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Preface to the Second Edition

In this monograph we study a general class of elliptic boundary value problems
for second-order integro-differential operators in partial differential equations, and
prove that this class of elliptic boundary value problems provides a general class of
Feller semigroups in functional analysis. As an application, we construct a general
class of Markov processes in probability in which a Markovian particle moves
chaotically in the state space, incessantly changing its direction of motion until it
“dies” at the time when it reaches the set where the particle is definitely absorbed.

In the early 1950s, W. Feller completely characterized the analytic structure
of one-dimensional diffusion processes; he gave an intrinsic representation of the
infinitesimal generator of a one-dimensional diffusion process and determined
all possible boundary conditions which describe the domain of the infinitesimal
generator. The probabilistic meaning of Feller’s work was clarified by E.B. Dynkin,
K. Itô, H.P. McKean, Jr., D. Ray and others. One-dimensional diffusion processes
are fully understood, both from the analytic and the probabilistic viewpoints.

The main purpose of the present monograph is to generalize Feller’s work to
the multi-dimensional case. In 1959 A.D., Ventcel’ (Wentzell) studied the problem
of determining all possible boundary conditions for multi-dimensional diffusion
processes. This monograph is devoted to a careful and accessible exposition of
functional analytic methods for the problem of constructing Markov processes with
Ventcel’ boundary conditions in probability. Analytically, a Markovian particle
in a domain of Euclidean space is governed by an integro-differential operator,
called a Waldenfels integro-differential operator, in the interior of the domain,
and it obeys a boundary condition, called a Ventcel’ boundary condition, on the
boundary of the domain. Probabilistically, a Markovian particle moves both by
jumps and continuously in the state space and it obeys the Ventcel’ boundary
condition which consists of six terms corresponding to the diffusion along the
boundary, the absorption phenomenon, the reflection phenomenon, the sticking (or
viscosity) phenomenon, the jump phenomenon on the boundary and the inward
jump phenomenon from the boundary. In this monograph we prove existence
theorems for Feller semigroups with Ventcel’ boundary conditions for second-order
elliptic Waldenfels integro-differential operators.
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viii Preface to the Second Edition

Many people found the first edition of my book Semigroups, Boundary Value
Problems and Markov Processes (2004) useful. However, in the 10 years since the
first edition appeared, there have been a number of much more comprehensive
treatments of the material. The theory has reached a state of completion that
makes it ideal for presentation in book form. This augmented second edition
is amply illustrated. In order to keep the book up-to-date, additional references
have been included in the bibliography. All chapters are rounded off with Notes
and Comments where, primarily, bibliographical references are discussed. These
Notes and Comments are intended to supplement the text and place it in a better
perspective. The errors in the first edition have been corrected thanks to the kind
input of many friends.

Our approach to the problem of constructing Markov processes with Ventcel’
boundary conditions is distinguished by the extensive use of ideas and techniques
characteristic of recent developments in the theory of partial differential equations.
In particular, the theory of pseudo-differential operators – a modern theory of
potentials – continues to be one of the most influential topics in the modern history
of analysis, and is a very refined mathematical tool whose full power is yet to be
exploited. Several recent developments in the theory of pseudo-differential operators
have made possible further progress in the study of elliptic boundary value problems
and hence in the study of Markov processes. The presentation of these new results
is the main purpose of this monograph.

The idea behind our approach is as follows:

(1) We reduce the problem of existence of Feller semigroups to the unique solv-
ability of boundary value problems for Waldenfels integro-differential operators
with Ventcel’ boundary conditions, and then prove existence theorems for Feller
semigroups. To do this, we consider the Dirichlet problem for Waldenfels
integro-differential operators, and prove an existence and uniqueness theorem
in the framework of Hölder spaces. Then, by using the Green and harmonic
operators for the Dirichlet problem, we can reduce the study of the boundary
value problems to that of the Fredholm pseudo-differential equations on the
boundary.

(2) The crucial point in the proof is how to calculate the complete symbol of
pseudo-differential operators on the boundary. Furthermore, we make use of an
existence and uniqueness theorem for a class of pseudo-differential operators
on the boundary. The proof of this theorem is carried out by using a method of
elliptic regularizations essentially due to Oleı̆nik and Radkevič and developed
for second-order differential operators with non-negative characteristic form.

(3) In this way, by using the Hölder space theory of pseudo-differential operators,
we can prove that if the Ventcel’ boundary conditions are transversal on the
boundary, then we can verify all the conditions of the generation theorems of
Feller semigroups.

(4) Moreover, we consider the general non-transversal case, and prove the unique
solvability of boundary value problems for Waldenfels integro-differential oper-
ators with Ventcel’ boundary conditions. In other words, we construct Feller
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semigroups corresponding to the diffusion phenomenon where a Markovian
particle moves both by jumps and continuously in the state space until it “dies”
at the time when it reaches the set where the particle is definitely absorbed.

The present monograph is an expanded and revised version of a set of lecture
notes for the graduate courses given at Sophia University, Hokkaido University,
Tôhoku University, Tokyo Metropolitan University, Hiroshima University, Tokyo
Institute of Technology and the University of Tsukuba. These lectures were
addressed to the advanced undergraduates and beginning-graduate students with
interest in functional analysis, partial differential equations and probability.

Unlike many other books on Markov processes, this monograph focuses on
the relationship between four subjects in analysis: semigroups, pseudo-differential
operators, elliptic boundary value problems and Markov processes. For graduate
students, it may serve as an effective introduction to these four interrelated fields
of analysis. For the graduate students about to major in the subject and for the
mathematicians in the field looking for a coherent overview, it will provide a method
for the analysis of elliptic boundary value problems in the framework of Sobolev and
Besov spaces. Filling a mathematical gap between textbooks on Markov processes
and recent developments in analysis, this monograph describes a powerful method
capable of extensive further development. This monograph would be suitable as a
textbook in a 1-year, advanced graduate course on functional analysis and partial
differential equations, with emphasis on their strong interrelations with probability
theory. In the introductory Chap. 1, I have attempted to state our problems and
results in such a fashion that a broad spectrum of readers will be able to understand.

The second edition of Boundary Value Problems and Markov Processes (2009),
which was published in the Springer Lecture Notes in Mathematics series, may be
considered as a short introduction to the present more advanced monograph.

I began this work at the Ecole Normale Supérieure d’Ulm and Université de
Paris-Sud (1976–1978) with the financial support of the French Government while I
was on leave from the Tokyo Institute of Technology, and pursued it at the Institute
for Advanced Study (1980–1981) with the financial support of the National Science
Foundation. A major part of the work was done at the University of Tsukuba (1981–
2009) and Hiroshima University (1995–1998) with the aid of Grant-in-Aid for
General Scientific Research, Ministry of Education, Culture, Sports, Science and
Technology, Japan. I take this opportunity to express my sincere gratitude to all
these institutions.

In preparing this monograph, I am indebted to many people. I would like to
express my hearty thanks to Professors Francesco Altomare, Wolfgang Arendt,
Angelo Favini, Yasushi Ishikawa, Yuji Kasahara, Tamotu Kinoshita, Akihiko
Miyachi, Silvia Romanelli, Elmar Schrohe, Seiichiro Wakabayashi and Atsushi
Yagi. It is a pleasure to thank Schrohe and Ishikawa who have read and commented
on portions of various preliminary drafts of this monograph. Especially, Schrohe
helped me to learn the material that is presented in this monograph. Appendix B is
based on his paper entitled “A short introduction to Boutet de Monvel’s calculus”.
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I am deeply indebted to the late Professor Kiyosi Itô for his constant interest in
my work.

I would like to thank the editorial staff of Springer-Verlag Heidelberg for their
cooperation during the production of this augmented second edition.

Last but not least, I owe a great debt of gratitude to my family who gave me
moral support during the preparation of this monograph.

Tsukuba, Japan Kazuaki Taira
January 2014



Preface to the First Edition

The purpose of this book is to provide a careful and accessible account along
modern lines of the subject of the title, and to discuss problems of current interest
in the field. Unlike many other books on Markov processes, this book focuses on
the relationship between Markov processes and elliptic boundary value problems,
with an emphasis on the study of analytic semigroups. More precisely, this book is
devoted to the functional analytic approach to a class of degenerate boundary value
problems for second-order elliptic integro-differential operators, called Waldenfels
operators, which includes as particular cases the Dirichlet and Robin problems. We
prove that this class of boundary value problems provides a new example of analytic
semigroups both in theLp topology and in the topology of uniform convergence. As
an application, we construct a strong Markov process corresponding to the physical
phenomenon where a Markovian particle moves both by jumps and continuously in
the state space until it “dies” at the time when it reaches the set where the particle is
definitely absorbed.

The approach here is distinguished by the extensive use of techniques charac-
teristic of recent developments in the theory of partial differential equations. The
main technique used is the calculus of pseudo-differential operators which may be
considered as a modern theory of potentials. Several recent developments in the
theory of partial differential equations have made possible further progress in the
study of boundary value problems and hence the study of Markov processes. The
presentation of these new results is the main purpose of this book. We have confined
ourselves to the simple but important boundary condition. This makes it possible to
develop our basic machinery with a minimum of bother and the principal ideas can
be presented concretely and explicitly.

This monograph is an expanded and revised version of a set of lecture notes for
graduate courses given by the author at Hiroshima University in 1995–1997 and at
the University of Tsukuba in 1998–2000. In 1988–1990 I gave a course in functional
analysis and partial differential equations at the University of Tsukuba, the notes for
which were published in the Springer Lecture Notes in Mathematics series under the
title Boundary Value Problems and Markov Processes in 1991. These notes were
found useful by a number of people, but they went out of print after a few years.
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Moreover, in the 10 years since the lecture notes appeared, there have been a number
of much more comprehensive treatments of the material.

Out of all this has emerged the present book. This new edition has been revised
to streamline some of the analysis and to give better coverage of important examples
and applications. It is addressed to advanced undergraduates or beginning-graduate
students and also mathematicians with an interest in functional analysis, partial
differential equations and probability. For the former, it may serve as an effective
introduction to these three interrelated fields of mathematics. For the latter, it
provides a method for the analysis of elliptic boundary value problems, a powerful
method clearly capable of extensive further development. I have revised and updated
the bibliography, but I have preferred to give references to expository books and
articles rather than to research papers.

It is possible to regard the present book as the first volume of a three-volume
series by the author, the others being Analytic Semigroups and Semilinear Initial
Boundary Value Problems (Cambridge University Press, 1995) and Brownian
Motion and Index Formulas for the de Rham Complex (Wiley-VCH, 1998). I hope
that this monograph will lead to a better insight into the study of three interrelated
subjects in analysis: semigroups, elliptic boundary value problems and Markov
processes.

I would like to express my hearty thanks to the two referees whose comments
and corrigenda concerning portions of various preliminary drafts of this book have
resulted in a number of improvements. I am grateful to my colleagues and students
at Tsukuba and Hiroshima who have provided the stimulating environment in which
ideas germinate and flourish.

My special thanks go to the editorial staff of Springer-Verlag Tokyo and
Heidelberg for their unfailing helpfulness and cooperation during the production
of the book.

This research was partially supported by Grant-in-Aid for General Scientific
Research (No. 13440041), Ministry of Education, Culture, Sports, Science and
Technology, Japan.

Last, but not least, I owe a great debt of gratitude to my wife, Naomi, who gave
me moral support during the preparation of this book.

Tsukuba, Japan Kazuaki Taira
April 2003
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Chapter 1
Introduction and Main Results

In this monograph we solve the problem of the existence of Feller semigroups
associated with strong Markov processes. More precisely, we prove the unique
solvability of boundary value problems for Waldenfels integro-differential oper-
ators with general Ventcel’ (Wentzell) boundary conditions, and construct Feller
semigroups corresponding to the diffusion phenomenon where a Markovian particle
moves chaotically in the state space, incessantly changing its direction of motion
until it “dies” at the time when it reaches the set where the particle is definitely
absorbed. This monograph provides a careful and accessible exposition of the func-
tional analytic approach to the problem of constructing strong Markov processes
with Ventcel’ boundary conditions in probability. Our approach here is distinguished
by the extensive use of ideas and techniques characteristic of recent developments
in the theory of partial differential equations.

The following diagram gives a bird’s eye view of Markov processes, Feller
semigroups and elliptic boundary value problems and how these relate to each other:

In the early 1950s W. Feller [Fe1, Fe2] completely characterized the analytic
structure of one-dimensional diffusion processes; he gave an intrinsic representation

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__1,
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2 1 Introduction and Main Results

of the infinitesimal generator A of a one-dimensional diffusion process and deter-
mined all possible boundary conditions which describe the domain D.A/ of
definition of the infinitesimal generator A. The probabilistic meaning of Feller’s
work was clarified by E.B. Dynkin [Dy1, Dy2], K. Itô and H.P. McKean, Jr. [IM],
D. Ray [Ra] and others. One-dimensional diffusion processes are fully understood
both from the analytic and the probabilistic points of view. The main purpose of this
monograph is to generalize Feller’s work to the multi-dimensional case.

Now we take a close look at Feller’s work. Let X D .xt ;F ;Ft ; Px/ be a
one-dimensional diffusion process with state space K . A point x of K is called
a right (resp. left) singular point if xt .!/ � x (resp. xt .!/ � x) for all t 2 Œ0; �.!//
with Px-measure one, where the random variable � is the lifetime of the process X .
A right and left singular point is called a trap. A point which is neither right nor left
singular is called a regular point.

For simplicity, we assume that the state space K is the half-line

K D Œ0;1/;

and all its interior points are regular. Feller proved that there exist a strictly
increasing, continuous function s on .0;1/ and Borel measuresm and k on .0;1/
such that the infinitesimal generatorA of the process X can be expressed as follows:

Af .x/ D lim
y#x

f C.y/ � f C.x/ � R
.x;y�

f .z/ dk.z/

m..x; y�/
: (1.1)

Here:

(1) f C.x/ D lim"#0 f .xC"/�f .x/
s.xC"/�s.x/ , the right-derivative of f at x with respect to s.

(2) The measurem is positive for non-empty open subsets, and is finite for compact
sets.

(3) The measure k is finite for compact subsets.

The function s is called a canonical scale, and the measures m and k are called
a canonical measure (or speed measure) and a killing measure for the process X ,
respectively. They determine the behavior of a Markovian particle in the interior of
the state space K .

We remark that the right-hand side of (1.1) is a generalization of the second-order
differential operator

a.x/f 00 C b.x/f 0 C c.x/f;

where a.x/ > 0 and c.x/ � 0 on K . For example, the formula

Af D a.x/f 00 C b.x/f 0
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can be written in the form (1.1), if we take

s.x/ D
Z x

0

exp

�

�
Z y

0

b.z/

a.z/
dz

�

dy;

dm.x/ D 1

a.x/
exp

�Z x

0

b.y/

a.y/
dy

�

dx;

dk.x/ D 0:

The boundary point 0 is called a regular boundary if we have, for an arbitrary
point r 2 .0;1/,

Z

.0;r/

Œs.r/ � s.x/�Œdm.x/C dk.x/� <1;
Z

.0;r/

Œm..x; r//C k..x; r//�ds.x/ <1:

Intuitively, the regularity of the boundary point means that a Markovian particle
approaches the boundary in finite time with positive probability, and also enters the
interior from the boundary.

The behavior of a Markovian particle at the boundary point is characterized
by boundary conditions. In the case of regular boundary points, Feller determined
all possible boundary conditions which are satisfied by the functions f .x/ in the
domainD.A/ of the infinitesimal generatorA of the process X . A general boundary
condition is of the form

�f .0/� ıAf .0/C �f C.0/ D 0;

where � , ı and � are constants such that � � 0, ı � 0, � � 0, �C ı > 0. If we
admit jumps from the boundary into the interior, then a general boundary condition
takes the form

�f .0/� ıAf .0/C �f C.0/C
Z

.0;1/

Œf .x/ � f .0/� d�.x/ D 0; (1.2)

where � is a Borel measure with respect to which the function min.1; s.x/� s.C0//
is integrable.

First, we introduce a class of (temporally homogeneous) Markov processes.
A Markov process is said to be one-dimensional or multi-dimensional according
as the state space is a subset of R or RN .N � 2/. Intuitively, the Markov property
is the principle of the lack of any “memory” in the system. Markov processes are
an abstraction of the idea of Brownian motion. From the point of view of analysis,
however, the transition function of a Markov process is something more convenient
than the Markov process itself. Secondly, we give the precise definition of a Markov
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transition function adapted to the Hille–Yosida theory of semigroups. Moreover, we
introduce a class of semigroups associated with Markov processes, called Feller
semigroups, and prove generation theorems for Feller semigroups which form a
functional analytic background for the construction of Markov processes. Following
Ventcel’ (Wentzell) [We], we can describe analytically the infinitesimal generator A
of a Feller semigroup fTtg in the case where the state space is the closure D of a
bounded domainD in Euclidean space RN . Analytically, a Markovian particle inD
is governed by an integro-differential operator W , called a Waldenfels operator,
in the interior D of the domain, and it obeys a boundary condition L, called a
Ventcel’ boundary condition, on the boundary @D of the domain. Probabilistically, a
Markovian particle moves both by jumps and continuously in the state space and it
obeys the Ventcel’ boundary condition which consists of six terms corresponding
to the diffusion along the boundary, the absorption phenomenon, the reflection
phenomenon, the sticking (or viscosity) phenomenon and the jump phenomenon
on the boundary and the inward jump phenomenon from the boundary. Therefore,
we are reduced to the study of the boundary value problem for Waldenfels integro-
differential operatorsW with Ventcel’ boundary conditionsL in the theory of partial
differential equations.

1.1 Formulation of the Problem

Let D be a bounded domain of Euclidean space RN with smooth boundary @D;
its closure D D D [ @D is an N -dimensional, compact smooth manifold with
boundary (see Fig. 1.1).

Let C.D/ be the space of real-valued, continuous functions on D. We equip the
space C.D/ with the topology of uniform convergence on the whole D; hence it is
a Banach space with the maximum norm

kf k1 D max
x2D
jf .x/j:

A strongly continuous semigroup fTtgt�0 on the space C.D/ is called a Feller
semigroup on D if it is non-negative and contractive on C.D/:

f 2 C.D/; 0 � f � 1 onD H) 0 � Ttf � 1 on D:

It is known (see [Dy1, Dy2, Ta2]) that if Tt is a Feller semigroup on D, then there
exists a unique Markov transition function pt on D such that

Ttf .x/ D
Z

D

pt .x; dy/f .y/ for all f 2 C.D/:
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D n

Fig. 1.1 The bounded
domain D with smooth
boundary @D

It can be shown that the functionpt is the transition function of some strong Markov
process X ; hence the value pt .x;E/ expresses the transition probability that a
Markovian particle starting at position x will be found in the set E at time t .

On the other hand, it is known (see [BCP,SU,Ta2,Wa,We]) that the infinitesimal
generator of a Feller semigroup fTtgt�0 is described analytically by a Waldenfels
integro-differential operator W (formula (1.3)) and a Ventcel’ boundary condition
L (formula (1.5)), which we shall formulate precisely (see Sects. 9.4 and 9.5).

Let W be a second-order elliptic integro-differential operator with real smooth
coefficients such that

WDu.x/ (1.3)

D P u.x/C SDu.x/

WD
0

@
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

C
NX

jD1
aj� .x/

@u

@xj
.x/C a�.x/u.x/

C
Z

D

s.x; y/

2

4u.y/ � �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy:

Here:

(1) aij 2 C1.RN /, aij.x/ D aji.x/ for all x 2 RN and 1 � i; j � N , and there
exists a constant a0 > 0 such that

NX

i;jD1
aij.x/�i �j � a0j�j2 for all .x; �/ 2 RN � RN :

(2) bi 2 C1.RN / for all 1 � i � N .
(3) c 2 C1.RN / and P1.x/ D c.x/ � 0 in D.
(4) The integral kernel s.x; y/ is the distribution kernel of a properly supported,

pseudo-differential operator S 2 L2�	1;0 .R
N /, 	 > 0, which has the transmission

property with respect to @D due to Boutet de Monvel [Bo] (see Sect. 7.6), and
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s.x; y/ � 0 off the diagonal 
RN D f.x; x/ W x 2 RN g in RN � RN . The
measure dy is the Lebesgue measure on RN .

(5) The function �.x; y/ is a local unity function onD, that is, �.x; y/ is a smooth
function on D � D such that �.x; y/ D 1 in a neighborhood of the diagonal

D D f.x; x/ W x 2 Dg in D �D. The function �.x; y/ depends on the shape
of the domainD. More precisely, it depends on a family of local charts onD in
each of which the Taylor expansion is valid for functions u. For example, if D
is convex, we may take �.x; y/ � 1 on D �D.

(6) aj� .x/ D .SD�jx /.x/ where �jx .y/ D �.x; y/.yj � xj / for all 1 � j � N .
(7) a� .x/ D .SD�x/.x/ where �x.y/ D �.x; y/.

Under these conditions, we show that the operator SD can be formally
written in the simple form

.SDu/ .x/ D S.u0/
ˇ
ˇ
D
D
Z

D

s.x; y/u.y/ dy; x 2 D;

where u0 is the extension of v to RN by zero outside of D

u0.x/ D
(

u.x/ for x 2 D;
0 for x 2 RN nD:

In fact, we have

SDu.x/

WD
NX

jD1
aj� .x/

@u

@xj
.x/C a� .x/u.x/

C
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy

D
NX

jD1

Z

D

s.x; y/ �.x; y/.yj�xj / dy � @u

@xj
.x/C

Z

D

s.x; y/ �.x; y/ dy � u.x/

C
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy

D
Z

D

s.x; y/u.y/ dy; x 2 D:

Due to the non-local character of the pseudo-differential operator S , it is
natural to use the zero-extension of functions in the interior D outside of the
closureD D D[@D. This extension has a probabilistic interpretation. Namely,



1.1 Formulation of the Problem 7

D
Fig. 1.2 A Markovian
particle moves by jumps and
continuously

it corresponds to stopping the diffusion process with jumps in the whole space
RN at the first exit time of the closureD. However, the zero-extension produces
a singularity of solutions at the boundary @D. The transmission property
guarantees that if v is smooth up to the boundary @D, then so is SDv.

The operator SD can be visualized as follows:

SD W C1.D/ �! E 0.RN /
S!�! E 0.RN / �! C1.D/;

where the first arrow is the zero extension to RN and the last one is the
restriction to D.

(8) The operatorWD satisfies the condition

WD1.x/ D P1.x/C SD1.x/ (1.4)

D c.x/C a�.x/C
Z

D

s.x; y/ Œ1 � �.x; y/� dy � 0 in D:

The operatorW is called a second-order Waldenfels integro-differential operator
or simply a Waldenfels operator (cf. [Wa]). The differential operator P is called
a diffusion operator which describes analytically a strong Markov process with
continuous paths (diffusion process) in the interior D, and the functions aij.x/,
bi.x/ and c.x/ are called the diffusion coefficients, the drift coefficients and the
termination coefficient, respectively. The integro-differential operator

Sru D
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy

is called a second-order Lévy operator which corresponds to the jump phenomenon
in the interior D (see [St]). That is, a Markovian particle moves by jumps to
a random point, chosen with kernel s.x; y/, in the interior D. Therefore, the
Waldenfels integro-differential operatorW D P C Sr corresponds to the diffusion
phenomenon where a Markovian particle moves both by jumps and continuously in
the state space D (see Fig. 1.2).

In order to remove a singularity in the interior D, we introduce condition (1.4)
on the structure of jumps for the Waldenfels integro-differential operator W . The
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intuitive meaning of condition (1.4) is that the jump phenomenon from a point
x 2 D to the outside of a neighborhood of x in the interior D is “dominated”
by the absorption phenomenon at x. In particular, if P1.x/ D c.x/ � 0 in D, then
condition (1.4) implies that any Markovian particle does not move by jumps from
x 2 D to the outside of a neighborhood V.x/ of x in the interior D. Indeed, we
have

Z

D

s.x; y/ Œ1 � �.x; y/� dy D 0;

and so, by conditions (4) and (5),

s.x; y/ D 0 for all y 2 D n V.x/:
Probabilistically, this is a condition on the support of the Lévy measure s.�; y/ dy
associated with the pseudo-differential operator S .

It should be emphasized that the integro-differential operator Sr is a “regulariza-
tion” of S (see inequalities (10.2) and (10.3)).

Let L be a second-order boundary condition such that, in terms of local
coordinates .x1; x2; : : : ; xN�1/ of @D,

Lu.x0/ (1.5)

D Qu.x0/C �.x0/
@u

@n
.x0/� ı.x0/WDu.x0/C � u.x0/

WD
0

@
N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/C �.x0/u.x0/

1

A

C�.x0/
@u

@n
.x0/ � ı.x0/WDu.x0/

C
N�1X

jD1
�j .x

0/
@u

@xj
.x0/C � .x0/u.x0/

C
Z

@D

r.x0; y0/

2

4u.y0/ � .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy:

Here:

(1) The operator Q is a second-order degenerate elliptic differential operator
on @D with non-positive principal symbol. In other words, the ˛ij are the
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D
n

Fig. 1.3 The vector field ˇ
and the unit interior normal n
to @D

components of a smooth symmetric contravariant tensor of type
�
2
0

�
on @D

satisfying the condition

N�1X

i;jD1
˛ij.x0/�i �j � 0 for all x0 2 @D and � 0 D

N�1X

jD1
�j dxj 2 T �

x0.@D/;

where T �
x0.@D/ is the cotangent space of @D at x0.

(2) ˇ.x0/ DPN�1
iD1 ˇi .x0/@=@xi is a smooth vector field on @D (see Fig. 1.3).

(3) Q1 D � 2 C1.@D/ and �.x0/ � 0 on @D.
(4) � 2 C1.@D/ and �.x0/ � 0 on @D.
(5) ı 2 C1.@D/ and ı.x0/ � 0 on @D.
(6) n D .n1; n2; : : : ; nN / is the unit interior normal to the boundary @D (see

Fig. 1.3).
(7) The integral kernel r.x0; y0/ is the distribution kernel of a pseudo-differential

operator R 2 L2�	11;0 .@D/, 	1 > 0, and r.x0; y0/ � 0 off the diagonal 
@D D
f.x0; x0/ W x0 2 @Dg in @D � @D. The density dy0 is a strictly positive density
on @D.

(8) The integral kernel t.x; y/ is the distribution kernel of a properly supported,
pseudo-differential operator T 2 L

1�	2
1;0 .RN /, 	2 > 0, which has the

transmission property with respect to the boundary @D, and t.x; y/ � 0 off
the diagonal
RN D f.x; x/ W x 2 RN g in RN � RN .

(9) The function .x; y/ is a local unity function on D; more precisely, .x; y/
is a smooth function on D � D, with compact support in a neighborhood of
the diagonal 
@D , such that, at each point x0 of @D, .x0; y/ D 1 for y in a
neighborhood of x0 in D. The function .x; y/ depends on the shape of the
boundary @D.

(10) �j .x0/ D R.
j

x0/.x
0/ where jx0.y

0/ D .x0; y0/.yj � xj / for all 1 � j �
N � 1.

(11) � .x0/ D R.x0/.x0/ where x0.y0/ D .x0; y0/.
Under these conditions, we show that the boundary operator � can be

formally written in the simple form

� u.x0/ D
Z

@D

r.x0; y0/u.y0/ dy0 C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy; x0 2 @D:
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In fact, we have

N�1X

jD1
�j .x

0/
@u

@xj
.x0/C � .x0/u.x0/

C
Z

@D

r.x0; y0/

2

4u.y0/� .x0; y0/

0

@u.x0/C
N�1X

j D 1

.yj �xj / @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy

D
N�1X

jD1

Z

@D

r.x0; y0/ .x0; y0/.yj � xj / dy0 � @u

@xj
.x/

C
Z

@D

r.x0; y0/ .x0; y0/ dy0 � u.x0/

C
Z

@D

r.x0; y0/

2

4u.y0/� .x0; y0/

0

@u.x0/C
ND1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy

D
Z

@D

r.x0; y0/u.y0/ dy0 C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy; x0 2 @D:

(12) The boundary operator � is of order 2 � 	1, and satisfies the condition

Q1.x0/C �1.x0/ (1.6)

D �.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 � 0 on @D:

The boundary condition L is called a second-order Ventcel’ boundary condition
(cf. [We]). It should be noted that L is a generalization of the boundary condi-
tion (1.2) to the multi-dimensional case. The six terms of L

N�1X

i;jD1
˛ij.x0/

@2u

@xi@xj
.x0/C

N�1X

iD1
ˇi .x0/d

@u

@xi
.x0/;

�.x0/u.x0/; �.x0/
@u

@n
.x0/; ı.x0/WDu.x0/;



1.1 Formulation of the Problem 11

D D

absorption reflection

Fig. 1.4 The absorption phenomenon and the reflection phenomenon
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Fig. 1.5 The diffusion along @˝ and the viscosity phenomenon
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Fig. 1.6 The inward jump phenomenon from @ and the jump phenomenon on @D

Z

@D

r.x0; y0/

2

4u.y0/� .x0; y0/

0

@u.x0/�
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0;

Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy

correspond to the diffusion along the boundary, the absorption phenomenon, the
reflection phenomenon, the viscosity phenomenon and the jump phenomenon on
the boundary and the inward jump phenomenon from the boundary, respectively
(see Figs. 1.4–1.6).
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For the probabilistic meanings of Ventcel’ boundary conditions, the reader might
refer to Dynkin–Yushkevich [DY].

For the Ventcel’ boundary condition L, we are forced to impose condition (1.6)
in order to remove a singularity of solutions at the boundary @D. The intuitive
meaning of condition (1.6) is that the jump phenomenon from a point x0 2 @D
to the outside of a neighborhood of x0 on the boundary @D is “dominated” by the
absorption phenomenon at x0. In particular, if �.x0/ � 0 on @D, then condition (1.6)
implies that any Markovian particle does not move by jumps from x0 2 @D to the
outside of a neighborhood V.x0/ of x0 on the boundary @D. Indeed, we have

Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 D 0;

and so, by conditions (7) and (9),

r.x0; y0/ D 0 for all y0 2 @D n V.x0/:

Probabilistically, this is a condition on the support of the Lévy measure r.�; y0/ dy0
associated with the pseudo-differential operatorR.

It should be noted that the integro-differential operator

�ru.x
0/

D
Z

@D

r.x0; y0/

2

4u.y0/ � .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/ � u.x0/

�
dy; x0 2 @D;

is a “regularization” ofR 2 L2�	11;0 .@D/ and T 2 L1�	21;0 .RN / (see inequalities (10.5)
and (10.6)).

This monograph is devoted to functional analytic methods for the problem of
the existence of strong Markov processes in probability theory. More precisely, we
consider the following problem:

Problem 1.1. Conversely, given analytic data .W;L/, can we construct a Feller
semigroup fTtgt�0 whose infinitesimal generator is characterized by .W;L/ ?

It is known that any right-continuous Markov process whose transition function
has the Feller property is a strong Markov process. Our functional analytic method
for the problem of the existence of strong Markov processes in probability theory
may be visualized as follows:
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1.2 Statement of Main Results

Now we say that the boundary condition L is transversal on the boundary @D if it
satisfies the condition

Z

D

t.x0; y/ dy D C1 if �.x0/ D ı.x0/ D 0: (1.7)

The intuitive meaning of condition (1.7) is that a Markovian particle jumps
away “instantaneously” from the points x0 2 @D where neither reflection nor
viscosity phenomenon occurs (which is similar to the reflection phenomenon).
Probabilistically, this means that every Markov process on the boundary @D is the
“trace” on @D of trajectories of some Markov process on the closureD D D [ @D.

The next theorem asserts that there exists a Feller semigroup onD corresponding
to the diffusion phenomenon where one of the reflection phenomenon, the viscosity
phenomenon and the inward jump phenomenon from the boundary occurs at each
point of the boundary @D (see Fig. 1.7):

Theorem 1.2. We define a linear operator A from the space C.D/ into itself as
follows:

(a) The domain of definitionD.A/ of A is the set

D.A/ D ˚u 2 C.D/ W WDu 2 C.D/; Lu D 0� : (1.8)

(b) Au D WDu for every u 2 D.A/.
Here WDu and Lu are taken in the sense of distributions.

Assume that the boundary condition L is transversal on the boundary @D. Then
the operator A generates a Feller semigroup fTtgt�0 on D.

Next we generalize Theorem 1.2 to the non-transversal case. To do this, we
assume the following condition (H):
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D

Fig. 1.7 The intuitive
meaning of Theorem 1.2

(H) There exists a second-order Ventcel’ boundary condition L� such that

Lu D m.x0/ L�uC �.x0/ u on @D;

where

(30) m 2 C1.@D/ and m.x0/ � 0 on @D,

and L� is given, in terms of local coordinates .x1; x2; : : : ; xN�1/ of @D, by the
formula

L�u.x
0/

D Qu.x0/C �.x0/
@u

@n
.x0/ � ı.x0/WDu.x0/C � u.x0/

WD
0

@
N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/C

N�1X

iD1
ˇ
i
.x0/

@u

@xi
.x0/C �.x0/

1

A

C�.x0/
@u

@n
.x0/� ı.x0/WDu.x0/

C
N�1X

jD1
�j .x

0/
@u

@xj
.x0/C � .x0/u.x0/

C
Z

@D

r.x0; y0/

2

4u.y0/� .x0; y0/

0

@u.x0/C
N�1X

jD1

�
yj � xj

� @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy;

and the operator� is a boundary condition of order 2�	1, and satisfies the condition

Q1.x0/C � 1.x0/ D �.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 (1.9)

� 0 on @D:
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M = {m = 0}

D

Fig. 1.8 A Markovian
particle dies when it reaches
the set M

Furthermore, we assume that L� satisfies the transversality condition

Z

D

t.x0; y/ dy D C1 if �.x0/ D ı.x0/ D 0: (1.10)

We let

M D
	

x0 2 @D W �.x0/ D ı.x0/ D 0;
Z

D

t.x0; y/ dy <1



:

Then, by condition (1.10) it follows that

M D fx0 2 @D W m.x0/ D 0g;

since we have

�.x0/ D m.x0/ �.x0/;

ı.x0/ D m.x0/ ı.x0/;

t.x0; y/ D m.x0/ t.x0; y/:

Hence we find that the boundary condition L is not transversal on @D.
Furthermore, we assume the following condition (A):

(A) m.x0/ � �.x0/ > 0 on @D.

The intuitive meaning of conditions (H) and (A) is that a Markovian particle does
not stay on @D for any period of time until it “dies” at the time when it reaches the
set M where the particle is definitely absorbed (see Fig. 1.8).

We introduce a subspace of C.D/ which is associated with the non-transversal
boundary condition L.

By condition (A), we find that the boundary condition

Lu D m.x0/ L�uC �.x0/ u D 0 on @D
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includes the condition

u D 0 on M:

With this fact in mind, we let

C0.D nM/ D fu 2 C.D/ W u D 0 onM g:

The space C0.D nM/ is a closed subspace of C.D/; hence it is a Banach space.
A strongly continuous semigroup fTtgt�0 on the space C0.D n M/ is called a

Feller semigroup on D nM if it is non-negative and contractive on C0.D nM/:

f 2 C0.D nM/; 0 � f � 1 on D nM H) 0 � Ttf � 1 on D nM:

We define a linear operator W from C0.D nM/ into itself as follows:

(a) The domain of definitionD.W/ of W is the set

D.W/ D ˚u 2 C0.D nM/ W WDu 2 C0.D nM/; Lu D 0� : (1.11)

(b) Wu D WDu for every u 2 D.W/.

Here WDu and Lu are taken in the sense of distributions.
The next theorem is a generalization of Theorem 1.2 to the non-transversal case:

Theorem 1.3. Assume that conditions (H) and (A) are satisfied. Then the operator
W, defined by formula (1.11), generates a Feller semigroup fTtgt�0 onD nM .

If Tt is a Feller semigroup onDnM , then there exists a unique Markov transition
function pt on D nM such that

Ttf .x/ D
Z

DnM
pt.x; dy/f .y/ for all f 2 C0.D nM/;

and further that pt is the transition function of some strong Markov process X .
On the other hand, the intuitive meaning of conditions (A) and (H) is that the

absorption phenomenon occurs at each point of the set M D fx0 2 @D W m.x0/ D
0g. Therefore, Theorem 1.3 asserts that there exists a Feller semigroup on D nM
corresponding to the diffusion phenomenon where a Markovian particle moves both
by jumps and continuously in the state spaceD nM until it “dies” at the time when
it reaches the set M .

It is known (see [Dy1, Theorem 5.10]) that any right-continuous Markov process
whose transition function has the C0-property is a strong Markov process. Our
functional analytic method for the problem of the existence of strong Markov
processes in probability theory may be visualized as follows (see Sect. 9.2):
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Finally, we consider the case where all the operators S , T and R are
pseudo-differential operators of order less than one. Then we can take �.x; y/ � 1
onD�D, and write the Waldenfels integro-differential operatorW in the following
form:

WDu.x/ D P u.x/C SDu.x/ (1.12)

WD
0

@
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

Ca.x/u.x/C
Z

D

s.x; y/ Œu.y/� u.x/� dy;

where:

(40) The integral kernel s.x; y/ is the distribution kernel of a properly supported,
pseudo-differential operatorS 2 L1�	1;0 .R

N /, 	 > 0, which has the transmission
property with respect to the boundary @D, and s.x; y/ � 0 off the diagonal

RN D f.x; x/ W x 2 RN g in RN � RN .

(70) a.x/ D .SD1/.x/.
(80) WD1.x/ D P1.x/C SD1.x/ D c.x/C a.x/ � 0 in D.

Similarly, the boundary condition L can be written in the following form:

Lu.x0/ (1.13)

D Qu.x0/C �.x0/
@u

@n
.x0/ � ı.x0/WDu.x0/C � u.x0/

WD
0

@
N�1X

i;jD1
˛ij.x0/

@2u

@xi@xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/C �.x0/u.x0/

1

A

C�.x0/
@u

@n
.x0/� ı.x0/WDu.x0/C � .x0/u.x0/

C
Z

@D

r.x0; y0/
�
u.y0/� u.x0/

�
dy0 C

Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy:
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Here:

(30) Q1.x0/ D �.x0/ � 0 on @D.
(70) The integral kernel r.x0; y0/ is the distribution kernel of a pseudo-differential

operator R 2 L1�	11;0 .@D/, 	1 > 0, and r.x0; y0/ � 0 off the diagonal 
@D D
f.x0; x0/ W x0 2 @Dg in @D � @D.

(80) The integral kernel t.x; y/ is the distribution kernel of a properly supported,
pseudo-differential operator T 2 L

1�	2
1;0 .RN /, 	2 > 0, which has the

transmission property with respect to the boundary @D, and t.x; y/ � 0 off
the diagonal
RN D f.x; x/ W x 2 RN g in RN � RN .

(120) The boundary operator � satisfies the condition

Q1.x0/C �1.x0/ D �.x0/C � .x0/ � 0 on @D:

Then Theorems 1.2 and 1.3 may be simplified as follows:

Theorem 1.4. Assume that the Waldenfels operator W and the Ventcel’ boundary
condition L are of the forms (1.12) and (1.13), respectively. If the boundary
condition L is transversal on the boundary @D, then the operator W, defined by
formula (1.8), generates a Feller semigroup fTtgt�0 on D.

Theorem 1.5. Assume that the Waldenfels operator W and the Ventcel’ boundary
condition L are of the forms (1.12) and (1.13), respectively, and further that
conditions (H) and (A) are satisfied:

(H) There exists a second-order transversal Ventcel’ boundary condition L� such
that

Lu D m.x0/ L�uC �.x0/ u on @D:

(A) m.x0/� �.x0/ > 0 on @D.

Then the operator W, defined by formula (1.11), generates a Feller semigroup
fTtgt�0 on D nM .

In this monograph we do not prove Theorems 1.4 and 1.5, since their proofs are
essentially the same as those of Theorems 1.2 and 1.3, respectively. Theorems 1.2–
1.5 solve the problem of the existence of Feller semigroups with Ventcel’ boundary
conditions for elliptic Waldenfels integro-differential operators from the viewpoint
of functional analysis.

1.3 Summary of the Contents

This introductory Chap. 1 is intended as a brief introduction to our problem and
results in such a fashion that it could be understood by a broad spectrum of readers.
The contents of the monograph are divided into Parts I–III.
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Part I (Chaps. 2–4) provides elements of measure theory, real analysis, prob-
ability theory, functional analysis and semigroup theory. The material in these
preparatory chapters is given for completeness, to minimize the necessity of
consulting too many outside references. This makes the book fairly self-contained.

Chapter 2 is intended as a brief introduction to probability theory. Section 2.1
serves to illustrate some results of measure theory, since measure spaces are the
natural setting for the study of probability. We study measurable spaces and measur-
able functions. In particular, we prove the monotone class theorem (Theorem 2.4)
and the Dynkin class theorem (Corollary 2.5) which will be useful for the study
of the measurability of functions in Chap. 9. In Sect. 2.2 we introduce probability
spaces and in Sect. 2.3 we consider random variables and their expectations. One
of the most important concepts in probability theory is that of independence. It
is the concept of independence more than anything else which gives probability
theory a life of its own, distinct from other branches of analysis. In Sect. 2.4 we
study independent events, independent random variables and independent algebras.
In Sect. 2.5, as an application of the Radon–Nikodým theorem we introduce
conditional probabilities and conditional expectations. Section 2.6 is devoted to the
general theory of conditional expectations which will play a vital role in the study
of Markov processes in Chap. 9.

Chapter 3 is devoted to a review of standard topics from functional analysis such
as quasinormed and normed linear spaces and closed, compact and Fredholm linear
operators in Banach spaces. These topics form a necessary background for what
follows. In Sects. 3.1–3.3 we study linear operators and functionals, quasinormed
and normed linear spaces. In a normed linear space we consider continuous linear
functionals as generalized coordinates of the space. The existence of non-trivial,
continuous linear functionals is based on the Hahn–Banach extension theorem
(Theorem 3.21). In particular, Mazur’s theorem (Theorem 3.25) asserts that there
exists a non-trivial, continuous linear functional which separates a point and a
closed convex, balanced set. In Sect. 3.3.2, by using Mazur’s theorem we prove
that a closed convex, balanced subset is weakly closed (Corollary 3.26). This
corollary plays an important role in the proof of an existence and uniqueness
theorem for a class of second-order classical pseudo-differential operators in the
framework of Hölder spaces (Theorem 10.23) in Chap. 10. In Sect. 3.4 we prove the
Riesz–Markov representation theorem (Theorem 3.41) which describes an intimate
relationship between Radon measures and non-negative linear functionals on the
spaces of continuous functions. This fact constitutes an essential link between
measure theory and functional analysis, providing a powerful tool for constructing
Markov transition functions in Chap. 9. Section 3.5 is devoted to closed operators
and Sect. 3.6 is devoted to complemented subspaces in a normed linear space,
respectively. Section 3.7 is devoted to the Riesz–Schauder theory for compact
operators. More precisely, for a compact operator T on a Banach space, the
eigenvalue problem can be treated fairly completely in the sense that the classical
theory of Fredholm integral equations may be extended to the linear functional
equation T x��x D y with a complex parameter � (Theorem 3.61). In Sect. 3.8 we
state important properties of Fredholm operators (Theorems 3.64–3.66). Roughly
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speaking, the Fredholm property of T conveys that the operator T is both “almost”
injective and “almost” surjective, that is, it is “almost” an isomorphism. Moreover,
the index indT indicates how far the operator T is from being “invertible”. Namely,
the further indT is from zero, the more “non-invertible” T is. The stability theorem
for indices of Fredholm operators (Theorem 3.66) plays an essential role in the proof
of Theorem 1.2 in Chap. 10.

Chapter 4 is devoted to the general theory of semigroups. In Sects. 4.1–4.3 we
study Banach space valued functions, operator valued functions and exponential
functions, generalizing the numerical case. Section 4.4 is devoted to the theory
of contraction semigroups. A typical example of a contraction semigroup is the
semigroup associated with the heat kernel (Example 4.11). We consider when a
linear operator is the infinitesimal generator of some contraction semigroup. This
question is answered by the Hille–Yosida theorem (Theorem 4.10). In Sect. 4.5
we consider when a linear operator is the infinitesimal generator of some .C0/
semigroup (Theorem 4.28), generalizing the theory of contraction semigroups
developed in Sect. 4.4. Moreover, we study an initial-value problem associated with
a .C0/ semigroup, and prove an existence and uniqueness theorem for the initial-
value problem (Theorem 4.30). These topics form the necessary background for the
proof of Theorems 13.3, 13.4, 13.9 and 13.10 in Chap. 13.

Part II (Chaps. 5–8) provides elements of distributions, Sobolev and Besov
spaces, pseudo-differential operators and maximum principles for second-order
elliptic Waldenfels operators which play a crucial role throughout the book. Each
chapter has its own focus.

Chapter 5 is a summary of the basic definitions and results about the theory of
distributions or generalized functions which will be used in subsequent chapters.
Distribution theory has become a convenient tool in the study of partial differential
equations. Many problems in partial differential equations can be formulated in
terms of abstract operators acting between suitable spaces of distributions, and these
operators are then analyzed by the methods of functional analysis. The virtue of
this approach is that a given problem is stripped of extraneous data, so that the
analytic core of the problem is revealed. Section 5.1 serves to settle questions of
notation and such. In Sect. 5.2 we study Lp spaces, the spaces of Ck functions
and test functions, and Hölder spaces on an open subset of Euclidean space.
Moreover, we introduce Friedrichs’ mollifiers and show how mollifiers can be used
to approximate a function by smooth functions (Theorem 5.4). In Sect. 5.3 we
study differential operators and state that differential operators are local operators
(Peetre’s theorem 5.7). In Sect. 5.4 we present a brief description of the basic
concepts and results of distributions. In particular, the importance of tempered
distributions lies in the fact that they have Fourier transforms. In Sect. 5.4.10 we
calculate the Fourier transform of a tempered distribution which is closely related to
the stationary phase theorem (Example 5.29). In Sect. 5.5 we prove the Schwartz
kernel theorem (Theorem 5.36) which characterizes continuous linear operators
in terms of distributions. In Sect. 5.6 we describe the classical single and double
layer potentials arising in the Dirichlet and Neumann problems for the Laplacian

 in the case of the half-space RnC (formulas (5.14) and (5.15)). Moreover, we
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prove Green’s representation formula (5.16). This formula will be formulated in
terms of pseudo-differential operators in Chap. 7. Some results in Sects. 5.3–5.5
can be extended to distributions, differential operators, and operators and kernels
on a manifold in Sect. 5.7. Manifolds are an abstraction of the idea of a surface
in Euclidean space. The virtue of manifold theory is that it provides a geometric
insight into the study of partial differential equations, and intrinsic properties of
partial differential equations may be revealed. In Sect. 5.8 we introduce the notion
of domains of class C r from the viewpoint of manifold theory.

Chapter 6 is devoted to the precise definitions and statements of Sobolev and
Besov spaces of Lp type with some detailed proofs. One of the most useful ways of
measuring differentiability properties of functions on Rn is in terms of Lp norms,
and is provided by the Sobolev spaces on Rn. The great advantage of this approach
lies in the fact that the Fourier transform works very well in Lp.Rn/. The function
spaces we shall treat are the following:

(i) The generalized Sobolev spacesW s;p.˝/ andHs;p.˝/ of Lp type on an open
subset ˝ of Rn, which will be used in subsequent chapters. When ˝ is a
Lipschitz domain, these spaces coincide with each other.

(ii) The Besov spaces Bs;p.Rn�1/ on Rn�1 are function spaces defined in terms of
theLp modulus of continuity. The Besov spacesBs;p.@˝/ on the boundary @˝
of a Lipschitz domain˝ are defined to be locally the Besov spaces Bs;p.Rn�1/,
upon using local coordinate systems flattening out @˝ , together with a partition
of unity.

In studying boundary value problems in the domain ˝ , we need to make sense of
the restriction uj@˝ as an element of a function space on the boundary @˝ when
u belongs to a Sobolev space of Lp type on ˝ . In Sect. 6.1 we prove Hardy’s
inequality on the interval .0;1/ (Theorem 6.2) which is used systematically in
the proof of a trace theorem (Theorem 6.6). In Sect. 6.2 we present some basic
definitions and results of the Sobolev spaces W s;p.˝/ and Hs;p.˝/. In Sect. 6.3
we give the precise definition of the Besov space Bs;p.@˝/ on the boundary
@˝ . It should be emphasized that the Besov spaces Bs;p.@˝/ enter naturally in
connection with boundary value problems in the framework of function spaces ofLp

type. In Sect. 6.4 we prove a trace theorem (Theorem 6.6) which plays an important
role in the study of boundary value problems in Chap. 7.

In Chap. 7 we present a brief description of the basic concepts and results of the
theory of pseudo-differential operators – a modern theory of potentials – which is
used in the subsequent chapters. In recent years there has been a trend in the theory
of partial differential equations towards constructive methods. The development of
the theory of pseudo-differential operators has made possible such an approach to
the study of elliptic boundary value problems.

The purpose of Sect. 7.1 is to summarize the basic facts about manifolds with
boundary and the double of a manifold which are most frequently used in the theory
of partial differential equations. We formulate two fundamental theorems on smooth
manifolds with boundary. The first theorem states that if ˝ is a bounded domain of
Euclidean space Rn with smooth boundary @˝ , then @˝ has an open neighborhood
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in ˝ which is diffeomorphic to @˝ � Œ0; 1/ (the product neighborhood theorem).
The second theorem states that ˝ is a submanifold of some n-dimensional, smooth
manifoldM without boundary. This manifoldM is called the double of ˝ .

In Sect. 7.2 we define the generalized Sobolev spaces Hs;p.M/ and the Besov
spaces Bs;p.@˝/ where M D Ő is the double of ˝ . In Sect. 7.3 we introduce the
Fourier integral distribution

K.x/ D
Z

RN
ei'.x;�/a.x; �/ d�

associated with the phase function '.x; �/ and the amplitude a.x; �/. The operator
A is called the Fourier integral operator associated with the phase function
'.x; y; �/ and the amplitude a.x; y; �/ if its distribution kernel KA.x; y/ is given
by the Fourier integral distribution

KA.x; y/ D
Z

RN
ei'.x;y;�/a.x; y; �/ d�:

In Sect. 7.4 we define pseudo-differential operators. A pseudo-differential operator
of order m is a Fourier integral operator associated with the phase function
'.x; y; �/ D .x � y/ � � and some amplitude a.x; y; �/ 2 Sm�;ı.˝ �˝ �Rn/. In this
section we study their basic properties such as the behavior of transposes, adjoints
and compositions of such operators, and the effect of a change of coordinates
on such operators. It should be emphasized that Theorem 7.18 contains all the
machinery necessary for the theory of pseudo-differential operators, and its proof
is based on Example 5.29 and the stationary phase theorem. By using the multiplier
theorem of Marcinkiewicz just as in Coifman–Meyer [CM], Bourdaud [Bd] proved
anLp boundedness theorem for pseudo-differential operators (Theorem 7.24) which
plays a fundamental role throughout the book. A global version of Theorem 7.24
is proved in Appendix A, due to its length. This appendix is a refinement of
Appendix A of the first edition of the present monograph.

The calculus of pseudo-differential operators is applied to elliptic boundary
value problems in Chaps. 9 and 10. In Sect. 7.5 we describe the classical surface
and volume potentials arising in boundary value problems for elliptic differential
operators in terms of pseudo-differential operators. One of the important questions
in the theory of elliptic boundary value problems is that of the smoothness of
a solution near the boundary. In Sect. 7.6, following Boutet de Monvel [Bo], we
introduce a condition concerning symbols in the normal direction at the boundary
(the transmission property) in order to ensure the boundary regularity property.
It should be noted that the notion of transmission property is invariant under a
change of coordinates which preserves the boundary. Hence this notion can be
transferred to manifolds with boundary. Section 7.7 is devoted to the Boutet de
Monvel calculus. Elliptic boundary value problems cannot be treated directly by
pseudo-differential operator methods. It was Boutet de Monvel who introduced
the operator-algebraic aspect with his calculus in 1971. He constructed a relatively
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small “algebra” which contains the boundary value problems for elliptic differential
operators as well as their parametrices. The operators in the Boutet de Monvel cal-
culus may be regarded as operator-valued pseudo-differential operators. This point
of view, going back to an idea of Schulze, was first sketched by Schrohe–Schulze
[SS1]. In Appendix B, following Schrohe [Sr5], we follow the pseudo-differential
spirit of Boutet de Monvel’s construction more closely than the older descriptions.
We modify Schrohe’s paper [Sr5] in such a fashion that a broad spectrum of readers
could understand the Boutet de Monvel calculus. In Sect. 7.8 we prove that the
distribution kernel s.x; y/ of a pseudo-differential operator S 2 Lm1;0.Rn/ satisfies
the estimate

js.x; y/j � C

jx � yjmCn ; x; y 2 R; x ¤ y:

In Chap. 8, following Bony–Courrège–Priouret [BCP], we prove various max-
imum principles for second-order elliptic Waldenfels operators which play an
essential role throughout the book. In Sect. 8.1 we give complete characterizations
of linear operators which satisfy the positive maximum principle related to condition
(ˇ0) in Theorem 9.50 in Chap. 9 (Theorems 8.2, 8.4 and 8.8). In Sect. 8.2 we prove
the weak and strong maximum principles and Hopf’s boundary point lemma for
second-order elliptic Waldenfels operators (Theorems 8.11, 8.13 and 8.15). It should
be emphasized that these characterizations give, as a byproduct, characterizations of
distributions of order 2 which are non-negative outside the origin. Chapter 8 is an
expanded and revised version of Sect. 3.4 and Appendix C of the first edition of the
present monograph.

Part III (Chaps. 9–13) is the heart of the subject, and is devoted to the functional
analytic approach to the problem of constructing Markov processes with Ventcel’
boundary condition for second-order elliptic Waldenfels operators with smooth
coefficients. We describe how the problem can be solved, using the mathematics
presented in Parts I and II.

In Chap. 9 we introduce a class of (temporally homogeneous) Markov processes
which we will deal with in this monograph. Intuitively, the (temporally homoge-
neous) Markov property is that the prediction of subsequent motion of a physical
particle, knowing its position at time t , depends neither on the value of t nor on
what has been observed during the time interval Œ0; t/; that is, a physical particle
“starts afresh”. From the point of view of analysis, however, the transition function
of a Markov process is something more convenient than the Markov process itself.
In fact, it can be shown that the transition functions of Markov processes generate
solutions of certain parabolic partial differential equations such as the classical
diffusion equation; and, conversely, these partial differential equations can be used
to construct and study the transition functions and the Markov processes themselves.
In Sect. 9.1 we give the precise definition of a (temporally homogeneous) Markov
transition function adapted to the theory of semigroups (Definition 9.4). A Markov
process is called a strong Markov process if the “starting afresh” property holds
not only for every fixed moment but also for suitable random times. In Sect. 9.1.7
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we formulate precisely this “strong” Markov property (Definition 9.25), and give
a useful criterion for the strong Markov property (Theorem 9.26). In Sect. 9.1.8
we introduce the notion of uniform stochastic continuity of transition functions
(Definition 9.27), and give simple criteria for the strong Markov property in terms
of transition functions (Theorems 9.28 and 9.29). In Sect. 9.2 we introduce a class
of semigroups associated with Markov processes (Definition 9.30), called Feller
semigroups, and we give a characterization of Feller semigroups in terms of Markov
transition functions (Theorems 9.33 and 9.34). Section 9.3 is devoted to a version
of the Hille–Yosida theorem (Theorem 3.10) adapted to the present context. We
prove generation theorems for Feller semigroups (Theorems 9.35 and 9.50) which
form a functional analytic background for the proof of Theorem 1.2 in Chap. 10.
In particular, Theorem 9.50 and Corollary 9.51 give useful criteria in terms of
maximum principles. In Sects. 9.4 and 9.5, following Ventcel’ [We], we study the
problem of determining all possible boundary conditions for multi-dimensional
diffusion processes. More precisely, we describe analytically the infinitesimal
generator A of a Feller semigroup fTtg in the case where the state space is
the closure D of a bounded domain D in Euclidean space RN (Theorems 9.52
and 9.53). Theorems 9.52 and 9.53 are essentially due to Ventcel’ [We]. Our proof
of these theorems follows Bony–Courrège–Priouret [BCP], where the infinitesimal
generators of Feller semigroups are studied in great detail in terms of the maximum
principle (see Chap. 8). Analytically, a Markovian particle in D is governed by an
integro-differential operatorW , called a Waldenfels operator, in the interiorD of the
domain, and it obeys a boundary conditionL, called a Ventcel’ boundary condition,
on the boundary @D of the domain. Probabilistically, a Markovian particle moves
both by jumps and continuously in the state space and it obeys the Ventcel’ boundary
condition which consists of six terms corresponding to the diffusion along the
boundary, the absorption phenomenon, the reflection phenomenon, the sticking (or
viscosity) phenomenon and the jump phenomenon on the boundary and the inward
jump phenomenon from the boundary.

In this way, we can reduce the problem of the existence of Feller semigroups
to the unique solvability of the boundary value problem for Waldenfels integro-
differential operatorsW with Ventcel’ boundary conditionsL in the theory of partial
differential equations.

Chapter 10 is devoted to the proof of Theorem 1.2 which is a refinement of [Ta6,
Theorem 1]. In Sects. 10.1 and 10.2 we formulate our problem and Theorem 1.2,
generalizing Feller’s work to the multi-dimensional case. Our functional analytic
approach to the problem of constructing Markov processes with Ventcel’ boundary
conditions is adapted from Bony–Courrège–Priouret [BCP], Cancelier [Cn], Sato–
Ueno [SU] and Taira [Ta3, Ta4, Ta5, Ta6, Ta7, Ta8, Ta9].

The idea of our approach is as follows (cf. [BCP, SU, Ta5]): First, in Sect. 10.3
we consider the following Dirichlet problem for the Waldenfels integro-differential
operatorW D P C S :

(
.˛ �WD/v D f in D;

�0v D ' on @D;
(D)
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where ˛ is a positive parameter. We show that if S 2 L2�	1;0 .R
N / has the transmission

property with respect to @D, then Dirichlet problem (D) is uniquely solvable in
the framework of Hölder spaces (Theorem 10.4). In the proof, we estimate the
integro-differential operator S in terms of Hölder norms, and show that the pseudo-
differential operator case .W; �0/ D .PCS; �0/may be considered as a perturbation
of a compact operator to the differential operator case .P; �0/ in the framework of
Hölder spaces.

We let

v D G0
˛f:

The operatorG0
˛ is called the Green operator for Dirichlet problem (D). We remark

that the operatorG0
˛ is a generalization of the classical Green representation formula

for Dirichlet problem (D).
In Sect. 10.4 we reduce the problem of the existence of Feller semigroups to

the unique solvability of the boundary value problem for the Waldenfels integro-
differential operatorW D P C S (Theorem 10.19)

(
.˛ �WD/u D f in D;

.� � L/u D ' on @D;

and then prove existence theorems for Feller semigroups (Theorem 10.2). Here ˛ is
a positive parameter and � is a non-negative constant.

However, we find that a function u is a solution of the problem

(
.˛ �WD/u D f in D;

Lu D 0 on @D
(�)

if and only if the function w D u � v is a solution of the problem

(
.˛ �WD/w D 0 in D;

Lw D �Lv D LG0
˛f on @D:

On the other hand, we show that every solution w of the equation

.˛ �WD/w D 0 in D

can be expressed by means of a single layer potential as follows:

w D H˛ :

The operator H˛ is called the harmonic operator for Dirichlet problem (D). We
remark that the operator H˛ is a generalization of the classical Poisson integral
formula for Dirichlet problem (D).
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Therefore, by using the Green operator G0
˛ and harmonic operator H˛ we can

reduce the study of problem (�) to that of the equation

LH˛ D �LG0
˛f on @D:

This is a generalization of the classical Fredholm integral equation on the boundary.

Section 10.5 is devoted to the proof of Theorem 1.2. The first essential step in
the proof is to show that if T 2 L

1�	2
1;0 .RN / has the transmission property with

respect to @D, then the operatorLH˛ is the sum of a second-order degenerate elliptic
differential operator P˛ and a classical pseudo-differential operator S˛ with non-
negative distribution kernel on the boundary @D. The second essential step in the
proof is to calculate the complete symbol of the pseudo-differential operator LH˛ .
In particular, we calculate the complete symbol of the first-order classical pseudo-
differential operator…˛ defined by the formula

…˛' D @

@n
.H˛'/

ˇ
ˇ
ˇ
ˇ
@D

:

In the special case where P is the usual Laplacian
, we can write down concretely
the complete symbol p.x0; � 0I˛/ of …˛ as follows (cf. formula (10.55)):

p.x0; � 0I˛/

D �j� 0j � 1
2

 
!x0.b� 0;b� 0/
j� 0j2 � .N � 1/M.x0/

!

Cp�1 1
2

div ı.�0/.x
0/

C terms of order � �1=2 depending on ˛:

Here:

(a) j� 0j is the length of � 0 with respect to the Riemannian metric .gij.x
0// of @D

induced by the natural metric of RN .
(b) M.x0/ is the mean curvature of @D at x0.
(c) !x0.b� 0;b� 0/ is the second fundamental form of @D at x0, while b� 0 2 Tx0.@D/ is

the tangent vector corresponding to the cotangent vector � 0 2 T �
x0.@D/ by the

duality between Tx0.@D/ and T �
x0.@D/ with respect to the Riemannian metric

.gij.x
0// of @D.

(d) div ı.�0/ is the divergence of a real smooth vector field ı.�0/ on @D defined (in
local coordinates) by the formula

ı.�0/ D
N�1X

jD1

@j� 0j
@�j

@

@xj
for � 0 6D 0:

This is carried out in Sect. 10.7 due to its length.
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D

Fig. 1.9 A Markov process
on @D pieced together with a
W -diffusion in D

In the third essential step in the proof we formulate an existence and uniqueness
theorem for a class of second-order classical pseudo-differential operators in the
framework of Hölder spaces (Theorem 10.23) which enters naturally into the study
of the pseudo-differential operator LH˛ . Theorem 10.23 is proved in Sect. 10.6,
by using a method of elliptic regularizations essentially due to Oleı̆nik–Radkevič
[OR] (Theorem 10.27). In order to prove the fundamental estimate (10.28), we
need an interpolation argument. Moreover, we remark that Corollary 3.26 to
Mazur’s theorem (Theorem 3.25) in Chap. 3 plays an important role in the proof
of estimate (10.28). Section 10.6 is a refinement of Appendix B of the first edition
of the present monograph.

In this way, by using the Hölder space theory of pseudo-differential operators we
can show that if the boundary condition L is transversal on the boundary @D, then
the operator LH˛ is bijective in the framework of Hölder spaces. More precisely,
we find that a unique solution u of problem (�) can be expressed in the form

u D G0
˛f �H˛

�
LH�1

˛

�
LG0

˛f
��
:

This formula allows us to verify all the conditions of the generation theorems of
Feller semigroups (Theorems 9.35 and 9.50) discussed in Sect. 9.3.

Intuitively, if the boundary condition L is transversal on the boundary @D,
then we can “piece together” a strong Markov process on the boundary @D with
W -diffusion in the interior D to construct a strong Markov process on the closure
D D D [ @D. It seems that our method of construction of Feller semigroups is,
in spirit, not far removed from the probabilistic method of construction of diffusion
processes by means of Poisson point processes of Brownian excursions used by
Watanabe [Wb]. The situation may be represented schematically by Fig. 1.9.

In Chap. 11 we prove Theorem 1.3 (Theorem 11.1), generalizing Theorem 1.2 to
the non-transversal case. The following idea of proof can be traced back to the work
of Taira [Ta9] and [Ta6]. In fact, Theorem 1.3 is a refinement of [Ta6, Theorem 2].
In Sect. 11.1 we consider a one-point compactification K@ D K [ f@g of the space
K D D nM , where

M D fx0 2 @D W m.x0/ D 0g;
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and introduce a closed subspace of C.K@/ by

C0.K/ D fu 2 C.K@/ W u.@/ D 0g :

Then we have the isomorphism

C0.K/ Š C0.D nM/ D ˚u 2 C.D/ W u D 0 on M
�
:

In Sect. 11.2 we apply part (ii) of Theorem 9.35 to the operator W defined by
formula (1.11).

Our functional analytic approach may be described as follows (see Sect. 9.1):
First, we note that if condition (H) is satisfied, then the boundary condition L can
be written in the form

Lu D m.x0/ L�uC �.x0/ u on @D;

where the boundary condition L� is transversal on @D. Hence, by applying
Theorem 1.2 to the boundary condition L� we can solve uniquely the following
boundary value problem:

(
.˛ �WD/v D f in D;

L�v D 0 on @D:

We let

v D G�
˛f:

The operator G�
˛ is called the Green operator for the boundary condition L� . Then

it follows that a function u is a solution of the problem

(
.˛ �WD/u D f in D;

Lu D 0 on @D
(��)

if and only if the function

w D u � v

is a solution of the problem

(
.˛ �WD/w D 0 in D;

Lw D �Lv D ��.x0/ v on @D:



1.3 Summary of the Contents 29

Thus, just as in the proof of Theorem 1.2, we can reduce the study of problem (��)
to that of the equation

LH˛ D �LG�
˛f D ��.x0/G�

˛f on @D:

By using the Hölder space theory of pseudo-differential operators as in the proof
of Theorem 1.2, we can show that if condition (A) is satisfied, then the operator
LH˛ is bijective in the framework of Hölder spaces.

Therefore, we find that a unique solution u of problem (��) can be expressed as
follows:

u D G�
˛f �H˛

�
LH�1

˛

�
LG�

˛f
��
:

This formula allows us to verify all the conditions of the generation theorems of
Feller semigroups (Theorem 10.28), especially the density of the domain D.W/ in
C0.D nM/.

It is worth pointing out that if we had used instead of G�
˛ the Green operator

G0
˛ for Dirichlet problem (D) as in the proof of Theorem 1.2, then our proof would

break down.
In this monograph we study mainly Markov transition functions with only

informal references to the random variables which actually form the Markov
processes themselves. In Chap. 12 we study this neglected side of our subject. The
discussion will have a more measure-theoretical flavor than hitherto. Section 12.1 is
devoted to a review of the basic definitions and properties of Markov processes. In
Sect. 12.2 we consider when the paths of a Markov process are actually continuous.
In Sect. 12.3 we give a useful criterion for path-continuity of a Markov process fxt g
in terms of the infinitesimal generator A of the associated Feller semigroup fTtg.
Section 12.4 is devoted to examples of multi-dimensional diffusion processes. More
precisely, we prove that (1) reflecting barrier Brownian motion, (2) reflecting and
absorbing barrier Brownian motion, (3) reflecting, absorbing and drifting barrier
Brownian motion, are typical examples of multi-dimensional diffusion processes,
that is, examples of continuous strong Markov processes on a bounded domain.
It should be emphasized that these three Brownian motions correspond to the
Neumann boundary value problem, the Robin boundary value problem and the
oblique derivative boundary value problem for the Laplacian in terms of elliptic
boundary value problems, respectively.

In Chap. 13 we summarize the contents of the first edition of the present
monograph “Semigroups, boundary value problems and Markov processes” which
was published in 2004. In Sect. 13.1 we study a class of degenerate boundary
value problems for second-order elliptic differential operators which includes
as particular cases the Dirichlet and Robin problems. We state existence and
uniqueness theorems for this class of degenerate elliptic boundary value problems
(Theorems 13.1 and 13.2). The crucial point is how to define modified boundary
spaces B1�1=p;p

L0
.@D/ and C1C�

L0
.@D/ in which our boundary value problems are
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uniquely solvable. The purpose of Sect. 13.2 is to study our degenerate elliptic
boundary value problems from the viewpoint of the theory of analytic semigroups,
and to generalize generation theorems for analytic semigroups both in the Lp

topology and in the topology of uniform convergence (Theorems 13.3 and 13.4).
As an application, we state generation theorems for Feller semigroups correspond-
ing to the diffusion phenomenon where a Markovian particle moves continuously
until it “dies” at the time when it reaches the set where the particle is definitely
absorbed (Theorem 13.5). In Sect. 13.3 we assume that the domain D is convex,
and extend the existence and uniqueness theorems for degenerate elliptic boundary
value problems in Sect. 13.1 (Theorems 13.6) and the generation theorems for
analytic and Feller semigroups in Sect. 13.2 to the integro-differential operator
case (Theorems 13.7, 13.9 and 13.10). Due to the non-local character of integro-
differential operators, we are forced to impose various conditions on the structure of
jumps of Markovian particles such as the moment condition. Moreover, in order to
remove a singularity of solutions at the boundary @D, we impose the condition that
no jumps outside the closure D are allowed.

As concluding remarks, we give an overview of general results on generation
theorems for Feller semigroups proved mainly by the author [Ta3, Ta4, Ta5, Ta6,
Ta7, Ta8, Ta9, Ta10, Ta11] using the theory of pseudo-differential operators [Ho1,
Se1, Se2] and the Calderón–Zygmund theory of singular integral operators [CZ].

Bibliographical references are discussed primarily in the Notes and Comments
at the end of the chapters. These notes are intended to supplement the text and place
it in a better perspective.

1.4 Notes and Comments

Our functional analytic approach to the problem of constructing Markov processes
with Ventcel’ boundary conditions in probability is adapted from Bony–Courrège–
Priouret [BCP], Cancelier [Cn], Sato–Ueno [SU] and Taira [Ta3, Ta4, Ta5, Ta6, Ta7,
Ta8, Ta9]. The approach here is distinguished by the extensive use of ideas and
techniques characteristic of recent developments in the theory of pseudo-differential
operators. The theory of pseudo-differential operators continues to be one of the
most influential topics in the modern history of analysis, and is a very refined
mathematical tool whose full power is yet to be exploited (see [Ho4]). Several recent
developments in the theory of pseudo-differential operators have made possible
further progress in the study of elliptic boundary value problems and hence in
the study of Markov processes. The presentation of these new results is the main
purpose of this monograph.

This monograph is an expanded and revised version of the previous works Taira
[Ta3, Ta4, Ta5, Ta6, Ta7, Ta8, Ta9], and has been revised to streamline some of the
analysis and to give better coverage of important examples and applications. The
theory has reached a state of completion that makes it ideal for presentation in book
form. More precisely, Theorems 1.2 and 1.3 are an expanded and revised version of
[Ta6, Theorem 1] and [Ta6, Theorem 2], respectively.



1.4 Notes and Comments 31

This book fills a mathematical gap between textbooks on Markov processes
such as Bass [Ba1, Ba2], Garroni–Menaldi [GM2], Skubachevskii [Sk] and recent
developments in analysis.

Skubachevskii [Sk] studies elliptic boundary value problems containing
Non-local terms with support inside the domain and small non-local terms with sup-
port near the boundary. Based on the classical works of Agmon–Douglis–Nirenberg
[ADN] and Agranovich–Vishik [AV], he proves the Fredholm property and the
stability of the index of elliptic boundary value problems. As an application of
these results, he gives sufficient conditions for the existence of Feller semigroups
with Ventcel’ boundary conditions. However, his sufficient conditions in the main
theorems are formulated in terms of general integro-differential operators acting
on Hölder spaces. He does not give a probabilistic interpretation of his sufficient
conditions for the existence of Feller semigroups with Ventcel’ boundary conditions.

On the other hand, Jacob [Ja] discusses the martingale problem for a large class
of pseudo-differential operators in the whole space RN . In particular, he studies
the martingale problem for generators of Lévy type. However, the objectives of his
works are different from this monograph, which focuses on general Ventcel’ bound-
ary conditions. Due to the non-local character of the Waldenfels Integro-differential
operator W , we find more difficulties in the bounded domain D than in the whole
space RN .

For detailed studies of stochastic differential equations with jumps, the reader
might refer to Applebaum [Ap] and Bichteler [Bi].
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Chapter 2
Elements of Probability Theory

This chapter is intended as a brief introduction to probability theory.
First, we present a brief dictionary of the Probabilists’ dialect due to Folland

[Fo2, Chapter 10]:

Section 2.1 serves to illustrate some results of measure theory, since measure
spaces are the natural setting for the study of probability. In particular, we
prove the monotone class theorem (Theorem 2.4) and the Dynkin class theorem

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__2,
© Springer-Verlag Berlin Heidelberg 2014
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(Corollary 2.5) which will be useful for the study of measurability of functions in
Chap. 9. In Sect. 2.2 we introduce probability spaces and in Sect. 2.3 we consider
random variables and their expectations. One of the most important concepts in
probability theory is that of independence. It is the concept of independence more
than anything else which gives probability theory a life of its own, distinct from
other branches of analysis. In Sect. 2.4 we study independent events, independent
random variables and independent algebras. In Sect. 2.5, as an application of the
Radon–Nikodým theorem, we introduce conditional probabilities and conditional
expectations (Definitions 2.23, 2.26 and 2.32). Section 2.6 is devoted to the general
theory of conditional expectations which will play a vital role in the study of Markov
processes in Chap. 9.

2.1 Measurable Spaces and Functions

This section serves to illustrate some results of measure theory, since measure spaces
are the natural setting for the study of probability. We study measurable spaces
and measurable functions. In particular, we prove the monotone class theorem
(Theorem 2.4) and the Dynkin class theorem (Corollary 2.5) which will be useful
for the study of measurability of functions in Chap. 9.

2.1.1 Measurable Spaces

Let X be a non-empty set. An algebra of sets on X is a non-empty collection A of
subsets of X which is closed under finite unions and complements, that is, if it has
the following two properties (F1) and (F2):

(F1) If E 2 A, then its complementEc D X n E belongs to A.
(F2) If fEj gnjD1 is an arbitrary finite collection of members of A, then the union

Sn
jD1 Ej belongs to A.

Two subsets E and F of X are said to be disjoint if E \ F D ;, that is, if there
are no elements common to E and F . A disjoint union is a union of sets that are
mutually disjoint.

A collection E of subsets of X is called an elementary family on X if it has the
following three properties (EF1)–(EF3):

(EF1) The empty set ; belongs to E .
(EF2) If E , F 2 E , then their intersection E \ F belongs to E .
(EF3) If E 2 E , then the complement Ec D X n E is a finite disjoint union of

members of E .
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It should be noted that if E is an elementary family, then the collection of finite
disjoint unions of members of E is an algebra.

A �-algebra of sets on X is an algebra which is closed under countable unions
and complements. More precisely, a non-empty collection M of subsets of X is
called a �-algebra if it has the following three properties (S1)–(S3):

(S1) The empty set ; belongs to M.
(S2) If A 2M, then its complementAc D X n A belongs to M.
(S3) If fAng1nD1 is an arbitrary countable collection of members of M, then the

union
S1
nD1 An belongs to M.

The pair .X;M/ is called a measurable space and the members of M are called
measurable sets in X .

It is easy to see that the intersection of any family of �-algebras on X is a �-
algebra. Therefore, for any collection F of subsets of X we can find a unique
smallest �-algebra �.F/ on X which contains F , that is, the intersection of all
�-algebras containing F . This �.F/ is sometimes called the �-algebra generated
by F .

If X is a topological space, then the �-algebra B.X/ generated by the family OX

of open sets in X is called the Borel �-algebra on X . In other words, we have

B.X/ D �.OX/:

The members of B.X/ are called Borel sets in X .
We sometimes consider measurability on subsets ofX . If˝ is a non-empty Borel

set of X , then the collection

B.˝/ D f˝ \A W A 2 B.X/g

is a �-algebra on ˝ .
The next proposition asserts that the Borel �-algebra B.R/ on R can be generated

in a number of different ways [Fo2, Proposition 1.2]:

Proposition 2.1. The Borel �-algebra B.R/ is generated by each of the following
five collections (a)–(e):

(a) The open rays: E1 D f.a;1/ W �1 < a < 1g or E2 D f.�1; b/ W �1 <

b <1g.
(b) The closed rays: E3 D fŒa;1/ W �1 < b < 1g or E4 D f.�1; b� W �1 <

b <1g.
(c) The open intervals: E5 D f.a; b/ W �1 < a < b <1g.
(d) The half-open intervals: E6 D f.a; b� W �1 < a < b < 1g or E7 D fŒa; b/ W
�1 < a < b <1g.

(e) The closed intervals: E8 D fŒa; b� W �1 < a < b <1g.
Moreover, the next proposition asserts that the Borel �-algebra B.Rn/ generated

by the family On of open sets in Rn can be generated in a number of different ways:
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Proposition 2.2. The Borel �-algebra B.Rn/ on Rn is generated by each of the
following three collections (a)–(c):

(a) The open intervals: E1 D f.a1; b1/� � � � � .an; bn/ W �1 < ai < bi <1 .1 �
i � n/g.

(b) The half-open intervals: E2 D f.a1; b1� � � � � � .an; bn� W �1 < ai < bi <

1 .1 � i � n/g or E3 D fŒa1; b1/ � � � � � Œan; bn/ W �1 < ai < bi <1 .1 �
i � n/g.

(c) The product of Borel sets of R: E4 D B.R/ � � � � � B.R/ D fA1 � � � � � An W
Ai 2 B.R/ .1 � i � n/g.

Now we introduce a new class of subsets of X which is closely related to �-
algebras:

Definition 2.3. Let F be a collection of subsets of X .

(i) F is called a �-system in X if it is closed under finite intersections.
(ii) F is called a d -system in X if it has the following three properties (a)–(c):

(a) The set X itself belongs to F .
(b) If A, B 2 F and A 	 B , then the difference B nA belongs to F .
(c) If fAng1nD1 is an increasing sequence of members of F , then the unionS1

nD1 An belongs to F .

It should be emphasized that a collection F is a �-algebra if and only if it is
both a �-system and a d -system. For any collection F of subsets of X , there exists
a smallest d -system d.F/ which contains F . Indeed, it suffices to note that the
intersection of an arbitrary number of d -systems is again a d -system.

The next theorem gives a useful criterion for the d -system d.F/ to be a
�-algebra:

Theorem 2.4 (the monotone class theorem). If a collection F of subsets of X is
a �-system, then it follows that

d.F/ D �.F/:

Proof. Since we have

d.F/ 	 �.F/;

we have only to show that d.F/ is a �-algebra. To do this, it suffices to show that
d.F/ is a �-system. The proof is divided into two steps.

Step 1: First, we let

D1 WD fB 2 d.F/ W B \A 2 d.F/ for all A 2 Fg:
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Then it is easy to verify that D1 is a d -system and further that

F 	 D1;

since F is a �-system. Hence we have

d.F/ 	 D1;

and so

D1 D d.F/:

Step 2: Secondly, we let

D2 WD fB 2 d.F/ W B \ A 2 d.F/ for all A 2 d.F/g:

Again, it is easy to verify that D2 is a d -system. Moreover, if A is an arbitrary
element of F , then we have, for all B 2 D1 D d.F/,

B \A 2 d.F/:

This proves that

F 	 D2:

Hence we have

d.F/ 	 D1;

and so

D2 D d.F/:

This implies that d.F/ is closed under finite intersections, that is, d.F/ is a
�-system.

The proof of Theorem 2.4 is complete.

The next version of the monotone class theorem will be useful for the study of
measurability of functions in Chap. 9:

Corollary 2.5 (the Dynkin class theorem). Let F be a �-system. If D is a
d -system which contains F , then it follows that

�.F/ 	 D:
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Indeed, it follows from an application of Theorem 2.4 that

�.F/ D d.F/ 	 D;

since D is a d -system which contains F .

2.1.2 Measures

LetX be a non-empty set equipped with a collection D of subsets ofX . An extended
real-valued set function � is a function defined on D taking extended real numbers.
The collection D is called the domain of definition of �.

Let � be a set function defined on an algebra A on X . The set function � is said
to be finitely additive if we have, for any m 2 N,

�

0

@
mX

jD1
Aj

1

A D
mX

jD1
�.Aj /

provided that the Aj are mutually disjoint sets of A. We say that � is countably
additive if we have the equality

�

0

@
1X

jD1
Aj

1

A D
1X

jD1
�.Aj /

provided that the Aj are mutually disjoint sets of A such that
P1

jD1 Aj .
Let .X;M/ be a measurable space. An extended real-valued function � defined

on the �-algebra M is called a non-negative measure or simply a measure if it has
the following three properties (M1)–(M3):

(M1) 0 � �.E/ � 1 for all E 2M.
(M2) �.;/ D 0.
(M3) The function � is countably additive, that is,

�

0

@
1X

jD1
Ej

1

A D
1X

jD1
�.Ej /

for any disjoint countable collection fEj g1jD1 of members of M.

The triplet .X;M; �/ is called a measure space. In other words, a measure space is
a measurable space which has a non-negative measure defined on the �-algebra of
its measurable sets.
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If �.X/ < 1, then the measure � is called a finite measure and the space
.X;M; �/ is called a finite measure space. If X is a countable union of sets of
finite measure, then the measure � is said to be �-finite on X . We also say that the
measure space .X;M; �/ is �-finite.

Some basic properties of measures are summarized in the following four
properties (a)–(d):

(a) (Monotonicity) If E , F 2M and E 	 F , then �.E/ � �.F /.
(b) (Subadditivity) If fEj g1jD1 	M, then we have the inequality

�

0

@
1[

jD1
Ej

1

A �
1X

jD1
�.Ej /:

(c) (Continuity from below) If fEj g1jD1 	M and if E1 	 E2 	 : : :, then we have
the equality

�

0

@
1[

jD1
Ej

1

A D lim
j!1�.Ej /:

(d) (Continuity from above) If fEj g1jD1 	M and if E1 
 E2 
 : : : and �.E1/ <
1, then we have the equality

�

0

@
1\

jD1
Ej

1

A D lim
j!1�.Ej /:

Let .X;M; �/ be a measure space, and let A be an algebra in M. The
next approximation theorem asserts that every set in the �-algebra �.A/ can be
approximated by sets in the algebra A:

Theorem 2.6 (the approximation theorem). If � 2 �.A/ and �.�/ < 1, then
there exists a sequence fAng1nD1 in A such that

lim
n!1�.�4 An/ D 0;

where

A4 B D .A n B/[ .B n A/ (2.1)

is the symmetric difference of A and B .

Proof. We let

C D f� 2M W condition (2.1) holds trueg :
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We have only to show that C is a �-algebra which contains A. Indeed, we then have
the assertion

�.A/ 	 C:

In other words, the desired condition (2.1) holds true for all � 2 �.A/.
(a) First, it follows that A 	 C. Indeed, it suffices to take An WD � if � 2 A.
(b) Secondly, if � 2 C, then it is easy to see that

�c 4 Acn D �4 An;

so that

lim
n!1�

�
�c 4 Acn

� D lim
n!1�.�4 An/ D 0:

This proves that �c 2 C, since Acn 2 A.
(c) Thirdly, if f�ng1nD1 	 C, then it follows that � D [1

nD1�n 2 C. Indeed, since
�.�/ < 1, it follows from the continuity from above of the measure � that,
for any given " > 0, there exists a positive numberN D N."/ such that

�

 

� n
N[

nD1
�n

!

<
"

2
: (2.2)

On the other hand, for each �n 2 C there exists a set An 2 A such that

� .�n 4 An/ < "

2nC1 ; n D 1; 2; : : : ; N: (2.3)

However, it is easy to see that

 
N[

nD1
An

!

4� 	
N[

nD1
.An 4�n/

[
 

� n
N[

nD1
�n

!

: (2.4)

Therefore, by combining inequalities (2.2) and (2.3) we obtain from asser-
tion (2.4) that

�

 

� n
N[

nD1
�n

!

�
NX

nD1
� .An 4�n/C �

 

� n
N[

nD1
�n

!

<
"

2

�
1

2
C 1

22
C : : :C 1

2N

�

C "

2
< ";

N[

nD1
An 2 A:

This proves that � D [1
nD1�n 2 C.
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Summing up, we have proved that C is a �-algebra which contains A.
The proof of Theorem 2.6 is complete.

2.1.3 Measurable Functions

We let

R D f�1g [ R [ f1g

with the obvious ordering, where 1 D C1. The topology on R is defined by
declaring that the open sets in R are those which are unions of segments of the types

.a; b/; Œ�1; a/; .a;1�:

The elements of R are called extended real numbers.
If we define a mapping

� W R �! .�1; 1/

by the formula

�.x/ D x

1C jxj for each x 2 R;

then it is easy to verify that the space R is topologically isomorphic to the closed
interval Œ�1; 1�.

Let .X;M/ be a measurable space. An extended real-valued function f .x/
defined on a set A 2 M is said to be M-measurable or simply measurable if
the set

f �1..a;1// D fx 2 A W f .x/ > ag

is in M for every a 2 R. It is easy to verify that an extended real-valued function
f .x/ is M-measurable if and only if it satisfies the following two conditions (1)
and (2):

(1) f �1.B/ 2M for every B 2 B.R/.
(2) f �1.1/ 2M and f �1.�1/ 2M.

It should be emphasized that the sets f �1.1/ and f �1.�1/ are measurable for
extended real-valued functions.

If .Rn;B.Rn// is the Borel measurable space, we say that f .x/ is Borel
measurable. It is easy to see that continuous functions on Rn are Borel measurable.
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Some basic properties of measurable functions are summarized in the following
three properties (MF1)–(MF3):

(MF1) If f and g are measurable functions, then f ˙ g and fg are measurable
functions.

(MF2) If ffng1nD1 is a sequence of measurable functions, then the functions

sup
n�1

fn; inf
n�1 fn;

lim sup
n!1

fn; lim inf
n!1 fn

are all measurable.
(MF3) If a sequence ffng1nD1 of measurable functions converges to a function g,

then the limit function g is measurable.

If A is a subset of X , we let

�A.x/ D
(
1 if x 2 A;
0 for x … A:

The function �A is called the characteristic function of A.
A real-valued function f .x/ on X is called a simple function if it takes on only a

finite number of values. Thus, if a1, a2, : : :, am are the distinct values of f .x/, then
f .x/ can be written as follows (see Fig. 2.1):

f .x/ D
mX

jD1
aj �Aj .x/;

where

Aj D
˚
x 2 X W f .x/ D aj

�
:

We call this formula the standard representation of f .x/. It expresses f .x/ as a
linear combination, with distinct coefficients aj , of characteristic functions �Aj of
disjoint sets Aj whose union is X . We note that the function f .x/ is measurable if
and only if each set Aj is measurable.

The next theorem asserts that arbitrary measurable functions can be approxi-
mated in a nice way by simple functions [Fo2, Theorem 2.10]:

Theorem 2.7. An extended real-valued function defined on a measurable set is
measurable if and only if it is a pointwise limit of a sequence of measurable simple
functions. Furthermore, every non-negative measurable function is a pointwise limit
of an increasing sequence of non-negative measurable simple functions.
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f(x)

A1 A2 Am

a1
a2 am

Fig. 2.1 The simple function f .x/

Let .X;M/ be a measurable space. If E 2M, we let

M.E/ D fE \ F W F 2Mg:

It is easy to see that M.E/ is a �-algebra on E . An extended real-valued function
f defined on X is said to be measurable on E if the restriction f jE of f to E is
M.E/-measurable. In other words, f is measurable on E if and only if it satisfies
the condition

E \ f �1.B/ 2M for every B 2 B.R/:

Let .X;M/ and .Y;N / be two measurable spaces. A mapping f W X ! Y is
said to be M=N -measurable or simply measurable if it satisfies the condition

f �1.N / 	M:

The next proposition is often useful:

Proposition 2.8. Assume that the �-algebra N is generated by a non-empty
collection E of subsets of Y : �.E/ D N . Then the mapping f W X ! Y is M=

N -measurable if and only if f �1.E/ 	M. Moreover, we have

�
�
f �1.E/

� D f �1 .�.E// D f �1.N /:

The next theorem is a version of the monotone class theorem (Theorem 2.4), and
will be useful for the study of measurability of functions in Chap. 9:

Theorem 2.9. Let F be a �-system inX and let H be a linear space of real-valued
functions onX . Assume that the following two conditions (i) and (ii) are satisfied:

(i) 1 2 H and �A 2 H for all A 2 F .
(ii) If ffng1nD1 is an increasing sequence of non-negative functions in H such that

f D supn�1 fn is bounded, then it follows that f 2 H.
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Then the linear space H contains all real-valued, bounded functions onX which
are �.F/-measurable.

Proof. The proof is divided into three steps.

Step 1: We let

D WD fA 	 X W �A 2 Hg;

and prove that

�.F/ 	 D:

To do this, we show that D is a d -system containing F .

(a) First, by condition (i) it follows that X 2 D and that

F 	 D:

(b) Secondly, since H is a linear space, it follows that we have, for all A1, A2 2 D
with A1 	 A2,

�A2nA2 D �A2 � �A1 2 H:

This implies that A2 n A1 2 D.
(c) Finally, if fAng1nD1 is an arbitrary sequence of sets in D, then it follows from

condition (ii) that

�[1

nD1An
D sup

n�1
�An 2 H:

This implies that
S1
nD1 An 2 D.

Therefore, we have proved that D is a d -system containing F , so that

d.F/ 	 D:

On the other hand, since F is a �-system, it follows from an application of the
monotone class theorem (Theorem 2.4) that

d.F/ D �.F/:

Summing up, we obtain that

�.F/ D d.F/ 	 D:
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Step 2: If f .x/ is an arbitrary real-valued, bounded �.F/-measurable function
on X , then we can write it in the form

f .x/ D f C.x/ � f �.x/;

where

f C.x/ D maxff .x/; 0g;
f �.x/ D maxf�f .x/; 0g:

It should be noted that both f C.x/ and f �.x/ are non-negative and �.F/-
measurable functions on X .

Moreover, by applying Theorem 2.7 we obtain that every non-negative, �.F/-
measurable function g.x/ is a pointwise limit of an increasing sequence fgn.x/g1nD1
of non-negative, �.F/-measurable simple functions.

However, since �.F/ 	 D and since H is a linear space, it follows that the
simple functions gn.x/ are in H and further from condition (ii) that

g.x/ D sup
n�1

g.x/ 2 H:

Step 3: Since f ˙.x/ are non-negative and �.F/-measurable, we obtain from
Step 2 that

f C.x/; f �.x/ 2 H;

so that

f .x/ D f C.x/ � f �.x/ 2 H:

The proof of Theorem 2.9 is complete.

2.2 Probability Spaces

Let ˝ be a non-empty set and let F be a �-algebra of subsets of ˝ , that is, F
is a collection of subsets which contains the empty set ; and is closed under the
formation of complements and of the union of countably many of members. A
function P defined on F is called a probability measure if it satisfies the following
three conditions (P1)–(P3):

(P1) P.A/ � 0 for all A 2 F .
(P2) P.˝/ D 1.



48 2 Elements of Probability Theory

(P3) The function P is countably additive, that is,

P

 1X

nD1
An

!

D
1X

nD1
P.An/

for any disjoint countable collection fAng1nD1 of members of F .

The triplet .˝;F ; P / is called a probability space. The elements of ˝ are known
as sample points, those of F as events and the values P.A/, A 2 F , are their
probabilities.

We remark that conditions (P1)–(P3) imply the following continuity condition
(P4) of the probability P :

(P4) If An 2 F , and AnC1 	 An and [1
nD1 D ;, then it follows that

lim
n!1P.An/ D 0:

2.3 Random Variables and Expectations

Let .˝;F ; P / be a probability space. A real-valued, F -measurable function X
defined on ˝ is called a random variable. In other words, a real-valued function
X on ˝ is a random variable if and only if it satisfies the condition

X�1.A/ 2 F for every A 2 B.R/: (2.5)

However, it is easy to verify (see Proposition 2.1) that X satisfies condition (2.5) if
and only if X�1..�1; r// 2 F for every r 2 Q. Indeed, it suffices to note that we
have, for every b 2 R,

.�1; b� D
\

rn2Q
rn>b

.�1; rn/:

Moreover, we have the following theorem:

Theorem 2.10. Let X1, X2, : : :, Xn be random variables. If f is a real-valued,
B.Rn/-measurable function on Rn, then the composite function

Y.!/ D f .X1.!/;X2.!/; : : : ; Xn.!//; ! 2 ˝;

is F -measurable.
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The situation can be visualized in the following diagram:

Proof. (1) First, we show that

.X1;X2; : : : ; Xn/
�1 .A/ 2 F for all A 2 B.Rn/: (2.6)

To do this, we let

B D
n
A 2 B.Rn/ W .X1;X2; : : : ; Xn/�1 .A/ 2 F

o
:

We remark that the Borel �-algebra B.Rn/ is generated by the collection C of
all Borel cylinder sets in Rn:

C D fA1 � A2 � � � � � An W A1;A2; : : : ; An 2 B.R/g ;
�.C/ D B.Rn/:

Since X1, X2, : : :, Xn are F -measurable, it follows that

.X1;X2; : : : ; Xn/
�1 .A1 � A2 � � � � �An/ D

n\

iD1
X�1
i .Ai / 2 F :

This proves that

C 	 B:

However, we find that B is a �-algebra. Indeed, it suffices to note that the
mapping .X1;X2; : : : ; Xn/�1 preserves unions, intersections and complements.

Hence it follows that

B.Rn/ D �.C/ 	 B 	 B.Rn/;
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so that

B D B.Rn/:

This proves the desired assertion (2.6).
(2) Secondly, since f is B.Rn/-measurable, it follows that

f �1.B/ 2 B.Rn/ for every B 2 B.R/:

Therefore, by applying assertion (2.6) with

A WD f �1.B/;

we obtain that

Y �1.B/ D .X1;X2; : : : ; Xn/�1
�
f �1.B/

� 2 F for every B 2 B.R/:

This proves that Y is F -measurable.
The proof of Theorem 2.10 is complete.

If X1, X2, : : :, Xn are random variables on ˝ , then an n-dimensional, vector-
valued functionX on ˝ , defined by the formula

X.!/ D .X1.!/;X2.!/; : : : ; Xn.!// ; ! 2 ˝;

is called an n-dimensional random variable on ˝ . Then we have the following
theorem:

Theorem 2.11. A vector-valued function X D .X1;X2; : : : ; Xn/ is a random
variable on ˝ if and only if it satisfies the condition

X�1.A/ 2 F for every A 2 B.Rn/: (2.7)

Proof. (1) The “if” part: For any B 2 B.R/, we let

A D R � � � � � .i/! B � � � � � R 2 B.Rn/:

Then it follows from condition (2.7) that

X�1
i .B/ D .X1;X2; : : : ; Xn/�1 .A/ D X�1.A/ 2 F :

This proves that each Xi is F -measurable.
(3) The “only if” part: If we let

B D ˚A 2 B.Rn/ W X�1.A/ 2 F
�
;
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then we find that condition (2.7) is equivalent to the following condition:

B D B.Rn/:

To do this, we recall that the Borel �-algebra B.Rn/ is generated by the collection
C of all Borel cylinder sets in Rn:

C D fA1 � A2 � � � � � An W A1;A2; : : : ; An 2 B.R/g ;
�.C/ D B.Rn/:

First, we find that B is a �-algebra. Indeed, it suffices to note that the mappingX�1
preserves unions, intersections and complements. Moreover, since X1, X2, : : :, Xn
are F -measurable, it follows that

X�1 .A1 � A2 � � � � � An/ D .X1;X2; : : : ; Xn/�1 .A1 � A2 � � � � � An/

D
n\

iD1
X�1
i .Ai / 2 F :

This implies that

C 	 B:

Hence we obtain that

B.Rn/ D �.C/ 	 B 	 B.Rn/;

so that

B D B.Rn/:

Therefore, we have proved that condition (2.7) is satisfied.
The proof of Theorem 2.11 is complete.

If X1, X2, : : :, Xn are real-valued functions on ˝ , we define a �-algebra
�.X1;X2; : : : ; Xn/ by the formula

� .X1;X2; : : : ; Xn/ D
n
.X1;X2; : : : ; Xn/

�1 .A/ W A 2 B.Rn/
o
:

Then we have the following proposition:

Proposition 2.12. The �-algebra B D � .X1;X2; : : : ; Xn/ is the smallest
�-algebra with respect to which all the variables X1, X2, : : :, Xn are measurable.
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Proof. (1) First, it is easy to see that B is a �-algebra. Indeed, it suffices to
note that the mapping .X1;X2; : : : ; Xn/�1 preserves unions, intersections and
complements.

(2) Secondly, we show that each Xi is B-measurable. For any B 2 B.R/, we let

A D R � � � � � .i/! B � � � � � R 2 B.Rn/:

Then it follows that

X�1
i .B/ D .X1;X2; : : : ; Xn/�1 .A/ 2 � .X1;X2; : : : ; Xn/ D B:

This proves that each Xi is B-measurable.
(3) Finally, we show that B is the smallest �-algebra with respect to which all the

variables X1, X2, : : :, Xn are measurable. To do this, we assume that QB is a
�-algebra with respect to which all the variablesX1,X2, : : :,Xn are measurable.
Let C be the collection of all Borel cylinder sets in Rn:

C D fA1 � A2 � � � � �An W A1;A2; : : : ; An 2 B.R/g :

We recall that the Borel �-algebra B.Rn/ is generated by C:

�.C/ D B.Rn/:

Since X1, X2, : : :, Xn are QB-measurable, it follows that

.X1;X2; : : : ; Xn/
�1 .A1 � A2 � � � � � An/ D

n\

iD1
X�1
i .Ai/ 2 QB:

This implies that

.X1;X2; : : : ; Xn/
�1 .C/ 	 QB:

Hence we have

B D .X1;X2; : : : ; Xn/
�1 .B.Rn//

D .X1;X2; : : : ; Xn/
�1 .�.C// D �


.X1;X2; : : : ; Xn/

�1 .C/
�

	 QB:

Therefore, we have proved that B is the smallest �-algebra with respect to which all
the variablesX1, X2, : : :, Xn are measurable.

The proof of Proposition 2.12 is complete.
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Theorem 2.13. Assume that a function X W ˝ ! R is �.X1;X2; : : : ; Xn/-
measurable. Then we can find a Borel measurable function '.x1; x2; : : : ; xn/ on
Rn such that

X.!/ D '.X1.!/;X2.!/;Xn.!// for every ! 2 ˝: (2.8)

The situation can be visualized in the following diagram:

Proof. The proof is divided into two steps.

Step 1: Assume that X is a non-negative, �.X1;X2; : : : ; Xn/-measurable func-
tion. Then we let

�
.k/
i D X�1

��
i

2k
;
i C 1
2k

��

2 �.X1;X2; : : : ; Xn/; i D 0; 1; : : : ; 22k:

Hence we can find disjoint subsets A.k/i 2 B.Rn/ such that

�
.k/
i D .X1;X2; : : : ; Xn/�1


A
.k/
i

�
; i D 0; 1; : : : ; 22k:

Moreover, without loss of generality, we may assume that

A
.k/
i D A.kC1/

2i C A.kC1/
2iC1 ;

�
.kC1/
2i D X�1

��
2i

2kC1 ;
2i C 1
2kC1

��

D .X1;X2; : : : ; Xn/�1

A
.kC1/
2i

�
;

�
.kC1/
2iC1 D X�1

��
2i C 1
2kC1 ;

2i C 2
2kC1

��

D .X1;X2; : : : ; Xn/�1

A
.kC1/
2iC1

�
:

Now we define simple functions X.k/.!/ on ˝ and 'k.x1; x2; : : : ; xn/ on Rn

respectively as follows:

X.k/.!/ D
22kX

iD0

i

2k
�
�
.k/
i
.!/ ; �

.k/
i D X�1

��
i

2k
;
i C 1
2k

��

;
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and

'k.x1; x2; : : : ; xn/ D
22kX

iD0

i

2k
�
A
.k/
i
.x1; x2; : : : ; xn/ ;

�
.k/
i D .X1;X2; : : : ; Xn/�1


A
.k/
i

�
; A

.k/
i 2 B.Rn/:

Here it should be noted that

'k.X1.!/;X2.!/; : : : ; Xn.!// D
22kX

iD0

i

2k
�
�
.k/
i
.!/ D X.k/.!/; ! 2 ˝:

Therefore, we obtain the following two assertions (a) and (b):

(a) The 'k.x1; x2; : : : ; xn/ are Borel measurable functions on Rn.
(b) 'k .X1;X2; : : : ; Xn/ D X.k/ " X in ˝ .

If we introduce a Borel measurable function '.x1; x2; : : : ; xn/ on Rn by the
formula

'.x1; x2; : : : ; xn/

D
(

supk 'k.x1; x2; : : : ; xn/ if supk 'k.x1; x2; : : : ; xn/ <1;
0 if supk 'k.x1; x2; : : : ; xn/ D1;

then we have the equality

X.!/ D '.X1.!/;X2.!/;Xn.!// for every ! 2 ˝:

This proves the desired equality (2.8) for the non-negative case.

Step 2: If X is a �.X1;X2; : : : ; Xn/-measurable function, it can be decomposed
into the positive and negative parts:

X.!/ D XC.!/ �X�.!/; ! 2 ˝;

where

XC.!/ D maxfX.!/; 0g;
X�.!/ D maxf�X.!/; 0g:

By Step 1, we can find two Borel measurable functions 'C.x1; x2; : : : ; xn/ and
'�.x1; x2; : : : ; xn/ such that
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XC.!/ D 'C.X1.!/;X2.!/;Xn.!// for every ! 2 ˝;
X�.!/ D '�.X1.!/;X2.!/;Xn.!// for every ! 2 ˝:

If we let

'.x1; x2; : : : ; xn/ D 'C.x1; x2; : : : ; xn/ � '�.x1; x2; : : : ; xn/;

then we obtain that the Borel measurable function '.x1; x2; : : : ; xn/ satisfies the
condition

X.!/ D XC.!/ � X�.!/

D 'C.X1.!/;X2.!/;Xn.!//� '�.X1.!/;X2.!/;Xn.!//

D '.X1.!/;X2.!/;Xn.!// for every ! 2 ˝:

This proves the desired equality (2.8) for the general case.
Now the proof of Theorem 2.13 is complete.

Let B.R/ be the �-algebra of all Borel sets in R. For any A 2 B.R/, we let

X�1.A/ D f! 2 ˝ W X.!/ 2 Ag;

and define

P.X 2 A/ D P.X�1.A// D P.f! 2 ˝ W X.!/ 2 Ag/:

Then it is easy to see that a real-valued functionPX on B.R/, defined by the formula

PX.A/ D P.X 2 A/ for every A 2 B.R/;

is a probability measure on .R;B.R//. The measure PX is called the distribution of
the random variable X . It should be emphasized that if X W ˝ ! R is a random
variable, then the probability space .˝;F ; P / can be transferred to the probability
space .R;B.R/; PX/.

Moreover, we can introduce a real-valued function FX.x/ on R by the formula

FX.x/ D �.�1; x� D P.X � x/ D P.! 2 ˝ W X.!/ � x/ for every x 2 R:

The function FX.x/ is called the distribution function of the random variable X .
It is easy to verify that the distribution function FX.x/ enjoys the following four
properties (F1)–(F4):

(F1) x � y H) FX.x/ � FX.y/ (monotonicity).
(F2) x # c H) FX.x/ # FX.c/ (right-continuity).
(F3) limx!C1 FX.x/ D 1 and limx!�1 FX.x/ D 0.
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(F4) FX.x/ has a jump discontinuity of magnitude ı > 0 at x D a if and only if
P.X D a/ D ı. In particular, FX.x/ is continuous at x D a if and only if
P.X D a/ D 0.

It is a general principle that all properties of random variables which are relevant
to probability theory can be formulated in terms of their distributions.

The integral

Z

˝

X.!/ dP

is called the expectation or mean of X , and is denoted by E.X/. When we speak of
E.X/, it is understood that the integral of jX.!/j is finite. If � 2 F , we let

E.X I�/ D E.X��/ D
Z

˝

X.!/ ��.!/ dP D
Z

�

X.!/ dP:

Some basic properties of the expectations are summarized in the following seven
properties (E1)–(E7):

(E1) E.X/ exists if and only if E.jX j/ exists.
(E2) If either E.jX j/ <1 or E.jY j/ <1, then we have, for all a, b 2 R,

E.aX C bY / D aE.X/C bE.Y /:

(E3) If X D c for some constant c almost everywhere in ˝ , then E.X/ D c.
(E4) If X D Y almost everywhere in ˝ , then E.X/ D E.Y /.
(E5) If X � Y almost everywhere in ˝ , then E.X/ � E.Y /.
(E6) If X � 0 almost everywhere in ˝ , then E.X/ � 0.
(E7) jE.X/j � E.jX j/.

We remark that expectations can be computed using PX or FX instead of the
integral over˝ as follows:

E.X/ D
Z

˝

X.!/ dP D
Z

R
x dPX D

Z 1

�1
x dFX.x/; (2.9)

where the last expression is interpreted as an improper Riemann–Stieltjes integral
and the third one is interpreted as a Lebesgue–Stieltjes integral.

The second equality in formula (2.9) is a special case of the following measure-
theoretic construction: Let .˝ 0;F 0/ be another measurable space, and assume that
a mapping � W ˝ ! ˝ 0 is measurable in the sense that ��1.A0/ 2 F for every
A0 2 F 0. Then the measure P induces an image measure P� on .˝ 0;F 0/ by the
formula

P�.A
0/ D P.��1.A0// for every A0 2 F 0: (2.10)
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Indeed, it suffices to note that the mapping ��1 preserves unions and intersections.
Then we have the following theorem:

Theorem 2.14. If X 0 is a measurable function from .˝ 0;F 0/ into .R;B.R//, then
the composite function X.!/ D X 0.�.!// is a random variable on .˝;F ; P /, and
we have the equality

E.X/ D
Z

˝

X.!/ dP D
Z

˝0

X 0.!0/ dP�; (2.11)

where the existence of either side implies that of the other.

Proof. First, it is clear that X D X 0 ı � is F 0-measurable. The proof of (2.11) is
divided into three steps.

Step 1: If X 0 is a characteristic function of a set A0 2 F 0, then it follows that X
is also a characteristic function of the set ��1.A0/:

X D X 0 ı � D �A0 ı � D ���1.A0/:

Hence we have, by definition (2.10),

E.X/ D P.��1.A0// D P�.A0/ D
Z

˝0

�A0.!0/ dP� D
Z

˝0

X 0.!0/ dP�:

This proves the desired equality (2.11) for characteristic functions. The extension
to simple functions follows by taking finite linear combinations, since the mapping
��1 preserves unions and intersections.

Step 2: If X 0 is a non-negative, F 0-measurable function, then we can find an
increasing sequence of simple functions fX 0

ng which converges to X 0. Hence
it follows from an application of the monotone convergence theorem [Fo2,
Theorem 2.14] that

lim
n!1

Z

˝0

X 0
n.!

0/ dP� D
Z

˝0

X 0.!0/ dP�: (2.12)

However, we note that the composite functions Xn D X 0
n ı � are an increasing

sequence of simple functions which converges to X . By applying again the
monotone convergence theorem, we obtain that

E.X/ D
Z

˝

X.!/ dP D lim
n!1

Z

˝

Xn.!/ dP D lim
n!1E.Xn/: (2.13)

Since (2.11) holds true for the simple functions Xn and X 0
n, it follows from (2.13)

and (2.12) that
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E.X/ D lim
n!1E.Xn/ D lim

n!1

Z

˝0

X 0
n.!

0/ dP� D
Z

˝0

X 0.!0/ dP�:

This proves the desired equality (2.11) for non-negative, F 0-measurable functions.

Step 3: Finally, the general case of (2.11) follows by applying separately to the
positive and negative parts of X 0:

X 0.!0/ D X 0C.!0/ �X 0�.!0/; !0 2 ˝ 0;

where

X 0C.!0/ D maxfX 0.!0/; 0g;
X 0�.!0/ D maxf�X 0.!0/; 0g:

Indeed, since we have

X 0C.!0/ D XC.�.!// D maxfX.�.!//; 0g;
X 0�.!0/ D X�.�.!// D maxf�X.�.!//; 0g;

we obtain from Step 2 that

Z

˝0

X 0.!0/ dP� D
Z

˝0

X 0C.!0/ dP� �
Z

˝0

X 0�.!0/ dP�

D
Z

˝

XC.!/ dP �
Z

˝

X�.!/ dP D
Z

˝

X.!/ dP

D E.X/:

This proves the desired equality (2.11) for general F 0-measurable functions.
Moreover, it is easily seen that E.X/ exists if and only if X 0 is integrable with

respect to P� .
The proof of Theorem 2.14 is complete.

Corollary 2.15. Let g.x/ be a Borel measurable function from .Rn;B.Rn// into
.R;B.R//. If a vector-valued function X D .X1;X2; : : : ; Xn/ is a random variable
on ˝ and if the expectation E.g.X// exists, then we have

E.g.X// D
Z

˝

g.X1.!/;X2.!/; : : : ; Xn.!// dP (2.14)

D
Z 1

�1
� � �
Z 1

�1
g.x1; x2; : : : ; xn/ dPX :
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Indeed, Corollary 2.15 follows from an application of Theorem 2.14 with

˝ 0 WD Rn; F 0 D B.Rn/;

� WD X; X 0 D g; X WD g.X/:

Now we let .˝1;F1/ and .˝2;F2/ be measurable spaces, and let˝ D ˝1 �˝2,
F D F1 ˝ F2 be the Cartesian product of the measurable spaces .˝1;F1/ and
.˝2;F2/. We recall that a rectangle is a set of the form A1 � A2 where A1 2 F1

and A2 2 F2, and further that the collection A of finite disjoint unions of rectangles
forms an algebra. Moreover, we have

�.A/ D F D F1 ˝ F2:

If A 2 F , then the !1-section A!1 of A is defined by the formula

A!1 D f!2 2 ˝2 W .!1; !2/ 2 Ag; !1 2 ˝1:

If X is an F -measurable function on ˝ , then the !1-section X!1 of X is defined by
the formula

X!1.!2/ D X.!1; !2/; !2 2 ˝2:

The next theorem will be useful for the study of measurability of functions in
Chap. 9:

Theorem 2.16. Let P.!1; A2/ be a function defined on ˝1 � F2. Assume that the
following two conditions (i) and (ii) are satisfied:

(i) For each !1 2 ˝1, P.!1; �/ is a probability measure on .˝2;F2/.
(ii) For each A2 2 F2, P.�; A2/ is an F1-measurable function on ˝1.

If h is a bounded, F -measurable function on ˝ , we let

H.!1/ D
Z

˝2

h.!1; !2/ P.!1; d!2/:

Then H is a bounded, F1-measurable function on˝1.

Proof. The proof is divided into two steps.

Step 1: We prove the boundedness of H on ˝1.
First, since h.!1; �/ is F2-measurable for all !1, it follows that the functionH is
well-defined. Moreover, we have the inequalit
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jH.!1/j D
ˇ
ˇ
ˇ
ˇ

Z

˝2

h.!1; !2/ P.!1; d!2/

ˇ
ˇ
ˇ
ˇ �

Z

˝2

jh.!1; !2/jP.!1; d!2/

� sup
˝

jhj
Z

˝2

P.!1; d!2/ D sup
˝

jhjP.!1;˝2/

D sup
˝

jhj:

This proves that H is bounded on ˝1.
Step 2: Secondly, we prove the F1-measurability of H .

Step 2-1: If h D �A1�A2 is a characteristic function with A1 2 F1 and A2 2
F2, then it follows that

H.!1/ D
Z

˝2

�A1.!1/ �A2.!2/ P.!1; d!2/ D �A1 .!1 P.!1; A2// :

This proves that H is F1-measurable, since �A1 and P.�; A2/ are F1-measur-
able.

Step 2-2: Let A be the collection of finite disjoint unions of rectangles in ˝ .
If h D �A with A 2 A, then it follows that h is a simple function of the form

h D
kX

jD1
aj �A.1/j �A.2/j ; A

.1/
j 2 F1; A

.2/
j 2 F2:

Hence we have

H.!1/ D
kX

jD1
aj �A.1/j

.!1 P.!1; A
.2/
j //:

By Step 2-1, this proves that H is F1-measurable.
Step 2-3: We let

M D
	

A 2 F W
Z

˝2

�A.!1; !2/ P.!1; d!2/ is F1-measurable




:

By Step 2-2, it follows that

A 	M:

Moreover, by applying the monotone convergence theorem [Fo2, Theorem
2.14] we obtain that M is a d -system. Therefore, it follows from an
application of the Dynkin class theorem (Corollary 2.5) that

F D �.A/ 	M 	 F ;
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so that

M D F :

This proves that the function
Z

˝2

�A.!1; !2/ P.!1; d!2/

is F1-measurable for every A 2 F .
Step 2-4: If h is a general simple function of the form

h D
kX

jD1
aj �Aj ; Aj 2 F ;

then it follows that

H.!1/ D
kX

jD1
aj

Z

˝2

�Aj .!1; !2/ P.!1; d!2/:

By Step 2-3, this proves that H is F1-measurable.
Step 2-5: If h is a bounded, F -measurable function on ˝ , it can be decom-

posed into the positive and negative parts:

h.!1; !2/ D hC.!1; !2/ � h�.!1; !2/; .!1; !2/ 2 ˝ D ˝1 �˝2;

where

hC.!1; !2/ D maxfh.!1; !2/; 0g;
h�.!1; !2/ D maxf�h.!1; !2/; 0g:

However, we know that the function hC is a pointwise limit of an increasing
sequence fhC

n g1nD1 of non-negative, F -measurable simple functions and that the
function h� is a pointwise limit of an increasing sequence fh�

n g1nD1 of non-
negative, F -measurable simple functions. Hence it follows from an application of
the monotone convergence theorem [Fo2, Theorem 2.14] that

Z

˝2

h˙.!1; !2/ P.!1; d!2/ D lim
n!1

Z

˝2

hṅ .!1; !2/ P.!1; d!2/:

By Step 2-4, we find that the functions

Z

˝2

h˙.!1; !2/ P.!1; d!2/

are F1-measurable.
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Summing up, we have proved that the function

H.!1/ D
Z

˝2

h.!1; !2/ P.!1; d!2/

D
Z

˝2

hC.!1; !2/ P.!1; d!2/�
Z

˝2

h�.!1; !2/ P.!1; d!2/

is F1-measurable.
The proof of Theorem 2.16 is complete.

2.4 Independence

One of the most important concepts in probability theory is that of independence.
It is the concept of independence more than anything else which gives probability
theory a life of its own, distinct from other branches of analysis.

2.4.1 Independent Events

Let .˝;F ; P / be a probability space. Two events A and B in F are said to be
independent if the following product rule holds true:

P.A \ B/ D P.A/P.B/:

A collection fE1;E2; : : : ; Eng of events in F is said to be independent if the
product rule holds true for every subcollection of them, that is, if every subcollection
fEi1; Ei2 ; : : : ; Eik g satisfies the condition

P.Ei1 \ Ei2 \ : : : \ Eik / D P.Ei1/P.Ei2/ : : : P.Eik /: (2.15)

A collection A D fEi W i 2 I g of events in F , where I is a finite or infinite index
set, is said to be independent if every finite subcollection of A is independent, that
is, if condition (2.15) holds true for all k 2 N and all distinct i1, i2, : : :, ik 2 I .

We note that if A D fEi W i 2 I g is an independent class, then so is the class
A0 obtained by replacing the Ei in any subclass of A by either ;, ˝ or Ec

i . For
example, if A and B are independent, then the following product rules hold true:

P.A \ Bc/ D P.A/P.Bc/; P.Ac \ B/ D P.Ac/P.B/;
P.Ac \ Bc/ D P.Ac/P.Bc/:
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2.4.2 Independent Random Variables

Let .˝;F ; P / be a probability space. A collection fX1;X2; : : : ; Xng of random
variables on ˝ is said to be independent if the events E1 D X�1.B1/, E2 D
X�1.B2/, : : :, En D X�1.Bn/ satisfy condition (2.15) for every choice of Borel
sets B1, B2, : : :, Bn 2 B.R/:

P
�
Xi1 2 Bi1 ; Xi2 2 Bi2 ; : : : ; Xik 2 Bik

� D
kY

jD1
P
�
Xij 2 Bij

�
: (2.16)

A collection C D fXi W i 2 I g of random variables on ˝ , where I is a finite
or infinite index set, is said to be independent if every finite subcollection of C is
independent, that is, if condition (2.16) holds true for all k 2 N and all distinct i1,
i2, : : :, ik 2 I .

For any finite sequence fX1;X2; : : : ; Xng of random variables on˝ , we consider
.X1;X2; : : : ; Xn/ as a map of ˝ into Rn

.X1;X2; : : : ; Xn/ W ˝ �! Rn;

and define the image measure P.X1;X2;:::;Xn/ on .Rn;B.Rn// by the formula

P.X1;X2;:::;Xn/.B/ D P
�
.X1;X2; : : : ; Xn/

�1.B/
�

for every Borel set B 2 B.Rn/:

The probability measure P.X1;X2;:::;Xn/ on Rn is called the joint distribution of
.X1;X2; : : : ; Xn/.

The next theorem gives a characterization of independent random variables in
terms of their joint distributions:

Theorem 2.17. A collection fXi W i 2 I g of random variables on ˝ is
independent if and only if the joint distribution P.X˛1 ;X˛2 ;:::;X˛n / of any finite set
fX˛1;X˛2 ; : : : ; X˛ng is the product of their individual distributions:

P.X˛1 ;X˛2 ;:::;X˛n / D
nY

jD1
PX˛j on B.Rn/: (2.17)

Proof. First, we have, for all Borel sets B1, B2, : : :, Bn 2 B.R/,

P.X˛1 ;X˛2 ;:::;X˛n /.B1 � B2 : : : � Bn/ (2.18)

D P �.X˛1; X˛2 ; : : : ; X˛n/�1.B1 � B2 : : : � Bn/
�

D P �X�1
˛1
.B1/ \X�1

˛2
.B2/\ : : : \X�1

˛n
.Bn/

�
:
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(1) The “only if” part: If we define a measurable rectangle (Borel cylinder set) to
be a set of the form

B1 �B2 � : : : �Bn; B1; B2; : : : ; Bn 2 B.R/;

then it follows that the collection A of finite disjoint unions of rectangles forms an
algebra and further that A generates the �-algebra B.Rn/: �.A/ D B.Rn/.

If fXig is independent, then it follows from (2.18) that

P.X˛1 ;X˛2 ;:::;X˛n /.B1 � B2 : : : � Bn/ (2.19)

D
nY

jD1
P

X�1
˛j
.Bj /

�
D

nY

jD1
PX˛j .Bj /

D
0

@
nY

jD1
PX˛j

1

A .B1 � B2 � : : : � Bn/ :

We let

M D
8
<

:
A 2 B.Rn/ W P.X˛1 ;X˛2 ;:::;X˛n /.A/ D

nY

jD1
PX˛j .A/

9
=

;
:

Then we find from (2.19) that A 	 M. Moreover, it is easy to see that M is a
d -system, since P.X˛1 ;X˛2 ;:::;X˛n / and

Qn
jD1 PX˛j are measures on B.Rn/. Therefore,

by applying the Dynkin class theorem (Corollary 2.5) we obtain that

�.A/ 	M;

so that

M D B.Rn/:

This proves the desired equality (2.17).

(2) The “if” part: If (2.17) holds true, then we have, by (2.18) and (2.19),

P
�
X�1
˛1
.B1/\X�1

˛2
.B2/ \ : : : \X�1

˛n
.Bn/

�

D P
�
.X˛1; X˛2 ; : : : ; X˛n/

�1.B1 �B2 : : : � Bn/
�

D P.X˛1 ;X˛2 ;:::;X˛n /.B1 � B2 : : : � Bn/
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D
0

@
nY

jD1
PX˛j

1

A .B1 � B2 � : : : � Bn/

D
nY

jD1
PX˛j .Bj / D

nY

jD1
P

X�1
˛j
.Bj /

�
;

or equivalently,

P .X˛1 2 B1;X˛2 2 B2; : : : ; X˛n 2 Bn/ D
nY

jD1
P
�
X˛j 2 Bj

�
:

This proves that fXig is independent.
The proof of Theorem 2.17 is complete.

2.4.3 Independent Algebras

Let .˝;F ; P / be a probability space. A collection A D fA1;A2; : : : ;Ang of
subalgebras of F is said to be independent if we have, for any event Ei 2 Ai ,

P .E1 \E2 \ : : : \En/ D P.E1/P.E2/ : : : P.En/: (2.20)

A collection A D fAi W i 2 I g of subalgebras of F , where I is an infinite index set,
is said to be independent if every finite subcollection of A is independent, that is, if
condition (2.20) holds true for all n 2 N and all distinct i1, i2, : : :, in 2 I :

P .Ei1 \Ei2 \ : : : \Ein/ D P.Ei1/P.Ei2/ : : : P.Ein/; Eik 2 Aik :

If A is an event of ˝ , we define the �-algebra �.A/ as follows:

�.A/ D f;; A;Ac;˝g :

Then it is easy to see that a collection fA1;A2; : : : ; Ang of events is independent if
and only if the collection f�.A1/; �.A2/; : : : ; �.An/g of �-algebras is independent.

We recall that a collection fX1;X2; : : : ; Xng of random variables on ˝ is
independent if the events E1 D X�1

1 .B1/, E2 D X�1
2 .B2/, : : :, En D X�1

n .Bn/

satisfy condition (2.20) for every choice of Borel sets B1, B2, : : :, Bn 2 B.R/:

P .X1 2 B1;X2 2 B2; : : : ; Xn 2 Bn/ D
nY

jD1
P
�
Xj 2 Bj

�
: (2.21)
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If X is a random variable on ˝ , we define the �-algebra �.X/ by the formula

� .X/ D ˚X�1.A/ W A 2 B.R/
�
:

Then we have the following theorem:

Theorem 2.18. Let C D fXi W i 2 I g be a collection of random variables on ˝ ,
where I is a finite or infinite index set. Then the collection C is independent if and
only if the collection A D f� .Xi/ W i 2 I g of �-algebras is independent.

Proof. The proof is divided into two steps.

Step 1: The “only if” part: Let fXi1; Xi2 ; : : : ; Xing be an arbitrary finite subcollec-
tion of A. If Eik D X�1

ik
.Bik /, Bik 2 B.R/, is an element of �

�
Xik

�
, we obtain

from (2.21) that

P
�\nkD1Eik

� D P
�\nkD1X�1

ik
.Bik /

�

D P .Xi1 2 Bi1 ; Xi2 2 Bi2 ; : : : ; Xin 2 Bin/

D
nY

kD1
P
�
Xik 2 Bik

� D
nY

kD1
P
�
X�1
ik
.Bik /

�

D
nY

kD1
P
�
Eik
�
:

This proves the independence of the collection f�.Xi1/; �.Xi2/; : : : ; �.Xin/g of
�-algebras.

Step 2: The “if” part: Let fXi1; Xi2; : : : ; Xing be an arbitrary finite subcollection
of A. For any Borel set Bik 2 B.R/, it follows that

Eik D X�1
ik
.Bik / 2 �

�
Xik

�
:

Hence we have, by the independence of f�.Xi1/; �.Xi2/; : : : ; �.Xin/g,

P .Xi1 2 Bi1 ; Xi2 2 Bi2 ; : : : ; Xin 2 Bin/

D P
�\nkD1X�1

ik
.Bik /

� D P �\nkD1Eik
� D

nY

kD1
P
�
Eik
�

D
nY

kD1
P
�
Xik 2 Bik

�
:

This proves the independence of the collection fXi1; Xi2; : : : ; Xing of random
variables.

The proof of Theorem 2.18 is complete.
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The next theorem asserts that functions of independent random variables are
independent:

Theorem 2.19. Let 'i;j W Rki ! R be Borel measurable functions for 1 � i � n,
1 � j � `i , and let Xi W ˝ ! Rki be random variables for 1 � i � n. If the
random variables fX1;X2; : : : ;Xng are independent, then the random variables Yi ,
defined by the formula

Yi D .'i;1.Xi/; 'i;2.Xi/; : : : ; 'i;`i .Xi// for every 1 � i � n;

are independent.

Proof. First, we have, for any set B 2 B.R/,

'�1
i;j .B/ 2 B.Rki /; 1 � i � n; 1 � j � `i ;

Y�1
i .B/ D X�1

i


'�1
i;j .B/

�
; 1 � i � n;

and so

�.Yi / D
˚
Y�1
i .B/ W B 2 B.R/

� 	 � .Xi / D X�1
i .A/ W A 2 B.Rki /:

This proves that �.Yi / is a sub-�-algebra of � .Xi / for 1 � i � n.
Now we assume that the random variables fX1;X2; : : : ;Xng are independent.

Then it follows from an application of Theorem 2.18 that the collection

f�.X1/; �.X2/; : : : ; �.Xn/g

is independent. Hence we find that the collection f�.Y1/; �.Y2/; : : : ; �.Yn/g of
�-algebras is independent, since �.Yi / 	 � .Xi / for 1 � i � n. Therefore, by
applying again Theorem 2.18, we obtain that the random variables fY1;Y2; : : : ;Yng
are independent.

The proof of Theorem 2.19 is complete.

We give examples of operations which preserve the independence of algebras:

Theorem 2.20. Let A D fAi W i 2 I g be a collection of sub-algebras of F , where I
is a finite or infinite index set. If the collection A is independent, then the collection
B D f� .Ai / W i 2 I g of �-algebras is independent. Here � .Ai / is the �-algebra
generated by the algebra Ai .

Proof. We have only to prove that if every finite subcollection

fA1;A2; : : : ;Ang

of A is independent, then the collection f�.A1/; �.A2/; : : : ; �.An/g of �-algebras
is independent.
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Let �i be an arbitrary element of �.Ai / with 1 � i � n. By Theorem 2.6, for
any positive " > 0 we can find a subset Ai 2 Ai such that

P .�i 4 Ai/ < "

2n
for every 1 � i � n;

where

A4 B D .A n B/[ .B n A/

is the symmetric difference of A and B . Then we have the inequalities

ˇ
ˇP
�\niD1�i

� � P �\niD1Ai
�ˇˇ � P ��\niD1�i

�4 �\niD1Ai
��

(2.22)

�
nX

iD1
P .�i 4 Ai/ < "

2
;

and
ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
P .�i /�

nY

iD1
P .Ai /

ˇ
ˇ
ˇ
ˇ
ˇ
�

nX

iD1
jP .�i/� P .Ai /j (2.23)

�
nX

iD1
P .�i 4 Ai/ < "

2n
� n D "

2
:

However, we have

P
�\niD1Ai

� D
nY

iD1
P .Ai / for all Ai 2 Ai ; (2.24)

since the collection fA1;A2; : : : ;Ang is independent.
Therefore, we obtain from inequalities (2.22), (2.23) and formula (2.24) that

ˇ
ˇP
�\nkD1�i

� � P �\nkD1�i

�ˇˇ

� ˇˇP �\nkD1�i

� � P �\nkD1Ai
�ˇˇC

ˇ
ˇ
ˇ
ˇ
ˇ
P
�\nkD1Ai

� �
nY

kD1
P .�i /

ˇ
ˇ
ˇ
ˇ
ˇ

D ˇ
ˇP
�\nkD1�i

� � P �\nkD1Ai
�ˇˇC

ˇ
ˇ
ˇ
ˇ
ˇ

nY

kD1
P .Ai /�

nY

kD1
P .�i /

ˇ
ˇ
ˇ
ˇ
ˇ

< ":
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Since " is arbitrary, we have, for each �i 2 �.Ai / with 1 � i � n,

P
�\niD1�i

� D P �\niD1�i

�
:

This proves the independence of the collection f�.A1/; �.A2/; : : : ; �.An/g.
The proof of Theorem 2.20 is complete.

Theorem 2.21. Let A D fAi W i 2 I g be a collection of subalgebras of F , where
I is a finite or infinite index set. If the collection A is independent and if J1, J2, : : :,
Jp are disjoint subsets of I , then the collection

˚
�
�[j2J1Aj

�
; �

�[j2J2Aj

�
; : : : ; �

�[j2JpAj

��

of �-algebras is independent.

Proof. We consider the case where

J1 D fi1; i2; : : :g :

We let

QA D
n
\kjD1Aij W Aij 2 Aii ; k D 1; 2; : : :

o
;

and define an algebra A as follows:

A D the collection of finite unions of members of QA:

Then it is easy to see that

Aj 	 A for all j 2 J1;
�
�[j2J1Aj

� D �.A/:

First, we show that if QJ D f`1; `2; : : : ; `ng such that QJ \ J1 D ;, then the
collection

f�.A/; A`1 ; A`2 ; : : : ; A`ng
is independent. By Theorem 2.20, it suffices to show that the collection

fA;A`1 ;A`2 ; : : : ;A`ng
of subalgebras is independent.

We remark that every element of A can be expressed as a finite disjoint union of
members of QA. Now let A be an arbitrary element of A such that

A D B1 C B2 C : : :CBm;
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where

Bi D \kjD1Aij 2 QA; Aij 2 Aii :

Then we have, for each A`k 2 A`k with `k 2 QJ ,

P
�
Bi \\niD1A`i

� D P
�\i2J1[ QJAi

� D
Y

i2J1[ QJ
P .Ai / (2.25)

D P.Bi / �
nY

iD1
P .A`i / ;

since the collection fAi W i 2 J1 [ QJ g is independent.
Therefore, we obtain from formula (2.25) that

P
�
A \\niD1A`i

� D
mX

jD1
P
�
Bj \\niD1A`i

�

D
mX

jD1
P.Bj / �

nY

iD1
P .A`i /

D P.A/

nY

iD1
P .A`i / for all A 2 A and A`k 2 A`k :

This proves the independence of the collection fA;A`1 ;A`2 ; : : : ;A`ng.
By repeating this process, we can prove that the collection

˚
�
�[j2J1Aj

�
; �

�[j2J2Aj

�
; : : : ; �

�[j2JpAj

��

is independent.
The proof of Theorem 2.21 is complete.

The next example asserts that vector-valued functions of independent random
variables are independent:

Example 2.22. Let fX1;X2; : : : ; Xng be a collection of independent random vari-
ables on ˝ . If we let

Y0 D .X1; : : : ; Xk1/ ;
Y1 D .Xk1C1; : : : ; Xk2Ck2/ ;

:::

Y` D
�
Xk1C:::Ck`C1; : : : ; Xn

�
;

then the collection fY0;Y1; : : : ;Yng is independent.
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Proof. If we let

Ai D �.Xi / D
˚
X�1
i .A/ W A 2 B.R/

�
for every 1 � i � n;

it follows from an application of Theorem 2.18 that the collection

fX1;X2; : : : ; Xng

of random variables is independent if and only if the collection

fA1;A2; : : : ;Ang

of �-algebras is independent. Moreover, by applying Theorem 2.21 to our situation
we find that the collection

˚
� .A1; : : : ;Ak1 / ; � .Ak1C1; : : : ;Ak2Ck2/ ; : : : ; �

�
Ak1C:::Ck`C1; : : : ;An

��

of �-algebras is independent. However, it is easy to see that

�.Y0/ D � .A1; : : : ;Ak1/ ;

�.Y1/ D � .Ak1C1; : : : ;Ak2Ck2/ ;
:::

�.Y`/ D �
�
Ak1C:::Ck`C1; : : : ;An

�
:

Therefore, by applying again Theorem 2.18, we obtain that the collection

fY0;Y1; : : : ;Yng

is independent.
The proof of Example 2.22 is complete.

2.5 Conditional Probabilities

In this section we introduce conditional probabilities which play a crucial role in the
study of Markov processes in Chap. 9. We begin with the definition of a conditional
probability:

Definition 2.23. Let .˝;F ; P / be a probability space. Let B be a sub-�-algebra of
F and � 2 F . A random variable Y on ˝ is called a version of the conditional
probability of � for given B if it satisfies the following two conditions (CP1) and
(CP2):



72 2 Elements of Probability Theory

(CP1) The function Y is B-measurable.
(CP2) P.�\�/ D E.Y I�/ for every� 2 B. That is, we have, for every� 2 B,

P.�\�/ D
Z

�

Y.!/ dP: (2.26)

We shall write

Y D P.� j B/:

The existence of P.� j B/ is based on the Radon–Nikodým theorem [Fo2,
Theorem 3.8]. Indeed, by applying the Radon–Nikodým Theorem we can find a
non-negative, B-measurable function f .!/ on ˝ such that

P.� \�/ D
Z

�

f .!/ dP for all � 2 B:

Moreover, if g.!/ is another B-measurable function on ˝ such that

P.� \�/ D
Z

�

g.!/ dP for all � 2 B;

then it follows that f .!/ D g.!/ almost everywhere in ˝ . That is, the conditional
probability P.� j B/ can be determined up to a set in B of measure zero.

Now let X be a random variable on the probability space .˝;F ; P /. If we let

� D X�1 ..�1; x�/ D f! 2 ˝ W X.!/ � xg D fX � xg for every x 2 R;

and consider the conditional probability

P.� j B/ D P.X � x j B/;

then we have the following lemma:

Lemma 2.24. The conditional probabilities

P.X � x j B/; x 2 R;

enjoy the following three properties (CD1)–(CD3):

(CD1) x < y H) P.X � x j B/.!/ � P.X � y j B/.!/ for almost all
! 2 ˝ (monotonicity).

(CD2) limk!C1 P.X � k j B/.!/ D 1 for almost all ! 2 ˝ .
(CD3) limk!�1 P.X � k j B/.!/ D 0 for almost all ! 2 ˝ .
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Proof. (i) The proof of property (CD1): If we let

� D f! 2 ˝ W P.X � x j B/.!/ > P.X � y j B/.!/g ;
it follows that � 2 B. Assume, to the contrary, that

P.�/ > 0:

Then we obtain from condition (2.26) that

P.fX � xg \�/ D
Z

�

P.X � x j B/.!/ dP

>

Z

�

P.X � y j B/.!/ dP D P.fX � yg \�/;

so that

P.fX � xg \�/ > P.fX � yg \�/:
This is a contradiction, since we have

x < y H) fX � xg \� 	 fX � yg \�:

(ii) The proof of property (CD2): By property (CD1), it follows that the sequence
fP.X � k j B/.!/g is increasing with respect to k, for almost all ! 2 ˝ .
Hence we obtain that the limit

lim
k!1P.X � k j B/.!/

exists for almost all ! 2 ˝ . For any given " > 0, we let

�" D
	

! 2 ˝ W lim
k!1P.X � x j B/.!/ � 1 � "




:

Then it follows that �" 2 B, and further from condition (2.26) that

P.�"/ D lim
k!1P.fX � kg \�"/ D lim

k!1E.P.X � k j B/I�"/

D
Z

�"

lim
k!1P.X � k j B/.!/ dP � .1 � "/P.�"/:

This proves that P.�"/ D 0.
Since " > 0 is arbitrary, we find that

lim
k!1P.X � k j B/.!/ D 1

for almost all ! 2 ˝ .
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(iii) The proof of property (CD3): Similarly, by letting

�" D
	

! 2 ˝ W lim
k!�1P.X � x j B/.!/ � "




;

we can prove that

lim
k!�1P.X � k j B/.!/ D 0

for almost all ! 2 ˝ .
The proof of Lemma 2.24 is complete.

Moreover, we can prove the following theorem:

Theorem 2.25. Let X be a random variable on .˝;F ; P /. If B is a sub-�-algebra
of F , then there exists a function �B on˝ �B.R/ which satisfies the following two
conditions (1) and (2):

(1) �B.!; �/ is a probability measure on B.R/ for almost all ! 2 ˝ .
(2) For everyA 2 B.R/,�B.�; A/ is a version of the conditional probabilityP.X 2

A j B/. In particular, we have

P ..X 2 A/ \�/ D
Z

�

�B.!;A/ dP for all � 2 B:

Moreover, the function �B is uniquely determined in the sense that any two such
functions are equal with respect to P . More precisely, if a function Q�B on˝�B.R/
satisfies conditions (1) and (2), then we have, for almost all ! 2 ˝ ,

Q�B.!;A/ D �B.!;A/; A 2 B.R/: (2.27)

Proof. The proof is divided into four steps.

Step 1: First, we prove the uniqueness of the function �B, that is, we prove
equality (2.27) for almost all ! 2 ˝ .
To do this, we let

M D fA 2 B.R/ W Q�B.!;A/ D �B.!;A/ for almost all ! 2 ˝g :

It suffices to show that M D B.R/.
If we let

E D the collection of sets of the form .x; y� or .x;1/ or ; (2.28)

where �1 � x < y <1;
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then it is easy to see that E is an elementary family. Hence we find that the
collection A of finite disjoint unions of members in E is an algebra, and further
that the �-algebra �.A/ generated by A is B.R/.
For every rational number r 2 Q, it follows that .�1; r� 2 B.R/. Hence we
have, for almost all ! 2 ˝ ,

Q�B.!; .�1; r�/ D �B.!; .�1; r�/: (2.29)

By the right-continuity of measures, we obtain from (2.29) that, for all x 2 R,

Q�B.!; .�1; x�/ D lim
rn2Q
rn#x
Q�B.!; .�1; rn�/ D lim

rn2Q
rn#x

�B.!; .�1; rn� (2.30)

D �B.!; .�1; x�/:

Moreover, we have, for all .x;1/ D R n .�1; x� with x 2 R,

Q�B.!; .x;1// D Q�B.!;R n .�1; x�/ D Q�B.!;R/ � Q�B.!; .�1; x�/
D 1 � Q�B.!; .�1; x�/ D 1 � �B.!; .�1; x�/ (2.31)

D �B.!;R n .�1; x�/ D Q�B.!; .x;1//;

and, for all .x; y� D .�1; y� n .�1; x� with y > x,

Q�B.!; .x; y�/ D Q�B.!; .�1; y� n .�1; x�/ (2.32)

D Q�B.!; .�1; y�/ � Q�B.!; .�1; x�/
D �B.!; .�1; y�/ � �B.!; .�1; x�/
D �B.!; .x; y�/:

Hence, we obtain from (2.30) to (2.32) that A 	M.
However, it is easy to see that M is a d -system, since Q�B and �B are
probability measures on B.R/. Therefore, by applying the Dynkin class theorem
(Corollary 2.5) we obtain that

B.R/ D �.A/ 	M 	 B.R/;

so that

M D B.R/:

This proves the desired equality (2.27).
Step 2: We prove the existence of the function �B . The proof is divided into two

steps.
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Step 2-1: For every r 2 Q, we define a B-measurable function GB.r/ by the
formula

GB.r/.!/ D P .X � r j B/ .!/ for almost all ! 2 ˝:
For each integer n 2 N, we let

˝n D
	

! 2 ˝ W GB

�
k

n

�

.!/ � GB

�
k C 1
n

�

.!/ for all k 2 Z;

lim
k!1GB

�
k

n

�

.!/ D 1; lim
k!�1GB

�
k

n

�

.!/ D 0



:

Then it follows from an application of Lemma 2.24 that

(
˝n 2 B for all n 2 N;

P .˝n/ D 1 for all n 2 N;

so that
( Q̋ DT1

nD1 ˝n 2 B;
P. Q̋ / D 1:

Hence we can define a function FB on ˝ � R as follows:

FB.!; x/ D
8
<

:

limr2Q
r#x

GB.r/.!/ if ! 2 Q̋ ;
0 if ! … Q̋ :

Then it is easy to see that FB.!; �/ is a distribution function for each ! 2 Q̋
and that FB.�; x/ is B-measurable for each x 2 R. Moreover, it follows from
an application of the monotone convergence theorem [Fo2, Theorem 2.14]
that

P.fX � xg \�/ D lim
r2Q
r#x

P.fX � rg \�/ D lim
r2Q
r#x

Z

�

GB.r/.!/ dP

D
Z

�

FB.!; x/ dP for every� 2 B:

This proves that FB.�; x/ is a version of the conditional probability P.X �
x j B/.

Step 2-2: We note that the distribution function FB.!; �/ determines a proba-
bility measure �B.!/ on R for each ! 2 Q̋ . In particular, we have

FB.!; x/ D �B.!/ ..�1; x�/ ; x 2 R:
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Therefore, for everyA 2 B.R/ we can define a function �B.�; A/ on˝ by the
formula

�B.!;A/ D
(
�B.!/.A/ if ! 2 Q̋ ;
0 if ! … Q̋ : (2.33)

We show that the function �B.�; A/ is B-measurable for every A 2 B.R/. To
do this, we let

L D fA 2 B.R/ W �B.�; A/ is B-measurableg :

It suffices to show that L D B.R/.

(a) First, it follows that .�1; y� 2 L for all y 2 R, since the function

�B.!; .�1; y�/ D
(
�B.!/ ..�1; y�/ D FB.!; y/ if ! 2 Q̋ ;
0 if ! … Q̋

is B-measurable.
(b) Secondly, it follows that .x; y� 2 L for all y > x, since we have, for

.x; y� D .�1; y� n .�1; x�,

�B.!; .x; y�/ D �B.!; .�1; y�/ � �B.!; .�1; x�/:

(c) Thirdly, it follows that .x;1/ 2 L for all x 2 R, since we have

�B.!; .x;1// D
1X

jD0
�B.!; .x C j; x C j C 1�/:

Therefore, we find that the elementary family E defined by formula (2.28)
is contained in L and further that the collection A of finite disjoint unions
of members in E is an algebra contained in L.

(d) However, it is easy to see that L is a d -system, since �B.!; �/ are
probability measures on B.R/. Therefore, by applying the Dynkin class
theorem (Corollary 2.5) we obtain that

B.R/ D �.A/ 	 L 	 B.R/;

so that

L D B.R/:
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Step 2-3: Finally, we prove that �B.�; A/ is a version of the conditional
probability P.X 2 A j B/. It remains to show that we have, for every� 2 B,

P..X 2 A/\�/ D
Z

�

�B.!;A/ dP: (2.34)

To do this, we let

N D fA 2 B.R/ W Equation (2.34) holds true for all � 2 Bg :

It suffices to show that N D B.R/.
By arguing just as in Step 2-1, we obtain that E 	 A 	 N and further that
N is a d -system. Indeed, if fAng1nD1 is an increasing sequence of members of
N , then it follows from an application of the monotone convergence theorem
[Fo2, Theorem 2.14] that

P
�
.X2 [1

nD1 An/\�
� D lim

n!1P ..X2An/ \�/ D lim
n!1

Z

�

�.!;An/ dP

D
Z

�

�B.!;[1
nD1An/ dP:

This proves that the union [1
nD1An belongs to N . Therefore, by applying the

Dynkin class theorem (Corollary 2.5) we obtain that

B.R/ D �.A/ 	 N 	 B.R/;

so that

N D B.R/:

Summing up, we have proved that �B.!;A/ D P.X 2 A j B/.!/ for every
A 2 B.R/.

Now the proof of Theorem 2.25 is complete.

Definition 2.26. The function�B on˝�B.R/ is called a version of the conditional
probability of X with respect to B, and will be denoted by P.X 2 � j B/.
If B is generated by the random variables X1, X2, : : :, Xn, that is, if B D
�.X1;X2; : : : ; Xn/, then P.X 2 � j B/ will be denoted as follows:

P .X 2 � j X1;X2; : : : ; Xn/ D P.X 2 � j �.X1;X2; : : : ; Xn//:

The next theorem is an Rn-version of Theorem 2.25:
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Theorem 2.27. Let X be a random variable and let X D .X1;X2; : : : ; Xn/ be
a vector-valued random variable on the probability space .˝;F ; P /. Then there
exists a function  .x;A/ on Rn�B.R/ which satisfies the following two conditions
(i) and (ii):

(i)  .x; �/ is a probability measure on B.R/ for �X-almost all x 2 Rn. Here �X is
the joint distribution of X D .X1;X2; : : : ; Xn/.

(ii) For every A 2 B.R/,  .�; A/ is a Borel measurable function on Rn and we
have, for almost all ! 2 ˝ ,

 .X1.!/;X2.!/; : : : ; Xn.!/; �/ (2.35)

D P .X 2 � j X1;X2; : : : ; Xn/ .!/:

Moreover, the function  is uniquely determined in the sense that any two of
them are equal with respect to �X. More precisely, if a function Q on Rn�B.R/
satisfies conditions (i) and (ii), then we have, for �X-almost all x 2 Rn,

Q .x;A/ D  .x;A/; A 2 B.R/: (2.36)

Proof. The proof is divided into three steps.

Step 1: First, we construct a function  by using the function �B in Theo-
rem 2.25.
Since B D �.X1;X2; : : : ; Xn/ and �B.�; A/ is B-measurable for every A 2
B.R/, it follows from an application of Theorem 2.13 that there exists a Borel
measurable function ˚.�; A/ on Rn such that

˚ .X1.!/;X2.!/; : : : ; Xn.!/; A/ (2.37)

D �B.!;A/ D
(
�B.!/.A/ if ! 2 Q̋ ;
0 if ! … Q̋ :

Here we recall that �B.!/ is a probability measure on R for every ! 2 Q̋ .
If we let

G.x; y/ D ˚.x; .�1; y�/; x 2 Rn; y 2 R;

it follows that the functionG.x; y/ D ˚.x; .�1; y�/ is a distribution function of y
for every x 2 X. Q̋ /. Hence, if we let

� D
	

x 2 Rn W G.x; r/ � G.x; r 0/ for all r < r 0 with r , r 0 2 Q;

lim
r2Q

r!�1
G.x; r/ D 0; lim

r 02Q
r 0!1

G.x; r 0/ D 1



;
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then we have

� 2 B.Rn/;

X. Q̋ / 	 �:

If we define a function F.x; y/ on Rn �R by the formula

F.x; y/ D
8
<

:

limr2Q
r#y

G.x; r/ if x 2 � ;
0 if x … � ;

we have the following four assertions (a)–(d):

(a) For each x 2 Rn, the function

y 7�! F.x; y/

is right-continuous on R.
(b) For each y 2 R, the function

x 7�! F.x; y/

is Borel measurable on Rn.
(c) For each x 2 � , the function F.x; y/ is a distribution function of y, and

F.x; y/ D G.x; y/ for all x 2 X. Q̋ /.
(d) For each x 2 � , the function F.x; �/ determines a probability measure  .x; �/

on R. In particular, we have, for all x 2 X. Q̋ /,

 .x; �/ D ˚.x; �/:

Moreover, if we define a function  .x;A/ by the formula

 .x;A/ D
(
˚.x;A/ if x 2 � ;
0 if x 62 � ;

then we have

 .X.!/; A/ D ˚.X.!/; A/ for all ! 2 ˝:

Indeed, it suffices to note that

 .x;A/ D ˚.x;A/ D 0 for all x 2 X. Q̋ c/ 	 � c:
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Therefore, we obtain from formula (2.37) that, for almost all ! 2 ˝ ,

 .X1.!/;X2.!/; : : : ; Xn.!/; A/ D ˚.X.!/; A/ D �B.!;A/

D P .X 2 A j X1;X2; : : : ; Xn/ .!/:

This proves the desired equality (2.35).

Step 2: Secondly, we show that .x;A/ is a Borel measurable function of x 2 Rn

for every A 2 B.R/. To do this, we let

M D fA 2 B.R/ W  .�; A/ is Borel measurable on Rng :

Then, by arguing just as in the proof of Theorem 2.25 we can prove that

M D B.R/:

Moreover, since  .x; �/ is a probability measure on R for each x 2 � and since
X. Q̋ / 	 � , it follows that

1 D P. Q̋ / � P �X�1.� /
� D �X.� / � 1:

Therefore, we have proved that  .x; �/ is a probability measure on B.R/ for �X-
almost all x 2 Rn.

Step 3: Finally, we prove the uniqueness of the function  .

