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Mathematics translates concepts into formalisms and applies
those formalisms to derive insights that are usually not
amenable to a less formal analysis.



Preface

This book provides an introduction to and an overview of the most
important concepts and structures of modern mathematics. Therefore, I try
to motivate and explain those concepts and structures and illustrate them
with examples, but I often do not provide the complete proofs of the basic
results. Therefore, this book has a broader scope and is less complete and
detailed than standard mathematical textbooks. Its main intention is to
describe and develop the conceptual, structural, and abstract thinking of
mathematics. Specific mathematical structures then illustrate that con-
ceptual approach, and their mutual relationships and their abstract com-
mon features should also provide deeper insight into each of them.

The book thus could be used

1. simply as an overview of the panorama of mathematical structures and
the relations between them, to be supplemented by more detailed texts
whenever you want to acquire a working knowledge of some structure,

2. by itself as a first introduction to abstract mathematics,
3. together with existing textbooks, to put their results into a more general

perspective,
4. after having studied such textbooks, in order to gain a new and

hopefully deeper perspective.

Putting it differently, this means that the readers should use this book in
the manner that best suits their individual needs and aims. It is not my
intention to suggest or prescribe a particular way of reading this book. Of
course, you could, in principle, try to read the book from the beginning to
the end. You could also, however, browse through it and see what strikes
you as especially interesting or useful. Or you could simply search for
particular topics that you want to learn or understand better. Whichever
way you approach it, I hope that this book will prove useful for you.

In any case, however, I should emphasize that mathematics can only be
properly learned by going through and understanding the proofs of the
main results in detail and by carrying out exercises and computing
examples. This book does not systematically provide such proofs and
exercises, so it needs to be supplemented by suitable other texts. (Some
such textbooks are listed in the bibliography and are cited in the individual
chapters of this book. Of course, there exist many more good textbooks
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than listed, and my selection may appear somewhat random to some
experts in the respective fields).

After having dutifully expressed this warning, let me also issue a
warning in an opposite direction. Beware of those self-appointed guard-
ians of certain narrow subfields of mathematics who claim that you cannot
understand what their subfield and work is about unless you study it with
the insiders over many years. Often, such people are just afraid of com-
petition from outsiders. On the contrary, I maintain that every important
conceptual mathematical idea can be understood with some effort. Perhaps
it requires somewhat more effort than the present book might offer to you,
and in any case you will also need some ability in flexible and abstract
thinking. But do not let this deter you. This book is intended to offer you
some help and guidance on your path toward a deeper understanding of
mathematics. This book wants to convey a positive, encouraging message,
and not a negative, discouraging one.

Let me now describe the contents and topics. The first chapter gives an
informal overview. Chapter 2 introduces some basic structures, like
graphs, monoids, and groups, rings and fields, lattices and Boolean and
Heyting algebras, as well as the basic notions of category theory. In
Chap. 3, we first treat relations in an abstract manner and then discuss
graphs as the mathematical structures encoding binary relations. As a
more concrete example of mathematical reasoning, we discuss the rep-
resentation theory of finite groups and apply this to illustrate the space of
all graphs on the same set of vertices. In Chap. 4, we introduce topological
spaces, as well as the more general class of pretopological spaces.
A topological structure on a set distinguishes a subclass of the Boolean
algebra of its subsets. The members of this subclass are called the open
sets of the topology, and they constitute a Heyting algebra. (Since in
general, the complement of an open set need not be open itself, they no
longer form a Boolean algebra.) On a topological space, we can define
sheaves and cohomology groups and thereby obtain algebraic invariants.
Also, we introduce measures and with their help supplement the algebraic
invariants by geometric ones. In the next Chap. 5, we analyze the concept
of space from the points of view of topology, differential geometry, and
algebraic geometry. In differential geometry, we identify the basic notion
of curvature, whereas the algebro-geometric approach is based on the
concept of a scheme. In the next Chap. 6, we turn to algebraic topology in
more detail and discuss general homology theory. We illustrate this for
simplicial complexes, and this also allows us to develop a dynamical
picture of topology. This can be seen as a discrete analog of Conley
theory, the extension of Morse theory to dynamical systems. I then insert
Chap. 7, where the generation of structures through specified operations,
perhaps obeying certain constraints, is discussed. In Chap. 8, we return to
categories and provide an introduction to the basic results of category
theory, like the Yoneda lemma and its applications. In Chap. 9, devoted to
topoi, we combine algebraic structures such as Boolean and Heyting
algebras, the geometric perspective of categorial concepts like presheafs,
with the abstract approach of mathematical logic. The last chapter is
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something of an anticlimax. It reviews the various structures that can be
imposed upon or induced by the simplest examples, the sets with no, one,
or two elements. While much of this is, of course, rather trivial, it should
give the reader the opportunity to review the basic concepts. Of course, to
study these examples, one does not have to wait until the end, but can also
utilize them while reading about a certain type of structure in another
chapter. In the other chapters, a box in the page margin indicates that one
of the recurring standard examples is discussed in the text. Occasionally, I
use the abbreviation “iff” for “if and only if,” which has become cus-
tomary in mathematical texts.

Also, at certain places, I point out—possible or already existing—
connections with theoretical biology. A systematic conceptual framework
for theoretical biology still awaits to be developed, but I believe that some
of the concepts presented in this book could yield important ingredients.

While some aspects of the present book may be new, like the discrete
Conley theory or some items in the discussion of the concept of space,
most of this book simply condenses and illustrates what can be found in
existing textbooks. The motivation, as already mentioned in the begin-
ning, is to provide a comprehensive overview and an orientation among
the many important structures of modern mathematics. Of course, there
are many omissions in this book. In particular, the most fundamental
concepts of analysis like compactness are not treated, nor are such
important structures as Banach spaces. Also, no mention is made of
number theory beyond the elementary concept of a prime number.

Since this book covers a wide range of mathematical topics, some
conflicts with established notation in certain fields are inevitable, because
the different notational conventions are not always compatible. One point
that the reader should be alerted to is that I use the symbol 1 for the truth
value true, although some other texts use 0 instead.

Clearly, in many of the special fields discussed here, I am not an expert
in the technical sense. I wanted to share the understanding that I do
possess, however, with my students and collaborators, and to guide them
into the powerful realm of abstract modern mathematical concepts, and
therefore, I lectured on these topics in graduate courses at Leipzig. I hope
that the present book can likewise serve to share that understanding with
its readers.

Also, the style of the book leads to inconsistencies, in the sense that
certain mathematical concepts are presupposed, but not explained, at var-
ious places. Foremost among them is the core concept of analysis, that of
differentiation. We need this because some of the most important concepts
and examples depend on differential calculus. This is clearly inconsistent,
because I shall explain more basic principles, like that of continuity,
carefully. The reason is that, to understand the essential thrust of this book
and its examples, we need not go into the conceptual foundations of cal-
culus, but can hopefully get away with what the reader knows from her
basic calculus course. In any case, all the required material from calculus
can be found in my textbook [59]. Also, at certain places, I use construc-
tions and results from linear algebra without further explanation.
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Moreover, the style of this book is not uniform. Some passages are
rather elementary, with many details, whereas others are much denser and
technically more difficult. You don’t have to read this book linearly. It
might be most efficient to first select those parts that you find easiest to
understand and only subsequently proceed to the more technical sections.

I thank Nils Bertschinger, Timo Ehrig, Alihan Kabalak, Martin Kell,
Eckehard Olbrich, Johannes Rauh, and other participants of my course for
useful questions, insightful comments, and helpful suggestions. Over the
years, of course, the conceptual point of view presented here has also been
strongly influenced by the work of or discussions with friends and col-
leagues. They include the mathematicians Nihat Ay, Paul Bourgine,
Andreas Dress, Tobias Fritz, Xianqing Li-Jost, Stephan Luckhaus, Eber-
hard Zeidler, and the late Heiner Zieschang, the theoretical biologists Peter
Stadler and the late Olaf Breidbach, and the organization scientist Mas-
simo Warglien. Oliver Pfante checked the manuscript and found some
typos and minor inconsistencies. I am also grateful to several reviewers for
constructive criticism. Pengcheng Zhao provided some of the figures. For
creating most of the diagrams, I have used the latex supplement DCpic of
Pedro Quaresma.

I thank the IHES for its hospitality during the final stages of my work
on this book. I also acknowledge the generous support from the ERC
Advanced Grant FP7-267087, the Volkswagenstiftung and the Klaus
Tschira Stiftung.
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Notational Conventions

Often, when a set is equipped with some additional structure which is
clear from the context, that structure is not included in the notation. For
instance, we may speak of a topological space X and thus write X in place
of ðX;OðXÞÞ where OðXÞ is the collection of open subsets of X defining
the topological structure.

xv



1OverviewandPerspective

1.1 Overview

This book is concernedwith the conceptual structure ofmathematics. Leav-
ing largely aside the concepts of infinity and limit,1 we shall cover those
aspects that we can perhaps summarize under the headings

1. Distinctions
2. Relations
3. Abstractions
4. Generation

In this introductory chapter, I shall attempt to describe the above aspects
in general and informal terms. While this may be somewhat vague and
abstract, I hope that it can serve as some motivation for the more formal
developments in subsequent chapters.

1.1.1 Properties and Distinctions

For concreteness, we consider here a set S and its elements. Subsequently,
however, we shall consider more general structures and try to talk about
them in more intrinsic terms.

When we consider the elements of a set, we want to distinguish them.
Or more precisely, it is rather the other way around. In order to be able
to identify some individual element, item, or object, we need to be able
to distinguish it from others. Such a distinction can come from a prop-
erty that some elements possess in contrast to others. While any particular
property may only separate one collection of objects from another one, an
element might then become identifiable through the combination of several
properties that together are not shared by any other object.

1In the original sense of mathematical analysis; unfortunately, also certain constructions
in category theory have been named “limits”, and we shall deal with those in this text.

© Springer International Publishing Switzerland 2015
J. Jost, Mathematical Concepts, DOI 10.1007/978-3-319-20436-9_1

1



2 1 Overview and Perspective

In the most basic case, we have a binary distinction, that is, an object
can have a property or not. When the objects are elements of a set, we
then have the subset of those elements that possess the property, and the
complementary subset of those that don’t. We can then also turn things
around and start with a specific subset. The property would then be that an
element belongs to that subset. Thus, if we can identify arbitrary subsets of a
given set, we have as many distinctions as there are subsets, and conversely,
if we have sufficiently many distinctions, we can identify arbitrary subsets.
A finite set with n elements has 2n subsets. When every subset corresponds
to a distinction, we may not only distinguish a single element from the rest,
but we can also distinguish any collection of elements from the rest, that is,
those not in that particular collection. Thus, there are exponentially more
distinctions than elements. As Cantor discovered, this principle also applies
to infinite sets.

It turns out that often a more refined perspective is needed. A property
may not hold absolutely, but perhaps only under certain circumstances,
or in certain possible worlds, an old idea of Leibniz as revived by the
logician Kripke. The question then is not what is actually the case, but
which possibilities are compatible with each other, or compossible, using
Leibniz’ terminology. Also, properties need not be independent of each
other, but theremight exist relationships or correlations between their values
at one instance or in different possible worlds. We shall describe the formal
structures appropriate for handling these issues.

1.1.2 Relations

When we discuss properies as a tool to make distinctions, this leads to the
question of where such properties come from. A property should relate to
the structure of an object. This in turn leads to the question of what the
structure of an object is. From a formal point of view, as adopted here, the
structure of an object consists of its relations with other objects. This, as
we shall explore in this book, is a very powerful principle. In particular,
this applies to large classes of formal objects, and not only to the elements
of sets. Nevertheless, there is an important difficulty. An object may also
entertain relations with itself. These can be viewed as symmetries of that
object.

In the diagram below, when we reflect the left figure across the dashed
line, we get a different figure, as depicted on the right.

(1.1.1)

When, however, we reflect the figure in the next diagram, we get a figure
that is undistinguishable from the first one.
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(1.1.2)

One says that the figure is symmetric about the dashed axis. The impor-
tant point here is that we can describe that symmetry as the invariance under
a certain operation, in this case a reflection. In fact, this particular figures
possesses further symmetries. It is also invariant under reflection about a
vertical axis, or under a counterclockwise rotation about its center by 90,
180 or 270◦.

D C

BA

A D

CB

(1.1.3)

In this diagram, we have labelled the vertices in order to indicate the
effect of the counterclockwise rotation by 90◦. Again, these symmetries
are described in terms of operations. In contrast, the figure on the left in
(1.1.1) is not invariant under any such operation. So, that figure is related
by the operation of reflection about the vertical line to a different figure,
that on the right. Thus, applying that operation here leads to another figure,
whereas the square in (1.1.2) is related to itself, and the operation does not
produce a new figure. Such an operation that relates an object to itself is
called an automorphism of that object. Such automorphisms can be com-
posed. For instance, we may first reflect the object about the vertical axis
and then about the horizontal one or apply a rotation of a multiple of 90◦ to
it. Still, the figure stays invariant. Or, one can reverse the effect of an auto-
morphism. We could first rotate the figure counterclockwise by 90◦, and
then rotate it clockwise by 90◦ (or equivalently, rotate it counterclockwise
by 270◦). One expresses these facts, that automorphisms can be composed
and reversed, by saying that the automorphisms form a group. Thus, the
square in (1.1.2) possesses a symmetry group consisting of reflections and
rotations and their compositions. Other objects may, of course, have other
symmetry groups. Among the plane figures, the circle is that with the largest
symmetry group. In contrast, the figure in (1.1.1) does not possess any non-
trivial symmetries. Only the identity operation, which consists in doing
nothing, leaves that figure invariant. (This identity operation, although it
may appear completely trivial, is very important for themathematical struc-
ture of a group. Just think of the role of 0 in arithmetic. Adding 0 does not
change any number, and so the addition of 0 is the identity operation of
arithmetic. Although, or perhaps rather because this is so obvious, it took
a long time to discover 0 as an arithmetic object.)
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Once we understand the structure of the symmetries, that they form a
group, we possess a general tool. For the example just analyzed, this group
is generated by a reflection and a rotation. But the principle is general and
applies to other geometric shapes and helps to organize the pattern of the
symmetries that such a shape might have. For instance, without the concept
of a group, itmight be a rather formidable task to understand the symmetries
of, say, an icosahedron, but with a little group theory, this becomes quite
easy.

Thus, when we want to characterize an object through its relations with
other objects, we also have to take the automorphism group of that object
into account. When an object possesses a nontrivial automorphism group,
this in particular indicates that it has some internal structure. We can then
try to resolve that structure through amore fine-grained perspective. Instead
of considering the category (a term to be formally defined in Chap.2, but
perhaps already intuitively meaningful at this stage) of figures in the plane,
within which the square is a single object, we rather focus on the category
consisting only of the four vertices of the square. Each of these vertices
has no nontrivial internal structures, and so cannot be further resolved. The
automorphisms of the square (except for the trivial one, the identity), while
leaving the square as a whole invariant, then permute those points. Never-
theless, there is some structure between the points that remains invariant.
Whenever two vertices are connected by an edge, then their images under
any automorphism of the square will still be connected by an edge. For
instance, no automorphism of the square can just interchange the positions
of A and B, but leave the other two vertices, C and D, invariant. When, in
contrast, we forget those relations and consider only a set consisting of four
elements A, B,C, D, then we can freely permute them without changing
that set itself. Thus, the automorphism of the set of four elements is the
group of all permutations of those elements. It is larger than the automor-
phism group of the square which consisted only of certain permutations,
those corresponding to reflections and rotations. The square as a collection
of four vertices with four edges between them, that is, where four out of
the six possible pairs have a particular relation, as expressed by an edge,
has more structure than the simple set of four elements. And since there is
more structure that needs to be preserved, the automorphism group is cor-
respondingly smaller. This is a general principle, that additional structure
reduces the number of symmetries.

Let us return once more to the figure in (1.1.1)

•
D

•
C

•B•A

....................................................................................................................................................................................................

................................................................................................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

......................................................................................................

(1.1.4)

The connectivity pattern as expressed by the edges is the same as for
the square. When we consider (1.1.4) as a figure in the plane, it is differ-
ent from (1.1.3) because the distances between the vertices are different.
Denoting the distance between two points P, Q by d(P, Q), wewould have
d(A, B) = d(A, D) < d(B, D) = d(B,C) < d(C, D) < d(A,C). In

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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particular, any vertex can be distinguished from another one by its specific
collection of distances. For this reason, there cannot be any symmetry that
preserves all distances, in contrast to the situation for the square, where the
arrangement d(A, B) = d(B,C) = d(C, D) = d(A, D) < d(A,C) =
d(B, D) still permits some, but not all, of the vertex permutations to be
symmetries.

In any case, the preceding already suggests to interpret relations in terms
of formal operations. Thus, by considering the structure of objectswe are led
to consider the structure of sets or classes of operations. The principle can
then be iterated, taking such classes of operations as objects and describing
their structure in terms of new operations, that is, considering operations
on operations.

Objects or structures can also often be turned into operations. For
instance, in arithmetic, a number might be considered as an object, but
it can also be seen as the operations of adding or multiplying by that num-
ber. In that way, an object translated into an operation can gain a generative
power. For instance, through the repeated addition of 1, one can obtain any
natural number.

The preceding has been argued from the perspective of a single object.
But we can also assume the perspective that a relation takes place between
two or more objects. We can then identify those collections of objects
that stand in specific relations with each other. This suggests a geometric
representation. For simplicity, we discuss here only symmetric relations,
that iswhenever A stands in a relationwith B, then B also stands in a relation
with A. When the relation is binary, that is, involves only two objects at a
time, we can represent it by a graph,

•A • B................................................................................................ (1.1.5)

that is, that if A and B are related, then, representing A and B as vertices,
the relation is depicted by an edge connecting them. And if C is not related
to A or to B, it is not connected to either of them.

•A • B

•C

................................................................................................

Now,when it is also possible that three points stand in a relation, we need
to distinguish the situation where we only have pairwise relations between,
say, A, B and C ,

•
A

• B•C

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........................................................
......................................................................................

.....................................................

(1.1.6)

from that where also the triple A, B,C has a relation.
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We depict the latter by filling the triangle enclosed by the three edges. Of
course, this scheme also allows us to represent more complicated config-
urations of relations geometrically, by a so-called simplicial complex. The
concepts of algebraic topology will then enable us to systematically distin-
guish between qualitatively different situations. For that purpose, we shall
need and construct more refined invariants than the Euler characteristic
introduced in the next Sect. 1.1.3, the (co)homology groups.

(1.1.7)

There canbedifferent types of relations. For simplicity,we restrict ourselves
here to the case of relations between two objects. They could be

• discrete, as in the case of the graph (1.1.5) where a relation is expressed
by the presence of an edge

• qualitative, like nearness, or
• quantitative, like the distance between two points.

1.1.3 Abstraction

Abstraction ignores or forgets irrelevant details and identifies the essential
aspects or properties. One such possibility is to describe a collection of
objects by their number, that is, count howmanyobjects there are, regardless
of their individual or shared properties. Thus, a finite set is characterized
by the number of its elements, that is, by a positive integer, taken from
N. But in many cases, we can not only count objects, but also measure
them. Measurements usually yield real numbers instead of integers. Since
not every real number is rational, that is, described as a fraction of two
integers, as already the old Greeks discovered, or in any other way by
finitely many integers, measuring cannot be reduced to counting.2

There also exist coarser distinctions than enumeration. For instance, we
could simply look at the parity of a number, whether it is odd or even.When
we use 1 for an odd and 0 for an even number, and when we then restrict
the operations that we know from the integers, addition and multiplica-
tion, to those parities, we obtain the rule 1 + 1 = 0 (the sum of two odd

2The Pythagorean principle that nature reduces to numbers was inspired by the discov-
ery that musical harmonies are based on rational frequency relations. More generally,
physically interacting elements usually get into some state of resonance that is expressed
by rational relations. This may be the general reason why measurements can typically be
reduced to counting after all, notwithstanding the fact that roots of algebraic equations
with rational coefficients are usually not rational themselves, and numbers like π and e
are not even algebraic, that is, cannot be obtained as roots of such algebraic equations.
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numbers is even). With that, we get an algebraic structure on the set with
the two elements 0 and 1. Despite its simplicity, this algebraic structure is
fundamental.

Both counting and measuring utilize only positive numbers. When we
also admit negative numbers, we gain the possibility of cancellation. In
other words, we can count with signs. For instance, when one has an object
like a simplicial complex that contains constituents of different dimension,
one can count the even-dimensional constituents with a positive sign and
the odd-dimensional constituents with a negative sign.

• +1

• +1.......................................................................

−1

(1.1.8)

When we sum the contributions in this figure, we obtain +1 − 1 + 1 =
1. This is the so-called Euler characteristic (this idea had already been
discovered by Descartes, in fact). It is the same as that of a single point,

• +1 (1.1.9)

When the single point in (1.1.9) stands for the bottom vertex in (1.1.8),
we could express this by saying that the upper vertex and the edge in (1.1.8),
being in adjacent dimensions, have cancelled each other. In fact, we can
turn this cancellation into a process,

•
t = 0

•....................................................................... •
t = 1

3

•.............................................. •
t = 2

3

•..................... •
t = 1 (1.1.10)

which takes place in continuous time from t = 0, when the full configura-
tion is there, until time t = 1, when it has shrunk to a point. In other words,
an edge with two vertices can be continuously deformed into a single ver-
tex. That both configurations have the same Euler characteristic, 1 in this
case, is a necessary (but not sufficient) condition for such a deformation to
be possible. On the other hand, the single vertex, as in (1.1.9) stays there
and cannot be deformed to nothing, because “nothing” would have Euler
characteristic 0 instead of 1.

In the same vein, the triangle in (1.1.6), consisting of three vertices and
three edges, hasEuler characteristic 3·(+1)+3·(−1) = 0,whereas thefilled
triangle below it has an additional two-dimensional piece that will count as
+1, so that the Euler characteristic becomes 3 · (+1) + 3 · (−1) + 1 = 1.
Therefore, this simple count with cancellations tells us that the unfilled and
the filled triangle are “topologically different”. In particular, one cannot be
deformed into the other, because (as we shall prove) topological invariants
have to stay constant under continuous deformations. Of course, for this
simple example, this may appear as completely evident, but the power of
the formalism will be so general that it will also allow for such conclusions
in situations which are not evident at all.
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1.1.4 Generation

In many cases, it is extremely cumbersome to describe a structure by listing
all details, and in other cases, this is even impossible. One cannot list all
positive integers simultaneously, as such a list would have to be infinite.
But this is not necessary anyway. One can simply prescribe the principle
of generation. Starting with 1, by repeated addition of 1, one can obtain
any positive integer. In the terminology of Aristotle, instead of an actual
infinity, we have a potential one, as the process of adding 1 needs never
end. Thus, we only need a generator, the integer 1 in this case, and a rule
of generation, addition in this example, for a condensed description of the
structure, the set of positive integers here. This principle applies to other
mathematical structures as well, be they finite or infinite. For instance, the
square in (1.1.3) can be generated from a single vertex, say A, by applying
rotations about the center to generate the other vertices. Thus, the generator
here would be the vertex A, and the operations would be those rotations.
(If we had also wanted to include the edges, we should have started with
the edge from A to B, say, and would have obtained the others by rotating
that one.)

At amore abstract level, proofs ofmathematical statements are generated
from the premises by applying the rules of logical inference. Once one
understands how to do it, one no longer has to carry out all the details.
As emphasized by Hermann Weyl [115], what is important is rather the
creative power of mathematics, that is, the construction or discovery of
rich structures in which suitable premises lead to contentful results, and the
identification of those lines of reasoning among the multitude of possible
ones that can deduce such results. One finds a proof of amathematical result
not by mechanically trying out one possible formal scheme after the next,
but rather through structural insights.

The possibility of generation depends on structural regularities. This can
be quantified. Kolmogorov’s concept of algorithmic complexity assigns to
each structure the length of the shortest program that can generate it. The
more regularities a structure possesses, themore it canbe condensed, and the
shorter the corresponding program. Thus, in the algorithmic sense, regular
structures are simple, and random ones, without apparent regularities, are
algorithmically complex. Often, structures that appear rather complicated
can be generated by simple rules. For instance, some simple dynamical
rules can generate rather intricate patterns, like chaotic attractors.

1.2 A Brief Historical Sketch

This book is conceptual, not historical. Historically, mathematical discov-
eries have not always been made in their logical order. Perhaps, it was often
rather the reverse of the logical order. While in hindsight some of the gen-
eral principlesmay appear rather simple, typically only after some concrete,
but complicated structures had been investigated and understood in great
detail, the underlying abstract principle emerged. In other words, there is
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the tension or contrast between the universal validity, or so mathematicians
think, of mathematical structures and results, and their historically contin-
gent genesis or discovery. Therefore, a conceptual and a historical perspec-
tive are necessarily different. Nevertheless, I shall attempt here a—very
brief and perhaps rather superficial—sketch of the history of mathematical
principles and structures. Of course, this should not and cannot replace a
more systematic investigation of the history of mathematics.3

Abstract mathematics began in classical Greek antiquity. Euclid (fl. ca.
300 B.C.) developed a formal deductive scheme for the geometry of the
plane and of three-dimensional space. In fact, after the bible, Euclid’s “Ele-
ments” is probably the most translated text in the intellectual history of
mankind, and that with the most printed editions and copies. The Euclid-
ean system of deductive geometry still forms an essential component of
mathematical high school curricula. Aristotle (384–322 B.C.) isolated the
basic formal rules for logical inference, and this was similarly influential
in the history of Western thought.

Gottfried Wilhelm Leibniz (1646–1716) then put forward the powerful
idea of the formalization of thinking via a symbolic language or scheme.
His version of infinitesimal calculus won the day over Newton’s because
of his superior symbolism. In contrast, his ideas about geometry as an
abstract science of spatial relationships (which he called “Analysis situs”,
the analysis of position) were not sufficiently developed and formalized in
order to have a similarly sweeping impact (see [97] for a detailed analysis).
But he also discovered the binary system, that is, the rules for computation
with the two symbols 0 and 1 only.

Leonhard Euler (1707–1783), inspired by Leibniz’ idea of an Analy-
sis situs, could translate a combinatorial problem into a graph theoretical
one, that is, construct a geometric representation, and solve the latter. In
a rather different direction, but also inspired by Leibniz’ vision, Hermann
Grassmann (1809–1877) developed what is now called linear algebra, the
rules for the algebraic operations with vectors and matrices. The science of
space then took a decisive new turn with Bernhard Riemann’s (1826–1866)
concept of a manifold equipped with a notion of distance derived from an
infinitesimal structure [96]. A manifold is an abstract object, in contrast
to a geometric shape in three-dimensional Euclidean space. In any case,
the conceptual approach of Riemann, as opposed to a computational or
algorithmic one, had a large impact. Georg Cantor (1845–1918) went on to
create abstract set theory [20], and the axiomatic version of Ernst Zermelo
(1871–1953) and Abraham Fraenkel (1891–1965) is still considered to be
the most basic foundation of mathematics, even though this has been chal-

3Of course, there exist many books on the history of mathematics, for instance the very
comprehensive [21] and [119]. Perhaps naturally, most of them develop a historical
instead of a conceptual perspective, and therefore are not so useful for our present
enterprise. The most systematic and comprehensive history of mathematical thought that
I am aware of is [68]. Studies of the historical development of mathematical concepts
that combine a historical perspective with that of mathematical research are contained in
[67, 27]. Besides general treatises on the history of mathematics, there also exist studies
devoted to the development of mathematical structures, like [37] on set theory or [25]
on algebraic structures.
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lenged by proposals from category theory. Felix Hausdorff (1868–1942)
then developed set theoretical topology from the basic notion of an open
set, and thereby came upwith the abstract notion of space that was generally
adopted [48].

Although Riemann’s original approach had been conceptual and not
algorithmic, the tensor calculus of Riemannian geometry, as created in
particular byGregorioRicci-Curbastro (1853–1925) ultimately becameone
of the most powerful algorithmic tools of mathematics, and, in particular,
the mathematical basis of Einstein’s theory of general relativity, as well
as of modern quantum field theory. The concept of a connection, that is,
how to pass from the infinitesimal geometry at one point of a Riemannian
manifold to that at another point, was first introduced by Tullio Levi-Civita
(1873–1941) and then in particular developed by Hermann Weyl (1885–
1955) (for a general perspective, see [114]). The notion of a fiber bundle,
where a geometric structure like that of a vector space or a Lie group is
attached to every point of a manifold or, from a another perspective, where
we have a family of such fibers indexed by the points of a manifold, was
clarified by Charles Ehresmann (1905–1979).

Riemann’s work also led to a new direction in topology—which was
a new name for Leibniz’ Analysis situs—the development of homology
and cohomology theory. This was achieved by the combinatorial approach
to topology of Henri Poincaré (1854–1912) and Luitzen Brouwer (1881–
1966). Poincaré also emphasized the qualitative aspects of topology in his
work on dynamical systems.

Modern algebra, and in fact, evenmathematics as such as an autonomous
science, distinct from the study of natural phenomena, is said to have begun
withCarl FriedrichGauss’ (1777–1855) “Disquisitiones arithmeticae”. The
notion of a group emerged from the work of Gauss and, in particular, of
Évariste Galois (1811–1832). Felix Klein (1849–1925) then defined geo-
metrical structures through the groups of transformations that leave their
constitutive relations invariant. Sophus Lie (1842–1899) systematically
developed the theory of symmetries in group theoretic terms.

Riemann’s conceptual ideas found their way into the work of Richard
Dedekind (1831–1916), and what is now called “modern algebra” was
developed by EmmyNoether (1882–1935) and her school, see in particular
[111]. This also provided a new foundation of algebraic geometry, in the
hands of André Weil (1906–1998) and many others, culminating in the
work of Alexandre Grothendieck (1928–2014) (see for instance [4]). This
work unified algebraic geometry and number theory and made spectacular
developments in the latter field possible. Thiswas achieved through a higher
level of abstraction than had hitherto been considered feasible.

Such a level of abstraction had been prepared in the work of David
Hilbert (1862–1943) on the axiomatic foundation of geometry [50] and
other areas of mathematics, and then in the very systematic approach of
the Bourbaki group to the structural thinking of mathematics. In particular,
the important notion of a (pre)sheaf was introduced by Jean Leray (1906–
1998) which then became a basic tool in the hands of Grothendieck, who
developed concepts like schemes and topoi, see [4].
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Working on the foundations of algebraic topology (see [31]), Samuel
Eilenberg (1913–1998) and Saunders Mac Lane (1909–2005) invented the
structural approach of category theory [32]. Sheaves, schemes, and topoi
find their natural place in this framework. This even extends to logic and
provides a common foundation for geometry and logic. This not only covers
classical, but also intuitionistic logic where the law of the excluded mid-
dle no longer needs to hold and propositions may be only locally, but not
necessarily globally true. The language of topoi can deal with such struc-
tures of contingent truths. Taking up another fundamental idea of Leibniz,
that of possible worlds, the logician Saul Kripke (1940-) had constructed a
possible world semantics for logic [72], and it was then discovered that the
notion of a topos provides an abstract tool for investigating this aspect.

The preceding sketch of a conceptual history of mathematics was neces-
sarily very cursory and perhaps rather one-sided, with many omissions. It
sets the stage, however, for the topics to be developed and discussed in this
book. In Sect. 5.1, when we discuss the concept of space, we shall return to
the history of geometry.

http://dx.doi.org/10.1007/978-3-319-20436-9_5


2Foundations

2.1 Objects, Relations, and Operations

2.1.1 Distinctions

A set is a collection of distinct or distinguishable objects, its elements.
But how can these elements be distinguished? Possibly, by certain specific
intrinsic properties that they possess in contrast to others. Better, by specific
relations that they have with other elements.

This leads to the concept of equivalence, of “equal” versus “different”,
or of “nondistinguishable” versus “distinguishable”. Objects that have the
same properties or that stand in the same relation to all other elements are
equivalent, as they cannot be distinguished from each other. Therefore, one
might want to identify them, that is, treat them as the same and not as
different objects. (One should be aware of the possibility, however, that the
identification need not be unique because the objects may possess certain
internal symmetries or automorphisms, a concept to be explained below.)

So, when we have a set of points, we may not be able to distinguish these
points from each other, and therefore, we should identify them all. The
resulting set would then consist of a single point only. However, strangely,
we can distinguish different sets by their number of points or elements.
That is, as soon as we can distinguish the elements of a set, we can also
distinguish different sets. As we shall see, however, two sets with the same
number of elements cannot be distinguished from each other, unless we can
distinguish the elements themselves between the two sets.

Returning to the intrinsic properties, an element could have some internal
structure, for instance be a set itself, or some space (see below), that is, it
could be an object with structure. Or, conversely, we could say that an object
consists of elements with relations between them. In any case, however, this
seems to be some kind of higher level element. But the basic mathematical
formalism ignores this kind of hierarchy. A collection of sets can again be
treated as a set (so long as certain paradoxes of self-reference are avoided).
More abstractly, we shall introduce the notion of a category below.

© Springer International Publishing Switzerland 2015
J. Jost, Mathematical Concepts, DOI 10.1007/978-3-319-20436-9_2
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2.1.2 Mappings

In this section, we start with an elementary concept that most likely will
be familiar to our readers. We utilize this also to introduce diagrams as a
useful tool to visualize examples for some of the general concepts that we
shall introduce in this chapter, and perhaps also to compensate our readers a
little for the steepness of some of the subsequent conceptual developments.

Let us consider two sets S and T . We consider a special type of relation
between their elements.

Definition 2.1.1 A map, also called a mapping, g : S → T assigns to
each element s ∈ S one and only one element g(s) ∈ T , also written as
s �→ g(s). Such a map g : S → T between sets is called injective if
whenever s1 �= s2 ∈ S, then also g(s1) �= g(s2). That is, different elements
in S should have different images in T . The map g : S → T is called
surjective if for every t ∈ T , there exists some, in general not unique, s ∈ S
with g(s) = t . Thus, no point in T is omitted from the image of S. Of
course, if g were not surjective, we could simply replace T by g(S) to make
it surjective. A map g : S → T that is both injective and surjective is called
bijective.
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This does not define a map from the set {s1, s2} to the set {t1, t2} because
s1 has two images, instead of only one, whereas s2 has none.
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This is a map, but it is neither injective, because t1 has two different
preimages, s1 as well as s2, nor surjective, because t2 has no preimage at
all.
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This represents a bijective map from {s1, s2, s3, s4} to {t1, t2, t3, t4}.
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Let us consider the set {1} consisting of a single element only. Let S be
another non-empty set. We can then specify an element s of S by a map

f : {1} → S with f (1) = s. (2.1.1)

Thus, the set S corresponds to the maps f : {1} → S. The set {1} serves
as a universal spotlight that can be directed by a map f to any particular
element of the set S.

When S′ is a subset of S, S′ ⊂ S, then we have the inclusion map

i : S′ → S

s �→ s for every s ∈ S′. (2.1.2)

This map i is injective, but not surjective, unless S′ = S.
More generally, a binary relation between the sets S and T is given by

a collection of ordered pairs R = {(s, t)} where s ∈ S, t ∈ T . While a
relation is more general than a map, we can represent every such relation
R by a map

r : S × T → {0, 1}
r((s, t)) = 1 ⇔ (s, t) ∈ R, (2.1.3)

and hence, equivalently, r((s, t)) = 0 iff (s, t) /∈ R. We might say here
that 1 stands for “true”, that is, the relation R holds, whereas 0 stands for
“false”, that is, R does not hold for the pair (s, t).

Mappings can be composed. That is, if f : S → T and g : T → V are
maps, then the map h := g ◦ f is defined by

s �→ f (s) �→ g( f (s)), (2.1.4)

i.e., s is mapped to the image of f (s) under the map g, g( f (s)). We note
that for this procedure to be possible, the target T of f , also called its
codomain, has to agree with the domain of the map g.

Lemma 2.1.1 The composition of maps is associative. This means that
when f : S → T, g : T → V, h : V → W are maps, then

h ◦ (g ◦ f ) = (h ◦ g) ◦ f =: h ◦ g ◦ f. (2.1.5)

Proof Under either of the variants given in (2.1.5), the image of s ∈ S is
the same, h(g( f (s))). �

Let us also explain the use of the brackets (.). The expression h ◦ (g ◦ f )

means that we first compute the composition g ◦ f —let us call it η, and
then the composition h ◦ η. For (h ◦ g) ◦ f , it is the other way around. We
first compute the composition h ◦g =: φ and then φ ◦ f . (2.1.5) tells us that
the two results agree. In general, brackets (.) are used to specify the order
in which the various operations in a formula have to be carried out. In some
cases, there exists a general convention for such an order, and in those cases,
brackets will not be needed. For instance, in an expression a ·b +c, we first
compute the product a · b and then add c to it. Also, when two expressions
are connected by an equality or inequality sign, like a + b ≤ c · d, then the
expressions on the left- and on the right-hand side of that sign are each first
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computed and then the corresponding results are compared. But probably,
every reader knows that. We shall repeatedly make use of such implicit
conventions.

2.1.3 Power Sets and Distinctions

We consider a set S with finitely many elements, say S = {s1, s2, . . . , sn}.
And we assume that there is some property that may either apply or not to
each element of S. We write P(s) = 1 when s satisfies this property, and
P(s) = 0 if it does not. According to the separation principle of Zermelo-
Frankel set theory (see Sect. 2.2), each such P specifies the subset P S of
those s that satisfy P(s) = 1, i.e.,

P S = {s ∈ S : P(s) = 1}. (2.1.6)

Conversely, for any subset S′ of S, we can define such a property PS′ by

PS′(s) = 1 if and only if s ∈ S′. (2.1.7)

Thus,
PS′ S = S′. (2.1.8)

We call the set of all subsets of S its power set P(S). Thus, each subset
S′ ⊂ S becomes an element S′ ∈ P(S). We can also say that each element
of P(S) corresponds to a distinction that we can make on the elements of
S, whether they possess a property P or not.

We can also interpret P as a map

P : S → {0, 1} (2.1.9)

from S into the set 2 := {0, 1}, and we shall therefore also write

P(S) = 2S . (2.1.10)

Now, when S is the empty set ∅, then its power set, the set of all its
subsets, is

P(∅) = {∅}, (2.1.11)

because the empty set is a subset of every set, hence also of itself. Thus, the
power set of the empty set is not empty, but contains ∅ as its single element.
That is, the power set of the empty set contains one element. This is the
trivial distinction, but it is a distinction nonetheless.

Next, when S = {1} contains a single element, which we now denote by
1, then its power set is{1}

P({1}) = {∅, {1}}, (2.1.12)

because we now have two possible properties or distinctions. When 1 does
not satisfy the property, we get P S = ∅, but when 1 does satisfy it, we have
P S = {1}.

Moving on to a set S = {1, 2} with two elements, we have{1, 2}
P({1, 2}) = {∅, {1}, {2}, {1, 2}}, (2.1.13)

because now a property can be satisfied by none, both or either of the
elements. That is, on two elements, we canmake four different distinctions.
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Pursuing this pattern, we see that the power set of a set with n elements
has 2n elements. Thus, the size of the power set grows exponentially as a
function of the size of the original set.

We next turn to infinite sets. We start with the positive integers N =
{1, 2, 3, . . . } and call a set S infinite if there exists an injective map

i : N → S. (2.1.14)

N possesses infinite subsets that do not contain all the elements of N itself.
For instance, the set of even positive integers, 2N = {2, 4, 6, . . . }, is infinite
because we have the injective map i : N → 2N with i(n) = 2n for n ∈ N .
In fact, in this case, the map i is even bijective. There exist other sets S
which may appear larger than N from a naive perspective for which we
nevertheless have a bijection i : N → S. For example, let us consider
the set S = {(n, m)} of all pairs of positive integers n, m. We construct a
bijection by the following procedure:

1 �→ (1, 1),

2 �→ (1, 2), 3 �→ (2, 1),

4 �→ (1, 3), 5 �→ (2, 2), 6 �→ (3, 1),

7 �→ (1, 4), . . . ,

that is, for every k ∈ Nwe enumerate the finitelymany pairs with n+m = k
and after that move on to k + 1. Similarly, we can construct a bijection
between N and the set of all N -tuples of elements of N, for every N ∈ N.

However, this is not possible between N and its power set P(N). Every
element of X ∈ P(N) corresponds to a distinction that we can make in N,
that is, to a property that we can check for every n ∈ N and then assign
those n that satisfy it to the set X . We can also express this via a binary
sequence, like

100110100 . . . (2.1.15)

whichmeans that the integers 1, 4, 5, 7, . . . satisfy the propertywhereas 2, 3,
6, 8, 9, . . . don’t. We now describe Cantor’s famous diagonal argument that
the set of all such binary sequences σ = (σ1, σ2, σ3, . . . ) cannot be put in a
bijective correspondence with N. The argument proceeds by contradiction.
Suppose that there were such a correspondence, i : n �→ σ(n). We then
consider the sequence σ ′ constructed as follows. When σk(k) = 1, we put
σ ′(k) = 0, and if σk(k) = 0, we put σ ′(k) = 1. Thus, at the kth position,
σ ′ is different from σ(k). Therefore, for every k, there is some position for
which σ ′ is different from σ(k). Thus, σ ′ is different from all the sequences
σ(k). But that means that the correspondence i is not surjective, and this is
the contradiction.

In general, the power set P(S) of a set S is always “larger” than S itself,
in the sense that on a set of elements, we can make more distinctions than
there are elements.

Cantor’s argument showed that there is no surjective map

i : N → 2N. (2.1.16)
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We shall now generalize the argument and the result (and the reader may
want to skip the rest of this section upon a first reading) and show that only
under very special circumstances can there be a surjective map

f : S → �S

x �→ fx : S → � (2.1.17)

where
�S := {λ : S → �} (2.1.18)

is the set of all maps from S to �. Each map f : S → �S (whether
surjective or not) yields

f̃ : S × S → �

f̃ (x, y) = fx (y), (2.1.19)

that is, for x , we have the map fx : S → � which we can apply to y ∈ S.
We then have

Lemma 2.1.2 If there is a surjective map

g : S → �S (2.1.20)

then every map
λ : � → � (2.1.21)

has a fixed point, that is, there exists some � ∈ � with

λ(�) = �. (2.1.22)

Proof We consider the diagonal embedding

� : S → S × S

x �→ (x, x) (2.1.23)

and, recalling (2.1.19), the map

φ := λ ◦ g̃ ◦ � : S → �. (2.1.24)

Anticipating the notations of category theory to be introduced in Sect. 2.3,
we can represent this by a diagram

S × S �

�S

.......................................................................................................................................................................................................................................................... ............
g̃

....................................................................................................................................................................................................................................................................... ............
φ
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........

........

........

.................

............

�

..............................................................................................................
...
.........
...

λ

. (2.1.25)

Now, if g is surjective, there has to be some x0 ∈ S with

g(x0) = φ, or equivalently, g̃(x0, y) = φ(y) for all y ∈ S, (2.1.26)

and hence in particular, and this is the crucial diagonal argument,

g̃(x0, x0) = φ(x0). (2.1.27)
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But then

φ(x0) = λ ◦ g̃ ◦ �(x0) = λ ◦ g̃(x0, x0) = λ(φ(x0)),

that is,
� = φ(x0)

satisfies (2.1.22), i.e., is a fixed point. �

Now, of course, for � = {0, 1}, the map λ with λ(0) = 1, λ(1) = 0 {0, 1}
does not have a fixed point. Therefore, there can be no surjective map
g : S → {0, 1} for any S, and in particular not for S = N. Thus, Cantor’s
result holds. Note that Cantor’s idea is translated into the diagonal operator
� and the formula (2.1.27) in the above proof.

More generally, on any set � with more than one element, we can per-
mute the elements to construct a map without fixed points. Therefore, the
above argument can be translated into a proof by contradiction. For any
set � with more than one (for instance two) elements, the existence of a
surjective map (2.1.20) would lead to a contradiction.

2.1.4 Structures

2.1.4.1 Binary Relations

We now look at a single set S. A structure consists of relations between the
elements of the set S. Often, these relations are conceived or imagined as
spatial relations. This leads to the concept of a space, to be defined below.
This brings us into the realm of geometry.

A relation on a set S is given by a map

F : S × S → R (2.1.28)

for some range set R. (In Chap.3, we shall also consider relations involving
more than two elements of a set S.)

Definition 2.1.2 When we have two sets with relations, (S1, F1) and
(S2, F2), with the same range R, then we call a map φ : S1 → S2 a
homomorphism (i.e., structure preserving) if for all s, s′ ∈ S1

F1(s, s′) = r implies F2(φ(s), φ(s′)) = r (2.1.29)

for all r ∈ R. We shall then also write this as φ : (S1, F1) → (S2, F2).

Definition 2.1.3 Let F : S × S → R be a relation and φ : S′ → S a map.
We then define the pullback relation φ∗F : S′ × S′ → R by

φ∗F(s′, s′′) = F(φ(s′), φ(s′′)) for s′, s′′ ∈ S′. (2.1.30)

In particular, when S′ ⊂ S, we can pull back a relation from S to S′ via the
inclusion (2.1.2).

With this definition,

φ : (S′, φ∗F) → (S, F) (2.1.31)

becomes a homomorphism. We record this observation as a principle.

http://dx.doi.org/10.1007/978-3-319-20436-9_3
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Theorem 2.1.1 Relations can be pulled back by mappings, and the corre-
sponding mappings then become homomorphisms.

The simplest relation is a binary one, as explained at the endofSect. 2.1.2.
That is, two elements either stand in a relation, or they don’t. When S is
our set, according to (2.1.3), this can be expressed as

F : S × S → {0, 1}. (2.1.32)

This is also known as a directed graph (sometimes also called a digraph)
with vertex set S and with an ordered pair (s1, s2) ∈ S × S being an edge
when F(s1, s2) = 1. We also call this an edge from s1 to s2.
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This depicts a digraph with edges (s1, s2), (s2, s3), (s3, s2).
When F is symmetric, that is F(s1, s2) = F(s2, s1) for all s1, s2, then

this yields an undirected graph, usually simply called a graph for short.
Here are some pictures of graphs.Some graphs
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The second and the third are highly symmetric whereas the first does not
exhibit any symmetries. Here, a symmetry would be a bijective homomor-
phism h from the vertex set to itself. That it is a homomorphism refers to
the edge relation. It means that (s1, s2) is an edge precisely if (h(s1), h(s2))
is. Anticipating our discussion of automorphism groups, we see that such
symmetries can be composed, that is, if h1 and h2 are symmetries, then so
is h2 ◦ h1. As an exercise, the reader might determine all the symmetries of
the latter two graphs and their composition rules. The answer for the last
graph is that the vertex in the center has to stay fixed under any symmetry
whereas any permutation of the other 8 vertices yields a symmetry.

We now introduce some important types of relations.

Definition 2.1.4 When the binary relation F is

reflexive: F(s, s) = 1 for all s

transitive: if F(s1, s2) = 1 and F(s2, s3) = 1, then also F(s1, s3) = 1

symmetric: F(s1, s2) = F(s2, s1),

then we say that F defines an equivalence relation on S. In this case, one
usually writes s1 ≡ s2 for F(s1, s2) = 1. We then define a quotient S/F of
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S by the equivalence relation F whose elements are the equivalence classes

[s] := {s′ ∈ S : s′ ≡ s} (2.1.33)

for s ∈ S.

In this section, we shall draw a number of graphs or digraphs to illus-
trate algebraic structures geometrically. We shall usually omit edges from
the vertices to themselves, to simplify our drawings. That is, when depict-
ing reflexive relations, the reflexivity condition is always assumed, but not
drawn.
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Here, two vertices s, s′ are connected by an edge iff F(s, s′) = 1. The
first and the third graph here then represent equivalence relations, whereas
the second one does not, as it is not transitive.

One can view an equivalence relation F on S as a partitioning of S into
the equivalence classes. In the quotient S/F , equivalence is transformed
into equality, [s1] = [s2] iff s1 ≡ s2. We also obtain an induced relation Fq

on S/F by putting Fq([s], [s′]) = 1 if [s] = [s′] and = 0 otherwise. The
map

q : S → S/F

s �→ [s] (2.1.34)

is then a homomorphism. Thus, an equivalence relation F induces a map
(2.1.34) from S to its quotient S/F . Conversely, a map φ : S → S′ defines
an equivalence relation by

F(s1, s2) = 1 :⇔ φ(s1) = φ(s2), (2.1.35)

that is, we identify elements of S that have the same image under φ. The
target set S′ thus becomes the quotient S/F .

There always exists the trivial equivalence relation F0 on S with F0(s1,
s2) = 1 only if s1 = s2.

Definition 2.1.5 When the relation F is

reflexive: F(s, s) = 1 for all s

transitive: if F(s1, s2) = 1 and F(s2, s3) = 1, then also F(s1, s3) = 1

antisymmetric: if F(s1, s2) = 1 and F(s2, s1) = 1, then s1 = s2,

then we say that (S, F) is a partially ordered set, or poset for short. One
usually writes s1 ≤ s2 in place of F(s1, s2) = 1 in this case. A partial order
provides some (partial) ranking of the elements of S.
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Again, the second graph here is not transitive, nor is the fourth, and
therefore they do not represent posets, whereas the other two do. Also, any
graph with two arrows in opposite directions between the same two vertices
would not be antisymmetric and hence would not represent a poset.

Definition 2.1.6 A lattice is a poset (S, ≤) for which any two elements
s1, s2 have a unique greatest lower bound, that is, there exists some s, also
written as s1 ∧ s2 and called the meet of s1 and s2, with

s ≤ s1, s ≤ s2, and s ≤ s whenever s ≤ s1, s ≤ s2, (2.1.36)

and a unique least upper bound s̄, also written as s1 ∨ s2 and called the join
of s1 and s2, with

s1 ≤ s̄, s2 ≤ s̄, and s̄ ≤ s whenever s1 ≤ s, s2 ≤ s. (2.1.37)
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This poset is not a lattice as it neither has a unique greatest lower nor a
unique least upper bound.

We leave it to the reader to check that the operations ∧ and ∨ are asso-
ciative and commutative. Here, associativity of, for instance, ∧ means that
always

(s ∧ s′) ∧ s′′ = s ∧ (s′ ∧ s′′), (2.1.38)

and commutativity that always

s ∧ s′ = s′ ∧ s. (2.1.39)

These notions will be taken up in Definitions 2.1.12 and 2.1.13 below.

Definition 2.1.7 We say that the lattice possesses 0 and 1 (not to be con-
fused with the values in (2.1.32)), if it contains elements 0, 1 with the
property that for all s ∈ S

0 ≤ s ≤ 1. (2.1.40)

• 0
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• 1
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Equivalently, as we leave for the reader to check, a lattice with 0 and 1
is a set with two binary associative and commutative operations ∧ (“and”),
and ∨ (“or”) and two distinguished elements 0, 1, satisfying

s ∧ s = s, s ∨ s = s (2.1.41)

1 ∧ s = s, 0 ∨ s = s (2.1.42)

s ∧ (s′ ∨ s) = s = (s ∧ s′) ∨ s (2.1.43)
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for any elements s, s′. The ordering can be recovered from these conditions
by stipulating that s ≤ s′ iff s ∧ s′ = s, or equivalently, iff s ∨ s′ = s′.
The exercise then amounts to verifying that these properties imply that ≤
defines an ordering in the sense of Definition 2.1.5, from the properties of
∧ and∨. Thus, here, we can recover a structure from operations; this aspect
will be taken up in Sect. 2.1.6 below.

2.1.4.2 Metrics

When the range of F is larger, we obtain more general types of relations.
When

F : S × S → R, (2.1.44)

we obtain the structure of a weighted and directed graph, with F(s1, s2)
being the weight of the edge from s1 to s2.

When we require that

F : S × S → R
+ (the nonnegative real numbers), (2.1.45)

be symmetric, i.e. F(s1, s2) = F(s2, s1) for all s1, s2, and satisfy the trian-
gle inequality

F(s1, s3) ≤ F(s1, s2) + F(s2, s3) for all s1, s2, s3, (2.1.46)

we obtain a pseudometric.
When the points s, s′ satisfy F(s, s′) = 0, then, by (2.1.46), also

F(s, σ ) = F(s′, σ ) for all other σ . Therefore, s and s′ cannot be distin-
guished by their relations with other elements in terms of the pseudometric.
Therefore, according to the general principle described above, they should
be identified. (Above, in the definition of an equivalence relation, we had
identified elements with F(s1, s2) = 1, but, of course, it amounts to the
same when we identify elements with F(s1, s2) = 0 instead. It is an exer-
cise for the reader to check that, for a pseudometric, this does indeed define
an equivalence relation.) When we then identify all such equivalent points,
we obtain a new set S̄, a quotient of the original one, with an induced metric
F̄ . Here, using the standard notation d in place of F̄ for a metric, we have

d(x1, x2) > 0 whenever x1 �= x2, for all x1, x2 ∈ S̄. (2.1.47)

When these conditions are satisfied, d(., .) is called a metric, and we also
say that (S, d) is a metric space (the notion of space will be defined below).

A metric provides us with a quantitative notion of nearness, in the sense
that we can not only say that for instance y is closer than z to x if

d(x, y) < d(x, z), (2.1.48)

but we can also quantify that difference.

Examples

1. On the real line R, we have the Euclidean metric Euclidean metric

d(x, y) = |x − y| for x, y ∈ R. (2.1.49)
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2. More generally, on R
d , the set of d-tuples (x1, . . . , xd), xi ∈ R for

i = 1, . . . , d, we have the Euclidean metric

d(x, y) =
√
√
√
√

d
∑

i=1

(xi − yi )2 for x = (x1, . . . , xd), y = (y1, . . . , yd)

(2.1.50)
which, of course, reduces to (2.1.49) for d = 1.

3. On any set S, we can define a metric byTrivial metric

d(s1, s2) =
{

0 if s1 = s2
1 if s1 �= s2.

(2.1.51)

Thus, any two different points have the same distance from each other.
For a set with three points, this looks like

•

•

•
This metric is trivial in the sense that it does not allow any further
distinction beyond whether two points are the same or different.

4. A metric d on the set S defines a connected graph if for any s �= s′ ∈ S
there exist s0 = s, s1, . . . , sn = s′ ∈ S with

d(si−1, si ) = 1 for i = 1, . . . , n, and d(s, s′) = n (2.1.52)

and we can then let the pair (s1, s2) define an edge iff d(s1, s2) = 1.
The first part of the condition then says that any two elements can be
connected by a chain of edges. In that sense, the graph is connected. The
second part of the condition then specifies that the distance between two
vertices of the graph equals the minimal number of edges needed to get
from one to the other.

5. On the set of binary strings of some fixed length n, that is, on objects of
the form (b1b2 . . . bn) with bi ∈ {0, 1}, we have the Hamming distance
that counts in how many positions two strings b = (b1b2 . . . bn), b′ =
(b′

1b′
2 . . . b′

n) differ, that is,

d(b, b′) =
n

∑

i=1

|bi − b′
i |. (2.1.53)

6. Whenever S′ ⊂ S, a metric on S induces a metric on S′ by pullback
under the inclusion i : S′ → S, see (2.1.2).

When d is a metric on S and φ : S′ → S a map, then φ∗d is a metric
on S′ only if φ is injective. Otherwise, it is only a pseudometric, and we
need to pass to the quotient where points with the same image under φ are
identified to obtain a metric, as just described.

The next definition will be formulated for metric spaces only, although
it would also work for pseudometrics. The reason for this restriction is that
its content for metric spaces is more interesting and useful than for general
pseudometrics.
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Definition 2.1.8 Let (S, d) be a metric space. We say that the point z ∈ S
is between the points x and y if

d(x, y) = d(x, z) + d(y, z), (2.1.54)

that is, if the triangle inequality (2.1.46) becomes an equality.
A subset C of S is called convex if whenever x, y ∈ C , then also all

points that are between x and y are contained in C as well.

•x •z1 •z2
•w

•y

The points z1 and z2 are between x and y with respect to the Euclidean
metric in the plane R

2, but w is not.
For the trivialmetric (2.1.51), no point z is between two other points x, y.

Consequently, any subset of a set S equipped with that metric is convex.

Definition 2.1.9 Let p1, . . . , pn ∈ S where (S, d) is a metric space. Then
a point b ∈ S with

b = argminq

∑

i=1,...,n

d2(pi , q) (2.1.55)

is called a barycenter of p1, . . . , pn . Also, a point m = m(p1, p2) ∈ S
with

d(p1, m) = d(p2, m) = 1

2
d(p1, p2) (2.1.56)

is called a midpoint of p1 and p2.

In particular, a midpoint m(p1, p2) is between p1 and p2 in the sense of
Definition 2.1.8. Amidpointm, if it exists, is also a barycenter of p1 and p2.
This is easily seen. Let a be any point in S, and let d(p1, a) = λd(p1, p2).
(We may assume λ ≤ 1, as otherwise p2 would yield a lower value in
(2.1.55) than a.) By the triangle inequality, d(p2, a) ≥ (1 − λ)d(p1, p2).
Thus,

d2(p1, a) + d2(p2, a) ≥ λ2d2(p1, p2) + (1 − λ)2d2(p1, p2)

≥ 1

2
d2(p1, p2) = d2(p1, m) + d2(p2, m),

and a midpoint thus indeed yields the smallest possible value in (2.1.55).
There is another characterization of midpoints that will become relevant

in Sect. 5.3.3. Let

B(p, r) := {q ∈ S; d(p, q) ≤ r} for p ∈ S, r ≥ 0 (2.1.57)

be the closed ball with center p and radius r . Given p1, p2 ∈ S, we then
ask for the smallest radius r = r(p1, p2) with

B(p1, r) ∩ B(p2, r) �= ∅. (2.1.58)

We then observe

http://dx.doi.org/10.1007/978-3-319-20436-9_5
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Lemma 2.1.3 The following are equivalent

(i) p1, p2 ∈ S possess a midpoint.
(ii) r(p1, p2) = 1

2d(p1, p2).

When S is finite, barycenters always exist, but midpoints need not. Nei-
ther barycenters nor midpoints need be unique. For the metric (2.1.51),
there are no midpoints (unless p1 = p2), but any of the pi is a barycenter
of p1, . . . , pn . On a connected graph as characterized by (2.1.52), s and
s′ possess a (not necessarily unique) midpoint iff their distance is an even
integer.

2.1.5 Heyting and Boolean Algebras

In this section, we shall consider particular classes of lattices, the Heyting
and Boolean algebras. These will play an important role in our discussion
of topoi in the last chapter, and they will also arise in our discussion of
topologies. Nevertheless, a reader who is primarily interested in the general
and abstract aspects of structures may wish to skip this section upon a first
reading and only return to it at some later stage.

Definition 2.1.10 A lattice with 0 and 1 is a Heyting algebra if for any
elements s, s′, there exists a (unique) element, called the implication s ⇒ s′,
satisfying

t ≤ (s ⇒ s′) iff t ∧ s ≤ s′. (2.1.59)

The element
¬s := (s ⇒ 0) (2.1.60)

is called the pseudo-complement of s.
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• s′

•s ⇒ s′
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(2.1.61)

In the diagrams (where the arrows from the lowest to the highest vertex
that are required by transitivity are not shown), we see that s ⇒ s′ sits
above s′, but cannot sit higher above s than s′, that is, it still has to satisfy
s ∧ (s ⇒ s′) = s ∧ s′, and in fact, it is the highest such element. For the
pseudo-complement, we draw the following diagrams (where again some
arrows required by transitivity are not shown)
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• 0 = ¬s

•s

• 1 = ¬¬s
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(2.1.62)

In a Heyting algebra, we have

(((s ⇒ s′) ∧ s) ⇒ s′) = 1, (2.1.63)

because t ≤ (((s ⇒ s′) ∧ s) ⇒ s′) iff t ∧ (s ⇒ s′) ∧ s ≤ s′ (by (2.1.59)
and the associativity of ∧) iff t ∧ (s ⇒ s′) ≤ (s ⇒ s′) (by (2.1.59)
again), and this is satisfied for all t by the definition of ∧, and finally, any
element σ with t ≤ σ for all t has to be 1, as follows from (2.1.40). In the
terminology of elementary logic, (2.1.63) says that the “modus ponens” is
always valid. As an exercise for this formalism, you may wish to check that
t ⇒ (s ⇒ s′) = t ∧ s ⇒ s′.

In order to develop the concept of a Heyting algebra further, it is useful
to reformulate the definition (2.1.10) of a Heyting algebra without invoking
the order relation ≤.

Lemma 2.1.4 A Heyting algebra is a set with two binary associative
and commutative operations ∧,∨ and two distinguished elements 0, 1,
satisfying

x ∧ x = x, x ∨ x = x (2.1.64)

1 ∧ x = x, 0 ∨ x = x (2.1.65)

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x (2.1.66)

for any elements x, y, and a binary operation ⇒ characterized as follows.
For any elements y, z, there exists a (unique) element y ⇒ z satisfying

x ∧ (y ⇒ z) = xi f f x ∧ y ∧ z = x ∧ y (2.1.67)

for all x.

Proof The relations (2.1.64)–(2.1.66) are simply (2.1.41)–(2.1.43), and as
explained there, from these operations, we can then recover the order rela-
tion ≤ ; it is characterized by x ≤ y iff x ∧ y = x , or equivalently, iff
x ∨ y = y. �

Therefore, (2.1.67) can also be written as

x ≤ (y ⇒ z) iff x ∧ y ≤ z (2.1.68)

for all x .
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From the symmetry of ∧, we get the symmetry

x ≤ (y ⇒ z) iff y ≤ (x ⇒ z). (2.1.69)

In the sequel, we leave out the brackets and write, for instance,

x ∨ y ≤ w ⇒ z in place of (x ∨ y) ≤ (w ⇒ z). (2.1.70)

That is, the operations ∨,∧,⇒ are carried out before the relation ≤ is
applied. Similarly for = in place of ≤.

Lemma 2.1.5 A Heyting algebra satisfies the distributive law

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) for all x, y, z. (2.1.71)

Proof For the proof strategy, we observe that

x = y iff for all w : (x ≤ w iff y ≤ w). (2.1.72)

Indeed, this holds in any poset, by insertingw = x andw = y into (2.1.72)
and using the antisymmetry of the ordering.

Now (x ∨ y) ∧ z ≤ w iff x ∨ y ≤ z ⇒ w (by 2.1.68) iff (x ≤ z ⇒ w

and y ≤ z ⇒ w) iff (x ∧ z ≤ w and y ∧ z ≤ w) iff (x ∧ z) ∨ (y ∧ z)
≤ w. �

Similarly, we have distributive laws for ⇒.

Lemma 2.1.6 A Heyting algebra satisfies

(x ∨ y) ⇒ z = (x ⇒ z) ∧ (y ⇒ z) (2.1.73)

and
x ⇒ (y ∧ z) = (x ⇒ y) ∧ (x ⇒ z) (2.1.74)

for all x, y, z.

Note that we have both ∨ and ∧ in (2.1.73), but only ∧ in (2.1.74).

Proof By (2.1.69), w ≤ (x ∨ y) ⇒ z iff x ∨ y ≤ w ⇒ z iff (x ≤ w ⇒ z
and y ≤ w ⇒ z) iff, using (2.1.69) again, (w ≤ x ⇒ z andw ≤ y ⇒ z) iff
w ≤ (z ⇒ z ∧ y ⇒ z). This shows (2.1.73). We leave the proof of (2.1.74)
to the reader. �

There are some further rules that we shall employ below.

x ⇒ x = 1 (2.1.75)

x ∧ (x ⇒ y) = x ∧ y (2.1.76)

y ∧ (x ⇒ y) = y (2.1.77)

(x ⇒ (y ∧ x)) = x ⇒ y for all x, y. (2.1.78)

For instance, (2.1.78) follows directly from (2.1.71) and (2.1.75), and we
leave the other equations as an exercise.

(2.1.60) and (2.1.73) imply one of De Morgan’s laws,

¬(x ∨ y) = ¬x ∧ ¬y. (2.1.79)
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(The other De Morgan law, (2.1.84)¬(x ∧ y) = ¬x ∨¬y, does not hold in
all Heyting algebras, but only in Boolean algebras. The reader can check
this with the example ofO(X), the algebra of open subsets of a topological
space X , introduced in Sect. 4.1 below.)

We conclude our treatment of general Heyting algebras with

Lemma 2.1.7 When a lattice L with 0 and 1 carries a binary operation ⇒
satisfying (2.1.75)-(2.1.78), then this defines a Heyting algebra structure
on L.

Thus, the Heyting algebra structure can be recovered from the two binary
operations ∧ and ⇒.

Proof We need to show that the two sides of (2.1.67) are equivalent when
the conditions (2.1.75)–(2.1.78) hold. Thus, for going from left to right,
assume that

x ∧ (y ⇒ z) = x, hence

x ∧ y = x ∧ y ∧ (y ⇒ z)

= x ∧ y ∧ z by (2.1.76)

so that the right-hand side of (2.1.67) holds. Conversely,

x = x ∧ (y ⇒ x) by (2.1.77)

= x ∧ (y ⇒ (y ∧ x)) by (2.1.78)

= x ∧ (y ⇒ (x ∧ y ∧ z)) if the r.h.s. of (2.1.67) holds

= x ∧ ((y ⇒ z ∧ y) ∧ (y ⇒ x)) by (2.1.77) (with the roles of x and y interchanged)

= x ∧ (y ⇒ z) by (2.1.78) and (2.1.76)

which is the left-hand side of (2.1.67). �

Definition 2.1.11 Finally, a Boolean algebra is a Heyting algebra in which
the pseudo-complement ¬s of every element s satisfies

s ∨ ¬s = 1 and s ∧ ¬s = 0. (2.1.80)

¬s is then called the complement of s.

In particular, we then have in a Boolean algebra

¬¬s = s for every s. (2.1.81)

In a general Heyting algebra, however, this need not hold; we only have

s ≤ ¬¬s. (2.1.82)

Thus, the right diagram in (2.1.62) is Boolean, but the left one is not.
Also, the implication and the pseudo-complement in a Boolean algebra

are related by
s ⇒ s′ = ¬s ∨ s′. (2.1.83)

Also, in a Boolean algebra, we have

¬(s1 ∧ s2) = ¬s1 ∨ ¬s2. (2.1.84)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Therefore, in a Boolean algebra, the pseudo-complement together with ∨
determines ∧ by applying (2.1.81)–(2.1.84)

s1 ∧ s2 = ¬(¬s1 ∨ ¬s2). (2.1.85)

Similarly, in a Boolean algebra, ¬ and ∧ determine ∨,
s1 ∨ s2 = ¬(¬s1 ∧ ¬s2). (2.1.86)

A basic example of a Boolean algebra is {0, 1} with the above operations,
that is,

0 ∧ 0 = 0 ∧ 1 = 0, 1 ∧ 1 = 1, 0 ∨ 0 = 0, 1 ∨ 1 = 0 ∨ 1 = 1, ¬0 = 1.
(2.1.87)

As a more general example, let X be a set, and let P(X) be its power
set, that is, the set of all its subsets. P(X) has an algebraic structure with
the following operations as ¬, ∨,∧,⇒ (for all A, B ∈ P(X)):

Complement: A �→ X \ A (2.1.88)

Union: (A, B) �→ A ∪ B (2.1.89)

Intersection: (A, B) �→ A ∩ B := X \ (X \ A ∪ X \ B) (2.1.90)

Implication: (A, B) �→ A ⇒ B := (X \ A) ∪ B. (2.1.91)

We note that C ∩ A ⊂ B iff C ⊂ (A ⇒ B), that is, the condition required
in (2.1.59).

We also have the relations

A ∪ (X \ A) = X (2.1.92)

A ∩ (X \ A) = ∅ (2.1.93)

for all A ∈ P(X). Thus, ∅ and X assume the roles of 0 and 1, resp., that is,

∅ ⊂ A (and also A ∩ ∅ = ∅) (2.1.94)

and
A ⊂ X (and also A ∪ X = X) (2.1.95)

for all A ∈ P(X).
The Boolean algebra {0, 1} ∼= {∅, X} then arises as the power set of a

set X with a single element.
Boolean algebra
{0, 1} ∼= {∅, X}

However, when we take X as a set with 2 elements, say X = {0, 1},1
and put

O(X) := {∅, {0}, {0, 1}}, (2.1.96)

then we have a Heyting algebra that is not Boolean (because {0} has no
complement).

Heyting algebra
{∅, {0}, {0, 1}}

Returning to the case of Boolean algebras, and the above example of
P(X) as an example of such a Boolean algebra, this is in fact an instance
of a general relationship as given in the representation theorem of Stone.
(As that theorem will not be utilized or referred to in the sequel, and since
its proof invokes concepts that may seem a bit technical, some readers may
want to skip it on a first reading and continue after (2.1.107).)

1Please do not get confused by the different meanings of the symbols 0 and 1 here, as
algebraic symbols on one hand and as members of a set on the other hand.
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Theorem 2.1.2 (Stone) For any Boolean algebra B with operations
∨,∧, ¬, there exist a set X and an injective homomorphism of Boolean
algebras

h : B → P(X). (2.1.97)

Here, a homomorphism η : B1 → B2 of Boolean algebras has to satisfy
η(s1 ∧ s2) = η(s1) ∧ η(s2) for all s1, s2 ∈ B1 where on the left-hand side,
we have the operation ∧ in B1, and on the right-hand side the operation in
B2, and analogous relations for the other operations ∨,¬, and also η(0) =
0, η(1) = 1, where again on the left-hand sides, we have the elements 0 and
1 in B1, whereas on the right-hand sides, the corresponding elements in B2.
(Again, this is an instance of the concept of a homomorphism as a structure
preserving map; here, the structure is that of a Boolean algebra, but we
have also encountered and will repeatedly encounter homomorphisms for
other structure. In Sect. 2.3, the concept will be developed from an abstract
perspective.)

Proof A filter F on B is defined to be a subset of B with the following
properties

0 /∈ F , 1 ∈ F , (2.1.98)

if s ∈ F , s ≤ s′, then also s′ ∈ F , (2.1.99)

if s1, . . . , sn ∈ F , then also s1 ∧ · · · ∧ sn ∈ F . (2.1.100)

An ultrafilterF is defined to be a maximal filter, that is, whenever for some
filter G

F ⊂ G, then F = G. (2.1.101)

Equivalently, F is an ultrafilter iff

for all s ∈ B, either s ∈ F or ¬s ∈ F . (2.1.102)

(Note that as a consequence of (2.1.98) and (2.1.100), s and¬s cannot both
be contained in a filter F .)

The idea of the proof then is to let X be the set of all ultrafilters on B
and define

h : B → P(X)

s �→ {F : s ∈ F}, (2.1.103)

and verify that this is an injective homomorphism of Boolean algebras.
So, let’s see how this goes. Constructing filters is easy. For s ∈ B, let
F(s) := {s′ ∈ B : s ≤ s′}. Such an F(s) is called a principal filter.
In general, however, this is not an ultrafilter. We have F(s) � F(σ ) for
any σ ≤ s, σ �= s. We can then try to iterate this construction and obtain
larger and larger filters that asymptotically yield an ultrafilter. In fact, in
general, one has to appeal to the axiom of choice to ensure the existence of
ultrafilters.

We observe, however, that by (2.1.98) and (2.1.100), we cannot augment
a filter F(s) so that it contains two elements s1, s2 ≤ s with s1 ∧ s2 = 0.
Thus, if s � t , then ¬t ∧ s �= 0, and hence we can obtain an ultrafilter
containing s, but not t . This yields the injectivity of h.
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Among the conditions to check for a homomorphism of Boolean alge-
bras, the most difficult one is

h(s1 ∨ s2) = h(s1) ∪ h(s2). (2.1.104)

We shall check this one and leave the others to the reader. Thus, if s1∨s2 ∈ F
for some ultrafilter, then we claim that also s1 or s2 is in F . This will then
yield h(s1 ∨ s2) ⊂ h(s1) ∪ h(s2). If on the contrary, neither of s1, s2 were
in F , then by (2.1.102), both ¬s1,¬s2 ∈ F , hence also ¬s1 ∧ ¬s2 ∈ F by
(2.1.100). But since also, by (2.1.84), ¬(¬s1 ∧ ¬s2) = s1 ∨ s2 is in F by
assumption, this would contradict (2.1.102). For the other direction, that
is, ⊃ in (2.1.104), if s1 ∨ s2 /∈ F , then ¬s1 ∧ ¬s2 = ¬(s1 ∨ s2) ∈ F , and
hence neither s1 nor s2 can be in F , using (2.1.98) and (2.1.100) again. �

Actually, an ultrafilter F on a Boolean algebra B is the same as a homo-
morphism η from B to the Boolean algebra {0, 1}; we have

η(s) = 1 iff s ∈ F . (2.1.105)

We leave it to the reader to check that the properties of ultrafilters ensure
that this is indeed a homomorphism of Boolean algebras.

Also, the definition of a filter in the above proof is meaningful for any
Heyting algebra H , not necessarily Boolean. Moreover, a filter G (not nec-
essarily ultra) in H yields a homomorphism η : H → K into another
Heyting algebra, with η−1(1) = G; this is the natural generalization of
(2.1.105). For a principal filter F(s), this Heyting algebra is simply the
poset H/s := {s′ ∈ H : s′ ≤ s} with the Heyting algebra operations
induced from H . Equivalently, we can obtain it as the space of equivalence
classes for

s1 ≡ s2 iff s1 ∧ s = s2 ∧ s. (2.1.106)

This construction extends to a general filter F as

s1 ≡ s2 iff s1 ∧ s′ = s2 ∧ s′ for some s′ ∈ F . (2.1.107)

Let us now consider a structure that is not a Heyting or Boolean algebra.
We take the Euclidean space R

d ,2 that is, the space consisting of tuplesEuclidean space R
d

x = (x1, . . . , xd) with components xi ∈ R. The elements of R
d can be

added; with y = (y1, . . . , yd), we have

x + y = (x1 + y1, . . . , xd + yd) (2.1.108)

and multiplied by real numbers α,

αx = (αx1, . . . , αxd). (2.1.109)

Also, we have the scalar product

〈x, y〉 =
d

∑

i=1

xi yi . (2.1.110)

2This is, of course, an example of a vector space, but that latter concept will only be
introduced below. Therefore, we recall some details here.
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A linear subspace of R
d is a subset of the form

V = {α1v1 + . . . αmvm : αi ∈ R, i = 1, . . . , d} (2.1.111)

for some elements v1, . . . , vm ∈ R
d , called generators of V ; given V , these

v j are not unique, but this does not matter for our purposes. For two linear
subspaces V, W , as is easily checked, their intersection V ∩ W is again a
linear subspace, and so is their direct sum

V ⊕ W := {v + w : v ∈ V, w ∈ W }. (2.1.112)

Finally, for a linear subspace, we have the complementary subspace

V ⊥ := {w ∈ R
d : 〈v,w〉 = 0 for all v ∈ V }. (2.1.113)

This is where we need the scalar product. Again, the complementary sub-
space of a linear subspace is indeed itself a linear subspace.

When we then take the intersection ∩ of linear subspaces as ∧, the
direct sum ⊕ as ∨ and the complement ⊥ as ¬, R

d itself as 1, and the
trivial subspace {0} (where 0 stands for the element (0, . . . , 0) ofR

d whose
components are all 0) as 0,3 the linear subspaces of R

d do not constitute a
Heyting algebra. For instance, the distributive law of Lemma 2.1.5 is not
satisfied. Some subspaceW �= {0}may intersect twoother subspacesV1, V2
only at 0, but may nevertheless be contained in the direct sum V1 ⊕ V2. For
example, consider R

2 spanned by the vectors e1 = (1, 0), e2 = (0, 1) and
let V1, V2, W be the one-dimensional subspaces spanned by e1, e2, e1 +
e2 = (1, 1), resp. Then V1 ⊕ V2 = R

2 and hence this space contains W
while neither V1 nor V2 does. In such a case, (V1 ⊕ V2)∩ W = W , whereas
(V1 ∩ W ) ⊕ (V2 ∩ W ) = {0}. For those readers who went through the
proof of Theorem 2.1.2, it is also instructive to see why that proof does not
apply to this example. In fact, an ultrafilter F would have to correspond
to a smallest subspace �= {0}, that is, a subspace W generated by a single
vector w �= 0. In other words, the linear filter F would then consist of all
linear subspaces V containing that W . But then (2.1.102) does not hold in
general. In fact, there are many subspaces W for which neither W nor W ⊥
contain V . For example, take W as above as the span of (1, 1) in R

2, and V
as the span of (1, 0). Then neither V nor V ⊥, the space spanned by (0, 1),
contain W .

In any case, returning to (2.1.32), as soon as we have a basic distinction
between two values, 0 and 1 (as in (2.1.32)), false or true, out or in, or
whatever, then we can use that distinction to define relations between the
elements of a set S.

2.1.6 Operations

Instead of relations, one can also consider operations. These are transfor-
mations of the elements of a set. When we have a structure, the operations

3Carefully distinguish the different meanings of the symbol 0 employed here!
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are required to preserve that structure, in a sense defined below. The opera-
tions themselves usually constitute a structure. Such a structure can operate
on itself, as in the case of a group, or it can operate on another structure, as
for the representation of a group. In any case, operations bring us into the
realm of algebra.

Operations also offer a new perspective on the issue of equivalence.
Given an operation of some structure on a set, one can consider two elements
of the latter as equivalentwhen there is an operationmoving one of them into
the other. In this way, one can form the quotient of the set by the operation,
by identifying two elements that are related by an operation, or as one also
says in this context, that can be mapped to each other. In order that this be
an equivalence relation, so that we can indeed construct such a quotient, we
need to require that this operation be reflexive, that is, every element can be
mapped to itself (that is, doing nothing counts as an operation), symmetric,
that is, when a can be mapped to b, then also b can be mapped to a, and
transitive, that is, when a can be mapped to b, and b to c, then we can also
map a to c. In terms of the operations, this means that we have an identity
operation and that operations can be inverted and composed. When this
composition is associative, then the operations constitute a group.

In this sense, we have the principle that any structure should be divided
by its automorphism group, the concept of automorphism being defined
below.

Let us introduce or recall the basic structures that are defined in terms
of operations.

Definition 2.1.12 A monoid M is a set each element of which defines an
operation

lg : M → M

h �→ gh. (2.1.114)

In fact, we shall usually write this as a binary operation

(g, h) → gh (2.1.115)

mapping a pair of elements g, h of M to their product gh. This product has
to be associative

(gh)k = g(hk) for all g, h, k ∈ M, (2.1.116)

and there must exist a distinguished element e (called the neutral element)
with

eg = ge = g for all g ∈ M. (2.1.117)

For instance, a lattice with 0 and 1 possesses two such binary operations, ∧
and ∨. According to (2.1.42), the neutral element for ∧ is 1, but the neutral
element for ∨ is 0.

On the set {0, 1}, we have two monoid structures, with the operations
denoted by · and +, resp.,

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1 and (2.1.118)

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. (2.1.119)
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Monoid structures on
{0, 1}

Both structures will be important. Of course, this is also a special case
of the observation we have just made about lattices, because we can let ·
correspond to ∧ and + to ∨ in the lattice with 0 and 1 only.

The operation lg is called the left translation by g. Equivalently, we could
write (2.1.115) in terms of the right translation rh by h. Expressed in terms
of such translations, (2.1.117)means that the left and right translations le, re

by the neutral element are the identity operations on M .

Definition 2.1.13 A group G is a monoid in which each g ∈ G has to
possess an inverse g−1 ∈ G satisfying

gg−1 = g−1g = e. (2.1.120)

The element e and the inverse g−1 of a given element g are uniquely deter-
mined, as is easily verified.

Definition 2.1.14 A subset S of a group G is called a set of generators of
the group G if every element of G can be expressed as a product of elements
from S and their inverses. (Such a set of generators is not unique.) The group
is called free if it does not possess nontrivial relations. This means that there
exists a set S of generators such that any element of G can be written in a
unique way as the product of elements of S and their inverses, apart from
inserting trivial products of the form gg−1. (Again, S itself is not unique
here.) G is called torsionfree if gn �= e for all g ∈ G, n ∈ Z, n �= 0.

Free groups are torsionfree, because if gn = e nontrivially, then e can be
expressed in more than one way as a product in G, and hence the same
would hold for any other element, e.g., h = gnh.

Definition 2.1.15 The monoid M or the group G is called commutative or,
equivalently, abelian if

gh = hg for all g, h ∈ M or G. (2.1.121)

For a commutative group, the operation is often written as g + h, with
−h in place of h−1, and the element e is denoted by 0.

Of course, there is the trivial group containing a single element e, with
e · e = e. The smallest nontrivial group is given by (2.1.119), and we now
write this asZ2 := ({0, 1},+)with 0+0 = 0 = 1+1, 0+1 = 1+0 = 1.

Commutative group
Z2 := ({0, 1},+)

When we consider the same set with a different operation, (2.1.118), which
we now write as M2 := ({0, 1}, ·) with 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1,
we obtain a monoid that is not a group (because 0 has no inverse).

Monoid
M2 := ({0, 1}, ·)

More generally, for q ≥ 2, we can consider the cyclic group Zq :=
({0, 1, . . . , q −1}, +) with addition defined modulo q , that is, m +q ≡ m Cyclic group (Zq , +)
for all m. Thus, for instance, 1 + (q − 1) = 0 or 3 + (q − 2) = 1. We can
also equip this set with multiplication modulo q , obtaining again a monoid
Mq which is not a group. Monoid (Mq , ·)
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The nonnegative integers with addition also constitute a monoidN0; this
monoid, however, can be extended to the group Z of integers.

Monoid N0
Group of integers Z

Also, the positive rational numbers Q+, and likewise the nonzero ratio-
nals Q \ {0}, equipped with multiplication constitute a group.Group (Q+, ·)

Definition 2.1.16 A subgroup H of a group G is simply some H ⊂ G that
also forms a group law under the group operation of G. That is, whenever
h, k ∈ H , then also hk ∈ H and h−1 ∈ H . Thus, H is closed under the
group operation of G, that is, whenever we apply the group operations of
multiplication or take the inverse of elements in H , then the result is still
in H .

We shall discuss themore abstract Definition 2.3.5 below. Every groupG
has the trivial group {e} and G itself as subgroups. As a nontrivial example,
mZ := {. . . ,−2m, −m, 0, m, 2m, . . . } is a subgroup of Z. Also, whenSubgroup mZ of Z

p divides q ∈ N, then {0, p, 2p, . . . } is a subgroup of Zq . When q
Subgroups of Zq is a prime number (that is, if q = mn with positive integers m, n, then

either m = q, n = 1 or the other way around), however, then Zq does not
possess any nontrivial subgroups. Thus, here an arithmetic property, that q
be prime, is translated into a group theoretical one, thatZq has no nontrivial
subgroups.

In fact, the integers Z also possess another operation, namely multipli-
cation. This leads us to the nextRing (Z, +, ·)

Definition 2.1.17 A ring R possesses the structure of a commutative group,
written as+ (often called addition), and another operation (called multipli-
cation) that is associative, see (2.1.116), and which is distributive over +,

g(h+k) = gh+gk and (h+k)g = hg+kg for all g, h, k ∈ G. (2.1.122)

The ring is said to be commutative when the multiplication is also commu-
tative, see (2.1.121). It is said to possess an identity or unit if there is an
element, denoted by 1, satisfying

g1 = 1g = g for all g ∈ R. (2.1.123)

Since 0 + 0 = 0, the distributive law (2.1.122) implies

g0 = 0g = 0 for all g ∈ R. (2.1.124)

A ring with identity thus possesses a group structure (addition) as well
as a monoid structure (multiplication) that is distributive over the group
structure.

For instance whenwe equipZq both with addition+ andmultiplication ·
modulo q , we obtain a ring. The simplest example is, of course, Z2 withRing (Zq ,+, ·)
the two operations given in (2.1.118) and( 2.1.119).

