ � ˛

# � '.˛/
:

It takes a bit of algebra to conclude that these expressions coincide. For X 2 S�, it
is straightforward to verify that Thm. 4.2 coincides with Thm. 4.3, and therefore we
leave out the underlying computations.

Remark 4.4 Let LQ be the distribution of QT , with Q0 sampled from an exponential
distribution (independent of anything else) with mean 1=ˇ: Then Thm. 4.3 entails
that

Ee�˛ LQ D
�

1 � ˛

˛ C ˇ

Nk.#; ˇ/
Nk.#; 0/

�
k.#; ˛/

k.#; 0/

D
�

1 �
Nk.#; ˇ/
Nk.#; 0/ C ˇ

˛ C ˇ

Nk.#; ˇ/
Nk.#; 0/

�
k.#; ˛/

k.#; 0/
: (4.18)

This decomposition says that LQ can be interpreted as the sum of two independent
random variables, say, LQ D LQ1 C LQ2. One of them, say LQ1, corresponds to the
factor k.#; ˛/=k.#; 0/, and the underlying random variable NXT (i.e. the maximum
attained up to time T), or, equivalently, QT with Q0 D 0: The other term, LQ2, is the
contribution due to the fact that the queue does not start empty at time 0, but rather
starts according to the exponential distribution with mean 1=ˇ. The random variable
corresponding to this term has value 0 with probability

Lp WD 1 � Nk.#; ˇ/
Nk.#; 0/ ;

and is sampled from an exponential distribution with mean 1=ˇ with probability
1 � Lp: }

As mentioned, Thm. 4.3 enables the evaluation of the transform of the workload
after an exponential amount of time, if the initial workload has been independently
sampled from an exponential distribution. The next question is, what can be done
if Q0 is not exponentially distributed? Below we describe what procedure can
be followed in the case that Q0 is sampled from a (finite) mixture of Erlang
distributions. Realizing that [19, Thm. III.4.2] the class of mixtures of Erlang
distributions is dense (in the sense of weak convergence) in the set of all probability
distributions on the positive half-line (even if the ‘shape parameters’ ˇk are required
to be identical), we can approximate any distribution of Q0 arbitrarily closely by
such a mixture of Erlangs.
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Let pk (with k 2 f0; : : : ;mg) be non-negative real numbers summing to 1. For
k 2 f1; : : : ;mg, introduce parameters nk 2 f0; 1; : : :g and ˇk > 0: Let the density of
Q0 be given, for x > 0, by

g.x/ D
mX

kD1
pkˇ

nkC1
k

xnk

nkŠ
e�ˇkx;

with an additional probability p0 2 Œ0; 1� in 0. We obviously have

Ee�˛QT D p0E0e
�˛QT C

Z

.0;1/
g.x/Exe�˛QT dx:

The first term on the right-hand side obviously equals p0k.#; ˛/=k.#; 0/; so let us
focus on the second term. Based on the ideas that we used for the exponential case,
for this second term we can write
Z

.0;1/
g.x/Exei˛QT dx

D
mX

kD1
pk

Z 1

0

ˇ
nkC1
k

xnk

nkŠ
e�ˇkx

Z x

yD0

Z 1

zD�1
e˛i.�zCx/

P. NX0T 2 dy;X0T 2 dz/dx

C
mX

kD1
pk

Z 1

0

ˇ
nkC1
k

xnk

nkŠ
e�ˇkx

Z 1

yDx

Z 1

zD�1
e˛i.�zCy/

P. NX0T 2 dy;X0T 2 dz/dx: (4.19)

Recall the identities

Z 1

y
xne�	xdx D nŠ

	nC1
nX

`D0

.	y/`

`Š
e�	y;

Z y

0

xne�	xdx D nŠ

	nC1

 

1 �
nX

`D0

.	y/`

`Š
e�	y

!

:

As a result, the first term in (4.19), with ˛k WD ˇk � ˛i (and upon interchanging the
order of the integrals), reduces to

mX

kD1
pk

�
ˇk

˛k

�nkC1  nkX

`D0

Z 1

zD�1

Z 1

yD0
.˛ky/`

`Š
e�˛ize�˛ky

P. NX0T 2 dy;X0T 2 dz/

!

;
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which can be interpreted as

mX

kD1
pk

�
ˇk

˛k

�nkC1  nkX

`D0

˛`k
`Š

E

�
. NX0T/`e�˛k NX0

T e�˛iX0

T

�
!

D
mX

kD1
pk

�
ˇk

˛k

�nkC1  nkX

`D0

˛`k
`Š
Ee˛i. NX0

T�X0

T / E

�
. NX0T/`e�ˇk NX0

T

�
!

D k.#;�˛i/

k.#; 0/

mX

kD1
pk

�
ˇk

˛k

�nkC1  nkX

`D0

˛`k
`Š
.�1/`

Nk.`/.#; ˇk/

Nk.#; 0/

!

;

where Nk.`/.#; ˇ/ is the `th derivative of Nk.#; ˇ/ with respect to ˇ; the first equality
uses the fact that NX0T � X0T and NXT are independent. Likewise, the second term
in (4.19) equals

mX

kD1

pk

 Z
1

zD�1

Z
1

yD0

 

e�˛ize˛iy �
nkX

`D0

ˇ`k
`Š

y`e�˛ize�˛ky

!

dP. NX0

T 2 dy;X0

T 2 dz/

!

D
mX

kD1

pk

 

Ee˛i.NX0

T�X0

T / �
nkX

`D0

ˇ`k
`Š

E

�
. NX0

T /
`e�˛k NX0

T e�˛iX0

T

�
!

D k.#;�˛i/

k.#; 0/

mX

kD1

pk

 

1 �
nkX

`D0

ˇ`k
`Š
.�1/`

Nk.`/.#; ˇk/

Nk.#; 0/

!

:

Combining the above we obtain, with 	k;` WD ˇ`k � ˇ
nkC1
k .˛ C ˇk/

`�nk�1, the
generalization of (4.18):

Ee�˛QT D
 

p0 C
mX

kD1
pk

 

1 �
nkX

`D0

.�1/`
`Š

	k;`

Nk.`/.#; ˇk/

Nk.#; 0/

!!
k.#; ˛/

k.#; 0/
I

with m D 1, p1 D 1 (and hence p0 D 0), ˇ1 D ˇ, and nk D 0, Eqn. (4.18) is
recovered.

We conclude this chapter by pointing out how the results presented above can
be used to evaluate another metric, that is, the mean amount of time the workload
process has spent above a given level. To this end, we first introduce the random
variable V.t; u/ 2 Œ0; t� by setting

V.t; u/ WD
Z t

0

1fQs�ugds:
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Our objective is to analyze the double transform of Ex V.t; u/, that is,

Z 1

0

e�˛u
Z 1

0

#e�#t
Ex V.t; u/dt du D

Z 1

0

e�˛u
Z 1

0

#e�#t
Z t

0

Px.Qs � u/ds dt du;

which, after swapping the two inner integrals, reduces to

Z 1

0

e�˛u
Z 1

0

e�#s
Px.Qs � u/ds du:

Again interchanging the order of the integrals, and applying integration by parts, we
obtain

Z 1

0

e�˛u
Z 1

0

#e�#t
Ex V.t; u/dt du D 1 � Ex e�˛QT

˛#
;

with T being exponentially distributed with mean 1=#: Then the transform (with
respect to the initial position x) of this expression can be phrased in terms of the
functions k.�; �/ and Nk.�; �/ relying on Thm. 4.3.

Exercises

Exercise 4.1 Verify Eqns. (4.2), (4.3), and (4.4), and use them to compute �T.˛/.

Exercise 4.2 Verify Eqn. (4.5).

Exercise 4.3 Let X 2 SC and T be exponentially distributed with mean 1=# . Prove
that

P.QT D 0/ D
�

lim
˛!1

˛

'.˛/

�
#

 .#/
e� .#/x:

Use this to find the steady-state probability P.Q D 0/, and show that for the case of
X 2 CP.r; �; b.�// this gives the well-known expression

P.Q D 0/ D 1 � �EB

r
:

Exercise 4.4 Verify Eqn. (4.6) using Thm. 4.1.

Exercise 4.5 Verify Eqn. (4.15).
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Exercise 4.6 Let X 2 S�, and let T be exponentially distributed with mean 1=q,
independently of X. Determine

Z 1

0

ˇ0e
�ˇ0x

Exe�˛QT dx:

Interpret the result.

Exercise 4.7 Let X 2 S�, and let T be exponentially distributed with mean 1=q,
independently of X. Determine

Z 1

0

ˇe�ˇx
Exe�˛QT dx

as q # 0. Interpret the result.

Exercise 4.8 Let X be a Lévy process with EX1 < 0. Prove that sups2Œ0;t� Xs

converges in distribution to sups2Œ0;1/ Xs, as t ! 1. Interpret this fact in the setting
of the corresponding Lévy-driven queue.

Exercise 4.9 Let X correspond to Bm.�1; 1/ and T be exponentially distributed
with mean 1=# , independently of X. Derive Exe�˛QT . Find E0QT and Var0 QT .

Exercise 4.10 Let X correspond to Bm.�1; 1/, and fix a time epoch t > 0, and an
initial workload x � 0.

(a) Argue that (4.6) entails that ExQt D I.x; t/C J.x; t/; where

I.x; t/ WD
Z .x�t/=

p
t

�1

Z x�t�z
p

t

0

1p
2�

e�z2=2dy dz;

J.x; t/ WD
Z .�xCt/=

p
t

�1

Z �xCt�z
p

t

0

1p
2�

e�z2=2e�2ydy dz:

(b) Verify that

I.x; t/ D .x � t/˚N

�
x � tp

t

�

C
r

t

2�
e�.x�t/2=.2t/;

and

J.x; t/ D 1

2
˚N

��x C tp
t

�

� e2x

2
˚N

��x � tp
t

�

:

(c) Check that

E0Qt D �
�

t C 1

2

�

C .t C 1/˚N
�p

t
�C

r
t

2�
e�t=2:



Chapter 5
Heavy Traffic

In this chapter we study Lévy-driven queues in heavy traffic. More specifically, we
analyze the asymptotic regime in which the drift of the input process tends to 0.
Evidently, in this regime the workload explodes, but under an appropriate scaling its
distribution converges to a non-degenerate limit.

We now introduce the key quantities studied in this chapter. With .Xt/t denoting a
Lévy process, we consider a queue fed by the input process .X."/t /t, defined through

X."/t WD ."/ .Xt � tEX1 � "t/ ;

where ."/ denotes an appropriately chosen scaling function. In the sequel the
stochastic process .Q."/

t /t denotes the workload process of the Lévy-driven queue fed
by .X."/t /t, whereas the corresponding stationary version is defined by the random
variable Q."/. Without loss of generality, we assume in this chapter that EX1 D 0:

We consider the regime in which " tends to 0, so that the queue under consideration
is increasingly heavily loaded.

The goal of this chapter is twofold. First, depending on specific distributional
properties of X1, we identify the right scaling function ."/ that provides us with
a non-trivial limit of the stationary workload Q."/, in the limiting regime " # 0.
In addition, we determine a rescaling of time, denoted by n."/, such that the
transient workload Q."/

tn."/ has a proper limit. Second, we explicitly find the limiting
distributions of both the transient and stationary workloads, as " # 0.

As it turns out, there are two regimes that should be distinguished in this chapter.
To point out the difference between these two situations, which differ in terms of
the scaling function ."/, let us first consider a special class of Lévy input: we
assume for the moment that X 2 S.˛; ˇ; 0/, with ˛ 2 .1; 2�. Recall that .Xt/t is self-

© Springer International Publishing Switzerland 2015
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similar with parameter 1=˛, as we observed in Section 2.3. We therefore obtain,
with 	 WD �˛=.˛ � 1/ � �2,

Q."/ D ."/ sup
t�0
.Xt � "t/ D ."/ sup

t�0
�
X"	 t � "1C	 t

�

dD �
."/"�1=.˛�1/

�
sup
t�0
.Xt � t/:

It is therefore natural to choose ."/ D "1=.˛�1/, which results in the distributional
equality, for each " > 0,

Q."/ dD sup
t�0
.Xt � t/:

Having found the candidate for the ‘space scaling’ ."/, we now focus on
identifying the appropriate scaling of time n."/. To this end, consider the transient
workload. Assuming Q."/

0 D x, relying on (2.4), it is seen that picking n."/ D "	

leads to a non-degenerate limit:

Q."/
"	 t D ."/

�
X"	 t � "	C1t

�C max

�

x;�."/ inf
0�s�"	 t

.Xs � "s/

	

dD �
."/"�1=.˛�1/

�
.Xt � t/C max

�

x;� �."/"�1=.˛�1/� inf
0�s�t

.Xs � s/

	

:

The above toy example suggests that if .Xt/t is asymptotically stable with index
˛ 2 .1; 2�, then."/ should decrease polynomially to 0, roughly at the rate 1=.˛ �
1/, whereas time should be ‘stretched’ by a factor "	 . In particular, if ˛ D 2, that is,
.Xt/t belongs to the domain of attraction of a normal law, then ."/ � " as " # 0.
This suggests that in cases where Var X1 < 1, we should choose ."/ � " and
n."/ � "�2. We note that in this chapter we use the intuitive notation a."/ � b."/ to
express that a."/=b."/ tends to 1 as " # 0.

We formalize the above observations in the next sections. The principal distinc-
tion turns out to be that if Var X1 < 1 then the heavy-traffic limit of the workload
process is that of a queue fed by Brownian motion (i.e. reflected Brownian motion),
whereas if Var X1 D 1 then we have convergence to a queue fed by an ˛-stable
Lévy motion.

Pioneering work on queues in heavy traffic was done in the 1960s by Kingman
[134–136]; Kingman’s approach is in line with the one we follow in Section 5.1,
in that it is based on manipulating the transform of the workload distribution (as
identified in the previous chapters). More precisely, for the class of Lévy processes
.Xt/t having a finite variance, we demonstrate in Section 5.1 how to find the
stationary and transient heavy-traffic limiting distributions from our expressions
of the Laplace transforms of Q."/ and Q."/

t , respectively. An alternative approach,
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based on the central limit theorem, was developed by e.g. Prohorov [180]. For more
background, we refer to a survey by Glynn [100] and the book by Whitt [217].

The case that the variance Var X1 is infinite has been analyzed in detail as well.
In general terms, as indicated above, in this case the heavy-traffic limit corresponds
to a reflected ˛-stable Lévy motion (rather than a reflected Brownian motion). We
focus on this case in Section 5.2, where we use an alternative (i.e. different from the
one presented in Section 5.1) way of finding the limiting process, which is based on
the functional central limit theorem. For further reading in this context we refer e.g.
to [50, 96, 197], and again [217].

5.1 Lévy Inputs with Finite Variance

In this section we assume Var X1 to be finite. For convenience, we normalize the
Lévy process such that Var X1 D 1. Realize that this normalization can be done
without loss of generality; we later comment on how to translate the results to the
unnormalized case Var X1 6D 1.

The main finding of this section is that in this finite-variance case, as " # 0, the
workload process scales essentially as "�1. More precisely, in a steady state, picking
."/ D ", it will be argued that the distribution of the steady-state workload Q."/

tends to that of an exponentially distributed random variable (with mean 1
2
) as " # 0.

This finding can be intuitively understood, bearing in mind that this distribution is
the steady-state distribution of a queue fed by Bm.�1; 1/, in combination with the
functional central limit theorem. In addition we address the corresponding transient
behavior: stretching time by a factor "�2, we prove convergence of the transient
distribution to that of reflected Brownian motion.

We subsequently treat the spectrally positive case, the spectrally negative case,
and the general case. In our approach, we rely on the stationary and transient results
derived in the previous chapters: we consider the transforms that we derived for Q."/

and Q."/

t="2
, respectively, and study their behavior in the heavy-traffic regime, that is,

as " # 0:
In the remainder of this chapter, E denotes an exponential random variable with

mean 1
2
. The process .Et/t denotes a Brownian motion Bm.�1; 1/ reflected at 0;

according to Eqn. (4.6),

P.Et � y j E0 D x/ D 1 � ˚N

��y C x � tp
t

�

� e�2y˚N

��y � x C tp
t

�

; (5.1)

with, as before, ˚N.�/ WD 1 � �N.�/ denoting the distribution function of a standard
normal random variable. Recall that E corresponds to the steady-state distribution
of Bm.�1; 1/ reflected at 0, which also follows when taking t ! 1 in (5.1).
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Spectrally positive case—We start by analyzing the stationary workload under heavy
traffic, and later shift to the transient case, for X 2 SC. Define

'."/.˛/ WD logEe�˛X
."/
1 D ˛"2 C '.˛"/:

From Thm. 3.2, we thus have

Ee�˛Q."/ D ˛

'."/.˛/

�
�EX."/1

�
D ˛"2

˛"2 C '.˛"/
:

As we assume that Var X1 D 1 < 1, and realizing that '.˛/ D 1
2
˛2 C o.˛2/, it

follows that, as " # 0,

Ee�˛Q."/ D 1

1C 1
2
˛ C o.1/

D 2

2C ˛
C o.1/I

recognize the Laplace transform of an exponential random variable with mean 1
2

in
the right-hand side of the previous display. We obtain the following convergence
in distribution; its validity is an immediate consequence of Lévy’s convergence
theorem, see e.g. Williams [220, Section 18.1].

Theorem 5.1 Let X 2 SC. Then, as " # 0, Q."/ d! E.

Example 5.1 Consider the situation of compound Poisson input with exponentially
distributed jobs. We choose the arrival rate �" D 1� ", mean service time ��1" D 1,
and depletion rate 1. It is readily verified that the driving Lévy process has mean
rate .1 � "/ � 1 D �". The transform of the unscaled stationary workload is, due
to Thm. 3.2, ".1C ˛/=.˛ C "/, which leads to .1C "˛/=.˛ C 1/ when scaling the
workload by ". When taking the limit " # 0, we obtain 1=.˛C 1/, corresponding to
an exponential distribution with mean 1.

This could have been concluded without doing any computations with trans-
forms. For the M/M/1 queue (with arrival rate �, the mean service time ��1, and
depletion rate 1) it is known that the steady-state workload satisfies

P.Q � x/ D 1 � �

�
e�.���/x;

for x � 0. Plugging in the above parameters and recalling that."/ D ", we arrive at

P
�
Q."/ � x

� D P

 

sup
t�0
.Xt � t EX1 � "t/ � x

."/

!

D 1 � �"

�"
e�.�"��"/.x="/ ! 1 � e�x;

as " # 0. }
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Now we consider the time-dependent behavior, relying on Thm. 4.1. The first
question is, how should we scale time in order to obtain a meaningful limit? In the
setup of Thm. 4.1 (i.e. the result providing the transform of the transient workload
in a queue with spectrally positive input) we scale the parameter # by a factor n."/
(so that the exponential clock has mean n."/=#); the function n."/ we identify later
on. We assume that Q."/

0 D x.
With  ."/.�/ defined as the inverse of '."/.�/, Thm. 4.1 yields, for ˛ � 0,

Exe�˛QTn."/ D #=n."/

#=n."/� '."/.˛/

�

e�˛x � ˛

 ."/.#=n."//
e� ."/.#=n."// x

�

;

with T exponentially distributed with mean #�1. As before, we now study the
behavior of this transform for " # 0: To this end, we first verify that, as " # 0,

 ."/.#/ � �1C
r

1C 2#

"2
;

so that picking n."/ D "�2 leads to

lim
"#0

Exe�˛QT="2 D #

# � ˛ � 1
2
˛2

�

e�˛x � ˛

�1C p
1C 2#

e.1�
p
1C2#/x

�

;

which is the Laplace transform of Bm.�1; 1/ reflected at 0, after an exponential
time with mean #�1 (use Thm. 4.1). This proves the following statement.

Theorem 5.2 Let X 2 SC. Then, for any t > 0, as " # 0, Q."/

t="2
d! .Et j E0 D x/.

Spectrally negative case—We now address X 2 S�, and we start again by
considering the stationary case. We define the cumulant of X."/1 by ˚."/.�/, and its
right inverse by �."/.�/. Thm. 3.3 states that Q."/ obeys an exponential distribution
with mean .� ."/.0//�1. As " # 0, �."/.q/ � 1Cp1C 2q="2:We find the following
result.

Theorem 5.3 Let X 2 S�. Then, as " # 0, Q."/ d! E.

In relation to the transient case, with T exponentially distributed with mean q�1,
Thm. 4.2 yields

Z 1

0

ˇe�ˇx
Exe�˛QT="2dx D �."/.q"2/

� ."/.q"2/C ˛
C q"2

˚."/.ˇ/ � q"2
� ."/.q"2/ � ˇ
�."/.q"2/C ˛

˛

˛ C ˇ
:

As " # 0, this converges to

1C p
1C 2q

1C p
1C 2q C ˛

C q
1
2
ˇ2 � ˇ � q

� 1C p
1C 2q � ˇ

1C p
1C 2q C ˛

� ˛

˛ C ˇ
:
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This is the triple transform corresponding to Bm.�1; 1/ reflected at 0, started with
an initial level sampled from an exponential distribution with mean ˇ�1, after
an exponentially distributed time with mean q�1. We again find that the limiting
marginal distribution coincides with that of reflected Brownian motion.

Theorem 5.4 Let X 2 S�. Then, for any t > 0, as " # 0, Q."/

t="2
d! .Et j E0 D x/.

General case—For the situation we are considering, that is, Var X1 < 1, the results
derived for X 2 SC and X 2 S� carry over to general Lévy processes. We sketch
how this can be proved for the stationary case relying on the expression for the
transform of the stationary workload, as given in Thm. 3.5; the result for the transient
case can be established similarly (but requires a considerable additional amount of
calculus).

From Thm. 3.5, we have, for ˛ � 0,

Ee�˛Q."/ D exp

�

�
Z 1

0

Z

.0;1/
1

t
.1 � e�˛x/P

�
X."/t 2 dx

�
dt

�

D exp

�

�
Z 1

0

Z

.0;1/
1

t
˛e�˛x

P

�
X."/t > x

�
dx dt

�

: (5.2)

The idea is to let " # 0 in this expression. In the calculations, we need the following
lemma.

Lemma 5.1 For any s > 0,

Z 1

0

sp
2�x3

exp

�

�1
2

.s � x/2

x

�

dx D 1

and

Z 1

0

sp
2�x3

exp

�

�1
2

.s C x/2

x

�

dx D e�2s:

Proof Substituting u WD s2=x,

I WD
Z 1

0

sp
2�x3

exp

�

�1
2

.s � x/2

x

�

dx D
Z 1

0

1p
2�u

exp

�

�1
2

.s � u/2

u

�

du:

Adding these two integrals, we obtain

2I D
Z 1

0

1p
2�x

� s

x
C 1

�
exp

 

�1
2

�
sp
x

� p
x

�2
!

dx:
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Now substitute y WD s=
p

x � p
x; it is readily verified that

dy D �1
2

�
1p
x

� s

x
C 1

��

dx:

It follows that I D R1
�1.

p
2�/�1e�y2=2dy D 1. The second claim follows from the

first claim, by an elementary computation. �

Now let us return to our expression for Ee�˛Q."/ . Substituting s WD t", we obtain
that the exponent in (5.2) reads as

�
Z 1

0

Z

.0;1/
1

s
˛e�˛x

P

 
Xs="
p

s="
>

xp
s"

C p
s"

!

dx ds:

Realize that we are considering the regime " # 0, so that s=" becomes large. The
idea is that we apply the central limit theorem, and replace the random variable
Xs="=

p
s=" by a standard normal random variable. We thus obtain

�
Z 1

0

Z

.0;1/
1

s
˛e�˛x

Z 1

0

1p
2�

exp

 

�1
2

�

y C xp
s"

C p
s"

�2
!

dy dx ds:

Now subsequently substituting z WD y
p

s" and v WD s", we find

�
Z 1

0

Z

.0;1/
˛e�˛x

Z 1

0

1p
2�v3

exp

�

�1
2

�
.x C z C v/2

v

��

dz dx dv

(which is independent of "!). The next step is to interchange the order of integration;
first perform the integration over v. The second claim of Lemma 5.1 implies that the
above expression equals

�
Z

.0;1/

Z 1

0

˛
e�˛x

x C z
e�2.xCz/dz dx D �

Z 1

0

Z 1

x
˛e�˛x e�2y

y
dy dx

D �
Z 1

0

Z y

0

˛e�˛x e�2y

y
dx dy

D �
Z 1

0

e�2y � e�.2C˛/y

y
dy D log

�
2

2C ˛

�

;

where the last step is due to ‘Frullani’. We conclude that

lim
"#0

Ee�˛Q."/ D 2

2C ˛
:

This leads to the following result.
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Theorem 5.5 Let X be a general Lévy process with Var X1 D 1. Then, as " # 0,

Q."/ d! E.

To make the above computations into a formal proof, one step needs further
justification: the replacement of Xs="=

p
s=" by a standard normal random variable.

This step can be made rigorous by using detailed, explicit error bounds for the
central limit theorem.

We could apply the same line of reasoning to the transient result presented in
Thm. 4.3. This leads to the following transient counterpart of Thm. 5.5.

Theorem 5.6 Let X be a general Lévy process with Var X1 D 1. Then, for any

t > 0, as " # 0, Q."/

t="2
d! .Et j E0 D x/.

While we have chosen to present proofs that rely on the results derived in the
previous chapters, there are various alternative ways to establish the above heavy-
traffic results. We refer e.g. to Asmussen [19, Thm. X.7.1] for an elementary and
straightforward proof of the discrete-time version of Thm. 5.5; it requires a minor
argument to extend this result to continuous time. In [19, Prop. X.7.4] the discrete-
time version of Thm. 5.6 is proved for the special case that the queue is initially
empty, that is, the case that x D 0.

We mentioned that we assumed, without loss of generality, that Var X1 D 1: By
rescaling, it is straightforward to obtain the counterparts of Thms. 5.5 and 5.6 for
the case of non-unit variance: with V WD Var X1, as " # 0,

Q."/

V

d! E;
Q."/

tV="2

V

d! .Et j E0 D x/: (5.3)

5.2 Lévy Inputs in the Domain of a Stable Law

Consider now a complementary scenario, when the variance of the input process
is infinite (i.e. Var X1 D 1). More precisely, we assume that the centered Lévy
process X satisfies (D1)–(D2), defined as follows.

Definition 5.1 We say that the condition (D1) holds if

P.jX1j > x/ D L.x/x�˛;

for ˛ 2 .1; 2/, and a slowly varying function L.�/, that is, L.x/=L.tx/ ! 1 for
x ! 1, for any t > 0:

We say that the condition (D2) holds if

lim
x!1

P.X1 > x/

P.jX1j > x/
D 1C ˇ

2
;

with ˇ 2 Œ�1; 1�.
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The key observation is that assuming (D1)–(D2) is equivalent to assuming the
existence of a function d.t/, t > 0, such that

Xt

d.t/

d! S.˛/1 ; as t ! 1, (5.4)

where S.˛/1
dD S˛.1; ˇ; 0/; see e.g. Whitt [217, Thm. 4.5.1]. Put differently, X satisfies

(D1)–(D2) if and only if it belongs to the domain of attraction of the stable law
S˛.1; ˇ; 0/; for more background, see e.g. [217, Chapter IV]. Observe that the
above statement entails that the tail of the complementary distribution function of
X1 decays roughly as x�˛ for ˛ 2 .1; 2/, such that the mean of X1 exists, but the
variance does not. In this sense, this case is complementary to the situation that was
analyzed in Section 5.1. The goal of the remainder of this section is to establish
the counterpart of the heavy-traffic results of Section 5.1 (now imposing (D1)–(D2)
rather than Var X1 < 1).

To simplify the proofs, and to avoid technicalities for the moment, we first
assume that

lim
x!1L.x/ D A > 0I

that is, X belongs to the normal domain of attraction of a stable law. We comment
on the general case (i.e. not requiring L.x/ ! A) later on.

In the above setting, the classical result describing the convergence of random
sums to stable laws, e.g. [217, Thm. 4.5.2], states that

d.t/ WD
�

A

C˛;1

�1=˛
t1=˛ (5.5)

is the right scaling function, where C˛;1 WD .1 � ˛/=.
 .2 � ˛/ cos.�˛=2// (cf.
Prop. 2.1).

Consider first the stationary workload Q."/ of the Lévy-driven queue fed by
.X."/t /t, with X."/t D ."/ .Xt � "t/ (recall that throughout we assume EXt D 0),
and analyze its behavior as " # 0.

We begin by identifying the scaling function ."/. Let n."/ be a positive
function, to be specified later. Using that

Q."/ dD sup
t�0

."/ .Xt � "t/ D sup
t�0

."/
�
Xn."/t � "n."/t

�
;

we deduce that an appropriate scaling for the convergence of ."/Xn."/t (in the
heavy-traffic regime " # 0) is

."/ D 1

d.n."//
; (5.6)
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where n."/ is chosen such that "n."/."/ ! 1, as " # 0. Hence, in view of (5.5),
we should pick

n."/ �
�

A

C˛;1

�1=.1�˛/
"�˛=.˛�1/

and

."/ �
�

A

C˛;1

�1=.1�˛/
"1=.˛�1/;

as " # 0.
We are now in a position to find the distributional limit of Q."/ as " # 0, with

."/ as chosen above. Whereas we used a transform-based approach in the previous
section (relating to Var X1 < 1), we now follow an alternative approach that relies
on a functional central limit theorem for asymptotically stable processes.

For given T > 0, consider the supremum on a finite interval:

sup
t2Œ0;n."/T�

."/ .Xt � "t/ D sup
t2Œ0;T�

�
Xn."/t

d.n."//
� "n."/

d.n."//
t

�

:

Now the classical functional central limit theorem for asymptotically stable stochas-
tic processes ensures that, with the process .S.˛/t /t denoting an ˛-stable Lévy motion
S.˛; ˇ; 0/,

�
Xn."/t

d.n."//

�

t2Œ0;T�
d!
�

S.˛/t

�

t2Œ0;T� ; (5.7)

weakly in the space DŒ0;T� (with the J1 topology); we refer to [45, 50, 96, 197, 217]
for details on weak convergence in this function space.

Combining the above with the continuous mapping theorem (note that for any
finite T > 0, the supremum over Œ0;T� is a continuous mapping) implies that

sup
t2Œ0;T�

�
Xn."/t

d.n."//
� "n."/

d.n."//
t

�
d! sup

t2Œ0;T�

�
S.˛/t � t

�
I (5.8)

see e.g. [139, 197]. Thus we are left with extending the above convergence to the
supremum over the interval Œ0;1/. To show this it suffices to prove that

lim
T!1P

 

sup
t�T

�
Xn."/t � "n."/t

�
> 0

!

D 0; (5.9)

uniformly in " > 0.
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This can be done by resorting to an idea taken from Shneer and Wachtel [197];
see also [139]. The key observation is that, by the results derived in Pruitt [181,
Section 3], there exists a C > 0 such that for each x;T > 0,

P

 

sup
t2Œ0;T�

Xt � x

!

� CT
E.X21 I jX1j � x/

x2
: (5.10)

We combine this with the straightforward fact that

E
�
X21I jX1j � x

� � C1x
2
P.jX1j > x/

for sufficiently large x, and C1 > 0; see e.g. [89, Prop. A.3.8]. We thus find the upper
bound

P

 

sup
t�Tn."/

.Xt � "t/ > 0
!

�
1X

kD0
P

 

sup
t�2kC1Tn."/

Xt > 2
k"n."/T

!

� C2

1X

kD0

�
2kC1Tn."/

22k"2n2."/T2

�

E
�
X21I jX1j � 2k"n."/T

�

� C3 T1�˛"�˛.n."//1�˛
1X

kD0
2k.1�˛/ � C4 T1�˛;

where we used that "�˛.n."//1�˛ � C˛;1=A as " # 0, and where C2;C3;C4 denote
some positive constants. Hence the condition (5.9) holds uniformly in " > 0; recall
that ˛ > 1.

The case of a general slowly varying function L.�/, rather than assuming that
L.x/ ! A > 0 as x ! 1, follows the same line of reasoning, with the exception
that

d.t/ WD inf

�

y W P.jX1j > y/ <
1

t

	

is the appropriate scaling [89, Prop. 2.2.13]. We refer to [139, 197], and references
therein, for details.

We have thus arrived at the following result.

Theorem 5.7 Let X be a general Lévy process satisfying (D1)–(D2). Then, as " # 0,
for."/ D 1=d.n."// and n."/ such that "n."/."/ ! 1, we have

Q."/ d! sup
t�0

�
S.˛/t � t

�
;

where S.˛/ 2 S.˛; ˇ; 0/:
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The analysis of the corresponding transient case follows from a straightforward
combination of the weak convergence (5.7) with the fact that the transient solution
of the Skorokhod problem is continuous with respect to the input process .Xt/t [185,
Prop. D.4]. As a consequence, the following statement holds: under an appropriate
scaling the workload process converges to that of a queue fed by an ˛-stable Lévy
motion. Recall that Q."/

0 D x.

Theorem 5.8 Let X be a general Lévy process satisfying (D1)–(D2). Then, for any
t > 0, as " # 0, for."/ D 1=d.n."// and n."/ such that "n."/."/ ! 1, we have

Q."/

tn."/

d! .S˛t � t/C max

�

x;� inf
0�s�t

.S˛s � s/

	

;

where S.˛/ 2 S.˛; ˇ; 0/:

Example 5.2 Consider the case of a queue fed by compound Poisson input. More
precisely, the process .Xt/t corresponds to a Poissonian arrival stream (of rate �) of
jobs with distribution function

P.B � x/ D 1 � .x C 1/�ı;

for x � 0 and ı 2 .1; 2/: To ensure stability, the queue is emptied at a constant rate
r that is larger than

�EB D �

ı.ı � 1/
:

Observe that EB < 1, whereas Var B D 1: Considering (D1)–(D2), it can be
verified that we have to pick ˛ D ı and ˇ D 1 (note that the process is spectrally
positive). We conclude from Thm. 5.7 that Q."/ converges to the stationary workload
in a queue fed by .S.ı/t � t/t, with S.ı/ 2 S.ı; 1; 0/, irrespective of the values of �
and r (as long as r > �EB). }

Exercises

Exercise 5.1 Prove (5.3) from Thms. 5.5 and 5.6.

Exercise 5.2 In this exercise we prove Eqn. (4.6), which plays a crucial role in
Chapter 5. We rely on elementary arguments to do this; an alternative, martingale-
based proof can be found in e.g. [19, Thm. XIII.4.3] for the special case Q0 D x D 0:

For ease we start with the case d D �1, � D 1, and t D 1, and later translate
that into the setting of Eqn. (4.6). Define Xt WD Bt � t, with .Bt/t standard Brownian
motion.
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(a) Prove that, for x � 0,

P

 

sup
s2Œ0;1�

Bs > x

ˇ
ˇ
ˇ
ˇ
ˇ

B1 D 0

!

D e�2x2 :

Hint: First argue that

P

 

sup
s2Œ0;1�

Bs > x

ˇ
ˇ
ˇ
ˇ
ˇ

B1 D 0

!

D P

 

sup
s�0

B.sC1/�1 > x

ˇ
ˇ
ˇ
ˇ
ˇ

B1 D 0

!

D P

 

sup
s�0

1

1C s
BsC1 > x

ˇ
ˇ
ˇ
ˇ
ˇ

B1 D 0

!

:

Then use P.sups>0.Bs � as/ > x/ D exp.�2ax/ for a > 0. (For an alternative
derivation, see [184].)

(b) Prove that

P

 

sup
s2Œ0;1�

.Bs � s/ > x

ˇ
ˇ
ˇ
ˇ
ˇ

B1 D y

!

D e�2x.xC1�y/

for x � maxf0; y � 1g, and 1 otherwise.
(c) We first assume the workload process is in stationarity at time 0. Denote the

density of a standard normal random variable by �N.�/ WD ˚ 0N.�/: Show that

P.Q0 � x;Q1 � y/ D
Z yC1

�1
P

�
sup
s�0

.�Xs/ � x; sup
t�1

.X1 � Xt/

� y j B1 D z
�
�N.z/dz:

(d) Prove that

P

 

sup
s�0

.�Xs/ � x; sup
t�1

.X1 � Xt/ � y

ˇ
ˇ
ˇ
ˇ B1 D z

!

D P

 

sup
s�0

.�Xs/ � minfx; y C 1 � zg
!

P

 

sup
t2Œ0;1�

.�Xt/ � y C 1 � z

ˇ
ˇ
ˇ
ˇ
ˇ
B1Dz

!

:

(e) Use the above results to prove that

P.Q0 > x;Q1 > y/ D e�2y˚N.�x C y � 1/C e�2x˚N.x � y � 1/ C
e�2.xCy/˚N.�x � y C 1/� ˚N.�x � y � 1/
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(this requires quite a bit of calculus!), and

P.Q0 2 dx;Q1 > y/ D 2e�2x˚N.x � y � 1/dx C 2e�2.xCy/˚N.�x � y C 1/dx:

(f) Conclude that

P.Q1 � y j Q0 D x/ D 1 �˚N.x � y � 1/� e�2y˚N.�x � y C 1/:

(g) Derive Eqn. (4.6).

Exercise 5.3 Let X."/t WD X.1/t C X.2/t � "t, where it is assumed that X.1/ 2
S.˛1; ˇ1; 0/ and X.2/ 2 S.˛2; ˇ2; 0/ are mutually independent, with ˛1; ˛2 2
.1; 2/.

(a) Find the heavy-traffic scaling function, that is, a function ."/, such that Q."/

converges in distribution to a non-degenerate limit, as " # 0.
(b) Assume now that X.2/ is a standard Brownian motion, independent of X.1/.

Find the heavy-traffic scaling function, that is, a function ."/, such that Q."/

converges in distribution to a non-degenerate limit, as " # 0.

Exercise 5.4 Let X."/t D X.1/t C X.2/t , where X.1/ 2 S.˛; ˇ; 0/ and X.2/ is an
independent centered Lévy process with Var X.2/1 < 1.

(a) Prove that X belongs to the domain of attraction of the stable law, and find its
parameters.

(b) Find the heavy-traffic scaling ."/ such that Q."/ converges in distribution to a
non-degenerate limit as " # 0.

Exercise 5.5 Suppose that X 2 S.˛; ˇ; 0/ for ˛ 2 .1; 2/ and ˇ 2 .�1; 1/. Prove
that

Xt

t1=˛
d! S.˛/1 ; as t ! 1;

where S.˛/1
dD S˛.1; ˇ; 0/.

Exercise 5.6 Suppose that a centered Lévy process .Xt/t satisfies .D1/–.D2/ with
˛ > 2 and ˇ 2 .�1; 1/. Find the domain of attraction of X.

Exercise 5.7 Let .Xt/t be a centered Lévy process such that, for ˛ 2 .1; 2/,

lim
x!1

P.jX1j > x/

x�˛
D 1:

(a) Suppose that P.X1 > x/ D o.P.X1 < �x// as x ! 1. Find the distribution of
lim"#0 Q."/ under an appropriate heavy-traffic parameterization.

(b) Suppose that P.X1 < �x/ D o.P.X1 > x// as x ! 1. Find the distribution of
lim"#0 Q."/ under an appropriate heavy-traffic parameterization.



Chapter 6
Busy Period

Besides the (stationary and transient) workload distribution, as analyzed in the
previous chapters, a primary object of study in queueing theory is the so-called
busy period. In this chapter we analyze the busy period in a Lévy-driven queue, in
that we characterize the time it takes for the queue to drain given that it starts off
in the queue’s stationary distribution. In the sequel, we let � denote the busy-period
duration:

� WD infft � 0 W Qt D 0g;

where it is assumed that Q0 obeys the stationary workload distribution.
As for the stationary and transient workloads, all results are in terms of Laplace

transforms. Again we will focus on spectrally positive input, spectrally negative
input, and general (i.e. spectrally two-sided) input. The last section, Section 6.4,
is about a metric that directly relates to the busy period: the minimum workload
attained by the Lévy-driven queue over an interval of given length, where we again
start from the stationary workload at time 0.

However, we start with a general result, reflecting the duality between hitting
times and running maxima, which will be applied in the spectrally negative case
and the general case. Recall the definition of the first passage time:

�.x/ WD infft � 0 W Xt < �xg:

As before, let X0t WD �Xt, and let T be an exponential random variable with mean
q�1: Then the following result holds for any Lévy process X.

Lemma 6.1 For q � 0, ˇ > 0,

Z 1

0

e�ˇx
Ee�q�.x/dx D 1

ˇ

�
1 � Ee�ˇ NX0

T

�
: (6.1)
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Proof A (by now) standard integration-by-parts argument yields

Z 1

0

e�ˇx
Ee�q�.x/dx D

Z 1

0

e�ˇx
Z 1

0

qe�qt
P.�.x/ � t/dt dx: (6.2)

Observe that

f�.x/ � tg D
(

sup
0�s�t

X0s > x

)

D f NX0t > xg:

Also changing the order of integration, we thus obtain that (6.2) can be rewritten as

Z 1

0

qe�qt
Z 1

0

e�ˇx
P
� NX0t > x

�
dx dt:

Again integration by parts yields that this equals

Z 1

0

qe�qt 1

ˇ

�

1 �
Z 1

0

e�ˇx
P
� NX0t 2 dx

�
�

dt;

which can be interpreted as the right-hand side of (6.1). �

Remark 6.1 In the case that the stability condition is not fulfilled, the first passage
time �.x/ is defective. It is readily checked that the following version of Lemma 6.1
still applies:

Z 1

0

e�ˇx
�
Ee�q�.x/1f�.x/<1g

�
dx D 1

ˇ

�
1 � Ee�ˇ NX0

T

�
: (6.3)

This, evidently, also yields an expression for the transform of P.�.x/ < 1/ (by
putting q D 0). }

6.1 Spectrally Positive Case

When introducing the inverse Gaussian process in Section 2.2, it was observed that
for X 2 Bm.d; �2/, the process e�'.˛/t e�˛Xt is a mean-1 martingale; it is readily
verified that this property carries over to any X 2 SC with EX1 < 0. Now apply
‘optional sampling’ with respect to the stopping time �.x/; realize that due to the
fact that there are no negative jumps, X�.x/ D �x. It follows that

1 D e˛x
Ee�'.˛/�.x/;
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or, equivalently, Ee�#�.x/ D e� .#/x. This leads to the interesting observation that
.�.x//x�0 is an increasing Lévy process with Laplace exponent � .#/. This is
formalized in the following property, which is useful when studying the busy period
of a Lévy-driven queue with spectrally positive input. As an aside, it is noted that
Lemma 6.2 also holds for EX1 � 0; in the case EX1 > 0 the random variable �.x/
is defective.

Lemma 6.2 Let X 2 SC, and EX1 < 0. For # � 0, x > 0,

Ee�#�.x/ D e� .#/x:

With Lemma 6.2 characterizing the time it takes before the buffer idles starting at
level x, we are now in a position to find an expression for the Laplace transform of
the busy period � (with the workload at time 0 distributed according to its stationary
distribution).

Proposition 6.1 Let X 2 SC. For # � 0,

Ee�#� D  .#/' 0.0/
#

:

Proof By virtue of Lemma 6.2,

Ee�#� D
Z 1

0

Ee�#�.x/P.Q0 2 dx/ D
Z 1

0

e� .#/xP.Q0 2 dx/ D Ee� .#/Q0 :

The statement follows by applying Thm. 3.2. �

In the special case X 2 CP.r; �; b.�//, the notion of a busy period starting at 0
is well defined. More precisely, such a busy period starts with a job arriving in an
empty queue, and ends at the first epoch that the workload attains 0 again. We denote
the associated random variable by �0; let �.#/ WD Ee�#�0 be the corresponding
Laplace–Stieltjes transform, which is known to satisfy the fixed-point equation
�.#/ D b.# C � � ��.#//, after having renormalized time such that r D 1. This
fixed-point equation can be obtained by the following standard argument.