Assume that we have, for every A 2 B.R/,

 .X1.!/;X2.!/; : : : ; Xn.!/; A/ D P .X2A j X1;X2; : : : ; Xn/ .!/ (2.38)

D Q .X1.!/;X2.!/; : : : ; Xn.!/; A/:

If we let

F.x; y/ D  .x; .�1; y�/ ; x 2 Rn; y 2 R;

QF .x; y/ D Q .x; .�1; y�/ ; x 2 Rn; y 2 R;

then we obtain that the functions F.x; y/ and QF .x; y/ are distribution functions of
y for �X-almost all x 2 Rn.

For each y 2 Q, we let

B1 D
˚
x 2 Rn W F.x; y/ > QF .x; y/� :

Then it follows that B1 2 B.Rn/. Moreover, we have, by assertion (2.38) with
x WD X.!/ and A WD .�1; y�,
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Z

B1

QF .x; y/ d�X.x/ D
Z

.X2B1/
Q .X.!/; .�1; y�/ dP

D P ..X 2 .�1; y�/ \ .X 2 B1//

D
Z

.X2B1/
 .X.!/; .�1; y�/ dP D

Z

B1

F.x; y/ d�X.x/;

so that

0 D
Z

B1

�
F.x; y/ � QF .x; y/� d�X.x/:

This proves that

�X.B1/ D 0;

since the integrand is positive on B1.
Similarly, if we let

B2 D
˚
x 2 Rn W QF .x; y/ > F.x; y/� ;

it follows that

�X.B2/ D 0:

Therefore, we obtain that

�X
�˚
x 2 Rn W F.x; y/ ¤ QF .x; y/�� D �X .B1 [ B2/ D 0 for all y 2 Q:

Hence we have

�X
�[r2Q

˚
x 2 Rn W F.x; r/ ¤ QF .x; r/��

�
X

r2Q

�X
�˚
x 2 Rn W F.x; r/ ¤ QF .x; r/�� D 0:

Namely, we have

�X
�˚
x 2 Rn W F.x; r/ D QF .x; r/ for all r 2 Q

��

D �X
�\r2Q

˚
x 2 Rn W F.x; r/ D QF .x; r/��

D �X

�[r2Q
˚
x 2 Rn W F.x; r/ ¤ QF .x; r/��c

�
D 1:
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Moreover, since F.x; y/ and QF .x; y/ are right-continuous functions of y, we have

F.x; y/ D lim
r2Q
r#y

F.x; r/ D lim
r2Q
r#y
QF .x; r/ D QF .x; y/ for every y 2 R:

This proves that

F.x; �/ D QF .x; �/ for �X-almost all x 2 Rn:

Summing up, we have proved the desired assertion (2.36).
The proof of Theorem 2.27 is complete.

Definition 2.28. The function  on Rn � B.R/ is called a conditional distribution
of X with respect to .X1;X2; : : : ; Xn/. We shall write

P .X 2 A j X1 D x1;X2 D x2; : : : ; Xn D xn/ D  .x1; x2; : : : ; xn; A/;
A 2 B.R/:

Example 2.29. Let Y be a random variable and let X D .X1;X2; : : : ; Xn/ be a
vector-valued random variable on the probability space .˝;F ; P /. Then Y and X
are independent if and only if we have, for �X-almost all x 2 Rn,

P .Y 2 A j X1 D x1;X2 D x2; : : : ; Xn D xn/ D P.Y 2 A/; (2.39)

A 2 B.R/:

Proof. (i) The “if” part: Since we have

B D � .X/ D ˚X�1.B/ W B 2 B.Rn/
�
;

it follows from formula (2.35) and condition (2.39) that

 .x;A/ D P .Y 2 A j X D x/ D P.Y 2 A/; A 2 B.R/:

Hence we have, for every B 2 B.Rn/,

P ..Y 2 A/ \ .X 2 B// D
Z

.X2B/
P .Y 2 A j X/ .!/ dP

D
Z

B

 .x;A/ d�X D
Z

B

P.Y 2 A/ d�X

D P.Y 2 A/�X.B/ D P.Y 2 A/P.X 2 B/:

This proves that the random variables Y and X are independent.
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(ii) The “only if” part: If Y and X are independent variables, it follows from an
application of Theorem 2.18 that the �-algebras �.Y / and B D � .X/ are
independent. Hence we have, for every B 2 B.Rn/,

P ..Y 2 A/\ .X 2 B// D P.Y 2 A/P.X 2 B/ D
Z

.X2B/
P .Y 2 A/ dP:

This proves that

P .Y 2 A j X/ .!/ D P.X 2 A/;
or equivalently,

P .Y 2 A j X D x/ D P.Y 2 A/ for �X-almost all x 2 Rn:

This proves condition (2.39).

Example 2.30. Let X and Y be random variables such that the joint distribution of
.X; Y / has a density f .x; y/. Then a version of the conditional distribution of Y
with respect to X has a density function

f .x; y/
R1

�1 f .x; y/ dy
: (2.40)

Proof. We have, for all Borel sets A, B 2 B.R/,

P.X 2 B; Y 2 A/ D
Z

B

Z

A

f .x; y/ dx dy:

By taking A D R, we obtain that the distribution of X is given by the formula

P.X 2 B/ D
Z

B

�Z 1

�1
f .x; y/ dy

�

dx:

That is, the distribution � D P ıX�1 of X has a density

g.x/ D
Z 1

�1
f .x; y/ dy;

since we have

�.B/ D P ıX�1.B/ D P.X 2 B/ D
Z

B

g.x/ dx for every B 2 B.R/:

If we let


 D fx 2 R W g.x/ D 0g ;
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then we have

�.
/ D
Z




g.x/ dx D 0:

Therefore, we can define a function  .x;A/ on Rn � B.R/ by the formula

 .x;A/ D
8
<

:

1

g.x/

R
A
f .x; y/ dy if x … 
;

0 if x 2 
:

Then it follows that  .x; �/ is a probability measure on R if x … 
. Moreover, we
obtain that  is a version of the conditional distribution of Y with respect to X .
Indeed, it suffices to note that

P ..Y 2 A/ \ .X 2 B//

D
Z

B

�Z

A

f .x; y/ dy

�

dx

D
Z

Bn

g.x/ .x;A/ dx C

Z

B\


�Z

A

f .x; y/ dy

�

dx

D
Z

Bn

g.x/ .x;A/ dx D

Z

B

g.x/ .x;A/ dx D
Z

B

 .x;A/ d�

D
Z

.X2B/
 .X.!/; A/ dP for every B 2 B.R/:

Summing up, we have proved that  .x; �/ D P.Y 2 � j X D x/ has the density
function (2.40).

The proof of Example 2.30 is complete.

2.6 Conditional Expectations

The general theory of conditional expectations plays a vital role in the study of
Markov processes in Chap. 9.

Let X be a random variable on the probability space .˝;F ; P /. If B is a sub-�-
algebra of F , then it follows from an application of Theorem 2.25 that there exists
a conditional probability P.X 2 � j B/ of X with respect to B.

The next theorem will play a crucial role in the study of Markov processes in
Sect. 10.1:
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Theorem 2.31. Assume that E .jX j/ <1. Then the integral

Y.!/ D
Z 1

�1
x P.X 2 dx j B/.!/ (2.41)

exists for almost all ! 2 ˝ , and satisfies the following two conditions (CE1) and
(CE2):

(CE1) The function Y is B-measurable.
(CE2) E.X I�/ D E.Y I�/ for every � 2 B. That is, we have, for every � 2 B,

Z

�

X.!/ dP D
Z

�

Y.!/ dP:

Moreover, the function Y is uniquely determined in the sense that any two such
functions are equal with respect to P .

Proof. The proof is divided into two steps.

Step 1: First, we show that the function Y.!/ is a real-valued, B-measurable
random variable, that is, it satisfies condition (CE1).
To do this, we let

An;k D .�.k C 1/=2n;�k=2n� [ Œk=2n; .k C 1/=2n/; n; k 2 N;

�
.n/

k D X�1 .An;k/ D f! 2 ˝ W X.!/ 2 An;kg ; n; k 2 N;

and

Zn.!/ D
1X

kD0

k

2n
�
�
.n/
k

.!/ D
1X

kD0

k

2n
�An;k .X.!// ; n 2 N:

Then it is easy to see the following two assertions (a) and (b) (see Fig. 2.2):

(a) The Zn are B-measurable functions.
(b) Zn " jX j almost everywhere in ˝ .

Hence, by applying the monotone convergence theorem [Fo2, Theorem 2.14] we
obtain that

Z

˝

jX.!/j dP D lim
n!1

Z

˝

Zn.!/ dP (2.42)

D lim
n!1

1X

kD0

k

2n

Z

˝

�
�
.n/

k

.!/ dP

D lim
n!1

1X

kD0

k

2n

Z

˝

�An;k .X.!// dP
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0

k + 1
2n

2k + 1
2n+1

k

2n

Fig. 2.2 The approximations
Zn.!/ to jX.!/j

D lim
n!1

1X

kD0

k

2n
P .X 2 An;k/

D lim
n!1

1X

kD0

k

2n
P .jX j 2 Œk=2n; .k C 1/=2n// :

However, we have

Z 1

�1
jxj P.X 2 dx j B/.!/ D lim

n!1

1X

kD0

k

2n
P .X 2 An;k j B/ .!/; (2.43a)

Z

˝

�
�
.n/
k

.!/ dP D P

�
.n/

k

�
D
Z

˝

P.�
.n/

k j B/.!/ dP (2.43b)

D
Z

˝

P.X 2 An;k j B/.!/ dP:

Hence, by using the monotone convergence theorem [Fo2, Theorem 2.14] we obtain
from formula (2.42), (2.43a) and (2.43b) that

Z

˝

�Z 1

�1
jxj P.X 2 dx j B/.!/

�

dP

D
Z

˝

 

lim
n!1

1X

kD0

k

2n
P .X 2 An;k j B/ .!/

!

dP

D lim
n!1

1X

kD0

k

2n

Z

˝

P .X 2 An;k j B/ .!/ dP

D lim
n!1

1X

kD0

k

2n

Z

˝

�An;k .X.!// dP D E .jX j/ <1:



88 2 Elements of Probability Theory

This proves that the B-measurable function

Z 1

�1
jxj P.X 2 dx j B/.!/

is finite for almost all ! 2 ˝ .
Therefore, by letting

Yn.!/ D
1X

kD�1

k

2n
P .X 2 Œk=2n; .k C 1/=2n/ j B/ .!/;

we obtain from assertion (2.41) that the series

1X

kD�1

k

2n
P .X 2 Œk=2n; .k C 1/=2n/ j B/ .!/

converges absolutely for almost all ! 2 ˝ , and further that the limit function

lim
n!1Yn.!/ D lim

n!1

1X

kD�1

k

2n
P .X 2 Œk=2n; .k C 1/=2n/ j B/ .!/

D
Z 1

�1
x P.X 2 dx j B/.!/ D Y.!/

is finite for almost all ! 2 ˝ .

Step 2: Secondly, we let

Xn.!/ D
1X

kD�1

k

2n
�Œk=2n;.kC1/=2n/.X.!//; n 2 N:

Then it is easy to see the following three assertions (a)–(c):

(a) The Xn are B-measurable functions.
(b) jXnj � jX j almost everywhere in ˝ .
(c) Xn ! X almost everywhere in ˝ .

Therefore, by using the dominated convergence theorem we obtain from formu-
las (2.41) and condition (2.43a) that

E.Y I�/ D
Z

�

Y.!/ dP D
Z

�

�Z 1

�1
x P.X 2 dx j B/.!/

�

dP

D
Z

�

 

lim
n!1

1X

kD�1

k

2n
P .X 2 Œk=2n; .k C 1/=2n/ j B/ .!/

!

dP
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D lim
n!1

1X

kD�1

k

2n

Z

�

P .X 2 Œk=2n; .k C 1/=2n/ j B/ .!/ dP

D lim
n!1

1X

kD�1

k

2n
E .P .X 2 Œk=2n; .k C 1/=2n/ j B/ I�/

D lim
n!1

1X

kD�1

k

2n
P ..X 2 Œk=2n; .k C 1/=2n// \�/

D lim
n!1

1X

kD�1

k

2n

Z

�

�Œk=2n;.kC1/=2n/.X.!// dP

D lim
n!1

Z

�

Xn.!/ dP D
Z

�

X.!/ dP

D E.X I�/ for every� 2 B:

This proves that Y satisfies condition (CE2).

Step 3: Finally, we assume that a function OY satisfies conditions (CE1) and
(CE2). If we let

�1 D f! 2 ˝ W Y.!/ > OY .!/g;

it follows that �1 2 B. Moreover, since we have

E.X I�1/ D E.Y I�1/ D E. OY I�1/;

it follows that
Z

�1


Y.!/ � OY .!/

�
dP D E.Y � OY I�1/ D 0:

This proves that P.�1/ D 0, since the integrand Y � OY is positive on the set �1.
Similarly, if we let

�2 D f! 2 ˝ W OY .!/ > Y.!/g;

it follows that P.�2/ D 0.
Summing up, we have proved that

P

f! 2 ˝ W Y.!/ 6D OY .!/g

�
D P .�1 [�2/ D 0;

so that Y and OY are equal with respect to P .
Now the proof of Theorem 2.31 is complete.
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Definition 2.32. Let B be a sub-�-algebra of F . An integrable random variable Y
is called a version of the conditional expectation of X for the given B if it satisfies
conditions (CE1) and (CE2). We shall write

Y D E.X j B/ D
Z 1

�1
x P.X 2 dx j B/:

Theorem 2.33. Assume that a Borel function f .x/ on R satisfies the condition

E.jf .X/j/ D
Z

˝

jf .X.!//j dP <1:

Then we have

E.f .X/ j B/.!/ D
Z 1

�1
f .x/ P.X 2 dx j B/.!/ (2.44)

for almost all ! 2 ˝:

Proof. First, by arguing just as in Theorem 2.31, we obtain that the right-hand side
of (2.44)

Z 1

�1
f .x/ P.X 2 dx j B/.!/

D lim
n!1

1X

kD�1

k

2n
P .f .X/ 2 Œk=2n; .k C 1/=2n/ j B/ .!/

is B-measurable and finite for almost all ! 2 ˝ . Indeed, it suffices to note that

Z

˝

�Z 1

�1
jf .x/j P.X 2 dx j B/.!/

�

dP

D lim
n!1

1X

kD0

k

2n

Z

˝

P .f .X/ 2 An;k j B/ .!/ dP D E .jf .X/j/ <1:

Moreover, by using the dominated convergence theorem we have

E.f .X/I�/

D lim
n!1

1X

kD�1

k

2n

Z

�

P .f .X/ 2 Œk=2n; .k C 1/=2n/ j B/ .!/ dP

D lim
n!1

1X

kD�1

k

2n
P
��
X 2 f �1Œk=2n; .k C 1/=2n/� \��
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D lim
n!1

1X

kD�1

k

2n
E
�
P
�
X 2 f �1Œk=2n; .k C 1/=2n/ j B� I��

D E
 

lim
n!1

1X

kD�1

k

2n
P .f .X/ 2 Œk=2n; .k C 1/=2n/ j B/ I�

!

D E
�Z 1

�1
f .x/ P.X 2 dx j B/I�

�

for every� 2 B:

This proves that the right-hand side of (2.44) satisfies condition (CE2).
The proof of Theorem 2.33 is complete.

When X is the characteristic function �A of a set A 2 F , then we have

E .�A j B/ D P.A j B/:

Indeed, it suffices to note that the conditional probability P.A j B/ is a B-measur-
able random variable which satisfies the condition

Z

�

P.A j B/.!/ dP D P.A \�/ D
Z

�

�A.!/ dP for all � 2 B:

The next theorem summarizes the basic properties of the conditional expectation:

Theorem 2.34. Assume that E .jX j/ < 1. Then we have the following seven
assertions (i)–(vii):

(i) If X is B-measurable, then it follows that X.!/ D E.X j B/ for almost all
! 2 ˝ . In particular, we have E.X j B/.!/ D E.X/ for almost all ! 2 ˝ if
B D f;;˝g.

(ii) Conditional expectation is linear in X . That is, we have, for all a1, a2 2 R,

E .a1X1 C a2X2 j B/ .!/ (2.45)

D a1 E.X1 j B/.!/C a2 E.X2 j B/.!/ for almost all ! 2 ˝:

(iii) If X1.!/ � X2.!/ for almost all ! 2 ˝ , then it follows that E.X1 j B/.!/ �
E.X2 j B/.!/ for almost all ! 2 ˝ .

(iv) If X.!/ � 0 for almost all ! 2 ˝ , then it follows that E.X j B/.!/ � 0 for
almost all ! 2 ˝ . More precisely, we have the inequality

jE.X j B/.!/j � E.jX j j B/.!/ for almost all ! 2 ˝: (2.46)

(v) If Y is B-measurable and if E .jXY j/ < 1, then it follows that E.XY j
B/.!/ D Y E.X j B/.!/ for almost all ! 2 ˝ .

(vi) If Xn.!/ " X.!/ for almost all ! 2 ˝ , then it follows that E.Xn j B/.!/ "
E.X j B/.!/ for almost all ! 2 ˝ .
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(vii) If the �-algebras �.X/ and B are independent, then we have

E.X j B/.!/ D E.X/ for almost all ! 2 ˝: (2.47)

Proof. (i) This is trivial, since the function X itself satisfies conditions (CE1) and
(CE2). Moreover, if B D f;;˝g, it follows that E.X j B/.!/ D E.X/ for
almost all ! 2 ˝ . Indeed, we have

Z

˝

E.X/ dP D E.X/ D
Z

˝

X.!/ dP:

(ii) First, it follows that the function

a1 E.X1 j B/C a2 E.X2 j B/

is B-measurable. Moreover, we have, by assertion (i),

E .a1E.X1 j B/C a2E.X2 j B/I�/

D
Z

�

.a1 E.X1 j B/.!/C a2 E.X2 j B/.!// dP

D a1
Z

�

E.X1 j B/.!/ dPC a2
Z

�

E.X2 j B/.!/ dP

D a1
Z

�

X1.!/ dPC a2
Z

�

X2.!/ dP

D
Z

�

.a1X1.!/C a2X2.!// dP

D E .a1X1 C a2X2I�/ for every� 2 B:

This proves the desired equality (2.45).

(iii) If we let

� D f! 2 ˝ W E.X2 j B/.!/ < E.X1 j B/.!/g;

then it follows that � 2 B. However, we have, by assertions (i) and (ii),

0 �
Z

�

.E.X1 j B/.!/� E.X2 j B/.!// dP

D
Z

�

E.X1 � X2 j B/.!/ dP D
Z

�

.X1 �X2/.!/ dP � 0;
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so that
Z

�

.E.X1 j B/.!/ �E.X2 j B/.!// dP D 0:

This proves that P.�/ D 0, since the integrand E.X1 j B/� E.X2 j B/ is positive
on �.

(iv) Since we have the inequality

�jX.!/j � X.!/ � jX.!/j for almost all ! 2 ˝;

it follows from an application of assertion (iii) that

�E.jX j j B/.!/ � E.X j B/.!/ � E.jX j j B/.!/ for almost all ! 2 ˝:

This proves the desired inequality (2.46).

(v) We let

Yn.!/ D
1X

kD�1

k

2n
�Œk=2n;.kC1/=2n/ .Y.!// ; n 2 N:

Then it is easy to see the following two assertions (a) and (b):

(a) The Yn are B-measurable functions.
(b) Yn.!/! Y.!/ for almost all ! 2 ˝ .

Moreover, since jXYnj � jXY j in ˝ and E .jXY j/ < 1, by using the
dominated convergence theorem we obtain that

E.XY I�/ (2.48)

D
Z

�

X.!/Y.!/ dP D lim
n!1

Z

�

X.!/Yn.!/ dP

D lim
n!1

1X

kD�1

Z

�

X.!/
k

2n
�Œk=2n;.kC1/=2n/.Y.!// dP

D lim
n!1

1X

kD�1
E

�

X
k

2n
�Œk=2n;.kC1/=2n/.Y /I�

�

D lim
n!1

1X

kD�1

k

2n
E
�
X I� \ Y �1Œk=2n; .k C 1/=2n/� for every� 2 B:
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However, since Y is B-measurable, it follows that

� \ Y �1Œk=2n; .k C 1/=2n/ 2 B:

Hence we obtain from condition (CE2) and the dominated convergence theorem that

lim
n!1

1X

kD�1

k

2n
E
�
X I� \ Y �1Œk=2n; .k C 1/=2n/� (2.49)

D lim
n!1

1X

kD�1

k

2n
E
�
E.X j B/I�\ Y �1Œk=2n; .k C 1/=2n/�

D lim
n!1

Z

�

1X

kD�1
E.X j B/.!/ k

2n
�Œk=2n;.kC1/=2n/.Y.!// dP

D lim
n!1

Z

�

Yn.!/E.X j B/.!/ dP

D E .Y E.X j B/I�/ for every� 2 B:

By combining formulas (2.48) and (2.49), we have proved that

E.XY I�/ D lim
n!1

1X

kD�1

k

2n
E
�
X I�\ Y �1Œk=2n; .k C 1/=2n/�

D E .Y E.X j B/I�/ for every� 2 B:

This proves that E.XY j B/.!/ D Y E.X j B/.!/ for almost all ! 2 ˝ .

(vi) Since Xn.!/ " X.!/ for almost all ! 2 ˝ , by applying assertion (iii) we find
that E.Xn j B/.!/ is increasing in n. Hence, if we let

Y.!/ D min

�

lim sup
n!1

E.Xn j B/.!/; E.X j B/.!/
�

;

then it follows that Y is B-measurable and further that E.Xn j B/.!/ " Y.!/ for
almost all ! 2 ˝ .

Therefore, we obtain from the monotone convergence theorem [Fo2, Theorem
2.14] and condition (CE2) that

E.X I�/ D lim
n!1E.XnI�/ D lim

n!1E.E.Xn j B/I�/
D E.Y I�/ for every� 2 B:

This proves that Y.!/ D E.X j B/.!/ for almost all ! 2 ˝ .
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(vii) Since X is independent of every set B in B, it follows that

P .B \ .X 2 A// D P.B/P .X 2 A/ for all A 2 B.R/:

Therefore, we have
Z

B

E.X j B/.!/ dP

D
Z

B

X.!/ dP D lim
n!1

1X

kD�1

k

2n

Z

B

�Œk=2n;.kC1/=2n/.X.!// dP

D lim
n!1

1X

kD�1

k

2n

Z

B\X�1Œk=2n;.kC1/=2n/
dP

D lim
n!1

1X

kD�1

k

2n
P .B \ .X 2 Œk=2n; .k C 1/=2n//

D lim
n!1

1X

kD�1

k

2n
P .X 2 Œk=2n; .k C 1/=2n// � P.B/ D

Z

˝

X.!/ dP � P.B/

D
Z

B

E.X/ dP for every B 2 B:

This proves the desired formula (2.47).
Now the proof of Theorem 2.34 is complete.

Theorem 2.35. Assume that E .jX j/ <1. If B1 	 B2, then we have

E.X j B1/.!/ D E .E.X j B2/ j B1/ .!/ D E .E.X j B1/ j B2/ .!/ (2.50)

for almost all ! 2 ˝:

Proof. First, we have, for every� 2 B1 	 B2,

E.X I�/ D
Z

�

X.!/ dP D
Z

�

E.X j B2/.!/ dP D E .E.X j B2/I�/ : (2.51)

However, it follows from an application of assertion (iv) of Theorem 2.34 that

jE.X j B2/.!/j � E.jX j j B2/.!/ for almost all ! 2 ˝;
so that

E .jE.X j B2/j/ � E .E.jX j j B2// D
Z

˝

E.jX j j B2/.!/ dP

D
Z

˝

jX j.!/ dP D E .jX j/ <1:
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Hence, by taking the conditional expectation of Z WD E.X j B2/ with respect to B1
we obtain that, for every� 2 B1,

E .E.X j B2/I�/ D E.ZI�/ D E .E.Z j B1/I�/ (2.52)

D E .E.E.X j B2/ j B1/I�/ :

Therefore, it follows from (2.51) and (2.52) that

E.X I�/ D
Z

�

E .E.X j B2/ j B1/ .!/ dP for every� 2 B1:

This proves the first equality in (2.50).
Moreover, since E.X j B1/ is B2-measurable, by applying assertion (i) of

Theorem 2.34 with

X WD E.X j B1/; B WD B1;

we obtain that

E .E.X j B1/ j B2/ .!/ D E.X j B1/.!/ for almost all ! 2 ˝:

This proves the second equality in (2.50).
Now the proof of Theorem 2.35 is complete.

Example 2.36. Let X be a random variable and let X D .X1;X2; : : : ; Xn/ be a
vector-valued random variables on the probability space .˝;F ; P /. We recall (see
Definition 2.28) that the conditional distribution  of X with respect to the random
variable .X1;X2; : : : ; Xn/ is given by the formula

 .x1; x2; : : : ; xn; A/

D P .X 2 A j X1 D x1;X2 D x2; : : : ; Xn D xn/
for �X-almost all .x1; x2; : : : ; xn/ 2 Rn and A 2 B.R/:

Assume that a Borel measurable function g.z; x1; : : : ; xn/ on RnC1 satisfies the
condition

E .jg.X;X1;X2; : : : ; Xn/j/

D
Z

˝

jg.X.!/;X1.!/;X2.!/ : : : ; Xn.!//j dP <1:
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Then we have

E .g.X;X1; : : : ; Xn/ j X1;X2; : : : ; Xn/ .!/ (2.53)

D
Z 1

�1
g.x;X1.!/; : : : ; Xn.!// .X1.!/;X2.!/; : : : ; Xn.!/; dx/

for almost all ! 2 ˝:

If we define a Borel measurable function h.x1; x2; : : : ; xn/ on Rn by the formula

h.x1; x2; : : : ; xn/ D
Z 1

�1
g.x; x1; x2; : : : ; xn/ .x1; x2; : : : ; xn; dx/ ;

then we obtain from (2.53) that

E .g.X;X1; : : : ; Xn/ j X1;X2; : : : ; Xn/ .!/ D h.X1.!/;X2.!/; : : : ; Xn.!//
for almost all ! 2 ˝:

We shall write

h.x1; x2; : : : ; xn/

D E .g.X;X1;X2; : : : ; Xn/ j X1 D x1;X2 D x2; : : : ; Xn D xn/ :

Example 2.37. Let X D .X1;X2; : : : ; Xn/ and Y D .XnC1; XnC2; : : : ; XnC`/ be
vector-valued random variables on the probability space .˝;F ; P /. Then there
exists a conditional distribution ˚ of Y with respect to the random variable
.X1;X2; : : : ; Xn/:

˚.x1; x2; : : : ; xn; A/

D P ..XnC1; XnC2; : : : ; XnC`/ 2 A j X1 D x1;X2 D x2; : : : ; Xn D xn/
for �X-almost all .x1; x2; : : : ; xn/ 2 Rn and A 2 B.R`/:

Proof. Let  k be the conditional distribution  ofXkC1 with respect to the random
variable .X1;X2; : : : ; Xk/:

 k.x1; x2; : : : ; xk; dxkC1/

D P .XkC1 2 dxkC1 j X1 D x1;X2 D x2; : : : ; Xk D xk/ :
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We let

˚.x1; x2; : : : ; xn; A/

D
Z 1

�1
 n.x1; x2; : : : ; xn; dxnC1/

Z 1

�1
 nC1.x1; : : : xnC1; dxnC2/ � � �

�
Z 1

�1
�A.xnC1; : : : ; xnC`/  nC`�1 .x1; : : : ; xnC`�1; dxnC`/ ; A 2 B.R`/:

Then we can prove the following two assertions (1) and (2):

(1) For �X-almost all x 2 Rn, ˚.x1; x2; : : : ; xn; �/ is a probability measure on R`.
(2) For every A 2 B.R`/, ˚.�; A/ is a Borel measurable function on Rn.

Moreover, by applying Theorem 2.35 we have

˚.X1.!/; : : : ; Xn.!/; A/

D E
�

E � � �E
�

E .�A .XnC1; : : : ; XnC`/ j X1; : : : ; XnC`�1/

j X1; : : : ; XnC`�2
�

� � � j X1; : : : ; Xn
�

.!/

D E .�A .XnC1; : : : ; XnC`/ j X1; : : : ; Xn/ .!/
D P .XnC1; : : : ; XnC` 2 A j X1; : : : ; Xn/ .!/ for almost all ! 2 ˝:

This proves that

˚.x1; x2; : : : ; xn; A/

D P ..XnC1; XnC2; : : : ; XnC`/ 2 A j X1 D x1;X2 D x2; : : : ; Xn D xn/ :
The proof of Example 2.37 is complete.

2.7 Notes and Comments

The results discussed here are based on Blumenthal–Getoor [BG], Lamperti [La],
Nishio [Ni] and Folland [Fo2].

Section 2.1: The monotone class (Theorem 2.4) and the Dynkin class theorem
(Corollary 2.5) were first proved by Dynkin [Dy1]. Our proof is due to Blumenthal–
Getoor [BG, Chapter 0]. The approximation theorem (Theorem 2.6) is taken from
Nishio [Ni, Chapter 2, Section 3, Theorem 5].

Sections 2.2–2.4: The material in these sections is taken from Nishio [Ni].
Section 2.5: Theorems 2.25 and 2.27 are adapted from Nishio [Ni, Chapter 7,

Section 1].
Section 2.6: Theorems 2.31, 2.33 and 2.34 are adapted from Nishio [Ni,

Chapter 7, Section 2] and Lamperti [La, Appendix 2].



Chapter 3
Elements of Functional Analysis

This chapter is devoted to a review of standard topics from functional analysis such
as quasinormed and normed linear spaces and closed, compact and Fredholm linear
operators on Banach spaces. These topics form a necessary background for what
follows. In Sects. 3.1–3.3 we study linear operators and functionals, quasinormed
and normed linear spaces. In a normed linear space we consider continuous linear
functionals as generalized coordinates of the space. The existence of non-trivial,
continuous linear functionals is based on the Hahn–Banach extension theorem
(Theorem 3.21). In particular, Mazur’s theorem (Theorem 3.25) asserts that there
exists a non-trivial, continuous linear functional which separates a point and a closed
convex, balanced set. In Sect. 3.3.2, by using Mazur’s theorem we prove that a
closed convex, balanced subset is weakly closed (Corollary 3.26). This corollary
plays an important role in the proof of an existence and uniqueness theorem for
a class of pseudo-differential operators in the framework of Hölder spaces (The-
orem 10.23) in Chap. 10. In Sect. 3.4 we prove the Riesz–Markov representation
theorem (Theorem 3.41) which describes an intimate relationship between Radon
measures and non-negative linear functionals on the spaces of continuous functions.
This fact constitutes an essential link between measure theory and functional
analysis, providing a powerful tool for constructing Markov transition functions
in Chap. 9. Section 3.5 is devoted to closed operators and Sect. 3.6 is devoted to
complemented subspaces in a normed linear space, respectively. Section 3.7 is
devoted to the Riesz–Schauder theory for compact operators. More precisely, for a
compact operator T on a Banach space, the eigenvalue problem can be treated fairly
completely in the sense that the classical theory of Fredholm integral equations may
be extended to the linear functional equation Tx��x D y with a complex parameter
� (Theorem 3.61). In Sect. 3.8 we state important properties of Fredholm operators
(Theorems 3.64–3.66). Roughly speaking, the Fredholm property of T conveys
that the operator T is both “almost” injective and “almost” surjective, that is, it is
“almost” an isomorphism. Moreover, the index indT indicates how far the operator

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__3,
© Springer-Verlag Berlin Heidelberg 2014
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T is from being bijective. Namely, the further indT is from zero, the more bijective
T is. The stability theorem for indices of Fredholm operators (Theorem 3.66) plays
an essential role in the proof of Theorem 1.2 in Chap. 10.

3.1 Linear Operators and Functionals

Let X , Y be linear spaces over the same scalar field K. A mapping T defined on a
linear subspace D of X and taking values in Y is said to be linear if it preserves the
operations of addition and scalar multiplication:

T .x1 C x2/ D Tx1 C Tx2 for all x1; x2 2 D: (L1)

T .˛x/ D ˛Tx for all x 2 D and ˛ 2 K: (L2)

We often write Tx, rather than T .x/, if T is linear. We let

D.T / D D;

R.T / D fT x W x 2 D.T /g;
N.T / D fx 2 D.T / W Tx D 0g;

and call them the domain, the range and the null space of T , respectively. The
mapping T is called a linear operator from D.T / 	 X into Y . We also say that T
is a linear operator from X into Y with domain D.T /. In the particular case when
Y D K, the mapping T is called a linear functional on D.T /. In other words, a
linear functional is a K-valued function on D.T / which satisfies conditions (L1)
and (L2).

If a linear operator T is a one-to-one map of D.T / onto R.T /, then it is easy
to see that the inverse mapping T �1 is a linear operator on R.T / onto D.T /. The
mapping T �1 is called the inverse operator or simply the inverse of T . A linear
operator T admits an inverse if and only if Tx D 0 implies that x D 0.

Let T1 and T2 be two linear operators from a linear space X into a linear space
Y with domains D.T1/ and D.T2/, respectively. Then we say that T1 D T2 if and
only if D.T1/ D D.T2/ and T1x D T2x for every x 2 D.T1/ D D.T2/. IfD.T1/ 	
D.T2/ and T1x D T2x for every x 2 D.T1/, then we say that T2 is an extension of
T1 and also that T1 is a restriction of T2, and we write T1 	 T2.

3.2 Quasinormed Linear Spaces

Let X be a linear space over the real or complex number field K. A real-valued
function p defined on X is called a seminorm on X if it satisfies the following three
conditions (S1)–(S3):
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0 � p.x/ <1 for all x 2 X: (S1)

p.˛x/ D j˛jp.x/ for all ˛ 2 K and x 2 X: (S2)

p.x C y/ � p.x/C p.y/ for all x; y 2 X: (S3)

Let fpi g be a countable family of seminorms on X such that

p1.x/ � p2.x/ � � � � � pi .x/ � � � � for every x 2 X; (3.1)

and define

Vij D
	

x 2 X W pi .x/ < 1

j




; i; j D 1; 2; : : : :

Then it is easy to verify that a countable family of the sets

x C Vij D fx C y W y 2 Vijg

satisfies the axioms of a fundamental neighborhood system of x; hence X is a
topological space which satisfies the first axiom of countability.

Furthermore, we have the following theorem:

Theorem 3.1. Let fpig be a countable family of seminorms on a linear space X
which satisfies condition (3.1). Assume that

For every non-zero element x 2 X , there exists a seminorm pi (3.2)

such that pi.x/ > 0:

Then the space X is metrizable by the metric

�.x; y/ D
1X

iD1

1

2i
pi .x/

1C pi .x/ for all x; y 2 X:

If we let

jxj D �.x; 0/ D
1X

iD1

1

2i
pi .x/

1C pi .x/ for every x 2 X; (3.3)

then the quantity jxj enjoys the following four properties (Q1)–(Q4):

(Q1) jxj � 0; jxj D 0 if and only if x D 0.
(Q2) jx C yj � jxj C jyj (the triangle inequality).
(Q3) ˛n ! 0 in K H) j˛nxj ! 0 for every x 2 X .
(Q4) jxnj ! 0 H) j˛xnj ! 0 for every ˛ 2 K.
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This quantity jxj is called a quasinorm of x, and the spaceX is called a quasinormed
linear space.

Theorem 3.1 may be restated as follows:

Theorem 3.2. A linear space X , topologized by a countable family fpig1iD1 of
seminorms satisfying conditions (3.1) and (3.2), is a quasinormed linear space with
respect to the quasinorm jxj defined by formula (3.3).

Let X be a quasinormed linear space. The convergence

lim
n!1 jxn � xj D 0

in X is denoted by s � limn!1 xn D x or simply by xn ! x, and we say that the
sequence fxng1nD1 converges strongly to x. A sequence fxng1nD1 is called a Cauchy
sequence if it satisfies Cauchy’s (convergence) condition

lim
m;n!1 jxm � xnj D 0:

A quasinormed linear space X is called a Fréchet space if it is complete, that is, if
every Cauchy sequence in X converges strongly to a point in X . If a quasinormed
linear space X is topologized by a countable family fpig of seminorms which
satisfies conditions (3.1) and (3.2), then the above definitions may be reformulated
in terms of seminorms as follows.

(i) A sequence fxng1nD1 in X converges strongly to a point x in X if and only
if, for every seminorm pi and every positive ", there exists a positive integer
N D N.i; "/ such that

n � N H) pi .xn � x/ < ":
(ii) A sequence fxng1nD1 in X is a Cauchy sequence if and only if, for every

seminorm pi and every positive ", there exists a positive integer N D N.i; "/

such that

m; n � N H) pi.xm � xn/ < ":

Let X be a quasinormed linear space. A linear subspace of X is called a closed
subspace if it is a closed subset of X . For example, the closure M of a linear
subspaceM is a closed subspace. Indeed, the elements ofM are limits of sequences
in M ; thus, if x D limn!1 xn with xn 2 M and y D limn!1 yn with yn 2 M ,
then it follows that

x C y D lim
n!1.xn C yn/; xn C yn 2 M;

˛x D lim
n!1˛xn; ˛xn 2 M:

This proves that x C y 2 M and ˛x 2 M for every ˛ 2 K.
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3.2.1 Bounded Sets

Let X be a quasinormed linear space, topologized by a countable family fpig of
seminorms which satisfies conditions (3.1) and (3.2). A set B in X is said to be
bounded if we have, for every seminorm pi ,

sup
x2B

pi.x/ < C1:

We remark that every compact set is bounded.
Throughout the rest of this section, let X and Y be quasinormed linear spaces

over the same scalar field, topologized respectively by countable families fpig1iD1
and fqi g1iD1 of seminorms which satisfy conditions (3.1) and (3.2).

3.2.2 Continuity of Linear Operators

Let T be a linear operator from X into Y with domain D.T /. By virtue of the
linearity of T , it follows that T is continuous everywhere on D.T / if and only if it
is continuous at one point of D.T /. Furthermore, we have the following theorem:

Theorem 3.3. A linear operator T from X into Y with domainD.T / is continuous
everywhere on D.T / if and only if, for every seminorm qj on Y , there exist a
seminorm pi on X and a positive constant C such that

qj .Tx/ � Cpi .x/ for all x 2 D.T /:

3.2.3 Topologies of Linear Operators

We let

L.X; Y / D the collection of continuous linear operators on X into Y :

We define in the set L.X; Y / addition and scalar multiplication of operators in the
usual way:

.T C S/x D TxC Sx for all x 2 X;

.˛T /x D ˛.Tx/ for all ˛ 2 K and x 2 X:

Then it follows that L.X; Y / is a linear space.
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We introduce three different topologies on the space L.X; Y /.

(1) Simple convergence topology: This is the topology of convergence at each point
of X ; a sequence fTng1nD1 in L.X; Y / converges to an element T of L.X; Y / in
the simple convergence topology if and only if Tnx ! Tx in Y as n!1, for
each x 2 X .

(2) Compact convergence topology: This is the topology of uniform convergence
on compact sets in X ; Tn ! T in the compact convergence topology if and
only if Tnx ! Tx in Y as n ! 1, uniformly for x ranging over compact sets
in X .

(3) Bounded convergence topology: This is the topology of uniform convergence
on bounded sets in X ; Tn ! T in the bounded convergence topology if and
only if Tnx ! Tx in Y as n! 1, uniformly for x ranging over bounded sets
in X .

The simple convergence topology is weaker than the compact convergence
topology, and the compact convergence topology is weaker than the bounded
convergence topology.

3.2.4 The Banach–Steinhaus Theorem

We introduce three different definitions of boundedness for sets in the space
L.X; Y /:

(1) A set H in L.X; Y / is said to be bounded in the simple convergence topology
if, for each x 2 X , the set fTx W T 2 H g is bounded in Y .

(2) A setH in L.X; Y / is said to be bounded in the compact convergence topology
if, for every compact set K in X , the set

S
T2H T .K/ is bounded in Y .

(3) A setH in L.X; Y / is said to be bounded in the bounded convergence topology
if, for every bounded set B in X , the set

S
T2H T .B/ is bounded in Y .

Furthermore, a set H in L.X; Y / is said to be equicontinuous if, for every
seminorm qj on Y , there exist a seminorm pi on X and a positive constant C
such that

sup
T2H

qj .Tx/ � Cpi .x/ for all x 2 X:

The next theorem states one of the fundamental properties of Fréchet spaces:

Theorem 3.4 (Banach–Steinhaus). Let X be a Fréchet space and Y a quasi-
normed linear space. Then the following four conditions (i)–(iv) are equivalent:

(i) A set H in L.X; Y / is bounded in the simple convergence topology.
(ii) A set H in L.X; Y / is bounded in the compact convergence topology.
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(iii) A set H in L.X; Y / is bounded in the bounded convergence topology.
(iv) A set H in L.X; Y / is equicontinuous.

3.2.5 Product Spaces

Let X and Y be quasinormed linear spaces over the same scalar field K. Then the
Cartesian product X � Y becomes a linear space over K if we define the algebraic
operations coordinatewise

fx1; y1g C fx2; y2g D fx1 C x2; y1 C y2g for all x1; x2 2 X and y1; y2 2 Y ;
˛fx; yg D f˛x; ˛yg for all ˛ 2 K and x 2 X; y 2 Y :

It is easy to verify that the quantity

jfx; ygj D �jxj2 C jyj2�1=2 ; fx; yg 2 X � Y; (3.4)

satisfies axioms (Q1)–(Q4) of a quasinorm; hence the product space X � Y is a
quasinormed linear space with respect to the quasinorm defined by formula (3.4).
Furthermore, if X and Y are Fréchet spaces, then so is X � Y . In other words, the
completeness is inherited by the product space.

3.3 Normed Linear Spaces

A quasinormed linear space is called a normed linear space if it is topologized by
just one seminorm which satisfies condition (3.2). We give the precise definition of
a normed linear space.

Let X be a linear space over the real or complex number field K. A real-valued
function k � k defined on X is called a norm on X if it satisfies the following three
conditions (N1)–(N3):

(N1) kxk � 0; kxk D 0 if and only if x D 0.
(N2) k˛xk D j˛jkxk for all ˛ 2 K and x 2 X .
(N3) kx C yk � kxk C kyk for all x, y 2 X (the triangle inequality).

A linear space X equipped with a norm k � k is called a normed linear space.
The topology on X is defined by the metric

�.x; y/ D kx � yk for all x; y 2 X:
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The convergence

lim
n!1 kxn � xk D 0

in X is denoted by s � limn!1 xn D x or simply xn ! x, and we say that the
sequence fxng1nD1 converges strongly to x. A sequence fxng1nD1 in X is called a
Cauchy sequence if it satisfies the condition

lim
n;m!1 kxn � xmk D 0:

A normed linear space X is called a Banach space if it is complete, that is, if every
Cauchy sequence in X converges strongly to a point in X .

Two norms k � k1 and k � k2 defined on the same linear space X are said to be
equivalent if there exist positive constants c and C such that

ckxk1 � kxk2 � Ckxk1 for all x 2 X:

Equivalent norms induce the same topology.
If X and Y are normed linear spaces over the same scalar field, then the product

space X � Y is a normed linear space with the norm

kfx; ygk D �kxk2X C kyk2Y
�1=2

for all fx; yg 2 X � Y :

If X and Y are Banach spaces, then so is X � Y .
Let X be a normed linear space. If Y is a closed linear subspace of X , then the

factor space X=Y is a normed linear space by the norm

k Qxk D inf
z2Qx
kzk for every Qx 2 X=Y : (3.5)

If X is a Banach space, then so is X=Y . The space X=Y , normed by (3.5), is called
a normed factor space.

Throughout the rest of this section, the letters X , Y , Z denote normed linear
spaces over the same scalar field.

The next theorem is a normed linear space version of Theorem 3.3:

Theorem 3.5. Let T be a linear operator from X into Y with domain D.T /. Then
T is continuous everywhere on D.T / if and only if there exists a positive constant
C such that

kTxk � Ckxk for all x 2 D.T /: (3.6)

Remark 3.6. In inequality (3.6), the quantity kxk is the norm of x in X and the
quantity kTxk is the norm of Tx in Y . Frequently several norms appear together, but
it is clear from the context which is which.
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One of the consequences of Theorem 3.5 is the following extension theorem for
a continuous linear operator:

Theorem 3.7. If T is a continuous linear operator from X into Y with domain
D.T / and if Y is a Banach space, then T has a unique continuous extension QT
whose domain is the closure D.T / of D.T /.

As another consequence of Theorem 3.5, we give a necessary and sufficient
condition for the existence of a continuous inverse of a linear operator:

Theorem 3.8. Let T be a linear operator from X into Y with domain D.T /. Then
T admits a continuous inverse T �1 if and only if there exists a positive constant c
such that

kTxk � ckxk for all x 2 D.T /:

A linear operator T from X into Y with domain D.T / is called an isometry if it
is norm-preserving, that is, if we have

kTxk D kxk for every x 2 D.T /:

It is clear that if T is an isometry, then it is injective and both T and T �1 are
continuous.

If T is a continuous, one-to-one linear mapping fromX onto Y and if its inverse
T �1 is also a continuous mapping, then it is called an isomorphism of X onto Y .
Two normed linear spaces are said to be isomorphic if there is an isomorphism
between them.

By combining Theorems 3.5 and 3.8, we obtain the following theorem:

Theorem 3.9. Let T be a linear operator on X onto Y . Then T is an isomorphism
if and only if there exist positive constants c and C such that

ckxk � kTxk � Ckxk for all x 2 X:

If T is a continuous linear operator from X into Y with domainD.T /, we let

kT k D inffC W kTxk � Ckxk; x 2 D.T /g:

Then, in view of the linearity of T we have

kT k D sup
x2D.T /
x¤0

kTxk
kxk D sup

x2D.T /
kxkD1

kTxk D sup
x2D.T /
kxk�1

kTxk: (3.7)

This proves that kT k is the smallest non-negative number such that

kTxk � kT k � kxk for all x 2 D.T /: (3.8)
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Theorem 3.5 asserts that a linear operator T from X into Y is continuous if and
only if it maps bounded sets in X into bounded sets in Y . Thus a continuous linear
operator from X into Y is usually called a bounded linear operator from X into Y .
We let

L.X; Y / D the space of bounded (continuous) linear operators from X into Y :

In the case of normed linear spaces, the simple convergence topology on L.X; Y /
is usually called the strong topology of operators, and the bounded convergence
topology on L.X; Y / is called the uniform topology of operators. In view of
formulas (3.7) and (3.8), it follows that the quantity kT k satisfies axioms (N1)–
(N3) of a norm; hence the space L.X; Y / is a normed linear space with the norm
kT k given by formula (3.7). The topology on L.X; Y / induced by the operator norm
kT k is just the uniform topology of operators.

We give a sufficient condition for the space L.X; Y / to be complete:

Theorem 3.10. If Y is a Banach space, then so is L.X; Y /.

If T is a linear operator from X into Y with domain D.T / and S is a linear
operator from Y into Z with domain D.S/, then we define the product ST as
follows:

(a) D.ST/ D fx 2 D.T / W Tx 2 D.S/g.
(b) .ST/.x/ D S.Tx/ for every x 2 D.ST/.

As for the product of linear operators, we have the following proposition:

Proposition 3.11. If T 2 L.X; Y / and S 2 L.Y;Z/, then it follows that ST 2
L.X;Z/. Moreover, we have the inequality

kSTk � kSk � kT k:

We often make use of the following theorem in constructing the bounded inverse
of a bounded linear operator:

Theorem 3.12. If T is a bounded linear operator on a Banach space X into itself
and satisfies kT k < 1, then the operator I �T has a unique bounded linear inverse
.I � T /�1 which is given by C. Neumann’s series

.I � T /�1 D
1X

nD0
T n D I C T C T 2 C : : :C T n C : : : :

Here I is the identity operator: Ix D x for every x 2 X , and T 0 D I .

As an important application of Theorem 3.12, we give the functional analytic
background for the method of continuity in nonlinear analysis:
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Theorem 3.13. Let X be a Banach space and let Y be a normed linear space.
If T0 and T1 are two bounded linear operators from X into Y , we define a family of
bounded linear operators

Tt D .1� t/T0 C t T1 W X �! Y for every t 2 Œ0; 1�:

Assume that there exists a positive constant C , independent of t , such that

kxkX � CkTtxkY for all x 2 X: (3.9)

Then the operator T1 mapsX onto Y if and only if the operator T0 mapsX onto Y .

The next theorem is a normed linear space version of the Banach–Steinhaus
theorem (Theorem 3.4):

Theorem 3.14 (The principle of uniform boundedness). Let X be a Banach
space and let Y be a normed linear space. If H is a subset of L.X; Y /, then the
boundedness of the set fkTxk W T 2 H g at each x 2 X implies the boundedness of
the set fkT k W T 2 H g.
Corollary 3.15. Let X be a Banach space, Y a normed linear space and fTng1nD1
a sequence in L.X; Y /. If the limit

s � lim
n!1Tnx D Tx (3.10)

exists for every x 2 X , then it follows that T 2 L.X; Y / and we have the inequality

kT k � lim inf
n!1 kTnk:

The operator T obtained above is called the strong limit of fTng1nD1, since the
convergence (3.19) is in the strong topology of operators. We then write

T D s � lim
n!1Tn:

3.3.1 Finite Dimensional Spaces

The next theorem asserts that there is no point in studying abstract finite dimensional
normed linear spaces:

Theorem 3.16. All n-dimensional normed linear spaces over the same scalar field
K are isomorphic to Kn with the maximum norm

k˛k D max
1�i�n j˛i j for every ˛ D .˛1; ˛2; : : : ; ˛n/ 2 Kn:
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The topological properties of the space Kn apply to all finite dimensional normed
linear spaces.

Corollary 3.17. All finite dimensional normed linear spaces are complete.

Corollary 3.18. Every finite dimensional linear subspace of a normed linear space
is closed.

Corollary 3.19. A subset of a finite dimensional normed linear space is compact if
and only if it is closed and bounded.

By Corollary 3.19, it follows that the closed unit ball in a finite dimensional
normed linear space is compact. Conversely, this property characterizes finite
dimensional spaces:

Theorem 3.20. If the closed unit ball in a normed linear space X is compact, then
X is finite dimensional.

3.3.2 The Hahn–Banach Extension Theorem

In a normed linear space we consider continuous linear functionals as generalized
coordinates of the space. The existence of non-trivial, continuous linear functionals
is based on the following Hahn–Banach extension theorem:

Theorem 3.21 (The Hahn–Banach extension theorem). Let X be a linear space
over the real or complex number field K and let p be a seminorm defined on X . If
M is a linear subspace of X and if f is a linear functional defined onM such that
jf .x/j � p.x/ on M , then there exists a linear functional F on X such that F is
an extension of f and further that jF.x/j � p.x/ on X .

The next theorem is a version of the Hahn–Banach extension theorem for normed
linear spaces:

Theorem 3.22. Let X be a normed linear space over the real or complex number
field K, and let M be a linear subspace of X . If f is a continuous linear functional
defined on M , then it can be extended to a continuous linear functional f0 on X
so that

kf0k D kf k: (3.11)

Proof. We let

p.x/ D kf k � kxk for every x 2 X:

Then it follows that p is a continuous seminorm on X such that

jf .x/j � kf k � kxk D p.x/ on M:
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By applying Theorem 3.21 to our situation, we can find a linear functional f0 on
X such that f0 is an extension of f and that jf0.x/j � p.x/ on X . Hence we
obtain that

kf0k � p.x/ D kf k � kxk for every x 2 X;

so that

kf0k � kf k:

This proves the desired assertion (3.11), since f0 is an extension of f .
The proof of Theorem 3.22 is complete.

Now we can prove the existence of non-trivial, continuous linear functionals:

Theorem 3.23. Let X be a normed linear space over the real or complex number
field K, and let x0 be a point ofX . If p is a continuous seminorm defined onX , then
there exists a continuous linear functional F on X such that F.x0/ D p.x0/ and
further that jF.x/j � p.x/ on X .

Proof. We let

M D f˛x0 W ˛ 2 Kg ;

and define a functional f on M by the formula

f .˛x0/ D ˛ p.x0/ for every ˛ 2 K:

Then it is easy to see that f is linear and continuous on M and that

jf .˛x0/j D j˛jp.x0/ D p.˛x0/ for every ˛ 2 K:

By applying Theorem 3.21, we can find a linear functional F on X such that F is
an extension of f and that

jF.x/j � p.x/ on X:

This proves that F.x0/ D f .x0/ D p.x0/ and further that F.x/ is continuous at
x D 0 with p.x/. By the linearity of F , it follows that F.x/ is continuous at every
point of X .

The proof of Theorem 3.23 is complete.

Corollary 3.24. Let X be a normed linear space. For each non-zero element x0 of
X , there exists a continuous linear functional f0 on X such that

(
f0.x0/ D kx0k;
kf0k D 1:
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Proof. In the proof of Theorem 3.23, we take

p.x/ D kxk for every x 2 X:

Then it follows from an application of Theorem 3.23 that there exists a continuous
linear functional f0 on X such that f0.x0/ D p.x0/ D kx0k and further that

jf0.x/j � p.x/ D kxk for every x 2 X:

This proves that kf0k D 1.
The proof of Corollary 3.24 is complete.

A continuous linear functional onX is usually called a bounded linear functional
on X .

A closed subsetM of a normed linear spaceX is said to be balanced if it satisfies
the condition

x 2M; j˛j � 1 H) ˛x 2M:

The next theorem asserts that there exists a non-trivial, continuous linear
functional which separates a point and a closed convex, balanced set:

Theorem 3.25 (Mazur). Let X be a real or complex, normed linear space and let
M be a closed convex, balanced subset of X . Then, for any point x0 62 M there
exists a continuous linear functional f0 on X such that f0.x0/ > 1 and jf0.x/j � 1
on M .

Proof. Let

dist .x0;M/ D inf
z2M kx0 � zk

be the distance from x0 to the set M . Since M is closed and x0 …M , it follows that

dist .x0;M/ > 0:

If 0 < d < dist .x0;M/, we let

B

�

0;
d

2

�

D
	

x 2 X W kxk � d

2




;

B

�

x0;
d

2

�

D x0 C B
�

0;
d

2

�

D
	

x 2 X W kx � x0k � d

2




;

U D
	

x 2 X W dist .x;M/ � d

2




:
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Then we have

U \ B
�

x0;
d

2

�

D ;; (3.12a)

B

�

0;
d

2

�

	 U; (3.12b)

since 0 2M .
Moreover, sinceM is convex and balanced, it is easy to verify the following three

assertions (a)–(c):

(a) U is convex.
(b) U is balanced.
(c) U is absorbing, that is, for any x 2 X , there exists a constant ˛ > 0 such that

˛�1x 2 U .

Indeed, assertion (c) follows from assertion (3.12b).
Therefore, we can define the Minkowski functional pU of U by the formula

pU .x/ D inf
˛>0

˛�1x2U
˛ for every x 2 X:

By virtue of assertion (3.12b), we find that

pU .x/ � 2

d
kxk for every x 2 X:

This proves that pU is a continuous seminorm on X . Since U is closed, it is easy to
verify the following assertions (3.13):

pU .x/ > 1 if x … U ; (3.13a)

pU .x/ � 1 if x 2 U : (3.13b)

Therefore, by applying Theorem 3.23 with

p WD pU ;
we can find a continuous linear functional f0 on X such that

(
f0.x0/ D pU .x0/ > 1 for x0 62 U ;
jf0.x/j � pU .x/ on X:

In particular, we have, by assertion (3.13b),

jf0.x/j � pU .x/ � 1 on M;

since M 	 U .
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The proof of Theorem 3.25 is complete.

The next corollary will play an important role in the proof of Theorem 10.23 in
Chap. 10:

Corollary 3.26. Let X be a real or complex, normed linear space. IfM is a closed
convex, balanced subset of X , then it is closed in the weak topology of X .

Proof. Assume, to the contrary, that M is not weakly closed in the weak topology
of X . Then there exists a point x0 … M such that x0 is an accumulation point of
M in the weak topology of X . That is, there exists a sequence fxng of M such that
fxng converges weakly to x0. However, by using Mazur’s theorem (Theorem 3.25)
we can find a continuous linear functional f0 on X such that

(
f0.x0/ > 1;

jf0.x/j � 1 on M:

Hence we have

1 < jf0.x0/j D lim
n!1 jf0.xn/j � 1:

This contradiction proves Corollary 3.26.

3.3.3 Dual Spaces

Let X be a normed linear space over the real or complex number field K. Then the
space L.X;K/ of all bounded linear functionals onX is called the dual space of X ,
and is denoted by X 0. The bounded (resp. simple) convergence topology on X 0 is
called the strong (resp. weak*) topology on X 0 and the dual space X 0 equipped with
this topology is called the strong (resp. weak*) dual space of X .

It follows from an application of Theorem 3.10 with Y WD K that the strong dual
space X 0 is a Banach space with the norm

kf k D sup
x2Xkxk�1
jf .x/j:

Corollary 3.24 asserts that the dual space X 0 separates points of X , that is, for
arbitrary two distinct points x1, x2 of X , there exists a functional f 2 X 0 such
that f .x1/ ¤ f .x2/.
Example 3.27. Let .˝;M; �/ be a measure space. If 1 � p <1, we let

Lp.˝/ D the space of equivalence classes of measurable

functions f .x/ on ˝ such that jf jp is integrable on ˝:
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We remark that Lp.˝/ is a Banach space with the norm

kf kp D
�Z

˝

jf .x/jp d�
�1=p

:

If 1 < p <1, we let q D p=.p � 1/, so that 1 < q <1 and

1

p
C 1

q
D 1:

Assume that .˝;M; �/ is �-finite. Then we have the following two assertions
(i) and (ii):

(i) If v 2 Lq.˝/, we define a linear functional fv by the formula

fv.u/ D
Z

˝

u.x/v.x/ d� for every u 2 Lp.˝/;

then we have

(
fv 2 .Lp.˝//0 ;
kfvk D kvkLq.˝/:

(ii) Conversely, every element f 2 .Lp.˝//0 can be expressed as f D fv for some
function v 2 Lq.˝/.

3.3.4 Annihilators

Let A be a subset of a normed linear space X . An element f of the dual space X 0
is called an annihilator of A if it satisfies the condition

f .x/ D 0 for all x 2 A:

We let

A0 D ff 2 X 0 W f .x/ D 0 for all x 2 Ag

be the set of all annihilators of A. This is not a one way proposition. If B is a subset
of X 0, we let

0B D fx 2 X W f .x/ D 0 for all f 2 Bg

be the set of all annihilators of B .
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Here are some basic properties of annihilators:

(i) The sets A0 and 0B are closed linear subspaces of X and X 0, respectively.
(ii) If M is a closed linear subspace of X , then 0.M0/ DM .

(iii) If A is a subset of X and M is the closure of the subspace spanned by A, then
M0 D A0 and M D 0.A0/.

3.3.5 Dual Spaces of Normed Factor Spaces

Let M be a closed linear subspace of a normed linear space X . Then each element
f of M0 defines a bounded linear functional Qf on the normed factor space X=M
by the formula

Qf . Qx/ D f .x/ for all Qx 2 X=M:

Indeed, the value f .x/ on the right-hand side does not depend on the choice of a
representative x of the equivalence class Qx, and we have

k Qf k D kf k:
Furthermore, it is easy to see that the mapping

� W f 7�! Qf
of M0 into .X=M/0 is linear and surjective; hence we have the following theorem:

Theorem 3.28. The strong dual space .X=M/0 of the factor space X=M can be
identified with the spaceM0 of all annihilators of M by the linear isometry � .

3.3.6 Bidual Spaces

Each element x of a normed linear space X defines a bounded linear functional Jx
on the strong dual space X 0 by the formula

Jx.f / D f .x/ for every f 2 X 0: (3.14)

Then Corollary 3.24 asserts that

kJxk D sup
f 2X 0

kf k�1

jJx.f /j D kxk;

so that the mapping J is a linear isometry of X into the strong dual space .X 0/0 of
X 0. The space .X 0/0 is called the strong bidual space or strong second dual space
of X .
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Summing up, we have the following theorem:

Theorem 3.29. A normed linear space X can be embedded into its strong bidual
space .X 0/0 by the linear isometry J defined by formula (3.14).

If the mapping J is surjective, that is, if X D .X 0/0, then we say that X is
reflexive.

3.3.7 Weak Convergence

A sequence fxng1nD1 in a normed linear space X is said to be weakly convergent if
a finite limn!1 f .xn/ exists for every f in the dual space X 0 of X . A sequence
fxng1nD1 in X is said to converge weakly to an element x of X if limn!1 f .xn/ D
f .x/ for every f 2 X 0; we then write w � limn!1 xn D x or simply xn ! x

weakly. Since the spaceX 0 separates points ofX , the limit x is uniquely determined.
Theorem 3.29 asserts that X may be considered as a linear subspace of its bidual
space .X 0/0; hence the weak topology onX is just the simple convergence topology
on the bidual space .X 0/0 D L.X 0;K/.

For weakly convergent sequences, we have the following theorem:

Theorem 3.30. (i) s � limn!1 xn D x implies that w� limn!1 xn D x.
(ii) A weakly convergent sequence fxng1nD1 is bounded:

sup
n�1
kxnk <1:

Furthermore, if w � limn!1 xn D x, then the sequence fxng1nD1 is bounded
and we have the inequality

kxk � lim inf
n!1 kxnk:

Part (ii) of Theorem 3.30 has a converse:

Theorem 3.31. A sequence fxng1nD1 in X converges weakly to an element x of X if
the following two conditions (a) and (b) are satisfied:

(a) The sequence fxng1nD1 is bounded.
(b) limn!1 f .xn/ D f .x/ for every f in some strongly dense subset of X 0.

3.3.8 Weak* Convergence

A sequence ffng1nD1 in the dual space X 0 is said to be weakly* convergent if a finite
limn!1 fn.x/ exists for every x 2 X . A sequence ffng1nD1 inX 0 is said to converge
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weakly* to an element f of X 0 if limn!1 fn.x/ D f .x/ for every x 2 X ; we then
write w � � limn!1 fn D f or simply fn ! f weakly*. The weak* topology on
X 0 is just the simple topology on the dual space X 0 D L.X;K/.

We have the following analogue of Theorem 3.30:

Theorem 3.32. (i) s � limn!1 fn D f implies that w � � limn!1 fn D f .
(ii) If X is a Banach space, then a weakly* convergent sequence ffng1nD1 in X 0

converges weakly* to an element f of X 0 and we have the inequality

kf k � lim inf
n!1 kfnk:

One of the important consequences of Theorem 3.32 is the sequential weak*
compactness of bounded sets:

Theorem 3.33. Let X be a separable Banach space. Then every bounded sequence
in the strong dual space X 0 has a subsequence which converges weakly* to an
element of X 0.

3.3.9 Transposes

Let T be a linear operator from X into Y with domain D.T / dense in X . Such
operators are called densely defined operators. Each element g of the dual space Y 0
of Y defines a linear functional G on D.T / by the formula

G.x/ D g.Tx/ for every x 2 D.T /:

If this functional G is continuous everywhere on D.T /, it follows from an
application of Theorem 3.7 that G can be extended uniquely to a continuous linear
functional g0 on the closure

D.T / D X;

that is, there exists a unique element g0 of the dual space X 0 of X which is an
extension of G. So we let

D.T 0/ D the totality of those g 2 Y 0 such that the mapping

x 7�! g.Tx/

is continuous everywhere on D.T /;

and define

T 0g D g0:
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In other words, the mapping T 0 is a linear operator from Y 0 into X 0 with domain
D.T 0/ such that

g.Tx/ D .T 0g/.x/ for all x 2 D.T / and g 2 D.T 0/: (3.15)

The operator T 0 is called the transpose of T .
Frequently we write hf; xi or hx; f i for the value f .x/ of a functional f at a

point x. For example, we write formula (3.15) as follows:

hTx; gi D ˝x; T 0g
˛

for all x 2 D.T / and g 2 D.T 0/:

The next theorem states that the continuity of operators is inherited by the
transposes:

Theorem 3.34. Let X , Y be normed linear spaces and X 0, Y 0 be their strong dual
spaces, respectively. If T is a bounded linear operator from X into Y , then its
transpose T 0 is a bounded linear operator from Y 0 into X 0, and we have

kT 0k D kT k:

3.4 Continuous Functions and Measures

One of the fundamental theorems in analysis is the Riesz–Markov representation
theorem which describes an intimate relationship between measures and linear
functionals.

3.4.1 Spaces of Continuous Functions

A topological space is said to be locally compact if every point has a compact
neighborhood. Let .X; �/ be a locally compact metric space. Let C.X/ be the
collection of real-valued, continuous functions on X . We define on the set C.X/
addition and scalar multiplication of functions in the usual way:

.f C g/.x/ D f .x/C g.x/ for all x 2 X:

. f̨ /x D f̨ .x/ for all ˛ 2 K and x 2 X:

Then C.X/ is a real linear space.
The next two results show that locally compact metric spaces have a rich supply

of continuous functions that vanish outside compact sets (cf. Dugundji [Dg]):
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Fig. 3.1 The function f
in Lemma 3.35

Lemma 3.35 (Urysohn). Let .X; �/ be a locally compact metric space. If K 	
U 	 X where K is compact and U is open, then there exists a real-valued,
continuous function f 2 C.X/ such that (see Fig. 3.1)

8
ˆ̂
<

ˆ̂
:

0 � f .x/ � 1 on X;

f .x/ D 1 on K;

f .x/ D 0 outside a compact subset of U :

Theorem 3.36 (Tietze’s extension theorem). Let .X; �/ be a locally compact
metric space and K a compact subset of X . If f 2 C.K/, then there exists a
real-valued, continuous function F 2 C.X/ such that F D f on K . Moreover,
the function F.x/ may be taken to vanish outside a compact set.

If f 2 C.X/, the support of f , denoted by suppf , is the smallest closed set
outside of which f .x/ vanishes, that is, the closure of the set fx 2 X W f .x/ 6D 0g.
If suppf is compact, we say that f is compactly supported. We define a subspace
of C.X/ as follows:

Cc.X/ D ff 2 C.X/ W suppf is compactg :

In other words, Cc.X/ is the space of compactly supported, continuous functions
on X . The notation ‘Cc’ is used only for the moment in this section (later we will
generally work in ‘C0’).

If .X; �/ is a non-compact, locally compact metric space, then we can make X
into a compact space by adding a single “point at infinity” in such a way that the
functions in C0.X/ are precisely those continuous functions f such that f .x/! 0

as x approaches the point at infinity.
More precisely, let @ denote a point that is not an element of X and let X@ D

X [ f@g. Then we have the following proposition:

Proposition 3.37. Let .X; �/ be a locally compact metric space and let T be the
collection of all subsets U of X@ D X [ f@g such that either (i) U is an open subset
of X or (ii) @ 2 U and U c D X@ n U is a compact subset of X . Then the space
.X@; T / is a compact space and the inclusion map i W X ! X@ is an embedding.
Furthermore, if f 2 C.X/, then f .x/ extends continuously to X@ if and only if
f .x/ D g.x/ C c where g 2 C0.X/ and c 2 R, in which case the continuous
extension is given by f .@/ D c (see Fig. 3.2).
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0
C0(X)

R

f = g + c

g

Fig. 3.2 The function
f D g C c in
Proposition 3.37

The space X@ D X [ f@g is called the one-point compactification of X and the
point @ is called the point at infinity.

Furthermore, if f 2 C.X/, we say that f is vanishes at infinity if the set fx 2
X W jf .x/j � "g is compact for every " > 0, and we write

lim
x!@

f .x/ D 0:

We define a subspace C0.X/ of C.X/ as follows:

C0.X/ D
	

f 2 C.X/ W lim
x!@

f .x/ D 0



:

It is easy to see that C0.X/ is a Banach space with the supremum (maximum) norm

kf k1 D sup
x2X
jf .x/j:

The next proposition asserts that C0.X/ is the uniform closure of Cc.X/:

Proposition 3.38. Let .X; �/ be a locally compact metric space. The space C0.X/
is the closure of Cc.X/ in the topology of uniform convergence.

Proof. Assume that ffng is a sequence in Cc.X/ which converges uniformly to
some function f 2 C.X/. Then, for any given " > 0 there exists a number n 2 N
such that

kf � fnk1 < ":

Hence we have

jf .x/j < " if x 2 X n suppfn:

This proves that the set fx 2 X W jf .x/j � "g is compact for every " > 0, so that
f 2 C0.X/.
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Conversely, if f 2 C0.X/, we let

Kn D
	

x 2 X W jf .x/j � 1

n




; n 2 N:

Since Kn is compact, by applying Urysohn’s lemma (Lemma 3.35) we can find a
function gn 2 Cc.X/ such that 0 � gn � 1 and gn D 1 on Kn. Then it follows that
fn D gn f 2 Cc.X/ and that

kf � fnk1 D k.1 � gn/f k1 � 1

n
:

This proves that ffng converges uniformly to f 2 C.X/.
The proof of Proposition 3.38 is complete.

3.4.2 Space of Signed Measures

Let .X;M/ be a measurable space. A real-valued function � defined on the �-
algebra M is called a signed measure or real measure if it is countably additive,
that is,

�

 1X

iD1
Ai

!

D
1X

iD1
�.Ai /

for any disjoint countable collection fAig1iD1 of members of M. It should be noted
that every rearrangement of the series

P
i �.Ai / also converges, since the disjoint

union
P1

iD1 Ai is not changed if the subscripts are permuted. A signed measure
takes its values in .�1;1/, but a non-negative measure may take 1; hence the
non-negative measures do not form a subclass of the signed measures.

If � and � are signed measures on M, we define the sum �C � and the scalar
multiple ˛� .˛ 2 R/ as follows:

.�C �/.A/ D �.A/C �.A/ for all A 2M;

.˛�/.A/ D ˛�.A/ for all ˛ 2 K and A 2M:

Then it is clear that �C � and ˛� are signed measures.
If � is a signed measure, we define a function j�j on M by

j�j.A/ D sup

(
nX

iD1
j�.Ai/j

)

for all A 2M;
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where the supremum is taken over all finite partitions fAi g ofA into members of M.
Then the function j�j is a finite non-negative measure on M. The measure j�j is
called the total variation measure of �, and the quantity j�j.X/ is called the total
variation of �. We observe that

j�.A/j � j�j.A/ � j�j.X/ for all A 2M: (3.16)

Furthermore, we can verify that the quantity j�j.X/ satisfies axioms (N1)–(N3) of
a norm. Thus the totality of signed measures on M is a normed linear space with
the norm k�k WD j�j.X/.

If we define two functions �C and �� on M by the formulas

�C D 1

2
.j�j C �/;

�� D 1

2
.j�j � �/;

then it follows from inequalities (3.16) that both �C and �� are finite non-negative
measures on M. It should be emphasized that the measures �C and �� are the
positive and negative variation measures of �, respectively. We also have the Jordan
decomposition of �:

� D �C � ��:

3.4.3 The Riesz–Markov Representation Theorem

The object of this section is to show that non-negative linear functionals on the
spaces of continuous functions are given by integration against Radon measures.
This fact constitutes an essential link between measure theory and functional
analysis, providing a powerful tool for constructing measures.

Let .X; �/ be a locally compact metric space and K a compact subset of X , and

Cc.X/ D ff 2 C.X/ W suppf is compactg :
C0.X/ D ff 2 C.X/ W f vanishes at infinityg :

First, we characterize the non-negative linear functionals on Cc.X/. A linear
functional I on Cc.X/ is said to be non-negative if I.f / � 0 whenever f � 0,
that is, if it satisfies the condition

f 2 Cc.X/; f .x/ � 0 on X H) I.f / � 0:
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The next proposition asserts that non-negativity implies a rather strong continuity
property:

Proposition 3.39. If I is a non-negative linear functional onCc.X/, then, for every
compact set K 	 X there exists a positive constant CK such that

jI.f /j � CK kf k1 for all f 2 Cc.X/ with suppf 	 K:

Here

kf k1 D sup
x2X
jf .x/j :

If � is Borel measure on X such that �.K/ <1 for every compact set K 	 X ,
then it follows that

Cc.X/ 	 L1.X;�/:

Hence the map

I� W f 7�!
Z

X

f .x/ d�.x/

is a non-negative linear functional on the space Cc.X/. The purpose of this
subsection is to prove that every non-negative linear functional on Cc.X/ arises
in this fashion. In doing this, we impose some additional conditions on �, subject to
which � is uniquely determined.

A Radon measure onX is a Borel measure that is finite on all compact sets in X ,
and is outer regular on all Borel sets in X and inner regular on all open sets in X .

If U is a open set in X and f 2 Cc.X/, then we write

f � U

to mean that (see Fig. 3.3)

(
0 � f .x/ � 1 on X;

suppf 	 U:

On the other hand, if K is a subset of X, we let

�K.x/ D
(
1 if x 2 K;
0 if x 2 X nK;
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and we write

f � �K
to mean that (see Fig. 3.4)

f .x/ � �K.x/ on X:

The next theorem asserts that non-negative linear functionals on the space Cc.X/
are given by integration against Radon measures:

Theorem 3.40. Let .X; �/ be a locally compact metric space. If I is a non-negative
linear functional on the space Cc.X/, then there is a unique Radon measure � on
X such that

I.f / D
Z

X

f .x/ d�.x/ for all f 2 Cc.X/: (3.17)

Furthermore, the Radon measure � enjoys the following two properties (3.18)
and (3.19):

�.U / D sup fI.f / W f 2 Cc.X/; f � U g for every open set U 	 X: (3.18)

�.K/ D inf fI.f / W f 2 Cc.X/; f � �Kg for every compact set K 	 X:
(3.19)

Proof. The proof is divided into two steps.

Step 1: First, we prove the uniqueness of the Radon measure. More precisely, we
show that a Radon measure � is determined by I on all Borel subsets of X .
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Assume that � is a Radon measure such that

I.f / D
Z

X

f .x/ d� for all f 2 Cc.X/:

Let U be an arbitrary open subset of X . Then we have, for every function f � U ,

I.f / D
Z

X

f .x/ d� �
Z

U

d� D �.U /:

On the other hand, if K is a compact subset of U , then it follows from an
application of Urysohn’s lemma (Lemma 3.35) that there exists a function f 2
Cc.X/ such that f � U and f D 1 onK . Hence we have the inequality

�.K/ D
Z

X

�K.x/ d� �
Z

X

f .x/ d� D I.f /:

However, since � is inner regular, we obtain that

�.U / D sup f�.K/ W K 	 U; K is compactg
� sup fI.f / W f 2 Cc.X/; f � U g � �.U /:

Therefore, we have, for every open set U 	 X ,

�.U / D sup fI.f / W f 2 Cc.X/; f � U g :

This proves that the Radon measure � is determined by I on open subsets U of X ,
and hence by I on all Borel subsets of X , since it is outer regular on all Borel sets.

Step 2: The proof of the uniqueness suggests how to construct a Radon mea-
sure �. More precisely, we begin by defining �.U / for an arbitrary open set
U 	 X by

�.U / D sup fI.f / W f 2 Cc.X/; f � U g ;

and then define ��.E/ for an arbitrary set E 	 X by the formula

��.E/ D inf f�.U / W U 
 X; U is openg :

It should be noted that ��.U / D �.U / if U is open, since we have �.U / �
�.V / for U 	 V .

The idea of the proof may be explained as follows:

(i) First, we prove that �� is an outer measure:
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�� .;/ D 0:
��.E/ � ��.F / if E 	 F :

��
0

@
1[

jD1
Ej

1

A �
1X

jD1
��.Ej /:

(ii) Secondly, we prove that every open subset U of X is ��-measurable:

��.E/ D ��.E \ U /C ��.E n U / for all E 	 X such that ��.E/ <1:

At this point, it follows from an application of Carathéodory’s theorem [Fo2,
Theorem 1.11] that every Borel set is ��-measurable and further that the
restriction � of �� to the �-algebra BX is a Borel measure. It should be
emphasized that ��.U / D �.U / if U is open and that the measure � is outer
regular and satisfies condition (3.18).

(iii) Thirdly, we prove that the measure � satisfies the condition (3.18).
This implies that � is finite on compact subsets of X and is inner regular

on open subsets U of X :

�.U / D sup f�.K/ W K 	 U; K is compactg :

Indeed, if U is open and if ˛ is an arbitrary number satisfying the condition
˛ < �.U /, then we can choose a function f 2 Cc.X/ such that f � U and
that I.f / > ˛. We let

K D suppf:

If g is a function in Cc.X/ satisfying the condition g � �K , then it follows
that

g � f � 0

so that, by the positivity of I ,

I.g/ � I.f / > ˛:

However, we have, by formula (3.19),

�.K/ > ˛:

This proves that � is inner regular on open sets, since ˛ is an arbitrary number
satisfying the condition ˛ < �.U /.

(iv) Finally, we prove (3.17).
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Proof of Assertion (i): It suffices to show that if
˚
Uj
�

is a sequence of open sets
in X and if U D [1

jD1Uj , then we have the inequality

�.U / �
1X

jD1
�.Uj /:

Indeed, it follows from this inequality that we have, for any subset E 	 X ,

��.E/ D inf

8
<

:

1X

jD1
�.Uj / W E 	

1[

jD1
Uj ; Uj is open

9
=

;
;

and further [Fo2, Proposition 1.10] that the expression on the right-hand side defines
an outer measure.

If U D [1
jD1Uj and if f 2 Cc.X/ such that f � U , then we let

K D suppf:

Since K is compact, it follows that, for some finite n,

K 	
n[

jD1
Uj :

Moreover, we can find functions g1, g2, : : :, gn 2 Cc.X/ such that gj � Uj
and

Pn
jD1 gj D 1 on K (a partition of unity subordinate to the covering

˚
Uj
�
).

However, since we have

f D
nX

jD1
f gj ; f gj � Uj ;

we obtain that, for any function f � U ,

I.f / D
nX

jD1
I.fgj / �

nX

jD1
�.Uj / �

1X

jD1
�.Uj /;

so that

�.U / D sup fI.f / W f 2 Cc.X/; f � U g �
1X

jD1
�.Uj /:
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Proof of Assertion (ii): It suffices to show that

��.E/ � ��.E \ U /C ��.E n U / (3.20)

for all E 	 X such that ��.E/ <1:

First, we consider the case where E is open. Then, for any given " > 0 we can
find a function f 2 Cc.X/ such that

(
f � E \ U;
I.f / > �.E \ U /� ":

Moreover, since the set E n suppf is also open, we can find a function g 2 Cc.X/
such that

(
g � E n suppf;

I.g/ > �.E n suppf /� ":

However, we have

f C g � E; suppf 	 U;
and so

�.E/ � I.f /C I.g/ > �.E \ U /C �.E n suppf /� 2"
� ��.E \ U /C ��.E n U /� 2":

Therefore, by letting " # 0 in this inequality we obtain the desired inequality (3.20).
Secondly, we consider the general case where ��.E/ <1. Then, for any given

" > 0 we can find an open subset V 
 E such that

�.V / < ��.E/C ":
Hence it follows that

��.E/C " > �.V / � ��.V \ U /C ��.V n U /
� ��.E \ U /C ��.E n U /:

Therefore, by letting " # 0 in this inequality we obtain the desired inequality (3.20).
Proof of Assertion (iii): Let K be an arbitrary compact subset of X , and let f 2

Cc.X/ such that f � �K . If " is an arbitrary positive number, we define an open set
U" as follows:

U" D fx 2 X W f .x/ > 1 � "g :
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Then it follows that we have, for any function g � U",
1

1 � "f � g � 0;

and so, by the positivity of I ,

I.g/ � 1

1 � "I.f /:

Hence we have the inequality

�.K/ � �.U"/ D sup fI.g/ W g 2 Cc.X/; g � U"g � 1

1 � "I.f /:

Therefore, by letting " # 0 in this inequality we obtain that

�.K/ � I.f /:
This proves that we have, for every compact set K 	 X ,

�.K/ � inf fI.f / W f 2 Cc.X/; f � �Kg : (3.21)

On the other hand, for any open set U 
 K , by using Urysohn’s lemma
(Lemma 3.35) we can find a function h 2 Cc.X/ such that h � �K and h � U .
Hence we have the inequality

I.h/ � �.U / D sup fI.f / W f 2 Cc.X/; f � U g :

However, since � is outer regular onK , it follows that

�.K/ D inf f�.U / W U 
 K; U is openg :
Hence we have proved that

I.h/ � �.K/:
This proves that

inf fI.f / W f 2 Cc.X/; f � �Kg � I.h/ � �.K/: (3.22)

Therefore, the desired formula (3.19) follows by combining inequalities (3.21)
and (3.22).

Proof of Assertion (iv): To do this, we have only to show that

I.f / D
Z

X

f .x/d� for all f 2 Cc.X; Œ0; 1�/:
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Indeed, it suffices to note that the space Cc.X/ is the linear span of functions in the
space Cc.X; Œ0; 1�/.

For any positive integer N 2 N, we let

Kj D
	

x 2 X W f .x/ � j

N




; 1 � j � N;

and

K0 D suppf:

Moreover, we define functions f1, f2, : : :, fN 2 Cc.X; Œ0; 1�/ by the formulas

fj .x/ D min

	

max

	

f .x/ � j � 1
N

; 0




;
1

N




; 1 � j � N:

Here it should be noted that

fj .x/ D

8
ˆ̂
<

ˆ̂
:

0 if x … Kj�1;
f .x/ � j�1

N
if x 2 Kj�1 nKj ;

1
N

if x 2 Kj :

Then it follows that

1

N
�Kj � fj �

1

N
�Kj�1 ;

so that

1

N
�.Kj / D 1

N

Z

X

�Kj .x/ d� �
Z

X

fj .x/ d� (3.23)

� 1

N

Z

X

�Kj�1 .x/ d� D
1

N
�.Kj�1/:

Also, if U is an open set containingKj�1, then we have the condition

Nfj � U;

and the inequality

I.fj / � �.U /

N
:
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Hence, by formula (3.19) and outer regularity of � it follows that

1

N
�.Kj / D 1

N
inf
˚
I.f / W f 2 Cc.X/; f � �Kj

� � I.fj / (3.24)

� 1

N
inf
˚
�.U / W U 
 Kj�1; U is open

� D 1

N
�.Kj�1/:

However, since we have

f D
NX

jD1
fj ;

it follows from inequalities (3.23) and (3.24) that

1

N

NX

jD1
�.Kj / �

NX

jD1

Z

X

fj .x/ d� D
Z

X

f .x/d� � 1

N

N�1X

jD0
�.Kj /;

1

N

NX

jD1
�.Kj / �

NX

jD1
I.fj / D I.f / � 1

N

N�1X

jD0
�.Kj /:

Hence we have the inequalities

ˇ
ˇ
ˇ
ˇI.f /�

Z

X

f .x/ d�

ˇ
ˇ
ˇ
ˇ �

�.K0/ � �.KN /

N
� �.suppf /

N
:

Therefore, by letting N ! 1 in this inequality we obtain the desired for-
mula (3.17), since �.suppf / <1.

Now the proof of Theorem 3.40 is complete.

We recall (Proposition 3.38) that C0.X/ is the uniform closure of Cc.X/. Hence
we find that if � is a Radon measure on X , then the linear functional

I� W f 7�!
Z

X

f .x/ d�.x/

extends continuously to C0.X/ if and only if it is bounded with respect to the
uniform norm. This happens only when

�.X/ D sup fI.f / W f 2 Cc.X/; 0 � f � 1 on Xg <1;

in which case �.X/ is the operator norm kIk of F .
Therefore, we have the following locally compact version of the Riesz–Markov

representation theorem:
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Theorem 3.41 (Riesz–Markov). Let .X; �/ be a locally compact metric space.
If F is a non-negative linear functional on the space C0.X/, then there exists a
unique Radon measure � on X such that

F.f / D
Z

X

f .x/ d�.x/ for all f 2 C0.X/;

and we have

�.X/ D sup

	Z

X

f .x/ d�.x/ W f 2 C0.X/; 0 � f � 1 on X




D kF k:

Corollary 3.42. Let .K; �/ be a compact metric space. Then we have the following
two assertions (i) and (ii):

(i) To each non-negative linear functional T on C.K/, there corresponds a unique
Radon measure � onK such that

T .f / D
Z

K

f .x/ d�.x/ for all f 2 C.K/; (3.25)

and we have

kT k D �.K/: (3.26)

(ii) Conversely, every finite Radon measure � on K defines a non-negative linear
functional T on C.K/ through formula (3.25), and relation (3.26) holds true.

Remark 3.43. It is easy to see that every open set in a compact metric space is a
�-compact. Thus we find that every finite Radon measure � is regular.

Now we can characterize the space of all bounded linear functionals on C.K/,
that is, the dual space C.K/0 of C.K/. Recall (see formula (3.7)) that the dual space
C.K/0 is a Banach space with the operator norm

kT k D sup
f 2C.K/
kf k�1

jTf j:

The compact version of the Riesz–Markov representation theorem reads as
follows:

Theorem 3.44 (Riesz–Markov). Let .K; �/ be a compact metric space. Then we
have the following two assertions (i) and (ii):

(i) To each T 2 C.K/0, there corresponds a unique real Borel measure � on K
such that (3.25) holds true for all f 2 C.K/, and we have

kT k D the total variation j�j.K/ of �: (3.27)
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(ii) Conversely, every real Borel measure � on K defines a bounded linear
functional T 2 C.K/0 through formula (3.25), and relation (3.27) holds true.

Remark 3.45. The positive and negative variation measures �C, �� of a real Borel
measure � are both regular.

We recall that the space of all real Borel measures � on K is a normed linear
space with the norm

k�k D the total variation j�j.K/ of �: (3.28)

Therefore, we can restate Theorem 3.44 as follows:

Theorem 3.46. The dual space C.K/0 of C.K/ can be identified with the space of
all real Borel measures on K normed by (3.28).

3.4.4 Weak Convergence of Measures

Let K be a compact metric space and let C.K/ be the Banach space of real-valued
continuous functions onK with the supremum (maximum) norm

kf k1 D sup
x2K
jf .x/j:

A sequence f�ng1nD1 of real Borel measures on K is said to converge weakly to a
real Borel measure � on K if it satisfies the condition

lim
n!1

Z

K

f .x/ d�n.x/ D
Z

K

f .x/ d�.x/ for every f 2 C.K/: (3.29)

Theorem 3.46 asserts that the space of all real Borel measures on K normed by
formula (3.28) can be identified with the strong dual space C.K/0 of C.K/. Thus
the weak convergence (3.29) of real Borel measures is just the weak� convergence
of C.K/0.

One more result is important when studying the weak convergence of measures:

Theorem 3.47. The Banach space C.K/ is separable, that is, it contains a
countable, dense subset.

The next theorem is one of the fundamental theorems in measure theory:

Theorem 3.48. Every sequence f�ng1nD1 of real Borel measures on K satisfying
the condition

sup
n�1
j�nj.K/ < C1 (3.30)
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has a subsequence which converges weakly to a real Borel measure � on K .
Furthermore, if the measures �n are all non-negative, then the measure � is also
non-negative.

Proof. By virtue of Theorem 3.46, we can apply Theorem 3.33 with X WD C.K/

to obtain the first assertion, since condition (3.30) implies the boundedness of the
Borel measures �n. The second assertion is an immediate consequence of the first
assertion of Corollary 3.42.

3.5 Closed Operators

Let X and Y be normed linear spaces over the same scalar field. Let T be a linear
operator from X into Y with domainD.T /. The graph G.T / of T is the set

G.T / D ffx;Txg W x 2 D.T /g

in the product space X � Y . Note that G.T / is a linear subspace of X � Y . We say
that T is closed if its graphG.T / is closed inX�Y . This is equivalent to saying that

fxng 	 D.T /; xn �! x in X; Txn �! y in Y

H) x 2 D.T /; Tx D y:

In particular, if T is continuous and its domain D.T / is closed in X , then T is a
closed linear operator.

We remark that if T is a closed linear operator which is also injective, then its
inverse T �1 is a closed linear operator. Indeed, this follows from the fact that the
mapping fx; yg 7�! fy; xg is a homeomorphism of X � Y onto Y �X .

A linear operator T is said to be closable if the closure G.T / in X � Y of G.T /
is the graph of a linear operator, say, T , that is, G.T / D G.T /.

A linear operator is called a closed extension of T if it is a closed linear operator
which is also an extension of T . It is easy to see that if T is closable, then every
closed extension of T is an extension of T . Thus the operator NT is called the minimal
closed extension of T .

The next theorem gives a necessary and sufficient condition for a linear operator
to be closable:

Theorem 3.49. A linear operator T from X into Y with domain D.T / is closable
if and only if the following condition is satisfied:

fxng 	 D.T /; xn �! 0 in X; Txn �! y in Y H) y D 0:
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Now we state two important theorems concerning closed linear operators:

Theorem 3.50 (Banach’s open mapping theorem). Let X and Y be Banach
spaces. Then every continuous linear operator from X onto Y is open, that is, it
maps every open set in X onto an open set in Y .

Theorem 3.51 (Banach’s closed graph theorem). Let X and Y be Banach
spaces. Then every closed linear operator from X into Y is continuous.

Corollary 3.52. Let X and Y be Banach spaces. If T is a continuous, one-to-one
linear operator from X onto Y , then its inverse T �1 is also continuous; hence T is
an isomorphism.

Indeed, the inverse T �1 is a closed linear operator, so that Theorem 3.51 applies.
We give useful characterizations of closed linear operators with closed range:

Theorem 3.53. Let X and Y be Banach spaces and T a closed linear operator
from X into Y with domain D.T /. Then the range R.T / of T is closed in Y if and
only if there exists a positive constant C such that

dist .x;N.T // � CkT xk for all x 2 D.T /:

Here

dist .x;N.T // D inf
z2N.T / kx � zk

is the distance from x to the null space N.T / of T .

Theorem 3.54 (Banach’s closed range theorem). Let X and Y be Banach spaces
and T a densely defined, closed linear operator from X into Y . Then the following
four conditions (i)–(iv) are equivalent:

(i) The range R.T / of T is closed in Y .
(ii) The range R.T 0/ of the transpose T 0 is closed in X 0.

(iii) R.T / D 0N.T 0/ D fx 2 X W hx; x0i D 0 for all x0 2 N.T 0/g.
(iv) R.T 0/ D 0N.T / D fx0 2 X 0 W hx0; xi D 0 for all x 2 N.T /g.

3.6 Complemented Subspaces

LetX be a linear space. Two linear subspacesM andN ofX are said to be algebraic
complements in X if X is the direct sum of M and N , that is, if X D M u N .
Algebraic complements M and N in a normed linear space X are said to be
topological complements in X if the addition mapping

fy; zg 7�! y C z
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is an isomorphism of M �N onto X . We then write

X D M ˚N:

As an application of Corollary 3.52, we obtain the following theorem:

Theorem 3.55. Let X be a Banach space. If M and N are closed algebraic
complements in X , then they are topological complements.

A closed linear subspace of a normed linear space X is said to be complemented
in X if it has a topological complement. By Theorem 3.55, this is equivalent in
Banach spaces to the existence of a closed algebraic complement.

The next theorem gives two criteria for a closed subspace to be complemented:

Theorem 3.56. Let X be a Banach space and M a closed subspace of
X . If M has either finite dimension or finite codimension, that is, if either
(i) dimM < 1 or (ii) codimM D dimX=M < 1, then it is complemented
in X .

3.7 Compact Operators

For a compact operator T on a Banach space, the eigenvalue problem can be
treated fairly completely in the sense that the classical theory of Fredholm integral
equations may be extended to the linear functional equation Tx � �x D y with a
complex parameter �. This result is known as the Riesz–Schauder theory.

3.7.1 Definition and Basic Properties of Compact Operators

LetX and Y be normed linear spaces over the same scalar field K. A linear operator
T from X into Y is said to be compact or completely continuous if it maps every
bounded subset of X onto a relatively compact subset of Y , that is, if the closure
of T .B/ is compact in Y for every bounded subset B of X . This is equivalent to
saying that, for every bounded sequence fxng1nD1 in X , the sequence fT xng1nD1 has
a subsequence which converges in Y .

We list some basic facts which follow at once:

(i) Every compact operator is bounded.
Indeed, a compact operator maps the unit sphere onto a bounded set.

(ii) Every bounded linear operator with finite dimensional range is compact.
This is an immediate consequence of Corollary 3.19.

(iii) No isomorphism between infinite dimensional spaces is compact.
This follows from an application of Theorem 3.20.
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(iv) A linear combination of compact operators is compact.
(v) The product of a compact operator with a bounded operator is compact.

The next theorem states that if Y is a Banach space, then the compact operators
form a closed subspace of the space L.X; Y / of bounded linear operators:

Theorem 3.57. Let X be a normed linear space and Y a Banach space. If fTng1nD1
is a sequence of compact linear operators which converges to an operator T in the
space L.X; Y / with the uniform topology, then the limit operator T is compact.

As for the transposes of compact operators, we have the following theorem:

Theorem 3.58. Let X and Y be normed linear spaces. If T is a compact linear
operator from X into Y , then its transpose T 0 is a compact linear operator from Y 0
into X 0.

3.7.2 The Riesz–Schauder Theory

Now we state the most interesting results on compact linear operators, which are
essentially due to F. Riesz in the Hilbert space setting. The results were extended to
Banach spaces by Schauder:

Theorem 3.59. Let X be a Banach space and T a compact linear operator from X

into itself. Set

S D I � T:

Then we have the following three assertions (i)–(iii):

(i) The null space N.S/ of S is finite dimensional and the range R.S/ of S is
closed in X .

(ii) The null space N.S 0/ of the transpose S 0 is finite dimensional and the range
R.S 0/ of S 0 is closed in X 0.

(iii) dimN.S/ D dimN.S 0/.

The next result is an extension of the theory of linear mappings for finite
dimensional linear spaces:

Corollary 3.60 (The Fredholm alternative). Let T be a compact linear operator
from a Banach space X into itself. If S D I � T is either one-to-one or onto, then
it is an isomorphism of X onto itself.

Let T be a bounded linear operator from X into itself. The resolvent set of T ,
denoted �.T /, is defined to be the set of scalars � 2 K such that �I � T is an
isomorphism of X onto itself. In this case, the inverse .�I � T /�1 is called the
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resolvent of T . The complement of �.T /, that is, the set of scalars � 2 K such that
�I � T is not an isomorphism of X onto itself is called the spectrum of T , and is
denoted by �.T /.

The set �p.T / of scalars � 2 K such that �I �T is not one-to-one forms a subset
of �.T /, and is called the point spectrum of T . A scalar � 2 K belongs to �p.T /
if and only if there exists a non-zero element x 2 X such that Tx D �x. In this
case, � is called an eigenvalue of T and x an eigenvector of T corresponding to �,
respectively. Also the null space N.�I � T / of �I � T is called the eigenspace of
T corresponding to �, and the dimension of N.�I � T / is called the multiplicity
of �.

By using C. Neumann’s series (Theorem 3.12), we find that the resolvent set
�.T / is open in K and that

f� 2 K W j�j > kT kg 	 �.T /:

Hence the spectrum �.T / D K n �.T / is closed and bounded in K.
If T is a compact operator and � is a non-zero element of �.T /, then, by applying

Corollary 3.60 to the operator ��1T we obtain that �I �T is not one-to-one, that is,
� 2 �p.T /. Also note that ifX is infinite dimensional, then T is not an isomorphism
of X onto itself; hence 0 2 �.T /. Therefore, the scalar field K can be decomposed
as follows:

K D ��p.T / [ f0g
�[ �.T /:

We can say rather more about the spectrum �.T /:

Theorem 3.61 (Riesz–Schauder). Let T be a compact linear operator from a
Banach space X into itself. Then we have the following three assertions (i)–(iii):

(i) The spectrum �.T / of T is either a finite set or a countable set accumulating
only at 0; and every non-zero element of �.T / is an eigenvalue of T .

(ii) dimN.�I � T / D dimN.� � T 0/ <1 for all � ¤ 0.
(iii) Let � ¤ 0. The equation

.�I � T /x D y

has a solution if and only if y is orthogonal to the space N.�� T 0/. Similarly,
the equation

.�I � T 0/z D w

has a solution if and only if w is orthogonal to the spaceN.�I �T /. Moreover,
the operator �I � T is onto if and only if it is one-to-one.
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3.8 Fredholm Operators

Throughout this section, the letters X , Y , Z denote Banach spaces over the same
scalar field. The Fredholm property of T W X ! Y conveys that the operator
T is both “almost” injective and “almost” surjective, that is, it is “almost” an
isomorphism.

3.8.1 Definition and Basic Properties of Fredholm Operators

A linear operator T from X into Y is called a Fredholm operator if the following
five conditions (i)–(v) are satisfied:

(i) The domainD.T / of T is dense in X .
(ii) T is a closed operator.

(iii) The null space N.T / D fx 2 D.T / W T x D 0g of T has finite dimension, that
is, dimN.T / <1.

(iv) The range R.T / D fT x W x 2 D.T /g of T is closed in Y .
(v) The range R.T / of T has finite codimension, that is,

codimR.T / D dimY=R.T / <1:

Then the index of T is defined by the formula

indT WD dimN.T / � codimR.T /:

Roughly speaking, the index indT indicates how far the operator T W X ! Y

is from being bijective. Namely, the further indT is from zero, the more bijective
T is.

First, we give a characterization of Fredholm operators:

Theorem 3.62. If T is a Fredholm operator fromX into Y with domainD.T /, then
there exist a bounded linear operator S W Y ! X and compact linear operators
P W X ! X , Q W Y ! Y such that

(a) ST D I � P on D.T /.
(b) TS D I �Q on Y .

Furthermore, we have

R.P / D N.T /;
dimR.Q/ D codimR.T / D dimY=R.T /:

Theorem 3.62 has a converse:



3.8 Fredholm Operators 141

Theorem 3.63. Let T be a closed linear operator fromX into Y with domainD.T /
dense in X . Assume that there exist bounded linear operators S1 W Y ! X , S2 W
Y ! X and compact linear operatorsK1 W X ! X , K2 W Y ! Y such that

(a) S1T D I �K1 on D.T /.
(b) TS2 D I �K2 on Y .

Then T is a Fredholm operator.

Secondly, we state an important property of the product of Fredholm operators:

Theorem 3.64. If T is a Fredholm operator from X into Y and if S is a Fredholm
operator from Y intoZ, then the productST is a Fredholm operator fromX intoZ.
Moreover, we have

ind .ST/ D indS C indT:

As for the transposes of Fredholm operators, we have the following theorem:

Theorem 3.65. If T is a Fredholm operator fromX into Y and if Y is reflexive, then
the transpose T 0 of T is a Fredholm operator from Y 0 into X 0. Moreover, we have

indT 0 D �indT:

3.8.2 Stability Theorem for Indices of Fredholm Operators

By combining Theorems 3.59 and 3.54 (or Theorem 3.61), we obtain that if
X DY and T is compact, then the operator I � T is a Fredholm operator and ind
.I �T /D 0.

More precisely, the next theorem asserts that the index indT is stable under
compact perturbations and small perturbations in the space L.X; Y / of bounded
linear operators on X into Y :

Theorem 3.66. Let T be a Fredholm operator from X into Y . Then we have the
following two assertions (i) and (ii):

(i) If K is a compact linear operator on X into Y , then the sum T C K is a
Fredholm operator, and we have

ind .T CK/ D indT:

(ii) There exists a constant " > 0 such that if an operator S 2 L.X; Y / satisfies the
condition kSk < ", then the sum T C S is a Fredholm operator, and we have

ind .T C S/ D indT:
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3.9 Notes and Comments

For more thorough treatments of functional analysis, the reader might be referred to
Friedman [Fr2], Rudin [Ru], Schechter [Sh] and Yosida [Yo].

Sections 3.1 and 3.2: For the theory of linear topological spaces, see Treves [Tv].
Section 3.3: The method of continuity (Theorem 3.13) is adapted from

Gilberg–Trudinger [GT, Theorem 5.2]. The Hahn–Banach extension theorem
(Theorem 3.21) is taken from Yosida [Yo, Chapter IV, Section 1, Theorem;
Section 4, Theorem].

Section 3.4: Proposition 3.38 is taken from Folland [Fo2, Proposition 4.35] and
the proof of Theorem 3.40 is adapted from Folland [Fo2, Theorem 7.2]. The locally
compact version of the Riesz–Markov representation theorem (Theorem 3.41)
is taken from Folland [Fo2, Theorem 7.17] and the compact version of the
Riesz–Markov representation theorem (Theorem 3.44) is taken from Folland [Fo2,
Corollary 7.18], respectively.

Sections 3.5–3.7: The material in these sections is adapted from Friedman [Fr2]
and Yosida [Yo].

Section 3.8: For further material on Fredholm operators, see Gohberg–Kreı̆n
[GK] and Palais [Pl].

The following diagram gives a bird’s eye view of Linear Algebra, Integral
Equations and Functional Analysis and how these relate to each other:



Chapter 4
Theory of Semigroups

This chapter is devoted to the general theory of semigroups. These topics form the
necessary background for the proof of Theorems 1.2 and 1.3. In Sects. 4.1–4.3 we
study Banach space valued functions, operator valued functions and exponential
functions, generalizing the numerical case. Section 4.4 is devoted to the theory
of contraction semigroups. A typical example of contraction semigroups is the
semigroup associated with the heat kernel (Example 4.11). We consider when a
linear operator is the infinitesimal generator of some contraction semigroup. This
question is answered by the Hille–Yosida theorem (Theorem 4.10). In Sect. 4.5
we consider when a linear operator is the infinitesimal generator of some .C0/
semigroup (Theorem 4.28), generalizing the theory of contraction semigroups
developed in Sect. 4.4. Moreover, we study an initial-value problem associated with
a .C0/ semigroup, and prove an existence and uniqueness theorem (Theorem 4.30).

4.1 Banach Space Valued Functions

Let E be a Banach space over the real or complex number field, equipped with a
norm k � k. A function u.t/ defined on an interval I with values in E is said to be
strongly continuous at a point t0 of I if it satisfies the condition

lim
t!t0
ku.t/ � u.t0/k D 0:

If u.t/ is strongly continuous at every point of I , then it is said to be strongly
continuous on I . If u.t/ is strongly continuous on I , then the function ku.t/k is
continuous on I and also, for any f in the dual space E 0 of E , the function f .u.t//
is continuous on I .

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__4,
© Springer-Verlag Berlin Heidelberg 2014
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As in the case of scalar valued functions, the following two results (1) and (2)
hold true:

(1) If u.t/ is strongly continuous on a bounded closed interval I , then it is uniformly
strongly continuous on I .

(2) If a sequence fun.t/g of strongly continuous functions on I converges uniformly
strongly to a function u.t/ on I , then the limit function u.t/ is strongly
continuous on I .

If u.t/ is a strongly continuous function on I such that

Z

I

ku.t/k dt <1; (4.1)

then the Riemann integral

Z

I

u.t/ dt

can be defined just as in the case of scalar valued functions. Then we say that the
function u.t/ is strongly integrable on I . By the triangle inequality, we have the
inequality

�
�
�
�

Z

I

u.t/ dt

�
�
�
� �

Z

I

ku.t/k dt:

Furthermore, we easily obtain the following theorem (cf. [Tn, Chapter 7,
Theorem 7-1]):

Theorem 4.1. Let u.t/ be a strongly continuous function defined on an interval I
which satisfies condition (4.1), and let T be a bounded linear operator on E into
itself. Then the function T u.t/ is strongly integrable on I , and we have

T

�Z

I

u.t/ dt

�

D
Z

I

T u.t/ dt:

Similarly, we have, for any f 2 E 0,

f

�Z

I

u.t/ dt

�

D
Z

I

f .u.t// dt:

As in the case of scalar valued functions, the following two results (3) and (4)
hold true:

(3) If a sequence fun.t/g of strongly continuous functions on a bounded closed
interval I converges uniformly strongly to a function u.t/ on I , then the limit
function u.t/ is strongly integrable on I , and we have
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Z

I

u.t/ dt D lim
n!1

Z

I

un.t/ dt:

(4) If u.t/ is strongly continuous in a neighborhood of a point t0 of I , then we have

lim
h!0

�
�
�
�
�
1

h

Z t0Ch

t0

u.t/ dt � u.t0/

�
�
�
�
�
D 0:

A function u.t/ defined on an open interval I is said to be strongly differentiable
at a point t0 of I if the limit

lim
h!0

u.t0 C h/ � u.t0/

h
(4.2)

exists in E . The value of (4.2) is denoted by

du

dt
.t0/ or u0.t0/:

If u.t/ is strongly differentiable at every point of I , then it is said to be strongly
differentiable on I . A strongly differentiable function is strongly continuous.

As in the case of scalar valued functions, the following two results (5) and (6)
hold true:

(5) If u.t/ is strongly differentiable on I and u0.t/ is strongly continuous on I , then
we have, for any a, b 2 I ,

u.b/� u.a/ D
Z b

a

u0.t/ dt:

(6) If u.t/ is strongly continuous on I , then, for each c 2 I , the integral
R t
c

u.s/ ds
is strongly differentiable on I , and we have

d

dt

�Z t

c

u.s/ ds

�

D u.t/:

4.2 Operator Valued Functions

Let L.E;E/ be the space of all bounded linear operators on a Banach space E into
itself. The space L.E;E/ is a Banach space with the operator norm

kT k D sup
x2E
x¤0

kTxk
kxk D sup

x2Ekxk�1
kTxk:
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A function T .t/ defined on an interval I with values in the space L.E;E/ is said to
be strongly continuous at a point t0 of I if it satisfies the condition

lim
t!t0
kT .t/x � T .t0/xk D 0 for every x 2 E:

We say that T .t/ is norm continuous at t0 if it satisfies the condition

lim
t!t0
kT .t/ � T .t0/k D 0:

If T .t/ is strongly (resp. norm) continuous at every point of I , then it is said to
be strongly (resp. norm) continuous on I . A norm continuous function is strongly
continuous.

The next theorem is an immediate consequence of the principle of uniform
boundedness (see Theorem 3.14):

Theorem 4.2. If T .t/ is strongly continuous on I , then the function kT .t/k is
bounded uniformly in t over bounded closed intervals contained in I .

A function T .t/ defined on an open interval I is said to be strongly differentiable
at a point t0 of I if there exists an operator S.t0/ in L.E;E/ such that

lim
h!0

�
�
�
�

�
T .t0 C h/� T .t0/

h

�

x � S.t0/x
�
�
�
� D 0 for every x 2 E:

We say that T .t/ is norm differentiable at t0 if it satisfies the condition

lim
h!0

�
�
�
�
T .t0 C h/ � T .t0/

h
� S.t0/

�
�
�
� D 0:

The operator S.t0/ is denoted by

dT

dt
.t0/ orT 0.t0/:

If T .t/ is strongly (resp. norm) differentiable at every point of I , then it is said to be
strongly (resp. norm) differentiable on I . A norm differentiable function is strongly
differentiable.

It should be emphasized that the Leibniz formula can be extended to strongly or
norm differentiable functions:

Theorem 4.3. (i) If u.t/ and T .t/ are both strongly continuous (resp. differen-
tiable) on I , then the function T .t/u.t/ is also strongly continuous (resp.
differentiable) on I . In the differentiable case, we have the formula

d

dt
.T .t/u.t// D dT

dt
.t/u.t/C T .t/du

dt
.t/:
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(ii) If T .t/ and S.t/ are both norm (resp. strongly) differentiable on I , then the
function S.t/T .t/ is also norm (resp. strongly) differentiable on I , and we have
the formula

d

dt
.S.t/T .t// D dS

dt
.t/T .t/C S.t/dT

dt
.t/:

4.3 Exponential Functions

Let E be a Banach space and L.E;E/ the space of all bounded linear operators on
E into itself. Just as in the case of numerical series, we have the following theorem:

Theorem 4.4. If A 2 L.E;E/, we let

etA D
1X

mD0

tm

mŠ
Am for every t 2 R: (4.3)

Then it follows that the right-hand side converges in the Banach space L.E;E/,
and enjoys the following three properties (a)–(c):

(a) ketAk � ejt jkAk for all t 2 R.
(b) etAesA D e.tCs/A for all t , s 2 R.
(c) The exponential function etA is norm differentiable on R, and satisfies the

formula

d

dt
.etA/ D AetA D etAA for all t 2 R: (4.4)

Proof. (a) Since we have, for anym 2 N,

kAmk � kAkm;

it follows that

ketAk D kI C tAC .tA/2

2Š
C .tA/3

3Š
C : : : k

� kIk C jt jkAk C jt j
2kAk2
2Š

C jt j
3kAk3
3Š

C : : :

D ejt jkAk for all t 2 R:

This proves that the series (4.3) converges in the space L.E;E/ for all t 2 R,
and enjoys property (a).
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(b) Just as in the case of numerical series, we can rearrange the series

e.tCs/A D
1X

mD0

.t C s/m
mŠ

Am

to obtain that
 1X

mD0

tm

mŠ
Am

! 1X

mD0

sm

mŠ
Am

!

:

(c) We remark that the series

AetA D
1X

mD0

tm

mŠ
AmC1 D etAA

converges in L.E;E/ uniformly in t over bounded intervals of R. Hence we
have, by termwise integration,

Z t

0

AesA ds D
1X

mD0

tmC1

.mC 1/ŠA
mC1 D etA � I: (4.5)

Therefore, we find that the left-hand side of formula (4.5) and hence the function
etA is norm differentiable on R, and that the desired formula (4.4) holds true.

The proof of Theorem 4.4 is complete.

Theorem 4.5. If A and B are bounded linear operators on a Banach space E into
itself and if A and B commute, then we have

eACB D eA eB D eB eA: (4.6)

Proof. Since AB D BA, it follows that

AetB D
1X

mD0

tm

mŠ
ABm D

1X

mD0

tm

mŠ
BmA D etBA;

just as in the numerical case.
However, we have, by formula (4.4),

d

dt

�
e.1�t /.ACB/� D �.ACB/ e.1�t /.ACB/ for all t 2 R:

Hence, if we let

K.t/ D etA etB e.1�t /.ACB/ for every t 2 R;
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we find from the Leibniz formula that

d

dt
.K.t// D etA Ae tB e.1�t /.ACB/ C etA etB Be.1�t /.ACB/

�etA etB .AC B/e.1�t /.ACB/

D etA etB Ae.1�t /.ACB/ C etA etB Be.1�t /.ACB/

�etA etB .AC B/e.1�t /.ACB/

D 0 for all t 2 R;

so that K.t/ is a constant function. In particular, we have

eACB D K.0/ D K.1/ D eA eB:

This proves the desired formula (4.6).
The proof of Theorem 4.5 is complete.

4.4 Contraction Semigroups

Let E be a Banach space. A one-parameter family fTtgt�0 of bounded linear
operators on E into itself is called a contraction semigroup of class .C0/ or simply
a contraction semigroup if it satisfies the following three conditions (i)–(iii):

(i) TtCs D Tt � Ts for all t , s � 0.
(ii) limt#0 kTtx � xk D 0 for every x 2 E .

(iii) kTtk � 1 for all t � 0.

Condition (i) is called the semigroup property.

Remark 4.6. In view of conditions (i) and (ii), it follows that T0 = I . Hence
condition (ii) is equivalent to the strong continuity of fTtgt�0 at t D 0. Moreover, it
is easy to verify that a contraction semigroup fTt gt�0 is strongly continuous on the
interval Œ0;1/.

4.4.1 The Hille–Yosida Theory of Contraction Semigroups

If fTtgt�0 is a contraction semigroup of class .C0/, then we let

D D the set of all x 2 E such that the limit

lim
h#0

Thx � x
h

exists in E:
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Then we define a linear operator A from E into itself as follows:

(a) The domainD.A/ of A is the set D.

(b) Ax D lim
h#0

Thx � x
h

for every x 2 D.A/.

The operator A is called the infinitesimal generator of fTtgt�0.
First, we derive a differential equation associated with a contraction semigroup

of class .C0/ in terms of its infinitesimal generator:

Proposition 4.7. Let A be the infinitesimal generator of a contraction semigroup
fTtgt�0. If x 2 D.A/, then we have Ttx 2 D.A/ for all t > 0, and the function Ttx
is strongly differentiable on the interval .0;1/ and satisfies the equation

d

dt
.Ttx/ D A.Ttx/ D Tt .Ax/ for all t > 0: (4.7)

Proof. Let h > 0. Then we have, by the semigroup property,

Th.Ttx/ � Ttx
h

D Tt
�
Th � I
h

x

�

:

However, since Tt is bounded and x 2 D.A/, it follows that

Tt

�
Th � I
h

x

�

�! Tt.Ax/ as h # 0:

This implies that

(
Ttx 2 D.A/;
A.Ttx/ D Tt .Ax/:

Therefore, we find that Ttx is strongly right-differentiable on .0;1/ and satisfies
the equation

d

dt

C
.Ttx/ D A.Ttx/ D Tt .Ax/ for all t > 0:

Similarly, we have, for each 0 < h < t ,

Tt�hx � Ttx
�h � Tt .Ax/ D Tt�h

�
Th � I
h

x � Th.Ax/
�

:

However, since we have the inequality

kTt�hk � 1
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and, as h # 0,

Th.Ax/ �! Ax;

we obtain that

Tt�hx � Ttx
�h �! Tt .Ax/ as h # 0:

This proves that Ttx is strongly left-differentiable on .0;1/ and satisfies the
equation

d

dt

�
.Ttx/ D A.Ttx/ D Tt.Ax/ for all t > 0:

Summing up, we have proved that Ttx is strongly differentiable on the interval
.0;1/ and satisfies Eq. (4.7).

The proof of Proposition 4.7 is complete.

The next proposition characterizes the infinitesimal generator A:

Proposition 4.8. Let A be the infinitesimal generator of a contraction semigroup
fTtgt�0. Then A is a densely defined, closed linear operator in E .

Proof. The proof is divided into two steps.

Step 1: First, we show that the operator A is closed.
To do this, we assume that

xn 2 D.A/; xn ! x0 and Axn ! y0 in E:

Then it follows from an application of Eq. (4.7) that

Ttxn � xn D
Z t

0

d

ds
.Tsxn/ ds D

Z t

0

Ts.Axn/ ds: (4.8)

However, we have, as n!1,

Ttxn � xn �! Ttx0 � x0
and also

�
�
�
�

Z t

0

Ts.Axn/ ds�
Z t

0

Tsy0 ds

�
�
�
� D

�
�
�
�

Z t

0

Ts.Axn � y0/ ds

�
�
�
�

�
Z t

0

kTs.Axn � y0/k ds

� t kAxn � y0k �! 0:
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Hence, by letting n!1 in (4.8) we obtain that

Ttx0 � x0 D
Z t

0

Tsy0 ds: (4.9)

Furthermore, it follows that, as t # 0,

1

t

Z t

0

Tsy0 ds �! T0y0 D y0;

since the integrand Tsy0 is strongly continuous.
Therefore, we find from (4.9) that, as t # 0,

Ttx0 � x0
t

D 1

t

Z t

0

Tsy0 ds �! y0:

This proves that

(
x0 2 D.A/;
Ax0 D y0:

Therefore, we have proved that the operator A is a closed operator.
Step 2: Secondly, we show the density of the domainD.A/ in E .

Let x be an arbitrary element of E . For each ı > 0, we let

xı D 1

ı

Z ı

0

Tsx ds:

Then we have, for any 0 < h < ı,

Th.xı/ D 1

ı

Z ı

0

Th.Tsx/ ds D 1

ı

Z ı

0

ThCsx ds D 1

ı

Z ıCh

h

Tsx ds:

Hence it follows that

�
Th � I
h

�

xı D 1

ı

 
1

h

Z ıCh

h

Tsx ds � 1
h

Z ı

0

Tsx ds

!

(4.10)

D 1

ı

 
1

h

Z ıCh

ı

Tsx ds � 1
h

Z h

0

Tsx ds

!

:

However, it follows that, as h # 0,
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1

h

Z ıCh

ı

Tsx ds �! Tıx;

1

h

Z h

0

Tsx ds �! T0x D x;

since the integrand Tsx is strongly continuous.
Therefore, we find from (4.10) that, as h # 0,

�
Th � I
h

�

xı �! 1

ı
.Tıx � x/:

This proves that

8
<

:

xı 2 D.A/;
Axı D 1

ı
.Tıx � x/:

Moreover, it follows that, as ı # 0,

xı D 1

ı

Z ı

0

Tsx ds �! T0x D x:

Summing up, we have proved thatD.A/ is dense in E .
The proof of Proposition 4.8 is complete.

Let fTtgt�0 be a contraction semigroup. Then the integral

Z s

0

e�˛tTtx dt; x 2 E; (4.11)

is strongly integrable for all s > 0, since the integrand is strongly continuous on the
interval Œ0;1/. Moreover, if ˛ > 0, then the limit G˛x of the integral (4.11) exists
in E as s !1:

G˛x WD
Z 1

0

e�˛t Ttx dt D lim
s!1

Z s

0

e�˛t Ttx dt; x 2 E; ˛ > 0:

Thus G˛x is defined for all x 2 E if ˛ > 0. It is easy to see that the operator G˛ is
a bounded linear operator from E into itself with norm 1=˛:

kG˛xk � 1

˛
kxk for all x 2 E: (4.12)

The family fG˛g˛>0 of bounded linear operators is called the resolvent of the
semigroup fTtgt�0.
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The next proposition characterizes the resolventG˛:

Proposition 4.9. Let fTtgt�0 be a contraction semigroup defined on a Banach
space E and A the infinitesimal generator of fTtg. For each ˛ > 0, the operator
.˛I � A/ is a bijection of D.A/ onto E , and its inverse .˛I � A/�1 is the
resolvent G˛:

.˛I � A/�1x D G˛x D
Z 1

0

e�˛t Ttx dt for every x 2 E: (4.13)

Proof. The proof is divided into three steps.

Step 1: First, we show that .˛I � A/ is surjective for each ˛ > 0.
Let x be an arbitrary element of E . Then we have, for each h > 0,

Th.G˛x/ D
Z 1

0

e�˛t Th.Ttx/ dt D
Z 1

0

e�˛tTtChx dt

D e˛h
Z 1

h

e�˛tTtx dt:

Hence it follows that

Th.G˛x/ �G˛x D e˛h
Z 1

h

e�˛t Ttx dt �
Z 1

0

e�˛t Ttx dt

D �
e˛h � 1�

Z 1

h

e�˛tTtx dt �
Z h

0

e�˛tTtx dt;

so that

Th.G˛x/ �G˛x
h

(4.14)

D
�
e˛h � 1
h

�Z 1

h

e�˛tTtx dt � 1
h

Z h

0

e�˛t Ttx dt:

However, we obtain that, as h # 0,

�
e˛h � 1
h

�

�! ˛;

Z 1

h

e�˛tTtx dt �!
Z 1

0

e�˛t Ttx dt D G˛x;

1

h

Z h

0

e�˛t Ttx dt �! e�˛t TtxjtD0 D x:
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By letting h # 0 in (4.14), we have proved that

Th.G˛x/ �G˛x
h

�! ˛G˛x � x as h # 0:

This implies that

(
G˛x 2 D.A/;
A.G˛x/ D ˛G˛x � x;

or equivalently,

.˛I � A/G˛x D x for every x 2 E:

Therefore, we have proved that the operator .˛I�A/ is surjective for each ˛ > 0.
Step 2: Secondly, we show that .˛I � A/ is injective for each ˛ > 0.

Now we assume that

x 2 D.A/; .˛I � A/x D 0:

If we introduce a function u.t/ by the formula

u.t/ D e�˛tTtx for all t > 0;

then it follows from an application of Proposition 4.7 that

d

dt
.u.t// D �˛e�˛t Ttx C e�˛t TtAx D �e�˛t Tt .˛I � A/x

D 0;

so that

u.t/ D a constant; t > 0:

However, we have, by letting t # 0,

u.t/ D u.0/ D e�˛t Ttx
ˇ
ˇ
tD0 D x:

On the other hand, we have, by letting t " C1,

u.t/ D u.C1/ D lim
t"C1

u.t/ D 0:

Indeed, it suffices to note that

ku.t/k D e�˛tkTtxk � e�˛tkxk for all t > 0:



156 4 Theory of Semigroups

Hence it follows that x D 0. This proves that the operator .˛I � A/ is injective
for each ˛ > 0.

Step 3: Summing up, we have proved that .˛I � A/ is a bijection of D.A/ onto
E and that .˛I � A/�1 D G˛ .

The proof of Proposition 4.9 is complete.

Now we consider when a linear operator is the infinitesimal generator of some
contraction semigroup. This question is answered by the following Hille–Yosida
theorem [CP, Chapitre 6, Théorème 6.12]:

Theorem 4.10 (Hille–Yosida). Let A be a linear operator from a Banach space E
into itself with domainD.A/. In order that A is the infinitesimal generator of some
contraction semigroup, it is necessary and sufficient that A satisfies the following
three conditions:

(i) The operator A is closed and its domainD.A/ is dense in E .
(ii) For every ˛ > 0 the equation

.˛I � A/x D y

has a unique solution x 2 D.A/ for any y 2 E; we then write

x D .˛I � A/�1y:

(iii) For any ˛ > 0, we have the inequality

�
�.˛I � A/�1

�
� � 1

˛
: (4.15)

Proof. The necessity of conditions (i)–(iii) follows from Propositions 4.8 and 4.9
and inequality (4.12).

The sufficiency is proved in six steps.

Step 1: For each ˛ > 0, we define linear operators

J˛ D ˛.˛I � A/�1;

and

A˛ D AJ˛:

Then we can prove the following two assertions (4.16) and (4.17):

kJ˛k � 1; (4.16a)

lim
˛!C1J˛x D x for every x 2 E; (4.16b)
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and

kA˛k � 2˛; (4.17a)

lim
˛!C1A˛x D Ax for every x 2 D.A/: (4.17b)

The operators A˛ are called the Yosida approximations to A.
First, we note that assertion (4.16a) is an immediate consequence of inequal-
ity (4.15). Furthermore, we have, for all x 2 D.A/,

J˛x � x D ˛.˛I � A/�1x � .˛I � A/�1.˛I � A/x

D .˛I � A/�1 .˛x � ˛x C Ax/ D .˛I � A/�1.Ax/:

Hence it follows from inequality (4.15) that, as ˛ ! C1,

kJ˛x � xk �
�
�.˛I � A/�1

�
� kAxk � 1

˛
kAxk �! 0:

This proves assertion (4.16b), since kJ˛k � 1 and D.A/ is dense in E .
Assertion (4.17b) follows from assertion (4.16b). Indeed, we have, as ˛ ! C1,

A˛x D AJ˛x D J˛.Ax/ �! Ax for every x 2 D.A/:

On the other hand, it follows that

A˛ D �˛I C ˛J˛;

so that

kA˛k � ˛ C ˛ kJ˛k � 2˛:

This proves assertion (4.17a).
Step 2: We define a linear operator

Tt.˛/ D exp ŒtA˛� for every ˛ > 0:

Since we have

A˛ D �˛I C ˛J˛;

it follows from an application of Theorem 4.5 that the operators

Tt .˛/ D e�˛t exp Œ˛tJ˛� ; t � 0; (4.18)
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form a contraction semigroup for each ˛ > 0. Indeed, it suffices to note that

kTt .˛/k D e�˛t kexp Œ˛tJ˛�k � e�˛t
 1X

nD0

.˛t/n

nŠ
kJ n˛ k

!

� e�˛t
 1X

nD0

.˛t/n

nŠ

!

D e�˛t e˛t D 1:

Step 3: We show that the operator Tt.˛/ has a strong limit Tt as ˛ ! C1:

Ttx D lim
˛!C1Tt.˛/x for every x 2 E:

Moreover, this convergence is uniform in t over bounded intervals Œ0; t0� for all
t0 > 0.
If x is an arbitrary element of D.A/, then it follows from an application of
Proposition 4.7 that

Tt .˛/x � Tt .ˇ/x

D
Z t

0

d

ds
.Tt�s.ˇ/Ts.˛/x/ ds

D
Z t

0

�
d

ds
.Tt�s.ˇ// � Ts.˛/x C Tt�s.ˇ/ � d

ds
.Ts.˛/x/

�

ds

D
Z t

0

�
Tt�s.ˇ/.�Aˇ/Ts.˛/x C Tt�s.ˇ/Ts.˛/.A˛x/

�
ds

D
Z t

0

Tt�s.ˇ/Ts.˛/
�
A˛x � Aˇx

�
ds:

Hence we have the inequality

kTt.˛/x � Tt .ˇ/xk

D
�
�
�
�

Z t

0

Tt�s.ˇ/Ts.˛/
�
A˛x � Aˇx

�
ds

�
�
�
�

�
Z t

0

kTt�s.ˇ/k jTs.˛/k ds � ��A˛x � Aˇx
�
� � t ��A˛x � Aˇx

�
�

� t0
�
�A˛x � Aˇx

�
� for all t 2 Œ0; t0�;

since kTt�s.ˇ/k � 1 and kTs.˛/k � 1. However, we recall (see assertion (4.17b)
that, as ˛ ! C1,

A˛x �! Ax for every x 2 D.A/:
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Therefore, we obtain that, as ˛; ˇ !C1,

kTt .˛/x � Tt.ˇ/xk �! 0;

and that this convergence is uniform in t over the interval Œ0; t0�.
We can define a linear operator Tt by the formula

Ttx D lim
˛!C1Tt .˛/x for every x 2 D.A/:

Furthermore, since kTt .˛/k � 1 and D.A/ is dense in E , it follows that the
operator Tt.˛/ has a strong limit Tt as ˛ ! C1:

Ttx D lim
˛!C1Tt .˛/x for every x 2 E; (4.19)

and further that the convergence is uniform in t over bounded intervals Œ0; t0� for
each t0 > 0.

Step 4: We show that the family fTtgt�0 forms a contraction semigroup of
class .C0/.
First, it follows from an application of the principle of uniform boundedness
(Theorem 3.14) that the operator Tt is bounded and satisfies the condition

kTtk � lim inf
˛!C1 kTt .˛/k � 1 for all t � 0:

Secondly, the semigroup property of fTtg

Tt .Tsx/ D TtCsx; x 2 E

follows from that of fTt.˛/g. Indeed, we have, as ˛! C1,

kTt .Tsx/ � Tt .˛/.Ts.˛/x/k
� k.Tt � Tt.˛//Tsxk C kTt.˛/.Tsx � Ts.˛/x/k
� k.Tt � Tt.˛//Tsxk C k.Ts � Ts.˛//xk �! 0;

so that

Tt.Tsx/ D lim
˛!C1Tt.˛/.Ts.˛/x/ D lim

˛!C1TtCs.˛/x

D TtCsx for every x 2 E:

Furthermore, since the convergence of (4.19) is uniform in t over bounded sub-
intervals of the interval Œ0;1/, it follows that the function Ttx, x 2 E , is strongly
continuous on the interval Œ0;1/. Consequently, the family fTtgt�0 forms a
contraction semigroup.
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Step 5: We show that the infinitesimal generator of the semigroup fTtgt�0 thus
obtained is precisely the operator A.
Let A0 be the infinitesimal generator of fTt gt�0 with domain D.A0/. If x is
an arbitrary element of the domain D.A/, it follows from an application of
Proposition 4.7 that

etA˛ x � x D
Z t

0

d

ds

�
esA˛ x

�
ds D

Z t

0

esA˛ .A˛x/ ds: (4.20)

However, we have, as ˛ ! C1,

etA˛x � x D Tt .˛/x � x �! Ttx � x for every x 2 D.A/;

and also

Z t

0

esA˛ .A˛x/ ds �!
Z t

0

Ts.Ax/ ds for every x 2 D.A/:

Indeed, it suffices to note that, as ˛ ! C1,

�
�
�
�

Z t

0

esA˛ .A˛x/ ds�
Z t

0

Ts.Ax/ ds

�
�
�
�

�
�
�
�
�

Z t

0

esA˛ .A˛x � Ax/ ds

�
�
�
�C

�
�
�
�

Z t

0

.esA˛ � Ts/.Ax/ ds

�
�
�
�

�
Z t

0

�
�esA˛

�
� ds kA˛x � Axk C

Z t

0

�
�esA˛ .Ax/� Ts.Ax/

�
� ds

� t kA˛x � Axk C
Z t

0

kTs.˛/.Ax/ � Ts.Ax/k ds �! 0:

Hence, by letting ˛ !C1 in (4.20) we have, for all x 2 D.A/,

Ttx � x D
Z t

0

Ts.Ax/ ds:

Moreover, it follows that, as t # 0,

Ttx � x
t

D 1

t

Z t

0

Ts.Ax/ ds �! T0.Ax/ D Ax for every x 2 D.A/;

since the integrand Ts.Ax/ is strongly continuous.
Summing up, we have proved that

(
x 2 D.A0/;
A0x D Ax:
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This implies that

A 	 A0:

It remains to show that

D.A/ D D.A0/:

If y is an arbitrary element of D.A0/, we let

x D .I � A/�1.I � A0/y:

Then we have

(
x 2 D.A/ 	 D.A0/;
.I � A/x D .I � A0/y;

and so

.I � A0/x D .I � A0/y;

This implies that

y D x 2 D.A/;

since the operator .I � A0/ is bijective.
Step 6: Finally, we show the uniqueness of the semigroup.

Let fUtgt�0 be another contraction semigroup which has A as its infinitesimal
generator. For each x 2 D.A/ and each t > 0, we introduce a function w.s/ as
follows:

w.s/ D Tt�s.Usx/; 0 � s � t:

Then it follows from an application of Proposition 4.7 that

dw

ds
D
�
d

ds
Tt�s

�

Usx C Tt�s
�
d

ds
Usx

�

D �ATt�s.Usx/C Tt�s.AUsx/ D �Tt�s.AUsx/C Tt�s.AUsx/
D 0; 0 < s < t;

so that

w.s/ D a constant; 0 � s � t:
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Fig. 4.1 The intuitive meaning of the heat kernel Kt.x/

In particular, we obtain that w.0/ D w.t/, that is,

Ttx D Utx for all x 2 D.A/:

This implies that Tt D Ut for all t � 0, since Tt and Ut are both bounded and
since D.A/ is dense in E .

Now the proof of Theorem 4.10 is complete.

4.4.2 The Contraction Semigroup Associated with the Heat
Kernel

In this subsection we study the semigroup associated with the heat kernel

Kt.x/ D 1

.4�t/n=2
e� jxj

2

4t ; t > 0; x 2 Rn:

Physically, the heat kernel Kt.x/ expresses a thermal distribution of position x
at time t in a homogeneous isotropic medium Rn with unit coefficient of thermal
diffusivity, given that the initial thermal distribution is the Dirac measure ı.x/ (see
Fig. 4.1):

Now we consider the heat kernel Kt.x/ on the function space

C0.Rn/ D fu 2 C.Rn/ W lim
x!1 u.x/ D 0g:

We recall (see Sect. 4.4.1) that a function u 2 C.Rn/ is said to vanish at infinity if
the set

fx 2 Rn W ju.x/j � "g

is compact for every " > 0, and we write

lim
x!1 u.x/ D 0:
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It is easy to see that the function space C0.Rn/ is a Banach space with the supremum
(maximum) norm

kuk1 D sup
x2Rn
ju.x/j:

The purpose of this subsection is to prove the following example [Tn, Chapter 12,
Example 3]:

Example 4.11. A one-parameter family fTt gt�0 of bounded linear operators,
defined by the formula

Ttu.x/ D
(

u.x/ for t D 0;
R

Rn Kt .x � y/u.y/ dy for t > 0;

forms a contraction semigroup of class .C0/ on the Banach space C0.Rn/.

Proof. The proof of Example 4.11 is given by a series of several claims. In the
following we shall write T .t/ for Tt .

Step 1: First, the next lemma proves that the operators T .t/ map C0.Rn/ into
itself:

Lemma 4.12. We have, for all t > 0,

T .t/ W C0.Rn/ �! C0.Rn/:

Proof. Let u.x/ be an arbitrary function in C0.Rn/. Then it follows that

T .t/u.x/ D 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t u.y/ dy

D 1

.4�t/n=2

Z

Rn
e� jzj2

4t u.x � z/ dz:

(1) First, we show that T .t/u 2 C.Rn/: Since u 2 C0.Rn/ is uniformly
continuous on Rn, for any given number " > 0 we can find a constant
ı D ı."/ > 0 such that

jx1 � x2j < ı H) ju.x1/ � u.x2/j < ":

In particular, we have

jx � yj < ı H) ju.x � z/ � u.y � z/j < ":
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Therefore, we obtain that

jT .t/u.x/� T .t/u.y/j

D
ˇ
ˇ
ˇ
ˇ

1

.4�t/n=2

Z

Rn
e� jzj2

4t u.x � z/ dz� 1

.4�t/n=2

Z

Rn
e� jzj2

4t u.y � z/ dy

ˇ
ˇ
ˇ
ˇ

� 1

.4�t/n=2

Z

Rn
e� jzj2

4t ju.x � z/ � u.y � z/j dz

� "

.4�t/n=2

Z

Rn
e� jzj2

4t dz D ":

This proves that the function T .t/u is uniformly continuous on Rn.
(2) Secondly, we show that T .t/u 2 C0.Rn/, that is,

lim
x!1T .t/u.x/ D 0: (4.21)

Since we have the condition

lim
x!1 u.x/ D 0;

for any given number " > 0 we can find a positive integer N D N."/ 2 N
such that

ju.y/j < " for all jyj > N: (4.22)

Then we decompose the integral T .t/u.x/ into the two terms:

T .t/u.x/

D 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t u.y/ dy

D 1

.4�t/n=2

Z

jyj�N
e� jx�yj

2

4t u.y/ dyC 1

.4�t/n=2

Z

jyj>N
e� jx�yj

2

4t u.y/ dy

WD I1.x/C I2.x/:

However, by condition (4.22) we can estimate the term I2.x/ as follows:

jI2.x/j � 1

.4�t/n=2

Z

jyj>N
e� jx�yj

2

4t ju.y/j dy (4.23)

<
"

.4�t/n=2

Z

Rn
e� jx�yj

2

4t u.y/ dy D ":
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The term I1.x/ may be estimated as follows:

jI1.x/j � 1

.4�t/n=2

Z

jyj�N
e� jx�yj

2

4t ju.y/j dy

� 1

.4�t/n=2

Z

jyj�N
e� .jxj�N/2

4t ju.y/j dy

D 1

.4�t/n=2
e� .jxj�N/2

4t

Z

jyj�N
ju.y/j dy

� 1

.4�t/n=2
e� .jxj�N/2

4t

Z

Rn
ju.y/j dy:

Moreover, we have, as x !1,

e� .jxj�N/2

4t �! 0;

and hence

I1.x/ �! 0 as x !1: (4.24)

Summing up, we obtain from assertions (4.23) and (4.24) that

lim sup
x!1

jT .t/u.x/j � lim sup
x!1

.jI1.x/j C jI2.x/j/ � ":

This proves the desired assertion (4.21), since " is arbitrary.
The proof of Lemma 4.12 is complete.

Moreover, we find that the operators fT .t/gt>0 are bounded on the space C0.Rn/.
Indeed, it suffices to note that we have, for all x 2 Rn,

jT .t/u.x/j

�
Z

Rn
Kt.x � y/ju.y/j dy

� kuk1 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t dy D kuk1 1

.4�t/n=2

Z

Rn
e� jyj

2

4t dy

D kuk1;

and hence

kT .t/uk1 � kuk1 for all u 2 C0.Rn/:

This proves that kT .t/k � 1 for all t > 0.
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Step 2: Secondly, we show that the family fT .t/gt�0 forms a semigroup on the
space C0.Rn/:

Step 2-1: To do this, we need the following Chapman–Kolmogorov equa-
tion (4.25) for the heat kernel (cf. formula (9.4)):

Lemma 4.13 (the Chapman–Kolmogorov equation). For all t , s > 0, we
have the equation

KtCs.x/ D
Z

Rn
Kt.x � y/Ks.y/ dy: (4.25)

Proof. (1) The proof is based on the following elementary formula (4.26):

jx � yj2
4t

C jyj
2

4s
D jxj2
4.t C s/ C

t C s
4ts

ˇ
ˇ
ˇ
ˇy �

s

t C s x
ˇ
ˇ
ˇ
ˇ

2

: (4.26)

Indeed, the right-hand side is calculated as follows:

jxj2
4.t C s/ C

t C s
4ts

ˇ
ˇ
ˇ
ˇy �

s

t C s x
ˇ
ˇ
ˇ
ˇ

2

(4.27)

D jxj2
4.t C s/ C

t C s
4ts

�

y � s

t C s x; y �
s

t C s x
�

D jxj2
4.t C s/ C

t C s
4ts

 

jyj2 � 2s

t C s .x; y/C
�

s

t C s
�2
jxj2

!

D jxj2
4.t C s/ C

t C s
4ts
jyj2 � 1

2t
.x; y/C s

4t.t C s/ jxj
2

D t C s
4t.t C s/ jxj

2 C t C s
4ts
jyj2 � 1

2t
.x; y/

D 1

4t
jxj2 � 1

2t
.x; y/C t C s

4ts
jyj2:

Similarly, the left-hand side is calculated as follows:

jx � yj2
4t

C jyj
2

4s
D 1

4t
.x � y; x � y/C 1

4s
jyj2 (4.28)

D 1

4t
jxj2 � 1

2t
.x; y/C 1

4t
jyj2 C 1

4s
jyj2

D 1

4t
jxj2 � 1

2t
.x; y/C t C s

4ts
jyj2:



4.4 Contraction Semigroups 167

Therefore, the desired formula (4.26) follows from formulas (4.27)
and (4.28).

(2) By using formula (4.26), we can prove the Chapman–Kolmogorov equa-
tion (4.25) as follows:

Z

Rn
Kt .x � y/Ks.y/ dy

D 1

.4�t/n=2
1

.4�s/n=2

Z

Rn
e� jx�yj

2

4t � e� jyj
2

4s dy

D 1

.4�t/n=2
1

.4�s/n=2

Z

Rn
e

�
�

jx�yj
2

4t C jyj
2

4s

�

dy

D 1

.4�t/n=2
1

.4�s/n=2

Z

Rn
e

� jxj
2

4.tCs/� tCs
4ts jy� s

tCs xj2 dy

D 1

.4�t/n=2
1

.4�s/n=2
e

� jxj
2

4.tCs/

Z

Rn
e� tCs

4ts jy� s
tCs xj2 dy

D 1

.4�t/n=2
1

.4�s/n=2
e

� jxj
2

4.tCs/

Z

Rn
e� tCs

4ts jzj2d z

D 1

.4�t/n=2
1

.4�s/n=2
e

� jxj
2

4.tCs/

�
t C s
4ts

��n=2 Z

Rn
e�jwj2 dw

D 1

.4�/n
4n=2

.t C s/n=2 e
� jxj

2

4.tCs/ .
p
�/n D 1

.4�.t C s//n=2 e
� jxj

2

4.tCs/

D KtCs.x/:

The proof of Lemma 4.13 is complete.

Step 2-2: The next lemma proves that the family fT .t/gt�0 forms a semigroup:

Lemma 4.14. For all t , s > 0, we have

T .t/.T .s/u/.x/ D T .t C s/u.x/; u 2 C0.Rn/: (4.29)

Proof. By using the Chapman–Kolmogorov equation (4.25), we obtain that

T .t/.T .s/u/.x/ D
Z

Rn
Kt.x � y/T .s/u.y/ dy

D
Z

Rn
Kt.x � y/

�Z

Rn
Ks.y � z/u.z/ dz

�

dy

D
Z

Rn

�Z

Rn
Kt .x � y/Ks.y � z/ dy

�

u.z/ dz
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D
Z

Rn
KtCs.x � z/u.z/ dz

D T .t C s/u.x/ for every u 2 C0.Rn/:

The proof of Lemma 4.14 is complete.

Step 3: Finally, the next lemma proves that the operators fT .t/gt>0 converge
strongly to the identity operator I :

Lemma 4.15. We have, for all u 2 C0.Rn/,

lim
t#0
kT .t/u � uk1 D 0: (4.30)

Proof. Since we have

1

.4�t/n=2

Z

Rn
e� jy�yj

2

4t dy D 1

.4�t/n=2

�
1

4t

��n=2 Z

Rn
e�jwj2 dw D 1;

it follows that

T .t/u.x/� u.x/ D 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t u.y/ dy � u.x/

D 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t .u.y/� u.x// dy:

However, since u 2 C0.Rn/ is uniformly continuous on Rn, for any given number
" > 0 we can find a constant ı D ı."/ > 0 such that

jx � yj < ı H) ju.x/� u.y/j < ": (4.31)

Then we decompose the term T .t/u.x/� u.x/ into the two terms:

T .t/u.x/ � u.x/ D 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t .u.y/� u.x// dy

D 1

.4�t/n=2

Z

jx�yj<ı
e� jx�yj

2

4t .u.y/� u.x// dy

C 1

.4�t/n=2

Z

jx�yj�ı
e� jx�yj

2

4t .u.y/� u.x// dy

WD I3.x/C I4.x/:

By condition (4.31), we can estimate the term I3.x/ as follows:
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jI3.x/j � 1

.4�t/n=2

Z

jx�yj<ı
e� jx�yj

2

4t ju.y/� u.x/j dy (4.32)

<
"

.4�t/n=2

Z

jx�yj<ı
e� jx�yj

2

4t dy

<
"

.4�t/n=2

Z

Rn
e� jx�yj

2

4t dy D " for all x 2 Rn:

The term I4.x/ may be estimated as follows:

jI4.x/j � 1

.4�t/n=2

Z

jx�yj�ı
e� jx�yj

2

4t ju.y/� u.x/j dy

However, since u 2 C0.Rn/, we can find a positive constant M such that

ju.y/� u.x/j � ju.y/j C ju.x/j � 2M:

Hence we have the inequality

jI4.x/j � 2M

.4�t/n=2

Z

jx�yj�ı
e� jx�yj

2

4t dy

D 2M

.4�t/n=2

Z

jzj�ı
e� jzj2

4t dz .z D 2ptw/

D 2M

.4�t/n=2

Z

2
p
tjwj�ı

e�jw2j.2
p
t/n dz

D 2M

�n=2

Z

jwj�ı=.2pt /

e�jw2jdz:

This proves that

I4.x/ �! 0 for all t # 0: (4.33)

It should be noted that this convergence is uniform in x 2 Rn.
Summing up, we obtain from assertions (4.32) and (4.33) that

lim sup
t#0

jT .t/u.x/ � u.x/j � lim sup
t#0

.jI3.x/j C jI4.x/j/ � " for all x 2 Rn:

This proves the desired assertion (4.30), since " is arbitrary.
The proof of Lemma 4.15 is complete.

Now the proof of Example 4.11 is complete.
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Remark 4.16. We can prove that the function

w.x; t/ D T .t/u.x/ D 1

.4�t/n=2

Z

Rn
e� jx�yj

2

4t u.y/ dy

is a solution of the following initial-value problem for the heat equation:

8
<

:

@w

@t
�
w D 0 in Rn � .0;1/;

w.�; 0/ D u on Rn:

Roughly speaking, we may write the function w.x; t/ in the form

w.x; t/ D T .t/u.x/ D et 
u.x/:

Physically, the function w.x; t/ represents the temperature at position x and time t
in a homogeneous isotropic medium Rn with unit coefficient of thermal diffusivity,
given that the temperature at position x and time 0 is u.x/.

4.5 The Hille–Yosida Theory of .C0/ Semigroups

This section is devoted to the Hille–Yosida theory of .C0/ semigroups, generalizing
the theory of contraction semigroups developed in Sect. 4.4 (Theorem 4.28).
Moreover, we study an initial-value problem associated with a .C0/ semigroup, and
prove an existence and uniqueness theorem (Theorem 4.30).

4.5.1 Semigroups and Their Infinitesimal Generators

Let E be a Banach space and let L.E;E/ be the space of all bounded linear
operators on E into itself. The space L.E;E/ is a Banach space with the operator
norm

kT k D sup
x2E
x¤0

kTxk
kxk D sup

x2Ekxk�1
kTxk:

Definition 4.17. Let fTtgt�0 be a family of linear operators on E . The family
fTtgt�0 is called a semigroup if it satisfies the following three conditions (i)–(iii):

(i) Tt 2 L.E;E/ for all t � 0.
(ii) T0 D I (the identity operator).

(iii) Tt � Ts D TtCs for all t , s � 0 (the semigroup property).
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Definition 4.18. Let fTt gt�0 be a semigroup on E .

(i) The semigroup fTtgt�0 is said to be quasibounded if there exist a positive
constantM and a real number ˇ such that

kTtk �M eˇt for all t � 0:
(ii) The semigroup fTtgt�0 is said to be bounded if there exists a positive constant

M such that

kTtk �M for all t � 0:

In particular, if M D 1, that is, if kTtk � 1 for all t � 0, it is called a
contraction semigroup.

Definition 4.19. If a semigroup fTtgt�0 is strongly continuous for all t � 0, that is,
if it satisfies the condition

lim
s#0
kTtCsx � Ttxk D 0 for every x 2 E;

then it is called a semigroup of class .C0/ or simply a .C0/ semigroup.

First, we prove the following fundamental result [Tn, Chapter 12, Theorem 12-1]:

Proposition 4.20. Every .C0/ semigroup fTtgt�0 is a quasi-bounded semigroup.
More precisely, there exist a constantM � 1 and a real number ! such that

kTtk �M e!t for all t � 0: (4.34)

Proof. In this proof, we shall write

T .t/ D Tt for every t � 0:
Since fT .t/gt�0 is strongly continuous on the interval Œ0; 1�, it follows from an
application of the principle of uniform boundedness (Theorem 3.14) that

M1 � sup
t2Œ0;1�

kT .t/k <1:

If we denote by Œt � the integral part of t , that is, if we express t D Œt � C  with
0 �  < 1, then we obtain from the semigroup property of fT .t/gt�0 that

kTtk D kT .1/Œt �T ./k � kT .1/kŒt �kT ./k �M1 e
Œt � log kT .1/k:

(i) The case where kT .1/k � 1: Since t > Œ�, we have the inequality

M1 e
Œt � log kT .1/k �M1 e

t log kT .1/k
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(ii) The case where kT .1/k < 1: Since log kT .1/k < 0 and since Œt � D t� � t�1,
it follows that

Œt � log kT .1/k � .t � 1/ log kT .1/k:

Hence we have the inequality

M1 e
Œt � log kT .1/k �M1 e

.t�1/ log kT .1/k DM1 e
� log kT .1/ket log kT .1/k:

Summing up, we have proved that

kT .t/k �
(
M1 e

t log kT .1/k if kT .1/k � 1;
M1 e

.t�1/ log kT .1/k D M1 e
� log kT .1/k et log kT .1/k if kT .1/k < 1:

Therefore, the desired inequality follows by taking

(
M DM1 if ! D log kT .1/k � 0;
M DM1 e

� log kT .1/k if ! D log kT .1/k < 0:

Finally, we observe that

1 D kT .0/k � lim
t#0
M e!t DM:

The proof of Proposition 4.20 is complete.

Proposition 4.20 has a converse:

Proposition 4.21. If a quasi-bounded semigroup fTtgt�0 is strongly right-
continuous at t D 0, then it is a .C0/ semigroup.

Proof. For a quasi-bounded semigroup fTtg, we let

St D e�ˇt Tt ; t � 0;

then it follows that fStg is a bounded semigroup. That is, we may assume that fTtg
is a bounded semigroup:

kTtk �M for all t � 0:

If t0 is an arbitrary positive number, it suffices to show that fTtg is strongly
continuous at t D t0. First, we have, for each x 2 E ,

Tt0Chx � Tt0x D .Th � I /.Tt0x/ �! 0 as h # 0:

This proves that fTtgt�0 is strongly right-continuous at t D t0.
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Secondly, we have, as h # 0,

kTt0�hx � Tt0xk D kTt0�h.I � Th/xk �M k.Th � I /xk �! 0:

This proves that fTtgt�0 is strongly left-continuous at t D t0.
Summing up, we have proved that fTtgt�0 is strongly continuous at t D t0.
The proof of Proposition 4.21 is complete.