More generally, we can also form amalgams of the operations of addition
and multiplication.
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Definition 2.1.18 A module M over a ring R is an abelian group (with
group operation denoted by +) whose elements can be multiplied by ele-
ments of R, denoted by (r, g) �→ rg for r ∈ R, g ∈ M , with the following
distributive and associative rules.

r(g + h) = rg + rh (2.1.125)

(r + s)g = rg + rs (2.1.126)

(rs)g = r(sg) (2.1.127)

for all r, s ∈ R, g, h ∈ M .
If R possesses an identity 1, then the R-module M is called unitary if

1g = g for all g ∈ M. (2.1.128)

Of course, each ring is a module over itself, as well as a module over
any subring4 of itself. In Definition 2.1.21 below, we shall also consider
subsets of a ring that are closed under multiplication of that ring, hence
also constitute modules. In those cases, the operation of multiplication is
already internal to the structure, but the concept of amodule also allows us to
consider the multiplication by elements of the ring as something additional,
superimposed upon the internal group structure of M . In particular, the
elements of R are not considered as elements of M , but rather as operations
on M . In the sequel, we shall often encounter such modules over rings. In
particular, at several places, we shall construct structures from a ring on
which that ring then operates.

In any case, it is an important principle that one structure can operate
on another one. In this book, we shall mostly interpret such operations
as multiplications, but in other contexts they might arise as translations,
time shifts (as an operation by the (positive) real numbers or integers), or
whatever. As we shall see below, there are many examples where not a ring,
but only a monoid or group operates.

We now come to an important special class of rings.

Definition 2.1.19 A commutative ring R with identity 1 �= 0 for which
R \ {0} also is a group under multiplication, i.e., for which every g �= 0
possesses a multiplicative inverse g−1 with

gg−1 = 1, (2.1.129)

is called a field.
A unitary module over a field is called a vector space.

We have already seen an example of a vector space, Euclidean space R
d ,

see (2.1.108) and (2.1.109). Euclidean space R
d

4In Definition 2.1.16, we have explained what a subgroup is, and you should then easily
be able to define a subring, if you do not already know that concept.
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Anexample of afield isZ2 = ({0, 1}, +, ·) with the operations as definedField
Z2 = ({0, 1}, +, ·) above.5 We then have the vector space Z

n
2 over the field Z2. That vector

space consists of all binary strings of length n, like (1011) (n = 4) with
componentwise additionmodulo 2. For instance, (1100)+(0110) = (1010)
in Z

4
2. The operation of the field Z2 on this vector space is given byVector space Z

n
2

0 · a = a, 1 · a = a for all a ∈ Z
n
2. And we have the simple rule that

a + b = 0 ∈ Z
n
2 iff a = b.

More generally, Zq with the above ring structure is a field if and only if
q is a prime number. When q is not prime, there exist elements without

Field (Zp,+, ·) for
prime p

multiplicative inverses, namely the divisors of q . For example, in Z4, we
have 2 · 2 = 0 mod 4.

The topic of rings and fields and the relations between themwill be taken
up in detail in Sect. 5.4.1.

Finally,

Definition 2.1.20 An algebra A is a module over a commutative ring R
that possesses a bilinear multiplication, that is,

(r1a1 + r2a2)b = r1a1b + r2a2b for all a1, a2, b ∈ A, r1, r2 ∈ R

a(r1b1 + r2b2) = r1ab1 + r2ab2 for all a, b1, b2 ∈ A, r1, r2 ∈ R

(2.1.130)

(Here, for instance, a1b denotes the multiplication of the two elements of
the algebra, whereas r1a is the multiplication of the element a of A by the
element r1 of the ring R.)

Of course, every ring R is not only a module, but also an algebra over
itself. In that case, multiplication in the algebra and multiplication by an
element of the ring is the same.

Less trivial, but typical examples are algebras of functions. As those
will play an important role later on, let us systematically go through the
construction. When U is a set, then the functions from U to a monoid,
group, or ring constitute a monoid, group, or ring themselves. (This will
be discussed from a more general perspective in Sect. 2.1.7.) For instance,
when M is a monoid, and f : U → M, g : U → M , then for x ∈ U , we
can simply put

( f g)(x) := f (x)g(x), (2.1.131)

as the latter multiplication takes place in the monoid M . Moreover, we can
multiply such a function f : U → M by an element m of M ,

(m f )(x) := m f (x). (2.1.132)

5Thus, we have equipped the group Z2 now with an additional operation, multiplication,
but still denote it by the same symbol. We shall, in fact, often adopt the practice of not
changing the name of an object whenwe introduce some additional structure or operation
on it. That structure or operation will then henceforth be implicitly understood. This is
a convenient, but somewhat sloppy practice. Probably, you will not need to worry about
it, but as a mathematician, I should at least point this out.

http://dx.doi.org/10.1007/978-3-319-20436-9_5
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From this, we see that the functions onU with values in a commutative ring
form an algebra. Whether the set U also possesses an algebraic structure is
irrelevant here.

Here is another construction of an algebra. Let γ : R → S be a homo-
morphism of commutative rings. Then S becomes an algebra over R. We
have the addition and multiplication in S, and (r, s) �→ γ (r)s yields the
multiplication by elements of R, that is, the module structure for S. The
multiplication in S then clearly satisfies the bilinearity laws (2.1.130).

Let us also systematically go through the example that you probably
know best: The positive integers N = {1, 2, 3, . . . } together with addi- N

tion do not form a monoid, as the neutral element is missing. This is
easily remedied by including 0 and considering the nonnegative integers
N0 = {0, 1, 2, . . . } which form an additive monoid. This monoid is not Monoid N0
a group because its elements, except 0, do not have inverses. This is fixed
by enlarging it to the additive group of integers Z. If we also include the Ring Z

operation of multiplication of integers, then Z becomes a ring. This ring
is not a field, because apart from 1 and −1, its non-zero elements do not
possess multiplicative inverses. Again, we can enlarge it, this time to obtain
the field Q of rational numbers. (Q can be further enlarged to the fields Field Q

of the real, the complex, or the p-adic numbers, but this is not our present
concern.) All this may appear rather easy in the light of the concepts that we
have developed. We should, however, remember that each such extension
was an important step in the history of mathematics, and that it provided a
crucial motivation for the corresponding abstract concept.

Definition 2.1.21 A (left) ideal I in a monoid M is a subset of M with

mi ∈ I for all i ∈ I, m ∈ M. (2.1.133)

An ideal in a commutative ring R with identity is a nonempty subset that
forms a subgroup of R as an abelian group and satisfies the analogue of
(2.1.133) w.r.t. multiplication.

An ideal in a commutative ring is then also a module over that ring in the
sense of Definition 2.1.18.

With this concept of an ideal, one can characterize the groups G as
precisely those monoids for which ∅ and G itself are the only ideals. Anal-
ogously, a commutative ring R with identity is a field if its only left ideals
are {0} and R itself. This will be of fundamental importance in Sect. 5.4
below.

When M is the additive monoid N0 of nonnegative integers, then its
ideals are ∅ and all sets {n ≥ N } for some fixed N ∈ N0. The set of left
ideals of the monoid M2 is�M2 := {∅, {0}, {0, 1}}. We note that this is the

Ideals of monoids M2
and Mqsame as the above Heyting algebra O(X) for the 2-element set X = {0, 1}.

More generally, for Mq , the ideals are ∅, {0}, Mq and all subsets of the form
{0, m, 2m, . . . , (n − 1)m} when nm = q for n, m > 1, that is, nontrivial
divisors of q . Thus, when q is a prime number, Mq has only the three trivial
ideals, but when q is not prime, there are more. These then are also the
ideals of the ring (Zq , +, ·)

http://dx.doi.org/10.1007/978-3-319-20436-9_5
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The ideals of the ring of integers Z are of the form {nm : n ∈ Z} forIdeals of ring Z

fixed m ∈ Z. (Note that while for the monoid N0, we considered ideals
with respect to the operation of addition, for the ring Z, we consider ideals
with respect to multiplication.)

monoid = possibility
to compose elements
(addition or multiplica-
tion)
(N0,+) or (Z, ·)

⇐====== group = monoid
with inverses
(Z, +) or (Q+, ·)

ring = combination of
a group (addition) and
a monoid (multiplica-
tion), related by distrib-
utive law
(Z, +, ·)

⇐====== field = ring whose
addition is commu-
tative and whose
multiplication has
inverses
(Q, +, ·)

module = commutative
group with multiplication
by a ring
(Z × Z, +) over (Z, +, ·)
special case: ideal = mod-
ule that is a subset of the
ring
(2Z, +)

⇐====== vector space = uni-
tary module over a
field
(Q × Q,+)

algebra = module with multiplication
over a commutative ring
functions f : U → Z, for a set U

The various algebraic structures and the relations between them, with examples.
The arrow is an implication, in the sense that, e.g., every group is a monoid;
structures build upon those above them.

So far, we have looked at the prototypes of abelian groups, Zq and
Z. In many respects, however, the most important group is the symmet-
ric group Sn , the group of permutations of n elements, with the com-Symmetric group Sn

position of permutations as the group operation. We think of these ele-
ments as ordered in the form (1, . . . n). A permutation of them is then
written as (i1i2 . . . in), meaning that the element ik ∈ {1, 2. . . . , n} is
put in the place of k, for k = 1, 2, . . . , n. Of course, the i j all have to
be different, so as to exhaust the set {1, 2, . . . , n}. The original ordering
(12 . . . n) then stands for the identity permutation that leaves every ele-
ment unchanged. The symmetric group S2 consists of the two elements
(12) and (21) and is therefore isomorphic to Z2 (we shall explain the
term “isomorphic” only below in Definition 2.3.2, but you will probably
readily understand its meaning in the present example). The group S3S3
contains 6 elements, (123), (213), (132), (321), (231), (312). (123) is the
neutral element. (213), (132) and (321) simply exchange two elements;
for instance, (213) exchanges the first and the second element and leaves
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the third one in place. Each of these three permutations is its own inverse.
In contrast, (231) and (312) permute the three elements cyclically, and
they are inverses of each other, i.e., (231) ◦ (312) = (123). Moreover,
(231) = (132) ◦ (213), that is, we first exchange the first two elements
(note the reversal of order in our notation; here, the permutation (213) is
carried out first, and then the permutation (132) is applied), and then the
last two. After the first exchange, 1 is in the middle position, and the second
exchange then moves it into the last position. Also, (231) = (213) ◦ (321),
whereas (213) ◦ (132) = (312). In particular, S3 is not abelian, since
(132) ◦ (213) �= (213) ◦ (132).

In order to simplify the notation, one can leave out those elements that
are not affected by the permutation. Thus, instead of (132), one simply
writes (32) for the exchange of the second and the third element. With this
notation, for example, (21)◦ (32) = (312). Again, note the reverse order of
the operation: We first exchange the last two elements, which brings 3 into
the second position, and we then exchange the first two positions, which
then brings 3 from the second into the first position.

We can also already make some general observations. The groupSm is
contained in Sn for m < n—just take m of the n elements and permute Sn
them and leave the remaining n − m elements alone. Sm is a subgroup of
Sn in the terminology of Definition 2.1.16 or 2.3.5 below. This means that
the inclusion that we have described defines i : Sm → Sn such that for
all g, h ∈ Sm , we have

i(g ◦ h) = i(g) ◦ i(h) (2.1.134)

where the first ◦ is the multiplication in Sm and the second one that in
Sn . More generally, a map i : G1 → G2 between groups or monoids
satisfying (2.1.134) is called group or monoid homomorphism. Thus, a
homomorphism is a map compatible with the group or monoid operations.
Analogously, one may then define homomorphisms of rings or fields.

Returning to the example of the symmetric groupsSn , we see that, since
S3 is not abelian, this implies that neither are the groups Sn for n > 3.

Also, when G is a group with finitely many elements, or a finite group
for short, then left multiplication lg by any g ∈ G induces a permutation of
the elements of G. For this, we simply observe that lg : G → G is injective,
because if gh = gk, then also h = g−1(gh) = g−1(gk) = k. That is, lg
maps different elements to different elements, and it therefore permutes the
elements of g. Likewise, the assignment g → lg is injective, in the sense
that if g1 �= g2, then also lg1 �= lg2 , as for instance lg1e = g1 �= g2 = lg2e.

A group G defines a graph. More precisely, take a group G with a set S
of generators that is closed under inversion, that is, whenever g ∈ S, then
also g−1 ∈ S (one might simply start with any set S′ of generators and
enlarge S′ to S by all the inverses of its elements). The so-called Cayley
graph of the pair (G, S) then has as vertex set the elements of G, and there
is an edge between h, k ∈ G iff there is some g ∈ S with gh = k. Since
then also g−1 by our condition on S and g−1k = h, this relation between h
and k is symmetric, and the graph is therefore undirected. For instance, for
the symmetric group S3, we can take the generators (21), (32), (31) each
of which is its own inverse. The resulting Cayley graph is then Cayley graph of S3
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(31) (2.1.135)

In this graph, in order to avoid clutter, we have labelled only some of the
edges, and for the edges, we have used the abbreviated notation explained
above. We also see that this graph is bipartite, that is, there are two classes
of nodes, {(123), (231), (312)} and {(132), (321), (213)}with the property
that there are only edges between nodes from different classes. In fact, the
second class consists of permutations of two elements, in our shorthand
notation {(32), (31), (21)}. Such permutations of two elements are called
transpositions. The elements of the other class are products of an even
number of such transpositions. In fact, each symmetric groupSn contains
the two subclasses of elements that can be written as products of an even
or of an odd number of transpositions. (We can also formulate this slightly
more abstractly and define the parity or sign sgn(g) of an element g ofSn to
be 1 (even) if it can be expressed as even number, and −1 (odd) if it can be
expressed as an odd number of transpositions. Of course, we then have to
verify that the parity is well defined, in the sense that there is no permutation
that can be represented by both an even and an odd number of transpositions.
The essential fact underlying this is that the product of two transpositions—
which is even—can never be a single transposition itself—which would be
odd. This, however, is readily checked. Also, sgn(gh) = sgn(g)sgn(h). In
more abstract terminology, this means that sgn is a group homomorphism
fromSn to the group {1,−1} with multiplication as the group law. In turn,
the assignment 1 → 0, −1 → 1 is a homomorphism of this group to the
group Z2 with addition as the group law.)

The first subclass, the even products, actually forms a subgroup of Sn .
This group is called the alternating group An .

In order to show the bipartiteness of this Cayley graph, we rearrange the
positions of the nodes to get the following figure.Cayley graph of S3
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In fact, we have here a complete bipartite graph, meaning that every node in
one class is connected with every node in the other class. Let us emphasize
that (2.1.136) depicts the samegraph as (2.1.135).Rearranging the positions
of the nodes can create visualizations that look very different although they
represent the same structure.

Here is another observation. The permutation (31) can also be expressed
as the product (31) = (21)(32)(21) of three transpositions of adjacent
elements. Again, this is a general phenomenon. Any element ofSn can be
written as a product of transpositions of adjacent elements. This product
representation is not unique (for instance, also (31) = (32)(21)(32)), but
the parity (odd vs. even) is invariant. In particular, we can choose the set
of transpositions of adjacent elements as a set of generators of Sn . This
would change the above Cayley graph (2.1.135) to the following one Cayley graph of S3
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(2.1.137)

From this graph, for instance, we can directly read off the identity (21)(32)
(21) = (32)(21)(32).

Of course, we could also take S = G\{e}, that is, let our set of generators
consist of all nontrivial elements of G. The resulting Cayley graph would
then be a complete graph, that is, a graph where each element is connected
with every other element. In fact, the same is true for any finite group G,
i.e., when we take all nontrivial elements of G as generators, the resulting
Cayley graph is complete.

The symmetric groups will appear again in Sect. 3.4.4 below. In fact,
there we shall see a converse to the preceding observation that we can
obtain complete graphs as Cayley graphs of the symmetric (or any other)
group: The automorphism group of a complete graph is a symmetric group.

Given such algebraic structures, you can of course combine them to form
other such structures. For instance, we can form the product G H of two
groups G H . The elements of G H are pairs (g, h), g ∈ G, h ∈ H , and the
group operation is likewise assembled from those in G and H ,

(g1, h1)(g2, h2) := (g1g2, h1h2). (2.1.138)

Subsequently, we shall utilize another important concept from group
theory, that of a normal subgroup. To prepare for this concept, let us con-
sider a group G with a subgroup N . We then consider the set G/N of the
equivalence classes for the equivalence relation

g ∼ h iff there exists some n ∈ N with h = ng. (2.1.139)

http://dx.doi.org/10.1007/978-3-319-20436-9_3
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(2.1.139) defines an equivalence relation, indeed, because N is a subgroup,
and not just a subset of G. For instance, for the transitivity of (2.1.139), let
g ∼ h and h ∼ k, that is, there exist n, m ∈ N with h = ng, k = mh. But
then k = mng and since mn ∈ N because N is a group, we obtain g ∼ k.
Nevertheless, it seems that this leads us outside the realm of groups, as so
far, G/N is only a set, although we had started with groups G and N . In
other words, we are led to the question of whether G/N can also be turned
into a group. It turns out, however, that we need to impose an additional
condition upon N for that purpose.

Definition 2.1.22 A subgroup N of a group G is called a normal subgroup
if for every g ∈ G

g−1Ng = N . (2.1.140)

Lemma 2.1.8 If N is a normal subgroup of G, then the quotient G/N can
be equipped with a group structure.

Proof We need to verify that the group multiplication in G passes to the
quotient G/N in the sense that we can carry it out unambiguously on
equivalence classes. That is, when [g] denotes the equivalence class of
g ∈ G, we need to verify that

[g][h] := [gh] (2.1.141)

is well defined in the sense that it does not depend on the choice of elements
in the equivalence classes. That means that when g′ ∼ g, h′ ∼ h, then we
want

g′h′ ∼ gh, (2.1.142)

that is,
[g′h′] = [gh]. (2.1.143)

Now, when g′ ∼ g, h′ ∼ h, there exist m, n ∈ N with g′ = mg, h′ = nh.
Then

g′h′ = mgnh = mgng−1gh. (2.1.144)

Now since gNg−1 = N as N is a normal subgroup, the element gng−1 is
again an element of N . Calling this element n′, we obtain from (2.1.144)

g′h′ = mn′gh, (2.1.145)

and since mn′ ∈ N as N is a group, we conclude that (2.1.143) holds. �

Putting it differently, the Lemma says that we have a group homomorphism

ι : G → G/N , g → [g]. (2.1.146)

Let us consider some examples of normal subgroups.

• Any subgroup of an abelian group is normal, since g−1ng = n in that
case.



2.1 Objects, Relations, and Operations 45

• When q = mn is not prime, that is, m, n, q are all integers > 1, then Zm

and Zn are subgroups of Zq (Zm becomes the subgroup with elements
0, m, 2m, . . . , (n − 1)m of Zq , and analogously for Zn), and since Zq is
abelian, they are normal subgroups.

Normal subgroups of
Zq• The alternating group An is a normal subgroup of the symmetric group

Alternating group An
Sn , because the parity of g−1ng is the same as the parity of n. In fact,
since we have observed above that sgn induces a group homomorphism
Sn → Z2, this also follows from the next example.

• If ρ : H → G is a group homomorphism, then ker(ρ) := {k ∈ H :
ρ(k) = e ∈ G} is a normal subgroup. In fact, if k ∈ ker ρ, then for any
h ∈ H , we have ρ(h−1kh) = ρ(h)−1ρ(k)ρ(h) = ρ(h)−1eρ(h) = e,
and hence also ρ(h)−1ρ(k)ρ(h) ∈ ker ρ.

Actually, the last example is not really an example, but a general fact. Every
normal subgroup N of a group G is the kernel of a homomorphism, the
homomorphism ι : G → G/N of (2.1.146).

Definition 2.1.23 A group G is called simple if it is nontrivial and its only
normal subgroups are the trivial group and G itself.

This is a very important concept, because simple groups are the basic
building blocks of group theory. A group G that is not simple possesses
a nontrivial normal subgroup N and therefore can be broken up into two
smaller groups, the normal subgroup N and the quotient group G/N . When
one or both of those are still not simple, the process can be repeated. When
G is finite, the process then has to terminate after finitely many steps, and
one has assembled the building blocks of G (by the Jordan-Hölder theorem,
which we do not prove here, they are, in fact, unique). Thus, when one has
a list of the simple finite groups, one can then construct all finite groups,
and the subject of finite groups is mathematically completely understood.
The complete classification of finite simple groups, however, turned out to
be quite difficult and was only successfully completed around 2004.

The most important examples of finite simple groups are the cyclic
groups Zp for a prime p (as we have just seen in the examples of nor-
mal subgroups, Zn is not simple when n is not prime) and the alternating
groupsAn for n ≥ 5 (the latter fact is not completely trivial). There are such
infinite series of finite simple groups, and 26 exceptional groups, among
which the so-called monster group is the most complex. A recent textbook
is [118]. The approach to the classification of finite groups as just described
embodies an important principle of mathematical research. Whenever one
wants to understand some class of mathematical structures, one first needs
to identify the elementary building blocks that are no longer decomposable
by some basic operation (here, taking the quotient by a normal subgroup),
and then one has to classify those building blocks. All the structures in
the class under consideration can then be composed out of those building
blocks.
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2.1.7 Parametrizing Constructions

We have defined or characterized algebraic structures like Boolean and
Heyting algebras, monoids, groups, rings and fields in terms of operations.
There were nullary operations—the distinguished elements 0, 1—, unary
operations—the pseudo-complement v → ¬v or the inverse g → g−1—
and binary operations—(v, w) → v ∧ w or (g, h) → gh. Let S be such a
structure, and let X be a set. Then, typically, the set SX of maps

φ : X → S (2.1.147)

again carries the same type of structure. For instance, when S is a group,
SX is also a group, with group law

(φ, ψ) → φψ

with φψ(x) := φ(x)ψ(x) (2.1.148)

where on the right hand side, we have the group operation of S applied to
the elements φ(x) and ψ(x). We may consider SX as a family of groups
parametrized by the elements of X , but the preceding construction tells us
that this family is a group in its own right. So, if we want, we can iterate
the construction and consider maps from some other set into SX . Again,
the result will be a group.

The same works for monoids or rings. It does not work, however, for
fields. That is, the maps from a set X into a field F do not constitute a
field; they only yield a ring (except for the trivial case when X has only one
element). The reason is the exceptional role of the distinguished element
0 as being the only one without a multiplicative inverse. In F X any φ that
maps some, but not all elements of X to 0 then fails to have a multiplicative
inverse, without being the neutral element for addition in F X—the latter
one being the map that maps all x ∈ X to 0.

When we have a relation like in (2.1.32), F : S × S → {0, 1}, we have
two immediate possibilities for defining such a relation on SX ,

F(φ, ψ) := sup
x∈X

F(φ(x), ψ(x)) (2.1.149)

or
F(φ, ψ) := inf

x∈X
F(φ(x), ψ(x)) (2.1.150)

In the first case, we have F(φ, ψ) = 1 if there exists some x ∈ X with
F(φ(x), ψ(x)) = 1. In the second case, this would have to hold for all
x ∈ X .

We can do the same when the relation takes values in R or R
+, provided

the supremum or infimum stays finite.
Just as an aside, to put this into the perspective of analysis: If X carries

a measure μ (see Sect. 4.4), we can also average this construction w.r.t. μ.
For instance, when the relation is a metric d(., .), and if 1 ≤ p < ∞, we
obtain a metric on SX via

dp(φ, ψ) := (

∫

X
d p(φ(x), ψ(x))μ(dx))1/p (2.1.151)

where d p(y, z) means d(y, z)p; again, we need to assume that this expres-
sion is finite, of course. The case p = 2 is themost important one in practice.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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The restriction p ≥ 1 is needed for the triangle inequality to hold for the
metric dp on SX . dp is also called the L p-metric on SX . The analogue of
(2.1.149) is

d∞(φ, ψ) := ess supx∈X d(φ(x), ψ(x)), (2.1.152)

where ess sup stands for the essential supremum (i.e., ess supx∈X f (x) :=
inf{a ∈ R ∪ {∞} : f (x) ≤ a for all x ∈ X \ A} for some A ⊂ X with
μ(A) = 0, a so-called nullset, see Sect. 4.4). (For details, see e.g. [59]).
Of course, when X is, for instance, finite, we may replace the essential
supremum by the ordinary supremum.

2.1.8 DiscreteVersus Continuous

Besides the distinction between geometry and algebra, another important
distinction in mathematics is that between discrete and continuous struc-
tures. In abstract terms, this is the difference between counting and mea-
suring. In its basic form, counting utilizes the positive integers N, that is,
the possibility of enumeration. Measuring depends on the real numbers R,
and the ancient Greeks have already discovered that measuring cannot be
reduced to counting, because of the existence of irrational numbers, that is,
numbers that cannot be expressed as a ratio of two integers. Real numbers
can be expressed as sequences of integers, in fact, even as binary strings,
but Cantor’s diagonal argument displayed in Sect. 2.1.3 showed us that the
reals cannot be enumerated by the integers.

Continuous structures constitute the realmofanalysis. In analysis, funda-
mental concepts are limits and convergence, completion, and compactness.

The completely new aspect that analysis offers is that relations need
not hold exactly, but only approximatively, and that this can be quantified
in the sense that the approximation error can be controlled or estimated.
For that purpose, analysis is based on continuous structures which enable
us to define perturbations and variations. While such structures constitute
the basis of analysis, the methods can then even be applied to discrete
settings, as in numerical analysis, where continuous structures are utilized
conceptually to interpolate between discrete values, and to prescribe the
resolution of a discrete scheme by comparison with an idealized continuous
one.

Returning to the above example of a pseudometric F , let us assume that
there is also some metric d given on S. Then F + εd, for any positive
real number ε, yields a perturbation of the pseudometric F that is positive
definite, i.e., a metric on S. We may apply this even to the trivial case where
F ≡ 0. In that case, the above quotient S̄ obtained by identifying points
s, s′ with F(s, s′) = 0 consists of one single point, whereas the quotient by
F +εd for any ε > 0 is the entire set S. Therefore, the quotient construction
in this case does not depend continuously on ε. In a certain sense, then the
algebraic quotient construction and the analytic limit construction ε → 0
are not compatible with each other.

Somemathematical concepts connect two of the above domains, geome-
try, algebra, and analysis. The concept of a Lie group, for instance, connects
all three of them, but this will not be treated in the present book.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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2.2 Axiomatic Set Theory

This section will not be referred to in the sequel, and it can therefore be
skipped. Its purpose is to provide a formal substrate for some notions that
have been employed in the preceding in an intuitive sense. More precisely,
we shall briefly describe the Zermelo-Frankel version of axiomatic set the-
ory that started with [123]. There are many textbooks on axiomatic set
theory, for instance [109].

The basic notions of a set and of membership in a set (expressed by the
symbol ∈) are not defined in axiomatic set theory, but they are assumed
to exhibit certain properties that are stipulated in the axioms. Such axioms
should be consistent (in the sense that it is not possible to derive from them
both a statement and its negation), plausible, and rich enough to derive for
instance the basic results of Cantor’s theory of sets.

We now list 10 axioms of set theory that emerged from the work of
Zermelo, Frankel, Skolem, von Neumann and others.

1. Axiom of extension: Let A, B be sets. If for all x , x ∈ A if and only if
x ∈ B, then A = B.
Thus, sets with the same elements are equal. This axiom says that a set
is determined by its elements.

2. Axiom of the empty set: There exists a set ∅ with the property that for
all x , x /∈ ∅.
Here, x /∈ abbreviates “it is false that x ∈”. The empty set thus is simply
the set without elements.

3. Axiom of separation: Let A be a set. Then for every definite condition
P(x), there exists a set B such that for all x , x ∈ B if and only if x
satisfies P(x).
Here, a definite condition is built from the so-called atomic formulas
x ∈ y and x = y (where x and y are variables) through finitely many
applications to formulas P, Q of connectives (if P, then Q; P iff Q; P
and Q; P or Q; not P) and quantifiers (for all x, P holds (abbreviated
as P(x)); for some x, Q holds). In a condition P(x), the variable x
must be free, that is, not under the scope of a quantifier. In contrast, for
a condition as in the axiom, B must not be free, that is, it has be bound
by a quantifier. The concepts of propositional and predicate logic that
are employed will be taken up in Sect. 9.3. We have discussed this as a
principle for specifying subsets of a given set already in Sect. 2.1.3.

4. Axiom of pairing: If A, B are sets, there exists a set (A, B) that has
A and B as its only elements.
(A, B) is called the unordered pair of A and B. This and the next
two axioms ensure that the application of standard operations to sets
produces sets again.

5. Axiom of union: Let A be a set. Then there exists a set C with the
property that x ∈ C iff x ∈ a for some a ∈ A.
This means that the union of all the sets that are elements of A is again
a set. We also write

⋃

A for this set. A more explicit notation would
be

⋃

a∈A a.

http://dx.doi.org/10.1007/978-3-319-20436-9_9
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6. Axiom of power set: Let A be a set. Then there exists a set P(A),
called the power set of A, with the property that B ∈ P(A) whenever
for all x , x ∈ B implies x ∈ A.
The power set P(A) thus contains all the subsets of A as its elements.
We have discussed the power set already in Sect. 2.1.3 where we have
connected the axioms of separation and power set.

7. Axiom of infinity: There exists a set N with the properties that ∅ ∈ N
and whenever x ∈ N , then also x ∪ {x} ∈ N .
Here, {x} is the set having x as its only member, and x ∪{x}means that
we add to the set x x itself as a further member. The axiom of infinity
can be seen as an abstract version of Peano’s principle of induction that
generates the natural numbers (positive integers). We consider x ∪ {x}
as the successor of x . Such a set N might be written in an iterative
fashion as

N = {∅, ∅ ∪ {∅},∅ ∪ {∅} ∪ {∅ ∪ {∅}}, . . . }. (2.2.153)

In fact, in place of ∅, we could have started with an arbitrary element
x . Therefore, more succinctly, we introduce a symbol 1 and write 1′ :=
1 ∪ {1}. Then we obtain such a set N as

N = {1, 1′, 1′′, 1′′′, . . . }. (2.2.154)

8. Axiom of choice: Let A be a set whose elements are nonempty sets.
Then there exists a mapping f : A → ⋃

A with f (a) ∈ a for all
a ∈ A.
Thus, for every a ∈ A, we can choose some element f (a) of a.

9. Axiom of replacement: Let A be a set and f a mapping defined on
A. Then there exists a set B whose elements are precisely the f (x) for
x ∈ A.
Thus, the image of a set under a mapping is again a set. As an applica-
tion, the map 1 �→ N from (2.2.154) produces the set

{N , N ′, N ′′, . . . }. (2.2.155)

10. Axiom of restriction: Every set A contains an element a with A ∩a =
∅.
Thus, A and its element a have no element in common. This last axiom
is only introduced in order to rule out certain undesired models of the
first nine axioms. More precisely, it serves to rule out infinite descend-
ing chains, that is, . . . an ∈ an−1 ∈ · · · ∈ a0. In particular, according
to this axiom, we must not have a ∈ a.

The preceding axioms are not all independent of each other. In fact, several
of them can be left out without loss of scope, as they can be derived from the
remaining ones. For instance, the axiom of the empty set can be omitted,
and so can the axiom of separation which can be deduced from the axiom
of replacement. Also, from the latter together with the axiom of power set
one can deduce the axiom of pairing. Thus, the list of axioms reflects the
historical development rather than their logical status. Also, some people
do not accept the axiom of choice.

There is an alternative systemof axioms, named afterBernays andGödel;
in some treatises, von Neumann is also included.
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In the sequel, we shall assume that we have some fixed universe U of
sets that satisfies the above axioms. Any set to be mentioned in the sequel
will be assumed to be a member of U .

2.3 Categories andMorphisms

The concepts of category and morphism unify some (but not all) of the
preceding.

Definition 2.3.1 A category C consists of objects A, B, C, . . . and arrows
or morphisms

f : A → B (2.3.1)

between objects, called the domain A = dom( f ) and codomain B =
cod( f ) of f . Arrows can be composed, that is, given f : A → B and
g : B → C , there is an arrow

g ◦ f : A → C. (2.3.2)

(The requirement for the composition is solely that cod( f ) = dom(g).)
This composition is associative, that is,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f (2.3.3)

for f : A → B, g : B → C, h : C → D.
For each object A, we have the identity arrow (“doing nothing”)

1A : A → A (2.3.4)

which satisfies
f ◦ 1A = f = 1B ◦ f (2.3.5)

for all f : A → B.

The associativity condition (2.3.3) can also be expressed by saying that
whichever sequence of arrowswe follow from A to D in the diagram below,
the result is the same.

A CB D
f g h

g ◦ f

h ◦ g

(2.3.6)

We can either follow the red or the blue sequence or the middle one,
h ◦ g ◦ f .

Somewhat sloppily, we shall occasionally write C ∈ C to say that C is
an object of the category C.

One might object here that Definition 2.3.1 is not really a mathematical
definition because it is left undefined what an “object” or a “morphism” is
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or should be. Whenever we speak of a category, we therefore first need to
specify what its objects and morphisms are. For the abstract language of
categories, however, it is irrelevant what the objects and morphisms are.
They only need to satisfy the rules laid down in Definition 2.3.1.

The idea is that the objects of a category share some kind of structure,
and that the morphisms then have to preserve that structure. A category
thus consists of objects with structure and directed relations between them.
A very useful aspect is that these relations can be considered as operations.

Taking objects as vertices and arrows as edges, we can thus consider a
category as a directed graph, with the property that each vertex stands in
relation to itself, that is, has an edge from itself to itself. This graph might
have multiple edges, as there could be more than one morphism between
two objects.

In this sense, the arrows of a category are viewed as relations. One can
also view them as operations, as mappings between the objects. An arrow
from A to B thus maps A to B.

Viewing morphisms as operations may remind you of the notion of a
group, but in contrast to what was required in the Definition 2.1.13 of a
group for the left translation lg by a group element, for the morphisms of
the category we do not require that they can be inverted, nor that we can
compose any two of them. Nevertheless, we have

Lemma 2.3.1 A category with a single object is a monoid, and conversely.

Proof Let M be amonoid, as inDefinition 2.1.12.We consider the elements
g of M as operations, h �→ gh, that is, as arrows

lg : M → M. (2.3.7)

Since they have to satisfy the associativity law, they define the morphisms
of the category with the single object M . The neutral element e yields the
identity morphism 1M .

Conversely, the arrows of a category with a single object M can be
considered as the left translations lg of M , hence as elements of a monoid,
as they satisfy the associativity law. The identity arrow 1M yields the neutral
element e of that monoid. �

Categories can be constructed and considered at different levels of
abstraction, as we shall explore in the following. As a brief guide to things
that will be explained in more detail shortly, let us point out the following
principle:On one hand, the structures thatwe have considered in the preced-
ing constitute categories. A set, a graph or digraph, a poset, lattice, Heyting
or Boolean algebra, a monoid, group, ring, or field are all categories, with
the objects being the elements of that structure, and the morphisms being
given by the relations or operationswithin that structure.6 On the other hand,
however, at the next level, the ensemble of structures of a given type also
constitute a category. Thuswe shall have the category of sets, the category of

6Alternatively, as noted above, for an algebraic structure like a group, we could consider
that structure as the single object, and its elements as the morphisms of that object.
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posets, those of graphs and digraphs, of metric spaces, of monoids, groups,
rings, or fields, etc. The morphisms then are structure preserving mappings
between two such structures, e.g., between two groups. Thus, within the
context of the corresponding category, we can consider all structures of a
given type simultaneously and consider the structure preserving relations
between them. We can then move to still higher levels of abstraction and
consider categories of categories of categories and figure out what the mor-
phisms in that case should be. Or we can consider categories of morphisms.
And so on. This will be explored not only in the remainder of this section,
but also throughout much of this book.

So, let us go into more detail now and develop the preceding abstract
principle. Every set is a category, with the elements as the objects and
the only arrows being the identity arrows of the elements. Thus, a set is a
category with a most uninteresting structure, that is, there are no structural
relations between different objects. In fact, the empty set ∅ also constitutes
a category. This category has no objects and no arrows. This may strike you
as the utmost triviality, but it turns out that for some formal constructions,
it is quite useful to include this particular category.

However, reversely, we also have the category of sets, denoted by Sets,
and also the category of finite sets. The objects of these categories are
now sets, one of them being again the empty set ∅, and the morphisms are
mappings

f : S1 → S2 (2.3.8)

between sets. In view of our above discussion of distinctions, this leads us
to the concept of isomorphism:

Definition 2.3.2 Two objects A1, A2 of a category are isomorphic if there
exist morphisms f12 : A1 → A2, f21 : A2 → A1 with

f21 ◦ f12 = 1A1, f12 ◦ f21 = 1A2 . (2.3.9)

In this case, the morphisms f12, f21 are called isomorphisms.
An automorphism of an object A is an isomorphism f : A → A.

Of course, 1A is an automorphism of A, but there may also exist others.
Often, an automorphism is considered as a symmetry of A.

Since an automorphism can be inverted, the automorphisms of an object
A of a category form a group, the automorphism group of A. In fact, this is
how the group concept historically emerged. But we may then turn things
around and consider a group as an abstract object that might be represented
as the group of automorphisms of some object in a category. We’ll return
to that issue.

(2.3.9) means that isomorphisms are invertible morphisms. Isomorphic
objects are then characterized by having the same morphisms, as follows
from the associativity law. That is, for example when f12 : A1 → A2 is an
isomorphism, then a morphism g : A2 → B corresponds to the morphism
g ◦ f12 : A1 → B, and similarly in other directions. In particular, 1A2 then
corresponds to f12.

There may, however, exist more than one isomorphism between isomor-
phic objects A1, A2. In that case, the identification of the morphisms of
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these two objects is not canonical as it depends on the choice of such an
isomorphism. In fact, we can precompose an isomorphism f12 : A1 → A2
with any automorphism f1 : A1 → A1 or postcompose it with any auto-
morphism f2 : A2 → A2 to obtain another isomorphism. Conversely,
whenever f12, g12 : A1 → A2 are two isomorphisms, then g−1

12 ◦ f12 is
an automorphism of A1, and g12 ◦ f −1

12 is an automorphism of A2. Thus,
the identification of two isomorphic objects is only determined up to the
automorphisms of either of them. In fact, the automorphism groups of two
isomorphic objects are themselves isomorphic. This is an instantiation of
the fact that isomorphic objects have the same relational structurewith other
objects, in this case with themselves. Again, however, the automorphism
groups may in turn possess certain symmetries, making this identification
noncanonical again.

As observed, since automorphisms can be inverted, the automorphisms
of an object A of a category form a group. In that sense, the concept of
a morphism is a generalization of that of an automorphism in two ways.
Firstly, it need not be invertible, and secondly, it need not map an object
A to itself, but can map it to another object B of the same category. Mor-
phisms can be composed. In distinction to a monoid or group where any
two elements can be freely composed, however, here we have the restric-
tion that the domain of the second morphism has to contain the codomain
of the first one in order that they can be composed. Since in a monoid or
group, all elements have the monoid or group itself as their domain and
codomain, there is no such restriction for the composition of monoid or
group elements. Thus, we had observed in Lemma 2.3.1 that the categories
with a single object are precisely the monoids.

In any case, the most fundamental of the monoid or group laws, associa-
tivity, has to be preserved for the composition of morphisms. In a certain
sense, associativity is a higher law, as it is about the composition of com-
positions. It stipulates that such a composition of compositions does not
depend on the order in which we compose the compositions. This has to
be distinguished from the property of commutativity which requires that a
composition of group elements be independent of the order of these ele-
ments. Commutativity does not hold for a general monoid or group. Com-
mutative monoids or groups constitute a special subclass of all monoids
or groups, with many additional properties that are not shared by other
monoids or groups in general.

Thus, a category can be considered as a directed graph, as some kind of
generalized monoid, or as a set with some additional structure of directed
relations between its elements.

Again, within a category, we cannot distinguish between isomorphic
objects. We may thus wish to identify them, but need to keep in mind that
such an identification need not be canonical as it depends on the choice
of an isomorphism, as explained above. The important point here is that
the objects of a category are determined only up to isomorphism. The
view of category is that an object B of a category C is characterized by its
relationswith other objects, that is, by the sets HomC(., B) andHomC(B, .)

of morphisms f : A → B and g : B → C , respectively, and as we
have seen, for isomorphic objects B1 and B2, the corresponding sets can
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be identified, although not necessarily canonically. Thus, in a category,
isomorphic objects cannot be distinguished by their relations with other
objects.

In this sense, the category of finite sets contains just one single object for
each n ∈ N∪{0}, the setwith n elements, because any two setswith the same
number of elements are isomorphic within the category of sets. Thus, the
structure of the category of sets consists essentially in the cardinality.Again,
this is notwithstanding the fact that the isomorphisms between sets of the
same cardinality are not canonical as they can be composed with arbitrary
permutations of the elements of the sets. In particular, the automorphism
group of a set of n elements is the groupSn of permutations of its elements
introduced at the end of Sect. 2.1.6.

A poset becomes a category when we stipulate that there is an arrow
a → b whenever a ≤ b. In turn, we also have the category of posets, with
arrows m : A → B between posets now given by monotone functions, that
is, whenever a1 ≤ a2 in A, then m(a1) ≤ m(a2) in B. Again, while we can
consider a category as a graph, we can also consider the category of graphs.
Morphisms are then mappings g between graphs �1 → �2 that preserve
the graph structure, that is, map edges to edges.

There can be categories with the same objects, but different morphisms.
For instance, we can consider the category whose objects are sets, but
whose morphisms are injective maps between sets. As another example,
for a category with metric spaces as its objects, we could take the isome-
tries as morphisms, that is, the mappings f : (S1, d1) → (S2, d2) with
d2( f (x), f (y)) = d1(x, y) for all x, y ∈ S1. Alternatively, we can also
take the more general class of distance nonincreasing maps, that is, those
g : (S1, d1) → (S2, d2) with d2(g(x), g(y)) ≤ d1(x, y) for all x, y ∈ S1.
The isomorphisms of the category, however, are the same in either case.
Algebraic structures also naturally fall into the framework of categories.
Again, a single structure can be considered as a category, but we can
also form the category of all structures of a given type. Thus, as already
explained, for instance amonoid M or a groupG yields the categorywith M
or G as its only object and the multiplications by monoid or group elements
as the morphisms. Thus, the monoid or group elements are not objects, but
(endo)morphisms of this category.7 In fact, for a group considered as a cat-
egory, everymorphism is then an isomorphism, because the group elements
are invertible.

Consideringmonoid or group elements as morphisms, of course, reflects
the general idea of a monoid or group as consisting of operations. We have
already noted that the associativity law for monoids and groups is included
in the definition of a category. In particular, the axioms for a category
can also be considered as generalizations of the group axioms, as we do
not require invertibility of the operations. Thus, the concept of a monoid is
natural within category theory even though in general the concept of a group
is more important than that of a monoid. In fact, a category with a single

7Alternatively, we could also consider the elements of a group or monoid as the objects
of the corresponding category. The morphisms would again be the multiplications by
elements. Thus, the classes of objects and morphisms would coincide.
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object M is nothing but a monoid, where the composition of morphisms
then defines the monoid multiplication. Thus, there are many morphisms
from this single object to itself. Conversely, we have the categories of
monoids, groups, finite groups, abelian groups, free (abelian) groups, Lie
groups, etc. In such a category of groups, for instance, an object is again
a group, but a morphism now has to preserve the group structure, that is,
be a group homomorphism. We should be quite careful here. A monoid M
or group G considered as a category is not a subcategory8 of the category
Monoids of monoids or Groups of groups, resp. The reason is that in
those two cases, the notion of a morphism is different. For a single group
as a category, the multiplication by any group element as an operation on
the group itself is a morphism. Within the category of groups, however, a
morphism χ : G1 → G2 between two objects has to preserve their group
structure. In particular,χ has tomap the neutral element of G1 to the neutral
element of G2. Analogously, of course, for the case of monoids.

There is a generalization of the foregoing. Let M again be a fixedmonoid,
with its unit element denoted by e, and with the product of the elements
m, n simply written as mn. By definition, the category BM = M − Sets
consists of all representations of M , that is, of all sets X with an operation
of M on X , i.e.,

μ : M × X → X

(m, x) �→ mx

with ex = x and (mn)x = m(nx) for all x ∈ X, m, n ∈ M. (2.3.10)

A morphism f : (X, μ) → (Y, λ) then is a map f : X → Y which is
equivariant w.r.t. the representations, that is,

f (mx) = m f (x) for all m ∈ M, x ∈ X (2.3.11)

(where we also write λ(m, y) = my for the representation λ). Expressed
more abstractly,

f (μ(m, x)) = λ(m, f (x)). (2.3.12)

For instance, when L is a left ideal of M , then left multiplication by M on
L yields such a representation.

Another interpretation of a category, which leads us into logic, a topic
to be taken up in Sect. 9.3, is that of a deductive system. The objects of
a deductive system are interpreted as formulas, the arrows as proofs or
deductions, and the operations on arrows as rules of inference. For formulas
X, Y, Z and deductions f : X → Y, g : Y → Z , we have the binary
operation of composition, yielding g ◦ f : X → Z , as an inference rule.
Thus, by stipulating an equivalence relation for proofs, a deductive system
becomes a category. Or putting it the other way around, a category is a
formal encoding of a deductive system. See [74] and Sect. 9.3.

We now develop some general concepts.

Definition 2.3.3 An arrow f : A → B between two objects of a category
C is called

8An obvious definition: A category D is a subcategory of the category C if every object
D and every morphism D1 → D2 of D is also an object or a morphism, resp., of C.

http://dx.doi.org/10.1007/978-3-319-20436-9_9
http://dx.doi.org/10.1007/978-3-319-20436-9_9
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• a monomorphism, or shortly, monic, in symbols,

f : A � B, or f : A ↪→ B, (2.3.13)

if for any morphisms g1, g2 : C → A in C, f g1 = f g2 implies g1 = g2,
• an epimorphism, or shortly, epic, in symbols,

f : A � B, (2.3.14)

if for anymorphisms h1, h2 : B → D inC, h1 f = h2 f implies h1 = h2.

Thesenotions generalize thoseof injective and surjectivemappings between
sets, as introduced in Sect. 2.1.2.

An isomorphism is bothmonic and epic. In the categorySets the converse
also holds, that is a monic and epic morphism is an isomorphism (in short
jargon: In Sets, monic epics are iso). In a general category, this need not
be true, however. For instance, in the category of free abelian groups, f :
Z → Z, n �→ 2n is monic and epic, but not iso.

The above definition is an instance of a general principle in category the-
ory, to define properties through relations with other objects or morphisms
within a category. We shall systematically explore this principle below.

Definition 2.3.4 Amorphism f is called an endomorphism if its codomain
coincides with its domain A, in symbols

f : A � . (2.3.15)

Thus, an automorphism is an invertible endomorphism.

Definition 2.3.5 A subobject A of the object B of the category C is a
monomorphism f : A � B.

Often, the monomorphism f is clear from the context, and we then simply
call A a subobject of B.

Thus, for instance, in the category Sets, we can speak of subsets, whereas
in the category Groups, we have subgroups. For the set {1, 2, . . . , n} of n
elements, any collection {i1, i2, . . . , im} for any distinct ik ∈ {1, 2, . . . , n},
m < n, yields a subset. And the group Sm , introduced at the end of
Sect. 2.1.6, of permutations of those m elements is a subgroup of Sn . .
The observation at the end of Sect. 2.1.6 that for a finite group G, the leftSn
translation lg by any element g ∈ G yields a permutation of the elements of
G, with different elements inducing different permutations, means that we
can consider G as a subgroup of the group of permutations of its elements.
Slightly more abstractly: Every finite group is a subgroup of a symmetric
group. This is known as Cayley’s Theorem.

We can also consider the morphisms of one category C as the objects
of another category D. In other words, operations within one category can
become the objects in another one. In particular, what we mean by an
“object” in mathematics has little, if anything, to do with what an “object”
is in ordinary language. In category theory, an object is anything on which
we can perform systematic operations that relate it to other objects. And



2.3 Categories and Morphisms 57

when and since we can also operate on operations, they in turn can become
objects.

But if we take operations as objects, what then are the operations of that
category? Themorphisms ofD are arrows betweenmorphisms ofC, that is,

F : ( f : A → B) → (g : C → D), (2.3.16)

given by a pair
φ : A → C, ψ : B → D (2.3.17)

of morphisms of C with
ψ ◦ f = g ◦ φ. (2.3.18)

One also expresses this relation by saying that the diagram

A
f−−−−→ B

φ

⏐
⏐



⏐
⏐

ψ

C
g−−−−→ D

(2.3.19)

commutes. In short, the morphisms of a category of morphisms are com-
muting diagrams. As an example, when f : A → B is a morphism, the
identity 1 f is obtained from the identities 1A and 1B through such a com-
mutative diagram

A
f−−−−→ B

1A

⏐
⏐



⏐
⏐

1B

A
f−−−−→ B .

(2.3.20)

We shall now derive a simple condition for constructing a commutative
diagram from twomorphisms. This is the basic situation considered in [94].
Let X, Y be objects in some categoryC, and let π : X → Y be amorphism.
When C = Sets, that is, X, Y are sets and π is a map between them, then
π defines an equivalence relation,

x1 ∼ x2 iff π(x1) = π(x2). (2.3.21)

Let f : X → X be another morphism. We can then find a morphism
f̃ : Y → Y for which the diagram

Y Y

XX

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............ ............
f̃

....................................................................................................................................................................................................................................................................... ............
f

..............................................................................................................
...
.........
...

π

..............................................................................................................
...
.........
...

π

(2.3.22)

commutes iff f commutes with the equivalence relation (2.3.21), that is,

if x1 ∼ x2 then also f (x1) ∼ f (x2). (2.3.23)

When C is a category of sets with additional structure, then condition
(2.3.23) becomes simpler to check, because we can utilize the additional
structure. For instance, when C = Groups and π : G → H is a group
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homomorphism, then for a homomorphism ρ : G → G, we get a commu-
tative diagram

H H

GG

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............ ............
ρ̃

....................................................................................................................................................................................................................................................................... ............
ρ

..............................................................................................................
...
.........
...

π

..............................................................................................................
...
.........
...

π

(2.3.24)

iff
ρ(ker π) ⊂ ker π, (2.3.25)

because in that case, (2.3.25) implies (2.3.23).
The condition (2.3.23) is not a categorical one. Therefore, we now refor-

mulate it in a more abstract manner. Given the morphism π : X → Y in
our category C, consider the set of morphisms

K (π) = {g : X → Z morphism of C : π factors through g}, (2.3.26)

that is, where there exists a morphism πg : Z → X with π = πg ◦G. Thus,
g ∈ K (π) iff there exists a commutative diagram

Y

ZX ................................................................................................................. ............
g

..............................................................................................................
...
.........
...

π

.........................................................................................................................................................................
...
............

πg

(2.3.27)

Lemma 2.3.2 A necessary and sufficient condition for (2.3.22) to com-
mute is

K (π) ⊂ K (π ◦ f ). (2.3.28)

Proof We consider the following diagram

Y Y

XX

Z

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............ ............
f̃

................................................................................................................. ............
f

...................................................................................................................
.
............

π
.................................................................................................................... ...........

.

π

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

g

...................................................................................................................................................................................................................................................................................
...
............

πg

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

......................... .........
...

(π ◦ f )g

(2.3.29)

Let g ∈ K (π).When (2.3.22) commutes, we have f̃ and can put (π ◦ f )g =
f̃ ◦πg . Thus, g ∈ K (π ◦ f ). For the other direction, we simply observe that
π ∈ K (π) with Z = Y and ππ = idY . Then, f̃ = (π ◦ f )π lets (2.3.22)
commute. �
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In the case of groups, as in (2.3.24), (2.3.25), the crucial g is the projection
onto the quotient group G/ ker π .

We can also fix an object C of C and consider the category C/C of all
morphisms f : D → C from objects D of C. This category is called a slice
or comma category. A morphism f → g between two objects of this slice
category, that is, from an arrow f : D → C to an arrow g : E → C is then
a commutative diagram

D E

C

....................................................................................................................................................................................................................................................................... ............F
............................................................................................................................................................................ .........

...

f

.........................................................................................................................................................................
...
............

g

(2.3.30)

that is, an arrow F : D → E with f = g ◦ F .
We can then also go ahead and form categories C of categories.9 That

is, the objects of C are categories C, and the morphisms F : C → D of C,
called functors, then preserve the category structure. This means that they
map objects and arrows of C to objects and arrows of D, satisfying

F( f : A → B) is given by F( f ) : F(A) → F(B) (2.3.31)

F(g ◦ f ) = F(g) ◦ F( f ) (2.3.32)

F(1A) = 1F(A) (2.3.33)

for all A, B, f, g. Thus, the image of an arrow under F is an arrow between
the images of the corresponding objects (domain and codomain) under F ,
preserving compositions, and mapping identities to identities.

Functors play a very important role as typically one wants to assign to
objects of a category with a perhaps complicated structure objects of a cat-
egory with less structure that nevertheless capture the important qualitative
features of the former. For instance, we can associate to a topological space
its cohomology groups, as will be explained below. These groups are alge-
braic objects that encode qualitative topological properties of these spaces.
The question that typically arises from such constructions is whether they
capture all the relevant features. In the present example, this leads to the
question to what extent the cohomology groups determine the topology of
a space.

In general, a functor that maps one category to another one with less
structure is called forgetful.

9In fact, these form more naturally so-called bicategories. We suppress this technical
point here, however. See for instance [80]. More importantly, one has to be careful to
avoid paradoxes of self-reference. Therefore, one respects the axioms of set theory as
listed in Sect. 2.2 and considers only sets from a universe U . A category will be called
small if both its objects and its arrows constitute a set from U (see Definition 8.1.2). One
then looks only at categories of small categories.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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Given two categories C, D, we can then also look at the category
Fun(C, D) of all functors F : C → D. The morphisms of this category are
called natural transformations. Thus, a natural transformation

θ : F → G (2.3.34)

maps a functor F to another functor G, preserving the structure of the
category Fun(C, D). What is that structure, and how can it be preserved?
Well, the defining property of a functor is that it maps morphisms of C to
morphisms of D. Thus, given a morphism f : C → C ′ in C, we obtain
morphisms F f : FC → FC ′ and G f : GC → GC ′ in D. A natural
transformation θ : F → G then has to respect that relation. That means
that for each C ∈ C, it induces a morphism

θC : FC → GC (2.3.35)

such that the diagram

FC
θC−−−−→ GC

F f

⏐
⏐



⏐
⏐

G f

FC ′ θC ′−−−−→ GC ′

(2.3.36)

commutes.

As will be investigated in more detail in Sect. 8.3, in particular, we can
consider functor categories of the form SetsC, involving the category Sets
of sets and some small category C (C is called small if its collections of
objects and of arrows are both sets, see Definition 8.1.2). The objects of
SetsC are functors

F, G : C → Sets, (2.3.37)

and its arrows are natural transformations

φ, ψ : F → G. (2.3.38)

According to (2.3.35) and (2.3.36), thismeans that, for instance,φ : F → G
for each C ∈ C has to induce a morphism

φC : FC → GC (2.3.39)

such that the diagram

FC
φC−−−−→ GC

F f

⏐
⏐



⏐
⏐

G f

FC ′ φC ′−−−−→ GC ′

(2.3.40)

commutes.
We also need the opposite category Cop, obtained from C by taking the
same objects, but reversing the direction of all arrows. This simply means
that each arrow C → D in Cop corresponds to an arrow D → C in C. In
some cases, this procedure is quite natural. For instance, when the category
C is a poset, this simply amounts to replacing x ≤ y by y ≥ x .

We can now consider the category SetsCop
for some fixed small category

C. Here, for instance, the category C could be P(S), the objects of which

http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_8
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are the subsets U of some set S and the morphisms the inclusions V ⊂ U .
That is,P(S) has the structure of a poset, with the ordering relation≤ given
by inclusion ⊂. This poset has a largest element, S, and a smallest one, ∅.
(In fact, P(S) is a Boolean algebra, with the operations of intersection and
union.) This category will be treated in Sect. 2.4.

From the preceding, wemay form the impression that themost important
example of a category is the category Sets of sets. Much of the terminol-
ogy is oriented towards that example, for instance the representation of
morphisms by arrows reminds us of maps between sets. The objects of
many other categories are sets with some additional structure, such as a
partial order or a group structure. We then have a natural functor from such
a category to Sets, the so-called forgetful functor that simply forgets that
additional structure. Also, it is a fundamental principle to be explored below
in more detail that an object of a category can to a large extent be described
or characterized by its hom-set, that is, by the set of morphisms into that
object or the morphisms from that object.

Another basic example is the category of groups,Groups, whichwehave
already discussed above.We have pointed out that the notion of amorphism
is inspired by that of a homomorphism between groups. Homomorphisms
between groups preserve the group structure, and a morphism between
objects of some category has to preserve the characteristic structure of that
category.

In order to show the applicability or limitations of the concepts intro-
duced below, we shall often consider other categories. For that purpose,
a particularly useful example will be the one consisting of a single poset.
Here, the objects are the elements of that poset. As already emphasized, this
should not be confused with the category of all posets, where the objects
are posets themselves, instead of elements of posets.

The topic of categories will be taken up systematically below in Chap.8.
In order to appreciate the general approach of that chapter, it will be useful
to first look at some more particular mathematical structures in depth. We
shall do this in the following chapters.

Before moving on in this direction, let us insert a small warning. Even
though category theory provides us with abstract principles and construc-
tions that apply simultaneously to all categories, nevertheless, the concrete
content of such constructions might be rather different according to the
type of category under consideration. On one hand, we have the categories
whose objects are simply elements of some set. These elements do not pos-
sess any internal structure. They may stand in binary relations F , and such
relations then define the morphisms. In a set, there are no nontrivial such
relations, that is, F(s1, s2) = 1 only for s1 = s2. In a poset, such a relation
is denoted by ≤, that is, ss ≤ s2 iff F(s1, s2) = 1. Such binary relations
can also be represented geometrically as digraphs, that is, we draw an edge
from s1 to s2 whenever F(s1, s2) = 1.

In contrast, at the next level, we have categories, like Sets, Posets or
Groups whose objects do have some particular internal structure (although
trivial in the case of Sets). Morphisms are required to preserve that struc-
ture, that is, be structure homomorphisms. For this type of categories, the
constructions of category theory will turn out to much more useful than

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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for the preceding ones, whose objects are elements without internal struc-
ture. While the preceding categories may serve to illustrate some of those
constructions, as examples of the general thrust of the theory they may be
somewhat misleading.

2.4 Presheaves

In this section, we shall take a first glimpse at the concept of a presheaf,
which will be treated in more detail and depth in Sects. 4.5 and 8.4 below.

Here is a preliminary definition that will be refined in Sect. 4.5 where we
shall work in the category of topological spaces instead of sets. A bundle
over the set S is a surjective map p : T → S from some other set T .
For x ∈ S, the preimage p−1(x) is called the fiber over x . S is called the
base space, and T is the total space. A section of such a bundle is a map
s : S → T with p ◦ s = 1S . Thus, a section associates to each element
x of the base space an element of the fiber over x . Usually, for a given
bundle, the space of sections is constrained; that is, not every such s with
p ◦ s = 1S represents a valid section of the bundle, but the sections need
to satisfy certain restrictions or constraints.

Here is an interpretation. S could be a set of properties, observables or
features of possible objects, like size, color, texture, material. The fiber over
such a feature x ∈ S then contains the possible values that this feature can
assume. When x stands for color, the fiber over x might contain the values
‘red’, ‘green’, ‘blue’ etc., or if we desire, also more precise shades of color
like ‘azure blue’, ‘crimson’, or ‘yellowish pink’. A section then assigns to
each object the values of its properties, that is, in the current example, its
color, size, texture, material etc. The whole point now is that the values
of the various properties in general are not independent of each other. A
trivial example might elucidate this issue. When the object in question is
a piece of gold, then the value ‘gold’ for the material constrains the color
to be ‘golden’, and also its size and texture will obey certain restrictions.
Deeper and more interesting examples come from theoretical biology, and
lead, in fact, to the core of the field of morphology. Two hundred years
ago, the biologist Cuvier (1769–1832), the founder of scientific paleon-
tology and comparative anatomy, had already emphasized that a plant or
animal does not just consist of an arbitrary collection of feature values, but
that those are highly interdependent and determined by its mode of living.
According to his principle of “Correlation of parts”, the anatomical struc-
tures of the various organs of an animal are functionally related to each
other and the structural and functional characteristics of the organs are all
derived from the particular mode of living of the animal within its envi-
ronment. Mammals are not only viviparous, but also typically possess fur
and characteristic anatomical features, and carnivores not only have teeth
and jaws adapted to catch and handle their pray, but also digestive tracts
suited for their meat diets, and feet depending on the way they chase their
prey, and so on. In fact, based on such correspondences, he could perform
the stunning feat of reconstructing a particular dinosaur on the sole basis

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_4
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of a very incomplete fossil consisting only of a claw. Later on, when a
more complete fossil skeleton was found, it agreed in remarkable detail
with Cuvier’s reconstruction which made him quite famous.10 Translated
into our language of bundles and sections, there exist strong correlations,
constraints and restrictions between the values of the various features, and
knowing such constraints, one can reconstruct much of a section from the
values of particular features. The biological aspects will be explored in
detail elsewhere. Here, we want to use this to introduce a key concept, that
of a presheaf.

We recall the functor category SetsCop
for some small category C where

Cop is obtained from C by reversing the directions of all arrows, and
stipulate

Definition 2.4.1 An element P of SetsCop
is called a presheaf on C.

For an arrow f : V → U in C, and x ∈ PU , the value P f (x), where
P f : PU → PV is the image of f under P , is called the restriction of x
along f .

Thus, a presheaf formalizes the possibility of restricting collections of
objects, that is, the—possibly structured—sets assigned to subsets of S,
from a set to its subsets.

We can put this into the more general context that will be developed in
Chap.8, but this will not be indispensable for understanding the current
section. Anticipating some of Sect. 8.4 and also of Sect. 8.3, we consider
HomC(V, U ), the set of morphisms in the category C from the object V to
the object U . Each object U ∈ C then yields the presheaf yU defined on
an object V by

yU (V ) = HomC(V, U ) (2.4.1)

and on a morphism f : W → V by

yU ( f ) : HomC(V, U ) → HomC(W, U )

h �→ h ◦ f. (2.4.2)

We shall also see in Sect. 8.3 that when f : U1 → U2 is a morphism of C,
we obtain a natural transformation yU1 → yU2 by composition with f , so
that we get the Yoneda embedding (Theorem 8.3.1)

y : C → SetsCop
. (2.4.3)

The presheaf yU , with

yU (V ) = HomC(V, U ), (2.4.4)

is also called the functor of points as it probes U by morphisms from other
members V of the category.Whenweworkwith the categorySets and V is a
single element set, then anymorphism from such a single element set to a set
U determines an element in U , a point of U . When V is a more general set,
then this yields, in naive terminology, a family of points in U parametrized
by V . The categorial approach thus naturally incorporates such generalized

10We refer to [44] for a conceptual analysis of Cuvier’s position in the history of biology.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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http://dx.doi.org/10.1007/978-3-319-20436-9_8
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points. For instance,whenwe are in the category of algebraic varieties (to be
defined below), we probe an algebraic varietyU by considering morphisms
from other algebraic varieties V , be they classical points or more general
varieties.

When we go in the opposite direction and consider

zU (V ) = HomC(U, V ), (2.4.5)

we obtain what is called the functor of functions. Here, classically, one
would take as V a field such as the real numbers R or the complex
numbers C.

Of course, we can then also let U and V vary simultaneously, to make
the construction symmetric.

We now return to the category C = P(S) of subsets of some set S. For
a presheaf P : P(S)op → Sets, we then have the restriction maps

pV U : PV → PU for U ⊂ V (2.4.6)

that satisfy
pUU = 1PU (2.4.7)

and
pWU = pV U ◦ pW V whenever U ⊂ V ⊂ W. (2.4.8)

Definition 2.4.2 The presheaf P : P(S)op → Sets is called a sheaf if
it satisfies the following condition. If U = ⋃

i∈I Ui for some family
(Ui )i∈I ⊂ P(S) and πi ∈ PUi satisfies pUi ,Ui ∩U j πi = pU j ,Ui ∩U j π j

for all i, j ∈ I , then there exists a unique π ∈ PU with pUUi π = πi for
all i .

Thus, whenever the πi are compatible in the sense that the restrictions of
πi and π j to Ui ∩ U j always agree, then they can be patched together to an
element π of PU that restricts to πi on PUi .

The interpretation of a presheaf over P(S) that is most important for
our current purposes takes place within the framework of fiber bundles
developed at the beginning of this section. The set assigned to some U ⊂ S
by the presheaf P then would simply be the set of sections over U of a
fiber bundle with base S. Such sections over a subset U are called local
because they need not extend to all of S. Sections defined over all of S
could be called global, and thus, local sections need not admit extensions
to global sections. In contrast, by the presheaf condition, whenever we have
a local section over some U , we can restrict it to any V ⊂ U . The sheaf
condition, in turn, stipulates that locally compatible local sections can be
patched together to a global section. Not every presheaf is a sheaf, and so,
such an extension from local compatibility to what one may call global
coherence need not always be possible.

For instance, when our fiber bundle is a Cartesian product S × R or
S × C, then all fibers are R, and a local section over U is nothing but a real
valued function on U . A presheaf then might stipulate further conditions or
restrictions on such functions. In particular, when S carries some additional
structure, like that of a metric, we could require the functions to respect
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that structure. In the case where S is equipped with a metric D(., .), we
might request, for instance, that for every local section over U , that is,
for every function f : U → R that belongs to the presheaf, we have
| f (x) − f (y)| ≤ d(x, y) for all x, y ∈ U . Or when S is a graph, we could
only admit functions with values ±1 and require that any such function on
a subgraph U assign different values to neighboring vertices. That is, when
f (x) = 1 for some vertex x , then f (y) = −1 for all neighbors y of x , and
conversely. Such a function then cannot be extended to any subgraph that
contains a triangle, that is, three vertices x, y, z each of which is a neighbor
of the other two. More generally and precisely, a graph is called bipartite
iff it admits such a function f . Bipartite graphs do not contain triangles,
nor other cycles of odd length.11 They consist of two classes of vertices,
so that a function f with the above properties assigns the value +1 to one
class and −1 to the other.

+1

−1

+1 +1

−1

+1 +1

−1

?

Here, we have sections for the first two graphs, but none for the third.
This phenomenon is also called frustration. Of course, the first two graphs
are subgraphs of the third, and so, we see here an example where a local
section cannot be extended to a global section.

Returning to the biological principle of the “Correlation of parts”, the
sections of a presheaf would correspond to the different species, and the
fact that only specific value combinations in the various fibers are realized
by some section then reflects those correlations and constraints.

We now describe and further explore a different biological realization
of presheafs, and discuss a proposal of Benecke and Lesne [11] to describe
genomes in this formal framework. TheDNAof a cell of amember of a bio-
logical species is a linear string composed of instances of four nucleotides,
labelled by the letters A, T, C, G.12 That is, we have a finite sequence (with
about 3 billion elements in the case of humans) of positions, called genetic
loci, each of which is filled by one of the letters A, T, C, G. Looking at
this from the point of view of topology, we take as base space the space
of genetic loci of a species, with a metric given by the distance between
positions in the linear arrangement.13 As the fiber, we take the possible
nucleotide values, that is, A, T, C , and G. This fiber then carries a natural
probability measure (see Sect. 4.4 below for the formal definition) given
by the relative frequencies of the nucleotide values. In fact, first the fiber
over each locus carries such a measure. We can then also compare fibers

11see Sect. 3.4.1 for the definition of a cycle.
12With certain exceptions that need not concern us here, all the cells of a given organism
carry the same DNA sequence.
13We assume here that there is a one-to-one correspondence between the loci of different
members of the species. That is, we assume that the only differences between individuals
are given by point mutations, but not by insertions or deletions of nucleotide strings in
the genome.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_3
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over different loci by the distance between those measures.14 We can also
simply look at the abstract fiber of the four nucleotide values and obtain a
measure on it by averaging over all genetic loci.

An individual genome is then a section of this fiber bundle. The space of
sections then yields a sheaf, even though, of course, not every section needs
to be realized by the genome of some individual. Again, spaces of genomes
then induce measures on the space of sections as well as on the individual
fibers, or more generally, on the collection of fibers over any given set of
loci. When the set of loci of two populations is in 1-1 correspondance, we
can then look at the distance between the measures induced on the space
of sections by the two populations. We can then define the genetic distance
between the populations as such a distance between measures on the space
of sections.

2.5 Dynamical Systems

Definition 2.5.1 A dynamical system is a homomorphism φ from the addi-
tive groupZ of integers or real numbersR (or the semigroup of nonnegative
integers or reals) to the group of (invertible) selfmaps F(S) of some set S.
When the domain is the group (monoid) of (nonnegative) integers, we speak
of a discrete-time dynamical system, and when we have the (nonnegative)
reals, we talk about a continuous-time system.

In particular, 0 ∈ R is mapped to idS , and φ(t1 + t2) = φ(t1) ◦ φ(t2).
Often, there is more structure; for instance, S could be a topological space
(see Definition 4.1.1) or a differentiable manifold (see Definition 5.3.3),
and the selfmaps could be homeomorphisms (see Definition 4.1.11) or
diffeomorphisms. Or, S could be a vector space, and the maps linear. We
can write this as a diagram

φ(t1) φ(t2)

t2t1

............................................................................................................................................................................. ............

............................................................................................................................................................................................ ............

..............................................................................................................
...
.........
...

φ

..............................................................................................................
...
.........
...

φ

(2.5.1)

The variable t here is considered as time. The value φ(0) is called the
initial value of the dynamical system (2.5.1). One usually writes φ(x, t) for
φ(t)(x), the value of themapφ(t) applied to the initial value x = φ(0). This
expresses the dependence on time t and the initial value x . The collection
of points φ(x, t) as t varies is called the orbit of x .

14Here, we can use the distance induced by the Fisher metric on the space of measures.
We can also utilize the Kullback-Leibler divergence, which is not quite a distance, in
fact, because it is not symmetric. For the definition and for a geometric view of these
distances, see [3, 6].

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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In the discrete-time case, we can simply take a map F : S → S (invert-
ible when the system is to be defined on Z) and consider its iterates, that
is, put

φ(x, n) = Fn(x), (2.5.2)

the n-fold iterate of F (when n < 0 and F is therefore assumed to be
invertible, Fn = (F−1)−n). Thus, N or Z operates on S by iteration of a
self-map. As a diagram, this looks like

n − 1 n n + 1

Fn−1(x) Fn(x) Fn+1(x)

.................................................................................................................................................................................. ............
+1

.................................................................................................................................................................................. ............
+1

...................................................................................................................................................... ............F ...................................................................................................................................................... ............F

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

. . .. . .

........................................................................................ ............

....................................................................................................... ............

........................................................................................ ............

....................................................................................................... .........
...

(2.5.3)

Such a discrete-time dynamical system, that is, a set S equipped with an
endomorphism F , is also called an automaton.
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3.1 Elements Standing in Relations

Relations take place between elements, and in order to conceptualize this,
we can either take the elements or the relations as primary. Alternatively,
we can try to combine these two dual approaches.

When we take the elements as fundamental, we start with a set V whose
elements are denoted by v or v0, v1, v2, . . . . We assume that finite tuples
(v0, v1, . . . , vq) of elements, all assumed to be different from each other,
can stand in a relation r(v0, v1, . . . , vq). Here, the tuple (v0, v1, . . . , vq)

may be considered as ordered or unordered, depending on whether we want
to let the relation depend on the order of elements or not. That is, in the
unordered case,wehave r(v0, v1, . . . , vq) = r(vi0 , . . . , viq ) for any permu-
tation (i0, . . . , iq) of (0, . . . , q). Here, r takes its values in some set or space
R which we leave unspecified for the moment. We write r(v0, . . . , vq) = o
when this relation is trivial (whatever triviality might mean here), or per-
haps with a better interpretation, absent; that is, we distinguish one partic-
ular member o of R that indicates the absence of a relation. We thus have
a map

r :
⋃

q=0,1,...

V q+1 → R, (3.1.1)

which in the unordered case reduces to a map from the collection of finite
subsets of V to R. As a useful convention, one may then require that
r(∅) = o.

When we shall do cohomology theory below, we shall assume the fol-
lowing properties

(i)
r(v) �= o, (3.1.2)

that is, each element stands in a nontrivial relation with itself.

© Springer International Publishing Switzerland 2015
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(ii)

If r(v0, . . . , vq) �= o, then also r(vi1 , . . . , vi p ) �= o (3.1.3)

for any (different) i1, . . . , i p ∈ {0, . . . , q},
that is, whenever some elements stand in a nontrivial relation, then this
also holds for any nonempty subset of them.

When these conditions are satisfied and we associate a simplex to every
collection of elements with r(v0, . . . , vq) �= o, we obtain a simplicial com-
plex with vertex set V . In fact, we can take the preceding properties as the
defining axioms for a simplicial complex.

Without these restrictions, we obtain a hypergraph.

Example Let U1, . . . , Um be a collection of nonempty subsets of some set
M .We say thatUi1 , . . . , Ui p stand in a relation, that is, r(Ui1 , . . . , Ui p ) �= o
iff

Ui1 ∩ · · · ∩ Ui p �= ∅, (3.1.4)

that is, if these sets have a nonempty intersection. The above conditions
are then satisfied, as all the sets are nonempty, and hence r(Ui ) �= o, and
if a collection of sets has a nonempty intersection, then this also holds for
any subcollection. Thus, any such collection of sets defines a simplicial
complex with the vertices corresponding to the sets Ui , i = 1, . . . , m. This
simplicial complex is called a Čech complex. This construction will be
taken up in Sect. 4.6 below.

When the set M carries a measure μ (see Sect. 4.4), we can also put

r(Ui1 , . . . , Ui p ) = μ(Ui1 ∩ · · · ∩ Ui p ). (3.1.5)

We then obtained a weighted simplicial complex, that is, a complex where
a real number is attached to every simplex.

When, as in the introductory Sect. 2.1.4, the relations are only defined for
pairs of elements, that is, for q = 1, and if r can take only two possible val-
ues, which we may denote by o and 1, we obtain a loopless directed graph,
also called a digraph. In the unordered case, this reduces to an undirected
loopless graph, usually simply called a graph. In that case, the elements of
V are called vertices or nodes. That is, in the ordered case, we put an edge
e := [v, w] from the vertex v to the vertex w when r(v, w) = 1. In the
unordered case, we then simply have an edge between v andw. “Loopless”
heremeans that we do not allow for edges from a vertex to itself. (The graph
is loopless, because we assume in this chapter that only different elements
can stand in a relation with each other. The selfrelation is not considered
to be binary, but unary, r(v) �= o, and therefore is represented by a vertex
rather than an edge of the graph.) Also, the graphs are “simple”, meaning
that between any two vertices, there can be at most one edge.

When, instead of restricting the range of r to two values, we let r take
values in R or C (and we identify o with 0), we obtained weighted graphs.
The weight of the edge from v to w is then given by r(v, w). In particular,
we have the convention that the edge weight is 0 iff r(v, w) = 0, that is, in
the absence of an edge from v to w.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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3.2 Relations Specifying Elements

The alternative approach consists in starting with a set S of relations and a
map

s : S →
⋃

q=0,1,...

V q+1 (3.2.6)

or to the set P(V ) of subsets of V in the unordered case, possibly requiring
that the range of s be confined to the finite subsets of V , in order to respect
the convention set up in the preceding section.

For instance, to construct a graph, we take an edge set E and a vertex
set V and a map

s : E → V 2. (3.2.7)

For each edge e ∈ E , s(e) = (v1, v2) then specifies its beginning v1 and
end v2.When the graph is to be simple, we require that s be injective.When
the graph is to be loopless, we require that the vertices v1 �= v2. When we
want to have an undirected graph, we let s take its values in the unordered
pairs of vertices. Such a point of view is, for instance, useful in the study
of random graphs, that is, where pairs of vertices are randomly connected
by edges according to some probabilistic rule. In the simplest case, every
pair of different vertices v1 �= v2 is connected by an edge with probability
0 < p < 1, without any dependencies among pairs. This construction
was first proposed by Erdös and Renyi [34], and has become an important
paradigm in graph theory. In this book, however, we do not enter the realm
of stochastics, but may refer the curious reader to [63].

3.3 Isomorphisms

Whichever way we choose to specify and describe the category of relations
between elements, the categorical description will include the notion of
a morphism between two members of such a category. Since it is rather
straightforward to work out the corresponding notion of morphism in each
situation, we consider here only the simplest case of undirected graphs.
Such a graph is specified by a vertex set V and an edge set E as explained
in Sect. 3.1. A morphism

γ : (V1, E1) → (V2, E2) (3.3.8)

is then given by a map η : V1 → V2 between the vertex sets whose induced
map on pairs of vertices, (v, v′) �→ (η(v), η(v′) maps edges in E1 to
edges in E2. In other words, η(v), η(v′) ∈ V2 are connected by an edge iff
v, v′ ∈ V1 are thus connected.

Two such graphs �1 = (V1, E1), �2 = (V2, E2) then are isomorphic
if there exist morphisms γ : �1 → �2, γ

′ : �2 → �1 for which γ′ ◦ γ



72 3 Relations

and γ ◦ γ′ are the identities of �1 and �2, resp. An automorphism of the
graph � = (V, E) is then an isomorphism from � to itself (recalling some
general concepts of category theory).

In order to understand the automorphism group A(�) of a graph � =
(V, E) with n vertices, we observe that the symmetric group Sn operates
by permutations on the vertex set V . The automorphism group of � then
consists precisely of those elements ofSn that map the edge set E to itself.
For the trivial graph �0, that is, the graph with an empty edge set, and the
complete graph Kn , that is, the graph with an edge between any pair of the
n vertices (see the figure below for K4),Complete graph K4
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A(�) is the entire symmetric group Sn . For any other graph, A(�) is a
proper subgroup of Sn , possibly the trivial group consisting only of the
trivial permutation, that is, the permutation operating as the identity on V .
The smallest graphs without any nontrivial isomorphism have 6 vertices;
an example is shown in the figure below.Graph without sym-

metries
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While all smaller graphs do possess some nontrivial automorphisms,
when the vertex sets gets larger, automorphisms become rarer, and in fact, a
generic graph does not possess any nontrivial automorphisms. Also, check-
ing whether two graphs (with the same number of vertices) are isomorphic
is an NP-hard1 problem, and therefore so is the determination of the auto-
morphism group of a given graph. Here, however, we do not wish to enter
into the corresponding details.

When some s ∈ Sn does not yield an automorphism of a graph �, it
maps � to another graph s(�) that is isomorphic to �. That graph is thus
obtained from � by a permutation of its vertices and the induced mapping
of the edges. In turn, any graph isomorphic to� is easily seen to be obtained
in this manner.

1A concept not explained here; for this and other notions of computational complexity
theory, see for instance [92].
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3.4 Moduli Spaces of Graphs

3.4.1 From theVertices

When, instead of looking at a single relational structure, we would like
to understand all possible such structures, we are led to so-called mod-
uli spaces (the name being derived from Riemann’s investigation of the
various conformal structures (Riemann surfaces) that a given topological
surface can be equipped with). Thus, let us look at the set of all binary
relation structures between n elements. Each such structure is encoded by
a directed graph (digraph) with a vertex set given by those n elements.
In order to represent all these structures simultaneously, we consider each
such structure, that is, each such digraph as an element (vertex) of another
graph D(n), and we put an oriented edge from the vertex v� representing
the digraph � to v� representing � if � is obtained from � by addition of
a directed edge.

Similarly, when we consider undirected graphs, we obtain a space M(n)

whose vertices stand for graphs �, � of n elements, and we again put an
edge from v� to v� when the latter is obtained from the former by addition
of an edge. Thus, M(n) again is a directed graph, and if we wish, we can
turn it into an undirected graph by ignoring the direction of its edges.

For weighted graphs, with edge weights in either R or C, we have an
additional structure, since we can add two weighted graphs on n elements
(again with the convention that we put an edge of weight 0 in the absence
of an edge between two vertices) by simpling adding the weights of corre-
sponding edges. Therefore, the moduli spaces of weighted graphs with n
vertices is a vector space (over R or C or whatever field the weights take
their values in) of dimension equal to the number of ordered (for a directed
graph) or unordered (for an undirected graph) pairs of vertices, that is, of
dimension n(n − 1) or n(n−1)

2 , resp.
All this is straightforward, but we have ignored one important aspect.

In fact, a moduli space should represent the different objects in a category.
Two isomorphic graphs, as defined in Sect. 3.3, should not be considered
as different. To incorporate this into our formal framework, we consider
the induced operation of the symmetric group Sn on M(n) (or D(n), the
two cases being completely analogous). The moduli space for graphs with
n vertices is therefore

M(n) := M(n)/Sn, (3.4.9)

the quotient of M(n) by the operation of Sn .
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(3.4.10)

The figure shows the moduli space M(4) in black, with the graph rep-
resenting each vertex in M(4) adjacent to it in color. Let us discuss the
structure of M(4) a bit further. M(4) is a bipartite graph, one class rep-
resenting graphs with an even number of edges (represented in red), the
other class those with an odd number (represented in blue). Moreover,
M(4) possesses an automorphism obtained by exchanging each graph by
its complementary graph. For instance, K4 goes to the trivial graph while
the 3-star and the triangle are interchanged and the 3-path is a fixed point
of this automorphism.
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(3.4.11)

Whenwemove on to graphswith 5 vertices, the diagram (3.4.11) already
gets more complicated. Because of the symmetry that we have discovered
for graphs with 4 vertices, between a graph and the complementary graph,
here we have depicted only those graphs with ≤ 5 edges. We can also
perform certain checks, for instance for the graphs with precisely 5 edges.
We shall use some basic concepts from graph theory to evaluate our find-
ings. A path is a sequence v1, . . . , vm of distinct vertices such that vν and
vν+1 are connected by an edge for ν = 1, . . . , m − 1. A graph is called
connected if any two vertices can be joined by a path. A cycle is a closed
path v0, v1, . . . , vm = v0, that is, all the vertices v1, . . . , vm are distinct,
but the initial vertex v0 is the same as the terminal vm . For m = 3, 4, 5, we
speak of a triangle, quadrangle, or pentagon. A connected graph without
cycles is called a tree. A tree with n vertices has n − 1 edges. A graph with
more than n − 1 edges has to contain some cycle. In particular, a graph
with 5 vertices and 5 edges must contain at least one cycle, that is, either a
triangle, a quadrangle or a pentagon. When it contains a triangle, either the
two remaining vertices are connected to different vertices of the triangle,
to the same vertex of the triangle, or one of them is connected either with
two vertices of the triangle, or with one vertex and the remaining node.
Likewise, when we have a quadrangle, either there is a diagonal inside the
quadrangle (which is the same as a vertex connected to two vertices of a
triangle) or the remaining vertex is connected to one of the vertices of the
quadrangle. Thus, we find 6 nonisomorphic graphs with 5 vertices and 5
edges.

As a different check, we can look at the sequences of vertex degrees.
For the 6 graphs with 5 vertices and 5 edges, they are (in the order that they
appear in the diagram)

(1, 1, 2, 3, 3), (1, 1, 2, 2, 4), (1, 2, 2, 2, 3), (0, 2, 2, 3, 3), (2, 2, 2, 2, 2), (1, 2, 2, 2, 3).

Wenote that the sumof the vertex degrees always has to be equal to twice the
number of edges, that is, 10 for the current case. We also observe that there
are two different graphs, the triangle with a two-path and the quadrangle
connected to a single vertex, that have the same degree sequences. Thus,
the degree sequence cannot always distinguish nonisomorphic graphs.
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In any case, it is clear that when we move on to higher numbers of ver-
tices, such an enumeration schemeof all isomorphismclasses of graphs is no
longer feasible, and therefore, we need to developmore abstract and general
methods to investigate such families of graphs. One can ask many ques-
tions. For instance, how many connected nonisomorphic graphs are there
with n vertices? Let An be that number. Then A2 = 1, A3 = 2, A4 = 6,
A5 = 21. But what is the formula for An for arbitrary n? Not so easy to
figure out.

