
Instituto de Matemática Pura e Aplicada

IMPA Monographs

Jonas Gomes
Luiz Velho

From Fourier 
Analysis to 
Wavelets



IMPA Monographs

Volume 3

This series, jointly established by IMPA and Springer, publishes advanced mono-
graphs giving authoritative accounts of current research in any field of mathematics,
with emphasis on those fields that are closer to the areas currently supported at
IMPA. The series gives well-written presentations of the “state-of-the-art” in fields
of mathematical research and pointers to future directions of research.

Series Editors

Emanuel Carneiro, Instituto de Matemática Pura e Aplicada
Severino Collier, Universidade Federal do Rio de Janeiro
Claudio Landim, Instituto de Matemática Pura e Aplicada
Paulo Sad, Instituto de Matemática Pura e Aplicada

More information about this series at http://www.springer.com/series/13501

http://www.springer.com/series/13501




Jonas Gomes • Luiz Velho

From Fourier Analysis
to Wavelets

123



Jonas Gomes
BOZANO Investimentos
Offices Shopping Leblon
Rio de Janeiro, Brazil

Luiz Velho
Instituto de Matemática Pura e Aplicada
Rio de Janeiro, Brazil

IMPA Monographs
ISBN 978-3-319-22074-1 ISBN 978-3-319-22075-8 (eBook)
DOI 10.1007/978-3-319-22075-8

Library of Congress Control Number: 2015945959

Mathematics Subject Classification (2010): 42-XX, 42C40, 65-XX, 65T60

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


To my family, the true force that propelled my
carrier.

— Jonas Gomes

To my beloved daughter Alice Velho
Chekroun and my grandson Levi Yitzchak
Chekroun

— Luiz Velho.





Preface

From a digital viewpoint, most real-world applications can be reduced to the
problem of function representation and reconstruction. These two problems are
closely related to synthesis and analysis of functions. The Fourier transform is the
classical tool used to solve them. More recently, wavelets have entered the arena
providing more robust and flexible solutions to discretize and reconstruct functions.

Starting from Fourier analysis, the course guides the audience to acquire an
understanding of the basic ideas and techniques behind the wavelets. We start by
introducing the basic concepts of function spaces and operators, both from the
continuous and discrete viewpoints. We introduce the Fourier and Window Fourier
Transform, the classical tools for function analysis in the frequency domain, and we
use them as a guide to arrive at the Wavelet transform. The fundamental aspects of
multiresolution representation and its importance to function discretization and to
the construction of wavelets are also discussed.

Emphasis will be given on ideas and intuition, avoiding most of the mathematical
machinery, which are usually involved in the study of wavelets. Because of this, the
book demands from the readers only a basic knowledge of linear algebra, calculus,
and some familiarity with complex analysis. Basic knowledge of signal and image
processing would be desirable.

This monograph originated from the course notes of a very successful tutorial
given by the authors during the years of 1998 and 1999 at ACM SIGGRAPH -
the International Conference and Exhibition on Computer Graphics and Interactive
Techniques.

The notes in English for the SIGGRAPH course have been based on a set of notes
in Portuguese that we wrote for a wavelet course on the Brazilian Mathematical
Colloquium in 1997 at IMPA, Rio de Janeiro. We wish to thank Siome Goldenstein
who collaborated with us to produce the Portuguese notes.

Rio de Janeiro, Brazil Jonas Gomes
May 2015 Luiz Velho
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Chapter 1
Introduction

In this chapter we give a general overview of the area of Computational Mathematics
and computer graphics, introducing the concepts which motivate the study of
wavelets.

1.1 Computational Mathematics

Mathematical modeling studies phenomena of the physical universe using mathe-
matical concepts. These concepts allow us to abstract from the physical problems
and use the mathematical tools to obtain a better understanding of the different
phenomena of our universe.

The advance of computing technology (both hardware and software) has enabled
the use of mathematical modeling to make simulations on the computer (synthetic
simulations). These simulations allow for a great flexibility: We can advance in
time, accelerate processes, introduce local and global external factors, and change
the different parameters on the mathematical models used. These conditions of
simulation in general are very difficult to be attained in real-world simulations.

Computational Mathematics is the combination of mathematical modeling with
computer simulations. Computational mathematics represents a return to the birth
of mathematics, where mathematical problems were directly related to the solutions
of practical problems of our everyday life.

In this context, computer graphics provides different techniques to visualize the
results from the simulation. This visualization enables a direct interaction of the
users with the different parameters of the simulation and also enables them to collect
valuable qualitative and quantitative information about the simulation process.
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Fig. 1.1 Abstraction levels for computational mathematics

1.1.1 Abstraction Levels

A useful way to organize the ideas discussed in the previous section, which
will be used in the book, consists in structuring the problem of computational
mathematics using abstraction levels. These abstraction levels encapsulate the
different phases of the simulation processing providing a better understanding of the
whole process. We will use the paradigms of the four universes. This paradigm uses
four levels: Physical universe, Mathematical Universe, Representation Universe,
and Implementation Universe (see Fig. 1.1).

Level 1: Physical Universe In this level the problems are originally posed and
correctly formulated. The elements of these abstraction levels consist of the different
phenomena from the physical universe.

Level 2: Mathematical Universe This level contains tools from different areas
of mathematics (Analysis, Geometry, Differential Equations, Algebra, etc.). The
process of mathematical modeling consists in the association of elements from the
physical universe (Level 1) with elements of the mathematical universe.

Level 3: Representation Universe To perform synthetic simulations the math-
ematical models must be discretized and implemented on the computer. The
representation universe consists of the different elements of discrete mathematics
and the mathematical methods of discretization. As part of this universe, we
have virtual machines where we can describe algorithms. The discretization of a
problem consists in relating the mathematical model associated with the problem
in the mathematical universe (Level 2) to a discretized model in the representation
universe.
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Level 4: Implementation Universe This abstraction level is considered so as to
allow for a clear separation between the discretization problem in Level 3 and the
problems inherent to implementation. The elements of this universe consist in data
structures and programming languages with a well-defined syntax and semantics.
The implementation of a problem consists in associating discrete structures from
the representation universe with elements of the implementation universe.

These four abstraction levels will be used along the book.They split the problems
into four major sub-problems and favors an encapsulation of each of the sub-
problems: At each level the problem is studied with a clear separation from its
intrinsic issues with issues related to the other abstraction levels.

We should point out that this abstraction paradigm constitutes a characterization
of computational mathematics. Below we will give some examples.

Example 1 (Measurements). Consider the problem of measuring objects in the
physical universe. For a given object we must associate with it a number which
represents its length, area, or volume. In order to achieve this we must introduce a
standard unit of measure which is compared with the objects to provide a measure.

From the point of view of the mathematical universe, to each measure we
associate a real number. Rational numbers correspond to commensurable objects,
and irrational numbers correspond to incommensurable ones.

To represent the measurements, we must look for a discretization of the real
numbers. A widely used choice is given by the floating point representation. Note
that in this representation the set of real numbers is discretized by a finite set of
rational numbers. In particular, this implies that in the representation universe we
do not have the concept of incommensurable measurements.

An implementation of the real numbers using floating point arithmetic can be
done using a standard IEEE specification. A good reference for these topics is [29].

The above example, although simple, constitutes the fundamental problem in the
study of computational mathematics. In particular, we should remark the loss of
information when we pass from the mathematical to the representation universe:
incommensurable measures disappear. In general the step from the mathematical to
the representation universe forces a loss of information, and this is one of the most
delicate problems we have to face in computational mathematics.

Example 2 (Rigid Body Motion). Consider now the well-known problem of study-
ing the motion of a small rigid body which is thrown into the space with a given
initial velocity. The problem consists in studying the trajectory of the body.

In the mathematical universe we will make a simplification to model the problem.
The rigid body will be considered to be a particle, that is a point of mass. This
abstraction allows us to neglect the air resistance. Simple calculations well known
from elementary physical courses allow us to solve the problem of determining the
trajectory: a parabola

f .t/ D at2 C btC c :
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To visualize the trajectory in the computer we must obtain a discretization of the
parabola. This discretization can be obtained by taking a uniform partition 0 D t0 <
t1 < � � � < tn D t of the time interval Œ0; t�. Using this partition the parabola is
represented by a finite set of points of the plane:

.t0; f .t0//; .t1; f .t1//; : : : ; .tn; f .tn// :

These points constitute samples of the function that defines the parabola.
Finally, data structures to implement the samples are well known and can be

easily implemented.
Note that in order to plot the parabola we must “reconstruct” it from the samples.

Interpolation methods must be used in the reconstruction process. Again, the
representation process by sampling loses information about the parabola. Depending
on the interpolation method used we will not be able to reconstruct the parabola
exactly, but only an approximation of it.

An important remark should be done. The solution to the problem in the above
example was initially attained in the mathematical universe; it was an analytical
solution providing the equation of the trajectory. The discretization of the analytical
solution was done in order to visualize it. Another option would be discretizing the
problem before solving it by using discrete mathematical models to formulate the
problem [27]. Which is the best strategy? Discretize the problem to obtain a solution
or compute an analytical solution and discretize it.

The answer to this problem is not simple. Initially we should remark that there
are several situations where we do not have an analytic solution to the problem in
the mathematical universe. When this happens discretization a priori to determine
a solution is of fundamental importance. This is the case, for instance, in several
problems which are modeled using differential equations: The discretization allows
us the use of numerical methods to solve an equation where an analytical solution
is difficult or even impossible to be achieved.

When the problem has an analytical solution in the mathematical universe we
have the option to compute it before discretization. Nevertheless we should point
out that the process of discretization should not be decorrelated from the formulation
of the problem in the physical universe. In example 2, for instance, the parameter of
the parabola represents the time, and we know that the horizontal motion is uniform.
Therefore, a uniform discretization of time is the most adequate to playback the
animation of the particle motion.

1.2 Relation Between the Abstraction Levels

We should not forget the importance of establishing for each problem the relation
between the four universes in our abstraction paradigm described above. In its
essence these relations enable us to answer the question: How close a computational
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Fig. 1.2 Spectral distribution function

simulation is from reality? The answer to this problem depends on the relation
between the different abstraction levels:

• Relation between the implementation of the problem and its discretization;
• Relation between the discretization and the mathematical formulation of the

problem;
• Relation between the mathematical model of the problem and the original

problem in the physical universe.

The relationship between the mathematical and the representation universe is of
most importance. We have seen that there are losses in the representation process,
and a very important issue consists in recovering the continuous model from the
discrete representation. This step is called reconstruction. Since the representation
is a loss process, reconstruction in general is not possible to be attained exactly. The
example below will make this point clear.

Example 3 (Representation of Color). Color is produced by an electromagnetic
radiation in the visible band of the spectrum. Therefore from the point of view of the
mathematical universe, a color is determined by its spectral distribution function.
This function associates with each wavelength � the value of the associated radiant
energy (see Fig. 1.2).

Therefore, the process if discretizing a color reduces to that of discretizing a
function, then what is the most natural technique? A simple solution consists in
using point sampling as we did in the discretization of the parabola in example 2. In
this case another question arises: How many samples should we take?

Understanding this problem in its generality and devising adequate and robust
solutions is a difficult task. In fact this is a topic to be covered in this book. In the
case of color, it is possible to devise a simple solution going back to the physical
universe. How does the human eye processes color? From the theory of Young-
Helmholtz the eye discretizes color using three samples of the spectral distribution
function: One sample of low frequency (Red), one sample of medium frequency
(Green), and another sample of high frequency (Blue).
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This means that from the perceptual point of view it is enough to use three
samples of the spectral distribution function in order to represent color. This
means that the representation of the color space (which is an infinite dimensional
function space) is given by the Euclidean space R

3. Note that this representation
is completely justified from the point of view of color perception on the physical
universe. It is far away from being a good mathematical representation.

Exact reconstruction of the original spectral color from the three RGB samples
is in general an impossible task. Nevertheless, the color sampling problem has been
posed in a way that we do not need to guarantee an exact reconstruction: We should
be able to provide a reconstruction process in which the reconstructed color is
perceptually equal to the color defined by the original spectral distribution function.
This problem is called perceptual color reconstruction. Perceptual reconstruction of
color is the technology behind many color reconstruction devices nowadays, such as
color television: The TV set reconstructs colors which are only perceptually equal
to the original colors captured from the video camera.

1.3 Functions and Computational Mathematics

Functions play a distinguished role in computational mathematics. In fact they con-
stitute the basic tools of mathematical modeling: The relation between magnitudes
of the physical world is, in most cases, described by functions. Notice that the two
examples of rigid body motion and color reconstruction were reduced to the problem
of representation and reconstruction of functions.

Therefore, a highly relevant problem in computational mathematics turns out to
be the problem of function representation and reconstruction.

