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Preface

A central research challenge for the mathematical sciences in the twenty-first century is the
development of principled methodologies for the seamless integration of (often vast) data sets
with sophisticated mathematical models. Such data sets are becoming routinely available in
almost all areas of engineering, science, and technology, while mathematical models describing
phenomena of interest are often built on decades, or even centuries, of human knowledge.
Ignoring either the data or the models is clearly unwise, and so the issue of combining them is
of paramount importance. When the underlying mathematical model is a (possibly stochastic)
dynamical system and the data may be time-ordered, combining model and data is referred
to as data assimilation.

The research area of data assimilation has been driven, to a large extent, by practitioners
working in the atmospheric and oceanographic sciences and in other areas of the geosciences,
such as oil recovery. The resulting research has led to a host of algorithmic approaches and a
number of significant algorithmic innovations. However, there has been no systematic treat-
ment of the mathematical underpinnings of the subject. The goal of this book is to pro-
vide such a treatment. Specifically, we develop a unified mathematical framework in which a
Bayesian formulation of the problem provides the bedrock for the derivation and development
of algorithms; furthermore, the examples used in the text, together with the algorithms that
are introduced and discussed, are all illustrated by matlab software detailed in the book and
freely available online via the Springer website, the authors’ personal web pages, and at the
following link:

http://tiny.cc/damat .

It is important to appreciate that this book develops the subject of data assimilation
in a manner that differs significantly from both its historical development and its typical
presentation in other books. We begin with a “gold-standard” Bayesian formulation of the
problem, which while out of reach for current online geophysical applications such as weather
forecasting, provides a clearly defined mathematical problem whose solution would provide
the ideal combination of mathematical model and available data, given known statistical un-
certainties in both. We then describe various algorithmic approaches within the context of
the underpinning Bayesian formulation. The reader interested in understanding the historical
development of data assimilation in an applied context, or in more practically oriented math-
ematical and computational treatments of the field, has a number of options for additional
reading, which we now describe. First, we mention that the probabilistic “smoothing” and
“filtering” approaches that we describe in this book grew out of the calculus of variations
and the control-theoretic viewpoints on data assimilation, resulting, respectively, from the
papers of Talagrand and Courtier [135, 37] and Kalman [79]. The current practice of data
assimilation in the context of the atmospheric sciences, and weather prediction in particular,
is covered in the book by Kalnay [81]. An introduction in which the presentation is motivated
by applications in oceanography is Bennett’s book [12]. The book by Evensen [50] provides

xi
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a good overview of many computational aspects of the subject, reflecting the author’s ex-
perience in geophysical applications including oceanography and oil recovery; application of
data assimilation in oil recovery is the primary focus of the book [115] by Oliver, Reynolds,
and Li. The recent book by Abarbanel provides a physics and dynamical systems perspective
on data assimilation [1], with motivation coming not only from weather forecasting, but also
from neuroscience. The reader interested in state-of-the-art novel online algorithms based on
mathematical insight and physical reasoning may consult the book by Majda and Harlim
[100]; there the focus is on complex dynamical systems exhibiting turbulent behavior. And
finally, the book by Cotter and Reich [31] provides a novel numerical-analysis-based perspec-
tive on the field, with primary motivation coming from geophysical applications. Our book
provides a mathematical perspective on the subject via which all of these existing books can
be interpreted.

The book is organized into nine chapters: the first contains a brief introduction to the
mathematical tools around which the material is organized; the next four are concerned with
discrete-time dynamical systems and discrete-time data, while the last four are concerned with
continuous-time dynamical systems and continuous-time data; continuous-time dynamical
systems together with discrete-time data can be reformulated as discrete-time dynamical
systems with discrete-time data, and so this problem is not covered explicitly in the book.
The four chapters on discrete and continuous time are organized identically: in the first, we
frame the problem, the second and third are devoted to smoothing algorithms and filtering
algorithms respectively, and the fourth contains matlab programs and discussion of them.
Both underlying stochastic and deterministic dynamics are studied.

Chapter 1 is organized around four themes: probability, dynamical systems, probability
metrics, and dynamical systems for probability measures. These subjects are given a terse
overview that cannot do justice to the richness of these areas of mathematics. However, the
introductory style of the material serves to orient the reader toward the form of mathematical
thinking that underpins the approach taken to data assimilation in this book. Chapter 2 sets
up the problem of data assimilation, based on an underlying stochastic dynamical system
in which the noise appears additively; the degenerate case in which the noise disappears,
deterministic dynamics, is also considered. Nonadditive noise can be studied similarly to our
development, but it does lead to additional complications in some scenarios, in particular when
the transition density of the underlying Markov chain is not known explicitly; for pedagogical
reasons, we hence focus on additive noise. Similarly, the data is assumed to be found from
a nonlinear function of the output of the dynamical system, at each discrete time, also with
additive noise. Furthermore, both the model and data noise are assumed to be Gaussian in
order to simplify our exposition; this may easily be relaxed to include situations in which
the noise has a known density with respect to Lebesgue measure. Examples of illustrative
maps are given, including a pair of examples arising from quadratic differential equations,
both due to Lorenz, of dissipative character and motivated by geophysical applications. The
central conceptual idea underlying the chapter is to frame the data-assimilation problem
as that of determining the probability distribution on the output of the dynamical system
when conditioned on the observed noisy data—the fully Bayesian formulation of the problem.
There are two key variants on this perspective: smoothing, in which data in the future may
condition knowledge of the output of the dynamical system in its past; and filtering, in
which data in the future is not used to estimate the conditional probability distribution at
a given time. We define these two probabilistic problems, demonstrate that they are related
to one another, and describe a well-posedness theory, showing that the desired conditional
probability distributions are Lipschitz with respect to small changes in the data.

The two probabilistic problems of smoothing and filtering lead to two different classes of al-
gorithms, and these are described, respectively, in Chapters 3 and 4. Smoothing algorithms are
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typically more computationally intensive than filtering algorithms. This is because smoothing
algorithms involve the incorporation of data that is distributed over a time interval, while fil-
tering algorithms incorporate the data sequentially, at each time point, as it arrives. Adapting
the output of a dynamical system to fit a stream of data all at once, rather than sequentially,
is typically a more demanding task; however, it does have potential rewards, and at least
currently, weather forecasts based on the former approach give better predictions than those
based on sequential incorporation of data. Chapter 3 starts with a fully Bayesian algorith-
mic approach, namely the use of Monte Carlo–Markov Chain (MCMC) methods to sample
the distribution on the output of the dynamical system, given the data. These methods are
introduced in a general framework for an arbitrary target density defined via its Lebesgue den-
sity, and an arbitrary proposal distribution; then a variety of specific methods are described,
exploiting the specific structure of the target distribution arising in the data-assimilation
problem to construct the proposal. The chapter concludes by linking the Bayesian approach
to variational methods; specifically, it is shown how the well-known 4DVAR (for determinis-
tic dynamics) and weak constraint 4DVAR (for stochastic dynamics, denoted by w4DVAR in
this book) methods correspond to maximizing the desired probability distribution on signal
given data. In Chapter 4, filtering algorithms are described. For the derivation of many of the
algorithms, we adopt a minimization approach; this unifies all the methods described, with
the exception of the particle filter. The chapter begins by studying linear Gaussian prob-
lems, where the Kalman filter may be used to characterize the resulting Gaussian probability
distribution—the filtering distribution—exactly. The propagation of the mean is shown to be
derived from a sequential minimization principle in which a quadratic functional, represent-
ing a compromise between fitting the model and the data, is minimized as each data point is
acquired in time. This sequential minimization approach is then used as the basis from which
to derive various approximate algorithms such as 3DVAR, the extended Kalman filter, and
the ensemble Kalman filter. Although widely used in practice, these approximate algorithms
cannot in general accurately reproduce the desired conditional probability distribution, ex-
cept for linear Gaussian problems. Our final algorithm in this chapter is the particle filter,
which, although known to behave poorly in high dimensions, can in principle reproduce the
true filtering distribution as the number of particles tends to infinity. Neither the MCMC
method for the smoothing problem nor the particle filter for the filtering problem is currently
practical for high-dimensional applications such as those arising in the geophysical sciences.
However, they play an important role in the subject, since they provide benchmarks against
which the more practical, yet less well founded, algorithms may be compared. Furthermore,
their formulation provides guiding principles that can be used in the development of new
algorithms targeted at the high-dimensional setting.

In Chapter 2, the guiding dynamical system examples used throughout the text are illus-
trated with the output of matlab programs, while Chapters 3 and 4 include the output of
matlab programs to illustrate the algorithms we introduce for smoothing and filtering. In
Chapter 5, we provide and discuss the matlab programs used to produce all of this material.
These programs are provided for two reasons: firstly, for some readers, code can provide a
very direct way to understand both the theory and algorithms presented within the text;
and secondly, the codes can form the basis of more sophisticated algorithms that the reader
can develop by building upon them. We have not aimed for the most succinct or speediest
implementation of the algorithms, but rather have tried to maintain a uniform presentation
in which connections to the theoretical developments in the text are fairly transparent.

Chapter 6 introduces data assimilation in continuous time. Our perspective in this chapter,
and in the two subsequent algorithmic chapters concerning continuous time, is to motivate
much of the mathematics by taking formal asymptotic limits of the discrete-time setting,
in which the underlying dynamical system behaves like a stochastic differential equation
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(SDE), as does the observation model. Continuous-time data assimilation is in principle a
very technical area, primarily because it involves probability on infinite-dimensional spaces.
Our approach is to build intuition about the problems using the discrete setting as a stepping-
stone, deriving continuous-time limits from increasingly frequent discrete-time observations of
an underlying continuous process. Although we must forgo complete rigorous proofs in order
to adopt this approach within a short book, we believe that the resulting intuition will help
the reader access the more technical published literature in this area, and that the lack of
rigorous proofs is compensated for by significant insight. Various important results from the
theory of stochastic differential equations are stated and then used throughout the chapter,
including the Itô and the Girsanov formulae, together with basic existence and uniqueness
theorems for equations with additive Brownian noise and equipped with moment inequalities;
such inequalities arise naturally for the dissipative quadratic dynamical systems introduced in
Chapter 2. As in discrete time, the smoothing and filtering distributions are both introduced.
Furthermore, the Zakai and Kushner–Stratonovich stochastic partial differential equations
(SPDEs) for the evolution of the density of the filtering distribution are also derived.

In Chapter 7, we describe MCMC methods to sample the posterior distribution for the
smoothing problem in continuous time. We include both stochastic dynamics, for which the
probability distribution of interest is on an infinite-dimensional space (the pathspace of the
solution on a time interval [0, T ]), and deterministic dynamics, for which it is on a finite-
dimensional space (where the initial condition lies). As in the discrete-time setting, we also
discuss variational methods, which lead to problems in the calculus of variations. Chapter 8 is
devoted to filtering algorithms in continuous time. The Kalman–Bucy filter is derived by tak-
ing the small interobservation time limit of a discretely observed continuous process. The same
methodology is then applied to the 3DVAR method, to the extended and ensemble Kalman
filters, and to the particle filter. In Chapter 9, we provide and discuss the matlab code used
to produce the figures in the preceding three chapters; our motivation for including this code
is the same as in Chapter 5, where we consider discrete-time data assimilation.

Warning We reiterate an important issue relating to the perspective we adopt in this book.
Our aim is to provide clearly defined mathematical foundations for data assimilation, and this
leads to the Bayesian problem of finding a probability distribution on the signal, given the
data. In the very-high-dimensional problems arising in many applications, especially those
of geophysical origin referred to above, it is currently beyond reach to expect to be able to
compute the resulting probability distributions accurately in high dimensions, in either the
filtering or the smoothing context. Thus many of the algorithms we describe are currently
impractical for such applications, especially in online scenarios. For this reason, of all the algo-
rithms we describe here, only the 3DVAR, 4DVAR, and ensemble Kalman filter are routinely
used in real geophysical applications. The use of MCMC methods for smoothing problems,
and the extended Kalman filter and the particle filter, is currently impractical for real on-
line applications arising for large systems such as those in geophysical applications. However,
this fact should not diminish their importance. Our book provides a clear and unequivocal
statement and analysis of the desired problem to be solved in many such applications, and
methods that can be used to accurately solve the problem in various simplified scenarios. As
such, we believe that it provides an important cornerstone in the field that can help guide
applied researchers.

Target Audience/Prerequisites The book is aimed at mathematical researchers interested
in a systematic development of this interdisciplinary field and at researchers from the geo-
sciences and a variety of other scientific fields who use tools from data assimilation to combine
data with time-dependent models. As well as being suitable for self-study by such researchers,
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the book can also be used as a text, and the examples, exercises, and matlab programs help
to make it usable in this context. Although we review some basic mathematical prerequisites
in the first chapter, a first course in each of differential equations, dynamical systems, and
probability is assumed of the reader. It is thus suitable for a master’s- or PhD-level lecture
course.

Notation Throughout,
(〈·, ·〉, | · |) denotes the Euclidean inner product and norm on R

�,
for an integer �; and | · | will also denote the induced operator norm. In the sections on
continuous time, the same notation will also be used for the Hilbert space structure on the
space L2([0, T ];R�). For a positive definite symmetric matrix A ∈ R

�×�, we introduce the

inner product 〈·, ·〉A = 〈A− 1
2 ·, A− 1

2 ·〉 and the resulting norm | · |A = |A− 1
2 · |; this may also be

generalized to the Hilbert space setting of L2([0, T ];R�). We let ‖ · ‖F denote the Frobenius
norm of a matrix, found as the square root of the sum of the squares of the entries. The outer
product of the ordered pair of vectors a, b in R

� is the linear operator a ⊗ b with property
(a⊗ b)c = 〈b, c〉a. The symbol ∧ is used to denote the (symmetric) operation on a pair of real
numbers that delivers the minimum of that pair: a ∧ b = a if a ≤ b.

The symbol N = {1, 2, . . . } denotes the positive integers, and Z
+ := N∪{0} = {0, 1, 2, . . . }.

We write R for (−∞,∞) and R
+ for [0,∞). We use > 0 (respectively ≥ 0) to denote positive

definite (respectively positive semidefinite) for real symmetric matrices. The notation R
�×�
sym is

used to denote symmetric �× � matrices. The symbols P and E are used to denote probability
(measure and density function) and expectation.

A Gaussian probability distribution on R
�, or on the Hilbert space L2([0, T ];R�), will be

denoted by N(m,C), with m the mean and covariance C. The inverse of the covariance, the
precision, is denoted by the symbol L. The symbols σ and γ are typically used to denote
standard deviations. The symbol cf denotes a characteristic function, and SI a stochastic
integral. The symbol z denotes an i.i.d. (independent and identically distributed) sequence
of uniform random variables on [0, 1], and ι an i.i.d. sequence of Gaussian random variables,
both arising in the definition of MCMC methods.

We use v to denote the (unknown) signal, and y the data, both indexed by discrete time
j. The symbol Yj denotes the accumulated data to time j. In continuous time, the unknown
signal is again v, now indexed by continuous time t, and z denotes the data, also indexed by
t. The maps Ψ and f on R

n define the systematic part of the dynamics model in discrete
and continuous time respectively, while h denotes the observation operator in both discrete
and continuous time. The symbols ξ and η denote the noise sequences entering the signal
and data models, respectively, in discrete time; when these random variables are Gaussian,
their covariances are Σ and Γ respectively. In continuous time, noises are typically Brownian,
denoted by B and W (possibly with suffixes) and variances Σ0 and Γ0. The symbols v and q
denote variables determined from v and h respectively.

The symbols μ, μ0, μ
′, μj , ϑ, ϑ0, ν, some possibly with suffixes, denote probability measures.

The symbols ρ, ρ0, ρ
′, ρj , π, π0, �, again possibly with suffixes, denote probability density func-

tions (pdfs). We use μ∞ (respectively ρ∞) to denote (typically ergodic) invariant measures
(respectively densities). Furthermore, p denotes a Markov kernel. The symbol P is used to
denote the linear map on measures (or their densities) implied by a Markov kernel, and Lj

the nonlinear map on measures (or their densities) implied by application of Bayes’s formula
to take a prior into a posterior.

The symbols I and J, possibly with suffixes det or r, are used to denote nonlinear real-
valued functionals arising in variational methods, and the functionals Φ (in discrete time)
and Ξ1, Ξ2, and Ξ3 (in continuous time) appear in their definition.
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Chapter 1

Mathematical Background

The purpose of this chapter is to provide a brief overview of the key mathematical ways of
thinking that underpin our presentation of the subject of data assimilation. In particular, we
touch on the subjects of probability, dynamical systems, probability metrics, and dynamical
systems for probability measures, in Sections 1.1, 1.2, 1.3, and 1.4 respectively. Our treatment
is necessarily terse and very selective, and the bibliography section 1.5 provides references to
the literature. We conclude with exercises in Section 1.6.

We highlight here the fact that throughout this book, all probability measures on R
� will

be assumed to possess a density with respect to Lebesgue measure, and furthermore, this
density will be assumed to be strictly positive everywhere in R

�. This assumption simplifies
greatly our subsequent probabilistic calculations.

1.1 Probability

We describe here some basic notation and facts from probability theory, all of which will be
fundamental to formulating data assimilation from a probabilistic perspective.

1.1.1. Random Variables on R
�

We consider a random variable z, defined as a function on an underlying probability space
and taking values in R

�. Associated with this random variable is an induced probability
measure μ on R

�. Furthermore, to be able to compute expectations, we need to work with
a sufficiently rich collection of subsets of R�, to each of which we can assign the probability
that z is contained in it; this collection of subsets is termed a σ-algebra. Throughout these
notes we work with B(R�), the Borel σ-algebra generated by the open sets; we will abbreviate
this σ-algebra by B when the set R� is clear. The Borel σ-algebra is the natural collection of
subsets available on R

� that allows for coherent assignation of probabilities and a theory of
integration; an element in B will be termed a Borel set.

We have defined a probability triple
(
R

�,B, μ). For simplicity, we assume throughout the
book that z has a strictly positive probability density function (pdf) ρ with respect to Lebesgue

© Springer International Publishing Switzerland 2015
K. Law et al., Data Assimilation, Texts in Applied Mathematics 62,
DOI 10.1007/978-3-319-20325-6 1
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2 1 Mathematical Background

measure.1 Then for every Borel set A ⊂ R
�, we define μ(A), the probability that the random

variable z lies in A, by

μ(A) =

∫

A

ρ(x) dx,

where the pdf ρ : R� → R
+ satisfies

∫

R�

ρ(x) dx = 1.

A Borel set A ⊂ R
� is sometimes termed an event, and the event is said to occur almost

surely if μ(A) = 1. Since ρ integrates to 1 over R
� and is strictly positive, this implies that

the Lebesgue measure of the complement of A, the set Ac, is zero.
We write z ∼ μ as shorthand for the statement that z is distributed according to probability

measure μ on R
�. Note that here μ : B(R�) → [0, 1] denotes a probability measure, and

ρ : R
� → R

+ the corresponding density. However, we will sometimes use the letter P to
denote both the measure and its corresponding pdf. This should create no confusion: P(·) will
be a probability measure whenever its argument is a Borel set, and a density whenever its
argument is a point in R

�. On occasion, we will write P(z ∈ A) for P(A).
For a function f : R

� → R
p×q, we denote by Ef(z) the expected value of the random

variable f(z) on R
p×q; this expectation is given by

Ef(z) =

∫

R�

f(x)μ(dx), μ(dx) = ρ(x)dx.

We also sometimes write μ(f) for Ef(z). The case in which the function f is vector-valued
corresponds to q = 1, so that R

p×q = R
p×1 ≡ R

p. We will sometimes write E
μ if we wish

to differentiate between different measures with respect to which the expectation is to be
understood.

The characteristic function of the random variable z on R
� is cf : R� → C, defined by

cf(h) = E exp
(
i〈h, z〉).

Example 1.1. Let � = 1, and set ρ(x) = 1
π(1+x2) . Note that ρ(x) > 0 for every x ∈ R. Also,

using the change of variables x = tan θ, we have

∫ ∞

−∞

dx

π(1 + x2)
= 2

∫ ∞

0

dx

π(1 + x2)
=

∫ arctan(∞)

arctan(0)

2 sec2 θ dθ

π(1 + tan2 θ)
=

2

π

∫ π/2

0

dθ = 1,

and therefore ρ is the pdf of a random variable z on R. We say that such a random variable
has the Cauchy distribution. ♠

Let G : R� → R
�, and note that if z is a random variable on R

�, then so too is G(z). If
z ∼ μ then G(z) ∼ G � μ, the pushforward of μ under G. If μ has associated pdf ρ on R

�,
then G � μ has associated pushforward pdf, denoted by G � ρ. This pushforward pdf may be
calculated explicitly by means of the change of variable formula under an integral. Indeed if
G is invertible, then

G � ρ(v) := ρ(G−1(v))|DG−1(v)|.

1 Of course, μ and ρ depend on the particular random variable z, but we suppress this dependence in
the notation.
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We will occasionally use the Markov inequality, which states that for a random variable z
on R

� and R > 0,

P(|z| ≥ R) ≤ R−1
E|z|. (1.1)

As a consequence,

P(|z| < R) ≥ 1−R−1
E|z|. (1.2)

In particular, if E|z| < ∞, then choosing R sufficiently large shows that P(|z| < R) > 0. In
our setting, this last inequality follows in any case, by assumption of the strict positivity of
ρ(·) everywhere on R

�.
A sequence of probability measures μ(n) on R

� is said to converge weakly to a limiting
probability measure μ on R

� if for all continuous bounded functions ϕ : R� → R, we have

E
μ(n)

ϕ(u)→ E
μϕ(u)

as n→∞.
Finally, we note that although developed here on R

�, the theory of probability can be
developed on much more general measure spaces and, in particular, on separable Banach
spaces. In the part of the book relating to continuous time, we will use probability theory in
this setting.

1.1.2. Gaussian Random Variables

We work in finite dimensions, but all the ideas can be generalized to infinite-dimensional
contexts, such as the separable Hilbert space setting. A Gaussian random variable2 on R

� is
characterized by the following parameters:

• Mean: m ∈ R
�.

• Covariance: C ∈ R
�×�
sym, C ≥ 0.

We write z ∼ N(m,C) and call the Gaussian random variable centered if m = 0. If C > 0,
then z has strictly positive pdf on R

�, given by

ρ(x) =
1

(2π)�/2(detC)1/2
exp
(
−1

2

∣
∣C− 1

2 (x−m)
∣
∣2
)

(1.3a)

=
1

(2π)�/2(detC)1/2
exp
(
−1

2
|x−m|2C

)
. (1.3b)

It can be shown that indeed ρ given by (1.3) satisfies

∫

R�

ρ(x) dx = 1. (1.4)

Lemma 1.2. Let z ∼ N(m,C), C > 0. Then

1. Ez = m.
2. E(z −m)(z −m)T = C.

2 Sometimes also called a normal random variable.
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Proof For the first item,

Ez =
1

(2π)�/2(detC)1/2

∫

R�

x exp
(−1

2
|x−m|2C

)
dx

=
1

(2π)�/2(detC)1/2

∫

R�

(y +m) exp
(−1

2
|y|2C

)
dy

=
1

(2π)�/2(detC)1/2

∫

R�

y exp
(−1

2
|y|2C

)
dy +

m

(2π)�/2(detC)1/2

∫

R�

exp
(−1

2
|y|2C

)
dy

= 0 +m

= m,

where we used in the last line that the function y �→ y exp
(− 1

2 |y|2C
)
is even and the fact that

by (1.4),

1

(2π)�/2(detC)1/2

∫

R�

exp
(−1

2
|y|2C

)
= 1.

For the second item,

E(z −m)(z −m)T =
1

(2π)�/2(detC)1/2

∫

R�

(x−m)(x−m)T exp
(−1

2
|x−m|2C

)
dx

=
1

(2π)�/2(detC)1/2

∫

R�

yyT exp
(−1

2
|C−1/2y|2) dy

=
1

(2π)�/2(detC)1/2

∫

R�

C1/2wwTC1/2 exp
(−1

2
|w|2) det(C1/2) dw

= C1/2JC1/2,

where

J =
1

(2π)�/2

∫

R�

wwT exp
(−1

2
|w|2) dw ∈ R

� × R
�,

and so

Jij =
1

(2π)�/2

∫

R�

wiwj exp
(−1

2

�∑

k=1

w2
k

) �∏

k=1

dwk.

To complete the proof, we need to show that J is the identity matrix I on R
� × R

�. Indeed,
for i �= j,

Jij ∝
∫

R

wi exp
(−1

2
w2

i

)
dwi

∫

R

wj exp
(−1

2
w2

j

)
dwj = 0,

by symmetry; and for i = j,

Jjj =
1

(2π)
1
2

∫

R

w2
j exp

(−1

2
w2

j

)
dwj

(
1

(2π)
1
2

∫

R

exp
(−1

2
w2

k

)
dwk

)�−1

=
1

(2π)
1
2

∫

R

w2
j exp

(−1

2
w2

j

)
dwj

= − 1

(2π)
1
2

wj exp
(−1

2
w2

j

)∣∣
∣
∞

−∞
+

1

(2π)
1
2

∫

R

exp
(−1

2
w2

j

)
dwj = 1,
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where we again used (1.4) in the first and last lines. Thus J = I, the identity in R
�, and

E(z −m)(z −m)T = C1/2C1/2 = C. �
The following characterization of Gaussians is often useful.

Lemma 1.3. The characteristic function of the Gaussian N(m,C) is given by

cf(h) = exp
(
i〈h,m〉 − 1

2
〈Ch, h〉).

Proof This follows from noting that

1

2
|x−m|2C − i〈h, x〉 =

1

2
|x− (m+ iCh)|2C − i〈h,m〉+

1

2
〈Ch, h〉.

�

Remark 1.4. Note that the pdf for the Gaussian random variable that we wrote down in
equation (1.3) is defined only for C > 0, since it involves C−1. The characteristic func-
tion appearing in the preceding lemma can be used to define a Gaussian with mean m and
covariance C, including the case C ≥ 0, so that the Gaussian covariance C is only positive
semidefinite, since it is defined in terms of C and not C−1. For example, if we let z ∼ N(m,C)
with C = 0, then z is a Dirac mass at m, i.e., z = m almost surely, and for every continuous
function f ,

Ef(z) = f(m).

This Dirac mass may be viewed as a particular case of a Gaussian random variable. We will
write δm for N(m, 0). ♠
Lemma 1.5. The following hold for Gaussian random variables:

• If z = a1z1+a2z2, where z1, z2 are independent Gaussians with distributions N(m1, C1) and
N(m2, C2) respectively, then z is Gaussian with distribution N(a1m1+a2m2, a

2
1C1+a

2
2C2).

• If z ∼ N(m,C) and w = Lz + a, then w ∼ N(Lm+ a, LCLT ).

Proof The first result follows from computing the characteristic function of z. By indepen-
dence, this is the product of the characteristic functions of a1z1 and of a2z2. The characteristic
function of aizi has logarithm equal to

i〈h, aimi〉 − 1

2
〈a2iCh, h〉.

Adding this for i = 1, 2 gives the logarithm of the characteristic function of z, from which its
mean and covariance may be read off.

For the second result, we note that the characteristic function of a+Lz is the expectation
of the exponential of

i〈h, a+ Lz〉 = i〈h, a〉+ i〈LTh, z〉.
Using the properties of the characteristic functions of z, we deduce that the logarithm of the
characteristic function of a+ Lz is equal to

i〈h, a〉+ i〈LTh,m〉 − 1

2
〈CLTh, LTh〉.
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This may be rewritten as

i〈h, a+ Lm〉 − 1

2
〈LCLTh, h〉,

which is the logarithm of the characteristic function of N(a+ Lm,LCLT ), as required. �
We finish by stating a lemma whose proof is straightforward, given the foregoing material

in this section, and left as an exercise.

Lemma 1.6. Define

I(v) :=
1

2

〈
(v −m), L(v −m)

〉

with L ∈ R
�×�
sym satisfying L > 0 and m ∈ R

�. Then exp
(−I(v)) can be normalized to produce

the pdf of the Gaussian random variable N(m,L−1) on R
�. The matrix L is known as the

precision matrix of the Gaussian random variable.

1.1.3. Conditional and Marginal Distributions

Let (a, b) ∈ R
� × R

m denote a jointly varying random variable.

Definition 1.7. The marginal pdf P(a) of a is given in terms of the pdf P(a, b) of (a, b) by

P(a) =

∫

Rm

P(a, b) db.

♠
Remark 1.8. With this definition, for A ⊂ B(R�),

P(a ∈ A) = P

(
(a, b) ∈ A× R

m

)
=

∫

A

∫

Rm

P(a, b) da db

=

∫

A

(∫

Rm

P(a, b) db

)
da =

∫

A

P(a) da.

Thus the marginal pdf P(a) is indeed the pdf for a in situations in which we have no infor-
mation about the random variable b other than that it is in R

m. ♠
We now consider the situation that is the extreme opposite of the marginal situation. To be

precise, we assume that we know everything about the random variable b: we have observed
it and know what value it takes. This leads to consideration of the random variable a given
that we know the value taken by b; we write a|b for a given b. The following definition is then
natural:

Definition 1.9. The conditional pdf P(a|b) of a|b is defined by

P(a|b) = P(a, b)

P(b)
. (1.5)

♠
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Remark 1.10. Conditioning a jointly varying random variable can be useful in computing
probabilities, as the following calculation demonstrates:

P

(
(a, b) ∈ A×B

)
=

∫

A

∫

B

P(a, b) da db

=

∫

A

∫

B

P(a|b)P(b) da db

=

∫

B

(∫

A

P(a|b) da
)

︸ ︷︷ ︸
=:I1

P(b) db
︸ ︷︷ ︸
=:I2

.

Given b, I1 computes the probability that a is in A. Then I2 denotes averaging over given
outcomes of b in B. ♠

1.1.4. Bayes’s Formula

By Definition 1.9, we have

P(a, b) = P(a|b)P(b), (1.6a)

P(a, b) = P(b|a)P(a). (1.6b)

Equating and rearranging, we obtain Bayes’s formula, which states that

P(a|b) = 1

P(b)
P(b|a)P(a). (1.7)

The importance of this formula is apparent in situations in which P(a) and P(b|a) are indi-
vidually easy to write down. Then P(a|b) may be identified easily, too.

Example 1.11. Let (a, b) ∈ R× R be a jointly varying random variable specified via

a ∼ N(m,σ2), P(a);

b|a ∼ N(f(a), γ2), P(b|a).

Notice that by equation (1.5), P(a, b) is defined via two Gaussian distributions. In fact, we
have

P(a, b) =
1

2πγσ
exp

(
− 1

2γ2
|b− f(a)|2 − 1

2σ2
|a−m|2

)
.

Unless f(·) is linear, this is not the pdf of a Gaussian distribution. Integrating over a, we
obtain, from the definition of the marginal pdf of b,

P(b) =
1

2πγσ

∫

R

exp

(
− 1

2γ2
|b− f(a)|2 − 1

2σ2
|a−m|2

)
da.

Using equation (1.6) then shows that

P(a|b) = 1

P(b)
× 1

2ππγσ
exp

(
− 1

2γ2
|b− f(a)|2 − 1

2σ2
|a−m|2

)
.
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Note that a|b, like (a, b), is not Gaussian. Thus for both (a, b) and a|b, we have con-
structed a non-Gaussian pdf in a simple fashion from the knowledge of the two Gaussians a
and b|a. ♠

When Bayes’s formula (1.7) is used in statistics, then b is typically observed data, and a
is the unknown about which we wish to find information using the data. In this context, we
refer to P(a) as the prior, to P(b|a) as the likelihood, and to P(a|b) as the posterior. The
beauty of Bayes’s formula as a tool in applied mathematics is that the likelihood is often easy
to determine explicitly, given reasonable assumptions on the observational noise, while there
is considerable flexibility inherent in modeling prior knowledge via probabilities to give the
prior. Combining the prior and likelihood as in (1.7) gives the posterior, which is the random
variable of interest; while the probability distributions used to define the likelihood P(b|a)
(via a probability density on the data space) and prior P(a) (via a probability on the space of
unknowns) may be quite simple, the resulting posterior probability distribution can be very
complicated. A second key point to note about Bayes’s formula in this context is that P(b),
which normalizes the posterior to a pdf, may be hard to determine explicitly, but algorithms
exist to find information from the posterior without knowing this normalization constant. We
return to this point in subsequent chapters.

1.1.5. Independence

Consider the jointly varying random variable (a, b) ∈ R
� × R

m. The random variables a and
b are said to be independent if

P(a, b) = P(a)P(b).

In this case, for f : R� → R
�′ and g : Rm → R

m′
,

Ef(a)g(b)T = (Ef(a))× (Eg(b)T ) ,

since

Ef(a)g(b)T =

∫

R�×Rm

f(a)g(b)TP(a)P(b) da db =

(∫

R�

f(a)P(a)da

)(∫

Rm

g(b)TP(b)db

)
.

An i.i.d. (independent, identically distributed) sequence {ξj}j∈N is one that satisfies the
following conditions:3

• Each ξj is distributed according to the same pdf ρ.
• ξj is independent of ξk for j �= k.

If J is a subset of N with finite cardinality, then this i.i.d. sequence satisfies

P ({ξj}j∈J) =
∏

j∈J

ρ(ξj).

3 This discussion is easily generalized to j ∈ Z
+.
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1.2 Dynamical Systems

We will discuss data assimilation in the context of both discrete-time and continuous-time
dynamical systems. In this section, we introduce some basic facts about such dynamical
systems.

1.2.1. Iterated Maps

Let ∈ C(R�,R�). We will frequently be interested in the iterated map, or discrete-time
dynamical system, defined by

vj+1 = Ψ(vj), v0 = u,

and in studying properties of the sequence {vj}j∈Z+ . A fixed point of the map is a point v∞
that satisfies v∞ = Ψ(v∞); initializing the map at u = v∞ will result in a sequence satisfying
vj = v∞ for all j ∈ Z

+.

Example 1.12. Let

Ψ(v) = λv + a.

Then

vj+1 = λvj + a, v0 = u.

By induction, we see that for λ �= 1,

vj = λju+ a

j−1∑

i=0

λi = λju+ a
1− λj
1− λ .

Thus if |λ| < 1, then

vj → a

1− λ as j →∞.
The limiting value a

1−λ is a fixed point of the map. ♠
Remark 1.13. In the preceding example, the long-term dynamics of the map, for |λ| < 1, is
described by convergence to a fixed point. Far more complex behavior is, of course, possible;
we will explore such complex behavior in the next chapter. ♠

The following result is known as the (discrete-time) Gronwall lemma.

Lemma 1.14. Let {vj}j∈Z+ be a positive sequence and (λ, a) a pair of real numbers with
λ > 0. Then if

vj+1 ≤ λvj + a, j = 0, 1, . . . ,

it follows that

vj ≤ λjv0 + a
1− λj
1− λ , λ �= 1,

and

vj ≤ v0 + ja, λ = 1.
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Proof We prove the case λ �= 1; the case λ = 1 may be proved similarly. We proceed by
induction. The result clearly holds for j = 0. Assume that the result is true for j = J. Then

vJ+1 ≤ λvJ + a

≤ λ
(
λJv0 + a

1− λJ
1− λ

)
+ a

= λJ+1v0 + a
λ− λJ+1

1− λ + a
1− λ
1− λ

= λJ+1v0 + a
1− λJ+1

1− λ .

This establishes the inductive step, and the proof is complete. �
We will also be interested in stochastic dynamical systems of the form

vj+1 = Ψ(vj) + ξj , v0 = u,

where ξ = {ξj}j∈N is an i.i.d. sequence of random variables on R
�, and u is a random variable

on R
�, independent of ξ.

Example 1.15. This is a simple but important one-dimensional (i.e., � = 1) example. Let
|λ| < 1, and let

vj+1 = λvj + ξj , ξj ∼ N(0, σ2) i.i.d.,

v0 ∼ N(m0, σ
2
0).

By induction,

vj = λjv0 +

j−1∑

i=0

λj−i−1ξi.

Thus vj is Gaussian, as a linear transformation of Gaussians; see Lemma 1.5. Furthermore,
using independence of the initial condition from the sequence ξ, we obtain

mj := Evj = λjm0,

σ2j := E(vj −mj)
2 = λ2jE(v0 −m0)

2 +

j−1∑

i=0

λ2j−2i−2σ2

= λ2jσ20 + σ2
j−1∑

i=0

λ2i = λ2jσ20 + σ2
1− λ2j
1− λ2 .

Since |λ| < 1, we deduce thatmj → 0 and σ2j → σ2(1−λ2)−1. Thus the sequence of Gaussians
generated by this stochastic dynamical system has a limit, which is a centered Gaussian with
variance larger than the variance of ξ1, unless λ = 0. ♠

1.2.2. Differential Equations

Let f ∈ C1(R�,R�) and consider the ordinary differential equation (ODE)

dv

dt
= f(v), v(0) = u.
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Assume that a solution exists for all u ∈ R
�, t ∈ R

+; for a given u, this solution is then
an element of the space C1(R+;R�). In this situation, the ODE generates a continuous-time
dynamical system. We are interested in properties of the function v. An equilibrium point
v∞ ∈ R

� is a point for which f(v∞) = 0. Initializing the equation at u = v∞ results in a
solution v(t) = v∞ for all t ≥ 0.

Example 1.16. Let f(v) = −αv + β. Then

eαt
(
dv

dt
+ αv

)
= βeαt,

and so

d

dt

(
eαtv

)
=
d

dt

(
β

α
eαt
)
.

Thus

eαtv(t)− u =
β

α
(eαt − 1),

so that

v(t) = e−αtu+
β

α
(1− e−αt).

If α > 0, then

v(t)→ β

α
as t→∞.

Note that v∞ := β
α is the unique equilibrium point of the equation. ♠

Remark 1.17. In the preceding example, the long-term dynamics of the ODE, for α > 0,
is described by convergence to an equilibrium point. As in discrete time, far more complex
behavior is, of course, possible; we will explore this possibility in the next chapter. ♠

If the differential equation has a solution for every u ∈ R
� and every t ∈ R

+, then there
is a one-parameter semigroup of operators Ψ(·; t), parameterized by time t ≥ 0, with the
properties that

v(t) = Ψ(u; t), t ∈ (0,∞), (1.10a)

Ψ(u; t+ s) = Ψ
(
Ψ(u; s); t

)
, t, s ∈ R

+, u ∈ R
�, (1.10b)

Ψ(u; 0) = u ∈ R
�. (1.10c)

We call Ψ(·; ·) the solution operator for the ODE. In this scenario, we can consider the iterated
map defined by Ψ(·) = Ψ(·;h), for some fixed h > 0, thereby linking the discrete-time iterated
maps with continuous-time ODEs.

Example 1.18. (Example 1.16, continued) Let

Ψ(u; t) = e−αtu+
β

α

(
1− e−αt

)
,

which is the solution operator for the equation in that v(t) = Ψ(u; t). Clearly, Ψ(u; 0) = u.
Also
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Ψ(u; t+ s) = e−αte−αsu+
β

α

(
1− e−αte−αs

)

= e−αt

(
e−αsu+

β

α

(
1− e−αs

)
)
+
β

α

(
1− e−αt

)

= Ψ(Ψ(u; s); t) .

♠
The following result is known as the (continuous-time) Gronwall lemma.

Lemma 1.19. Let z ∈ C1(R+,R) satisfy

dz

dt
≤ az + b, z(0) = z0,

for some a, b ∈ R. Then

z(t) ≤ eatz0 + b

a

(
eat − 1

)
.

Proof Multiplying both sides of the given identity by e−at, we obtain

e−at

(
dz

dt
− az

)
≤ be−at,

which implies that

d

dt

(
e−atz

) ≤ be−at.

Therefore,

e−atz(t)− z(0) ≤ b

a

(
1− e−at

)
,

so that

z(t) ≤ eatz0 + b

a

(
eat − 1

)
.

�

1.2.3. Long-Time Behavior

We consider the long-time behavior of discrete-time dynamical systems. The ideas are easily
generalized to continuous-time dynamical systems—ODEs—and indeed, our example will
demonstrate such a generalization. To facilitate our definitions, we now extend Ψ to act on
Borel subsets of R�. Note that currently, Ψ : R� → R

�; we extend to Ψ : B(R�)→ B(R�) via

Ψ(A) =
⋃

u∈A

Ψ(u), A ∈ B(R�).

For both Ψ : R� → R
� and Ψ : B(R�)→ B(R�), we denote by

Ψ(j) = Ψ ◦ · · · ◦Ψ
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the j−fold composition of Ψ with itself. In the following, let B(0, R) denote the ball of radius
R in R

�, in the Euclidean norm, centered at the origin.

Definition 1.20. A discrete-time dynamical system has a bounded absorbing set Babs ⊂ R
�

if for every R > 0, there exists J = J(R) such that

Ψ(J) (B(0, R)) ⊂ Babs, ∀j ≥ J.

♠
Remark 1.21. The definition of absorbing set is readily generalized to continuous-time
dynamical systems; this is left as an exercise for the reader. ♠
Example 1.22. Consider an ODE for which there exist α, β > 0 such that

〈f(v), v〉 ≤ α− β|v|2, ∀v ∈ R
�.

Then

1

2

d

dt
|v|2 =

〈
v,
dv

dt

〉
= 〈v, f(v)〉 ≤ α− β|v|2.

Applying the Gronwall lemma (Lemma 1.19) gives

|v(t)|2 ≤ e−2βt|v(0)|2 + α

β

(
1− e−2βt

)
.

Hence if |v(0)|2 ≤ R, then

|v(t)|2 ≤ 2
α

β
∀t ≥ T : e−2βtR2 ≤ α

β
.

Therefore, the set Babs = B
(
0,
√

2α
R

)
is absorbing for the ODE (with the generalization of

the above definition of absorbing set to continuous time, as in Remark 1.21).
If vj = v(jh), so that Ψ(·) = Ψ(·;h) and vj+1 = Ψ(vj), then

|vj |2 ≤ 2
α

β
∀J ≥ T

h
,

where T is as in the ODE case. Hence Babs = B
(
0,
√

2α
R

)
is also an absorbing set for the

iterated map associated with the ODE. ♠
Definition 1.23. When the discrete-time dynamical system has a bounded absorbing set, Babs

we define the global attractor A to be

A =
⋂

k≥0

⋃

j≥k

Ψ(j)(Babs).

♠
This object captures all the long-time dynamics of the dynamical system. As for the absorbing
set itself, this definition is readily generalized to continuous time.
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1.2.4. Controlled Dynamical Systems

It is frequently of interest to add a controller w = {wj}∞j=0 to the discrete-time dynamical
system to obtain

vj+1 = Ψ(vj) + wj .

The aim of the controller is to “steer” the dynamical system to achieve some objective.
Interesting examples include the following:

• Given a point v∗ ∈ R
� and time J ∈ Z

+, choose w such that vJ = v∗.
• Given an open set B and time J ∈ Z

+, choose w such that vj ∈ B for all j ≥ J .
• Given y = {yj}j∈N, where yj ∈ R

m, and given a function h : R� → R
m, choose w to keep

|yj − h(vj)| small in some sense.

The third option is most relevant in the context of data assimilation, and so we focus on
it. In this context, we will consider controllers of the form wj = K

(
yj − h(vj)

)
, so that

vj+1 = Ψ(vj) +K
(
yj − h(vj)

)
. (1.11)

A key question is then how to choose K to ensure the desired property. We present a simple
example that illustrates this.

Example 1.24. Let � = m = 1, Ψ(v) = λv and h(v) = v. We assume that the data {yj}j∈N

is given by yj+1 = v†j+1, where v
†
j+1 = λv†j . Thus the data is itself generated by the un-

controlled dynamical system. We wish to use the controller to ensure that the solution of
the controlled system is close to the data {yj}j∈N generated by the uncontrolled dynamical
system, and hence to the solution of the uncontrolled dynamical system itself.

Consider the controlled dynamical system

vj+1 = Ψ(vj) +K (yj − h(vj))
= λvj +K(yj − vj)︸ ︷︷ ︸

wj

, j ≥ 1,

and assume that v0 �= v†0. We are interested in whether vj approaches v†j as j →∞.
To this end, suppose that K is chosen such that |λ−K| < 1. Then note that

v†j+1 = λv†j +K (yj − v†j )︸ ︷︷ ︸
=0

.

Hence ej = vj − v†j satisfies

ej+1 = (λ−K)ej

and

|ej+1| = |λ−K||ej |.
Since we have chosen K such that |λ − K| < 1, we have |ej | → 0 as j → ∞. Thus the
controlled dynamical system approaches the solution of the uncontrolled dynamical system
as j → ∞. This is prototypical of certain data-assimilation algorithms that we will study in
Chapter 4. ♠



1.3 Probability Metrics 15

It is also of interest to consider continuous-time controllers {w(t)}t≥0 for differential
equations

dv

dt
= f(v) + w.

Again, the goal is to choose w to achieve some objective analogous to those described in
discrete time.

1.3 Probability Metrics

Since we will frame data assimilation in terms of probability, natural measures of robustness of
the problem will require the idea of distance between probability measures. Here we introduce
basic metric properties, and then some specific distances on probability measures and their
properties.

1.3.1. Metric Properties

Definition 1.25. A metric on a set X is a function d : X ×X → R
+ (distance) satisfying

the following properties:

• coincidence: d(x, y) = 0 iff x = y;
• symmetry: d(x, y) = d(y, x);
• triangle: d(x, z) ≤ d(x, y) + d(y, z).

♠
Example 1.26. Let X = R

�, viewed as a normed vector space with norm ‖ · ‖; for example,
we might take ‖ · ‖ = | · |, the Euclidean norm. Then the function d : R� ×R

� → R
+ given by

d(x, y) := ‖x− y‖ defines a metric. Indeed, from the properties of norms:

• ‖x− y‖ = 0 iff x = y;
• ‖x− y‖ = ‖y − x‖;
• ‖x− z‖ = ‖x− y + y − z‖ ≤ ‖x− y‖+ ‖y − z‖.

♠

1.3.2. Metrics on Spaces of Probability Measures

LetM denote the space of probability measures on R
� with strictly positive Lebesgue density

on R
�. Throughout this section, we let μ and μ′ be two probability measures on M, and let

ρ and ρ′ denote the corresponding densities; recall that we assume that these densities are
positive everywhere, in order to simplify the presentation. We define two useful metrics on
probability measures.
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Definition 1.27. The total-variation distance on M is defined by

dTV(μ, μ
′) =

1

2

∫

R�

|ρ(u)− ρ′(u)| du

=
1

2
E
μ

∣
∣
∣
∣1−

ρ′(u)
ρ(u)

∣
∣
∣
∣ .

♠
Thus the total-variation distance is half of the L1 norm of the difference of the two pdfs.

Note that clearly, dTV(μ, μ
′) ≥ 0. Also,

dTV(μ, μ
′) ≤ 1

2

∫

R�

|ρ(u)| du+ 1

2

∫

R�

|ρ′(u)| du

=
1

2

∫

R�

ρ(u) du+
1

2

∫

R�

ρ′(u) du

= 1.

Note also that dTV may be characterized as

dTV(μ, μ
′) =

1

2
sup|f |∞≤1|Eμ(f)− E

μ′
(f)| = 1

2
sup|f |∞≤1|μ(f)− μ′(f)|, (1.12)

where we have used the convention that μ(f) = E
μ(f) =

∫
R� f(v)μ(dv) and |f |∞ =

supu |f(u)|.
Definition 1.28. The Hellinger distance on M is defined by

dHell(μ, μ
′) =

(
1

2

∫

R�

(√
ρ(u)−

√
ρ′(u)

)2
du

)1/2

=

⎛

⎝1

2
E
μ

(

1−
√
ρ′(u)
ρ(u)

)2
⎞

⎠

1/2

.

♠
Thus the Hellinger distance is a multiple of the L2 distance between the square roots of

the two pdfs. Again, clearly dHell(μ, μ
′) ≥ 0. Also,

dHell(μ, μ
′)2 ≤ 1

2

∫

R�

(ρ(u) + ρ′(u)) du = 1.

We also note that the Hellinger and total-variation distances can be written in a symmetric
way and that they satisfy the triangle inequality—they are indeed valid distance metrics on
the space of probability measures.

Lemma 1.29. The total variation and Hellinger distances satisfy

0 ≤ 1√
2
dTV(μ, μ

′) ≤ dHell(μ, μ
′) ≤ dTV(μ, μ

′)1/2 ≤ 1.
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Proof The upper and lower bounds of, respectively, 0 and 1 are proved above. We show first
that 1√

2
dTV(μ, μ

′) ≤ dHell(μ, μ
′). Indeed, by the Cauchy–Schwarz inequality,

dTV(μ, μ
′) =

1

2

∫

R�

∣
∣
∣
∣
∣
1−

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
1 +

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣
ρ(u) du

≤
⎛

⎝1

2

∫

R�

∣
∣
∣
∣
∣
1−

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣

2

ρ(u) du

⎞

⎠

1/2⎛

⎝1

2

∫

R�

∣
∣
∣
∣
∣
1 +

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣

2

ρ(u) du

⎞

⎠

1/2

≤ dHell(μ, μ
′)
(∫

R�

∣
∣
∣
∣1 +

ρ′(u)
ρ(u)

∣
∣
∣
∣ ρ(u) du

)1/2

=
√
2dHell(μ, μ

′).

Finally, for the inequality dHell(μ, μ
′) ≤ dTV(μ, μ

′)1/2 note that

|√a−
√
b| ≤ √a+

√
b ∀a, b > 0.

Therefore,

dHell(μ, μ
′)2 =

1

2

∫

R�

∣
∣
∣
∣
∣
1−

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
1−

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣
ρ(u) du

≤ 1

2

∫

R�

∣
∣
∣
∣
∣
1−

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
1 +

√
ρ′(u)
ρ(u)

∣
∣
∣
∣
∣
ρ(u) du

=
1

2

∫

R�

∣
∣
∣
∣1−

ρ′(u)
ρ(u)

∣
∣
∣
∣ ρ(u) du

= dTV(μ, μ
′).

�
Why do we bother to introduce the Hellinger distance, rather than working with the more

familiar total variation? The answer stems from the following two lemmas.

Lemma 1.30. Let f : R� → R
p be such that

(Eμ|f(u)|2 + E
μ′ |f(u)|2) <∞.

Then

|Eμf(u)− E
μ′
f(u)| ≤ 2(Eμ|f(u)|2 + E

μ′ |f(u)|2) 1
2 dHell(μ, μ

′). (1.13)

As a consequence,

|Eμf(u)− E
μ′
f(u)| ≤ 2(Eμ|f(u)|2 + E

μ′ |f(u)|2) 1
2 dtv(μ, μ

′)
1
2 . (1.14)

Proof In the following, all integrals are over R�. Now,
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|Eμf(u)− E
μ′
f(u)| ≤

∫
|f(u)||ρ(u)− ρ′(u)|du

=

∫ √
2|f(u)||

√
ρ(u) +

√
ρ′(u)| · 1√

2
|
√
ρ(u)−

√
ρ′(u)|du

≤
(∫

2|f(u)|2|
√
ρ(u) +

√
ρ′(u)|2du

) 1
2
(
1

2

∫
|
√
ρ(u)−

√
ρ′(u)|2du

) 1
2

≤
(∫

4|f(u)|2(ρ(u) + ρ′(u))du
) 1

2

⎛

⎝1

2

∫ (

1−
√
ρ′(u)

√
ρ(u)

)2

ρ(u)du

⎞

⎠

1
2

= 2(Eμ|f(u)|2 + E
μ′ |f(u)|2) 1

2 dHell(μ, μ
′).

Thus (1.13) follows. The bound (1.14) follows from Lemma 1.29. �

Remark 1.31. The preceding lemma shows that if two measures μ and μ′ are O(ε)-close in
the Hellinger metric, and if the function f(u) is square-integrable with respect to u distributed
according to μ and μ′, then expectations of f(u) with respect to μ and μ′ are also O(ε)-close.
It also shows that under the same assumptions on f , if two measures μ and μ′ are O(ε)-
close in the total-variation metric, then expectations of f(u) with respect to μ and μ′ are

only O(ε
1
2 )-close. This second result is sharp, and to get O(ε)-closeness of expectations using

O(ε)-closeness in the total-variation metric requires a stronger assumption on f , as we now
show. ♠
Lemma 1.32. Assume that |f | is finite almost surely with respect to both μ and μ′ and denote
the almost sure upper bound on |f | by fmax. Then

|Eμf(u)− E
μ′
f(u)| ≤ 2fmaxdTV(μ, μ

′).

Proof Under the given assumption on f ,

|Eμf(u)− E
μ′
f(u)| ≤

∫
|f(u)||ρ(u)− ρ′(u)|du

≤ 2fmax

(
1

2

∫
|ρ(u)− ρ′(u)|du

)

≤ 2fmax

(
1

2

∫ ∣∣
∣
∣1−

ρ′(u)
ρ(u)

∣
∣
∣
∣ ρ(u)du

)

= 2fmaxdTV(μ, μ
′).

�
The implication of the preceding two lemmas and Remark 1.31 is that it is natural to work

with the Hellinger metric, rather than the total-variation metric, in considering the effect of
perturbations of the measure on expectations of functions that are square-integrable but not
bounded.

1.4 Probabilistic View of Dynamical Systems

Here we look at the natural connection between dynamical systems and the underlying
dynamical system that they generate on probability measures. The key idea here is that the
Markovian propagation of probability measures is linear, even when the underlying dynamical
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system is nonlinear. This advantage of linearity is partially offset by the fact that the und-
erlying dynamics on probability distributions is infinite-dimensional, but it is nonetheless
a powerful perspective on dynamical systems. Example 1.15 provides a nice introductory
example demonstrating the probability distributions carried by a stochastic dynamical sys-
tem; in that case, the probability distributions are Gaussian, and we explicitly characterize
their evolution through the mean and covariance. The idea of mapping probability measures
under the dynamical system can be generalized, but the situation is typically more compli-
cated, because the probability distributions are typically not Gaussian and not characterized
by a finite number of parameters.

1.4.1. Markov Kernel

Definition 1.33. The function p : R� × B(R�) → R
+ is a Markov kernel if the following

conditions are satisfied:

• For each x ∈ R
�, p(x, ·) is a probability measure on

(
R

�.B(R�)
)
;

• x �→ p(x,A) is B(R�)-measurable for all A ∈ B(R�).

♠
The first condition is the key one for the material in this book: the Markov kernel at fixed x
describes the probability distribution of a new point y ∼ p(x, ·). By iterating on this, we may
generate a sequence of points that constitute a sample from the distribution of the Markov
chain, as described below, defined by the Markov kernel. The second measurability condition
ensures an appropriate mathematical setting for the problem, but an in-depth understanding
of this condition is not essential for the reader of this book. In the same way that we use P

to denote both the probability measure and its pdf, we sometimes use p(x, ·) : R� → R
+, for

each fixed x ∈ R
�, to denote the corresponding pdf of the Markov kernel from the preceding

definition.
Consider the stochastic dynamical system

vj+1 = Ψ(vj) + ξj ,

where ξ = {ξj}j∈Z+ is an i.i.d. sequence distributed according to a probability measure on R
�

with density ρ(·).We assume that the initial condition v0 is possibly random, but independent
of ξ. Under these assumptions on the probabilistic structure, we say that {vj}j∈Z+ is a Markov
chain. For this Markov chain, we have

P(vj+1|vj) = ρ
(
vj+1 −Ψ(vj)

)
;

thus

P(vj+1 ∈ A|vj) =
∫

A

ρ
(
vj+1 −Ψ(vj)

)
dv.

In fact, we can define a Markov kernel

p(u,A) =

∫

A

ρ
(
v −Ψ(u)

)
dv,

with the associated pdf
p(u, v) = ρ (v −Ψ(u)) .
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If vj ∼ μj with pdf ρj , then

μj+1 = P(vj+1 ∈ A)
=

∫

R�

P(vj+1 ∈ A|vj)P(vj) dvj

=

∫

R�

p(u,A)ρj(u) du.

And then

ρj+1(v) =

∫

R�

p(u, v)ρj(u) du

=

∫

R�

ρ
(
v −Ψ(u)

)
ρj(u) du.

Furthermore, we have a linear dynamical system for the evolution of the pdf

ρj+1 = Pρj , (1.15)

where P is the integral operator

(Pπ)(v) =

∫

R�

ρ
(
v −Ψ(u)

)
π(u) du.

Example 1.34. Let Ψ : R� → R
�. Assume that ξ1 ∼ N(0, σ2I). Then

ρj+1(v) =

∫

R�

1

(2π)�/2σ�
exp

(
− 1

2σ2
|v −Ψ(u)|2

)
ρj(u) du.

As σ →∞, we obtain the deterministic model

ρj+1(v) =

∫

R�

δ
(
v −Ψ(u)

)
ρj(u) du.

♠
For each integer n ∈ N, we use the notation pn(u, ·) to denote the Markov kernel arising

from n steps of the Markov chain; thus p1(u, ·) = p(u, ·). Furthermore, pn(u,A) = P(u(n) ∈
A|u(0) = u).

1.4.2. Ergodicity

In many situations, we will appeal to ergodic theorems to extract information from sequences
{vj}j∈Z+ generated by a (possibly stochastic) dynamical system. Assume that this dynamical
system is invariant with respect to the probability measure μ∞. Then, roughly speaking, an
ergodic dynamical system is one for which, for a suitable class of test functions ϕ : R� → R,
and v0 almost surely with respect to the invariant measure μ∞, the Markov chain from the
previous subsection satisfies

1

J

J∑

j=1

ϕ(vj)→
∫

R�

ϕ(v)μ∞(dv) = E
μ∞ϕ(v). (1.16)
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We say that the time average equals the space average. The preceding identity encodes the
idea that the histogram formed by a single trajectory {vj} of the Markov chain looks more and
more like the pdf of the underlying invariant measure. Since the convergence is almost sure
with respect to the initial condition, this implies that the statistics on where the trajectory
spends time is asymptotically independent of the initial condition; this is a very powerful
property.

If the Markov chain has a unique invariant density ρ∞, which is a fixed point of the linear
dynamical system (1.15), then it will satisfy

ρ∞ = Pρ∞, (1.17)

or equivalently,

ρ∞(v) =

∫

R�

p(u, v)ρ∞(u)du. (1.18)

In the ergodic setting, this equation will have a form of uniqueness within the class of pdfs,
and furthermore, it is often possible to prove, in some norm, the convergence

ρj → ρ∞ as j →∞.

Example 1.35. Example 1.15 generates an ergodic Markov chain {vj}j∈Z+ carrying the se-
quence of pdfs ρj . Furthermore, each ρj is the density of a Gaussian N(mj , σ

2
j ). If |λ| < 1,

then mj → 0 and σ2j → σ2∞, where

σ2∞ =
σ2

1− λ2 .

Thus ρ∞ is the density of a Gaussian N(0, σ2∞). We then have

1

J

J∑

j=1

ϕ(vj) =
1

J

J∑

j=1

ϕ

(

λjv0 +
J−1∑

i=1

λj−i−1ξi

)

→
∫

R

ρ∞(v)ϕ(v) dv.

♠

1.4.3. Bayes’s Formula as a Map

Recall that Bayes’s formula states that

P(a|b) = 1

P(b)
P(b|a)P(a).

This may be viewed as a map from P(a) (what we know about a a priori, the prior) to P(a|b)
(what we know about a once we have observed the variable b, the posterior.) Since

P(b) =

∫

R�

P(b|a)P(a) da,

we see that

P(a|b) = P(b|a)P(a)∫
R� P(b|a)P(a) da =: LP(a).
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Here L is a nonlinear map that takes the pdf P(a) into P(a|b).We use the letter L to highlight
the fact that the map is defined, in the context of Bayesian statistics, using the likelihood to
map prior to posterior.

1.5 Bibliography

• For background material on probability, as covered in Section 1.1, the reader is directed
to the elementary textbook [23] and to the more advanced texts [60, 148] for further
material (for example, the definition of measurable.) The book [113], together with the
references therein, provides an excellent introduction to Markov chains. The book [108]
is a comprehensive study of ergodicity for Markov chains; the central use of Lyapunov
functions will make it particularly accessible to readers with a background in dynamical
systems. Note also that Theorem 3.3 contains a basic ergodic result for Markov chains.

• Section 1.2 concerns dynamical systems and stochastic dynamical systems. The determinis-
tic setting is discussed in numerous textbooks, such as [61, 147], with more advanced mate-
rial, related to infinite-dimensional problems, covered in [137]. The ergodicity of stochastic
dynamical systems is presented in [7], and targeted treatments based on the small-noise
scenario include [53, 14]. The book [134] contains elementary chapters on dynamical sys-
tems, and the book chapter [73] contains related material in the context of stochastic
dynamical systems. For the subject of control theory, the reader is directed to [149], which
has a particularly good exposition of the linear theory, and [130] for the nonlinear setting.

• Probability metrics are the subject of Section 1.3, and the survey paper [57] provides a
very readable introduction to this subject, together with references to the wider literature.

• Viewing (stochastic) dynamical systems as generating a dynamical system on the proba-
bility measure that they carry is an enormously powerful way of thinking. The reader is
directed to the books [145] and [10] for overviews of this subject and further references.

1.6 Exercises

1. Consider the ODE

dv

dt
= v − v3, v(0) = v0.

By finding the exact solution, determine the one-parameter semigroup Ψ(·; t) with prop-
erties (1.10).

2. Consider a jointly varying random variable (a, b) ∈ R
2 defined as follows: a ∼ N(0, σ2)

and b|a ∼ N(a, γ2). Find a formula for the probability density function of (a, b), using
(1.5b), and demonstrate that the random variable is a Gaussian with mean and covariance
that you should specify. Using (1.7), find a formula for the probability density function of
a|b; again demonstrate that the random variable is a Gaussian with mean and covariance
that you should specify.

3. Consider two Gaussian densities on R: N(m1, σ
2
1) and N(m2, σ

2
2). Show that the Hellinger

distance between them is given by

dHell(μ, μ
′)2 = 1−

√

exp
(
− (m1 −m2)2

2(σ21 + σ22)

) 2σ1σ2
(σ21 + σ22)

.
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4. Consider two Gaussian measures on R: N(m1, σ
2
1) and N(m2, σ

2
2). Show that the total-

variation distance between the measures tends to zero as m2 → m1 and σ22 → σ21 .
5. The Kullback–Leibler divergence between two measures μ′ and μ, with pdfs ρ′ and ρ

respectively, is

DKL(μ
′||μ) =

∫
log
(ρ(x)′

ρ(x)

)
ρ′(x)dx.

Does DKL define a metric on probability measures? Justify your answer. Consider two
Gaussian densities on R: N(m1, σ

2
1) and N(m2, σ

2
2). Show that the Kullback–Leibler

divergence between them is given by

DKL(μ1||μ2) = ln
(σ2
σ1

)
+

1

2

(σ21
σ22
− 1
)
+

(m2 −m1)
2

2σ22
.