3.4.2 From the Edges

The complete graph Kn on n vertices possesses n(n−1)
2 edges. We con-

sider the simplicial complex �N constituted by the N := (
n(n−1)

2 − 1)-

dimensional simplex, that is, the one with n(n−1)
2 vertices x0, . . . , xN , and

all its subsimplices. Each such vertex x j stands for an edge e j of Kn . Thus,
a subsimplex with vertices xi0 , . . . , xik represents the graph possessing the
edges ei0 , . . . , eik corresponding to those vertices of �N . Again, we have
an induced operation of the symmetry groupSn on �N , and so our moduli
space of graphs of n vertices in this setting is given by

�N /Sn . (3.4.12)

Ignoring the action ofSn for the moment, the simplex�N can also be seen
as representing the complete graph Kn together with all its subgraphs. In the
same manner, we could take any other graph � on n vertices and consider
the simplicial complex representing � together with all its subgraphs.

3.4.3 From the EdgeWeights

As we have already seen, the moduli space of graphs with (complex) edge
weights is the vector spaceC

n(n−1)/2, andwe can add suchweighted graphs
by adding the weights of each edge. Again, the symmetry group Sn per-
muting the vertices of a graph then operates on that vector space. Since this
is the operation of a group on a vector space, we are therefore in the realm
of representation theory. We shall now briefly present that theory and apply
it to the example of weighted graphs with 4 vertices.

3.4.4 Representation Theory

Definition 3.4.1 A representation of the (finite) group G is a homomor-
phism

ρ : G → Gl(V ) (3.4.13)

into the automorphismgroupof a (finite-dimensional) complex vector space
V . ρ is also said to give V the structure of a G-module.

One also usually simply says that V is a representation of G, assuming
that ρ is clear from the context.
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Here,Gl(V ) is the group of invertible linear endomorphisms of the vector
space V . When we identify V as C

n by choosing some vector space basis
of V , then Gl(V ) operates by invertible matrices, and so then does every
element g ∈ G via ρ(g). We therefore often write gv in place of ρ(g)v for
v ∈ V .

A morphism between representations V and W of G is then given by a
linear map L : V → W that commutes with the actions of G, that is the
diagram

V
L−−−−→ W

g

⏐
⏐
�

⏐
⏐
�g

V
L−−−−→ W

(3.4.14)

commutes for every g ∈ G.
We are then naturally interested in the representations of G up to iso-

morphism; we write V ∼= W for isomorphic representations.
The concept of a representation is compatible with natural operations

on vector spaces. For representations V, W , the direct sum V ⊕ W and the
tensor product V ⊗ W are also representations2; for instance

g(v ⊗ w) = gv ⊗ gw. (3.4.15)

A representation ρ on V induces a representation ρ∗ on the dual V ∗ =
Hom(V, C) via the requirement that the pairing 〈v∗, v〉 := v∗(v) be pre-
served,

〈ρ∗(g)v∗, ρ(g)v〉 = 〈v∗, v〉 for all v, v∗, (3.4.16)

namely
ρ∗(g) = ρ(g−1)t : V ∗ → V ∗. (3.4.17)

Therefore, when V, W are representations, so is

Hom(V, W ) = V ∗ ⊗ W. (3.4.18)

g then acts on L ∈ Hom(V, W ) via

L �→ g ◦ L ◦ g−1, that is, v �→ gL(g−1v). (3.4.19)

L is said to be G-linear or G-equivariant if

g ◦ L ◦ g−1 = L for all g. (3.4.20)

In other words, the space of G-linear maps between the representations V
and W is identified with the space

HomG(V, W ) (3.4.21)

of elements of Hom(V, W ) fixed under the action of G.

2 The direct sum and the tensor product can be defined in categorical terms, see Sect. 8.2
for such constructions. For the present purposes, it is sufficient to consider the cases
where V = C

n and W = C
m , with bases (e1, . . . , en) and ( f1, . . . , fm). Cn ⊕ C

m is
then the vector space Cn+m with basis (e1, . . . , en, f1, . . . , fm) and C

n ⊗ C
m is Cnm

with basis vectors (ei ⊗ f j ), i = 1, . . . , n, j = 1, . . . , m.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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Definition 3.4.2 AsubspaceV ′ �= {0}of the representationV that is invari-
ant under the action of G (i.e., gv′ ∈ V ′ for every v′ ∈ V ′, g ∈ G) is called
a subrepresentation. When V ′

� V , this subrepresentation is proper. The
representation V is called irreducible if it does not contain a proper sub-
representation.

We have the following important

Lemma 3.4.1 For each proper subrepresentation V ′ of V , there is a com-
plementary subrepresentation, that is a complementary G-invariant sub-
space V ′′ with

V = V ′ ⊕ V ′′. (3.4.22)

Proof Take any Hermitian product 〈., .〉 on V and average it over G to
obtain a G-invariant Hermitian product

〈v,w〉G :=
∑

g∈G

〈gv, gw〉. (3.4.23)

(Here, G-invariance means that 〈hv, hw〉G = 〈v,w〉G for all h ∈ G; this
G-invariance of (3.4.23) follows from the fact that when g runs through
all the elements of G, so does gh for any h ∈ G.) We then take V ′′ as the
subspace of V that is orthogonal to V ′ w.r.t. 〈., .〉G . �

The method of the preceding proof, averaging a product over the G-
action is simple, but very important.3 In fact, for the representation theory
of compact Lie groups, such an averaging via integration w.r.t. an invariant
measure on the group is fundamental. For noncompact groups, however, it
fails in general.

We immediately obtain

Lemma 3.4.2 (Schur) If V, W are irreducible representations of G and
L ∈ HomG(V, W ), then either L = 0 or L is an isomorphism. If V = W ,
then L = λ Id for some λ ∈ C. Thus,

dimHomG(V, W ) =
{

1 if V ∼= W

0 if V ∼=/ W
(3.4.24)

Proof The kernel and the image of L are invariant subspaces. Irreducibility
implies that they are either 0 or the entire spaceV orW , resp.WhenV = W ,
L must have some eigenvalue λ, hence L − λ Id has nonzero kernel. By
irreducibility again, this kernel then must be all of V , hence L = λ Id. �

Remark In Schur’s lemma, it is important that the representations be com-
plex, so as to ensure the existence of eigenvalues.

3The method of averaging has a more general scope than described here, as it can also
be used for linear representations in vector spaces over fields other than C or R. It breaks
down, however, when working over a field whose characteristic divides the group order.
Here, we refrain from explaining this in detail.
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Corollary 3.4.1 Any representation V of the finite group G can be uniquely
decomposed as a direct sum of distinct unique irreducible representations
Vi with unique multiplicities mi

V = V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k . (3.4.25)

(The uniqueness here of course holds up to permutation of the sum-
mands.)

Proof The decomposition follows from Lemma 3.4.1, and the uniqueness
follows from Schur’s Lemma 3.4.2. �

For a group G, we first of all have the trivial representation on C, with

gv = v for all v ∈ C. (3.4.26)

For the symmetric group Sn , we also have the permutation representation
on the vector space C

n that permutes the coordinate axes. This represen-
tation is not irreducible because

∑

ei , where the ei , i = 1, . . . , n, are the
standard basis vectors of C

n , spans a 1-dimensional invariant subspace. On
the complementary subspace

V := {z ∈ C
n :

∑

zi = 0} (3.4.27)

the representation is irreducible. This is called the standard representation.
Moreover, we have the alternating representation ofSn onC, defined by

v �→ sgn(g)v, (3.4.28)

where the signum, sgn(g), is 1 or −1, depending on whether g consists
of an even or odd number of transpositions. (The reader may recall from
Sect. 2.1.6 that anypermutation canbewritten as a product of transpositions,
that is, exchanges between two elements of the set on which it operates; in
the sequel, we shall write the permutation exchanging i and j as (i j). The
alternating group is then the kernel of this representation.)

In fact, any finite group G operates as a group of permutations, or more
precisely, can be seen as a subgroup of a permutation group. In fact, it
operates on itself by left translation, and this permutes the group elements.
In general, when G operates by left translation on a finite set S, we have a
homomorphismG → Aut(S) into the permutation group of S, and this then
induces a representation of G on the vector space VS with basis elements
es corresponding to the elements s ∈ S, and the representation then is
obviously

g
∑

λses =
∑

λsegs . (3.4.29)

Thus, the case where S = G on which G operates by left translation is
a special case, and the resulting representation is called the regular repre-
sentation VR of G. Note, however, that the permutation representation of
Sn is not the regular representation, because the former is induced by the
operation of Sn on a set of n elements whereas the latter comes from the
action of Sn on itself by left translation.

Returning to the above example of graphs with 4 vertices, S4 operates
on M(4), or more precisely on C

6, the space of weighted graphs with 4

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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vertices, by permutation of the edges. Since edges are given by pairs of
vertices, this representation comes from the representation on Sym2

C
4, the

symmetric 4×4matrices with complex entries, induced by the permutation
representation. Again, this representation is not irreducible. First of all, the
subrepresentation on pairs of the form ( j, j), j = 1, 2, 3, 4, is a permuta-
tion representation (which decomposes, as discussed, into the sum of the
trivial and the standard representation). Since Sym2

C
4 is 10-dimensional,

we are left with a 6-dimensional representation. Again, it contains a permu-
tation representation as a subrepresentation operating on triples of edges
sharing one vertex. For instance, when we permute the vertices 1 and 2,
the edge triple e12, e13, e14 goes to the edge triple e12, e23, e24. This per-
mutation representation then splits, as always, into the sum of the trivial
and the standard representation. The complementary representation is 2-
dimensional. This representation, in fact, is a representation of the quotient
group

S3 = S4/{1, (21)(43), (31)(42), (41)(32)}, (3.4.30)

where ( j i) is the permutation of the vertices i and j . This representationS3, S4
permutes pairs of opposite edges. Thus,S3 operates on the set of edge pairs
{(e12, e34), (e13, e24), (e14, e23)} by permutation. It is only a 2-dimensional
representation, because we have split off the trivial representation already.
In other words, we have the standard representation of S3.

We now proceed to a more systematic treatment of the representations
of a finite group G. The group G operates on itself by conjugation

g �→ hgh−1 for h ∈ G. (3.4.31)

The orbits of this action are called conjugacy classes; that is, the conjugacy
class of g is

C(g) := {hgh−1 : h ∈ G}. (3.4.32)

Of course, when G is abelian, the conjugacy class of an element consists
only of that element itself. Here, however, we are rather interested in non-
abelian groups like the symmetric group Sn .

Since conjugacy is an equivalence relation on the elements of g (for
instance, if g2 = hg1h−1, then g1 = kg2k−1 with k = h−1, showing the
symmetry), the group G is the disjoint union of its different conjugacy
classes. This decomposition of the group G will be the key to understand
its representations.

Group elements in the conjugacy class should be similar to each other, or
more precisely, operate in essentially the same manner in representations.
When g1 and g2 = hg1h−1 are conjugate, then the operation of g2 is
obtained from that of g1 simply by shifting vectors v by the operation
of h; in formulae, g2(hv) = hg1h−1hv = hg1(v). Therefore, we shall
now consider functions that are constant on the conjugacy classes of G,
and we shall see that a representation produces a particular class function,
the so-called character, which in turn determines this representation, see
Corollary 3.4.3. In particular, we shall see that the number of irreducible
representations of a finite group equals its number of conjugacy classes,
see Corollary 3.4.2.
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Definition 3.4.3 A class function on G is a complex valued function that is
constant on the conjugacy classes of G. The vector space of class functions
is denoted by Cclass(G). On Cclass(G), we have the Hermitian product

(φ, ψ) := 1

|G|
∑

g

φ(g)ψ(g), (3.4.33)

where, of course, the normalization factor |G| denotes the number of ele-
ments of G.

The following lemma indicates that class functions are relevant for under-
standing group representations.

Lemma 3.4.3 If φ : G → C is a class function and V a representation of
G, then

Lφ,V :=
∑

g

φ(g)g : V → V (3.4.34)

is G-equivariant.

Proof

Lφ,V (hv) =
∑

g

φ(g)g(hv)

=
∑

g

φ(hgh−1)hgh−1(hv) since hgh−1 runs through G if g does

= h(
∑

g

φ(g)g(v)) since φ is a class function

= h(Lφ,V (v))

which is the condition for G-equivariance. �

So, the point of the proof is that we can pull h from the right to the left
of g even though h and g need not commute, because gh and hg are in the
same conjugacy class and φ is constant on conjugacy classes.

(In fact, the converse also holds, that is, if Lφ,V is G-equivariant, then
φ is a class function. The reader may prove that herself.)

We consider the class function φ(g) = 1
|G| for all g and the associated

G-equivariant

L := L1,V = 1

|G|
∑

g

g : V → V . (3.4.35)

We have

Lemma 3.4.4 L projects V onto the fixed point set

V G := {v ∈ V : gv = v for all g ∈ G}. (3.4.36)
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Proof For any h ∈ G,

hLv = 1

|G|
∑

g

hgv

= 1

|G|
∑

g

gv by the familiar argument

= Lv.

Thus, the image of L is contained in the fixed point set. Conversely, if v is
fixed by all g, then it is also fixed by L , the average over all g. In particular,
L ◦ L = L . �

It will now turn out that representations can be understood in terms of
particular class functions.

Definition 3.4.4 The character of a representation V of G is the class
function

χV (g) := tr(g|V ). (3.4.37)

Of course,χV is a class function because the trace of amatrix is invariant
under conjugation.

The main result of this section will be that the characters form an ortho-
normal basis w.r.t. to the Hermitian product (3.4.33) of Cclass(G).

Let us start with some easy examples:

1. For the trivial representation, we have χ(g) = 1 for every g.
2. For the alternating representation of Sn , we have χ(g) = sgn(g) for

every g.
3. Let V1 be a 1-dimensional representation of G. Then, identifying V1

with C, for every g ∈ G, g1 = λ for some λ ∈ C, and since gn = e for
some n ∈ N as G is finite, we have λn = 1. Therefore, λ is a root of
unity, and hence

|χV1(g)| = 1. (3.4.38)

4. For the permutation representation of Sn , χ(g) equals the number ofSn
fixed points of g on the set of n elements on whichSn operates. This is
easily seen: The trace of amatrix is the sum of its diagonal elements, and
when an element is fixed by g, we get a corresponding one on the diago-
nal of the matrix for the permutation representation of g, whereas when
two elements are exchanged by g, the corresponding matrix contains a
block of the form (

0 1
1 0

)

, (3.4.39)

that is, one with 0s on the diagonal.
5. The preceding then extends to any subgroup of the permutation group

of a set S, in particular to the regular representation VR of a group G
induced by the left translations of G on itself. In particular, we have

χVR (e) = |G| (3.4.40)

χVR (g) = 0 for g �= e. (3.4.41)
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6. Since the permutation representation splits as the direct sumof the trivial
and the standard representation, we can deduce the characters for the
latter from (3.4.42) below. χ(g) for the standard representation simply
equals the number of fixed points of g minus 1.

We next compile some elementary general results about characters.

Lemma 3.4.5 For representations V, W of G, the characters satisfy

χV ⊕W = χV + χW (3.4.42)

χV ⊗W = χV χW (3.4.43)

χV ∗ = χ̄V (3.4.44)

χHom(V,W ) = χ̄V χW (3.4.45)

χ∧2 V = 1

2
(χV (g)2 − χV (g2)) (3.4.46)

χSym2V = 1

2
(χV (g)2 + χV (g2)) (3.4.47)

Proof All these formulae follow easily from the fact that the trace of a
matrix is the sum of its eigenvalues. For instance, when the operation of
g on V has eigenvalues λi , then the eigenvalues of the operation on

∧2 V
are λiλ j , i < j , and

∑

i< j

λiλ j = 1

2
((

∑

λi )
2 −

∑

λ2
i ), (3.4.48)

and for Sym2V , we can either use the eigenvalues λiλ j , i ≤ j , or the
relation

V ⊗ V = Sym2V ⊕
∧2

V . (3.4.49)

Also, (3.4.45) follows from (3.4.18), (3.4.43), (3.4.44). �

While Lemma 3.4.5 is easy, it embodies an important principle: Alge-
braic relations between representations are converted into arithmetic rela-
tions between their characters.

We now come to the key observation

Lemma 3.4.6 For any representation V of G,

dim V G = 1

|G|
∑

g

χV (g), (3.4.50)

where V G is the fixed point set of (3.4.36).

Proof By Lemma 3.4.4, for L = 1
|G|

∑

g g : V → V ,

dim V G = trL = 1

|G|
∑

g

trg = 1

|G|
∑

g

χV (g). (3.4.51)

�
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We can now bring everything together. We apply Lemma 3.4.6 to the
representation Hom(V, W ), where V, W are representations of G, recall
from (3.4.45) that the character of this representation is χV χW and divide
this by |G| to obtain the Hermitian product (3.4.33) of the characters χV

and χW and at the same time make (3.4.50) applicable and conclude that
this Hermitian product is

1

|G|
∑

g

χV (g)χW (g) =
{

1 if V ∼= W

0 if V ∼=/ W
(3.4.52)

Theorem 3.4.1 The characters of the irreducible representations of G form
an orthonormal basis of Cclass(G) w.r.t. the Hermitian product (3.4.33).

Proof The orthonormality is contained in (3.4.52). In order to show that
the characters span Cclass(G), we need to show that φ = 0 is the only class
function φ satisfying (φ, χV ) = 0 for all characters of representations;
in fact, since any representation is a sum of irreducible representations, it
of course suffices to consider the characters of the irreducible representa-
tions. We consider the G-equivariant map Lφ,V = ∑

g φ(g)g : V → V
of (3.4.34) for an irreducible representation V . By Schur’s Lemma 3.4.2,
Lφ,V = λId, and so

λ = 1

dim V
trLφ,V = 1

dim V

∑

g

φ(g)χV (g) = |G|
dim V

(φ, χV ∗) = 0.

This means that
∑

g

φ(g)g = 0 for all representations of V . (3.4.53)

But, for instance, for the regular representation, the operations of the gs are
linearly independent. Therefore, (3.4.53) yields φ(g) = 0 for all g, hence
φ = 0. �

This theorem has a number of immediate corollaries.

Corollary 3.4.2 The number of irreducible representations of the finite
group G is equal to the number of conjugacy classes of G.

Proof The dimension of Cclass(G) is equal to the number of conjugacy
classes of G. �

Corollary 3.4.3 Representations are determined by their characters.

Corollary 3.4.4 For a representation V and an irreducible representation
Vi , Vi occurs in V with multiplicity mi = (χV ,χVi ). In particular, V is
irreducible iff

(χV , χV ) = 1. (3.4.54)
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Proof According to (3.4.25), we can decompose V as V = V ⊕m1
1 ⊕ · · · ⊕

V ⊕mk
k , and from (3.4.42), we get

(χV ,χV ) =
∑

m2
i , (3.4.55)

and the results follow easily. �

Corollary 3.4.5 If V is an irreducible representation of G and V1 is a
1-dimensional representation, then V ⊗ V1 is also irreducible.

Proof By (3.4.43), χV ⊗V1 = χV χV1 , and so by (3.4.38),

(χV χV1 ,χV χV1) = (χV , χV ) = 1 since V is irreducible,

by the preceding Corollary, which in turn implies that V ⊗ V1 is
irreducible. �

Of course, this is trivial if V1 is the trivial representation, but wemay also
apply it, for instance, to the alternating representation of the permutation
group.

Corollary 3.4.6 Unless G is trivial (G = {e}), the regular representation
of G is not irreducible. In fact, it is the sum of all irreducible representations
Vi , and each Vi appears in this sum with multiplicity mi = dim Vi ; thus

|G| = dim VR =
∑

Vi irred. rep. of G

(dim Vi )
2, (3.4.56)

and
0 =

∑

dim ViχVi (g) for g �= e. (3.4.57)

Proof It follows from (3.4.54), (3.4.40), (3.4.41) that for |G| > 1, the
regular representation is not irreducible. We decompose it as a sum of the
irreducible representations

VR = V m1
1 ⊕ · · · ⊕ V mk

k , (3.4.58)

hence
dim VR =

∑

i

mi dim Vi . (3.4.59)

From Theorem 3.4.1, (3.4.55), (3.4.40) and (3.4.41), we obtain

mi = (χVi ,χVR ) = 1

|G|χVi (e)|G| = dim Vi , (3.4.60)

and with (3.4.59), also (3.4.56) follows. Similarly, (3.4.57) is derived from
(3.4.41). �

As a test, we now apply the preceding theory to the symmetric groupS4.
Representations of
S4From the abstract discussion of representations and the action on the set of

edges of graphs with 4 vertices, and the corresponding action on M(4), we
already know the following representations:
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1. The trivial representation V0
2. The alternating representation V1
3. The standard representation V
4. The representation V3 of the quotient group S3
5. The representation V ′ := V ⊗ V1, according to Corollary 3.4.5

We shall nowverify from the characters of these representations and the pre-
ceding results that these are all the irreducible representations. As a prepa-
ration, we observe that S4 possesses 5 conjugacy classes, represented by
the elements 1, (21), (21)(43), (231), and (2341). These classes contain 1, 6,
3, 8, and 6 elements, resp.We also recall that the permutation representation
VP is reducible as the sum of the standard and the trivial representation.
We then have the following character table, first for VP and then below the
line for the irreducible representations

class 1 (21) (21)(43) (231) (2341)
# elements 1 6 3 8 6

VP 4 2 0 1 0
V0 1 −1 1 1 1
V1 1 −1 1 1 −1
V 3 1 −1 0 −1
V3 2 0 2 −1 0
V ′ 3 −1 −1 0 1

Character table for
S4 For instance, the character χVP (g) is given by the number of fixed points

of the permutation induced by g which directly gives the first row. The
row for V0 is obvious, and the row for V then follows from the relation
VP = V ⊕ V0, using (3.4.42). The row for V1 is again obvious, and
the row for V ′ then follows from V ′ = V ⊗ V1, using (3.4.43). Finally,
the characters for V3 can be either determined directly or deduced from the
others with the help of (3.4.56) and (3.4.57).

In fact, wemay also observe that as the rows of the table of the characters
are orthogonal, so are the columns, and we have

∑

Vi irred. rep. of G

χVi (g)χVi (h) = 0 if g and h are not conjugate.

(3.4.61)

We may also check this relation in the preceding character table for S4.
Here, we have used the operation of S4 on the vertex and edge sets of

graphs with 4 elements to derive its character table. As an alternative, we
can also use its operation on the 3-dimensional cube by permutations of its
4 spatial diagonals. It is an instructive exercise for the reader to carry this
through.

More importantly, the reader is invited to investigate how the preceding
analysis generalizes to the symmetric group Sd for arbitrary d ∈ N.

A reference for this section is [40] which I have followed for many of
the details. The material is also presented in [17, 75, 111], for instance.
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The representation theory of finite groups was originally developed by
Frobenius and I.Schur, see [99]. Similar methods apply to representations
of compactLie groups, as shownbyPeter andWeyl [93].More generally, the
Cartan-Weyl theory of representations of compact Lie groups decomposes
irreducible representations under abelian subgroups, see for instance [54,
69, 116].



4Spaces

In the history of science, there have been different conceptualizations of
the relation between physical objects or bodies and space. One view, which
underlies Aristotelian and Cartesian physics, is that space simply surrounds
bodies. In that perspective, bodies have the ontological priority. Without
bodies, there is no space. In the other view, which emerged in the natural
philosophy of the 16th century and which is basic for Galilean and New-
tonian physics, bodies fill a preexisting space. It is this latter view that also
underlies the topological concepts to be developed in this chapter although
its traces might be somewhat difficult to discern in the abstract definitions.
Therefore, let me illustrate this aspect first in informal terms. Topology is
concerned with a set and its subsets and it equips that set with the structure
of a space by singling out a particular collection of subsets as open. The
complements of open sets are then called closed. Closed sets contain their
boundary, whereas open sets don’t. For the standard topology of the real
line, intervals of the form {x ∈ R : a < x < b} are open, those of the form
{x ∈ R : a ≤ x ≤ b} closed, when a < b ∈ R are fixed. The boundary of
such an interval consists of the points a and b. Similarly, in R

d , open sets
are generated by strict inqualities, for instance {x ∈ R

d : a < f (x) < b}
for some continuous function f , and closed sets by weak such inequal-
ities. Under some nondegeneracy assumption which we don’t spell out
here, the boundary would consist of the hypersurfaces {x : f (x) = a} and
{x : f (x) = b}.

At this level of abstraction, physical bodies could be considered as closed
subsets of the space. Now let us explore the implications of this in terms of
naive physics. The boundary might represent the skin of a body. A natural
intuition is that two bodies could touch each other along their skins, like
when you are shaking hands with another person or get in some other
way in physical contact. This, however, is not compatible with the above
topology. In that topology, two sets can touch only along some interface, and
that interface between two disjoint sets can only belong to one of them. Or
putting it differently, if two closed sets touched each other, they would have
to share a single skin. For instance, if B1 = {x : a ≤ f (x) ≤ b} and B2 =
{x : b ≤ f (x) ≤ c}, they share the interface { f (x) = b}. In that sense, the
topology that we are going to develop is somewhat counterintuitive, or at
least not compatible with an Aristotelian view of physics. Instead of having
two bodies touch each other along their individual skins, one should rather
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think of two chambers separated by a common wall. For instance, the open
chambers C1 = {x : a < f (x) < b} and C2 = {x : b < f (x) < c} share
the wall { f (x) = b} which belongs to neither of them. (Ignore the fact that
this wall is infinitely thin.)

Of course, for a real physical understanding of what happens when two
bodies touch each other, we should go to atomic physics, and to explore
the relation between physical objects and physical space, we should look
into the theory of general relativity. But this is not our concern here, and in
the sequel, I shall develop the mathematical concept of a topological space.
This concept, which is essentially due to Hausdorff [48], has a far wider
significance than abstractly modelling physics in three-dimensional space,
and in fact, it constitutes one of the basic tools of modern mathematics.

Actually, in the preceding informal discussion,we have used the ordering
< of the real line in order to illustrate its topology. The abstract concept of
a topological space that we are going develop will, however, not need any
such ordering. It simply imposes some structure upon the power set of a
given set. This should also serve as an important example that we need to
disentangle concepts in order to understand their full scope. That will also
guide our considerations in Chap.5.

4.1 Pretopological andTopological Spaces

For a set X , let P(X) be its power set, that is, the set of all its subsets. We
recall from (2.1.88)–(2.1.91) that P(X) has an algebraic structure with the
following operations

Complement: A �→ X \ A (4.1.1)

Union: (A, B) �→ A ∪ B (4.1.2)

Intersection: (A, B) �→ A ∩ B := X \ (X \ A ∪ X \ B) (4.1.3)

Implication: (A, B) �→ A ⇒ B := (X \ A) ∪ B, (4.1.4)

and we also have the relations

A ∪ (X \ A) = X (4.1.5)

A ∩ (X \ A) = ∅ (4.1.6)

for all A ∈ P(X).
The preceding relations turn P(X) into a Boolean algebra (Definition

2.1.11). Here, the intersection∩ corresponds to the logical and∧, the union
∪ to the logical or ∨, and the complement \ to the negation ¬. In fact,

x ∈ A ∩ B ⇔ (x ∈ A) ∧ (x ∈ B) (4.1.7)

x ∈ A ∪ B ⇔ (x ∈ A) ∨ (x ∈ B) (4.1.8)

x ∈ X\A ⇔ ¬(x ∈ A) (⇔ x /∈ A). (4.1.9)

For the statement of the relations ∩,∪, \, we do not need to invoke
the points of X . In fact, essentially all what follows can be developed on
the basis of this structure on P(X) without involving those points. The

http://dx.doi.org/10.1007/978-3-319-20436-9_5
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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systematic exploration of this aspect is called pointless topology (note the
pun!).

In this section, we shall introduce and study the notion of a topological
space which is defined in terms of classes of subsets of P(X), called open,
that are characterized by properties involving the union ∪ and the inter-
section ∩ operators, but do not need the complement \, see Theorem 4.1.1
below. In Sect. 4.2, we shall introduce another notion, that of a measur-
able space, which is defined in terms of classes of subsets of P(X), called
measurable, whose characterization will also involve the complement.

We start with a more general concept, which, as we shall argue, is also
of independent interest.

Definition 4.1.1 X is called a pretopological space if it possesses an oper-
ator ◦:P(X) → P(X) with the following properties

(i) X◦ = X .
(ii) A◦ ⊂ A for all A ∈ P(X).
(iii) A◦ ∩ B◦ = (A ∩ B)◦ for all A, B ∈ P(X).

A◦ is called the interior of A. A is called open if A = A◦.
O(X) ⊂ P(X) is the collection of open subsets of X .
X is called a topological space if the operator ◦ in addition satisfies

(iv) A◦◦ = A◦ for all A ∈ P(X).

Thus, in a topological space, the interior of a set is always open.

Lemma 4.1.1 In a pretopological space X,

A ⊂ B implies A◦ ⊂ B◦. (4.1.10)

Proof Since A ∩ B = A when A ⊂ B, we have

A◦ = (A ∩ B)◦ = A◦ ∩ B◦ ⊂ B◦. �

In particular, we conclude that

(∅)◦ = ∅. (4.1.11)

Thus, on ∅, the only pretopology is that with (4.1.11). On a set with a single
element, X = {1}, we also have only a single pretopology, because wemust

(Pre)topologies on
{1}

also have X◦ = X . On a set with two elements, X = {1, 2}, we can put {1}◦
(Pre)topologies on
{1, 2}

as either {1} or ∅, and we have the same options for the other single element
set, {2}. Thus, altogether, we have four different pretopologies on this set.
Each such pretopology would also be a topology. On a three element set,
X = {1, 2, 3}, we could, for instance, put {1, 2}◦ = {1} and {1}◦ = ∅, in {1, 2, 3}
which case the resulting pretopology would not be a topology.
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Lemma 4.1.2 In a topological space, A◦ is the largest open subset of A.

Proof If A′ is an open subset of A, that is, (A′)◦ = A′ ⊂ A, then by
Lemma 4.1.1, (A′)◦ ⊂ A◦. Thus, any other open subset of A is contained
in A◦. �

Theorem 4.1.1 A topological space X is defined by a collection O(X) ⊂
P(X) whose members are called the open subsets of X, satisfying

(i) X ∈ O(X).
(ii) ∅ ∈ O(X).

(iii) If A, B ∈ O(X), then also A ∩ B ∈ O(X).
(iv) For any collection (Ai )i∈I ⊂ O(X), also

⋃

i∈I Ai ∈ O(X).

Remark If one employs the conventions
⋃

i∈∅ Ai = ∅,
⋂

i∈∅ Ai = X
and requires condition (iii) for any finite intersection, then the first two
conditions become superfluous.

Proof Given an operator ◦ as in Definition 4.1.1, we need to show that the
sets with A◦ = A satisfy the conditions of the theorem. The first three
conditions are clear from the axioms of the definition and (4.1.11). Now
suppose that the sets Ai satisfy A◦

i = Ai . Then for B = ⋃

i∈I Ai , since
Ai ⊂ B for all i , we then also have A◦

i ⊂ B◦ by (4.1.10), hence B◦ ⊃
⋃

i∈I A◦
i = ⋃

i∈I Ai = B, hence B◦ = B. This verifies condition (iv) of
the theorem.

Conversely, when we have a collection O(X) as in the theorem, we
define A′ as the largest member ofO(X) contained in A. For condition (iii)
of Definition 4.1.1, it is clear that A′ ∩ B ′ ⊂ (A ∩ B)′ because A′ ∩ B ′ is
an open subset of A ∩ B. Conversely, when (A ∩ B)′ is not contained in
A′ ∩ B ′, then it is either not contained in A′ or not contained in B ′. In the
latter case, (A′ ∩ B ′) ∪ B ′ is an open subset of B larger than B ′ which is in
contradiction with the definition of B ′ as the largest open subset of B.

At this point, the reader maywonder whywe have not yet used condition
(iv) of Definition 4.1.1. But it still remains to show that the collection
O(X) that we have defined with the help of ◦ yields the original topology
that we have started with. For this, we need to show that A′ = A◦ for all
A ∈ P(X). Since O(X) is closed under taking unions, A′ is the union of
all members of O(X) contained in A. Now by condition (iv) of Definition
4.1.1, A◦ ∈ O(X), hence A◦ ⊂ A′. Conversely, since A′ ⊂ A and by
definition of O(X), (A′)◦ = A′, we get from Lemma 4.1.1 that A′ ⊂ A◦.
Thus, A′ = A◦. �

From the proof of Theorem 4.1.1, we see that any pretopology defines
a topology whose open sets are those with A◦ = A. Unless the original
pretopology is a topology, however, not every set of the form A◦ is open.

The collectionO(X) of open sets of a topological space in general does
not form a Boolean algebra, because complements of open sets need not be
open. However, it is a Heyting algebra which, as we recall from (2.1.41),

http://dx.doi.org/10.1007/978-3-319-20436-9_2


4.1 Pretopological and Topological Spaces 93

(2.1.42), (2.1.43), means the following. First, a lattice with 0 and 1 is a par-
tially ordered set with two binary associative and commutative operations
∧,∨ and two distinguished elements 0, 1, satisfying

a ∧ a = a, a ∨ a = a (4.1.12)

1 ∧ a = a, 0 ∨ a = a (4.1.13)

a ∧ (b ∨ a) = a = (a ∧ b) ∨ a (4.1.14)

for any element a.
A lattice with 0 and 1 is a Heyting algebra if for any elements a, b, there

exists an exponential ba , that is, according to (2.1.80), an element a ⇒ b
characterized by

c ≤ (a ⇒ b) iff c ∧ a ≤ b. (4.1.15)

O(X) with the inclusion ⊂ as the partial order ≤, with ∅, X as 0, 1 and
with ∩,∪ as ∧, ∨ is a lattice. When we put

U ⇒ V :=
⋃

W for all open W with W ∩ U ⊂ V, (4.1.16)

it becomes a Heyting algebra. The key point here is that the complement
of a set is replaced by the interior of its complement, in order to stay inside
the categoryO(X). We remark that Heyting algebras also replace Boolean
algebras when one goes from classical logic to intuitionistic propositional
calculus where one abandons the law of the excluded middle, that is, the
exclusive complementarity between a statement and its complement. This
issue will be taken up in Sect. 9.3.

Lemma 4.1.3 In a topological space X, for any collection of subsets
(Ai )i∈I ,

(
⋃

i∈I

Ai )
◦ =

⋃

i∈I

A◦
i . (4.1.17)

Proof This follows from Theorem 4.1.1 which implies that in a topological
space, the union of open sets is open. �

Example 1. For a set X , O = {∅, X} is the smallest O satisfying all the
axioms for a topological space. This topology is called the indiscrete
topology.

Indiscrete topology
O = {∅, X}

2. For a set X , O = P(X) is the largest O satisfying all the axioms for a
topological space. This topology is called the discrete topology. Discrete topology

O = P(X)3. Let (X, d) be a metric space. The metric induces a topology on X
whose open sets are obtained from unions of ballsU (x, r) := {y ∈ X :
d(x, y) < r} for some x ∈ X, r ≥ 0. (U (x, 0) = ∅,

⋃

x∈X U (x, r) =
X for any r > 0.)

(a) When X = R
d and d is theEuclideanmetric, this yields the standard Euclidean metric

topology of Euclidean space. Note that this topology can be gen-
erated by many different metrics. For instance, any metrics d(., .)

that are generated by some norm ‖.‖, that is, d(x, y) = ‖x − y‖,
are equivalent to each other in the sense that they generate the same
topology on R

d .

http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_9
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(b) From the trivial metric (2.1.51), we obtain the discrete topology,Trivial metric

Discrete topology
because in that case any ball U (x, r) for 0 < r < 1 reduces to
the singleton set {x}. Therefore, any such singleton set is open,
and since any set U is the union of the singleton sets of its points,
U = ⋃

x∈U {x}, therefore every U is open.

4. X = R. Let O consist of ∅, X and all intervals (ξ, ∞), ξ ∈ R.
5. Let X contain infinitely many points. We let O consist of ∅ and all

complements of finite sets. This topology is called the cofinite topology.
6. For a vector space V , letO consist of all complements of finitely many

affine linear subspaces of V .

The preceding examples can be cast into a slightly more systematic form
with the help of

Definition 4.1.2 B ⊂ O(X) is called a basis1 for the topology O(X) if
every U ∈ O(X) can be written as a union of elements of B.

In the examples, we can then identify the following bases: {X} for 1,
{{x}, x ∈ X} in 2, the balls U (x, r) with x ∈ X and rational r in 3 (use
the triangle inequality to check that the intersection of finitely many balls
can also be represented as the union of balls centered at elements of this
intersection), the intervals (ξ, ∞) with rational ξ in 4.

With this notion, we also naturally have

7. Let (X,O(X)), (Y,O(Y )) be topological spaces. We can then equip the
product X × Y = {(x, y) : x ∈ X, y ∈ Y } with the topologyO(X × Y )

that has as basis sets U × V with U ∈ O(X), V ∈ O(Y ). This topology
on X × Y is called the product topology.

We can also start with a B ⊂ P(X) that satisfies

(i)
⋃

B∈B
B = X, (4.1.18)

(ii)

If B1, B2 ∈ B, x ∈ B1 ∩ B2, there exists B0 ∈ B with x ∈ B0 ⊂ B1 ∩ B2
(4.1.19)

and then letO consist of all unions of elements ofB. This defines a topology
on X with basis B.

When B ⊂ P(X) does not satisfy (4.1.19), it need not be the basis
of any topology on X . For instance, take X = {−1, 0, 1}, and let B1 =
{−1, 0}, B2 = {0, 1}. Then {B1, B2} cannot be the basis of any topology
because we cannot recover the set {0} = B1 ∩ B2 by taking unions.

To address this deficiency, we formulate

1In [66], this is called a base instead of a basis.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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Definition 4.1.3 S ⊂ O(X) is called a subbasis for the topology O(X) if
everyU ∈ O(X) can bewritten as a union of finite intersections of elements
of S.

In contrast to the previous example, we can now take any S ⊂ P(X).
Then O, defined as the collection of all finite intersections of unions of
members of S, is a topology on X with subbasis S. We say that S generates
the topology O.

We also have

Lemma 4.1.4 B ⊂ O(X) is a basis for the topology O(X) iff for every
U ∈ O(X) and every x ∈ U, there exists some V ∈ B with x ∈ V ⊂ U.

Proof Let B be a basis. If x ∈ U ⊂ O(X), then since U is the union of
members of B, there must exist some V ∈ B with x ∈ V ⊂ U . For the
converse, let U ∈ O(X) and let W be the union of all V ∈ B with V ⊂ U .
Thus W ⊂ U . But when x ∈ U , by assumption there exists some V ∈ B
with x ∈ V ⊂ W . Hence also U ⊂ W , and altogether U = W . Thus, every
open set is the union of members of B. �

Definition 4.1.4 An open set containing an element x is called an (open)
neighborhood of x .

Definition 4.1.5 U ⊂ O(X) \ {∅} is called an open covering of the topo-
logical space X if

⋃

U∈U U = X .

The following is one of the most important concepts of mathematical
analysis, but it will not be explored in this book.

Definition 4.1.6 A subset K of the topological space (X,O(X)) is called
compact if every open covering U of K , i.e., K ⊂ ⋃

U∈U U , possesses a
finite subcovering. That means that there exist finitely many U1, . . . , Um ∈
U such that

K ⊂
⋃

j=1,...,m

U j . (4.1.20)

The topological space (X,O(X)) is called locally compact if every x ∈ X
is contained in some compact subset K ⊂ X that contains some open
neighborhood U of x , i.e., x ∈ U ⊂ K .

We next describe how a topology can be transferred from a set to its
subsets.

Definition 4.1.7 Let (X,O(X) be a topological space. The topology on
Y ⊂ X defined by O(Y ) := {U ∩ Y, U ∈ O(X)} is called the induced
topology on Y .

One might also consider a topological structure as a device for local-
izing constructions in a set, or better, as the framework that defines such
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localizations. In that sense, the question naturally emerges whether such a
concept of localization is compatible with the notion of a set as composed
of elements. An open set is conceived as surrounding the points contained
in it. Such a compatibility is then expressed by the following

Definition 4.1.8 A topological space (X,O(X)) is called a Hausdorff
space if for every two elements x1 �= x2 ∈ X there exist disjoint open
sets, i.e., U1 ∩ U2 = ∅ with x1 ∈ U1, x2 ∈ U2.

Thus in a Hausdorff space any two distinct points possess disjoint open
neighborhoods.

We note, however, that the topologies of examples 4, 5 and 6 do not
satisfy the Hausdorff property.

Instead of defining a topology in terms of open sets, we can also define it
in terms of complements of open sets, the so-called closed sets. Likewise,
a pretopology can be defined by a closure operator instead of an interior
operator, as we shall now describe.

Definition 4.1.9 The closure A of a subset A of a pretopological space X
is A = X\(X\A)◦, the complement of the interior of its complement. A is
called closed if A = A, or equivalently, if X\A is open.

The examples 5 and 6 can now be more easily described by saying that
the finite or the affine linear subsets are the closed ones.

On the basis of Definition 4.1.9, an equivalent definition of a (pre)topolo-
gical space can be given in terms of the Kuratowski closure operator.

Theorem 4.1.2 X is a pretopological space if it possesses a closure oper-
ator¯ with the following properties

(i) ∅ = ∅.
(ii) A ⊂ A for all A ∈ P(X).

(iii) A ∪ B = A ∪ B for all A, B ∈ P(X).

It is a topological space if the closure operator in addition satisfies

(iv) A = A for all A ∈ P(X).

In some interpretation, A is that part of X that you can reach from A by
applying some operation. The first property then says that you cannot reach
anything from nothing. The second property says that you can reach all your
starting points, that is, nothing is lost by an operation. The third property
says that from a union of starting sets you cannot reach more than the
combination of what you can reach from each single set. Finally, condition
(iv) says that whatever you can reach, you can already reach in a single step.
In other words, when you can reach more and more by applying more and
more steps, then the closure operation does not come from a topological
structure. For instance, in a graph �, one can define the closure of a set
of vertices as the union of this set with the set of all neighbors of these
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vertices. Then, except when every vertex can be reached from each other
vertex in a single step, that is, except for a complete graph, the closure
operator does not satisfy (iv). The same construction is also possible for
directed graphs where the closure operator reaches the forward neighbors
of a vertex set, again in addition to the members of the set itself. Thus, let
� be a directed graph. y is called a (forward) neighbor of x ∈ � if there is
a directed edge from x to y. For each x ∈ �, we let x (abbreviated for {x})
be the set containing x and its neighbors, and for A ⊂ �, we then put

A :=
⋃

x∈A

x . (4.1.21)

This then defines a closure operator, hence a pretopology. Conversely, given
a pretopological space with a closure operator as above, we can construct
a directed graph by connecting each x with all the elements of {x}.

Another important example of a closure operator arises froma dynamical
system. For instance, we may consider

ẋ(t) = F(x(t)) for x ∈ R
d , t > 0 (4.1.22)

x(0) = x0 (4.1.23)

for some sufficiently regular F , say uniformly Lipschitz continuous2 so that
the Picard-Lindelöf theorem implies the existence of a unique solution of
(4.1.22) with initial values (4.1.23) for all t ≥ 0. Thus, (4.1.22) constitutes
a special case of Definition 2.5.1. For A ⊂ R

d , we may then put

A
T := {x(t), 0 ≤ t ≤ T } where x(t) is a solution of (4.1.22) with x(0) ∈ A.

(4.1.24)

For each T > 0, this then defines a closure operator. The closed sets then
are the forward invariant sets of the dynamical system (4.1.22), that is,
those B ⊂ R

d with x(t) ∈ B for all t ≥ 0 if x(0) ∈ B. Note that this does
not depend on the choice of T > 0 as follows readily from the semigroup
property

x(t1+t2) = y(t2) where y(t) is the solution of (4.1.22) with y(0) = x(t1).
(4.1.25)

We also note that a set that is closed w.r.t. this closure operator need not
be closed w.r.t. the standard topology of Rd . For instance, for F(x) = −x ,
any open ball U (0, r) w.r.t. the Euclidean metric on R

d is closed w.r.t. the
dynamical system.

We may also define an infinitesimal closure operator

A :=
⋂

T >0

A
T
. (4.1.26)

In any case, in view of these examples, the name “pretopological space”
does not seem so fortunate. The notion of a topology is a static one, whereas

2This means that there exists some constant K < ∞ with the property that |F(x) −
F(y)| ≤ K |x − y| for all x, y ∈ R

d .

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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the notion of a pretopology has a dynamic or operational content, and its
thrust is therefore principally different from that of a topology.

If we wish to consider pretopological or topological spaces as objects
of a category, we need to identify the corresponding morphisms. That is
what we shall now do. (Again, it might be useful to remind ourselves that
we have categories at different levels. A topological space is a category
by itself, whose objects are the open sets and whose morphisms are the
inclusions.We are now interested in the higher level categorywhose objects
are (pre)topological spaces.)

Definition 4.1.10 A map f : X → Y between pretopological spaces is
called continuous if

f −1(A◦) ⊂ ( f −1(A))◦ (4.1.27)

for any subset of Y . (Here, the interior operator for both spaces X and Y is
denoted by the same symbol ◦.)

It is clear that the identitymap 1X of a pretopological space is continuous,
and that the composition of continuousmaps is again continuous. Therefore,
we have the categories Pretop and Top of pretopological and topological
spaces with continuous maps as morphisms.

Lemma 4.1.5 A map f : X → Y between pretopological spaces is con-
tinuous iff

f (B) ⊂ f (B) (4.1.28)

for any subset of X.

Proof This follows directly from the definitions as the reader will readily
check. �

Lemma 4.1.6 A map f : X → Y between topological spaces is contin-
uous iff the preimage f −1(A) of any open subset of Y is an open subset
of X.

Proof We need to show that f −1(A) is open when A ⊂ Y is open. In
that case, A◦ = A, hence f −1(A◦) = f −1(A). If f is continuous, then
f −1(A) ⊂ f −1(A)◦ which implies that these two sets are equal. Thus
f −1(A) is indeed open. �

Example (we use the same numbering as for the above examples of topo-
logical spaces)

1. For the indiscrete topologyon a set X , anymap f : Y → X is continuous
where (Y,O′) is any topological space. In fact, this fact characterizes
the indiscrete topology. Conversely, for the indiscrete topology, if g :
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X → Y is a continuous map into any topological space that has the
Hausdorff property, then g has to be constant. Indiscrete topology

2. For the discrete topology on X , anymap g : X → Y into any topological
space (Y,O′) is continuous, and this characterizes the discrete topology.

Discrete topology3. Continuous maps f : (X, d) → (Y, d ′) between metric spaces are
characterized by the property that for every x ∈ X and ε > 0, there
exists some δ > 0 with the property that f (U (x, δ)) ⊂ U ( f (x), ε).
(This example explains how the continuity concept is related to the ε-δ-
criterion that you have encountered in calculus.)

4. A function f : (X,O) → R is called lower semicontinuous if for every
x ∈ X and ε > 0, there exists some U ∈ O with x ∈ U with the
property that

f (y) > f (x) − ε if y ∈ U. (4.1.29)

These lower semicontinuous functions are precisely those functions on
(X,O) that are continuous for the topology on R for which the open
sets are ∅, X and all intervals (ξ, ∞), ξ ∈ R.

5. Amap between cofinite topological spaces is continuous if the preimage
of every point is finite.

6. For a vector spaces V, W and topologies consisting of all complements
of affine linear subspaces, the continuousmaps are the affine linear ones.

Definition 4.1.11 A bijective map f : X → Y between topological spaces
for which both f and its inverse f −1 are continuous is called a homeomor-
phism.

We now consider the continuous functions C(X) from a topological
space (X,O(X)) to R (with its standard topology, but the subsequent con-
struction does not depend on the choice of the topology onR).R has a field
structure, with the operations + and ·. Therefore, we can also add and mul-
tiply R-valued functions and obtain a ring structure on C(X). Why, then,
is C(X) only a ring, but not a field? The reason is that we cannot divide by
any function that assumes the value 0 at some point. In a field, however, the
only element by which one cannot divide is the 0 element; in C(X), this
element is, of course, the function ≡ 0. In fact, C(X) is even an algebra,
because we can multiply functions by scalars λ ∈ R. This constructions
then obviously applies to functions with values in any field, and not only
for R. In particular, we can take the complex scalars C in place of R.

When we now have a continuous map f : X → Y between topological
spaces, it induces a contravariant ring (or algebra) homomorphism

f ∗ : C(Y ) → C(X)

φ �→ φ ◦ f. (4.1.30)

Established references for topological spaces are [66, 95]. The connec-
tions with analysis are well explained in [2]. For pretopological spaces, we
refer to [23], one of the founding texts of the field. For recent contributions
to pretopological spaces, see [105, 106, 107] and the literature therein. We
now describe some applications developed in those papers.
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We consider the set of all binary strings of length n, that is, objects of the
form (x1, . . . , xn)with xi ∈ {0, 1}. When we connect two strings that differ
in precisely one position, that is, that can be obtained from each other by a
single point mutation, or equivalently, that have Hamming distance 1 from
each other (see (2.1.53)), we obtain the n-dimensional hypercube Wn as the
graph representing this structure. For each x ∈ Wn , we let x be the set of its
neighbors in Wn . Of course, we can also apply this to other sets of strings,
where the entries are chosen from some arbitrary alphabet L , in place of
the binary one {0, 1}. For instance, we may consider genetic sequences
composed of four letters, denoted by A, T, C, G. In this manner, we obtain

Letters A, T, C, G of
genetic sequences

a pretopology representing the biological concept of a point mutation.
Another important biological operation is recombination by genetic

cross-over. Again, we could work with an arbitrary alphabet instead ofGenetic recombina-
tion the binary one, without any substantial change of mathematical con-

tent. We consider equal cross-over, meaning that for two binary strings
x = (x1, . . . , xn), y = (y1, . . . , yn) of length n, their possible recombina-
tions R(x, y) are the strings

(x1, . . . , xk, yk+1, . . . , yn) and (y1, . . . , y�, x�+1, . . . xn) (4.1.31)

for k, � = 1, . . . , n. We thus have

1.
R(x, x) = {x}

2.
R(x, y) = R(y, x)

3.
{x, y} ⊂ R(x, y)

In general, however, it is not true that

R(x, z) ⊂ R(x, y) if z ∈ R(x, y).

For instance, for x = (0000), y = (1111), we have z = (0011) ∈ R(x, y)

and w = (0010) ∈ R(x, z), but w /∈ R(x, y). Thus, if, following Gitchoff-
Wagner [41], we defined the closure of A as

A1 :=
⋃

x,y∈A

R(x, y), (4.1.32)

condition (iv) for a topological space would not be satisfied. This deficit
can be remedied, however, by considering the union of all iterations of
recombinations starting from a given set of strings. Then by such itera-
tions, starting from two strings x, y as before, we can generate all strings
(u1, . . . , un) where each ui independently can be either xi or yi . Thus, for
instance, by iterated recombinations, we can generate any string of length
4 from x = (0000) and y = (1111). Formally, we put

An :=
⋃

x,y∈An−1

R(x, y) for n ≥ 2, and

A :=
⋃

n∈N
An . (4.1.33)

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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This then satisfies condition (iv). Condition (iii) for a Kuratowski closure
operator, however, is neither satisfied by (4.1.32) nor by (4.1.33). In contrast
to property (iv), this deficit cannot be remedied by looking at the union of
iterations of recombination. Thus, recombination leads to a structure on
binary sequences that is more general than a pretopology. The failure of
condition (iii) points to the advantage of genetic diversity in a population
with sexual recombination. From the union of two gene pools, in general,
one can generate more genomes by recombination than from the two gene
pools in isolation.

4.2 σ-Algebras

We now introduce a class of set systems whose defining properties include
complementation. There are several motivations for this. When we shall
introduce measures in Sect. 4.4, we wish to have the property that the mea-
sure of a subset A ⊂ X and that of its complement X\A add up to the
measure of X . In particular, whenever we are able to measure A, we also
want to measure its complement. More conceptually, we may want to think
in terms of alternatives, for instancewhenwemake observations or perform
measurements. For example, when we make a scalar observation, that is,
evaluate a function f : X → R at some point x ∈ X , we may ask the
question “Is f (x) > a?” for some specified value a ∈ R. We then have the
two complementary subsets {x ∈ X : f (x) > a} and {x ∈ X : f (x) ≤ a}
that represent the two possible answers, yes or no, to our question. For
such reasons, we wish to work with classes of subsets that are closed under
complementation and also satisfy certain other properties which are also
related to the issues just discussed. The relevant definition is

Definition 4.2.1 Let X be a set. A σ-algebra of subsets of X is a subset B
of P(X) satisfying:

(i) X ∈ B.
(ii) If B ∈ B, then so is X\B.
(iii) If Bn ∈ B for all n ∈ N, then so is

⋃

n∈N
Bn .

(X,B) is then called a measurable space.

The preceding properties imply:

(iv) ∅ ∈ B.
(v) If B1, . . . , Bm ∈ B, then so is

m⋂

j=1
B j .

Thus, on X = {0, 1}, we have two different σ-algebras, one with B =
{∅, X}, and the other with B = {∅, {0}, {1}, X}. σ-algebras on {0, 1}
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In order to obtain a σ-algebra, we can start with any collection of subsets
of X and close it up under complements and countable unions. If X is a
topological space, we can therefore take the smallest σ-algebra containing
all open subsets of X . The sets in this σ-algebra are called Borel sets.

So far, however, one might be naturally inclined to simply use the entire
Boolean algebra P(X) as the σ-algebra. One important reason why one
works with smaller σ-algebras than P(X) is that when the σ-algebra is
too large, it becomes too restrictive to satisfy the properties required in the
Definition 4.4.1 of a measure in Sect. 4.4. Another reason, that σ-algebras
are tools to account for the distinctions that can be made on the basis of
observations, will be analyzed in detail below.

Having thus defined the category of measurable spaces, we can easily
identify the morphisms.

Definition 4.2.2 Amap T : (X,B(X)) → (Y,B(Y )) between measurable
spaces is called measurable if for all A ∈ B(Y ) also T −1(A) ∈ B(X).

A continuous map between topological spaces is always measurable for
any Borel measure because the preimages of open sets are open, and so the
preimages of Borel sets are Borel.

In turn, when we have a measurable space (Y,B) and a map f : X → Y ,
we can equip X with the σ-algebra f �B consisting of all sets f −1(A) with
A ∈ B. Such a σ-algebra may be quite small. In particular, we cannot
distinguish between points with the same value of f .

Let us elaborate on this issue and dwell a little on the interpretation of
σ-algebras in terms of observables. In the most basic case, we check the
elements of X for some property p, and we put p(x) = 1 when x possesses
that property and p(x) = 0 if not. We then obtain a σ-algebra B on X from
the two sets

A := p−1(1) = {x ∈ X; p(x) = 1} and X\A = p−1(0) = {x ∈ X; p(x) = 0}.
(4.2.1)

It could happen that either all or none of the elements of X possess the
property p in which case B is the trivial σ-algebra consisting only of X
itself and ∅. Otherwise, we would have four members,

B = {A, X\A, X, ∅}. (4.2.2)

This σ-algebra B then expresses all the distinctions that we can make on
the basis of our observations, that is, the trivial observation whether x is in
the set X and the observation whether it possesses the property p.

When we then have several such properties p1, . . . , pn that we can
observe, we get the corresponding sets A j := p−1

j (1) and their comple-
ments for j = 1, . . . , n, and by taking intersections and unions, we can
generate the corresponding σ-algebra Bn . This simply expresses the fact
that we can now make distinctions by combining our observations. For
instance A1 ∩ X\A2 is the set of those elements that satisfy property p1,
but not p2, and A2 ∪ A3 contains those points that satisfy p2 or p3. In
particular, if the set X is otherwise opaque for us and we can only per-
form observations that check properties p j , then the σ-algebra Bn reflects
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our knowledge and our ability to discriminate between the points of X on
the basis of our observations regarding the properties p1, . . . , pn . When
we then make an additional observation, the σ-algebra gets larger as our
knowledge or our discrimination ability increase. More precisely, we can
define that a new property pn+1 is independent of the properties p1, . . . , pn

if the σ-algebra Bn+1 is strictly larger than Bn .
When we can make scalar measurements, that is, if we have a function

f : X → R, then we obtain the σ-algebra F generated by the sets

f −1{ f > a} = {x ∈ X : f (x) > a} for a ∈ R. (4.2.3)

For every a ∈ R, we can thusmake the binary distinctionwhether f (x) > a
or not. Alternatively, F is also generated by the sets

f −1{ f = a} = {x ∈ X : f (x) = a} for a ∈ R. (4.2.4)

Thus, we can discriminate between points x1, x2 with f (x1) �= f (x2), but
we cannot distinguish between points with the same value of f .

The σ-algebra B also defines an equivalence relation where x1, x2 are
equivalent iff x1 ∈ A ⇔ x2 ∈ A for all A ∈ B.

Again,whenwe can perform further suchmeasurements, say f1, . . . , fn ,
we can make further distinctions as the resulting σ-algebra gets larger, or
equivalently, the equivalence classes defined by this σ-algebra get smaller.
It may happen that we can uniquely identify each point x ∈ X by the
values of m such suitably chosen measurements. In fact, one could try to
define the dimension of a topological space X as the smallest number m
with the property that each x ∈ X possesses an open neighborhood U with
continuous functions f1, . . . , fm : U → R such that the resultingσ-algebra
onU contains the singleton sets {y} for all y ∈ U . Here, the functions could
depend on the neighborhood U , but not on the point x itself. If there is no
finite such m, we could declare the dimension of x to be infinite. While this
may seem quite natural, there are technical difficulties involved with this
approach. Although these can eventually be overcome, we do not want to go
into further details here. See, for instance, [36]. Below, in Sect. 5.3, we shall
consider a more constrained class of spaces, the differentiable manifolds,
for which the definition of the dimension is easier.

4.3 Set Systems

In this section, we develop a more abstract and unifying perspective on
topologies and σ-algebras with the concepts of category theory. Both a
Heyting algebra O of open sets and a σ-algebra B are defined in terms of
the operations of the union ∪, the intersection ∩ and the complement \ of
subsets of some set. These operations do not behave naturally under maps
f : X → Y . In fact,

f (A ∩ B) ⊂ f (A) ∩ f (B), (4.3.1)

http://dx.doi.org/10.1007/978-3-319-20436-9_5
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where inequality can occur when f is not injective. Similarly, in general

f (X\A) �= f (X)\ f (A) ⊂ Y\ f (A), (4.3.2)

where the right hand side is larger when f is not surjective, but where also
the left-hand side could be larger for a non-injective f . The phenomena
should be clear from this diagram:

•f (A) = f (B)

•
A

•Y\ f (A)

•
B
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Remarkably, however, when applying f −1, we obtain a homomorphism
of the Boolean algebra P . In fact, we have

f −1(V ∩ W ) = f −1(V ) ∩ f −1(W ) (4.3.3)

and

f −1(V ∪ W ) = f −1(V ) ∪ f −1(W ), (4.3.4)

as well as

f −1(W\V ) = f −1(W )\ f −1(V ). (4.3.5)

In fact, we also have the more general relations

f −1(
⋂

i∈I

Ai ) =
⋂

i∈I

f −1(Ai ), f −1(
⋃

i∈I

Ai ) =
⋃

i∈I

f −1(Ai ) (4.3.6)

for any collection (Ai )i∈I ⊂ P(Y ). All these relations are easily checked
from the basic fact that

x ∈ f −1(A) ⇔ f (x) ∈ A, (4.3.7)

and the relations (4.1.7)–(4.1.9). We happily leave this to the reader as a
simple exercise to keep him alert.

We therefore define the functor

f ∗(V ) := f −1(V ) for V ⊂ Y, (4.3.8)

to express this contravariant behavior.
This morphism f ∗ : P(Y ) → P(X) also preserves the partial ordering

structure of inclusion ⊂ , as it should. This simply means that

V ⊂ W ⇒ f ∗(V ) ⊂ f ∗(W ). (4.3.9)

In fact, in turn any such morphism F : P(Y ) → P(X) yields a map
f : X → Y . We simply put

f (x) := y for all x ∈ F({y}). (4.3.10)

Since if y1 �= y2, then {y1}∩{y2} = ∅ and hence also F({y1})∩ F({y2}) =
∅, the definition (4.3.10) causes no ambiguity.
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We now want to check to what extent the preceding extends to
subfamilies of P , such as a Heyting algebra O of the open sets of some
topology or a σ-algebra B.

Definition 4.3.1 A set system S on the set X is a subset of P(X) that is
closed under certain operations involving only the union, intersection, and
complement of (possibly infinitely many) sets.

G ⊂ P(X) is called a subbasis of the set system S, or is said to gen-
erate S, if every element of S can be obtained from elements of G by the
operations defining S.

For instance, the set system O(X) is defined in terms of the operations
∪ and ∩, see Theorem 4.1.1. The definition of a σ-algebra also involves
the complement \, but in fact, two of the three operations would suffice in
any case because, for instance, ∩ can be expressed in terms of ∪ and \, see
(4.1.3).

The preceding considerations, or more precisely the relations (4.3.3)–
(4.3.6), imply

Lemma 4.3.1 Let S(Y ) be a set system on Y , and f : X → Y a map. Then
f ∗ yields a morphism of set systems. This means that f ∗S(Y ) = f −1S(Y )

is a set system on X, of the same type as S(Y ), that is, defined by the same
operations as S(Y ).

In particular, whenO(Y ) defines a topology on Y , then f ∗O(Y ) defines
a topology on X , and if B(Y ) is a σ-algebra on Y , then f ∗B(Y ) yields a
σ-algebra on X .

We may then also ask whether a morphism F : S(Y ) → S(X) defines a
map f : X → Y , as was the case forP . In fact, we need to require thatS(Y )

be Hausdorff in the sense that it separates the points of Y , as otherwise such
a morphism need not define a map, that is, a relation between points in X
and Y such that every point in X is related to precisely one point in Y . For
instance, if Y has the indiscrete topology, we then only have the relations
F(Y ) = X and F(∅) = ∅ which is not sufficient to yield a map. That S(Y )

is Hausdorff means that for p �= q ∈ Y , there exist U, V ∈ S(Y ) with
U ∩ V = ∅, p ∈ U, q ∈ V . Then also F(U ) ∩ F(V ) = ∅. In this sense,
when we put

F(p) := lim
−−→
x∈U

F(U ) (4.3.11)

as a colimit (as defined in Sect. 8.2), we can assign distinct preimages to all
those points in Y where this colimit is not empty. On the other hand, since
the morphism F satisfies F(Y ) = X , every point in X occurs as some such
preimage. Thus, F defines a map f : X → Y .

Lemma 4.3.2 This map f preserves the structure of the set system S. For
instance, if S = O defines a topology, then f is continuous, and if S = B
is a σ-algebra, then f is measurable.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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Here, we refer to the characterization of continuity established in Lemma
4.1.6.

We can also express this in a diagram

(X, f ∗S(Y )) (Y,S(Y ))

X Y............................................................................................................................................................................................ ............
f

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

.............................................................................................................. ............
f

(4.3.12)

The upper f then indicates that f is a morphism for the category of set
systems of type S, according to Lemma 4.3.2. In fact, it is a pullback3 in
the sense that whenever we have a morphism h : (W,S(W )) → (Y,S(Y ))

which, at the level of maps between sets, i.e., downstairs in (4.3.13), factors
as h = f ◦g, then it also induces anS-morphism (W,S(W )) → (X,S(X)).
That is, there is a dashed arrowmaking the following diagram commutative.

(W,S(W ))

(X, f ∗S(Y )) (Y,S(Y ))

W X Y

............. ............. ............. ............. ............... ............

................................................................................................................................................................................................................................................................................................................................................................ ............

h.........................................................................................................................................................................................
...
.........
...

............................................................................................................................................................................................ ............
g

.............................................................................................................. ............

f..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

............................................................................................................................................................................................ ............
f

(4.3.13)

To see this,we observe that since h = f ◦g, for any A ∈ S(Y ), h−1(A) =
g−1 f −1(A) = g−1(B) for B = f −1(A). And since h is assumed to be anS-
morphism, we have h∗S(Y ) ⊂ S(W ). Thus, for any B ∈ f ∗S(Y ), we find
a preimage in S(W ). This yields the S-morphism S(W ) → f ∗S(Y ), that
is, the dashed arrow in the diagram. Compare also the general discussion
of pullbacks around (8.2.34).

There is another characterization of f ∗S(Y ).

Lemma 4.3.3 Suppose that the set system S(Z) on Z satisfies the Haus-
dorff property. A mapping g : (X, f ∗S(Y )) → (Z ,S(Z)) is an S-
morphism iff there exists an S-morphism h : (Y,S(Y )) → (Z ,S(Z))

with g = h ◦ f .

Proof For themaph to exist,weneed to show thatwhenever f (x1) = f (x2)
for x1, x2 ∈ X , then also g(x1) = g(x2). Now if f (x1) = f (x2), then there
is no U ∈ f ∗S(Y ) that separates x1, x2, that is, contains one of these two
points, but not the other. If now g(x1) �= g(x2), then by the Hausdorff
property of S(Z), there exists some V ∈ S(Z) containing one of them,
but not the other. But then g−1(V ) would separate x1 and x2. But this is
not compatible with the fact that since g is an S-morphism, we must have

3See (8.2.34) for a general definition of pullbacks.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_8
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g−1(V ) ∈ f ∗S(Y ). This contradiction shows that there exists such amap h,
and it is then readily verified that it is also an S-morphism. This establishes
the forward direction of the lemma. The reverse direction is trivial.

We can also represent the content of Lemma 4.3.3 by a commuting
diagram

(X, f ∗S(Y )) (Y,S(Y ))

(Z ,S(Z))

.............

.............

.............

.............

.........
...
.........
...

h

....................................................................................................................................................... ..........
..

g

.............................................................................................................. ............
f

(4.3.14)

We now come to an important generalization of Lemma 4.3.1.

Lemma 4.3.4 Let Ya, a ∈ A be a collection of sets indexed by some index
set A. Let S(Ya) be a set system on Ya (where all these set systems are
supposed to be defined through the same operations; for instance, they could
all be topologies). Let X be a set, and let fa : X → Ya be a map for every
a ∈ A. We then obtain a set system S(X ) with subbasis

⋃

a∈A f �(S(Ya)),
that is, generated by the sets f −1(Ua) with Ua ∈ S(Ya).

With respect to this set system, each fa is then an S-morphism. For
instance, if the set systems are topologies, then each fa is continuous.

The proof is clear, because the statement is essentially a definition. �
We shall now use this Lemma to define topologies (or, by the same

scheme, other set systems) on products when we have one on each factor.
This will generalize the Example 7 of Sect. 4.1 (after Definition 4.1.2).

Definition 4.3.2 Let Ya, a ∈ A again be a collection of sets indexed by
some index set A. The Cartesian product

Xa∈AYa (4.3.15)

is then defined as the set of all mappings y defined on A with y(a) ∈ Ya

for every a ∈ A. We also have the projection pb : Xa∈AYa → Yb with
pb(y) = y(b) for b ∈ A.

Suppose that each Ya carries a topologyO(Ya). Then the product topol-
ogy on Xa∈AYa is generated by the sets p−1

b (Ub) for Ub ∈ O(Yb).

We may recall (2.1.1) where we have identified the elements of a set Y
via maps f : {1} → Y . The notion of a product extends this to index sets
other than the trivial {1}.

We should point out that even when the index set A is infinite, only finite
intersections of sets of the form p−1

b (Ub) need to be open.
Importantly, not only can we pull back set systems, but we can also push

them forward. We can then construct quotients instead of products, as we
shall now explain.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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Definition 4.3.3 Let f : X → Y be a map, and let S(X) be a set system
on X . We then define the set system S(Y ) as the collection of all subsets
B of Y for which f −1(B) ∈ S(X). This set system is called the quotient
set system on Y induced by the map f . In particular, when S(X) defines
a topology on X , then the resulting topology on Y is called the quotient
topology.

It is easy to check that S(Y ) is a set system of the desired type, indeed.
In particular, f : (X,S(X)) → (Y,S(Y ) then becomes an S-morphism.

In fact,S(Y ) is the largest set systemonY forwhich f is anS-morphism.
In contrast, in the situation of Lemma 4.3.1, f �S(Y ) is the smallest set
system on X for which f is an S-morphism.

We leave it to the reader as an exercise to prove the following

Lemma 4.3.5 Let f : (X,O(X)) → (Y,O(Y )) be a continuous map
between topological spaces where O(Y ) is the quotient topology. Let
(Z ,O(Z)) be another topological space. Then a map g : (Y,O(Y )) →
(Z ,O(Z)) is continuous iff g ◦ f : (X,O(X)) → (Z ,O(Z)) is
continuous.

4.4 Measures

Topology is concerned with qualitative properties whereas geometry is
based on measurements, that is, quantitative aspects. In this section, we
shall be concerned with the question of how to measure the size of subsets
of a set, and the conceptual requisites to make this possible.

The idea of a measure on a set X is to assign to subsets of X nonnegative
real numbers, or possibly also the value ∞, that express the sizes of those
subsets. Therefore, the measure should be additive, that is, the measure
of a disjoint union of subsets should equal the sum of the measures of
those subsets. This, however, leads to the difficulty that, while one can
take unions over arbitrary index sets, one can take sums of real numbers
only for countable sequences. In order to overcome this difficulty, some
constructions are necessary. They amount to restricting the class of subsets
to which one can assign a measure, but this restriction should be such
that the “important” or “natural” subsets of X should still have a measure.
In particular, when X carries a topology as given by an algebra O(X) of
open subsets, then those open sets should be measurable. However, as the
additive requirement should include that the measure of a subset of X and
the measure of its complement add up to the measure of X itself, we are
faced with the difficulty that in general the complement of an open set need
not be open itself. Therefore, we should like to require that complements of
open sets, that is, closed sets also bemeasurable. In particular, this indicates
that the concept of a σ-algebra as introduced in Sect. 4.2 should be useful.

Here, the σ-algebra should not be too small because we might like to
measure as many subsets of X as possible. More precisely, we want to
make sure that certain particular classes of subsets of X be measurable,
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for instance the open sets if X happens to carry a topology. As already
explained, in order to obtain a σ-algebra, we can start with any collection
of subsets of X and close it up under complements and countable unions. In
particular, when X is a topological space, we can take the Borel σ-algebra,
that is, the smallest σ-algebra containing all open subsets of X .

On the other hand, the σ-algebra should not be too large, as otherwise it
becomes too restrictive to satisfy the properties in the next definition. Thus,
the Borel σ-algebra is typically a good choice in measure theory.

Definition 4.4.1 A measure on (X,B) is a function

μ : B → R
+ ∪ ∞

satisfying:

(i) μ(
⋃

n∈N
Bn) = ∑

n∈N
μ(Bn), if Bi ∩ B j = ∅ for all i �= j , i.e., if the sets

Bn are pairwise disjoint,
(ii) μ(X) �= 0.

A triple (X,B,μ) with the preceding properties is called a measure space.
WhenB is the Borel σ-algebra, we speak of a Borel measure. A particularly
important class of Borel measures are the Radon measures, i.e., those that
take finite values on compact sets and for which the measure of any Borel
set is given by the supremum of the measures of its compact subsets.

(i) implies

(iii) μ(∅) = 0 and
(iv) μ(B1) ≤ μ(B2) if B1 ⊂ B2.

Remark The preceding properties are modeled after the Lebesgue measure
which plays a fundamental role in analysis, because it leads to complete
function spaces, like the Hilbert space L2. For that purpose, it is important
to require the additivity (i) for countable families of disjoint measurable
sets, and not only for finite ones. But this is not our topic, and we refer
to [59]. We shall utilize measures for putting weights on the simplices of
a simplicial complex, and for sketching certain applications in biology.
Nevertheless, the concept of a measure is not really central for this book,
and some readers may wish to skip it.

The null sets of a measure μ are those subsets A of X with μ(A) = 0.
Thus, the null sets of a measure are negligible w.r.t. that measure. Two
measures are called compatible if they have the same null sets. If μ1, μ2 are
compatible Radon measures, they are absolutely continuous with respect
to each other in the sense that there exists a function φ : X → R

+ ∪ ∞
that is integrable (see e.g. [59]) with respect to either of them, such that

μ2 = φμ1, or, equivalently, μ1 = φ−1μ2. (4.4.1)

φ is called the Radon-Nikodym derivative of μ2 with respect to μ1.
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We observe that, being integrable, φ is finite almost everywhere, i.e., the
set of points where it takes the value ∞ is a null set (with respect to both
μ1 and μ2) on X , and since the situation is symmetric between φ and φ−1,
φ is also positive almost everywhere.

When (X,O(X)) is a locally compact Hausdorff space, then the Riesz
representation theorem says that the Radon measures are precisely the pos-
itive continuous linear functionals on C0(X), the space of continuous func-
tions f : X → R. Here, a functional

L : C0(X) → R (4.4.2)

is positive whenever L( f ) ≥ 0 for all f ≥ 0 (that is, f (x) ≥ 0 for all
x ∈ X ). In order to define when L be continuous, we equip C0(X) with the
following metric

d( f, g) := sup
x∈X

| f (x) − g(x)|. (4.4.3)

In this way, according to the general scheme whereby a metric induces a
topology, we define a basis U ( f, ε) of open sets ( f : X → R continuous,
ε ≥ 0) on C0(X) via

g ∈ U ( f, ε) ⇔ (g − f )−1(U (0, ε)) = X (4.4.4)

where U (0, ε) of course is an open interval in R.

Definition 4.4.2 A measure μ satisfying

(iv) μ(X) = 1

is called a probability measure.

We let M(X) be the set of all probability measures on (X,B). M(X)

contains the Dirac measures supported at the points of X . That is, for any
x ∈ X , we have the measure δx defined byDirac measure

δx (A) :=
{

1 if x ∈ A

0 if x /∈ A
(4.4.5)

For a Diracmeasure, of course, the requirements of Definition 4.4.1 are eas-
ily satisfied even when we takeP(X) as our σ-algebra. For other measures,
like the Lebesgue measure on R, this is not so, and one needs to restrict to
the Borel σ-algebra. We do not go into those details here, however.

Also, when we have a random walk process operating on X with time
t ∈ R

+ (continuous time) or t ∈ N (discrete time), we have the transition
probabilities p(A, B, t), denoting the probability that a particle starting in
the set A at time 0 is in the set B at time t . Here, the sets A, B, . . . are
assumed to be contained in some appropriate σ-algebra B, and p(A, ., t)
is a probability measure on (X,B). It therefore satisfies

p(A, B, t) + p(A, X \ B, t) = 1 for all B ∈ B, t ≥ 0. (4.4.6)

We also have
p(A, A, 0) = 1 for all A ∈ B. (4.4.7)
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The underlying process here could be the mutational drift in a population
of genomes, that is, in genotype space.

Other important examples of measures arise in applications from dis-
tributions of objects. For instance, in molecular biology, for any protein
represented in a cell, we can use the density φ of that protein to define some
(Radon) measure φμ for some background measure μ, say the Lebesgue
measure. In Sect. 4.7 below we shall address the question of how to com- Protein colocaliza-

tionpare different such measures representing the distribution of proteins or
whatever else is of interest in some application.

Definition 4.4.3 A map T : (X,B(X), μX ) → (Y,B(Y ), μY ) between
measure spaces is called measure preserving when μX (T −1(A)) = μY (A)

for all A ∈ B(Y ).

In turn, when we have a measure space (X,B,μ) and amap f : X → Y ,
we can equip Y with the σ-algebra f�B generated by the sets f (A) with
A ∈ B and the measure f�μ defined by the property

f�μ(B) := μ( f −1(B)) (4.4.8)

for B ∈ B. (Note that in general φ�μ with φ�μ(C) := μ(φ(C)) for a map
φ : Z → X does not define a measure as the additivity property is violated
when, for instance, there are two disjoint setsC1, C2 with φ(C1) = φ(C2).)

For instance, we can look at the genotype-phenotype map f that asso-
ciates to a genome x ∈ X (a string in the alphabet with letters A, C, G, T ,
but for themathematical structure behind this, we could also take our binary
alphabet as above) the phenotype y ∈ Y (whatever that is–here we do not
specify the structure of the set or topological space Y ) produced by it (or,
perhaps better, the collection of possible phenotypes that can be produced
by it, depending on external influences and circumstances, but we suppress
this important aspect for the sake of the present discussion). In general,
many different genotypes can lead to the same phenotype, that is, the map
f is not injective. The set of genotypes leading to one and the same pheno-
type is called a neutral basin. Genotype space carries a natural metric given
by the Hamming distance (2.1.53) between genomes, that is, the number
of mutations required to move from one genome to another one.

When we then have a measure on genotype space, for instance, given
by the distribution of genomes in a population, we then obtain an induced
measure on phenotype space. Also the above family of measures p(A, , t)
corresponding to mutational drift in genotype space then induces a corre-
sponding family of probability measures in phenotype space. Thus, when
we have two phenotypes K , L , we can look at the genotypes giving rise to
them, A := f −1K , B := f −1L and then have the transition probability

π(y, z, t) := ( f� p)(y, z.t) = p(A, B, t). (4.4.9)

Thus, the transition probabilities between phenotypes are simply given by
those between the underlying genotypes. This assumes that the underlying
genotype is not known in detail, that is, that all genotypes that can pro-
duce the given phenotype are possible. When one instead knows which of
the possible genotypes is underlying the genotype in question, then one

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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may wish to replace A in (4.4.9) by the set containing only that particular
genotype.

We may call a phenotype set K ⊂ Y almost absorbing if

π(K , Y \ K , t) � 1 for all t < T for some T � 0. (4.4.10)

That is, one would have to wait for a very long time before a different
phenotype will emerge from those in the set K , because there is strong
selective pressure to maintain the phenotypic characteristics encoded in
K . For some other phenotype set L ⊂ Y , we may then ask for the time
accumulated transition probability

T
∑

t=1

π(L , K , t) (4.4.11)

or for the minimal waiting time

inf
t>0

π(L , K , t) > δ for some given δ > 0 (4.4.12)

to reach that almost absorbing phenotype with some nonnegligible proba-
bility from the original phenotype L .

We also observe that for two phenotypes y, z, the reachabilities

r(y, z) := rT (y, z) :=
T

∑

t=1

π(y, z, t) (4.4.13)

for some given T > 0 in general are different in the two directions, that is

r(y, z) �= r(z, y), (4.4.14)

as are the waiting times

inf
t>0

π(y, z, t) > δ (4.4.15)

before one is reached from the other with some minimal probability δ > 0.

4.5 Sheaves

In this section, we shall elaborate upon the concept of a presheaf as already
defined in Sect. 2.4 and to be further developed below in Sect. 8.4, but we
shall concentrate on the case where the category in question is that of open
subsets of some topological space. We shall also try to make this largely
independent of Chap.8.

In fact, the constructions here are analogous to those in Sect. 2.4, with the
difference that nowwe do not consider the categoryP(S) of subsets of some
set S, but rather the category O(X) of open subsets of some topological
space X .

In this sense, we define a bundle over the topological space X as a
surjective continuous map p : Y → X from some other topological space.
Analogously to Sect. 2.4, for x ∈ X , the preimage p−1(x) is called the fiber

http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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over x . X is called the base space, and Y is the total space. A section of
such a bundle is a continuous map s : X → Y with p ◦ s = 1X .

We say that the fiber is modeled after the topological space F if for every
x ∈ X , there exists some open U with x ∈ U and a homeomorphism, that
is, a map that is bijective and continuous in both directions (see Definition
4.1.11),

φ : p−1(U ) → U × F. (4.5.1)

When the model F has some additional structure, such as that of a vector
space, and if

φx : p−1(x) → {x} × F, (4.5.2)

is an isomorphism with respect to that structure for every x (where we
either assume that each fiber possesses this structure already, or that we can
use the φx to endow the fibers with such a structure so that they become
isomorphisms), we say that the bundle has such a structure. For instance,
we speak of a vector bundle when F carries the structure of a vector space.
Thus, such a structured bundle locally is a product of the base space and
the fiber. Globally, however, that need not be the case, that is, in general a
fiber bundle need not be a product X × F . In algebraic topology, invariants
are constructed that express the twisting of a bundle, that is, its deviation
from a global product structure.

Such structured bundles then also form corresponding categories. The
morphisms have tomap the fiber over a point x to the fiber over its image and
induce a morphism in the category constituted by the fibers. For instance,
in the category of vector bundles, a morphism between two such bundles
then induces linear maps, that is, vector space morphisms, between fibers.

After this preparation, we shall now recall the definition of a presheaf
and then that of a sheaf. First we shall again work in the general context of
a category SetsCop

for some fixed small category C. This time, the category
C that we have in mind is O(X), the objects of which are the open subsets
U of some topological space X and the morphisms the inclusions V ⊂ U .
O(X) has the structure of a poset, with the ordering relation ≤ given by
the inclusion ⊂. This poset has a largest element, X , and a smallest one,
∅. (In fact,O(X) is a Heyting algebra as explained above, in Sect. 4.1, and
we also have the operations of intersection and union.)

From Sects. 2.4 and 4.5, we now recall the basic

Definition 4.5.1 An element P of SetsCop
is called a presheaf on C.

For an arrow f : V → U in C, and x ∈ PU , the value P f (x), where
P f : PU → PV is the image of f under P , is called the restriction of x
along f .

Thus, a presheaf expresses thatwe can restrict collections of objects from
an open set to its open subsets. This then allows us to concentrate on the
opposite question, that is, when we can extend such collections of objects
from open sets to larger open sets containing them. The obstructions to
such extensions can be determined in terms of the nonvanishing of certain
algebraic invariants that come fromcohomology theory aswill be developed
below in Sect. 4.6.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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We now return to the setting of topological spaces, where, as already
indicated, the category of interest is C = O(X), the category of open
subsets of a topological space X . For a presheaf P : O(X)op → Sets, we
then have the restriction maps

pV U : PV → PU for U ⊂ V (4.5.3)

that satisfy
pUU = 1PU (4.5.4)

and

pWU = pV U ◦ pW V whenever U ⊂ V ⊂ W. (4.5.5)

Analogously to Sect. 2.4, we have

Definition 4.5.2 The presheaf P : O(X)op → Sets is called a sheaf
if it satisfies the following condition. If U = ⋃

i∈I Ui for some family
(Ui )i∈I ⊂ O(X) and πi ∈ PUi satisfies pUi ,Ui ∩U j πi = pU j ,Ui ∩U j π j for
all i, j ∈ I , then there exists a unique π ∈ PU with pUUi π = πi for all i .

Thus, the πi that are compatible in the sense that the restrictions of πi

and π j to Ui ∩ U j always agree, can be patched together to an element π
of PU that restricts to πi on PUi .

The sheaves that occur in geometry take their values not in a category of
arbitrary sets, but in the category of Abelian groups or category of modules
over some commutative ring R with 1. That is, to each open subset U
of X , we associate some group GU or some R-module MU . The presheaf
condition implies that whenever V ⊂ U , we obtain a homomorphism gV U :
GU → GV (or mV U : MU → MV ), with gUU = 1GU and gWU =
gW V ◦ gV U for U ⊂ V ⊂ W . The sheaf condition says that whenever we
have elements ai ∈ GUi with gUi ,Ui ∩U j ai = gU j ,Ui ∩U j a j for all i, j , then
there exists a unique a ∈ GU with gUUi a = ai for all i . The uniqueness
means that when ai = 0 for all i , then also a = 0 whenever gUUi a = ai

for all i .
We also note that functoriality implies

P∅ = 0, the trivial group or module, (4.5.6)

for any such presheaf P .
As a simple example, we can take the constant sheaf that assigns to each

nonempty U the same group G (and, as always, to the empty set the trivial
group 0). Essentially the same type of sheaf arises, when, on a topologicalConstant sheaf
space X , we take the locally constant functions with values in some set K .
Thus, for each open U ⊂ X , PU is the set of locally constant functions
from U to K .