1.3.1 Representation and Reconstruction of Functions

The simplest method to represent a function is to use point sampling. In the one-
dimensional case a real function of one-variable f W I � R ! R is discretized by
taking a partition t1 < t2 < � � � < tn of the domain interval I. The representation is
given by the vector

fn D .f .t1/; f .t2; /; : : : ; f .tn// 2 R
n :

In this way, the space of real functions defined on the interval I is represented by the
Euclidean space Rn.

Is this a good representation? This question is directly related with the problem
of information loss in the representation of a function. A mathematical formulation
of the above question would be: Is point sampling an exact representation? In other
words, is it possible to reconstruct a function f from its representation vector? Note
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that in the case of point sampling a reconstruction technique consists of interpolating
the points .ti; f .ti//, i D 1; : : : ; n. In general, this interpolation process gives only an
approximation of the original function.

A final word about function reconstruction is in order. Inside the computer any
function is in fact necessarily discretized. When we talk about a continuous function
it means that we are able to evaluate the function at any point of its domain.
That is, we have a representation of the function on the computer, along with a
reconstruction technique that enables us to evaluate the function at any point.

1.3.2 Specification of Functions

In general when a function is specified on the computer the specification technique
results in a representation of the function. The first step towards doing computation
with the function consists in reconstructing it from its representation.

Therefore representation and reconstruction techniques are related with user
interface issues in a computational system.

1.4 What is the Relation with Graphics?

A broad view of computer graphics would lead us to say that is the area that
manipulates graphical objects. That is, in computer graphics we are interested in
creating, processing, analyzing, and visualizing graphical objects.

In order to fully understand this description we must give a precise meaning to
the concept of a graphical object. A simple and effective definition was given in
[25]: A graphical object consists of a shape and its attributes. The shape defines
the geometry and topology of the object, and the attributes describe the different
properties associated with it, such as color, material, velocity, density, etc.

Mathematically, the shape is characterized as a subset U � R
n, and the attributes

are encapsulated into a vector valued function

f WU � R
n ! R

p :

The dimension of the set U is the dimension of the graphical object, and R
n is the

embedding space. The object is denoted by O D .U; f /.
This definition encompasses different signals such as video, audio and image, and

also curves, surfaces, and volumetric models. According to the abstraction levels
we have described the main problems of computer graphics such as description,
representation, reconstruction, and implementation of graphical objects. We should
remark that visualization of graphical objects, an important part of the computer
graphics applications, is in fact a reconstruction problem.
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Example 4 (Image and Digital Image). The physical model of an image is well
represented by a photography. Analyzing a photography we observe a geometric
support (the paper where it is printed), and associated with each point of this support
we have a color information.

Therefore, from the mathematical point of view we can model an image as a
function f WU � R

2 ! C , where C is a representation of the color space. Using the
RGB color representation of example 3 we have C D R

3.
We can easily obtain a representation of an image using point sampling. We take

partitions�X D fi�x I i 2 Z; �x > 0g and �Y D fj�y I j 2 Z; �y > 0g of the x
and y axes of the Euclidean plane, and we define a two-dimensional lattice of the
plane by taking the cartesian product�X ��Y. This lattice is characterized by the
vertices .i�x; j�y/ which are denoted simply by .i; j/. The image f is represented
by the matrix

f .i; j/ D f .i�x; j�y/ :

The values of �x and �y represent the resolution of the representation. An
important problem consists in devising the best resolution that is appropriate for
each application.

1.4.1 Description of Graphical Objects

By description of a graphical object we mean the definition of its shape and
attributes on the mathematical universe.

There are basically three different methods to describe the shape of a graphical
object.

• Parametric description;
• Implicit description;
• Algorithmic description.

In the parametric description the object shape is defined as the image of a
function f WU � R

m ! R
n. If U is an m-dimensional subset of Rm, the graphical

object has dimension m.
In the implicit description the object shape U � R

m is described as the zero set
of a function FWRm ! R

k. More precisely,

U D fx 2 R
m I F.x/ D 0g :

This set is denoted by F�1.0/, and it is called the inverse image of 0 by the
function f .

In the algorithmic description the shape is described by a function (either
implicitly or parametrically) which is defined using an algorithm in some virtual
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machine (see [5]). Examples of functions defined algorithmically are found in the
description of fractals. Other common example in computational mathematics are
the objects defined using differential equations, where we must use an algorithm to
solve the equation.

An important remark is in order. The attributes of a graphical object are described
by a function. Also as discussed above, in general, the shape of the object is
described by functions. Therefore, both the shape and attributes of a graphical object
are described by functions. The study of graphical objects reduces to the problem of
function description, representation, and reconstruction.

1.5 Where do Wavelets Fit?

In order to understand the role of the wavelets in the scenario of computational
mathematics, even without understanding what a wavelet is, we must remember that
our major concern is the description, representation, and reconstruction of functions.

The different uses of wavelets in computational mathematics, and in particular in
computer graphics, are related with two facts:

• Representation and reconstruction of functions, a problem that has been posed
above;

• Multiresolution representation, a problem that consists in representing the graph-
ics object in different resolutions.

1.5.1 Function Representation Using Wavelets

An efficient process to represent a function consists of decomposing it into simpler
functions. In other words, we must devise a collection fg�g of functions � 2 ˝ ,
where the parameter space ˝ is discrete, in such a way that every function f can be
expressed by a sum

f D
X

�

c�g� : (1.1)

In this case, the coefficient sequence .c�/ constitutes the representation of the
function f , f 7! .f�/�2˝ . The function f is reconstructed from its representation
coefficients using Eq. (1.1). Wavelets constitute a powerful tool to construct families
g�, and compute the representation coefficients c�.
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1.5.2 Multiresolution Representation

Our perception of the physical world occurs in different scales. In order to recognize
a house it is not necessary to have details about its roof, doors, or windows. The
identification is done using a macroscopic scale of the house. Different information
about the house can be attained by using finer scales, where the measurements of
the details have the same order of magnitude of the scale used.

This multiple scale approach is the desired one when we study functions.
A good representation of a function should enable us to devise representations in
different scales. Wavelets turn out to be a very effective tool in order to achieve
multiresolution representations.

1.6 About these Book

This book describes a guided journey to the wonderland of the wavelets. The
starting point of our journey is the kingdom of Fourier analysis. The book has an
introductory flavor. We have tried to use mathematics as a language which has the
adequate semantics to describe the wavescape along the trip. Therefore, in order to
make the text easier to read we decided to relax with the mathematical syntax. To
cite an example, it is very common to refer to some “space of functions” without
making the concept precise. Inner products and norms on these spaces will be used.
Also, we will refer to linear operators and other operations on function spaces
relaxing about several hypothesis that would be necessary to confirm the validation
of some assertions.

There are several books that cover these syntax issues in detail in the literature.
We have tried to write a logfile of our journey which contains somehow the details
without going deep into the mathematical rigor. We are more interested into the
semantics of the different facets of wavelet theory, emphasizing the intuition over
the mathematical rigor.

In spite of the huge amount of material about wavelets in the literature, this
book covers the subject with a certain degree of originality on what concerns the
organization of the topics. From the point of view of the abstraction paradigm of
the four universes, we will cover the role of wavelets on function representation and
reconstruction. We will also discuss some implementation issues along the way.

This book originated from our need to teach wavelets to students originated from
both mathematical and computer science courses.
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1.7 Comments and References

The abstraction levels of the four universes described in this section are based on
[46]. A generalization of them along the lines presented in this section was published
in [26].

Many good books on wavelets have been published. They emphasize different
aspects of the theory and applications. We will certainly use material from these
sources, and we will cite them along our journey.



Chapter 2
Function Representation and Reconstruction

In the previous chapter we concluded that one of the major problems in computa-
tional mathematics is related to function representation and reconstruction. In this
chapter we will give more details about these two problems in order to motivate the
study of wavelets.

2.1 Representing Functions

Functions must be discretized so as to implement them on the computer. Also, when
a function is specified in the computer the input is a representation of the function.
As an example, numerical methods that solve differential equations (Runge-Kutta,
finite differences, finite elements, etc.) compute in fact a representation of the
solution.

Associated with each representation technique we must have a reconstruction
method. These two operations enable us to move functions between the mathe-
matical and the representation universes when necessary. As we will see in this
chapter, the reconstruction methods are directly related with the theory of function
interpolation and approximation.
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2.1.1 The Representation Operator

We denote by S a space of sequences .cj/j2Z of numbers1. We admit that S has
a defined norm which allows us to compute the distance between two sequences of
the space. If c D .cj/j 2 Z, its norm is indicated by jjcjj D jj.cj/j 2 Zjj.

A representation of a space of functions F is an operator RWF ! S into some
space of sequences. For a given function f 2 F , its representation R.f / is a sequence

R.f / D .fj/j2Z 2 S :

R is called the representation operator. We also suppose that F has a norm, jj jj,
and that R preserves norms, that is

jjR.f /jj D jjf jj ;
or that R satisfies some stability condition, such as

jjR.f /jj � Cjjf jj :
When R is linear and continuous, we have a linear representation.

The most important examples of representations occur when the space of
functions F is a subspace of the space L2.R/, of square integrable functions (finite
energy),

L2.R/ D
�

f WR! R I
Z

R

jf .t/j2dt <1
�
;

and the representation space S is the space `2 of the square summable sequences,

`2 D
(
.xi/i2Z; I xi 2 C; and

C1X

iD�1
jxij2 <1

)
:

When the representation operator is invertible, we can reconstruct f from
its representation sequence: f D R�1..fi/i2Z/. In this case, we have an exact
representation, also called ideal representation. A method to compute the inverse
operator gives us the reconstruction equation. We should remark that in general
invertibility is a very strong requirement for a representation operator. In fact weaker
conditions such as invertibility on the left suffice to obtain exact representations.

In case the representation is not exact we should look for other techniques to
compute approximate reconstruction of the original function. There are several
representation/reconstruction methods in the literature. We will review some of
these methods in this chapter.

1By numbers we mean a real or complex number.
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2.2 Basis Representation

A natural technique to obtain a representation of a space of functions consists in
constructing a basis of the space. A set B D fejI j 2 Zg is a basis of a function
space F if the vectors ej are linearly independent, and for each f 2 F there exists
a sequence .˛j/j2Z of numbers such that

f D
X

j2Z
˛jej : (2.1)

The above equality means the convergence of partial sums of the series in the norm
of the space F .

lim
n!1

������
f �

nX

jD�n

˛jej

������
D 0

We define the representation operator by

R.f / D .˛j/j2Z :

Equation (2.1) reconstructs the function f from the representation sequence .˛j/.
We must impose additional hypothesis on the representation basis in order to

guarantee unicity of the representation. A particular case of great importance (in
fact the only one we will be using in this book) occurs when the space of functions
has an inner product and it is complete in the norm induced by this inner product.
These spaces, called Hilbert spaces, possess special basis as we will describe below.

2.2.1 Complete Orthonormal Representation

A collection of functions f'nI n 2 Zg on a separable Hilbert space H is a complete
orthonormal set if the conditions below are satisfied:

1. Orthogonality: h'm; 'ni D 0 if n ¤ m;
2. Normalization: jj'njj D 1 for each n 2 Z;
3. Completeness: For all f 2 H , and any " > 0, there exists N > 0, N 2 Z such

that

�����f �
NX

kD�N

hf ; 'ki'k

����� < " :
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The third condition says that linear combinations of functions from the complete
orthonormal set can be used to approximate arbitrary functions from the space.
Complete orthonormal sets are also called orthonormal basis of Hilbert spaces.

An orthonormal basis f'jg defines a representation operator RWH ! `2,
R.f / D .fj/ D .hf ; 'ji/, which is invertible. Therefore, the representation is exact.
The reconstruction of the original signal is given by

f D
C1X

kD�1
hf ; 'ki'k :

It is easy to see that the orthogonality condition implies that the elements 'n

are linearly independent. This implies in particular that the representation sequence
.hf ; 'k/i is uniquely determined by f . This representation preserves the norm. That is

jjR.f /jj2 D
X

k2Z
hf ; 'ki2 D jjf jj2 : (2.2)

This expression is called Plancherel equation.

2.3 Representation by Frames

The basic idea of representing functions on a basis consists in decomposing it using
a countable set of simpler functions.

The existence of a complete orthonormal set and its construction is in general
a very difficult task. On the other hand, orthonormal representations are too much
restrictive and rigid. Therefore, it is important to obtain collections of functions
f'nI n 2 Zg which do not constitute necessarily an orthonormal set and are not even
linearly independent, but can be used to define a representation operator. One such
collection is constituted by the frames.