6. Assume that two measures μ and μ′ have positive Lebesgue densities ρ and ρ′ respectively.
Prove the bounds

dHell(μ, μ
′)2 ≤ 1

2
DKL(μ||μ′) , dTV(μ, μ

′)2 ≤ DKL(μ||μ′),

where the Kullback–Leibler divergence DKL is defined in the preceding exercise.
7. Consider the stochastic dynamical system of Example 1.15. Find explicit formulas for the

maps mj �→ mj+1 and σ2j �→ σ2j+1.
8. Directly compute the mean and covariance of w = a + Lz if z is Gaussian N(m,C),

without using the characteristic function. Verify that you obtain the same result as in
Lemma 1.5.

9. Prove Lemma 1.6.
10. Generalize Definitions 1.20 and 1.23 to continuous time, as suggested in Remark 1.21.



Chapter 2

Discrete Time: Formulation

In this chapter, we introduce the mathematical framework for discrete-time data assimilation.
Section 2.1 describes the mathematical models we use for the underlying signal, which we wish
to recover, and for the data, which we use for the recovery. In Section 2.2, we introduce a
number of examples used throughout the text to illustrate the theory. Sections 2.3 and 2.4
respectively describe two key problems related to the conditioning of the signal v on the data
y, namely smoothing and filtering; in Section 2.5, we describe how these two key problems
are related. Section 2.6 proves that the smoothing problem is well posed and, using the
connection to filtering described in Section 2.5, that the filtering problem is well posed; here
well-posedness refers to continuity of the desired conditioned probability distribution with
respect to the observed data. Section 2.7 discusses approaches to evaluating the quality of
data-assimilation algorithms. In Section 2.8, we describe various illustrations of the foregoing
theory and conclude the chapter with Section 2.9, devoted to a bibliographical overview, and
Section 2.10, containing exercises.

2.1 Setup

We assume throughout this book that Ψ ∈ C(Rn,Rn), and we consider the Markov chain
v = {vj}j∈Z+ defined by the random map

vj+1 = Ψ(vj) + ξj , j ∈ Z
+, (2.1a)

v0 ∼ N(m0, C0), (2.1b)

where ξ = {ξj}j∈Z+ is an i.i.d. sequence, with ξ0 ∼ N(0, Σ) and Σ > 0. Because (v0, ξ) is a
random variable, so too is the solution sequence {vj}j∈Z+ : the signal, which determines the
state of the system at each discrete time instance. For simplicity, we assume that v0 and ξ are
independent. The probability distribution of the random variable v quantifies the uncertainty
in predictions arising from this stochastic dynamics model.

In many applications, models such as (2.1) are supplemented by observations of the system
as it evolves; this information then changes the probability distribution on the signal, typically
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reducing the uncertainty. To describe such situations, we assume that we are given data, or
observations, y = {yj}j∈N defined as follows. At each discrete time instance, we observe a
(possibly nonlinear) function of the signal, with additive noise:

yj+1 = h(vj+1) + ηj+1, j ∈ Z
+, (2.2)

where h ∈ C(Rn,Rm) and η = {ηj}j∈N is an i.i.d. sequence, independent of (v0, ξ), with
η1 ∼ N(0, Γ ) and Γ > 0. The function h is known as the observation operator. The
objective of data assimilation is to determine information about the signal v, given data y.
Mathematically, we wish to solve the problem of conditioning the random variable v on the
observed data y, or problems closely related to this. Note that we have assumed that both
the model noise ξ and the observational noise η are Gaussian; this assumption is made for
convenience only, and could be easily generalized.

We will also be interested in the case in which the dynamics is deterministic and (2.1)
becomes

vj+1 = Ψ(vj), j ∈ Z
+, (2.3a)

v0 ∼ N(m0, C0). (2.3b)

In this case, which we refer to as deterministic dynamics, we are interested in the random
variable v0, given the observed data y; note that v0 determines all subsequent values of the
signal v.

Finally, we mention that in many applications, the function Ψ is the solution operator for
an ordinary differential equation (ODE) of the form1

dv

dt
= f(v), t ∈ (0,∞), (2.4a)

v(0) = v0. (2.4b)

Then, assuming that the solution exists for all t ≥ 0, there is a one-parameter semigroup
of operators Ψ(·; t), parameterized by time t ≥ 0, with properties defined in (1.10). In this
situation, we assume that Ψ(u) = Ψ(u; τ), i.e., the solution operator over τ time units, where
τ is the time between observations; thus we implicitly make the simplifying assumption that
the observations are made at equally spaced time points, and note that the state vj = v(jh)
evolves according to (2.3a). We use the notation Ψ(j)(·) to denote the j−fold composition of
Ψ with itself. Thus, in the case of continuous-time dynamics, Ψ(· ; jτ) = Ψ(j)(·).

2.2 Guiding Examples

Throughout these notes, we will use the following examples to illustrate the theory and
algorithms presented.

Example 2.1. We consider the case of one-dimensional linear dynamics, where

Ψ(v) = λv (2.5)

for some scalar λ ∈ R. Figure 2.1 compares the behavior of the stochastic dynamics (2.1)
and deterministic dynamics (2.3) for the two values λ = 0.5 and λ = 1.05. We set Σ = σ2,

1 Here the use of v = {v(t)}t≥0 for the solution of this equation should be distinguished from our use
of v = {vj}∞j=0 for the solution of (2.1).
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and in both cases, 50 iterations of the map are shown. We observe that the presence of noise
does not significantly alter the dynamics of the system for the case |λ| > 1, since for both
the stochastic and deterministic models, |vj | → ∞ as j →∞. The effects of stochasticity are
more pronounced when |λ| < 1, since in that case, the deterministic map satisfies vj → 0,
while for the stochastic model, vj fluctuates randomly around 0.

Fig. 2.1: Behavior of (2.1) for Ψ given by (2.5) for different values of λ and Σ = σ2.

Using (2.1a), together with the linearity of Ψ and the Gaussianity of the noise ξj , we obtain

E(vj+1) = λE(vj), E(v2j+1) = λ2E(v2j ) + σ2.

If |λ| > 1, then the second moment explodes as j → ∞, as does the modulus of the first
moment if E(v0) �= 0. On the other hand, if |λ| < 1, we see (Example 1.15) that E(vj) → 0
and E(v2j )→ σ2∞, where

σ2∞ =
σ2

1− λ2 . (2.6)

Indeed, since v0 is Gaussian, the model (2.1a) with linear Ψ and Gaussian noise ξj gives rise
to a random variable vj , which is also Gaussian. Thus, from the convergence of the mean
and the second moment of vj , we conclude that vj converges weakly to the random variable
N(0, σ2∞). This is an example of ergodicity as expressed in (1.16); the invariant measure μ∞
is the Gaussian N(0, σ2∞), and the density ρ∞ is the Lebesgue density of this Gaussian. ♠
Example 2.2. Now consider the case of two-dimensional linear dynamics. In this case,

Ψ(v) = Av, (2.7)

with A a 2× 2 matrix of one of the following three forms A�:

A1 =

(
λ1 0
0 λ2

)
, A2 =

(
λ α
0 λ

)
, A3 =

(
0 1
−1 0

)
.

For � = 1, 2, the behavior of (2.1) for Ψ(u) = A�u can be understood from the analysis
underlying Example 2.1, and the behavior is similar, in each coordinate, depending on whether
the λ value on the diagonal is less than or greater than 1. However, the picture is more
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interesting when we consider the third choice Ψ(u) = A3u, since in this case, the matrix A3

has purely imaginary eigenvalues and corresponds to a rotation by π/2 in the plane; this is
illustrated in Figure 2.2a. Addition of noise into the dynamics gives a qualitatively different
picture: now the step j to j + 1 corresponds to a rotation by π/2 composed with a random
shift of the origin; this is illustrated in Figure 2.2b.

�� ♠

Fig. 2.2: Behavior of (2.1) for Ψ given by (2.7), and Σ = σ2.

Example 2.3. We now consider our first nonlinear example, namely the one-dimensional
dynamics for which

Ψ(v) = α sin v. (2.8)

Figure 2.3 illustrates the behavior of (2.1) for this choice of Ψ, and with α = 2.5, both for
deterministic and stochastic dynamics. In the case of deterministic dynamics, Figure 2.3a,
we see that eventually, iterates of the discrete map converge to a period-2 solution. Although
only one period-2 solution is seen in this single trajectory, we can deduce that there will
be another period-2 solution, related to this one by the symmetry u �→ −u. This second
solution is manifest when we consider stochastic dynamics. Figure 2.3b demonstrates that the
inclusion of noise significantly changes the behavior of the system. The signal now exhibits
bistable behavior, and within each mode of the behavioral dynamics, vestiges of the period-2
dynamics may be seen: the upper mode of the dynamics is related to the period-2 solution
shown in Figure 2.3a, and the lower mode to the period-2 solution found from applying the
symmetry u �→ −u to obtain a second period-2 solution from that shown in Figure 2.3a.

A good way of visualizing ergodicity is via the empirical measure or histogram generated by
a trajectory of the dynamical system. Equation (1.16) formalizes the idea that the histogram,
in the large-J limit, converges to the probability density function of a random variable,
independently of the starting point v0. Thinking in terms of pdfs of the signal, or functions
of the signal, and neglecting time-ordering information is a very useful viewpoint throughout
these notes.

Histograms visualize complex dynamical behavior such as that seen in Figure 2.3b by ig-
noring time-correlation in the signal and simply keeping track of where the solution goes as
time elapses, but not the order in which places are visited. This is illustrated in Figure 2.4a,
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Fig. 2.3: Behavior of (2.1) for Ψ given by (2.8) for α = 2.5 and Σ = σ2; see also p1.m in
Section 5.1.1.

where we plot the histogram corresponding to the dynamics shown in Figure 2.3b, but cal-
culated using a simulation of length J = 107. We observe that the system quickly forgets
its initial condition and spends almost equal proportions of time around the positive and
negative period-2 solutions of the underlying deterministic map. Figure 2.4a would change
very little if the system were started from a different initial condition, reflecting ergodicity of
the underlying map. ♠

Fig. 2.4: Probability density functions for vj , j = 0, · · · , J , for J = 107.

Example 2.4. We now consider a second one-dimensional and nonlinear map, for which

Ψ(v) = rv(1− v). (2.9)

We consider initial data v0 ∈ [0, 1], noting that for r ∈ [0, 4], the signal will then satisfy
vj ∈ [0, 1] for all j, in the case of the deterministic dynamics) (2.3). We confine our discussion
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here to the deterministic case, which can itself exhibit quite rich behavior. In particular, the
behavior of (2.3), (2.9) can be seen in Figure 2.5 for the values of r = 2 and r = 4. These

Fig. 2.5: Behavior of (2.1) for Ψ given by (2.9).

values of r have the desirable property that it is possible to determine the signal analytically.
For r = 2, one obtains

vj =
1

2
− 1

2
(1− 2v0)

2j , (2.10)

which implies that for every value of v0 �= 0, 1, we have vj → 1/2, as we can also see in
Figure 2.5a. For v0 = 0, the solution remains at the unstable fixed point 0, while for v0 = 1,
the solution maps onto 0 in one step, and then remains there. In the case r = 4, the solution
is given by

vj = 4 sin2(2jπθ), with v0 = 4 sin2(πθ). (2.11)

This solution can also be expressed in the form

vj = sin2(2πzj), (2.12)

where

zj+1 =

{
2zj , 0 ≤ zj < 1

2 ,

2zj − 1, 1
2 ≤ zj < 1,

and using this formula, it is possible to show that this map produces chaotic dynamics for
almost all initial conditions. This is illustrated in Figure 2.5b, where we plot the first 100
iterations of the map. In addition, in Figure 2.4b, we plot the pdf using a long trajectory of
vj of length J = 107, demonstrating the ergodicity of the map. In fact, there is an analytic
formula for the steady-state value of the pdf (the invariant density), found as J → ∞; it is
given by

ρ(x) = π−1x−1/2(1− x)−1/2. (2.13)

♠
Example 2.5. Turning now to maps Ψ derived from differential equations, the simplest case
is to consider linear autonomous dynamical systems of the form
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dv

dt
= Lv, (2.14a)

v(0) = v0. (2.14b)

Then Ψ(u) = Au with A = exp(Lτ). ♠

Fig. 2.6: Projection of the Lorenz ’63 attractor onto two different pairs of coordinates.

Example 2.6. The Lorenz ’63 model is perhaps the simplest continuous-time system to exh-
ibit sensitivity to initial conditions and chaos. It is a system of three coupled nonlinear
ordinary differential equations whose solution v ∈ R

3, where v = (v1, v2, v3), satisfies
2

dv1
dt

= a(v2 − v1), (2.15a)

dv2
dt

= −av1 − v2 − v1v3, (2.15b)

dv3
dt

= v1v2 − bv3 − b(r + a). (2.15c)

Note that we have employed a coordinate system in which the origin in the original version of
the equations proposed by Lorenz is shifted. In the coordinate system that we employ here,
we have equation (2.4) with vector field f satisfying

〈f(v), v〉 ≤ α− β|v|2 (2.16)

for some α, β > 0. As demonstrated in Example 1.22, this implies the existence of an absorbing
set:

lim sup
t→∞

|v(t)|2 < R (2.17)

for every R > α/β. Mapping the ball B(0, R) forward under the dynamics gives the global
attractor (see Definition 1.23) for the dynamics. In Figure 2.6, we visualize this attractor,
projected onto two different pairs of coordinates at the classical parameter values (a, b, r) =
(10, 83 , 28).

2 Here the index denotes components of the solution, not discrete time.
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Throughout these notes, we will use the classical parameter values (a, b, r) = (10, 83 , 28)
in all of our numerical experiments; at these values, the system is chaotic, and it exhibits
sensitive dependence with respect to the initial condition. A trajectory of v1 versus time can
be found in Figure 2.7a, and in Figure 2.7b, we illustrate the evolution of a small perturbation
to the initial condition that generated Figure 2.7a; to be explicit, we plot the evolution of
the error in the Euclidean norm | · | for an initial perturbation of magnitude 10−4. Figure 2.6
suggests that the measure μ∞ is supported on a strange set with Lebesgue measure zero, and
this is indeed the case; for this example, there is no Lebesgue density ρ∞ for the invariant
measure, reflecting the fact that the attractor has a fractal dimension less than three, the
dimension of the space where the dynamical system lies.

♠

Fig. 2.7: Dynamics of the Lorenz ’63 model in the chaotic regime (a, b, r) = (10, 83 , 28).

Example 2.7. The Lorenz-96 model is a simple dynamical system, of tunable dimension,
that was designed as a caricature of the dynamics of Rossby waves in atmospheric dynamics.
The equations have a periodic “ring” formulation and take the form3

dvk
dt

= vk−1

(
vk+1 − vk−2

)− vk + F, k ∈ {1, · · · ,K}, (2.18a)

v0 = vK , vK+1 = v1, v−1 = vK−1. (2.18b)

Equation (2.18) satisfies the same dissipativity property (2.16) satisfied by the Lorenz ’63
model, for appropriate choice of α, β > 0, and hence also satisfies the absorbing ball prop-
erty (2.17), thus having a global attractor (see Definition 1.23).

In Figure 2.8a, we plot a trajectory of v1 versus time for F = 8 and K = 40. Furthermore,
as we did in the case of the Lorenz ’63 model, we also show the evolution of the Euclidean
norm of the error | · | for an initial perturbation of magnitude 10−4; this is displayed in
Figure 2.8b and clearly demonstrates sensitive dependence on initial conditions. We visualize
the attractor, projected onto two different pairs of coordinates, in Figure 2.9.

♠

3 Again, here the index denotes components of the solution, not discrete time.
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Fig. 2.8: Dynamics of the Lorenz-96 model in the chaotic regime (F,K) = (8, 40).

Fig. 2.9: Projection of the Lorenz-96 attractor onto two different pairs of coordinates.

2.3 Smoothing Problem

2.3.1. Probabilistic Formulation of Data Assimilation

Together, (2.1) and (2.2) provide a probabilistic model for the jointly varying random variable
(v, y). In the case of deterministic dynamics, (2.3) and (2.2) provide a probabilistic model for
the jointly varying random variable (v0, y). Thus in both cases, we have a random variable
(u, y), with u = v (respectively u = v0) in the stochastic (respectively deterministic) case.
Our aim is to discover information about the signal v in the stochastic case, or v0 in the de-
terministic case, from observation of a single instance of the data y. The natural probabilistic
approach to this problem is to try to find the probability measure describing the random
variable u given y, denoted by u|y. This constitutes the Bayesian formulation of the problem
of determining information about the signal arising in a noisy dynamical model based on
noisy observations of that signal. We will refer to the conditioned random variable u|y in the
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case of either the stochastic dynamics or the deterministic dynamics as the smoothing dis-
tribution. It is a random variable that contains all the probabilistic information about the
signal, given our observations. The key concept that drives this approach is Bayes’s formula
from Section 1.1.4, which we use repeatedly in what follows.

2.3.2. Stochastic Dynamics

We wish to find the signal v from (2.1) from a single instance of data y given by (2.2). To
be more precise, we wish to condition the signal on a discrete time interval J0 = {0, . . . , J},
given data on the discrete time interval J = {1, . . . , J}; we refer to J0 as the data assimilation
window. We define v = {vj}j∈J0

, y = {yj}j∈J, ξ = {ξj}j∈J0
, and η = {ηj}j∈J. The smoothing

distribution here is the distribution of the conditioned random variable v|y. Recall that we
have assumed that v0, ξ, and η are mutually independent random variables. With this fact
in hand, we may apply Bayes’s formula to find the pdf P(v|y).

Prior. The prior on v is specified by (2.1), together with the independence of u and ξ and
the i.i.d. structure of ξ. First note that using (1.5) and the i.i.d. structure of ξ in turn, we
obtain

P(v) = P(vJ , vJ−1, · · · , v0)
= P(vJ |vJ−1, · · · , v0)P(vJ−1, · · · , v0)
= P(vJ |vJ−1)P(vJ−1, · · · , v0).

Proceeding inductively gives

P(v) =

J−1∏

j=0

P(vj+1|vj)P(v0).

Now

P(v0) ∝ exp
(
−1

2

∣
∣C− 1

2
0 (v0 −m0)

∣
∣2
)
,

while

P(vj+1|vj) ∝ exp
(
−1

2

∣
∣
∣Σ− 1

2

(
vj+1 −Ψ(vj)

)∣∣
∣
2)
.

The probability distribution P(v) that we now write down is not Gaussian, but the distribution
on the initial condition P(v0), and the conditional distributions P(vj+1|vj), are all Gaussian,
making the explicit calculations above straightforward.

Combining the preceding information, we obtain

P(v) ∝ exp(−J(v)),

where

J(v) := 1
2

∣
∣C− 1

2
0 (v0 −m0)

∣
∣2 +

∑J−1
j=0

1
2

∣
∣Σ− 1

2

(
vj+1 −Ψ(vj)

)∣∣2 (2.19a)

= 1
2

∣
∣v0 −m0

∣
∣2
C0

+
∑J−1

j=0
1
2

∣
∣vj+1 −Ψ(vj)

∣
∣2
Σ
. (2.19b)
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The pdf P(v) = ρ0(v) proportional to exp(−J(v)) determines a prior measure μ0 on R
|J0|×n.

The fact that the probability is not in general Gaussian follows from the fact that Ψ is not
in general linear.

Likelihood. The likelihood of the data y|v is determined as follows. It is a (Gaussian)
probability distribution on R

|J|×m, with pdf P(y|v) proportional to exp(−Φ(v; y)), where

Φ(v; y) =

J−1∑

j=0

1

2

∣
∣yj+1 − h(vj+1)

∣
∣2
Γ
. (2.20)

To see this, note that because of the i.i.d. nature of the sequence η, it follows that

P(y|v) =
J−1∏

j=0

P(yj+1|v)

=
J−1∏

j=0

P(yj+1|vj+1)

∝
J−1∏

j=0

exp
(
−1

2

∣
∣Γ− 1

2

(
yj+1 − h(vj+1)

)∣∣2
)

= exp(−Φ(v; y)).

In the applied literature, m0 and C0 are often referred to as the background mean and
background covariance respectively; we refer to Φ as the model–data misfit functional.

Using Bayes’s formula (1.7), we can combine the prior and the likelihood to determine the
posterior distribution, that is, the smoothing distribution, on v|y. We denote the measure
with this distribution by μ.

Theorem 2.8. The posterior smoothing distribution on v|y for the stochastic dynamics
model (2.1), (2.2) is a probability measure μ on R

|J0|×n with pdf P(v|y) = ρ(v) proportional
to exp(−I(v; y)), where

I(v; y) = J(v) + Φ(v; y). (2.21)

Proof Bayes’s formula (1.7) gives us

P(v|y) = P(y|v)P(v)
P(y)

.

Thus, ignoring constants of proportionality that depend only on y, we have

P(v|y) ∝ P(y|v)P(v0)
∝ exp(−Φ(v; y)) exp(−J(v))
= exp(−I(v; y)).

�
Note that although the preceding calculations required only knowledge of the pdfs of

Gaussian distributions, the resulting posterior distribution is non-Gaussian in general, unless
Ψ and h are linear. This is because unless Ψ and h are linear, I(·; y) is not quadratic. We refer
to I as the negative log-posterior. It will be helpful later to note that

ρ(v)

ρ0(v)
∝ exp

(−Φ(v; y)). (2.22)
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2.3.3. Reformulation of Stochastic Dynamics

For the development of algorithms to probe the posterior distribution, the following reformu-
lation of the stochastic dynamics problem can be very useful. For this, we define the vector
ξ = (v0, ξ0, ξ1, · · · , ξJ−1) ∈ R

|J0|n. The following lemma is key to what follows.

Lemma 2.9. Define the mapping G : R|J0|×n �→ R
|J0|×n by

Gj(v0, ξ0, ξ1, · · · , ξJ−1) = vj , j = 0, · · · , J,

where vj is determined by (2.1). Then this mapping is invertible. Furthermore, if Ψ ≡ 0, then
G is the identity mapping.

Proof In words, the mapping G takes the initial condition and noise into the signal. Invert-
ibility requires determination of the initial condition and the noise from the signal. From the
signal, we may compute the noise as follows, noting that of course, the initial condition is
specified, and that then we have

ξj = vj+1 −Ψ(vj), j = 0, · · · , J − 1.

The fact that G becomes the identity mapping when Ψ ≡ 0 follows directly from (2.1) by
inspection. �

We may thus consider the smoothing problem as finding the probability distribution of ξ,
as defined prior to the lemma, given data y, with y as defined in Section 2.3.2. Furthermore,
we have, using the notion of pushforward,

P(v|y) = G � P(ξ|y), P(ξ|y) = G−1 � P(v|y). (2.23)

These formulas mean that it is easy to move between the two measures: samples from one
can be converted into samples from the other simply by applying G or G−1. This means that
algorithms can be applied, for example, to generate samples from ξ|y and then convert them
into samples from v|y. We will use this later on. In order to use this idea, it will be helpful to
have an explicit expression for the pdf of ξ|y. We now find such an expression.

To begin, we introduce the measure ϑ0 with density π0 found from μ0 and ρ0 in the case
Ψ ≡ 0. Thus

π0(v) ∝ exp

⎛

⎝−1

2

∣
∣
∣C

− 1
2

0 (v0 −m0)
∣
∣
∣
2

−
J−1∑

j=0

1

2
|Σ− 1

2 vj+1|2
⎞

⎠ (2.24a)

∝ exp

⎛

⎝−1

2
|v0 −m0|2C0

−
J−1∑

j=0

1

2
|vj+1|2Σ

⎞

⎠ , (2.24b)

and hence ϑ0 is a Gaussian measure, independent in each component vj for j = 0, · · · , J.
By Lemma 2.9, we also deduce that measure ϑ0 with density π0 is the prior on ξ as defined
above:

π0(ξ) ∝ exp

⎛

⎝−1

2
|v0 −m0|2C0

−
J−1∑

j=0

1

2
|ξj |2Σ

⎞

⎠ . (2.25)

We now compute the likelihood of y|ξ. For this, we define

Gj(ξ) = h
(
Gj(ξ)

)
(2.26)
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and note that we may then concatenate the data and write

y = G(ξ) + η, (2.27)

where η = (η1, · · · , ηJ ) is the Gaussian random variableN(0, ΓJ ), where ΓJ is a block diagonal
nJ × nJ matrix with n× n diagonal blocks Γ . It follows that the likelihood is determined by
P(y|ξ) = N

(G(ξ), ΓJ

)
. Applying Bayes’s formula from (1.7) to find the pdf for ξ|y, we obtain

the posterior ϑ on ξ|y, as summarized in the following theorem.

Theorem 2.10. The posterior smoothing distribution on ξ|y for the stochastic dynamics
model (2.1), (2.2) is a probability measure ϑ on R

|J0|×n with pdf P(ξ|y) = π(ξ) proportional
to exp(−Ir(ξ; y)), where

Ir(ξ; y) = Jr(ξ) + Φr(ξ; y), (2.28)

Φr(ξ; y) :=
1

2
|(y − G(ξ))|2ΓJ

,

and

Jr(ξ) :=
1

2
|v0 −m0|2C0

+

J−1∑

j=0

1

2
|ξj |2Σ .

We refer to Ir as the negative log-posterior.

2.3.4. Deterministic Dynamics

It is also of interest to study the posterior distribution on the initial condition in the case
that the model dynamics contains no noise and is given by (2.3); this we now do. Recall that
Ψ(j)(·) denotes the j−fold composition of Ψ(·) with itself. In the following, we sometimes
refer to Jdet as the background penalization, and m0 and C0 as the background mean and
covariance; we refer to Φdet as the model–data misfit functional.

Theorem 2.11. The posterior smoothing distribution on v0|y for the deterministic dynamics
model (2.3), (2.2) is a probability measure ν on R

n with density P(v0|y) = �(v0) proportional
to exp(−Idet(v0; y)), where

Idet(v0; y) = Jdet(v0) + Φdet(v0; y), (2.29a)

Jdet(v0) =
1

2

∣
∣v0 −m0

∣
∣2
C0
, (2.29b)

Φdet(v0; y) =
J−1∑

j=0

1

2

∣
∣yj+1 − h

(
Ψ(j+1)(v0)

)∣∣2
Γ
. (2.29c)

Proof We again use Bayes’s rule, which states that

P(v0|y) = P(y|v0)P(v0)
P(y)

.
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Thus, ignoring constants of proportionality that depend only on y, we have

P(v0|y) ∝ P(y|v0)P(v0)
∝ exp

(−Φdet(v0; y)
)
exp
(−1

2
|v0 −m0|2C0

)

= exp(−Idet(v0; y)).

Here we have used the fact that P(y|v0) is proportional to exp
(−Φdet(v0; y)

)
; this follows

from the fact that yj |v0 form an i.i.d. sequence of Gaussian random variables N
(
h(vj), Γ )

with vj = Ψ(j)(v0). �
We refer to Idet as the negative log-posterior.

2.4 Filtering Problem

The smoothing problem considered in the previous section involves, potentially, conditioning
vj on data yk with k > j. Such conditioning can be performed only offline and is of no use in
online scenarios in which we want to determine information on the state of the signal now,
hence using only data from the past up to the present. To study this situation, let Yj =

{yl}jl=1 denote the accumulated data up to time j. Filtering is concerned with determining
P(vj |Yj), the pdf associated with the probability measure on the random variable vj |Yj ; in
particular, filtering is concerned with the sequential updating of this pdf as the index j is
incremented. This update is defined by the following procedure, which provides a prescription
for computing P(vj+1|Yj+1) from P(vj |Yj) via two steps: prediction, which computes the
mapping P(vj |Yj) �→ P(vj+1|Yj), and analysis, which computes P(vj+1|Yj) �→ P(vj+1|Yj+1)
by application of Bayes’s formula.
Prediction. Note that P(vj+1|Yj , vj) = P(vj+1|vj), because Yj contains noisy and indirect
information about vj and cannot improve upon perfect knowledge of the variable vj . Thus,
by (1.5), we deduce that

P(vj+1|Yj) =
∫

Rn

P(vj+1|Yj , vj)P(vj |Yj)dvj (2.30a)

=

∫

Rn

P(vj+1|vj)P(vj |Yj)dvj . (2.30b)

Note that since the forward model equation (2.1) determines P(vj+1|vj), this prediction step
provides the map from P(vj |Yj) to P(vj+1|Yj). This prediction step simplifies in the case of
deterministic dynamics (2.3); in this case, it simply corresponds to computing the pushforward
of P(vj |Yj) under the map Ψ.
Analysis. Note that P(yj+1|vj+1, Yj) = P(yj+1|vj+1), because Yj contains noisy and indirect
information about vj and cannot improve upon perfect knowledge of the variable vj+1. Thus,
using Bayes’s formula (1.7), we deduce that

P(vj+1|Yj+1) = P(vj+1|Yj , yj+1)

=
P(yj+1|vj+1, Yj)P(vj+1|Yj)

P(yj+1|Yj)
=

P(yj+1|vj+1)P(vj+1|Yj)
P(yj+1|Yj) . (2.31)
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Since the observation equation (2.2) determines P(yj+1|vj+1), this analysis step provides a
map from P(vj+1|Yj) to P(vj+1|Yj+1).
Filtering Update. Together, then, the prediction and analysis step provide a mapping from
P(vj |Yj) to P(vj+1|Yj+1). Indeed, if we let μj denote the probability measure on R

n corre-
sponding to the density P(vj |Yj), and let μ̂j+1 be the probability measure on R

n corresponding
to the density P(vj+1|Yj), then the prediction step maps μj to μ̂j+1, while the analysis step
maps μ̂j+1 to μj+1. However, there is, in general, no easily usable closed-form expression for
the density of μj , namely P(vj |Yj). Nevertheless, formulas (2.30), (2.31) form the starting
point for numerous algorithms to approximate P(vj |Yj). In terms of analyzing the particle
filter, it is helpful conceptually to write the prediction and analysis steps as

μ̂j+1 = Pμj μj+1 = Lj μ̂j+1. (2.32)

Note that P does not depend on j, since the same Markov process governs the prediction
step at each j; however, Lj depends on j, because the likelihood sees different data at each
j. Furthermore, the formula μ̂j+1 = Pμj summarizes (2.30), while μj+1 = Lj μ̂j+1 summa-
rizes (2.31). Note that P is a linear mapping, while Lj is nonlinear; this issue is discussed in
Sections 1.4.1 and 1.4.3 at the level of pdfs.

2.5 Filtering and Smoothing are Related

The filtering and smoothing approaches to determining the signal from the data are distinct
but related. They are related by the fact that in both cases, the solutions computed at the
end of any specified time interval are conditioned on the same data and must hence coincide;
this is made precise in the following.

Theorem 2.12. Let P(v|y) denote the smoothing distribution on the discrete time interval
j ∈ J0, and P(vJ |YJ) the filtering distribution at time j = J for the stochastic dynamics
model (2.1). Then the marginal of the smoothing distribution on vJ is the same as the filtering
distribution at time J :

∫
P(v|y)dv0dv1 . . . dvJ−1 = P(vJ |YJ ).

Proof Note that y = YJ . Since v = (v0, . . . , vJ−1, vJ), the result follows trivially. �
Remark 2.13. Note that the marginal of the smoothing distribution on say vj, j < J , is not
equal to the filter P(vj |Yj). This is because the smoother induces a distribution on vj that is
influenced by the entire data set YJ = y = {yl}l∈J; in contrast, the filter at j involves only
the data Yj = {yl}l∈{1,...,j}. ♠

It is also interesting to mention the relationship between filtering and smoothing in the
case of noise-free dynamics. In this case, the filtering distribution P(vj |Yj) is simply found
as the pushforward of the smoothing distribution on P(v0|Yj) under Ψ(j), that is, under j
applications of Ψ.

Theorem 2.14. Let P(v0|y) denote the smoothing distribution on the discrete time interval
j ∈ J0, and P(vJ |YJ ) the filtering distribution at time j = J for the deterministic dynamics
model (2.3). Then the pushforward of the smoothing distribution on v0 under Ψ(J) is the same
as the filtering distribution at time J :

Ψ(J) � P(v0|YJ ) = P(vJ |YJ).
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2.6 Well-Posedness

Well-posedness of a mathematical problem refers, generally, to the existence of a unique
solution that depends continuously on the parameters defining the problem. We have shown,
for both filtering and smoothing, how to construct a uniquely defined probabilistic solution
to the problem of determining the signal given the data. In this setting, it is natural to
consider well-posedness with respect to the data itself. Thus we now investigate the continuous
dependence of the probabilistic solution on the observed data; indeed, we will show Lipschitz
dependence. To this end, we need probability metrics, as introduced in Section 1.3.

As we do throughout these notes, we perform all calculations using the existence of every-
where positive Lebesgue densities for our measures. We let μ0 denote the prior measure on
v for the smoothing problem arising in stochastic dynamics, as defined by (2.1). Then μ and
μ′ denote the posterior measures resulting from two different instances of the data, y and y′

respectively. Let ρ0, ρ, and ρ
′ denote the Lebesgue densities on μ0, μ, and μ

′ respectively.
Then for J and Φ as defined in (2.19) and (2.20),

ρ0(v) =
1

Z0
exp(−J(v)), (2.33a)

ρ(v) =
1

Z
exp(−J(v)− Φ(v; y)), (2.33b)

ρ′(v) =
1

Z ′ exp(−J(v)− Φ(v; y′)), (2.33c)

where

Z0 =

∫
exp(−J(v))dv, (2.34a)

Z =

∫
exp(−J(v)− Φ(v; y))dv, (2.34b)

Z ′ =
∫

exp(−J(v)− Φ(v; y′))dv. (2.34c)

Here, and in the proofs that follow in this section, all integrals are over R
|J0|×n (or in the

case of the deterministic dynamics model at the end of the section, over Rn). Note that |J0|
is the cardinality of the set J0 and is hence equal to J + 1. To this end, we note explicitly
that (2.33a) implies that

exp
(−J(v))dv = Z0ρ0(v)dv = Z0μ0(dv), (2.35)

indicating that integrals weighted by exp
(−J(v)) may be rewritten as expectations with

respect to μ0. We use the identities (2.33), (2.34), and (2.35) repeatedly in what follows
to express all integrals as expectations with respect to the measure μ0. In particular, the
assumptions that we make for the subsequent theorems and corollaries in this section are
all expressed in terms of expectations under μ0 (or under ν0 for the deterministic dynamics
problem considered at the end of the section). This is convenient, because it relates to the
unconditioned problem of stochastic dynamics for v in the absence of any data, and may thus
be checked once and for all, independently of the particular data set y or y′ that are used to
condition v and obtain μ and μ′.

We assume throughout what follows that y, y′ are both contained in a ball of radius r
in the Euclidean norm on R

|J|×n. Again, |J| is the cardinality of the set J and is hence
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equal to J . We also note that Z0 is bounded from above independently of r, because ρ0 is
the density associated with the probability measure μ0, which is therefore normalizable, and
this measure is independent of the data. It also follows that Z ≤ Z0, Z

′ ≤ Z0 using (2.35)
in (2.34b), (2.34c), together with the fact that Φ(·; y) is a positive function. Furthermore, if
we assume that

v :=
∑

j∈J

(
1 + |h(vj)|2

)
(2.36)

satisfies E
μ0v < ∞, then both Z and Z ′ are positive with common lower bound depending

only on r, as we now demonstrate. It is sufficient to prove the result for Z, which we now
do. In the following, and in the proofs that follow, K denotes a generic constant, which may
depend on r and J but not on the solution sequence v, and which may change from instance
to instance. Note first that by (2.34), (2.35),

Z

Z0
=

∫
exp
(−Φ(v; y))ρ0(v)dv ≥

∫
exp
(−Kv

)
ρ0(v)dv.

Since E
μ0v <∞, we deduce from (1.2) that for R sufficiently large,

Z

Z0
≥ exp

(−KR)
∫

|v|<R

ρ0(v)dv = exp
(−KR)Pμ0(|v| < R)

≥ exp
(−KR)(1−R−1

E
μ0v
)
.

Since K depends on y, y′ only through r, we deduce that by choosing R sufficiently large, we
have found lower bounds on Z,Z ′ that depend on y, y′ only through r.

Finally, we note that since all norms are equivalent on finite-dimensional spaces, there is
constant K such that

⎛

⎝
J−1∑

j=0

|yj+1 − y′j+1|2Γ

⎞

⎠

1
2

≤ K|y − y′|. (2.37)

The following theorem then shows that the posterior measure is in fact Lipschitz continuous,
in the Hellinger metric, with respect to the data.

Theorem 2.15. Consider the smoothing problem arising from the stochastic dynamics model
(2.1), resulting in the posterior probability distributions μ and μ′ associated with two different
data sets y and y′. Assume that E

μ0v < ∞, where v is given by (2.36). Then there exists
c = c(r) such that for all |y|, |y′| ≤ r,

dHell(μ, μ
′) ≤ c|y − y′|.

Proof We have, by (2.33), (2.35),

dHell(μ, μ
′)2 =

1

2

∫
|
√
ρ(v)−

√
ρ′(v)|2dv

=
1

2

∫
Z0

∣
∣
∣
1√
Z
e−

1
2Φ(v;y) − 1√

Z ′ e
− 1

2Φ(v;y′)
∣
∣
∣
2

ρ0(v)dv

≤ I1 + I2,
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where

I1 = Z0

∫
1

Z

∣
∣
∣e−

1
2Φ(v;y) − e− 1

2Φ(v;y′)
∣
∣
∣
2

ρ0(v)dv,

and using (2.33) and (2.34),

I2 = Z0

∣
∣
∣
1√
Z
− 1√

Z ′

∣
∣
∣
2
∫
e−Φ(v;y′)ρ0(v)dv

= Z ′
∣
∣
∣
1√
Z
− 1√

Z ′

∣
∣
∣
2

.

We estimate I2 first. Since as shown before the theorem, Z,Z ′ are bounded below by a
positive constant depending only on r, we have

I2 =
1

Z
|
√
Z −

√
Z ′|2 =

1

Z

|Z − Z ′|2
|√Z +

√
Z ′|2 ≤ K|Z − Z

′|2.

Since Φ(v; y) ≥ 0 and Φ(v; y′) ≥ 0, we have from (2.33), (2.34), using the fact that e−x is
Lipschitz on R

+,

|Z − Z ′| ≤ Z0

∫
|e−Φ(v;y) − e−Φ(v;y′)|ρ0(v)dv

≤ Z0

∫
|Φ(v; y)− Φ(v; y′)|ρ0(v)dv.

By definition of Φ and use of (2.37), we have

|Φ(v; y)− Φ(v; y′)| ≤ 1

2

J−1∑

j=0

|yj+1 − y′j+1|Γ |yj+1 + y′j+1 − 2h(vj+1)|Γ

≤ 1

2

⎛

⎝
J−1∑

j=0

|yj+1 − y′j+1|2Γ

⎞

⎠

1
2
⎛

⎝
J−1∑

j=0

|yj+1 + y′j+1 − 2h(vj+1)|2Γ

⎞

⎠

1
2

≤ K|y − y′|
⎛

⎝
J−1∑

j=0

(
1 + |h(vj+1)|2

)
⎞

⎠

1
2

= K|y − y′|v 1
2 .

Since E
μ0v <∞ implies that Eμ0v

1
2 <∞, it follows that

|Z − Z ′| ≤ K|y − y′|.

Hence I2 ≤ K|y − y′|2
Using that Z0 is bounded above independently of r, that Z is bounded below, depending

on data only through r, and that e−
1
2x is Lipschitz on R

+, it now follows that I1 satisfies

I1 ≤ K
∫
|Φ(v; y)− Φ(v; y′)|2ρ0(v)dv.
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Squaring the preceding bound on |Φ(v; y)− Φ(v; y′)| gives

|Φ(v; y)− Φ(v; y′)|2 ≤ K|y − y′|2v,

and so I1 ≤ K|y − y′|2, as required. �

Corollary 2.16. Consider the smoothing problem arising from the stochastic dynamics model
(2.1), resulting in the posterior probability distributions μ and μ′ associated with two different
data sets y and y′. Assume that Eμ0v <∞, where v is given by (2.36). Let f : R|J0|×n → R

p

be such that Eμ0 |f(v)|2 <∞. Then there is c = c(r) > 0 such that for all |y|, |y′| < r,

|Eμf(v)− E
μ′
f(v)| ≤ c|y − y′|.

Proof First note that since Φ(v; y) ≥ 0, Z0 is bounded above independently of r, and since
Z is bounded from below depending only on r, Eμ|f(v)|2 ≤ cEμ0 |f(v)|2; and a similar bound
holds under μ′. The result follows from (1.13) and Theorem 2.15. �

Using the relationship between filtering and smoothing as described in the previous section,
we may derive a corollary concerning the filtering distribution.

Corollary 2.17. Consider the smoothing problem arising from the stochastic dynamics model
(2.1), resulting in the posterior probability distributions μ and μ′ associated with two different
data sets y and y′. Assume that Eμ0v < ∞, where v is given by (2.36). Let g : Rn → R

p be
such that Eμ0 |g(vJ)|2 <∞. Then there is c = c(r) > 0 such that for all |y|, |y′| < r,

|EμJ g(u)− E
μ′
J g(u)| ≤ c|YJ − Y ′

J |,

where μJ and μ′J denote the filtering distributions at time J corresponding to data YJ , Y
′
J

respectively (i.e., the marginals of μ and μ′ on the coordinate at time J).

Proof Since by Theorem 2.12, μJ is the marginal of the smoother on the vJ -coordinate, the
result follows from Corollary 2.16 by choosing f(v) = g(vJ). �

A similar theorem and corollaries may be proved for the case of deterministic dynamics (2.3)
and the posterior P(v0|y). We state the theorem and leave its proof to the reader. We let ν0
denote the prior Gaussian measure N(m0, C0) on v0 for the smoothing problem arising in
deterministic dynamics, and ν and ν′ the posterior measures on v0 resulting from two different
instances of the data, y and y′ respectively. We also define

v0 :=

J−1∑

j=0

(
1 +

∣
∣h
(
Ψ(j+1)(v0)

)∣∣2).

Theorem 2.18. Consider the smoothing problem arising from the deterministic dynamics
model (2.3). Assume that Eν0v0 <∞. Then there is c = c(r) > 0 such that for all |y|, |y′| ≤ r,

dHell(ν, ν
′) ≤ c|y − y′|.

2.7 Assessing the Quality of Data-Assimilation Algorithms

It is helpful in studying algorithms for data assimilation to ask two questions: (i) how inf-
ormative is the data we have? (ii) how good is our algorithm at extracting the requisite
information? These are two separate questions, answers to both of which are required in
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the quest to understand how well we perform at extracting a signal, using model and data.
We take the two questions separately, in turn; however, we caution that many applied papers
entangle them both and simply measure algorithm quality by ability to reconstruct the signal.

Answering question (i) is independent of any particular algorithm: it concerns the proper-
ties of the Bayesian posterior pdf itself. In some cases, we will be interested in studying the
properties of the probability distribution on the signal, or the initial condition, for a particu-
lar instance of the data generated from a particular instance of the signal, which we call the
truth. In this context, we will use the notation y† = {y†j} to denote the realization of the data

generated from a particular realization of the truth v† = {v†j}. We first discuss properties of
the smoothing problem for stochastic dynamics. Posterior consistency concerns the ques-
tion of the limiting behavior of P(v|y†) as either J → ∞ (large data sets) or |Γ | → 0 (small
noise). A key question is whether P(v|y†) converges to the truth in either of these limits;
this might happen, for example, if P(v|y†) becomes closer and closer to a Dirac probability
measure centered on v†. When this occurs, we say that the problem exhibits Bayesian poste-
rior consistency; it is then of interest to study the rate at which the limit is attained. Such
questions concern the information content of the data; they do not refer to any algorithm, and
therefore, they are not concerned with the quality of any particular algorithm. In consider-
ing filtering, rather than smoothing, a particular instance of this question concerns marginal
distributions: for example, one may be concerned with posterior consistency of P(vJ |y†J) with
respect to a Dirac measure on v†J in the filtering case; see Theorem 2.12. For the case of
deterministic dynamics, the distribution P(v|y†) is completely determined by P(v0|y†) (see
Theorem 2.14), so one may discuss posterior consistency of P(v0|y†) with respect to a Dirac

measure on v†0.
Here it is appropriate to mention the important concept of model error. In many (in fact

most) applications, the physical system that generates the data set {yj} can be (sometimes
significantly) different from the mathematical model used, at least in certain aspects. This can

be thought of conceptually by imagining data generated by (2.2), with v† = {v†j} governed
by the deterministic dynamics

v†j+1 = Ψtrue(v
†
j ), j ∈ Z

+, (2.38a)

v†0 = u ∼ N(m0, C0). (2.38b)

Here the function Ψtrue governs the dynamics of the truth that underlies the data. We assume
that the true solution operator is not known to us exactly, and we seek instead to combine
the data with the stochastic dynamics model (2.1); the noise {ξj} is used to allow for the
discrepancy between the true solution operator Ψtrue and that used in our model, namely Ψ.
It is possible to think of many variants on this situation. For example, the dynamics of the
truth may be stochastic; or the dynamics of the truth may take place in a higher-dimensional
space than that used in our models, and may need to be projected into the model space.
Statisticians sometimes refer to the situation in which the data source differs from the model
used as model misspecification.

We now turn from the information content, or quality, of the data to the quality of alg-
orithms for data assimilation. We discuss three approaches to assessing quality. The first,
fully Bayesian, approach can be defined independently of the quality of the data. The second
approach, estimation, entangles the properties of the algorithm with the quality of the data.
We discuss these two approaches in the context of the smoothing problem for stochastic dyn-
amics. The reader will easily see how to generalize to smoothing for deterministic dynamics
or to filtering. The third approach is widely used in operational numerical weather prediction
and judges quality by the ability to predict.
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Bayesian Quality Assessment. Here we assume that the algorithm under consideration
provides an approximation Papprox(v|y) to the true posterior distribution P(v|y). We ask the
following question: how close is Papprox(v|y) to P(v|y)? We might look for a distance measure
between probability distributions, or we might simply compare some important moments of
the distributions, such as the mean and covariance. Note that this version of quality assessment
does not refer to the concept of a true solution v†. We may apply it with y = y†, but we may
also apply it when there is model error present and the data comes from outside the model
used to perform data assimilation. However, if combined with Bayesian posterior consistency,
when y = y†, then the triangle inequality relates the output of the algorithm to the truth v†.
Very few practitioners evaluate their algorithms by this measure. This reflects the fact that
knowing the true distribution P(v|y) is often difficult in practical high-dimensional problems.
However, it is arguably the case that practitioners should spend more time querying their
algorithms from the perspective of Bayesian quality assessment, since the algorithms are
often used to make probabilistic statements and forecasts.

Signal Estimation Quality Assessment. Here we assume that the algorithm under
consideration provides an approximation to the signal v underlying the data, which we denote
by vapprox; thus vapprox attempts to determine and then track the true signal from the data.
If the algorithm actually provides a probability distribution, then this estimate might be, for
example, the mean. We ask the following question: if the algorithm is applied in the situation
in which the data y† is generated from the signal v†, how close is vapprox to v†? There are
two important effects at play here: the first is the information content of the data—does the
data actually contain enough information to allow for accurate reconstruction of the signal
in principle? And the second is the role of the specific algorithm used—does the specific
algorithm in question have the ability to extract this information when it is present? This
approach thus measures the overall effect of these two in combination.

Forecast Skill. In many cases, the goal of data assimilation is to provide better forecasts
of the future, for example in numerical weather prediction. In this context, data-assimilation
algorithms can be benchmarked by their ability to make forecasts. This can be discussed in
both the Bayesian quality and signal estimation senses. We first discuss Bayesian estimation
forecast skill in the context of stochastic dynamics. The Bayesian k-lag forecast skill can be
defined by studying the distance between the approximation Papprox(v|y) and P(v|y) when
both are pushed forward from the endpoint of the data assimilation window by k applications
of the dynamical model (2.1); this model defines a Markov transition kernel that is applied
k times to produce a forecast. We now discuss signal estimation forecast skill in the context
of deterministic dynamics. Using vapprox at the endpoint of the assimilation window as an
initial condition, we run the model (2.3) forward by k steps and compare the output with

v†j+k. In practical applications, this forecast methodology inherently confronts the effect of
model error, since the data used to test forecasts is real data that is not generated by the
model used to assimilate, as well as information content in the data and algorithm quality.

2.8 Illustrations

In order to build intuition concerning the probabilistic viewpoint on data assimilation, we des-
cribe some simple examples in which the posterior distribution may be visualized easily. For
this reason, we concentrate on the case of one-dimensional deterministic dynamics; the pos-
terior pdf P(v0|y) for deterministic dynamics is given by Theorem 2.11. It is one-dimensional
when the dynamics is one-dimensional and takes place in R. In Section 3, we will introduce
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more sophisticated sampling methods to probe probability distributions in higher dimensions
that arise from noisy dynamics and/or from high-dimensional models.

Figure 2.10 concerns the scalar linear problem from Example 2.1 (recall that throughout
this section, we consider only the case of deterministic dynamics) with λ = 0.5. We employ
a prior N(4, 5), we assume that h(v) = v, and we set Γ = γ2 and consider two different
values of γ and two different values of J , the number of observations. The figure shows
the posterior distribution in these various parameter regimes. The true value of the initial
condition that underlies the data is v†0 = 0.5. For both γ = 1.0 and 0.1, we see that as
the number of observations J increases, the posterior distribution appears to converge to
a limiting distribution. However, for smaller γ, the limiting distribution has much smaller
variance, and is centered closer to the true initial condition at 0.5. Both of these observations
can be explained, using the fact that the problem is explicitly solvable: we show that for
fixed γ and J →∞, the posterior distribution has a limit, which is a Gaussian with nonzero
variance. And for fixed J , as γ → 0, the posterior distribution converges to a Dirac measure
(Gaussian with zero variance) centered at the truth v†0.

To see these facts, we start by noting that from Theorem 2.11, the posterior distribution
on v0|y is proportional to the exponential of

Idet(v0; y) =
1

2γ2

J−1∑

j=0

|yj+1 − λj+1v0|2 + 1

2σ20
|v0 −m0|2,

where σ20 denotes the prior variance C0. As a quadratic form in v0, this defines a Gaussian
posterior distribution, and we may complete the square to find the posterior mean m and
variance σ2post:

1

σ2post
=

1

γ2

J−1∑

j=0

λ2(j+1) +
1

σ20
=

1

γ2

(λ2 − λ2J+2

1− λ2
)
+

1

σ20

and

1

σ2post
m =

1

γ2

J−1∑

j=0

λ(j+1)yj+1 +
1

σ20
m0.

We note immediately that the posterior variance is independent of the data. Furthermore, if
we fix γ and let J →∞, then for every |λ| < 1, we see that the large-J limit of the posterior
variance is determined by

1

σ2post
=

1

γ2

( λ2

1− λ2
)
+

1

σ20

and is nonzero; thus uncertainty remains in the posterior, even in the limit of large data. On
the other hand, if we fix J and let γ → 0, then σ2post → 0, so that uncertainty disappears in
this limit. It is then natural to ask what happens to the mean. To this end, we assume that
the data is itself generated by the linear model of Example 2.1, so that

yj+1 = λj+1v†0 + γζj+1,

where ζj is an i.i.d. Gaussian sequence with ζ1 ∼ N(0, 1). Then

1

σ2post
m =

1

γ2

(λ2 − λ2J+2

1− λ2
)
v†0 +

1

γ

J−1∑

j=0

λ(j+1)ζj+1 +
1

σ20
m0.
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Using the formula for σ2post, we obtain

(λ2 − λ2J+2

1− λ2
)
m+

γ2

σ20
m =

(λ2 − λ2J+2

1− λ2
)
v†0 + γ

J−1∑

j=0

λ(j+1)ζj+1 +
γ2

σ20
m0.

From this, it follows that for fixed J and as γ → 0, m → v†0, almost surely with respect to
the noise realization {ζj}j∈J. This is an example of posterior consistency.

Fig. 2.10: Posterior distribution for Examples 2.1 for different levels of observational noise.
The true initial condition used in both cases is v0 = 0.5, while we have assumed that C0 = 5
and m0 = 4 for the prior distribution.

We now study Example 2.4, in which the true dynamics are no longer linear. We begin our
investigation taking r = 2, and we investigate the effect of choosing different prior distribu-
tions. Before discussing the properties of the posterior, we draw attention to two facts. Firstly,
as Figure 2.5a shows, the system converges in a small number of steps to the fixed point at
1/2 for this value of r = 2. And secondly, the initial conditions v0 and 1 − v0 both result
in the same trajectory if the initial condition is ignored. The first point implies that after
a small number of steps, the observed trajectory contains very little information about the
initial condition. The second point means that since we observe from the first step onward,
only the prior can distinguish between v0 and 1− v0 as the starting point.

Figure 2.11 concerns an experiment in which the true initial condition underlying the
data is v†0 = 0.1. Two different priors are used, both with C0 = 0.01, giving a standard
deviation of 0.1, but with different means. The figure illustrates two facts: firstly, even with
103 observations, the posterior contains considerable uncertainty, reflecting the first point
above. Secondly, the prior mean has an important role in the form of the posterior pdf:
shifting the prior mean to the right, from m0 = 0.4 to m0 = 0.7, results in a posterior that
favors the initial condition 1− v†0 rather than the truth v†0.

This behavior of the posterior changes completely if we assume a flatter prior. This is
illustrated in Figure 2.12, where we consider the prior N(0.4, C0) with C0 = 0.5 and 5 respec-
tively. As we increase the prior covariance, the mean plays a much weaker role than in the
preceding experiments: we now obtain a bimodal posterior centered at both the true initial
condition v†0, and also at 1− v†0.
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Fig. 2.11: Posterior distribution for Example 2.4 for r = 2 in the case of different means for
the prior distribution. We have used C0 = 0.01, γ = 0.1, and true initial condition v0 = 0.1;
see also p2.m in Section 5.1.2.

Fig. 2.12: Posterior distribution for Example 2.4 for r = 2 in the case of different covariance
for the prior distribution. We have used m0 = 0.4, γ = 0.1, and true initial condition v0 = 0.1.

In Figure 2.13, we consider the quadratic map (2.9) with r = 4, J = 5, and prior
N(0.5, 0.01), with observational standard deviation γ = 0.2. Here, after only five observa-
tions, the posterior is very peaked, although because of the v �→ 1 − v symmetry mentioned
above, there are two symmetrically related peaks; see Figure 2.13a. It is instructive to look at
the negative of the logarithm of the posterior pdf, which, up to an additive constant, is given
by Idet(v0; y) in Theorem 2.11. The function Idet(·; y) is shown in Figure 2.13b. Its complexity
indicates the considerable complications underlying the solution of the smoothing problem.
We will return to this last point in detail later. Here we simply observe that normalizing the
posterior distribution requires evaluation of the integral

∫

Rn

e−I(v0,y)dv0.



2.9 Bibliographic Notes 49

This integral may often be determined almost entirely by very small subsets of Rn, meaning
that this calculation requires some care; indeed, if I(·) is very large over much of its domain,
then it may be impossible to compute the normalization constant numerically. We note,
however, that the sampling methods that we will describe in the next chapter do not require
evaluation of this integral.

Fig. 2.13: Posterior distribution and negative log-posterior for Example 2.4 for r = 4 and
J = 5. We have used C0 = 0.01,m0 = 0.5, γ = 0.2, and true initial condition v0 = 0.3.

2.9 Bibliographic Notes

• Section 2.1, Data Assimilation, has its roots in the geophysical sciences and is driven by the
desire to improve inaccurate models of complex dynamically evolving phenomena by means
of incorporation of data. The book [81] describes data assimilation from the viewpoint
of the atmospheric sciences and weather prediction, while the book [12] describes the
subject from the viewpoint of oceanography. These two subjects were the initial drivers for
evolution of the field. However, other applications are increasingly using the methodology
of data assimilation, and the oil industry in particular is heavily involved in the use, and
development, of algorithms in this area [115]. The recent book [1] provides a perspective on
the subject from the viewpoint of physics and nonlinear dynamical systems, and includes
motivational examples from neuroscience, as well as the geophysical sciences. The article
[74] is a useful one to read because it establishes a notation that is now widely used in
the applied communities, and the articles [111, 6] provide simple introductions to various
aspects of the subject from a mathematical perspective. The special edition of the journal
Physica D devoted to data assimilation, [75], provides an overview of the state of the art
around a decade ago.

• It is useful to comment on generalizations of the setup described in Section 2.1. First we
note that we have assumed a Gaussian structure for the additive noise appearing in both
the signal model (2.1) and the data model (2.2). This is easily relaxed in much of what
we describe here, provided that an explicit formula for the probability density function
of the noise is known. However, the Kalman filter, described in the next chapter, relies
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explicitly on the closed Gaussian form of the probability distributions resulting from the
assumption of Gaussian noise. There are also other parts of the notes, such as the pCN
MCMC methods and the minimization principle underlying approximate Gaussian filters,
also both described in the next chapter, that require the Gaussian structure. Second, we
note that we have assumed additive noise. This, too, can be relaxed, but that has the com-
plication that most nonadditive noise models do not yield explicit formulas for the needed
conditional probability density functions; for example, this situation arises if one looks at
stochastic differential equations over discrete time intervals—see [17] and the discussion
therein. However, some of the methods we describe rely only on drawing samples from the
desired distributions and do not require the explicit conditional probability density func-
tion. Finally, we note that much of what we describe here translates to infinite-dimensional
spaces with respect to both the signal space and the data space; however, in the case of an
infinite-dimensional data space, the additive Gaussian observational noise is currently the
only situation that is well developed [133].

• Section 2.2. The subject of deterministic discrete-time dynamical systems of the form (2.3)
is reviewed in numerous texts; see [147] and the references therein, and Chapter 1 of [134],
for example. The subject of stochastic discrete-time dynamical systems of the form (2.1),
and in particular the property of ergodicity that underlies Figure 2.4, is covered in some
depth in [108]. The exact solutions of the quadratic map (2.9) for r = 2 and r = 4 may be
found in [127] and [96] respectively. The Lorenz ’63 model was introduced in [95]. Not only
does this paper demonstrate the possibility of chaotic behavior and sensitivity with respect
to initial conditions, but it also makes a concrete connection between a three-dimensional
continuous-time dynamical system and a one-dimensional chaotic map of the form (2.1).
Furthermore, a subsequent computer-assisted proof demonstrated rigorously that the ODE
indeed exhibits chaos [139, 140]. The book [132] discusses properties of the Lorenz ’63 model
in some detail, and the book [51] discusses properties such as fractal dimension. The shift
of origin that we have adopted for the Lorenz ’63 model is explained in [137]; it enables
the model to be written in an abstract form that includes many geophysical models of
interest, such as the Lorenz ’96 model, introduced in [97], and the Navier–Stokes equation
on a two-dimensional torus [102, 137]. We now briefly describe this common abstract form.
The vector u ∈ R

J (J = 3 for Lorenz ’63, J arbitrary for Lorenz’ 96) solves the equation

du

dt
+Au+B(u, u) = f, u(0) = u0, (2.39)

where there is λ > 0 such that for all w ∈ R
J ,

〈Aw,w〉 ≥ λ|w|2, 〈B(w,w), w〉 = 0.

Taking the inner product with u shows that

1

2

d

dt
|u|2 + λ|u|2 ≤ 〈f, u〉.

If f is constant in time, then this inequality may be used to show that (2.16) holds:

1

2

d

dt
|u|2 ≤ 1

2λ
|f |2 − λ

2
|u|2.

Integrating this inequality gives the existence of an absorbing set and hence leads to the
existence of a global attractor; see Example 1.22, the book [137], or Chapter 2 of [134], for
example.
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• Section 2.3 contains the formulation of data assimilation as a fully nonlinear and non-
Gaussian problem in Bayesian statistics. This formulation is not yet the basis of practi-
cal algorithms in geophysical systems such as weather forecasting. This is because global
weather forecast models involve n = O(109) unknowns, and incorporate m = O(106) data
points daily; sampling the posterior on R

n given data in R
m in an online fashion, usable for

forecasting, is beyond current algorithmic and computational capability. However, the fully
Bayesian perspective provides a fundamental mathematical underpinning of the subject,
from which other more tractable approaches can be systematically derived. See [133] for
a discussion of the Bayesian approach to inverse problems. Historically, data assimilation
did not evolve from this Bayesian perspective, but rather evolved out of the control theory
perspective. This perspective is summarized well in the book [77]. However, the importance
of the Bayesian perspective is increasingly being recognized in the applied communities. In
addition to providing a starting point from which to derive approximate algorithms, it also
provides a gold standard against which other more ad hoc algorithms can be benchmarked;
this use of Bayesian methodology was suggested in [89] in the context of meteorology (see
discussion that follows), and then employed in [76] in the context of subsurface inverse
problems arising in geophysics.

• Section 2.4 describes the filtering, or sequential, approach to data assimilation, within the
fully Bayesian framework. For low-dimensional systems, the use of particle filters, which
may be shown to approximate the required filtering distribution rigorously as it evolves
in discrete time, has been enormously successful; see [48] for an overview. Unfortunately,
these filters can behave poorly in high dimensions [19, 11, 129]. While there is ongoing work
to overcome these problems with high-dimensional particle filtering, see [16, 28, 143], for
example, this work has yet to impact practical data assimilation in, for example, operational
weather forecasting. For this reason, the ad hoc filters, such as the 3DVAR filter, extended
Kalman filter, and ensemble Kalman filter, described in Chapter 4, are of great practical
importance. Their analysis is hence an important challenge for applied mathematicians.

• Section 2.6, on data assimilation, may be viewed as an inverse problem to determine
the signal from the observations. Inverse problems in differential equations are often ill
posed when viewed from a classical nonprobabilistic perspective. One reason for this is
that the data may not be informative about the whole signal, so that many solutions
are possible. However, taking the Bayesian viewpoint, in which the many solutions are
all given a probability, allows for well-posedness to be established. This idea is used for
data-assimilation problems arising in fluid mechanics in [32], for inverse problems arising
in subsurface geophysics in [44, 42], and described more generally in [133]. Well-posedness
with respect to changes in the data is of importance in its own right, but also more generally
because it underpins other stability results that can be used to control perturbations. In
particular, the effect of numerical approximation on integration of the forward model can
be understood in terms of its effect on the posterior distribution; see [33]. A useful overview
of probability metrics, including Hellinger and total-variation metrics, is contained in [57].

• Section 2.7. The subject of posterior consistency is central to the theory of statistics in
general [141], and within Bayesian statistics in particular [13, 15, 56]. Assessing the quality
of data assimilation algorithms is typically performed in the “signal estimation” framework
using identical twin experiments in which the data is generated from the same model
used to estimate the signal; see [75] and the references therein. The idea of assessing
“Bayesian quality” has only recently been used within the data-assimilation literature;
see [89], where this approach is taken for the Navier–Stokes inverse problem formulated
in [32]. The evaluation of algorithms by means of forecast skill is enormously influential in
the field of numerical weather prediction and drives a great deal of algorithmic selection.
The use of information theory to understand the effects of model error and to evaluate
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filter performance is introduced in [99] and [22] respectively. There are also a number of
useful consistency checks that can be applied to evaluate the computational model and
its fit to the data [50, 2, 4]. We discuss the idea of the variant known as rank histograms at
the end of Chapter 4. If the empirical statistics of the innovations are inconsistent with the
assumed model, then they can be used to improve the model in the future; this is known
as reanalysis.