The typical examples of sheaves are given by spaces of functions. For
instance, we can take as MU the real-valued continuous functions on the
open set U . This is an R-module. Given a continuous function fi on Ui

with fi |Ui ∩U j
= f j |Ui ∩U j

, then there exists a unique continuous function

f on U = ⋃

Ui with f|Ui = fi for all i .Continuous functions
C0

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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When X is a complex manifold, we can also assign to an open set U the
space of holomorphic functions onU . The fundamental difference between
continuous and holomorphic functions rests on the fact that a holomorphic
function is globally determined by its value on some open set, or even its
power series expansion at some point. In that sense, sheaves of holomorphic
functions are similar to sheaves of locally constant functions, rather than to
sheaves of continuous functions.

When V is a vector bundle over the topological space X , the sheaf
of continuous sections of V is a sheaf of modules over the sheaf of rings of
continuous functions on X . (It is straightforward to define what a sheaf of
modules over a sheaf of rings is.)

We nowwish to construct a topology on a presheaf P : O(X)op → Sets.
Let x ∈ U, V ∈ O(X), that is, two open neighborhoods of the point x . We
say that f ∈ PU, g ∈ PV have the same germ at x if there exists some
open W ⊂ U ∩ V with x ∈ W and with f|W = g|W , that is, if they coincide
on some neighborhood of x . The important point is that this neighborhood
may depend on f and g. The example that one should have in mind here is
that of the sheaf of continuous functions. For analytic functions, we could
simply take the power series expansion at the point x and take this as the
infinitesimal representation of a function at a point x . Since continuous
functions are not determined by infinitesimal properties, we rather check
whether they agree locally in the vicinity of the point x , in order to identify
them when we want to consider some kind of infinitesimal neighborhood
of x only. In any case, we have defined an equivalence relation, and the
equivalence class of such an f is called the germ of f at x and denoted
by germx f . The set of all such equivalence classes, that is, the set of all
germs at x is denoted by Px and called the stalk of P at x . For each open
neighborhood U of x , we therefore have a function

germx : PU → Px , (4.5.7)

and in fact, we have

Px = lim
−−→
x∈U

PU (4.5.8)

as a colimit. We consider the disjoint union of all stalks,

�P :=
∐

x∈X

Px , (4.5.9)

and the projection

p : �P → X

(φ ∈ Px ) �→ x, (4.5.10)

that is, we map each germx to its base point x . For x ∈ U and f ∈ PU ,
we then have a function

�( f ) : U → �P (4.5.11)

x �→ germx f. (4.5.12)

We now take the topology on�P that is generated by the basis consisting of
the images �( f )(U ) for all such U ∈ O(X), f ∈ PU . Thus, an open set is
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a union of such images. For this topology, each �( f ) is a homeomorphism
onto its image, that is, continuous in both directions. For the continuity of
�( f ), we use the fact that the image �( f )(U ), a basic open set, consists
of all germs germx f for x ∈ U . Now an open set containing such a germ
is of the form �(g)(V ) where g ∈ PV satisfies germxg = germx f . By
the definition of a germ, there then exists some open W ⊂ U ∩ V with
f|W = g|W . Thus, for every element in every open set of �P , the preimage
under �( f ) contains an open subset of U that is mapped to that open set
in �P . Thus, �( f ) is continuous. Since it maps open sets U to open sets
�( f )(U ) and is injective, it is indeed a homeomorphism onto its image.

Also, the projection p from (4.5.10) is a local homeomorphism, as each
point in germx f has the open neighborhood �( f )(U ), and p ◦ �( f ) =
1U , �( f ) ◦ p = 1�( f )(U ). To each such presheaf P , we can then assign the
sheaf of continuous sections of�P . One verifies that if P is already a sheaf,
then this assignment is an isomorphism. In particular, every sheaf is such a
sheaf of continuous sections of a bundle.

4.6 Cohomology

In this section, we present some generalization of Čech cohomology for
presheaves. A reference for cohomology theory is [104].

We recall the basic definition of Sect. 3.1 and start with a set V whose
elements are denoted by v or v0, v1, v2, . . . . We assume that finite collec-
tions of different elements can stand in a relation r(v0, v1, . . . , vq). We
write r(v0, . . . , vq) = o when this relation is trivial (whatever triviality
might mean here). We assume the following properties

(i)
r(v) �= o, (4.6.1)

that is, each element stands in a nontrivial relation with itself.
(ii)

If r(v0, . . . , vq) �= o, then also r(vi1 , . . . , vi p ) �= o

for any (different) i1, . . . , i p ∈ {0, . . . , q}, (4.6.2)

that is, whenever some elements stand in a nontrivial relation, then this
also holds for any nonempty subset of them.

When we associate a simplex to every collection of elements with
r(v0, . . . , vq) �= o, we obtain a simplicial complex with vertex set V .
In fact, we can take the preceding properties as the defining axioms for a
simplicial complex.

An example arises for an open covering U of a topological space
(X,O(X)). Here, for U0, . . . , Uq ∈ U , r(U0, . . . , Uq) �= o iff U0 ∩ · · · ∩
Uq �= ∅. In fact, we observe here that each open coveringU of a topological
space defines a simplicial complex with vertex set V = U . This simplicial
complex is called the nerve of the covering.

http://dx.doi.org/10.1007/978-3-319-20436-9_3
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We can also consider the relations r(v0, . . . , vq) as the objects of a
category R, with a morphism r(vi1 , . . . , viq ) → r(v0, . . . , vq) when-
ever i1, . . . , i p ∈ {0, . . . , q}. This category possesses coproducts,4 as
r(v0, . . . , vq) is the coproduct of r(v0), . . . , r(vq). In fact, in the sequel, for
R we can take any category with coproducts and define v0...q as the coprod-
uct of the objects v0, . . . , vq , replacing themore cumbersome r(v0, . . . , vq)

by v0...q .
We now assume that we have a functor G from the category R to the

categoryAbofAbeliangroups.Wedenote the groupoperation in anAbelian
group by + and the inverse by −, and, as customary, we write g1 − g2 for
g1 + (−g2). The trivial group with a single element is denoted by 0. Thus,
for every morphism r1 → r2 in R, we obtain a group homomorphism
G(r1r2) : G(r1) → G(r2) with

G(rr) = 1G(r) (4.6.3)

and

G(r1r3) = G(r2r3)G(r1r2) for r1 → r2 → r3. (4.6.4)

We also have

G(o) = 0 (4.6.5)

since o is the terminal object (in the sense of Definition 8.2.1 below) in R
(unless all elements of V together stand in a nontrivial relation (in which
case the above simplicial complex consists of a single simplex)), and 0 is
the terminal object in Ab.

Definition 4.6.1 For q = 0, 1, . . . , we let Cq(R, G) be the group of map-
pings γ that associates to each ordered (q + 1)-tuple (v0, v1, . . . , vq) of
elements of V an element γ(v0, . . . , vq) ∈ G(r(v0, . . . , vq)). For subse-
quent convenience, we put Cq = 0 whenever q ∈ Z is negative or larger
than the number of elements of V . We define the coboundary operator

δ = δq : Cq(R, G) → Cq+1(R, G)

(δγ)(v0, . . . vq+1) :=
q+1
∑

i=0

(−1)iγ(v0, . . . , v̂i , . . . , vq+1) (4.6.6)

where v̂i means omission of the argument vi .

We easily check

Lemma 4.6.1
δq ◦ δq−1 = 0 (4.6.7)

for all q, or leaving out the superscript q,

δ ◦ δ = 0. (4.6.8)

Lemma 4.6.1 implies

4See (8.2.47) for the general definition of a coproduct in a category.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_8
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Corollary 4.6.1
imδq−1 ⊂ kerδq , (4.6.9)

that is, the image of δq−1 is contained in the kernel of δq .

We therefore define

Definition 4.6.2 The qth cohomology group of the category R with values
in G is the quotient group

Hq(R, G) := kerδq/imδq−1. (4.6.10)

Here, it is important that we are working with Abelian groups, because
that implies that the subgroup imδq−1 of kerδq is automatically a normal
subgroup so that the quotient group is well defined, see Lemma 2.1.22.

Thus, cohomologygroups identify those elements ofCq whose cobound-
ary vanishes up to what is considered trivial, that is, what is in the image
of the coboundary operator from Cq−1, which we know to be in the ker-
nel anyway from (4.6.7). Thus, the cohomology group Hq reflects what
is new in dimension or degree q in the sense that it is not derived from
what is there in degree q − 1. For instance when we have three sets with
a nonempty intersection U1 ∩ U2 ∩ U3 �= ∅, then of course each pairwise
intersection between them also has to be nonzero. However, when we have
U1∩U2 �= ∅, U2∩U3 �= ∅, U1∩U3 �= ∅, but withU1∩U2∩U3 = ∅, then
there is something nontrivial that is reflected by a nontrivial cohomology
class.

The cohomology theory developed so far applies to any collection
A1, . . . , An of subsets of some set S, and it reflects the intersection pat-
terns between those sets. In particular, when X is a topological space, we
can apply it to any collection U of open subsets U1, . . . , Un . When we
are interested in constructing invariants of X itself, the question arises to
what extent this depends on the choice of those open subsets. We shall
now describe the corresponding result. Another collection U ′ of open sets
U ′
1, . . . , U ′

m is called a refinement of U if for every μ there exists some
ν(μ) with U ′

μ ⊂ Uν(μ). In this situation, we obtain an induced map

ρν : Cq(U , G) → Cq(U ′, G) (4.6.11)

by restricting maps to G from the Uν(μ) or from intersections of such sets
to the Uμ and their intersections. We have

δ ◦ ρ = ρ ◦ δ (4.6.12)

for the coboundary operator. Therefore, we obtain an induced homomor-
phism of cohomology groups

ρ : Hq(U , G) → Hq(U ′, G) (4.6.13)

When we choose another refinement function λ with U ′
μ ⊂ Uλ(μ) for all μ,

thenwe check that this leads to sameρ in (4.6.13). Thus, the homomorphism
of cohomology groups does not depend on the choice of the refinement
map ν.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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We then define the cohomology groups of X as the colimits (see Sect. 8.2)
of those of its open coverings when these coverings get finer and finer,

Hq(X, G) := lim
−→U

Hq(U , G). (4.6.14)

In practice, the computation of these cohomology groups uses the following
theorem of Leray that tells us that we do not need to pass to arbitrary
refinements, but simply need to check that the intersections in the covering
are cohomologically trivial.

Theorem 4.6.1 Whenever the covering U of the topological space X,O is
acyclic in the sense that

Hq(Ui1 ∩ . . . Ui p , G) = 0 for all q > 0, i1, . . . , i p, (4.6.15)

then

Hq(X, G) = Hq(U , G) for all q. (4.6.16)

Thus,when there is no local cohomology in the coveringU , it captures all
the cohomology of X . In this sense, cohomology expresses global qualita-
tive properties of a topological space and a presheaf of Abelian groups on it.
This is fundamental for algebraic topology. In some applications sketched
below, however, we are interested in the cohomology of specific coverings
that need not be acyclic in the sense of (4.6.15).

4.7 Spectra

We now assume that we have some nonnegative Radon measure μ on the
measurable topological space (X,B,O). We assume that we have a collec-
tion φ0μ,φ1μ, . . . of Radon measures compatible with μ. We take these
νi := φiμ as the vi of our vertex set V , and put, for any subcollection
νi1 , . . . , νi p ,

(νi1 , . . . , νi p ) :=
∫ p

∏

j=1

(φi j )
1/pμ :=

⎛

⎝

p
∏

j=1

(φi j )
1/pμ

⎞

⎠ (X) ∈ R. (4.7.1)

In particular, this allows us to define relations

r(νi1 , . . . , νi p ) :=
{

1 if (νi1 , . . . , νi p ) �= 0

o else.
(4.7.2)

In this way, we obtain a weighted simplicial complex. The simplices are
given by those subcollections νi1 , . . . , νi p with r(νi1 , . . . , νi p ) = 1, and to
each such simplex, we associate the weight (νi1 , . . . , νi p ). The simplicial
structure expresses the topology of the overlap patterns, and the weights
reflect the geometry, that is, the amounts of overlap between subcollections
of our Radon measures.

We start with the topological aspects and then refine them by geometric
aspects. As in Sect. 4.6, we thus obtain a category R, and we now consider

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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an R-module functor M , that is, we associate to each object r of R a
module M(r) over the real numbers, i.e., a real vector space, to get the
groupsCq(R, M), the coboundary operators δq and the cohomology groups
Hq(R, M).

We also assume that each M(r) carries a scalar product 〈., .〉. This prod-
uct is assumed to be positive, that is, 〈v, v〉 > 0 for v �= 0. In particular,
〈v, v〉 = 0 implies v = 0, that is, the product is nondegenerate.

In the simple case when M(r) = R for r �= o, we can simply take the
product in R. When M(r) is a space of (integrable) functions, we may put

〈γ1(ν0, . . . , νq ), γ2(ν0, . . . , νq )〉 :=
∫

γ1(ν0, . . . , νq )γ2(ν0, . . . , νq )

q
∏

i=0

(φi )
1/(q+1)μ,

(4.7.3)

that is, use the measures ν0, . . . , νq to integrate functions.
Given two elements ofCq(R, M), that is, mappings γ1, γ2 that associate

to each ordered (q + 1)-tuple (ν0, ν1, . . . , νq) elements γα(ν0, . . . , νq) ∈
M(r(ν0, . . . , νq)) (α = 1, 2), we can define their product

(γ1, γ2)q :=
∑

ν0,...,νq

〈γ1(ν0, . . . , νq), γ2(ν0, . . . , νq)〉
∫ q

∏

i=0

(φi )
1/(q+1)μ.

(4.7.4)

With these products, we can define adjoints δ∗q : Cq(R, M) → Cq−1

(R, M) of the coboundary operators by

(δ∗qγ, η)q−1 = (γ, δq−1η)q for γ ∈ Cq(R, M), η ∈ Cq−1(R, M).

(4.7.5)

Because of (4.6.7), we also have

δ∗q−1 ◦ δ∗q = 0. (4.7.6)

We then obtain the generalized Laplacian

�q := δq−1 ◦ δ∗q + δ∗q+1 ◦ δq : Cq(R, M) → Cq(R, M). (4.7.7)

From the definition, we see that the �q are selfadjoint in the sense that

(�qγ1, γ2) = (γ1,�
qγ2) for all γ1, γ2. (4.7.8)

Therefore, all eigenvalues of �q are real. Here, λ is an eigenvalue of �q if
there exists some g �= 0 with

�qg = λg. (4.7.9)

Such a g is then called an eigenfunction for the eigenvalue λ. Also, the
collection of the eigenvalues of an operator is called its spectrum.

Since
(�qg, g) = (δqg, δqg) + (δ∗qg, δ∗qg) (4.7.10)

we see that
�qg = 0 iff δqg = 0 and δ∗qg = 0. (4.7.11)

Thus, the eigenfunctions for the eigenvalue 0 correspond to cohomology
classes, and the multiplicity of the eigenvalue 0 is therefore a topological
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invariant. In fact, one can show that each cohomology class, that is, each
element of Hq(R, M) is represented by a unique eigenfunction of�q . Here,
the nondegeneracy of the scalar product of course plays a crucial role.

We can utilize these constructions to associate numerical invariants, the
eigenvalues of the Laplacians �q , to collections of densities of objects.
For instance, when we have different proteins in a cell, the distribution of
each protein i yields a density or Radon measure νi , and we can then try to
characterize the joint distribution of different proteins,5 their colocalization,
by the topological invariants given by the cohomology groups Cq(R,Z) or
Cq(R,R) or for some other ring, and by the geometric invariants given by
the spectra of the Laplacians �q . Those topological invariants encode the
qualitative properties of the overlap, that is, which collections of proteins
occur together, and which ones don’t, whereas the geometric invariants
encode also the quantitative aspects as reflected by the amount of overlap.

Of course, the foregoing can also be applied to many other—biological
or non-biological—examples. For instance, we can study the distributions
of members of different species in an ecosystem.

Returning to the formalism, what we have done here amounts to the
following. To a collection of compatible Radon measures on a topological
space, we have associated a weighted simplicial complex. The simplices
correspond to the intersections of support sets of the measures, and the
weights are then given by the induced measures on those intersections. We
have then utilized theweights to define scalar products of cochains.With the
help of those products, we have then defined adjoints δ∗ of the coboundary
operators δ, and Laplace operators �. The spectra of those Laplace oper-
ators then are supposed to yield geometric invariants of the collection of
Radon measures, in addition to the topological invariants obtained from the
Čech cohomology of the intersection patterns of the support sets.

In fact, for the analysis of the spectra, it might be simpler to consider the
operators

�
q
d := δq−1 ◦ δ∗q and �

q
u := δ∗q+1 ◦ δq (4.7.12)

(with d for “down” and u for “up”) separately. Of course, these operators
satisfy

�q = �
q
d + �

q
u . (4.7.13)

The reason is the following general fact about eigenvalues of products of
operators A, B. Whenever v is an eigenfunction of AB with eigenvalue
λ �= 0, that is,

ABv = λv �= 0, (4.7.14)

then Bv �= 0 is an eigenfunction of B A with the same eigenvalue, as

B A(Bv) = λBv. (4.7.15)

Therefore, �
q
d and �

q−1
u have the same nonvanishing eigenvalues. Thus,

their spectra differ at most by the multiplicity of the eigenvalue 0.
Also, if v is an eigenfunction of �

q
d with eigenvalue λ �= 0, that is,

δq−1 ◦ δ∗qv = λv, then

δ∗q+1 ◦ δqλv = δ∗q+1 ◦ δq ◦ δq−1 ◦ δ∗q
v = 0

5For a technology that can generate such protein colocalization data, see [98].
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by (4.6.7), hence�
q
uv = 0. Similarly, by (4.7.6),whenw is an eigenfunction

of �
q
u with eigenvalue λ �= 0, then �

q
dw = 0. Therefore, the spectrum of

�q is the union of the nonvanishing parts of the spectra of �
q
d and �

q
u

and the eigenvalue 0 with its multiplicity. Combined with the above fact
that �q

d and �
q−1
u have the same nonvanishing eigenvalues, we see that for

the spectral analysis, the appropriate operators to investigate are �
q
d and

�
q
u , and there exist relations between the spectra for the different possible

values of q . More precisely, for each q , some part of the nonzero spectrum
is shared with the spectrum at q −1, and the other part is shared with q +1.
See [52].



5What Is Space?

5.1 A Conceptual Deconstruction and a Historical
Perspective

In order to approach this question, we might first ask “What is the space
that we are living in?”. And a first answer might be “Three-dimensional
Euclidean space”. But what is that three-dimensional Euclidean space, and
how can it be described? Perhaps we think that we know the answer: Each
point x in three-dimensional Euclidean space is described uniquely by its
Cartesian coordinates x1, x2, x3, that is, by a triple of real numbers. That Euclidean 3-space
is, we suppose that we have three mutually orthogonal coordinate axes that
emanate from a common origin “0”, and that the point x is characterized
by the lengths x1, x2, x3 of its projections onto those three coordinate axes.
Furthermore, we have a Euclidean scalar product between points x and y
that can be computed from their coordinate representations

〈x, y〉 := x1y1 + x2y2 + x3y3. (5.1.1)

From this Euclidean scalar product, we obtain the norm

‖x‖ := √〈x, x〉 (5.1.2)

of x and the angle α

〈x, y〉 =: cosα ‖x‖‖y‖ (5.1.3)

between x and y. In particular, when 〈x, y〉 = 0, we say that x and y are
orthogonal to each other.

Furthermore, we have the structure of a vector space, that is, we can add
two points

x + y := (x1 + y1, x2 + y2, x3 + y3) (5.1.4)

and multiply points by real numbers α,

αx := (αx1,αx2,αx3). (5.1.5)

In other words, algebraic operations on coordinates induce the correspond-
ing operations on the points of Euclidean space.

Euclidean space also supports vector calculus, that is, processes of differ-
entiation and integration. In particular, we can compute derivatives (tangent
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vectors) of smooth curves, and measure the lengths of curves, the areas of
curved surfaces, and the volumes of bodies.

Thus, we have a lot of structure. Perhaps too much for the beginning.
In particular, some part of the structures are simply arbitrary conventions.
For instance, what determines the position of the origin 0 of the Cartesian
structure in physical space? Clearly, this is an arbitrary convention. The
Euclidean structure also depends on the assumption or convention that the
coordinate axes are orthogonal to each other, and the lengths of vectors
depend on the choices of units on the coordinate axes. Where do they come
from?

The Cartesian representation of Euclidean space may also obscure some
of its geometric properties. We think that Euclidean space is homogeneous,
that is, its geometric properties are the same at every point, and isotropic,
that is, its geometric properties are the same in every direction. However,
the Cartesian structure distinguishes one particular point, the origin 0, as
well as the three directions of the coordinate axes.

Thus, in particular, we have seen that our naive conception of space con-
founds two structures, the Cartesian or vector space structure with its coor-
dinate representations and the Euclidean metric structure. And it remains
unclear what either of them has to do with physical space.

So, perhaps we should start differently and ask “What are the essential
or characteristic properties of space?”. Many answers to this question have
been proposed in the history of philosophy, mathematics, and physics, and
it might be insightful to examine some of them.

To that end, we shall now give a caricature of the history of concepts of
space, with little regard for historical accuracy, but rather for the purpose
of identifying some important conceptual aspects.

Aristotle (384–322) who lived before Euclid (ca.325–265) had a rather
different concept of space than Euclid. He argued that since for instance a
stone falls to the ground, the location of the stone in the air is different from
its location on the ground. In other words, there are differences between
“up” and “down”, and space is neither homogeneous nor isotropic. For
Aristotle, spacewas the collection of “natural” locations of physical objects.
Aristotle thought of a categorical difference betweenmatter andmovement,
and therefore between rest and motion. The natural state of matter was rest,
and it moved only in order to attain its natural position of rest. This became
a conceptual obstacle that physicists needed a long time to overcome.

In contrast to this, the painters of the Renaissance, led by Filippo
Brunelleschi (1377–1446), saw space as the medium in which light rays
propagate according to the laws of Euclidean geometry and developed the
constructions of geometrical perspective for their two-dimensional repre-
sentations. It is somewhat remarkable, and perhaps ironic, that they postu-
lated an objective spatial reality in order to create subjective illusions, that
is, a perception of spatial depth in planar paintings.

Galileo Galilei (1564–1642) considered space as the idealized medium
for the kinetics and dynamics of physical bodies and emphasized the invari-
ance properties of the laws of physics that depend on the homogeneity and
isotropy of (Euclidean) space. This was a key step for eventually over-
coming the Aristotelian distinction between movement and rest. For Isaac
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Newton (1643–1717), space was an invariant container in which bodies
could exercise forces upon each other which then led to their physical
dynamics. For that purpose, Newton conceived space as absolute, and
he considered centrifugal forces as evidence of movement against such
an absolute reference frame. Notwithstanding his fundamental concept of
force that overcame the Cartesian misconception of identifying matter and
extension and that turned out to be basic for the subsequent progress of
physics, his notion of absolute space constituted a step backwards from the
insights of Galilei. In contrast, for GottfriedWilhelm Leibniz (1646–1716),
space simply encoded relations between objects, instead of existing inde-
pendently of the objects contained in it. This idea both anticipated some
aspect of relativistic physics and also contributed to more abstract notions
of space of modern mathematics. There, we speak of a space when we wish
to express any kind of qualitative or quantitative relation between objects
that need not be of a physical nature. For instance, a graph codifies binary
relations between discrete objects. But in fact, even for the description of
physical systems, it is often useful to employ a more abstract notion of
space. For instance, the state space of a collection of N particles in three-
dimensional Euclidean space represents the positions of these particles by
3N coordinates, and their phase space employs 6N coordinates for their
positions and momenta or velocities. More generally, state or phase spaces
for dynamical systems describe their possible degrees of freedom.Actually,
before Newton and Leibniz, Descartes (1596–1650), who had translated his
name as Cartesius into Latin, had already introduced coordinates for the
geometric description and analytic treatment of algebraic relations, such as
z = w2 or z2 = w3. This leads to two-dimensional Cartesian space, and
we can naturally extend this to construct N -dimensional Cartesian space.
When we base this on the concept of real numbers R (which was only R

clarified in the 19th century by Richard Dedekind (1831–1916) and others,
much later than Descartes), then N -dimensional Cartesian space is R

N .
Furthermore, the concept of a vector space, which underlies this construc-
tion, was only introduced later by Hermann Grassmann (1809–1877). The
vector space R

N is not yet equipped with the Euclidean metric structure.
An entirely new approach was introduced by Bernhard Riemann (1826–

1866) [96]. In modern terminology, he conceived of space as a differen-
tiable manifold in which one could perform (infinitesimal) measurements
of lengths and angles, that is, what one calls a Riemannian manifold in
his honor. Riemann was the key person behind the conceptual analysis and
clarification of the notion of space in mathematical terms. In particular,
Riemann was the first to clearly distinguish the topological and the metric
structure of space.

Partly building upon Riemann and partly criticizing him, the physicist
Hermann von Helmholtz (1821–1894) argued that the characteristic empir-
ical property of physical space is that one can freely move bodies around
in it without deforming them. In modern terminology, this led him to the
conclusion that physical space must be a three-dimensional Riemannian
manifold of constant curvature, that is, either a Euclidean, spherical, or
hyperbolic space form. Sophus Lie (1842–1899), however, identified some
gaps in themathematical reasoning ofHelmholtz and developed the abstract
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concept of geometric invariance transformation. The Lie groups yielded a
fundamental concept for the subsequent development of the quantum the-
ory of physics, and Lie groups and Riemannian geometry constitute the
basic language of modern quantum field theory.

For Albert Einstein (1879–1955), however, in contrast to Helmholtz,
bodies were not moving invariantly in an invariant space, but rather the
properties of space and the movements of bodies were intertwined; again,
the concept of a Riemannian manifold turned out to be the appropriate
notion for the physics of general relativity.

The work of Riemann also inspired the axiomatic approach to geometry,
that is, the program of characterizing space, or classes of possible spaces, in
terms of abstract properties. Important contributions came fromGeorgCan-
tor (1845–1918) and David Hilbert (1862–1943). On the basis of Cantor’s
set theory, the notion of a topological space could be developed, and Hilbert
started a systematic axiomatic program for geometry (and other areas of
mathematics). For a more detailed treatment of the conceptual history of
geometry, I refer to my commentary in [96].

In algebraic geometry, one is interested in the solution sets of algebraic
equations or relations. Again, Riemann, by conceiving Riemann surfaces as
geometric objects expressing the multivalued character of such solutions,
had an important impact, and eventually, the concept of an algebraic vari-
ety emerged. In contrast to a manifold which has the same local structure
throughout, an algebraic variety may possess singularities, that is, points or
subsets with more complicated local surroundings than others. This makes
coordinate descriptions less convenient, and the alternative of character-
izing points as zero sets of suitable collections of local functions shaped
the development of modern algebraic geometry. In the hands of Alexander
Grothendieck (1928–2014), this led to the general notion of a scheme that
unifies algebraic geometry and arithmetic.

On the basis of this rather cursory narrative of the history of geometry,we
can now identify several feasible approaches to the notion and description
of spaces.

1. Manifold: Description by coordinate charts, that is, by locally relating
to a model space

2. Scheme: Description through local functions, with points corresponding
to maximal ideals in function spaces

3. Description of a given space through homomorphisms, that is, structure
preserving maps, from variable other spaces: Hom(−, S)

4. Characterization in terms of invariants, as in cohomology theory
5. Assembling a space from local pieces (simplices, cells) so that the prop-

erties of the space are reduced to the combinatorics of this assembly
pattern

6. Characterization of a space in terms of the group of its structure pre-
serving transformations. In the basic situation, those structure preserv-
ing transformations (homeomorphisms, diffeomorphisms, isometries,
. . .) operate transitively on the space. More complicated spaces are then
assembled from or decomposed into such homogeneous pieces or strata.
Perhaps the simplest instance is a manifold with boundary.
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7. Metric space: Defining a space through distance relations between its
elements

Each of these conceptualizations contains a drive towards generalization
and abstraction. For instance, when we describe a space by its algebra of
continuous functions, then we can simply turn things around and consider
every algebra as defining some space. For instance, while the algebra of
continuous functions is commutative—when f, g : M → R are functions
on some space M , then f (x)g(x) = g(x) f (x) for every x ∈ M–, one
can then also consider noncommutative algebras (perhaps with suitable
additional properties) and declare them to define a noncommutative space,
see [24]. We shall see the power of such an approach in Sect. 5.4, albeit
there we shall still work within the commutative setting.

5.2 Axioms of Space

On the basis of the mathematical structures developed in Chap.4, in par-
ticular in Sect. 4.1, we shall now develop a more abstract and axiomatic
theory of space.

We now define a basic space through a series of axioms and then add
an axiom that will allow us to introduce additional structures. In short,
in a space we shall be able to identify points, but not will not be able to
distinguish between them.

Let us try to start with the following property.

Axiom 1 A space consists of points.

Axiom 1 is motivated by set theory. It is, however, problematic in the
sense that it concerns an ontological aspect, as opposed to an operational
one. We therefore try to replace this axiom by the following construction.

The space under consideration will be denoted by X . When we think of
X as consisting of points, then X is a set, and we can then also consider
subsets of X . The subsets of X constitute theBoolean algebraP(X)with the
operations of complement, union, intersection, and the inclusion relation, as
described in Sect. 4.1. As pointed out there, we can also perform pointless
topology, that is, consider P(X) as an abstract formal category, without
having to take recourse to any points. We now develop this aspect in the
way that we start from that category P(X) and construct the points from
appropriate systems of members of P(X). That is, the points of X , instead
of being fundamental or constitutive for X , become derived objects.

Within the framework of category theory, there exists a natural approach
to this issue, using the (ultra)filters introduced in Sect. 2.1.5 in the proof
of Theorems 2.1.2, see (2.1.98)–(2.1.101). Let us briefly recall those defi-
nitions here. Let X be a set. A filter F on P(X) is then a subset of P(X)

satisfying

∅ /∈ F , X ∈ F , (5.2.1)

if U ∈ F , U ⊂ U ′, then also U ′ ∈ F , (5.2.2)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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http://dx.doi.org/10.1007/978-3-319-20436-9_2
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if U1, . . . , Un ∈ F , then also U1 ∩ · · · ∩ Un ∈ F . (5.2.3)

Heuristically, one could say that a filter specifies a class of sets that share
some property. For instance, if A ⊂ X , then F(A) := {V ⊂ X : A ⊂ V },
the collection of all subsets of X containing A, is a filter. Thus, if x ∈ X
is a point, it would be captured by the filter F({x}). This filter then enjoys
an additional property: it is what we have called an ultrafilter or a maximal
filter, that is, whenever for some filter G

F ⊂ G, then F = G. (5.2.4)

Equivalently, F is an ultrafilter iff

for all U ∈ P(X), either U ∈ F or X\U ∈ F . (5.2.5)

In particular, for the ultrafilter F({x}), S ∈ F({x}) iff x ∈ S. Conversely,
we could then use ultrafilters to define or identify the points x of X . Here,
two different situations could arise. We could either have

⋂

U∈F
U �= ∅, (5.2.6)

in which case we might consider this intersection as a point of X , or
⋂

U∈F
U = ∅, (5.2.7)

in which case there would be no point in X corresponding toF . In the latter
case, we might wish to add an “ideal” point to X . For instance, when X is
the open interval (0, 1) = {t ∈ R : 0 < t < 1}, the filter consisting of all
subsets of (0, 1) that contain an open interval (0, ε) for some ε > 0 would
have an empty intersection, but would naturally define the point 0 that we
might then add to (0, 1) to close it off at its left side. Similarly, we could
write down a filter defining the point 1. Here, however, we do not explore
the important issue of completing a space.

So far, the concept of a filter has been developed for a set, using its
power set. When we have a topological space X , we might wish to replace
the power set P(X) by the set O(X) of its open subsets and carry out the
analogous construction there. In fact, the example of the open interval (0, 1)
just discussed finds its natural place in the context of topological spaces.
And the issue of completion briefly alluded to in that example is meaningful
only for topological spaces, but not for general sets.

Moreover, filters or ultrafilter do not behave nicely under mappings,
reflecting the fact thatmaps need neither be injective, i.e., couldmap several
points to the same one, nor surjective, i.e., could leave out some points in
the target.We shall address this issue from a somewhat different perspective
in Sect. 5.4 below.

We now step somewhat outside of category theory and try to investigate
whatwe really need from an abstract perspective to define or identify points.
For that purpose, we assume that we have Q(X) ⊂ P(X) satisfying:

(i)
∅, X ∈ Q (5.2.8)
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(ii) Whenever (Qi )i∈I ⊂ Q for some index set I , then also
⋃

i∈I

Qi ∈ Q (5.2.9)

Thus, the requirements for Q are somewhat weaker than those imposed
upon the collection of open sets O in Sect. 4.1, but for most examples, one
may simply take that collection O for Q.

A focus U is then a subset of Q(X) with the property that for all U, V ∈
U , there exists some W ∈ U with

W ⊂ U ∩ V (5.2.10)

and
⋂

U∈U
U �= ∅. (5.2.11)

We note that in (5.2.10), we do not require that the intersection of two
members of a focus be in the focus. In fact, that intersection need not even
be a member of Q. We might, however, take the union of all members of Q
that are contained in that intersection. That union is again in Q, and in fact,
it is the largest member with that property. We do not require, however, that
it also be a member of the focus U .

The focus V is a refinement of U if for every V ∈ V , there exists some
U ∈ U with

V ⊂ U. (5.2.12)

A focus U is called pointlike if
⋂

U∈U
U ⊂

⋂

V ∈V
V for all refinements V, (5.2.13)

that is, one cannot obtain a smaller asymptotic intersection by making the
elements U of the focus smaller. We may then say that the pointlike focus
U defines the point

⋂

U∈U U . In other words, in place of points, we can
consider pointlike foci. The notion of a point is then no longer a primitive
notion, but rather becomes a derived one, in fact derived by the asymptotics
of the operation of taking smaller and smaller members of foci.

We note that when Q(X) is a collection O(X) of open sets as in the
definition of a topological space, see Sect. 4.1, then a focus becomes a net
in the terminology of topology. We may think in terms of such examples,
but should keep in mind that, so far, we have not requested thatQ be closed
under finite intersections. We have only required that the intersection of
two members of a focus contains another member of that focus.

An easy example is R with its standard topology. x ∈ R is then obtained R

from the net (x− 1
n , x+ 1

n ) forn ∈ N. As another example, let us consider the
cofinite topology on R, introduced in Sect. 4.1, that is, the topology whose
open sets are the complements of finitely many points. For x ∈ R, we
consider the focus consisting of all open sets of the form R \ {x1, . . . , xn},
where x �= x1, . . . , xn . These open sets then constitute a focus whose
intersection is the point x .

Axiom 1 can then be replaced by

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Axiom 2 The points can be identified by foci. This identification should
satisfy the Hausdorff property.

By the Hausdorff property, we mean that for any two foci U1, U2 iden-
tifying different points, there exist disjoint members Ui ∈ Ui , that is,

U1 ∩ U2 = ∅. (5.2.14)

Axiom 3 The space is coherent in the sense that when Q is an element
of Q(X), different from ∅, X, then its complement X \ Q is not contained
in Q.

In particular,when a focus identifies a point,we cannot use the complements
of the members of the focus to identify another point. We can also interpret
the preceding as an exclusion principle, by saying that Q ∈ Q includes the
point x ∈ Q, and that it excludes the points y in its complement X \ Q.
Axiom 3 then means that the inclusion Q of a point x , that is, Q ∈ Q
with x ∈ Q, cannot simultaneously define the inclusion of another point y
excluded by Q. In the context and terminology of set theoretic topology,
that simply means that the set X \ U cannot be open at the same time as U
when both of them are nonempty. In other words, the space X is assumed
to be connected as a topological space.

TheAxioms 2, 3 excludemany types of topological spaces. For instance,
the indiscrete topology where O = {X, ∅} does not satisfy the HausdorffIndiscrete topology
property whereas the discrete topology where O = P violates Axiom 3. In

Discrete topology that sense, Axiom 2 stipulates that Q has to be rich enough, but Axiom 3,
in contrast, requires that it not be too rich.

So far, we have discussed the identification of points. We now come
to another, in a certain sense, opposite aspect, their distinction. In a set
without additional structure, all elements are equivalent in the sense that
each element can be transformed into each other one by a permutation of
the set, that is, by an automorphism of the set structure. Expressed differ-
ently, its transformation group operates transitively on the set. Here, we are
employing a general concept from category theory. When A is a member
of a category, an invertible morphism of A, that is, a map from A to itself
that is structure preserving in both directions, is called a transformation of
A. Since, being morphisms, transformations can be composed, and since
by definition, they are invertible, they form a group, the transformation
group of A.

Of course, on a set without a topological or some other structure, we can-
not identify points. However, even when we can identify points as required
in the preceding axioms, we may still be able to transform points into each
other in a manner that preserves the structure. In fact, this is what we are
going to reqire now for a basic space.

Axiom 4 The points cannot be distinguished from each other. They are
equivalent under transformations of the space.

Informally stated, a basic space looks the same at each of its points,
so that we can transform one into the other without constraints. Thus, a
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basic space X has to possess a transitive group of transformations. When
this requirement is not satisfied, we might speak of a composite space.
Examples are manifolds with boundary (composed of the interior and the
boundary), stratified spaces (composed of several basic strata), or algebraic
varieties with singularities (which are examples of stratified spaces, the
largest stratum consisting of the non-singular points).

We might also take the transformation group T as the primary object in
place of the space. From that perspective, Axiom 4 says that the space X is a
homogeneous space for T . In particular, it yields a representation of T . This
aspect is fundamental in elementary particle physics where its symmetries,
that is, a Lie group T , characterize a particle, and its manifestation in
experimental data arises from a representation of T .

Axiom 4 provides an operationalization of the equivalence principle.
When we have a structure Q ⊂ P as above, we may consider transfor-
mations as invertible morphisms of Q. That is, they have to preserve the
operations of union and intersection and the relation of inclusion. Thus, foci
are transformed into foci, and the Hausdorff property ensures that points
correspond to points. For a topological space (X, O), we have described
this in Sect. 4.1.We recall that, in the terminology of points for simplicity, a
homeomorphism of (X, O) is a bijective map h : X → X with the property
that the image and the preimage of every open set is open. That is, a home-
omorphism preserves the topological structure. Homeomorphisms can be
inverted and composed, that is, if h, g are homeomorphisms, then h−1 and
h ◦ g are homeomorphisms as well. The homeomorphisms therefore con-
stitute a group of transformations of the topological space X . Axiom 4 then
means that for any two points x, y ∈ X , there exists some homeomorphism
h with

h(x) = y. (5.2.15)

This does not hold for all topological spaces. It is valid, however, for the
perhaps most important class, for manifolds, to be introduced in Sect. 5.3
below.

Axiom 5 A structure on the space consists of constraints on its
transformations.

We shall now describe some examples of this that involve some more
advanced concepts that will be defined only subsequently, in Sect. 5.3 and
its Sects. 5.3.1 and 5.3.2, or not at all in this text. For instance, a differen-
tiable manifold is characterized by constraining the transformations to be
diffeomorphisms. Its diffeomorphism group still operates transitively on a
differentiablemanifold. This is no longer valid for richer structures that lead
to stronger constraints on the transformation, for instance for the structure of
a complex manifold whose transformations would be biholomorphic maps,
that is, invertible holomorphic maps. In such a case, we should rather con-
sider local transformations. In the case of a complex manifold, this would
be biholomorphic maps between open sets, e.g. small neighborhoods of
points. A complex manifold is then locally homogeneous in the sense that
for any two points z, w, there exist neighborhoods U of z and V of w and a

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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biholomorphic map h : U → V with h(z) = w. We should formalize this
property as the concept of local space.

For a semisimpleLie groupG of noncompact type, a homogeneous space
is given by the quotientG/K ofG by amaximal compact subgroup K .G/K
is also a special case of a Riemannian manifold (on which G operates by
isometries), but a general Riemannian manifold need not be homogeneous,
and in fact not even in the local sense just described. It, however, can be
characterized in terms of infinitesimal isometries as we shall see below.We
should formalize this property as the concept of infinitesimal space. More
generally, the isometries of a metric space constitute the transformation
group for a metric structure. Again, in general, a metric space need not
possess any global or local isometries.

5.3 Manifolds

In the preceding, we have employed certain notions, those of a manifold,
of a differentiable and of a Riemannian manifold, that we have not yet
defined. We therefore have to proceed to the corresponding definitions. For
the technical aspects, a reference is [58]. We first describe the principle
before proceeding to a technical definition.

Axiom 6 A manifold is a principle relating a basic space to the model space
R

d (considered as a topological space) by local descriptions in such a man-
ner that the identity of points can be traced across the different descriptions.
Those descriptions can be arranged in such a manner that locally always
finitely many of them suffice.

We shall now explain the terms employed in this axiom in a more formal
manner. For this purpose, we shall have to introduce some technical terms,
like paracompactness, that shall not be further explored or discussed in the
sequel. Some readers may therefore wish to skip this and proceed directly
to Definition 5.3.1.

A covering (Uα)α∈A (A an arbitrary index set) is a collection of subsets
of our space M whose union equals M . When M is a topological space
we can speak of an open covering, that is, one where all the Uα are open
sets. A covering is called locally finite if each p ∈ M has a neighborhood
that intersects only finitely many Uα. The topological space M is called
paracompact if any open covering possesses a locally finite refinement.
This means that for any open covering (Uα)α∈A there exists a locally finite
open covering (Vβ)β∈B with

∀ β ∈ B ∃ α ∈ A : Vβ ⊂ Uα. (5.3.1)

Paracompactness is a technical condition that ensures the existence of par-
titions of unity. These constitute a useful analytical tool, and we briefly
state the corresponding result now, even though we shall not utilize it here.
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Lemma 5.3.1 Let X be a paracompact Hausdorff space, (Uα)α∈A an open
covering. Then there exist a locally finite refinement (Vβ)β∈B of (Uα) and
continuous functions ϕβ : X → R with

(i) {x ∈ X : ϕβ(x) �= 0} ⊂ Vβ for all β ∈ B,
(ii) 0 ≤ ϕβ(x) ≤ 1 for all x ∈ X, β ∈ B,

(iii)
∑

β∈B ϕβ(x) = 1 for all x ∈ X.

In (iii), there are only finitely many nonvanishing summands at each point
since only finitely many ϕβ are nonzero at any given point because the
covering (Vβ) is locally finite.

The collection of functions ϕβ : X → R as in the Lemma is then called
a partition of unity subordinate to (Uα). A proof can be found in [95], for
instance.

We recall from Sect. 4.1 that a map between topological spaces is called
continuous if the preimage of any open set is again open. A bijective map
which is continuous in both directions is called a homeomorphism.

Definition 5.3.1 Amanifold M of dimension d is a connected paracompact
Hausdorff space together with the collection of all homeomorphisms from
open setsU ⊂ M to open sets� ⊂ R

d , such that every x ∈ M is contained
in some such open U that is homeomorphic to an open � ⊂ R

d .
Such a homeomorphism

x : U → �

is called a (coordinate) chart.

It is customary to write the Euclidean coordinates of R
d ,� ⊂ R

d

open, as
x = (x1, . . . , xd), (5.3.2)

and these are then considered as local coordinates on our manifold M when
x : U → � is a chart.

In order to verify that a manifold from Definition 5.3.1 satisfies
Axiom 4, we state

Theorem 5.3.1 Let M be a manifold, and p, q ∈ M. Then there exists a
homeomorphism

h : M → M with h(p) = q. (5.3.3)

We sketch the

Proof 1. A manifold M is path connected in the sense that for every two
points p �= q , there exists a continuous and injective map c : [0, 1] →
M with c(0) = p, c(1) = q . (This sounds intuitively plausible, but the
proof of this fact is not trivial.)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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2. There exist a neighborhood U of c([0, 1]) and a chart

x : U → � = {x ∈ R
d : |x − p| < 1

for some p = (λ, 0, . . . , 0), 0 ≤ λ ≤ 1} (5.3.4)

that maps c([0, 1]) to {(λ, 0, . . . , 0), 0 ≤ λ ≤ 1}, with p = c(0)
corresponding to (0, 0, . . . , 0).

3. There exists a homeomorphism η : � → � that is the identity in a
neighborhood of the boundary of � in R

d and maps (0, 0, . . . , 0) to
(1, 0, . . . , 0), that is, the point corresponding to c(0) = p to the point
corresponding to c(1) = q .

4. Extending x−1 ◦ η to all of M by letting it be the identity outside U
yields a homeomorphism of M with h(p) = q . �

A point p ∈ Uα is determined by xα(p); hence it is often identified with
xα(p).Often, the indexα is also omitted, and the components of x(p) ∈ R

d

are called local coordinates of p.
Thus, putting the preceding more abstractly, a manifold is a principle

for identifying each point across different local representations (coordinate
charts), as required in Axiom 6. That is, when

xi : Ui → �i ⊂ R
d , i = 1, 2, (5.3.5)

are two charts with p ∈ U1 ∩U2, then the representation x1(p) by the chart
x1 is identified with the representation x2(p) by the chart x2.

Now, according to the concept of a manifold, one cannot distinguish
between two homeomorphic manifolds. That is, when h : M1 → M2 is a
homeomorphism, then the point p ∈ M1 has to be identified with the point
h(p) ∈ M2. In terms of coordinate charts, the charts x : U → � of M1
correspond to the charts x ◦ h−1 : h(U ) → � of M2. Here, it is important
to realize that when h : M → M is a homeomorphism of the manifold M
to itself, we then have two different, but equivalent representations of M ,
in the sense that the point p in M in the first representation corresponds to
the point h(p) in M in the second representation, but no longer to the point
p in that representation.

The second important aspect is that charts allow us to transfer structures
from R

d to a manifold, by imposing a compatibility condition on chart
transitions. Again, we state an axiom before a more formal and concrete
definition.

Axiom 7 A structure on a manifold is a compatibility condition between
local descriptions.

Definition 5.3.2 An atlas is a family {Uα, xα} of charts for which the Uα

constitute an open covering of M. We say that an atlas {Uα, xα} on a mani-
fold is of structural type C where C is some category if all chart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ)

are isomorphisms for the category C (in case Uα ∩ Uβ �= ∅).
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Any atlas consisting of charts that are compatible in this sense is con-
tained in a maximal one, namely the one consisting of all charts compatible
with the original one. A maximal atlas of charts that are compatible in this
sense is called a C-structure, and a manifold of type C of dimension d is a
manifold of dimension d with such an atlas.

The following is the most basic example of such a structure.

Definition 5.3.3 An atlas {Uα, xα} on a manifold is called differentiable if
all chart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ)

are differentiable of class C∞ (in case Uα ∩Uβ �= ∅). Amaximal differen-
tiable atlas is called a differentiable structure, and a differentiable manifold
of dimension d is a manifold of dimension d with a differentiable structure.

Remark

1. We are requiring here the differentiability classC∞ (“smoothness”), that
is, we request the functions to be infinitely often differentiable, but one
can, of course, also work with other differentiability classes. Working
with C∞ is the laziest choice, as it obviates the need to always specify
the precise order of differentiability required in a given situation.

2. Since the inverse of xβ ◦ x−1
α is xα ◦ x−1

β , chart transitions are differ-
entiable in both directions, i.e. diffeomorphisms. Thus, they are isomor-
phisms for the corresponding category, as required.

3. It is easy to show that the dimension of a differentiable manifold is
uniquely determined. For a general manifold that is not necessarily dif-
ferentiable, this is much harder.

4. Since any differentiable atlas is contained in a maximal differentiable
one, it suffices to exhibit some differentiable atlas if one wants to con-
struct a differentiable manifold.

Definition 5.3.4 A map h : M → M ′ between differentiable manifolds
M and M ′ with charts {Uα, xα} and {U ′

α, x ′
α} is called differentiable if all

maps x ′
β ◦h◦x−1

α are differentiable (of classC∞, as always) where defined.
Such a map is called a diffeomorphism if it is bijective and differentiable in
both directions.

As before, one cannot distinguish between two diffeomorphic differen-
tiable manifolds.

For purposes of differentiation, a differentiable manifold locally has the
structure of the vector space R

d . That is, now, in addition to the topological
structure ofR

d , we also use its vector space structure. As will become clear
below, the vector space R

d , however, is an infinitesimal rather than a local
model for a differentiable manifold.

According to the concept of a differentiable manifold, the differentia-
bility of a map can be tested in local coordinates. The diffeomorphism
requirement for the chart transitions then guarantees that differentiability
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defined in this manner is a consistent notion, i.e. independent of the choice
of a chart. It is important to realize, however, that the values of derivatives
depend on the local charts employed. Therefore, they are not intrinsically
defined. This issue will be taken up in Sect. 5.3.1. Whether the Jacobian of
a map is zero or not, however, does not dependent on the local coordinates,
and this therefore is an intrinsic property. This will be utilized in the proof
of Theorem 5.3.2.

In any case, we can also formulate the preceding as

Axiom 8 A differentiable manifold is a principle for identifying points and
vectors across different local representations.

This aspect will form the content of Sect. 5.3.1.

A differentiable manifold satisfies the analogue of Theorem 5.3.1

Theorem 5.3.2 Let M be a differentiable manifold, and p, q ∈ M. Then
there exists a diffeomorphism

h : M → M with h(p) = q. (5.3.6)

For the

Proof We observe that the constructions of the proof of Theorem 5.3.1 can
be carried out in the differentiable category. In particular, on a differentiable
manifold, we may find a differentiable curve c : [0, 1] → M with nowhere
vanishing derivative with c(0) = p, c(1) = q , and the homeomorphism
η : � → � of that proof can be constructed as a diffeomorphism. �

Example

1. The simplest example of a d-dimensional manifold is R
d itself.R

d

2. The sphere

Sn := {(u1, . . . ,un+1) ∈ R
n+1 :

n+1
∑

i=1

(ui )2 = 1} (5.3.7)

Sphere
is a differentiable manifold of dimension n. This manifold is covered
by the following two charts. On U1 := Sn\{(0, . . . , 0, 1)} (the sphere
without the north pole), we put

x1(u
1, . . . ,un+1) := (x11(u

1, . . . ,un+1), . . . , xn
1 (u1, . . . , un+1))

:=
(

u1

1 − un+1 , . . . ,
un

1 − un+1

)

and on U2 := Sn\{(0, . . . , 0,−1)} (the sphere without the south pole),

x2(u
1, . . . ,un+1) := (x12(u

1, . . . ,un+1), . . . , xn
2 (u1, . . . ,un+1))

:=
(

u1

1 + un+1 , . . . ,
un

1 + un+1

)

.



5.3 Manifolds 137

3. Similarly, n-dimensional hyperbolic space, represented as the hyper-
boloid of revolution

Hn := {u ∈ R
n+1 : (u1)2 + . . . (un)2 − (un+1)2 = −1, un+1 > 0},

(5.3.8)

is a manifold. Hyperbolic space
4. Let w1, w2, . . . , wn ∈ R

n be linearly independent and define u1, u2 ∈
R

n as equivalent if there are m1, m2, . . . , mn ∈ Z with

u1 − u2 =
n

∑

i=1

miwi .

Let π be the projection mapping u ∈ R
n to its equivalence class. The

torus T n := π(Rn) can then be made a differentiable manifold (of
dimension n) as follows: Suppose �α is open and does not contain any
pair of equivalent points. We put

Uα := π(�α),

xα := (π|�α)−1.

Torus
5. In general, any open subset of a (differentiable) manifold is again a

(differentiable) manifold.
6. The Cartesian product M × N of two differentiable manifolds M, N

also naturally carries the structure of a differentiable manifold. In fact,
if {Uα, xα}α∈A and {Vβ, yβ}β∈B are atlases for M and N , resp., then
{Uα × Vβ, (xα, yβ)}(α,β)∈A×B is an atlas for M × N with differentiable
chart transitions.

According to Definition 5.3.2, one can put any type of restriction on
the chart transitions, for example, require them to be affine, algebraic, real
analytic, conformal, Euclidean volume preserving, . . . , and thereby define a
class ofmanifolds with that particular structure. Perhaps themost important
example is the notion of a complex manifold.

Definition 5.3.5 A complex manifold of complex dimension d (dimC M =
d) is a differentiable manifold of (real) dimension 2d (dimR M = 2d)
whose charts take values in open subsets of C

d with holomorphic1 chart
transitions.

Analogous to the case of a differentiablemanifold, since chart transitions
operate in both directions, they are in fact biholomorphic, that is, bijective
with holomorphic inverses.

1Let us recall the definition of a holomorphic map. On C
d , we use complex coordinates

z1 = x1 + iy1, . . . , zd = xd + iyd . A complex function h : U → C where U is an open

subset of Cd , is called holomorphic if ∂̄h
∂ z̄k := 1

2 ( ∂h
∂xk + i ∂h

∂yk ) = 0 for k = 1, . . . , d, and

a map H : U → C
m is then holomorphic if all its components are. We do not want to go

into the details of complex analysis here, and we refer the reader to [58] for more details
about complex manifolds.
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For a complex manifold, the analogue of Theorems 5.3.1, 5.3.2 in
general no longer holds. We only have

Theorem 5.3.3 Let M be a complex manifold, p, q ∈ M. Then there exist
open neighborhoods U, V of p and q, resp., and a biholomorphic map
h : U → V with h(p) = q.

Proof We choose two local charts x, y whose domains contain p and q ,
resp., with x(p) = 0 = y(q). By multiplying with an appropriate scaling
factor, if necessary, we may assume that the images of x and y both contain
the unit ball U (0, 1) := {z ∈ C

d : |z| < 1}. We may then take U :=
x−1(U (0, 1)), V := y−1(U (0, 1)) and the biholomorphic map h := y−1 ◦
x : U → V , that is, the biholomorphic map that is represented by the
identity in our local charts. �

5.3.1 Differential Geometry

We now explore the concept of a differentiable manifold in more detail,
according to three principles

1. Through local coordinate representations and the compatibility require-
ment between such local descriptions, differential calculus becomes
available on a differentiable manifold. The objects of that calculus,
like tangent vectors, however, are described differently in different
local descriptions, and they therefore need to be related by transforma-
tions. The resulting transformation rules constitute the subject of tensor
calculus.

2. According to the concept of a manifold, the geometric content should
not depend on the local descriptions. This leads to Riemann’s idea of
invariants.

3. Along with the differential calculus, we can also utilize the Euclidean
structure onR

d , in order to introduce metric relations on a differentiable
manifold. This leads to the profound concept of a Riemannian mani-
fold. The basic invariants of a Riemannian manifold are contained in
Riemann’s curvature tensor. Importantly, a Riemannian metric is only
infinitesimally Euclidean, but in general not locally or globally. The
curvature quantifies that deviation from being Euclidean.

For a more detailed discussion and for the proofs of various results, we
refer to [58, 62].

As indicated, tensor calculus is about coordinate representations of geo-
metric objects and the transformations of those representations under coor-
dinate changes. Tensor calculus thus has to reconcile the invariant properties
of geometric objects with their non-invariant local descriptions.

We consider a d-dimensional differentiablemanifold M . Tensor calculus
involves intricate, but well thought out notational schemes for efficiently
representing and making transparent the transformation behavior of infini-
tesimal geometric quantities under coordinate changes.A useful convention
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is the Einstein summation convention

ai bi :=
d

∑

i=1

ai bi . (5.3.9)

That is, a summation sign is omitted when the same index occurs twice
in a product, once as an upper and once as a lower index. This rule is not
affected by the possible presence of other indices; for example,

Ai
j b

j =
d

∑

j=1

Ai
j b

j . (5.3.10)

The conventions about when to place an index in an upper or lower position
will be given subsequently. We also recall the Kronecker symbol

δi
k :=

{

1 when i = k

0 when i �= k.
(5.3.11)

The manifold M is locally modeled after R
d , and so, locally, it can

be represented by coordinates x = (x1, . . . , xd) taken from some open
subset of R

d . These coordinates, however, are not canonical, and we may
as well choose other ones, y = (y1, . . . , yd), with x = f (y) for some
homeomorphism f . Since our manifold M is differentiable, we can cover
it by local coordinates for which all coordinate transitions are diffeomor-
phisms. Differential geometry then investigates how various expressions
representing objects on M like tangent vectors transform under coordinate
changes. Here and in the sequel, all objects defined on a differentiable man-
ifold will be assumed to be differentiable themselves. This is checked in
local coordinates, but since coordinate transitions are diffeomorphic, the
differentiability property does not depend on the choice of coordinates.

The simplest object in the present context is a (differentiable) function
φ : M → R. Of course, the value of φ at some point p ∈ M does not
depend on the choice of local coordinates. Thus, changing coordinates by
x = f (y), we have φ(x) = φ( f (y)). That is, instead of applying the
function φ in the x-coordinates, we need to utilize the function φ ◦ f in
the y-coordinates. In more abstract terms, changing coordinates from x to
y pulls the function φ defined in the x-coordinates back to f �φ defined
for the y-coordinates, with f �φ(y) = φ( f (y)). We shall now discuss what
happens to the derivatives of φ under such coordinate changes.

Here, an operator that takes the derivative of a function in a given direc-
tion is called a tangent vector. As a formula, when ψ : M → R is a
function, then in the coordinates given by y, a tangent vector at the point p
with coordinate representation y0 is of the form

W = wi ∂

∂yi
, (5.3.12)

and it operates on ψ as

W (ψ)(y0) = wi ∂ψ

∂yi |y=y0

. (5.3.13)

The index i in ∂
∂yi is considered as a lower index, and the summation

convention (5.3.9) is applied.
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When now ψ = f �φ, we want to transform the vector W to the x-
coordinates, i.e., push it forward, so that

( f�W )(φ) = W ( f �φ) (5.3.14)

and the value of the derivative is the same in the x- and the y-coordinates.
By the chain rule, we have

W ( f �φ) = wk ∂

∂yk
φ( f (y)) = wk ∂xi

∂yk

∂φ

∂xi
, (5.3.15)

and therefore, since this has to hold for all functions φ,

f�W = wk ∂xi

∂yk

∂

∂xi
. (5.3.16)

We have thus derived the transformation behavior of tangent vectors under
coordinate changes.

The essential principle here is that in order that a quantity, here the
derivative of a function, be invariant under coordinate changes, according
to (5.3.14), the corresponding operator has to be transformed appropriately.

The tangent vectors at p ∈ M form a vector space, called the tangent
space Tp M of M at p. A basis of Tp M is given by the ∂

∂yi , considered as
derivative operators at the point p represented by y0 in the local coordinates,
as in (5.3.13).

A vector field is then defined as W (y) = wi (y) ∂
∂yi , that is, by having

a tangent vector at each point of M , with differentiable coefficients wi (y),
of course. The vector space of vector fields on M is written as �(TM). (In
fact, �(TM) is a module over the ring C∞(M).)

Later, we shall need the Lie bracket [V, W ] := V W −W V of two vector
fields V (y) = vi (y) ∂

∂yi , W (y) = w j (y) ∂
∂y j . [V, W ] operates on a function

ψ as

[V, W ]ψ(y) = vi (y) ∂
∂yi (w

j (y) ∂
∂y j ψ(y)) − w j (y) ∂

∂y j (v
i (y) ∂

∂yi ψ(y))

= (vi (y)
∂w j (y)

∂yi − wi (y)
∂v j (y)

∂yi )
∂ψ(y)

∂y j . (5.3.17)

In particular, for coordinate vector fields, we have
[

∂

∂yi
,

∂

∂y j

]

= 0. (5.3.18)

Returning to the x-coordinates and considering a single tangent vector,
V = vi ∂

∂xi at some point x0, we define a covector or cotangent vector

ω = ωi dxi at this point as an object dual to V , with the rule

dxi
(

∂

∂x j

)

= δi
j (5.3.19)

yielding

ωi dxi
(

v j ∂

∂x j

)

= ωiv
jδi

j = ωiv
i . (5.3.20)
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This expression depends only on the coefficients vi and ωi at the point p.
We write this as ω(V ), the application of the covector ω to the vector V , or
as V (ω), the application of V to ω.

Like the tangent vectors, the cotangent vectors at p constitute a vector
space, which is then called the cotangent space T �

p M .
For a differentiable function φ, we have the differential of φ,

dφ = ∂φ

∂xi
dxi . (5.3.21)

When V is a tangent vector, we then have

V (φ) = dφ(V ). (5.3.22)

Here, for simplicity of notation, we have left out the point p at which we
perform these operations. That point does not matter, as long as all objects
are considered at the same point. Subsequently, this will lead us to the
concepts of vector fields and 1-forms. First, however, we need to look at
the transformation behavior

dxi = ∂xi

∂y j
dy j (5.3.23)

required for the invariance of ω(V ). Thus, the coefficients of ω in the y-
coordinates are given by the identity

ωi dxi = ωi
∂xi

∂y j
dy j . (5.3.24)

Again, a covector ωi dxi is pulled back under a map f :

f �(ωi dxi ) = ωi
∂xi

∂y j
dy j . (5.3.25)

A 1-form then assigns a covector to every point in M , and thus, it is locally
given as ωi (x)dxi .

The transformation behavior of a tangent vector as in (5.3.16) is called
contravariant, the opposite one of a covector as (5.3.24) covariant. We may
then also consider higher order tensors. For instance, an object of the form

ai
j

∂
∂xi ⊗ dx j transforms as ai

j
∂yk

∂xi
∂x j

∂y�
∂

∂yk ⊗ dy�, while ai j dxi ⊗ dx j

becomes ai j
∂xi

∂yk
∂x j

∂y� dyk ⊗ dyl . In fact, the tensor product symbol ⊗ is
often left out in the notation of tensor calculus; for instance, one simply
writes ai j dxi dx j . In general, an object whose coefficients have r upper
and s lower indices and with the corresponding transformation behavior is
called an r times contravariant and s times covariant tensor; for instance,
ai j dxi dx j is of type (0, 2).

A differentiable manifold specifies how one can pass from the local
structure as given by the concept of a manifold to an infinitesimal structure.
We shall now see how in turn we can utilize such an infinitesimal structure
to arrive at local and even global constructions.
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5.3.2 Riemannian Geometry

So far, we have considered the transformation behavior under coordinate
changes of infinitesimal objects at one and the same point p. In other words,
we have connected the structure of a differentiable manifold with linear
algebra.

Geometry, however, asks for more, for being able to perform quantita-
tive measurements. Within the framework of a differentiable manifold with
its infinitesimal aspects as just developed, this requirement can be decom-
posed into two aspects. One concerns infinitesimal measurements, that is,
assigning lengths to tangent vectors and quantifying angles between tangent
vectors. The other concerns the comparison of measurements at different
points. In fact, this turns out to be a special instance of a more general
question, how to relate the infinitesimal geometries at different points. The
first question can also be considered in more generality; how to impose
geometric structures as known from the vector space R

d onto the tangent
spaces of a differentiable manifold in a consistent manner.

A direct way to address the first requirement consists simply in imposing
a Euclidean structure on each tangent space Tp M . This is achieved by a
tensor gi j dxi ⊗ dx j with symmetric and positive definite (gi j )i, j=1,...,d .
We then have a Euclidean product of tangent vectors:

〈V, W 〉 := gi jv
iw j (5.3.26)

for V = vi ∂
∂xi , W = wi ∂

∂xi . Since vi andwi transform contravariantly, gi j

has to transform doubly covariantly (as indicated by the lower position of
the indices), so that the product as a scalar quantity remains invariant under
coordinate transformations.

There are also some tensor calculus conventions involving ametric tensor
G = (gi j )i, j . The inverse metric tensor is written as G−1 = (gi j )i, j , that
is, by raising the indices. In particular

gi jg jk = δi
k :=

{

1 when i = k

0 when i �= k.
(5.3.27)

We then have the general convention for raising and lowering indices

vi = gi jv j and vi = gi jv
j . (5.3.28)

In an analogous manner, one may also impose other structures on tangent
spaces, like symplectic or complex structures in the case of even d. These
structures then have to satisfy the appropriate transformation rules under
coordinate changes.

Given a metric, we possess notions of length and angle. For a tangent
vector V , its length is given as

‖V ‖ := √〈V, V 〉, (5.3.29)

as in (5.1.2). Likewise, as in (5.1.3), the angleα between two tangent vectors
V, W at a point p is defined by

cosα ‖V ‖‖W‖ := 〈V, W 〉. (5.3.30)
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In particular, we then have a notion of orthogonality. The tangent vectors
V, W at some point p are orthogonal to each other if

〈V, W 〉 = 0. (5.3.31)

In a differentiable manifold M , when we have some linear subspace L of
a tangent space Tp M , we can look at those tangent vectors that are not
contained in L , but when we also have a Riemannian metric, we can then
distinguish those vectors that are orthogonal to L . With this, we can then
also define the gradient of a differentiable function φ as the direction of
steepest ascent. This works as follows. We recall the differential (5.3.21)
of φ, the 1-form dφ = ∂φ

∂xi dxi . According to (5.3.22), for every tangent
vector V , we have V (φ) = dφ(V ). The gradient of φ is then that vector
∇φ that satisfies

〈∇φ, V 〉 = dφ(V ) (5.3.32)

for every tangent vector V . Untangling (5.3.32) in local coordinates, we
obtain

∇φ = gi j ∂φ

∂xi

∂

∂x j
. (5.3.33)

This is most easily checked by inserting (5.3.33) into the left hand side
of (5.3.32) and verifying that (5.3.32) is indeed satisfied. In particular, the
gradient ∇φ is orthogonal to the level sets of φ in the following sense. Let
{φ ≡ κ}, for some κ ∈ R, be a level set. Let p be a point in this level set,
i.e., φ(p) = κ. A tangent vector V ∈ Tp M is then tangent to this level set
if V (φ) = 0, that is, if the value of φ does not change to first order in the
direction of V . But then, by (5.3.21), (5.3.32), we have that

〈∇φ, V 〉 = 0. (5.3.34)

It is important to point out that without a Riemannian metric, we can define
the differential dφ, but not the gradient for a differentiable function φ on a
differentiable manifold.

Given a metric, we can also define and compute the length of a differ-
entiable curve c : [0, 1] → M as

L(c) :=
∫ 1

0
〈ċ(t), ċ(t)〉1/2dt, (5.3.35)

that is, by integrating the length of its tangent vector along the curve.
We can then utilize this to define the distance between points p, q ∈ M as

d(p, q) := inf{L(c) : c : [0, 1] → M with c(0) = p, c(1) = q}.
(5.3.36)

After checking some technical details, one finds that equipped with this
distance function d(., .), M becomes a metric space, that is, d is positive,
symmetric, and satisfies the triangle inequality.One also checks—which is a
good exercise—that the topology introduced by that metric d(., .) coincides
with the original topology of M as a manifold.
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Of course, we can then also ask whether any two points p, q ∈ M can
be connected by a shortest curve, that is, whether there exists a curve c0
with c0(0) = p, c0(1) = q and

L(c0) = d(p, q). (5.3.37)

The Hopf-Rinow theorem assures us that such a curve does indeed exist if
M is complete. It is a called a geodesic curve, and it satisfies the equations

c̈0
k(t) + �k

i j (c0(t))ċ
i
0(t)ċ

j
0(t) = 0 for k = 1, . . . , d. (5.3.38)

with

�k
i j = 1

2
gkl(gil, j + g jl,i − gi j,l), (5.3.39)

where

gi j,k := ∂

∂xk
gi j . (5.3.40)

In particular, the Hopf-Rinow theorem tells us that the infimum in (5.3.36)
is, in fact, a minimum, that is

d(p, q) := min{L(c) : c : [0, 1] → M with c(0) = p, c(1) = q}.
(5.3.41)

There is one small technical caveat here. A solution of (5.3.38) need not be
the shortest connection of its endpoints. It is only locally shortest, that is, for
any sufficiently small ε > 0 (whichmaydependon c) and t1, t2 ∈ [0, 1]with
|t1 − t2| < ε, the restricted curve c[t1,t2] is the (unique) shortest connection
between c(t1) and c(t2). In general, however, geodesic connections between
two points in a manifold are not unique. In fact, on a compact Riemannian
manifold, there always exist infinitely many geodesic connections between
any two points p and q . Most of these geodesic connections, however, are
not shortest connections between p and q . Shortest connections, in fact, are
generically unique. Of course, all these claims require proof, but we refer
to the literature, e.g. [58] and the references therein.

In the preceding, we have also seen the basic paradigm of the calculus
of variations (see [64]). The problem of minimizing the integral (5.3.35),
a global quantity, is transformed into the differential equation (5.3.38), an
infinitesimal principle. The underlying rationale is that if a curve c yields
a minimum for the global quantity (5.3.35), then it also has to be locally
minimizing, that is, every portion of the curve c[t1,t2] for 0 ≤ t1 < t2 ≤ 1
then also has to be the shortest connection between its endpoints c(t1) and
c(t2). And if the curve c is always locally minimizing, then it also has
to be infinitesimally minimizing, which leads to the differential equation
(5.3.38).

There is still another direction in which the preceding can lead our think-
ing.We have used the Riemannian metric and the length functional (5.3.35)
induced by that Riemannian metric to obtain the metric d(., .) in (5.3.36).
And on a complete Riemannian metric, the distance d(p, q) between two
points equals the length of the shortest (geodesic) connection c between
them. We can, however, also try to reverse this and start with some metric
d(., .) on some set X . The metric then induces a topology on X , with a
basis of open sets given by the open metric balls U (x, r), x ∈ X, r ≥ 0.
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as in Example 3 in Sect. 4.1. We can then define the length of a continuous
curve c : [0, 1] → X as

L(c) := sup{
n

∑

i=1

d(c(ti−1), c(ti )) : 0 = t0 < t1 < · · · < tn = 1, n ∈ N}.
(5.3.42)

The curve c is then called a geodesic if

L(c|[τ1,τ2]) = d(c(τ1), c(τ2)) whenever |τ1 − τ2| ≤ ε, (5.3.43)

for some ε > 0. Thus, a geodesic realizes the distance between its suffi-
ciently close points.

The metric space (X, d) is called a geodesic space if for any two points
p, q ∈ X , there exists a shortest geodesic joining them, i.e., a continuous2

curve c : [0, 1] → X with c(0) = p, c(1) = q and

L(c) = d(p, q). (5.3.44)

In particular, a metric space that is geodesic has to be path connected, that
is, any two points can be joined by some curve.

So far, we have worked with arbitrary parametrizations of our curves on
the unit interval [0, 1]. For many purposes, however, it is more convenient
to work with a particular parametrization. We can parametrize a curve
proportionally to arclength, that is, we consider the homeomorphism σ :
[0, 1] → [0, 1] with the property that the curve γ := c ◦ σ satisfies

L(γ|[0,t]) = t L(γ)(= t L(c)) for all t ∈ [0, 1]. (5.3.45)

On a geodesic space, a midpoint m(p, q) of p and q as defined in
Definition 2.1.9, see (2.1.56), has to satisfy

m(p, q) = γ(
1

2
) (5.3.46)

for a shortest geodesic γ : [0, 1] → X connecting p and q and parame-
trized proportionally to arclength. We note that since the shortest geodesic
between p and q need not be unique, they may have more than one such
midpoint.

These concepts will be taken up below in Sect. 5.3.3.
It might also be worth pointing out that we have just seen an instance

of a general mathematical strategy. When one, perhaps somewhat special
structure, here a Riemannian metric, implies some crucial and fundamental
property, here that any two points can be connected by a shortest curve, one
can then take that property as a starting axiom in its own right and develop
the theory on the basis of that axiom, disregarding the original structure
that led us to that axiom. This often leads to a considerable clarification of
the conditions and structures that one really needs for a certain important
property and to the identification of the right level of abstraction.

2The epithet “continuous” is used here only for emphasis, as all curves are implicitly
assumed to be continuous.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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We now return to Riemannian geometry. An isometry i between two
Riemannian manifolds M, g and N , γ can be defined either infinitesimally,
in the sense that for all tangent vectors V, W at any point p ∈ M , we have

〈V, W 〉g = 〈i�V, i�W 〉γ (5.3.47)

or equivalently by the requirement that for any curve c in M ,

Lg(c) = Lγ(i ◦ c), (5.3.48)

where, of course, the subscript g or γ indicates w.r.t. which metric the
expressions are computed.

So far, we have computed derivatives of functions. We have also talked
about vector fields V (x) = vi (x) ∂

∂xi as objects that depend differentiably
on their arguments x . This naturally raises the question of how to compute
their derivatives. However, this encounters the problem that in contrast
to functions, the representation of such objects depends on the choice of
local coordinates, and we have described in some detail that and how they
transform under coordinate changes.

It turns out that on a differentiable manifold, there is in general no single
canonical way of taking derivatives of vector fields or other tensors in an
invariant manner. There are, in fact, many such possibilities, and they are
called connections or covariant derivatives. Only when we have additional
structures, like aRiemannianmetric, canwe single out a particular covariant
derivative on the basis of its compatibilitywith themetric. For our purposes,
however, we also need other covariant derivatives, and so, we now develop
this notion. As usual, we begin with

Axiom 9 A connection on a differentiable manifold is a scheme for the
comparison of the infinitesimal geometries at different points. This scheme
is itself based on an infinitesimal principle.

Again, we need to elaborate the formal details of this axiom. Let M be
a differentiablemanifold.We recall that�(T M) denotes the space of vector
fields on M . An (affine) connection or covariant derivative on M is a linear
map

∇ : �(T M) ⊗R �(T M) → �(T M)

(V, W ) �→ ∇V W

satisfying:

(i) ∇ is tensorial in the first argument:

∇V1+V2W = ∇V1W + ∇V2W for all V1, V2, W ∈ �(T M)

∇ f V W = f ∇V W for all f ∈ C∞(M), V, W ∈ �(T M);
(ii) ∇ is R-linear in the second argument:

∇V (W1 + W2) = ∇V W1 + ∇V W2 for all V, W1, W2 ∈ �(T M)

and it satisfies the product rule

∇V ( f W ) = V ( f )W + f ∇V W for all f ∈ C∞(M), V, W ∈ �(T M).

(5.3.49)
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∇V W is called the covariant derivative of W in the direction V . By (i), for
any x0 ∈ M , (∇V W )(x0) only depends on the value of V at x0. By way
of contrast, it also depends on the values of W in some neighborhood of
x0, as it naturally should as a notion of a derivative of W . The example on
which this is modeled is the Euclidean connection given by the standard
derivatives, that is, for V = V i ∂

∂xi , W = W j ∂
∂x j ,

∇eucl
V W = V i ∂W j

∂xi

∂

∂x j
.

However, this is not invariant under nonlinear coordinate changes, and
since a general manifold cannot be covered by coordinates with only linear
coordinate transformations, we need the above more general and abstract
concept of a covariant derivative.

LetU be a coordinate chart in M , with local coordinates x and coordinate
vector fields ∂

∂x1
, . . . , ∂

∂xd (d = dimM). We then define the Christoffel
symbols of the connection ∇ via

∇ ∂
∂xi

∂

∂x j
=: �k

i j
∂

∂xk
. (5.3.50)

(It will become apparent belowwhy we are utilizing here the same symbols
as in (5.3.38), (5.3.39).)

Thus,

∇V W = V i ∂W j

∂xi

∂

∂x j
+ V i W j�k

i j
∂

∂xk
. (5.3.51)

In order to understand the nature of the objects involved, we can also leave
out the vector field V and consider the covariant derivative∇W as a 1-form.
In local coordinates

∇W = W j
;i

∂

∂x j
dxi , (5.3.52)

with

W j
;i := ∂W j

∂xi
+ W k�

j
ik . (5.3.53)

If we change our coordinates x to coordinates y, then the new Christoffel
symbols,

∇ ∂
∂yl

∂

∂ym
=: �̃n

lm
∂

∂yn
, (5.3.54)

are related to the old ones via

�̃n
lm(y(x)) =

{

�k
i j (x)

∂xi

∂yl

∂x j

∂ym
+ ∂2xk

∂yl∂ym

}
∂yn

∂xk
. (5.3.55)

In particular, due to the term ∂2xk

∂yl∂ym , the Christoffel symbols do not trans-

form as a tensor. However, if we have two connections 1∇, 2∇, with cor-
responding Christoffel symbols 1�k

i j ,
2�k

i j , then the difference
1�k

i j − 2�k
i j

does transform as a tensor. Expressed more abstractly, this means that the
space of connections on M is an affine space.

For a connection ∇, we define its torsion tensor via

T (V, W ) := ∇V W − ∇W V − [V, W ] for V, W ∈ �(T M). (5.3.56)
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Inserting our coordinate vector fields ∂
∂xi as before, we obtain

Ti j := T

(
∂

∂xi
,

∂

∂x j

)

= ∇ ∂
∂xi

∂

∂x j
− ∇ ∂

∂x j

∂

∂xi

since coordinate vector fields commute, i.e., [ ∂
∂xi ,

∂
∂x j ] = 0

=
(

�k
i j − �k

ji

) ∂

∂xk
. (5.3.57)

We call the connection ∇ torsion-free or symmetric if T ≡ 0. By the
preceding computation, this is equivalent to the symmetry

�k
i j = �k

ji for all i, j, k. (5.3.58)

Let c(t) be a smooth curve in M , and let V (t) := ċ(t) (= ċi (t) ∂
∂xi (c(t)) in

local coordinates) be the tangent vector field of c. In fact, we should instead
write V (c(t)) in place of V (t), but we consider t as the coordinate along

the curve c(t). Thus, in those coordinates ∂
∂t = ∂ci

∂t
∂

∂xi , and in the sequel,
we shall frequently and implicitly make this identification, that is, switch
between the points c(t)on the curve and the corresponding parameter values
t . Let W (t) be another vector field along c, i.e., W (t) ∈ Tc(t)M for all t .
We may then write W (t) = wi (t) ∂

∂xi (c(t)) and form

∇ċ(t)W (t) = ẇi (t)
∂

∂xi
+ ċi (t)w j (t)∇ ∂

∂xi

∂

∂x j

= ẇi (t)
∂

∂xi
+ ċi (t)w j (t)�k

i j (c(t))
∂

∂xk
(5.3.59)

(the preceding computation is meaningful as we see that it depends only
on the values of W along the curve c(t), but not on other values in a neigh-
borhood of a point on that curve).

This represents a (nondegenerate) linear system of d first-order differ-
ential operators for the d coefficients wi (t) of W (t). Therefore, for given
initial values W (0), there exists a unique solution W (t) of

∇ċ(t)W (t) = 0. (5.3.60)

We observe the following facts:

1. Since the system (5.3.60) is linear w.r.t. W , the solution depends linearly
on the initial values. That is,whenW1(t) andW2(t) are the solutionswith
initial valuesW1(0) andW2(0), resp., then the solutionwith initial values
α1W1(0) + α2W2(0) is obtained as α1W1(t) + α2W2(t). In particular,

W (0) �→ W (1) (5.3.61)

is a linear map from Tc(0)M to Tc(1)M .
2. The system (5.3.60) is autonomous. Therefore, if we reparametrize the

curve c, that is, consider c̃(t) := c(γ(t)) for some diffeomorphism
γ : [0, 1] → [0, 1], then the solution of ∇˙̃c(t)W (t) = 0 is given by
W (γ(t)).

3. The system (5.3.60) depends nonlinearly on the curve c, because in
(5.3.59), the Christoffel symbols in general are nonconstant functions
of c. Therefore, in general, W (t) will depend not only on the initial
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values W (0), but also on the curve c. Moreover, because of the nonlinear
structure, this dependence is not easily computed, and, in fact, in general,
it cannot be computed explicitly at all.

The solution W (t) of (5.3.60) is called the parallel transport of W (0)
along the curve c(t). We also say that W (t) is covariantly constant along
the curve c. This now furnishes a scheme for comparing the infinitesimal
geometries at different points p, q ∈ M . We take a smooth curve c :
[0, 1] → M with c(0) = p, c(1) = q . We can then identify the tangent
vector W = W (0) ∈ Tp M with W (1) ∈ Tq M where W (t) denotes the
parallel transport along the curve c. Thus, from an infinitesimal principle,
the integration of the system of differential equations (5.3.60), we obtain a
global comparison between tangent spaces at different points.

The result of this comparison, that is, W (1) ∈ Tq M for given W (0) ∈
Tp M will in general depend on the curve c, as noted in 3.

In particular, wemay askwhat happens whenwe take q = p and parallel
transport W (0) along a nontrivial curve c with c(0) = c(1) = p, or for
short, a nontrivial loop based at p. Thus, instead of different points, we
take the same point, but in between we follow some nontrivial loop, so
that the identity of the point should make no difference for the comparison
principle. We then get a vector W (1) ∈ Tp M that is in general different
from W (0). We can, of course, do this for every W ∈ Tp M , and, according
to 1., we obtain a linear map

Lc : Tp M → Tp M

W (0) �→ W (1). (5.3.62)

Moreover, when we then parallel transport the vector V (0) := W (1) as
V (t) along another curve c′ with c′(0) = c′(1) = p, we obtain another
vector V (1) = Lc′(V (0)), and we have the group law

(Lc′ ◦ Lc)(W ) = Lc′(Lc(W )) = Lc′·c(W ) and Lc−1 = (Lc)
−1, (5.3.63)

where c′ · c(t) := c(2t) for 0 ≤ t ≤ 1/2 and = c′(2t − 1) for 1/2 ≤ t ≤ 1,
i.e., c′ · c is the composition of the curves c and c′, and c−1(t) := c(1− t),
that is, c−1 is the curve c traversed in the opposite direction. Here, we are
applying 2. above. Thus,wehave a homomorphism from the groups of loops
based at p with the composition law to the group of linear automorphisms
of the vector space Tp M . The image of this homomorphism is called the
holonomy group Hp of the connection ∇ at p. The holonomy groups at
different points are conjugate to each other. In fact, for p, q ∈ M , a closed
loop γ at q and a curve c with c(0) = p, c(1) = q , we have

Lγ = Lc ◦ Lc−1·γ·c ◦ Lc−1 (5.3.64)

where we observe that analogous to (5.3.62), we presently have a linear
map Lc : Tp M → Tq M .

In general, however, the holonomy groups are simply isomorphic to the
general linear groupGl(d, R). Therefore, they are not useful for quantifying
the path dependence of parallel transport. Therefore, we now undertake a
different consideration. We define the curvature tensor R by

R(V, W )Z := ∇V ∇W Z − ∇W ∇V Z − ∇[V,W ]Z , (5.3.65)
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or in local coordinates

Rk
li j

∂

∂xk
:= R(

∂

∂xi
,

∂

∂x j
)

∂

∂xl
(i, j, l = 1, . . . , d). (5.3.66)

The curvature tensor can be expressed in terms of the Christoffel symbols
and their derivatives via

Rk
li j = ∂

∂xi
�k

jl − ∂

∂x j
�k

il + �k
im�m

jl − �k
jm�m

il . (5.3.67)

We also note that, as the name indicates, the curvature tensor R is, like the
torsion tensor T , but in contrast to the connection ∇ represented by the
Christoffel symbols, a tensor. This means that when one of its arguments
is multiplied by a smooth function, we may simply pull out that function
without having to take a derivative of it. Equivalently, it transforms as
a tensor under coordinate changes; here, the upper index k stands for an
argument that transforms as a vector, that is contravariantly, whereas the
lower indices l, i, j express a covariant transformation behavior.

The curvature tensor quantifies to what degree covariant derivatives do
not commute. Intuitively, it quantifies the difference between infinitesimally
transporting the vector Z first in the direction of V and then in the direction
of W comparedwith transporting it first in the direction of W and then in the
direction of V . Or equivalently, it compares Z with the result of transporting
it first in the direction V , then in the direction W , then in the direction
−V , and finally in the direction −W , that is, by transporting it around
an infinitesimal rectangle. When the end result is Z again, the curvature
R(V, W )Z is 0. When the result is different from Z , the corresponding
curvature is �= 0. In that sense, the curvature quantifies the infinitesimal
path dependence of parallel transport.