Consider a space H with an inner product < >. A collection of functions
f'nI n 2 Zg is a frame if there exist constants A and B satisfying 0 < A � B < C1,
such that for all f 2H , we have

Ajjf jj2 �
1X

nD�1
jhf ; 'nij2 � Bjjf jj2 : (2.3)

The constants A and B are called frame bounds. When A D B we say that the
frame is tight. From the Plancherel formula (2.2) it follows that every orthonormal
set is a tight frame with A D B D 1. Nevertheless, there exist tight frames which
are not orthonormal basis. The following statement is true:

Theorem 1. If B D f'nI n 2 Zg is a tight frame with A D 1 and jj'njj D 1;8n,
then B is an orthonormal basis.
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If a frame is tight, it follows from (2.3) that

X

j2Z
jhf ; 'jij2 D Ajjf jj2 :

Using the polarization identity, we obtain

Ahf ; gi D
X

j2Z
hf ; 'jih'j; gi ;

that is,

f D A�1X

j2Z
hf ; 'ji'j :

The above expression (although deduced in the weak sense) shows how we can
obtain approximations of a function f using frames. In fact, it motivates us to define
a representation operator R analogous to what we did for orthonormal basis:

R.f / D .fj/j2Z; where fj D hf ; 'ji :
We should remark that this operator in general is not invertible. Nevertheless it

is possible to reconstruct the signal from its representation R.f /, as we will show
below.

From Eq. (2.3) it follows that the operator R is bounded: jjRf jj2 � Bjjf jj2. The
adjoint operator R� de R is easily computed:

hR�u; f i D hu;Rui D
X

j2Z
ujhf ; 'ji D

X

j2Z
ujh'j; f i ;

therefore

R�u D
X

j2Z
uj'j :

(It can be shown the convergence is also true on norm.) By the definition of R we
have

X

j2Z
jhf ; 'jij2 D jjFf jj2 D hF�Ff ; f i :

On the other hand, since jjF�jj D jjFjj, we have jjF�ujj � B1=2jjujj. We conclude
that

AI � F�F � BI :

In particular, it follows that the operator F�FWF ! F is invertible.
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The above results allow us to obtain an expression to reconstruct the function
f from its representation R.f /. We will state the result without proof: Applying the
operator .F�F/�1 to the elements 'j of the frame, we obtain a family of functions Q'j,

Q'j D .F�F/�1'j :

This family constitutes a frame with bounds given by

B�1jjf jj2 �
X

j2Z
jhf ; Q'jij2 � A�1jjf jj2 :

Therefore we can associate with the frame f Q'jg a representation operator QRWF !
`2.Z/, defined in the usual way . QRf /j D hf ; Q'ji. The frame f Q'jg is called reciprocal
frame of the frame f.'j/j2Zg. It is easy to prove that the reciprocal frame of f Q'jg is
the original frame f.'j/g.

The following identity can also be proved for all functions f 2 F :

f D
X

j2Z
hf ; 'ji Q'j D

X

j2Z
hf ; Q'ji'j : (2.4)

The first equality gives us a reconstruction equation of the function f from its
representation sequence R.f / D .hf ; 'ji/l2Z. Note that the second equation in (2.4)
gives a method to describe a function f as a superposition of the elements of the
original frame. Because of this equation the reciprocal frame is also called dual
frame.

2.4 Riesz Basis Representation

If a collection B D f'nI n 2 Zg is a frame, and the functions 'j are linearly
independent, we have a Riesz basis. Therefore if feng is a Riesz basis, for any f 2H
we have

Ajjf jj2 �
X

n

jhf ; enij2 � Bjjf jj2 :

For each function f 2 L2.R/, we define its representation

X

k

hf ; ekiek ;

on the Riesz basis fekg.
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If L is a continuous linear operator with a continuous inverse, then L maps any
orthonormal basis of a Hilbert space onto a Riesz basis. Moreover, any Riesz basis
can be obtained using this method.

Also, it can be proved that from a Riesz basis feng of a Hilbert space H , we can
construct an orthonormal basis fQeng of H . A proof of this fact can be found in [20],
p. 139.

From the above remarks, we see that Riesz bases constitute the basis of a Hilbert
space that is closest to complete orthonormal sets.

2.5 Representation by Projection

For a given closed subspace V of a Hilbert SpaceF , the representation by projection
consists in taking a representation of a function f 2 F as its unique orthogonal
projection onto V (see Fig. 2.1).

If f'kg is an orthonormal basis of V , then a representation of f is given by

R.f / D ProjV .f / D
X

k

hf ; 'ki'k :

This representation is not exact, unless we have V D F . The best reconstruction we
can have consists in finding the unique vector of V which is closest to f . This vector
can be computed using optimization techniques.

An important particular case occurs when we have a family of subspaces fVjg
such that

S
Vj D F , and the family of representations ProjVj

.f / converges to
the function f . An example occurs when each subspace Vj has finite dimension,
as described in the next section.

Fig. 2.1 Galerkin representation of a function f
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2.6 Galerkin Representation

The Galerkin method computes a representation R.f / D .fj/, j D 0; 1; : : : ;N � 1 in
such a way that there exists a reconstruction equation

fN.t/ D
N�1X

kD0
aN.k/�N;k.t/ ;

which approximates the function f , in norm, when N !1. That is,

jjf � fN jj ! 0; if N !1 :

The representation fN is therefore computed in such a way to minimize the norm
jjf � fN jj. Geometrically, the functions

�N;0; �N;1; : : : ; �N;N�1

generate a subspace V of the space of functions, and the representation fN is the
orthogonal projection of f onto V (see Fig. 2.1).

The coefficients aN.k/ are computed using a dual set 'N;k of the set �N;k:

h�N;k; 'N;ji D ıi;j; aN.k/ D hf ; 'N;ki :

The functions 'N;k are called sampling functions, analysis functions, or representa-
tion functions. The functions �N;k are called synthesis functions or reconstruction
functions.

It is important to remark that the reconstruction functions are not uniquely
determined. Also, changing these functions imply in a change of the reconstructed
function. If �N;k is an orthonormal set, then the synthesis functions may be used as
analysis functions, that is,

aN.k/ D hf ; �N;ki :

The Galerkin representation is also known in the literature as representation by finite
projection.

Galerkin representation is very important in devising numerical methods because
they use finite dimensional representation spaces, which is very suitable for
computer implementations. This method is used in different representations of
functions by piecewise polynomial functions in the theory of approximation.
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2.7 Reconstruction, Point Sampling and Interpolation

The well-known example of a Galerkin representation consists in taking a finite
point sampling of a function f W Œa; b� ! R. We take a partition a D t0 < t1; � � � ; <
tn D b and define

R.f / D .f .t0/; : : : ; f .tn// 2 R
n :

In this case, the Dirac “functions” ı.t � tk/, k D 0; 1; : : : ; n constitute the sampling
functions

f .tk/ D hf ; ı.t � tk/i D
Z C1

�1
f .u/ı.t � tk/du :

We can choose several different reconstruction functions from the above represen-
tation. We will study some classical reconstruction basis below.

2.7.1 Piecewise Constant Reconstruction

In this reconstruction each synthesis function is given by the characteristic functions
of the partition intervals.

�N;k D �Œtk ;tkC1� D
(
0 if x < tk or t > tkC1
1 if x 2 Œtk; tkC1�

(2.5)

The graph of this function is shown in Fig. 2.2(a). Geometrically, the reconstructed
function is an approximation of the function f by a function which is constant in
each interval of the partition (see Fig. 2.2(b)).

In the literature of signal processing the synthesis function used here is called
box function. This method reconstructs the functions approximating it by a discon-
tinuous functions. The discontinuities in the reconstructed function introduce high
frequencies in the reconstructed signal (see Chap. 7 of [24]).

Fig. 2.2 a Graph of the synthesis function. b Reconstruction
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Fig. 2.3 a Graph of the synthesis function. b Reconstruction

2.7.2 Piecewise Linear Reconstruction

In this case the synthesis functions �N;k are given by

�N;k D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

0 if x < tk�1 or t > tkC1
t � tk�1
tk � tk�1

if x 2 Œtk�1; tk�

tkC1 � t

tkC1 � tk
if x 2 Œtk; tkC1�

(2.6)

The graph of this function is shown in Fig. 2.3(a). Geometrically, the reconstructed
function is an approximation of the function f by a continuous function which is
linear in each interval of the partition used in the sampling process. Fig. 2.3(b)
shows, in dotted lines, the graph of the original function, and the graph of the
reconstructed function using a continuous line.

Higher Order Reconstruction

We could continue with these reconstruction methods using polynomial functions of
higher degree defined on each interval of the sampling partition. The differentiability
class of these functions on the whole interval can be controlled according to the
degree of the polynomials. The spaces of splines is the natural habitat for these
reconstruction methods.

We should remark that in the Galerkin representation using point sampling
the reconstruction methods consist in interpolating and approximating the original
function from its samples. A natural question would be:

Question 2.1. Is it possible to obtain exact reconstruction using the Galerkin
representation by point sampling?
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Note that exact reconstruction in this representation has an interesting geometric
meaning: Find an interpolation method that is able to reconstruct the function f
exactly from the set of its samples f .ti/. We will return to this question in the next
chapter.

2.8 Multiresolution Representation

We perceive the world through a multiscale mechanism. First we use a coarse scale
to recognize the object, then we use finer scales in order to discover its distinct
properties in detail. As an example, the identification of a house can be done in a
very coarse scale, but finer scales are necessary in order to observe details about the
windows, doors, floor, and so forth.

Therefore, it is natural that we look for multiscale representation of functions.
That is, we are interested in obtaining a family of representations that could
represent the function at distinct scales. At the same time we need techniques that
allow us to change between representations on different scales.

This can be achieved by using nested representation spaces. Consider a sequence
of closed subspaces fVjgj2Z such that

� � �VjC1 � Vj � Vj�1 � � � ; 8 2 Z :

And a family of representation operators PjWV ! Vj such that

jjv � Pj.v/jj � C infu2Vj jjv � ujj ; (2.7)

where C does not depend on j. The proximity condition of Eq. (2.7) is trivially
satisfied if Vj is a closed subspace of a Hilbert space, and Pj is the orthogonal
projection onto Vj, as illustrated in Fig. 2.4.

Fig. 2.4 Representation operator
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Note that from Eq. (2.7) we have

jjPj.v/jj � cjjvjj (2.8)

Pj.v/ D v; 8v 2 Vj .i.e. P2j D Pj/ : (2.9)

Also we require a natural commutativity condition Pj ıPj�1 D Pj, which guarantees
that the different representations match each other.

Intuitively each representation space Vj�1 contains more details (finer scale) than
the space Vj. This can be stated precisely by introducing the operator QjWV ! Vj�1,
defined by

Qj.v/ D PjC1.v/� Pj.v/ :

If Wj D Image.Qj/ D Qj.Vj/, it follows that

Vj�1 D Vj CWj : (2.10)

That is, Qj.v/ is the detail we must add to the representation space Vj to obtain VjC1.
For this reason, Qj is called a refinement operator.

Iterating Eq. (2.10) we have the decomposition equation

VJ D Vj0 C
�
Wj0 C � � � CWJC1

�
; (2.11)

which says that a finer representation can be obtained from a previous one, by adding
details. Equation (2.11) can be rewritten using operators:

Pj.v/ D Pj0 .v/C
j0X

jDJC1
Qj.v/ : (2.12)

In order to be able to decompose any element v of V we impose some additional
hypothesis on the representation operators Pj:

1. Pj.v/! v if j! �1;
2. Pj.v/! 0 if j! C1.

From the proximity condition of Eq. (2.7), these two conditions are
equivalent to

1.
S

j2Z Vj is dense on V;
2.
T

j2Z D f0g.
By taking the limit, j0 ! C1 and j! �1, in (2.12) we have

v D
X

j2Z
Qj.v/; 8v 2 V :

That is, any vector v is the sum of all of its details in the different representations.
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In the particular case where the representation operators Pj are orthogonal
projections over closed Hilbert spaces, the sum in Eq. (2.11) is in fact a direct sum,
and the spaces Vj and Wj are orthogonal.

Techniques to compute nested sequences of multiresolution representation are
closely related with wavelets.

2.9 Representation by Dictionaries

The problem of obtaining a representation of a function can be well understood
using the metaphor of natural language. When we write, we have an idea and we
must represent it using words of the language. If we have a rich vocabulary, we
will have a great conciseness power to write the idea, on the contrary, we will have
to use more words to express the same idea. Based on this metaphor, S. Mallat [38]
introduced in the literature a representation method based on dictionary of functions.

A dictionary in a function space H is a family D D .g�/�2� of vectors in H
such that jjg�jj D 1. This family is not necessarily countable. A representation of a
function in a dictionary D is a decomposition

f D
X

�2�
˛�g� ;

such that .˛� / 2 `2. The rationale behind the representation method consists in
constructing extensive dictionaries and devising optimal representation techniques
that allow us to represent a function using a minimum of words from the dictionary.
Therefore, Representation using dictionaries allows us the use of a great heterogene-
ity in the reconstruction functions, which makes the representation/reconstruction
process very flexible.

Note that distinct functions use different dictionary vectors in their representation
which makes the representation process nonlinear. In [37] several dictionary systems
are described, as well as techniques to compute dictionary based representations.
One basic strategy to compute a representation for a function f is described below.