2.10 Exercises

1. Consider the map given in Example 2.3 and related program p1.m. By experimenting with
the code, determine approximately the value of α, denoted by α1, at which the noise-free
dynamics changes from convergence to an equilibrium point to convergence to a period-2
solution. Can you find a value of α = α2 for which you obtain a period-4 solution? Can
you find a value of α = α3 for which you obtain a nonrepeating (chaotic) solution? For the
values α = 2, α2, and α3, compare the trajectories of the dynamical system obtained with
the initial condition 1 and with the initial condition 1.1. Comment on what you find. Now
fix the initial condition at 1 and consider the same values of α, with and without noise
(σ ∈ {0, 1}). Comment on what you find. Illustrate your answers with graphics. To get
interesting displays, you will find it helpful to change the value of J (number of iterations)
depending upon what you are illustrating.

2. Consider the map given in Example 2.4 and verify the explicit solutions given for r = 2
and r = 4 in formulas (2.10)–(2.12).

3. Consider the Lorenz ’63 model given in Example 2.6. Determine values of {α, β} for
which (2.16) holds.

4. Consider the Lorenz ’96 model given in Example 2.7. Program p19.m plots solutions of
the model, as well as analyzing sensitivity to initial conditions. Study the behavior of the
equation for J = 40, F = 2, for J = 40, F = 4, and report your results. Fix F at 8 and play
with the value of the dimension of the system, J . Report your results. Again, illustrate
your answers with graphics.

5. Consider the posterior smoothing distribution from Theorem 2.8. Assume that the stochas-
tic dynamics model (2.1) is scalar and defined by Ψ(v) = av for some a ∈ R and Σ = σ2,
and that the observation model (2.2) is defined by h(v) = v and Γ = γ2. Find explicit
formulas for J(v) and Φ(v; y), assuming that v0 ∼ N(m0, σ

2
0).

6. Consider the posterior smoothing distribution from Theorem 2.11. Assume that the dy-
namics model (2.3a) is scalar and defined by Ψ(v) = av for some a ∈ R, and that the
observation model (2.2) is defined by h(v) = v and Γ = γ2. Find explicit formulas for
Jdet(v0) and Φdet(v0; y), assuming that v0 ∼ N(m0, σ

2
0).

7. Consider the definition of total variation distance given in Definition 1.27. State and prove
a theorem analogous to Theorem 2.15, but employing the total variation distance instead
of the Hellinger distance.

8. Consider the filtering distribution from Section 2.4 in the case that the stochastic dynamics
model (2.1) is scalar and defined by Ψ(v) = av for some a ∈ R and Σ = σ2, and that
the observation model (2.2) is defined by h(v) = v and Γ = γ2, and v0 ∼ N(m0, σ

2
0).

Demonstrate that the prediction and analysis steps preserve Gaussianity, so that μj =
N(mj , σ

2
j ). Find iterative formulas that update (mj , σ

2
j ) to give (mj+1, σ

2
j+1).

9. Prove Theorem 2.18.



Chapter 3

Discrete Time: Smoothing Algorithms

The formulation of the data-assimilation problem described in the previous chapter is
probabilistic, and its computational resolution requires the probing of a posterior probabil-
ity distribution on signal-given data. This probability distribution is on the signal sequence
v = {vj}Jj=0 when the underlying dynamics is stochastic and given by (2.1); the posterior is

specified in Theorem 2.8 and is proportional to exp
(−I(v; y)), given by (2.21). On the other

hand, if the underlying dynamics is deterministic and given by (2.3), then the probability
distribution is on the initial condition v0 only; it is given in Theorem 2.11 and is proportional
to exp

(−Idet(v0; y)
)
, with Idet given by (2.29). Generically, in this chapter, we refer to the

unknown variable as u, and then use v in the specific case of stochastic dynamics and v0 in
the specific case of deterministic dynamics. The aim of this chapter is to understand P(u|y).
In this regard, we will do three things:

• find explicit expressions for the pdf P(u|y) in the linear, Gaussian setting;
• generate samples {u(n)}Nn=1 from P(u|y) by algorithms applicable in the non-Gaussian

setting;
• find points where P(u|y) is maximized with respect to u, for given data y.

In general, the probability distributions of interest cannot be described by a finite set of
parameters, except in a few simple situations such as the Gaussian scenario, in which the
mean and covariance determine the distribution in its entirety—the Kalman smoother.
When the probability distributions cannot be described by a finite set of parameters, an
expedient computational approach to representing the measure approximately is through the
idea of Monte Carlo sampling. The basic idea is to approximate a measure ν by a set of
N samples {u(n)}n∈Z+ drawn, or approximately drawn, from ν to obtain the measure νN ≈ ν
given by

νN =
1

N

N∑

n=1

δu(n) . (3.1)

We may view this as defining a (random) map SN on measures that takes ν into νN . If the u(n)

are exact draws from ν, then the resulting approximation νN converges to the true measure
ν as N → ∞.1 For example, if v = {vj}Jj=0 is governed by the probability distribution μ0
defined by the unconditioned dynamics (2.1), and with pdf determined by (2.19), then exact

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-20325-6 3) contains supplementary material, which is available to authorized users.
1 Indeed, we prove such a result in Lemma 4.7 in the context of the particle filter.
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independent samples v(n) = {v(n)j }Jj=0 are easy to generate, simply by running the dynamics
model forward in discrete time. However, for the complex probability measures of interest
here, where the signal is conditioned on data, exact samples are typically not possible, and
so instead, we use the idea of Monte Carlo Markov chain (MCMC) methods, which
provide a methodology for generating approximate samples. These methods do not require
knowledge of the normalization constant for the measure P(u|y); as we have discussed, Bayes’s
formula (1.7) readily delivers P(u|y) up to normalization, but the normalization itself can
be difficult to compute. It is also of interest simply to maximize the posterior probability
distribution to find a single-point estimate of the solution, leading to variational methods,
which we also consider.

Section 3.1 gives explicit formulas for the solution of the smoothing problem in the setting
in which the stochastic dynamics model is linear, and subject to Gaussian noise, for which the
observation operator is linear, and for which the distributions of the initial condition and the
observational noise are Gaussian; this is the Kalman smoother. These explicit formulas help
to build intuition about the nature of the smoothing distribution. In Section 3.2, we provide
some background concerning MCMC methods, and in particular, the Metropolis–Hastings
variant of MCMC, and show how they can be used to explore the posterior distribution.
It can be very difficult to sample the probability distributions of interest with high accuracy,
because of the two problems of high dimension and sensitive dependence on initial conditions.
While we do not claim to introduce the optimal algorithms to deal with these issues, we
do discuss such issues in relation to the samplers we introduce, and we provide references
to the active research ongoing in this area. Furthermore, although sampling of the posterior
distribution may be computationally infeasible in many situations, it provides, where possible,
an important benchmark solution, enabling other algorithms to be compared against a “gold
standard” Bayesian solution.

However, because sampling the posterior distribution can be prohibitively expensive, a
widely used computational methodology is simply to find the point that maximizes the prob-
ability, using techniques from optimization. These are the variational methods, also known
as 4DVAR and weak constraint 4DVAR. We introduce this approach to the problem
in Section 3.3. In Section 3.4, we provide numerical illustrations that showcase the MCMC
and variational methods. The chapter concludes with bibliographic notes in Section 3.5 and
exercises in Section 3.6.

3.1 Linear Gaussian Problems: The Kalman Smoother

The Kalman smoother plays an important role, because it is one of the few examples for
which the smoothing distribution can be explicitly determined. This explicit characterization
occurs because the signal dynamics and observation operator are assumed to be linear. When
combined with the Gaussian assumptions on the initial condition for the signal, and on the
signal and observational noise, this gives rise to a posterior smoothing distribution that is
also Gaussian.

To find formulas for this Gaussian Kalman smoothing distribution, we set

Ψ(v) =Mv, h(v) = Hv (3.2)

for matrices M ∈ R
n×n, H ∈ R

m×n and consider the signal/observation model (2.1), (2.2).
Given data y = {yj}j∈J and signal v = {vj}j∈J0

, we are interested in the probability dis-
tribution of v|y, as characterized in Section 2.3.2. By specifying the linear model (3.2) and
applying Theorem 2.8, we obtain the following result:
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Theorem 3.1. The posterior smoothing distribution on v|y for the linear stochastic dynamics
model (2.1), (2.2), (3.2) with C0, Σ and Γ symmetric positive definite is a Gaussian probability
measure μ = N(m,C) on R

|J0|×n. The covariance C is the inverse of a symmetric positive
definite block tridiagonal precision matrix

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L11 L12

L21 L22 L23

. . .
. . .

. . .

. . .
. . . LJJ+1

LJ+1J LJ+1J+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with Lij ∈ R
n×n given by L11 = C−1

0 +MTΣ−1M, Ljj = HTΓ−1H +MTΣ−1M +Σ−1 for
j = 2, . . . , J, LJ+1,J+1 = HTΓ−1H + Σ−1, Ljj+1 = −MTΣ−1, and Lj+1j = −Σ−1M for
j = 1, . . . , J. Furthermore, the mean m solves the equation

Lm = r,

where

r1 = C−1
0 m0, rj = HTΓ−1yj−1, j = 2, · · · , J + 1.

This mean is also the unique minimizer of the functional

I(v; y) =
1

2

∣
∣C−1/2

0 (v0 −m0)
∣
∣2 +

J−1∑

j=0

1

2

∣
∣Σ−1/2(vj+1 −Mvj)

∣
∣2 +

J−1∑

j=0

1

2

∣
∣Γ−1/2(yj+1 −Hvj+1)

∣
∣2

=
1

2

∣
∣v0 −m0

∣
∣2
C0

+

J−1∑

j=0

1

2

∣
∣vj+1 −Mvj |2Σ +

J−1∑

j=0

1

2

∣
∣yj+1 −Hvj+1|2Γ (3.3)

with respect to v and as such is a maximizer, with respect to v, for the posterior pdf P(v|y).
Proof The proof is based on Lemma 1.6 and the identification of the mean and covariance
by studying an appropriate quadratic form. From Theorem 2.8, we know that the desired
distribution has pdf proportional to exp

(−I(v; y)), where I(v; y) is given in (3.3). This is a
quadratic form in v, and we deduce that the inverse covariance L is given by ∂2v I(v; y), the
Hessian of I with respect to v. To determine L, we note the following identities:

D2
v0
I(v; y) = C−1

0 +MTΣ−1M,

D2
vj
I(v; y) = Σ−1 +MTΣ−1M +HTΓ−1H, j = 1, . . . , J − 1,

D2
vJ
I(v; y) = Σ−1 +HTΓ−1H,

D2
vj ,vj+1

I(v; y) = −MTΣ−1,

D2
vj+1,vj

I(v; y) = −Σ−1M.

We may then complete the square and write

I(v; y) =
1

2
〈(v −m), L(v −m)〉+ q,

where q is independent of v. From this, it follows that the mean indeed minimizes I(v; y) with
respect to v, and hence maximizes P(v|y) ∝ exp

(−I(v; y)) with respect to v. By differentiating
with respect to v, we obtain
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Lm = r, r = −∇vI(v; y)
∣
∣
∣
v=0

, (3.4)

where ∇v is the gradient of I with respect to v. This characterization of r gives the desired
equation for the mean. Finally, we show that L, and hence C, is positive definite symmetric.
Clearly, L is symmetric, and hence so is C. It remains to check that L is strictly positive
definite. To see this, note that if we set m0 = 0, then

1

2
〈v, Lv〉 = I(v; 0) ≥ 0. (3.5)

Moreover, I(v; 0) = 0 with m0 = 0 implies, since C0 > 0 and Σ > 0,

v0 = 0,

vj+1 =Mvj , j = 0, . . . , J − 1,

i.e., v = 0. Hence we have shown that 〈v, Lv〉 = 0 implies v = 0, and the proof is complete. �
We now consider the Kalman smoother in the case of deterministic dynamics. Application

of Theorem 2.11 gives the following:

Theorem 3.2. The posterior smoothing distribution on v0|y for the deterministic linear
dynamics model (2.3), (2.2), (3.2) with C0 and Γ symmetric positive definite is a Gaus-
sian probability measure ν = N(mdet, Cdet) on R

n. The covariance Cdet is the inverse of the
positive definite symmetric matrix Ldet given by the expression

Ldet = C−1
0 +

J−1∑

j=0

(MT )j+1HTΓ−1HM j+1.

The mean mdet solves

Ldetmdet = C−1
0 m0 +

J−1∑

j=0

(MT )j+1HTΓ−1yj+1.

This mean is a minimizer of the functional

Idet(v0; y) =
1

2

∣
∣v0 −m0|2C0

+

J−1∑

j=0

1

2

∣
∣yj+1 −HM j+1v0

∣
∣2
Γ

(3.7)

with respect to v0 and as such is a maximizer, with respect to v0, of the posterior pdf P(v0|y).
Proof By Theorem 2.11, we know that the desired distribution has pdf proportional to
exp
(−Idet(v0; y)

)
given by (3.7). The inverse covariance Ldet can be found as the Hessian of

Idet, Ldet = ∂2v Idet(v0; y), and the mean mdet solves

Ldetmdet = −∇vIdet(v0; y)
∣
∣
∣
v0=0

. (3.8)

As in the proof of the preceding theorem, we have that

Idet(v0; y) =
1

2
〈Ldet(v0 −mdet), (v0 −mdet)〉+ q,

where q is independent of v0; this shows that mdet minimizes Idet(· ; y) and maximizes P(·|y).
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We have thus characterized Ldet andmdet, and using this characterization gives the desired
expressions. It remains to check that Ldet is positive definite, since it is clearly symmetric by
definition. Positive-definiteness follows from the assumed positive-definiteness of C0 and Γ ,
since for every nonzero v0 ∈ R

n,

〈v0, Ldetv0〉 ≥ 〈v0C−1
0 v0〉 > 0. (3.9)

�

3.2 Markov Chain–Monte Carlo Methods

In the case of stochastic dynamics, equation (2.1), the posterior distribution of interest is
the measure μ on R

|J0|×n, with density P(v|y) given in Theorem 2.8; in the case of deter-
ministic dynamics, equation (2.3), it is the measure ν on R

n with density P(v0|y) given in
Theorem 2.11. In this section, we describe the idea of Markov chain–Monte Carlo (MCMC)
methods for exploring such probability distributions.

We will begin by describing the general MCMC methodology, after which we discuss the
specific Metropolis–Hastings instance of this methodology. This material makes no reference
to the specific structure of our sampling problem; it works in the general setting of creating a
Markov chain that is invariant for an arbitrary measure μ on R

� with pdf ρ. We then describe
applications of the Metropolis–Hastings family of MCMC methods to the smoothing problems
of noise-free dynamics and noisy dynamics respectively. In describing the generic Metropolis–
Hastings methodology, we will use u (with indices) to denote the state of the Markov chain,
and w (with indices) to denote the proposed moves. Thus in the case of stochastic dynamics,
the current state u and proposed state w live in the space where signal sequences v lie, and in
the case of deterministic dynamics, they live in the space where the initial conditions v0 lie.

3.2.1. The MCMC Methodology

Recall the concept of a Markov chain {u(n)}n∈Z+ introduced in Section 1.4.1. The idea of
MCMC methods is to construct a Markov chain that is invariant with respect to a given
measure μ on R

� and, of particular interest to us, a measure μ with positive Lebesgue density
ρ on R

�. We now use a superscript n to denote the index of the resulting Markov chain,
instead of a subscript j, to provide a clear distinction between the Markov chain defined
by the stochastic (respectively deterministic) dynamics model (2.1) (respectively (2.3)) and
the Markov chains that we will use to sample the posterior distribution on the signal v
(respectively initial condition v0) given data y.

We have already seen that Markov chains allow the computation of averages with respect
to the invariant measure by computing the running time-average of the chain—see (1.16).
More precisely, we have the following theorem (for which it is useful to recall the notation for
the iterated kernel pn from the very end of Section 1.4.1):

Theorem 3.3. Assume that if u(0) ∼ μ with Lebesgue density ρ, then u(n) ∼ μ for all n ∈ Z
+,

so that μ is invariant for the Markov chain. If in addition, the Markov chain is ergodic, then
for every bounded continuous ϕ : R� → R,
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1

N

N∑

n=1

ϕ(u(n))
a.s.−→ E

μϕ(u)

for μ a.e. initial condition u(0). In particular, if there exist a probability measure p on R
� and

ε > 0 such that for all u ∈ R
� and all Borel sets A ⊆ B(R�), we have p(u,A) ≥ εp(A), then

for all u ∈ R
�,

dTV

(
pn(u, ·), μ) ≤ 2(1− ε)n. (3.10)

Furthermore, there is then K = K(ϕ) > 0 such that

1

N

N∑

n=1

ϕ(u(n)) = E
μϕ(u) +KξNN

− 1
2 , (3.11)

where ξN converges weakly to N(0, 1) as N →∞.
Remark 3.4. This theorem is the backbone of MCMC. As we will see, there is a large class
of methods that ensure invariance of a given measure μ, and furthermore, these methods
are often provably ergodic, so that the preceding theorem applies. As with all algorithms in
computational science, the optimal algorithm is the one that delivers the smallest error for
given unit computational cost. In this regard, there are two observations to make about the
preceding theorem.

• The constant K measures the size of the variance of the estimator of Eμϕ(x), multiplied
by N . It is thus a surrogate for the error incurred in running MCMC over a finite number
of steps. The constant K depends on ϕ itself, but it will also reflect general properties of the
Markov chain. For a given MCMC method, there will often be tunable parameters whose
choice will affect the size of K without affecting the cost per step of the Markov chain.
The objective of choosing these parameters is to minimize the constant K, within a given
class of methods all of which have the same cost per step. In thinking about how to do this,
it is important to appreciate that K measures the amount of correlation in the Markov
chain; lower correlation leads to a decreased constant K. More precisely, K is computed
by integrating the autocorrelation of the Markov chain.

• A further tension in designing MCMC methods is in the choice of the class of methods
themselves. Some Markov chains are expensive to implement, but the convergence in (3.11)
is rapid (the constant K can be made small by appropriate choice of parameters), while
other Markov chains are cheaper to implement, but the convergence in (3.11) is slower (the
constant K is much larger). Some compromise between ease of implementation and rate of
convergence needs to be made.

♠

3.2.2. Metropolis–Hastings Methods

The idea of Metropolis–Hastings methods is to build an MCMC method for a measure μ by
adding an accept/reject test on top of a Markov chain that is easy to implement but that is
not invariant with respect to μ; the accept/reject step is designed to enforce invariance with
respect to μ. This is done by enforcing detailed balance:

ρ(u)p(u,w) = ρ(w)p(w, u) ∀u,w ∈ R
� × R

�. (3.12)
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Note that integrating with respect to u and using the fact that

∫

R�

p(w, u)du = 1,

we obtain ∫

R�

ρ(u)p(u,w)du = ρ(w),

so that (1.18) is satisfied, and the density ρ is indeed invariant. We now exhibit an algorithm
designed to satisfy detailed balance by correcting a given Markov chain, which is not invariant
with respect to μ, by the addition of an accept/reject mechanism.

We are given a probability density function ρ, hence satisfying ρ : R
� → R

+, with∫
ρ(u)du = 1. Now consider a Markov transition kernel q : R� × R

� → R
+ with the prop-

erty that
∫
q(u,w)dw = 1 for every u ∈ R

�. Recall the notation, introduced in Section 1.4.1,
that we use the function q(u,w) to denote a pdf and simultaneously, a probability measure
q(u, dw). We create a Markov chain {u(n)}n∈N that is invariant for ρ as follows. Define2

a(u,w) = 1 ∧ ρ(w)q(w, u)
ρ(u)q(u,w)

. (3.13)

The algorithm is as follows:

1. Set n = 0 and choose u(0) ∈ R
�.

2. n→ n+ 1.
3. Draw w(n) ∼ q(u(n−1), ·).
4. Set u(n) = w(n) with probability a(u(n−1), w(n)), u(n) = u(n−1) otherwise.
5. Go to step 2.

At each step in the algorithm there are two sources or randomness: that required for
drawing w(n) in step 3, and that required for accepting or rejecting w(n) as the next u(n)

in step 4. These two sources of randomness are chosen to be independent of each other.
Furthermore, all the randomness at discrete algorithmic time n is independent of randomness
at preceding discrete algorithmic times, conditional on u(n−1). Thus the whole procedure gives
a Markov chain. If z = {z(j)}j∈N is an i.i.d. sequence of U [0, 1] random variables, then we
may write the algorithm as follows:

w(n) ∼ q(u(n−1), ·),
u(n) = w(n)

I
(
z(n) ≤ a(u(n−1), w(n))

)
+ u(n−1)

I
(
z(n) > a(u(n−1), w(n))

)
.

Here I denotes the indicator function of a set. We let p : R�×R
� → R

+ denote the transition
kernel of the resulting Markov chain,, and we let pn denote the transition kernel over n steps;
recall that we therefore have pn(u,A) = P(u(n) ∈ A|u(0) = u). Similarly as above, for fixed u,
pn(u, dw) denotes a probability measure on R

� with density pn(u,w). The resulting algorithm
is known as a Metropolis–Hastings MCMC algorithm, and it satisfies detailed balance with
respect to μ.

Remark 3.5. The following two observations are central to Metropolis–Hastings MCMC
methods.

2 Recall that we use the ∧ operator to denote the minimum between two real numbers.
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• The construction of Metropolis–Hastings MCMC methods is designed to ensure the detailed
balance condition (3.12). We will use the condition expressed in this form in what follows
later. It is also sometimes written in integrated form as the statement

∫

R�×R�

f(u,w)ρ(u)p(u,w)dudw =

∫

R�×R�

f(u,w)ρ(w)p(w, u)dudw (3.14)

for all f : R�×R
� → R. Once this condition is obtained, it follows trivially that the measure

μ with density ρ is invariant, since for f = f(w), we obtain

∫

R�

f(w)

(∫

R�

ρ(u)p(u,w)du

)
dw =

∫

R�

f(w)ρ(w)dw

∫

R�

p(w, u)du

=

∫

R�

f(w)ρ(w)dw.

Note that
∫
R� ρ(u)p(u,w)du is the density of the distribution of the Markov chain after

one step, given that it is initially distributed according to density ρ. Thus the preceding
identity shows that the expectation of f is unchanged by the Markov chain if it is initially
distributed with density ρ. This means that if the Markov chain is distributed according to
measure with density ρ initially, then it will be distributed according to the same measure
for all algorithmic time.

• Note that in order to implement Metropolis–Hastings MCMC methods, it is not necessary
to know the normalization constant for ρ(·), since only its ratio appears in the definition
of the acceptance probability a.

♠
The Metropolis–Hastings algorithm defined above satisfies the following corollary, which

requires definition of total-variation (TV) distance given in Section 1.3:

Corollary 3.6. For the Metropolis–Hastings MCMC methods, we have that the detailed bal-
ance condition (3.12) is satisfied and that hence μ is invariant: if u(0) ∼ μ with Lebesgue
density ρ, then u(n) ∼ μ for all n ∈ Z

+. Thus, if the Markov chain is ergodic, then the
conclusions of Theorem 3.3 hold.

We now describe some exemplars of Metropolis–Hastings methods adapted to the data
assimilation problem. These are not to be taken as optimal MCMC methods for data assimi-
lation, but rather as examples of how to construct proposal distributions q(u, ·) for Metropolis–
Hastings methods in the context of data assimilation. In any given application, the proposal
distribution plays a central role in the efficiency of the MCMC method, and tailoring it to
the specifics of the problem can have significant impact on efficiency of the MCMC method.
Because of the level of generality at which we are presenting the material herein (arbitrary f
and h), we cannot discuss such tailoring in any detail.

3.2.3. Deterministic Dynamics

In the case of deterministic dynamics (2.3), the measure of interest is a measure on the initial
condition v0 in R

n. Perhaps the simplest Metropolis–Hastings algorithm is the random walk
Metropolis (RWM) sampler, which employs a Gaussian proposal, centered at the current
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state; we now illustrate this for the case of deterministic dynamics. Recall that the measure
of interest is ν with pdf �. Furthermore, � ∝ exp

(−Idet(v0; y)
)
, as given in Theorem 2.11.

The RWM method proceeds as follows: Given that we are at u(n−1) ∈ R
n, a current

approximate sample from the posterior distribution on the initial condition, we propose

w(n) = u(n−1) + βι(n−1), (3.15)

where ι(n−1) ∼ N(0, Cprop) for some symmetric positive definite proposal covariance Cprop

and proposal variance scale parameter β > 0; natural choices for this proposal covariance
include the identity I or the prior covariance C0. Because of the symmetry of such a random
walk proposal, it follows that q(w, u) = q(u,w) and hence that

a(u,w) = 1 ∧ �(w)
�(u)

= 1 ∧ exp
(
Idet(u; y)− Idet(w; y)

)
.

Remark 3.7. The expression for the acceptance probability shows that the proposed move to w
is accepted with probability 1 if the value of Idet(· ; y), the log-posterior, is decreased by moving
to w from the current state u. On the other hand, if Idet(· ; y) increases, then the proposed
state is accepted only with some probability less than 1. Recall that Idet(· ; y) is the sum of
the prior penalization (background) and the model–data misfit functional. The algorithm thus
has a very natural interpretation in terms of the data-assimilation problem: it biases samples
toward decreasing Idet(· ; y) and hence to improving the fit to both the model and the data in
combination.

The algorithm has two key tuning parameters: the proposal covariance Cprop and the scale
parameter β. See Remark 3.4, first bullet, for discussion of the role of such parameters. The
covariance can encode any knowledge, or guesses, about the relative strength of correlations
in the model; given this, the parameter β should be tuned to give an acceptance probability
that is neither close to 0 nor to 1. This is because if the acceptance probability is small, then
successive states of the Markov chain are highly correlated, leading to a large constant K
in (3.11). On the other hand, if the acceptance probability is close to 1, then this is typically
because β is small, also leading to highly correlated steps and hence to a large constant K
in (3.11). ♠

Numerical results illustrating the method are given in Section 3.4.

3.2.4. Stochastic Dynamics

We now apply the Metropolis–Hastings methodology to the data assimilation smoothing
problem in the case of the stochastic dynamics model (2.1). Thus the probability measure
is on an entire signal sequence {vj}Jj=0 and not just on v0; hence it lives on R

|J0|×n. It is
possible to apply the random walk method to this situation, too, but we take the opportunity
to introduce several different Metropolis–Hastings methods, in order to highlight the flexibility
of the methodology. Furthermore, it is also possible to take the ideas behind the proposals
introduced in this section and apply them in the case of deterministic dynamics.

In what follows, recall the measures μ0 and μ defined in Section 2.3, with densities ρ0
and ρ, representing (respectively) the measure on sequences v generated by (2.1) and the
resulting measure when the signal is conditioned on the data y from (2.2). We now construct,



62 3 Discrete Time: Smoothing Algorithms

via the Metropolis–Hastings methodology, two Markov chains {u(n)}n∈N that are invariant
with respect to μ. Hence we need only specify the transition kernel q(u,w) and identify the
resulting acceptance probability a(u,w). The sequence {w(n)}n∈Z+ will denote the proposals.

Independence Dynamics Sampler Here we choose the proposal w(n), independently
of the current state u(n−1), from the prior μ0 with density ρ0. Thus we are simply proposing
independent draws from the dynamical model (2.1), with no information from the data used
in the proposal. Important in what follows is the observation that

ρ(v)

ρ0(v)
∝ exp(−Φ(v; y)). (3.16)

With the given definition of proposal, we have that q(u,w) = ρ0(w) and hence that

a(u,w) = 1 ∧ ρ(w)q(w, u)
ρ(u)q(u,w)

= 1 ∧ ρ(w)/ρ0(w)
ρ(u)/ρ0(u)

= 1 ∧ exp(Φ(u; y)− Φ(w; y)).

Remark 3.8. The expression for the acceptance probability shows that the proposed move to
w is accepted with probability 1 if the value of Φ(· ; y) is decreased by moving to w from the
current state u. On the other hand, if Φ(· ; y) increases, then the proposed state is accepted
only with some probability less than 1, with the probability decreasing exponentially fast with
respect to the size of the increase. Recall that Φ(· ; y) measures the fit of the signal to the
data. Because the proposal builds in the underlying signal model, the acceptance probability
does not depend on I(· ; y), the negative log-posterior, but only the part reflecting the data,
namely the negative log-likelihood. In contrast, the RWM method, explained in the context of
deterministic dynamics, does not build the model into its proposal and hence the accept–reject
mechanism depends on the entire log-posterior; see Remark 3.7. ♠

The independence dynamics sampler does not have any tuning parameters and hence can
be very inefficient, since there are no parameters to modify in order to obtain a reasonable
acceptance probability; as we will see in the illustrations in Section 3.4 below, the method
can hence be quite inefficient because of the resulting frequent rejections. We now discuss
this point and an approach to resolving it. The rejections are caused by attempts to move far
from the current state, and in particular to proposed states that are based on the underlying
stochastic dynamics, but not on the observed data. This typically leads to increases in the
model–data misfit functional Φ(. ; y) once the Markov chain has found a state that fits the
data reasonably well. Even if data is not explicitly used in constructing the proposal, this
effect can be ameliorated by making local proposals, which do not move far from the current
state. These are exemplified in the following MCMC algorithm.

The pCN Method. It is helpful in what follows to recall the measure ϑ0 with density π0
found from μ0 and ρ0 in the case Ψ ≡ 0 and given by equation (2.24). We denote the mean
by m and covariance by C, noting that m = (mT

0 , 0
T , · · · , 0T )T and that C is block diagonal

with first block C0 and the remainder all being Σ. Thus ϑ0 = N(m,C). The basic idea of
this method is to make proposals with the property that if Ψ ≡ 0, so that the dynamics is
Gaussian and with no time correlation, and if h ≡ 0, so that the data is totally uninformative,
then the proposal would be accepted with probability 1. Making small incremental proposals
of this type then leads to a Markov chain that incorporates the effects of Ψ �= 0 and h �= 0
through the accept–reject mechanism. We describe the details of how this works.
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Recall the prior on the stochastic dynamics model with density ρ0(v) ∝ exp
(−J(v)) given

by (2.19). It will be useful to rewrite π0 as follows:

π0(v) ∝ exp(−J(v) + F (v)),

where

F (v) =

J−1∑

j=0

(
1

2

∣
∣
∣Σ− 1

2Ψ(vj)
∣
∣
∣
2

−
〈
Σ− 1

2 vj+1, Σ
− 1

2Ψ(vj)
〉)

. (3.17)

We note that
ρ0(v)

π0(v)
∝ exp(−F (v))

and hence that using (2.22),

ρ(v)

π0(v)
∝ exp(−Φ(v; y)− F (v)). (3.18)

Recall the Gaussian measure ϑ0 = N(m,C) defined via its pdf in (2.24). The pCN method
is a variant of random-walk-type methods, based on the following Gaussian proposal:

w(n) = m+
(
1− β2

) 1
2

(
u(n−1) −m

)
+ βι(n−1), (3.19)

β ∈ (0, 1], ι(n−1) ∼ N(0, C).

Here ι(n−1) is assumed to be independent of u(n−1).

Lemma 3.9. Consider the Markov chain

u(n) = m+
(
1− β2

) 1
2

(
u(n−1) −m

)
+ βι(n−1), (3.20)

β ∈ (0, 1], ι(n−1) ∼ N(0, C),

with ι(n−1) independent of u(n−1). The Markov kernel for this chain q(u,w) satisfies detailed
balance (3.12) with respect to the measure ϑ0 with density π0:

π0(w)q(w, u)

π0(u)q(u,w)
= 1. (3.21)

Proof We show that π0(u)q(u,w) is symmetric in (u,w). To demonstrate this, it suffices to
consider the quadratic form found by taking the negative of the logarithm of this expression.
This is given by

1

2
|u−m|2C +

1

2β2
|w −m− (1− β2)

1
2 (u−m)|2C .

This is the same as

1

2β2
|u−m|2C +

1

2β2
|w −m|2C −

(1− β2)
1
2

β2
〈w −m,u−m〉C ,

which is clearly symmetric in (u,w). The result follows. �
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By use of (3.21) and (3.18), we deduce that the acceptance probability for the MCMC
method with proposal (3.19) is

a(u,w) = 1 ∧ ρ(w)q(w, u)
ρ(u)q(u,w)

= 1 ∧ ρ(w)/π0(w)
ρ(u)/π0(u)

= 1 ∧ exp(Φ(u; y)− Φ(w; y) + F (u)− F (w)).

Recall that the proposal preserves the underlying Gaussian structure of the stochastic dynam-
ics model; the accept–reject mechanism then introduces non-Gaussianity into the stochastic
dynamics model, via F , and introduces the effect of the data, via Φ. By choosing β small, so
that w(n) is close to u(n−1), we can make a(v(n−1), w(n)) reasonably large and obtain a usable
algorithm. This is illustrated in Section 3.4.

Recall from Section 2.3.3 that if Ψ ≡ 0 (as assumed to define the measure ϑ0), then the
noise sequence {ξj−1}∞j=1 is identical with the signal sequence {vj}∞j=1. More generally, even if
Ψ �= 0, the noise sequence {ξj}∞j=1, together with v0, a vector that we denote in Section 2.3.3
by ξ, uniquely determines the signal sequence {vj}∞j=0; see Lemma 2.9. This motivates a
different formulation of the smoothing problem for stochastic dynamics in which one views
the noise sequence and initial condition as the unknown, rather than the signal sequence itself.
Here we study the implication of this perspective for MCMC methodology, in the context of
the pCN method, leading to our third sampler within this subsection: the pCN dynamics
sampler. We now describe this algorithm.

The pCN Dynamics Sampler is so named because the proposal (implicitly, via the
mapping G defined in Lemma 2.9) samples from the dynamics as in the independence sampler,
while the proposal also includes a parameter β allowing small steps to be taken and chosen to
ensure good acceptance probability, as in the pCN method. The posterior measure we wish
to sample is given in Theorem 2.10. Note that this theorem implicitly contains the fact that

ϑ(dξ) ∝ exp
(−Φr(ξ; y)

)
ϑ0(dξ).

Furthermore, ϑ0 = N(m,C), where the mean m and covariance C are as described above for
the standard pCN method. We use the pCN proposal (3.19)

ζ(n) = m+
(
1− β2

) 1
2

(
ξ(n−1) −m

)
+ βι(n−1),

and the acceptance probability is given by

a(ξ, ζ) = 1 ∧ exp (Φr(ξ; y)− Φr(ζ; y)) .

In interpreting this formula, it is instructive to note that

Φr(ξ; y) =
1

2
|y − G(ξ)|2ΓJ

=
1

2

∣
∣
∣Γ

− 1
2

J (y − G(ξ))
∣
∣
∣
2

= Φ
(G(ξ); y),

and that ξ comprises both v0 and the noise sequence {ξ}J−1
j=0 . Thus the method has the same

acceptance probability as the independence dynamics sampler, albeit expressed in terms of
initial condition and model noise rather than signal, and also possesses a tunable parameter
β; it thus has the nice conceptual interpretation of the acceptance probability that is present
in the independence dynamics sampler, as well as the advantage of the pCN method that the
proposal variance β may be chosen to ensure a reasonable acceptance probability.
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3.3 Variational Methods

Sampling the posterior using MCMC methods can be prohibitively expensive. This is because
in general, sampling involves generating many different points in the state space of the Markov
chain. It can be of interest to generate a single point, or small number of points, that represent
the salient features of the probability distribution, when this is possible. If the probability
is peaked at one place or a small number of places, then simply locating these peaks may
be sufficient in some applied contexts. This is the basis for variational methods that seek to
maximize the posterior probability, thereby locating such peaks. In practice, this boils down
to minimizing the negative log-posterior.

We begin by illustrating the idea in the context of the Gaussian distributions highlighted in
Section 3.1 concerning the Kalman smoother. In the case of stochastic dynamics, Theorem 3.1
shows that P(v|y), the pdf of the posterior distribution, has the form

P (v|y) ∝ exp
(
−1

2
|v −m|2L

)
.

Now consider the problem

v
 = argmaxv∈R|J0|×nP(v|y).
From the structure of P(v|y), we see that

v
 = argminv∈R|J0|×n I(v; y),

where

I(v; y) =
1

2
|v −m|2L =

1

2
|L− 1

2 (v −m)|2.

Thus v
 = m, the mean of the posterior. Similarly, using Theorem 3.2, we can show that in
the case of deterministic dynamics,

v
0 = argmaxv0∈R|J0|×nP(v0|y),

is given by v
0 = mdet.
In this section, we show how to characterize peaks in the posterior probability, in the gen-

eral non-Gaussian case, leading to problems in the calculus of variations. The methods are
termed variational methods. In the atmospheric sciences, these variational methods are
referred to as 4DVAR; this nomenclature reflects the fact that they are variational methods
that incorporate data over three spatial dimensions and one temporal dimension (thus four
dimensions in total) in order to estimate the state. In Bayesian statistics, the methods are
called MAP estimators: maximum a posteriori estimators. It is helpful to realize that the
MAP estimator is not, in general, equal to the mean of the posterior distribution. However,
in the case of Gaussian posteriors, it is equal to the mean. Computation of the mean of a
posterior distribution, in general, requires integrating against the posterior distribution. This
can be achieved, via sampling for example, but is typically quite expensive if sampling is
expensive. MAP estimators, in contrast, require only the solution of an optimization prob-
lem. Unlike the previous section on MCMC methods, we do not attempt to review the vast
literature on relevant algorithms (here optimization algorithms); instead, references are given
in the bibliographic notes of Section 3.5.

First we consider the case of stochastic dynamics.
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Theorem 3.10. Consider the data-assimilation problem for stochastic dynamics: (2.1), (2.2),
with Ψ ∈ C1(Rn,Rn) and h ∈ C1(Rn,Rm). Then:

• (i) The infimum of I(· ; y) given in (2.21) is attained at at least one point v
 in R
|J0|×n.

It follows that the density ρ(v) = P(v|y) on R
|J0|×n associated with the posterior probability

μ given by Theorem 2.8 is maximized at v
.
• (ii) Furthermore, let B(u, δ) denote a ball in R

|J0|×n of radius δ and centered at u. Then

lim
δ→0

P
μ
(
B(u1, δ)

)

Pμ
(
B(u2, δ)

) = exp
(
I(u2; y)− I(u1; y)

)
for all u1, u2 ∈ R

|J0|×n. (3.22)

Proof Note that I(· ; y) is nonnegative and continuous, so that the infimum I is finite and
nonnegative. To show that the infimum of I(· ; y) is attained in R

|J0|×n, we let v(n) denote a
minimizing sequence. Without loss of generality, we may assume that for all n ∈ N,

I(v(n); y) ≤ I+ 1.

From the structure of I(· ; y), it follows that

v0 = m0 + C
1
2
0 r0,

vj+1 = Ψ(vj) +Σ
1
2 rj+1, j ∈ Z

+,

where 1
2 |rj |2 ≤ I + 1 for all j ∈ Z

+. By iterating and using the inequalities on the |rj |,
we deduce the existence of K > 0 such that |v(n)| ≤ K for all n ∈ N. From this bounded
sequence, we may extract a convergent subsequence, relabeled v(n) for simplicity, with limit v
.
By construction, we have that v(n) → v
 and that for every ε > 0, there is N = N(ε) such
that

I ≤ I(v(n); y) ≤ I+ ε, ∀n ≥ N.

Hence, by continuity of I(· ; y), it follows that

I ≤ I(v
; y) ≤ I+ ε.

Since ε > 0 is arbitrary, it follows that I(v
; y) = I. Because

μ(dv) =
1

Z
exp(−I(v; y))dv

= ρ(v)dv,

it follows that v
 also maximizes the posterior pdf ρ.
For the final result, we first note that because Ψ and h are continuously differentiable, the

function I(· ; y) is continuously differentiable. Thus we have

P
μ
(
B(u, δ)

)
=

1

Z

∫

|v−u|<δ

exp
(− I(v; y)

)
dv

=
1

Z

∫

|v−u|<δ

(
exp(−I(u; y)) + e(u; v − u)

)
dv,
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where

e(u; v − u) =
〈
−
∫ 1

0

DvI
(
u+ s(v − u); y)ds, v − u

〉
.

As a consequence, we have, for K± > 0,

−K−|δ| ≤ e(u; v − u) ≤ K+|δ|

for u = u1, u2 and |v−u| < δ. Using the preceding, we find that for E := exp
(
I(u2; y)−I(u1; y)

)
,

P
μ
(
B(u1, δ)

)

Pμ
(
B(u2, δ)

) ≤ E
∫
|v−u1|<δ

exp
(
K+|δ|)dv

∫
|v−u2|<δ

exp
(−K−|δ|)dv = E

exp
(
K+|δ|)

exp
(−K−|δ|) .

Similarly, we have that

P
μ
(
B(u1, δ)

)

Pμ
(
B(u2, δ)

) ≥ E
∫
|v−u1|<δ

exp
(−K−|δ|)dv

∫
|v−u2|<δ

exp
(
K+|δ|)dv = E

exp
(−K−|δ|)

exp
(
K+|δ|) .

Taking the limit δ → 0 gives the desired result. �

Remark 3.11. The second statement in Theorem 3.10 may appear a little abstract. It is,
however, essentially a complicated way of restating the first statement. To see this, fix u2
and note that the right-hand side of (3.22) is maximized at point u1, which minimizes I(· ; y).
Thus, independently of the choice of fixed u2, the identity (3.22) shows that the probability
of a small ball of radius δ centered at u1 is approximately maximized by choosing centers at
minimizers of I(· ; y). Why, then, do we bother with the second statement? We do so because it
makes no reference to Lebesgue density. As such, it can be generalized to infinite dimensions,
as is required in continuous time, for example. We include the second statement for precisely
this reason. We also remark that our assumption on continuous differentiability of Ψ and h
is stronger than what is needed, but makes for the rather explicit bounds used in the preceding
proof and is hence pedagogically desirable. ♠

The preceding theorem leads to a natural algorithm: compute

v = argminu∈R|J0|×n I(u; y).

In applications to meteorology, this algorithm is known as weak constraint 4DVAR, and
we denote this by w4DVAR in what follows. The word “weak” in this context is used to
indicate that the deterministic dynamics model (2.3a) is not imposed as a strong constraint.
Instead, the objective functional I(· ; y) is minimized; this penalizes deviations from exact
satisfaction of the deterministic dynamics model, as well as deviations from the data.

The w4DVAR method generalizes the standard 4DVAR method, which may be derived
from w4DVAR in the limit Σ → 0, so that the prior on the model dynamics (2.1) is deter-
ministic, but with a random initial condition, as in (2.3). In this case, the appropriate mini-
mization is of Idet(v0; y), given by (2.29). This has the advantage of being a lower-dimensional
minimization problem than w4DVAR; however, it is often a harder minimization problem,
especially when the dynamics is chaotic. The basic 4DVAR algorithm is sometimes called
strong constraint 4DVAR to denote the fact that the dynamics model (2.3a) is imposed
as a strong constraint on the minimization of the model–data misfit with respect to the initial
condition; we simply refer to the method as 4DVAR. The following theorem may be proved
similarly to Theorem 3.10.
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Theorem 3.12. Consider the data-assimilation problem for deterministic dynamics: (2.3),
(2.2) with Ψ ∈ C1(Rn,Rn) and h ∈ C1(Rn,Rm). Then:

• (i) The infimum of Idet(· ; y) given in (2.29) is attained at at least one point v
0 in R
n.

It follows that the density �(v0) = P(v0|y) on R
n associated with the posterior probability

ν given by Theorem 2.11 is maximized at v
0 .
• (ii) Furthermore, if B(z, δ) denotes a ball in R

n of radius δ centered at z, then

lim
δ→0

P
ν
(
B(z1, δ)

)

Pν
(
B(z2, δ)

) = exp(Idet(z2; y)− Idet(z1; y)).

As in the case of stochastic dynamics, we do not discuss optimization methods to perform
minimization associated with variational problems; this is because optimization is a well-
established and mature research area that is hard to do justice to within the confines of this
book. However, we conclude this section with an example that illustrates certain advantages
of the Bayesian perspective over the optimization or variational perspective. Recall from
Theorem 2.15 that the Bayesian posterior distribution is continuous with respect to small
changes in the data. In contrast, computation of the global maximizer of the probability may
be discontinuous as a function of data. To illustrate this, consider the probability measure με

on R with Lebesgue density proportional to exp
(−V ε(u)

)
, where

V ε(u) =
1

4
(1− u2)2 + εu. (3.23)

It is a straightforward application of the methodology behind the proof of Theorem 2.15 to
show that με is Lipschitz continuous in ε, with respect to the Hellinger metric. Furthermore,
the methodology behind Theorems 3.10 and 3.12 shows that the probability with respect
to this measure is maximized whenever V ε is minimized. The global minimum, however,
changes discontinuously, even though the posterior distribution changes smoothly. This is
illustrated in Figure 3.1, where the left-hand panel shows the continuous evolution of the
probability density function, while the right-hand panel shows the discontinuity in the global
maximizer of the probability (minimizer of V ε) as ε passes through zero. The explanation for
this difference between the fully Bayesian approach and MAP estimation is as follows. The
measure με has two peaks, for small ε, close to ±1. The Bayesian approach accounts for both
of these peaks simultaneously and weights their contribution to expectations. In contrast, the
MAP estimation approach leads to a global minimum located near u = −1 for ε > 0 and near
u = +1 for ε < 0, resulting in a discontinuity.

3.4 Illustrations

We describe a range of numerical experiments that illustrate the application of MCMC meth-
ods and variational methods to the smoothing problems that arise in both deterministic and
stochastic dynamics.

The first illustration concerns the use of the RWM algorithm to study the smoothing
distribution for Example 2.4 in the case of deterministic dynamics, where our aim is to find
P(v0|y). Recall Figure 2.13a, which shows the true posterior pdf, found by plotting the formula
given in Theorem 2.8. We now approximate the true posterior pdf by the MCMC method,
using the same parameters, namely m0 = 0.5, C0 = 0.01, γ = 0.2, and v†0 = 0.3. In Figure 3.2,
we compare the posterior pdf calculated by the RWM method (denoted by ρN , the histogram
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Fig. 3.1: Plot of (3.23) shows discontinuity of the global maximum as a function of ε.

Fig. 3.2: Comparison of the posterior for Example 2.4 for r = 4 using random walk metropolis
and equation (2.29) directly as in the matlab program p2.m. We have used J = 5, C0 = 0.01,
m0 = 0.5, γ = 0.2, and true initial condition v0 = 0.3; see also p3.m in Section 5.2.1. We
have used N = 108 samples from the MCMC algorithm.

of the output of the Markov chain) with the true posterior pdf ρ. The two distributions are
almost indistinguishable when plotted together in Figure 3.2a; in Figure 3.2b, we plot their
difference, which, as we can see, is small relative to the true value. We deduce that the number
of samples used, N = 108, results here in an accurate sampling of the posterior.

We now turn to the use of MCMC methods to sample the smoothing pdf P(v|y) in the
case of stochastic dynamics (2.1), using the independence dynamics sampler and both pCN
methods. Before describing the application of numerical methods, we study the ergodicity of
the independence dynamics sampler in a simple but illustrative setting. For simplicity, assume
that the observation operator h is bounded, so that for all u ∈ R

N , |h(u)| ≤ hmax. Then,
recalling the notation Yj = {y�}j�=1 from the filtering problem, we have
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Φ(u; y) ≤
J−1∑

j=0

(|Γ− 1
2 yj+1|2 + |Γ− 1

2h(uj+1)|2
)

≤ |Γ− 1
2 |2
(J−1∑

j=0

|yj+1|2 + Jh2max

)

≤ |Γ− 1
2 |2
(
|YJ |2 + Jh2max

)

=: Φmax.

Since Φ ≥ 0, this shows that every proposed step is accepted with probability exceeding
e−Φmax , and hence that since proposals are made with the prior measure μ0 describing the
unobserved stochastic dynamics,

p(u,A) ≥ e−Φmaxμ0(A).

Thus Theorem 3.3 applies, and in particular, (3.10) and (3.11) hold, with ε = e−Φmax , under
these assumptions. This positive result about the ergodicity of the MCMC method also in-
dicates the potential difficulties with the independence dynamics sampler. The independence
sampler relies on draws from the prior matching the data well. Where the data set is large
(J � 1) or the noise covariance small (|Γ | � 1), this will happen infrequently, because Φmax

will be large, and the MCMC method will reject frequently and be inefficient. To illustrate
this, we consider application of the method to Example 2.3, using the same parameters as
in Figure 2.3; specifically, we take α = 2.5 and Σ = σ2 = 1. We now sample the posterior
distribution and then plot the resulting accept–reject ratio a for the independence dynamics
sampler, employing different values of noise Γ and different sizes of the data set J . This is
illustrated in Figure 3.3.

Fig. 3.3: Accept–reject probability of the independence sampler for Example 2.3 for α = 2.5,
Σ = σ2 = 1, and Γ = γ2 for different values of γ and J .

In addition, in Figure 3.4, we plot the output and the running average of the output
projected into the first element of the vector v(k), the initial condition—recall that we are
defining a Markov chain on R

J+1—for N = 105 steps. Figure 3.4a clearly exhibits the fact
that there are many rejections caused by the low average acceptance probability. Figure 3.4b
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Fig. 3.4: Output and running average of the independence dynamics sampler after K = 105

steps, for Example 2.3 for α = 2.5, Σ = σ2 = 1, and Γ = γ2 = 1, with J = 10; see also p4.m
in Section 5.2.2.

shows that the running average has not converged after 105 steps, indicating that the chains
needs to be run for longer. If we run the Markov chainover N = 108 steps, then we do get
convergence. This is illustrated in Figure 3.5. In Figure 3.5a, we see that the running average
has converged to its limiting value when this many steps are used. In Figure 3.5b, we plot the
marginal probability distribution for the first element of v(k), calculated from this converged
Markov chain.

Fig. 3.5: Running average and probability density of the first element of v(k) for the indepen-
dence dynamics sampler after K = 108 steps, for Example 2.3 for α = 2.5, Σ = σ2 = 1, and
Γ = γ2, with γ = 1 and J = 10; see also p4.m in Section 5.2.2.

In order to get faster convergence when sampling the posterior distribution, we turn to
application of the pCN method. Unlike the independence dynamics sampler, this contains a
tunable parameter that can vary the size of the proposals. In particular, the possibility of
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making small moves, with resultant higher acceptance probability, makes this a more flexible
method than the independence dynamics sampler. In Figure 3.6, we show application of the
pCN sampler, again considering Example 2.3 for α = 2.5, Σ = σ2 = 1, and Γ = γ2 = 1, with
J = 10, the same parameters used in Figure 3.4.

In the case that the dynamics significantly influence the trajectory, i.e., the regime of
large Ψ or small σ, it may be the case that the standard pCN method is ineffective, due
to large effects of the G term, and the improbability of Gaussian samples being close to
samples of the prior on the dynamics. The pCN dynamics sampler, recall, acts on the space
comprising the initial condition and forcing, both of which are Gaussian under the prior, and
so may sometimes have an advantage given that pCN-type methods are based on Gaussian
proposals. The use of this method is explored in Figure 3.7 for Example 2.3 for α = 2.5,
Σ = σ2 = 1, and Γ = γ2 = 1, with J = 10.

Fig. 3.6: Trace plot and running average of the first element of v(k) for the pCN sampler after
K = 105 steps, for Example 2.3 with α = 2.5, Σ = σ2 = 1, and Γ = γ2 = 1, with J = 10; see
also p5.m in Section 5.2.3.

We now turn to variational methods; recall Theorems 3.10 and 3.12 in the stochastic and
deterministic cases respectively. In Figure 3.8a, we plot the MAP (4DVAR) estimator for
our Example 2.1, choosing exactly the same parameters and data as for Figure 2.10a, in
the case J = 102. In this case, the function Idet(· ; y) is quadratic and has a unique global
minimum. A straightforward minimization routine will easily find this: we employed standard
matlab optimization software initialized at three different points. From all three starting
points chosen, the algorithm finds the correct global minimizer.

In Figure 3.8b, we plot the MAP (4DVAR) estimator for our Example 2.4 for the case
r = 4 choosing exactly the same parameters and data as for Figure 2.13. We again employ a
matlab optimization routine, and we again initialize it at three different points. The value
obtained for our MAP estimator depends crucially on the choice of initial condition in our
minimization procedure, in particular on the choices of starting point presented: for the three
initializations shown, it is only when we start from 0.2 that we are able to find the global
minimum of Idet(v0; y). By Theorem 3.12, this global minimum corresponds to the maximum
of the posterior distribution, and we see that finding the MAP estimator is a difficult task for
this problem. Starting with the other two initial conditions displayed, we converge to one of the
many local minima of Idet(v0; y); these local minima are in fact regions of very low probability,
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Fig. 3.7: Trace plot and running average of the first element of v(k) for the pCN dynamics
sampler after K = 105 steps, for Example 2.3 with α = 2.5, Σ = σ2 = 1, and Γ = γ2 = 1,
with J = 10; see also p6.m in Section 5.2.3.

Fig. 3.8: Finding local minima of I(v0; y) for Examples 2.1 and 2.4. The values and the data
used are the same as for Figures 2.10a and 2.13b. (◦, �,�) denote three different initial con-
ditions for starting the minimization process: (−8,−2, 8) for Example 2.1 and (0.05, 0.2, 0.4)
for Example 2.4.

as we can see in Figure 2.13a. This illustrates the care required in computing 4DVAR solutions
in cases in which the forward problem exhibits sensitivity to initial conditions.

Figure 3.9 shows application of the w4DVAR method, or MAP estimator given by Theo-
rem 3.10, in the case of Example 2.3 with parameters set at J = 5, γ = σ = 0.1. In contrast
to the previous example, this is no longer a one-dimensional minimization problem: we are
minimizing I(v; y) given by (2.21) over v ∈ R

6, given the data y ∈ R
5. The figure shows that

there are at least two local minimizers for this problem, with v(1) closer to the truth than v(2),
and with I(v(1); y) considerably smaller than I(v(2); y). However, v(2) has a larger basin of
attraction for the optimization software used: many initial conditions lead to v(2), while fewer
lead to v(1). Furthermore, while we believe that v(1) is the global minimizer, it is difficult
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to state this with certainty, even for this relatively low-dimensional model. To get greater
certainty, an exhaustive and expensive search of the six-dimensional parameter space would
be needed.

Fig. 3.9: Weak constraint 4DVAR for J = 5, γ = σ = 0.1, illustrating two local minimizers
v(1) and v(2); see also p7.m in Section 5.2.5.

3.5 Bibliographic Notes

• The Kalman smoother from Section 3.1 leads to a system of linear equations, characterized
in Theorem 3.1. These equations are of block tridiagonal form, and may be solved by LU
factorization. The Kalman filter corresponds to the LU sweep in this factorization, a fact
that was highlighted in [26].

• Section 3.2. Monte Carlo Markov chain methods have a long history, initiated in the 1953
paper [107] and then generalized to an abstract formulation in the 1970 paper [66]. The
subject is presented from an algorithmic point of view in [92]. Theorem 3.3 is contained in
[108], and that reference also contains many other convergence theorems for Markov chains;
in particular, we note that it is often possible to increase substantially the class of functions
ϕ to which the theorem applies by means of Lyapunov function techniques, which control
the tails of the probability distribution. The specific form of the pCN-MCMC method
that we introduce here has been chosen to be particularly effective in high dimensions;
see [35] for an overview, [18] for the introduction of pCN and other methods for sampling
probability measures in infinite dimensions in the context of conditioned diffusions, and
[34] for an application to a data-assimilation problem.
The key point about pCN methods is that the proposal is reversible with respect to an
underlying Gaussian measure. Even in the absence of data, if Ψ �= 0, then this Gaussian
measure is far from the measure governing the actual dynamics. In contrast, still in the
absence of data, this Gaussian measure is precisely the measure governing the noise and
initial condition, giving the pCN dynamics sampler a natural advantage over the standard
pCN method. In particular, notice that the acceptance probability is now determined only
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by the model–data misfit for the pCN dynamics sampler, and does not have to account
for incorporation of the dynamics as it does in the original pCN method; this typically
improves the acceptance rate of the pCN dynamics sampler over the standard pCN method.
Therefore, this method may be preferable, particularly in the case of unstable dynamics.
The pCN dynamics sampler was introduced in [34] and further tested in [69]; it shows
considerable promise.
The subject of MCMC methods is an enormous one, to which we cannot do justice in
this brief presentation. There are two relevant time scales for the Markov chain: the burn-
in time, which determines the time to reach the part of state-space where most of the
probability mass is concentrated, and the mixing time, which determines the time taken
to fully explore the probability distribution. Our brief overview would not be complete
without a cursory discussion of convergence diagnostics [54], which attempt to ensure that
the Markov chain is run long enough to have both burnt in and mixed. While none of the
diagnostics are foolproof, there are many simple tests that can and should be undertaken.
The first is simply to study (as we have done in this section) trace plots of quantities of
interest (components of the solution, acceptance probabilities) and the running averages of
these quantities of interest. More sophisticated diagnostics are also available. For example,
comparison of the within-chain and between-chain variances of multiple chains beginning
from overdispersed initial conditions is advocated in the works [55, 25]. The authors of
those works advise that one apply a range of tests based on comparing inferences from
individual chains and a mixture of chains. These and other more sophisticated diagnostics
are not considered further here, and the reader is referred to the cited works for further
details and discussion.

• Section 3.3. Variational methods, known as 4DVAR in the meteorology community and
widely used in practice, have the distinction, when compared with the ad hoc non-Gaussian
filters described in the next chapter, which are also widely used in practice in their EnKF
and 3DVAR formulations, of being well founded statistically: they correspond to the max-
imum a posteriori estimator (MAP estimator) for the fully Bayesian posterior distribution
on model state given data [78]. See [151] and the references therein for a discussion of the
applied context; see [43] for a more theoretical presentation, including connections to the
Onsager–Machlup functional arising in the theory of diffusion processes. The European
Centre for Medium-Range Weather Forecasts (ECMWF) runs a weather prediction code
based on spectral approximation of continuum versions of Newton’s balance laws, together
with various subgrid scale models. Initialization of this prediction code is based on the use
of 4DVAR-like methods. The conjunction of this computational forward model and the use
of 4DVAR to incorporate data results in the best weather predictor worldwide, according
to a widely adopted metric by which the prediction skill of forecasts is measured. The sub-
ject of algorithms for optimization, which of course underpins variational methods, is vast,
and we have not attempted to cover it here; we mention briefly that many methods use
first-derivative information (for example steepest-descent methods) and second-derivative
information (Newton methods); the reader is directed to [112] for details. Derivatives can
also be useful in making MCMC proposals, leading to the Langevin and the hybrid Monte
Carlo methods, for example; see [124] and the references therein.
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3.6 Exercises

1. Consider the posterior distribution on the initial condition, given by Theorem 2.11, in the
case of deterministic dynamics. In the case of Example 2.4, program p2.m plots the prior
and posterior distributions for this problem for data generated with true initial condition
v0 = 0.1. Why is the posterior distribution concentrating much closer to 0.9 than to the
true initial condition at 0.1? Change the mean of the prior from 0.7 to 0.3. What do you
observe regarding the effect on the posterior? Explain what you observe. Illustrate your
findings with graphics.

2. Consider the posterior distribution on the initial condition, given by Theorem 2.11, in the
case of deterministic dynamics. In the case of Example 2.4, program p3.m approximates
the posterior distribution for this problem for data generated with true initial condition
v0 = 0.3. Why is the posterior distribution in this case approximately symmetric about
0.5? What happens if the mean of the prior is changed from 0.5 to 0.1? Explain what you
observe. Illustrate your findings with graphics.

3. Consider the posterior distribution on the initial condition, given by Theorem 2.11, in the
case of deterministic dynamics. In the case of Example 2.4, program p3.m approximates
the posterior distribution for this problem. Modify the program so that the prior and
data are the same as for the first exercise in this section. Compare the approximation
to the posterior obtained by use of program p3.m with the true posterior as computed
by program p2.m. Carry out similar comparisons for different choices of prior, ensuring
that programs p2.m and p3.m share the same prior and the same data. In all cases,
experiment with the choice of the parameter β in the proposal distribution within p3.m,
and determine its effect on the displayed approximation of the true posterior computed
from p2.m. Illustrate your findings with graphics.

4. Consider the posterior distribution on the initial condition, given by Theorem 2.11, in the
case of deterministic dynamics. In the case of Example 2.4, program p3.m approximates
the posterior distribution for this problem. Modify the program so that it applies to
Example 2.3. Experiment with the choice of the parameter J , which determines the length
of the Markov chain simulation, within p3.m. Illustrate your findings with graphics.

5. Consider the posterior distribution on the signal, given by Theorem 2.8, in the case
of stochastic dynamics. In the case of Example 2.3, program p4.m approximates the
posterior distribution for this problem, using the independence dynamics sampler. Run
this program for a range of values of γ. Report and explain the effect of γ on the acceptance
probability curves.

6. Consider the posterior distribution on the signal, given by Theorem 2.8, in the case
of stochastic dynamics. In the case of Example 2.3, program p5.m approximates the
posterior distribution for this problem, using the pCN sampler. Run this program for a
range of values of γ. Report and explain the effect of β on the acceptance probability
curves.

7. Consider the posterior distribution on the signal, given by Theorem 2.8, in the case of
stochastic dynamics. In the case of Example 2.3, program p6.m approximates the pos-
terior distribution for this problem, using the pCN dynamics sampler. Run this program
for a range of values of γ. Report and explain the effect of σ and of J on the acceptance
probability curves.

8. Consider the MAP estimator for the posterior distribution on the signal, given by
Theorem 3.10, in the case of stochastic dynamics. Program p7.m finds the MAP esti-
mator for Example 2.3. Increase J to 50 and display your results graphically. Now repeat
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your experiments for the values γ = 0.01, 0.1, and 10 and display and discuss your findings.
Repeat the experiments using the “truth” as the initial condition for the minimization.
What effect does this have? Explain this effect.

9. Prove Theorem 3.12.
10. Consider application of the RWM proposal (3.15), applied in the case of stochastic

dynamics. Find the form of the Metropolis–Hastings acceptance probability in this case.
11. Consider the family of probability measures με on R with Lebesgue density proportional

to exp
(−V ε(u)

)
with V ε(u) given by (3.23). Prove that the family of measure με is locally

Lipschitz in the Hellinger metric and in the total variation metric.