First observe that the duration of the busy period does not depend on the specific
service policy, as long as it is work conserving; for instance, the busy period
when serving on a first-come-first-served basis coincides with the busy period
when serving on a last-come-first-served basis. Now consider the following work-
conserving service mechanism. After the arrival of the first job, the server starts
processing that job. In the case that the next job arrives before the service of the first
has been completed, the server starts serving that second job, and in fact the entire
‘sub-busy period’ associated with the second job, and only after having finished
this does it resume serving the first job. This policy is continued until the first
job has been fully served, and the busy period ends. Observe that the busy period
has, by virtue of the above construction, a self-similar nature, in the sense that,
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with �01 ; �
0
2 ; : : : being i.i.d. copies of �0 (independent of the service requirement B

corresponding to the first job), and Nt a Poisson process with rate � (independent of
B and �01 ; �

0
2 ; : : :),

�0
dD B C

N�0X

kD1
�0k

(where
P0

kD1 �0k WD 0). As a consequence, when conditioning on B D t, and
realizing that the number of sub-busy periods has a Poisson distribution with mean
�t,

�.#/ D
Z 1

0

e�#t
1X

kD0
e��t .�t/k

kŠ
.�.#//k P.B 2 dt/:

Elementary calculus now yields �.#/ D b.# C � � ��.#//.
Now recall that the Laplace exponent is '.˛/ D ˛ � �C �b.˛/. Therefore

0 D b.# C � � ��.#// � �.#/ D 1

�
'.# C � � ��.#//� #

�
;

and hence '.# C � � ��.#// D # . Apply  .�/ to both sides, and we obtain the
following result.

Proposition 6.2 Let X 2 CP.1; �; b.�//. For # � 0,

�.#/ D �C #

�
� 1

�
 .#/:

Let us return to the setting of general X 2 SC (i.e. not just compound Poisson).
In fact, more refined results than Prop. 6.1 can be found; see e.g. Mandjes et al.
[158]. Consider for instance

L.# I˛; N̨ / WD
Z 1

0

e�#t
E
�
e�˛Q0�N̨Qt1f�>tg

�
dt

D
Z 1

0

e�.˛CN̨/xE
"Z �.x/

0

e�N̨Xt�#tdt

#

P.Q0 2 dx/I

here it is used that for t � � it holds that Qt D Q0 C Xt. Now observe that for any
Lévy process .Zt/t and ı for which the expressions are well defined, we have that

Ms WD e�ıZs � 1 � �
logEe�ıZ1

� �
Z s

0

e�ıZt dt (6.4)
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is a martingale. Now pick ı D N̨ and Zt D Xt C .#= N̨ /t, and use ‘optional sampling’
to obtain

E

"Z �.x/

0

e�N̨Xt�#tdt

#

D 1 � e. N̨� .#//x

# � '. N̨ / I

here it is used that X�.x/ D �x: Combining the above, we end up with

L.# I˛; N̨ / D ' 0.0/
# � '. N̨ /

�
˛ C N̨
'.˛ C N̨ / � ˛ C  .#/

'.˛ C  .#//

�

:

It is actually also possible to compute the joint transform of the stationary workload
and residual busy period:

Ee�˛Q�#� D
Z 1

0

e�˛x
Ee�#�.x/P.Q 2 dx/

D
Z 1

0

e�˛xe� .#/xP.Q 2 dx/ D �.˛ C  .#//;

with �.�/ as given in Thm. 3.2.

6.2 Spectrally Negative Case

The following lemma, which is crucial in the analysis of the busy period distribution
for X 2 S�, presents the double transform of �.x/. It is a direct consequence of
Lemma 6.1 and Thm. 3.4: because of Lemma 6.1,

Z 1

0

e�ˇx
Ee�q�.x/dx D 1

ˇ

�
1 � Ee�ˇ. NXT�XT /

�
;

and because of Thm. 3.4, with T being exponentially distributed with mean q�1 (as
usual independently of X),

Ee�ˇ. NXT�XT / D
Nk.q; ˇ/
Nk.q; 0/ D q

�.q/

�.q/� ˇ

q � ˚.ˇ/
;

using the explicit expression for Nk.�; �/ for X 2 S�; see Section 3.3.

Lemma 6.3 Let X 2 S�, and EX1 < 0. For q � 0, x > 0, ˇ > 0,

Z 1

0

e�ˇx
Ee�q�.x/dx D 1

ˇ

�

1 � q

�.q/

�.q/� ˇ
q � ˚.ˇ/

�

:
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Now recall from Thm. 3.3 that Q0 is exponentially distributed with mean ˇ�10 :
As a result, Lemma 6.3 yields

Ee�q� D
Z 1

0

ˇ0e
�ˇ0x

Ee�q�.x/dx D 1 � q

�.q/

�.q/� ˇ0

q � ˚.ˇ0/
:

Using that ˚.ˇ0/ D 0 and ˇ0 D �.0/, we find the following result.

Proposition 6.3 Let X 2 S�. For q � 0,

Ee�q� D �.0/

�.q/
:

Similarly to what we did above for X 2 SC, we can find more detailed results
for X 2 S�. To this end, we first state and prove a lemma, known as the second
factorization identity, which can be found in e.g. Kyprianou [146, p. 176]; it is a
slight extension of Eqn. (6.3). Importantly, it does not require the underlying Lévy
process to be spectrally one sided. Realize that x C X�.x/ � 0. In the lemma below,
we assume T to have an exponential distribution with mean q�1, which is, as usual,
independent of anything else.

Lemma 6.4 For q; Nq � 0, ˇ > 0,

Z 1

0

e�ˇx
E
�
e�q�.x/CNq.xCX�.x//1f�.x/<1g

�
dx D 1

ˇ � Nq

 

1 � Ee�ˇ NX0

T

Ee�Nq NX0

T

!

:

Proof We follow the proof of [146, Exercise 6.7], which is in line with [7, 66].
Essentially due to the memoryless property of the exponential distribution, we have

E

�
e�Nq NX0

T1f NX0

T>xg
�

D E

�
e�Nq NX0

T1f�.x/<Tg
�

D E
�
eNqX�.x/1f�.x/<Tg

�
E

�
e�Nq NX0

T

�
I

the reasoning behind these equations immediately becomes clear when drawing a
picture (the ‘memoryless argument’ is due to the underlying Markovian structure).
In addition,

E
�
eNqX�.x/1f�.x/<Tg

� D
Z 1

0

e�qs
Z 1

0

qe�q.t�s/
E
�
1fs<tgeNqXs

�
dtP.�.x/ 2 ds/

D E
�
e�q�.x/CNqX�.x/1f�.x/<1g

�
:

Combining the above, it is verified that it is left to prove that

Z 1

0

.ˇ � Nq/e�.ˇ�Nq/xE
�

e�Nq NX0

T1f NX0

T>xg
�

dx D E

�
e�Nq NX0

T

�
� E

�
e�ˇ NX0

T

�
:
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This equality follows by writing the left-hand side of the previous display as

Z 1

0

Z 1

x
.ˇ � Nq/e�.ˇ�Nq/xe�NqudP. NX0T 2 du/ dx;

and interchanging the order of the integration. �

Now observe that

L.qIˇ; Ň/ WD
Z 1

0

e�qt
E

h
e�ˇQ0� ŇQt I � > t

i
dt

D
Z 1

0

ˇ0e
�.ˇCˇ0C Ň/xE

"Z �.x/

0

e� ŇXt�qtdt

#

dx;

using that Q0 is exponentially distributed with mean 1=ˇ0: As in the spectrally
positive case,

E

"Z �.x/

0

e� ŇXt�qtdt

#

D 1 � E.e� ŇX�.x/�q�.x//

q � ˚.� Ň/ :

Applying the second factorization identity, as derived in Lemma 6.4, we obtain that

L.qIˇ; Ň/ D ˇ0

ˇ C ˇ0 C Ň
1

q �˚.� Ň/
Ee�.ˇCˇ0/ NX0

T

Ee Ň NX0

T

;

which, by virtue of Thm. 4.1 (X0 2 SC!; take x D 0), leads to

L.qIˇ; Ň/ D ˇ0

ˇ C ˇ0 C Ň
�.q/� ˇ � ˇ0
q �˚.ˇ C ˇ0/

1

�.q/C Ň :

The joint transform of the stationary workload and busy period follows directly from
Lemma 6.3 and Thm. 3.3:

Ee�ˇQ�q� D ˇ0

Z 1

0

e�.ˇCˇ0/xEe�q�.x/dx D ˇ0

ˇ C ˇ0

�

1 � q

�.q/

�.q/� ˇ � ˇ0
q �˚.ˇ C ˇ0/

�

:

6.3 Spectrally Two-Sided Case

In this section we do not assume the driving Lévy process to be necessarily
spectrally one sided. It turns out that in this case the results on the busy period are
less explicit than in the one-sided case, that is, in terms of the Wiener–Hopf factors.
We detail two approaches: one is based on Lemma 6.1, while the other exploits a
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duality property between the busy period and the epoch in which the driving Lévy
process attains its all-time maximum.

Approach using ‘Pecherskii–Rogozin’—The following result is usually attributed
to Pecherskii and Rogozin [174]; see also [146, Exercise 6.7(ii)]. It follows
immediately from Lemma 6.1 and Thm. 3.4. The function Nk.�; �/ is defined in (3.11).

Lemma 6.5 Let X be a general Lévy process. For q � 0, ˇ > 0,

Z 1

0

e�ˇx
Ee�q�.x/dx D 1

ˇ

�

1 �
Nk.q; ˇ/
Nk.q; 0/

�

:

When inverting the above double transform with respect to ˇ (which could be
done numerically), we obtain, for any x � 0, Ee�q�.x/. The Laplace transform of the
busy period is then, evidently, obtained by computing

Z 1

0

Ee�q�.x/
P.Q0 2 dx/;

where the distribution of Q0 follows from Thm. 3.5.

Approach using duality—This approach uses a sequence of elementary arguments,
e.g. from renewal theory. It is first observed that the busy period � equivalently
reads �.Q/ with Q the stationary workload, and �.x/ the duration of the busy period
given that the initial workload is x. Then it is noticed that this random quantity is
distributed as the age � of the same busy period, which is defined as

� WD � inffs � 0 W 8r 2 Œs; 0� W Xs � Xr � 0gI

this distributional equality follows directly from standard properties for forward and
backward recurrence times; see e.g. Asmussen [19, Section V.3]. It takes a little
thought to realize that time-reversibility arguments entail that

� dD supfs � 0 W Xs D NXg D G;

with NX WD limT!1 NXT and G WD limT!1GT , where NXT and GT are as used in the
context of Thm. 3.4. It now follows that, as an immediate consequence of Thm. 3.4,

E e�#� D E e�#G D k.#; 0/

k.0; 0/
:

6.4 Infimum Over Given Time Interval

In this section we consider the distribution of the random variable Q
t
WD infs2Œ0;t� Qs,

assuming the workload is in stationarity at time 0. In the first part of this section,
which is based on Dȩbicki et al. [74], we find explicit expressions for Laplace
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transforms for the spectrally one-sided situation. We then consider the spectrally
two-sided case, and find expressions in terms of the Wiener–Hopf factors, relying
on the techniques developed in Section 4.3 (and in particular a representation in the
spirit of the one given in Remark 4.4).

Spectrally one-sided case—Observe, for u � 0, that the event fQ
t
> ug corresponds

to fQ0 C infs2Œ0;t� Xs > ug: Hence

Z 1

0

e�#t
Z 1

0

e�˛u
P.Q

t
> u/du dt

D
Z 1

0

e�#t
Z 1

0

e�˛u
Z 1

u
P

�

inf
s2Œ0;t�Xs > u � q

�

P.Q0 2 dq/du dt

D
Z 1

0

Z q

0

e�˛u
Z 1

0

e�#t
P.�.q � u/ > t/dt duP.Q0 2 dq/:

The inner integral is the transform of the tail probability P.�.q � u/ > t/, so that
integration by parts yields

Z 1

0

Z q

0

e�˛u 1

#

�
1 � Ee�#�.q�u/

�
duP.Q0 2 dq/: (6.5)

Now we have to distinguish between X 2 SC and X 2 S�. In the former case
we can use Lemma 6.2 to evaluate the inner integral; then we have to perform a bit
of straightforward calculus, in combination with Thm. 3.2. We obtain the following
result, with T exponentially distributed with mean #�1.

Proposition 6.4 Let X 2 SC. For ˛; # � 0,

Z 1

0

e�˛u
P.Q

T
> u/du D

Z 1

0

#e�#t
Z 1

0

e�˛u
P.Q

t
> u/du dt

D
�
1

˛
� ' 0.0/
'.˛/

�

� ' 0.0/
˛ �  .#/

�
 .#/

#
� ˛

'.˛/

�

:

In the latter case, that is, X 2 S�, we recall from Thm. 3.3 that Q0 has an
exponential distribution with parameter ˇ0 D �.0/. Interchanging the order of
integration in (6.5), and applying Lemma 6.3, we obtain the following result. Here
T is exponentially distributed with mean q�1.

Proposition 6.5 Let X 2 S�. For ˇ; q � 0,

Z 1

0

e�ˇu
P.Q

T
> u/du D

Z 1

0

qe�qt
Z 1

0

e�ˇu
P.Q

t
> u/du dt

D 1

ˇ C �.0/

�.q/� �.0/

�.q/
:
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Example 6.1 The special case of X 2 Bm.d; �2/ can be solved explicitly. To
simplify the notation assume that d D �1; �2 D 1. Then, using that Q0 is
exponentially distributed with mean 1

2
(see Example 3.1), for each u; t > 0, with

X0t D �Xt,

P.Q
t
> u/ D P.Q0 C inf

s2Œ0;t�Xs > u/

D
Z 1

u
P

�

inf
s2Œ0;t�Xs > u � x

�

2e�2xdx

D 2e�2u
Z 1

0

P

 

sup
s2Œ0;t�

X0s < y

!

e�2ydy D e�2u
Ee�2 NX0

t :

Now, by (4.6), we can explicitly find Ee�2 NX0

t , which finally leads to

P.Q
t
> u/ D e�2u

 

2.1C t/�N.
p

t/�
r
2t

�
e�t=2

!

;

with �N.�/, as before, the complementary distribution function of a standard normal
random variable. }

Spectrally two-sided case—To analyze the two-sided case, we first recall that, with
XT WD infs2Œ0;T� Xs,

QT WD XT C maxfQ0;�XTg D .XT � XT/C .XT C maxfQ0;�XTg/ : (6.6)

Let T be exponentially distributed with mean 1=# . For the moment we do not
specify the distribution of Q0; later in our exposition we assume that it is distributed
as the stationary workload Q (and hence also as the all-time supremum NX).

Observe that, due to Thm. 3.4, (i) these two terms in the right-hand side of (6.6)
are independent, and (ii) the first of these is distributed as NXT : As a consequence,

Ee�˛QT D k.#; ˛/

k.#; 0/

�
E
�
e�˛.Q0CXT /1fQ0CXT>0g

�C P.Q0 C XT � 0/
�
: (6.7)

If we were to assume that Q0 is sampled from an exponential distribution with
mean 1=ˇ, we would recover the result featuring in Remark 4.4. The idea now,
however, is to let Q0 follow the steady-state workload distribution, as characterized
through Thm. 3.5. As starting in stationarity implies that the workload still obeys
the stationary distribution after an exponential time, we have that the left-hand side
of (6.7) equals Ee�˛ NX D k.0; ˛/=k.0; 0/. In addition, it is easily seen that

E
�
e�˛.Q0CXT /1fQ0CXT>0g

�C P.Q0 C XT � 0/ D Ee�˛Q
T :
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Upon combining these two properties, it thus follows that

Ee�˛Q
T D k.#; 0/

k.0; 0/

k.0; ˛/

k.#; ˛/
:

Proposition 6.6 Let X be a general Lévy process, and let T be exponentially
distributed with mean 1=# , independently of X. For ˛ � 0,

Z 1

0

e�˛u
P.Q

T
> u/du D 1

˛

�

1 � k.#; 0/

k.0; 0/

k.0; ˛/

k.#; ˛/

�

:

It is readily checked that the results for the spectrally one-sided case are in
agreement with Prop. 6.6.

From the above steps some more refined results can be derived, as follows. To this
end, first observe that from the two ways to characterize the busy-period distribution
that were presented in Section 6.3, for any t > 0, with NX and Xt independent,

P.Q0 C Xt � 0/ D P. NX C Xt � 0/ D P.� � t/ D P.G � t/:

It thus follows that

P.Q0 C XT � 0/ D P.G � T/ D Ee�#G D k.#; 0/

k.0; 0/
;

and as an immediate consequence,

E

h
e�˛Q

T1fQ
T
>0g
i

D E
�
e�˛.Q0CXT /1fQ0CXT>0g

� D k.#; 0/

k.0; 0/

�
k.0; ˛/

k.#; ˛/
� 1

�

:

This leads to the identity

E

�
e�˛QT j Q

T
> 0

�
D k.#; 0/

k.#; ˛/

k.0; ˛/ � k.#; ˛/

k.0; 0/� k.#; 0/
:

Having found a characterization of the distribution of Q
T

conditional on Q
T
> 0,

it is remarked that we can also find the transform of QT given that Q
T
> 0. This

is done as follows. The two terms in the right-hand side of (6.7) correspond to the
transforms of QT in the scenarios that Q

T
> 0 and Q

T
D 0. We therefore have

E
�
e�˛QT 1fQ0CXT>0g

� D k.#; ˛/

k.#; 0/
E
�
e�˛.Q0CXT /1fQ0CXT>0g

�
;

and hence

E

�
e�˛QT j Q

T
> 0

�
D k.0; ˛/ � k.#; ˛/

k.0; 0/� k.#; 0/
:
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We also note that we have found the remarkable identity

E

�
e�˛QT j Q

T
> 0

�
D E

�
e�˛Q

T j Q
T
> 0

�
Ee�˛Q:

We now turn to behavior related to the queue conditional on being non-empty
on the entire interval Œ0;1/: With Q the all-time infimum of the workload during
the time interval Œ0;1/, then by letting # # 0 and by applying L’Hôpital’s rule, we
obtain

lim
t!1E

�
e�˛Qt j Q

t
> 0

�
D E

�
e�˛Q j Q > 0

� D k0.0; ˛/
k.0; ˛/

k.0; 0/

k0.0; 0/
;

where the derivation is with respect to the first argument of k.�; �/. Likewise,

lim
t!1E

�
e�˛Qt j Q

t
> 0

�
D k0.0; ˛/

k0.0; 0/
:

There is a connection between these results, where one conditions on the rare event
of the workload process never hitting 0, and the topic of quasi-stationarity; see e.g.
[158] and references therein.

Exercises

Exercise 6.1 In the case X 2 CP.r; �; b.�//, the notion of a busy period starting
at 0 is well defined. We denote this random variable by �0; let �.#/ WD Ee�#�0 be
the corresponding Laplace–Stieltjes transform. Renormalizing time such that r D 1,
give a detailed proof of the fact that �.#/ is the unique solution of the fixed-point
equation

�.#/ D b.# C � � ��.#//:

Exercise 6.2 Prove that .Mt/t, defined in (6.4), is a martingale.

Exercise 6.3 Compute Ee�#� for X corresponding to Bm.�1; 1/, both by using the
result for X 2 SC and the result for X 2 S�:

Exercise 6.4 This exercise is on the mean of the busy period � , with the workload
starting in stationarity.

(a) Prove that

E� D ' 00.0/
2.' 0.0//2

for X 2 SC.
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Hint: Realize that

' 0. .#// 0.#/ D 1; ' 00. .#//. 0.#//2 C ' 0. .#// 00.#/ D 0:

(b) Prove that E� D �.˚ 0.0/ˇ0/�1 for X 2 S�.

Exercise 6.5 Show that Eqn. (4.14) is in line with Lemma 6.3.

Exercise 6.6 As Bm.d; �2/ (with d < 0) is in SC as well as S�, both Lemmas 6.2
and 6.3 can be used to identify Ee�#�.x/: Show that both lemmas lead to the same
result.

Exercise 6.7 Let X correspond to Bm.�1; 1/ and .Qt/t be the stationary workload
process.

(a) Prove that

P

�

inf
s2Œ0;t�Qs > u

�

D e�2u
E exp

 

�2 sup
s2Œ0;t�

.�Xs/

!

:

(b) Use this to show that

P

�

inf
s2Œ0;t�Qs > u

�

D e�2u

 

2.1C t/�N.
p

t/ �
r
2t

�
exp

�
� t

2

�
!

:

(c) Find an explicit function f .�/ such that

P.infs2Œ0;t� Qs > u/

f .t/
! 1

as t ! 1:

Exercise 6.8 Let X correspond to Bm.�1; 1/. Suppose that Q0 D x > u > 0.

(a) Determine P.infs2Œ0;t� Qs > u/.
(b) Find an explicit function f .�/ such that

P.infs2Œ0;t� Qs > u/

f .t/
! 1

as t ! 1:
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Exercise 6.9 In this exercise we study the distribution of .Q j Q > 0/ for spectrally
one-sided case.

(a) For X 2 SC determine

E
�
e�˛Q j Q > 0

�
:

Show that this conditional distribution corresponds to the residual lifetime
distribution associated with the steady-state workload (to be denoted by Qres).

Hint: Show that

E
�
e�˛Q j Q > 0

� D 1 � Ee�˛Q

˛ EQ
D Ee�˛Qres

;

with Q denoting the stationary workload.
(b) Show that .Q j Q > 0/ has an exponential distribution with mean 1=ˇ0 for X 2

S�.
(c) For X 2 SC show that

lim
t!1E

�
e�˛Qt j Q

t
> 0

�
D �.˛/

�.0/
;

where

�.˛/ WD ' 0.0/
'.˛/

�

1 � ˛' 0.0/
'.˛/

�

D ˛' 0.0/
'.˛/

� 1
˛

�

1 � ˛' 0.0/
'.˛/

�

:

Conclude that when t ! 1, the distribution of .Qt j Q
t
> 0/ converges to

that of the sum of two independent random variables, where the first of these
is distributed as the stationary workload Q, and the second as the residual
stationary workload Qres:

(d) Show that for X 2 S�, the distribution of .Qt j Q
t
> 0/ converges (as t ! 1)

to that of an Erlang(2) random variable, where each of the phases has mean
1=ˇ0, that is,

lim
t!1E

�
e�ˇQt j Q

t
> 0

�
D
�

�.0/

�.0/C ˇ

�2
:

Exercise 6.10 In this exercise we analyze .Q j Q > 0/ for X 2 SC. The special
feature is that Q0 is now not sampled from the stationary workload distribution, but
rather we assume that Q0 D x > 0: Let T have an exponential distribution with
mean 1=# , independent of the driving Lévy process.

(a) Use the identity

Exe�˛QT D Ex

�
e�˛QT 1fQ

T
>0g
�

C P.�.x/ � T/E0e
�˛QT ; (6.8)
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in conjunction with Thm. 4.1, to show that

Ex

�
e�˛QT j Q

T
> 0

�
D  .#/

 .#/ � ˛
e�˛x � e� .#/ x

1 � e� .#/ x
:

Hint: Realize that

Ex

�
e�˛QT 1fQ

T
>0g
�

D Ex

�
e�˛Q

T1fQ
T
>0g
�
E0e
�˛ NXT :

(b) Show that when t ! 1, the distribution of .Qt j Q
t
> 0/ converges to that of a

uniform random variable on the interval .0; x�:

Remark The case of X 2 S� and Q0 D x > 0 will be dealt with in Exercise 11.3.



Chapter 7
Workload Correlation Function

Where we analyzed the busy period in the previous chapter, in this chapter we study
a second transience-related metric: the correlation function of the workload process.
Assuming the Lévy-driven queue is in stationarity at time 0, we concentrate, for
t � 0, on the function

r.t/ WD Corr.Q0;Qt/ WD Cov.Q0;Qt/p
Var Q0 � Var Qt

D E.Q0Qt/ � .EQ0/
2

Var Q0

(note that EQ0 D EQt and Var Q0 D Var Qt due to the stationarity). This function
offers us insight into the ‘memory’ of the workload process: to what extent does
the value of Q0 provide us with information on the value of Qt? Knowledge of the
workload correlation is helpful if we are asked to determine a threshold T such that
for t � T the workloads Q0 and Qt can be safely assumed independent (in the sense
that the correlation is negligibly small, i.e. below some given level " > 0).

In this chapter we first explicitly compute, for the case of spectrally one-sided
input, the Laplace transform Or.�/ corresponding to the correlation function r.�/, in
terms of the model primitives; this we do intensively relying on our results for
the transient workload, as stated in Thms. 4.1 and 4.2. Then we show how these
transforms can be used to prove a set of structural properties; more specifically,
relying on the theory of completely monotone functions, it is shown that r.�/ is
positive, decreasing, and convex.

7.1 Spectrally Positive Case: Transform

In this section we determine the transform of the workload correlation function for
X 2 SC. As mentioned above, we assume that the workload process is in steady
state at time 0, which in this case means that Q0 obeys the distribution featuring in

© Springer International Publishing Switzerland 2015
K. Dębicki, M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext,
DOI 10.1007/978-3-319-20693-6_7
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Thm. 3.2. Let T have an exponential distribution with mean 1=#: First realize that

E.e�˛QT j Q0 D x/ D
Z 1

0

#e�#t
E.e�˛Qt j Q0 D x/dt:

By differentiation with respect to ˛ and subsequently letting ˛ # 0, we obtain, by
applying Thm. 4.1, that

Z 1

0

#e�#t
E.Qt j Q0 D x/dt D �'

0.0/
#

C x C e� .#/x

 .#/
: (7.1)

Concentrate on the Laplace transform 	.#/ of Cov.Q0;Qt/. Straightforward calcu-
lus reveals that

	.#/ WD
Z 1

0

Cov.Q0;Qt/e
�#tdt D

Z 1

0

.E.Q0Qt/ � �2/e�#tdt

D
Z 1

0

Z 1

0

x � E.Qt j Q0 D x/ � e�#tdP.Q0 � x/dt � �2

#
I

we use the notation � D EQ0. By invoking (7.1) we find that the expression in the
previous display equals

Z 1

0

x

#

�

�'
0.0/
#

C x C e� .#/x

 .#/

�

dP.Q0 � x/ � �2

#

D ��'
0.0/
#2

C v

#
C 1

# .#/
E.Q0e

� .#/Q0 /; (7.2)

with v, as defined in (3.6), the variance Var Q0. From Thm. 3.2 we obtain by
differentiating

E.Q0e
�˛Q0 / D ' 0.0/

�

� 1

'.˛/
C ˛

' 0.˛/
.'.˛//2

�

:

Inserting this relation, in addition to (3.5), into Eqn. (7.2), we obtain the Laplace
transform of Cov.Q0;Qt/:

	.#/ D �'
00.0/
2#2

C v

#
C ' 0.0/

#2

�
1

# 0.#/
� 1

 .#/

�

:

This trivially provides us with the Laplace transform of Corr.Q0;Qt/ as well. It is
stated in the following theorem, which is due to Es-Saghouani and Mandjes [90];
when specializing to compound Poisson input, we find [39, Eqn. (6.2)] again.
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Theorem 7.1 Let X 2 SC. For # � 0, and v as in (3.6),

Or.#/ WD
Z 1

0

r.t/ e�#tdt

D 	.#/

v
D 1

#
� ' 00.0/
2v#2

C ' 0.0/
v#2

�
1

# 0.#/
� 1

 .#/

�

: (7.3)

Remark 7.1 Using Thm. 3.2, it is readily verified that the result in Thm. 7.1 can be
simplified to

Or.#/ D 1

#
� 1

v

�
' 00.0/
2#2

C �0. .#//
# .#/

�

;

with �.˛/, as before, denoting Ee�˛Q. }
Example 7.1 Suppose X 2 Bm.�1; 1/. Then the Laplace exponent of .Xt/t is given
by '.˛/ D ˛C 1

2
˛2, and its inverse is  .#/ D �1Cp

1C 2# . Thm. 7.1 yields that
the Laplace transform of r.�/ is given by

Or.#/ D 1

#
� 2

#2
C 2

#3

�p
1C 2# � 1

�
:

It turns out to be possible to explicitly invert Or.�/:

r.t/ D 2.1� 2t � t2/
�
1 �˚N.

p
t/
�C 2

p
t.1C t/�N.

p
t/; (7.4)

with ˚N.�/ (respectively, �N.�/) the standard normal distribution (respectively,
standard normal density). It is remarked that Eqn. (7.4) is in agreement with the
results in [1] and [157, Section 12.1]. }

7.2 Spectrally Negative Case: Transform

The analysis of the spectrally negative case is similar to that of the spectrally positive
case. The derivation of the transform of the workload correlation function relies on
the facts (i) that we have the double transform of Qt through Thm. 4.2, and (ii) that
Q0 is exponentially distributed (as we know from Thm. 3.3). Now observe that,
defining by T an exponentially distributed random variable with mean q�1,

Z 1

0

qe�qt
E.Q0Qt/dt D

Z 1

0

ˇ0xe�ˇ0x
ExQT dx (7.5)

D lim
˛#0

d

d˛

"

ˇ � d

dˇ

Z 1

0

e�ˇx
Exe�˛QT dx

ˇ
ˇ
ˇ
ˇ
ˇDˇ0

#

:
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Upon combining the explicit expression in Thm. 4.2 with (7.5), and recalling that
we have in the spectrally negative case that Var Q0 D v D 1=ˇ20, we eventually
find, after considerable calculus, the following result. For computational details we
refer to Glynn and Mandjes [101].

Theorem 7.2 Let X 2 S�. For q � 0,

Or.q/ WD
Z 1

0

r.t/ e�qtdt D 1

q
C ˇ20

q2
˚ 0.ˇ0/

�
1

�.q/
� 1

ˇ0

�

:

The following corollary follows from applying L’Hôpital’s rule twice. It implies
that in the spectrally negative case the workload process is necessarily short-range
dependent, that is,

R1
0

r.t/dt < 1. Use that � 0.0/˚ 0.ˇ0/ D 1 and ˚ 00.ˇ0/ C
.˚ 0.ˇ0//3� 00.0/ D 0, which follow from repeated differentiation of the relation
˚.�.q// D q:

Corollary 7.1 Let X 2 S�. Then

Z 1

0

r.t/dt D 1

ˇ0˚ 0.ˇ0/
C ˚ 00.ˇ0/
2.˚ 0.ˇ0//2

< 1:

In the spectrally positive case the workload process is not necessarily short-range
dependent; we return to this issue in Section 7.3.

7.3 Spectrally Positive Case: Structural Results

Relying on the theory of completely monotone functions [41], and in particular on
the fact that completely monotone functions can be regarded as Laplace transforms
of non-negative random variables, various structural properties of r.�/ can be proved.
In this section we do so for X 2 SC; the next section deals with X 2 S�. More
specifically, we show that r.�/ is positive, decreasing, and convex.

Before presenting the main result of this section (which is Prop. 7.1) we introduce
the concept of complete monotonicity. A function f .˛/ on Œ0;1/ is said to be
completely monotone if for all n 2 N, ˛ � 0,

.�1/n dn

d˛n
f .˛/ � 0:

We write f .˛/ 2 C . Bernstein [41] proved that there is equivalence between
f .˛/ being completely monotone, and the possibility of writing f .˛/ as a Laplace
transform of a non-negative random variable (up to a multiplicative constant); for
more background on completely monotone functions, see Feller [92, pp. 439–442].
More precisely, it holds that a function f .˛/ on Œ0;1/ is the Laplace transform of a
non-negative random variable if and only if (i) f .˛/ 2 C , and (ii) f .0/ D 1.
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The concept of complete monotonicity is easy to work with, as a consequence
of the fact that one can use a set of practical ‘generation rules’; the proof of the
following lemma is standard, and can be found in e.g. [90].

Lemma 7.1 The following properties apply.

(1) C is closed under addition: if f .˛/ 2 C and g.˛/ 2 C , then f .˛/C g.˛/ 2 C .
This can be extended: if fx.˛/ 2 C for x 2 � , then

R
x2� fx.˛/�.dx/ 2 C for

any measure �.�/.
(2) C is closed under multiplication: if f .˛/ 2 C and g.˛/ 2 C , then f .˛/g.˛/ 2

C .
(3) Properties of composite C functions: if f .˛/ 2 C and g.˛/ � 0 with g0.˛/ 2 C ,

then f .g.˛// 2 C :
(4) Let U.˛/ be non-decreasing on Œ0;1/, and U.0/ D 0, u WD lim˛!1U.˛/ <

1; and

f .˛/ WD
Z

Œ0;1/
e�˛xdU.x/I

clearly f .˛/ 2 C and u D f .0/. Then also g.˛/ WD ˛�1 � . f .0/� f .˛// 2 C :
(5) C is closed under differentiation: if f .˛/ 2 C , then �f 0.˛/ 2 C .

We now state the main result of this section; see [90]. The version for compound
Poisson input only is due to [172].

Proposition 7.1 Let X 2 SC. Then r.�/ is positive, decreasing, and convex.

To prove this result, we first observe that it is readily seen that the Laplace
exponent �.�/ of an increasing Lévy process .Yt/t�0 is necessarily of the form

�.˛/ D �˛d C
Z 1

0

e�˛x˘�.dx/;

for d � 0 and spectral measure˘�.�/; importantly, there is no Brownian component.
Then Lemma 7.1(1) directly implies the following result.

Lemma 7.2 Let .Yt/t�0 be an increasing Lévy process, with Laplace exponent
�.˛/. Then �� 0.˛/ 2 C :

Suppose that X 2 SC with Laplace exponent '.˛/. We now make the following
observations.

(A)  0.#/ 2 C . This is because � .�/ is the Laplace exponent of an increasing
Lévy process, as follows from Lemma 6.2, in conjunction with Lemma 7.2.

(B) If f .˛/ 2 C , then so is

f .0/� f .˛/C ˛f 0.˛/
˛2

:

This is a consequence of consecutively applying Lemma 7.1(4) and 7.1(5).
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(C) Recalling that

'.˛/ D �˛d C 1

2
˛2�2 C

Z

.0;1/
.e�˛x � 1C ˛x1.0;1//˘.dx/;

we obtain

˛' 0.˛/ � '.˛/

˛2
D 1

2
�2 C 1

˛2

Z

.0;1/
.1 � e�˛x � ˛xe�˛x/˘'.dx/;

which is in C , as follows from the fact that any positive constant is in C ,
together with claim (B) above, and Lemma 7.1(1).

Lemma 7.3 Define �.#/ by

�.#/ WD 1

�

�
1

# 0.#/
� 1

 .#/

�

I (7.6)

then �.#/ is the Laplace transform of some (non-negative) random variable.

Proof To prove Lemma 7.3 we first factorize

1

# 0.#/
� 1

 .#/
D �1.#/�2.#/;

with

�1.#/ WD  .#/

#
; �2.#/ WD 1

 .#/ 0.#/
� #

. .#//2
:

Because of Thm. 3.2, ˛='.˛/ 2 C ; now applying Lemma 7.1(3), in conjunction
with claim (A) above, we obtain that �1.#/ 2 C .

To show that also �2.#/ 2 C , we first recall from claim (C) above that
.˛' 0.˛/ � '.˛//=˛2 2 C :Again applying Lemma 7.1(3), in conjunction with claim
(A), it follows that �2.#/ 2 C .

As both �1.#/ and �2.#/ are in C , Lemma 7.1(2) yields that �.#/ 2 C . Applying
‘L’Hôpital’ twice, and using that  00.0/.' 0.0//3 D �' 00.0/, it is readily verified that
�.0/ D 1. Now Lemma 7.3 follows from Bernstein’s result. �

We are now ready to prove Prop. 7.1. The proof demonstrates how the concept of
complete monotone functions facilitates elegant proofs of structural results.

Let Or.1/.#/ and Or.2/.#/ be the Laplace transforms of r0.t/ and r00.t/, respectively:

Or.1/.#/ WD
Z 1

0

r0.t/ e�#tdt D �'
00.0/
2v#

.1 � �.#//; (7.7)

Or.2/.#/ WD
Z 1

0

r00.t/ e�#tdt D ' 00.0/
2v

�.#/; (7.8)
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for # � 0. Here the properties that r.0/ D 1 and

r0.0/ D lim
"#0

E.Q0Q"/� E.Q2
0/

"Var Q0

D lim
"#0

E.Q0X"/

"Var Q0

D �'
00.0/
2v

;

in conjunction with integration by parts, are used.
Hence, convexity of r.�/ follows from the expression for Or.2/.#/ in (7.8); it is

concluded from Lemma 7.3 that Or.2/.#/ 2 C , so that r00.t/ is non-negative (for t �
0). The monotonicity of r.�/ follows from the expression for Or.1/.#/ in Eqn. (7.7),
by applying Lemma 7.1(4) to Or.2/.#/ 2 C ; we find that �Or.1/.#/ is in C , implying
that r0.t/ � 0 (for t � 0). Then it is easily verified that applying Lemma 7.1(4) to
�Or.1/.#/ 2 C , in conjunction with Eqn. (7.3), implies Or.#/ 2 C , and hence r.t/ � 0

(for t � 0). We have thus proved that r.�/ is positive, decreasing, and convex.
In Cor. 7.1 we observed that for X 2 S� the workload process is short-range

dependent. This statement is not valid for X 2 SC; only if '.4/.0/ is well defined is
r.t/ then integrable and

Z 1

0

r.t/dt D 1

8v

'.4/.0/

' 0.0/2
� 5

12v

' 00.0/'.3/.0/
' 0.0/3

C 1

4v

' 00.0/3

' 0.0/4
I

see [90].

7.4 Spectrally Negative Case: Structural Results

The proof for X 2 S� works quite similarly to the one for X 2 SC (but is
considerably easier). This result is due to Glynn and Mandjes [101].

Proposition 7.2 Let X 2 S�. Then r.�/ is positive, decreasing, and convex.

Proof As mentioned, we mimic the proof of the spectrally positive case, as
originally developed in [90]. Using integration by parts, we find that

Or.1/.q/ WD
Z 1

0

r0.t/e�qtdt D ˇ20
q
˚ 0.ˇ0/

�
1

�.q/
� 1

ˇ0

�

;

which also entails that r0.0/ D ˇ0˚
0.ˇ0/. Analogously,

Or.2/.q/ WD
Z 1

0

r00.t/e�qtdt

D �r0.0/C ˇ20˚
0.ˇ0/

�
1

�.q/
� 1

ˇ0

�

D ˇ20
˚ 0.ˇ0/
�.q/

: (7.9)
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Prop. 6.3 shows that �.0/=�.q/ 2 C . We conclude from (7.9) that Or.2/.q/ is in C ,
and hence r00.�/ is positive, that is, r.�/ is convex.

We know from Lemma 7.1(4) that f .q/ 2 C implies that, with g.q/ defined as
.f .0/� f .q//=q, also g.q/ 2 C : Taking f .q/ D Or.2/.q/, we obtain that �Or.1/.q/ 2 C ,
and hence r0.�/ is negative, that is, r.�/ is decreasing. Applying the same procedure
again, we find that Or.q/ 2 C , and hence r.�/ is positive. �

Exercises

Exercise 7.1 This exercise is on the workload correlation function r.t/ for X
corresponding to Bm.�1; 1/.
(a) Verify Eqn. (7.4).
(b) Find an explicit function f .�/ so that r.t/=f .t/ ! 1 as t ! 1: Use the relation

lim
x!1

1 �˚N.x/

�N.x/
�
�
1

x
� 1

x3
C 3

x5
� 15

x7

�

D 1;

with ˚N.�/ and �N.�/ the cumulative distribution function and the density,
respectively, of a standard normal random variable.

Exercise 7.2 Verify Thm. 7.2 from Eqn. (7.5).



Chapter 8
Stationary Workload Asymptotics

Virtually all results presented so far have been in terms of transforms. These in
principle uniquely characterize the entity under study, and with numerical inversion
they can be evaluated up to a great level of precision, but in specific cases one
would prefer closed-form expressions. However, if one is willing to settle for a less
ambitious goal, then such explicit results can be achieved: when focusing on just
asymptotics of the quantity of interest, various limit results can be established. In
this chapter the objective is to characterize the tail asymptotics of the steady-state
workload, that is, we analyze P.Q > u/ for u large. More specifically, our goal is to
obtain the exact asymptotics of P.Q > u/, that is, we wish to identify an explicitly
given function f .�/ such that, as u ! 1; P.Q > u/=f .u/ ! 1.

When analyzing stationary workload asymptotics, it turns out that the subdivision
into the two spectrally one-sided cases and the case with jumps in both directions
(that we have repeatedly come across in the previous chapters) is less relevant.
Crucial when characterizing these tail probabilities is a subdivision along the lines
of the ‘heaviness’ of the upper tail of the driving Lévy process X. The asymptotics
for cases when this tail is ‘light’ are intrinsically different from those corresponding
to ‘heavy-tailed’ scenarios (and there turns out to be an intermediate regime too).

Before proceeding with the analysis of the stationary workload distribution we
include a short technical note. Recall that, due to Eqn. (2.5), we have the identity

P.Q > u/ D P.9t � 0 W Xt > u/ D P.�.u/ < 1/;

where �.u/ is defined as the first passage time of level u, that is, infft � 0 W Xt > ug:
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8.1 Light-Tailed Regime

We denote by L the class of Lévy processes such that there exists an ! > 0 such
that Ee!X1 D 1 and EX1e!X1 < 1; in the literature this case is often referred to
as the ‘Cramér case’ or the ‘light-tailed case’. Notice that a necessary condition
for X 2 L is that all moments of X1 are finite (this is not a sufficient condition
though: think of a compound Poisson input process with jobs that have a Weibull or
lognormal distribution).

For ease we start our analysis by considering X 2 CP.r; �; b.�//\ L , for which
the asymptotics of P.Q > u/ for u large can be determined in very explicit terms
relying on the concept of change of measure. Then we focus on spectrally positive
input; there the crucial observation is that in this light-tailed regime the Laplace
exponent '.˛/ is well defined not only for ˛ � 0 but also for a range of negative
values. The last part of the section presents the asymptotics for general X 2 L ; we
briefly sketch the proof of this result.

Compound Poisson case—As was mentioned above, we first assume X 2
CP.r; �; b.�//, where we set, without loss of generality, r D 1. We assume that
% D �EB=r D �EB < 1 to ensure stability. Then let ! solve the equation

'.�!/ D �! � �C �b.�!/ D 0I

due to the convexity of '.�/ in combination with the fact that ' 0.0/ D �EX1 > 0,
we conclude that this ! is positive.

Referring to the original probability measure as P, we introduce an alternative
measure Q that is characterized as CP.1; �C!; Nb.�//, where the Laplace transform
Nb.˛/ is given by b.˛�!/=b.�!/: The underlying random variable that corresponds
to the job size under Q can be thought of as a random variable whose density is

P.B 2 dx/
e!x

E e!B
D P.B 2 dx/

e!x

b.�!/
(where it is readily verified that this function is positive and integrates to 1, as
required). As a consequence, the Laplace exponent of the driving Lévy process
under Q is

˛ � .�C !/C .�C !/
b.˛ � !/

b.�!/ :

But we know that �! � � C �b.�!/ D 0, so that the Laplace exponent under Q
can be rewritten as

˛ � .�C !/C �b.˛ � !/ D �.! � ˛/ � �C �b.˛ � !/ D '.˛ � !/:
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Recall that the Laplace exponent was '.˛/ under P; the above computation shows
that under Q this Laplace exponent is shifted by ! (recall this is a positive number!)
to the right.

This procedure to generate an alternative probability model is often referred to
as exponential twisting; it owes its name to the relation

Q.Xt 2 dx/ D e!x
P.Xt 2 dx/;

which holds because
Z 1

�1
e�˛x

Q.Xt 2 dx/ D e'.˛�!/t D
Z 1

�1
e.!�˛/x P.Xt 2 dx/

for all ˛ for which these expressions are well defined.
We now check whether the queue is stable under the new measure Q. To this

end, first note that the corresponding load can be expressed as .�C !/EQB. From
the definition of ! and the convexity of Ee!X1 , it can be concluded (in self-evident
notation) that

.�C !/EQB D .�C !/

�

�b0.�!/
b.�!/

�

D ��b0.�!/ DW %Q > 1; (8.1)

so that under Q the queue is unstable. In other words, under Q we have that �.u/ <
1 almost surely, for any u > 0:

A change-of-measure argument yields that

P.Q > u/ D EP1f�.u/<1g D EQ

0

@
f .P/X�.u/

.X�.u//

f .Q/X�.u/
.X�.u//

1f�.u/<1g

1

A ; (8.2)

with f .P/Xt
.�/ and f .Q/Xt

.�/ denoting the densities of Xt under the original and alternative
measures, respectively; see e.g. Asmussen [19, Thm. XIII.3.2]. This identity will
appear, in various forms, several times in this monograph. If under Q the event of
overflow is more likely than under P, the above equality states that this is compen-
sated for by suitably small values of the ‘likelihood ratio’ f .P/X�.u/

.X�.u//=f .Q/X�.u/
.X�.u//.