Let fM be the projection of f over the space generated by M vectors from the
dictionary, with index set IM:

fM D
X

m2IM

hf ; gmigm :

The error eM in the approximation is the sum of the remaining coefficients

eM D jjf � fMjj2 D
X

m…IM

jhf ; gmij2 :
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To minimize this error the indices in IM must correspond to the M vectors that have
the largest inner product amplitude jhf ; gmij. These are the vectors that have a better
correlation with f , that is, the vectors that best match the features of f . Certainly
the error is smaller than the error resulting from a linear approximation where the
decomposition vectors of the representation do not vary with f .

The above ideas lead to an algorithm to compute the representation. For details
see [38].

2.10 Redundancy in the Representation

The representation of a function is not unique in general. Besides non-unicity, we
can have a redundancy for a given representation. This occurs, for instance, in the
representation using frames. In fact, if the frame .'j/j2Z is an orthonormal basis, the
representation operator

RWH ! `2; .Rf /j D hf ; 'ji

is an isometry, and the image of H is the whole space `2. The reconstruction
equation

f D
X

j2Z
hf ; 'ji Q'j

computes each vector in such a way that there is no correlation between the
coefficients.

If the frame is not constituted by linearly independent vectors, there exists
a redundancy in the representation, which corresponds to a certain correlation
between the elements of the representation sequence. This redundancy can be
used to obtain a certain robustness in the representation/reconstruction process. An
interesting discussion of the redundancy in frame representation can be found in
[20], p. 97.

2.11 Wavelets and Function Representation

We can summarize what we have done up to this point in the statement that our main
concern is the study of representation and reconstruction of functions. Therefore
our slogan at this point should be “all the way to function representation and
reconstruction techniques.”

In fact, we need to develop techniques that allow us to construct representation
tools (basis, dictionaries, frames, multiscale representations, etc.) which are flexible,
concise, and allow for robust reconstruction.
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This leads us naturally to the study of function variation as a strategy to detect
the different features of a given function, and take them into consideration when
representing the function. We will start our journey on this road from the next
chapter on. It will take us from the kingdom of Fourier to the wonderland of
wavelets.

2.12 Comments and References

Multiscale representation was introduced by S. Mallat in [36] in the context of the
Hilbert spaces L2.R/ of functions, and orthonormal projection. The more general
introduction we gave in Sect. 2.8 of this chapter was based on [10]. A detailed
description of Mallat’s work will be given later on.

A detailed study of representation and reconstruction using frames is found in
[20], pp. 57–63, and also in Chap. V of [37].



Chapter 3
The Fourier Transform

In order to devise good representation techniques we must develop tools that enable
us to locate distinguished features of a function. The most traditional of these tools
is the Fourier Transform which we will study in this chapter. The study of Fourier
transform, its strength and limitations, is the starting point of our journey to the
wavelets.

3.1 Analyzing Functions

To detect features of a function we must analyze it. This occurs in our everyday
routine: signals are analyzed and interpreted by our senses, a signal representation
is grabbed from this analysis and it is sent to our brain. This is the process used in
our perception of colors and sound.

Music, images, and other elements we interact with in our everyday life are
characterized by functions: To each point on the space, and to each instant of time
the function produces a certain output which we are able to detect. These functions
are usually called signals.

The best way to analyze the features of a signal is by studying its frequencies.
In an audio signal, for example, the frequencies are responsible for what we are
accustomed to identify as an acute or grave sound. Also, the distinction from red to
green is captured in the frequency of the associated electromagnetic wave.

3.1.1 Fourier Series

In order to analyze the frequency content of a function we must initially answer
the following question: What is the frequency of a function? This is an easy task
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Fig. 3.1 Sine function with frequencies 2, 4, and 8

when the function is periodic. In fact given the function f .t/ D A sin.2	!t/, A > 0,
the parameter A measures the amplitude (maximum and minimum values assumed
by f ), the parameter ! indicates how many complete cycles of period exist on the
interval Œ0; 1�. This number is directly connected with the number of oscillations
of the function in the unit of time, which is called the frequency of the function.
Figure 3.1 shows the graph of f for different values of !.

Consider a periodic function with period L > 0, that is, f .tCL/ D f .t/. We denote
by L2T.R/ the space of periodic functions of period T which are square integrable.
That is

Z t0CT

t0

jf .t/j2dt <1 :

The theory of Fourier series says that f can be decomposed as

f .s/ D
C1X

jD�1
aje

i2	!js; aj 2 R; (3.1)

where !j D j=T is a constant. This decomposition of a periodic function f is
called the Fourier series of f . It is well known that the family fei2	!js; j 2 Zg is
a complete orthonormal set of the space L2T.R/. Therefore Eq. (3.1) is an orthogonal
basis representation of the function f .

In conclusion, the Fourier series shows that any periodic function can be
decomposed as an infinite sum of periodic functions (sines and cosines). This
decomposition makes it easy an analysis of the frequencies present on the function f :
There exists a fundamental frequency !, and all of the other frequencies are integer
multiples !j, j 2 Z, of this fundamental frequency.

The coefficient aj in the Eq. (3.1) of the Fourier series measures the amplitude of
the frequency component!j on the function f . In particular, if aj D 0, this frequency
is not present in the function. This frequency amplitude aj is computed using the
equation

aj D
Z L

0

f .u/ei2	!judu ; (3.2)
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where L is the period of the function. Note that Eq. (3.1) completely characterizes
the function f by its frequencies. In other words, we have an exact represen-
tation of f .

3.1.2 Fourier Transform

The above portrait of the function f worked perfectly well: We were able to
obtain an exact representation of the function f and this representation completely
characterizes f by its frequencies. The only drawback is the fact that f was a periodic
function.

Is it possible to extend the above results for non-periodic functions? In this case
we do not have a discrete spectrum of well-defined frequencies as in Eq. (3.1). In
fact, every function f defined by Eq. (3.1) is necessarily periodic. Nevertheless, we
can use the Fourier series representation as an inspiration to introduce the concept
of frequency for arbitrary functions.

Take s D !j in Eq. (3.2) which computes the amplitude of the frequency, and
assume that the variable s takes any value. We obtain

a.s/ D
Z C1

�1
f .u/ei2	sudu : (3.3)

Notice that we have changed the notation from aj to a.s/.
The operation f .u/ei2	su in the integrand above is called modulation of the

function f . The exponential is called the modulating function. For each s, ei2	su

is a periodic function of frequency s, s 2 R. Therefore, for each s 2 R Eq. (3.3) can
be interpreted as an infinite weighted average of f using the modulating function as
the weighting function.

The rationale behind the frequency computation in the modulation process
can be explained as follows: When f has oscillations of frequencies s, or close
to s, these frequencies result to be in resonance with the frequency s of the
modulating function, therefore a.s/ assumes non-zero values. On the contrary, when
the oscillations of f and the frequencies of the modulating function are completely
distinct we have a cancellation effect and the integral of (3.3) is zero or close to zero.
We conclude that a.s/measures the occurrence of the frequency s on the function f .
Since s varies in a continuum of numbers, it is interesting to interpret (3.3) as
describing a frequency density of the function f . When a.s/ ¤ 0 this means that
frequencies s occurs on f . The value of a.s/ is a measure of the occurrence of the
frequency s on f .

We will change notation and denote a.s/ by Of .s/ or by F.f /.s/. Note that Of is in
fact an operator that associates with the function f the function Of D F.f /, defined
by (3.3). Therefore we have an operator defined between two function spaces. What
function spaces are these? It is possible to show that the operator is well defined for
any function f satisfying the equation
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jjf jj D
Z

R

jf .u/j2du <1 : (3.4)

These functions are called square integrable functions or functions with finite
energy. This space is denoted by L2.R/. Equation (3.4) defines a norm on L2.R/,
and it is easy to see that this norm is induced by the inner product.

hf ; gi D
Z

R

f .u/g.u/du ;

where g means the complex conjugate. It is well known that the space L2.R/ with
this inner product is a Hilbert space, called the space of square integrable functions.

In sum, we have introduced an operator F D Of WL2.R/! L2.R/, defined by

F.f /.s/ D Of .s/ D
Z C1

�1
f .u/e�i2	sudu : (3.5)

This operator is called Fourier Transform. Note that we changed the signal of the
exponent when passing from (3.3) to (3.5) so as to keep the definition compatible
with the definition of the Fourier transform used in the literature.

Without going into too much details, we would like to clarify some mathematical
points. The Fourier transform is well defined when the function f belongs to the
space L1.R/ of integrable functions. In this case it is easy to see that Of is bounded
and continuous. In fact,

jOf .w/ � Of .s/j �
Z

R

jf .t/jei2	wt � ei2	stj �
�Z

R

jf .t/dt

�
jw � sj :

The extension of f to the space L2.R/ of square integrable functions is achieved
by a limiting process: Any function f 2 L2.R/ can be approximated by integrable
functions of finite energy. More precisely, for any f 2 L2.R/, there exists a sequence
fn 2 L1.R/\ L2.R/ such that

lim
n!1 jjfn � f jj D 0 :

We define Of as the limit of the sequence Ofn. Why is it important to define the Fourier
transform on L2.R/, instead of L1.R/? We can give two main reasons for that:

• The Fourier transform of an integrable function is not necessarily integrable.
Therefore F is not an operator FWL1.R/! L1.R/.

• The space L2.R/ has a richer structure than the space L1.R/ because of its inner
product. In fact it is a Hilbert space.
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From the linearity of the integral it follows easily that the Fourier transform
FWL2.R/ ! L2.R/ is linear. A fascinating result is that F is an isometry of L2.
That is,

hf ; gi D hOf ; Ogi; 8f ; g 2 L2.R/ : (3.6)

This equation is known as Parseval identity. It follows easily from it that

jjf jj2 D jjOf jj2 : (3.7)

This equation is known as Plancherel equation.
The inverse of the Fourier transform is given by

F�1.g/.t/ D
Z C1

�1
g.s/ei2	!tds : (3.8)

That is, F�1.Of / D f . Therefore, we have

f .t/ D F�1.Of / D
Z C1

�1
Of .s/ei2	stds : (3.9)

An important fact to emphasize is that we have two different ways to “read”
Eq. (3.9) of the inverse transform:

1. It furnishes a method to obtain the function f from its Fourier Transform Of .
2. It allows us to reconstruct f as a superposition of periodic functions, ei2	st, and

the coefficients of each function in the superposition are given by the Fourier
transform.

The second interpretation above shows that the equation of the inverse Fourier
transform is a non-discrete analogous of Eq. (3.1) of the Fourier series.

3.1.3 Spatial and Frequency Domain

Analyzing from the mathematical point of view, the Fourier transform is an
invertible linear operator on L2.R/. Nevertheless, in the applications we have a very
interesting interpretation of it. A function f WR! R can be interpreted as associating
with each value of t in the spatial domain R some physical magnitude f .t/. When
we compute the Fourier transform of f , we obtain another function Of .s/ defined on
L2.R/. In this case, for each value of the parameter s 2 R the value Of .s/ represents
the frequency density s in f . We interpret this by saying that Of is a representation of
the function f in the frequency domain. In summary, the Fourier transform changes
a function from the spatial to the frequency domain.
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Since in our case the spatial domain has dimension 1 it is common to interpret
the variable t as time and call the spatial domain by the name of time domain.

Note that describing a function on the frequency domain allows us to obtain the
frequency contents of the function. The frequency contents are closely related with
the features carried by the function. As we have pointed out in the previous chapter,
these features are important elements to obtain good function representation.

3.2 A Pause to Think

Our purpose in this section is to have a better understanding of the potentialities
of the Fourier transform from the point of view of function representation and
reconstruction. Equation (3.2) provides us with information about the frequencies of
a periodic function. For this reason, it is called the analysis equation. Equation (3.1)
allows us to obtain f from the coefficients aj computed using the analysis equation.
For this reason it is called a synthesis equation. From the point of view of the
previous chapter the analysis equation computes a representation of the periodic
function f by the sequence .aj/; j 2 Z. The synthesis equation provides us with a
reconstruction technique. Note that in this case the reconstruction is exact.

When the function is not periodic we know that Eq. (3.5), which defines the
Fourier transform, gives us an analysis of the frequencies of the function f .
Equation (3.9) writes the function f as a superposition of a “continuum” of periodic
functions. This equation plays the role of the reconstruction Eq. (3.1) of the function
f (the analysis equation). Note that the analysis and synthesis equation associated
with the Fourier transform are not discrete as in the case of the Fourier series, for
periodic functions. Therefore we do not have a tool that allows us to represent and
reconstruct arbitrary functions as in the case of the Fourier series.

One important question can be posed now: How effective is the Fourier transform
analysis of a function? A discussion of this question will be done in the next section.

3.3 Frequency Analysis

In this section we study some examples that will give a better insight into the
analysis provided by the Fourier transform.