Definition 4.22. If fTtgt�0 is a .C0/ semigroup, then we let

D D
	

x 2 E W the limit lim
h#0

Thx � x
h

exists




;

and introduce a linear operator A by the formulas:

(a) D.A/ D D.

(b) Ax D limh#0
Thx � x

h
for every x 2 D.A/.

The operator A is called the infinitesimal generator of the semigroup fTt gt�0.
First, we derive a differential equation associated with a .C0/ semigroup in terms

of its infinitesimal generator [Tn, Chapter 12, Theorem 12-3]:

Lemma 4.23. If A is the infinitesimal generator of a .C0/ semigroup fTtgt�0, then
we have the following two assertions (i) and (ii):

(i) If x 2 D.A/, then it follows that Ttx 2 D.A/ for all t > 0 and further that

A.Ttx/ D Tt .Ax/ for all t > 0:

Moreover, the function Ttx, x 2 D.A/, is continuously differentiable for all
t > 0, and satisfies the equation

d

dt
.Ttx/ D Tt .Ax/ D A.Ttx/ for all t > 0: (4.35)

(ii) The operator A is a closed linear operator.

Proof. (i) If x 2 D.A/, we have, for all h > 0,

�
Th � I
h

�

Ttx D Tt
�
Th � I
h

x

�

:

However, since x 2 D.A/, it follows that

Tt

�
Thx � x

h

�

�! Tt .Ax/ as h # 0:
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Therefore, we obtain that

�
Th � I
h

�

Ttx D Tt
�
Th � I
h

x

�

�! Tt.Ax/ as h # 0:

This proves that TtAx 2 D.A/ and that A.Ttx/ D Tt.Ax/.
Moreover, it follows that Ttx is strongly right-differentiable:

d

dt

C
.Ttx/ D lim

h#0
TtChx � Ttx

h
D lim

h#0
Tt

�
Thx � x

h

�

D Tt.Ax/:

On the other hand, we have, for all sufficiently small h > 0 with t � h > 0,

Tt�hx � Ttx
�h � Tt.Ax/ D Tt�h

�
x � Thx
�h � Th.Ax/

�

: (4.36)

However, it follows that

x � Thx
�h D Thx � x

h
�! Ax as h # 0;

Th.Ax/ �! Ax as h # 0:

Since we have the inequality (see inequality (4.34))

kTt�hk �Me!.t�h/;

we obtain from (4.36) that

Tt�hx � Ttx
�h � Tt .Ax/ D Tt�h

�
x � Thx
�h � Th.Ax/

�

�! 0 as h # 0:

This proves that Ttx is strongly left-differentiable:

d

dt

�
.Ttx/ D lim

h#0
Tt�hx � Ttx
�h D Tt .Ax/:

Therefore, we have proved that Ttx is strongly differentiable, and that
Eq. (4.35) holds true. Moreover, we find that the derivative

d

dx
.Ttx/ D Tt .Ax/; x 2 D.A/;

is strongly continuous.
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(ii) Let fung be an arbitrary sequence in the domain D.A/ such that un ! u and
Aun ! v. We show that u 2 D.A/ and Au D v.

Since we have, for all x 2 D.A/,
d

dt
.Ttx/ D Tt.Ax/;

it follows that

Ttx � x D
Z t

0

d

ds
.Tsx/ ds D

Z t

0

Ts.Ax/ ds:

In particular, we have

Ttun � un D
Z t

0

Ts.Aun/ ds: (4.37)

However, we note that

Ttun � un �! Ttu � u as n!1;

and that
�
�
�
�

Z t

0

.Ts.Aun/ � Tsv/ ds

�
�
�
� �

Z t

0

kTs.Aun/� Tsvk

� t � max
s2Œ0;t � kTsk � kAun � vk �! 0 as n!1:

Therefore, by letting n!1 in (4.37) we obtain that

Ttu � u D
Z t

0

Tsv ds:

Since the function Tsv is strongly continuous, we have

lim
t#0

Ttu � u

t
D lim

t#0
1

t

Z t

0

Tsv ds D TsvjsD0 D v:

This proves that u 2 D.A/ and Au D v, so that the operator A is closed.
The proof of Lemma 4.23 is complete.

Lemma 4.24. The domain D.A/ of the infinitesimal generator A of a .C0/

semigroup fTt gt�0 is dense in the space E .

Proof. First, we choose a real-valued function ' 2 C1
0 .R/ such that

supp' 	 RC D .0;1/:
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Fig. 4.2 The function '"

If x is an arbitrary element of E , we let

u D
Z 1

0

'.t/Ttx dt:

Then we have, for all sufficiently small h > 0,

Thu D
Z 1

0

'.t/ Th.Ttx/ dt D
Z 1

0

'.t/ TtChx dt D
Z 1

h

'.s � h/ Tsx ds

D
Z 1

0

'.s � h/ Tsx ds;

and hence

Thu � u

h
D �

Z 1

0

'.s � h/ � '.s/
�h Tsx ds:

By letting h # 0 in this formula, we obtain from the Lebesgue dominated
convergence theorem [Fo2, Theorem 2.24] that

lim
h#0

Thu � u

h
D �

Z 1

0

' 0.t/Ttx dt: (4.38)

This proves that u 2 D.A/ and that

Au D �
Z 1

0

' 0.t/Ttx dt:

For any given number " > 0, we choose a real-valued function '" 2 C1
0 .R/

such that (see Fig. 4.2)

supp'" 	 Œ"; 3 "� ;
Z 1

0

'".t/ dt D 1:

If we let

u" D
Z 1

0

'".t/Ttx dt;

it follows from an application of formula (4.38) with u WD u" that u" 2 D.A/.
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Moreover, since we have

x D
Z 1

0

'".t/x dt;

we obtain that

ku" � xk �
Z 1

0

'".t/kTtx � xk dt D
Z 3"

"

'".t/kTtx � xk dt

D sup
t2Œ";3"�

kTtx � xk �! 0 as " # 0:

This proves the density of D.A/ in E .
The proof of Lemma 4.24 is complete.

Corollary 4.25. Every .C0/ semigroup fTtgt�0 is uniquely determined by its
infinitesimal generator A.

Proof. Assume that two .C0/ semigroups fTtg and fStg have a closed linear operator
A as their infinitesimal generator. For any positive time t0, it suffices to show that

Tt0 D St0 :
If x is an arbitrary element of the domainD.A/, we let

W.t/ D Tt0�t � St � x; 0 � t � t0:
Then it follows from an application of formula (4.22) that

d

dt
.W.t// D

�
d

dt
.Tt0�t /

�

Stx C Tt0�t
�
d

dt
.Stx/

�

D Tt0�t .�A/.Stx/C Tt0�t .AStx/ D 0;
so that

dW

dt
� 0 for all t 2 Œ0; t0�:

This implies that

Tt0x D W.0/ D W.t0/ D St0x for all x 2 D.A/: (4.39)

However, we know from Lemma 4.24 that the domain D.A/ is dense in E . Hence
we have, by assertion (4.39),

Tt0 D St0 ;
since the operators Tt0 and St0 are bounded.
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The proof of Corollary 4.25 is complete.

If fTt gt�0 is a .C0/ semigroup, we shall write formally

Tt D etA D exp.tA/;

by using its infinitesimal generator A.

4.5.2 Infinitesimal Generators and Their Resolvents

Let E be a Banach space and let A W E ! E be a closed linear operator with
domainD.A/. We recall the following definitions:

(1) The resolvent set ofA, denoted by �.A/, is defined to be the set of scalars � 2 C
such that �I � A is injective and that .�I �A/�1 2 L.E;E/.

(2) If � 2 �.A/, the inverse operator .�I � A/�1 is called the resolvent of A, and
is denoted by R.�IA/:

R.�IA/ D .�I � A/�1; � 2 �.A/:

(3) The complement of �.A/ is called the spectrum of A, and is denoted by �.A/:
�.A/ D Cn�.A/. The set �p.A/ of scalars � 2 C such that the operator �I �A
is not one-to-one forms a subset of �.A/, and is called the point spectrum of A.
A scalar � 2 C belongs to �p.A/ if and only if there exists a non-zero element
x 2 E such that Ax D �x. In this case, � is called an eigenvalue of A and
x an eigenvector of A corresponding to �. Also the null space N.�I � A/ of
�I �A is called the eigenspace of A corresponding to �, and the dimension of
N.�I � A/ is called the geometric multiplicity of �.

First, we have the following results [Tn, Chapter 8, Theorem 8-2]:

Lemma 4.26. Let A W E ! E be a closed linear operator with domain D.A/. If
�, � 2 �.A/, we have the following two formulas (i) and (ii):

(i) .� � A/�1 � .� � A/�1 D .�� �/.� � A/�1.� �A/�1.
(ii) .� � A/�1.� � A/�1 D .�� A/�1.� �A/�1.

The formula (i) is called the resolvent equation.

Proof. (i) The first formula may be proved as follows:

.� � A/�1 � .� � A/�1 D .� �A/�1.�� A/.� �A/�1
�.� �A/�1.� � A/.�� A/�1

D .� �A/�1f.��A/ � .� �A/g.� �A/�1
D .� �A/�1.�� �/.� �A/�1
D .� � �/.� �A/�1.� �A/�1:
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Fig. 4.3 The half-space
fRe� > !g

(ii) Moreover, if we interchange � and � in formula (i), it follows that

.� �A/�1 � .� � A/�1 D .� � �/.� �A/�1.� � A/�1:

Therefore, by combining this formula with formula (i) we obtain that

.� �A/�1.� � A/�1 D 1

� � �
�
.� �A/�1 � .� � A/�1�

D 1

� � �
�
.� � �/.�� A/�1.� � A/�1�

D .� �A/�1.�� A/�1:

The proof of Lemma 4.26 is complete.

Let fT .t/gt�0 be a .C0/ semigroup and let A be its infinitesimal generator.
The next theorem characterizes the resolvent set �.A/ and the resolvent

R.�IA/ D .�I �A/�1 [Tn, Chapter 12, Theorem 12-4]:

Theorem 4.27. Let fT .t/gt�0 be a .C0/ semigroup that satisfies the inequality

kTtk �M e!t for all t � 0: (4.40)

Then we have the following two assertions (i) and (ii):

(i) The infinitesimal generator A of fTtgt�0 is a closed operator and its domain
D.A/ is dense in E .

(ii) The resolvent set �.A/ of A contains the half-plane f� 2 C W Re� > !g (see
Fig. 4.3) and the resolvent R.�IA/ D .�I � A/�1 is expressed in the integral
form
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R.�IA/u D
Z 1

0

e��tT .t/u dt; Re� > !; u 2 E: (4.41)

Moreover, we have the inequalities for the powers of R.�IA/

kR.�IA/mk � M

.Re� � !/m ; Re� > !; m D 1; 2; : : : : (4.42)

Proof. The proof is divided into six steps.

Step 1: First, if � is a complex number such that Re� > !, then we have, by
inequality (4.40),

Z 1

0

je��t jkT .t/uk dt �
Z 1

0

je��t jkT .t/kkuk dt

� M kuk
Z 1

0

e�.Re��!/t dt DM kuk
�

�e
�.Re��!/t

Re� � !
�1

0

D M kuk
Re� � ! for all u 2 E:

Hence, if we let

QR.�/u D
Z 1

0

e��t T .t/u dt for every u 2 E; (4.43)

it follows that QR.�/ 2 L.x/ and that

k QR.�/k � M

Re� � ! ; Re� > !: (4.44)

Step 2: Secondly, we show that, for all u 2 E ,

( QR.�/u 2 D.A/;
.�I � A/ QR.�/u D u:

(4.45)

For all sufficiently small h > 0, it follows that

T .h/. QR.�/u/� QR.�/u
h

D 1

h

Z 1

0

e��tT .h/T .t/u dt � 1
h

Z 1

0

e��tT .t/u dt

D 1

h

Z 1

0

e��t fT .hC t/ � T .t/gu dt
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D 1

h

Z 1

0

e��tT .t C h/u dt � 1
h

Z 1

0

T .t/u dt

D 1

h

Z 1

h

e��.s�h/T .s/u ds� 1
h

Z 1

0

T .t/u dt

D 1

h

(Z 1

0

e��.t�h/T .t/u dt �
Z h

0

e��.t�h/T .t/u dt

)

�1
h

Z 1

0

e��tT .t/u dt

D e�h � 1
h

Z 1

0

e��tT .t/u dt � 1
h

Z h

0

e��h.1�s/T .hs/u ds

WD I1 C I2:

However, we have, as h # 0,

I1 D e�h � 1
h

QR.�/u D �e
�h � 1
�h

QR.�/u �! � QR.�/u;

and also

I2 D �1
h

Z h

0

e��h.1�s/T .hs/u ds �! �T .0/u D �u:

Therefore, we have proved that

lim
h#0

T .h/. QR.�/u/� . QR.�/u/
h

(4.46)

D lim
h#0

1

h

Z 1

0

e��t fT .hC t/ � T .t/gu dt D � QR.�/u � u:

This proves that

( QR.�/u 2 D.A/;
A. QR.�/u/ D � QR.�/u � u;

or equivalently,

.�I �A/ QR.�/u D u for all u 2 E:

We remark that the operator �I �A is surjective for all Re� > !.
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Step 3: Thirdly, we show that

QR.�/.�I � A/u D u for all u 2 D.A/: (4.47)

We have, by formula (4.43) and assertion (4.46),

QR.�/.Au/ D lim
h#0
QR.�/

�
T .h/u � u

h

�

D lim
h#0

1

h

	Z 1

0

e��t T .h/T .t/u dt�
Z 1

0

e��tT .t/u dt




D lim
h#0

1

h

	Z 1

0

e��t .T .hC t/ � T .t//u dt




D � QR.�/u � u:

This proves the desired assertion (4.47). We remark that the operator �I � A is
injective for all Re� > !.

Step 4: Fourthly, we show that

lim
�#1

� QR.�/u D u for every u 2 E: (4.48)

Since we have, for all � > !,

Z 1

0

�e��t dt D 1;

it follows that

�
�u � � QR.�/u�� D

�
�
�
�

Z 1

0

�e��tu dt �
Z 1

0

�e��t T .t/u dt

�
�
�
�

�
Z 1

0

�e��tku � T .t/uk dt:

However, for any given number " > 0 we can find a number ı D ı."/ > 0

such that

0 � t < ı H) ku � T .t/uk < ":

Then we decompose the integral
R1
0
�e��tku � T .t/uk dt into the two terms I3

and I4:
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Z 1

0

�e��tku � T .t/uk dt

D
Z ı

0

�e��tku � T .t/uk dtC
Z 1

ı

�e��tku � T .t/uk dt

WD I3 C I4:

The term I3 may be estimated as follows:

I3 � "
Z ı

0

�e��t dt D " ��e��t �ı
0
D ".1 � e��ı/ < ":

The term I4 may be estimated as follows:

I4 �
Z 1

ı

�e��t .1C kT .t/k/ kuk dt

� kuk
Z 1

ı

�e��t .1CMe!t / dt

D kuk
Z 1

ı

.�e��t CM�e�.��!/t / dt D kuk
�

�e��t � M�e�.��!/t

� � !
�1

ı

D kuk
�

e��ı C M�e�.��!/ı

� � !
�

:

Therefore, we obtain that

lim sup
�!1

ku � � QR.�/uk � lim
�#1

.I3 C I4/ � ":

This proves the desired assertion (4.48), since " > 0 is arbitrary.
Step 5: By combining assertions (4.45) and (4.48), we obtain that the domain
D.A/ is dense in the space E . Moreover, it follows from assertions (4.45)
and (4.47) and inequality (4.44) that QR.�/ D .�I � A/�1 is the resolvent of
A, that is,

R.�IA/u D QR.�/u D
Z 1

0

e��t T .t/u dt; Re� > !; u 2 E;

and further that A D �I � QR.�/�1 is a closed linear operator.
Step 6: Finally, we prove inequality (4.42). If we differentiate formula (4.41) with

respect to �, it follows that

d

d�
.R.�IA/u/ D �

Z 1

0

te��t T .t/u dt:
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On the other hand, by using the resolvent equation in the Banach space L.E;E/
we obtain that

d

d�

�
.�I �A/�1� D �.�I � A/�2 D �R.�IA/2:

Hence we have

R.�IA/2 D
Z 1

0

t e��t T .t/u dt:

Similarly, if we differentiate this formula with respect to �, we obtain that

d

d�

�
R.�IA/2u� D �

Z 1

0

t2e��tT .t/u dt;

and that

d

d�
.�I � A/�2 D �2.�I �A/�3 D �2R.�IA/3:

Hence we have

2R.�IA/3u D
Z 1

0

t2e��tT .t/u dt;

or equivalently,

R.�IA/3u D 1

2

Z 1

0

t2e��t T .t/u dt:

Continuing this process, we have, after m � 1 steps,

R.�IA/mu D 1

.m � 1/Š
Z 1

0

tm�1e��tT .t/u dt:

Moreover, by using inequality (4.40) we obtain that

kR.�IA/muk � M kuk
.m � 1/Š

Z 1

0

tm�1e�.Re��!/t dt:

However, the integral on the right-hand side can be calculated as follows:

Z 1

0

tm�1e�.Re��!/t dt

D
�

� t
m�1e�.Re��!/t

Re� � !
�tD1

tD0
C
Z 1

0

.m � 1/tm�2e�.Re��!/t

Re� � ! dt
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D
Z 1

0

.m � 1/tm�2e�.Re��!/t

Re� � ! dt

�
�
�

D .m � 1/Š
.Re� � !/m�1

Z 1

0

e�.Re��!/t dt D .m � 1/Š
.Re� � !/m�1

�

�e
�.Re��!/t

Re� � !
�tD1

tD0

D .m� 1/Š
.Re� � !/m :

Therefore, we have proved that

kR.�IA/muk � M kuk
.m � 1/Š �

.m � 1/Š
.Re� � !/m D

M kuk
.Re� � !/m for all u 2 E:

This proves the desired inequality (4.42).

Now the proof of Theorem 4.27 is complete.

4.5.3 The Hille–Yosida Theorem

Now we consider when a linear operator is the infinitesimal generator of some .C0/
semigroup. This question is answered by the following Hille–Yosida theorem [Tn,
Chapter 12, Theorem 12-5]:

Theorem 4.28 (Hille–Yosida). Let E be a Banach space, and let A W E ! E

be a closed linear operator with domain D.A/. The operator A is the infinitesimal
generator of some .C0/ semigroup fTtgt�0 if and only if it satisfies the following two
conditions (i) and (ii):

(i) The operator A is a densely defined, closed linear operator.
(ii) There exists a real number ! such that the half-line .!;1/ is contained in the

resolvent set �.A/ of A, and the resolvent R.�IA/ D .�I � A/�1 satisfies the
inequality

kR.�IA/mk � M

.� � !/m ; � > !; m D 1; 2; : : : : (4.49)

Proof. (I) The “only if” part follows immediately from Theorem 4.27.
(II) The proof of the “if” part is divided into four steps. In the following we shall

write T .t/ for Tt .
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Step 1: If n is a positive integer such that n > !, we let

Jn WD
�

I � 1
n
A

��1
D n.nI �A/�1 D nR.nIA/ 2 L.E;E/;

An WD AJn D nA.nI �A/�1 D f�n.nI � A/�1 C n2I g.nI �A/�1
D �nI C n2R.nIA/ 2 L.E;E/:

The operators An are called Yosida approximations.

First, we show that

s � lim
n!1Jn D I; (4.50)

lim
n!1Anu D Au for every u 2 D.A/: (4.51)

Since we have the inequality

kR.�IA/mk � M

.� � !/m ; � > !; m D 1; 2; : : : ;

it follows that

kR.nIA/k D
�
�
�
�
Jn

n

�
�
�
� �

M

n � ! ; (4.52)

so that

kJnk � nM

n � ! :

This proves that the operators Jn are uniformly bounded in the space L.E;E/.
On the other hand, we have, for all u 2 D.A/,

Jnu D nR.nIA/u
D R.nIA/.nu� AuC Au/ D R.nIA/f.nI � A/u � Aug
D uCR.nIA/.Au/:

However, it follows from inequality (4.52) that

kR.nIA/.Au/k � kR.nIA/k � kAuk � M kAuk
n � ! �! 0 as n!1:

Hence we have, as n!1,

Jnu �! u for every u 2 D.A/:
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Since D.A/ is dense in E and since Jn are uniformly bounded, we obtain that

Jnu �! u for every u 2 E as n!1:

This proves the desired assertion (4.50).
Moreover, since we have

1

n
JnA D .nI � A/�1A D .nI �A/�1fnI � .nI � A/g D n.nI � A/�1 � I;
1

n
AJn D A.nI � A/�1 D fnI � .nI �A/g.nI � A/�1 D n.nI � A/�1 � I;

it follows that the operators A and Jn are commutative on D.A/. Hence we have,
by assertion (4.50),

Anu D AJnu D Jn.Au/ �! Au for every u 2 D.A/ as n!1:

This proves the desired assertion (4.51).

Step 2: For any positive integer n > !, we let

Tn.t/ D etAn D etAJn ;

and show that

kTn.t/k �Me n!t
n�! : (4.53)

Since we have

Tn.t/ D et.�nCn2R.nIA// D e�nt � en2tR.nIA/;

it follows that

kTn.t/k � e�nt
1X

mD0

n2mtm

mŠ
kR.nIA/mk

� M e�nt
1X

mD0

n2mtm

mŠ
� 1

.n � !/m DM e�nt � e n2t
n�!

D M e
n!t
n�! for all positive integer n > !:

This proves the desired inequality (4.53).
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Step 3: Now we show the following two assertions (i) and (ii):

(i) The strong limit T .t/ WD s � lim Tn.t/ exists in the Banach space L.E;E/.
More precisely, the function Tn.t/u, u 2 E , converges to T .t/u uniformly
in t on bounded intervals of Œ0;1/.

(ii) The operators fT .t/gt�0 form a .C0/ semigroup, and satisfies the inequality
kT .t/k �M e!t for all t � 0.

If we let

!0 WD maxf0; !g;
then it follows that

n!t

n � ! � 2!0t for all positive integer n > 2!0:

Let  > 0 be an arbitrary positive number. Then we have, by Step 2,

kTn.t/k �M e
n!t
n�! �M e2!0t �M e2!0 ; t 2 Œ0; �; n > 2!0: (4.54)

On the other hand, by Theorem 4.4 it follows that

d

dt
.Tn.t// D d

dt

�
etAn

� D Tn.t/An:

Since Am and An are commutative and since Am and Tn.s/ are commutative, we
have

Tn.t/ � Tm.t/ D ŒTm.t � s/Tn.s/�sDtsD0

D
Z t

0

d

ds
fTm.t � s/Tn.s/g ds

D
Z t

0

	
d

ds
Tm.t � s/ � Tn.s/C Tm.t � s/ � d

ds
Tn.s/




ds

D
Z t

0

f�Tm.t � s/AmTn.s/C Tm.t � s/Tn.s/Ang ds

D
Z t

0

fTm.t � s/Tn.s/An � Tm.t � s/Tn.s/Amg ds

D
Z t

0

Tm.t � s/Tn.s/.An �Am/ ds for all t 2 Œ0; �:

In view of inequality (4.54), this proves that

kTn.t/u � Tm.t/uk � M2 e4!0 kAnu �Amuk; (4.55)

for all t 2 Œ0; � and all n, m > 2!0:
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However, it follows from assertion (4.38) that we have, for all u 2 D.A/,
Anu �! Au as n!1:

Therefore, by letting n;m ! 1 in inequality (4.42) we find that the function
Tn.t/u, u 2 D.A/, converges uniformly in t 2 Œ0; �, for each  > 0.

We consider the general case where u 2 E: For any given number " > 0, we can
find an element v 2 D.A/ such that ku � vk < ". Then we have the inequality

kTn.t/u � Tm.t/uk
� kTn.t/.u � v/k C kTn.t/v � Tm.t/vk C kTm.t/.u � v/k
� 2M " e2!0 C kTn.t/v � Tm.t/vk; t 2 Œ0; �; n;m > 2!0:

Since the function Tn.t/v, v 2 D.A/, converges uniformly in t 2 Œ0; �, it follows
that

lim sup
n;m!1

kTn.t/u � Tm.t/uk � 2M " e2!0 for all t 2 Œ0; �:

This proves that the function Tn.t/u, u 2 E , also converges uniformly in t 2 Œ0; �,
for each  > 0.

Therefore, we have proved that the function Tn.t/u, u 2 E , converges uniformly
in t over bounded intervals of Œ0;1/.

We can define a family fT .t/gt�0 of linear operators on E by the formula

T .t/u WD lim
n!1Tn.t/u for every u 2 E:

First, we note that the function T .t/u, u 2 E , is strongly continuous for all t � 0,
since this convergence is uniform in t over bounded intervals of Œ0;1/. Secondly, it
follows from an application of the principle of uniform boundedness (Theorem 3.14)
that

kT .t/k � lim inf
n!1 kTn.t/k � lim inf

n!1 M e
n!t
n�! DM e!t for all t � 0;

so that

T .t/ 2 L.E;E/ for all t � 0:

Thirdly, since we have the group property for the operators

Tn.t C s/ D Tn.t/Tn.s/ for all t , s 2 R;

by passing to the limit we obtain the semigroup property for the operators

T .t C s/ D T .t/T .s/ for all t , s � 0:
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Summing up, we have proved that fT .t/gt�0 form a .C0/ semigroup, and satisfies
the inequality kT .t/k �M e!t for all t � 0.

Step 4: Finally, we show that the infinitesimal generatorA of fT .t/gt�0 coincides
with the operator A.

Since we have, for all n > !0,

d

dt
.Tn.t/u/ D d

dt

�
etAnu

� D AnTn.t/u D Tn.t/Anu; u 2 D.A/;

it follows that

Tn.h/u � u D
Z h

0

d

dt
.Tn.t/u/ dt D

Z h

0

Tn.t/Anu dt: (4.56)

Hence we have, by inequality (4.40),

kTn.t/.Anu/� T .t/.Au/k � kTn.t/kkAnu � Auk C k.Tn.t/ � T .t//Auk
� M e2!hkAnu � Auk C k.Tn.t/ � T .t//.Au/k:

It should be noted that the convergence

Tn.t/.Anu/ �! T .t/.Au/

is uniform in t 2 Œ0; � as n!1.
By letting n!1 in (4.56), we obtain that

T .h/u � u D
Z h

0

T .t/Au dt; u 2 D.A/:

Hence it follows that

lim
h#0

T .h/u� u

h
D lim

h#0
1

h

Z h

0

T .t/Au dt D T .0/Au D Au:

This proves that

u 2 D.A/;
Au D Au;

so that A 	 A.
In order to prove that A D A, it suffices to show that D.A/ 	 D.A/.
Let u be an arbitrary element of D.A/. Since the operator

�I � A W D.A/ �! E
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is bijective for � > !, we can find a unique element v 2 D.A/ such that

.�I � A/v D .�I � A/u:

However, since A 	 A, it follows that

.�I � A/v D .�I � A/v;

so that

.�I � A/.u� v/ D 0:

This proves that u D v 2 D.A/, that is, D.A/ 	 D.A/, since the operator

�I � A W D.A/ �! E

is bijective for � > ! (see assertion (ii) of Theorem 4.27).
Now the proof of Theorem 4.28 is complete.

The next corollary gives a simple necessary and sufficient condition for contrac-
tion .C0/ semigroups (cf. Theorem 4.10):

Corollary 4.29. LetE be a Banach space, and letA W E ! E be a densely defined,
closed linear operator with domain D.A/. The operator A is the infinitesimal
generator of some contraction .C0/ semigroup fTtgt�0 if and only if the half-line
.0;1/ is contained in the resolvent set �.A/ of A and the resolvent R.�IA/ D
.�I �A/�1 satisfies the inequality

kR.�IA/k � 1

�
for all � > 0:

Proof. The “only if” part follows from Theorem 4.27 with ! WD 0 and M WD 1.
The “if” part may be proved as follows: Since we have, for every integerm 2 N,

kR.�IA/mk � kR.�IA/km � 1

�m
for all � > 0;

it follows that condition (ii) of Theorem 4.28 is satisfied with ! WD 0 and M WD
1. Therefore, by applying Theorem 4.28 to our situation we obtain that A is the
infinitesimal generator of some contraction .C0/ semigroup.

The proof of Corollary 4.29 is complete.
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4.5.4 .C0/ Semigroups and Initial-Value Problems

Finally, we consider an initial-value problem associated with a .C0/ semigroup.
More precisely, we prove the following existence and uniqueness theorem for an
initial-value problem associated with a .C0/ semigroup ([CP, Chapitre 6, Théorème
6.9]; [Kr, Chapter I, Theorem 3.3]):

Theorem 4.30. Let fTt gt�0 be a .C0/ semigroup with infinitesimal generator A. If
x 2 D.A/, then the function u.t/ D Ttx is a unique solution of the initial-value
problem

8
<

:

du

dt
D Au for all t > 0;

u.0/ D x
(�)

which satisfies the following three conditions (a)–(c):

(a) The function u.t/ is continuously differentiable for all t > 0.
(b) ku.t/k �M eˇt for all t � 0.
(c) u.t/! x as t # 0.

In other words, the initial-value problem .�/ is well-posed.

The proof of Theorem 4.30 is based on the following result on the Laplace
transform:

Lemma 4.31. Let u.t/ be an E-valued, bounded continuous function defined on
the open interval RC D .0;1/. If we have, for all � > 0,

Z 1

0

e��tu.t/ dt D 0; (4.57)

then it follows that

u.t/ D 0 for all t � 0:

Proof. (1) If f is an arbitrary element of the dual space E 0 of E , then it follows
that the function

RC 3 t �! f .u.t//

is bounded and continuous. Moreover, it is easy to verify the formula

Z 1

0

e��tf .u.t// dt D f
�Z 1

0

e��tu.t/ dt

�

; (4.58)
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since the integrals can be approximated by Riemann sums. Indeed, let

� D ft0 D 0; t1; : : : ; tn D M g

be the division of the interval Œ0;M � for any M > 0. Then we have, for the
corresponding Riemann sums,

nX

iD0
e��ti f .u.ti // � j�j D f

 
nX

iD0
e��ti u.ti / � j�j

!

; (4.59)

where

j�j D max
1�i�n jti � ti�1j:

However, by letting j�j ! 0 in (4.59), we obtain that

nX

iD0
e��ti f .u.ti // � j�j �!

Z M

0

e��tf .u.t// dt;

f

 
nX

iD0
e��ti u.ti / � j�j

!

�! f

�Z M

0

e��tu.t/ dt

�

:

Hence we have, for all M > 0,

Z M

0

e��tf .u.t// dt D f
�Z M

0

e��tu.t/ dt

�

: (4.60)

The desired formula (4.58) follows by letting M !1 in (4.60).
(2) By combining condition (4.57) and formula (4.58), we obtain that

Z 1

0

e��tf .u.t// dt D 0 for all � > 0:

Hence we have, by the fundamental property of the Laplace transform,

f .u.t// D 0 for all t � 0:

This proves that u.t/ D 0 for all t � 0, since f is an arbitrary element of the
dual space E 0.

The proof of Lemma 4.31 is complete.

Corollary 4.32. Let u.t/ be an E-valued, bounded continuous function defined on
the open interval RC D .0;1/. Assume that there exist a constant M � 1 and a
real number ˇ such that
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ku.t/k �M eˇt for all t � 0: (4.61)

If we have, for all � > ˇ,

Z 1

0

e��tu.t/ dt D 0;

then it follows that

u.t/ D 0 for all t � 0:

Proof. If we let

v.t/ D u.t/e�ˇt ;

� D � � ˇ;

then it follows that the function v.t/ satisfies the bounded condition

kv.t/k �M for all t � 0;

and the condition
Z 1

0

e��tv.t/ dt D
Z 1

0

e�.��ˇ/tv.t/ dt D
Z 1

0

e��tu.t/ dt

D 0 for all � D � � ˇ > 0:

Therefore, by applying Lemma 4.31 we obtain that

v.t/ D u.t/ e�ˇt D 0 for all t � 0;

so that

u.t/ D 0 for all t � 0:

The proof of Corollary 4.32 is complete.

Proof of Theorem 4.30

(1) By Lemma 4.23 with A WD A, it follows that the function u.t/ D Ttx, x 2
D.A/, is a solution of problem .�/.

(2) We have only to show the uniqueness of the solution. Assume that u1 and u2 are
two solutions of problem .�/ which satisfy conditions (a)–(c):

ku1.t/k �M eˇ1t for all t � 0;
ku2.t/k �M eˇ2t for all t � 0:
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Then it follows that the function

v.t/ D u1.t/ � u2.t/

is a solution of the initial-value problem

8
<

:

dv

dt
D Av;

v.0/ D 0

which satisfies the condition

kv.t/k � 2M eˇt for all t � 0; (4.62)

where

ˇ D maxfˇ1; ˇ2g:

Now we take an arbitrary real number � such that � > ˇ, and let

W.t/ D e��tv.t/ D e��t .u1.t/ � u2.t// :

Then it follows that

d

dt
.W.t// D d

dt

�
e��tv.t/

� D ��W.t/C e��t d
dt

v.t/

D ��W.t/C e��tAv.t/ D �.�I � A/W.t/;

so that
Z s

0

W.t/ dt D �.�I � A/�1
Z s

0

dW.t/

dt
dt

D �.�I � A/�1W.s/;

since W.0/ D v.0/ D 0. Hence we have, by inequality (4.62),

�
�
�
�

Z s

0

W.t/ dt

�
�
�
� D

�
�
�
�

Z s

0

e��tv.t/ dt

�
�
�
� D

�
��.�I � A/�1W.s/��

D �
��.�I �A/�1 �e��sv.s/

���

� 1

� � ˇ e
��s 2M eˇs D 2M

� � ˇe
�.��ˇ/s :
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Since � > ˇ, it follows that

�
�
�
�

Z s

0

W.t/ dt

�
�
�
� �

2M

� � ˇ e
�.��ˇ/s �! 0 as s !1:

Therefore, we have proved that

Z 1

0

e��tv.t/ dt D
Z 1

0

W.t/ dt D 0 for all � > ˇ:

In view of condition (4.62), by applying Corollary 4.32 to the function v.t/ we
obtain that

v.t/ D u1.t/ � u2.t/ D 0 for all t � 0;

so that

u1.t/ D u2.t/ for all t � 0:

This proves the uniqueness theorem for problem .�/.
Now the proof of Theorem 4.30 is complete. ut

4.6 Notes and Comments

Hille–Phillips [HP] and Yosida [Yo] are the classics for semigroup theory. The
material in this chapter is adapted from Chazarain–Piriou [CP], Friedman [Fr1], J.
Goldstein [Gj], S.G. Kreı̆n [Kr], Pazy [Pa], Tanabe [Tn] and also part of Taira [Ta7].
For more leisurely treatments of semigroups, the reader is referred to Engel–Nagel
[EN].

Many problems in partial differential equations can be formulated in terms of
abstract operators acting between suitable Banach spaces of distributions, and these
operators are then analyzed by the methods of semigroup theory. The virtue of this
approach is that a given problem is stripped of extraneous data, so that the analytic
core of the problem is revealed.

For example, Taira [Ta12] is devoted to a semigroup approach to an initial-
boundary value problem of linear elastodynamics in the case where the boundary
condition is a regularization of the genuine mixed displacement-traction boundary
condition (see [MH, Chapter 6, Section 6.3]). More precisely, let ˝ be an open,
connected subset of Euclidean space Rn, n � 2, with smooth boundary @˝ .
We think of its closure ˝ D ˝ [ @˝ as representing the volume occupied
by an undeformed body. In [Ta12] we study the following initial-boundary value
problem of linear elastodynamics: For given Rn-valued functions f .x/ D .fi .x//,
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u0.x/ D .u0;i .x// and u1.x/ D .u1;i .x// defined in ˝ , find an Rn-valued function
u.x/ D .ui .x// in ˝ such that

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@2u
@t2
� div .a.x/ � ru/ D f in ˝ � .0;1/;

ujtD0 D u0 in ˝;
@u
@t
jtD0 D u1 in ˝;

˛.x/ .a.x/ � ru � n/C .1 � ˛.x//u D 0 on @˝ � .0;1/:

(4.63)

Here:

(1) a.x/ D .aij`m.x// is a smooth elasticity tensor.
(2) ˛.x/ is a smooth real-valued function on @˝ such that 0 � ˛.x/ � 1 on @˝ .
(3) n D .ni / is the outward unit normal to @˝ .

It is worth pointing out that, componentwise, the initial-boundary value prob-
lem (4.63) can be written in the form

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

@2ui
@t2
�Pn

jD1
@

@xj

�
Pn

`;mD1 aij`m.x/
@u`
@xm

�

D fi .x/;
ui jtD0 D u0;i .x/;
@ui
@t
jtD0 D u1;i .x/;

˛.x/
Pn

jD1
�
Pn

`;mD1 aij`m.x/
@u`
@xm

�

nj .x/C .1 � ˛.x//ui .x/ D 0:

It should be emphasized that our boundary condition

B˛u D ˛.x/ .a.x/ � ru � n/C .1 � ˛.x//u (4.64)

is a smooth linear combination of displacement and traction boundary conditions. It
is easy to see that B˛ is non-degenerate (or coercive) if and only if either ˛.x/ > 0
on @˝ (the Robin case) or ˛.x/ � 0 on @˝ (the Dirichlet case). However, our
boundary condition (4.64) is degenerate from an analytical point of view. This is
due to the fact that the so-called Shapiro–Lopatinskii complementary condition is
violated at the points x 2 @˝ where ˛.x/ D 0 (cf. [Ho4]).

The crucial point in our semigroup approach is to generalize the classical
variational approach to the degenerate case, by using the theory of fractional powers
of analytic semigroups [Ta7].

Finally, we give two simple but important examples of the initial-boundary value
problem (4.63):

Example 4.33. If we take

a.x/ D .aij`m.x// D
�
ıi`ıjm

�
;
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then our problem (4.63) becomes the mixed displacement-traction problem for the
wave equation

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@2u
@t2
�
u D f in ˝ � .0;1/;

ujtD0 D u0 in ˝;
@u
@t
jtD0 D u1 in ˝;

˛.x/ @u
@n C .1� ˛.x//u D 0 on @˝ � .0;1/:

Example 4.34. If we take

a.x/ D .aij`m.x// D
�
�ıijı`m C �ıi`ıjm

�
;

where �, � are Lamé moduli, then our problem (4.63) becomes the mixed
displacement-traction problem for the elastodynamic wave equation

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@2u
@t2
� .�
uC .�C �/grad .div u// D f in ˝ � .0;1/;

ujtD0 D u0 in ˝;
@u
@t
jtD0 D u1 in ˝;

˛.x/ .�.u/ � n/C .1 � ˛.x//u D 0 on @˝ � .0;1/:

Here we recall that

e.u/ D .eij.x// D
�
1

2

�
@ui
@xj
C @uj
@xi

��

is the linearized strain tensor and

�.u/ D .ij.x// D
 

�

nX

kD1
ekk.x/ıij C 2�eij.x/

!

is the linearized stress tensor.
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Chapter 5
Theory of Distributions

This chapter is a summary of the basic definitions and results from the theory of
distributions or generalized functions which will be used in subsequent chapters.
Distribution theory has become a convenient tool in the study of partial differential
equations. Many problems in partial differential equations can be formulated in
terms of abstract operators acting between suitable spaces of distributions, and these
operators are then analyzed by the methods of functional analysis. The virtue of this
approach is that a given problem is stripped of extraneous data, so that the analytic
core of the problem is revealed.

Section 5.1 serves to settle questions of notation and such. In Sect. 5.2 we
study Lp spaces, the spaces of Ck functions and test functions, and also Hölder
spaces on an open subset of Euclidean space. Moreover, we introduce Friedrichs’
mollifiers and show how Friedrichs’ mollifiers can be used to approximate a function
by smooth functions (Theorem 5.4). In Sect. 5.3 we study differential operators
and state that differential operators are local operators (Peetre’s theorem 5.7).
In Sect. 5.4 we present a brief description of the basic concepts and results in
the theory of distributions. In particular, the importance of tempered distributions
lies in the fact that they have Fourier transforms. In Sect. 5.4.10 we calculate
the Fourier transform of a tempered distribution which is closely related to the
stationary phase theorem (Example 5.29). In Sect. 5.5 we prove the Schwartz kernel
theorem (Theorem 5.36) which characterizes continuous linear operators in terms of
distributions. In Sect. 5.6 we describe the classical single and double layer potentials
arising in the Dirichlet and Neumann problems for the Laplacian 
 in the case
of the half-space RnC (formulas (5.73) and (5.74)). Moreover, we prove the Green
representation formula (5.75). This formula will be formulated in terms of pseudo-
differential operators in Chap. 7 (Sect. 7.5). Some results in Sects. 5.3–5.5 can be
extended to distributions, differential operators, and operators and kernels on a
manifold in Sect. 5.7. The virtue of manifold theory is that it provides a geometric
insight into the study of partial differential equations, and intrinsic properties of
partial differential equations may be revealed. In Sect. 5.8 we introduce the notion
of domains of class C r from the viewpoint of manifold theory.

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__5,
© Springer-Verlag Berlin Heidelberg 2014
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5.1 Notation

5.1.1 Points in Euclidean Spaces

Let Rn be the n-dimensional Euclidean space. We use the conventional notation

x D .x1; x2; : : : ; xn/:

If x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/ are points in Rn, we set

x � y D
nX

jD1
xj yj ;

jxj D
0

@
nX

jD1
x2j

1

A

1=2

:

5.1.2 Multi-indices and Derivations

Let ˛ D .˛1; ˛2; : : : ; ˛n/ be an n-tuple of non-negative integers. Such an n-tuple ˛
is called a multi-index. We let

j˛j D ˛1 C ˛2 C : : :C ˛n;
˛Š D ˛1Š˛2Š � � �˛nŠ:

If ˛ D .˛1; ˛2; : : : ; ˛n/ and ˇ D .ˇ1; ˇ2; : : : ; ˇn/ are multi-indices, we define

˛ C ˇ D .˛1 C ˇ1; ˛2 C ˇ2; : : : ; ˛n C ˇn/:

The notation ˛ � ˇ means that ˛j � ˇj for each 1 � j � n. Then we let

 
ˇ

˛

!

D
 
ˇ1

˛1

! 
ˇ2

˛2

!

� � �
 
ˇn

˛n

!

:

We use the shorthand

@j D @

@xj
;

Dj D 1

i

@

@xj
.i D p�1/
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for derivatives on Rn. Higher-order derivatives are expressed by multi-indices as
follows:

@˛ D @˛11 @˛22 � � � @˛nn ;
D˛ D D˛1

1 D
˛2
2 � � �D˛n

n :

Similarly, if x D .x1; x2; : : : ; xn/ 2 Rn, we write

x˛ D x˛11 x˛22 � � �x˛nn :

5.2 Function Spaces

5.2.1 Lp Spaces

Let ˝ be an open subset of Rn. Two Lebesgue measurable functions f , g on˝ are
said to be equivalent if they are equal almost everywhere in ˝ with respect to the
Lebesgue measure dx, that is, if f .x/ D g.x/ for every x outside a set of Lebesgue
measure zero. This is obviously an equivalence relation.

If 1 � p <1, we let

Lp.˝/ D the space of equivalence classes of Lebesgue measurable

functions f .x/ on ˝ such that jf .x/jp is integrable on ˝:

The space Lp.˝/ is a Banach space with the norm

kf kp D
�Z

˝

jf .x/jp dx

�1=p
:

Furthermore, the space L2.˝/ is a Hilbert space with the inner product

.f; g/ D
Z

˝

f .x/g.x/ dx:

A Lebesgue measurable function f .x/ on ˝ is said to be essentially bounded if
there exists a constant C > 0 such that jf .x/j � C almost everywhere (a.e.) in ˝ .
We define

ess supx2˝ jf .x/j D inffC W jf .x/j � C a.e. in ˝g:
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For p D1, we let

L1.˝/ D the space of equivalence classes of essentially bounded;

Lebesgue measurable functions on ˝:

The space L1.˝/ is a Banach space with the norm

kf k1 D ess supx2˝ jf .x/j:

If 1 < p <1, we let

p0 D p

p � 1;

so that 1 < p0 <1 and

1

p
C 1

p0 D 1:

The number p0 is called the exponent conjugate to p.
We recall that the most basic inequality for Lp-functions is the following:

Theorem 5.1 (Hölder’s inequality). If 1 < p < 1 and f 2 Lp.˝/, g 2
Lp

0

.˝/, then the product f .x/g.x/ is in L1.˝/ and we have the inequality

kfgk1 � kf kpkgkp0 : (5.1)

It should be noted that inequality (5.1) holds true for the two cases p D 1,
p0 D1 and p D1, p0 D 1. Inequality (5.1) in the case p D p0 D 2 is referred to
as Schwarz’s inequality.

5.2.2 Convolutions

We give a general theorem about integral operators on a measure space [Fo2,
Theorem 6.18]:

Theorem 5.2 (Schur’s lemma). Let .X;M; �/ be a measure space. Assume that
K.x; y/ is a measurable function on the product space X �X such that

sup
x2X

Z

X

jK.x; y/j d�.y/ � C

and

sup
y2X

Z

X

jK.x; y/j d�.x/ � C
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where C is a positive constant. If f 2 Lp.X/ with 1 � p � 1, then the function
Tf .x/, defined by the formula

Tf .x/ D
Z

X

K.x; y/f .y/ d�.y/;

is well-defined for almost all x 2 X , and is in Lp.X/.
Furthermore, we have the inequality

kTfkp � Ckf kp:

Corollary 5.3 (Young’s inequality). If f 2 L1.Rn/ and g 2 Lp.Rn/ with 1 �
p � 1, then the convolution .f � g/.x/, defined by the formula

.f � g/.x/ D
Z

Rn
f .x � y/g.y/ dy;

is well-defined for almost all x 2 Rn, and is in Lp.Rn/.
Furthermore, we have the inequality

kf � gkp � kf k1kgkp:

5.2.3 Spaces of C k Functions

Let ˝ be an open subset of Rn. We let

C.˝/ D the space of continuous functions on ˝:

If K is a compact subset of ˝ , we define a seminorm pK on C.˝/ by the formula

C.˝/ 3 ' 7�! pK.'/ D sup
x2K
j'.x/j:

We equip the space C.˝/ with the topology defined by the family fpKg of
seminorms where K ranges over all compact subsets of ˝ .

If k is a positive integer, we let

Ck.˝/ D the space of Ck functions on ˝:

We define a seminorm pK;k on Ck.˝/ by the formula

Ck.˝/ 3 ' 7�! pK;k.'/ D sup
x2Kj˛j�k
j@˛'.x/j: (5.2)
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We equip the space Ck.˝/ with the topology defined by the family fpK;kg of
seminorms where K ranges over all compact subsets of ˝ . This is the topology of
uniform convergence on compact subsets of˝ of the functions and their derivatives
of order � k.

We set

C1.˝/ D
1\

kD1
C k.˝/;

and

C0.˝/ D C.˝/:

Let m be a non-negative integer or m D 1. Let fK`g be a sequence of compact
subsets of ˝ such that K` is contained in the interior of K`C1 for each ` and that

˝ D
1[

`D1
K`:

For example, we may take

K` D
	

x 2 ˝ W jxj � `; dist.x; @˝/ � 1

`




:

Such a sequence fK`g is called an exhaustive sequence of compact subsets of ˝ . It
is easy to see that the countable family

fpK`;j g`D1;2;:::
0�j�m

of seminorms suffices to define the topology on Cm.˝/ and further that Cm.˝/ is
complete. Hence the space Cm.˝/ is a Fréchet space.

Furthermore, we let

C.˝/ D the space of functions in C.˝/ having continuous

extensions to the closure˝ of ˝:

If k is a positive integer, we let

Ck.˝/ D the space of functions in Ck.˝/ all of whose derivatives

of order � k have continuous extensions to ˝:
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We set

C1.˝/ D
1\

kD1
C k.˝/;

and

C0.˝/ D C.˝/:
Let m be a non-negative integer or m D 1. We equip the space Cm.˝/ with

the topology defined by the family fpK;j g of seminorms where K ranges over all
compact subsets of ˝ and 0 � j � m.

Let fF`g be an increasing sequence of compact subsets of ˝ such that

1[

`D1
F` D ˝:

For example, we may take

F` D fx 2 ˝ W jxj � `g:
Such a sequence fF`g is called an exhaustive sequence of compact subsets of ˝ . It
is easy to see that the countable family

fpF`;j g`D1;2;:::
0�j�m

of seminorms suffices to define the topology on Cm.˝/ and further that Cm.˝/ is
complete. Hence the space Cm.˝/ is a Fréchet space.

If ˝ is bounded and 0 � m <1, then the space Cm.˝/ is a Banach space with
the norm

k'kCm.˝/ D sup
x2˝j˛j�m
j@˛'.x/j:

5.2.4 The Space of Test Functions

Let ˝ be an open subset of Rn and let u.x/ be a continuous function on ˝ . The
support of u, denoted supp u, is the closure in ˝ of the set fx 2 ˝ W u.x/ ¤ 0g. In
other words, the support of u is the smallest closed subset of ˝ outside of which u
vanishes.

Letm be a non-negative integer orm D1. IfK is a compact subset of˝ , we let

Cm
K .˝/ D the space of functions in Cm.˝/ with support in K:
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The space Cm
K .˝/ is a closed subspace of Cm.˝/. Furthermore, we let

Cm
0 .˝/ D

[

K�˝
Cm
K .˝/;

where K ranges over all compact subsets of ˝ , so that Cm
0 .˝/ is the space of

functions in Cm.˝/ with compact support in ˝ . It should be emphasized that the
space Cm

0 .˝/ can be identified with the space of functions in Cm
0 .R

n/ with support
in˝ . If fK`g is an exhaustive sequence of compact subsets of˝ , we equip the space
Cm
0 .˝/ with the inductive limit topology of the spaces Cm

K`
.˝/, that is, the strongest

locally convex linear space topology such that each injection

Cm
K`
.˝/ �! Cm

0 .˝/

is continuous. We can verify that this topology on Cm
0 .˝/ is independent of the

sequence fK`g used.
We list some basic properties of the topology on Cm

0 .˝/:

(1) A sequence f'j g in Cm
0 .˝/ converges to an element ' in Cm

0 .˝/ if and only if
the functions 'j and ' are supported in a common compact subset K of ˝ and
'j ! ' in Cm

K .˝/.
(2) A subset of Cm

0 .˝/ is bounded if and only if it is bounded in Cm
K .˝/ for some

compactK 	 ˝ .
(3) A linear mapping from Cm

0 .˝/ into a linear topological space is continuous if
and only if its restriction to Cm

K .˝/ for every compactK 	 ˝ is continuous.

The elements of C1
0 .˝/ are often called test functions.

5.2.5 Hölder Spaces

Let D be a subset of Rn and let 0 < � < 1. A function ' defined on D is said to be
Hölder continuous with exponent � if the quantity

Œ'�� ID D sup
x;y2D
x 6Dy

j'.x/ � '.y/j
jx � yj�

is finite. We say that ' is locally Hölder continuous with exponent � if it is Hölder
continuous with exponent � on compact subsets of D. Hölder continuity may be
viewed as a fractional differentiability.

Let ˝ be an open subset of Rn and 0 < � < 1. We let

C�.˝/ D the space of functions in C.˝/ which are locally Hölder

continuous with exponent � on ˝:
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If k is a positive integer, we let

CkC� .˝/ D the space of functions in Ck.˝/ all of whose k-th order

derivatives are locally Hölder continuous with exponent �

on ˝:

If K is a compact subset of ˝ , we define a seminorm qK;k on CkC� .˝/ by the
formula

CkC� .˝/ 3 ' 7�! qK;k.'/ D sup
x2Kj˛j�k
j@˛'.x/j C sup

j˛jDk
Œ@˛'�� IK:

It is easy to see that the Hölder space CkC� .˝/ is a Fréchet space.
Furthermore, we let

C�.˝/ D the space of functions in C.˝/ which are Hölder

continuous with exponent � on˝:

If k is a positive integer, we let

CkC� .˝/ D the space of functions in Ck.˝/ all of whose k-th order

derivatives are Hölder continuous with exponent �

on ˝:

Letm be a non-negative integer. We equip the space CmC� .˝/ with the topology
defined by the family fqK;kg of seminorms whereK ranges over all compact subsets
of ˝. It is easy to see that the Hölder space CmC� .˝/ is a Fréchet space.

If ˝ is bounded, then CmC� .˝/ is a Banach space with the norm

k'kCmC� .˝/ D k'kCm.˝/ C sup
j˛jDm

Œ@˛'�� I˝

D sup
x2˝j˛j�m
j@˛'.x/j C sup

j˛jDm
Œ@˛'�� I˝:

5.2.6 Friedrichs’ Mollifiers

Let �.x/ be a non-negative, C1 function on Rn satisfying the following condi-
tions (5.3):

supp � D fx 2 Rn W jxj � 1g: (5.3a)
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Fig. 5.1 Friedrichs’ mollifiers f�"g

Z

Rn
�.x/ dx D 1: (5.3b)

For example, we may take

�.x/ D
(
k expŒ�1=.1� jxj2/� if jxj < 1;
0 if jxj � 1;

where the constant factor k is so chosen that condition (5.3b) is satisfied.
For each " > 0, we define

�".x/ D 1

"n
�
x

"

�
;

then �".x/ is a non-negative,C1 function on Rn, and satisfies the conditions

supp �" D fx 2 Rn W jxj � "gI (5.4a)
Z

Rn
�".x/ dx D 1: (5.4b)

The functions f�"g are called Friedrichs’ mollifiers (see Fig. 5.1).
The next theorem shows how Friedrichs’ mollifiers can be used to approximate

a function by smooth functions:
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Theorem 5.4. Let ˝ be an open subset of Rn. Then we have the following two
assertions (i) and (ii):

(i) If u 2 Lp.˝/ with 1 � p < 1 and vanishes outside a compact subset K of
˝ , then it follows that �" � u 2 C1

0 .˝/ provided that " < dist .K; @˝/, and
further that �" � u! u in Lp.˝/ as " # 0.

(ii) If u 2 Cm
0 .˝/ with 0 � m <1, then it follows that �" � u 2 C1

0 .˝/ provided
that " < dist .supp u; @˝/, and further that �" � u! u in Cm

0 .˝/ as " # 0.

Here

dist .K; @˝/ D inf fjx � yj W x 2 K; y 2 @˝g :

The functions �" � u are called regularizations of the function u.

Corollary 5.5. The space C1
0 .˝/ is dense in Lp.˝/ for each 1 � p <1.

Proof. Corollary 5.5 is an immediate consequence of part (i) of Theorem 5.4, since
Lp functions with compact support are dense in Lp.˝/.

The next result gives another useful construction of smooth functions that vanish
outside compact sets:

Corollary 5.6. Let K be a compact subset of Rn. If˝ is an open subset of Rn such
that K 	 ˝ , then there exists a function f 2 C1

0 .˝/ such that

0 � f .x/ � 1 in ˝;

f .x/ D 1 on K:

Proof. Let

ı D dist .K; @˝/;

and define a relatively compact subset U of ˝ , containingK , as follows:

U D
	

x 2 ˝ W jx � yj < ı

2
for some y 2 K




:

Then it is easy to verify that the function

f .x/ D �" � �U .x/ D 1

"n

Z

U

�
x � y

"

�
dy; 0 < " <

ı

2
;

satisfies all the conditions.
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5.3 Differential Operators

Let ˝ be an open subset of Rn. If m is a non-negative integer, we let

P.x;D/ D
X

j˛j�m
a˛.x/D

˛; a˛ 2 C1.˝/:

It is clear that P.x;D/ is a continuous linear mapping from C1.˝/ into itself.
Such mappings are called differential operators of order m on ˝ . We see that P D
P.x;D/ satisfies the condition

supp Pu 	 supp u for every u 2 C1.˝/; (5.5)

since differentiation is a purely local process. We express this fact by saying that
differential operators are local.

The next theorem states that the converse is also true (Peetre [Pe]):

Theorem 5.7 (Peetre). Assume that P is a linear mapping from C1.˝/ into itself
which satisfies conditions (5.4a) and (5.4b). Then, for every relatively compact
subset ˝ 0 of ˝ , there exist a non-negative integer m and C1 functions a˛.x/ in
˝ such that

P.x;D/u.x/ D
X

j˛j�m
a˛.x/D

˛u.x/; u 2 C1.˝ 0/; x 2 ˝ 0:

5.4 Distributions and the Fourier Transform

In this section we present a brief description of the basic concepts and results from
the theory distributions.

5.4.1 Definitions and Basic Properties of Distributions

Let˝ be an open subset of Rn. A distribution on˝ is a continuous linear functional
on C1

0 .˝/. The space of distributions on ˝ is denoted by D0.˝/. In other words,
the space D0.˝/ is the dual space

�
C1
0 .˝/

�0 D L.C1
0 .˝/;C/. If u 2 D0.˝/ and

' 2 C1
0 .˝/, we denote the action of u on ' by hu; 'i or sometimes by h'; ui.

We give some useful characterizations of distributions:

Theorem 5.8. Let u be a linear functional on C1
0 .˝/. Then the following three

conditions (i), (ii) and (iii) are equivalent:

(i) The functional u is a distribution.
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(ii) For any compact subset K of ˝ , there exist a constant C > 0 and a non-
negative integerm such that

j hu; 'i j � CpK;m.'/ for all ' 2 C1
K .˝/;

where

pK;m.'/ D sup
x2Kj˛j�m
j@˛'.x/j:

(iii)
˝
u; 'j

˛! 0 whenever 'j ! 0 in C1
0 .˝/.

Part (ii) of Theorem 5.4 tells us that the space C1
0 .˝/ is a dense subspace of

Cm
0 .˝/ for 0 � m <1. Also it is clear that the injection of C1

0 .˝/ into Cm
0 .˝/ is

continuous. Hence the dual space Dm.˝/0 D L.Cm
0 .˝/;C/ can be identified with a

linear subspace of D0.˝/, by the identification of a continuous linear functional
on Cm

0 .˝/ with its restriction to C1
0 .˝/. The elements of Dm.˝/0 are called

distributions of order � m on ˝ . In other words, the distributions of order � m on
˝ are precisely those distributions on˝ that have continuous extensions to Cm

0 .˝/.
Now we give some important examples of distributions.

Example 5.9. We let

L1loc.˝/ D the space of equivalence classes of Lebesgue measurable

functions on ˝ which are integrable on every compact

subset of ˝:

The elements of L1loc.˝/ are called locally integrable functions on ˝ . For example
(n D 1), it is easy to verify the following two assertions (a) and (b):

(a) log jxj 2 L1loc.R/.
(b) Y.x/ 2 L1loc.R/.

Here Y.x/ is the Heaviside step function defined by the formula

Y.x/ D
(
1 for x > 0;

0 for x < 0:

Every element f of L1loc.˝/ defines a distribution Tf of order zero on ˝ by the
formula

˝
Tf ; '

˛ D
Z

˝

f .x/'.x/ dx for every ' 2 C1
0 .˝/:
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Indeed, we have, for all ' 2 C1
K .˝/,

j ˝Tf ; '
˛ j �

�Z

K

jf .x/j dx

�

pK;0.'/:

Moreover, we can prove that the mapping

f 7�! Tf

induces an injection of L1loc.˝/ into D0.˝/. Indeed, we can prove the following
lemma of Du Bois Raymond:

Lemma 5.10 (Du Bois Raymond). Assume that f 2 L1loc.˝/ satisfies the condi-
tion

Z

˝

f .x/'.x/ dx D 0 for all ' 2 C1
0 .˝/: (5.6)

Then it follows that

f .x/ D 0 almost everywhere in ˝:

Proof. It suffices to show that we have, for any compact subset K of ˝ ,

f .x/ D 0 almost everywhere in K:

Now we take a function � 2 C1
0 .˝/ such that �.x/ D 1 on K , and let

f�.x/ D �.x/f .x/; x 2 Rn:

Then we see that

f� 2 L1.Rn/:

Hence it follows from an application of part (i) of Theorem 5.4 with p WD 1 that

�" � f� �! f� in L1.Rn/ as " # 0: (5.7)

However, we have

�" � f�.x/ D
Z

Rn
�".x � y/f�.y/ dy D

Z

Rn
f .y/ .�.y/�".x � y// dy;

and, for all sufficiently small " > 0,

�.�/�".x � �/ 2 C1
0 .˝/ for all x 2 Rn:
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Therefore, by applying condition (5.6) to our situation we obtain that

�" � f�.x/ D 0 for all x 2 Rn:

Hence we have, by assertion (5.7),

kf�kL1 D lim
"#0
k�" � f�kL1 D 0:

This proves that

f�.x/ D �.x/f .x/ D 0 for almost all x 2 Rn;

so that

f .x/ D 0 for almost all x 2 K:

The proof of Lemma 5.10 is complete.

By virtue of Lemma 5.10, we can regard locally integrable functions as distribu-
tions. We say that such distributions “are” functions. In particular, the functions in
Cm.˝/ .0 � m � 1/ and in Lp.˝/ .1 � p � 1/ are distributions on˝ .

Example 5.11. More generally, every complex Borel measure � on ˝ defines a
distribution of order zero on ˝ by the formula

h�; 'i D
Z

˝

'.x/ d�.x/ for every ' 2 C1
0 .˝/:

In particular, if we take � to be the point mass at a point x0 of ˝ , we obtain the
Dirac measure ıx0 defined by the formula

hıx0 ; 'i D '.x0/ for every ' 2 C1
0 .˝/:

In other words, the Dirac measure ıx0 is the point evaluation functional for x0 2 ˝ .
We denote ı0 just by ı in the case x D 0.

Example 5.12. Let f .x/ be a continuous function on Rn n f0g which is positively
homogeneous of degree �n and has mean zero on the unit sphere˙n:

f .�x/ D ��nf .x/; x 2 Rn; � > 0; (5.8a)
Z

˙n

f .�/ d� D 0: (5.8b)

Here � is the surface measure on ˙n.
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Then the formula

hv: p: f .x/; 'i D lim
"#0

Z

jxj>"
f .x/'.x/ dx; ' 2 C1

0 .R
n/;

defines a distribution on Rn. Here “v.p.” stands for Cauchy’s “valeur principale” in
French.

For example (n D 1), the distribution v: p:.1=x/ is defined by the formula
�

v: p:
1

x
; '

�

D lim
"#0

Z

jxj>"
'.x/

x
dx

D
Z 1

0

'.x/ � '.�x/
x

dx for every ' 2 C1
0 .R/:

We define various operations on distributions.

(a) Restriction: If u 2 D0.˝/ and V is an open subset of˝ , we define the restriction
ujV to V of u by the formula

hujV ; 'i D hu; 'i for every ' 2 C1
0 .V /:

Then it follows that ujV 2 D0.V /.

(b) Differentiation: The derivative @˛u of a distribution u 2 D0.˝/ is the
distribution on˝ defined by the formula

h@˛u; 'i D .�1/j˛j hu; @˛'i for every ' 2 C1
0 .˝/:

For example (n D 1), we have

(1) Y.x/0 D ı.x/.
(2) .log jxj/0 D v: p:

1

x
.
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(c) Multiplication by functions: The product au of a function a 2 C1.˝/ and a
distribution u 2 D0.˝/ is the distribution on ˝ defined by the formula

hau; 'i D hu; a'i for every ' 2 C1
0 .˝/:

For example (n D 1), we have

(1) x ı.x/ D 0.

(2) x

�

v: p:
1

x

�

D 1.

The Leibniz formula for the differentiation of a product remains valid:

Dˇ.au/ D
X

˛�ˇ

 
ˇ

˛

!

Dˇ�˛a �D˛u:

(d) We can combine operations (b) and (c). We let

P.x;D/ D
X

j˛j�m
a˛.x/D

˛; a˛ 2 C1.˝/

be a differential operator of order m on ˝ . If u 2 D0.˝/, we define P.x;D/u
by the formula

hP.x;D/u; 'i D
*

u;
X

j˛j�m
.�1/j˛jD˛.a˛'/

+

for every ' 2 C1
0 .˝/:

Then it follows that P.x;D/u 2 D0.˝/.
(e) Conjugation: The conjugate u of a distribution u 2 D0.˝/ is the distribution on

˝ defined by the formula

hu; 'i D hu; 'i for every ' 2 C1
0 .˝/;

where � denotes complex conjugation.
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5.4.2 Topologies on D0.˝/

Let˝ be an open subset of Rn. There are two natural topologies on the space D0.˝/
of distributions on ˝:

(1) Weak* topology s: This is the topology of convergence at each element of
C1
0 .˝/. The space D0.˝/ endowed with this topology is denoted by D0.˝/s .

A sequence fuj g of distributions converges to a distribution u in D0.˝/s if and
only if the sequence f˝uj ; '

˛g converges to hu; 'i for every ' 2 C1
0 .˝/.

(2) Strong topology b: This is the topology of uniform convergence on all bounded
subsets of C1

0 .˝/. The space D0.˝/ endowed with this topology is denoted
by D0.˝/b. A sequence fuj g of distributions converges to a distribution u in
D0.˝/b if and only if the sequence f˝uj ; '

˛g converges to hu; 'i uniformly in '
over all bounded subsets of C1

0 .˝/.

We list some basic topological properties of D0.˝/:

(I) In the case of a sequence of distributions, the two notions of convergence
coincide, that is, uj ! u in D0.˝/s if and only if uj ! u in D0.˝/b. Let
˝1 and ˝2 be open subsets of Rn1 and Rn2 , respectively and let A be a linear
operator on C1

0 .˝2/ into D0.˝1/. Then the continuity of A does not depend
on the topology (s or b) on D0.˝1/. Indeed, A W C1

0 .˝2/ 7! D0.˝1/ is
continuous if and only if its restriction toC1

K2
.˝2/ for every compactK2 	 ˝2

is continuous; so it suffices to base our reasoning on sequences.
(II) If fuj g is a sequence in D0.˝/ and the limit

hu; 'i D lim
j!1

˝
uj ; '

˛

exists for every ' 2 C1
0 .˝/, then it follows that u 2 D0.˝/. Thus we

have uj ! u in D0.˝/s and hence in D0.˝/b. This is one of the important
consequences of the Banach–Steinhaus theorem.

(III) The strong dual space of D0.˝/b can be identified with C1
0 .˝/. This fact is

referred to as the reflexivity of C1
0 .˝/.

5.4.3 The Support of a Distribution

Let˝ be an open subset of Rn. Two distributions u1 and u2 on˝ are said to be equal
in an open subset V of ˝ if the restrictions u1jV and u2jV are equal. In particular,
we have u D 0 in V if and only if hu; 'i D 0 for all ' 2 C1

0 .V /.
The local behavior of a distribution determines it completely. More precisely, we

have the following theorem:

Theorem 5.13. The space D0.˝/ has the sheaf property; this means the following
two properties (S1) and (S2) hold:
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(S1) If fU�g�2� is an open covering of ˝ and if a distribution u 2 D0.˝/ is zero
in each U�, then u D 0 in ˝ .

(S2) Given an open covering fU�g�2� of ˝ and a family of distributions u� 2
D0.U�/ such that uj D uk in everyU�\U�, there exists a distribution u 2 D0.˝/
such that u D u� in each U�.

Proof. Let f'�g�2� be a partition of unity subordinate to the open covering fU�g�2�
of˝ (see Sect. 5.7.2). That is, the family f'�g�2� in C1.˝/ satisfies the following
three conditions (a), (b) and (c):

(a) 0 � '�.x/ � 1 for all x 2 ˝ and � 2 �.
(b) supp'� 	 U� for each � 2 �.
(c) The collection fsupp'�g�2� is locally finite and

X

�2�
'�.x/ D 1 for every x 2 ˝:

Here supp'� is the support of '�, i.e. the closure in ˝ of the set fx 2 ˝ W
'�.x/ ¤ 0g.

(1) For any given ' 2 C1
0 .˝/, it follows that

(
' DP�2� '� ';
'� ' 2 C1

0 .U�/ for each � 2 �:

Here it should be emphasized that the summation
P

�2� is finite, since supp'
is compact. Therefore, since u is zero in each U�, we have

hu; 'i D
*

u;
X

�2�
'� '

+

D
X

�2�
hu; '� 'i D 0:

This proves that u D 0 in ˝ .
(2) If we define a distribution u 2 D0.˝/ by the formula

hu; 'i D
X

�2�
hu�; '� 'i for every ' 2 C1

0 .˝/;

then it is easy to verify that u D u� in each U�.
The proof of Theorem 5.13 is complete.

If u 2 D0.˝/, the support of u is the smallest closed subset of˝ outside of which
u is zero. The support of u is denoted by supp u. We observe that if ' 2 C1

0 .˝/ such
that supp' \ supp u D ;, then we have hu; 'i D 0. It should be emphasized that
the present definition of support coincides with the previous one if u is a continuous
function on ˝ .
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Fig. 5.2 The approximate function �j .x/

Example 5.14. In the case where n D 1, it is easy to verify the following three
assertions (1), (2) and (3):

(1) supp ıx0 D fx0g.
(2) suppY.x/ D Œ0;1/.
(3) supp v: p: 1

x
D .�1;1/.

5.4.4 The Dual Space of C 1.˝/

Let˝ be an open subset of Rn. The injection of C1
0 .˝/ into C1.˝/ is continuous

and the space C1
0 .˝/ is a dense subspace of C1.˝/.

Indeed, if fKj g is an exhaustive sequence of compact subsets of ˝ , by using
Corollary 5.6 we can construct a sequence f�j g of functions in C1

0 .˝/ such that
�j .x/ D 1 on Kj (see Fig. 5.2). For any given function ' 2 C1.˝/, it is easy to
verify that

�j ' �! ' in C1.˝) as j !1:

Hence the dual space E 0.˝/ D L.C1.˝/;C/ can be identified with a linear
subspace of D0.˝/, by the identification of a continuous linear functional on
C1.˝/ with its restriction to C1

0 .˝/. In other words, the elements of E 0.˝/
are precisely those distributions that have continuous extensions to C1.˝/. The
situation can be visualized in the following diagram:

More precisely, we have the following theorem:

Theorem 5.15. (i) The dual space E 0.˝/ of C1.˝/ consists of those elements of
D0.˝/ with compact support.

(ii) The dual space E 0m.˝/ of Cm.˝/, 0 � m < 1, consists of those elements of
D0m.˝/ with compact support, and E 0.˝/ D [1

mD0E 0m.˝/.
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As in the case of D0.˝/, we equip the space E 0.˝/with two natural topologies s
and b , and denote .E 0.˝/, s/ and .E 0.˝/; b/ by E 0.˝/s and E 0.˝/b respectively.
We have the same topological properties of E 0.˝/ as those of D0.˝/.

5.4.5 Tensor Products of Distributions

Let X and Y be open subsets of Rn and Rp, respectively. If ' 2 C1
0 .X/ and

 2 C1
0 .Y /, we define the tensor product ' ˝  of ' and  by the formula

.' ˝  /.x; y/ D '.x/ .y/:
It is clear that ' ˝  2 C1

0 .X � Y /. We let

C1
0 .X/˝ C1

0 .Y / D the space of finite combinations of the form ' ˝  
where ' 2 C1

0 .X/ and  2 C1
0 .Y /:

The space C1
0 .X/˝C1

0 .Y / is a linear subspace of C1
0 .X �Y /. Furthermore, it is

sequentially dense in C1
0 .X � Y /; that is, for every ˚ 2 C1

0 .X � Y /, there exists
a sequence f˚j g in C1

0 .X/˝ C1
0 .Y / such that ˚j ! ˚ in C1

0 .X � Y /.
The next lemma asserts that the space C1

0 .X/ ˝ C1
0 .Y / is sequentially dense

in C1
0 .X � Y /:

Lemma 5.16. The space C1
0 .X/˝ C1

0 .Y / is sequentially dense in C1
0 .X � Y /.

That is, for every function ˚ 2 C1
0 .X � Y / there exists a sequence f˚j g in

C1
0 .X/˝ C1

0 .Y / such that ˚j ! ˚ in C1
0 .X � Y /.

Proof. Let ˚.x; y/ be an arbitrary function in C1
0 .X � Y /. We choose a closed

cube K of side length T such that supp˚ is contained in the interior of K (see
Fig. 5.3), and we extend the function˚ to the periodic function Q̊ 2 C1.Rn �Rp/

with period T . Moreover, we choose two functions �.x/ 2 C1.Rn/ and �.y/ 2
C1.Rp/ such that

supp .� ˝ �/ 	 K;
�.x/˝ �.y/ D 1 on supp˚:

Then we have

˚.x; y/ D .�.x/˝ �.y// Q̊ .x; y/; (5.9)

and the Fourier expansion of Q̊

Q̊ .x; y/ D
X

˛2Nn
ˇ2Np

c˛;ˇ e
2�i
T ˛�x e 2�iT ˇ�y; .x; y/ 2 Rn � Rp: (5.10)
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Fig. 5.3 The interior of the
closed cube K

Here the Fourier coefficients c˛;ˇ of Q̊ are given by the formula

c˛;ˇ D 1

T nCp

Z

Rn

Z

Rp
e� 2�i

T ˛�x e� 2�i
T ˇ�y˚.x; y/ dx dy:

However, we have, by integration by parts,

˛� ˇı c˛;ˇ

D 1

T nCp

�
T

2�

�j�Cıj Z

Rn

Z

Rp
e� 2�i

T ˛�x e� 2�i
T ˇ�yD�

x D
ı
y˚.x; y/ dx dy

D 1

T nCp

�
T

2�

�j�Cıj Z

X

Z

Y

e� 2�i
T ˛�x e� 2�i

T ˇ�yD�
x D

ı
y˚.x; y/ dx dy

for all multi-indices � and ı:

Hence, for any positive integer N we can find a positive constant CN such that

.1C j˛j C jˇj/N ˇˇc˛;ˇ
ˇ
ˇ � CN for all .˛; ˇ/ 2 Nn � Np: (5.11)

Therefore, we obtain from formulas (5.9), (5.10) and inequality (5.11) that the
series

˚.x; y/ D .�.x/˝ �.y// Q̊ .x; y/
D
X

˛2Nn
ˇ2Np

c˛;ˇ


�.x/ e

2�i
T ˛�x� �.y/ e

2�i
T ˇ�y�

converges in the space C1
0 .X � Y /.

Now the proof of Lemma 5.16 is complete.
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The sequential density of C1
0 .X/˝C1

0 .Y / in C1
0 .X � Y / allows us to obtain

the following theorem:

Theorem 5.17. If u 2 D0.X/ and v 2 D0.Y /, there exists a unique distribution
u˝ v 2 D0.X � Y / such that

hu˝ v; ˚i D hu; 'i D hv;  i for all ˚ 2 C1
0 .X � Y /;

where '.x1/ D hv; ˚.x; �/i and  .y/ D hu; ˚.�; y/i.
The distribution u˝ v is called the tensor product of u and v.
We list some basic properties of the tensor product:

(1) hu˝ v; ' ˝  i D hu; 'i hv;  i for all ' 2 C1
0 .X/ and  2 C1

0 .Y /.
(2) supp .u˝ v/ D supp u � supp v.
(3) D˛

xD
ˇ
y .u˝ v/ D D˛

xu˝Dˇ
y v.

5.4.6 Convolutions of Distributions

The Young inequality (Corollary 5.3) tells us that if u 2 L1.Rn/ and v 2 Lp.Rn/

with 1 � p � 1, then the convolution

.u � v/.x/ D
Z

Rn
u.x � y/v.y/ dy

is well-defined for almost all x 2 Rn, and is in Lp.Rn/. Furthermore, it follows
from Fubini’s theorem [Fo2, Theorem 2.37] that

hu � v; 'i D
Z Z

Rn�Rn
u.x/v.y/'.x C y/ dx dy for all ' 2 C1

0 .R
n/:

We use this formula to extend the definition of convolution to the case of distribu-
tions.

Let u, v 2 D0.Rn/ and assume that one of them has compact support. If ' 2
C1
0 .R

n/, then the support of the function

Q' W .x; y/ 7�! '.x C y/

is contained in the strip

f.x; y/ 2 Rn �Rn W x C y 2 supp'g:



224 5 Theory of Distributions

Thus it is easy to see that the intersection

supp .u˝ v/\ supp Q'

is a compact subset of Rn �Rn. We choose a function � in C1
0 .R

n �Rn/ such that
� D 1 in a neighborhood of supp .u˝ v/\ supp Q', and define

hu˝ v; Q'i D hu˝ v; � Q'i :

Observe that hu˝ v; � Q'i is independent of the function � chosen, and further that
the mapping

C1
0 .R

n/ 3 ' 7�! hu˝ v; Q'i

is continuous. This discussion justifies the following definition:

Definition 5.18. The convolution u � v of two distributions u and v in D0.Rn/, one
of which has compact support, is a distribution on Rn defined by the formula

hu � v; 'i D hu˝ v; Q'i for every ' 2 C1
0 .R

n/:

We state some basic facts concerning the convolution product:

(1) u � v D v � u.
(2) supp .u � v/ 	 supp uC supp v D fx C y W x 2 supp u; y 2 supp vg.
(3) D˛.u � v/ D .D˛u/ � v D u � .D˛v/.
(4) If either u 2 D0.Rn/, v 2 C1

0 .R
n/ or u 2 E 0.Rn/, v 2 C1.Rn/, then we have

u � v 2 C1.Rn/;

.u � v/.x/ D ˝uy; v.x � y/
˛
;

where uy means that the distribution u operates on v.x � y/ as a function of y
with x fixed.

(5) Let �.x/ be a non-negative,C1 function on Rn such that

�.�x/ D �.x/ for all x 2 Rn;

supp� D fx 2 Rn W jxj � 1g;
Z

Rn
�.x/ dx D 1;

and define a function �".x/ by the formula (see Fig. 5.1)

�".x/ D 1

"n
�
x

"

�
for every " > 0:
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If u 2 D0.Rn/ (resp. u 2 E 0.Rn/), then it follows that the convolutions u � �"
are in C1.Rn/ and further that we have, for every ' 2 C1

0 .R
n/ (resp. ' 2

C1.Rn/),

hu � �"; 'i D hu; �" � 'i �! hu; 'i as " # 0:

This proves that

u � �" �! u in D0.Rn/ (resp. in E 0.Rn/) as " # 0:

Rephrased, distributions can be approximated in the weak* topology of distri-
butions by smooth functions. The functions u � �" are called regularizations of
the distribution u.

5.4.7 The Jump Formula

If x D .x1; x2; : : : ; xn/ is a point of Rn, we write

x D .x0; xn/; x0 D .x1; x2; : : : ; xn�1/:

If u 2 C1.RnC/, we define its extension u0 to the whole space Rn by the formula

u0.x0; xn/ D
(

u.x0; xn/ for xn � 0;
0 for xn < 0:

Then it follows that u0 is a distribution on Rn and further that its j -th derivative
@
j
n.u0/ with respect to the normal variable xn is expressed as follows:

@j .u0/

@x
j
n

D
�
@j u

@x
j
n

�0
C

j�1X

kD0
�j�k�1u˝ ı.k/.xn/;

where �ku is a C1 function on Rn�1
x0 defined by the formula

.�ku/.x0/ D @ku

@xkn
.x0; 0/ for every x0 2 Rn�1;

and ı.xn/ is the Dirac measure at 0 on Rxn .
Furthermore, if 
 is the usual Laplacian


 D @2

@x21
C @2

@x22
C : : :C @2

@x2n
;
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then we have the following formula (5.12):


.u0/ D .
u/0 C �1u˝ ı.xn/C �0u˝ ı.0/.xn/ (5.12)

D .
u/0 C @u

@xn
.x0; 0/˝ ı.xn/C u.x0; 0/˝ ı.0/.xn/:

More generally, if the operator

P.x;Dx/ D
mX

jD0
Pj .x;Dx0/Dj

n

is a differential operator of orderm with C1 coefficients on Rn, then we have

P.u0/ D .Pu/0 C 1p�1
X

`CkC1�m
P`CkC1.x;Dx0/�`u˝Dk

nı.xn/: (5.13)

Here Pj .x;Dx0/ is a differential operator of order m � j with respect to x0.
Formula (5.13) will be referred to as the jump formula.

5.4.8 Regular Distributions with Respect to One Variable

If x D .x1; x2; : : : ; xn/ is the variable in Rn, we write

x D .x0; xn/; x0 D .x1; x2; : : : ; xn�1/;

so x0 is the variable in Rn�1.
A function U.xn/ defined on R with values in D0.Rn�1

x0 / is said to be continuous
if, for every � 2 C1

0 .R
n�1
x0 /, the function hU.xn/; �i is continuous on R.

We let

C.RID0.Rn�1
x0 //

D the space of D0.Rn�1
x0 /-valued continuous functions on R:

If U 2 C.RID0.Rn�1//, we can associate injectively a distribution u 2 D0.Rn/

by the formula

hu; 'i D
Z

R
hU.xn/; '.�; xn/i dxn for every ' 2 C1

0 .R
n/:
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Such a distribution u is said to be continuous with respect to xn with values in
D0.Rn�1

x0 /. We let

�0u D U.0/ 2 D0.Rn�1
x0 /:

The distribution �0u is called the sectional trace of order zero on the hyperplane
fxn D 0g of u.

Let k be a positive integer. A function U.xn/, defined on R with values in
D0.Rn�1

x0 /, is said to be of class Ck if, for every � 2 C1
0 .R

n�1
x0 /, the function

hU.xn/; �i is of class Ck on R.
We let

Ck.RID0.Rn�1
x0 // D the space of D0.Rn�1

x0 /-valued Ck functions on R:

If U 2 Ck.RID0.Rn�1
x0 //, we have, for 0 � j � k,

˝
@jnu; '

˛ D
Z

R

˝
U .j /.xn/; '.�; xn/

˛
dxn; ' 2 C1

0 .R
n/:

This shows that the distribution @jnu on Rn is the distribution associated with U .j / 2
C.RID0.Rn�1

x0 //. We say that u is of class Ck with respect to xn with values in
D0.Rn�1

x0 /. We define the sectional trace �j u of order j on the hyperplane fxn D 0g
of u by the formula

�ju D Dj
nU.0/ 2 D0.Rn�1/; 0 � j � k:

We make no distinction between U and u for notational convenience.
It is obvious what we mean by Cm.Œ0;1/ID0.Rn�1

x0 //, 0 � m � 1. If u 2
C.Œ0;1/ID0.Rn�1

x0 //, we define a distribution u0 2 D0.Rn/ by the formula

˝
u0; '

˛ D
Z 1

0

hu.xn/; '.�; xn/i dxn for every ' 2 C1
0 .R

n/:

The distribution u0 is an extension to the whole space Rn of u which is equal to zero
for xn < 0.

If u 2 Cm.Œ0;1/ID0.Rn�1
x0 //, we define its sectional traces �ju, 0 � j � m, on

the hyperplane fxn D 0g by the formula

�ju D lim
xn#0

Dj
n u.�; xn/ in D0.Rn�1/:

Then it is easy to verify that the jump formula (5.13) can be extended to the space
Cm.Œ0;1/ID0.Rn�1

x0 //.
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5.4.9 The Fourier Transform

If f 2 L1.Rn/, we define its (direct) Fourier transform Of by the formula

Of .�/ D
Z

Rn
e�ix��f .x/ dx; � D .�1; �2; : : : ; �n/; (5.14)

where x � � D x1�1 C x2�2 C : : : C xn�n. It follows from an application of the
Lebesgue dominated convergence theorem [Fo2, Theorem 2.24] that the function
Of .�/ is continuous on Rn, and further we have the inequality

k Of k1 D sup
Rn
j Of .�/j � kf k1:

We also denote Of by Ff .

Example 5.19. If f , g 2 L1.Rn/, then the Fourier transform 1f � g of the
convolution f � g is given by the formula

1f � g.�/ D Of .�/ Og.�/; � 2 Rn:

Indeed, we have, by Fubini’s theorem,

1f � g.�/ D
Z

Rn
e�ix��

�Z

Rn
f .x � y/g.y/ dy

�

dx

D
Z

Rn
g.y/e�iy�� dy �

Z

Rn
f .x � y/e�i��.x�y/ dy

D Of .�/ Og.�/:

Similarly, if g 2 L1.Rn/, we define the function Lg.x/ by the formula

Lg.x/ D 1

.2�/n

Z

Rn
eix��g.�/ d�:

The function Lg.x/ is called the inverse Fourier transform of g. We also denote Lg by
F�g.

Now we introduce a subspace of L1.Rn/ which is invariant under the Fourier
transform. We let

S.Rn/ D the space of C1 functions '.x/ on Rn such that;

for any non-negative integer j , the quantity
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pj .'/ D sup
x2Rnj˛j�j

˚
.1C jxj2/j=2j@˛'.x/j�

is finite:

The space S.Rn/ is called the Schwartz space or space of C1 functions on Rn

rapidly decreasing at infinity. We equip the space S.Rn/ with the topology defined
by the countable family fpj g of seminorms. It is easy to verify that S.Rn/ is
complete; so it is a Fréchet space.

Now we give typical examples of functions in S.Rn/:

Example 5.20. (1) For every a > 0, it follows that

'.x/ D e�ajxj2 2 S.Rn/:

The Fourier transform O'.�/ of '.x/ is given by the formula

O'.�/ D
Z

Rn
e�ix��e�ajxj2 dx D

�

a

�n=2
e� j�j2

4a ; � 2 Rn: (5.15)

(2) The Fourier transform cKt.�/ of the heat kernel

Kt.x/ D 1

.4�t/n=2
e� jxj

2

4t ; x 2 Rn; t > 0;

is given by the formula

cKt.�/ D 1

.4�t/n=2

Z

Rn
e�ix��e� jxj

2

4t dx D e�t j�j2 ; � 2 Rn; t > 0: (5.16)

Proof. (1) We have only to prove (5.15) for n D 1, since we have

exp
��ajxj2� D exp

2

4�a
0

@
nX

jD1
x2j

1

A

3

5 D
nY

jD1
exp

h
�ax2j

i
:

The proof is divided into three steps.

Step 1: If � D 0, then formula (5.15) is reduced to the well known formula

Z 1

�1
e�ax2 dx D

r
�

a
:

Step 2: Now we consider the case where � < 0. Since the function

C 3 z 7�! e�az2 e�iz�
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0 x

y

y0

R−R

• ΓR

Fig. 5.4 The integral path
�R consisting of the rectangle

is an entire function of z D xCiy, it follows from an application of Cauchy’s
theorem that

0 D
Z

�R

e�az2 e�iz� dz (5.17)

D
Z R

�R
e�ax2�ix� dxC

Z y0

0

e�a.RCiy/2�i.RCiy/� i dy

C
Z �R

R

e�a.xCiy0/
2

e�i.xCiy0/� dxC
Z 0

y0

e�a.�RCiy/2e�i.�RCiy/� i dy

WD I C II C III C IV:

Here �R is a path consisting of the rectangle as in Fig. 5.4:

(a) Since we have, for y� � 0,

ˇ
ˇ
ˇe�a.˙RCiy/2�i.˙RCiy/�

ˇ
ˇ
ˇ D e�aR2Cay2Cy� � e�aR2Cay2 ;

we can estimate the second term II and the fourth term IV as follows:

jIIj ; jIVj D
ˇ
ˇ
ˇ
ˇ

Z y0

0

e�a.˙RCiy/2�i.˙RCiy/� dy

ˇ
ˇ
ˇ
ˇ

� e�aR2
Z y0

0

e�ay2 dy �! 0 as R!1:

(b) In order to estimate the third term III as R!1, we note that

Z �R

R

e�a.xCiy0/
2

e�i.xCiy0/� dx D
Z �R

R

e�ax2Cay02Cy0��i.2ay0C�/x dx:
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If we take

y0 D � �

2a
;

then it follows that

ay0
2 C y0� D a

�

� �

2a

�2
C
�

� �

2a

�

� D � �
2

4a
:

Hence the third term III can be estimated as follows:

III D
Z �R

R

e�ax2Cay02Cy0��i.2ay0C�/x dx

D eay02Cy0�
Z �R

R

e�ax2 dx

�! e� �2

4a

Z �1

1
e�ax2 dx D �e� �2

4a

r
�

a
as R!1:

Therefore, by letting R!1 in (5.17) we obtain the desired formula (5.15)
for � < 0:

Z 1

�1
e�ix� e�ax2 dx D

r
�

a
e� �2

4a :

Step 3: The case where � > 0 can be treated similarly.

(2) Formula (5.16) follows by applying (5.15) with a WD 1=.4t/ to the heat kernel
Kt.x/.

The proof of Example 5.20 is complete.

The next theorem summarizes the basic properties of the Fourier transform:

Theorem 5.21. (i) The Fourier transforms F and F� map S.Rn/ continuously
into itself. Furthermore, we have, for all multi-indices ˛ and ˇ,

bD˛'.�/ D �˛ O'.�/; ' 2 S.Rn/;

Dˇ O'.�/ D 2.�x/ˇ'.�/; ' 2 S.Rn/:

(ii) The Fourier transforms F and F� are isomorphisms of S.Rn/ onto itself; more
precisely, FF� D F�F D I on S.Rn/. In particular, we have

'.x/ D 1

.2�/n

Z

Rn
eix�� O'.�/ d� for every ' 2 S.Rn/: (5.18)
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Fig. 5.5 The function  .x/

(iii) If ',  2 S.Rn/, we have

Z

Rn
'.x/ O .x/ dx D

Z

Rn
O'.�/ .�/ d�; (5.19a)

Z

Rn
'.x/ .x/ dx D 1

.2�/n

Z

Rn
'.�/ .�/ d�: (5.19b)

Formula (5.18) is called the Fourier inversion formula and formulas (5.19a)
and (5.19b) are called the Parseval formulas.

5.4.10 Tempered Distributions

For the three spaces C1
0 .R

n/, S.Rn/ and C1.Rn/, we have the following two
inclusions (i) and (ii):

(i) The injection of C1
0 .R

n/ into S.Rn/ is continuous and the space C1
0 .R

n/ is
dense in S.Rn/.

(ii) The injection of S.Rn/ into C1.Rn/ is continuous and the space S.Rn/ is
dense in C1.Rn/.

Indeed, we take a function  2 C1
0 .R

n/ such that (see Fig. 5.5)

 .x/ D
(
1 if jxj < 1;
0 if jxj > 2;

and let

 j .x/ D  
�
x

j

�

for every integer j � 1:
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For any given function ' 2 S.Rn/ (resp. ' 2 C1.Rn/), it is easy to verify that

 j ' �! ' in S.Rn/ (resp. in C1.Rn/) as j !1.

Hence the dual space S 0.Rn/ D L.S.Rn/;C/ can be identified with a linear
subspace of D0.Rn/ containing E 0.Rn/, by the identification of a continuous linear
functional on S.Rn/ with its restriction to C1

0 .R
n/. Thus, we have the inclusions

E 0.Rn/ 	 S 0.Rn/ 	 D0.Rn/:

The elements of S 0.Rn/ are called tempered distributions on Rn. In other
words, the tempered distributions are precisely those distributions on Rn that have
continuous extensions to S.Rn/.

Roughly speaking, the tempered distributions are those which grow at most
polynomially at infinity, since the functions in S.Rn/ die out faster than any power
of x at infinity. In fact, we have the following examples (1)–(4) of tempered
distributions:

(1) The functions in Lp.Rn/ .1 � p � 1/ are tempered distributions.
(2) A locally integrable function on Rn is a tempered distribution if it grows at most

polynomially at infinity.
(3) If u 2 S 0.Rn/ and f .x/ is a C1 function on Rn all of whose derivatives grow

at most polynomially at infinity, then the product f u is a tempered distribution.
(4) Any derivative of a tempered distribution is also a tempered distribution.

More precisely, we can prove the following structure theorem for tempered
distributions:

Theorem 5.22 (the structure theorem). Let u 2 S 0.Rn/. Then there exist a non-
negative integerm and functions ff˛gj˛j�m in L1.Rn/ such that

u D
X

j˛j�m
@x1 � � � @xn@˛x

�
.1C jxj2/m=2f˛

�
: (5.20)

Proof. The proof is divided into three steps.

Step 1: Since u W S.Rn/ ! C is continuous, we can find a seminorm pm.�/ of
S.Rn/ and a constant ı > 0 such that

 2 S.Rn/; pm. / < ı H) jhu;  ij < 1: (5.21)

Here we recall that

pm. / D sup
x2Rnj˛j�m

˚
.1C jxj2/m=2j@˛ .x/j� :
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x
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Kx

Fig. 5.6 The set Kx

Let ' be an arbitrary non-zero function in S.Rn/. By letting

 D ı

2

'

pm.'/
;

we obtain from assertion (5.21) that

jhu; 'ij < 2

ı
pm.'/:

This proves that

jhu; 'ij � C pm.'/ for every ' 2 S.Rn/; (5.22)

where

C WD 2

ı
:

Step 2: For each point x 2 Rn, we let (see Fig. 5.6)

Kx D fy 2 Rn W jxj j � jyj j; xj yj � 0g;
where we use the convention

xj yj � 0 and xj D 0 H) yj � 0:

Since every function ' 2 S.Rn/ satisfies the estimate

j@˛x'.x/j �
Z

Kx

ˇ
ˇ
ˇ@y1 � � � @yn@˛y'.y/

ˇ
ˇ
ˇ dy;

we have, for all x 2 Rn and j˛j � m,
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.1C jxj2/m=2j@˛x'.x/j �
Z

Kx

.1C jxj2/m=2j@y1 � � � @yn@˛y'.y/j dy

�
Z

Kx

.1C jyj2/m=2j@y1 � � � @yn@˛y'.y/j dy

�
Z

Rn
.1C jyj2/m=2j@y1 � � � @yn@˛y'.y/j dy:

This proves that

pm.'/ �
X

j˛j�m

Z

Rn

�
1C jxj2�m=2 j@x1 � � � @xn@˛x'.x/j dx (5.23)

D
X

j˛j�m
k ˛kL1.Rn/;

where the function

 ˛.x/ WD
�
1C jxj2�m=2 @x1 � � � @xn@˛x'.x/; j˛j � m;

belongs to the space L1.Rn/.
By combining inequalities (5.22) and (5.23), we obtain that

jhu; 'ij � C
X

j˛j�m
k ˛kL1.Rn/ for every ' 2 S.Rn/: (5.24)

Step 3: Now we let

N D the number of multi-indices ˛ such that j˛j � m;

and introduce a subspace� of the product space L1.Rn/N as follows:

� D ˚. ˛/j˛j�m W ' 2 S.Rn/
�
:

Then it follows that the mapping

S.Rn/ 3 ' 7�! . ˛/j˛j�m 2 �

is bijective. Indeed, it suffices to note that

' 2 S.Rn/ and @x1 � � � @xn' D 0 H) ' D 0:

On the other hand, we introduce a norm k � k on the product space L1.Rn/N by
the formula
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k.f1; : : : ; fN /k D
NX

jD1
kfj kL1 for every .f1; : : : ; fN / 2 L1.Rn/N ;

and define a linear functional ` on the subspace� by the formula

`
�
. ˛/j˛j�m

� D hu; 'i for every . ˛/j˛j�m 2 �:

By virtue of inequality (5.24), it follows that the linear functional ` is continuous.
The situation can be visualized in the following diagram:

By applying the Hahn–Banach Theorem (Theorem 3.22) to our situation, we
obtain that the linear functional ` can be extended a continuous linear functional Q̀
on the whole space L1.Rn/N . However, we recall that the dual space

�
L1.Rn/

�0
can

be identified with the space L1.Rn/. Hence we have

Q̀ 2 �L1.Rn/N
�0 D L1.Rn/N :

Therefore, we can find functions fg˛gj˛j�m of L1.Rn/ such that

Q̀ �. ˛/j˛j�m
� D

X

j˛j�m
hg˛;  ˛i for every . ˛/j˛j�m 2 L1.Rn/N :

Summing up, we have proved that

hu; 'i D ` �. ˛/j˛j�m
� D

X

j˛j�m
hg˛;  ˛i

D
X

j˛j�m

˝
g˛; .1C jxj2/m=2@x1 � � � @xn@˛x'

˛

D
X

j˛j�m
.�1/nCj˛j ˝@x1 � � � @xn@˛x

�
.1C jxj2/m=2g˛

�
; '
˛
:

If we let

f˛.x/ D .�1/nCj˛jg˛.x/ 2 L1.Rn/;
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we obtain that

hu; 'i D
*
X

j˛j�m
@x1 � � � @xn@˛x

�
.1C jxj2/m=2f˛

�
; '

+

for every ' 2 S.Rn/:

This proves the desired formula (5.20).
The proof of Theorem 5.22 is complete.

Furthermore, we can prove a simplified version of formula (5.20):

Corollary 5.23. Every distribution u 2 S 0.Rn/ can be expressed in the form

u D @mC3
x1
� � � @mC3

xn
G; (5.25)

where G.x/ is a tempered continuous function on Rn.

Proof. If we let

h˛.x/ D
Z x1

0

� � �
Z xn

0

.1C jyj2/m=2f˛.y/ dy1 � � � dyn; (5.26)

we obtain that the function h˛.x/ is continuous and satisfies the inequality

jh˛.x/j � .1C jxj2/m=2
Z x1

0

� � �
Z xn

0

jf˛.y/j dy1 � � � dyn (5.27)

� kf˛kL1.Rn/
�
1C jxj2�.mCn/=2

:

This proves that h˛.x/ is a tempered function on Rn.
On the other hand, we have the following elementary formula:

h.t/ D
�
d

dt

�k Z t

0

.t � /k�1

.k � 1/Š h./ d; k 2 N:

By making use of this formula, we obtain that

h˛.x/ (5.28)

D @mC1
x1
� � � @mC1

xn

�Z x1

0

� � �
Z xn

0

.x1 � y1/m � � � .xn � yn/m
mŠ � � �mŠ h˛.y/ dy1 � � � dyn

�

D @mC1
x1
� � � @mC1

xn
G˛.x/;

where

G˛.x/ WD
Z x1

0

� � �
Z xn

0

.x1 � y1/m � � � .xn � yn/m
mŠ � � �mŠ h˛.y/ dy1 � � � dyn:

By inequality (5.27), it follows thatG˛.x/ is a tempered continuous function on Rn.
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Therefore, if we define a tempered continuous function G.x/ by the formula

G.x/ D
X

j˛j�m
G˛.x/;

then we obtain from formulas (5.20), (5.26) and (5.28) that

u D
X

j˛j�m
@x1 � � � @xn@˛x

�
.1C jxj2/m=2f˛

�

D
X

j˛j�m
@2x1 � � � @2xn@˛xh˛ D

X

j˛j�m
@mC3
x1
� � � @mC3

xn
G˛

D @mC3
x1
� � � @mC3

xn
G:

This proves the desired formula (5.25).
The proof of Corollary 5.23 is complete.

By combining Theorem 5.15 and Corollaries 5.6 and 5.23, we can obtain the
following structure theorem for distributions with compact support:

Theorem 5.24 (the structure theorem). Let u 2 E 0.Rn/. For any given compact
neighborhood ! of supp u, there exist a non-negative integer m and a continuous
functionH.x/ on Rn with support in ! such that

u D @mC3
x1
� � � @mC3

xn
H: (5.29)

Proof. By applying Corollary 5.6 to our situation, we can construct a function � 2
C1
0 .!/ such that

0 � �.x/ � 1 on !;

�.x/ D 1 on supp u:

The desired formula (5.29) follows from formula (5.25) by replacing G.x/ by
H.x/ D �.x/G.x/.

The proof of Theorem 5.24 is complete.

Now we give some concrete and important examples of tempered distributions:

Example 5.25. (a) Dirac measures: ı.x/.
(b) Riesz potentials:

R˛.x/ D � ..n � ˛/=2/
2˛�n=2� .˛=2/

1

jxjn�˛ ; 0 < ˛ < n:
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(c) Newtonian potentials:

N.x/ D � ..n � 2/=2/
4�n=2

1

jxjn�2 ; n � 3:

(d) Bessel potentials:

G˛.x/ D 1

� .˛=2/

1

.4�/n=2

Z 1

0

e�t� jxj
2

4t t
˛�n
2

dt

t
; ˛ > 0:

It is known (see Aronszajn–Smith [AS]) that the function G˛.x/ is represented
as follows:

G˛.x/ D 1

2.nC˛�2/=2�n=2� .˛=2/
K.n�˛/=2.jxj/jxj ˛�n

2 ;

where K.n�˛/=2.z/ is the modified Bessel function of the third kind (cf.
Watson [Wt]).

(e) Riesz kernels:

Rj .x/ D �� ..nC 1/=2/
�.nC1/=2 v: p:

xj

jxjnC1 ; 1 � j � n:

The distribution

v: p:
xj

jxjnC1

is an extension of v: p: .1=x/ to the multi-dimensional case (see Example 5.12).
(f) In the case n D 1, we have

(1) Y.x/ 2 S 0.R/.
(2) v: p:

1

x
2 S 0.R/.

The importance of tempered distributions lies in the fact that they have Fourier
transforms.

If u 2 S 0.Rn/, we define its (direct) Fourier transform Fu D Ou by the formula

hFu; 'i D hu;F'i for all ' 2 S.Rn/: (5.30)

Then we have Fu 2 S 0.Rn/, since the Fourier transform

F W S.Rn/ �! S.Rn/
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is an isomorphism. Furthermore, in view of formulas (5.19a) and (5.19b) it follows
that the above definition (5.30) agrees with definition (5.14) if u 2 S.Rn/. We also
denote Fu by Ou.

Similarly, if v 2 S 0.Rn/, we define its inverse Fourier transform F�v D Lv by the
formula

hF�v;  i D hv;F� i for all  2 S.Rn/:

The next theorem, which is a consequence of Theorem 5.21, summarizes the
basic properties of Fourier transforms in the space S 0.Rn/:

Theorem 5.26. (i) The Fourier transforms F and F� map S 0.Rn/ continuously
into itself. Furthermore, we have, for all multi-indices ˛ and ˇ,

F.D˛u/.�/ D �˛Fu.�/; u 2 S 0.Rn/;

D
ˇ

� .Fu.�// D F..�x/ˇu/.�/; u 2 S 0.Rn/:

(ii) The Fourier transforms F and F� are isomorphisms of S 0.Rn/ onto itself;
more precisely, FF� D F�F D I on S 0.Rn/.

(iii) The transforms F and F� are norm-preserving operators on L2.Rn/ and
FF� D F�F D I on L2.Rn/.

Assertion (iii) is referred to as the Plancherel theorem.
We remark that Theorems 5.21 and 5.26 can be visualized as follows:

S (Rn) F−−−−→ S (Rn)
⏐⏐ ⏐⏐

L2(Rn) F−−−−→ L2(Rn)
⏐⏐ ⏐⏐

S(Rn) −−−−→
F

S(Rn)

S (Rn) F∗
←−−−− S (Rn)

⏐⏐ ⏐⏐

L2(Rn) F∗
←−−−− L2(Rn)

⏐⏐ ⏐⏐

S(Rn) ←−−−−
F∗

S(Rn)
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5.4.11 The Fourier Transform of Tempered Distributions

In this subsection we calculate explicitly the Fourier transform of some important
examples of tempered distributions. First, we consider the distributions v: p: 1

x
and

Y.x/ in the case n D 1:

Example 5.27. (1) For the distribution v: p: 1
x

, we have

F
�

v: p:
1

x

�

.�/ D �� i sgn � D
(
��i for � > 0;

�i for � < 0:
(5.31)

(2) For the Heaviside function Y.x/, we have

.FY /.�/ D OY .�/ D 1

i
v: p:

1

�
C �ı.�/: (5.32)

Proof. (1) We calculate the Fourier transform of the distribution

h.x/ D 1

�
v: p:

1

x
:

For 0 < " < �, we let

h";�.x/ D
(

1
�x

if " < jxj < �;
0 otherwise;

and

h".x/ D
(

1
�x

if jxj > ";
0 if jxj � ":

Then it follows that

.Fh";�/.�/ D
Z

"<jxj<�
e�ix��

�x
dx D �2i

�

Z �

"

sin.x � �/
x

dx

D

8
<̂

:̂

�2i
�

R ��
"�

sinx

x
dx if � > 0;

2i

�

R ���
�"�

sin x

x
dx if � < 0:

Hence we have, as � " 1,

.Fh"/.�/ D �2i
�

Z 1

"j�j
sin x

x
dx � sign �: (5.33)
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Moreover, by letting " # 0 in formula (5.33) we obtain that

Oh.�/ D .Fh/.�/ D �i sign �:

This implies that

F
�

v: p:
1

x

�

.�/ D � Oh.�/ D �� i sgn �:

The proof of the desired formula (5.31) is complete.
(2) Similarly, we can calculate the inverse Fourier transform of v: p: 1

x
as follows:

F�
�

v: p:
1

�

�

.x/ D i

2
sgnx: (5.34)

By formula (5.34), it follows that

F�
�
2

i
v: p:

1

�
C 2�ı.�/

�

D sgnx C 1 D
(
2 for x > 0;

0 for x < 0
(5.35)

D 2Y.x/:

Therefore, by applying the Fourier transform F to both sides of formula (5.35)
we obtain from part (ii) of Theorem 5.26 that

OY .�/ D .FY /.�/ D 1

2
F F�

�
2

i
v: p:

1

�
C 2�ı.�/

�

D 1

i
v: p:

1

�
C �ı.�/:

The proof of the desired formula (5.32) is complete.
The proof of Example 5.27 is now complete.

Secondly, we calculate the inverse Fourier transform of some homogeneous
functions:

Example 5.28. (i) For � ¤ �n � 2k with k D 0, 1, 2, : : :, we let

�.�/ D j�j�; � 6D 0:

Then its inverse Fourier transform

k.x/ D .F��/.x/ D 1

.2�/n

Z

Rn
eix�� j�j� d�
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is given by the formula

k.x/ D 2�

�n=2

�
�
nC�
2

�

�
���

2

�
1

jxjnC� ; x 6D 0:

(ii) The Fourier transforms cR˛.�/ and ON.�/ are obtained from part (i) by taking
� WD ˛�n and � WD 2�n, respectively. More precisely, we have the following
two formulas (a) and (b):

(a) Riesz potentials:

R˛.x/ D � ..n � ˛/=2/
2˛�n=2� .˛=2/

1

jxjn�˛ ; 0 < ˛ < n;

cR˛.�/ D 1

j�j˛ :

(b) Newtonian potentials:

N.x/ D � ..n � 2/=2/
4�n=2

1

jxjn�2 ; n � 3;

ON.�/ D 1

j�j2 :

Proof. The proof of part (i) is divided into two steps.

Step 1: We let

˚.x/ D
Z

Rn
eix�� j�j� d�;

and show that there exists a constant C such that

˚.x/ D C

jxjnC� for every x 6D 0: (5.36)

(1) First, we show that the function ˚.x/ is invariant under rotations, that is, we
have, for every orthogonal n � n matrix A,

˚.Ax/ D ˚.x/; x 6D 0: (5.37)

Indeed, since we have

Ax � � D hAx; �i D ˝x; tA�˛ D ˝x;A�1�
˛ D x � A�1�; � 2 Rn;
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it follows that

˚.Ax/ D
Z

Rn
eiAx�� jA�j� d� D

Z

Rn
eix�A�1� jA�j� d�

D
Z

Rn
eix�� j�j� jdetAj d� .� D A�/

D
Z

Rn
eix�� j�j� d� D ˚.x/ for every x 6D 0:

(2) Secondly, the function ˚.x/ is positively homogeneous of degree �� � n in
x, that is, we have, for all r > 0,

˚.rx/ D r���n ˚.x/; x 6D 0: (5.38)

Indeed, it is easy to verify that

˚.rx/ D
Z

Rn
eirx�� j�j� d� D

Z

Rn
eix�r� j�j� d�

D
Z

Rn
eix�� j�j� r��r�nd� .� D �=r/

D r���n
Z

Rn
eix�� j�j� d� D r���n˚.x/; x 6D 0:

(3) Therefore, we find from assertions (5.37) and (5.38) that the function
jxjnC� ˚.x/ is a constant. This proves the desired formula (5.36).

Step 2: Now we calculate the inverse Fourier transform k.x/ of the function �.�/

k.x/ D .F��/.x/ D 1

.2�/n

Z

Rn
eix�� j�j� d�; x 6D 0:

By formula (5.36), we can write the function k.x/ in the form

k.x/ D ˛

jxjnC� ; x 6D 0; (5.39)

where

˛ WD C

.2�/n
:

We have only to show that

˛ D C

.2�/n
D 2�

�n=2

�
�
nC�
2

�

�
���

2

� : (5.40)
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To do this, by using formula (5.19a) and formula (5.39) we have, for all ' 2
S.Rn/,

Z

Rn
j�j� .F�'/.�/ d� D

Z

Rn
F�


j�j�

�
.x/'.x/ dx (5.41)

D ˛
Z

Rn

1

jxjnC� '.x/ dx:

However, if we take

'.x/ D e�jxj2 for every x 2 Rn;

then it follows from formula (5.15) with a WD 1 that

F�'.�/ D
�
1

4�

�n=2
e� j�j2

4 for every � 2 Rn:

Therefore, we obtain from formula (5.41) that

�
1

4�

�n=2 Z

Rn
j�j� e� j�j2

4 d� D ˛
Z

Rn

1

jxjnC� e
�jxj2 dx: (5.42)

(1) We calculate the right-hand side of formula (5.41): By using the polar coordi-
nates, we have

˛

Z

Rn

1

jxjnC� e
�jxj2 dx (5.43)

D ˛
Z

˙n

Z 1

0

1

rnC� e
�r2rn�1 dr d� .x D r�; � 2 ˙n/

D ˛ j˙nj
Z 1

0

e�r2 r���1 dr D ˛

2
!n

Z 1

0

e�s s�.�=2/�1 dr .s D r2/

D 1

2
˛ !n �

�

��
2

�

:

Here

!n D 2�n=2

� .n=2/
; n � 2;

is the surface area of the unit sphere ˙n.
(2) We calculate the left-hand side of formula (5.41): Similarly, by using the polar

coordinates we have
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�
1

4�

�n=2 Z

Rn
j�j� e� j�j2

4 d� (5.44)

D
�
1

4�

�n=2 Z

˙n

Z 1

0

r�e� r2

4 rn�1 dr d� .� D r�; � 2 ˙n/

D 1

.4�/n=2
j˙nj

Z 1

0

rnC��1 e� r2

4 dr

D 2�

�n=2
!n

Z 1

0

snC��1 e�s2 ds .r D 2s/

D 2�

�n=2
!n

2

Z 1

0

t .nC�/=2�1 e�t dt .t D s2/

D 2�

�n=2
!n

2
�

�
nC �
2

�

:

Therefore, the desired formula (5.40) follows by combining formulas (5.43)
and (5.44):

˛
!n

2
�

�

��
2

�

D 2�

�n=2
!n

2
�

�
nC �
2

�

:

The proof of Example 5.28 is now complete.

Thirdly, we calculate the Fourier transform of a tempered distribution which is
closely related to the stationary phase theorem [CP, Chapitre III, Théorème 9.3]:

Example 5.29. (1) For any � 2 R n f0g, we consider the function

f .x/ D exp

�
i�

2
x2
�

; x 2 R:

Then its Fourier transform .Ff /.�/ D Of .�/ is given by the formula

Of .�/ D
p
2�

pj�j exp

�
i�

4

�

j�j
�

exp

�

� i

2�
�2
�

; � 2 R: (5.45)

(2) For any symmetric, non-singular q � q matrixQ, we consider the function

G.y/ D exp

�
i

2
hQy; yi

�

; y 2 Rq:

Then its Fourier transform .FG/.�/ D OG.�/ is given by the formula
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OG.�/ D .2�/q=2
pj detQj exp

�
i�

4
signQ

�

exp

�

� i
2

˝
Q�1�; �

˛
�

; � 2 Rq: (5.46)

Here the signature signQ of Q is the number ˛ of plus ones minus the number
ˇ of the minus ones in the diagonalized q � q matrix: signQ D ˛ � ˇ.

Proof.(1) The proof of formula (5.45) is divided into two steps.

Step 1: For any complex number ˛ 2 C, we let

T˛.x/ D exp
h
�˛
2
x2
i
; x 2 R;

and define a distribution T˛ 2 S 0.R/ by the formula

hT˛; 'i D
Z 1

�1
exp

h
�˛
2
x2
i
'.x/ dx for every ' 2 S.R/:

(a) First, we show that the function

C 3 ˛ 7�! T˛ 2 S 0.R/

is continuous for ˛ D � C i� in the closed half-plane f˛ 2 C W Re˛ � 0g.
Let ˛0 be an arbitrary point of f˛ 2 C W Re˛ � 0g. Then we have, for any
complex number ˛ D � C i� near ˛0 D �0 C i�0,

ˇ
ˇ
ˇexp

h
�˛
2
x2
i
'.x/

ˇ
ˇ
ˇ � exp

�

��
2
x2
�

j'.x/j � j'.x/j :

Therefore, by applying the Lebesgue dominated convergence theorem
[Fo2, Theorem 2.24] we obtain that

lim
˛!˛0

hT˛; 'i D lim
˛!˛0

Z 1

�1
exp

h
�˛
2
x2
i
'.x/ dx

D
Z 1

�1
exp

h
�˛0
2
x2
i
'.x/ dx

D hT˛0; 'i for every ' 2 S.R/:

This proves that the function ˛ 7�! T˛ is continuous for ˛ in the closed
half-plane f˛ 2 C W Re˛ � 0g.

(b) Secondly, we show that the function

C 3 ˛ 7�! T˛ 2 S 0.R/

is holomorphic for ˛ in the open half-plane f˛ 2 C W Re˛ > 0g.
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Let ˛0 D �0 C i�0 be an arbitrary point of f˛ 2 C W Re˛ > 0g. For any
complex number ˛ D � C i� near ˛0 D �0 C i�0, we consider a function
F.�; �/ defined by the formula

F.�; �/ D hT˛; 'i D
Z 1

�1
exp

h
�˛
2
x2
i
'.x/ dx

D
Z 1

�1
exp

�

��
2
x2
�

exp

�

� i�
2
x2
�

'.x/ dx:

Then it is easy to see that the partial derivative

@F

@�
.�0; �0/ D �

Z 1

�1
x2

2
exp

�

��0
2
x2
�

exp

�

� i�0
2
x2
�

'.x/ dx

exists. Moreover, by arguing just as in Step (a) we find that the function

@F

@�
.�; �/ D �

Z 1

�1
x2

2
exp

�

��
2
x2
�

exp

�

� i�
2
x2
�

'.x/ dx

is a continuous function of ˛ D � C i� in f˛ 2 C W Re˛ � 0g.
Similarly, it is easy to see that the partial derivative

@F

@�
.�; �/ D �i

Z 1

�1
x2

2
exp

�

��
2
x2
�

exp

�

� i�
2
x2
�

'.x/ dx

exists, and is a continuous function of ˛ in f˛ 2 C W Re˛ � 0g.
Summing up, we have proved that the function

F.�; �/ D hT˛; 'i D
Z 1

�1
exp

�

��
2
x2
�

exp

�

� i�
2
x2
�

'.x/ dx

is of class C1 in the closed half-plane f˛ 2 C W Re˛ > 0g, and satisfies the
Cauchy–Riemann equation

@F

@�
C i @F

@�
D 0 in the open half-plane f˛ 2 C W Re˛ > 0g:

This proves that the function ˛ 7�! T˛ is holomorphic in the open half-plane
f˛ 2 C W Re˛ > 0g.

Step 2: We note that

T˛.x/ D exp
h
�˛
2
x2
i
2 S.R/ for every ˛ > 0;

and further (see formula (5.15) for n WD 1) that
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bT˛.�/ D
p
2�p
˛

exp

�

� 1

2˛
�2
�

2 S.R/ for every ˛ > 0: (5.47)

Hence it follows from assertions (a) and (b) that the function

C 3 ˛ 7�!
D
bT˛; '

E
D hT˛; O'i .' 2 S.R//

is continuous in the closed half-plane f˛ 2 C W Re˛ � 0g and is holomorphic
in the open half-plane f˛ 2 C W Re˛ > 0g. This proves that the Fourier
transform bT˛ of T˛ is holomorphic in f˛ 2 C W Re˛ > 0g, and is continuous
in f˛ 2 C W Re˛ � 0g.
On the other hand, it is easy to see that the function

1p
˛
D exp

�

�1
2

log˛

�

D 1
pj˛j exp

�

�1
2
i arg˛

�

is holomorphic in the open half-plane f˛ 2 C W Re˛ > 0g and is continuous
in the half-plane f˛ 2 C W ˛ ¤ 0; Re˛ � 0g.
By virtue of the unicity theorem, it follows from formula (5.47) that

bT˛.�/ D
p
2�p
˛

exp

�

� 1

2˛
�2
�

; Re˛ > 0: (5.48)

Furthermore, by passing to the limit in formula (5.48) we obtain that

bT˛.�/ D
p
2�p
˛

exp

�

� 1

2˛
�2
�

; Re˛ � 0; ˛ ¤ 0:

In particular, we have

Of .�/ D
p
2�p�i� exp

�

� i

2�
�2
�

; � 2 R n f0g; (5.49)

by taking

˛ D �i�:

However, we note that

1p�i� D
8
<

:

1pj�j exp
�
�
4
i
�

if � > 0;
1pj�j exp

���
4
i
�

if � < 0:
(5.50)
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Therefore, the desired formula (5.45) follows by combining formulas (5.49)
and (5.50).

(2) In order to prove (5.46), we take an orthogonal q � q matrixM such that

tMQM D D D

0

B
B
B
B
B
@

�1 0 � � 0
0 �2 � � �
� � � � �
� � � � 0
0 � � 0 �q

1

C
C
C
C
C
A

and let

y D Mx; x 2 Rq:

Then it follows that

hQy; yi D hQMx;Mxi D ˝tMQMx; x
˛ D hDx; xi D

qX

jD1
�2j x

2
j :

Hence we have

OG.�/ D
Z

Rq
exp Œ�iy � �� exp

�
i

2
hQy; yi

�

dy

D
Z

Rq
exp Œ�iMx � �� exp

2

4 i

2

qX

jD1
�2j x

2
j

3

5 jdetM jdx

D
Z

Rq
exp

��ix �M�1�
�

exp

2

4 i

2

qX

jD1
�2j x

2
j

3

5 dx:

Moreover, by replacing � byM� we have

OG.M�/ D
Z

Rq
exp Œ�ix � �� exp

2

4 i

2

qX

jD1
�2j x

2
j

3

5 dx

D
qY

jD1

Z

R
exp

��ixj �j
�

exp

�
i

2
�2j x

2
j

�

dxj :

Therefore, by using formula (5.45) we obtain that
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OG.M�/ D
qY

jD1

Z

R
exp

��ixj �j
�

exp

�
i

2
�2j x

2
j

�

dxj (5.51)

D
qY

jD1

Z

R

p
2�

1
qˇ
ˇ�j

ˇ
ˇ

exp

"

i
�

4

�jˇ
ˇ�j

ˇ
ˇ

#

exp

"

� i
2

�2j

�j

#

D .2�/q=2
pj detQj exp

�
i�

4
signQ

�

exp

�

� i
2

˝
Q�1M�;M�

˛
�

:

Indeed, it suffices to note the following three formulas (a), (b) and (c):

(a) j detQj D j detDj D ˇˇ�1�2 � � ��q
ˇ
ˇ.

(b)
Pq

jD1
�j

j�j j D signQ.

(c)
Pq

jD1
�2j
�j
D ˝D�1�; �

˛ D ˝tMQ�1M�; �
˛ D ˝Q�1M�;M�

˛
.

The desired formula (5.46) follows from (5.51) if we replaceM� by �.
The proof of Example 5.29 is now complete.

Furthermore, we can calculate explicitly the Fourier transforms of Bessel
potentials and Riesz potentials in Examples 5.25 as follows:

Example 5.30. (a) Bessel potentials (see Theorem 6.1):

cG˛.�/ D 1

.1C j�j2/˛=2 ; ˛ > 0:

(b) Riesz kernels:

cRj .�/ D i �jj�j ; 1 � j � n:

Finally, as for distributions with compact support we have the following theorem:

Theorem 5.31. Let u 2 E 0.Rn/. Then we have the following two assertions (i)
and (ii):

(i) Its Fourier transform .Fu/.�/ D Ou.�/ is a C1 function on Rn given by the
formula

.Fu/.�/ D ˝u; e�ix�� ˛ for every � 2 Rn: (5.52)

(ii) The function Fu.�/ is slowly increasing, that is, there exist constants C > 0

and � 2 R such that

j.Fu/.�/j � C.1C j�j/� for all � 2 Rn: (5.53)
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Proof. The proof is divided into three steps.

Step 1: For every � 2 Rn, we let

�.�/ D ˝u; e�ix�� ˛ :

Since u 2 E 0.Rn/, by considering difference quotients of � we obtain that �.�/ 2
C1.Rn/ with derivatives given by the formula

.@˛�/.�/ D .�i/j˛j ˝u; x˛ e�ix�� ˛ for every multi-index ˛:

Step 2: Now we prove that �.�/ D .Fu/.�/ for all � 2 Rn, that is, formula (5.52).
If ' 2 C1

0 .R
n/, then it follows that u � ' 2 C1

0 .R
n/ and further that we have

1u � '.�/ D
Z

Rn
e�ix�� u � '.x/ dx

D ˝
u � '; e�ix�� ˛ D ˝ux ˝ 'y; e�i.xCy/�� ˛ D ˝u; e�ix�� ˛ ˝'; e�iy�� ˛

D ˝
u; e�ix�� ˛ O'.�/:

In particular, by taking

'.x/ WD �".x/ D 1

"n
�
x

"

�
; " > 0;

we obtain that

1u � �".�/ D
˝
u; e�ix�� ˛ b�".�/: (5.54)

(a) First, by letting " # 0 in the left-hand side of (5.54) we obtain that

u � �" �! u in S 0.Rn/:

This proves that

1u � �" �! Fu in S 0.Rn/ as " # 0; (5.55)

since F W S 0.Rn/! S 0.Rn/ is continuous.
(b) On the other hand, it follows from an application of the Lebesgue dominated

convergence theorem [Fo2, Theorem 2.24] that

b�".�/ D
Z

jyj�1
�.y/e�i"y�� dy .x D "y/

�!
Z

jyj�1
�.y/ dyD 1 uniformly in � over compact subsets of Rn as " # 0:
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Hence, by letting " # 0 in the right-hand side of (5.54) we obtain that

˝
u; e�ix�� ˛ b�".�/ �!

˝
u; e�ix�� ˛ in D0.Rn/ as " # 0: (5.56)

Therefore, the desired formula (5.52) follows by combining assertions (5.55)
and (5.56).

Step 3: Finally, we prove that the function .Fu/.�/ is slowly increasing.
Since u 2 E 0.Rn/, we can find a compact set K , a non-negative integer � and a
positive constant � such that

pK;�. / D sup
x2Kj˛j��
j@˛ .x/j < � H) j hu;  i j < 1:

For all ' 2 C1.Rn/ and � > 0, by letting

 .x/ D � '.x/

pK;�.'/C �; x 2 Rn;

we obtain that

pK;�. / D � pK;�.'/

pK;�.'/C � < �;

so that

j hu;  i j D � j hu; 'i j
pK;�.'/C � < 1:

This proves that

j hu; 'i j � 1

�
pK;�.'/ for all ' 2 C1.Rn/; (5.57)

since � > 0 is arbitrary.

Therefore, the desired inequality (5.53) follows by taking '.x/ D e�i �x�
in (5.57).

The proof of Theorem 5.31 is now complete.

Example 5.32. If ıx0 is Dirac measure at a point x0 of Rn, then it follows that

cıx0.�/ D
˝
ıx0; e

�ix�� ˛ D e�ix0�� for all � 2 Rn;

and further that
ˇ
ˇ
ˇcıx0.�/

ˇ
ˇ
ˇ D 1 for all � 2 Rn:
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5.5 Operators and Kernels

Let X and Y be open subset of Rn and Rp , respectively. In this section we
characterize continuous linear operators from C1

0 .Y / into D0.X/ in terms of
distributions.

Example 5.33. Let K 2 C1.X � Y /. If we define a linear operator

A W C1
0 .Y / �! C1.X/

by the formula

A .x/ D
Z

Y

K.x; y/ .y/ dy for every  2 C1
0 .Y /;

then it follows that A is continuous.
Furthermore, the operator A can be extended to a continuous linear operator

QA W E 0.Y /b �! C1.X/:

Proof. (1) Let M be an arbitrary compact subset of Y . If  2 C1
0 .Y / with

supp 	 M , then we have, for any compact subset L of X and any non-
negative integer j ,

pL;j .A / D sup
x2Lj˛j�j

ˇ
ˇ
ˇ
ˇ

Z

Y

@˛xK.x; y/ .y/ dy

ˇ
ˇ
ˇ
ˇ

� sup
x2Lj˛j�j

Z

M

j@˛xK.x; y/j dy � sup
y2M
j .y/j

D sup
x2Lj˛j�j

Z

M

j@˛xK.x; y/j dy � pM;0 . / :

This proves the continuity of A W C1
0 .Y /! C1.X/.

(2) Furthermore, we can extend A to a continuous linear operator

QA W E 0.Y /b �! C1.X/

as follows: If we let

QAv.x/ D hv; K.x; �/i for every v 2 E 0.Y /;

then it follows that QAv 2 C1.X/, since supp v is compact. More precisely, we
have, for any compact subset H of X and any non-negative integerm,
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pH;m. QAv/ D sup
x2Hj˛j�m

ˇ
ˇ@˛

� QAv
�ˇˇ D sup

x2Hj˛j�m
jhv; @˛xK.x; �/ij ;

where the functions

f@˛xK.x; �/g x2Hj˛j�m

form a bounded subset of C1.Y /. However, we recall that a sequence fvj g of
distributions converges to a distribution v in the space E 0.Y /b if and only if the
sequence f˝vj ;  

˛g converges to hv;  i uniformly in  over all bounded subsets
of C1

0 .Y /.
Therefore, we obtain the continuity of QA W E 0.Y /b ! C1.X/.
The proof of Example 5.33 is complete.

More generally, we have the following example:

Example 5.34. If K is a distribution in D0.X � Y /, we can define a continuous
linear operator

A 2 L
�
C1
0 .Y /;D0.X/

�

by the formula

hA ; 'i D hK; ' ˝  i for all ' 2 C1
0 .X/ and  2 C1

0 .Y /:

We then write A D Op.K/.

Proof. (1) First, we show that A 2 D0.X/. Assume that 'j ! 0 in C1
0 .X/ as

j !1. Then it follows that 'j˝ ! 0 inC1
0 .X�Y / for every 2 C1

0 .Y /.
Hence we have

˝
A ; 'j

˛ D ˝K; 'j ˝  
˛ �! 0 as j !1:

This proves that A 2 D0.X/.
(2) Secondly, we show that A W C1

0 .Y / ! D0.X/ is continuous. Assume that
 j ! 0 in C1

0 .Y / as j !1. Then it follows that '˝ j ! 0 in C1
0 .X�Y /

for every ' 2 C1
0 .X/. Therefore, we have
˝
A j ; '

˛ D ˝K; ' ˝  j
˛ �! 0 as j !1;

and hence

A j �! 0 in D0.X/:

This proves the continuity of A W C1
0 .Y /! D0.X/.

The proof of Example 5.34 is complete.
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We give a simple example of an operator Op .K/:

Example 5.35. LetD D f.x; x/ W x 2 Xg be the diagonal in the product space X �
X , and define a distribution ıD 2 D0.X �X/ by the formula

hıD;˚i D
Z

X

˚.x; x/ dx for every ˚ 2 C1
0 .X �X/:

Then it follows that Op .ıD/ D I .

Proof. Indeed, it suffices to note that we have, for all ',  2 C1
0 .X/,

hOp .ıD/ ; 'i D hıD; ' ˝  i D
Z

X

'.x/ .x/ dx D h ; 'i :

This proves that Op .ıD/ D  for all  2 C1
0 .X/, that is, Op .ıD/ D I .

The proof of Example 5.35 is complete.

5.5.1 Schwartz’s Kernel Theorem

By Lemma 5.16, we know that the space C1
0 .X/ ˝ C1

0 .Y / is sequentially dense
in C1

0 .X � Y /. Hence it follows that the mapping

D0.X � Y / 3 K 7�! Op.K/ 2 L.C1
0 .Y /;D0.X//

is injective. The next theorem asserts that it is also surjective:

Theorem 5.36 (Schwartz’s kernel theorem). If A is a continuous linear operator
from C1

0 .Y / into D0.Y /, then there exists a unique distribution K 2 D0.X � Y /
such that A D Op.K/.

Proof. The proof is divided into three steps.

Step 1: The bilinear form

C1
0 .X/ � C1

0 .Y / 3 .';  / �! hA ; 'i D D0.X/ hA ; 'iC1

0 .X/ 2 C

induces a linear formK on the algebraic tensor productC1
0 .X/˝C1

0 .Y /. More
precisely, if ˚ 2 C1

0 .X � Y / is of the form

˚ D
NX

jD1
'j ˝  j ; 'j 2 C1

0 .X/;  j 2 C1
0 .Y /; (5.58)
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then we define the linear form hK;˚i by the formula

hK;˚i D
NX

jD1

˝
A j ; 'j

˛
: (5.59)

It should be emphasized that the right-hand side of (5.59) does not depend on the
decomposition (5.58) of ˚ .

Step 2: By virtue of Lemma 5.16, it suffices to show thatK is a linear continuous
form on C1

0 .X/ ˝ C1
0 .Y / for the topology induced by C1

0 .X � Y /. In order
to show that K 2 D0.X � Y /, we need the following elementary lemma from
functional analysis:

Lemma 5.37. Let E , F be Fréchet spaces, and let B W E � F ! C be a bilinear
form. Assume that the linear functional E 3 x 7! B.x; y/ is continuous for each
y 2 F and further that the linear functional F 3 y 7! B.x; y/ is continuous for
each x 2 E . Then it follows that the bilinear form B W E � F ! C is continuous.

Proof. (i) First, we show that the bilinear form B W E � F ! C is separately
continuous, that is, we prove the following two assertions (a) and (b):

(a) If xj ! 0 in E , then B.xj ; y/ ! 0 uniformly for y in any bounded set
of F .

(b) If yk ! 0 in F , then B.x; yk/ ! 0 uniformly for x in any bounded set
of E .

Proof of Assertion (a): Since the linear functional E 3 x 7! B.x; y/ is
continuous for each y 2 F , it follows that E 3 x 7! jB.x; y/j is a continuous
seminorm for each y 2 F . Similarly, it follows that F 3 y 7! jB.x; y/j is a
continuous seminorm for each x 2 E . Hence, if M is a bounded subset of F ,
we have, for each x 2 E ,

sup
y2M
jB.x; y/j <1: (5.60)

This implies that the set fB.�; y/gy2M is bounded in the dual space E 0 D
L.E;C/ of E with respect to the simple topology. By applying the Banach–
Steinhaus theorem (Theorem 3.4) with

X WD E; Y WD C; H WD fB.�; y/gy2M ;

we obtain that the set fB.�; y/gy2M is equicontinuous in E 0. Hence there exists
a neighborhoodU of 0 such that

sup
y2M
x2U
jB.x; y/j � 1: (5.61)
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Let A be an arbitrary compact subset of E . Then we can find a finite set of
points fx1; x2; : : : ; xpg in A such that

A 	
p[

iD1
fxi C U g :

Thus we have, by assertions (5.60) and (5.61),

sup
y2M
jB.x; y/j � max

1�i�p

 

sup
y2M
jB.xi ; y/j

!

C 1 for all x 2 A:

This implies that the seminorm

�.x/ D sup
y2M
jB.x; y/j; x 2 E;

is bounded in the compact convergence topology of E . By applying again the
Banach–Steinhaus theorem, we obtain that the seminorm �.x/ is continuous on
E . Therefore, we have the desired assertion

xj �! 0 in E H) �.xj / D sup
y2M
jB.xj ; y/j �! 0:

Assertion (b) can be proved similarly.
(ii) Now we assume that

xj �! x in E; yk �! y in F :

Then it follows that the sequence fykg is bounded in F . Hence we have, by
assertion (b),

B.xj ; yk/� B.x; yk/ D B.xj � x; yk/ �! 0;

and also

B.x; yk/� B.x; y/ D B.x; yk � y/ �! 0:

Therefore, we obtain that

ˇ
ˇB.xj ; yk/� B.x; y/

ˇ
ˇ � ˇˇB.xj ; yk/ � B.x; yk/

ˇ
ˇC jB.x; yk/� B.x; y/j

�! 0:

This proves the continuity of B .
The proof of Lemma 5.37 is complete.
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Step 3: We show that, for given compact subsets H 	 X and L 	 Y ,
respectively, there exist a non-negative integerm and a positive constant C such
that we have, for all ˚ 2 C1

0 .X/˝ C1
0 .Y / with supp˚ 	 H �L,

jhK;˚ij � C pH�L;m.˚/; (5.62)

where

pH�L;m.˚/ D sup
.x;y/2H�L

j˛j�m

ˇ
ˇ
ˇ@˛x;y˚.x; y/

ˇ
ˇ
ˇ :

(a) If ˚ 2 C1
0 .X/ ˝ C1

0 .Y / with supp˚ 	 H � L, we can find compact
neighborhoodsH1 of H and L1 of L such that

˚ D
NX

jD1
'j ˝  j ; 'j 2 DH1.X/;  j 2 DL1.Y /;

where

DH1.X/ D f' 2 C1
0 .X/ W supp' 	 H1g ;

DL1.Y / D f 2 C1
0 .Y / W supp 	 L1g :

Furthermore, we take functions f 2 C1
0 .X/ and g 2 C1

0 .Y / such that

f D 1 near H1; suppf D H2 	 X;
g D 1 near L1; suppg D L2 	 Y:

Then we have, by the Fourier inversion formula,

'j .x/ D f .x/'j .y/ D 1

.2�/n

Z

Rn

�
f .x/eix��� O'j .�/ d�;

 j .y/ D g.y/ j .y/ D 1

.2�/p

Z

Rp

�
g.y/eiy��� O j .�/ d�:

We remark that the second integral converges in the topology of DL2.Y /. Since
A W C1

0 .Y /! D0.X/ is linear and continuous, it follows that

A j D 1

.2�/p

Z

Rp
A
�
g.y/eiy��� O j .�/ d� in D0.X/:
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Therefore, we obtain the formula

˝
A j ; 'j

˛
(5.63)

D
�

1

.2�/p

Z

Rn
A
�
g.y/eiy��� O j .�/ d�; 1

.2�/n

Z

Rn

�
f .x/eix��� O'j .�/ d�

�

D 1

.2�/p
1

.2�/n

Z

Rp

�Z

Rn
F .�; �/ O'j .�/ d�

�
O j .�/ d�;

where

F.�; �/ D D0.X/ < A
�
g.y/eiy��� ; f .x/eix�� >C1

0 .X/ :

(b) We show that F.�; �/ 2 C .Rn �Rp/ and further that there exist a positive
constant C 0 and non-negative integers k and ` such that

jF.�; �/j � C 0 .1C j�j/k .1C j�j/` for all .�; �/ 2 Rn � Rp: (5.64)

Since A W C1
0 .Y /! D0.X/ is continuous, we find that the bilinear form

B W DH2.X/ �DL2.Y / 3 .';  / �! hA ; 'i D D0.X/ hA ; 'iC1

0 .X/ 2 C

is continuous for each ' and for each  , that is, we have the following two
assertions (1) and (2):

(1) If 'j ! 0 in DH2.X/, then it follows that B.'j ;  / ! 0 for each  2
DL2.Y /.

(2) If  k ! 0 in DL2.Y /, then it follows that B.'; k/ ! 0 for each ' 2
DH2.X/.

Hence, by applying Lemma 5.37 to our situation we obtain that the bilinear
form B W DH2.X/ � DL2.Y / ! C is continuous. In particular, it follows that
F.�; �/ is a continuous function of .�; �/ 2 Rn � Rp if we take

'.x/ WD f .x/eix�� ;  .y/ WD g.y/eiy��:

Furthermore, since the mapping .';  / 7! hA ; 'i is continuous, there exist
non-negative integers k and ` and a positive constant C such that

jhA ; 'ij � C pH2;k.'/ pL2;`. / for all .';  / 2 DH2.X/ �DL2.Y /:

(5.65)

Therefore, the desired inequality (5.64) follows from inequality (5.65) by
taking

'.x/ WD f .x/eix�� ;  .y/ WD g.y/eiy��:
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(c) By combining (5.59) and (5.63), we obtain that

hK;˚i D
NX

jD1

˝
A j ; 'j

˛

D 1

.2�/p
1

.2�/n

NX

jD1

Z

Rp

�Z

Rn
F .�; �/ O'j .�/ d�

�
O j .�/ d�:

Hence, by virtue of Fubini’s theorem it follows from (5.58) that

hK;˚i D 1

.2�/p
1

.2�/n

NX

jD1

Z

Rn

Z

Rn
F .�; �/ O'j .�/ O j .�/ d� d� (5.66)

D 1

.2�/p
1

.2�/n

Z

Rn

Z

Rn
F .�; �/

0

@
NX

jD1
O'j .�/ O j .�/

1

A d� d�

D 1

.2�/p
1

.2�/n

Z

Rn

Z

Rn
F .�; �/ O̊ .�; �/ d� d�:

However, if ˚ 2 C1
0 .X/˝ C1

0 .Y / with supp˚ 	 H � L, then we have, by
integration by parts,

�˛ �ˇ O̊ .�; �/

D
Z

H

Z

L

e�ix� e�iy�

D˛
xD

ˇ
y˚.x; y/

�
dx dy for all multi-indices ˛ and ˇ:

Therefore, for any positive integer m we can find a positive constant C 00 such
that

.1C j�j C j�j/m
ˇ
ˇ
ˇ O̊ .�; �/

ˇ
ˇ
ˇ � C 00 pH�L;m.˚/ for all .�; �/ 2 Rn � Rp:

(5.67)

Now, if we choose positive numbersm1 andm2 such that

m1 > k C n; m2 > `C p;

and let

m WD m1 Cm2

in inequality (5.67), then we obtain from formula (5.66) and inequality (5.64)
that
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jhK;˚ij

� 1

.2�/p
1

.2�/n

Z

Rn

Z

Rn
jF.�; �/j

ˇ
ˇ
ˇ O̊ .�; �/

ˇ
ˇ
ˇ d� d�

� C 0

.2�/p
C 00

.2�/n

Z

Rn

Z

Rn

.1C j�j/k .1C j�j/`
.1C j�j C j�j/m d� d� � pH�L;m.˚/

� C 0

.2�/p
C 00

.2�/n

Z

Rn

.1C j�j/k
.1C j�j/m1 d� �

Z

Rn

.1C j�j/`
.1C j�j/m2 d� � pH�L;m.˚/

D C 0

.2�/p
C 00

.2�/n

Z

Rn

1

.1C j�j/m1�k d� �
Z

Rn

1

.1C j�j/m2�` d� � pH�L;m.˚/:

This proves the desired inequality (5.66) with

C WD C 0

.2�/p
C 00

.2�/n

Z

Rn

1

.1C j�j/m1�k d� �
Z

Rn

1

.1C j�j/m2�` d�:

Now the proof of Theorem 5.36 is complete.

The distributionK is called the kernel of A. Formally, we have

.A / .x/ D
Z

Y

K.x; y/ .y/ dy for all  2 C1
0 .Y /:

Now we give some important examples of distribution kernels:

Example 5.38. (a) Riesz potentials: X D Y D Rn, 0 < ˛ < n.

.�
/�˛=2u.x/ D R˛ � u.x/

D � ..n � ˛/=2/
2˛�n=2� .˛=2/

Z

Rn

1

jx � yjn�˛ u.y/ dy; u 2 C1
0 .R

n/:

(b) Newtonian potentials: X D Y D Rn, n � 3.

.�
/�1u.x/ D N � u.x/

D � ..n � 2/=2/
4�n=2

Z

Rn

1

jx � yjn�2 u.y/ dy; u 2 C1
0 .R

n/:

(c) Bessel potentials: X D Y D Rn, ˛ > 0.

.I �
/�˛=2u.x/ D G˛ � u.x/ D
Z

Rn
G˛.x � y/ u.y/ dy; u 2 C1

0 .R
n/:

(d) Riesz operators: X D Y D Rn, 1 � j � n.
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Yju.x/ D Rj � u.x/

D i � ..nC 1/=2/
�.nC1/=2 v: p:

Z

Rn

xj � yj
jx � yjnC1 u.y/ dy; u 2 C1

0 .R
n/:

(e) The Calderón–Zygmund integro-differential operator:X D Y D Rn.

.�
/1=2u.x/ D 1p�1
nX

jD1
Yj

�
@u

@xj

�

.x/

D � ..nC 1/=2/
�.nC1/=2

nX

jD1
v: p:

Z

Rn

xj � yj
jx � yjnC1

@u

@yj
.y/ dy;

u 2 C1
0 .R

n/:

If A W C1
0 .Y /! D0.X/ is a continuous linear operator, we define its transpose

A0 by the formula

˝
A0'; 

˛ D h';A i for all ' 2 C1
0 .X/ and  2 C1

0 .Y /:

Then the transpose A0 is a continuous linear operator on C1
0 .X/ into D0.Y /. The

distribution kernel of A0 is obtained from the distribution kernel K.x; y/ of A by
interchanging the roles of x and y; formally this means that

�
A0'

�
.y/ D

Z

X

K.y; x/'.x/ dx for all ' 2 C1
0 .X/:

Also we have .A0/0 D A.
Similarly, we define the adjoint A� of A by the formula

˝
A�'; 

˛ D ˝';A ˛ for all ' 2 C1
0 .X/ and  2 C1

0 .Y /:

Then the adjoint A� is a continuous linear operator on C1
0 .X/ into D0.Y /. The

distribution kernel of A� is obtained from the distribution kernel K.x; y/ by
interchanging the roles of x and y; formally this means that

�
A�'

�
.y/ D

Z

X

K.y; x/ '.x/ dx for all ' 2 C1
0 .X/:

We also have .A�/�DA.

Example 5.39. If X D Y is an open subset ˝ of Rn and if

A D
X

j˛j�m
a˛.x/D

˛
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is a differential operator of orderm with C1 coefficients in ˝ , then we have

A0 D
X

j˛j�m
.�1/j˛jD˛ .a˛.x/�/ ;

A� D
X

j˛j�m
.�1/j˛jD˛


a˛.x/�

�
:

This shows that both A0 and A� are differential operators of order m with C1
coefficients in ˝ .

5.5.2 Regularizers

Let X and Y be open subsets of Rn and Rp, respectively. A continuous linear
operator A W C1

0 .Y / ! D0.X/ is called a regularizer if it extends to a continuous
linear operator from E 0.Y / into C1.X/.

The next theorem gives a characterization of regularizers in terms of distribution
kernels:

Theorem 5.40. A continuous linear operator A W C1
0 .Y / ! D0.X/ is a

regularizer if and only if its distribution kernel K.x; y/ is in C1.X � Y /.
Proof. The proof is divided into two steps.

Step 1: First, we prove the “if” part. If A D Op .K/ with K 2 C1.X � Y /,
then it follows from Example 5.33 that A extends to a continuous linear operator
QA W E 0.Y /! C1.X/.

Step 2: Secondly, we prove the “only if” part. The proof of Step 2 is divided into
four steps.

Step 2-a: We assume that A D Op .K/ extends to a continuous linear operator
QA W E 0.Y /! C1.X/. First, by letting

a.x; y/ D � QAıy
�
.x/ for every .x; y/ 2 X � Y ;

we show that a 2 C.X � Y /. Here we observe that QAıy 2 C1.X/.
Now let .x0; y0/ be an arbitrary point of X � Y . Then it follows that

ja.x; y/ � a.x0; y0/j (5.68)

D ˇ
ˇ� QAıy

�
.x/ � � QAıy0

�
.x0/

ˇ
ˇ

� ˇˇ� QAıy
�
.x/ � � QAıy0

�
.x/
ˇ
ˇC ˇˇ� QAıy0

�
.x/ � � QAıy0

�
.x0/

ˇ
ˇ :

However, since Aıy0 2 C1.X/, for any given " > 0 we can find a constant
�0 D �0.x0; "/ > 0 such that
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jx � x0j � �0 H) ˇ
ˇ� QAıy0

�
.x/� � QAıy0

�
.x0/

ˇ
ˇ � "

2
: (5.69)

Moreover, since A W E 0.Y /! C1.X/ is continuous, for any given " > 0 we
can find a constant �00 D �00.x0; "; �0/ > 0 such that

jy � y0j � �00 H) sup
jx�x0j��0

ˇ
ˇ� QAıy

�
.x/ � � QAıy0

�
.x/
ˇ
ˇ (5.70)

D pfjx�x0j��0g;0
� QAıy � QAıy0

� � "

2
:

Indeed, it suffices to note that y ! y0 in Y implies that ıy ! ıy0 in E 0.Y /.
Therefore, by combining inequalities (5.68)–(5.70) we obtain that

sup
jx�x0j��0

jy�y0 j��00

ja.x; y/ � a.x0; y0/j � ":

This proves that a.x; y/ D � QAıy
�
.x/ 2 C.X � Y /.

Step 2-b: Secondly, we show that a 2 C1.X � Y /. Since QA W E 0.Y / !
C1.X/ is continuous, it is easy to verify that we have, for all multi-indices ˛
and ˇ,

@˛x@
ˇ
ya.x; y/ D .�1/jˇj@˛x

 QAı.ˇ/y

�
.x/ in D0.X � Y /: (5.71)

However, by arguing just as in Step 2-a we find that

@˛x@
ˇ
ya.x; y/ D .�1/jˇj@˛x

 QAı.ˇ/y

�
.x/ 2 C.X � Y /:

This proves that a.x; y/ D � QAıy
�
.x/ 2 C1.X � Y /.

Step 2-c: Finally, we show that a.x; y/ D K.x; y/. To do this, we need the
following lemma:

Lemma 5.41. The linear combinations of distributions of the form ı
.ˇ/
y are

dense in the space E 0.Y /.

Proof. Let v be an arbitrary distribution of E 0.Y /. By Theorem 5.24, we can
find a compact neighborhood V of supp v and a non-negative integer m such
that

v D @mC2G;

where

G 2 C.Y /; suppG 	 V:
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For every function  2 C1.Y /, we have

hv;  i D ˝
@mC2G; 

˛ D .�1/mC2 ˝G; @mC2 
˛

D .�1/mC2
Z

Y

G.y/@mC2 .y/ dy:

The integrand G.y/@mC2 .y/ is continuous and supported in the compact
subset V , so the integral can be approximated by Riemann sums. More
precisely, for each large number N 2 N we can approximate suppG by a
union of cubes of side length 2�N and volume 2�nN centered at points yN1 ,
yN2 , : : :, yNk.N/ 2 suppG. Then we find that the corresponding Riemann sums

SN D .�1/mC2

2nN

k.N/X

jD1
G.yNj /@

mC2 .yNj /

are supported in the common compact subset V , and converge uniformly to
hv;  i as N !1. Hence we have, for every  2 C1.Y /,

hv;  i D lim
N!1

˝
SN ; 

˛ D lim
N!1

*
1

2nN

k.N/X

jD1
G.yNj /ı

.mC2/
yNj

;  

+

:

This proves that

1

2nN

k.N/X

jD1
G.yNj /ı

.mC2/
yNj

�! v in E 0.Y / as N !1:

The proof of Lemma 5.41 is complete.