But now realize that Q is constructed (by exponential twisting) such that

f .Q/Xt
.x/ D f .P/Xt

.x/
e!x

Ee!Xt
D f .P/Xt

.x/e!x:

Using that �.u/ < 1 almost surely, we thus find the powerful identity

P.Q > u/ D EQe�!X�.u/ : (8.3)
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Our goal now is to use this result (which holds for any u > 0) to obtain the exact
asymptotics of P.Q > u/.

To this end, the next step is to observe that X�.u/ D u C Ru, where Ru is the
overshoot over level u. Let Ln be the nth ladder height, that is, the difference between
the nth and .n�1/st record value; these random variables are positive and i.i.d., and,
due to (8.1), non-defective (use that under Q the load is larger than 1!). Renewal
theory (see e.g. [19, Section V.4]) now yields that the overshoot Ru converges to a
limiting random variable R, whose distribution is given through

Q.R � v/ D 1

EQL

Z v

0

.1 � Q.L � y//dy;

with the random variable L corresponding to a single ladder height. Due to the
definition of the new measure Q, we have

Q.L 2 dy/ D e!y
P.L 2 dy/ D e!y�P.B > y/dyI (8.4)

it is an exercise to verify that it follows from the definition of ! that this density
indeed integrates to 1. Upon combining the above findings, we obtain that, as u !
1,

P.Q > u/e!u ! 1

EQL

Z 1

0

e�!y.1 � Q.L � y//dy:

Further, with straightforward calculus we can evaluate the constant in the left-hand
side of the previous display, as follows. Integration by parts yields

Z 1

0

e�!y.1 � Q.L � y//dy D 1

!

�

1 �
Z 1

0

e�!y
Q.L 2 dy/

�

: (8.5)

Inserting relation (8.4) then reduces (8.5) to .1 � %/=!: Again by integration by
parts,

EQL D �

!2
.1 � b.�!//� �

!
b0.�!/: (8.6)

Recalling that ! solves �! � �C �b.�!/ D 0, and using the definition of %Q, we
arrive at the following result, known as the Cramér–Lundberg asymptotics. It states
that, in the case of compound Poisson input, in the light-tailed regime P.Q > u/
decays essentially exponentially.

Theorem 8.1 Let X 2 CP.1; �; b.�//\ L : Then, as u ! 1,

P.Q > u/e!u ! 1 � %

%Q � 1 :
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In passing, we also proved that, for all u � 0, P.Q > u/ � e�!u (use the
identity (8.3), write X�.u/ D u C Ru, and realize that Ru � 0). In [44, Remark 2] and
[72] it is argued that this uniform bound applies for all X 2 L , that is, not just for
compound Poisson; the proof in [72] relies on a change-of-measure argument.

Corollary 8.1 Let X 2 L : Then, for any u > 0, P.Q > u/ � e�!u:

Spectrally positive case—A next step is to consider asymptotics for more general
Lévy processes in L : is it for instance possible to extend Thm. 8.1 to SC \ L ?
To this end, realize that we have the Laplace–Stieltjes transform of Q, that is,
˛' 0.0/='.˛/; see Thm. 3.2. Then one idea is to exploit this transform to obtain
the tail asymptotics. An approach to doing so is through application of the so-called
Heaviside principle, as advocated in e.g. Abate and Whitt [3]. We now point out how
‘Heaviside’ works, with a focus on the asymptotics of complementary distribution
functions. We restrict ourselves to special cases, that is, the case that the transform
of the complementary distribution has a pole, and the one that it has a branching
point.

Recipe 8.1 (‘Heaviside’) Let �.�/ be the Laplace transform of the complementary
distribution function of a (non-negative) random variable Z:

�.˛/ WD
Z 1

0

e�˛x
P.Z > x/dx:

(i) Suppose there is an ! > 0 such that, for some A > 0, �.˛/ � A.˛ C !/�1, as
˛ # �!. Then,

P.Z > u/ � Ae�!u;

as u ! 1.
(ii) Suppose there is an ! > 0 such that, for some A > 0 and (irrelevant) B, �.˛/ �

A
p
˛ C ! C B, as ˛ # �!. Then,

P.Z > u/ � Ae�!u

u
p

u
 .� 1
2
/
;

as u ! 1. }
It is noted, however, that the Heaviside principle, although well established in

the literature and frequently used [65], lacks full mathematical rigor. This is why
we have called this technique a ‘recipe’; in [3] the term ‘operational principle’ is
used.
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Now let us use ‘Heaviside’ to find the tail asymptotics of P.Q > u/. To this end,
first note that an elementary integration-by-parts argument yields

Z 1

0

e�˛x
P.Q > x/dx D P.Q > 0/

˛
� ' 0.0/
'.˛/

:

Now observe that when X 2 L , '.�/ has a zero in �!, and

lim
˛#�!

.˛ C !/

Z 1

0

e�˛x
P.Q > x/dx D ' 0.0/

�' 0.�!/ > 0I

note that we assumed that the denominator of the last expression is finite (due to the
requirement EX1e!X1 < 1). Now the Heaviside principle says that, as u ! 1,

P.Q > u/e!u ! ' 0.0/
�' 0.�!/ I

it is readily checked that for the compound Poisson case this expression agrees with
that of Thm. 8.1.

General case—The most general (rigorously proven) result is due to Bertoin and
Doney [44]: there, tail asymptotics for P.Q > u/ are derived for the full class L .
These are of the form Ce�!u, where ! solves Ee!X1 D 1; but with some rather
involved expression for C. A nice alternative proof of this result, relying on an
embedding approach, was given in [82]. Here we present the compact proof that
was derived in Asghari et al. [15], and that heavily rests on the identity (8.3). It uses
Lemma 6.4, which can be rephrased as

Z 1

0

e�ˇx
E
�
e�q�.x/�Nq.X�.x/�x/1f�.x/<1g

�
dx D 1

ˇ � Nq

 

1 � Ee�ˇ NXT

Ee�Nq NXT

!

D 1

ˇ � Nq
�

1 � k.q; ˇ/

k.q; Nq/
�

: (8.7)

In Eqn. (8.3) we found P.Q > u/ D EQe�!X�.u/ I recall that Q is the exponentially
twisted version of P, with parameter !, under which the Lévy process .Xt/t has a
positive drift. Now observe that, with the overshoot Ru WD X�.u/ � u,

EQe�!X�.u/ D e�!u
EQe�!.X�.u/�u/ D e�!u

EQe�!Ru :

Then, relying on (8.7), in self-evident notation we have that

lim
u!1EQe�!Ru D lim

ˇ#0
ˇ

ˇ � !
�

1 � kQ.0; ˇ/

kQ.0; !/

�

: (8.8)
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From

kQ.0; ˇ/ D exp

�

�
Z 1

0

Z

.0;1/
1

t

�
e�t � e�ˇx

�
e!x

P.Xt 2 dx/ dt

�

D exp

�

�
Z 1

0

Z

.0;1/
1

t

��
e�t � e�.ˇ�!/x

� � �
e�t � e�tC!x

��
P.Xt 2 dx/ dt

�

D k.0; ˇ � !/

k.1;�!/ ;

it is immediate that

kQ.0; ˇ/

kQ.0; !/
D k.0; ˇ � !/

k.0; 0/
:

As argued in Kyprianou [146, p. 188], `.0; ˇ�!/ WD 1=k.0; ˇ�!/ ! 0 as ˇ # 0:
It follows that (8.8) equals

1

!k.0; 0/
lim
ˇ#0

ˇ

`.0; ˇ � !/
D 1

!k.0; 0/

1

`0.0;�!/ ;

where the derivative `0.0;�!/ is to be understood as the partial derivative with
respect to the second argument. The final result is given in the theorem below; a
detailed version of the above sketch-of-proof is found in [146, Section VII.2]. It
is checked that the result is in agreement with the asymptotics for the light-tailed
spectrally positive case.

Theorem 8.2 Let X 2 L . Then, as u ! 1,

P.Q > u/e!u ! 1

!k.0; 0/

1

`0.0;�!/ :

8.2 Intermediate Regime

We now focus on a second regime, in which the upper tail of X1 is still essentially
exponential, but the equation Ee!X1 D 1 now lacks a proper positive solution.

We define

! WD supfı � 0 W EeıX1 < 1g:

We say that X 2 I if ! 2 .0;1/ and Ee!X1 < 1; this basically means that at
ı D !, the moment generating function EeıX1 jumps from a value strictly smaller
than 1 to 1.
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Interestingly, again the change-of-measure technique can be used to find a
uniform upper bound. Defining M.ı/ WD EeıX1 , the new measure Q.#/ is such
that the Lévy process under Q.#/ has moment generating function

EQ.#/e
ıX1 D M.ı C #/

M.#/
:

As before, for all # < !, we obtain the inequality

P.Q > u/ D EQ.u/
�
e�#X�.u/ � .M.#//�u

� � e�#u;

which leads to the following uniform bound.

Corollary 8.2 Let X 2 I : Then P.Q > u/ � e�!u:

The following exact asymptotics were derived in Dieker [82]; see also [137].
Remarkably, they show that for X 2 I the tail distribution of Q is asymptotically
proportional to that of X1. We do not include a proof here.

Proposition 8.1 Let X 2 I . Then, as u ! 1,

P.Q > u/

P.X1 > u/
! Ee!Q

M.!/ log M.!/
:

8.3 Heavy-Tailed Regime

In this section we consider Lévy processes for which EeıX1 D 1 for all ı > 0:

An important subclass of these processes is the class of regularly varying Lévy
processes R.

Considering the class of compound Poisson inputs, regular variation refers to the
tail of the distribution of the jobs: it is assumed that for an index ˛ and all y > 0, as
x ! 1,

P.B > yx/

P.B > x/
! y˛:

We begin with a heuristic argument that leads to the correct asymptotics. Recall
that, due to (3.2),

P.Q > u/ D P

 
NX

iD1
Bres

i > u

!

;

where Bres
1 ;B

res
2 ; : : : are i.i.d. samples from the residual lifetime distribution of B and

P.N D n/ D .1 � �/ �n, with � D �EB=r. A known property of distributions with
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a regularly varying tail is that

P

 
nX

iD1
Bres

i > u

!

� nP .Bres > u/

for each n, as u ! 1. Under the proviso that we can interchange the sum (i.e.P1
nD1 � � � ) with the limit (i.e. limu!1 � � � ), we have

P.Q > u/ D
1X

nD1
P

 
nX

iD1
Bres

i > u

!

.1 � �/ �n

� .1 � �/P .Bres > u/
1X

nD1
n�n D %

1 � %P .B
res > u/ ;

as u ! 1.
Now we sketch an approach to formally finding the tail asymptotics of P.Q > u/

for u large and X 2 CP.r; �; b.�//\R, following a recipe outlined in Zwart [223, pp.
36–39]. This recipe is based on the insight that in these heavy-tailed scenarios a large
workload is (with overwhelming probability) due to a single big job. The approach
therefore consists of a lower bound, in which the probability of this most likely
scenario is evaluated, and an upper bound in which it is shown that the contributions
of other scenarios (e.g. no big job, multiple big jobs) can be neglected. Here we
demonstrate how the lower bound is derived; the upper bound is more involved and
left out.

We apply the usual time normalization, in that we assume r D 1 (without loss of
generality). We consider CP.1; �; b.�//, and we denote, as earlier, % WD �EB: First
it is noted that due to the law of large numbers, we can find (for any ı; " > 0) a
number tı;" such that for all t � tı;" ,

P.Xt > .%� 1 � "/t/ > 1 � ı:

It is noted that a sufficient condition for the workload Q0 to exceed u is that a job of
size at least u C .1 � %/t C "t arrived at time �t, and that the amount of work that
arrived between �t and 0 is at least .% � "/t; notice that the former event is rare, as
opposed to the latter. We thus obtain

P.Q > u/ �
Z 1

tı;"

�P.B > u C .1 � %/t C "t/P.�X�t > .%� 1 � "/t/dt

� .1 � ı/

Z 1

tı;"

�P.B > u C .1 � %/t C "t/dt

D .1 � ı/
%

1� %C "
P.Bres > u C tı;"/ � .1 � ı/%

1 � %C "
P.Bres > u/;
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where the last step is an immediate consequence of the definition of regular
variation. Now let ı; " # 0, and the lower bound follows.

As pointed out above, the upper bound considers the contributions of other
scenarios, and proves that they can be neglected relative to P.Bres > u/. This is in
general quite a cumbersome procedure. After having established this upper bound,
the following theorem is obtained. The result dates back e.g. to [49, 62], but there
entirely different proof techniques were used.

Theorem 8.3 Let X 2 CP.1; �; b.�//\ R. Then, as u ! 1,

P.Q > u/ � %

1 � %P.B
res > u/:

There is an alternative approach though, that is helpful if the Laplace–Stieltjes
transform is available: Tauberian inversion. To explain this method, we first define
the following notion.

Definition 8.1 We say that f .x/ 2 Rı.n; �/, with ı 2 .n; n C 1/, for x # 0, if

f .x/ D
nX

iD0

f .i/.0/

iŠ
xi C �xıL.1=x/; x # 0;

for a slowly varying function L.�/, that is, L.x/=L.tx/ ! 1 for x ! 1, for any
t > 0.

The Tauberian theorem in [47, Thm. 8.1.6] states that the property that Ee�˛X 2
Rı.n; �/ as ˛ # 0, for some non-negative random variable X, is equivalent to

P.X > u/ � .�1/n�1

 .1 � ı/

� � � u�ıL.u/;

as u ! 1; see also [46].
Suppose now that X 2 SC and '.˛/ 2 R�.n; �/; we then write X 2 SC \ R. It

is readily checked that

Ee�˛Q D ˛' 0.0/
'.˛/

2 R��1
�

n � 1;
�

' 0.0/

�

:

Then the Tauberian theorem yields the following result.

Theorem 8.4 Let X 2 SC \ R, with '.˛/ 2 R�.n; �/. Then, as u ! 1,

P.Q > u/ � .�1/n

 .2 � �/

�
�

�

' 0.0/

�

u1��L.u/:
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Example 8.1 Consider X 2 CP.1; �; b.�//. Suppose P.B > x/ � x�ıL.x/: From
'.˛/ D ˛C�b.˛/��, it follows that '.˛/ 2 Rı.n; �
 .1�ı/.�1/n�1/ by applying
‘Tauber’. Then the above theorem confirms the result presented in Thm. 8.3. }

It should be realized that the class R is a subset of the class of all Lévy processes
for which EeıX1 D 1 for all ı > 0: Now define the (broader) class of heavy-tailed
(or subexponential) Lévy processes H , as follows.

To this end, we first introduce the notion of subexponential distribution functions,
following the terminology of [82]. With D.�/ being a distribution function on Œ0;1/

and D?2 the twofold convolution of D, we say that D is subexponential if

1 � D?2.x/ � 2.1� D.x//

as x ! 1: For a measure �.�/ we say that it is subexponential if the following
two conditions are fulfilled: (i) �.Œ1;1// < 1, and (ii) �.Œ1; ��/=�.Œ1;1// is
subexponential. Then, for the spectral measure ˘.�/ associated with the Lévy
process .Xt/t, define

N̆ ..x;1// WD
Z 1

x
˘..y;1//dy:

We say that X 2 H if N̆ .�/ is subexponential.
The following result is found in Asmussen [18]; a version also containing local

asymptotics was first presented in [82]. Realize that �EX1 is a positive number.

Theorem 8.5 Let X 2 H . Then, as u ! 1,

P.Q > u/ � 1

�EX1

Z 1

u
P.X1 > x/dx:

It is straightforward to check that the class of ˛-stable Lévy motions belongs
to H . The following result, attributed to Port [178], is an immediate consequence
of Thm. 8.5, Prop. 2.1, and Karamata’s theorem [47, Section 1.6]; recall that we
assumed m < 0.

Proposition 8.2 Let X 2 S.˛; ˇ;m/, with ˛ 2 .1; 2/, ˇ 2 .�1; 1�. Then, as u ! 1,

P.Q > u/ � 1

.�m/

Z 1

u
x�˛C˛;1

�
1C ˇ

2

�

dx � 1

.�m/

1

˛ � 1
u�˛C1C˛;1

�
1C ˇ

2

�

:

It is noted that there is a seeming incompatibility between the above asymptotics
and the corresponding result in [178] (which is Prop. 3.7 in [96]), but it is a matter
of (straightforward but tedious) calculus to verify that both expressions match.

The case of Lévy input that is an aggregate of ˛-stable Lévy motion and
compound Poisson with regularly varying jobs was considered in Furrer [96]; in
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that setting it turns out that the heaviest tail essentially dominates the asymptotics,
as could be expected.

Exercises

Exercise 8.1 Prove that %Q > 1 in (8.1).

Exercise 8.2 This exercise is on the Cramér–Lundberg asymptotics.

(a) Let X correspond to Bm.�1; 1/. Determine the asymptotics of P.Q > u/.
(b) Let X correspond to CP.1; �; b.�//, with B exponentially distributed with mean

��1: Determine the asymptotics of P.Q > u/.

Exercise 8.3 Check Eqns. (8.5) and (8.6), and show that these equations imply the
limiting constant appearing in the statement of Thm. 8.1.

Exercise 8.4 Define

b.˛/ WD 3

2
C ˛ �

s
�
3

2
C ˛

�2
� 2

for ˛ > ˛0 WD � 3
2

C p
2 and 1 otherwise.

(Remark: Here, b.�/ is the Laplace transform of a busy period in an M/M/1 queue
with arrival rate 1

2
and service rate 1; see e.g. [19, Prop. III.8.10].)

Let X correspond to CP.r; �; b.�//:
(a) Verify that the queue’s stability condition is r=� > 2:
(b) Determine Ee!X1 D e'.�!/:
(c) Verify that X 2 L if '.˛0/ � 0 (in addition to r=� > 2), that is,

r

�
�

p
2 � 1

3
2

� p
2
;

and that X 2 I otherwise. In both cases compute the corresponding asymp-
totics of P.Q > u/.

Hint: Verify that when X 2 L ,

! D �r � 2�2
r2 C 2�r

:

Exercise 8.5 Verify Example 8.1.
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Exercise 8.6 In the case X 2 S.˛; ˇ;m/, where ˛ 2 .1; 2/; ˇ 2 .�1; 1�; and m < 0,
[96, Prop. 3.7] gives that

P.Q > u/ � 1

.�m/

1

˛ � 1u�˛C1A.˛; ˇ/;

with

A.˛; ˇ/ WD 
 .1C ˛/

�˛

r

1C ˇ2 tan2
��˛

2

�
	 sin

��˛

2
C arctan

�
ˇ tan

��˛

2

���

(realize that ˇ needs to be replaced by �ˇ in [96, Prop. 3.7] to make Furrer’s setting
compatible with ours!). Prove that this is consistent with Prop. 8.2.

Exercise 8.7 Let X 2 S.˛1; ˇ1;m1/ and Y 2 S.˛2; ˇ2;m2/ be independent, with
˛1; ˛2 2 .1; 2� and m1;m2 < 0. Consider Zt D Xt C Yt.

(a) Assume that ˛1 � ˛2 and ˇ2 > �1. Find the asymptotics of the stationary
workload distribution for a queue driven by the Lévy process Z.

(b) Assume that ˛1 < ˛2. Find the asymptotics of the stationary workload
distribution for a queue driven by the Lévy process Z.

Exercise 8.8 Let Y.1/;Y.2/; : : : be i.i.d. copies of Y 2 S.˛; ˇ;�m/, with ˛ 2 .1; 2/
and m > 0. Let Q.N/ be the stationary workload of a queue driven by X.N/t WD
PN

iD1 Y.i/t . Find the exact asymptotics of

P
�
Q.N/ > NB

�
;

as N ! 1, with B > 0.



Chapter 9
Transient Asymptotics

In this chapter we discuss asymptotics that relate to transient properties of the
workload. We start in Section 9.1 by considering the asymptotics of the transient
workload distribution (for given initial value x and time t); in line with what we
found in Chapter 8, various scenarios are possible, depending on the shape of the
upper tail of X1.

Then in Section 9.2 we focus on ‘joint exceedance probabilities’ of the type

P
�
Q0 > pu;QT.u/ > qu

�
;

for u large, p; q > 0, and various shapes of the function T.u/. It is assumed
throughout that the workload is in stationarity at time 0. There are various regimes,
depending on the specific values of p and q, with appealing intuitive interpretations.

In the third section we focus on the tail distribution of the busy period p.t/ WD
P.� > t/ for t large; as it turns out, similar techniques can also be used to
characterize the asymptotic behavior of the correlation function r.t/ for t large. This
chapter is concluded in Section 9.4 by analyzing the minimum value attained over
an interval of length T.u/, for u large and various shapes of T.u/.

9.1 Transient Workload Asymptotics

In this section we concentrate on the asymptotic properties of

Px.Qt > u/ WD P.Qt > u j Q0 D x/; (9.1)

as u ! 1, for given x; t � 0.

© Springer International Publishing Switzerland 2015
K. Dębicki, M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext,
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Before we proceed with the analysis of (9.1) for u large, let us first make a
useful observation. It follows straightforwardly from representation (2.4) that, with
Q0 D x,

P. NXt > u/ � P.Qt > u/ � P. NXt > u � x/; (9.2)

for each x; t � 0, with as before NXt WD sups2Œ0;t� Xs; to see this, observe that we have
the trivial inequality a � maxfa; bg � a C b, and the distributional equality

Xt � inf
0�s�t

Xs
dD sup
0�s�t

Xs D NXt:

The above bounds indicate that the asymptotic behavior of NXt plays the key
role in the analysis of (9.1). The following lemma, due to Willekens [219], will
be intensively used in this section.

Lemma 9.1 Let .Xt/t be a Lévy process. Then, for any 0 < u0 < u we have

P

 

sup
s2Œ0;t�

Xs > u

!

P

�

inf
s2Œ0;t�Xs > �u0

�

� P.Xt > u � u0/:

Proof Recall the stopping time �.u/ D infft � 0 W Xt � ug, as introduced in
Section 3.2. We have

P.�.u/ � t/ � P.Xt > u � u0/C P.�.u/ � t;Xt � u � u0/

� P.Xt > u � u0/C P

�

�.u/ � t; inf
s2Œ�.u/;�.u/Ct�

.Xs � X�.u// � �u0

�

D P.Xt > u � u0/C P.�.u/ � t/P

�

inf
s2Œ0;t�Xs � �u0

�

;

by the strong Markov property. As a consequence,

P.�.u/ � t/P

�

inf
s2Œ0;t�Xs > �u0

�

� P.Xt > u � u0/;

which combined with the fact that

P

 

sup
s2Œ0;t�

Xs > u

!

� P.�.u/ � t/;

completes the proof. �
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The combination of Lemma 9.1 with inequality (9.2) enables us to obtain the
asymptotics of (9.1) for a wide class of Lévy processes. We distinguish between a
number of specific scenarios.

Long-tailed case—We start by analyzing the transient probability (9.1) for X
satisfying the property

lim
u!1

P.Xt > u � y/

P.Xt > u/
D 1; (9.3)

for each y > 0, that is, we assume that Xt has a long-tailed distribution function. We
refer to Foss et al. [93] for properties of this family of distribution functions.

Upon combining (9.2) with Lemma 9.1, we obtain the inequality

Px.Qt > u/

P.Xt > u/
� P. NXt > u � x/

P.Xt > u/
�
�

P

�

inf
s2Œ0;t�Xs � �u0

���1
P.Xt > u � x/

P.Xt > u/
;

for u � x > u0 > 0 such that P.infs2Œ0;t� Xs � �u0/ > 0. Using the assumption (9.3)
and letting u0 ! 1, it follows that

lim sup
u!1

Px.Qt > u/

P.Xt > u/
� 1:

The above, together with the fact that by (9.2),

Px.Qt > u/

P.Xt > u/
� 1;

justifies the following result.

Theorem 9.1 Suppose that Xt satisfies (9.3). Then, as u ! 1,

Px.Qt > u/ � P.Xt > u/:

Example 9.1 Consider the case of X 2 S.˛; ˇ;�r/ with ˛ 2 .1; 2/, ˇ 2 .�1; 1�.
Following Thm. 9.1 and Prop. 2.1,

Px.Qt > u/ � 1 � ˛

 .2 � ˛/ cos.�˛=2/

�
1C ˇ

2

�

tu�˛:

We note that the obtained asymptotic behavior is insensitive with respect to the
initial workload Q0 D x and the shift parameter r. }
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Weibullian-tailed case—Now we address the case that also covers light-tailed
marginals of .Xt/t. Suppose that there exist numbers A > 0 and 	 > 0, such that

lim
u!1

logP.Xt > u/

u	
D �A; (9.4)

that is, Xt has an (asymptotically) Weibullian distribution function. Following the
same line of reasoning as used in the case of long-tailed Lévy processes, we arrive
at the following result, now for logarithmic asymptotics.

Theorem 9.2 Suppose that Xt satisfies (9.4). Then, as u ! 1,

lim
u!1

logPx.Qt > u/

logP.Xt > u/
D 1:

Example 9.2 Let X 2 S.˛;�1;�r/ with ˛ 2 .1; 2/. It follows that

lim
u!1

logPx.Qt > u/

u˛=.˛�1/
D �t�1=.˛�1/

˛ � 1

˛˛=.˛�1/

�

cos

�
�.2 � ˛/

2

��1=.˛�1/
;

by combining Thm. 9.1 with Prop. 2.2 (independently of the values Q0 D x and r).
}
Example 9.3 Suppose that Xt D Jt � rt, where J 2 G.	; ˇ/. Then

lim
u!1

logPx.Qt > u/

u
D �	:

Observe that these logarithmic asymptotics do not depend on either Q0 D x, or r, or
time t. }

9.2 Joint Transient Distribution

In Dȩbicki et al. [72] the focus is on probabilities of the type

P.Q0 > pu;QT.u/ > qu/;

for p; q > 0:We summarize the main findings of this paper, and provide an intuitive
justification of these results.

Reference [72] first identifies conditions under which the probability of interest
is essentially dominated by the ‘most demanding event’, in the sense that it is
asymptotically equivalent to P.Q > maxfp; qgu/ for u large; here, as before, Q
denotes the steady-state workload. These conditions turn out to reduce to T.u/ being
sublinear (i.e. T.u/=u ! 0 as u ! 1).
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This condition makes sense, as it means that the time epochs 0 and T.u/ are
‘close’, relative to the workload levels to be achieved (i.e. pu and qu). Informally,
for the scenario that p > q it means that if at time 0 level pu is exceeded, then
with high chance also qu is exceeded at time T.u/; a similar reasoning applies when
q > p.

Then a second condition is derived under which the probability of interest
‘decouples’, in that it is asymptotically equivalent to the product of the correspond-
ing marginal probabilities, P.Q > pu/P.Q > qu/, for u large (meaning that the ratio
of this product of probabilities to the joint probability tends to 1 as u ! 1). In this
condition a crucial role is played by the random quantity QD, for D > EX1, which
is distributed as supt�0.Xt � Dt/; as a result QD resembles the original queue Q but
with the drain rate adapted by D, due to (2.5). Then the decoupling condition is that
for all � > 0, D > EX1, we should have that

lim
u!1

P.QD > �T.u//

P.Q > pu/P.Q > qu/
D 0:

For various types of input considered in the literature this ‘decoupling condition’
reduces to requiring that T.u/ is superlinear (i.e. T.u/=u ! 1 as u ! 1). This
is the case for instance if the tails of Q and QD decay exponentially, as is verified
easily.

This decoupling property can be heuristically justified as follows. If T.u/ grows
fast (faster than the buffer levels pu and qu, to be reached at times 0 and T.u/,
respectively), it is conceivable that time epochs 0 and T.u/ are contained in different
busy periods. This means that the event of reaching qu at T.u/ ‘does not benefit’
from the positive correlation of the fact that pu was reached at 0, and hence the
events are essentially independent.

However, for X 2 R, requiring that T.u/=u ! 1 is not sufficient for decoupling.
In this case it is seen that, due to the fact that the tails of Q and QD decay in a
regularly varying fashion, the ‘decoupling condition’ reduces to T.u/=u2 ! 1.
The rationale behind the fact that we have decoupling only for T.u/ increasing
superquadratically is that for T.u/ increasing subquadratically, with overwhelming
probability it suffices to have a single big jump to cause overflow both over pu at
time 0, and over qu at time T.u/; ‘decoupling’, on the contrary, would correspond
to a scenario with two big jumps. These findings imply that for X 2 R there is a
third regime, that is, T.u/ increasing superlinearly but subquadratically; [72] also
identifies the asymptotics for this case.

In [72] special attention is paid to the case T.u/ D Ru for some R > 0; for X 2
L , intuitively appealing asymptotics are derived, intensively relying on sample-
path large-deviations results [69]. The regimes obtained can be interpreted in terms
of most likely paths to overflow. If R is small (i.e. fulfilling an explicit criterion in
terms of p; q; and the characteristics of the driving Lévy process .Xt/t), then one has
asymptotics of the type P.Q > maxfp; qgu/. If this condition does not apply, two
cases are possible: for large R the most likely scenario is that the buffer fills up to
level pu, then drains, remains empty for a while, and starts building up a relatively
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short time before Ru, to reach level qu at Ru (in this case the asymptotics look like
P.Q > pu/P.Q > qu/), whereas for moderate R the buffer remains (most likely)
non-empty between 0 and R.

We thus obtain the following structural result. Let ! > 0 solve, as before,
Ee!X1 D 1. Then there are (uniquely characterized) thresholds NR and LR such that for
all R smaller than NR, as u ! 1,

1

u
logP.Q0 > pu;QRu > qu/ ! � maxfp; qg!I

for R between NR and LR,

1

u
logP.Q0 > pu;QRu > qu/ ! � p! � R � sup

ı

�
ı
�q � p

R

�
� logEeıX1

�
I

and for R larger than LR,

1

u
logP.Q0 > pu;QRu > qu/ ! � .p C q/!:

Summarizing, in the first scenario the ‘most demanding’ event dominates the
asymptotics, in the last scenario the events are essentially independent, while in the
intermediate scenario the (scaled) most likely path attains p at time 0, then follows
a straight line with slope .q � p/=R during R time units, to reach q at time R.

9.3 Busy Period and Correlation Function

Relying on the Heaviside recipe (i.e. Recipe 8.1), we now study the tail distribution
function of the busy period p.t/ WD P.� > t/, as well as the correlation function
r.t/: We show the computations for p.t/, but note that the computations for r.t/
work very similarly, and are provided in detail in Es-Saghouani and Mandjes [90]
and Glynn and Mandjes [101].

Let us first consider the light-tailed case. For X 2 L we have that Ee!X1 D 1 for
some ! > 0, which implies that EesX1 has a minimizer for s in the interval between
0 and !. This observation will be used several times later on.

As usual, we start by considering the spectrally positive case. As before, we
assume that the equation '.˛/ D 0 has a negative root. Observe that then
(obviously) Prop. 6.1 holds for any positive # , but that we can consider the analytic
continuation up to the branching point #? < 0 of  .�/; in the sequel let � < 0

denote the minimizer of '.�/, so that '.�/ D #? < 0 (where it is noticed that
v' WD ' 00.�/ > 0).
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Then the idea is to write, for # # #?, that  .#/�� � p
2=v' �p# � #?: Hence,

around #?, we have that, for some (irrelevant) constant �,

Z 1

0

e�#t
P.� > t/dt D 1

#
� ' 0.0/

 .#/

#2
� � C A'

p
# � #?;

where

A' WD � '
0.0/
.#?/2

s
2

v'
< 0;

and hence, applying ‘Heaviside’, we estimate the tail distribution of the busy period
by

P.� > t/ � A'

 .� 1

2
/

� e#
?t

t
p

t
: (9.5)

We now turn to the spectrally negative case. Prop. 6.3 holds for any positive q, but
we can consider the analytic continuation up to the branching point q? < 0 of �.�/.
Let � > 0 denote the minimizer of ˚.�/, so that ˚.�/ D q? < 0. Similarly to
the spectrally positive case, we obtain, with v˚ WD ˚ 00.�/ > 0 and � being some
(irrelevant) number,

Z 1

0

e�qt
P.� > t/dt D 1

q

�

1 � �.0/

�.q/

�

� � C A˚
p

q � q?;

where

A˚ WD �.0/

q?�2

s
2

v˚
< 0;

and hence ‘Heaviside’ estimates the tail of the busy-period distribution as

P.� > t/ � A˚

 .� 1

2
/

� eq?t

t
p

t
: (9.6)

For related results on the light-tailed case, we refer e.g. to [65, 173]; importantly, the
asymptotic shape Ae#t=.t

p
t/, for # < 0 and A > 0, appears also if X 2 L without

necessarily being spectrally one sided.
We now consider the heavy-tailed case. In the case X 2 SC \ R, the following

‘Tauberian lemma’ is useful [90].
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Lemma 9.2 Suppose ' 0.˛/ 2 R��1.n � 1; �/. Then the following three statements
hold, for ˛ # 0 or # # 0:

(A) '.˛/ 2 R�.n; �=�/I
(B)  .#/ 2 R� .n; N�/ ; with N� WD ����1.' 0.0//���1;
(C)  0.#/ 2 R��1 .n � 1; N��/.

For the heavy-tailed case with compound Poisson input, we refer for results on �0

(the busy period starting at 0; see Section 6.1) e.g. to [26, 78]. The main intuition is
that a single big job causes a long busy period. It is found that if X 2 CP.1; �; b.�//\
R, then

P.�0 > t/ � 1

1 � % P.B > t.1 � %// (9.7)

as t ! 1; as usual % WD �EB. The validity of (9.7) can be seen as follows. First
recall that Ee�#�0 D .� C # �  .#//=�: Suppose that '.˛/ 2 R�.n; �/, that is,
b.˛/ 2 R�.n; �=�/. In view of the above lemma,

 .#/ 2 R� .n; L�/ ; with L� WD � �

.' 0.0//�C1
;

and as a consequence, Ee�#�0 2 R�.n;�L�=�/: It follows from ‘Tauber’ that

P.�0 > t/ � .�1/n�1

 .1 � �/

�=�

.' 0.0//�C1
t��L.t/;

but also

P.B > t/ � .�1/n�1

 .1 � �/

.�=�/ t��L.t/:

Relation (9.7) now follows by noting that ' 0.0/ D 1 � %:

Now consider the situation that X 2 SC \ R, in which '.˛/ 2 R�.n; �/. Our
objective now is to find the tail asymptotics P.� > t/. Again,  .#/ 2 R� .n; L�/ :
Straightforward calculations yield that

Ee�#� 2 R��1.n � 1; L�' 0.0//;

such that ‘Tauber’ eventually gives

P.� > t/ � .�1/n

 .2 � �/ L� t1��L.t/:
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For results on the asymptotics of the correlation function r.t/ in the case X 2
SC \ R, we refer to [90, Section 5]. Under the assumption that ' 0.˛/ 2 R��1.n �
1; �/, with Lemma 9.2, we can characterize the behavior of  .#/ and  0.#/ for #
small, so that Thm. 7.1 yields Or.#/ for # small (this requires a substantial amount
of algebra!). Then, again with ‘Tauber’, we can identify the asymptotics of r.t/ for
t large. The case of X 2 S� is covered in [101].

9.4 Infimum over Given Time Interval

In this section we analyze the tail probabilities related to the minimum value attained
by the workload process, as introduced in Section 6.4. More precisely, we consider
the lowest value attained over a period of length T.u/, given the workload is in
steady state at time 0, and we do so for various shapes of T.u/. We focus on the
behavior of P.Q

T.u/
> u/ for u large, recalling that Q

t
is defined as the minimum of

the stationary workload process in the interval Œ0; t�:
In Dȩbicki et al. [74] it is proved that for X 2 L the following logarithmic

asymptotics hold:

logP
�

Q
T.u/

> u
�

� �!u C #?T.u/;

as u ! 1; here, ! > 0 and #? < 0 are as defined before (i.e. ! > 0 solves
EesX1 D 1 and #? < 0 is the minimum attained by logEesX1). We now sketch the
proof of this result.

Observe that the probability of interest is, for any given " > 0, bounded from
below by

P .Q0 > u C "T.u// P

�

inf
s2Œ0;T.u/�Xs > �"T.u/

�

;

where we used that Q0 is independent of .Xt/t�0. Now the former factor reads, for
" small, as the probability of the steady-state workload exceeding u (which roughly
looks like e�!u), whereas the latter factor reads as the probability of a busy period
lasting at least T.u/ (which roughly looks like e#

?T.u/). The lower bound follows
after taking decay rates and sending " to 0. In the upper bound it is proved that,
relative to this scenario, all other scenarios can be ignored.

The above result entails that for X 2 L the probability P.Q
T.u/

> u/ decays

roughly as exp.�!u/ if T.u/ D o.u/, and as exp.#?T.u// if u D o.T.u//: From
an intuitive standpoint this makes sense: in the former case it is crucial that the
workload reaches u at time 0, and then with high probability it remains above u
during the ‘short’ interval Œ0;T.u/�, whereas in the latter case remaining above u
during the ‘long’ interval Œ0;T.u/� is the most demanding requirement.
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Reference [74] also covers the case of X 2 R: The main result is that, under a
mild regularity condition, the following exact asymptotics hold:

P

�
Q

T.u/
> u

�
� P .Q > u C T.u// C T.u/P.X1 > u C T.u//;

as u ! 1: It is easily verified that if T.u/ D o.u/, then these asymptotics look
like those of P.Q > u/ (see Thm. 8.5); if u D o.T.u//, then they look like those of
T.u/P.X1 > T.u//.

Exercises

Exercise 9.1 Let X correspond to Bm.�1; 1/. Determine, for p; q;R > 0,

lim
u!1

1

u
logP.Q0 > pu;QRu > qu/:

Determine the thresholds NR and LR as well.

Exercise 9.2 Determine the asymptotics of P.� > t/ for X 2 CP.1; �; b.�// \ R
using Tauberian inversion.

Exercise 9.3 Let X correspond to Bm.�1; 1/. Determine the asymptotics of
P.� > t/:

Exercise 9.4 Let X correspond to CP.1; �; b.�//, where B is an exponentially
distributed random variable with mean ��1. Determine the asymptotics of P.� > t/:

Exercise 9.5 Let X 2 SC \ R.

(a) Assume '.˛/ 2 R�.n; �/, and fix an x > 0. Apply ‘Tauber’ to prove that

P.�.x/ > t/ � .�1/n

 .1 � �/

L�x t��L.t/; with L� WD � �

.' 0.0//�C1
;

as t ! 1:

(b) Let X 2 CP.1; �; b.�// with b.˛/ 2 R�.n; �=�/: Show that the result proved
under (a) is consistent with Eqn. (9.7) by considering the asymptotics of

P.�0 > t/ D
Z 1

0

P.�.x/ > t/P.B 2 dx/:

Exercise 9.6 Let X 2 SC:

(a) Show that for any # � 0,

P.� > t/ � e�#t
Ee#� :
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(b) Show that the smallest value of # for which

lim sup
t!1

1

t
logP.� > t/ � #

holds is equal to #?:
(c) Prove the following exponential bound on the tail distribution of � :

P.� > t/ � ' 0.0/
�

#?
e#

?t:

Exercise 9.7 Determine the asymptotics of r.t/ for X 2 SC \ L and for X 2 S�
using the Heaviside approach. Check the findings with the results from [90, 101].

Exercise 9.8 Let X correspond to Bm.�1; 1/. Determine the logarithmic asymp-
totics of P.Qpu > u/ and P.Qu

p
u > u/.

Exercise 9.9 Let X correspond to X 2 S.˛; ˇ;m/ with ˛ 2 .0; 2�, ˇ 2 .�1; 1�, and
m < 0. Determine the exact asymptotics of P.Qpu > u/ and P.Qu

p
u > u/.



Chapter 10
Simulation of Lévy-Driven Queues

This chapter focuses on the use of stochastic simulation when analyzing Lévy-
driven queues. In the first part, it is explained how (transient and stationary)
Lévy-driven queues can be simulated. In the second part, the focus is on efficiently
estimating rare-event probabilities using importance sampling: we subsequently
treat fast simulation of the tail probabilities related to the stationary workload and
the busy period. In the last part of this chapter attention is paid to estimating the
workload correlation function r.t/ for t large.

10.1 Simulation of Lévy-Driven Queues

There are various accessible texts that describe how Lévy processes can be
simulated; we refer in particular to Asmussen and Glynn [24, Chapter XII] and
Cont and Tankov [63, Chapter VI]. The difficulty lies in dealing with the ‘small
jumps’ (for processes with infinitely many jumps in a finite amount of time, such as
the gamma process); various techniques have been proposed to incorporate these.

In Section 3.3 it was pointed out how a general Lévy process (with possibly
‘small jumps’) can be approximated by the sum of a Brownian motion and a
compound Poisson process (with drift), which we could write as Bm.d; �2/ C
CP.r; �; b.�//—evidently, without loss of generality we can take r D 0, by
incorporating the ‘full drift’ in d. Therefore we concentrate in this section on
pointing out how to simulate a queue fed by such a process. It it stressed that the
approximation proposed in Section 3.3 becomes more accurate when " # 0, but
this also increases the arrival rate of the compound Poisson process. In other words,
there is an evident trade-off between the accuracy of the approximating process and
the simulation effort needed.

Simulation of the transient workload—Suppose that Q0 D x, and that we wish
to simulate Qt for some t > 0: We assume that we know how to simulate random

© Springer International Publishing Switzerland 2015
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variables that are uniformly distributed on Œ0; 1� (to be denoted by U in the sequel),
and that we are also capable of sampling from the distribution of the random variable
B, that is, the distribution characterized by the Laplace transform b.�/ (see e.g. [24,
Chapter II]).

We first point out how Qt could be simulated if X consists of just a Brownian
term Bm.d; �2/ (i.e. no compound Poisson term); see e.g. [63, p. 177] and [101].
Recall that, by (2.4),

Qt D Xt C max

�

x;� inf
0�s�t

Xs

	

:

The idea is to first simulate Xt from a normal distribution with mean dt and variance
�2t; say it attains the value z. It is then observed that, with .Wt/t denoting a standard
Brownian motion, using standard calculation rules for Brownian motion, it holds
that

P

�

� inf
0�s�t

Xs � x

ˇ
ˇ
ˇ
ˇ Xt D z

�

D P

�

8s 2 Œ0; t� W Ws � x C ds

�

ˇ
ˇ
ˇ
ˇ Wt D dt � z

�

�

:

Relying on standard results for the Brownian bridge, this equals

1 � exp

�

� 2x

�2t
.x C z/

�

I

observe that this expression does not depend on d (why?). Then it is readily verified
that

Yz.�; t/ WD
�

� inf
0�s�t

Xs � x

ˇ
ˇ
ˇ
ˇ Xt D z

�
dD � z

2
C 1

2

p
z2 � 2�2t log U:

This gives us a way to sample � inf0�s�t Xs, conditional on the value of Xt. As a
result, we have found an efficient way to sample Qt.

Now return to the setting of X corresponding to Bm.d; �2/ C CP.0; �; b.�//.
The idea is to iteratively simulate the workload at the jump epochs of the Poisson
process. In the following pseudocode E.�/ stands for a sample from the exponential
distribution with mean ��1, and N.d; �2/ for a sample from the normal distribution
with mean d and variance �2; B refers to a sample from the distribution of the
job sizes in the compound Poisson process. The pseudocode generates an exact
sample of Qt in the case that X corresponds to the sum of a Brownian motion and a
compound Poisson process.