Suppose that Of .s0/ ¤ 0. From this we conclude that f has frequencies s0 or
close to s0. In this case, the next step of analyzing f consists in determining the
localization of these frequencies on the spatial domain of f . This localization is of
great importance in several applications, and in particular in the problem of function
representation. We can make an analogy using a radar metaphor: the existence of
a certain frequency detects the presence of some object, and the localization of a
frequency allows us to determine the object position.
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Fig. 3.2 A signal (a) and its Fourier transform (b)

In general localizing frequencies on the spatial domain using Fourier transform
is impossible. This happens because the modulating function (exponential) used
to measure the frequency density on the Fourier transform does not have compact
support: the integral that defines the transform extends to the whole line. Therefore
the only information carried from the fact that Of .s/ ¤ 0 is that the frequency s or
frequencies close to s are present on the function f .

Example 5 (Signal with impulses). Consider the signal defined by the function

f .t/ D sin.2	516:12t/C sin.2	2967:74t/C ı.t � 0:05/C ı.t � 0:42/ :

It consists of a sum of two sines with frequencies 516:12Hz and 2967:74Hz, where
we added two impulses of order 3 at the two different positions t0 D 0:05 s and
t1 D 0:42 s. The graph of this signal is shown in Fig. 3.2(a). The graph of its Fourier
transform is shown in Fig. 3.2(b).

Note that the Fourier transform detects well the two sine signals (the two spikes
in Figure (b)). How about the impulses? It is easy to see from the definition of the
Fourier transform, that translation of an impulse on the spatial domain introduces
modulation by an exponential on the frequency domain. Therefore the modulation
introduced by the two impulses generate a superposition of frequencies. These
frequencies do not appear in Fig. 3.2(b) because of a scale problem. Figure 3.3 plots
the graph in a different scale so as to make it possible to observe the superposed
frequencies corresponding to the two impulses.

In conclusion the Fourier transform does not provide clear information about the
two impulses.

The difficulty in localizing frequencies on the spatial domain is one of the
major weaknesses of the Fourier transform in analyzing signals. Below we will
give a classical example that shows the inefficiency of the Fourier transform in
representing functions.
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Fig. 3.3 Fourier transform of two impulses ı.t � 0:05/ and ı.t � 0:42/

Example 6 (Fourier analysis of the impulse signal). Consider the impulse “func-
tion” Dirac ı. We have

Z C1

�1
f .t/ı.t/dt D f .0/ :

Taking f .t/ D e�i2	st in this equation we have

Oı.s/ D
Z C1

�1
ı.t/e�i2	stdt D 1 :

This shows that the Fourier transform of the impulse ı is a constant function of
value 1. Using this result in the reconstruction Eq. (3.9), we obtain

ı.t/ D
Z C1

�1
Oı.f /ei2	stds D

Z C1

�1
ei2	stds :

That is, exponentials of every frequency values s 2 R must be combined in order to
analyze the impulse signal.

This fact has a very simple mathematical explanation: As the Fourier transform
uses modulating functions without compact support, and periodic, we must “sum”
an infinite number of these functions so as to occur destructive interference.
Nevertheless from the physical point of view we do not find a plausible explanation
for the problem of representing such a simple signal combining an infinite number
of periodic functions.
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In general, if a function presents sudden changes (e.g., discontinuities), the
high frequencies relative to these changes are detected by the transform, but they
influence the computation of the Fourier transform along all of the domain because
the modulating function does not have compact support. The Fourier analysis is
therefore more efficient in the study of signals that do not suffer sudden variations
along the time. These signals are called stationary signals.

3.4 Fourier Transform and Filtering

Even though the classical theory of filtering is developed for discrete signals, a good
insight is gained by studying filtering of continuous signals. The relation of the
filtering theory with the Fourier analysis is very important and will be exploited in
many different parts of the book.

A filter is an operator LWL2.R/ ! L2.R/, defined on the space of signals with
finite energy. An important class of filters is given by the linear, time invariant filters.
A filter is linear if the operator LWL2.R/! L2.R/ is linear. A filter is time invariant
if a time delay can be applied either before or after filtering, with the same result.
That is,

L.f .t � t0// D .Lf /.t � t0/ :

Linear and space invariant filters are simple to study because they are completely
determined by their values on the impulse signal h D Lı.t/. Indeed, time invariance
of L gives

Lı.t � u/ D h.t � u/ :

Therefore,

L.f .t// D L
Z

R

f .u/ı.t � u/du (3.10)

D
Z

R

f .u/h.t � u/ D
Z

R

h.u/f .t � u/du : (3.11)

The last integral on the above equation is called the convolution product of h and
f , and it is denoted by h � f .t/. That is,

h � f .t/ D
Z

R

h.u/f .t � u/du :

We conclude that filtering signal f with a linear, time invariant filter L is equivalent
to make a convolution of f with the signal h D Lı.t/. The signal h is called the
impulse response of the filter. Sometimes h is called the kernel of the filter.
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Applying the filter L to e�i2	wt yields

L.e�i2	wt/ D
Z

R

h.u/e�i2	w.t�u/du (3.12)

D e�i2	wt
Z

R

h.u/e�i2	wudu (3.13)

D Oh.w/e�i2	wt : (3.14)

This shows that each exponential e�i2	wt is an eigenvector of the filter L, and
the corresponding eigenvalue is the value Oh.w/ of Fourier transform of the impulse
response function h of L.

This result is of paramount importance and it is the link between filter theory
and Fourier analysis. In fact, as an immediate consequence it gives an insight in the
action of the filter on the frequencies of a signal f as we will show below.

From the equation of the inverse Fourier transform we have

f .t/ D
Z

R

Of .w/ei2	wtdw :

Applying L to f we get

L.f .t// D
Z

R

Of .w/L.ei2	wt/dw D
Z

R

Of .w/Oh.w/ei2	wtdw : (3.15)

The above equation shows that the filter L modulates the sinusoidal components
ei2	wt of f , amplifying or attenuating them. Since Lf .t/ D h � f , Eq. (3.15) can be
restated as

F.h � f / D F.h/F.f / ; (3.16)

where F is the Fourier transform, and on the right we have a product of two
functions. The Fourier transform F.h/ of the impulse response is called the transfer
function of the filter. Equation (3.16) will be used to give a better insight into the
filtering operation.

Linear and space invariant filters are classified according to the way they modify
the frequencies of the signal f . This classification includes four basic types:

• Low-pass;
• High-pass;
• Band-pass
• Band-stop.



3.4 Fourier Transform and Filtering 39

Fig. 3.4 Transfer function of an ideal low-pass filter

Fig. 3.5 Transfer function of an ideal high-pass filter

3.4.1 Low-pass Filters

This filter is characterized by the fact that they attenuate the high frequencies of
the signal without changing the low frequencies. From Eq. (3.16) it follows that the
graph of the transfer function of an ideal low-pass filter is shown in Fig. 3.4.

3.4.2 High-pass Filter

This filter has a complementary behavior to that of the low-pass filter. It attenuates
the low frequencies and does not change the high frequencies. From Eq. (3.16) it
follows that the graph of a transfer function of an ideal high-pass filter is shown in
Fig. 3.5.

3.4.3 Band-pass Filter

This filter changes both low and high frequencies of the signal, but does not change
frequencies in some interval (band) of the spectrum. The graph of the transfer
function of an ideal band-pass filter is shown in Fig. 3.6. A low-pass filter is a band-
pass filter for low frequencies.
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Fig. 3.6 Transfer function of an ideal band-pass filter

Fig. 3.7 Transfer function of an ideal band-stop filter

3.4.4 Band-stop Filter

This is the complementary of a band-pass filter. This filter affects frequencies on
an interval (band) of the spectrum. Frequencies outside this frequency band are not
affected. The graph of the transfer function of an ideal band-stop filter is shown in
Fig. 3.7.

3.5 Fourier Transform and Function Representation

Is it possible to obtain representation and reconstruction techniques for a non-
periodic function using the Fourier transform?

Equation (3.9) which defines the inverse transform gives us a clue to look for an
answer to our question. In fact, this equation writes the function f as a superposition
of periodical functions, “modulated” by the Fourier transform.

Certainly there exists a redundancy in this “representation” of the function f by a
continuum of functions. We can eliminate this redundancy by taking only a discrete
set of frequencies sj D !0j, !0 constant, j 2 Z.

Unfortunately this discretization leads us to the Fourier series of the function f .
In fact, Fourier series are particular instances of Fourier transform for discrete
signals. If

f .t/ D
X

n2Z
f .n/ı.t � n/ ;
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then

Of .w/ D
X

n2Z
f .n/e�i2	wn :

Therefore the method that seems natural to obtain function representations from
the Fourier transform is in fact inadequate. Nevertheless the Fourier theory, and
its relationship with filter theory, is of great importance in the study of different
representation methods. This fact will be illustrated in the next section.

3.5.1 Fourier Transform and Point Sampling

In spite of all of the weakness of the Fourier transform that we have already
discussed, it is a powerful tool to analyze the problem of function representation. We
will use it to understand the problem of exact reconstruction from a representation
by point sampling.

An important step in this direction is to understand the spectrum of a point
sampled signal. More precisely, suppose that we have a uniform sampling partition
of the real numbers with interval length �t. This length is called the sampling
period. The discretized signal is given by

fd.t/ D
X

k2Z
f .k�t/ı.t � k�t/ :

The relation between the Fourier transform Of of f and the Fourier transform Ofd of the
discretized signal fd is given by

Ofd.s/ D 1

�t

X

k2Z
Of
�

s � k

�t

�
: (3.17)

A clear interpretation of Eq. (3.17) is very important: Apart from the scaling
factor 1=�t, it says that the spectrum of the sampled signal fd is obtained from the
spectrum Of of the continuous signal f by translating it by multiples of 1=�t, and
summing up all of the translated spectra. This is illustrated in Fig. 3.8: In (a) we
show the graph of the function f ; in (b) we show the graph of the Fourier transform
Of ; in (c) we show the graph of the point sampling representation .fi/ of f ; in (d) we
show the Fourier transform of the sampled function fd.

It is important to remark that the translating distance varies inversely with the
sampling period: The sampling period is �t and the translating distance is 1=�t.
Therefore closer samples produce more spaced translations and vice versa. Note
that in particular, very high frequencies are introduced in the sampling process by
the infinite translation of the spectrum.



42 3 The Fourier Transform
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Fig. 3.8 Sampling and the Fourier spectrum

Equation (3.17) is the key point to understand the reconstruction problem when
we use uniform point sampling to represent a function. This fact will be discussed
in next section.

3.5.2 The Theorem of Shannon-Whittaker

In this section we will use Fourier theory to answer a question posed on Chap. 2: Is
it possible to obtain an exact representation of a function using point sampling?

We will see that the answer is positive if we restrict the function f and at the same
time impose conditions on the sampling rate. Initially we will demand the following
conditions:

• The point sampling process is uniform. That is, the sampling intervals Œtk; tkC1�
have the same length�t D tkC1 � tk.

• The Fourier transform Of of the function f assumes zero values outside a bounded
interval Œ�˝;˝� of the frequency domain. We say that Of has compact support.

Using the above restrictions, we have the classical:

Theorem 2 (Theorem of Shannon-Whittaker). Consider a function f WR ! R

with compact support, supp .Of / � Œ�˝;˝�, and a uniform partition ti, i 2 Z of the
real numbers R such that 2�t � ˝ . Then f can be reconstructed (exactly) from its
point sampling representation .f .ti//i2Z. The reconstruction equation is given by
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f .t/ D
C1X

kD�1
f

�
k

2˝

�
sin	.2˝t � k/

	.2˝t � k/
: (3.18)

The inequality 2�x � ˝ is called Nyquist limit. It says that we must take at least
2 samples for each complete cycle of maximum frequency occurring in the function.

The result of the theorem is very intuitive. The hypothesis of the theorem says:

1. The function f should not have very high frequencies, supp .Of / � Œ�˝;˝�;
2. We take samples of f sufficiently close, such that we have at least 2 samples for

a complete cycle of maximum frequency (2�t � ˝);

The conclusion of the theorem is: f can be exactly reconstructed interpolating its
samples using Eq. (3.18).

A function f such that Of has compact support is called a band limited function,
because it possess frequencies within a limited interval (band) of the frequency
domain. It is interesting to make a sketch of the proof of the theorem so that we
can see the role of Fourier analysis and filtering.

Sketch of the Proof Consider a band limited function f . The point sampling
representation transforms f into the sequence f .ti/ which is null outside the points
of the sampling partition, and assumes the values of f on the points of the partition.

We have seen from Eq. (3.17) that the sampling process alters the frequency
spectrum of the function f , introducing very high frequencies by translating and
summing up the original spectrum. In order to reconstruct f we have to recover the
original frequency spectrum from the spectrum of the sampled function.

The translation distance of the spectrum of the original signal f depends on the
sampling period (the length of the intervals in the sampling lattice): The smaller the
period (that means more space between consecutive samples), the bigger will be the
translation of the spectrum.