Chapter 4

Discrete Time: Filtering Algorithms

In this chapter, we describe various algorithms for the filtering problem. Recall from Sec-
tion 2.4 that filtering refers to the sequential update of the probability distribution on the
state given the data, as data is acquired, and that Yj = {y�}j�=1 denotes the data accumulated
up to time j. The filtering update from time j to time j + 1 may be broken into two steps:
prediction, which is based on the equation for the state evolution, using the Markov kernel
for the stochastic or deterministic dynamical system that maps P(vj |Yj) into P(vj+1|Yj); and
analysis, which incorporates data via Bayes’s formula and maps P(vj+1|Yj) into P(vj+1|Yj+1).
All but one of the algorithms we study (the optimal proposal version of the particle filter)
will also reflect these two steps.

We begin in Section 4.1 with the Kalman filter, which provides an exact algorithm to
determine the filtering distribution for linear problems with additive Gaussian noise. Since
the filtering distribution is Gaussian in this case, the algorithm comprises an iteration that
maps the mean and covariance from time j to time j + 1. In Section 4.2, we show how the
idea of Kalman filtering may be used to combine a dynamical model with data for nonlinear
problems; in this case, the posterior distribution is not Gaussian, but the algorithms proceed
by invoking a Gaussian ansatz in the analysis step of the filter. This results in algorithms that
do not provably approximate the true filtering distribution in general; in various forms, they
are, however, robust to use in high dimensions. In Section 4.3, we introduce the particle filter
methodology, which leads to provably accurate estimates of the true filtering distribution
but which is, in its current forms, poorly behaved in high dimensions. The algorithms in
Sections 4.1–4.3 are concerned primarily with stochastic dynamics, but setting Σ = 0 yields
the corresponding algorithms for deterministic dynamics. In Section 4.4, we study the long-
time behavior of some of the filtering algorithms introduced in the previous sections. Finally,
in Section 4.5, we present some numerical illustrations and conclude with bibliographic notes
and exercises in Sections 4.6 and 4.7.

For clarity of exposition, we again recall the form of the data assimilation problem. The
signal is governed by the model of equations (2.1):

vj+1 = Ψ(vj) + ξj , j ∈ Z
+,

v0 ∼ N(m0, C0),
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where ξ = {ξj}j∈N is an i.i.d. sequence, independent of v0, with ξ0 ∼ N(0, Σ). The data is
given by equation (2.2):

yj+1 = h(vj+1) + ηj+1, j ∈ Z
+,

where h : Rn → R
m and η = {ηj}j∈Z+ is an i.i.d. sequence, independent of (v0, ξ), with

η1 ∼ N(0, Γ ).

4.1 Linear Gaussian Problems: The Kalman Filter

This algorithm provides a sequential method for updating the filtering distribution P(vj |Yj)
from time j to time j+1, when Ψ and h are linear maps. In this case, the filtering distribution
is Gaussian, and it can be characterized entirely through its mean and covariance. To see
this, we note that the prediction step preserves Gaussianity by Lemma 1.5; the analysis
step preserves Gaussianity because it is an application of Bayes’s formula (1.7), and then
Lemma 1.6 establishes the required Gaussian property, since the log pdf is quadratic in the
unknown.

To be concrete, we let
Ψ(v) =Mv, h(v) = Hv (4.2)

for matrices M ∈ R
n×n, H ∈ R

m×n. We assume that m ≤ n and Rank(H) = m. We let
(mj , Cj) denote the mean and covariance of vj |Yj , noting that this entirely characterizes the

random variable, since it is Gaussian. We let (m̂j+1, Ĉj+1) denote the mean and covariance
of vj+1|Yj , noting that this, too, completely characterizes the random variable, since it is also
Gaussian. We now derive the map (mj , Cj) �→ (mj+1, Cj+1), using the intermediate variables

(m̂j+1, Ĉj+1), so that we may compute the prediction and analysis steps separately. This gives
the Kalman filter in a form in which the update is expressed in terms of precision rather than
covariance.

Theorem 4.1. Assume that C0, Γ,Σ > 0. Then Cj > 0 for all j ∈ Z
+, and

C−1
j+1 = (MCjM

T +Σ)−1 +HTΓ−1H, (4.3a)

C−1
j+1mj+1 = (MCjM

T +Σ)−1Mmj +HTΓ−1yj+1. (4.3b)

Proof We assume for the purposes of induction that Cj > 0, noting that this is true for j = 0
by assumption. The prediction step is determined by (2.1) in the case Ψ(·) =M ·:

vj+1 =Mvj + ξj , ξj ∼ N(0, Σ).

From this, it is clear that

E(vj+1|Yj) = E(Mvj |Yj) + E(ξj |Yj).

Since ξj is independent of Yj , we have

m̂j+1 =Mmj . (4.4)

Similarly,

E
(
(vj+1 − m̂j+1)⊗ (vj+1 − m̂j+1)|Yj

)
= E

(
M(vj −mj)⊗M(vj −mj)|Yj

)
+ E

(
ξj ⊗ ξj |Yj

)

+ E
(
M(vj −mj)⊗ ξj |Yj

)
+ E

(
ξj ⊗M(vj −mj)|Yj

)
.
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Again, since ξj is independent of Yj and vj , we have

Ĉj+1 =ME((vj −mj)⊗ (vj −mj)|Yj)MT +Σ

=MCjM
T +Σ. (4.5)

Note that Ĉj+1 > 0, because Cj > 0 by the inductive hypothesis and Σ > 0 by assumption.
Now we consider the analysis step. By (2.31), which is just Bayes’s formula, and using

Gaussianity, we have

exp
(
−1

2

∣
∣v −mj+1

∣
∣2
Cj+1

)
∝ exp

(
−1

2

∣
∣Γ− 1

2 (yj+1 −Hv)
∣
∣2 − 1

2

∣
∣Ĉ− 1

2
j+1(v − m̂j+1)

∣
∣2
)
(4.6a)

= exp
(
−1

2

∣
∣yj+1 −Hv

∣
∣2
Γ
− 1

2

∣
∣v − m̂j+1

∣
∣2
Ĉj+1

)
. (4.6b)

Equating quadratic terms in v gives, since Γ > 0 by assumption,

C−1
j+1 = Ĉ−1

j+1 +HTΓ−1H, (4.7)

and equating linear terms in v gives1

C−1
j+1mj+1 = Ĉ−1

j+1m̂j+1 +HTΓ−1yj+1. (4.8)

Substituting the expressions (4.4) and (4.5) for (m̂j+1, Ĉj+1) gives the desired result. It re-
mains to verify that Cj+1 > 0. From (4.7), it follows, since Γ−1 > 0 by assumption and

Ĉj+1 > 0 (proved above), that C−1
j+1 > 0. Hence Cj+1 > 0, and the induction is complete. �

We may now reformulate the Kalman filter using covariances directly, rather than using
precisions.

Corollary 4.2. Under the assumptions of Theorem 4.1, the formulas for the Kalman filter
given there may be rewritten as follows:

dj+1 = yj+1 −Hm̂j+1,

Sj+1 = HĈj+1H
T + Γ,

Kj+1 = Ĉj+1H
TS−1

j+1,

mj+1 = m̂j+1 +Kj+1dj+1,

Cj+1 = (I −Kj+1H)Ĉj+1,

with (m̂j+1, Ĉj+1) given in (4.4), (4.5).

Proof By (4.7), we have

C−1
j+1 = Ĉ−1

j+1 +HTΓ−1H,

and application of Lemma 4.4 below gives

Cj+1 = Ĉj+1 − Ĉj+1H
T (Γ +HĈj+1H

T )−1HĈj+1

=
(
I − Ĉj+1H

T (Γ +HĈj+1H
T )−1H

)
Ĉj+1

= (I − Ĉj+1H
TS−1

j+1H)Ĉj+1

= (I −Kj+1H)Ĉj+1,

1 We do not need to match the constant terms (with respect to v), since the normalization constant in
Bayes’s theorem deals with matching these.
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as required. Then the identity (4.8) gives

mj+1 = Cj+1Ĉ
−1
j+1m̂j+1 + Cj+1H

TΓ−1yj+1

= (I −Kj+1H)m̂j+1 + Cj+1H
TΓ−1yj+1. (4.9)

Now note that again by (4.7),

Cj+1(Ĉ
−1
j+1 +HTΓ−1H) = I,

so that

Cj+1H
TΓ−1H = I − Cj+1Ĉ

−1
j+1

= I − (I −Kj+1H)

= Kj+1H.

Since H has rank m, we deduce that

Cj+1H
TΓ−1 = Kj+1.

Hence (4.9) gives

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1 = m̂j+1 +Kj+1dj+1,

as required. �

Remark 4.3. The key difference between the Kalman update formulas in Theorem 4.1 and
those in Corollary 4.2 is that in the former, matrix inversion takes place in the state space,
with dimension n, while in the latter matrix, inversion takes place in the data space, with
dimension m. In many applications, m� n, since the observed subspace dimension is much
less than the state space dimension, and thus the formulation in Corollary 4.2 is frequently
employed in practice. The quantity dj+1 is referred to as the innovation at time step j + 1.
It measures the mismatch of the predicted state from the data. The matrix Kj+1 is known as
the Kalman gain. ♠

The following matrix identity was used to derive the formulation of the Kalman filter in
which inversion takes place in the data space.

Lemma 4.4. Woodbury Matrix Identity Let A ∈ R
p×p, U ∈ R

p×q, C ∈ R
q×q, and

V ∈ R
q×p. If A and C are positive, then A+ UCV is invertible, and

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1

V A−1.

4.2 Approximate Gaussian Filters

Here we introduce a family of methods, based on invoking a minimization principle that
underlies the Kalman filter, that has a natural generalization to non-Gaussian problems. The
update equation for the Kalman filter mean, (4.8), can be written as

mj+1 = argmin
v

Ifilter(v),
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where

Ifilter(v) :=
1

2
|yj+1 −Hv|2Γ +

1

2
|v − m̂j+1|2Ĉj+1

; (4.10)

here m̂j+1 is calculated from (4.4), and Ĉj+1 is given by (4.5). The fact that this minimization
principle holds follows from (4.6). (We note that Ifilter(·) in fact depends on j, but we suppress
explicit reference to this dependence for notational simplicity.)

While the Kalman filter itself is restricted to linear Gaussian problems, the formulation
via minimization generalizes to nonlinear problems. A natural generalization of (4.10) to the
nonlinear case is to define

Ifilter(v) :=
1

2
|yj+1 − h(v)|2Γ +

1

2
|v − m̂j+1|2Ĉj+1

, (4.11)

where

m̂j+1 = Ψ(mj) + ξj ,

and then to set

mj+1 = argmin
v

Ifilter(v).

This provides a family of algorithms for updating the mean that depend on how Ĉj+1 is
specified. In this section, we will consider several choices for this specification, and hence
several different algorithms. Notice that the minimization principle is very natural: it enforces
a compromise between fitting the model prediction m̂j+1 and the data yj+1.

For simplicity, we consider the case in which observations are linear and h(v) = Hv, leading
to the update algorithm mj �→ mj+1 defined by

m̂j+1 = Ψ(mj) + ξj , (4.12a)

Ifilter(v) =
1

2
|yj+1 −Hv|2Γ +

1

2
|v − m̂j+1)|2Ĉj+1

, (4.12b)

mj+1 = argmin
v

Ifilter(v). (4.12c)

This quadratic minimization problem is explicitly solvable, and by the arguments used in
deriving Corollary 4.2, we deduce the following update formulas:

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1, (4.13a)

Kj+1 = Ĉj+1H
TS−1

j+1, (4.13b)

Sj+1 = HĈj+1H
T + Γ. (4.13c)

The next three subsections correspond to algorithms derived in this way, namely by mini-
mizing Ifilter(v), but corresponding to different choices of the model covariance Ĉj+1. We also
note that in the first two of these subsections, we choose ξj ≡ 0 in equation (4.12a), so that
the prediction is made by the noise-free dynamical model; however, that is not a necessary
choice, and while it is natural for the extended Kalman filter for 3DVAR, including random
effects in (4.12a) is also reasonable in some settings. Likewise, the ensemble Kalman filter can
also be implemented with noise-free prediction models.

We refer to these three algorithms collectively as approximate Gaussian filters. This is
because they invoke a Gaussian approximation when they update the estimate of the signal
via (4.12b). Specifically, this update is the correct update for the mean if the assumption that

P(vj+1|Yj) = N
(
m̂j+1), Ĉj+1) is invoked for the prediction step. In general, the approximation

implied by this assumption will not be a good one, and this can invalidate the statistical
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accuracy of the resulting algorithms. However, the resulting algorithms may still have desirable
properties in terms of signal estimation; in Section 4.4.2, we will demonstrate that this is
indeed so.

4.2.1. 3DVAR

This algorithm is derived from (4.13) by simply fixing the model covariance Ĉj+1 ≡ Ĉ for
all j. Thus we obtain

m̂j+1 = Ψ(mj), (4.14a)

mj+1 = (I −KH)m̂j+1 +Kyj+1, (4.14b)

K = ĈHTS−1, S = HĈHT + Γ. (4.14c)

The nomenclature 3DVAR refers to the fact that the method is variational (it is based on the
minimization principle underlying all of the approximate Gaussian methods), and it works
sequentially at each fixed time j; as such, the minimization, when applied to practical physical
problems, is over three spatial dimensions. This should be contrasted with 4DVAR, which
involves a minimization over all spatial dimensions, as well as time—four dimensions in all.

We now describe two methodologies that generalize 3DVAR by employing model covari-
ances that evolve from step j to step j + 1: the extended and ensemble Kalman filters. We
present both methods in basic form but conclude the section with some discussion of methods
widely used in practice to improve their practical performance.

4.2.2. Extended Kalman Filter

The idea of the extended Kalman filter (ExKF) is to propagate covariances according to the
linearization of (2.1) and to propagate the mean using (2.3). Thus we obtain, from modification
of Corollary 4.2 and (4.4), (4.5),

Prediction

{
m̂j+1 = Ψ(mj),

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T +Σ.

Analysis

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sj+1 = HĈj+1H
T + Γ,

Kj+1 = Ĉj+1H
TS−1

j+1,

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1,

Cj+1 = (I −Kj+1H)Ĉj+1.

4.2.3. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) generalizes the idea of approximate Gaussian filters in
a significant way: rather than using the minimization procedure (4.12) to update a single
estimate of the mean, it is used to generate an ensemble of particles all of which satisfy the
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model/data compromise inherent in the minimization; the mean and covariance used in the
minimization are then estimated using this ensemble, thereby adding further coupling to the
particles, in addition to that introduced by the data.

The EnKF is executed in a variety of ways, and we begin by describing one of these, the
perturbed observation EnKF:

Prediction

⎧
⎪⎪⎨

⎪⎪⎩

v̂
(n)
j+1 = Ψ(v

(n)
j ) + ξ

(n)
j , n = 1, . . . , N,

m̂j+1 = 1
N

∑N
n=1 v̂

(n)
j+1,

Ĉj+1 = 1
N−1

∑N
n=1(v̂

(n)
j+1 − m̂j+1)(v̂

(n)
j+1 − m̂j+1)

T .

Analysis

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sj+1 = HĈj+1H
T + Γ,

Kj+1 = Ĉj+1H
TS−1

j+1,

v
(n)
j+1 = (I −Kj+1H)v̂

(n)
j+1 +Kj+1y

(n)
j+1, n = 1, . . . , N,

y
(n)
j+1 = yj+1 + η

(n)
j+1, n = 1, . . . , N.

Here η
(n)
j are i.i.d. draws from N(0, Γ ), and ξ

(n)
j are i.i.d. draws from N(0, Σ). “Perturbed

observation” refers to the fact that each particle sees an observation perturbed by an inde-
pendent draw from N(0, Γ ). This procedure gives the Kalman filter in the linear case in the
limit of an infinite ensemble. Even though the algorithm is motivated through our general
approximate Gaussian filters framework, notice that the ensemble is not prescribed to be
Gaussian. Indeed, it evolves under the full nonlinear dynamics in the prediction step. This
fact, together with the fact that covariance matrices are not propagated explicitly, other than
through the empirical properties of the ensemble, has made the algorithm very appealing to
practitioners.

Another way to motivate the preceding algorithm is to introduce the family of cost functions

Ifilter,n(v) :=
1

2
|y(n)j+1 −Hv|2Γ +

1

2
|v − v̂(n)j+1|2Ĉj+1

. (4.15)

The analysis step proceeds to determine the ensemble {v(n)j+1}Nn=1 by minimizing Ifilter,n with

n = 1, · · · , N. The set {v̂(n)j+1}Nn=1 is found from running the prediction step using the fully

nonlinear dynamics. These minimization problems are coupled through Ĉj+1, which depends

on the entire set of {v̂(n)j }Nn=1. The algorithm thus provides update rules of the form

{v(n)j }Nn=1 �→ {v̂(n)j+1}Nn=1, {v̂(n)j+1}Nn=1 �→ {v(n)j+1}Nn=1, (4.16)

defining approximations of the prediction and analysis steps respectively.
It is then natural to think of the algorithm making the approximations

μj ≈ μNj =
1

N

N∑

n=1

δ
v
(n)
j
, μ̂j+1 ≈ μNj =

1

N

N∑

n=1

δ
v̂
(n)
j+1
. (4.17)

Thus we have a form of Monte Carlo approximation of the distribution of interest. However,
except for linear problems, the approximations given do not, in general, converge to the true
distributions μj and μ̂j as N →∞.



86 4 Discrete Time: Filtering Algorithms

4.2.4. Ensemble Square-Root Kalman Filter

We now describe another popular variant of the EnKF. The idea of this variant is to define
the analysis step in such a way that an ensemble of particles is produced whose empirical
covariance exactly satisfies the Kalman identity

Cj+1 = (I −Kj+1H)Ĉj+1, (4.18)

which relates the covariances in the analysis step to those in the prediction step. This is done
by mapping the mean of the predicted ensemble according to the standard Kalman update
and introducing a linear deterministic transformation of the differences between the particle
positions and their mean to enforce (4.18). Doing so eliminates a sampling error inherent in
the perturbed observation approach. The resulting algorithm has the following form:

Prediction

⎧
⎪⎪⎨

⎪⎪⎩

v̂
(n)
j+1 = Ψ(v

(n)
j ) + ξ

(n)
j , n = 1, . . . , N,

m̂j+1 = 1
N

∑N
n=1 v̂

(n)
j+1,

Ĉj+1 = 1
N−1

∑N
n=1(v̂

(n)
j+1 − m̂j+1)(v̂

(n)
j+1 − m̂j+1)

T ,

Analysis

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sj+1 = HĈj+1H
T + Γ,

Kj+1 = Ĉj+1H
TS−1

j+1,

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1,

v
(n)
j+1 = mj+1 + ζ

(n)
j+1.

Here the {ζ(n)j+1}Nn=1 are designed to have sample covariance Cj+1 = (I −Kj+1H)Ĉj+1. There
are several ways to do this, and we now describe one of them, referred to as the ensemble
transform Kalman filter (ETKF).

If we define

X̂j+1 =
1√
N − 1

[
v̂
(1)
j+1 − m̂j+1, . . . , v̂

(N)
j+1 − m̂j+1

]
,

then Ĉj+1 = X̂j+1X̂
T
j+1. We now seek a transformation Tj+1 such that if Xj+1 = X̂j+1T

1
2
j+1,

then

Cj+1 := Xj+1X
T
j+1 = (I −Kj+1H)Ĉj+1. (4.19)

Note that the Xj+1 (respectively the X̂j+1) correspond to Cholesky factors of the matrices

Cj+1 (respectively Ĉj+1) respectively. We may now define the {ζ(n)j+1}Nn=1 by

Xj+1 =
1√
N − 1

[
ζ
(1)
j+1, . . . , ζ

(N)
j+1

]
.

We now demonstrate how to find an appropriate transformation Tj+1. We assume that Tj+1

is symmetric and positive definite and that the standard matrix square root is employed.
Choosing

Tj+1 =
[
I + (HX̂j+1)

TΓ−1(HX̂j+1)
]−1

,

we see that
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Xj+1X
T
j+1 = X̂j+1Tj+1X̂

T
j+1

= X̂j+1

[
I + (HX̂j+1)

TΓ−1(HX̂j+1)
]−1

X̂T
j+1

= X̂j+1

{
I − (HX̂j+1)

T
[
(HX̂j+1)(HX̂j+1)

T + Γ
]−1

(HX̂j+1)

}
X̂T

j+1

= (I −Kj+1H)Ĉj+1,

as required, where the transformation between the second and third lines is justified by
Lemma 4.4. It is important to ensure that 1, the vector of all ones, is an eigenvector of the

transformation Tj+1, and hence of T
1
2
j+1, so that the mean of the ensemble is preserved. This

is guaranteed by Tj+1 as defined.

4.3 The Particle Filter

In this section, we introduce an important class of filtering methods known as particle filters.
In contrast to the filters introduced in the preceding section, the particle filter can be proved to
reproduce the true posterior filtering distribution in the large-particle limit, and as such, has
a privileged places among all the filters introduced in this book. We will describe the method
in its basic form—the bootstrap filter—and then give a proof of convergence. It is important
to appreciate that the form of particle filter introduced here is far from state-of-the-art, and
that far more sophisticated versions are used in practical applications. Nonetheless, despite
this sophistication, particle filters do not perform well in applications such as those arising in
geophysical applications of data assimilation, because the data in those applications places
very strong constraints on particle locations, making efficient algorithms very hard to design.
It is for this reason that we have introduced particle filters after the approximate Gaussian
filters introduced in the preceding section. The filters in the preceding section tend to be more
robust to data specifications. However, they all rely on the invocation of ad hoc Gaussian
assumptions in their derivation and hence do not provably produce the correct posterior
filtering distribution, notwithstanding their ability, in partially observed small-noise scenarios,
to correctly identify the signal itself, as in Theorem 4.10. Because it can provably reproduce
the correct filtering distribution, the particle filter thus plays an important role, conceptually,
even though it is not, in current form, a practical algorithm in geophysical applications. With
further improvements it may, in time, form the basis for practical algorithms in geophysical
applications.

4.3.1. The Basic Approximation Scheme

All probability measures that possess density with respect to Lebesgue measure can be ap-
proximated by a finite convex combination of Dirac probability measures; an example of this
is the Monte Carlo sampling idea that we described at the start of Chapter 3, and it also
underlies the ensemble Kalman filter of Section 4.2.3. In practice, the idea of approximation
by a convex combination of probability measures requires the determination of the locations
and weights associated with these Dirac measures. Particle filters are sequential algorithms
that use this idea to approximate the true filtering distribution P(vj |Yj).

Basic Monte Carlo, as in (3.1), and the ensemble Kalman filter, as in (4.17), correspond to
approximation by equal weights. Recall μj , the probability measure on R

n corresponding to
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the density P(vj |Yj), and μ̂j+1, the probability measure on R
n corresponding to the density

P(vj+1|Yj). The basic form of the particle filter proceeds by allowing the weights to vary and
by finding N -particle Dirac measure approximations of the form

μj ≈ μNj :=
N∑

n=1

w
(n)
j δ

v
(n)
j
, μ̂j+1 ≈ μ̂Nj+1 :=

N∑

n=1

ŵ
(n)
j+1δv̂(n)

j+1
. (4.20)

The weights must sum to 1. The approximate distribution μNj is completely defined by particle

positions v
(n)
j and weights w

(n)
j , and the approximate distribution μ̂Nj+1 is completely defined

by particle positions v̂
(n)
j+1 and weights ŵ

(n)
j+1. Thus the objective of the method is to find

update rules

{v(n)j , w
(n)
j }Nn=1 �→ {v̂(n)j+1, ŵ

(n)
j+1}Nn=1, {v̂(n)j+1, ŵ

(n)
j+1}Nn=1 �→ {v(n)j+1, w

(n)
j+1}Nn=1 (4.21)

defining the prediction and analysis approximations respectively; compare this with (4.16)
for the EnKF, where the particle weights are uniform and only the positions are updated.
Defining the updates for the particle filter may be achieved by an application of sampling for
the prediction step, and of Bayesian probability for the analysis step.

Recall the prediction and analysis formulas from (2.30) and (2.31), which can be summa-
rized as

P(vj+1|Yj) =
∫

Rn

P(vj+1|vj)P(vj |Yj)dvj , (4.22a)

P(vj+1|Yj+1) =
P(yj+1|vj+1)P(vj+1|Yj)

P(yj+1|Yj) . (4.22b)

We may rewrite (4.22) as

μ̂j+1(·) = (Pμj)(·) :=
∫

Rn

P(·|vj)μj(dvj) (4.23a)

dμj+1

dμ̂j+1
(vj+1) =

P(yj+1|vj+1)

P(yj+1|Yj) . (4.23b)

Writing the update formulas in this way is important for us, because they then make sense
in the absence of Lebesgue densities; in particular, we can use them in situations where Dirac
masses appear, as they do in our approximate probability measures. The formula (4.23b)
for the density or Radon–Nikodym derivative of μj+1 with respect to that of μ̂j+1 has a
straightforward interpretation: the right-hand side quantifies how to reweight expectations
under μ̂j+1 so that they become expectations under μj+1. To be concrete, we may write

E
μj+1ϕ(vj+1) = E

μ̂j+1

(dμj+1

dμ̂j+1
(vj+1)ϕ(vj+1)

)
.

4.3.2. Sequential Importance Resampling

The simplest particle filter, which is based on sequential importance resampling, is now de-
scribed. We begin by assuming that we have an approximation μNj given by (4.20) and explain
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how to evolve the weights {v(n)j , w
(n)
j }Nn=1 into {v(n+1)

j , w
(n+1)
j }Nn=1, via {v̂(n)j+1, ŵ

(n)
j+1}Nn=1, as

in (4.21).

Prediction. In this step, we approximate the prediction phase of the Markov chain. To do

this, we simply draw v̂
(n)
j+1 from the kernel p of the Markov chain (2.1a) started from v

(n)
j .

Thus the relevant kernel is p(vj , vv+1) = P(vj+1|vj). We then have v̂
(n)
j+1 ∼ p(v(n)j , ·). We leave

the weights of the approximation unchanged, so that ŵ
(n)
j+1 = w

(n)
j . From these new particles

and (in fact unchanged) weights, we have the particle approximation

μ̂Nj+1 =
N∑

n=1

w
(n)
j δ

v̂
(n)
j+1
. (4.24)

Analysis. In this step, we approximate the incorporation of data via Bayes’s formula. Define
gj(v) by

gj(vj+1) ∝ P(yj+1|vj+1), (4.25)

where the constant of proportionality is, for example, the normalization for the Gaussian and
is hence independent of both yj+1 and vj+1.We now apply Bayes’s formula in the form (4.23b).
Thus we obtain

μNj+1 =

N∑

n=1

w
(n)
j+1δv̂(n)

j+1
, (4.26)

where

w
(n)
j+1 = w̃

(n)
j+1

/
(

N∑

n=1

w̃
(n)
j+1

)

, w̃
(n)
j+1 = gj

(
v̂
(n)
j+1

)
w

(n)
j . (4.27)

The first equation in the preceding is required for normalization. Thus in this step, we do not
change the particle positions, but we reweight them.

Resampling. The algorithm as described is deficient in two respects, both of which can be
dealt with by introducing a resampling step into the algorithm. Firstly, the initial measure
μ0 for the true filtering distribution will not typically be made up of a combination of Dirac
measures. Secondly, the method can perform poorly if one of the particle weights approaches
1 (and then all others approach 0). The effect of the first can be dealt with by sampling
the initial measure and approximating it by an equally weighted (by N−1) sum of Dirac
measures at the samples. The second can be ameliorated by drawing a set of N particles
from the measure (4.26) and assigning weight N−1 to each; this has the effect of multiplying
particles with high weights and killing particles with low weights.

Putting together the three preceding steps leads to the following algorithm; for notational
convenience, we use Y0 to denote the empty vector (no observations at the start):

1. Set j = 0 and μN0 (dv0) = μ0(dv0).

2. Draw v
(n)
j ∼ μNj , n = 1, . . . , N .

3. Set w
(n)
j = 1/N , n = 1, . . . , N ; redefine μNj :=

∑N
n=1 w

(n)
j δ

v
(n)
j

.

4. Draw v̂
(n)
j+1 ∼ p(v(n)j |·).

5. Define w
(n)
j+1 by (4.27) and μNj+1 :=

∑N
n=1 w

(n)
j+1δv̂(n)

j+1
.

6. j + 1→ j.
7. Go to step 2.
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This algorithm is conceptually intuitive, proposing that each particle moves according to
the dynamics of the underlying model itself, and is then reweighted according to the likelihood
of the proposed particle, i.e., according to the data. This sequential importance resampling
filter is also sometimes termed the bootstrap filter. We will comment on important improve-
ments to this basic algorithm in the following section and in the bibliographic notes. Here we
prove convergence of this basic method, as the number of particles goes to infinity, thereby
demonstrating the potential power of the bootstrap filter and more sophisticated variants of it.

Recall that by (2.32), the true filtering distribution simply satisfies the iteration

μj+1 = LjPμj , μ0 = N(m0, C0), (4.28)

where P corresponds to moving a point currently at v according to the Markov kernel p(·|v)
describing the dynamics given by (2.1a), and Lj denotes the application of Bayes’s formula
with likelihood proportional to gj(·) given by (4.25). Recall also the sampling operator SN

defined by (3.1). It is then instructive to write the particle filtering algorithm that approxi-
mates (4.28) in the following form:

μNj+1 = LjS
NPμNj , μN0 = μ0. (4.29)

There is a slight trickery here in writing application of the sampling SN after application of
P , but some reflection shows that this is well justified: applying P followed by SN can be
shown, by first conditioning on the initial point and sampling with respect to P , and then
sampling over the distribution of the initial point, to be the algorithm as defined.

Comparison of (4.28) and (4.29) shows that analyzing the particle filter requires estimation
of the error induced by application of SN (the resampling error) together with estimation of
the rate of accumulation of this error in time under the application of Lj and P . We now
build the tools to allow us to do this. The operators Lj , P , and S

N map the space P(Rn) of
probability measures on R

n into itself according to the following:

(Ljμ)(dv) =
gj(v)μ(dv)∫

Rn gj(v)μ(dv)
, (4.30a)

(Pμ)(dv) =

∫

Rn

p(v′, dv)μ(dv′), (4.30b)

(SNμ)(dv) =
1

N

N∑

n=1

δv(n)(dv), v(n) ∼ μ i.i.d. . (4.30c)

Notice that both Lj and P are deterministic maps, while SN is random. Let μ = μω denote,
for each ω, an element of P(Rn). If we then assume that ω is a random variable describing the
randomness required to define the sampling operator SN , and let Eω denote expectation over
ω, then we may define a “root mean square” distance d(·, ·) between two random probability
measures μω, νω as follows:

d(μ, ν) = sup|f |∞≤1

√
Eω|μ(f)− ν(f)|2.

Here we have used the convention that μ(f) =
∫
Rn f(v)μ(dv) for measurable f : Rn → R, and

similar for ν. Furthermore,

|f |∞ = sup
u
|f(u)|.
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This distance indeed generates a metric, and in particular, satisfies the triangle inequality.
Note also that in the absence of randomness within the measures, the metric satisfies d(μ, ν) =
2dTV(μ, ν), by (1.12); that is, it reduces to the total variation metric. In our context, the
randomness within the probability measures comes from the sampling operator SN used to
define the numerical approximation.

Theorem 4.5. We assume in the following that there exists κ ∈ (0, 1] such that for all v ∈ R
n

and j ∈ N,

κ ≤ gj(v) ≤ κ−1.

Then

d(μNJ , μJ ) ≤
J∑

j=1

(2κ−2)j
1√
N
.

Proof The desired result is proved below in a straightforward way from the following three
facts, whose proof we postpone to three lemmas at the end of the section:

sup
μ∈P(Rn)

d(SNμ, μ) ≤ 1√
N
, (4.31a)

d(Pν, Pμ) ≤ d(ν, μ), (4.31b)

d(Ljν, Ljμ) ≤ 2κ−2d(ν, μ). (4.31c)

By the triangle inequality, we have, for νNj = PμNj ,

d(μNj+1, μj+1) = d(LjS
NPμNj , LjPμj)

≤ d(LjPμ
N
j , LjPμj) + d(LjS

NPμNj , LjPμ
N
j )

≤ 2κ−2
(
d(μNj , μj) + d(SNνNj , ν

N
j )
)

≤ 2κ−2
(
d(μNj , μj) +

1√
N

)
.

Iterating, after noting that μN0 = μ0, gives the desired result. �

Remark 4.6. This important theorem shows that the particle filter reproduces the true filter-
ing distribution in the large-particle limit. We make some comments about this.

• This theorem shows that at every fixed discrete time j, the filtering distribution μj is well
approximated by the bootstrap filtering distribution μNj in the sense that as the number of
particles N goes to∞, the approximating measure converges to the true measure. However,
since κ < 1, the number of particles required to decrease the upper bound on the error
beneath a specified tolerance grows with J .

• If the likelihoods have a small lower bound, then the constant in the convergence proof may
be prohibitively expensive, requiring an enormous number of particles to obtain a small
error. This is similar to the discussion concerning the independence dynamics sampler in
Section 3.4, where we showed that large values in the potential Φ lead to slow convergence
of the Markov chain, and the resultant need for a large number of samples.

• In fact, in many applications, the likelihoods gj may not be bounded from above or below,
uniformly in j, and more refined analysis is required. However, if the Markov kernel P
is ergodic, then it is possible to obtain bounds in which the error constant arising in the
analysis has milder growth with respect to J .
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• Considering the case of deterministic dynamics shows just how difficult it may be to make
the theorem applicable in practice: if the dynamics is deterministic, then the original set

of samples from μ0, {v(n)0 }Nn=1, give rise to a set of particles v
(n)
j = Ψ(j)(v

(n)
0 ); in other

words, the particle positions are unaffected by the data. This is clearly a highly undesirable
situation in general, since there is no reason at all why the pushforward under the dynamics
of the initial measure μ0 should have substantial overlap with the filtering distribution for
a given fixed data set. Indeed, for chaotic dynamical systems, one would expect that it
does not have such overlap, since the pushforward measure will be spread over the global
attractor, while the data will, at fixed time, correspond to a single point on the attractor.
This example motivates the improved proposals of the next section.

♠
Before describing improvements to the basic particle filter, we prove the three lemmas

underlying the convergence proof.

Lemma 4.7. The sampling operator satisfies

sup
μ∈P(Rn)

d(SNμ, μ) ≤ 1√
N
.

Proof Let ν be an element of P(Rn) and {v(n)}Nn=1 i.i.d. with v(1) ∼ ν. In this proof, the
randomness in the measure SN arises from these samples {v(n)}Nn=1, and expectation over
this randomness is denoted by E. Then

SNν(f) =
1

N

N∑

n=1

f
(
v(n)

)
,

and defining f = f − ν(f), we deduce that

SNν(f)− ν(f) = 1

N

N∑

n=1

f
(
v(n)

)
.

It is straightforward to see that

Ef
(
v(n)

)
f
(
v(l)
)
= δnlE

∣
∣
∣f
(
v(n)

)∣∣
∣
2

.

Furthermore, for |f |∞ ≤ 1,

E

∣
∣
∣f
(
v(1)
)∣∣
∣
2

= E

∣
∣
∣f
(
v(1)
)∣∣
∣
2

−
∣
∣
∣Ef

(
v(1)
)∣∣
∣
2

≤ 1.

It follows that for |f |∞ ≤ 1,

E
∣
∣ν(f)− SNν(f)

∣
∣2 =

1

N2

N∑

n=1

E

∣
∣
∣f
(
v(n)

)∣∣
∣
2

≤ 1

N
.

Since the result is independent of ν, we may take the supremum over all probability measures
and obtain the desired result. �
Lemma 4.8. Since P is a Markov kernel, we have

d(Pν, Pν′) ≤ d(ν, ν′).
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Proof Define

q(v′) =
∫

Rn

p(v′, v)f(v)dv = E(v1|v0 = v′),

that is, the expected value of f under one step of the Markov chain given by (2.1a), started
from v′. Clearly, for |f |∞ ≤ 1,

|q(v′)| ≤
∫

Rn

p(v′, dv)|f(v) ≤
∫

Rn

p(v′, dv) = 1.

Thus
|q|∞ ≤ sup

v
|q(v)| ≤ 1.

Note that

ν(q) = E(v1|v0 ∼ ν) =
∫

Rn

∫

Rn

p(v′, v)f(v)ν(dv′) dv

=

∫

Rn

(∫

Rn

p(v′, v)ν(dv′)
)
f(v)dv = Pν(f).

Thus Pν(f) = ν(q), and it follows that

|Pν(f)− Pν′(f)| = |ν(q)− ν′(q)|.

Thus

d(Pν, Pν′) = sup
|f |∞≤1

(
E
ω|Pν(f)− Pν′(f)|2

) 1
2

≤ sup
|q|∞≤1

(
E
ω|ν(q)− ν′(q)|2

) 1
2

= d(ν, ν′),

as required. �
Lemma 4.9. Under the assumptions of Theorem 4.5, we have

d(Ljν, Ljμ) ≤ 2κ−2d(ν, μ).

Proof Notice that for |f |∞ <∞, we can rewrite

(Ljν)(f)− (Ljμ)(f) =
ν(fgj)

ν(gj)
− μ(fgj)

μ(gj)
(4.32a)

=
ν(fgj)

ν(gj)
− μ(fgj)

ν(gj)
+
μ(fgj)

ν(gj)
− μ(fgj)

μ(gj)
(4.32b)

=
κ−1

ν(gj)
[ν(κfgj)− μ(κfgj)] + μ(fgj)

μ(gj)

κ−1

ν(gj)
[μ(κgj)− ν(κgj)]. (4.32c)

Now notice that ν(gj)
−1 ≤ κ−1 and that μ(fgj)/μ(gj) ≤ 1, since the expression corresponds

to an expectation with respect to measure found from μ by reweighting with likelihood pro-
portional to gj . Thus

|(Ljν)(f)− (Ljμ)(f)| ≤ κ−2|ν(κfgj)− μ(κfgj)|+ κ−2|ν(κgj)− μ(κgj)|.
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Since |κgj |∞ ≤ 1, it follows that |κfgj |∞ and hence that

E
ω|(Ljν)(f)− (Ljμ)(f)|2 ≤ 4κ−4 sup

|h|∞≤1

E
ω|ν(h)− μ(h)|2.

The desired result follows. �

4.3.3. Improved Proposals

In the particle filter described in the previous section, we propose according to the underlying
unobserved dynamics, and then apply Bayes’s formula to incorporate the data. The final point
in Remark 4.6 demonstrates that this may result in a very poor set of particles with which
to approximate the filtering distribution. Cleverer proposals, which use the data, can lead to
improved performance, and we outline this methodology here.

Instead of moving the particles {v(n)j }Nn=1 according to the Markov kernel P , we use a

Markov kernel Qj with density Q(vj+1|vj , Yj+1). The weights w
(n)
j+1 are found, as before, by

applying Bayes’s formula for each particle and then weighting appropriately as in (4.27):

w̃
(n)
j+1 = w

(n)
j

P

(
yj+1|v̂(n)j+1

)
P

(
v̂
(n)
j+1|v(n)j

)

Q

(
v̂
(n)
j+1|v(n)j , Yj+1

) , (4.33a)

w
(n)
j+1 = w̃

(n)
j+1

/
(

N∑

n=1

w̃
(n)
j+1

)

. (4.33b)

The choice

Q

(
vj+1|v(n)j , Yj+1

)
= P

(
vj+1|v(n)j

)

results in the bootstrap filter from the preceding subsection. In the more general case, the
approach results in the following algorithm:

1. Set j = 0 and μN0 (v0)dv0 = P(v0)dv0.

2. Draw v
(n)
j ∼ μNj , n = 1, . . . , N .

3. Set w
(n)
j = 1/N , n = 1, . . . , N .

4. Draw v̂
(n)
j+1 ∼ Q(·|v(n)j+1, Yj+1).

5. Define w
(n)
j+1 by (4.33) and μNj+1 = P

N (vj+1|Yj+1) by (4.26).
6. j + 1→ j.
7. Go to step 2.

We note that the normalization constants in (4.33a), here assumed known in the definition
of the reweighting, are not, of course, needed. The so-called optimal proposal is found by
choosing

Q

(
vj+1|v(n)j , Yj+1

)
≡ P

(
vj+1|v(n)j , yj+1

)
,

which results in

w̃
(n)
j+1 = w

(n)
j P

(
yj+1|v(n)j

)
. (4.34)
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The above can be seen by observing that the definition of conditional probability gives

P

(
yj+1|v̂(n)j+1

)
P

(
v̂
(n)
j+1|v(n)j

)
= P

(
yj+1, v̂

(n)
j+1|v(n)j

)

= P

(
v̂
(n)
j+1|v(n)j , yj+1

)
P

(
yj+1|v(n)j

)
.

(4.35)

Substituting the optimal proposal into (4.33) then immediately gives (4.34).
This small difference from the bootstrap filter may seem trivial at first glance, and at the

potentially large cost of sampling from Q. However, in the case of nonlinear Gaussian Markov
models that we study here, the distribution and the weights are given in closed form. If the
dynamics is highly nonlinear or the model noise is larger than the observational noise, then the
variance of the weights for the optimal proposal may be much smaller than for the standard
proposal. The corresponding particle filter will be referred to with the acronym SIRS(OP) to
indicate the optimal proposal. For deterministic dynamics, the optimal proposal reduces to
the standard proposal.

4.4 Large-Time Behavior of Filters

With the exception of the Kalman filter for linear problems and the particle filter in the
general case, the filtering methods presented in this chapter do not, in general, give accurate
approximations of the true posterior distribution; in particular, the approximate Gaussian
filters do not perform well as measured by the Bayesian quality assessment test of Section 2.7.
However, they may perform well as measured by the signal estimation quality assessment test,
and the purpose of this section is to demonstrate this fact.

More generally, an important question concerning filters is their behavior when iterated
over long times and in particular, their ability to recover the true signal underlying the data if
iterated for long enough, even when initialized far from the truth. In this section, we present
some basic large-time asymptotic results for filters to illustrate the key issue that affects the
ability of filters to accurately recover the signal when iterated for long enough. The main
idea is that the data must be sufficiently rich to stabilize any inherent instabilities within the
underlying dynamical model (2.1); in rough terms, it is necessary to observe only the unstable
directions, since the dynamics of the model itself will enable recovery of the true signal within
the space spanned by the stable directions. We illustrate this idea first, in Section 4.4.1, for
the explicitly solvable case of the Kalman filter in one dimension, and then, in Section 4.4.2,
for the 3DVAR method.

4.4.1. The Kalman Filter in One Dimension

We consider the case of one-dimensional dynamics with

Ψ(v) = λv, h(v) = v,

while we will also assume that

Σ = σ2, Γ = γ2.
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With these definitions, equations (4.3a,b) become

1

cj+1
=

1

σ2 + λ2cj
+

1

γ2
, (4.36a)

mj+1

cj+1
=

λmj

σ2 + λ2cj
+

1

γ2
yj+1, (4.36b)

which, after some algebraic manipulation, give

cj+1 = g(cj), (4.37a)

mj+1 =

(
1− cj+1

γ2

)
λmj +

cj+1

γ2
yj+1, (4.37b)

where we have defined

g(c) :=
γ2(λ2c+ σ2)

γ2 + λ2c+ σ2
. (4.38)

We wish to study the behavior of the Kalman filter as j → ∞, i.e., when more and more
data points are assimilated into the model. Note that the covariance evolves independently
of the data {yj}j∈Z+ and satisfies an autonomous nonlinear dynamical system. However, it is

of interest to note that if σ2 = 0, then the dynamical system for c−1
j is linear.

We now study the asymptotic properties of this map. The fixed points c
 of (4.37a) satisfy

c
 =
γ2(λ2c
 + σ2)

γ2 + λ2c
 + σ2
, (4.39)

and thus solve the quadratic equation

λ2(c
)2 +
(
γ2(1− λ2) + σ2

)
c
 − γ2σ2 = 0.

We see that provided λγσ �= 0, one root is positive and one negative. The roots are given by

c
± =
−(γ2 + σ2 − γ2λ2)±√(γ2 + σ2 − γ2λ2)2 + 4λ2γ2σ2

2λ2
. (4.40)

We observe that the update formula for the covariance ensures that provided c0 ≥ 0, then
cj ≥ 0 for all j ∈ N. It also demonstrates that cj ≤ γ2 for all j ∈ Z

+, so that the variance
of the filter is no larger than the variance in the data. We may hence fix our attention on
nonnegative covariances, knowing that they are also uniformly bounded by γ2. We will now
study the stability of the nonnegative fixed points.

We begin with the case σ = 0, which corresponds to deterministic dynamics and for which
the dynamics of c−1

j is linear. In this case, we obtain

c
+ = 0, c
− =
γ2(λ2 − 1)

λ2

and

g′(c
+) = λ2, g′(c
−) = λ−2,

which implies that when λ2 < 1, c
+ is an asymptotically stable fixed point, while when
λ2 > 1, c
− is an asymptotically stable fixed point. When |λ| = 1, the two roots are coincident
at the origin and neutrally stable. Using the aforementioned linearity, for the case σ = 0 it is
possible to solve (4.36a) to obtain for λ2 �= 1,
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1

cj
=

(
1

λ2

)j
1

c0
+

1

γ2

[(
1
λ2

)j − 1
1
λ2 − 1

]

. (4.41)

This explicit formula shows that the fixed point c
+ (respectively c
−) is globally asymptotically
stable, and exponentially attracting on R

+, when λ2 < 1 (respectively λ2 > 1). Notice also
that c
− = O(γ2), so that when λ2 > 1, the asymptotic variance of the filter scales as the
observational noise variance. Furthermore, when λ2 = 1, we may solve (4.36a) to obtain

1

cj
=

1

c0
+

j

γ2
,

showing that c
− = c
+ = 0 is globally asymptotically stable on R
+ but is only algebraically

attracting.
We now study the stability of the fixed points c
+ and c
− in the case of σ2 > 0, corresponding

to the case in which the dynamics are stochastic. To this end, we prove some bounds on g′(c
)
that will also be useful when we study the behavior of the error between the true signal and
the estimated mean; here, and in what follows in the remainder of this example, a prime
denotes differentiation with respect to c. We begin by noting that

g(c) = γ2 − γ4

γ2 + λ2c+ σ2
, (4.42)

and so

g′(c) =
λ2γ4

(γ2 + λ2c+ σ2)2
.

Using the fact that c
 satisfies (4.39) together with equation (4.42), we obtain

g′(c
) =
1

λ2
(c
)2

(
c
 + σ2

λ2

)2 and g′(c
) = λ2
(
1− c


γ2

)2

.

We can now see that from the first equation, we obtain the following two bounds, since σ2 > 0:

g′(c
) < λ−2, for λ ∈ R, and g′(c
) < 1, for λ2 = 1,

while from the second equality and the fact that since c
 satisfies (4.39), c
 < γ2, we obtain

g′(c
) < λ2

when c
 > 0. We thus conclude that when σ2 > 0, the fixed point c
+ of (4.37a) is always
stable independently of the value of the parameter λ.

Limiting covariance for σ2 = 0 Limiting covariance for σ2 > 0
|λ| < 1 cj → 0 (exponentially) cj → c�+ = O(γ2) (exponentially)

|λ| = 1 cj → 0 (algebraically) cj → c�+ = O(γ2) (exponentially)

|λ| > 1 cj → c�− = O(γ2) (exponentially) cj → c�+ = O(γ2) (exponentially)

Table 4.1: Summary of the limiting behavior of covariance cj for Kalman filter applied to
one-dimensional dynamics.
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Fig. 4.1: Cobweb diagram for equation (4.37a).

Fig. 4.2: Cobweb diagram for equation (4.37a).

Table 4.1 summarizes the behavior of the variance of the Kalman filter in the case of one-
dimensional dynamics. This is illustrated further in Figures 4.1 and 4.2, where we plot the
cobweb diagram for the map (4.42). In particular, in Figure 4.1, we observe the difference
between the algebraic and geometric convergence to 0, for different values of λ in the case
σ = 0, while in Figure 4.2, we observe the exponential convergence to c
+ for the case |λ| > 1.
The analysis of the error between the mean and the truth underlying the data is left as an
exercise at the end of the chapter. This shows that the error in the mean is, asymptotically,
of order γ2 in the case σ = 0.
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4.4.2. The 3DVAR Filter

In the previous subsection, we showed that the Kalman filter accurately recovers a one-
dimensional signal, provided the observational noise is small. The result allows for initializa-
tion far from the true signal and is, in this sense, quite strong. On the other hand, being
only one-dimensional, it gives a somewhat limited picture. In this subsection, we study the
3DVAR filter given by (4.14). We study conditions under which the 3DVAR filter will recover
the true signal, to within a small observational noise level of accuracy, in dimensions greater
than 1, and when only part of the system is observed.

To this end, we assume that
yj+1 = Hv†j+1 + εj , (4.43)

where the true signal {v†j}j∈N satisfies

v†j+1 = Ψ(v†j ), j ∈ N, (4.44a)

v†0 = u, (4.44b)

and for simplicity, we assume that the observational noise satisfies

sup
j∈N

|εj | = ε. (4.45)

We have the following result.

Theorem 4.10. Assume that the data is given by (4.43), where the signal follows equa-

tion (4.44) and the error in the data satisfies (4.45). Assume furthermore that Ĉ is chosen
such that (I−KH)Ψ : Rn → R

n is globally Lipschitz with constant a < 1 in some norm
∥
∥ ·∥∥.

Then there is constant c > 0 such that

lim sup
j→∞

∥
∥mj − v†j

∥
∥ ≤ c

1− aε.

Proof We may write (4.14), (4.44), using (4.43), as

mj+1 = (I −KH)Ψ(mj) +KHΨ(v†j ) +Kεj ,

v†j+1 = (I −KH)Ψ(v†j ) +KHΨ(v†j ).

Subtracting, and letting ej = mj − v†j , gives, for some finite constant c independent of j,

∥
∥ej+1

∥
∥ ≤ ∥∥(I −KH)Ψ(mj)− (I −KH)Ψ(v†j )

∥
∥+ ‖Kεj‖

≤ a∥∥ej
∥
∥+ cε.

Applying the Gronwall lemma (Lemma 1.14) gives the desired result. �
We refer to a map with Lipschitz constant less than 1 as a contraction in what follows.

Remark 4.11. The preceding simple theorem shows that it is possible to construct filters that
can recover from being initialized far from the truth and lock on to a small neighborhood of the
true signal underlying the data when run for long enough. Furthermore, this can happen even
when the system is only partially observed, provided that the observational noise is small and
enough of the system is observed. This concept of observing “enough” illustrates a key idea in
filtering: the question whether the fixed model covariance in 3DVAR, Ĉ, can be chosen to make
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(I −KH)Ψ into a contraction involves a subtle interplay between the underlying dynamics,
encapsulated in Ψ, and the observation operator H. In rough terms, the question of making
(I −KH)Ψ into a contraction is the question whether the unstable parts of the dynamics are

observed; if they are, then it is typically the case that Ĉ can be designed to obtain the desired
contraction. ♠
Example 4.12. Assume that H = I, so that the whole system is observed, that Γ = γ2I

and Ĉ = σ2I. Then for η2 = γ2

σ2 ,

S = (σ2 + γ2)I, K =
σ2

(σ2 + γ2)
I

and

(I −KH) =
γ2

(σ2 + γ2)
I =

η2

(1 + η2)
I.

Thus if Ψ : Rn → R
n is globally Lipschitz with constant λ > 0 in the Euclidean norm, | · |,

then (I −KH)Ψ is globally Lipschitz with constant a < 1 if η is chosen such that η2λ
1+η2 < 1.

Thus by choosing η sufficiently small, the filter can be made to contract. This corresponds to
trusting the data sufficiently in comparison to the model. It is a form of variance inflation
in that for a given level of observational noise, η can be made sufficiently small by choosing
the model variance scale σ2 sufficiently large—“inflating” the model variance. ♠
Example 4.13. Assume that there is a partition of the state space in which H = (I, 0)T , so

that only part of the system is observed. Set Γ = γ2I and Ĉ = σ2I. Then with η as in the
previous example,

I −KH =

(
η2

1+η2 I 0

0 I

)

.

While the previous example shows that variance inflation may help to stabilize the filter,
this example shows that in general, more is required: in this case, it is clear that making
(I−KH)Ψ(·) into a contraction will require a relationship between the subspace in which we
observe and the space in which the dynamics of the map is expanding and contracting. For
example, if Ψ(u) = Lu and

L =

(
2I 0
0 aI

)
,

then

(I −KH)L =

(
2η2

1+η2 I 0

0 aI

)

.

When |a| < 1, this can be made into a contraction by choosing η sufficiently small; but
for |a| ≥ 1, this is no longer possible. The example thus illustrates the intuitive idea that
the observations should be sufficiently rich to ensure that the unstable directions within the
dynamics can be tamed by observing them. ♠
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4.4.3. The Synchronization Filter

A fundamental idea underlying successful filtering of partially observed dynamical systems
is synchronization. To illustrate this, we introduce and study the idealized synchronization
filter. To this end, consider a partition of the identity P +Q = I. We write v = (p, q), where
p = Pv, q = Qv, and then, with a slight abuse of notation, write Ψ(v) = Ψ(p, q). Consider

a true signal governed by the deterministic dynamics model (4.44) and write v†k = (p†k, q
†
k),

with p†k = Pv†k and q†k = Qv†k. Then

p†k+1 = PΨ(p†k, q
†
k),

q†k+1 = QΨ(p†k, q
†
k).

Now imagine that we observe yk = p†k exactly, without noise. Then the synchronization filter

simply fixes the image under P to p†k and plugs this into the image of the dynamical model
under Q; if the filter is mk = (pk, qk) with pk = Pmk and qk = Qmk, then

pk+1 = p†k+1,

qk+1 = QΨ(p†k, qk).

We note that expressed in terms of the data, this filter has the form

mk+1 = QΨ(mk) + Pyk+1. (4.46)

A key question now is whether the filter synchronizes in the following sense:

|qk − q†k| → 0 as k →∞.

This of course is equivalent to

|mk − v†k| → 0 as k →∞. (4.47)

Whether this happens involves, as for 3DVAR described above, a subtle interplay between
the underlying dynamics and the observation operator, here P . The bibliography, Section 4.6,
contains pointers to the literature studying this question.

In fact, the following example shows how the synchronization filter can be viewed as a
distinguished parameter limit, corresponding to infinite variance inflation, for a particular
family of 3DVAR filters.

Example 4.14. Let H = P and Γ = γ2I. If we choose Ĉ as in Example 4.13, then the
3DVAR filter can be written as

mk+1 = SΨ(mk) + (I − S)yk+1, (4.48a)

S =
η2

1 + η2
P +Q. (4.48b)

The limit η → 0 is the extreme limit of variance inflation referred to in Example 4.12. In this
limit, the 3DVAR filter becomes the synchronization filter (4.46). ♠
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4.5 Illustrations

Fig. 4.3: Kalman filter applied to the linear system of Example 2.2 with A = A3, H = (1, 0),
Σ = I, and Γ = 1; see also p8.m in Section 5.2.5. The problem is initialized with mean 0
and covariance 10 I.

The first illustration concerns the Kalman filter applied to the linear system of Example 2.3
with A = A3. We assume that H = (1, 0), so that we observe only the first component of
the system, and the model and observational covariances are Σ = I and Γ = 1, where I
is the 2 × 2 identity matrix. The problem is initialized with mean 0 and covariance 10 I.
Figure 4.3a shows the behavior of the filter on the unobserved component, showing how
the mean locks onto a small neighborhood of the truth and how the one-standard-deviation
confidence intervals computed from the variance on the second component also shrink from a
large initial value to an asymptotic small value; this value is determined by the observational
noise variance in the first component. In Figure 4.3b, the trace of the covariance matrix is
plotted, demonstrating that the total covariance matrix approaches a small limiting matrix
asymptotically. And finally, Figure 4.3c shows the error (in the Euclidean norm) between the
filter mean and the truth underlying the data, together with its running average. We will
employ similar figures (a), (b), and (c) in the examples that follow in this section.
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Fig. 4.4: 3DVAR methodology applied to the logistic map Example 2.4 with r = 4, γ2 = 10−2,
and c = γ2/η with η = 0.2; see also p9.m in Section 5.3.1.

The next illustration shows the 3DVAR algorithm applied to Example 2.4 with r = 2.5.
We consider noise-free dynamics and observational variance of γ2 = 10−2. The fixed model
covariance is chosen to be c = γ2/η with η = 0.2. The resulting algorithm performs well at
tracking the truth with asymptotic time-averaged Euclidean error of size roughly 10−2. See
Figure 4.4.

The rest of the figures illustrate the behavior of the various filters, all applied to Example 2.3
with α = 2.5, σ = 0.3, and γ = 1. In particular, 3DVAR (Figure 4.5), ExKF (Figure 4.6),
EnKF (Figure 4.7), ETKF (Figure 4.8), and the particle filter with standard (Figure 4.9)
and optimal (Figure 4.10) proposals are all compared on the same example. The ensemble-
based methods all use 100 ensemble members each (notice that this is much larger than the
dimension of the state space, which is n = 1 here; this is hence a regime outside of which the
ensemble methods would usually be employed in practice. For 3DVAR, results from which
(for this example) are shown only in the summary Figure 4.11, we take η = 0.5.

All of the methods perform well at tracking the true signal, asymptotically in time, re-
covering from a large initial error. However, they also all exhibit occasional instabilities and
lose track of the true signal for short periods of time. From Fig. 4.6(c), we can observe that
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Fig. 4.5: 3DVAR for the sine map Example 2.3 with α = 2.5, σ = 0.3, γ = 1, and η = 0.2; see
also p10.m in Section 5.3.3.

the ExKF has small error for most of the simulation, but that sporadic large excursions are
seen in the error. From Fig. 4.8(c), one can observe that ETKF is similarly prone to small
destabilization and local instability, like the EnKF with perturbed observations in Fig. 4.7(c).
Also, notice from Figure 4.9(c) that the particle filter with standard proposal is perhaps
slightly more prone to destabilization than the optimal proposal in Figure 4.10(c), although
the difference is minimal.

The performance of the filters is now compared through a detailed study of the statistical
properties of the error e = m − v† over long simulation times. In particular, we compare
the histograms of the errors and their large time averages. Figure 4.11 compares the errors
incurred by the three basic methods 3DVAR, ExKF, and EnKF, demonstrating that the
EnKF is the most accurate method of the three on average, with ExKF the least accurate
on average. Notice from Fig. 4.11(a) that the error distribution of 3DVAR is the widest, and
both it and EnKF remain consistently accurate. The distribution of ExKF is similar to that of
EnKF, except for the “fat tails” associated with the destabilization intervals seen in Fig. 4.6.

Figure 4.12 compares the errors incurred by the four more accurate ensemble-based meth-
ods EnKF, ETKF, SIRS, and SIRS(OP). The error distribution, Fig. 4.12(a), of all these
filters is similar. In Fig. 4.12(b), one can see that the time-averaged errors in EnKF and
ETKF are indistinguishable. Also, the EnKF, ETKF, and SIRS(OP) also remain more or less
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Fig. 4.6: ExKF on the sine map Example 2.3 with α = 2.5, σ = 0.3, and γ = 1; see also
p11.m in Section 5.3.4.

consistently accurate. The distribution of e for SIRS is similar to SIRS(OP), except for the
fat tails associated with the destabilization intervals seen in Fig. 4.9, which leads to the larger
time-averaged error seen in Fig. 4.12(b). In this sense, the distribution of e is similar to that
for ExKF.

4.6 Bibliographic Notes

• Section 4.1. Since its introduction in 1960 [79], the Kalman filter has found wide-ranging
application to low-dimensional engineering applications in which the linear Gaussian model
is appropriate. In addition to the original motivation in control of flight vehicles, it has
grown in importance in the fields of econometric time-series analysis and signal processing
[65]. It is also important because it plays a key role in the development of the approximate
Gaussian filters, which are the subject of Section 4.2. The idea behind the Kalman filter, to
combine model and data optimally, is arguably one of the most important ideas in applied



106 4 Discrete Time: Filtering Algorithms

Fig. 4.7: EnKF on the sine map Example 2.3 with α = 2.5, σ = 0.3, γ = 1, and N = 100; see
also p12.m in Section 5.3.5.

mathematics over the last century: the impact of the paper [79] on many application
domains has been huge.