Step 2-d: If A1 D Op .a/, it follows from Step 1 that A1 W C1
0 .Y / !

D0.X/ is a regularizer. That is, it extends to a continuous linear operator
QA1 W E 0.Y /! C1.X/. Hence we have, by formula (5.71),

QA1

ı.ˇ/y

�
D
D
a.�; y/; ı.ˇ/y

E
D .�1/jˇj@ˇya.�; y/ D QA


ı.ˇ/y

�
:

However, by Lemma 5.41 it follows that the linear combinations of distribu-
tions of type ı.ˇ/y are dense in the space E 0.Y /.
Therefore, we obtain from the continuity of QA1 and QA that

Op .a/ D QA1 D QA D Op .K/ on E 0.Y /:

By the uniqueness of kernels, this implies that a.x; y/ D K.x; y/.
Summing up, we have proved that A D Op .K/ with K 2 C1.X � Y /.
Now the proof of Theorem 5.40 is complete.
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5.6 Layer Potentials

The purpose of this section is to describe the classical layer potentials arising in
the Dirichlet and Neumann problems for the Laplacian 
 in the case of the half-
space RnC.

5.6.1 Single and Double Layer Potentials

Recall that the Newtonian potential is defined by the formula (see Example 5.25)

.�
/�1f .x/ D N � f .x/ (5.72)

D � ..n � 2/=2/
4�n=2

Z

Rn

1

jx � yjn�2 f .y/ dy

D 1

.n � 2/!n
Z

Rn

1

jx � yjn�2 f .y/ dy; f 2 C1
0 .R

n/:

Here

!n D 2�n=2

� .n=2/
; n � 2;

is the surface area of the unit sphere ˙n. In the case n D 3, we have the classical
Newtonian potential

u.x/ D 1

4�

Z

R3

f .y/

jx � yj dy:

Up to an appropriate constant of proportionality, the Newtonian potential

1

4�

1

jx � yj
is the gravitational potential at position x due to a unit point mass at position y,
and so the function u.x/ is the gravitational potential due to a continuous mass
distribution with density f .x/. In terms of electrostatics, the function u.x/ describes
the electrostatic potential due to a charge distribution with density f .x/.

We define a single layer potential with density ' by the formula

N � .'.x0/˝ ı.xn// (5.73)

D 1

.n � 2/!n
Z

Rn�1

'.y0/
.jx0 � y0j2 C x2n/.n�2/=2 dy0; ' 2 C1

0 .R
n�1/:
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In the case n D 3, the function N � .' ˝ ı/ is related to the distribution of electric
charge on a conductor ˝ . In equilibrium, mutual repulsion causes all the charge
to reside on the surface @˝ of the conducting body with density ', and @˝ is an
equipotential surface.

We define a double layer potential with density  by the formula

N � . .x0/˝ ı.0/.xn// (5.74)

D 1

!n

Z

Rn�1

xn .y
0/

.jx0 � y0j2 C x2n/n=2
dy0;  2 C1

0 .R
n�1/:

In the case n D 3, the functionN�. ˝ı.0// is the potential induced by a distribution
of dipoles on R2 with density  .y0/, the axes of the dipoles being normal to R2.

5.6.2 The Green Representation Formula

By applying the Newtonian potential to both sides of the jump formula (5.13), we
obtain that

u0 D .N � .�
//.u0/
D N � ..�
u/0/�N � .�1u˝ ı.xn//�N � .�0u˝ ı.0/.xn//

D �
Z

Rn
N.x � y/
u.y/ dy �

Z

Rn�1

N.x0 � y0; xn/
@u

@yn
.y0; 0/ dy0

C
Z

Rn�1

@N

@yn
.x0 � y0; xn/u.y0; 0/ dy:

Hence we arrive at the Green representation formula:

u.x/ D 1

.2 � n/!n
Z

Rn
C

1

jx � yjn�2
u.y/ dy (5.75)

C 1

.2 � n/!n
Z

Rn�1

1

.jx0 � y0j2 C x2n/.n�2/=2
@u

@yn
.y0; 0/ dy0

C 1

!n

Z

Rn�1

xn

.jx0 � y0j2 C x2n/n=2
u.y0; 0/ dy0; x 2 RnC:

By formulas (5.72)–(5.74), we find that the first term is the Newtonian potential and
the second and third terms are the single and double layer potentials, respectively.

On the other hand, it is easy to verify that if '.x0/ is bounded and continuous on
Rn�1, then the function
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u.x0; xn/ D 2

!n

Z

Rn�1

xn

.jx0 � y0j2 C x2n/n=2
'.y0/ dy0 (5.76)

is well-defined for .x0; xn/ 2 RnC, and is a (unique) solution of the homogeneous
Dirichlet problem for the Laplacian

(

u D 0 in RnC;
u D ' on Rn�1:

Formula (5.76) is called the Poisson integral formula for the solution of the Dirichlet
problem.

Furthermore, by using the Fourier transform we can express formula (5.76) for
' 2 S.Rn�1/ as follows:

u.x0; xn/ D 1

.2�/n�1

Z

Rn�1

eix0��0

e�xnj�0j O'.� 0/ d� 0: (5.77)

To do this, we need the following two elementary formulas (5.78) and (5.79):

Lemma 5.42. (i) For any a > 0, we have

Z 1

�1
ei˛x e�ax2 dx D

r
�

a
e� ˛2

4a : (5.78)

(ii) For any ˇ > 0, we have

e�ˇ D 1p
�

Z 1

0

e�s
p
s
e� ˇ2

4s ds: (5.79)

Proof. (i) Formula (5.78) is a special case of formula (5.15) for n WD 1.
(ii) First, we prove

e�ˇ D 1

�

Z 1

�1
eiˇx

1C x2 dx: (5.80)

To do this, we observe that the function

C 3 z 7�! f .z/ D eiˇz

1C z2

has a pole at z D i in the closed half-plane fz 2 C W Im z � 0g, and further that
its residue is given by the formula

Res Œf .z/�zDi D lim
z!i
.z � i/f .z/ D e�ˇ

2i
D � i

2
e�ˇ:
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Fig. 5.7 The integral path �
consisting of the semicircle

Hence we have, by the residue theorem,

Z

�

f .z/ dz D 2�i
�

� i
2
e�ˇ

�

D � e�ˇ: (5.81)

Here � is a path consisting of the semicircle as in Fig. 5.7:
Then we can rewrite (5.81) as follows:

� e�ˇ D
Z

�

f .z/ dz D
Z

C

f .z/ dzC
Z R

�R
f .x/ dx WD I C II: (5.82)

However, since we have, for all z D x C iy 2 C ,

ˇ
ˇeiˇz

ˇ
ˇ D ˇˇeiˇxe�ˇyˇˇ D ˇˇe�ˇyˇˇ � 1;

we can estimate the first term I as follows:

ˇ
ˇ
ˇ
ˇ

Z

C

f .z/ dz

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ

Z �

0

eiˇRei�

1CR2e2i� Riei� d�

ˇ
ˇ
ˇ
ˇ
ˇ

�
Z �

0

R

R2 � 1 d� D
�R

R2 � 1 �! 0 as R!1:

Therefore, (5.80) follows by letting R!1 in (5.82).
Now, by using Fubini’s theorem we obtain from (5.78) with ˛ WD ˇ and a WD s

and (5.80) that

e�ˇ

D 1

�

Z 1

�1
eiˇx

1C x2 dx

D 1

�

Z 1

�1
eiˇx

�Z 1

0

e�.1Cx2/s ds

�

dx D 1

�

Z 1

0

e�s
�Z 1

�1
eiˇx e�sx2 dx

�

ds

D 1p
�

Z 1

0

e�s
p
s
e� ˇ2

4s ds:
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This proves formula (5.79).
The proof of Lemma 5.42 is complete.

Therefore, it follows from an application of Fubini’s theorem and Lemma 5.42
with ˇ WD xnj� 0j that

1

.2�/n�1

Z

Rn�1

eix0��0

e�xnj�0j O'.� 0/ d� 0

D
Z

Rn�1

'.y0/
�

1

.2�/n�1

Z

Rn�1

ei.x
0�y0/��0

e�xnj�0j d� 0
�

dy0

D
Z

Rn�1

'.y0/
�

1

�n=2
1

xn�1
n

Z 1

0

e�s.1Cjx0�y0j2=x2n/sn=2�1 ds

�

dy0

D
Z

Rn�1

'.y0/
�

1

�n=2
1

xn�1
n

Z 1

0

e�� �n=2�1 d�
xnn

.jx0 � y0j2 C x2n/n=2
�

dy0

�
� D s �1C jx0 � y0j2=x2n

��

D � .n=2/

�n=2

Z

Rn�1

xn

.jx0 � y0j2 C x2n/n=2
'.y0/ dy0

D 2

!n

Z

Rn�1

xn

.jx0 � y0j2 C x2n/n=2
'.y0/ dy0:

This proves the desired formula (5.77). ut

5.7 Distribution Theory on a Manifold

This section gives a summary of the basic definitions and results from the theory
of distributions on a manifold. The virtue of manifold theory is that it provides
a geometric insight into the study of distributions, and intrinsic properties of
distributions may be revealed.

5.7.1 Manifolds

In this subsection we summarize some basic facts about manifold theory. Manifolds
are an abstraction of the idea of a surface in Euclidean space.

Let X be a set and 0 � r � 1. An atlas or coordinate neighborhood system of
class C r on X is a family of pairs A D f.Ui , 'i/gi2I satisfying the following three
conditions (MA1), (MA2) and (MA3):
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(MA1) Each Ui is a subset of X and X D [i2IUi .
(MA2) Each 'i is a bijection of Ui onto an open subset of Rn, and for every pair
i , j of I with Ui \ Uj ¤ ; the set 'i .Ui \ Uj / is open in Rn.

(MA3) For each pair i , j of I with Ui \ Uj ¤ ;, the mapping

'j ı '�1
i W 'i .Ui \ Uj / �! 'j .Ui \ Uj /

is a C r diffeomorphism. Here a C0 diffeomorphism means a homeomorphism.

In other words, X is a set which can be covered by subsets Ui , each of which
is parametrized by an open subset of Rn. Each pair .Ui ; 'i / is called a chart or
coordinate neighborhood of A. The mappings 'j ı '�1

i in condition (MA3) are
called transition maps or coordinate transformations.

Let .U; '/ be a chart on X . If p is a point of U , then '.p/ is a point of Rn and
hence an n-tuple of real numbers. We let

'.p/ D .x1.p/; x2.p/; : : : ; xn.p//; p 2 U:

The n-tuple .x1.p/; x2.p/; : : : ; xn.p// of real numbers is called the local coor-
dinates of p in the chart .U; '/, and the n-tuple .x1; x2; : : : ; xn/ of real-valued
functions on U is called the local coordinate system on .U; '/. We use the standard
notation

'.x/ D .x1; x2; : : : ; xn/; x 2 U:

Two atlases A1 and A2 on X are said to be compatible if the union A1 [ A2 is
an atlas on X . It is easy to see that the relation of compatibility between atlases is
an equivalence relation. An equivalence class of atlases on X is said to define a C r

structure D on X . The union

AD D
[
fA W A 2 Dg

of the atlases in D is called the maximal atlas of D, and a chart .U; '/ of AD is
called an admissible chart.

An n-dimensional C r manifold M is a pair consisting of a set X and a C r

structure D on X . We often identify M with the underlying set X for notational
convenience.

Topology on Manifolds

Now we see how to define a topology on a manifold by means of atlases. Let M
be an n-dimensional C r manifold. A subset O of M is defined to be open if and
only if, for each x 2 O , there exists an admissible chart .U; '/ such that x 2 U and
U 	 O . It is easy to verify that the open sets in M define a topology.
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A C r manifold is said to be Hausdorff if it is Hausdorff as a topological space.
From now on, we assume that our manifolds are Hausdorff.

Let X be a topological space. A collection C of subsets of X is said to be locally
finite if every point of X has a neighborhood which intersects only finitely many
elements of C. A covering fVj g of X is called a refinement of a covering fUig of X
if each Vj is contained in some Ui .

A topological space X is said to be paracompact if it is a Hausdorff space and
every open covering of X has a locally finite refinement which is also an open
covering ofX . It is well known that aC0 manifoldM is paracompact and its number
of connected components is at most countable if and only if M satisfies the second
axiom of countability.

A subset N of a C r manifold M , 0 � r � 1, is called a submanifold of M if,
at each point x of N , there exists an admissible chart .U; '/ on M such that:

(SM) ' W U ! V1 � V2, where V1 is open in Rm and V2 is open in Rn�m, 1 �
m � n, and we have

'.U \N/ D V1 � f0g:

The number n �m is called the codimension of N in M .
An open subset of M is a submanifold if we take m D n, and is called an open

submanifold. A submanifold of M is called a closed submanifold if it is a closed
subset of M .

Densities on a Manifold

Let E be an n-dimensional linear space over R and E� D L.E;R/ its dual space.
Let ^nE be the n-th exterior product of E and ^nE� the n-th exterior product of
E�. Then the spaces ^nE and ^nE� are both one-dimensional and are dual to each
other. The non-zero elements of ^nE� are called volume elements on E .

A complex-valued density on E is a mapping

� W
n̂

E �! C

such that

�.��/ D j�j�.�/; � 2 R:

The set of all densities on E is a complex linear space with the obvious operations
of addition and scalar multiplication. This linear space is denoted by˝.E�/, and is
called the space of densities on E .

Densities can be constructed from volume elements in the following way: If ! 2
^nE�, we define a mapping
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j!j W
n̂

E �! C

by the formula

j!j.�/ D jh�; !ij ; � 2
n̂

E;

where h�; �i is the pairing of ^nE and ^nE�. Then we have

j!j 2 ˝.E�/:

The space ˝.E�/ is one-dimensional. Indeed, if .e1; e2; : : : ; en/ is a basis of E
and .e1; e2; : : : ; en/ is the corresponding dual basis of E�, then every � of ˝.E�/
can be written in the form

� D �.e1 ^ � � � ^ en/
ˇ
ˇe1 ^ � � � ^ enˇˇ :

Now let M be an n-dimensional C1 manifold. We remark that if .U; '/ is a
chart onM with '.x/ D .x1; x2; : : : ; xn/, then the density

jdx1 ^ � � � ^ dxnj
is a basis of the space ˝.T �

x .M// of densities on the tangent space Tx.M/ of M at
each point x of U .

We let

˝.T �.M// D
G

x2M
˝.T �

x .M//

be the disjoint union of the spaces ˝.T �
x .M//, and define a mapping

j�j W ˝.T �.M// �!M

by the formula

j�j.�/ D x if � 2 ˝.T �
x .M//;

and define a mapping

j'j W j�j�1.U / �! '.U / � R2

by the formula

j'j.�/ D
�

'.x/; �

�
@

@x1
^ � � � ^ @

@xn

��

if j�j.�/ D x. Here we identify C with R2.
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We can make ˝.T �.M// into an .nC 2/-dimensional C1 manifold by giving
natural charts for it. Indeed, if .U; '/ is a chart on M with '.x/ D .x1; x2; : : : ; xn/,
then the family of pairs f.j�j�1.U /; j'j/g, where .U; '/ ranges over all admissible
charts, is an atlas on ˝.T �.M//. We call ˝.T �.M// the fiber bundle of densities
on the tangent spaces of M .

A C1 density on M is a C1 mapping

� WM �! ˝.T �.M//

such that �.x/ 2 ˝.T �
x .M// for each x 2M . The setC1.jM j/ of allC1 densities

on M is a complex linear space with the obvious operations of addition and scalar
multiplication.

5.7.2 Distributions on a Manifold

Let M be an n-dimensional C1 manifold (without boundary) which satisfies the
second axiom of countability; hence M is paracompact. It is well known that every
paracompact C1 manifold M has a partition of unity f'�g�2� subordinate to any
given open covering fU�g�2� ofM . That is, the family f'�g�2� in C1.M/ satisfies
the following three conditions (PU1), (PU2) and (PU3):

(PU1) 0 � '�.x/ � 1 for all x 2M and � 2 �.
(PU2) supp'� 	 U� for each � 2 �.
(PU3) The collection fsupp'�g�2� is locally finite and

X

�2�
'�.x/ D 1 for every x 2M:

We let

C1.M/ D the space of C1 functions on M:

We equip the space C1.M/ with the topology defined by the family of seminorms:

' 7�! p.' ı ��1/; ' 2 C1.M/;

where .U; �/ ranges over all admissible charts on M and p ranges over all
seminorms on C1.�.U // such as formula (5.1). By using a partition of unity, we
can verify that the topology on C1.M/ is defined by the family of seminorms
associated with an atlas on M alone. However, since M satisfies the second axiom
of countability, there exists an atlas onM consisting of countably many charts. This
shows that C1.M/ is metrizable. Furthermore, it is easy to see that C1.M/ is
complete; hence it is a Fréchet space.
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If K is a compact subset ofM , we let

C1
K .M/ D the space of C1 functions on M with support in K:

The space C1
K .M/ is a closed subspace of C1.M/. Furthermore, we let

C1
0 .M/ D

[

K�M
C1
K .M/;

where K ranges over all compact subsets of M . We equip the space C1
0 .M/ with

the inductive limit topology of the spaces C1
K .M/.

We let

C1.jM j/ D the space of C1 densities onM;

C1
0 .jM j/ D the space of C1 densities onM with compact support:

Since M is paracompact, it is known that M admits a strictly positive C1 density
�. Hence we can identify C1.jM j/ with C1.M/ as linear topological spaces by
the isomorphism

C1.M/ �! C1.jM j/
' 7�! ' � �:

Similarly, the space C1
0 .jM j/ can be identified with the space C1

0 .M/.
A distribution on M is a continuous linear functional on C1

0 .jM j/. The space
of distributions on M is denoted by D0.M/. That is, D0.M/ is the dual space�
C1
0 .jM j/

�0 D L.C1
0 .jM j/;C/. If ' 2 C1

0 .M/ and u 2 D0.M/, we denote
the action of u on ' � � by hu; ' � �i or sometimes by h' � �; ui.

A function u defined on M is said to be in L1loc.M/ if, for any admissible chart
.U; �/ onM , the local representative u ı��1 of u is in L1loc.�.U //. The elements of
L1loc.M/ are called locally integrable functions on M . Every element u of L1loc.M/

defines a distribution on M by the formula

hu; ' � �i D
Z

M

u' � � for every ' 2 C1
0 .M/:

We list some basic properties of distributions on a manifold:

(1) If V is an open subset ofM , then a distribution u 2 D0.M/ defines a distribution
ujV 2 D0.V / by restriction to C1

0 .jV j/.
(2) The space D0.M/ has the sheaf property; this means the following two

properties (S1) and (S2) hold:

(S1) If fU�g�2� is an open covering of M and if a distribution u 2 D0.M/ is
zero in each U�, then u D 0 in M .



5.7 Distribution Theory on a Manifold 277

(S2) Given an open covering fU�g�2� of M and a family of distributions
u� 2 D0.U�/ such that uj D uk in every U� \ U�, there exists a distribution
u 2 D0.M/ such that u D u� in each U�.

(3) The space of distributions with compact support can be identified with the dual
space E 0.M/ of C1.jM j/.

We have the same topological properties of D0.M/ and E 0.M/ as those of D0.˝/
and E 0.˝/ stated in Sect. 5.4.

5.7.3 Differential Operators on a Manifold

Let M be an n-dimensional C1 manifold (without boundary). If P is a linear
mapping of C1.M/ into itself and if .U; �/ is a chart on M , we let

��P D �� ı .P jU / ı ��;

where P jU is the restriction of P to U and ��v D v ı � is the pull-back of v by �
and ��u D u ı ��1 is the push-forward of u by �, respectively. Then it follows that
��P is a linear mapping of C1.�.U // into itself. The situation can be visualized
in the above commutative diagram.

A continuous linear mapping P W C1.M/ ! C1.M/ is called a differential
operator of order m on M if, for any chart .U; �/ on M , the mapping ��P is a
differential operator of orderm on �.U / 	 Rn.

Example 5.43. Let .M; g/ be an n-dimensional, Riemannian smooth manifold. The
Laplace–Beltrami operator or simply the Laplacian 
M of M is a second-order
differential operator defined (in local coordinates) by the formula


M D div .gradf /

D
nX

k;`D1

1
p

det.gij/

@

@xk

�q
det.gij/g

k` @

@x`

�

for every f 2 C1.M/;
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where

gij D g
�
@

@xi
;
@

@xj

�

;

.gij/ D the inverse matrix of .gij/:

IfM D Rn with standard Euclidean metric .gij/ D .ıij/, then the Laplace–Beltrami
operator
M becomes the usual Laplacian


 D @2

@x21
C @2

@x22
C : : :C @2

@x2n
:

5.7.4 Operators and Kernels on a Manifold

Let M and N be C1 manifolds equipped with strictly positive densities � and �,
respectively.

If K 2 D0.M � N/, we can define a continuous linear operator A W C1
0 .N /!

D0.M/ by the formula

hA ; ' � �i D hK; ' � �˝  � �i for all ' 2 C1
0 .M/ and  2 C1

0 .N /:

If A W C1
0 .N /! D0.M/ is a continuous linear operator, we define its transpose

A0 by the formula

˝
A0'; � �˛ D h' � �;A i for all ' 2 C1

0 .M/ and  2 C1
0 .N /:

Then the transpose A0 is a continuous linear operator on C1
0 .M/ into D0.N /. Also

we have .A0/0 D A.
Similarly, we define the adjoint A� of A by the formula

˝
A�'; � �˛ D ˝' � �;A ˛ for all ' 2 C1

0 .M/ and  2 C1
0 .N /:

Then the adjointA� is a continuous linear operator on C1
0 .M/ into D0.N /, and we

have .A�/� D A.
It should be emphasized that the results in Sect. 5.5 extend to this case.
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Fig. 5.8 The Lipschitz hypograph ˝

5.8 Domains of Class C r

In this section we introduce the notion of domains of class C r from the viewpoint
of manifold theory.

An open set ˝ in Rn is called a Lipschitz hypograph if its boundary @˝ can be
represented as the graph of a Lipschitz continuous function. That is, there exists a
Lipschitz continuous function � W Rn�1 ! R such that (see Fig. 5.8)

˝ D fx D .x0; xn/ 2 Rn W xn < �.x0/; x0 2 Rn�1g: (5.83)

An open subset of Rn is called a domain if it is also connected. Let 0 � r � 1.
A domain ˝ in Rn with boundary @˝ is said to be of class C r or a C r domain if,
at each point x0

0 of @˝ , there exist a neighborhood U of x0
0 in Rn and a bijection �

of U onto B D fx D .x1; x2; : : : ; xn/ 2 Rn W jxj < 1g such that (see Fig. 5.9)

�.U \˝/ D B \ fxn > 0g;
�.U \ @˝/ D B \ fxn D 0g;
� 2 C r.U /; ��1 2 C r.B/:

More precisely, a C r domain is an n-dimensional C r manifold with boundary (see
Sect. 7.1).

Sometimes, a different smoothness condition will be needed, so we broaden the
above terminology as follows: For any non-negative integer k and any 0 < � � 1,
we say that the domain ˝ defined by formula (5.83) is a Ck;� hypograph if the
function � is of class Ck;� , that is, if � is of class Ck and its k-th order partial
derivatives are Hölder continuous with exponent � .

The next definition requires that, roughly speaking, the boundary of ˝ can
be represented locally as the graph of a Lipschitz continuous function, by using
different systems of Cartesian coordinates for different parts of the boundary:
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Fig. 5.9 The coordinate neighborhood .U; �/

Fig. 5.10 The families fUj g and f˝j g in Definition 5.44

Definition 5.44. Let˝ be a bounded domain in Euclidean space Rn with boundary
@˝ . We say that ˝ is a Lipschitz domain if there exist finite families fUj gJjD1 and
f˝j gJjD1 having the following three properties (i), (ii) and (iii) (see Fig. 5.10):

(i) The family fUj gJjD1 is a finite open covering of @˝ .
(ii) Each ˝j can be transformed to a Lipschitz hypograph by a rigid motion, that

is, by a rotation plus a translation.
(iii) The set ˝ satisfies the conditions

Uj \˝ D Uj \˝j ; 1 � j � J:

In the obvious way, we define a domain of class Ck;� or Ck;� domain by substi-
tuting “Ck;�” for “Lipschitz” throughout Definition 5.44. It should be emphasized
that a Lipschitz domain is the same thing as a C0;1 domain.

If ˝ is a Lipschitz hypograph defined by (5.83), then we observe that its
boundary

@˝ D ˚x D �x0; �.x0/
� W x0 2 Rn�1�
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is an .n � 1/-dimensional, C0;1 submanifold of Rn if we apply the following
Rademacher theorem (see [MZ, Corollary 1.73], [Sn3, Theorem]):

Theorem 5.45 (Rademacher). Any Lipschitz continuous function on Rn admits
L1 first partial derivatives almost everywhere in Rn.

Indeed, it follows from an application of Rademacher’s theorem that the function
�.x0/ is Fréchet differentiable almost everywhere in Rn�1 with

kr�kL1.Rn�1/ � C; (5.84)

where C is any Lipschitz constant for the function �.x0/. Hence the Riemannian
metric .hij/ of @˝ is given by

0

B
B
B
B
B
B
B
@

h11 h12 � � � h1n�1
h21 h22 � � � h2n�1
� � � � � �
� � � � � �
� � � � � �

hn�1 1 hn�1 2 � � � hn�1 n�1

1

C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

1C �2x1 �x1�x2 � � � �x1�xn�1

�x2�x1 1C �2x2 � � � �x2�xn�1

� � � � � �
� � � � � �
� � � � � �

�xn�1�x1 �xn�1�x2 � � � 1C �2xn�1

1

C
C
C
C
C
C
C
A

;

where

�xi D
@�

@xi
; 1 � i � n � 1:

It is easy to see that

det
�
hij
� D 1C �2x1 C : : :C �2xn�1

D 1C jr�.x0/j2:

Therefore, we obtain that the boundary @˝ has the surface measure d� and that
the unit exterior normal � exists d�-almost everywhere in Rn�1 (see Fig. 5.11),
where d� and � are given respectively by the formulas:

d� D
p
1C jr�.x0/j2 dx0;
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Fig. 5.11 The unit exterior
normal � to @˝

� D .�r�.x0/; 1/
p
1C jr�.x0/j2 :

Here it should be noted that we have, by inequality (5.84),

1 �
p
1C jr�.x0/j2 �

p
1C C2;

so that the surface measure d� is equivalent locally to the Lebesgue measure dx0.

5.9 Notes and Comments

Schwartz [Sz] and Gelfand–Shilov [GS] are the classics for distribution theory. Our
treatment here follows the expositions of Chazarain–Piriou [CP], Hörmander [Ho4]
and Treves [Tv].

Sections 5.1 and 5.2: The material in these sections is taken from Gilbarg–
Trudinger [GT] and Folland [Fo1].

Section 5.3: Peetre’s theorem 5.7 is due to Peetre [Pe].
Section 5.4: For the Banach–Steinhaus theorem, see Treves [Tv, Chapter 33].

Example 5.29 is taken from Chazarain–Piriou [CP, Chapitre III, Lemme 9.4].
Remark 4.16 in Chap. 4 is based on the following approximation formula (5.85)

for the Dirac measure ı.x � y/:

ı.x � y/ D 1

.2�/n
lim
t#0

Z

Rn
ei.x�y/�� e�t j�j2 d�: (5.85)

Indeed, we obtain from Example 5.20 (2) that

lim
t#0
Kt.x � y/ D lim

t#0

�
1

.2�/n

Z

Rn
ei.x�y/�� e�t j�j2 d�

�

D ı.x � y/:
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Hence we have (formally) the assertion

lim
t#0

w.x; t/ D lim
t#0

Z

Rn
Kt .x � y/ u.y/ dy D

Z

Rn
ı.x � y/ u.y/ dy D u.x/:

We remark that formula (5.85) is an approximation to the identity, since the Dirac
measure ı.x � y/ is the distribution kernel of the identity operator.

Section 5.5: The proof of Schwartz’s kernel theorem (Theorem 5.36) is taken
from Chazarain–Piriou [CP, Chapitre I, Théorème 4.4].

Section 5.6: More detailed and concise accounts of layer potentials are given by
the books of Folland [Fo1] and McLean [Mc].

The Poisson integral formula (5.76) is based on the following approximation
formula (5.86) for the Dirac measure ı.x0 � y0/:

ı.x0 � y0/ D 1

.2�/n�1 lim
xn#0

Z

Rn�1

ei.x
0�y0/��0

e�xnj�0j d� 0: (5.86)

Indeed, we find from the proof of formula (5.77) that

lim
xn#0

2

!n

Z

Rn�1

xn

.jx0 � y0j2 C x2n/n=2
dy0

D lim
xn#0

�
1

.2�/n�1

Z

Rn�1

ei.x
0�y0/��0

e�xnj�0j d� 0
�

D ı.x0 � y0/:

Hence we have (formally) the assertion

lim
xn#0

u.x0; xn/ D lim
xn#0

�
2

!n

Z

Rn�1

xn

.jx0 � y0j2 C x2n/n=2
'.y0/ dy0

�

D
Z

Rn�1

ı.x0 � y0/ '.y0/ dy0

D '.x0/:

We remark that formula (5.86) is an approximation to the identity, since the Dirac
measure ı.x0 � y0/ is the distribution kernel of the identity operator.

Section 5.7: Distributions on a manifold were first studied by de Rham [De].
The material here is adapted from Abraham–Marsden–Ratiu [AMR], Chazarain–
Piriou [CP] and Lang [Lg].

Section 5.8: The definition of a C r domain is taken from McLean [Mc].



Chapter 6
Sobolev and Besov Spaces

Chapter 6 is devoted to the precise definitions and statements of Sobolev and Besov
spaces of Lp type with some detailed proofs. One of the most useful ways of
measuring differentiability properties of functions on Rn is in terms of Lp norms,
and is provided by the Sobolev spaces on Rn. The great advantage of this approach
lies in the fact that the Fourier transform works very well in Lp.Rn/. The function
spaces we shall treat are the following:

(i) The generalized Sobolev spacesW s;p.˝/ andHs;p.˝/ of Lp type on an open
subset ˝ of Rn, which will be used in subsequent chapters. When ˝ is a
Lipschitz domain, these spaces coincide with each other.

(ii) The Besov spaces Bs;p.Rn�1/ on Rn�1 are function spaces defined in terms of
theLp modulus of continuity. The Besov spacesBs;p.@˝/ on the boundary @˝
of a Lipschitz domain˝ are defined to be locally the Besov spaces Bs;p.Rn�1/,
upon using local coordinate systems flattening out @˝ , together with a partition
of unity.

In studying boundary value problems in the domain ˝ , we need to make sense of
the restriction uj@˝ as an element of a function space on the boundary @˝ when
u belongs to a Sobolev space of Lp type on ˝ . In Sect. 6.1 we prove Hardy’s
inequality on the interval .0;1/ (Theorem 6.2) which is used systematically in
the proof of a trace theorem (Theorem 6.6). In Sect. 6.2 we present some basic
definitions and results of the Sobolev spaces W s;p.˝/ and Hs;p.˝/. In Sect. 6.3
we give the precise definition of the Besov space Bs;p.@˝/ on the boundary @˝ . It
should be emphasized that the Besov spaces Bs;p.@˝/ enter naturally in connection
with boundary value problems in the framework of function spaces of Lp type. In
Sect. 6.4 we prove a trace theorem (Theorem 6.6) which will play an important role
in the study of boundary value problems in Chap. 7.

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__6,
© Springer-Verlag Berlin Heidelberg 2014
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6.1 Hardy’s Inequality

First, we prove a general integral inequality on the interval .0;1/.
Theorem 6.1. LetK.x; y/ be a Lebesgue measurable function defined on the space
.0;1/ � .0;1/. Assume that K.x; y/ is positively homogeneous of degree �1,
that is,

K.�x; �y/ D ��1K.x; y/ for every � > 0;

and further that the integral

AK WD
Z 1

0

jK.1; y/jy�1=p dy

is finite for some 1 � p � 1.
Then the operator Tf , defined by the formula

Tf .x/ D
Z 1

0

K.x; y/f .y/ dy; y 2 .0;1/;

is bounded from Lp.0;1/ into itself. More precisely, we have the inequality

kTfkp � AKkf kp for all f 2 Lp.0;1/:

Proof. Since we have, by the positive homogeneity of K , the formula

Tf .x/ D
Z 1

0

K.x; y/f .y/ dy D
Z 1

0

K.x; zx/f .zx/ x dz .y D zx/

D
Z 1

0

x�1K.1; z/f .zx/ x dz D
Z 1

0

K.1; z/f .zx/ dz;

by applying Minkowski’s inequality for integrals [Fo2, Theorem 6.19] we
obtain that

kTf kp �
Z 1

0

jK.1; z/jkf .z�/kp dz:

However, it is easy to see that

kf .z�/kp D
�Z 1

0

jf .zx/jp dx

�1=p
D z�1=p

�Z 1

0

jf .y/jp dy

�1=p

D z�1=pkf kp for each z > 0:
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Therefore, we have the inequality

kTf kp �
�Z 1

0

jK.1; z/jz�1=p dz

�

kf kp D AKkf kp:

The proof of Theorem 6.1 is complete.

Now we can prove Hardy’s inequality, which will be used systematically.

Theorem 6.2 (Hardy’s inequality). Let 1 � p � 1 and � ¤ 0. If f .x/ is a non-
negative, Lebesgue measurable function on the interval .0;1/, we define a function
F.x/ by the formula

F.x/ D
( R x

0
f .y/ dy if � < 0;

R1
x
f .y/ dy if � > 0:

Then we have the inequality

�Z 1

0

.x�F.x//p
dx

x

�1=p
� 1

j� j
�Z 1

0

.x�C1f .x//p
dx

x

�1=p
: (6.1)

Proof. We only consider the case where � < 0. The case where � > 0 is proved
similarly.

If we let

K.x; y/ WD
(
x��1=py��C1=p�1 if 0 � y � x;
0 if x < y;

then it follows that K.x; y/ is positively homogeneous of degree �1 and satisfies
the conditions

Z 1

0

K.1; y/y�1=p dy D
Z 1

0

y���1 dy D � 1
�
:

If we introduce an integral operator

Tg.x/ WD
Z 1

0

K.x; y/ g.y/ dy

D x��1=p
Z x

0

y��C1=p�1 g.y/ dy for all g 2 Lp.0;1/;
then, by applying Theorem 6.1 to our situation we obtain that

�Z 1

0

�

x��1=p
Z x

0

y��C1=p�1g.y/ dy

�p
dx

�1=p
� 1

j� j
�Z 1

0

g.y/p dy

�1=p
:
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In particular, if we let

g.y/ WD y��1=pC1 f .y/ for every y 2 .0;1/;

then it follows that

�Z 1

0

.x�F.x//p
dx

x

�1=p
D
�Z 1

0

�

x��1=p
Z x

0

f .x/ dy

�p
dx

�1=p

� 1

j� j
�Z 1

0

�
y��1=pC1 f .y/

�p
dy

�1=p

D 1

j� j
�Z 1

0

.x�C1f .x//p
dx

x

�1=p
:

The proof of Theorem 6.2 is complete.

Example 6.3. If we let

� DW 1
p
� 1; 1 < p � 1;

then we have, by inequality (6.1),

�Z 1

0

�
1

x

Z x

0

f .y/ dy

�p
dx

�1=p
� p

p � 1
�Z 1

0

f .y/p dy

�1=p
:

6.2 Sobolev Spaces

In this section we present a brief description of the basic concepts and results from
the theory of Sobolev spaces of Lp type, which will be used in subsequent chapters.
Many problems in partial differential equations may be formulated in terms of
abstract operators acting between suitable Sobolev and Besov spaces, and these
operators are then analyzed by the methods of functional analysis.

6.2.1 First Definition of Sobolev Spaces

Let ˝ be an open subset of Rn. If 1 < p < 1 and if s is a non-negative integer,
then the Sobolev space W s;p.˝/ on ˝ is defined to be the space of those functions
u 2 Lp.˝/ such thatD˛u 2 Lp.˝/ for j˛j � s, and the norm kukW s;p.˝/ is defined
by the formula
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kukW s;p.˝/ D
0

@
X

j˛j�s

Z

˝

jD˛u.x/jpdx

1

A

1=p

: (6.2)

If 1 < p <1 and if s D mC � with a non-negative integer m and 0 < � < 1,
then the Sobolev space W s;p.˝/ on ˝ is defined to be the space of those functions
u 2 W m;p.˝/ such that, for j˛j D m, the integral (Slobodeckiı̆ seminorm)

“

˝�˝
jD˛u.x/ �D˛u.y/jp
jx � yjnCp� dx dy

is finite. The norm kukW s;p.˝/ of W s;p.˝/ is defined by the formula

kukW s;p.˝/ D
�X

j˛j�m

Z

˝

jD˛u.x/jp dx

C
X

j˛jDm

“

˝�˝
jD˛u.x/ �D˛u.y/jp
jx � yjnCp� dx dy

�1=p
:

6.2.2 Second Definition of Sobolev Spaces

Next, we introduce a second family of Sobolev spaces, by using the Fourier
transform.

Let S.Rn/ be the Schwartz space or space of smooth functions on Rn rapidly
decreasing at infinity. We recall that the (direct) Fourier transform F and the inverse
Fourier transform F� are isomorphisms of S.Rn/ onto itself. The dual space S 0.Rn/

of S.Rn/ is called the space of tempered distributions on Rn. Roughly speaking, the
tempered distributions are those distributions which grow at most polynomially at
infinity, since the functions in S.Rn/ die out faster than any power of x at infinity.
The importance of tempered distributions lies in the fact that they have Fourier
transforms. More precisely, if u 2 S 0.Rn/, we define its (direct) Fourier transform
Fu by the formula

hFu; 'i D hu;F'i for every ' 2 S.Rn/;

where h�; �i is the pairing of S 0.Rn/ and S.Rn/. Similarly, if v 2 S 0.Rn/, we define
its inverse Fourier transform F�v by the formula

hF�v;  i D hv;F� i for every  2 S.Rn/:

It should be emphasized that the Fourier transforms F and F� are isomorphisms
from S 0.Rn/ onto itself.
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If s 2 R, we define a linear map

J s D .I �
/�s=2 W S 0.Rn/ �! S 0.Rn/

by the formula

J su D F� �.1C j�j2/�s=2Fu
�

for every u 2 S 0.Rn/: (6.3)

The operator J s W S 0.Rn/! S 0.Rn/ can be visualized in the following diagram:

Then it is easy to see that the map J s is an isomorphism from S 0.Rn/ onto itself,
and its inverse is the map J �s . The function J su is called the Bessel potential of
order s of u.

We can calculate the convolution kernelGs.x/ of the Bessel potential J su for all
s > 0. More precisely, we have the following theorem:

Theorem 6.4. Let s > 0. (i) The inverse Fourier transform

F� �.1C j�j2/�s=2�

is equal to the function

Gs.x/ D 1

.4�/s=2
1

� .s=2/

Z 1

0

e��jxj2=ı e�ı=.4�/ ı.s�n/=2
dı

ı
: (6.4)

In other words, we have, by the Fourier inversion formula,

F.Gs/.�/ D
�
1C j�j2��s=2 : (6.5)

Moreover, we have

Z

Rn
Gs.x/ dx D 1; (6.6)

and so

Gs 2 L1.Rn/: (6.7)
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(ii) Let 1 � p � 1. The Bessel potential J s can be expressed as follows:

J su.x/ D Gs � u.x/ D
Z

Rn
Gs.x � y/u.y/ dy; u 2 Lp.Rn/: (6.8)

Furthermore, the Bessel potential J s is bounded from Lp.Rn/ into itself. More
precisely, we have the inequality

kJ sukLp.Rn/ � kukLp.Rn/; u 2 Lp.Rn/: (6.9)

Proof. (i) First, we have, for all t > 0,

1

ts=2
D 1

� .s=2/

Z 1

0

e�tı ıs=2�1 dı:

In particular, by letting t D 1C j�j2 we obtain that

1

.1C j�j2/s=2 D
1

� .s=2/

Z 1

0

e�.1Cj�j2/ı ıs=2�1 dı:

Hence it follows that

F� �.1C j�j2/�s=2�

D 1

.2�/n

Z

Rn
eix�� 1

.1C j�j2/s=2 d�

D 1

.2�/n

Z

Rn
eix��

�
1

� .s=2/

Z 1

0

e�.1Cj�j2/ı ıs=2�1 dı
�

d�

D 1

� .s=2/

Z 1

0

e�ı ıs=2�1
�

1

.2�/n

Z

Rn
eix�� e�ıj�j2 d�

�

dı

D 1

� .s=2/

Z 1

0

e�ı ıs=2�1
	

1

.4�ı/n=2
e�jxj2=.4ı/




dı

D 1

� .s=2/

1

.4�/s=2

Z 1

0

e��jxj2=t e�t=.4�/ t .s�n/=2
dt

t

D Gs.x/:

This proves formula (6.4), or equivalently, formula (6.5).
Moreover, we have, by Fubini’s theorem
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Z

Rn
Gs.x/ dx

D 1

.4�/s=2
1

� .s=2/

Z 1

0

e�ı=4� ı.s�n/=2�1
�Z

Rn
e��jxj2=ı dx

�

dı

D 1

.4�/s=2
1

� .s=2/

Z 1

0

e�ı=4� ı.s�n/=2�1 ın=2 dı .ı D 4�t/

D 1

.4�/s=2
1

� .s=2/

Z 1

0

e�t .4�/s=2�1 t s=2�1.4�dt/

D 1

� .s=2/

Z 1

0

e�t t s=2�1 dt D 1:

This proves formula (6.6) and assertion (6.7).
(ii) Therefore, by combining formulas (6.3) and (6.5) we obtain that

J su D F� �.1C j�j2/�s=2Fu.�/
�

D F� .F.Gs/.�/Fu.�// D F� .F.Gs � u/.�//

D Gs � u; u 2 Lp.Rn/:

This proves formula (6.8).
Finally, in view of formula (6.8), we can apply Young’s inequality (Corol-

lary 5.3) and formula (6.6) to obtain that

kJ sukLp.Rn/ D kGs � ukLp.Rn/ � kGskL1.Rn/ kukLp.Rn/ D kukLp.Rn/:

This proves inequality (6.9).
The proof of Theorem 6.4 is complete.

Now, if s 2 R and 1 < p <1, we let

Hs;p.Rn/ D the image of Lp.Rn/ under the mapping J s

D fJ sv W v 2 Lp.Rn/g :

We equipHs;p.Rn/ with the norm

kukHs;p.Rn/ D kJ �sukLp.Rn/; u 2 Hs;p.Rn/: (6.10)

The spaceHs;p.Rn/ is called the Bessel potential space of order s or the generalized
Sobolev space of order s.

We list some basic topological properties ofHs;p.Rn/:
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(1) The Schwartz space S.Rn/ is dense in each Hs;p.Rn/.
(2) The spaceH�s;p0

.Rn/ is the dual space ofHs;p.Rn/, where p0 D p=.p � 1/ is
the exponent conjugate to p.

(3) If s > t , then we have the inclusions

S.Rn/ 	 Hs;p.Rn/ 	 Ht;p.Rn/ 	 S 0.Rn/;

with continuous injections.
(4) If s is a non-negative integer, then the space Hs;p.Rn/ is isomorphic to the

Sobolev space W s;p.Rn/, and the norm (6.10) is equivalent to the norm (6.2).

6.2.3 Definition of General Sobolev Spaces

Now we define the generalized Sobolev spacesHs;p.˝/ for general domains˝ .
For each s 2 R and 1 < p <1, we let

Hs;p.˝/ D the space of restrictions to ˝ of functions in Hs;p.Rn/:

We equip the space Hs;p.˝/ with the norm

kukHs;p.˝/ D inf kU kHs;p .Rn/;

where the infimum is taken over all U 2 Hs;p.Rn/ which equal u in ˝ . The space
Hs;p.˝/ is a Banach space with respect to the norm k � ks;p . It should be noted that

H0;p.˝/ D Lp.˝/I k � kH0;p.˝/ D k � kLp.˝/:

Then we have the following important relationships between the Sobolev spaces
Hs;p.˝/ and W s;p.˝/:

Theorem 6.5. If˝ is a bounded, Lipschitz domain, then we have, for all s � 0 and
1 < p <1,

Hs;p.˝/ D W s;p.˝/:

6.3 Definition of Besov Spaces on the Boundary

In studying boundary value problems in a Lipschitz domain ˝ of Rn, we need to
make sense of the restriction uj@˝ as an element of a function space on the boundary
@˝ when u belongs to a Sobolev space of Lp type on ˝ . In this way, the Besov
spaces Bs;p.@˝/ on the boundary @˝ enter naturally in connection with boundary
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Fig. 6.1 The Lipschitz
hypograph ˝

value problems. The Besov spaces Bs;p.@˝/ are defined to be locally the Besov
spaces Bs;p.Rn�1/ on Rn�1, upon using local coordinate systems flattening out @˝ ,
together with a partition of unity.

An open set ˝ in Rn is called a Lipschitz hypograph if its boundary @˝ can be
represented as the graph of a Lipschitz continuous function. In other words, there
exists a Lipschitz continuous function � W Rn�1 ! R such that (see Fig. 6.1)

˝ D fx D .x0; xn/ 2 Rn W xn < �.x0/; x0 2 Rn�1g: (5.83)

We define Besov spaces Bs;p.@˝/ on the boundary @˝ of a Lipschitz domain
˝ , upon using local coordinate systems flattening out @˝ , together with a partition
of unity (see Sect. 5.7.2), in the following way.

Step 1: First, if 1 < p <1, we let

B1;p.Rn�1/

D the space of (equivalence classes of) functions ' 2 Lp.Rn�1/ for which
“

Rn�1�Rn�1

j'.x0 C h0/ � 2'.x0/C '.x0 � h0/jp
jh0j.n�1/Cp dh0 dx0 <1:

The space B1;p.Rn�1/ is a Banach space with respect to the norm

j'jB1;p.Rn�1/

D
�Z

Rn�1

j'.x0/jp dx0

C
“

Rn�1�Rn�1

j'.x0 C h0/� 2'.x0/C '.x0 � h0/jp
jh0j.n�1/Cp dh0 dx0

�1=p
:

If s 2 R and 1 < p <1, we let
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Bs;p.Rn�1/ D the image of B1;p.Rn�1/ under the mapping J 0s�1,

where J 0s�1 is the Bessel potential of order s � 1
on Rn�1

D
n
J 0s�1 W  2 B1;p.Rn�1/

o
:

We equip the space Bs;p.Rn�1/ with the norm

j'jBs;p.Rn�1/ D
ˇ
ˇ
ˇJ 0�sC1'

ˇ
ˇ
ˇ
B1;p.Rn�1/

; ' 2 Bs;p.Rn�1/:

The space Bs;p.Rn�1/ is called the Besov space of order s.
We list some basic topological properties of Bs;p.Rn�1/:

(1) The Schwartz space S.Rn�1/ is dense in each Bs;p.Rn�1/.
(2) The spaceB�s;p0

.Rn�1/ is the dual space ofBs;p.Rn�1/, where p0 D p=.p�1/.
(3) If s > t , then we have the inclusions

S.Rn�1/ 	 Bs;p.Rn�1/ 	 Bt;p.Rn�1/ 	 S 0.Rn�1/;

with continuous injections.
(4) If 1 < p <1 and if s D mC � with a non-negative integerm and 0 < � < 1,

then the Besov space Bs;p.Rn�1/ coincides with the space of those functions
' 2 W m;p.Rn�1/ such that, for j˛j D m, the integral (Slobodeckiı̆ seminorm)

“

Rn�1�Rn�1

jD˛'.x0/�D˛'.y0/jp
jx0 � y0j.n�1/Cp� dx0 dy0

is finite. Furthermore, the norm j'js;p is equivalent to the norm

�X

j˛j�m

Z

Rn�1

jD˛'.x0/jp dx0 (6.11)

C
X

j˛jDm

“

Rn�1�Rn�1

jD˛'.x0/ �D˛'.y0/jp
jx0 � y0j.n�1/Cp� dx0 dy0

�1=p
:

Step 2: If ˝ is a Lipschitz hypograph defined by (5.83), then we recall that its
boundary

@˝ D fx D �x0; �.x0/
� W x0 2 Rn�1g
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is an .n � 1/-dimensional C0;1 submanifold of Rn and further that @˝ has
a surface measure d� and a unit exterior normal � which exists d�-almost
everywhere in Rn�1 (see Fig. 5.11):

d� D
p
1C jr�.x0/j2 dx0;

� D .�r�.x0/; 1/
p
1C jr�.x0/j2 :

Step 2-1: Now we can define the Besov spaces Bs;p.@˝/ for 0 < s � 1 in the
following way: For any function ' 2 Lp.@˝/ D Lp.@˝; d�/, we define a
function

'�.x
0/ WD '.x0; �.x0//; x0 2 Rn�1;

and let, for 0 < s < 1,

Bs;p.@˝/ D ˚' 2 Lp.@˝/ W '� 2 Bs;p.Rn�1/
�
:

We equip this space with the norm (the norm (6.11) with m WD 0)

j'jBs;p.@˝/ (6.12)

D j'�jBs;p.Rn�1/

D
�Z

Rn�1

j'�.x0/jp dx0C
“

Rn�1�Rn�1

j'�.x0/ � '�.y0/jp
jx0 � y0j.n�1/Cps dx0 dy0

�1=p
:

For s D 1, we let

B1;p.@˝/

D the space of (equivalence classes of) functions ' 2 Lp.@˝; d�/ for which
“

Rn�1
�Rn�1

j'�.x0 C h0/ � 2'�.x0/C '�.x0 � h0/jp
jh0j.n�1/Cp

dh0 dx0 <1:

The space B1;p.@˝/ is a Banach space with respect to the norm

j'jB1;p.@˝/
D j'�jB1;p.Rn�1/

D
�Z

Rn�1

j'�.x0/jp dx0

C
“

Rn�1�Rn�1

j'�.x0 C h0/� 2'�.x0/C '�.x0 � h0/jp
jh0j.n�1/Cp dh0 dx0

�1=p
:
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Step 2-2: If 	.˝/ is a Lipschitz hypograph for some rigid motion 	 W Rn !
Rn, then we can define the Besov spaces Bs;p.@˝/ for 0 < s � 1 in the same
way except that

'�.x
0/ WD ' �	�1.x0; �.x0//

�
; x0 2 Rn�1:

Step 3: We consider the general case where ˝ is a bounded Lipschitz domain.
Using the notation of Definition 5.44 (see Fig. 5.10), we choose a partition of
unity f�j gJjD1 subordinate to the open covering fUj gJjD1 of @˝ , that is,

�j 2 C1
0 .Uj /;

0 � �j .x/ � 1 in Uj ;

JX

jD1
�j .x/ D 1 on @˝:

Then we define the Besov spaces Bs;p.@˝/ for 0 < s � 1 as follows:

Bs;p.@˝/ D ˚' 2 Lp.@˝/ W �j' 2 Bs;p.@˝j /; 1 � j � J
�
;

where the norm j'jBs;p.@˝/ is defined by the formula

j'jBs;p.@˝/ D
JX

jD1

ˇ
ˇ�j '

ˇ
ˇ
Bs;p.@˝j /

:

It should be emphasized that the Besov spaces Bs;p.@˝/ for 0 < s � 1 are
independent of the open covering fUj g and the partition of unity f�j g used.

Step 4: Furthermore, we shall define Besov spaces Bs;p.@˝/ for 1 < s < 2 on a
bounded C1;1 domain˝ .

Step 4-1: If˝ is aC1;1 hypograph defined by formula (5.83) for some function
� 2 C1;1.Rn�1/, then we define the Besov spaces Bs;p.@˝/ for s D 1 C �
with 0 < � < 1 in the same way by replacing the norm (6.12) by the norm
(the norm (6.11) with m WD 1)

j'jBs;p.@˝/
D ˇ
ˇ'�
ˇ
ˇ
W s;p.Rn�1/

D
�X

j˛j�1

Z

Rn�1

jD˛'�.x
0/jp dx0

C
X

j˛jD1

“

Rn�1�Rn�1

jD˛'�.x
0/�D˛'�.y

0/jp
jx0 � y0j.n�1/Cp� dx0 dy0

�1=p
:



298 6 Sobolev and Besov Spaces

Step 4-2: If˝ is a bounded C1;1 domain, then the Besov spaces Bs;p.@˝/ for
1 < s < 2 are defined to be locally the Besov spaces Bs;p.@˝j /, 1 � j � J ,
just as in Step 3. Here it should be emphasized that the boundary @˝ is an
.n � 1/-dimensionalC1;1 submanifold of Rn.

The norm of Bs;p.@˝/ for 0 � s < 2 will be denoted by j � js;p .

6.4 Trace Theorems

In this section we prove an important trace theorem which will be used in the study
of boundary value problems in the framework of function spaces of Lp type:

Theorem 6.6 (The trace theorem). Let 1 < p < 1. For every function f 2
Hs;p.Rn/ with s > 1=p, the restriction

g WD Rf D f jRn�1 (6.13)

is well defined almost everywhere in Rn�1, and belongs to Bs�1=p;p.Rn�1/. Fur-
thermore, the restriction mapping R so defined is continuous, that is, there exists a
positive constant C such that

kRfkBs�1=p;p.Rn�1/ � Ckf kHs;p.Rn/; f 2 Hs;p.Rn/: (6.14)

Proof. Without loss of generality, we may assume that

1

p
< s < 1:

We let

Qx D .x; �/ 2 Rn; x D .x1; x2; : : : ; xn�1/ 2 Rn�1; � 2 R:

If f .x; �/ is a function in Hs;p.Rn/, then it can be written in the form (see (6.8)
and (6.9))

(
f D Gs � ';
' 2 Lp.Rn/;

(6.15)

with

kf ks;p D k'kp:
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Here and in the following, we simply write

kf ks;p D kf kHs;p.Rn/;

k'kp D k'kLp.Rn/:

Hence we have, by (6.8),

g.x/ D f .x; 0/ D
Z

Rn�1

�Z

R
Gs.z; �/'.x � z; �/ d�

�

dz; x 2 Rn�1:

Here we recall that

kgkBs�1=p;p.Rn�1/

D
�Z

Rn�1

jg.x/jp dxC
“

Rn�1�Rn�1

jg.x � y/ � g.x/jp
jyj.n�1/C.s�1=p/p dx dy

�1=p
:

Therefore, to prove inequality (6.14) it suffices to show the following two inequali-
ties (6.16) and (6.17):

kgkp � Akf ks;p: (6.16)
�Z

R

kg.� � y/ � g.�/kpp
jyjn�2Csp

dy

�1=p
� Bkf ks;p : (6.17)

Step 1: First, we prove inequality (6.16). By Hölder’s inequality [Fo2, Theorem
6.2], it follows that

ˇ
ˇ
ˇ
ˇ

Z

R
Gs.z; �/'.x � z; �/ d�

ˇ
ˇ
ˇ
ˇ � kGs.z; �/kq k'.x � z; �/kp; x; z 2 Rn�1;

where

1

p
C 1

q
D 1:

Hence we have the inequality

jg.x/j D
ˇ
ˇ
ˇ
ˇ

Z

Rn�1

�Z

R
Gs.z; �/'.x � z; �/ d�

�

dz

ˇ
ˇ
ˇ
ˇ

�
Z

Rn�1

ˇ
ˇ
ˇ
ˇ

Z

R
Gs.z; �/'.x � z; �/ d�

ˇ
ˇ
ˇ
ˇ dz

�
Z

Rn�1

kGs.z; �/kq k'.x � z; �/kp dz:
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Moreover, by applying Minkowski’s inequality for integrals [Fo2, Theorem 6.19]
we obtain that

kgkp �
�
�
�
�

Z

Rn�1

kGs.z; �/kq k'.x � z; �/kp dz

�
�
�
�
p

�
Z

Rn�1

kGs.z; �/kq k'.�z; �/kp dz

D
Z

Rn�1

kGs.z; �/kq k'.�; �/kp dz

� k'kp
�Z

Rn�1

kGs.z; �/kq dz

�

D A kf ks;p;

with

A WD
Z

Rn�1

kGs.z; �/kq dz:

In order to prove inequality (6.16), we are reduced to the following lemma:

Lemma 6.7. Let 1=p < s < 1. Then we have

A D
Z

Rn�1

kGs.z; �/kq dz <1: (6.18)

Proof. It is known (see Aronszajn–Smith [AS]) that the Bessel kernelGs.x/ can be
expressed as follows:

Gs.z; �/ (6.19)

D 1

2.nCs�2/=2 �n=2 � .n=2/
K.n�s/=2

p
jzj2 C �2

� �jzj2 C �2�.s�n/=4 ;

.z; �/ 2 Rn�1 � R;

where K� is the modified Bessel function of the third kind (Watson [Wt]). This
proves that Gs.x/ has the asymptotics

Gs.z; �/ � � ..n � s/=2/
2s�n=2� .n=2/

�jzj2 C �2�.s�n/=2
�

(6.20a)

as jzj C j�j ! 0;

Gs.z; �/ � 1

2.nCs�1/=2 �.n�1/=2� .n=2/
�jzj2 C �2�.s�n�1/=4

(6.20b)

�e�
p

jzj2C�2 as jzj C j�j ! 1:
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(a) First, we consider the case where 0 < jzj � 1.

(a-1) If j�j � 1, then we have, by estimate (6.20b),

jGs.z; �/j � C1e
p

�jzj2Cj�j2 � C1e�j�j; (6.21)

since jzj2 C j�j2 � 1.
(a-2) If j�j � 1, then we have, by estimate (6.20a),

jGs.z; �/j � C2
�jzj2 C j�j2�.s�n/=2 : (6.22)

However, it is easy to see that

�Z

j�j�1
.jzj2 C j�j2/.s�n/q=2 d�

�1=q

D
�Z

R
.jzj2 C j�j2�2/.s�n/q=2jzj d�

�1=q

D
�Z

R
.1C �2/.s�n/q=2jzj.�nCs/qC1 d�

�1=q

D jzj�nCsC1=q
�Z

R
.1C �2/�.n�s/q=2 d�

�1=q
;

and further that
Z

R
.1C �2/�.n�s/q=2 d� <1;

since we have the inequality

.n � s/q > .n� 1/ p

p � 1 >
p

p � 1 > 1:

Therefore, by using Hölder’s inequality [Fo2, Theorem 6.2] we obtain from
inequalities (6.21) and (6.22) that

Z

0<jzj�1
kGs.z; �/kq dz (6.23)

� C1
Z

0<jzj�1

�Z

j�j�1
e�qj�j d�

�1=q
dz

CC2
Z

0<jzj�1

�Z

j�j�1
.jzj2 C j�j2/.s�n/q=2 d�

�1=q
dz
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D C3 C C4
Z

0<jzj�1
jzjs�nC1=q dz

D C3 C C4
Z 1

0

Z

˙n�1

rn�2r�nCsC1�1=p dr d�

D C3 C C4!n�1
Z 1

0

rs�1�1=p dr D C3 C C4!n�1
�
rs�1=p

s � 1=p
�1

0

D C3 C C4!n�1
�

1

s � 1=p
�

<1; 1

p
< s < 1;

where ˙n�1 is the unit sphere in Rn�1 and !n�1 is its surface area

!n�1 WD 2�.n�1/=2

� ..n� 1/=2/:

(b) Next we consider the case where jzj > 1. Since we have, by estimate (6.20b),

jGs.z; �/j � C5e� 1
2

p
jzj2Cj�j2 e� 1

2

p
jzj2Cj�j2 � C5e� 1

2 jzje� 1
2 j�j;

it follows from an application of Hölder’s inequality [Fo2, Theorem 6.2] that

Z

jzj>1
kGs.z; �/kq dz � C5

Z

1<jzj

�Z

R
e� 1

2 qjzje� 1
2 qj�j d�

�1=q
dz (6.24)

D C5

�Z

jzj>1
e� 1

2 jzj dz

��Z

R
e� 1

2 qj�j d�
�1=q

< 1:

Therefore, the desired assertion (6.18) follows by combining the two inequali-
ties (6.23) and (6.24).

The proof of Lemma 6.7 is complete.

Step 2: Secondly, we prove inequality (6.17). If we let

g�.x/ WD
Z

Rn�1

Gs.z; �/'.x � z; �/ dz;

then we can write the function g.x/ in the form

g.x/ D
Z

R

Z

Rn�1

Gs.z; �/'.x � z; �/ dzd� D
Z

R
g�.x/ d�:

Hence we have



6.4 Trace Theorems 303

g.x � y/ � g.x/ D
Z

R

�
g�.x � y/ � g�.x/

�
d�:

On the other hand, it is easy to verify that

g�.x � y/ � g�.x/

D
Z

Rn�1

Œ'.x � y � z; �/ � '.x � z; �/� Gs.z; �/ dz

D
Z

Rn�1

'.x � w; �/Gs.w� y; �/ dw

�
Z

Rn�1

'.x � z; �/Gs.z; �/ dz

D
Z

Rn�1

'.x � z; �/ ŒGs.z � y; �/ �Gs.z; �/� dz:

Thus, by applying Minkowski’s inequality for integrals [Fo2, Theorem 6.19] we
obtain that

kg�.� � y/� g�.�/kp
�
Z

Rn�1

k'.� � z; �/kp jGs.z � y; �/ �Gs.z; �/j dz

D
Z

Rn�1

k'.�; �/kp jGs.z � y; �/ �Gs.z; �/j dz

D k'.�; �/kp
Z

Rn�1

jGs.z � y; �/ �Gs.z; �/j dz:

In order to estimate the last integral

Z

Rn�1

jGs.z � y; �/ �Gs.z; �/j dz;

we decompose it into the two terms

Z

Rn�1

jGs.z � y; �/ �Gs.z; �/j dz

�
Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz

C
Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz

WD I.y; �/C J.y; �/:
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Step 2-1: The estimate of the term I.y; �/.

(a) If jyj � j�j, it follows that

Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz

�
Z

jzj�2jyj
jGs.z � y; �/j dzC

Z

jzj�2jyj
jGs.z; �/j dz

� 2
Z

jzj�3jyj
jGs.z; �/j dz:

Since we have, by estimate (6.20a),

jGs.z; �/j � C
�jzj2 C j�j2�.s�n/=2 � C 0 .jzj C j�j/s�n ;

we obtain that

Z

jzj�3jyj
jGs.z; �/j dz � C 0

Z

jzj�3jyj
j�js�n

�

1C jzjj�j
�s�n

dz

� C 0 j�js�n
Z

Rn�1

.1C jwj/s�n j�jn�1 dw

D C 0j�js�1
 Z

Rn�1

1

.1C jwj/n�1C.1�s/ dw

!

D C 00j�js�1:

(b) We consider the case where j�j � jyj.
(b-1) If jyj � j�j=2, then, by the mean value theorem it follows that, for
0 < � < 1,

jGs.z � y; �/ �Gs.z; �/j
D jG.zC .�y/; �/ �Gs.z; �/j

�
ˇ
ˇ
ˇ
ˇ
@Gs

@x1
.z1 � �y1; z2 � y2; : : : ; zn�1 � yn�1; �/

ˇ
ˇ
ˇ
ˇ jy1j

C
ˇ
ˇ
ˇ
ˇ
@Gs

@x2
.z1; z2 � �y2; z3 � y3; : : : ; zn�1 � yn�1; �/

ˇ
ˇ
ˇ
ˇ jy2j C � � �

C
ˇ
ˇ
ˇ
ˇ
@Gs

@xn�1
.z1; z2; : : : ; zn�2; zn�1 � �yn�1; �/

ˇ
ˇ
ˇ
ˇ jyn�1j:
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However, we have, by estimates (6.20),

ˇ
ˇ
ˇ
ˇ
@Gs

@x1
.z1 � �y1; z2 � y2; : : : ; zn�1 � yn�1; �/

ˇ
ˇ
ˇ
ˇ jy1j

� C .jz1 � �y1j C jz2 � y2j C � � � C jzn�1 � yn�1j C j�j/s�n�1 ;

and, for 0 < � < 1 and jyj � j�j=2,

jz1 � �y1j C jz2 � y2j C : : :C jzn�1 � yn�1j C j�j

� jzj � jyj C j�j � j�j
� jzj
j�j C 1 �

jyj
j�j
�

� j�j
� jzj
j�j C

1

2

�

:

Similarly, we have, for the partial derivative @Gs
@x2

,

ˇ
ˇ
ˇ
ˇ
@Gs

@x2
.z1; z2 � �y2; z3 � y3; : : : ; zn�1 � yn�1; �/

ˇ
ˇ
ˇ
ˇ

� C .jz1j C jz2 � �y2j C jz3 � y3j C � � � C jzn�1 � yn�1j C j�j/s�n�1 ;

and

jz1j C jz2 � �y2j C jz3 � y3j C � � � C jzn�1 � yn�1j C j�j

� j�j
� jzj
j�j C

1

2

�

;

and, for the partial derivative @Gs
@xn�1

,

ˇ
ˇ
ˇ
ˇ
@Gs

@xn�1
.z1; z2; : : : ; zn�2; zn�1 � �yn�1; �/

ˇ
ˇ
ˇ
ˇ

� C .jz1j C jz2j C � � � C jzn�2j C jzn�1 � �yn�1j C j�j/s�n�1 ;

and

jz1j C jz2j C � � � C jzn�2 C jzn�1 � �yn�1j C j�j � j�j
 jzj

j�j C 1
2

�
:
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Therefore, we obtain that

Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz

� C jyj j�js�n�1
Z

jzj�2jyj

� jzj
j�j C

1

2

�s�n�1
dz

� C 0j�js�n�1jyj
Z

Rn�1

�

jwj C 1

2

�s�n�1
j�jn�1 dw

D C 0j�js�2jyj
Z

Rn�1

1

.jwj C 1=2/.n�1/C.2�s/ dw

D C 00j�js�2jyj:

(b-2) If j�j=2 � jyj � j�j, just as in the case (b-1) we obtain that

Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz � 2

Z

jzj�3jyj
jGs.z; �/j dz

� C j�js�1:

However, since we have the inequality

j�js�1 D jyj j�js�2
� j�j
jyj
�

� 2 jyj j�js�2;

it follows that, for jyj � j�j,
Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz � C jyj j�js�2:

Summing up, we have proved that

I.y; �/ WD
Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz (6.25)

�
(
C j�js�1 if jyj � j�j;
C jyj j�js�2 if jyj � j�j:

Step 2-2: The estimate of the term J.y; �/. Just as in Step (b-1), we have, by the
mean value theorem,

jGs.z � y; �/ �Gs.z; �/j � C
�
1

2
jzj C j�j

�s�n�1
jyj; 1

p
< s < 1: (6.26)
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(a) We consider the case where jyj � j�j: Since we have jzj � 2jyj, it follows that

1

2
jzj C j�j � 1

2
jzj D 1

2
jyj jzjjyj D

1

2
jyj
�
1

2

jzj
jyj C

1

2

jzj
jyj
�

� 1

2
jyj
�

1C 1

2

jzj
jyj
�

:

Hence, by using inequality (6.26) we obtain that
Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz (6.27)

� C jyj
Z

jzj�2jyj

�
1

2
jzj C j�j

�s�n�1
dz

� 2nC1�sC jyjs�n
Z

jzj�2jyj

�
1

2

jzj
jyj C 1

�s�n�1
dz

D 2nC1�sC jyjs�n
Z

jwj�2
1

.jwj=2C 1/n�1C.2�s/ jyjn�1 dw

D C 0jyjs�1:
However, we note that

jyjs�1 D
�
1

jyj
�1�s

�
�
1

j�j
�1�s

D j�js�1; 1

p
< s < 1:

Therefore, we have, by inequality (6.27),

Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz � C 0j�js�1: (6.28)

(b) We consider the case where j�j � jyj: By inequality (6.26), it follows that

Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz (6.29)

� C jyj
Z

jzj�2jyj
1

.jzj=2C j�j/s�nC1 dz

D C jyj
Z

jzj�2jyj
1

j�jn�sC1 .jzj=.2j�j/C 1/n�sC1 dz

� 2n�1C jyj
Z

Rn�1

j�js�n�1j�jn�1 1

.1C jwj/n�1C.2�s/ dw

D C 0 jyj j�js�2:
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By combining inequalities (6.28) and (6.29), we have proved that

J.y; �/ WD
Z

jzj�2jyj
jGs.z � y; �/ �Gs.z; �/j dz (6.30)

�
(
C j�js�1 if jyj � j�j;
C jyj j�js�2 if jyj � j�j:

By combining inequalities (6.25) and (6.30), we obtain that, for any y 2 Rn�1,

kg.� � y/ � g.�/kp
�
Z

R
kg�.� � y/ � g�.�/kp d�

�
Z

R
k'.�; �/kp

�Z

Rn�1

jGs.z � y; �/ �Gs.z; �/j dz

�

d�

D
Z

j�j�jyj
k'.�; �/kp

�Z

Rn�1

jGs.z � y; �/ �Gs.z; �/j dz

�

d�

C
Z

j�j�jyj
k'.�; �/kp

�Z

Rn�1

jGs.z � y; �/ �Gs.z; �/j dz

�

d�

� A
�Z

j�j�jyj
k'.�; �/kpj�js�1d� C

Z

j�j�jyj
k'.�; �/kp jyj j�js�2 d�

�

:

Hence, we have, for any y 2 Rn�1 n f0g and any � 2 R,

kg.� � y/ � g.�/kp
jyjsC.n�2/=p � A

�Z

j�j�jyj
j�j�1Cs
jyjsC.n�2/=p k'.�; �/kp d�

C
Z

j�j�jyj
jyj j�j�2Cs
jyjsC.n�2/=p k'.�; �/kp d�

�

Furthermore, by using polar coordinates we find that

Z

Rn�1

�kg.� � y/� g.�/kp
jyjsC.n�2/=p

�p
dy (6.31)

� 2p�1Ap
"Z

Rn�1

�Z

j�j�jyj
j�j�1Cs
jyjsC.n�2/=p k'.�; �/kp d�

�p
dy

#

C2p�1Ap
"Z

Rn�1

�Z

j�j�jyj
jyj j�j�2Cs
jyjsC.n�2/=p k'.�; �/kp d�

�p
dy

#
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D 2p�1Ap
"Z 1

0

Z

˙n�1

�Z

j�j�r
j�j�1Cs
rsC.n�2/=p k'.�; �/kp d�

�p
rn�2 dr d�

#

C2p�1Ap
"Z 1

0

Z

˙n�1

�Z

j�j�r
r j�j�2Cs
rsC.n�2/=p k'.�; �/kp d�

�p
rn�2 dr d�

#

:

Step 2-3: Now we estimate the last two integrals in inequality (6.31).

(a) If � > 0, it follows that
Z 1

0

1

rn�2Csp

�Z r

0

j�j�1Csk'.�; �/kp d�
�p

dr

C
Z 1

0

rp

rn�2Csp

�Z 1

r

j�j�2Csk'.�; �/kp d�
�p

dr

D
Z 1

0

�
r�sC1=p�p

�Z r

0

��1Csk'.�; �/kp d�
�p dr

r

C
Z 1

0

�
r1�sC1=p

�p
�Z 1

r

��2Csk'.�; �/kp d�
�p dr

r

WD I C II:

However, for the integral I , by applying Hardy’s inequality (Theorem 6.2)
with � WD �s C 1=p < 0 we obtain that

I � A
Z 1

0

�
��sC1=pC1��1Csk'.�; �/kp

�p d�

�
(6.32)

D A

Z 1

0

k'.�; �/kpp d�:

Similarly, for the integral II, by applying Hardy’s inequality (Theorem 6.2)
with � WD 1 � s C 1=p > 0 we obtain that

II � A0
Z 1

0

�
�1�sC1=pC1��2Csk'.�; �/kp

�p d�

�
(6.33)

D A0
Z 1

0

k'.�; �/kpp d�:

(b) If � < 0, it follows that

Z 1

0

�
r�sC1=p�p

�Z 0

�r
j�j�1Csk'.�; �/kp d�

�p
dr

r

C
Z 1

0

�
r1�sC1=p

�p
�Z �r

�1
j�j�2Csk'.�; �/kp d�

�p dr

r
;
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so that, with � WD ��,

Z 1

0

�
r�sC1=p�p

�Z r

0

��1Csk'.�;��/kp d�
�p dr

r

C
Z 1

0

�
r1�sC1=p

�p
�Z 1

r

��2Csk'.�;��/kp d�
�p dr

r

WD III C IV:

However, for the integral III, by applying Hardy’s inequality (Theorem 6.2)
with � WD �s C 1=p < 0 we obtain that

III � A
Z 1

0

�
�1�sC1=p��1Csk'.�;��/kp

�p d�

�
(6.34)

D A00
Z 1

0

k'.�;��/kp d� D A00
Z 0

�1
k'.�; �/kp d�:

Similarly, for the integral IV , by applying Hardy’s inequality (Theorem 6.2)
with � WD 1 � s C 1=p > 0 we obtain that

IV � A000
Z 1

0

�
�1�sC1=pC1��2Csk'.�;��/kp

�p d�

�
(6.35)

D A000
Z 1

0

k'.�;��/kp d� D A000
Z 0

�1
k'.�; �/kp d�:

Step 2-3: Therefore, by combining inequalities (6.32)–(6.35) we have proved that

Z

Rn�1

kg.� � y/ � g.�/kpp
jyjn�2Csp

dy � C
Z 1

�1
k'.�; �/kpp d� D Ck'kpp D Ckf kps;p:

The proof of inequality (6.17) and hence that of inequality (6.14) is complete.

Under certain hypotheses on the domain ˝ , functions in Sobolev spaces
Hs;p.˝/ may be extended as functions in Hs;p.Rn/. In this way, the trace theorem
(Theorem 6.6) remains valid for Hs;p.˝/ and Bs�1=p;p.@˝/. More precisely, we
have the following trace theorem (see Adams–Fournier [AF, Remarks 7.45]):

Theorem 6.8 (the trace theorem). Let ˝ be a bounded C1;1 domain of Rn. If 1 <
p <1, then the trace map

� D .�0; �1/ WW 2;p.˝/ �! B2�1=p;p.@˝/˚ B1�1=p;p.@˝/

u 7�!
�

uj@˝; @u

@n

ˇ
ˇ
ˇ
ˇ
@˝

�
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is continuous. Here

n D �� D .r�.x0/;�1/
p
1C jr�.x0/j2

is the unit interior normal to the boundary @˝ (see Fig. 6.1).

Indeed, it suffices to note that we have, by Theorem 6.5,

H2;p.˝/ D W 2;p.˝/:

6.5 Notes and Comments

Our treatment of Sobolev and Besov spaces is adapted from Adams–Fournier [AF],
Stein [Sn2] and Taibleson [Tb]. For more thorough treatments of function spaces,
the reader might be referred to Adams–Fournier [AF], Aronszajn–Smith [AS],
Bergh–Löfström [BL], Calderón [Ca], Stein [Sn2], Taibleson [Tb] and Triebel [Tr].

Section 6.1: Theorem 6.1 is taken from Folland [Fo2, Theorem 6.20] and
Example 6.3 is taken from Folland [Fo2, Corollary 6.21].

Section 6.2: Theorem 6.4 is adapted from Stein [Sn2]. For the proof of
Theorem 6.5, see Adams–Fournier [AF, Theorem 5.24].

Section 6.3: Theorem 6.6 is adapted from Stein [Sn1].
Section 6.4: Theorem 6.8 is adapted from Stein [Sn1] and [Sn2].



Chapter 7
Theory of Pseudo-differential Operators

In this chapter we present a brief description of the basic concepts and
results from the theory of pseudo-differential operators – a modern theory of
potentials –which will be used in the subsequent chapters. The development of the
theory of pseudo-differential operators has greatly advanced our understanding of
partial differential equations, and the pseudo-differential calculus has become an
indispensable tool in contemporary analysis, in particular, in the study of elliptic
boundary value problems. The calculus of pseudo-differential operators will be
applied to elliptic boundary value problems in Chaps. 10 and 11.

The purpose of Sect. 7.1 is to summarize the basic facts about manifolds with
boundary and the double of a manifold which are most frequently used in the theory
of partial differential equations. Let ˝ be a bounded domain of Euclidean space
Rn with smooth boundary @˝ . In Sect. 7.1 we formulate two fundamental theorems
on smooth manifolds with boundary. The first theorem (Theorem 7.2) states that
the boundary @˝ has an open neighborhood in ˝ which is diffeomorphic to @˝ �
Œ0; 1/. The second theorem (Theorem 7.3) states that ˝ is a submanifold of some
n-dimensional, smooth manifold M without boundary. This manifold M is called
the double of ˝ . In Sect. 7.2 we define the generalized Sobolev spaces Hs;p.M/

and the Besov spaces Bs;p.@˝/ where M D Ő is the double of ˝ . In Sect. 7.3 we
introduce the Fourier integral distribution

K.x/ D
Z

RN
ei'.x;�/a.x; �/ d�

associated with the phase function '.x; �/ and the amplitude a.x; �/. The operator
A is called the Fourier integral operator associated with the phase function
'.x; y; �/ and the amplitude a.x; y; �/ if its distribution kernel KA.x; y/ is given
by the Fourier integral distribution

KA.x; y/ D
Z

RN
ei'.x;y;�/a.x; y; �/ d�:

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__7,
© Springer-Verlag Berlin Heidelberg 2014

313
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In Sect. 7.4 we define pseudo-differential operators. A pseudo-differential operator
of order m is a Fourier integral operator associated with the phase function
'.x; y; �/ D .x � y/ � � and some amplitude a.x; y; �/ 2 Sm�;ı.˝ �˝ �Rn/. In this
section we study their basic properties such as the behavior of transposes, adjoints
and compositions of such operators, and the effect of a change of coordinates
on such operators. It should be emphasized that Theorem 7.18 contains all the
machinery necessary for the theory of pseudo-differential operators, and its proof
is based on Example 5.29 and the stationary phase theorem. By using the multiplier
theorem of Marcinkiewicz just as in Coifman–Meyer [CM], Bourdaud [Bd] proved
anLp boundedness theorem for pseudo-differential operators (Theorem 7.24) which
plays a fundamental role throughout the book. A global version of Theorem 7.24
will be proved in Appendix A, due to its length.

In Sect. 7.5 we describe the classical surface and volume potentials arising
in boundary value problems for elliptic differential operators in terms of
pseudo-differential operators (Theorems 7.28 and 7.29). One of the important
questions in the theory of elliptic boundary value problems is that of the smoothness
of a solution near the boundary. In Sect. 7.6 we introduce a condition about symbols
in the normal direction at the boundary (the transmission property) in order to ensure
the boundary regularity property. Moreover, it should be noticed that the notion of
transmission property is invariant under a change of coordinates which preserves
the boundary. Hence this notion can be transferred to manifolds with boundary.
Section 7.7 is devoted to the Boutet de Monvel calculus. Elliptic boundary value
problems cannot be treated directly by pseudo-differential operator methods. It was
Boutet de Monvel who brought in the operator-algebraic aspect with his calculus in
1971. He constructed a relatively small “algebra” which contains the boundary value
problems for elliptic differential operators as well as their parametrices. In Sect. 7.8
we prove (Theorem 7.36) that the distribution kernel s.x; y/ of a pseudo-differential
operator S 2 Lm1;0.Rn/ satisfies the estimate

js.x; y/j � C

jx � yjmCn ; x; y 2 R; x ¤ y:

7.1 Manifolds with Boundary and the Double of a Manifold

We denote by RnC the open half-space

RnC D fx D .x1; x2; : : : ; xn/ 2 Rn W xn > 0g :

We let

RnC D fx 2 Rn W xn � 0g;
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and let U be an open set in RnC in the topology induced on RnC from Rn. We define
the boundary @U of U to be the intersection of U with Rn�1 � f0g and the interior
IntU of U to be the complement of @U in U , that is,

@U D U \ fx 2 Rn W xn D 0g;
IntU D U \ fx 2 Rn W xn > 0g:

It is easy to see that IntU is open in U and that @U is closed in U , but not in Rn.
This inconsistent use of the notation @U is temporary.

Let U and V be two open sets in RnC. We say that a mapping f W U ! V is of
class C r .0 � r � 1/ if, for each point x of U , there exist a neighborhoodU1 of x
in Rn and a neighborhood V1 of f .x/ in Rn, and a C r mapping f1 W U1 ! V1 such
that f1jU\U1 D f jU\U1 .

Then we have the following lemma:

Lemma 7.1. Let U , V be open sets in RnC and f W U ! V a C r diffeomorphism
with 1 � r � 1. Then the mapping f induces two C r diffeomorphisms

Intf W IntU �! IntV

@f W @U �! @V:

Now we can define a C r manifold .1 � r � 1/ with boundary in the following
way: Let M be a set. An atlas of charts with boundary on M is a family of pairs
f.Ui ; 'i /gi2I satisfying the following three conditions (MB1)–(MB3):

(MB1) Each Ui is a subset of M and M D [i2IUi .
(MB2) Each 'i is a bijection of Ui onto an open subset of RnC, and for every pair i ,

j of I with Ui \ Uj ¤ ; the set 'i.Ui \ Uj / is open in RnC.
(MB3) For each pair i , j of I with Ui \ Uj ¤ ;, the mapping

'j ı '�1
i W 'i .Ui \ Uj / �! 'j .Ui \ Uj /

is a C r diffeomorphism.

Each pair .Ui ; 'i / is called a chart with boundary of the atlas.
An n-dimensional C r manifold with boundary is a set M together with an atlas

of charts with boundary on M . By virtue of Lemma 7.1, we can define two sets
IntM and @M as follows:

IntM D
[

i2I
.Int'i /

�1 .Int .'i .Ui /// ;

@M D
[

i2I
.@'i /

�1 .@.'i .Ui/// :
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M
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Fig. 7.1 The interior IntM and the boundary @M of M
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M
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Fig. 7.2 The product neighborhood V of @M

We call IntM the interior of M and @M the boundary of M , respectively (see
Fig. 7.1). The set IntM is an n-dimensional C r manifold (without boundary) with
atlas obtained from .Ui ; 'i / by replacing 'i.Ui / by Int .'i .Ui//, and the set @M is
an .n � 1/-dimensional C r manifold (without boundary) with atlas obtained from
.Ui ; 'i / by replacing 'i .Ui/ by @.'i .Ui //.

We give two fundamental theorems on smooth manifolds with boundary. The first
theorem states that @M has an open neighborhood in M which is diffeomorphic to
@M � Œ0; 1/ (see Fig. 7.2):

Theorem 7.2 (The product neighborhood theorem). LetM be an n-dimensional
paracompact smooth manifold with boundary @M . Then there exists a C1 diffeo-
morphism ' of @M � Œ0; 1/ onto an open neighborhood V of @M inM which is the
identity map on @M : V Š @M � Œ0; 1/.
The diffeomorphism ' is called a collar for M and the neighborhood V is called a
product neighborhood of @M , respectively.

The second theorem states that M is a submanifold of some n-dimensional,
smooth manifold without boundary. Let M0 D M � f0g and M1 D M � f1g be
two copies of M . The double OM of M is the topological space obtained from the
union M0 [M1 by identifying .x; 0/ with .x; 1/ for each x in @M (see Fig. 7.3).
By using the product neighborhood theorem (Theorem 7.2), we have the following
theorem:
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M0 = M × {0}

M1 = M × {1}

M̂ = M0 ∪ M1
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Fig. 7.3 The double OM of M

Theorem 7.3. If M is an n-dimensional, paracompact smooth manifold with
boundary @M , then its double OM is an n-dimensional, smooth manifold without
boundary, and is uniquely determined up to C1 diffeomorphisms.

7.2 Function Spaces

Let ˝ be a bounded domain of Euclidean space Rn with smooth boundary @˝ .
Its closure ˝ D ˝ [ @˝ is an n-dimensional, compact smooth manifold with
boundary. By virtue of Theorems 7.2 and 7.3, we may assume that the following
three conditions (a)–(c) are satisfied (see Figs. 7.4 and 7.5):

(a) The domain˝ is a relatively compact, open subset of an n-dimensional compact
smooth manifoldM without boundary.

(b) In a tubular neighborhood W of @˝ in M a normal coordinate t is chosen so
that the points of W are represented as .x0; t/, x0 2 @˝ , �1 < t < 1; t > 0 in
˝ , t < 0 in M n˝ and t D 0 only on @˝ .

(c) The manifoldM is equipped with a strictly positive density � which, on W , is
the product of a strictly positive density ! on @˝ and the Lebesgue measure dt
on .�1; 1/. The manifoldM D Ő is the double of ˝ .

Now we define the generalized Sobolev spaces Hs;p.M/ and the Besov spaces
Bs;p.@˝/ where M D Ő is the double of ˝ .

First, we introduce distributions which behave locally just like the distributions
in Hs;p.Rn/:

H
s;p
loc .˝/ D the space of distributions u 2 D0.˝/ such that

'u 2 Hs;p.Rn/ for all ' 2 C1
0 .˝/:
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Fig. 7.5 The tubular neighborhood W of @˝

We equip the space Hs;p
loc .˝/ with the topology defined by the seminorms u 7!

k'uks;p as ' ranges over C1
0 .˝/. It is easy to verify that the localized Sobolev

space Hs;p
loc .˝/ is a Fréchet space.

The localized Besov space Bs;p
loc .˝/ is defined similarly, with Hs;p.Rn/ replaced

by Bs;p.Rn/.
Secondly, we show the invariance of the space Hs;p

loc .˝/ under C1 diffeomor-
phisms. To do this, let ˝1, ˝2 be two open subsets of Rn and � W ˝1 ! ˝2 a C1
diffeomorphism. If v 2 D0.˝2/, then we can define a distribution ��v 2 D0.˝1/ by
the formula

h��v; 'i D ˝v; ' ı ��1 � ˇˇdet .J.��1//
ˇ
ˇ˛ ; ' 2 C1

0 .˝1/;

where J.��1/ is the Jacobian matrix of ��1. The distribution ��v is called the
inverse image of v under �.

It is easy to see that the mapping v 7! ��v is an isomorphism of Hs;p
loc .˝2/ onto

H
s;p
loc .˝1/ and that its inverse is the mapping u 7! .��1/�u. The situation can be

visualized in the following diagram:

( −1)∗u ∈ D (Ω2)
(χ

χ

χ

−1)∗
←−−−− D (Ω1) u

⏐⏐ ⏐⏐

v ∈ Hs,p
loc (Ω2) −−−−→

χ∗
Hs,p

loc (Ω1) ∗v
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Thirdly, the Sobolev spacesHs;p.M/ on the doubleM D Ő can be defined to be
locally the Sobolev spacesHs;p.Rn/, upon using local coordinate systems flattening
out M , together with a partition of unity, in the following way: We let

Hs;p.M/ D the space of distributions u 2 D0.M/ such that, for any

admissible chart .U; �/ on M , the inverse image .��1/�.ujU /
of ujU under ��1 belongs to Hs;p

loc .�.U //:

We equip the spaceHs;p.M/ with the topology defined by the family of seminorms

u 7�! k Q' � ���1�� .ujU /ks;p
where .U; �/ ranges over all admissible charts on M and Q' ranges over the space
C1
0 .�.U //.

By the compactness of M , we can find an atlas f.Uj ; �j /gNjD1 consisting of
finitely many charts on M . Let f'j gNjD1 be a partition of unity subordinate to the
covering fUj gNjD1. Then the norm of Hs;p.M/ can be defined by the formula

kuks;p D
NX

jD1

�
�
�

��1
j

��
.'j u/

�
�
�
s;p
;

where k � ks;p on the right-hand side is the norm of Hs;p.Rn/. Hence the Sobolev
space Hs;p.M/ is a Banach space.

The Besov spaces Bs;p.@˝/ on the boundary @˝ are defined similarly, with
Hs;p.Rn/ replaced by Bs;p.Rn�1/ (see Sect. 6.3). The norm of Bs;p.@˝/ will be
denoted by j � js;p .

Finally, we state two important theorems which will be used in the study of
elliptic boundary value problems:

(i) (The trace theorem) Let 1 < p <1. Then the trace map

�0 W Hs;p.˝/ �! Bs�1=p;p.@˝/

u 7�! uj@˝
is continuous for every s > 1=p (Theorem 6.5), and is surjective.

(ii) (The Rellich–Kondrachov theorem) If s > t , then the injections

Hs;p.M/ �! Ht;p.M/;

Bs;p.@˝/ �! Bt;p.@˝/

are both compact (or completely continuous).
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7.3 Fourier Integral Operators

7.3.1 Symbol Classes

Let ˝ be an open subset of Rn. If m 2 R and 0 � ı < � � 1, we let

Sm�;ı.˝ �RN / D the set of all functions a.x; �/ 2 C1.˝ �RN / with

the property that, for any compactK 	 ˝ and any

multi-indices ˛, ˇ, there exists a constant CK;˛;ˇ > 0

such that we have, for all x 2 K and � 2 RN ,
ˇ
ˇ@˛� @

ˇ
xa.x; �/

ˇ
ˇ � CK;˛;ˇ.1C j� j/m��j˛jCıjˇj:

The elements of Sm�;ı.˝ �RN / are called symbols of orderm. We drop the ˝ �RN

and use Sm�;ı when the context is clear.
If K is a compact subset of ˝ and j is a non-negative integer, we define

a seminorm pK;j;m on Sm�;ı.˝ �RN / by the formula

Sm�;ı.˝ � RN / 3 a 7�! pK;j;m.a/ D sup
x2K
�2RNj˛jCjˇj�j

ˇ
ˇ
ˇ@˛� @

ˇ
xa.x; �/

ˇ
ˇ
ˇ

.1C j� j/m��j˛jCıjˇj :

We equip the space Sm�;ı.˝ �RN / with the topology defined by the family fpK;j;mg
of seminorms where K ranges over all compact subsets of ˝ and j D 0, 1, : : :. It
is easy to see that the space Sm�;ı.˝ �RN / is a Fréchet space.

We give some simple examples of symbols:

Example 7.4. (1) A polynomial p.x; �/ D P
j˛j�m a˛.x/�˛ of order m with

coefficients a˛.x/ in C1.˝/ is in the class Sm1;0.˝ � Rn/.
(2) If m 2 R, the function

˝ � Rn 3 .x; �/ 7�! h�im

is in the class Sm1;0.˝ � Rn/, where

h�i D .1C j�j2/1=2 D �1C �21 C �22 C : : :C �2n
�1=2

:

(3) A function a.x; �/ 2 C1.˝�.RN nf0g// is said to be positively homogeneous
of degreem in � if it satisfies the condition

a.x; t�/ D tma.x; �/ for all t > 0:
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If a.x; �/ is positively homogeneous of degree m in � and if '.�/ is a smooth
function such that '.�/ D 0 for j� j � 1=2 and '.�/ D 1 for j� j � 1, then the
function '.�/a.x; �/ is in the class Sm1;0.˝ � RN /.

We set

S�1.˝ � RN / D
\

m2R

Sm�;ı.˝ � RN /:

For example, every function '.�/ 2 S.RN / is in the class S�1.˝ � RN /. More
precisely, we have

S�1.˝ �RN / D C1.˝/ Ő �S.RN /;

where the space C1.˝/ Ő �S.RN / is the completed �-topology (or projective
topology) tensor product of the Fréchet spaces C1.˝/ and S.RN / (see Schaefer
[Sa, Chapter III, Section 6], Treves [Tv, Chapter 45]).

The next theorem gives a meaning to a formal sum of symbols of decreasing
order:

Theorem 7.5. Let ˝ be an open subset of Rn and 0 � ı < � � 1. If aj .x; �/ 2
S
mj
�;ı .˝ � RN / with mj # �1, j D 0, 1, : : :, then there exists a symbol a.x; �/ 2
S
m0
�;ı .˝ � RN /, unique modulo S�1.˝ �RN /, such that we have, for all k � 1,

a.x; �/ �
k�1X

jD0
aj .x; �/ 2 Smk�;ı .˝ � RN /: (7.1)

If formula (7.1) holds true, we write

a.x; �/ �
1X

jD0
aj .x; �/:

The formal sum
P

j aj .x; �/ is called an asymptotic expansion of a.x; �/.
A symbol a.x; �/ in Sm1;0.˝ � RN / is said to be classical if there exist smooth

functions aj .x; �/, positively homogeneous of degreem � j in � for j� j � 1, such
that

a.x; �/ �
1X

jD0
aj .x; �/:

The homogeneous function a0.x; �/ of degree m is called the principal part of
a.x; �/.

We let

Smcl .˝ �RN / D the set of all classical symbols of orderm:
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It should be emphasized that the subspace Smcl .R
N /, defined as the set of all

x-independent elements of Smcl .˝ � RN /, is closed in the induced topology, and
we have

Smcl .˝ �RN / D C1.˝/ Ő �Smcl .R
N /:

We give some simple examples of classical symbols:

Example 7.6. The symbols in Examples 7.4 are all classical, and they have
respectively as principal part the following functions:

(1) pm.x; �/ DPj˛jDm a˛.x/�˛ for p.x; �/ DPj˛j�m a˛.x/�˛ .
(2) j�jm for .1C j�j2/m=2.
(3) a.x; �/ for '.�/a.x; �/.

A symbol a.x; �/ in Sm�;ı.˝ � RN / is said to be elliptic of order m if, for any
compactK 	 ˝ , there exists a constant CK > 0 such that

ja.x; �/j � CK.1C j� j/m; x 2 K; j� j � 1

CK
:

There is a simple criterion for ellipticity in the case of classical symbols:

Theorem 7.7. Let a.x; �/ be in Smcl .˝ � RN / with principal part a0.x; �/. Then
a.x; �/ is elliptic if and only if we have the condition

a0.x; �/ ¤ 0 for all x 2 ˝ and j� j D 1:

7.3.2 Phase Functions

Let˝ be an open subset of Rn. A function '.x; �/ in C1.˝� .RN nf0g// is called
a phase function on ˝ � .RN n f0g/ if it satisfies the following three conditions
(a)–(c):

(a) '.x; �/ is real-valued.
(b) '.x; �/ is positively homogeneous of degree one in the variable � .
(c) The differential d' does not vanish on the space ˝ � .RN n f0g/.

We give some important examples of phase functions:

Example 7.8. (a) Let U be an open subset of Rp and ˝ D U � U . The function

'.x; y; �/ D .x � y/ � � D
pX

kD1
.xk � yk/�k
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is a phase function on the space˝ � .Rp n f0g/ (n WD 2p, N WD p). The phase
function '.x; y; �/ will be used for pseudo-differential operators (see Sect. 7.4).

(b) Let ˝ 0 be an open subset of Rn�1 and˝ D .˝ 0 �RC/ �˝ 0. The function

'K.x; y
0; � 0; �n/ D .x0 � y0/ � � 0 C xn �n D

n�1X

kD1
.xk � yk/�k C xn �n

is a phase function on the space˝�.Rnnf0g/ (n WD 2n�1,N WD n). The phase
function 'K.x; y0; � 0; �n/ will be used for potential operators (see Sect. 7.7.1).

(c) Let ˝ 0 be an open subset of Rn�1 and˝ D ˝ 0 � .˝ 0 �RC/. The function

'T .x
0; y; � 0; �n/ D .x0 � y0/ � � 0 � yn �n

is a phase function on the space˝�.Rnnf0g/ (n WD 2n�1,N WD n). The phase
function 'T .x0; y; � 0; �n/ will be used for trace operators (see Example 7.13(3)).

(d) Let ˝ 0 be an open subset of Rn�1 and ˝ D .˝ 0 � RC/ � .˝ 0 � RC/. The
function

'B.x; y; �
0; �n; �n/ D .x0 � y0/ � � 0 � yn �n C xn �n

is a phase function on the space ˝ � .RnC1 n f0g/ (n WD 2n, N WD n C 1).
The phase function 'B.x; y; � 0; �n; �n/will be used for singular Green operators
(see Sect. 7.7.1).

The next lemma will play a fundamental role in defining oscillatory integrals:

Lemma 7.9. If '.x; �/ is a phase function on ˝ � .RN n f0g/, then there exists a
first-order differential operator

L D
NX

jD1
aj .x; �/

@

i@�j
C

nX

kD1
bk.x; �/

@

i@xk
C c.x; �/

such that

L.ei'/ D ei';
and its coefficients aj .x; �/, bk.x; �/, c.x; �/ enjoy the properties

aj .x; �/ 2 S01;0; bk.x; �/ 2 S�1
1;0 ; c.x; �/ 2 S�1

1;0 :

Furthermore, the transpose L0 of L has coefficients a0
j .x; �/, b

0
k.x; �/, c

0.x; �/ in
the same symbol classes as aj .x; �/, bk.x; �/, c.x; �/, respectively.

For example, if '.x; y; �/ is a phase function as in Example 7.8(a)

'.x; y; �/ D .x � y/ � �; .x; y/ 2 U � U; � 2 .Rp n f0g/ ;
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then the operator L is given by the formula

L D 1 � �.�/
2C jx � yj2

8
<

:

pX

jD1
.xj � yj / @

i@�j
C

pX

kD1

�k

j�j2
@

i@xk
C

pX

kD1

��k
j�j2

@

i@yk

9
=

;

C�.�/;

where �.�/ is a function in C1
0 .R

p/ such that �.�/ D 1 for j�j � 1.

7.3.3 Oscillatory Integrals

Let ˝ be an open subset of Rn and 0 � ı < � � 1. We let

S1
�;ı

�
˝ � RN

� D
[

m2R

Sm�;ı
�
˝ � RN

�
:

If '.x; �/ is a phase function on ˝ � .RN n f0g/, we wish to give a meaning to the
integral

I'.au/ D
“

˝�RN
ei'.x;�/a.x; �/u.x/ dx d�; u 2 C1

0 .˝/; (7.2)

for each symbol a.x; �/ 2 S1
�;ı.˝ � RN /.

By Lemma 7.9, we can replace ei' in formula (7.2) by L.ei'/. Then a formal
integration by parts gives us that

I'.au/ D
“

˝�RN
ei'.x;�/L0.a.x; �/u.x// dx d�:

However, the properties of the coefficients of L0 imply that L0 maps Sr�;ı contin-

uously into Sr���;ı for every r 2 R, where � D min.�; 1 � ı/. By continuing this
process, we can reduce the growth of the integrand at infinity until it becomes
integrable, and give a meaning to the integral (7.2) for each symbol a.x; �/ 2
S1
�;ı.˝ � RN /.

More precisely, we have the following theorem:

Theorem 7.10. Let ˝ be an open subset of Rn and 0 � ı < � � 1. Then we have
the following two assertions (i) and (ii):

(i) The linear functional

S�1 �
˝ � RN

� 3 a 7�! I'.au/ 2 C
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extends uniquely to a linear functional ` on S1
�;ı.˝ � RN / whose restriction to

each Sm�;ı.˝�RN / is continuous. Furthermore, the restriction to Sm�;ı.˝�RN /

of ` is expressed in the form

`.a/ D
“

˝�RN
ei'.x;�/.L0/k.a.x; �/u.x// dx d�;

where k > .mCN/=�, � D min.�; 1 � ı/.
(ii) For any fixed a.x; �/ 2 Sm�;ı.˝ � RN /, the mapping

C1
0 .˝/ 3 u 7�! I'.au/ D `.a/ 2 C (7.3)

is a distribution of order � k for k > .mCN/=�.

We call the linear functional ` on S1
�;ı.˝ � RN / an oscillatory integral, but use

the standard notation as in formula (7.2). The distribution (7.3) is called the Fourier
integral distribution associated with the phase function '.x; �/ and the amplitude
a.x; �/, and is denoted by the formula

Z

RN
ei'.x;�/a.x; �/ d�:

A consequence of Theorem 7.10 is that the usual rules of integration theory such
as Fubini’s theorem and partial integration hold true for oscillatory integrals.

We give some simple examples of Fourier integral distributions:

Example 7.11. (a) The Dirac measure ı.x/ may be expressed as an oscillatory
integral in the form

ı.x/ D 1

.2�/n

Z

Rn
eix�� d�:

This formula is called the plane-wave expansion of the delta function (cf.
Gel’fand–Shilov [GS]).

(b) The distributions v:p: .xj =jxjnC1/, 1 � j � n, are expressed in the form

v:p:
xj

jxjnC1 D �
i

2n� ..nC 1/=2/�.n�1/=2

Z

Rn
eix�� �j
j�j d�; 1 � j � n:

Indeed, it suffices to note that cRj .�/ D �j =j�j, 1 � j � n, as stated in
Examples 5.30 in Chap. 5.

If u is a distribution on ˝ , then the singular support of u is the smallest closed
subset of ˝ outside of which u is smooth. The singular support of u is denoted by
sing supp u.
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The next theorem estimates the singular support of a Fourier integral distribution:

Theorem 7.12. Let ˝ be an open subset of Rn and 0 � ı < � � 1. If '.x; �/ is a
phase function on˝�.RN nf0g/ and if a.x; �/ is in S1

�;ı.˝�RN /, then the Fourier
integral distribution

K.x/ D
Z

RN
ei'.x;�/a.x; �/ d� 2 D0.˝/

satisfies the condition

sing suppK 	 ˚x 2 ˝ W d�'.x; �/ D 0 for some � 2 RN n f0g� :

7.3.4 Definitions and Basic Properties of Fourier Integral
Operators

Let U and V be open subsets of Rp and Rq , respectively, and 0 � ı < � � 1. If
'.x; y; �/ is a phase function on U � V � .RN n f0g/ and if a.x; y; �/ is a symbol
in S1

�;ı.U �V �RN /, then there is associated a distributionK 2 D0.U �V / defined
by the formula

K.x; y/ D
Z

RN
ei'.x;y;�/a.x; y; �/ d�:

By applying Theorem 7.12 with ˝ WD U � V and n WD p C q, we obtain that

sing suppK 	 ˚.x; y/ 2 U � V W d�'.x; y; �/ D 0 for some � 2 RN n f0g� :

The distributionK.x; y/ 2 D0.U � V / defines a continuous linear operator

A W C1
0 .V / �! D0.U /

by the formula

hAv; ui D hK; u˝ vi ; u 2 C1
0 .U /; v 2 C1

0 .V /:

The operator A is called the Fourier integral operator associated with the phase
function '.x; y; �/ and the amplitude a.x; y; �/, and is denoted as follows:

Av.x/ D
“

V�RN
ei'.x;y;�/a.x; y; �/v.y/ dy d�; v 2 C1

0 .V /:
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We give some simple examples of Fourier integral operators:

Example 7.13. (1) Let U be an open subset of Rn. The identity operator of the
space C1

0 .U / can be expressed as a Fourier integral operator in the form

u.x/ D 1

.2�/n

“

U�Rn
ei.x�y/��u.y/ dyd�; u 2 C1

0 .U /:

(2) A differential operator

P.x;D/ D
X

j˛j�m
a˛.x/D

˛; a˛.x/ 2 C1.U /;

with characteristic polynomial

p.x; �/ D
X

j˛j�m
a˛.x/�

˛;

can be expressed in the form

P u.x/ D 1

.2�/n

“

U�Rn
ei.x�y/�� p.x; �/ u.y/ dy d�; u 2 C1

0 .U /:

(3) Let V be an open subset of Rn
y and let U be an open subset of Rn�1

x0 such that

V \ �Rn�1 � f0g� D U � f0g:

If � is the trace operator, defined by the formula

� WC1
0 .V / �! C1.U /

v 7�! v.x0; 0/;

then it can be expressed in the form

.�v/.x0/ D 1

.2�/n

“

V�Rn
ei.x

0�y0/��0�iyn�nv.y/ dyd�; v 2 C1
0 .V /:

Trace operators for the classes of Fourier integral operators have a formal
meaning here. In Sect. 7.7.1 we define trace, potential and singular Green operators
in the half-space RnC as an essential tool for studying elliptic boundary value
problems.

It is natural to ask whether the Fourier integral operator A W C1
0 .V / ! D0.U /

induces a continuous linear operator

A W C1
0 .V / �! C1.U /
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and when the operator A has a continuous extension

A W E 0.V / �! D0.U /:

The next theorem summarizes some basic properties of the Fourier integral
operator A with phase function '.x; y; �/:

Theorem 7.14. (i) If dy;�'.x; y; �/ ¤ 0 on U �V � .RN nf0g/, then the Fourier
integral operator A maps C1

0 .V / continuously into C1.U /.
(ii) If dx;�'.x; y; �/ ¤ 0 on U �V �.RN nf0g/, then the Fourier integral operator

A extends to a continuous linear operator on E 0.V / into D0.U /.
(iii) If dy;�'.x; y; �/ ¤ 0 and dx;�'.x; y; �/ ¤ 0 on U � V � .RN n f0g/, then we

have, for all v 2 E 0.V /,

sing suppAv

	 ˚x 2 U W d�'.x; y; �/ D 0 for some y 2 sing supp v and � 2 RN n f0g� :

The situation can be visualized in the following diagram:

E (V ) A−−−−→ D (U)
⏐⏐ ⏐⏐

C∞
0 (V ) −−−−→

A
C∞(U)

7.4 Pseudo-differential Operators

In this section we define pseudo-differential operators and study their basic
properties such as the behavior of transposes, adjoints and compositions of such
operators, and the effect of a change of coordinates on such operators. Furthermore,
we formulate classical surface and volume potentials in terms of pseudo-differential
operators. This calculus of pseudo-differential operators will be applied to elliptic
boundary value problems in Chaps. 11–13.

7.4.1 Definitions of Pseudo-differential Operators

Let ˝ be an open subset of Rn and 0 � ı < � � 1. A pseudo-differential operator
of orderm on ˝ is a Fourier integral operator of the form

Au.x/ D
“

˝�Rn
ei.x�y/��a.x; y; �/u.y/ dy d�; u 2 C1

0 .˝/; (7.4)
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with some a.x; y; �/ 2 Sm�;ı.˝ � ˝ � Rn/. In other words, a pseudo-differential
operator of orderm is a Fourier integral operator associated with the phase function
'.x; y; �/ D .x � y/ � � and some amplitude a.x; y; �/ 2 Sm�;ı.˝ �˝ �Rn/.

For example, the Bessel potential J s D .I � 
/�s=2, s > 0, is a
pseudo-differential operator of order �s with amplitude

a.x; y; �/ D 1

.2�/n
1

.1C j�j2/s=2 2 S
�s
1;0 .R

n � Rn � Rn/:

Indeed, it suffices to note (see Examples 5.20 and 5.25) that

.I �
/�s=2u.x/ D Gs � u.x/

D 1

.2�/n

Z

Rn
eix��cGs.�/Ou.�/ d�

D
“

Rn�Rn
ei.x�y/��

�
1

.2�/n
1

.1C j�j2/s=2
�

u.y/ dyd�; u 2 C1
0 .R

n/:

We let

Lm�;ı.˝/ D the set of all pseudo-differential operators of orderm on ˝:

By applying Theorems 7.12 and 7.14 to our situation, we obtain the following three
assertions (1)–(3):

(1) A pseudo-differential operatorA maps the space C1
0 .˝/ continuously into the

spaceC1.˝/ and extends to a continuous linear operatorA W E 0.˝/! D0.˝/.
The situation may be represented by the following diagram:

E (Ω) A−−−−→ D (Ω)
⏐⏐ ⏐⏐

C∞
0 (Ω) −−−−→

A
C∞(Ω)

(2) The distribution kernelKA.x; y/, defined by the formula

KA.x; y/ D
Z

RN
ei.x�y/��a.x; y; �/ d�;

of a pseudo-differential operator A satisfies the condition

sing suppKA 	 f.x; x/ W x 2 ˝g;

that is, the kernelKA.x; y/ is smooth off the diagonal 
˝ D f.x; x/ W x 2 ˝g
in ˝ �˝ .
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Ω

Ω

K

K ′

suppAFig. 7.6 Condition (a) on
suppA

(3) sing suppAu 	 sing supp u for every u 2 E 0.˝/. In other words, Au is smooth
whenever u is. This property is referred to as the pseudo-local property.

We set

L�1.˝/ D
\

m2R

Lm�;ı.˝/:

The next theorem characterizes the class L�1.˝/:

Theorem 7.15. The following three conditions (i)–(iii) are equivalent:

(i) A 2 L�1.˝/.
(ii) A is written in the form (7.4) with some a.x; y; �/ 2 S�1.˝ �˝ � Rn/.

(iii) A is a regularizer, or equivalently, its distribution kernel KA.x; y/ is in the
space C1.˝ �˝/ (see Theorem 5.36).

A continuous linear operator A W C1
0 .˝/ ! D0.˝/ is said to be properly

supported if the following two conditions (a) and (b) are satisfied (see Figs. 7.6
and 7.7):

(a) For any compact subset K of ˝ , there exists a compact subset K 0 of ˝ such
that

supp v 	 K H) suppAv 	 K 0:

(b) For any compact subset K 0 of ˝ , there exists a compact subset K 
 K 0 of ˝
such that

supp v \K D ; H) suppAv \K 0 D ;:
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Ω
K

K ′

Ω suppAFig. 7.7 Condition (b) on
suppA

If A is properly supported, then it maps C1
0 .˝/ (resp. C1.˝/) continuously

into itself, and further it extends to a continuous linear operator on E 0.˝/ (resp.
D0.˝/) into itself. The situation may be represented by the following diagrams:

E (Ω) A−−−−→ E (Ω)
⏐⏐ ⏐⏐

C∞
0 (Ω) −−−−→

A
C∞

0 (Ω)

D (Ω) A−−−−→ D (Ω)
⏐⏐ ⏐⏐

C∞(Ω) −−−−→
A

C∞(Ω)

The next theorem states that every pseudo-differential operator can be written as
the sum of a properly supported operator and a regularizer:

Theorem 7.16. Let˝ be an open subset of Rn and 0 � ı < � � 1. IfA 2 Lm�;ı.˝/,
then we have the decomposition

A D A0 CR;

where A0 2 Lm�;ı.˝/ is properly supported and R 2 L�1.˝/.
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Proof. Choose a function �.x; y/ in C1.˝ � ˝/ that satisfies the following two
conditions (a) and (b) (cf. Figs. 7.6 and 7.7):

(a) �.x; y/ D 1 in a neighborhood of the diagonal f.x; x/ W x 2 ˝g in ˝ �˝ .
(b) The restrictions to supp� of the projections pi W ˝ �˝ 3 .x1; x2/ 7! xi 2 ˝ ,

i D 1, 2, are proper mappings.

Then the operators A0 and R, defined respectively by the kernels

KA0.x; y/ D �.x; y/KA.x; y/;

KR.x; y/ D .1 � �.x; y//KA.x; y/;

are the desired ones.
The proof of Theorem 7.16 is complete.

If p.x; �/ 2 Sm�;ı.˝ � Rn/, then the operator p.x;D/, defined by the formula

p.x;D/u.x/ D 1

.2�/n

Z

Rn
eix�� p.x; �/Ou.�/ d�; u 2 C1

0 .˝/; (7.5)

is a pseudo-differential operator of orderm on ˝ , that is, p.x;D/ 2 Lm�;ı.˝/.
The next theorem asserts that every properly supported pseudo-differential

operator can be reduced to the form (7.5):

Theorem 7.17. Let˝ be an open subset of Rn and 0 � ı < � � 1. If A 2 Lm�;ı.˝/
is properly supported, then we have

p.x; �/ D e�ix��A.eix��/ 2 Sm�;ı.˝ �Rn/;

and

A D p.x;D/:
Furthermore, if a.x; y; �/ 2 Sm�;ı.˝ �˝ �Rn/ is an amplitude for A, then we have
the asymptotic expansion

p.x; �/ �
X

˛�0

1

˛Š
@˛� D

˛
y .a.x; y; �//

ˇ
ˇ
ˇ
ˇ
yDx

:

The function p.x; �/ is called the complete symbol of A.

We extend the notion of a complete symbol to the whole space Lm�;ı.˝/. If A 2
Lm�;ı.˝/, we choose a properly supported operatorA0 2 Lm�;ı.˝/ such thatA�A0 2
L�1.˝/, and define

�.A/ D the equivalence class of the complete symbol of A0 in

Sm�;ı.˝ � Rn/=S�1.˝ � Rn/:
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In view of Theorems 7.15 and 7.16, it follows that �.A/ does not depend on the
properly supported operator A0 chosen. The equivalence class �.A/ is called the
complete symbol of A. It is easy to see that the mapping

Lm�;ı.˝/ 3 A 7�! �.A/ 2 Sm�;ı.˝ � Rn/=S�1.˝ �Rn/

induces an isomorphism

Lm�;ı=L
�1 �! Sm�;ı=S

�1:

We shall often identify the complete symbol �.A/ with a representative in the
class Sm�;ı.˝ � Rn/ for notational convenience, and call any member of �.A/
a complete symbol of A.

A pseudo-differential operatorA 2 Lm1;0.˝/ is said to be classical if its complete
symbol �.A/ has a representative in the class Smcl .˝ �Rn/.

We let

Lmcl.˝/ D the set of all classical pseudo-differential operators of orderm

on ˝:

Then the mapping

Lmcl.˝/ 3 A 7�! �.A/ 2 Smcl .˝ � Rn/=S�1.˝ � Rn/

induces an isomorphism

Lmcl=L
�1 �! Smcl =S

�1:

Also we have

L�1.˝/ D
\

m2R

Lmcl.˝/:

If A 2 Lmcl.˝/, then the principal part of �.A/ has a canonical representative
�A.x; �/ 2 C1.˝ � .Rn n f0g// which is positively homogeneous of degree m in
the variable �. The function �A.x; �/ is called the homogeneous principal symbol
of A. For example, the Bessel potential J s D .I � 
/�s=2, s 2 Rn, is a classical
pseudo-differential operator on Rn with homogeneous principal symbol j�j�s .

7.4.2 Basic Properties of Pseudo-differential Operators

Let ˝ be an open subset of Rn. A subset � of ˝ � RN is said to be conic if it
satisfies the condition

.x; �/ 2 � H) .x; t�/ 2 � for all t > 0:
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Let a.x; �/ be a function in C1.˝ � RN /. Then the conic support of a, denoted
by conic supp a, is the smallest closed conic subset of ˝ � RN outside of which
a.x; �/ vanishes.

The next theorem plays a crucial role in the theory of pseudo-differential
operators:

Theorem 7.18. Let ˝ be an open subset of Rn and 1 � � � ı < � � 1. We are
given the following:

(a) A pseudo-differential operator P 2 Lm�;ı.˝/.
(b) A symbol a.y; �/ 2 Sq�;ı.˝ �RN /.

(c) A phase function  .x; �/ 2 C1.˝ � .RN n f0g// which satisfies the condition

dx .x; �/ ¤ 0 for all .x; �/ 2 conic supp a and � ¤ 0:

Assume that either the operator P is properly supported or the symbol a.y; �/ has
a compact support with respect to y in ˝ .

If we let

b.x; �/ D e�i .x;�/P.a.y; �/ei .y;�//.x; �/; .x; �/ 2 ˝ �RN ;

then we have the following three assertions (i)–(iii):

(i) b.x; �/ 2 SmCq
�;ı .˝ � .RN n f0g//.

(ii) The function b.x; �/ has an asymptotic expansion

b.x; �/

�
X

˛�0; ˇ�0

1

˛ŠˇŠ
@
˛Cˇ
� Dˇ

y .p.x; y; dx .x; �///

ˇ
ˇ
ˇ
ˇ
yDx

D˛
y .a.y; �/e

ir.x;y;�//

ˇ
ˇ
ˇ
ˇ
yDx

:

Here p.x; y; �/ 2 Sm�;ı.˝ �˝ � RN / is an amplitude for P 2 Lm�;ı.˝/ and

r.x; y; �/ D  .y; �/ �  .x; �/ � hdx .x; �/; y � xi ;
.x; y; �/ 2 ˝ �˝ � .RN n f0g/:

(iii) In particular, we have

b.x; �/ � p.x; x; dx .x; �//a.x; �/ mod SmCq�1
�;ı .˝ �˝ � .RN n f0g//:

Theorem 7.18 contains all the machinery necessary for the theory of
pseudo-differential operators. In fact, Theorems 7.17, 7.19, 7.20 and 7.22 can
be easily obtained from Theorem 7.18 respectively by taking p.x; y; �/,  .x; �/
and a.y; �/ as in the following diagram:
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The proof of Theorem 7.18 is based on Example 5.29 and the stationary phase
theorem.

The next two theorems assert that the class of pseudo-differential operators forms
an algebra closed under the operations of composition of operators and taking the
transpose or adjoint of an operator:

Theorem 7.19. Let˝ be an open subset of Rn and 0 � ı < � � 1. IfA 2 Lm�;ı.˝/,
then its transpose A0 and its adjoint A� are both in Lm�;ı.˝/, and the complete
symbols �.A0/ and �.A�/ have respectively the following asymptotic expansions:

�.A0/.x; �/ �
X

˛�0

1

˛Š
@˛� D

˛
x .�.A/.x;��//;

�.A�/.x; �/ �
X

˛�0

1

˛Š
@˛� D

˛
x .�.A/.x; �//:

Theorem 7.20. Let ˝ be an open subset of Rn. If A 2 Lm
0

�0 ;ı0.˝/ and B 2
Lm

00

�00 ;ı00.˝/ where 0 � ı0 < �00 � 1 and if one of them is properly supported,

then the composition AB is in Lm
0Cm00

�;ı .˝/ with � D min.�0; �00/, ı D max.ı0; ı00/,
and we have the asymptotic expansion

�.AB/.x; �/ �
X

˛�0

1

˛Š
@˛� .�.A/.x; �// �D˛

x .�.B/.x; �// :

A pseudo-differential operator A 2 Lm�;ı.˝/ is said to be elliptic of order m if
its complete symbol �.A/ is elliptic of order m. In view of Theorem 7.7, it follows
that a classical pseudo-differential operator A 2 Lmcl.˝/ is elliptic if and only if its
homogeneous principal symbol �A.x; �/ does not vanish on the space˝�.Rnnf0g/.

The next theorem states that elliptic operators are the “invertible” elements in the
algebra of pseudo-differential operators:

Theorem 7.21. Let ˝ be an open subset of Rn and 0 � ı < � � 1. An operator
A 2 Lm�;ı.˝/ is elliptic if and only if there exists a properly supported operator
B 2 L�m

�;ı .˝/ such that

(
AB � I mod L�1.˝/;
BA � I mod L�1.˝/:
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Such an operator B is called a parametrix for A. In other words, a parametrix
for A is a two-sided inverse of A modulo L�1.˝/. We observe that a parametrix is
unique modulo L�1.˝/.

The next theorem proves the invariance of pseudo-differential operators under
a change of coordinates:

Theorem 7.22. Let ˝1, ˝2 be two open subsets of Rn and let � W ˝1 ! ˝2 be a
C1 diffeomorphism. If A 2 Lm�;ı.˝1/, where 1� � � ı < � � 1, then the mapping

��A W C1
0 .˝2/ �! C1.˝2/

v 7�! A.v ı �/ ı ��1

is in the class Lm�;ı.˝2/, and we have the asymptotic expansion

�.��A/.y; �/ �
X

˛�0

1

˛Š


@˛� �.A/

�
.x; t�0.x/ � �/ � D˛

z

�
eir.x;z;�/

�ˇˇ
zDx ; (7.6)

with

r.x; z; �/ D ˝�.z/ � �.x/ � �0.x/ � .z � x/; �˛ :

Here x D ��1.y/, �0.x/ is the derivative of � at x and t�0.x/ is its transpose.

The situation may be represented by the following diagram:

C∞
0 (Ω1)

A−−−−→ C∞(Ω1)

χ∗⏐⏐
⏐⏐

χ∗

C∞
0 (Ω2) −−−−→

χ∗A
C∞(Ω2)

Here ��v D v ı � is the pull-back of v by � and ��u D u ı ��1 is the push-forward
of u by �, respectively.

Remark 7.23. Formula (7.6) shows that

�.A�/.y; �/ � �.A/
�
x; t�0.x/ � �� mod Sm�.��ı/

�;ı :

Note that the mapping

˝2 � Rn 3 .y; �/ 7�! �
x; t�0.x/ � �� 2 ˝1 � Rn

is just a transition map of the cotangent bundle T �.Rn/. This implies that the
principal symbol �m.A/ of A 2 Lm�;ı.Rn/ can be invariantly defined on T �.Rn/

when 1 � � � ı < � � 1.



7.4 Pseudo-differential Operators 337

A differential operator of ordermwith smooth coefficients on˝ is continuous on
H
s;p
loc .˝/ (resp. Bs;p

loc .˝/) into Hs�m;p
loc .˝/ (resp. Bs�m;p

loc .˝/) for all s 2 R. These
results extend to pseudo-differential operators:

Theorem 7.24. Every properly supported operator A 2 Lm1;ı.˝/, 0 � ı < 1,
extends to a continuous linear operator A W Hs;p

loc .˝/! H
s�m;p
loc .˝/ for all s 2 R

and 1 < p <1, and it also extends to a continuous linear operatorA W Bs;p
loc .˝/!

B
s�m;p
loc .˝/ for all s 2 R and 1 � p � 1.

The situation may be represented by the following diagrams:

D (Ω) A−−−−→ D (Ω)
⏐⏐ ⏐⏐

Hs,p
loc (Ω) A−−−−→ Hs−m,p

loc (Ω)
⏐⏐ ⏐⏐

C∞(Ω) −−−−→
A

C∞(Ω)

D (Ω) A−−−−→ D (Ω)
⏐⏐ ⏐⏐

Bs,p
loc (Ω) A−−−−→ Bs−m,p

loc (Ω)
⏐⏐ ⏐⏐

C∞(Ω) −−−−→
A

C∞(Ω)

7.4.3 Pseudo-differential Operators on a Manifold

Now we define the concept of a pseudo-differential operator on a manifold,
and transfer all the machinery of pseudo-differential operators to mani-
folds.Theorem 7.22 leads us to the following definition:

Definition 7.25. Let M be an n-dimensional, compact smooth manifold without
boundary, and 1 � � � ı < � � 1. A continuous linear operator A W C1.M/ !
C1.M/ is called a pseudo-differential operator of order m 2 R if it satisfies the
following two conditions (i) and (ii):

(i) The distribution kernel ofA is smooth off the diagonal
M D f.x; x/ W x 2M g
in M �M .

(ii) For any chart .U; �/ on M , the mapping
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�� .AjU / W C1
0 .�.U // �! C1.�.U //

u 7�! A.u ı �/ ı ��1

belongs to the class Lm�;ı.�.U //.

The situation may be represented by the following commutative diagram:

C∞
0 (U)

A|U−−−−−→ C∞(U)

χ∗⏐⏐
⏐⏐

χ

χχ

∗

C∞
0 ( (U)) −−−−−→

χ∗(A|U)
C∞( (U))

Here the operator AjU is defined as follows:

AjU W C1
0 .U / �! C1.M/

A!�! C1.M/ �! C1.U /;

where the first arrow is the natural injection and the last one is the restriction to U .
We let

Lm�;ı.M/ D the set of all pseudo-differential operators of orderm onM;

and set

L�1.M/ D
\

m2R

Lm�;ı.M/:

Some results about pseudo-differential operators on Rn stated above are also true
for pseudo-differential operators on M . In fact, pseudo-differential operators on M
are defined to be locally pseudo-differential operators on Rn.

For example, we have the following five results (1)–(5):

(1) A pseudo-differential operator A extends to a continuous linear operator A W
D0.M/! D0.M/.

(2) sing suppAu 	 sing supp u, u 2 D0.M/.
(3) A continuous linear operator A W C1.M/ ! D0.M/ is a regularizer if and

only if it is in L�1.M/.
(4) Letm 2 R and 0 � ı < � � 1. The classLm�;ı.M/ is stable under the operations

of composition of operators and taking the transpose or adjoint of an operator.
(5) A pseudo-differential operator A 2 Lm1;ı.M/, where 0 � ı < 1, extends to a

continuous linear operator A W Hs;p.M/ ! Hs�m;p.M/ for all s 2 R and
1 < p <1 and also a continuous linear operator A W Bs;p.M/! Bs�m;p.M/

for all s 2 R and 1 � p � 1.
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The situation may be represented by the following diagrams:

D (M) A−−−−→ D (M)
⏐⏐ ⏐⏐

Hs,p(M) A−−−−→ Hs−m,p(M)
⏐⏐ ⏐⏐

C∞(M) −−−−→
A

C∞(M)

D (M) A−−−−→ D (M)
⏐⏐ ⏐⏐

Bs,p(M) A−−−−→ Bs−m,p(M)
⏐⏐ ⏐⏐

C∞(M) −−−−→
A

C∞(M)

A pseudo-differential operator A 2 Lm1;0.M/ is said to be classical if, for any
chart .U; �/ on M , the mapping �� .AjU / W C1

0 .�.U // ! C1.�.U // belongs to
the class Lmcl.�.U //.

We let

Lmcl .M/ D the set of all classical pseudo-differential operators of order

m on M:

We observe that

L�1.M/ D
\

m2R

Lmcl.M/:

Let A 2 Lmcl.M/. If .U; �/ is a chart on M , there is associated a homogeneous
principal symbol �A� 2 C1.�.U / � .Rn n f0g//. In view of Remark 7.23, by
smoothly patching together the functions �A� we can obtain a smooth function
�A.x; �/ on T �.M/ n f0g D f.x; �/ 2 T �.M/ W � ¤ 0g, which is positively
homogeneous of degree m in the variable �. The function �A.x; �/ is called the
homogeneous principal symbol of A.

A classical pseudo-differential operator A 2 Lmcl.M/ is said to be elliptic of
orderm if its homogeneous principal symbol �A.x; �/ does not vanish on the bundle
T �.M/ n f0g of non-zero cotangent vectors.

Then we have the following result (6):

(6) An operator A 2 Lmcl.M/ is elliptic if and only if there exists a parametrix
B 2 L�m

cl .M/ for A:
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(
AB � I mod L�1.M/;

BA � I mod L�1.M/:

7.4.4 Hypoelliptic Pseudo-differential Operators

Let ˝ be an open subset of Rn. A properly supported pseudo-differential operator
A on˝ is said to be hypoelliptic if it satisfies the condition

sing supp u D sing suppAu; u 2 D0.˝/:

It is easy to see that this condition is equivalent to the following condition: For any
open subset ˝1 of ˝ , we have

u 2 D0.˝/; Au 2 C1.˝1/ H) u 2 C1.˝1/:

For example, Theorem 7.21 tells us that elliptic operators are hypoelliptic.
We say that A is globally hypoelliptic if it satisfies the weaker condition

u 2 D0.˝/; Au 2 C1.˝/ H) u 2 C1.˝/:

It should be noted that these two notions may be transferred to manifolds. The
following criterion for hypoellipticity is due to Hörmander:

Theorem 7.26. Let ˝ be an open subset of Rn and let A D p.x;D/ be a properly
supported pseudo-differential operator in Lm�;ı.˝/ with 1�� � ı < � � 1. Assume
that, for any compact K 	 ˝ and any multi-indices ˛, ˇ there exist constants
CK;˛;ˇ > 0, CK > 0 and � 2 R such that we have, for all x 2 K and j�j � CK ,

ˇ
ˇ
ˇD˛

� D
ˇ
x p.x; �/

ˇ
ˇ
ˇ � CK;˛;ˇjp.x; �/j.1C j�j/��j˛jCıjˇj ; (7.7a)

jp.x; �/j�1 � CK.1C j�j/�: (7.7b)

Then there exists a parametrix B 2 L��;ı.˝/ for A.

We give a typical example of Theorem 7.26 which plays an essential role in the
proof of [Ta9, Theorem 1.1]:

Example 7.27. Let .M; g/ be an n-dimensional, compact Riemannian smooth
manifold without boundary, and let
M be the Laplace–Beltrami operator ofM (see
Example 5.43). If ˛.x/ is a smooth function defined on M such that 0 � ˛.x/ � 1
on M , then a pseudo-differential operator

A.x;D/ D ˛.x/
p
�
M C .1 � ˛.x//
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satisfies conditions (7.7a) and (7.7b) with � WD 0, � WD 1 and ı WD 1=2 (see [Ta9,
Lemma 5.2]; [Ka]).

7.5 Potentials and Pseudo-differential Operators

The purpose of this section is to describe, in terms of pseudo-differential operators,
the classical surface and volume potentials arising in boundary value problems for
elliptic differential operators.

We give a formal description of a background. Let ˝ be a bounded domain in
Euclidean space Rn with smooth boundary @˝ . Its closure ˝ D ˝ [ @˝ is an
n-dimensional, compact smooth manifold with boundary. We may assume that ˝
is the closure of a relatively compact, open subset ˝ of an n-dimensional, compact
smooth manifoldM without boundary in which ˝ has a smooth boundary @˝ (see
Fig. 7.8).

Let P be a differential operator of orderm with smooth coefficients onM . Then
we have the jump formula (see formula (5.13))

P.u0/ D .Pu/0 C QP�u; u 2 C1.˝/; (7.8)

where u0 is the extension of u to M by zero outside of ˝

u0.x/ D
(

u.x/ for x 2 ˝;
0 for x 2 M n˝;

and QP�u is a distribution on M with support in @˝ . If P admits an “inverse” Q,
then the function u may be expressed as follows:

u D Q..Pu/0/
ˇ
ˇ
˝
C Q. QP�u/

ˇ
ˇ
˝
: (7.9)

The first term on the right-hand side is a volume potential and the second term
is a surface potential with m “layers”. For example, if P is the usual Laplacian

 and if ˝ D RnC, then formulas (7.8) and (7.9) coincide with formulas (5.12)
and (5.49), respectively. The proof of formula (7.9), based on jump formula (7.8),
may conceivably be new.

First, we state a theorem which covers surface potentials:

Theorem 7.28. Let A 2 Lmcl.M/ be properly supported. Assume that

Every term in the complete symbol
1X

jD0
aj .x; �/ of A (7.10)

is a rational function of �.
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Fig. 7.8 The double M of ˝

Then we have the following two assertions (i) and (ii):

(i) The operator

H W v 7�! A.v˝ ı/j˝
is continuous from C1.@˝/ into C1.˝/. Moreover, if v 2 D0.@˝/, the
distribution Hv has sectional traces on the boundary @˝ of any order.

(ii) The operator

S W C1.@˝/ �! C1.@˝/

v 7�! Hvj@˝
belongs to the class LmC1

cl .@˝/. Furthermore, its homogeneous principal
symbol is given by the formula

.x0; � 0/ 7�! 1

2�

Z

�

a0.x
0; 0; � 0; �n/ d�n

where a0.x0; xn; � 0; �n/ 2 C1.T �.M/ n f0g/ is the homogeneous principal
symbol of A, and � is a circle in the half-plane f�n 2 C W Im �n > 0g which
encloses the poles �n of a0.x0; 0; � 0; �n/ there (see Fig. 7.9).

(iii) If 1 < p <1, then the operatorH extends to a continuous linear operator

H W Bs;p.@˝/ �! Hs�m�1=p;p.˝/

for every s 2 R.

Part (i) of Theorem 7.28 asserts that the surface potential H preserves smooth-
ness up to the boundary @˝ . The situation of Theorem 7.28 can be visualized in the
following diagram:
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Fig. 7.9 The circle � in the
half-plane fIm �n > 0g

Bs,p(∂Ω) H−−−−→ Hs−m−1/p,p(Ω)
⏐⏐ ⏐⏐

C∞(∂Ω) −−−−→
H

C∞(Ω)

It should be emphasized that condition (7.10) is invariant under a change of
coordinates. Furthermore, it is easy to see that every parametrix for an elliptic
differential operator satisfies condition (7.10).

The next theorem covers volume potentials:

Theorem 7.29. Let A 2 Lmcl.M/ be as in Theorem 7.28. Then we have the
following two assertions (i) and (ii):

(i) The operator

A˝ W f 7�! A.f 0/
ˇ
ˇ
˝

is continuous from C1.˝/ into itself.
(ii) If 1 < p <1, then the operator A˝ extends to a continuous linear operator

A˝ W Hs;p.˝/ �! Hs�m;p.˝/

for every s > �1=p.

The operator A˝ can be visualized as follows:

A˝ W C1.˝/ �! D0.M/
A!�! D0.M/ �! C1.˝/;

where the first arrow is the zero extension to M and the last one is the restriction to
˝ . In view of the pseudo-local property of A, we note that A˝ maps C1.˝/ into
C1.˝/. Part (i) of Theorem 7.29 asserts that the volume potential A˝ preserves
smoothness up to the boundary @˝ . Moreover, the situation of Theorem 7.29 can be
visualized in the following diagram:
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Hs,p(Ω) AΩ−−−−→ Hs−m,p(Ω)
⏐⏐ ⏐⏐

C∞(Ω) −−−−→
AΩ

C∞(Ω)

7.6 The Transmission Property

One of the important questions in the theory of pseudo-differential operators in a
domain ˝ is that of the smoothness of a solution near the boundary @˝ . Due to
the non-local character of pseudo-differential operators, we find more difficulties
in the bounded domain ˝ than in the whole space Rn. In fact, when considering
the Dirichlet problem in ˝ , it is natural to use the zero-extension u0 of functions
u defined in the interior ˝ outside of the closure ˝ D ˝ [ @˝ as in Sect. 7.5.
This extension has a probabilistic interpretation. Namely, it corresponds to stopping
the diffusion process with jumps in the whole space Rn at the first exit time of the
closure˝ .

Given an arbitrary pseudo-differential operatorA, it is in general not true that the
operator

A˝ W u 7�! A.u0/
ˇ
ˇ
˝

maps functions u which are smooth up to the boundary @˝ into functions A˝u
with the same property. The crucial requirement here is that the symbol of A has
the transmission property. On one hand, this restricts the class of boundary value
problems in the calculus, on the other hand, however, it ensures that solutions to
elliptic equations with smooth data are smooth; it therefore helps to avoid problems
with singularities of solutions at the boundary.

Following Boutet de Monvel [Bo], we impose a condition about symbols in the
normal direction at the boundary in order to ensure the stated regularity property
(see Rempel–Schulze [RS]).

If x D .x1; x2; : : : ; xn/ is the variable in Rn, we write

x D .x0; xn/; x0 D .x1; x2; : : : ; xn�1/;

so x0 2 Rn�1 is the tangential component of x with dual variables � 0 D
.�1; �2; : : : ; �n�1/, and xn 2 R is its normal component with dual variable �n.

If m 2 R, we let

Sm1;0.R
nC �Rn/ D the space of symbols a.x; �/ in Sm1;0.R

nC � Rn/

which have an extension in Sm1;0.R
n � Rn/:
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A symbol a.x; �/ 2 Sm1;0.RnC � Rn/ is said to have the transmission property with
respect to the boundary Rn�1 if all its derivatives

�
@

@xn

�˛n
a.x0; 0; � 0; �/; ˛n � 0;

admit an expansion of the form

�
@

@xn

�˛n
a.x0; 0; � 0; �/ (7.11)

D
mX

jD0
bj .x

0; � 0/�j C
1X

kD�1
ak.x

0; � 0/


h� 0i �p�1�

�k


h� 0i Cp�1�

�kC1 ; � 2 R;

where (cf. [RS, 2.2.2.1, Proposition 3])

bj .x
0; � 0/ 2 Sm�j

1;0 .Rn�1 � Rn�1/;

and

ak.x
0; � 0/ 2 SmC1

1;0 .Rn�1 � Rn�1/

form a rapidly decreasing sequence with respect to k, and

˝
� 0˛ D �1C j� 0j2�1=2 :

For classical pseudo-differential symbols of integer order, the transmission
property can be expressed via homogeneity properties of the terms in the asymptotic
expansion. However, this is no longer true for non-classical pseudo-differential
symbols. For details, see the analysis by Grubb–Hörmander [GH].

For example, if a.x; �/ 2 Sm1;0.Rn � Rn/ is a classical symbol of order m 2 Z
with an asymptotic expansion

a.x; �/ �
1X

jD0
am�j .x; �/;

where am�j .x; �/ 2 Sm�j
1;0 is positively homogeneous of degree m � j for j�j � 1,

then it is easy to verify (see [RS, 2.2.2.3, Proposition 1], [Ho4, Lemma 18.2.14])
that a.x; �/ has the transmission property if and only if we have, for all multi-indices
˛ D .˛0; ˛n/,
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�
@

@xn

�˛n � @

@� 0

�˛0

am�j .x0; 0; 0;C1/

D .�1/m�j�j˛0j
�
@

@xn

�˛n � @

@� 0

�˛0

am�j .x0; 0; 0;�1/:

First, we have the following lemma:

Lemma 7.30. Regularizing symbols always have the transmission property, and so
do symbols a.x; �/ which vanish to infinite order at fxn D 0g. Moreover, all symbols
a.x; �/ which are polynomial in � have the transmission property.

There are symbols with the transmission property of arbitrary order:

Example 7.31. Let b.x; � 0/ 2 Sm1;0.Rn � Rn�1/ and ' 2 S.R/. Then it is easy to
verify that the symbol

a.x; �/ WD b.x; � 0/'.�n=
˝
� 0˛/

has the transmission property with respect to the boundary Rn�1.

The next proposition asserts the stability of the transmission property under the
usual pseudo-differential constructions:

Proposition 7.32. (a) If a.x; �/ and b.x; �/ has the transmission property, then
all derivatives @˛� @

ˇ
xa.x; �/ and the product a.x; �/b.x; �/ has the transmission

property, respectively.
(b) If aj .x; �/ are symbols of order m � j with the transmission property and if

a.x; �/ �Pj aj .x; �/, then a.x; �/ has the transmission property.
(c) If a.x; �/ is elliptic with the transmission property, then every parametrix of

a.x; �/ has the transmission property.

If m 2 R, we let

Lm1;0.R
nC/ D the space of pseudo-differential operators in Lm1;0.R

nC/

which can be extended to a pseudo-differential

operator in Lm1;0.R
n/:

A pseudo-differential operator A 2 Lm1;0.R
nC/ is said to have the transmission

property with respect to the boundary Rn�1 if any complete symbol of A has the
transmission property with respect to the boundary Rn�1.

As a first useful example, we formulate the pseudo-differential operators that
have the transmission property in dimension one [Bo, Theorem 2.7]:

Theorem 7.33. Let A.x;D/ be a pseudo-differential operator defined in a neigh-
borhood of the half-line x � 0. In order that the transmission property with
respect to the origin holds true for A, it is necessary and sufficient that A admits a
decomposition
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A D A0 C A1 C A2:

Here:

(1) The symbol of A0 vanishes to the infinite order at the origin x D 0.
(2) A1 is a differential operator with smooth coefficients.
(3) The distribution kernel of A2 is a function f .x; y/ which is smooth up to the

diagonal for x > y, and also for x < y.

Now we illustrate how the transmission property of the symbol ensures that
the associated operator preserves smoothness up to the boundary. If A is a
pseudo-differential operator in Lm1;0.R

nC/, then we define a new operator

ARn
C

W C1
0


RnC

�
�! C1 �

RnC
�

u 7�! A.u0/
ˇ
ˇ
Rn

C

;

where u0 is the extension of u to Rn by zero outside of RnC

u0.x/ D
(

u.x/ for x 2 RnC;
0 for x 2 Rn nRnC:

The operator ARn
C

can be visualized as follows:

ARn
C

W C1
0 .R

nC/ �! E 0.Rn/
A!�! D0.Rn/ �! C1.RnC/;

where the first arrow is the zero extension to Rn and the last one is the restriction to
RnC. In view of the pseudo-local property of A, we note that ARn

C

maps C1
0 .R

nC/
into C1.RnC/.

The transmission property implies that if u is smooth up to the boundary, then
so is ARn

C

u. More precisely, we have the following theorem (see [RS, 2.3.1.2,
Corollary 3; 2.3.2.6, Theorem 8]):

Theorem 7.34. Let A 2 Lm1;0.R
nC/. Then we have the following two assertions

(i) and (ii):

(i) IfA has the transmission property with respect to the boundary Rn�1, thenARn
C

maps C1
0


RnC

�
continuously into C1


RnC

�
.

(ii) IfA has the transmission property with respect to the boundary Rn�1, thenARn
C

maps CkC�
com


RnC

�
continuously into Ck�mC�

loc


RnC

�
for any integer k � m.

Here CkC�
com


RnC

�
is the space of functions in Ck


RnC

�
with compact support

in RnC and all of whose k-th order derivatives are Hölder continuous with
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exponent � , and Ck�mC�
loc


RnC

�
is the space of functions in Ck


RnC

�
all

of whose k-th order derivatives are locally Hölder continuous with exponent
� , respectively.

The situation of Theorem 7.34 can be visualized in the following diagram:

Ck+θ
comp(Rn

+)
ARn

+−−−−→ Ck−m+θ
loc (Rn

+)
⏐⏐ ⏐⏐

C∞
0 (Rn

+) −−−−→
ARn

+

C∞(Rn
+)

Moreover, it should be noticed that the notion of transmission property is
invariant under a change of coordinates which preserves the boundary. Hence this
notion can be transferred to manifolds with boundary as follows. Indeed, if ˝ is a
relatively compact, open subset of an n-dimensional paracompact smooth manifold
M without boundary (see Fig. 7.8), then the notion of transmission property can be
extended to the class Lm1;0.M/, upon using local coordinate systems flattening out
the boundary @˝ .

Then we have the following theorem (see [RS, 2.3.1.2, Theorem 4; 2.3.3.3,
Theorem 1]):

Theorem 7.35. Let A 2 Lm1;0.M/. Then we have the following two assertions (i)
and (ii):

(i) If A has the transmission property with respect to the boundary @˝ , then the
operator

A˝ W C1.˝/ �! C1.˝/

u 7�! A.u0/
ˇ
ˇ
˝

maps C1.˝/ continuously into itself, where u0 is the extension of u to M by
zero outside of ˝.

(ii) If A has the transmission property with respect to the boundary @˝ , then the
operator A˝ maps CkC� .˝/ continuously into Ck�mC� .˝/ for any integer
k � m and 0 < � < 1.

The situation of Theorem 7.35 can be visualized in the following diagram:

Ck+θ(Ω) AΩ−−−−→ Ck−m+θ(Ω)
⏐⏐ ⏐⏐

C∞(Ω) −−−−→
AΩ

C∞(Ω)
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7.7 The Boutet de Monvel Calculus

Elliptic boundary value problems cannot be treated directly by pseudo-differential
operator methods. It was Boutet de Monvel [Bo] who brought in the
operator-algebraic aspect with his calculus in 1971. He constructed a relatively
small “algebra”, called the Boutet de Monvel algebra, which contains the boundary
value problems for elliptic differential operators as well as their parametrices.

7.7.1 Trace, Potential and Singular Green Operators
on the Half-Space Rn

C

In this subsection we give basic definitions and properties of classes of trace,
potential and singular Green operators on the half-space RnC. The presentation here
is based on Rempel–Schulze [RS, Section 2.3.2].

Pseudo-differential trace operators T are a natural generalization of the usual
differential trace operators from elliptic boundary value problems, while potential
operators K can be described as the adjoints of trace operators T with respect to
the L2 inner products. Singular Green operatorsG are introduced in order to get an
algebra of matrices of operators of the form

A D
�
P˝ CG K

T S

�

;

called the Boutet de Monvel algebra. In fact, a typical example of a singular Green
is the composition of a trace operator T and a potential operatorK .

(1) A function k.x0; y0; � 0; �/ 2 C1.Rn�1�Rn�1�Rn�1�R/ is called a potential
symbol of orderm if it satisfies the condition

k.x0; y0; � 0; �/ D
1X

jD0
kj .x

0; y0; � 0/
.1 � i� h� 0i�1/j
.1C i� h� 0i�1/jC1 :

Here the symbols kj .x0; y0; � 0/ form a rapidly decreasing sequence in the class
Sm1;0.R

n�1 �Rn�1 � Rn�1/.
Then the potential operator

K W C1
0 .R

n�1/ �! C1.RnC/

is defined as an oscillatory integral by the formula
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.Kv/.x0; xn/

D 1

.2�/n

“

Rn�1�Rn�1

ei.x
0�y0/��0

�Z

Rn�1

k.x0; y0; � 0; �/ d�
�

v.y0/ dy0 d� 0;

v 2 C1
0 .R

n�1/:

(2) A function t.x0; y0; � 0; �/ 2 C1.Rn�1 � Rn�1 � Rn�1 � R/ is called a trace
symbol of orderm and type d if it satisfies the condition

t.x0; y0; � 0; �/

D
d�1X

kD0
bk.x

0; y0; � 0/

�
˝
� 0˛�1

�k C
1X

jD0
tj .x

0; y0; � 0/
.1C i� h� 0i�1/j
.1 � i� h� 0i�1/jC1 :

Here bk.x0; y0; � 0/ 2 Sm1;0.Rn�1 � Rn�1 � Rn�1/ and the symbols tj .x0; y0; � 0/
form a rapidly decreasing sequence in the class Sm1;0.R

n�1 � Rn�1 � Rn�1/.
Then the trace operator

T W C1
.0/ .R

nC/ �! C1.Rn�1/

is defined as an oscillatory integral by the formula

.T u/.x0/ D 1

.2�/n

“

Rn�1�Rn�1

ei.x
0�y0/��0

�
�Z

�

t.x0; y0; � 0; �/
�Z

R
e�iyn�u0.y0; yn/dyn

�

d�

�

dy0 d� 0;

u 2 C1
.0/ .R

nC/:

Here � is a large circle in the upper complex half-plane f� 2 C W Im � > 0g,
and u0 is the extension of u to Rn by zero outside of RnC

u0.y0; yn/ D
(

u.y0; yn/ for yn � 0;
0 for yn < 0;

and

C1
.0/ .R

nC/ D
n
ujRn

C

W u 2 C1
0 .R

n/
o
:

(3) A function b.x0; y0; � 0; �; / 2 C1.Rn�1 � Rn�1 � Rn�1 � R � R/ is called a
singular Green symbol of orderm and type d if it satisfies the condition
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b.x0; y0; � 0; �; /

D
d�1X

`D0

0

@
1X

jD0
cj`.x

0; y0; � 0/
.1 � i� h� 0i�1/j
.1C i� h� 0i�1/jC1

1

A


˝
� 0˛�1�`

C
1X

jD0

1X

`D0
bj`.x

0; y0; � 0/
.1 � i� h� 0i�1/j
.1C i� h� 0i�1/jC1

.1C i h� 0i�1/`
.1 � i h� 0i�1/`C1 :

Here the symbols cj`.x0; y0; � 0/ form a rapidly decreasing sequence in the class
Sm1;0.R

n�1 � Rn�1 � Rn�1/ with respect to j , for each ` D 0; 1; 2; : : : ; d � 1,
and the symbols bj`.x0; y0; � 0/ form a rapidly decreasing double sequence in
the class Sm1;0.R

n�1 � Rn�1 � Rn�1/.

Then the singular Green operator

G W C1
.0/ .R

nC/ �! C1.RnC/

is defined as an oscillatory integral by the formula

.Gu/.x0; xn/

D 1

.2�/nC1

“

Rn�1�Rn�1

ei.x
0�y0/��0

�
� Z

�

�Z

R
eixn�b.x0; y0; � 0; �; / d�

��Z

R
e�iynu0.y0; yn/dyn

�

d

�

dy0d� 0;

u 2 C1
.0/ .R

nC/:

Here � is a large circle in the upper complex half-plane f 2 C W Im  > 0g.

7.7.2 The Boutet de Monvel Algebra

Let ˝ be a relatively compact, open subset of an n-dimensional compact smooth
manifold M without boundary (see Fig. 7.4). Boutet de Monvel [Bo] introduced
matrices of operators

A D
�
P˝ CG K

T S

�

W
C1.˝/
˚

C1.@˝/
�!