As we have observed, the curvature R constitutes a tensor. In particu-
lar, whether it vanishes or not does not depend on the choice of coordi-
nates. Therefore, the curvature tensor can yield geometric invariants, that
is, quantities that do not depend on the choice of coordinates, but only on
the underlying geometry, here that of the connection ∇.

Now, let M carry a Riemannian metric g = 〈·, ·〉. Wemay then ask about
the compatibility of a connection with this Riemannian structure, in the
sense that parallel transport preserves the lengths of and the angles between
tangent vectors. We therefore say that ∇ is a Riemannian connection if it
satisfies the metric product rule

Z〈V, W 〉 = 〈∇Z V, W 〉 + 〈V,∇Z W 〉. (5.3.68)

One can show that for any Riemannian metric g, there exists a unique
torsion-free Riemannian connection, the so-called Levi-Cività connection
∇g . It is given by

〈∇g
V W, Z〉 = 1

2
{V 〈W, Z〉 − Z〈V, W 〉 + W 〈Z , V 〉

− 〈V, [W, Z ]〉 + 〈Z , [V, W ]〉 + 〈W, [Z , V ]〉}. (5.3.69)

The Levi-Cività connection ∇g respects the metric as required above; that
is, if V (t), W (t) are parallel vector fields along a curve c(t), then

〈V (t), W (t)〉 ≡ const. (5.3.70)
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Thus, products between tangent vectors remain invariant under parallel
transport.

The curvature tensor of the Levi-Cività connection of a Riemannian
manifold then yields invariants of the Riemannian metric. This was one of
the fundamental insights of Bernhard Riemann.

The Christoffel symbols of ∇g can be expressed through the metric; in
local coordinates, with gi j = 〈 ∂

∂xi
∂

∂x j 〉, we use the abbreviation

gi j,k := ∂

∂xk
gi j (5.3.71)

and have

�k
i j = 1

2
gkl(gil, j + g jl,i − gi j,l), (5.3.72)

or, equivalently,

gi j,k = g jl�
l
ik + gil�

l
jk = �ik j + � jki . (5.3.73)

We note that (5.3.72) is the same as (5.3.39). This is another way of see-
ing the compatibility between the connection ∇g and the metric g, as
(5.3.72) comes from (5.3.50) and therefore is defined through the con-
nection whereas (5.3.39) directly comes from the metric.

From (5.3.67) and (5.3.72), we see that the curvature tensor of the Levi-
Cività connection of a Riemannian metric can be expressed in terms of
(first and) second derivatives of that Riemannian metric gi j . It turns out
that there are no invariants that are given solely in terms of first derivatives
of the metric. In fact, as Riemann had already observed, for any point p on
a Riemannian manifold, we may introduce local coordinates such that

gi j (p) = δi j , and gi j,k(p) = 0 for all i, j, k. (5.3.74)

Thus, in particular, all first derivatives of the metric can be made to vanish
at the arbitrary point p. Thus, also all Christoffel symbols then vanish at p.
In general, however, they can only be made to vanish at a single point, but
not for instance locally in some neighborhood of that point. Nevertheless,
(5.3.74) has an important consequence that can often simplify computa-
tions considerably. Namely, when we do any tensor computation involving
first derivatives of the metric, we may then assume that (5.3.74) is satisfied
at the point p where we happen to carry out the computation. The result of
the computations can then be simply transformed back into arbitrary coor-
dinates by the rules for the transformations of co- or contravariant tensors.
That is, we can carry out the computation in the simplified coordinates of
(5.3.74) and obtain the result in other coordinates from the transformation
behavior of the tensor in question.

Since the first derivatives of the metric can be made to vanish by a suit-
able coordinate transformation, invariants cannot possibly be computed
from such first derivatives. In contrast, the second derivatives cannot all be
made to disappear, as they are constrained by the curvature tensor which
has a coordinate-independent meaning. Historically, it was the other way
around. Gauss for surfaces in three-dimensional Euclidean space and Rie-
mann in general discovered that certain combinations of second derivatives
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of the metric tensor, as computed in local coordinates, yield expressions
that remain invariant under coordinate changes. Such expressions were
then called curvature from the way they were originally derived in terms of
certain curvatures of curves on a surface.

A curve c(t) in M is called autoparallel or geodesic if

∇ċ ċ = 0. (5.3.75)

In local coordinates, (5.3.75) becomes

c̈k(t) + �k
i j (c(t))ċ

i (t)ċ j (t) = 0 for k = 1, . . . , d. (5.3.76)

Formally, this is the same as (5.3.38).We note, however, that the Christoffel
symbols in (5.3.38) were defined through the metric whereas here, they
come from the connection. Thus, (5.3.38) and (5.3.76) coincide only for the
Levi-Cività connection, that is, when the two definitions of the Christoffel
symbols yield the same result. (5.3.38) stems from the length minimizing
property of the curve, that is, from a metric concept. In contrast, (5.3.76)
expresses an analogue of straightness in Euclidean space. In Euclidean
space, a curve is shortest if and only if it is straight. In the general geometric
context, these two properties only coincide for the Levi-Cività connection,
that is, when the metric and the connection are compatible.

Equation (5.3.76) constitutes a system of second-order ODEs, and given
p ∈ M , V ∈ Tp M , and since M is complete, one can show that there exists
a geodesic

cV : [0,∞) → M

with cV (0) = p, ċV (0) = V .Without the assumption of completeness, such
a geodesic need only exist on some interval [0, δ), with δ > 0 depending
on p and V .

We point out once more that (5.3.75) is a nonlinear system of differential
equations for the curve c, in contrast to (5.3.60) which is a linear system
for the vector field W along the curve c. Thus, when applying (5.3.60) to
the tangent field of the curve c itself, it becomes nonlinear.

5.3.3 Curvature as a Measure of Nonlinearity

Definition 5.3.6 Aconnection∇ on the differentiablemanifold M is called
flat if each point in M possesses a neighborhood U with local coordinates
for which all the coordinate vector fields ∂

∂xi are parallel, that is,

∇ ∂

∂xi
= 0. (5.3.77)

Theorem 5.3.4 A connection ∇ on M is flat if and only if its curvature and
torsion vanish identically.

In most cases, only torsionfree connections are considered anyway.
Therefore, curvature is the crucial quantity whose vanishing implies flat-
ness. We recall that curvature was introduced as a measure of the path
dependence of parallel transport. Thus, when curvature vanishes, that is,
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when parallel transport is path independent, we can introduce covariantly
constant coordinate vector fields. And this condition, (5.3.77), is charac-
teristic of Euclidean space. One also calls Euclidean space flat space, and
this explains the terminology employed in the definition. “Flat” here means
“non-curved”.

Proof When the connection is flat, all ∇ ∂
∂xi

∂
∂x j = 0, and so, all Christoffel

symbols �k
i j = 0, and therefore, also T and R vanish, as they can be

expressed in terms of the �k
i j , see (5.3.57), (5.3.67).

For the converse direction, we shall find local coordinates y for which

∇dy = 0. (5.3.78)

Here, we are using the connection, again denoted by ∇ on the cotangent
bundle T �M induced by the connection ∇ on T M . This connection is
defined by the property that for a vector field V and a one-form ω, we have

d(V, ω) = (∇V,ω) + (V, ∇ω), (5.3.79)

that is, by a product rule. In contrast to the product rule for a metric connec-
tion that uses the metric 〈., .〉, here we use the pairing between vectors and
one-forms which is given by duality. In local coordinates, this connection
is characterized by the Christoffel symbols:

∇ ∂
∂xi

dx j = −�
j
ikdxk . (5.3.80)

For such coordinates y, the coordinate vector fields ∂
∂yi then are covari-

antly constant, i.e., satisfy (5.3.77), because (dy j , ∂
∂yi ) = δ

j
i , hence

0 = d(dy j , ∂
∂yi ) = (∇dy j , ∂

∂yi )+ (dy j , ∇ ∂
∂yi ) by (5.3.79) and ∇dy j = 0

by (5.3.78).
For given coordinates, we have dy = ∂y

∂xi dxi . We shall proceed in
two steps. We first construct a covariantly constant (vector valued) 1-form
μi dxi , and then show that theμi can be represented as derivatives,μi = ∂y

∂xi .
For the first step, we shall use the vanishing of the curvature, and for the sec-
ond, the vanishing of the torsion. In both steps, the decisive ingredient will
be the Theorem of Frobenius. That theorem says that we can locally inte-
grate an overdetermined system of ordinary differential equations where all
first derivatives of a function are prescribed when that system is compatible
with the commutation of second derivatives; see e.g. Appendix A in [35].

The equation for the first step,

∇μi dxi = 0 (5.3.81)

by (5.3.80) is equivalent to the system

∂

∂x j
μi + �k

jiμk = 0 for all i, j. (5.3.82)

In vector notation, this becomes

∂

∂x j
μ + � jμ = 0. (5.3.83)
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We now use the Theorem of Frobenius, as mentioned. For a smooth
solution, the second derivatives should commute, that is, we should have
∂

∂xi
∂

∂x j μ = ∂
∂x j

∂
∂xi μ for all i, j . By (5.3.83), this implies

[�i , � j ] + ∂

∂xi
� j − ∂

∂x j
�i = 0 (5.3.84)

holds for all i, j . The Theorem of Frobenius then says that this necessary
condition is also sufficient, that is, we can solve (5.3.83) locally if and only
if (5.3.84) holds. With indices, this is

∂�k
j�

∂xi
− ∂�k

i�

∂x j
+ �k

im�m
j� − �k

jm�m
i� = 0 for all i, j. (5.3.85)

By (5.3.67), thismeans that the curvature tensor vanishes.We can thus solve
(5.3.82) for the μi . In order that these μi are derivatives

∂y
∂xi , the necessary

and sufficient condition (again, by the theorem of Frobenius) is

∂

∂xi
μ j = ∂

∂x j
μi for all i, j, (5.3.86)

which by (5.3.82) in turn is equivalent to the condition �k
i j = �k

ji for all
i, j, k, that is, the vanishing of the torsion T , see the derivation of (5.3.58).
This completes the proof. �

Equation (5.3.77) is an infinitesimal condition. We nowwant to measure
the deviation from flatness in a local sense. We assume that the connection
∇ is the Levi-Cività connection of a Riemannian metric 〈., .〉; in particular,
it is torsionfree. The crucial aspect here is the behavior of geodesics. We
recall the geodesic equation (5.3.75), and we assume that we have a family
of geodesics c(., s) depending on a parameter s. We then have

∇ ∂c
∂t

∂c(t, s)

∂t
= 0. (5.3.87)

Since we assume that all the curves c(., s) are geodesic, hence all satisfy
(5.3.87), we can then also take the covariant derivative w.r.t. s to get

0 = ∇ ∂c
∂s

∇ ∂c
∂t

∂c(t, s)

∂t

= ∇ ∂c
∂t

∇ ∂c
∂s

∂c(t, s)

∂t
+ R(

∂c

∂s
,
∂c

∂t
)
∂c

∂t
by (5.3.65)

= ∇ ∂c
∂t

∇ ∂c
∂t

∂c(t, s)

∂s
+ R(

∂c

∂s
,
∂c

∂t
)
∂c

∂t
since ∇ is torsionfree. (5.3.88)

Thus, for any s, the vector field X (t) := ∂c(t,s)
∂s satisfies the so-called Jacobi

equation

∇ ∂c
∂t

∇ ∂c
∂t

X (t) + R(X,
∂c

∂t
)
∂c

∂t
= 0. (5.3.89)

A solution X of (5.3.89) is called a Jacobi field along the geodesic c(., s).
We note that (5.3.89) is a linear equation for the vector field X ; in fact,
it is the linearization of the geodesic equation, as we have obtained it by
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differentiating the equation for geodesics w.r.t. the parameter s. For a Jacobi
field X , we obtain

d2

dt2
1

2
〈X, X〉 = 〈∇ ∂c

∂t
X, ∇ ∂c

∂t
X〉 − 〈R(X,

∂c

∂t
)
∂c

∂t
, X〉

≥ − 〈R(X,
∂c

∂t
)
∂c

∂t
, X〉. (5.3.90)

Therefore, an upper bound for the curvature term 〈R(X, ∂c
∂t )

∂c
∂t , X〉 yields

a lower bound for the second derivative of the squared norm of X . We wish
to explore the geometric consequences of this fact. In order to take into
account the particular structure of this curvature term, we first introduce
the important.

Definition 5.3.7 The sectional curvature of the plane spanned by the (lin-
early independent) tangent vectors X, Y ∈ Tp M of the Riemannian mani-
fold M is defined as

K (X ∧ Y ) := 〈R(X, Y )Y, X〉 1

‖X ∧ Y‖2 (5.3.91)

(‖X ∧ Y‖2 = 〈X, X〉〈Y, Y 〉 − 〈X, Y 〉2).

Note that we have chosen the normalization factor in (5.3.91) so that the
sectional curvature does not depend on the lengths of the vectors X and Y
nor on the angle between them, but only on the two-dimensional tangent
plane that they span.

In coordinates, with X = ξi ∂
∂xi , Y = ηi ∂

∂xi , and putting

Ri jkl := 〈R(
∂

∂xk
,

∂

∂xl
)

∂

∂x j
,

∂

∂xi
〉, (5.3.92)

this becomes

K (X ∧ Y ) = Ri jk�ξ
iη jξkη�

gikg j�(ξiξkη jη� − ξiξ jηkη�)

= Ri jk�ξ
iη jξkη�

(gikg j� − gi jgk�)ξiη jξkη�
. (5.3.93)

Definition 5.3.8 The Riemannian manifold M is said to have constant sec-
tional curvature K if

K (X ∧ Y ) ≡ K (5.3.94)

for all linearly independent tangent vectors X, Y ∈ Tx M for all x ∈ M .

Euclidean space then has constant sectional curvature 0.A sphere of
radius 1 has constant curvature 1, while hyperbolic space has curvature Sphere
−1. This can be verified by direct computation, but we shall obtain these

Hyperbolic spacevalues below in a more elegant way with the help of Jacobi fields. Spaces of
constant curvature ρ then are obtained by scaling the sphere or hyperbolic
space, depending on whether ρ > 0 or < 0. For instance, the sphere of

Sphere,
hyperbolic space

radius 1√
ρ has curvature ρ > 0. In fact, these curvature properties also

characterize those spaces, in the following sense.AnyRiemannianmanifold
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with curvature ρ ≡ const. is locally isometric to a sphere, Euclidean space,
or hyperbolic space with that curvature ρ. Such a space is also called a

Sphere,
hyperbolic space

space form.
The Rauch comparison theorems then control a solution of the Jacobi

equation (5.3.89) on a Riemannian manifold of sectional curvature

λ ≤ K ≤ μ (5.3.95)

locally by the solutions of the Jacobi equation on the spaces of constant
curvature λ and μ, resp. These comparison results follow from comparison
theorems for ordinary differential equations. Essentially, locally, a solution
of (5.3.89) is then smaller than the solution for K ≡ λ and larger than
the solution for K ≡ μ, for corresponding initial values. That is, a lower
curvature bound controls a Jacobi field from above, and an upper curvature
bound controls it from below.

The Jacobi equation (for vector fields orthogonal to the tangent vector
field of the underlying geodesic) for constant sectional curvature ρ is

f̈ (t) + ρ f (t) = 0 (5.3.96)

for ρ ∈ R. The reason why the Jacobi equation (5.3.89) which is a vector
equation reduces to the scalar equation (5.3.96) in the constant curvature is
that for constant sectional curvature ρ, we have

R(X, Y )Y = ρ‖Y‖2X. (5.3.97)

Also, we are using orthonormal coordinate vector fields ei (t) that are par-
allel along c, i.e., ∇ċ(t)ei (t) = 0. Thus, for X (t) = xi (t)ei (t) ∈ Tc(t)M ,
we have ∇ċ(t) X (t) = d

dt xi (t)ei (t) =: Ẋ(t) and likewise ∇ċ(t)∇ċ(t)

X (t) = Ẍ(t).
The solutions of (5.3.96) are simply

cρ(t) :=

⎧

⎪
⎨

⎪
⎩

cos(
√

ρ t) if ρ > 0,

1 if ρ = 0,

cosh(
√−ρ t) if ρ < 0,

(5.3.98)

and

sρ(t) :=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1√
ρ sin(

√
ρ t) if ρ > 0,

t if ρ = 0,
1√−ρ

sinh(
√−ρ t) if ρ < 0.

(5.3.99)

They have initial values f (0) = 1, ḟ (0) = 0, resp. f (0) = 0, ḟ (0) = 1.
The solutions of these equations describe the behavior of families of

geodesics on (scaled) spheres or hyperbolic spaces, and we turn once more
Sphere,
hyperbolic space

to those basic examples of Riemannian manifolds.
On R

n+1, we consider the two quadratic forms

〈x, x〉+ := (x1)2 + · · · + (xn)2 + (xn+1)2 and (5.3.100)

〈x, x〉− := (x1)2 + · · · + (xn)2 − (xn+1)2 (5.3.101)
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and recall the sphere (5.3.7)

Sn := {x ∈ R
n+1 : 〈x, x〉+ = 1} (5.3.102)

and the hyperbolic space (5.3.8)

Hn := {x ∈ R
n+1 : 〈x, x〉− = −1, xn+1 > 0}. (5.3.103)

For x ∈ Sn , V ∈ Tx Sn satisfies

〈x, V 〉+ = 0, (5.3.104)

and for x ∈ Hn , V ∈ Tx Hn , we analogously have

〈x, V 〉− = 0. (5.3.105)

Therefore, by Sylvester’s theorem,3 the restriction of 〈., .〉− to Tx Hn yields
a positive definite quadratic form. 〈., .〉+ and 〈., .〉− then induceRiemannian
metrics on Sn and Hn , resp. Let O(n + 1) and O(n, 1) be the subgroups of
the general linear group Gl(n + 1) that leave 〈., .〉+ and 〈., .〉− invariant,
resp. They then also leave Sn and Hn invariant, if we restrict in the latter
case to the subgroup of O(n, 1) that maps the positive xn+1-axis to itself.
Since they leave the quadratic forms and their level spaces Sn and Hn , resp.,
invariant, they operate by isometries on those spaces. Since geodesics are
mapped to geodesics by isometries, they should remain invariant when their
endpoints are fixed under such an isometry. In fact, this is in general only
correct locally, that is, when these endpoints are sufficiently close together
and the geodesic is their shortest connection. In that case, such shortest
geodesics are unique, and they do indeed have to remain invariant. From
this, we can conclude that the geodesics are precisely the intersections of
Sn and Hn with two-dimensional linear subspaces of R

n+1, because those
subspaces remain invariant under reflections, which are elements of the
respective isometry groups. Thus, for x ∈ Sn, V ∈ Tx Sn, 〈V, V 〉+ = 1,
the geodesic c : R → Sn with c(0) = x, ċ(0) = V is given by

c(t) = (cos t)x + (sin t)V . (5.3.106)

Analogously, the geodesic c : R → Hn with c(0) = x ∈ Hn, ċ(0) = V ∈
Tx Hn, 〈V, V 〉− = 1 is given by

c(t) = (cosh t)x + (sinh t)V . (5.3.107)

In fact, since we have 〈x, x〉− = −1, 〈x, V 〉− = 0, 〈V, V 〉− = 1, we get

〈ċ(t), ċ(t)〉− = − sinh2 t + cosh2 t = 1, (5.3.108)

and analogously on Sn .
If we then have W ∈ Tx Hn with 〈W, V 〉− = 0, 〈W, W 〉− = 1, we

obtain a family of geodesics

c(t, s) := cosh t x + sinh t (cos sV + sin sW ). (5.3.109)

3This theorem says that every homogeneous quadratic polynomial is reducible by real
orthogonal substitutions to the form of a sum of positive and negative squares. See [75],
p.577.
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This family yields the Jacobi field

X (t) := sinh tW (5.3.110)

at s = 0. It satisfies
Ẍ(t) − X (t) = 0. (5.3.111)

From the Jacobi equation (5.3.89), we then conclude that the hyperbolic
space Hn possesses sectional curvature≡ −1. Analogously, the sphere SnHyperbolic space
has sectional curvature ≡ 1.

Sphere Likewise, the scaled sphere (5.3.7)

Sn(ρ) :=
{

x ∈ R
n+1 : 〈x, x〉+ = 1√

ρ

}

(5.3.112)

then has sectional curvature ≡ ρ, and analogously, the scaled hyperbolic
space Hn(ρ) has sectional curvature ≡ −ρ.

The solutions of (5.3.98) and (5.3.99) thus give the characteristic behav-
ior of families of geodesics on (scaled) spheres or hyperbolic spaces. On

Sphere,
hyperbolic space

a sphere, we have the families of geodesics going through two antipodal
points, say north and south pole, and the distance between them behaves
like the sin function sρ for ρ > 0. On hyperbolic space, in contrast, geo-
desics diverge exponentially, as the sinh function sρ for ρ < 0. Euclidean
space, where geodesics diverge linearly, is intermediate between the cases
of positive and negative curvature.

In fact, these properties are characteristic of Riemannian manifolds with
curvature controls, and they lead to an axiomatic approach to curvature. This
was first conceived in the Vienna school; in particular, the contribution of
Wald [112] exhibits a key idea. We can put this into a general perspective.
A configuration of three points in a metric space (X, d) has to obey the
triangle inequality, but otherwise there mutual distances can be arbitrary.
We call a configuration of three points (x1, x2, x3) in X a triangle. For
such a triangle in (X, d), there exist points x1, x2, x3 ∈ R

2 with the same
distances

d(xi , x j ) = |xi − x j |, for every i, j = 1, 2, 3. (5.3.113)

We say that the points x1, x2, x3 ∈ R
2 represent an isometric embedding

of the triangle (x1, x2, x3) into the Euclidean plane. The term “isometry”
here refers to the fact that distances are preserved. Such a triple of points
(x1, x2, x3) is called a comparison triangle for the triangle (x1, x2, x3), and
it is unique up to isometries (a result of classical Euclidean geometry, as
the reader may recall). Likewise, we can also find comparison triangles in
hyperbolic instead of Euclidean space, and also in a sphere, if the distances
d(xi , x j ) are not too large. This means that such a triangle does not exhibit
essential geometric information about the underlying space (X, d). This
changes if we consider configurations of four points x1, . . . , x4 with their
mutual distances. In particular, as Wald [112] observed, a configuration of
four points on a smooth surface S can be isometrically embedded into a
unique constant curvature surface, unless particular conditions hold, like
when some of the points coincide or when they all lie on the same geodesic
curve. That is, we find a unique K and a surface SK of constant curvature
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K with its metric denoted by dK on which there are points xi , i = 1, 2, 3, 4
with

d(xi , x j ) = dK (xi − x j ), for every i, j = 1, 2, 3, 4. (5.3.114)

Wald then says that the surface S has curvature ≤ k (≥ k) if for all such
configurations the comparison surface SK has K ≤ k (K ≥ k). This works
well for surfaces, which was Wald’s aim. For higher dimensional spaces,
however, arbitrary four-point configurations seem to be too general. Just
consider a tetrahedron in Euclidean 3-space, that is, four points with all dis-
tances between different points equal to each other. Such a configuration
can be isometrically embedded into some sphere of at ppropriate curvature
depending on the distance in the tetrahedron, but not into the Euclidean
plane. Therefore, we should only work with specific four-point configura-
tions. In fact, as we shall see in a moment, things work well if we start with
a triangle and choose the fourth point on the shortest geodesic between two
of the vertices of that triangle. The critical distance which yields informa-
tion about the curvature of the underlying space is then the distance from
that fourth point to the remaining third vertex of the triangle.

We thus turn to the general theories of curvature inequalities in metric
spaces that were developed by Busemann [19] and Alexandrov [1].We now
describe the essential principles of this approach (see e.g. [12, 18, 57]). For
simplicity, we only treat a special case, that of generalized nonpositive
curvature. We use the concept of a geodesic space as defined in Sect. 5.3.2.

Definition 5.3.9 The geodesic space (X, d) is said to have curvature
bounded from above by 0 in the sense of Busemann if for every p ∈ X
there exists some ρp > 0 such that for all x, y, z ∈ B(p, ρp)

d(m(x, y), m(x, z))

d(y, z)
≤ 1

2
(5.3.115)

where the midpoints m(x1, x2) have been defined in 2.1.56 and character-
ized in (5.3.46).

In a similar manner, one can also define upper curvature bounds other
than 0, and also lower curvature bounds for metric spaces, although the
technical details are somewhat more complicated.

In a certain sense, Busemann’s definition provides a negative view of
nonpositive curvature, in the sense that geodesics are diverging faster than
in the Euclidean case. The distance between y and z is at least twice as large
as the distance between m(x, y) and m(x, z), the two points that are half
as far away from x than y and z, on the same geodesics. A more positive
view, that is more restrictive, but which implies stronger properties, was
provided by Alexandrov. He started from the observation that in a space of
negative curvature, the geodesic from y to z comes at least as close to x as
the corresponding geodesic would in Euclidean space. More precisely,

Definition 5.3.10 The geodesic space (X, d) is said to have curvature
bounded from above by 0 in the sense of Alexandrov if for every p ∈ X

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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there exists some ρp > 0 such that for all x1, x2, x3 ∈ B(p, ρp) and any
shortest geodesic c : [0, 1] → X with c(0) = x1, c(1) = x2, parametrized
proportionally to arclength, for all 0 ≤ t ≤ 1

d2(x3, c(t)) ≤ (1 − t)d2(x1, x3) + td2(x2, x3) − t (1 − t)d2(x1, x2).
(5.3.116)

In fact, it suffices to require (5.3.116) for t = 1
2 , that is, for the midpoint

m(x1, x2) = c( 12 ) of x1 and x2. (5.3.116) then becomes

d2(x3, m(x1, x2)) ≤ 1

2
d2(x1, x3) + 1

2
d2(x2, x3) − 1

4
d2(x1, x2).

(5.3.117)

We again consider a triangle, that is, a configuration of three points
(x1, x2, x3) in X a triangle and a comparison triange (x1, x2, x3) in R

2

satisfying (5.3.113).
Let c : [0, 1] → R

2 be the straight line segment with c(0) = x1, c(1) =
x2, that is the analogue of the geodesic curve c from x1 to x2. Then an
equivalent formulation of (5.3.116) is

d(x3, c(t)) ≤ ‖x3) − c(t)‖ for 0 ≤ t ≤ 1, (5.3.118)

and in particular for t = 1
2 as in (5.3.117).

The Fig. 5.1 depicts the relationship between the distances in a triangle in
a space of nonpositive curvature in the sense of Alexandrov and a Euclidean
comparison triangle.

We now want to reformulate the condition in Definition 5.3.10, or more
precisely its version 5.3.117, in such a manner that it becomes meaningful
even for metric spaces (X, d) that are not geodesic, like discrete metric
spaces. Let x1, x2 ∈ X . We put

ρ(x1,x2)(x) := max
i=1,2

d(x, xi ) and r(x1, x2) := inf
x∈X

ρ(x1,x2)(x). (5.3.119)

For every x , we have that

x ∈ B(x1, ρ(x1,x2)(x)) ∩ B(x2, ρ(x1,x2)(x)) (5.3.120)

and thus, the intersection of these two balls centered at x1 and x2 with
the same radius r = ρ(x1,x2)(x) is nonempty. When x1 and x2 possess a

geodesic
from x3

to x1 = c(0)

x3

x1
x2c

geodesic
from x3

to x2 = c(1)

≤

c

x3

x1
x2

Fig.5.1 Comparison between a triangle in a space of nonpositive curvature in the sense
of Alexandrov and the triangle with the same lengths of corresponding sides (indicated
by slashes) in the Euclidean plane. Redrawn from [57]
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midpoint m(x1, x2), then, as we have observed in Lemma 2.1.3

r(x1, x2) = 1

2
d(x1, x2), (5.3.121)

and

m(x1, x2) ∈ B(x1, r(x1, x2)) ∩ B(x2, r(x1, x2)) (5.3.122)

and so, again, that intersection is nonempty. Moreover, the infimum in
(5.3.119) is realized by x = m(x1, x2). Thus, the smallest radius needed
to have a nonempty intersection of two closed balls contains some very
basic information about a metric space. We now proceed to look at radii
that guarantee a nonempty intersection of three balls, and we shall find that
this contains curvature information.

We seek the smallest radius r3 such that the ball B(x3, r3) intersects the
two balls B(x1, r12) and B(x2, r12). Since those two balls intersect only in
m(x1, x2), that other ball then also has to contain m(x1, x2). Therefore, that
radius has to be equal to the distance between x3 and that midpoint. Thus,
we conclude that r3 = d(x3, m(x1, x2)) is the smallest radius r ′ of a closed
ball B(x3, r ′) centered at x3 such that

B(x1, r12) ∩ B(x2, r12 ∩ B(x3, r ′) �= ∅. (5.3.123)

This observation can now be related to our curvature bound (5.3.117),
because m(x1, x2) = c( 12 ) in the notation of Definition 5.3.10. The
inequality (5.3.117) thus becomes

r3 ≤ r3 (5.3.124)

for the Euclidean analogue r3 of r3.
Along these lines, one can also formulate another version of nonpositive

curvature that treats all three points x1, x2, x3 of the triangle equally and
that consequently is easier to formulate. This was discovered in [7]. Again,
we consider a comparison triangle x1, x2, x3 ∈ R

2 with the same distances

d(xi , x j ) = |xi − x j |, for every i, j = 1, 2, 3.

We then define the functions

ρ(x1,x2,x3)(x) := max
i=1,2,3

d(x, xi ), x ∈ X,

and,

ρ(x1,x2,x3)(x) := max
i=1,2,3

‖x − xi‖, x ∈ R
2.

The numbers

r(x1, x2, x3) := inf
x∈X

ρ(x1,x2,x3)(x) and r(x1, x2, x3) := min
x∈R ρ(x1,x2,x3)(x)

(5.3.125)

are called the circumradii of the respective triangles.

Definition 5.3.11 (Nonpositive curvature) Let (X, d) be a metric space.
We say that CurvX ≤ 0 if, for each triangle (x1, x2, x3) in X, we have

r(x1, x2, x3) ≤ r(x1, x2, x3), (5.3.126)

where xi with i = 1, 2, 3 are the vertices of an associated comparison
triangle.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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Again, by obvious modifications, one can formulate other curvature
bounds.As shown in [7], on aRiemannianmanifold, the conditionCurvX ≤
0 is again equivalent to nonpositive sectional curvature. Also, nonpositive
Alexandrov curvature implies nonpositive curvature in the sense of Defin-
ition 5.3.11 whereas nonpositive Busemann curvature doesn’t in general.

From the preceding, it is clear that the geometric content of Defini-
tion 5.3.11 is the following. When the infimum in (5.3.125) is achieved,
r(x1, x2, x3) is the smallest number r with the property that

⋂

i=1,2,3

B(xi , r) �= ∅, (5.3.127)

and this radiusmust not be larger than the corresponding radius for a Euclid-
ean comparison triangle. (When the infimum in (5.3.125) is not achieved,
we only have

⋂

i=1,2,3 B(xi , r(x1, x2, x3) + ε) �= ∅ for any ε > 0, but the
geometric intuition is essentially the same.)

Thus, while for two balls in a geodesic space B(x1, r) ∩ B(x2, r) �= ∅
whenever r ≥ 1

2d(x1, x2), and therefore, the smallest such number does not
have much geometric content, the intersection patterns of three balls reflect
an important geometric property. The condition (5.3.127) does not involve
any point x explicitly. It thus embodies the principle that three balls in X
should have a nonempty intersection whenever the corresponding balls in
the Euclidean plane with the same distances between their centers intersect
nontrivially. We can apply this principle to any metric space and search for
the minimal radius for which the balls centered at three given points have
a nonempty intersection. Curvature bounds such as (5.3.126) quantify the
dependence of such a minimal radius on the distances between the points
involved, as compared to the Euclidean situation.

Since for discrete metric spaces, small balls might just contain their
center and nothing else, it might be appropriate to utilize the following
modification.

Definition 5.3.12 Let ε > 0. A metric space (X, d) has ε-relaxed nonpos-
itive curvature if

⋂

i=1,2,3

B(xi , r) �= ∅ whenever r ≥ r(x1, x2, x3) + ε (5.3.128)

for every triangle (x1, x2, x3) ∈ X.

The essential point here is that ε is independent of the distances between
the points x1, x2, x3 constituting the triangle. Therefore, when these dis-
tances are smaller than ε, the condition (5.3.128) is automatically satisfied.
In contrast, when these distances are large compared with ε, the condition
is essentially the same as (5.3.127).

The formulation of the nonpositive condition in terms of intersection
patterns of balls, as in (5.3.127) and (5.3.128), should also remind us of
the construction of the Čech complex from intersection patterns of balls in
Sect. 3.1which could then be analyzed inSect. 4.6with the tools of algebraic
topology. Our nonpositive curvature condition can then be considered as a
geometric refinement of this topological scheme. Of course, we could also
consider intersection patterns of more than three balls. While for geodesic

http://dx.doi.org/10.1007/978-3-319-20436-9_3
http://dx.doi.org/10.1007/978-3-319-20436-9_4
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spaces this does not seem to contain much further geometric content, for
discrete spaces a version of (5.3.128) for more than three balls could yield
useful geometric information.

Whether two balls intersect does not contain specific geometric infor-
mation about the underlying space, because the criterion is simply that the
sum of their radii be at least as large as the distance between their cen-
ters. When, however, the space also carries a measure, we can look at the
measure of the intersection of two balls as a function of their radii and the
distance between their centers. This contains information about the Ricci
curvature when the space is a Riemannian manifold. Here, the Ricci curva-
ture in the direction of a tangent vector X is defined as the average of the
sectional curvatures of all the tangent planes containing X . Therefore, one
can use this in general metric spaces that are equipped with a measure to
define generalized Ricci curvature bounds. While here, we do not go into
the details, we only remark that it is natural that for Ricci curvature, we
not only need a metric, but also a measure, since the Ricci curvature in the
Riemannian case had been defined as an average over sectional curvatures,
and taking averages implicitly invokes a measure.

For a survey of sectional andRicci curvature inequalities inmetric spaces
and their geometric implications, we refer to [9] and the references provided
there.

5.4 Schemes

After having treated manifolds and metric aspects, we now turn to one of
the other possibilities for conceptualizing space, as discussed in Sect. 5.1,
that of a scheme. In this section, I shall heavily draw upon the references
[33, 46, 102] which are recommended for a more detailed, extensive, and
precise treatment. My aim here is only to describe the essential ideas.

The starting idea is the following one. We consider a topological space
(X, O(X)), andwe assume that the topology is rich enough, that is, contains
enough open sets so that each point yields a closed set (if not, we should
replace “point” by “closed set” in the sequel). We have the notion of con-
tinuous functions f : X → R,4 and we may impose the condition that the
continous functions separate points, that is, for any a �= b ∈ X , there exists
a continuous function f with f (a) �= f (b). By subtracting a constant—
which is always continuous—, we may then assume that f (a) = 0.

Now, the continuous functions on X form a ring C(X) as one can add
and multiply their values in R. This ring is commutative and contains an
identity (always denoted as 1), the function f ≡ 1. In general, however,
C(X) is not a field because any f with f (a) = 0 for some a ∈ X has no
multiplicative inverse. In fact, given a ∈ X , the functions f ∈ C(X) with
f (a) = 0 constitute an ideal Ia in the ring C(X) (see Sect. 5.4.1 below

4For the present discussion, other rings would do as well, but we stick to R here for
concreteness. C will become important below.
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for the definition and properties of ideals).5 And if we impose the above
separation property, then Ia �= Ib for a �= b ∈ X . That is, when I is the set
of ideals in C(X), we obtain an injective map

X → I
a �→ Ia . (5.4.129)

This means that we can recover the points in X from algebraic objects,
ideals in a ring. According to the standard mathematical strategy that we
have already encountered several times, we can then turn things around
and start with those algebraic objects as our primary objects. That is, we
consider a ring (commutative,with 1) togetherwith its set of ideals, and then
try to construct some topological space whose points are given by ideals.
Obviously, there are some immediate problems, and therefore, ultimately,
if this is going to work at all, it needs to be refined. In particular, not every
ideal in C(X) corresponds to a point of X . For instance, we can take any
closed subset A of X . A then defines the ideal IA of those continuous
functions that are 0 at all the points of A. Thus, we can hope at best to
recover the closed subsets of X . However, when A contains two different
points a �= b, then IA � Ia, Ib. More generally, whenever B ⊂ A, for
closed subsets A, B, then IA ⊂ IB . Thus, we have a contravariant functor
from the closed subsets of X to the ideals in C(X).

Therefore, we can try to identify those ideals that correspond to points
in X , as opposed to larger subsets, as those that are maximal, that is, not
contained in some larger ideal (different from the entire ring). This, how-
ever, brings us into trouble with functorial properties. When h : R1 → R2
is a ring homomorphism, the preimage of any ideal in R2 is an ideal in
R1—so far, so good—but the preimage of a maximal ideal need not be
maximal itself. Of course, this corresponds to the simple topological fact
that a continuous map F : X1 → X2 between topological spaces need
not be injective, but can map some (closed, for our purposes) set A ⊂ X1
containing more than one point to a single point a in X2. When f ∈ C(X2)

satisfies f (a) = 0, then f ◦ F ∈ C(X1) satisfies f (x) = 0 for all x ∈ A,
that is, it vanishes at A. Therefore, the pullback of a function that vanishes
at a ∈ X2 under the map F then becomes a function that vanishes on the
entire set A. One possible resolution of this difficulty might consist in con-
sidering all closed subsets of the topological space X , as opposed to single
points only. This would fit well with the functorial properties of continuous
maps. A continuous map pulls closed sets back to closed ones, and the
induced map on the ideal sets is then a transformation of the corresponding
ideals.

There may be too many such closed subsets, however, to make this
really feasible. Another approach could consist in restricting the class of
functions, that is, not consider all continuous functions, but rather assume
that the space X carries some additional structure and to restrict to the class
of functions that preserve that structure. In fact, we shall see that this will

5In complex and algebraic geometry, there is a way to circumvent this problem, namely,
to look at meromorphic functions, that is, also for functions assuming the value ∞ in a
controlled manner.
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help us to identify the strength of this approach. More precisely, we shall
see that this approach is constitutive for modern algebraic geometry.

Before we proceed, it will be useful to recall some algebra:

5.4.1 Rings

We consider a commutative ring R with an identity, denoted as 1, and all
rings occurring in the sequel will likewise automatically be assumed to be
commutative and have a 1.

a ∈ R is called a (multiplicative) unit if there exists some b ∈ R with
ab = 1. A ring is a field if all its elements �= 0 are units.

We say thata �= 0divides c if there exists someb �= 0withab = c.a �= 0
in R is called a proper zero divisor if there exists some b �= 0 in R with ab =
0, that is, if a divides 0. (In general, when talking about division concepts,
0 is always automatically excluded, without further explicit mentioning in
the sequel.) A ring without proper zero divisors (and which is nontrivial in
the sense that 1 �= 0) is called an integral domain. The integers Z are, of
course, an example. From an integral domain, one can construct a quotient
field. One takes pairs (a, b) of elements with b �= 0 and considers pairs
(a1, b1), (a2, b2) as equivalent if a1b2 = a2b1. Every field is an integral
domain, but not conversely, as the example Z again shows. On the other Z

hand, the rings Zq for q not a prime number are not integral domains. In
fact, let q = mn with m, n > 1 be a nontrivial product. Then mn = 0 mod
q , and therefore, m and n divide 0. Zq

An integral domain R is called a unique factorization domain if every
a ∈ R that is not a unit is a finite product, unique up to order and units,
of irreducible elements. Here, b ∈ R is called irreducible if it is not a unit
and if the only divisors of b are units u or of the form bu for some unit
u (it is clear that such elements u and bu trivially are divisors of b). The
uniqueness of the factorization is equivalent to the condition that whenever
an irreducible p divides a product ab, then it divides one of the factors.
(The proof, which is elementary, is left to the reader or can be looked up,
e.g. in [121] or [73].)

A particular and important class of unique factorization domains are the
Euclidean domains. These are the integral domains where we can associate
an integer ν(a) to every element a, with the properties that ν(b) ≤ ν(a)

whenever b divides a, and for any a, b with b �= 0, there exist elements
q, r with a = bq + r and ν(r) ≤ ν(b). The ring of integers is a Euclidean
domainwith ν(n) := |n|. In a Euclidean domain, any nonzero elements a, b
have a greatest common divisor d, and d is a linear combination of a and
b, d = αa + βb, for some α,β ∈ R, see again [73, 121] for simplicity. In
particular, a Euclidean domain is a unique factorization domain. For, when
an irreducible p divides ab, but not a, then the greatest common divisor
between p and a is 1, hence 1 = αa + β p. Therefore, b = αab + β pb,
and since p is assumed to divide ab, it then also divides b.

We recall that an ideal I in R is a nonempty set of elements of R that
forms a subgroup of R as an abelian group and satisfies aI ⊂ I for all a ∈ R
(Definition 2.1.21). In particular, I is then a subring of R (but not every

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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subring is an ideal, as is shown by the integer subringZ of the rationalsQ).Z

When an ideal contains 1, it has to coincide with the ring R itself. Thus, the
ideals of interest do not contain 1. Thus, they cannot contain a unit either.
In particular, a field does not possess any nontrivial ideals, that is, ideals
different from the field itself and the zero ideal (0), the ideal containing
only 0. The intuitive idea that will be behind the subsequent constructions
is that the presence of nontrivial ideals encodes the deviation of a ring from
being a field. And, as we shall explore in a moment, nontrivial ideals can
be generated by nontrivial noninvertible elements of a ring.

The intersection of ideals is again an ideal.
From an ideal I of R, we obtain the quotient ring R/I . The kernel Ker(h)

of a ring homomorphism h : R1 → R2 is an ideal in R1. h then induces a
ring isomorphism R1/Ker(h) → R2. More generally, when I2 is an ideal
in R2, then its preimage I1 := h−1(I2) is an ideal in R1. Ker(h) is then the
preimage of the zero ideal (0) ⊂ R2, and therefore the smallest one among
all the preimages of ideals.

For any a ∈ R, a R, i.e., the set of elements of the form ab, b ∈ R, is
an ideal, called the principal ideal generated by a. As already mentioned,
for this ideal to be nontrivial, a should not be a unit, nor should it be 0.
More generally, a family {aλ}λ∈� generates the ideal I if every b ∈ I can
be written as a finite sum b = ∑n

i=1 bi aλi with bi ∈ R. We then also write
I = (aλ)λ∈�. By definition, the empty set generates the zero ideal. An ideal
is said to be finitely generated if it possesses a finite set of generators.

Definition 5.4.1 The ring R (commutative with 1, as always) is said to be
Noetherian if every ideal is finitely generated.

The Noetherian property is very important, because it is needed for most
results in the theory of schemes. The ring C(M) of continuous functions
on a manifold, unfortunately, is not Noetherian. For p ∈ M , the continuous
functions f with f (p) constitute an ideal Ip, as remarked above, but this
ideal is not finitely generated. In fact, Ip is not even finite dimensional, and
so, we cannot find any finite set of functions f1, . . . , fn so that any f ∈ Ip

is a linear combination of those functions. What we can only hope for is to
expand such an f into an infinite series, like a Fourier series, but this does
not qualify for the Noetherian property.

We now come to a fundamental example of Noetherian rings. Given
a ring R, we consider the polynomial ring R[X ], the ring of polynomials
a0+a1X + . . . an X , with a0, . . . , an ∈ R, n ∈ N∪{0}, in the indeterminate
X .When an �= 0, we say that the polynomial has degree n. Analogously, we
can consider the ring of polynomialswith k indeterminates, R[X1, . . . , Xk].
The ring of polynomials K [X ] with coefficients in a field K and a single
indeterminate is a Euclidean domain, with ν( f ) := degree of f for f �= 0
and ν(0) = −1.

We have the Hilbert basis theorem:

Theorem 5.4.1 If the ring R is Noetherian, then so are the polynomial
rings R[X1, . . . , Xk].
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From an ideal I , we can construct another ideal, its radicalRad(I), the
set of all a ∈ R with an ∈ I for some n ∈ N. The nilradical Rad(0) consists
of all nilpotent elements of R (an element a is called nilpotent if an = 0
for some n ∈ N). The ring R is called reduced if Rad(0) = (0). For any
ring R, we have the reduced ring Rred := R/Rad(0).

An ideal I �= R of R is calledmaximal if there is no other ideal I ′ �= I, R
with I ⊂ I ′. The ideal I is maximal iff R/I is a field. This is easily follows
from the fact that every a that is not a unit (nor 0) generates a nontrivial
ideal. In other words, the zero ideal (0) is the only maximal ideal of a field,
and this characterizes a field.

Maximal ideals, however, are not good for functorial purposes, because
the preimage of amaximal ideal in R2 under a homomorphism h : R1 → R2
need not bemaximal in R1. For instance, let h embed a ring R without proper
zero divisors that is not a field into a field K . Then the zero ideal (0) is
maximal in K , but its preimage, the zero ideal (0) of R is not maximal in R.

This functorial problem goes away when we consider prime ideals
instead of maximal ones. Here, an ideal I �= R in R is called prime if
whenever ab ∈ I for elements a, b ∈ R, then a ∈ I or b ∈ I . In the inte-
gers Z, the prime ideals are precisely the ideals pZ generated by a prime Z

number p, and the zero ideal (0). When q is prime, then Zq is a field (as
discussed in Sect. 2.1.6), and hence the only prime ideal is (0), but when
q is not prime, and p is a prime number dividing q , then the multiples of
p (modulo q) also constitute a prime ideal. For instance, Z4 has the prime
ideals {0} and {0, 2}. Z4

I is a prime ideal iff R/I is an integral domain. For, if h : R → R/I is
the natural homomorphism, then ab ∈ I iff h(a)h(b) = 0, and if R/I is an
integral domain, this can happen only if h(a) = 0 or h(b) = 0.

In particular, any maximal ideal is prime because any field is an integral
domain. Also, (0) is a prime ideal in the ring R iff R is an integral domain.

As indicated, if h : R1 → R2 is a homomorphism, and if I2 ⊂ R2 is a
prime ideal, then I1 := h−1(I2) is prime. For, ifab ∈ I1, then h(a)h(b) ∈ I2
and since the latter is prime, h(a) ∈ I2 or h(b) ∈ I2, and hence a ∈ I1 or
b ∈ I1 so that I1 is indeed prime.

Let K be a field and consider the polynomial ring R := K [X1, . . . , Xn].
Let a1, . . . , an ∈ K and consider all the polynomials f ∈ R with
f (a1, . . . , an) = 0. They form a prime ideal I in R since K is a field.
Since we can write every element g ∈ R as g(X) = a +∑

i gi (X)(X − ai )

for some elements gi ∈ R, we see that g(a1, . . . , an) = 0 iff a = 0. There-
fore, I is generated by the polynomials X −ai . On the other hand, any ideal
that contains both I and some element g with g(a1, . . . , an) �= 0 then has
to contain some a �= 0, hence 1 since K is a field, and hence the ideal has to
be the entire ring R. Therefore, the prime ideal I is maximal. In particular,
R/I is a field, in fact, the ground field K .

In a Euclidean domain, for instance the integers Z or the polynomial Z

ring K [X ] in one indeterminate over a field, every prime ideal is maximal.
For, if I is a prime ideal in a Euclidean domain, it is of the form pR for
some element p (a prime), and if a /∈ I , then the greatest common divisor
between a and p is 1, hence αa +β p = 1 for some α,β ∈ R, and therefore
the image of a in the quotient R/I has an inverse. Thus, R/I is a field. And
thus, the ideal I is maximal.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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However, in the polynomial ring K [X1, X2] with two indeterminates,
there exist prime ideals that are not maximal. In fact, the ideal I generated
by the irreducible polynomial X1 is prime (since a field trivially is a unique
factorization domain). It is contained in the ideal generated by the two
polynomials X1 and X2. The latter ideal, however, does not contain the
constants and therefore still is not the entire ring K [X1, X2]. Thus, I is not
maximal.

Considering again the ring of continuous functions C(X) on a topolog-
ical space X , then for any p ∈ X , the ideal Ip of functions vanishing at p
is prime because whenever a product f g vanishes at p, then at least one of
the factors has to vanish there. For an arbitrary closed set A ⊂ X , the ideal
IA of functions vanishing on A need not be prime, because A could be a
nontrivial union of two closed sets A1, A2, both of them smaller than A
itself. We can then take a function f1 vanishing on A1, but not on all of A,
and analogously f2 for A2. Then f1 f2 ∈ IA, but neither of the factors is.

A ring R is called local if it possesses an ideal J �= R that contains all
other ideals. Given a ring R and a prime ideal I , we can construct a local
ring RI as follows. We consider pairs (a, b), a ∈ R, b ∈ R \ I , with the
identification

(a1, b1) ∼ (a2, b2) if there exists some c ∈ R\ I with c(a1b2−a2b1) = 0.
(5.4.130)

(Since R is not assumed to be an integral domain, we need to account for
the presence of proper zero divisors.) On such pairs, we have the familiar
operations from the calculus of fractions

(a1, b1) + (a2, b2) = (a1b2 + a2b1, b1b2) (5.4.131)

(a1, b1)(a2, b2) = (a1a2, b1b2). (5.4.132)

The equivalence classes of pairs with these operations constitute a ring,
the local ring RI of the prime ideal I . That the ring is indeed local is seen
as follows. We have the homomorphism i : R → RI , i(a) = (a, 1). i(a)

is invertible in RI precisely when a /∈ I . Every element in RI is of the
form (i(a), i(b)), with b /∈ I . The elements (i(a), i(b)), with b /∈ I , but
with a ∈ I , constitute an ideal J , and since every element of RI that is not
contained in J has an inverse, this ideal J has to contain all other ideals.

When R = C(X), p ∈ X and Ip is the prime ideal of functions vanishing
at p as before, then the local ring RIp consists of the pairs ( f, g) with
g(p) �= 0. Thus, even though we may not be able to divide by such a g
globally, as it may vanish somewhere, we can divide by it locally, in the
vicinity of the point p. In that sense, the local ring RI is closer to being
a field than the original ring R as all elements not in the ideal I are now
invertible.

We can also put this construction in a kind of dual manner. A nonempty
subset S ⊂ R that does not contain 0 and is closed under multiplication is
calledmultiplicative. Examples are S = {gn, n ∈ N} for a single g that is not
nilpotent, or S = R\ I for some prime ideal I . For amultiplicative set S, we
can construct its ring of fractions, also denoted as RS (this, unfortunately,
is a confusing notation in view of the earlier notation RI ; the excuse is
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that an ideal is not multiplicative as it contains 0), consisting of all pairs
(a, s), a ∈ R, s ∈ S, with

(a1, s1) ∼ (a2, s2) if there exists s ∈ S with s(a1s2 − a2s1) = 0,
(5.4.133)

again with the usual operations on fractions. For S = {gn, n ∈ N} for
a single non-nilpotent g, we also simply write Rg . This is just the ring
obtained by adjoining an inverse to g. The prime ideals of Rg are precisely
those prime ideals of R that do not contain g, under the homomorphism
that sends a ∈ R to (a, 1) = (ga, g) ∈ Rg .

From this construction, we also see that the elements of R that belong
to all its prime ideals are precisely the nilpotent elements. As it is clear
that a nilpotent element belongs to all prime ideals, we only need to verify
that for an element g ∈ R that is not nilpotent, we can find some prime
ideal to which it does not belong. For this purpose, we look at the ring Rg

just constructed. As just noted, the homomorphism R → Rg induces an
embedding SpecRg → SpecR whose image consists of those prime ideals
in R that do not contain g.

In other words, the intersection of all prime ideals of R equals its nilrad-
ical Rad(0). Similarly, the intersection of all prime ideals containing g ∈ R
is given by the elements f with f n = ga for some n ∈ N, a ∈ R. This is
seen by applying the preceding reasoning to the ring R/(g).

5.4.2 Spectra of Rings

Definition 5.4.2 The set of prime ideals of a ring R is called the spectrum
of R, SpecR.

We equip SpecR with a topology, by taking as the closed sets the sets
of the form V (E) where E is any subset of R and V (E) consists of all the
prime ideals containing E . Of course, when I is the ideal generated by E ,
then V (E) = V (I ). The V (E) satisfy the axioms for closed sets because
of the obvious properties

V (
⋃

λ∈�

Eλ) =
⋂

λ∈�

V (Eλ) (5.4.134)

V (E12) = V (E1) ∪ V (E2), (5.4.135)

with E12 being the intersection of the ideals generated by E1 and E2 and
where � is an arbitrary index set. Thus, arbitrary intersections and finite
unions of closed sets are closed, as they should. This topology is called
the spectral topology, and henceforth we consider SpecR as a topological
space.

For instance, for the ring Z of integers, when we take m ∈ Z, then the
prime ideals containing m are precisely those generated by the prime divi-
sors of m. More generally, for a subset {m1, m2, . . . } of Z, the prime ideals Z

containing that subset are those generated by the common prime divisors
of all the mi . Thus, the closed sets in SpecZ contain the prime ideals gen-
erated by the common prime divisors of some set of integers. In Zq , if m
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is relatively prime to q , that is, their largest common divisor is 1, then m
is not contained in any prime ideal, that is, V ({m}) = ∅. In contrast, if m
and q have the common prime divisors p1, . . . , pk , then m is contained
in the prime ideals generated by those. Thus, the closed sets of SpecZq

contain the common prime divisors of q and some collection of positive
integers < q .Zq

We can already make the following observation. When we take E = I
for some prime ideal I ⊂ R, then, since V (I ) then consists of all the
prime ideals containing I , we have V (I ) = I precisely if I is a maximal
ideal. Thus, a prime ideal I becomes a closed set in SpecR if and only if
I is maximal. Thus, not all points of SpecR are closed w.r.t. the spectral
topology. In particular, the zero ideal (0) is not closed (unless R is a field).

Since, as observed above, preimages of prime ideals under ring homo-
morphisms are prime, every homomorphism h : R1 → R2 induces a
mapping

h� : SpecR2 → SpecR1. (5.4.136)

Since we always have

(h�)−1V (E) = V (h(E)), (5.4.137)

the preimages of closed sets are closed, and therefore h� is continuous.
Let us look at the example of the integersZ.We recall that SpecZ consistsZ

of the ideals pZ, p a prime number, and (0). Since any integer �= 0 is
contained in finitely many prime ideals, the closed sets in SpecZ are the
finite ones (and, of course, SpecZ itself, as generated by 0). Therefore, the
open sets are the complements of the finite sets. Therefore, the intersection
of any two nonempty open sets is nonempty itself. In particular, SpecZ
cannot satisfy any Hausdorff property, and in fact, this is characteristic
of spectra of rings. Actually, in some spectra, there even exist non-closed
points. The closure of a point in SpecR, that is, of a prime ideal I in R,
is V (I ) = ⋂

E⊃I V (E). Thus, when the ideal is not maximal, then V (I )
is larger than I , and hence I is not closed. Thus, when R contains prime
ideals that are not maximal, then SpecR contains such non-closed points.

On the other hand, we have

Lemma 5.4.1 SpecR is compact.

Proof Let g be a non-nilpotent element of R (the nilpotent elements are
precisely those that are contained in all prime ideals, as observed above),
and consider the open set

D(g) := SpecR − V (g), (5.4.138)

that is, the prime ideals not containing g. In fact,

D(g) = SpecRg, (5.4.139)

because the ideals of Rg correspond to those ideals in R that do not contain
g, as remarked above. Moreover, SpecR f ∩ SpecRg = SpecR f g (since a
prime ideal contains a product iff it contains one of the factors), so that the
collection D(g) is closed under finite intersection. These open sets form
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a basis of the topology. In fact, for an open set U = SpecR − V (E) =
SpecR − ⋂

g∈E V (g) = ⋃

g∈ESpecRg . It therefore suffices to show that
any covering by such sets D(g) contains a finite subcover. Thus, let

SpecR =
⋃

λ

D(gλ). (5.4.140)

This means that ⋂

λ

V (gλ) = V (J ) = ∅ (5.4.141)

where J is the ideal generated by the gλ. Thus, there is no prime ideal
containing J , hence J = R. But in this case, we can find gλ1, . . . , gλk and
elements h1, . . . , hk with

gλ1h1 + · · · + gλk hk = 1 (5.4.142)

that is, the ideal generated by gλ1 , . . . , gλk is R, and hence

SpecR =
⋃

i=1,...,k

D(gλi ), (5.4.143)

and we have found a finite subcover. �

5.4.3 The Structure Sheaf

We want to construct a sheaf O on the topological space X = SpecR for
some ring R. This construction will rest on the basic principle that has been
employed for the definition of the topology on SpecR when R was some
ring of functions on a topological space Y . The basic sets are the “points”,
that is, the prime ideals as obtained from functions vanishing at that “point”.
Such a “point” is a closed set iff it is given by a maximal ideal. We are using
the quotation marks here because by this construction we shall in general
get more “points” than the ordinary points of the underlying topological
space Y . First of all, Y itself is a “point”, as it corresponds to the prime
ideal generated by 0, that is, the function vanishing identically on all of
Y . Moreover (suppressing some important technical details), when Y is
a complex manifold or an algebraic variety, and if we consider rings of
holomorphic functions, then also irreducible subvarieties other than points
are given by prime ideals of holomorphic functions. We shall leave out
the quotation marks from now and shall speak about points in this more
general sense. Thus, while the basic closed sets are given by those points
that correspond to maximal ideals, the basic open sets are then given by
complements of such points, that is, by minimal sets, where certain func-
tions f are nonzero. When a function f is nonzero, we can divide by it and
consider quotients g

f . Therefore, on such a basic open set, we have more
functions than on the entire space Y . This becomes particularly important
when we look at compact complex manifolds or algebraic varieties. Those
do not carry any global nonconstant holomorphic functions. However, open
subsets do. Therefore, we can only hope to recover such a space from its
holomorphic functions when we also consider such functions that are not
defined everywhere, but only on the complement of some points. From a
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different perspective, one considers meromorphic functions, that is, func-
tions that are holomorphic on the complement of a collection of points, but
have poles at those points. Therefore, from this perspective, it is again nat-
ural to work with a topology whose open sets are those sets where suitable
collections meromorphic functions have no poles.

We shall now formalize the preceding idea in the framework developed
so far. We first consider the special case where R has no proper divisors of
0, that is, it is an integral domain. We let K be its field of fractions. For any
open U ⊂ X , we let O(U ) be the set of the u ∈ K which for every I ∈ U ,
that is, for every prime ideal I in U , can be represented as u = (a, b)

with a, b ∈ R, with b /∈ I . We also write this suggestively as b(I ) �= 0, to
indicate that we consider a, b as functions onU , with b nonzero at the point
I . It is straightforward to check that O yields a sheaf on X (and we shall
verify this below in detail for the general case), called its structure sheaf.

We have O(SpecR) = R. This is seen as follows. If u ∈ O(SpecR),
then for every I ∈SpecR, there exist aI , bI ∈ R with

u = (aI , bI ), bI (I ) �= 0. (5.4.144)

The ideal J generated by all the bI , I ∈SpecR is therefore not contained
in any prime ideal of R, hence J = R. Therefore, by a reasoning already
applied above in the proof of Lemma 5.4.1, we can find I1, . . . , Ik and
h1, . . . , hk ∈ R with

bI1h1 + · · · + bIk hk = 1. (5.4.145)

Since, by (5.4.144), u can be represented as u = (aI j , bI j ) for every j , by
multiplying this representation by bI j h j and summing w.r.t. j , we obtain

u = aI1h1 + · · · + aIk hk ∈ R, (5.4.146)

and hence O(SpecR) = R, as claimed.
We now turn to the general case, and we put

O(D(g)) = Rg, (5.4.147)

recalling (5.4.138, 5.4.139).The ideabehind this is again natural and simple.
When R is the ring of continuous functions on some topological space X ,
and if f ∈ R, we consider the open set D( f ) = {x ∈ X : f (x) �= 0}, and
on this open set, we have the well defined inverse function 1

f , and so, on
D( f ), we can adjoin this inverse to R to obtain the local ring R f as the
ring of continuous functions on D( f ).

If D( f ) ⊂ D(g), then all prime ideals that do not contain f do not
contain g either, and then some power of f is a multiple of g, as observed at
the end of Sect. 5.4.1.We can therefore define the restrictionmap pD(g)D( f )

as the localization map Rg → Rg f = R f .

Lemma 5.4.2 Let, as in Lemma 5.4.1, D(g) be covered by open sets D(gλ).
Then, if h, k ∈ Rg are equal in each Rgλ , they are equal.

Conversely, if for each λ, there exists some hλ ∈ Rgλ such that for any
λ,μ, the images of hλ and hμ in Rgλgμ are equal, then there exists some
h ∈ Rg whose image in Rgλ is hλ for all λ.
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Proof We first consider the case where g = 1. Then Rg = R, D(g) =
SpecR =: X .

If h, k ∈ Rg are equal in Rgλ , then (gλ)N (h − k) = 0 for some power
N . Since the cover can be assumed to be finite by the compactness of
Lemma 5.4.1, h − k is annihilated by a power of the product of the gλi , i =
1, . . . , k. Since the ideal generated by these elements is the entire ring, we
have h = k in R.

For the second part, if hλ = hμ in Rgλgμ , then (gλgμ)N hλ = (gλgμ)N hμ

for all large N . Using again the compactness of Lemma 5.4.1, we can take
the same N for all λ,μ. As before, the gλ, and therefore also the (gλ)N

generate the entire ring R, that is,

1 =
∑

λ

fλ(gλ)N with fλ ∈ R. (5.4.148)

We put

h =
∑

λ

fλ(gλ)N hλ. (5.4.149)

Then for each μ,

(gmu)N h =
∑

λ

(gmu)N fλ(gλ)N hλ =
∑

λ

(gmu)N fλ(gλ)N hμ

= (gmu)N (
∑

λ

fλ(gλ)N )hμ = (gmu)N hμ.

This means that h is equal to hμ on each D(gλ).
The case of a general g then follows by applying the previous case to

X ′ := D(g), R′ := Rg, g
′
λ := ggλ. �

Lemma 5.4.2 verifies the sheaf property of (5.4.147) w.r.t. to an open
covering of SpecR. It is not hard to verify (but we omit this here for brevity)
that this implies the sheaf property in general.

Definition 5.4.3 The sheaf given by (5.4.147) is called the structure sheaf
of SpecR.

5.4.4 Schemes

Definition 5.4.4 An affine scheme (X, O) is the spectrum of a commuta-
tive ring R with identity, X = SpecR, equipped with its topology and its
structure sheaf O as constructed above.

The ring R is then given by R = O(X). An affine scheme can be
characterized by the following properties, whose underlying ideas we also
recall here once more:

1. For the points x ∈ X , the stalksOx are local rings, that is, they possess a
nontrivial ideal that contains all other ideals. Here, the stalk is obtained
by dividing by all elements of R that do not vanish at x (in the sense
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that they are not contained in the prime ideal corresponding to x), and
the maximal ideal Jx in question is then given by those elements that
do vanish at x . This ideal does indeed contain all other ones, because
all elements not in Jx are invertible in the stalk Ox by its construction.

2. Open sets can be obtained from enlarging the ring R by dividing by
suitable nontrivial elements.More precisely, let f ∈ R be non-nilpotent.
We then have the open set U f with

O(U f ) = R[ f −1], (5.4.150)

that is, U f is the set of points x ∈ X for which f maps to a unit of the
stalk Ox . Again, the idea is to obtain the open set U f from f as the set
of points where f can be inverted. In this way, we obtain the topology
of X from the algebraic structure of the ring R.

3. From the stalk Ox and its maximal ideal Jx , we obtain an ideal in O(X)

as its preimage. Again, the idea is to associate to the point x the ideal
of those functions that are not invertible at x . By associating to x ∈ X
this ideal, we obtain a map

X → SpecO(X). (5.4.151)

For an affine scheme, this is a homeomorphism of topological spaces.

Definition 5.4.5 A scheme X is a topological space, denoted by |X | when
there is danger of confusion, equipped with a sheaf O of rings, such that
|X | is covered by open sets Uα of the form

Uα
∼= |SpecRα| for rings Rα with O(Uα) ∼= OSpecRα . (5.4.152)

Here, ∼= means homeomorphic.
We also say that (|X |, O) is locally affine when this condition holds.

We now consider the basic example. Let K be an algebraically closed field.
The affine n-dimensional space over K is defined as

An
K := SpecK [x1, . . . , xn], (5.4.153)

the spectrum of the ring of polynomials in n variables over K . Since K is
Affine
n-dimensional space

algebraically closed, by Hilbert’s Nullstellensatz, the quotient of the poly-
nomial ring K [x1, . . . , xn] by any maximal ideal is K itself. The maximal
ideals are therefore of the form

J = (x1 − ξ1, . . . , xn − ξn), for ξ1, . . . , ξn ∈ K . (5.4.154)

Thus, the maximal ideals, that is, the closed points of the scheme An
K are

identified with n-tupels (ξ1, . . . , ξn) of elements of K . Irreducible polyno-
mials f (x1, . . . , xn) ∈ K [x1, . . . , xn] generate prime ideals and therefore
yield other, non-closed points. The closure of such a point contains all
(ξ1, . . . , ξn) with f (ξ1, . . . , ξn) = 0. Thus, such a point corresponds to
an irreducible subvariety � f of K n , and in addition to the closed points
contained in it, its closure also contains the points corresponding to all
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the irreducible subvarieties of � f , obtained by the simultaneous vanishing
of other irreducible polynomials in addition to f . In particular, the point
corresponding to the zero ideal (0) contains in its closure all the points
corresponding to irreducible subvarieties of K n , including all the closed
points (ξ1, . . . , ξn) ∈ K n .
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6.1 Relations and Simplicial Complexes

In this chapter, we shall combine some of the previous threads. In Sect. 3.2,
we contrasted graphs as constituted of elements standing in relations to
one another versus graphs as relations identifying elements. In Chap.5,
we considered spaces as consisting of points, or more generally, pointlike
objects that can again be viewed as the elements of such spaces. On the other
hand, at the end of Sect. 5.1, we also suggested a possible conceptualization
of space as consisting of being assembled from simple local pieces. Here,
we shall now take up that suggestion, but translate it into a framework of
relations as being constitutive for a space. At the same time, this chapter
will provide an introduction to basic concepts of algebraic topology. In
contrast to Chap.4, where we introduced cohomology theory as a tool for
defining and analyzing sheaves, here we shall start with homology theory.

We need to recall the concept of a simplicial complex as introduced in
Sect. 3.1. We consider a finite1 set V whose elements are denoted by v

or v0, v1, v2, . . . . We assume that finite tuples of elements can stand in a
relation r(v0, v1, . . . , vq). We assume that all the elements v0, . . . , vq in
such a relation are different from each other. The tuple (v0, v1, . . . , vq) is
considered as ordered. The orderingwill be relevant only up to the parity of a
permutation. Thus, we have (v0, v1, . . . , vq) = (vi0 , . . . , viq ) for any even
permutation (i0, . . . , iq) of (0, . . . , q), while we put (v0, v1, . . . , vq) =
−(vi0 , . . . , viq ) for an odd permutation. In other words, we consider an
odd permutation as a change of orientation of such a tuple. This will be
an important aspect in the sequel. Put simply, the rule is that any change
of orientation introduces a minus sign. This will then allow for suitable
cancellations, and this is at the basis of (co)homology theory. In particular,
this sign convention implies that

(v0, v1, . . . , vq) = 0 whenever vi = v j for some i �= j, (6.1.1)

1The assumption of finiteness is made here to avoid technical complications and the need
for additional technical assumptions that are not pertinent to the essential ideas of this
chapter.
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that is, whenever two of the members of such a tuple are the same. This is
a useful convention.

r takes its values in some set or space R which we leave unspecified.
We write r(v0, . . . , vq) = o in the absence of a relation, for some formal
element o ∈ R.

We use the convention r(∅) = o.
We shall now assume that r(v0, v1, . . . , vq) �= o iff r(−(v0, v1, . . . ,

vq)) �= o, that is, the presence of a relation does not depend on the orien-
tation of the tuple. We recall from Sect. 3.1 that such a relation structure
defines a simplicial complex � when the following properties hold.

(i) r(v) �= o, (6.1.2)

that is, each element stands in a nontrivial relation with itself.

(ii) If r(v0, . . . , vq) �= o, then also r(vi1 , . . . , vi p ) �= o for any (different)

i1, . . . , i p ∈ {0, . . . , q}, (6.1.3)

that is, whenever some elements stand in a nontrivial relation, then this
also holds for any subset of them.

The simplicial complex � is visualized by associating a q-dimensional
simplex σq to every collection of elements with r(v0, . . . , vq) �= o. We put
|σq | := q and call it the dimension.

When we take the ordering up to parity of a permutation into account,
we obtain an orientation for every such simplex. The convention (6.1.1)
also eliminates degenerate simplices, that is, those where not all vertices
are different.

In the sequel, however, we shall identify the simplicial complex as a
geometric object with the collection of its unoriented simplices, that is,
with all tuples (v0, . . . , vq) with r(v0, v1, . . . , vq) �= o, considering all
permutations of the vertices of a simplex as yielding the same unoriented
simplex. This can be seen as a geometric representation. For instance, when
we speak about amap� → S, for some set S,wemeanassigning an element
of S to every (unoriented) simplex of �. Nevertheless, the orientations of
the simplices will play decisive roles in the algebraic computations.

Definition 6.1.1 When r(v0, . . . , vq) �= o and {vi0 , . . . , vi p } ⊂ {v0, . . . ,
vq)}, we say that (vi0 , . . . , vi p ) is a subsimplex of (v0, . . . , vq). If p = q−1,
we also speak of a face of (v0, . . . , vq).

The dimension of a simplicial complex is defined as the maximal dimen-
sion among its simplices.

In order to have a category Simp of simplicial complexes, we need to
define the morphisms.

Definition 6.1.2 A simplicial map s : �1 → �2 between simplicial com-
plexes maps each vertex v of �1 to a vertex s(v) of �2 and assigns to

http://dx.doi.org/10.1007/978-3-319-20436-9_3
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each simplex (v0, . . . , vq) of �1 the simplex of �2 spanned by the images
s(vi ), i = 0, . . . , q .

Note that the image s(σq) of a q-simplex is of dimension lower than q
when s is not injective on the set of vertices of σq .

6.2 Homology of Simplicial Complexes

We shall nowgive an introduction to the homology of simplicial complexes;
references are [47, 87, 104, 108].

Let G be an abelian group. A q-chain is defined as a formal linear
combination

cq =
m

∑

i=1

giσ
i
q (6.2.4)

for elements gi of G and q-simplices σi
q of �. The q-chains then form a

group Cq = Cq(�, G), with the group operation of G:
m

∑

i=1

giσ
i
q +

m
∑

i=1

g′
iσ

i
q =

m
∑

i=1

(gi + g′
i )σ

i
q . (6.2.5)

Here, the + sign in the last expression denotes the group operation of G
whereas the addition expressed by

∑

is a formal one. I hope that the reader
will not confuse these two different operations.

For any q for which � does not contain any q-simplices, we put, of
course, Cq(�, G) = 0, the trivial group. We also note that the inverse of
∑m

i=1 giσ
i
q in the group Cq is

∑m
i=1 −giσ

i
q , that is, taking the inverses of

the gi in G, but equivalently, we could write
∑m

i=1 gi (−σi
q), that is, giving

all simplices involved the opposite orientation.

Definition 6.2.1 For a simplicial complex �, we let αq be the number of
unoriented q-simplices. The Euler characteristic of � is then

χ(�) :=
∑

q

(−1)qαq . (6.2.6)

In fact, αq is the rank of the group Cq(�,Z), the group of q-chains with
coefficients in the integers Z. 2

Definition 6.2.2 Theboundary of an orientedq-simplexσq = (v0, v1, . . . ,

vq) is the (q − 1)-chain

∂σq :=
q

∑

i=0

(−1)i (v0, . . . , v̂i , . . . , vq) for q > 0, (6.2.7)

2This simply means that Cq (�,Z) is isomorphic to Z
αq , the product of αq copies of Z;

in fact, since Z is abelian, we should rather speak of a sum instead of a product and write
Z

αq = Z ⊕ · · · ⊕ Z with αq summands.
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and, of course, ∂σ0 = 0 for a 0-chain. Here, v̂i means that the vertex vi is
omitted.

The boundary of the q-chain cq = ∑m
i=1 giσ

i
q then is, by linearity,

∂cq :=
m

∑

i=1

gi∂σi
q . (6.2.8)

When we want to emphasize that ∂ operates on q-chains, we shall write ∂q .

2-simplex
In Fig. 6.1, σ2 = (σ1

0,σ
2
0,σ

3
0) and σ1

1 = (σ1
0, σ

2
0), σ

2
1 = (σ2

0, σ
3
0), σ

3
1 =

(σ3
0, σ

1
0) = −(σ1

0, σ
3
0), and hence

∂σ2 = σ1
1 + σ2

1 + σ3
1

∂σ1
1 = σ2

0 − σ1
0

ker ∂2 = 0

ker ∂1 = [σ1
1 + σ2

1 + σ3
1]

ker ∂0 = [σ1
0,σ

2
0,σ

3
0]

im ∂2 = ker ∂1
im ∂1 = [σ1

0 − σ2
0, σ

2
0 − σ3

0]
b2 = 0 = b1, b0 = 1, and hence χ = 1.

(For the definition of the Betti numbers bq , see Definition6.2.5 below, and
for their relation with the Euler characteristic χ, see Theorem6.2.3.)

Definition 6.2.3 The q-chain cq is called closed or, equivalently, a cycle, if

∂qcq = 0. (6.2.9)

The q-chain cq is called a boundary if there exists some (q +1)-chain γq+1
with

∂q+1γq+1 = cq . (6.2.10)

Thus, the closed chains are given by the kernel of ∂q , ker ∂q , and the
boundaries by the image of ∂q+1, im ∂q+1. In particular, both of them yield
subgroups of Cq .

If the simplex σ2 had not been present in Fig. 6.2, we would have had
no contribution in dimension 2 and instead

b1 = 1, b0 = 1, and hence χ = 0 (see Theorem 6.2.3).

Fig. 6.1 For an explanation,
see the main text
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Thus, in the absence of σ2, [σ1
1 + σ2

1 + σ3
1] is no longer a boundary, and

hence we get a contribution to homology in dimension 1. In particular, this
changes the Euler characteristic.

Theorem 6.2.1
∂q−1∂q = 0 for all q. (6.2.11)

We shall usually abbreviate this fundamental relation as

∂2 = 0. (6.2.12)

Proof Because of (6.2.8), it suffices to show that

∂∂σq = 0 (6.2.13)

for any oriented q-simplex. Since Cs = 0 for s < 0, we only need to
consider the case q ≥ 2. For σq = (v0, . . . , vq), we have

∂∂σq = ∂

q
∑

i=0

(−1)i (v0, . . . , v̂i , . . . , vq)

=
q

∑

i=0

(−1)i∂(v0, . . . , v̂i , . . . , vq)

=
q

∑

i=0

(−1)i

⎛

⎝

i−1
∑

j=1

(−1) j (v0, . . . , v̂ j , . . . , v̂i , . . . , vq)

+
q

∑

j=i+1

(−1) j−1(v0, . . . , v̂i , . . . , v̂ j , . . . , vq)

⎞

⎠

=
∑

j<i

(−1)i+ j (v0, . . . , v̂ j , . . . , v̂i , . . . , vq)

+
∑

j>i

(−1)i+ j−1(v0, . . . , v̂i , . . . , v̂ j , . . . , vq),

and exchanging i and j in the last sum gives the result. 
�

Corollary 6.2.1 im ∂q+1 is a subgroup of ker ∂q , and since G is abelian,
it is a normal subgroup.

This enables us to form the quotient group and to state

Definition 6.2.4 The quotient group

Hq(�, G) := ker ∂q/im ∂q+1 (6.2.14)

is called the qth homology group (with coefficients in G) of the simplicial
complex �.
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Remark Instead of taking the boundary ∂σq of the q-simplex σq =
(v0, . . . , vq) that maps it to a configuration of (q − 1)-simplices, we could
also have considered its augmentation, defined as follows

αq(v0, . . . , vq) =
∑

v

(v, v0, . . . , vq) (6.2.15)

where the sum is taken over all v for which (v, v0, . . . , vq) is a (q + 1)-
simplex in �. We then have

αq+1αq = 0, (6.2.16)

or more shortly α2 = 0, because

αq+1αq(v0, . . . , vq) =
∑

w

∑

v

(w, v, v0, . . . , vq)

where the first sum is over all w for which (w, v, v0, . . . , vq ) is a (q + 2)-
simplex

= 0,

because whenever (w, v, v0, . . . , vq) is a simplex in �, then so is (v, w,

v0, . . . , vq) = −(w, v, v0, . . . , vq), that is, the terms in the double sum
cancel in pairs.

Thus, for the augmentation α, it is even simpler to prove that its square
vanishes than for the boundary δ. And since the vanishing of the square
is the basic ingredient of the following considerations, we could work as
well with α as with ∂ to get an equivalent theory. However, the geometric
interpretation of what it means that ∂σ = 0 is perhaps somewhat easier than
ασ = 0, and so, we shall work out the theory for the operator ∂. Neverthe-
less, the reader is invited to pursue the considerations for the augmentation
operator α as an exercise. But we shall now return to ∂.

For a cycle cq , we denote by [cq ] = [cq ]� its equivalence class as an
element of Hq(�, G).

Theorem 6.2.2 Hq(., G) is a covariant functor from the category Simp of
simplicial complexes to the category Ab of abelian groups.

Proof We need to show that a simplicial map s : �1 → �2 induces a group
homomorphism Hq(s) : Hq(�1, G) → Hq(�2, G) with the appropriate
composition properties. That we do indeed get such a homomorphism is
the content of the following lemma. The rest of the proof is trivial. 
�

Lemma 6.2.1 The induced map Cq(s) : Cq(�1, G) → Cq(�2, G) on
chains commutes with the boundary operators, that is, the following dia-
gram commutes

Cq(�1, G)
Cq (s)−−−−→ Cq(�2, G)

∂

⏐
⏐
	

⏐
⏐
	∂

Cq−1(�1, G)
Cq−1(s)−−−−→ Cq−1(�2, G).

(6.2.17)

Hence we can pass to quotients to obtain maps Hq(s).
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Proof We have to show

∂Cq(s)(σq) = Cq−1(s)(∂σq) (6.2.18)

for every q-simplex σq = (v0, . . . , vq). If all the images s(vi ) are different,
then this is obvious. When two images coincide, w.l.o.g. s(v0) = s(v1), we
have Cq(s)(σq) = 0, hence also ∂Cq(s)(σq) = 0. On the other hand, for
∂σq = (v1, v2, . . . , vq)−(v0, v2, . . . , vq)+∑q

i=2(v0, v1, . . . , v̂i , . . . , vq),
the first two terms in the sum have the same image under Cq−1(s) whereas
the other terms get mapped to 0. Hence alsoCq−1(s)(∂σq) = 0 in this case.

Thus, closed chains are mapped to closed chains, and boundaries to
boundaries, and we obtain the induced maps on the homology groups. 
�

Weconsider the caseG = Z. SinceZ is a finitely generated abelian group
and� contains only finitely many simplices, then so isCq(�,Z) and hence
also Hq(�,Z). According to the classification of finitely generated abelian
groups, then

Hq(�,Z) ∼= Z
bq ⊕ Zt1q

· · · ⊕ Zt
rq
q

, (6.2.19)

that is, it is the direct sum of bq copies of Z and rq finite cyclic groups;
in fact, we can arrange the torsion coefficients t i

q in such a manner that t i
q

divides t i+1
q for i = 1, . . . , rq − 1.

Definition 6.2.5 bq = bq(�) is called the qth Betti number of �.

In the sequel, we shall discuss the important

Theorem 6.2.3
χ(�) =

∑

q

(−1)qbq(�). (6.2.20)

Proof This result will follow from Corollary6.2.5 or Corollary6.3.1; see
also Corollary6.3.3. 
�

In the discussion of Fig. 6.1, we have computed the Betti numbers of
the two-dimensional simplex σ2. When we take out the interior, we get its
boundary ∂σ2

•
σ3
0

•
σ1
0 •

σ2
0

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.......

σ2
1

.................................................................................................................................................................................

σ1
1

....................................................................................................................................................................................................
σ3
1

(6.2.21)

For this simplicial complex, now im ∂2 = 0, and hence we get the Betti
numbers

b1 = 1, b0 = 1, and hence χ = b1 − b0 = 0 (6.2.22)

for the Euler characteristic of (6.2.20).
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In fact, this extends to other dimensions as follows

Lemma 6.2.2 For the q-dimensional simplex σq , we have

bp = 0 for p > 0 and b0 = 1, hence χ = 1. (6.2.23)

For its boundary ∂σq , that is, for the (q−1)-dimensional simplicial complex
that consists of all simplices of σq of dimension < q, we have

bq−1 = 1 = b0 and bp = 0 for all other p (6.2.24)

and hence

χ(∂σq) =
{

0 for even q

2 for odd q.
(6.2.25)

The proof is, of course, not principally difficult, but a little lengthy, and
omitted.

Since Hq is a quotient group of Cq , typically the bq are much smaller
than theαq which are the ranks of the free abelian groupCq(�,Z). Thus, in
the computation of the Euler characteristic, some cancellation takes place.
This cancellation is encoded in the homology of �, as will be elaborated
in the sequel.

In order to get there, we need some more technical preparations. In
particular, we shall need to generalize the previous constructions in the
following manner.

Definition 6.2.6 Let� be a subcomplex of the simplicial complex�. Since
Cq(�, G) ⊂ Cq(�, G), we can form the quotient group Cq(�, �; G) :=
Cq(�, G)/Cq(�, G), and since the boundary operator ∂q maps Cq(�) to
Cq−1(�) (if a subcomplex is contained in �, then so is its boundary), we
obtain an induced operator

∂rel
q : Cq(�, �; G) → Cq−1(�, �; G), (6.2.26)

called the relative boundary operator. The quotient group

Hq(�, �; G) := ker ∂rel
q /im ∂rel

q+1 (6.2.27)

is called the qth relative homology group of� relative� (with coefficients
in the abelian group G), and its dimension (as in (6.2.19)) is denoted by
brel

q .

The elements of ker ∂rel
q are also called (relative) cycles and those of

im ∂rel
q+1 (relative) boundaries. For a cycle cq , we denote by [cq ](�,�) its

equivalence class as an element of Hq(�, �; G).

You should think here of the subcomplex� as being absent or taken out.
Everything that gets mapped to � disappears.

The pairs of simplicial complexes that we shall consider below in
Sect. 6.3 will be of the form (P0, P1) as in the definition of an exchange
pattern. In the figures in this and the next section, we denote our simpli-
cial pair by (�0, �1) in place of (�, �). In Fig. 6.2 (see Fig. 6.1 for the
notation),
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Fig. 6.2 For an explanation,
see the main text

�0 = �

�1 = � \ σ2

ker ∂rel
2 = [σ2]

∂rel
1 = ∂rel

0 = 0

brel
2 = 1, brel

1 = 0 = brel
0

ker ∂�1
1 = [σ1

1 + σ2
1 + σ3

1]
b1(�1) = 1, b0(�1) = 1.

Lemma 6.2.3 The maps

j∗ : Hq(�) → Hq(�, �)

[cq ]
�

�→ [cq ](�,�) (6.2.28)

and

∂∗ : Hq(�, �) → Hq−1(�)

[cq ]
(�,�)

�→ [∂cq ]� (6.2.29)

are well defined.

Proof Since a boundary in� is also a relative boundary, j∗ is well defined.
If cq is a relative q-cycle, then ∂cq ⊂ � and since ∂∂cq = 0, it is a cycle
in � (although it need not be a boundary in � as cq is not assumed to be
contained in �.) 
�

Theorem 6.2.4 The homology sequence of the pair (�, �),

. . .
j∗−−−−→ Hq+1(�, �)

∂∗−−−−→ Hq(�)
i∗−−−−→ Hq(�)

j∗−−−−→ Hq(�, �)
∂∗−−−−→ . . .