• Section 4.2. All the non-Gaussian filters we discuss are based on modifying the Kalman
filter so that it may be applied to nonlinear problems. The development of new filters is
a very active area of research, and the reader is directed to the book [100], together with
the articles [28, 101] and [142], for insight into some of the recent developments with an
applied mathematics perspective.
The 3DVAR algorithm was proposed at the United Kingdom’s Met Office in 1986 [93, 94],
and was subsequently developed by the United States National Oceanic and Atmospheric
Administration [119] and by the European Centre for Medium-Range Weather Forecasts
(ECMWF) in [36]. The perspective of these papers was one of minimization, and as such,
easily incorporates nonlinear observation operators via the objective functional (4.11),

with a fixed Ĉ = Ĉj+1, for the analysis step of filtering; nonlinear observation operators
are important in numerous applications, including numerical weather forecasting. In the
case of linear observation operators, the objective functional is given by (4.12) with explicit

solution given, in the case Ĉ = Ĉj+1, by (4.14). In fact, the method of optimal interpolation
predates 3DVAR and takes the linear equations (4.14) as their starting point, rather than
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Fig. 4.8: ETKF on the sine map Example 2.3 with α = 2.5, σ = 0.3, γ = 1, and N = 100; see
also p13.m in Section 5.3.6.

starting from a minimization principle; it is then very closely related to the method of
krigging from the geosciences [136]. The 3DVAR algorithm is important because it is
prototypical of the many more sophisticated filters that are now widely used in practice,
and it is thus natural to study it.
The extended Kalman filter was developed in the control theory community and is discussed
at length in [77]. It is not practical to implement in high dimensions, and low-rank extended
Kalman filters are then used instead; see [89] for a recent discussion.
The ensemble Kalman filter uses a set of particles to estimate covariance information, and
may be viewed as an approximation of the extended Kalman filter, designed to be suitable
in high dimensions. See [50] for an overview of the methodology, written by one of its
originators, and [144] for an early example of the power of the method. We note that the

minimization principle (4.15) has the very desirable property that the samples {v̂(n)n+1}Nn=1

correspond to samples of the Gaussian distribution found by Bayes’s theorem with prior
N(m̂j+1, Ĉj+1) and likelihood yj+1|v. This is the idea behind the randomized maximum
likelihood method described in [115], widely used in petroleum applications; the idea is
discussed in detail in the context of the EnKF in [82]. There has been some analysis of
the EnKF in the large-sample limit; see, for example, [91, 90, 103]. However, the primary
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Fig. 4.9: Particle Filter (standard proposal) on the sine map Example 2.3 with α = 2.5,
σ = 0.3, γ = 1, and N = 100; see also p14.m in Section 5.3.7.

power of the method for practitioners is that it seems to provide useful information for small
sample sizes; it is therefore perhaps a more interesting direction for analysis to study the
behavior of the algorithm, and determine methodologies to improve it, for fixed numbers of
ensemble members. There is some initial work in this direction, and we describe it below.
Note that the Γ appearing in the perturbed observation EnKF can be replaced by the

sample covariance Γ̃ of the {η(n)j+1}Nn=1, and this is often done in practice. The sample

covariance of the updated ensemble in this case is equal to (I − K̃j+1H)Ĉj+1, where K̃j+1

is the gain corresponding to the sample covariance Γ̃ .
There is a range of parameters that can be used to tune the approximate Gaussian filters or
modifications of those filters. In practical implementations, especially for high-dimensional
problems, the basic forms of the ExKF and EnKF as described here are prone to poor
behavior, and such tuning is essential [81, 50]. In Examples 4.12 and 4.13, we have already
shown the role of variance inflation for 3DVAR, and this type of approach is also fruitfully
used within ExKF and EnKF. A basic version of variance inflation is to replace the estimate
Ĉj+1 in (4.13) by εĈ + Ĉj+1, where Ĉ is a fixed covariance such as that used in a 3DVAR

method. Introducing ε ∈ (0, 1) leads, for positive definite Ĉ, to an operator without a null
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Fig. 4.10: Particle Filter (optimal proposal) on the sine map Example 2.3 with α = 2.5,
σ = 0.3, γ = 1, and N = 100; see also p15.m in Section 5.3.8.

space and consequently to better behavior. In contrast, taking ε = 0 can lead to singular
model covariances. This observation is particularly important when the EnKF is used in
high-dimensional systems in which the number N of ensemble members is always less than
the dimension n of the state space. In this situation, Ĉj+1 necessarily has a null space
of dimension at least n − N . It can also be important for the ExKF, where the evolving
dynamics can lead, asymptotically in j, to degenerate Ĉj+1 with nontrivial null space.
Notice also that this form of variance inflation can be thought of as using 3DVAR-like
covariance updates, in the directions not described by the ensemble covariance. This can
be beneficial in terms of the ideas underlying Theorem 4.10, where the key idea is that
K close to the identity can help ameliorate growth in the underlying dynamics. This may
also be achieved by replacing the estimate Ĉj+1 in (4.13) by (1 + ε)Ĉj+1. This is another
commonly used inflation tactic; note, however, that it lacks the benefit of rank correction.
It may therefore be combined with the additive inflation, yielding ε1Ĉ+(1+ε2)Ĉj+1. More
details regarding tuning of filters through inflation can be found in [4, 52, 77, 81, 50].
Another methodology that is important for practical implementation of the EnKF is lo-
calization [81, 50]. This is used to reduce unwanted correlations in Ĉj between points that
are separated by large distances in space. The underlying assumption is that the correla-
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Fig. 4.11: Convergence of e = m−v† for each filter for the sine map Example 2.3, corresponding
to solutions from Figs. 4.5, 4.6, 4.7.

Fig. 4.12: Convergence of e = m − v† for both versions of EnKF in comparison to the par-
ticle filters for the sine map Example 1.3, corresponding to solutions from Figs. 4.7, 4.8, 4.9,
and 4.10.

tion between points decays proportionally to their distance from one another, and as such
is increasingly corrupted by the sample error in ensemble methods. The sample covariance
is hence modified to remove correlations between points separated by large distances in
space. This is typically achieved by composing the empirical correlation matrix with a
convolution kernel. Localization can have the further benefit of increasing rank, as in the
case of the first type of variance inflation described above. An early reference illustrating
the benefits and possible implementation of localization is [72]. An important reference
that links this concept firmly with ideas from dynamical systems is [117].
Following the great success of the ensemble Kalman filter algorithm, in a series of papers
[138, 20, 3, 146], the square-root filter framework was (re)discovered. The idea goes back
at least to [5]. We focused the discussion above in Section 4.2.4 on the ETKF, but we
note that it is possible to derive different transformations. For example, the singular evo-
lutive interpolated Kalman (SEIK) filter proceeds by first projecting the ensemble into the
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(K − 1)-dimensional mean-free subspace, and then identifying a (K − 1)× (K − 1) matrix
transformation, effectively prescribing a K× (K−1) matrix transformation Lj as opposed

to the K ×K rank (K − 1) matrix T
1/2
j proposed in ETKF. The former is unique up to

unitary transformation, while the latter is unique only up to unitary transformations that
have 1 as an eigenvector. Other alternative transformations may take the form Aj or K̃j

such that Xj = AjX̂j or Xj = (I − K̃H)X̂j . These are known as the ensemble adjustment
Kalman filter (EAKF) and the ensemble square-root filter (ESRF) respectively. See [20]
for details about the ETKF, [3] for details about the EAKF, and [146] for details about
the ESRF [146]. A review of all three is given in [138]. The similar singular evolutive in-
terpolated Kalman (SEIK) filter was introduced in [121] and is compared with the other
square root filters in [110]. Other ensemble-based filters have been developed in recent years
bridging the ensemble Kalman filter with the particle filter, for example [71, 70, 123, 128].

• Section 4.3. In the linear case, the extended Kalman filter of course coincides with the
Kalman filter; furthermore, in this case, the perturbed observation ensemble Kalman filter
reproduces the true posterior distribution in the large-particle limit [50]. However, the
filters introduced in Section 4.2 do not produce the correct posterior distribution when
applied to general nonlinear problems. On the contrary, the particle filter does recover
the true posterior distribution as the number of particles tends to infinity, as we show in
Theorem 4.5. This proof is adapted from the very clear exposition in [122].
For more refined analyses of the convergence of particle filters, see, for example, [39, 46] and
references therein. As explained in Remark 4.6 the constant appearing in the convergence
results may depend exponentially on time if the mixing properties of the transition kernel
P(dvj |vj−1) are poor (the undesirable properties of deterministic dynamics illustrate this).
There is also interesting work studying the effect of the dimension [129]. A proof that
exploits ergodicity of the transition kernel, when that is present, may be found in [46];
the assumptions there on the transition and observation kernels are very strong and are
generally not satisfied in practice, but studies indicate that comparable results may hold
under less stringent conditions.
For a derivation and discussion of the optimal proposal, introduced in Section 4.3.3, see
[47] and references therein. We also mention here the implicit filters developed by Chorin
and coworkers [30, 29, 28]. These involve solving an implicit nonlinear equation for each
particle that includes knowledge of the next set of observed data. This has some similarities
to the method proposed in [143], and both are related to the optimal proposal mentioned
above.

• Section 4.4. The stability of the Kalman filter is a well-studied subject, and the book [86]
provides an excellent overview from the perspective of linear algebra. For extensions to the
extended Kalman filter, see [77]. Theorem 4.10 provides a glimpse into the mechanisms at
play within 3DVAR, and approximate Gaussian filters in general, in determining stabil-
ity and accuracy: the incorporation of data can convert unstable dynamical systems, with
positive Lyapunov exponents, into contractive nonautonomous dynamical systems, thereby
leading, in the case of small observational noise, to filters that recover the true signal within
a small error. This idea was highlighted in [27] and first studied rigorously for the 3DVAR
method applied to the Navier–Stokes equation in [24]; this work was subsequently general-
ized to a variety of different models in [109, 88, 87]. It is also of note that these analyses of
3DVAR build heavily on ideas developed in [67] for a specialized form of data assimilation
in which the observations are noise-free. In the language of the synchronization filter in-
troduced in Section 4.4.3, this paper demonstrates the synchronization property (4.47) for
the Navier–Stokes equation with sufficiently large number of Fourier mode observations,
and for the Lorenz ’63 model of Example 2.6 observed in only the first component. The
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paper [87] consider similar issues for the Lorenz ’96 model of Example 2.7. Similar ideas
are studied for the perturbed observation EnKF in [82]; in this case, it is necessary to
introduce a form of variance inflation to obtain a result analogous to Theorem 4.10. An
important step in the theoretical analysis of ensemble Kalman filter methods is the paper
[58], which uses ideas from the theory of shadowing in dynamical systems; the work proves
that the ETKF variant can shadow the truth on arbitrarily long time intervals, provided
the dimension of the ensemble is greater than the number of unstable directions in the
system.
In the context of filter stability, it is important to understand the optimality of the mean
of the true filtering distribution. We observe that all of the filtering algorithms that we
have described produce an estimate of the probability distribution P(vj |Yj) that depends
only on the data Yj . There is a precise sense in which the true filtering distribution can be
used to find a lower bound on the accuracy that can be achieved by any of these approxi-
mate algorithms. We let E(vj |Yj) denote the mean of vj under the probability distribution
P(vj |Yj) and let Ej(Yj) denote any estimate of the state vj based only on data Yj . Now
consider all possible random data sets Yj generated by the model (2.1), (2.2), noting that
the randomness is generated by the initial condition v0 and the noises {ξj , ηj}; in particular,
conditioning on Yj to obtain the probability distribution P(vj |Yj) can be thought of as being
induced by conditioning on the observational noise {ηk}k=1,...,j . Then E

∗
j (Yj) := E(vj |Yj)

minimizes the mean-square error with respect to the random model (2.1), (2.2) [98, 77, 79]:

E‖vj − E∗
j (Yj)‖2 ≤ E‖vj − Ej(Yj)‖2 (4.49)

for all Ej(Yj). Thus the algorithms we have described can do no better at estimating the
state of the system than can be achieved, in principle, from the conditional mean of the
state given the data E(vj |Yj). This lower bound holds on average over all instances of
the model. An alternative way to view the inequality (4.49) is as a means to providing
upper bounds on the true filter. For example, under the conditions of Theorem 4.10, the
right-hand side of (4.49) is, asymptotically as j →∞, of size O(ε2); thus we deduce that

lim sup
j→∞

E‖vj − E(vj |Yj)‖2 ≤ Cε2.

This viewpoint is adopted in [126], where the 3DVAR filter is used to bound the true
filtering distribution. This latter optimality property can be viewed as resulting from the
Galerkin orthogonality interpretation of the error resulting from taking conditional expec-
tation.
We have considered large-time behavior on the assumption that the map Ψ can be im-
plemented exactly. In situations in which the underlying map Ψ arises from a differential
equation and numerical methods are required, large excursions in phase space caused by
observational noise can cause numerical instabilities in the integration methods underlying
the filters. Remark 8.7 illustrates this fact in the context of continuous time. See [59] for a
discussion of this issue.

• Section 4.5. We mention here the rank histogram. This is another consistency check on
the output of ensemble- or particle-based approximations of the filtering distribution. The
idea is to consider observed scalar quantities and to generate ordered bins associated to
that scalar and then keep track of the statistics over time of the data yj with respect
to the bins. For example, if one has an approximation of the distribution consisting of
N equally weighted particles, then a rank histogram for the first component of the state
consists of three steps, each carried out at each time j. First, add a random draw from the
observational noise N(0, Γ ) to each particle after the prediction phase of the algorithm.
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Second, order the particles according to the value of their first component, generating N−1
bins between the values of the first component of each particle, and with one extra bin on
each end. Finally, rank the current observation yj between 1 and N+1 depending on which
bin it lands in. If one does this at each time j, a histogram of the rank of the observations
is obtained. The “spread” of the ensemble can be evaluated using this diagnostic. If the
histogram is uniform, then the spread is consistent. If it is concentrated toward the center,
then the spread is overestimated. If it is concentrated at the edges, then the spread is
underestimated. This consistency check on the statistical model used was introduced in [2]
and is widely adopted throughout the data-assimilation community.

4.7 Exercises

1. Consider the Kalman filter in the case M = H = I, Σ = 0, and Γ > 0. Prove that
the covariance operator Cj converges to 0 as j →∞. Modify the program p8.m so that it
applies to this setup, in the two-dimensional setting. Verify what you have proved regarding
the covariance and make a conjecture about the limiting behavior of the mean of the
Kalman filter.

2. Consider the 3DVAR algorithm in the case Ψ(v) = v, H = I, Σ = 0, and Γ > 0. Choose

Ĉ = αΓ . Find an equation for the error ej := vj − mj and derive an expression for
limj→∞ E|ej |2 in terms of α and σ2 := E|ηj |2. Modify the program p9.m so that it applies
to this setup, in the one-dimensional setting. Verify what you have proved regarding the
limiting behavior of the mj .

3. Consider the EnKF algorithm in the same setting as the previous example. Modify program
p12.m so that it applies to this setup, in the one-dimensional setting. Study the behavior

of the sequence mj found as the mean of the particles v
(n)
j over the ensemble index n.

4. Consider the SIRS algorithm in the same setting as the previous example. Modify program
p14.m so that it applies to this setup, in the one-dimensional setting. Study the behavior

of the sequence mj found as the mean of the particles v
(n)
j over the ensemble index n.

5. Make comparative comments regarding the 3DVAR, EnKF, and SIRS algorithms on the
basis of your solutions to the three preceding exercises.

6. In this exercise, we study the behavior of the mean of the Kalman filter in the case of one-
dimensional dynamics. The notation follows the development in Section 4.4.1. Consider
the case σ = 0 and assume that the data {yj}j∈N is generated from a true signal {v†j}j∈Z+

governed by the equation

v†j+1 = λv†j ,

and that the additive observational noise {ηj}j∈N is drawn from an i.i.d. sequence with

variance γ2. Define the error ej = mj−v†j between the estimated mean and the true signal
and use (4.37b) to show that

ej+1 =

(
1− cj+1

γ2

)
λej +

cj+1

γ2
ηj+1. (4.50)

Deduce that ej is Gaussian and that its mean and covariance satisfy the equations

Eej+1 = λ

(
1− cj+1

γ2

)
Eej (4.51)
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and

Ee2j+1 = λ2
(
1− cj+1

γ2

)2

Ee2j +
c2j+1

γ2
. (4.52)

Equation (4.51) can be solved to obtain

Eej = λj

[
j∏

i=0

(
1− ci+1

γ2

)]

Ee0. (4.53)

In a similar way, obtain for the solution of (4.52),

Ee2j = λ2j

[
j−1∏

i=0

(
1− ci+1

γ2

)2
]

Ee20 +

j−1∑

i=0

{[
j∏

k=i+1

(
1− ck

γ2

)]

λ2(j−i) c
2
i

γ2

}

+
c2j
γ2
. (4.54)

Using the properties of the variance derived in Section 4.4.1, prove that the mean of the
error tends to zero and that the asymptotic variance is bounded by γ2.



Chapter 5

Discrete Time: matlab Programs

This chapter is dedicated to illustrating the examples, theory, and algorithms, as presented
in the previous chapters, through a few short and easy-to-follow matlab programs. These
programs are provided for two reasons: (i) For some readers, they will form the best route by
which to appreciate the details of the examples, theory, and algorithms we describe; (ii) for
other readers, they will be a useful starting point to develop their own codes. While ours are
not necessarily the optimal implementations of the algorithms discussed in these notes, they
have been structured to be simple to understand, to modify, and to extend. In particular,
the code may be readily extended to solve problems more complex than those described in
Examples 2.1–2.7, which we will use for most of our illustrations. The chapter is divided into
three sections, corresponding to programs relevant to each of the preceding three chapters.

Before getting into details, we highlight a few principles that have been adopted in the
programs and in the accompanying text of this chapter. First, notation is consistent between
programs, and it matches the text in the previous sections of the book as far as possible.
Second, since many of the elements of the individual programs are repeated, they will be
described in detail only in the text corresponding to the program in which they first appear;
the short annotations explaining them will, however, be repeated within the programs. Third,
the reader is advised to use the documentation available at the command line for any built-
in functions of matlab; this information can be accessed using the help command—for
example, the documentation for the command help can be accessed by typing help help.

5.1 Chapter 2 Programs

The programs p1.m and p2.m used to generate the figures in Chapter 2 are presented in
this section. Thus these algorithms simply solve the dynamical system (2.1) and process the
resulting data.

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-20325-6 5) contains supplementary material, which is available to authorized users.
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5.1.1. p1.m

The first program, p1.m, illustrates how to obtain sample paths from equations (2.1)
and (2.3). In particular, the program simulates sample paths of the equation

uj+1 = α sin(uj) + ξj , (5.1)

with ξj ∼ N(0, σ2) i.i.d. and α = 2.5, both for deterministic (σ = 0) and stochastic dynamics
(σ �= 0) corresponding to Example 2.3. In line 5, the variable J is defined, which corresponds
to the number of forward steps that we will take. The parameters α and σ are set in lines
6–7. The seed for the random-number generator is set to sd∈ N in line 8 using the command
rng(sd). This guarantees that the results will be reproduced exactly by running the pro-
gram with this same sd. Different choices of sd∈ N will lead to different streams of random
numbers used in the program, which may also be desirable in order to observe the effects of
different random numbers on the output. The command sd will be called in the preamble
of all of the programs that follow. In line 9, two vectors of length J are created, named v
and vnoise; after the program has run, these two vectors contain the solutions for the case
of deterministic (σ = 0) and stochastic dynamics (σ = 0.25) respectively. After the initial
conditions are set in line 10, the desired map is iterated, without and with noise, in lines
12–15. Note that the only difference between the forward iteration of v and that of vnoise
is the presence of the sigma*randn term, which corresponds to the generation of a ran-
dom variable sampled from N(0, σ2). Lines 17–18 contain code that graphs the trajectories,
with and without noise, to produce Figure 2.3. Figures 2.1, 2.2, and 2.5 were obtained by
simply modifying lines 12–15 of this program, in order to create sample paths for the corre-
sponding Ψ for the other three examples; furthermore, Figure 2.4a was generated from output
of this program, and Figure 2.4b was generated from output of a modification of this program.

1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p1.m - behaviour of sin map (Ex. 1.3)
3 %%% with and without observational noise
4
5 J=10000;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 sigma=0.25;% dynamics noise variance is sigmaˆ2
8 sd=1;rng(sd);% choose random number seed
9 v=zeros(J+1,1); vnoise=zeros(J+1,1);% preallocate space

10 v(1)=1;vnoise(1)=1;% initial conditions
11
12 for i=1:J
13 v(i+1)=alpha*sin(v(i));
14 vnoise(i+1)=alpha*sin(vnoise(i))+sigma*randn;
15 end
16
17 figure(1), plot([0:1:J],v),
18 figure(2), plot([0:1:J],vnoise),
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5.1.2. p2.m

The second program presented here, p2.m, is designed to visualize the posterior distribution
in the case of one-dimensional deterministic dynamics. For clarity, the program is separated
into three main sections. The setup section in lines 5–10 defines the parameters of the
problem. The model parameter r is defined in line 6, and it determines the dynamics of the
forward model, in this case given by the logistic map (2.9):

vj+1 = rvj(1− vj). (5.2)

The dynamics are taken as deterministic, so the parameter sigma does not feature here. The
parameter r is equal to 2, so that the dynamics are not chaotic, as the explicit solution given
in Example 2.4 shows. The parameters m0 and C0 define the mean and covariance of the prior
distribution v0 ∼ N(m0, C0), while gamma defines the observational noise ηj ∼ N(0, γ2).

The truth section in lines 14–20 generates the true reference trajectory (or truth) vt in
line 18 given by (5.2), as well as the observations y in line 19 given by

yj = vj + ηj . (5.3)

Note that the index of y(:,j) corresponds to observation of H*v(:,j+1). This is due to
the fact that the first index of an array in matlab is j=1, while the initial condition is v0,
and the first observation is of v1. So effectively the indices of y are correct as corresponding to
the text and equation (5.3), but the indices of v are off by 1. The memory for these vectors is
preallocated in line 14. This is unnecessary, because matlab would simply dynamically allocate
the memory in its absence, but it would slow down the computations due to the necessity
of allocating new memory each time the given array changes size. Commenting this line out
allows observation of this effect, which becomes significant when J becomes sufficiently large.

The solution section after line 24 computes the solution, in this case the pointwise
representation of the posterior smoothing distribution on the scalar initial condition. The
pointwise values of the initial condition are given by the vector v0 (v0) defined in line 24.
There are many ways to construct such vectors, and this convention defines the initial (0.01)
and final (0.99) values and a uniform step size 0.0005. It is also possible to use the command
v0=linspace(0.01,0.99,1961), defining the number 1961 of intermediate points, rather
than the step size 0.0005. The corresponding vector of values of Phidet (Φdet), Jdet (Jdet),
and Idet (Idet) are computed in lines 32, 29, and 34 for each value of v0, as related by the
equation

Idet(v0; y) = Jdet(v0) + Φdet(v0; y), (5.4)

where Jdet(v0) is the background penalization and Φdet(v0; y) is the model–data misfit
functional given by (2.29b) and (2.29c) respectively. The function Idet(v0; y) is the negative
log-posterior as given in Theorem 2.11. Having obtained Idet(v0; y), we calculate P(v0|y) in
lines 37–38, using the formula

P(v0|y) = exp(−Idet(v0; y))∫
exp(−Idet(v0; y)) . (5.5)

The trajectory v corresponding to the given value of v0 (v0(i)) is denoted by vv and is
replaced for each new value of v0(i) in lines 29 and 31, since it is required only to compute
Idet. The command trapz(v0,exp(-Idet)) in line 37 approximates the denominator of
the above by the trapezoidal rule, i.e., the summation
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trapz(v0, exp(−Idet)) =
N−1∑

i=1

(v0(i+ 1)− v0(i)) ∗ (Idet(i+ 1) + Idet(i))/2. (5.6)

The rest of the program deals with plotting our results, and in this instance, it coincides with
the output of Figure 2.11b. Again, simple modifications of this program were used to produce
Figures 2.10, 2.12, and 2.13. Note that rng(sd) in line 8 allows us to use the same random
numbers every time the file is executed; those random numbers are generated with the seed
sd, as described in Section 5.1.1. Commenting this line out would result in the creation of
new realizations of the random data y, different from those used to obtain Figure 2.11b.

1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p2.m smoothing problem for the deterministic logistic map (Ex. 1.4)
3 %% setup
4
5 J=1000;% number of steps
6 r=2;% dynamics determined by r
7 gamma=0.1;% observational noise variance is gammaˆ2
8 C0=0.01;% prior initial condition variance
9 m0=0.7;% prior initial condition mean

10 sd=1;rng(sd);% choose random number seed
11
12 %% truth
13
14 vt=zeros(J+1,1); y=zeros(J,1);% preallocate space to save time
15 vt(1)=0.1;% truth initial condition
16 for j=1:J
17 % can be replaced by Psi for each problem
18 vt(j+1)=r*vt(j)*(1-vt(j));% create truth
19 y(j)=vt(j+1)+gamma*randn;% create data
20 end
21
22 %% solution
23
24 v0=[0.01:0.0005:0.99];% construct vector of different initial data
25 Phidet=zeros(length(v0),1);Idet=Phidet;Jdet=Phidet;% preallocate space
26 vv=zeros(J,1);% preallocate space
27 % loop through initial conditions vv0, and compute log posterior I0(vv0)
28 for j=1:length(v0)
29 vv(1)=v0(j); Jdet(j)=1/2/C0*(v0(j)-m0)ˆ2;% background penalization
30 for i=1:J
31 vv(i+1)=r*vv(i)*(1-vv(i));
32 Phidet(j)=Phidet(j)+1/2/gammaˆ2*(y(i)-vv(i+1))ˆ2;% misfit
33 functional
34 end
35 Idet(j)=Phidet(j)+Jdet(j);
36 end
37
38 constant=trapz(v0,exp(-Idet));% approximate normalizing constant
39 P=exp(-Idet)/constant;% normalize posterior distribution
40 prior=normpdf(v0,m0,sqrt(C0));% calculate prior distribution
41
42 figure(1),plot(v0,prior,’k’,’LineWidth’,2)
43 hold on, plot(v0,P,’r--’,’LineWidth’,2), xlabel ’v_0’,
44 legend ’prior’ J=10ˆ3
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5.2 Chapter 3 Programs

The programs p3.m-p7.m, used to generate the figures in Chapter 3, are presented in this
section. Hence various MCMC algorithms used to sample the posterior smoothing distribution
are given. Furthermore, optimization algorithms used to obtain solutions of the 4DVAR and
w4DVAR variational methods are also introduced. Our general theoretical development of
MCMC methods in Section 3.2 employs a notation of u for the state of the chain and w for
the proposal. For deterministic dynamics, the state is the initial condition v0; for stochastic
dynamics, it is either the signal v or the pair (v0, ξ), where ξ is the noise (since this pair
determines the signal). Where appropriate, the programs described here use the letter v, and
variants thereof, for the state of the Markov chain to keep the connection with the underlying
dynamics model.

5.2.1. p3.m

The program p3.m contains an implementation of the random walk Metropolis (RWM)
MCMC algorithm. The development follows Section 3.2.3, where the algorithm is used to
determine the posterior distribution on the initial condition arising from the deterministic
logistic map of Example 2.4 given by (5.2). Note that in this case, since the underlying dy-
namics are deterministic and hence completely determined by the initial condition, the RWM
algorithm will provide samples from a probability distribution on R.

As in program p2.m, the code is divided into three sections: setup, where parameters are
defined; truth, where the truth and data are generated; and solution, where the solution
is computed, this time by means of MCMC samples from the posterior smoothing distribution.
The parameters in lines 5–10 and the true solution (here taken as only the initial condition,
rather than the trajectory it gives rise to) vt in line 14 are taken to be the same as those
used to generate Figure 2.13. The temporary vector vv generated in line 19 is the trajectory
corresponding to the truth (vv(1)=vt in line 14) and used to calculate the observations y
in line 20. The true value vt will also be used as the initial sample in the Markov chain
for this and for all subsequent MCMC programs. This scenario is, of course, impossible in
the case that the data is not simulated. However, it is useful when the data is simulated,
as it is here, because it can reduce the burn-in time, i.e., the time necessary for the current
sample in the chain to reach the target distribution, or the high-probability region of the state
space. Because we initialize the Markov chain at the truth, the value of Idet(v

†), denoted by
the temporary variable Idet, is required to determine the initial acceptance probability, as
described below. It is computed in lines 15–23 exactly as in lines 25–34 of program p2.m, as
described around equation (5.4).

In the solution section, some additional MCMC parameters are defined. In line 28, the
number of samples is set to N =105. For the parameters and specific data used here, this
is sufficient for convergence of the Markov chain. In line 30, the step-size parameter beta
is preset such that the algorithm for this particular posterior distribution has a reasonable
acceptance probability, or ratio of accepted to rejected moves. A general rule of thumb for
this is that it should be somewhere around 0.5, to ensure that the algorithm is not too
correlated because of high rejection rate (acceptance probability near zero) and that it is
not too correlated because of small moves (acceptance probability near one). The vector V
defined in line 29 will save all of the samples. This is an example in which preallocation is
very important. Try using the commands tic and toc before and respectively after the loop
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in lines 33–50 in order to time the chain both with and without preallocation.1 In line 34, a
move is proposed according to the proposal equation (3.15):

w(k) = v(k−1) + βι(k−1),

where v(v) is the current state of the chain (initially taken to be equal to the true initial
condition v0), ι

(k−1)=randn is an i.i.d. standard normal, and w represents w(k). Indices are
not used for v and w because they will be overwritten at each iteration.

The temporary variable vv is again used for the trajectory corresponding to w(k) as a
vehicle to compute the value of the proposed Idet(w

(k); y), denoted in line 42 by I0prop =
J0prop + Phiprop. In lines 44–46, the decision to accept or reject the proposal is made
based on the acceptance probability

a(v(k−1), w(k)) = 1 ∧ exp(Idet(v
(k−1); y)− Idet(w

(k); y)).

In practice, this corresponds to drawing a uniform random number rand and replacing v
and Idet in line 45 with w and I0prop if rand<exp(I0-I0prop) in line 44. The variable
bb is incremented if the proposal is accepted, so that the running ratio of accepted moves
bb to total steps n can be computed in line 47. This approximates the average acceptance
probability. The current sample v(k) is stored in line 48. Notice that here one could replace
v by V(n-1) in line 34, and by V(n) in line 45, thereby eliminating v, and letting w be the
only temporary variable. However, the present construction is favorable, because as mentioned
above, in general one may not wish to save every sample.

The samples V are used in lines 51–53 to visualize the posterior distribution. In particular,
bins of width dx are defined in line 51, and the command hist is used in line 52. The
assignment Z = hist(V,v0) means first that the real number line is split intoM bins with
centers defined according to v0(i) for i = 1, . . . ,M , with the first and last bins corresponding
to the negative, respectively positive, half-lines. Second, Z(i) counts the number of k for
which V(k) is in the bin with center determined by v0(i). Again, trapz (5.6) is used
to compute the normalizing constant in line 53, directly within the plotting command. The
choice of the location of the histogram bins allows for a direct comparison with the posterior
distribution calculated from the program p2.m by directly evaluating Idet(v; y) defined in (5.4)
for different values of initial conditions v. This output is then compared with the corresponding
output of p2.m for the same parameters in Figure 3.2.

1 In practice, one may often choose to collect certain statistics from the chain “on the fly” rather than
saving every sample, particularly if the state space is high-dimensional and the memory required for
each sample is large.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p3.m MCMC RWM algorithm for logistic map (Ex. 1.4)
3 %% setup
4
5 J=5;% number of steps
6 r=4;% dynamics determined by alpha
7 gamma=0.2;% observational noise variance is gammaˆ2
8 C0=0.01;% prior initial condition variance
9 m0=0.5;% prior initial condition mean

10 sd=10;rng(sd);% choose random number seed
11
12 %% truth
13
14 vt=0.3;vv(1)=vt;% truth initial condition
15 Jdet=1/2/C0*(vt-m0)ˆ2;% background penalization
16 Phidet=0;% initialization model-data misfit functional
17 for j=1:J
18 % can be replaced by Psi for each problem
19 vv(j+1)=r*vv(j)*(1-vv(j));% create truth
20 y(j)=vv(j+1)+gamma*randn;% create data
21 Phidet=Phidet+1/2/gammaˆ2*(y(j)-vv(j+1))ˆ2;% misfit functional
22 end
23 Idet=Jdet+Phidet;% compute log posterior of the truth
24
25 %% solution
26 % Markov Chain Monte Carlo: N forward steps of the
27 % Markov Chain on R (with truth initial condition)
28 N=1e5;% number of samples
29 V=zeros(N,1);% preallocate space to save time
30 beta=0.05;% step-size of random walker
31 v=vt;% truth initial condition (or else update I0)
32 n=1; bb=0; rat(1)=0;
33 while n<=N
34 w=v+sqrt(2*beta)*randn;% propose sample from random walker
35 vv(1)=w;
36 Jdetprop=1/2/C0*(w-m0)ˆ2;% background penalization
37 Phidetprop=0;
38 for i=1:J
39 vv(i+1)=r*vv(i)*(1-vv(i));
40 Phidetprop=Phidetprop+1/2/gammaˆ2*(y(i)-vv(i+1))ˆ2;
41 end
42 Idetprop=Jdetprop+Phidetprop;% compute log posterior of the proposal
43
44 if rand<exp(Idet-Idetprop)% accept or reject proposed sample
45 v=w; Idet=Idetprop; bb=bb+1;% update the Markov chain
46 end
47 rat(n)=bb/n;% running rate of acceptance
48 V(n)=v;% store the chain
49 n=n+1;
50 end
51 dx=0.0005; v0=[0.01:dx:0.99];
52 Z=hist(V,v0);% construct the posterior histogram
53 figure(1), plot(v0,Z/trapz(v0,Z),’k’,’Linewidth’,2)% visualize the
54 posterior
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5.2.2. p4.m

The program p4.m contains an implementation of the independence dynamics sampler for
stochastic dynamics, as introduced in Section 3.2.4. Thus the posterior distribution is on the
entire signal {vj}j∈J. The forward model in this case is from Example 2.3, given by (5.1). The
smoothing distribution P(v|Y ) is therefore over the state space R

J+1.
The sections setup, truth, and solution are defined as for program p3.m, but note

that now the smoothing distribution is over the entire path, not just over the initial condition,
because we are considering stochastic dynamics. Since the state space is now the path space,
rather than the initial condition as it was in program p3.m, the truth vt∈ R

J+1 is now a
vector. Its initial condition is taken as a draw from N(m0, C0) in line 16, and the trajectory
is computed in line 20, so that at the end, vt∼ ρ0. As in program p3.m, v† (vt) will be the
chosen initial condition in the Markov chain (to ameliorate burn-in issues), and so Φ(v†; y)
is computed in line 23. Recall from Section 3.2.4 that only Φ(·; y) is required to compute the
acceptance probability in this algorithm.

Notice that the collection of samples V∈ R
N×J+1 preallocated in line 30 is substantial in

this case, illustrating the memory issue that arises when the dimension of the signal space,
and number of samples, increases.

The current state of the chain v(k) and the value of Φ(v(k); y) are again denoted by v and
Phi, while the proposal w(k) and the value of Φ(w(k); y) are again denoted by w and Phiprop,
as in program p3. As discussed in Section 3.2.4, the proposal w(k) is an independent sample
from the prior distribution ρ0, similarly to v†, and it is constructed in lines 34–39. The
acceptance probability used in line 40 is now

a(v(k−1), w(k)) = 1 ∧ exp(Φ(v(k−1); y)− Φ(w(k); y)). (5.7)

The remainder of the program is structurally the same as p3.m. The outputs of this
program are used to plot Figures 3.3, 3.4, and 3.5. Note that in the case of Figure 3.5, we
have used N = 108 samples.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p4.m MCMC INDEPENDENCE DYNAMICS SAMPLER algorithm
3 %%% for sin map (Ex. 1.3) with noise
4 %% setup
5
6 J=10;% number of steps
7 alpha=2.5;% dynamics determined by alpha
8 gamma=1;% observational noise variance is gammaˆ2
9 sigma=1;% dynamics noise variance is sigmaˆ2

10 C0=1;% prior initial condition variance
11 m0=0;% prior initial condition mean
12 sd=0;rng(sd);% choose random number seed
13
14 %% truth
15
16 vt(1)=m0+sqrt(C0)*randn;% truth initial condition
17 Phi=0;
18
19 for j=1:J
20 vt(j+1)=alpha*sin(vt(j))+sigma*randn;% create truth
21 y(j)=vt(j+1)+gamma*randn;% create data
22 % calculate log likelihood of truth, Phi(v;y) from (1.11)
23 Phi=Phi+1/2/gammaˆ2*(y(j)-vt(j+1))ˆ2;
24 end
25
26 %% solution
27 % Markov Chain Monte Carlo: N forward steps of the
28 % Markov Chain on Rˆ{J+1} with truth initial condition
29 N=1e5;% number of samples
30 V=zeros(N,J+1);% preallocate space to save time
31 v=vt;% truth initial condition (or else update Phi)
32 n=1; bb=0; rat(1)=0;
33 while n<=N
34 w(1)=sqrt(C0)*randn;% propose sample from the prior
35 Phiprop=0;
36 for j=1:J
37 w(j+1)=alpha*sin(w(j))+sigma*randn;% propose sample from the prior
38 Phiprop=Phiprop+1/2/gammaˆ2*(y(j)-w(j+1))ˆ2;% compute likelihood
39 end
40 if rand<exp(Phi-Phiprop)% accept or reject proposed sample
41 v=w; Phi=Phiprop; bb=bb+1;% update the Markov chain
42 end
43 rat(n)=bb/n;% running rate of acceptance
44 V(n,:)=v;% store the chain
45 n=n+1;
46 end
47 % plot acceptance ratio and cumulative sample mean
48 figure;plot(rat)
49 figure;plot(cumsum(V(1:N,1))./[1:N]’)
50 xlabel(’samples N’)
51 ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
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5.2.3. p5.m

The independence dynamics sampler of Section 5.2.2 may be very inefficient, since typical
random draws from the dynamics may be unlikely to fit the data as well as the current
state, and will then be rejected. The fifth program, p5.m, gives an implementation of the
pCN algorithm from Section 3.2.4 that is designed to overcome this issue by including the
parameter β, which, if chosen small, allows for incremental steps in signal space and hence
the possibility of nonnegligible acceptance probabilities. This program is used to generate
Figure 3.6

This program is almost identical to p4.m, and so only the points at which it differs will
be described. First, since the acceptance probability is given by

a(v(k−1), w(k)) = 1 ∧ exp(Φ(v(k−1); y)− Φ(w(k); y) +G(v(k−1))−G(w(k))),

the quantity

G(u) =

J−1∑

j=0

(1
2
|Σ− 1

2Ψ(uj)|2 − 〈Σ− 1
2uj+1, Σ

− 1
2Ψ(uj)〉

)

will need to be computed, both for v(k) (denoted by v in lines 31 and 44), where its value
is denoted by G (v(0) = v†), as well as for G(v†) which is computed in line 22), and for w(k)

(denoted by w in line 36) where its value is denoted by Gprop in line 39.
As discussed in Section 3.2.4, the proposal w(k) is given by (3.19):

w(k) = m+ (1− β2)
1
2 (v(k−1) −m) + βι(k−1); (5.8)

here ι(k−1) ∼ N(0, C) are i.i.d. and denoted by iota in line 35. Here C is the covariance of the
Gaussian measure π0 given in Equation (2.24) corresponding to the case of trivial dynamics
Ψ = 0, and m is the mean of π0. The value of m is given by m in line 33.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p5.m MCMC pCN algorithm for sin map (Ex. 1.3) with noise
3
4 %% setup
5 J=10;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=.1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=0;rng(sd);% Choose random number seed
12
13 %% truth
14
15 vt(1)=m0+sqrt(C0)*randn;% truth initial condition
16 G=0;Phi=0;
17
18 for j=1:J
19 vt(j+1)=alpha*sin(vt(j))+sigma*randn;% create truth
20 y(j)=vt(j+1)+gamma*randn;% create data
21 % calculate log density from (1.--)
22 G=G+1/2/sigmaˆ2*((alpha*sin(vt(j)))ˆ2-2*vt(j+1)*alpha*sin(vt(j)));
23 % calculate log likelihood phi(u;y) from (1.11)
24 Phi=Phi+1/2/gammaˆ2*(y(j)-vt(j+1))ˆ2;
25 end
26
27 %% solution
28 % Markov Chain Monte Carlo: N forward steps
29 N=1e5;% number of samples
30 beta=0.02;% step-size of pCN walker
31 v=vt;% truth initial condition (or update G + Phi)
32 V=zeros(N,J+1); n=1; bb=0; rat=0;
33 m=[m0,zeros(1,J)];
34 while n<=N
35 iota=[sqrt(C0)*randn,sigma*randn(1,J)];% Gaussian prior sample
36 w=m+sqrt(1-betaˆ2)*(v-m)+beta*iota;% propose sample from the pCN walker
37 Gprop=0;Phiprop=0;
38 for j=1:J
39 Gprop=Gprop+1/2/sigmaˆ2*((alpha*sin(w(j)))ˆ2-2*w(j+1)*alpha*sin
40 (w(j)));
41 Phiprop=Phiprop+1/2/gammaˆ2*(y(j)-w(j+1))ˆ2;
42 end
43
44 if rand<exp(Phi-Phiprop+G-Gprop)% accept or reject proposed sample
45 v=w;Phi=Phiprop;G=Gprop;bb=bb+1;% update the Markov chain
46 end
47 rat(n)=bb/n;% running rate of acceptance
48 V(n,:)=v;% store the chain
49 n=n+1;
50 end
51 % plot acceptance ratio and cumulative sample mean
52 figure;plot(rat)
53 figure;plot(cumsum(V(1:N,1))./[1:N]’)
54 xlabel(’samples N’)
55 ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
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5.2.4. p6.m

The pCN dynamics sampler is now introduced as program p6.m. The independence dynamics
sampler of Section 5.2.2 may be viewed as a special case of this algorithm for proposal variance
β = 1. This proposal combines the benefits of tuning the step size β while still respecting
the prior distribution on the dynamics. It does so by sampling the initial condition and noise
(v0, ξ) rather than the path itself, in lines 34 and 35, as given by equation (5.8). However,
as opposed to the pCN sampler of the previous section, this variable w is now interpreted
as a sample of (v0, ξ) and is therefore fed into the path vv itself in line 39. The acceptance
probability is the same as that of the independence dynamics sampler (5.7), depending only
on Phi. If the proposal is accepted, both the forcing u=w and the path v=vv are updated in
line 44. Only the path is saved, as in the previous routines, in line 47.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p6.m MCMC pCN Dynamics algorithm for
3 %%% sin map (Ex. 1.3) with noise
4 %% setup
5
6 J=10;% number of steps
7 alpha=2.5;% dynamics determined by alpha
8 gamma=1;% observational noise variance is gammaˆ2
9 sigma=1;% dynamics noise variance is sigmaˆ2

10 C0=1;% prior initial condition variance
11 m0=0;% prior initial condition mean
12 sd=0;rng(sd);% Choose random number seed
13
14 %% truth
15
16 vt(1)=m0+sqrt(C0)*randn;% truth initial condition
17 ut(1)=vt(1);
18 Phi=0;
19 for j=1:J
20 ut(j+1)=sigma*randn;
21 vt(j+1)=alpha*sin(vt(j))+ut(j+1);% create truth
22 y(j)=vt(j+1)+gamma*randn;% create data
23 % calculate log likelihood phi(u;y) from (1.11)
24 Phi=Phi+1/2/gammaˆ2*(y(j)-vt(j+1))ˆ2;
25 end
26
27 %% solution
28 % Markov Chain Monte Carlo: N forward steps
29 N=1e5;% number of samples
30 beta=0.2;% step-size of pCN walker
31 u=ut;v=vt;% truth initial condition (or update Phi)
32 V=zeros(N,J+1); n=1; bb=0; rat=0;m=[m0,zeros(1,J)];
33 while n<=N
34 iota=[sqrt(C0)*randn,sigma*randn(1,J)];% Gaussian prior sample
35 w=m+sqrt(1-betaˆ2)*(u-m)+beta*iota;% propose sample from the pCN walker
36 vv(1)=w(1);
37 Phiprop=0;
38 for j=1:J
39 vv(j+1)=alpha*sin(vv(j))+w(j+1);% create path
40 Phiprop=Phiprop+1/2/gammaˆ2*(y(j)-vv(j+1))ˆ2;
41 end
42
43 if rand<exp(Phi-Phiprop)% accept or reject proposed sample
44 u=w;v=vv;Phi=Phiprop;bb=bb+1;% update the Markov chain
45 end
46 rat(n)=bb/n;% running rate of acceptance
47 V(n,:)=v;% store the chain
48 n=n+1;
49 end
50 % plot acceptance ratio and cumulative sample mean
51 figure;plot(rat)
52 figure;plot(cumsum(V(1:N,1))./[1:N]’)
53 xlabel(’samples N’)
54 ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
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5.2.5. p7.m

The next program, p7.m, contains an implementation of the weak constrained variational
algorithm w4DVAR discussed in Section 3.3. This program is written as a function, while all
previous programs were written as scripts. This choice was made for p7.m so that the matlab
built-in function fminsearch can be used for optimization in the solution section, and
the program can still be self-contained. To use this built-in function, it is necessary to define
an auxiliary objective function I to be optimized. The function fminsearch can be used
within a script, but the auxiliary function would then have to be written separately, so we
cannot avoid functions altogether unless we write the optimization algorithm by hand. We
avoid the latter in order not to divert the focus of this text from the data-assimilation problem,
and algorithms to solve it, to the problem of how to optimize an objective function.

Again the forward model is that given by Example 2.8, namely (5.1). The setup and
truth sections are similar to the previous programs, except that G, for example, need not be
computed here. The auxiliary objective function I in this case is I(·; y) from equation (2.21),
given by

I(·; y) = J(·) + Φ(·; y), (5.9)

where

J(u) :=
1

2

∣
∣C− 1

2
0 (u0 −m0)

∣
∣2 +

J−1∑

j=0

1

2

∣
∣Σ− 1

2

(
uj+1 −Ψ(uj)

)∣∣2 (5.10)

and

Φ(u; y) =
J−1∑

j=0

1

2

∣
∣Γ− 1

2

(
yj+1 − h(uj+1)

)∣∣2. (5.11)

It is defined in lines 38–45. The auxiliary objective function takes as inputs (u,y,sigma,gamma,
alpha,m0, C0,J), and gives output out= I(u; y), where u ∈ RJ+1 (given all the other pa-
rameters in its definition—the issue of identifying the input to be optimized over is discussed
also below).

The initial guess for the optimization algorithm uu is taken as a standard normal random
vector over R

J+1 in line 27. In line 24, a standard normal random matrix of size 1002 is
drawn and thrown away. This is so that one can easily change the input, e.g., to randn(z)
for z∈ N, and induce different random initial vectors uu for the optimization algorithm,
while keeping the data fixed by the random number seed sd set in line 12. The truth vt
may be used as initial guess by uncommenting line 28. In particular, if the output of the
minimization procedure is different for different initial conditions, then it is possible that the
objective function I(·; y) has multiple minima, and hence the posterior distribution P(·|y) is
multimodal. As we have already seen in Figure 3.8, this is certainly true even in the case of
scalar deterministic dynamics, when the underlying map gives rise to a chaotic flow.

The matlab optimization function fminsearch is called in line 32. The function handle
command @(u)I(u, · · ·) is used to tell fminsearch that the objective function I is to
be considered a function of u, even though it may take other parameter values as well (in
this case, y,sigma,gamma,alpha,m0,C0, and J). The outputs of fminsearch are the
value vmap such that I(vmap) is minimum, the value fval = I(vmap), and the exit
flag, which takes the value 1 if the algorithm has converged. The reader is encouraged to use
the help command for more details on this and other matlab functions used in the notes.
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The results of this minimization procedure are plotted in lines 34–35 together with the true
value v† as well as the data y. In Figure 3.9, such results are presented, including two minima
that were found with different initial conditions.

1 function this=p7
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p7.m weak 4DVAR for sin map (Ex. 1.3)
4 %% setup
5
6 J=5;% number of steps
7 alpha=2.5;% dynamics determined by alpha
8 gamma=1e0;% observational noise variance is gammaˆ2
9 sigma=1;% dynamics noise variance is sigmaˆ2

10 C0=1;% prior initial condition variance
11 m0=0;% prior initial condition mean
12 sd=1;rng(sd);% choose random number seed
13
14 %% truth
15
16 vt(1)=sqrt(C0)*randn;% truth initial condition
17 for j=1:J
18 vt(j+1)=alpha*sin(vt(j))+sigma*randn;% create truth
19 y(j)=vt(j+1)+gamma*randn;% create data
20 end
21
22 %% solution
23
24 randn(100);% try uncommenting or changing the argument for different
25 % initial conditions -- if the result is not the same,
26 % there may be multimodality (e.g. 1 & 100).
27 uu=randn(1,J+1);% initial guess
28 %uu=vt; % truth initial guess option
29
30 % solve with blackbox
31 % exitflag=1 ==> convergence
32 [vmap,fval,exitflag]=fminsearch(@(u)I(u,y,sigma,gamma,alpha,m0,C0,J),uu)
33
34 figure;plot([0:J],vmap,’Linewidth’,2);hold;plot([0:J],vt,’r’,’Linewidth’,2)
35 plot([1:J],y,’g’,’Linewidth’,2);hold;xlabel(’j’);legend(’MAP’,’truth’,’y’)
36
37 %% auxiliary objective function definition
38 function out=I(u,y,sigma,gamma,alpha,m0,C0,J)
39
40 Phi=0;JJ=1/2/C0*(u(1)-m0)ˆ2;
41 for j=1:J
42 JJ=JJ+1/2/sigmaˆ2*(u(j+1)-alpha*sin(u(j)))ˆ2;
43 Phi=Phi+1/2/gammaˆ2*(y(j)-u(j+1))ˆ2;
44 end
45 out=Phi+JJ;



130 5 Discrete Time: matlab Programs

5.3 Chapter 4 Programs

The programs p8.m-p15.m, used to generate the figures in Chapter 4, are presented in
this section. Various filtering algorithms used to sample the posterior filtering distribution
are given, involving both Gaussian approximation and particle approximation. Since these
algorithms are run for very large times (large J), they will be divided into only two sections:
setup, in which the parameters are defined, and solution, in which both the truth and
observations are generated, and the online assimilation of the current observation into the filter
solution is performed. The generation of truth can be separated into a truth section as in
the previous sections, but two loops of length J would be required, and loops are inefficient in
matlab , so the present format is preferred. The programs in this section are all very similar,
and their output is also similar, giving rise to Figures 4.3–4.12. With the exception of p8.m
and p9.m, the forward model is given by Example 2.8 (5.1), and the output is identical, given
for p10.m through p15.m in Figures 4.5–4.7 and 4.8–4.10. Figures 4.11 and 4.12 compare the
filters from the other Figures. The program p8.m features a two-dimensional linear forward
model, and p9.m features the forward model from Example 2.9 (5.2). At the end of each
program, the outputs are used to plot the mean and the covariance as well as the mean-
square error of the filter as functions of the iteration number j.

5.3.1. p8.m

The first filtering program is p8.m, which contains an implementation of the Kalman filter
applied to Example 2.2,

vj+1 = Avj + ξj , with A =

(
0 1
−1 0

)
,

and observed data given by

yj+1 = Hvj+1 + ηj+1

with H = (1, 0) and Gaussian noise. Thus only the first component of vj is observed.
The parameters and initial condition are defined in the setup section, lines 3–19. The

vectors v, m ∈ R
N×J , y∈ R

J , and c ∈ R
N×N×J are preallocated to hold the truth, mean,

observations, and covariance over the J observation times defined in line 5. In particular,
notice that the true initial condition is drawn from N(m0, C0) in line 16, where m0 = 0 and
C0 = 1 are defined in lines 10–11. The initial estimate of the distribution is defined in lines
17–18 as N(m0, C0), where m0 ∼ N(0, 100I) and C0 ← 100C0, so that the code may test the
ability of the filter to lock onto the true distribution, asymptotically in j, given a poor initial
estimate. That is to say, the values of (m0, C0) are changed such that the initial condition is
not drawn from this distribution.

The main solution loop then follows in lines 21–34. The truth v and the data that
are being assimilated y are sequentially generated within the loop, in lines 24–25. The filter
prediction step, in lines 27–28, consists in computing the predictive mean and covariance m̂j

and Ĉj as defined in (4.4) and (4.5) respectively:

m̂j+1 = Amj , Ĉj+1 = ACjA
T +Σ.
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Notice that indices are not used for the transient variables mhat and chat representing m̂j

and Ĉj , because they will not be saved from one iteration to the next. In lines 30–33, we
implement the analysis formulas for the Kalman filter from Corollary 4.2. In particular, the
innovation between the observation of the predicted mean and the actual observation, as
introduced in Corollary 4.2, is first computed in line 30,

dj = yj −Hm̂j . (5.12)

Again d, which represents dj , does not have any index for the same reason as above. Next,
the Kalman gain defined in Corollary 4.2 is computed in line 31:

Kj = ĈjH
T (HĈjH

T + Γ )−1. (5.13)

Once again, an index j is not used for the transient variable K representing Kj . Notice that a
“forward slash” / is used to compute B/A=B A−1. This is an internal function of matlab that
will analyze the matrices B and A to determine an “optimal” method for inversion, given their
structure. The update given in Corollary 4.2 is completed in lines 30–32 with the equations

mj = m̂j +Kjdj and Cj = (I −KjH)Ĉj . (5.14)

Finally, in lines 36–50, the outputs of the program are used to plot the mean and the
covariance as well as the mean-square error of the filter as functions of the iteration number
j, as shown in Figure 4.3.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p8.m Kalman Filter, Ex. 1.2
3 %% setup
4
5 J=1e3;% number of steps
6 N=2;% dimension of state
7 I=eye(N);% identity operator
8 gamma=1;% observational noise variance is gammaˆ2*I
9 sigma=1;% dynamics noise variance is sigmaˆ2*I

10 C0=eye(2);% prior initial condition variance
11 m0=[0;0];% prior initial condition mean
12 sd=10;rng(sd);% choose random number seed
13 A=[0 1;-1 0];% dynamics determined by A
14
15 m=zeros(N,J);v=m;y=zeros(J,1);c=zeros(N,N,J);% pre-allocate
16 v(:,1)=m0+sqrtm(C0)*randn(N,1);% initial truth
17 m(:,1)=10*randn(N,1);% initial mean/estimate
18 c(:,:,1)=100*C0;% initial covariance
19 H=[1,0];% observation operator
20
21 %% solution % assimilate!
22
23 for j=1:J
24 v(:,j+1)=A*v(:,j) + sigma*randn(N,1);% truth
25 y(j)=H*v(:,j+1)+gamma*randn;% observation
26
27 mhat=A*m(:,j);% estimator predict
28 chat=A*c(:,:,j)*A’+sigmaˆ2*I;% covariance predict
29
30 d=y(j)-H*mhat;% innovation
31 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
32 m(:,j+1)=mhat+K*d;% estimator update
33 c(:,:,j+1)=(I-K*H)*chat;% covariance update
34 end
35
36 figure;js=21;plot([0:js-1],v(2,1:js));hold;plot([0:js-1],m(2,1:js),’m’);
37 plot([0:js-1],m(2,1:js)+reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
38 plot([0:js-1],m(2,1:js)-reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
39 hold;grid;xlabel(’iteration, j’);
40 title(’Kalman Filter, Ex. 1.2’);
41
42 figure;plot([0:J],reshape(c(1,1,:)+c(2,2,:),J+1,1));hold
43 plot([0:J],cumsum(reshape(c(1,1,:)+c(2,2,:),J+1,1))./[1:J+1]’,’m’, ...
44 ’Linewidth’,2); grid; hold;xlabel(’iteration, j’);axis([1 1000 0 50]);
45 title(’Kalman Filter Covariance, Ex. 1.2’);
46
47 figure;plot([0:J],sum((v-m).ˆ2));hold;
48 plot([0:J],cumsum(sum((v-m).ˆ2))./[1:J+1],’m’,’Linewidth’,2);grid
49 hold;xlabel(’iteration, j’);axis([1 1000 0 50]);
50 title(’Kalman Filter Error, Ex. 1.2’)
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5.3.2. p9.m

The program p9.m contains an implementation of the 3DVAR method applied to the chaotic
logistic map of Example 2.4 (5.2) for r = 4. As in the previous section, the parameters and
initial condition are defined in the setup section, lines 3–16. In particular, notice that the
truth initial condition v(1) and initial mean m(1) are now initialized in lines 12–13 with
a uniform random number using the command rand, so that they are in the interval [0, 1],
where the model is well defined. Indeed, the solution will eventually become unbounded if
initial conditions are chosen outside this interval. With this in mind, we set the dynamics noise
sigma = 0 in line 8, i.e., deterministic dynamics, so that the true dynamics themselves do
not become unbounded.

The analysis step of 3DVAR consists in minimizing

Ifilter(v) =
1

2
|Γ− 1

2 (yj+1 −Hv)|2 + 1

2
|Ĉ− 1

2 (v −Ψ(mj))|2.

In this one-dimensional case, we set Γ = γ2, Ĉ = σ2 and define η2 = γ2/η2. The stabilization
parameter η (eta) from Example 4.12 is set in line 14, representing the ratio in uncertainty
in the data to that of the model; equivalently, it measures trust in the model over the obser-
vations. The choice η = 0 means that the model is irrelevant in the minimization step (4.12)
of 3DVAR, in the observed space—the synchronization filter. Since in the example, the signal
space and observation space both have dimension equal to 1, the choice η = 0 simply corre-
sponds to using only the data. In contrast, the choice η = ∞ ignores the observations and
uses only the model.

The 3DVAR setup gives rise to the constant scalar covariance C and resultant constant
scalar gain K; this should not be confused with the changing Kj in (5.13), temporarily defined
by K in line 31 of p8.m. The main solution loop follows in lines 20–33. Up to the different
forward model, lines 21–22, 24, 26, and 27 of this program are identical to lines 24–25, 27, 30,
and 32 of p8.m, described in Section 5.3.1. The only other difference is that the covariance
updates are not here because of the constant-covariance assumption underlying the 3DVAR
algorithm.

The 3DVAR filter may in principle generate the estimated mean mhat outside [0, 1],
because of the noise in the data. In order to flag potential unbounded trajectories of the
filter, which in principle could arise because of this, an extra stopping criterion is included in
lines 29–32. To illustrate this, try setting sigma�= 0 in line 8. Then the signal will eventually
become unbounded, regardless of how small the noise variance is chosen. In this case, the
estimate will surely blow up while tracking the unbounded signal. Otherwise, if η is chosen
appropriately so as to stabilize the filter, it is extremely unlikely that the estimate will ever
blow up. Finally, similarly to p8.m, in the last lines of the program we use the outputs of
the program in order to produce Figure 4.4, namely plotting the mean and the covariance as
well as the mean-square error of the filter as functions of the iteration number j.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p9.m 3DVAR Filter, deterministic logistic map (Ex. 1.4)
3 %% setup
4
5 J=1e3;% number of steps
6 r=4;% dynamics determined by r
7 gamma=1e-1;% observational noise variance is gammaˆ2
8 sigma=0;% dynamics noise variance is sigmaˆ2
9 sd=10;rng(sd);% choose random number seed

10
11 m=zeros(J,1);v=m;y=m;% pre-allocate
12 v(1)=rand;% initial truth, in [0,1]
13 m(1)=rand;% initial mean/estimate, in [0,1]
14 eta=2e-1;% stabilization coefficient 0 < eta << 1
15 C=gammaˆ2/eta;H=1;% covariance and observation operator
16 K=(C*H’)/(H*C*H’+gammaˆ2);% Kalman gain
17
18 %% solution % assimilate!
19
20 for j=1:J
21 v(j+1)=r*v(j)*(1-v(j)) + sigma*randn;% truth
22 y(j)=H*v(j+1)+gamma*randn;% observation
23
24 mhat=r*m(j)*(1-m(j));% estimator predict
25
26 d=y(j)-H*mhat;% innovation
27 m(j+1)=mhat+K*d;% estimator update
28
29 if norm(mhat)>1e5
30 disp(’blowup!’)
31 break
32 end
33 end
34 js=21;% plot truth, mean, standard deviation, observations
35 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
36 plot([0:js-1],m(1:js)+sqrt(C),’r--’);plot([1:js-1],y(1:js-1),’kx’);
37 plot([0:js-1],m(1:js)-sqrt(C),’r--’);hold;grid;xlabel(’iteration, j’);
38 title(’3DVAR Filter, Ex. 1.4’)
39
40 figure;plot([0:J],C*[0:J].ˆ0);hold
41 plot([0:J],C*[0:J].ˆ0,’m’,’Linewidth’,2);grid
42 hold;xlabel(’iteration, j’);title(’3DVAR Filter Covariance, Ex. 1.4’);
43
44 figure;plot([0:J],(v-m).ˆ2);hold;
45 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
46 hold;xlabel(’iteration, j’);
47 title(’3DVAR Filter Error, Ex. 1.4’)
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5.3.3. p10.m

A variation of program p9.m is given by p10.m, where the 3DVAR filter is implemented for
Example 2.3 given by (5.1). Indeed, the remaining programs of this section will all be for the
same example, namely Example 2.3, so this will not be mentioned again. In this case, the
initial condition is again taken as a draw from the prior N(m0, C0) as in p7.m, and the initial
mean estimate is again changed to m0 ∼ N(0, 100I) so that the code may test the ability of
the filter to lock onto the signal given a poor initial estimate. Furthermore, for this problem,
there is no need to introduce the stopping criterion present in the case of p9.m since the
underlying deterministic dynamics are dissipative. The output of this program is shown in
Figure 4.5.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p10.m 3DVAR Filter, sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12
13 m=zeros(J,1);v=m;y=m;% pre-allocate
14 v(1)=m0+sqrt(C0)*randn;% initial truth
15 m(1)=10*randn;% initial mean/estimate
16 eta=2e-1;% stabilization coefficient 0 < eta << 1
17 c=gammaˆ2/eta;H=1;% covariance and observation operator
18 K=(c*H’)/(H*c*H’+gammaˆ2);% Kalman gain
19
20 %% solution % assimilate!
21
22 for j=1:J
23 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
24 y(j)=H*v(j+1)+gamma*randn;% observation
25
26 mhat=alpha*sin(m(j));% estimator predict
27
28 d=y(j)-H*mhat;% innovation
29 m(j+1)=mhat+K*d;% estimator update
30
31 end
32
33 js=21;% plot truth, mean, standard deviation, observations
34 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
35 plot([0:js-1],m(1:js)+sqrt(c),’r--’);plot([1:js-1],y(1:js-1),’kx’);
36 plot([0:js-1],m(1:js)-sqrt(c),’r--’);hold;grid;xlabel(’iteration, j’);
37 title(’3DVAR Filter, Ex. 1.3’)
38
39 figure;plot([0:J],c*[0:J].ˆ0);hold
40 plot([0:J],c*[0:J].ˆ0,’m’,’Linewidth’,2);grid
41 hold;xlabel(’iteration, j’);
42 title(’3DVAR Filter Covariance, Ex. 1.3’);
43
44 figure;plot([0:J],(v-m).ˆ2);hold;
45 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
46 hold;xlabel(’iteration, j’);
47 title(’3DVAR Filter Error, Ex. 1.3’)



5.3 Chapter 4 Programs 137

5.3.4. p11.m

The next program is p11.m. This program comprises an implementation of the extended
Kalman filter.It is very similar in structure to p8.m, except with a different forward model.
Since the dynamics are scalar, the observation operator is defined by setting H to take the
value 1 in line 16. The predicting covariance Ĉj is not independent of the mean, as it is
for the linear problem p8.m. Instead, as described in Section 4.2.2, it is determined via the
linearization of the forward map around mj , in line 26:

Ĉj+1 = (α cos(mj))Cj (α cos(mj)) .

As in p8.m, we change the prior to a poor initial estimate of the distribution to study whether,
and how, the filter locks onto a neighborhood of the true signal, despite poor initialization,
for large j. This initialization is in lines 15–16, where m0 ∼ N(0, 100I) and C0 ← 10C0.
Subsequent filtering programs use an identical initialization, with the same rationale as in
this case. We will not state this again. The output of this program is shown in Figure 4.6.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p11.m Extended Kalman Filter, sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12
13 m=zeros(J,1);v=m;y=m;c=m;% pre-allocate
14 v(1)=m0+sqrt(C0)*randn;% initial truth
15 m(1)=10*randn;% initial mean/estimate
16 c(1)=10*C0;H=1;% initial covariance and observation operator
17
18 %% solution % assimilate!
19
20 for j=1:J
21
22 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
23 y(j)=H*v(j+1)+gamma*randn;% observation
24
25 mhat=alpha*sin(m(j));% estimator predict
26 chat=alpha*cos(m(j))*c(j)*alpha*cos(m(j))+sigmaˆ2;% covariance predict
27
28 d=y(j)-H*mhat;% innovation
29 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
30 m(j+1)=mhat+K*d;% estimator update
31 c(j+1)=(1-K*H)*chat;% covariance update
32
33 end
34
35 js=21;% plot truth, mean, standard deviation, observations
36 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
37 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
38 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
39 (’iteration, j’);
40 title(’ExKF, Ex. 1.3’)
41
42 figure;plot([0:J],c);hold
43 plot([0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
44 hold;xlabel(’iteration, j’);
45 title(’ExKF Covariance, Ex. 1.3’);
46
47 figure;plot([0:J],(v-m).ˆ2);hold;
48 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
49 hold;xlabel(’iteration, j’);
50 title(’ExKF Error, Ex. 1.3’)
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5.3.5. p12.m

The program p12.m contains an implementation of the ensemble Kalman filter, with per-
turbed observations, as described in Section 4.2.3.The structure of this program is again very
similar to those of p8.m and p11.m, except now an ensemble of particles, of size N defined in
line 12, is retained as an approximation of the filtering distribution. The ensemble {v(n)}Nn=1

represented by the matrix U is then constructed out of draws from this Gaussian in line 18,
and the mean m′

0 is reset to the ensemble sample mean.