Pseudocode 10.1 Input: Q0 D x and t; Bm.d; �2/; CP.0; �; b.�//. Output: Qt.
T WD 0; Q D x;
while T < t do

s WD E.�/; T WD T C s;
if T < t then
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z WD N.ds; �2s/; Q WD z C maxfQ;Yz.�; s/g; Q WD maxfQ C B; 0g;
else

r WD s � .T � t/; z D N.dr; �2r/; Q WD z C maxfQ;Yz.�; r/g;
end (of ‘if’);

end (of ‘while’); return Qt WD Q.

Simulation of the steady-state workload—We recall that, due to the distributional
identity (2.5), this amounts to simulating the all-time maximum of the Lévy process
X. Let us approximate the all-time maximum with the maximum of X up until N
jumps of the compound Poisson process, which we denote by NQN . Then N is chosen
sufficiently large, such that we are guaranteed to obtain an ‘almost exact’ sample
from the stationary workload Q; after describing the simulation algorithm, we point
out how to select N. We propose the following pseudocode; it uses the property that
the maximum is attained either immediately after the arrival of a job, or between
jobs (where the process locally behaves as a Brownian motion).

Pseudocode 10.2 Input: N; Bm.d; �2/; CP.0; �; b.�//. Output: NQN .
n WD 0; Q D 0; X WD 0;
while n � N do

n WD n C 1; s WD E.�/; z D N.ds; �2s/; m WD Yz.�; s/;
if X C m > Q then

Q WD X C m;
end (of ‘if’);
X WD X C z C B;
if X > Q then

Q WD X;
end (of ‘if’);

end (of ‘while’); return Q.

The issue that remains to be addressed is how big N should be chosen to ensure
that the ‘truncation error’ is negligible. Here we describe a procedure to determine
N for the case X 2 L .

Let Ti be the ith job arrival as generated by the compound Poisson process, and
let the time interval Ii D .Ti;TiC1�. Evidently, applying the union bound we can
bound the error from above by

P

 

sup
t�TN

Xt > u

!

�
1X

nDN

P

 

sup
t2In

Xt > u

!

�
1X

nDN

P

 

sup
t2In

Xt > 0

!

:

Observe that supt2In
Xt is, in distribution, equal to XTn , increased by an (indepen-

dently sampled) random variable V representing the maximum in I1. Now construct
the random variable V as follows. Let S be exponentially distributed with mean
��1, and B be a sample from the job size distribution. Let G.s/ have a normal
distribution with mean ds and variance �2s. Then, assuming all samples are drawn
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independently,

V WD maxfYG.S/.�; S/;G.S/C Bg:

By applying the Markov inequality—in this form often referred to as the Chernoff
bound [77, p. 93]—we have for any # > 0,

P.XTn C V > 0/ � Ee#XTn Ee#V D
 

ˇ.�#/ � �

�C d# C 1
2
�2#2

!n

Ee#V :

To make the upper bound tight, we pick the # > 0 that minimizes the expression
ˇ.�#/=.� C d# C 1

2
�2#2/; say that the minimum is attained at L# . Notice that

the value of the minimum, say Lm, is smaller than 1 due to the requirement that
EB D �EX1 C d be smaller than 0:

Collecting the above findings, we arrive at

P

 

sup
t�XN

Xt > u

!

�
1X

nDN

Lmn � Ee
L#V D LmN

1 � Lm � Ee
L#V :

We conclude that by picking N larger than

log "C log.1� Lm/� logEe L#V

log Lm ;

it is ensured that the error made is below ":

10.2 Estimation of Workload Asymptotics

Suppose we wish to estimate P.Q > u/ by simulation. It is well known (see e.g.
Mandjes [157, Section 8.2]) that the number of simulation runs needed to obtain an
estimate with a given predefined precision (expressed in terms of the ratio of the
width of the confidence interval and the estimate) is inversely proportional to the
probability to be estimated. This insight follows from the following reasoning; we
focus on the regime in which the probability of interest is small.

Suppose we perform n independent trials, and Ii is the indicator function for the
event under consideration happening in run i, for i D 1; : : : ; n: Evidently, Opn WD
n�1

Pn
iD1 Ii is an unbiased estimator of the target probability, say, p. The variance

of this estimator is n�1p.1 � p/ � n�1p: Suppose that we continue simulating until
the width of the confidence interval is below a fraction f of the probability p, and
that our confidence level is ˛. As a result the confidence interval is of the form .Opn �
t˛
pOpn=n; Opn C t˛

pOpn=n/. This yields the rule of thumb that n must be sufficiently
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large such that

n � t2˛
f 2p

:

The above condition shows that the number of runs is indeed inversely proportional
to p. In the light-tailed situation at hand this means that this number grows roughly
exponentially in u, and as a result simulation experiments may take prohibitively
long. Our objective now is to devise techniques that have the potential to speed up
the simulation procedure. Focusing on X 2 L , ideas that date back to Siegmund
[198] can be applied to estimate P.Q > u/ highly efficiently.

As before, let ! solve Ee!X1 D 1. The idea is now not to perform the simulation
under the original measure P, corresponding to the characteristic triplet .d; �2;˘/,
but rather under an alternative measure Q under which the event of interest
occurs more frequently. After weighing the simulation output with an appropriate
likelihood ratio, unbiasedness is recovered. This procedure is commonly referred to
[24, pp. 127–128] as importance sampling.

This Q is an exponentially twisted version of P, in the way it was constructed in
Section 8.1. More concretely, the measure Q is such that, in self-evident notation,
for all ı,

EQeıX1 D Ee.ıC!/X1 :

It is now elementary to check that Q also corresponds to a Lévy process, with triplet

�

d C �2! C
Z 1

�1
x.e!x � 1/˘.dx/; �2; e!x˘.dx/

�

I (10.1)

cf. [24, Example XII.6.2]. Observe the methodological similarity to the derivation
of the Cramér–Lundberg asymptotics in Section 8.1.

Recall that the convexity of EeıX1 implies that EQX1 D EX1e!X1 > 0, so that the
random variable �.u/ WD infft W Xt > ug becomes non-defective under Q. As we
saw in identity (8.3),

P.Q > u/ D EQe�!X�.u/ :

In other words, we should simulate underQ until �.u/, record the value Li of e�!X�.u/

in each run i, perform n runs, and estimate P.Q > u/ by n�1
Pn

iD1 Li: It follows
immediately from (8.3) that this estimator is unbiased; note that EQLi D P.Q > u/.
In addition, due to the fact that each observation of e�!X�.u/ is bounded by e�!u,
the estimator has excellent variance properties (in particular, it has bounded relative
error; see [24, p. 159]).

Clearly, a prerequisite for applying this method is that one should be able to
sample trajectories of Lévy processes; the state of the art on this issue is presented
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in [24, Chapter XII] and [63, Chapter VI], but see Section 10.1 as well. Notice that,
in passing, we re-proved the fact that P.Q > u/ � e�!u; see Cor. 8.1.

Example 10.1 Consider the case of X corresponding to Bm.�1; 1/, that is, a process
with negative drift, characterized by a Laplace exponent of the form '.˛/ D ˛ C
1
2
˛2. It is checked that! D 2. It entails that underQ we should sample the Brownian

motion Bm.1; 1/, that is, a Brownian motion with a positive drift. }
Example 10.2 Another example concerns the case that the driving Lévy process X
corresponds to CP.1; �; b.�// with the B sampled from an exponential distribution
with mean ��1: Let % WD �=� < 1: The decay rate ! > 0 solves

'.�!/ D �! � �C �
�

� � !
D 0;

yielding ! D � � � > 0: The Laplace exponent of the process under Q is given by
'.˛ � !/, that is,

˛ � �C �
�

�C ˛
:

In other words, we should let the jobs arrive according to a Poisson process with
rate �, with their sizes being sampled from an exponential distribution with mean
��1: Observe that under Q the drift is positive. }

For the case of heavy tails, we refer to [23, 27] and [24, Section VI.3]. In
this context it is noted that the above ideas for X 2 L do not carry over to the
heavy-tailed case, basically because (most likely) overflow is not caused by several
‘somewhat unlikely’ events, but rather a single big jump.

10.3 Estimation of Busy-Period Asymptotics

We now aim at efficiently estimating the tail probability p.t/ D P.� > t/ for X 2 L :

In this case the following alternative measure was proposed in [101]; for ease we
concentrate on X 2 SC, but the case X 2 S� can be dealt with similarly.

• In the interval .0; t� let the Lévy process be twisted with �� D � .#?/ > 0, as
described above; #? is as defined in Section 9.3. In this way we obtain that the
Lévy process under this new measure has drift 0, making long busy periods more
likely.

• In addition we twist the workload at time 0, denoted by Q0; we do so by a factor
� � 0, for which we identify a suitable value later on. Here we recall that under
P the workload is distributed as a random variable whose transform is given
by Thm. 3.2. This effectively means that we sample Q0 from a distribution with
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Laplace–Stieltjes transform

Ee�.˛��/Q0
Ee�Q0

D ˛ � �
'.˛ � �/

'.��/
�� :

From now on we denote this new measure, consisting of twisting Q0 (with the yet
unknown �) as well as twisting .Xs/s2.0;t� (with �, so that it has drift 0), by Q� .

In each run we simulate the process under Q� till time t, so that we can check
whether the event f� > tg has occurred. Along these lines, we perform n inde-
pendent runs. Then the estimator, based on these n runs, reads n�1

Pn
iD1 Li1f�i>tg,

where Li is the likelihood ratio of run i. Let us write down this likelihood ratio more
explicitly. First there is the contribution due to the twisted queue at time 0; using
Thm. 3.2 we obtain

L1 WD e��Q0 � Ee�Q0 D e��Q0 � ��' 0.0/
'.��/ : (10.2)

Second there is the contribution due to the twisted Lévy process between 0 and t:

L2 WD e .#
?/Xt � Ee� .#?/Xt D e .#

?/Xt � e#
?t: (10.3)

The ‘total likelihood ratio’ of a single run is thus L WD L1 	 L2: As before, the
resulting estimator is unbiased, as EQ� L1f�>tg equals the probability of our interest,
that is, P.� > t/ D p.t/.

As a consequence of the fact that VarQ� .L1f�>tg/ � 0, we see that

EQ�L21f�>tg � .EQ�L1f�>tg/2 D .p.t//2:

In this sense, we could call our change of measure logarithmically efficient if

lim
t!1

1

t
logEQ�L21f�>tg � lim

t!1
1

t
log.EQ�L1f�>tg/2 D 2#?I

here the equality is due to Eqn. (9.5) (or Eqn. (9.6) in the corresponding spec-
trally negative case). In this context, in which the probability of interest decays
roughly exponentially, logarithmic efficiency essentially means that the number of
replications needed to obtain an estimate with a certain fixed precision grows subex-
ponentially in the ‘rarity parameter’ t; cf. Asmussen and Glynn [24, Chapter VI].

It is now easily seen that � D 0 does not necessarily yield logarithmic efficiency.
To this end, recall that a necessary condition for the event f� > tg is Q0 C Xt > 0,

EQ�L21f�>tg �
�

��'
0.0/

'.��/
�2

e2#
?t
EQ� e�2�Q0e�2 .#?/Q0 I (10.4)
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when picking � D 0 we need to have

EQ0e
�2 .#?/Q0 < 1

for logarithmic efficiency, and this is not a priori clear. But now we can see, realizing
that '. .#?// is finite (to see this, use that � is larger than the pole of '.�/), that
picking � WD � .#?/ D �� does yield logarithmic efficiency! In other words, we
have to exponentially twist Q0 as well, and we have to do so with twist � D �� > 0.

The next question is, can we do better than twisting with ��? Interestingly, using

EQ� e�˛Q0 D ˛ � �

'.˛ � �/
� '.��/�� ;

the right-hand side of (10.4) can be rewritten as

.' 0.0//2
� ��
'.��/

��
2� C �

'.2� C �/

�

e2#
?t: (10.5)

Observe that it contains two factors in �, the first of which increases in �, the second
decreases in �: there is a trade-off. It is a straightforward exercise to show that the
minimum is achieved for � D �� (equate the derivative to 0, but it can also be seen
using a symmetry argument). We conclude that, in the sense that it minimizes (10.5),
the proposed change of measure is the best possible within the class of exponential
twists of Q0:

Example 10.3 For X corresponding to Bm.�1; 1/, that is, with '.˛/ D ˛C 1
2
˛2 and

� D �1, we obtain that the optimal � equals 1. It entails that we should sample Q0

from an exponential distribution with mean 1; under the original measure it would
be an exponential distribution with mean 1

2
. After time 0, we should sample the

Brownian motion as Bm.0; 1/, that is, a driftless Brownian motion. }
Example 10.4 We now consider the case that X represents CP.1; �; b.�// with the
B sampled from an exponential distribution with mean ��1: Let % WD �=� < 1:

Recall that, with E.ı/ denoting an exponentially distributed random variable with
mean 1=ı,

Q0
dD
�
0 with probability 1 � %;
E.� � �/ with probability %.

It is now a matter of straightforward calculations to verify that the twisting with ��
yields the distribution

LQ0
dD
�
0 with probability 1 � p

%;
E..

p
� � p

�/2/ with probability
p
%.
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After time 0 we should let the jobs arrive according to a Poisson process with ratep
��, with their sizes being sampled from an exponential distribution with mean

1=
p
��: }

10.4 Estimation of Workload Correlation Function

So far we have provided recipes to estimate two types of rare-event probabilities,
that is, those related to a large workload, and those related to a long busy period.
The workload correlation is also a rare-event-related quantity, but not a rare-
event probability as such. As a result, inherently different techniques need to be
developed, so as to efficiently estimate r.t/ D Corr.Q0;Qt/. In this section we
describe an approach that was developed in Glynn and Mandjes [101].

We again restrict ourselves to X 2 L \ SC (where it is noted that the
corresponding spectrally negative case works similarly). Observe that it suffices to
estimate c.t/ WD Cov.Q0;Qt/, as v D Var Q is known. The ‘naïve estimator’ of c.t/
is, in self-evident notation, and recalling that EQ is known,

c.NS/
n .t/ WD 1

n

nX

iD1
Q.i/
0 Q.i/

t � .EQ/2;

based on n independent runs. The variance of this naïve estimator reads .n�1/ �
Var.Q0Qt/. Now note that, as t ! 1,

Var.Q0Qt/ D E.Q2
0Q

2
t / � .EQ0Qt/

2 ! .EQ2/2 � .EQ/4;

which is positive due to the fact that EQ2 > .EQ/2: Suppose our goal is to simulate
until our estimate has a certain given relative precision f (defined as the ratio
between the width of the confidence interval and the estimate) and confidence ˛.
The number of runs needed, say n, is roughly equal to the smallest n satisfying

t˛

q

Var c.NS/
n .t/

c.t/
< f ;

with t˛ as defined earlier. This yields that

n � t2˛
f 2.c.t//2

�
.EQ2/2 � .EQ/4

�
:

Now recall that in the situation at hand c.t/ decays roughly exponentially. We
therefore obtain the following remarkable result for the naïve estimator: it says that
the number of runs required blows up exponentially, but it is quadratically inversely



140 10 Simulation of Lévy-Driven Queues

proportional to c.t/, rather than just inversely proportional. This result underscores
that efficient (simulation-based) computation of the workload correlation c.t/
poses fundamentally new questions (compared to the estimation of rare-event
probabilities). This was perhaps not anticipated, given the fact that the decay of
r.t/ (and hence of c.t/ as well) resembles that of the busy-period tail asymptotics
p.t/, as was observed in Chapter 9.

To overcome this problem, we now consider a coupling-based algorithm, that
reduces the number of runs needed from quadratically inversely proportional to c.t/,
to just inversely proportional. We write

c.t/ D E.Q0 � .Qt � Q?
t //;

where both Q and Q? are stationary versions of the workload, and Q?
t is independent

of Q0. We construct such a coupling as follows: generate Q0 and Q?
0 independently,

sampled from the stationary distribution of the workload. Now use exactly the
same incoming Lévy process Xs over .0; t� to drive both .Qs/s2.0;t� and .Q?

s /s2.0;t�
from their two independently generated initial conditions. This makes Qt and Q0

correlated, but leaves Q?
t and Q0 independent. The new estimator becomes, in self-

evident notation,

c.CS/
n .t/ WD 1

n

nX

iD1
Q.i/
0

�
Q.i/

t � Q? .i/
t

�
;

based on n independent runs.

Q0

Q0

t

Fig. 10.1 Graphical illustration of the coupling technique, in a compound Poisson example. Top
graph is Qt, bottom graph is Q?

t . Observe that the distance between both graphs is non-increasing
in t. The processes coincide at the end of the busy period of the workload process corresponding
to the largest initial workload
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A key observation is that Q.i/
t D Q? .i/

t if in both systems the busy period
(that started at time 0) has ended; see also Fig. 10.1. In other words, we obtain a
non-zero contribution only when at least one of the busy periods has not ended
yet. Mainly due to this property, it is proved in [101] that the number of runs
needed is roughly inversely proportional to c.t/: If this algorithm is augmented
with importance sampling (very similarly to the way this was done in the algorithm
to estimate p.t/ efficiently; see Section 10.3), one even obtains a logarithmically
efficient algorithm [101, Section 4.3].

Exercises

Exercise 10.1 Verify Eqn. (10.1).

Exercise 10.2 Verify the formulas for the likelihood ratios (10.2) and (10.3).

Exercise 10.3 Prove that (10.5) is minimized for � D ��:
Exercise 10.4 Let X correspond to the gamma process G.ˇ; 	/, minus a determin-
istic drift of rate r.

(a) Show that the queue is stable if ˇ=	 < r:
(b) Prove that the zero-drift change of measure, that can be used to efficiently

estimate P.� > t/ and r.t/, is such that X should be sampled as G.ˇ; ˇ=r/
minus a deterministic drift of rate r.

Exercise 10.5 In the simulation algorithm to efficiently estimate r.t/, we construct
a coupling as follows. First generate Q0 and Q?

0 independently, sampled from
the stationary distribution of the workload. Then use exactly the same incoming
Lévy process Xs over .0; t� to drive both .Qs/s2.0;t� and .Q?

s /s2.0;t� from their two
independently generated initial conditions. As a result, Qt and Q0 are correlated, but
Q?

t and Q0 are independent.

(a) In the proof it is used that the distance between both processes, that is, j Qt �
Q?

t j, is non-increasing in t. Prove this property.
(b) Let � (respectively, �?) denote the first epoch that .Qt/t (respectively, .Q?

t /t)
hits 0. Show that for t > maxf�; �?g the processes .Qt/t and .Q?

t /t coincide.

Exercise 10.6 Consider a queueing process .Qt/t driven by the Lévy process .Xt/t.
Assume that Q0 D 0 a.s. Check that P.Qs > x/ � P.Qt > x/ for each x � 0 if s < t,
that is, Qs;Qt are stochastically ordered.



Chapter 11
Variants of the Standard Queue

So far we have considered the standard infinite-buffer queue with Lévy input.
This chapter describes a number of variants of this standard model. The systems
considered are (i) Lévy-driven finite-buffer queues, (ii) models in which the current
workload level has impact on the input process (‘feedback’), (iii) vacation and
polling models, and (iv) queues with Markov additive input. In this chapter we
typically sketch the state of the art in these areas, without giving all proofs in full
detail.

11.1 Finite-Buffer Queues

In this section we consider a Lévy-driven queue in which the workload cannot
exceed level K > 0; in the case that this upper boundary K would be exceeded
by a positive jump, the part of the jump that fits into the buffer is accepted, and
the rest is rejected (symmetrically to what happens to negative jumps at the lower
boundary 0). The finite-buffer system that is thus defined is treated in detail in the
monograph by Andersen et al. [8]; here we restrict ourselves to the main results.

Again we call the associated workload process .Qt/t. A corresponding Sko-
rokhod problem can be formulated, in which Qt is expressed in terms of the local
time at 0 (as before), but now also the local time at K plays a role. Assuming for
ease that Q0 D 0, we have that Qt D Xt C Lt � NLt, with Lt (respectively, NLt) the local
time at 0 (respectively, at K); popularly speaking, Lt increases only when Qt D 0,
whereas NLt increases only when Qt D K:
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In Andersen and Mandjes [9] and Kruk et al. [142] it is shown how to solve
.Qt/t explicitly from the Skorokhod problem; the authors of [142] found the
representation

Qt D Xt � sup
s2Œ0;t�

�

max

�

min

�

Xs � K; inf
u2Œ0;t�Xu

	

; inf
u2Œs;t�Xu

	�

;

whereas the alternative solution in [9] is slightly simpler, and reads

Qt D sup
s2Œ0;t�

max

�

Xt � Xs; inf
u2Œs;t�.K C Xt � Xu/

	

I

for ease we here consider the case that Q0 D 0. It was proved for the infinite-buffer
model that the mean E.Qt j Q0 D 0/ is increasing and concave in t [119, 127], but,
interestingly, this conclusion remains valid in the finite-buffer case as well [9].

The first part of the following result [153, 199] characterizes the steady-state
workload Q in terms of a first-passage time; note that it is (obviously) now not
necessary that EX1 < 0. The second part, which can be found in e.g. [43, Thm. 8,
p. 194], assumes spectrally negative input, but realize that the spectrally positive
case can be dealt with analogously (by considering the Lévy input �X). Recall the
(implicit) definition of the scale function W.0/.�/ from Eqn. (4.7); write �K.u/ WD
P.Q � u/:

As we know the transform of W.0/.�/, the result below uniquely characterizes
P.Q > u/. For the case of Brownian input, it turns out that Q has a truncated
exponential distribution, as is easily checked. We mention here that in [85] scale
functions are also used to determine the busy-period distribution in a finite-buffer
M/G/1 queue.

Proposition 11.1

(i) For u 2 Œ0;K�,

1 � �K.u/ D P.X�Œu�K;u/ � u/;

where �Œu; v/ WD infft � 0 W Xt 62 Œu; v/g; for u � 0 � v:

(ii) Let X 2 S�. Then, for u 2 Œ0;K�,

1 � �K.u/ D W.0/.K � u/

W.0/.K/
:

Proof We now prove both parts of Prop. 11.1. We start with part (i). The idea is that
we find an alternative expression for the probability

P0.QT � u/ WD P.QT � u j Q0 D 0/;
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Fig. 11.1 Proof of Prop. 11.1

0

u

K

QT

s T

and then we let T grow to 1, so as to obtain �K.u/; the proof presented here follows
essentially the same lines as Asmussen [19, Prop. XIV.3.7].

To this end, consider Fig. 11.1: we took Q0 D 0, and we picked u such that
QT � u: The following two claims hold.

(A) First, there is an s between 0 and T such that XT � Xs � u: One such s for
which this holds is s?, the last epoch before T that the system was empty (see
Fig. 11.1). Indeed, it is verified that

u � QT D XT � Xs? � NLT C NLs? � XT � Xs?;

using that . NLt/t is an increasing process.
(B) Second, for all s between 0 and T, we have that XT � Xs � u � K, because

otherwise QT would be below u.

Now define RT.u/ WD u � XT C XT�t until this process hits .�1; 0� (and then it is
set equal to 0) or .K;1/ (and then it is set equal to 1). The observations (A) and
(B) above now entail that the event fQT � ug is equivalent to fRT.u/ D 0g: As a
result,

P0.QT � u/ D P.�Œu � K; u/ � T;X�Œu�K;u/ � u/;

so that the stated result follows by sending T to 1:

We continue with part (ii); for full details we refer to Kyprianou [146, Thm. 8.1].
We rewrite for X 2 S�,

P.X�Œu�K;u/ � u/ D P.�.u/ < �.K � u//;
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where �.u/ is, as before, the first epoch that the driving Lévy process .Xt/t exceeds u.
We consider the cases EX1 > 0 and EX1 < 0 separately; we mention that EX1 D 0

can be dealt with as a limiting case of EX1 < 0, as demonstrated in [146, pp. 216–
217], and is left out here.

• In the case EX1 > 0, it is first verified that for u 2 Œ0; a/,

P.�.u/ D 1/ D P.�.a � u/ < �.u// � P.�.a/ D 1/;

so that

P.�.a � u/ < �.u// D P.�.u/ D 1/

P.�.a/ D 1/
:

We observe that in order to show the result, it suffices to prove that W.0/.u/ is
proportional to P.�.u/ D 1/. This is done as follows. Let X0 equal �X, which
is in SC and has a negative drift. Then, due to integration by parts and Thm. 3.2
(i.e. the generalized Pollaczek–Khintchine formula),

Z 1

0

e�ˇu
P.�.u/ D 1/du D

Z 1

0

e�ˇu
P

 

sup
t�0

X0t < u

!

du

D 1

ˇ

Z 1

0

e�ˇu
P

 

sup
t�0

X0t 2 du

!

D ˚ 0.0/
˚.ˇ/

:

As the transform of W.0/.u/ with respect to ˇ is 1=˚.ˇ/, we proved the desired
proportionality.

• Now consider the case EX1 < 0; the above approach does not work, as both
P.�.u/ D 1/ and P.�.a/ D 1/ equal 0. Construct the measure Q as before,
that is, with exponential twisting by !, where ! solves ˚.!/ D 0:

Recall that EQX1 D ˚ 0.!/ > 0. Because of what we found for the case EX1 > 0,
it holds that

Q.�.a � u/ < �.u// D Q.�.u/ D 1/

Q.�.a/ D 1/
:

Hence, using that X�.a�u/ D a � u for X 2 S�,

P.�.a � u/ < �.u// D EQ

�
e�!X�.a�u/1f�.a�u/<�.u/g

�

D e�!.a�u/
Q.�.a � u/ < �.u// D e!u

Q.�.u/ D 1/

e!a Q.�.a/ D 1/
:
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We observe that in this case it suffices to prove that W.0/.u/ is proportional to
e!u

Q.�.u/ D 1/. Denote

˚Q.ˇ/ WD logEQeˇX1 D ˚.ˇ C !/� ˚.!/ D ˚.ˇ C !/:

Analogously to the above argument, we find that

Z 1

0

e�ˇue!u
Q.�.u/ D 1/du D ˚ 0

Q
.0/

˚Q.ˇ � !/
D ˚ 0.!/

˚.ˇ/
;

which is proportional to 1=˚.ˇ/, as desired. �
Remark 11.1 For the class of Lévy processes with phase-type jumps in both
directions, that is, X 2 PC [ P�, the quantity �K.u/ can be determined using
the theory of Section 3.4. }
Remark 11.2 It is noted that the analysis of dual-exit-related probabilities of the
type P.�.a/ < �.b// (with a and b positive) plays a role in several other applica-
tions. One such application is sequential analysis [200]; the CUSUM method, which
detects changes in the probability distribution underlying a stochastic process,
requires the evaluation of the probability that an associated log likelihood process
hits the upper (respectively, lower) barrier before hitting the lower (respectively,
upper) barrier. }
Example 11.1 Let .Xt/t be a compound Poisson process with a positive drift of
rate 1. The downward jumps arrive according to a Poisson process with rate � and
have an exponentially distributed size with mean ��1: Observe that this process is
spectrally negative.

It is readily checked that

1

˚.ˇ/
D �C ˇ

ˇ.ˇ � �C �/
D 1

ˇ
C �

ˇ.ˇ � �C �/
:

Realizing that 1=˚.ˇ/ is the Laplace transform of W.0/.x/, this gives

W.0/.x/ D 1C �

� � �

�
1 � e�.���/x

�
;

so that, with u 2 Œ0;K/, and assuming � 6D �,

P.Q > u/ D �e�.���/.K�u/ � �
�e�.���/K � � ; P.Q D K/ D � � �

�e�.���/K � �:

If � > �, then P.Q D K/ ! 1 � �=� as K ! 1, as also follows using trivial
queueing-theoretic arguments. If � < �, then P.Q D K/ � �e�.���/K.� � �/, as
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K ! 1. It is readily checked that in the case � D � we have W.0/.x/ D 1 C �x,
and therefore

P.Q > u/ D 1C �.K � u/

1C �K

for u 2 Œ0;K/, and P.Q D K/ D 1=.1C �K/ � 1=.�K/ as K ! 1. }
In models with a finite buffer, there is the notion of a loss rate `K , which we

define, in self-evident notation, by

`K WD E�K
NL1:

In Asmussen and Pihlsgård [29] the following result was proved for general finite-
buffer Lévy-driven queues.

Proposition 11.2 If
R1
1

y˘.dy/ D 1, then `K D 1; otherwise

`K D EX1
K

Z K

0

x�K.dx/C �2

2K
C 1

2K

Z K

0

Z 1

�1
k.x; y/˘.dy/�K.dx/;

where k.x; y/ WD �.x2 C 2xy/ for y � �x, k.x; y/ WD y2 for �x < y < K � x, and
k.x; y/ WD 2y.K � x/ � .K � x/2 for y � K � x:

For X 2 L , [29] also studies the asymptotics of `K for K large. These are of the
form Ce�!K , for some rather complicated C, and ! solving Ee!X1 D 1: Observe the
similarity to the asymptotics of the tail distribution of the stationary workload in the
model with infinite buffer.

11.2 Models with Feedback

In the queues we have studied so far, the input stream was not affected by the current
level of the workload. In this section we do allow such dependencies, which we refer
to as feedback.

We start by considering a queue whose input is CP.r.x/; �.x/; b.�// when the
current workload level is x � 0; note that the distribution of the jobs B does not
depend on x. Mimicking the procedure outlined in Section 3.1, a rate conservation
argument shows that the density fQ.�/ of the stationary workload obeys the integral
equation [36]

r.x/fQ.x/ D
Z

.0;x/
�.y/fQ.y/P.B > x � y/dy C �.0/p0P.B > x/;
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with p0 WD P.Q D 0/. In the special case that the jobs have an exponential
distribution with mean 1=�; multiplication by e�x yields the differential equation
g0.x/ D g.x/�.x/=r.x/; with g.x/ WD e�xr.x/fQ.x/: For the case p0 > 0 we obtain by
an elementary separation of variables argument that

fQ.x/ D �.0/p0
r.x/

exp

�Z x

0

�
�.y/

r.y/
� �

�

dy

�

;

under appropriate integrability conditions; the case p0 D 0 should be dealt with
separately. Further details can be found in Bekker et al. [36].

In [38] attention is paid to a queue fed by a spectrally positive Lévy process,
where feedback information about the workload level may lead to adaptation of
the Lévy exponent. Among other models, the paper addresses the class of models
in which the workload can only be observed at Poisson instants; at these Poisson
instants, the Lévy exponent may be adapted based on the amount of work present
at that time. In [37] a somewhat related model is studied: the focus is on a Lévy-
driven queue, where the Lévy exponent of the input process alternates between two
different forms (depending on the evolution of the workload process in the past).
Classical related papers are [54, 110].

11.3 Vacation and Polling Models

In Boxma et al. [52] a Lévy-driven queue with server vacations is studied. It can
be regarded as a stochastic storage process alternatingly experiencing active and
passive (vacation) periods (see also [128]), and is described as follows.

During active periods, work is generated according to a Lévy process XD 2 SC
with negative drift, until the workload reaches 0 (i.e. the storage reservoir is empty).
From then on, the storage level behaves according to a second Lévy process XU,
which is assumed to be non-decreasing. As during this period work accumulates in
the queue, it may be interpreted as a vacation; it lasts aI C bV , where I is a function
of the length of the preceding active period, and V is an independent vacation time,
and a and b are given, non-negative scalars. The case in which the workload is still
0 after aI C bV has to be treated separately: the vacation period is extended until
work is generated by XU. Subsequently a new active period starts; etc.

The steady-state workload in such a system can be found as follows. Consider
the sequence of epochs right before an active period starts. The transform of
the storage level at such an embedded epoch can be expressed in terms of the
transform at the previous embedded epoch. As these transforms should be identical
in equilibrium, we can thus obtain the transform of the stationary storage level at
those embedded epochs [52, Section 3]. Relying on the Kella–Whitt martingale,
they can be translated into the transform of the workload at an arbitrary epoch;
see [52, Section 4]. Interestingly, these vacation models can be related to so-called
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polling models, in which a single server visits multiple queues according to some
predefined discipline.

The topic of Lévy-driven polling systems is explored in full detail in Boxma et al.
[51]. There the focus is on an N-queue polling model with switchover times. Each
of the queues is fed by a non-decreasing Lévy process, which can be different during
each of the consecutive periods within the server’s cycle. The N-dimensional Lévy
processes obtained in this fashion are described by their (joint) Laplace exponent,
thus allowing for non-independent input streams. Again, as a first step the steady-
state distribution of the workload is determined at embedded epochs (which are now
polling and switching instants); importantly, the joint transform of all N workloads
is found. As before, application of the Kella–Whitt martingale yields the steady-
state distribution at an arbitrary epoch.

The analysis heavily relies on the link between the polling system and so-called
(multitype) Jiřina processes (continuous-state discrete-time branching processes).
The results are so general that they cover the most important polling disciplines,
like exhaustive and gated.

11.4 Models with Markov-Additive Input

Markov-additive processes (MAPs) date back to Çinlar [61] and Neveu [169],
and can be seen as the Markov-modulated version of Lévy processes; here we
concentrate on MAPs in continuous time. We now give the definition of a MAP;
for ease we restrict ourselves to the spectrally positive case (which we call S MAPC ),
but general MAPs can be introduced analogously.

A MAP is a bivariate Markovian process .Xt; Jt/ that is defined as follows; see
Fig. 11.2.

• Let .Jt/t be an irreducible continuous-time Markov chain with finite state space
E D f1; : : : ; dg. Define by .qij/

d
i;jD1 the .d 	 d/ transition rate matrix of .Jt/t and

by � the (unique) stationary distribution.
• For each state i that Jt can attain, let the process .X.i/t /t be a Lévy process. As

mentioned above, for the moment we assume these are in SC, and have Laplace
exponents 'i.˛/ WD logE exp.�˛X.i/1 /, for i D 1; : : : ; d.

• Letting Tn and TnC1 be two successive transition epochs of Jt, and given that Jt

jumps from state i to state j at t D Tn, we define the additive process Xt in the
time interval ŒTn;TnC1/ through

Xt WD XTn� C Un
ij C ŒX.j/t � X.j/Tn

�;

where the .Un
ij/n constitute a sequence of i.i.d. random variables (each of which

is distributed as a generic random variable Uij) with Laplace–Stieltjes transform

bij.˛/ D Ee�˛Uij ;
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t

Xt

Fig. 11.2 Graphical illustration of the evolution of a MAP. In this case there are two states: one in
which the process behaves as a Brownian motion (corresponding to the solid parts of the horizontal
axis), and the other being a negative drift (corresponding to the dashed parts of the horizontal axis).
In addition, there are upward jumps at the transition epochs of the process Jt

where Uii � 0; describing the jumps at transition epochs. To make the MAP

spectrally positive, it is required that Uij � 0 almost surely (for all i; j 2
f1; : : : ; dg) and that the processes X.i/t are allowed to have positive jumps only
(for all i 2 f1; : : : ; dg). As an aside we mention that the superposition of MAPs is
again a MAP.

Observe that the modulating Markov chain does not jump in Œt; t C h/ with
probability 1 C qjjh C o.h/, given Jt D j (recall that qjj < 0), and jumps to k
with probability qjkh C o.h/, for h # 0. We therefore obtain, with the matrix�.˛; t/
defined by

�ij.˛; t/ WD Ei
�
e�˛Xt1fJtDjg

� D E
�
e�˛Xt1fJtDjg j J0 D i

�
;

the following equation (using that bkk.˛/ D 1 for all ˛):

�ij.˛; t C h/ D .1C qjjh/�ij.˛; t/Ee�˛X
.j/
h C

X

k 6Dj

qkjh ��ik.˛; t/bkj.˛/C o.h/

D .1C 'i.˛//�ij.˛; t/C h
dX

kD1
�ik.˛; t/qkjbkj.˛/C o.h/:

Subtracting�ij.˛; t/ from both sides and dividing by h, we obtain a system of linear
differential equations. Its solution is given in the following proposition, which shows
some sort of infinite divisibility, but now at the matrix level. In this sense, the MAP
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can be regarded as a genuine matrix counterpart of the Lévy process. Define the
matrix M.˛/ entrywise by

Mij.˛/ WD 1fiDjg'i.˛/C qijbij.˛/:

Proposition 11.3 The matrix �.˛; t/ equals eM.˛/t .

Just as in the Lévy case, we can now construct MAP-driven queues, which are
stable under the (intuitively conceivable) assumption that

EX1 D
dX

iD1
�iEX.i/1 C

X

i6Dj

�iqijEUij < 0:

Having defined these, all issues we have addressed so far for the Lévy-driven queue
(stationary distribution, transience, busy periods, tail probabilities, etc.) can be
studied for the MAP-driven queue as well. We do not give an exhaustive overview of
all results in this area here, as a vast body of literature has focused on this topic; we
rather restrict ourselves to a relatively short account of the main findings concerning
the stationary distribution.

In Asmussen and Kella [25] martingale methods have been developed in order
to analyze, for X 2 S MAPC , the joint distribution of the steady-state workload Q
and the steady state of the Markov chain J. Under the stability condition identified
above, the transform of the Q reads

E.e�˛Q; J D j/ D �
˛`.M.˛//�1

�
j
; (11.1)

where ` is a row vector. It is interesting to compare the structure of this result with
the Pollaczek–Khintchine formula of Thm. 3.2: observe that it is essentially its MAP

counterpart.
Without formally proving (11.1), we now explain why a formula of this structure

comes out. To this end, define �j.�/ as the Laplace transform of the steady-state
workload at epochs at which the modulating Markov chain enters state j. Suppose
the modulating Markov chain just entered state i, and we consider what has
happened in the exponentially distributed time (with mean Oq�1j , with Oqj WD �qjj

if the modulating Markov chain came from state j) that it spent in the previous state.
Relying on Thm. 4.1, �i.˛/ equals

Z 1

0

X

j6Di

Oqj

Oqj � 'j.˛/

�

e�˛x � ˛

 j.Oqj/
e� j.Oqj/x

��
qji

Oqj

�

bji.˛/fj.dx/;

where fj.�/ is the density of the stationary workload at epochs that the modulating
Markov chain enters state j. We thus obtain the identity

�i.˛/ D
X

j6Di

�
qji

Oqj

�

bji.˛/
Oqj

Oqj � 'j.˛/

�

�j.˛/ � ˛

 j.Oqj/
�j. j.Oqj//

�

:
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Further manipulation of this equation leads to a matrix equation that has the
structure of (11.1).

The authors of [25] do not succeed in uniquely characterizing the vector `; it
can be seen that

P
i `i D EX1 though. We also refer to [118] for related results. In

D’Auria et al. [67] a method is developed that does determine `: In this approach,
an important role is played by the first passage time process �.x/ WD infft � 0 W
X.t/ D �xg. It is readily seen that J�.x/ is a time-homogeneous Markov process
(as a function of x), say with generator �. The main finding of [67] is a way to
identify this matrix, relying on the theory of Jordan chains. Then ` can be expressed
in terms of the invariant that is associated with �; in the proof of the key result a
lemma on the number of zeros of the determinant of M.˛/ plays a crucial role [114].
A different approach is described in [83]. Reference [68] covers the special case that
all the X.i/ correspond to Brownian motions (with a specific focus on finite-buffer
models).

Dieker and Mandjes [83] and Ivanovs et al. [114] also deal with the case of
X 2 S MAP� . Then Q has a phase-type distribution, whose parameters again follow
directly with the techniques developed in [114]; this can be viewed as the MAP

counterpart of the exponential distribution identified in Thm. 3.3. In that paper, the
case of doubly reflected (i.e. finite-buffer-capacity) Markov-modulated Brownian
motion is also dealt with. Other important papers are e.g. [53, 148, 186, 187], and
various parts of the monograph [179].

The rest of this section addresses the case that, in self-evident notation, X 2
L MAP. This requires that all X.i/ are in L , and that all random variables Uij are
light tailed as well.

As we saw for the ordinary Lévy-driven queue, in order to obtain the workload
asymptotics the alternative measure Q played a pivotal role. In that case the
definition of Q rested on the (positive) solution ! of Ee!X1 D 1. The first question
is how such a measure Q can be constructed for X 2 L MAP. This can be done as
follows.

• Let the eigenvalue/eigenvector pair .e.#/;h.#// solve the following eig-
ensystem:

M.�#/ h.#/ D e.#/ h.#/:

Due to Perron–Frobenius theory [40, 195], it holds that M.�#/ has a real
eigenvalue e.#/ with maximal real part, and the corresponding right eigenvector
is componentwise positive; in the sequel, we refer to this (specific) eigen-
value/eigenvector pair as .e.#/;h.#//. With Nh.#/ denoting the left eigenvector
of the above eigensystem, it is readily [19, Cor. XI.2.3] checked that�ij.�#; t/ �
hi.#/Nhj.#/ete.#/ for t large.

• Let ! > 0 solve the equation e.!/ D 0; this eigensystem-related equation is the
MAP counterpart of Ee!X1 D 1. Define the alternative measure Q as follows; it
can be regarded as an exponentially twisted version of the original measure P,
with parameter !.
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- With the Lévy process X.i/ under P being characterized by 'i.˛/, under Q it
corresponds to the Laplace exponent

'
Q

i .˛/ D 'i.˛ � !/� 'i.�!/:

More specifically, with X.i/ under P being defined through .di; �
2
i ; ˘i/, (10.1)

tells us that under Q it corresponds to the triplet

�

di C �2i ! C
Z 1

�1
x.e!x � 1/˘i.dx/; �2i ; e

!x˘i.dx/

�

:

- The distribution of the jumps Uij is changed under Q such that the Laplace–
Stieltjes transform of Uij becomes

bQ

ij .˛/ WD bij.˛ � !/

bij.�!/ :

- Under Q, the modulating Markov chain has transition rates

qQ

ij WD qij
hj.!/

hi.!/
bij.�!/

for i 6D j, and qQ

ii WD qii C 'i.�!/: It is readily verified that the row sums of
the resulting generator matrix equal 0, as, using that M.�!/h.!/ D 0,

X

j6Di

qQ

ij D
X

j6Di

qij
hj.!/

hi.!/
bij.�!/

D 1

hi.!/

0

@'i.�!/hi.!/C
dX

jD1
qij bij.�!/ hj.!/

1

A � qii � 'i.�!/

D �qii � 'i.�!/ D �qQ

ii :

Observe that X under Q is again a MAP.
Now let ! > 0 solve the equation e.!/ D 0:We will show that this ! essentially

determines the behavior of P.Q > u/ for u large. To this end, it is first observed that

Q
dD sup

t�0
.�Xt/ D � inf

t�0Xt;

where J0 is distributed according to �. This is only equal in distribution to supt�0 Xt

if .Xt/t is reversible, which is the case if the modulating Markov chain is, and in
addition bij.˛/ D bji.˛/ for all pairs .i; j/.
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Based on the above, however, we do have, with . QXt/t denoting the time-reversed
counterpart of .Xt/t,

Q
dD sup

t�0
QXt:

As . QXt/t is again a MAP (with the transition rate matrix .qij/
d
i;jD1 replaced by its time-

reversed version, and Uij by Uji), from now on we focus on analyzing, for a given
MAP .Xt/t,

P

 

sup
t�0

Xt > u

!

D
dX

iD1
�iqi.u/; with qi.u/ WD P

 

sup
t�0

Xt > u

ˇ
ˇ
ˇ
ˇ
ˇ

J0 D i

!

:

To this end, let us consider the probability qi.u/ for a given i 2 f1; : : : ; dg. It is
first noted that under Q the MAP has a positive drift, so that qi.u/ equals the value of
the likelihood ratio at the epoch the level u is first crossed, which we denote as before
by �.u/. Now suppose we ‘simulate’ X under Q until �.u/: Let the modulating
Markov chain make N jumps before �.u/, and let it visit states i0 D i; i1; : : : ; iN ,
where the amount of time it stays in these states is t0; t1; : : : ; tN , with

PN
nD0 tn >

�.u/: Also, let vn be the jump size at the nth transition of the modulating Markov
chain, and wn be the increment of the Lévy process X.in/ between tn and tnC1:

The likelihood ratio is the product of the following factors.

(i) First there is the contribution of the jumps of the modulating Markov chain:

L1 D
�

qi0;i1 � � � qiN�1;iN

qi0 � � � qiN�1

�, 
qQ

i0;i1
� � � qQ

iN�1;iN

qQ

i0
� � � qQ

iN�1

!