C1.˝/
˚

C1.@˝/
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Here:

(1) P is a pseudo-differential operator on the full manifoldM and

P˝u D P.u0/j˝ for all u 2 C1.˝/;

where u0 is the extension of u by zero to M

u0.x/ D
(

u.x/ for x 2 ˝;
0 for x 2M n˝:

The operator P˝ can be visualized as follows:

P˝ W C1.˝/ �! D0.M/
P!�! D0.M/ �! C1.˝/;

where the first arrow is the zero extension toM and the last one is the restriction
to˝ . In view of the pseudo-local property of P , we note thatP˝ mapsC1.˝/
into C1.˝/.

The crucial requirement is that the symbol of P has the transmission
property in order that P˝ maps C1.˝/ into itself.

(2) S is a pseudo-differential operator on @˝ .
(3) The potential operator K and trace operator T are generalizations of the

potentials and trace operators known from the classical theory of elliptic
boundary value problems, respectively.

(4) The entry G, a singular Green operator, is an operator which is smoothing
in the interior ˝ while it acts like a pseudo-differential operator in directions
tangential to the boundary @˝ . As an example, we may take the difference of
two solution operators to (invertible) classical boundary value problems with
the same differential part in the interior but different boundary conditions.

Boutet de Monvel [Bo] proved that these operator matrices form an algebra in the
following sense (see [RS, 2.3.3.2, Theorem 1; 3.1.1.1, Theorem 2]): Given another
element of the calculus, say,

A0 D
�
P 0̋ CG0 K 0
T 0 S 0

�

W
C1.˝/
˚

C1.@˝/
�!

C1.˝/
˚

C1.@˝/

the composition A0A is again an operator matrix of the type described above. It is
worth pointing out here that the product P 0̋ P˝ does not coincide with .P 0P/˝ ; in
fact, the difference P 0̋ P˝ � .P 0P/˝ turns out to be a singular Green operator (see
[RS, 2.1.2.3, Lemma 5]).

For example, we consider the Dirichlet problem
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(

u D f in ˝;

u D ' on @˝:
(D)

Then problem (D) corresponds to the map

D D
�

˝

�0

�

W C1.˝/ �!
C1.˝/
˚

C1.@˝/

where

�0u D uj@˝; u 2 C1.˝/;

is the trace operator on @˝ . The map D defines an isomorphism and its inverse D�1
has the form

D�1 D �P˝ CG L
� W

C1.˝/
˚

C1.@˝/
�! C1.˝/;

with a pseudo-differential operator P , a singular Green operator G and a potential
operatorL. More precisely, if g.x; z/ and `.x; y/ are the classical Green and Poisson
kernels of problem (D) respectively, then it follows that

u.x/ D
Z

˝

g.x; z/f .z/ dzC
Z

@˝

`.x; y/'.y/ d!.y/;

so that

.P˝ CG/f D
Z

˝

g.x; z/f .z/ dz;

L' D
Z

@˝

`.x; y/'.y/ d!.y/:

Furthermore, it should be noted that

�

˝

�0

�
�
P˝ CG L

� D
�

˝.P˝ CG/ 
˝L

�0.P˝ CG/ �0L

�

D
�
I 0

0 I

�

; (7.12)

since D�1 is the two-sided inverse of D.
If the map

A D
�

˝

B

�

W C1.˝/ �!
C1.˝/
˚

C1.@˝/
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is another elliptic boundary value problem such as the Neumann problem, then we
have, by formula (7.12),

AD�1 D
�

˝

B

�
�
P˝ CG L

� D
�

I 0

B.P˝ CG/ BL

�

;

and the right lower corner

Q D BL W C1.@˝/ �! C1.@˝/

is a pseudo-differential operator on @˝ . The ellipticity of A and D implies that the
operatorQ is elliptic. Let R be a parametrix forQ:

(
RQ � I mod L�1.@˝/;
QR � I mod L�1.˝/:

If we let

C D
�

I 0

�RB.P˝ CG/ R
�

;

then we obtain that

A
�
D�1C

� D
�

I 0

B.P˝ CG/ BL
��

I 0

�RB.P˝ CG/ R
�

D
�

I 0

B.P˝ CG/ � .BL/RB.P˝ CG/ .BL/R
�

D
�

I 0

B.P˝ CG/ � .QR/B.P˝ CG/ QR
�

�
�
I 0

0 I

�

:

This proves that the map

D�1C D �P˝ CG � LRB.P˝ CG/ LR
� W

C1.˝/
˚

C1.@˝/
�! C1.˝/

is a parametrix for the map A.
Therefore, starting at the map D we can find the parametrix D�1C of another

elliptic map A by calculating the parametrix R of the elliptic pseudo-differential
operator Q D BL on the boundary @˝ . In Sect. 10.4 we will return this reduction
to the boundary in a more general setting (see Theorems 10.19 and 10.21).
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7.8 Distribution Kernel of a Pseudo-differential Operator

In this section, following Coifman–Meyer [CM, Chapitre IV, Proposition 1] we
prove that the distribution kernel s.x; y/ of a pseudo-differential operator S 2
Lm1;0.R

n/ satisfies the estimate

js.x; y/j � C

jx � yjmCn ; x; y 2 R; x ¤ y:

More precisely, we can obtain the following fundamental result:

Theorem 7.36. Let �.x; �/ be a symbol in the class Sm1;0 .R
n � Rn/ such that

ˇ
ˇ
ˇ�
.˛/

.ˇ/ .x; �/
ˇ
ˇ
ˇ � C˛ˇ .1C j�j/m�j˛j ; .x; �/ 2 Rn � Rn: (7.13)

We let

r.x; z/ D 1

.2�/n

Z

Rn
eiz���.x; �/ d�;

where the integral is taken in the sense of oscillatory integrals (see Theorem 7.10).
Then the distribution r.x; z/ satisfies the condition

r.x; z/ 2 C1 .Rn � Rn n f0g/ ;

and the estimate

jr.x; z/j � C

jzjnCm ; z ¤ 0: (7.14)

Proof. First, if we let the usual Laplacian


� D @2

@�21
C @2

@�22
C : : :C @2

@�2n
;

then it follows from condition (7.13) that

ˇ
ˇ
ˇ
N

� .�.x; �//
ˇ
ˇ
ˇ � CN


1C j�j2

�m=2�N
; .x; �/ 2 Rn � Rn: (7.15)

The proof is divided into two steps.

Step 1: The case where jzj � 1: By taking a large integer N such that

N >
nCm
2

;
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we have, by integration by parts,

r.x; z/ D .�1/N
jzj2N

Z

Rn
eiz��
N

� .�.x; �// d�:

Hence, by using the polar coordinates we obtain from estimate (7.15) that

jr.x; z/j � 1

jzj2N
Z

Rn

ˇ
ˇ
ˇ
N

� .�.x; �//
ˇ
ˇ
ˇ d� (7.16)

� CN

jzj2N
Z

Rn


1C j�j2

�m=2�N
d�

D CN

jzj2N
Z 1

0

Z

˙n

�
1C r2�m=2�N rn�1 dr d�

D CN

jzj2N !n
Z 1

0

�
1C r2�m=2�N rn�1 dr

� C 0
N

jzjnCm for all jzj � 1;

since we have 2N > nCm. Here

!n D 2�n=2

� .n=2/
; n � 3;

is the surface area of the unit sphere ˙n.
Step 2: The case where 0 < jzj � 1: Let

R D 1

jzj � 1;

and take a smooth function '.t/ 2 C1
0 .R/ such that

'.t/ D
8
<

:
1 for jt j � 1

2
;

0 for jt j � 1:

Then we can decompose the kernel r.x; z/ into the following two terms r1.x; z/
and r2.x; z/:

r.x; z/ D 1

.2�/n

Z

Rn
eiz��'

�
�

R

�

�.x; �/ d�

C 1

.2�/n

Z

Rn
eiz��

�

1 � '
�
�

R

��

�.x; �/ d�

WD r1.x; z/C r2.x; z/:



7.8 Distribution Kernel of a Pseudo-differential Operator 357

In this way we are reduced to the estimate of the two terms r1.x; z/ and r2.x; z/.

(a) The estimate of the term r1.x; z/: Since we have the inequality

ˇ
ˇ
ˇ
ˇe
iz��'

�
�

R

�

�.x; �/

ˇ
ˇ
ˇ
ˇ � C j�jm for j�j � R;

it follows that

jr1.x; z/j � 1

.2�/n

Z

Rn

ˇ
ˇ
ˇ
ˇe
iz��'

�
�

R

�

�.x; �/

ˇ
ˇ
ˇ
ˇ d� (7.17)

� 1

.2�/n

Z

j�j�R

ˇ
ˇ
ˇ
ˇ'

�
�

R

�

�.x; �/

ˇ
ˇ
ˇ
ˇ d�

� C 0
Z

j�j�R
j�jm d� D C 0

Z R

0

Z

˙n

rmrn�1 dr d�

D C 0!n
RmCn

mC n D
C 00

jzjnCm :

(b) The estimate of the term r2.x; z/: Take

N >
nCm
2

just as in Step 1. Then, by integration by parts it follows that

r2.x; z/ D .�1/N
jzj2N

Z

Rn
eiz��
N

�

�

�.x; �/

�

1 � '
�
�

R

���

d�:

Hence we have the inequality

jr2.x; z/j (7.18)

� 1

jzj2N
Z

Rn

ˇ
ˇ
ˇ
ˇ


N
�

�

�.x; �/

�

1 � '
�
�

R

���ˇˇ
ˇ
ˇ d�

� CN

jzj2N
	 Z

j�j�R


1C j�j2

�m=2�N
d� C 1

R

Z

jR=2��j�R
j�j2m�2N�1 d�




D CN

jzj2N
	 Z 1

R

Z

˙n

�
1C r2�m=2�N rn�1dr d�

C 1
R

Z R

R=2

Z

˙n

rm�2N�1rn�1dr d�
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� C 0
N

jzj2N
�

1

R2N�m�n C
1

R2N�m�nC2

�

� 2C 0
N

jzj2N
�
1

R

�2N�m�n
D 2C 0

N

jzj2N jzj
2N�m�n D 2C 0

N

jzjnCm :

Therefore, we obtain from estimates (7.17) and (7.18) that

jr.x; z/j � jr1.x; z/j C jr2.x; z/j � C 0
N

jzjnCm for all 0 < jzj � 1: (7.19)

The desired estimate (7.14) follows by combining the two estimates (7.16)
and (7.19).

The proof of Theorem 7.36 is complete.

7.9 Notes and Comments

The development of the theory of pseudo-differential operators has greatly advanced
our understanding of partial differential equations, and the pseudo-differential
calculus has become an indispensable tool in contemporary analysis, in particular
on compact manifolds without boundary. Our treatment of pseudo-differential
operators follows the book of Chazarain–Piriou [CP]. For detailed studies of
pseudo-differential operators, the reader might be referred to Chazarain–Piriou
[CP], Èskin [Es], Hörmander [Ho4], Kumano-go [Ku], Rempel–Schulze [RS],
Schulze [Su2] and Taylor [Ty].

Section 7.1: The material in this section is taken from Abraham–Marsden–Ratiu
[AMR], Lang [Lg] and Munkres [Mu]. This section is given for completeness, to
minimize the necessity of consulting too many outside references. Theorems 7.2
and 7.3 are taken from Munkres [Mu].

Section 7.2: For the doubleM D Ő of˝ , see Munkres [Mu]. The trace theorem
and the Rellich–Kondrachov theorem are taken from Bergh–Löfström [BL], Stein
[Sn1], Taibleson [Tb] and Triebel [Tr]. The following diagram summarizes three
pillars for sequential compactness in analysis:

Sequences of Compactness theorems
real numbers the Bolzano–Weierstrass theorem

continuous functions the Ascoli–Arzelà theorem
distributions the Rellich–Kondrachov theorem

Section 7.3: The symbol classes Sm�;ı.˝ � RN / were first introduced by
Hörmander [Ho2] (see also Seeley [Se1]). In Appendix B we shall introduce
matrix-valued symbols in order to study systems of pseudo-differential operators.

For the theory of Fourier integral operators, see Hörmander [Ho3],
Duistermaat–Hörmander [DH] and Duistermaat [Du].
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Section 7.4: A proof of Theorem 7.18 is given in Chazarain–Piriou [CP, Chapitre
IV, Théorème 2.1]. For the stationary phase theorem, see Chazarain–Piriou [CP,
Chapitre III, Théorème 9.3]. Theorem 7.24 is due to Bourdaud [Bd, Theorem 1].
The notion of hypoellipticity was introduced by Schwartz [Sz]. Theorem 7.26 is due
to Hörmander [Ho2, Theorem 4.2]. Hypoelliptic second-order differential operators
have been studied in great detail by Oleı̆nik–Radkevič [OR] and many others.

Section 7.5: Theorem 7.28 is taken from Chazarain–Piriou [CP, Chapitre V,
Théorème 2.4] and Theorem 7.29 is taken from Chazarain–Piriou [CP, Chapitre
V, Théorème 2.5], respectively. The reader might be referred to the original works
Hörmander [Ho1] and Seeley [Se2]. See Polking [Po] for the parabolic case.

Section 7.6: Following Schrohe [Sr5, Definition 2.3], we can introduce an
equivalent definition of the transmission property for general symbols a.x; y; �/
in the class Sm1;0.R

n�Rn�Rn/ as in Sect. 7.4.1. To do this, letH be the linear space
of all complex-valued functions f .t/ on the real line R which are of class C1 and
have a regular pole at infinity. More precisely, a function f .t/ 2 C1.R/ belongs to
H if and only if it has a unique expansion

f .t/ D
NX

sD1
˛st

s C
1X

kD�1
˛k

�
1 � it

1C it

�k
; i D p�1;

where the coefficients ˛k form a rapidly decreasing sequence (see [RS, Chapter 2,
Section 2.1.1]). A symbol

a.x; y; �/ 2 Sm1;0.Rn � Rn � Rn/

is said to have the transmission property at fxn D yn D 0g, provided that we have,
for all non-negative integers k and `,

@kC`a
@xkn@y

`
n

.x0; 0; y0; 0; � 0;
˝
� 0˛ �n/ 2 Sm1;0.Rn�1

x0 � Rn�1
y0 � Rn�1

�0 / Ő �H�n ;

where

˝
� 0˛ D �1C j� 0j2�1=2 :

The subscripts x0, y0, � 0 and �n are used in order to indicate the variable for which
we have the corresponding property.

Hörmander [Ho4] introduces a similar notion: the bilateral transmission property.
An operator on the half-space RnC has the bilateral transmission property if it
maps functions which are smooth up to the boundary to functions with the same
property (see [Ho4, Definition 18.2.13]). The difference between both notions is
that the bilateral transmission property assures the transmission property also for
the opposite half-space Rn�. This is needed in order to obtain a calculus which is
closed under taking adjoints.
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Section 7.7: Boundary value problems cannot be treated directly by
pseudo-differential methods. Already in the 1960s, however, first essential steps
were taken to provide a similar framework allowing the construction of parametrices
to elliptic elements (see Višik–Èskin [VE]). More detailed and concise accounts
of the transmission property and the Boutet de Monvel calculus are given in the
books by Rempel–Schulze [RS], Grubb [Gb] and Schrohe [Sr5]. See also Èskin
[Es, Chapter III] and Hörmander [Ho4, Section 18.2].

The operators in the Boutet de Monvel calculus may be regarded as
operator-valued pseudo-differential operators. This point of view, going back to
an idea of Schulze, was first sketched by Schrohe–Schulze [SS1]. In Appendix B,
following Schrohe [Sr5], we show the pseudo-differential spirit of Boutet de
Monvel’s construction more closely than the older descriptions. This concept has
been applied successfully to the analysis of boundary value problems on singular
manifolds. In fact, in this operator-valued set-up, the Boutet de Monvel calculus
can be combined very well with pseudo-differential calculi for cone and edge
singularities (see [Su1, SS1, SS2, SS3, SS4, SS5]).

Section 7.8: This section is adapted from Coifman–Meyer [CM, Chapitre IV]
and Nagase [Na].



Chapter 8
Waldenfels Operators and Maximum Principles

In this chapter, following Bony–Courrège–Priouret [BCP], we prove various max-
imum principles for second-order elliptic Waldenfels operators which play an
essential role throughout the book. In Sect. 8.1 we give complete characterizations
of linear operators which satisfy the positive maximum principle related to condition
(ˇ0) in Theorem 9.50 in Chap. 9 (Theorems 8.2, 8.4 and 8.8). In Sect. 8.2 we prove
the weak and strong maximum principles and Hopf’s boundary point lemma for
second-order elliptic Waldenfels operators (Theorems 8.11, 8.13 and 8.15).

8.1 Borel Kernels and Maximum Principles

In this section we give complete characterizations of linear operators which satisfy
the positive maximum principle related to condition (ˇ0) in Theorem 9.50. It should
be emphasized that these characterizations give, as a byproduct, the following
characterizations of distributions of order 2 which are non-negative outside the
origin (see Bony–Courrège–Priouret [BCP, Proposition I.1.2]):

Proposition 8.1. (I) Let T be a linear operator (functional) from C2
0 .R

n/ into R.
Then T W C2

0 .R
n/! R is continuous and satisfies the condition

u 2 C2
0 .R

n/; u � 0 in Rn and 0 62 supp u H) T .u/ � 0

if and only if there exist real numbers aij, bi and c and a positive Radon measure
� on Rn n f0g such that the linear functional T can be written in the form

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__8,
© Springer-Verlag Berlin Heidelberg 2014
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T .u/ (8.1)

D
nX

i;jD1
aij @2u

@xi @xj
.0/C

nX

iD1
bi
@u

@xi
.0/C c u.0/

C
Z

Rnnf0g
�.dy/

"

u.y/ � '.y/
 

u.0/C
nX

iD1

@u

@xi
.0/ yi

!#

; u 2 C2
0 .˝/:

Here:

(a) ' 2 C1
0 .R

n/ and ' D 1 in a neighborhood of 0.
(b) The Radon measure � satisfies the condition

Z

0<jyj2�1
jyj2 �.dy/ <1:

(II) If a linear operator (functional) T W C1
0 .R

n/! R satisfies the condition

u 2 C2
0 .R

n/; u � 0 in Rn and u.0/ D 0 H) T .u/ � 0;

then the linear functional T can be extended uniquely to a continuous linear
functional T W C2

0 .R
n/ ! R of the form (8.1). In this case, the matrix .aij/ is

non-negative definite:

nX

i;jD1
aij�i �j � 0 for all � 2 Rn:

Let ˝ be an open subset of Rn or of RnC. More precisely, if ˝ is an open set in
RnC in the topology induced on RnC from Rn, then we define the boundary @˝ of

˝ to be the intersection of ˝ with Rn�1 � f0g and the interior
ı
˝ of ˝ to be the

complement of @˝ in ˝ , that is,

@˝ D ˝ \ fx 2 Rn W xn D 0g;
ı
˝ D ˝ \ fx 2 Rn W xn > 0g:

We note (see Figs. 8.1 and 8.2) that

˝ D
8
<

:

ı
˝ if ˝ is open in Rn;
ı
˝ [ @˝ if ˝ is open in RnC:

Then we let
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........................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

...............

0

◦
Ω

Ω =
◦
Ω ∪ Ω

Ω

Rn
+

x

xn

.....

.....

.....
.....
......
......

.......
.....

........
..........

...................
..................................................................................................................................................................................................................................................................................

Fig. 8.2 ˝ is open in Rn
C

Bloc.
ı
˝/ D the space of Borel measurable functions in

ı
˝

which are bounded on compact subsets of
ı
˝;

and

C0.˝/ D the space of continuous functions in ˝

with compact support in ˝:
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Fig. 8.3 Condition (LU3) on
supp �

Let B˝ and B ı

˝
be the �-algebra of all Borel sets in ˝ and the �-algebra of all

Borel sets in
ı
˝, respectively. A positive Borel kernel of

ı
˝ into ˝ is a mapping

ı
˝ 3 x 7�! s.x; dy/

of
ı
˝ into the space of non-negative measures on B˝ such that, for each X 2 B˝ ,

the function

ı
˝ 3 x 7�! s.x;X/ D

Z

X

s.x; dy/

is Borel measurable in
ı
˝ .

A local unity function on˝ is a smooth function �.x; y/ in˝�˝ which satisfies
the following three conditions (LU1)–(LU3) (see Fig. 8.3):

(LU1) 0 � �.x; y/ � 1 in ˝ �˝ .
(LU2) �.x; y/ D 1 in a neighborhood of the diagonal 
˝ D f.x; x/ W x 2 ˝g in

˝ �˝ .
(LU3) For any compact subsetK of˝ , there exists a compact subsetK 0 of˝ such

that the functions �x.�/ D �.x; �/, x 2 K , have their support in K 0.

We can construct a local unity function �.x; y/ in the following way: Let fUigi2I
be an open covering of ˝ and let f'igi2I be a partition of unity subordinate to the
covering fUig (see Sect. 5.7.2). That is, the family f'igi2I satisfies the following
three conditions (PU1)–(PU3) (see Fig. 8.4):

(PU1) 0 � 'i.x/ � 1 for all x 2 ˝ and i 2 I .
(PU2) supp'i 	 Ui for each i 2 I .
(PU3) The collection fsupp'igi2I is locally finite and
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Fig. 8.4 The open covering
fUig and the partition of
unity f'ig

X

i2I
'i .x/ D 1 for every x 2 ˝:

Here supp'i is the support of 'i , i.e. the closure in ˝ of the set fx 2 ˝ W
'i .x/ 6D 0g.

If we take a smooth function  i.x/ in ˝ such that

(
0 �  i.x/ � 1 for all x 2 ˝;
 i .x/ D 1 on supp'i ;

then it is easy to verify that the function

�.x; y/ D
X

i2I
'i .x/  i .y/; .x; y/ 2 ˝ �˝;

satisfies the desired conditions (LU1)–(LU3).

8.1.1 Linear Operators having Positive Borel Kernel

Now we assume that a positive Borel kernel s.x; dy/ satisfies the following two
conditions (NS.1) and (NS.2):

(NS.1) s.x; fxg/ D 0 for every x 2 ı
˝.

(NS.2) For every non-negative function f .x/ in C0.˝/, the function

x 7�!
Z

˝

s.x; dy/jy � xj2f .y/; x 2 ı
˝;

belongs to the space Bloc.
ı
˝/.

By using Taylor’s formula and condition (NS.2), we can define a linear operator
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S W C2
0 .˝/ �! Bloc.

ı
˝/

by the formula (see Example 8.9)

Su.x/ (8.2)

D
Z

˝

s.x; dy/

"

u.y/ � �.x; y/
 

u.x/C
nX

iD1

@u

@xi
.x/.yi � xi /

!#

;

x 2 ı
˝; u 2 C2

0 .˝/:

Here C2
0 .˝/ is the space of functions in C2.˝/ with compact support in ˝ (see

Sect. 5.2.4).
First, we give a complete characterization of linear continuous operators W W

C2
0 .˝/ ! Bloc.

ı
˝/ which have positive Borel kernels in the case where ˝ is an

open subset of Rn or of RnC:

Theorem 8.2. Let ˝ be an open subset of Rn or of RnC. If W is a linear operator

from C2
0 .˝/ into Bloc.

ı
˝/, then the following two assertions (p0) and (w) are

equivalent:

(p0) W W C2
0 .˝/! Bloc.

ı
˝/ is continuous and satisfies the condition

x 2 ı
˝; u 2 C2

0 .˝/; u � 0 in ˝ and x 62 supp u H) Wu.x/ � 0: (8.3)

(w) There exist a second-order differential operator P W C2.˝/ ! Bloc.
ı
˝/ and

positive Borel kernels s.x; dy/, having properties (NS.1) and (NS.2), such that
the operatorW is written in the form

Wu.x/ D Pu.x/C Su.x/ (8.4)

D
0

@
nX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

nX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

C
Z

˝

s.x; dy/

�

u.y/� �.x; y/
�

u.x/C
nX

iD1

@u

@xi
.x/.yi � xi /

��

;

x 2 ı
˝; u 2 C2

0 .˝/:

Here the coefficients aij.x/, bi.x/ and c.x/ belong to the space Bloc.
ı
˝/.
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Proof. (w) H) (p0): For u 2 C2
0 .˝/, we make use of Taylor’s formula

u.y/� u.x/�
nX

iD1

@u

@xi
.x/ .yi � xi / D

nX

i;jD1
.yi � xi /

�
yj � xj

�
Riju.x; y/;

where

Riju.x; y/ D
Z 1

0

@2u

@xi@xj
.x C t.y � x//.1 � t/ dt; x; y 2 ˝:

Here we observe that Riju 2 C.˝ �˝/ and further that

�
�Riju

�
�
C.˝�˝/ �

1

2
kukC2.˝/ :

Therefore, we find that assertion (w) implies assertion (p0).

(p0) H) (w): Conversely, we assume that W W C2
0 .˝/ ! Bloc.

ı
˝/ is a

linear operator which satisfies condition (p0). Then it follows from assertion (8.3)

that there exists a positive Borel kernel s.x; dy/ from
ı
˝ into ˝ which satisfies

condition

s.x; fxg/ D 0 for every x 2 ı
˝ (NS.1)

and the condition
Z

˝

s.x; dy/u.y/ D Wu.x/ if u 2 C2
0 .˝/ and x 2 ı

˝ n supp u: (8.5)

We shall show that this kernel s.x; dy/ satisfies condition (NS.2). To do this, it
suffices to prove that the function

x 7�!
Z

˝

s.x; dy/jy � xj2 f .y/

is locally bounded on
ı
˝ for every non-negative function f 2 C1

0 .˝/. The proof is
divided into three steps.

Step 1: Let ˚.x; y/ be an arbitrary non-negative, continuous function on˝ �˝
which satisfies the following three conditions (i)–(iii):

(i) The functions ˚x.y/ D ˚.x; y/ is a function in C2 .˝/ for each x 2 ˝ .
(ii) The functions

.x; y/ 7�! @˚x

@yi
.y/ .1 � i � n/
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and

.x; y/ 7�! @2˚x

@yi@yj
.y/ .1 � i; j � n/

are continuous on ˝ �˝ .
(iii) We have, for each x 2 ˝ ,

˚x.x/ D @˚x

@yi
.x/ D @2˚x

@yi@yj
.x/ D 0 .1 � i; j � n/:

We prove that the function

x 7�!
Z

˝

s.x; dy/˚.x; y/f .y/

is locally bounded on
ı
˝ for every non-negative function f 2 C1

0 .˝/. Since we
have, for every non-negative function f 2 C1

0 .˝/,

˚xf 2 C2
0 .˝/

and so

W .˚xf / 2 Bloc.
ı
˝/;

we have only to show that

Z

˝

s.x; dy/˚.x; y/f .y/ D W .˚xf / .x/ for all x 2 ı
˝: (8.6)

In order to prove (8.6), for each x 2 ı
˝ we consider an increasing sequence f�j g

of non-negative functions in C1.˝/ which satisfies the following three conditions
(a)–(c):

(a) �j .y/ D 0 in a neighborhood of x for all j 2 N.
(b) We have, for all y 6D x,

sup
j�1

�.y/ D 1:

(c) We have

lim
j!1

�
��j˚xf �˚xf

�
�
C2.˝/

D 0:



8.1 Borel Kernels and Maximum Principles 369

Fig. 8.5 The function ˛.y/

For example, by choosing a smooth function ˛.y/ on Rn such that (see Fig. 8.5)

0 � ˛.y/ � 1 on Rn;

and that

˛.y/ D
(
0 if jyj � 1;
1 if jyj � 2;

we may take

�j .y/ D ˛ .j.y � x// D
(
0 if jy � xj � 1

j
;

1 if jy � xj � 2
j
:

It should be emphasized that we have, for all j 2 N,

j˚x.y/j � C1

j 3
and jr˛.y/j � C2j if r˛.y/ 6D 0;

j˚x.y/j � C1

j 3
and jr2˛.y/j � C3j 2 if r2˛.y/ 6D 0;

where C1, C2 and C3 are positive constants independent of j 2 N.
Then, by virtue of assertion (8.5), it follows that

Z

˝

s.x; dy/�j .y/˚x.y/f .y/ D W
�
�j˚xf

�
.x/ for every n 2 N: (8.7)

We note that each term of the left-hand side of formula (8.7) is monotone increasing,
while the operator W on the right-hand side of formula (8.7) is continuous.
Therefore, the desired formula (8.6) follows by letting j !1 in formula (8.7).

Step 2: We show that the Borel kernel s.x; dy/ satisfies condition (NS.2). The
proof is divided into two steps.

Step 2-1: First, we show that if g.x/ is a non-negative, continuous function on
Rn such that g.0/ D 0, then the function
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x 7�!
Z

˝

s.x; dy/jy � xj2g.y � x/f .y/

is locally bounded on
ı
˝.

Step 2-1a: In order to prove the boundedness of s.x; dy/, we need the following
lemma:

Lemma 8.3. Let B D Br.0/ D fz 2 Rn W jzj < rg be the open ball about 0 radius
r > 0 and let g.x/ be a bounded, non-negative function on B such that

lim
x!0

g.x/ D 0: (8.8)

Then there exists a bounded, non-negative function k 2 C2.B/ such that

jzj2g.z/ � k.z/ for all z 2 B: (8.9)

k.0/ D @k

@xi
.0/ D @2k

@xi @xj
.0/ D 0 for all 1 � i; j � n: (8.10)

Proof. The proof is divided into two steps,

(1) First, we consider the case where n D 1. To do this, it suffices to construct a
function k.x/ on the interval Œ0; r/.

We consider the inferior envelope Qg.x/ of the family of linear functions,
ax C b, with a, b 2 R, which majorize the function g.x/ on the interval Œ0; r/.
Since the function Qg.x/ is concave, it follows that Qg.x/ is continuous on the
open interval .0; r/. Moreover, it is easy to verify the following three assertions
(a)–(c):

(a) Qg.x/ is non-negative and bounded.
(b) Qg.0/ D 0 and limx#0 Qg.x/ D 0.
(c) g.x/ � Qg.x/ for all x 2 Œ0; r/.

Now, by letting

k.x/ D 6
Z x

0

�Z t

0

Qg.s/ ds

�

dt; 0 � x < r; (8.11)

we shall show the inequality

x2 g.x/ � k.x/ for all x 2 Œ0; r/I (8.12)

which proves the desired inequality (8.9) in the case where n D 1.
If '.x/ is a function in C Œ0; r/, we define its primitiveP'.x/ by the formula

P'.x/ D
Z x

0

'.t/ dt; 0 � x < r:
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Since the function Qg.x/ is concave and Qg.0/ D 0, we have the inequality

Qg.t/ � t

x
Qg.x/ for all 0 < x < r and 0 � t � x: (8.13)

Therefore, by applying the operation P twice we obtain from inequality (8.13)
that

P Qg.x/ D
Z x

0

Qg.t/ dt �
Z x

0

t

x
Qg.x/ dt D 1

2
x Qg.x/; 0 � x < r;

and further from condition (c) that

P2 Qg.x/ D P.P Qg/.x/ � 1

2

Z x

0

t Qg.t/ dt � 1

2

Z x

0

t2

x
Qg.x/ dt D 1

6
x2 Qg.x/

� 1

6
x2 g.x/; 0 < x < r:

In view of (8.11), this proves (8.12).
(2) We can prove the general case where n � 2 as follows: For 0 � � < r , we let

�.�/ D sup
jzjD�

g.z/; 0 < � < r:

We see that

g.z/ � �.jzj/ for all z 2 B:

Moreover, it follows from condition (8.8) that �.�/ is bounded on the interval
Œ0; �/ and that

lim
�#0

�.�/ D 0:

Therefore, just as in Step (1) we can construct a function (see formula (8.11))

�.�/ D 6P 2 Q�.�/; 0 < � < r;

associated with the function �.�/. Then it is easy to verify that the function
k.z/, defined by the formula

k.z/ D �.jzj/; z 2 B;

satisfies the desired conditions (8.9) and (8.10).

The proof of Lemma 8.3 is complete.
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Step 2-1b: If g.x/ is a non-negative, continuous function on Rn such that g.0/ D
0, then it follows from an application of Lemma 8.3 that there exists a non-
negative function k 2 C2.Rn/ such that

jzj2 g.z/ � k.z/ for all z 2 Rn;

k.0/ D @k

@xi
.0/ D @2k

@xi@xj
.0/ D 0 for all 1 � i; j � n:

However, by applying the result of Step 1 to the function ˚.x; y/ WD k.x � y/
we obtain that the function

x 7�!
Z

˝

s.x; dy/k.y � x/f .y/

is locally bounded on
ı
˝.

Since we have the inequality

jy � xj2 g.y � x/ � k.y � x/ for all x, y 2 ˝;

it follows that the function

x 7�!
Z

˝

s.x; dy/jy � xj2g.y � x/f .y/

is also locally bounded on
ı
˝ .

Step 2-2: We assume, to the contrary, that there exist a compact subset K of
ı
˝

and a non-negative function f 2 C0.˝/ such that

sup
x2K

Z

˝

s.x; dy/jy � xj2f .y/ D C1:

Then we can find a sequence fxj g of points in K and a sequence fgj g of non-
negative, continuous functions on Rn such that we have, for each j 2 N,

gj .0/ D 0;
kgj k1 D 1;
Z

˝

s.xj ; dy/jy � xj j2gj .y � xj /f .y/ � j Š:

If we let

g.z/ D
1X

`D1

1

2`
g`.z/; z 2 Rn;
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it follows that g.z/ is a non-negative, continuous function on Rn such that

g.0/ D 0;

and that
Z

˝

s.xj ; dy/jy � xj j2g.y � xj /f .y/

D
1X

`D1

1

2`

Z

˝

s.xj ; dy/jy � xj j2g`.y � xj /f .y/

� 1

2j

Z

˝

s.xj ; dy/jy � xj j2gj .y � xj /f .y/ � j Š

2j
for all j 2 N;

so that

sup
j�1

Z

˝

s.xj ; dy/jy � xj j2g.y � xj /f .y/ D C1:

This contradicts the assertion proved in Step 2-1.
Summing up, we have proved that the Borel kernel s.x; dy/ satisfies condition
(NS.2).

Step 3: By starting at the kernel s.x; dy/ and a unity local function �.x; y/ we
can define a continuous linear operator

S W C2
0 .˝/ �! Bloc.

ı
˝/

by formula (8.2)

Su.x/

D
Z

˝

s.x; dy/

"

u.y/ � �.x; y/
 

u.x/C
nX

iD1

@u

@xi
.x/.yi � xi /

!#

;

x 2 ı
˝; u 2 C2

0 .˝/:

We denote by Q̋ an open subset of Rn such that

( Q̋ \ RnC D ˝ if ˝ is an open subset of RnC;
Q̋ D ˝ if ˝ is an open subset of Rn:

Then it follows from condition (8.5) that the mapping

C1
0 .
Q̋ / 3 u 7�! W

�
uj Q̋

�
.x/ � S �uj Q̋

�
.x/; x 2 ı

˝;
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defines a distribution of order 2 on Q̋ whose support is reduced to the point x.

Since P D W � S maps C2
0 .˝/ into Bloc.

ı
˝/, we obtain that P is a second-order

differential operator of the form

Pu.x/ D
nX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

nX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/; x 2 ı

˝;

where the coefficients aij.x/, bi.x/ and c.x/ belong to Bloc.
ı
˝/.

Now the proof of Theorem 8.2 is complete.

Secondly, First, we give a useful characterization of linear continuous operators

W W C2
0 .˝/ ! Bloc.

ı
˝/ which have positive Borel kernels in the case where ˝ is

an open subset of Rn or of RnC:

Theorem 8.4. Let ˝ be an open subset of Rn or of RnC. Let V be a linear subspace
of C2

0 .˝/ which contains C1
0 .˝/, that is, C1

0 .˝/ 	 V 	 C2
0 .˝/. Assume that W

is a linear operator from V into Bloc.
ı
˝/ and satisfies the condition

x 2 ı
˝; u 2 V ; u � 0 in ˝ and u.x/ D 0 H) Wu.x/ � 0: (8.14)

Then the operator W can be extended uniquely to a continuous linear operator

W W C2
0 .˝/! Bloc.

ı
˝/ which still satisfies condition (8.14) for all u 2 C2

0 .˝/:

x 2 ı
˝; u 2 C2

0 .˝/; u � 0 in ˝ and u.x/ D 0 H) Wu.x/ � 0: (p1)

Proof. The proof is divided into three steps.

Step 1: First, we consider the case where V D C2
0 .˝/. In order to prove the

continuity ofW , by the closed graph theorem (Theorem 3.51) it suffices to show
that the operator

W W C2
0 .˝/ �! Bloc.

ı
˝/

is closed.
Step 1-1: The next lemma is an essential step in the proof:

Lemma 8.5. For any point x 2 ı
˝ and any compact subset K of ˝ , there exists a

positive constant C.x;K/ such that

jWu.x/j � C.x;K/ kukC2.˝/ for all u 2 C2
0 .K/: (8.15)

Here

C2
0 .K/ D

˚
u 2 C2

0 .˝/ W supp u 	 K� :
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Proof. For a point x 2 ı
˝ and a compact set K 	 ˝ , we choose a local unity

function �.x; y/ such that

K 	 supp�.x; �/ for every x 2 ı
˝;

and let

�0x .y/ D �.x; y/;
�ix.y/ D �0x .y/ .yi � xi / D �.x; y/ .yi � xi / ; 1 � i � n:

Moreover, if u 2 C2
0 .K/, we let

ux.y/ D u.y/� u.x/�0x .y/ �
nX

iD1

@u

@xi
.x/�ix.y/ (8.16)

D u.y/� �.x; y/
 

u.x/C
nX

iD1

@u

@xi
.x/.yi � xi /

!

; x; y 2 ˝:

We observe that

u.y/ D u.x/�0x.y/C
nX

iD1

@u

@xi
.x/�ix.y/C ux.y/; ux 2 C2

0 .K/; (8.17)

and that

ux.x/ D @ux
@xi

.x/ D 0; 1 � i � n: (8.18)

Therefore, by applying the operatorW to both sides of (8.17) we obtain that

Wu.x/ (8.19)

D u.x/W
�
�0x
�
.x/C

nX

iD1

@u

@xi
.x/W

�
�ix
�
.x/CW .ux/ .x/; x 2 ı

˝:

On the other hand, by Taylor’s formula it follows from condition (8.18) that

ux.y/ D
nX

i;jD1
.yi � xi /.yj � xj /Rij.ux/.x; y/;

�
�Rij.ux/

�
�
C.˝�˝/ �

1

2
kuxkC2.˝/ :
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Therefore, we can find a non-negative function �x 2 C1
0 .˝/ such that

�x.y/ D jy � xj2 for all y 2 K 	 supp�0x ;

and further that

jux.y/j � n kuxkC2.˝/ �x.y/ for all y 2 ˝: (8.20)

If we let

U˙.y/ D n kuxk�x.y/˙ ux.y/

then we have, by inequality (8.20) and condition (8.18),

U˙ 2 C2
0 .˝/;

U˙.y/ � 0 in ˝;

U˙.x/ D 0:

Hence, by applying condition (p1) to the function U˙ we obtain that

WU˙.x/ D n kuxkC2.˝/ W .�x/ .x/˙W .ux/ .x/ � 0; x 2 ı
˝;

so that

jW .ux/ .x/j � n kuxkC2.˝/ W .�x/ .x/; x 2 ı
˝: (8.21)

However, by Taylor’s formula it follows from formula (8.16) that there exists a
positive constant C1.x;K/ such that

kuxkC2.˝/ � C1.x;K/ kukC2.˝/ for all u 2 C2
0 .K/: (8.22)

Therefore, we have, by inequalities (8.21) and (8.22),

jW .ux/ .x/j � nC1.x;K/ kukC2.˝/ W .�x/ .x/; x 2 ı
˝: (8.23)

By combining formula (8.19) and inequality (8.23), we have proved that

jW .u/ .x/j

� ju.x/j ˇˇW �
�0x
�
.x/
ˇ
ˇC

nX

iD1

ˇ
ˇ
ˇ
ˇ
@u

@xi
.x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇC jW .ux/ .x/j
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� kukC2.˝/
ˇ
ˇW

�
�0x
�
.x/
ˇ
ˇC kukC2.˝/

nX

iD1

ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇ

CnC1.x;K/ kukC2.˝/ W .�x/ .x/

D
 
ˇ
ˇW

�
�0x
�
.x/
ˇ
ˇC

nX

iD1

ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇC nC1.x;K/W .�x/ .x/

!

kukC2.˝/ :

This proves the desired inequality (8.15).
The proof of Lemma 8.5 is complete.

Step 1-2: Now we show the following assertion:

uj �! u in C2
0 .˝/; Wuj �! v in Bloc.

ı
˝/

H) v D Wu:

Since the topology ofC2
0 .˝/ is the inductive limit topology of the spaces C2

0 .K/,
there exists a compact subset K 	 ˝ such that

uj �! u in C2
0 .K/:

Therefore, by applying inequality (8.15) to the functions uj � u, we obtain that,
as j !1,

Wuj .x/ �! Wu.x/ for each x 2 ı
˝:

This proves that v D Wu.
Summing up, we have proved Theorem 8.4 in the case where V D C2

0 .˝/.
Step 2: We consider the general case where V is only a subspace of C2

0 .˝/ which
containsC1

0 .˝/. In this case we cannot use the closed graph theorem, as in Step
1.

Step 2-1: Our proof is based on the following lemma:

Lemma 8.6. For any point x0 2
ı
˝ and any compact set K 	 ˝ such that x0 2 ı!

K , there exist a compact set L 	 ˝ , a neighborhood V of x0 .V 	
ı
˝/ and smooth

functions �0x.y/, �
1
x.y/, : : :, �

n
x.y/; 'x.y/ in C1

0 .˝/ with support in L such that,
for each x 2 V ,

�0x.x/ D 1; �ix.x/ D 0I
@�0x
@xk

.x/ D 0; @�
i
x

@xk
.x/ D ıik .1 � i; k � n/: (8.24)

'x.x/ D 0 and jy � xj2 � 'x.y/ for all y 2 K: (8.25)
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Moreover, we have the estimates

sup
x2V

�
��ix

�
�
C2.˝/

<1 .0 � i � n/; (8.26a)

sup
x2V

ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇ <1 .0 � i � n/; (8.26b)

sup
x2V
jW .'x/ .x/j <1: (8.26c)

Proof. (1) First, we construct functions �0x.y/, �
1
x.y/, : : :, �

n
x.y/ in the space

C1
0 .˝/ which satisfy conditions (8.24).

To do so, we consider the following .nC 1/ � .nC 1/ matrix:

M.xI x0/ D

0

B
B
B
B
B
B
B
B
B
B
B
@

�0x0 .x/ @1�
0
x0
.x/ � � @k�0x0.x/ � � @n�0x0.x/

�1x0 .x/ @1�
1
x0
.x/ � � @k�1x0.x/ � � @n�1x0.x/

� � � � � � � �
� � � � � � � �

�
j
x0 .x/ @1�

j
x0.x/ � � @k�jx0.x/ � � @n�jx0.x/

� � � � � � � �
� � � � � � � �

�nx0 .x/ @1�
n
x0
.x/ � � @k�nx0.x/ � � @n�nx0.x/

1

C
C
C
C
C
C
C
C
C
C
C
A

; x 2 ˝:

Here

@k�
j
x0
.x/ D @

@yk

�
�jx0.y/

�
ˇ
ˇ
ˇ
ˇ
yDx

.1 � i; k � n/:

We note that the matrixM.xI x0/ is the identity matrix at x D x0. Hence we can

find a compact neighborhoodV of x0 .V 	
ı
˝/ such thatM.x0I x/ is invertible

on V . We express the inverse matrix N.xI x0/ of M.xI x0/ in the form

N.xI x0/ D

0

B
B
B
B
B
B
B
@

00 .x/ 
0
1 .x/ � � 0k .x/ � � 0n.x/

10 .x/ 
1
1 .x/ � � 1k .x/ � � 1n.x/

� � � � � � � �

j
0 .x/ 

j
1 .x/ � � jk .x/ � � jn .x/

� � � � � � � �
n0 .x/ 

n
1 .x/ � � nk .x/ � � nn .x/

1

C
C
C
C
C
C
C
A

; x 2 V:

Then we can define functions �0x.y/, �
1
x.y/, : : :, �

n
x.y/ by the formula
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0

B
B
B
B
B
B
B
B
B
B
B
@

�0x.y/

�1x.y/

�
�

�
j
x.y/

�
�

�nx.y/

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

00 .x/ 
0
1 .x/ � � 0k .x/ � � 0n.x/

10 .x/ 
1
1 .x/ � � 1k .x/ � � 1n.x/

� � � � � � � �
� � � � � � � �


j
0 .x/ 

j
1 .x/ � � jk .x/ � � jn .x/

� � � � � � � �
� � � � � � � �

n0 .x/ 
n
1 .x/ � � nk .x/ � � nn .x/

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
@

�0x .y/

�1x .y/

�
�

�kx .y/

�
�

�nx .y/

1

C
C
C
C
C
C
C
C
C
C
C
A

; x 2 V; y 2 ˝:

It is easy to see that the functions �0x.y/, �
1
x.y/, : : :, �

n
x.y/ satisfy condi-

tions (8.24), for each x 2 V .
(2) Secondly, we construct functions 'x.y/ in the space C1

0 .˝/ by using the
functions �0x.y/, �

1
x.y/, : : :, �

n
x.y/. We choose a non-negative smooth function

�.y/ in C1
0 .˝/ such that

�.y/ D 1 onK [ V :

For each x 2 V , we let

 x.y/ D jy � xj2 �.y/ for all y 2 ˝;

and

Q'x.y/

D  x0.y/�  x0.x/�0x.y/�
nX

iD1

@

@yi
. x0.y//

ˇ
ˇ
ˇ
ˇ
yDx

�ix.y/ for all y 2 ˝:

Then, by using Taylor’s formula and conditions (8.24) we can find a positive
constant C , independent of x 2 V , such that

Q'x.y/ � C jy � xj2 for all y 2 ˝:

Therefore, it is easy to see that the functions

'x.y/ D 1

C
Q'x.y/ for all y 2 ˝;

satisfy conditions (8.25), for each x 2 V .
(3) Finally, we can easily verify that the functions �0x.y/, �

1
x.y/, : : :, �

n
x.y/ and

'x.y/ satisfy the desired estimates (8.26a), (8.26b) and (8.26c).
The proof of Lemma 8.6 is complete.

Step 2-2: In the general case, we substitute the functions �0x.y/, �
1
x .y/, : : :, �

n
x .y/

and �x.y/ by the functions �0x.y/, �
1
x.y/, : : :, �

n
x.y/ and 'x.y/, respectively.
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If v 2 V with supp v 	 K for some compact subset K 	 ˝ , we let

vx.y/ D v.y/ � v.x/�0x.y/�
nX

iD1

@v

@xi
.x/�ix.y/ x; y 2 ˝: (8.27)

We note that

v.y/ D v.x/�0x.y/C
nX

iD1

@v

@xi
.x/�ix.y/C vx.y/; vx 2 V ; (8.28)

and that

vx.x/ D @vx
@xi

.x/ D 0; 1 � i � n: (8.29)

Therefore, by applying the operatorW to both sides of (8.28) we obtain that

Wv.x/ (8.30)

D v.x/W
�
�0x
�
.x/C

nX

iD1

@v

@xi
.x/W

�
�ix
�
.x/CW .vx/ .x/; x 2 ı

˝:

On the other hand, by Taylor’s formula it follows from condition (8.29) that

vx.y/ D
nX

i;jD1
.yi � xi /.yj � xj /Rij.vx/.x; y/;

�
�Rij.vx/

�
�
C.˝�˝/ �

1

2
kvxkC2.˝/ :

However, by virtue of assertion (8.25) we obtain that

jvx.y/j � n kvxkC2.˝/ 'x.y/ for all y 2 ˝: (8.31)

If we let

V˙.y/ D n kvxk'x.y/˙ vx.y/

then we have, by inequality (8.31) and condition (8.29),

V˙ 2 V ;

V˙.y/ � 0 in ˝;

V˙.x/ D 0:
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Hence, by applying condition (p1) to the function V˙ we obtain that

W V˙.x/ D n kvxkC2.˝/ W .'x/ .x/˙W .vx/ .x/ � 0; x 2 ı
˝;

so that

jW .vx/ .x/j � n kvxkC2.˝/ W .'x/ .x/; x 2 ı
˝: (8.32)

However, by Taylor’s formula it follows from (8.27) that there exists a positive
constant C1.x;K/ such that

kvxkC2.˝/ � C1.x;K/ kvkC2.˝/ for all v 2 V with supp v 	 K: (8.33)

Therefore, we have, by inequalities (8.32) and (8.33),

jW .vx/ .x/j � nC1.x;K/ kvkC2.˝/ W .'x/ .x/; x 2 ı
˝: (8.34)

By combining formula (8.30) and inequality (8.34), we obtain that

jW.v/.x/j

� jv.x/j ˇˇW �
�0x
�
.x/
ˇ
ˇC

nX

iD1

ˇ
ˇ
ˇ
ˇ
@v

@xi
.x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇC jW .vx/ .x/j

� kvkC2.˝/
ˇ
ˇW

�
�0x
�
.x/
ˇ
ˇC kvkC2.˝/

nX

iD1

ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇ

CnC1.x;K/ kvkC2.˝/ W .'x/ .x/

D
 

nX

iD0

ˇ
ˇW

�
�ix
�
.x/
ˇ
ˇC nC1.x;K/W .'x/ .x/

!

kvkC2.˝/ :

In view of estimates (8.26b) and (8.26c), we have proved that the operatorW W V !
Bloc.

ı
˝/ can be extended uniquely to a continuous linear operator

W W C2
0 .˝/ �! Bloc.

ı
˝/:

Step 3: Finally, it remains to show that the extended operator W still satisfies
condition (8.14) for all u 2 C2

0 .˝/:

x 2 ı
˝; u 2 C2

0 .˝/; u � 0 in ˝ and u.x/ D 0 H) Wu.x/ � 0: (p1)
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Let fukg be a sequence of smooth functions in the space C1
0 .˝/ such that

uk � 0 in ˝;

uk.x/ D 0 for all k 2 N;

uk �! u in C2
0 .˝/:

For example, by choosing a smooth function ˛.y/ on Rn such that

0 � ˛.y/ � 1 on Rn;

and that

˛.y/ D
(
0 if jyj � 1;
1 if jyj � 2;

we may take the functions fukg of the form

uk.y/ D 1

2
.1 � ˛ .k.y � x///

nX

i;jD1

@2u

@xi @xj
.x/ .yi � xi /

�
yj � xj

�

C˛ .k.y � x// J"ku.y/; y 2 ˝:

Here the J"ku are Friedrichs’ mollifiers with "k # 0 (see Sect. 5.2.6).

Then, by applying condition (8.14) to the functions fukg we obtain from the
continuity of W that

Wu.x/ D lim
k!1 Wuk.x/ � 0:

This proves the desired condition (p1/.
Now the proof of Theorem 8.4 is complete.

By combining Theorems 8.2 and 8.4, we have the following simple characteriza-
tion of W :

Corollary 8.7. Let ˝ be an open subset of Rn or of RnC. If a linear operator

W W C2
0 .˝/ ! Bloc.

ı
˝/ satisfies condition (p1), then it follows that W W

C2
0 .˝/ ! Bloc.

ı
˝/ is continuous and can be written in the form (8.4), where aij,

bi , c 2 Bloc.
ı
˝/ and the positive Borel kernels s.x; dy/ enjoy properties (NS.1) and

(NS.2).

Proof. If W W C2
0 .˝/ ! Bloc.

ı
˝/ is a linear operator, then it follows from

an application of Theorem 8.4 that condition (p1) implies the continuity of W
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and condition (p0). Therefore, we obtain from Theorem 8.2 that condition (w) is
satisfied.

We remark that if the integro-differential operatorW D P C S enjoys property
(w), then the kernel s.x; dy/ and the principal part

�
aij.x/

�
1�i;j�n of P are uniquely

determined by W . Indeed, it suffices to note the following formulas:

Z

˝

s.x; dy/u.y/ D Wu.x/ if u 2 C2
0 .˝/ and x 2 ı

˝ n supp u; (8.5)

2u.x/
nX

i;jD1
aij.x/�i �j D W

�
˚�
xu
�
.x/ �

Z

˝

s.x; dy/˚�
x.y/u.y/ (8.35)

if x 2 ı
˝, u 2 C2

0 .˝/ and � D .�i / 2 Rn;

where

˚�
x .y/ D

 
nX

iD1
�i .yi � xi /

!2

; x, y 2 ˝ and � D .�i / 2 Rn:

Finally, we characterize linear operators W W C2
0 .˝/ ! Bloc.

ı
˝/ which satisfy

the positive maximum principle (PM):

Theorem 8.8. Let ˝ be an open subset of Rn or of RnC. If W is a linear operator

from C2
0 .˝/ into Bloc.

ı
˝/ of the form (8.4), then we have the following two

assertions (i) and (ii):

(i) The operator W satisfies condition (8.14) if and only if the principal symbol

�Pn
i;jD1 aij.x/�i �j of P is non-positive on

ı
˝ � Rn.

(ii) The operatorW satisfies the positive maximum principle (PM)

x0 2
ı
˝; v 2 C2

0 .˝/ and v.x0/ D sup
˝

v � 0 H) Wv.x0/ � 0 (PM)

if and only if the principal symbol of P is non-positive on
ı
˝ � Rn and the

following conditions (8.36) hold true:

P1.x/ D c.x/ � 0 for all x 2 ı
˝; (8.36a)

W1.x/ D c.x/C
Z

˝

s.x; dy/Œ1 � �.x; y/� � 0 for all x 2 ı
˝:

(8.36b)
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In particular, the positive Borel kernels s.x; dy/ enjoy the following property
(NS.3):

(NS.3) For any open subset ˝ 0 of
ı
˝ , the function

˝ 0 3 x 7�! s.x;˝ n˝ 0/ D
Z

˝n˝0

s.x; dy/

belongs to the space Bloc.˝
0/.

Proof. The proof is divided into two steps.

Step 1: It is easy to see that if the principal symbol of P is non-positive, then the
integro-differential operatorW D P CS satisfies the condition (p1). Indeed, we
have

x 2 ı
˝; u 2 C2

0 .˝/; u � 0 in ˝; u.x/ D 0
H)

Wu.x/ D
nX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

Z

˝

s.x; dy/u.y/ � 0:

Conversely, it suffices to show that if condition (p1) is satisfied, then we have

x 2 ı
˝; h 2 C2

0 .˝/; h � 0 in ˝; h.x/ D @h

@xi
.x/ D 0 .1 � i � n/

(8.37)

H) Wh.x/ �
Z

˝

s.x; dy/h.y/ � 0:

Indeed, by virtue of formula (8.35) it follows from assertion (8.37) with h WD ˚
�
xu

that

x 2 ı
˝; u 2 C2

0 .˝/; u � 0 in ˝ and � D .�i / 2 Rn

H)

2u.x/

0

@
nX

i;jD1
aij.x/�i �j

1

A D W �
˚�
xu
�
.x/ �

Z

˝

s.x; dy/˚�
x .y/u.y/ � 0:

This proves that

nX

i;jD1
aij.x/�i �j � 0 for all .x; �/ 2 ı

˝ � Rn:
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Now we choose a real-valued, smooth function ' 2 C1
0 .˝/ such that

(
0 � '.y/ � 1 in ˝;

'.y/ D 1 in a neighborhood of x:

Then we have, by condition (p1) with u WD ' h and (8.5),

0 � W.' h/.x/ D Wh.x/ �W..1 � '/h/.x/

D Wh.x/ �
Z

˝

s.x; dy/.1 � '.y//h.y/

D Wh.x/ �
Z

˝

s.x; dy/h.y/ �
Z

˝

s.x; dy/'.y/h.y/;

since

x … supp .1 � '/h:

This proves that

Wh.x/ �
Z

˝

s.x; dy/h.y/ � �
Z

˝

s.x; dy/'.y/h.y/: (8.38)

On the other hand, we have, by Taylor’s formula,

h.y/

D h.x/ �
nX

iD1

@h

@xi
.x/ .yi � xi /�

nX

i;jD1
.yi � xi /

�
yj � xj

�
Rijh.x; y/

D 1

2

nX

i;jD1
.yi � xi /

�
yj � xj

� Z 1

0

@2h

@xi @xj
.x C t.y � x//.1 � t/ dt:

If V is an open neighborhood of the support supp' of ', then it follows that

'.y/h.y/

D 1

2
'.y/

nX

i;jD1
.yi � xi /

�
yj � xj

� Z 1

0

@2h

@xi @xj
.x C t.y � x//.1 � t/ dt

for all y 2 V :

Hence we have the inequality

'.y/h.y/ � n

4
khkC2.˝/ �V .y/ for all y 2 ˝;
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and so
Z

˝

s.x; dy/'.y/h.y/ � n khkC2.˝/
Z

V

s.x; dy/ jy � xj2 :

However, by condition (NS.2) it follows from an application of the Lebesgue
dominated convergence theorem ([Fo2, Theorem 2.24]) that, for any given positive
number ", we can find a function ' with a sufficiently small neighborhood of x such
that

Z

˝

s.x; dy/'.y/h.y/ � ": (8.39)

Therefore the desired assertion (8.37) follows by combining inequalities (8.38)
and (8.39), since " is arbitrary.

Step 2: If the operator S is of the form

Su.x/ D
Z

˝

s.x; dy/

"

u.y/� �.x; y/
 

u.x/C
nX

iD1

@u

@xi
.x/ .yi � xi /

!#

;

then we have, by condition (8.36),

x 2 ı
˝; u 2 C2

0 .˝/; u.x/ D sup
˝

u � 0
H)
Wu.x/

D Pu.x/C Su.x/

D
nX

i;jD1
aij.x/

@2u

@xi @xj
.x/C c.x/u.x/C

Z

˝

s.x; dy/ .u.y/� �.x; y/u.x//

� c.x/u.x/C
Z

˝

s.x; dy/.1 � �.x; y//u.x/

D
�

P1.x/C
Z

˝

s.x; dy/.1 � �.x; y/
�

u.x/

� 0:

Conversely, we assume that the integro-differential operatorW D PCS satisfies
the positive maximum principle (PM). Then it follows thatW satisfies condition
(p1), so that the principal symbol of P is non-positive.

On the other hand, we can choose an increasing sequence
˚
�j
�

of smooth
functions in C1

0 .˝/ such that
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Fig. 8.6 The function �j .x/

8
ˆ̂
<

ˆ̂
:

0 � �j .y/ � 1 in ˝;

�j .y/ D 1 in a neighborhood of x;

supj�1 �j .y/ D 1 for each point y 2 ˝:

For example, if fKj g is an increasing sequence of compact subsets of ˝ such that

Kj is contained in the interior
ı

KjC1 of KjC1 for each j and that

˝ D
1[

jD1
Kj ;

then it follows from an application of Corollary 5.6 that there exists a function �j 2
C1
0 .˝/ such that (see Fig. 8.6)

(
0 � �j .y/ � 1 in ˝;

�j .y/ D 1 on Kj :

Then we have, by condition (MP),

0 � W�j .x/ D c.x/�j .x/C
Z

˝

s.x; dy/
�
�j .y/� �.x; y/�j .x/

�
(8.40)

D c.x/C
Z

˝

s.x; dy/.�j .y/� �.x; y//

D P1.x/C
Z

˝

s.x; dy/.�j .y/ � �.x; y//:

Therefore, the desired condition (8.36) follows by letting j ! 1 in inequal-
ity (8.40).

The proof of Theorem 8.8 is complete.

In Sect. 7.4, we give a precise definition of the principal symbol of a differential
operator.
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8.1.2 Positive Borel Kernels and Pseudo-Differential Operators

Let D be a bounded domain of Euclidean space RN with smooth boundary @D.
Now we give two important examples of positive Borel kernels in terms of pseudo-
differential operators:

Example 8.9. Let s.x; y/ be the distribution kernel of a properly supported, pseudo-
differential operator S 2 L2�	1;0 .R

N /, 	 > 0, and s.x; y/ � 0 off the diagonal

RN D f.x; x/ W x 2 RN g in RN � RN . Then the integro-differential operator Sr ,
defined by the formula (see formula (8.2))

Sru.x/

D
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy; x 2 D;

is absolutely convergent.

Proof. Indeed, we can write the integral Sru.x/ in the form

Sru.x/

D
Z

D

s.x; y/ Œ1 � �.x; y/� u.y/ dy

C
Z

D

s.x; y/�.x; y/

0

@u.y/� u.x/�
NX

jD1
.yj � xj / @u

@xj
.x/

1

A dy:

By using Taylor’s formula

u.y/� u.x/ �
NX

jD1
.yj � xj / @u

@xj
.x/

D
NX

i;jD1
.yi � xi /.yj � xj /

�Z 1

0

.1 � t/ @2u

@xi @xj
.x C t.y � x//dt

�

;

we can find a constant C1 > 0 such that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
u.y/� u.x/ �

NX

jD1
.yj � xj / @u

@xj
.x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� C1jx � yj2; x; y 2 D:
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On the other hand, it follows from an application of Theorem 7.36 that, for any
compact K 	 RN , there exists a constant C2 > 0 such that the distribution kernel
s.x; y/ of S 2 L2�	1;0 .R

N /, 	 > 0, satisfies the estimate

0 � s.x; y/ � C2

jx � yjNC2�	 ; x; y 2 D; x ¤ y:

Therefore, we have, for some constant C3 > 0,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Z

D

s.x; y/�.x; y/

0

@u.y/� u.x/ �
NX

jD1
.yj � xj / @u

@xj
.x/

1

A dy

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� C3kukC2.D/
Z

D

1

jx � yjNC2�	 � jx � yj2 dy

D C3kukC2.D/
Z

D

1

jx � yjN�	 dy:

Similarly, we have, for some constant C4 > 0,

ˇ
ˇ
ˇ
ˇ

Z

D

s.x; y/ Œ1 � �.x; y/� u.y/ dy

ˇ
ˇ
ˇ
ˇ � C4kukC.D/

Z

D

1

jx � yjN�	 dy;

since we have

�.x; y/ � 1

D �.x; y/ � �.x; x/ �
NX

jD1
.yj � xj / @�

@xj
.x; x/

D
NX

i;jD1
.yi � xi /.yj � xj /

�Z 1

0

.1 � t/ @2�

@xi @xj
.x; x C t.y � x//dt

�

:

Therefore, we obtain that the integral Sru.x/ is absolutely convergent.
The proof of Example 8.9 is complete.

Example 8.10. Let r.x0; y0/ be the distribution kernel of a pseudo-differential
operator R 2 L

2�	1
1;0 .@D/, 	1 > 0, and r.x0; y0/ � 0 off the diagonal 
@D D

f.x0; x0/ W x0 2 @Dg in @D � @D. Let t.x; y/ be the distribution kernel of a properly
supported, pseudo-differential operator T 2 L1�	21;0 .RN /, 	2 > 0, and t.x; y/ � 0
off the diagonal
RN D f.x; x/ W x 2 RN g in RN�RN . Then the integro-differential
operator �r , defined by the formula
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�ru.x
0/

D
Z

@D

r.x0; y0/

2

4u.y0/ � .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/ � u.x0/

�
dy; x0 2 @D;

is absolutely convergent.

Proof. Since R 2 L2�	11;0 .@D/ and T 2 L1�	21;0 .RN /, it follows from an application
of Theorem 7.36 that the kernels r.x0; y0/ and t.x0; y/ satisfy respectively the
estimates

0 � r.x0; y0/ � C 0

jx0 � y0j.N�1/C2�	1 ; x0; y0 2 @D; x0 ¤ y0;

0 � t.x0; y/ � C 00

jx0 � yjNC1�	2 ; x0 2 @D; y 2 D;

where jx0 � y0j denotes the geodesic distance between x0 and y0 with respect to the
Riemannian metric of @D. Therefore, we obtain that the integrals

Rru.x
0/

D
Z

@D

r.x0; y0/

2

4u.y0/� .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0;

Tru.x
0/ D

Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy

are both absolutely convergent.
The proof of Example 8.10 is complete.

8.2 Maximum Principles for Waldenfels Operators

In this section we prove the strong maximum principle and Hopf’s boundary point
lemma for second-order elliptic Waldenfels operators which play an essential role
in Chaps. 9 and 10.

Let D be a bounded domain of Euclidean space RN with smooth boundary @D.
We consider a second-order elliptic Waldenfels integro-differential operatorW with
real coefficients such that



8.2 Maximum Principles for Waldenfels Operators 391

Wu.x/ D Pu.x/C Su.x/

WD
0

@
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

C
NX

jD1
aj� .x/

@u

@xj
.x/C a�.x/u.x/

C
Z

D

s.x; dy/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1

@u

@xj
.x/

�
yj � xj

�
1

A

3

5 :

Here:

(1) aij.x/ 2 C.D/, aij.x/ D aji.x/ for all x 2 D and 1 � i; j � N , and there
exists a constant a0 > 0 such that

NX

i;jD1
aij.x/�i �j � a0j�j2 for all .x; �/ 2 D � RN :

(2) bi .x/ 2 C.D/ for all 1 � i � N .
(3) c.x/ 2 C.D/, and c.x/ � 0 in D, but c.x/ 6� 0 in D.
(4) The positive Borel kernel s.x; dy/ satisfies the following three conditions

(NS.10), (NS.20) and (NS.30):

(NS.10) s.x; fxg/ D 0 for every x 2 D.
(NS.20) For every non-negative function f 2 C.D/, the function

D 3 x 7�!
Z

D

s.x; dy/jy � xj2f .y/

belongs to the space C.D/.
(NS.30) For every open subset ˝ of D, the function

˝ 3 x 7�! s.x;D n˝/

belongs to the space Bloc.˝/.

(5) aj� .x/ D S.�jx /.x/ where �jx .y/ D �.x; y/.yj � xj / for all 1 � j � N .
(6) a� .x/ D S.�x/.x/ where �x.y/ D �.x; y/.
(7) Finally, we assume that

W1.x/ D P1.x/C S1.x/ (8.41)

D c.x/C a� .x/C
Z

D

s.x; dy/ .1 � �.x; y// � 0 in D:
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8.2.1 The Weak Maximum Principle

First, we prove the weak maximum principle:

Theorem 8.11 (the weak maximum principle). Let W D P C S be a second-
order elliptic Waldenfels operator. If S maps C2.D/ continuously into C.D/, then
we have the following two assertions (i) and (ii):

(i) If a function u.x/ 2 C.D/ \ C2.D/ satisfies the condition

Wu.x/ � 0 in D

and if the functionW1 satisfies the condition

W1.x/ D P1.x/CS1.x/ D c.x/Ca� .x/C
Z

D

s.x; dy/.1��.x; y// < 0 in D;

then the function u.x/ may take its positive maximum only on the boundary
@D.

(ii) If a function u.x/ 2 C.D/ \ C2.D/ satisfies the condition

Wu.x/ > 0 in D

and if the functionW1 satisfies the condition

W1.x/ D P1.x/CS1.x/ D c.x/Ca� .x/C
Z

D

s.x; dy/.1��.x; y// � 0 in D;

then the function u.x/ may take its non-negative maximum only on the
boundary @D.

Proof. Assume, to the contrary, that there exists a point x0 of D such that

u.x0/ D max
x2D

u.x/:

Then it follows that

@u

@xi
.x0/ D 0; 1 � i � N I

NX

i;jD1
aij.x0/

@2u

@xi @xj
.x0/ � 0:

Hence we have the inequalities

Pu.x0/ D
NX

i;jD1
aij.x0/

@2u

@xi @xj
.x0/C c.x0/u.x0/ � c.x0/u.x0/; (8.42)
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and

Su.x0/ D
Z

D

s.x0; dy/.u.y/� �.x0; y/u.x0//C a� .x0/u.x0/ (8.43)

D
Z

D

s.x0; dy/.u.y/� u.x0//

C
�Z

D

s.x0; dy/.1 � �.x0; y//C a� .x0/
�

u.x0/

D
Z

D

s.x0; dy/.u.y/� u.x0//C S1.x0/u.x0/

� S1.x0/u.x0/:
Assertion (i): If Wu.x/ � 0 in D, W1.x/ < 0 in D and if u.x0/ D maxD u > 0,

then it follows from inequalities (8.41)–(8.43) that

0 � Wu.x0/ D Pu.x0/C Su.x0/ � .c.x0/C S1.x0// u.x0/

D max
x2D

u.x/ �W1.x0/ < 0:

This is a contradiction.
Assertion (ii): Similarly, if Wu.x/ > 0, W1.x/ � 0 in D and if u.x0/ D

maxD u � 0, then it follows from inequalities (8.42) and (8.43) that

0 < Wu.x0/ D Pu.x0/C Su.x0/ � max
x2D

u.x/ �W1.x0/ � 0:

This is also a contradiction.
The proof of Theorem 8.11 is complete.

As an application of the weak maximum principle, we can obtain a pointwise
estimate for solutions of the non-homogeneous equation Wu D f :

Theorem 8.12. Let W D P C S be a second-order elliptic Waldenfels operator
such that S maps C2.D/ continuously into C.D/, and assume that

W1.x/ < 0 on D D D [ @D:
Then we have, for all u 2 C.D/ \ C2.D/,

max
D

juj � max

	�
1

minD.�W1/
�

sup
D

jWuj; max
@D
juj



: (8.44)

Proof. We let

M D max

	�
1

minD.�W1/
�

sup
D

jWuj; max
@D
juj



;
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and consider two functions

v˙.x/ DM ˙ u.x/:

Then it follows that

Wv˙.x/ DM �W1.x/˙Wu.x/ � 0 in D:

Hence, by applying part (i) of Theorem 8.11 to the functions�v˙.x/ we obtain that
the functions v˙.x/ may take their negative minimums only on the boundary @D.
However, we have the inequality

v˙.x/ DM ˙ u.x/ � 0 on @D:

Therefore, we obtain that

v˙.x/ � 0 on D:

This proves the desired estimate (8.44).
The proof of Theorem 8.12 is complete.

8.2.2 The Strong Maximum Principle

The next theorem is a generalization of the strong maximum principle for the
Laplacian to the integro-differential operator case:

Theorem 8.13 (the strong maximum principle). Let W D P C S be a second-
order elliptic Waldenfels operator such that S mapsC2.D/ continuously intoC.D/.
Assume that a function u.x/ 2 C2.D/ satisfies the conditions

Wu.x/ � 0 in D

and thatM D maxD u � 0. If the function u.x/ takes its non-negative maximumM
at an interior point of D, then it is a constant.

Proof. The proof is divided into four steps.

Step 1: We let

M D max
x2D

u.x/ � 0;

F D fx 2 D W u.x/ DM g;
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Fig. 8.7 The open ball V

and assume, to the contrary, that

F ¤ D:

Since F is closed inD, we can find a point x0 of F and an open ball V contained
in the set D n F , centered at x1, such that (see Fig. 8.7)

(a) V 	 D n F ;
(b) x0 is on the boundary @V of V .

Step 2: The next lemma on the existence of “barriers” is an essential step in the
proof of Theorem 8.13:

Lemma 8.14. Assume that

s.x0; V / D 0: (8.45)

Then there exists a function v.x/ 2 C1.D/ which satisfies the following four
properties (i) through (iv):

(i) v.x/ > 0 in V .
(ii) v.x/ < 0 on D n V .

(iii) v.x/ D 0 on @V .
(iv) Wv.x0/ > 0.

Proof. We take a function '.x/ 2 C1
0 .D/ such that

(
0 � '.x/ � 1 in D;

'.x/ D 1 on V ;

and define a smooth function vq.x/ by the formula

vq.x/ D
�
exp

��qjx � x1j2
� � exp

��q�2��'.x/; � D jx0 � x1j; (8.46)
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where q is a positive constant to be chosen later on. Then it is easy to see that the
function vq.x/ satisfies conditions (i) through (iii). Hence it suffices to show that the
function Wvq.x/ satisfies condition (iv) for q sufficiently large.

First, we estimate the function Pvq.x0/ from below. To do this, it should be noted
that

vq.x0/ D 0; (8.47a)

rvq.x0/ D 2q.x1 � x0/ exp
��q�2� ¤ 0: (8.47b)

Hence we have

Pvq.x0/ D
(

4q2
NX

i;jD1
aij.x0/.x1i � x0i /.x1j � x0j /

�2q
NX

iD1

�
aii.x0/C bi.x0/.x0i � x1i /

�
)

exp
��q�2� :

Since the matrix .aij/ is positive definite, we can estimate the function Pv.x0/ from
below as follows:

Pvq.x0/ �
�
C1q

2 C C2q
�

exp
��q�2� ; (8.48)

where

C1 D 4a0�2 > 0

and C2 are constants independent of q.
Secondly, we estimate the function Svq.x0/. By condition (8.45), we can write

the function Svq.x0/ in the form

Svq.x0/ (8.49)

D
NX

iD1
ai .x0/

@vq
@xi

.x0/C a.x0/vq.x0/

C
Z

D

s.x0; dy/

2

4vq.y/ � �.x0; y/
0

@vq.x0/C
NX

jD1

@vq
@xj

.x0/
�
yj � x0j

�
1

A

3

5

D
NX

iD1
ai .x0/

@vq
@xi

.x0/C
Z

DnV
s.x0; dy/ .1 � �.x0; y// vq.y/

C
Z

DnV
s.x0; dy/�.x0; y/

2

4vq.y/ � vq.x0/�
NX

jD1

@vq
@xj

.x0/
�
yj � x0j

�
3

5 :
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By using formula (8.46) and Taylor’s formula, we can find a positive constant C3,
independent of q, such that

ˇ
ˇ
ˇ
ˇ
@vq
@xi

.x0/

ˇ
ˇ
ˇ
ˇ � C3q exp

��q�2� .1 � i � N/; (8.50)

ˇ
ˇvq.y/

ˇ
ˇ � C3 exp

��q�2� for all y 2 D n V ; (8.51)
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
vq.y/ � vq.x0/�

NX

jD1

@vq
@xj

.x0/
�
yj � x0j

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(8.52)

� C3q2 exp
��q�2� jy � x0j2 for all y 2 D n V :

By virtue of inequalities (8.50) and (8.51), we can find positive constants C4 and
C5, independent of q, such that

ˇ
ˇ
ˇ
ˇ
ˇ

NX

iD1
ai .x0/

@vq
@xi

.x0/

ˇ
ˇ
ˇ
ˇ
ˇ
� C4q exp

��q�2� ;
ˇ
ˇ
ˇ
ˇ

Z

DnV
s.x0; dy/ .1 � �.x0; y// vq.y/

ˇ
ˇ
ˇ
ˇ � C5 exp

��q�2� :

Moreover, by using condition (NS.20) we can choose a local unity function �.x; y/
such that

Z

DnV
s.x0; dy/�.x0; y/ jy � x0j2 � C1

2C3
; (8.53)

if the support of �.x0; �/ is sufficiently close to x0. Hence it follows from
inequalities (8.52) and (8.53) that

Z

DnV
s.x0; dy/�.x0; y/

2

4vq.y/ � vq.x0/ �
NX

jD1

@vq
@xj

.x0/
�
yj � x0j

�
3

5

� C3q2 exp
��q�2�

Z

DnV
s.x0; dy/�.x0; y/ jy � x0j2

� C3q2 exp
��q�2� � C1

2C3
D C1

2
q2 exp

��q�2� :

Summing up, we have proved that

ˇ
ˇSvq.x0/

ˇ
ˇ �

�
C1

2
q2 C C4q C C5

�

exp
��q�2� : (8.54)
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Therefore, it follows from inequalities (8.48) and (8.54) that

Wvq.x0/ D Pvq.x0/C Svq.x0/ � Pqv.x0/ �
ˇ
ˇSqv.x0/

ˇ
ˇ (8.55)

�
�
C1

2
q2 C C4q C C5

�

exp
��q�2�

> 0;

if we take a positive constant q so large that

q >
�C4 C

q
C2
4 � 2C1C5

C1
:

The desired assertion (iv) follows from inequality (8.55) with v.x/ WD vq.x/.
The proof of Lemma 8.14 is complete.

Step 3: We recall that

u.x0/ DM D max
x2D

u.x/ � 0:

Hence we have the inequality

Pu.x0/ D
NX

i;jD1
aij.x0/

@2u

@xi @xj
.x0/C c.x0/u.x0/ � c.x0/u.x0/ � 0;

and, by condition (8.41),

Su.x0/ D
Z

D

s.x0; dy/ .u.y/� �.x0; y/u.x0//C a.x0/u.x0/

D
Z

D

s.x0; dy/ .u.y/� u.x0//

C
Z

D

s.x0; dy/ .1 � �.x0; y/u.x0//C a.x0/u.x0/

D
Z

D

s.x0; dy/ .u.y/� u.x0//C a.x0/u.x0/

�
Z

D

s.x0; dy/ .u.y/� u.x0//

C
�Z

D

s.x0; dy/.1 � �.x0; y//C a.x0/
�

u.x0/

� S1.x0/u.x0/ � 0:
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This implies that

Pu.x0/ D 0; Su.x0/ D 0:

Indeed, it suffices to note that

0 � Wu.x0/ D Pu.x0/C Su.x0/ � 0:

Thus we have

0 D Su.x0/ �
Z

D

s.x0; dy/ .u.y/� u.x0// � 0;

and hence
Z

D

s.x0; dy/ .u.y/� u.x0// D 0: (8.56)

However, we have

u.y/� u.x0/ < 0 for all y 2 V n fx0g:

By assertion (8.56), this implies that the condition (8.45)

s.x0; V / D 0

holds true, since we have

s.x0; fx0g/ D 0:

Therefore, we can apply Lemma 8.14 to our situation.
Step 4: If v is the function given in Lemma 8.14, we introduce a function

u�.x/ D u.x/C �v.x/;

where � is a positive constant to be chosen later on. Then, by Lemma 8.14 we
have the following four assertions (a) through (d) (see Fig. 8.8):

(a) There exists a neighborhood V 0 of x0 such that

Wv > 0 in V 0;

since Wv D PvC Sv is a continuous function in D.
(b) Wu� D WuC �Wv � �Wv > 0 in V 0.
(c) u� D uC �v � u �M on D n V , since v � 0 onD n V .
(d) u� D uC�v �M on V nV 0 for � sufficiently small, since u < M on V nV 0.
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Fig. 8.8 The ball V and the neighborhood V 0 of x0

V ′

V ′

x0• .....
.....
.....
.....
......
......

.......
.....

........
..........

..................
................................................................................................................................................................................................

.........
.......
........
.......
.....
......
.....
.....
.....
...

Fig. 8.9 The neighborhood V 0 of x0

Therefore, we obtain the following assertions (8.57) (see Fig. 8.9):

Wu� > 0 in V 0; (8.57a)

u� �M on @V 0; (8.57b)

u�.x0/ DM: (8.57c)

However, these assertions (8.57) contradict part (ii) of Theorem 8.11 (the weak
maximum principle).

Summing up, we have proved that

F D D;

that is,

u.x/ �M in D:

Now the proof of Theorem 8.13 is complete.
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Fig. 8.10 The unit interior
normal n at x0

0

8.2.3 The Hopf Boundary Point Lemma

Finally, we consider the unit interior normal derivative .@u/=.@n/ at a boundary
point where the function u.x/ takes its non-negative maximum.

The Hopf boundary point lemma reads as follows:

Theorem 8.15 (Hopf’s boundary point lemma). Let W D P C S be a second-
order elliptic Waldenfels operator such that S mapsC2.D/ continuously intoC.D/.
Assume that a function u.x/ 2 C2.D/ satisfies the conditions

Wu.x/ � 0 in D;

max
D

u � 0;

and further that there exists a point x0
0 2 @D such that u.x0

0/ D maxD u. Then we
have the inequality (see Fig. 8.10)

@u

@n
.x0
0/ < 0;

unless the function u.x/ is a constant in D.

Proof. By Theorem 8.13, we have only to consider the following case:

(
u.x0

0/ D M D maxx2D u.x/ � 0;
u.y/ < u.x0

0/ for all y 2 D: (8.58)

The proof is divided into three steps.

Step 1: Now we assume, to the contrary, that

@u

@n
.x0
0/ D 0: (8.59)
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Fig. 8.11 The open ball V

Fig. 8.12 The local coordinate system .x0; xN /

We can find an open ball V contained in the domainD, centered at x1, such that
(see Fig. 8.11)

(a) The point x0
0 is on the boundary @V of V .

(b) n D s.x1 � x0
0/ for some s > 0.

Step 2: The next lemma on the existence of “barriers” is an essential step in the
proof of Theorem 8.15, just as in the proof of Theorem 8.13:

Lemma 8.16. There exists a function v.x/ 2 C1.D/ which satisfies the following
five properties (i) through (v):

(i) v.x/ > 0 in V .
(ii) v.x/ < 0 on D n V .

(iii) v.x/ D 0 on @V .
(iv) Wv.x0

0/ > 0.
(v) .@v=@n/.x0

0/ > 0.

Proof. Near the boundary point x0
0, we introduce local coordinate systems .x0; xN /

such that x0 D .x1; x2; : : : ; xN�1/ give local coordinates for the boundary @D and
that (see Fig. 8.12)

D D f.x0; xN / W xN > 0g;
@D D f.x0; xN / W xN D 0g;
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x0
0 D .00; 0/ D .0; : : : ; 0; 0/;
x1 D .00; �/ D .0; : : : ; 0; �/:

We take a function  .x/ 2 C1.D/ such that

(
0 �  .x/ � 1 on D;

 .x/ D 1 in a tubular neighborhood of @D;

and define a function vq.x/ D vq.x0; xN / by the formula

vq.x/ D
�
exp

��q.jx0j2 C .xN � �/2/
� � exp

��q�2�� .x/; (8.60)

� D jx0
0 � x1j;

where q is a positive constant to be chosen later on. Then it is easy to see that the
function vq.x/ satisfies conditions (i) through (iii) and (v). Hence it suffices to show
that the function Wvq.x/ satisfies condition (iv) for q sufficiently large.

First, we estimate the function Pvq.x0
0/ from below. To do this, it should be

noticed that

vq.x
0
0/ D 0; (8.61a)

@vq
@xi

.x0
0/ D 0 .1 � i � N � 1/; (8.61b)

@vq
@xN

.x0
0/ D 2�q exp

��q�2� ; (8.61c)

and that

@2vq
@xi @xj

.x0
0/ D �2qıij exp

��q�2� .1 � i; j � N � 1/;

@2vq
@x2N

.x0
0/ D .4q2�2 � 2q/ exp

��q�2� :

Hence we have

Pvq.x
0
0/ D

(

4aNN.x0
0/�

2q2 C 2
 

bNN.x0
0/� �

NX

iD1
aii.x0

0/

!

q

)

exp
��q�2� :

Since the matrix .aij/ is positive definite, we can estimate the function Pvq.x0
0/ from

below as follows:

Pvq.x
0
0/ �

�
C1q

2 C C2q
�

exp
��q�2� ; (8.62)



404 8 Waldenfels Operators and Maximum Principles

where

C1 D 4a0�2 > 0

and C2 are constants independent of q.
Secondly, in order to estimate the function Svq.x0

0/ we study the Borel kernel
s.x0

0; dy/: By conditions (8.58) and (8.59), it follows that

@u

@xi
.x0
0/ D 0; 1 � i � N;

@2u

@x2N
.x0
0/ � 0:

Hence we have the inequality

Pu.x0
0/ D

NX

i;jD1
aij.x0

0/
@2u

@xi@xj
.x0
0/C c.x0

0/u.x
0
0/

D aNN.x0
0/
@2u

@x2N
.x0
0/C

N�1X

i;jD1
aij.x0

0/
@2u

@xi @xj
.x0
0/C c.x0

0/u.x
0
0/ � 0:

Moreover, by condition (8.41) it follows that

Su.x0
0/ D

Z

D

s.x0
0; dy/

�
u.y/� �.x0

0; y/u.x
0
0/
�C a�.x0

0/u.x
0
0/

D
Z

D

s.x0
0; dy/

�
u.y/� u.x0

0/
�

C
�

a�.x
0
0/C

Z

D

s.x0
0; dy/

�
1 � �.x0

0; y/
�
�

u.x0
0/

�
Z

D

s.x0
0; dy/

�
u.y/� u.x0

0/
� � 0:

This implies that

Pu.x0
0/ D 0; Su.x0

0/ D 0:

Indeed, it suffices to note that

0 � Wu.x0
0/ D Pu.x0

0/C Su.x0
0/ � 0:
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Thus we obtain that

0 D Su.x0
0/ �

Z

D

s.x0
0; dy/

�
u.y/� u.x0

0/
� � 0;

so that
Z

D

s.x0
0; dy/

�
u.y/� u.x0

0/
� D 0: (8.63)

However, if we let

G D fx0 2 @D W u.x0/ D max
x2D

u.x/g;

we obtain from condition (8.58) that

u.y/� u.x0
0/ < 0 for all y 2 D [ .@D nG/:

Hence it follows from condition (8.63) that

s.x0
0; V / D 0;

since we have

u.y/� u.x0
0/ < 0 for all y 2 V n fx0

0g;
s.x0

0; fx0
0g/ D 0:

Therefore, we can write the function Svq.x0
0/ in the form

Svq.x
0
0/ (8.64)

D
NX

iD1
ai .x0

0/
@vq
@xi

.x0
0/C a.x0

0/vq.x
0
0/

C
Z

D

s.x0
0; dy/

2

4vq.y/� �.x0
0; y/

0

@vq.x
0
0/C

NX

jD1

@vq
@xj

.x0
0/

yj � x0

0j

�
1

A

3

5

D
NX

iD1
ai .x0

0/
@vq
@xi

.x0
0/C

Z

DnV
s.x0

0; dy/
�
1� �.x0

0; y/
�

vq.y/

C
Z

DnV
s.x0

0; dy/�.x0
0; y/

2

4vq.y/ � vq.x
0
0/ �

NX

jD1

@vq
@xj

.x0
0/

yj � x0

0j

�
3

5 :
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By using formula (8.60) and Taylor’s formula, we can find a positive constant C3,
independent of q, such that

ˇ
ˇ
ˇ
ˇ
@vq
@xi

.x0
0/

ˇ
ˇ
ˇ
ˇ � C3q exp

��q�2� .1 � i � N � 1/; (8.65)

ˇ
ˇvq.y/

ˇ
ˇ � C3 exp

��q�2� for all y 2 D n V ; (8.66)
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
vq.y/� vq.x

0
0/�

NX

jD1

@vq
@xj

.x0
0/

yj � x0

0j

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(8.67)

� C3q2 exp
��q�2� ˇˇy � x0

0

ˇ
ˇ2 for all y 2 D n V :

By virtue of inequalities (8.65) and (8.66), we can find positive constants C4 and
C5, independent of q, such that

ˇ
ˇ
ˇ
ˇ
ˇ

NX

iD1
ai .x0

0/
@vq
@xi

.x0
0/

ˇ
ˇ
ˇ
ˇ
ˇ
� C4q exp

��q�2� ;
ˇ
ˇ
ˇ
ˇ

Z

DnV
s.x0

0; dy/
�
1 � �.x0

0; y/
�

vq.y/

ˇ
ˇ
ˇ
ˇ � C5 exp

��q�2� :

Moreover, by using condition (NS.20) we can choose a local unity function �.x; y/
such that

Z

DnV
s.x0

0; dy/�.x0
0; y/

ˇ
ˇy � x0

0

ˇ
ˇ2 � C1

2C3
; (8.68)

if the support of �.x0
0; �/ is sufficiently close to x0

0. Hence it follows from
inequalities (8.67) and (8.68) that

Z

DnV
s.x0

0; dy/�.x0
0; y/

2

4vq.y/ � vq.x
0
0/ �

NX

jD1

@vq
@xj

.x0
0/

yj � x0

0j

�
3

5

� C3q2 exp
��q�2�

Z

DnV
s.x0

0; dy/�.x0
0; y/

ˇ
ˇy � x0

0

ˇ
ˇ2

� C3q2 exp
��q�2� � C1

2C3
D C1

2
q2 exp

��q�2� :

Summing up, we have proved that

ˇ
ˇSvq.x

0
0/
ˇ
ˇ �

�
C1

2
q2 C C4q C C5

�

exp
��q�2� : (8.69)
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Fig. 8.13 The ball V and the neighborhood V 0 of x0

0

Therefore, it follows from inequalities (8.62) and (8.69) that

Wvq.x
0
0/ D Pvq.x

0
0/C Svq.x

0
0/ � Pvq.x

0
0/ �

ˇ
ˇSvq.x

0
0/
ˇ
ˇ (8.70)

�
�
C1

2
q2 C C4q C C5

�

exp
��q�2�

> 0;

if we take a positive constant q so large that

q >
�C4 C

q
C2
4 � 2C1C5

C1
:

The desired assertion (iv) follows from inequality (8.70) with v.x/ WD vq.x/.
The proof of Lemma 8.16 is complete.

Step 3: If we introduce a function

u�.x/ D u.x/C �v.x/

for a positive constant �, then we obtain from Lemma 8.16 the following four
assertions (a) through (d) (see Fig. 8.13):

(a) There exists a neighborhood V 0 of x0
0 in D such that

Wv > 0 in V 0 \D;

since Wv D PvC Sv is a continuous function onD.
(b) Wu� D WuC �Wv � �Wv > 0 in V 0 \D.
(c) u� D uC �v � u �M on D n V , since v � 0 onD n V .
(d) u� D uC�v �M on V nV 0 for � sufficiently small, since u < M on V nV 0.
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Hence it follows from an application of part (ii) of Theorem 8.11 with u WD u�
that

u� �M in V 0 \D;

so that

u.y/C �v.y/ D u�.y/ � M D u�.x
0
0/ D u.x0

0/C �v.x0
0/

for all y 2 V 0 \D:

This proves that

u.y/� u.x0
0/ � ��.v.y/ � v.x0

0// for all y 2 V 0 \D:

Therefore, we obtain that

@u

@n
.x0
0/ D lim

y!x0

0

u.y/ � u.x0
0/

y � x0
0

� �� lim
y!x0

0

v.y/� v.x0
0/

y � x0
0

D �� @v

@n
.x0
0/

< 0:

This contradicts hypothesis (8.59).
Now the proof of Theorem 8.15 is complete.

8.3 Notes and Comments

Chapter 8 is an expanded and revised version of Sect. 3.4 and Appendix C of the
first edition of the present monograph. For a general study of maximum principles,
the reader might refer to Protter–Weinberger [PW] and Bony–Courrège–Priouret
[BCP].

Section 8.1: Proposition 8.1 is essentially due to Bony–Courrège–Priouret [BCP,
Proposition I.1.5] and Theorem 8.2 is taken from Bony–Courrège–Priouret [BCP,
Théorème I].

Section 8.2: Theorem 8.4 is taken from Bony–Courrège–Priouret [BCP,
Théorème II] and Theorem 8.8 is taken from Bony–Courrège–Priouret [BCP,
Théorème III], respectively. The boundary point lemma (Theorem 8.15) was proved
independently by Hopf [Hp] and Oleı̆nik [Ol].

In Taira [Ta5, Chapter 7], we prove various maximum principles for second-
order degenerate elliptic differential operators, and reveal the underlying analytical
mechanism of propagation of maximums in terms of subunit vectors introduced by
Fefferman–Phong [FP].



Part III
Markov Processes, Semigroups
and Boundary Value Problems



Chapter 9
Markov Processes, Transition Functions
and Feller Semigroups

The content of this chapter may be summarized in the following diagram:

In this chapter we introduce a class of (temporally homogeneous) Markov
processes which we will deal with in this book (Definition 9.3). Intuitively, the
Markov property is that the prediction of subsequent motion of a physical particle,
knowing its position at time t , depends neither on the value of t nor on what has been
observed during the time interval Œ0; t/; that is, a physical particle “starts afresh”.
From the point of view of analysis, however, the transition function of a Markov
process is something more convenient than the Markov process itself. In fact, it
can be shown that the transition functions of Markov processes generate solutions
of certain parabolic partial differential equations such as the classical diffusion
equation; and, conversely, these differential equations can be used to construct and
study the transition functions and the Markov processes themselves. In Sect. 9.1 we
give the precise definition of a Markov transition function adapted to the theory of
semigroups (Definition 9.4). A Markov process is called a strong Markov process
if the “starting afresh” property holds not only for every fixed moment but also for
suitable random times. In Sect. 9.1.7 we formulate precisely this “strong” Markov
property (Definition 9.25), and give a useful criterion for the strong Markov property
(Theorem 9.26). In Sect. 9.1.8 we introduce the basic notion of uniform stochastic

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__9,
© Springer-Verlag Berlin Heidelberg 2014

411
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continuity of transition functions (Definition 9.27), and give simple criteria for the
strong Markov property in terms of transition functions (Theorems 9.28 and 9.29).
In Sect. 9.2 we introduce a class of semigroups associated with Markov processes
(Definition 9.30), called Feller semigroups, and we give a characterization of Feller
semigroups in terms of Markov transition functions (Theorems 9.33 and 9.34).
Section 9.3 is devoted to a version of the Hille–Yosida theorem (Theorem 3.10)
adapted to the present context. We prove generation theorems for Feller semigroups
(Theorems 9.35 and 9.50) which form a functional analytic background for the
proof of Theorem 1.2 in Chap. 10. In particular, Theorem 9.50 and Corollary 9.51
give useful criteria in terms of maximum principles. In Sects. 9.4 and 9.5, following
Ventcel’ (Wentzell) [We] we study the problem of determining all possible boundary
conditions for multi-dimensional diffusion processes. More precisely, we describe
analytically the infinitesimal generator A of a Feller semigroup fTtg in the case
where the state space is the closure D of a bounded domain D in Euclidean
space RN (Theorems 9.52 and 9.53). Theorems 9.52 and 9.53 are essentially due
to Ventcel’ [We]. Our proof of these theorems follows Bony–Courrège–Priouret
[BCP], where the infinitesimal generators of Feller semigroups are studied in great
detail in terms of the maximum principle (see Chap. 8). Analytically, a Markovian
particle inD is governed by an integro-differential operatorW , called a Waldenfels
operator, in the interiorD of the domain, and it obeys a boundary conditionL, called
a Ventcel’ boundary condition, on the boundary @D of the domain. Probabilistically,
a Markovian particle moves both by jumps and continuously in the state space and
it obeys the Ventcel’ boundary condition which consists of six terms corresponding
to the diffusion along the boundary, the absorption phenomenon, the reflection
phenomenon, the sticking (or viscosity) phenomenon and the jump phenomenon
on the boundary and the inward jump phenomenon from the boundary. For the
probabilistic meanings of Ventcel’ boundary conditions, the reader might refer to
Dynkin–Yushkevich [DY].

In this way, we can reduce the problem of existence of Feller semigroups to the
unique solvability of the boundary value problem for Waldenfels integro-differential
operatorsW with Ventcel’ boundary conditionsL in the theory of partial differential
equations.

9.1 Markov Processes

In 1828 the English botanist R. Brown observed that pollen grains suspended in
water move chaotically, incessantly changing their direction of motion (see Fig. 9.1).
The physical explanation of this phenomenon is that a single grain suffers innu-
merable collisions with the randomly moving molecules of the surrounding water.
A mathematical theory for Brownian motion was put forward by A. Einstein [Ei]
in 1905. Let p.t; x; y/ be the probability density function that a one-dimensional
Brownian particle starting at position x will be found at position y at time t . Einstein
derived the following formula from statistical mechanical considerations:
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p.t; x; y/ D 1p
2�Dt

exp

�

� .y � x/
2

2Dt

�

:

HereD is a positive constant determined by the radius of the particle, the interaction
of the particle with surrounding molecules, temperature and the Boltzmann constant.
This gives an accurate method of measuring Avogadro’s number by observing
particles. Einstein’s theory was experimentally tested by J. Perrin [Pr] between 1906
and 1909.

In Sect. 9.1 we give the precise definition of a Markov transition function adapted
to the theory of semigroups (Definition 9.4).

9.1.1 Definitions of Markov Processes

Brownian motion was put on a firm mathematical foundation for the first time by N.
Wiener [Wi] in 1923. Let ˝ be the space of continuous functions ! W Œ0;1/ 7! R
with coordinates xt .!/ D !.t/ and let F be the smallest �-algebra in ˝ which
contains all sets of the form

f! 2 ˝ W a � xt .!/ < bg; t � 0; a < b:

Wiener constructed probability measures Px , x 2 R, on F for which the following
holds true:
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Pxf! 2 ˝ W a1 � xt1.!/ < b1; a2 � xt2 .!/ < b2; : : : ; (9.1)

an � xtn.!/ < bng

D
Z b1

a1

Z b2

a2

: : :

Z bn

an

p.t1; x; y1/p.t2 � t1; y1; y2/ : : :

p.tn � tn�1; yn�1; yn/ dy1 dy2 : : : dyn;

0 < t1 < t2 < : : : < tn <1:

This formula expresses the “starting afresh” property of Brownian motion that if a
Brownian particle reaches a position, then it behaves subsequently as though that
position had been its initial position. The measure Px is called the Wiener measure
starting at x.

Let .˝;F/ be a measurable space. A non-negative measure P on F is called
a probability measure if P.˝/ D 1. The triple .˝;F ; P / is called a probability
space. The elements of˝ are known as sample points, those of F as events and the
valuesP.A/,A 2 F , are their probabilities. An extended real-valued, F -measurable
functionX on ˝ is called a random variable. The integral

Z

˝

X.!/ dP

(if it exists) is called the expectation of X , and is denoted by E.X/.
We begin with a review of conditional probabilities and conditional expectations

(see Sects. 3.5 and 3.6). Let G be a �-algebra contained in F . If X is an integrable
random variable, then the conditional expectation of X for given G is any random
variable Y which satisfies the following two conditions (CE1) and (CE2):

(CE1) The function Y is G-measurable.
(CE2)

R
A
Y.!/ dP D R

A
X.!/ dP for all A 2 G.

We recall that conditions (CE1) and (CE2) determine Y up to a set in G of measure
zero. We shall write

Y D E.X j G/:

When X is the characteristic function �B of a set B 2 F , we shall write

P.B j G/ D E .�B j G/ :

The function P.B j G/ is called the conditional probability of B for given G. This
function can also be characterized as follows:
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(CP1) The function P.B j G/ is G-measurable.
(CP2) P.A \ B/ D E.P.B j G/IA/ for every A 2 G. That is, we have, for every

A 2 G,

P.A \ B/ D
Z

A

P.B j G/.!/ dP:

It should be emphasized that the function P.B j G/ is determined up to a set in
G of P -measure zero, that is, it is an equivalence class of G-measurable functions
on ˝ with respect to the measure P .

Markov processes are an abstraction of the idea of Brownian motion. Let K be
a locally compact, separable metric space and B the �-algebra of all Borel sets in
K , that is, the smallest �-algebra containing all open sets in K . Let .˝;F ; P / be a
probability space. A functionX defined on˝ taking values inK is called a random
variable if it satisfies the condition

X�1.E/ D fX 2 Eg 2 F for all E 2 B:

We express this by saying that X is F=B-measurable. A family fxt gt�0 of random
variables is called a stochastic process, and it may be thought of as the motion in
time of a physical particle. The space K is called the state space and ˝ the sample
space. For a fixed ! 2 ˝ , the function xt .!/, t � 0, defines in the state space K a
trajectory or a path of the process corresponding to the sample point !.

In this generality the notion of a stochastic process is of course not so interesting.
The most important class of stochastic processes is the class of Markov processes
which is characterized by the Markov property. Intuitively, this is the principle of
the lack of any “memory” in the system. Markov processes are an abstraction of
the idea of Brownian motion. More precisely, the temporally homogeneous Markov
property or simply Markov property is that the prediction of subsequent motion of
a physical particle, knowing its position at time t , depends neither on the value of
t nor on what has been observed during the time interval Œ0; t/; that is, a physical
particle “starts afresh”.

Now we introduce a class of Markov processes which we will deal with in this
book. This vague idea can be made precise and effective in several ways.

If fZ�g�2� is a family of random variables, we let (see Proposition 2.12)

�.Z�I� 2 �/ D the smallest �-algebra contained in F

with respect to which all Z� are measurable:

If fxt gt�0 is a stochastic process, we introduce three sub-�-algebras F�t , FDt and
F�t of F as follows:
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

F�t D �.xs W 0 � s � t/
D the smallest �-algebra contained in F

with respect to which all xs , 0 � s � t , are measurable;

FDt D �.xt /

D the smallest �-algebra contained in F
with respect to which xt is measurable;

F�t D �.xs W t � s <1/
D the smallest �-algebra contained in F

with respect to which all xs , t � s <1, are measurable:

Intuitively, an event in F�t is determined by the behavior of the process fxsg up
to time t and an event in F�t by its behavior after time t . Thus they represent
respectively the “past” and “future” relative to the “present” moment.

Definition 9.1. A stochastic process X D fxt g is called a Markov process if it
satisfies the condition

P.B j F�t / D P.B j FDt / for any “future” set B 2 F�t :

More precisely, we have, for any “future” set B 2 F�t ,

P.A\ B/ D
Z

A

P.B j FDt /.!/ dP for every “past” set A 2 F�t :

Intuitively, this means that the conditional probability of a “future” event B given
the “present” is the same as the conditional probability of B given the “present” and
the “past”.

An observer may record not only the trajectories of the process, but also some
other occurrences, only indirectly related or entirely unrelated to the process. Thus
we obtain a broader and more flexible formulation of the Markov property if we
enlarge the “past” as follows.

Let fFtgt�0 be a family of sub-�-algebras of F which satisfies the following two
conditions (a) and (b):

(a) If s < t , then Fs 	 Ft .
(b) For each t � 0, the function xt is Ft =B-measurable, that is,

fxt 2 Eg 2 Ft for all E 2 B:

We express property (a) by saying that the family fFtg is increasing, and property
(b) by saying that the stochastic process fxt g is adapted to fFtg. We remark that the
family fF�tgt�0 satisfies both conditions and is the minimal possible one.
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Fig. 9.2 The compactification K@ of K

Definition 9.2. Let fxt gt�0 be a stochastic process and let fFtgt�0 be an increasing
family of sub-�-algebras of F . We say that fxt g is a Markov process with respect to
fFtg if it satisfies the following two conditions (i) and (ii):

(i) fxt g is adapted to fFt g.
(ii) P.B j Ft / D P.B j FDt / for all B 2 F�t .

It should be noted that Definition 9.2 reduces to Definition 9.1 if we take Ft WD
F�t . Moreover, by choosing the family fFtg as the “past” has the effect of making
it harder for the Markov property to hold true, while the property becomes more
powerful.

Now we define a class of (temporally homogeneous) Markov processes which
we will deal with in this book:

Definition 9.3. Assume that we are given the following:

(1) A locally compact, separable metric space K and the �-algebra B of all Borel
sets inK . A point @ is adjoined toK as the point at infinity ifK is not compact,
and as an isolated point if K is compact (see Fig. 9.2). We let

K@ D K [ f@g;
B@ D the �-algebra in K@ generated by B:

The space K@ D K [ f@g is called the one-point compactification of K .
(2) The space ˝ of all mappings ! W Œ0;1�! K@ such that !.1/ D @ and that if

!.t/ D @ then !.s/ D @ for all s � t . Let !@ be the constant map !@.t/ D @

for all t 2 Œ0;1�.
(3) For each t 2 Œ0;1�, the coordinate map xt defined by xt .!/ D !.t/ for all

! 2 ˝ .
(4) For each t 2 Œ0;1�, a pathwise shift mapping �t W ˝ ! ˝ defined by the

formula �t!.s/ D !.t C s/ for all ! 2 ˝ . Note that �1! D !@ and that
xt ı �s D xtCs for all t , s 2 Œ0;1�.

(5) A �-algebra F in ˝ and an increasing family fFtg0�t�1 of sub-�-algebras of
F .

(6) For each x 2 K@, a probability measure Px on .˝;F/.
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We say that these elements define a temporally homogeneous Markov process or
simply Markov process X D .xt ;F ;Ft ; Px/ if the following four conditions (i)–(iv)
are satisfied:

(i) For each 0 � t <1, the function xt is Ft =B@- measurable, that is,

fxt 2 Eg 2 Ft for all E 2 B@:

(ii) For each 0 � t <1 and E 2 B, the function

pt .x;E/ D Pxfxt 2 Eg

is a Borel measurable function of x 2 K .
(iii) Pxf! 2 ˝ W x0.!/ D xg D 1 for each x 2 K@.
(iv) For all t , h 2 Œ0;1�, x 2 K@ and E 2 B@, we have

PxfxtCh 2 E j Ftg D ph.xt ; E/ a.e.;

or equivalently

Px.A \ fxtCh 2 Eg/ D
Z

A

ph.xt .!/; E/ dPx.!/ for all A 2 Ft : (9.2)

In this definition, the term ‘Markov process’ means a family of Markov processes
over the measure space .˝;F ; Px/ with respect to fFgt , one Markov process for
each of the measures Px corresponding to all possible initial positions x 2 K@.
Here is an intuitive way of thinking about the above definition of a Markov process.
The sub-�-algebra Ft may be interpreted as the collection of events which are
observed during the time interval Œ0; t �. The valuePx.A/,A 2 F , may be interpreted
as the probability of the event A under the condition that a particle starts at position
x; hence the value pt .x;E/ expresses the transition probability that a particle
starting at position x will be found in the set E at time t (see Fig. 9.3). The function
pt .x; �/ is called the transition function of the process X . The transition function
pt .x; �/ specifies the probability structure of the process. The intuitive meaning of
the crucial condition (iv) is that the future behavior of a particle, knowing its history
up to time t , is the same as the behavior of a particle starting at xt .!/, that is, a
particle starts afresh.

By using the Markov property (9.2) repeatedly, we easily obtain the following
formula (9.3), analogous to formula (9.1):

Pxf! 2 ˝ W xt1.!/ 2 A1; xt2.!/ 2 A2; : : : ; xtn.!/ 2 Ang (9.3)

D
Z

A1

Z

A2

� � �
Z

An

pt1.x; dy1/pt2�t1 .y1; dy2/ � � �ptn�tn�1 .yn�1; dyn/;

0 < t1 < t2 < : : : < tn <1; A1; A2; : : : ; An 2 B:
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Fig. 9.3 The transition
probability pt .x; E/

A Markovian particle moves in the space K until it “dies” or “disappears” at the
time when it reaches the point @; hence the point @ is called the terminal point or
cemetery. With this interpretation in mind, we let

�.!/ D infft 2 Œ0;1� W xt .!/ D @g:

The random variable � is called the lifetime of the process X . The process X is said
to be conservative if it satisfies the condition

Pxf� D1g D 1 for each x 2 K:

9.1.2 Transition Functions

From the point of view of analysis, the transition function is something more
convenient than the Markov process itself. In fact, it can be shown that the transition
functions of Markov processes generate solutions of certain parabolic partial
differential equations such as the classical diffusion equation; and, conversely, these
differential equations can be used to construct and study the transition functions and
the Markov processes themselves.

Our first job is thus to give the precise definition of a transition function adapted
to the theory of semigroups:

Definition 9.4. Let .K; �/ be a locally compact, separable metric space and B the
�-algebra of all Borel sets in K .

A function pt .x;E/, defined for all t � 0, x 2 K and E 2 B, is called
a temporally homogeneous Markov transition function on K or simply Markov
transition function on K if it satisfies the following four conditions (a)–(d):
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Fig. 9.4 The intuitive
meaning of formula (9.4)

(a) pt.x; �/ is a non-negative measure on B and pt .x;K/ � 1 for each t � 0 and
each x 2 K .

(b) pt.�; E/ is a Borel measurable function for each t � 0 and each E 2 B.
(c) p0.x; fxg/ D 1 for each x 2 K .
(d) (The Chapman–Kolmogorov equation) For any t , s � 0, any x 2 K and any

E 2 B, we have

ptCs.x; E/ D
Z

K

pt .x; dy/ps.y;E/: (9.4)

It is just condition (d) which reflects the Markov property that a particle starts
afresh. Here is an intuitive way of thinking about the above definition of a Markov
transition function. The value pt .x;E/ expresses the transition probability that
a physical particle starting at position x will be found in the set E at time t .
Equation (9.4) expresses the idea that a transition from the position x to the set
E in time t C s is composed of a transition from x to some position y in time
t , followed by a transition from y to the set E in the remaining time s; the latter
transition has probability ps.y;E/ which depends only on y (see Fig. 9.4). Thus a
physical particle “starts afresh”; this property is called the Markov property.

The Chapman–Kolmogorov equation (9.4) tells us that pt .x;K/ is monotoni-
cally increasing as t # 0, so that the limit

pC0.x;K/ D lim
t#0
pt .x;K/

exists.
A Markov transition function pt .x; �/ is said to be normal if it satisfies the

condition
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pC0.x;K/ D lim
t#0
pt .x;K/ D 1 for every x 2 K:

The next theorem justifies the definition of a transition function, and hence it will
be fundamental for our further study of Markov processes:

Theorem 9.5. For every Markov process, the function pt , defined by the formula

pt .x;E/ D Pxfxt 2 Eg; x 2 K; E 2 B; t � 0;

is a Markov transition function. Conversely, every normal Markov transition
function corresponds to some Markov process.

Here are some important examples of normal transition functions on the line R
(see Lamperti [La, Chapter 7, Section 8]):

Example 9.6 (uniform motion). If t � 0, x 2 R and E 2 B, we let

pt .x;E/ D �E.x C vt/;

where v is a constant, and �E.y/ D 1 if y 2 E andD 0 if y 62 E .

This process, starting at x, moves deterministically with constant velocity v.

Example 9.7 (Poisson process). If t � 0, x 2 R and E 2 B, we let

pt.x;E/ D e��t
1X

nD0

.�t/n

nŠ
�E.x C n/;

where � is a positive constant.

This process, starting at x, advances one unit by jumps, and the probability of n
jumps during the time 0 and t is equal to e��t .�t/n=nŠ.

Example 9.8 (Brownian motion). If t > 0, x 2 R and E 2 B, we let

pt .x;E/ D 1p
2�t

Z

E

exp

�

� .y � x/
2

2t

�

dy;

and

p0.x;E/ D �E.x/:

This is a mathematical model of one-dimensional Brownian motion. Its character
is quite different from that of the Poisson process; the transition function pt.x;E/
satisfies the condition

pt .x; .x � "; x C "// D 1 � o.t/
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or equivalently,

pt .x;R n .x � "; x C "// D o.t/

for every " > 0 and every x 2 R. This means that, unlike the Poisson process,
this process never stands still. In fact, this process changes state not by jumps but
by continuous motion. A Markov process with this property is called a diffusion
process.

Example 9.9 (Brownian motion with constant drift). If t > 0, x 2 R and E 2 B,
we let

pt.x;E/ D 1p
2�t

Z

E

exp

�

� .y �mt � x/
2

2t

�

dy;

and

p0.x;E/ D �E.x/;

wherem is a constant.

This represents Brownian motion with a constant drift of magnitudem superim-
posed; the process can be represented as fxt Cmtg, where fxt g is Brownian motion
on R.

Example 9.10 (Cauchy process). If t > 0, x 2 R and E 2 B, we let

pt.x;E/ D 1

�

Z

E

t

t2 C .y � x/2 dy;

and

p0.x;E/ D �E.x/:

This process can be thought of as the “trace” on the real line of trajectories of
two-dimensional Brownian motion, and it moves by jumps (see Knight [Kn, Lemma
2.12]). More precisely, if B1.t/ and B2.t/ are two independent Brownian motions
and if T is the first passage time of B1.t/ to x, then B2.T / has the Cauchy density

1

�

jxj
x2 C y2 ; �1 < y <1:

Here are two examples of diffusion processes on the closed half-lineK D RC D
Œ0;1/ in which we must take account of the effect of the boundary point 0 of K
(see [La, Chapter 7, Section 8]):
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Fig. 9.5 The reflecting barrier

Example 9.11 (reflecting barrier Brownian motion). If t > 0, x 2 K D Œ0;1/ and
E 2 B, we let

pt .x;E/ D 1p
2�t

�Z

E

exp

�

� .y � x/
2

2t

�

dyC
Z

E

exp

�

� .y C x/
2

2t

�

dy

�

;

(9.5)

and

p0.x;E/ D �E.x/:

This represents Brownian motion with a reflecting barrier at x D 0; the process may
be represented as fjxt jg, where fxt g is Brownian motion on R. Indeed, since fjxt jg
goes from x to y if fxtg goes from x to ˙y due to the symmetry of the transition
function in Example 9.8 about x D 0, we find that (see Fig. 9.5)

pt .x;E/ D Pxfjxt j 2 Eg

D 1p
2�t

�Z

E

exp

�

� .y � x/
2

2t

�

dyC
Z

E

exp

�

� .y C x/
2

2t

�

dy

�

:

Example 9.12 (sticking barrier Brownian motion). If t > 0, x 2 K D Œ0;1/ and
E 2 B, we let

pt .x;E/ D 1p
2�t

�Z

E

exp

�

� .y � x/
2

2t

�

dy �
Z

E

exp

�

� .y C x/
2

2t

�

dy

�

C
�

1 � 1p
2�t

Z x

�x
exp

�

� z2

2t

�

dz

�

�E.0/;
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and

p0.x;E/ D �E.x/:

This represents Brownian motion with a sticking barrier at x D 0. When a Brownian
particle reaches the boundary point 0 for the first time, instead of reflecting it sticks
there forever; in this case the state 0 is called a trap.

Here is a typical example of diffusion processes on the closed intervalK D Œ0; 1�
in which we must take account of the effect of the two boundary points 0 and 1 ofK:

Example 9.13 (reflecting barrier Brownian motion). If t > 0, x 2 K D Œ0; 1� and
E 2 B, we let

pt.x;E/

D 1p
2�t

Z

E

 1X

nD�1

�

exp

�

� .y � x C 2n/
2

2t

�

C exp

�

� .y C x C 2n/
2

2t

��!

dy;

and

p0.x;E/ D �E.x/:

This represents Brownian motion with two reflecting barriers at x D 0 and x D 1.

It has been assumed so far that pt .x;K/ � 1 for each t � 0 and each x 2 K .
This implies that a Markovian particle may die or disappear in a finite time.

Here are three typical examples of absorbing barrier Brownian motion.

Example 9.14 (absorbing barrier Brownian motion). If t > 0, x 2 K D Œ0;1/
and E 2 B, we let

pt .x;E/ D 1p
2�t

�Z

E

exp

�

� .y � x/
2

2t

�

dy �
Z

E

exp

�

� .y C x/
2

2t

�

dy

�

;

(9.6)

and

p0.x;E/ D �E.x/:

This represents Brownian motion with an absorbing barrier at x D 0; a Brownian
particle dies at the first moment when it hits the boundary point x D 0 (see Fig. 9.6).
That is, the boundary point 0 of K is the terminal point.

Example 9.15 (absorbing barrier Brownian motion). If t > 0, x 2 K D Œ0; 1� and
E 2 B, we let
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Fig. 9.6 The absorbing barrier

pt .x;E/

D 1p
2�t

Z

E

 1X

nD�1

�

exp

�

� .y � x C 2n/
2

2t

�

� exp

�

� .y C x C 2n/
2

2t

��!

dy;

and

p0.x;E/ D �E.x/:

This represents Brownian motion with two absorbing barriers at x D 0 and x D 1.

Example 9.16 (absorbing–reflecting barrier Brownian motion). Let � be a constant
such that 0 < � < 1. If t > 0, x 2 K D Œ0;1/ and E 2 B, we let

pt .x;E/ (9.7)

D 1p
2�t

�Z

E

exp

�

� .y � x/
2

2t

�

dyC
Z

E

exp

�

� .y C x/
2

2t

�

dy

�

� 1p
2�t

�
2.1� �/

�

�

�
Z

E

exp

�
.1 � �/
�

y

��Z �y

�1
exp

�
.1� �/
�

z

�

exp

�

� .z � x/
2

2t

�

dz

�

dy;

and

p0.x;E/ D �E.x/:

This process fxt g may be thought of as a “combination” of the absorbing and
reflecting Brownian motions; the absorbing and reflecting cases are formally
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obtained by letting � ! 0 and � ! 1, respectively. In fact, it is easy to verify
that formulas (9.6) and (9.5) may be obtained from formula (9.7) by letting � ! 0

and �! 1, respectively.

A Markov transition function pt .x; �/ is said to be conservative if it satisfies the
condition that we have, for all t > 0,

pt .x;K/ D 1 for each x 2 K:

For example, the reflecting barrier Brownian motion of Example 9.11 is
conservative. Indeed, it suffices to note that we have, for all t > 0,

pt.x; Œ0;1// D 1p
2�t

�Z 1

0

exp

�

� .y � x/
2

2t

�

dyC
Z 1

0

exp

�

� .y C x/
2

2t

�

dy

�

D 1p
2�t

�Z 1

�1
exp

�

� .y � x/
2

2t

�

dy

�

D 1 for every x 2 K D Œ0;1/:

There is a simple trick which allows us to turn the general case into the
conservative case. We add a new point @ to the locally compact space K as the
point at infinity ifK is not compact, and as an isolated point ifK is compact; so the
space K@ D K [ f@g is compact. Then we can extend a Markov transition function
pt .x; �/ on K to a Markov transition function p0

t .x; �/ on K@ by the formulas

8
ˆ̂
<

ˆ̂
:

p0
t .x; E/ D pt.x;E/; x 2 K; E 2 BI
p0
t .x; f@g/ D 1� pt .x;K/; x 2 KI
p0
t .@;K/ D 0; p0

t .@; f@g/ D 1:

Intuitively, this means that a Markovian particle moves in the spaceK until it dies at
which time it reaches the point @; hence the point @ is the terminal point or cemetery.

In the sequel, we will not distinguish in our notation between pt .x; �/ and
p0
t .x; �/; in the cases of interest for us the point @ will be absorbing.

9.1.3 Kolmogorov’s Equations

In the first works devoted to Markov processes, the most fundamental was A.N.
Kolmogorov’s work (1931) where the general concept of a Markov transition
function was introduced for the first time and an analytic method of describing
Markov transition functions was proposed.

We now take a close look at Kolmogorov’s work (see Lamperti [La, Chapter 6,
Section 5]). Let pt.x; �/ be a transition function on R, and assume that the following
two conditions (i) and (ii) are satisfied:



9.1 Markov Processes 427

(i) For each " > 0, we have

lim
t#0

1

t
sup
x2R

pt .x;R n .x � "; x C "// D 0:

(ii) The limits

lim
t#0

1

t

Z xC"

x�"
pt .x; dy/.y � x/2 D a.x/;

lim
t#0

1

t

Z xC"

x�"
pt .x; dy/.y � x/ D b.x/;

lim
t#0

1

t
.pt .x;R/ � 1/ D c.x/

exist for each x 2 R.

Physically, the limit a.x/ may be interpreted as a variance instantaneous (with
respect to t) velocity at position x, and the limit b.x/ has a similar interpretation
as a mean. The transition functions in Examples 9.6, 9.8 and 9.9 satisfy conditions
(i) and (ii) with a.x/ D 0, b.x/ D v, c.x/ D 0; a.x/ D 1, b.x/ D c.x/ D 0;
a.x/ D 1, b.x/ D m, c.x/ D 0, respectively, whereas the transition functions in
Examples 9.7 and 9.10 do not satisfy condition (i).

Furthermore, we assume that the transition function pt .x; �/ has a density
p.t; x; y/with respect to the Lebesgue measure dy. Intuitively, the densityp.t; x; y/
represents the state of the process at position y at time t , starting at the initial state
that a unit mass is at position x. Under certain regularity conditions, Kolmogorov
showed that the density p.t; x; y/ is, for fixed y, the fundamental solution of the
Cauchy problem

8
<

:

@p

@t
D a.x/

2

@2p

@x2
C b.x/@p

@x
C c.x/p; t > 0:

limt#0 p.t; x; y/ D ıy.x/;
(9.8)

and is, for fixed x, the fundamental solution of the Cauchy problem

8
<

:

@p

@t
D @2

@y2


a.y/

2

�
� @

@y
.b.y/p/C c.y/p; t > 0:

limt#0 p.t; x; y/ D ıx.y/:
(9.9)

Here ı is the Dirac measure (see Example 5.11), and ıy and ıx represent unit
masses at position y and x, respectively. Equation (9.8) is called Kolmogorov’s
backward equation, since we consider the terminal state (the variable y) to be
fixed and vary the initial state (the variable x). In this context, Eq. (9.9) is called
Kolmogorov’s forward equation. These equations are also called the Fokker–Planck
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partial differential equations. In the case of Brownian motion (Example 9.8),
Eqs. (9.8) and (9.9) become the classical diffusion (or heat) equations

@p

@t
D 1

2

@2p

@x2
; t > 0:

@p

@t
D 1

2

@2p

@y2
; t > 0:

Conversely, Kolmogorov raised the problem of construction of Markov transition
functions by solving the given Fokker–Planck partial differential equations (9.8) and
(9.9).

It is worth pointing out here that the forward equation (9.9) is given in a more
intuitive form than the backward equation (9.8), but regularity conditions on the
functions a.y/ and b.y/ are more stringent than those needed in the backward
case. This suggests that the backward approach is more convenient than the forward
approach from the viewpoint of analysis.

In 1936, W. Feller treated this problem by classical analytic methods, and proved
that Eq. (9.8) (or (9.9)) has a unique solution p.t; x; y/ under certain regularity
conditions on the functions a.x/, b.x/ and c.x/, and that this solution p.t; x; y/
determines a Markov process. In 1943, R. Fortet proved that these solutions
correspond to Markov processes with continuous paths.

On the other hand, S.N. Bernstein [Be] (1938) and P. Lévy [Le] (1948) made
probabilistic approaches to this problem, by using stochastic differential equations.

9.1.4 Feller and C0 Transition Functions

Let .K; �/ be a locally compact, separable metric space and B the �-algebra of all
Borel sets in K . Let B.K/ be the space of real-valued, bounded Borel measurable
functions onK; B.K/ is a Banach space with the supremum norm

kf k1 D sup
x2K
jf .x/j:

If pt is a transition function on K , we let

Ttf .x/ D
Z

K

pt.x; dy/f .y/ for every f 2 B.K/:

Then, by applying Theorem 2.7 with

F WD B;

H WD ff 2 B.K/ W Ttf is Borel measurableg;
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we obtain that H D B.K/, that is, the function Ttf is Borel measurable whenever
f 2 B.K/. Indeed, it suffices to note the following two facts (i) and (ii):

(i) Condition (b) of Definition 9.4 implies condition (i) of Theorem 2.7.
(ii) An application of the monotone convergence theorem [Fo2, Theorem 2.14]

gives that condition (ii) of Theorem 2.7 is satisfied.

In view of condition (a) of Definition 9.4, it follows that, for each t � 0, the
operator Tt is non-negative and contractive on B.K/ into itself:

f 2 B.K/; 0 � f .x/ � 1 onK H) 0 � Ttf .x/ � 1 on K:

Furthermore, we have, by condition (d) of Definition 9.4 and Fubini’s theorem,

TtCsf .x/ D
Z

K

ptCs.x; dy/f .y/ D
Z

K

Z

K

pt .x; dz/ps.z; dy/f .y/

D
Z

K

pt .x; dz/

�Z

K

ps.z; dy/f .y/

�

D
Z

K

pt .x; dz/Tsf .z/

D Tt .Tsf /.x/;

so that the operators Tt form a semigroup

TtCs D Tt � Ts; t; s � 0:
We also have, by condition (c) of Definition 9.4,

T0 D I D the identity operator:

The Hille–Yosida theory of semigroups requires the strong continuity of fTtgt�0:
lim
t#0
kTtf � f k1 D 0 for every f 2 B.K/; (9.10)

that is,

lim
t#0

sup
x2K

ˇ
ˇ
ˇ
ˇ

Z

K

pt .x; dy/f .y/ � f .x/
ˇ
ˇ
ˇ
ˇ D 0 for every f 2 B.K/: (9:100)

Now, by taking f WD �fxg 2 B.K/ in (9:100), we obtain that

lim
t#0
pt .x; fxg/ D 1 for every x 2 K: (9.11)

However, the Brownian motion transition function in Example 9.8, the most
important and interesting example, does not satisfy condition (9.11). Thus we shift
our attention to continuous functions on K , instead of Borel measurable functions
on K .
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0 C0(K)
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Fig. 9.7 The spaces C.K@/ and C0.K/

Now let C.K/ be the space of real-valued, bounded continuous functions on K;
C.K/ is a normed linear space with the supremum norm

kf k1 D sup
x2K
jf .x/j:

We add a new point @ to the locally compact space K as the point at infinity if K is
not compact, and as an isolated point if K is compact; so the space K@ D K [ f@g
is compact. Then we say that a function f 2 C.K/ converges to a 2 R as x ! @

(see Sect. 4.4.1) if, for each " > 0, there exists a compact subset E of K such that

jf .x/ � aj < " for all x 2 K nE:

We shall write

lim
x!@

f .x/ D a:

Let C0.K/ be the subspace of C.K/ which consists of all functions satisfying the
condition limx!@ f .x/ D 0; C0.K/ is a closed subspace of C.K/. We remark that
C0.K/ may be identified with C.K/ if K is compact.

Moreover, we introduce a useful convention

Any real-valued function f on K is extended to the compact space
K@ D K [ f@g by setting f .@/ D 0.

From this point of view, the spaceC0.K/ is identified with the subspace ofC.K@/

which consists of all functions f satisfying the condition f .@/ D 0. More precisely,
it should be emphasized that (see Fig. 9.7)

C.K@/ D fconstant functionsg C C0.K/:
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Now we can introduce two important conditions on the measures pt .x; �/ related
to continuity in x 2 K , for fixed t � 0:

Definition 9.17. A transition function pt is called a Feller transition function or
simply Feller function if the function

Ttf .x/ D
Z

K

pt .x; dy/f .y/

is a continuous function of x 2 K whenever f .x/ is bounded and continuous on
K . In other words, the Feller property is equivalent to saying that the space C.K/
is an invariant subspace of B.K/ for the operators Tt . Moreover, we say that pt is a
C0 transition function if the space C0.K/ is an invariant subspace of C.K/ for the
operators Tt :

f 2 C0.K/ H) Ttf 2 C0.K/:

Remark 9.18. The Feller property is equivalent to saying that the measures pt .x; �/
depend continuously on x 2 K in the usual weak topology, for every fixed t � 0.

9.1.5 Path Functions of Markov Processes

It is naturally interesting and important to ask the following question:

Question 9.19. Given a Markov transition function pt , under which conditions on
pt does there exist a Markov process with transition function pt whose paths are
almost surely continuous?

A Markov process X D .xt ;F ;Ft ; Px/ is said to be right-continuous provided
that, for each x 2 K ,

Pxf! 2 ˝ W the mapping t 7! xt .!/ is a right-continuous

function from Œ0;1/ into K@g D 1:

Furthermore, we say that X is continuous provided that, for each x 2 K ,

Pxf! 2 ˝ W the mapping t 7! xt .!/ is a continuous

function from Œ0; �/ intoK@g D 1:

Here � is the lifetime of the process X .
Now we give some useful criteria for path-continuity in terms of transition

functions:
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Theorem 9.20. Let K be a locally compact, separable metric space and let pt be
a normal transition function on K .

(i) Assume that the following two conditions (L) and (M) are satisfied:

(L) For each s > 0 and each compact E 	 K , we have

lim
x!@

sup
0�t�s

pt .x;E/ D 0:

(M) For each " > 0 and each compact E 	 K , we have

lim
t#0

sup
x2E

pt .x;K n U".x// D 0;

where U".x/ D fy 2 K W �.y; x/ < "g is an "-neighborhood of x.

Then there exists a Markov process X with transition functionpt whose paths
are right-continuous on Œ0;1/ and have left-hand limits on Œ0; �/ almost surely.

(ii) Assume that condition (L) and the following condition (N) (replacing condition
(M)) are satisfied:

(N) For each " > 0 and each compact E 	 K , we have

lim
t#0

1

t
sup
x2E

pt .x;K n U".x// D 0:

Then there exists a Markov process X with transition function pt whose
paths are almost surely continuous on Œ0; �/.

Remark 9.21. 1. Condition (L) is trivially satisfied, if the state spaceK is compact.
2. It is known (see Dynkin [Dy1, Lemma 6.2]) that if the paths of a Markov process

are right-continuous, then the transition function pt satisfies the condition

lim
t#0
pt .x; U".x// D 1 for all x 2 K:

9.1.6 Stopping Times

In this subsection we formulate the starting afresh property for suitable random
times  , that is, the events f! 2 ˝ W .!/ < ag should depend on the process fxt g
only “up to time a”, but not on the “future” after time a. This idea leads us to the
following definition:

Definition 9.22. Let fFt W t � 0g be an increasing family of �-algebras in a
probability space .˝;F ; P /. A mapping  W ˝ ! Œ0;1� is called a stopping time
or Markov time with respect to fFtg if it satisfies the condition



9.1 Markov Processes 433

f < ag D f! 2 ˝ W .!/ < ag 2 Fa for all a > 0: (9.12)

If we introduce another condition

f � ag D f! 2 ˝ W .!/ � ag 2 Fa for all a > 0; (9.13)

then condition (9.13) implies condition (9.12); hence we obtain a smaller family of
stopping times. Indeed, we have, for all a > 0,

f < ag D f! 2 ˝ W .!/ < ag D
1[

nD1

	

! 2 ˝ W .!/ � a � 1
n




D
1[

nD1

	

 � a � 1
n




;

and it follows from condition (9.13) that each set in the union belongs to Fa�1=n.
Hence we obtain from the monotonicity of fFtg that

f < ag 2
1[

nD1
Fa�1=n 	 Fa for all a > 0:

This proves that condition (9.12) is satisfied.
Conversely, we can prove the following lemma:

Lemma 9.23. Assume that the family fFtg is right-continuous, that is,

Ft D
\

s>t

Fs for each t � 0:

Then condition (9.12) implies condition (9.13).

Proof. First, we have, for all a > 0,

f � ag D f! 2 ˝ W .!/ � ag D
1\

nD1

	

! 2 ˝ W .!/ < aC 1

n




D
1\

nD1

	

 < aC 1

n




:

However, it follows from condition (9.12) that each set in the intersection belongs
to FaC1=n. Hence we obtain from the right-continuity of fFtg that

f � ag 2
1\

nD1
FaC1=n D Fa for all a > 0:

This proves that condition (9.13) is satisfied.
The proof of Lemma 9.23 is complete.
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Summing up, we have proved that conditions (9.12) and (9.13) are equivalent
provided that the family fFtg is right-continuous.

If  is a stopping time with respect to the right-continuous family fFtg of
�-algebras, we let

F D fA 2 F W A\ f � ag 2 Fa for all a > 0g :
Intuitively, we may think of F as the “past” up to the random time  . Then we have
the following lemma:

Lemma 9.24. F is a �-algebra.

Proof. (1) It is clear that ; 2 F .
(2) If A 2 F , then we have, by condition (9.13),

Ac \ f � ag D f � ag n .A \ f � ag/ 2 Fa for all a > 0:

This proves that Ac 2 F .
(3) If Ak 2 F for k D 1, 2, : : :, then we have, by condition (9.13),

 1[

kD1
Ak

!

\ f � ag D
1[

kD1
.Ak \ f � ag/ 2 Fa for all a > 0:

This proves that [1
kD1Ak 2 F .

The proof of Lemma 9.24 is complete.

Now we list some elementary properties of stopping times and their associated
�-algebras:

(i) Any non-negative constant mapping is a stopping time. More precisely, if  �
t0 for some constant t0 � 0, then it follows that  is a stopping time and that
F reduces to Ft0 .

Proof. Since we have

f � t0 � ag D
(
; 2 Fa if 0 < a < t0;

˝ 2 Fa if a � t0;
it follows that  is a stopping time and further from the right-continuity of fFtg
that

F D fA 2 F W A \ f � ag 2 Fa for all a > 0g
D fA 2 F W A 2 Fa for all a � t0g
D
\

a�t0
Fa D Ft0 :

The proof of Assertion (i) is complete.
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(ii) If fng is a finite or denumerable collection of stopping times for the family
fFtg, then it follows that

 D inf
n
n

is also a stopping time.

Proof. Since each n is a stopping time, we have, for all a > 0,

f D inf
n
n < ag D

[

n

fn < ag 2 Fa:

Indeed, it suffices to note that each set in the union belongs to Fa.

(iii) If fng is a finite or denumerable collection of stopping times for the family
fFtg, then it follows that

 D sup
n
n

is also a stopping time.

Proof. Since each n is a stopping time and since fFtg is increasing, we have,
for all a > 0,

f D sup
n

n < ag D
1[

kD1

\

n

	

n < a � 1
k




2
1[

kD1
Fa�1=k 	 Fa:

Indeed, it suffices to note that each set in the intersection belongs to Fa�1=k .

(iv) If  is a stopping time and t0 is a positive constant, then it follows that  C t0
is also a stopping time.

Proof. Since the stopping time  is non-negative, we have, by the monotonicity
of fFtg,

f C t0 < ag D f < a � t0g

D
(
; 2 Fa if 0 < a � t0;
f < a � t0g 2 Fa�t0 	 Fa if a > t0:

This proves that  C t0 is a stopping time.

(v) Let 1 and 2 be stopping times for the family fFtg such that 1 � 2 on ˝ .
Then it follows that

F1 	 F2 :

This is a generalization of the monotonicity of the family fFtg.
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Proof. If A is an arbitrary element of F1 , then it satisfies the condition

A\ f1 � ag 2 Fa for all a > 0:

Since we have f2 � ag 	 f1 � ag for all a > 0, it follows that

A\ f2 � ag D .A \ f1 � ag/\ f2 � ag 2 Fa for all a > 0: (9.14)

This proves that A 2 F2 .

(vi) Let fng1nD1 be a sequence of stopping times for the family fFtg such that
nC1 � n on˝ . Then it follows that the limit

 D lim
n!1 n D inf

n�1 n

is a stopping time and further that

F D
\

n�1
Fn :

This property generalizes the right-continuity of the family fFtg.
Proof. First, by assertion (ii) it follows that  is a stopping time. Moreover, we have,
for each n D 1, 2, : : :,

 D inf
k�1 k � n:

Hence it follows from assertion (v) that

F 	 Fn for each n D 1, 2, : : :;

so that

F 	
\

n�1
Fn :

Conversely, let A be an arbitrary element of \n�1Fn . Then it follows that, for
each n D 1, 2, : : :,

A\ fn � ag 2 Fa for all a > 0:

However, since n #  as n!1, we have

f � ag D
\

m2N

[

n2N

	

n � aC 1

m




:
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Hence we obtain from assertion (9.14) that

A\ f � ag D A
\

 
\

m2N

[

n2N

	

n � aC 1

m


!

D
\

m2N

[

n2N

�

A\
	

n � aC 1

m


�

;

where each member in the union belongs to FaC1=m.
Therefore, it follows from the right-continuity of fFtg that

A\ f � ag 2
\

m2N

FaC 1
m
D Fa for all a > 0:

This proves that A 2 F .
The proof of Assertion (vi) is complete.

9.1.7 Definition of Strong Markov Processes

A Markov process is called a strong Markov process if the “starting afresh” property
holds not only for every fixed moment but also for suitable random times. In this
subsection we formulate this “strong” Markov property precisely (Definition 9.25),
and give a useful criterion for the strong Markov property (Theorem 9.26).

Let .K; �/ be a locally compact, separable metric space. We add a new point @ to
the locally compact space K as the point at infinity if K is not compact, and as an
isolated point if K is compact; so the space K@ D K [ f@g is compact.

Let X D .xt ;F ;Ft ; Px/ be a Markov process. For each t 2 Œ0;1�, we define a
mapping

˚t W Œ0; t � �˝ �! K@

by the formula

˚t.s; !/ D xs.!/:

A Markov process X D .xt ;F ;Ft ; Px/ is said to be progressively measurable with
respect to fFtg if the mapping ˚t is BŒ0;t � � Ft =B@-measurable for each t 2 Œ0;1�,
that is, if we have the condition

˚�1
t .E/ D f˚t 2 Eg 2 BŒ0;t � � Ft for all E 2 B@:
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Here BŒ0;t � is the �-algebra of all Borel sets in the interval Œ0; t � and B@ is the
�-algebra in K@ generated by B. It should be noted that if X is progressively
measurable and if  is a stopping time, then the mapping x W ! 7! x.!/.!/ is
F=B@- measurable.

Definition 9.25. We say that a progressively measurable Markov process X D
.xt ;F ;Ft ; Px/ has the strong Markov property with respect to fFtg if the following
condition is satisfied:

For all h � 0, x 2 K@, E 2 B@ and all stopping times  , we have

PxfxCh 2 E j Fg D ph.x ; E/;

or equivalently,

Px.A\ fxCh 2 Eg/ D
Z

A

ph.x.!/.!/; E/ dPx.!/ for all A 2 F :

This expresses the idea of “starting afresh” at random times.
The next result gives a useful criterion for the strong Markov property:

Theorem 9.26. If the transition function of a right-continuous Markov process has
the C0-property, then it is a strong Markov process.

9.1.8 The Strong Markov Property and Uniform Stochastic
Continuity

In this subsection we introduce the basic notion of uniform stochastic continuity of
transition functions (Definition 9.27), and give simple criteria for the strong Markov
property in terms of transition functions (Theorems 9.28 and 9.29).

Let .K; �/ be a locally compact, separable metric space. We begin with the
following definition:

Definition 9.27. A transition functionpt onK is said to be uniformly stochastically
continuous on K if it satisfies the following condition:

For each " > 0 and each compact E 	 K , we have

lim
t#0

sup
x2E

Œ1 � pt .x; U".x//� D 0; (9.15)

where U".x/ D fy 2 K W �.y; x/ < "g is an "-neighborhood of x.

It should be noted that every uniformly stochastically continuous transition
function pt is normal and satisfies condition (M) in Theorem 9.20. Therefore, by
combining part (i) of Theorems 9.20 and 9.26 we obtain the following theorem:
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Theorem 9.28. If a uniformly stochastically continuous,C0 transition function sat-
isfies condition (L), then it is the transition function of some strong Markov process
whose paths are right-continuous and have no discontinuities other than jumps.

Theorems 9.20 and 9.26 can be visualized as follows:

A continuous strong Markov process is called a diffusion process. The next result
states a sufficient condition for the existence of a diffusion process with a prescribed
transition function:

Theorem 9.29. If a uniformly stochastically continuous, C0 transition function
satisfies conditions (L) and (N), then it is the transition function of some diffusion
process.

This theorem is an immediate consequence of part (ii) of Theorems 9.20 and
9.28.

9.2 Feller Semigroups and Transition Functions

In Sect. 9.2 we introduce a class of semigroups associated with Markov processes
(Definition 9.30), called Feller semigroups, and we give a characterization of Feller
semigroups in terms of Markov transition functions (Theorems 9.33 and 9.34).

9.2.1 Definition of Feller Semigroups

Let .K; �/ be a locally compact, separable metric space and let C.K/ be the Banach
space of real-valued, bounded continuous functions onK with the supremum norm

kf k1 D sup
x2K
jf .x/j:

Recall (see Sect. 9.1.4) that C0.K/ is the closed subspace of C.K/ which consists
of all functions satisfying the condition limx!@ f .x/ D 0, and further that C0.K/
may be identified with C.K/ if K is compact.

Now we introduce a class of semigroups associated with Markov processes:

Definition 9.30. A family fTtgt�0 of bounded linear operators acting on the space
C0.K/ is called a Feller semigroup onK if it satisfies the following three conditions
(i), (ii) and (iii):
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(i) TtCs D Tt � Ts for all t; s � 0 (the semigroup property); T0 D I .
(ii) The family fTtg is strongly continuous in t for t � 0:

lim
s#0
kTtCsf � Ttf k1 D 0 for every f 2 C0.K/:

(iii) The family fTtg is non-negative and contractive on C0.K/:

f 2 C0.K/; 0 � f .x/ � 1 on K H) 0 � Ttf .x/ � 1 onK:

9.2.2 Characterization of Feller Semigroups in Terms
of Transition Functions

In Sect. 9.1.3, we proved the following theorem:

Theorem 9.31. If pt is a Feller transition function on K , then the associated
operators fTt gt�0, defined by the formula

Ttf .x/ D
Z

K

pt .x; dy/f .y/ for every f 2 C.K/;

form a non-negative and contraction semigroup on C.K/:

(i) TtCs D Tt � Ts , t , s � 0 (the semigroup property); T0 D I .
(ii) f 2 C.K/, 0 � f .x/ � 1 on K H) 0 � Ttf .x/ � 1 onK .

The purpose of this subsection is to prove a converse:

Theorem 9.32. If fTtgt�0 is a non-negative and contraction semigroup on the
space C0.K/, then there exists a unique C0 transition function pt on K such that
the formula

Ttf .x/ D
Z

K

pt .x; dy/f .y/ (9.16)

holds true for all f 2 C0.K/.
Proof. We fix t � 0 and x 2 K , and define a linear functional F on C0.K/ as
follows:

F.f / D Ttf .x/ for all f 2 C0.K/:

Then it follows that F is non-negative and bounded with norm kF k � 1, since
Tt is a non-negative and contractive operator on C0.K/. Therefore, by applying
the Riesz–Markov representation theorem (Theorem 3.41) to the functional F we
obtain that there exists a unique Radon measure pt .x; �/ onK such that
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Fig. 9.8 The function fn

Tt .x/ D F.f / D
Z

K

pt .x; dy/f .y/ for all f 2 C0.K/: (9.17)

We show that the measures pt satisfy conditions (a)–(d) of Definition 9.4.

(a) First, we have the inequality

pt .x;K/D sup fF.f / W f 2 C0.K/; 0 � f � 1 onKg DkF k � 1; x 2 K;

since F is contractive.
(b) Since T0 D I , it follows that

f .x/ D T0f .x/ D
Z

K

p0.x; dy/f .y/ for all f 2 C0.K/:

This proves that p0.x; fxg/ D 1 for each x 2 K .
(c) We prove that the function pt .�; E/ is Borel measurable for each E 2 B. To do

this, it suffices to show that the collection

A D fE 2 B W pt.�; E/ is B-measurableg

coincides with the �-algebra B. The proof is divided into five steps.

Step 1: The collection A contains the collection O of all open subsets of K:

A 
 O: (9.18)

Indeed, if G 2 O, we let (see Fig. 9.8)

fn.x/ D minfn�.x;K nG/; 1g; n D 1; 2; : : : :

Then fn is a function in C0.K/, and satisfies the condition

lim
n!1fn.x/ D

(
1 if x 2 G;
0 if x 2 K nG:

Thus, by virtue of the dominated convergence theorem we obtain from formula
(9.17) with f WD fn that
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lim
n!1Ttfn D lim

n!1

Z

K

pt .x; dy/fn.y/ D pt .x;G/:

Since the functions Ttfn are continuous, this proves that the limit function
pt .�; G/ is B-measurable and so G 2 A.

Step 2: We have, by assertion (9.18),

d.O/ 	 d.A/: (9.19)

Step 3: The collection A is a d -system

d.A/ D A: (9.20)

Indeed, it is easy to verify the following three assertions (i), (ii) and (iii):

(i) By assertion (9.15), it follows that

K 2 O 	 A:

(ii) If A, B 2 A and A 	 B , then it follows that the function

pt .�; B nA/ D pt .�; B/� pt .�; A/
is B-measurable. This proves that B nA 2 A.

(iii) If fAng1nD1 is an increasing sequence of elements of A, then it follows that
the function

pt
��;[1

nD1An
� D lim

n!1pt .�; An/

is B-measurable. This proves that

1[

nD1
An 2 A:

Step 4: Since O is a �-system, it follows from an application of the monotone
class theorem (Theorem 2.4) that

d.O/ D �.O/ D B: (9.21)

Step 5: By combining assertions (9.21), (9.19) and (9.20), we obtain that

B D d.O/ 	 d.A/ D A 	 B;

so that

A D B:
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(d) In view of the semigroup property and Fubini’s theorem, it follows from
formula (9.17) that we have, for all f 2 C0.K/,

Z

K

ptCs.x; dz/f .z/ D TtCsf .x/DTt .Tsf /.x/D
Z

K

pt .x; dy/
Z

K

ps.y; dz/f .z/

D
Z

K

�Z

K

pt.x; dy/ps.y; dz/

�

f .z/:

Hence the uniqueness part of the Riesz–Markov representation theorem (Theo-
rem 3.41) gives that

ptCs.x; E/ D
Z

K

pt.x; dy/ps.y;E/ D
Z

K

pt .x; dy/ps.y;E/ for all E 2 B:

Finally, the C0-property of pt comes automatically, since Tt W C0.K/! C0.K/.
The proof of Theorem 9.32 is now complete.

It should be emphasized that the Feller or C0-property concerns only the
continuity of a Markov transition function pt .x;E/ in x, and not, by itself,
continuity in t .

Now we give a necessary and sufficient condition on pt .x;E/ in order that its
associated operators fTt gt�0 are strongly continuous in t on the space C0.K/:

lim
s#0
kTtCsf � Ttf k1 D 0 for all f 2 C0.K/: (9.22)

Theorem 9.33. Let pt .x; �/ be a C0 transition function on K . Then the associated
operators fTtgt�0, defined by formula (9.16), are strongly continuous in t on C0.K/
if and only if pt.x; �/ is uniformly stochastically continuous on K and satisfies the
following condition (L):

(L) For each s > 0 and each compact E 	 K , we have

lim
x!@

sup
0�t�s

pt .x;E/ D 0: (9.23)

Proof. The proof is divided into two steps.

Step 1: First, we prove the “if” part of the theorem. Since continuous functions
with compact support are dense in C0.K/, it suffices to prove the strong
continuity of fTtg at t D 0

lim
t#0
kTtf � f k1 D 0 (9:220)

for all such functions f .
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For any compact subset E of K containing suppf , we have

kTtf � f k1 � sup
x2E
jTtf .x/ � f .x/j C sup

x2KnE
jTtf .x/j (9.24)

� sup
x2E
jTtf .x/ � f .x/j C kf k1 � sup

x2KnE
pt .x; suppf /:

However, condition (L) implies that, for each " > 0, we can find a compact subset
E of K such that, for all sufficiently small t > 0,

sup
x2KnE

pt.x; supp f / < ": (9.25)

On the other hand, we have, for each ı > 0,

Ttf .x/ � f .x/ D
Z

Uı.x/

pt .x; dy/.f .y/ � f .x//

C
Z

KnUı.x/
pt .x; dy/.f .y/ � f .x// � f .x/.1 � pt .x;K//;

and hence

sup
x2E
jTtf .x/ � f .x/j

� sup
�.x;y/<ı

jf .y/ � f .x/j C 3kf k1 � sup
x2E

Œ1 � pt .x; Uı.x//� :

Since f .x/ is uniformly continuous, we can choose a constant ı > 0 such that

sup
�.x;y/<ı

jf .y/ � f .x/j < ":

Furthermore, it follows from condition (9.15) with " WD ı that, for all sufficiently
small t > 0,

sup
x2E

Œ1 � pt .x; Uı.x//� < ":

Hence we have, for all sufficiently small t > 0,

sup
x2E
jTtf .x/ � f .x/j < " .1C 3kf k1/ : (9.26)

Therefore, by carrying inequalities (9.25) and (9.26) into inequality (9.24) we
obtain that, for all sufficiently small t > 0,

kTtf � f k1 < " .1C 4kf k1/ :

This proves (9:220), that is, the strong continuity of fTtg.
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Fig. 9.9 The function fx

Step 2: Next, we prove the “only if” part of the theorem.