The Nyquist limit 2�t � ˝ says that if we take the sampling period sufficiently
small, the translated spectra will have disjoint domains. In this case, using an
adequate low-pass filter we can recover the original spectrum of the signal f . From
this original spectrum we are able to reconstruct the original signal using the inverse
Fourier transform.

Details of this proof, including the computation of the reconstruction Eq. (3.18),
can be found in [24].

3.6 Point Sampling and Representation by Projection

It can be shown that if we take

e˝.t/ D sin	2˝t

	2˝t
;
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the set fe˝.t � k�t/g is an orthogonal basis of the space

L2˝.R/ D ff 2 L2.R/ I supp.Of / � Œ�˝;˝�g :

Moreover, the reconstruction Eq. (3.18) is the projection of f on this basis. In sum,
the problem of point sampling and reconstruction is reduced to the problem of
representation on an orthogonal basis.

If a signal f is not band-limited, that is, f … L2˝.R/, and it is represented using
point sampling with period�t � ˝=2, and we reconstruct the sampled signal using
the reconstruction Eq. (3.18) of Shannon-Whittaker, we obtain a function Qf 2 L2.R/
such that jjQf � f jj is minimized. In fact, Qf is the orthogonal projection of f on L2˝.R/.

3.7 Point Sampling and Representation Coefficients

When we have an orthonormal basis f�jg of the space L2.R/, the representation of
f in this basis is given by

f D
X

n

hf ; �ni�n :

In this case we have the representation sequence

f 7! .hf ; �ni/n2Z :

Note that if �n.x/ D ı.x � n/, then

hf ; �ni D hf ; ı.x� n/i D f .n/ :

That is, the elements of the representation sequence are samples of the function f .
This fact motivates us to pose the following question:

Question 3.1. What is the relation between the elements hf ; �ni of the representa-
tion sequence and the samples f .n/ of the function f ?

There is a simple answer for this question in a very particular case of great
importance in the study of wavelets. We will suppose that the functions �n

which constitute the orthonormal basis are obtained from a single function � by
translations. More precisely,

�n.x/ D �.x � n/ :

From Parseval equation, and the identity

O�n.s/ D F.�.x � n// D e�i2	 ins O�.s/ ;
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we have

h�n; f i D h O�n; Of i D
Z C1

�1
e2	 ins O�.s/Of .s/ds D F.n/ ;

where the function F is given by its Fourier transform

OF.!/ D O�.!/Of .!/ : (3.19)

Notice that

j OF.s/j � jj O�jj jjOf jj D jj�jj jjf jj ;

therefore OF.!/ is integrable, and this implies that F is continuous. This shows that
the values of the samples F.n/ are well defined.

If the function � is a low-pass filter, Eq. (3.19) shows that F is obtained from
the original function f by a low-pass filtering process, therefore the values of F.n/
are close to the values of the original function f , if it does not have great frequency
variations.

For this reason, it is common to refer to the elements hf ; �ni from the represen-
tation sequence as samples of the function f , even when � is not a low-pass filter.
This fact is resumed in the theorem below for future references:

Theorem 3. If f�n D �.x � n/g is an orthonormal basis of L2.R/, then the terms
hf ; �ni of the representation sequence of f on the basis f�ng are obtained by filtering
f , F D f � �, and sampling the resulting function F. That is,

hf ; �ni D hf ; �.x � n/i D F.n/ :

3.8 Comments and References

There are several good books covering the theory of Fourier analysis. For a revision
of the classical theory, we suggest the reader to consult [64]. This reference also
covers the discrete Fourier transform. A comprehensive reference for the discrete
Fourier transform, both from the conceptual and computational point of view, is
found in [7].

In practice we use finite signals when implementing the operations of sampling
and reconstruction on the computer. Therefore, we need to study the Fourier
transform of finite signals. This Fourier transform is called Discrete Fourier
Transform (DFT). For the reader interested in details, we recommend [24] and [7].
The reference [24] brings a chapter with a review of signal theory, adequate for
those with some computer graphics background, it can be found on Chap. 1 of [24].
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From the computational viewpoint an important issue related with the Fourier
transform is the study of its computational complexity. That is, the study of the
computational complexity of the DFT when applied to a finite signal with N
samples. There are different flavors of computing with a Fast Fourier Transform,
which reduces the computational complexity. For those interested in these topics,
we recommend [34] and [21].

We have not stressed in this chapter a very important point when working with
Fourier analysis and filtering: Since all of the theory studied here is linear, a natural
representation for them is to use matrices. This approach is important specially from
the computational point of view. Matrix notation is used all over in [55]. We will use
some matrix notation later on this book. The reader should consult the Appendices
to this book where we introduce matrix notation.

The concepts of this chapter extend naturally to real functions of several
variables. Of particular importance in computer graphics is the case of functions
f WR2 ! R, which describes an image, and the case f WR3 ! R which is related
to the study of volumetric objects. A good reference at an introductory level that
covers two-dimensional signal processing is [33].

A detailed discussion of the different problems arising from incorrect reconstruc-
tion of a signal from a representation by point sampling is found in Chap. 7 of [24].

An analysis of the reconstruction problem when we use uniform point sampling
representation with a sampling rate superior to the Nyquist limit is found in p. 20
of [20].

The problem of reconstructing a function from its samples called the attention of
mathematicians since the beginning of the century. For details about the history
of this problem, we recommend [9]. A comprehensive discussion with different
versions of the problem including solutions can be found on [66].

The Theorem of Shannon-Whittaker is a very important result in the theory of
function discretization. Nevertheless it presents certain deficiencies as a solution
to the sampling/reconstruction problem. In particular, the hypothesis that Of has
compact support is too much restrictive. Several research directions are raised from
the Theorem of Shannon-Whittaker. We could mention the following ones:

• Look for versions of the theorem using a weaker hypothesis than that of compact
support;

• Generalize the theorem for arbitrary domains of Rn.
• Analyze what happens with the reconstruction when the sampling is done without

obeying the Nyquist limit.



Chapter 4
Windowed Fourier Transform

In this chapter we will introduce a modification in the definition of the Fourier
transform in order to obtain a transform with better localization properties in the
time-frequency domain. This transform will give us better results for the purposes
of function representation.

4.1 A Walk in The Physical Universe

Our purpose is to obtain a transform that enables us to perform a local computation
of the frequency density. The inspiration for this transform is to analyze the audio
analysis performed by our auditory system. Consider for this an audio signal
represented by a real function f of one variable (time).

Real time analysis The audio information we receive occurs simultaneously on
time and frequency. This means that the signal f is transformed by the auditory
system in a signal Qf .t; !/ that depends on the time and the frequency.

Future sounds are not analyzed This means that only values of f .t/ for t � t1 can
be analyzed when computing the “transform” Qf .t; !/.
The auditory system has finite memory That is, sounds that we have heard some
time ago do not influence the sounds that we hear in a certain instant of time. This
means that there exists a real number t0 > 0 such that the computation of the
“transform” Qf .t; !/ depends only on the values of t on the interval Œt � t0; t�.

Mathematically, the last two properties show that the modulating function used to
detect frequencies in the computation of the “transform” Qf .t; !/must have its values
concentrated in a neighborhood of t. We say that it is localized in time. D. Gabor,
[23] was the first to propose a transform with the above properties.
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4.2 The Windowed Fourier Transform

One method to obtain a localized modulating function consists in using an auxiliary
function g.u/ to localize the modulating function e�2i	!u used in the Fourier
transform in a certain neighborhood of the time domain:

g!;t.u/ D g.u� t/e�2	 i!u : (4.1)

This localization operator is illustrated in Fig. 4.1. We take a function g.u/, and
for each value of t 2 R, we translate the origin to the point t and multiply the
exponential by the translated function g.u � t/. If the function g is localized in
the time domain, we obtain the desired localization of the modulating function
g.u� t/e�2	 i!u.

From the above, the definition of our transform is given by

Qf .!; t/ D
Z C1

�1
g.u� t/f .u/e�2	 i!udu

D
Z C1

�1
gt;!.u/f .u/du D hgt;!; f i : (4.2)

The transform f 7! Qf .t; !/ is called the windowed Fourier transform (WFT), or the
short time Fourier transform (STFT). Two important questions can be posed with
respect to the windowed Fourier transform Qf .t; !/:
Question 4.1. Is the transform Qf .t; !/ invertible?

Question 4.2. What is the image of the transform Qf .t; !/?
The importance of these questions can be measured from the fact that the

invertibility of the Fourier transform is one of its strength. The underlying idea
of the importance of the inverse transform is that if we are able to obtain a
good representation using the transform, its inverse will provide the reconstruction.
The image of the transform is important because it measures the scope of the
representable functions.

We will discuss these two questions in the following sections.

Fig. 4.1 Modulating function
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4.2.1 Invertibility of Qf .t; !/

The problem of inverting the windowed Fourier transform consists in determining a
function f from its transformed function Qf .t; !/.

From (4.2) it follows that Qf .u; t/ D bft.u/, where ft.u/ D g.u � t/f .u/. Applying
the inverse Fourier transform, we have

g.u� t/f .u/ D ft.u/ D
Z C1

�1
Qf .!; t/e2	 i!ud! :

We cannot divide by g.u�t/ to get f .u/, because the function g might as well assume
zero values. Multiplying both members of the equation g.u � t/, and integrating in
t we obtain

Z C1

�1
jg.u� t/j2f .u/dt D

Z C1

�1

Z C1

�1
e�2	 i!ug.u� t/Qf .!; t/d!dt :

That is,

f .u/ D 1

jjgjj2
“

!;t

g.u� t/e2	 i!u Qf .!; t/d! : (4.3)

As we did for the Fourier transform, Eq. (4.3) can be interpreted into two different
ways:

1. It is an equation to compute f from its windowed Fourier transform Qf .!; t/;
2. It decomposes the function f as an infinite superposition of localized waveforms

g!;t.u/ D g.u� t/e2	 i!u:

These waveforms are called time-frequency atoms.

4.2.2 Image of the Windowed Fourier Transform

In this section we will discuss the second question posed before: What is the image
space of the windowed Fourier transform? We will only give some comments
concerning the answer.

Given a function f its windowed Fourier transform Qf .!; t/ is a function of two
variables. It is possible to prove that if f 2 L2.R/, then Qf .!; t/L2.R2/. Also, it is
possible to show that the image of the transform Qf does not cover the whole space
L2.R2/. Therefore, the posed question consists in characterizing the image set of
the windowed Fourier transform. We will not solve this problem here. A solution to
it can be found in [31], p. 56, or Theorem 4.1 of [37].
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It is important to compare the result here with the analogous result for the Fourier
transform: The Fourier transform is an isometry of the space L2.R/. In particular its
image is the whole space.

4.2.3 WFT and Function Representation

Since our main focus is the problem of function representation, a natural question
to be posed now would be:

Question 4.3. Is it possible to obtain a function representation using the windowed
Fourier transform?

In fact since the windowed Fourier transform has good localization properties
in the time-frequency domain, we should expect that the discretization of Eq. (4.3)
would give good discrete time-frequency atomic representations.

4.3 Time-frequency Domain

We have noticed that if f 2 L2.R/, then Qf .!; t/ 2 L2.R2/. Therefore the windowed
Fourier transform of a function is defined on the domain .!; t/, called the time-
frequency domain.

From the definition of the windowed Fourier transform (4.2) we know that if g is
well localized in time (i.e., g is small outside of a small time interval), then Qf is also
well localized in time. How about the frequency localization of Qf ?

From Eq. (4.2) which defines the windowed Fourier transform, we have

Qf .!; t/ D hg!;t; ti D hOg!;t; Of i ;

where the second equation follows from Parseval’s identity. We conclude that if g
has good localization properties in the frequency domain (i.e., Og is small outside an
interval of frequency !), then the transform Qf is also localized in frequency.

Therefore the windowed Fourier transform enables us to analyze the function
f in the time-frequency domain, in the sense that we have localized information
both in time and frequency domain. This result is completely in accordance with
the problem we have discussed before: Detect frequencies of the function f , and
localize them on the time domain.

How precisely can we localize the information about f in the time-frequency
domain? An answer to this question is given below.
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4.3.1 The Uncertainty Principle

From the previous section we could conclude that a finer analysis of a function
f 2 L2.R/ could be obtained by using window functions g with very good localiza-
tion properties on the time-frequency domain .!; t/.

Unfortunately there is a limit to the localization precision in the time-frequency
domain. This limitation comes from a general principle that governs the time-
frequency transforms. This is the uncertainty principle which will be discussed
now. In simple terms the statement of this principle is: We can not obtain precise
localization simultaneously in the time and frequency domains. The intuition behind
this principle is simple: To measure frequencies we must observe the signal for
some period of time. The more precision we need in the frequency measurements
the larger the time interval we have to observe.