In line 27, the predicting ensemble {v̂(n)j }Nn=1 represented by the matrix Uhat is computed
from a realization of the forward map applied to each ensemble member. This is then used
to compute the ensemble sample mean m̂j (mhat) and covariance Ĉj (chat). There is now

an ensemble of “innovations” with a new i.i.d. realization y
(n)
j ∼ N(yj , Γ ) for each ensemble

member, computed in line 31 (not to be confused with the actual innovation as defined in
equation (5.12)),

d
(n)
j = y

(n)
j −Hv̂(n)j .

The Kalman gain Kj (K) is computed using (5.13), very similarly to how it is done in p8.m
and p11.m, and the ensemble of updates is computed in line 33:

v
(n)
j = v̂

(n)
j +Kjd

(n)
j .

The output of this program is shown in Figure 4.7. Furthermore, long simulations of length
J = 105 were performed for this and the previous two programs, p10.m and p11.m, and
their errors are compared in Figure 4.11.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p12.m Ensemble Kalman Filter (PO), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e5;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Uhat=alpha*sin(U(j,:))+sigma*randn(1,N);% ensemble predict
28 mhat=sum(Uhat)/N;% estimator predict
29 chat=(Uhat-mhat)*(Uhat-mhat)’/(N-1);% covariance predict
30
31 d=y(j)+gamma*randn(1,N)-H*Uhat;% innovation
32 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
33 U(j+1,:)=Uhat+K*d;% ensemble update
34 m(j+1)=sum(U(j+1,:))/N;% estimator update
35 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/(N-1);% covariance update
36
37 end
38
39 js=21;% plot truth, mean, standard deviation, observations
40 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
41 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
42 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
43 (’iteration, j’);
44 title(’EnKF, Ex. 1.3’)
45
46 figure;plot([0:J],c);hold
47 plot([0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
48 hold;xlabel(’iteration, j’);
49 title(’EnKF Covariance, Ex. 1.3’);
50
51 figure;plot([0:J],(v-m).ˆ2);hold;
52 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
53 hold;xlabel(’iteration, j’);
54 title(’EnKF Error, Ex. 1.3’)
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5.3.6. p13.m

The program p13.m contains a particular square-root filter implementation of the ensemble
Kalman filter, namely the ETKF filter, described in detail in Section 4.2.4. The program thus
is very similar to p12.m for the EnKF with perturbed observations. In particular, the filtering
distribution of the state is again approximated by an ensemble of particles. The predicting

ensemble {v̂(n)j }Nn=1 (Uhat), mean m̂j(mhat), and covariance Ĉj (chat) are computed exactly

as in p12.m. However, this time the covariance is kept in factorized form X̂jX̂


j = Ĉj in lines

29–30, with factors denoted by Xhat. The transformation matrix is computed in line 31,

Tj =
(
IN + X̂


j H

Γ−1HX̂j

)− 1
2

,

and Xj = X̂jTj (X) is computed in line 32, from which the covariance Cj = XjX


j is

reconstructed in line 38. A single innovationdj is computed in line 34, and a single updated
mean mj is then computed in line 36 using the Kalman gain Kj (5.13) computed in line
35. This is the same as in the Kalman filter and extended Kalman filter (ExKF) of p8.m
and p11.m, in contrast to the EnKF with perturbed observations appearing in p12.m. The
ensemble is then updated to U in line 37 using the formula

v
(n)
j = mj +X

(n)
j

√
N − 1,

where X
(n)
j is the nth column of Xj .

Notice that the operator that is factorized and inverted has dimension N , which in this case
is large in comparison to the state and observation dimensions. This is, of course, natural for
computing sample statistics, but in the context of the one-dimensional examples considered
here, it makes p13.m run far more slowly than p12.m. However, in many applications, the
signal state-space dimension is the largest, with the observation dimension coming next, and
the ensemble size being far smaller than either of these. In this context, the ETKF has become
a very popular method. So its relative inefficiency, compared, for example, with the perturbed
observations Kalman filter, should not be given too much weight in the overall evaluation of
the method. Results illustrating the algorithm are shown in Figure 4.8.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p13.m Ensemble Kalman Filter (ETKF), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Uhat=alpha*sin(U(j,:))+sigma*randn(1,N);% ensemble predict
28 mhat=sum(Uhat)/N;% estimator predict
29 Xhat=(Uhat-mhat)/sqrt(N-1);% centered ensemble
30 chat=Xhat*Xhat’;% covariance predict
31 T=sqrtm(inv(eye(N)+Xhat’*H’*H*Xhat/gammaˆ2));% right-hand sqrt
32 transform
33 X=Xhat*T;% transformed centered ensemble
34
35 d=y(j)-H*mhat;randn(1,N);% innovation
36 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
37 m(j+1)=mhat+K*d;% estimator update
38 U(j+1,:)=m(j+1)+X*sqrt(N-1);% ensemble update
39 c(j+1)=X*X’;% covariance update
40
41 end
42
43 js=21;% plot truth, mean, standard deviation, observations
44 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
45 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
46 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
47 (’iteration, j’);
48 title(’EnKF(ETKF), Ex. 1.3’);
49
50 figure;plot([0:J],(v-m).ˆ2);hold;
51 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
52 plot([0:J],cumsum(c)./[1:J+1]’,’r--’,’Linewidth’,2);
53 hold;xlabel(’iteration, j’);
54 title(’EnKF(ETKF) Error, Ex. 1.3’)
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5.3.7. p14.m

The program p14.m is an implementation of the standard SIRS filter from Section 4.3.2. The
setup section is almost identical to the those of the EnKF methods, because those methods
also rely on particle approximations of the filtering distribution. However, the particle filters
consistently estimate quite general distributions, while the EnKF is provably accurate only
for Gaussian distributions. The truth and data generation and ensemble prediction in lines
24–27 are the same as in p12.m and p13.m. The way this prediction in line 27 is phrased

in Section 4.3.2 is v̂
(n)
j+1 ∼ P(·|v(n)j ). An ensemble of “innovation” terms {d(n)j }Nn=1 is again

required, but with all terms using the same observation, as computed in line 28. Assuming

w
(n)
j = 1/N , then

ŵ
(n)
j ∝ P(yj |v(n)j ) ∝ exp

{
−1

2

∣
∣
∣d(n)j

∣
∣
∣
2

Γ

}
,

where d
(n)
j is the innovation of the nth particle, as given in (4.27). The vector of unnormalized

weights {ŵ(n)
j }Nn=1 (what) is computed in line 29 and normalized to {w(n)

j }Nn=1 (w) in line
30. Lines 32–39 implement the resampling step. First, the cumulative distribution function
of the weights W ∈ [0, 1]N (ws) is computed in line 32. Notice that W has the properties

W1 = w
(1)
j , Wn ≤ Wn+1, and WN = 1. Then N uniform random numbers {u(n)}Nn=1 are

drawn. For each u(n), let n∗ be such that Wn∗−1 ≤ u(n) < Wn∗ . This n∗ (ix) is found in line
34 using the find function, which can identify the first or last element in an array to exceed
zero (see help file): ix = find ( ws > rand, 1, ’first’ ). This corresponds to

drawing the (n∗)th element from the discrete measure defined by {w(n)
j }Nn=1. The nth particle

v
(n)
j (U(j+1,n)) is set equal to v̂(n

∗)
j (Uhat(ix)) in line 37. The sample mean and covariance

are then computed in lines 41–42. The rest of the program follows the others, generating the
output displayed in Figure 4.9.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p14.m Particle Filter (SIRS), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=100;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % Assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Uhat=alpha*sin(U(j,:))+sigma*randn(1,N);% ensemble predict
28 d=y(j)-H*Uhat;% ensemble innovation
29 what=exp(-1/2*(1/gammaˆ2*d.ˆ2));% weight update
30 w=what/sum(what);% normalize predict weights
31
32 ws=cumsum(w);% resample: compute cdf of weights
33 for n=1:N
34 ix=find(ws>rand,1,’first’);% resample: draw rand \sim U[0,1] and
35 % find the index of the particle corresponding to the first time
36 % the cdf of the weights exceeds rand.
37 U(j+1,n)=Uhat(ix);% resample: reset the nth particle to the one
38 % with the given index above
39 end
40
41 m(j+1)=sum(U(j+1,:))/N;% estimator update
42 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/N;% covariance update
43
44 end
45
46 js=21;% plot truth, mean, standard deviation, observations
47 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
48 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
49 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
50 (’iteration, j’);
51 title(’Particle Filter (Standard), Ex. 1.3’);
52
53 figure;plot([0:J],(v-m).ˆ2);hold;
54 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
55 hold;xlabel(’iteration, j’);title(’Particle Filter (Standard) Error,
56 Ex. 1.3’)
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5.3.8. p15.m

The program p15.m is an implementation of the SIRS(OP) algorithm from Section 4.3.3. The
setup section and truth and observation generation are again the same as in the previous
programs. The difference between this program and p14.m arises because the importance

sampling proposal kernel Qj with density P(vj+1|vj , yj+1) is used to propose each v̂
(n)
j+1 given

each particular v
(n)
j ; in particular, Qj depends on the next data point, whereas the kernel P

used in p14.m has density P(vj+1|vj), which is independent of yj+1.

Observe that if v
(n)
j and yj+1 are both fixed, then P

(
vj+1|v(n)j , yj+1

)
is the density of the

Gaussian with mean m′(v) and covariance Σ′ given by

m′(n) = Σ′
(
Σ−1Ψ

(
v
(n)
j

)
+H
Γ−1yj+1

)
, (Σ′)−1

= Σ−1 +H
Γ−1H.

Therefore, Σ′ (Sig) and the ensemble of means
{
m′(n)}N

n=1
(vector em) are computed in lines

27 and 28 and used to sample v̂
(n)
j+1 ∼ N(m′(n), Σ′) in line 29 for all of

{
v̂
(n)
j+1

}N

n=1
(Uhat).

Now the weights are updated by (4.34) rather than (4.27), i.e., assuming w
(n)
j = 1/N .

Then

ŵ
(n)
j+1 ∝ P

(
yj+1|v(n)j

)
∝ exp

{
−1

2

∣
∣
∣yj+1 −Ψ

(
v
(n)
j

)∣∣
∣
2

Γ+Σ

}
.

This is computed in lines 31–32, using another auxiliary “innovation” vector d in line 31.
Lines 35–45 are again identical to lines 32–42 of program p14.m, performing the resampling
step and computing the sample mean and covariance.

The output of this program was used to produce Figure 4.10, similar to the other filtering
algorithms. Furthermore, long simulations of length J = 105 were performed for this and
the previous three programs, p12.m, p13.m, and p14.m, and their errors are compared in
Figure 4.12, similarly to Figure 4.11, comparing the basic filters p10.m, p11.m, and p12.m.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p15.m Particle Filter (SIRS, OP), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=100;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % Assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Sig=inv(inv(sigmaˆ2)+H’*inv(gammaˆ2)*H);% optimal proposal covariance
28 em=Sig*(inv(sigmaˆ2)*alpha*sin(U(j,:))+H’*inv(gammaˆ2)*y(j));% proposal
29 mean
30 Uhat=em+sqrt(Sig)*randn(1,N);% ensemble optimally importance sampled
31
32 d=y(j)-H*alpha*sin(U(j,:));% ensemble innovation
33 what=exp(-1/2/(sigmaˆ2+gammaˆ2)*d.ˆ2);% weight update
34 w=what/sum(what);% normalize predict weights
35
36 ws=cumsum(w);% resample: compute cdf of weights
37 for n=1:N
38 ix=find(ws>rand,1,’first’);% resample: draw rand \sim U[0,1] and
39 % find the index of the particle corresponding to the first time
40 % the cdf of the weights exceeds rand.
41 U(j+1,n)=Uhat(ix);% resample: reset the nth particle to the one
42 % with the given index above
43 end
44
45 m(j+1)=sum(U(j+1,:))/N;% estimator update
46 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/N;% covariance update
47
48 end
49
50 js=21;%plot truth, mean, standard deviation, observations
51 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
52 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
53 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
54 (’iteration, j’);
55 title(’Particle Filter (Optimal), Ex. 1.3’);
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5.4 ODE Programs

The programs p16.m and p17.m are used to simulate and plot the Lorenz ’63 and ’96 models
from Examples 2.6 and 2.7, respectively. These programs are both matlab functions, similar
to the program p7.m presented in Section 5.2.5. The reason for using functions and not scripts
is that the black box matlab built-in function ode45 can be used for the time integration
(see help page for details regarding this function). Therefore, each has an auxiliary function
defining the right-hand side of the given ODE, which is passed via a function handle to ode45.

5.4.1. p16.m

The first of the ODE programs, p16.m, integrates the Lorenz ’63 model 2.6. The setup
section of the program, on lines 4–11, defines the parameters of the model and the initial
conditions. In particular, a random Gaussian initial condition is chosen in line 9, and a
small perturbation to its first (x) component is introduced in line 10. The trajectories are
computed on lines 13–14 using the built-in function ode45. Notice that the auxiliary function
lorenz63, defined on line 29, takes as arguments (t, y), prescribed through the definition of
the function handle @(t,y), while (α, b, r) are given as fixed parameters (a,b,r), defining
the particular instance of the function. The argument t is intended for defining nonautonomous
ODEs and is spurious here, since it is an autonomous ODE, and therefore, t does not appear
on the right-hand side. It is nonetheless included for completeness, and it causes no harm.
The Euclidean norm of the error is computed in line 16, and the results are plotted similarly
to previous programs in lines 18–25. This program is used to plot Figs. 2.6 and 2.7.

5.4.2. p17.m

The second of the ODE programs, p17.m, integrates the J=40-dimensional Lorenz ’96
model 2.7. This program is almost identical to the previous one, where a small perturba-
tion of the random Gaussian initial condition defined on line 9 is introduced on lines 10–11.
The major difference is the function passed to ode45 on lines 14–15, which now defines the
right-hand side of the Lorenz ’96 model given by the subfunction lorenz96 on line 30. Again
the system is autonomous, and the spurious t-variable is included for completeness. A few of
the 40 degrees of freedom are plotted along with the error in lines 19–27. This program is
used to plot Figs. 2.8 and 2.9
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1 function this=p16
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p16.m Lorenz ’63 (Ex. 2.6)
4 %% setup
5
6 a=10;b=8/3;r=28;% define parameters
7 sd=1;rng(sd);% choose random number seed
8
9 initial=randn(3,1);% choose initial condition

10 initial1=initial + [0.0001;0;0];% choose perturbed initial condition
11
12 %% calculate the trajectories with blackbox
13 [t1,y]=ode45(@(t,y) lorenz63(t,y,a,b,r), [0 100], initial);
14 [t,y1]=ode45(@(t,y) lorenz63(t,y,a,b,r), t1, initial1);
15
16 error=sqrt(sum((y-y1).ˆ2,2));% calculate error
17
18 %% plot results
19
20 figure(1), semilogy(t,error,’k’)
21 axis([0 100 10ˆ-6 10ˆ2])
22 set(gca,’YTick’,[10ˆ-6 10ˆ-4 10ˆ-2 10ˆ0 10ˆ2])
23
24 figure(2), plot(t,y(:,1),’k’)
25 axis([0 100 -20 20])
26
27
28 %% auxiliary dynamics function definition
29 function rhs=lorenz63(t,y,a,b,r)
30
31 rhs(1,1)=a*(y(2)-y(1));
32 rhs(2,1)=-a*y(1)-y(2)-y(1)*y(3);
33 rhs(3,1)=y(1)*y(2)-b*y(3)-b*(r+a);
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1 function this=p17
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p17.m Lorenz ’96 (Ex. 2.7)
4 %% setup
5
6 J=40;F=8;% define parameters
7 sd=1;rng(sd);% choose random number seed
8
9 initial=randn(J,1);% choose initial condition

10 initial1=initial;
11 initial1(1)=initial(1)+0.0001;% choose perturbed initial condition
12
13 %% calculate the trajectories with blackbox
14 [t1,y]=ode45(@(t,y) lorenz96(t,y,F), [0 100], initial);
15 [t,y1]=ode45(@(t,y) lorenz96(t,y,F), t1, initial1);
16
17 error=sqrt(sum((y-y1).ˆ2,2));% calculate error
18
19 %% plot results
20
21 figure(1), plot(t,y(:,1),’k’)
22 figure(2), plot(y(:,1),y(:,J),’k’)
23 figure(3), plot(y(:,1),y(:,J-1),’k’)
24
25 figure(4), semilogy(t,error,’k’)
26 axis([0 100 10ˆ-6 10ˆ2])
27 set(gca,’YTick’,[10ˆ-6 10ˆ-4 10ˆ-2 10ˆ0 10ˆ2])
28
29 %% auxiliary dynamics function definition
30 function rhs=lorenz96(t,y,F)
31
32 rhs=[y(end);y(1:end-1)].*([y(2:end);y(1)] - ...
33 [y(end-1:end);y(1:end-2)]) - y + F*y.ˆ0;



Chapter 6

Continuous Time: Formulation

In this chapter, and in all subsequent chapters, we consider continuous-time signal dynamics
and continuous-time data. This takes us into a part of the subject that is potentially rather
technical, a fact that can obscure the structure manifest in the continuous-time formulation.
In order to avoid technicalities that can obfuscate the derivations, and in order to create space
to highlight the structure present in the continuous-time models, we proceed as follows: we
adopt an approach whereby the derivation of many key equations proceeds in a nonrigorous
fashion from the discrete-time setup, by formally taking the limit τ → 0, where τ is the
time increment between observations. We then concentrate on studying the properties of the
resulting limiting continuous-time problems, and algorithms for them.

This chapter commences with a derivation of the continuous-time setting, via the limiting
process τ → 0, in Section 6.1; we also include a brief overview of the properties of stochastic
integrals and stochastic differential equations (SDEs). Section 6.2 contains the guiding ex-
amples that we use throughout the continuous-time part of these notes, and is followed, in
Sections 6.3 and 6.4, with a discussion of the filtering and smoothing problems, respectively.
As in the discrete-time setting, filtering and smoothing are related, and this fact is discussed,
and references given, in the bibliography, Section 6.6. Well-posedness of the distributions is
considerably harder to study in continuous time than in discrete time, and we also provide
references to the relevant literature on this topic within the bibliography, Section 6.6, rather
than analyze it explicitly. Section 6.5 contains numerical illustrations centered on the guiding
examples. The chapter concludes with exercises in Section 6.7.

6.1 Setup

6.1.1. Derivation of the Continuous-Time Model

In order to derive a continuous-time limit that exhibits clearly the tension between determin-
istic and stochastic elements, we consider the discrete-time model (2.1) and (2.2) in the case
that for τ > 0,

Ψ(·)→ I ·+τf(·), yj+1 →
(
zj+1 − zj

τ

)
, Σ → τΣ0, and Γ → τ−1Γ0. (6.1)
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The assumption on Ψ, namely that it is a small O(τ) perturbation of the identity, and the
scaling of the model noise Σ to have variance O(τ), ensures that the underlying signal process
behaves like an SDE for τ → 0. In contrast to the model noise, however, the observational
noise variance Γ is scaled inversely proportional to τ . This large observational noise scaling
counterbalances the effect of increased frequency of observation so as to obtain an interesting
effect in the limit. To understand this fact, notice that the variable z is, in the limit, an
integral of the observations y. Together, this scaling of the noise and definition of z leads to a
situation in which observational noise and the variable z are of the same order of magnitude,
and z is governed by an SDE.

From (2.1), the scalings (6.1) give

vj+1 = vj + τf(vj) +
√
τΣ0ξ̃j , j ∈ Z

+, (6.2a)

v0 ∼ N(m0, C0), (6.2b)

with ξ̃ = {ξ̃j}j∈N an i.i.d. sequence determined by ξ̃0 ∼ N(0, I) and independent of v0.
From (2.2), we obtain

zj+1 = zj + τh(vj+1) +
√
τΓ0η̃j+1, j ∈ Z

+, (6.3a)

z0 = 0, (6.3b)

with η̃ = {η̃j}j∈Z+ an i.i.d. sequence determined by η̃1 ∼ N(0, I). The independence as-

sumptions made in the discrete-time setting imply that ξ̃, η̃ and v0 are mutually independent
random variables. We assume that the pair (vj , zj) represent approximations of a continuous-
time process (v(·), z(·)) evaluated at time t = jτ. Specifically, if we view vj as an approxima-
tion to v(jτ) and zj as an approximation to z(jτ), then (6.2), (6.3) constitute a consistent
numerical discretization, with time step τ , of the SDEs

dv

dt
= f(v) +

√
Σ0
dBv

dt
, (6.4a)

v(0) ∼ N(m0, C0), (6.4b)

and

dz

dt
= h(v) +

√
Γ0
dBz

dt
, (6.5a)

z(0) = 0; (6.5b)

here Bv (respectively Bz) is an R
n-valued (respectively R

m-valued) standard Brownian
motion. In addition, Bv and Bz are independent of each other and of v(0). Note that in
fact, (6.2) is the Euler–Maruyama approximation of (6.4), while (6.3) is a semi-implicit ap-
proximation of (6.5), of Euler–Maruyama type. Straightforward numerical analysis proves
convergence of the solution of (6.2), (6.3) to (6.4), (6.5) under, for example, the assump-
tion that f and h are globally Lipschitz functions. Thus our signal dynamics is determined
by (6.4), and the data by (6.5). We will always assume that Γ0 > 0. In studying the stochastic
dynamics model, we also assume that Σ0 > 0. However, we will also consider the deterministic
dynamics model for which Σ0 = 0.

We now return to the question of why we chose the particular scalings Σ → τΣ0 and
Γ → τ−1Γ0. These are the scalings that result in interesting continuous-time limits in which
deterministic and stochastic effects are in balance. Choosing Σ → τ rΣ0 with r > 1 would
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result in the deterministic dynamics model considered below, while choosing r < 1 would
necessitate a different rescaling in time to obtain a continuous limit, and this would simply be
Brownian motion. Furthermore, choosing the observational noise variance inversely propor-
tional to the time increment between observations reflects the right balance to see an O(1)
noise polluting the observations in the continuous-time limit; choosing Γ → τ−rΓ0 with r < 1
results in a limiting observation equation like (6.5) but with Γ0 replaced by 0, and choosing
r > 1 does not result in an interesting limit, because noise swamps the observations.

This and subsequent chapters will be devoted to the data-assimilation problem of finding
out information about the signal v solving (6.4) from the data z given by (6.5). Thus our
scalings have been chosen so that the resulting continuous-time limit retains the interesting
balance between observations and noise that makes the data-assimilation problem challenging;
more precisely, it leads to problems in which the fields of stochastic dynamical systems and
statistics need to work in conjunction in order to make progress. Our analysis in this and sub-
sequent chapters should mainly be understood as an attempt to understand data assimilation
by means of the tools of continuous-time analysis; for some researchers, this brings a clarity
to the subject that reveals the key issues more clearly than in discrete time. In particular,
this understanding is most pertinent to the understanding of discrete-time data assimilation
in the case of high-frequency observations with large observational noise. In rough terms,
the analysis is relevant when the high frequency and large noise balance to produce O(1)
stochastic effects.

As in the discrete-time setting, we will be interested, on occasion, in the case of deter-
ministic signal dynamics, where Σ0 ≡ 0, but we will always have Γ0 �= 0. In the case of
deterministic dynamics, we replace equation (6.4) by

dv

dt
= f(v), (6.6a)

v(0) ∼ N(m0, C0). (6.6b)

6.1.2. Stochastic Integration

We conclude this section with a brief summary of the basic properties of Itô stochastic integrals
and SDEs, since these are used throughout our continuous-time developments. In order to
define SDEs, we need to be able to make sense of the stochastic integral

SI :=

∫ b

a

r(t)dW (t), (6.7)

where W is a Brownian motion. We now make this idea more precise, using the Itô inter-
pretation of stochastic integration. Let W be an R

m−valued standard unit Brownian motion
(covariance I on R

m), defined on time interval R+ and constructed on a probability space
(Ω,F ,P). Let Ft ⊂ F denote the sub-σ-algebra defined by information only on [0, t), let
b ≥ a ≥ 0, and let M2([a, b];Rd×m) denote the space of all measurable random functions
r : R+×Ω → R

d×m with the property that r(t; ·) is Ft−measurable, and hence depends only
on the Brownian motion on [0, t), and such that

E

∫ b

a

‖r(t, ω)‖2Fdt <∞;

here ‖ · ‖F denotes the Frobenius norm. With this notation established, we have the following
properties for (6.7).
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Lemma 6.1. (Properties of the Itô Integral)
For r ∈ M2([a, b];Rd×m), and using the shorthand r(t) := r(t, ω), we have, for SI given

by (6.7) the following:

1. (i) SI is Fb−measurable and is linear in r;
2. (ii) E(SI) = 0;

3. (iii) E|SI|2 = E
∫ b

a
‖r(t)‖2Fdt.

Having defined the stochastic integral, we can now move on to SDEs. In the following,
g : Rd ×R

+ → R
d is a smooth vector-valued function, and γ : Rd ×R

+ → R
d×m is a smooth

matrix-valued function. We consider the white-noise-driven Itô SDE

dv

dt
= g(v, t) + γ(v, t)

dW

dt
, v(0) = u. (6.8)

The precise interpretation of (6.8) is as an integral equation for v(t) ∈ C(R+,Rd):

v(t) = u+

∫ t

0

g(v(s), s)ds+

∫ t

0

γ(v(s), s)dW (s), t ≥ 0, (6.9)

where the last term is a stochastic integral. Without further assumptions, existence and
uniqueness of solutions to this equation may be difficult to establish. We work under a set of
assumptions that is natural in many applications: we assume that there exist α, β ∈ R such
that

〈g(v, t), v〉 ≤ α+ β|v|2 ∀(v, t) ∈ R
d × R

+. (6.10)

We observe that for both of the Lorenz models introduced later in this section, this condition
is satisfied; see the discussion following equation (2.39).

Theorem 6.2. Assume that both g : Rd × [0, T ] → R
d×m and γ : Rd × [0, T ] → R

d×d are
measurable, that g satisfies (6.10), that g(·, t) is locally Lipschitz, uniformly in t ∈ [0, T ], that
γ(·, t) is globally Lipschitz on R

d, uniformly in t ∈ [0, T ], and that v(0) = u is a random
variable, independent of the Brownian motion W (t), and satisfying

E|u|2 <∞.

Then the SDE (6.8) has a unique solution v ∈ C([0, T ];Rd) with

E

(∫ T

0

|v(t)|2 dt
)

<∞.

Furthermore, the solution of the SDE does not explode on [0, T ], almost surely.

The equation (6.8) defines a Markov process whose properties we now study in more detail.
Given the function γ(x, t) in the SDE (6.8), we define the diffusivity matrix Γ : Rd × R

+ �→
R

d×d by

Γ (x, t) = γ(x, t)γ(x, t)T . (6.11)
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The Markov process defined by (6.8) is characterized by the following generator L, defined
via its action on a test function ϕ : Rd �→ R:

Lϕ = g · ∇ϕ+
1

2
Γ : ∇∇ϕ. (6.12)

The generator plays a central role in computing the rate of change of functions of the solution
of the SDE via the Itô formula.

Lemma 6.3. (Itô Formula) Assume that the conditions of Theorem 6.2 hold. Let v(t)
solve (6.8) and let ϕ ∈ C2,1(Rd×[0, T ],R). Then the process ϕ(v(t), t) satisfies, for 0 ≤ t ≤ T ,

ϕ(v(t), t) = ϕ(u, 0) +

∫ t

0

(∂ϕ
∂t

(v(s), s) + Lϕ(v(s), s)
)
ds

+

∫ t

0

〈∇ϕ(v(s), s), γ(v(s), s) dW (s)〉 .

Assume, furthermore, that the SDE (6.8) has coefficients f, γ that are independent of time t
and that ϕ too is chosen to be independent of time t. Then the Itô formula gives

ϕ(v(t)) = ϕ(u) +

∫ t

0

Lϕ(v(s))ds+
∫ t

0

〈∇ϕ(v(s)), γ(v(s))dW (s)〉 . (6.13)

Deconstruction of (6.13) shows that the derivative of ϕ(v(t)) contains an extra term that
would not be present if W (t) were a smooth function of time, since the formula may be
written as

ϕ(v(t)) = ϕ(u) +

∫ t

0

1

2
Γ (v(s)) : ∇∇ϕ(v(s))ds+

∫ t

0

〈∇ϕ(v(s)), dv(s)〉 .

As in discrete time, we will make occasional reference to the concept of ergodicity. In
the simplest setting, where the ergodic average is with respect to an invariant measure μ∞
with Lebesgue density ρ∞, we obtain, for μ∞, almost every v(0) = u, and some class of test
functions ϕ : Rd → R,

1

T

∫ T

0

ϕ
(
v(t)

)
dt→

∫

Rd

ρ∞(v)ϕ(v)dv. (6.14)

Expressed in terms of the measure rather than its density, we obtain

1

T

∫ T

0

ϕ
(
v(t)

)
dt→

∫

Rd

ϕ(v)μ∞(dv). (6.15)

In this context, it is important to define the L2−adjoint of L, namely the operator L
 given by

L
ϕ = −∇ · (gϕ) + 1

2
∇ · ∇ · (Γϕ). (6.16)

When the random variable v(t) solving (6.8) has a density ρ(·, t) with respect to Lebesgue
measure on R

d, then ρ solves the Fokker–Planck equation

dρ

dt
= L
ρ. (6.17)
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When the SDE with generator L is ergodic and has an invariant measure with Lebesgue
density ρ∞, then this density will be the unique, up to normalization, nonnegative solution of
L
ρ∞ = 0 in L1(R); in other words, the unique, up to normalization, nonnegative steady-state
solution of the Fokker-Planck equation in L1(R). In this regard, it is useful to note that if ρ∞
satisfies

− gρ∞ +
1

2
∇ · (Γρ∞) = 0 (6.18)

and is a positive C2 function in L1(R), then it also satisfies L
ρ∞ = 0 and is the density of an
invariant measure for the SDE; in this situation, the SDE is known as reversible. Furthermore,
if γ =

√
2εI, so that Γ = 2εI, note that (6.18) reduces to the equation

− gρ∞ + ε∇ρ∞ = 0. (6.19)

This equation has an exact solution in the case g(·) = −∇V (·), namely

ρ∞(·) ∝ exp
(−ε−1V (·)). (6.20)

As in discrete time, a good way of visualizing ergodicity is via the empirical measure, or
histogram, generated by a trajectory of the dynamical system. Equation (6.14) formalizes the
idea that the histogram of the stochastic dynamical system defined by (6.8) converges, in the
large-T limit, to the probability density function ρ∞ of a random variable, independently of
the starting point v(0) = u. As in discrete time, thinking in terms of pdfs of the signal, or
functions of the signal, and neglecting time-ordering information is a very useful viewpoint
throughout this book.

6.2 Guiding Examples

In this section, we describe various examples of the underlying signal dynamics as governed
by equation (6.4). These will be used to guide and illustrate our subsequent analyses. Since we
do not consider observations in this section, we refer to the driving Brownian motion simply
as B, not Bv. The first two examples concern the linear problem

dv

dt
+ Λv =

√
Σ0
dBv

dt
, (6.21a)

v(0) = v0, (6.21b)

which generates a Gaussian process for fixed v0, or for v0 itself Gaussian.

Example 6.4. Our first class of examples concerns equation (6.21) in the case n = 2, Σ0 = I,
and

Λ =

(
1 0
0 −10−1

)
.

The two components are independent in this case. Their behaviors are very different because
the matrix Λ induces growth in the second component, and damping in the first. These effects
must be considered in the context of the noise driving the equation, resulting in the typical
properties (with respect to the random noise) that v1(t) spends most of its time fluctuating
around 0, while |v2(t)| grows to infinity. This is illustrated in Figure 6.1. ♠
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Example 6.5. Of particular interest in the linear case (6.21) is the situation in which Λ > 0
and Σ0 = 2I; in this case, the solution of the resulting linear Gaussian SDE is known as an
Ornstein–Uhlenbeck (OU) process. The solution may be written in integral form as

Fig. 6.1: Behavior of (6.4) for Example 6.4, with (6.4) solved with an Euler–Maruyama method
(τ = 10−2).

v(t) = e−Λtv(0) +
√
2

∫ t

0

e−Λ(t−s)dB(s).

From this, it is clear that the distance between any two solutions driven by the same Brownian
motion, say W 
, but starting at different points, will converge exponentially fast toward each
other and indeed exponentially fast towards the distinguished solution

v
(t) :=
√
2

∫ t

0

e−Λ(t−s)dW 
(s).

As a linear transformation of a Brownian motion, v
 is itself Gaussian, and a straightforward
calculation, using the Itô isometry (Lemma 6.1 (iii)) for the covariance, shows that it has
mean zero and covariance Λ−1

(
I − e−2Λt

)
. In particular, the variance tends to the limit

Λ−1 as t→∞. The OU process is in fact ergodic with unique invariant measure given by the
Gaussian N(0, Λ−1). This can be seen by noting, from (6.20), that every function proportional

to exp(− 1
2 |Λ

1
2 v|2) satisfies (6.19).

Figure 6.2a shows two trajectories of this process starting from different initial conditions,
but driven by the same Brownian motion B
, in the case n = 1 and Λ = 1. Notice that
the two trajectories converge toward each other as predicted by the analysis. Furthermore
the empirical measure of each trajectory, its histogram, converges toward the unit Gaussian
N(0, 1) as implied by ergodicity (see Figure 6.2b). ♠

Example 6.6. Our third example concerns noise-driven motion in a double-well potential.
In particular, if we consider the equation

dv

dt
= −V ′(v) +

√
2ε
dB

dt

for the potential V (v) = 1
4

(
1− v2)2, we obtain the equation

dv

dt
= v − v3 +

√
2ε
dB

dt
, (6.22)
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Fig. 6.2: Behavior of two different trajectories driven by the same noise of (6.4) for Exam-
ple 6.4, and comparison of the empirical measure calculated from one trajectory with the
ergodic measure. Empirical measure constructed by solving (6.4) with Euler–Maruyama with
τ = 10−2 with final time of integration T = 105.

which we will use in several illustrations in the sequel. In the absence of noise, when ε = 0, the
equation will give solutions that converge to the stable equilibrium points at ±1, according
to whether sgn

(
v(0)

)
= ±1, and will stay at the unstable equilibrium point at the origin if

v(0) = 0.With noise (ε > 0), the solution can make transitions between the two minima of the
potential, and at random times. This leads to an ergodic Markov process that has invariant
measure with Lebesgue density proportional to exp

(−ε−1V (v)
)
, as shown in the discussion

preceding (6.20); note that such a function satisfies (6.19) and reflects the fact that solutions
spend most of their time near ±1 when ε is small.

Figure 6.3a shows a trajectory of this SDE for ε = 0.08, exhibiting transitions between the
two stable equilibria, followed by fluctuations about them, caused by the noise. Furthermore,
Figure 6.3b shows the empirical measure of the trajectory over the longer time interval T =
5× 105, in comparison with the density of the invariant measure, illustrating ergodicity. ♠

Example 6.7. We will also consider the Lorenz ’63 model from Example 2.6, with additive
white noise. We thus obtain the SDEs1

dv1
dt

= α(v2 − v1) + σ1
dB1

dt
, (6.23a)

dv2
dt

= −αv1 − v2 − v1v3 + σ2
dB2

dt
, (6.23b)

dv3
dt

= v1v2 − bv3 − b(r + α) + σ3
dB3

dt
, (6.23c)

where the Bj are Brownian motions, assumed to be independent.
Figure 6.4 shows the behavior of a trajectory computed with σ1 = σ2 = σ3 =

√
2× 0.25 and

projected onto the v1/v2-coordinates and onto the v2/v3-coordinates; it should be compared

1 Here the index denotes components of the solution, not discrete time.
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Fig. 6.3: Behavior of a trajectory of (6.4) for Example 6.6, and comparison of the empirical
measure calculated from this trajectory with the invariant measure. Empirical measure con-
structed by solving (6.4) with Euler–Maruyama with τ = 10−2 with final time of integration
T = 5× 105; see also p1c.m in Section 9.1.1.

with Figure 2.6, arising in the deterministic case (the scales differ slightly). Notice the similar
structure to the deterministic case, but with a smearing effect caused by the noise. This
problem is also ergodic, and Figure 6.5 shows the density of the invariant measure when
projected onto the v1- and v2-coordinates respectively. The invariant measure is calculated
from the empirical measure, using the Euler–Maruyama scheme, with τ = 10−3 and final time
of integration T = 105. ♠

Fig. 6.4: The Lorenz equations with additive noise (6.23); projection onto two different pairs
of coordinates.
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Fig. 6.5: Different marginal distributions of the invariant measure for the Lorenz equa-
tions (6.23) with additive noise. The invariant measure is also plotted in the case of zero
noise (deterministic) for reference.

Example 6.8. We also consider a noisy Lorenz ’96 model in the following form:2

dvk
dt

= vk−1

(
vk+1 − vk−2

)− vk + F + σk
dBk

dt
, k ∈ {1, · · · , J}, (6.24a)

v0 = vJ , vJ+1 = v1, v−1 = vJ−1. (6.24b)

Again the Bk are assumed to be independent Brownian motions. This is the model from
Example 2.7 extended to include additive noise. Figure 6.6 shows two different projections
of (6.24) for σk = σ =

√
0.5 calculated using the Euler–Maruyama scheme for τ = 10−3

and final time of integration T = 102; this figure should be compared with Figure 2.9, which
corresponds to the case σk ≡ 0. ♠

Fig. 6.6: The Lorenz ’96 model with additive noise (6.24); projection onto two different pairs
of coordinates.

2 Again, the index here denotes components of the solution, not discrete time.
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6.3 Smoothing Problem

6.3.1. Probabilistic Formulation of Data Assimilation

As in the discrete case, we consider an underlying Bayesian formulation of the data-
assimilation problem in which the object of interest is the probability distribution on the
signal v from (6.4) given the data z from (6.5). And in the case of deterministic dynam-
ics (6.6), this becomes a probability distribution on the initial condition v(0) = v0 given z. In
both cases, we have a jointly varying random variable (u, z), with u either the function v or,
in the case of deterministic dynamics, the initial condition v0. The smoothing distribution
is the conditional probability distribution u|z. Once again, Bayes’s theorem will provide the
way to determine this distribution. However, in order to derive an expression for the relevant
probability distributions before conditioning, a key ingredient will be the Girsanov formula,
which describes how to find the change of measure between two SDEs with the same diffusion
coefficient. We now describe this, before turning to conditioning in the following subsection.
We also emphasize that in the continuous-time setting considered here, the data, namely z,
is the integral of the data y, which is employed in discrete time.

6.3.2. Girsanov Formula

SDEs of the form (6.8) generate solutions that are continuous functions of time—see
Theorem 6.2—and we refer to the space C([0, T ];Rd) in which such solutions lie as pathspace.
SDEs that do not have the same diffusion coefficient generate measures that are mutually
singular on pathspace; the same is true of SDEs starting from different deterministic initial
conditions. However, if these two possibilities are ruled out, then under conditions on the drift
and diffusion coefficient, such as those specified below in Theorem 6.9, the two different SDEs
generate measures that are absolutely continuous with respect to each other. The Girsanov
formula provides an explicit expression for the Radon–Nikodym derivative between two such
measures.

Consider the SDE
dv

dt
= g(v) + γ(v)

dW

dt
, v(0) = v0, (6.25)

and the same equation with the function g set to zero, namely

dv

dt
= γ(v)

dW

dt
, v(0) = v0. (6.26)

We assume that the unknown v(t) is in R
p and that the Brownian motion is also in R

p. We
also assume that g : Rp → R

p and γ : Rp → R
p×p are Lipschitz on bounded sets, and that

γ(v) is invertible for every v ∈ R
p. We view the solution of the equations (6.25) and (6.26) as

generating measures on H := L2([0, T ];Rp). The Girsanov formula is as follows.

Theorem 6.9. (Girsanov Formula) Assume that γ and g are such that both equations (6.25)
and (6.26) have solutions on t ∈ [0, T ] that do not explode almost surely. Then the measures
χ and χ0 on H generated by the two equations (6.25) and (6.26) respectively are equivalent
with Radon–Nikodym derivative
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dχ

dχ0
(v) = exp

(
−
∫ T

0

(1
2
|γ(v)−1g(v)|2dt− 〈γ(v)−1g(v), γ(v)−1dv〉)

)
.

Remark 6.10. We find it convenient to work with measures defined on Hilbert space, primar-
ily because some of the algorithms we describe in the next chapter exploit Gaussian structures
that are most easily explained in the Hilbert space setting. However, although our setting is
then the pathspace H, the solutions generated by the probability measures χ and χ0 concen-
trate on the Banach space B := C([0, T ];Rn) with probability 1; this fact is sometimes written
succinctly as χ(B) = χ0(B) = 1. ♠
Example 6.11. Consider the two SDEs

dv

dt
= −v + dW

dt
, v(0) = v0,

dv

dt
=
dW

dt
, v(0) = v0.

The two Gaussian measures generated by these SDEs, the OU process and Brownian motion,
are equivalent. If we denote OU measure by χ and Wiener measure (on the Brownian motion)
by χ0, then Theorem 6.9 gives

dχ

dχ0
(v) = exp

(
−
∫ T

0

1

2

(|v|2dt+ vdv
))
.

By the Itô formula, Lemma 6.3, we have, under χ0,

1

2
v2(T ) =

1

2
v2(0) +

∫ T

0

vdv +
1

2
T.

Thus

dχ

dχ0
(v) = exp

(
−
∫ T

0

1

2
|v|2dt− 1

2
v2(T ) +

1

2
v20 +

1

2
T
)

∝ exp
(
−
∫ T

0

1

2
|v|2dt− 1

2
v2(T )

)
.

We observe in passing that although we view χ and χ0 as measures on Hilbert space H,
they in fact satisfy χ0

(
C([0, T ];R)

)
= χ

(
C([0, T ];R)

)
= 1, so that functions drawn from χ0

and χ are almost surely continuous; thus the pointwise evaluation v(T ) makes sense almost
surely. ♠

6.3.3. Conditional Probabilities

In the infinite-dimensional setting that arises in conditioning v on z for equations (6.4), (6.5),
or v(0) on z in the case Σ0 = 0, the following conditioning theorem will be of paramount
importance. It plays the same role that Bayes’s formula (1.7) plays in the finite-dimensional
setting.

Theorem 6.12. Let ς, υ be probability measures on S×T , where (S,A) and (T,B) are measur-
able spaces. Denote by (x, y) with x ∈ S and y ∈ T an element of S×T . Assume that ς � υ and
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that ς has Radon–Nikodym derivative φ with respect to υ, so that ς(dx, dy) = φ(x, y)υ(dx, dy).
Assume further that the conditional distribution of x|y under υ, denoted by υy(dx), exists.
Then the conditional distribution of x|y under ς, denoted by ςy(dx), exists, and ςy � υy. The
Radon–Nikodym derivative is given by

dςy

dυy
(x) =

{
1

c(y)φ(x, y), if c(y) > 0, and

1 else
(6.27)

with c(y) =
∫
S
φ(x, y) dυy(x) for all y ∈ T .

6.3.4. Stochastic Dynamics

We are now ready to turn to the derivation of a formula for the posterior distribution on v
solving (6.4), given the solution z of (6.5). It will be useful in what follows to consider the
equation

dv

dt
=
√
Σ0
dBv

dt
, (6.28a)

v(0) ∼ N(m0, C0), (6.28b)

found from (6.4) by setting f ≡ 0, and the equation

dz

dt
=
√
Γ0
dBz

dt
, (6.29a)

z(0) = 0, (6.29b)

found from (6.5) by setting h ≡ 0. Furthermore, it will also be helpful to define

Ξ1(v) :=
1

2

∫ T

0

|f(v(t))|2Σ0
dt−

∫ T

0

〈f(v(t)), dv(t)〉Σ0
, (6.30a)

Ξ2(v, z) :=
1

2

∫ T

0

|h(v(t))|2Γ0
dt−

∫ T

0

〈h(v(t)), dz(t)〉Γ0
, (6.30b)

H1 := L2([0, T ];Rn), H2 := L2([0, T ];Rm), and H = H1×H2. Let v = {v(t)}t∈[0,T ] ∈ H1 and
z = {z(t)}t∈[0,T ] ∈ H2. The smoothing problem in the continuous case is to study the signal
v given the accumulated data up to time T , namely z, more precisely, to study the random
variable v|z on H1. We refer to [0, T ] as the data-assimilation window. We have the following
theorem:

Theorem 6.13. Let μ0 denote the prior measure on the random variable v ∈ H1 defined
by (6.4), and let μ denote the posterior measure for the random variable v|z ∈ H1 with z
given by (6.5). Then if f, h are bounded Lipschitz functions, it follows that μ� μ0 and

dμ

dμ0
(v) ∝ exp

(−Ξ2

(
v, z
))
. (6.31)

Proof Let ψ denote the measure on H2 found from (6.5) with v fixed, and let ψ0 denote the
measure on H2 found from (6.29); thus ψ0 denotes Wiener measure on H2. By the Girsanov
formula of Theorem 6.9, we have
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dψ

dψ0
(z) = exp

(−Ξ2

(
v, z
))
.

Now let ν denote the measure on H defined by the SDEs (6.4), (6.5), and ν0 the measure,
also on H, arising in the case h ≡ 0. By conditioning on fixed v and then multiplying by the
measure μ0 on H1 determined by (6.4), we find that

dν

dν0
(v, z) = exp

(−Ξ2

(
v, z
))
.

Furthermore, ν0(dv, dz) = μ0(dv)⊗ ψ0(dz). Since f and h are bounded, we deduce that

∫
exp

(−Ξ2

(
v, z
))
μ0(dv) > 0

almost surely. Thus Theorem 6.12 gives the desired result. �

Remark 6.14. • This is the analogue of Theorem 2.8 in the discrete setting. Formally,
Theorem 6.13, and its form in (6.32) below, can be derived from Theorem 2.8 using the
scalings (6.1) and passing to the limit τ → 0. To understand this limit, it is important to
notice three facts. Firstly, within Theorem 2.8, the density with respect to Lebesgue mea-
sure can be written as the product of exp

(−J(v)) and exp
(−Φ(v; y)), and dividing through

by exp
(−J(v)) gives an expression for the Radon–Nikodym derivative of the desired con-

ditional measure on v|y with respect to the prior measure on v governed purely by the
stochastic dynamics; this expression is proportional to exp

(−Φ(v; y)). Secondly, Φ(v; y)
can be written, up to terms r(y) that are independent of v and depend only on y, as

Φ(v; y) =

J−1∑

j=0

1

2

∣
∣Γ− 1

2h(vj+1)
∣
∣2 −

J−1∑

j=0

〈
Γ− 1

2 yj+1, Γ
− 1

2h(vj+1)
〉〉+ r(y).

Thirdly, the term involving r(y) may be absorbed into the normalization constant and
can hence be ignored; the remaining two terms converge, formally, to Ξ2(v, z) under the
scalings (6.1).

• We let ϑ0 denote the measure on H1 generated by equation (6.28); thus ϑ0 is Wiener
measure convolved with a random Gaussian initial starting point. The Girsanov theorem
(Theorem 6.9) shows that

dμ0
dϑ0

(v) = exp
(−Ξ1

(
v
))
.

From this identity, together with (6.31), it follows that

dμ

dϑ0
(v) ∝ exp

(−Ξ1

(
v
)− Ξ2

(
v, z
))
. (6.32)

This expression is useful in the application of MCMC algorithms designed specifically for
sampling probability measures defined via their density with respect to a Gaussian.

♠
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6.3.5. Deterministic Dynamics

If the underlying signal dynamics is deterministic, so that we have model equation (6.6),
then the resulting data-assimilation problem is one of parameter estimation in SDEs. The
Gaussian distribution on v(0) = v0 is the prior distribution, and our aim is to condition this
on the observed data z, which is the solution of (6.5). To see how this ends up as a parameter
estimation problem in SDEs, we note that the solution of (6.4) with Σ0 = 0 is simply given
by v(t) = Ψ(v0; t), where Ψ : Rn × R

+ is the semigroup defined in (1.10). Thus (6.5) may be
written

dz

dt
= h

(
Ψ(v0; t)

)
+
√
Γ0
dBz

dt
, z(0) = 0. (6.33)

Define

Ξ3(v0, z) :=
1

2

∫ T

0

|h(Ψ(v0; t)
)|2Γ0

dt−
∫ T

0

〈
h
(
Ψ(v0; t)

)
, dz(t)

〉
Γ0
. (6.34)

Note that this is simply Ξ2(v, z) evaluated with v(t) = Ψ(v0; t).

Theorem 6.15. The posterior smoothing distribution on v0|z for the deterministic dynamics
model (6.6), (6.5) is a probability measure ν on R

n with density P(v0|z) = �(v) proportional
to exp(−Idet(v0; z)), where

Idet(v0; z) = Jdet(v0) + Ξ3(v0; z), (6.35a)

Jdet(v0) =
1

2

∣
∣v0 −m0

∣
∣2
C0
, (6.35b)

Ξ3(v0, z) =
1

2

∫ T

0

|h(Ψ(v0; t)
)|2Γ0

dt−
∫ T

0

〈
h
(
Ψ(v0; t)

)
, dz(t)

〉
Γ0
. (6.35c)

Proof Let ν0 denote the probability measure N(m0, C0) on the initial condition v0, and as
in the previous section, let ψ0 denote Wiener measure on H2. If we define the measure on
R

n ×H2 defined by (v0, z) by η(dv0, dz), and by η0(dv0, dz) the same measure when h ≡ 0,
then conditioning on v0 and application of Theorem 6.9 shows that

dη

dη0
(v0, z) ∝ exp

(−Ξ3

(
v0, z

))
.

Noting that η0(dv0, dz) = ν0(dv0)⊗ ψ0(dz) and applying the conditioning Theorem 6.12, we
deduce that v0|z is distributed according to measure ν given by

dν

dν0
(v0) ∝ exp

(−Ξ3

(
v0, z

))
,

since c = c(z) is finite almost surely. The desired result follows once we note that ν0 has density

with respect to Lebesgue measure that is proportional to exp
(− 1

2 |C
− 1

2
0 (v0 −m0)|2

)
. �
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6.4 Filtering Problem

Recall equations (6.4), (6.5) and define the accumulated data up to time t by zt :=
{z(s)}s∈[0,t]. The filtering problem is to find a sequential update, as t increases, of the measure
μt, the distribution of the random variable v(t)|zt. To this end, recall the adjoint generator
L∗ given by (6.16). When it is applied to equation (6.4), we obtain

L∗ϕ = ∇ ·
(
−fϕ+

1

2
Σ0∇ϕ

)
. (6.36)

We have the following theorem about μt, in which E
t denotes expectation with respect to

μt (and hence integration with respect to the density ρ(·, t)). It characterizes the density of
the smoothing distribution (respectively unnormalized density of the smoothing distribution)
as the solution of the Kusher–Stratonovich (respectively Zakai) stochastic partial differential
equation (SPDE). Before reading the statement of the theorem, it is instructive to recall that
in the absence of data, the probability density function for v satisfying (6.4) is given by the
Fokker–Planck equation (6.17). The following theorem shows how this equation should be
modified to incorporate conditioning on observed data.

Theorem 6.16. Assume that f is globally Lipschitz, that h is linearly bounded, and that the
measure μt governing the filtering problem for equations (6.4), (6.5) has Lebesgue density
ρ(·, t) : Rn �→ R

+ for each fixed t. Then ρ solves the Kushner–Stratonovich equation

∂ρ

∂t
= L∗ρ+ ρ

〈
h− E

th,
dz

dt
− E

th

〉

Γ0

. (6.37)

Furthermore, ρ(v, t) = r(v, t)/
∫
Rn r(v, t)dv, where r solves the Zakai equation

∂r

∂t
= L∗r + r

〈
h,
dz

dt

〉

Γ0

. (6.38)

Remark 6.17. We note that the Zakai equation is a linear stochastic PDE, while the
Kushner–Stratonovich equation is a nonlinear stochastic PDE, because evaluation of expec-
tation under E

t requires integration against ρ. In the proof sketch that follows, we begin by
deriving the Zakai equation and then obtain the Kushner–Stratonovich equation from it by
imposing the normalization condition that the probability density function (pdf) integrates to
one. ♠
Sketch Proof As in many places in the theory of continuous-time filtering, we provide a
derivation based on studying the discrete-time setting under the scalings (6.1). We give ref-
erences to the rigorous derivation of the two equations in the bibliographic notes at the end
of the chapter.

In the following, we invoke the scalings (6.1) and think of vj (respectively zj) as approxi-
mation of a process v(t) (respectively z(t)) at time t = jτ. We begin by recalling the update
formula (4.28) for the filtering distribution. If we assume that μj has unnormalized density
rj , then equation (4.28) gives

rj+1(vj+1) = exp
(
−τ
2
|h(vj+1)|2Γ0

+ 〈h(vj+1), zj+1 − zj〉Γ0

)∫
P(vj+1|dvj)rj(vj). (6.39)
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We now note that under the scalings (6.1), we have (since the discrete-time stochastic
dynamics approximates a limiting SDE with pdf evolution governed by (6.17))

∫
P(vj+1|dvj)rj(vj) ≈ (eL

�τrj)(vj+1).

Furthermore, if we define the stochastic process q via the SDE

dq

ds
= −1

2
|h(v(s))|2Γ0

+ 〈h(v(s)), dz(s)〉Γ0
,

then

exp
(
−τ
2
|h(vj+1)|2Γ0

+ 〈h(vj+1), zj+1 − zj〉Γ0

)
≈ exp

(
q(jτ + τ)− q(jτ)).

We define

Mj(t) := exp
(
q(jτ + t)− q(jτ))

and note that then

exp
(
−τ
2
|h(vj+1)|2Γ0

+ 〈h(vj+1), zj+1 − zj〉Γ0

)
≈Mj(τ).

Applying the Itô formula of Lemma 6.3 to Mj(t) shows that

Mj(t) = 1 +

∫ jτ+t

jτ

Mj(s) 〈h(v(s)), dz(s)〉Γ0
.

This rather subtle calculation reflects the exponential martingale characteristics of Mj(t); it
is central to the derivation we give here: more naive calculations based on the scalings (6.1)
will not correctly derive the limiting equations unless they reflect the exponential martingale
structure that we have built in here. Using the preceding display, we obtain the natural
approximation

Mj(τ) ≈ 1 +Mj(0) 〈h(vj+1), zj+1 − zj〉Γ0
= 1 + 〈h(vj+1), zj+1 − zj〉Γ0

.

Furthermore, we also have the natural approximation

(eL
�τr)(v) ≈ (1 + τL
)r(v).

Combining these two approximations within (6.39) gives

rj+1(vj+1) = (1 + 〈h(vj+1), zj+1 − zj〉Γ0
)(1 + τL
)rj(vj+1).

Rearranging and keeping terms up to order O(τ), we obtain

rj+1(vj+1)− rj(vj+1) = τL
rj(vj+1) + rj(vj+1) 〈h(vj+1), zj+1 − zj〉Γ0
,

which is clearly a discretization of the Zakai equation.
To obtain the Kushner–Stratonovich equation, we apply the Itô formula to the function

ρ(v, t) = r(v, t)/
∫
Rn r(v, t)dv. The Itô formula as defined in Lemma 6.3 applies only in finite

dimensions, but it generalizes to the infinite-dimensional situation under somewhat strin-
gent conditions. We proceed purely formally, on the assumption that the Itô formula from
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Lemma 6.3 indeed applies in our infinite-dimensional setting. To this end, we need to compute
the derivatives of the function V , defined by

V (r) =
r∫

Rn r(v)dv
.

The first derivative DV (r) is defined by its action on the function ϕ as follows:

DV (r)ϕ =
ϕ∫

Rn r(v)dv
− r

∫
Rn ϕ(v)dv

(
∫
Rn r(v)dv)2

.

Similarly, the second derivative D2V (r) is defined by its action on pairs of functions (φ, ϕ) as
follows:

D2V (r)[ϕ, φ] = − φ
∫
Rn ϕ(v)dv

(
∫
Rn r(v)dv)2

− ϕ
∫
Rn φ(v)dv

(
∫
Rn r(v)dv)2

+ 2
r
∫
Rn φ(v)dv

∫
Rn ϕ(v)dv

(
∫
Rn r(v)dv)3

.

Applying the Itô formula then gives

∂ρ

∂t
= DV (r)

∂r

∂t
+

1

2
D2V (r)[rhTΓ

− 1
2

0 , rhTΓ
− 1

2
0 ]. (6.40)

We have, for

q =

〈
h,
dz

dt

〉

Γ0

,

and with E denoting expectation with respect to μt (and hence integration with respect to
the density ρ),

DV (r)
∂r

∂t
=
L
r + rq∫
Rn r(v)dv

− r
∫
Rn r(v)qdv

(
∫
Rn r(v)dv)2

= L
ρ+ ρq− ρEtq.

We also have

1

2
D2V (r)[rhTΓ

− 1
2

0 , rhTΓ
− 1

2
0 ] = −ρ 〈h,Eth

〉
Γ0

+ ρ
〈
E
th,Eth

〉
Γ0
.

Substituting the two preceding displays into (6.40) gives the desired Kushner–Stratonovich
equation. �

6.5 Illustrations

As in Section 2.8, in the discrete-time setting, here we focus on some simple examples where
the posterior distribution may be visualized easily. For this reason, we concentrate on the case
of one-dimensional deterministic dynamics, since in that case, the corresponding probability
measure ν is a measure on R, where the initial conditions live (see Theorem 6.15), and not on
the pathspace H1 = L2([0, T ];Rn). In Chapter 7, we introduce more sophisticated sampling
methods that can be used to probe the probability distributions on function spaces (infinite-
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dimensional spaces), which arise from noisy dynamics in which the unknown is an element of
H1 and is hence a time-dependent function.

Figure 6.7 concerns the scalar linear problem from equation 6.21 for Λ = 0.5 and Σ0 = 0.
We employ a prior N(4, 5), we assume that h(v) = v, and set Γ0 = γ20 and consider two differ-
ent values of γ0 and three different values of T , the final time of observation. The figure shows
the posterior distribution in these various parameter regimes. The true value of the initial
condition that underlies the data is v†0 = 0.5. For both γ0 = 1 and γ0 = 0.1, we see that as the
final time T over which we observe the process increases, the posterior distribution appears
to converge to a limiting distribution. However, for smaller γ0, the limiting distribution has
much smaller variance, and it is centered closer to the true initial condition at 0.5. Both of
these remarks concerning the observed data can be explained by the fact that the problem
is explicitly solvable: we show that for fixed γ0 as T → ∞, the posterior has a limit, which
is a Gaussian with nonzero variance. And for fixed T as γ0 → 0, the posterior distribution
converges to a Dirac measure (Gaussian with zero variance) centered at the truth v†0.

Fig. 6.7: Posterior distribution for smoothing distribution on the initial condition of equa-
tion (6.21), with Σ0 = 0, for different levels of observational noise. The true initial condition

used in both cases is v†0 = 0.5, while we have assumed that C0 = 5 and m0 = 4 for the prior
distribution; see also p2c.m in Section 9.1.2.

To establish these facts, we begin by noting that from Theorem 6.15, the posterior distri-
bution v0|z is proportional to the exponential of the negative of

Idet(v0; z) =
1

2σ20
|v0−m0|2+ 1

2γ20

∫ T

0

e−2Λtv20dt−
1

γ20

∫ T

0

e−2Λtv0v
†
0dt−

1

γ0

∫ T

0

v0e
−ΛtdBz(t),

where σ20 denotes the prior variance C0, and we have used the fact that Ψ(v0; t) = v0e
−Λt, as

well as the fact that
dz(t) = v†0e

−Λtdt+ γ0dBz(t).

As a quadratic form in v0, this defines a Gaussian posterior distribution, and we may complete
the square to find the posterior mean m and variance σ2post:

1

σ2post
=

1

γ20

∫ T

0

e−2Λtdt+
1

σ20
=

1

γ20

(
1− e−2ΛT

2Λ

)
+

1

σ20
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and

1

σ2post
m =

1

γ20

∫ T

0

v†0e
−2Λtdt+

1

γ0

∫ T

0

e−ΛtdBz(t) +
1

σ20
m0.

We note immediately that the posterior variance is independent of the data. Furthermore, if
we fix γ0 and let T →∞, then for every Λ > 0, we see that the large-T limit of the posterior
variance is determined by

1

σ2post
=

1

γ20

1

2Λ
+

1

σ20

and is nonzero; thus uncertainty remains in the posterior, even in the limit of infinite obser-
vational time. On the other hand, if we fix T and let γ0 → 0, then σ2post → 0, so that the
uncertainty disappears in the limit. In this case, it is then natural to ask what happens to
the mean. In particular, evaluating the deterministic integral in the equation for the mean
gives us

1

σ2post
m =

1

γ20

(
1− e−2ΛT

2Λ

)
v†0 +

1

γ0

∫ T

0

e−ΛT dBz(t) +
1

σ20
m0.

Using the formula for σ2post, we obtain

(
1− e−2ΛT

2Λ

)
m+

γ20
σ20
m =

(
1− e−2ΛT

2Λ

)
v†0 + γ0

∫ T

0

e−ΛtdBz(t) +
γ20
σ20
m0.

From this, it follows that for fixed T and as γ0 → 0, we have m → v†0 almost surely with
respect to the noise realization Bz. This is another example of posterior consistency.

We now study Example 6.6 in the noise-free case ε = 0. The true dynamics are no longer
linear. In particular, we are interested in studying the interplay of the underlying nonlinearity
and the choice of the prior distribution. Before discussing the properties of the posterior, we
draw attention to the following fact about the dynamics of the system: the system converges
exponentially fast to the stable equilibrium at points ±1, according to whether sgn(v†0) = ±1.
This is an important observation, since it suggests that if the system is observed on long time
intervals, then the posterior distribution will assign the majority of the probability to the
basin of attraction of the equilibrium to which the true dynamics of the system converge.