1. Let x be an arbitrary point of K . For any " > 0, we define (see Fig. 9.9)

fx.y/ D
8
<

:
1 � 1

"
�.x; y/ if �.x; y/ � ";

0 if �.x; y/ > ":
(9.27)

If E is a compact subset of K , then the functions fx , x 2 E , are in C0.K/,
for all sufficiently small " > 0, and satisfy the condition

kfx � fzk1 � 1

"
�.x; z/; x; z 2 E: (9.28)

However, for any ı > 0, by the compactness of E we can find a finite number
of points x1; x2; : : : ; xn of E such that

E 	
n[

kD1
Uı"=4.xk/;

and hence

min
1�k�n �.x; xk/ �

ı"

4
for all x 2 E:

Thus, by combining this inequality with inequality (9.28) we obtain that

min
1�k�n kfx � fxkk1 �

ı

4
for all x 2 E: (9.29)

Now we have, by (9.27),

0 � 1 � pt .x; U".x//

� 1 �
Z

K@

pt.x; dy/fx.y/ D fx.x/ � Ttfx.x/
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Fig. 9.10 The function f

� kfx � Ttfxk1
� kfx � fxkk1 C kfxk � Ttfxkk1 C kTtfxk � Ttfxk1
� 2kfx � fxkk1 C kfxk � Ttfxkk1:

In view of inequality (9.29), the first term in the last inequality is bounded
by ı=2 for the right choice of k. Furthermore, it follows from the strong
continuity (9.220) of fTtg that the second term tends to zero as t # 0, for
each k D 1; � � � ; n.
Consequently, we have, for all sufficiently small t > 0,

sup
x2E

Œ1 � pt .x; U".x//� � ı:

This proves condition (9.15), that is, the uniform stochastic continuity of
pt .x; �/.

2. It remains to verify condition (L). We assume, to the contrary, that:

For some s > 0 and some compact E 	 K , there exist a constant "0 > 0, a
sequence ftkg, tk # t (0 � t � s) and a sequence fxkg, xk ! @, such that

ptk .xk; E/ � "0: (9.30)

Now we take a relatively compact subset U of K containing E , and let (see
Fig. 9.10)

f .x/ D �.x;K n U /
�.x;E/C �.x;K n U / :

Then it follows that the function f .x/ is in C0.K/ and satisfies the condition

Ttf .x/ D
Z

K

pt .x; dy/f .y/ � pt .x;E/ � 0:

Therefore, by combining this inequality with inequality (9.30) we obtain that

Ttkf .xk/ D
Z

K

ptk .xk; dy/f .y/ � ptk .xk; E/ � "0: (9.31)
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However, we have the inequality

Ttkf .xk/ � kTtkf � Ttf k1 C Ttf .xk/: (9.32)

Since the semigroup fTtg is strongly continuous and Ttf 2 C0.K/, we can let
k !1 in inequality (9.32) to obtain that

lim sup
k!1

Ttkf .xk/ D 0:

This contradicts condition (9.31).
The proof of Theorem 9.33 is complete.

Rephrased, Theorem 9.33 gives a characterization of Feller semigroups in terms
of transition functions:

Theorem 9.34. If pt .x; �/ is a uniformly stochastically continuous, C0 transition
function onK and satisfies condition (L), then its associated operators fTtgt�0 form
a Feller semigroup on K .

Conversely, if fTtgt�0 is a Feller semigroup on K , then there exists a uniformly
stochastically continuous, C0 transition function pt.x; �/ on K , satisfying condition
(L), such that (9.16) holds true for all f 2 C0.K/.

Theorem 9.34 can be visualized as follows:

9.3 The Hille–Yosida Theory of Feller Semigroups

Section 9.3 is devoted to a version of the Hille–Yosida theorem (Theorem 3.10)
adapted to the present context. In particular, we prove generation theorems for Feller
semigroups (Theorems 9.35 and 9.50) which form a functional analytic background
for the proof of Theorem 1.2 in Chap. 10.
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9.3.1 Generation Theorems for Feller Semigroups

Let .K; �/ be a locally compact, separable metric space and let C.K/ be the space
of real-valued, bounded continuous functions on K; C.K/ is a normed linear space
with the supremum norm

kf k1 D sup
x2K
jf .x/j:

We add a new point @ to the locally compact space K as the point at infinity if K is
not compact, and as an isolated point if K is compact; so the space K@ D K [ f@g
is compact. Recall that C0.K/ is the closed subspace of C.K/ which consists of
all functions satisfying the condition limx!@ f .x/ D 0, and that C0.K/ may be
identified with C.K/ if K is compact.

If fTtgt�0 is a Feller semigroup on K , we define its infinitesimal generator A by
the formula

Au D lim
t#0

Ttu � u

t
; (9.33)

provided that the limit (9.30) exists in the space C0.K/. More precisely, the
generator A is a linear operator from C0.K/ into itself defined as follows:

(1) The domainD.A/ of A is the set

D.A/ D fu 2 C0.K/ W the limit (9.33) exists in C0.K/g :

(2) Au D limt#0
Ttu � u

t
for every u 2 D.A/.

The next theorem is a version of the Hille–Yosida theorem (Theorem 3.10)
adapted to the present context:

Theorem 9.35 (Hille–Yosida).

(i) Let fTtgt�0 be a Feller semigroup on K and A its infinitesimal generator. Then
we have the following four assertions (a)–(d):

(a) The domainD.A/ is dense in the space C0.K/.
(b) For each ˛ > 0, the equation .˛I � A/u D f has a unique solution u

in D.A/ for any f 2 C0.K/. Hence, for each ˛ > 0 the Green operator
.˛I �A/�1 W C0.K/! C0.K/ can be defined by the formula

u D .˛I � A/�1f for every f 2 C0.K/:

(c) For each ˛ > 0, the operator .˛I � A/�1 is non-negative on C0.K/:

f 2 C0.K/; f � 0 on K H) .˛I � A/�1f � 0 on K:
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(d) For each ˛ > 0, the operator .˛I � A/�1 is bounded on C0.K/ with norm

k.˛I � A/�1k � 1

˛
:

(ii) Conversely, if A is a linear operator from C0.K/ into itself satisfying condition
(a) and if there is a constant ˛0 � 0 such that, for all ˛ > ˛0, conditions (b)–(d)
are satisfied, then A is the infinitesimal generator of some Feller semigroup
fTtgt�0 on K .

Proof. In view of Theorem 3.10, it suffices to show that the semigroup fTtgt�0 is
non-negative if and only if its resolvents f.˛I �A/�1g˛>˛0 are non-negative.

The “only if” part is an immediate consequence of the integral expression of
.˛I �A/�1 in terms of the semigroup fTtg (see formula (4.11)):

.˛I � A/�1 D
Z 1

0

e�˛tTt dt; ˛ > 0:

On the other hand, the “if” part follows from expression (4.18) of the semigroup
Tt.˛/ in terms of the Yosida approximation J˛ D ˛.˛I �A/�1:

Tt .˛/ D e�˛t exp Œ˛tJ˛� D e�˛t
1X

nD0

.˛t/n

nŠ
J n˛ ;

and definition (4.19) of the semigroup Tt :

Tt D lim
˛!1Tt .˛/:

The proof of Theorem 9.35 is complete.

Corollary 9.36. Let K be a compact metric space and let A be the infinitesimal
generator of a Feller semigroup on K . Assume that the constant function 1 belongs
to the domainD.A/ of A and that we have, for some constant c,

A1.x/ � �c onK: (9.34)

Then the operator A0 D A C cI is the infinitesimal generator of some Feller
semigroup on K .

Proof. It follows from an application of part (i) of Theorem 9.35 that, for all ˛ > c,
the operators

.˛I � A0/�1 D ..˛ � c/I � A/�1

are defined and non-negative on the whole space C.K/. However, in view of
inequality (9.34) we obtain that
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˛ � ˛ � .A1C c/ D .˛I �A0/1 on K;

so that

˛.˛I �A0/�11 � .˛I � A0/�1.˛I �A0/1 D 1 on K:

Hence we have, for all ˛ > c,

k.˛I �A0/�1k D k.˛I � A0/�11k1 � 1

˛
:

Therefore, by applying part (ii) of Theorem 9.35 to the operatorA0 D AC cI we
find that A0 is the infinitesimal generator of some Feller semigroup on K .

The proof of Corollary 9.36 is complete.

Now we write down explicitly the infinitesimal generators of Feller semigroups
associated with the transition functions in Examples 9.6–9.12.

Example 9.37 (uniform motion). Let K D R and

(
D.A/ D ff 2 C0.K/\ C1.K/ W f 0 2 C0.K/g;
Af D vf 0 for every f 2 D.A/;

where v is a positive constant. Then the resolvents f.˛I �A/�1g˛>0 are given by the
formula

.˛I �A/�1g D 1

v

Z 1

x

e� ˛
v .y�x/g.y/ dy for every g 2 C0.K/:

Example 9.38 (Poisson process). Let K D R and

(
D.A/ D C0.K/;
Af .x/ D �.f .x C 1/� f .x// for every f 2 D.A/:

The operator A is not “local”; the value Af .x/ depends on the values f .x/ and
f .x C 1/. This reflects the fact that the Poisson process changes state by jumps.

Example 9.39 (Brownian motion). Let K D R and

8
<

:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/g;
Af D 1

2
f 00 for every f 2 D.A/:

The operator A is “local”, that is, the value Af .x/ is determined by the values of f
in an arbitrary small neighborhood of x. This reflects the fact that Brownian motion
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changes state by continuous motion. The resolvents f.˛I � A/�1g˛>0 are given by
the formula

.˛I �A/�1g D 1p
2˛

Z 1

�1
e�p

2˛jx�yjg.y/ dy for every g 2 C0.K/:

Example 9.40 (Brownian motion with constant drift). Let K D R and

8
<

:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/g;
Af D 1

2
f 00 Cmf 0 for every f 2 D.A/:

Example 9.41 (Cauchy process). Let K D R and the domain D.A/ contain C2

functions onK with compact support, and let the infinitesimal generatorA be of the
form

Af .x/ D 1

�

Z C1

�1
.f .x C y/� f .x// dy

y2
:

The operator A is not “local”, which reflects the fact that the Cauchy process
changes state by jumps.

Example 9.42 (reflecting barrier Brownian motion). Let K D Œ0;1/ and

8
<

:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/; f 0.0/ D 0g;
Af D 1

2
f 00 for every f 2 D.A/:

The resolvents f.˛I � A/�1g˛>0 are given by

.˛I � A/�1g (9.35)

D 1p
2˛

Z 1

0

e
p
2˛.x�y/g.y/ dyC 1p

2˛

Z 1

0

e�p
2˛.xCy/g.y/ dy

� 1p
2˛

Z x

0

h
e

p
2˛.x�y/ � e�p

2˛.x�y/
i
g.y/ dy for every g 2 C0.K/:

Example 9.43 (sticking barrier Brownian motion). Let K D Œ0;1/ and

8
<

:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/; f 00.0/ D 0g;
Af D 1

2
f 00 for every f 2 D.A/:
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The resolvents f.˛I � A/�1g˛>0 are given by

.˛I � A/�1g (9.36)

D 1p
2˛

Z 1

x

e
p
2˛.x�y/g.y/ dyC 1

˛
g.0/ e�p

2˛x

� 1
˛

Z 1

0

e�p
2˛.xCy/g.y/ dyC 1p

2˛

Z x

0

e�p
2˛.x�y/g.y/ dy

for every g 2 C0.K/:

Moreover, we can obtain the following:

Example 9.44 (reflecting barrier Brownian motion). Let K D Œ0; 1� and

8
<

:

D.A/ D ff 2 C2.K/ W f 0.0/ D f 0.1/ D 0g;
Af D 1

2
f 00 for every f 2 D.A/:

Example 9.45 (absorbing barrier Brownian motion). Let K D Œ0;1/ and

8
<

:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/; f .0/ D 0g;
Af D 1

2
f 00 for every f 2 D.A/:

This represents Brownian motion with an absorbing barrier at x D 0; a Brownian
particle dies at the first moment when it hits the boundary x D 0. That is, the point
0 is the terminal point.

Example 9.46 (absorbing barrier Brownian motion). Let K D Œ0; 1� where the
boundary points 0 and 1 are identified with the point at infinity @. More precisely,
we introduce a subspace C0.K/ of C.K/ as follows:

C0.K/ D ff 2 C.K/ W f .0/ D f .1/ D 0g:

Then we define a linear operator A W C0.K/! C0.K/ by the formula

8
<

:

D.A/ D ff 2 C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/; f .0/ D f .1/ D 0g;
Af D 1

2
f 00 for every f 2 D.A/:

This represents Brownian motion with two absorbing barriers at x D 0 and x D 1;
a Brownian particle dies at the first moment when it hits the boundary points x D 0
and x D 1. That is, the two points 0 and 1 are the terminal points.
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Example 9.47 (absorbing–reflecting barrier Brownian motion). Let K D Œ0;1/,
and

8
ˆ̂
<

ˆ̂
:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/;
�f 0.0/� .1 � �/f .0/ D 0g;

Af D 1

2
f 00 for every f 2 D.A/:

Here � is a constant such that 0 < � < 1. This process fxt g may be thought of as a
“combination” of the absorbing and reflecting Brownian motions; the absorbing and
reflecting cases are formally obtained by letting �! 0 and �! 1, respectively.

Here is an example where it is difficult to begin with a transition function and the
infinitesimal generator is the basic tool used to describe the process.

Example 9.48 (sticky barrier Brownian motion). Let K D Œ0;1/. We define a
linear operator A W C0.K/! C0.K/ by the formula

8
ˆ̂
<

ˆ̂
:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/;
f 00 2 C0.K/; f 0.0/� �f 00.0/ D 0g;

Af D 1

2
f 00 for every f 2 D.A/:

Here � is a positive constant. This process fxt g may be thought of as a “combi-
nation” of the reflecting and sticking Brownian motions; the reflecting and sticking
cases are formally obtained by letting �! 0 and �!1, respectively. Upon hitting
x D 0, a Brownian particle leaves immediately, but it spends a positive duration of
time there. We remark that the set ft > 0 W xt D 0g is somewhat analogous to
Cantor-like sets of positive Lebesgue measure. The resolvents f.˛I �A/�1g˛>0 are
given by the formula

.˛I �A/�1g (9.37)

D 1p
2˛

Z 1

0

e
p
2˛.x�y/g.y/ dyC C e�p

2˛x

� 1p
2˛

Z x

0

h
e

p
2˛.x�y/ � e�p

2˛.x�y/i g.y/ dy for every g 2 C0.K/;

where C is a constant given by the formula

C D
 

1
�
�p2˛

1
�
Cp2˛

!Z 1

0

e�p
2˛yg.y/ dyC

q
2
˛
g.0/

1
�
Cp2˛ :

It should be noted that (9.35) and (9.36) may be obtained from (9.37) by letting
�! 0 and �!1, respectively.
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Finally, it is worth pointing out here that a strong Markov process cannot stay
at a single position for a positive length of time and then leave that position by
continuous motion; it must either jump away or leave instantaneously. We give a
simple example of a strong Markov process which changes state not by continuous
motion but by jumps when the motion reaches the boundary:

Example 9.49. Let K D Œ0;1/ and

8
ˆ̂
<

ˆ̂
:

D.A/ D ff 2 C0.K/\ C2.K/ W f 0 2 C0.K/; f 00 2 C0.K/;
f 00.0/ D 2c R1

0 .f .y/ � f .0// dF.y/g;
Af D 1

2
f 00 for every f 2 D.A/:

Here c is a positive constant and F is a distribution function on .0;1/.
This process fxt g may be interpreted as follows. When a Brownian particle

reaches the boundary x D 0, it stays there for a positive length of time and then
jumps back to a random point, chosen with the function F , in the interior .0;1/.
The constant c is the parameter in the “waiting time” distribution at the boundary
x D 0. Note that the boundary condition

f 00.0/ D 2c
Z 1

0

.f .y/ � f .0// dF.y/

depends on the values of f .y/ far away from the boundary x D 0, unlike the
boundary conditions in Examples 9.11–9.14.

9.3.2 Generation Theorems for Feller Semigroups in Terms
of Maximum Principles

Although Theorem 9.35 tells us precisely when a linear operator A is the
infinitesimal generator of some Feller semigroup, it is usually difficult to verify
conditions (b)–(d). So we give useful criteria in terms of maximum principles [Ta9,
Theorem 2.18 and Corollary 2.19]:

Theorem 9.50 (Hille–Yosida–Ray). Let K be a compact metric space. Then we
have the following two assertions (i) and (ii):

(i) Let B be a linear operator from C.K/ D C0.K/ into itself, and assume that

.˛/ The domainD.B/ of B is dense in the space C.K/.

.ˇ/ There exists an open and dense subset K0 of K such that if u 2 D.B/ takes
a positive maximum at a point x0 of K0, then we have the inequality

Bu.x0/ � 0:

Then the operator B is closable in the space C.K/.
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(ii) Let B be as in part (i), and further assume that

.ˇ0/ If u 2 D.B/ takes a positive maximum at a point x0 of K , then we have the
inequality

Bu.x0/ � 0:
.�/ For some ˛0 � 0, the range R.˛0I � B/ of ˛0I � B is dense in the space

C.K/.

Then the minimal closed extension B of B is the infinitesimal generator of some
Feller semigroup on K .

Corollary 9.51. Let B be the infinitesimal generator of a Feller semigroup on a
compact metric space K and C a bounded linear operator from C.K/ into itself.
Assume that either C or B C C satisfies condition .ˇ0/. Then the operator A D
B C C is the infinitesimal generator of some Feller semigroup on K .

9.4 Infinitesimal Generators of Feller Semigroups
on a Bounded Domain (i)

In the early 1950s, W. Feller completely characterized the analytic structure of
one-dimensional diffusion processes; he gave an intrinsic representation of the
infinitesimal generator A of a one-dimensional diffusion process and determined
all possible boundary conditions which describe the domain D.A/ of A. The
probabilistic meaning of Feller’s work was clarified by E.B. Dynkin [Dy1, Dy2],
K. Itô and H.P. McKean, Jr. [IM], D. Ray [Ra] and others. One-dimensional
diffusion processes are fully understood, both from the analytic and the probabilistic
viewpoints.

Now we take a close look at Feller’s work. Let X D .xt ;F ;Ft ; Px/ be a
one-dimensional diffusion process with state space K . A point x of K is called
a right (resp. left) singular point if xt .!/ � x (resp. xt .!/ � x) for all t 2 Œ0; �.!//
with Px-measure one. A right and left singular point is called a trap. For example,
the point at infinity @ is a trap. A point which is neither right nor left singular is
called a regular point.

For simplicity, we assume that the state space K is the half-line

K D Œ0;1/;
and all its interior points are regular. Feller proved that there exist a strictly
increasing, continuous function s on .0;1/ and Borel measuresm and k on .0;1/
such that the infinitesimal generatorA of the process X can be expressed as follows:

Af .x/ D lim
y#x

f C.y/ � f C.x/ � R
.x;y�

f .z/ dk.z/

m..x; y�/
: (9.38)
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Here:

(1) f C.x/ D lim"#0 f .xC"/�f .x/
s.xC"/�s.x/ , the right-derivative of f at x with respect to s.

(2) The measurem is positive for non-empty open subsets, and is finite for compact
sets.

(3) The measure k is finite for compact subsets.

The function s is called a canonical scale, and the measures m and k are called
a canonical measure (or speed measure) and a killing measure for the process X ,
respectively. They determine the behavior of a Markovian particle in the interior of
the state space K .

We remark that the right-hand side of (9.38) is a generalization of the
second-order differential operator

a.x/f 00 C b.x/f 0 C c.x/f;

where a.x/ > 0 and c.x/ � 0 on K . For example, the formula

Af D a.x/f 00 C b.x/f 0

can be written in the form (9.13), if we take

s.x/ D
Z x

0

exp

�

�
Z y

0

b.z/

a.z/
dz

�

dy;

dm.x/ D 1

a.x/
exp

�Z x

0

b.y/

a.y/
dy

�

dx;

dk.x/ D 0:

The boundary point 0 is called a regular boundary if we have, for a point r 2
.0;1/,

Z

.0;r/

Œs.r/ � s.x/�Œdm.x/C dk.x/� <1;
Z

.0;r/

Œm..x; r//C k..x; r//� ds.x/ <1:

It can be shown that this notion is independent of the point r used. Intuitively, the
regularity of the boundary point means that a Markovian particle approaches the
boundary in finite time with positive probability, and also enters the interior from
the boundary.

The behavior of a Markovian particle at the boundary point is characterized
by boundary conditions. In the case of regular boundary points, Feller determined
all possible boundary conditions which are satisfied by the functions f .x/ in the
domainD.A/ of A. A general boundary condition is of the form
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�f .0/� ıAf .0/C �f C.0/ D 0;

where � , ı and � are constants such that � � 0, ı � 0, � � 0, �C ı > 0. If we
admit jumps from the boundary into the interior, then a general boundary condition
takes the form

�f .0/� ıAf .0/C �f C.0/C
Z

.0;1/

Œf .x/ � f .0/� d�.x/ D 0 (9.39)

where � is a Borel measure with respect to which the function min.1; s.x/� s.C0//
is integrable. It should be noted that boundary condition (9.39) is a “combination”
of the boundary conditions in Examples 9.11, 9.14 and 9.49 if we take

s.x/ D x; dm.x/ D 2dx; dk.x/ D 0:

A Markov process is said to be one-dimensional or multi-dimensional according
as the state space is a subset of R or RN (N � 2).

The main purpose of this book is to generalize Feller’s work to the
multi-dimensional case. In l959 A.D. Ventcel’ [We] studied the problem of
determining all possible boundary conditions for multi-dimensional diffusion
processes. In this section and the next section, we shall describe analytically the
infinitesimal generator of a Feller semigroup in the case when the state space K is
the closure D of a bounded domainD in RN (Theorems 9.52 and 9.53).

Let K be a compact metric space and let C.K/ D C0.K/ be the Banach space
of real-valued continuous functions f .x/ on K with the maximum norm

kf k1 D max
x2K jf .x/j:

A sequence f�ng1nD1 of real Borel measures on K is said to converge weakly to a
real Borel measure � on K if it satisfies the condition

lim
n!1

Z

K

f .x/ d�n.x/ D
Z

K

f .x/ d�.x/ for every f 2 C.K/: (9.40)

We remark (see Theorem 3.46) that the space of all real Borel measures � on K is
a normed linear space with the norm

k�k D the total variation j�j.K/ of �;

and further (see formula (3.17)) that the weak convergence (9.40) of real Borel
measures is just the weak* convergence of the dual space C.K/0 of C.K/.

Now we recall that a Feller semigroup fTtgt�0 on K is a strongly continuous
semigroup of bounded linear operators Tt acting on C.K/ such that

f 2 C.K/; 0 � f .x/ � 1 on K H) 0 � Ttf .x/ � 1 on K:
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The infinitesimal generator A of fTtg is defined by the formula

Au D lim
t#0

Ttu � u

t
; (9.41)

provided that the limit (9.41) exists in C.K/. That is, the generator A is a linear
operator from C.K/ into itself whose domain D.A/ consists of all u 2 C.K/ for
which the limit (9.41) exists.

Theorem 9.35, a version of the Hille–Yosida theorem, asserts that a Feller
semigroup is completely characterized by its infinitesimal generator. Therefore, we
are reduced to the study of the infinitesimal generators of Feller semigroups.

Our first job is to derive an explicit formula in the interior D of D for the
infinitesimal generator A of a Feller semigroup fTtgt�0 on the closureD.

The next result is essentially due to Ventcel’ [We] and [Ta5, Theorem 9.4.1]:

Theorem 9.52. Let D be a bounded domain in RN and let fTtgt�0 be a Feller
semigroup on D with infinitesimal generator A. Assume that, for every point x0 of
D, there exist a local coordinate system .x1; x2; : : : ; xN / on a neighborhood of x0

and continuous functions �1, �2, : : :, �N onD such that �i D xi in a neighborhood
of x0 and that the functions 1, �1, �2, : : :, �N and

PN
iD1 �i belong to the domain

D.A/ of A. Then we have, for all u 2 D.A/ \ C2.D/,

Au.x0/ D
NX

i;jD1
aij.x0/

@2u

@xi@xj
.x0/C

NX

iD1
bi .x0/

@u

@xi
.x0/C c.x0/u.x0/ (9.42)

C
Z

D

e.x0; dy/

"

u.y/� u.x0/�
NX

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�
#

:

Here:

(1) The matrix .aij.x0// is symmetric and positive semi-definite.
(2) bi .x0/ D A.�i � �i .x0//.x0/ for all 1 � i � N .
(3) c.x0/ D A1.x0/.
(4) e.x0; �/ is a non-negative Borel measure on D such that, for any neighborhood

U of x0,

e.x0;D n U / <1; (9.43a)

Z

U

e.x0; dy/

"
NX

iD1

�
�i .y/� �i .x0/

�2
#

<1: (9.43b)

Proof. The proof is divided into three steps.

Step 1: By applying Theorem 9.33 with C0.K/ WD C.D/, we obtain that
there corresponds to a Feller semigroup fTtgt�0 on D a unique uniformly
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stochastically continuous Feller transition function pt on D in the following
manner:

Ttf .x/ D
Z

D

pt.x; dy/f .y/ for every f 2 C.D/:

Since the functions 1, �1, �2, : : :, �N and
PN

iD1 �2i belong to the domain D.A/,
it follows that

�1 � �1.x0/; : : : ; �N � �N .x0/;
NX

iD1

�
�i � �i .x0/

�2 2 D.A/:

Thus we have

Au.x0/ (9.44)

D lim
t#0

1

t

�
Ttu.x

0/� u.x0/
�

D lim
t#0

1

t

�Z

D

pt .x
0; dy/u.y/� u.x0/

�

D lim
t#0

(
1

t

�
pt .x

0;D/ � 1� u.x0/

C1
t

NX

iD1

Z

D

pt .x
0; dy/

�
�i .y/� �i .x0/

� @u

@xi
.x0/

C1
t

Z

D

pt .x
0; dy/

"

u.y/� u.x0/ �
NX

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�
# )

D c.x0/u.x0/C
NX

iD1
bi .x0/

@u

@xi
.x0/

C lim
t#0

1

t

Z

Dnfx0g
pt .x

0; dy/Qu.x0; y/d.x0; y/;

where

c.x0/ D lim
t#0

Tt1.x
0/ � 1
t

D A1.x0/;

bi .x0/ D lim
t#0

Tt .�i � �i .x0//.x0/
t

D A.�i � �i .x0//.x0/;
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and

d.x0; y/ D
NX

iD1

�
�i .y/ � �i .x0/

�2
;

Qu.x0; y/ D
u.y/� u.x0/�PN

iD1
@u

@xi
.x0/.�i .y/� �i .x0//

d.x0; y/
; y 2 D n fx0g:

To rewrite the last term of 9.44, we define a non-negative measure Qpt .x0; �/ onD
by the formula

Qpt .x0; E/ D 1

t

Z

E

pt.x
0; dy/d.x0; y/ for all E 2 BD:

Here and in the following BK denotes the �-algebra of all Borel sets in a metric
space K . Then we can rewrite (9.44) as follows:

Au.x0/ D c.x0/u.x0/C
NX

iD1
bi .x0/

@u

@xi
.x0/C lim

t#0

Z

D

Qpt .x0; dy/Qu.x0; y/:
(9:440)

Note that, for all sufficiently small t > 0,

Qpt .x0;D/ � lim
t#0
Qpt.x0;D/C 1 D lim

t#0
1

t

Z

D

pt .x
0; dy/d.x0; y/C 1 (9.45)

D A

 
NX

iD1

�
�i � �i .x0/

�2
!

.x0/C 1:

Step 2: Now we introduce a compactification of the space D n fx0g to which the
function Qu.x0; �/ may be continuously extended. We let

zij.x0; y/ D .�i .y/� �i .x0//.�j .y/� �j .x0//
d.x0; y/

; y 2 D n fx0g:

Then it is easy to see that the functions zij.x0; �/ satisfy the condition

jzij.x0; y/j � 1;

and that the matrix .zij.x0; �// is symmetric and positive semi-definite. We define
a compact subspace M of symmetric, positive semi-definite matrices by the
formula

M D f.zij/1�i;j�N W zij D zj i ; .zij/ � 0; jzijj � 1g;
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Fig. 9.11 The compactification Hx0 of D n fx0g

and consider an injection

˚x0 W D n fx0g 3 y 7�!
�
y; .zij.x0; y//

� 2 D �M:

Then the function Qu.x0; ˚�1
x0
.�//, defined on ˚x0.D n fx0g/, can be extended to a

continuous function Ou.x; �/ on the closure

Hx0 D ˚x0.D n fx0g/

of ˚x0.D n fx0g/ in D � M . Indeed, by using Taylor’s formula we have, in a
neighborhood of x0,

u.y/ D u.x0/C
NX

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�

C
NX

i;jD1

Z 1

0

@2u

@xi@xj
.x0 C �.y � x0//.1 � �/ d�

� ��i .y/� �i .x0/
� �
�j .y/� �j .x0/

�
;

and hence

Qu.x0; y/ D
NX

i;jD1

Z 1

0

@2u

@xi@xj
.x0 C �.y � x0//.1 � �/d�zij.x0; y/ (9.46)

�! Ou.x; h/ D 1

2

NX

i;jD1

@2u

@xi@xj
.x0/zij;

as ˚x0.y/ D .y; .zij.x0; y///! h D .x0; .zij// (see Fig. 9.11).
We define a non-negative measure Opt.x0; �/ onHx0 by the formula

Opt .x0; OE/ D Qpt .x0; ˚�1
x0
. OE// for all OE 2 BH

x0
: (9.47)
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Then it follows from inequality (9.36) that we have, for all sufficiently small
t > 0,

Opt .x0;Hx0/ � Qpt .x0;D/ � A

 
NX

iD1
.�i � �i .x0//2

!

.x0/C 1:

Hence, by applying Theorem 3.48 to our situation we obtain that there exists a
sequence ftng, tn # 0, such that the measures Optn.x0; �/ converge weakly to a
finite non-negative Borel measure Op.x; �/ on Hx0 .
Therefore, in view of (9.46) and (9.47), we can pass to the limit in (9:4400) to
obtain the following:

Au.x0/ (9:4400)

D c.x0/u.x0/C
NX

iD1
bi .x0/

@u

@xi
.x0/C lim

t#0

Z

Dnfx0g
Qpt .x0; dy/Qu.x0; y/

D c.x0/u.x0/C
NX

iD1
bi .x0/

@u

@xi
.x0/C lim

n!1

Z

Hx0

Optn.x0; dh/Ou.x; h/

D c.x0/u.x0/C
NX

iD1
bi .x0/

@u

@xi
.x0/C

Z

Hx0

Op.x; dh/Ou.x; h/:

To rewrite the last term of (9:4400), we define a non-negative Borel measure
Qp.x0; �/ onD n fx0g by the formula

Qp.x0; E/ D Op.x;˚x0.E// for all E 2 BDnfx0g;

and let

Z W D �M 3 h D .y; .zij// 7�! .zij/ 2M:
Then we have

Z

Hx0

Op.x; dh/Ou.x; h/ (9.48)

D
Z

Hx0n˚x0 .Dnfx0g/
Op.x; dh/Ou.x; h/C

Z

˚x0 .Dnfx0g/
Op.x; dh/Ou.x; h/

D 1

2

NX

i;jD1

Z

H
x0

n˚
x0
.Dnfx0g/

Op.x; dh/Zij.h/
@2u

@xi@xj
.x0/

C
Z

Dnfx0g
Qp.x0; dy/Qu.x0; y/
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D
NX

i;jD1
aij.x0/

@2u

@xi @xj
.x0/

C
Z

D

e.x0; dy/

"

u.y/� u.x0/�
NX

iD1

@u

@xi
.x0/

�
�i .y/� �i .x0/

�
#

;

where

aij.x0/ D 1

2

Z

Hx0n˚x0 .Dnfx0g/
Op.x; dh/Zij.h/;

and

e.x0; fx0g/ D 0;

e.x0; E/ D
Z

Enfx0g
Op.x0; dy/

�
1

d.x0; y/

�

; E 2 BD:

Therefore, by combining (9:4400) and (9.48) we obtain the desired expression
(9.42) for Au in the interiorD of D.

Step 3: Properties (9.43) follow from our construction of aij.x0/, bi.x0/, c.x0/
and e.x0; �/.
The proof of Theorem 9.52 is now complete.

Theorem 9.52 asserts that the infinitesimal generator A of a Feller semigroup
fTtgt�0 onD is written in the interiorD ofD as the sumW of a degenerate elliptic
differential operator P of second order and an integro-differential operator S :

W u.x/ D P u.x/C Su.x/ (9.49)

WD
0

@
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

C
Z

D

e.x; dy/

"

u.y/ � u.x/�
NX

iD1

@u

@xi
.x/ .�i .y/ � �i .x//

#

:

The differential operator P is called a diffusion operator which describes
analytically a strong Markov process with continuous paths in the interiorD such as
Brownian motion, and the functions aij.x/, bi.x/ and c.x/ are called the diffusion
coefficients, the drift coefficients and the termination coefficient, respectively.
The operator S is called a second-order Lévy operator which corresponds to the
jump phenomenon in the interior D; a Markovian particle moves by jumps to
a random point, chosen with kernel e.x; dy/, in the interior D. Therefore, the
operatorW D P C S , called a Waldenfels integro-differential operator or simply a
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Waldenfels operator, corresponds to the physical phenomenon where a Markovian
particle moves both by jumps and continuously in the state space D (see Fig. 1.2).

Intuitively, the above result may be interpreted as follows: By Theorems 9.33
and 9.5, there correspond to a Feller semigroup fTtgt�0 a unique transition function
pt and a Markov process X D .xt ;F ;Ft ; Px/ in the following manner:

Ttf .x/ D
Z

D

pt.x; dy/f .y/; f 2 C.D/I

pt .x;E/ D Pxfxt 2 Eg; E 2 BD:

In view of Theorem 9.20 and Remark 9.21, it will be true that if the paths of X
are continuous, then the transition function pt has local character such as condition
(N) of Theorem 9.20; hence the infinitesimal generator A is local, that is, the value
Au.x0/ at an interior point x0 is determined by the values of u in an arbitrary small
neighborhood of x0. However, it is well known (see Theorem 5.8) that a linear
operator is local if and only if it is a differential operator. Therefore, we have the
following assertion: The infinitesimal generator A of a Feller semigroup fTtgt�0 on
D is a differential operator in the interior D of D if the paths of its corresponding
Markov process X are continuous.

In the general case when the paths of X may have discontinuities such as jumps,
the infinitesimal generator A takes the form of the sum W of a differential operator
P and an integro-differential (non-local) operator S , as proved in Theorem 9.52.

9.5 Infinitesimal Generators of Feller Semigroups
on a Bounded Domain (ii)

In this section, we shall derive an explicit formula on the boundary @D of D
for the infinitesimal generator A of a Feller semigroup fTtgt�0 on the closure D
(Theorem 9.53).

Let D be a bounded domain in Euclidean space RN , with smooth boundary @D,
and choose, for each point x0 of @D, a neighborhood U of x0 in RN and a local
coordinate system .x1, : : :, xN�1, xN / on U such that (see Fig. 9.12)

x 2 U \D” x 2 U; xN .x/ > 0I
x 2 U \ @D” x 2 U; xN .x/ D 0;

and such that the functions .x1; x2; : : : ; xN�1/, restricted to U \ @D, form a local
coordinate system of @D on U \ @D (see Sect. 7.1). Furthermore, we may assume
that the functions x1, x2, : : :, xN�1, xN can be extended to smooth functions �1, : : :,
�N�1, �N on RN , respectively, so that
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Fig. 9.12 The local coordinate system .x0; xN /

d.x0; y/ D �N .y/C
N�1X

iD1

�
�i .y/� �i .x0/

�2
> 0 (9.50)

if x0 2 U \ @D and y 2 D n fx0g:

The next theorem, due to Ventcel’ [We], asserts that every C2 function in the
domain D.A/ of A must obey a boundary condition at each point of @D [Ta5,
Theorem 9.5.1]:

Theorem 9.53. Let D be a bounded domain in RN , with smooth boundary @D,
and let fTtgt�0 be a Feller semigroup on D and A its infinitesimal generator. Then
every function u in D.A/ \ C2.D/ satisfies, at each point x0 of @D, the boundary
condition of the form

N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/ (9.51)

C�.x0/u.x0/C �.x0/
@u

@xN
.x0/ � ı.x0/Au.x0/

C
Z

D

�.x0; dy/

"

u.y/ � u.x0/�
N�1X

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�
#

D 0:

Here:

(1) The matrix .˛ij.x0// is symmetric and positive semi-definite.
(2) �.x0/ � 0.
(3) �.x0/ � 0.
(4) ı.x0/ � 0.
(5) �.x0; �/ is a non-negative Borel measure on D such that, for any neighborhood

V of x0 in RN ,
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�.x0;D n V / <1; (9.52a)

Z

V\D
�.x0; dy/

"

�N .y/C
N�1X

iD1

�
�i .y/ � �i .x0/

�2
#

<1: (9.52b)

Proof. The proof is essentially the same as that of Theorem 9.52, and is divided into
five steps.

Step 1: By Theorem 9.33, there corresponds to a Feller semigroup fTt gt�0 on D
a unique uniformly stochastically continuous Feller transition function pt on D
in the following manner:

Ttf .x/ D
Z

D

pt.x; dy/f .y/ for all f 2 C.D/:

Thus we have

1

t

�
Ttu.x

0/� u.x0/
�

(9.53)

D 1

t

�
pt.x

0;D/� 1� u.x0/C 1

t

N�1X

iD1

Z

D

pt .x
0; dy/

�
�i .y/ � �i .x0/

� @u

@xi
.x0/

C1
t

Z

D

pt .x
0; dy/

"

u.y/ � u.x0/�
N�1X

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�
#

D �t .x0/u.x0/C
N�1X

iD1
ˇ
j
t .x

0/
@u

@xi
.x0/C 1

t

Z

D

pt .x
0; dy/Qu.x0; y/d.x0; y/;

where

�t .x
0/ D 1

t

�
pt .x

0;D/ � 1� ;

ˇ
j
t .x

0/ D 1

t

Z

D

pt .x
0; dy/

�
�j .y/� �j .x0/

�
;

and

d.x0; y/ D �N .y/C
N�1X

iD1

�
�i .y/� �i .x0/

�2
; y 2 D;

Qu.x0; y/ D
u.y/� u.x0/ �PN�1

iD1
@u

@xi
.x0/.�i .y/ � �i .x0//

d.x0; y/
; y 2 D n fx0g:
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We rewrite the last term of (9.53). To do this, we introduce a non-negative
function

`t .x
0/ D 1

t

Z

D

pt .x
0; dy/d.x0; y/;

and consider two cases.

Case A: `t .x
0/ > 0. In this case we can write

1

t

Z

Dnfx0g
pt .x

0; dy/Qu.x0; y/d.x0; y/ D `t .x0/
Z

Dnfx0g
Qqt .x0; dy/Qu.x0; y/;

where

Qqt .x0; E/ D 1

t`t .x0/

Z

E

pt .x
0; dy/d.x0; y/; E 2 BD:

Here and in the following BK denotes the �-algebra of all Borel sets inK . We
note that

Qqt .x0;D n fx0g/ D 1

t`t .x0/

Z

Dnfx0g
pt.x

0; dy/d.x0; y/

D
R
Dnfx0g pt .x

0; dy/d.x0; y/
R
D pt .x

0; dy/d.x0; y/
D 1;

since it follows from condition (9.50) that d.x0; x0/ D 0.
Case B: `t .x

0/ D 0. In this case, we have

0 D `t .x0/ D 1

t

Z

D

pt .x
0; dy/d.x0; y/;

and so, by condition (9.50),

pt.x
0;D n fx0g/ D 0:

Hence we can write

1

t

Z

Dnfx0g
pt .x

0; dy/Qu.x0; y/d.x0; y/ D `t .x0/
Z

Dnfx0g
Qqt .x0; dy/Qu.x0; y/ D 0;

where (for example)

Qqt .x0; �/ D the unit mass at a point of D;
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so that

Qqt .x0;D n fx0g/ D 1:

Summing up, we obtain from Case A and Case B that

1

t

�
Ttu.x

0/ � u.x0/
�

(9:530)

D �t .x0/u.x0/C
N�1X

jD1
ˇ
j
t .x

0/
@u

@xj
.x0/C `t .x0/

Z

Dnfx0g
Qqt .x0; dy/Qu.x0; y/:

Step 2: Now we introduce a compactification of D n fx0g to which the function
Qu.x0; �/ may be continuously extended. We let

w.x0; y/ D �N .y/

d.x0; y/
; y 2 D n fx0g;

zij.x0; y/ D .�i .y/ � �i .x0//.�j .y/� �j .x0//
d.x0; y/

; y 2 D n fx0g:

Then it is easy to see that the functions w.x0; �/ and zij.x0; �/ satisfy the conditions

0 � w.x0; y/ � 1;
jzij.x0; y/j � 1;

w.x0; y/C
N�1X

iD1
zi i .x0; y/ D 1;

and the matrix .zij.x0; �// is symmetric and positive semi-definite. We define a
compact subspace M of symmetric, positive semi-definite matrices by

M D f.zij/1�i;j�N�1 W zij D zj i ; .zij/ � 0; jzijj � 1g;

and a compact subspaceH of D � Œ0; 1� �M by the formula

H D
(

.y;w; .zij// 2 D � Œ0; 1� �M W wC
N�1X

iD1
zi i D 1

)

; (9.54)

and consider an injection

˚x0 W D n fx0g 3 y 7�! �
y;w.x0; y/; .zij.x0; y//

� 2 H:
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Fig. 9.13 The compactification Hx0 of D n fx0g

Then the function Qu.x0; ˚x0.�//, defined on ˚x0.D n fx0g/, can be extended to a
continuous function Ou.x0; �/ on the closure

Hx0 D ˚x0.D n fx0g/;
of ˚x0.D n fx0g/ in H . Indeed, by using Taylor’s formula we have, in a
neighborhood of x0,

u.y/ D u.x0/C
N�1X

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�C @u

@xN
.x0/�N .y/

C
NX

i;jD1

Z 1

0

@2u

@xi@xj
.x0 C �.y � x0//.1 � �/ d�

� ��i .y/� �i .x0/
� �
�j .y/ � �j .x0/

�
;

and hence (see Fig. 9.13)

Qu.x0; y/ D @u

@xN
.x0/w.x0; y/ (9.55)

C
NX

i;jD1

Z 1

0

@2u

@xi @xj
.x0 C �.y � x0//.1 � �/d� � zij.x0; y/

�! Ou.x0; h/ D @u

@xN
.x0/wC 1

2

NX

i;jD1

@2u

@xi @xj
.x0/zij;

as

˚x0.y/ D �y;w.x0; y/; .zij.x0; y//
� �! h D .x0;w; .zij//:

We define a non-negative measure Oqt .x0; �/ on Hx0 by the formula

Oqt .x0; OE/ D Qqt .x0; ˚�1
x0 . OE// for all OE 2 BHx0

:
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Then we can write (9:530) as follows:

1

t

�
Ttu.x

0/ � u.x0/
�

(9:5300)

D �t .x0/u.x0/C
N�1X

jD1
ˇ
j
t .x

0/
@u

@xj
.x0/C `t .x0/

Z

Hx0

Oqt .x0; dh/Ou.x0; h/:

We remark that the measure Oqt .x0; �/ is a probability measure on Hx0 .
Step 3: We pass to the limit in (9:5300). To do this, we introduce non-negative

functions

�m.x
0/ D ��1=m.x0/C

N�1X

jD1
jˇj1=m.x0/j C `1=m.x0/; (9.56)

m D 1; 2; : : : ;

and consider two cases.

Case I: lim infm!1 �m.x
0/ D 0. In this case, there exists a subsequence

f�mk .x0/g of f�m.x0/g such that

lim
k!1 �mk .x

0/ D 0:

Thus, by passing to the limit in (9:5300) with t WD 1=mk we obtain that

Au.x0/ D 0:

Hence we have condition (9.51), if we take

˛ij.x0/ D ˇi .x0/ D �.x0/ D �.x0/ D 0;
ı.x0/ D 1;
�.x0; dx/ D 0:

Case II: lim infm!1 �m.x
0/ > 0. In this case, there exist a subsequence

f�mk .x0/g of f�m.x0/g and a function �.x0/ such that

lim
k!1 �mk .x

0/ D �.x0/ > 0: (9.57)

Then, by dividing both sides of (9:5300) with t WD 1=mk by the function
�mk .x

0/ we obtain that
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ık.x
0/
�
Ttku.x0/ � u.x0/

tk

�

(9.58)

D �k.x0/u.x0/C
N�1X

jD1
ˇ
j

k.x
0/
@u

@xj
.x0/C `k.x0/

Z

Hx0

qk.x
0; dh/Ou.x0; h/;

where

tk D 1

mk

;

ık.x
0/ D 1

�mk.x
0/
; �k.x

0/ D �tk .x
0/

�mk .x
0/
;

ˇ
j

k .x
0/ D ˇ

j
tk
.x0/

�m.x0/
; `k.x

0/ D `tk .x
0/

�mk .x
0/
;

qk.x
0; �/ D Oqtk .x0; �/:

However, we have, by (9.57),

0 � ık.x0/ <1;

and further, by (9.55),

0 � ��k.x0/ � 1; �1 � ˇjk .x0/ � 1; 0 � `k.x0/ � 1;

��k.x0/C
N�1X

jD1
jˇjk.x0/j C `k.x0/ D 1:

We remark that the measures qk.x
0; �/ are probability measures onHx0 .

Since the metric spaces Œ0;C1�, Œ0; 1� and Œ�1; 1� are compact and since the
space of probability measures on Hx0 is also compact (see Theorem 3.48), we
can pass to the limit in (9.58) to obtain the following:

ı.x0/Au.x0/ (9.59)

D �.x0/u.x0/C
N�1X

jD1
ˇj .x0/

@u

@xj
.x0/C `.x0/

Z

Hx0

Oq.x0; dh/Ou.x0; h/:

Here the functions ı.x0/, �.x0/, ˇj .x0/ and `.x0/ satisfy the conditions

0 � ı.x0/ <1;
0 � ��.x0/ � 1;
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�1 � ˇj .x0/ � 1;
0 � `.x0/ � 1;

and

� �.x0/C
N�1X

jD1
jˇj .x0/j C `.x0/ D 1; (9.60)

and the measure Oq.x0; �/ is a probability measure on Hx0 .
To rewrite the last term of formula (9.59), we define a non-negative Borel
measure Qq.x0; �/ on D n fx0g by the formula

Qq.x0; E/ D Oq.x0; ˚x0.E// for all E 2 BDnfx0g;

and let

W W D � Œ0; 1� �M 3 h D .y;w; .zij// 7�! w 2 Œ0; 1�;
Z W D � Œ0; 1� �M 3 h D .y;w; .zij// 7�! .zij/ 2M:

Then, in view of assertion (9.55) it follows that

`.x0/
Z

Hx0

Oq.x0; dh/Ou.x0; h/ (9.61)

D `.x0/
Z

Hx0 n˚x0 .Dnfx0g/
Oq.x0; dh/Ou.x0; h/C `.x0/

Z

˚x0 .Dnfx0g/
Oq.x0; dh/Ou.x0; h/

D `.x0/
( Z

Hx0 n˚x0 .Dnfx0g/
Oq.x0; dh/W.h/

@u

@xN
.x0/

C1
2

NX

i;jD1

Z

Hx0 n˚x0 .Dnfx0g/
Oq.x0; dh/Zij.h/

@2u

@xi@xj
.x0/

)

C`.x0/
Z

Dnfx0g
Qq.x0; dy/Qu.x0; y/

D �.x0/
@u

@xN
C

N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/

C
Z

D

�.x0; dy/

"

u.y/� u.x0/ �
N�1X

iD1

@u

@xi
.x0/

�
�i .y/� �i .x0/

�
#

;
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where

�.x0/ D `.x0/
Z

Hx0 n˚x0 .Dnfx0g/
Oq.x0; dh/W.h/; (9.62)

˛ij.x0/ D `.x0/
2

Z

Hx0 n˚x0 .Dnfx0g/
Oq.x0; dh/Zij.h/; (9.63)

and

�.x0; fx0g/ D 0; (9.64a)

�.x0; E/ D `.x0/
Z

Enfx0g
Oq.x0; dh/Zij.h/; E 2 BD: (9.64b)

Therefore, by combining (9.59) and (9.64) we obtain the desired boundary
condition (9.51) in Case II.

Step 4: Properties (9.52a) and (9.52b) follow from our construction of ˛ij.x0/,
ˇi .x0/, �.x0/, �.x0/, ı.x0/ and �.x0; �/.

Step 5: Finally, we show that the boundary condition (9.51) is consistent, that is,
condition (9.51) does not take the form 0 D 0.
In Case I, we have taken

ı.x0/ D 1:

In Case II, we assume that

�.x0/ D ˇi .x0/ D 0; �.x0; �/ D 0:

Then we have, by Eq. (9.60),

`.x0/ D 1;

and hence, by (9.64),

Oq.x0; ˚x0.D n fx0g// D Qq.x0;D n fx0g/ D 0:

This implies that

Oq.x0;Hx0 n˚x0.D n fx0g// D 1;

since the measure Oq.x0; �/ is a probability measure on Hx0 . Therefore, in view of
definition (9.54) it follows from (9.62) and (9.63) that
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�.x0/C 2
N�1X

iD1
˛i i .x0/ D `.x0/

Z

Hx0

Oq.x0; dh/

 

W.h/C
N�1X

iD1
Zii .h/

!

D `.x0/ Oq.x0;Hx0 n ˚x0.D n fx0g//
D 1:

The proof of Theorem 9.53 is now complete.

Probabilistically, Theorems 9.52 and 9.53 may be interpreted as follows: A
Markovian particle in a Markov process X on the state space D is governed by
an integro-differential operator W of the form (9.49) in the interior D of D, and it
obeys a boundary condition L of the form (9.51) on the boundary @D of D:

Lu.x0/ WD
N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/ (9.65)

C�.x0/u.x0/C �.x0/
@u

@xN
.x0/� ı.x0/W u.x0/

C
Z

D

�.x0; dy/

"

u.y/ � u.x0/�
N�1X

iD1

@u

@xi
.x0/

�
�i .y/ � �i .x0/

�
#

D 0:

The pseudo-differential boundary condition L is called a second-order Ventcel’
boundary condition (cf. [We]). It should be emphasized that the six terms of L

N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/;

�.x0/u.x0/; �.x0/
@u

@xN
.x0/; ı.x0/W u.x0/;

Z

@D

�.x0; dy0/

2

4u.y0/� u.x0/ �
N�1X

jD1
.�j .y/� �j .x0//

3

5 ;

Z

D

�.x0; dy/

2

4u.y/� u.x0/ �
N�1X

jD1
.�j .y/� �j .x0//

3

5

correspond to the diffusion phenomenon along the boundary (like Brownian motion
on @D), the absorption phenomenon, the reflection phenomenon, the sticking
(or viscosity) phenomenon and the jump phenomenon on the boundary and the
inward jump phenomenon from the boundary, respectively (see Figs. 1.4–1.6).
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Analytically, via a version of the Hille–Yosida theorem (Theorem 9.35),
Theorems 9.52 and 9.53 may be interpreted as follows: A Feller semigroup fTtgt�0
on D is described by an integro-differential operator W of the form (9.49) and a
boundary condition L of the form (9.65). Therefore, we are reduced to the study
of boundary value problems for Waldenfels integro-differential operators W with
Ventcel’ boundary conditionsL in the theory of partial differential equations.

9.6 Notes and Comments

Chapter 9 is a refinement of Chapter 9 of Taira [Ta5]. The results discussed here are
adapted from Blumenthal–Getoor [BG], Dynkin [Dy1, Dy2], Dynkin–Yushkevich
[DY], Ethier–Kurtz [EK], Feller [Fe1, Fe2], Ikeda–Watanabe [IW], Itô–McKean,
Jr. [IM], Lamperti [La], Revuz–Yor [RY] and Stroock–Varadhan [SV]. In particular,
our treatment of temporally homogeneous Markov processes follows the expositions
of Dynkin [Dy1, Dy2] and Blumenthal–Getoor [BG]. However, unlike many other
books on Markov processes, this chapter focuses on the interrelationship between
three subjects: Feller semigroups, transition functions and Markov processes.
Our approach to the problem of constructing Markov processes with Ventcel’
boundary conditions is distinguished by the extensive use of ideas and techniques
characteristic of recent developments in functional analysis.

Section 9.1: Theorem 9.5 is taken from Dynkin [Dy1, Chapter 4, Section 2],
while Theorem 9.20 is taken from Dynkin [Dy1, Chapter 6] and [Dy2, Chapter 3,
Section 2]. Theorem 9.26 is due to Dynkin [Dy1, Theorem 5.10] and Theorem 9.28
is due to Dynkin [Dy1, Theorem 6.3], respectively. Theorem 9.28 is a non-compact
version of Lamperti [La, Chapter 8, Section 3, Theorem 1]. Section 9.1.6 is adapted
from Lamperti [La, Chapter 9, Section 2].

On the other hand, Bernstein [Be] and Lévy [Le] made probabilistic approaches
to Markov processes with discontinuous paths, in terms of characteristic functions of
additive processes (processes with stationary, independent increments having right
continuous trajectories with left limits). Indeed, the exponents of these characteristic
functions are closely related to Waldenfels integro-differential operators which can
be the infinitesimal generators of such jump type processes. By using such an
infinitesimal generator, we can obtain an extended form of forward and backward
Kolmogorov’s equations for the transition density function, as parabolic integro-
differential equations.

Section 9.2: The semigroup approach to Markov processes can be traced back to
the work of Kolmogorov [Kl]. It was substantially developed in the early 1950s, with
Feller [Fe1] and [Fe2] doing the pioneering work. Our presentation here follows
the book of Dynkin [Dy2] and also part of Lamperti’s [La]. Theorem 9.34 is a
non-compact version of Lamperti [La, Chapter 7, Section 7, Theorem 1].

Section 9.3: Theorem 9.50 is due to Sato–Ueno [SU, Theorem 1.2] and
Bony–Courrège–Priouret [BCP, Théorème de Hille–Yosida–Ray] (cf. [It, Ra, Ta5]).
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Section 9.4: Theorem 9.52 is adapted from Sato–Ueno [SU], while the main
idea of its proof is due to Ventcel’ [We]. Moreover, Bony, Courrège and Priouret
[BCP] give a more precise characterization of the infinitesimal generators of Feller
semigroups in terms of the maximum principle (see Chap. 8).

Section 9.5: Theorem 9.53 is due to Ventcel’ [We]. We can reconstruct the
functions ˛ij.x0/, ˇi .x0/, �.x0/, �.x0/ and ı.x0/ so that they are bounded and Borel
measurable on the boundary @D (see Bony–Courrège–Priouret [BCP, Théorème
XIII]). For the probabilistic meanings of Ventcel’ boundary conditions, the reader
might refer to Dynkin–Yushkevich [DY]. G. Goldstein [Gg] gives a physical
interpretation of general Ventcel’ boundary conditions for both the heat and wave
equations.



Chapter 10
Semigroups and Boundary Value Problems
for Waldenfels Operators

In the early 1950s, W. Feller [Fe1, Fe2] completely characterized the analytic
structure of one-dimensional diffusion processes; he gave an intrinsic representation
of the infinitesimal generator A of a one-dimensional diffusion process and deter-
mined all possible boundary conditions which describe the domain D.A/ of the
infinitesimal generator A. The probabilistic meaning of Feller’s work was clarified
by E.B. Dynkin [Dy1, Dy2], K. Itô and H.P. McKean, Jr. [IM], D. Ray [Ra] and
others. One-dimensional diffusion processes are fully understood both from the
analytic and probabilistic points of view.

Chapter 10 is the heart of the subject, and is devoted to the functional ana-
lytic approach to the problem of constructing (temporally homogeneous) Markov
processes with Ventcel’ (Wentzell) boundary conditions in probability theory. In
Sects. 10.1 and 10.2 we formulate our problem and Theorem 1.2 (Theorem 10.2),
generalizing Feller’s work to the multi-dimensional case. The approach here is
adapted from Bony–Courrège–Priouret [BCP], Cancelier [Cn], Sato–Ueno [SU] and
Taira [Ta3, Ta4, Ta5, Ta6, Ta7, Ta8, Ta9, Ta10].

Our functional analytic approach is as follows: (1) We reduce the problem of
existence of Feller semigroups to the unique solvability of boundary value problems
for Waldenfels integro-differential operators W with Ventcel’ boundary conditions
L and then prove existence theorems for Feller semigroups (Theorems 10.2
and 10.21). In Sect. 10.3 we consider Dirichlet problem (D) for Waldenfels integro-
differential operators W D P C S , and prove that if S 2 L2�	1;0 .R

N / has the
transmission property with respect to @D due to Boutet de Monvel [Bo] (see
Sect. 7.6), then Dirichlet problem (D) is uniquely solvable in the framework of
Hölder spaces (Theorem 10.4). Then, by using the Green operatorG0

˛ and harmonic
operator H˛ for Dirichlet problem (D) we can reduce the study of the boundary
value problems to that of the classical pseudo-differential operator LH˛ on the
boundary (Theorem 10.19) in Sect. 10.4. This is a generalization of the classical
Fredholm integral equation on the boundary. (2) Sect. 10.5 is devoted to the proof
of Theorem 10.21 and hence that of Theorem 1.2.

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__10,
© Springer-Verlag Berlin Heidelberg 2014

477



478 10 Semigroups and Boundary Value Problems for Waldenfels Operators

Theorem 10.21 H) Theorem 10.2 H) Theorem 1.2

The first essential step in the proof is to show that if T 2 L
1�	2
1;0 .RN / has the

transmission property with respect to @D, then the operator LH˛ is the sum of a
second-order degenerate elliptic differential operator P˛ and a classical pseudo-
differential operator S˛ with non-negative distribution kernel on @D. The second
essential step in the proof is to calculate the complete symbol of the classical
pseudo-differential operator LH˛ on @D. This is carried out in Sect. 10.7 due to
its length. In the third essential step in the proof we formulate an existence and
uniqueness theorem for a class of pseudo-differential operators in the framework of
Hölder spaces (Theorem 10.23) which enters naturally in the study of the pseudo-
differential operator LH˛. The proof of Theorem 10.23 is based on a method
of elliptic regularizations essentially due to Oleı̆nik–Radkevič [OR] developed
for second-order differential operators with non-negative characteristic form. In
order to prove estimate (10.28), we need an interpolation argument. Moreover, we
remark that Corollary 3.26 to Mazur’s theorem (Theorem 3.25) in Chap. 3 plays an
important role in the proof of estimate (10.28). (3) In this way, by using the Hölder
space theory of pseudo-differential operators we can prove that if the Ventcel’
boundary conditions L are transversal on the boundary, then we can verify all
the conditions of the generation theorems of Feller semigroups (Theorems 9.35
and 9.50) discussed in Sect. 9.3.

10.1 Formulation of the Problem

Let D be a bounded domain of Euclidean space RN , with smooth boundary @D;
its closure D D D [ @D is an N -dimensional, compact smooth manifold with
boundary. We may assume thatD is the closure of a relatively compact open subset
D of an N -dimensional, compact smooth manifold OD without boundary in which
D has a smooth boundary @D. This manifold OD is called the double of D (see
Fig. 10.1).

Let C.D/ be the space of real-valued, continuous functions f on D. We equip
the space C.D/ with the topology of uniform convergence on the whole D; hence
it is a Banach space with the maximum norm

kf k1 D max
x2D
jf .x/j:

A strongly continuous semigroup fTtgt�0 on the space C.D/ is called a Feller
semigroup on D if it is non-negative and contractive on C.D/:

f 2 C.D/; 0 � f .x/ � 1 on D H) 0 � Ttf .x/ � 1 on D:
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Fig. 10.1 The double OD of
D

It follows from an application of Theorem 9.32 that if Tt is a Feller semigroup on
D, then there exists a unique (temporally homogeneous) Markov transition function
pt .x; �/ on D such that

Ttf .x/ D
Z

D

pt .x; dy/f .y/ for every f 2 C.D/:

It can be shown (see [Dy2, Chapter III, Section 3]) that the function pt .x; �/ is the
transition function of some strong Markov process .Xt/; hence the value pt.x;E/
expresses the transition probability that a Markovian particle starting at position x
will be found in the set E at time t (see Fig. 9.3).

Our approach can be visualized as follows (see Chap. 9):

Furthermore, it is shown in Chap. 9 (see Theorems 9.52 and 9.53) that the
infinitesimal generator A of a Feller semigroup fTtgt�0 is described analytically
by a Waldenfels integro-differential operator W and a Ventcel’ boundary condition
L, which we shall formulate precisely.

Let W be a second-order elliptic integro-differential operator with real smooth
coefficients such that
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WDu.x/ D Pu.x/C SDu.x/ (10.1)

WD
0

@
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

C
NX

jD1
aj� .x/

@u

@xj
.x/C a� .x/u.x/

C
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy;

x 2 D:

Here:

(1) aij.x/ 2 C1.RN /, aij.x/ D aji.x/ for all x 2 RN and 1 � i; j � N , and there
exists a constant a0 > 0 such that

NX

i;jD1
aij.x/�i �j � a0j�j2 for all .x; �/ 2 RN � RN :

(2) bi .x/ 2 C1.RN / for all 1 � i � N .
(3) P1.x/ D c.x/ 2 C1.RN / and c.x/ � 0 in D.
(4) The integral kernel s.x; y/ is the distribution kernel of a properly supported,

classical pseudo-differential operator S 2 L2�	1;0 .R
N /, 	 > 0, which has the

transmission property with respect to @D, and s.x; y/ � 0 off the diagonal

RN D f.x; x/ W x 2 RN g in RN � RN . The measure dy is the Lebesgue
measure on RN . Here it should be noticed (see Sect. 7.6) that the operator SD
can be formally written in the form

SDv.x/ WD S.v0/
ˇ
ˇ
D
D
Z

D

s.x; y/v.y/ dy; x 2 D;

where v0 is the extension of v to RN by zero outside D

v0.x/ D
(

v.x/ for x 2 D;
0 for x 2 RN nD:

(5) The function �.x; y/ is a local unity function onD, that is, �.x; y/ is a smooth
function on D � D such that �.x; y/ D 1 in a neighborhood of the diagonal

D D f.x; x/ W x 2 Dg inD�D (see Sect. 9.1). The function �.x; y/ depends
on the shape of the domain D. More precisely, it depends on a family of local
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Fig. 10.2 A Markovian
particle moves by jumps and
continuously

charts on D in each of which the Taylor expansion is valid for functions u. For
example, if D is convex, we may take �.x; y/ � 1 on D �D.

(6) aj� .x/ D .SD�jx /.x/ where �jx .y/ D �.x; y/.yj � xj / for all 1 � j � N .
(7) a� .x/ D .SD�x/.x/ where �x.y/ D �.x; y/.
(8) The operatorWD satisfies the condition (1.6)

WD1.x/ D P1.x/C SD1.x/

D c.x/C a�.x/C
Z

D

s.x; y/ Œ1 � �.x; y/� dy � 0 in D:

The operatorW is called a second-order Waldenfels integro-differential operator
or simply a Waldenfels operator (cf. [Wa]). The differential operator P is called
a diffusion operator which describes analytically a strong Markov process with
continuous paths in the interior D such as Brownian motion, and the functions
aij.x/, bi .x/ and c.x/ are called the diffusion coefficients, the drift coefficients and
the termination coefficient, respectively. The integro-differential operator

Sru.x/ D
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy

is called a second-order Lévy operator which corresponds to the jump phenomenon
in the interior D; a Markovian particle moves by jumps to a random point, chosen
with kernel s.x; y/, in the interior D. More precisely, we find from inequali-
ties (10.2) and (10.3) below that the Lévy measure s.�; y/ dy has a singularity of
order N � 	 at the diagonal
D , and this singularity at the diagonal is produced by
the accumulation of small jumps of Markovian particles.

Therefore, the Waldenfels integro-differential operator W corresponds to the
physical phenomenon where a Markovian particle moves both by jumps and
continuously in the state space D (see Fig. 10.2).

The intuitive meaning of condition (6) is that the jump phenomenon from a point
x 2 D to the outside of a neighborhood of x in the interior D is “dominated” by
the absorption phenomenon at x. In particular, if a.x/ � 0 in D, then condition (6)
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implies that any Markovian particle does not move by jumps from x 2 D to the
outside of a neighborhood V.x/ of x in the interiorD, since we have

Z

D

s.x; y/ Œ1 � �.x; y/� dy D 0;

and so, by conditions (4) and (5),

s.x; y/ D 0 for all y 2 D n V.x/:

It should be noted that the integro-differential operator

Sru.x/ D
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy

is a “regularization” of S , since the integrand is absolutely convergent (see
Example 8.9). Indeed, we can write Sru.x/ in the form

Sru.x/

D
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy

D
Z

D

s.x; y/ Œ1 � �.x; y/� u.y/ dy

C
Z

D

s.x; y/�.x; y/

0

@u.y/� u.x/ �
NX

jD1
.yj � xj / @u

@xj
.x/

1

A dy:

By using Taylor’s formula

u.y/� u.x/ �
NX

jD1
.yj � xj / @u

@xj
.x/

D
NX

i;jD1
.yi � xi /.yj � xj /

�Z 1

0

.1 � t/ @2u

@xi @xj
.x C t.y � x//dt

�

;

we can find a constant C1 > 0 such that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
u.y/� u.x/ �

NX

jD1
.yj � xj / @u

@xj
.x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� C1jx � yj2; x; y 2 D:
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On the other hand, by arguing as in the proof of Theorem 7.36 in Chap. 7 we can
find a constant C2 > 0 such that the kernel s.x; y/ of S 2 L2�	1;0 .R

N / satisfies the
estimate

0 � s.x; y/ � CK

jx � yjNC2�	 ; x; y 2 D; x ¤ y:

Therefore, we have, with some constant C3 > 0,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Z

D

s.x; y/�.x; y/

0

@u.y/� u.x/ �
NX

jD1
.yj � xj / @u

@xj
.x/

1

A dy

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(10.2)

� C3kukC2.D/
Z

D

1

jx � yjNC2�	 � jx � yj2 dy

D C3kukC2.D/
Z

D

1

jx � yjN�	 dy:

Similarly, we have, with some constant C4 > 0,

ˇ
ˇ
ˇ
ˇ

Z

D

s.x; y/ Œ1 � �.x; y/� u.y/ dy

ˇ
ˇ
ˇ
ˇ � C4kukC.D/

Z

D

1

jx � yjN�	 dy; (10.3)

since we have

�.x; y/ � 1

D �.x; y/ � �.x; x/ �
NX

jD1
.yj � xj / @�

@xj
.x; x/

D
NX

i;jD1
.yi � xi /.yj � xj /

�Z 1

0

.1 � t/ @2�

@xi @xj
.x; x C t.y � x//dt

�

:

In a tubular neighborhood B of the boundary @D, we can introduce local
coordinate systems .x0; t/ (see Sect. 7.1) such that x0 D .x1; x2; : : : ; xN�1/ give
local coordinates for the boundary @D and

D D f.x0; t/ W t > 0g:

We further normalize the coordinates by assuming the curves x.t/ D .x0
0; t/, x

0
0 2

@D, are unit speed geodesics perpendicular to @D for 0 � t < " (see Fig. 10.3).
Let L be a second-order boundary condition such that, in terms of local

coordinates .x1; x2; : : : ; xN�1/,
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Fig. 10.3 The tubular neighborhood B of @D

Lu.x0/ (10.4)

D Qu.x0/C �.x0/
@u

@n
.x0/� ı.x0/WDu.x0/C � u.x0/

WD
0

@
N�1X

i;jD1
˛ij.x0/

@2u

@xi @xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/C �.x0/u.x0/

1

A

C�.x0/
@u

@n
.x0/ � ı.x0/WDu.x0/

C
N�1X

jD1
�j .x

0/
@u

@xj
.x0/C � .x0/u.x0/

C
Z

@D

r.x0; y0/

2

4u.y0/ � .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy; x0 2 @D;

where:

(1) The operator Q is a second-order degenerate elliptic differential operator on
@D with non-positive principal symbol. In other words, the ˛ij.x0/ are the
components of a smooth symmetric contravariant tensor of type

�
2
0

�
on @D

satisfying the condition

N�1X

i;jD1
˛ij.x0/�i �j � 0; x0 2 @D; � 0 D

N�1X

jD1
�j dxj 2 T �

x0.@D/:

Here T �
x0.@D/ is the cotangent space of @D at x0.

(2) ˇ.x0/ DPN�1
iD1 ˇi .x0/@u=@xi is a smooth vector field on @D (see Fig. 10.4).

(3) Q1.x0/ D �.x0/ 2 C1.@D/ and �.x0/ � 0 on @D.
(4) �.x0/ 2 C1.@D/ and �.x0/ � 0 on @D.
(5) ı.x0/ 2 C1.@D/ and ı.x0/ � 0 on @D.
(6) n D .n1; n2; : : : ; nN / is the unit interior normal to the boundary @D.
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Fig. 10.4 The vector field ˇ
and the unit interior normal n
to @D

(7) The integral kernel r.x0; y0/ is the distribution kernel of a classical pseudo-
differential operator R 2 L

2�	1
1;0 .@D/, 	1 > 0, and r.x0; y0/ � 0 off the

diagonal 
@D D f.x0; x0/ W x0 2 @Dg in @D � @D. The density dy0 is a
strictly positive density on @D.

(8) The integral kernel t.x; y/ is the distribution kernel of a properly supported,
classical pseudo-differential operator T 2 L1�	21;0 .RN /, 	2 > 0, which has the
transmission property with respect to the boundary @D, and t.x; y/ � 0 off
the diagonal
RN .

(9) The function .x; y/ is a local unity function on D; more precisely, .x; y/
is a smooth function on D � D, with compact support in a neighborhood of
the diagonal 
@D , such that, at each point x0 of @D, .x0; y/ D 1 for y in a
neighborhood of x0 in D. The function .x; y/ depends on the shape of the
boundary @D.

(10) �j .x0/ D R.
j

x0/.x
0/ where j

x0.y
0/ D .x0; y0/.yj � xj / for all 1 � j �

N � 1.
(11) � .x0/ D R.x0/.x0/ where x0.y0/ D .x0; y0/.
(12) The operator � is a boundary condition of order 2 � 	1, and satisfies the

condition (1.6)

Q1.x0/C �1.x0/

D �.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 � 0 on @D:

The boundary condition L is called a second-order Ventcel’ boundary condition
(cf. [We]). The six terms of L

N�1X

i;jD1
˛ij.x0/

@2u

@xi@xj
.x0/C

N�1X

iD1
ˇi .x0/

@u

@xi
.x0/;

�.x0/u.x0/; �.x0/
@u

@n
.x0/; ı.x0/WDu.x0/;

Z

@D

r.x0; y0/

2

4u.y0/ � .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0;

Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy
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correspond to the diffusion phenomenon along the boundary (like Brownian motion
on @D), the absorption phenomenon, the reflection phenomenon, the sticking (or
viscosity) phenomenon and the jump phenomenon on the boundary and the inward
jump phenomenon from the boundary, respectively (see Figs. 1.4–1.6).

The intuitive meaning of condition (10) is that the jump phenomenon from a
point x0 2 @D to the outside of a neighborhood of x0 on the boundary @D is
“dominated” by the absorption phenomenon at x0. In particular, if �.x0/ � 0 on
@D, then condition (10) implies that any Markovian particle does not move by jumps
from x0 2 @D to the outside of a neighborhood V.x0/ of x0 on the boundary @D,
since we have

Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 D 0;

and so, by conditions (7) and (9),

r.x0; y0/ D 0 for all y0 2 @D n V.x0/:

It should be noted that the integro-differential operator

�ru.x
0/

D
Z

@D

r.x0; y0/

2

4u.y0/ � .x0; y0/

0

@u.x0/C
N�1X

jD1
.yj � xj / @u

@xj
.x0/

1

A

3

5 dy0

Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy; x0 2 @D;

is a “regularization” of R 2 L2�	11;0 .@D/ and T 2 L1�	21;0 .RN /, since the integrals

Rru.x
0/ D

Z

@D

r.x0; y0/
�
u.y0/� .x0; y0/

�
u.x0/C

N�1X

jD1
.yj � xj / @u

@xj
.x0/

��
dy0;

Tru.x
0/ D

Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy

are both absolutely convergent (see Example 8.10). Indeed, it suffices to note
(see Theorem 7.36) that the kernels r.x0; y0/ and t.x0; y/ satisfy respectively the
estimates

0 � r.x0; y0/ � C 0

jx0 � y0j.N�1/C2�	1 ; x0; y0 2 @D; x0 ¤ y0; (10.5)

0 � t.x0; y/ � C 00

jx0 � yjNC1�	2 ; x0 2 @D; y 2 D; (10.6)
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where jx0 � y0j denotes the geodesic distance between x0 and y0 with respect to the
Riemannian metric of the manifold @D. We find from inequalities (10.5) and (10.6)
that the Lévy measures r.�; y0/ dy0 and t.�; y/ dy have singularities of order .N�1/�
	1 andN�	2, respectively, and these singularities are produced by the accumulation
of small jumps of Markovian particles.

This chapter is devoted to the functional analytic approach to the problem of
constructing (temporally homogeneous) Markov processes with Ventcel’ boundary
conditions in probability. More precisely, we consider the following problem:

Problem 10.1. Conversely, given analytic data .W;L/, can we construct a Feller
semigroup fTtgt�0 whose infinitesimal generator is characterized by .W;L/?

Our approach is distinguished by the extensive use of ideas and techniques
characteristic of recent developments in the theory of partial differential equations.
It focuses on the relationship between three interrelated subjects in analysis; Feller
semigroups, pseudo-differential operators and elliptic boundary value problems,
providing powerful methods for future research (see [Ta3, Ta4, Ta5, Ta6, Ta7, Ta8,
Ta9, Ta10]).

10.2 A Generation Theorem for Feller Semigroups
on a Bounded Domain

In this section we consider the transversal case and prove Theorem 1.2. The
boundary condition L is said to be transversal on the boundary @D if it satisfies
the condition

Z

D

t.x0; y/ dy D C1 if �.x0/ D ı.x0/ D 0: (10.7)

The intuitive meaning of condition (10.7) is that a Markovian particle jumps away
“instantaneously” from the points x0 2 @D where neither the reflection phenomenon
nor the sticking phenomenon (which is similar to the reflection phenomenon)
occurs. Probabilistically, this means that every Markov process on the boundary
@D is the “trace” on @D of trajectories of some Markov process on the closure
D D D [ @D (see Remark 10.22 below).

Intuitively, Theorem 1.2 asserts that there exists a Feller semigroup on D

corresponding to the physical phenomenon where one of reflection, sticking or
inward jump from the boundary occurs at each point of the boundary @D (see
Fig. 10.5):

The next generation theorem for Feller semigroups proves Theorem 1.2:

Theorem 10.2. We define a linear operator A from the space C.D/ into itself as
follows:
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Fig. 10.5 The intuitive
meaning of Theorem 1.2

(a) The domain of definitionD.A/ of A is the set

D.A/ D ˚u 2 C.D/ W WDu 2 C.D/; Lu D 0� : (10.8)

(b) Au D WDu for every u 2 D.A/.
Here WDu and Lu are taken in the sense of distributions.

Assume that the boundary condition L is transversal on the boundary @D. Then
the operator A generates a Feller semigroup fTtgt�0 on D.

Remark 10.3. Bony, Courrège and Priouret [BCP] proved Theorem 10.2 in the case
where the differential operatorQ in formula (10.4) is elliptic (see [BCP, Théorème
XIX]). Theorem 10.2 is proved by Cancelier [Cn, Théorème 3.2] and also by Taira
[Ta6, Theorem 1]. It should be emphasized that Takanobu and Watanabe give a
probabilistic version of Theorem 10.2 in the case where the domain D is the half-
space RNC (see [TW, Corollary]).

The idea of our proof of Theorem 10.2 is as follows (see Bony–Courrège–
Priouret [BCP], Sato–Ueno [SU], Taira [Ta5]).

First, we consider the Dirichlet problem for the Waldenfels integro-differential
operator WD D P C SD: For given functions f .x/ and '.x0/ defined in D and on
@D, respectively, find a function u.x/ in D such that

(
.˛ �WD/u D f in D;

�0u D ' on @D;
(D)

where ˛ is a positive parameter. We show that if S 2 L2�	1;0 .R
N / has the transmission

property with respect to @D, then Dirichlet problem (D) is uniquely solvable in
the framework of Hölder spaces (Theorem 10.4). Secondly, we reduce the problem
of construction of Feller semigroups to that of unique solvability of the following
boundary value problem for the Ventcel’ boundary condition L:

(
.˛ �WD/u D f in D;

.� �L/u D ' on @D;
(*)
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where � is a non-negative constant (Theorem 10.19). In this way we prove existence
theorems for Feller semigroups (Theorems 10.2 and 10.21).

10.3 The Dirichlet Problem for Waldenfels Operators

In this section we study Dirichlet problem (D) for the Waldenfels integro-differential
operatorWD D P C SD:

(
.˛ �WD/u D f in D;

�0u D ' on @D:
(D)

We prove an existence and uniqueness theorem for Dirichlet problem (D) in the
framework of Hölder spaces (Theorem 10.4) which plays an important role in the
proof of existence theorems for Feller semigroups (Theorems 10.2 and 10.21).

10.3.1 Existence and Uniqueness Theorem for the Dirichlet
Problem

We prove the following existence and uniqueness theorem for Dirichlet problem (D)
(cf. [BCP, Théorème XV]):

Theorem 10.4. Let W be a second-order elliptic Waldenfels operator and ˛ > 0.
Assume that

WD1.x/ � 0 in D:

Let k be an arbitrary non-negative integer and 0 < � < 1. Then Dirichlet
problem (D) has a unique solution u in the spaceCkC2C� .D/ for any f 2 CkC� .D/
and any ' 2 CkC2C� .@D/.

The proof of Theorem 10.4 will be proved in the next subsection due to its length.

10.3.2 Proof of Theorem 10.4

The next theorem proves Theorem 10.4:

Theorem 10.5 H) Theorem 10.4
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Theorem 10.5. Let W be a second-order elliptic Waldenfels operator. Assume that

WD1.x/ � 0 in D:

Let k be an arbitrary non-negative integer and 0 < � < 1. Then we have the
following three assertions (i), (ii) and (iii):

(i) (Uniqueness) If f 2 C.D/ and ' 2 C.@D/, then a solution u 2 C.D/ \
C2C� .D/ of problem (D) is unique.

(ii) (Existence) For any f 2 CkC� .D/ and any ' 2 CkC2C� .@D/, problem (D)
has a unique solution u in the space CkC2C� .D/.

(iii) (Global Regularity) If f 2 CkC� .D/ and ' 2 CkC2C� .@D/ for some non-
negative integer k, then a solution u 2 C.D/\C2.D/ of problem (D) belongs
to the space CkC2C� .D/.

Proof. The proof of Theorem 10.5 is divided into three steps.

Step 1: The uniqueness theorem for problem (D) (Assertion (i)) follows from an
application of Theorem 8.12 in Chap. 8 with W WD WD � ˛ for ˛ > 0, since we
have the inequality

max
D

juj � max

	
1

˛
sup
D

j.WD � ˛/uj; max
@D
juj



: (10.9)

Indeed, it suffices to note that

WD1.x/� ˛ D c.x/C a� .x/C
Z

D

s.x; y/ Œ1 � �.x; y/� dy � ˛ � �˛ on D:

Step 2: The essential point in the proof of the existence theorem for problem (D)
(Assertion (ii)) is how to show that the operator

.WD � ˛; �0/ D .P � ˛ C SD; �0/ W C2C� .D/ �! C�.D/˚ C2C� .@D/

is an algebraic and topological isomorphism for ˛ > 0. To do this, we estimate
the integral operator S in terms of Hölder norms, and show that the pseudo-
differential operator case .WD; �0/ may be considered as a perturbation of a
compact operator to the differential operator case .P; �0/ in the framework of
Hölder spaces. Namely, our proof can be reduced to the following differential
operator case:

(
.˛ � P/v D f in D;

�0v D ' on @D:
(D0)

The existence and uniqueness theorem in this case is well established in the
framework of Hölder spaces. In fact, the next theorem summarizes the basic facts
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about the Dirichlet problem in the framework of Hölder spaces (see Gilbarg–
Trudinger [GT]):

Theorem 10.6. Let P be a second-order elliptic differential operator. Assume that

P1.x/ � 0 in D:

Let k be an arbitrary non-negative integer and 0 < � < 1. Then we have the
following three assertions (i), (ii) and (iii):

(i) (Existence and Uniqueness) If f 2 C�.D/ with 0 < � < 1 and ' 2 C.@D/,
then problem .D0/ has a unique solution u in C.D/ \ C2C� .D/.

(ii) (Interior Regularity) If u 2 C2.D/ and f 2 CkC� .D/ for some non-negative
integer k, then it follows that u 2 CkC2C� .D/.

(iii) (Global Regularity) If f 2 CkC� .D/ and ' 2 CkC2C� .@D/ for some non-
negative integer k, then a solution u 2 C.D/\C2.D/ of problem .D0/ belongs
to the space CkC2C� .D/.

First, it follows from an application of Theorem 10.6 with P WD P � ˛ that the
operator

.P � ˛; �0/ W C2C� .D/ �! C�.D/˚ C2C� .@D/

is an algebraic and topological isomorphism for ˛ > 0. In particular, we have

ind .P � ˛; �0/ D 0:

On the other hand, since S 2 L2�	1;0 .R
N / for 	 > 0 and has the transmission property

with respect to @D, we obtain that the integro-differential operator SD , defined by
the formula

SDu.x/ D
NX

iD1
ai� .x/

@u

@xi
.x/C a�.x/u.x/

C
Z

D

s.x; y/

2

4u.y/� �.x; y/
0

@u.x/C
NX

jD1
.yj � xj / @u

@xj
.x/

1

A

3

5 dy;

maps C2C� .D/ continuously into C	C� .D/. Hence it follows from an application
of the Ascoli–Arzelà theorem that the operator

.SD; 0/ W C2C� .D/ �! C�.D/˚ C2C� .@D/

is compact. That is, we find that the operator

.WD � ˛; �0/ D .P � ˛; �0/C .SD; 0/
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is a perturbation of the compact operator .S; 0/ to the operator .P � ˛; �0/. By
applying the stability theorem for indices (Theorem 3.65) to our situation, we obtain
that

ind .WD � ˛; �0/ D ind .P � ˛; �0/ D 0:

Hence, in order to show the bijectivity of .WD � ˛; �0/ it suffices to prove its
injectivity:

(
u 2 C2C� .D/; .WD � ˛/u D 0 in D; �0u D 0 on @D

H) u D 0 in D:

However, this assertion is an immediate consequence of inequality (10.9).
Therefore, we have proved the existence and uniqueness theorem for problem (D)

(Assertion (ii)).

Step 3: Finally, we prove the global regularity theorem for problem (D) (Asser-
tion (iii)).

Assume that
8
ˆ̂
<

ˆ̂
:

u 2 C.D/ \ C2.D/;

.WD � ˛/u D f 2 CkC� .D/;
u D ' 2 CkC2C� .@D/:

By virtue of Assertion (ii), we can find a unique function v 2 CkC2C� .D/ such that

(
.WD � ˛/v D f 2 CkC� .D/;
v D ' 2 CkC2C� .@D/:

If we let

w D u � v;

then we have
8
ˆ̂
<

ˆ̂
:

w 2 C.D/ \ C2.D/;

.WD � ˛/w D 0 in D;

w D 0 on @D:

Therefore, by applying Assertion (i) to the function w we obtain that

w D 0;
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so that

u D v 2 CkC2C� .D/:

The proof of Theorem 10.5 is complete.

Now the proof of Theorem 10.4 is complete.

10.4 Construction of Feller Semigroups and Boundary Value
Problems

In this section we reduce the problem of constructing Feller semigroups to that
of the unique solvability of boundary value problems for the Waldenfels integro-
differential operator WD D P C SD with Ventcel’ boundary conditions L
(Theorem 10.19). Our approach here is divided into three Sects. 10.4.1–10.4.3.

10.4.1 Green Operators G0
˛ and Harmonic Operators H˛

By using Theorem 10.4 with k WD 0, we obtain that Dirichlet problem (D)
has a unique solution u in the space C2C� .D/ for any f 2 C�.D/ and any
' 2 C2C� .@D/, 0 < � < 1. Therefore, we can introduce two linear operators

G0
˛ W C�.D/ �! C2C� .D/;

and

H˛ W C2C� .@D/ �! C2C� .D/

as follows.

(a) For any f 2 C�.D/, the function G0
˛f 2 C2C� .D/ is the unique solution of

the problem

(
.˛ �WD/G

0
˛f D f in D;

G0
˛f D 0 on @D:

(10.10)

(b) For any ' 2 C2C� .@D/, the function H˛' 2 C2C� .D/ is the unique solution
of the problem

(
.˛ �WD/H˛' D 0 in D;

H˛' D ' on @D:
(10.11)
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The operator G0
˛ is called the Green operator for Dirichlet problem (D) and the

operatorH˛ is called the harmonic operator for Dirichlet problem (D), respectively.
We remark that the operators G0

˛ and H˛ are generalizations of the classical Green
representation formula (5.75) and Poisson integral formula (5.76), respectively.

Then we have the following results (cf. [BCP, Proposition III.1.6], [Ta5, Lem-
mas 9.6.2 and 9.6.3]):

Lemma 10.7. The operator G0
˛ , ˛ > 0, considered from C.D/ into itself, is non-

negative and continuous with norm

�
�G0

˛

�
� D ��G0

˛1
�
�1 D max

x2D
G0
˛1.x/:

Proof. Let f .x/ be an arbitrary function in C�.D/ such that f .x/ � 0 on D.
Then, by applying the weak maximum principle (Theorem 8.11 in Chap. 8) with
W WD W � ˛ to the function �G0

˛f we obtain from (10.10) that

G0
˛f � 0 onD:

This proves the non-negativity of G0
˛ .

Since G0
˛ is non-negative, we have, for all f 2 C�.D/,

�G0
˛kf k1 � G0

˛f � G0
˛kf k1 on D:

This implies the continuity of G0
˛ with norm

�
�G0

˛

�
� D ��G0

˛1
�
�1 :

The proof of Lemma 10.7 is complete.

Lemma 10.8. The operatorH˛ , ˛ > 0, considered from C.@D/ into C.D/, is non-
negative and continuous with norm

kH˛k D kH˛1k1 D max
x2D

H˛1.x/:

Proof. Let '.x0/ be an arbitrary function in C2C� .@D/ such that '.x0/ � 0 on @D.
Then, by applying the weak maximum principle (Theorem 8.11) withW WD W �˛
to the function �H˛' we obtain from formula (10.11) that

H˛' � 0 on D:

This proves the non-negativity of H˛ .
Since H˛ is non-negative, we have, for all ' 2 C2C� .@D/,

�H˛k'k1 � H˛' � H˛k'k1 on D:
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This implies the continuity of H˛ with norm

kH˛k D kH˛1k1 :

The proof of Lemma 10.8 is complete.

More precisely, we have the following theorem (see [BCP, Proposition III.1.6]):

Theorem 10.9. (i) (a) The operator G0
˛ , ˛ > 0, can be uniquely extended to a

non-negative, bounded linear operator on C.D/ into itself, denoted again
by G0

˛, with norm

�
�G0

˛

�
� D ��G0

˛1
�
�1 �

1

˛
: (10.12)

(b) For any f 2 C.D/, we have

G0
˛f
ˇ
ˇ
@D
D 0:

(c) For all ˛, ˇ > 0, the resolvent equation holds true:

G0
˛f �G0

ˇf C .˛ � ˇ/G0
˛G

0
ˇf D 0 for every f 2 C.D/: (10.13)

(d) For any f 2 C.D/, we have

lim
˛!C1˛G0

˛f .x/ D f .x/; x 2 D: (10.14)

Furthermore, if f D 0 on @D, then this convergence is uniform in x 2 D,
that is,

lim
˛!C1˛G0

˛f D f in C.D/: (10.140)

(e) The operator G0
˛ maps CkC� .D/ into CkC2C� .D/ for any non-negative

integer k.
(ii)

(a0) The operator H˛ , ˛ > 0, can be uniquely extended to a non-negative,
bounded linear operator from C.@D/ into C.D/, denoted again by H˛ ,
with norm

kH˛k � 1:

(b0) For any ' 2 C.@D/, we have

H˛'j@D D ':
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(c0) For all ˛, ˇ > 0, we have

H˛' �Hˇ' C .˛ � ˇ/G0
˛Hˇ' D 0 for every ' 2 C.@D/: (10.15)

(d 0) For any ' 2 C.@D/, we have

lim
˛!C1H˛'.x/ D 0; x 2 D:

(e0) The operator H˛ maps CkC2C� .@D/ into CkC2C� .D/ for any non-nega-
tive integer k.

Proof. (i) Assertion (a): By making use of Friedrichs’ mollifiers (see Theo-
rem 6.5), we find that the space C�.D/ is dense in C.D/ and further that
non-negative functions can be approximated by non-negative smooth functions.
Hence, by Lemma 10.7 it follows that the operator G0

˛ W C�.D/ ! C2C� .D/
can be uniquely extended to a non-negative, bounded linear operator G0

˛ W
C.D/! C.D/ with norm

�
�G0

˛

�
� D ��G0

˛1
�
�1 :

Furthermore, since the functionG0
˛1 satisfies the conditions

(
.WD � ˛/G0

˛1 D �1 in D;

G0
˛1 D 0 on @D;

by applying inequality (10.9) we obtain that

�
�G0

˛

�
� D ��G0

˛1
�
�1 �

1

˛
:

Assertion (b): This follows from (10.10), since the space C�.D/ is dense in
C.D/ and since the operatorG0

˛ W C.D/! C.D/ is bounded.
Assertion (c): We find from the uniqueness theorem for problem (D)

(Theorem 10.4) that Eq. (10.13) holds true for all f 2 C�.D/. Hence it holds
true for all f 2 C.D/, since the space C�.D/ is dense in C.D/ and since the
operatorsG0

˛ are bounded.
Assertion (d): First, let f be an arbitrary function in C�.D/ satisfying

f j@D D 0. Then it follows from the uniqueness theorem for problem (D)
(Theorem 10.4) that we have, for all ˛, ˇ,

f � ˛G0
˛f D G0

˛ ..ˇ �WD/f /� ˇG0
˛f:
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Thus we have, by estimate (10.12),

�
�f � ˛G0

˛f
�
�1 �

1

˛
k.ˇ �WD/f k1 C

ˇ

˛
kf k1;

so that

lim
˛!C1

�
�f � ˛G0

˛f
�
�1 D 0:

Now let f .x/ be an arbitrary function in C.D/ satisfying f j@D D 0. By
means of Friedrichs’ mollifiers (see Theorem 6.5), we can find a sequence ffj g
in C�.D/ such that

(
fj �! f in C.D/ as j !1;
fj D 0 on @D:

Then we have, by estimate (10.12),

�
�f � ˛G0

˛f
�
�1 �

�
�f � fj

�
�1 C

�
�fj � ˛G0

˛fj
�
�1 C

�
�˛G0

˛fj � ˛G0
˛f
�
�1

� 2 ��f � fj
�
�1 C

�
�fj � ˛G0

˛fj
�
�1 ;

and hence

lim sup
˛!C1

�
�f � ˛G0

˛f
�
�1 � 2

�
�f � fj

�
�1 :

This proves assertion .10:140/, since
�
�f � fj

�
�1 ! 0 as j !1.

To prove assertion (10.14), let f .x/ be an arbitrary function in C.D/ and x
an arbitrary point of D. Take a function  .y/ 2 C.D/ such that

8
ˆ̂
<

ˆ̂
:

0 �  .y/ � 1 on D;

 .y/ D 0 in a neighborhood of x;

 .y/ D 1 near the boundary @D:

Then it follows from the non-negativity of G0
˛ and estimate (10.12) that

0 � ˛G0
˛ .x/C ˛G0

˛.1 �  /.x/ D ˛G0
˛1.x/ � 1: (10.16)

However, by applying assertion .10:130/ to the function 1 �  we have

lim
˛!C1˛G0

˛.1 �  /.x/ D .1 �  /.x/ D 1:
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In view of inequalities (10.16), this implies that

lim
˛!C1˛G0

˛ .x/ D 0:

Thus, since we have the inequalities

�kf k1 � f  � kf k1 on D;

it follows that

j˛G0
˛.f  /.x/j � kf k1 � ˛G0

˛ .x/ �! 0 as ˛ ! C1:

Therefore, by applying assertion .10:140/ to the function .1 �  /f we obtain
that

f .x/ D ..1 �  /f / .x/ D lim
˛!C1˛G0

˛ ..1 �  /f / .x/ D lim
˛!C1˛G0

˛f .x/:

Assertion (e): This is an immediate consequence of part (iii) of Theo-
rem 10.4.

(ii) Assertion (a0): Since the space C2C� .@D/ is dense in C.@D/, by Lemma 10.8
it follows that the operator H˛ W C2C� .@D/ ! C2C� .D/ can be uniquely
extended to a non-negative, bounded linear operator H˛ W C.@D/ ! C.D/.
Moreover, by applying inequality (10.9) we have

kH˛k D kH˛1k1 D 1:

Assertion (b0): This follows from (10.11), since the spaceC2C� .@D/ is dense
in C.@D/ and since the operatorH˛ W C.@D/! C.D/ is bounded.

Assertion (c0): We find from the uniqueness theorem for problem (D)
that (10.15) holds true for all ' 2 C2C� .@D/. Hence it holds true for all
' 2 C.@D/, since the space C2C� .@D/ is dense in C.@D/ and since the
operatorsG0

˛ and H˛ are bounded.
Assertion (d0): This is an immediate consequence of part (iii) of Theo-

rem 10.4.
The proof of Theorem 10.9 is now complete.

10.4.2 Boundary Value Problems and Reduction
to the Boundary

Now we consider the following general boundary value problem in the framework
of the spaces of continuous functions:
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(
.˛ �WD/u D f in D;

Lu D 0 on @D;
(��)

where ˛ > 0 is a parameter. In this subsection, by using the Green operator G0
˛

and harmonic operator H˛ for Dirichlet problem (D) we reduce the study of the
boundary value problems to that of the classical pseudo-differential operator LH˛

on the boundary (Theorem 10.19). This is a generalization of the classical Fredholm
integral equation on the boundary.

To do this, we introduce three operators W , LG0
˛ and LH˛ associated with

problem .��/.
Step 1: First, we can introduce a linear operator

W W C.D/ �! C.D/

as follows.

(a) The domainD.W / ofW is the space C2C� .D/.
(b) Wu D WDu D PuC SDu for every u 2 D.W /.

Then we have the following result (cf. [Ta5, Lemma 9.6.5]):

Lemma 10.10. The operator W has its minimal closed extension W in the space
C.D/.

Proof. We apply part (i) of Theorem 9.50 to the operatorW .
Assume that a function u 2 C2C� .D/ takes a positive maximum at a point x0 of

D:

u.x0/ D max
x2D

u.x/ > 0:

Then it follows that

@u

@xi
.x0/ D 0; 1 � i � N;

NX

i;jD1
aij.x0/

@2u

@xi@xj
.x0/ � 0;

since the matrix .aij.x// is positive definite. Hence we have the inequality

WDu.x0/

D Pu.x0/C .SDu/.x0/

D
NX

i;jD1
aij.x0/

@2u

@xi @xj
.x0/C c.x0/u.x0/
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Ca� .x0/u.x0/C
Z

D

s.x0; y/ Œ.u.y/� u.x0//� dy

C
Z

D

s.x0; y/ Œ1 � �.x0; y/� dy � u.x0/

� c.x0/u.x0/C a�.x0/u.x0/C
Z

D

s.x0; y/ Œ1 � �.x0; y/� dy � u.x0/

D WD1.x0/ � u.x0/
� 0:

This implies that the operatorW satisfies condition .ˇ/ of Theorem 9.50 withK0 WD
D andK WD D, so that W has its minimal closed extensionW in C.D/.

The proof of Lemma 10.10 is complete.

Remark 10.11. The situation may be visualized by the diagram below.

The extended operators G0
˛ W C.D/ ! C.D/ and H˛ W C.@D/ ! C.D/,

˛ > 0, still satisfy (10.10) and (10.11) respectively in the following sense (cf. [Ta5,
Lemma 9.6.7 and Corollary 9.6.8]):

Lemma 10.12. (i) For any f 2 C.D/, we have

(
G0
˛f 2 D.W /;

.˛I �W /G0
˛f D f in D:

(ii) For any ' 2 C.@D/, we have

(
H˛' 2 D.W /;

.˛I �W /H˛' D 0 in D:

Here D.W / is the domain of the closed extensionW .

Proof. Assertion (i): Choose a sequence ffj g in C�.D/ such that fj ! f in C.D/
as j !1. Then it follows from the boundedness of G0

˛ that

G0
˛fj �! G0

˛f in C.D/;
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and also

.˛ �WD/G
0
˛fj D fj �! f in C.D/:

Hence we have

(
G0
˛f 2 D.W /;

.˛I �W /G0
˛f D f in D:

since the operatorW W C.D/! C.D/ is closed.
Assertion (ii): Similarly, part (ii) is proved, since the space C2C� .@D/ is dense

in C.@D/ and since the operatorH˛ W C.@D/! C.D/ is bounded.
The proof of Lemma 10.12 is complete.

Corollary 10.13. Assume that

WD1.x/ < 0 on D D D [ @D:

Then we have the following two assertions (i) and (ii):

(i) If a function u 2 D.W / satisfies the conditions

(
W u D 0 in D;

u D 0 on @D;

then it follows that u D 0 onD.
(ii) Every function u in the domainD.W / can be written in the following form:

u D G0
˛

�
.˛I �W /u

�CH˛.uj@D/; ˛ > 0: (10.17)

Proof. (i) Choose a sequence fuj g in D.W / D C2C� .D/ such that

(
Wuj �! W u in C.D/;

uj �! u in C.D/:

Then it follows from an application of inequality (9.44) with u WD uj that

max
D

juj j � max

	�
1

minD.�WD1/

�

max
D

jWuj j; max
@D
juj j




: (10.18)

Since we have

W u D 0 in D; u D 0 on @D;
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by passing to the limit in inequality (10.18) we obtain that

max
D

juj D lim
j!1 max

D

juj j D 0;

so that

u D 0 on D:

(ii) We let

w D u �G0
˛

�
.˛I �W /u��H˛.uj@D/:

Then it follows from Lemma 10.12 that the function w 2 D.W / satisfies the
conditions

(
.˛I �W /w D 0 in D;

w D 0 on @D:

Thus we can apply part (i) with W WD W � ˛ to obtain that

w D 0:

This proves the desired formula (10.17).
The proof of Corollary 10.13 is complete.

Step 2: Secondly, we introduce a linear operator

LG0
˛ W C.D/ �! C.@D/

as follows.

(a) The domainD
�
LG0

˛

�
of LG0

˛ is the space C�.D/.
(b) LG0

˛f D L
�
G0
˛f
�

for every f 2 D �
LG0

˛

�
.

Then we have the following result (cf. [BCP, Lemme III.2.4], [Ta5,
Lemma 9.6.9]):

Lemma 10.14. The operator LG0
˛ , ˛ > 0, can be uniquely extended to a non-

negative, bounded linear operator LG0
˛ W C.D/! C.@D/.

Proof. Let f .x/ be an arbitrary function inD.LG0
˛/ such that f .x/ � 0 onD. Then

we have
8
ˆ̂
<

ˆ̂
:

G0
˛f 2 C2.D/;

G0
˛f � 0 on D;

G0
˛f D 0 on @D;
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and so

LG0
˛f .x

0/ D �.x0/
@

@n
.G0

˛f /.x
0/C ı.x0/f .x0/C

Z

D

t.x0; y/G0
˛f .y/ dy

� 0 on @D:

This proves that the operator LG0
˛ is non-negative.

By the non-negativity of LG0
˛, we have, for all f 2 D.LG0

˛/,

�LG0
˛kf k1 � LG0

˛f � LG0
˛kf k1 on @D:

This implies the boundedness of LG0
˛ with norm

�
�LG0

˛

�
� D ��LG0

˛1
�
�1 :

Recall that the space C�.D/ is dense in C.D/ and that non-negative functions
can be approximated by non-negative smooth functions. Hence we find that the
operator LG0

˛ can be uniquely extended to a non-negative, bounded linear operator

LG0
˛ W C.D/! C.@D/.
The proof of Lemma 10.14 is complete.

The situation may be visualized by the following diagram:

The next lemma states a fundamental relationship between the operators LG0
˛ and

LG0
ˇ for ˛, ˇ > 0 (cf. [Ta5, Lemma 9.6.10]):

Lemma 10.15. For any f 2 C.D/, we have

LG0
˛f � LG0

ˇf C .˛ � ˇ/LG0
˛ G

0
ˇf D 0; ˛; ˇ > 0: (10.19)

Proof. Choose a sequence ffj g in C�.D/ such that fj ! f in C.D/ as j ! 1.
Then, by using the resolvent Eq. (10.13) with f WD fj we have

LG0
˛fj � LG0

ˇfj C .˛ � ˇ/LG0
˛G

0
ˇfj D 0:

Hence (10.19) follows by letting j !1, since the operators LG0
˛, LG0

ˇ and G0
ˇ are

all bounded.
The proof of Lemma 10.15 is complete.
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Step 3: Finally, we introduce a linear operator

LH˛ W C.@D/ �! C.@D/

as follows.

(a) The domainD .LH˛/ of LH˛ is the space C2C� .@D/.
(b) LH˛ D L.H˛ / for every  2 D .LH˛/.

The operators LH˛ are a pseudo-differential operator version of the classical
Fredholm integral equation on the boundary @D.

Then we have the following result (cf. [Ta5, Lemma 9.6.11]):

Lemma 10.16. The operator LH˛ , ˛ > 0, has its minimal closed extension LH˛ in
the space C.@D/.

Proof. We apply part (i) of Theorem 9.50 to the operator LH˛ . To do this, it suffices
to show that the operator LH˛ satisfies condition .ˇ0/ with K WD @D (or condition
.ˇ/ with K WD K0 D @D) of the same theorem.

Assume that a function  in D.LH˛/ D C2C� .@D/ takes its positive maximum
at some point x0 of @D. Since the function H˛ is in C2C� .D/ and satisfies the
conditions

(
.WD � ˛/H˛ D 0 in D;

H˛ D  on @D;

by applying the weak maximum principle (Theorem 8.11) with W WD W � ˛ to
the function H˛ , we find that the function H˛ takes its positive maximum at a
boundary point x0

0 2 @D:

 .x0
0/ D max

y2D
H˛ .y/ > 0;

@ 

@xi
.x0
0/ D 0; 1 � i � N � 1:

Thus we can apply the Hopf boundary point lemma (Theorem 8.15 in Chap. 8) to
obtain that

@

@n
.H˛ /.x

0
0/ < 0:

Hence we have, by condition (1.6),
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LH˛ .x
0
0/ D

N�1X

i;jD1
˛ij.x0

0/
@2 

@xi @xj
.x0
0/C �.x0

0/ .x
0
0/C �.x0

0/
@

@n
.H˛ /.x

0
0/

�˛ ı.x0
0/ .x

0
0/C

Z

D

t.x0
0; y/

�
H˛ .y/ �  .x0

0/
�

dy

C� .x0
0/ .x

0
0/C

Z

@D

r.x0
0; y

0/
�
 .y0/ �  .x0

0/.x
0
0; y

0/
�

dy0

D
N�1X

i;jD1
˛ij.x0

0/
@2 

@xi @xj
.x0
0/C �.x0

0/
@

@n
.H˛ /.x

0
0/

�˛ı.x0
0/ .x

0
0/C

Z

D

t.x0
0; y/

�
H˛ .y/ �  .x0

0/
�

dy

C
Z

@D

r.x0
0; y

0/
�
 .y0/ �  .x0

0/
�

dy0

C
�

�.x0
0/C � .x0

0/C
Z

@D

r.x0
0; y

0/
�
1 � .x0

0; y
0/
�

dy0
�

 .x0
0/

� 0:

This verifies condition .ˇ0/ of Theorem 9.50, so that LH˛ has its minimal closed
extension LH˛ in C.@D/.

The proof of Lemma 10.16 is complete.

Remark 10.17. The situation may be visualized by the following diagram:

Moreover, the operator LH˛ enjoys the following property (10.20):

If a function  in the domainD
�
LH˛

�
takes its positive (10.20)

maximum at some point x0 of @D, then we have the inequality

LH˛ .x
0/ � 0:

The next lemma states a fundamental relationship between the operators LH˛

and LHˇ for ˛, ˇ > 0 (cf. [Ta5, Lemma 9.6.13]):

Lemma 10.18. The domain D
�
LH˛

�
of LH˛ does not depend on ˛ > 0; so we

denote by D the common domain. Then we have

LH˛ � LHˇ C .˛ � ˇ/LG0
˛ Hˇ D 0; ˛; ˇ > 0;  2 D: (10.21)
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Proof. Let  .x0/ be an arbitrary function in D.LHˇ/, and choose a sequence f j g
in D.LHˇ/ D C2C� .@D/ such that

(
 j �!  in C.@D/;

LHˇ j �! LHˇ in C.@D/:

Then it follows from the boundedness of Hˇ and LG0
˛ that

LG0
˛.Hˇ j / D LG0

˛.Hˇ j / �! LG0
˛.Hˇ / in C.@D/:

Therefore, by using (10.15) with ' WD  j we obtain that

LH˛ j D LHˇ j � .˛ � ˇ/LG0
˛.Hˇ j /

�! LHˇ � .˛ � ˇ/LG0
˛.Hˇ / in C.@D/:

This implies that

(
 2 D.LH˛/;

LH˛ D LHˇ � .˛ � ˇ/LG0
˛.Hˇ /:

Conversely, by interchanging ˛ and ˇ we have the inclusion

D.LH˛/ 	 D.LHˇ/;

and so

D.LH˛/ D D.LHˇ/:

The proof of Lemma 10.18 is complete.

Step 4: Now we can state a general existence theorem for Feller semigroups on
@D in terms of the boundary value problem

(
.˛ �WD/u D f in D;

.� �L/u D ' on @D:
(�)

The next theorem asserts that the operator LH˛ is the infinitesimal generator
of some Feller semigroup on @D if and only if problem (�) is solvable for
sufficiently many functions ' in the space C.@D/ (cf. [BCP, Théorème XX], [Ta5,
Theorem 9.6.15]):
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Theorem 10.19. (i) If the operator LH˛ , ˛ > 0, is the infinitesimal generator of
a Feller semigroup on @D, then, for each constant � > 0, the boundary value
problem

(
.˛ �WD/u D 0 in D;

.� �L/u D ' on @D
(�0)

has a solution u 2 C2C� .D/ for any ' in some dense subset of C.@D/.
(ii) Conversely, if, for some constant � � 0, problem (�0) has a solution u 2

C2C� .D/ for any ' in some dense subset of C.@D/, then the operator LH˛

is the infinitesimal generator of some Feller semigroup on @D.

Proof. Assertion (i): If the operator LH˛ generates a Feller semigroup on @D, by
applying part (i) of Theorem 9.35 withK WD @D to the operator LH˛ we obtain that

R
�
�I � LH˛

� D C.@D/ for each � > 0:

This implies that the range R .�I � LH˛/ is a dense subset of C.@D/ for each
� > 0. However, if ' 2 C.@D/ is in the range R .�I � LH˛/, and if ' D
.�I � LH˛/ with  2 C2C� .@D/, then the function u D H˛ 2 C2C� .D/
is a solution of problem (�0). This proves assertion (i).

Assertion (ii): We apply part (ii) of Theorem 9.35 with K WD @D to the operator
LH˛. To do this, it suffices to show that the operator LH˛ satisfies condition .�/
of the same theorem, since it satisfies condition .ˇ0/, as is shown in the proof of
Lemma 10.16.

By the uniqueness theorem for problem (D), it follows that any function u 2
C2C� .D/ which satisfies the equation

.˛ �WD/u D 0 in D

can be written in the form

u D H˛ .uj@D/ ; uj@D 2 C2C� .@D/ D D .LH˛/ :

Thus we find that if there exists a solution u 2 C2C� .D/ of problem (�0) for a
function ' 2 C.@D/, then we have

.�I � LH˛/ .uj@D/ D ';

and so

' 2 R .�I � LH˛/ :
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Therefore, if there exists a constant � � 0 such that problem (�0) has a solution u in
C2C� .D/ for any ' in some dense subset of C.@D/, then the range R .�I � LH˛/

is dense in C.@D/. This verifies condition .�/ (with ˛0 WD �) of Theorem 9.50.
Hence assertion (ii) follows from an application of the same theorem.

The proof of Theorem 10.19 is complete.

We can give a precise meaning to the boundary conditions Lu for functions u in
the domainD.W /.

We let

D.L/ D ˚u 2 D.W / W uj@D 2 D
�
;

where D is the common domain of the operators LH˛ , ˛ > 0. It should be noted
that the domainD.L/ contains the space C2C� .D/, since we have

C2C� .@D/ D D .LH˛/ 	 D:

Corollary 10.13 tells us that every function u in D.L/ 	 D.W / can be written in
the form

u D G0
˛

�
.˛I �W /u�CH˛ .uj@D/ ; ˛ > 0: (10.13)

Then we define Lu by the formula

Lu D LG0
˛

�
.˛I �W /u�C LH˛ .uj@D/ : (10.22)

The next lemma justifies definition (10.22) of Lu for all u 2 D.L/ (cf. [Ta5,
Lemma 9.6.16]):

Lemma 10.20. The right-hand side of (10.22) depends only on u, not on the choice
of expression (10.17).

Proof. Assume that

u D G0
˛

��
˛I �W �

u
�CH˛ .uj@D/

D G0
ˇ

��
ˇI �W �

u
�CHˇ .uj@D/ ;

where ˛ > 0, ˇ > 0. Then it follows from (10.19) with f WD �
˛I �W �

u
and (10.22) with  WD uj@D that

LG0
˛

��
˛I �W �

u
�C LH˛ .uj@D/ (10.23)

D LG0
ˇ

��
˛I �W �

u
� � .˛ � ˇ/LG0

˛G
0
ˇ

��
˛I �W �

u
�

CLHˇ .uj@D/ � .˛ � ˇ/LG0
˛Hˇ .uj@D/
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D LG0
ˇ

�
.ˇI �W /u�C LHˇ .uj@D/

C.˛ � ˇ/
n
LG0

ˇu � LG0
˛G

0
ˇ

�
˛I �W �

u � LG0
˛Hˇ .uj@D/

o
:

However, the last term of (10.23) vanishes. Indeed, it follows from (10.19) with
f WD u that

LG0
ˇu� LG0

˛


G0
ˇ

�
˛I �W �

u
�
� LG0

˛Hˇ .uj@D/

D LG0
ˇu� LG0

˛


G0
ˇ

�
ˇI �W �

uCHˇ .uj@D/C .˛ � ˇ/G0
ˇu
�

D LG0
ˇu� LG0

˛u � .˛ � ˇ/LG0
˛G

0
ˇu

D 0:

Therefore, we obtain from (10.23) that

LG0
˛

��
˛I �W �

u
�C LH˛ .uj@D/ D LG0

ˇ

��
ˇI �W �

u
�C LHˇ .uj@D/ :

The proof of Lemma 10.20 is complete.

10.4.3 A Generation Theorem for Feller Semigroups in Terms
of Green Operators

Now we formulate a generation theorem for Feller semigroups in terms of Green
operatorsG˛ which implies Theorem 10.2:

Theorem 10.21 H) Theorem 10.2

Theorem 10.21. We define a linear operator

A W C.D/ �! C.D/

as follows (see formula (10.8)).

(a) The domainD.A/ of A is the set

D.A/ D ˚u 2 D.W / W uj@D 2 D; Lu D 0� ; (10.24)

where D is the common domain of the operators LH˛ , ˛ > 0.
(b) Au D W u for every u 2 D.A/.
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Fig. 10.6 The intuitive
meaning of formula (10.25)

If the boundary conditionL is transversal on the boundary @D, then the operator
A is the infinitesimal generator of some Feller semigroup on D, and the Green
operatorG˛ D .˛I � A/�1, ˛ > 0, is given by the formula

G˛f D G0
˛f �H˛


LH˛

�1 
LG0

˛f
��

for every f 2 C.D/: (10.25)

Remark 10.22. Intuitively, formula (10.25) asserts that if the boundary condition
L is transversal on the boundary @D, then we can “piece together” a Markov
process (Feller semigroup) on the boundary @D with W -process in the interior D
to construct a Markov process (Feller semigroup) on the whole D D D [ @D. The
situation may be represented schematically by Fig. 10.6.

10.5 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 10.21 and hence that of Theo-
rem 1.2. We shall apply a version of the Hille–Yosida theorem (Theorem 9.35) to
the operator A defined by formula (10.17). To do this, we verify that A satisfies
conditions (a)–(d) in the same theorem.

10.5.1 Proof of Theorem 10.21

The proof of Theorem 10.21 is divided into several steps.

Theorem 10.23 H) Theorem 10.19 H) Theorem 10.21

Step 1: First, by the Boutet de Monvel calculus [Bo] (see Sect. 7.7) we know that
if T 2 L1�	21;0 .RN / has the transmission property with respect to the boundary
@D, then the operator

Z

D

t.x0; y/H˛'.y/ dy D TD .H˛'/j@D
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is a classical pseudo-differential operator of order 1 � 	2 on the boundary @D.
Therefore, we find that the operator LH˛ is the sum of a second-order degenerate
elliptic differential operator and a classical pseudo-differential operator of order
max.2 � 	1; 1 � 	2/:

LH˛'.x
0/

D
N�1X

i;jD1
˛ij.x0/

@2'

@xi@xj
.x0/C

N�1X

iD1
ˇi .x0/

@'

@xi
.x0/C �.x0/'.x0/

C�.x0/
@

@n
.H˛'/ .x

0/� ˛ ı.x0/'.x0/

C
Z

D

t.x0; y/
�
H˛'.y/� '.x0/

�
dy

C
N�1X

jD1
�j .x

0/
@'

@xj
.x0/C � .x0/'.x0/

C
Z

@D

r.x0; y0/

2

4'.y0/� .x0; y0/

0

@'.x0/C
N�1X

jD1

�
yj � xj

� @'

@xj
.x0/

1

A

3

5 dy0:

Now we prove that

For all ˛ > 0, the operator LH˛ generates a Feller semigroup on the boundary @D.

First, we have the following six assertions (i)–(vi):

(i) The operator

Q' D
N�1X

i;jD1
˛ij.x0/

@2'

@xi@xj
C

N�1X

iD1
ˇi .x0/

@'

@xi
C �.x0/'

is a second-order degenerate elliptic differential operator on @D with non-
positive principal symbol, and Q1.x0/ D �.x0/ � 0 on @D.

(ii) The operator

…˛' D @

@n
.H˛'/

ˇ
ˇ
ˇ
ˇ
@D

is a first-order classical pseudo-differential operator on @D (see [Ho1, RS,
Se2]). For example, if A is the usual Laplacian


 D @2

@x21
C @2

@x22
C : : :C @2

@x2N
;
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then we can write down the symbol of …˛ as follows (see formula (10.60)):

�j� 0j � 1
2

 
!x0.b� 0;b� 0/
j� 0j2 � .N � 1/M.x0/

!

Cp�1 1
2

div ı.�0/.x
0/

C terms of order � �1=2 depending on ˛:

Here div ı.�0/ is the divergence of a real smooth vector field ı.�0/ on @D defined
(in local coordinates) by the formula

ı.�0/ D
N�1X

jD1

@j� 0j
@�j

@

@xj
for � 0 6D 0:

Moreover, it should be noted (cf. condition (8.3)) that

' 2 C2C� .@D/; ' � 0 on @D and x00
0 2 @D; x0

0 62 supp' (10.26)

H) …˛'.x
0
0/ D

@

@n
.H˛'/.x

0
0/ � 0:

Indeed, if we let

u D H˛' 2 C2C� .D/;

then we have

(
.˛ �WD/u D 0 in D;

u D ' on @D:

Since ' � 0 on @D, it follows from an application of the weak maximum
principle (see Theorem 8.11) that

H˛' D u � 0 in D:

This implies that

…˛'.x
0
0/ D

@

@n
.H˛'/.x

0
0/ � 0;

since H˛'.x
0
0/ D '.x0

0/ D 0.
(iii) The integro-differential operator

Z

@D

r.x0; y0/

2

4'.y0/� .x0; y0/

0

@'.x0/C
N�1X

jD1
.yj � xj / @'

@xj
.x0/

1

A

3

5 dy0
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is a classical pseudo-differential operator of order 2 � 	1 on the boundary @D.
Indeed, it can be formally written in the form

Z

@D

r.x0; y0/

2

4'.y0/� .x0; y0/

0

@'.x0/C
N�1X

jD1
.yj � xj / @'

@xj
.x0/

1

A

3

5 dy0

D R'.x0/ �R.x0/ � '.x0/ �
N�1X

jD1
R.

j

x0/ � @'
@xj

.x0/;

where

x0.y0/ D .x0; y0/; y0 2 @D;

j

x0.y
0/ D .x0; y0/

�
yj � xj

�
; y0 2 @D:

(iv) The integral operator

Z

D

t.x0; y/
�
H˛'.y/� '.x0/

�
dy D TD .H˛'/j@D � .TD1/j@D � '.x0/

is a classical pseudo-differential operator of order 1 � 	2 on the boundary
@D, since T 2 L1�	21;0 .RN / has the transmission property with respect to the
boundary @D (see [Bo,RS]). For example, if P is the usual Laplacian
 and if
the symbol of T is given by the formula (see formula (7.11))

a0.x
0; � 0/

j� 0j � p�1 �n
C a1.x0; � 0/

j� 0j C p�1 �n
.j� 0j � p�1 �n/2

C : : : ;

a0.x
0; � 0/; a1.x0; � 0/ 2 S2�	21;0 .RN�1 � RN�1/;

then we can write down the symbol of the operator

TD .H˛'/j@D
concretely as follows:

a0.x
0; � 0/

2j� 0j C 1

4

 
!x0.b� 0;b� 0/
j� 0j2 � .N � 1/M.x0/

!
a0.x

0; � 0/
2j� 0j2

Cp�1 a0.x
0; � 0/

4j� 0j div ı.�0/.x
0/

C terms of order � �	2 � 1 depending on ˛:
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(v) We remark (cf. condition (8.3)) that

' 2 C2C� .@D/; ' � 0 on @D and x00
0 2 @D; x0

0 62 supp'

H) LH˛'.x
0
0/ � 0:

Indeed, we have, by assertion (10.26),

LH˛'.x
0
0/ D �.x0

0/
@

@n
.H˛'/.x

0
0/C

Z

@D

r.x0
0; y

0/'.y0/ dy0

C
Z

D

t.x0
0; y/H˛'.y/ dy � 0:

Therefore, by applying Theorem 9.5 to our situation we obtain that the pseudo-
differential operator LH˛ may be written in the form

LH˛' D P˛' C S˛'; ' 2 C2.@D/:

Here:

(a) The operator P˛ is a second-order degenerate elliptic differential operator
on @D with non-positive principal symbol and P˛1.x0/ D �˛.x

0/ � 0 on
@D.

(b) The operator S˛ is an integro-differential operator given by the formula

S˛'.x
0/

D
Z

@D

s.x0; y0/
�
'.y0/ � �.x0; y0/

�
'.x0/C

N�1X

iD1

@'

@xi
.x0/.yi � xi /

��
dy0:

It should be emphasized that s.x0; y0/ � 0 off the diagonal 
@D D
f.x0; x0/ W x0 2 @Dg, and that

LH˛1.x
0/ D �˛.x0/C

Z

@D

s.x0; y0/
�
1 � �.x0; y0/

�
dy0 � 0 on @D:

(vi) Finally, since the function H˛1 takes its positive maximum 1 only on the
boundary @D, it follows from an application of the Hopf boundary point lemma
(see Theorem 8.15) that

H˛1.y/� 1 < 0 in D;

…˛1.x
0/ D @

@n
.H˛1/.x

0/ < 0 on @D:

Hence, it follows from transversality condition (10.7) and condition (1.6) that
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LH˛1.x
0/ D �.x0/C �.x0/…˛1.x

0/� ˛ı.x0/ (10.27)

C� .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0

C
Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

D
�

�.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0
�

� ˛ı.x0/

C�.x0/…˛1.x
0/C

Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

� �˛ı.x0/C �.x0/…˛1.x
0/C

Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

< 0 on @D:

Step 2: The next unique solvability theorem for pseudo-differential operators in
the framework of Hölder spaces will play an essential role in the construction of
Feller semigroups (see [Cn, Théorème 4.5], [Ta6, Theorem 2.1]):

Theorem 10.23. Let T be a second-order classical pseudo-differential operator on
an n-dimensional, compact smooth manifoldM without boundary such that

T D P C S:

Here:

(a) The operator P is a second-order degenerate elliptic differential operator on
M with non-positive principal symbol p.x; �/, and P1.x/ � 0 on M .

(b) The operator S is a classical pseudo-differential operator of order 2�	, 	 > 0,
onM and its distribution kernel s.x; y/ is non-negative off the diagonal
M D
f.x; x/ W x 2M g in M �M .

(c) T1.x/ D P1.x/C S1.x/ � 0 on M .

Then, for each integer k � 1 there exists a constant � D �.k/ > 0 such that, for
any f 2 CkC� .M/, we can find a function ' 2 CkC� .M/ satisfying the equation

.T � �I/' D f on M;

and the estimate

k'kCkC� .M/ � C.�/kf kCkC� .M/: (10.28)

Here C.�/ > 0 is a constant independent of f .

Theorem 10.23 will be proved in the next Sect. 10.6 due to its length.
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Step 3: By applying Theorem 10.23 to the operator LH˛ , we find that

If � > 0 is sufficiently large, then the range R.LH˛ � �I/ (10.29)

contains the space C2C� .@D/:

This implies that the rangeR.LH˛ � �I/ is a dense subset of C.@D/. Therefore,
by applying part (ii) of Theorem 10.19 to the operator L we obtain that the
operator LH˛ is the infinitesimal generator of some Feller semigroup on @D,
for any ˛ > 0.

Step 4: Now we prove that

The equation (10.30)

LH˛ D '
has a unique solution  in D.LH˛/ for any ' 2 C.@D/; hence

the inverse LH˛
�1

of LH˛ can be defined on the whole space C.@D/:

Further the operator �LH˛
�1

is non-negative and bounded on C.@D/:

We have, by inequality (10.27) and transversality condition (10.7),

`˛ D � sup
x02@D

LH˛1.x
0/ > 0:

Furthermore, by using Corollary 10.13 with K WD @D, A WD LH˛ and c WD `˛
we obtain that the operator LH˛ C `˛I is the infinitesimal generator of some Feller
semigroup on @D. Therefore, since `˛ > 0, it follows from an application of part (i)
of Theorem 9.35 with A WD LH˛ C `˛I that the equation

�LH˛  D
�
`˛I � .LH˛ C `˛I /

�
 D '

has a unique solution 2 D.LH˛/ for any ' 2 C.@D/, and further that the operator

�LH˛
�1 D �

`˛I � .LH˛ C `˛I /
��1

is non-negative and bounded on the space
C.@D/ with norm

�
�
��LH˛

�1��
� D

�
�
�
�
`˛I � .LH˛ C `˛I /

��1��
�1 �

1

`˛
:

Step 5: By assertion (10.30), we can define

G˛f D G0
˛f �H˛


LH˛

�1 
LG0

˛f
��

for every f 2 C.D/: (10.21)
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Step 5-1: First, we prove that

G˛ D .˛I � A/�1 ; ˛ > 0: (10.31)

In view of Lemmas 10.10 and 10.20, it follows that we have, for all f 2 C.D/,
8
ˆ̂
<̂

ˆ̂
:̂

G˛f D G0
˛f �H˛


LH˛

�1 
LG0

˛f
��
2 D.W /;

G˛f j@D D �LH˛
�1 

LG0
˛f
�
2 D �

LH˛

� D D;

LG˛f D LG0
˛f � LH˛


LH˛

�1 
LG0

˛f
��
D 0;

and that

.˛I �W /G˛f D f:

This proves that

(
G˛f 2 D.A/;
.˛I � A/G˛f D f;

that is,

.˛I � A/G˛ D I on C.D/:

Therefore, in order to prove (10.31) it suffices to show the injectivity of the
operator ˛I � A for ˛ > 0.
Assume that

u 2 D.A/ and .˛I � A/u D 0:
Then, by Corollary 10.13, the function u can be written as

u D H˛ .uj@D/ ; uj@D 2 D D D �
LH˛

�
:

Thus we have

LH˛ .uj@D/ D Lu D 0:
In view of assertion (10.30), this implies that

uj@D D 0;
so that

u D H˛ .uj@D/ D 0 in D:
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Step 5-2: The non-negativity of G˛ , ˛ > 0, follows immediately from

formula (10.25), since the operators G0
˛ , H˛ , �LH˛

�1
and LG0

˛ are all non-
negative.

Step 5-3: We prove that the operator G˛ is bounded on the space C.D/ with
norm

kG˛k � 1

˛
; ˛ > 0: (10.32)

To do this, it suffices to show that

G˛1 � 1

˛
on D; (10.2800)

since G˛ is non-negative on C.D/.

First, it follows from the uniqueness property of solutions of problem (D00) that

˛G0
˛1CH˛1 D 1CG0

˛.WD1/ on D: (10.33)

In fact, both sides have the same boundary value 1 and satisfy the same equation:
.˛ �WD/u D ˛ in D.
By applying the operator L to both sides of equality (10.33), we obtain from
condition (1.6) that

�LH˛1.x
0/

D �L1.x0/ � LG0
˛.WD1/.x

0/C ˛LG0
˛1.x

0/

D �
�

�.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0
�

��.x0/
@

@n
.G0

˛.WD1//.x
0/ �

Z

D

t.x0; y/G0
˛.WD1/.y/dyC ˛LG0

˛1.x
0/

� ˛LG0
˛1.x

0/ on @D;

since we have

G0
˛.WD1/ D 0 on @D;

G0
˛.WD1/ � 0 on D:

Hence we have, by the non-negativity of �LH˛
�1

,

� LH˛
�1 �

LG0
˛1
� � 1

˛
on @D: (10.34)
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By using (10.18) with f WD 1, inequality (10.34) and equality (10.33), we obtain
that

G˛1 D G0
˛1CH˛


�LH˛

�1 �
LG0

˛1
��

� G0
˛1C

1

˛
H˛1 D 1

˛
C 1

˛
G0
˛.WD1/

� 1

˛
onD;

since the operatorsH˛ and G0
˛ are non-negative and since WD1 � 0 in D.

Step 5-4: Finally, we prove that

The domainD.A/ is dense in the space C.D/: (10.35)

Before the proof, we need some lemmas on the behavior ofG0
˛ ,H˛ and �LH˛

�1

as ˛ !C1 (see [BCP, Proposition III.1.6]; [Ta5, Lemmas 9.6.19 and 9.6.20]):

Lemma 10.24. For every f 2 C.D/, we have

lim
˛!C1

�
˛G0

˛f CH˛ .f j@D/
� D f in C.D/: (10.36)

Proof. Choose a constant ˇ > 0 and let

g D f �Hˇ.f j@D/:

Then, by using (10.11) with ' WD f j@D we obtain that

˛G0
˛g � g D

�
˛G0

˛f CH˛.f j@D/ � f
� � ˇG0

˛Hˇ.f j@D/: (10.37)

However, we have, by estimate (10.32),

lim
˛!C1G0

˛Hˇ.f j@D/ D 0 in C.D/;

and by assertion .10:140/

lim
˛!C1˛G0

˛g D g in C.D/;

since gj@D D 0. Therefore, the desired formula (10.36) follows by letting ˛ !C1
in (10.37).

The proof of Lemma 10.24 is complete.
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Lemma 10.25. The function

…˛1.x
0/ D @

@n
.H˛1/ .x

0/; x0 2 @D;

diverges to �1 uniformly and monotonically as ˛ ! C1.

Proof. First, formula (10.15) with ' WD 1 gives that

H˛1 D Hˇ1 � .˛ � ˇ/G0
˛Hˇ1:

Thus, in view of the non-negativity of G0
˛ andH˛ it follows that

˛ � ˇ H) H˛1 � Hˇ1 on D:

Since H˛1j@D D Hˇ1j@D D 1, this implies that the functions

@

@n
.H˛1/.x

0/; x0 2 @D;

are monotonically non-increasing in ˛. Furthermore, by using formula (10.14) with
f WD Hˇ1 we find that the function

H˛1.x/ D Hˇ1.x/�
�

1 � ˇ
˛

�

˛G0
˛Hˇ1.x/

converges to zero monotonically as ˛ ! C1, for each interior point x of D.
Now, for any given constantK > 0 we can construct a function u 2 C2.D/ such

that

u D 1 on @D; (10.38a)

@u

@n
� �K on @D: (10.38b)

Indeed, it follows from an application of Theorem 10.4 that, for any integerm > 0,
the function

u D .H˛01/
m ; ˛0 > 0;

belongs to C2C� .D/ and satisfies condition (10.38a). Furthermore, we have the
inequality

@u

@n
D m @

@n
.H˛01/ � m sup

x02@D
@

@n
.H˛01/ .x

0/:
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Fig. 10.7 The neighborhood
U of @D

However, since the function H˛01 takes its positive maximum 1 only on the
boundary @D, we can apply the Hopf boundary point lemma (see Theorem 8.15)
to obtain that

@

@n
.H˛01/ < 0 on @D:

In view of this inequality, we obtain that the function u D .H˛01/
m satisfies

condition (10.38b) form sufficiently large.
Take a function u.x/ in C2.D/ satisfying conditions (10.38a) and (10.38b), and

choose a neighborhoodU of @D, relative toD, with smooth boundary @U such that
(see Fig. 10.7)

u � 1

2
on U : (10.39)

Recall that the function H˛1 converges to zero in D monotonically as ˛ ! C1.
Since u D H˛1 D 1 on @D, by using Dini’s theorem we can find a constant ˛ > 0

(depending on u and hence on K) such that

H˛1 � u on @U n @D; (10.40a)

˛ > 2kWDuk1: (10.40b)

It follows from inequalities (10.39) and (10.40b) that

.WD � ˛/.H˛1 � u/ D ˛u �WDu � ˛

2
� kWDuk1 > 0 in U :

Thus, by applying the weak maximum principle (Theorem 8.11) withW WD W �˛
to the function H˛1 � u we obtain that the function H˛1 � u may take its positive
maximum only on the boundary @U . However, conditions (10.38a) and (10.40a)
imply that

H˛1 � u � 0 on @U D .@U n @D/[ @D:
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Therefore, we have the inequality

H˛1 � u on U D U [ @U ;

and hence

@

@n
.H˛1/ � @u

@n
� �K on @D;

since uj@D D H˛1j@D D 1.
The proof of Lemma 10.25 is complete.

Corollary 10.26. If the boundary condition L is transversal on the boundary @D,
then we have

lim
˛!C1

�
�
��LH˛

�1��
� D 0:

Proof. First, we have, by condition (1.6),

LH˛1.x
0/

D �.x0/C �.x0/
@

@n
.H˛1/.x

0/ � ˛ı.x0/

C� .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 C

Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

D �.x0/
@

@n
.H˛1/.x

0/� ˛ı.x0/

C
�

�.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1� .x0; y0/

�
dy0
�

C
Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

� �.x0/
@

@n
.H˛1/.x

0/� ˛ı.x0/C
Z

D

t.x0; y/ ŒH˛1.y/� 1� dy:

However, it follows from an application of Beppo Levi’s theorem that

lim
˛!C1

Z

D

t.x0; y/ ŒH˛1.y/� 1� dy D �
Z

D

t.x0; y/dy;

since the functionH˛1 converges to zero in D monotonically as ˛ !C1.
Hence we obtain from Lemma 10.25 that if the boundary condition L is

transversal on the boundary @D, that is, if we have the condition

Z

D

t.x0; y/dy D C1 if �.x0/ D ı.x0/ D 0;
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then the function LH˛1 diverges to �1 monotonically as ˛ ! C1. By Dini’s
theorem, this convergence is uniform in x0 2 @D. Thus it follows that the function

1

LH˛1.x0/

converges to zero uniformly in x0 2 @D as ˛ ! C1. This proves that

�
�
��LH˛

�1��
� D

�
�
��LH˛

�1
1
�
�
� �

�
�
�
�

1

LH˛1

�
�
�
� �! 0 as ˛ ! C1;

since we have the inequality

1 D �LH˛1.x
0/

jLH˛1.x0/j �
�
�
�
�

1

LH˛1

�
�
�
�
��LH˛1.x

0/
�

for all x0 2 @D:

The proof of Corollary 10.26 is complete.

10.5.2 End of Proof of Theorem 1.2

In view of formula (10.31) and inequality (10.32), it suffices to prove that

lim
˛!C1 k˛G˛f � f k1 D 0 for all f 2 C2C� .D/; (10.41)

since the space C2C� .D/ is dense in C.D/.
First, we observe that

k˛G˛f � f k1 D
�
�
�˛G0

˛f � ˛H˛


LH˛

�1 �
LG0

˛f
��� f

�
�
�1

� ��˛G0
˛f CH˛ .f j@D/� f

�
�1

C
�
�
��˛H˛


LH˛

�1 �
LG0

˛f
���H˛ .f j@D/

�
�
�1

� ��˛G0
˛f CH˛ .f j@D/� f

�
�1

C
�
�
��˛LH˛

�1 �
LG0

˛f
� � f j@D

�
�
�1 :

Thus, in view of (10.36) it suffices to show that

lim
˛!C1

h
�˛LH˛

�1 �
LG0

˛f
� � f j@D

i
D 0 in C.@D/: (10.42)
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Take a constant ˇ such that 0 < ˇ < ˛, and write

f D G0
ˇgCHˇ';

where (cf. (10.17)):

(
g D .ˇ �WD/f 2 C�.D/;

' D f j@D 2 C2C� .@D/:

Then, by using Eqs. (10.13) (with f WD g) and (10.15) we obtain that

G0
˛f D G0

˛G
0
ˇg CG0

˛Hˇ' D 1

˛ � ˇ

G0
ˇg �G0

˛g CHˇ' �H˛'
�
:

Hence we have the inequality

�
�
��˛LH˛

�1 �
LG0

˛f
� � f j@D

�
�
�1

D
�
�
�
�

˛

˛ � ˇ

�LH˛

�1� 
LG0

ˇg � LG0
˛g C LHˇ'

�
C ˛

˛ � ˇ ' � '
�
�
�
�1

� ˛

˛ � ˇ
�
�
��LH˛

�1��
� �
�
�
�LG0

ˇg C LHˇ'
�
�
�1

C ˛

˛ � ˇ
�
�
��LH˛

�1��
� � ��LG0

˛

�
�1 � kgk1 C

ˇ

˛ � ˇ k'k1:

By Corollary 10.26, it follows that the first term on the last inequality converges
to zero as ˛ ! C1. For the second term, by using (10.13) with f WD 1 and the
non-negativity of G0

ˇ and LG0
˛ we find that

�
�LG0

˛

�
� D ��LG0

˛1
�
�1 D

�
�
�LG0

ˇ1 � .˛ � ˇ/LG0
˛G

0
ˇ1
�
�
�1 �

�
�
�LG0

ˇ1
�
�
�1 :

Hence the second term also converges to zero as ˛ ! C1. It is clear that the third
term converges to zero as ˛ ! C1. This completes the proof of assertion (10.42)
and hence that of assertion (10.41).

The proof of assertion (10.35) is complete.

Step 6: Summing up, we have proved that the operator A, defined by for-
mula (10.24), satisfies conditions (a)–(d) in Theorem 9.35. Hence it follows
from an application of the same theorem that the operator A is the infinitesimal
generator of some Feller semigroup on D.

Now the proof of Theorem 10.21 and hence that of Theorem 1.2 is complete. ut
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10.6 Unique Solvability for Second-Order
Pseudo-differential Operators

In this section we give a sketch of the proof of a unique solvability theorem for
a class of second-order classical pseudo-differential operators in the framework
of Hölder spaces (Theorem 10.23). The proof of Theorem 10.23 is based on a
method of elliptic regularizations essentially due to Oleı̆nik–Radkevič [OR, Chapter
I] developed for second-order differential operators with non-negative characteristic
form, just as in the proof of Cancelier [Cn, Théorème 4.5]. In order to prove
estimate (10.28), we need an interpolation argument. Moreover, we remark that
Corollary 3.26 to Mazur’s theorem (Theorem 3.25) in Chap. 3 plays an important
role in the proof of estimate (10.28).

10.6.1 Fundamental Results for Second-Order
Pseudo-differential Operators

Let M be an n-dimensional compact smooth manifold M without boundary. We
begin with the following two fundamental results for second-order classical pseudo-
differential operators T on M :

Theorem 10.27. Let T D P C S be a second-order classical pseudo-differential
operator on M , as in Theorem 10.23. Assume that

T1.x/ D P1.x/C S1.x/ < 0 on M:

Then we have, for all ' 2 C2.M/,

k'kC.M/ �
�

1

minM.�T1/
�

kT 'kC.M/:

Theorem 10.27 is a compact manifold version of Theorem 8.12 formulated in
Chap. 8.

Theorem 10.28. Let T D P C S be a second-order classical pseudo-differential
operator on M , as in Theorem 10.23. Assume that the operator T is elliptic on M
and satisfies the condition

T1 D P1C S1 < 0 on M:

Then, for every integer k � 0 the operator

T W CkC2C� .M/ �! CkC� .M/

is bijective.
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Proof. Since T is elliptic and its principal symbol is real, it follows from an
application of [Ta5, Corollary 6.7.12] that T is a Fredholm operator with index
zero

indT D dimN.T / � codimR.T / D 0:

Here we recall the following definitions (see Sect. 3.8.1):

(i) The null space N.T / D f' 2 CkC2C� .M/ W T ' D 0g of T has finite
dimension, that is, dimN.T / <1.

(ii) The range R.T / D fT ' W ' 2 CkC2C� .M/g of T has finite codimension, that
is,

codimR.T / D dimCkC� .M/=R.T / <1:

However, Theorem 10.27 asserts that T is injective, that is, dimN.T / D 0.
Therefore, we obtain that codimR.T / D 0. This proves that T is surjective.

10.6.2 Proof of Theorem 10.23

If k is a positive integer, we have the following characterization of the Sobolev space
W k;1.M/:

W k;1.M/ D
(

' 2 Ck�1.M/ W max
j˛j�k�1 supx;y2Mx¤y

j@˛'.x/ � @˛'.y/j
jx � yj <1

)

;

where jx � yj is the geodesic distance between x and y with respect to the
Riemannian metric of the manifoldM .

The proof of Theorem 10.23 is divided into three steps.

Step I: First, we prove Theorem 10.23 for the Sobolev spaceW 1;1.M/ (k D 1):

Lemma 10.29. There exists a constant � D �.1/ > 0 such that, for any f 2
W 1;1.M/, we can find a function ' 2 W 1;1.M/ satisfying the equation

.T � �I/' D f on M;

and the estimate

k'k1;1 � C1.�/kf k1;1:

Here C1.�/ > 0 is a constant independent of f .
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Proof. The proof is divided into three steps.

Step 1: First, we construct a smooth function �.x; y/ on M �M which satisfies
the following two conditions (a) and (b):

(a) 0 � �.x; y/ � 1 on M �M .
(b) �.x; y/ D 1 in a neighborhood of the diagonal
M in M �M .

Let fU˛g`˛D1 be a finite open covering of M and let f'˛g`˛D1 be a partition of
unity subordinate to the covering fU˛g (see Sect. 5.7.2). That is, the family f'˛g
in C1.M/ satisfies the following three conditions (1), (2) and (3):

(1) 0 � '˛.x/ � 1 for all x 2 M .
(2) supp'˛ 	 U˛ for each ˛.
(3)

P`
˛D1 '˛.x/ D 1 for each x 2M .

If we take a smooth function  ˛.x/ in M such that

(
0 �  ˛.x/ � 1 for all x 2M;

 ˛.x/ D 1 on supp'˛;

then it is easy to verify that the function

�.x; y/ D
X̀

˛D1
'˛.x/ ˛.y/; .x; y/ 2 M �M;

satisfies the desired conditions (a) and (b).
Now we find that the operator T D P C S can be written, in terms of local

coordinates .x1; x2; : : : ; xn/, in the form

T '.x/ D
nX

i;jD1
˛ij.x/

@2'

@xi @xj
.x/C

nX

iD1
ˇi .x/

@'

@xi
.x/C �.x/'.x/

C
Z

M

s.x; y/

"

'.y/� �.x; y/
 

'.x/C
nX

iD1
.yi � xi / @'

@xi
.x/

!#

dy

WD Q'.x/C S'.x/:

Here:

(a) The differential operator

nX

i;jD1
˛ij.x/

@2

@xi @xj
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is the principal part of P ; more precisely, the ˛ij.x/ are the components of a
smooth symmetric contravariant tensor of type

�
2
0

�
on M which satisfies the

condition

nX

i;jD1
˛ij.x/�i �j � 0; x 2 M; � D

nX

jD1
�jdxj 2 T �

x .M/;

where T �
x .M/ is the cotangent space of M at x.

(b) The function �.x; y/ DPN
˛D1 �˛.x; y/ is a local unity function on M .

(c) The density dy is a strictly positive density on M .
(d) T1.x/ D Q1.x/C S1.x/ D �.x/C R

M
s.x; y/Œ1 � �.x; y/� dy � 0 on M .

Furthermore, it should be emphasized that there exists a constant C > 0 such
that the distribution kernel s.x; y/ of S 2 L2�	cl .M/, 	 > 0, satisfies the estimate
(see Theorem 7.36)

js.x; y/j � C

jx � yjnC2�	 for all .x; y/ 2 .M �M/ n
M:

Hence we find that the integral

Sr'.x/ D
Z

M

s.x; y/

"

'.y/ � �.x; y/
 

'.x/C
nX

iD1
.yi � xi / @'

@xi
.x/

!#

dy

is absolutely convergent, since 	 > 0 and �.x; y/ D 1 in a neighborhood of the
diagonal
M .

Now, if ' 2 C1.M/, we define a continuous function BT .'; '/ on M by the
formula

BT .'; '/.x/ D 2
nX

i;jD1
˛ij.x/

@'

@xi
.x/

@'

@xj
.x/

C
Z

M

s.x; y/ .'.y/� '.x//2 dy � T1.x/ � '.x/2; x 2 M:

It should be noted that the function BT .'; '/ is non-negative on M for all ' 2
C1.M/.

The next result may be proved just as in the proof of Cancelier [Cn,
Théorème 4.1].

Lemma 10.30. Let fXj grjD1 be a family of real smooth vector fields on M such
that the Xj span the tangent space Tx.M/ at each point x of M . If ' 2 C1.M/,
we let
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p1.x/ D
rX

jD1
jXj'.x/j2; x 2M;

and

R1.x/ D Tp1.x/ �
rX

jD1
BT .Xj';Xj'/.x/; x 2M:

Then, for each � > 0 there exist constants ˇ0 > 0 and ˇ1 > 0 such that we have,
for all ' 2 C1.M/,

jR1.x/j � �
rX

jD1
BT .Xj';Xj'/.x/C ˇ0k'k2C.M/ (10.43)

Cˇ1k'k2C1.M/
C 1

2
kT 'k2

C1.M/
; x 2M:

Remark 10.31. The constants ˇ0 and ˇ1 are uniform for the operators T C"ƒ��I ,
0 � " � 1, � � 0, where ƒ is a second-order elliptic differential operator on M
defined by the formula

ƒ D �
rX

jD1
X�
j Xj D

rX

jD1
X2
j C

rX

jD1
Xj �Xj :

Step 2: First, let f .x/ be an arbitrary element of C1.M/. Since the operator
T C "ƒ� �I is elliptic for all " > 0 and .T C "ƒ� �I/1 D T1� � � �� < 0
on M for � > 0, it follows from an application of Theorem 10.28 that we can
find a unique function '" 2 C1.M/ such that

.T C "ƒ� �I/'" D f on M:

Furthermore, by applying Theorem 10.27 to the operator T C"ƒ��I we obtain
that

k'"kC.M/ � 1

�
kf kC.M/; (10.44)

since minM .�.T C "ƒ� �I/1/ � �.

Let x0 be a point of M at which the function

p"1.x/ D
rX

jD1
jXj'".x/j2
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attains its positive maximum. Then we have the inequality

ƒp"1.x0/ D
0

@
rX

jD1
X2
j

1

Ap"1.x0/ � 0;

and also

Tp"1.x0/ D
nX

i;jD1
˛ij.x0/

@2p"1
@xi @xj

.x0/C �.x0/p"1.x0/

C
Z

M

s.x0; y/Œp
"
1.y/� �.x0; y/p"1.x0/� dy

�
�

�.x0/C
Z

M

s.x0; y/Œ1 � �.x0; y/� dy

�

p"1.x0/

C
Z

M

s.x0; y/Œp
"
1.y/� p"1.x0/� dy

� T1.x0/ � p"1.x0/:

Hence, by using inequality (10.43) with � WD 1=2 and inequality (10.44) we obtain
that

�p"1.x0/ � .� � T1.x0//p"1.x0/� "ƒp"1.x0/
� .� � T � "ƒ/p"1.x0/

D �
0

@.T C "ƒ� �/p"1.x0/ �
rX

jD1
BTC"ƒ��I .Xj'"; Xj'"/.x0/

1

A

�
rX

jD1
BTC"ƒ��I .Xj'"; Xj'"/.x0/

� �1
2

rX

jD1
BTC"ƒ��I .Xj'"; Xj'"/.x0/C ˇ0k'"k2C.M/

Cˇ1k'"k2C1.M/
C 1

2
kf k2C1.M/

� ˇ0

�2
kf k2C.M/ C ˇ1k'"k2C1.M/

C 1

2
kf k2C1.M/ :

This proves that
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.� � ˇ1/k'"k2C1.M/
� �


k'"k2C.M/ C p"1.x0/

�
� ˇ1k'"k2C1.M/

(10.45)

� 1

�
kf k2C.M/ C

ˇ0

�2
kf k2C.M/ C

1

2
kf k2

C1.M/
:

Here it should be emphasized (see Remark 10.31) that the constants ˇ0 and ˇ1 are
independent of " > 0 and � > 0. Therefore, if � > 0 is so large that

� > ˇ1;

then it follows from inequality (10.45) that

k'"k2C1.M/
� C.�/kf k2

C1.M/
; (10.46)

where C.�/ > 0 is a constant independent of " > 0.