In order to give a more quantitative statement of the uncertainty principle, we
have to define precisely the notion of “information localization” of a function. For
this, we will suppose that the norm L2.R/ of the window function g is 1, that is,
jjgjj2 D 1. It follows from the equation of Plancherel that jjOgjj2 D 1. We may
consider g and Og as probability distributions, then the averages of g and Og are
computed by

t0 D
Z C1

�1
tjg.t/jdt; and !0 D

Z C1

�1
!jOg.!/jd! ;

respectively. The size of the localization interval of g and Og is given the standard
deviation

T2 D
Z C1

�1
.t � t0/

2jg.t/j2dt ;

and

˝2 D
Z C1

�1
.! � !0/2jOg.!/j2d! :

With the above definitions, the uncertainty principle states that

4	˝T � 1 :

Note that if g is well localized in frequency (˝ small) then T � 1=4	˝ cannot
be small, therefore g does not have good localization in time. The same reasoning
applies for frequency localization.

The localization of the signal in the time-frequency domain .!; t/ is represented
geometrically by the rectangle of dimensions T � ˝ . This rectangle is called
uncertainty window or information cell of the transform. From the uncertainty
principle, the area of this rectangle is � 1=4	 (see Fig. 4.2).
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Fig. 4.2 Information cells

The uncertainty principle shows that do not exist point coordinates in the
time-frequency domain. Or, to state this more precisely, the coordinates in the time-
frequency domain are the centroids of density distributions, and don’t have great
importance to the analysis of functions, unless for the fact that they are used to
measure the dimensions of the uncertainty windows.

4.4 Atomic Decomposition

Our main goal is to provide better representations of a signal. The purpose of
introducing the windowed Fourier transform is to obtain representations in the
time-frequency domain. More precisely, given a function f we must obtain a
decomposition

f D
X

�2˝
a�g� ; (4.4)

where ˝ is discrete, and the functions g� have good localization properties in the
time-frequency domain. The functions g� are called time-frequency atoms, and the
reconstruction Eq. (4.4) is called atomic decomposition.

The atomic decomposition defines a representation operator

R.f / D .a�/�2˝ 2 `2 :

Each atom in this representation constitutes a basic element used to measure the
frequency density of the function in a small period of time. Each of these atoms
is represented by a rectangle whose sides indicate the measure of localization
according to the uncertainty principle. The degree of uncertainty in time and in
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Fig. 4.3 Atoms in the time-frequency domain

frequency is indicated by the width and height of the rectangle. The localization of
the atom in the time-frequency domain is given by the coordinates of the center of
the rectangle, or by the coordinates of some of its vertices. From the uncertainty
principle the area of each rectangle is � 1=4	 .

We associate a gray color with each atom to indicate its energy in the decom-
position. The energy is directly related with the value of the coefficients in the
reconstruction equation. In Fig. 4.3 we depict some atoms. The associated signal to
the atom on the left presents small localization in frequencies and has small energy;
the central atom has better localization of frequencies (complete cycle) and therefore
has more energy; the atom to the right has a good frequency localization (several
cycles are encompassed) and a high energy.

Given a signal f represented by some finite atomic decomposition

fN.t/ D
N�1X

kD0
aN.k/�N;k.t/ ;

this representation depicted by the corresponding rectangles of each atom �N;k, and
the corresponding energy component aN.k/�N;k.

In the case of representation by uniform sampling, we have an exact localization
in time and no localization in the frequency domain. The representation in the time-
frequency domain is illustrated in Fig. 4.4(a), where the distribution between the
vertical segments is given by the sampling interval.

The atoms of the discrete Fourier transform

1; e
2	i
N ; : : : ; e

2	i.N�1/s
N
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a b

Fig. 4.4 a Point sampling. b Fourier sampling

constitute an orthonormal basis. We have N discrete values of frequency
0; s; 2s; : : : ; .N � 1/s. These atoms have no time localization, therefore the atomic
representation of a function using this basis is localized in the frequency domain
and has no time localization. This fact is depicted in Fig. 4.4(b).

4.5 WFT and Atomic Decomposition

The natural way to obtain atomic decompositions of the function f using the win-
dowed Fourier transform would be using the inverse transform (4.3) which writes
f as a superposition of indexed functions by the time frequency parameters. This
equation gives us an indication that by discretizing the time and frequency parame-
ters we obtain representation/reconstruction methods for functions f 2 L2.R/.

In order to achieve this we should look for discrete versions of the windowed
Fourier transform. We fix t0 and !0 and we take discrete values of time t D nt0, and
discrete values of frequency ! D m!0, n;m 2 Z. In the time-frequency domain we
have the uniform lattice

�t0;!0 D f.mt0; n!0/ I m; n 2 Zg ;

depicted in Fig. 4.5.
In this case we write the transform Qf in the form

Qfm;n D
Z C1

�1
f .u/g.u� nt0/e

�2	 im!0udu ; (4.5)

which is called discrete windowed Fourier transform (DWFT).
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Fig. 4.5 Uniform lattice in time-frequency domain

The discrete windowed Fourier transform uses a countable family of time
frequency atoms

gm;n.u/ D ei2	m!0ug.u� nt0/ :

If this family constitute a frame, we can obtain a representation

f 7! .hf ; gm;ni/m;n2Z ;

of the function f . Moreover, f can be reconstructed from this representation using
the reciprocal frame egm;n, as described in Chap. 2:

f D
X

m;n

hf ; gm;niegm;n :

Geometrically, this result means that when we position the information cells of the
time-frequency atoms gm;n on the vertices of the lattice, we cover the whole time-
frequency plane. This fact is illustrated in Fig. 4.6 for two distinct discretizations of
the domain.

Now the crucial question to complement the above results is:

Question 4.4. Does there exist frames gm;n with good localization properties in the
time-frequency plane?

A detailed analysis of this question, with several related references, can be found
in Chap. 4 of [20]. We will give a briefing of the results here:

1. If t0!0 > 2	 , then frames gm;n do not exist.
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Fig. 4.6 Decompositions of the time-frequency domain using the DWFT

2. If t0!0 D 2	 , frames do exist but they do not have good localization properties
in the time-frequency domain. In fact, if we take

g.x/ D
(
1 if x 2 Œ0; 1�
0 if x < 0 or x > 1 ;

then gm;n.x/ is a basis. The same happens if we take g.x/ D sin	x=	x.
3. If t0!0 < 2	 , then there exists tight frames with good time-frequency localiza-

tion properties. A construction of such a tight frame is found in [19].

From the point of view of time-frequency, the atomic decomposition of a function
using the discrete windowed Fourier transform gives a uniform decomposition in
rectangles, according to the illustration in Fig. 4.6. We will give some examples.

Example 7 (Sines with impulses). Consider the signal defined by the function

f .t/ D sin.2	516:12t/C sin.2	2967:74t/C ı.t � 0:05/C ı.t � 0:42/ :

This signal consists of a sum of two senoids with frequencies 516:12Hz and
2967:74Hz, with two impulses of order 3 for time values of t0 D 0:05 s and
t1 D 0:42 s. The graph of the signal is shown in the image on the left of Fig. 4.7.
The graph of its Fourier transform is depicted in the image on the right.

The analysis of this signal using the Fourier transform was done in Chap. 2. Our
goal here is to revisit this analysis using the windowed Fourier transform. For this,
we use a Hamming window with different sizes. A Hamming window is defined by
a cosine curve a C b cos t for convenient values of a and b. Its graph is shown in
Fig. 4.8.
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Fig. 4.7 Signal and its Fourier transform
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Fig. 4.8 Hamming window

The images (a), (b), and (c) of Fig. 4.9 show the information cells of the atomic
decomposition of the signal f using the discrete windowed Fourier transform. In the
decomposition shown in (a) we have used a Hamming window of width 32 (i.e., 32
samples) in the decomposition shown in (b) we used a Hamming window of width
64 (64 samples), and in (c) we have used a Hamming window of width 256.

An analysis of the decompositions in the figure shows us the following:

• In (a) we see that two impulses were detected with a good localization in
time. The two sine waves also have been detected but the localization of their
frequencies is not good. Moreover several information cells show up which are
not directly related with the dominating frequencies of the signal.
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Fig. 4.9 Atomic decomposition using windowed Fourier transform

• In (b) we have a better localization of the sine frequencies, but the information
cells are not able to distinguish the two impulses.

• In (c) we have a good localization of the two impulses in time and good
localization of the sinusoidal frequencies. Also it should be noticed that most
of the information cells in the figure are related with the relevant frequencies of
the signal. Nevertheless, it should be remarked that if the two pulses were close
together, we would not be able to distinguish them.

The above example shows that making an adequate adjustment of the size of the
window, we can obtain satisfactory results in the analysis of the signal using the
windowed Fourier transform. The results are much better than those of the analysis
using the Fourier transform in the previous chapter.

Nevertheless we must take into consideration that the signal that we have used is
very simple: it contains only two distinguished frequencies of the sine waves, and
the two impulses.

Now we will give an example of a signal which is very difficult to be analyzed
using the windowed Fourier transform. The idea of constructing such an example is
very simple: The information cells of the windowed Fourier transform have constant
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Fig. 4.10 a Quadratic chirp signal. b Ideal atomic decomposition of the signal

width, thus if a signal has frequencies which varies between different orders of
magnitude, it is very difficult to obtain an adequate width of a window that is able
to detect all of the frequency values. We will give an example illustrating this fact.

Example 8 (Quadratic chirp signal). Consider the signal defined by the function

f .t/ D sin2.t2/:

The frequencies of this signal have a quadratic growth along the time. The graph of
the function f is shown in Fig. 4.10(a). Since the signal has low frequencies close
to the origin t D 0 and they increase arbitrarily as the time increases, we conclude
that a good atomic decomposition of this signal should have time-frequency atoms
as illustrated in Fig. 4.10(b).

Figure 4.11 shows two atomic decompositions of the signal f using the windowed
Fourier transform. In both we have used Hamming windows of different sizes. It
should be noticed that the relevant frequencies are detected and are correlated along
a parabola, as we predicted. Nevertheless several other information cells appear that
are not related with relevant frequencies of the signal. Moreover the information
cells corresponding to the frequencies of the signal do not possess good localization
properties.

The above example makes explicit the limitation of the windowed Fourier
transform: It uses a fixed window size. In the next chapter we will introduce the
wavelet transform in an attempt to fix this problem. The problem of representation
and reconstruction of signals will be revisited with this transform. As we will see,
better atomic decompositions will be obtained.
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Fig. 4.11 Time-frequency decomposition of chirp signal using DWFT

4.6 Comments and References

The windowed Fourier transform was introduced in the literature by D. Gabor [23].
D. Gabor used Gaussian windows, for this reason the windowed Fourier transform
with gaussian windows is also called Gabor transforms in the literature.

The reference [31] contains useful information with detailed proofs, the only
drawback is that it requires more familiarity of the reader with techniques from
functional analysis and measure theory. In particular it generalizes the concept of
frames for non-discrete frames, and along with the equations of the resolution of the
identity provides elegant proofs of several results.

The study of the windowed Fourier transform in [20] is quite complete. Nev-
ertheless frames for the windowed Fourier transform are discussed along with the
problem of wavelet frames. This could bring some difficulties for those with less
experience.



Chapter 5
The Wavelet Transform

In this chapter we will introduce the wavelet transform with the purpose of
obtaining better representation of functions using atomic decompositions in the
time-frequency domain.

5.1 The Wavelet Transform

The windowed Fourier transform introduces a scale (the width of the window),
and analyzes the signal from the point of view of that scale. If the signal has
important frequency details outside of the scale, we will have problems in the signal
analysis:

• If the signal details are much smaller than the width of the window, we will have
a problem similar to the one we faced with the Fourier transform: The details will
be detected but the transform will not localize them.

• If the signal details are larger than the width of the window, they will not be
detected properly.

To solve this problem when we analyze a signal using the windowed Fourier
transform, we must define a transform which is independent of scale. This transform
should not use a fixed scale, but a variable one.

The scale is defined by the width of the modulation function. Therefore we must
use a modulation function which does not have a fixed width. Moreover the function
must have good time localization. To achieve this we start from a function .t/ as a
candidate of a modulation function, and we obtain a family of functions from  by
varying the scale: We fix p � 0 and for all s 2 R, s ¤ 0, we define

 s.u/ D jsj�p 
	u

s



D 1

jsjp 
	u

s



: (5.1)
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Fig. 5.1 Scales of a function: a s < 1; b s D 1; c s > 1

If  has width T (given as the standard deviation as explained in Chap. 3), then
the width of s is sT. The modulation of the function by the factor 1=jsj2 increases
its amplitude when the scale s decreases and vice versa. In terms of frequencies,
we can state: For small scales s,  s has high frequencies, and as s increases the
frequency of  s decreases. This fact is illustrated in Fig. 5.1.