In our case, we have chosen v†0 = 0.5, so the true solution converges to +1, which has the
interval (0,∞) as its basin of attraction; we therefore expect that most of the probability in
the posterior will be assigned to (0,∞). Figures 6.8 and 6.9 illustrate the fact that this is
indeed the case, for large enough observation time T , for a variety of different prior choices,
all Gaussian with variance C0. In particular, we can see that observing up to T = 10 is
enough in order for the posterior probability to be positive primarily in the interval (0,∞).
Interestingly, though, we see that choosing the prior in such a way that the majority of its
probability is in the wrong basin of attraction—see Figure 6.9—leads to posteriors with quite
different characteristics; in particular, they have most of their support in the true basin of
attraction of +1 but have smaller posterior spread than those arising for the priors chosen in
Figure 6.8.
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Fig. 6.8: Posterior distribution for Example 6.6, with ε = 0, for two different prior covariances.
The true initial condition used in both cases is v†0 = 0.5, while we have assumed m0 = 4 and
γ0 = 1; see also p3c.m in Section 9.1.3.

Fig. 6.9: Posterior distribution for Example 6.6, with ε = 0, for two different prior covariances.
The true initial condition used in both cases is v†0 = 0.5, while we have assumed m0 = −4
and γ0 = 1; see also p3c.m in Section 9.1.3.

6.6 Bibliographic Notes

• Section 6.1. In the first subsection, we give a formal derivation of the continuous-time limit
of the data-assimilation setup introduced in Chapter 2. The derivations should be straight-
forward to understand for readers with a knowledge of the numerical solution of SDEs, as
detailed in [84] or explained at an introductory level in [68]. The second section contains a
brief summary of various basic results from the theory of stochastic integration and differen-
tial equations. All these results may be found in [104]: Lemma 6.1 appears as Theorem I.5.8
in that text, Theorem 6.2 as Theorem II.3.5, and Lemma 6.3 as Theorem I.6.4.

• Section 6.2 is devoted to examples. The OU process of Example 6.5 is of fundamental
importance in stochastic analysis; see section III.3.5 of [104], for example. The equation
from Example 6.6 is known as the overdamped Langevin equation, or Brownian dynamics
model, and is the canonical example of a reversible continuous-time Markov process; see
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[120]. Examples 6.7 and 6.8 concern noisy perturbation of a deterministic system satisfy-
ing (2.16); the ergodicity of such problems is discussed in [106] and [105].

• Section 6.3 is devoted to a definition of the smoothing problem from continuous-time data
assimilation. The key Girsanov formula of Theorem 6.9 appears as Theorem XIII.2.2 in
[104] in a simplified setting, while the general formulation that we state here is taken from
[49], Theorem 11A. Realizations of Brownian motion are in fact Hölder continuous for
every exponent up to 1/2, a property inherited by solutions of (6.25); this fact lies behind
the discussion in Remark 6.10, and further discussion of regularity properties of SDEs
may be found in [104, 114]. The conditioning Theorem 6.12 is from [62], Lemma 5.3. The
formulation of continuous-time smoothing problems for a wide variety of models, including
the one considered here, is given in [63].

• Section 6.4 concerns the continuous-time filtering problem, a subject that is described in
some detail in the book [125] and is given a modern development in [9]. In particular,
the Zakai and Kushner–Stratonovich equations, derived purely formally here, are given
rigorous developments in those books. To be more precise, Theorem 6.16 follows from
Theorems 3.24 and 3.30 in [9], after application of Exercises 3.11 and 3.25 to simplify
the conditions; note that since the initial distribution on v(0) is Gaussian, all moments
exist. Use of the Itô formula in infinite dimensions, as employed in our sketch derivation
of the Kushner–Stratonovich equation from the Zakai equation, is discussed in [41]. Our
sketch derivation is based, in part, on the very clear presentation in Chapter 4 of the lec-
ture notes [118]. The Zakai and Kushner–Stratonovich equations can be used as the basis
for numerical approximation of the filtering problem, by means of Galerkin approxima-
tion, polynomial chaos [131], and other finite-dimensional approximation techniques; see
[9] and the references therein. Note, however, that these methods are not well adapted to
high-dimensional problems, and new ideas are required for the numerical solution of these
equations in high dimensions.

• As in discrete time (see Section 2.5), the filtering and smoothing distributions are related.
To be specific, in the case of stochastic dynamics, the measure μ given by Theorem 6.13
(which is a measure on the space H1 defined preceding the theorem, but in fact, it is
concentrated on C([0, T ];Rn)) has marginal on the path at time T , which is a measure on
R

n, given by the filtering distribution μT from Theorem 6.16. Furthermore, in the case of
deterministic dynamics, the pushforward of the measure ν given in Theorem 6.15 by T time
units under the flow given by (6.4) with Σ0 = 0 coincides with the filtering distribution
μT from Theorem 6.16.

• We have not included a section on the well-posedness of the data-assimilation problem,
for either filtering or smoothing, because this is a considerably more subtle issue in con-
tinuous time than in discrete time. The reason for this subtle behavior is the dependence
of the smoothing or the filtering distributions on a stochastic integral with respect to the
observed data. In the smoothing situation, this is manifest in Theorems 6.13 and 6.15 in
the stochastic and deterministic settings respectively; and in the filtering situation, it is
manifest in the Kushner–Stratonovich and Zakai equations (6.37) and (6.38). The theory of
rough paths provides the natural context within which to study the stability of stochastic
integrals with respect to perturbation, and the paper [38] demonstrates the power of this
approach in studying well-posedness of the filtering problems, as well as giving an overview
of the history of the subject of well-posedness of filters. Similar rough-path ideas are likely
to be successful in the study of well-posedness of the smoothing problem in continuous
time.

• We also mention that although we have not included an explicit continuous-time analogue
of Section 2.7, similar considerations apply in continuous time. In particular, it is important
to distinguish between the quality of the data, as manifest in the posterior distribution,
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and independent of any algorithm, and the ability of the algorithm employed to represent
the posterior distribution accurately.

6.7 Exercises

1. Using the Itô formula, show that

∫ T

0

W (t)dW (t) =
1

2
W 2(T )− 1

2
T.

2. Consider the stochastic differential equation

dv

dt
= λv + μv

dW

dt
, v(0) = v0,

where v(t) ∈ R for each fixed t ≥ 0. By applying the Itô formula to the function f(x) = lnx,
show that

v(t) = v0 exp
((
λ− 1

2
μ2
)
t+ μW (t)

)
.

3. Consider the Ornstein–Uhlenbeck process and its solution from Example 6.5 with the addi-
tional assumptions that v(t) is one-dimensional and that v(0) ∼ N(v0, σ

2), independently
of the driving Brownian motion B(t). Using the properties of the Itô integral, calculate
E(v(t)) and E(v2(t)). In addition, show that up to a normalizing, constant the solution to
the Fokker–Planck equation (6.17) is given by

ρ(v, t) ∝ exp
(
− (v − e−Λtv0)

2

2 (e−2Λtσ2 + Λ−1(1− e−2Λt))

)
.

Using this formula, compute the limit of ρ(v, t) as t → ∞. Demonstrate that the limit
distribution is invariant under the Ornstein–Uhlenbeck process. (The limiting calculation,
in fact, exhibits the ergodicity of the process.)

4. Consider the differential equation

dv

dt
= Av,

where we have A ∈ R
2×2 and the observations z are given by

dz

dt
= Hv +

√
Γ0
dBz

dt
.

Modify the code p2c.m in order to plot the posterior on the initial condition v0 in two
dimensions in the case that the matrix A is given by

A1 =

(
λ1 0
0 λ2

)
, A2 =

(
λ α
0 λ

)
, A3 =

(
0 1
−1 0

)

and the observation operator is given by

H1 =

(
1 0
0 0

)
, H2 =

(
1 0
0 1

)
.
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Consider the cases in which λ1 and λ2 have the same sign and opposite signs, as well
as positive and negative λ. For which of the different choices do you observe posterior
consistency?

5. Consider the Lorenz ’63 model given in Example 6.7. Experiment with the effect of the
noise level on the marginal distribution of the invariant measure, as depicted in Figure 6.5,
using program p16.m as your starting point. Consider varying the size of the noise homo-
geneously in each component, as well as setting the noise to zero in all but one of the three
components, and then considering the effect of varying the noise in just the one component.

6. Recall the Langevin equation (6.22),

dv

dt
= v − v3 +

√
2ε
dW

dt
,

from Example 6.6. Consider the following linearly implicit discretization of the equation:

vn+1 = (1 + τ)vn − τvn+1v
2
n +

√
2ετ ξ̃n,

where ξ̃n is an independent N(0, 1) random variable. On rearranging, we find that

vn+1 = (1 + τv2n)
−1
(
(1 + τ)vn +

√
2ετ ξ̃n

)
.

Modify the code in program pc1.m to study the invariant measure of this equation
numerically, using this linearly implicit discretization, for different noise levels ε.



Chapter 7

Continuous Time: Smoothing Algorithms

In this chapter, we describe various algorithms for the smoothing problem in continuous time.
We begin, in Section 7.1, by describing the Kalman–Bucy smoother, which applies in the
case of linear dynamics when the initial conditions and the observational noise are Gaussian;
the explicit Kalman–Bucy formulas are useful for the building of intuition. In Section 7.2,
we discuss MCMC methods to sample from the smoothing distributions of interest. However,
as in the discrete-time case, sampling the posterior can be prohibitively expensive. For this
reason, it is of interest to identify the point that maximizes probability, using techniques from
optimization, rather than explore the entire probability distribution—the variational method.
This optimization approach is discussed in Section 7.3. Section 7.4 is devoted to numerical
illustrations of the methods introduced in the previous sections. The chapter concludes with
bibliographic notes in Section 7.5 and exercises in Section 7.6.

7.1 Linear Gaussian Problems: The Kalman–Bucy Smoother

As in discrete time, the Kalman smoother plays an important role, because it provides an
example of a smoothing distribution that can be explicitly characterized, as we will show
here. We set

f(v) = Lv, h(v) = Hv, (7.1)

where L ∈ R
n×n and H ∈ R

m×n. We consider the signal/observation model (6.4), (6.5), and
the resulting posterior distribution v|y.
Theorem 7.1. Let μ0 be the Gaussian measure on H1 = L2([0, T ];Rn) determined by

dv

dt
= Lv +

√
Σ0
dBv

dt
, v(0) ∼ N(m0, Γ0), (7.2)

and define

Ξ2(v, z) :=
1

2

∫ T

0

|Hv(t)|2Γ0
dt−

∫ T

0

〈Hv(t), dz(t)〉Γ0
. (7.3)
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Then the posterior smoothing distribution on v|y for the linear stochastic dynamics model
(6.4), (6.5), (7.1) is a measure μ that is absolutely continuous with respect to μ0 and is
characterized by

dμ

dμ0
(v) ∝ exp

(−Ξ2(v, z)
)
. (7.4)

Proof This is a straightforward application of Theorem 6.13. �
Although the preceding result does not explicitly characterize the mean and covariance of

the Gaussian measure μ, it is possible to do so, and references are given in the bibliography.
We now consider the Kalman smoother in the case of deterministic dynamics. Theorem 6.15
gives the following:

Theorem 7.2. The posterior smoothing distribution on v0|y for the deterministic linear dy-
namics model (6.6), (6.5), (7.1) with symmetric positive definite C0 and Γ0 is characterized
by Gaussian measure ν = N(mdet, Cdet). The covariance Cdet is the inverse of the positive
definite symmetric matrix Ldet given by the expression

Ldet = C−1
0 +

∫ T

0

eL
T tHTΓ−1

0 HeLt dt. (7.5)

The mean mdet solves

Ldetmdet = C−1
0 m0 +

∫ T

0

eL
T tHTΓ−1

0 dz(t).

Proof By Theorem 6.15, we know that ν has pdf proportional to exp
(−Idet(v0; z)

)
, where

Idet(v0; z) =
1

2

∣
∣v0 −m0

∣
∣2
C0

+
1

2

∫ T

0

∣
∣HeLtv0

∣
∣2
Γ0
dt−

∫ T

0

〈
HeLtv0, dz(t)

〉
Γ0
.

The inverse covariance Ldet satisfies

Ldet = ∂2v0
Idet(v0; z),

and the mean solves

Ldetmdet = −∇v0
Idet(v0; z)

∣
∣
∣
v0=0

.

These two equations characterize Cdet and mdet. Finally, the positive-definiteness of Ldet

follows from that of C0 and Γ0. Indeed, from (7.5), we have that for v �= 0,

〈v, Ldetv〉 ≥ 〈v, C−1
0 v〉 > 0.

�

Remark 7.3. The formulas for the mean and covariance given in the preceding theorem may
be found by imposing the scalings from (6.1) and taking the limit τ → 0 in the formulas
for the mean and covariance in Theorem 3.2 (discrete time), after setting M = exp(Lτ).
Furthermore, as in Theorem 3.2, the formulas for the mean may be interpreted as a maximizer
of the posterior probability of v0 given data z. ♠
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7.2 Markov Chain–Monte Carlo Methods

As in the case of discrete time, we may use MCMC methods to sample from the smoothing
distributions of interest. We start with deterministic dynamics, where the posterior distribu-
tion is on the initial condition in R

n; we then move on to the case of stochastic dynamics,
where the posterior distribution is on the pathspace H1 = L2([0, T ];Rn) ⊃ C([0, T ];Rn); as
observed in Remark 6.10, the solutions are in C([0, T ];Rn), almost surely.

7.2.1. Deterministic Dynamics

In the case of deterministic dynamics (6.6), the measure of interest is a measure on the initial
condition v0 in R

n. As in the discrete case, we describe application of the random walk
Metropolis (RWM) sampler in this setting, where we sample the initial condition, since it
is perhaps the simplest algorithm to describe. Recall from Section 6.3.5 that the measure of
interest is ν with pdf � and that Theorem 6.15 shows that � ∝ exp

(−Idet(v0; y)
)
.

The RWM method proceeds as before: given that the state of the Markov chain at step
n− 1 is v(n−1), we propose

w(n) = v(n−1) + βι(n−1),

where ι(n−1) ∼ N(0, Cprop) is a centered Gaussian random variable on R
n defined for some

positive definite proposal covariance Cprop and proposal variance scale parameter β; we then
accept the move v(n) = w(n) with probability a(v(n−1), w(n)), where

a(v, w) = 1 ∧ �(w)
�(v)

= 1 ∧ exp
(
Idet(v; y)− Idet(w; y)

)
;

otherwise, we set v(n) = v(n−1). Thus moves that decrease Idet are always accepted; moves that
increase Idet are accepted with a probability that is smaller for larger increases. Recall that
Idet is the sum of the prior penalization (background) and the model–data misfit functional
given by (6.35). The algorithm thus has a very natural interpretation in terms of the data-
assimilation problem. Numerical results illustrating it are given in Section 7.3. As in discrete
time, we are not advocating the RWM algorithm as an algorithm that is particularly well
adapted to the sampling question at hand; we are merely using it to illustrate the application
of MCMC to the smoothing problem for deterministic dynamics. More sophisticated methods
are now described, in the context of stochastic dynamics.

7.2.2. Stochastic Dynamics

Here we apply the Metropolis–Hastings methodology to the data-assimilation smoothing prob-
lem in the case of the stochastic dynamics model (6.4), given data determined by (6.5). Thus
the probability measure is on v ∈ H1 = L2([0, T ];Rn). This is a fundamentally more com-
plicated situation than we have encountered in any of our preceding discussions of MCMC
methods, both in this chapter and in Chapter 3. This is because the space from which we
wish to sample (pathspace) is infinite-dimensional. This has implications for the algorithms
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that may be used: for example, the RWM algorithm is not defined in our infinite-dimensional
setting. In practice, we discretize the infinite-dimensional space and could, in principle, use
standard MCMC methods. But the fact that the methods are not defined in the infinite-
dimensional limit means that they behave poorly when the dimension of the approximating
space is high. For this reason, we concentrate here on special MCMC methods that are well
defined in the infinite-dimensional setting. It turns out that the two methods we introduced in
Section 3.2.4 for studying discrete time dynamics are well defined in the infinite-dimensional
limit. We now describe them in the current infinite-dimensional setting.

Our interest is in the measure μ on the pathspace H1 determined by Theorem 6.13. This
measure is characterized in (6.31) via its density with respect to measure μ0; the measure μ0
is simply the measure on H1 defined by solutions of the equation (6.4). On the other hand,
the measure μ is also characterized in (6.32) via its density with respect to measure ϑ0 given
by (6.28); thus the measure ϑ0 is simply the Gaussian measure on H1 generated by Brownian
motion with a Gaussian random starting point. The two methods we now describe require,
respectively, the ability to sample from μ0 and from ϑ0.

We begin with the independence dynamics sampler. Here we choose the proposal w(n),
independently of the current state v(n−1), from the prior μ0: this just means generating an
independent sample from the unconditioned dynamics defined by (6.4). Similarly to the case
of discrete-time dynamics, this move is accepted with probability a(v(n−1), w(n)), where

a(v, w) = 1 ∧ exp
(
Ξ2(v, z)− Ξ2(w, z)

)
.

The resulting MCMC method always accepts moves that decrease the functional Ξ2(·; z),
which is defined just before Theorem 6.13; if this functional increases, then the move is
accepted with a probability less than 1. It is illuminating to note that if z were differentiable,
we could write

Ξ2(v, z) =
1

2

∫ T

0

∣
∣
∣h(v(t))− dz

dt

∣
∣
∣
2

Γ0

dt+K(z),

where K(z) is independent of v. Thus Ξ2(·, z) is a form of model–data misfit functional:
Ξ2(v, z) measures how well the given function v fits the observed data, in a least-squares
sense. Furthermore, if we pretend that z is differentiable, we then have that

Ξ2(v, z)− Ξ2(w, z) =
1

2

∫ T

0

∣
∣
∣h(v(t))− dz

dt

∣
∣
∣
2

Γ0

dt− 1

2

∫ T

0

∣
∣
∣h(w(t))− dz

dt

∣
∣
∣
2

Γ0

dt,

and the acceptance probability may be interpreted as biasing samples toward trajectories that
have a best fit to the data, is a least-squares sense.

As in the case of discrete time, and as we will see in the illustrations in Section 7.4 below, the
independence dynamics sampler can be quite inefficient, because the proposed moves attempt
to move far from the current state based only on the underlying stochastic dynamics, and not
on the observed data; this can lead to frequent rejections. As in the discrete-time setting, this
effect can be controlled by making local proposals, and such a method is exemplified by the
pCN method. Recall the Gaussian measure ϑ0, noting that this has mean m the constant
function m(t) = m0 with fluctuations described by standard Brownian motion on R

n with
variance Σ0, and starting from an initial condition distributed as N(0, C0); as such, it is
straightforward to draw from this measure. The pCN method, introduced in Section 3.2.4, is
based on the following proposal: we define

w(n) = m+ (1− β2)
1
2

(
v(n−1) −m)+ βι(n−1),
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where ι(n−1) is a standard Brownian motion on R
n with variance Σ0 and starting from an

initial condition drawn at random from N(0, C0), and is independent of v(n−1). This proposal
preserves ϑ0 and would be accepted all the time if f ≡ 0 and h ≡ 0. With nonzero (f, h), so
that the observations contain information about the signal, and so that the signal itself is not
simply Brownian motion, the move is accepted with probability a(v(n−1), w(n)), where

a(v, w) = 1 ∧ exp(Ξ2(v, z)− Ξ2(w, z) + Ξ1(v)− Ξ1(w)),

and Ξ1, Ξ2 are as defined preceding Theorem 6.13. By choosing β small, so that w(n) is close
to v(n−1), we can make a(v(n−1), w(n)) reasonably large and obtain a usable algorithm. These
two infinite-dimensional MCMC methods are illustrated in Section 7.4.

7.3 Variational Methods

Recall that the idea of variational methods, as described in the discrete-time setting, is to find
a point that maximizes the posterior probability: the MAP estimator. In finite-dimensional
terms, when the posterior probability has density with respect to Lebesgue measure, this point
is found by maximizing the pdf. In finite dimensions it is straightforward to relate the problem
of maximizing probability to that of minimizing the negative logarithm of the probability, and
this is expressed in Theorems 3.10 and 3.12. In those theorems, we also express the idea of
a probability maximizer in a way that translates well to infinite dimensions, where there is
no Lebesgue measure. More precisely, we find points that maximize the probability of small
balls centered at that point, and then consider the limit in which the small ball has radius
that tends to zero. We outline application of this definition of MAP estimator to the case
of stochastic dynamics. We then consider the simpler case of deterministic dynamics, where
Lebesgue measure can be used.

For stochastic dynamics, our starting point is the formula (6.32) for the measure μ on
v|z governed by equations (6.4), (6.5), where we note that Ξ1 and Ξ2 are given by (6.30).
The measure ϑ0 is the Gaussian measure generated by the equation (6.28). This has mean
m ∈ H1, which is the constant function m(t) = m0, and covariance defined by the Wiener
measure with variance Σ0 and random initial condition distributed according to N(0, C0).
This gives a Gaussian measure N(m,C) on H1. A useful way of characterizing C is via its
inverse L, the precision. For this problem, the precision is given by

L = −Σ0
d2

dt2
,

with domain of L specified by the boundary conditions dv
dt = Σ0C

−1
0 v at t = 0 and dv

dt = 0 at
t = T. If we pretend for a moment that the Gaussian measure ϑ0 has a Lebesgue density, then
by analogy with the finite-dimensional setting, it should have Lebesgue density proportional to

exp
(−1

2
|C− 1

2 (v −m)|2) = exp
(−1

2
|L 1

2 (v −m)|2).

This suggests, based on (6.32), that the posterior measure of interest, μ, has Lebesgue density
proportional to exp

(−I(v; z)), where

I(v; z) :=
1

2
|L 1

2 (v −m)|2 + Ξ2(v; z) + Ξ1(v).
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This, in turn, suggests that points that maximize probability are those that minimize the
functional I(·; z); minimization is over functions v such that v−m is in the domain of L

1
2 . This

leads to an infinite-dimensional minimization (indeed infimization) problem; furthermore,
because of the structure of L, the resulting Euler–Lagrange equations are of second order
in time. These kinds of arguments can be made rigorous, but some very subtle issues in
stochastic analysis arise in making them so, and these are beyond the scope of these notes—
we give detailed reference to the relevant literature in Section 7.5. Here we simply note that
the dependence of Ξ1 and Ξ2, as defined in (6.30), on stochastic integrals with respect to v
and z respectively, makes the problem particularly hard; integration by parts, using the Itô
formula, can be used to derive reformulations of the objective function I(·; z) appropriate to
proving that minimizers coincide with MAP estimators.

In the case of deterministic continuous-time dynamics, the minimization is simpler, since it
is over the finite-dimensional space Rn: the objective functional is Idet(v0; z) given in Theorem
6.15. We highlight some important structure in this minimization problem. We assume that
the data z(t) is derived from (6.5) with v(t) = Ψ(v†0; t). Then, up to an additive constant that
is independent of v0, we have

Ξ3(v0, z) =
1

2

∫ T

0

∣
∣
∣
(
h
(
Ψ(v0; t)

)−h(Ψ(v†0; t)
))∣∣
∣
2

Γ0

dt−
∫ T

0

〈
h
(
Ψ(v0; t)

)
,
√
Γ0dBz(t)

〉

Γ0

+c(v†0),

where Bz is the specific realization of Brownian motion that gives rise to the data: we have
substituted for z using

dz

dt
= h

(
Ψ(v†0; t)

)
+
√
Γ0
dBz

dt
.

Of course, we do not know Bz in practice; we simply observe z. But studying the minimiza-
tion in this form, in which the truth value v† of the initial condition appears explicitly, is
instructive. In this form, the minimization problem for Idet given by (6.35) is equivalent to
the minimization of

1

2
|v0 −m0|2C0

+
1

2

∫ T

0

∣
∣
∣
(
h
(
Ψ(v0; t)

)− h(Ψ(v†0; t)
))∣∣
∣
2

Γ0

dt−
∫ T

0

〈
h
(
Ψ(v0; t)

)
,
√
Σ0dBz(t)

〉

Γ0

,

where Bz is the specific realization of Brownian motion that gave rise to the data. To under-
stand how the global minimizer may be characterized in the limit of large T , note that the
first term is then O(1), the second term is O(T ) (for v0 �= v†0 and provided that Ψ(·; t) is not
contracting), and the third term, by the Itô formula of Lemma 6.3, is O(T

1
2 ). Thus, for large

T , minimization will be dominated by the middle term, which is nonnegative, and zero for
v0 = v†0. This suggests that for large T , the variational method will have a global minimum
close to the truth. Such arguments can be made rigorous; we give references in Section 7.5.

7.4 Illustrations

We describe several numerical experiments that illustrate the application of variational meth-
ods and MCMC methods to the smoothing problems arising in continuous time for both
deterministic and stochastic dynamics.

The first illustration concerns variational methods, and in particular, application of opti-
mization techniques to minimize Idet given in Theorem 6.15. We consider the deterministic
Lorenz ’63 model from Example 6.7 with σ1 = σ2 = σ3 = 0 and linear observation operator
h(v) = Hv with H = (1, 0, 0), so that only the first component of the equation is observed; we
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assume that the scalar observation equation (6.5) is employed with Γ0 = γ2. The remaining
parameter values for the objective functions defined in Theorem 6.15 are T = 2, γ = 0.1,
C0 = 0.01I, and m0 = 0. The value of the time step is set to τ = 10−4. The MAP estimator
in this case (which we define to be the best of several local minima that we identified) is
very close to the truth. This is shown in the top left panel of Fig. 7.1, along with several
local minima. These results were generated with p7c.m. The remaining three panels show
the value of the objective function Idet from Theorem 6.15 for each of the three components
of the initial condition, with the values of the other two degrees of freedom fixed at the MAP
estimator. Clockwise from top right, they are Idet(v1, v

MAP
2 , vMAP

3 ), Idet(v
MAP
1 , vMAP

2 , v3), and
Idet(v

MAP
1 , v2, v

MAP
3 ). Here v1, v2, v3 (possibly with superscript MAP) denote the three com-

ponents of the initial condition for the Lorenz equation, a notation commented on in the
footnote within Example 6.7. Notice the multimodality of these three slices through the
objective function, and notice broad similarities (in that the distribution is multimodal) with
the example shown in Figure 3.8(b) for the discrete case. This multimodality is a hallmark
of performing MAP estimation for chaotic dynamical systems, and it can cause considerable
computational difficulties, especially in high-dimensional problems.

Fig. 7.1: 4DVAR for the (deterministic) Lorenz ’63 equation from Example 6.7 with obser-
vation operator H = (1, 0, 0). Panel (a) shows the truth, the MAP estimator (the best local
minimizer that we found), and several other local minima of Idet; for the three local minima,
we report the value of the objective function Idet. Panels (b)–(d) show Idet as a function of
each of the degrees of freedom individually, conditional on the other two being fixed at values
of the MAP estimator. Recall that here v1, v2, v2 denote the three components of the initial
condition from Example 6.7.
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The next illustration concerns the use of the RWM algorithm to study the smoothing
distribution for Example 6.6. We consider the case of deterministic dynamics, with ε = 0, so
that our aim is to find the posterior distribution P(v0|z) on R. Recall Figure 6.8a, which shows
the true posterior pdf, found by plotting the formula (6.35) given in Theorem 6.15 for the
choice of Gaussian prior N(4, 10), which we will also use here. We now approximate the true

Fig. 7.2: Comparison of the posterior for Example 6.6, with ε = 0, using random walk
Metropolis and equation (6.35) directly as in the matlab program p3c.m. We have used

T = 10, C0 = 5,m0 = 4 =, γ = 1, τ = 10−2, and true initial condition v†0 = 0.5; see also
p4c.m in Section 9.1.3. The MCMC algorithm is run for K = 108 steps.

posterior pdf by the RWM method, using the same parameters as in Figure 6.8a, namely T =
10, C0 = 4,m0 = 4, γ = 1, τ = 10−2, and v†0 = 0.5. In Figure 7.2, we compare the posterior pdf
calculated by the MCMC method (denoted by ρN , the histogram of the output of the Markov
chain) with the true posterior pdf ρ. The two distributions are almost indistinguishable when
plotted together in Figure 7.2a; in Figure 7.2b, we plot their differences, which, as we can see,
is small relative to the true value. We deduce that the numbers of samples used, K = 108,
results in this case in an accurate sampling of the posterior.

We now turn to the use of MCMC methods to sample the smoothing pdf P(v|z) in the case
of stochastic dynamics (6.4). We again study Example 6.6, now with ε = 0.08. We use both
the independence dynamics sampler and the pCN method. In particular, in Figure 7.3, we plot
the accept–reject ratio for the independence dynamics sampler, employing different values of
observational noise γ and different observational times T . We observe that the behavior of the
accept–reject ratio is similar to that in the discrete case: it decreases with decreasing γ and
with larger values of the length of the time interval over which data is collected, here T (and
J in discrete time). In addition, in Figure 7.4, we plot the output and the running average of
the output for u(T ). The true value of u(T ) is −1.1905. The information content of the data
set it high, and the algorithm reconstructs a mean posterior value for the signal at the end
time t = T that is fairly close to this true value. Figure 7.4a clearly exhibits the fact that
there are many rejections caused by the low acceptance probability. Figure 7.4b shows that
the running average has not yet converged after 105 steps, indicating that the chain needs to
be run for longer. If we run the Markov chain over K = 106 steps, then we get convergence,
as illustrated in Figure 7.5. In particular, in Figure 7.5a, we see that the running average has
converged to its limiting value when this many steps are used. Furthermore, in Figure 7.5b, we
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Fig. 7.3: Accept–reject probability of the independence dynamics sampler for Example 6.6 for
C0 = 1,m0 = 0, ε = 0.08, τ = 0.01, and Γ0 = γ2 for different values of γ and observational
time T .

plot the marginal probability distributions for u(T ), calculated from this converged Markov
chain.

Fig. 7.4: Output and running average of the independence dynamics sampler after K = 105

steps, for Example 6.6 for C0 = 1,m0 = 0, ε = 0.08, τ = 0.01, and Γ0 = γ2 = 0.52 and T = 10.

In order to get faster convergence when we sample the posterior distribution, we turn to
application of the pCN method. Unlike the independence dynamics sampler, this contains a
tunable parameter that can vary the size of the proposals. In particular, the possibility of
making small moves, with resultant higher acceptance probability, makes this a more flexible
method than the independence dynamics sampler. In Figure 7.6, we show application of the
pCN sampler, again considering Example 6.6 for C0 = 0,m0 = 1, ε = 0.08, τ = 0.01, and
Γ0 = γ2 = 0.52 and T = 10, the same parameters used in Figure 7.4, while the value of β
used is 0.05.
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Fig. 7.5: Running average and probability density of the first and last elements of the inde-
pendence dynamics sampler after K = 106 steps, for Example 6.6 for C0 = 0,m0 = 1, ε =
0.08, τ = 0.01, and Γ0 = γ2 = 0.52 and T = 10.

Fig. 7.6: Output and running average for the pCN sampler (β = 0.05) after K = 105 steps,
for Example 6.6 for C0 = 0,m0 = 1, ε = 0.08, τ = 0.01, and Γ0 = γ2 = 0.52 and T = 10.

7.5 Bibliographic Notes

• Section 7.1 is devoted to the Kalman–Bucy filter, which first appeared in the published
literature in the paper [80]. A characterization of the measure μ from Theorem 7.1 in terms
of the solution of boundary value problems may be found in [64]. In particular, the paper
[64] shows an explicit calculation linking the calculation as a boundary value problem to
the formulas in [80]; this link corresponds to a continuous analogue of LU factorization.

• Section 7.2 concerns solution of the smoothing problem for continuous-time data assim-
ilation by means of MCMC methods. This subject is considered in some detail in the
article [63]. The reader is also pointed to the article [35] for an overview of MCMC meth-
ods for infinite-dimensional problems. In the case of deterministic dynamics, the approach
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we describe corresponds to adopting a Bayesian approach to parameter estimation in SDEs;
the subject of parameter estimation for SDEs is explored in the recent collection of arti-
cles [83].

• Section 7.3 concerns variational methods. In the case of stochastic dynamics, these are
optimization problems over infinite-dimensional spaces, and the full power of the calculus
of variations [40] and associated computational tools [112] is relevant to the development
of efficient algorithms. The computational tools from [112] are also, of course, relevant
in the case of deterministic dynamics, where the optimization is over a finite-dimensional
space. Derivation of the appropriate cost function that should be minimized in the infinite-
dimensional setting in order to define a MAP estimator is the subject of several papers by
Zeitouni and coworkers in the 1980s; see [150, 43] and the references therein. The argument
concerning the behavior of the objective functional in this case, for large T , underpins
the proofs of posterior consistency for maximum-likelihood-based parameter estimation in
SDEs [85]. For further discussion of posterior consistency, see [43].

7.6 Exercises

1. Find the exact solution of the equation

dv

dt
= v(1− v2)

from Example 6.6 when ε = 0. Using this exact solution, modify the code used in p3c.m,
which uses a numerical approximation of the equation (6.22), to produce an improved
approximation of the posterior distribution shown in Figure 6.9a with T = 10.

2. Use program p5c.m to study the acceptance probability of the independence dynamics
sampler, for fixed ε > 0, as the noise level in the observation equation is increased. Report
your findings and offer an explanation.

3. Use program p6c.m to study the acceptance probability of the independence dynamics
sampler, for fixed ε > 0, as the proposal variance β is varied in [0, 1]. Report your findings
and offer an explanation.

4. Define a pCN dynamics sampler for the posterior distribution of Theorem 6.13, analogously
to what is done in discrete time in Section 3.2.4. Specify the proposal and the form of the
acceptance probability.

5. Write a program to sample from the posterior distribution of Theorem 6.13, using the
pCN dynamics sampler from the previous exercise. Apply the method to the same example
considered in program p6c.m. Compare the output in the form of time traces, as well as
time-average traces, as in Figure 7.6.



Chapter 8

Continuous Time: Filtering Algorithms

In this chapter, we describe various algorithms for determination of the filtering distribution
μt in continuous time. We begin in Section 8.1 with the Kalman–Bucy filter, which provides
an exact algorithm for linear problems. Since the filtering distribution is Gaussian in this case,
the distribution is entirely characterized by the mean and covariance; the algorithm comprises
a system of differential equations for the mean and the covariance. In Section 8.2, we discuss
the approximate Gaussian methods introduced in Section 4.2 in the discrete-time setting.
Similarly to the case of the Kalman–Bucy filter, we again obtain a differential equation for the
mean; for the extended Kalman (ExKF) filter, we also obtain an equation for the covariance,
and for the ensemble Kalman filter (EnKF), we have a system of differential equations coupled
through their empirical mean and covariance. In Section 8.3, we discuss how the particle filter
methodology introduced in Section 4.3 extends to the continuous case, while in Section 8.4,
we study the long-time behavior of some of the filtering algorithms discussed in the previous
sections. Finally, in Section 8.5, we present some numerical illustrations and conclude with
bibliographic notes and exercises in Sections 8.6 and 8.7 respectively.

It is helpful to recall the form of the continuous-time data-assimilation problem. The signal
is governed by the SDE from (6.4):

dv

dt
= f(v) +

√
Σ0
dBv

dt
,

v(0) ∼ N(m0, C0);

the data is generated by the SDE (6.5):

dz

dt
= h(v) +

√
Γ0
dBz

dt
,

z(0) = 0.

We let zt denote {z(s)}s∈[0,t], the data accumulated up to time t, and we are interested in
the probability measure μt governing v(t)|zt, and in particular, in updating this measure
sequentially in time. This is the filtering problem. In principle, the Kushner–Stratonovich
and Zakai equations provide the solution to the filtering problem, but in general, they do
not have closed-form solutions. Thus algorithms are required to approximate their solution.
The filtering algorithms that we describe in the remainder of the section attempt to do this.

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-20325-6 8) contains supplementary material, which is available to authorized users.
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We highlight here the fact that the Kushner–Stratonovich and Zakai equations are stochastic
PDEs in spatial dimension n, the size of the state space. Thus their solution poses formidable
challenges for high-dimensional problems.

8.1 Linear Gaussian Problems: The Kalman–Bucy Filter

Although the Kushner–Stratonovich and Zakai equations do not, in general, have closed-
form solutions, they do have such solutions for linear models; this is entirely analogous to
the discrete-time setting and stems from the fact that the desired filtering distribution is
Gaussian. The resulting algorithm for the mean and covariance is the Kalman–Bucy filter,
which we now describe.

Consider equations (6.4) and (6.5), where f(v) = Lv, h(v) = Hv, for L ∈ R
n×n, H ∈ R

m×n

of full rank m. Then (6.4) and (6.5) become

dv

dt
= Lv +

√
Σ0
dBv

dt
, v(0) ∼ N(m0, C0), (8.3a)

dz

dt
= Hv +

√
Γ0
dBw

dt
, z(0) = 0. (8.3b)

Theorem 8.1. The filtering distribution μt for v(t)|zt governed by (8.3) is Gaussian with
mean m and covariance C solving the Kalman–Bucy filter

dm

dt
= Lm+ CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= LC + CLT +Σ0 − CHTΓ−1

0 HC, C(0) = C0.

Sketch Proof We give references to the rigorous derivation of Kalman–Bucy filtering in
the bibliographic notes at the end of the chapter. Here we derive the filter by a formal
discretization argument, with no proof, since this provides a useful way to understand the
structure of the filter. In particular, we consider the discrete-time Kalman filter of Section 4.1,
and the prediction and analysis steps given by (4.4), (4.5) and (4.7), (4.8) respectively, with
M = I+τL and the other scalings detailed in (6.1). The prediction steps (4.4) and (4.5) give,
to leading order in τ ,

m̂j+1 = mj + τLmj , (8.4)

Ĉj+1 = (I + τL)Cj(I + τL)T + τΣ0

= Cj + τ(LCj + CjL
T +Σ0) +O(τ2). (8.5)

Now using the analysis step from Corollary 4.2, again to leading order and substituting (8.4)
and (8.5), we obtain

dj+1 = (yj+1 −Hmj) +O(τ),

Sj+1 =
1

τ
Γ−1
0 +O(1),

Kj+1 = τCjH
TΓ−1

0 +O(τ2),

mj+1 = mj + τLmj + τCjH
TΓ−1

0 (yj+1 −Hmj),

Cj+1 = Cj + τ(LCj + CjL
T +Σ0)− τCjH

TΓ−1
0 HCj +O(τ2).
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Recalling that yj+1 = τ−1(zj+1 − zj) and passing to the limit gives

dm

dt
= Lm+ CHTΓ0

(
dz

dt
−Hm

)
,

dC

dt
= LC + CLT +Σ0 − CHTΓ−1

0 HC,

which concludes the proof sketch. �

8.2 Approximate Gaussian Filters

Here we discuss the family of approximate Gaussian filtersintroduced in Section 4.2, general-
izing to continuous time. Our aim is to ascertain the form of continuous-time limits under the
scalings detailed in (6.1). Our aim is not to prove theorems about the limiting process, but
rather to give an understanding of what the natural continuous-time limiting processes are.
We thus use the environment “result” rather than “theorem” to highlight the fact that the
forms of the continuous-time limits are derived only formally and not, currently, rigorously
proved in the published literature; however, it would not be difficult to make rigorous proofs
based on these results.

The starting point of our investigations is equation (4.13), which is based on the assumption

that P(uj+1|Yj) = N(Ψ(mj), Ĉj+1). In addition to the expression for the update ofmj (4.13a)
using Bayes’s, rule one sees that the new covariance Cj+1 satisfies

Cj+1 = (I −Kj+1H)Ĉj+1. (8.6)

We will now proceed in a similar fashion as in the case of the Kalman–Bucy filter: we derive
a differential equation for the time evolution of the mean and covariance of the different
approximate Gaussian filters studied in Section 4.2. The resulting Gaussian measures should
be viewed as attempts to approximate the true filtering distribution μt.

8.2.1. 3DVAR

Result 8.2. Consider the filtering distribution for the 3DVAR algorithm (4.14) arising in
the case of deterministic dynamics (Σ = 0) and linear observations(h(v) = Hv). Under the
scalings detailed in (6.1), and in the continuous-time limit (τ → 0), the corresponding limiting
filtering distribution is Gaussian with mean m and covariance C satisfying

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0, (8.7a)

dC

dt
= 0, C(0) = Ĉ. (8.7b)

Derivation We begin our derivation by observing that (4.13) implies that

mj+1 = Ψ(mj) + Ĉj+1H
T (Γ +HĈj+1H

T )−1
(
yj+1 −HΨ(mj)

)
.
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We now apply the scalings appropriate for a continuous-time limit and in particular set

Ψ(m) = m+ τf(m) +O(τ2).

In addition, for the case of 3DVAR, we have Ĉj+1 = Ĉ for all j, which implies that

Ĉj+1 − Ĉj = 0.

Finally, using the scalings from equation (6.1) and recalling that yj+1 = τ−1(zj+1 − zj), we
have that

mj+1 −mj

τ
= f(mj) + Ĉj+1H

T (Γ0 + τHĈj+1H
T )−1

(
zj+1 − zj

τ
−Hmj

)
+O(τ),

Ĉj+1 − Ĉj

τ
= 0.

By taking the limit τ → 0, we obtain

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= 0, C(0) = Ĉ,

where we have identified C0 with Ĉ. This completes our derivation. �

8.2.2. Extended Kalman Filter

The 3DVAR algorithm imposes a fixed covariance on the model in the prediction step of the
algorithm, implying also a fixed covariance in the analysis step. The extended Kalman filter
attempts to improve on this by propagating the covariance in the prediction step according
to the linearized dynamics. In the continuous-time limit, we obtain the following.

Result 8.3. Consider the filtering distribution for the extended Kalman Filter from Sec-
tion 4.2.2 in the case of stochastic dynamics and linear observations (h(v) = Hv). Under
the scalings detailed in (6.1) and in the continuous-time limit (τ → 0), the corresponding
limiting filtering distribution is Gaussian with mean m and covariance C satisfying

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= Df(m)C + C(Df(m))T +Σ0 − CHTΓ−1

0 HC, C(0) = C0.

Derivation From the formulas given in Section 4.2.2, we have

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T +Σ,
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and using (4.13) and (8.6),

mj+1 = Ψ(mj) + Ĉj+1H
T (Γ +HĈj+1H

T )−1(yj+1 −HΨ(mj)),

Ĉj+1 = DΨ(mj)(I −KjH)ĈjDΨ(mj)
T +Σ.

To deduce the continuous-time limit, we set Ψ(m) = m + τf(m) + O(τ2) and impose (6.1).
This yields

DΨ(mj) = I + τDf(mj) +O(τ2),

(I −KjH) = I − τĈjH
T (Γ0 + τHĈjH

T )−1H +O(τ2).

Combining the two previous sets of equations and recalling that yn+1 = τ−1(zn+1 − zn), we
obtain

mj+1 −mj

τ
= f(mj) + Ĉj+1H

T (Γ0 + τHĈj+1H
T )−1

(
zj+1 − zj

τ
−Hmj

)
+O(τ),

Ĉj+1 − Ĉj

τ
= Df(mj)Ĉj + ĈjDf(mj)

T − ĈjH
T (Γ0 + τHĈjH

T )−1HĈj +Σ0 +O(τ).

By taking the limit τ → 0, we obtain

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= Df(m)C + C(Df(m))T +Σ0 − CHTΓ−1

0 HC, C(0) = C0,

as required. �

8.2.3. Ensemble Kalman Filter

As already discussed in Chapter 4, the ensemble Kalman filter differs from the extended
Kalman filter and 3DVAR in that instead of using an appropriate minimization procedure to
update a single estimate of the mean, a minimization principle is used to generate an ensemble
of particles all of which satisfy the model/data compromise inherent in the minimization;
these are coupled through the empirical covariance used to weight the minimization. Thus in
studying the EnKF in continuous time, it is natural to derive an SDE for each of the particles,
instead of deriving a single equation for the mean and the covariance as in Results 8.2 and 8.3.
In deriving the continuous-time limit for each of the particles, it will be useful to rewrite the
ensemble Kalman filter from Section 4.2.3 using the family of minimization principles Ifilter,nn
given by (4.15), with n = 1, . . . , N indexing the particles. Using such an interpretation leads
to the following equation:

Ĉ−1
j+1(I + Ĉj+1H

TΓ−1H)v
(n)
j+1 = Ĉ−1

j+1v̂
(n)
j+1 +HTΓ−1y

(n)
j+1,

with Ĉj+1 the predictive covariance found from the properties of the predictive ensemble; in

this derivation we simply assume that Ĉj+1 is invertible and return to address this issue after

the derivation. Applying Ĉj+1 allows us to rewrite the analysis step of the ensemble Kalman
Filter in the following form:
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(I + Ĉj+1H
TΓ−1H)v

(n)
j+1 = v̂

(n)
j+1 + Ĉj+1H

TΓ−1y
(n)
j+1, (8.8a)

y
(n)
j+1 = yj+1 + η

(n)
j+1, n = 1, · · · , N, (8.8b)

where v̂
(n)
j+1, m̂j+1, and Ĉj+1 are given by the prediction step detailed in Section 4.2.3. We

now have the following result:

Result 8.4. Consider the ensemble Kalman Filter from Section 4.2.3 in the case of stochastic
dynamics and linear observations (h(v) = Hv). Under the scalings detailed in (6.1) and in the
continuous-time limit (τ → 0), the particles evolve according to the following set of coupled
SDEs, for n = 1, · · · , N :

dv(n)

dt
= f(v(n)) + C(v)HTΓ−1

0

(dz(n)

dt
−Hv(n)

)
+Σ

1/2
0 dBv, (8.9a)

dz(n)

dt
= Hv + Γ

1/2
0

(dW (n)

dt
+
dBz

dt

)
, (8.9b)

where W (1), · · · ,W (N), Bz, Bu are mutually independent standard Wiener processes. The
mean m(v) and covariance C(v) are defined empirically from the particles v = {v(n)}Nn=1

as follows:

m(v) =
1

N

N∑

n=1

v(n), (8.10a)

C(v) =
1

N − 1

N∑

n=1

(v(n) −m)(v(n) −m)T . (8.10b)

Derivation We begin our derivation by noting the formulation of the analysis step given
in (8.8) and employing the definition of the particle prediction step to give

v
(n)
j+1 − v(n)j = v̂

(n)
j+1 − v(n)j − Ĉj+1H

TΓ−1Hv
(n)
j+1 + Ĉj+1H

TΓ−1y
(n)
j+1

= Ψ(v
(n)
j+1)− v(n)j − Ĉj+1H

TΓ−1Hv
(n)
j+1 + Ĉj+1H

TΓ−1y
(n)
j+1 + ξ

(n)
j .

Now using the scalings from equation (6.1), we have that

Ψ(v) = v + τf(v) +O(τ2), ξ
(n)
j =

√
τΣ

1/2
0 ξ̂

(n)
j ,

and thus we obtain

v
(n)
j+1 − v(n)j = τ(f(v

(n)
j )− Ĉj+1H

TΓ−1
0 Hv

(n)
j+1) + τĈj+1H

TΓ−1
0 y

(n)
j+1 +

√
τΣ

1/2
0 ξ̂

(n)
j+1 +O(τ2),

where ξ̂
(n)
j is N(0, I) distributed. Now using the rescaling y

(n)
j+1 = τ−1(z

(n)
j+1 − z(n)j ), we have

the coupled difference equations

v
(n)
j+1 − v

(n)
j = τ(f(v

(n)
j )− Ĉj+1H

TΓ−1
0 Hv

(n)
j+1) + Ĉj+1H

TΓ−1
0 (z

(n)
j+1 − z

(n)
j ) +

√
τΣ

1/2
0 ξ̂

(n)
j+1,

(8.11)

z
(n)
j+1 − z

(n)
j = τHvj+1 +

√
τΓ

1/2
0 (η̂

(n)
j+1 + η̂j+1), (8.12)
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where ξ̂
(n)
j+1, η̂

(n)
j+1, and ξ̂j+1 are independent N(0, I)-distributed random variables. In addition,

we have

m̂j+1 =
1

N

N∑

n=1

v
(n)
j+1 +O(τ),

so in the limit of τ → 0, we have that (m̂j+1, Ĉj+1) → (m,C) given by equation (8.10).
Furthermore, we see that the coupled difference equations given by (8.11) form a mixed
implicit–explicit Euler–Maruyama-type scheme for the system of SDEs (8.9), and thus in the
limit of τ → 0, we obtain the desired equations. �

Recall that in the preceding derivation, we made the assumption that Ĉj+1 is invertible.
However, this might not be the case; indeed, it cannot be the case if the dimension of the state
space exceeds the number of particles. However, one can still obtain the key equations (8.8)
in this case, by applying the following lemma to the analysis formula in Section 4.2.3.

Lemma 8.5. Assume that Γ is invertible. Then

(I −Kj+1H)−1 = (I + Ĉj+1H
TΓ−1H)

and

(I −Kj+1H)−1Kj+1 = Ĉj+1H
TΓ−1.

Proof We begin the proof by noting that using the Woodbury matrix identity from
Lemma 4.4, we have, for

Sj+1 := (Γ +HĈj+1H
T ),

that
S−1
j+1 = Γ−1 − Γ−1H(Ĉ−1

j+1 +HTΓ−1H)−1HTΓ−1,

where we note that Sj+1 is invertible because Γ is. Assume that Cj+1 is invertible; we will

relax this assumption below. Thus Z := I −Kj+1H = I − Ĉj+1H
TS−1

j+1H can be written as

Z = I − Ĉj+1H
TΓ−1H − Ĉj+1H

TΓ−1H(Ĉ−1
j+1 +HTΓ−1H)−1HTΓ−1H

= I − Ĉj+1B − Ĉj+1B(Ĉ−1
j+1 +B)−1B

= I − Ĉj+1B(I − (Ĉ−1
j+1 +B)−1B)

= I − Ĉj+1B(Ĉ−1
j+1 +B)−1Ĉ−1

j+1,

where B = HTΓ−1H. Manipulating this expression further, we see that

Z(I + Ĉj+1B) = I.

This identity may be derived even if Cj+1 is not invertible simply by adding εI to Cj+1 in
the preceding derivation and then letting ε→ 0. The preceding identity implies that

(I −Kj+1H)−1 = (I + Ĉj+1B) = (I + Ĉj+1H
TΓ−1H),

which concludes the proof for our first equation. Now using this equation, it is easy to see
that

Kj+1 = H−1 − (I + Ĉj+1H
TΓ−1H)−1H−1
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and thus

(I −Kj+1H)Kj+1 = (I + Ĉj+1H
TΓ−1H)H−1 −H−1 = Ĉj+1H

TΓ−1,

which concludes the proof for our second equation. �

8.3 The Particle Filter

The particle filter in continuous time faces many of the same issues arising in discrete time,
as outlined in Section 4.3. In the basic version of the method, analogous to the bootstrap
filter of Section 4.3.2, the particles evolve in continuous time according to the SDE (6.4). The
particles are weighted according to (6.31), which reflects the change of measure required to
take the solution of the SDE into the solution of the SDE conditioned on the observations
given by (6.5). As in discrete time, it is helpful to resample from the resulting distribution in
order to obtain an approximation with significant weight near the data. References to detailed
literature on the subject are given in Section 8.6.

8.4 Large-Time Behavior of Filters

Here we provide some simple examples that illustrate issues relating to the large-time behavior
of filters. The discussion from the preamble of Section 4.4 also applies here in continuous
time. In particular, the approximate Gaussian filters do not perform well as measured by
the Bayesian quality assessment test of Section 2.7 but may perform well as measured by
the signal estimation quality assessment test. Also, similarly to the situation in discrete time,
the Kalman–Bucy filter for linear problems and the particle filter give accurate approximations
of the true posterior distribution, in the latter case in the large-particle limit. The purpose of
this section is to illustrate these issues.

8.4.1. The Kalman–Bucy Filter in One Dimension

We consider the case of one-dimensional deterministic linear dynamics (8.3) with Σ0 = 0 and

f(v) = �v, h(v) = v,

while we will also assume that
Γ0 = γ2, C0 = c0.

Thus the filter aims to reconstruct signal v(t) solving the equation

dv

dt
= �v

from knowledge of {z(s)}0≤s≤t, where

z(s) =

∫ s

0

v(τ)dτ + γBw(s).
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Even though the variance of Bw(t) grows linearly with t, we will show that the variance of
the Kalman–Bucy filter is asymptotically zero, for � ≤ 0, or of order O(γ2) otherwise.

With these definitions, the Kalman–Bucy filter of Theorem 8.1 becomes

dm

dt
= �m+ γ−2c

(
dz

dt
−m

)
, m(0) = m0,

dc

dt
= 2�c− γ−2c2, c(0) = c0.

Here m denotes the mean of the filter, and c, the variance.
We notice that the equation for the variance evolves independently of that for the mean,

and independently of the data. Furthermore, if we define the precision p to be the inverse of
c, then straightforward calculation reveals that p solves the linear equation

dp

dt
= −2�p+ γ−2.

For � �= 0, this has exact solution

p(t) = exp(−2�t) 1
c0

+
(
1− exp(−2�t)

) 1

2�γ2
,

while for � = 0, we see that

p(t) =
1

c0
+

t

γ2
.

Thus for � ≤ 0, we have p(t) → ∞ as t → ∞. and the asymptotic variance is zero, while
for � > 0, the asymptotic variance is 2�γ2. In particular, if the observational variance γ2 is
small, then the asymptotic variance of the Kalman filter is O(γ2), even when � > 0, so that
the dynamics is unstable. The key point to observe, then, is that asymptotic uncertainty is
small, independently of whether the underlying deterministic dynamics is stable. In words,
observation can stabilize uncertainty growth in unstable systems. We study the behavior of
the error in the mean in the exercises at the end of this chapter.

8.4.2. The 3DVAR Filter

Recall the 3DVAR continuous filtering algorithm (8.7). We will study the behavior of this
algorithm with data z := {z†(t)}t∈[0,∞) constructed as follows. We let {v†(t)}t∈[0,∞) denote
the exact solution of the equations (6.4) in the case Σ0 = 0 :

dv†

dt
= f(v†), v†(0) = v†0. (8.13)

We assume that the data z† is a single realization of the SDE (6.4) with v = v† and in the
case h(·) = H·:

dz†

dt
= Hv† +

√
Γ0
dBz

dt
, z†(0) = 0. (8.14)
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In order to study the continuous-time 3DVAR filter, we eliminate z = z† in equation (8.7)
using (8.14) to obtain

dm

dt
= f(m) + CHTΓ−1

0 H(v† −m) + CHTΓ
− 1

2
0

dBz

dt
. (8.15)

In the following theorem, expectation is with respect to the Brownian motion Bz entering the
data equation (8.14).

Theorem 8.6. Let m solve equation (8.15), let v† solve equation (8.13), assume that f is
globally Lipschitz with constant L and that there exist λ > 0 and ε > 0 such that

〈CHTΓ−1
0 Ha, a〉 ≥ (L+

1

2
λ)|a|2, ∀a ∈ R

n,

Tr(Γ
− 1

2
0 HC2HTΓ

− 1
2

0 ) ≤ ε2.

Then the error in the 3DVAR filter satisfies

E|m(t)− v(t)|2 ≤ e−λt|m(0)− v(0)|2 + ε2

λ
(1− e−λt). (8.16)

Thus

limsupt→∞E|m(t)− v(t)|2 ≤ ε2

λ
. (8.17)

Proof Define δ = m− v† and subtract equation (8.13) from equation(8.15) and apply the Itô
formula to |δ|2 to obtain

1

2
d|δ|2 + 〈CHTΓ−1

0 Hδ, δ〉dt ≤ 〈f(m)− f(v†), δ〉+ 〈δ, CHTΓ
− 1

2
0 dBz〉+ 1

2
Tr

(
Γ

− 1
2

0 HC2HTΓ
− 1

2
0

)
dt.

(8.18)

Using the Lipschitz property of f and the definition of λ and ε, and taking expectations, gives

dE|δ|2
dt

≤ −λE|δ|2 + ε2. (8.19)

Use of the Gronwall inequality gives the desired result. �
It is interesting to consider the asymptotic behavior of this 3DVAR filter in the linear

Gaussian case from the preceding subsection. We thus assume that

f(v) = �v, h(v) = v,

and that
Γ0 = γ2, C = η−1γ2I.

We assume that γ2 � 1 and that � > 0. Our scaling of C proportional to γ2 is motivated
by the fact that the Kalman–Bucy filter has asymptotic variance on this scale. Theorem 8.6
applies, provided η is chosen to satisfy

η ≤ (�+
1

2
λ)−1,

and then (8.17) shows that the mean-square error in the filter is bounded by η−2λ−1γ2. Thus
the asymptotic error of the 3DVAR filter scales in the same way as the error Kalman filter
(which we study in the exercises) if the covariance C is tuned appropriately.
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8.5 Illustrations

In this section, the output of the various filtering algorithms will be presented. The text is
minimal, since the filters and their respective behaviors relative to one another are analogous
to their discrete-time counterparts as detailed in Chapter 4.

Figure 8.1 shows application of the Kalman Bucy filter to equation (6.21), in dimension
n = 2, with

Λ =

(−1 1
−1 −1

)
.

The observation operator is H = (1, 0)T , so that the second component is unobserved.
Figure 8.1a shows that the unobserved component is accurately recovered in the long-time
limit, despite the fact that the filter is initialized far from the truth. Figures 8.1b and 8.1c
show the asymptotic behavior of the covariance and the square of the Euclidean error between
the mean and the true signal underlying the data; both are shown pathwise and in running
average form.

Fig. 8.1: Kalman–Bucy filter for Example 6.4 with Λ given by (8.20) with γ = σ = 1, as given
in Section 8.20.
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The next figures all concern the application of approximate Gaussian filters, together with
the particle filter, to Example 6.6. Figures 8.2 and 8.3 concern application of the 3DVAR
filter for (γ, σ, η) = (0.3, 0.3, 0.1) and (0.1, 0.3, 0.1) respectively, where γ2 and σ2 are the
variance of the observations and the model dynamics respectively, and C = η−1γ2 is the fixed
variance defining the filter. Notice the decrease the error from Figure 8.2 to 8.3 resulting from
the decrease in γ. This is consistent with Theorem 8.6. Similar behavior is observed for the
other filters, as shown in Figures 8.4–8.8, where the extended Kalman filter, two forms of
the ensemble Kalman filter, and two forms of the particle filter are displayed. The extended
Kalman filter has, arguably, the best performance; but it is a method that does not scale well
to high-dimensional problems.

Remark 8.7. It is important to remark that stability can be a significant issue, especially for
filters in continuous time when complex nonlinear models are considered. As examples of this,
consider the continuous-time extended Kalman filter applied to the chaotic dynamical systems
Lorenz ’63 (6.23) and Lorenz ’96 (6.24), as presented in Section 6.2. In both cases, whether
instability is observed depends on the observation operator, for example. Figures 8.9 and 8.10
show the second component (left) and mean-square error (right) of the Lorenz ’63 model (6.23)
with σ = 2 and γ = 0.2. In both cases, we make a scalar linear observation h(v) = Hv. The
difference is that in Figure 8.9, the observation operator is given by H = (1, 0, 0), while in
Figure 8.10, the observation operator is given by H = (0, 0, 1). Figures 8.11 and 8.12 show
the second component (left) and mean-square error (right) of the Lorenz ’96 model (6.24)
with σ = 1 and γ = 0.1. The difference is that in Figure 8.11, we observe two out of every
three degrees of freedom, again linearly, while in Figure 8.12, we observe one out of every
three degrees of freedom, also linearly. Note that for both Lorenz models, for observations that
are insufficient to keep the filter close to the truth, large excursions in the error can occur.
These large excursions can easily induce numerical instabilities and destabilize the algorithms
unless care is taken in the choice of integrator and time step. ♠

8.6 Bibliographic Notes

• In Section 8.1, we consider the continuous-time limit of the Kalman filter. This is the
celebrated Kalman–Bucy filter, which was published in [80], the year after Kalman’s orig-
inal paper in the discrete-time setting [79], as described in Section 4.1. The Kalman–Bucy
smoother concerns the related continuous-time smoothing problem; it may be solved by
a continuous-time analogue of LU factorization, in which the first triangular sweep corre-
sponds to application of the Kalman–Bucy filter—see [64] and the discussion at the end of
the previous chapter. Theorem 8.1 can also be derived from the Kushner–Stratonovich or
Zakai equation equation of Theorem 6.16 by computing moments.

• Section 8.2 concerns approximate Gaussian filters and, more specifically, filters that are
derived as continuous-time limits of the discrete-time approximate Gaussian filters of Sec-
tion 4.2. The idea of deriving continuous-time limits of the 3DVAR, extended, and ensemble
Kalman filters was developed systemically in the papers [21, 82]. Furthermore, those pa-
pers, along with the paper [88], contain analyses of the large-time stability and accuracy
of the filters, with results similar in spirit to Theorem 4.10.

• Section 8.3 concerns the continuous-time particle filter. This methodology for solving
continuous-time filtering problems arising in SDEs can be viewed as constituting a particle
method for solution of the underlying stochastic PDE (Zakai or Kushner–Stratonovich)
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Fig. 8.2: Continuous 3DVAR filter for double-well Example 6.5 with γ = σ = 0.3, as given in
Section 9.3.2.

introduced in Section 6.4 and governing the probability density of v|zt. The method is
analyzed in detail in [9] and in [45]; these two books also provide copious references to the
literature on this subject.

• Section 8.4 concerns stability of filters. In Section 8.4.1, we study the one-dimensional
Kalman filter, while Section 8.4.2 concerns the 3DVAR filter. The example and theorem,
respectively, covered in these two subsections are entirely analogous to those in discrete
time in Section 4.4.
The example from Section 8.4.1 concerning the Kalman–Bucy filter is very specific to one-
dimensional deterministic dynamics. However, the general setting is thoroughly studied, as
in discrete time, and the reader is directed to the book [86], concerning Riccati equations,
for details. Theorem 8.6 is a simplified version of a result first proved in the context
of the Navier–Stokes equation in [21], and then for the Lorenz ’63 model in [88]. The
first stability analysis in continuous time concerned noise-free data and a synchronization
filter in which the observed variables are simply inserted into the governing equations
for the unobserved variables, giving rise to a nonautonomous dynamical system for the
unobserved variables [116]; this analysis forms the backbone of the analyses of the 3DVAR
filter for the Navier–Stokes and Lorenz ’63 models. The analysis was recently extended
to the Lorenz ’96 model in [87]. The synchronization filter is discussed in discrete time in
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Fig. 8.3: Continuous 3DVAR filter for double well Example 6.5 with γ = 0.1, σ = 0.3, as given
in Section 9.3.2.

Section 4.4.3. The continuous-time 3DVAR filter acts as a control system, forcing the filter
toward the data. In the paper [21], the data for the Navier–Stokes equation comprised low-
frequency Fourier information, and this control perspective was generalized in [8] to cover
the technically demanding case of data based on pointwise observations. The large-time
behavior of the EnKF is studied, in both discrete and continuous time, in [82]. Finally, we
note that as discussed in Section 4.6 in the discrete-time setting, the 3DVAR filter may be
used to bound the error in the mean of the Kalman filter for linear problems, because of the
optimality of the Kalman filter; this latter optimality property follows, as in discrete time,
from a Galerkin orthogonality interpretation of the error resulting from taking conditional
expectation. The paper [126] implements this idea in the discrete setting.