(6.2.30)

(where i∗ is the map Hq(i) induced by the inclusion i : � → � and j∗, ∂∗
are defined in Lemma6.2.3) is exact in the sense that the kernel of each
map in the sequence coincides with the image of the preceding map.

Let us describe this homology sequence in words: A relative homology
class, represented by a (q + 1)-chain with boundary in � is mapped to
the cohomology class of that boundary (that boundary is closed because
of ∂2 = 0, but while by construction it is the boundary of a chain in �,
it need not be the boundary of a chain in �, and may therefore represent
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a nontrivial element of the qth homology of �). Next, a homology class
of � becomes a homology class in � under the inclusion i : � → �.
Finally, a homology class in � trivially is also a homology class relative
to �. From these observations, it is already clear that the composition of
any two subsequent maps in the sequence is 0, that is, the image of any map
is contained in the kernel of the next one. We now verify this formally and
check the remaining details.

Proof We need to show the following three relations

ker(i∗ : Hq(�) → Hq(�)) = im (∂∗ : Hq+1(�, �) → Hq(�)),

(6.2.31)

ker( j∗ : Hq(�) → Hq(�, �)) = im (i∗ : Hq(�) → Hq(�)),

(6.2.32)

ker(∂∗ : Hq(�, �) → Hq−1(�)) = im ( j∗ : Hq(�) → Hq(�, �)).

(6.2.33)

(6.2.31): We have i∗∂∗[cq+1]�,� = i∗[∂cq+1]� = [∂cq+1]� = 0 as this
is a boundary in �. Thus im ∂∗ ⊂ ker i∗.

Conversely, let [cq ]� ∈ ker i∗. Thus, cq is a cycle in � which is a
boundary in �, i.e., there exists some chain γq+1 in � with ∂γq+1 = cq .
Since cq is in �, γq+1 is a relative cycle, hence yields an element [γq+1] ∈
Hq+1(�, �). Thus, [cq ]� = ∂∗[γq+1] is in im ∂∗, hence ker i∗ ⊂ im ∂∗.

(6.2.32): We have j∗i∗[cq ]� = [cq ](�,�) = 0 if cq ⊂ �. Hence im i∗ ⊂
ker j∗.

Conversely, let [cq ]� ∈ ker j∗. Then there exists a (q + 1)-chain γq+1
in � such that cq − ∂γq+1 =: c0q ⊂ � (cq is a boundary relative to �,
as it represents 0 ∈ Hq(�, �)). Thus, [cq ]� = [c0q ]� = i∗[c0q ]� ∈ im i∗.
Hence ker j∗ ⊂ im i∗.

(6.2.33): We have ∂∗ j∗[cq ]� = [∂cq ]� = 0 because ∂cq = 0. Hence
im j∗ ⊂ ker ∂∗.

Conversely, let [cq ](�,�) ∈ ker ∂∗. Then [∂cq ]� is a boundary in �,
that is, there exists a γq ⊂ � with ∂cq = ∂γq . Then [cq ](�,�) =
[cq − γq ](�,�) (because γq is trivial relative to �) = j∗[cq − γq ]� . Hence
ker ∂∗ ⊂ im j∗. 
�

The reader should convince herself that the preceding proof is not prin-
cipally difficult. It simply consists in systematically disentangling the def-
initions of the various morphisms.

Theorem 6.2.5 Let s : (�1, �1) → (�2,�2) be a simplicial map between
pairs of simplicial complexes (i.e., s is a simplicial map from �1 to �2
with s(�1) ⊂ �2). As in Theorem6.2.2, we get induced maps Hq(�1) →
Hq(�2), Hq(�1) → Hq(�2), Hq(�1,�1) → Hq(�2,�2), all denoted
by s∗. Then the following diagram commutes

. . .
j∗−−−−−−−→ Hq+1(�1, �1)

∂∗−−−−−−−→ Hq (�1)
i∗−−−−−−−→ Hq (�1)

j∗−−−−−−−→ Hq (�1, �1)
∂∗−−−−−−−→ . . .

⏐
⏐
	 s∗

⏐
⏐
	 s∗

⏐
⏐
	 s∗

⏐
⏐
	 s∗

⏐
⏐
	

⏐
⏐
	

. . .
j∗−−−−−−−→ Hq+1(�2, �2)

∂∗−−−−−−−→ Hq (�2)
i∗−−−−−−−→ Hq (�2)

j∗−−−−−−−→ Hq (�2, �2)
∂∗−−−−−−−→ . . .

(6.2.34)
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The proof of Theorem6.2.5 proceeds as the proofs of Theorems6.2.2,
6.2.4, and we therefore leave the details as an exercise.
We now come to the excision theorem.

Theorem 6.2.6 Let � be a subset of, or more precisely, a collection of
simplices contained in the subcomplex � of the simplicial complex � with
the following properties:

(i) If the simplex σq is not contained in �, then none of its subsimplices
is contained in � either.

(ii) A simplex σq contained in � must not be a subsimplex of a simplex in
� \ �.

Then the inclusion i : (� \ �,� \ �) → (�, �) induces isomorphisms

i∗ : Hq(� \ �,� \ �) → Hq(�, �) (6.2.35)

for all q.

Proof By (i), � \ � and � \ � are subcomplexes of �. The elements of
Cq(�, �) and Cq(� \ �,� \ �) can both be considered as linear combi-
nations of oriented simplices of � \ �; hence these chain groups are iso-
morphic. For any such c ∈ Cq(� \ �), by (ii) we have that ∂c ∈ Cq−1(�)

if and only if ∂c ∈ Cq−1(� \ �). Therefore, also the homology groups Hq

are isomorphic. 
�

Let us consider a simple example

σ3
0

σ1
0 σ2

0

σ2
1 σ1

1

σ3
1

Here, � is the subcomplex consisting of the blue and the red simplices,
that is, it contains σ1

0,σ
3
0, σ

2
0, σ

1
1, σ

3
1, whereas � is the subset containing

only the red simplices σ2
0,σ

3
1,σ

1
1. Then � \ � is the edge σ2

1 together with
its two vertices σ1

0,σ
3
0, whereas � \ � has only the two vertices σ1

0, σ
3
0.

Then, according to our previous computations, b1(� \ �, � \ �) = 1
(because there is a single edge whose boundary is in � \ �, hence is 0 in
the relative homology) and b0(� \ �, � \ �) = 0 (because both vertices
are in the part � \ � which is taken out). By the excision theorem, these
then are also the Betti numbers of (�, �).

Corollary 6.2.2 Let �0, �1 be subcomplexes of � with � = �0 ∪ �1.
Then we have isomorphisms

i∗ : Hq(�0, �0 ∩ �1) → Hq(�, �1) (6.2.36)

for all q.
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Proof Let � be the subset of �1 consisting of those simplices that are
not subsimplices of simplices in �0. � then satisfies the assumptions of
Theorem6.2.6, andwe can apply that resultwith�0 = �\� and�0∩�1 =
�1 \ �. 
�

In order to put the preceding into perspective and also in order to achieve
a generalization of Theorem6.2.4 that will play an important role below, we
shall now isolate the algebraic aspects of the constructions just presented.
In this way, you can appreciate the fact that the geometric and the algebraic
constructions are completely parallel.

Definition 6.2.7 A chain complex is a system C = (Cq , ∂q)q∈Z of abelian
groups Cq and homomorphisms ∂q : Cq → Cq−1 with ∂q ◦ ∂q+1 = 0 for
all q (we shall often write ∂ in place of ∂q and call it the boundary operator).
We then define cycles and boundaries and the homology groups Hq(C) as
before.

A chain map f : C → C ′ between chain complexes C = (Cq , ∂q)q∈Z
and C ′ = (C ′

q , ∂′
q)q∈Z is a family of homomorphisms fq : Cq → C ′

q
with ∂′

q ◦ fq = fq−1 ◦ ∂q for all q . As a chain maps cycles to cycles
and boundaries to boundaries, it induces homomorphisms f∗ = Hq( f ) :
Hq(C) → Hq(C ′).

A sequence

0 −−−−→ C ′ α−−−−→ C
β−−−−→ C ′′ −−−−→ 0 (6.2.37)

(where 0 stands for the chain complex with the trivial group for every q) is
called a short exact sequence if for all q the sequence

0 −−−−→ C ′
q

αq−−−−→ Cq
βq−−−−→ C ′′

q −−−−→ 0 (6.2.38)

is exact.

Here, since 0 stands for the trivial group, the exactness of (6.2.38) includes
the statements that αq is injective and that βq is surjective. (6.2.38) is then
called a short exact sequence of abelian groups.

Definition 6.2.8 A short sequence

0 −−−−→ A′ α−−−−→ A
β−−−−→ A′′ −−−−→ 0 (6.2.39)

of abelian groups is said to split if β has a right inverse, i.e., there exists a
homomorphism β′′ : A′′ → A with β ◦ β′′ = idA′′ .

When (6.2.37) splits,
A ∼= A′ ⊕ A′′. (6.2.40)

In general, however, a short exact sequence need not split. Rather, the
general case is accounted for by the following fundamental result.

Theorem 6.2.7 Any short exact sequence

0 −−−−→ C ′ α−−−−→ C
β−−−−→ C ′′ −−−−→ 0 (6.2.41)
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induces a long exact sequence of homology groups

. . . −−−−→ Hq+1(C ′′) ∂∗−−−−→ Hq(C ′) α∗−−−−→ Hq(C)

β∗−−−−→ Hq(C ′′) ∂∗−−−−→ . . .

(6.2.42)

where the connecting homomorphism ∂∗ is defined by

∂∗[c′′] = [α−1∂β−1c′′] ∈ Hq−1(C
′) for c′′ ∈ Hq(C ′′). (6.2.43)

Proof From the definition of chain complexes, we obtain the commutative
diagram

0 −−−−→ C ′
q+1

αq+1−−−−→ Cq+1
βq+1−−−−→ C ′′

q+1 −−−−→ 0
⏐
⏐
	 ∂′

q+1

⏐
⏐
	 ∂′

q+1

⏐
⏐
	 ∂′

q+1

⏐
⏐
	

⏐
⏐
	

0 −−−−→ C ′
q

αq−−−−→ Cq
βq−−−−→ C ′′

q −−−−→ 0
⏐
⏐
	 ∂′

q

⏐
⏐
	 ∂′

q

⏐
⏐
	 ∂′

q

⏐
⏐
	

⏐
⏐
	

0 −−−−→ C ′
q−1

αq−1−−−−→ Cq−1
βq−1−−−−→ C ′′

q−1 −−−−→ 0

(6.2.44)

where each row is a short exact sequence of abelian groups. In the sequel,
we shall often leave out the subscript q when it can be inferred from context.
Let c′′ ∈ C ′′

q be a cycle, i.e., ∂c′′ = 0. Since βq is surjective by exactness,
we find some c ∈ Cq with β(c) = c′′, and then

β(∂c) = ∂′′β(c) = ∂′′c′′ = 0. (6.2.45)

By exactness, we find a unique c′ ∈ C ′
q−1 with α(c′) = ∂c, and then

α(∂′c′) = ∂α(c′) = ∂2c = 0. (6.2.46)

Since by exactness, αq−1 is injective, ∂′c′ = 0. Therefore, c′ is a (q − 1)-
cycle of C ′ and hence induces an element [c′] ∈ Hq(C ′) which we denote
by ∂∗[c′′]. We need to show that ∂∗ is well defined in the sense that this
element of Hq(C ′) depends only on the homology class of c′′.

To verify this, take c1 ∈ Cq with [β(c1)] = [c′′], that is, there exists some
d ′′ ∈ C ′′

q+1 with β(c1) = β(c) + ∂′′d ′′. By surjectivity of β again, we find
d ∈ Cq+1 with β(d) = d ′′. Then β(c1) = β(c +∂′′d). By exactness again,
we find d ′ ∈ C ′

q with c1 = c + ∂d + α(d ′). Then ∂c1 = ∂c + ∂α(d ′) =
α(c′) + α(∂′d ′). Thus, [α−1(∂c′)] = [c′] = [α−1(∂c)] which shows,
indeed, that the homology class of c′ depends only on that of c′′. 
�

We then have the following generalization of Theorem6.2.5 that will
play an important role below.

Corollary 6.2.3 Let �2 ⊂ �1 ⊂ � be complexes. We then have the long
exact sequence of homology groups

. . .
j∗−−−−→ Hq+1(�, �1)

∂∗−−−−→ Hq(�1, �2)
i∗−−−−→ Hq(�, �2)

j∗−−−−→ Hq(�, �1)
∂∗−−−−→ . . . (6.2.47)
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Proof We apply Theorem6.2.7 to the short exact sequence

0 −−−−→ C(�1, �2) −−−−→ C(�, �2) −−−−→ C(�, �1) −−−−→ 0
(6.2.48)

which is obtained from the inclusions between our simplicial complexes.

�

In fact, it is useful and insightful to develop a still more general pic-
ture. Let �1, �2 be subcomplexes of �. Then �1 ∩ �2 and �1 ∪ �2 are
subcomplexes of � as well, and we have inclusions of chain complexes,
C(�i ) ⊂ C(�), i = 1, 2, and C(�1 ∩ �2) = C(�1) ∩ C(�2), C(�1) +
C(�2) = C(�1∪�2), with the usual formal sum.With the inclusion maps
i1 : �1 ∩ �2 ⊂ �1, i2 : �1 ∩ �2 ⊂ �2, j1 : �1 ⊂ �1 ∪ �2, j2 : �2 ⊂
�1 ∪ �2 and i(c) := (C(i1)c,−C(i2)c), j (c1, c2) := C( j1)c1 + C( j2)c2
(note the—sign in the definition of i), we obtain a short exact sequence of
chain complexes

0 −−−−−→ C(�1 ∩ �2)
i−−−−−→ C(�1) ⊕ C(�2)

j−−−−−→ C(�1 ∪ �2) −−−−−→ 0.
(6.2.49)

Definition 6.2.9 The long exact homology sequenceobtained from(6.2.49)
by Theorem6.2.7,

. . .
j∗−−−−→ Hq+1(�1 ∪ �2)

∂∗−−−−→ Hq(�1 ∩ �2)

i∗−−−−→ Hq(�1) ⊕ Hq(�2)

j∗−−−−→ Hq(�1 ∪ �2)
∂∗−−−−→ . . .

(6.2.50)

is called the Mayer-Vietoris sequence of �1 and �2

When� = �1∪�2, theMayer-Vietoris sequence tells us how to assem-
ble the homology of � from the homologies of its pieces and their inter-
sections.

More generally, when (�1,�1), (�2,�2) are simplicial pairs contained
in �, we not only have the short exact sequence (6.2.49), but also the short
exact subsequence of the latter

0 −−−−−→ C(�1 ∩ �2)
i−−−−−→ C(�1) ⊕ C(�2)

j−−−−−→ C(�1 ∪ �2) −−−−−→ 0
(6.2.51)

and the short exact quotient sequence (the reader is asked to verify this
exactness)

0 −−−−−→ C(�1 ∩ �2)/C(�1 ∩ �2)
i−−−−−→ C(�1)/C(�1) ⊕ C(�2)/C(�2)

j−−−−−→ C(�1 ∪ �2)/C(�1 ∪ �2) −−−−−→ 0.
(6.2.52)

By Theorem6.2.9 again, we obtain a long exact sequence of homology
groups, called the relative Mayer-Vietoris sequence,
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. . .
j∗−−−−→ Hq+1(�1 ∪ �2,�1 ∪ �2)

∂∗−−−−→ Hq(�1 ∩ �2,�1 ∩ �2)

i∗−−−−→ Hq(�1, �1) ⊕ Hq(�2,�2)
j∗−−−−→ Hq(�1 ∪ �2,�1 ∪ �2)

∂∗−−−−→ . . .
(6.2.53)

For the pairs (�, �2) and (�1, �1), this reduces to the sequence of Corol-
lary6.2.3 of the triple (�, �1, �2), and whenwe furthermore have�2 = ∅,
we get the result of Theorem6.2.4 back.

Definition 6.2.10 A filtration of the simplicial complex � is a family of
subcomplexes � = �0 ⊃ �1 ⊃ · · · ⊃ �n .

Here is a simple example

σ3
0

σ1
0 σ2

0

σ2
1 σ1

1

σ3
1

(6.2.54)

� = �0 is everything, �1 consists of all the colored simplices, that is,
σ3
1,σ

1
1, σ

1
0, σ

3
0,σ

2
0, �2 consists of the red and the green simplices, that is,

σ1
1,σ

3
0, σ

2
0, and �3 contains only the green vertex σ2

0 and �4 = ∅.
In the sequel, we wish to apply Corollary6.2.3 iteratively to a filtration

of a simplicial complex so as to build its homology up from the members
of the filtration.

We shall need to address one more technical point. We start with the
following observation. This observation will depend on the construction of
tensor products of abelian groups which we now recall.

Definition 6.2.11 For abelian groups A and B, we let F(A × B) be the
free abelian group generated by the set A× B (recall the construction of the
chain groups). The tensor product A ⊗ B is then obtained by dividing out
the equivalence relation (a1 + a2, b) ∼ (a1, b) + (a2, b), (a, b1 + b2) ∼
(a, b1) + (a, b2).

The tensor product can also be characterized by the property that for
any abelian group C , the bilinear maps A × B → C correspond to the
homomorphisms A ⊗ B → C .

For an abelian group G and a field K , the tensor product G ⊗ K of
abelian groups (taking the additive group of the field K ) becomes a vector
space over the field K , with the obvious operation r(g ⊗ s) = g ⊗ (rs)
for g ∈ G, r, s ∈ K . Furthermore, group homomorphisms ρ : G1 → G2
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induce vector space morphisms (i.e., linear maps) ρ ⊗ id : G1 ⊗ K →
G2 ⊗ K .

Consequently, for a field K , from the homology groups Hq(�,Z), we
obtain vector spaces

Hq(�,Z) ⊗ K . (6.2.55)

The fields we have in mind here are K = R and K = Z2. The point is that
for instance Zn ⊗ R = 0, while Z ⊗ R = R, that is, by tensoring with R,
we get rid of the torsion in Hq(�,Z).

In fact, from the universal coefficient theorem, in this manner, we can
obtain homology groups with coefficients in K from those with coefficients
inZ.We shall now briefly explain this issue, without providing the technical
details and proofs, however, as this shall not be needed in the sequel.

Definition 6.2.12 An exact sequence of abelian groups, with F being a
free abelian group,

0 −→ R −→ F −→ A −→ 0 (6.2.56)

is called a free resolution of A.

Example

0 −→ Z
n−→ Z −→ Zn −→ 0 (6.2.57)

is a free resolution of Zn .

There is an easy way to construct a free resolution of an abelian group
A, called the standard resolution, as follows. We let F(A) consist of the
formal sums

∑

g∈A μ(g)g, with μ(g) ∈ Z and requiring that at most finitely
many μ(g) �= 0. F(A) is the free abelian group generated by the set A; we
have already utilized this construction above for the chain groups. We then
have a homomorphism ρ : F(A) → A that simply consists in replacing the
formal

∑

in F(A) by the group operation in A. With R(A) := ker ρ, we
obtain the standard resolution of A,

0 −→ R(A)
i−→ F(A)

ρ−→ A −→ 0. (6.2.58)

When we tensor this exact sequence with another abelian group G, we pre-
serve a part of this sequence; more precisely, we obtain the exact sequence

R(A) ⊗ G
i⊗idG−→ F(A) ⊗ G

ρ⊗idG−→ A ⊗ G −→ 0. (6.2.59)

We do not necessarily have the leftmost arrow of (6.2.58) in (6.2.59) as
well because i ⊗ idG need no longer be injective.

Definition 6.2.13 The kernel of i ⊗ idG : R(A) ⊗ G → F(A) ⊗ G is
called the torsion product Tor(A, G) of A and G.

In order to be able to compute some examples, we utilize the following
lemma, without providing its (not too difficult) proof here.
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Lemma 6.2.4 For any free resolution

0 −→ R
i−→ F

p−→ A −→ 0, (6.2.60)

we have
ker(i ⊗ idG) ∼= Tor(A, G). (6.2.61)

Thus, we can compute the torsion product from any free resolution of
A, not necessarily the standard one.

Example

1. For a free abelian group,

Tor(A, G) = 0, (6.2.62)

because 0 −→ 0 −→ A
idA−→ A −→ 0 is a free resolution of the free

group A.
2. Tor(Zn, G) ∼= {g ∈ G : ng = 0}, (6.2.63)

because in the free resolution (6.2.57), the map i is given by multipli-
cation by n. In particular, when G is torsion free,

Tor(Zn, G) = 0. (6.2.64)

3. Also, by taking direct sums of free resolutions, we obtain

Tor(A1 ⊕ A2, G) ∼= Tor(A1, G) ⊕ Tor(A2, G). (6.2.65)

4. Combining the preceding items, we obtain

Tor(A,R) = 0 (6.2.66)

for any finitely generated abelian group A.

The universal coefficient theorem (which we do not prove here) tells us

Theorem 6.2.8 For a simplicial pair (�, �), q ∈ Z and an abelian
group G, we have

Hq(�, �; G) ∼= (Hq(�, �;Z)⊗G)⊕Tor(Hq−1(�, �;Z), G). (6.2.67)

For our purposes, the important consequence of Theorem6.2.8 is that
when the group G is a field, the homology groups Hq(�, �; G) are in fact
vector spaces over G. The fields that we have in mind here areR and Z2. In
the rest of this section, in fact,we shall takeG = R (as opposed to our earlier
choice G = Z), so that we do not need to worry about torsion, see (6.2.66),
andwe shall henceworkwith the vector spaces Hq(�, �) = Hq(�, �;R),
without mentioning this explicitly.

We shall utilize the following simple result.

Lemma 6.2.5 Let · · · → A3
a2−→ A2

a1−→ A1 −→ 0 be an exact sequence
of linear maps between vector spaces. Then for all k ∈ N

dim A1 − dim A2 + dim A3 −· · ·− (−1)k dim Ak + (−1)k dim im ak = 0.
(6.2.68)
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Proof If � : V → W is linear, then dim V = dim (ker �) + dim (im �).
The exactness implies that

dim (ker a j ) = dim (im a j+1).

Hence by the exactness of the sequence

dimA j = dim (im a j−1) + dim (im a j )

and with
dimA1 = dim (im a1)

the claim follows. 
�

We now apply this lemma to the long exact sequence of Corollary6.2.3
(with G = R, to emphasize this once more). We put

bq(�, �) := dim Hq(�, �), (6.2.69)

νq(�, �1, �2) := dim(im ∂q+1). (6.2.70)

From the lemma, we get
m

∑

q=0

(−1)q (bq (�,�1) − bq (�, �2) + bq (�1, �2)) − (−1)mνm(�,�1, �2) = 0,

(6.2.71)
whence

(−1)m−1νm−1(�, �1, �2) (6.2.72)

= (−1)mνm(�, �1, �2) − (−1)mbm(�, �1) + (−1)mbm(�, �2)

−(−1)mbm(�1, �2).

With

Pm(t, �, �) :=
m

∑

q=0

bq(�, �)tq , (6.2.73)

P(t, �, �) :=
∑

q≥0

bq(�, �)tq , (6.2.74)

Qm(t, �, �1, �2) :=
m

∑

q=0

νq(�, �1,�2)t
q , (6.2.75)

Q(t, �, �1, �2) :=
∑

q≥0

νq(�, �1,�2)t
q , (6.2.76)

and multiplying (6.2.72) by (−1)q tq and summing, we obtain

(−1)mνm(�, �1, �2) + (1 + t)Qm−1(t, �, �1, �2)

= Pm(t, �, �1) − Pm(t, �, �2) + Pm(t, �1, �2) (6.2.77)

and

(1 + t)Q(t, �, �1, �2) = P(t, �, �1) − P(t, �, �2) + P(t, �1, �2).

(6.2.78)
We obtain
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Theorem 6.2.9 Let � = �0 ⊃ �1 ⊃ · · · ⊃ �n be a filtration of �. Then
n

∑

j=1

P(t, � j−1, � j ) = P(t, �0, �n) + (1 + t)Q(t), (6.2.79)

with Q(t) := ∑n−1
j=1 Q(t, � j−1, � j , �n).

We observe that Q(t) is a polynomial with nonnegative integer coeffi-
cients.

Proof We apply (6.2.78) for the triple (� j−1, � j , �n) and sumw.r.t. j . 
�

In particular, choosing t = −1, we get

Corollary 6.2.4
n

∑

j=1

P(−1, � j−1, � j ) = P(−1, �0, �n). (6.2.80)

We look at the example (6.2.54) which we recall here,

σ3
0

σ1
0 σ2

0

σ2
1 σ1

1

σ3
1

(6.2.81)

and for which we compute b1(�0)(= b1(�0, �4)) = 1, b0(�0) = 1 and
b1(�0, �1) = 1, b0(�0, �1) = 0; b1(�1, �2) = 0, b0(�1, �2) = 0;
b1(�2, �3) = 0, b0(�2, �3) = 0; b1(�3)(= b1(�3, �4)) = 0,
b0(�3) = 1 which of course fits with the general formula.

Similarly, we obtain from (6.2.77)

(−1)m
n

∑

j=1

Pm(−1, � j−1, � j ) ≥ (−1)m P(−1, �0, �n). (6.2.82)

Recalling the definitions (6.2.73), (6.2.74), we obtain from (6.2.82) and
(6.2.80)

Corollary 6.2.5 With

cq :=
∑

j

bq(� j−1, � j ), (6.2.83)

we have

cm − cm−1 +· · ·+ (−1)mc0 ≥ bm − bm−1 +· · ·+ (−1)mb0 for all m ≥ 0,
(6.2.84)
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and ∑

q

(−1)qcq =
∑

q

(−1)qbq . (6.2.85)

In particular, when we construct a filtration by adding simplices one by
one, we see that (6.2.85) includes the formula of Theorem6.2.3.

Corollary 6.2.6
cq ≥ bq for all q. (6.2.86)

Proof This follows from Corollary6.2.5. 
�

6.3 Combinatorial Exchange Patterns

In this section, we utilize the preceding results from simplicial homology
theory to obtain a combinatorial analogue of Conley’s homology theory for
dynamical systems. For that purpose, we need to develop the concept of a
combinatorial exchange pattern.

Definition 6.3.1 An exchange pattern of the relations defining the simpli-
cial complex� means that for every q-simplex σq = (v0, . . . , vq) of�, we
either do nothing or select verticesw1, . . . , wm for which (wα, v0, . . . , vq)

is a (q +1)-simplex, that is, r(wα, v0, . . . , vq) �= o, and take the collection
P0(σq) of all those (q + 1)-simplices (wα, v0, . . . , vq) together with all
their subsimplices as well as the collection P1(σq) of all q-simplices of
the form (wα, v0, . . . , v̂i , . . . , vq) for some i = 0, . . . , q , again together
with all their subsimplices. Equivalently, P1 consists of all subsimplices of
dimension ≤ q of P0 with the exception of σq . (As it stands, P0(σq) and
P1(σq) need not be simplicial complexes themselves, but later, we shall
apply the procedure in such a manner that they will always be simplicial
complexes.) We interpret such a simplex (wα, v0, . . . , v̂i , . . . , vq) as one
obtained by exchanging the element vi in the relation defining σq against
the elementwα leading to the relation r(wα, v0, . . . , v̂i , . . . , vq) �= o. This
exchange process is subject to the following constraint:

1. Whenever we have exchanged the relation defining some simplex, this
simplex in turn cannot be used to exchange the relation of any of its
faces.

We may iterate the process by selecting one of the q-simplices
(wα, v0, . . . , v̂i , . . . , vq) and repeating the process with that simplex. The
resulting exchange set P0 will then be the union of the exchange sets of
those simplices, and the corresponding P1 will consist of all proper sub-
simplices of P0 without the exchanged ones, that is, without (v0, . . . , vq)

and (wα, v0, . . . , v̂i , . . . , vq).



6.3 Combinatorial Exchange Patterns 197

We are allowed to exchange the relation of any simplex σq more than
once, or conversely also not at all. In the latter case, we put P0(σq) =
σq , P1(σq) = ∅. In order to ensure that the result of any exchange will
still be a simplicial complex, later on we shall perform the exchanges w.r.t.
decreasing dimension of the simplices involved, i.e., start with exchanges
of the higher dimensional simplices and finally end up with exchanges of
0-dimensional simplices along 1-dimensional ones.

One important idea motivating this construction is the following. When
m = 1, that is, when we utilize only one additional element to exchange
the relation of σq , then we think of a cancellation of σq against the (q +1)-
simplex (w1,σq). In the sequel, we shall count q-simplices with the sign
(−1)q , and so, such a cancellationwill not effect the result of such counting,
but reduce the number of items to be counted by 2.

Here is a preliminary definition that may be helpful to develop some
intuition, but which shall be refined subsequently.

Definition 6.3.2 An exchange orbit of index q is a finite sequence of sim-
plices

σ0
q , τ0q+1,σ

1
q , . . . , σm

q , τm
q+1, (6.3.87)

where, for j = 0, . . . , m − 1, τ
j

q+1 is obtained by adding a vertex to σ
j
q ,

and σ
j+1
q �= σ

j
q is obtained by deleting a vertex from τ

j
q+1. In other words,

σ
j
q and σ

j+1
q are different faces of τ

j
q+1. The exchange orbit is closed and

called an exchange cycle if σm
q = σ0

q . Two such closed orbits are equivalent
when they contain the same simplices in the same cyclic order, that is, when
they only differ by the choice of the starting simplex.

An exchange pattern can be readily visualized by drawing an arrow from
a face into any simplex that is used for exchanging for any of its vertices.
The condition in the definition then says that whenever an arrow is pointing
out of some simplex, there cannot be any arrow pointing into it.

In Fig. 6.3 (see Fig. 6.1 for the notation)

�0 = �

�′
1 = � \ {σ2, σ

1
1}

ker ∂rel
2 = 0

ker ∂rel
1 = [σ1

1] = im ∂rel
2

brel
2 = brel

1 = brel
0 = 0

ker ∂
�′
1

1 = 0, im ∂
�′
1

1 = [σ1
0 − σ3

0, σ
3
0 − σ2

0]
ker ∂

�′
1

0 = [σ1
0,σ

2
0,σ

3
0]

b1(�
′
1) = 0, b0(�

′
1) = 1.
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Fig. 6.3 For an explanation,
see the main text

Fig. 6.4 For an explanation,
see the main text

Fig. 6.5 For an explanation,
see the main text; not
satisfying the constraints
developed for Definition6.3.4
below

Fig. 6.6 For an explanation,
see the main text; not
satisfying the constraints
developed for Definition6.3.4
below

We now consider examples with two 2-simplices as in Fig. 6.4, distin-
guished by a corresponding superscript. For instance, in Fig. 6.5

�0 = �

�′
1 = � \ {σ1

2,σ
2
2,σ

1
1}

ker ∂rel
2 = [σ1

2 + σ2
2]

ker ∂rel
1 = [σ1

1] = im ∂rel
2

∂rel
0 = 0,

and the topological invariants therefore are the same as those of Fig. 6.2.
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Fig. 6.7 For an explanation, see the main text; not satisfying the constraints developed
for Definition6.3.4 below

Fig. 6.8 A more complicated pattern. Note the cycle of red edges without arrows and
the two vertices each with two incoming or two outgoing arrows

Fig. 6.9 Another more complicated pattern. The collection of green edges results from
exchanging the two interior edges with arrows pointing into adjacent 2-simplices

In Fig. 6.6 (see Fig. 6.1 for the notation),

�0 = �

�′′
1 = � \ {σ2,σ

1
1, σ

2
1}

ker ∂rel
2 = 0

ker ∂rel
1 = [σ1

1,σ
2
1] �= im ∂rel

2

ker ∂rel
0 = 0 = im ∂rel

1

brel
2 = 0, brel

1 = 1, brel
0 = 0
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ker ∂
�′′
1

1 = 0, im ∂
�′′
1

1 = [σ3
0 − σ1

0]
ker ∂

�′′
1

0 = [σ1
0,σ

2
0,σ

3
0]

b0(�
′′
1 ) = 2.

Similarly, for the one-dimensional simplicial complex in Fig. 6.7

brel
1 = 1, brel

0 = 0

and with rem standing for remainder, brem
1 = 0, brem

0 = 1.

By the Excision Theorem6.2.6, for any simplicial complex � and any
exchange pair (P0, P1), the homology of the pair (�, (�\P0) ∪ P1) is
the same as that of (P0, P1). We can do better, however, by breaking the
exchange relation up into components. In order to identify the relevant com-
ponents, we can proceed by decreasing dimension q . That is, we pick any
top-dimensional simplex σ not used in an exchange if there is any such sim-
plex. We then take �0 = �, �1 = �\σ. We repeat this process until there
is no further top-dimensional simplex not participating in any exchange,
i.e., with no arrow pointing into it. We then take a top-dimensional simplex
that has an arrow pointing into it, if any such simplex exists. Since σ partic-
ipates in an exchange process, we take its orbit P0(σ), that is, all simplices
(together with all their subsimplices) of the same dimension that can be
reached from σ by following arrows backward or forward, together with all
the faces from which those arrows originate. That is, σ′ ∈ P0(σ) whenever
there exists a sequence of simplices σ0 = σ,σ1, . . . ,σn = σ′ and faces
τ i of both σi−1 and σi that use at least one of them for an exchange. Then
any of the faces of

⋃n
i=0 σi different from the τ i are not using any top-

dimensional simplex for an exchange. We then let P1(σ) be the collection
of those faces (together with all their subsimplices). In the present case,
we take �0 = �, �1 = �\P0(σ) ∪ P1(σ). We can repeat the process
with other orbits, that is, having constructed� j , we take a top-dimensional
simplex σ in � j (as � j might already be of smaller dimension than �, a
top-dimensional simplex of� j might be of correspondingly smaller dimen-
sion) and take out its orbit P0(σ) without P1(σ) to obtain � j+1. Again, in
each dimension, we first cut out the simplices without arrows and then the
nontrivial orbits. The order among the simplices without arrows or the order
in which we eliminate the orbits in each dimension plays no role. It is only
important to eliminate the simplices without arrows first, as otherwise the
elimination of an orbit may lead to a space that is no longer a simplicial
complex. This happens when for an orbit we utilize a face of a simplex
without arrows. Also, it is important to carry the process out according to
decreasing dimension. We proceed until we arrive at �n = ∅.

Definition 6.3.3 The filtration resulting from the above process is called a
filtration for the exchange pattern.

Note that the filtration for an exchange pattern need not be unique
because we can eliminate the arrow-free simplices as well as the nontriv-
ial orbits in each dimension in an arbitrary order. This will not affect the
topological invariants cq from the resulting excision process.
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Corollary 6.3.1 The inequalities of Corollary6.2.5 hold.

Proof This is clear because in each step the conditions of the Excision
Theorem6.2.6 are satisfied. 
�

We have already observed above that Theorem6.2.3 follows from
Corollary6.2.5, but now it is also a consequence of Corollary6.3.1:

Corollary 6.3.2
χ(�) =

∑

q

(−1)qbq(�), (6.3.88)

where the Euler number χ(�) has been defined in (6.2.6).

Proof We apply Corollary6.3.1 to the exchange process where we sim-
ply take out the simplices of � one by one, according to decreasing
dimension. 
�

We shall now describe the theory of Forman [38, 39] in the framework
that we have developed here.

Definition 6.3.4 A discrete vector field on the simplicial complex � is a
collection of pairs of simplices τ i

q−1 ⊂ σi
q , with the restriction that each

simplex is contained in at most one pair.

By drawing an arrow from τ i
q−1 into σi

q for each pair, we create an
exchange pattern in the sense of Definition6.3.1. An orbit of index q of a
vector field is then a sequence

τ1q−1, σ
1
q , τ2q−1, σ

2
q , . . . , τn

q−1,σ
n
q , τn+1

q−1 (6.3.89)

such that (τ i
q−1, σ

i
q) is always a pair for the vector field τ i

q−1 �= τ i+1
q−1, but

both of them are faces of σi
q . The orbit is closed if τn+1

q = τ1q . Apart from
this possibility, we assume that all the simplices involved are different from
each other.

This then obviously represents a special case of our construction, and
the preceding results apply.

Of particular interest in Forman’s theory and for a variety of applications
are the gradient vector fields of discrete Morse functions which we shall
now describe. In fact, Forman proved that any vector field without closed
orbits is such a gradient vector field.

Definition 6.3.5 A function f : � → R (i.e., f assigns to every simplex
of � a real number) is called a Morse function if for every simplex σq ∈ �

1. there is at most one simplex ρq+1 ⊃ σq with

f (ρq+1) ≤ f (σq) (6.3.90)

and
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2. at most one simplex τq−1 ⊂ σq with

f (τq−1) ≥ f (σq). (6.3.91)

•2 • 4

•6
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..........
..........
..........
..........
..........
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..........
..........
.......

2

.................................................................................................................................................................................

4

(6.3.92)

The function on the graph on the left is not a Morse function, because
the upper vertex (with the value 6) does not satisfy condition 1., whereas
the function on the graph on the right is Morse.

When we draw an arrow from σq to ρq+1 whenever σq ⊂ ρq+1 and
f (ρq+1) ≤ f (σq), then we obtain a combinatorial exchange pattern. The
above conditions then restrict the combinatorial exchange patterns that
come from a Morse function. Condition 1 says that there cannot be more
than one arrow emanating from any simplex. This is violated in Fig. 6.8 for
the two red dots with two arrows into adjacent edges, and in Fig. 6.9 for the
edge with two arrows into adjacent 2-simplices. Condition 2 does not hold
in Fig. 6.6.

Lemma 6.3.1 For a simplex σq , it is not possible that there both exist a
simplex ρq+1 with 1. and a simplex τq−1 with 2.

Proof When there exists a simplex ρq+1 satisfying 1., then by applying 2.
to ρq+1, for all other faces σ′

q �= σq of ρq+1,

f (ρq+1) > f (σ′
q). (6.3.93)

Each σ′
q in turn, by 2., has at most one face τ ′

q−1 with

f (τ ′
q−1) ≥ f (σ′

q). (6.3.94)

If now there existed some face τq−1 of σq with (6.3.90), we would find
some such σ′

q for which τq−1 is also a face, but then we would have the
chain of inequalities

f (σ′
q) < f (ρq+1) ≤ f (σq) ≤ f (τq−1). (6.3.95)

This, however, would violate 1. for τq−1 because (6.3.95) means that both
f (σq) and f (σ′

q) are smaller than f (τq−1). 
�

Definition 6.3.6 The simplex σq is critical for f if there neither exists a
ρq+1 with (6.3.90) nor a τq−1 with (6.3.91).

In the right graph in (6.3.92), with its Morse function, the top edge (with
the value 6) and the bottom vertex (with the value 0) are critical.

Lemma6.3.1 says that for a non-critical simplex precisely one of the
conditions 1. or 2. holds. Therefore, we may define
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Definition 6.3.7 The gradient vector field associated to a Morse function
f on the simplicial complex � is given by the pairs (σq , τq−1) with

f (τq−1) ≥ f (σq). (6.3.96)

Since the function f is then decreasing along orbits, the gradient vector
field of a Morse function does not possess any closed orbits.

Corollary 6.3.3 The number μq of critical simplices of dimension q of a
Morse function on � satisfies

μm −μm−1+· · ·+(−1)mμ0 ≥ bm −bm−1+· · ·+(−1)mb0 for all m ≥ 0,
(6.3.97)

and ∑

q

(−1)qμq =
∑

q

(−1)qbq . (6.3.98)

Proof WeapplyCorollary6.2.5 and observe the following points. The exci-
sion of a nontrivial orbit does not yield a contribution to the alternating sum
of the relative Betti numbers cq , because orbits of a Morse function cannot
be closed, as just pointed out, and so, the simplices of dimension q and q−1
involved in such an orbit cancel in pairs, except for the last τn+1

q−1 which is
kept and not excised. The excision of a critical simplex of dimension q , in
contrast, contributes 1 to the cqs. 
�

The reason why (6.3.98) holds is easy to understand. For a non-critical
q-simplex σq , by Lemma6.3.1, we either find a (q + 1)-simplex with 1.
or a (q − 1)-simplex with 2., but not both. Therefore, we find precisely
one simplex in an adjacent dimension that we can cancel with σq in the
alternating sum defining the Euler characteristic χ(�) of Definition6.2.1.
Only the critical simplices remain and contribute to χ(�). That is, we can
deduce directly from the definition of the Euler characteristic that χ(�) =
∑

q(−1)qμq . Theorem6.2.3 and Corollary6.3.1 then tells us that we also
have χ(�) = ∑

q(−1)qbq .

Remark In the samemanner that Forman conceived his theory just sketched
as a discrete version of Morse theory, the framework developed here can
be considered as a discrete version of Conley theory, see e.g. [60].

6.4 Homology of Topological Spaces

In this section, we shall sketch the homology theory of topological spaces,
without providing the technical proofs, for which we refer to [104] or [108],
for instance.

It may seem natural, and in fact, this was the first attempt towards a gen-
eral homology theory, to try to approximate a topological space by a sim-
plicial complex, by somehow subdividing it into sufficiently small pieces
that are homeomorphic to simplices. This approach, however, encounters
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several problems. First of all, it is not clear whether a general topological
space can be so approximated. Secondly, even for a manifold, where such
a simplicial approximation is possible without problems, it is not clear to
what extent the resulting homology theory might depend on the choice
of simplicial approximation. One might then try to construct a common
simplicial subdivision for any two such simplicial approximations, but this
runs into combinatorial problems, and, in fact, is not possible in general.
Thirdly, constructions within a homology theory for topological spaces
should behave functorially under continuous mappings, but the image of a
simplicial approximation of one space under a continuous map need not be
one for the target space, for instance if the map happens to be not injective.

Therefore, this functorial behavior should already be built into the defi-
nitions.

This is the idea underlying singular homology which we shall now
sketch.

We have to perform one conceptual shift. In the preceding sections, we
had considered a simplex σq as a collection of q + 1 vertices, that is, as
a combinatorial object. We now need to consider simplices as topological
spaces.

Definition 6.4.1 The (topological) simplex �q of dimension q isq-simplex

�q :=
{

x ∈ R
q+1 : x =

q
∑

i=0

λi e
i , 0 ≤ λi ≤ 1,

∑

λi = 1

}

, (6.4.1)

where e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , ), . . . , eq = (0, 0, . . . , 0, 1)
are the unit basis vectors ofRq+1.Here, (λ0, . . . ,λq) are called thebarycen-
tric coordinates of the point x = ∑q

i=0 λi ei .
The i th face �i

q−1 of �q consists of all x ∈ �q with λi = 0. The

(topological) boundary �̇q is the union of all its faces. Thus, it consists of
all x ∈ �q for which at least one of the λ j vanishes.

From now on, we shall consider simplices as topological as opposed to
combinatorial objects, according to the preceding definition.

The basic example is this topological boundary �̇q . The following
lemma is geometrically obvious and readily checked.

Lemma 6.4.1 �̇q is homeomorphic to the (q − 1)-dimensional sphere

Sq−1 = {x = (x1, . . . , xq) ∈ R
q :

q
∑

i=1

(xi )2 = 1}. (6.4.2)

This is illustrated in the following picture for q = 2, that is, for S1.sphere
Sq−1
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Thus, the topological invariants of the sphere Sq−1 can be computed
from Lemma6.2.2, according to the framework that will be developed in
this section. In particular, we shall have

bq−1(Sq−1) = b0(Sq−1) = 1 and bp(Sq−1) = 0 for all other p,

(6.4.3)

χ(Sq−1) =
{

2 for odd q

0 for even q.
(6.4.4)

Similarly, the simplex�q itself is homeomorphic to the q-dimensional ball

Bq =
{

x = (x1, . . . , xq) ∈ R
q :

q
∑

i=1

(xi )2 ≤ 1

}

, (6.4.5)

and so, the Betti numbers of the ball are those of the simplex, that is,

b0(Bq) = 1 and bp(Bq) = 0 for p > 0, and hence χ(Bq) = 1. (6.4.6)

We now start the general constructions of singular homology. The map

δi
q−1 : �q−1 → �i

q−1 ⊂ �q (6.4.7)

e0 �→ e0, . . . , ei−1 �→ ei−1, ei �→ ei+1, . . . , eq−1 �→ eq

maps the (q−1)-dimensional simplex bijectively and linearly on the i th face
of the q-dimensional simplex. One checks that for q ≥ 2, 0 ≤ k < j ≤ q

δ
j
q−1 ◦ δk

q−2 = δk
q−1 ◦ δ

j−1
q−2. (6.4.8)

Definition 6.4.2 Let X be a topological space. A singular q-simplex in X
is a continuous map

γq : �q → X. (6.4.9)

Note that the map γq need not be injective. Thus, the image of �q may
look rather different from a simplex.

Analogously to the chain groups Cq(X, G) (G being an abelian group)
in simplicial homology, we now define the groups Sq(X, G) of singular
q-chains in X . Thus, a singular q-chain is a formal linear combination

sq =
m

∑

i=1

giγ
i
q (6.4.10)

of finitely many singular q-simplices with coefficients gi ∈ G.
A continuous map f : X → Y between topological spaces then induces

a homomorphism f∗ : Sq(X, G) → Sq(Y, G) between the singular chain
groups for any q and G, because the continuous image of a singular q-
chain is again a singular q-chain. Thus, we have functors Fq,G from the
category of topological spaces to the category of abelian groups, for every
non-negative integer q and every abelian group G. We can also view the
collection of these functors as a single functor F from the category of
topological spaces to the category of singular chain complexes. We leave
it to the reader to precisely define the latter category.
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The boundary operator is given by

∂ = ∂q : Sq(X) → Sq−1(X) (6.4.11)

∂sq =
q

∑

i=0

(−1)i sq ◦ δi
q−1 (6.4.12)

for q ≥ 1 (∂q := 0 for q ≤ 0).

Again, the crucial result is

Lemma 6.4.2
∂q ◦ ∂q+1 = 0. (6.4.13)

Definition 6.4.3 The qth (singular) homology group of the topological
space X with coefficients in G is

Hq(X, G) := ker ∂q/im ∂q+1. (6.4.14)

Theorem 6.4.1 A continuous map f : X → Y between topological spaces
commutes with the boundary operator and therefore induces homomor-
phisms

f∗ := Hq( f, G) : Hq(X, G) → Hq(Y, G). (6.4.15)

In particular, when h : X → Y is a homeomorphism, then the induced
maps h∗ yield isomorphisms of the corresponding homology groups.

Corollary 6.4.1 Homeomorphic topological spaces have the same Betti
numbers. In particular, their Euler numbers coincide.

Thus, we have a functor Gq,G that maps the singular chain complex
Sq(X, G) to the abelian group Hq(X, G) and that maps group homomor-
phisms given by singular chain maps to group homomorphisms. Again, we
can view this as a general functor G. The compositions of the two functors
Fq,G andGq,G then give the homology functors Hq,G that assigns to a topo-
logical space X its singular homology group Hq(X, G), or more abstractly
H = G ◦ F which assigns to X its collection of singular homology groups.
H is the functor of real interest whereas F only plays an auxiliary role.

One then also defines homology groups of pairs (X, A)where A ⊂ X are
topological spaces. As for simplicial homology, one obtains exact homol-
ogy sequences for pairs. Therefore, one has the same algebraic apparatus at
one’s disposal as for simplicial homology. The excision theorem now takes
the following form

Theorem 6.4.2 Let U ⊂ A ⊂ X be topological spaces for which the
closure Ū of U is contained in the interior A◦ of A. The inclusion map
i : (X \ U, A \ U ) → (X, A) then induces isomorphisms

i∗ : Hq(X \ U, A \ U ) → Hq(X, A). (6.4.16)
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The proof is technically more complicated than that of the simplicial
excision theorem, because a singular chain in X need not be the sum of
chains in A and X \U . One therefore needs to construct suitable refinements
by barycentric subdivision, but we spare the details.

Again, these constructions yield functors. For instance, we have the
functor that assigns to every pair (X, A) of topological spaces its long
exact sequence of singular homology groups.

Let us summarize some aspects that on one hand may appear rather
obvious, but that on the other hand are conceptually important. Exceptwhen
X is a finite topological space, the chain groups Sq(X, G) are infinitely
generated, or when G is a field, say G = R, are infinite dimensional vector
spaces. In order to extract useful information about the shape of X from
them, one has to go to a reduced description that reflects only the essential
aspects. These are the homology groups Hq(X, G). In typical cases of
interest, like compact manifolds, they are finitely generated, or when G is
a field, finite dimensional vector spaces. When passing from S(X, G) to
H(X, G), one considers all boundaries, that is, all chains s with s = ∂t
for some chain t , as trivial. Since ∂ ◦ ∂ = 0, for such a chain necessarily
∂s = 0. Theremay, however, also exist chainsσ that satisfy ∂σ = 0without
being boundaries themselves. These are the nontrivial chains that generate
the homology groups, with the equivalence relation that σ1 and σ2 yield
the same homology elements whenever σ1 − σ2 = ∂τ for some τ . For
every non-negative integer q and every abelian group G, we then have the
functor Hq(., G) from the category of topological spaces to the category of
abelian groups that assigns to every X its homology group Hq(X, G). Since
somehow an abelian group is a simpler object than a topological space, this
functor extracts some of the topological information about X . However,
some topological information is also lost by that functor. In particular, two
topological spaces X and Y that have the same homology groups for every
q and G can still be different as topological spaces, that is, need not be
homeomorphic. Onemay then definemore refined invariants of topological
spaces that are allow for finer distinctions, but those are more complicated
than the homology groups.

In fact, it is a general phenomenon that we construct a functor that
attaches certain algebraic or other invariants to the objects in some cate-
gory, then that functor typically is not injective, that is, the invariants cannot
distinguish all the objects in the original category. The functor “forgets”
some of the original structure. Nevertheless, good invariants like homology
groups allow for many distinctions between different objects. For instance,
compact two-dimensionalmanifolds are fully characterized by their homol-
ogy groups. That is, two such manifolds with the same homology groups
are homeomorphic. (The details of the classification of compact surfaces
(without boundary) can be found in introductions to geometric topology,
like [88], or (at least in the case of orientable surfaces) in textbooks on
Riemann surfaces, for instance [61].) This, however, is no longer true in
higher dimensions.
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6.5 HomotopyTheory of Topological Spaces

In order to develop the appropriate general framework for the topologi-
cal investigation of topological spaces, we shall now introduce homotopy
theory.

We consider the category of pairs (X, A), A ⊂ X closed, of topological
spaces, with morphisms f : (X, A) → (Y, B) being continuous maps

f : X → Y with f (A) ⊂ B. (6.5.1)

As we are working with topological spaces, all maps in this section will
be assumed to be continuous. We shall abbreviate X = (X, ∅), which
implicitly contains the fact that the category of topological spaces naturally
is a subcategory of the category of pairs of topological spaces.

Two such morphisms f0, f1 are homotopic, that is, continuously
deformable into each other, f0 ∼ f1 : (X, A) → (Y, B), when, with
I = [0, 1], there exists an

F : (X, A) × I → (Y, B) with F(x, t) = ft (x) for t = 0, 1. (6.5.2)

According to our general assumption, F has to be continuous, and this is
the crucial point.

Maps are homotopic when they can be continuously deformed into each
other.

Lemma 6.5.1 Homotopy ∼ is an equivalence relation on the set of contin-
uous maps between pairs of topological spaces.

Proof 1. Reflexivity: f ∼ f with F(x, t) := f (x) for all x .
2. Symmetry: If f0 ∼ f1 with F as in (6.5.2), then f1 ∼ f0 via F ′(x, t) :=

f (x, 1 − t).
3. Transitivity: If F1 : f0 ∼ f1, F2 : f1 ∼ f2, put

F(x, t) :=
{

F1(x, 2t) for 0 ≤ t ≤ 1/2

F2(x, 2t − 1) for 1/2 ≤ t ≤ 1
(6.5.3)

to get f0 ∼ f2. 
�

Thus, for f : (X, A) → (Y, B), we denote by [ f ] its homotopy class,
that is, its equivalence classw.r.t.∼. Homotopicmaps are thus considered to
be equivalent within our category and should therefore not be distinguished.

We leave it to the reader to verify that composites of homotopic maps are
homotopic. We then get a category of pairs whose objects are topological
spaces and whose morphisms are homotopy classes of maps. This looks
somewhat unsymmetric, however, as we have performed an identification
among the morphisms, but not yet among the objects. Therefore, we shall
now turn to the appropriate equivalence concept for pairs of topological
spaces.
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A homotopy equivalence between two pairs of spaces is defined by
requiring that there exist

φ : (X1, A1) → (X2, A2), ψ : (X2, A2) → (X1, A1) (6.5.4)
with φ ◦ ψ ∼ idX2 ,ψ ◦ φ ∼ idX1 .

We then also write (X1, A1) ∼ (X2, A2) and say that the two pairs are
homotopy equivalent. We leave it as an exercise to verify that homotopy
equivalence is an equivalence relation on the set of pairs of topological
spaces.

Moreover, if (X1, A1) ∼ (X2, A2), (Y1, B1) ∼ (Y2, B2), i = 1, 2, then
for f : (X1, A1) → (Y1, B1) and g := φ′ ◦ f ◦ ψ where ψ : (X2, A2) →
(X1, A1), φ

′ : (Y1, B1) → (Y2, B2) are themaps from the homotopy equiv-
alences, we obtain f ∼ ψ′ ◦ g ◦ φ = ψ′ ◦ φ′ ◦ f ◦ ψ ◦ φ. Therefore,
f0 ∼ f1 : (X1, A1) → (Y1, B1) iff g0 ∼ g1 : (X2, A2) → (Y2, B2) (where
gi is related to fi in the same manner as g was related to f ). We then get
the category of homotopy classes of pairs as objects and homotopy classes
of maps as morphisms.

A ⊂ X is called a strong deformation retract of X if there exists a
continuous map r : X × [0, 1] → X satisfying

r(x, t) = x ∀x ∈ A (leave A invariant)
r(x, 0) = x ∀x ∈ X (start with the identity)
r(x, 1) ∈ A ∀x ∈ X (end up in A).

Thus, we shrink the whole space X into its subset A while leaving all points
in A itself unaffected.

Let us consider some examples, first for pairs of the form (X, ∅), (Y, ∅).
We let B2 = {x = (x1, x2) ∈ R

2 : (x1)2 + (x2)2 ≤ 1} be the closed unit
disk and 0 the origin in R

2. Then the identity map of B2, f1 := idB2 , and
the constant map f0 that maps all of B2 to 0 are homotopic: the homotopy
is provided by F(x, t) = t x . This then also implies that the space B2 is
homotopically equivalent to the space consisting only of the origin, that is,
of a single point. If we want to have nontrivial pairs here, we take (B2, {0})
and ({0}, {0}).Another example of homotopically equivalent spaces is given
by the cylinder Z = {(x1, x2, x3) ∈ R

3 : x21 + x22 = 1,−1 ≤ x3 ≤ 1} Cylinder
and the circle S1 = {x = (x1, x2) ∈ R

2 : x21 + x22 = 1}, with the required
Circle S1map from the cylinder to the circle simply collapsing the third coordinate

x3 to 0, and the map from the circle to the cylinder embedding the former
into the latter as the circle x3 = 0. Again, this also shows the homotopy
equivalence of (Z , A) and (S1, A), where A is any subset of S1. The disk
B2 and the circle S1, however, are not homotopically equivalent, as we see
from Theorem6.5.1 below, because their Euler numbers are different (1 for
the disk (6.4.6), but 0 for the circle (6.4.4)). In any case, the intuition behind
this result is that one would have to create a hole somewhere in B2 to map
it onto S1 so that the composition of this map with the inclusion of S1 into
B2 becomes homotopic to the identity of S1. Cutting a hole, however, is
not a continuous operation.

We can also interpret these examples in the sense that the origin (or,
likewise any other point in B2) is a strong deformation retract of the unit
disk B2, and so is the circle S1 for the cylinder Z . This circle S1, however,
is not a strong deformation retract of the unit disk B2.
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We also make the following observation. Homotopy equivalent spaces
need not be homeomorphic as the example of the cylinder and the circle
or the disk and the point shows. (There are some subtle aspects here, for
instance that the dimension of a manifold is invariant under homeomor-
phisms, which we do not prove here; see for instance [36]. This result, first
demonstrated by Brouwer, may be intuitively clear, but is, in fact, difficult
to prove.) In particular, since Theorem6.5.1 below tells us that the Betti
numbers are homotopy invariants, there exist non-homeomorphic spaces
with the same Betti numbers. In particular, the Betti numbers do not fully
characterize the homeomorphism class of a topological space. In fact, as
we shall point out after Theorem6.5.1, the Betti numbers do not even char-
acterize the homotopy type of a topological space.

We shall now describe some constructions that are useful for understand-
ing the topological version of the Conley index as presented above in our
treatment of simplicial homology. The essential idea there was to consider
suitable pairs (P0, P1) where P1 was some kind of exit set that represented
whatever was not participating in the process going on in P1, and which
therefore should be considered as trivial and contracted to a point.

(X, x0)(x0 ∈ X) is called a punctured space. (X, A) yields the punctured
space X/A by identifying all x ∈ A as a single point. More formally: x ≈ y
if x = y or x, y ∈ A is an equivalence relation, and we let [A] be the
equivalence class of x ∈ A. We then put

X/A := (X/ ≈, [A]).
Thus, we collapse the whole subset A to a single point. Moreover, we have
the important special case

X/∅ = (X � p, p), p /∈ X.

(Here, � means the disjoint union, that is, here we are adding a point p to
X that is not contained in X .)

A continuous map f : (X, A) → (Y, B) induces [ f ] : X/A → Y/B
via [ f ][x] := [ f (x)].

If (X, A) ∼ (Y, B) then also X/A ∼ Y/B.

We shall simply write X/A for the homotopy class [X/A] of X/A.
Returning to our examples, we consider Z/Awhere A consists of the two

boundary circles x3 = ±1 of the cylinder Z . This space is homotopicallyCylinder
equivalent to S2/{p1, p2}, the sphere modulo two points, for example the
north and the south pole. This in turn is homotopically equivalent to T 2/S′
where the torus T 2 is obtained by rotating the circle S′ := {(x1, 0, x3) :
x1 = 2 + sin θ, x3 = cos θ} about the x3-axis.

We now come to the fundamental connection between homotopy and
homology.

Theorem 6.5.1 If f ∼ g : (X, A) → (Y, B), then

f∗ = g∗ : Hq(X, A; G) → Hq(Y, B; G). (6.5.5)

In particular, the corresponding homology groups of homotopy equivalent
spaces are isomorphic. Their Betti and Euler numbers coincide.
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This is the basic principle, that algebraic invariants attached to topolog-
ical spaces are invariant under continuous deformations.

Proof For simplicity, and in order to bring out the basic geometric intuition
more clearly, we shall provide a proof of this result only for the case where
A = ∅. That is, we show that if f, g : X → Y are homotopic, then they
induce the same homomorphism

f∗ = g∗ : Hq(X) → Hq(Y ), (6.5.6)

where we leave out the group G from our notation as it plays no role in the
proof. References are [47] or [108].

Let F : X × [0, 1] → Y be a homotopy between f and g, with f (.) =
F(., 0), g(.) = F(., 1), and let γ : �q → X be a singular q-simplex. The
following diagram describes the basic geometric situation (for q = 1).

v0

w1

v1

w0

Δ × {0}

Δ × {1}

(6.5.7)

The square represents � × [0, 1]. The image under F ◦ γ of the bottom
of this square is the image of f ◦ γ, that of the top g ◦ γ, whereas the left
and the right boundary become images of ∂� × [0, 1]. These four pieces
together constitute the boundary of � × [0, 1]. We thus see that, up to the
image of a boundary, which will disappear when we shall consider cycles,
and a boundary, that is, in homology, the images of f ◦ γ and g ◦ γ are
the same, for every singular q-simplex. However, there is one technical
issue, that � × [0, 1] is not a simplex itself. But this is easily remedied by
subdividing it into simplices. In the picture, this is achieved by the diagonal
from v0 to w1. In higher dimensions, we need, of course, more simplices.

We now provide the details. We first subdivide �q × [0, 1] into q + 1
(q +1)-dimensional simplices. We have the projection �q ×[0, 1] → �q ,
and we arrange the vertices v0, . . . , vq of the simplex �q × {0} and the
vertices w0, . . . , wq of �q × {1} in such a manner that vi and wi project
to the same vertex of �q , as in the above diagram. We consider maps
φi : �q → [0, 1] for i = 0, . . . , q with φ0 = 0 and

φi (λ0, . . . ,λ1) =
q

∑

ν=q−i+1

λν for i = 1, . . . , q

in barycentric coordinates (see (6.4.1)). The image of φi is the q-simplex
(v0, . . . , vq) = � × {0} for i = 0 and the simplex (v0, . . . , vq−i ,

wq−i+1, . . . , wq) for i = 1, . . . , q . Also φi (x) ≤ φi+1(x) for all x ∈ �q ,
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and the region between these two graphs is the (q + 1)-dimensional sim-
plex (v0, . . . , vq−i , wq−i , . . . , wq). This yields the desired realization of
�q × [0, 1] as a simplicial complex.

Let now γ : �q → X be a singular simplex. We extend it as γ × id :
�q × [0, 1] → X × [0, 1] where of course id is the identity on [0, 1]. With
the above subdivision, this then becomes a singular chain.

With these constructions, we can define

D : Cq(X) → Cq+1(Y )

sq �→
∑

k

(−1)k F ◦ (sq × id)|(v0, . . . , vk, wk, . . . , wq) (6.5.8)

Our aim now is to verify the relation

∂D = g∗ − f∗ − D∂. (6.5.9)

This formalizes what we have said when discussing the diagram (6.5.7).
For showing (6.5.9), the essential point is to realize D∂ as the image of
∂D × [0, 1]. We compute

D∂(γq ) =
∑

κ>k

(−1)k(−1)κ F ◦ (γq × id)|(v0, . . . , vk , wk , . . . , ŵκ, . . . , wq )

+
∑

κ<k

(−1)k−1(−1)κ F ◦ (γq × id)|(v0, . . . , v̂κ, . . . , vk , wk , . . . , wq ).

(6.5.10)

We can now identify all the terms in

∂D(γq ) =
∑

κ≤k

(−1)k(−1)κ F ◦ (γq × id)|(v0, . . . , v̂κ, . . . , vk , wk , . . . , wq )

+
∑

κ≥k

(−1)k(−1)κ+1F ◦ (γq × id)|(v0, . . . , vk , wk , . . . , ŵκ, . . . , wq ).

The terms with κ �= k yield −D∂ according to (6.5.10). The terms with
κ = k cancel except for the first term in the sum for κ = k = 0 which
yields g ◦ γq and the second term in the sum for κ = k = q which gives
− f ◦ γq . This proves (6.5.9).

The relation (6.5.9) then extends by linearity to singular q-chains sq .
When sq is a cycle, then ∂sq = 0, and (6.5.9) yields

∂D(sq) = g∗(sq) − f∗(sq). (6.5.11)

Therefore, g∗(sq) = f∗(sq) in homology, and we have verified (6.5.6).
The remaining claims of the Theorem are now easy. If X and Y are

homotopy equivalent, then according to (6.5.4), there are

φ : X → Y, ψ : Y → X with φ ◦ ψ ∼ idY ,ψ ◦ φ ∼ idX ,

and by what we have already shown, this implies that φ∗ ◦ ψ∗ induces the
identity on H(Y ), and ψ∗ ◦ φ∗ induces the identity on H(X). Therefore,
for instance φ induces an isomorphism between H(X) and H(Y ). 
�

Theorems6.4.1 (and its analogue for pairs of topological spaces which
we did not state explicitly) and 6.5.1 yield
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Theorem 6.5.2

Hq(.; G) : (X, A) �→ Hq(X, A; G) (6.5.12)

is a functor from the category of homotopy classes of pairs of topological
spaces to the category of abelian groups.

We state some consequences of Theorem6.5.1 which the reader will
readily check.

Corollary 6.5.1 1. If A is a deformation retract of X, then

Hq(X, A) = 0 for all q. (6.5.13)

2. If B ⊂ A ⊂ X and A is a deformation retract of X, then the inclusion
i : A → X induces isomorphisms

i∗ : Hq(A, B) → Hq(X, B). (6.5.14)

3. If B ⊂ A ⊂ X and B is a deformation retract of A, then the inclusion
j : B → A induces isomorphisms

j∗ : Hq(X, B) → Hq(X, A). (6.5.15)

Theorem6.5.1 tells us that the homology groups yield topological invari-
ants of a topological space, in the sense that they depend only on its homo-
topy equivalence class. Conversely, homology groups could then be used
to distinguish between spaces that are not homotopy equivalent. In order to
show that two spaces X and Y are not homotopy equivalent, it suffices to
show that at least one of their homology groups is different. While this is
very successful in many cases, unfortunately, the homology groups do not
furnish a complete set of invariants. In other words, there do exist spaces X
and Y that are not homotopy equivalent, but whose corresponding homol-
ogy groups are all isomorphic.

6.6 Cohomology

We have briefly introduced cohomology already in Sect. 4.6. We now con-
sider cohomology more systematically and in particular describe its con-
nections with homology.

Let G be some fixed group. Subsequently, G will be assumed to be
abelian, but we do not yet need that assumption. We then have the Hom-
functor

Groupsop → Sets

A �→ Hom(A, G) (6.6.1)

which assigns to each group A the set of group homomorphisms from A to
G and which maps each group homomorphism f : A1 → A2 to

f ∗ : Hom(A2, G) → Hom(A1, G)

φ �→ φ ◦ f. (6.6.2)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Recalling the discussion in Sect. 8.3, the Hom-functor is contravariant, that
is, the directions of homomorphisms, here f , are reversed, here f ∗.

We now consider a simplicial chain group Cq(X,Z) or a singular one,
Sq(X,Z).We then have the groupHom(Cq(X), G) of cochains with values
in G and the coboundary operator

δq−1 := ∂∗
q : Hom(Cq−1(X), G) → Hom(Cq(X), G)

φ �→ φ ◦ ∂q

i.e., δq−1(φ)(
∑

giσ
i
q) = φ(

∑

gi∂qσi
q). (6.6.3)

Lemma 6.6.1
δq ◦ δq−1 = 0 (6.6.4)

for all q.

Proof This follows from the corresponding property of the boundary oper-
ators ∂q , see (6.2.11) 
�

Analogously to the definition (6.2.14) of the homology groups, we can
then define cohomology groups, assuming from now that the group G is
abelian.

Definition 6.6.1 The qth cohomology group of the simplicial complex
(when we work with simplicial chains) or the topological space X (when
we use singular chains) with coefficients in the abelian group G is

Hq(X, G) := ker δq/im δq−1. (6.6.5)

Analogously, of course, one also defines the relative cohomology groups
Hq(X, A; G) of topological pairs (X, A).

For a chain cq ∈ Cq and a cochain φq ∈ Hom(Cq , G), we write

〈φq , cq〉 := φq(cq) ∈ G. (6.6.6)

Lemma 6.6.2 〈., .〉 is bilinear and satisfies

〈δq−1φq−1, cq〉 = 〈φq−1, ∂qcq〉. (6.6.7)

In particular, the pairing of a cocycle (δφ = 0) with a boundary vanishes,
and so does the product of a cycle (∂c = 0) with a coboundary (δφ).

The proof is obvious.

Corollary 6.6.1 〈., .〉 induces a bilinear pairing between the cohomology
group Hq(X, G) and the homology group Hq(X, G), denoted by the same
symbols 〈., .〉.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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We shall now introduce products in cohomology. For that purpose, from
now on, we need to assume that G be a ring, that is, in addition to the
commutative group law written as g + h, we also have a multiplication,
written as gh, that, for the sake of generality, need not be commutative. Of
course the main example is the—commutative—ring Z, and the fields Z2
and R are likewise important.

Definition 6.6.2 Let γ : �n → X be a singular n-simplex, and let φ ∈
Hom(Sq(X), G) be a singular q-cochain with coefficients in the ring G,
with q ≤ n. The cap-product between γ and φ is defined by, for g ∈ G,

φ ∩ (gγ) := g〈φ, γ ◦ [en−q , . . . , en]〉(γ ◦ [e0, . . . , en−q ]) ∈ Sn−q(X) ⊗ G.

(6.6.8)
The cap-product is linearly extended to singular chains.

Thus, we evaluate the q-cochain on the q-dimensional rear of the n-
simplex γ and take this number as the coefficient of the (n−q)-dimensional
front of γ.

Lemma 6.6.3 For a singular n-chain c and a singular q-cochain φ,

∂(φ ∩ c) = (−1)q(δφ) ∩ c + φ ∩ ∂c. (6.6.9)

Theproofproceeds by a somewhat tedious, but otherwise straightforward
computation.

In particular, the cap-product of a cocycle (i.e., δφ = 0) with a cycle
is a cycle, and the product of a cocycle with a boundary is a boundary.
Therefore, we can state

Definition 6.6.3 The cap-product between cohomology and homology is
the product induced by (6.6.8)

Hq(X, G) × Hn(X, G) → Hn−q(X, G)

(ψ, c) �→ ψ ∩ c. (6.6.10)

By duality, we can now also define a product on cohomology.

Definition 6.6.4 Let φ ∈ H p(X, G),ψ ∈ Hq(X, G). The cup-product
between φ and ψ is defined by requiring that for all c ∈ Hn(X, G) with
p + q = n

〈φ ∪ ψ, c〉 = 〈φ,ψ ∩ c〉 ∈ G. (6.6.11)

Thus,
φ ∪ ψ ∈ Hn(X, G), with p + q = n. (6.6.12)

We could also entangle the definition of the cup-product in terms of the cap-
product and define the former also at cocycle level (we shall utilize the same
letters for cocycles and for cohomology classes, that is, equivalence classes
of cocycles; this should cause no confusion): Forφ ∈ Hom(Sp(X), G), ψ ∈
Hom(Sq(X), G) and a singular (p+q)-simplex γ : �p+q → X and g ∈ G,
we have

〈φ ∪ ψ, gγ〉 = g〈φ, γ ◦ [e0, . . . , ep]〉〈ψ, γ ◦ [ep, . . . , ep+q ]〉, (6.6.13)
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that is, we multiply the evaluation of φ on the p-dimensional front by the
evaluation of ψ on the q-dimensional back of the image of �p+q .

Theorem 6.6.1 Let G be a commutative ring with unit.
Equipped with the cup-product,

H∗(X, G) :=
⊕

q≥0

Hq(X, G) (6.6.14)

is an anticommutative ring with unit, called the cohomology ring of X,
and a module over the ring G.

Anticommutativity here means

φ ∪ ψ = (−1)pqψ ∪ φ for φ ∈ H p,ψ ∈ Hq . (6.6.15)

Proof For the ring structure, we check the distribution law

(φ1 + φ2) ∪ ψ = φ1 ∪ ψ + φ2 ∪ ψ (6.6.16)

φ ∪ (ψ1 + ψ2) = φ ∪ ψ1 + φ ∪ ψ2 (6.6.17)

and the associativity

(φ ∪ ψ) ∪ ω = φ ∪ (ψ ∪ ω). (6.6.18)

For the module structure, we have the homogeneity

(gφ) ∪ ψ = φ ∪ (gψ) = g(φ ∪ ψ). (6.6.19)

The unit is the unit 1X ∈ H0(X, G) that satisfies

1X ∪ φ = φ ∪ 1X = φ. (6.6.20)

All these properties are readily checked. 
�

Moreover, the cup-product is functorial in the sense of

Lemma 6.6.4 For a continuous map f : Y → X, we have

f ∗(φ ∪ ψ) = f ∗φ ∪ f ∗ψ. (6.6.21)

Corollary 6.6.2
X �→ H∗(X, G) (6.6.22)

is a functor from the category Topop of topological spaces (with reversed
directions of morphisms) to the category of (anticommutative) rings and
G-modules.

It is important to note that we do not have an analogous ring structure
on the homology of X . The cup-product on the cohomology of X carries
information that is in general not contained in its homology. When X is
a closed manifold, however, the cup-product on cohomology is dual to
the intersection product on homology. This is a consequence of Poincaré
duality for manifolds to which we shall now turn.
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6.7 Poincaré Duality and Intersection Numbers

In this section, M is a connected manifold of dimension n, for the moment
possibly with boundary ∂M . Here, ∂M is the boundary of M in the topo-
logical sense, the closure of M minus its interior, but for manifolds, this
topological boundary is what underlies the homological boundary of M as
an n-chain. We assume that (together with its boundary, if present) M is
compact.

Definition 6.7.1 M is called orientable if

Hn(M, ∂M,Z) ∼= Z . (6.7.1)

A choice of a generator of this group, [M], which is called a fundamental
class of M , is then called an orientation of M .

Remark In general, for a connected manifold, possibly with boundary, for
all abelian groups G

Hn(M, ∂M; G) either ∼= G or ∼= {g ∈ G : 2g = 0}, (6.7.2)

and in the first case, M is orientable. In particular, we always have

Hn(M, ∂M,Z2) ∼= Z2, (6.7.3)

and we therefore always have a fundamental class [M]2 ∈ Z2.

The geometric reason for (6.7.2), i.e., that Hn has only a single generator
when G isZ orZ2, is that M itself is the only singular n-chain that is closed
modulo ∂M . Any other n-chain has some boundary inside M and therefore
does not represent a homology class modulo ∂M . TheZ-cohomology class
corresponding to M is then [M], and it either satisfies 2[M] = 0, in which
case M is not orientable (think of the Möbius band), or it freely generates Möbius band
Z.

The Poincaré duality theorem is then

Theorem 6.7.1 Let M be a compact orientable n-dimensional manifold
without boundary. Then, for any q ∈ Z, the cap-product with a fundamental
class [M] yields an isomorphism

∩ [M] : Hq(M,Z) → Hn−q(M,Z)

φ �→ φ ∩ [M]. (6.7.4)

In any case, when M is not assumed to be orientable, we obtain an isomor-
phism

∩ [M]2 : Hq(M,Z2) → Hn−q(M,Z2)

φ �→ φ ∩ [M]2. (6.7.5)

We do not prove this result here, as the proof is too long. The proof can
be found in any good textbook on algebraic topology, for instance [47] or
[108].
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Corollary 6.7.1 The Betti numbers of the compact orientable
n-dimensional manifold M satisfy

bq = bn−q . (6.7.6)

In particular, when n is odd, the Euler characteristic of M vanishes:

χ(M) =
∑

q

(−1)qbq = 0. (6.7.7)

Proof The universal coefficient theorem in cohomology (which we do not
prove here) states that the cohomology groups always satisfy

Hq(X, G) ∼= Hom(Hq(X), G) ⊕ Ext(Hq−1(X), G), (6.7.8)

where Ext stands for some finite group. In particular, the free parts of Hq

and Hq agree, and so, the qth Betti number of X , defined as the dimension
of the free part of Hq(X,Z), agrees with the dimension of the free part of
Hq(X,Z). When X is a manifold, we may therefore apply Poincaré duality
to get the result. 
�

Theorem6.7.1 allows us to define a product on homology for compact
manifolds, the intersection product, which is dual to the cup product on
cohomology.

Definition 6.7.2 Let M be a compact oriented manifold and let

P : Hq(M,Z) → Hn−q(M,Z) (6.7.9)

be the inverse of the Poincaré isomorphism (6.7.4). Forα ∈ Hq(M,Z),β ∈
Hn−q(M,Z), we define their intersection product as

α · β := 〈P(β) ∪ P(α), [M]〉 ∈ Z. (6.7.10)

When M is not necessarily orientable, we can still define a Z2 intersection
product by using [M]2 in place of [M] in (6.7.10).

Note that we take the factors on the right hand side of (6.7.10) in the
opposite order. This leads to a sign normalization, in view of the formula

α · β = (−1)q(n−q)β · α. (6.7.11)

The geometric interpretation of (6.7.10) is that it counts the number
of intersection points, with appropriate signs, of cycles representing the
homology classes α, β. We shall now briefly sketch this geometric inter-
pretation for the case where M is a differentiable manifold (see e.g. [29]).
A differentiable manifold is oriented iff there exists an atlas as in Defini-
tion5.3.3 for which all chart transitions have positive Jacobian determinant.
This in turn is equivalent to the following condition. For a vector space V of
dimension n overR, we take some ordered basis (e1, . . . , en) and declare it
to be positive and then call any other basis that is obtained from this one by a
linear transformation with positive determinant positive as well; otherwise
it is called negative. Thus, the order of the basis vectors matters. When we
permute an odd number of them, the resulting basis is no longer positive,
but negative. In this way, we can orient every tangent space Tx M of M . M

http://dx.doi.org/10.1007/978-3-319-20436-9_5
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is then oriented if we can choose these orientations in a coherent manner.
This means the following. In each coordinate chart, every tangent space is
identified with Rn , and an orientation on Rn then induces an orientation on
each tangent space. Since for an orientedmanifold, all chart transitions have
positive Jacobian determinant, this orientation can therefore be consistently
chosen independently of the coordinate chart.

We now let N1, N2 be compact oriented differentiable submanifolds, of
dimensions q and n − q , resp. of the compact oriented differentiable mani-
fold M of dimensionn.We assume that N1 and N2 always intersect transver-
sally. This means that at a point x of intersection, we can find oriented bases
(ε1, . . . , εq) of Tx N1 and (η1, . . . , ηn−q) of Tx N2 such that their combina-
tion (ε1, . . . , εq , η1, . . . , ηn−q) yields a basis of Tx M . In other words, the
two tangent spaces Tx N1, Tx N2, considered as subspaces of Tx M , span the
latter space. Because of the complementarity of the dimensions q and n−q ,
this means that there are no linear dependencies between tangent vectors of
N1 and tangent vectors of N2. Differential topology (see e.g. [51]) tells us
that we can always achieve such transversal intersections by slight pertur-
bations of N1 or N2, in particular without affecting the homology classes
that they define. Also, when such submanifolds of complementary dimen-
sions intersect transversally, they intersect in at most finitely many points
(the case where N1 and N2 are disjoint, that is, do not intersect at all, is also
considered as transversal). We then assign i(x) := +1 to every intersec-
tion point x for which (ε1, . . . , εq , η1, . . . , ηn−q) as constructed above is a
positive basis of Tx M , and i(x) := −1 when it is a negative basis. Letting
[N1], [N2] be the homology classes defined by N1, N2, we have

[N1] · [N2] =
∑

x∈N1∩N2

i(x). (6.7.12)

Thus,we count the points in the intersection N1∩N2 with signs according
to the orientations of the submanifolds and of [M] itself. This is the desired
geometric interpretation of intersection numbers.

The important point is that these intersection numbers depend only on
the homology classes of the submanifolds N1, N2. In particular, they are
invariant under perturbations of them.

The intersection numbers are particularly useful when n is even and
q = n − q = n/2. In this case, we can define the self-intersection number
of a compact oriented submanifold N of M as [N ]·[N ]. Geometrically, this
means that we perturb N into another (homologous) submanifold N ′ such
that N and N ′ intersect transversally and then count their intersection points
according to the above rule. In particular, when we can deform N in such a
manner that N ′ is disjoint from N , then the self-intersection number of N
vanishes. We point out that the self-intersection number of a submanifold
can also be negative.

Let us also mention that there exists a Morse theoretic approach to the
topology of differentiable manifolds, see for instance [100, 58]. In that
approach, intersections play an important geometric role.
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7.1 Generating Structures

Before returning to category theory in Chap.8, we want to take up a
somewhat different perspective on mathematical structures. This is embod-
ied in the following

Definition 7.1.1 A mathematical structure consists of a set of generators,
a (possibly empty) set of relations between them (constraints), and a set
of operations with which the other elements of the structure are generated
from the generators.

Examples:

1. A set is simply generated by its elements, without further relations or
operations. This simply expresses the fact that a set as such does not
carry any further structure.

2. For an equivalence relations on a set X , every x ∈ X generates its
equivalence class by the operation of equivalence.

3. A vector space is generated by a basis, the operation being taking linear
combinations of vectors.

4. A group G is finitely generated if there exists a finite number of group
elements g1, . . . , gn such that every g ∈ G can be written as a product
g = γ1γ2 . . . γN with γi ∈ {g1, g−1

1 , . . . , gn, g−1
n } for i = 1, . . . , N ,

that is, as a finite product of the generators and their inverses. These gen-
erators may satisfy certain relations between them, beyond the trivial
relation gg−1 = e for all g ∈ G. For instance, when the group is com-
mutative, the generators also satisfy ghg−1h−1 = e for all g, h ∈ G.
The generator 1 of the additive group Z2 satisfies 1 + 1 = 0. The Z2
free abelian group Z is generated by 1 without any relation. When

Zfinitely many relations suffice to generate all the relations between
finitely many generators, the group is said to be finitely presented. The
operations in this example are the group laws, of course.

© Springer International Publishing Switzerland 2015
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5. Let (X, d) be a metric space. We say that ξ is a midpoint of x1, x2 if

d(x1, ξ) = d(x2, ξ) = 1

2
d(x1, x2). (7.1.1)

When (X, d) is geodesic, such midpoints always exist. Simply take a
shortest geodesic γ : [0, 1] → X , parametrized proportionally to arc
length (see (5.3.45)), with γ(0) = x1, γ(1) = x2. Then ξ = γ( 12 )

is a midpoint. We also notice that midpoints need not be unique. For
instance, when we take the north and the south pole on the sphere Sn ,
then all points on the equator are their midpoints.

Definition 7.1.2 Let X0 be a subset of the geodesic metric space (X, d).
Then the closure of the set of all points generated by iterated application of
the midpoint operation starting with the elements of X0 is called the convex
hull of X0.

Thatwe iterated themidpoint operation simplymeans thatwhen for instance
ξ1, ξ2 aremidpoints of elements of X0, we can then in the next step take their
midpoints, or midpoints of one of them with an element of X0, and so on.
Thus, here the operations are the midpoint construction and the topological
closure.

For Euclidean space, we need infinitely many points to generate it in its
entirety, because the convex hull of finitely many points is always bounded.
In contrast, as the above example shows, the sphere Sn can already be
generated by two points. We may then ask for any compact Riemannian
manifold M how many points are needed to generate it.

6. When (X, d) is a metric space that is not geodesic, we can replace the
midpoint construction by the betweenness relation of Definition 2.1.8,
that is,

Definition 7.1.3 Let (X, d) be ametric space. For x1, x2 ∈ X , let B(x1, x2)
be the set of all points y that are between x1 and x2, i.e., that satisfy

d(x1, y) + d(x2, y) = d(x1, x2). (7.1.2)

The convex hull of X0 ⊂ X is then generated by the iterated application of
the betweenness rule.

When (X, d) is geodesic, this leads to the same result as Definition 7.1.2.

7. The topologyO(X) of a topological space is generated by a basis of the
topology through the operations of possibly infinite unions and finite
intersections. When (X, d) is a metric space, the ballsU (x, r) := {y ∈
X : d(x, y) < r} for x ∈ X, r ≥ 0 generate a topology.

8. The Borel σ-algebra of a topological space is generated by its open sets
through the operations of union, intersection, and complement.

9. The propositions of a logical system are generated from its axioms by
the application of the operation of logical inference (modus ponens),
see Sect. 9.3.

http://dx.doi.org/10.1007/978-3-319-20436-9_5
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_9
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10. We consider a dynamical system (4.1.22) and (4.1.23), that is,

ẋ(t) = F(x(t)) for x ∈ R
d , t > 0 (7.1.3)

x(0) = x0. (7.1.4)

We assume that we can find a solution of (7.1.3) with initial values
(7.1.4) for 0 ≤ t < T for some T > 0. For instance, when F is Lip-
schitz continuous, this follows from the Picard-Lindelöf theorem, see
[59]. By this operation of the dynamical rule, A ⊂ R

d then generates
the set of all such orbits x(t) for x0 ∈ A. In particular, each point x0
generates its orbit x(t).