D hiN .!/

hi0 .!/

N�1Y

nD0

 

bin;inC1
.�!/qin

qQ

in

!

;

where qi WD �qii.
(ii) Then there is the contribution of the exponentially distributed sojourn times in

the states i0 D i; i1; : : : ; iN . This yields, with NtN WD �u �PN�1
nD0 tn,

L2 D
0

@
N�1Y

nD0

qQ

in
e�qQin tn

qine�qin tn

1

A e�qQiN Ntn

e�qiN Ntn I

the last factor differs from the terms 0 up to N � 1, as the only information
used is that the level u is reached before the exponential clock (with rate qQ

iN
)

expires.
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(iii) The third contribution reflects the jumps at transition epochs of the modulating
Markov chain:

L3 D
NY

nD1

e�!vn

bin�1;in.�!/
:

(iv) Finally there is the contribution due to the increments of the Lévy processes:
with NwN the increment of the Lévy process X.iN / between

PN�1
nD0 tn and the

stopping time �.u/,

L4 D
 

N�1Y

nD0
e�!wnC'in .�!/tn

!

e�! NwNC'iN .�!/NtN :

It is elementary to verify that the product of these four factors equals

L D hiN .!/

hi0 .!/
exp

 

�!
 

NX

nD1
vn C

N�1X

nD0
wn C NwN

!!

:

Now realize that, due to the very definition of �.u/,

NX

nD1
vn C

N�1X

nD0
wn C NwN > u:

We have now proved, with Hi WD maxjD1;:::;d hj.!/=hi.!/ < 1, the following
result, which can be viewed as the counterpart of Cor. 8.1.

Proposition 11.4 Let X 2 L MAP. For any u > 0, and i 2 f1; : : : ; dg,

qi.u/ � Hie
�!u:

It is even possible to derive the exact asymptotics of qi.u/ using the standard
change-of-measure relation qi.u/ D EQL:

qi.u/ D 1

hi.!/
EQ

�
hJ�.u/ e�!X�.u/

� I

this is the counterpart of identity (8.3). It can be verified [19, Thm. XIII.8.3] that
under Q the overshoot Ru WD X�.u/ � u has a proper limiting distribution as u ! 1,
say R, and so has J�.u/, say J. It leads to the following statement.

Proposition 11.5 Let X 2 L MAP. For any u > 0,

qi.u/ � 1

hi.!/
e�!u

EQ

�
hJ e�!R

�
:
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As mentioned earlier, the literature on light-tailed MAPs is vast. Several special
cases have been dealt with in great detail. The most prominent among these is the
case of the Markov fluid input model. In this model the Lévy processes X.1/; : : : ;X.d/

correspond to deterministic drifts (with rates, say, r1; : : : ; rd), and the jumps Uij are
absent; this model was predominantly motivated by applications in communication
networks. Under the obvious stability constraint

Pd
iD1 �iri < 0, techniques have

been developed to compute the stationary workload P.Q > u/; the computational
effort needed amounts to solving a d-dimensional eigensystem, and in addition a
system of linear equations should be solved to identify a set of unknown coefficients.

In the first contributions (see Anick et al. [10] and Kosten [140]), specific
attention was paid to the situation that the Markov fluid source corresponds to
the superposition of multiple (stochastically identical) two-state Markov fluids;
the idea is that this models the situation of multiple users feeding traffic into a
network element. In later contributions (see Kesidis et al. [132] and Mitra [165]),
a substantial amount of attention has been paid to the asymptotics of P.Q > u/
for u large, which are of the form Ce�!u; as we saw above. Reference [159] is
an early paper on identifying the exponentially twisted version of a MAP. In e.g.
[87, 99, 131, 132, 214] the relation

e.#/ D lim
t!1

1

t
logEe#Xt

is explored in great detail, giving rise to the concept of effective bandwidth.

Exercises

Exercise 11.1 Let X correspond to Bm.d; �2/:

(a) Prove that, for d 6D 0,

W.0/.x/ D 1

d

�
1 � e�2.d=�2/x

�
:

(b) Consider the case of a finite-buffer queue with buffer size K > 0. Determine,
for u between 0 and K, P.Q < u/ for d 6D 0:

(c) Prove that for d D 0 it holds that P.Q < u/ D u=K for u 2 Œ0;K�: Give an
intuitive explanation of this fact.

Exercise 11.2 Let .Xt/t be a compound Poisson process with a positive drift of
rate 1. The downward jumps arrive according to a Poisson process with rate � and
have an exponentially distributed size with mean ��1: Prove that, under � ¤ �,

W.0/.x/ D 1C �

� � �
�
1 � e�.���/x

�
:
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Exercise 11.3 In this exercise we analyze .Q j Q > 0/ for X 2 S�, where it is
assumed that the initial workload Q0 equals x > 0; see Section 6.4. As it turns out,
the steady-state workload in the finite-buffer queue plays an important role here.
Let T be an exponential random variable with mean 1=q, independent of the driving
Lévy process.

(a) Use the identity (6.8) to show that

Ex

�
e�ˇQT 1fQ

T
>0g
�

D q

�
W.q/.x/

ˇ C �.q/
� e�ˇx

Z x

0

eˇyW.q/.y/dy

�

:

(b) Use Prop. 11.1 to show that

lim
t!1Ex

�
e�ˇQ

t j Q
t
> 0

�
D �.ˇ/

�.0/
;

where

�.ˇ/ WD 1

ˇ C �.0/
�
Z x

0

e�ˇy.1 � �x.y//dy:

Exercise 11.4 Prove that the superposition of MAPs is again a MAP.

Exercise 11.5 Let X correspond to a d-dimensional Markov fluid with 'i.˛/ D
�ri˛: Define

Fi.t; x/ D P.Qt < x; Jt D i/:

(a) Prove that

Fi.tCt; x/ D Fi.t; x�ri t/

0

@1 �
X

j 6Di

qijt

1

AC
X

j 6Di

Fj.t; x�rjit/ qjitCo.t/;

fort # 0, with rji the input rate in the interval Œt; t Ct/
(Note: The parameter rji will turn out to be irrelevant in (b) and (c)).

(b) Show that this entails that

@

@t
Fi.t; x/C ri

@

@x
Fi.t; x/ D

dX

jD1
qjiFj.t; x/:

(c) Now we consider the stationary workload. Let Fi.x/ WD P.Q < x; J D i/. Argue
that under the stationarity condition

Pd
iD1 �iri < 0 the distribution functions
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Fi.x/ satisfy the following system of linear differential equations:

riF
0
i.x/ D

dX

jD1
qjiFj.x/;

or, in matrix notation, with R WD diagfr1; : : : ; rdg,

F0.x/ D R�1Q0F.x/

(with Q0 denoting the transpose of Q), assuming that none of the ri’s equal 0.
(d) Show that

F.x/ D
dX

jD1
cje

�jxv.j/;

where the .�j; v
.j// are the eigenvalue–eigenvector pairs of the matrix M WD

R�1Q0 and cj are constants.
(e) Argue why Re.�j/ > 0 implies that cj D 0.
(f) Argue why for all i such that ri > 0 we have that Fi.0/ D 0.

(Note: Let the number of states with ri < 0 be N�, so that the number of states
with ri > 0 is d � N�. It turns out that the number of j such that Re.�j/ > 0 equals
N�, so that there are as many constraints as coefficients cj; see e.g. [67, 114, 203].)

Exercise 11.6 Let X correspond to a two-state Markov fluid, that is,

Q D
��� �

� ��
�

;

�
'1.˛/

'2.˛/

�

D
��r1˛

�r2˛

�

:

(a) Find the stability condition.
(b) Determine, under the stability condition, P.Q > u/ for u > 0, using the

preceding exercise. And what is P.Q D 0/?



Chapter 12
Lévy-Driven Tandem Queues

In this chapter we analyze a system consisting of two concatenated Lévy-driven
queues, a so-called Lévy-driven tandem queue. This model, being a natural exten-
sion of the one-node queueing system, can be regarded as a building block for more
complex network architectures that will be concentrated on in Chapter 13.

We first informally describe what we mean by a Lévy-driven tandem queue. We
consider a two-node system, in which the output of the first (upstream) queue is fed
into the second (downstream) queue. Let the service rate at the upstream node be
r1, and at the downstream node be r2; both rates are positive and constant. In order
to avoid the downstream node becoming degenerate, it is assumed throughout that
r2 < r1. We suppose that a Lévy process Jt feeds into the first queue, with EJ1 < r2
to ensure stability. We assume that no additional work enters the second queue. The
tandem system is depicted in Fig. 12.1.

In a queue with compound Poisson input for instance, there is a logical and
intuitive concept of output: traffic enters the second queue at a rate r1 during busy
periods of the first queue, and at a rate 0 during idle periods. Notice, however, that
such a notion cannot always be naturally defined; for instance, this is true of the
Brownian case as a consequence of the fact that the notion of busy periods and idle
periods is problematic.

This conceptual issue problem can be remedied as follows. Since both the
transient and the stationary scenarios follow the same reasoning, we now focus
on the argument for the system in steady state (the transient case being treated in
Section 12.3). Let Q.1/ and Q.2/ be the stationary workloads at the first and second
nodes respectively, and let Q denote the total stationary workload present in stations
1 and 2 together. The stationary workload of the upstream queue can be defined in

© Springer International Publishing Switzerland 2015
K. Dębicki, M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext,
DOI 10.1007/978-3-319-20693-6_12
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Fig. 12.1 Tandem network r1 r2J (1)
t

1 2

the usual way: with X.1/t WD Jt � r1t, we have due to (2.5) that Q.1/ is distributed as
supt�0 X.1/t . A crucial observation is that, in addition, the total queue behaves as a
single queue fed by Jt, but emptied at rate r2 [31, 94, 190]:

Q.1/ C Q.2/ dD sup
t�0

X.2/t ;

where X.2/t WD Jt � r2t. Then we can reconstruct Q.2/ as the difference between
the total workload and the workload in the upstream queue, so as to obtain the
distributional equality

.Q.1/;Q.2//
dD
 

sup
t�0

X.1/t ; sup
t�0

X.2/t � sup
t�0

X.1/t

!

D � NX.1/; NX.2/ � NX.1/� I (12.1)

here we use the short notation NX.i/ D supt�0 X.i/t . In line with the notation introduced
in Chapter 2, we define for J 2 SC, the Laplace exponents

�i.˛/ WD logEe�˛X
.i/
1 ;

for i D 1; 2, and  i.�/ D ��1i .�/. Analogously, for J 2 S�, we let

˚i.ˇ/ WD logEeˇX
.i/
1 ;

for i D 1; 2 be the cumulants, and �i.q/ WD supfˇ � 0 W ˚i.ˇ/ D qg be their right
inverses.

We start this chapter by providing in Section 12.1 a useful representation for
the stationary workload distribution of the downstream queue; this result enables
us to find closed-form expressions for the corresponding Laplace transform in
terms of the model primitives, as shown in Section 12.2. Then, in Section 12.3 we
consider the transient case. Again distinguishing between light-tailed and heavy-
tailed scenarios, the workload asymptotics are presented in Section 12.4. The
chapter is concluded in Section 12.5 with results on the joint distribution of the
stationary workloads in the upstream and downstream queue.
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12.1 Representation for Stationary Downstream Workload

In this section we focus on distributional properties of the stationary downstream
queue; in particular, we derive a reduction property describing the distribution of
Q.2/. To make the notation more compact, in the sequel we let, for S 
 R,

NX.i/S WD sup
t2S

X.i/t :

Based on (12.1), we have that

P.Q.2/ > u/ D P
� NX.2/ � NX.1/ > u

� D P

� NX.2/Œ0;1/ � NX.1/Œ0;1/ > u
�
: (12.2)

We note that despite this explicit formula, its direct applicability is limited, since
.X.1/t /t�0 and .X.2/t /t�0 are highly dependent; e.g. note that X.1/t � X.2/t D .r2 �
r1/t. However, under the assumption that J is a Lévy process, a compact alternative
representation can be deduced, as we show in this section.

In the first place, it can be shown that we can ‘shrink’ the intervals over
which both suprema in (12.2) are taken: rather than a difference of two suprema
over Œ0;1/, we thus obtain the difference of two suprema over disjoint, adjacent
intervals. This is done as follows.

For given u > 0, we define tu WD u=.r1 � r2/, to be interpreted as the
minimal time needed for the second queue to exceed level u, starting empty. Let
t?i WD arg supt2Œ0;1/ X.i/t , for i D 1; 2:

• We first show that NX.2/Œ0;1/ � NX.1/Œ0;1/ > u implies t?2 � tu. To show this, let us
suppose that t?2 < tu: But then we obtain a contradiction:

NX.2/Œ0;1/ � NX.1/Œ0;1/ D sup
t2Œ0;tu/

.Jt � r2t/ � sup
s�0
.Js � r1s/

� sup
t2Œ0;tu/

..Jt � r2t/ � .Jt � r1t// D u:

As a consequence, we replace NX.2/Œ0;1/ by NX.2/Œtu;1/.
• Notice that

ft?1 > tug �
n NX.2/Œtu;1/ � NX.1/Œ0;1/ > u

o
�
n NX.2/Œtu;1/ � NX.1/Œ0;tu � > u

o
; (12.3)

where the second inclusion is trivial, and the first inclusion an immediate
consequence of the fact that, given that t?1 > tu,

NX.2/Œtu;1/ � NX.1/Œ0;1/ � .Jt?1
� r2t

?
1 / � .Jt?1

� r1t
?
1 / > u:
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• The first inclusion in (12.3) implies that

P

� NX.2/Œtu ;1/ � NX.1/Œ0;1/ > uI t?1 > tu
�

D P
�
t?1 > tu

�
:

Due to the second inclusion in (12.3),

P

� NX.2/Œtu ;1/ � NX.1/Œ0;1/ > uI t?1 > tu
�

� P

� NX.2/Œtu ;1/ � NX.1/Œ0;tu � > uI t?1 > tu
�

� P
�
t?1 > tu

�
:

Combining the previous two displays yields

P

� NX.2/Œtu ;1/ � NX.1/Œ0;1/ > uI t?1 > tu
�

D P

� NX.2/Œtu;1/ � NX.1/Œ0;tu � > uI t?1 > tu
�
:

(12.4)

• From (12.4) and the trivial relation

P

� NX.2/Œtu;1/ � NX.1/Œ0;1/ > uI t?1 � tu
�

D P

� NX.2/Œtu;1/ � NX.1/Œ0;tu � > uI t?1 � tu
�

we find

P
�
Q.2/ > u

� D P

� NX.2/Œtu;1/ � NX.1/Œ0;1/ > u
�

D P

� NX.2/Œtu;1/ � NX.1/Œ0;1/ > uI t?1 � tu
�

C P

� NX.2/Œtu;1/ � NX.1/Œ0;1/ > uI t?1 > tu
�

D P

� NX.2/Œtu;1/ � NX.1/Œ0;tu� > uI t?1 � tu
�

C P

� NX.2/Œtu;1/ � NX.1/Œ0;tu � > uI t?1 > tu
�

D P

� NX.2/Œtu;1/ � NX.1/Œ0;tu� > u
�
: (12.5)

Realize that the reduction property (12.5) holds irrespective of the underlying
process J being Lévy or not. Assuming J is Lévy, the probability P.Q.2/ > u/ can
be simplified even further. Recalling that X.1/tu � X.2/tu D �u, we have

NX.2/Œtu;1/ � NX.1/Œ0;tu � D
� NX.2/Œtu ;1/ � X.2/tu

�
�
� NX.1/Œ0;tu � � X.1/tu

�
C u:

In view of the stationarity and independence of the increments of J,

NX.2/Œtu;1/ � X.2/tu
dD sup

t2Œ0;1/
X.2/t

is independent of

NX.1/Œ0;tu � � X.1/tu
dD sup

t2Œ0;tu �
�X.1/t :
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This leads to the following representation, which is originally due to Dȩbicki
et al. [76].

Theorem 12.1 For each u > 0, and . LX.1/t /t�0; . LX.2/t /t�0 denoting independent
copies of .X.1/t /t�0, .X.2/t /t�0 respectively,

P.Q.2/ > u/ D P

 

sup
t2Œ0;1/

LX.2/t > sup
t2Œ0;tu �

� LX.1/t

!

:

12.2 Steady-State Workload of the Downstream Queue

As we demonstrate now, direct application of Thm. 12.1 to the class of spectrally
one-sided input processes yields an expression for the Laplace–Stieltjes transform
Ee�˛Q.2/ . In the case that J is spectrally positive, we in addition obtain a representa-
tion in the spirit of (3.2). We also briefly comment on the case that the input process
is not necessarily spectrally one sided.

We first derive a result that holds for any Lévy process J, that is, at the moment
it is not yet required that X be spectrally one sided. Define �.1/.x/ WD infft � 0 W
X.1/t � �xg. Then, for each x � 0, using the notation of Thm. 12.1,

P

 

sup
t2Œ0;tu �

�X.1/t < x

!

D P
�
�.1/.x/ > tu

�
:

Obviously, supt2Œ0;1/ X.2/t
dD Q, as we saw above; recall that Q denotes the total

workload. Application of the above to Thm. 12.1 leads, after a few elementary
steps, to

Z 1

0

e�˛u
P.Q.2/ > u/du D

Z 1

0

e�˛u
Z 1

0

P
�
�.1/.x/ > tu

�
P.Q 2 dx/du

D .r1 � r2/
Z 1

0

Z 1

0

e�˛.r1�r2/vP
�
�.1/.x/ > v

�
dv P.Q 2 dx/

D 1

˛

�

1 �
Z 1

0

Z 1

0

e�˛.r1�r2/vP
�
�.1/.x/ 2 dv

�
P.Q 2 dx/

�

D 1

˛

�
1 � Ee�˛.r1�r2/�.1/.Q/

�
:

As a consequence we obtain the following representation for the steady-state
workload in the downstream queue.
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Theorem 12.2 For ˛ � 0,

Ee�˛Q.2/ D Ee�˛.r1�r2/�.1/.Q/:

It turns out that for one-sided Lévy inputs one can express Ee�˛Q.2/ more
explicitly. To this end, in the rest of this section we tacitly assume that

�.1/.x/
dD infft � 0 W X.1/t < �xgI (12.6)

cf. �.x/ as introduced in Chapter 2. Assumption (12.6) is satisfied for all J 2
SC, since 0 is regular for .0;1/ for the class SC; this is easily checked from
the definition of regularity [146, Def. 6.4]. The case J 2 S� is more subtle,
although (12.6) still holds for a wide class of spectrally negative Lévy processes,
including ˛-stable Lévy motions. We refer e.g. to [60] or [161] for explicit criteria
under which (12.6) holds.

Spectrally positive case—Recall that in the spectrally positive case we have that,
by combining (12.6) with Lemma 6.2, Ee�#�.1/.x/ D e�x 1.#/. As a consequence we
obtain

Ee�˛Q.2/ D Ee� 1.˛.r1�r2//Q; (12.7)

which, in view of Thm. 3.2, gives the following result.

Theorem 12.3 Let J 2 SC. For ˛ � 0,

Ee�˛Q.2/ D �EX.2/1
r1 � r2

 1.˛.r1 � r2//

˛ �  1.˛.r1 � r2//
:

Now define N�.1/.x/ WD .r1�r2/�.1/.x/. It follows from Lemma 6.2 that the process
( N�.1/.x//x�0 is an increasing Lévy process with Ee�# N�.1/.x/ D e�x�.#/, where �.#/ WD
 1..r1 � r2/#/. Thm. 12.3 can be written in the form [76]

Ee�˛Q.2/ D .1 � %/

1X

iD1
%i�1 .`H.˛//

i ;

where H.�/ is a distribution function such that H.x/ D 0 for x < 0 and

`H.˛/ WD
Z 1

0

e�˛vdH.v/ D �.˛/

%˛
; with % WD lim

˛#0
�.˛/

˛
D r1 � r2

�EX.1/1
I

cf. [209, Eqn. (23)]. As a result, we get the following counterpart of (3.2) for the
downstream queue.



12.2 Steady-State Workload of the Downstream Queue 167

Proposition 12.1 Let J 2 SC. For u � 0,

P.Q.2/ � u/ D .1 � %/

1X

iD1
%i�1H?i.u/:

Remark 12.1 The distribution H.�/ has a natural representation in the language of
the Lévy measure associated with ( N�.1/.x//x�0. As it is an increasing process, there
is no Brownian term. In other words, we can let .d; 0;˘/ be the characteristic triplet
corresponding to this Lévy process, so that

�.˛/ D ˛d C ˛

Z 1

0

e�˛x N̆ .x/dx;

where N̆ .x/ WD ˘..x;1// is the tail of the Lévy measure and

H.t/ D d

%
C 1

%

Z t

0

N̆ .x/dx

for all t � 0. In addition, % D d C R1
0

N̆ .x/dx. }
Following [76], Thm. 12.1 enables us to find the exact distribution function of

the downstream workload for several specific input processes.

Example 12.1 Suppose J corresponds to Bm.0; 1/. Then the density function of
supt2Œ0;tu � �X.1/t equals

d

dx
P

 

sup
t2Œ0;tu �

�X.1/t � x

!

D
s

2

�tu
exp

�

� .x � r1tu/2

2tu

�

� 2r1e
2r1x

�

1 � ˚N

�
x C r1tup

tu

��

I

see e.g. [35]. Combining this with Example 3.1 and Thm. 12.1 yields, after standard
calculus, for u � 0,

P.Q.2/ > u/ D r1 � 2r2
r1 � r2

e�2r2u˚N

�
r1 � 2r2p

r1 � r2

p
u

�

(12.8)

C r1
r1 � r2

�

1 � ˚N

�
r1p

r1 � r2

p
u

��

;

with, ˚N.�/, as before, the distribution function of a standard normal random
variable. }
A similar argument also works for the case of J 2 CP.0; �; b.�// (so that X.i/ 2
CP.ri; �; b.�// for i D 1; 2). However, in this case, P.Q.2/ > u/ is expressed in
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terms of a convolution involving Q and supt2Œ0;tu � �X.1/t , and for the corresponding
distribution functions only series representations are available; see [76].

Spectrally negative case—Using the same line of reasoning for X 2 S� as for
X 2 SC, and using Thm. 3.3, we obtain

Ee�ˇQ.2/ D ˇ0

Z 1

0

Ee�ˇ.r1�r2/�.1/.x/e�ˇ0xdx;

where ˇ0 D �2.0/ > 0 solves ˚2.ˇ0/ D 0, recalling that �i.�/ denotes the right
inverse of ˚i.�/. Now invoking Lemma 6.3, with 	 WD ˇ.r1 � r2/ we obtain

Ee�ˇQ.2/ D ˇ0 � 1
ˇ0

�

1 � 	

�1.	/
� �1.	/ � ˇ0
	 � ˚1.ˇ0/

�

I

recall that we assume (12.6). We thus find

Ee�ˇQ.2/ D ˇ0ˇ.r1 � r2/� �1.ˇ.r1 � r2//˚1.ˇ0/

�1.ˇ.r1 � r2//.ˇ.r1 � r2/� ˚1.ˇ0//
:

Realizing that ˚1.ˇ0/ D ˚2.ˇ0/� .r1� r2/ˇ0 D �.r1� r2/ˇ0, this eventually leads
to the following result.

Theorem 12.4 Let J 2 S�. For ˇ � 0,

Ee�ˇQ.2/ D �1.ˇ.r1 � r2//C ˇ

�1.ˇ.r1 � r2//

ˇ0

ˇ0 C ˇ
:

General case—The results that can be obtained using the representation found
in Thm. 12.1 for the spectrally two-sided case are somewhat implicit; later, in
Section 12.5 we develop an alternative technique that leads to an explicit formula
for the transform of the steady-state workload in the downstream queue in terms of
the Wiener–Hopf factors.

Here we use the representation of Thm. 12.1, and propose the following
approach. Let the random variable V be distributed as the all-time maximum
NX.2/ D supt2Œ0;1/ X.2/t , and let

W.u/
dD sup

t2Œ0;	u�
�X.1/t ;

independently of V , with 	 WD .r1 � r2/�1: Then, appealing to Thm. 12.1, we have
that P.Q.2/ > u/ D P.V � W.u/ > 0/: Observe now that this means that if we are
able to compute

F.˛; u/ WD Ee˛i.V�W.u// D Ee˛iV
Ee�˛iW.u/;
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then we can obtain P.Q.2/ > u/ by performing numerical Fourier inversion.
Unfortunately, F.˛; u/ cannot be determined in closed form, but as we point out
below, we can compute the double transform

OF.˛; ˇ/ WD
Z 1

0

e�ˇu
Ee˛iV

Ee�˛iW.u/du D Ee˛iV
Z 1

0

e�ˇu
Ee�˛iW.u/du;

from which (obviously) P.Q.2/ > u/ can be determined by performing a double
numerical inversion.

We now evaluate OF.˛; ˇ/. Using Thm. 3.4, we can express Ee˛iV D Ee˛i NX.2/ in
terms of the Wiener–Hopf functions. In addition,

Z 1

0

e�ˇu
Ee�˛iW.u/du D 1

ˇ

Z 1

0

ˇ

	
e�.ˇ=	/v E exp

�

˛i inf
t2Œ0;v� X

.1/
t

�

dv

D 1

ˇ

Z 1

0

ˇ

	
e�.ˇ=	/v E exp

 

˛i

 

X.1/v � sup
t2Œ0;v�

X.1/t

!!

dv

D 1

ˇ
E exp

 

˛i

 

X.1/T � sup
t2Œ0;T�

X.1/t

!!

;

with T exponentially distributed with mean 	=ˇ (independent of the driving Lévy
process). Again using Thm. 3.4, this quantity can be expressed in terms of Wiener–
Hopf functions.

12.3 Transient Downstream Workload

In this section we study the transient workload of the downstream queue in our
tandem system. The goal is to analyze Q.2/

t , assuming that at time 0 the system
starts off empty (i.e. Q.1/

0 D Q.2/
0 D 0). Again we primarily focus on spectrally

one-sided cases.
Let Q.1/

t and Q.2/
t denote, respectively, the up- and downstream workloads of the

tandem network at time t > 0, provided that .Q.1/
0 ;Q

.2/
0 / D .0; 0/. By

Qt WD Q.1/
t C Q.2/

t

we denote the total workload in the system at time t > 0. Then, repeating the
argument that was used for the stationary case (cf. Section 12.1), and using that

�
Q.1/

t ;Qt

�
dD
 

sup
s2Œ0;t�

X.1/s ; sup
s2Œ0;t�

X.2/s

!

;

we have the following counterpart of Thm. 12.1; see also Dȩbicki et al. [75].
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Theorem 12.5 For each u > 0, t > tu WD u=.r1� r2/, and . LX.1/t /t�0; . LX.2/t /t�0 being
independent copies of .X.1/t /t�0, .X.2/t /t�0 respectively,

P

�
Q.2/

t > u
�

D P

 

sup
s2Œ0;t�tu �

LX.2/s > sup
s2Œ0;tu�

� LX.1/s

!

:

The above representation allows us to characterize the transient downstream

workload in terms of the double transform Ee�˛Q
.2/
T , where T is exponentially

distributed with mean 1=# > 0 and ˛ > 0. This approach is consistent with the
analysis of the transient workload of the single queue, as given in Chapter 4.

Indeed, following the line of reasoning of [75], it is convenient to first write

Ee�˛Q
.2/
T D 1 � ˛#

Z 1

0

Z 1

0

e�˛u�#t
P

�
Q.2/

t > u
�

du dt:

Now observe that by Thm. 12.5,

Z 1

0

Z 1

0

e�˛u�#t
P

�
Q.2/

t > u
�

dt du D

D
Z 1

0

Z 1

tu

e�˛u�#t
P

 

sup
s2Œ0;t�tu �

LX.2/s > sup
s2Œ0;tu�

� LX.1/s

!

dt du

D
Z 1

0

Z 1

0

e�#we�u.˛C#=.r1�r2//

Z 1

0

P
�
�.1/.z/ > tu

�
P.Qw 2 dz/dw du; (12.9)

where we applied a change of variables (i.e. w WD t � tu). Again changing variables
(now v WD u=.r1 � r2/), the expression (12.9) turns out to equal

r1 � r2
# C ˛.r1 � r2/

	
Z 1

0

e�#w

�

1 �
Z 1

0

Z 1

0

e�v.#C˛.r1�r2//P
�
�.1/.z/ 2 dv

�
P.Qw 2 dz/

�

dw

D r1 � r2
# C ˛.r1 � r2/

1

#

�
1 � Ee�.#C˛.r1�r2//�.1/.QT /

�
:

This leads to the following counterpart of (12.7), which was originally derived in
[75].
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Theorem 12.6 Let J be a general Lévy process, and let T be exponentially
distributed with mean 1=# , independently of J. For ˛ � 0,

Ee�˛Q
.2/
T D #

# C ˛.r1 � r2/
C ˛.r1 � r2/

# C ˛.r1 � r2/
Ee�.#C˛.r1�r2//�.1/.QT /:

Similarly to the stationary case considered in Section 12.2, we can now derive

more explicit formulas for Ee�˛Q
.2/
T in the case that the Lévy input process J is

spectrally one sided. For this, in what follows, we again assume (12.6).

Spectrally positive case—Assume that J 2 SC. Following Thm. 12.6 it suffices
to focus on Ee�.#C˛.r1�r2//�.1/.QT /, which by Lemma 6.2, equals

Ee� 1.#C˛.r1�r2//QT :

Now, following Thm. 4.1 (recall that we assume x D 0), the above equals

 2.#/ �  1.# C ˛.r1 � r2//

.r1 � r2/. 1.# C ˛.r1 � r2//� ˛/

#

 2.#/
;

which straightforwardly leads to the following result [75].

Theorem 12.7 Let J 2 SC, and let T be exponentially distributed with mean 1=# ,
independently of J. For ˛ � 0,

Ee�˛Q
.2/
T D #

# C ˛.r1 � r2/

 1.# C ˛.r1 � r2//

 2.#/

 2.#/� ˛
 1.# C ˛.r1 � r2//� ˛

:

Spectrally negative case—Now consider J 2 S�; let T be exponentially
distributed with mean 1=q, independently of J. Observe that QT is exponentially
distributed with mean 1=�2.q/, as follows from the theory of Chapter 4. Hence,
relying on Thm. 12.6,

Ee�ˇQ
.2/
T D q

q C ˇ.r1 � r2/

C ˇ.r1 � r2/

q C ˇ.r1 � r2/

Z 1

0

�2.q/e
��2.q/s Ee�.qCˇ.r1�r2//�.1/.s/ds: (12.10)

On the other hand, Lemma 6.1 implies that, for ˇ > 0, q � 0,

Z 1

0

e�ˇx
Ee�q�.1/.x/dx D 1

ˇ

�

1 � q

�1.q/

�1.q/� ˇ
q � ˚1.ˇ/

�

:

Inserting the above into (12.10), we obtain the following result [75].
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Theorem 12.8 Let J 2 S�, and let T be exponentially distributed with mean 1=q,
independently of J. For ˇ � 0,

Ee�ˇQ
.2/
T D 1 � ˇ.r1 � r2/

�1.q C ˇ.r1 � r2//

�1.q C ˇ.r1 � r2// � �2.q/
q C ˇ.r1 � r2/� ˚1.�2.q//

:

12.4 Stationary Downstream Workload Asymptotics

The objective of this section is to characterize P.Q.2/ > u/ as u ! 1. We analyze
two regimes: light- and heavy-tailed input (leaving out the intermediate regime).

Light-tailed regime—To get a feel for the general form of the asymptotics, we
start by focusing on the special case of J corresponding to Bm.0; 1/. The more
general case of J 2 L is considered later.
Suppose J 2 Bm.0; 1/ and r1 > r2. Then, after some lengthy but standard calculus,
formula (12.8) leads to the following asymptotics, as u ! 1:

(i) if r1 > 2r2, then

P
�
Q.2/ > u

�
e2r2u ! r1 � 2r2

r1 � r2
I

(ii) if r1 D 2r2, then

P
�
Q.2/ > u

�p
ue2r2u ! 1p

2�r2
I

(iii) if r1 < 2r2, then

P
�
Q.2/ > u

�
�

u

r1 � r2

�3=2
exp

�
r21

2.r1 � r2/
u

�

! 1p
2�

4r2
r21.r1 � 2r2/2

:

One now distinguishes between two situations: with r?1 WD 2r2, there is qualitatively
different behavior for r1 � r?1 and r1 < r?1 . In the former case, that is, r1 � r?1 ,
the most likely overflow scenario of the downstream queue is that, upon overflow,
the upstream queue remains essentially empty while the downstream queue fills
(roughly at a rate r2 during 1=.2r2/ units of time; that is, the input rate of the tandem
queue is roughly 2r2). Thus the asymptotics in cases (i)–(ii) have essentially the
same shape as those of P.Q > u/ D e�2r2u. In the latter case, that is, r1 < r?1 , the
most likely scenario is that J feeds into the first queue at a rate of about r1 during tu
units of time.

The observed dichotomy extends to the more general class of light-tailed inputs.
Assuming J 2 SC \ L , following the setup given in Lieshout and Mandjes [152],
the asymptotics of Q.2/ can be analyzed by applying the Heaviside technique of
Recipe 8.1 to the Laplace–Stieltjes transform Ee�˛Q.2/ . Let Nt be the (non-zero) root
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of '1.˛/ D .r1 � r2/˛,

tb WD inf˛ '1.˛/

r1 � r2
;

and N̨ WD arg inf'1.˛/. Then ‘Heaviside’ gives that

(i) if ' 01.Nt/ > 0, then, as u ! 1,

P.Q.2/ > u/e�Ntu ! �EX.2/1 '
0
1.Nt/

.r1 � r2/.r1 � r2 � ' 01.Nt//
I

(ii) if ' 01.Nt/ D 0, then, as u ! 1,

P.Q.2/ > u/
p

ue�Ntu ! 1p
2�

�EX.2/1
r1 � r2

s
' 001 .Nt/

r1 � r2
I

(iii) if ' 01.Nt/ < 0, then, as u ! 1,

P.Q.2/ > u/u3=2e�tbu ! 1p
2�

�EX.2/1
.tb � N̨ /2

s
1

.r1 � r2/' 001 . N̨ / :

Heavy-tailed regime—We now study the asymptotics of the workload of the
downstream queue in the case J 2 SC\R: Before we state the main result, we first
relate these asymptotics to those of P.Q > u/. In view of the results of Chapter 8,
let us assume for the moment that

P.Q > u/ D u1��L.u/.1C o.1//

as u ! 1, where L.�/ is slowly varying at 1, with � 2 .1; 2/. Then, by (12.7),
Thm. 3.2, and ‘Tauber’,

Ee�˛Q.2/ � 1 D Ee� 1.˛.r1�r2//Q � 1

D 
 .2 � �/. 1.˛.r1 � r2///
��1L

�
1

 1.˛.r1 � r2//

�

.1C o.1//

D 
 .2 � �/%��1˛��1L
�
1

˛

�

.1C o.1//;

as ˛ ! 0, since lim˛!0  1.˛.r1 � r2//=˛ D % with % D .r1 � r2/=.�EX.1/1 /. Thus,
again using ‘Tauber’, we obtain the asymptotics, as u ! 1,

P.Q.2/ > u/ D %��1u1��L.u/.1C o.1//:
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The following theorem generalizes the above findings to the case of J 2 SC\R
(so we do not necessarily have that � 2 .1; 2/, but rather that � > 1), with '1.˛/ 2
R�.n; �/; see [152, Thm. 4.7].

Theorem 12.9 Let J 2 SC \ R, with '1.˛/ 2 R�.n; �/. Then, as u ! 1,

P.Q.2/ > u/ �
 

�EX.1/1
r1 � r2

!1��
P.Q > u/

� .�1/nC1

 .2 � �/

�

�EX.2/1

 
�EX.1/1
r1 � r2

!1��
u1��L.u/:

Example 12.2 Consider the case of J 2 S.˛; 1; 0/, with ˛ 2 .1; 2/. Then Prop. 8.2,
in combination with Thm. 12.9, straightforwardly provides us with the asymptotics

P.Q.2/ > u/ � 1


 .2� ˛/ cos.�.˛ � 2/=2/
1

r2

�
r1

r1 � r2

�1�˛
u1�˛;

as u ! 1. }
Example 12.3 Suppose J 2 CP.0; �; b.�// and P.B > x/ D x�ıL.x/ with ı > 1.
The combination of Example 8.1 with Thm. 12.9 immediately implies

P.Q.2/ > u/ �
�

r1 � �EB

r1 � r2

�1�ı
P.Q > u/

� �

r2 � �EB

�
r1 � �EB

r1 � r2

�1�ı
1

ı � 1
u1�ıL.u/;

as u ! 1. }

12.5 Bivariate Distribution

So far we have studied the distribution of the downstream workload. In this section
we set ourselves a more ambitious goal, that is, the joint distribution of Q.1/ and
Q.2/. It turns out that in order to derive the associated bivariate Laplace–Stieltjes
transform, the notion of splitting times is particularly useful.

Recall that .Q.1/;Q.2//
dD . NX.1/; NX.2/ � NX.1//, so that

Ee�˛Q.1/�N̨Q.2/ D Ee�.˛�N̨ / NX.1/�N̨ NX.2/ : (12.11)
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As a consequence, in order to study the joint distribution of both stationary
workloads, it suffices to characterize the joint distribution of . NX.1/; NX.2//: Also, we
let G.i/ WD arg supt�0 X.i/t be the (first) epoch that .X.i/t /t�0 attains its maximum, for
i D 1; 2. Before proceeding, we note that it is convenient to distinguish between two
scenarios:

• 0 is irregular for .sups2Œ0;t� X
.1/
s � X.1/t /t, which means that

R.1/ WD inf

(

t > 0 W sup
s2Œ0;t�

X.1/s D X.1/t

)

> 0

almost surely, or X.1/ is a compound Poisson process;
• 0 is regular for .sups2Œ0;t� X

.1/
s � X.1/t /t, that is, R.1/ D 0 almost surely.

Since both the cases follow the same idea and lead to the same formula, we analyze
only the first scenario, referring to Dȩbicki et al. [71] for details on the regular case.

Trivially,

Ee�˛ NX.1/�N̨ NX.2/ D Ee
�˛X

.1/

G.1/
�N̨X.2/

G.1/ e
�N̨

� NX.2/�X
.2/

G.1/

�

:

First consider the first exponential term in the expression in the right-hand side of
the previous display. Using that X.2/t � X.1/t D .r1 � r2/t > 0, we have

�˛X.1/
G.1/

� N̨X.2/
G.1/

D �.˛ C N̨ / NX.1/ � N̨ .r1 � r2/G
.1/:

In addition, with respect to the second exponential term, we remark that

NX.2/ � X.2/
G.1/

D sup
t�G.1/

X.2/t � X.2/
G.1/
;

where it is used that almost surely G.2/ � G.1/ (why?).
Then it is a crucial step to note that �˛X.1/

G.1/
� N̨X.2/

G.1/
and NX.2/ � X.2/

G.1/
are

independent; this property is justified in e.g. Bertoin [43, Lemma VI.6], or in [71,
Lemma 2.1]. These considerations straightforwardly yield

Ee�˛ NX.1/�N̨ NX.2/ D Ee�.˛CN̨ / NX.1/�N̨.r1�r2/G.1/Ee
�N̨ . NX.2/�X

.2/

G.1/
/
:

The factor Ee
�N̨. NX.2/�X

.2/

G.1/
/ can be computed upon choosing ˛ D 0 in the above

equality. Hence we find

Ee�˛ NX.1/�N̨ NX.2/ D Ee�.˛CN̨ / NX.1/�N̨.r1�r2/G.1/
Ee�N̨ NX.2/

Ee�N̨ NX.1/�N̨ .r1�r2/G.1/
:
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This expression can be further evaluated by using Thm. 3.4. To this end, let k.i/.#; ˛/
be defined as k.#; ˛/ in (3.10), but with Xt replaced by X.i/t , for i D 1; 2: We obtain

Ee�˛ NX.1/�N̨ NX.2/ D k.1/. N̨ .r1 � r2/; ˛ C N̨ /
k.1/. N̨ .r1 � r2/; N̨ /

k.2/.0; N̨ /
k.2/.0; 0/

:

By replacing ˛ by ˛ � N̨ , we thus find the following result, relying on the relation
between the all-time supremum and stationary workloads (12.11).

Theorem 12.10 Let J be a general Lévy process. For ˛; N̨ � 0,

Ee�˛Q.1/�N̨Q.2/ D k.1/. N̨ .r1 � r2/; ˛/

k.1/. N̨ .r1 � r2/; N̨ /
k.2/.0; N̨ /
k.2/.0; 0/

:

This theorem yields the following transform for the stationary workload in the
downstream queue:

Ee�˛Q.2/ D k.1/.˛.r1 � r2/; 0/

k.1/.˛.r1 � r2/; ˛/

k.2/.0; ˛/

k.2/.0; 0/
;

or, using Thm. 3.4 in combination with the fact that NX.2/ and Q D Q.1/ C Q.2/ have
the same distribution,

Ee�˛Q D k.1/.˛.r1 � r2/; ˛/

k.1/.˛.r1 � r2/; 0/
Ee�˛Q.2/ :

Now realize, again by Thm. 3.4, that

k.1/.˛.r1 � r2/; ˛/

k.1/.˛.r1 � r2/; 0/
D Ee�˛ NX

.1/
T˛ ;

with T˛ having an exponential distribution with mean .˛.r1 � r2//�1, independently
of the driving Lévy process J. We find the appealing identity, valid for general Lévy
input X,

Ee�˛Q D Ee�˛.Q.1/CQ.2// D Ee�˛ NX
.1/
T˛ Ee�˛Q.2/ :

Observe the connection with the representation of the stationary downstream
workload identified in Thm. 12.1.

Spectrally positive case—Combining the above with the known fact that for
X.i/ 2 SC,

Ee�˛G.i/�N̨ NX.i/ D �EX.i/1
 i .˛/ � N̨
˛ � 'i. N̨ / ; (12.12)
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for ˛; N̨ � 0, .˛; N̨ / ¤ .0; 0/, N̨ ¤  i.˛/, i D 1; 2 (see e.g. [43, Thm. VII.4])
directly leads to the following result; see [71]. Plugging in ˛ D 0, Thm. 12.3 is
recovered.

Theorem 12.11 Let J 2 SC. For ˛; N̨ � 0,

Ee�˛Q.1/�N̨Q.2/ D �EX.2/1 N̨
N̨ �  1. N̨ .r1 � r2//

 1. N̨ .r1 � r2// � ˛
.r1 � r2/ N̨ � '1.˛/

:

Spectrally negative case—The corresponding spectrally negative case can be
dealt with as well; cf. Section 12.2. To this end, it is recalled that [43, Thm. VII.4]
for X 2 S�,

Ee�ˇG.i/� Ň NX.i/ D �i.0/

�i.ˇ/C Ň :

We find the following result, in line with Thm. 12.4.

Theorem 12.12 Let J 2 S�. For ˇ; Ň � 0,

Ee�ˇQ.1/� ŇQ.2/ D �1. Ň.r1 � r2//C Ň
�1. Ň.r1 � r2//C ˇ

ˇ0

ˇ0 C Ň :

In Chapter 13 we show that the idea leading to Thm. 12.10 can be generalized to
considerably more complex network structures, including n-node tandem networks
and networks with a tree-type structure.

Having the formula for the bivariate transform of the workload, one may try to
use it to explicitly obtain the joint distribution of the workloads in steady state. Due
to the complexity of this task, it was solved in only a few special cases; see Lieshout
and Mandjes [151] and Mandjes [156]. In the following proposition we consider the
Brownian tandem case; see [151].

Proposition 12.2 Let J 2 Bm.0; 1/. For u; v � 0,

P
�
Q.1/ > u;Q.2/ > v

� D

D r2
r1 � r2

 

1 � ˚N

 
u C vr1=.r1 � r2/
p
v=.r1 � r2/

!!