Step 3: Now let f .x/ be an arbitrary element of W 1;1.M/. Then we can find a
sequence ffpg1pD1 in C1.M/ such that

(
fp �! f in C.M/;

kfpkC1.M/ � kf k1;1:

If '"p is a unique solution in C1.M/ of the equation

.T C "ƒ� �I/'"p D fp on M; (10.47)

it follows from an application of inequality (10.46) that

k'"pk2C1.M/
� C.�/kfpk2C1.M/

� C.�/kf k21;1:

This proves that the sequence f'"pg is uniformly bounded and equicontinuous on
M . Hence, by virtue of the Ascoli–Arzelà theorem we can choose a subsequence
f'"0p0g which converges uniformly to a function ' 2 C.M/, as "0 # 0 and p0 !
1. Furthermore, since the unit ball in the Hilbert space L2.M/ is sequentially
weakly compact (see Yosida [Yo, Chapter V, Section 2, Theorem 1]), we may
assume that the sequence f@j '"0p0g converges weakly to a function j inL2.M/,
for each 1 � j � n. Then it follows that

@j ' D  j 2 L2.M/; 1 � j � n:

On the other hand, it is easy to verify that the set

K D
n
g 2 L2.M/ W kgk1 �

p
C.�/ kf k1;1

o
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is convex, strongly closed and balanced in L2.M/. Therefore, by applying Corol-
lary 3.26 with

X WD L2.M/; M WD K;

we obtain that the set K is weakly closed in L2.M/.
However, we have

(
@j '"0p0 2 K;
@j '"0p0 �!  j weakly in L2.M/ for each 1 � j � n:

Therefore, since the set K is weakly closed in L2.M/, it follows that

@j ' D  j 2 K; 1 � j � n;

that is,

k@j 'k1 �
p
C.�/ kf k1;1; 1 � j � n:

Summing up, we have proved that

(
' 2 W 1;1.M/;

k'k1;1 � C1.�/kf k1;1;

where C1.�/ > 0 is a constant independent of f .
Finally, by letting "0 # 0 and p0 !1 in the equation

.T C "0ƒ � �I/'"0p0 D fp0 on M;

we obtain that

.T � �I/' D f on M:

The proof of Lemma 10.29 is now complete.

Step II: Similarly, we can prove Theorem 10.23 for the general Sobolev space
W m;1.M/ wherem � 2:

Lemma 10.32. For each integerm � 2, there exists a constant � D �.m/ > 0 such
that, for any f 2 W m;1.M/, we can find a function ' 2 W m;1.M/ satisfying the
equation

.T � �I/' D f on M;
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and the estimate

k'km;1 � Cm.�/kf km;1:

Here Cm.�/ > 0 is a constant independent of f .

Step III: Theorem 10.23 follows from Lemmas 10.29 and 10.32 by a well-known
interpolation argument.

First, by combining Lemmas 10.29 and 10.32 we obtain the following two
inequalities (10.48) and (10.49):

k.T � �I/�1f kk;1 � Ck.�/kf kk;1 for all f 2 W k;1.M/: (10.48)

k.T � �I/�1f kkC1;1 � CkC1.�/kf kkC1;1 for all f 2 W k;1.M/: (10.49)

If we define a real interpolation space

�
W k;1.M/;W kC1;1.M/

�
�;1 ; k 2 N; 0 < � < 1;

between the Sobolev spaces W k;1.M/ and W kC1;1.M/ as follows:

�
W k;1.M/;W kC1;1.M/

�
�;1

D
	

u 2 W k;1.M/ W kuk�;1 WD sup
t>0

K.t; u/

t�
<1




;

where

K.t; u/ D inf

	

ku0kk;1 C tku1kkC1;1 W u D u0 C u1;

u0 2 W k;1.M/; u1 2 W kC1;1.M/




:

Then it is known (Bergh–Löfström [BL, Theorem 6.4.5], Triebel [Tr, Theo-
rem 2.4.2]) that the Hölder space CkC� .M/ coincides with the interpolation space

CkC� .M/ D �W k;1.M/;W kC1;1.M/
�
�;1

with the norm k � k�;1.
Indeed, it suffices to note the following three assertions (i), (ii) and (iii):

(i) For any integerm 2 N, we have the inclusions

Cm.M/ 	 W m;1.M/ 	 Bm1;1.M/:
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(ii) For any integer k 2 N and any 0 < � < 1, we have

�
Bk1;1.M/;BkC11;1.M/

�
�;1 D BkC�1;1.M/ D CkC� .M/;

�
Ck.M/; C kC1.M/

�
�;1 D CkC� .M/:

(iii) For any integer k 2 N and 0 < � < 1, we have the inclusions

CkC� .M/ D �
Ck.M/; C kC1.M/

�
�;1

	 �W k;1.M/;W kC1;1.M/
�
�;1

	 �Bk1;1.M/;BkC11;1.M/
�
�;1

D CkC� .M/:

Therefore, by an interpolation argument we obtain from inequalities (10.48)
and (10.49) that

k.T � �I/�1f kCkC� .M/ � CkC1.�/� Ck.�/1��kf kCkC� .M/

for all f 2 CkC� .M/:

This proves the desired estimate (10.28) with

C.�/ WD CkC1.�/� Ck.�/1�� :

The situation may be visualized by the following diagram:

Now the proof of Theorem 10.23 is complete. ut

10.7 The Symbol of the First-Order Pseudo-differential
Operator …˛

The purpose of this last section is to explicitly calculate the symbol of the harmonic
operator H˛ and that of the pseudo-differential operator …˛ in the special case
where P D 
.
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Fig. 10.8 The local
coordinate system .y0; yN /

Let x0 be an arbitrary point of the boundary @D. We take the following local
coordinate system: Make the yN -axis coincide with the interior normal n at x0 and
the hyperplane yN D 0 coincide with the tangent hyperplane of @D at x0 (see
Fig. 10.8). Then the domainD is given by the formula

yN � '.y0/ > 0;

where '.y0/ is a smooth function of the variables y0 D .y1; y2; : : : ; yN�1/.
We may assume that the Taylor expansion of '.y0/ is given as follows:

'.y0/ D
N�1X

jD1
!j y

2
j C

N�1X

i;j;kD1
!ijkyiyj yk CO

ˇ
ˇy0ˇˇ4

�
;

where the !i and !ijk are constants satisfying the conditions

!kij D !ijk D !jik:

For any two vectors ˛0 D .˛1; ˛2; : : : ; ˛N�1/ and ˇ0 D .ˇ1; ˇ2; : : : ; ˇN�1/
tangent to @D at x0, the bilinear form

!x0.˛
0; ˇ0/ D 2

N�1X

jD1
!j ˛j ˇj

is the second fundamental form, while

M.x0/ D 2

N � 1
N�1X

jD1
!j

is the mean curvature of the boundary @D at x0.
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Now we can introduce a new local coordinate system x D .x0; xN / with x0 D
.x1; x2; : : : ; xN�1/ by the formulas

yi D xi �
xN

@'

@xir

1CPN�1
iD1


@'

@xi

�2
; 1 � i � N � 1;

yN D '.x0/C xNr

1CPN�1
iD1


@'

@xi

�2
:

Indeed, it suffices to note that the Jacobian satisfies the condition

D.y1; y2; : : : ; yN /

D.x1; x2; : : : ; xN /
D 1

at the origin, so that .x1; x2; : : : ; xN / can be chosen as a local coordinate system in
some neighborhood of the origin (see Fig. 10.9).

Then we have the following Taylor expansions for the local coordinate system
.x1; x2; : : : ; xN /:

xi D yi C 2!iyiyN C 4!2i yi y2N � 2!iyi
0

@
N�1X

jD1
!j y

2
j

1

A

C3yN
N�1X

j;kD1
!ijkyj yk CO


jyj4

�
;

xN D yN �
N�1X

iD1
!iy

2
i � 2

0

@
N�1X

jD1
!2j y

2
j

1

AyN �
N�1X

i;j;kD1
!ijkyiyj yk CO


jyj4

�
:

The Riemannian metric is given by the following formula (10.50):

ds2 D dy21 C dy22 C : : :C dy2N (10.50)

D
N�1X

iD1
.1 � 2!ixN /2dx2i C 4

 
N�1X

iD1
!ixidxi

!2

�12xN
N�1X

i;j;kD1
!ijkxkdxidxj C dx2N CO


jxj3 jdxj2

�
:
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Fig. 10.9 The local coordinate system .x0; xN /

Therefore, we obtain from (10.50) that the symbol of the minus Laplacian

�
 D �
�
@2

@x21
C @2

@x22
C : : :C @2

@x2N

�

on D is given by the formula

N�1X

jD1


1C 4!j xN C 12!2j x2N CO


jxj3

��
�2j C �2N (10.51)

C
N�1X

i;jD1

 

12xN

 
N�1X

kD1
!ijkxk

!

� 4!i!j xixj CO

jxj3

�
!

�i �j
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�2p�1
N�1X

jD1

 

�2
 
N�1X

iD1
!i!j xj

!

C 3xN
 
N�1X

iD1
!iij

!

CO

jxj2

�
!

�j

C2p�1
0

@
N�1X

jD1
!j C 2xN

N�1X

jD1
!2j C 3

N�1X

i;jD1
!iij xj CO


jxj2

�
1

A �N :

We remark that the principal symbol A2.x; � 0; �N / of �
 is a polynomial of �N
of degree 2. We denote the roots of A2.x0; 0; � 0; �N / with positive imaginary part
and negative imaginary part by C.x0; 0; � 0/ and �.x0; 0; � 0/, respectively. Then,
in view of (10.47) it is easy to verify that the roots ˙.x0; 0; � 0/ have the following
Taylor expansions (10.52):

˙.x0; 0; � 0/ D ˙p�1
 
ˇ
ˇ� 0ˇˇ� 2

PN�1
i;jD1 !i!j xixj �i �j

j� 0j CO
ˇ
ˇx0ˇˇ3

�
!

;

(10.52)

where

� 0 D .�1; �2; : : : ; �N�1/ ; j� 0j D
q
�21 C �22 C : : :C �2N�1:

Moreover, we can write down the symbol

f .x; �/ D f�2.x; �/C f�3.x; �/C : : :

of the fundamental solution F of �
 as follows:

f�2.x; �/ D 1

j�j2 �
4xN

PN�1
jD1 !j �2j

�

j�j4 (10.53a)

C
16x2N

PN�1
jD1 !j �2j

�2

j�j6 �
12x2N

PN�1
jD1 !2j �2j

�

j�j4

�
PN�1

i;jD1

12xN

PN�1
kD1 !ijkxk

�
� 4!i!j xixj

�
�i �j

j�j4

CO

jxj3

�
j�j�2;

f�3.x; �/ D �2
p�1 �N

 
4
PN�1

jD1 !j �2j
j�j6 C

PN�1
jD1 !j
j�j4

!

(10.53b)

CO .jxj/ j�j�3;
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where

� D .� 0; �N / D .�1; �2; : : : ; �N�1; �N / ; j�j D
q
j� 0j2 C �2N :

We calculate the symbol of the Poisson operator P . To do this, we denote by T C a
first-order pseudo-differential operator on @D having the symbol C.x0; 0; � 0/, and
consider a mappingQ W C1

0 .@D/! C1.D/ defined by the formula

Q W ' 7�! F
�

�p�1 @ı@D
@n
˝ ' � ı@D ˝ TC'

�

:

Here ı@D ˝  is a distribution on RN defined by the formula

hı@D ˝  ; �i D
Z

@D

�j@D �  d�; � 2 C1
0

�
RN

�
;

where d� is the hypersurface element of @D. It should be emphasized that the
mappingQ is a pseudo-Poisson operator in the sense of Boutet de Monvel [Bo], and
further that its symbol has an asymptotic expansion with respect to homogeneous
degree of

�
x�1
N ; � 0�. Moreover, by using (10.52) and (10.53) we can calculate the

symbol of Q as follows:

p�1 e
p�1xN C.x0;0;�0/

C 1

2�

Z 1

�1
xN
@f�2
@xN

.x0; 0; � 0; �N /
�
�N � �.x0; 0; � 0/

�
e

p�1xN �N d�N

� 1

2�

Z 1

�1

N�1X

jD1

@f�2
@�j

.x0; 0; � 0; �N /
�

�p�1 @
�

@xj
.x0; 0; � 0/

�

e
p�1xN �N d�N

C 1

2�

Z 1

�1
f�3.x0; 0; � 0; �N /

�
�N � �.x0; 0; � 0/

�
e

p�1xN �N d�N

CO
�
xN

ˇ
ˇ� 0ˇˇ�1

�2�

D p�1 e�xN

j�0j�2j�0j�1.PN�1

i;jD1 !i!j xi xj �i �j /CO

jx0j3

��

�p�1 xN
0

@
N�1X

jD1
!j �

2
j C 3

N�1X

i;j;kD1
!ijkxk�i �j CO

ˇ
ˇx0ˇˇ2

�
1

A

�

2xN

ˇ
ˇ� 0ˇˇ�1 C ˇˇ� 0ˇˇ�2

�
e�xN j�0j

C
0

@
N�1X

j;kD1
!j!k�kxk�

2
j

ˇ
ˇ� 0ˇˇ�1

1

A

2xN

ˇ
ˇ� 0ˇˇ�2 C 2 ˇˇ� 0ˇˇ�3 CO �ˇˇx0ˇˇ�

�
e�xN j�0j
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Cp�1
 0

@
N�1X

jD1
!j �

2
j

1

A
�

x2N j� 0j�1 � 1

2j� 0j3
�

Cp�1
 
N�1X

iD1
!i

!�

xN � 1

2j� 0j
�!

e�xN j�0j CO
�
xN

ˇ
ˇ� 0ˇˇ�1

�2�

:

This proves that the mapping

K W ' 7�! Q'j@D
is an elliptic pseudo-differential operator of order zero, and its complete symbol
k.x0; � 0/ is given by

k.x0; � 0/ D p�1
 

1 �
PN�1

jD1 !j �2j
2 j� 0j3 �

PN�1
jD1 !j
2 j� 0j C : : :

!

:

If L is a parametrix forK , then it is known that the operator

QL' D F
�

�p�1 @ı@D
@n
˝ L' � ı@D ˝ TCL'

�

coincides with the harmonic operator H modulo smooth operators. The symbol of
the harmonic operatorH is given by

e
�xN


j�0j�2j�0j�1.PN�1

jD1 !j xj �j /
2CO


jx0j3

��

(10.54)

�xN
0

@

0

@
N�1X

jD1
!j �

2
j

1

A
ˇ
ˇ� 0ˇˇ�2 CO �ˇˇx0ˇˇ�

1

A e�xN j�0j

CxN
0

@
N�1X

jD1
!j CO

�ˇˇx0ˇˇ�
1

A e�xN j�0j CO
�
xN

ˇ
ˇ� 0ˇˇ�1

�2�

:

Therefore, we find that the mapping

… W ' 7�! @.P'/
@n

ˇ
ˇ
ˇ
ˇ
@D

is a first-order classical pseudo-differential operator on the boundary @D, and further
that its principal symbol p1.x0; � 0/ is given by
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p1.x
0; � 0/ D � ˇˇ� 0ˇˇC

2
PN�1

jD1 !j xj �j
�2

j� 0j CO
ˇ
ˇx0ˇˇ3

�
;

and the real part of the second symbol p0.x0; � 0/ is given by

Rep0.x0; � 0/ D �
PN�1

jD1 !j �2j
j� 0j2 C

N�1X

jD1
!j CO

�ˇˇx0ˇˇ� :

Moreover, we can write down the complete symbol p.x0; � 0/ of … in the following
coordinate-free form (10.55) (see [Ta2]):

Lemma 10.33. The symbol p.x0; � 0/ of the pseudo-differential operator… is given
by

p.x0; � 0/ D �j� 0j � 1
2

 
!x0.b� 0;b� 0/
j� 0j2 � .N � 1/M.x0/

!

(10.55)

Cp�1 1
2

div ı.�0/.x
0/C terms of order � �1:

Here:

(a) j� 0j is the length of � 0 with respect to the Riemannian metric .gij.x
0// of @D

induced by the natural metric of RN .
(b) M.x0/ is the mean curvature of @D at x0.
(c) !x0.b� 0;b� 0/ is the second fundamental form of @D at x0, while b� 0 2 Tx0.@D/ is

the tangent vector corresponding to the cotangent vector � 0 2 T �
x0.@D/ by the

duality between Tx0.@D/ and T �
x0.@D/ with respect to the Riemannian metric

.gij.x
0// of @D.

(d) div ı.�0/ is the divergence of a real smooth vector field ı.�0/ on @D defined (in
local coordinates) by the formula

ı.�0/ D
N�1X

jD1

@j� 0j
@�j

@

@xj
for � 0 6D 0:

Proof. First, we remark that the symbol p.x0; � 0/ of the operator… is given by

p.x0; � 0/ D � ˇˇ� 0ˇˇ � 1
2

 
!x.b� 0;b� 0/
j� 0j2 � .N � 1/M.x0/

!

(10.56)

Cp�1 r0.x0; � 0/C terms of order � �1;

where r0.x0; � 0/ is a real term of order zero.
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In order to calculate the term r0.x
0; � 0/, let .U; �/ be a local chart of @D. Then

we have, for all ',  2 C1
0 .U /,

.';… /L2.@D/

D .…'; /L2.@D/
D
Z

RN�1

…'
�
��1.x0/

� �  .��1.x0//�.x0/ dx

D
Z

RN�1

'
�
��1.x0/

� � .…0/
� . .��1.x0// �.x0// dx

D
Z

RN�1

'
�
��1.x0/

� �
�

1

�.x0/
.…0/

� �.x0/
�

 .��1.x0//�.x0/ dx;

where

�.x0/ D
q

det
�
gij.x0/

�
;

and .…0/
� is the adjoint of … in the space L2.RN�1/. By using Theorems 7.19

and 7.20, we obtain from (10.56) that the symbol of the pseudo-differential operator

…� D 1

�.x0/
.…0/

� �.x0/

is given by

� ˇˇ� 0ˇˇ � 1
2

 
!x.b� 0;b� 0/
j� 0j2 � .N � 1/M.x0/

!

(10.57)

�p�1
0

@r0.x0; � 0/ �
N�1X

jD1

@2 j� 0j
@xj @�j

� 1

�.x0/

N�1X

jD1

@ j� 0j
@�j

@�.x0/
@xj

1

A

C terms of order� �1:

Since … D …�, it follows from (10.56) and (10.57) that

p�1 r0.x0; � 0/

D �p�1
0

@r0.x
0; � 0/�

N�1X

jD1

@2 j� 0j
@xj @�j

� 1

�.x0/

N�1X

jD1

@ j� 0j
@�j

@�.x0/
@xj

1

A ;
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so that

r0.x
0; � 0/ D 1

2

0

@ 1

�.x0/

N�1X

jD1

@ j� 0j
@�j

@�.x0/
@xj

C
N�1X

jD1

@2 j� 0j
@xj @�j

1

A : (10.58)

However, we recall that the divergence div v of a real smooth vector field

v D
N�1X

jD1
vj

@

@xj

is given (in local coordinates) by

div v D 1

�.x0/

N�1X

jD1

@

@xj

�
�.x0/ vj

�

D
N�1X

jD1

@vj

@xj
C 1

�.x0/

N�1X

jD1

@�.x0/
@xj

vj :

Hence we can rewrite (10.58) as follows:

r0.x
0; � 0/ D 1

2
div ı.�0/.x

0/: (10.59)

Therefore, the desired formula (10.55) follows by combining (10.56) and (10.59).
The proof of Lemma 10.33 is complete.

It should be emphasized that the distribution kernel `.x0; y0/ of … is given by

`.x0; y0/ D � .N=2/

�N=2
1

jx0 � y0jN C : : : ;

where jx0 � y0j denotes the geodesic distance between x0 and y0 with respect to the
Riemannian metric .gij.x

0// of the boundary @D.
Now we are in a position to calculate the symbol of the pseudo-differential

operator …˛ in the special case where P D 
. To do this, we remark that the
operator …˛ coincides with the operator … when ˛ D 0. Therefore, by replacing
the operator
 by
�˛ we can write down the complete symbol p.x0; � 0I˛/ of…˛

for ˛ � 0 as follows (cf. formula (10.55)):

p.x0; � 0I˛/ D �
p
j� 0j2 C ˛ � 1

2

 
!x0.b� 0;b� 0/
j� 0j2 C ˛ � .N � 1/M.x

0/
!

Cp�1 1
2

div ı.�0;˛/.x
0/C terms of order � �1:
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Here div ı.�0;˛/ is the divergence of a real smooth vector field ı.�0;˛/ on @D defined
(in local coordinates) by the formula

ı.�0;˛/ D
N�1X

jD1

@
pj� 0j2 C ˛
@�j

@

@xj
for � 0 6D 0:

Hence we find that the complete symbol p.x0; � 0I˛/ is given by

p.x0; � 0I˛/ D �j� 0j � 1
2

 
!x0.b� 0;b.� 0//
j� 0j2 � .N � 1/M.x0/

!

(10.60)

Cp�1 1
2

div ı.�0/.x
0/

C terms of order � �1=2 depending on ˛:

Indeed, it suffices to note the following asymptotic expansions for any parameter
˛ � 0:

p
j� 0j2 C ˛ D j� 0j � ˛

2
j� 0j�1 � ˛

2

8
j� 0j�3 C : : :

D j� 0j C terms of order � �1 depending on ˛;

1

j� 0j2 C ˛ D
1

j� 0j2 C ˛ j�
0j�4 C : : :

D 1

j� 0j2 C terms of order � �4 depending on ˛;

@
pj� 0j2 C ˛
@�j

D �j
pj� 0j C ˛

�j

j� 0j3=2 C : : :

D @j� 0j
@�j
C terms of order � �1=2 depending on ˛:

10.8 Notes and Comments

The results discussed in this chapter are adapted from Taira [Ta4, Ta5, Ta6, Ta7,
Ta8, Ta9, Ta10]. Agmon [Ag] and Lions–Magenes [LM] are the classics for elliptic
boundary value problems by variational methods.

Section 10.2: Theorem 10.2 is a generalization of Taira [Ta6, Theorem 1].
It should be noted that Theorem 1.2 was proved before by Taira [Ta10, Theo-
rem 10.1.3] under some additional conditions, and also by Cancelier [Cn, Théo-
rème 3.2]. On the other hand, Takanobu and Watanabe [TW] proved a probabilistic
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version of Theorem 1.2 in the case where the domain D is the half-space RNC
(see [TW, Corollary]). It seems that our method of construction of Feller semigroups
is, in spirit, not far removed from the probabilistic method used by Watanabe [Wb]
(see Remark 10.3).

Section 10.3: Theorem 10.4 is a pseudo-differential operator version of Bony–
Courrège–Priouret [BCP, Théorème XV]. Since the pseudo-differential operator
T 2 L1�	21;0 .RN / has the transmission property with respect to @D, we can make
use of the zero-extension of functions in the interior D outside of the closure
D D D [ @D. This extension has a probabilistic interpretation that any Markovian
particle does not move by jumps fromD into the outside RNnD across the boundary
@D. Therefore, we can prove that every solution w of the Dirichlet problem

(
.˛ �WD/w D 0 in D;

w D  on @D
(10.11)

is expressed in the form

w D H˛ :

This formula is a pseudo-differential operator version of the de la Vallée-Poussin
formula obtained by the balayage method. If a Markovian particle may move by
jumps from the interior D into the outside RN n D across the boundary @D, then
we can apply balayage potential theory to solve Dirichlet problem (10.11) in an
extended context (see [BH, Ha]).

Section 10.4: Theorem 10.19 is a pseudo-differential operator version of Bony–
Courrège–Priouret [BCP, Théorème XX].

Section 10.5: Theorem 10.21 is a revised version of Taira [Ta6, Theorem 1].
Section 10.6: Theorem 10.23 is inspired by Oleı̆nik–Radkevič [OR, Chapter I]

and Cancelier [Cn, Théorème 4.5]. This Sect. 10.6 is a refinement of Appendix B of
the first edition of the present monograph.

Section 10.7: The results discussed here are adapted from Fujiwara–Uchiyama
[FU] and Taira [Ta2].



Chapter 11
Proof of Theorem 1.3

In this chapter we consider the non-transversal case, and prove Theorem 1.3
(Theorem 11.1). The idea of the proof can be traced back to the work of Taira [Ta9]
and [Ta6].

We assume the following condition (A):

(A) There exists a second-order Ventcel’ boundary condition L� such that

Lu D m.x0/ L�uC �.x0/u on @D;

where
.30/ m.x0/ 2 C1.@D/ andm.x0/ � 0 on @D,

and L� is given, in terms of local coordinates .x1; x2; : : : ; xN�1/, by the formula

L�u.x
0/

D Qu.x0/C �.x0/
@u

@n
.x0/� ı.x0/WDu.x0/C � u.x0/

WD
N�1X

i;jD1
˛ij .x0/

@2u

@xi@xj
.x0/C

N�1X

iD1
ˇ
i
.x0/

@u

@xi
.x0/C �.x0/

C�.x0/
@u

@n
.x0/ � ı.x0/WDu.x0/

C
N�1X

jD1
�j .x

0/
@u

@xj
.x0/C � .x0/u.x0/

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__11,
© Springer-Verlag Berlin Heidelberg 2014
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C
Z

@D

r.x0; y0/

2

4u.y0/� .x0; y0/

0

@u.x0/C
N�1X

jD1

�
yj � xj

� @u

@xj
.x0/

1

A

3

5 dy0

C
Z

D

t.x0; y/
�
u.y/� u.x0/

�
dy; x0 2 @D;

and satisfies the transversality condition

Z

D

t.x0; y/ dy D C1 if �.x0/ D ı.x0/ D 0: (1.10)

Moreover, we recall the following four conditions (7)–(10):

(7) The integral kernel r.x0; y0/ is the distribution kernel of a classical pseudo-
differential operator R 2 L

2�	1
1;0 .@D/, 	1 > 0, and r.x0; y0/ � 0 off the

diagonal
@D D f.x0; x0/ W x0 2 @Dg in @D � @D. The density dy0 is a strictly
positive density on @D.

(8) The integral kernel t .x; y/ is the distribution kernel of a properly supported,
classical pseudo-differential operator T 2 L1�	21;0 .RN /, 	2 > 0, which has the
transmission property with respect to the boundary @D, and t.x; y/ � 0 off
the diagonal
RN .

(9) The function .x; y/ is a local unity function on D; more precisely, .x; y/
is a smooth function on D � D, with compact support in a neighborhood of
the diagonal 
@D , such that, at each point x0 of @D, .x0; y/ D 1 for y in a
neighborhood of x0 in D.

(10) The operator � r is a boundary condition of order 2 � 	1, and satisfies the
condition

Q1.x0/C � r1.x
0/ D �.x0/C

Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 � 0 on @D:

(1.9)

We let

M D fx0 2 @D W �.x0/ D ı.x0/ D 0;
Z

D

t.x0; y/ dy <1g:

Then, by condition (1.10) it follows that

M D fx0 2 @D W m.x0/ D 0g;

since we have

�.x0/ D m.x0/ �.x0/; ı.x0/ D m.x0/ ı.x0/; t.x0; y/ D m.x0/ t.x0; y/:

Hence we find that the boundary condition L is not transversal on @D.
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Furthermore, we assume the following condition (H):

(H) m.x0/C j�.x0/j > 0 on @D.

The intuitive meaning of conditions (A) and (H) is that a Markovian particle does
not stay on @D for any period of time until it “dies” when it reaches the setM where
the particle is definitely absorbed.

In Sect. 11.1 we consider a one-point compactification K@ D K [ f@g of the
space K D D nM , where

M D fx0 2 @D W m.x0/ D 0g;

and introduce a closed subspace of C.K@/ by

C0.K/ D fu 2 C.K@/ W u.@/ D 0g :

Then we have the isomorphism

C0.K/ Š C0.D nM/ D ˚u 2 C.D/ W u D 0 on M
�
:

In Sect. 11.2 we apply part (ii) of Theorem 9.35 to the operator W defined by
formula (1.10). Our functional analytic approach may be visualized as follows (see
Sect. 9.1):

11.1 The Space C0.D n M/

First, we consider the one-point compactificationK@ D K [ f@g of the space K D
D nM , where

M D fx0 2 @D W m.x0/ D 0g:

We say that two points x and y of D are equivalent modulo M if x D y or x,
y 2 M ; we then write x � y. We denote by D=M the totality of equivalence
classes modulo M . On the set D=M , we define the quotient topology induced by
the projection q W D ! D=M . It is easy to see that the topological space D=M
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D D M

M = {m = 0}
•
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.............................................................................................

D

Fig. 11.1 The compactification D=M of D nM

is a one-point compactification of the space D nM and that the point at infinity @
corresponds to the set M (see Fig. 11.1):

K@ D D=M; @ DM:

Furthermore, we have the following isomorphism (11.1):

C.K@/ Š
˚
u 2 C.D/ W u is constant on M

�
: (11.1)

Now we introduce a closed subspace of C.K@/ as in Sect. 9.1:

C0.K/ D fu 2 C.K@/ W u.@/ D 0g :

Then we have, by assertion (11.1),

C0.K/ Š C0.D nM/ D ˚u 2 C.D/ W u D 0 on M
�
: (11.2)

11.2 End of Proof of Theorem 1.3

We shall apply part (ii) of Theorem 9.35 to the operator W defined by for-
mula (1.10).

First, we show that if condition (A) is satisfied, then the operator LH˛ is bijective
in the framework of Hölder spaces. This is proved by applying Theorem 10.23 just
as in the proof of Theorem 1.2. Therefore, we find that a unique solution u of the
boundary value problem

(
.˛ �WD/u D f in D;

Lu D m.x0/ L�uC �.x0/u D 0 on @D
.��/
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can be expressed as follows:

u D G˛f D G�
˛f �H˛


LH˛

�1 �
LG�

˛f
��
:

This formula allows us to verify all the conditions of the generation theorems of
Feller semigroups discussed in Sect. 9.3.

To do this, we simplify the boundary condition

Lu D 0 on @D:

If conditions (A) and (H) are satisfied, then we may assume that the boundary
condition L is of the form

Lu D m.x0/ L�uC .m.x0/ � 1/u; (11.3)

with

0 � m.x0/ � 1 on @D:

Indeed, it suffices to note that the boundary condition

Lu D m.x0/ L�uC �.x0/ .uj@D/ D 0 on @D

is equivalent to the condition

�
m.x0/

m.x0/ � �.x0/

�

L�uC
�

�.x0/
m.x0/� �.x0/

�

.uj@D/ D 0 on @D:

Furthermore, we note that

LG0
˛f D m.x0/ L�G0

˛f;

and that

LH˛' D m.x0/ L�H˛' C .m.x0/� 1/':

Hence, in view of definition (10.21) it follows that

Lu D m.x0/ L�uC .m.x0/� 1/ .uj@D/ ; u 2 D.L/: (11:30)

Therefore, the next generation theorem for Feller semigroups implies Theo-
rem 1.3:

Theorem 11.1 H) Theorem 1.3
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Theorem 11.1. We define a linear operator

W W C0.D nM/ �! C0.D nM/

as follows (cf. formula (10.23)).

(a) The domainD.W/ of W is the set

D.W/ D fu 2 C0.D nM/ W W u 2 C0.D nM/; (11.4)

Lu D m.x0/ L�uC .m.x0/� 1/ .uj@D/ D 0g:

(b) Wu D W u for every u 2 D.W/.

Assume that the following condition (A0) is satisfied:

(A0) 0 � m.x0/ � 1 on @D.

Then the operator W is the infinitesimal generator of some Feller semigroup
fTtgt�0 on D nM , and the Green operatorG˛ D .˛I �W/�1, ˛ > 0, is given by

G˛f D G�
˛f �H˛


LH˛

�1 �
LG�

˛f
��
; f 2 C0.D nM/: (11.5)

Here G�
˛ is the Green operator for the boundary condition L� given by for-

mula (10.22):

G�
˛f D G0

˛f �H˛


L�H˛

�1 
L�G0

˛f
��
; f 2 C.D/:

Proof. We apply part (ii) of Theorem 9.35 to the operator W defined by for-
mula (11.4), just as in the proof of Theorem 1.2. The proof is divided into several
steps.

Step 1: First, we prove that

For all ˛ > 0, the operator LH˛ generates a Feller semigroup

on the boundary @D:

By virtue of the transmission property of T 2 L2�	21;0 .RN /, it follows (see Boutet
de Monvel [Bo], Rempel–Schulze [RS, Chapter 3]) that the operator LH˛ is the
sum of a degenerate elliptic differential operator of second order and a classical
pseudo-differential operator of order 2 �min.	1; 	2/:

LH˛'.x
0/

D m.x0/L�H˛'.x
0/C .m.x0/ � 1/'.x0/
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D m.x0/

� N�1X

i;jD1

˛ij .x0/
@2'

@xi @xj
.x0/C

N�1X

iD1

ˇ
i
.x0/

@'

@xi
.x0/C �.x0/'.x0/

�

Cm.x0/�.x0/
@

@n
.H˛'/ .x

0/ � ˛ m.x0/ ı.x0/'.x0/C .m.x0/� 1/'.x0/

Cm.x0/

�N�1X

jD1

�j .x
0/
@u

@xj
.x0/C � .x0/u.x0/

�

Cm.x0/

Z

@D

r.x0; y0/
�
'.y0/ � .x0; y0/

�

'.x0/C
N�1X

jD1

.yj � xj
�
@'

@xj
.x0//

�
dy0

C
Z

D

t.x0; y/
�
H˛'.y/ � '.x0/

�
dy

�

:

Furthermore, it follows from an application of Hopf’s boundary point lemma (see
Theorem 8.15) that

H˛1.y/� 1 < 0 in D;

…˛1.x
0/ D @

@n
.H˛1/.x

0/ < 0 on @D:

This implies that

LH˛1.x
0/ D m.x0/ L�H˛1.x

0/C .m.x0/� 1/ < 0 on @D:

Indeed, it suffices to note that

L�H˛1.x
0/ D �˛ ı.x0/C �.x0/…˛1.x

0/ (11.6)

C
�

�.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0
�

C
Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

� �˛ ı.x0/C �.x0/…˛1.x
0/C

Z

D

t.x0; y/ ŒH˛1.y/� 1� dy

< 0 on @D;

since we have, by condition (1.9),

�.x0/C � .x0/C
Z

@D

r.x0; y0/
�
1 � .x0; y0/

�
dy0 � 0 on @D:
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Therefore, by applying Theorem 10.23 to the operator LH˛ we obtain that

If � > 0 is sufficiently large, then the range R.LH˛ � �I/ (11.7)

contains the space C2C� .@D/:

This implies that the rangeR.LH˛ � �I/ is a dense subset of C.@D/. Therefore,
by applying part (ii) of Theorem 10.19 to the operator L we obtain that the
operator LH˛ is the infinitesimal generator of some Feller semigroup on @D,
for all ˛ > 0.

Step 2: Now we prove that

If condition (A0) is satisfied, then the equation (11.8)

LH˛  D '
has a unique solution  in D

�
LH˛

�
for any ' 2 C.@D/; hence

the inverse LH˛
�1

of LH˛ can be defined on the whole space C.@D/:

Further, the operator �LH˛
�1

is non-negative and bounded on C.@D/:

Since we have, by inequality (11.6) and condition (A0),

LH˛1.x
0/ D m.x0/L�H˛1.x

0/C .m.x0/ � 1/ < 0 on @D;

it follows that

k˛ D � sup
x02@D

LH˛1.x
0/ > 0;

and further that the constants k˛ are increasing in ˛ > 0:

˛ � ˇ > 0 H) k˛ � kˇ:

Indeed, it suffices to note that H˛1 converges to zero and …˛1 diverges to �1
monotonically as ˛ ! C1, respectively. Moreover, by using Corollary 9.36
with K WD @D, A WD LH˛ and c WD k˛ we obtain that the operator LH˛ C k˛I
is the infinitesimal generator of some Feller semigroup on @D. Therefore, since
k˛ > 0, it follows from an application of part (i) of Theorem 9.35 with A WD
LH˛ C k˛I that the equation

�LH˛  D
�
k˛I � .LH˛ C k˛I /

�
 D '

has a unique solution  2 D �
LH˛

�
for any ' 2 C.@D/, and further that the

operator
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�LH˛
�1 D �k˛I � .LH˛ C k˛I /

��1

is non-negative and bounded on the space C.@D/ with norm

�
�
��LH˛

�1��
� D

�
�
�
�
k˛I � .LH˛ C k˛I /

��1��
� � 1

k˛
: (11.9)

Step 3: By assertion (11.8), we can define the operator G˛ by formula (11.5) for
all ˛ > 0. We prove that

G˛ D .˛I �W/�1; ˛ > 0: (11.10)

By virtue of Lemma 10.24, it follows that we have, for all f 2 C0.D nM/,

G˛f 2 D.W /;

and

WG˛f D ˛G˛f � f:

Furthermore, we have

LG˛f D LG�
˛f � LH˛


LH˛

�1 �
LG�

˛f
�� D 0 on @D: (11.11)

However, we recall the formula (11:30)

Lu D m.x0/ L�uC .m.x0/� 1/ .uj@D/ ; u 2 D.L/:

Hence we find that (11.11) is equivalent to the following:

m.x0/ L�.G˛f /C .m.x0/� 1/ .G˛f j@D/ D 0 on @D: (11:110)

This implies that

G˛f D 0 onM D fx0 2 @D W m.x0/ D 0g;

so that

WG˛f D ˛G˛f � f D 0 on M:

Summing up, we have proved that

G˛f 2 D.W/ D ˚u 2 C0.D nM/ W W u 2 C0.D nM/; Lu D 0� ;
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and

.˛I �W/G˛f D f; f 2 C0.D nM/;

that is,

.˛I �W/G˛ D I on C0.D nM/:

Therefore, in order to prove (11.10) it suffices to show the injectivity of the
operator ˛I �W for ˛ > 0.
Assume that

u 2 D.W/ and .˛I �W/u D 0:

Then, by Corollary 10.13 it follows that the function u can be written in the form

u D H˛ .uj@D/ ; uj@D 2 D D D �
LH˛

�
:

Thus we have

LH˛ .uj@D/ D Lu D 0:

In view of assertion (11.8), this implies that

uj@D D 0;

so that

u D H˛ .uj@D/ D 0 in D:

Step 4: Now we prove the following three assertions (i)–(iii):

(i) The operatorG˛ is non-negative on the space C0.D nM/:

f 2 C0.D nM/; f � 0 on D nM H) G˛f � 0 on D nM:

(ii) The operatorG˛ is bounded on the space C0.D nM/ with norm

kG˛k � 1

˛
; ˛ > 0:

(iii) The domainD.W/ is dense in the space C0.D nM/.

Step 4-1: First, we show the non-negativity of G˛ on the space C.D/:

f 2 C.D/; f � 0 on D H) G˛f � 0 on D:
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Recall that the Dirichlet problem

(
.˛ �WD/u D f in D;

u D ' on @D
(D0)

is uniquely solvable. Hence it follows that

G�
˛f D H˛

�
G�
˛f j@D

�CG0
˛f onD: (11.12)

Indeed, both sides have the same boundary values G�
˛f j@D and satisfy the

same equation: .˛ �WD/u D f in D.
Thus, by applying the operatorL to both sides of (11.12) we obtain that

LG�
˛f D LH˛

�
G�
˛f j@D

�C LG0
˛f:

Since the operators�LH˛
�1

and LG0
˛ are non-negative, it follows that


�LH˛

�1� �
LG�

˛f
� D �G�

˛f j@D C

�LH˛

�1� 
LG0

˛f
�

� �G�
˛f j@D on @D:

Therefore, by the non-negativity of H˛ and G0
˛ we find that

G˛f D G�
˛f CH˛


�LH˛

�1 �
LG�

˛f
�� � G�

˛f �H˛

�
G�
˛f j@D

�

D G0
˛f � 0 on D:

Step 4-2: Next we prove the boundedness ofG˛ on the space C0.D nM/ with
norm

kG˛k � 1

˛
; ˛ > 0: (11.13)

To do this, it suffices to show that

f 2 C0.DnM/; f � 0 on D H) ˛G˛f � max
D

f onD; (11:130)

since G˛ is non-negative on the space C.D/.
We observe (cf. (11:30)) that

LG�
˛f D m.x0/ L�G�

˛f C .m.x0/� 1/ �G�
˛f j@D

� D .m.x0/� 1/ �G�
˛f j@D

�
;

so that
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G˛f D G�
˛f �H˛


LH˛

�1 �
LG�

˛f
��

(11:50)

D G�
˛f CH˛


�LH˛

�1 �
.m.x0/ � 1/G�

˛f j@D
��
:

Therefore, by the non-negativity of H˛ and �LH˛
�1

it follows that

G˛f D G�
˛f CH˛


�LH˛

�1 �
.m.x0/� 1/G�

˛f j@D
�� � G�

˛f

� 1

˛
max
D

f on D;

since we have the inequalities

.m.x0/ � 1/G�
˛f j@D � 0 on @D;

kG�
˛k � 1=˛:

This proves assertion (11:130) and hence assertion (11.13).
Step 4-3: Finally, we prove the density of D.W/ in the space C0.D nM/. In

view of (11.10), it suffices to show that

lim
˛!C1 k˛G˛f � f k1 D 0; f 2 C0.D nM/\ C1.D/: (11.14)

We recall (cf. (11:50)) that

˛G˛f � f D ˛G�
˛f � f � ˛H˛


LH˛

�1 �
LG�

˛f
��

(11.15)

D �
˛G�

˛f � f
�CH˛


LH˛

�1 �
˛.1 �m.x0//G�

˛f j@D
��
:

We estimate each term on the right-hand side of (11.15).
Step 4-3-1: First, by applying Theorem 1.2 to the boundary condition L�

we find from assertion (10.28) that the first term on the right-hand side
of (11.15) tends to zero:

lim
˛!C1 k˛G

�
˛f � f k1 D 0: (11.16)

Step 4-3-2: To estimate the second term on the right-hand side of (11.15),
we note that

H˛


LH˛

�1 �
˛.1 �m.x0//G�

˛f j@D
��

D H˛


LH˛

�1 �
.1 �m.x0//f j@D

��

CH˛


LH˛

�1 �
.1 �m.x0//.˛G�

˛f � f /j@D
��
:
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However, we have, by inequality (11.9) and assertion (11.16),

�
�
�H˛


LH˛

�1 �
.1 �m.x0//

�
˛G�

˛f � f
� j@D

����
�1 (11.17)

�
�
�
��LH˛

�1��
� � ��.1 �m.x0//

�
˛G�

˛f � f
� j@D

�
�1

� 1

k˛

�
�.1 �m.x0//

�
˛G�

˛f � f
� j@D

�
�1

� 1

k1
k˛G�

˛f � f k1 �! 0 as ˛ ! C1:

Here we have used the fact that

k1 D � sup
x02@D

LH11.x
0/ � k˛ D � sup

x02@D
LH˛1.x

0/ for all ˛ � 1:

Thus we are reduced to the study of the term

H˛


LH˛

�1 �
.1 �m.x0//f j@D

��
:

Now, for any given " > 0, we can find a function h 2 C1.@D/ such that

(
h D 0 near M D fx0 2 @D W m.x0/ D 0g;
k.1 �m.x0//f j@D � hk1 < ":

Then we have the inequality

�
�
�H˛


LH˛

�1 �
.1 �m.x0//f j@D

���H˛


LH˛

�1
h
���
�1 (11.18)

�
�
�
��LH˛

�1��
� � ��.1 �m.x0//f j@D � h

�
�1 �

"

k˛

� "

k1
for all ˛ � 1:

Furthermore, we can find a function � 2 C1
0 .@D/ such that

(
� D 1 near M;

.1 � �/h D h on @D:

Then we have the inequality
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h.x0/ D �
1 � �.x0/

�
h.x0/

D ��LH˛1.x
0/
�
�
1 � �.x0/
�LH˛1.x0/

�

h.x0/

�
�

sup
x02@D

�
1� �.x0/
�LH˛1.x0/

��

khk1
��LH˛1.x

0/
�
:

Since the operator �LH˛
�1

is non-negative on the space C.@D/, it follows that

�LH˛
�1
h � sup

x02@D

�
1 � �.x0/
�LH˛1.x0/

�

� khk1 on @D;

so that
�
�
�H˛


LH˛

�1
h
���
�1 �

�
�
��LH˛

�1
h
�
�
�1 (11.19)

� sup
x02@D

�
1 � �.x0/
�LH˛1.x0/

�

� khk1:

However, there exists a constant c0 > 0 such that

0 � 1 � �.x0/
m.x0/

� c0; x0 2 @D:

Hence we have the inequality

1 � �.x0/
�LH˛1.x0/

�
�

1 � �.x0/
m.x0/ .�L�H˛1.x0//C .1 �m.x0//

�

� c0
�
�
�
�

1

�L�H˛1

�
�
�
�1

for all ˛ � 1:

In view of Lemma 10.25, this implies that

lim
˛!C1

�

sup
x02@D

�
1 � �.x0/
�LH˛1.x0/

��

D 0:

Summing up, we obtain from inequalities (11.18) and (11.19) that

lim sup
˛!C1

�
�
�H˛


LH˛

�1 �
.1 �m.x0//f j@D

����
�1

� lim sup
˛!C1

"�
�
�H˛


LH˛

�1
h
���
�1
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C
�
�
�H˛


LH˛

�1 �
.1 �m.x0//f j@D

�� �H˛


LH˛

�1
h
���
�1

#

� lim
˛!C1

�

sup
x02@D

�
1 � �.x0/
�LH˛1.x0/

��

khk1 C "

k1

� "

k1
:

Since " is arbitrary, this proves that

lim
˛!C1

�
�
�H˛


LH˛

�1 �
.1 �m.x0//f j@D

����
�1 D 0: (11.20)

Therefore, by combining assertions (11.17) and (11.20) we find that the second
term on the right-hand side of (11.15) also tends to zero:

lim
˛!C1

�
�
�H˛


LH˛

�1 �
˛.1 �m.x0//G�

˛f j@D
����
�1 D 0:

This completes the proof of assertion (11.14) and hence that of assertion (iii).
Step 5: Summing up, we have proved that the operator W, defined by for-

mula (11.4), satisfies conditions (a)–(d) in Theorem 9.35. Hence, in view of
assertion (11.2) it follows from an application of part (ii) of the same theorem that
the operator W is the infinitesimal generator of some Feller semigroup fTtgt�0
on D nM .

The proof of Theorem 11.1 and hence that of Theorem 1.3 is now complete. ut
Remark 11.2. It is worth pointing out that if instead of G�

˛ we had used the Green
operator G0

˛ for the Dirichlet problem, as in the proof of Theorem 10.2, then our
proof would have broken down.

11.3 Notes and Comments

The results discussed in this chapter are adapted from Taira [Ta6] and [Ta9].
Section 11.1: The space C0.D nM/ is introduced by Taira [Ta6].
Section 11.2: Theorem 11.1 is a revised version of Taira [Ta6, Theorem 2], and is

a generalization of Taira [Ta9, Theorem 1.4]. It should be noted that Taira [Ta8] has
proved Theorem 11.1 under the condition that L� D @=@n and ı.x0/ � 0 on @D, by
using the Lp theory of pseudo-differential operators (see [Ta8, Theorem 2]).



Chapter 12
Markov Processes Revisited

In this book we have mainly studied (temporally homogeneous) Markov transition
functions with only informal references to the random variables which actually
form the Markov processes themselves (see Sect. 9.1). In this chapter we study this
neglected side of our subject. The discussion will have a more measure-theoretical
flavor than hitherto.

Section 12.1 is devoted to a review of the basic definitions and properties
of (temporally homogeneous) Markov processes. In Sect. 12.2 we consider when
the paths of a Markov process are actually continuous, and prove Theorem 9.20
(Corollary 12.8). In Sect. 12.3 we give a useful criterion for path-continuity of a
Markov process fxt g in terms of the infinitesimal generator A of the associated
Feller semigroup fTtg (Theorem 12.10). Section 12.4 is devoted to examples of
multi-dimensional diffusion processes. More precisely, we prove that (1) reflecting
barrier Brownian motion (Theorem 12.12), (2) reflecting and absorbing barrier
Brownian motion (Theorem 12.15), (3) reflecting, absorbing and drifting barrier
Brownian motion (Theorem 12.16) are typical examples of multi-dimensional
diffusion processes, that is, examples of continuous strong Markov processes.

12.1 Basic Definitions and Properties of Markov Processes

First, we recall the basic definitions of stochastic processes (see Sect. 9.1.1). Let K
be a locally compact, separable metric space and B the �-algebra of all Borel sets in
K . Let .˝;F ; P / be a probability space. A function X defined on ˝ taking values
in K is called a random variable if it satisfies the condition

X�1.E/ D fX 2 Eg 2 F for all E 2 B;

that is, X is F=B-measurable.

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__12,
© Springer-Verlag Berlin Heidelberg 2014

563
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A family X D fx.t; !/g, t 2 Œ0;1/, ! 2 ˝ , of random variables is called
a stochastic process. We regard the process X primarily as a function of t whose
values x.t; �/ for each t are random variables defined on ˝ taking values in K .
More precisely, we are dealing with one function of two variables, that is, for each
fixed t the function xt .�/ is F=B-measurable. If, instead of t , we fix an ! 2 ˝ ,
then we obtain a function x.�; !/ W Œ0;1/ ! K which may be thought of as the
motion in time of a physical particle. In this context, the space K is called the state
space and˝ the sample space. The function xt .!/ D x.t; !/, t 2 Œ0;1/, defines in
the state space K a trajectory or a path of the process corresponding to the sample
point !.

Sometimes it is useful to think of a stochastic process X specifically as a function
of two variables x.t; !/ where t 2 Œ0;1/ and ! 2 ˝ . One powerful tool in
this connection is Fubini’s theorem. To do this, we introduce a class of stochastic
processes which we will deal with in this chapter.

Definition 12.1. A stochastic process X D fxt gt�0 is said to be measurable
provided that the function x.�; �/ W Œ0;1/ � ˝ ! K is measurable with respect
to the product �-algebra A � F , where A is the �-algebra of all Borel sets in the
interval Œ0;1/.
We remark that the condition that the function xt .�/ D x.t; �/ is F=B-measurable
for each t does not guarantee the measurability of the process x.�; �/.

Now let pt be a (temporally homogeneous) Markov transition function on the
metric spaceK (see Definition 9.4). The idea behind Definition 9.4 of a (temporally
homogeneous) Markov transition function suggests the following definition (cf.
formula (9.3)):

Definition 12.2. A stochastic process X D fxt gt�0 is said to be governed by the
(temporally homogeneous) transition function pt provided that we have, for all 0 �
t1 < t2 < : : : < tn <1 and all Borel sets B1, B2, : : :, Bn 2 B,

P.! 2 ˝ W xt1.!/ 2 B1; xt2 .!/ 2 B2; : : : ; xtn.!/ 2 Bn/ (12.1)

D
Z

yn2Bn
: : :

Z

y12B1

Z

y12B1

Z

x2K
�.dx/pt1.x; dy1/

pt2�t1 .y1; dy2/ � � �ptn�tn�1 .yn�1; dyn/;

where � is some probability measure on the measurable space .K;B/, and is called
the initial distribution of the process fxt g.
Remark 12.3. Formula (12.1) expresses the “starting afresh” property of a sto-
chastic process that if a Markovian particle reaches a position, then it behaves
subsequently as though that position had been its initial position.

The notion of the (temporally homogeneous) Markov property is introduced and
discussed in Sect. 9.1: If X D fxt gt�0 is a stochastic process, we introduce three
sub-�-algebras of F as follows:
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

F�t D �.xs W 0 � s � t/
D the smallest �-algebra contained in F

with respect to which all xs; 0 � s � t , are measurable;

FDt D �.xt /

D the smallest �-algebra contained in F
with respect to which xt is measurable;

F�t D �.xs W t � s <1/
D the smallest �-algebra contained in F

with respect to which all xs; t � s <1, are measurable:

We recall that an event in F�t is determined by the behavior of the process fxsg
up to time t and an event in F�t by its behavior after time t . Thus they represent
respectively the “past” and “future” relative to the “present” moment.

A stochastic process X D fxt g is called a (temporally homogeneous) Markov
process if it satisfies the condition

P.B j F�t / D P.B j FDt / for any “future” set B 2 F�t :

More precisely, we have, for any “future” set B 2 F�t ,

P.A \ B/ D
Z

A

P.B j FDt /.!/ dP.!/ for every “past” set A 2 F�t :

Intuitively, this means that the conditional probability of a “future” event B given
the “present” is the same as the conditional probability of B given the “present” and
“past”.

The next theorem justifies Definition 12.2, and hence it will be fundamental for
our further study of (temporally homogeneous) Markov processes:

Theorem 12.4. Let X D fxt gt�0 be any stochastic process with values in
the metric space K which is governed by a (temporally homogeneous) Markov
transition function pt . Then it follows that fxt g is a (temporally homogeneous)
Markov process.

Our study of Markov processes is based on formula (12.1) which shows how the
finite-dimensional distributions of the process X D fxt g are calculated from the
Markov transition function pt . However, knowledge of all the finite-dimensional
distributions may not be sufficient to precisely determine the path functions of a
Markov process. Therefore, it is important to ask the following question:

Question 12.5. Given a (temporally homogeneous) Markov transition function pt
and an initial distribution �, does there exist a (temporally homogeneous) Markov
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process X D fxt g having the corresponding finite-dimensional distributions whose
paths are almost surely “nice” in some sense?

We say that two (temporally homogeneous) Markov processes X D fxt gt�0
and Y D fyt gt�0 defined on the same probability space .˝;F ; P / is equivalent
provided that we have, for all t 2 Œ0;1/,

P.f! 2 ˝ W xt .!/ D yt .!/g/ D 1:

The next theorem asserts that, under quite general conditions there does exist a
Markov process with “nice” paths equivalent to any given process:

Theorem 12.6. Let .K; �/ be a compact metric space and let X D fxtgt�0 be
a stochastic process with values in K which is governed by a (temporally homo-
geneous) normal Markov transition function pt . Then there exists a (temporally
homogeneous) Markov process Y D fyt g, equivalent to the process X D fxt g,
such that

P.f! 2 ˝ W the function yt .!/ are right-continuous and

have left-hand limits for all t � 0g/ D 1:

12.2 Path-Continuity of Markov Processes

It is naturally interesting and important to consider when the paths of a (temporally
homogeneous) Markov process fxt g are actually continuous for all t � 0. The
purpose of this section is to establish some useful sufficient conditions for path-
continuity of the Markov process fxt g.

First, we have the following theorem:

Theorem 12.7. Let .K; �/ be a locally compact metric space and let X D fxt gt�0
be a measurable stochastic process with values in K . Assume that, for each " > 0

and eachM > 0, the condition

P.f! 2 ˝ W �.xt .!/; �tCh.!// � "g/ D o.h/ as h # 0 (12.2)

holds uniformly for all t 2 Œ0;M �, i.e., we have, for all t 2 Œ0;M �,

lim
h#0

P.f! 2 ˝ W �.xt .!/; �tCh.!// � "g/
h

D 0:

Then it follows that

P.f! 2 ˝ W xt .!/ has a jump discontinuity somewhereg/ D 0: (12.3)
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Ω

t M0

Aε,h

Fig. 12.1 The set A";h

Proof. The proof is divided into two steps.

Step 1: First, we show that if we let

J";h.!/ D ft 2 Œ0;M � W �.xt .!/; xtCh.!// � "g ; ! 2 ˝; (12.4)

then it follows from condition (12.2) that

E Œm.J";h/� D o.h/ as h # 0; (12.5)

where m D dt is the Lebesgue measure on R.
To do this, we define the set (see Fig. 12.1)

A";h D f.t; !/ 2 Œ0;M � �˝ W �.xt .!/; xtCh.!// � "g :

We remark that the set A";h is measurable with respect to the product �-algebra
A � F . Indeed, it suffices to note the following two facts (a) and (b):

(a) The mapping .t; !/ 7! .xt .!/; xtCh.!// is measurable from the product
space Œ0;M � �˝ into the product space K �K , for each h � 0.

(b) The metric � is a continuous function on the product space K �K .

By virtue of Fubini’s theorem, we can compute the product measure m � P of
A";h by integrating the measure of a cross section as follows:

.m � P/.A";h/ D
Z M

0

P.f! 2 ˝ W .t; !/ 2 A";hg/ dt:
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0

0

t0 t0 + ht0 − h
s

xs( )

Fig. 12.2 The trajectory
xt .!/

By condition (12.2), it follows that

.m � P/.A";h/ D o.h/ as h # 0: (12.6)

Moreover, by integrating in the other order we obtain from definition (12.4) that

.m � P/.A";h/ D
Z

˝

m.ft 2 R W .t; !/ 2 A";hg/ dP.!/ (12.7)

D E Œm.ft 2 Œ0;M � W �.xt .!/; xtCh.!// � "g/�
D E Œm.J";h/� :

Therefore, the desired assertion (12.5) follows by combining assertions (12.6)
and (12.7).

Step 2: Now we show that the existence of jumps in the trajectories of fxt g
contradicts assertion (12.5).

Step 2-1: We assume that, for some "0 > 0,

P.f! 2 ˝ W xt .!/ has a jump with gap greater than 2"0g/ > 0:

If xt .!/ is a trajectory having such a jump at t D t0 (see Fig. 12.2), we obtain
that the two limits

x
t
C

0
.!/ D lim

h#0
xt0Ch.!/; xt�0 .!/ D lim

h#0
xt0�h.!/

exist and satisfy the condition

�.xt�0 .!/; xtC0
.!// � 2"0:

Then we have, for sufficiently small h > 0,
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8
<

:

�.xt�0 .!/; xs.!// �
"0

2
for all s 2 .t0 � h; t0/;

�.x
t
C

0
.!/; xs.!// � "0

2
for all s 2 .t0; t0 C h/:

Moreover, by the triangle inequality it follows that

2"0 � �.xt�0 .!/; xtC0 .!//
� �.xt�0 .!/; xt .!//C �.xt .!/; xtCh.!//C �.xtCh.!/; xtC0 .!//

� "0

2
C �.xt .!/; xtCh.!//C "0

2
for all t 2 .t0 � h; t0/;

so that

�.xt .!/; xtCh.!// � "0 for all t 2 .t0 � h; t0/:

This implies that, for all sufficiently small h > 0,

m.ft 2 Œ0;M � W �.xt .!/; xtCh.!// � "0g/ � m..t0 � h; t0// D h;

or equivalently,

m.J"0;h/.!/

h
� 1 for all sufficiently small h > 0: (12.8)

Step 2-2: Now we assume, to the contrary, that

P.f! 2 ˝ W xt .!/ has a jump discontinuity somewhereg/ > 0:

Then it follows from Step 2-1 that there exists a positive number "0 such that
assertion (12.8) holds true.

Therefore, we can find a positive constant ı D ı."0/ such that

EŒm.J"0;h/� D
Z

˝

m.J"0;h/.!/ dP.!/ �
Z

L"0

m.J"0;h/.!/ dP.!/ (12.9)

� h ı for all sufficiently small h > 0;

where

L"0 D f! 2 ˝ W xt .!/ has a jump with gap greater than 2"0g :

Assertion (12.9) contradicts condition (12.5).

The proof of Theorem 12.7 is complete.
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t1t0 = 0 t2 tk tk+1

t

Fig. 12.3 The stochastic
process fyt g

The next corollary proves part (ii) of Theorem 9.20 under condition (N) with
E D K:

Corollary 12.8. Let .K; �/ be a locally compact metric space and let X D fxt gt�0
be a right-continuous Markov process governed by a Markov transition function pt .
Assume that, for each " > 0, the condition

ph.x;K n U".x// D o.h/ (12.10)

holds uniformly in x 2 K as h # 0. In other words, for each " > 0 we have the
condition

lim
h#0

1

h
sup
x2K

pt.x;K n U".x// D 0:

Here U".x/ D fy 2 K W �.y; x/ < "g is an "-neighborhood of x.
Then it follows that

P.f! 2 ˝ W xt .!/ is continuous for all t � 0g/ D 1:

Proof. Wefxt g is right-continuous and has limits from the left as well. The proof of
Corollary 12.8 is divided into two steps.

Step 1: First, we prove the following lemma (see Dynkin [Dy1, Lemma 5.9]):

Lemma 12.9. Every right-continuous stochastic process fxt g is measurable.

Proof. Let ftng be an arbitrary increasing sequence such that

0 D t0 < t1 < t2 < : : :!1:

Then we can define a stochastic process fyt g by the formula (see Fig. 12.3)
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yt .!/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

xt0.!/ D x.t0; !/; ! 2 ˝ for t0 � t < t1;
xt1.!/ D x.t1; !/; ! 2 ˝ for t1 � t < t2;

�
�

xtk .!/ D x.tk; !/; ! 2 ˝ for tk � t < tkC1;
�
�

Since we have, for any a 2 R,

f.t; !/ W yt .!/ < ag D
1[

iD0
Œti ; tiC1/ � f! W xti .!/ < ag;

it follows that the process fytg is measurable.
For each integer n 2 N, we choose a non-negative integer k such that

k

2n
� t < k C 1

2n
;

and let

�n.t/ D k C 1
2n

:

It is clear that �n.t/ # t as n!1. Now, if we define a stochastic process fxng by
the formula

xn.t; !/ D x.�n.t/; !/ for every ! 2 ˝;

then we have the following two assertions (a) and (b):

(a) The process xn.t/ is measurable.
(b) xn.t; !/! x.t; !/ as n!1.

Indeed, assertion (a) is proved just as in the case of the process fytg, while assertion
(b) follows from the right-continuity of the process fxt g.

Therefore, we obtain from assertions (a) and (b) that the process fxt g is
measurable.

The proof of Lemma 12.9 is complete.

Step 2: Let � be the initial distribution of the process fxtg in Definition 12.2.
Namely, we have, for all 0 � t1 < t2 < : : : < tn <1 and all Borel sets B1, B2,
: : :, Bn 2 B,
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Uε(xt( ))

xt( ) = y

xt+h( ) = z

x

Fig. 12.4 �.y; z/ � " ,
y 2 K; z 2 K n U".y/

P.! 2 ˝ W xt1.!/ 2 B1; xt2 .!/ 2 B2; : : : ; xtn.!/ 2 Bn/

D
Z

yn2Bn
: : :

Z

y12B1

Z

y12B1

Z

x2K
�.dx/pt1.x; dy1/

pt2�t1 .y1; dy2/ � � �ptn�tn�1 .yn�1; dyn/:

Then we have, by Fubini’s theorem (see Fig. 12.4),

P.f! 2 ˝ W �.xt .!/; xtCh.!// � "g/ (12.11)

D P.f! 2 ˝ W xt .!/ 2 K; xtCh.!/ 2 K n U".xt .!//g/

D
Z

K

Z

KnU".y/

�Z

K

pt.x; dy/

�

ph.y; dz/ �.dx/

D
“

K

 Z

KnU".y/
ph.y; dz/

!

pt .x; dy/ �.dx/

D
“

K

pt .x; dy/ph.y;K n U".y// �.dx/:

In view of condition (12.10), we obtain from formula (12.11) that the assertion

lim
h#0

P.f! 2 ˝ W �.xt .!/; xtCh.!// � "g/
h

D lim
h#0

’
K
pt.x; dy/ph.y;K n U".y// �.dx/

h

D
“

K

pt .x; dy/

�

lim
h#0

ph.y;K n U".y//
h

�

�.dx/

D 0
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holds uniformly for all t � 0. This assertion implies that condition (12.2) holds
uniformly for all t � 0, as h # 0. Hence it follows from an application of
Theorem 12.7 that

P.f! W xt .!/ has a jump discontinuity somewhereg/ D 0: (12.12)

However, we recall that the stochastic process fxt g is right-continuous and has limits
from the left as well.

Therefore, we obtain from assertion (12.12) that

P.f! 2 ˝ W xt .!/ is continuous for all t � 0g/ D 1:

The proof of Corollary 12.8 is complete.

12.3 Path-Continuity of Markov Processes Associated
with Semigroups

It is usually difficult to verify condition (12.10) directly, since it is rather exceptional
when any simple formula for the transition probability function pt is available.
The purpose of this section is to give a useful criterion for path-continuity of the
Markov process fxt g in terms of the infinitesimal generator A of the associated
Feller semigroup fTtg.

Let .K; �/ be a compact metric space and let C.K/ be the space of real-valued,
bounded continuous functions on K; C.K/ is a Banach space with the maximum
norm

kf k1 D max
x2K jf .x/j:

A strongly continuous semigroup fTtgt�0 on the space C.K/ is called a Feller
semigroup if it is non-negative and contractive on C.K/, that is,

f 2 C.K/; 0 � f .x/ � 1 on K H) 0 � Ttf .x/ � 1 on K:

We recall (see Theorem 9.34) that if pt is a uniformly stochastically continuous
Feller function on K , then its associated operators fTtgt�0, defined by formula

Ttf .x/ D
Z

K

pt.x; dy/f .y/ for every f 2 C.K/; (12.13)

form a Feller semigroup on K . Conversely, if fTtgt�0 is a Feller semigroup on K ,
then there exists a uniformly stochastically continuous Feller function pt onK such
that (12.13) holds true.
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Furthermore, we know that the function pt is the transition function of some
strong Markov process X D fxt gt�0 whose paths are right-continuous and have no
discontinuities other than jumps.

Our approach can be visualized as follows:

Feller semigroup on C(K)

uniform stochastic continuity + Feller property

right-continuous Markov process strong Markov process

The next theorem gives some useful sufficient conditions for path-continuity of
the Markov process fxt g in terms of the infinitesimal generator A of the associated
Feller semigroup fTtg:
Theorem 12.10. Let .K; �/ be a compact metric space and let X D fxt gt�0 be a
right-continuous Markov process governed by a uniformly stochastically continuous
Feller transition function pt on K . Assume that the infinitesimal generator A of
the associated Feller semigroup fTtgt�0, defined by formula (12.13), satisfies the
condition that, for each " > 0 and each point x 2 K , there exists a function f 2
D.A/ which satisfies the following three conditions (i)–(iii):

(i) f .x/ � 0 on K .
(ii) f .y/ > 0 for all y 2 K n U".x/.

(iii) f .y/ D Af .y/ D 0 in some neighborhood of x.

Here U".x/ D fz 2 K W �.z; x/ < "g is an "-neighborhood of x.
Then we have

P.f! 2 ˝ W xt .!/ is continuous for all t � 0g/ D 1:

Proof. We shall apply Corollary 12.8 to our situation.
To do this, we assume, to the contrary, that condition (12.10) does not hold. Then

we can find a positive number "0 such that

ph.x;K n U2"0.x// is not of order o.h/ uniformly in x as h # 0:

More precisely, for this "0 there exist a positive constant ı, a decreasing sequence
fhng of positive numbers, hn # 0, and a sequence fxng of points in K such that

phn.xn;K n U2"0.xn// � ı hn for all sufficiently large n: (12.14)
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xn

0x0

2 0

Fig. 12.5 The open balls
U2"0 .x0/ and U"0 .xn/

However, since K is compact, we may assume that the sequence fxng itself
converges to some point x0 of K . If �.xn; x0/ < "0, then it follows that (see
Fig. 12.5)

U"0.xn/ 	 U2"0.x0/:

Hence we have, by assertion (12.14),

phn.xn;K n U"0.x0// � phn.xn;K n U2"0.xn// (12.15)

� ı hn for all sufficiently large n:

Now, for these "0 and x0 we can construct a function f 2 D.A/ which satisfies
conditions (i)–(iii). It follows from condition (ii) that

c D min
x2KnU"0 .x0/

f .x/ > 0:

Then we have, by assertion (12.15),

Thnf .xn/ D
Z

K

phn.xn; dy/f .y/ �
Z

KnU"0 .x0/
phn.xn; dy/f .y/ (12.16)

�
�

min
KnU"0 .x0/

f

�

� phn.xn;K n U"0.x0//

� cı hn for all sufficiently large n:

However, since f .xn/ D 0 for xn close to the limit point x0, we obtain from
assertion (12.16) that

Thnf .xn/� f .xn/
hn

D Thnf .xn/

hn
� cı for all xn 2 U.x0/: (12.17)
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On the other hand, since we have, for f 2 D.A/,

Af .y/ D lim
n!1

Thnf .y/ � f .y/
hn

uniformly in y 2 K;

it follows from condition (iii) that

Thnf .y/ � f .y/
hn

�! Af .y/ D 0 uniformly in y 2 U.x0/:

Hence we have, for all y 2 U.x0/,
ˇ
ˇ
ˇ
ˇ
Thnf .y/ � f .y/

hn

ˇ
ˇ
ˇ
ˇ <

cı

2
for all sufficiently large n: (12.18)

However, since f .xn/ D 0 and Thnf � 0 on K , by letting y WD xn in inequality
(12.18) we obtain that

Thnf .xn/� f .xn/
hn

D
ˇ
ˇ
ˇ
ˇ
Thnf .xn/� f .xn/

hn

ˇ
ˇ
ˇ
ˇ <

cı

2
for all xn 2 U.x0/:

This assertion contradicts assertion (12.17).
Therefore, we have proved that condition (12.10) holds true. Theorem 12.10

follows from an application of Corollary 12.8.
The proof of Theorem 12.10 is complete.

12.4 Examples of Diffusion Processes on a Bounded Domain

In this section we prove that (1) reflecting barrier Brownian motion, (2) reflecting
and absorbing barrier Brownian motion, (3) reflecting, absorbing and drifting barrier
Brownian motion are typical examples of multi-dimensional diffusion processes,
that is, examples of continuous strong Markov processes on a bounded domain.
It should be emphasized that these three Brownian motions correspond to the
Neumann boundary value problem, the Robin boundary value problem and the
oblique derivative boundary value problem for the Laplacian 
 in terms of elliptic
boundary value problems, respectively.

The following diagram gives a bird’s eye view of diffusion processes and elliptic
boundary value problems and how these relate to each other:
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D n
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•
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............

Fig. 12.6 The bounded domain D with smooth boundary @D

12.4.1 The Neumann Case

Let D be a bounded domain of Euclidean space RN with smooth boundary @D;
its closure D D D [ @D is an N -dimensional, compact smooth manifold with
boundary (see Fig. 12.6).

First, we consider the Neumann boundary condition

BN u D @u

@n
D 0 on @D;

where n D .n1; n2; : : : ; nN / is the unit interior normal to the boundary @D.
We introduce a linear operator AN as follows:

(a) D.AN / D
	

u 2 C.D/ W 
u 2 C.D/; @u

@n
D 0 on @D




, where 
u is taken in

the sense of distributions.
(b) AN u D 
u for every u 2 D.AN /.

Then it follows from an application of Theorem 1.2 with L WD BN that the
operatorAN is the infinitesimal generator of a Feller semigroup fStgt�0. Let fxt .!/g
be the strong Markov process corresponding to the Feller semigroup fStgt�0 with
Neumann boundary condition. In this subsection we study the path-continuity of the
Markov process fxt .!/g. In order to make use of Theorem 12.10, we shall construct
a function f 2 D.AN / which satisfies conditions (i)–(iii) of the same theorem. Our
construction of the function f .x/ may be visualized by Fig. 12.7.

(1) The case where x0 is an arbitrary (interior) point of D: By applying Theorem
[Ta10, Theorem 1.5] with �.x0/ WD 1 and �.x0/ WD 0, we can find a function
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Uε(x)

U2ε(x)

D

f(y)

D

Fig. 12.7 The function f 2 D.AN /

� 2 C1.D/ such that
8
<

:


� D �1 in D;
@�

@n
D 0 on @D:

(12.19)

Then we have the following lemma:

Lemma 12.11. The function � satisfies the condition

�.x/ > 0 on D:

Proof. We assume, to the contrary, that

min
D
� � 0:

(1) First, we consider the case: There exists a point x0 2 D such that

�.x0/ D min
D

� � 0:

Since we have, by condition (12.19),


.��/ D 1 > 0 in D; (12.20)

it follows from an application of the strong maximum principle (Theorem 8.13
in Chap. 8) with W WD 
 and u WD �� that

�.x/ � �.x0/ in D:

Hence we have


.��/ D 0 in D:

This contradicts condition (12.20).
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Fig. 12.8 The function �.t/

(2) Next we consider the case: There exists a point x0
0 2 @D such that

�.x0
0/ D min

D

� � 0:

Then, by applying the boundary point lemma (Theorem 8.15) with W WD 
 to
the function u WD �� we obtain from inequality (12.20) that

@�

@n
.x0
0/ > 0:

This contradicts the boundary condition

@�

@n
D 0 on @D:

The proof of Lemma 12.11 is complete.

Now we choose a real-valued, smooth function � 2 C1.R/ such that (see
Fig. 12.8)

8
ˆ̂
<

ˆ̂
:

0 � �.t/ � 1 on R;

supp � 	 .�1; 1/;
�.t/ D 1 for all t 2 �� 1

2
; 1
2

�
;

(12.21)

and define a function f 2 C1.D/ by the formula

f .x/ D
�

1 � �
� jx � x0j

"

��

�.x/;

where
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Fig. 12.9 The local coordinate system .x0; xN /

0 < " < dist .x; @D/ D inf
z2@D jx � zj:

Then, in view of Lemma 12.11 it is easy to verify that f 2 D.AN / and satisfies
conditions (i)–(iii) of Theorem 12.10.

(2) The case where x0 is an arbitrary (boundary) point of @D: By change of
coordinates, we may assume that

x0 D .00; 0/ D .0; : : : ; 0; 0/;
n D .00; 1/ D .0; : : : ; 0; 1/ 2 RN :

The situation may be represented schematically by Fig. 12.9.

If we define a function f 2 C1.D/ by the formula

f .x0; xN / D
�

1 � �
xN
"

�
�

� jx0j
"

��

�.x0; xN /;

x0 D .x1; x2; : : : ; ; xN�1/ 2 RN�1; xN 2 R;

then it follows from conditions (12.21) and (12.19) that

@f

@n
D @f

@xN

ˇ
ˇ
ˇ
ˇ
xND0

D �
�

@

@xN


�
xN
"

���

�

� jx0j
"

�ˇˇ
ˇ
ˇ
xND0

� �.x0; 0/
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Fig. 12.10 The neighborhoods U"=2.x0/ and U".x0/

C
�

1 � �
xN
"

�
�

� jx0j
"

��

� @�
@xN

.x0; xN /
ˇ
ˇ
ˇ
ˇ
xND0

D �1
"
� 0.0/�

� jx0j
"

�

� �.x0; 0/C
�

1 � �
� jx0j
"

��
@�

@n

D 0 on @D:

This proves that f 2 D.AN /. Moreover, we have the following three assertions
(a)–(c) (see Fig. 12.10):

(a) Since f .x/ D 0 in the "=2 neighborhoodU"=2.x0/ of x0, it follows that

f .y/ D ANf .y/ D 0 for all y 2 U"=2.x0/:

This proves that condition (iii) of Theorem 12.10 is satisfied.
(b) It is clear that f .x/ � 0 onD, so that condition (i) in Theorem 12.10 is satisfied.
(c) Since f .y/ D �.y/ outside the

p
N " neighborhoodUp

N ".x0/ of x0, it follows
from Lemma 12.11 that

f .y/ > 0 for all y 2 D n Up
N ".x0/:

This proves that condition (ii) of Theorem 12.10 is satisfied.

Therefore, by applying Theorem 12.10 to the operator AN we obtain the
following generalization of Examples 9.11 and 9.13 to the multi-dimensional case:

Lemma 12.11 H) Theorem 12.10 H) Theorem 12.12

Theorem 12.12. The strong Markov process fxt .!/g associated with the Feller
semigroup fStgt�0 enjoys the property
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P .f! W xt .!/ is continuous for all t � 0g/ D 1:

Since fStgt�0 is a Feller semigroup on the compact set D, it follows from an
application of Theorem 9.34 that there exists a uniformly stochastically continuous,
Feller transition function pt .x; �/ on D such that

Stf .x/ D
Z

D

pt .x; dy/f .y/ (12.22)

holds true for all f 2 C.D/.
Furthermore, we can prove the following important result:

Proposition 12.13. The Feller transition function pt.x; �/ is conservative, that is,
we have, for all t > 0,

pt.x;D/ D 1 for each x 2 D: (12.23)

Proof. First, we note that

(
1 2 D.AN /;
AN1 D 0 in D:

Hence, by applying Theorem 4.30 with Tt WD St we obtain that the function u.t/ D
St1 is a unique solution of the initial-value problem

8
<

:

du

dt
D AN u for all t > 0;

u.0/ D 1
(�)

which satisfies the following three conditions (a)–(c):

(a) The function u.t/ is continuously differentiable for all t > 0.
(b) ku.t/k � 1 for all t � 0.
(c) u.t/! 1 as t # 0.

However, it is easy to see that the function u.t/ � 1 is also a solution of problem
(�) which satisfies three conditions (a)–(c).

Therefore, it follows from the uniqueness theorem for problem (�) that

St1 D 1 for all t > 0:

In view of formula (12.22), we obtain the desired assertion (12.23) as follows:

1 D St1.x/ D
Z

D

pt .x; dy/ D pt .x;D/ for each x 2 D:

The proof of Proposition 12.13 is complete.
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12.4.2 The Robin Case

Secondly, we consider the Robin boundary condition

BRu D a.x0/
@u

@n
C b.x0/u D 0 on @D; (12.24)

where

(
a 2 C1.@D/; a.x0/ > 0 on @D;

b 2 C1.@D/; b.x0/ � 0 on @D:

We introduce a linear operator AR as follows:

(a) D.AR/ D
	

u 2 C.D/ W 
u 2 C.D/; a.x0/
@u

@n
C b.x0/u D 0 on @D




, where


u is taken in the sense of distributions.
(b) ARf D 
f for every f 2 D.AR/.

However, since a.x0/ > 0 on @D, by letting

Qb.x0/ D b.x0/
a.x0/

we find that the boundary condition (12.24) is equivalent to the following boundary
condition:

@f

@n
C Qb.x0/f D 0 on @D:

In other words, without loss of generality we may assume that

a.x0/ D 1 on @D;

Qb.x0/ � 0 on @D:

Then it follows from an application of Theorem 1.2 with L WD BR that the operator
AR is the infinitesimal generator of a Feller semigroup fTt gt�0 with Robin boundary
condition. Let fyt .!/g be the strong Markov process corresponding to the Feller
semigroup fTtgt�0. In this subsection we study the path-continuity of the Markov
process fyt.!/g. To do this, we shall make use of Theorem 12.10.

(1) The case where x0 is an arbitrary (interior) point of D: By applying Theorem
[Ta10, Theorem 1.5] with �.x0/ WD 1 and �.x0/ WD Qb.x0/, we can find a
function � 2 C1.D/ such that



584 12 Markov Processes Revisited

8
<

:


 D �1 in D;
@ 

@n
C Qb.x0/ D 0 on @D:

(12.25)

Then we have the following lemma:

Lemma 12.14. The function  satisfies the condition

 .x/ > 0 on D:

Proof. We assume, to the contrary, that

min
D

 � 0:

(1) First, we consider the case: There exists a point x0 2 D such that

 .x0/ D min
D

 � 0:

Since we have, condition (12.25),


.� / D 1 > 0 in D; (12.26)

it follows from an application of the strong maximum principle (Theorem 8.13)
with W WD 
 and u WD � that

 .x/ �  .x0/ in D:

Hence we have


.� / D 0 in D:

This contradicts condition (12.26).
(2) Next we consider the case: There exists a point x0

0 2 @D such that

 .x0
0/ D min

D

 � 0:

Then, by applying the boundary point lemma (Theorem 8.15) with W WD 
 to
the function u WD � we obtain from inequality (12.26) that

@ 

@n
.x0
0/ > 0:

This contradicts the boundary condition
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0 D @ 

@n
.x0
0/C Qb.x0

0/ .x
0
0/ �

@ 

@n
.x0
0/ > 0 on @D;

since Qb.x0
0/ � 0 on @D.

The proof of Lemma 12.14 is complete.

Now we choose a real-valued, smooth function � 2 C1.R/ that satisfies
condition (12.21) (see Fig. 12.8), and define a function f 2 C1.D/ by the formula

f .x/ D
�

1 � �
� jx � x0j

"

��

 .x/;

where

0 < " < dist .x; @D/:

Then, in view of Lemma 12.14 it is easy to verify that f 2 D.AR/ and satisfies
conditions (i)–(iii) of Theorem 12.10.

(2) The case where x0 is an arbitrary (boundary) point of @D: By change of
coordinates, we may assume that

x0 D .00; 0/ D .0; : : : ; 0; 0/;
n D .00; 1/ D .0; : : : ; 0; 1/ 2 RN :

If we define a function f 2 C1.D/ by the formula

f .x0; xN / D
�

1 � �
xN
"

�
�

� jx0j
"

��

 .x0; xN /;

it follows from conditions (12.21) and (12.25) that

@f

@n
C Qb.x0/f

D @

@xN

�

1 � �
xN
"

�
�

� jx0j
"

��

 .x0; xN /
ˇ
ˇ
ˇ
ˇ
xND0

C Qb.x0/
�

1 � �
xN
"

�
�

� jx0j
"

��

 

ˇ
ˇ
ˇ
ˇ
xND0

D �1
"
� 0.0/�

� jx0j
"

�

�  .x0; 0/C
�

1 � �.0/�
� jx0j
"

��
@ 

@xN
.x0; xN /

ˇ
ˇ
ˇ
ˇ
xND0

CQb.x0/
�

1 � � .0/ �
� jx0j
"

��

 .x0; 0/
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D
�

1 � �
� jx0j
"

��
@ 

@xN
.x0; xN /

ˇ
ˇ
ˇ
ˇ
xND0

C
�

1 � �
� jx0j
"

��
Qb.x0/ .x0; 0/

D
�

1 � �
� jx0j
"

���
@ 

@n
C Qb.x0/ 

�

D 0 on @D:

This proves that f 2 D.AR/. Moreover, we have the following three assertions
(a)–(c) (see Fig. 12.9):

(a) Since f .x/ D 0 in the "=2 neighborhood U"=2.x0/ of x0, it follows from
Lemma 12.14 that

f .y/ D ARf .y/ D 0 for all y 2 U"=2.x0/:
This proves that condition (iii) of Theorem 12.10 is satisfied.

(b) It is clear that f .x/ � 0 onD, so that condition (i) in Theorem 12.10 is satisfied.
(c) Since f .y/ D  .y/ outside the

p
N " neighborhoodUp

N ".x0/ of x0, it follows
from Lemma 12.11 that

f .y/ > 0 for all y 2 D n Up
N ".x0/:

This proves that condition (ii) of Theorem 12.10 is satisfied.

Therefore, by applying Theorem 12.10 to the operator AR we obtain the
following generalization of Example 9.16 to the multi-dimensional case:

Lemma 12.14 H) Theorem 12.10 H) Theorem 12.15

Theorem 12.15. The strong Markov process fyt.!/g associated with the Feller
semigroup fTt gt�0 enjoys the property

P .f! W yt .!/ is continuous for all t � 0g/ D 1:

12.4.3 The Oblique Derivative Case

Finally, we consider the oblique derivative boundary condition

BOu D @u

@n
C ˇ.x0/uC b.x0/u D 0 on @D;

where n is the unit inner normal vector to the boundary @D,

b 2 C1.@D/; b.x0/ � 0 on @D;
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and

ˇ.x0/u WD
N�1X

iD1
ˇi .x

0/
@u

@xi

is a tangent vector field of class C1 on the boundary @D.
We introduce a linear operator AO as follows:

(a) The domainD.AO/ is the space

D.AO/ D
	

u 2 C.D/ W 
u 2 C.D/; @u

@n
C ˇ.x0/uC b.x0/u D 0 on @D




:

Here 
u is taken in the sense of distributions.
(b) AOu D 
u for every u 2 D.AO/.

Then it follows from an application of Theorem 1.2 with L WD BO that the
operator AO is the infinitesimal generator of a Feller semigroup fUtgt�0 with
oblique derivative boundary condition. Let fzt .!/g be the strong Markov process
corresponding to the Feller semigroup fUtgt�0. In this subsection we study the
path-continuity of the Markov process fzt .!/g. To do this, we shall make use of
Theorem 12.10.

If we introduce a vector field ` by the formula

` D nC ˇ;

then the oblique derivative boundary condition

BOu D @u

@n
C ˇ.x0/uC b.x0/u D 0 on @D

can be written in the form (see Fig. 12.11)

@u

@`
C b.x0/u D 0 on @D:

Furthermore, for each initial point y0 D .y1; y2; : : : ; yN�1/ 2 RN�1 we consider
the following initial-value problem for ordinary differential equations:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

d�1

dt
D ˇ1.�.y0; t//; �1.y

0; 0/ D y1;
:::

:::
d�N�1

dt
D ˇN�1.�.y0; t//; �N�1.y0; 0/ D yN�1;

d�N

dt
D 1; �N .y

0; 0/ D 0:

(12.27)
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Fig. 12.11 The vector field ` D n C ˇ

RN
+

yN

y ′
x ′

D

Fig. 12.12 The change of variables x D �.y/

We remark that the initial-value problem (12.27) has a unique local solution

�.y0; t/ D .�1.y0; t/; �2.y0; t/; : : : ; �N .y0; t//;

since the vector field ˇ.x0/ is Lipschitz continuous. Hence we can introduce a new
change of variables by the formula

.x1; x2; : : : ; xN / D .�1.y
0; yN /; �2.y0; yN /; : : : ; �N .y0; yN //;

y D .y0; yN / 2 RN :

The situation may be represented schematically by Fig. 12.12.
Then it follows that the vector field ` can be simplified as follows:

@

@yN
D

N�1X

jD1

@xj

@yN

@

@xj
C @xN

@yN

@

@xN
D

N�1X

jD1
ˇj .x/

@

@xj
C @

@xN
D @

@`
:

Hence we obtain that

@u

@n
C ˇ.x0/uC b.x0/u D @u

@`
C b.x0/u D

�
@Qu
@yN
C Qb.y0/Qu

�ˇˇ
ˇ
ˇ
yND0

;
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where

Qu.y/ D u .�.y// D u.x/;

Qb.y0/ D b ��.y0/
� D b.x0/:

In this way, we are reduced to the Robin boundary condition case in the half-
space RNC:

BR Qu D @Qu
@yN
C Qb.y0/Qu D 0 on @RNC:

Therefore, by applying Theorem 12.10 to the operator AO we obtain the
following theorem:

Theorem 12.15 H) Theorem 12.16

Theorem 12.16. The strong Markov process fzt .!/g associated with the Feller
semigroup fUtgt�0 enjoys the property

P .f! W zt .!/ is continuous for all t � 0g/ D 1:

12.5 Notes and Comments

The results discussed in this chapter are adapted from Dynkin [Dy2], Kinney [Ki],
Lamperti [La] and Ray [Ra].

Section 12.1: Theorem 12.4 is due to Lamperti [La, Chapter 8, Section 2] and
Theorem 12.6 is due to Lamperti [La, Section 8.3, Theorem 1], respectively.

Section 12.2: Theorem 12.7 is adapted from Lamperti [La, Section 8.3, Theorem
2] and Corollary 12.8 is adapted from Dynkin [Dy2, Theorem 3.5] (see also [La,
Section 8.3, Corollary]).

Section 12.3: Theorem 12.10 is taken from Dynkin [Dy2, Theorem 3.9] and
Lamperti [La, Section 8.3, Theorem 3].

Section 12.4: Theorem 12.12 (the Neumann case), Theorem 12.15 (the Robin
case) and Theorem 12.16 (the oblique derivative case) may be new.



Chapter 13
Concluding Remarks

In this final chapter we summarize the contents of the first edition of the present
monograph “Semigroups, boundary value problems and Markov processes” which
was published in 2004. In Sect. 13.1 we study a class of degenerate boundary
value problems for second-order elliptic differential operators which includes
as particular cases the Dirichlet and Robin problems. We state existence and
uniqueness theorems for this class of degenerate elliptic boundary value problems
(Theorems 13.1 and 13.2). The crucial point is how to define modified boundary
spaces B1�1=p;p

L0
.@D/ and C1C�

L0
.@D/ in which our boundary value problems are

uniquely solvable. The purpose of Sect. 13.2 is to study our degenerate elliptic
boundary value problems from the viewpoint of the theory of analytic semigroups,
and is to generalize generation theorems for analytic semigroups both in the Lp

topology and in the topology of uniform convergence (Theorems 13.3 and 13.4). As
an application, we state generation theorems for Feller semigroups corresponding
to the diffusion phenomenon where a Markovian particle moves continuously
until it “dies” at the time when it reaches the set where the particle is definitely
absorbed (Theorem 13.5). In Sect. 13.3 we assume that the domain D is convex,
and extend the existence and uniqueness theorems for degenerate elliptic boundary
value problems in Sect. 13.1 (Theorems 13.6) and the generation theorems for
analytic and Feller semigroups in Sect. 13.2 to the integro-differential operator
case (Theorems 13.7, 13.9 and 13.10). Due to the non-local character of integro-
differential operators, we are forced to impose various conditions on the structure of
jumps of Markovian particles such as the moment condition. Moreover, in order to
remove a singularity of solutions at the boundary @D, we impose the condition that
no jumps outside the closure D are allowed.

The following diagram gives a bird’s eye view of existence and uniqueness
theorems for degenerate elliptic boundary value problems and generation theorems
for analytic and Feller semigroups in Chap. 13 proved by the author ([Ta7], [Ta8]
and [Ta9]) using the Lp theory of pseudo-differential operators:

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7__13,
© Springer-Verlag Berlin Heidelberg 2014

591
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The second edition [Ta9] of “Boundary value problems and Markov processes”
may be considered as a short introduction to this augmented second edition.

13.1 Existence and Uniqueness Theorems for Boundary
Value Problems

Let D be a bounded domain of Euclidean space RN with smooth boundary @D; its
closureD D D[@D is anN -dimensional compact smooth manifold with boundary
(see Fig. 1.1). We let

Au.x/ D
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

be a second-order elliptic differential operator with real coefficients such that

(1) aij.x/ 2 C1.D/, aij.x/ D aji.x/ for all x 2 D and 1 � i; j � N , and there
exists a constant a0 > 0 such that

NX

i;jD1
aij.x/�i �j � a0j�j2 for all .x; �/ 2 D � RN :

(2) bi .x/ 2 C1.D/ for all 1 � i � N .
(3) c.x/ 2 C1.D/ and c.x/ � 0 on D, but c.x/ 6� 0 in D.

The differential operator A is called a diffusion operator which describes
analytically a strong Markov process with continuous paths (diffusion process) in
the interiorD (see Fig. 13.1).

We let

L0u.x
0/ D �.x0/

@u

@n
.x0/C �.x0/u.x0/

be a first-order boundary condition with real coefficients such that
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Fig. 13.1 A Markovian
particle moves continuously

(1) �.x0/ 2 C1.@D/ and �.x0/ � 0 on @D.
(2) �.x0/ 2 C1.@D/ and �.x0/ � 0 on @D.
(3) n D .n1; n2; : : : ; nN / is the unit interior normal to the boundary @D.

Now we consider the following boundary value problem: Given functions f and
' defined in D and on @D, respectively, find a function u in D such that

8
<

:

Au D f in D;

L0u D �.x0/
@u

@n
C �.x0/u D ' on @D:

(13.1)

It should be noted that if �.x0/ � 0 and �.x0/ � �1 on @D (resp. �.x0/ > 0
on @D), then the boundary condition L0 is the so-called Dirichlet (resp. Robin)
condition. It is easy to see that problem (13.1) is non-degenerate (or coercive) if and
only if either �.x0/ > 0 on @D or �.x0/ � 0 and �.x0/ < 0 on @D. The generation
theorem for analytic semigroups is well established in the non-degenerate case both
in theLp topology (see Friedman [Fr1], Tanabe [Tn]) and in the topology of uniform
convergence (see Masuda [Ma] for the Dirichlet case).

The fundamental hypothesis is the following condition (FH):

(FH) �.x0/� �.x0/ > 0 on @D.

The intuitive meaning of condition (FH) is that either reflection or absorption occurs
at each point of the boundary @D. More precisely, condition (FH) implies that
absorption occurs at each point of the set

M D fx0 2 @D W �.x0/ D 0g;
while reflection occurs at each point of the set @D nM D fx0 2 @D W �.x0/ > 0g.
In other words, a Markovian particle moves continuously in the space D nM until
it “dies” when it reaches the set M (see Fig. 13.2).

The first purpose of the first edition is to prove existence and uniqueness theorems
for problem (13.1) in the framework of Lp spaces and Hölder spaces. In the case
where N D 3, �.x0/ may be a function such that, in terms of local coordinates
.x1; x2/ of @D,

�.x0/ D e�1=x21 sin2
1

x1
e�1=x22 sin2

1

x2
:
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Fig. 13.2 A Markovian
particle dies when it reaches
the set M

Therefore, the crucial point in our approach is how to define function subspaces in
which the boundary value problem (13.1) is uniquely solvable.

If k is a positive integer and 1 < p < 1, we define the Sobolev space of Lp

type

Hk;p.D/ D the space of (equivalence classes of) functions

u 2 Lp.D/ whose derivativesD˛u, j˛j � k,

in the sense of distributions are all in Lp.D/;

and the space

Bk�1=p;p.@D/

D the space of the boundary values ' of functions u 2 Hk;p.D/:

In the space Bk�1=p;p.@D/, we introduce a norm

j'jBk�1=p;p.@D/ D inf
˚kukHk;p.D/ W u 2 Hk;p.D/; uj@D D '

�
:

The space Bk�1=p;p.@D/ is a Banach space with respect to the norm
j � jBk�1=p;p.@D/. More precisely, it is a Besov space (see Bergh–Löfström [BL],
Taibleson [Tb], Triebel [Tr]).

We introduce a subspace ofBk�1=p;p.@D/ which is associated with the boundary
condition L0 in the following way: We let

B
1�1=p;p
L0

.@D/

D ˚
' D �.x0/'1 � �.x0/'2 W '1 2 B1�1=p;p.@D/; '2 2 B2�1=p;p.@D/

�
;

and define a norm
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j'j
B
1�1=p;p
L0

.@D/

D inf
˚j'1jB1�1=p;p.@D/ C j'2jB2�1=p;p.@D/ W ' D �.x0/'1 � �.x0/'2

�
:

Then it is easy to verify (see [Ta7, Lemma 4.7]) that the space B1�1=p;p
L0

.@D/

is a Banach space with respect to this norm j � j
B
1�1=p;p
L0

.@D/
. It should be noted

that the space B1�1=p;p
L0

.@D/ is an “interpolation space” between the Besov spaces
B2�1=p;p.@D/ and B1�1=p;p.@D/. More precisely, we have

(
B
1�1=p;p
L0

.@D/ D B2�1=p;p.@D/ if �.x0/ � 0 on @D;

B
1�1=p;p
L0

.@D/ D B1�1=p;p.@D/ if �.x0/ > 0 on @D:

Now we can state an existence and uniqueness theorem for the boundary value
problem (13.1) in the framework of Lp spaces ([Ta7, Theorem 1], [RF, Theorem
1.1]):

Theorem 13.1. Let 1 < p <1. Assume that condition (FH) is satisfied. Then the
mapping

.A;L0/ W H2;p.D/ �! Lp.D/
M

B
1�1=p;p
L0

.@D/

is an algebraic and topological isomorphism. In particular, for any f 2 Lp.D/
and any ' 2 B

1�1=p;p
L0

.@D/, there exists a unique solution u 2 H2;p.D/ of
problem (13.1).

Furthermore, in order to study problem (13.1) in the framework of Hölder spaces,
we introduce a subspace of C1C� .@D/, 0 < � < 1, which is a Hölder space version
of B1�1=p;p

L0
.@D/. We let

C1C�
L0

.@D/ D ˚' D �.x0/'1 � �.x0/'2 W '1 2 C1C� .@D/; '2 2 C2C� .@D/
�
;

and define a norm

j'j
C
1C�
L0

.@D/

D inf
˚j'1jC1C� .@D/ C j'2jC2C� .@D/ W ' D �.x0/'1 � �.x0/'2

�
:

Then it is easy to verify (see [Ta7, Lemma 4.7]) that the spaceC1C�
L0

.@D/ is a Banach
space with respect to the norm j � j

C
1C�
L0

.@D/
. We remark that

(
C1C�
L0

.@D/ D C2C� .@D/ if �.x0/ � 0 on @D;

C 1C�
L0

.@D/ D C1C� .@D/ if �.x0/ > 0 on @D:
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The next theorem is a Hölder space version of Theorem 13.1 [Ta8, Theorem 1.1]:

Theorem 13.2. Let 0 < � < 1. If condition (FH) is satisfied, then the mapping

.A;L0/ W C2C� .D/ �! C�.D/
M

C1C�
L0

.@D/

is an algebraic and topological isomorphism. In particular, for any f 2 C�.D/ and
any ' 2 C1C�

L0
.@D/, there exists a unique solution u 2 C2C� .D/ of problem (13.1).

13.2 Generation Theorems for Analytic Semigroups
on a Bounded Domain

The second purpose of the first edition is to study the boundary value problem (13.1)
from the point of view of analytic semigroup theory in functional analysis, and to
generalize the generation theorem for analytic semigroups to the degenerate case.

We associate with problem (13.1) an unbounded linear operatorAp from Lp.D/

into itself as follows:

(a) The domain of definitionD.Ap/ of Ap is the set

D.Ap/ D
	

u 2 H2;p.D/ W L0u D �.x0/
@u

@n
C �.x0/u D 0 on @D




:

(b) Apu D Au for every u 2 D.Ap/.
Then we can prove a generation theorem for analytic semigroups in the frame-

work of Lp spaces [Ta9, Theorem 1.2]:

Theorem 13.3. Let 1 < p < 1. If condition (FH) is satisfied, then we have the
following two assertions (i) and (ii):

(i) For every " > 0, there exists a constant rp."/ > 0 such that the resolvent set of
Ap contains the set

†p."/ D
˚
� D r2ei# W r � rp."/; �� C " � # � � � "

�
;

and that the resolvent .Ap � �I/�1 satisfies the estimate

�
�.Ap � �I/�1

�
� � cp."/

j�j for all � 2 †p."/; (13.2)

where cp."/ > 0 is a constant depending on ".
(ii) The operator Ap generates a semigroup ezAp on the space Lp.D/ which is

analytic in the sector
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Fig. 13.3 The set †p."/ and the sector 
"


" D fz D t C is W z ¤ 0; j arg zj < �=2� "g

for any 0 < " < �=2 (see Fig. 13.3).

It should be noted that Theorem 13.3 for p D 2 is proved by Taira [Ta1, Theorem 1].
Secondly, we state a generation theorem for analytic semigroups in the topology

of uniform convergence.
Let C.D/ be the space of real-valued, continuous functions f on D. We equip

the space C.D/ with the topology of uniform convergence on the whole D; hence
it is a Banach space with the maximum norm

kf k1 D max
x2D
jf .x/j:

We introduce a subspace of C.D/ which is associated with the boundary condition
L0. We remark that the boundary condition

L0u D �.x0/
@u

@n
C �.x0/u D 0 on @D

includes the condition

u D 0 on M D fx0 2 @D W �.x0/ D 0g;

if �.x0/ ¤ 0 on M . With this fact in mind, we let

C0.D nM/ D ˚u 2 C.D/ W u D 0 onM
�
:

The space C0.D nM/ is a closed subspace of C.D/; hence it is a Banach space.
Furthermore, we introduce a linear operator A from C0.D n M/ into itself as
follows:
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Fig. 13.4 The set †."/ and the sector 
"

(a) The domain of definitionD.A/ of A is the set

D.A/ D ˚u 2 C0.D nM/ W Au 2 C0.D nM/; L0u D 0 on @D
�
: (13.3)

(b) Au D Au for every u 2 D.A/.
Here Au and L0u are taken in the sense of distributions.

Then Theorem 13.3 remains valid with Lp.D/ and Ap replaced by C0.D nM/

and A, respectively. More precisely, we can prove the following theorem [Ta9,
Theorem 1.3]:

Theorem 13.4. If condition (FH) is satisfied, then we have the following two
assertions (i) and (ii):

(i) For every " > 0, there exists a constant r."/ > 0 such that the resolvent set of
A contains the set

†."/ D ˚� D r2ei# W r � r."/; �� C " � # � � � "� ;

and such that the resolvent .A � �I/�1 satisfies the estimate

k.A � �I/�1k � c."/

j�j for all � 2 †."/; (13.4)

where c."/ > 0 is a constant depending on ".
(ii) The operator A generates a semigroup ezA on the space C0.D nM/ which is

analytic in the sector


" D fz D t C is W z ¤ 0; j arg zj < �=2� "g

for any 0 < " < �=2 (see Fig. 13.4).
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Moreover, the operators fetAgt�0 are non-negative and contractive on the
space C0.D nM/:

f 2 C0.DnM/; 0 � f .x/ � 1 on D nM H) 0 � etA f .x/ � 1 on D nM:

Theorems 13.3 and 13.4 express a regularizing effect for the parabolic differential
operator @=@t �A with homogeneous boundary condition L0.

Furthermore, we can reformulate part (ii) of Theorem 13.4 as follows [Ta9,
Theorem 1.4]:

Theorem 13.5. If condition (FH) is satisfied, then the operatorA generates a Feller
semigroup fTt gt�0 on the spaceD nM .

Theorem 13.5 generalizes Bony–Courrège–Priouret [BCP, Théorème XIX] to
the case where �.x0/ � 0 on the boundary @D (cf. [Ta5, Theorem 10.1.3]).

13.3 The Integro-Differential Operator Case

More generally, it should be emphasized that Theorems 13.2–13.5 may be extended
to the integro-differential operator case. For simplicity, we assume that the domain
D is convex. LetW be a second-order elliptic integro-differential operator with real
coefficients such that

W u.x/ D Au.x/C Sru.x/

WD
0

@
NX

i;jD1
aij.x/

@2u

@xi @xj
.x/C

NX

iD1
bi .x/

@u

@xi
.x/C c.x/u.x/

1

A

C
Z

RN nf0g

0

@u.x C z/� u.x/�
NX

jD1
zj
@u

@xj
.x/

1

A s.x; z/m.dz/:

Here:

(1) aij.x/ 2 C1.D/, aij.x/ D aji.x/ for all x 2 D and 1 � i; j � N , and there
exists a constant a0 > 0 such that

NX

i;jD1
aij.x/�i �j � a0j�j2 for all .x; �/ 2 D � RN :

(2) bi .x/ 2 C1.D/ for all 1 � i � N .
(3) c.x/ 2 C1.D/ and c.x/ � 0 in D, but c.x/ 6� 0 in D.
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(4) s.x; z/ 2 C.D�RN / and 0 � s.x; z/ � 1 onD�RN , and there exist constants
C0 > 0 and 0 < � < 1 such that

js.x; z/ � s.y; z/j � C0jx � yj� ; x; y 2 D; z 2 RN ; (13.5)

and
s.x; z/ D 0 if x C z 62 D: (13.6)

Condition (13.6) implies that the integral operator Sr may be considered as an
operator acting on functions u defined on the closure D (see Garroni–Menaldi
[GM2, Chapter 2, Section 2.3]).

(5) The measure m.dz/ is a Radon measure on the space RN n f0g which satisfies
the moment condition

Z

fjzj�1g
jzj2 m.dz/C

Z

fjzj>1g
jzjm.dz/ <1: (13.7)

Condition (13.7) is a standard condition for the measure m.dz/ (see Garroni–
Menaldi [GM2, Chapter 2, Section 2.1]).

The operatorW D ACSr is called a second-order Waldenfels integro-differential
operator or simply a Waldenfels operator (cf. [BCP, Wa]). The integro-differential
operator Sr is called a second-order Lévy operator which corresponds to the jump
phenomenon in the closure D (see [St]). In this context, condition (13.6) implies
that any Markovian particle does not move by jumps from the interior D into the
outside ofD. On the other hand, condition (13.7) imposes various conditions on the
structure of jumps for the Lévy operator Sr . More precisely, the condition

Z

fjzj�1g
jzj2 m.dz/ <1

implies that the measure m.�/ admits a singularity of order 2 at the origin, and
this singularity at the origin is produced by the accumulation of small jumps of
Markovian particles. The condition

Z

fjzj>1g
jzjm.dz/ <1

implies that the measure m.�/ admits a singularity of order 1 at infinity, and this
singularity at infinity is produced by the accumulation of large jumps of Markovian
particles.

First, we consider the following boundary value problem: Given functions f and
' defined in D and on @D, respectively, find a function u in D such that

(
W u D f in D;

L0u D ' on @D:
(13.8)
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Due to the non-local character of the Waldenfels integro-differential operatorW ,
we find more difficulties in the bounded domain D than in the whole space RN .
In fact, when considering the Dirichlet problem in D, it is natural to use the zero-
extension of functions in the interior D outside of the closure D D D [ @D. This
extension has a probabilistic interpretation. Namely, it corresponds to stopping the
diffusion process with jumps in the whole space RN at the first exit time of the
closureD.

However, the zero-extension produces a singularity of solutions at the boundary
@D. In order to remove this singularity, we introduce various conditions on
the structure of jumps for the Waldenfels integro-differential operator W . More
precisely, if only jumps of order 1 at most are allowed outside of the closure D,
then we obtain regular solutions of the Dirichlet problem for the Waldenfels integro-
differential operatorW [GM2, Chapter 3].

For the boundary value problem (13.8), we are forced to impose a stronger
condition (13.6) in order to remove a singularity of solutions at the boundary @D.
Namely, no jumps outside of D are allowed. Probabilistically, this is a condition on
the support of the Lévy measure s.x; �/m.�/ associated with the pseudo-differential
operator S .

The next theorem is a generalization of Theorem 13.2 to the integro-differential
operator case [Ta8, Theorem 1]:

Theorem 13.6. Assume that condition (FH) is satisfied. Then the mapping

.W;L0/ W C2C� .D/ �! C�.D/
M

C1C�
L0

.@D/

is an algebraic and topological isomorphism. In particular, for any f 2 C�.D/ and
any ' 2 C1C�

L0
.@D/, there exists a unique solution u 2 C2C� .D/ of problem (13.8).

As an application of Theorem 13.6, we can construct a Feller semigroup
corresponding to the physical phenomenon where a Markovian particle moves both
by jumps and continuously in the state space until it “dies” at the time when it
reaches the set where the particle is definitely absorbed, generalizing Theorem 13.5.

To do this, we define a linear operator W from the Banach space C0.D nM/ into
itself as follows:

(a) The domain of definitionD.W/ is the set

D.W/ D fu 2 C2.D/ \ C0.D nM/ W Wu 2 C0.D nM/;

L0u D 0 on @Dg:

(b) Wu D Wu for every u 2 D.W /.
The next theorem asserts that there exists a Feller semigroup on D n M

corresponding to the physical phenomenon where a Markovian particle moves both
by jumps and continuously in the state spaceD nM until it “dies” at the time when
it reaches the set M as in Theorem 1.3 [Ta8, Theorem 2]:
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Theorem 13.7. If condition (FH) is satisfied, then the operator W is closable in the
space C0.DnM/, and its minimal closed extension W is the infinitesimal generator
of some Feller semigroup fetWgt�0 on D nM .

Remark 13.8. For the non-degenerate case, the reader is referred to Komatsu [Ko,
Theorem 5.2], Stroock [St, Theorem 2.2], Garroni–Menaldi [GM1, Chapter VIII,
Theorem 3.3] and also Galakhov–Skubachevskiı̆ [GB, Theorem 5.1].

Secondly, we study the boundary value problem (13.8) from the point of view of
analytic semigroup theory, generalizing Theorems 13.3 and 13.4.

To do this, we associate with problem (13.8) an unbounded linear operator Wp

from Lp.D/ into itself as follows:

(a) The domain of definitionD.Wp/ is the set

D.Wp/ D fu 2 H2;p.D/ W L0u D 0 on @Dg:

(b) Wpu D Wu for every u 2 D.Wp/.

The next theorem is a generalization of Theorem 13.3 to the integro-differential
operator case [Ta8, Theorem 3]:

Theorem 13.9. Let 1 < p <1. Assume that condition (FH) is satisfied. Then we
have the following two assertions (i) and (ii):

(i) For every " > 0, there exists a constant rp."/ > 0 such that the resolvent set of
Wp contains the set

†p."/ D
˚
� D r2ei# W r � rp."/; �� C " � # � � � "

�
;

and that the resolvent .Wp � �I/�1 satisfies the estimate

�
�.Wp � �I/�1

�
� � cp."/

j�j ; � 2 †p."/; (13.9)

where cp."/ > 0 is a constant depending on ".
(ii) The operator Wp generates a semigroup ezWp on the space Lp.D/ which is

analytic in the sector


" D fz D t C is W z ¤ 0; j arg zj < �=2� "g

for any 0 < " < �=2 (see Fig. 13.3).

Moreover, we introduce a linear operator W from C0.D n M/ into itself as
follows:

(a) The domain of definitionD.W/ is the set
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D.W/ D fu 2 C0.D nM/\H2;p.D/ W Wu 2 C0.D nM/;

L0u D 0 on @Dg; N < p <1:

(b) Wu D Wu for every u 2 D.W/.

Here it should be noted that the domain D.W/ is independent of N < p <1.
The next theorem is a generalization of Theorem 13.4 to the integro-differential

operator case [Ta8, Theorem 4]:

Theorem 13.10. Let N < p < 1. If condition (FH) is satisfied, then we have the
following two assertions (i) and (ii):

(i) For every " > 0, there exists a constant r."/ > 0 such that the resolvent set of
W contains the set

†."/ D ˚� D r2ei# W r � r."/; �� C " � # � � � "� ;

and that the resolvent .W � �I/�1 satisfies the estimate

k.W � �I/�1k � c."/

j�j ; � 2 †."/; (13.10)

where c."/ > 0 is a constant depending on ".
(ii) The operator W generates a semigroup ezW on the space C0.D n M/ which

is analytic in the sector 
" D fz D t C is W z ¤ 0; j arg zj < �=2� "g for any
0 < " < �=2 (see Fig. 13.4).

Remark 13.11. By combining Theorems 13.7 and 13.10, we can prove that the
operator W coincides with the minimal closed extension W : W DW .

Theorems 13.9 and 13.10 express a regularizing effect for the parabolic integro-
differential operator @=@t�W with homogeneous boundary conditionL0 (cf. [GM1,
Chapter VIII, Theorem 3.1]).

13.4 Notes and Comments

It should be emphasized that the Calderón–Zygmund theory of singular integral
operators with non-smooth kernels provides a powerful tool to deal with smoothness
of solutions of elliptic boundary value problems, with minimal assumptions of
regularity on the coefficients. The theory of singular integrals continues to be one
of the most influential topics in the modern history of analysis, and is a very refined
mathematical tool whose full power is yet to be exploited [Sn4].

Finally, we give an overview of general results on generation theorems for Feller
semigroups proved by the author [Ta5,Ta6,Ta7,Ta8,Ta9,Ta10,Ta11] using the theory
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of pseudo-differential operators [Ho1, Se1, Se2] and the theory of singular integral
operators [CZ].



Appendix A
Boundedness of Pseudo-differential Operators

In this appendix we prove an Lp boundedness theorem for pseudo-differential
operators – a global version of Theorem 7.24 – which plays a fundamental role
throughout the book. Bourdaud [Bd] proved the Lp boundedness by using the
multiplier theorem of Marcinkiewicz, just as in Coifman–Meyer [CM]: The method
of proof consists of the following two steps (1) and (2):

(1) A characterization of Lp functions in terms of the Littlewood-Paley series.
(2) A reduction of the problem to elementary symbols of the form

�.x; �/ D
1X

jD0
Mj .2

jıx/  .2�j �/;

where  .�/ is a smooth function with compact support which does not contain
the origin and fMj g is a bounded sequence in an appropriate Hölder space.

This appendix is a refinement of Appendix A of the first edition of the present
monograph. For a general study of the Lp theory of pseudo-differential operators,
the reader might refer to Coifman–Meyer [CM], Kumano-go [Ku] and Taylor [Ty].

A.1 The Littlewood–Paley Series of a Tempered Distribution

In this section we characterize Lp functions by their Littlewood–Paley series. We
begin with the following elementary lemma (cf. [BL, Lemma 6.1.7]):

Lemma A.1. For a given constant a > 1, there exists a function '.�/ 2 C1
0 .R

n/

such that

supp ' D
	

� 2 Rn W 1
a
� j�j � a




; (A.1a)
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X

j2Z

'.a�j �/ D 1 for all � ¤ 0: (A.1b)

Proof. If h.�/ is a non-negative function in C1
0 .R

n/ such that

supp h D
	

� 2 Rn W 1
a
� j�j � a




;

then we have, for all k 2 Z,

supp h.a�k �/ D f� 2 Rn W ak�1 � j�j � akC1g:

Thus we can define a functionH.�/ 2 C1
0 .R

n/ by the formula

H.�/ D
X

k2Z

h.a�k �/; � 2 Rn:

It should be noted that the sum is locally finite, and that

(
H.0/ D 0;
H.�/ > 0 for all � ¤ 0:

Therefore, it is easy to verify that the function

'.�/ D h.�/

H.�/
; � 2 Rn;

enjoys the desired properties (A.1) and (A.1a).

Furthermore, if we define a function  0.�/ by the formula

 0.�/ D
0X

jD�1
'.a�j �/; � 2 Rn;

then it follows from properties (A.1) and (A.1a) that

 0 2 C1
0 .R

n/; (A.2a)

supp  0 D f� 2 Rn W j�j � ag; (A.2b)

 0.�/ D 1 �
1X

jD1
'.a�j �/ for all � ¤ 0: (A.2c)

Now, by using the Fourier transform we can introduce a family of linear operators
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�0 W S 0.Rn/ �! S 0.Rn/;

�j IS 0.Rn/ �! S 0.Rn/; j D 1; 2; : : : ;

by the formulas

b�0f .�/ D  0.�/ Of .�/;
1�jf .�/ D '.a�j �/ Of .�/; j D 1; 2; : : : :

The operators�j (and�0) can be visualized in the following commutative diagram:

Then, by properties (A.1) and (A.2) it is easy to see that

f D
1X

jD0
�jf; f 2 S 0.Rn/: (A.3)

Indeed, it suffices to note that, for all � ¤ 0,

1X

jD0
1�jf .�/ D b�0f .�/C

1X

jD1
1�jf .�/

D
0

@ 0.�/C
1X

jD1
'.a�j �/

1

A Of .�/ D
0

@
X

j2Z

'.a�j �/

1

A Of .�/

D Of .�/:

The series (A.3) is called the Littlewood–Paley series of f .

A.2 Peetre’s Definition of Besov and Generalized Sobolev
Spaces

In this section, following Bergh–Löfström [BL], we give Peetre’s equivalent
definition of Besov spaces and generalized Sobolev spaces.
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To do this, we choose a D 2 in Lemma A.1. Namely, '.�/ is a function in
C1
0 .R

n/ which satisfies the conditions

supp ' D
	

� 2 Rn W 1
2
� j�j � 2




; (A.4a)

X

k2Z

'.2�k �/ D 1 for all � ¤ 0: (A.4b)

Then we can define functions 'k.x/,  .x/ 2 S.Rn/ by the formulas

b'k.�/ D '.2�k �/; k 2 Z;

O .�/ D  0.�/ D 1 �
1X

jD1
'.2�j �/:

It should be noted that

supp b'k D f� 2 Rn W 2k�1 � j�j � 2kC1g; k 2 Z;

supp O D f� 2 Rn W j�j � 2g:

In this appendix, if s 2 R we define the Bessel potential J s by the formula

J s D .I �
/s=2 W S 0.Rn/ �! S 0.Rn/:

More precisely, we let

J sf D F�..1C j�j2/s=2 Of .�//; f 2 S 0.Rn/:

The operators J s can be visualized in the following diagram:

Then we have the following basic properties of the objects just defined (see [BL,
Lemma 6.2.1]):

Lemma A.2. (i) Assume that a distribution f 2 S 0.Rn/ satisfies the condition

'k � f 2 Lp.Rn/; k 2 Z;
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with 1 � p � 1. Then we have, for all s 2 R,

kJ s.'k � f /kLp � C 2sk k'k � f kLp ; k D 1; 2; : : : ;

with a constant C > 0 independent of p and k.
(ii) If a distribution f 2 S 0.Rn/ satisfies the condition

 � f 2 Lp.Rn/;

with 1 � p � 1, then we have, for all s 2 R,

kJ s. � f /kLp � C 0 k � f kLp ;

with a constant C 0 > 0 independent of p and k.

Now, by virtue of Lemma A.2 we can make the following Definition A.3 of the
Besov and generalized Sobolev spaces (see [BL, Definition 6.2.2]):

Definition A.3. Let s 2 R, and 1 � p, q � 1. If f 2 S 0.Rn/, we let

kf kBsp;q D
(
k � f kLp C

�P1
kD1

�
2sk k'k � f kLp

�q�1=q
if 1 � q <1;

k � f kLp C supk�1
�
2sk k'k � f kLp

�
if q D1;

kf kHs
p
D kJ sf kLp :

Then the Besov space Bs
p;q.R

n/ and the generalized Sobolev space Hs
p.R

n/ are
defined respectively as follows:

Bs
p;q.R

n/ D ff 2 S 0.Rn/ W kf kBsp;q <1g;
H s
p.R

n/ D ff 2 S 0.Rn/ W kf kHs
p
<1g:

Remark A.4. It is known (see Bergh–Löfström [BL], Triebel [Tr]) that the Sobolev
space Hs;p.Rn/ and the Besov space Bs;p.Rn�1/ introduced in Sect. 6.2 are
respectively equivalent to the following:

Hs;p.Rn/ D Hs
p.R

n/; s 2 R; 1 < p <1;
Bs;p.Rn�1/ D Bs

p;p.R
n�1/; s 2 R; 1 � p � 1:

It should be noted that

H0
p.R

n/ D Lp.Rn/; 1 � p � 1:

Furthermore, it is easy to verify the following two assertions (I) and (II):
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(I) The spaces Bs
p;q.R

n/ and Hs
p.R

n/ are Banach spaces with norms k � kBsp;q and
k � kHs

p
, respectively.

(II) The Bessel potential J � is a topological isomorphism of Bs
p;q.R

n/ onto
Bs��
p;q .R

n/ for each � 2 R, and is also a topological isomorphism of Hs
p.R

n/

ontoHs��
p .Rn/ for each � 2 R, respectively.

The next theorem characterizes the spaces Bs
p;q.R

n/ and Hs
p.R

n/ in terms of the
Littlewood–Paley series (see [BL, Theorem 6.4.3]):

Theorem A.5. (i) Let s 2 R and 1 < p <1. Then we have, for any f 2 S 0.Rn/,

f 2 Hs
p.R

n/”
0

@
1X

jD0
22sj j�jf j2

1

A

1=2

2 Lp.Rn/:

(ii) Let s 2 R and 1 � p, q � 1. Then we have, for any f 2 S 0.Rn/,

f 2 Bs
p;q.R

n/”
1X

jD0
2sqj k�jf kBsp;q <1:

Remark A.6. Theorem A.5 remains valid with the constant 2 replaced by a general
constant a > 1.

A.3 Non-regular Symbols

In this section we introduce a class of non-regular symbols �.x; �/ which are Hölder
continuous with respect to the variable x and belong to the Hörmander class S01;ı
with respect to the variable �.

Let 0 � ı � 1, N 2 N and r a non-integral positive number. A function �.x; �/
defined on Rn � Rn belongs to the class S01;ı.N; r/ if it satisfies the following two
conditions (a) and (b):

(a) For each j˛j � N and jˇj < r , there exists a constant C˛;ˇ > 0 such that

ˇ
ˇ
ˇ@˛� @

ˇ
x�.x; �/

ˇ
ˇ
ˇ � C˛;ˇ.1C j�j/�j˛jCıjˇj ; x; � 2 Rn:

(b) For each j˛j � N and jˇj D Œr�, there exists a constant C 0̨
;ˇ > 0 such that

ˇ
ˇ
ˇ@˛� @

ˇ
x�.x C h; �/ � @˛� @ˇx�.x; �/

ˇ
ˇ
ˇ � C 0̨

;ˇ jhjr�Œr�.1C j�j/�j˛jCrı ; (A.5)

x; �; h 2 Rn:

Here Œr� is the integral part of r .
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Remark A.7. If r is integral, then condition (A.5) should be replaced by the
Zygmund condition for jˇj D r � 1

ˇ
ˇ
ˇ@˛� @

ˇ
x�.x C h; �/C @˛� @ˇx�.x � h; �/ � 2@˛� @ˇx�.x; �/

ˇ
ˇ
ˇ

� C 0̨
;ˇ jhj.1C j�j/�j˛jCrı ; x; �; h 2 Rn:

It is easy to verify that the class S01;ı.N; r/ is a Banach space with respect to the
norm

k�k D
X

j˛j�N
jˇj<r

sup
x;�

( j@˛� @ˇx�.x; �/j
.1C j�j/�j˛jCıjˇj

)

C
X

j˛j�N
jˇjDŒr�

sup
x;�;h

( j@˛� @ˇx�.x C h; �/ � �.x; �/j
jhjr�Œr�.1C j�j/�j˛jCrı

)

:

The next lemma asserts that every symbol �.x; �/ in S01;ı.N; r/ can be decom-
posed into elementary symbols (cf. [CM, Chapter II, Proposition 5]):

Lemma A.8. Let 0 � ı � 1, r > 0 and let N be an even integer greater than n.
Then every symbol �.x; �/ 2 S01;ı.N; r/ can be decomposed into the form

�.x; �/ D Q�.x; �/C
X

k2Zn

.1C jkj2/�.nC1/=2�k.x; �/: (A.6)

Here:

(i) The symbol Q�.x; �/ 2 S01;ı.N; r/ satisfies the condition

Q�.x; �/ D 0 for all j�j � 2; (A.7)

and there exists a constant C > 0, depending on n and N , such that

k@˛� Q�.�; �/k�r � Ck�k; j˛j � N:

(ii) Every elementary symbol �k.x; �/ is written in the form

�k.x; �/ D
1X

jD0
Mk;j .2

jıx/  k.2
�j �/; (A.8)
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where

 k.�/ D .1C jkj2/.nC1�N/=2eik� �.�/

�.�/ 2 C1
0 .R

n/; supp � D
	

� 2 Rn W 1
3
� j�j � 3




;

Mk;j .x/ D .1C jkj2/N=2Ck;j .x/ 2 �r.Rn/:

Moreover, we have, with some constant C 0 > 0 independent of k and j ,

k kkL1

N�n�1
� C 0; (A.9a)

kMk;jk�r � C 0k�k: (A.9b)

Here �r.Rn/ D Br1;1.Rn/ is the classical Hölder space and L1
m .R

n/ is the space
of functions on Rn whose distribution derivatives of order � m belong to L1.Rn/,
respectively.

Proof. The proof is divided into three steps.

Step 1: First, we take a non-negative function �.�/ 2 C1
0 .R

n/ which satisfies
the condition

�.�/ D
(
1 if j�j � 1;
0 if j�j � 2; (A.10)

and let

�.x; �/ D �.�/�.x; �/ C .1 � �.�//�.x; �/ (A.11)

WD Q�.x; �/C .x; �/:
By condition (A.10) and the Leibniz rule, it is easy to verify that

Q�.x; �/ D �.�/�.x; �/ D 0 for all j�j � 2;

and that we have, for all j˛j � N ,

k@˛� Q�.�; �/k�r � C1k�k.1C j�j/�j˛jCrı � C1k�k.1C j�j/rı

� 3rı C1k�k;

with a constant C1 > 0.
Similarly, we have the estimate

kk � C2k�k;

with a constant C2 > 0.
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Step 2: Secondly, we take a non-negative function �.�/ 2 C1
0 .R

n/ which
satisfies the conditions

supp � D
	

� 2 Rn W 1
2
� j�j � 2




;

1X

jD0
�.2�j �/ D 1 for all j�j � 1;

and let

j .x; �/ D �.�/ .2�jı x; 2j �/

D �.�/ .1 � �.2j �//�.2�jı x; 2j �/; j D 0; 1; 2; : : : :

Then the symbols j .x; �/ are estimated as follows:

Lemma A.9. For each j˛j � n, there exists a constant C > 0, independent of j ,
such that

kD˛
� j .�; �/k�r � C k�k; j D 0; 1; 2; : : : : (A.12)

Proof. For example, we consider the case where ˛ D 0: It should be noted that we
have, for jˇj D Œr�,

�
1

2jı

�jˇj ˇˇ
ˇ
ˇ@
ˇ
x�

�
x C h
2jı

; 2j �

�

� @ˇx�
 x

2jı
; 2j �

�ˇˇ
ˇ
ˇ

� k�k
�
1

2jı

�jˇj � jhj
2jı

�r�Œr�
.1C j2j �j/rı

D k�kjhjr�Œr�
�
1C j2j �j

2j

�rı
:

However, it follows that

1C 2j�1 � 1C j2j �j � 1C 2jC1;
1

2
� j�j � 2;

so that

1

2
� 1

2j
C 1

2
� 1C j2j �j

2j
� 1

2j
C 2 � 3; � 2 supp �:

Hence we have estimate (A.12) for ˛ D 0.
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Step 3: Thirdly, we take a non-negative function �.�/ 2 C1
0 .R

n/ which satisfies
the conditions

supp � D
	

� 2 Rn W 1
3
� j�j � 3




;

�.�/ D 1 on supp �:

Then we can expand the symbol j .x; �/ D j .x; �/ �.�/ in the Fourier series
form

j .x; �/ D
 
X

k2Zn

Ck;j .x/ e
ik��
!

�.�/;

where

Ck;j .x/ D 1

.2�/n

Z

Rn
j .x; �/ e

�ik�� d�:

Moreover, we can rewrite the symbol j .x; �/ in the form (see decomposi-
tion (A.8)):

j .x; �/ D
X

k2Zn

.1C jkj2/�.nC1/=2 ˚.1C jkj2/N=2Ck;j .x/
�

(A.13)

� ˚.1C jkj2/.nC1�N/=2eik� �.�/
�

WD
X

k2Zn

uk Mk;j .x/  k.�/:

Here it should be noted that

N is an even integer greater than n;
X

k2Zn

uk D
X

k2Zn

.1C jkj2/�.nC1/=2 <1:

Hence we have, by decomposition (A.13),

.x; �/ D
0

@
1X

jD0
�.2�j �/

1

A .x; �/ (A.14)

D
1X

jD0
j .2

jı x; 2�j �/ D
1X

jD0

X

k2Zn

uk Mk;j .2
jı x/  k.2

�j �/
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D
X

k2Zn

uk

8
<

:

1X

jD0
Mk;j .2

jı x/  k.2
�j �/

9
=

;

WD
X

k2Zn

.1C jkj2/�.nC1/=2 �k.x; �/:

The desired decomposition (A.5) follows by combining decompositions (A.10)
and (A.14).

It remains to prove estimates (A.9) and (A.9a) for the functions  k.�/ and
Mk;j .x/.

(1) The estimate (A.9) of  k.�/: Since we have, for j˛j � N � n � 1,

ˇ
ˇ
ˇ@˛�  k.�/

ˇ
ˇ
ˇ � C3k�kL1

N�n�1
;

it follows that

k kkL1

N�n�1
� C4:

(2) The estimate (A.9a) of Mk;j .x/: By integration by parts, it follows that

Mk;j .x/ D .1C jkj2/N=2
.2�/n

Z

Rn
e�ik� j .x; �/ d�

D 1

.2�/n

Z

Rn
j .x; �/ � .I �
�/

N=2e�ik� d�

D 1

.2�/n

Z

Rn
e�ik�.I �
�/

N=2j .x; �/ d�:

Hence, by Lemma A.9 it is easy to see that

kMk;jk�r � C5k�k:

Now the proof of Lemma A.8 is complete.

A.4 The Lp Boundedness Theorem

In this section we formulate an Lp boundedness theorem for pseudo-differential
operators with non-regular symbols due to Bourdaud [Bd, Theorem 1]:

Theorem A.10. Let 0 � ı � 1, r > 0 and let N be an even integer greater than
.3n=2/C1. If �.x; �/ is a symbol in the class S01;ı.N; r/, then the pseudo-differential
operator �.x;D/, defined by the formula
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�.x;D/f .x/ D 1

.2�/n

Z

Rn
eix���.x; �/ Of .�/ d�;

is bounded on the generalized Sobolev space Hs
p.R

n/ for all .ı � 1/r < s < r and
1 < p <1, and is bounded on the Besov space Bs

p;q.R
n/ for all .ı � 1/r < s < r

and 1 � p, q � 1, respectively.

By virtue of Lemma A.8, the proof of Theorem A.10 is reduced to the proof of
the following two Propositions A.11 and A.12:

Proposition A.11. Let 0 � ı � 1, r > 0 and let N be an even integer greater than
n. Assume that a symbol �.x; �/ 2 S01;ı.N; r/ satisfies the condition

�.x; �/ D 0 for all j�j � 2: (A.15)

Then the pseudo-differential operator

�.x;D/f .x/ D 1

.2�/n

Z

Rn
eix���.x; �/ Of .�/ d�

is bounded on the generalized Sobolev space Hs
p.R

n/ for all .ı � 1/r < s < r and
1 < p <1, and is bounded on the Besov space Bs

p;q.R
n/ for all .ı � 1/r < s < r

and 1 � p, q � 1. More precisely, we have the estimate for the operator norm

k�.x;D/k � Ck�k;

with a constant C > 0 depending on n, p, q, r , s and ı.

Proposition A.12. Let 0 � ı � 1, r > 0 and let N be an even integer greater than
n. Assume that a symbol �.x; �/ 2 S01;ı.N; r/ is an elementary symbol of the form

�.x; �/ D
1X

jD0
Mj .2

jıx/  .2�j �/; (A.16)

where

 .�/ 2 C1
0 .R

n/; supp  D
	

� 2 Rn W 1
3
� j�j � 3




:

The sequence fMj g is bounded in the Hölder space�r.Rn/:

Then the pseudo-differential operator

�.x;D/f .x/ D 1

.2�/n

Z

Rn
eix���.x; �/ Of .�/ d�
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is bounded on the generalized Sobolev space Hs
p.R

n/ for all .ı � 1/r < s < r and
1 < p <1, and is bounded on the Besov space Bs

p;q.R
n/ for all .ı � 1/r < s < r

and 1 � p, q � 1. More precisely, we have the estimate for the operator norm

k�.x;D/k � C
 

sup
j�0
kMjk�r

!

k kL1

N�n�1
;

with a constant C > 0 depending on n, p, q, r , s and ı.

In this appendix we shall only prove the generalized Sobolev space case. The
proof of the Besov space case is left to the reader.

A.5 Proof of Proposition A.11

First, it should be noted that

k�.x;D/ukHs
p
D kJ s.�.x;D/u/kLp D k�.x;D/J�svkLp ;

u D J�sv 2 Hs
p.R

n/; v 2 Lp.Rn/:

In other words, we have the following commutative diagram:

Hs
p

σ(x,D)−−−−−−−−→ Hs
p

⏐⏐J−s Js

⏐⏐

Lp −−−−−−−−→
Jsσ(x,D)J−s

Lp

Furthermore, we find that the symbol .x; �/ of J s�.x;D/J�s is written in the
form

.x; �/ D �.x; �/C r.x; �/;

where r.x; �/ belongs to the Hörmander class S�1
1;ı with respect to the variable �.

Therefore, the proof of Proposition A.11 is reduced to the proof of the Lp

boundedness of the two operators �.x;D/ and r.x;D/ which will be proved in
Lemmas A.13 and A.17, respectively.

Lemma A.13. Let 0 � ı � 1, r > 0 and let N be an even integer greater than n.
Assume that a symbol �.x; �/ 2 S01;ı.N; r/ satisfies the condition

�.x; �/ D 0 for all j�j � 2: (A.17)
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Then there exists a constant C > 0 such that

k�.x;D/f kLp � Ckf kLp ; f 2 Lp.Rn/: (A.18)

Proof. First, we have, by condition (A.17),

�.x;D/f .x/ D 1

.2�/n

Z

Rn
eix���.x; �/ Of .�/ d�

D 1

.2�/n

Z

Rn

�Z

Rn
ei.x�y/���.x; �/ d�

�

f .y/ dy

D
Z

Rn
K.x � y; y/f .y/ dy;

where

K.x; z/ D 1

.2�/n

Z

Rn
eiz���.x; �/ d�:

However, by integration by parts it follows that, for any integer ` 2 N,

.1C jzj2/` K.x; z/ D 1

.2�/n

Z

Rn
eiz��.1C jzj2/` �.x; �/ d�

D 1

.2�/n

Z

Rn
.I �
�/

`eiz�� � �.x; �/ d�

D 1

.2�/n

Z

Rn
eiz�� .I �
�/

`�.x; �/ d�:

Hence we can find a constant C1 > 0 such that

.1C jzj2/` jK.x; z/j � C1k�k:

Now, if we take the integer ` satisfying the condition

n < 2` � N;

then we have the inequality

jK.x; z/j � C1k�k
.1C jzj2/` :

Thus it follows that
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j�.x;D/f .x/j �
Z

Rn
jK.x � y; y/j jf .y/j dy

� C1k�k
Z

Rn

jf .y/j
.1C jx � yj2/` dy

WD K0 � jf j.x/;

where

K0.x/ D C1k�k
.1C jxj2/` 2 L

1.Rn/:

Therefore, by applying Young’s inequality (Corollary 5.3) we obtain that

k�.x;D/f kLp � kK0 � jf jkLp � kK0kL1 kf kLp :

This proves inequality (A.18) with C WD kK0kL1 .
The next lemma, due to Nagase [Na, Theorem 2], plays an essential role in the

proof of an Lp boundedness theorem for pseudo-differential operators r.x;D/ of
negative order:

Lemma A.14. Assume that a symbol r.x; �/ 2 S01;ı.N; r/ satisfies the following
condition (A.19):

There exists a constant � > 0 such that, for each j˛j � n C 1, we have, with
some constant C > 0,

j@˛� r.x; �/j � C.1C j�j/�j˛j��: (A.19)

Then there exists a functionK.x; z/ 2 C.Rn � .Rn n f0g// such that

r.x;D/f D
Z

Rn
K.x; x � y/f .y/ dy; f 2 Lp.Rn/: (A.20)

Moreover, for each 0 < �0 < min.1; �/, there exists a constant C 0 > 0 such that

jK.x; z/j � C 0 1

1C jzj
1

jzjn��0
: (A.21)

Proof. The proof is divided into five steps.

Step 1: First, we take a function �.�/ 2 C1
0 .R

n/ such that

�.�/ D
8
<

:
1 if j�j � 1

2
;

0 if j�j � 1;
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and let

r".x; �/ D �."�/r.x; �/; 0 < " < 1:

Then it is clear that the support of r".x; �/ is compact with respect to the
variable �.

Step 2: If we let

K".x; z/ D 1

.2�/n

Z

Rn
eiz��r".x; �/ d�; 0 < " < 1;

then it follows from an application of the Lebesgue dominated convergence
theorem [Fo2, Theorem 2.24] that

r.x;D/f .x/ D 1

.2�/n

Z

Rn
eix��r.x; �/ Of .�/ d�

D 1

.2�/n
lim
"#0

Z

Rn
eix���."�/r.x; �/ Of .�/ d�

D 1

.2�/n
lim
"#0

“

Rn�Rn
ei.x�y/��r".x; �/f .y/ dy d�

D lim
"#0

�
1

.2�/n

Z

Rn
ei.x�y/��r".x; �/ d�

�

f .y/ dy;

that is,

r.x;D/f .x/ D lim
"#0

Z

Rn
K".x; x � y/ f .y/ dy; f 2 Lp.Rn/: (A.22)

However, by integration by parts it follows that

z˛ K".x; z/ D 1

.2�/n

Z

Rn
z˛ eiz��r".x; �/ d� (A.23)

D 1

.2�/n

Z

Rn
D˛
�

�
eiz��

� � r".x; �/ d�

D .�1/j˛j

.2�/n

Z

Rn
eiz�� D˛

� r".x; �/ d�

D .�1/j˛j

.2�/n

Z

Rn

�
eiz�� � 1�D˛

� r".x; �/ d�;
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since we have
Z

Rn
D˛
� r".x; �/ d� D

Z

Rn
D˛
� .�."�/ r.x; �// d� D 0:

Here we make the following elementary claim:

Lemma A.15. (a) D˛
� r".x; �/! D˛

� r.x; �/ as " # 0.
(b) For each j˛j D n, we have the inequality

jD˛
� r".x; �/j � krk.1C j�j/�n��; (A.24)

where

krk D
X

j˛j�n
sup
x;�

( j@˛� r.x; �/j
.1C j�j/�j˛j��

)

:

Therefore, by letting " # 0 in formula (A.23) it follows from an application of
the Lebesgue dominated convergence theorem [Fo2, Theorem 2.24] that

lim
"#0

z˛ K".x; z/ D .�1/j˛j

.2�/n

Z

Rn

�
eiz�� � 1�D˛

� r.x; �/ d�: (A.25)

If we let

K.x; z/ D .�1/j˛j

.2�/n z˛

Z

Rn

�
eiz�� � 1�D˛

� r.x; �/ d�; z ¤ 0; (A.26)

we obtain from formula (A.25) that

lim
"#0

z˛ K".x; z/ D z˛ K.x; z/:

Step 3: To prove inequality (A.21), we estimate the function z˛ K.x; z/ for
j˛j D n and j˛j D n C 1. To do this, we need the following elementary
inequality (A.27):

Lemma A.16. We have, for 0 < �0 < 1,

jeiz�� � 1j � 2jzj�0 j�j�0

: (A.27)

Proof. By the mean value theorem, it follows that

jeiz�� � 1j � minf2; jzj j�jg � 2minf1; jzj j�jg: (A.28)
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However, we have the inequalities

(
jzj j�j � 1 H) jzj j�j � .jzj j�j/�0

;

jzj j�j � 1 H) 1 � .jzj j�j/�0

;
(A.29)

since 0 < �0 < 1.
The desired inequality (A.27) follows by combining inequalities (A.28)

and (A.29).

Case (a): j˛j D n. By using formula (A.25) and inequalities (A.24) and (A.27),
we obtain that

jz˛ K".x; z/j D 1

.2�/n

Z

Rn

ˇ
ˇeiz�� � 1ˇˇ jD˛

� r".x; �/j d� (A.30)

� 2krkjzj�0

.2�/n

Z

Rn
j�j�0

.1C j�j/�n�� d�

� 2krkjzj�0

.2�/n

Z

Rn

1

.1C j�j/nC.���0/
d�

� C1krkjzj�0

;

with some constant C1 > 0.
Case (b): j˛j D nC1. Just as in the case (a), we have, with some constantC2 > 0,

jz˛ K".x; z/j � 2krkjzj�0

.2�/n

Z

Rn

1

.1C j�j/nC�C.1��0/
d� (A.31)

� C2krkjzj�0

:

Therefore, by letting " # 0 in inequalities (A.30) and (A.31) it follows that, for
j˛j D n and j˛j D nC 1, there exists a constant C3 > 0 such that

jz˛ K.x; z/j � C3jzj�0

:

This proves inequality (A.21).

Step 4: On the other hand, by combining Lemmas A.15 and A.16 we obtain that,
for j˛j D n and j˛j D nC 1,

j �eix�� � 1�D˛
� r.x; �/j �

C3jzj�0

.1C j�j/nC.���0/
:

Thus, by (A.26) it follows from an application of the Lebesgue dominated
convergence theorem that the function
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z˛K.x; z/ D .�1/j˛j

.2�/n

Z

Rn

�
eiz�� � 1�D˛

� r.x; �/ d�

is continuous on Rn �Rn. In particular, we have

K.x; z/ 2 C.Rn � .Rn n f0g//:

Step 5: Finally, by inequality (A.21) we can let " # 0 in (A.22) to obtain the
integral formula (A.20).

As a corollary of Lemma A.14, we can prove an Lp boundedness theorem
for pseudo-differential operators r.x;D/ of negative order (see Nagase [Na,
Theorem 3]):

Lemma A.17. If a bounded continuous symbol r.x; �/ satisfies condition (A.19),
then there exists a constant C > 0 such that

kr.x;D/f kLp � Ckf kLp ; f 2 Lp.Rn/: (A.32)

Proof. By inequality (A.21), it follows that

Z

Rn
jK.x; x � y/j dx � C 0

Z

Rn

1

1C jx � yj
1

jx � yjn��0
dx

D C 0
Z

Rn

1

1C jxj
1

jxjn��0
dx

� C 0
�Z

jxj�1
1

jxjn��0
dxC

Z

jxj>1
1

jxjnC.1��0/
dx

�

<1:

Similarly, we have the estimate

Z

Rn
jK.x; x � y/j dy � C 0

�Z

jyj�1
1

jyjn��0
dyC

Z

jyj>1
1

jyjnC.1��0/
dy

�

<1:

Therefore, the desired inequality (A.32) follows by applying Schur’s lemma (Theo-
rem 5.2).

A.6 Proof of Proposition A.12

The next lemma plays an essential role in the proof of Proposition A.12:
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Lemma A.18. Let 1 < p <1, s 2 R, a, � > 1 andm > n=2.

(i) If  .�/ is a function in C1
0 .R

n/ which satisfies the condition

supp  	
	

� 2 Rn W 1
�
� j�j � �




;

we let

fj .x/ D  .a�jD/.x/

WD 1

.2�/n

Z

Rn
eix�� 

�
a�j �

� Of .�/ d�; f 2 Hs
p.R

n/:

Then there exists a constant C > 0, independent of f , such that

�
�
�
�
�
�
�

0

@
1X

jD0
a2sj jfj j2

1

A

1=2
�
�
�
�
�
�
�
Lp

� Ck kL1

N�n�1
kf kHs

p
: (A.33)

(ii) If ffj g is a sequence in S 0.Rn/ which satisfies the condition

supp bfj 	
	

� 2 Rn W a
j

�
� j�j � �aj




;

then there exists a constant C > 0, independent of ffj g, such that

�
�
�
�
�
�

1X

jD0
fj

�
�
�
�
�
�
Hs
p

� C

�
�
�
�
�
�
�

0

@
1X

jD0
a2sj jfj j2

1

A

1=2
�
�
�
�
�
�
�
Lp

: (A.34)

(iii) If s > 0, then inequality (A.34) remains valid for every sequence ffj g in
S 0.Rn/ which satisfies the condition

supp bfj 	
˚
� 2 Rn W j�j � �aj � :

Parts (i) and (ii) are essentially proved in Bergh–Löfström [BL, Theorem 6.4.3],
while part (iii) is proved in Meyer [Me, Lemme 5].

A.6.1 Proof of the Case ı D 1

In this subsection, we prove the case where ı D 1 and 0 < s < r . The proof is
divided into five steps.
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Step 1: Let fMj g be a bounded sequence in the Hölder space �r.Rn/ D
Br1;1.Rn/ (see [Tr, Theorem 2.5.7]). We take a D 2 and let

Mj.x/ D
1X

`D0
Mj;`.x/ (A.35)

be the Littlewood–Paley series of the functionMj.x/, that is,

bMj;0.�/ D  0.�/bMj .�/;

bMj;k.�/ D '.2�k �/bMj .�/; k D 1; 2; : : : ;

where

supp ' D
	

� 2 Rn W 1
2
� j�j � 2




; (A.36a)

X

j2Z

'.2�j �/ D 1 for all � ¤ 0 (A.36b)

and

 0 2 C1
0 .R

n/; (A.37a)

supp  0 D f� 2 Rn W j�j � 2g; (A.37b)

 0.�/ D 1 �
1X

jD1
'.2�j �/ for all � ¤ 0: (A.37c)

If we introduce functions '`.x/ 2 S.Rn/ by the formulas

b'`.�/ D
(
 0.�/ if ` D 0;
'.2�k �/; if ` D 1; 2; : : :;

then the functionsMj;`.x/ can be expressed in the convolution form

Mj;`.x/ D '` �Mj.x/; ` D 0; 1; 2; : : : :

Moreover, the functionsMj;`.x/ are estimated as follows:

Lemma A.19. Let r 0 > 0 be an arbitrary number such that

Œr� < r 0 < r; Œr 0� D Œr�: (A.38)
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If we let

A D sup
j�0
kMjk�r ;

then we have, for all ` D 0, 1, 2, : : :,

kMj;`kL1 � C A2�r 0`; (A.39)

with some constant C > 0 independent of `.

Proof. By Part (i) of Lemma A.2, it follows that

kMj;`kL1 D k'` �MjkL1 D kJ�r 0 � J r 0

.'` �Mj/kL1 (A.40)

� C1 2�r 0`k'` � .J r 0

Mj/kL1 :

However, we have, by Young’s inequality (Corollary 5.3),

k'` � .J r 0

Mj/kL1 � k'`kL1 kJ r 0

MjkL1 D k O'kL1 kMj kHr0
1

: (A.41)

Since Œr 0� D Œr� < r 0 < r , we have the inclusions

�r D Br1;1 	 Br 0

1;1 	 Hr 0

1;

and hence, with some constants C2, C3 > 0,

kMjkHr0
1

� C2 kMjkBr0
1;1
� C3 kMj k�r � C3 A: (A.42)

Therefore, by combining inequalities (A.40), (A.41) and (A.42) we obtain that

kMj;`kL1 � C1 2�r 0`kJ r 0

MjkL1 � .C1 C3 k O'kL1/ 2�r 0`kMjk�r
� .C1 C3 k O'kL1/ A 2�r 0`:

This proves the desired inequality (A.39).

Step 2: If we let

Nj;h.x/ DMj;h�j .2j x/; h � j; (A.43)

then we have the following two Lemmas A.20 and A.21:

Lemma A.20. The functionsNj;h.x/ are estimated as follows:

kNj;hkL1 � C A2�.h�j /r 0

; h � j:
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Proof. Indeed, it follows from an application of Lemma A.19 that

kNj;hkL1 D kMj;h�j kL1 � C A2�.h�j /r 0

:

Lemma A.21. The spectra of the functionsNj;h.x/ are estimated as follows:

supp bNj;h 	
˚
� 2 Rn W 2h�1 � j�j � 2hC1� ; h � j: (A.44)

Proof. By formula (A.43), we can rewrite the function bNj;h.�/ as follows:

bNj;h.�/ D
Z

Rn
e�ix��Mj;h�j .2j x/ dx

D
Z

Rn
e�iy�.�=2j /Mj;h�j .y/

dy

2jn
D 1

2jn
2Mj;h�j .2�j �/

D 1

2jn
'.2�h�/bMj .2

�j �/:

However, since we have

supp ' D
	

� 2 Rn W 1
2
� j�j � 2




;

it follows that

supp bNj;h 	 f� 2 Rn W 2h�1 � j�j � 2hC1g:

Step 3: Now, by using decomposition (A.8) with ı WD 1 we express the function
�.x;D/f in terms of the functionsNj;h and fj .

By (A.35) and (A.43), it follows that

�.x;D/f .x/ D 1

.2�/n

Z

Rn
eix�� �.x; �/ Of .�/ d� (A.45)

D
1X

jD0

1

.2�/n

Z

Rn
eix�� Mj .2

j x/  .2�j �/ Of .�/ d�

D
1X

jD0

Mj .2
j x/

.2�/n

Z

Rn
eix��  .2�j �/ Of .�/ d�

D
1X

jD0
Mj .2

j x/ .2�jD/f .x/ D
1X

jD0
Mj .2

j x/ fj .x/
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D
1X

jD0

 1X

`D0
Mj;`.2

j x/

!

fj .x/ D
1X

jD0

0

@
1X

hDj
Mj;h�j .2j x/

1

A fj .x/

D
1X

jD0

0

@
1X

hDj
Nj;h.x/

1

A fj .x/;

where

fj .x/ D  .2�jD/.x/ D 1

.2�/n

Z

Rn
eix�� 

�
2�j �

� Of .�/ d�:

However, the spectra of the functionsNj;h.x/fj .x/ are estimated as follows:

Lemma A.22. We have, for all h � j ,

supp 2Nj;hfj 	
8
<

:

	

� 2 Rn W 1
3
� 2h � j�j � 3 � 2h




if h � j C 5;
˚
� 2 Rn W j�j � 35 � 2j � : if j � h � j C 4:

Proof. First, it should be noted that

2Nj;hfj .�/ D 1

.2�/n

Z

Rn
bNj;h.� � �/ .2�j �/ Of .�/ d�;

and that

supp bNj;h.� � �/ 	 f� 2 Rn W 2h�1 � j� � �j � 2hC1g;

supp  .2�j �/ D
	

� 2 Rn W 1
3
� 2j � j�j � 3 � 2j




:

Therefore, we can estimate the support of 2Nj;hfj as follows.