When we supplement this by the operation of topological closure,
we also get the asymptotic limit sets of such orbits, see [60].

11. In (4.1.31), we have defined the set of recombinations R(x, y) of two
binary strings, and we have then iterated the recombinations of strings
from some given set in (4.1.33) and defined a corresponding closure
operator.

Definition 7.1.4 A set G of generators of amathematical structure is called
minimal if no proper subset G0 � G can generate all the elements of that
structure.

Examples:

1. The groups Z, Zq have the single generator 1 which is then of course
minimal. Z, Zq

2. The symmetric groupSn is minimally generated by the transpositions
Sn( j, 1), j = 2, . . . , n. Any other transposition (k, j), k �= j is a product

( j, 1) ◦ (k, 1) ◦ ( j, 1), and any element of Sn can be expressed as a
product of transpositions (recall the discussion of the symmetric group
in Sect. 2.1.6).

3. For the Euclidean plane, there is no minimal set of generators for the
operation of convex hull. Aswe had already observed, any set of genera- Euclidean space
tors for this space is necessarily infinite, and eliminating a finite number
of points does not affect its generating ability.

4. When F is a dynamical system on R
d as in (7.1.3), a hypersurface

A ⊂ R
d with the property that every point of R

d lies on a unique orbit
x(t) for some x0 = x(0) ∈ A is called a Cauchy hypersurface. Of
course, such a hypersurface need not exist for a given F .

Definition 7.1.5 Let X0 be a subset of the set of elements X of amathemat-
ical structure. The set X0 of the elements of X generated by the elements of
X0 is called the scope of X0. The scope of a single element x is also called
the orbit of x .

An x /∈ X0 is said to be independent of X0.

The scope operator need not satisfy the axioms of the Kuratowski closure
operator given inTheorem4.1.2, because the scope of a union of two subsets
could be larger than the union of their individual scopes.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Examples:

1. X0 is a set of generators of X iff X0 = X .
2. In a metric space, the scope of X0 is its convex hull.
3. For a dynamical system (7.1.3), the scope of x0 is the orbit x(t) with

x(0) = x0.
4. For the recombination operator (4.1.31), we can then define a collec-

tion of binary strings of some given length n as independent if none of
them can be obtained by the iterated application of the recombination
operation from the others.Genetic recombina-

tion

Definition 7.1.6 A subset X0 of the set X of elements of a structure is
called nonpotent if

X0 = X0, (7.1.5)

that is, if its scope is not larger than itself.

Examples:

1. Trivially, X itself and ∅ are nonpotent.
2. The neutral element of a group is nonpotent.
3. In a metric space, any single point is nonpotent for the operation of

convex hull.
4. More generally, any convex set is nonpotent because it only generates

itself. This generalizes the previous example, as a single point always
constitutes a convex set in a metric space.

5. In a topological space, any single open set is nonpotent, because it can
only generate itself by taking a union or intersection. It can, however,
generate a σ-algebra because taking its complement yields a set that is
disjoint from itself.

6. A point x0 is nonpotent for a dynamical system iff it is a fixed point,
that is,

x(t) = x0 for all t for which the solution x(t) exists. (7.1.6)

7.2 Complexity

With Definition 7.1.1 at hand, we can also relate the generation of structure
to the concept of (algorithmic) complexity, as introduced by Kolmogorov
[71], with independent related ideas by Solomonoff [103] and Chaitin [22].
The algorithmic complexity of a structure is defined as the length of the
shortest computer program that can generate it. (While this length depends
on the universal computer (Turing machine) used to implement it, trans-
lating it to another universal Turing machine only introduces an additive
constant that can be controlled independently of the particular structure or
program. This bound depends only on the Turing machines in question,
because by their universality, they can simulate each other. We refer to [81]
for details.)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Thus, the algorithmic complexity essentially measures the most com-
pact or condensed description of a structure. What can be encoded in a
short program is not very complex in this sense. Random structures, on
the other hand, cannot be compressed, and hence possess high algorithmic
complexity.1

The concept of algorithmic complexity is thus concerned with the effi-
ciency of an encoding. Once one knows how to describe a structure in
principle, one essentially understands it, according to this concept. Run-
ning the actual program is considered to be a trivial aspect. In Definition
7.1.1, we have emphasized a similar aspect. Once we know the genera-
tors, the relations or constraints between them and the generative rules, we
understand the structure. Therefore, we can also measure the complexity
of a mathematical structure in this sense when we compute or estimate the
difficulty of such an encoding. We could, for instance, count the number of
generators, the length of the description of the constraints, and an encod-
ing of the generative rules. We would then consider this the algorithmic
complexity of a mathematical structure. Again, concrete numbers would
depend on the encoding scheme employed, but when that is universal, this
dependence would again only lead to an additive bound independent of the
particular structure under consideration.

A key aspect of the preceding is that symmetries reduce the algorithmic
complexity of a structure. Rather than listing all elements of a structure, it
is more efficient to describe it in terms of a minimal collection of elements
togetherwith the symmetry groupwhich allowsone to reconstruct thewhole
structure. Of course, symmetry groups by themselves can be complex in
the sense that they require a long description. But the point here is that
an important part of the complexity of a structure is represented by its
symmetry group.

7.3 Independence

In this section, we shall refine the concepts of minimality and independence
of Definitions 7.1.4 and 7.1.5. The idea is to represent sets of independent
elements as the simplices of a simplicial complex.

Definition 7.3.1 A matroid consists of a set V and a nonempty simplicial
complex�, called the independence complex,with vertex setV that satisfies
the exchange property: Whenever σ, τ are simplices of � with |σ| < |τ |,
then there exists some vertex v ∈ τ\σ for which σ+v (the simplex spanned
by the vertices of σ together with v) is also a simplex of �.

The vertex sets of the simplices of the independence complex � are
called the independent sets.

1 It is not always desirable to consider random structures as complex, simply because
they are not very structured. Such aspects have been intensively discussed in the theory
of complex systems, and other complexity measures have been proposed that avoid this
consequence, but this is not our topic here, and I shall discuss this elsewhere.
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In our subsequent notation, we shall be somewhat sloppy and often do
not distinguish between subsets of V and the simplices they span in �.

We observe that the exchange property implies

Lemma 7.3.1 All maximal simplices of a matroid have the same number
of vertices. �

Definition 7.3.2 The number of vertices of the maximal simplices of a
matroid is called its rank.

Examples:

1. Let V be a vector space. Letting every vector space basis span a simplex
yields a matroid. The exchange property expresses the fact that any
member of a basis can be exchanged against another one. When V is
defined over the real or complex numbers and carries a Euclidean norm
‖.‖, we could also take as vertex set the elements v with ‖v‖ = 1. We
could also take the one-dimensional linear subspaces of V as vertices.
Of course, the matroid in this example has an infinite vertex set when
the vector space is defined over an infinite field. We could, however,
apply the construction with some finite subset instead of all of V , in
order to get a finite matroid. For instance, we can consider the vector
space Z

n
2 over the field Z2. For example, in Z

2
2, we have the threeVector space Z

n
2

basis sets {(1, 0), (0, 1)}, {(1, 1), (0, 1)}, {(1, 0), (1, 1)}. Thus, the cor-
responding matroid consists of the three vertices (1, 0), (0, 1), (1, 1)
connected pairwise by edges. Thus, it is a triangle, that is, the complete
graph K3Complete graph K3

•(1,0)

•(1,1)

• (0,1)............
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

............................................................................................................................................................

.............................................................................................................................................

2. Let G be a finite graph with edge set E . We recall some concepts from
Sect. 3.4.1. A cycle is a subgraph of G of the form (v0, v1), (v1v2), . . . ,

(vmv0) where (vi−1vi ), i = 1, . . . , m are edges where all the vertices
v j involved are different, except that the last vertex coincides with the
first. A forest is a subgraph of G that contains no cycles. A connected
forest is a tree. We readily check a few observations. Assume that the
graph is connected, that is, for any two vertices x, y, there exists an
edge path joining them, that is, edges (x1x2), (x2x3) . . . (xk−1xk) with
x1 = x, xk = y. When the graph then has m vertices, |G| = m, then a
forest has at most m − 1 edges, and each forest with m − 1 edges is a
tree. Conversely, every connected subgraph with m − 1 edges is a tree.
In particular, any forest can be extended to a tree.

We then have the matroid M(G)with its vertex set being the edge set
E of G and the simplices representing the forests in G. By the preceding

http://dx.doi.org/10.1007/978-3-319-20436-9_3
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observations, the dimension of the maximal simplices is m −2, because
they have m − 1 vertices (i.e., edges of G).

We leave it to the reader as an easy exercise to generalize this to
non-connected graphs. We now discuss some examples of connected
graphs.
The complete graph K2 has a single edge, and therefore M(K2) consists
of a single vertex, K2

• •............................................................................................................................................................1 •1

where in this and the following diagrams, we represent a graph on the
left and its matroid on the right.

K3 has three edges, and any two of them span a tree; thus K3

•

•

•..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

1

............................................................................................................................................................2

.............................................................................................................................................

3

•1

•2

• 3..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

............................................................................................................................................................

.............................................................................................................................................

K4 has six edges, each of which is contained in two triangles (which
are not trees) and four trees of maximal size, that is, with three edges, K4

but here, we have not depicted the full matroid. The diagram needs to be
read as follows. Any two vertices are connected because any two edges
of the graph constitute either a tree or a forest. Thus, the edge graph
of M(K4) is the complete graph K6. Next, three vertices of our partial
representation of M(K4) are on a straight line iff the corresponding
edges in K4 form a triangle; for example, the edges 1, 2, 5 form the
triangle A, B, C and therefore are represented by three vertices on a
straight line. Conversely, any three edges not represented by vertices on
a straight line constitute a tree in K4. Thus, for example, the edges 1 and
4 form trees with the edges 2, 5 or 6. Thus, we need to fill a 2-simplex
in M(K4) for every triple of vertices not lying on a straight line.

3. Let C be a convex set in a metric space. The points of C that are not
between twoother points are called the extreme points ofC . For instance,
whenC is a triangle togetherwith its interior in the Euclidean plane, then
the three vertices are its extreme points. Similarly, a convex polygon in
the Euclidean plane has only finitely many extreme points, its vertices.
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In contrast, the unit disk {x ∈ R
2 : ‖x‖ ≤ 1} has the entire unit circleConvex polygon

as extreme points.
The corresponding matroid then has at its vertex set the extreme

points of C , and any subcollection of them defines a simplex. Thus,
when C has only finitely many extreme points, say m of them, then this
matroid is simply an (m − 1)-dimensional simplex.

4. We return again to the recombination (4.1.31) of binary strings of some
fixed length n. Here, however, the exchange property of matroids is notGenetic recombina-

tion satisfied. For instance, as pointed out after (4.1.32), from the iterated
recombination of x = (0000) and y = (1111), we can obtain any
string of length 4. But the four strings x1 = (1000), x2 = (0100), x3 =
(0010), x4 = (0001) are also independent generators of the collection
of strings of length 4.

Definition 7.3.3 Let A be a subset of the vertex set V of a matroid �V .
The simplicial complex�A containing those simplices of� whose vertices
are all in A is then a submatroid of �V . The rank of �A is then denoted by
r(A).

Equivalently, the independent sets of A ⊂ V are those subsets of A that
are independent sets of V .

Of course, for this definition to be meaningful, it needs to be checked
whether such a�A is amatroid itself.But the crucial condition, the exchange
property, is obviously satisfied because ifσ, τ are simplices of�A, then they
are also simplices of � and hence satisfy the exchange property whenever
|σ| < |τ |.

Lemma 7.3.2 The rank function of a matroid assigns to every A ⊂ V a
nonnegative integer or the value ∞; it satisfies

r({v}) = 1 for every v ∈ V, (7.3.1)

r(A) ≤ |A| for every A ⊂ V, (7.3.2)

r(A) ≤ r(A ∪ {v}) ≤ r(A) + 1 for every v ∈ V, A ⊂ V, (7.3.3)

r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) for every A, B ⊂ V (7.3.4)

r(A) ≤ r(B) for everyA ⊂ B ⊂ V . (7.3.5)

Proof (7.3.1), (7.3.2) and (7.3.3) are clear, and (7.3.4) can then be derived
by induction on the size |B|. (7.3.5) also follows from (7.3.3).

Definition 7.3.4 Let (V, �V )be amatroid offinite rank, that is, r(V ) < ∞.
We define the closure of A ⊂ V as

A := {v ∈ V : r(A ∪ {v}) = r(A)}. (7.3.6)

This closure operator satisfies the properties (i), (ii), and (iv) of Theorem
4.1.2, that is,

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Lemma 7.3.3

A ⊂ A for everyA ⊂ V, (7.3.7)

A ⊂ B ⇒ A ⊂ B for every A, B ⊂ V, (7.3.8)

A = A for everyA ⊂ V . (7.3.9)

Proof (7.3.7) and (7.3.9) are easy. To see (7.3.8), and to understand the
meaning of the definitions more generally, it is useful to disentangle what
v ∈ A means. It says that the maximal simplices in �A∪{v} have the same
rank as those in �A, or equivalently, that the maximal independent sets in
A and A ∪ {v} are of the same size. Thus, when we add v to a maximal
independent set of A, the result is no longer independent. Now, turning this
the other way around when considering B, if v were not in B wewould find
a maximal independent set BI in B which remains independent when we
enlarge it by v. But taking subsets leaves independence unaffected. That
is, both the intersection of BI with A and the intersection of BI ∪ {v} with
A ∪ {v} would be independent as well. Also, the intersection of a maximal
independent set like BI with A yields a maximal independent subset AI of
A. But since the independent set AI ∪{v} is then larger than AI , this would
contradict v ∈ A. This shows that when v ∈ A we must also have v ∈ B
whenever A ⊂ B. Therefore A ⊂ B, that is (7.3.8). �

In general, however, property (iii) of Theorem 4.1.2 is not satisfied. In
fact, none of the above three examples of matroids satisfies that property.
As these examples show, typically, from a union of two sets of generators
one can generate more than the union of what can be generated by the two
sets individually.

Definition 7.3.5 The submatroid generated by a closed subspace A = A
of V is called a flat.

Examples:

1. For a finite dimensional vector space V , the matroid whose independent
sets are the vector space bases of V , the rank is equal to the dimension.
For a subset A ⊂ V , A is the vector subspace generated by A, and a flat
therefore is simply a linear subspace of V .

2. For the matroid of forests in a graph G with edge set E , the clo-
sure of A ⊂ E contains all those e ∈ E that when added to A cre-
ate a cycle. That means that there exists a path consisting of edges
(x1x2), (x2x3), . . . , (xk−1xk) ∈ A such that e = (xk x1).

3. For the matroid of a convex set C in Euclidean space with finitely many
extreme points, v ∈ A if v is in the convex hull of A. Since v is an
extreme point, this is only possible if v ∈ A. Thus, every A ⊂ V is
closed.

Matroids were first introduced by H. Whitney [117]. References for
matroids are [91, 113].

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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In this chapter, we shall take up the concepts introduced in Sect. 2.3.
Before starting this chapter, let me point out that much of the termi-

nology of category theory has been chosen without any regard or respect
for established terminology in other fields. Instances are the notions of
“limit” or “topos” and even the notion of “category” itself which had been
employed since the times of Aristotle with a meaning almost opposite to
that of category theory.1 However, I shall make no attempts to change that
terminology here. (Let me also remark here that the physicists seem to be
more responsible in this regard. They usually coin new terms for new con-
cepts or phenomena, from entropy to the bewildering variety of atomic or
subatomic particles, from electrons, protons and neutrons to quarks, lep-
tons, hadrons, bosons, fermions,. . ., with certain exceptions like the very
unfortunate term “atom” meaning “indivisible”.)

Category theory embodies some important principles which I shall list
here.

1. Objects should not be definedor characterizedby intrinsic properties, but
rather by their relations with other objects. Objects that are isomorphic
in terms of relations therefore cannot be distinguished.

2. Constructions can be reflexively iterated, i.e., when constructions are
performed with objects at a certain level, we can pass to a higher level,
where the objects are the constructions of the previous level. Put diffe-
rently, the relations between objects at one level can become the objects
at the next level.

1 Some history about how those names evolved can be found in [82], and of course, this
development possesses some internal consistency that may serve as a justification for
the choice of terminology.

© Springer International Publishing Switzerland 2015
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8.1 Definitions

We recall the basic

Definition 8.1.1 A category C consists of objects A, B, C, . . . and arrows
or morphisms

f : A → B (8.1.1)

between objects, called the domain A = dom( f ) and codomain B =
cod( f ) of f . Arrows can be composed, that is, given f : A → B and
g : B → C , there is an arrow

g ◦ f : A → C. (8.1.2)

(The requirement for the composition is solely that cod( f ) = dom(g).)
This composition is associative, that is,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f (8.1.3)

for f : A → B, g : B → C, h : C → D.
For each object A, we have the identity arrow (“doing nothing”)

1A : A → A (8.1.4)

which satisfies

f ◦ 1A = f = 1B ◦ f (8.1.5)

for all f : A → B.

We also recall the underlying idea that the objects of a category share
some kind of structure, and that the morphisms then have to preserve that
structure. A category thus consists of objects with structure and directed
relations between them. A very useful aspect is that these relations can be
considered as operations.

We also recall some general constructions from Sect. 2.3. For a category
C of categories, the objects are categoriesC, and themorphisms F : C → D
of C, called functors, then preserve the category structure. This means that
they map objects and arrows of C to objects and arrows of D, satisfying

F( f : A → B) is given by F( f ) : F(A) → F(B) (8.1.6)

F(g ◦ f ) = F(g) ◦ F( f ) (8.1.7)

F(1A) = 1F(A) (8.1.8)

for all A, B, f, g. Thus, the image of an arrow under F is an arrow between
the images of the corresponding objects (domain and codomain) under F ,
preserving compositions, and mapping identities to identities.

Definition 8.1.2 A category C is called small if the collection of objects
and the collection of arrows of C are both sets (taken from a fixed universe
U as described in Sect. 2.2). Otherwise, it is called large.

C is called locally small if for any two objects, the collection of arrows
between them is a set.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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We should note that many important categories are not small. For
instance, Sets is large. It is locally small, however, because for any two
sets X, Y , the collection of mappings from X to Y is a set.

The collection of arrows { f : A → B} between two objects A, B of C
is written as

HomC(A, B) (8.1.9)

and called a hom-set (when C is locally small).
For two categories C, D, we have the category Fun(C, D) =: DC (the

latter notation will be explained below in (8.2.63)) of all functors F : C →
D whose morphisms are called natural transformations. Thus, a natural
transformation

θ : F → G (8.1.10)

maps a functor F to another functor G, preserving the structure of the
category Fun(C, D). A natural transformation θ : F → G then, for each
C ∈ C, has to induce a morphism

θC : FC → GC (8.1.11)

such that the diagram

FC
θC−−−−→ GC

F f

⏐
⏐
�

⏐
⏐
�G f

FC ′ θC ′−−−−→ GC ′

(8.1.12)

commutes.

Definition 8.1.3 A functor F : C → D is faithful if for all objects C,

D ∈ C,
FC,D : HomC(C, D) → HomD(FC, F D) (8.1.13)

is injective. It is full if FC,D is always surjective.
F is an embedding if it is faithful, full, and injective on objects of C.

Being faithful is weaker than being injective on arrows, because it
requires only injectivity on arrows between the same objects.

Definition 8.1.4 Given a categoryC, the opposite categoryCop is obtained
from C by taking the same objects, but reversing the direction of all arrows.

Thus, each arrow C → D in Cop corresponds to an arrow D → C in C.

8.2 Universal Constructions

Definition 8.2.1 Let C be a category. 0 ∈ C is an initial object if for any
object C ∈ C, there is a unique morphism

0 → C. (8.2.1)
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1 ∈ C is a terminal object if for any object C ∈ C, there is a unique
morphism

C → 1. (8.2.2)

This definition gives examples of a so-called universal mapping prop-
erty. In diagrammatic language, if the category has an initial element 0,
then for any morphism

C D................................................................................................................. ............ (8.2.3)

we obtain a commuting diagram

0

C D

..............................................................................................................
...
.........
...

............................................................................................................................................................................ .........
...

................................................................................................................. ............ (8.2.4)

with the unique morphisms from 0 to C and D. This is an equivalent defi-
nition of an initial object.

This is an instance of a standard procedure in category theory to define
certain objects or constructions, and we shall see several examples in the
sequel. The general principle is that one wishes to define special objects
without referring to their internal structure, but rather characterize them
uniquely in terms of their relations to other objects. This is achieved by
identifying universal properties that uniquely define that special object.

In this sense, it is clear, or at least easily checked, that initial (terminal)
objects are unique up to isomorphism—if they exist. The latter need not be
the case. In a set with more than one element, there is no initial or terminal
element, as there are no arrows between different elements.

Here are some further examples of initial and terminal objects.

1. ∅ and X are initial and terminal elements for the poset structure ofP(X).
That is, we have

∅ ⊂ A (and also A ∩ ∅ = ∅) (8.2.5)

and

A ⊂ X (and also A ∪ X = X) (8.2.6)

for all A ∈ P(X).
2. In general, in a poset A, an element a is initial iff a ≤ b for all b ∈ A, that

is, if a is a smallest element. Such an element need not exist. Likewise, a
terminal object would be a largest object. For instance, the poset (Z, ≤)Poset (Z, ≤)

contains neither a smallest nor a largest element, and therefore, as a
category, it does not possess an initial or terminal element.

This, in fact, is an instance of a general aspect of the subsequent construc-
tions. Specific objects in a category will be defined in terms of universal
properties, but for a particular category, it then remains to check whether it
possesses such an object.
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3. In the category of sets, the empty set is initial whereas any one-element
set is terminal. (Recall from (2.1.1) that there is also a map s from the
one element set 1 = {1} to any non-empty set S; simply take any s ∈ S
and put s(1) = s. Since the element s ∈ S is arbitrary here, this map is
not unique whenever S contains more than one element. In contrast, the
map σ : S → 1 with σ(s) = 1 for all s ∈ S is unique as required for a
terminal object.)

4. In the category of groups, the trivial group with a single element is both
initial and terminal.

5. In the category of commutative rings with identity 1, the trivial ring with
0 = 1 is still terminal, but now the ring of integers Z is initial. To see Ring Z

this, let R be a commutative ring with identity 1. We denote the neutral
element of the addition + by 0, and the additive inverse of 1 by −1. We
then map 0 ∈ Z to 0 ∈ R, and likewise 1 ∈ Z to 1 ∈ R. In order to
have a ring homomorphism, we then have to map n ∈ Z to 1 + · · · + 1
(n times) for n > 0 and to (−1) + · · · (−1) (−n times) for n < 0. For
instance, when R = Z2 , this means that an even n ∈ Z gets mapped to Ring Z2

1 and an odd one to 0.
Thus, Z is indeed initial in the category of commutative rings with 1.
Note that we cannot map the trivial ring with 0 = 1 to any nontrivial
ring R with 1 (in which case 0 �= 1 in R) because 0 has to be mapped to
0, but 1 has to be mapped to 1. However, we can map any ring R to this
trivial ring. Thus, the trivial ring is the terminal object in this category.

6. Somewhat similarly, in the category of Boolean algebras, the Boolean
algebra B0 = {0, 1} is initial, because for any Boolean algebra B, we

Boolean algebra
{0, 1}

map 0, 1 ∈ B0 to 0, 1 ∈ B. The trivial Boolean algebra consisting only
of 0 is again terminal.

7. In Sect. 2.3, we have introduced two different categories of metric
spaces. The objects are the same. In the first category, morphisms are
isometries, that is, mappings f : (S1, d1) → (S2, d2) with d2( f (x),

f (y)) = d1(x, y) for all x, y ∈ S1. Of course, we can map the empty
metric space isometrically to any other metric space, and so, this is
an initial object. There is no terminal object in this category, however,
because there is no metric space (S∞, d∞) to which we can map any
other metric space (S, d) isometrically (you may want to reflect a lit-
tle about this example, as it involves some not entirely trivial aspect).
In the second category of metric spaces, morphisms had to satisfy
d2( f (x), f (y)) ≤ d1(x, y) for all x, y ∈ S1, that is, be distance nonin-
creasing.Again, the emptymetric space is initial. This time, however,we
have the distance nonincreasing map g : (S, d) → (S0, d0), the trivial
metric space (S0, d0) consisting of a single element x0, with g(y) = x0
for every y ∈ S, and so, the trivial metric space becomes a terminal
object.

8. Somewhat similarly, in the category of graphs, the initial object is the
empty graph and the terminal object is the graph with a single vertex v0
and an edge from v0 to itself.

Perhaps, we can discern a rough pattern from these examples. Whenever
the empty set is an object of the category under consideration, it can be

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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taken as the initial object. When, in contrast, an object of a category needs
to possess certain distinguished elements, then any initial object also has
to contain those, and when, as in the case of commutative rings with 1,
such an element generates a series of other elements, then an initial object
also has to allow for such a generative process. The terminal object has to
support the relations or operations of the objects of the category in question
in a minimal manner. Therefore, it typically contains a single element.

We had already observed in (2.1.1) that we can consider any element
s of a set S as the image of a morphism s1 : 1 → S by simply putting
s1(1) = s. More generally, whenever the category C possesses a terminal
object 1, an arrow 1 → C for an object C is called a global element of C .

Definition 8.2.2 Let C be a category, and I another category, called an
index set, whose objects will be denoted by i, j, . . . . A diagram of type I
in C is then a functor

D : I → C, (8.2.7)

and we write Di in place of D(i), and Di→ j for the morphism D(i → j) :
Di → D j that is the image of a morphism i → j .

Thus, we select certain objects of C by equipping them with an index
i ∈ I, and we require that these index elements then carry the arrows from I.

We then have the category CI = Fun(I, C) (see (8.2.63) below for an
explanation of the notation) of diagrams in C of type I.

When I = {1} =: 1 has only a single object2 and only the identity arrow
of that object, then a diagram is simply an object in C. In particular, any
object of C can be identified with a functor

1 → C, (8.2.8)

up to isomorphism, as always. For instance, the elements of a set S may
be represented by arrows from a one-element set into S, as we had already
observed in (2.1.1). Thus, (8.2.8) tells us that in general, the objects of a
category can be considered as functors or diagrams.

Similarly, when I = {1, 2} =: 2 has only two objects and only their
identity arrows and one non-identity arrow 1 → 2, then each functor

2 → C (8.2.9)

corresponds to an arrow of C.
We now consider the category Sets of sets and take as the index set the

category � = {1, 0} with two arrows

α, ω : 1 ⇒ 0. (8.2.10)

A corresponding diagram G is then given by a pair of sets with a pair of
arrows

gα, gω : G1 ⇒ G0, (8.2.11)

2 Denoting that object by 1 is not meant to carry any implications; in particular, this
neither means a terminal object nor an identity element. It is simply an arbitrary label,
like others used below, including 0, 2, 3, . . .

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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besides the identity arrows, of course, but those will often be omitted from
our descriptions of categories because they always have to be there and thus
do not deserve explicit mention.

Thus, to each element e of G1, we associate two elements α(e), ω(e) of
G0. This, however, is nothing but a directed graph with edge set G1 and
vertex set G0, with α(e) and ω(e) being the initial and terminal vertex of
an edge. Compare Sect. 3.2.

Definition 8.2.3 A cone over a diagram D consists of an object C of C and
a family of arrows

ci : C → Di for i ∈ I, (8.2.12)

with the property that for each arrow i → j in I, the diagram

C

Di D j

.....................................................................................................................................................................
...
............

ci

..................................................................................................................................................................... .........
...

c j

....................................................................................................................................................................................................................................................................... .........
...

(8.2.13)

commutes.

Such a C has to have arrows to all elements of the indexed family,
respecting morphisms.

Let us compare this with the notion of an initial element. When we take
I = C and D as the identity functor, then a cone forwhich all themorphisms
are unique is an initial element. In general, however, the morphisms from
C to the Di are not unique. In fact, whenever there is a nontrivial morphism
di : Di → Di of some Di to itself, induced by a morphism from i to itself
in I, then di ◦ ci is also sa morphism from C to Di .

We then obtain the category Cone(D) of cones over D, with morphisms

γ : (C, ci ) → (C ′, c′
i ) (8.2.14)

having to satisfy

ci = c′
i ◦ γ for all i ∈ I, (8.2.15)

that is, the diagram

C C ′

Di

........................................................................................................................................................................ .........
...

ci

.....................................................................................................................................................................
...
............

c′
i

....................................................................................................................................................................................................................................................................... ............
γ

(8.2.16)

commutes.

Definition 8.2.4 A limit pi : lim←−−−−−
cone(D)

Ccone(D) → Di , i ∈ I, for a dia-

gram D : I → C is a terminal object in the category Cone(D).

http://dx.doi.org/10.1007/978-3-319-20436-9_3
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Thus, for any cone (C, ci ) over D, we have a unique γ : C →
lim←−−−−−

cone(D)
Ccone(D) with

pi ◦ γ = ci for all i. (8.2.17)

Of course, the terminology “limit” here is rather unfortunate, for two rea-
sons. First, it corresponds to the notion of an inverse or projective limit
in topology, whereas a direct or inductive limit in topology becomes a col-
imit in category theory, as defined below. Secondly, a limit in category
theory has little to do with the concept of a limit as used in analysis. In
fact, while certain constructions of limits of groups or classifying spaces
were indeed originally obtained as limits in the analytical sense of results
of convergence, it was then found that the criterion of convergence can be
replaced by that of universality. For the latter reason, it might be better to
call it a “universal” instead, but it seems that we cannot change the termi-
nology established in the field. In any case, it is a universal construction
that includes many important constructions as special cases. For instance,
to start with the most trivial case, when I is the empty category, there is
only one diagram D : I → C, and a limit is then simply a terminal element
in C. The general concept of a limit then generalizes this example in the
sense that one not only looks at morphisms to objects, but at morphisms
to diagrams, that is, specific arrangements of several objects connected by
morphisms.

When I = {1} =: 1 has only a single object and only the identity arrow
of that object, then, as we have already observed, a diagram is an object in
C. A cone is then simply an arrowC → D. Likewise, when I = {1, 2} =: 2
has only two objects and only their identity arrows and one non-identity
arrow 1 → 2, then each functor

2 → C (8.2.18)

corresponds to an arrow of C. In this case, a cone is a commutative diagram

C

D1 D2

.....................................................................................................................................................................
...
............

........................................................................................................................................................................ .........
...

....................................................................................................................................................................................................................................................................... ............ (8.2.19)

In the case of the category 1 as the index category, the limit of a diagram
(8.2.8) is that object itself, that is, in that case, a diagram is its own limit.
This example is not very helpful, however, for understanding the concept
of a limit. Likewise, for the index category 2, a terminal cone is simply an
arrow D1 → D2. In order to come to a less trivial case, let now I = {1, 2}
be a two-element set considered as a category, i.e., the only arrows are the
identity arrows of the elements. A diagram D : I → C is then simply a
pair D1, D2 of objects of C, and a cone is then an object C with arrows

D1
c1←−−−− C c2−−−−→ D2, (8.2.20)
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A terminal such cone is called a product D1× D2. Thus, a product D1× D2
of the two objects D1, D2 is an object with morphisms d1 : D1 × D2 →
D1, d2 : D1 × D2 → D2 (which are also called projections) and the
universal property that whenever C is an object with morphisms c1 : C →
D1, c2 : C → D2, then there is a unique morphism c : C → D1 × D2
with c1 = d1 ◦ c, c2 = d2 ◦ c. In particular, a product, like other such
universal objects, is unique up to (unique) isomorphism. The corresponding
commutative diagram is

C

D1 lim←−−−−−
cone(D)

Ccone(D) D2

...........................................................................................................................................................................................................................................................................................
.
............

............................................................................................................................................................................................................................................................................................ ...........
.

..........................................................................................................................................................................................................
c1

.............................................................................................................................................................................................. ............
c2

...........................................................................................................
...
.........
...

(8.2.21)

for any cone C over the diagram. Thus, again, for any object C in the
same constellation as lim←−−−−−

cone(D)
Ccone(D), there has to exist a unique arrow

from C to lim←−−−−−
cone(D)

Ccone(D), respecting the constellation. In this sense,
this generalizes the notion of a terminal object in a category, which simply
corresponds to the case where the constellation in question is trivial. So,
this allows us to understand the general concept of a limit as a natural gen-
eralization of that of a terminal object. Similarly, below we shall introduce
colimits as such a generalization of initial objects.

Let us return to the specific example of products. The standard example
motivating the name and the construction is of course the Cartesian product
of sets. Thus, let S, T be sets, and put

S × T = {(s, t) : s ∈ S, t ∈ T } (8.2.22)

πS(s, t) = s, πT (s, t) = t.

For any set X with maps xS : X → S, xT : X → T , we then have the
required commutative diagram

X

S S × T T

...........................................................................................................................................................................................................................................................................................
.
............

xS

............................................................................................................................................................................................................................................................................................ ...........
.

xT

......................................................................................................................................................................................................................................................................
πS .......................................................................................................................................................................................................................................................... ............

πT

..............................................................................................................
...
.........
...

(xS, xT )

(8.2.23)

When we have sets equipped with algebraic or other structures, like
monoids, groups, rings, vector spaces, we can then simply equip their Carte-
sian products with the corresponding product operations or structures. For
instance, when G, H are groups, their Cartesian product G × H becomes
a group with the group law defined in (2.1.138), that is,

(g1, h1)(g2, h2) = (g1g2, h1h2). (8.2.24)

G×H equippedwith (8.2.24) is then the product ofG and H in the category
of groups. (Note that in (2.1.138), we hadwritten the product simply as G H
in place of G × H .)

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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Similarly, we had already defined the product (X × Y,O(X × Y )) of
two topological spaces (X,O(X)), (Y,O(Y )) in Sect. 4.1. Again, this is the
product within the category of topological spaces, as the reader will readily
check.

Again, products need not exist. Let us consider once more the example
where our category is given by a poset. A product a × b of two elements
a, b then has to have arrows to a and b, that is, has to satisfy

a × b ≤ a and a × b ≤ b, (8.2.25)

and since it has to be limit, whenever c satisfies c ≤ a, c ≤ b, then also
c ≤ a × b. That is, a × b is the greatest lower bound of a and b, and this
need not exist. When the poset is the powerset P(X) of a set X , that is, the
set of its subsets, with partial order given by inclusion, then we have

a × b = a ∩ b, (8.2.26)

that is, the product is given by the intersection, because a ∩ b is the largest
common subset of a and b.

We also observe that when C possesses a terminal object 1 and products,
then for any object C , the product 1 × C is isomorphic to C itself; this is
easily inferred from the commutative diagram

C

1 1 × C C

.........................................................................................................................................................................
...
............

..............................................................................................................
...
.........
...

................................................................................................................ .................................................................................................... ............

............................................................................................................................................................................ .........
...

,

(8.2.27)

with the obvious morphisms.
Let us now recall the category � = {1, 0} (8.2.10) with two arrows

1 0
............................................................................................................................................... ............

α
............................................................................................................................................... ............

ω (8.2.28)

A diagram D for � = {1, 0} is given by a pair of arrows

D1 D0
............................................................................................................................................... ............

dα

............................................................................................................................................... ............

dω
(8.2.29)

(identity arrows not shown), and a cone over D then is given by a commu-
tative diagram

C

D1 D0

.......................................................................................................................................
....
............

c1

........................................................................................................................................... ........
....

c0

............................................................................................................................................... ............
dα

............................................................................................................................................... ............

dω
(8.2.30)

with

dα ◦ c1 = c0 and dω ◦ c1 = c0, that is, dα ◦ c1 = dω ◦ c1. (8.2.31)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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A limit for this diagram is called an equalizer of the morphisms dα and
dω . In the category of sets, the equalizer of f : X → Y and g : X → Y
consists of the set of those x ∈ X with f (x) = g(x), with the inclusion
map into X . In the category of groups, the equalizer of two homomorphisms
χ, ρ : G → H is given by the kernel of χ(ρ)−1, that is, by those elements
g ∈ G that satisfy χ(g)(ρ(g))−1 = e.

As another example, let us consider the following index category I =
{1, 2, 3}

1

2 3

..............................................................................................................
...
.........
...

................................................................................................................. ............ (8.2.32)

A limit of a corresponding diagram

D1

D2 D3

..............................................................................................................
...
.........
...

dα

................................................................................................................. ............
dβ

(8.2.33)

is then called a pullback of dα, dβ ; it is universal for the diagram

lim←−−−−−
cone(D)

Ccone(D) D1

D2 D3

..............................................................................................................
...
.........
...

dα

................................................................................................................. ............
dβ

........................................ ............

...........................................................................................................
...
.........
...

(8.2.34)

In the category of sets, the pullback P of f : X → Z , g : Y → Z consists
of the pairs (x, y) with x ∈ X, y ∈ Y, f (x) = g(y) and the projection
morphisms πX ,πY to X and Y . Thus, we have the diagram

P X

Y Z

..............................................................................................................
...
.........
...

f

................................................................................................................. ............
g

................................................................................................................. ............
πX

..............................................................................................................
...
.........
...

πY

(8.2.35)

and the condition f (x) = g(y) becomes

f ◦ πX = g ◦ πY , (8.2.36)

that is, the minimal requirement for the diagram (8.2.35) to commute. In
particular, when we have any other commuting diagram
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S X

Y Z

..............................................................................................................
...
.........
...

f

................................................................................................................. ............
g

................................................................................................................. ............
sX

..............................................................................................................
...
.........
...

sY

(8.2.37)

we get the map sP : S → P with sP (s) = sX (s), sY (s) which is well
defined because of the commutativity of (8.2.37), that is, f ◦ sX (s) =
g ◦ sY (s) for all s ∈ S. In particular, when f is the inclusion i : Z ′ → Z
of a subset Z ′ of Z , then the pullback is the subset g−1(Z ′) of Y . The
diagram is

g−1(Z ′) Z ′

Y Z

..............................................................................................................
...
.........
...

i

................................................................................................................. ............
g

.......................................................................................... ............
g

..............................................................................................................
...
.........
...

i

(8.2.38)

If g is an inclusion i ′′ : Z ′′ → Z as well, then the pullback is simply the
intersection Z ′ ∩ Z ′′.

Analogously for sets with structures, like groups or topological spaces.
Again, for our poset example, if we have a ≤ c, b ≤ c, then a pullback

would be some d with d ≤ a, d ≤ b and whenever e ≤ a, e ≤ b, then
also e ≤ d. Such a d would be the greatest lower bound of a and b,
or their meet in the sense of Definition2.1.6, see (2.1.36). Again, such
a d need not exist. Thus, the notion of a meet in a poset can be given
a diagrammatical formulation. Similarly, for our join, see (2.1.37), one
could give a diagrammatical formulation as a pushforward. We leave it to
the reader to develop this definition and to then apply it to this and other
examples.

We also note that when the categoryC possesses a terminal object 1, then
with D3 = 1, the pullback of (8.2.34) is simply the product D1 × D2. This
follows because since there exist unique morphisms from D1 and D2 to 1,
the diagrams for pullbacks reduce to the corresponding ones for products,
see (8.2.20), (8.2.21). In particular, a category with a terminal object and
pullbacks also possesses products.

We also observe that equalizers can be seen as pullbacks. We simply
play around with the diagrams (8.2.30) and (8.2.34) and present them as

C

D1 D0 D1

.....................................................................................................................................................................
...
............

c1

........................................................................................................................................................................ .........
...

c1

..............................................................................................................
...
.........
...

c0

................................................................................................................. ............
dα

.............................................................................................................................
dω

(8.2.39)

http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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and
lim←−−−−−

cone(D)
Ccone(D)

D2D1 D3................................................................................................................. ............
dα

.............................................................................................................................
dβ

...................................................................................................................................................
...
............

...................................................................................................................................................... .........
...

...........................................................................................................
...
.........
...

(8.2.40)

(where we have added the vertical morphism in (8.2.40) whose existence
follows from the commutativity of the diagram) and see that (8.2.39) is a
special case of (8.2.40), with D1 = D2.

As an illustration of pullbacks, let us consider the following

Lemma 8.2.1 The arrow f : A → B is a monomorphism iff the pullback
of f along itself is an isomorphism, that is, iff the diagram

A A

A B

..............................................................................................................
...
.........
...

f

................................................................................................................. ............
f

................................................................................................................. ............
1A

..............................................................................................................
...
.........
...

1A

(8.2.41)

is a pullback.

Proof By definition, f is a monomorphism iff for any two arrows g1, g2 :
C → A, f ◦ g1 = f ◦ g2 implies g1 = g2. We consider the diagram

C

A A

A B

.................................................................. .........
...

....................................................................................................................................................................................... ............

g1.................................................................................................................................................................................................. ........
....

g2

................................................................................................................. ............

1A..............................................................................................................
...
.........
...

1A

..............................................................................................................
...
.........
...

f

................................................................................................................. ............
f

(8.2.42)

When f is a monomorphism, this diagram commutes, with the unlabelled
arrow C → A being given by g1 = g2. Conversely, when f is a pullback
along itself, this implies that there exists an arrow, which we now call g :
C → A, that makes the diagram commutative. But then g1 = 1A ◦ g = g2.

�

Also, pullbacks satisfy functorial properties. For instance, we have the
useful
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Lemma 8.2.2 Consider a commutative diagram of the form

X Y

VU

Z

W

................................................................................................................. ............

................................................................................................................. ............

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

................................................................................................................. ............

................................................................................................................. ............

..............................................................................................................
...
.........
...

(8.2.43)

If either the two subdiagrams
X Y

VU

...................................... ............

...................................... ............

...................................
...
.........
...

...................................
...
.........
... ,

Y

V

Z

W

...................................
...
.........
...

...................................... ............

...................................... ............

...................................
...
.........
... (that is, the left and

the right subdiagram)

or the two subdiagrams
X Z

WU

...................................... ............

...................................... ............

...................................
...
.........
...

...................................
...
.........
... ,

Y

V

Z

W

...................................
...
.........
...

...................................... ............

...................................... ............

...................................
...
.........
... (that is, the outer and

the right diagram) are pullbacks, then so is the third.

Proof Let us prove the first claim and leave the second one to the reader.
Thus, assume that we have the following commutative diagram of black
arrows (in this diagram, the steps of the proof will already be indicated by
colors)

(8.2.44)

We then need to prove that there exists a morphism α : A → X making
the diagram commute. Since the right diagram is a pullback, and since we
have morphisms from A to Z and to V (composing the morphism from A
to U with that from U to V ), we get a morphism β : A → Y so that the
resulting diagram commutes. Thus, we now have arrows from A to Y and
to U , and we can indeed use the pullback property of the left diagram to
get the desired morphism α : A → X . �

We say that a category possesses limits, products, equalizers,
pullbacks, . . . , whenever the corresponding limit objects always exist in
that category. For instance, it possesses (binary) products whenever for any
two objects A, B, their product A × B exists. In fact, whenever such binary
products exists, then products of any finite number of objects also exist in
that category. This is what is meant by the existence of products.
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Similarly,a functor F between categories preserves limits, products, . . . ,
if it maps the relevant diagrams in one category to the corresponding dia-
grams in the other one. Thus, for instance, F preserves products when we
canonically have F(A × B) = F(A) × F(B) for all objects A, B.

Analogously to limits, we can also define colimits (also called direct or
inductive limits). In detail, a cocone for the diagram D : I → C is given
by an object B ∈ C and morphisms bi : Di → B with

b j ◦ Di→ j = bi for all morphisms i → j in I. (8.2.45)

A colimit qi : Di → lim−−−−−→
cone(D)

Ccone(D) is then an initial object in the

category of cocones. Thus, for every cocone (B, bi ) for D, we have a
unique λ : lim−−−−−→

cone(D)
Ccone(D) → B with

bi = λ ◦ qi for all i. (8.2.46)

For the two-element set I as a category as in the definition of products,
an initial such cone is called a coproduct D1 + D2. The corresponding
commutative diagram is

C

D1 lim−−−−−→
cone(D)

Ccone(D) D2
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.............................
............

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.........................................

.............................................................................................................................................................................................. ............

c1
.......................................................................................................................................................................................................... c2

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

(8.2.47)

for any cone C over the diagram. Of course, a coproduct in a category C
corresponds to a product in the opposite category Cop, as we are reversing
all the arrows. In the samemanner, we can dualize other universal construc-
tions.

In the categories of sets or topological spaces, the coproduct is simply
the disjoint union. That is, when we have two sets X and Y , we consider
every element of X as being different from any element of Y and form the
corresponding union. That is, when for instance X, Y ⊂ Z with X ∩ Y �= ∅,
every element of that intersection occurs twice in the disjoint union, once
as an element of X and once as an element of Y . In a more formal manner,
we can identify X with X × {0} and Y with Y × {1} in Z × {0, 1} and then
consider the union X × {0} ∪ Y × {1}. The index 0 or 1 then distinguishes
the elements in X from those in Y . One also writes ∪̇ for the disjoint union.
We leave it to the reader to check that this disjoint union is indeed the
coproduct in Sets. Of course, the essential point is that a map on X ∪̇Y is
uniquely specified through its values on X and Y .

In the same manner that the definition of a pullback generalizes that of a
product, we can also generalize the definition of a coproduct. The resulting
structure is called a pushforward. We shall now elaborate on this issue,
although perhaps the construction is already clear to the reader. Thus, we
consider the index category I� = {1, 2, 3}
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1

2

3 ................................................................................................................. ............

..............................................................................................................
...
.........
...

(8.2.48)

A limit of a corresponding diagram

D1

D2

D3 ................................................................................................................. ............
dα

..............................................................................................................
...
.........
...

dβ

(8.2.49)

is then called a pushforward of dα, dβ ; it is universal for the diagram

lim−−−−−−−→
cocone(D)

Ccocone(D)

D1

D2

D3 ....................................................................................................................................................................................................................................................................... ............
dα

..............................................................................................................
...
.........
...

dβ

...........................................................................................................
...
.........
...

............................................................................................................................................................................... .........
...

(8.2.50)

In the category of sets, for the pushforward P� of φ : Z → X, γ : Z → Y ,
we take the disjoint union of X and Y and identify φ(z) ∈ X with γ(z) ∈ Y
for all z ∈ Z and the inclusion morphisms iX , iY from X and Y . Thus, we
have the diagram

P�

X

Y

Z ................................................................................................................. ............
φ

..............................................................................................................
...
.........
...

γ

..............................................................................................................
...
.........
...

iX

................................................................................................................. ............
iY

(8.2.51)

and since we identify φ(z) and γ(z), we have

iX ◦ φ = iY ◦ γ, (8.2.52)

so that the diagram (8.2.51) commutes. As for pullbacks, the diagram
(8.2.51) is universal.

In particular, when we have inclusions X ∩ Y → X, X ∩ Y → Y, X →
X ∪ Y, Y → X ∪ Y , we get the diagram

X ∩ Y X

Y X ∪ Y

..............................................................................................................
...
.........
...

.................................................................................................. ............

.................................................................................................. ............

..............................................................................................................
...
.........
...

(8.2.53)

in which X ∩ Y is a pullback and X ∪ Y is a pushforward.
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Analogously for meet and join in a poset.
We now describe a construction that is not given by limits or colimits.

Definition 8.2.5 Let the category C possess products. The exponential3of
objects B and C is

an object C B and an arrow ε : B × C B → C, (8.2.54)

called the evaluation, with the property that for any object P and arrow
f : B × P → C , there exists a unique arrow

F : P → C B (8.2.55)

with

ε ◦ (1B × F) = f. (8.2.56)

In terms of diagrams,

B × C B C

B × P

................................................................................................................................................................................................................................................ .........
...ε

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
..............................

1B × F
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

f

(8.2.57)

Again, the basic example we should have in mind here is the category
Sets.When B andC are sets, an element ofC B is simply amap f : B → C ,
and the evaluation simply applies such an f to an element of B,

ε(x, f ) = f (x). (8.2.58)

In terms of Hom-sets (8.1.9), we have

HomSets(A × B, C) = HomSets(A, C B). (8.2.59)

This means that we view a map from A × B to C as a family of maps,
parametrized by B, from A to C . Of course, by exchanging the roles of A
and B, we obtain from (8.2.59)

HomSets(A, C B) = HomSets(B, C A). (8.2.60)

On the basis of this example, we should viewC B as the set of morphisms
from B to C , and the evaluation simply applies such a morphism to an
element of B. f : B × P → C can be considered as a family of morphisms
from B to C parametrized by P . C B is the universal parameter space for
morphisms from B to C , and any other parameter space P can then be
mapped into that one while keeping the element of B where the morphisms
are to be evaluated.

3 The name “exponential” seems to derive from the notation employed. It has little to do
with the exponential function in analysis or the exponential map in Riemannian geometry
and Lie groups. Perhaps a small justification is the following. When B and C are finite
sets with n and m elements, resp., then the set C B has mn elements.
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A simple, but important example is the following. In the category Sets,
we consider the object 2 := {0, 1}. Then for any X ∈ Sets, the exponential
2X is simply the power set P(X) of X , that is, the set of its subsets. In fact,
any subset A ⊂ X is characterized by the morphism

χA : X → 2 with χA(x) =
{

1 if x ∈ A

0 if x /∈ A.
(8.2.61)

In turn, the implication (4.1.4),

(A, B) �→ A ⇒ B := (X \ A) ∪ B (8.2.62)

in the power set P(X) is an exponential B A. This follows from the obser-
vation that C ∩ A ⊂ B implies C ⊂ (A ⇒ B). (Note that the product in
the poset P(X) is given by the intersection ∩, see (8.2.26).)

Definition 8.2.6 A category is Cartesian closed if it possesses products
and exponentials.

One can then show that the categoryCat of small categories and functors
is Cartesian closed. The exponential of two categories C, D is given by the
functors between them,

DC = Fun(C, D). (8.2.63)

We omit the proof which is not difficult.

8.3 Categories of Diagrams

Generalizing the category Sets� of graphs considered above, we now look
at functor categories of the form

SetsC (8.3.1)

for some locally small category C. Its objects are set-valued diagrams on
C, that is, functors

F, G : C → Sets, (8.3.2)

and its arrows are natural transformations

φ, ψ : F → G, (8.3.3)

see (8.1.10)–(8.1.12).
For any object C ∈ C, we then have the evaluation

εC : SetsC → Sets, (8.3.4)

given by
εC (F) = FC and εC (φ)(F) = (φ ◦ F)I. (8.3.5)

For an object C ∈ C, we have the functor

HomC(C,−) : C → Sets (8.3.6)

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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that takes an object D ∈ C to the set of morphisms HomC(C, D) from C
to D in the category C, and a morphism g : D → D′ to the morphism
HomC(C, D) → HomC(C, D′) in the category Sets that maps h : C → D
to g ◦ h : C → D′ . Thus,

HomC(C,−) ∈ SetsC. (8.3.7)

Such a functor is called representable.
Now, however, when f : C → C ′ is a morphism in C, we obtain the

natural transformation

HomC( f, −) : HomC(C ′,−) → HomC(C,−) (8.3.8)

which goes in the opposite direction. Here, a morphism h′ : C ′ → D goes
to the morphism h′ ◦ f : C → D. We call such a behavior contravariant.
Thus

xC := HomC(C,−) (8.3.9)

defines a contravariant functor

x : Cop → SetsC

C �→ HomC(C,−) (8.3.10)

from the category Cop obtained from C by taking the same objects, but
reversing the direction of all arrows, see Definition8.1.4. Since we are
reversing the arrows, x now maps arrows to arrows, instead of to arrows in
the opposite direction. Thus, x is a functor.

Let us analyze once more what we have done here. For objects C, D
in a locally small category C, we can look at the set HomC(C, D) of all
morphisms f : C → D. When we then let D vary, but keep C fixed,
we are probing C by its relations with other objects of the category, and
sincemorphisms encode the relations in a category, somehow the collection
of these sets for varying D should yield a good characterization of C .
Also, when we consider this as a function of the varying D, we obtain a
functor from C to Sets, mapping each object D to the set HomC(C, D),
and mapping morphisms g : D → D′ to mappings between those sets,
simply by composing morphisms f : C → D with g to obtain morphisms
f ′ := g ◦ f : C → D′. When we then also let C vary, then we obtain
a family of such functors from C to Sets, that is, a family of elements of
SetsC. Since nowmorphisms f : C → C ′ induce mappings in the opposite
direction, altogether, we obtain a morphism Cop → SetsC.

Similarly, we have

HomC(−, C) : Cop → Sets (8.3.11)

from Cop. Thus, D ∈ Cop is now taken to the set of morphisms from
D → C in C, and a morphism g : D → D′ in Cop, that is, a morphism
D′ → D in C, is now taken to a morphism in Sets.

This time, a morphism f : C → C ′ in C is taken to a morphism in the
same direction,

HomC(−, f ) : HomC(−, C) → HomC(−, C ′). (8.3.12)

This behavior is called covariant.
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Altogether, we obtain a functor

y : C → SetsCop

C �→ HomC(−, C), (8.3.13)

called the Yoneda functor. Thus, y sends C ∈ C to the functor that sends
D ∈ C to the set HomC(D, C).

Thus, y maps the category C to the functor category SetsCop
. The image

of each object C of C thus is a functor. The Yoneda lemma below will
then compare the functor yC with other functors F in this category; more
precisely, it will characterize the morphisms between the functors yC and
F . Such a functor F ∈ SetsCop

will be called a presheaf, see Sect. 8.4.
Let us consider the trivial example (which you may well wish to skip).

WhenC = {0} consists of a single element 0 with the identity 10 as the only
morphism, then y sends 0 to a single element set. In particular, when F is a
presheaf (to be defined below in general) on {0}, that is, a single set F0, then
we can send 0 to any element of this set. This is then a natural transformation
from Hom{0}(−, 0) = {10} to F . The construction of Yoneda will now
generalize this in a functorial manner, that is, respecting morphisms of a
general category C.

Definition 8.3.1 A functor F ∈ SetsCop
that is of the form HomC(−, C)

for some C ∈ C is called representable.

The main result here is the Yoneda Lemma:

Theorem 8.3.1 Let C be a locally small category. Then, for any functor
F ∈ SetsCop

,
HomSetsCop (yC, F) ∼= FC, (8.3.14)

that is, the natural transformations from HomC(−, C) to F are in natural
correspondence with the elements of the set FC.

Moreover, the Yoneda functor is an embedding in the sense of Defini-
tion8.1.3.

This result has the following important corollary, which follows from
the definition of an embedding.

Corollary 8.3.1 If the functors HomC(−, C) and HomC(−, C ′) for two
objects C, C ′ of C are isomorphic, then C and C ′ are isomorphic them-
selves. More generally, for C, C ′ ∈ C, the morphisms between the functors
HomC(−, C) and HomC(−, C ′) correspond to the morphisms between C
and C ′.

This corollary furnishes us with a useful strategy for checking the iso-
morphims of two objects of some (locally small) category.

The principle of the proof of Theorem8.3.1 is not difficult. An element
θ ∈ HomSetsCop (yC, F) is a morphism θ : HomC(−, C) → F . We can
apply this to D ∈ C to get a map HomC(D, C) → F D. Thus, an element
of HomC(D, C), that is, a morphism from D to C gets mapped to an
element of the set F D. We thus obtain one direction of the correspondence
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(8.3.14) by sending θ to θ(1C ) where 1C ∈ HomC(C, C) is the identity
morphism of C . For the other direction, we send ξ ∈ FC to the morphism
θξ ∈ HomSetsCop (yC, F) that sends f ∈ HomC(D, C) to F f (ξ) ∈ F D
(note that, by contravariance, F f : FC → F D for f : D → C). For the
embedding, we simply apply the first part to F = HomC(−, C ′). In slightly
more detail, we have

HomSetsCop (yC, yC ′) ∼= yC ′(C) by the first part
∼= HomC(C, C ′) by definition of y (8.3.15)

whence all the embedding properties follow. In fact, (8.3.15) is the key
identity underlying the Yoneda lemma, and it directly explains the result of
the corollary.

In order to check the details of this proof, we make the following con-
structions.4 Essentially, this will consist in entangling the hierarchical or
iterated constructions underlying the Yoneda lemma (a functor is a mor-
phism between categories, a natural transformation is a morphism between
functors, y is a functor that maps each object of C to a functor, etc.) Thus,
perhaps it may be more insightful to reflect on the above principle of the
proof than to go through all the subsequent details.

For a functor F ∈ SetsCop
, considering HomSetsCop (yC, F), the mor-

phisms from the functor yC to F , we note that both yC and F are functors
fromCop to Sets. yC is considered to be a special functor, because its image
is a Hom-set. Given an element of Hom(yC, F) (note that we leave out the
subscript SetsCop

indicating the category for simplicity of notation), that is
some morphisms

θ : HomC(−, C) → F, (8.3.16)

we can apply it to any D ∈ C to get

θD : HomC(D, C) → F D. (8.3.17)

Here, both HomC(D, C) and F D are simply sets.
In particular, we can form

xθ := ηC,F (θ) := θC (1C ) ∈ FC. (8.3.18)

Thus, we have constructed a morphism

ηC,F : Hom(yC, F) → FC. (8.3.19)

We want to show that this is an isomorphism.
For that purpose, we shall now construct a morphism in the opposite

direction which we shall subsequently identify as the inverse of ηC,F . Thus,
for ξ ∈ FC we want to construct a morphism θξ : yC → F . Of course, we
need to define this on objects D ∈ Cop, that is, we need to define

(θξ)D : HomC(D, C) → F D, (8.3.20)

4 In order to facilitate the reading for those who are not accustomed to the abstract
language employed in category theory, we try to spell out all the details. Therefore, more
advanced readers can skip much of what follows below.
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and we do this by setting

(θξ)D( f ) := F f (ξ). (8.3.21)

Note that F f : FC → F D for f : D → C as F maps the category Cop to
Sets. In particular, given such a morphism f : D → C in the category C,
we obtain a map F f : FC → F D between sets. This is how F is defined.
Thus, we construct for any ξ ∈ FC a natural transformation (a property
to be verified below) from the functor yC = HomC(−, C) to the functor
F by evaluating F f : FC → F D for any morphism f : D → C at the
element ξ ∈ FC .

In order to show that θξ is a morphism between the functors yC and
F , we need to verify that it is natural. This means that for a morphism
g : D′ → D,

Hom(D, C)
(θξ)D−−−−→ F D

Hom(g,C)

⏐
⏐
�

⏐
⏐
�Fg

Hom(D′, C)
(θξ)D′−−−−→ F D′

(8.3.22)

commutes. This follows from the following computation that only uses the
functoriality of F , for any h ∈ yC(D), i.e., h : D → C ,

(θξ)D′ ◦ Hom(g, C)(h) = (θξ)D′(h ◦ g)

= F(h ◦ g)(ξ) by (8.3.21)

= F(h) ◦ F(g)(ξ) since F is a functor

= F(h)(θξ)D(g) by (8.3.21) again.

We can now show that the two morphisms are the inverses of each other.
For that purpose, we compute θxθ , see (8.3.21) and (8.3.18). Thus, for
f : D → C , we have

(θxθ )D( f ) = F f (θC (1C )). (8.3.23)

Since θ is natural, see (8.3.22),

yC(C)
θC−−−−→ FC

yC( f )

⏐
⏐
�

⏐
⏐
�F f

yC(D)
θD−−−−→ F D

(8.3.24)

commutes. Thus,

(θxθ )D( f ) = F f (θC (1C )) by (8.3.23)

= θD ◦ yC( f )(1C ) by (8.3.24)

= θD( f ) by definition of yC.

This implies

θxθ = θ. (8.3.25)
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For the other direction, for ξ ∈ FC ,

xθξ = (θξ)C (1C ) by (8.3.18) again

= F(1C )(ξ) by (8.3.21) again

= 1FC (ξ) since F maps identities to identities

= ξ.

Thus,

xθξ = ξ, (8.3.26)

and we have verified that

Hom(yC, F) ∼= FC. (8.3.27)

This is the proof of the first part, and in fact the key part of the proof.
Before we come to the second statement, we observe that the constructed
isomorphism is natural in the sense that it yields commutative diagrams
from any arrow of the objects andmorphisms involved. First of all, consider
a morphism

θ : HomC(−, C) → F (8.3.28)

between functors as in (8.3.16). Such a morphism is then natural by defini-
tion in the sense that for any morphism f : D → C , the diagram (8.3.24),

(yC)C
θC−−−−→ FC

(yC) f

⏐
⏐
�

⏐
⏐
�F f

(yC)D
θD−−−−→ F D

(8.3.29)

commutes (note that contravariance here leads to a reversal of the direction
of arrows). Leaving the checking of the details to the reader, from this, we
obtain the commutative diagram

Hom(yC, F)
ηC,F−−−−→ FC

Hom(y f,F)

⏐
⏐
�

⏐
⏐
�F f

Hom(y D, F)
ηD,F−−−−→ F D.

(8.3.30)

Similarly, given a morphism χ : F → G, the diagram

Hom(yC, F)
ηC,F−−−−→ FC

Hom(yC,χ)

⏐
⏐
�

⏐
⏐
�χC

Hom(yC, G)
ηC,G−−−−→ GC

(8.3.31)

commutes.
The embedding part is now straightforward to prove. For objectsC, C ′ ∈

C, by the first part, we obtain an isomorphism

HomC(C, C ′) = yC ′(C) ∼= Hom(yC, yC ′). (8.3.32)
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This isomorphism is, of course, induced by y. In fact, f : C → C ′ is
mapped to the natural transformation θ f : yC → yC ′ which operates on
h : D → C via

(θ f )Dh = (yC ′)h( f ) = HomC(h, C ′)( f ) = f ◦ h = (y f )Dh, (8.3.33)

that is, θ f = y f . Thus, y is faithful and full. Finally, for the injectivity, if
yC = yC ′, then

HomC(C, C) = (yC)C = (yC ′)C = HomC(C, C ′), (8.3.34)

and since 1C is in this Hom-set, we have an isomorphism betweenC andC ′.
This completes the proof of Theorem8.3.1.

8.4 Presheaves

InSect. 8.3,wehave studied the categorySetsCop
of contravariant set-valued

functors on some fixed small category C. In fact, this category has already
appeared in Sect. 4.5, and we recall

Definition 8.4.1 An element P of SetsCop
is called a presheaf on C.

For an arrow f : V → U in C, and x ∈ PU , the value P f (x), where
P f : PU → PV is the image of f under P , is called the restriction of x
along f .

A presheaf thus assigns to each object inC some set, and this is functorial
in the contravariant sense, that is, those sets can be pulled back along arrows
in C. We can therefore view a presheaf as a collection of sets indexed by
the objects of C in a functorial manner. For instance, when the category C
is simply some set X (the objects thus being the elements of X , and with
only the identity arrows and no arrows between different elements), we just
have a collection of sets indexed by the elements of X .

In fact, for a fixed set X , we have an isomorphism of categories

SetsX ∼= Sets/X, (8.4.1)

where Sets/X is the slice category introduced in Sect. 2.3, see (2.3.30). On
the left of (8.4.1), we have a family {Zx : x ∈ X} of sets indexed by X
whereas on the right, we have the function

ξ : Z :=
∐

Zx → X

Zx → x (8.4.2)

from the disjoint union of the sets Zx to the base X . In other words, a map
from the set X into the category Sets, which assigns a set Zx to every x ∈ X
can be equivalently described as the collection of the preimages under the
projection from Z to X , where Z is the disjoint union of the Zx .

Emphasizing in contrast the functorial aspect, a presheaf formalizes
the possibility of restricting collections of objects, that is, the—possibly
structured—sets assigned to objects of C, to preimages of arrows.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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We recall from Sect. 8.3 that each object U ∈ C yields the presheaf yU
on C, the contravariant Hom-functor that is defined on an object V by

yU (V ) = HomC(V, U ) (8.4.3)

and on a morphism f : W → V by

yU ( f ) : HomC(V, U ) → HomC(W, U )

h �→ h ◦ f. (8.4.4)

Definition 8.4.2 A presheaf of the form yU for some object U ∈ C is
called a representable functor.

We also recall that when f : U1 → U2 is a morphism of C, we obtain a
natural transformation yU1 → yU2 by composition with f , so that we get
the Yoneda embedding (Theorem8.3.1)

y : C → SetsCop
. (8.4.5)

8.5 Adjunctions and Pairings

While the concept of an adjoint is fundamental to category theory, we shall
only briefly consider it here. In fact, this will not be seriously used in later
sections, so the present section might be skipped.

Definition 8.5.1 An adjunction between the categories C, D consists of
functors

L : C � D : R (8.5.1)

with the property that for any objects C ∈ C, D ∈ D, there is an isomor-
phism

λ : HomD(LC, D) ∼= HomC(C, RD) (8.5.2)

that is natural in C and D.
We then also call L the left adjoint of R, and R the right adjoint of L .

Let us consider the following important example. This example concerns
power set categories, that is, the categories P(Y ), the subsets of some set
Y . When we have another set X , we can consider the projection

π : X × Y → Y (8.5.3)

and the induced pullback

π∗ : P(Y ) → P(X × Y ). (8.5.4)

Let now A ⊂ Y, B ⊂ X × Y . Then

π∗(A) = {(x, y) : x ∈ X, y ∈ A} ⊂ B iff for all x ∈ X, A ⊂ {y : (x, y) ∈ B}.
(8.5.5)
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We put

∀π B := {y ∈ Y : (x, y) ∈ B for all x ∈ X}. (8.5.6)

Then (8.5.5) becomes

π∗(A) ⊂ B iff A ⊂ ∀π B. (8.5.7)

Similarly, defining

∃π B := {y ∈ Y : there exists some x ∈ X with (x, y) ∈ B}, (8.5.8)

we have

B ⊂ π∗(A) iff ∃π B ⊂ A. (8.5.9)

We now recall that in a category P(Z), Hom(Z1, Z2) has a single element
iff Z1 ⊂ Z2 and is empty otherwise. We thus conclude

Theorem 8.5.1 The functor ∀π : P(X × Y ) → P(Y ) is the right adjoint
of π∗ : P(Y ) → P(X ×Y ), and ∃π : P(X ×Y ) → P(Y ) is the left adjoint
of π∗.

Of course, this construction can be generalized to arbitrarymaps between
sets in place of projections.

Here is another example. We have the forgetful functor

U : Groups → Sets (8.5.10)

that assigns to every group G the set U (G) of its elements. Its left adjoint
is the functor

F : Sets → Groups

X �→ G X (8.5.11)

where G X is the free group generated by X . The elements of G X are all
monomials xn1

1 xn2
2 . . . with xi ∈ X, ni ∈ Z and only finitely many ni �= 0.

The only group laws are xn xm = xn+m for x ∈ X, n, m ∈ Z, and x0 = 1,
the unit of the group, for every x ∈ X . Then the morphisms

F X → G in Groups (8.5.12)

correspond to the morphisms

X → U (G) in Sets (8.5.13)

because a morphism from a free group F to another group G is determined
by the images of the generators of F , and conversely, assigning images to
all generators of F determines a morphism of F .

Analogously, we can consider the category of abelian groups and assign
to every set X the free abelian group AX whose elements are all formal
sums n1x1 + n2x2 + · · · , again with only finitely many nonzero ni ∈ Z,
and where now n1x1 + n2x2 = n2x2 + n1x1 to make the group abelian.

Also, the above construction of a free group generated by a set X can
be modified to yield the free monoid X∗ := MX over the set X , consisting
again of formal products x1x2 . . . of elements of X . Here, X is considered
as an “alphabet” from which the “words” in X∗ are formed. (This is indeed
the same as the construction of the free group G X , as we see when we write
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xx for x2 and so on.) Again, to make X∗ free, we do not allow for any
nontrivial relations among the monomials.

In a somewhat similar vein, we can consider the forgetful functor

U : Top → Sets (8.5.14)

from the category of topological spaces to the category of sets that simply
assigns to a topological space its underlying set. The left adjoint F gives a
set its discrete topology, denoted byOd(X), where every subset is open, see
Sect. 4.1. Then any morphism from a set X to U (Y) for some topological
space Y corresponds to a continuous map from (X,Od(X)) to Y because
anymap from a spacewith the discrete topology is continuous. Similarly,U
possesses a right adjointG that assigns to every set X its indiscrete topology
Oi (X), see Sect. 4.1 again. The right adjointness now follows from the fact
that any map from any topological space into a space with the indiscrete
topology is continuous.

Limits can likewise be written as adjoints. A cone over a diagram DI of
type I in a category C is a morphism

c : C → DI (8.5.15)

from an objectC ofC to the diagram DI. In particular, we have the diagonal
morphism c� with c�(C)i = C for all indices i in I. Thus, a diagram is a
morphism in

Hom(c�(C), DI) (8.5.16)

and when a diagram has a limit lim←−−−−−
cone(D)

Ccone(D), then for each C there is

a unique morphism C → lim←−−−−−
cone(D)

Ccone(D). This means that

Hom(c�(C), DI) = Hom(C, lim
←−−−−−
cone(D)

Ccone(D)) (8.5.17)

and the limit thus is a right adjoint of the diagonal morphism. Similarly,
colimits are left adjoints of diagonals.

From an adjunction, we obtain a natural transformation

η : 1C → R ◦ L (8.5.18)

by

ηC = λ(1LC ), (8.5.19)

and conversely, given such an η, we can set

λ( f ) = R f ◦ ηC . (8.5.20)

We omit the details of the verification of this claim.

Lemma 8.5.1 Right adjoints preserve limits, and therefore by duality, left
adjoints preserve colimits.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
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Proof We consider a diagram � : I → D and a cone K with morphisms
K → Di over that diagram. For any D ∈ D, we then get an induced
diagram �D : I → HomD(D, .) and a cone Hom(D, K ) with morphisms
Hom(D, K ) → Hom(D, Di ). We then have

lim
←−−−−−
cone(D)

Hom(D, Ccone(D)) = Hom(D, lim
←−−−−−
cone(D)

Ccone(D)) (8.5.21)

whenever lim←−−−−−
cone(D)

Ccone(D) exists in D. In that situation, we therefore find

HomC(C, R( lim
←−−−−−
cone(D)

Ccone(D))) ∼= HomD(LC, lim
←−−−−−
cone(D)

Ccone(D))

∼= lim
←−−−−−
cone(D)

HomD(LC, Ccone(D))

∼= lim
←−−−−−
cone(D)

HomC(C, RCcone(D))

∼= HomC(C, lim
←−−−−−
cone(D)

RCcone(D)).

The Yoneda Theorem8.3.1 then implies the isomorphism

R( lim
←−−−−−
cone(D)

Ccone(D)) ∼= lim
←−−−−−
cone(D)

RCcone(D). (8.5.22)

�

The concept of an adjoint allows for the unified treatment ofmanymathe-
matical constructions, see [5, 82]. At this moment, we only demonstrate
how this can be applied to the case of adjoint operators between Hilbert
spaces.

We startwith somevector spaceV , over the realsR (or someother ground
field K which would then replace R in the subsequent constructions) and
consider the category P

1V of oriented one-dimensional subspaces of V ,
with morphisms

Hom(l1, l2) ∼= R. (8.5.23)

Whenwe have a Hilbert space H with scalar product 〈., .〉,5 we consider theHilbert space
same objects, that is, the elements of P1H , but the only morphism between
l1 and l2 now being

〈e1, e2〉 (8.5.24)

where ei is a positive generator of li with 〈ei , ei 〉 = 1.
With these definitions, the standard concept of the adjoint L� of an

operator L : H → H ′, i.e.,
〈Lx, y〉H ′ = 〈x, L�y〉H (8.5.25)

5 The scalar product 〈., .〉 : H × H → R is symmetric, bilinear, and positive definite,
that is,

〈v,w〉 = 〈w, v〉 for all v,w ∈ H

〈αv1 + βv2, w〉 = α〈v1, w〉 + β〈v2, w〉 for all α,β ∈ R, v1, v2, w ∈ H

〈v, v〉 > 0 for all v �= 0 ∈ H.

.
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now becomes

HomH ′(Lx, y) = HomH (x, L�y) (8.5.26)

in hopefully obvious notation, when we identify a vector in a Hilbert space
with the linear subspace it spans.

We now put

C∗ := Fun(C,R). (8.5.27)

For α ∈ C∗ and C ∈ C, we then have

(C, α) := α(C) ∈ R. (8.5.28)

When we then have some

i : C → C∗ (8.5.29)

we obtain a generalized scalar product via

〈C, D〉 := (C, i(D)) = i(D)(C). (8.5.30)

When C is a group, we may require

i(C)(C) > 0 for C �= 0, (8.5.31)

that is, positive definiteness of 〈., .〉.
Category theory was invented by Eilenberg and Mac Lane [32] in order

to provide a foundation and a formal framework for algebraic topology
[31]. Important contributions to the theory were the Yoneda lemma [120]
and the notion of adjunctions, discovered by Kan [65].

In this chapter, I have often used the treatment in [5]. A general reference
for category theory is [82]. Amore elementary exposition of the basic ideas
and constructions is [79].



9Topoi

In this (almost) final chapter, we describe and analyze a concept, that of a
topos, that emerged from the works of Grothendieck in algebraic geometry,
see in particular [4], and Lawvere in logic, see for instance [77, 78] and
also the contribution of [110], and that provides a general framework for the
mathematical structures of geometry and logic. As always in mathematics,
when a concept unifies hitherto separate mathematical domains, it leads to
substantial and fundamental insights in both of them. A reason for this is,
of course, that it makes the concepts and methods developed in each of the
fields concerned available in the other.

In an intuitive sense—to be refined and corrected in this chapter—, a
topos is a category of structured families of sets where the type of structure
characterizes the topos in question. In the approach of Lawvere, the concept
of a topos emerges from abstracting certain fundamental properties of the
category of sets. One of those properties is that, for a set X , there is a
correspondence between subsets A of X and characteristic functions χ :
X → {0, 1}. The subset A corresponds to χA with χA(x) = 1 if x ∈ A
and χA(x) = 0 if x /∈ A. One can interpret 1 here as the truth value “true”
and 0 as “false”. Thus χA(x) = 1 iff it is true that x ∈ A. In a structured
family Xi of sets, we can then ask whether x ∈ Xi for every i , and we then
get the corresponding truth values for each i . This is the idea of a subobject
classifier that will be developed in Sect. 9.1.

Also, in the category of sets, whenever x ∈ X and F : X → X is a
mapping, there exists a mapping η : N → X defined by η(n) = Fn(x)

for n ∈ N. (This was described as a dynamical system in Sect. 2.5.) In
that sense, the natural numbers can be made to operate on X . That latter
property, albeit important as well, will not be systematically developed in
this chapter.

This chapter heavily depends on the material developed in the previous
one. Good references for topoi are [42, 84] fromwhichmuch of thematerial
has been taken. The references [10, 43] provide more details on geometric
modality. Other references for topos theory and logic are [74, 86]. Finally,
we mention the compendium [55].

© Springer International Publishing Switzerland 2015
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9.1 Subobject Classifiers

For the sequel, we shall have to work with sets of morphisms, and therefore,
to be on the safe side,we shall assumehenceforth that all categories involved
are small, even though there will be several instances where this assumption
will not be necessary.

Definition 9.1.1 A subobject A of an object B of a category C is a
monomorphism

i : A � B. (9.1.1)

A subobject i ′ : A′ � B is included in the subobject A if there exists a
morphism j : A′ → A with

i ′ = i ◦ j, (9.1.2)

i.e., the diagram
A

A′

B

............................................................................................................ ...........
.

.........
.........

i

..................
.................

.................
.................

..................
.....................
............

..............
.... i ′

........

........

........

........

........

........

........

........

........

........

........

.................

............

........................

j

(9.1.3)

commutes (note that j is automatically monic).
The subobjects A1, A2 � B are equivalent when each is included in

the other.
SubC(B) (9.1.4)

is the set of equivalence classes of subobjects of B in C.

SubC(B) is a poset with the ordering induced from the inclusion of
subobjects. In the category Sets,

SubSets(X) = P(X), (9.1.5)

the power set of X . (We have to be careful here. We do not admit arbitrary
injective maps between subsets of X , but only set theoretical inclusions.
That is, we consider the set X as a collection of specific elements, as above
when a set has been considered as a category itself, and all morphisms have
to preserve these elements.)

Equivalently, a subset A of X can be characterized by its characteristic
function

χA(x) :=
{

1 if x ∈ A

0 if x /∈ A.
(9.1.6)

Thus, χA takes its values in 2 := {0, 1}. We consider 2 as a set of truth val-
ues, with 1 corresponding to the value “true”. Thus, we have the monomor-
phism

true : 1 := {1} � 2, 1 �→ 1. (9.1.7)
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Thus, the subset A, given by the equivalence class of the monomorphism
i : A � X , is obtained as the pullback of true along χA:

A 1

X 2................................................................................................................. ............
χA

......................................................................................................
...
.........
...

........................

true

................................................................................................................. ............

......................................................................................................
...
.........
...

........................

i

(9.1.8)

We now generalize this.

Definition 9.1.2 In a category C with finite limits, a subobject classifier
consists of an object � and a monomorphism

true : 1 � � (9.1.9)

with the property that for every monomorphism A � X in C, there is a
unique morphism χ : X → � with a commutative pullback diagram

A 1

X �................................................................................................................. ............
χ

......................................................................................................
...
.........
...

........................

true

................................................................................................................. ............

......................................................................................................
...
.........
...

........................

(9.1.10)

In order to demonstrate that the existence of a subobject classifier has
nontrivial consequences, we present

Lemma 9.1.1 In a category C that possesses a subobject classifier, every
monomorphism is an equalizer, and a morphism that is both a mono- and
an epimorphism has to be an isomorphism.

Or shorter: In a category with a subobject classifier, monic epics are iso.

Proof We consider the diagram (9.1.10) in the following form

A 1

X �................................................................................................................. .........
...

χ f

......................................................................................................
...
.........
...

........................

true

................................................................................................................. .........
...

......................................................................................................
...
.........
...

........................

f

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

(9.1.11)

where the diagonal is the unique morphism tX : X → 1. A monic f : A →
X thus equalizes χ f and true ◦ tX .

Now,when f equalizesmorphisms h1, h2 : X → Y , i.e., h1◦ f = h2◦ f
and is an epimorphism, then h1 = h2 =: h. Thus, f equalizes h with itself.
Now, an equalizer of a morphism with itself has to be an isomorphism,
because also 1X is such an equalizer.We see this from the universal property
of (8.2.30), that is, from

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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X A

X Y

........................................................................................................................
...
.........
...

1X

..................................................... ............
a

.........................................................................................................................................
....
............

f

............................................................................................................................................... ............
h

............................................................................................................................................... ............

h (9.1.12)

where the existence of themorphism a comes from the universality property
of equalizers. This then implies that f ◦ a = 1X , a ◦ f = 1A, i.e., f is an
isomorphism. �

While we have seen the subobject classifier in Sets, let us now consider
an example of a category without a subobject classifier, the category Ab of
(small) abelian groups A. The terminal object 1 in Ab is the trivial group
consisting only of e.1 Thus, a homomorphism t : 1 � � into a putative
subobject classifier, an abelian group �, has to send e to e ∈ �. Therefore,
when we pull t back along a group homomorphism φ : A → �, we obtain
a diagram

S 1

A �

................................................................................................................. ............

................................................................................................................. ............
φ

......................................................................................................
...
.........
...

........................

i

......................................................................................................
...
.........
...

........................

t

(9.1.13)

with S = ker φ = φ−1(e). Since by commutativity of the diagram, e has to
be the image of S under the group homomorphismφ◦i , this homomorphism
then has tomap A to the quotient group A/S which then has to be a subgroup
of �. Thus, � would have to contain every such quotient group A/S as a
subgroup. There is obviously no such small abelian group �. This shows
that the category Ab cannot possess a subobject classifier. Intuitively, the
structure of this category is too constrained, in the sense that it poses severe
restrictions on morphisms, in order to permit a subobject classifier.

An even simpler counterexample is a poset category likeP(Y ), the set of
subsets of some fixed set Y , with the only morphisms being the inclusions
A ⊂ B. It does not possess a subobject classifier. The terminal object 1 in
P(Y ) is Y itself because that is the only one for which there exists a unique
morphism A ⊂ Y for every A. But then, a putative � would also have to be
Y itself, because no other object can receive a morphism from Y as required
for the arrow true : 1 → �. But then, (9.1.10) can be a pullback diagram
only for X itself, as χ then necessarily has to be the inclusion X ⊂ Y ,
and so, X itself is the only pullback of the corresponding diagram, and we
cannot satisfy the pullback condition for any nontrivial subobjects A of X
in P(Y ). The only exception where this does not create a problem for the

1Here wewrite e instead of 0 for the neutral element of an abelian group, to avoid conflict
with our convention that when the terminal object 1 of a category has a single element,
we denote that element by 1, and not by 0.
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pullback condition are sets Y with at most one element.We can also explain
the situation by the following diagram

A

X

Y

X Y

.................................................................. .........
...

⊂
............................................................................................................................................................................................ ............⊂

.........................................................................................................................................................................................
...
.........
...

⊂
.................

.................
.................

.................
.................

.................
..............
............

⊂
............................................................................................................................

....

............

⊂

.........................................................................................................................................................................................
...
.........
...

............................................................................................................................................................................................ ............⊂
(9.1.14)

This simply expresses the fact that every diagram with such inclusions
between A, X, Y can always be factored through X . The reason is essen-
tially that the bottom arrow X ⊂ Y does not depend on A. Note the contrast
with (9.1.8) where the arrow χA depends on the subset A and where con-
sequently we cannot factor through X when A �= X .

We now turn to the more positive issue of describing categories that do
possess a subobject classifier. All these categories will be derived from the
basic category Sets, and they will somehow correspond to categories of
parametrized families of sets, with suitable functorial properties, of course.
This is, in fact, no coincidence because the concept of a topos, to be
described below and one of whose essential features is the existence of
a subobject classifier, has been developed precisely as a formal framework
for such categories of parametrized families of sets.

In any case, in a category other than Sets, such a subobject classifier �,
when it exists at all, can be more complicated. Let us recall the category
of directed graphs (8.2.10) and (8.2.11), that is, the category of diagrams
G consisting of a pair of sets (G0, G1) (vertices and directed edges) with
a pair of arrows

gα, gω : G1 ⇒ G0, (9.1.15)

(besides the identity arrows).
Thus, to each element e of G1, that is, to each directed edge, we associate

two elementsα(e), ω(e) ofG0, its initial and terminal vertices. Sincewe are
in the category of graphs, a subobject classifier has to be a graph itself. This
graph � is depicted in the diagram (9.1.16). The morphism true : 1 � �

maps the point 1 of 1 to 1 ∈ � (the element of � corresponding to the
presence of a vertex), and the identity arrow of 1 to the arrow labelled
+ + +. This corresponds to the situation when an edge of G1 is also an
edge in a subgraph (�0, �1). The arrow++− in� corresponds to the case
where the initial and terminal vertices of an edge are contained in �0, but
the edge itself is missing from �1. When only the initial vertex is in �0, we
have the arrow + − −, while when only the terminal vertex is present, we
have − + −. Finally, when neither of those vertices is present, we have the
arrow − − − from 0 (corresponding to absence of a vertex) to itself.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_8


266 9 Topoi

1 0
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............

+++

.......................................................................................
..........
.........
.........
........
........
........
...............
..............
...

++ –

......................................................
......................................................

......................................................
......................................................

......................................................
.......................................................................................................................................................................................................................................................................................................................

............

+ – –

..................................................................................................................................................................................................................................................................................................................................................
......................................................

......................................................
......................................................

......................................................
........................

...
.........
...

– + –

......
.........
...............................................................................................................
.......
.................. .........

... – – –

(9.1.16)

Wenext consider the categorySets� of setswith endomorphisms (equiv-
alently: automata or discrete dynamical systems, see Sect. 2.5). An object
of Sets� thus is a set A equippedwith an endomorphism, that is, a self-map,

α : A → A, (9.1.17)

and a morphism between two such objects (A, α), (B, β) is given by a map

f : A → B with f ◦ α = β ◦ f. (9.1.18)

Since such an endomorphism α can be iterated, that is, repeatedly applied,
this indeed yields an automaton or a discrete dynamical system.