C
 

1 �˚N

 
�u C vr1=.r1 � r2/
p
v=.r1 � r2/

!!

e�2r1u

C r1 � 2r2
r1 � r2

˚N

 
�u C v.r1 � 2r2/=.r1 � r2/

p
v=.r1 � r2/

!

e�2..r1�r2/uCr2v/:
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We refer to [151, 152] for a full analysis of the joint buffer overflow probabilities
of the type P.Q.1/ > Au;Q.2/ > .1� A/u/ as u ! 1, for a given A 2 .0; 1/, but we
present here the intuition for the case J 2 L : To this end, define

F WD
n
.˛; N̨ / 2 R

2 W Ee�˛Q.1/�N̨Q.2/ < 1
o
;

and NF WD F \ R
2�. Then it is easy to see, as follows, that F and NF are convex. Take

.˛1; N̨1/ and .˛2; N̨2/ in F. Take a � 2 .0; 1/. Then

E exp
��.�˛1 C .1 � �/˛2/Q

.1/ � .� N̨1 C .1 � �/ N̨2/Q.2/
�

� �Ee�˛1Q.1/�N̨1Q.2/ C .1 � �/Ee�˛2Q.1/�N̨2Q.2/ < 1;

due to straightforward convexity arguments. The convexity of NF follows immedi-
ately.

Given that the set NF is convex, due to the Chernoff bound, we have, for any
.˛; N̨ / 2 NF,

P
�
Q.1/ > Au;Q.2/ > .1 � A/u

� � Ee�˛Q.1/�N̨Q.2/eA˛uC.1�A/ N̨u:

Now taking logs of both sides and dividing by u, we obtain

lim sup
u!1

1

u
logP

�
Q.1/ > Au;Q.2/ > .1 � A/u

� � inf
.˛; N̨ /2NF

.A˛u C .1 � A/ N̨u/:

We conclude that finding an upper bound on the decay rate reduces to a convex
programming problem, which has attractive numerical properties. Interestingly, in
[152] it is shown that the upper bound on the decay rate identified above is actually
tight, relying on sample-path large deviations [69].

This concludes the chapter on tandem queues. Several other issues concerning
tandem Lévy systems, including steady-state characteristics and correlation analy-
sis, can be found in [120, 129].

Exercises

Exercise 12.1 Let J correspond to Bm.0; 1/.

(a) Check Eqn. (12.8).
(b) Verify the asymptotics of P.Q.2/ > u/ as u ! 1:

(c) Find EQ.2/ and Var Q.2/.
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Exercise 12.2 Compute the Laplace–Stieltjes transform of Q.2/ for the case that
J corresponds to Bm.0; 1/, both by using the result for spectrally positive J and
spectrally negative J.

Exercise 12.3 Use ‘Heaviside’ to identify the asymptotics of P.Q.2/ > u/ for
X 2 S�:

Exercise 12.4 Use ‘Tauber’ to verify Thm. 12.9.

Exercise 12.5 Argue that almost surely G.2/ � G.1/.

Exercise 12.6 Let J 2 SC, and let T be exponentially distributed with mean 1=# ,

independently of J. Find E e�˛Q
.2/
T , as # # 0.

Exercise 12.7 Consider J 2 S.˛; 1; 0/, with ˛ 2 .1; 2/. Find the exact asymptotics
of P.Q.2/ > u/, as u ! 1.

Exercise 12.8 Consider P.Q.1/ > Au;Q.2/ > .1 � A/u/ for A 2 .0; 1/ and u large.
Determine the set NF for J corresponding to Bm.0; 1/:



Chapter 13
Lévy-Driven Queueing Networks

In this chapter we consider a general class of Lévy-driven queueing networks,
which can be regarded as the natural extension of the tandem networks studied in
the previous chapter. First, in Section 13.1, we formally introduce these networks
through a Skorokhod formulation. Restricting ourselves to the class of tree net-
works, the solution of the corresponding Skorokhod problem can be found explicitly
(see Section 13.2), leading to the representation (in terms of transforms) for the
joint distribution of the stationary workloads, ages of busy periods, and ages of
idle periods (Section 13.3). Finally, we apply these findings to obtain insightful
expressions for the joint Laplace–Stieltjes transform of the workloads and ages of
busy periods for (i) multinode tandem networks (see Section 13.4), (ii) individual
nodes within a tree network (see Section 13.5), and (iii) priority queueing models
(see Section 13.6).

13.1 Definition, Multidimensional Skorokhod Problem

In this section we introduce the framework studied in this chapter. We consider
a network of n infinite-buffer queues, where ‘queues’ are to be interpreted as
reservoirs that can temporarily store workload, as previously in this monograph.
Queue i is externally fed by the process J.i/t , where it is assumed that

J WD .Jt/t D
�
.J.1/t ; : : : ; J.n/t /0

�

t

is an n-dimensional Lévy process, with J0 D 0 and EjJ1j < 1. We denote by r
the vector .r1; : : : ; rn/

0, where ri > 0 is the output rate of queue i. The interaction
between the queues is described by the so-called routing matrix P D �

pij
�

i;jD1;:::;n;
here pij 2 Œ0; 1� is the fraction of output of station i that is immediately transferred to
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station j, where a fraction 1 � P
j¤i pij leaves the system (after having been served

by queue i). We assume that pii D 0 (no ‘self-loops’) and, for evident reasons,Pn
jD1 pij � 1, for all i D 1; : : : ; n. We represent the resulting network by the triplet

.J; r;P/.
Having defined the queueing network’s input and routing, the next step is to

point out how to construct the associated n-dimensional workload process. We do
so in a way that is analogous to the procedure developed in Chapter 2 for the single
node, that is, setting up a Skorokhod formulation (which is done in this section), and
explicitly solving this (done in the next section).

Following Harrison and Reiman [109] (see also Robert [185]), the workload
process corresponding to the ‘driving triplet’ .J; r;P/, in the sequel denoted by

Q WD .Qt/t�0 D
�

Q.1/
t ; : : : ;Q.n/

t

�0
t�0 ;

is the solution of the following multidimensional Skorokhod problem:

(AC) Qt is given by Q0 D x and, for t � 0,

Qt D x C Jt � .I � P0/ rt C .I � P0/Lt;

is non-negative for all t � 0;
(BC) L0 D 0 and Lt is non-decreasing, and

nX

iD1

Z T

0

Q.i/
t dL.i/t D 0; for all T > 0,

where x � 0, I is the n 	 n identity matrix, and

L D .Lt/t�0 D
�

L.1/t ; : : : ;L.n/t

�0
t�0

is the so-called reflecting process or regulator. The reflecting process L.i/t has
the informal interpretation of cumulative amount (in the time interval Œ0; t�) of
unused capacity at node i, for i D 1; : : : ; n.

It is known that a pair .Q;L/ satisfying (AC) and (BC) exists and that it is unique;
for a detailed treatment, we refer e.g. to [185].

Example 13.1 Consider, as introduced in Section 2.4, a single-node Lévy queue
driven by .Xt/t�0. This system is described by the triplet .J.1/; r1;P/, with P D
.p11/ D .0/; here Xt D J.1/t � r1t. Then Qt solves the corresponding Skorokhod
problem. It is easily seen that the conditions associated with the single-dimensional
Skorokhod problem (A)–(B), as introduced in Section 2.4, are in agreement with
conditions (AC)–(BC) above. }
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Example 13.2 Consider the two-node Lévy tandem network analyzed in Chap-
ter 12. This network is described by the triplet .J; r;P/, with

Jt D
�

Jt

0

�

; r D
�

r1
r2

�

; and P D
�
0 1

0 0

�

:

It requires a simple verification to conclude that the bivariate workload process Qt D
.Q.1/

t ;Q
.2/
t /0 solves the associated Skorokhod problem. }

13.2 Lévy-Driven Tree Networks

Above we observed that, both for single-node queues and tandem networks, it is
possible to solve the corresponding Skorokhod problem (AC)–(BC), leading to a
representation for the workload process in terms of the driving triplet .J; r;P/. For
general networks, however, it is not clear how to explicitly express the pair .Q;L/
in terms of the driving triplet. An important large class for which this is possible is
the class of so-called tree-type networks, to be considered in this section.

In the rest of this chapter we suppose that .J; r;P/ obeys the following properties
(see [71]):

(T1) P is strictly upper triangular (i.e. pij D 0 if j � i) and the jth column of P
contains exactly one strictly positive element for j D 2; : : : ; n;

(T2) the processes .J.j/t /t�0 are non-decreasing, for j D 2; : : : ; n;
(T3) if pij > 0, then pij > rj=ri:

The resulting network can be represented by a graph, with a directed vertex from
node i to node j if pij > 0; due to (T1) such a graph corresponds to a ‘tree network’
in which every node is fed by at most one predecessor node. Importantly, we do not
impose the requirement that J.1/ be non-decreasing. Observe that both the single-
node and tandem Lévy-driven queues, as described in earlier sections, satisfy the
three properties (T1)–(T3). An example of a tree network is given in Fig. 13.1.

J (1)t

J (3)t

1 2

3

4

Fig. 13.1 Example of a tree network; n D 4: Queues 1 and 3 have external input, output of queue
1 is routed to queue 2, output of queue 2 is split and routed to queues 3 and 4
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In order to find the solution of the Skorokhod problem (AC)–(BC) under (T1)–
(T3), and hence to identify the explicit representation for the workload process, we
analyze Qt coordinate by coordinate.

Recalling that Q0 D x, for each i D 1; : : : ; n, and defining LP WD P0 throughout
the remainder of this section, by (AC)–(BC) we have

Q.i/
t D .x C Jt � .I � LP/ rt C .I � LP/Lt/i D xi C J.i/t � ..I � LP/ rt � LPLt/i C L.i/t

and
R T
0 Q.i/

t dL.i/t D 0, for all T > 0. The above reduces, for each i D 1; : : : ; n, to

a one-dimensional Skorokhod problem (as introduced in Chapter 2), with L?.i/t WD
L.i/t C xi, and the driving process J.i/t � ..I � LP/r/it � . LPLt/i. As a consequence, the
following set of fixed-point equations holds: with

Jt.x/ WD Jt � .I � LP/rt C x

and J.j/t .x/ its jth component, we have

L.i/t D max

(

0; sup
s2Œ0;t�

�
. LPLs/i � J.i/s .x/

�
)

; (13.1)

for i D 1; : : : ; n; see e.g. Prop. 2.3.
We find the solution of (13.1) following the approach given in Dȩbicki et al. [71].

Under (T1)–(T2), iterating Eqn. (13.1) yields

L.i/t D max

(

0; sup
s2Œ0;t�

 

�
i�1X

kD0

� LPkJs.x/
�

i

!)

I (13.2)

the summation is up to k D i � 1 as a consequence of the fact that P is strictly
upper triangular. Indeed, Eqns. (13.1) and (13.2) are the same for i D 1. We now
present a proof by induction: assuming that (13.2) holds true for i D 1; : : : ; j�1with
j D 2; : : : ; n, we shall now verify that (13.2) holds for i D j as well. Before doing
that, we first state a lemma; we do not include a proof, as the claim is straightforward
to verify.

Lemma 13.1 Suppose that (T1)–(T3) hold for the fluid network characterized by
.J; r;P/. For all j D 2; : : : ; n, the function J.j/t .x/ is non-negative, and non-
decreasing in t.

Due to the assumed tree structure, embodied by (T1), there exists exactly one
` < j such that p`j > 0. As a consequence, by virtue of (13.1) and in combination
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with the induction hypothesis,

L.j/t D max

(

0; sup
s2Œ0;t�

�
p`jL

.`/
s � J.j/s .x/

�
)

D max

(

0; sup
s2Œ0;t�

 

p`j max

(

0; sup
v2Œ0;s�

 

�
`�1X

kD0

� LPkJv.x/
�

`

!)

� J.j/s .x/

!)

:

(13.3)

Now consider a general function F.�/ and a non-increasing function G.�/; then it is
obvious that

max

(

0; sup
s2Œ0;t�

max

(

0; sup
v2Œ0;s�

.F.v/C G.s//

))

D max

(

0; sup
s2Œ0;t�

sup
v2Œ0;s�

.F.v/C G.s//

)

D max

(

0; sup
v2Œ0;t�

sup
s2Œv;t�

.F.v/C G.s//

)

D max

(

0; sup
v2Œ0;t�

.F.v/C G.v//

)

:

As a consequence, expression (13.3) equals (use Lemma 13.1!)

max

(

0; sup
s2Œ0;t�

 

p`j

 

�
`�1X

kD0

� LPkJs.x/
�

`

!

� J.j/s .x/

!)

D max

(

0; sup
s2Œ0;t�

 

�
X̀

kD1

� LPkJs.x/
�

`
� J.j/s .x/

!)

D max

(

0; sup
s2Œ0;t�

 

�
X̀

kD0

� LPkJs.x/
�

j

!)

:

Since the jth column of LPk consists of 0s for k D `C 1; : : : ; j � 1, it follows that the
above expression equals (13.2) (for i D j).

We now combine (13.2) with the fact that, due to the (strict) upper triangular
structure of P assumed in (T1),

.I � LP/�1 D
1X

kD0
LPk D I C LP C LP2 C � � � C LPn�1I
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in addition, again because of (T1), the jth row of .I � LP/�1 equals the jth row of
IC LPC LP2C� � �C LPj�1. This immediately leads to the following result [71, Thm. 5.1]:

Qt D Jt.x/C max

�

0;� inf
s2Œ0;t� Js.x/

	

D Jt � .I � LP/rt C x C max

�

0;� inf
s2Œ0;t�

�
Js � .I � LP/rs C x

�	

D Jt � .I � LP/rt C max

�

x;� inf
s2Œ0;t�

�
Js � .I � LP/rs

�	

:

Our findings are summarized in the following theorem.

Theorem 13.1 Suppose that (T1)–(T3) hold for the fluid network characterized by
.J; r;P/. Then

Lt D max

(

0; sup
s2Œ0;t�

�
�.I � LP/�1.x C Js/C rs

�
)

;

and

Qt D Jt � .I � LP/rt C max

�

x;� inf
s2Œ0;t�

�
Js � .I � LP/rs

�	

;

where the suprema should be interpreted componentwise.

It is readily verified that Thm. 13.1 is a true generalization of the single-node and
tandem queues that we discussed before.

13.3 Representation for the Stationary Workload

In Section 13.2 we found a representation for the transient workload for the class
of fluid networks that satisfy the three assumptions (T1)–(T3). In order to get a
representation for the stationary workload, we additionally assume that

(T4) .I � P0/�1 EJ1 < r.

Condition (T4), where the inequality is understood to hold componentwise, ensures
stability of the network, being (obviously) necessary for the existence of the
stationary workload distribution.

As it turns out, under (T1)–(T4) we can find the joint distribution of the steady-
state workload Q, the age of the busy period B, and the age of the idle period I. More
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precisely, let Bt denote the n-dimensional vector of the ages of the busy periods at
time t, in all n queues of the network: Bt D .B.1/t ; : : : ;B.n/t /

0 with

B.i/t WD t � sup
˚
s � t W Q.i/

s D 0

: (13.4)

Analogously, we define the idle period process It D .I.1/t ; : : : ; I.n/t /0 by

I.i/t WD t � sup
˚
s � t W Q.i/

s > 0

: (13.5)

To make our notation compact, we denote (with a mild abuse of notation) the system
of equations (13.4) by

Bt WD t 1 � sup fs � t W Qs D 0g

and (13.5) by

It WD t 1 � sup fs � t W Qs > 0g

(where we note that there is ‘abuse of notation’, as one should realize that for any
component the supremum in the right-hand side may be attained for another value
of s).

Our objective in this section is to characterize the joint stationary distribution
.Q;B; I/0, corresponding to .Qt;Bt; It/

0 as t ! 1; we do so by following the setup
given in [71]. The idea is to consider a transformed version of the workload process,
that is,

QQt WD .I � LP/�1Qt:

Similarly to B.i/t and I.i/t we define QB.i/t and QI.i/t , with Q.i/
s replaced by QQ.i/

s in each
case.

In the sequel, we let QQ.i/
t represent the total workload of all the buffers on the

path from the root of the tree (labeled 1) up to (and including) station i. Likewise,
QB.i/t and QI.i/t describe the ages of the busy and idle periods of the aggregate buffer on
the path between stations 1 and i. To this end we introduce the process

Xt WD .I � LP/�1Jt � rt:

As in the tandem case, let NX D . NX.1/; : : : ; NX.n//0 be defined by NX.i/ WD supt�0 X.i/t :

A key observation is that Q.i/
t D 0 if and only if QQ.i/

t D 0 (use that .I � LP/�1 is
non-negative and lower triangular), which combined with (AC), leads to

( QAC) QQ0 D Qx, and

QQt D Qx C Xt C Lt



188 13 Lévy-Driven Queueing Networks

is non-negative for all t � 0, with Qx WD .I � LP/�1x;
( QBC) L0 D 0 and Lt is non-decreasing, and

nX

iD1

Z T

0

QQ.i/
t dL.i/t D 0; for all T > 0.

It is noted that the requirements ( QAC)–( QBC), analyzed coordinatewise, correspond
to a set of n (one-dimensional) Skorokhod problems. As a consequence, by virtue
of Thm. 13.1, we have, for any t � 0,

QQt D Xt C max

�

Qx;� inf
s2Œ0;t�Xs

	

D max

(

.Qx C Xt/; sup
s2Œ0;t�

.Xt � Xs/

)

:

Moreover, again using that Q.i/
t D 0 if and only if QQ.i/

t D 0 for i D 1; : : : ; n, we
have Bt D QBt and It D QIt. Hence for the age of the busy period we find

Bt D t 1 � sup

�

s � t W Qx C Xs D min

�

0; inf
u2Œ0;s�.Qx C Xu/

		

D t 1 � sup

�

s � t W Qx C Xs D min

�

0; inf
u2Œ0;t�.Qx C Xu/

		

(where a sample-path argument is used to validate the last equality), whereas for the
age of the idle period,

It D t 1 � sup

�

s � t W Qx C Xs ¤ min

�

0; inf
u2Œ0;t�.Qx C Xu/

		

:

Due to the stationarity of the increments of the n-dimensional Lévy process X, we
thus find the following distributional equality:

0

@

QQtQBt
QIt

1

A dD

0

B
B
B
B
B
B
B
B
B
@

max

(

.Qx � X�t/; sup
s2Œ�t;0�

.�Xs/

)

� sup

(

s 2 Œ�t; 0� W �Xs D max

(

Qx � X�t; sup
u2Œ�t;0�

.�Xu/

))

� sup

(

s 2 Œ�t; 0� W �Xs ¤ max

(

Qx � X�t; sup
u2Œ�t;s�

.�Xu/

))

1

C
C
C
C
C
C
C
C
C
A

:

Since Qx � X�t ! �1, as t ! 1 (due to requirement (T4)), we arrive at the
following result [71], where G WD .G.1/; : : : ;G.n//0, with

G.i/ WD arg sup
t�0

X.i/t D inf

(

s � 0 W X.i/s D sup
t�0

X.i/t

)
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(cf. Section 12.5) and H WD .H.1/; : : : ;H.n//0, with

H.i/ WD inf

�

s � 0 W X.i/s ¤ sup
t�s

X.i/t

	

:

Theorem 13.2 Suppose that (T1)–(T4) hold for the fluid network characterized by
.J; r;P/. Then for any initial condition Q0 D x, the triplet of vectors .Qt;Bt; It/

0
converges in distribution to ..I � LP/ NX;G;H/0, as t ! 1.

As we demonstrate in detail in the next sections, for a number of specific network
structures Thm. 13.2 allows the derivation of an explicit formula for the Laplace–
Stieltjes transform

Ee�h˛;Qi�h# ;Bi

of the stationary workloads and ages of busy periods, jointly for all queues in the
network; ˛;# 2 R

nC and h � ; � i denotes the inner product. The network architectures
that are covered include multinode tandem systems (Section 13.4) and single nodes
in tree networks (Section 13.5). Interestingly, the techniques that we have developed
also facilitate the analysis of the priority queue, that is, a single queue fed by
two traffic streams, of which one stream has service priority over the other stream
(Section 13.6).

13.4 Multinode Tandem Networks

In this section, we revisit the tandem network that was analyzed in Chapter 12,
but now in a substantially more general setting. We now allow any number n 2 N

of nodes (whereas in the previous chapter we restricted ourselves to the two-node
case); in addition, we may have independent external inputs to nodes 2; : : : ; n, and
at each station some output may leave the system. Put differently, the network is
characterized by .J; r;P/, where the routing matrix P is such that pi;iC1 2 .0; 1� for
i D 1; : : : ; n � 1, and pij D 0 otherwise.

To this end, we assume that, as before, (T1)–(T4) apply, but in addition also

(T5) J has mutually independent components.

The aim of this section is to find an explicit formula for Ee�h˛;Qi�h# ;Bi; with
˛;# 2 R

nC. We essentially follow the line of reasoning of [71].
As a first step we note that, as a direct consequence of Thm. 13.2, we have the

identity

Ee�h˛;Qi�h# ;Bi D Ee�h.I�LP/˛;.I�LP/�1Qi�h# ;Gi

D Ee�hQ̨ ; NXi�h# ;Gi;
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with Q̨ D . Q̨1; : : : ; Q̨n/
0 D .I � LP/˛; here Q̨ 2 R

nC. In this tandem setting with
external inputs (at any node), we have that

X.1/t D J.1/t � r1t;

X.iC1/t D pi;iC1X.i/t C J.iC1/t C .pi;iC1ri � riC1/t; (13.6)

for i D 1; : : : ; n � 1. In the sequel we use the, by now common, notation NX.i/t WD
sups2Œ0;t� X

.i/
s and NX.i/ WD sups�0 X.i/s .

It is convenient to distinguish between (i) the case that 0 is irregular for the
process . NX.i/t � X.i/t /t, meaning that

R.i/ WD inf
n
t > 0 W NX.i/t D X.i/t

o
> 0

almost surely (cf. Section 12.5), or X.i/ is a compound Poisson process, for all i D
1; : : : ; n � 1, and (ii) the case that among the nodes 1 to n � 1 there is a node i for
which 0 is regular for the process . NX.i/t � X.i/t /t, meaning that R.i/ D 0 almost surely,
but X.i/ is not compound Poisson. We start our exposition with the former case.

Case (i): Any node i from 1 to n � 1 is irregular, or X.i/ is compound Poisson—
Suppose first that for all i D 1; : : : ; n � 1; we have that R.i/ > 0 almost surely or
X.i/ is a compound Poisson process. Then NX.i/ D X.i/

G.i/
. Moreover, since J.iC1/t C

.pi;iC1ri � riC1/t is increasing in t for all i D 1; : : : ; n � 1, we have that G.1/ �
G.2/ � � � � � G.n/ almost surely (use the same argument as in Section 12.5). As a
result, for ` > i,

NX.`/ � X.`/
G.i/

D
 

sup
s�G.i/

X.`/s

!

� X.`/
G.i/
:

A key observation is now that

nX

`Di

Q̨` NX.`/ D
nX

`Di

Q̨`
 

sup
s�G.i/

X.`/s

!

and
nX

`DiC1
Q̨`. NX.`/ � X.`/

G.i/
/

are independent random variables, as is justified by [71, Lemma 2.1]. This implies
that, for each i D 1; : : : ; n � 1,

E

�
e�

Pn
`Di #`G

.`/�Pn
`Di Q̨` NX.`/

�

D E

��

e
�.Pn

`Di #`/G
.i/�Pn

`Di Q̨`X.`/G.i/

��

e
�Pn

`DiC1 #`.G
.`/�G.i//�Pn

`DiC1 Q̨`. NX.`/�X
.`/

G.i/
/

��

D E

�

e
�.Pn

`Di #`/G
.i/�Pn

`Di Q̨`X.`/G.i/

�

E

�

e
�Pn

`DiC1 #`.G
.`/�G.i//�Pn

`DiC1 Q̨`. NX.`/�X
.`/

G.i/
/

�

:
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We now point out how to determine the second factor in the last expression in the
previous display. Notice that this factor does not depend on #i and Q̨ i. As a conse-
quence, upon choosing in the above equality #i D Q̨ i D 0, we readily conclude that

E

�

e
�Pn

`DiC1 #`.G
.`/�G.i//�Pn

`DiC1 Q̨`. NX.`/�X
.`/

G.i/
/

�

D
E

�
e�

Pn
`DiC1 #`G

.`/�Pn
`DiC1 Q̨` NX.`/

�

E

�

e
�.Pn

`DiC1 #`/G
.i/�Pn

`DiC1 Q̨`X.`/G.i/

� :

Combining the above findings, we thus obtain the following recurrence equation:

E

�
e�

Pn
`Di #`G

.`/�Pn
`Di Q̨` NX.`/

�

D
E

�

e
�.Pn

`Di #`/G
.i/�Pn

`Di Q̨`X.`/G.i/

�

E

�

e
�.Pn

`DiC1 #`/G
.i/�Pn

`DiC1 Q̨`X.`/G.i/

�E
�

e�
Pn
`DiC1 #`G

.`/�Pn
`DiC1 Q̨` NX.`/

�
:

Iterating this recursion repeatedly immediately leads to the following quasi-product
form:

Ee�h˛;Qi�h# ;Bi D E

�
e�

Pn
`Di #`G

.`/�Pn
`Di Q̨` NX.`/

�

D
n�1Y

iD1

E

�

e
�.Pn

`Di #`/G
.i/�Pn

`Di Q̨`X.`/G.i/

�

E

�

e
�.Pn

`DiC1 #`/G
.i/�Pn

`DiC1 Q̨`X.`/G.i/

�E
�

e�#nG.n/�Q̨n NX.n/
�
: (13.7)

It is noted that we have not used (T5) yet. Application of the condition (T5) allows us
to get a more explicit form for Ee�h˛;Qi�h# ;Bi. Relation (13.6) immediately implies
that, for ` � i and i D 1; : : : ; n � 1,

X.`/t D
0

@
Ỳ

jDiC1
pj�1;j

1

AX.i/t C
X̀

jDiC1

0

@
Ỳ

kDjC1
pk�1;k

1

A
�

J.j/t C Qrjt
�
; (13.8)

with Qrj WD pj�1;jrj�1 � rj, and following the convention that
Qj

kDjC1 pk�1;k WD 1.
Now consider the ith numerator in (13.7). We have

nX

`Di

#`t C
nX

`Di

Q̨`X.`/t

D
nX

`Di

#`t C
nX

`Di

Q̨`
0

@
Ỳ

jDiC1
pj�1;j

1

AX.i/t C
nX

`Di

X̀

jDiC1
Q̨`
0

@
Ỳ

kDjC1
pk�1;k

1

A
�

J.j/t C Qrjt
�
:
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Now changing the order of summation in the double sum, and swapping the roles
of j and `, this quantity turns out to equal

nX

`Di

#`t C
nX

`Di

Q̨`
0

@
Ỳ

jDiC1
pj�1;j

1

AX.i/t C
nX

`DiC1

nX

jD`
Q̨ j

 
jY

kD`C1
pk�1;k

!
�

J.`/t C Qr`t
�
:

It is a matter of straightforward algebra to check that
Pn

`Di Q̨`Q`
jDiC1 pj�1;j D ˛i

(using the structure of the routing matrix P), which implies that the expression in
the previous display equals

nX

`Di

#`t C ˛iX
.i/
t C

nX

`DiC1
˛`

�
J.`/t C Qr`t

�
:

As a consequence, we have that

E

�

e
�.Pn

`Di #`/G
.i/�Pn

`Di Q̨`X.`/G.i/

�

D E

�

e
�.Pn

`Di #`C
Pn
`DiC1 ˛`Qr`/G.i/�˛iX

.i/

G.i/E

�

e
�.Pn

`DiC1 ˛`J
.`/

G.i/
/

ˇ
ˇ
ˇ
ˇG.i/

��

D E

�
e�.

Pn
`Di #`C

Pn
`DiC1 ˛`Qr`C

Pn
`DiC1 �

J
` .˛`//G

.i/�˛i NX.i/
�
; (13.9)

where � J
` .˛/ WD � logEe�˛J

.`/
1 , for ` D 2; : : : ; n.

In a similar way, for the ith denominator in (13.7) we obtain

E

�

e
�.Pn

`DiC1 #`/G
.i/�Pn

`DiC1 Q̨`X.`/G.i/

�

D E

�
e�.

Pn
`DiC1 #`C

Pn
`DiC1 ˛`Qr`C

Pn
`DiC1 �

J
` .˛`//G

.i/�pi;iC1˛iC1 NX.i/
�
; (13.10)

for i D 1; : : : ; n � 1, where we used that
Pn

`DiC1 Q̨`Q`
jDiC1 pj�1;j D pi;iC1˛iC1.

Combining (13.10) and (13.9) with (13.7) leads to the following explicit
expression for the joint transform Ee�h˛;Qi�h# ;Bi under study:

0

@
n�1Y

iD1

E

�
e�.

Pn
`Di #`C

Pn
`DiC1 ˛`Qr`C

Pn
`DiC1 �

J
` .˛`//G

.i/�˛i NX.i/
�

E

�
e�.

Pn
`DiC1 #`C

Pn
`DiC1 ˛`Qr`C

Pn
`DiC1 �

J
` .˛`//G.i/�pi;iC1˛iC1 NX.i/

�

1

A

	
�
Ee�Q̨n NX.n/�#nG.n/

�
: (13.11)
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Case (ii): Among nodes 1 to n � 1 there is a regular node i, but X.i/ is not
compound Poisson—In the above analysis we assumed that for all i D 1; : : : ; n � 1;
R.i/ > 0 almost surely, or X.i/ is a compound Poisson process. The remaining
scenario, when there exists i D 1; : : : ; n � 1 such that R.i/ D 0 almost surely but
.X.i/t /t is not a compound Poisson process, follows the same line of reasoning as
given above, with the tiny subtlety that in (13.7) one has to change X.`/

G.i/
into X.`/

G.i/�
for all i D 1; : : : ; n � 1 for which R.i/ D 0 almost surely. However, the resulting
formula for Ee�h˛;Qi�h# ;Bi is exactly the same as the one found in (13.11), since
X.j/

G.j/� can be replaced by NX.j/, as argued in the proof of [43, Thm. VI.5(i)]. As a
consequence, (13.11) holds for all Lévy tandem networks that satisfy (T1)–(T5).

Similarly to the procedure followed in Section 12.5, let k.i/.#; ˛/ be defined as
k.#; ˛/ in (3.10), with Xt replaced by X.i/t , for i D 1; : : : ; n. Relying on Thm 3.4, we
obtain the following result.

Theorem 13.3 Suppose that (T1)–(T5) hold for the fluid tandem network charac-
terized by .J; r;P/. For ˛;# 2 R

nC,

Ee�h˛;Qi�h# ;Bi

D

0

B
B
B
B
B
@

n�1Y

iD1

k.i/
 

nX

`Di

#` C
nX

`DiC1
˛`Qr` C

nX

`DiC1
� J
` .˛`/; ˛i

!

k.i/

 
nX

`DiC1
#` C

nX

`DiC1
˛`Qr` C

nX

`DiC1
� J
` .˛`/; pi;iC1˛iC1

!

1

C
C
C
C
C
A

k.n/.#n; ˛n/

k.n/.0; 0/
:

Example 13.3 We consider the case of spectrally positive inputs. Assume that (T1)–
(T5) hold and J.1/ 2 SC in an n-node tandem system .J; r;P/. Then, (T5) combined
with (13.8) implies that X.i/ 2 SC for all i D 1; : : : ; n. Thus, applying (12.12) to
Thm. 13.3, we obtain for ˛;# 2 R

nC,

Ee�h˛;Qi�h# ;Bi D �EX.n/1
 n .#n/� ˛n

#n � 'n.˛n/

	
n�1Y

iD1

 i

 
nX

`DiC1
� J
` .˛`/C

nX

`DiC1
Qr`˛` C

nX

`Di

#`

!

� ˛i

 i

 
nX

`DiC1
� J
` .˛`/C

nX

`DiC1
Qr`˛` C

nX

`DiC1
#`

!

� pi;iC1˛iC1

	
n�1Y

iD1

nX

`DiC1
� J
` .˛`/C

nX

`DiC1
Qr`˛` C

nX

`DiC1
#` � 'i.pi;iC1˛iC1/

nX

`DiC1
� J
` .˛`/C

nX

`DiC1
Qr`˛` C

nX

`Di

#` � 'i.˛i/

;
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where we have defined 'i.˛/ WD logEe�˛X
.i/
1 , and  i.�/ D '�1i .�/; see also [71,

Thm. 6.1]. In addition, we note that if n D 2 and

Jt D
 

J.1/t

0

!

; P D
�
0 1

0 0

�

;

and choosing #1 D #2 D 0, then we recover Thm. 12.11. }

13.5 Tree Networks: Stationary Distribution at a Specific
Node

In this section we demonstrate how the findings of Section 13.4 allow us to derive
a closed-form expression for the joint Laplace–Stieltjes transform of .Q.i/;B.i//0 at
any specific node i D 1; : : : ; n of a tree fluid network .J; r;P/, as introduced in
Section 13.2, which we assume to satisfy (T1)–(T5).

To this end, we first note that the dynamics of the workload at a given node
i of this network (where i D 2; : : : ; n) can be described as the workload in a
corresponding tandem system which consists of nodes that connect the root of
.J; r;P/ (i.e. node 1) with node i. Let ` be the only (by (T1)) node for which p`i > 0.
Then a straightforward application of Thm. 13.3, leads to the following formula.

Theorem 13.4 Suppose that (T1)–(T5) hold for the fluid network characterized by
.J; r;P/. For ˛; # 2 RC,

Ee�˛Q.i/�#B.i/ D k.`/
�
# C ˛.p`ir` � ri/C � J

i .˛/; 0
�

k.`/
�
# C ˛.p`ir` � ri/C � J

i .˛/; p`i˛
�

k.i/.#; ˛/

k.i/.0; 0/
:

Example 13.4 Consider the spectrally positive case, that is, we study a tree network
.J; r;P/ such that J.1/ 2 SC. Using that X.i/ 2 SC for all i D 1; : : : ; n, combination
of (12.12), Thms. 13.3 and 13.4, straightforwardly implies that

Ee�˛Q.i/�#B.i/ D �EX.i/1
 i .#/� ˛

# � 'i.˛/

	 `
�
# C ˛.p`ir` � ri/C � J

i .˛/
�

# C ˛.p`ir` � ri/C � J
i .˛/

# C ˛.p`ir` � ri/C � J
i .˛/ � '`.p`i˛/

 `
�
# C ˛.p`ir` � ri/C � J

i .˛/
� � p`i˛

for ˛; # 2 RC. }
Besides the Laplace–Stieltjes transforms of the age B of the busy periods, Thm. 13.3
also enables the Laplace–Stieltjes transforms of the length of the steady-state
running busy periods to be found. We refer to [71, Cor. 6.1] for details.
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13.6 Priority Fluid Queues

Consider a single station that is fed by n external Lévy inputs

J WD .Jt/t D
�

J.1/t ; : : : ; J.n/t

�0
t
;

each equipped with its own buffer. The system is emptied at a constant rate r > 0.
The queue discipline allows, for each i D 1; : : : ; n, the ith buffer to be continuously
drained only if buffers 1 to i � 1 do not require the full capacity r. We call such a
system a priority fluid queue.

We assume that the individual components of .Jt/t; that is, .J.1/t /t; : : : ; .J
.n/
t /t,

are mutually independent. In addition, we require that their Lévy measures are
concentrated on .0;1/ and J.i/0 D 0 for any i D 1; : : : ; n. Also, the processes

.J.i/t /t are assumed to be non-decreasing for i D 2; : : : ; n. To guarantee the stability
of the system, we impose the condition

Pn
iD1 EJ.i/1 < r. The aim of this section is

to find the Laplace transform of Q D .Q.1/; : : : ;Q.n//0, where Q.i/ is the stationary
workload corresponding to buffer i, for i D 1; : : : ; n:

The key observation is that one can establish an association between the
considered priority system and a specifically chosen tandem fluid network, in the
sense that their respective workload processes have the same dynamics. Indeed,
consider a tandem fluid network .J; r;P/ with r D .r; : : : ; r/0 and P such that
pi;iC1 D 1 for i D 1; : : : ; n � 1 and pi;j D 0 otherwise. Then the solution of the
Skorokhod problem for .J; r;P/ evolves in the same manner as the buffer content
process of the priority system; see also [88]. Moreover, .J; r;P/ satisfies (T1)–(T5),
with the exception that in (T3), pi;iC1 D ri=riC1 D 1. However, as remarked in [71,
Section 6.1], Thm. 13.3 still holds. The following theorem follows; see[71].

Theorem 13.5 Suppose that (T1)–(T5) hold for the priority fluid network charac-
terized by .J; r;P/. For ˛ 2 R

nC,

Ee�h˛;Qi D
 

n�1Y

iD1

k.i/
�Pn

`DiC1 � J
` .˛`/; ˛i

�

k.i/
�Pn

`DiC1 � J
` .˛`/; ˛iC1

�

!
k.n/.0; ˛n/

k.n/.0; 0/
:

Other interesting problems related to Lévy-driven networks, such as stability and
the applicability of (quasi-)product form solutions, are analyzed in a series of papers
by Kella and Whitt [120–123, 130].
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Exercises

Exercise 13.1 Consider a two-node Lévy network described by the triplet .J; r;P/
with

Jt D
 

J.1/t

at

!

; r D
�

r1
r2

�

; and P D
�
0 1

0 0

�

;

and r1 > r2 > a > 0. Suppose that .Q.1/
0 ;Q

.2/
0 /
0 D .0; 0/0. State and solve the

corresponding Skorokhod problem.

Exercise 13.2 Assume that (T1)–(T5) hold and assume J.1/ 2 SC, in an n-node
tandem system .J; r;P/with routing matrix P such that pi;iC1 D 1 for i D 1; : : : ; n�
1; see Example 13.3. Calculate Ee�#B.k/ , for k 2 f1; : : : ; ng, and compare this with
the corresponding result for a single-node queue with input

Pk
iD1 J.k/ and output

rate rk.

Exercise 13.3 Suppose that (T1)–(T4) hold for the tree fluid network .J; r;P/. Let
� be the distribution of .I � LP/ NX. Prove that � is the only stationary distribution that
satisfies the corresponding Skorokhod problem.

Hint: Suppose (on the contrary) that there exists another stationary distribution
O� ¤ � and . OQt/t is the corresponding stationary workload process. Observe that for
any Borel B 
 R

nC,

P. OQ0 2 B/ D lim
t!1P. OQt 2 B/ D lim

t!1

Z 1

0

P. OQt 2 B j OQ0 D x/P. OQt 2 dx/:

Now use Thm. 13.2, to show that the above equalsP..I� LP/ NX 2 B/; cf. [71, Cor. 5.1].

Exercise 13.4 Consider a two-queue priority system; a service rate r is shared
between the two queues. Traffic stream J.1/ feeding into buffer 1 has strict
service priority over traffic stream J.2/ (assumed to be non-decreasing) feeding into
buffer 2.

(a) Show that this network is described by the triplet .J; r;P/, with

Jt D
 

J.1/t

J.2/t

!

; r D
�

r
r

�

; and P D
�
0 1

0 0

�

:

(b) Compute the Laplace transform of the joint workload distribution (in station-
arity).

Exercise 13.5 Compute the counterpart of Example 13.3 for the case J.1/ 2 S�:



Chapter 14
Applications in Communication Networks

Statistical analyses show that, in certain circumstances, traffic aggregates in modern
communication networks can be accurately described by specific classes of Lévy
processes. In particular, there is widespread consensus that network traffic exhibits
properties like self-similarity (at least up to a certain timescale threshold) and heavy-
tailed traffic bursts. In addition, the Pareto-type marginal distribution of ˛-stable
Lévy motions matches quite well the distribution empirically observed. As a result, a
network element in a communication network can be modeled reasonably accurately
as a queue driven by an ˛-stable Lévy motion.

In traffic theory, one distinguishes between traffic models at the user level (in
which the behavior of individual users is modeled), and traffic models associated
with large numbers of users (in which the individual users are abstract). Besides
aggregation over large groups of users (also sometimes referred to as vertical
aggregation) there can be aggregation over long timescales (referred to as horizontal
aggregation).

Two commonly used models at the user level are (i) the superposition of on–
off-type sources (see e.g. Anick et al. [10] or Heath et al. [111]) and (ii) the
infinite-source Poisson model (see e.g. Resnick and van den Berg [183], Mikosch
et al. [163] and references therein). In model (i), it is assumed that each user
generates a traffic pattern that alternates between transmitting data at a constant
rate (if it is in the on-state) and remaining silent (if it is in the off-state). In
model (ii), transmissions by users start at times governed by a homogeneous
Poisson process, where the transmission durations form a sequence of i.i.d. random
variables (independent of the Poisson process), and during its transmission each
user generates traffic at a constant rate (where it is remarked that in some models a
variable rate is also considered).

In this chapter we provide a formal justification that both traffic models
introduced above, under appropriately chosen scaling of the number of customers
and time (i.e. vertical and horizontal aggregation), can be approximated by a self-
similar Lévy process. Importantly, this convergence carries over to the workload
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process, which confirms the applicability of Lévy-driven queues in the performance
evaluation of communication networks.

It turns out that, by and large, results for convergence of model (ii) (i.e. the
infinite-source Poisson model) are in line with their analogues for model (i) (i.e.
the on–off model); see e.g. [163, 217]. This motivates, in the rest of this chapter, our
focus on just one of the two variants: we choose to present the analysis for the case
that traffic is modeled by a superposition of on–off sources.

14.1 Construction of Stationary On–Off Source

We start by considering a single on–off source. The objective of this section is
to introduce the notation needed in the chapter, and to explicitly indicate how a
stationary version of such an on–off source can be constructed.

In the on–off model it is assumed that the rate at which traffic is generated
alternates between an on-mode and an off-mode. During the on-times traffic is fed
into the queue at a constant peak rate; without loss of generality we can normalize
this rate to 1. During the off-periods the input rate is 0. The durations of the activity
periods fTon;i; i � 0g are i.i.d. random variables, distributed as a non-negative
random variable Ton attaining values in RC. The silence periods, fToff;i; i � 0g are
also i.i.d., distributed as a random variable Toff with values in RC. Both sequences
are mutually independent and the generic random variables Ton;Toff have finite
densities. It is throughout assumed that �on WD ETon < 1 and �off WD EToff < 1.

For future use we first provide a construction of the stationary on–off process; cf.
Heath et al. [111], or [224]. To this end, we start by defining the long-run fraction
of time the source is on:

� WD �on

�on C �off
2 .0; 1/:

Additionally, let I be an independent random variable such that P.I D 1/ D 1 �
P.I D 0/ D �. We introduce the delayed renewal sequence

fTi; i � 0g WD
(

T0;T0 C
iX

kD1
.Ton;k C Toff;k/; i � 1

)

;

where

T0 WD I.T res
on;0 C Toff;0/C .1 � I/T res

off;0I (14.1)

here the random variables T res
on;0 and T res

off;0 follow the usual residual lifetime
distribution. It is seen that, informally, the Ti’s represent the epochs of the starts
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of the individual on–off cycles. Then the stationary on–off process is defined as

�t WD I � 1ft<Tres
on;0g C

1X

iD0
1ft2ŒTiI TiCTon;iC1/gI

�t D 1 if the source is on at time t, and 0 otherwise. It can be verified that, owing to
its very construction, E�t � �, for all t � 0.

Let Kt WD minfk � 0 W t � Tkg be the counter of the number of renewal epochs
until time t (i.e. starts of on–off cycles). It is clear that the accumulated input by
time t can be represented by

Jt WD
Z t

0

�s ds;

for t � 0:

14.2 Convergence of Traffic Process: Horizontal Aggregation

In this section we first focus on traffic generated by a single on–off source, by
studying limit properties of .JTt/t, as T ! 1 (‘horizontal aggregation’). As it
turns out, depending on the ‘heaviness’ of the tail distribution of the generic random
variables Ton and Toff, one can distinguish two scenarios, leading to convergence
either to Brownian motion or to ˛-stable Lévy motion (cf. the dichotomy presented
in Chapter 5). We treat both scenarios separately. Later in this chapter we extend
these results to multiple sources (‘vertical aggregation’).