Case (A): h � j C 5. In this case, we have the estimate

j�j � j� � �j C j�j � 2hC1 C 3 � 2j D 2h.2C 3 � 2j�h/

� 2h �2C 3 � 2�5�

� 3 � 2h:

Similarly, we have the estimate
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j�j � j� � �j � j�j

� 2h�1 � 3 � 2j D 2h
�
1

2
� 3 � 2j�h

�

� 2h
�
1

2
� 3 � 1

32

�

� 1

3
� 2h:

This proves that

supp 2Nj;hfj 	
	

� 2 Rn W 1
3
� 2h � j�j � 3 � 2h




if h � j C 5.
Case (B): j � h � j C 4. In this case, we have the estimates

j� � �j � 2hC1 � 2jC5;

j�j � 3 � 2j ;

and hence

j�j � j� � �j C j�j � 2jC5 C 3 � 2j D 35 � 2j :

This proves that

supp 2Nj;hfj 	
˚
� 2 Rn W j�j � 35 � 2j �

if j � h � j C 4.

The proof of Lemma A.22 is complete.

Step 4: By virtue of Lemma A.22, we can rewrite (A.45) in the form

�.x;D/f D
1X

jD0

0

@
1X

hDj
Nj;h

1

A fj

D
4X

�D0

0

@
1X

jD0
Nj;jC�fj

1

AC
1X

hD5

0

@
h�5X

jD0
Nj;hfj

1

A

WD g1 C g2:
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(i) The estimate of g1.x/: Since 0 < s < r , by applying part (iii) of Lemma A.18
with � WD 35 and a WD 2 and then Lemma A.20 we obtain that

kg1kHs
p
�

4X

�D0

�
�
�
�
�
�

1X

jD0
Nj;jC�fj

�
�
�
�
�
�
Hs
p

(A.46)

�
4X

�D0

�
�
�
�
�
�
�

0

@
1X

jD0
4sj jNj;jC�fj j2

1

A

1=2
�
�
�
�
�
�
�
Lp

� C1 A

�
�
�
�
�
�
�

0

@
1X

jD0
4sj jfj j2

1

A

1=2
�
�
�
�
�
�
�
Lp

:

However, we have, by inequality (A.29) with � WD 3, a WD 2 and m WD
N � n � 1,

�
�
�
�
�
�
�

0

@
1X

jD0
4sj jfj j2

1

A

1=2
�
�
�
�
�
�
�
Lp

� C2 k kL1

N�n�1
kf kHs

p
:

Therefore, by combining this inequality with inequality (A.46) we obtain that
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N�n�1
kf kHs

p
: (A.47)

(ii) The estimate of g2.x/: By applying inequality (A.34) with � WD 3 and a WD 2
and then Lemma A.20, we obtain that
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:

To estimate the function g2.x/, we need the following elementary result:
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Lemma A.23. If b > 1 and � D .�j / is an element of the Hilbert space `2, we let

� D .�k/;

�k D
Pk

jD0 bj �j
bk

; k D 0; 1; 2; : : : :

Then it follows that � 2 `2 and there exists a constant C > 1, independent of �,
such that

k�k`2 � Ck�k`2 : (A.49)

For example, we may take

C D
p
2
p
b2 C 1

b2 � 1 b:

Proof. (1) First, we have, for any given " > 0, the elementary inequality

.a1 C a2 C : : :C an/2 (A.50)
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(2) Now, by applying inequality (A.50) we obtain that
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C : : :C
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Hence it follows that
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If we take

" D
�
b2 � 1
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then we have, by inequality (A.51),
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This proves the desired inequality (A.49).

Now, by applying Lemma A.23 with

b WD 2r 0�s > 1; 0 < s < r 0;

�j WD 2sj jfj j;
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we obtain that
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Thus we have, by inequality (A.48),
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Step 5: By combining inequalities (A.47) and (A.52), we have proved that, for
0 < s < r 0,
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:

Now the proof of Proposition A.12 for ı D 1 and 0 < s < r is complete, since
r 0 > 0 may be chosen arbitrarily close to r . ut

A.6.2 Proof of the Case 0 � ı < 1

In this subsection, we prove the case where 0 � ı < 1 and .ı � 1/r < s < r : To do
this, it should be noted that

S01;ı.N; r/ 	 S01;1.N; r/ for 0 � ı < 1:
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Hence it follows from the proof of the case ı D 1 that if a symbol �.x; �/ is in the
class S01;ı.N; r/, then the operator �.x;D/ is bounded onHs

p.R
n/ for all 0 < s < r

and 1 < p <1.
Therefore, we have only to consider the case where .ı � 1/r < s < 0, since

Proposition A.12 for s D 0 follows from an interpolation argument. Indeed, it
suffices to note that the space H0

p.R
n/ D Lp.Rn/ is a complex interpolation space

between the spaces H�
p .R

n/ and H��
p .Rn/ with 0 < � < .1 � ı/r (see [BL,

Theorem 6.4.5] and [Tr, Theorem 2.4.7]). The proof is divided into four steps.

Step 1: Now we assume that �.x; �/ 2 S01;ı.N; r/ is an elementary symbol of the
form

�.x; �/ D
1X

jD0
Mj .2

jıx/  .2�j �/; (A.53)

where

 .�/ 2 C1
0 .R

n/; supp  D
	

� 2 Rn W 1
3
� j�j � 3




:

The sequence fMj g is bounded in the Hölder space �r.Rn/:

We take

a D 21�ı > 1; 0 � ı < 1;

and let

Mj.x/ D
1X

`D0
Mj;`.x/ (A.54)

be the Littlewood–Paley series of Mj.x/, that is,

bMj;0.�/ D  0.�/bMj .�/;

bMj;k.�/ D '.a�k �/bMj .�/; k D 1; 2; : : : ;

where

supp' D
	

� 2 Rn W 1
a
� j�j � a




; (A.55a)

X

j2Z

'.a�j �/ D 1 for all � ¤ 0 (A.55b)
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and

 0 2 C1
0 .R

n/; (A.56a)

supp  0 D f� 2 Rn W j�j � ag; (A.56b)

 0.�/ D 1 �
1X

jD1
'.2�j �/ for all � ¤ 0: (A.56c)

If we introduce functions '`.x/ 2 S.Rn/ by the formulas

b'`.�/ D
(
 0.�/ if ` D 0;
'.a�` �/; if ` D 1; 2; : : :;

then the functionsMj;` can be expressed in the convolution form

Mj;`.x/ D '` �Mj.x/; ` D 0; 1; 2; : : : :

Moreover, the functionsMj;` are estimated as follows:

Lemma A.24. If we let

A D sup
j�0
kMjk�r ;

then we have, for all ` D 0, 1, 2, : : :,

kMj;`kL1 � C Aa�r`; (A.57)

with some constant C > 0 independent of `.

Proof. By Part (i) of Lemma A.2, it follows that

kMj;`kL1 D k'` �MjkL1 D ��J .ı�1/r � J .1�ı/r .'` �Mj/
�
�
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� C1 a�r`k'` � .J .1�ı/rMj /kL1 :

However, we have, by Young’s inequality (Corollary 5.3),

k'` � .J .1�ı/rMj /kL1 � k'`kL1 kJ .1�ı/rMjkL1 (A.59)

D k O'kL1 kMjkH.1�ı/r
1

:

Since 0 � ı < 1, we have the inclusions

�r D Br1;1 	 B.1�ı/r
1;1 	 H.1�ı/r1 ;
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and hence, with some constants C2, C3 > 0,

kMjkH.1�ı/r
1

� C2 kMj kB.1�ı/r
1;1

� C3 kMjk�r � C3 A: (A.60)

Therefore, by combining inequalities (A.58), (A.59) and (A.60) we obtain that

kMj;`kL1 � C1 a�r`kJ .1�ı/rMjkL1 � .C1 C3 k O'kL1/ a�r`kMj k�r
� .C1 C3 k O'kL1/ A a�r`:

This proves inequality (A.57).

Step 2: By (A.8) and (A.54), it follows that
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and that
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Therefore, we can estimate the support of 2Mj;hfj as follows.
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with � D 3 � 2.��1/ C 2.��2/ıC1.
Case (B): 0 � j � `C � � 1. In this case, we have the estimate

j�j � j� � �j C j�j � 2.1�ı/.`C1/Cjı C 3 � 2j
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This proves that

supp 2Mj;`fj 	
˚
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The proof of Lemma A.25 is complete.
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Step 3: By virtue of Lemma A.25, we can rewrite (A.61) in the form

�.x;D/f D
1X

jD�

 
j��X

`D0
Mj;`.2

jı x/

!

fj

C
1X

`D0

0

@
`C��1X

jD0
Mj;`.2

jı x/fj

1

A

WD g1 C g2:

(i) The estimate of g1.x/: By applying inequality (A.34) with � WD 4 and a WD 2,
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(ii) The estimate of g2.x/: First, it follows that
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However, we have, by Lemma A.24,
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If we let

b WD 2�s > 1; .ı � 1/r < s < 0;
�j WD 2sj jfj j;

then we can write the last term in inequality (A.63) in the form
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Therefore, by applying Lemma A.23 we obtain from inequality (A.63) that
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By raising this inequality to the power p=2 and then integrating, it follows that
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On the other hand, since we have, by Lemma A.25,
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it follows from an application of part (iii) of Lemma A.18 with s WD sC.1 � ı/r > 0
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By combining inequalities (A.65) and (A.64) and using inequality (A.33) with a WD
2 and � WD 3, we obtain that
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This implies the estimate
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since for HsC.1�ı/r
p 	 Hs

p for 0 � ı < 1 and r > 0.
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Step 4: Summing up, we obtain from inequalities (A.62) and (A.66) that
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:

The proof of Proposition A.12 for 0 � ı < 1 and .ı � 1/r < s < 0 is now
complete. ut



Appendix B
The Boutet de Monvel Calculus via
Operator-Valued Pseudo-differential Operators

In this appendix, following faithfully Schrohe [Sr5], we present a short introduction
to the Boutet de Monvel calculus on the half-space RnC in the framework of
a pseudo-differential calculus with operator-valued symbols, which shows the
pseudo-differential spirit of Boutet de Monvel’s construction more clearly than the
older descriptions. We modify Schrohe’s paper [Sr5] in such a fashion that a broad
spectrum of readers will be able to understand the Boutet de Monvel calculus.

B.1 Introduction

Let X be an n-dimensional compact smooth manifold with boundary @X . As in
Sect. 7.1, we may assume that X D X [ @X is the closure of a relatively compact
subset X of an n-dimensional compact smooth manifold OX without boundary in
which X has a smooth boundary @X (see Fig. B.1). This manifold OX is the double
of X .

Boutet de Monvel considers matrices of operators

A D
�
PC CG K

T S

�

W
C1.X;E1/
˚

C1.@X; F1/
�!

C1.X;E2/
˚

C1.@X; F2/
(B.1)

HereE1,E2 are vector bundles overX , and F1, F2 are vector bundles over @X ; each
of them might be zero.

(1) P is a pseudo-differential operator on the double OX of X ; the subscript C
indicates that the action of PC is defined by extending the function by zero
to the full manifoldX , applying P , and then restricting the result to X . That is,
PCu is defined by the formula

PCu D P.u0/jX ;

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7,
© Springer-Verlag Berlin Heidelberg 2014
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X

X

X̂

Fig. B.1 The double OX of X

where u0 is the extension of u to OX by zero outside of X

u0.x/ D
(

u.x/ if x 2 X;
0 if x 2 OX n X:

(2) S is a usual pseudo-differential operator on the boundary @X .
(3) K and T are generalizations of the potential and trace operators known from

the theory of boundary value problems.
(4) The entry G, a so-called singular Green operator, is an operator which is

smoothing in the interior while it acts like a pseudo-differential operator in
directions tangential to the boundary @X . As an example, we may take the
difference of two solution operators to (invertible) classical boundary value
problems with the same differential part in the interior but different boundary
conditions.

Given an arbitrary pseudo-differential operator P , it is in general not true that
PC maps functions which are smooth up to the boundary @X into functions with the
same property. Therefore, the above mapping property will not hold true if we admit
all pseudo-differential operators. The crucial requirement here is that the symbol
of P has the transmission property, which will be discussed below in detail. On
one hand, this restricts the class of boundary value problems in the calculus, on
the other hand, however, it ensures that solutions of elliptic equations with smooth
data are smooth. Therefore, the transmission property helps to avoid problems with
singularities of solutions at the boundary.

It is also a central point that these operator matrices form an algebra in the
following sense: Given another element of the calculus, say,

A0 D
�
P 0C CG0 K 0
T 0 S 0

�

W
C1.X;E2/
˚

C1.@X; F2/
�!

C1.X;E3/
˚

C1.@X; F3/
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acting from vector bundlesE2, F2 to vector bundlesE3, F3, the compositionA0A is
again an operator matrix of the type described above. This is far from being obvious.
For example, consider one of the terms arising in the matrix composition, that is, the
product P 0CPC. Except for special cases, it will not coincide with .P 0P/C; in fact,
the difference

L.P 0; P / D P 0CPC � .P 0P/C

turns out to be a singular Green operator.
The presentation in Boutet de Monvel’s original paper is rather concise. This

appendix provides a self-contained introduction to the calculus on the half-space
RnC in terms of operator-valued symbol classes satisfying uniform estimates. This
text addresses primarily those readers who are familiar with the standard pseudo-
differential calculus as it is presented, for example, in the book of Kumano-go [Ku].
We have not included a section on coordinate invariance and the construction of
the manifold. For one thing, this allowed us to keep the exposition short. Moreover,
there is no new aspect to be developed in this direction.

B.2 Symbol Classes

B.2.1 General Notation

In the sequel, Hs.Rq/, s 2 R, will denote the usual Sobolev space of L2 type on
Euclidean space Rq . For any s D .s1; s2/ 2 R2, we introduce a weighted Sobolev
space by the formula

Hs .Rq/ D H.s1;s2/ .Rq/ D fhxi�s2 u W u 2 Hs1 .Rq/g ;

where

x D .x1; x2; : : : ; xq/ 2 Rq; hxi D .1C jxj2/1=2:

In particular, we have, for any s1 2 R,

H.s1;0/ .Rq/ D Hs1 .Rq/ :

We let

S .Rq/ D the Schwartz space of all rapidly decreasing functions on Rq:
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For a Fréchet space E , S.Rq; E/ is the vector-valued analog. The dual spaces are
S 0.Rq/ and S 0.Rq; E/ D L.S.Rq/; E/, respectively. The Fourier transform

F W S .Rq; E/ �! S .Rq; E/

will in general be indicated by a hat: For every u 2 S.Rq; E/, we let

Ou.�/ D .Fu/.�/ D
Z

Rq
e�ix��u.x/ dx; � 2 Rq:

Given a distribution u on Rq , we write rCu for its restriction to the upper half-space
Rq

C:

rCu D ujRq
C

;

where

Rq
C D

˚
x D .x1; x2; : : : ; xq�1; xq/ 2 Rq W xq > 0

�
:

For any s D .s1; s2/ 2 R2, we define a weighted Sobolev space on Rq
C by the

formula

Hs
�
Rq

C
� D ˚rCu W u 2 Hs .Rq/

�
;

and also

S
�
Rq

C
� D ˚rCu W u 2 S .Rq/

�
:

Moreover, Hs
0 .R

q
C/ denotes the weighted Sobolev space of all u 2 Hs.Rq/ which

are supported in Rq
C:

Hs
0


Rq

C
�
D
n
u 2 Hs .Rq/ W supp u 	 Rq

C
o
:

We note that

S
�
Rq

C
� D proj� lim

s1;s2!1H.s1;s2/
�
Rq

C
�
;

S 0 �Rq
C
� D ind� lim

s1;s2!�1H
.s1;s2/
0


Rq

C
�
:
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B.2.2 Group Actions

Let E , F be Banach spaces and let L.E; F / be the space of all continuous linear
operators on E into F . A strongly continuous group action on E is a family
	 D f	� W � 2 RCg of isomorphisms in L.E;E/ such that 	�	� D 	�� and
the mapping: � ! 	�e is continuous for every e 2 E . For all Sobolev spaces
Hs.Rq/ and Hs.Rq

C/, we shall use the group action defined on functions by the
formula

.	�u/.x/ D �q=2u.�x/; � 2 RC: (B.2)

This group action extends to distributions u 2 D0.Rq/ by the formula

.	�u/.'/ D u.	��1'/ for all ' 2 C1
0 .R

q/:

The situation can be visualized in the following diagram:

It should be noted that if u is a function on Rq , we have

.	�u/.'/ D
Z

Rq
�q=2u.�x/ '.x/ dx D

Z

Rq
��q=2u.z/ '.��1z/ dz

D u.	��1'/ for all ' 2 C1
0 .R

q/:

On E D C` with ` 2 N, we use the trivial group action 	� � id. Sums of spaces of
the above kind will be endowed with the sum of the group actions.

Lemma B.1. There are constants c and M such that

k	�kL.E;E/ � cmax
˚
�; ��1�M for all � 2 RC:

Indeed, Lemma B.1 follows easily from the well-known statement for additive
semigroups (see Hirschmann [Hi, Remark 2.2]).
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B.2.3 Operator-Valued Symbols

Let E , F be Banach spaces with strongly continuous group actions 	 and Q	,
respectively. If a.y; Qy; �/ is a function in C1.Rq �Rq �RqIL.E; F // and � 2 R,
then we shall write

a 2 S� .Rq � Rq � RqIE;F / ;

provided that, for all multi-indices ˛, ˇ, � there exists a positive constant C D
C.˛; ˇ; �/ such that

�
�
� Q	h�i�1D˛

�D
ˇ
yD

�

Qya.y; Qy; �/	h�i
�
�
�

L.E;F /
� C h�i��j˛j ; h�i D .1C j�j2/1=2:

The situation can be visualized in the following diagram:

~

~

If the operator-valued symbol a.y; Qy; �/ is independent of y or Qy, we shall write
a 2 S�.Rq � RqIE;F /.

For E D F D C, we recover the definition of the usual symbol class S�1;0.R
q �

Rq �Rq/ as follows:

S� .Rq � Rq � RqIC;C/ D S�1;0 .Rq � Rq � Rq/ :

Example B.2 (Trace operators). Let �j W S.RC/! C be a mapping defined by the
formula

�j f D lim
t#0

@j f

@x
j
n

.t/ D f .j /.0/; j D 0; 1; : : : :

The trace theorem for Sobolev spaces (Theorem 6.6 with p WD 2) guarantees that
�j extends to an element of L.H�.RC/;C/ provided that �1 > j C 1=2. We can
also view �j as an operator-valued symbol independent of the variables y and �;
then we have

�j 2 SjC1=2 .Rq � RqIH� .RC/ ;C/ :
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Indeed, recalling that the group action on H�.RC/ is given by formula (B.2) with
q WD 1 while on C we choose the identity, we only have to verify that

�
��j 	h�i

�
�

L.H�.RC/;C/
D O.h�ijC1=2/:

This is immediate, since we have

@j

@tj


h�i1=2 f .h�i t/

�
D h�ijC1=2 @j f

@tj
.h�i t/ for all f 2 S.RC/:

Definition B.3. For an operator-valued symbol a.y; Qy; �/ 2 S�.Rq � Rq �
RqIE;F /, the pseudo-differential operator

Op.a/ W S .Rq; E/ �! S .Rq; F /

is defined by the formula

ŒOp.a/� u.y/ D 1

.2�/q

“

Rq�Rq
ei.y� Qy/��a.y; Qy; �/u. Qy/ d Qy d�; u 2 S .Rq; E/ :

If the operator-valued symbol a.y; Qy; �/ is independent of Qy, this formula reduces
to the following:

ŒOp.a/� u.y/ D 1

.2�/q

Z

Rq
eiy��a.y; �/Ou.�/ d�:

In this case, we call a.y; �/ a left symbol for Op.a/. If a.y; Qy; �/ is independent of
y, then we have

ŒOp.a/� u.y/ D 1

.2�/q

“

Rq�Rq
ei.y� Qy/��a. Qy; �/u. Qy/ d Qy d�;

and a. Qy; �/ is called a right symbol for Op.a/.

Example B.4 (Action in the normal direction). We let

a.x0; xn; � 0; �n/ 2 S�1;0 .Rn � Rn/

with � 2 R. For fixed .x0; � 0/ 2 Rn�1�Rn�1, the function a.x0; �; � 0; �/ is an element
of the symbol class

S
�
1;0 .R � R/ :

For every � D .�1; �2/ 2 R2, the function a.x0; �; � 0; �/ induces a bounded linear
operator



650 Appendix B

Opxn.a/ D Opxna.x
0; xn; � 0; �n/ W H.�1;�2/.R/ �! H.�1��;�2/.R/;

that is,

Opxn.a/ D Opxna.x
0; xn; � 0; �n/ W H�.R/ �! H��.�;0/.R/

(cf. Schrohe [Sr1, Theorem 1.7]). Here the subscript xn indicates that the action is
with respect to the variable xn and the covariable �n only. Then we have

	h�0i�1

�
Opxn.a/

�
	h�0i D Opxna.x

0; xn=
˝
� 0˛ ; � 0;

˝
� 0˛ �n/: (B.3)

The situation can be visualized in the following diagram:

Hσ(R)
Opxn

(a)
−−−−−−−−−−−−−−−−−−→ Hσ−(μ,0)(R)

⏐⏐κ ξ
κ

ξ −1

⏐⏐

Hσ(R) −−−−−−−−−−−−−−−−−−→
Opxn

a(x ,xn/ ξ ,ξ , ξ ξn)
Hσ−(μ,0)(R)

Indeed, we have, for all u 2 S.R/,

	h�0i�1

�
Opxn.a/

�
.	h�0iu/.xn/

D 1

2�

Z

R

˝
� 0˛�1=2 eixn=h�0i��n a.x0; xn=

˝
� 0˛ ; � 0; �n/

˝
� 0˛�1=2 Ou.�n=

˝
� 0˛/ d�n

D 1

2�

Z

R
eixn�n a.x0; xn=

˝
� 0˛ ; � 0;

˝
� 0˛ �n/Ou.�n/ d�n

D �Opxna.x
0; xn=

˝
� 0˛ ; � 0;

˝
� 0˛ �n/

�
u.xn/:

The next theorem shows that Opxn.a/ is an operator-valued symbol in the sense
of Sect. B.2.3:

Theorem B.5. If a.x; �/ 2 S�1;0.Rn � Rn/ and � D .�1; �2/ 2 R2, then we have

Opxn.a/ 2 S�
�
Rn�1 �Rn�1IH�.R/;H��.�;0/.R/

�
:

Proof. Given multi-indices ˛ and ˇ, it follows from Example B.4 that we have to
estimate the following:

sup
x0;�0

�
�
�
˝
� 0˛j˛j

	h�0i�1 ŒOpxn.D
˛
�0D

ˇ

x0a/�	h�0i
�
�
�

L.H� .R/;H��.�;0/.R//

D sup
x0;�0

�
�
�
�
˝
� 0˛j˛j

ŒOpxn.D
˛
�0D

ˇ

x0a/�.x
0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛/

�
�
�
�

L.H� .R/;H��.�;0/.R//
:
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Since D˛
�0D

ˇ

x0a is of order � � j˛j, we may assume that ˛ D ˇ D 0. Now we find
that the operator

Opxna.x
0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛/ W H�.R/ �! H��.�;0/.R/

is continuous, and a bound for its norm is given by the suprema

sup
nˇˇ
ˇD

�

�n
Dı
xn
fa.x0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛/g

ˇ
ˇ
ˇ h�ni�� W xn; �n 2 R

o

for a finite number of derivatives. Since each of them is finite, the desired estimate
follows.

The proof of Theorem B.5 is complete.

As a consequence, we easily obtain order-reducing operators for the full space
situation;

Corollary B.6. For every � 2 R, the symbol r�.�/, defined by the formula

r�.�/ D h�i� D .1C j�j2/�=2; � D .�1; �2; : : : ; �n/ 2 Rn;

belongs to the symbol class S�1;0.R
n �Rn/, and induces the operator-valued symbol

Opxn.r
�/ 2 S�1;0

�
Rn�1 � Rn�1IH�.R/;H��.�;0/.R/

�

for � D .�1; �2/ 2 R2.

Remark B.7. The definitions in Sect. B.2.3 extend to projective and inductive limits.
Let QE and QF be Banach spaces with group actions. If F1  - F2  - : : : Fk  - : : :
and E1 ,! E2 ,! : : : Ek ,! : : : are sequences of Banach spaces with the same
group action and

F D
\

k2N

Fk D proj� lim
k!1Fk;

E D
[

k2N

Ek D ind � lim
k!1Ek:

Then we let

S�
�
Rq �Rq � RqI QE;F � D proj� lim

k!1S�
�
Rq � Rq � RqI QE;Fk

�
;

S�
�
Rq �Rq � RqIE; QF � D proj� lim

k!1S�
�
Rq � Rq � RqIEk; QF

�
;

S� .Rq � Rq � Rq IE;F / D proj� lim
k;`!1S� .Rq �Rq � RqIEk; F`/ :
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In particular, it makes sense to speak of the following symbol classes:

S�
�
Rq � Rq �Rq IS 0.RC/;S.RC/

�
;

S�
�
Rq � Rq �Rq IS 0.RC/;C

�
;

S� .Rq �Rq � RqIC;S.RC// :

We shall write

S�1.� � � / D
\

�2R

S�.� � � /:

Theorem B.8. Given symbols aj .y; Qy; �/ 2 S��j .Rq � Rq � Rq IE;F /, j D
0; 1; 2; : : :, there exists a symbol a.y; Qy; �/ 2 S�.Rq � Rq �Rq IE;F / such that

a.y; Qy; �/ �
1X

jD0
aj .y; Qy; �/:

As usual, the equivalence relation � is defined by the fact that we have, for every
positive integer J ,

a.y; Qy; �/ �
X

j�J
aj .y; Qy; �/ 2 S��J�1 .Rq � Rq � RqIE;F / :

Moreover, the symbol a.y; Qy; �/ is unique modulo S�1.Rq �Rq � RqIE;F /.
The proof follows from the standard argument, just as in Hörmander [Ho4,

Proposition 18.1.3].

Definition B.9. A symbol a.y; Qy; �/ 2 S�.Rq � Rq � RqIE;F / is said to be
classical if it has an asymptotic expansion

a.y; Qy; �/ �
1X

jD0
aj .y; Qy; �/

with

aj .y; Qy; �/ 2 S��j .Rq �Rq � RqIE;F /

satisfying the homogeneity relation

aj .y; Qy; ��/ D ���j Q	�aj .y; Qy; �/	��1 (B.4)
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for all � � 1, j�j � R with a suitable constant R. Then we write

a.y; Qy; �/ 2 S�cl .R
q �Rq � RqIE;F / :

For E D Ck and F D C`, we recover the standard notion.

The symbols �j in Example B.2 are homogeneous of degree j C1=2 in the sense
of formula (B.4).

The next lemma is straightforward to prove:

Lemma B.10. We let

a.y; Qy; �/ 2 S� .Rq � Rq � RqIE;F / ;
b.y; Qy; �/ 2 S Q� .Rq �Rq � RqIF;G/ :

Then we have the following two assertions (a) and (b):

(a) D˛
�D

ˇ
yD

�

Qya 2 S��j˛j .Rq � Rq �Rq IE;F / for all multi-indices ˛, ˇ and � .
(b) The pointwise composition .ba/.y; Qy; �/ D b.y; Qy; �/a.y; Qy; �/ yields an

element

ba 2 S�C Q� .Rq � Rq �Rq IE;G/ :

Theorem B.11. (i) Let a.y; Qy; �/ 2 S�.Rq � Rq � RqIE;F /. Then there exist a
(unique) left symbol aL.y; �/ and a (unique) right symbol aR. Qy; �/ for Op.a/.

(ii) Let a.y; Qy; �/ 2 S�.Rq�RqIE;F / and b.y; Qy; �/ 2 S Q�.Rq�RqIF;G/. Then
there is a left symbol cL.y; �/ 2 S�C Q�.Rq � RqIE;G/ such that

Op.b/ ı Op.a/ D Op .cL/ :

Moreover, we have the asymptotic expansion

cL.y; �/ �
X

˛

1

˛Š
@˛�bL.y; �/D

˛
y aL.y; �/:

Here bL.y; �/ is a left symbol for Op.b/.

Proof. The proof of part (i) is analogous to that of Kumano-go [Ku, Chapter 2,
Theorem 2.5]. For part (ii), we choose a right symbol aR. Qy; �/ for Op.a/ and a left
symbol bL.y; �/ for Op.b/, respectively. Then we have

Op.b/ ı Op.a/ D Op.b/ ı Op.aR/ D Op. Qc/;

with Qc.y; Qy; �/ D bL.y; �/aR. Qy; �/.
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By switching to the left symbol cL.y; �/ of Op. Qc/, we obtain

ŒOp.b/ ı Op.a/� u.y/ D ŒOp. Qc/� u.y/

D 1

.2�/q

“

Rq�Rq
ei.y� Qy/�� Qc.y; Qy; �/u. Qy/ dQyd�

D 1

.2�/q

Z

Rq
eiy��cL.y; �/Ou.�/ d�

D ŒOp .cL/� u.y/;

and the asymptotic expansion (see Theorems 7.17 and 7.20)

cL.y; �/ �
X

˛

1

˛Š
@˛�D

˛
Qy . Qc.y; Qy; �//

ˇ
ˇ
ˇ
ˇ
ˇ QyDy

D
X

˛

1

˛Š
@˛�


bL.y; �/D

˛
Qy aR. Qy; �/

�
ˇ
ˇ
ˇ
ˇ
ˇ QyDy

�
X

˛

1

˛Š
@˛�bL.y; �/D

˛
yaL.y; �/:

The proof of Theorem B.11 is complete.

B.2.4 Duality

Let .E�; E0; EC/ be a triple of Hilbert spaces. We assume that all are embedded
in a common vector space V and that E0 \ EC \ E� is dense in E˙ as well as
in E0. Moreover, we assume that there is a continuous, non-degenerate sesquilinear
form .�; �/E W EC�E� ! C which coincides with the inner product .�; �/E ofE0 on
.EC \E0/� .E� \E0/. We ask that, via .�; �/E , we may identify EC with the dual
of E� and vice versa, and that the quantities

kek0E�

D sup
kf kE

C

j.f; e/E j ; kf k0EC

D sup
kekE�

j.f; e/E j

furnish equivalent norms on the spaces E� andEC, respectively. Assume that there
is a group action 	 on V which has strongly continuous restrictions to each of the
spaces, unitary on E0, that is, .	�e; f /E D .e; 	��1f /E for all e and f 2 E0. Then
we have

.	�e; f /E D .e; 	��1f /E for all .e; f / 2 EC �E�;

since the identity holds true on the dense set .EC\E0/�.E�\E0/. In other words,
the action 	 on EC is dual to the action 	 on E� and vice versa.
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Typical examples for the above situation are given by the following triples:

.E�; E0; EC/ D
�
H�� .R/; L2.R/;H�.R/

�
;

.E�; E0; EC/ D
�
H��
0 .RC/; L2.RC/;H�.RC/

�
;

with � D .�1; �2/ 2 R2.
Let .F�; F0; FC/ be an analogous triple of Hilbert spaces with group action Q	,

and let a. Qy; y; �/ 2 S�.Rq�Rq�RqIE�; F�/. We define a�.y; Qy; �/ by the formula

a�.y; Qy; �/ D a. Qy; y; �/� 2 L.FC; EC/;

where the last asterisk � denotes the adjoint operator with respect to the sesquilinear
forms .�; �/E and .�; �/F :

�
a. Qy; y; �/�f; e�

E
D .f; a. Qy; y; �/e/F for all .e; f / 2 E� � FC:

It is not difficult to verify that a� 2 S�.Rq � Rq � RqIFC; EC/.
Moreover, we may introduce a continuous, non-degenerate sesquilinear form

.�; �/SE W S .Rq; EC/ � S .Rq; E�/ �! C

by the formula

.u; v/SE D
Z

Rq
.u.y/; v.y//E dy:

Analogously, we may introduce a continuous, non-degenerate sesquilinear form

.�; �/SF W S .Rq; FC/ � S .Rq; F�/ �! C

by the formula

.u; v/SF D
Z

Rq
.u.y/; v.y//F dy:

The symbol a�.y; Qy; �/ induces a continuous mapping

Op.a�/ W S .Rq; FC/ �! S .Rq; EC/ :

This is the unique operator satisfying the condition

�
ŒOp.a�/�u; v

�
SE D .u; ŒOp.a/�v/SF

for all u 2 S .Rq; FC/ and v 2 S .Rq; EC/:
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B.2.5 Wedge Sobolev Spaces

Let E be a Banach space with a group action 	. The wedge Sobolev space
Ws.Rq; E/, s 2 R, is the completion of the Schwartz space S.Rq; E/ with respect
to the norm

kuk2Ws .Rq;E/ D
Z

Rq
h�i2s

�
�
�	h�i�1 Ou.�/

�
�
�
2

E
d�:

The wedge Sobolev space Ws.Rq; E/ is a subset of S 0.Rq; E/ and is a Hilbert space
with the natural inner product. We remark that if F is a Banach space such that the
embeddingE ,! F is compact, then the embedding Ws.Rq; E/ ,!Ws0.Rq; F / is
compact whenever s > s0.

For any � D .�1; �2/ 2 R2 and s 2 R, we have the following two assertions (1)
and (2):

(1) The dual space of Ws.Rq;H�.RC// is W�s.Rq;H��
0 .RC// and vice versa.

(2) The dual of Ws.Rq;H�.R// is W�s.Rq;H�� .R//.

Proofs of these statements are given in Hirschmann [Hi, Corollary 6.5].
For any s D .s1; s2/ 2 R2, we can define the wedge Sobolev space

Ws.Rq; E/ D fhyi�s2 u W u 2Ws1 .Rq; E/g :

Then we obtain, in particular, the following two assertions (cf. Schrohe [Sr2,
Lemma 1.8, Corollary 1.10]):

proj� lim
s1;s2;�1;�2!1 W .s1;s2/

�
Rq;H .�1;�2/.RC/

� D S.RqC1
C /;

ind � lim
s1;s2;�1;�2!�1 W .s1;s2/


Rq;H

.�1;�2/
0 .RC/

�
D S 0.RqC1

C /:

Lemma B.12. For any s 2 R, we have the following four assertions (a)–(d):

(a) Ws.Rq;C/ D Hs.Rq/.
(b) Ws.Rq;Hs.Rk// D Hs.RqCk/.
(c) Ws.Rq;Hs

0 .RC// D Hs
0 .R

qC1/.
(d) Ws.Rq;Hs.RC// D Hs.RqC1

C /.

Proof. Assertion (a) is obvious.
For Assertion (b), we remark that the behavior of the Fourier transform under

dilations yields that

kuk2Ws .Rq;Hs.Rk//

D
Z

Rq
h�i2s k h�ik=2 his .Ft!Fy!�u/.�; h�i /k2L2.Rk / d�
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D
Z

Rq
h�i2sCk

Z

Rk
hi2s j.Ft!Fy!�u/.�; h�i /j2 d d�

D
Z

Rq
h�i2s

Z

Rk

D
h�i�1  0E2s j.Ft! 0Fy!�u/.�; 

0/j2 d 0 d�:

The desired statement follows, since we have

h�i2s
D
h�i�1  0

E2s D ˝�;  0˛2s D �1C j�j2 C j 0j2�s :

Assertion (c) follows from Assertion (b): The space Hs
0 .R

qC1
C / is the closure of

C1
0 .R

qC1
C / in the topology of Hs.RqC1/. Since the space C1

0 .R
qC1
C / is dense in

S.Rq;Hs
0 .RC// and since the norms of the spaces

Ws
�
Rq;Hs

0

�
RC

��
; Ws.Rq;Hs.R//; Hs.RqC1/

coincide on the space C1
0 .R

qC1
C /, we obtain the desired assertion:

Hs
0


RqC1

C
�
D
h
C1
0 .R

qC1
C /

i

Hs.RqC1/
D
h
C1
0 .R

qC1
C /

i

Ws.Rq;Hs
0 .RC//

D �S.Rq;Hs
0 .RC//

�
Ws.Rq;Hs

0 .RC//

DWs.Rq;Hs
0 .RC//:

Assertion (d) follows from Assertion (c) by duality:

Ws.Rq;Hs.RC// D
�
W�s�Rq;H�s

0

�
RC

���0 D

H�s
0


RqC1

C
��0

D Hs.RqC1
C /:

The proof of Lemma B.12 is complete.

The following theorem is proved by Seiler [Si, Theorem 3.14]:

Theorem B.13. Let E , F be Hilbert spaces and a.y; �/ 2 S�.Rq � RqIE;F /.
Then the operator

Op.a/ WWs.Rq; E/ �!Ws��.Rq; F /

is bounded for every s 2 R.
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Corollary B.14. Under the assumptions of Theorem B.13, the operator

Op.a/ WWs.Rq; E/ �!Ws�.�;0/.Rq; F /

is even bounded for every s D .s1; s2/ 2 R2.

Proof. By an interpolation argument, it suffices to treat the case: s2 2 2Z.
The boundedness of the operator

Op.a/ WWs.Rq; E/ �!Ws�.�;0/.Rq; F /

is equivalent to the boundedness of the operator

hyis2 Op.a/ hyi�s2 WWs1 .Rq; E/ �!Ws1��.Rq; F /:

Either hyis2 or hyi�s2 is a polynomial. Without loss of generality, we may take
s2 � 0. By using the identity

�
Op.a/; yj

� D Op.Dyj a/;

we may shift the powers of y from the left to the right-hand side. According to
Theorem B.13, both Op.D˛

ya/ and yˇ hyi�s2 , jˇj � s2, are bounded operators on
the respective spaces, and the desired assertion follows.

The proof of Corollary B.14 is complete.

B.3 The Transmission Property

It has been pointed out in the Introduction that we will have to impose a condition
on the pseudo-differential entry P in formula (B.1) in order to ensure the stated
mapping property. Following Boutet de Monvel [Bo], we ask that the symbol of P
has the transmission property.

Definition B.15. Given a function f on RnC, we denote by eCf its extension by
zero to a function on Rn:

eCf .x/ D
(
f .x/ if x 2 RnC;
0 if x 2 Rn nRnC:

Extension by zero also makes sense for distributions u inH.s1;s2/.Rn/ if s1 > �1=2.
Hence it follows that eCu is an element of H.s1;s2/.Rn/ for �1=2 < s1 < 1=2. If u
in H.s1;s2/.Rn/ for s1 � 1=2, then we have

eCu 2 H�.Rn/

for all � D .�1; �2/ with �1 < 1=2 and �2 D s2.
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For classical pseudo-differential symbols of integer order, the transmission
property can be expressed via homogeneity properties of the terms in the asymp-
totic expansion (see [Ho4, Theorem 18.2.18]). In fact, this property also ensures
condition (B.6) below. For non-classical symbols, this is no longer true. For details,
see the analysis by Grubb–Hörmander [GH]. In Schrohe [Sr3], it is shown that
the transmission property can be characterized via commutator estimates on wedge
Sobolev spaces.

We let

HC D ˚.eCu/^ W u 2 S.RC/
� D F .S.RC// ;

H�
0 D

˚
.e�v/^ W v 2 S.R�/

� D F .S.R�// :

Here HC and H�
0 are spaces of smooth functions on R decaying to the first order

near infinity, and

e�g.x/ D
(
g.x/ if x 2 Rn�;
0 if x 2 Rn n Rn�;

where Rn� is the lower half-space

Rn� D f.x1; x2; : : : ; xn�1; xn/ 2 Rn W xn < 0g:

We denote by H 0 the space of all polynomials. Then we let

H D HC ˚H�
0 ˚H 0;

H� D H�
0 ˚H 0;

H0 D HC ˚H�
0 :

The next proposition provide fundamental characterizations of the spaces HC,
H�
0 and H0 in terms of complex analysis:

Proposition B.16. (a) The spacesHC, H�
0 , H�, H0 andH are algebras.

(b) We can give Paley–Wiener type characterizations of the spaces HC, H�
0 and

H0 as follows.

(b.1) A function h 2 C1.R/ belongs to HC if and only if it has an analytic
extension to the lower open half-plane fIm � < 0g, continuous in
the lower closed half-plane fIm � � 0g, together with an asymptotic
expansion

h.�/ �
1X

kD1
ak �

�k; (B.5)
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for j�j ! 1 in the lower closed half-plane fIm � � 0g, which can be
differentiated formally.

A function h 2 C1.R/ belongs to HC if and only if it has a unique
expansion

h.t/ D
1X

kD0
˛k

.1 � it/k

.1C it/kC1 ;

where the coefficients ˛k form a rapidly decreasing sequence.
(b.2) A function h 2 C1.R/ belongs to H�

0 if and only if it has an analytic
extension to the upper open half-plane fIm � > 0g, continuous in
the upper closed half-plane fIm � � 0g, together with an asymptotic
expansion

h.�/ �
1X

kD1
ak �

�k;

for j�j ! 1 in the upper closed half-plane fIm � � 0g, which can be
differentiated formally.

A function h 2 C1.R/ belongs to H�
0 if and only if it has a unique

expansion

h.t/ D
�1X

kD�1
˛k
.1C it/jkj�1

.1 � it/jkj ;

where the coefficients ˛k form a rapidly decreasing sequence.
(b.3) A function h 2 C1.R/ belongs to H0 D HC ˚H�

0 if and only if it has
an asymptotic expansion

h.�/ �
1X

kD1
ak �

�k;

for j�j ! 1 in R, which can be differentiated formally.

A function h 2 C1.R/ belongs toH0 if and only if it has a unique expansion

h.t/ D
1X

kD�1
˛k

.1 � it/k

.1C it/kC1 ;

where the coefficients ˛k form a rapidly decreasing sequence.

Part (a) of Proposition B.16 is easily verified. Proofs of parts (b.1), (b.2) and (b.3)
can be found in Rempel–Schulze [RS, 2.1.1.1].
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Definition B.17. A pseudo-differential symbol

p D p.x; y; �/ 2 S�1;0.Rn � Rn � Rn/

has the transmission property at fxn D yn D 0g, provided that we have, for all k
and `,

@`yn@
k
xn
p.x0; 0; y0; 0; � 0;

˝
� 0˛ �n/ 2 S�1;0.Rn�1

x0 �Rn�1
y0 � Rn�1

�0 / Ő �H�n :

The subscripts x0, y0, � 0, and �n are used only for the moment in order to indicate
the variable for which we have the corresponding property.

We write

p 2 S�tr .Rn � Rn � Rn/ :

We assume that p D p.x; �/ is a classical symbol of order � 2 Z with an
asymptotic expansion

p.x; �/ �
1X

jD0
p��j .x; �/;

where the symbol

p��j .x; �/ 2 S��j .Rn � Rn/

is positively homogeneous of degree � � j in � for j�j � 1, that is, we have, for all
t � 1 and j�j � 1,

p��j .x; t�/ D t��j p��j .x; �/:

We sketch the argument why the classical symbol p.x; �/ of integer order has the
transmission property if and only if we have, for all multi-indices ˛ D .˛0; ˛n/,

�
@

@xn

�˛n � @

@� 0

�˛0

p��j .x0; 0; 0;C1/ (B.6)

D .�1/��j�j˛0j
�
@

@xn

�˛n � @

@� 0

�˛0

p��j .x0; 0; 0;�1/:

Indeed, a Taylor expansion gives that

@˛nxnp��j .x0; 0; � 0;
˝
� 0˛ �/

D ˝
� 0˛��j

@kxnp��j .x0; 0; � 0=
˝
� 0˛ ; �/
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D ˝
� 0˛��j

2

4
X

j˛0j�N

1

˛0Š
@˛nxn@

˛0

�0 p��j .x0; 0; 0; �/.� 0=
˝
� 0˛/˛0 C rN .x0; � 0; �/

3

5 :

Here rN .x0; � 0; �/ can be estimated in terms of the quantity

sup
n
j@ˇ0

�0 p��j .x0; 0; �� 0=
˝
� 0˛ ; �/j W jˇ0j D N C 1; 0 � � � 1

o
;

which is of orderO.h�i��j�N�1/, uniformly in x0 and � 0. Moreover, we have

@˛nxn@
˛0

�0p��j .x0; 0; 0; �/ D @˛nxn@˛
0

�0p��j .x0; 0; 0;˙1/j�j��j�j˛0j;

so that, eventually, Assertion (b.3) of Proposition B.16 gives the desired assertion.
The next lemma is obvious:

Lemma B.18. Regularizing symbols always have the transmission property, and so
do symbols which vanish to infinite order at fxn D 0g. Moreover, all symbols which
are polynomial in � have the transmission property according to condition (B.6).

Example B.19. The symbol h�i does not have the transmission property. Indeed,
since we have the identity

˝�
� 0; �n

˝
� 0˛�˛

D

1C j� 0j2 C �2n

˝
� 0˛2�1=2 D

˝
� 0˛2 C �2n

˝
� 0˛2�1=2 D ˝� 0˛

q
1C �2n

D ˝� 0˛ h�ni ;

this would require that � 7! h�i 2 H . However, by writing

h�i D j�j
�

1C 1

�2

�

D j�j
1X

jD0

 
1=2

j

!

��2j D
1X

jD0

 
1=2

j

!

.sgn �/ ��2jC1;

we see that condition (B.6) is violated.

There are symbols with the transmission property of arbitrary order:

Example B.20. Let q.x; � 0/ 2 S�1;0.Rn �Rn�1/ and ' 2 S.R/. Then we have

p.x; �/ WD q.x; � 0/'.�n=
˝
� 0˛/ 2 S�tr .Rn � Rn/:

Indeed, since we have

p.x0; 0; � 0;
˝
� 0˛ �n/ D q.x0; 0; � 0/'.�n/ 2 S�1;0.Rn�1

x0 �Rn�1
�0 /˝H�n;

it is straightforward to verify the symbol estimates for p.x; �/.
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The next proposition asserts the stability of the transmission property under the
usual pseudo-differential constructions:

Proposition B.21. (a) If p.x; y; �/ and q.x; y; �/ have the transmission property,
then all derivatives D˛

� D
ˇ
xD

�
yp.x; y; �/, the product p.x; y; �/q.x; y; �/, and

the left symbols pL.x; �/ and right symbols pR.y; �/, have the transmission
property.

(b) If pj .x; y; �/ are symbols of order � � j with the transmission property and if
p.x; y; �/ �Pj pj .x; y; �/, then p.x; y; �/ has the transmission property.

(c) If p.x; y; �/ is elliptic with the transmission property, then every parametrix of
p.x; y; �/ has the transmission property.

The proof of Proposition B.21 is straightforward.
The next lemma, together with Theorem B.24 below, shows that there are also

order-reducing symbols for the half-space situation. The construction goes back to
Grubb [Gb].

Lemma B.22. Choose � 2 S.R/ with supp .F�1�/ 	 R� and �.0/ D 1. For every
� 2 Z and a positive constant a with a >> sup k�0k (the supremum norm of the
first derivative of �), we let

r��.�/ D
�

�

�
�n

a h� 0i
�
˝
� 0˛ � i�n

��
; � D .� 0; �n/ 2 Rn: (B.7)

Then the symbol r��.�/ is an elliptic element in the symbol class S�tr .R
n � Rn/. The

same assertion holds true for the symbol

r
�
C.�/ D r��.�/ D

�

�

�
�n

a h� 0i
�
˝
� 0˛C i�n

��
; � D .� 0; �n/ 2 Rn:

Proof. The above definition makes sense, since we have

�


�n
ah�0i

�
h� 0i � i�n

h� 0i � i�n D 1C ˝� 0˛ �


�n
ah�0i

�
� �.0/

h� 0i � i�n
WD 1C r.�/;

where the symbol r.�/ is small:

jr.�/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

˝
� 0˛ �


�n
ah�0i

�
� �.0/

h� 0i � i�n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� sup k�0k

a
� j�njh�i :

An application of Example B.20 shows that r��.�/ is an elliptic symbol of order �.
Moreover, we have

r��.� 0;
˝
� 0˛ �n/ D

˝
� 0˛� .�.�n=a/� i�n/� :
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By using Proposition B.16, it is not difficult to verify that �.�n=a/ � i�n as well as
its integer powers belong to the space H� D H�

0 ˚H 0. Indeed, it suffices to note
that supp F�1� 	 R�. Hence the symbol r��.�/ has the transmission property.

The proof of Lemma B.22 is complete.

Definition B.23. Given s D .s1; s2/ 2 R2 with s1 > �1=2 and a symbol p, we
define the operator

OpCp W Hs.RnC/ �! D0.RnC/ (B.8)

by the formula

�
OpCp

�
u D rC �Op.p/.eCu/

�
:

For P D Op.p/, we write PC D OpCp.

It is obvious that we may replace D0.RnC/ on the right-hand side of (B.8) by
H�.RnC/, where �1 D minfs1; 0g � �, �2 D s2 and � is the order of p.

Theorem B.24. Let � D .�1; �2/ 2 R2. For the symbols r�˙.�/, we have the
following six assertions (a)–(f):

(a) Opxn.r
�

˙/ 2 S�.Rn�1 � Rn�1IH�.R/;H��.�;0/.R//.
(b) OpC

xn
r�� 2 S�.Rn�1 �Rn�1IH�.RC/;H��.�;0/.RC// with �1 > �1=2.

(c) Let e� W H�.RC/! H�.R/ be an arbitrary extension operator. Then it follows
that

rC �Opxn
�
r��
��
e� 2 S�

�
Rn�1 � Rn�1IH�.RC/;H��.�;0/.RC/

�
:

The operator is independent of the particular choice of e� .
(d) Opxn.r

�
C/ 2 S�.Rn�1 � Rn�1IH�

0 .RC/;H��.�;0/
0 .RC//. Note that we use

neither restriction nor extension, for H�
0 .RC/ ,! H�.R/.

(e) For every �0 2 Z, we have

�
Opxn

�
r
�
C
�� h

Opxn


r
�0

C
�i
D Opxn


r
�C�0

C
�

on each space H�
0 .RC/. In particular, as operators

H�
0 .RC/ �! H

��.�;0/
0 .RC/;

we have

�
Opxn

�
r
�
C
���1 D Opxn

�
r

��
C
�
:
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(f) For every �0 2 Z, we have

�
OpC

xn
r��
� h

OpC
xn
r�

0

�
i
D OpC

xn
r�C�0

�

on each space H�.RC/. Here we tacitly assume that the zero-extension eC is
replaced by an arbitrary extension operator if �1 � �1=2 or �1 � �0 � �1=2.
In particular, we have

�
OpC

xn
r��
��1 D OpC

xn
r��� :

Proof. Assertion (a) follows from Theorem B.5. For Assertions (b) and (c), we make
the following observation: If e W H�.RC/ ! H�.R/ is an arbitrary extension
operator, then it follows that the operator

rC �Opxn.r
��/.eu/

�

is independent of the choice of e. Indeed, it suffices to note that supp F�1� 	 R�
in Lemma B.22. Moreover, we can find a continuous operator

es W Hs.RC/ �! Hs.R/

satisfying the condition

Q	��1 es	� D es

for the standard group actions 	 and Q	 on Hs.RC/ and Hs.R/, respectively. The
situation can be visualized in the following diagram:

Hs(R+) es

−−−−→ Hs(R)
⏐⏐κλ κλ−1

⏐⏐

Hs(R+) −−−−→
es

Hs(R)

Therefore, Assertion (a) gives the desired assertions, since we have

OpC
xn
r��.u/ D rC �Opxn.r

��/.eCu/
� D rC �Opxn.r

��/.esu/
�
; u 2 H�.RC/:

For every u 2 H�
0 .RC/, it follows that ŒOpxn.r

�
C/�.u/ has support in the space

RC. Hence Assertion (d) follows from Assertion (a) as follows:

OpC
xn
r
�
C W H�

0 .RC/ �! H�.R/
Opxn .r

�

C
/

! �! H��.�;0/.R/ �! H
��.�;0/
0 .RC/:
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Assertion (e) is trivial. Assertion (f) is first shown for large �1; then it extends to the
general case.

The proof of Theorem B.24 is complete.

The next lemma illustrates the effect of the transmission property:

Lemma B.25. Let p 2 S�tr .Rn � Rn/. For every ` 2 N, the formula

k` D k`.x0; � 0/ D rC �Opxn.p/
�
.ı
.`/
0 / (B.9)

yields an element

k` 2 S�ClC1=2 �Rn�1 �Rn�1IC;S.RC/
�
:

Here ı.`/0 .xn/ is the `-th derivative of the Dirac measure ı0.xn/ at the origin 0, and
we consider k` as the operator which associates to a complex number c the function
c ŒOpxn.p/�ı

.`/
0 on RC.

Note that k` D 0 if p is a polynomial in �.

Proof. Take a right symbol pR D pR.x0; yn; �/ for Opxn.p/. Fix a cut-off function
! 2 C1

0 .R/ such that !.t/ D 1 near t D 0, and write

pR.x
0; yn; �/

D !.yn/pR.x0; yn; �/C .1� !.yn// pR.x0; yn; �/

D
X̀

jD0

y
j
n

j Š
!.yn/@

j
yn
pR.x

0; 0; �/C y`C1n pR`.x
0; yn; �/C .1 � !.yn// pR.x0; yn; �/

with a suitable term pR`. The operators associated with the second and the third
summand vanish, so we can focus on the first one. By part (a) of Proposition B.21,
it follows that the right symbol pR.x0; yn; �/ has the transmission property. Hence
we have

@jynpR.x
0; 0; � 0;

˝
� 0˛ �n/ 2 S�1;0


Rn�1
x0 � Rn�1

�0

�
Ő �H�n ;

and we can write

@jynpR.x
0; 0; � 0; �n/

D
�X

kD0
sjk.x

0; � 0/�kn C
1X

kD0
�jkbjk.x

0; � 0/hjk.�n=
˝
� 0˛/

with (see Schaefer [Sa, Chapter III, Section 6.4, Theorem], Treves [Tv, Theo-
rem 45.2])

sjk 2 S��k
1;0 .Rn�1 � Rn�1/;



B.3 The Transmission Property 667

and

1X

kD1
j�jkj <1;

hjk 2 H0 D HC ˚H�
0 D F .S.RC//˚F .S.R�// :

Here the sequences fbjkg1kD1 converge to zero in the symbol class S�1;0.R
n�1�Rn�1/

and the sequences fhjkg1kD1 converge to zero in the space H0, respectively. The
polynomial part gives no contribution to formula (B.9). Hence it suffices to consider
a single term

b.x0; � 0/h.�n=
˝
� 0˛/

under the summation to show that its contribution to formula (B.9) is an element of
the symbol class

S�
�
Rn�1 � Rn�1IC;S.RC/

�
;

and to verify that the seminorms for this element depend continuously on those for
b.x0; � 0/ and h.�/. Since b.x0; � 0/ is of order � and since we have

yjn ı
.`/
0 D .�1/`

 
`

j

!

j Š ı
.`�j /
0 ;

we have only to show that, for all � D .�1; �2/ 2 R2, the operator

rC	h�0i�1

h
OpxnD

˛
�0

�
h.�n=

˝
� 0˛/

�i
ı
.`/
0 W C �! H�.RC/

has a norm of order O.h� 0i�j˛jC`C1=2
/.

Now the operator

D˛
�0

�
h.�n=

˝
� 0˛/

�

is a linear combination of terms of the form

.�n=
˝
� 0˛/kh.k0/.�n=

˝
� 0˛/s.� 0/;

where

s 2 S�j˛j
1;0 .Rn�1 � Rn�1/; 0 � k � k0 � j˛j:
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The function �k
0

h.k
0/.�/ is an element ofH0 D HC˚H�

0 , so we may focus on the
case ˛ D 0. We observe that

	h�0i�1Opxnh.�n=
˝
� 0˛/ı.`/0 D i `

˝
� 0˛�1=2 F�1

�n!xn

�
h.�n=

˝
� 0˛/�`n

�
.xn=

˝
� 0˛/

D i ` ˝� 0˛1=2C` F�1 �h.�/�`
�
.xn/:

This gives the desired result, since rCF�1.h.�/�`/ is a function in S.RC/.
The proof of Lemma B.25 is complete.

Example B.26. The polynomial 1 C j�j2 is the symbol of the differential operator
1 � 
. Hence, by Lemma B.18 and part (c) of Proposition B.21 it follows that its
inverse a.�/ D .1C j�j2/�1 has the transmission property. For xn > 0, we have

�
Opxn.a/

�
ı0.xn/ D 1

2�

Z

R
eixn�n

1

1C j� 0j2 C �2n
d�n

D 1

2.2�/ h� 0i
Z

R
eixn�n

�
1

h� 0i C i�n C
1

h� 0i � i�n
�

d�n:

However, complex integration around a large half circle in the upper half-plane
shows that the integral is equal to the following:

2�eixn�n j�nDih�0i D 2�e�h�0ixn :

Hence, in this case, k0.x0; � 0/ D ŒOpxn.a/� is the operator which assigns to c 2 C
the function

c'.xn/ 2 S.RC/;

where

'.xn/ D 1

2 h� 0ie
�xnh�0i:

Then we have


	h�0i�1'

�
.xn/ D 1

2

˝
� 0˛�3=2 e�xn :

All its semi-norms of the space S.RC/ are of order O.h� 0i�3=2/, which shows that
k0.x

0; � 0/ is an element of the symbol class

S�3=2 �Rn�1 � Rn�1;C;S.RC/
�
:
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The next theorem illustrates how the transmission property of the symbol ensures
that the associated operator preserves smoothness up to the boundary:

Theorem B.27. Let a 2 S�tr .Rn � Rn/ for � 2 R and � D .�1; �2/ 2 R2 with
�1 > �1=2. Then we have

OpC
xn
a 2 S� �Rn�1 � Rn�1IH�.RC/;H��.�;0/.RC/

�
:

Proof. For �1=2 < �1 < 1=2, the assertion is immediate from Theorem B.5.
Indeed, it suffices to note that the extension operator

eC W H�.RC/ �! H�.R/

is continuous.
By using an interpolation argument, we may assume that �1 2 N. We proceed

by induction on �1. Recall that the norm of a function v 2 H�C.1��;0/.RC/ can be
estimated by the norm of v inH��.�;0/.RC/ and the norm of @xnv inH��.�;0/.RC/.
We note that

@xn
�
eCu

� D eC.@xnu/C u.0/ı0 for all u 2 H�C.1;0/.R/:

Hence we have

@xn
��

OpC
xn
a
�

u
�

D @xn
�
rC �Opxn.a/

�
eCu

�

D �OpC
xn
.@xna/

�
uC �OpC

xn
a
� �
@xn.e

Cu/
�

D �OpC
xn
.@xna/

�
uC �OpC

xn
a
�
eC.@xnu/C �0u rC �Opxn.a/

�
ı0:

Since we have

@xn	h�0i�1 D ˝� 0˛�1 	h�0i�1@xn ;

we obtain that
�
�
�@xn	h�0i�1

�
OpC

xn
a
�
	h�0i

�
�
�

L.H�C.1;0/.RC/;H
��.�;0/.RC//

D
�
�
�
˝
� 0˛�1 	h�0i�1@xn

�
OpC

xn
a
�
	h�0i

�
�
�

L.H�C.1;0/.RC/;H
��.�;0/.RC//

� ˝� 0˛�1
�
�
�	h�0i�1

�
OpC

xn
.@xna/

�
	h�0i

�
�
�

L.H�C.1;0/.RC/;H
��.�;0/.RC//

C
�
�
�	h�0i�1

�
OpC

xn
a
�
	h�0i

�
�
�

L.H� .RC/;H
��.�;0/.RC//
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C ˝� 0˛�1
�
�
�	h�0i�1rC �Opxn.a/

�
ı0

�
�
�

L.C;H��.�;0/.RC//

� ���0	h�0i
�
�

L.H�C.1;0/.RC/;C/
:

By induction on �1, all terms are of order O.h� 0i�/; for the last term, we have only
to apply Lemma B.25 with ` WD 0 and Example B.2 with j WD 0.

The proof of Theorem B.27 is complete.

B.4 Symbol Classes for the Boutet de Monvel Calculus

B.4.1 The Operator @C

In the subsequent text we shall denote by @C the usual derivative considered as a
differential operator on distributions over RC. We choose this notation in order to
distinguish @C from @t which also acts on distributions on the full line. For any
� D .�1; �2/ 2 R2 with �1 > �1=2, we have

@C D rC@t eC W H�.RC/ �! H��.1;0/.RC/:

On the other hand, the operator @C acts on all spaces H�.RC/ and defines an
.x0; � 0/-independent element of S1.Rn�1�Rn�1IH�.RC/;H��.1;0/.RC// for every
� D .�1; �2/ 2 R2:

@C 2 S1
�
Rn�1 �Rn�1IH�.RC/;H��.1;0/.RC/

�
:

B.4.2 Boundary Symbols on the Half-Space Rn
C

(a) A potential symbol k of order � is an element of the symbol class

S�
�
Rn�1 � Rn�1IC;S.RC/

�
(B.10)

D
\

�D.�1;�2/2R2

S�
�
Rn�1 � Rn�1IC;H�.RC/

�
:

This is a Fréchet space with the topology of the projective limit. The group
action is the identity on C and given by formula (B.2) on H�.RC/.
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(b) A trace symbol t of order � and type zero is an element of the symbol class

S�.Rn�1 � Rn�1IS 0.RC/;C/ (B.11)

D
\

�D.�1;�2/2R2

S�.Rn�1 � Rn�1IH�
0 .RC/;C/:

Again this is a Fréchet space with the projective limit topology.
For every �1 > �1=2, the weighted Sobolev space H.�1;�2/.RC/ is

embedded in the space H
0 .RC/ with  D .minf�1; 0g; �2/, by using the zero-

extension. Therefore, a trace symbol t of order � and type 0 defines an element
of S�.Rn�1 �Rn�1IH.�1;�2/.RC/;C/ whenever �1 > �1=2.

A trace symbol t of order � and type d 2 N0 is a sum of operator-valued
symbols

t D
dX

jD0
tj @

j
C;

where N0 D N[f0g, and each tj is a trace symbol of order ��j and type zero
and the summation is in the symbol class

S�.Rn�1 � Rn�1IH.�1;�2/.RC/;C/

for �1 > d � 1=2. We endow the space of trace symbols of order � and type d
with the topology of the non-direct sum of Fréchet spaces (see Definition B.28
below). Grubb [Gb] uses ‘class’ instead of ‘type’.

(c) A singular Green symbol g of order� and type zero is an element of the symbol
class

S�
�
Rn�1 � Rn�1IS 0.RC/;S.RC/

�
(B.12)

D
\

�;2R2

S�
�
Rn�1 � Rn�1IH�

0 .RC/;H.RC/
�
;

endowed with the Fréchet topology of the projective limit.
A singular Green symbol of order � and type zero furnishes an element of

the symbol class

S�
�
Rn�1 �Rn�1IH�.RC/;S.RC/

�
; � D .�1; �2/ 2 R2;

provided that �1 > �1=2. We define the singular Green symbols of order � and
type d as the sums

g D
dX

jD0
gj @

j
C;
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where each gj is a singular Green symbol of order �� j and type zero, and the
summation is in the symbol class

S�
�
Rn�1 �Rn�1IH�.RC/;S.RC/

�
; �1 > d � 1=2:

The resulting space carries the Fréchet topology of the non-direct sum.
(d) A boundary symbol a in the Boutet de Monvel calculus of order � and type d

is an operator-valued symbol of the form

a D
�

OpC
xn
pC gk
t s

�

; (B.13)

where p 2 S�.Rn � Rn/, g is a singular Green symbol of order � and type d ,
k is a potential symbol of order �, t is a trace symbol of order � and type d ,
and s 2 S�1;0.Rn�1 � Rn�1/. We know from Theorem B.27 that

OpC
xn
p 2 S� �Rn�1 � Rn�1IH�.RC/;H��.�;0/.RC/

�
;

� D .�1; �2/ 2 R2;

provided that �1 > �1=2. Also it follows that the symbol

s 2 S�1;0.Rn�1 � Rn�1/ D S�.Rn�1 � Rn�1IC;C/
is an operator-valued symbol. Therefore, for each �1 > d � 1=2 a boundary
symbol of order � and type d can be considered an element of the symbol class

S�
�
Rn�1 �Rn�1IH�.RC/˚ C;H��.�;0/.RC/˚ C

�
: (B.14)

That is, we have

a D
�

OpC
xn
pC gk
t s

�

W
H�.RC/
˚
C

�!
H��.�;0/.RC/

˚
C

We endow the space of boundary symbols of order � and type d with the
Fréchet topology of the non-direct sum of the Fréchet spaces involved.

(e) We obtain the notions of regularizing potential, trace, singular Green, and
boundary symbols by taking the intersection of the corresponding spaces over
all � 2 R.

(f) The definitions in (a), (b), and (c) extend easily to double symbols.
We obtain classical symbol classes by taking S�cl .: : :/.

(g) Since we eventually want to treat operators acting on sections of vector bundles
E1, E2 over a compact manifold X and F1, F2 over its boundary @X , we will
have to replace the spaces

C; S.RC/; H�.RC/; H�
0 .RC/; S 0.RC/;
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in general by N -fold Cartesian products for a suitable positive integer N :

CN1 ; S.RC/N2 ; H�.RC/N3 ; H�
0 .RC/N4 ; S 0.RC/N5 :

In order to avoid superfluous notation, we shall not write the Nj unless clarity
demands it.

The following notion of the non-direct sum has already been used in the above
definitions (b) and (d):

Definition B.28. Let E , F be Fréchet spaces. Assume that E and F are continu-
ously embedded in the same Hausdorff vector space. The exterior direct sum

E ˚ F

is a Fréchet space and has the closed subspace

N D f.a;�a/ W a 2 E \ F g:

Then the non-direct sum of E and F is the Fréchet space

E C F WD .E ˚ F / =N :

Definition B.29. We call the boundary symbol a in (B.13) a generalized singular
Green symbol of order � and type d , if p D 0. For d D 0, we obtain an element of
the symbol class

S�.Rn�1 �Rn�1IS 0.RC/N1 ˚ CN2 ;S.RC/N3 ˚ CN4/

with suitable non-negative integers N1, N2, N3, N4 2 N0:

a D
�
g k

t s

�

W
S 0.RC/N1
˚

CN2

�!
S.RC/N3
˚

CN4

The next proposition lays the foundation for Theorem B.32 below:

Proposition B.30. Let u 2 L2.R � R/, and assume that xkjD
`
xj

u.x1; x2/ is an

element of L2.R � R/ for j D 1, 2 and all k, ` 2 N0. Then it follows that
u 2 S.R �R/.

Proof. For each ` 2 2N, we have

�
Op
�
1C �`1 C �`2

��
u 2 L2.R2/:
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Since 1C �`1 C �`2 is an elliptic symbol of order `, it follows that

u 2 H.`;0/.R2/ for all ` 2 N:

On the other hand, the assumption with ` WD 0 implies that

u 2 H.0;k/.R2/ for all k 2 N:

Therefore, we have only to show that

\

s�0

�
H.s;0/.R2/ \H.0;s/.R2/

� D S.R2/:

Denote by F the Fréchet space on the left-hand side:

F WD
\

s�0

�
H.s;0/.R2/\H.0;s/.R2/

�
:

A system fpk W k 2 Ng of semi-norms for F is given by

pk.u/ D
�
�
�hxi2k u

�
�
�
L2
C
�
�
�hDi2k u

�
�
�
L2
;

where

hxi2k D �1C x21 C x22
�k
; hDi2k D �1C @21 C @22

�k
:

It is clear that the Schwartz space S.R2/ is a subset of F . Moreover, S.R2/ is dense
in F . Indeed, fix a function ' 2 C1

0 .R
2/ such that '.0/ D 1, and let

'".x/ D '."x/; " > 0:

Then it follows that '"u 2 S.R2/ for each u 2 F . By using the Lebesgue dominated
convergence theorem, we obtain that

'"u �! u in F as "! 0:

This proves the density of S.R2/ in F .
For every u 2 S.R2/, integration by parts and the Schwarz inequality imply that

�
�x˛Dˇ

x u
�
�2
L2
D
Z

R2
x˛Dˇ

x u � x˛Dˇ
x u dx � Cpk.u/2;



B.4 Symbol Classes for the Boutet de Monvel Calculus 675

provided that k � maxfj˛j; jˇjg. Here C is a generic positive constant depending
only on ˛ and ˇ. We obtain that x˛Dˇ

x extends to a continuous operator on F , and
that F 	 S.R2/.

The proof of Proposition B.30 is complete.

Definition B.31. We shall write R2CC D RC �RC.

The next theorem asserts the equivalence of the operator-valued approach and
the standard definition: The estimates in part (i) of Theorem B.32 are those required
in the usual presentation of singular Green operators (cf. Grubb [Gb, (2.3.28)]).

Theorem B.32 (Singular Green symbol kernels). Let � 2 R and let fg.y; �/ W
y; � 2 Rqg be a family of operators L2.RC/! L2.RC/. Then the following three
conditions (i), (ii) and (iii) are equivalent:

(i) Each g.y; �/ is an integral operator with a symbol kernel Qg.y; �I u; v/ satis-
fying the following estimates: For all k, k0, `, `0 2 N0 and ˛, ˇ 2 Nq

0 , there
exists a positive constant c depending on k, k0, `, `0, ˛, ˇ, with the estimate

�
�
�ukDk0

u v`D`0

v D
˛
�D

ˇ
y Qg.y; �I u; v/

�
�
�
L2.RCC/

� c h�i��j˛j�kCk0�`C`0

:

(ii) g.y; �/ 2 S�.Rq � RqIS0.RC/;S.RC//.
(iii) g 2 S�.Rq � RqIL2.RC/;S.RC// and g� 2 S�.Rq � RqIL2.RC/;S.RC//

where g�.y; �/ D fg.y; �/� W y; � 2 Rqg is the family of pointwise adjoints.

Proof. (i) H) (ii): It is easy to verify that 	h�i�1D˛
�D

ˇ
y g.y; �/	h�i is the integral

operator with the symbol kernel

h˛;ˇ.y; �I u; v/ D

D˛
�D

ˇ
y Qg
� 
y; �I h�i�1 u; h�i�1 v

�
h�i�1 :

The estimates for Qg imply that h˛;ˇ.y; �I �; �/ is a function in the space S.R2CC/,
and all its semi-norms are of order O.h�i��j˛j/. In particular, the symbol kernel
h˛;ˇ.y; �I u; v/ induces an operator from S 0.RC/ into S.RC/, and we have
condition (ii).
(ii) H) (iii): It is trivial that

g 2 S� �Rq �Rq IL2.RC/;S.RC/
�
:

Moreover, we have, for all � D .�1; �2/ 2 R2,

g 2 S�


Rq � RqIH�
0 .RC/; L2.RC/

�
:

Hence Sect. B.2.4 shows the asserted property of g�.y; �/.
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(iii) H) (i): The operator

	h�i�1g.y; �/	h�i W L2.RC/ �! S.RC/

is continuous. In particular, it is a Hilbert–Schmidt operator on L2.RC/ and thus
has an integral kernel h1.y; �I �; �/ 2 L2.R2CC/ with the norm

kh1.y; �I �; �/kL2.R2
CC

/ D
�
�
�	h�i�1g.y; �/	h�i

�
�
�
HS.L2.RC//

:

The last norm is bounded by the norm in the space L.L2.RC/;H .1;1/.RC//. By
a direct calculation, the operator g.y; �/ then has the integral kernel

Qg1.y; �I u; v/ D h1.y; �I h�i u; h�i v/ h�i : (B.15)

Correspondingly, the operator 	h�i�1g�.y; �/	h�i has the kernel h2.y; �I u; v/, and
we have

h1.y; �I u; v/ D h2.y; �I v; u/: (B.16)

The mapping

ukDk0

u 	h�i�1D˛
�D

ˇ
y g.y; �/	h�i W L2.RC/ �! S.RC/

is also continuous. Therefore, we have the estimate

�
�
�ukDk0

u D
ˇ
�D

ˇ
y h1.y; �I u; v/

�
�
�
L2.R2

CC
/
D O.h�i��j˛j/:

By using (B.16), we also have the estimate
�
�
�v`D`0

v D
˛
�D

ˇ
yh1.y; �I u; v/

�
�
�
L2.R2

CC
/
D O.h�i��j˛j/:

These estimates, together with Proposition B.30, show that
�
�
�ukDk0

u v`D`0

v D
ˇ
�D

ˇ
y h1.y; �I u; v/

�
�
�
L2.R2

CC
/
D O.h�i��j˛j/:

By combining this fact with (B.15), we obtain condition (i).
The proof of Theorem B.32 is now complete.

Lemma B.33. We may replace the estimates in part (i) of Theorem B.32 by the
following:

sup
u;v

ˇ
ˇ
ˇukDk0

u v`D`0

v D
˛
�D

ˇ
y Qg.y; �I u; v/

ˇ
ˇ
ˇ � c h�i1C��j˛j�kCk0�`C`0

:
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Proof. Lemma B.33 is a consequence of the following two estimates (B.17)
and (B.18) for all functions f 2 S.RC/:

sup
t>0

jf .t/j2 � 2kf kL2.RC/
kDtf kL2.RC/

: (B.17)

kf kL2.RC/
� h�i�1=2 sup

t>0

.1C h�i t/jf .t/j: (B.18)

Estimate (B.17) follows by applying the Schwarz inequality to

jf .t/j2 D �
Z 1

t

@

@s

n
f .s/ � f .s/

o
ds

D �
Z 1

t

@f

@s
� f .s/ ds �

Z 1

t

f .s/ � @f
@s
ds:

In order to prove estimate (B.18), we have only to note that

kf k2
L2.RC/

� sup
t>0


.1C h�i t/2 jf .t/j2

� Z 1

0

1

.1C h�i s/2 ds

D sup
t>0


.1C h�i t/2 jf .t/j2

�
h�i�1 :

The proof of Lemma B.33 is complete.

Theorem B.34 (Potential and trace symbol kernels).

(a) Let � 2 R and let k D fk.y; �/ W y; � 2 Rqg be a family of operators in
L.C; L2.RC//. Then the following four assertions (i)–(iv) are equivalent:

(i) The operators fk.y; �/ W y; � 2 Rqg act on C by multiplication by
functions Qk.y; �I �/ satisfying the following estimates: For all `, `0 2 N0

and all multi-indices ˛, ˇ 2 Nn�1
0 , there is a constant c, depending on `,

`0, ˛ and ˇ, such that

�
�
�u`D`0

u D
˛
�D

ˇ
y
Qk.y; �I u/

�
�
�
L2.RC/

� c h�i��j˛j�`C`0

:

(ii) k.y; �/ 2 S�.Rq � RqIC;S.RC//, that is, k is a potential symbol.
(iii) The family k� of pointwise adjoints k� D fk.y; �/� W y; � 2 Rqg is an

element of S�.Rq �Rq IS 0.RC/;C/.
(iv) We may replace the estimates in Assertion (i) by the following:

sup
u

ˇ
ˇ
ˇu`D`0

u D
˛
�D

ˇ
y
Qk.y; �I u/

ˇ
ˇ
ˇ � c h�i1=2C��j˛j�`C`0

:
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(b) A trace symbol t.y; �/ 2 S�.Rq � RqIS 0.RC/;C// of order � and type zero is
given by

t.y; �/f D
Z 1

0

Qt .y; �I u/f .u/ du; f 2 S.RC/;

where Qt.y; �I u/ satisfies the estimates in Assertion (i) or Assertion (iv).
In particular, potential and trace symbols are dual to each other.

Proof. The equivalence of Assertions (i) and (ii) can be shown just as in Proposi-
tion B.30. Furthermore, we find that Assertions (ii) and (iii) are equivalent, since we
have (cf. Sect. B.2.4)

H��
0 .RC/ D the dual space H�.RC/0 of H�.RC/:

Finally, we may use sup-norm estimates by the same arguments as in Lemma B.33.
Assertion (b) is an immediate consequence of Assertion (a).

The proof of Theorem B.34 is complete.

Example B.35. In Example B.2 we proved that

�j 2 SjC1=2.Rn�1 �Rn�1IH�.RC/;C/

whenever �1 > j C 1=2. Now we show that �j .x0; � 0/ is a trace symbol of order
j C 1=2 and type j C 1. Indeed, we can write

�0.x
0; � 0/f D

Z 1

0

˝
� 0˛ e�ynh�0if .yn/ dyn �

Z 1

0

e�ynh�0i @ynf .yn/ dyn (B.19)

for all f 2 S.RC/. Hence it follows that

�0 D t0 C t1 @C D t0 C t1 rC@t eC;

where

t0.x
0; � 0/f D ˝

� 0˛
Z 1

0

e�ynh�0if .yn/ dyn;

t1.x
0; � 0/f D �

Z 1

0

e�ynh�0if .yn/ dyn:

In particular, we have

t0	h�0if D
˝
� 0˛1=2

Z 1

0

e�t f .t/ dt D ˝� 0˛1=2 he��; f iS.RC/;S0.RC/
;
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and so

t0 2 S1=2.Rn�1 � Rn�1IS 0.RC/;C/:

In the same way, it follows that

t1 2 S�1=2.Rn�1 �Rn�1IS 0.RC/;C/:

By applying (B.19) to the function @jxnf , we obtain the desired result by iteration.

Remark B.36. It is obvious that there are many different ways to write

�j D
jC1X

`D0
t`@

`C

with trace symbols t` of order j C 1=2� ` and type zero.

B.5 The Analysis of Compositions

We may compose two boundary symbols of orders �1, �2 2 Z and types d1, d2 2
N0, say

a1 D
�

OpC
xn
p1 C g1 k1
t1 s1

�

;

a2 D
�

OpC
xn
p2 C g2 k2
t2 s2

�

;

provided that the dimensions of the matrices are compatible. According to part (b)
of Lemma B.10, we obtain that

a1a2 2 S�1C�2.Rn�1 � Rn�1IH�.RC/N1 ;CN2;H��.�1C�2;0/.RC/N3 ;CN4/

for suitable non-negative integersN1, N2, N3 and N4, assuming that �1 > d2 � 1=2
and that �1 � �2 > d1 � 1=2. We can compute the composition

a1a2 D
�
pC
1 C g1 k1
t1 s1

��
pC
2 C g2 k2
t2 s2

�

as follows:

�
.p1]np2/

C C `.p1; p2/C pC
1 g2 C g1pC

2 C g1g2 C k1t2 pC
1 k2 C g1k2 C k1s2

t1p
C
2 C t1g2 C s1t2 t1k2 C s1s2

�

:
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Here we have written pC
j instead of OpC

xn
pj , j D 1, 2, in order to save space,

and .p1]np2/C instead of OpC
xn
.p1]np2/; the notation ]n indicates composition with

respect to the variable xn.
We will verify the following 13 assertions (i)–(xiii):

(i) `.p1; p2/ D pC
1 p

C
2 � .p1]np2/C is a singular Green symbol of type �2C WD

maxf�2; 0g.
(ii) pC

1 g2 is a singular Green symbol of type d2.
(iii) g1pC

2 is a singular Green symbol of type .�2 C d1/C D maxf�2 C d1; 0g.
(iv) g1g2 is a singular Green symbol of type d2.
(v) k1t2 is a singular Green symbol of type d2.

(vi) pC
1 k2 is a potential symbol.

(vii) g1k2 is a potential symbol.
(viii) k1s2 is a potential symbol.

(ix) t1pC
2 is a trace symbol of type .�2 C d1/C.

(x) t1g2 is a trace symbol of type d2.
(xi) s1t2 is a trace symbol of type d2.

(xii) t1k2 is a pseudo-differential symbol.
(xiii) s1s2 is a pseudo-differential symbol.

In all cases the order of the respective symbols is �1 C �2. When referring to
the symbols in Assertions (xii) and (xiii) as ‘pseudo-differential’, we stress that
the Banach spaces E , QE in the sense of Sect. B.2.3 are simply CN2 and CN4 ,
respectively. Therefore, we obtain the following result:

Theorem B.37. The pointwise composition a1a2 of two boundary symbols a1 and
a2 of orders �1 and �2 and types d1 and d2, respectively, is a boundary symbol of
order �1 C �2 and type maxf�2 C d1; d2g. Its pseudo-differential part is p1]np2.

The proof is rather long, and we shall break it up into a sequence of partial results.

Step 1: First, we deal with the easy cases, namely, Assertions (ii), (iv), (v), (vi),
(vii), (viii), (x), (xi), (xii) and (xiii). We may assume that N1 D N2 D N3 D
N4 D 1. We write

g1 D
d1X

jD0
g1j @

j
C; g2 D

d2X

jD0
g2j @

j
C:

For Assertion (ii), we note that

pC
1 g2 D

d2X

jD0

�
pC
1 g2j

�
@
j
C;

where, according to Theorem B.27 and Lemma B.10, we obtain that

pC
1 g2j 2 S�1C�2�j

�
Rn�1 �Rn�1IS 0.RC/;S.RC/

�
:
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For Assertion (iv), we observe that

@
j
C 2 Sj

�
Rn�1 � Rn�1;H�.RC/;H��.j;0/.RC/

�
(B.20)

for all � D .�1; �2/ 2 R2. Then Lemma B.10 yields the desired result.
The proof of Assertions (v), (vi), (vii), (x) and (xii) is analogous.
For Assertions (viii), (xi) and (xiii), we recall additionally that

s2 2 S�21;0.Rn�1 � Rn�1/ D S�2.Rn�1 � Rn�1IC;C/:

Step 2: The compositions in Assertions (iii) and (ix) are slightly more delicate.
For example, we consider Assertion (iii): In order to show that g1p

C
2 is a singular

Green operator, we first note that

@C
�
pC
2

� D �rC@xneC� �rC �Opxn.p2/
�
eC� D rC �@xn

�
Opxn.p2/

�
eC�

D OpC
xn
Œip2.x; �/�n C @xnp2.x; �/� :

By iteration, we have

@
j
C
�
pC
2

� D OpC
xn
qj

for a suitable symbol qj 2 S�2Cjtr .Rn�Rn/. So it is no restriction to assume that
d1 D 0.

Next we shall establish a central point in Sect. B.5.1 below: For a fixed positive
integer N , we may split p2 into a ‘differential’ part and one that acts on the H�

0 -
spaces:

Opxn.p2/ D
NX

jD0

�2CX

kD0
xjn sjk@

k
xn
C a

with

sjk 2 S�2�k.Rn�1 � Rn�1/;

a 2 S�2 �Rn�1 �Rn�1IH�.R/;H��.�2C;0/.R/
�

for all � D .�1; �2/ 2 R2:

Moreover, we have

�Ca 2 S�2


Rn�1 � Rn�1IH�
0 .RC/;H

��.�2C;0/
0 .RC/

�
; �N � �1 � 0:

where �C denotes the restriction to RC followed by embedding into the space
H0
0 .RC/. This makes sense: For every u 2 C1

0 .RC/ and x0, � 0 fixed, it follows that
a.x0; � 0/u is smooth on R. As we shall show, �Ca.x0; � 0/ extends to an element of
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the space L.H�
0 .RC/;H

��.�2C;0/
0 .RC// for every � D .�1; �2/ 2 R2 and satisfies

the required symbol estimates.
After the above reduction, it follows that g1 is a singular Green symbol of order

�1 and type 0, and we have

g1p
C
2 D

NX

jD0

�2CX

kD0

�
g1x

j
n sjk

�
@kC C g1�Ca:

It is clear that sjk induces an element of the symbol class

S�2�k
�
Rn�1 �Rn�1IH�

0 .RC/;H�
0 .RC/

�

and further that xjn induces an element of the symbol class

xjn 2 S�j Rn�1 �Rn�1IH�
0 .RC/;H��.0;j /

0 .RC/
�
:

Therefore, the summation yields a singular Green symbol of order �1 C �2
�2CX

kD0

0

@
NX

jD0

�
g1x

j
n sjk

�
1

A @kC 2 S�1C�2
�
Rn�1 � Rn�1IS 0.RC/;S.RC/

�
;

while

g1�Ca 2 S�1C�2
�
Rn�1 � Rn�1IH�

0 .RC/;S.RC/
�
; �1 � �N:

By Lemma B.38 below with � WD �1 C �2 and d WD �2C, it follows that g1pC
2 is

a singular Green symbol of order �1 C �2. The type is �2C, since we assumed that
d1 D 0; in the general case it is .�2 C d1/C by the above consideration.

Also the composition in Assertion (ix) follows from the above representation for
Opxn.p2/.

Step 3: Assertion (i) presents additional complications. We shall deal with them
below.

First, however, we state a lemma which was employed in the above proof:

Lemma B.38. Let d 2 N0 and g 2 S�.Rn�1 � Rn�1IH�.RC/; L2.RC// with
�1 > d � 1=2. Assume that, for each N 2 N, there exist symbols gkN such that

gkN 2 S��k Rn�1 �Rn�1IH�.N;N /
0 .RC/;H .N:N/.RC/

�
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with

g D
dX

kD0
gkN @

kC:

Then g is a singular Green symbol of order � and type d .

Lemma B.38 is easily established.
Now we turn to the composition in Assertion (i).

Lemma B.39. For each h 2 H0 D HC ˚ H�
0 and all � D .�1; �2/ 2 R2 with

�1 � 0, we have

�COpxnh.�n=
˝
� 0˛/ 2 S0�Rn�1 �Rn�1IH�

0 .RC/;H�
0 .RC/

�
:

Proof. The crucial point here is the boundedness of the operator

�COpxn.h/.�n/ W H�N
0 .RC/ �! H�N

0 .RC/ for every N 2 N:

We let

� D Opxn.1C i�n/N :

It is clear that the operator

� W H0
0 .RC/ �! H�N

0 .RC/

is an isomorphism with the inverse

��1 D Opxn.1C i�n/�N W H�N
0 .RC/ �! H0

0 .RC/:

Thus it suffices to show that the operator

��1 ��COpxn.h/
�
� W C1

0 .RC/ �! H0
0 .RC/

extends to a bounded operator on the spaceH0
0 .RC/. The situation can be visualized

in the following diagram:
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Now we have

�
Opxn.h/

�
� D Opxn.h.1C i�n/N / D Opxn.h0 C p0/

for some function h0 2 H0 and a polynomial p0 of degree � N . Therefore, we
easily find that the operator

��1 ��COpxn.h/
�
� D ��1�COpxn.h0 C p0/

has a bounded extension to the space H0
0 .RC/.

The proof of Lemma B.39 is complete.

B.5.1 Decomposing OpC
xn

p

In this subsection we prove the decomposition result used for Assertions (iii) and
(ix). Let p 2 S�.Rn � Rn/ with � 2 Z. Fix N 2 N and a cut-off function ! 2
C1
0 .R/ with !.t/ D 1 near t D 0. We write

p.x; �/

D
N�1X

jD0

x
j
n

j Š
!.xn/@

j
xn
p.x0; 0; �/C xNn !.xn/pN .x; �/C .1 � !.xn//p.x; �/;

with the Taylor remainder pN .x; �/. As a consequence of the transmission property,
we obtain that @jxnp.x

0; 0; h� 0i �n/ is an element of the symbol class

S�


Rn�1
x0 � Rn�1

�0

�
Ő �H�n :

Since we have

H D H 0 ˚H0;

it follows that

@jxnp.x
0; 0; �/ D

�X

kD0
sjk.x

0; � 0/�kn C qj .x0; �/;

where

sjk 2 S��k
1;0 .Rn�1 � Rn�1/;
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and the symbol qj 2 S�1;0.Rn�1 � Rn/ has a representation

qj .x
0; � 0; �n/ D

1X

kD0
�jkcjk.x;

0 � 0/hjk.�n=
˝
� 0˛/ (B.21)

with (see Schaefer [Sa, Chapter III, Section 6.4, Theorem], Treves [Tv, Theo-
rem 45.2])

1X

kD0
j�jkj <1;

hjk 2 H0 D HC ˚H�
0 D F .S.RC//˚F .S.R�// :

Here the sequences fcjkg1kD1 converge to zero in the symbol class S�1;0.R
n�1�Rn�1/

and the sequences fhjkg1kD1 converge to zero in the space H0, respectively.
Therefore, we obtain that

Opxn.p/ D
�X

kD0

0

@
N�1X

jD0

x
j
n

j Š
!.xn/sjk.x

0; � 0/

1

A @kxn C a

where

a.x; �/ (B.22)

D Opxn

0

@
N�1X

jD0

x
j
n

j Š
!.xn/qj C xNn !.xn/pN .x; �/C .1 � !.xn//p.x; �/

1

A :

It is clear that a.x0; xn; � 0; �n/ is an element of the symbol class

S�
�
Rn�1 � Rn�1IH�.R/;H��.�C;0/.R/

�

for all � D .�1; �2/ 2 R2 and �C D maxf�; 0g. Moreover, we obtain that

�Ca 2 S�


Rn�1 � Rn�1IH�
0 .RC/;H

��.�C;0/

0 .RC/
�

provided that �N � �1 � 0. Indeed, this is rather straightforward for the last two
terms on the right-hand side of formula (B.22); for the terms under the summation
we employ the representation formula (B.21) which allows us to focus on a single
term. Then we apply Lemma B.39.

As explained above, this decomposition of Opxn.p/ furnishes the statement
regarding compositions (iii) and (ix).
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B.5.2 The Analysis of the Leftover Term

The leftover term `.p; q/ arises from the composition of the boundary symbols
associated with two pseudo-differential operators p.x; �/ and q.x; �/ of orders �1
and �2:

`.p; q/ D �
OpC

xn
p
� �

OpC
xN
q
� � rC �Opxn.p/

� �
Opxn.q/

�
eC

D rC �Opxn.p/
� �
eCrC � 1� �Opxn.q/

�
eC:

In this subsection we show that the leftover term `.p; q/ is a singular Green symbol
of order �1 C �2 and type �2C D maxf�2; 0g.

As in Sect. B.5.1, we can find symbols

sj .x; �
0/ 2 S�1�j1;0

�
Rn � Rn�1� ; Qsk.x; � 0/ 2 S�2�k1;0

�
Rn � Rn�1�

such that

Opxn.p/ D
�1X

jD0
sj @

j
xn
C a;

Opxn.q/ D
�2X

kD0
Qsk@kxn C b

(with the corresponding notation). In view of the identity

@xn
�
eCf

� D eC .@xnf /C f .0/ ı0.xn/ for all f 2 S.RC/; (B.23)

we conclude that

`

0

@
�1X

jD0
sj �

j
n ; q

1

A D 0: (B.24)

Therefore, we have

`.p; q/ D rC �Opxn.p/
� �
eCrC � 1� �Opxn.q/

�
eC

D rCa
�
eCrC � 1�

 
�2X

kD0
Qsk@kxneC C beC

!

:

However, by iterating identity (B.23) we see that

@kxn

�
eCf

� D eC �@kxnf
�C

k�1X

`D0
f .`/.0/ık�`�1

0 .xn/:
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Hence it follows that

�
eCrC � 1�

�2X

kD0
Qsk @kxn.eCf / D eCrC

 
�2X

kD0

k�1X

`D0
Qsk f .`/.0/ık�`�1

0

!

�
�2X

kD0

k�1X

`D0
Qsk f .`/.0/ık�`�1

0

D �
�2X

kD0

k�1X

`D0
Qsk.x0; 0; � 0/�`.f /ık�`�1

0 :

We know from Example B.35 that �` is a trace symbol of order 1=2C ` and type
`C 1:

�` 2 S`C1=2
�
Rn�1 � Rn�1IS 0.RC/;C

�
:

So we can write

`.p; q/ (B.25)

D �rCa
 

�2X

kD0

k�1X

`D0
Qsk.x0; 0; � 0/�`.f /ık�`�1

0

!

C rCa
�
eCrC � 1� beC

D
�2�1X

`D0
k`�` C rCa

�
eCrC � 1� beC;

where

k` D �
�2X

kD`C1
rCaQsk.x0; 0; � 0/ık�`�1

0 :

By using (B.24), we may replace a by p. Since we have

Qsk.x0; 0; � 0/ 2 S�2�k1;0

�
Rn�1 �Rn�1� ;

it follows from Lemma B.25 with ` WD k � ` � 1 and � WD �1 C �2 � k that k` is
a potential symbol of order �1 C �2 � ` � 1=2

k` 2 S�1C�2�`�1=2
�
Rn�1 � Rn�1IC;S.RC/

�
;

so that k`�` is a singular Green symbol of order �1 C �2 and type �2C as asserted.
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Now we consider the second summand in (B.25). On the space C1
0 .RC/, we

have

rCa
�
eCrC � 1� beC D �rCae�r�beC D � �rCae�J

� �
Jr�beC� ;

where r� is the restriction to R�, e� is the extension from R� to R by zero, and J
is the reflection operator, respectively:

r�u D ujR�
;

e�u.xn/ D
(

u.xn/ if xn 2 R�;
0 if xn 2 R n R�;

.J u/.xn/ D u.�xn/:

Note that, for every function u 2 C1
0 .RC/ 	 S.R/, beCu is a function in S.R/, so

that there are no problems with the compositions.
We shall show that rCae�J and Jr�beC are type zero singular Green operators

of orders �1 and �2, respectively.
First, we analyze the operator rCae�J . From (B.22), we know that

a D Opxn

0

@
N�1X

jD0

x
j
n

j Š
!.xn/qj C xNn !.xn/pN C .1 � !.xn//p

1

A : (B.26)

Here qj is the projection onto the space H0 D HC ˚H�
0 of @jxnp.x

0; 0; � 0; �/, and
xNn pN is the Taylor remainder; the positive integerN as well as the cut-off function
! are fixed.

In the argument below, we shall only need the fact that pN 2 S�11;0.Rn � Rn/,
which is obvious from Taylor’s formula. Since the function .1 � !.xn//p vanishes
to arbitrary order at xn D 0, we can find a symbol r 2 S�11;0.Rn � Rn/ such that

xNn pN .x; �/C .1 � !.xn//p.x; �/ D xNn r.x; �/:

Step 1: The operator of multiplication by xjn!.xn/ is an element of the symbol
class

S�j �Rn�1 � Rn�1IH�.RC/;H��.0;j /.RC/
�

for all � D .�1; �2/ 2 R2: This follows from the identity

	h�0i�1xjn!.xn/	h�0i D
˝
� 0˛�j xjn!

�
xn=

˝
� 0˛� ;
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together with the observation that the family

˚
!.�= ˝� 0˛/ W � 0 2 Rn�1�

is uniformly bounded on the weighted Sobolev space H�.RC/.
Step 2: rCŒOpxn.qj /�e

�J 2 S�1.Rn�1 � Rn�1IS 0.RC/;S.RC//: We write the
symbol qj .x0; � 0/ in the form (B.21). Then it suffices to show that

rC �Opxnh
�
�n=

˝
� 0˛�� e�J 2 S0 �Rn�1 � Rn�1IS 0.RC/;S.RC/

�
:

However, we note that

	h�0i�1Opxnh
�
�n=

˝
� 0˛� 	h�0i D Opxnh.�n/:

Thus it suffices to prove the continuity of the operator

rC �Opxn.h/
�
e�J W S 0.RC/ �! S.RC/;

since derivatives can be treated in the same way.

The operator Opxn.h/ has the integral kernel

k.xn; yn/ D
Z

R
ei.xn�yn/�nh.�n/ d�n D .F�1h/.xn � yn/:

Hence the operator rCŒOpxn.h/�e
�J is given via the integral kernel

k.xn;�yn/ D .F�1h/.xn C yn/ on R2CC D RC � RC:

Since we have

h 2 H0 D HC ˚H�
0 D F .S.RC//˚ F .S.R�// ;

.F�1h/jRC
2 S.RC/;

we obtain the desired assertion.
Steps 1 and 2 imply that the terms under the summation in (B.26) are singular

Green operators of order �1 � j and type zero.

Step 3: Fix K 2 N and r 2 S�11;0.Rn � Rn/. Then it follows that the operator
rCŒOpxnx

N
n r�e

�J defines an element of the symbol class

S�K Rn�1 � Rn�1IH�.K;K/
0 .RC/;H .K;K/.RC/

�
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provided that N is sufficiently large: We show that the norm of the operator

	h�0i�1 rC hOpxn


xNn D

˛
�0D

ˇ

x0r
�i
e�J	h�0i (B.27)

D ˝
� 0˛�N rC

h
Opxnx

N
n


D˛
�0D

ˇ

x0r
�
.x0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛/

i
e�J

in the space L.H�.K;K/
0 .RC/;H .K;K/.RC// is of orderO.h� 0i�K�j˛j

/.

It is clearly no restriction to assume that ˛ D ˇ D 0. Then the operator in (B.27)
has the integral kernel

k.xn; yn/ D
˝
� 0˛�N

Z

R
ei.xnCyn/�nxNn r

�
x0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛�d�n

on R2CC D RC � RC. This makes sense as an oscillatory integral: We may choose
` > .�1 C 1/=2 and regularize it as follows:

Z

R
ei.xnCyn/�nxNn .xn C yn/�2`

˝
� 0˛2` 
`

�n
r
� �
x0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛�d�n: (B.28)

Then the integrand is of order

O

xNn .xn C yn/�2`

˝
� 0˛2` ˝�� 0; �n

˝
� 0˛�˛�1�2`

�
:

In view of the identity

˝�
� 0; �n

˝
� 0˛�˛ D


1C j� 0j2 C �2n

˝
� 0˛2

�1=2 D ˝� 0˛ h�ni ;

we obtain that

k.xn; yn/ D
˝
� 0˛�N

Z

R
ei.xnCyn/�nxNn r

�
x0; xn=

˝
� 0˛ ; � 0; �n

˝
� 0˛�d�n

D O

xNn .xn C yn/�2`

˝
� 0˛�1�N

�
for ` >

�1 C 1
2

:

For xn, yn � 1, we choose ` D N=2 (N is large and may be assumed to be even)
and conclude that

k.xn; yn/ D O
˝
� 0˛�1�N

�
:

Otherwise, we let 2` > N C 2; then we have

k.xn; yn/ D O

hxn C yni�2

˝
� 0˛�1�N

�
:
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Consequently, we have the following two assertions:

sup
yn�0

Z 1

0

jk.xn; yn/j dxn D O
˝
� 0˛�1�N

�
;

sup
xn�0

Z 1

0

jk.xn; yn/j dyn D O
˝
� 0˛�1�N

�
:

By using Schur’s lemma (Theorem 5.2) with p WD 2, we obtain that the norm in
the space L.L2.RC/; L2.RC// of the operator family in formula (B.27) is of order
O.h� 0i�1�N /.

Next, we recall a general fact: We can estimate the norm of an operator

T 2 L

H

�.K;K/
0 .RC/;H .K;K/.RC/

�

in terms of the quantity

	�
�
�xmn @

m0

xn
T xln@

l 0

xn

�
�
�

L.L2.RC/;L
2.RC//

W m; m0; l; l 0 � K



;

and these operators have integral kernels

.�1/l 0xmn @m
0

xn
yln@

l 0

xn
k.xn; yn/

if k.xn; yn/ is the integral kernel for T . We plug this into our regularized expres-
sion (B.28) for the integral kernel k. Then we have to ask l > .�1 C 2K C 1/=2 to
make the integral converge. For N > �1 C 2K C 1, we can apply Schur’s Lemma
as before and we obtain the assertion.

Steps 1, 2, and 3 show that rCae�J is a singular Green operator of order �1 and
type zero.

Step 4: In virtually the same way we can treat Jr�beC, and prove that it is a
singular Green symbol of order �2 and type zero. Altogether we then know that
the leftover term

`.p; q/ D
�2�1X

lD0
kl�l C rCa

�
eCrC � 1� beC

D
�2�1X

lD0
kl�l �

�
rCae�J

� �
Jr�beC�

is a singular Green symbol of order �1 C �2 and type �2C D maxf�2; 0g.
Remark B.40. If a1 and a2 are classical, then so is the composition a1a2.
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B.6 Operators on the Half-Space Rn
C

Now we introduce the Boutet de Monvel algebra on the half-space RnC.

B.6.1 Operators in the Boutet de Monvel Calculus

Given a boundary symbol a of order � 2 Z and type d 2 N0 as in (B.13), we call
A D Op.a/ an operator of order � and type d in the Boutet de Monvel calculus and
write

A 2 B�;d .RnC/:

Therefore, the operator A is a 2 � 2 matrix of operators

A D
�
PC CG K

T S

�

: (B.29)

Here:

(1) We call PC D OpC.p/ D Opx0OpC
xn
p the pseudo-differential part of A.

(2) The operator G D Op.g/ is a so-called singular Green operator.
(3) The operator T D Op.t/ a trace operator.
(4) The operatorK D Op.k/ a potential (or Poisson) operator.
(5) The operator S D Op.s/ is the pseudo-differential part on the boundary.

The classical elements in the Boutet de Monvel calculus are the operators Op.a/,
where a is classical in the sense of Definition B.9. The notation is B�;dcl .R

nC/.
We call A a generalized singular Green operator if a is a generalized singular

Green symbol as in Definition B.29.
The intersection

\

�2Z

B�;d .RnC/

is the space of regularizing operators of type d .
We endow these spaces with the topology inherited from the topology on the

associated boundary symbols (see Sect. B.4.2).

Remark B.41. The sum in the upper left corner of formula (B.29) is not direct: For
example, let P be a regularizing pseudo-differential operator which has an integral
kernel in the Schwartz space S.Rn �Rn/. Then it is easy to see from Theorem B.32
that PC coincides with a regularizing singular Green operator.
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On the other hand, Theorem B.48 shows that singular Green operators are
regularizing when localized to the interior. If, in addition, we assume P to be
classical, we conclude that PC can only coincide with a singular Green operator
if it is regularizing.

By combining Assertion (B.14) with Corollary B.14, we obtain the following
result for wedge Sobolev spaces:

Theorem B.42. An operator A 2 B�;d .RnC/ induces a continuous mapping

A W
Ws.Rn�1;H�.RC//M1

˚
Ws.Rn�1;C/M2

�!
Ws�.m;0/.Rn�1;H��.m;0/.RC//N1

˚
Ws�.m;0/.Rn�1;C/N2

for every s 2 R2 and for every � D .�1; �2/ 2 R2 with �1 > d � 1=2.

For unweighted Sobolev spaces, the following statement is an immediate conse-
quence of Theorem B.42 and part (b) of Lemma B.12. The statement for weighted
Sobolev spaces can be obtained by the commutator technique just as in the proof of
Corollary B.14.

Theorem B.43. Let � D .�1; �2/ 2 R2, and A 2 B�;d .RnC/. Then the operator

A W
H�.RnC/M1

˚
H�.Rn�1/M2

�!
H��.m;0/.RnC/N1

˚
H��.m;0/.Rn�1/N2

is bounded for every �1 > d � 1=2.

Corollary B.44. The operators in Theorem B.43 have continuous restrictions

A W
S.RnC/M1

˚
S.Rn�1/M2

�!
S.RnC/N1
˚

S.Rn�1/N2 :

Theorem B.45 (Compositions). Consider two operators

A1 W
S.RnC/M1

˚
S.Rn�1/M2

�!
S.RnC/N1
˚

S.Rn�1/N2 :

and

A2 W
S.RnC/L1
˚

S.Rn�1/L2
�!

S.RnC/M1

˚
S.Rn�1/M2:
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with A` 2 B�`;d` .RnC/ for ` D 1, 2. Then we have the following three assertions (a),
(b) and (c):

(a) The composition A1A2 is an element of B�1C�2;d .RnC/ with

d D maxf�2 C d1; d2g:

(b) The composition is a regularizing operator whenever one of the factors is, and
it is a generalized singular Green operator whenever this is the case for A1
or A2. In particular, B0;0.RnC/ is an algebra, and B�1;0.RnC/ as well as the
generalized singular Green operators are ideals.

(c) A1A2 is a classical operator if both A1 and A2 are classical.

Proof. First, we write A` D Op.a`/ with

a` D
 

OpC
xn
p` CPd`

jD0 g j̀ @
j
C k`Pd`

jD0 t j̀ @
j
C s`

!

; ` D 1; 2:

Next, we choose left symbols for p1, g1j , t1j , k1, s1, and choose right symbols for
p2, g2j , t2j , k2, s2 with respect to the x0-action. Then we have

Op.bL.y; �//Op.bR. Qy; �// D Op.bL.y; �/bR. Qy; �//:

Therefore, the desired assertions follow from Theorems B.11 and B.37.
The proof of Theorem B.45 is complete.

Theorem B.46 (Adjoints). Let A 2 B�;0.RnC/ for � 2 Z with � � 0. Then the
formal adjoint A� of the operator

A W
S.RnC/M1

˚
S.Rn�1/M2

�!
S.RnC/N1
˚

S.Rn�1/N2

with respect to the inner products in the Hilbert spaces

L2.RnC/M1 ˚ L2.Rn�1/M2

and

L2.RnC/N1 ˚ L2.Rn�1/N2 ;

respectively, is an element of B�;0.RnC/. If A D Op.a/ with a boundary symbol a as
in (B.13), then we have

A� D
�

OpC
xn
p� C g� k�
t� s�

�

:
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Here

g�.x0; y0; � 0/ D g.y0; x0; � 0/�; t�.x0; y0; � 0/ D k.y0; x0; � 0/�;

k�.x0; y0; � 0/ D t.y0; x0; � 0/�; s�.x0; y0; � 0/ D s.y0; x0; � 0/�:

Note that the assertion is no longer true if d or � are positive.

Proof. Let .Op.p//� D Op.p�/ be the formal adjoint of Op.p/ with respect to the
inner product of L2.Rn/. Then the formal adjoint .OpCp/� of OpCp with respect
to the inner product of L2.RnC/ is given by

.OpCp/� D OpCp�:

Indeed, since � � 0, it follows that OpCp� is bounded on the space L2.RC/, and
we have

�
rCŒOp.p�/�eCu; v

� D �
ŒOp.p�/�eCu; eCv

� D �eCu; ŒOp.p/�eCv
�

D �
u; rCŒOp.p/�eCv

�
:

For the symbol g, we first apply Theorem B.32 to see that the pointwise adjoint
g.x0; y0; � 0/� defines a singular Green symbol. Next, we deduce from Sect. B.2.4
that the formal adjoint of Op.g/ is Op.g�/ with g�.x0; y0; � 0/ D g.y0; x0; � 0/�.

Similarly, we see from Theorem B.34 that the pointwise adjoint of a trace symbol
of type zero is a potential symbol and vice versa; then we employ Sect. B.2.4.

For a pseudo-differential symbol s, the assertion follows from the standard
pseudo-differential calculus or, alternatively, also from Sect. B.2.4.

The proof of Theorem B.46 is complete.

Theorem B.47 (Asymptotic expansions for compositions and adjoints). Let
N 2 N. By adopting the notation of Theorems B.45 and B.46, we can find two
boundary symbols cN and dN such that

A1A2 �
N�1X

j˛jD0

1

˛Š
Op.@˛�0a1.x

0; � 0/D˛
x0a2.x

0; � 0// D Op.cN /

and that

A� �
N�1X

j˛jD0

1

˛Š
Op.@˛�0D

˛
x0a.x

0; � 0/�/ D Op.dN /:

The boundary symbol cN is of order �1C�2�N and type maxf�2Cd1; d2g, while
dN is of order � �N and type zero.

Indeed, Theorem B.47 follows from Theorem B.11.
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Theorem B.48. Let G be a singular Green operator of order � and type d , T
a trace operator of order � and type d , and K a potential operator of order �.
Furthermore, we take a constant " > 0 and a function ' 2 C1

b .R
nC/ which vanishes

for all xn < ". Denote, just for the moment, byM' the operator of multiplication by
'. Then we have the following four assertions (a)–(d):

(a) GM' is a regularizing singular Green operator of type zero.
(b) M'G is a regularizing singular Green operator of type d .
(c) TM' is a regularizing trace operator of type zero.
(d) M'K is a regularizing potential operator.

Proof. (a) Without loss of generality, we may assume that the symbols are scalar.
For any N 2 N, we let

'N .x
0; xn/ D '.x0; xn/

xNn
; .x0; xn/ 2 RnC:

Then it follows that 'N 2 C1
b .R

nC/ and that

GM' D GM'NMxNn
:

Since MxNn
is an element of the symbol class

S�N Rn�1 �Rn�1IH�
0 .RC/;H��.0;N /

0 .RC/
�

for each � D .�1; �2/ 2 R2, Assertion (a) follows easily.
The arguments for Assertions (b), (c) and (d) are analogous.
The proof of Theorem B.48 is complete.

Now we introduce ellipticity and parametrices. As usual, ellipticity is the prop-
erty of the symbol (and the associated operator) that enables us to find an inverse
up to an error of order �1, while a parametrix is an inverse modulo regularizing
elements. Both notions are easily seen to be equivalent as a consequence of the
symbolic calculus.

Finally, we shall state a simpler condition for ellipticity. Namely, the ellipticity
of the interior pseudo-differential symbol together with the uniform invertibility of
the boundary symbol with the pseudo-differential symbol p replaced by the xn-
independent symbol p0, where p0.x0; �/ D p.x0; 0; �/.

Definition B.49. Let A 2 B�;d .RnC/ with � 2 Z, d � �C D maxf�; 0g, and
A D Op.a/.

(a) We say that A is elliptic if there exist two boundary symbols b` and br of order
�� and type .��/C D maxf��; 0g such that the boundary symbols b`a � I
and abr � I have order �1. Also the boundary symbol a is said to be elliptic.

Since we have

b` D b` .I � abr/C .b`a � I / br C br ;
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it follows that the boundary symbols b` and br differ by a symbol of order
�� � 1 only, and we may choose b` D br . We remark that b` and br are also
elliptic. The composition rules imply that the type of b`a � I is �C, while that
of abr � I is .��/C.

(b) We say that the operator B 2 B��;.��/C.RnC/ is a parametrix for A if both
BA � I and AB � I are regularizing. The types of BA � I and AB� I are �C
and .��/C, respectively.

Theorem B.50. Let A 2 B�;d .RnC/ with d � �C. Then A has a parametrix if and
only if it is elliptic.

Proof. If A D Op.a/ has a parametrixB D Op.b/, then Theorem B.47 implies that
both ba � I and ab � I are boundary symbols of order �1.

Conversely, assume that we find two boundary symbols b` and br such that b`a�
I and abr � I have order �1. If we let B` D Op.b`/ and Br D Op.br/, then we
can find a boundary symbol r` of order �1 and type �C and a boundary symbol rr
of order �1 and type .��/C such that

B`A� I D Op.r`/; ABr � I D Op.rr /:

Indeed, this follows immediately from an application of Theorem B.47. Next we
choose two boundary symbols Qb` and Qbr such that

Qb` �
1X

jD0
.�r`/]j ]b`;

Qbr � br]
1X

jD0
.�rr /]j :

In this notation, the ‘]’ indicates that we pick a boundary symbol for the correspond-
ing composition; for example,

Op
�
.�r`/]j

� D ŒOp.�r`/�j :

The type of r]j` is �C for all j , while that of r]jr is .��/C.
Finally, we carry out the asymptotic summation modulo regularizing boundary

symbols. If we let

QB` D Op. Qb`/; QBr D Op. Qbr/;

then we find that

QB`A� I D R` 2 B�1;�C

�
RnC

�
;

A QBr � I D Rr 2 B�1;.��/C�RnC
�
:
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Therefore, we obtain that

QB` � QB`
�
A QBr � Rr

� D � QB`A
� QBr � QB`Rr

D .I CR`/ QBr � QB`Rr D QBr CR` QBr � QB`Rr
� QBr modulo B�1;.��/C.RnC/:

This implies that both QB` and QBr furnish a parametrix for A.
The proof of Theorem B.50 is complete.

With a little more work, we find the following simpler ellipticity criterion which
we shall not prove here:

Theorem B.51. Let

a D
�

OpC
xn
pC gk
t s

�

be a boundary symbol of order � and type d � �C D maxf�; 0g. Let p0.x0; �/ D
p.x0; 0; �/ and

a0 D
�

OpC
xn
p0C gk
t s

�

:

Then the boundary symbol a is elliptic if and only if the following two conditions
(1) and (2) are satisfied:

(1) p 2 S�tr .Rn � Rn/ is an elliptic, N �N matrix-valued symbol on RnC.
(2) a0.x0; � 0/ W H.�;0/.RC/N ˚CM 0 ! L2.RC/N ˚CM is an isomorphism for all

x0 and � 0 with j� 0j � 1, satisfying the condition

�
	h�0i 0
0 1

��1
a0.x0; � 0/

�
	h�0i 0
0 1

�

D O.˝� 0˛��/:

By referring to p as “elliptic of order� on RnC”, we mean that there is an element
q 2 S��

tr .Rn�Rn/ such that pq�I and qp�I coincide with a symbol in the symbol
class S�1

tr .R
n � Rn/ on RnC �Rn.

The key ingredient in the proof is the fact that, according to Theorem B.48, the
non-pseudo-differential entries of a are regularizing outside a neighborhood of the
boundary.
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B.6.2 Outlook

It remains to establish the invariance of the symbol classes under suitable changes of
coordinates in order to introduce the Boutet de Monvel calculus on manifolds with
boundary. We shall omit this part, since there are no new aspects to be developed
from the present point of view.

The results on compositions, adjoints, and mapping properties carry over to
the case of operators acting on sections of vector bundles E1, E2 over a compact
manifold X and F1, F2 over its boundary @X . In particular, if A is an operator of
order � and type d , then it follows that the operator

A W
Hs.X;E1/

˚
Hs.@X; F1/

�!
Hs��.X;E2/

˚
Hs��.@X; F2/

(B.30)

is bounded for every s > �1=2, so that we have the mapping property (B.1).
In view of the well-known imbedding properties of Sobolev spaces on compact
manifolds, we see immediately that ellipticity implies the Fredholm property of A
in formula (B.30).

A few more features which might be of interest can be found in Schrohe [Sr4]
which also deals with weighted symbols on certain non-compact manifolds. If
E1 D E2 D E and F1 D F2 D F , for example, the algebra B0;0.X/ of all
operators of order and type zero is a Fréchet sub-algebra of the Banach algebra
of all bounded operators on the Hilbert space L2.X;E/˚ L2.@X; F /. It is closed
under holomorphic functional calculus in several complex variables, hence a pre-
C �-algebra and moreover a ��-algebra in the sense of Gramsch [Gh].

By using the fact that there exist order-reducing operators in the calculus
(Theorem B.24), we can show that the calculus is closed under inversion: If the
operatorA in (B.30) is bijective, then its inverse is again an element of the calculus.

Moreover, ellipticity is not only sufficient but also necessary for the Fredholm
property of the operator

A W
H�.X;E1/

˚
H�.@X;F1/

�!
H0.X;E2/

˚
H0.@X; F2/:



References

[AMR] Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications.
Global Analysis Pure and Applied: Series B, vol. 2. Addison-Wesley, Reading (1983)

[AF] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140,
2nd edn. Elsevier/Academic, Amsterdam (2003)

[Ag] Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical
Studies, vol. 2. Van Nostrand, Princeton (1965)

[ADN] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions I. Commun.
Pure Appl. Math. 12, 623–727 (1959)

[AV] Agranovich, M.S., Vishik, M.I.: Elliptic problems with a parameter and parabolic
problems of general type. Uspehi Mat. Nauk 19(3)(117), 53–161 (1964, in Russian);
English translation: Russ. Math. Surv. 19(3), 53–157 (1964)

[Ap] Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced
Mathematics, vol. 116, 2nd edn. Cambridge University Press, Cambridge (2009)

[AS] Aronszajn, N., Smith, K.T.: Theory of Bessel potentials I. Ann. Inst. Fourier (Grenoble),
11, 385–475 (1961)

[Ba1] Bass, R.F.: Probabilistic Techniques in Analysis. Probability and its Applications.
Springer, New York (1995)

[Ba2] Bass, R.F.: Diffusions and Elliptic Operators. Probability and its Applications. Springer,
New York (1998)

[BL] Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der Mathe-
matischen Wissenschaften. Springer, Berlin/New York (1976)

[Be] Bernstein, S.N.: Equations différentielles stochastiques. In: Actualités Sci. et Ind. vol. 738,
pp. 5–31. Conf. intern. Sci. Math. Univ. Genève. Hermann, Paris (1938)

[Bi] Bichteler, K.: Stochastic Integration with Jumps. Encyclopedia of Mathematics and its
Applications, vol. 89. Cambridge University Press, Cambridge (2002)

[BH] Bliedtner, J., Hansen, W.: Potential Theory: An Analytic and Probabilistic Approach to
Balayage. Universitext. Springer, Berlin/Heidelberg/New York/Tokyo (1986)

[BG] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Pure and
Applied Mathematics, vol. 29. Academic, New York/London (1968)

[BCP] Bony, J.-M., Courrège, P., Priouret, P.: Semi-groupes de Feller sur une variété à bord
compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au
principe du maximum. Ann. Inst. Fourier (Grenoble) 18, 369–521 (1968)

[Bd] Bourdaud, G.: Lp -estimates for certain non-regular pseudo-differential operators. Com-
mun. Partial Differ. Equ. 7, 1023–1033 (1982)

K. Taira, Semigroups, Boundary Value Problems and Markov Processes,
Springer Monographs in Mathematics, DOI 10.1007/978-3-662-43696-7,
© Springer-Verlag Berlin Heidelberg 2014

701



702 References

[Bo] Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math.
126, 11–51 (1971)

[Ca] Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. In: Proceed-
ings of Symposia in Pure Mathematics, IV, pp. 33–49. American Mathematical Society,
Providence, R.I. (1961)

[CZ] Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math.
88, 85–139 (1952)

[Cn] Cancelier, C.: Problèmes aux limites pseudo-différentiels donnant lieu au principe du
maximum. Commun. Partial Differ. Equ. 11, 1677–1726 (1986)

[CP] Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles
linéaires. Gauthier-Villars, Paris (1981)

[CM] Coifman, R.R., Meyer, Y.: Au-delà des opérateurs pseudo-différentiels. Astérisque,
vol. 57. Société Mathématique de France, Paris (1978)

[De] de Rham, G.: Variétés différentiables. Hermann, Paris (1955)
[Dg] Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1, 353–367 (1951)
[Du] Duistermaat, J.J.: Fourier Integral Operators. Courant Institute of Mathematical Sciences,

New York University, New York (1973)
[DH] Duistermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Math. 128, 183–269

(1972)
[Dy1] Dynkin, E.B.: Foundations of the theory of Markov processes. Gosudarstv.

Izdat. Fiz.-Mat. Lit., Moscow (1959) (in Russian); English translation: Perga-
mon Press, Oxford/London/New York/Paris (1960); German translation: Springer,
Berlin/Göttingen/Heidelberg (1961); French translation: Dunod, Paris (1963)

[Dy2] Dynkin, E.B.: Markov Processes I, II. Grundlehren der Mathematischen Wissenschaften.
Springer, Berlin/Göttingen/Heidelberg (1965)

[DY] Dynkin, E.B., Yushkevich, A.A.: Markov Processes, Theorems and Problems. Plenum
Press, New York (1969)

[Ei] Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover, New York
(1956)

[EN] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.
Graduate Texts in Mathematics, vol. 194. Springer, New York/Berlin/Heidelberg (2000)

[Es] Èskin, G.I.: Boundary value problems for elliptic pseudodifferential equations. Nauka,
Moscow (1973, in Russian); English translation: American Mathematical Society, Provi-
dence (1981)

[EK] Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley,
New York/Chichester/Brisbane/Toronto/Singapore (1986)

[FP] Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. In: Conference on
Harmonic Analysis (1981: Chicago), pp. 590–606. Wadsworth, Belmont (1983)

[Fe1] Feller, W.: The parabolic differential equations and the associated semigroups of transfor-
mations. Ann. Math. 55, 468–519 (1952)

[Fe2] Feller, W.: On second order differential equations. Ann. Math. 61, 90–105 (1955)
[Fo1] Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton Univer-

sity Press, Princeton (1995)
[Fo2] Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley,

New York (1999)
[Fr1] Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston Inc.,

New York/Montreal/London (1969)
[Fr2] Friedman, A.: Foundations of Modern Analysis. Holt, Rinehart and Winston Inc.,

New York/Montreal/London (1970)
[FU] Fujiwara, D., Uchiyama, K.: On some dissipative boundary value problems for the

Laplacian. J. Math. Soc. Jpn. 23, 625–635 (1971)
[GB] Galakhov, E.I., Skubachevskiı̆, A.L.: On Feller semigroups generated by elliptic operators

with integro-differential boundary conditions. J. Differ. Equ. 176, 315–355 (2001)



References 703

[GM1] Garroni, M.G., Menaldi, J.-L.: Green Functions for Second Order Parabolic Integro-
Differential Problems. Pitman Research Notes in Mathematics Series, vol. 275. Longman
Scientific & Technical, Harlow (1992)

[GM2] Garroni, M.G., Menaldi, J.-L.: Second Order Elliptic Integro-Differential Problems.
Chapman & Hall/CRC Research Notes in Mathematics, vol. 430. Chapman & Hall/CRC,
Boca Raton (2002)

[GS] Gel’fand, I.M., Shilov, G.E.: Generalized Functions I. Properties and Operations. Aca-
demic, New York/London (1964)

[GT] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order.
Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

[GK] Gohberg, I.C., Kreı̆n, M.G.: The basic propositions on defect numbers, root numbers and
indices of linear operators. Uspehi Mat. Nauk 12, 43–118 (1957, in Russian); English
translation: Am. Math. Soc. Transl. 13, 185–264 (1960)

[Gg] Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions.
Adv. Differ. Equ. 11, 457–480 (2006)

[Gj] Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford Mathematical
Monographs. Clarendon Press/Oxford University Press, New York (1985)

[Gh] Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und � -Algebren.
Math. Ann. 269, 27–71 (1984)

[Gb] Grubb, G.: Functional Calculus for Pseudodifferential Boundary Value Problems.
Progress in Mathematics, vol. 65, 2nd edn. Birkhäuser, Boston (1996)

[GH] Grubb, G., Hörmander, L.: The transmission property. Math. Scand. 67, 273–289 (1990)
[Ha] Hansen, W.: Restricted mean value property for Balayage spaces with jumps. Potential

Anal. 36, 263–273 (2012)
[HP] Hille, E., Phillips, R.S.: Functional Analysis and Semi-groups. American Mathematical

Society/Colloquium, Providence (1974). Third printing of the revised edition of 1957
[Hi] Hirschmann, T.: Functional analysis in cone and edge Sobolev spaces. Ann. Global Anal.

Geom. 8, 167–192 (1990)
[Hp] Hopf, E.: A remark on linear elliptic differential equations of second order. Proc. Am.

Math. Soc. 3, 791–793 (1952)
[Ho1] Hörmander, L.: Pseudo-differential operators and non-elliptic boundary problems. Ann.

Math. 83, 129–209 (1966)
[Ho2] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. In: Calderón,

A.P. (ed.) Proceedings of Symposia in Pure Mathematics: Singular Integrals, vol. X,
Chicago, pp. 138–183. American Mathematical Society, Providence (1967)

[Ho3] Hörmander, L.: Fourier integral operators I. Acta Math. 127, 79–183 (1971)
[Ho4] Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Pseudo-

Differential Operators. Reprint of the 1994 edition, Grundlehren der Mathematischen
Wissenschaften. Springer, Berlin/Heidelberg/New York/Tokyo (2007)

[IW] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd
edn. North-Holland/Kodansha, Amsterdam/Tokyo (1989)

[It] Itô, K.: Stochastic processes. Iwanami Shoten, Tokyo (1957, in Japanese)
[IM] Itô, K., McKean, H.P. Jr.: Diffusion Processes and Their Sample Paths. Grundlehren der

Mathematischen Wissenschaften, Second printing. Springer, Berlin/New York (1974)
[Ja] Jacob, N.: Pseudo Differential Operators and Markov Processes. Fourier Analysis and

Semigroups, vol. I. Imperial College Press, London (2001); Generators and Their
Potential Theory, vol. II. Imperial College Press, London (2002); Markov Processes and
Applications, vol. III. Imperial College Press, London (2005)

[Ka] Kannai, Y.: Hypoellipticity of certain degenerate elliptic boundary value problems. Trans.
Am. Math. Soc. 217, 311–328 (1976)

[Ki] Kinney, J.R.: Continuity properties of sample functions of Markov processes. Trans. Am.
Math. Soc. 74, 280–302 (1953)

[Kn] Knight, F.B.: Essentials of Brownian Motion and Diffusion. Mathematical Surveys,
vol. 18. American Mathematical Society, Providence (1981)



704 References

[Kl] Kolmogorov, A.N.: Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung.
Math. Ann. 104, 415–458 (1931)

[Ko] Komatsu, T.: Markov processes associated with certain integro-differential operators.
Osaka J. Math. 10, 271–303 (1973)

[Kr] Kreı̆n, S.G.: Linear Differential Equations in Banach Space. Nauka, Moscow (1967,
in Russian); English translation: Translations of Mathematical Monographs, vol. 29.
American Mathematical Society, Providence (1971); Japanese translation: Yoshioka
Shoten, Kyoto (1972)

[Ku] Kumano-go, H.: Pseudodifferential Operators. MIT, Cambridge (1981)
[La] Lamperti, J.: Stochastic Processes, A Survey of the Mathematical Theory. Applied

Mathematical Sciences, vol. 23. Springer, New York/Heidelberg (1977)
[Lg] Lang, S.: Differential Manifolds. Addison-Wesley, Reading (1972)
[Le] Lévy, P.: Processus Stochastiques et Mouvement Brownien. Suivi d’une note de M. Loéve.

(French) Gauthier-Villars, Paris, 365 (1948)
[LM] Lions, J.-L., Magenes, E.: Problèmes aux Limites Non-homogènes et Applications 1, 2.

Dunod, Paris (1968); English translation: Non-homogeneous Boundary Value Problems
and Applications 1, 2. Springer, Berlin/Heidelberg/New York (1972)

[MZ] Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential
Equations. Mathematical Surveys and Monographs, vol. 51. American Mathematical
Society, Providence (1997)

[MH] Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall,
Englewood Cliffs (1983)

[Ma] Masuda, K.: Evolution Equations (in Japanese). Kinokuniya Shoten, Tokyo (1975)
[Mc] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge

University Press, Cambridge (2000)
[Me] Meyer, Y.: Remarques sur un théorème de J.-M. Bony. Suppl. Rend. Circ. Mat. Palermo

II-1, 1–20 (1981)
[Mu] Munkres, J.R.: Elementary Differential Topology. Annals of Mathematics Studies, vol. 54.

Princeton University Press, Princeton (1966)
[Na] Nagase, M.: The Lp-boundedness of pseudo-differential operators with non-regular

symbols. Commun. Partial Differ. Equ. 2, 1045–1061 (1977)
[Ni] Nishio, M.: Probability Theory (in Japanese). Jikkyo Shuppan, Tokyo (1978)
[Ol] Oleı̆nik, O.A.: On properties of solutions of certain boundary problems for equations of

elliptic type. Mat. Sbornik 30, 595–702 (1952, in Russian)
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Cauchy–Riemann equation, 248
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Chapman–Kolmogorov equation, 166, 167,
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Closed range theorem, 136
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Conditional probability, 71, 414

Conditional probability of a random variable,
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Conjugate exponent, 204, 293
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Construction of Feller semigroups, 493
Continuity condition, 48
Continuity of linear operators, 103
Continuous function, 119
Continuous Markov process, 431
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440
Contraction semigroup of class .C0/, 149
Contractive operator, 429, 440
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Converge weakly*, 117
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Convolution, 204, 223, 224, 228
Convolution kernel, 290
Coordinate neighborhood, 272
Coordinate neighborhood system, 271
Coordinate transformation, 272
Cotangent bundle, 336
Cotangent space, 484, 528
Countable collection, 37
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Criterion for hypoellipticity, 340
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Definition of Besov spaces, 294
Definition of Besov spaces on the boundary,
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Definition of conditional expectations, 90
Definition of conditional probabilities, 71, 78
Definition of Feller semigroups, 439
Definition of Feller transition functions, 431
Definition of Markov processes, 413, 416–418
Definition of Sobolev spaces, 288, 289, 292
Definition of stopping times, 432
Definition of strong Markov property, 438
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Definition of transition functions, 419
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Density, 9, 273, 275, 276, 317, 485, 548
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Differential operator, 212, 217, 277, 327
Differential operator on a manifold, 277
Differentiation, 216
Diffusion along the boundary, 11, 474, 486
Diffusion coefficient, 463, 481
Diffusion operator, 7, 463, 481, 592
Diffusion process, 422, 439, 576
Dini’s theorem, 521
Dirac measure, 162, 215, 238, 253, 325, 427,

666
Dirichlet condition, 593
Dirichlet problem, 24, 269, 489
Disjoint, 36
Disjoint union, 36
Distance, 112, 136
Distribution, 212, 276, 361, 488, 577, 583, 587
Distribution function of a random variable, 55
Distribution kernel, 243, 262, 355, 480, 485,
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Distribution of a random variable, 55
Distribution of class Ck , 227
Distribution on a manifold, 275
Distribution theory on a manifold, 271
Distribution with compact support, 220, 251
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Domain, 279
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Domain of definition, 40, 100, 458, 465
Dominated convergence theorem, 88, 90, 93,
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674

Double layer potential, 267, 268
Double of a manifold, 314, 316, 478, 643
Drift, 422, 451
Drift coefficient, 463, 481
Du Bois Raymond’s lemma, 214
Dual space, 114, 212, 213, 220, 233
Dynkin class theorem, 39, 60, 75, 77, 78

Eigenspace, 139, 178
Eigenvalue, 139, 178
Eigenvector, 139, 178
Elastodynamic wave equation, 198
Elementary family, 36, 75
Elementary symbol, 611
Elliptic, 322, 335, 339, 525

boundary symbol, 696

differential operator, 529, 592
integro-differential operator, 5, 479, 599
pseudo-differential operator, 335, 339, 525
regularization, 525
symbol, 322, 696
Waldenfels operator, 390, 392–394, 401

Equicontinuity, 104
Equivalence class, 116
Equivalent (function), 203
Equivalent (Markov process), 566
Equivalent (norm), 106
Essentially bounded, 203
Event, 35
Existence and uniqueness theorem for

boundary value problems, 595, 596,
601

Existence and uniqueness theorem for
degenerate elliptic boundary value
problems, 592

Existence and uniqueness theorem for Dirichlet
problem, 489

Existence theorem for Feller semigroups, 506
Exit time, 7, 344, 601
Expectation, 35, 48, 56, 414
Exponential function, 147
Extended real numbers, 43
Extension, 100, 135
Exterior normal, 281, 296

Factor space, 106
Feller (transition) function, 573
Feller semigroup, 4, 16, 411, 439, 440, 458,

463, 465, 475, 477, 478, 573, 591
Feller transition function, 428, 431, 458, 466
Fiber bundle of densities, 275
Finite codimension, 137
Finite codimensional space, 137, 140, 526
Finite dimensional space, 110, 137, 138, 140,

526
Finite measure, 41, 462
Finite measure space, 41
Finitely additive, 40
First axiom of countability, 101
First passage time, 422
Fokker–Planck partial differential equations,

427
Formulation of the problem, 4, 478
Fourier integral distribution, 325
Fourier integral operator, 320, 326
Fourier inversion formula, 232, 290
Fourier transform, 212, 228, 239, 241, 269,

289
Fréchet differentiable, 281
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Fredholm alternative, 138
Fredholm integral equation, 26, 504
Fredholm operator, 140, 526
Friedrichs’ mollifier, 209, 210, 496, 497
Fubini’s theorem, 223, 228, 261, 270, 291,

564, 567
Function rapidly decreasing at infinity, 229,

289
Function space, 203, 317
Functional, 114

General boundary value problem, 498
General boundary value problems and

reduction to the boundary, 498
General existence theorem for Feller
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Generalized singular Green operator, 692
Generalized singular Green symbol, 673
Generalized Sobolev space, 292, 609
Generation theorem for analytic semigroups,

596, 597, 602, 603
Generation theorem for analytic semigroups on
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Generation theorem for Feller semigroups,

448, 454, 509
Generation theorem for Feller semigroups on a

bounded domain, 487, 599, 601
Geodesic, 483
Geodesic distance, 487, 526, 543
Geometric multiplicity, 178
Globally hypoelliptic, 340
Graph, 135
Green kernel, 353
Green operator, 25, 448, 493, 494, 509, 510
Green representation formula, 25, 268, 494
Group action, 647

Hahn–Banach extension theorem, 110
Hardy’s inequality, 286, 287, 309, 310
Harmonic operator, 25, 493, 494, 534
Heat equation, 170
Heat kernel, 162
Heaviside function, 213, 241
Hille–Yosida theorem, 156, 185, 448
Hille–Yosida theory, 149, 170, 429
Hille–Yosida theory of Feller semigroups, 447
Hille–Yosida–Ray theorem, 454
Hölder continuous, 208
Hölder space, 208, 209, 595, 612
Hölder’s inequality, 204, 299, 301, 302
Homogeneous principal symbol, 333, 339

Hopf’s boundary point lemma, 401, 504, 514,
521, 553, 579, 584

Hypoelliptic, 340
Hypograph, 280, 297

Identity operator, 327
Image measure, 56, 63
Independence, 62
Independent algebras, 65
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Independent random variables, 63, 65
Index of an operator, 140, 526
Indicator function, 35
Inductive limit topology, 208
Infinitesimal generator, 150, 173, 448–450,
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552, 574

of a Feller semigroup, 448–450, 455, 458,
463–465, 506, 510, 552, 574

of a Feller semigroup on a bounded
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Initial distribution of a stochastic process, 564
Initial-boundary value problem, 196
Initial-value problem for the heat equation, 170
Injective, 107, 256
Inner regular, 127
Integral, 35
Integro-differential operator, 383, 384, 386,

388, 389, 394, 463, 474, 479, 481,
482, 486, 491, 512, 514, 591, 599,
601–603

Integro-differential operator case, 599
Interior, 315, 316, 362

normal, 311, 484, 535, 577, 593
normal derivative, 401

Interpolation, 533, 534, 634
Invariance of pseudo-differential operators,

336
Inverse, 100, 107

Fourier transform, 228, 240, 290
operator, 100, 107

Inward jump phenomenon from the boundary,
11, 474, 486

Isometry, 107
Isomorphic, 107
Isomorphism, 107, 595, 596, 601

Joint distribution, 63
Jordan decomposition, 123
Jump discontinuity, 567
Jump formula, 225, 226, 341
Jump phenomenon on the boundary, 11, 474,

486
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Kernel, 254, 262
on a manifold, 278
theorem, 256

Killing measure, 456
Kolmogorov’s backward equation, 427
Kolmogorov’s forward equation, 427

Lp boundedness theorem, 615, 623
Lp space, 114, 203
Laplace–Beltrami operator, 277, 340
Laplacian, 225, 269, 277, 341, 355, 511, 513,

537
Layer potential, 267, 268, 341
Lebesgue dominated convergence theorem,

176, 228, 247, 252, 386, 620, 621,
674

Left symbol, 649
Leibniz formula, 146, 217
Lévy measure, 8, 12, 601
Lévy operator, 7, 463, 481, 600
Lifetime, 419
Linear, 100

elastodynamics, 196
functional, 100, 111
operator, 100, 103

Lipschitz constant, 281
Lipschitz continuous, 279, 294
Lipschitz domain, 280, 297
Lipschitz hypograph, 279, 294, 295
Littlewood–Paley series, 605, 607
Local coordinate, 272
Local coordinate system, 272
Local operator, 212, 464
Local unity function, 364, 528
Localized Besov space, 318
Localized Sobolev space, 318
Locally compact metric space, 119, 415, 417,

419, 428, 432, 437–439, 563, 566
Locally finite, 273
Locally Hölder continuous, 208
Locally integrable function, 213, 276

Manifold, 271–273, 275, 277, 278, 317, 337,
515

Manifold with boundary, 279, 314, 317
Markov process, 411, 412, 416, 417, 474, 479,

563, 565, 566, 573
Markov property, 415, 420, 564
Markov time, 432
Markov transition function, 419, 479, 564
Maximal atlas, 272
Maximum norm, 457, 478, 573, 597

Maximum principle, 361, 390, 454
Mazur’s theorem, 112, 114, 525
Mean, 56

curvature, 535, 541
value theorem, 304, 306

Measurable, 35, 415
function, 36, 43, 45
mapping, 45
set, 35, 37, 44
space, 36, 37, 43
stochastic process, 564, 566, 570

Measure, 40, 41, 119
Measure space, 35, 40, 41
Method of continuity, 108
Metric, 101, 105
Metric space, 119
Metrizable, 101
Minimal closed extension, 135, 455, 499, 504,

602
Minkowski functional, 113
Minkowski’s inequality for integrals, 286, 300,

303
Modified Bessel function, 239, 300
Mollifier, 209, 210, 496, 497
Moment condition, 591, 600
Monotone class theorem, 38, 45, 46, 442
Monotone convergence theorem, 57, 60, 61,

76, 78, 86, 87, 94, 429
Multi-index, 202
Multiplication by functions, 217
Multiplicity, 139

n-dimensional random variable, 50
Negative variation measure, 123
Neumann boundary condition, 577
Neumann series, 108, 139
Newtonian potential, 239, 243, 262
Non-direct sum of Fréchet spaces, 671, 673
Non-negative Borel measure, 458, 462, 465,

472
Non-negative definite, 362
Non-negative distribution, 361
Non-negative distribution kernel, 5, 9, 17, 18,

26, 480, 485, 514, 515
Non-negative linear functional, 123
Non-negative measure, 40, 364, 460, 461, 469
Non-negative operator, 429, 440
Non-positive principal symbol, 383, 484, 514,

515
Non-regular symbol, 610
Non-transversal, 13, 547, 548
Norm, 105, 203, 204, 207, 209, 428, 430, 439,

448, 611
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continuous, 146
differentiable, 146

Norm-preserving, 107
Normal, 281, 296, 311

coordinate, 317
Markov transition function, 566
transition function, 420, 421, 432

Normed factor space, 106, 116
Normed linear space, 105
Null space, 100, 138, 140, 526

Oblique derivative boundary condition, 586
One-point compactification, 121, 417, 550
Open mapping theorem, 136
Open submanifold, 273
Operator, 103, 254

norm, 108, 133, 145, 170
on a manifold, 278
valued function, 145

Operator-valued symbol, 648
Order of a distribution, 213
Order of a pseudo-differential operator, 328
Order of a symbol, 320
Oscillatory integral, 325, 349–351, 355

Paracompact, 273
Parametrix, 336, 340, 354, 697
Parseval formula, 232
Partition of unity, 219, 275, 294, 297, 364
Path, 415, 564
Path function, 431
Path-continuity, 431, 566, 573

of Markov processes, 566
of Markov processes associated with Feller

semigroups, 573
Peetre’s definition of Besov spaces, 607
Peetre’s definition of generalized Sobolev

spaces, 607
Peetre’s theorem, 212
Phase function, 322, 325, 326
�-system, 38
Plancherel theorem, 240
Plane-wave expansion, 325
Point at infinity, 121, 417, 437, 448, 550
Point spectrum, 139, 178
Poisson integral formula, 25, 269, 494
Poisson kernel, 353
Poisson process, 421, 450
Positive Borel kernel, 364
Positive maximum principle, 383
Positive semi-definite, 458, 460, 465, 468
Positive variation measure, 123

Positively homogeneous, 215, 244, 286, 287,
320

Potential, 267, 268, 295, 341, 352
operator, 323, 349, 692
symbol, 349, 670

Principal part, 321
Principal symbol, 387
Principle of uniform boundedness, 109, 146
Probability measure, 47, 414, 417, 470, 471
Probability space, 47, 48, 414
Probability theory, 35
Product, 141

neighborhood, 316
neighborhood theorem, 316
of linear operators, 108
space, 105, 106
topology, 105, 106

Progressively measurable, 437
Projective topology tensor product, 321
Properly supported, 330
Pseudo-differential operator, 323, 328, 337,

341, 355, 388, 603
Pseudo-differential operator on a manifold,

337
Pseudo-local property, 330, 343, 347, 352
Pull-back, 277, 336
Push-forward, 277, 336

Quasibounded, 171
Quasinorm, 102
Quasinormed linear space, 100, 102

Rademacher’s theorem, 281
Radon measure, 124, 361, 362, 600
Radon–Nikodým theorem, 72
Random variable, 48, 414, 415, 563
Range, 100, 140, 526
Rapidly decreasing, 229, 289
Real interpolation space, 533
Real measure, 122
Refinement, 273
Reflecting barrier Brownian motion, 422, 424,

451, 452
Reflection phenomenon, 11, 474, 486
Reflexive, 117
Reflexivity, 218
Regular boundary, 456
Regular distribution, 226
Regular point, 455
Regularization, 211, 225, 482, 486
Regularizer, 264, 330, 338
Regularizing effect, 599
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Rellich–Kondrachov theorem, 319
Residue theorem, 270
Resolvent, 139, 153, 178, 596, 598, 602, 603

equation, 178, 495
set, 138, 178, 596, 598, 602, 603

Restriction mapping, 298
Restriction of a distribution, 216
Restriction of a function, 293, 298
Restriction of an operator, 100
Riemann integral, 144
Riemann sum, 192, 266
Riemannian manifold, 277, 340
Riemannian metric, 277, 281, 340, 541
Riesz kernel, 239, 251
Riesz operator, 262
Riesz potential, 238, 243, 262
Riesz–Markov representation theorem, 119,

123, 132, 133
Riesz–Schauder theorem, 139
Riesz–Schauder theory, 138
Right symbol, 649
Right-continuous � -algebras, 433
Right-continuous Markov process, 431, 438,

566, 570, 574
Right-continuous path, 432
Right-continuous stochastic process, 570
Robin boundary condition, 583
Robin condition, 593

Sample space, 415, 564
Scalar field, 100, 109
Scalar multiplication, 103
Schur’s lemma, 204, 623, 691
Schwartz space, 229, 289, 293, 295
Schwartz’s kernel theorem, 256
Schwarz’s inequality, 204
Second fundamental form, 535, 541
Second-order, elliptic differential operator,

529, 592
Section of a set, 59
Sectional trace, 227
Semigroup, 170, 429, 439

of class .C0/, 171, 185
property, 149, 440

Seminorm, 100, 205, 206, 209, 229, 257, 320
Separable, 134, 415, 417, 428, 432, 437–439,

563
Separately continuous, 257
Sequential weak* compactness, 118
Sequentially dense, 221
Set function, 40
Sheaf property, 218, 276
Shift mapping, 417

� -algebra, 35, 37
� -algebra generated by, 37, 417
� -algebra of all Borel sets, 415, 419, 428, 438,

460, 467, 563
� -finite, 41, 115
Signature, 247
Signed measure, 122
Simple convergence topology, 104
Simple function, 44
Single layer potential, 267
Singular Green operator, 323, 351, 352, 692
Singular Green symbol, 350, 671
Singular integral operator, 604
Singular point, 455
Singular support, 325
Slobodeckiǐ seminorm, 289, 295
Smallest � -algebra, 37, 413, 415, 564
Sobolev space, 285, 288, 526
Space of continuous functions, 119, 205, 430,

439, 448, 498, 573, 597
Space of densities, 273
Space of signed measures, 122
Spectrum, 139, 178
Speed measure, 456
Stability theorem for indices, 492
Stability theorem for indices of Fredholm

operators, 141
State space, 415, 564
Sticking barrier Brownian motion, 423, 451
Sticking phenomenon, 11, 474, 486
Sticky barrier Brownian motion, 453
Stochastic process, 415, 417, 563

governed by the temporally homogeneous
transition function, 564

governed by the transition function, 564,
566

Stopping time, 432, 438
Strong bidual space, 116
Strong continuity, 429
Strong convergence, 102, 106
Strong dual space, 114
Strong limit, 109
Strong Markov process, 5, 437, 439, 479,

574
Strong Markov property, 438
Strong maximum principle, 394, 578, 584
Strong second dual space, 116
Strong topology, 108, 114, 218
Strongly continuous, 143, 146
Strongly continuous semigroup, 440
Strongly differentiable, 145, 146
Strongly integrable, 144
Structure theorem for distributions with

compact support, 238
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Structure theorem for tempered distributions,
233

Sub-� -algebra, 415–417, 564
Submanifold, 273
Sum of linear operators, 103
Support, 120, 207, 218, 219, 365
Supremum norm, 428, 430, 439, 448
Surface area, 302
Surface measure, 281, 282, 296
Surface potential, 341
Surjective, 256
Symbol, 320, 534
Symbol class, 320
Symmetric difference, 41, 68
Symmetric matrix, 460, 465, 468

Tempered distribution, 232, 233, 241, 289
Temporally homogeneous Markov process,

417, 565
Temporally homogeneous Markov property,

415, 564
Temporally homogeneous Markov transition

function, 419, 479, 565
Tensor product, 221, 223
Terminal point, 419, 424, 452
Termination coefficient, 463, 481
Test function, 207, 208
Tietze’s extension theorem, 120
Topological complement, 136
Topological space, 101
Topology of linear operators, 103
Topology on a manifold, 272
Total variation, 123
Total variation measure, 123
Trace map, 310, 319
Trace operator, 323, 327, 350, 352, 648, 692
Trace symbol, 350, 671
Trace theorem, 298, 310, 319
Trajectory, 415, 564
Transition function, 411, 418, 419, 439, 440
Transition map, 272, 336
Transmission property, 5, 9, 17, 18, 25, 26,

344–346, 352, 359, 480, 485, 491,
510, 513, 548, 552, 644, 658, 661

Transpose, 118, 119, 136, 141, 263, 278, 335
Transversal, 13, 15, 487, 510, 522
Transversality, 514, 548
Trap, 424, 455
Triangle inequality, 101, 105, 569

Unicity theorem, 249
Uniform motion, 421, 450
Uniform stochastic continuity, 438
Uniform topology of operators, 108
Uniformly stochastically continuous, 438, 439,

443, 447, 458, 466, 573
Unique solvability theorem for pseudo-

differential operators, 515,
525

Urysohn’s lemma, 119

Vanish at infinity, 121, 162
Ventcel’ (Wentzell) boundary condition, 10,

474, 485
Viscosity phenomenon, 11, 474, 486
Volume element, 273
Volume potential, 343
v.p. (valeur principale), 216

Waldenfels integro-differential operator, 7,
361, 390, 392–394, 401, 463, 477,
481, 489, 493, 600

Waldenfels operator, 7, 361, 390, 392–394,
401, 463, 477, 481, 489, 493, 600

Wave equation, 198
Weak* convergence, 117, 134, 457
Weak convergence of measures, 134
Weak* dual space, 114
Weak maximum principle, 392, 494, 504, 512,

521
Weak topology, 114
Weak* topology, 114, 218
Weakly closed, 114, 532
Weakly compact, 531
Weakly convergent, 117
Weakly* convergent, 117
Weighted Sobolev space, 645
Wiener measure, 414

Yosida approximation, 157, 186, 449
Young’s inequality, 205, 292, 619, 626, 635

Zero-extension, 6, 225, 227, 341, 344, 347,
348, 350, 352, 480, 601, 644, 658,
688

Zygmund condition, 611
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