• Section 8.5 concerns various numerical illustrations. Remark 8.7 highlights the fact that
implementing filters in a stable fashion, especially for complex models, can be nontrivial,
and the reader is cautioned that blind transfer of the programs in the next chapter to other
models may well lead to numerical instabilities. These can be caused by an interaction of
the numerical integration method with noisy data. See [59] for a discussion of this.
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Fig. 8.4: Extended Kalman filter for double-well Example 6.5 with γ = 0.1, σ = 0.3, as given
in Section 9.3.3.

8.7 Exercises

1. Consider the linear example of Section 8.4.1. Implement the Kalman–Bucy filter for this
problem by modifying program p8c.m. Verify that the code reproduces the large-time
asymptotic behavior of the variance as proved in Section 8.4.1. Carefully distinguish be-
tween � < 0, � = 0, and � > 0. Now extend your code to include the case Σ0 = σ2 > 0 and
study the large-time behavior of the covariance. What can you prove about the large-time
behavior of the covariance in this case?

2. In this exercise, we study the properties of the mean for the one-dimensional linear dynam-
ics example considered in Section 8.4.1, in the large-time asymptotic. More specifically, we
study the error between the filter and the truth v†. Assume that the truth satisfies the
equation

dv†

dt
= �v†,

while the data z is given by
dz

dt
= v† + γ

dB

dt
,
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Fig. 8.5: Ensemble Kalman filter for double-well Example 6.5 with γ = 0.1, σ = 0.3, as given
in Section 9.3.4.

and B is a realization of the standard unit Brownian motion. Define e = m− v† and show
that

de

dt
+ fe = γ−1c

dB

dt
,

where f = F ′ and

F ′(t) = γ−2c(t)− �, F (0) = 0.

Apply the Itô formula of Lemma 6.3 to a judiciously chosen function to show that

e(t) = exp
(−F (t))e(0) + SI(t), (8.20)

where

SI(t) =

∫ t

0

γ−1 exp
(
F (s)− F (t))c(s)dB(s).
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Fig. 8.6: Ensemble transform Kalman filter for double-well Example 6.5 with γ = 0.1, σ = 0.3,
as given in Section 9.3.5.

Use the Itô isometry of Lemma 6.1(iii) to show that

E|SI(t)|2 =

∫ t

0

γ−2 exp
(
2F (s)− 2F (t)

)
c2(s)ds. (8.21)

Using the properties of the variance established in Section 8.4.1, show that the asymptotic
error in the filter mean is bounded by O(γ2).

3. Extend the 3DVAR code of program p10c.m so that it may be applied to the Lorenz ’63
example of Example 6.7. Consider both the fully observed case, in which H = I, and the
partially observed case, with H = (1, 0, 0, )T . Compare the output of the filter with the
truth underlying the data, using different observational noise levels.

4. Extend the ExKF code of program p11c.m so that it may be applied to the Lorenz ’63
example of Example 6.7. Consider the fully observed case, in which H = I. Compare the
output of the filter with the truth underlying the data using different observational noise
levels.
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Fig. 8.7: Continuous particle filter (standard) for double-well Example 6.5 with γ = 0.1,
σ = 0.3, as given in Section 9.3.6.

5. Extend the EnKF code of program p12c.m so that it may be applied to the Lorenz ’96
example of Example 6.8. Consider the case in which two out of every three points are
observed. Compare the output of the filter with the truth underlying the data, using
different observational noise levels.
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Fig. 8.8: Continuous particle filter (optimal) for double-well Example 6.5 with γ = 0.1, σ = 0.3,
as given in Section 9.3.7.

Fig. 8.9: Extended Kalman filter for Lorenz ’63 Example 6.7 with observation operator
H = (1, 0, 0).
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Fig. 8.10: Extended Kalman filter for Lorenz ’63 example 6.7 with observation orator
H = (0, 0, 1).

Fig. 8.11: Extended Kalman filter for Lorenz ’96 example 6.8 with 2/3 of components observed.

Fig. 8.12: Extended Kalman filter for Lorenz ’96 example 6.8 with 1/3 of components observed.



Chapter 9

Continuous Time: matlab Programs

This chapter is dedicated to illustrating the examples, theory, and algorithms presented in the
preceding three chapters through a few short and easy-to-follow matlab programs. We have
followed the same principles as in Chapter 9, and again the code may be readily extended to
solve problems more complex than those described in Examples 6.4–6.8, which will be used
for most of our illustrations.

9.1 Chapter 6 Programs

The programs p1c.m, p2c.m, and p3c.m used to generate the figures in Chapter 6 are
presented in this section. These algorithms simply solve the dynamical system (6.4) and
process the resulting data.

9.1.1. p1c.m

The first program, p1c.m, illustrates how to obtain sample paths from equation (6.4). In
particular, the program simulates sample paths of the equation

dv

dt
= v − v3 +

√
Σ0
dBv

dt
, (9.1)

corresponding to Example 6.6, using the Euler–Maruyama discretization. In line 4, the vari-
ables tau and T correspond to the time step and the final time of integration respectively.
Furthermore, a vector t is also created in this line that stores the time points in which the
solution of the SDE is approximated. The parameter Sigma is set in line 5, while in line 6, a
vector x of length N (the length of the vector ) is created in which the approximation of the
SDE will be stored. The seed for the random number generator is set to sd ∈ N in line 7, while
in line 8, we precalculate the Brownian increments dW used in the Euler–Maruyama scheme.
This scheme is implemented in lines 11–13, and so the vector x now stores the approximation
of v(t) at the points given by t. Lines 15–22, are used to produce Figure 6.3. Figures 6.1
and 6.2, from Examples 6.4 and 6.5, were obtained by simply modifying lines 11–13 to order
to create sample paths corresponding to a different function f(v) in (6.4), where we note that
Example 6.4 decouples into two scalar problems.

© Springer International Publishing Switzerland 2015
K. Law et al., Data Assimilation, Texts in Applied Mathematics 62,
DOI 10.1007/978-3-319-20325-6 9

207



208 9 Continuous Time: matlab Programs

1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p1c.m behaviour of the double well potential with noise
3
4 tau=0.01; T=5e4; t=[0:tau:T];% set up integration constants
5 x0=3; eps=0.08; Sigma=sqrt(2*eps);% set the SDE coefficients
6 N=length(t); x=zeros(1,N); x(1)=x0; % set initial conditions
7 sd=0;rng(sd);% choose random number seed
8 dW=sqrt(tau)*randn(N-1,1);% precalculate the Brownian increments used
9

10 % Euler implementation of the OU
11 for i=1:N-1
12 x(i+1)=x(i)+tau*x(i)*(1-x(i)ˆ2)+Sigma*dW(i);
13 end
14
15 dx=0.01;z=[-5:dx:5]; V=hist(x,z);
16 p=exp(-0.25*epsˆ-1*(1-z.ˆ2).ˆ2); p1=p/trapz(z,p);
17
18 figure(1), plot(t,x,’k’,’LineWidth’,2)
19 axis([0 1000 -3 3])
20 figure(2), plot(z,V./(dx*sum(V)),’r’,z,p1,’k’,’LineWidth’,2)
21 axis([-2 2 0 1.5])
22 legend ’empirical measure’ ’invariant measure’

9.1.2. p2c.m

The second program, p2c.m, is designed to visualize the posterior distribution in the case
of linear one-dimensional continuous deterministic dynamics. For clarity, the program is sep-
arated into three main sections. The setup section in lines 3–8 defines the parameters of
the problem. The model parameter λ is defined in line 7; it determines the dynamics of the
forward model, in this case given by

du

dt
= λu. (9.2)

We observe that the linearity allows the exact solution u(t) = u0e
λt to be used in the code.

The parameters m0 and C0 define the mean and the covariance of the prior distribution
u0 ∼ N(m0, C0), while gamma is the diffusion coefficient for the driving Brownian motion.

The truth section in lines 10–19 generates the truth reference trajectory (or truth) vt in
line 16 using (9.2), as well as the observation z found using an Euler–Maryuama discretization
of the SDE

dz

dt
= u(t) + γ

dWz

dt
. (9.3)

The solution section after line 21 computes the solution, in this case the pointwise
representation of the posterior smoothing distribution on the scalar initial condition. The
pointwise values of the initial condition are given by the vector v0 (u0) defined in line 21.
The corresponding vector of values of Xi3 (Ξ3), Jdet (Jdet), and Idet (Idet) is computed
in lines 24, 25, and 27 for each value of v0, as related by the equation

Idet(v0; z) = Jdet(v0) + Ξ3(v0, z). (9.4)

In particular, here we have made explicit use of the fact that Ψ(v0; t) = v0e
λt in calculating

the first term in the expression for Ξ3. The functional Idet(v0; z) is the negative log-posterior



9.1 Chapter 6 Programs 209

as given in Theorem 6.15. Having obtained Idet(v0; z), we calculate P(v0|z) in lines 30–32
using the formula

P(v0|z) = exp(−Idet(v0; z))∫
exp(Idet(v0; z))

.

The rest of the program deals with plotting our results, and in this instance, it coincides with
the curve shown for T = 102 in Figure 6.7a. Simple modifications of this program were used
to produce the rest of Figure 6.7.

1 clear;set(0,’defaultaxesfontsize’,20);format long
2 % p2c.m - smoothing problem for continuous time OU process
3 %% setup
4 C0=5;m0=4;% variance and mean of the prior
5 sd=1;rng(sd);% choose random number seed
6 T=10; tau=0.01; t=[0:tau:T]; N=length(t);% time discretization
7 lambda=-0.5;% dynamics determined by lambda
8 gamma=1;% observational noise variance is gammaˆ2
9

10 %% truth
11 vt=zeros(N,1); z=zeros(N,1);% preallocate space to save time
12 vt(1)=0.5; z(1)=0;% truth initial condition
13 dW=sqrt(tau)*randn(N-1,1);% precalculating the Brownian increments used
14 for i=1:N-1
15 % can be replaced Psi for each problem
16 vt(i+1)=exp(lambda*tau)*vt(i);% create truth
17 z(i+1)=z(i)+tau*vt(i)+gamma*dW(i);% create data
18 end
19
20 %% solution
21 v0=[-10:0.01:10];% construct vector of different initial data
22 Xi3=zeros(length(v0),1); Idet=Xi3; Jdet=Xi3;% preallocate space to save
23 time
24 for j=1:length(v0)
25 Jdet(j)=1/2/C0*(v0(j)-m0)ˆ2;% background penalization
26 Xi3(j)=1/2*v0(j)ˆ2*gammaˆ-2*(exp(2*lambda*T)-1)/(2*lambda)- ...
27 sum(v0(j)*exp(lambda*t(1:end-1)).*diff(z)’)/gammaˆ2;
28 Idet(j)=Xi3(j)+Jdet(j);
29 end
30
31 constant=trapz(v0,exp(-Idet));% approximate normalizing constant
32 P=exp(-Idet)/constant;% normalize posterior distribution
33 prior=normpdf(v0,m0,C0); % calculate prior distribution
34
35 figure(1),plot(v0,prior,’k’,’LineWidth’,2)
36 hold on, plot(v0,P,’r--’,’LineWidth’,2), xlabel ’v_0’,
37 legend ’prior’ T=10ˆ2

9.1.3. p3c.m

The third program, p3c.m, is used to visualize the posterior in the case of the double-well
potential model (9.1) in the case of no noise Σ0 = 0. The main difference from p2.m is that
in this case, an explicit solution is not used (although it can be computed exactly; see the
exercises from Chapter 7), and we approximate Ψ(v0; t) using an Euler approximation in line
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18. This fact is also taken into account when Ξ3 (Xi3) is calculated in line 31. The program
ends by plotting our results, and in this instance, it coincides with the line for T = 10 in
Figure 6.9a. Simple modifications of this program were applied to the remainder of Figure 6.9,
as well as Figure 6.8.

1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p3c.m - smoothing problem for continuous time double-well
3 %% setup
4
5 C0=5;% variance of the prior
6 m0=-4;% mean of the prior
7 sd=1;rng(sd);% choose random number seed
8 T=10; tau=0.01; t=[0:tau:T]; N=length(t);% time discretization
9 gamma=1;% observational noise variance is gammaˆ2

10
11 %% truth
12
13 vt=zeros(N,1); z=zeros(N,1);% preallocate space to save time
14 vt(1)=0.5; z(1)=0;% truth initial condition
15 dW=sqrt(tau)*randn(N-1,1);% precalculate the Brownian increments used
16 for i=1:N-1
17 % can be replaced Psi for each problem
18 vt(i+1)=vt(i)+tau*(vt(i)-vt(i)ˆ3);
19 z(i+1)=z(i)+tau*vt(i)+gamma*dW(i);% create data
20 end
21
22 %% solution
23
24 v0=[-10:0.01:10];% construct vector of different initial data
25 Xi3=zeros(length(v0),1); Idet=Xi3; Jdet=Xi3;% preallocate space to save
26 time
27 for j=1:length(v0)
28 vv=zeros(N,1); vv(1)=v0(j);
29 Jdet(j)=1/2/C0*(v0(j)-m0)ˆ2;% background penalization
30 for i=1:N-1
31 vv(i+1)=vv(i)+tau*(vv(i)-vv(i)ˆ3);
32 Xi3(j)=Xi3(j)+(tau*0.5*vv(i)ˆ2-vv(i)*(z(i+1)-z(i)))/gammaˆ2;
33 end
34 Idet(j)=Jdet(j)+Xi3(j);
35 end
36
37
38 constant=trapz(v0,exp(-Idet));% approximate normalizing constant
39 P=exp(-Idet)/constant;% normalize posterior distribution
40 prior=normpdf(v0,m0,C0); % calculate prior distribution
41
42 figure(1),plot(v0,prior,’k’,’LineWidth’,2)
43 hold on, plot(v0,P,’r--’,’LineWidth’,2), xlabel ’v_0’,
44 legend ’prior’ T=10

9.2 Chapter 7 Programs

The programs p4c.m–p7c.m used to generate the figures in Chapter 7 are presented in this
section. Hence various MCMC algorithms used to sample the posterior distribution are given,
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together with a variational algorithm. Similarly to the discrete-time case, we have tried to be
consistent in our notation.

9.2.1. p4c.m

The matlab program p4c.m is the first of the MCMC algorithms discussed in continuous
time. It contains an implementation of the random walk Metropolis (RWM) algorithm from
Section 7.2.1 to determine the posterior distribution on the initial condition arising from the
double-well Example 6.6 with ε = 0, and equation (9.1) in particular. Note that in this case,
since the underlying dynamics are deterministic and hence completely determined by the
initial condition, the RWM algorithm will provide samples from a probability distribution on
R. As in program p2c.m, the code is divided into three sections: setup, where parameters
are defined, truth, where the truth and data are generated, and solution, where the
solution is computed, this time by means of MCMC samples from the posterior smoothing
distribution. The parameters are set in lines 5–9, and the true solution (here taken as only
the initial condition, rather than the trajectory it gives rise to) vt is calculated in line 18.
The true value vt is also used as the initial sample in the Markov chain for this and for all
subsequent MCMC programs. This scenario is not possible in the case that the data is not
simulated. However, it is useful in the case that the data is simulated as it is here, because it
reduces the time necessary for the current sample in the chain to reach the target distribution
or the high probability region of the state space. Therefore, the value of Idet(v

†), denoted by
the temporary variable Idet, will be necessary to compute the acceptance probability, as
described below. It is computed in lines 15–22 exactly as in lines 25–32 of program p3c.m,
as described around (9.4). In the solution section, some additional MCMC parameters are
defined. In line 27, the number of samples is set to M=105. For the parameters and specific data
used here, this is sufficient for the convergence of the Markov chain. In line 29, the step-size
parameter beta is preset such that the algorithm for this particular posterior distribution
has a reasonable acceptance probability, or ratio of accepted vs. rejected moves. The vector
V defined in line 28 will save all the samples. In line 33, a move is proposed according to the
proposal equation

w(k) = v(k−1) + βι(k−1),

where v(v) is the current state of the chain (initially taken to be equal to the true initial
condition v0), ι

(k−1)=randn is an i.i.d. standard normal, and w represents w(k). Indices are
not used for v and w, because they will be overwritten at each iteration.

The temporary variable vv is again used for the trajectory corresponding to w(k) as a
vehicle to compute the value of the proposed Idet(w

(k); y), denoted in line 41 by Idetprop=
Jdetprop+Xi3prop. This is later used in lines 43–45, where we decide to accept or reject
the proposal according to the acceptance probability

a(v(k−1), w(k)) = 1 ∧ exp(Idet(v
(k−1); y)− Idet(w

(k); y)).

The rest of the program (lines 50–51) uses the samples stored in V to visualize the posterior
distribution. The output is then compared with the corresponding output of p3c.m for the
same parameters in Figure 6.8a.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p4c.m MCMC RWM algorithm for double well (Ex. 5.6)
3 %% setup
4
5 C0=5;% variance of the prior
6 m0=4;% mean of the prior
7 sd=1;rng(sd);% choose random number seed
8 T=1; tau=0.1; t=[0:tau:T]; N=length(t);% time discretization
9 gamma=1;% observational noise variance is gammaˆ2

10
11 %% truth
12 vt(1)=0.5; z(1)=0;% truth initial condition
13 dW=sqrt(tau)*randn(N-1,1);% precalculate the Brownian increments used
14 Jdet=1/2/C0*(vt(1)-m0)ˆ2;% background penalization
15 Xi3=0;% initialization model-data misfit functional
16 for i=1:N-1
17 % can be replaced Psi for each problem
18 vt(i+1)=vt(i)+tau*(vt(i)-vt(i)ˆ3);
19 z(i+1)=z(i)+tau*vt(i)+gamma*dW(i); % create data
20 Xi3=Xi3+(tau*0.5*vt(i)ˆ2-vt(i)*(z(i+1)-z(i)))/gammaˆ2;
21 end
22 Idet=Jdet+Xi3;% compute log posterior of the truth
23
24 %% solution
25 % Markov Chain Monte Carlo: N forward steps of the
26 % Markov Chain on R (with truth initial condition)
27 M=1e5;% number of samples
28 V=zeros(M,1);% preallocate space to save time
29 beta=0.5;% step-size of random walker
30 v=vt(1);% truth initial condition (or else update I0)
31 n=1; bb=0; rat(1)=0;
32 while n<=M
33 w=v+sqrt(2*beta)*randn;% propose sample from random walker
34 vv(1)=w;
35 Jdetprop=1/2/C0*(w-m0)ˆ2;% background penalization
36 Xi3prop=0;
37 for i=1:N-1
38 vv(i+1)=vv(i)+tau*(vv(i)-vv(i)ˆ3);
39 Xi3prop=Xi3prop+(tau*0.5*vv(i)ˆ2-vv(i)*(z(i+1)-z(i)))/gammaˆ2;
40 end
41 Idetprop=Jdetprop+Xi3prop;% compute log posterior of the proposal
42
43 if rand<exp(Idet-Idetprop)% accept or reject proposed sample
44 v=w; Idet=Idetprop; bb=bb+1;% update the Markov chain
45 end
46 rat(n)=bb/n;% running rate of acceptance
47 V(n)=v;% store the chain
48 n=n+1 ;
49 end
50 dx=0.05; v0=[-10:dx:10]; Z=hist(V,v0);% construct the posterior histogram
51 figure(1), plot(v0,Z/trapz(v0,Z),’k’,’Linewidth’,2)% visualize the posterior
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9.2.2. p5c.m

The matlab program p5c.m contains an implementation of the independence dynamics
sampler for stochastic dynamics, as introduced in Section 7.2.2. Thus the posterior distribution
is on the entire signal on L2([0, T ];R) The forward model in this case uses equation (9.1),
but now with ε > 0. In practice, we cannot sample from L2([0, T ];R), since it is infinite-
dimensional, so we have to discretize. In particular, we choose our time step τ in line 9 and
take T = 10, and thus the smoothing distribution P(v|z) is over the state space R

J (with J
defined in line 12).

The sections setup, truth, and solution are defined as for program p4c.m. Since
the state space is now the pathspace, rather than the initial condition (analogously to the
discrete-time program of Section 5.2.1), the truth vt∈ R

J is now a vector. Its initial condition
is taken as a draw from N(m0, C0) in line 16, and the trajectory is computed in line 20, so
that at the end, vt∼ ρ0. Again, v† (vt) will be the initial condition in the Markov chain, and
so Ξ2(v

†; z) is computed in line 27. Recall from Section 7.2.2 that only Ξ2(·; y) is required to
compute the acceptance probability in this algorithm.

The current state of the chain v(k) and the value of Ξ2(v
(k); y) are again denoted by

v and Xi2, while the proposal w(k) and the value of Ξ2(w
(k); y) are again denoted by w

and Xi2prop, as in program p4c.m. As discussed in Section 7.2.2, the proposal w(k) is an
independent sample from the prior distribution ρ0, similarly to v†, and it is constructed in
lines 38–42. The acceptance probability used in line 44 is now

a(v(k−1), w(k)) = 1 ∧ exp(Ξ2(v
(k−1); y)− Ξ2(w

(k); y)). (9.5)

The rest of the program is structured similarly to that in Section 9.2.1. The outputs of
this program are used to plot Figures 7.3, 7.4, and 7.5. Note that in the case of Figure 7.5,
we have used N = 106 samples.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p5c.m MCMC INDEPENDENCE DYNAMICS SAMPLER algorithm in continuous time
3 %%% for double well (Ex 5.6) with noise
4
5 %% setup
6 m0=0;% prior initial condition mean
7 C0=1;% prior initial condition variance
8 gamma=0.5; % observational noise variance is gammaˆ2
9 tau=0.1; T=1;% timestep and final time of integraion

10 epsilon=0.08; sigma=sqrt(2*epsilon);% dynamics noise variance is sigmaˆ2
11 sd=1;rng(sd);% Choose random number seed
12 t=[0:tau:T]; J=length(t);% number of points where we approximate u
13
14 %% truth
15 vt=zeros(J,1); z=zeros(J,1); dz=zeros(1,J-1);% preallocate space to save
16 time
17 ut=sqrt(C0)*randn; z(1)=0;
18 dW_v=sqrt(tau)*randn(J,1);% truth noise sequence model
19 dW_z=sqrt(tau)*randn(J,1);% truth noise sequence observation
20 vt(1)=ut(1);% truth initial condition
21 Xi2=0;
22
23 for j=1:J-1
24 vt(j+1)=vt(j)+tau*vt(j)*(1-vt(j)ˆ2)+sigma*dW_v(j);% create truth
25 z(j+1)=z(j)+tau*vt(j)+gamma*dW_z(j);% create data
26 dz(j)=z(j+1)-z(j);
27 % calculate Xsi_2(v;z) from (5.27)
28 Xi2=Xi2+(0.5*tau*vt(j)ˆ2-vt(j)*dz(j))/gammaˆ2;
29 end
30
31 %% solution
32 % Markov Chain Monte Carlo: N forward steps of the
33 % Markov Chain on Rˆ{J+1} with truth initial condition
34 N=1e4;% number of samples
35 V=zeros(N,J);% preallocate space to save time
36 v=vt;% truth initial condition
37 n=1; bb=0; rat(1)=0;
38 while n<=N
39 w(1)=sqrt(C0)*randn;% propose sample from the prior distribution
40 Xi2prop=0;
41 for j=1:J-1
42 w(j+1)=w(j)+tau*w(j)*(1-w(j)ˆ2)+sigma*sqrt(tau)*randn;
43 Xi2prop=Xi2prop+(0.5*tau*w(j)ˆ2-w(j)*dz(j))/gammaˆ2;
44 end
45 if rand<exp(Xi2-Xi2prop)% accept or reject proposed sample
46 v=w; Xi2=Xi2prop; bb=bb+1;% update the Markov chain
47 end
48 rat(n)=bb/n;% running rate of acceptance
49 V(n,:)=v;% store the chain
50 n=n+1;
51 end
52 % plot acceptance ratio and cumulative sample mean
53 figure;plot(rat);figure;plot(cumsum(V(1:N,end))./[1:N]’)
54 xlabel(’samples N’);ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
55 figure; plot([1:1:N],V(:,end))
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9.2.3. p6c.m

The independence dynamics sampler of Section 9.2.2 can be very inefficient, since typical
random draws from the dynamics can form a poor fit to the data, in comparison with a current
state that has a good fit, and will then be rejected. The sixth matlab program, p6c.m, gives
an implementation of the pCN algorithm from Section 7.2.2, which is designed to overcome
this issue by including the parameter β, which, if chosen small, allows for incremental steps in
signal space and hence the possibility of nonnegligible acceptance probabilities. This program
is used to generate Figure 7.6

This program is almost identical to p5c.m, and so only the points at which it differs will
be described. First, since the acceptance probability is given by

a(v(k−1), w(k)) = 1 ∧ exp(Ξ2(v
(k−1); y)− Ξ2(w

(k); y) + Ξ1(v
(k−1))− Ξ1(w

(k))),

the quantity

Ξ1(v) :=
1

2

∫ T

0

|f(v(t))|2Σ0
dt−

∫ T

0

〈f(v(t)), dv(t)〉Σ0

will need to be computed, both for v(k), denoted by v in lines 32 and 47, where its value is
denoted by Xi1 (v(0) = v† and Ξ1(v

†) is computed in line 25), and for w(k), denoted by w in
line 39, where its value is denoted by Xi1prop in line 43.

As discussed in Section 7.2.2, the proposal w(k) is given by

w(k) = m+ (1− β2)
1
2 (v(k−1) −m) + βξ(k−1); (9.6)

here ξ(k−1) is a standard Brownian motion on R starting from an initial condition drawn at
random from N(0, C0). We denote this by xi in line 38.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p6c.m MCMC pCN algorithm algorithm in continuous time
3 %%% for double well (Ex 5.6) with noise
4 %% setup
5 m0=0;% prior initial condition mean
6 C0=1;% prior initial condition variance
7 gamma=0.5;% observational noise variance is gammaˆ2
8 tau=0.1; T=1;% timestep and final time of integration
9 epsilon=0.08; sigma=sqrt(2*epsilon);% dynamics noise variance is sigmaˆ2

10 sd=1;rng(sd);% Choose random number seed
11 t=[0:tau:T]; J=length(t);% number of points where we approximate u
12 %% truth
13 vt=zeros(1,J); z=zeros(1,J); dz=zeros(1,J-1); dvt=zeros(1,J-1);%
14 preallocate
15 ut=[sqrt(C0)*randn,sigma*sqrt(tau)*randn(1,J-1)];% truth noise sequence
16 z(1)=0;dW_z=sqrt(tau)*randn(1,J-1);% truth noise sequence observation
17 vt(1)=ut(1);% truth initial condition
18 Xi2=0; Xi1=0;
19 for j=1:J-1
20 vt(j+1)=vt(j)+tau*vt(j)*(1-vt(j)ˆ2)+ut(j+1); % create truth
21 dvt(j)=vt(j+1)-vt(j);
22 z(j+1)=z(j)+tau*vt(j)+gamma*dW_z(j); % create data
23 dz(j)=z(j+1)-z(j);
24 % calculate Xsi_2(v;z) from (5.27)
25 Xi2=Xi2+(0.5*tau*vt(j)ˆ2-vt(j)*dz(j))/gammaˆ2;
26 Xi1=Xi1+(0.5*tau*(vt(j)*(1-vt(j)ˆ2))ˆ2- vt(j)*(1-vt(j)ˆ2)*dvt(j))
27 /sigmaˆ2;
28 end
29 %% solution
30 % Markov Chain Monte Carlo: N forward steps of the
31 % Markov Chain on Rˆ{J+1} with truth initial condition
32 N=1e5;% number of samples
33 V=zeros(N,J);% preallocate space to save time
34 v=vt;% truth initial condition
35 beta=0.05;% step-size of pCN walker
36 n=1; bb=0; rat(1)=0;
37 m=[m0,zeros(1,J-1)];
38 while n<=N
39 dW=[sqrt(C0)*randn,sigma*sqrt(tau)*randn(1,J-1)];% Brownian increments
40 xi=cumsum(dW); % Brownian motion starting at a random initial condition
41 w=m+sqrt(1-betaˆ2)*(v-m)+beta*xi;% propose sample from the pCN walker
42 Xi2prop=0; Xi1prop=0;
43 for j=1:J-1
44 Xi2prop=Xi2prop+(0.5*tau*w(j)ˆ2-w(j)*dz(j))/gammaˆ2;
45 Xi1prop=Xi1prop+0.5*tau*(w(j)*(1-w(j)ˆ2))ˆ2/sigmaˆ2- ...
46 w(j)*(1-w(j)ˆ2)*(w(j+1)-w(j))/sigmaˆ2;
47 end
48 if rand<exp(Xi2-Xi2prop+Xi1-Xi1prop)% accept or reject proposed sample
49 v=w; Xi2=Xi2prop; Xi1=Xi1prop; bb=bb+1;% update the Markov chain
50 end
51 rat(n)=bb/n;% running rate of acceptance
52 V(n,:)=v;% store the chain
53 n=n+1;
54 end
55 % plot acceptance ratio and cumulative sample mean
56 figure;plot(rat);figure;plot(cumsum(V(1:N,end))./[1:N]’);



9.2 Chapter 7 Programs 217

9.2.4. p7c.m

The program p7c.m presents the MAP optimization algorithm as applied to the deterministic
Lorenz ’63 model 6.23 with continuous observations. As usual, the parameters are defined in
the setup section of lines 4–14. Similarly to p16.m, which implements the deterministic
Lorenz ’63 model (here the case σ = 0), the program is written as a function rather than a
script, and again, an auxiliary function, f, is defined to evaluate the right-hand side of the
ODE, on line 48. The Euler approximation of the true signal v† and the observation dz† are
defined in lines 19 and 20, respectively. The matlab built-in function fminsearch is used
here again on line 33, similarly to p7.m, for the optimization of the auxiliary function I as
a function of its argument u. The auxiliary function here is Idet from (6.35)a), defined on
lines 40–46. This is a sum of Jdet from (6.35)b), defined on line 41, and Ξ3 from (6.35)(c),
defined on line 44 within the loop of lines 42–45, where the path associated to the unknown
input u is defined on line 43 also within the loop. The output out of the function can be
recognized as Idet from (6.35). On line 25, one may choose the random number seed sd to
begin with a different random initial condition uu drawn from the prior on line 28. One may
also uncomment line 29 to try the optimization beginning with the truth as initial condition.
Lines 35–37 plot the results for a single initial condition. The results of the top left panel of
Fig. 7.1 can be reproduced by setting J=2e4 on line 6 of this program. The map estimator is
found by setting the initial condition to uu=vt(:,1) on line 29, or by letting the seed sd
on line 25 be given as 1 or 100, for example. The other two minima may be found by setting
the seed value to 10 or 1000, respectively. A simple modification can be used to loop through
the conditionals and generate the other three panels of that figure.
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1 function this=p7c
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p7c.m 4DVAR for inverse Lorenz ’63
4 %% setup
5
6 J=0.5e4;% number of steps
7 a=10;b=8/3;r=28;% define parameters
8 gamma=1e-1;% observational noise variance is gammaˆ2
9 C0=1e-2*eye(3);% prior initial condition covariance

10 m0=zeros(3,1);% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 H=[1,0,0];% observation operator
13 tau=1e-4;
14
15 %% truth
16
17 vt(:,1)=m0+sqrtm(C0)*randn(3,1);% truth initial condition
18 for j=1:J
19 vt(:,j+1)=vt(:,j) + tau*f(vt(:,j),a,b,r);% create truth
20 dz(:,j)=tau*H*vt(:,j+1)+gamma*sqrt(tau)*randn;% create data
21 end
22
23 %% solution
24
25 sd=1;rng(sd);% try changing the seed for different
26 % initial conditions -- if the result is not the same,
27 % there may be multimodality.
28 uu=sqrtm(C0)*randn(3,1);% initial guess
29 %uu=vt(:,1); % truth initial guess option
30
31 % solve with blackbox
32 % exitflag=1 ==> convergence
33 [vmap,fval,exitflag]=fminsearch(@(u)I(u,dz,gamma,m0,C0,J,H,a,b,r,tau),uu)
34
35 figure;plot(vmap,’ko’,’Markersize’,20, ’Linewidth’, 2);%axis([0 4 -1 1.5]);
36 hold;plot(vt(:,1),’rx’,’Markersize’,20,’Linewidth’,2);
37 hold;xlabel(’u’);legend(’MAP’,’truth’)
38
39 %% auxiliary objective function definitions
40 function out=I(u,dz,gamma,m0,C0,J,H,a,b,r,tau)
41 Jdet=1/2*(u-m0)’*(C0\(u-m0));Xi3=0;v=zeros(3,J);v(:,1)=u;
42 for j=1:J
43 v(:,j+1)=v(:,j)+tau*f(v(:,j),a,b,r);
44 Xi3=Xi3+1/gammaˆ2*(norm(H*v(:,j+1))ˆ2/2*tau - dz(j)’*H*v(:,j+1));
45 end
46 out=Xi3+Jdet;
47
48 function rhs=f(y,a,b,r)
49 rhs(1,1)=a*(y(2)-y(1));
50 rhs(2,1)=-a*y(1)-y(2)-y(1)*y(3);
51 rhs(3,1)=y(1)*y(2)-b*y(3)-b*(r+a);
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9.3 Chapter 8 Programs

This section consists of the programs p8c.m through p17c.m, which were used to generate the
illustrations in Chapter 8, where filtering algorithms are considered. It is worth noting that the
filtering algorithms themselves are continuous-time dynamical systems with very particular
structures, which needs to be preserved by the numerical method one uses to implement them.
For example, the covariance must remain symmetric and positive definite. While standard
discretization methods will often destroy these important structural properties, implementing
the specific discretization arising from the discrete-time formulation of the filtering algorithm
preserves the desired properties. Therefore, the filtering algorithms presented in this section
are very similar to the filtering algorithms in Section 5.3, with appropriate scalings with
respect to time step τ as given in equation (6.1). There are some areas where important
differences with discrete time remain; these will be described in what follows.

9.3.1. p8c.m

Program p8c.m solves the continuous-time Kalman–Bucy filter, analogous to the discrete-
time case in p8.m. The discretization time step tau is set in line 14. The linear forward SDE
is

dv = Avdt+
√
Σ0dBv.

The matrix

A =

(−1 1
−1 −1

)

is defined on line 13 and has eigenvalues with negative real part, so that the dynamics are
contractive. The valuesΣ0 = σ2I and σ are defined on line 9. Notice that for a continuous-time
linear equation with additive noise, the discretized form with time step τ is identical to that
in the discrete-time case, except with the forward operator now given as the exponential of
an operator L = eAτ , defined in line 15. The dynamical noise covariance of the corresponding

discrete system is then given in the form Σ = σ2(A+ A
)−1(e(A+A�)τ − I). This is defined
in line 16, and its square root in line 17 for use below. In line 19, the vector z is defined and
preallocated, with the default initial condition z(1)=0 prescribed in line 23.

The dynamical evolution of the hidden process v and that of the observed process z are
given in lines 29–30. The former looks just like its analogue in the discrete case, while the
latter is slightly different, since the noisy observation is not of y(j) here, but of the increment
dz, given by z(j+1)-z(j).

A split-step scheme is used for incorporation of the observations using the update step of
the discrete equations from which the continuous-time equations were derived, as explained in
the introduction. Therefore, there are intermediate “predict” mean and covariance mhat and
chat, as in the discrete case, in lines 32–33. The corresponding innovation and Kalman gain
are then defined in lines 35–36, and finally, the update completes the time step forward of size
tau of the Kalman–Bucy filter in lines 37–38. That is, lines 37–38 complete the approximation
of the equations for the mean and covariance given in Theorem 8.1, with L replaced by A.
As in the discrete-time examples, the resulting trajectory, covariance evolution, and error are
plotted in the remaining lines. The results are presented in Fig. 8.1.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p8c.m Kalman-Bucy Filter
3 %% setup
4
5 J=1e4;% number of steps
6 N=2;%dimension of state
7 I=eye(N);% identity operator
8 gamma=1;% observational noise variance is gammaˆ2*I
9 sigma=1;% dynamics noise variance is sigmaˆ2*I

10 C0=eye(2);% prior initial condition variance
11 m0=[0;0];% prior initial condition mean
12 sd=10;rng(sd);% choose random number seed
13 A=[-1 1;-1 -1];% dynamics determined by A
14 tau=0.01;% time discretization is tau
15 L=expm(A*tau);% forward semigroup operator
16 Sigma=sigmaˆ2*((A+A’)\(L*L’-I));% dynamics noise variance integrated
17 sqrtS=sqrtm(Sigma);
18
19 m=zeros(N,J+1);v=m;z=zeros(J+1,1);c=zeros(N,N,J+1);% pre-allocate
20 v(:,1)=m0+sqrtm(C0)*randn(N,1);% initial truth
21 m(:,1)=10*randn(N,1);% initial mean/estimate
22 c(:,:,1)=100*C0;% initial covariance
23 z(1)=0;% initial ghost observation
24 H=[1,0];% observation operator
25
26 %% solution % assimilate!
27
28 for j=1:J
29 v(:,j+1)=L*v(:,j) + sqrtS*randn(N,1);% truth
30 z(j+1)=z(j)+tau*H*v(:,j+1) + gamma*sqrt(tau)*randn;% observation
31
32 mhat=L*m(:,j);% estimator intermediate "predict"
33 chat=L*c(:,:,j)*L’+Sigma;% covariance intermediate "predict"
34
35 d=(z(j+1)-z(j))/tau-H*mhat;% "innovation"
36 K=(tau*chat*H’)/(H*chat*H’*tau+gammaˆ2);% "Kalman gain"
37 m(:,j+1)=mhat+K*d;% estimator "update"
38 c(:,:,j+1)=(I-K*H)*chat;% covariance "update"
39 end
40
41 figure;js=501;plot(tau*[0:js-1],v(2,1:js));hold;plot(tau*[0:js-1],
42 m(2,1:js)...
43 ,’m’); plot(tau*[0:js-1],m(2,1:js)+reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
44 plot(tau*[0:js-1],m(2,1:js)-reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
45 hold;grid;xlabel(’t’);
46 title(’Kalman-Bucy Filter’);
47 figure;plot(tau*[0:J],reshape(c(1,1,:)+c(2,2,:),J+1,1));hold
48 plot(tau*[0:J],cumsum(reshape(c(1,1,:)+c(2,2,:),J+1,1))./[1:J+1]’,...
49 ’m’,’Linewidth’,2); grid;hold;xlabel(’t’);axis([0 tau*J 0 50]);
50 title(’Kalman-Bucy Filter Covariance’);
51 figure;plot(tau*[0:J],sum((v-m).ˆ2));hold;
52 plot(tau*[0:J],cumsum(sum((v-m).ˆ2))./[1:J+1],’m’,’Linewidth’,2);grid
53 hold;xlabel(’t’);axis([0 tau*J 0 50]);
54 title(’Kalman-Bucy Filter Error’)
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9.3.2. p10c.m

Program p10c.m concerns the 3DVAR method and is similar to p10.m, using pseudodiscrete
dynamics as a time-splitting method, with the forward model given by the Langevin equation
with a double-well potential (9.1). The discrete-time Euler–Marayuma approximation of the
continuous-time dynamics v and observation process z are defined in lines 24–25, as in the
previous sections. The time step tau is set in line 18. Recall that the dynamics of C = C0 are
trivial for 3DVAR, and the update in line 28 is the approximation of the continuous 3DVAR
filter over time step τ :

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0.

The results are presented in Figs. 8.2 and 8.3.

1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p10c.m Continuous 3DVAR Filter, double-well
3 %% setup
4
5 J=1e4;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1e-1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12
13 m=zeros(J,1);v=m;z=m;z(1)=0;% pre-allocate
14 v(1)=m0+sqrt(C0)*randn;% initial truth
15 m(1)=2*randn;% initial mean/estimate
16 eta=.1;% stabilization coefficient 0 < eta << 1
17 c=gammaˆ2/eta;H=1;% covariance and observation operator
18 tau=0.01;% time discretization is tau
19 K=tau*(c*H’)/(H*c*H’*tau+gammaˆ2);% Kalman gain
20
21 %% solution % assimilate!
22
23 for j=1:J
24 v(j+1)=v(j)+tau*alpha*(v(j)-v(j)ˆ3) + sigma*sqrt(tau)*randn;% truth
25 z(j+1)=z(j)+tau*H*v(j+1) + gamma*sqrt(tau)*randn;% observation
26 mhat=m(j)+tau*alpha*(m(j)-m(j)ˆ3);% estimator predict
27 d=(z(j+1)-z(j))/tau-H*mhat;% innovation
28 m(j+1)=mhat+K*d;% estimator update
29 end
30 js=201;% plot truth, mean, standard deviation, observations
31 figure;plot(tau*[0:js-1],v(1:js));hold;plot(tau*[0:js-1],m(1:js),’m’);
32 plot(tau*[0:js-1],m(1:js)+sqrt(c),’r--’,tau*[0:js-1],m(1:js)-sqrt(c),
33 ’r--’);
34 hold;grid;xlabel(’t’);title(’3DVAR Filter’)
35
36 figure;plot(tau*[0:J],c*[0:J].ˆ0);hold
37 plot(tau*[0:J],c*[0:J].ˆ0,’m’,’Linewidth’,2);grid
38 hold;xlabel(’t’);title(’3DVAR Filter Covariance’);
39
40 figure;plot(tau*[0:J],(v-m).ˆ2);hold;
41 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
42 hold;xlabel(’t’);title(’3DVAR Filter Error’)
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9.3.3. p11c.m

Program p11c.m is a modification of p11.m using the similar split-step approximations
described in Sections 9.3.1 and 9.3.2 for the continuous-time extended Kalman filter. The
forward model is again the Langevin equation with a double-well potential (9.1). The updates
in lines 32–33 this time are approximations of

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= Df(m)C + C(Df(m))T +Σ0 − CHTΓ−1

0 HC, C(0) = C0.

Notice that the split-step scheme preserves the symmetry and positivity of C thanks to the
approximations used in lines 27–28 and 33. The results are presented in Fig. 8.4.

9.3.4. p12c.m

Program p12c.m is a modification of p12.m using the similar split-step approximations
described in Sections 9.3.1 and 9.3.2 for the continuous-time EnKF. The forward model is
again the Langevin equation with a double-well potential (9.1). The updates in lines 34, 32,
and 26 are given by

dv(n)

dt
= f(v(n)) + C(v)HTΓ−1

0

(dz(n)

dt
−Hv(n)

)
+Σ

1/2
0 dBv, (9.7a)

dz(n)

dt
= Hv + Γ

1/2
0

(dW (n)

dt
+
dBz

dt

)
. (9.7b)

Notice that the increments dW (n) are added in line 32, expanding the single observation from
line 26 into an ensemble. The covariance is updated in line 36:

m =
1

N

N∑

n=1

v(n),

C(v) =
1

N − 1

N∑

n=1

(v(n) −m)(v(n) −m)T .

The results are presented in Fig. 8.5.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p11c.m Extended Kalman-Bucy Filter, double-well
3 %% setup
4
5 J=1e4;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=.1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12
13 m=zeros(J,1);v=m;z=m;z(1)=0;c=m;% pre-allocate
14 v(1)=m0+sqrt(C0)*randn;% initial truth
15 m(1)=2*randn;% initial mean/estimate
16 c(1)=10*C0;H=1;% initial covariance and observation operator
17 tau=0.01;% time discretization is tau
18
19 %% solution % assimilate!
20
21 for j=1:J
22
23 v(j+1)=v(j)+tau*alpha*(v(j)-v(j)ˆ3) + sigma*sqrt(tau)*randn;% truth
24 z(j+1)=z(j)+tau*H*v(j+1) + gamma*sqrt(tau)*randn;% observation
25
26 mhat=m(j)+tau*alpha*(m(j)-m(j)ˆ3);% estimator predict
27 chat=(1+tau*alpha*(1-3*m(j)ˆ2))*c(j)* ...
28 (1+tau*alpha*(1-3*m(j)ˆ2))+sigmaˆ2*tau;% covariance predict
29
30 d=(z(j+1)-z(j))/tau-H*mhat;% innovation
31 K=(tau*chat*H’)/(H*chat*H’*tau+gammaˆ2);% Kalman gain
32 m(j+1)=mhat+K*d;% estimator update
33 c(j+1)=(1-K*H)*chat;% covariance update
34
35 end
36
37 js=201;% plot truth, mean, standard deviation, observations
38 figure;plot(tau*[0:js-1],v(1:js));hold;plot(tau*[0:js-1],m(1:js),’m’);
39 plot(tau*[0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);
40 plot(tau*[0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel(’t’);
41 title(’ExKF’)
42
43 figure;plot(tau*[0:J],c);hold
44 plot(tau*[0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
45 hold;xlabel(’t’);
46 title(’ExKF Covariance’);
47
48 figure;plot(tau*[0:J],(v-m).ˆ2);hold;
49 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
50 hold;xlabel(’t’);
51 title(’ExKF Error’)
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p12c.m Ensemble Kalman Filter (PO), double-well
3 %% setup
4
5 J=1e4;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=.1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;z=m;z(1)=0;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=2*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19 tau=0.01;st=sigma*sqrt(tau);% time discretization is tau
20
21 %% solution % assimilate!
22
23 for j=1:J
24
25 v(j+1)=v(j)+tau*alpha*(v(j)-v(j)ˆ3) + st*randn;% truth
26 z(j+1)=z(j)+tau*H*v(j+1) + gamma*sqrt(tau)*randn;% observation
27
28 Uhat=U(j,:)+tau*alpha*(U(j,:)-U(j,:).ˆ3)+st*randn(1,N);% ensemble
29 predict
30 mhat=sum(Uhat)/N;% estimator predict
31 chat=(Uhat-mhat)*(Uhat-mhat)’/(N-1);% covariance predict
32
33 d=(z(j+1)-z(j)+sqrt(tau)*gamma*randn(1,N))/tau-H*Uhat;% innovation
34 K=(tau*chat*H’)/(H*chat*H’*tau+gammaˆ2);% Kalman gain
35 U(j+1,:)=Uhat+K*d;% ensemble update
36 m(j+1)=sum(U(j+1,:))/N;% estimator update
37 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/(N-1);% covariance update
38
39 end
40
41 js=201;% plot truth, mean, standard deviation, observations
42 figure(1);plot(tau*[0:js-1],v(1:js));hold;plot(tau*[0:js-1],m(1:js),’m’);
43 plot(tau*[0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);
44 plot(tau*[0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel(’t’);
45 title(’EnKF’)
46
47 figure(2);plot(tau*[0:J],c);hold
48 plot(tau*[0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
49 hold;xlabel(’t’);title(’EnKF Covariance’);
50
51 figure(3);plot(tau*[0:J],(v-m).ˆ2);hold;
52 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
53 hold;xlabel(’t’);title(’EnKF Error’)
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9.3.5. p13c.m

Program p13c.m is a modification of p13.m using the similar split-step approximations
described in Sections 9.3.1 and 9.3.2 for the continuous-time ensemble transform version of
the EnKF—the ETKF. The forward model is again the Langevin equation with a double-well
potential (9.1). This program is not studied in Chapter 8. The results are presented in Fig. 8.6.

9.3.6. p14c.m

Program p14c.m is a modification of p14.m using the similar split-step approximations
described in Sections 9.3.1 and 9.3.2 for the continuous-time particle filter with standard pro-
posal. The forward model is again the Langevin equation with a double-well potential (9.1).
This program is not studied in Chapter 8, although it follows from the discussion in Sec-
tion 8.3. The results are presented in Fig. 8.7.

9.3.7. p15c.m

Program p15c.m is a modification of p15.m using the similar split-step approximations de-
scribed in Sections 9.3.1 and 9.3.2 for the continuous-time particle filter with optimal proposal.
The forward model is again the Langevin equation with a double-well potential (9.1). This
program is not studied in Chapter 8, although it follows from the discussion in Section 8.3.
The results are presented in Fig. 8.8
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p13c.m Ensemble Kalman Filter (ETKF), double-well
3 %% setup
4
5 J=1e4;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=.1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;z=m;z(1)=0;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=2*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19 tau=0.01;st=sigma*sqrt(tau);% time discretization is tau
20
21 %% solution % assimilate!
22
23 for j=1:J
24
25 v(j+1)=v(j)+tau*alpha*(v(j)-v(j)ˆ3) + st*randn;% truth
26 z(j+1)=z(j)+tau*H*v(j+1) + gamma*sqrt(tau)*randn;% observation
27
28 Uhat=U(j,:)+tau*alpha*(U(j,:)-U(j,:).ˆ3)+st*randn(1,N);% ensemble
29 predict
30 mhat=sum(Uhat)/N;% estimator predict
31 Xhat=(Uhat-mhat)/sqrt(N-1);% centered ensemble
32 chat=Xhat*Xhat’;% covariance predict
33 T=sqrtm(inv(eye(N)+Xhat’*H’*H*Xhat*tau/gammaˆ2));% square-root
34 transform
35 X=Xhat*T;% transformed centered ensemble
36
37 d=(z(j+1)-z(j))/tau-H*mhat;randn(1,N);% innovation
38 K=(tau*chat*H’)/(H*chat*H’*tau+gammaˆ2);% Kalman gain
39 m(j+1)=mhat+K*d;% estimator update
40 U(j+1,:)=m(j+1)+X*sqrt(N-1);% ensemble update
41 c(j+1)=X*X’;% covariance update
42
43 end
44 js=201;% plot truth, mean, standard deviation, observations
45 figure;plot(tau*[0:js-1],v(1:js));hold;plot(tau*[0:js-1],m(1:js),’m’);
46 plot(tau*[0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);
47 plot(tau*[0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel(’t’);
48 title(’EnKF(ETKF)’);
49 figure;plot(tau*[0:J],c);hold
50 plot(tau*[0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
51 hold;xlabel(’t’);title(’EnKF(ETKF) Covariance’);
52 figure;plot(tau*[0:J],(v-m).ˆ2);hold;
53 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
54 hold;xlabel(’t’);title(’EnKF(ETKF) Error’)



9.3 Chapter 8 Programs 227

1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p14c.m Particle Filter (SIRS), double-well
3 %% setup
4
5 J=1e4;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=.1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% Choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;z=m;z(1)=0;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=2*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19 tau=0.01;st=sigma*sqrt(tau);% time discretization is tau
20
21 %% solution % Assimilate!
22
23 for j=1:J
24
25 v(j+1)=v(j)+tau*alpha*(v(j)-v(j)ˆ3) + st*randn;% truth
26 z(j+1)=z(j)+tau*H*v(j+1) + gamma*sqrt(tau)*randn;% observation
27
28 Uhat=U(j,:)+tau*alpha*(U(j,:)-U(j,:).ˆ3)+st*randn(1,N);%ensemble
29 predict
30 d=(z(j+1)-z(j))/tau-H*Uhat;% ensemble innovation
31 what=exp(-1/2*(tau/gammaˆ2*d.ˆ2));% weight update
32 w=what/sum(what); randn(1,N);% normalize predict weights
33
34 ws=cumsum(w);% resample: compute cdf of weights
35 for n=1:N
36 ix=find(ws>rand,1,’first’);% resample (i)
37 U(j+1,n)=Uhat(ix);% resample (ii)
38 end
39
40 m(j+1)=sum(U(j+1,:))/N;% estimator update
41 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/N;% covariance update
42
43 end
44 js=201;% plot truth, mean, standard deviation, observations
45 figure(1);plot(tau*[0:js-1],v(1:js));hold;plot(tau*[0:js-1],m(1:js),’m’);
46 plot(tau*[0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);
47 plot(tau*[0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel(’t’);
48 title(’Particle Filter (Standard)’);
49 figure(2);plot(tau*[0:J],c);hold
50 plot(tau*[0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
51 hold;xlabel(’t’);title(’Particle Filter (Standard) Covariance’);
52 figure(3);plot(tau*[0:J],(v-m).ˆ2);hold;
53 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
54 hold;xlabel(’t’);title(’Particle Filter (Standard) Error’)
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p15c.m Particle Filter (SIRS, OP), double-well
3 %% setup
4 J=1e4;% number of steps
5 alpha=2.5;% dynamics determined by alpha
6 gamma=.1;% observational noise variance is gammaˆ2
7 sigma=3e-1;% dynamics noise variance is sigmaˆ2
8 m0=0; C0=1;% prior initial condition mean and variance
9 sd=1;rng(sd);% Choose random number seed

10 N=10;% number of ensemble members
11
12 m=zeros(J,1);v=m;z=m;z(1)=0;c=m;U=zeros(J,N);% pre-allocate
13 v(1)=m0+sqrt(C0)*randn;% initial truth
14 m(1)=2*randn;% initial mean/estimate
15 c(1)=10*C0;H=1;% initial covariance and observation operator
16 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
17 tau=0.01;st=sigma*sqrt(tau);% time discretization is tau
18
19 %% solution % Assimilate!
20 for j=1:J
21 v(j+1)=v(j)+tau*alpha*(v(j)-v(j)ˆ3) + st*randn;% truth
22 z(j+1)=z(j)+tau*H*v(j+1) + gamma*sqrt(tau)*randn;% observation
23
24 Sig=inv(inv(sigmaˆ2*tau)+H’*inv(gammaˆ2/tau)*H);% optimal proposal cov
25 em=Sig*(inv(sigmaˆ2*tau)*(U(j,:)+tau*alpha*(U(j,:)-U(j,:).ˆ3))+ ...
26 H’*inv(gammaˆ2/tau)*(z(j+1)-z(j))/tau);% optimal proposal mean
27 Uhat=em+sqrt(Sig)*randn(1,N);% ensemble optimally importance sampled
28
29 d=(z(j+1)-z(j))/tau-H*(U(j,:)+tau*alpha*(U(j,:)-U(j,:).ˆ3));% ensemble
30 innov
31 what=exp(-1/2/(sigmaˆ2*tau+gammaˆ2/tau)*d.ˆ2);% weight update
32 w=what/sum(what);randn(1,N);% normalize predict weights
33
34 ws=cumsum(w);% resample: compute cdf of weights
35 for n=1:N
36 ix=find(ws>rand,1,’first’);% resample (i)
37 U(j+1,n)=Uhat(ix);% resample (ii)
38 end
39
40 m(j+1)=sum(U(j+1,:))/N;% estimator update
41 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/N;% covariance update
42 end
43
44 js=201;% plot truth, mean, standard deviation, observations
45 figure(1);plot(tau*[0:js-1],v(1:js));hold;plot(tau*[0:js-1],m(1:js),’m’);
46 plot(tau*[0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);
47 plot(tau*[0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel(’t’);
48 title(’Particle Filter (Optimal)’);
49 figure(2);plot(tau*[0:J],(v-m).ˆ2);hold;
50 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
51 hold;xlabel(’t’);title(’Particle Filter (Optimal) Error’)
52 figure(3);plot(tau*[0:J],(v-m).ˆ2);hold;
53 plot(tau*[0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
54 hold;xlabel(’t’);
55 title(’Particle Filter (Optimal) Error’)
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9.3.8. p16c.m

Program p16c.m is an implementation of the extended Kalman filter for the Lorenz ’63
model (6.23). As in p7c.m, this program is written as a function rather than a script to
facilitate the use of the auxiliary function f defined on line 44. The forward solver is now given
by a simple Euler–Marayuma discretization, on line 19. An additional auxiliary function Df
is defined to evaluate the derivative matrix of the right-hand side for a given value of state, in
this case m(tj = jτ). The rest of the program proceeds as in the program 11c.m. The output
of this program with line 18 commented and 19 uncommented is presented in Figure 8.9, and
the output with line 18 uncommented and 19 commented is presented in Figure 8.10, using
plotting commands similar to those on lines 35–42.

9.3.9. p17c.m

Similarly to p16c.m, the program p17c.m is an implementation of the extended Kalman
filter for the Lorenz ’96 model (6.24), written as a function. Again auxiliary functions are
defined for the right-hand side on line 44 and the derivative matrix on line 47. The rest of
the program is also very similar to p16c.m, except now one is free to choose the dimension,
defined by N = r*n on line 6. Thus one can easily choose a fraction q/r of the components
to observe by letting the observation matrix H be block diagonal with n q × r blocks, each
consisting of a q-dimensional identity block next to a (q × q-r)-dimensional zero block.
This (q*n×N)-dimensional matrix is constructed on lines 18–19. If one changes the number
of steps to J=2e5 on line 7, then one obtains as output Figure 8.11. If one then modifies line
6 so that q=1, then one obtains the output of Figure 8.12.
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1 function this=p16c
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p16c.m ExKF, Lorenz 63
4 %% setup
5
6 J=1e5;% number of steps
7 a=10;b=8/3;r=28;% define parameters
8 gamma=2e-1;% observational noise variance is gammaˆ2
9 sigma=2e0;% dynamics noise variance is sigmaˆ2

10 I=eye(3);C0=I;% prior initial condition covariance
11 m0=zeros(3,1);% prior initial condition mean
12 sd=1;rng(sd);% choose random number seed
13
14 m=zeros(3,J);v=m;z=m(1,:);z(1)=0;c=zeros(3,3,J);% pre-allocate
15 v(:,1)=m0+sqrtm(C0)*randn(3,1);% initial truth
16 m(:,1)=10*randn(3,1);% initial mean/estimate
17 c(:,:,1)=10*C0;% initial covariance operator
18 H=[0,0,1];% observation operator
19 %H=[1,0,0];% observation operator
20 tau=1e-4;% time discretization is tau
21
22 %% solution % assimilate!
23 for j=1:J
24 v(:,j+1)=v(:,j)+tau*f(v(:,j),a,b,r) + sigma*sqrt(tau)*randn(3,1);%
25 truth
26 z(:,j+1)=z(:,j)+tau*H*v(:,j+1) + gamma*sqrt(tau)*randn;% observation
27 mhat=m(:,j)+tau*f(m(:,j),a,b,r);% estimator predict
28 chat=(I+tau*Df(m(:,j),a,b))*c(:,:,j)* ...
29 (I+tau*Df(m(:,j),a,b))’+sigmaˆ2*tau*I;% covariance predict
30 d=(z(j+1)-z(j))/tau-H*mhat;% innovation
31 K=(tau*chat*H’)/(H*chat*H’*tau+gammaˆ2);% Kalman gain
32 m(:,j+1)=mhat+K*d;% estimator update
33 c(:,:,j+1)=(I-K*H)*chat;% covariance update
34 end
35
36 figure;js=j;
37 plot(tau*[0:js-1],v(2,1:js));hold;plot(tau*[0:js-1],m(2,1:js),’m’);
38 plot(tau*[0:js-1],m(2,1:js)+reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
39 plot(tau*[0:js-1],m(2,1:js)-reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
40 hold;grid;xlabel(’t’);legend(’u_2’,’m_2’,’m_2 \pm c_2ˆ{1/2}’)
41 title(’ExKF, L63, u_1 observed’);Jj=min(J,j);
42 figure;plot(tau*[0:Jj-1],sum((v(:,1:Jj)-m(:,1:Jj)).ˆ2));hold;
43 grid;hold;xlabel(’t’);title(’ExKF, L63, MSE, u_1 observed’)
44
45 function rhs=f(y,a,b,r)
46 rhs(1,1)=a*(y(2)-y(1));
47 rhs(2,1)=-a*y(1)-y(2)-y(1)*y(3);
48 rhs(3,1)=y(1)*y(2)-b*y(3)-b*(r+a);
49 function A=Df(y,a,b)
50 A(1,:)=[-a,a,0];
51 A(2,:)=[-a-y(3),-1,-y(1)];
52 A(3,:)=[y(2),y(1),-b];
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1 function this=p17c
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p17c.m ExKF, Lorenz 96
4 %% setup
5
6 q=2;r=3;n=2;N=r*n;% observe q/r coordinates in N dimensions
7 J=5e4;F=8;% number of steps and parameter
8 gamma=1e-1;% observational noise variance is gammaˆ2
9 sigma=1e0;% dynamics noise variance is sigmaˆ2

10 I=eye(N);C0=I;% prior initial condition covariance
11 m0=zeros(N,1);% prior initial condition mean
12 sd=1;rng(sd);% choose random number seed
13
14 m=zeros(N,J);v=m;z=m(1:q*n,:);c=zeros(N,N,J);% pre-allocate
15 v(:,1)=m0+sqrtm(C0)*randn(N,1);% initial truth
16 m(:,1)=10*randn(N,1);% initial mean/estimate
17 c(:,:,1)=25*C0;% initial covariance operator
18 H=zeros(q*n,N);for k=1:n;H(q*(k-1)+1:q*k,r*(k-1)+1:r*k)= ...
19 [eye(q),zeros(q,r-q)];end% observation operator
20 tau=1e-4;% time discretization is tau
21
22 %% solution % assimilate!
23 for j=1:J
24 v(:,j+1)=v(:,j)+tau*f(v(:,j),F) + sigma*sqrt(tau)*randn(N,1);% truth
25 z(:,j+1)=z(:,j)+tau*H*v(:,j+1) + gamma*sqrt(tau)*randn(q*n,1);%
26 observation
27 mhat=m(:,j)+tau*f(m(:,j),F);% estimator predict
28 chat=(I+tau*Df(m(:,j),N))*c(:,:,j)* ...
29 (I+tau*Df(m(:,j),N))’+sigmaˆ2*tau*I;% covariance predict
30 d=(z(:,j+1)-z(:,j))/tau-H*mhat;% innovation
31 K=(tau*chat*H’)/(H*chat*H’*tau+gammaˆ2*eye(q*n));% Kalman gain
32 m(:,j+1)=mhat+K*d;% estimator update
33 c(:,:,j+1)=(I-K*H)*chat;% covariance update
34 end
35
36 figure;js=j;
37 plot(tau*[0:js-1],v(2,1:js));hold;plot(tau*[0:js-1],m(2,1:js),’m’);
38 plot(tau*[0:js-1],m(2,1:js)+reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
39 plot(tau*[0:js-1],m(2,1:js)-reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
40 hold;grid;xlabel(’t’);legend(’u_2’,’m_2’,’m_2 \pm c_2ˆ{1/2}’)
41 title(’ExKF, L96, 2/3 observed’);Jj=min(J,j);
42 figure;plot(tau*[0:Jj-1],sum((v(:,1:Jj)-m(:,1:Jj)).ˆ2/N));hold;
43 grid;hold;xlabel(’t’);title(’ExKF, L96, MSE, 2/3 observed’)
44
45 function rhs=f(y,F)
46 rhs=[y(end);y(1:end-1)].*([y(2:end);y(1)] - ...
47 [y(end-1:end);y(1:end-2)]) - y + F*y.ˆ0;
48 function A=Df(y,N)
49 A=-eye(N);
50 A=A+diag([y(end);y(1:end-2)],1);A(end,1)=y(end-1);
51 A=A+diag(y(2:end-1),-2);A(1,end-1)=y(end);A(2,end)=y(1);
52 A=A+diag(([y(3:end);y(1)] - [y(end);y(1:end-2)]),-1);
53 A(1,end)=y(2)-y(end-1);
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Itô formula, xiv, 155, 162, 167, 168, 172, 173, 180,

196, 202
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