Brownian approximation—Much of the (vast) literature on on–off models
focuses on the case in which the successive on and off times are light tailed.
Notice that the notion of ‘light tailed’ used here differs from the one used earlier in
Chapter 8.

Definition 14.1 We say that the condition (LT) holds if

Var.Ton/ D �2on < 1 and Var.Toff/ D �2off < 1:

Assume that (LT) holds and consider the sequence of scaled centered cumulative
processes .JTt � �Tt/t, in the regime that T ! 1. It is convenient to decompose
JTt � �Tt in terms of the regeneration points, that is,

JTt � �Tt D 1fT0<Ttg
�Z T0

0

.�s � �/ds C
KTtX

iD1
..1 � �/Ton;i � �Toff;i/

C
Z T

KTt

.�s � �/ds

�

C 1fT0�Ttg.JTt � �Tt/:
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Next, observe that after dividing the above by
p

T , some of the terms become
negligible as T grows large. Indeed, it is a matter of straightforward checking that
both

1p
T

Z T0

0

.�s � �/ds and
1p
T

Z t

KTt

.�s � �/ds

converge in probability to 0 as T ! 1. Besides, for each " > 0, upon applying the
Markov inequality, we have

P

�
1fT0�Ttg.JTt � �Tt/=

p
T � "

�
� P

�
1fT0�Ttg � "=.t

p
T/
�

� t
p

T P.T0 � Tt/

"
! 0;

as T ! 1; here (LT) is used. As a consequence, we have that

lim
T!1

JTt � �Ttp
T

dD lim
T!1

PKTt
iD1 ..1 � �/Ton;i � �Toff;i/p

T

dD lim
T!1

r
KTt

T
	
PKTt

iD1 ..1 � �/Ton;i � �Toff;i/p
KTt

dD lim
T!1

r
t

�on C �off
	
PŒTt�

iD1 ..1 � �/Ton;i � �Toff;i/
p
ŒTt�

dD
r

t

�on C �off

p
Var..1 � �/Ton;i � �Toff;i/N

dD L�p
tN ;

where

L� WD
s
�2on�

2
off C �2off�

2
on

.�on C �off/3

and N represents a standard normal random variable. We have just proved that
single-dimensional distributions of ..JTt � �Tt/=

p
T/t converge to the single-

dimensional distributions of Bm.0; L�2/ as T ! 1.
The convergence of the finite-dimensional distributions can be dealt with in a

similar way. For example, to prove the convergence of two-dimensional distribu-
tions, it suffices to check that for each b1; b2 2 R and t2 > t1 � 0, as T ! 1,

b1
JTt1 � �Tt1p

T
C b2

JTt2 � JTt1 � �T.t2 � t1/p
T

d! � L�b1
p

t1N1 C L�b2
p

t2 � t1N2

�
;

with mutually independent standard normal random variables N1;N2.
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In order to justify the application of the limit model in communication networks
it is crucial to establish convergence in a stronger sense, for instance the functional
weak convergence in the space D equipped with the Skorokhod topology J1—we
refer to the book by Whitt [217] for a complete description of these notions and
further background. The following result for vertical aggregation can be found in
Taqqu et al. [210], but see also [217, Chapter 8].

Theorem 14.1 Assume that (LT) holds. Then

�
JTt � �Ttp

T

�

t

d! .Xt/t;

as T ! 1, where X 2 Bm.0; L�2/. Here ‘
d!’ denotes weak convergence in the

.DŒ0;1/; J1/ Skorokhod space.

Example 14.1 A key model in traffic theory is the so-called Anick–Mitra–Sondhi
model [10], that is, it is assumed that Ton;Toff are exponentially distributed with
means �on; �off 2 .0;1/ respectively (i.e. exponentially distributed with hazard
rates ��1on ; �

�1
off respectively). Then, with .Xt/t corresponding to Bm.0; 1/, we have

that

�
JTt � �Ttp

T

�

t

d!
 s

2�2on�
2
off

.�on C �off/
3

Xt

!

t

;

as T ! 1, in the sense of weak convergence in .DŒ0;1/; J1/). }
Remark 14.1 Thm. 14.1 can immediately be extended to traffic processes consisting
of superpositions of an arbitrary number (say, M) of i.i.d. on–off sources. Let
.J.1/t /t; .J

.2/
t /t; : : : ; .J

.M/
t /t be i.i.d. copies of .Jt/t, and assume that (LT) holds. Then

 PM
iD1.J

.i/
Tt � �Tt/p
MT

!

t

d!
0

@

s
.ETon/2�

2
off C .EToff/2�2on

.ETon C EToff/3
Xt

1

A

t

as T ! 1, in the sense of weak convergence in .DŒ0;1/; J1/. }

Stable Lévy approximation—Statistical measurements of data traffic in commu-
nication networks have shown that in specific situations assumption (LT) may be
inadequate, in the sense that the tails of Ton;Toff are potentially significantly heavier.
The presence of such heavy-tailed phenomena strongly motivates the analysis of the
on–off model under the following alternative assumption. Again, it is remarked that
the notion of a random variable being ‘heavy tailed’ differs from the one used in
Chapter 8. Let NFon.�/ and NFoff.�/ be the complementary distribution functions of Ton

and Toff, respectively.
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Definition 14.2 We say that the condition (HT) holds if

NFon.x/ D x�˛on Lon.x/; NFoff.x/ D x�˛offLoff.x/ with ˛on; ˛off 2 .1; 2/;

where Lon.�/ and Loff.�/ are slowly varying at infinity.

To simplify notation we tacitly assume that Lon.�/ D Loff.�/ D 1 in the rest of this
section. It can be verified that all results are valid for slowly varying Lon.�/ and
Loff.�/. We note that condition (HT) ensures ETon D �on < 1 and EToff D �off <

1, while Var.Ton/ D 1 and Var.Toff/ D 1. In this sense, Ton;Toff are heavy
tailed.

Then, with ˛ WD minf˛on; ˛offg; after switching the scaling from
p

T to T1=˛ , one
can repeat the argument given under the condition (LT). That is, we can restrict the
analysis of the convergence of .JTt � �Tt/=T1=˛ , as T ! 1, to the convergence of
just

1

T1=˛

KTtX

iD1
..1 � �/Ton;i � �Toff;i/

as T ! 1 (cf. the proof of [210, Thm. 3]). The above expression, by virtue of (HT)
being in place, tends to an ˛-stable law. The following result can be found in [210].
Recall C˛;� WD �˛.1 � ˛/= .
 .2 � ˛/ cos.�˛=2//, as in Prop. 2.1. Define

� WD .�on C �off/
1C1=˛

�off
; ˇ WD �˛off � �˛on

�˛off C �˛on

:

Theorem 14.2 Assume that (HT) holds.

(i) If ˛on < ˛off, then, with X 2 S.˛; 1; 0/, as T ! 1,

�
JTt � �Tt

T1=˛

�

t

d!
�
.C˛;� /

�1=˛ Xt

�

t
:

(ii) If ˛off < ˛on, then, with X 2 S.˛;�1; 0/, as T ! 1,

�
JTt � �Tt

T1=˛

�

t

d!
�
.C˛;� /

�1=˛ Xt

�

t
:

(iii) If ˛on D ˛off, then, with X 2 S.˛; ˇ; 0/, as T ! 1,

�
JTt � �Tt

T1=˛

�

t

d!
�
.C˛;� /

�1=˛ Xt

�

t
:

Here ‘
d!’ denotes weak convergence in the .DŒ0;1/;M1/ Skorokhod space.
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Observe that, although .Jt/t has continuous sample paths a.s., the obtained ˛-
stable limit has non-continuous trajectories a.s. This contrasts with Thm. 14.1,
where the limit process is continuous a.s. (as it is a Brownian motion). This
observation is related to the fact that the obtained convergence in Thm. 14.2 is in
the M1 topology, and cannot be extended to J1-convergence in the Skorokhod space
DŒ0;1/. A comprehensive discussion of these issues can be found in [215, 216] and
the book [217].

Remark 14.2 Thm. 14.2 can immediately be extended to traffic processes consisting
of a superposition of i.i.d. on–off sources. Namely, for .J.1/t /t; .J

.2/
t /t; : : : ; .J

.M/
t /t

being i.i.d. copies of .Jt/t, under (HT), one gets that

 PM
iD1.J

.i/
Tt � �Tt/

.MT/1=˛

!

t

weakly converges in .DŒ0;1/;M1/, as T ! 1, to ˛-stable Lévy motion, with the
same regimes (in terms of ˛on and ˛off ) as in Thm. 14.2. }

The infinite-source Poisson counterpart of the results given in this section can be
found in [183].

14.3 Convergence of Traffic Process: Vertical Aggregation

In the previous section we observed that for a fixed number of on–off sources we
obtain a limiting Lévy process (either Brownian motion or an ˛-stable Lévy motion),
under a specific scaling, as T ! 1. It is tempting to ask whether these limiting
properties are preserved in the situation that the number of sources grows large,
too. To this end, we study the model in a limiting regime in which one first lets the
number of sources M go to 1 and only then one sends T to 1.

In order to answer this question we start from the analysis for light-tailed
Ton;Toff, that is, it is assumed that (LT) holds. As previously, .J.i/t /t, for i D 1; 2; : : :

are i.i.d. copies of .Jt/t. First, by the central limit theorem, we observe that for given
T and as M ! 1, with

LJ.M/t WD
PM

iD1.J
.i/
t � �t/p
M

;

LJ.M/Tt converges in distribution to a centered normal random variable with variance

Var
�LJ.M/Tt1

�
D Var.JTt/ D 2

Z Tt

0

Z s

0

Cov.�.v/; �.0//dv ds:
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Additionally, it is readily verified that for any given t1; t2 > 0 the scaling is such that
the covariance

Cov
�LJ.M/Tt1

; LJ.M/Tt2

�
D Cov .JTt1 ; JTt2 / D Var.JTt1 /C Var.JTt2 /� Var.JTt1 � JTt2 /

2

is independent of the number of sources M. The above, given that we are able
to prove tightness in .DŒ0;1/; J1/ of the considered sequence of processes (with
respect to the parameter M), leads to the conclusion that .LJ.M/Tt /t converges, as
M ! 1, in .DŒ0;1/; J1/ to a centered Gaussian process with the same covariance
structure as .JTt/t.

In the second step we take the outer limit as T ! 1. It is a matter of
straightforward algebra to check that, by (LT),

Var.JTt/

T
! 2t

Z 1

0

Cov.�.s/; �.0//ds
D �2on�

2
off C �2off�

2
on

.�on C �off/3
t;

as T ! 1. We thus arrive at the following result; cf. [210].

Theorem 14.3 Assume that (LT) holds. Then

lim
T!1 lim

M!1

 PM
iD1.J

.i/
Tt � �Tt/p
MT

!

t

dD .Xt/t;

where X 2 Bm.0; L�2/; the weak convergence holds in the .DŒ0;1/; J1/ Skorokhod
space.

Interestingly, under the (HT) scenario, we still have convergence of .LJ.M/Tt /t, as
M ! 1, to a Gaussian process with the same covariance structure as the generic
.JTt/t process, as above. Then, after scaling by T1=˛ , the resulting Gaussian process
converges, as T ! 1, to a fractional Brownian motion (fBm) with Hurst parameter
H D 1=˛, which is a non-Lévy self-similar Gaussian process with stationary
increments and a long-range dependent structure of the increment process; see e.g.
[210, 217].

An important contribution to the discussion on the validity of Lévy or fBm
approximations (under (HT)) is given in Mikosch et al. [163], where dependence
between the rates of growth of M and T is allowed. We briefly summarize these
findings. Assume that M D MT is an integer-valued function, non-decreasing in T,
such that limT!1MT D 1. For compactness we assume that ˛ D ˛on < ˛off; other
cases can be dealt with in a similar way. Let b.t/ WD .1=.1� Fon//

�1 .t/; by (HT)
the function b.t/ is regularly varying with index 1=˛. Consider the process

 PMT
iD1.J

.i/
Tt � �Tt/

b.MTT/

!

t
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as T ! 1. It turns out that, if limt!1 b.MTT/=T D 0, then the above converges in
.DŒ0;1/;M1/, as T ! 1, to an ˛-stable Lévy motion. If limt!1 b.MTT/=T D 1,
on the other hand, then the corresponding limit is a fractional Brownian motion with
Hurst parameter 1=˛. We refer to [163] or [164] for details. Infinite-source Poisson
counterparts of the results given in this section can be found in [163].

14.4 Convergence of Workload Processes

In this section we validate the applicability of the limits obtained in previous
sections in the context of communication networks. More specifically, we focus
on showing that the convergence of the traffic processes to a given Lévy process
(which we showed to apply under certain circumstances, as presented in the previous
subsections) carries over to the workload process (in the sense that the workload
process converges to the workload process corresponding to a queue fed by that
specific limiting Lévy process). We primarily consider the analysis of the model
with just a single source; the many-sources model can be dealt with in a similar
way.

For given T > 0 consider a fluid queue, where the buffer is fed by an integrated
on–off process .JTt/t. The buffer is emptied at rate rT > 0 and it is assumed that
Q0 D xT .

Then (for given T), the content of the fluid queue at time t equals, according
to (2.4),

Q.T/
t WD XTt C max

�

xT ;� inf
s2Œ0;Tt�

Xs

	

D XTt C max

�

xT ;� inf
s2Œ0;t�XTs

	

;

with XTt WD JTt � rT t.

Reflected Brownian motion approximation—This case corresponds to the light-
tailed scenario. Here it is assumed that condition (LT) is satisfied and

lim
T!1

rT � �Tp
T

D r; lim
T!1

xTp
T

D x:

Then, by Thm. 14.1,

XTtp
T

D JTt � �Ttp
T

� rT � �Tp
T

t

converges in .DŒ0;1/; J1/, as T ! 1, to Bm.�r; L�2/.
The reflection mapping, mapping a path .yv/v for v 2 Œ0; s� onto Œ0;1/, given by

qŒy�.s/ WD ys C max

�

x;� inf
v2Œ0;s� yv

	

;
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with qŒy�.0/ D x � 0, is continuous in the space DŒ0; t� equipped with the topology
J1. We refer for this result (as well as many related results) e.g. to Whitt [215, 217].
Hence we can apply the continuous mapping theorem, which straightforwardly
implies that

Q.T/
tp
T

D 1p
T

�

XTt C max

�

xT ;� inf
s2Œ0;t�XTs

	�
d! Qt;

as T ! 1, where Qt is a queue driven by Bm.�r; L�2/, with Q0 D x. The exact
distribution of Qt is given in (4.6).

Reflected ˛-stable approximation—This scenario corresponds to the heavy-tailed
case. Assume that (HT) holds with

lim
T!1

rT � �T

T1=˛
D r; lim

T!1
xT

T1=˛
D x:

The same reasoning as in the light-tailed case, combined with Thm. 14.2 and the
fact that the reflection mapping is continuous in the space .DŒ0; t�;M1/, implies that

Q.T/
t

T1=˛
d! Qt;

as T ! 1, where Qt is a queue driven by ˛-stable Lévy motion (chosen according
to Thm. 14.2) with drift �rt and Q0 D x. Distributional properties of Qt were
presented in e.g. Chapters 4 and 9.

Remark 14.3 Continuity of the reflection mapping both in the J1 and the M1

topology implies that the above findings extend to queues in which the input consists
of a superposition of multiple i.i.d. on–off sources. }
Remark 14.4 Convergence of the transient workload process to an appropriately
chosen reflected Lévy process does not imply directly the convergence of the corre-
sponding stationary workload process, since the sup functional is not continuous in
the .DŒ0;1/; J1/ space (or the .DŒ0;1/;M1/ space). Interesting results confirming
such a convergence for the sequence of workload processes driven by Lévy inputs
can be found in [139, 207]. }

Exercises

Exercise 14.1 Assume that Jt D J.1/t C J.2/t , where .J.1/t /t; .J
.2/
t /t are independent

integrated on–off processes.

(a) Find the counterpart of Thm. 14.1 under the assumption that both .J.1/t /t; .J
.2/
t /t

satisfy (LT).
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(b) Find the counterpart of Thm. 14.2 under the assumption that both .J.1/t /t; .J
.2/
t /t

satisfy (HT).
(c) Assume that .J.1/t /t satisfies (LT) and .J.2/t /t satisfies (HT). What is the right

scaling to get a non-trivial limit for .Jt/t? Recognize the limit.

Exercise 14.2 Check that under (LT),

Z 1

0

Cov.�.s/; �.0//ds D 1

2

.�on C �off/
3

�2on�
2
off C �2off�

2
on

:

Hint: This follows by analyzing the transform of
R1
0

Cov.�.s/; �.0//ds.

Exercise 14.3 Check that the reflection mapping

qŒy�.s/ WD ys C max

�

x;� inf
v2Œ0;s� yv

	

is continuous in the space DŒ0; t� with the topology J1. Do the same with the
topology M1. For definitions see e.g. [217].

Exercise 14.4 Consider the space DŒ0;1/with the topology J1. For definitions see
e.g. [217].

(a) Prove that the functional Ng.�/, defined by

Ng.y/ WD sup
s2Œ0;t�

ys;

is continuous in the space DŒ0;1/.
(b) Show that the functional Nh.�/, defined by

Nh.y/ WD sup
s2Œ0;1/

ys;

is not continuous in the space DŒ0;1/ (i.e. find a counterexample).
(c) Repeat tasks (a) and (b) with the topology M1.



Chapter 15
Applications in Mathematical Finance

Lévy fluctuation theory is widely used in mathematical finance, primarily owing to
its capability to model a wide range of path structures—as we saw earlier in the
book, the class of Lévy models is rich, in that it includes processes with paths that
are sometimes for a while seemingly continuous, then exhibit jumps, potentially
both in the upward and the downward direction. The primary goal of this chapter is
to illustrate how the theory of the previous chapters can be used in various subareas
within the broader domain of mathematical finance.

In e.g. Cont and Tankov [63] it is argued that one could model the price evolution
of various risky assets by the process .St/t, where

St D S0e
Xt ;

with .Xt/t being a Lévy process. The payoff structures of popular options are
typically expressed in terms of the value ST at the maturity time T, or possibly the
associated running maximum NST (or running minimum). This explains why Lévy
fluctuation theory is a useful tool when pricing such options, and why we choose
option pricing as one of the leading examples in the chapter.

The second leading example that we include in this chapter is non-life insurance.
Modeling the cumulative claim process as a Lévy process, it turns out that a
significant subset of the results presented in this book can be used when quantifying
the insurer’s ruin probability.

For an extensive treatment of applications in finance, and a general account of
the use of Lévy modeling in this context, we refer e.g. to [63]; see e.g. [194] for an
extensive account of applications in credit risk.

In this chapter, we first consider a number of specific Lévy processes that are
frequently used in the financial literature. Then we give a brief account of methods
that have been developed to estimate the parameters of the Lévy process from time
series data. We continue by providing a number of examples in which we indicate
how (exotic) options can be priced relying on the theory presented in this book. The

© Springer International Publishing Switzerland 2015
K. Dębicki, M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext,
DOI 10.1007/978-3-319-20693-6_15

209



210 15 Applications in Mathematical Finance

chapter is concluded by presenting a number of applications of Lévy fluctuation
theory in non-life insurance and a short account of other applications in finance.

15.1 Specific Lévy Processes in Finance

In Chapter 2, as well as Sections 3.4 and 3.5, we introduced a series of standard
Lévy processes. Several other Lévy processes have been developed specifically for
financial applications; we review them in this section.

Jump diffusion processes—In the ‘classical’ literature, the models proposed are
typically Brownian motion with compound Poisson jumps, referred to as jump
diffusion processes. In the classical paper by Merton [160] these jumps are assumed
to have a normal distribution, whereas in the paper by Kou [141] the jumps have a
Lévy measure of the form (with ��; �C > 0 and p 2 .0; 1/)

˘.dx/ D �
p��e��

x1fx<0g C .1 � p/�Ce��C

x1fx>0g
�

dx;

meaning that with probability p there is an exponentially distributed downward jump
with mean 1=��, and with probability 1 � p there is an exponentially distributed
upward jump with mean 1=�C.

Normal inverse Gaussian process—Among several other references, [34, 191]
advocate the use of normal inverse Gaussian processes in financial modeling. These
processes are constructed as follows.

With X beingBm.d; �2/ and Y being an increasing Lévy process, it can be shown
that .Zt/t WD .XYt/t is again a Lévy process. Indeed, an elementary computation
yields that

logEeisZt D t logEe.�.�2s2=2/Cd is/Y1 :

Now take for .Yt/t an inverse Gaussian process, as introduced in Chapter 2, with
parameters �Nd and N�2; more specifically, Yt is the first time that a Brownian motion
with parameters �Nd (with Nd > 0) and N�2 reaches the level �t, for t � 0. Recall that,
due to its very definition, .Yt/t is increasing. After some calculus, it follows that

logEeisZ1 D 1

�
� 1

�

s

1C ��2s2

Nd � 2�d is
Nd ;

with � WD N�2= Nd. In the sequel we refer to Z as a normal inverse Gaussian process,
denoted by NIG.d; Nd; �2; �/; cf. [63, Table 4.5].

Variance gamma process—We have observed that with X being Bm.d; �2/ and
Y being an increasing Lévy process, .Zt/t WD .XYt/t is again a Lévy process. Now
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taking Y 2 G.	; ˇ/ (being an increasing process!), we obtain

logEeisZ1 D �ˇ log

 

1C . 1
2
�2s2 � d is/

	

!

:

Picking 	 D ˇ D 1=�, we call the resulting Lévy process .Zt/t a variance
gamma process [59, 154, 155, 196] with parameters d; �2; and �; cf. expression
[63, Eqn. (4.23)]); we use the notation VG.d; �2; �/.

There are at least two alternative ways to construct the variance gamma process.
The first construction is the following. With a substantial amount of calculus, we
can rewrite the Lévy exponent logEeisZ1 as

� 1

�
log

�

1C 1

2
�2�s2 � �d is

�

D �1
�

log

�

1� i � .�s/

A�

�

� 1

�
log

�

1 � is

AC

�

; (15.1)

with

A� WD W � d�

�2�
; AC WD W C d�

�2�
; W WD

p
d2�2 C 2�2�:

Conclude that VG.d; �2; �/ can be written as the difference between two gamma
processes; with a bit of abuse of notation,

VG.d; �2; �/
dD G.AC; 1=�/� G.A�; 1=�/: (15.2)

An alternative way to represent the variance gamma process is as follows. Using
the above representation in conjunction with the expression for the Lévy measure of
the gamma process, we can characterize VG.d; �2; �/ through

˘.dx/ D
�

� 1

�x
eA

�

x1fx<0g C 1

�x
e�A

C

x1fx>0g
�

dxI

recall that AC and A� are positive. It is concluded that the variance gamma process
inherits from the gamma process the property of the ‘small jumps’: there are
infinitely many jumps in a finite amount of time; as opposed to the gamma process,
the variance gamma process has both positive and negative jumps. Observe that
the Lévy measure behaves as 1=jxj for small x, and as a result the condition for
the Brownian approximation (3.12) does not hold. In addition, it is verified that
variance gamma processes are light tailed (due to the fact that the upper tail of the
Lévy density is essentially exponential).

Generalized tempered stable processes—As we saw in Chapter 2, the class of
˛-stable Lévy motions has ‘small jumps’ (i.e. infinitely many jumps in a finite
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time interval), but also regularly varying tails. If we want to keep the former
effect, but mitigate the latter, one could choose tempered stable processes. They
are characterized by the following Lévy measure, for positive AC;A�;CC; and C�;
and ˛C; ˛� < 2:

˘.dx/ D
�

C�
.�x/1C˛�

eA
�

x1fx<0g C CC
x1C˛C

e�A
C

x1fx>0g
�

dxI (15.3)

the resulting process is light tailed. In the literature, the process obtained when
choosing ˛ WD ˛C D ˛� and C WD CC D C� is usually referred to as the CGMY
process [58], denoted by CGMY.˛;C;AC;A�/; an early reference for the case
˛� D ˛C is [138]. It is noted that we have ‘small jumps’ when choosing ˛ positive,
while we have a compound Poisson process for negative ˛: It is seen that for ˛ > 0
the condition for the Brownian approximation (3.12) is met. The evaluation of the
Lévy exponent is a routine calculation (recognize the gamma function!); it is noted
that the cases ˛ D 0 and ˛ D 1 should be treated separately.

Processes in the ˇ-class—The following model was introduced in
Kuznetsov [143]; it has ‘small jumps’ (for certain parameter values) and light
tails as well. As it belongs to the class M of meromorphic Lévy processes
(see Section 3.5), it allows relatively easy numerical evaluation, relying on the
techniques presented in Section 3.5. The ˇ-class is characterized by as many
as 10 parameters: obviously the deterministic drift d 2 R and the variance �2

corresponding to the Brownian component, but also ˛C > 0, ˇC > 0, cC > 0, and
�C 2 .0; 3/ n f1; 2g corresponding to the positive jumps, and ˛� > 0, ˇ� > 0,
c� > 0, and �� 2 .0; 3/ n f1; 2g corresponding to the negative jumps. More
concretely, the Lévy measure is given by

˘.dx/ D
�

c�
.1 � eˇ�

x/��

e˛�

ˇ
�

x1fx<0g C cC
.1 � e�ˇC

x/�C

e�˛C

ˇ
C

x1fx>0g
�

dx:

The corresponding Lévy exponent can be found by performing a standard com-
putation; it involves the beta function. This family of processes has a relatively
large number of parameters, and therefore offers a large amount of flexibility. For
instance, one obtains ‘small jumps’ (infinite activity) by picking �� or �C in the
interval .1; 3/.

Various other models have been proposed; see e.g. [144] for several other
examples in the class of meromorphic Lévy processes M .

15.2 Estimation

We now give a brief account of methods to estimate the parameters of the Lévy
process based on N periodic observations rk WD Xk � X.k�1/, for k D 1; : : : ;N.
For a more complete treatment in the specific context of financial modeling we refer
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e.g. to Cont and Tankov [63, Chapter VII] or Sueishi and Nishiyama [204]. A review
from a more statistical perspective can be found in Gugushvili [105].

The first method that is often used is maximum likelihood estimation. Then a class
of Lévy processes should be picked, leaving us with estimation of the parameters
corresponding to that class, for instance the vector � D .˛;C;AC;A�/ in the case
of the CGMY process. Suppose the density of X is known explicitly in terms of
�; call it f .� j �/. Then the idea is to maximize the likelihood of the observations,
that is,

max
�2�

NY

kD1
f .rk j �/;

or, equivalently, maximize the logarithm of the likelihood function `.�/ WDPN
kD1 log f .rk j �/: This method has a number of obvious disadvantages.

• First, a parametric class of Lévy processes should be picked. If there is little
prior knowledge of which model would fit well, it may sound reasonable to
take a class with many parameters, for instance a generalized tempered stable
process (6 parameters), or a process in the ˇ-class proposed in Kuznetsov [143]
(10 parameters). To allow a fair comparison between various models, however,
one needs to include a penalty for the number of parameters, perhaps in the spirit
of Akaike [4].

• For several classes of Lévy processes the density f .� j �/ of X is not available in
closed form, or it is available only in terms of special functions (whose evaluation
may be costly).

• Third, there are numerical issues. For instance, it is not guaranteed that `.�/ is
concave in � . As a result, standard optimization procedures may end up in a local
maximum.

An alternative to maximum likelihood is the generalized method of moments [106].
In this method, we need to have a vector-valued function g.�/ such that

m.�?/ WD E g.X j �?/ D 0;

where �? is the true value of the parameter (these are often referred to as the moment
conditions). Now define the following estimator of m.�/:

Om.�/ WD 1

N

NX

kD1
g.rk j �/:

The idea is now to estimate the parameters by performing the following minimiza-
tion, for some positive-definite weight matrix W:

min
�2� Œm.�/�

0W m.�/: (15.4)
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Conditions have been established under which the resulting estimator (i.e. the
minimizer of the optimization program (15.4)) has specific nice properties, e.g.
consistency. Evidently, this procedure has drawbacks as well. In addition to some of
the aspects mentioned above (with respect to the maximum likelihood estimator),
it is mentioned that the choice of the function g.�/ in the moment conditions has
potentially a substantial impact on the efficiency of the estimator.

In specific cases alternative algorithms have been developed. For instance, in
the case that X is a compound Poisson process (and hence the rk correspond to a
Poisson number of i.i.d. terms), interesting techniques have been developed; see
e.g. [55, 56, 107, 212] and references therein.

15.3 Distribution of Running Maximum

As we will see later in this section, in financial applications knowledge of the
distribution of the running maximum of a Lévy process X, that is,

NXt WD sup
0�s�t

Xs;

in some cases jointly with the value of Xt, is of utmost importance. For general Lévy
processes, this knowledge is immediately available from the Wiener–Hopf results.
Apart from reviewing these results, we also present approximations that can be used
when X is a subordinated Brownian motion.

We first consider the joint distribution of NXt and Xt: To this end, we trivially write

˛ NXt C ˇXt D .˛ C ˇ/ NXt C ˇ.Xt � NXt/:

The key step is that, with T being exponentially distributed with mean #�1,
according to Wiener–Hopf theory, the random variables NXT and XT � NXT are
independent [43, 146]; see also Section 3.3. It is also seen that, with as usual
X0t WD �Xt,

XT � NXT
dD � NX0T :

Focusing for the moment on X 2 SC, the above findings give after elementary
calculations (using the explicit expressions for X 2 SC as given in Section 3.3)
that, for ˛; ˇ � 0,

Ee�˛ NXT�ˇXT D Ee�.˛Cˇ/ NXT Eeˇ NX0

T D #

# � '.˛ C ˇ/

 .#/ � .˛ C ˇ/

 .#/ � ˇ
; (15.5)

where we use that X0 2 S�: Likewise, for X 2 S�, for ˛; ˇ � 0, with T
being exponentially distributed with mean q�1, again relying on the findings of
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Section 3.3,

Ee˛ NXTCˇXT D �.q/� ˇ

�.q/� .˛ C ˇ/

q

q �˚.ˇ/ ; (15.6)

using that X0 2 SC:
In the case that X is not spectrally one sided, we have results in terms of just

Wiener–Hopf factors. As before, we first use the independence of NXT and XT � NXT ,
to obtain

Eei˛ NXTCiˇXT D Eei.˛Cˇ/ NXTEeiˇ.XT�NXT /:

From Thm. 3.4 we know how to compute these quantities.
As is the case for the stationary and transient workloads, this result does not lend

itself for further evaluation in terms of the Lévy exponent of X in the spectrally
two-sided case, except when either the upward jumps or the downward jumps are
of phase type. This observation suggests that evaluation of the distribution of NXt

is hard for the spectrally two-sided processes introduced in Section 15.1 (normal
inverse Gaussian, variance gamma, CGMY), but there turns out to be an interesting
approximation.

Subordinated Brownian motion—Let X be Bm.d; �2/ and Y be an increasing
Lévy process (or subordinator), and define, as before, .Zt/t WD .XYt /t; we call the
process Z a subordinated Brownian motion. Then, due to the fact that Y is increasing,
we obviously have

XYt D Zt � NZt D sup
s2Œ0;t�

Zs D sup
s2Œ0;t�

XYs � sup
s2Œ0;Yt �

Xs D NXYt ;

and hence

P.XYt � x/ � P. NZt � x/ �
Z 1

0

P. NXy � x/P.Yt 2 dy/:

Relying on the explicit result for the transient workload of a Brownian-motion-
driven queue (4.6), we thus have

P. NZt � x/ �
Z 1

0

�

˚N

��x C dy

�
p

y

�

C e2dx=�2˚N

��x � dy

�
p

y

��

P.Yt 2 dy/

and

P. NZt � x/ �
Z 1

0

˚N

��x C dy

�
p

y

�

P.Yt 2 dy/:
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We conclude that if we can write Z as a subordinated Brownian motion, this
elementary procedure can be applied to find bounds on the distribution of NZt. Clearly,
the upper bound will be tight if the jumps of the subordinator are typically small.

In the case that the drift d is negative, we can find logarithmic asymptotics
of P. NZt � x/ for a large class of subordinating processes Y. Following Dȩbicki
et al. [73], we sketch the idea behind the derivation of these logarithmic asymptotics
for the case that Yt has a density function of the form L.x/=x�C1, where L.�/ is slowly
varying at infinity and � > 0. For the upper bound we use that

P. NZt � x/ � P

 

sup
s2Œ0;1/

Xs � x

!

D exp

�
2dx

�2

�

:

To get the lower bound, we first observe that

P. NZt � x/ � P.XYt � x/

� min
s2Œ�x=d�px;�x=dCpx�

P.Xs � x/P
�

Ys 2
h
� x

d
� p

x;� x

d
C p

x
i�
:

Using that P.Ys 2 Œ�x=d � p
x;�x=d C p

x�/ is regularly varying at infinity and

lim
x!1

log
�

mins2Œ�x=d�px;�x=dCpx� P.Xs � x/
�

x
D 2d

�2
;

we obtain the following result [73].

Theorem 15.1 Let X be Bm.d; �2/, with d < 0 and Y be an increasing Lévy
process. Assume that Yt has an absolutely continuous distribution with a probability
density function of the form L.x/=x�C1, where L.�/ is slowly varying at infinity and
� > 0. Then, with .Zt/t D .XYt /t,

lim
x!1

logP. NZt � x/

x
D 2d

�2
:

The case that the subordinating process Y is light tailed can be addressed as well;
it needs a more subtle approach, however, leading to several scenarios. We refer to
[13, 73] for more results on asymptotics of a subordinated Brownian motion and
extensions to more general subordinated Gaussian processes.

Likewise, we can also find an upper bound on P. NZt � x;Zt 2 dz/. Relying on
explicit results for the Brownian bridge, we can find the joint distribution of NXt

and Xt:

P. NXt � x;Xt 2 dy/ D 1p
2�t�

exp

�

� .y � dt/2

2�2t

�

P. NXt � x j Xt D y/ dy;
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where

P. NXt � x j Xt 2 dy/ D exp

�

� 2x

�2t
.x � y/

�

for x � y and 1 otherwise. We thus find

P. NZt � x;Zt 2 dz/ �
Z 1

yD0
P. NXy � x;Xy 2 dz/P.Yt 2 dy/:

This leaves us with the question of how we can verify whether a Lévy process
corresponds to a subordinated Brownian motion. In this respect, the following
equivalence is of crucial importance [63, Thm. 4.3]. Without loss of generality we
take the variance �2 of the Brownian motion equal to 1.

Theorem 15.2 A Lévy process Z is a subordinated Brownian motion (i.e. .Zt/t WD
.XYt /t with X being Bm.d; 1/ and Y being an increasing Lévy process) if and only if
the following three conditions hold:

• the Lévy measure ˘ of Z is absolutely continuous, with associated density �.x/;
• �.x/e�dx D �.�x/edx for all x;
• �.

p
x/e�d

p
x is completely monotone on .0;1/:

This result can be used to show that normal inverse Gaussian, variance gamma, and
CGMY are all subordinated Brownian motions. For normal inverse Gaussian and
variance gamma we already know that property from their very construction, but
it can now easily be re-proved by the above result. CGMY can also be shown to
be a subordinated Brownian motion [176, 221], with ˘.x/ containing a parabolic
cylinder function [218, p. 347]; for the broader class of tempered stable processes
this is not necessarily true (in other words, one should choose ˛� D ˛C and C� D
CC in (15.3)).

15.4 Option Pricing: Payoff Structures

In this and the next section we demonstrate how the results on the running maximum
facilitate option pricing; for more background we refer e.g. to [63, 170, 171]. We
start with simpler options, and gradually look at increasingly complicated variants.
As indicated earlier, we have that St D S0eXt for a Lévy process .Xt/t and a known
value S0.

Vanilla options—The simplest of all options is the so-called vanilla call option.
The call variant is defined through its payoff function

P.c/van.T;K/ WD maxfST � K; 0g D .ST � K/CI
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informally, this means that the holder has the right to buy the asset for K at the
maturity date T. Similarly, P.p/van.T;K/ WD .K � ST/

C is the price of the right to sell,
referred to as the vanilla put option.

Lookback options—Vanilla options have a payoff structure that depends on the
price evolution of the underlying asset only through the price at expiration. There
is an abundance of exotic options that are traded nowadays, however, with payoff
structures that are substantially more involved. Lookback options are examples of
derivatives for which the payoff depends on the maximum (or minimum) price over
the life of the option, and possibly the price of the underlying asset at maturity as
well. They come in two flavors: lookback options with a fixed strike, and those with
a floating strike.

With the stochastic process St representing the evolution of the stock prices and
NST WD sup0�t�T St the associated running maximum process, the payoff of the fixed-
strike call option is

P.c/fix .T;K/ WD maxfNST � K; 0g D .NST � K/C;

with strike price K and maturity time T; analogously, the payoff of the put
counterpart is given by P.p/fix .T;K/ WD .K � ST/

C, with .St/t the running minimum
process. As indicated by these payoffs, this type of option has a fixed, a priori known
strike price, but as opposed to the ‘traditional’ European option, the underlying
trigger is not the price at maturity but rather the maximum (or minimum) of the
underlying asset price over the life of the option.

The payoff of the floating-strike call option is

P.c/fl .T;L/ WD maxfST � LST ; 0g D .ST � LST/
CI

in the case L � 1 the payoff is always non-negative, and reduces to ST � LST : This
means that the strike price is fixed at the asset’s minimal price during the option’s
life, multiplied by a specified constant L. The payoff of the put counterpart is defined
by P.p/fl .T;L/ WD maxfLNST � ST ; 0g, which reduces to LNST � ST if L � 1:

Importantly, unlike vanilla options, the lookback options discussed above, as well
as other exotic options, have a path-dependent payoff. This means that their payoff
does not depend on ST alone, but also involves a certain functional of the process St,
for 0 � t � T (i.e. the maximum or minimum value attained). As a consequence it
is highly non-trivial to price such options, or to numerically assess the sensitivities
of the price with respect to the various model parameters such as the maturity and
the initial price of the underlying asset (the ‘Greeks’).

Barrier options—Another type of option involves both the running maximum
(or minimum), and the process’ value at the maturity time. Consider for instance
the so-called Up-and-In barrier call option, where it is remarked that other flavors
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(Up-and-Out, Down-and-In, Down-and-Out, and the put variants) can be defined
analogously [171]. The Up-and-In barrier call option has payoff

P.c/uib.T;K;H/ WD .ST � K/C 1fNST�HgI

we are interested in the more challenging case that maxfS0;Kg < H (noting that if
this condition is not fulfilled the payoff is non-negative with certainty).

Conclude from the above that all payoff functions depend on St, NSt, St, or a subset
of these. In Section 15.3 we found expressions for the joint distribution of NXt and
Xt (which were quite implicit, i.e. in terms of transforms); expressions for the joint
distribution of Xt and Xt can be found analogously. This means that, in principle, we
can evaluate the prices of the options. The next section further elaborates on this.

15.5 Option Pricing: Transforms of Prices

In this section we present results on the transforms of option prices, and also pay
some attention to corresponding sensitivities (‘Greeks’). We do so for the vanilla
option, lookback option, and barrier option, as introduced in the previous section.
We consider the usual setup, as introduced in more detail e.g. in Nguyen-Ngoc [170]
and Asghari and Mandjes [17]: a market with two basic assets, that is, the usual bank
account with an interest rate r > 0, and the option associated with an underlying
asset whose evolution in time is represented by the stochastic process St.

Locally, we use short notation for the Laplace transforms of NXT.q/ and XT.q/,
with T.q/ being an exponentially distributed random variable with mean q�1. We
introduce

�C.˛; q/ WD E e�˛ NXT.q/ D k.q; ˛/

k.q; 0/
; ��.˛; q/ WD E e�˛XT.q/ D

Nk.q;�˛/
Nk.q; 0/ :

In addition,

�C.˛; q/��.˛; q/ D Ee�˛ NXT.q/ Ee�˛XT.q/ D Ee�˛ NXT.q/ Ee�˛XT.q/C˛ NXT.q/

D Ee�˛XT.q/ D
Z 1

0

qe�qt
Ee�˛Xt dt

D
Z 1

0

q
�
exp.�q C logEe�˛X1 /

�t
dt

D q

q � logEe�˛X1
DW K .˛; q/: (15.7)
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Vanilla options—Our goal is to compute the price of the vanilla option, that is,
for given numbers K and T,

V.c/
van.T;K/ WD E

�
e�rTP.c/van.T;K/

� I

the analysis of the put counterpart works similarly. It requires some elementary
algebra to verify that, with k WD log.K=S0/,

V.c/
van.T;K/ D S0 e�rT

Z 1

k
.ex � ek/P.XT 2 dx/:

Let OV.c/
van.T; ˛/ be the Fourier transform with respect to k:

OV.c/
van.T; ˛/ WD S0e

�rT
Z 1

�1
ei˛ke�k

Z 1

k

�
ex � ek

�
P.XT 2 dx/dk;

where � > 0 is a damping factor. By changing the integration order it is readily
found that

OV.c/
van.T; ˛/ D S0e�rT

.i˛ C �/.i˛ C �C 1/
Ee.i˛C�C1/XT

D S0
.i˛ C �/.i˛ C �C 1/

�
e�r

Ee.i˛C�C1/X1
�T
; (15.8)

where the last step is due to the Lévy nature of Xt. We have expressed the transform
OV.c/

van.T; ˛/ in terms of the Lévy exponent corresponding to Xt and the maturity T.
We now determine the transforms of a set of Greeks, that is, sensitivities. We

focus on the sensitivities with respect to the initial price of the underlying asset S0
and the maturity T; in the sequel we refer to these Greeks as  and �: Regarding
the former, it is elementary to verify that

.c/
van.T;K/ WD @V.c/

van.T;K/

@S0
D e�rT

Z 1

log.K=S0/
ex
P.XT 2 dx/:

Writing k WD log.K=S0/ and transforming to k in the same way as above, we obtain
the transform

O.c/
van.T; ˛/ WD e�rT

Z 1

�1
ei˛ke�k

Z 1

k
ex
P.XT 2 dx/dk

D 1

i˛ C �

�
e�r

Ee.i˛C�C1/X1
�T
:

Realize that the expression in the right-hand side implicitly depends on S0, as k D
log.K=S0/.
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We now concentrate on the Greek with respect to the maturity time. With

�.c/
van.T;K/ WD @V.c/

van.T;K/

@T
;

we have that the corresponding transform equals

O�.c/
van.T; ˛/ WD S0

.i˛ C �/.i˛ C �C 1/

�
e�r

Ee.i˛C�C1/X1
�T �

logEe.i˛C�C1/X1 � r
�
:

It is noted that transforms of second-order Greeks can be determined similarly.
The vanilla options are path independent, in the sense that their prices depend

on the asset price process only through the asset price at maturity time T, and are
independent of the specific shape of the path during the time interval .0;T/. The
lookback options and barrier options, which we are going to study now, are path
dependent.