A subautomaton of such an automaton is then given by a subset A′ ⊂ A
and α′ = restriction of α to A′ with the property that A′ be closed under the
dynamics, that is, whenever a ∈ A′, then alsoα(a) ∈ A′. On the other hand,
when a /∈ A′, there may exist some n ∈ N with αn(a) ∈ A′. This leads to
the following subobject classifier, a particular set with an endomorphism.

•1 ←− • 1
2

←− • 1
3

←− · · · •0
� � (9.1.19)

Here, the bullet labelled 1
n+1 ∈ N corresponds to the smallest n ∈ N for

which αn(a) ∈ A′, and the bullet labelled 0 corresponds to those a ∈ A
that will never be mapped to A′ by any iteration of α. The self-arrow at 1
expresses the fact thatwhen a ∈ A′, then alsoα(a) ∈ A′.More colloquially,
n is the “time till truth”, that is, howmany steps it will take to get the element
a into the subset A′.

More generally, we consider the category of morphisms of sets, Sets→.
The objects of this category thus are maps f : A → B, and the morphisms
are commutative diagrams

C D

A B

..............................................................................................................
...
.........
...

................................................................................................................. ............
f

..............................................................................................................
...
.........
...

................................................................................................................. ............
g

(9.1.20)

In particular, a subobject f ′ : A′ → B ′ of f : A → B requires monomor-
phisms i : A′ → A, j : B ′ → B with a commutative diagram

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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A′ B ′

A B

......................................................................................................
...
.........
...

........................

j

................................................................................................................. ............
f

......................................................................................................
...
.........
...

........................

i

................................................................................................................. ............
f ′

(9.1.21)

For x ∈ A, we then have three possibilities:

(1) x ∈ A′ (“it is there”)
( 12 ) x /∈ A′, but f (x) ∈ B ′ (“it will get there”)
(0) x /∈ A′ and f (x) /∈ B ′ (“it will never get there”).

The subobject classifier is then given by the sets 3 := {1, 1
2 , 0}, 2 = {1, 0}

and the map t : 3 → 2 with t (1) = t ( 12 ) = 1, t (0) = 0. Here, the elements
of 3 correspond to the above three cases, and those of 2 correspond to
y ∈ B ′ and y /∈ B ′. The commutative diagram for subobject classification
is then, with 1 = {1} and it (1) = 1, jt (1) = 1,

A′ B ′

A B

.................................................................. .........
...
j

................................................................................................................. ............
f

.................................................................. .........
...

i
................................................................................................................. .........

...
f ′

1 1

3 2

................................................................................................................. .........
...id

.................................................................. .........
...

it
.................................................................. .........

...
jt

................................................................................................................. ............t

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

(9.1.22)

We next consider the category M −Sets of representations of themonoid
M , see (2.3.10). In this category, the terminal object is the set 1 = {e} with
a single object and the trivial operation of M , i.e., μe(m, e) = e for all
m ∈ M . We consider � = (�M ,ω) where �M is the set of all left ideals
of M with the operation

ω : M × �M → �M

(m, L) �→ {n : nm ∈ L} =: Lm . (9.1.23)

Lm is indeed an ideal because kLm = {kn : nm ∈ L} ⊂ Lm since if
nm ∈ L then also k(nm) ∈ L as L is an ideal. We also observe that the
largest ideal, M itself, is fixed by ω, ω(m, M) = M for all m ∈ M .

Thus, � is an M-set. We shall now verify that � is the subobject
classifier in the category M − Sets. First, t : 1 → � is given by
t (e) = M . We note that the equivariance condition (2.3.12) is satisfied:
t (μe(m, e) = ω(m, t (e)) = ω(m, M) = M .
Let now i : (X, μ) → (Y, λ) be an inclusion (by equivariance, see (2.3.12),
we have, with i(x) = x , λ(m, x) = μ(m, x) for all x ∈ X, m ∈ M). We
put

χi : (Y, λ) → � = (�M , ω)

y �→ {m : λ(m, y) ∈ X} (9.1.24)

http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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Again, χi (y) is an ideal because kχi (y) = {km : λ(m, y) ∈ X} ⊂ χi (y)

since λ(km, y) = λ(k, λ(m, y)) is in X as the operation of M on X maps
X to itself and therefore k ∈ M maps the element λ(m, y) ∈ X to another
element of X . Finally, we have χi (y) = M iff for all m ∈ M , λ(m, y) ∈ X
iff λ(e, y) ∈ X iff y ∈ X . Thus, � is indeed the subobject classifier.

To put this example into perspective, let us observe that when M is the
trivial monoid {e}, then the operation of M on any set is trivial. Hence, in
this case M − Sets = Sets. Since in this case M possesses only two ideals,
∅ and M itself, � has two elements and reduces to the subobject classifier
2 in Sets. More generally, when the monoid M is a group G, then we have
only two ideals, ∅ and G itself, and so � reduces again to 2, with the trivial
G-action. In fact, the reason why the subobject classifier here is the same
as in Sets is that whenever a subset X of Y is invariant under the action
of G, then so is its complement: for y ∈ Y \ X , if we had gy ∈ X for
some g ∈ G, then also y = g−1gy ∈ X , a contradiction. So, we can indeed
proceed as in Sets. For a general monoid action on Y that leaves X ⊂ Y
invariant, in general Y \ X is not invariant, and so, we send y ∈ Y to the
set, in fact ideal, L y of all those m ∈ M with my ∈ X . L y is the maximal
ideal M iff y ∈ X , and this then gives the subobject classifier. Conversely,
L y = ∅ if y is never moved into X by the action of M .

The above category Sets� of sets with endomorphisms represents a spe-
cial case of M − Sets, with M = N0, the monoid of nonnegative integers
with addition.

We now look at the category SetsCop
of presheaves on C, see Sect. 8.4.

We need a

Definition 9.1.3 A sieve on an objectC ofC is a set S of arrows f : . → C
(from an arbitrary object of C to C) with the following property. If f ∈ S,
f : D → C , then for any arrow g : D′ → D, also f ◦ g ∈ S.

Thus a sieve is closed under precomposition. For instance, when the
category is the power set P(B) of a set B, that is, the collection of subsets
of B, with the morphisms being the inclusions A′ ⊂ A, then a sieve S
for A can be considered as a collection of subsets of A with the property
that whenever A2 ⊂ A1 ∈ S, then also A2 ∈ S. More generally, when the
category is a poset (P, ≤), then a sieve S on p ∈ P can be identified with
a collection of elements q ≤ p such that r ≤ q ∈ S implies also r ∈ S.
—When the category is a monoid, then a sieve is simply a right ideal.

We have the following important functorial property. If S is a sieve on
C , and φ : D → C is a morphism, then φ∗S = {g : D′ → D : φ ◦ g ∈ S}
is a sieve on D. That is, sieves can be pulled back under morphisms. Thus,
a sieve satisfies the functorial property of a presheaf.

When we assign to each object C of C the so-called total sieve S̄(C) :=
{ f : . → C} of all morphisms into C , we obtain a presheaf on C. In fact,
this is the terminal object 1 in the category SetsCop

of presheaves on C. The
reason is simply that any presheaf on C has to cover any arrow of C.
We also obtain a presheaf � on C by

�(C) := {S a sieve on C}, (9.1.25)

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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and we then have a natural monomorphism

1 � �. (9.1.26)

This, in fact, yields the subobject classifier for the category SetsCop
. This

is seen as follows. For any presheaf F on C and any subobject U � F , we
need to define u : F → �. For C ∈ C and x ∈ FC , we put

uC (x) := { f : D → C : Uf (x) ∈ UD}. (9.1.27)

Thus, uC (x) is the sieve of arrows into C that pull back the element x
of the set FC to an element of the subset UD of F D. In other words, we
consider the collection of all pullbacks Uf (x) and check for which arrows
f they are in the set defined by the subpresheaf. When this happens for
all f , then x , or more precisely, the collection of the U f (x), belongs to
the subpresheaf U . This yields the condition for the subobject classifier.
In other words, for each arrow f : D → C , we ask whether U f (x) is
contained in the subset UD of FD. Thus, for every arrow f , we have two
truth values, “yes” or “no”, “true” or “false”. These values for different
arrows are not independent, because when y ∈ U D, then for every arrow
g : E → D, necessarily g∗(y) ∈ U E , by the presheaf condition forU . The
notion of a sieve allows us to keep track of these dependencies. The total
sieve corresponds to the situation where the answer is “always true”. The
empty sieve corresponds to “always false”. Other sieves mean “sometimes,
but not always true”.

Actually, the preceding examples are special cases of this one. For
instance, the category Sets→ is the category of presheaves over the category
→ consisting of two objects, called i0 and i1, with the morphisms i0 →
i0, i0 → i1, i1 → i1.Apresheaf F is then described by the sets F(i0), F(i1)
and a morphism F(i1) → F(i0). On the object i0, we then have two sieves,
the total sieve with the arrow i0 → i0, and the empty sieve. On the object i1,
we have three sieves, the total sieve containing the arrows i1 → i1, i0 → i1,
the sieve with the arrow i0 → i1, and the empty sieve. These correspond to
the cases (1), ( 12 ), (0), resp., in the above discussion of that example. The
case of Sets is trivial. It is the presheaf category over the category 1 with
the single object i0 with a single morphism i0 → i0 where we have two
sieves over i0, the one with the morphism i0 → i0 and the empty sieve.

Of course, the preceding construction is an instantiation of the Yoneda
lemma, and this allows us to repeat in a slightly different way what we
have just said (if you do not like repetitions, simply jump ahead to the next
section). By that result, elements of �(C) for the presheaf � correspond
to morphisms (natural transformations) from HomC(−, C) to �. Since �

is supposed to be a subobject classifier, they thus have to correspond to
subobjects of HomC(−, C). A subfunctor F of HomC(−, C) is given by a
set of the form

S = { f ∈ HomC(D, C) : f ∈ F D} (where D varies). (9.1.28)

By the presheaf property, S is a sieve. This then leads to (9.1.25). The
natural transformation from HomC(−, C) to � then assigns the sieve φ∗S
to a φ ∈ HomC(D, C).
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Similarly, elements of 1(C) correspond to morphisms (natural transfor-
mations) from HomC(−, C) to 1. By the structure of 1(C), this means
that we associate to φ ∈ HomC(D, C) the pull-back of the total sieve
S̄(C) = HomC(., C) under φ which is then the total sieve on the domain
D of φ. The assignment of C to the total sieve HomC(., C) is of course just
what the Yoneda functor y does, in the sense that this yields the presheaf
D �→ HomC(D, C). Moreover, for any presheaf U on C, there is a unique
morphism U → 1, assigning to each C ∈ C the total sieve 1(C). Also,
for a morphism m : F → �, the preimage of 1 (as a subpresheaf of �)
at C consists of those x ∈ FC for which U f (x) ∈ m−11(D) for every
morphism f : D → C , that is, those x ∈ FC that can be pulled back under
any arrow. This is then a subpresheaf of F , as described in (9.1.27).

9.2 Topoi

We now come to the key concept of this chapter. This concept encodes
the fundamental properties of categories of indexed families of sets, like
presheaves. The concept of a topos turns out to be very important in geom-
etry and logic, and we shall try to indicate its power. In fact, we shall give
two – equivalent – definitions. The first one is general and lazy.

Definition 9.2.1 A topos2 is a category E that possesses

1. all finite limits,
2. all finite colimits,
3. a subobject classifier, and
4. all exponentials.

It turns out, however, that this definition is somewhat redundant. For
instance, it can be shown that the existence of colimits already follows from
the other properties. We therefore now provide an alternative definition that
lists the minimal requirements.

Definition 9.2.2 A topos is a category E that possesses

1. a terminal object 1,
2. a pullback for every diagram A → C ← B,
3. a subobject classifier, that is, an object � with a monic arrow true :

1 � �, with the property that for every monomorphism A � X in E,
there is a unique morphism χA : X → � with a commutative pullback
diagram

2The origin of this word is the Greek τ óπoς , meaning “place, position”, whose plural is
τ óπoι, topoi.
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A 1

X �................................................................................................................. ............
χA

......................................................................................................
...
.........
...

........................

true

................................................................................................................. ............

......................................................................................................
...
.........
...

........................

(9.2.1)

4. for each object X another object P X , called a power object, and a
morphism εX : X ×P X → �with the property that for everymorphism
f : X × B → �, there is a unique morphism F : B → P X making the
following diagram commutative

X × B

X × P X �........................................................................................ ............
εX

............................................................................................................................................................................ .........
...

f

..............................................................................................................
...
.........
...

1X × F

(9.2.2)

We first of all note that because of conditions 1 and 2, a topos in partic-
ular admits products, see the discussion after (8.2.34) Therefore, the last
condition 4 is meaningful.

We recall the structural property Lemma 9.1.1 which then holds in any
topos. Moreover, in a topos, any arrow can be factored into the composition
of an epic and a monic arrow. In order to explain this, we say that an arrow
f : X → Y has as image a monic m = im f : Z → Y if f factors through
m : Z → Y if f = m ◦ e for some e : X → Z , and if m is universal in
the sense that whenever f factors through some m′, then so does m. As a
diagram, this becomes

X Y

Z

Z ′

...........................................................................................................................................................................................................................................................................
.
........
....

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

m

................................................................................................................. ............
f

................................................................................................................................ ........
....

e

..............................................................................................................
...
.........
...........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....................
............

m′

(9.2.3)

Lemma 9.2.1 In a topos, every arrow f possesses an image m and factors
as f = m ◦ e with an epic e.

Condition 4, of course, is a special case of an exponential, that is,

P X = �X . (9.2.4)

In particular, we have

P1 = �. (9.2.5)

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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Let us consider this last condition in the category Sets, recalling the above
discussion of exponentials, see (8.2.61). We recall that in this category,
� = 2 = {0, 1}. We put

εX (x, A) :=
{

1 if x ∈ A

0 else,
(9.2.6)

and for f : X × B → �, we put

F(b) := {x ∈ X : f (x, b) = 1}. (9.2.7)

Then εX ◦ (1X × F)(x, b) = 1 iff x ∈ F(b) = {ξ ∈ X : f (ξ, b) = 1} iff
f (x, b) = 1 so that the diagram (9.2.2) indeed commutes.

We can also express the last two requirements by

SubE X ∼= HomE(X, �) (9.2.8)

and

HomE(X × B, �) ∼= HomE(B, P X). (9.2.9)

Thus, the subobject functor and the functor HomE(X × ·, �) are both
representable. In particular, combining these two isomorphisms, we have
for B = 1

SubE X ∼= HomE(X, �) ∼= HomE(1, P X). (9.2.10)

Therefore, a subobject A of X can be alternatively described as

a monic arrow A � X (9.2.11)

a morphism χ : X → � (9.2.12)

a morphism a : 1 → P X. (9.2.13)

In the category Sets, we have

HomSets(1,�) = �1 = P1 (9.2.14)

according to (9.2.5). This relationship, however, is not true in general. We
consider the monoid M2 and the category of M2 − Sets. We have seenMonoid M2
that the subobject classifier� of this category is the set of left ideals of M2,
that is,

�M2 = {∅, {0}, {0, 1}} (9.2.15)

with its natural M2-action ω (9.1.23). Likewise, the terminal object 1 is
the set {0} with the trivial M2-action λ0.3 Thus, when h : 1 → � is
a morphism, then h : {0} → �M2 is equivariant w.r.t. λ0 and ω. Thus
ω(0, h(0)) = h(λ0(0), 0) = h(0). The key point now is that the value
h(0) = {0} is therefore not possible, because ω(0, {0}) = {0, 1} �= {0}.
Thus, we have only two possible values, h(0) = {0, 1} or h(0) = ∅. Thus,

HomM2−Sets(1,�) = {∅, {0, 1}} �= � = {∅, {0}, {0, 1}}. (9.2.16)

3Here, we cannot avoid denoting the single element of 1 by 0, as the latter is the neutral
element of M2.

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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The reason for this discrepancy is that in general, the set of subobjects of
X , SubC(X) = HomC(X, �), is only a set, but not an object of C itself,
in contrast to P X = �X . One expresses this by saying that HomC(X, �)

is external, while P X is internal to the category C. Since these two things
need not coincide, the external and the internal point of view of a category
may lead to different results.

Often, one uses the notation

� := true, (9.2.17)

as shall we do frequently. As remarked above, a topos possesses finite
colimits, and so, in particular, it has an initial object 0. There is then a
unique morphism

! : 0 → 1. (9.2.18)

We can then define the arrow

⊥ := false : 1 → � (9.2.19)

as the unique arrow for which

0 1

1 �................................................................................................................. ............⊥

..............................................................................................................
...
.........
...

�

................................................................................................................. ............!
..............................................................................................................
...
.........
...

!

(9.2.20)

is a pullback, that is, ⊥ is the characteristic arrow of !, i.e., ⊥ = χ!. In the
topos Sets, we have � = {0, 1}, 0 = ∅, 1 = {1}, and

�1 = 1, ⊥1 = 0. (9.2.21)

The reason is that in this case for no other object A of Sets than 0 is there
such a commutative diagram

A 1

1 �................................................................................................................. ............⊥

..............................................................................................................
...
.........
...

�

................................................................................................................. ............

..............................................................................................................
...
.........
...

(9.2.22)

and so, (9.2.19) trivially satisfies the pullback condition. Had we assigned
the value 1 to⊥1, however, then there would have been such diagrams, and
the pullback property would not have been satisfied, because there are no
morphisms A → 0 = ∅.

We return to the general case where we have the following important
result.

Theorem 9.2.1 (a) For any object X in a topos E, the power object P X
carries the structure of a Heyting algebra. In particular, the subobject
classifier � = P1 of a topos is a Heyting algebra.
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(b) For any object X of a topos E, the set of subobjects, SubE(X) =
HomE(X, �) carries the structure of a Heyting algebra. In particular,
HomE(1, �), where 1 is the terminal object of the topos E, is a Heyting
algebra.

Thus, whether we work internally (a) or externally (b), we obtain a
Heyting algebra, but these two Heyting algebras may be different from
each other as the preceding example shows. Also, either of them may or
may not be a Boolean algebra. This will be important in Sect. 9.3 below.
In any case, the key point of Theorem 9.2.1 is that it provides us with an
algebraic structure—that of a Heyting algebra—on the subobject classifier
and on the set of subobjects.

Let us sketch the relevant constructions for the proof of Theorem 9.2.1.
The key point is to define the operations of meet, join, and implication in
terms of appropriate pullback diagrams. We shall do this for the subobject
classifier � : 1 → �. First of all, ¬ = χ⊥, the characteristic map of
“false”. That is,

1 1

� �................................................................................................................. ............
¬ = χ⊥

..............................................................................................................
...
.........
...

�

................................................................................................................. ............

..............................................................................................................
...
.........
...

⊥

(9.2.23)

is a pullback diagram. Next, ∩ = χ(�,�) is the character of the product
arrow (�, �) : 1 → � × �; the corresponding diagram is

1 1

� × � �.................................................................................................. ............
∩ = χ(�,�)

..............................................................................................................
...
.........
...

�

................................................................................................................. ............

..............................................................................................................
...
.........
...

(�, �)

(9.2.24)

For∪, we need the coproduct�+� of�with itself (in Sets, the coproduct
of two sets is simply their disjoint union; for the general definition, recall
(8.2.47)). The two arrows (�, 1�) and (1�, �) from� to�×� then define
an arrow u : � + � → � × �, as in

� � + � �

� × �

................................................................................................................................................................................................................ .........
...

..............................................................................................................
...
.........
...

u

............................................................................................................................................................................ .........
...

(�, 1�)

.........................................................................................................................................................................
...
............

(1�, �)

(9.2.25)

Then ∪ = χu , as in
� + � 1

� × � �.................................................................................................. ............
∪ = χu

..............................................................................................................
...
.........
...

�

.................................................................................................. ............

..............................................................................................................
...
.........
...

u

(9.2.26)

http://dx.doi.org/10.1007/978-3-319-20436-9_8
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Finally, one needs to define an implication ⇒ in terms of the other opera-
tions. One then needs to check that these operations satisfy the properties
required for a Heyting algebra, see (2.1.67), (2.1.75)–(2.1.78) and Lemma
(2.1.7).

Having constructed the Heyting algebra operations on �, we can then
extend them to HomE(X, �): When we have arrows f, g : X → �, they
define an arrow ( f, g) : X → � × � by the universal property of � × �

(see the definition and discussion of products around (8.2.21) in Sect. 8.2),
and we can then compose this with ∩, ∪ or ⇒. And, of course, an arrow f
can be composed with ¬ to obtain the arrow ¬ f : X → �.

More specifically, we recall from the end of Sect. 9.1 that the subobject
classifier for a presheaf category SetsCop

is the presheaf � of sieves on the
objects of C. We can then check directly

Lemma 9.2.2 The set �(C) of sieves on C is a Heyting algebra for each
object C of the category C, and hence so is the sieve presheaf � itself, by
performing the Heyting algebra operations on each object C.

Proof Each sieve is a set (of morphisms), and so, we can define the union
and intersection of sieves. It is clear that unions and intersections of sieves
are again sieves. The implication operator S ⇒ S′ is defined by

( f : D → C) ∈ (S ⇒ S′)(C) (9.2.27)

iff whenever, for g : D′ → D, f ◦ g ∈ S(C), then also f ◦ g ∈ S′(C).

To show that this is indeed a sieve we have to verify that if f ∈ S ⇒ S′
and h : D′′ → D, then also f ◦ h ∈ S ⇒ S′. To check this: If in this
situation ( f ◦ h) ◦ k ∈ S(C) for k : D′ → D′′, then (9.2.27) with g = h ◦ k
yields ( f ◦ h) ◦ k ∈ S′(C). This implication operator then satisfies

S0 ⊂ (S ⇒ S′) iff S0 ∩ S ⊂ S′ (9.2.28)

for all sieves S0, as required for the implication operator by (2.1.59). �

That there are many topoi is guaranteed by the following result which
says that slice categories (introduced in Sect. 2.3, see (2.3.30)) over objects
of topoi are again topoi.

Theorem 9.2.2 For a topos E and an object E of E, the slice category
E/E of objects over E is also a topos.

This result can be considered as a generalization of (8.4.1). We do not
provide the complete proof (which is not difficult, but the construction
of power objects is somewhat lengthy), but note only that the subobject
classifier in E/E is simply given by � × E → E where � is, of course,
the subobject classifier of E and the arrow is the projection onto the second
factor.

This result also gives us an opportunity to reflect again the essential
idea behind the concept of a topos. We do this very heuristically, but the
preceding formal considerations will hopefully enable the reader to both

http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_8
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
http://dx.doi.org/10.1007/978-3-319-20436-9_2
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understand and be able to make this precise. When X is a set, and A ⊂ X
is a subset, then for x ∈ X , we can check whether x ∈ A or not. In other
words, we can check whether the property A is true for x or not. Formally,
this is what the subobject classifier � that consists of the two values 1 for
true and 0 for false allows us to do. When, more generally, we look at a
family Xe of sets, indexed by some E , with subsets Ae ⊂ Xe, and a section
xe ∈ Xe, we can then check for which e ∈ E , we have xe ∈ Ae, that is, for
which e the property A is true. The corresponding subobject classifier �E

which would consist of the individual subobject classifiers �e then allows
us to formalize this aspect that a property may hold for some, but perhaps
not for all e. And when E then carries some additional relation structure, as
expressed by a collection of morphisms, then the corresponding subobject
classifier will also incorporate that structure. For that purpose, we have used
concepts like sieves. And this is the reason why topoi are appropriate tools
for versions of logic where assertions may be true only sometimes, under
certain conditions or in certain situations. This is what we shall now turn to.

9.3 Topoi and Logic

We wish to first describe the main ideas of the present and the subsequent
sections. The operators of classical propositional logic, ∧ (and), ∨ (or),
∼ (not) and ⊃ (implies),4 obey the rules of a Boolean algebra, which are
the same as for the set theoretical operations ∩ (intersection), ∪ (union),
¬ (complement) and ⇒ (implies) in the power set P(X) of some set X .
In particular, we may consider the simplest Boolean algebra {0, 1}, which
we can identify with the power set of a 1-element set. Therefore, when one
has a collection of logical propositions, formed from letters by the above
logical operations, one considers so-called valuations that map sentences to
elements of such a Boolean algebra, preserving the above correspondences
between logical and Boolean operations. When the logical operations are
also considered as constituting a Boolean algebra, such a valuation would
thenbe ahomomorphismofBoolean algebras in the sense ofSect. 2.1.4. The
realm of logical formulas, however, is typically infinite whereas the range
of a valuation usually is a finite Boolean algebra, like {0, 1}. Nevertheless,
the issue of interest for classical propositional logic is whether a formula
is true (i.e., can be derived from the axioms) or not, that is, a simple binary
distinction. The sentences that can be derived within classical propositional
logic then correspond to those that are mapped to 1 in the Boolean algebra
by such a valuation. In fact, one may take any Boolean algebra here, for
instance {0, 1} or the power setP(X) of some set X . In particular, the law of
the excluded middle α∨ ∼ α for any α in the latter case then corresponds
to A ∪ X\A = X for any subset A of a set X . Likewise, the equivalent

4 The symbol ⊃ (implies) is not the reverse of the symbol ⊂ (subset). It rather goes in
the same direction. If A ⊂ B, then (x ∈ A) ⊃ (x ∈ B). I hope that this will not cause
much confusion.

http://dx.doi.org/10.1007/978-3-319-20436-9_2
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formulation ∼∼ α = α corresponds to the fact that each A ⊂ X equals the
complement of its complement, i.e., X\(X\A) = A.

Now in intuitionistic logic, the law of the excluded middle is no longer
accepted. Therefore, the logical operations of intuitionistic logic only cor-
respond to those of a Heyting algebra. Again, there is a topological version
of this, the collection O(X) of open subsets of a topological space X . In
a Heyting algebra, we only have a pseudocomplement instead of a com-
plement, and in O(X), this is the interior (X\A)◦ of the set theoretical
complement X\A. In particular, in general A ∪ (X\A)◦ may not be all of
X , but a proper open subset of it. Thus, for intuitionistic logic, one naturally
considers Heyting algebra valuations. In contrast to the classical Boolean
case, here it no longer suffices to take a single Heyting algebra, but one
rather needs to consider all of them when one wants to check via valuations
whether a sentence can be derived in intuitionistic logic. Following Kripke
(who essentially revived an old idea of Leibniz), one then considers a poset
P of so-called possible worlds, where p ≤ q is interpreted as the world q
being accessible from p, or a possible successor of p. One then requires
for a statement to hold at p, it has to continue to hold at all q with p ≤ q .
Likewise, for ∼ α to hold at p, α must not hold at any q with p ≤ q . In
particular, the law of the excluded middle does not hold here, and we are
in the realm of intuitionistic logic.

The poset here could again be a power set P(X), or O(X) for a topo-
logical space X , but the role will now be different. We have the natural
association of p ∈ P to the set Ap := {r ∈ P : r ≤ p}, but this does not
define a presheaf on P, because it is not contravariant, but rather covariant,
that is, Ap ⊂ Aq when p ≤ q . Thus, it rather defines a presheaf on Pop.
This is easily remedied, however, by taking instead Fp := {q ∈ P : p ≤ q}.
This does indeed yield a presheaf on P. (There may be a danger of con-
fusion here with the Yoneda lemma. Yoneda would tell us to construct a
presheaf from the Ap via r �→ Hom(r, p), that is, in this special case of a
poset, assigning to r the unique element r → p of Ap(r) in case r ≤ p,
and ∅ else. Conversely, Fp arises as p → ⋃

q Hom(p, q) from the Yoneda
functors p �→ Hom(p, q) for each q .)

Here, now, comes the main point. We consider variables whose range
of values is indexed by the members of our poset P. That is, the variable
ranges, called types, are presheaves (in fact, sheaves, but we’ll come to that
point) on P. That is, the range of possible values of a variable depends on
the possible world p in a functorial manner. In particular, for formulas, the
type consists of truth values, that is, it is the subobject classifier presheaf�.
In particular, a formula can be true in some possible world p, and then has to
remain true in all worlds subsequent to p, but may be false in others. Again,
in this setting, the law of the excluded middle does not need to hold, and we
are in the realm of intuitionistic logic. Operations like inserting a variable x
into a formula φ(.) then become morphisms of presheaves X → � where
X is the type of x . Likewise substituting a particular value a for a variable x
is described by a morphism 1 → X . The point, again, is that this has to be
done over each possible world p, in a manner that respects the morphisms
p ≤ q .
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In this section, we shall only give an outline and omit most proofs. A
more detailed treatment can be found [42] which we shall also follow here
in various places. A good reference for logic is [26].

We start with classical propositional logic (PL). There, we have an alpha-
bet �0 = {π0, π1, . . . } consisting of propositional variables (letters), the
symbols ∼,∧,∨,⊃ and the brackets ( , ). From these, we can form sen-
tences by taking letters and applying the above operations to them. The
collection of sentences is denoted by �. Classical logic (CL) has a certain
collection of axioms, that is, sentences that are considered to be universally
valid, and one rule of inference. The axioms may be different in different
treatises, but those different collections are all equivalent, hopefully. We
list here the following collection:

1. β ⊃ (α ⊃ β)

2. (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

3. (α ∧ β) ⊃ α
4. (α ∧ β) ⊃ β
5. (α ⊃ β) ⊃ ((α ⊃ γ) ⊃ (α ⊃ (β ∧ γ)))

6. α ⊃ (α ∨ β)

7. β ⊃ (α ∨ β)

8. (α ⊃ γ) ⊃ ((β ⊃ γ) ⊃ ((α ∨ β) ⊃ γ))

9. (α ⊃ β) ⊃ (∼ β ⊃∼ α)

10. α ⊃∼∼ α
11. ∼∼ α ⊃ α

The inference rule is modus ponendo ponens (usually simply called modus
ponens):

From the sentences α and α ⊃ β, we can derive the sentence β.
One should note that this inference rule does not have the same content

as the axiom (α ∧ (α ⊃ β)) ⊃ β would have. The inference rule only says
that when we can derive α and α ⊃ β within our formalism, then we get
β for free. In other words, the inference rule has a status different from an
axiom.

The CL–theorems, in symbols

�CL α, (9.3.1)

are those sentences α that can be derived from the axioms via applications
of the inference rule and substitutions.5 A substitution or insertion consists
in replacing in a sentence containing a letter α that letter by some sentence.
Thus, the inference rule enables us to derive theorems from the axiomswith
the help of substitutions.

With this notation, the modus ponens says that

�CL α and �CL (α ⊃ β) imply �CL β

5 The symbol � is often pronounced as “entail”; its shape also suggests calling it
“turnstile”.
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which is different from the axiom

�CL (α ∧ (α ⊃ β)) ⊃ β).

Intuitionistic logic (IL) accepts the first 10 axioms and the rule of infer-
ence, but not the 11th axiom, i.e., it rejects the law of the excluded middle
α∨ ∼ α. The IL-theorems are expressed by

�IL α. (9.3.2)

Semantics then consists in assigning truth values to sentences. In topos
logic, these truth values will be elements of the subobject classifier � of a
topos E, or in H = HomE(1,�). The simplest case is Sets where � is the
Boolean algebra 2 = {0, 1}. The essential point for the general case is given
by Theorem 9.2.1 which says that every such subobject classifier carries the
structure of aHeyting algebra.We thus let (H, �) be aHeyting algebra,with
the operations of meet, join, implication, and pseudo-complement denoted
by �, �,⇒, ¬, to distinguish them from the above logical operations.

For the version of topos logic that we shall explore in the sequel, the
relevant Heyting algebra is

H = HomE(1,�), (9.3.3)

see Theorem 9.2.1.

Definition 9.3.1 An H -valuation, where H is a Heyting algebra, is given
by a function V : �0 → H that is extended to a function V : � → H by
the rules

1. V (∼ α) = ¬V (α)

2. V (α ∧ β) = V (α) � V (β)

3. V (α ∨ β) = V (α) � V (β)

4. V (α ⊃ β) = ¬V (α) � V (β) = V (α) ⇒ V (β).

A sentence α ∈ � is called H -valid, or an H -tautology, in symbols

H |= α (9.3.4)

if

V (α) = 1 for every H -valuation. (9.3.5)

In particular,α is called classically valid if it is valid for theBoolean algebra
{0, 1}.

We then have the following fundamental result.

Theorem 9.3.1 The following four statements are equivalent.

1.
�CL α. (9.3.6)

2. α is classically valid.
3. α is B-valid for some Boolean algebra (B, �).
4. α is B-valid for any Boolean algebra.
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That CL-theorems are classically valid, i.e., the implication 1 ⇒ 2 is
called soundness, while the reverse implication 2 ⇒ 1 is called complete-
ness of the above classical system of axioms. Soundness, in contrast to com-
pleteness, is rather easy to prove. In turn, completeness is the more useful
part of the result. In order to check whether a formula can be derived, one
has to come up with a derivation of it which may require some ingenuity.
In contrast, classical validity can be verified with the help of truth tables
which, in principle, is a mechanical (although in practice typically lengthy)
procedure.

Similarly, concerning intuitionistic logic, we have

Theorem 9.3.2 The following statements are equivalent.

1.
�IL α. (9.3.7)

2. α is H-valid for any Heyting algebra H.

We observe that Theorem 9.3.2 is not as strong as Theorem 9.3.1 insofar
as here it does not suffice to check validity for a single algebra, like the
classical Boolean algebra {0, 1}, but that one rather has to check validity
for all Heyting algebras. In fact, this is a key insight into intuitionistic logic
that emerged from the work of Kripke.

When the quantifiers ∃,∀ are included, one is led to first-order logic. We
shall not go into the details, but rather move on to the connection between
topoi and logic. For this purpose, it will be insightful to discuss the approach
of Kripke to intuitionistic and modal logic. One starts with a category P
of so-called possible worlds. p → q for objects p, q of P means that the
world q can be reached from the world p, i.e., that it is a possible successor
of p. (For this interpretation, it may be helpful to assume that P is a poset,
or at least to assume that between any two objects, there exists at most one
morphism.) We then consider a presheaf F on Pop, that is, an element of
SetsP. The interpretation is that we assign to every world p a set Fp of
possible ranges of variables, or of possible states. Thus, when p → q , we
get an arrow Fpq : Fp → Fq , with Fpp = 1Fp and Fpr = Fqr ◦ Fpq

for p → q → r . Moreover, we assume that for each p, we have a set of
possible relations between variables that are preserved under arrows. That
is, if Rp is, for instance, a binary relation, then

x Rp y implies Fpq(x)Rq Fpq(y) for p → q. (9.3.8)

Wealso assume that for each p,we canverify forwhich valuesv1, . . . , vm ∈
Fp of variables x1, . . . , xm a formula φ(x1, . . . , xm) is true. We’ll have to
return to this issue, but for the moment, we simply write this as

Mp |= φ(v1, . . . , vm). (9.3.9)

Such a formula could, for instance, express a relation v1Rpv
2. In fact, such

relations and identities v ≈ u comprise the so-called atomic formulae. In
other words, atomic formulae must not contain the logical symbols ∧,∨,

⊃, ∼ or the quantifiers ∃,∀.
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We thendefine the validity at p inP of a formula in several steps, denoting
it by

M |=p φ(v1, . . . , vm), (9.3.10)

in terms of validities Mp |= φ(v1, . . . , vm) (note the different position of
the subscript p here and in (9.3.10). We use the abbreviation vq := Fpqv,
and we adopt the convention that a variable with a superscript i can only
be inserted into the i th slot of a formula.

1. For an atomic formula,M |=p φ(v1, . . . , vm) iffMp |= φ(v1, . . . , vm).
2. M |=p φ ∧ ψ(v1, . . . , vm) iff M |=p φ(v1, . . . , vm) and M |=p

ψ(v1, . . . , vm).
3. M |=p φ ∨ ψ(v1, . . . , vm) iff M |=p φ(v1, . . . , vm) or M |=p

ψ(v1, . . . , vm).
4. M |=p∼ φ(v1, . . . , vm) iff whenever p → q , not M |=q

φ(v1q , . . . , vm
q ).

5. M |=p φ ⊃ ψ(v1, . . . , vm) iff whenever p → q , if M |=q

φ(v1q , . . . , vm
q ), then M |=q ψ(v1q , . . . , vm

q ).

6. M |=p ∃wiφ(v1, . . . , vi−1, wi , vi+1, . . . , vm) iff for some vi ∈ Fp,
M |=p φ(v1, . . . , vi . . . , vm).

7. M |=p ∀wiφ(v1, . . . wi , . . . , vm) iff whenever p → q , for all v ∈ Fq ,
M |=q φ(v1q , . . . , vi−1

q , v, vi+1
q , . . . , vm

q ).

The important items here are the negation, the implication and the all quan-
tifier. For those, we not only require validity at the instance (world) p, but
also at all later instances (accessible worlds) q .

We now return to the validitiesMp that were employed in (9.3.10). We
consider the set P+ of hereditary subsets of P; here a hereditary subset S
has to satisfy

if p ∈ S and p → q, then also q ∈ S. (9.3.11)

We observe the analogy with the Definition 9.1.3 of a sieve—such a hered-
itary S is simply a sieve on Pop. As in the proof of Lemma 9.2.2, P+ is a
Heyting algebra, and so it can receive a valuation V : � → P+. For such a
valuation, for a sentence φ ∈ �, V (φ) is then considered as the set of those
worlds where φ is valid, and since the elements of the Heyting algebra P+
satisfy (9.3.11), whenever φ is valid at p, it then remains valid at all q with
p → q , that is, in all worlds that can be reached from the world p. This
is then the key point of Kripke’s possible world semantics of intuitionistic
logic. A modelM is then defined to be such a pair (P, V ) with a valuation
V : � → P+.

Let us consider a simple example: P is the arrow category → with two
objects i0, i1 and three morphisms i0 → i0, i0 → i1, i1 → i1. Assume that
for some sentence φ, we have V (φ) = {i1}, that is, φ is valid at i1, but not
at i0. The latter is expressed in symbols as M �i0 φ. Since M |=i1 φ and
we have the arrow i0 → i1, then alsoM �i0∼ φ. Therefore

M �i0 (φ∨ ∼ φ), (9.3.12)
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that is, the law of the excluded middle does not hold here – we are in
the realm of intuitionistic logic. We have, however, M |=i0∼∼ φ since
M �i0∼ φ and M �i1∼ φ, and hence also

M �i0 (∼∼ φ ⇒ φ). (9.3.13)

Definition 9.3.2 The sentence φ ∈ � is valid for the valuation V : � →
P+ if it is valid for every p ∈ P, that is, if V (φ) is the total hereditary set
P itself.

φ is valid in the sense of Kripke if it is valid for all such valuations V .

In the terminology of Definition 9.1.3, thus the sentence φ ∈ � is valid
for the valuation V : � → P+ if V (φ) is the total sieve of all elements
of P.

For propositional sentences (i.e., ones that do not involve the quantifiers
∃,∀), we have

Theorem 9.3.3 Let P be a poset. Then for any propositional sentence
α ∈ �,

SetsP |= α iff P |= α, (9.3.14)

where on the left-hand side, we have validity in the sense of the topos SetsP

(see 9.3.3) whereas on the right hand side, we have validity in the sense of
Kripke.

Later on, in 9.6, we shall put this result into a more general context,
and we shall shift the perspective. Topos validity will be the main concern,
and the Kripke rules will then emerge as an example of how to describe
the validity in a special topos, SetsP in the present case. We shall consider
more general topoi, in particular those of sheaves on a site (as defined in
the sections to follow), that allow for local amalgamations of formulae.

9.4 Topoi Topologies andModal Logic

Definition 9.4.1 A (Lawvere-Tierney) topology, also called a local oper-
ator, on a topos E with subobject classifier � is given by a morphism
j : � → � satisfying

(i)
j ◦ true = true (9.4.1)

(ii)
j ◦ j = j (9.4.2)

(iii)
j ◦ ∧ = ∧ ◦ ( j × j) (9.4.3)

where ∧ is the meet operator in the Heyting algebra � (see Theorem
9.2.1).
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The morphism j : � → � then classifies a subobject J of �, that is,
we get a commutative diagram

J 1

� �................................................................................................................. ............
j

......................................................................................................
...
.........
...

........................

true

................................................................................................................. ............

......................................................................................................
...
.........
...

........................

(9.4.4)

A good example of such a j is the double negation operator¬¬. Of course,
there also exist trivial examples.

In order to understand this definition, let us start by considering a topo-
logical space (X,O(X)). Let U := (Ui )i∈I be a collection of open subsets
of X , and let j0(U) be the collection of all open subsets of X contained in
⋃

i Ui , that is, all open sets covered by U . We then have

j0(O(X)) = O(X) (9.4.5)

and

j0( j0(U)) = j0(U). (9.4.6)

Also,

j0(U1 ∩ U2) ⊂ j0(U1) ∩ j0(U2) (9.4.7)

for two such collections. Here, U1 ∩ U2 consists of those open sets that are
contained in bothU1 andU2, and thesemay be few; in fact,U1∩U2 maywell
be empty even though, for instance,

⋃

V ∈U1
V might equal

⋃

V ∈U2
V , i.e.,

the two collections cover the same open set, but possibly utilizing different
sets. In particular, in general, the inclusion in (9.4.7)may be strict. However,
if Uα, α = 1, 2, are sieves (we recall that U is a sieve if whenever V ⊂ U
for some V ∈ O(X) and U ∈ U , then also V ∈ U), then we have equality
in (9.4.7).

After this preparation, we look at the topos SetsO(X)op
. The subobject

classifier in this topos is the presheaf that assigns to each U ∈ O(X) the
set �(U ) of all sieves on U , see (9.1.26). The terminal object 1 assigns
to U the total sieve S̄(U ) of all open subsets of U , and true : 1 � � is
then the inclusion, see the construction leading to (9.1.27). We now define
a subobject J of � by

J (U ) := {S a sieve on U with U =
⋃

V ∈S

V }. (9.4.8)

Also, when U0 is an open subset of U , we then have U0 = ⋃

V ∈S0 V where
S0 is the sieve consisting of all V ∩U0, V ∈ S. Thus, the covering property
of (9.4.8) is preserved under restrictions to open subsets, and J therefore is
a subfunctor of�. The classifying morphism j : � → � of this subfunctor
J then assigns to a sieve SU on an open subset U the total sieve

j (SU ) := S̄(U ′) with U ′ =
⋃

V ∈SU

V (9.4.9)
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of all the open sets covered by SU . Since j maps total sieves to total sieves,
property (9.4.1) is satisfied, and (9.4.2) holds for the same reason. (9.4.3)
is also easily verified, recalling the discussion of equality in (9.4.7). Thus,
j defines a topology on the topos SetsO(X)op

.
Given such a topology j on a topos E, and a subobject A of an object

X with characteristic morphism χA, we then define the closure A
j
(we

use the superscript j here not only to indicate the specific topology used,
but more importantly to distinguish this closure from the closure operator
in topology (see Definition 4.1.9 and Theorem 4.1.2), as the two in general
are different—and, in fact, are defined in different circumstances) as the
subobject of X with characteristic morphism j ◦ χA, that is,

χ
A

j = j ◦ χA. (9.4.10)

In fact, we can perform this construction for any arrow j that need not
define a topology. One can show that j defines a topology iff this closure
operator satisfies

A ⊂ A
j
, A

j
j

= A
j
, A ∩ B

j = A
j ∩ B

j
(9.4.11)

for all subobjects A. We see here a difference to the topological closure
operator of Theorem 4.1.2. There, the closure commuted with unions, but
here, the closure operator from a topos topology j commutes with inter-
sections instead.

We now turn to modal logic. In a modal logic, ordinary logic (classical
or intuitionistic) is amplified by some modal operator. This operator can,
for instance, express knowledge (epistemic modality), belief (doxastic),
obligation (deontic), or necessity and possibility (alethic). We denote such
a modal operator by ∇. So, for instance, in the epistemic modality, ∇α
stands for “the sentence α is known”. When the setting involves agents, we
may also have ∇iα expressing that “agent i knows α”. Here, however, we
shall work with a different modal operator, and we shall read ∇α as “it is
locally the case that α”. Here, “locally” will refer to a topology, as will be
explained in a moment. The modality that we shall investigate in the sequel
is also called “geometric modality”.

Definition 9.4.2 A modal operator is an operator

∇ : � → � (9.4.12)

where� is the collection of sentences of our logic, satisfying the following
conditions

∇(α ⊃ β) ⊃ (∇α ⊃ ∇β) (9.4.13)

α ⊃ ∇α (9.4.14)

∇∇α ⊃ ∇α. (9.4.15)

These axioms are different from the ones in classical modal logic for
the knowledge or other operators. For instance, when ∇α meant that “the
agent knowsα”, then (9.4.13) would say that when the implicationα ⊃ β is
known, then, when the agent knows α, she also knows β. Also, by (9.4.14)
she would know everything that is true, and when she knew that she knows

http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
http://dx.doi.org/10.1007/978-3-319-20436-9_4
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α, then by (9.4.15), she would also know α. These properties are not so
desirable for a knowledge operator, however, and in modal logic (see e.g.
[53]), rather than (9.4.14), (9.4.15), one usually requires the converse impli-
cations ∇α ⊃ α and ∇α ⊃ ∇∇α, that is, only true statements can be
known, and when one knows something, one also knows that one knows it.

In fact, the conditions (9.4.13) and (9.4.14) can be replaced by

(α ⊃ β) ⊃ (∇α ⊃ ∇β) (9.4.16)

∇(α ⊃ α) . (9.4.17)

Again, for the knowledge operator, this would mean that logical implica-
tions lead to implications between knowledges, and all tautologies would
be known, resp. Again, these conditions are not desirable for a knowledge
operator.

Let E be a topos equipped with a local operator j . If V : �0 →
HomE(1, �) is a valuation, we can extend it to � by using the seman-
tic rules of Definition 9.3.1 plus

V (∇α) = j ◦ V (α) (9.4.18)

for all sentences α.

9.5 Topologies and Sheaves

In order to understand the preceding better, we now discuss an approach to
topologies that constitutes an alternative to Definition 9.4.1.

Definition 9.5.1 Let C be a category. A (Grothendieck) topology on C
assigns to each object C a collection J (C) of sieves with the following
properties

(i) The total sieve S̄(C) of all arrows f : D → C is a member of J (C),
for every C .

(ii) If S ∈ J (C) and h : D → C is an arrow, then h∗(S) ∈ J (D).
(iii) If for some S ∈ J (C) and some other sieve S′ on C , for every arrow

h : D → C in S, h∗(S′) ∈ J (D), then also S′ ∈ J (C).

When a sieve S is contained in J (C) we say that S covers C . And we say
that the sieve S on C covers the arrow f : D → C if f ∗(S) ∈ J (D). The
sieve S on C is called closed6 if it contains all the arrows that it covers, i.e.,
if f : D → C is covered by S, then f ∈ S.

A site is a small category equipped with a topology J .

Again, this is motivated by the example of the category O(X) of open
subsets of a topological space X , the arrows V → U being the inclusions

6This condition is different from the closedness condition in topology and hopefully will
not be confused with it.
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V ⊂ U . We recall that a sieve S on U is a collection of open subsets of U
such that whenever W ⊂ V ∈ S, then also W ∈ S. We then say that a sieve
S covers U if

U ⊂
⋃

V ∈S

V . (9.5.1)

We then obtain a Grothendieck topology by letting J (U ) be the collection
of all sieves on U that cover U . (Note that not every cover of U , that is
any collection R of subsets V of U with U ⊂ ⋃

V ∈R V is a sieve, but it
generates the sieve of all V ′ with V ′ ⊂ V for some V ∈ R.) Condition
(i) is obvious: The collection of all open subsets of U obviously covers U .
Condition (ii) means that when a sieve S coversU , then any openU ′ ⊂ U is
covered by the collection V ∩U ′, V ∈ S. Finally, (iii) says that when a sieve
S′ covers any member V of a sieve S covering U , then S′ also covers U ,
as U ⊂ ⋃

V ∈S V . Also, closedness of S then simply means that whenever
U ′ ⊂ ⋃

V ∈S V , then also U ′ ∈ S. The latter makes the fundamental link
with the sheaf concept below: Whenever something holds on all V ∈ S
in a compatible manner, that is, matches on all intersections V1 ∩ V2 for
V1, V2 ∈ S, then it also has to hold on any U ′ ⊂ ⋃

V ∈S V .
As always, there exists a trivial topology. Here, this is the topology

where a sieve S covers C iff 1C ∈ S. In other words, the only sieve cov-
ering C is the total sieve S̄(C). Obviously, such a topology exists on every
category, in particular onO(X) for a topological space X . In order to avoid
confusion, we should point out that this is not the same as what might be
called a trivial topological space in topology. For such a trivial topological
space,O(X)would consist of X and ∅ only (this is also called the indiscrete
topology on the set X , see 4.1).

In fact, the Definitions 9.4.1 and 9.5.1 are equivalent in the following
situation.

Theorem 9.5.1 Let C be a small category. Then the Grothendieck topolo-
gies J on C correspond to the Lawvere-Tierney topologies on SetCop

.

We sketch the

Proof We have seen at the end of 9.1 that the subobject classifier for the
topos SetCop

is given by

�(C) = {S : S a sieve on C}. (9.5.2)

Therefore, given a Grothendieck topology J on C, we define

jC (S) := {g : D → C : g∗S ∈ J (D)}. (9.5.3)

Then jC (S) is also a sieve on C , and the operator j : � → � satisfies the
conditions of Definition 9.4.1 as is readily checked.

Conversely, a Lawvere-Tierney operator j : � → � classifies a subob-
ject J of �, as in (9.4.4). In fact

S ∈ J (C) iff jC (S) = S̄(C) (the total sieve on C). (9.5.4)

Again, one checks that this yields a Grothendieck topology.

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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These two constructions are inverses of each other. In fact, when for
a Grothendieck topology J , S ∈ J (C), then by condition (ii), jC (S) in
(9.5.3) is the total sieve. Conversely, if in (9.5.4), for a sieve S, jC (S) is the
total sieve, then by condition (iii), S has to be in J (C).

Now let J be a Grothendieck topology on C. For an object C , consider
g1, g2 ∈ S ∈ J (C) for arrows g1 : D1 → C, g2 : D2 → C . We let
D1 ×C D2 be the pullback of these two arrows, i.e.,

D1 ×C D2 D1

D2 C

..............................................................................................................
...
.........
...

g1

................................................................................................................. ............
g2

.............................................................................. ............
g21

..............................................................................................................
...
.........
...

g12

(9.5.5)

commutes and is universal.

Definition 9.5.2 Let F ∈ SetsCop
be a presheaf. F is called a sheaf on the

site (C, J ) if it satisfies the following condition. Whenever S ∈ J (C), if
for any collection of elements xi ∈ F Di for arrows gi : Di → C in S, we
have

Fg
j
i (xi ) = Fgi

j (x j ), (9.5.6)

then there exists precisely one x ∈ FC with

Fgi (x) = xi for all i. (9.5.7)

This x is called an amalgamation of the xi , and the above family of arrows
gi and elements xi is called compatible.

We recall the discussion of sheaves on topological spaces in Sect. 4.5.
Of course, the present definition generalizes the concept introduced there.
Let us consider the example of the sheaf of continuous functions on a
topological space (X,O(X)). Given U ∈ O(X) and a collection of open
subsets Ui ⊂ U and continuous functions φi : Ui → R satisfying

φi = φ j on Ui ∩ U j for all i, j (9.5.8)

then there exists a continuous function

φ : U → R with φ = φi on each Ui . (9.5.9)

The preceding definition abstracts this situation.
We also observe that for the trivial Grothendieck topology where the

only sieve covering an object C is the total sieve S̄(C), every presheaf is a
sheaf. This is trivially so, because the total sieve contains 1C , and so, for
this covering, we do not need to amalgamate anything, because it is already
given on C itself.

Theorem 9.5.2 The sheaves on a site (C, J ) also form a topos, called a
Grothendieck topos and denoted by Sh(C) (J , being implicitly understood,

http://dx.doi.org/10.1007/978-3-319-20436-9_4
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is omitted from the notation). The subobject classifier is similar to the
classifier � for presheaves (see 9.5.2),

�J (C) = {S : S a closed sieve on C}, (9.5.10)

with 1J (C) = 1(C) again the maximal sieve on C which is obviously
closed.

Proof We shall not provide all the details, which are tedious, but not prin-
cipally difficult, but only sketch the main issues. Of course, one needs to
verify first of all that this�J defines a presheaf. The crucial point for this is
that the closedness condition is preserved under pullback, that is, whenever
the sieve S on C is closed, so is then the pullback f ∗(S) for any arrow
f : D → C .
The next point to verify is that �J is even a sheaf, that is, one has to

verify the uniqueness and existence of amalgamations. Finally, to show that
�J is a subobject classifier, one checks that for a sheaf F , the classifying
map χF ′ : F → � factors through �J precisely if the subpresheaf F ′ of F
is a sheaf itself. This is the crucial point, and so we recall the construction
of the subobject classifier � for presheaves of (9.1.27). For C ∈ C and
x ∈ FC , we put

SC (x) := { f : D → C : f ∗(x) ∈ F ′ D}. (9.5.11)

Thus, SC (x) is the sieve of arrows into C that pull back the element x of
the set FC to an element of the subset F ′ D of F D. Now, let F ′ be a sheaf
itself. We then have to verify that for every x , the sieve SC (x) is closed.
The condition that F ′ be a sheaf means that for all sieves S covering C
if f ∗(x) ∈ F ′ D for all arrows f : D → C in S, then also x ∈ F ′C .
Indeed, when we have a compatible family of arrows gi : Di → C and
elements xi ∈ F Di , then, because F is a sheaf, this family possesses an
amalgamation x ∈ FC . If F ′ now is a sheaf as well, it then follows that
x ∈ F ′C . This consideration shows that when SC (x) covers the identity
arrow 1C : C → C , then 1C ∈ SC (x). When we apply this argument more
generally to any arrow f : D → C and to f ∗(x) in place of x , we see that
SC (x) is indeed closed when F ′ is a sheaf.

Of course, for a topos, we need to verify more conditions, like the exis-
tence of power objects, but we shall not do this here, referring instead to
the literature or the reader’s own persistence. �

9.6 Topoi Semantics

With the preceding concepts, we can now take a deeper look at topoi seman-
tics. In particular, we shall be able to place the considerations of Sect. 9.3
into a more general perspective.

We begin with the requirement that, in topos logic, to each variable x ,
we need to assign a type (also called sort). This is an object X of the toposE
that we want to work with, called the language. One then also says that the
interpretation of the variable x of type X is the identity arrow 1X : X → X .
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(When the objects of E are sets, then one would think of the set X as the
range of values for the variable x .) More generally, we also call an arrow
f : U → X an interpretation of a term of type X . We shall not carefully
distinguish between terms and their interpretations, however, and we often
call an arrow f : U → X simply a term. In particular, the operations on
arrows, like composition, can thus be applied to terms. In particular, for
terms σ of type X and τ of type Y , we obtain a term 〈σ, τ 〉 of type X × Y .
An arrow c : 1 → X is called a constant of type X . A term φ of type� (the
subobject classifier of E) is called a formula. Such a formula φ : X → �

then classifies a subobject {x : φ(x)} of X , according to the diagram

{x : φ(x)} 1

X �

..............................................................................................................
...
.........
...

true

................................................................................................................. ............
φ

................................................................................ ............

..............................................................................................................
...
.........
...

(9.6.1)

(Again, if X were a set, we would think of {x : φ(x)} as the subset of those
elements x for which φ(x) is true.)

Definition 9.6.1 For a morphism a : U → X (also called a generalized
element of X ) and a formula φ : X → �, we say that U forces φ(a), in
symbols

U |= φ(a), (9.6.2)

if a factors through the subobject {x : φ(x)} of X .

Equivalently, this can be expressed as

im a ≤ {x : φ(x)} (9.6.3)

in the Heyting algebra Sub(X) of subobjects of X , where im a is the image
of a, as in Lemma 9.2.1.

In order to put the present approach into perspective, we should recall
Theorem 9.3.3 of 9.3. There, we had defined Kripke validity and then iden-
tified it with validity in the sense of a topos E of presheafs, that is, with
validity for the Heyting algebra HomE(1,�). Here, now, we define validity
through the forcing relation of Definition 9.6.1. We therefore now have to
spell out how this validity behaves under the rules of the Heyting algebra
HomE(1, �). This is called Kripke-Joyal semantics (sometimes, Beth’s
name is also included), because Joyal had worked this out for a general
topos E. Here, however, we shall only consider the case of a Grothendieck
topos, that is, a topos Sh(C) of sheaves on a site (C, J ), see Theorem 9.5.2.
We refer to [84] for the case of a general topos, and also as a reference for
our treatment here.

To set up the framework, we first consider a presheaf X on C. We want
to define a forcing relation for an object C of C. We recall from the Yoneda
lemma that C yields a presheaf yC , given by HomC(−, C), and

HomSetsCop (yC, X) ∼= XC, (9.6.4)
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that is, the natural transformations from HomC(−, C) to X are in natural
correspondance with the elements of the set XC . We therefore consider the
elements of XC as generalized elements of X in the sense of Definition
9.6.1. Essentially, this simply means that a ∈ XC is an element that we can
insert for the variable x on the object C of the underlying category.

Henceforth,we assume that the presheaf X is a sheaf. (We shall, however,
not distinguish between a sheaf and the underlying presheaf; thus, our
treatment abandons some precision, hopefully contributing to an easier
understanding of the key ideas.) Thus, our forcing relation for a : yC →
X is

C |= φ(a) (9.6.5)

if

a ∈ {x : φ(x)}(C), (9.6.6)

that is, if

a factors through the subobject {x : φ(x)} of X. (9.6.7)

The forcing relation is then obviously monotonic in the sense that

if C |= φ(a) and f : D → C, then D |= φ(a f ). (9.6.8)

We now utilize the topology J and the fact that X is a sheaf. Then the
forcing relation is local in the sense that

if Ci |= φ(a fi ) for a covering { fi : Ci → C} w.r.t. J, then also C |= φ(a).

(9.6.9)

Theorem 9.6.1 Let (C, J ) be a site and E = Sh(C) the topos of sheaves on
this site. Let φ(x), ψ(x) be formulas in the language of E, x a free variable
of type X ∈ E, a ∈ XC. Also, let σ(x, y) be a formula with free variables
x, y of types X and Y , resp. Then

1. C |= φ(a) ∧ ψ(a) iff C |= φ(a) and C |= ψ(a).
2. C |= φ(a) ∨ ψ(a) iff for some covering fi : Ci → C, for each index i ,

Ci |= φ(a) or Ci |= ψ(a).
3. C |= φ(a) ⇒ ψ(a) iff for all f : D → C, D |= φ(a f ) implies

D |= ψ(a f ).
4. C |= ¬φ(a) iff whenever for f : D → C, D |= φ(a f ), then the empty

family is a cover of D.
5. C |= ∃yσ(a, y) iff there exist a covering fi : Ci → C and bi ∈ Y Ci

such that for each index i , Ci |= σ(a fi , bi ).
6. C |= ∀yσ(a, y) iff for all f : D → C and b ∈ Y D, also D |= σ(a f, b).

Again, we do not prove this result, but rather refer to [84]. Note that,
if we take the trivial Grothendieck topology on C, then every presheaf is
a sheaf, and our topos reduces to the presheaf topos SetsCop

. In this case,
some of the above conditions simplify:

2’ C |= φ(a) ∨ ψ(a) iff C |= φ(a) or C |= ψ(a).
4’ C |= ¬φ(a) iff there is no f : D → C with D |= φ(a f ).
5’ C |= ∃yσ(a, y) iff there exists some b ∈ Y C with C |= σ(a, b).
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The reason for these simplifications is clear. For instance, to get 2’, we
simply observe that, for the trivial topology,we can simply take the covering
1C : C → C in 2.

In fact, Kripke’s original setting was that of a site consisting of a poset
P with the trivial topology, as described in Sect. 9.3.



10AReviewof Examples

In this chapter, we systematically describe the simplest examples of the
structures that are discussed in the main text. Thus, this chapter is an anti-
climax, and the preceding chapters are not a prerequisite to read it; instead
you can turn to it at any point during your study of this book. Here, since the
standard examples are so ubiquitous, we no longer provide margin boxes
indicating their appearance.

10.1 ∅ (Nothing)

The empty set ∅ is

• a set
• not a monoid or group, because it does not possess a neutral element e
• a category with no objects or morphisms
• not the power set of any space
• a metric space without points
• a graph, a simplicial complexwithout vertices, amanifoldwithout points;
in particular, all Betti numbers bp and the Euler characteristic χ vanish

• a topological space, and as such, its power set is {∅}, that is, a set with
one element,

and this latter leads us on to the next example, as via the power set operation,
we have created something out of nothing.

10.2 {1} (Something)

{1} is the setwith a single element 1.Although it is almost completely trivial,
it constitutes an example of almost all structures that we have discussed in
this book. It can be equipped with the structure of
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• a set
• a graph with a single vertex and no edges

•
• hence also a simplicial complex with a single vertex and no other sim-
plices; thus, b0 = 1 while all other Betti numbers vanish, and χ=1

• a matroid over ∅ or, more generally, over any set E , with {∅} as the only
independent subset of ∅ (or E) and no vertices

• a 0-dimensional connected manifold
• an equivalence relation satisfying F(1, 1) = 1
• a partially ordered set (poset) and in fact even an ordered set, with 1 ≤ 1
• a lattice, with 1 ∨ 1 = 1 and 1 ∧ 1 = 1
• a lattice with 0 and 1 and a Heyting and Boolean algebra only if we allow
for 0 = 1 (like any Boolean algebra, it is a power set, that of ∅, as noted
earlier)

• a metric space, with d(1, 1) = 0
• a monoid and a group, with 1 being the neutral element, that is, 1 · 1 = 1
as the operation

• not a field, because for that we would also need a commutative group
structure with a neutral element 0 �= 1

• the spectrum of any field (recall that when F is a field, its only prime
ideal is (0))

• a category with a single object, the identity morphism of that object, and
if we want, also other morphisms 1 → 1

• a topological space, and as such, its power set is {∅, 1}, that is, a set with
two elements, (and this is also a σ-algebra)

and this latter leads us on to the next example, as via the power set operation,
we have created an alternative out of sheer existence.

10.3 {0, 1} (An Alternative)

{0, 1} is the set with two elements 0 and 1. These elements can stand for the
alternative between true (1) and false (0), between presence and absence
etc. In the previous example, {1}, there was only presence, whereas absence
was absent. By including the possibility of absence via the power set con-
struction, we have created an alternative. {0, 1} constitutes an example of
essentially all the structures that we have discussed in this book. It can be
equipped with the structure of

• a set
• a category with two objects, the identity morphisms of those objects, and
if we want, also other morphisms, for instance 0 → 1

• the power set P({1}) of a space with a single element, and therefore,
when we let 0 correspond to ∅ and 1 to {1}, it becomes the category with
the morphisms 0 → 0, 0 → 1, 1 → 1 described in the previous item

• as the power set of a setwith a single element, it also possesses a subobject
classifier, {1}, and it therefore becomes a topos



10.3 {0, 1} (An Alternative) 295

• an equivalence relation satisfying F(0, 0) = F(1, 1) = 1 and either
trivially also F(0, 1) = F(1, 0) = 1 or nontrivially F(0, 1) = F(1, 0) =
0 (in the former case, there is only a single equivalence class {0, 1},
whereas in the latter case, we have the two equivalence classes
{0} and {1})

• a partially ordered set (poset) and in fact even an ordered set, with 0 ≤ 1
• a lattice with 0 and 1, satisfying 0∧ 1 = 0 and 0∨ 1 = 1 as they should,
and a Heyting and Boolean algebra

•
0

•1

........

........

........

........

........

........

........

........

..............

............

(like any Boolean algebra, it is a power set, that of {1}, as noted there)
• a propositional logic with alphabet �0 = {1, 0} (“true” and “false”)
• a metric space, with d(0, 1) = d(1, 0) > 0
• the monoid M2 = ({0, 1}, ·) with 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1 that
is not a group (because 0 has no inverse)

• another monoid structure, the abelian group Z2 = ({0, 1}, +) with 0 +
0 = 0 = 1 + 1, 0 + 1 = 1 + 0 = 1

• the commutative ring with 1 and the field Z2 = ({0, 1}, +, ·) that com-
bines the previous two structures (note the abuse of notation where Z2
first carries only a group and then also a ring structure)

• the spectrum SpecZ4 of the ring Z4 because the latter has two prime
ideals, the trivial one, {0}, which we naturally identify with 0, and the
nontrivial {0, 2} which we then identify with 1, with structure sheaf
OSpecZ4=SpecZ4, as is the case for any ring, and equipped with this
structure sheaf, it becomes an affine scheme

• a topological space, and in fact, we have several possibilities for the
collection of open sets

– the indiscrete topology with O = {∅, {0, 1}} (that is, again with a set
with two elements only, so that no further distinctions are possible)

– the discrete topology with O = {∅, {0}, {1}, {0, 1}}, that is, equal to
the power set P({0, 1})

– or the topologies with one nontrivial open set, for instance O =
{∅, {0}, {0, 1}} (the latter is the topology of SpecZ4, because the trivial
ideal is not closed, but the nontrivial one is)

• aσ-algebra, either the trivial {∅, {0, 1}} or the full one, {∅, {0}, {1}, {0, 1}}
• not a (0-dimensional) manifold, because it is not connected
• a matroid over {1} with the two independent sets {∅} and {1},

and we can use it to generate

• a graph with two vertices

•0 •1
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that we, if we want, can connect by an edge

•0 •1..................................................................................................................................................

or by a directed edge, for instance 0 → 1,

•0 •1......................................................................................................................................................... ............

• hence also a simplicial complex with two vertices that may be joined by
a 1-dimensional simplex; when this is so, χ = 2 − 1 = 1, and for the
Betti numbers, b0 = 1, b1 = 0 and, of course, all higher Betti numbers
also vanish, and thus again χ = 1 − 0 = 1; when the vertices were not
joined by an edge, however, we would have b0 = 2 and χ = 2

• as a simplicial complex with two vertices connected by an edge, it would
also be a topological space, with the topology of the unit interval in R

(for instance induced by the Euclidean metric); each vertex would then
be a strong deformation retract of this space

• as such a simplicial complex consisting of two vertices connected by an
edge, it could then also be equipped with the Euclidean metric on the
unit interval; it would then be the convex hull of the two vertices

• as a simplicial complex with two vertices connected by an edge, then,
even though connected, it would still not be a (1-dimensional) manifold,
because the vertices do not possess neighborhoods that are homeomor-
phic to an open subset of R

• finally, {0, 1} is a set of basis vectors e1 = (1, 0), e2 = (0, 1) of the
vector space (Z2)

2 = Z2 ×Z2 over the field Z2 (of course, 0 and 1 have
a different meaning now, for instance (0, 1) yields the coordinates of a
vector in Z2 × Z2); the resulting matroid would have the independent
sets ∅, {e1}, {e2}, {e1, e2} and would again be the simplicial complex
consisting of two vertices connected by an edge.
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The bibliography lists several original references, monographs, and text-
books, not all of which have beenmentioned in themain text. The bibliogra-
phy is definitely not exhaustive or complete, and was not intended to be so.
The textbooks listed usually provide fairly accurate references, and there
seems to be little point in copying existing bibliographies. All sources that
I have directly consulted, however, are included in the present bibliography.

Remark In the bibliography, a superscript denotes the number of the edition;
e.g., 21999 means “2nd edition, 1999”.
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Čech complex, 70
Chain complex, 188
Chain map, 188
Character of representation, 82
Christoffel symbols, 147, 151, 153
Circumradius, 161
CL (=classical logic), 278
Class function, 81
Classical logic, 278
Classically valid, 279
Closed, 96, 163
Closed ball, 25
Closed chain, 180
Closed point, 175
Closed sieve, 285
Closure, 96
Closure in topos topology, 284
Closure of subset of matroid, 228
Closure operator, 96
Coboundary operator, 117, 214
Cocone, 245
Codomain, 15, 50
Codomain of arrow, 232
Cofinite topology, 94, 99, 129
Coherent space, 130
Cohomology group, 118, 119, 214
Cohomology ring, 216
Colimit, 245, 257
Colocalization, 121
Combinatorial exchange pattern, 196
Comma category, 59
Commutative, 35
Commutative diagram, 57
Commutative ring, 36
Commutative ring with identity, 165
Commuting diagram, 57
Compact, 95
Comparison triangle, 158
Compatible measures, 109
Complement, 30, 90

Complementary subrepresentation, 78
Complementary subspace, 33
Complete bipartite graph, 43
Complete graph, 43, 76
Completeness, 280
Complex manifold, 131, 137
Composite space, 131
Composition, 50
Composition of mappings, 15
Cone over a diagram, 237, 257
Conjugacy class, 80
Conley index, 210
Connected graph, 24, 75, 226
Connecting homomorphism, 189
Connection, 146
Constant sectional curvature, 155
Constant sheaf, 114
Constraint, 221
Continuous, 98
Continuous function, 163
Continuous functional, 110
Continuous map, 133
Continuous-time dynamical system, 66
Contravariant, 141
Contravariant functor, 249
Contravariant Hom-functor, 255
Convex, 25
Convex hull, 222, 224
Coordinate axis, 123
Coordinate change, 139
Coordinate chart, 126, 133
Coordinate representation, 138
Coproduct, 117, 245, 274
Correlation of parts, 65
Cotangent space, 141
Cotangent vector, 140
Counting, 47
Covariant, 141
Covariant derivative, 146
Covariant functor, 249
Covariantly constant, 149, 153
Covector, 140
Cover by sieve, 285
Covering, 95, 132
Cross-over, 100
Cup-product, 215
Curvature, 158
Curvature bounds, 158
Curvature tensor, 149
Cycle, 75, 180, 226
Cyclic group, 35, 45

D
Decomposition of group representation,

79
Deformation retract, 209



Index 307

Degree, 166
De Morgan laws, 29
Deviation from flatness, 154
Diagonal morphism, 257
Diagram, 236
Diffeomorphism, 131, 135
Diffeomorphism group, 131
Differentiable, 135
Differentiable manifold, 131, 135, 136,

138, 139, 218
Differentiable map, 135
Differential of a function, 141
Digraph, 20, 70, 73
Dimension, 133, 210
Dimension of a simplex, 178
Dirac measure, 110
Direct limit, 245
Direct sum, 33
Directed graph, 20, 23, 51, 70, 73, 97
Discrete dynamical system, 266
Discrete-time dynamical system, 66
Discrete topology, 93, 94, 99, 130
Disjoint union, 245
Distinction, 16
Distinction of points, 130
Distinguish, 13
Distributive, 36
Distributive law, 28
Domain, 15, 50
Domain of arrow, 232
Double negation operator, 283
Dual representation, 77
Dynamical system, 66, 97, 125, 223

E
Edge, 70, 71
Eigenfunction, 120
Eigenvalue, 120
Einstein’s theory of relativity, 126
Einstein summation convention, 139
Element, 69
Elementary particle physics, 131
Embedding, 233
Empty set, 48
Empty set as category, 52
Endomorphism, 56
Epic, 56
Epimorphism, 56
Equalizer, 241
Equivalence, 13, 34
Equivalence class, 21
Equivalence principle, 131
Equivalence relation, 20
Equivariant, 55
Euclidean angle, 123
Euclidean domain, 165

Euclidean metric, 23, 24
Euclidean norm, 123
Euclidean scalar product, 123
Euclidean space, 32, 123
Euler characteristic, 179, 218
Evaluation, 247
Exact sequence, 185, 188
Exchange cycle, 197
Exchange orbit, 197
Exchange pattern, 196
Exchange property, 225
Excision theorem, 187
Exclusion principle, 130
Exponential, 247, 248
External, 273
Extreme point of convex set, 227

F
Faithful functor, 233
False, 15
Fiber, 62, 112
Field, 37, 46, 165
Field homomorphism, 41
Filter, 31, 32
Filtration, 191
Finitely generated group, 221
Finitely generated ideal, 166
Finitely presented, 221
First-order logic, 280
Fixed point, 18, 224
Flat connection, 152
Flat in matroid, 229
Focus, 129, 130
Forcing, 289
Forcing relation, 289
Forest, 226
Forgetful functor, 59, 256, 257
Formula, 289
Forward invariant set, 97
Free group, 35
Free resolution, 192
Frobenius Theorem, 153
Full functor, 233
Functor, 59, 232
Functor category, 60
Functor of functions, 64
Functor of points, 63

G
Galilean physics, 124
Generalized element, 289
Generation of a set system, 105
Generation of a topology, 95
Generator, 35, 221
Genetic sequence, 65, 100
Genome, 66



308 Index

Genotype, 111
Genotype space, 111
Genotype-phenotype map, 111
Geodesic, 152
Geodesic curve, 144, 145, 152, 154
Geodesic space, 145
Geometric interpretation of intersection

numbers, 219
Geometric modality, 284
Germ, 115
Global element, 236
Global section, 64
G-module, 76
Graph, 20, 24, 70, 71, 73, 96
Greatest common divisor, 165
Greatest lower bound, 22
Grothendieck topology, 285
Grothendieck topos, 287, 289
Group, 34, 35
Group as category, 54
Group homomorphism, 41, 44
Group of permutations, 40
Group representation, 76

H
Hamming distance, 24
Hausdorff property, 99, 130
Hausdorff space, 96
Hereditary subset, 281
Heyting algebra, 26, 27, 32, 92, 273, 279
Hilbert basis theorem, 166
Holomorphic function, 115
Holonomy group, 149
Homeomorphism, 99, 116, 131, 133
Hom-functor, 213, 255
Homogeneous, 124
Homogeneous space, 131, 132
Homology group, 181
Homology sequence, 185
Homomorphism, 19, 20, 41
Homotopic, 208
Homotopy class, 208
Homotopy equivalence, 209
Homotopy theory, 208
Hom-set, 233
Hopf-Rinow theorem, 144
Hyperbolic space, 137, 155, 157
Hypergraph, 70

I
Ideal, 39, 163, 165
Identification of points, 130
Identity arrow, 50, 232
Identity in a ring, 36
IL (= intuitionistic logic), 279

Implication, 26, 30, 90
Inclusion, 15
Inclusion of subobject, 262
Inclusion of point, 130
Independence complex, 225
Independent, 223
Independent set, 225
Index set, 236
Indiscrete topology, 93, 98, 130
Induced topology on subset, 95
Inductive limit, 245
Inference rule, 278
Infinite, 17
Infinitesimal space, 132
Initial object, 233
Initial value, 66
Injective, 14
Insertion, 278
Integers, 39, 40
Integral domain, 165
Interior, 91
Internal, 273
Interpretation of a variable or a term, 288
Intersection, 30, 90
Intersection product, 218
Intuitionistic logic, 279–282
Invariance transformation, 126
Inverse, 35
Irreducible element of a ring, 165
Irreducible representation, 78
Irreducible subvariety, 174
Isometry, 146, 158
Isomorphic graphs, 71
Isomorphism, 52, 56
Isotropic, 124

J
Jacobi equation, 154, 156
Jacobi field, 154
Join, 22

K
Knowledge operator, 284
Kripke-Joyal semantics, 289
Kripke model, 280
Kripke semantics, 281
Kripke validity, 282, 289
Kuratowski closure operator, 96

L
Language, 288
Laplacian, 120
Lattice, 22
Lattice with 0 and 1, 22
Law of the excluded middle, 279, 282
Lawvere-Tierney topology, 282



Index 309

Least upper bound, 22
Left adjoint, 255
Left adjoints preserve colimits, 257
Left ideal, 39
Left translation, 35
Leibniz’ concept of space, 125
Lemma of Schur, 78
Length, 143
Leray theorem, 119
Letter, 278
Levi-Cività connection, 150, 154
Lie bracket, 140
Lie group, 47, 126
Limit, 237, 257
Linear subspace, 33
Local coordinates, 134
Local forcing relation, 290
Local function, 126
Local operator, 282
Local ring, 168
Local section, 64
Local transformation, 131
Locally, 284
Locally affine, 174
Locally compact, 95
Locally finite covering, 132
Locally small category, 232
Long exact sequence of homology

groups, 189
Loopless, 70
Lower semicontinuous, 99
L p-metric, 47

M
Manifold, 131–133
Manifold with boundary, 131
Map, 14
Mapping, 14
Mathematical structure, 221
Matroid, 225
Maximal filter, 31
Maximal ideal, 167
Mayer-Vietoris sequence, 190
Measurable, 102
Measurable space, 101
Measure, 109
Measure preserving map, 111
Measure space, 109
Measuring, 47
Meet, 22
Metric, 23, 47
Metric space, 23, 93, 99, 127, 132
Metric tensor, 142
Midpoint, 25, 145
Minimal set of generators, 223
Minimizing curve, 144

Modal logic, 284
Modal operator, 284
Model, 281
Module, 37
Moduli space, 73
Moduli space of (directed, weighted)

graphs, 73
Modus ponens, 27, 278
Monic, 56
Monoid, 34
Monoid as category, 54
Monoid homomorphism, 41
Monomorphism, 56, 243
Monotonic forcing relation, 290
Morphism, 50, 71, 232
Morphism between group representations,

77
Multiplication, 36
Multiplicative subset of a ring, 168
Multiplicative unit, 165
Mutation, 100
Mutational drift, 111

N
Natural transformation, 60, 233
Negative curvature, 158
Neighborhood, 95
Nerve of covering, 116
Net, 129
Neutral basin, 111
Neutral element, 34
Newtonian physics, 125
Nilpotent, 167
Nilradical, 167
Node, 70
Noetherian ring, 166
Non-closed point, 170
Nonpositive curvature, 161
Nonpotent, 224
Normal subgroup, 44
Null set, 109

O
Object, 50, 232
One-form, 141
Open, 91
Open covering, 95, 116
Open neighborhood, 95
Open subset, 92
Operation, 33, 221
Opposite category, 60, 233
Orbit, 66, 223
Orientable, 217
Orientation, 177, 217
Oriented differentiable manifold, 218
Orthogonal, 123
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P
Paracompact, 132
Parallel transport, 149
Parametrization, 145
Parametrized families of sets, 265
Parametrized group, 46
Partially ordered set, 21
Partition of unity, 132, 133
Path, 75, 226
Path connected, 145
Permutation, 40, 177
Permutation group, 79
Permutation representation, 79
Perspective, 124
Phase space, 125
PL (=propositional logic), 278
Poincaré duality theorem, 217
Point, 129, 171
Pointless topology, 91, 127
Polynomial, 166
Polynomial ring, 166, 167
Poset, 21, 280
Poset as category, 54, 61
Positive curvature, 158
Positive functional, 110
Possible world, 280
Possible worlds semantics, 281
Power object, 271
Power set, 16, 30, 49, 90
Power set category, 255
Presheaf, 63, 113, 254
Pretopological space, 91, 96
Prime ideal, 167, 169
Principal filter, 32
Principal ideal, 166
Principle of separation, 48
Probability measure, 110
Producs in cohomology, 215
Product, 239
Product group, 43, 239
Product set, 239
Product topology, 94, 107, 240
Proper zero divisor, 165
Propositional logic, 278
Protein, 111
Pseudo-complement, 26
Pseudometric, 23, 47
Pullback, 241
Pullback relation, 19
Punctured space, 210
Pushforward, 245, 246

Q
q-chain, 179
Quantifier, 280
Quotient, 20

Quotient ring, 166
Quotient set system, 108
Quotient topology, 108

R
Radical, 167
Radon measure, 109
Radon-Nikodym derivative, 109
Random walk, 110
Rank, 228
Rank function of a matroid, 228
Rank of matroid, 226
Rauch comparison theorems, 156
Reachability, 112
Recombination, 100, 101, 223, 224, 228
Reduced, 167
Refinement, 118
Refinement of focus, 129
Reflexive, 20
Regular representation, 79
Relation, 15, 19, 69, 116, 177, 221
Relative boundary, 184
Relative boundary operator, 184
Relative cohomology group, 214
Relative cycle, 184
Relative homology group, 184
Relaxed nonpositive curvature, 162
Representable functor, 249, 250, 255
Representation, 52
Representation of group, 76
Representation of monoid, 55
Representation of transformation group,

131
Representation theorem of Stone, 30
Restriction, 63, 113, 254
Restriction map, 172
Ricci curvature, 163
Riemann normal coordinates, 151
Riemannian connection, 150
Riemannian geometry, 146
Riemannian space, 125
Riesz representation theorem, 110
Right adjoint, 255
Right adjoints preserve limits, 257
Right translation, 35
Ring, 36
Ring homomorphism, 41
Ring of continuous functions, 99, 163
Ring of integers, 165
Ring with identity, 36

S
Scalar product, 32
Scaled sphere, 158
Scheme, 174
Schur lemma, 78
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Scope, 223
Section, 62, 113
Sectional curvature, 155
Self-intersection number, 219
Selfadjoint, 120
Semantics, 279
Semigroup, 97
Sentence, 278
Separate points, 163
Separation principle, 16
Set, 13
Set as category, 52
Set system, 105
Set-valued diagram, 248
Sheaf, 64, 114, 173, 286, 287
Sheaf of continuous functions, 114
Sieve, 268, 281, 285
σ -algebra, 101
Simple graph, 70
Simple group, 45
Simplicial complex, 70, 116, 177, 178
Simplicial map, 178
Site, 285
Slice category, 59, 275
Small category, 60, 232
Sort, 288
Soundness, 280
Space form, 156
Space of constant curvature, 155
SpecR, 169
Spectral topology, 169
Spectrum, 120
Spectrum of a ring, 169
Sphere, 136, 155, 157, 204, 205
Split sequence, 188
Stalk, 115
Standard representation, 79
State space, 125
Stratified space, 131
Strong deformation retract, 209
Structure, 19, 221
Structure on a space, 131
Structure preserving transformations, 126
Structure sheaf, 173
Subbasis for a topology, 95
Subbasis of a set system, 105
Subcategory, 55
Subgroup, 36
Subobject, 56, 262, 272
Subobject classifier, 263, 273
Subrepresentation, 78
Substitution, 278
Surjective, 14
Symmetric, 20
Symmetric group, 40, 45, 72, 73, 85, 223
Symmetry, 20, 52

T
Tangent space, 140
Tangent vector, 139
Tautology, 279
Tensor product, 191
Term, 289
Terminal object, 117, 234
Theorem of Stone, 30
Topoi semantics, 288
Topological simplex, 204
Topological space, 91, 96, 131, 163, 285
Topology on a topos, 282
Topology on a category, 285
Topology on presheaf, 115
Topos, 270
Topos logic, 279, 288
Torsion, 147
Torsion-free, 148
Torsionfree group, 35
Torsion product, 192
Torus, 137
Total sieve, 268, 285
Total space of a bundle, 62, 113
Transformation, 130
Transformation group, 130
Transformation of cotangent vectors, 141
Transition probability, 110, 111
Transitive, 20
Transitive group of transformations, 131
Transposition, 42
Tree, 75, 226
Triangle, 75, 158, 160
Triangle inequality, 23
Trivial metric, 24, 94
Trivial relation, 69
True, 15, 262, 273
Truth value, 262
Twisting, 113
Type, 288

U
Ultrafilter, 31
Union, 30, 90
Unique factorization domain, 165
Unit in a ring, 36, 165
Unitary module, 37
Universal coefficient theorem, 192
Universal mapping property, 234
Universe, 50

V
Valid, 279
Validity, 282, 289
Validity in possible worlds model, 281
Valuation, 279
Vector bundle, 113
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Vector field, 140
Vector space, 37, 123
Vertex, 70, 71

W
Waiting time, 112
Wald curvature, 159
Weight of edge, 70
Weighted graph, 23, 70, 73

Weighted simplicial complex, 70, 119

Y
Yoneda embedding, 63, 250, 255
Yoneda functor, 250
Yoneda lemma, 250, 269, 289

Z
Zermelo-Frankel set theory, 16, 48
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