Fixed-strike lookback options—We now focus on pricing fixed-strike lookback
options; again we present our analysis for the call option, but the put variant is dealt
with analogously. In our derivations, we follow the same line of reasoning as in
Nguyen-Ngoc [170]. Our goal is to evaluate, in terms of transforms,

V.c/
fix .T;K/ WD E

h
e�rTP.c/fix .T;K/

i
;

as well as its Greeks with respect to S0 and T; recall the definition of the payoff
P.c/fix .T;K/ from Section 15.4. If K � S0, it automatically follows that P.c/fix .T;K/ D
NST � K. Realize that this case corresponds to a ‘riskless’ option, for which it is
guaranteed that the payoff is non-negative. Let us therefore turn to the more realistic
setting in which K > S0:

We again parameterize k D log.K=S0/, which is now necessarily positive. Let
OV.c/

fix .#; ˛/ be the transform with respect to k and T:

OV.c/
fix .#; ˛/ WD

Z 1

0

#e�#T
Z 1

0

e�˛k V.c/
fix .T;K/ dk dT:

The idea of including the maturity T as an exponential random variable was first
proposed in Geman and Yor [98] for barrier options, but just for the Black–Scholes
model. This expression can be rewritten as the threefold integral

S0

Z 1

0

#e�.rC#/T
Z 1

0

e�˛k
Z 1

k
.ex � ek/P. NXT 2 dx/ dk dT;
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which we in the sequel assume to converge. Now change the order of integration:
first integrate over k 2 Œ0; x�, so as to obtain

S0
#

r C #

Z 1

0

.r C #/e�.rC#/T

Z 1

0

�
1

˛

�
ex � e.1�˛/x

� � 1

˛ � 1
�
1 � e.1�˛/x

�
�

P. NXT 2 dx/ dT:

This quantity can be expressed in term of transforms related to the running
maximum after an exponentially distributed time with mean .r C #/�1:

S0
#

r C #

�
1

˛

�
Ee NXT.rC#/ � Ee.1�˛/ NXT.rC#/

�
� 1

˛ � 1
�
1 � Ee.1�˛/ NXT.rC#/

��

:

This expression can be written in terms of the transform �C.˛; q/ introduced earlier:

S0
#

r C #

�
�C.�1; r C #/ � �C.˛ � 1; r C #/

˛
� 1 � �C.˛ � 1; r C #/

˛ � 1

�

:

The Greek related to the initial asset price S0 is


.c/
fix .T;K/ WD @V.c/

fix .T;K/

@S0
D e�rT

Z 1

log.K=S0/
ex
P. NXT 2 dx/:

With the usual transformation k D log.K=S0/, we find

O.c/
fix .#; ˛/ WD

Z 1

0

#e�.rC#/T
Z 1

�1
e�˛k

Z 1

k
ex
P. NXT 2 dx/dk dT

D #

r C #

�C.�1; r C #/� �C.˛ � 1; r C #/

˛
:

Now consider the Greek with respect to the maturity T. Interchanging the order of
the integrals and integration by parts yields

O�.c/
fix .#; ˛/ WD

Z 1

0

#e�#T
Z 1

0

e�˛k @V.c/
fix .T;K/

@T
dk dT D # OV.c/

fix .#; ˛/:

Floating-strike lookback options—In this subsection the focus lies on floating-
strike lookback options, presenting, as usual, the results for the call variant. We
characterize, in terms of transforms,

V.c/
fl .T;L/ WD E

h
e�rTP.c/fl .T;L/

i
;
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as well as its Greeks with respect to S0 and T; the payoff function P.c/fl .T;L/ is
defined in the previous section. If L � 1, this payoff equals ST � LST , being non-
negative, and allowing for relatively easy evaluation. We therefore focus on the more
realistic (and challenging) setting in which L > 1:

We parameterize ` WD log L (which is positive), and define

OV.c/
fl .#; ˛/ D

Z 1

0

#e�#T
Z 1

0

e�˛`V.c/
fl .T; e`/ d` dT:

After some algebra, it is seen that this expression equals

S0

Z 1

0

#e�.rC#/T
Z 1

0

e�˛`
Z 0

yD�1

Z 1

xD`Cy
.ex � e`Cy/P.XT 2 dx;XT 2 dy/ d` dT:

Interchange the order of the integrals, such that first the integral over ` 2 Œ0; x �y� is
evaluated. With the inner integral corresponding to the variable y and the ‘middle’
integral to x, this reduces to

S0

Z 1

0

#e�.rC#/T
Z 1

�1

Z 0

�1
�

ex .1 � e�˛.x�y//

˛
� ey .1 � e�.˛�1/.x�y//

˛ � 1
�

P.XT 2 dx;XT 2 dy/dT:

We thus find

OV.c/
fl .#; ˛/ D S0

#

r C #

�
1

˛.˛ � 1/
E
�
e�.˛�1/XT.rC#/C˛XT.rC#/

�

C 1

˛
EeXT.rC#/ � 1

˛ � 1
EeXT.rC#/

�

:

Consider the first term between the brackets in the previous display. By virtue of
(i) the trivial identity �.˛ � 1/x C ˛x D .˛ � 1/.x � x/C x, (ii) the fact that (due to
Wiener–Hopf theory) XT.rC#/ and XT.rC#/ � XT.rC#/ are independent, and (iii) the
fact that XT.rC#/ � XT.rC#/ is distributed as � NXT.rC#/; we have that

E
�
e�.˛�1/XT.rC#/C˛XT.rC#/

� D Ee�.˛�1/ NXT.rC#/ EeXT.rC#/ :
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Using the notation introduced in Eqn. (15.7), these considerations eventually lead to
the identity

OV.c/
fl .#; ˛/ D S0

#

r C #

�
�C.˛ � 1; r C #/��.�1; r C #/

˛.˛ � 1/

C K .�1; r C #/

˛
� ��.�1; r C #/

˛ � 1

�

:

We now turn to the Greeks. The quantity .c/
fl .T;L/, defined in the obvious way, is

simply OV.c/
fl .#; ˛/=S0, which is independent of S0; it is evident from the definition

of the payoff that OV.c/
fl .#; ˛/ is linear in S0: Regarding, in self-evident notation,

�
.c/
fl .T;L/, it is seen that, with the same line of reasoning as used for the fixed-strike

lookback option, O�.c/
fl .#; ˛/ D # OV.c/

fl .#; ˛/:

Barrier options—In this situation, we are interested in the more challenging case
that maxfS0;Kg < H (noting that if this condition is not fulfilled the payoff is non-
negative with certainty). Putting k WD log.K=S0/ and h WD log.H=S0/, we wish to
evaluate

V.c/
uib.T;K;H/ WD E

h
e�rTP.c/uib.T;K;H/

i
:

Now let OV.c/
uib.#; ˛; ˇ/ be the transform with respect to k; h; and T:

S0

Z
1

0

#e�.rC#/T
Z

1

�1

Z
1

0

e˛ike�ˇh
Z

1

yDk

Z
1

xDh
.ey � ek/P. NXT 2 dx;XT 2 dy/dh dk dT:

This expression reduces, when interchanging the order of integration, to

S0
i˛.i˛ C 1/ˇ

Z 1

0
#e�.rC#/T

Z 1

yD�1

Z 1

xD0
e.i˛C1/y.1� e�ˇx/P. NXT 2 dx;XT 2 dy/dT

D S0
i˛.i˛C 1/ˇ

#

r C #
E

�
e.i˛C1/XT.rC#/

�
1 � e�ˇ NXT.rC#/

��
;

which can be expressed in terms of the functions �C.˛; q/, ��.˛; q/; and K .˛; q/
(as we did for the floating-strike lookback option):

S0
#

r C #

�
K .�i˛ � 1; r C #/ � �C.�i˛ � 1C ˇ; r C #/��.�i˛ � 1; r C #/

i˛.i˛ C 1/ˇ

�

:

The Greeks can be characterized (in terms of transforms) as before.
We conclude this section with a few remarks. Above we demonstrated how to

compute the first moment of the option prices (where a discount factor r is imposed).
In making portfolio decisions, it may be that one needs to have information about
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higher moments as well, for instance the second moment (to be able to compute the
variance). Transforms of higher moments can be derived analogously.

Besides the options mentioned above, there is a plethora of alternatives. One
variant is the so-called American option, in which the holder decides the moment
of executing the option. This means that, in order to compute the price of such an
option (for instance in terms of a first moment), an optimal stopping problem needs
to be solved; see e.g. Mordecki [167].

15.6 Applications in Non-life Insurance

In this section we treat a selection of problems arising in non-life insurance that can
be analyzed using Lévy fluctuation theory. An important role is played by a duality
relation between ruin models and specific associated queueing models.

Lévy risk processes—In collective risk theory the risk reserve process .Ut/t,
describing the dynamics of the insurer’s capital balance in time, is modeled as

Ut D u C ct � St; (15.9)

where u is the initial capital (at time 0) of the insurance company, c > 0 is the
(constant) premium rate per unit of time, and .St/t is a stochastic process that models
the cumulative claims.

The celebrated Cramér–Lundberg model, to be found in e.g. [21, 162], assumes
that successive claims Y1;Y2; : : : arrive according to a Poisson process .Nt/t with
constant intensity, say � > 0. The claims form a sequence of i.i.d. non-negative
random variables with finite mean � > 0, which is also assumed to be independent
of the arrival process. As such, the cumulative claim process .St/t is a compound
Poisson process, and can be represented as

St D
NtX

kD1
Yk:

Although the Cramér–Lundberg model has a natural and elegant interpretation,
in many cases the framework appears to be too restrictive. This explains why
recent studies focus on more flexible and richer classes of processes to model the
cumulative claim process. In particular, there is a substantial body of work that
considers the idea of representing .St/t by a Lévy process with finite mean.

The theoretical justification behind approximating the risk reserve process by a
Lévy motion goes back to work of Iglehart [113]. He found, under the assumption
that EY21 < 1, that an appropriately scaled sequence of Cramér–Lundberg risk
reserve processes may be approximated by Brownian motion with linear drift. In
the case that the condition EY21 < 1 does not hold, an ˛-stable approximation was
established by Furrer et al. [97]. The idea that underlies these approximations is that
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time is sped up, but simultaneously the claim sizes are made smaller; this is done
in such a way that the corresponding risk processes converge to a non-degenerate
limit.

More specifically, the scaling considered is the following. Let S.˛/1
dD S˛.1; ˇ; 0/

for ˛ < 2, and let S.2/1 be distributed as a standard normal random variable. We
suppose that the partial sums of the claims Y1;Y2; : : : obey the following limiting
law as n ! 1:

1

d.n/

nX

kD1
.Yk � �/

d! S.˛/1 ;

where d.n/ WD An1=˛ with ˛ 2 .1; 2�, and A is some positive constant.
Then we consider the following sequence of Cramér–Lundberg risk processes:

U.n/
t WD u C cnt � 1

d.n/

NntX

kD1
Yk; (15.10)

for n D 1; 2; : : : : Here the premium rates are equal to cn WD c C ��A�1n1�1=˛ , and
.Nt/t denotes a Poisson process with intensity � > 0. It is readily verified that

U.n/
t D u C ct � Nnt � �nt

d.n/
� � 1

d.n/

NntX

kD1
.Yk � �/:

From this we draw the following two conclusions. First, it follows that for ˛ 2
.1; 2/, as n ! 1,

Nnt � �nt

d.n/
! 0

in probability in the Skorokhod topology. Second, if ˛ D 2, then

�
Nnt � �nt

d.n/

�

t

d! .St/t

in the sense of weak convergence in .DŒ0;1/; J1/, where S 2 Bm
�
0; �=A2

�
. These

observations straightforwardly lead to the following result; see Iglehart [113] and
Furrer et al. [97] for detailed proofs.

Theorem 15.3 Let .U.n/
t /t, n D 1; 2; : : : be a sequence of Cramér–Lundberg risk

processes as defined through (15.10).

(i) If ˛ 2 .1; 2/, then with S.˛/ 2 S.˛; ˇ; 0/, as n ! 1,

.U.n/
t /t

d! .u C ct � �1=˛S.˛/t /t:
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(ii) If ˛ D 2, then with S 2 Bm
�
0; �.�2 C A2/=A2

�
, as n ! 1,

.U.n/
t /t

d! .u C ct � St/t:

Here ‘
d!’ denotes weak convergence in the .DŒ0;1/; J1/ Skorokhod space.

Dualities between ruin and overflow probabilities—One of the central problems
in collective risk theory concerns the evaluation of the ruin probability. For a risk
process Ut D u C ct � St, where .St/t is a Lévy process with ES1 < c, we define the
ruin time �.u/ as the first time the risk process is negative, that is,

�.u/ WD infft > 0 W Ut < 0g:

Since �.u/ D infft > 0 W ct � St < �ug, the ruin time coincides with the passage
time of the process .ct � St/t below level �u, as introduced in Chapter 6. As an
immediate consequence, the probability that the risk process .Ut/t ever becomes
negative, sometimes referred to as the infinite-time ruin probability, equals

P .�.u/ < 1/ :

Now it follows directly that

P .�.u/ < 1/ D P

�

inf
t�0Ut < 0

�

D P

 

sup
t�0
.St � ct/ > u

!

:

Thus, by Reich’s identity, as given by Eqn. (2.5), the following theorem holds. It
establishes a useful duality property between ruin and queueing models.

Theorem 15.4 For u > 0,

P .�.u/ < 1/ D P.Q > u/;

where Q is the stationary workload of a queue with net input process .St � ct/t .

As a straightforward application of Thm. 15.4, we may translate all the results
derived for the stationary workload in terms of infinite-time ruin probabilities. In
particular, upon combining Thm. 3.1 with Remark 3.1, we obtain an exact formula
for the distribution of the infinite-time ruin probability in the Cramér–Lundberg
model.

In an analogous way we can find the counterpart of Thm. 15.4 for the finite-time
ruin probability

P .�.u/ � t/ ;
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which represents the probability that the risk process .Ut/t becomes negative before
time t. Using that

P .�.u/ � t/ D P

�

inf
s2Œ0;t�Us < 0

�

D P

 

sup
s2Œ0;t�

.Ss � cs/ > u

!

;

in combination with the representation that we derived for the transient workload
.Qt j Q0 D 0/ in Chapter 4, we obtain the following relation between the finite-
time ruin probability and the exceedance probability in the corresponding transient
queue.

Theorem 15.5 For u > 0,

P .�.u/ � t/ D P.Qt > u j Q0 D 0/;

where .Qt/t is the workload process of a queue with net input process .St � ct/t.

It is clear that, by applying Thm. 15.5 to the results derived in Chapters 4 and 9, we
can obtain both exact and asymptotic results for such finite-time ruin probabilities.

Lévy insurance risk process with tax—Consider the Lévy risk model under the
additional assumption that tax payments are deducted from the premium income.
Following Albrecher and Hipp [5], and also [6], we suppose that taxes are paid at a
constant proportion 	 2 Œ0; 1/, whenever the risk process is at its running maximum.
This leads to the modified risk process

QUt WD u C ct � St � 	 sup
s2Œ0;t�

.cs � Ss/;

where the ruin time is given by

�	 .u/ WD infft � 0 W QUt < 0g:

Thus, the infinite-time ruin probability takes the following form:

P
�
�	 .u/ < 1� D P

 

sup
t�0

�

St � ct � 	 inf
s2Œ0;t�.Ss � cs/

�

> u

!

:

Interestingly, there is an intimate relation between the ruin probability under tax
constraints and the ruin probability in the classical tax-free model (corresponding to
	 D 0). Albrecher et al. [6] established the following remarkably simple identity,
which allows us to reduce the analysis of the ruin probabilities with tax to those
related to the classical ‘non-tax model’.
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Theorem 15.6 Suppose that S 2 S�, 	 2 Œ0; 1/, and ES1 < c. Then, for u > 0,

P
�
�	 .u/ < 1� D 1 � .1 � P .�0.u/ < 1//1=.1�	/ :

Now the duality presented in Thm. 15.4, combined with the distributional
properties of the stationary workload that were derived in Chapters 3 and 8, provides
a tool that facilitates the analysis of ruin probabilities associated with the Lévy
insurance risk process with tax.

As an implication of the tax identity formula given in Thm. 15.6, we have, as
u ! 1,

P
�
�	 .u/ < 1� � 1

1 � 	
P .�0.u/ < 1/ :

Reinsurance models—We now consider the extension of the standard risk
model (15.9) to the situation in which several insurance companies share the same
risk portfolio. The model aims to compactly represent a system with an insurer
and reinsurer. We refer to Avram et al. [32, 33] and references therein for more
background on this model.

In order to make the notation transparent, we focus on a two-dimensional risk
model with a so-called proportional reinsurance scheme. Suppose that two compa-
nies, to be interpreted as the insurance company and the reinsurance company, share
the payout of each claim in proportions p1; p2 > 0, where p1 C p2 D 1, and receive
premiums at rates c1; c2 > 0, respectively. Then the risk process for the ith company
is given by

U.i/
t D ui C cit � piSt;

where ui > 0 is the initial capital (reserve) of ith company. As previously, the claim
process .St/t is a Lévy process, where it is throughout assumed that

ES1 < min

�
c1
p1
;

c2
p2

	

:

In what follows we assume that the second company, that is, the reinsurer, receives
less premium per amount paid out, that is, it holds that

c1
p1
>

c2
p2
:

Consider the infinite-time ruin probability that at least one insurance company
will go bankrupt, that is,

P .�or.u1; u2/ < 1/ (15.11)
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with

�or.u1; u2/ WD inf
n
t � 0 W U.1/

t < 0 or U.2/
t < 0

o
:

It takes a bit of elementary algebra to verify that

P .�or.u1; u2/ < 1/ D P

�
9t � 0 W U.1/

t < 0 or U.2/
t < 0

�

D P

�

9t � 0 W St � c1
p1

t >
u1
p1

or St � c2
p2

t >
u2
p2

�

:

Now relate the model that we currently consider with the Lévy-driven tandem
queueing model, as introduced in Chapter 12. It is then a straightforward exercise to
check that

P .�or.u1; u2/ < 1/ D P

��

Q.1/ >
u1
p1

	

[
�

Q.1/ C Q.2/ >
u2
p2

	�

; (15.12)

where, using the notation introduced in Chapter 12, .Q.1/;Q.2// is the joint stationary
workload in the tandem system with

X.1/t WD St � c1
p1

t; X.2/t WD St � c2
p2

t:

Recall that .X.2/t /t is the net input process of the total queue Q.1/ C Q.2/.
Relation (15.12), combined with results that were derived in Chapter 8 as well as

the straightforward observation that

max

�

P

�

Q.1/ >
u1
p1

�

;P

�

Q.1/ C Q.2/ >
u2
p2

�	

� P

��

Q.1/ >
u1
p1

	

[
�

Q.1/ C Q.2/ >
u2
p2

	�

� P

�

Q.1/ >
u1
p1

�

C P

�

Q.1/ C Q.2/ >
u2
p2

�

; (15.13)

in many cases allows us to identify the asymptotic behavior of the infinite-time ruin
probability (15.11).

Example 15.1 Consider the case of S 2 Bm.0; 1/. By virtue of (15.13) and
Example 3.1, we distinguish two scenarios. If c1=p21 < c2=p22, then, as u ! 1,

P .�or.u; u/ < 1/ � P

�

Q.1/ >
u

p1

�

D exp

�

�2c1
p21

u

�

:
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If c1=p21 > c2=p22, then, as u ! 1,

P .�or.u; u/ < 1/ � P

�

Q.1/ C Q.2/ >
u

p2

�

D exp

�

�2c2
p22

u

�

:

The case c1=p21 D c2=p22 requires a more refined analysis. }
So far we have concentrated on the probability of bankruptcy of at least one of

the insurance companies. Relying on the same arguments, however, we can analyze
the infinite-time ruin probability of both insurance companies. To this end, we define

�and.u1; u2/ WD min
˚
�.1/.u1/; �

.2/.u2/

;

where �.i/.ui/ is the ruin time for the ith company, where i D 1; 2. Then,

P .�and.u1; u2/ < 1/ D P

��

Q.1/ >
u1
p1

	

\
�

Q.1/ C Q.2/ >
u2
p2

	�

: (15.14)

Despite the relation

P .�and.u1; u2/ < 1/ D P.�.1/.u1/ < 1/CP.�.2/.u2/ < 1/�P .�or.u1; u2/ < 1/

which holds for all u1; u2 > 0, the asymptotic analysis of (15.14) is typically
more involved than the one corresponding to the ‘or case’, and needs to deal
with several special cases; see e.g. [151]. Complications arise when the probability
P .�or.u1; u2/ < 1/ is of the same order as the largest of the P.�.i/.ui/ < 1/, with
i D 1; 2; due to the minus sign in the above relation, a refined analysis is required
in order to identify the limiting behavior of P .�and.u1; u2/ < 1/.

For the special case of .St/t being a Brownian motion, however, a formula
is derived in [151] for the exact distribution of (15.14), which translated to the
reinsurance model gives the following result. As usual �N.�/ denotes the tail
distribution function of a standard normal random variable. We also use the
following notation:

� WD p1u2 � p2u1
p2c1 � p1c2

; k.x; y/ WD x C y�p
�
:

Theorem 15.7 Suppose that S 2 Bm.0; 1/ and u1; u2 > 0.

(i) If u1=p1 � u2=p2, then

P .�and.u1; u2/ < 1/ D exp

�

�2c1
p21

u1

�

:
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(ii) If u1=p1 < u2=p2, then

P .�and.u1; u2/ < 1/ D �N

�

k

�

�u1
p1
;

c1
p1

��

exp

�

�2c1
p21

u1

�

C�N

�

k

�
u1
p1
;

c1
p1

� 2c2
p2

��

exp

�

�2c2
p22

u2

�

C
�

1 � �N

�

k

�

�u1
p1
;

c1
p1

� 2c2
p2

���

exp

�

�2
�

u1
p1

�
c1
p1

� 2c2
p2

�

C c2
p22

u2

��

��N

�

k

�
u1
p1
;

c1
p1

��

:

Related asymptotic results for light-tailed claim processes .St/t can be found in
Avram et al. [32, 33].

For more results on insurance models and their relations with queueing theory we
refer to textbooks by Asmussen and Albrecher [21], Asmussen [19], Mikosch [162],
and Rolski et al. [189].

15.7 Other Applications in Finance

Above we pointed out how Lévy-based fluctuation theory can be used when pricing
options, but the material presented in this book is actually applicable in many other
contexts within mathematical finance. In this monograph we primarily considered
single-dimensional Lévy processes, but in many of these applications the joint
evolution of asset prices plays a role. The question of how the correlation between
the asset prices should be incorporated, however, is still largely unsolved.

One of the proposed techniques relies on the concept of copulas, as advocated
in Jaworski et al. [115] or Nelsen [168]; then the joint distribution can be written
in terms of the marginal distributions and a copula. These copulas have been
predominantly applied in risk/portfolio management and the pricing of derivatives
(for instance collateralized debt obligations, CDOs). In the latter domain the use
of copulas has become controversial since the financial crisis of 2008–2009. An
alternative Lévy-based model was proposed in den Iseger et al. [80]: there, the
distances to default of the individual obligors are modeled as the sum of a
common component (through which the obligors become correlated) and an obligor-
specific component, where both the common and the obligor-specific components
follow variance gamma processes. The resulting model has attractive computational
properties and allows for easy calibration. We also mention that the textbook of
Schoutens and Cariboni [194] addresses the use of Lévy processes in credit risk.
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Exercises

Exercise 15.1 Verify Eqns. (15.1) and (15.2).

Exercise 15.2 Evaluate the Lévy exponent for X 2 CGMY.˛;C;AC;A�/.

Exercise 15.3 Verify Eqns. (15.5) and (15.6).

Exercise 15.4 Find the exact asymptotics of P. NXt > u/ as t ! 1, where X is
standard Brownian motion, that is, X 2 Bm.0; 1/.

Exercise 15.5 Consider NXT , where X is a standard Brownian motion, and T is
exponentially distributed with mean 1=# (independently of X).

(a) Check that NXT
dD T1=2 NX1.

(b) Derive the distribution of NXT .

Exercise 15.6 Suppose that Xt D X.1/t C X.2/t where the process X.1/ corresponds to
Bm.d; �2/ and the process X.2/ 2 S.˛; 1;�m/, with ˛ 2 .1; 2/ and m > 0. Find the
exact asymptotics of P. NXt > u/ as u ! 1.

Exercise 15.7 Determine the transforms of the second-order Greeks of the vanilla
option

@2V.c/
van.T;K/

@S20
;

@2V.c/
van.T;K/

@T2
I

do the same for the lookback and barrier options.

Exercise 15.8 Consider the situation of a claim process S 2 S.˛; ˇ; 0/ with ˛ 2
.1; 2/, ˇ 2 .�1; 1�, and let the premium rate be c > 0. Find the asymptotics of
P.�.u/ < 1/ and P.�.u/ < t/, as u ! 1.

Exercise 15.9 Consider the proportional reinsurance problem with U.i/
t D uiCcit�

piSt, for i D 1; 2. It is assumed that S 2 S.˛; ˇ; 0/ with ˛ 2 .1; 2/, ˇ 2 .�1; 1�; as
usual p1; p2 are positive and add up to 1. In addition, we assume that c1=p1 > c2=p2.

Develop estimates for the probabilities P.�or.u; u/ < 1/ and P.�and.u; u/ < 1/,
as u ! 1.



Chapter 16
Computational Aspects: Inversion Techniques

In this chapter we focus on the issue of numerically computing

P
� NXt > x

� D P

 

sup
0�s�t

Xs > x

!

;

for given x; t � 0, and for arbitrary Lévy processes .Xt/t, or the more ambitious goal
of accurately evaluating the corresponding density f NXt

.x/ WD P. NXt 2 dx/: We focus
on two techniques, with their own specific pros and cons.

Before providing brief sketches of each of these techniques in Sections 16.1
and 16.2, we first recall that for any Lévy process in principle the full distribution
of NXt is described by Thm. 3.4: with k.� ; �/ as defined in (3.10), for ˛ � 0, and with
T exponentially distributed with mean #�1,

Ee�˛ NXT D k.#; ˛/

k.#; 0/

D exp

�

�
Z 1

0

Z 1

0

1

t

�
e�#t � e�#te�˛x

�
P.Xt 2 dx/dt

�

:

A first, admittedly naïve, idea is to evaluate f NXt
.x/ by first numerically computing

Ee�˛ NXT , and then performing inversion with respect to ˛ and #: While fast and
accurate techniques exist for such a double inversion [79], a major complication lies
in the fact that in many situations we know the Lévy exponent corresponding to
.Xt/t, but unfortunately hardly any explicit expressions for the density P.Xt 2 dx/
are available (think of variance gamma, CGMY, normal inverse Gaussian, etc.).

The first (‘approximation and inversion’) of the two approaches that we present
in this chapter, based on Asghari et al. [16], follows the line of reasoning pointed
out in Section 3.3: approximate the Lévy process by a Lévy process for which the
function k.#; ˛/ can be evaluated. This means that the small jumps are approximated
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by a Brownian motion, whereas the distribution of the jumps in one direction is
approximated by that of a phase-type random variable.

The second approach (‘repeated inversion’), based on Gruntjes et al. [104], (i)
first uses numerical inversion to find P.Xt 2 dx/ from the Lévy exponent, (ii) then
numerically evaluates k.#; ˛/, and (iii) finally performs a second inversion to obtain
f NXt
.x/ D P. NXt 2 dx/: We describe both methods in greater detail now.

16.1 Approach 1: Approximation and Inversion

As mentioned above, in this approach we replace the jumps in one direction (say
the upward direction) by phase-type jumps, and the ‘small jumps’ by a Brownian
motion. The Lévy process we thus obtain allows (semi-)explicit evaluation of
Ee�˛ NXT ; see e.g. Lewis and Mordecki [150]. We now provide more detail regarding
both approximation ideas.

Replace upward jumps by a phase-type counterpart—There is a relatively large
set of papers dealing with approximating a distribution on .0;1/ by a phase-type
distribution; see e.g. [91, 112]. Here we rely on the approach developed in Asmussen
et al. [28], which is based on the EM algorithm, and Thümmler et al. [211], which
proposes a comparable approach that focuses primarily on mixtures of Erlangs.

For a precise definition of phase-type distributions, see e.g. Asmussen [19,
Chapter III]; they can be thought of as distributions of absorption times in finite-state
continuous-time Markov chains, as we described in Section 3.3 of this textbook.
More precisely, with n C 1 denoting the dimension of the state space, where n
states are transient and the remaining state is absorbing, a phase-type distribution
corresponds to the entrance time of the absorbing state. This class covers mixtures
and sums of exponential distributions (and hence also the Erlang distribution, being
distributed as the sum of independent exponential random variables with the same
mean). As we discussed in Section 3.3, the class of phase-type distributions is dense,
in that any distribution on .0;1/ can, in principle, be approximated arbitrarily well;
the price to be paid, though, is that the dimension n of the associated Markov chain
may become prohibitively large.

The performance of the EM-based algorithm proposed is assessed in detail
in [28]—it was shown that quite a large class of distributions can be accurately
approximated by phase-type distributions of relatively low dimension d. From this
it is, however, not a priori clear what the impact is of replacing the upward jumps by
an appropriate phase-type random variable when evaluating P. NXt � x/ in the way
described above—there are no explicit bounds available on the error introduced by
replacing the jump distribution by its phase-type counterpart.

Replace small jumps by Brownian motion—As pointed out in Section 3.3, in the
case of small jumps (i.e.

R1
�1˘.dx/ D 1), the Lévy process under study can be

accurately approximated by the sum of an appropriately chosen compound Poisson
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process and Brownian motion. We first write the jump part of the Lévy exponent in
the form

Z 1

�1
.eisx � 1 � isx1fjxj<"g/˘.dx/ D

Z "

�"
.eisx � 1� isx/˘.dx/

C
Z

RnŒ�";"�
.eisx � 1/˘.dx/I

let the first term correspond to a Lévy process, say, X.1;"/t , and the second term
(which is a compound Poisson process) correspond to, say, X.2;"/t . Then the ‘small
jump component’ X.1;"/t can be approximated by (for some small value of ")

�"t C �"Bt; (16.1)

where Bt is a standard Brownian motion, and

�" WD
Z "

�"
x˘.dx/; �2" WD

Z "

�"
x2˘.dx/:

This approximation is motivated by the limit result (3.12). As pointed out in
Section 3.3, a sufficient condition for (3.12) to hold is that, with L.�/ a slowly
varying function at 0, ˘.�/ has a density of the form L.x/=jxj˛C1 for x # 0, with
˛ 2 .0; 2/: It is noted that this condition applies for e.g. stable Lévy processes and
CGMY processes, but not for e.g. variance gamma processes (as these correspond
to ˛ D 0). We also mention that the use of (16.1) is advocated for variance gamma
in Fu [95]—see in particular the third algorithm [95, p. 25].

Numerical inversion—Now that we can approximate the (double) Laplace
transform k.#; ˛/, the next step is to use a numerical technique to perform Laplace
inversion, so as to obtain an approximation for f NXt

.x/ D P. NXt 2 dx/: We advocate
the use of the method developed by den Iseger [79]; see also [81]. It is in the spirit
of approaches developed earlier [2, 86], in the sense that it relies on the Poisson
summation formula. This Poisson summation formula relates an infinite sum of
Laplace transform values to the z-transform of the function values f .k/, with
k D 0; : : : ;M � 1, that we wish to evaluate, from which the f .k/ can be computed
relying on the well-known fast Fourier transform; see e.g. [64].

A first complication is that the above-mentioned infinite sum tends to converge
slowly. Abate and Whitt [2] remedy this using a so-called Euler summation, but
in general the convergence remains prohibitively slow unless knowledge of the
location of singularities is available. One of den Iseger’s contributions [79] is to
approximate the infinite sum by a finite sum by using Gaussian quadrature. The
resulting algorithm is a substantial improvement over earlier algorithms in the sense
that (i) it can handle a larger class of Laplace transforms (e.g. no knowledge of the
location of discontinuities or singularities is needed), (ii) the algorithm needs only
numerical values of the Laplace transform, is fast (i.e. the function values f .k/,
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with k D 0; : : : ;M � 1, are computed at once, in order M log M time), and is of
nearly machine precision, (iii) can be extended to multiple dimensions. It is stressed
that this last feature is of crucial importance to us, as in our setting we are often
dealing with two-dimensional transforms.

Numerical results for this approach, as well as implementation details, are
provided in [16]. There the algorithm is tested for a broad variety of driving
Lévy processes and parameters. Unless the scenarios considered are ‘extreme’, the
performance of the algorithm is excellent. The major drawback of the approach lies
in the fact that, in the case that the upward jumps are not of phase type, we have
to identify a well-fitting phase-type distribution, which is not trivial to automate.
In addition, the techniques for evaluating k.#; ˛/ for Lévy processes with phase-
type upward jumps require the computation of a set of roots, which can be time
consuming. The same approach has been used in the context of option pricing in
[17].

16.2 Approach 2: Repeated Inversion

We now propose an alternative algorithm, based on Gruntjes et al. [104], which
settles the drawbacks of the approach described above. We have observed that in
the analysis a key role is played by the double transform k.#; ˛/=k.#; 0/. In this
approach, we first write K.#; ˛/ WD log.k.#; ˛/=k.#; 0// in a more convenient form
(in terms of # , ˛, and the Lévy exponent of the underlying Lévy process), and then
we point out how this new form can be used to develop an algorithm for fast and
accurate evaluation of the density f NXt

.x/.
In this section we write Ee�sXt D exp.�t�.s//. The main idea is that we want an

algorithm that does not require us to approximate the driving Lévy process .Xt/t
(as was the case for the algorithm of Section 16.1); instead, we aim to devise
a procedure that has #; ˛, and �.�/ as inputs, and provides us with an accurate
approximation of K.#; ˛/, which can then be numerically inverted.

Writing the Wiener–Hopf factors in a convenient form—Our first objective is to
rewrite the function K.#; ˛/. To this end, observe that

K.#; ˛/ D
Z 1

0

Z

.0;1/
1

t
.1 � e�˛x/ e�#tfXt.x/dx dt;

where fXt.�/ is the density of Xt (assumed to exist). We recall that we do not have an
explicit expression for fXt.�/ at our disposal (instead, the probabilistic properties of
.Xt/t are captured by �.�/).

Now denote by F the Fourier transform, and by F�1 the inverse Fourier
transform; in the sequel, F Œf �.s/ � F Œf .�/�.s/ is the Fourier transform of f ,
evaluated in s. We then have the following obvious relations:

F ŒfXt .�/�.s/ D e�t�.s/; fXt .x/ D F�1Œe�t�.�/�.x/;
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and

F Œgt.�/�.s/ D t� 0.s/e�t�.s/; with gt.x/ WD xfXt.x/:

It follows that

F�1Œt� 0.�/e�t�.�/�.x/ D xF�1Œe�t�.�/�.x/:

From the above, it is concluded that

K.#; ˛/ D
Z 1

0

Z

.0;1/
1

xt
.1 � e�˛x/ e�#tF�1Œt� 0.�/e�t�.�/�.x/dx dt:

Using Fubini’s theorem, in conjunction with the fact that F�1 is a linear operator,
this in turn equals

K.#; ˛/ D
Z

.0;1/

�
1

x
.1 � e�˛x/F�1

�Z 1

0

� 0.�/e�t.�.�/C#/ dt

�

.x/

�

dx:

Now define

F#.x/ WD F�1
�Z 1

0

� 0.�/e�t.�.�/C#/ dt

�

.x/ D 1

x
F�1

�
� 0.�/

�.�/C #

�

.x/:

By FC# .x/ we denote F#.x/ if x � 0 and 0 otherwise. With T#.�/ the Fourier
transform of FC# .�/, it then follows immediately that

K.#; ˛/ D T#.0/� T#.˛/:

In this way we have found a compact expression purely in terms of # , ˛, and �.�/:
we can plug in # , ˛, and �.�/, and obtain K.#; ˛/.

It is clear, however, that there may be numerical issues if

lim
x#0

F�1
�

� 0.�/
�.�/C #

�

.x/ 6D 0:

To remedy this issue, let NFC# .x/ equal F#.x/ � e�xF#.0/ if x � 0 and 0 otherwise.
Then obviously, with NT#.�/ the Fourier transform of NFC# .�/,

K.#; ˛/ D NT#.0/� NT#.˛/C F.0/
Z 1

0

1

x
.1 � e�˛x/e�xdx

D NT#.0/� NT#.˛/C F.0/ log.1C ˛/;
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where in the last step the Frullani integral equality has been used. We arrive at the
following pseudocode to determine K.#; ˛/ D logEe�˛ NXT , with T, as usual, an
exponentially distributed random variable with mean 1=#: It requires a routine to
perform Fourier inversion to evaluate F#.�/, and a routine to perform the Fourier
transform to evaluate NT#.�/, so as to compute K.#; ˛/ from # , ˛, and �.�/.
Pseudocode 16.1 Input: # , ˛, and �.�/. Output: K.#; ˛/ D logEe�˛XT .

1. Compute the function F#.�/.
2. Compute the function NT#.�/.
3. Set K.#; ˛/ D logEe�˛XT WD NT#.0/� NT#.˛/C F#.0/ log.1C ˛/:

Implementation issues—Above we mentioned that the input of the procedure
consists of # , ˛, and �.�/, but, as we have seen, in principle also � 0.�/ is needed.
One could either evaluate � 0.�/ numerically, or use an explicit expression for � 0.�/:
Evidently, from a numerical standpoint the latter option is preferred.

Once we have K.#; ˛/, in order to find the density f NXt
.�/, we have to perform a

double Laplace inversion (with respect to ˛ and #) to

Z 1

0

Z

.0;1/
e�#te�˛xf NXt

.x/dx dt D 1

#
� Ee�˛ NXT D eK.#;˛/

#
:

We refer for more detailed implementation issues to [104]; see also Section 16.1 for
more background on the Laplace inversion.

The experiments reported in [104] show that, for a broad set of scenarios, the
performance of the algorithm is excellent. In contrast with the first approach, as
described in Section 16.1, however, this second approach does not work well when
the driving Lévy process has small jumps.

16.3 Other Applications

Above we showed how to write the transform of the random quantity NXT in a form
that facilitates numerical evaluation; we presented two approaches. In this section,
we consider various other random quantities that can be assessed in a similar way.

Overshoots—By virtue of Lemma 6.4, with �.x/ defined as the first passage time
over level x, that is, infft � 0 W Xt � xg,

Z 1

0

e�ˇx
E

�
e�#�.x/�N#.X�.x/�x/1f�.x/<1g

�
dx D 1

ˇ � N#
�

1 � k.#; ˇ/

k.#; N#/
�

: (16.2)

Now both approaches, as presented in the previous sections, can be followed.

(i) We could follow the approach of Section 16.1: approximate X by a process
with phase-type upward jumps and the small jumps part replaced by Brownian
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motion; evaluate (16.2) for this process; and perform the numerical inversion to
obtain the joint density of the overshoot and the first passage time.

(ii) Alternatively, we could follow the second approach, as presented in Sec-
tion 16.2. To this end, realize that expression (16.2) equals

1

ˇ � N#
�

1 � eK.#;ˇ/

eK.#; N#/

�

:

It is easily checked that, inserting # D 0, this formula gives 1=.�.0/ C ˇ/

for X 2 S�, as desired (why?). The above expressions effectively show that,
using Pseudocode 16.1, we can also evaluate the triple transform (16.2). Then
numerical inversion has to be performed to obtain the joint density.

Joint distribution of running maximum and position—We found earlier that

Eei˛1 NXTCi˛2XT D Eei.˛1C˛2/ NXTEei˛2.XT�NXT / D k.#;�i.˛1 C ˛2//

k.#; 0/

Nk.#; i˛2/
Nk.#; 0/ :

Again both approaches can be followed. Regarding the second approach, note that
it is elementary to express this quantity in terms of K.� ; �/ and NK.� ; �/ (the latter
function defined in the obvious way), and as we are able to evaluate these, we can
also evaluate the joint transform under consideration.

Joint distribution of running maximum and corresponding epoch—In Thm. 3.4,
we found the joint transform of the running maximum and the epoch at which the
maximum was attained:

Ee�ˇGT�˛ NXT D k.# C ˇ; ˛/

k.#; 0/
: (16.3)

It is clear how to evaluate the joint distribution using the first approach.
Regarding the second approach, it is noted that unfortunately this transform

cannot be expressed in terms of K.� ; �/. We now point out how to evaluate L.#/ WD
log k.#; 0/; it is easily seen that if one can compute K.� ; �/ and L.�/, then one can
evaluate (16.3) as well. Using ‘Fubini’ and ‘Frullani’,

k.#; 0/ D �
Z 1

0

Z

.0;1/
1

t

�
e�t � e�#t

�
fXt .x/dx dt

D �
Z 1

0

Z

.0;1/
1

t

�
e�t � e�#t

�
F�1Œe��.�/t�.x/dx dt

D �
Z

.0;1/
F�1

�Z 1

0

1

t

�
e�t � e�#t

�
e��.�/tdt

�

.x/ dx

D �
Z

.0;1/
F�1

�

log

�
�.�/C #

�.�/C 1

��

.x/ dx:
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Least concave majorant—The methodology presented in this section clearly
facilitates numerical computations regarding quantities related to the transient
workload distribution of a Lévy-driven queue (as in Thm. 4.3); in addition, it can
be used when pricing options (as in Section 15.4). Now we show how our tools can
be used to numerically evaluate the least concave majorant OXt of a Lévy process
Xt. For the Brownian case, for instance Carolan and Dykstra [57] and Groeneboom
[103] performed explicit calculations; the results below address the general Lévy
case. The following lemma applies to any stochastic process Xt.

Lemma 16.1 Let . OXt/t be the concave majorant of .Xt/t over the interval Œ0;T�,
with T possibly equal to 1. With t 2 Œ0;T�, the event f OXt � xg is equivalent to

�

inf
0�s�t

x � Xs

t � s
� sup

t�r�T

Xr � x

r � t

	

:

Proof Realize that .x � Xs/=.t � s/ is the slope of the line through .t; x/ and .s;Xs/,
so that

B� WD inf
0�s�t

x � Xs

t � s

is the slope of the ‘steepest’ line through .t; x/ that majorizes Xs for any s 2 Œ0; t�.
Likewise,

BC WD sup
t�r�T

Xr � x

r � t

is the slope of the ‘flattest’ line through .t; x/ that majorizes Xs for any s 2 Œt;T�.
Then the stated result follows immediately. �

From the above lemma it is evident that

P. OXt � x/ D
Z 1

bDx=t

Z x

yD�1
P.B� � b;Xt 2 dy/P.BC 2 db j Xt D y/dy:

We now point out how the probabilities and densities in the integrand can be
determined. It is straightforward to verify that

P.B� � b;Xt 2 dy/ D P

 

sup
0�s�t

Xs � bs � x � bt;Xt 2 dy

!

: (16.4)

It is evident that we can evaluate (16.4) with the techniques described above;
rephrase it in terms of the joint distribution of NYt and Yt, with Yt WD Xt � bt.
Furthermore, observe that

P.BC � b j Xt D y/ D P.8r 2 Œt;T� W Xr � x � bt C br j Xt D y/;
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which due to the Markov property equals P. NYT�t � x � y/. Also this probability can
be evaluated relying on the approach proposed earlier in this section.

Exercises

Exercise 16.1 Use the EM technique advocated in [28] to find a phase-type
approximation of a standard normal random variable (by splitting this into a positive
and negative part). Repeat this for the dimension d of the associated continuous-time
Markov chain taking the values 3, 4, and 5, respectively.

Exercise 16.2 Let X 2 CGMY.˛;C;AC;A�/. Suppose we wish to replace the
small jumps by Brownian motion. Evaluate �" and �2� :



Chapter 17
Concluding Remarks

In this textbook we have highlighted a set of important results on queues with
Lévy input, and explicitly drawn the connection with fluctuation theory. An obvious
disclaimer is in place here: with this field being large, some relevant contributions
may have been overlooked. Also, given the connection between Lévy-driven queues
and risk theory in a Lévy environment, compactly reflected by Eqn. (2.5), perhaps
not all relations with the vast finance and insurance literature have been fully
exploited.

Despite the fact that the field develops rapidly, there are still many open
problems; we mention here just a few challenging directions.

(i) In the first place, quite a number of results presented in this book are restricted
to spectrally one-sided cases, whereas in practical situations the underlying
Lévy process often has two-sided jumps; see however [22, 149, 150].

(ii) Another domain in which still only partial results are known is that of Lévy-
driven networks: hardly any results are available when the underlying network
does not satisfy conditions (T1)–(T5); see however the novel contribution
[166].

(iii) Also, in the area of numerical evaluation (by either simulation or numerical
inversion) there is still substantial scope for improvement.

(iv) Finally, there are still many open problems related to various functionals of
the workload process: for instance, one would like to uniquely characterize the
full distribution of V.t; u/, as defined in Section 4.3, and only partial results are
available for the area under the workload graph [14, 48].

The variety of open questions, which emerge from analyzing Lévy-driven
queueing systems and Lévy fluctuation theory, stimulates the current research to
lie at the interface of such areas as extreme value theory, stochastic geometry,
large deviations, stochastic simulation theory, etc. This fuels the expectation that
Lévy-driven queueing theory and fluctuation theory will increasingly become a key
subdiscipline of applied and theoretical probability.

© Springer International Publishing Switzerland 2015
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