Analogous to what we did with the windowed Fourier transform of a function,
we need to localize each function  s in time. For this we define for each t 2 R the
function

 s;t.u/ D  s.u � t/ D jsj�p 
	u � t

s



D 1

jsjp 
	u � t

s



: (5.2)

Note that if  2 L2.R/, then  s;t 2 L2.R/, and

jj s;tjj2 D jsj1�2pjj jj2 :

By taking p D 1=2, we have jj s;tjj D jj jj.
Now we can define a transform on L2.R/ in a similar way that we defined the

windowed Fourier transform, using functions from the family  s;t as modulating
functions. More precisely, we have

Qf .s; t/ D
Z C1

�1
f .u/ s;t.u/du D h s;t; f i : (5.3)

This transform is known by the name of the wavelet transform.
As we did for the windowed Fourier transform, we can pose the following

questions concerning the wavelet transform:

Question 5.1. Is the wavelet transform Qf .s; t/ invertible?

Question 5.2. What is the image of the wavelet transform Qf .s; t/?
In the previous chapter we have explained the importance of these two questions

for function representation using time-frequency atoms.
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5.1.1 Inverse of the Wavelet Transform

By definition we have

Qf .s; t/ D h s;t; f i D h O s;t; Of i:
Moreover,

O s;t.!/ D jsj1�pe�2	 i!t O .s!/: (5.4)

From this it follows that

Qf .s; t/ D jsj1�p
Z C1

�1
e2	 i!t O .s; !/Of .!/d! (5.5)

D jsj1�pF�1
	 O .s!/Of .!/



; (5.6)

where F indicated the Fourier transform.
Applying the Fourier transform to both sides of the equation we obtain

Z C1

�1
e�2	 i!t Qf .s; t/dt D jsj1�p O .s!/Of .!/: (5.7)

From the knowledge of Of we can obtain f using the inverse transform. But we
cannot simply divide the above equation by O , because it might have zero values.
Multiplying both sides of (5.7) by O .s!/, and making some computations we obtain
the result below:

Theorem 4. If  satisfies the condition

C D
Z C1

�1
j O .u/j2
juj <1 ; (5.8)

then

f .u/ D 1

C

“

R2

jsj2p�3 Qfs;t.u/ s;t.u/dsdt : (5.9)

This theorem answers the first question posed at the end of the previous section:
The wavelet transform is invertible and Eq. (5.9) reconstructs f from its wavelet
transform.

As we did with the windowed Fourier transform, we can read Eq. (5.9) of the
inverse wavelet transform in two distinct ways:

1. The function f can be recovered from its wavelet transform;
2. The function f can be decomposed as a superposition of the time-frequency

atoms  s;t.u/.



64 5 The Wavelet Transform

We have seen that the second interpretation is of great importance because,
as in the case of the windowed Fourier transform, it will lead us to obtain good
representations by atomic decompositions of the function f .

5.1.2 Image of the Wavelet Transform

In this section we will discuss the second question we asked before about the image
of the wavelet transform.

The wavelet transform, similarly with the windowed Fourier transform, takes
a function f 2 L2.R/ into a function Qf .s; t/ of two variables. A natural question
consists in computing the image of the transform.

The interested reader should consult [31], p. 69. Besides characterizing the image
space, this reference brings a proof that the wavelet transform defines an isometry
over its image. We will not go into details of the computation here.

5.2 Filtering and the Wavelet Transform

Equation (5.3) that defines the wavelet transform can be written as a convolution
product

Qf .s; t/ D f �  s.u/ ;

where  s.u/ is defined in (5.1). Thus the wavelet transform is a linear space-
invariant filter. In this section we will discuss some properties of the wavelet filter.

The condition (5.8) that appears in the hypothesis of the Theorem 4 is called
admissibility condition. A function that satisfies this condition is called a wavelet.

From the admissibility condition it follows that

lim
u!0

O .u/ D 0 :

If O .u/ is continuous, then O .0/ D 0, that is,

Z C1

�1
 .u/du D 0 :

Geometrically, this condition states that the graph of the function must oscillate so
as to cancel positive and negative areas in order to have integral zero. Therefore
the graph of  has the form of a wave. In fact since  should have good time
localization properties it has a form of a “small wave” (see Fig. 5.2). That is why  
is named by wavelet.
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Fig. 5.2 Graph of a wavelet

a

b

Fig. 5.3 Fourier transform of a wavelet

Another important conclusion can be drawn from the above computations. Since
O .u/ 2 L2.R/, then

lim
u!0

O .u/ D 0 :

Along with the fact that O .0/ D 0, we conclude that the graph of the Fourier
transform O is as depicted in Fig. 5.3(a).

If O has a fast decay when u ! 0 and u ! 1, then O .u/ is small outside of a
small frequency band ˛ � juj � ˇ (see Fig. 5.3(b)). It follows from Eq. (5.4) that
O s;t 	 0 outside of the frequency band

˛

jsj � juj �
ˇ

jsj :
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Moreover, from Eq. (5.6) the wavelet transform Qf does not contain information about
f outside of this spectrum interval. In sum, the computations above show that “the
wavelet transform is a linear, time invariant band-pass filter.”

The next two examples are taken from [31].

Example 9 (Blur Derivative). Consider a function � of class C1, satisfying the
conditions

� � 0I
Z

R

�.u/du D 1I
Z

R

u�.u/du D 0I
Z

R

u2�.u/du D 1:

That is, � is a probability distribution with average 0 and variance (width) 1.
Suppose that

lim
u!C1

@n�1�
@un�1 .u/ D 0 :

Defining

 n.u/ D .�1/n @
n�

@un
.u/ ;

we have
Z

R

 n.u/du D 0 :

That is,  n satisfies the admissibility condition (5.8). Therefore we can define a
wavelet transform

Qf .s; t/ D
Z

R

 n
s;t.u/f .u/du ; (5.10)

where

 n
s;t.u/ D

1

s
 n
	u � t

s



:

(We are taking p D 1 in Eq. (5.2) that defines  s;t.u/). In an analogous way we
define

�s;t.u/ D 1

s
�
	u � t

s



:
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From the definition of  n we have that

 �n
s;t .u/ D .�1/ns�n @

n�s;t

@un
.u/ D s�n @

n�s;t

@tn
.u/ : (5.11)

From Eqs. (5.10) and (5.11) it follows that

Qf .s; t/ D s�n @
n

@tn

Z

R

�s;t.u/f .u/du: (5.12)

The above integral is a convolution product of the function f with the function
�s;t, therefore it represents a low-pass filtering linear time-invariant filtering opera-
tion of the function f , which is dependent on the scale s. We will denote this integral
by f .s; t/. Therefore we have

Qf .s; t/ D s�n @
nf .s; t/

@tn
; (5.13)

that is, the wavelet transform of f is the n-th time derivative of the average of the
function f on scale s. This derivative is known in the literature by the name of blur
derivative.

We know that the n-th derivative of f measures the details of f in the scale
of its definition. Therefore, Eq. (5.13) shows that the wavelet transform Qf .s; t/
gives the detail of order n of the function f , in the scale s. Keeping this wavelet
interpretation in mind is useful, even when the wavelet does not come from a
probability distribution.

Example 10 (The Sombrero Wavelet). We will use a particular case of the previous
example to define a wavelet transform. Consider the Gaussian distribution

�.u/ D 1p
2	

e�u2=2 ;

with average 0 and variance 1. The graph of this function is depicted in the image
on the left of Fig. 5.4. Using the notation of the previous example, we have

 1.u/ D ��0.u/ D 1p
2	

ue�u2=2 ;

and

 2.u/ D �00.u/ D 1p
2	
.u2 � 1/e�u2=2 :

The function � 2 is known as the “sombrero” function, because of the shape of its
graph, shown in the right of Fig. 5.4.
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Fig. 5.5 Signal f to be analyzed [31]

From the previous example it follows that we can use the sombrero function to
define a wavelet transform. We will use this wavelet to illustrate the flexibility of the
wavelet transform in analyzing frequencies of a signal. For this, consider the signal
whose graph is shown in Fig. 5.5.

This signal has high frequencies localized in the neighborhood of t D 50, and
t D 150. From time t D 280, the signal has a chirp behavior: a continuum of
increasing frequencies. In this region the signal is defined by the function

f .t/ D cos.t3/ :

We know already that the windowed Fourier transform is not adequate to analyze
signals with this behavior. Figure 5.6 shows the graph of the signal and the graph of
the wavelet transform for 5 distinct values of the scale s (the scale decreases from
top to bottom).

Note that the frequencies associated with the sudden change of the signal at time
t D 50 and time t D 150 are detected by the wavelet transform. Moreover, as the
scale s decreases the high frequencies of the chirp signal cos.t3/ are also detected.

5.3 The Discrete Wavelet Transform

In the study of the windowed Fourier transform the time-frequency domain was
discretized using a uniform lattice

�.t0;!0/ D f.mt0; n!0/Im; n 2 Zg ;
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Fig. 5.6 The wavelet transform [31]

because of the constant width of the time-frequency atoms. The wavelet transform
is defined on the time-scale domain. A natural question is:

Question 5.3. How to discretize the time-scale domain in such a way to obtain a
discrete wavelet transform?

We know that the scaling operation acts in a multiplicative way, that is,
composing two consecutive scalings is attained by multiplying each of the scale
factors. Therefore the discretization of the scaling factor is simple: We fix an initial
scale s0 > 1, and we consider the discrete scales

sm D sm
0 ; m 2 Z :

Positive values of m produce scales larger than 1, and negative values of m produce
scales less than 1.

How to discretize the time? Initially we should observe that we must obtain a
lattice in the time-scale domain in such a way that when we sample the wavelet
transform Qf .s; t/ on this lattice, we are able to reconstruct the function f from the
time-scale atoms Qfm;n, with minimum redundancy. As the wavelet width changes
with the scale, we must correlate the time with the scale discretization: As the scale
increases the width of the wavelet also increases, therefore we can take samples
further apart in the time domain. On the other hand, when the width of the wavelet
decreases with a reduction of the scale, we must increase the frequency sampling.
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To obtain the correct correlation between the scale and time discretization
we observe that an important property of the wavelet transform is: The wavelet
transform is invariant by change of scales. This statement means that if we make
a change of scale in the function f and simultaneously change the scale of the
underlying space by the same scaling factor, the wavelet transform does not change.
More precisely, if we take

fs0 .t/ D s�1=2
0 f

�
t

s0

�
;

then

Qfs0 .s0s; s0t/ D Qf .s; t/ :

Invariance by changing of scale constitutes an essential property of the wavelet
transform. It is important that this property be preserved when we discretize the
wavelet, so as to be also valid for the discrete wavelet transform. In order to achieve
this goal, when we pass from the scale sm D sm

0 to the scale smC1 D smC1
0 , we must

also increment the time by the scaling factor s0. In this way, we can choose a time t0
and take the length of the sampling time intervals as �t D sm

0 t0. Therefore, for each
scale sm

0 the time discretization lattice is

tm;n D nsm
0 t0; n 2 Z :

Finally, the discretization lattice in the time-scale domain is defined by

�s0;t0 D f.sm
0 ; nsm

0 t0/ I m; n 2 Zg :

Example 11 (Dyadic Lattice). We will give a very important example of a wavelet
discretization using s0 D 2 (dyadic lattice). We have

�2;t0 D f.2m; n2mt0/ I m; n 2 Zg :

The vertices of this lattice are shown in Fig. 5.7(a). This lattice is called hyperbolic
lattice because it is a uniform lattice in hyperbolic geometry (only the points are
part of the lattice).

To obtain a time-frequency lattice, we must observe that the frequency is the
inverse of the scale. In this manner, for a given initial frequency !0 the lattice will
be given by

�2!0;t0 D f.2�m!0; n2
�mt0/ I m; n 2 Zg :

The vertices of this lattice are shown in Fig. 5.7(b).
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a b

Fig. 5.7 a Time-scale lattice. b Time-frequency lattice

5.3.1 Function Representation

From the point of view of atomic decomposition the time-frequency atoms define a
tiling of the time-frequency domain in rectangles as shown in Fig. 5.8.

The discretization of the wavelet transform Qf .s; t/ D hf ;  s;t.u/i in the time-scale
lattice is given by

Qfm;n D hf ;  m;n.u/i ;

where

 m;n.u/ D  sm
0 ;nt0sm

0
.u/ (5.14)

D s�m=2
0  

�
u � nt0sm

0

sm
0

�
(5.15)

D s�m=2
0  .s�m

0 u � nt0/ : (5.16)

In this context we can pose again the two questions which motivated the process
of defining a discrete wavelet transform:

Question 5.4. Is the sequence hf ;  m;ni;m; n 2 Z an exact representation of the
function f ?

Question 5.5. Is it possible to reconstruct f from the family of wavelet time-
frequency atoms  m;n?



72 5 The Wavelet Transform

Fig. 5.8 Time-frequency decomposition using wavelets

A positive answer to these two questions would give us atomic decompositions
of the function f using a family  m;n of discrete wavelets.

There are several directions we could take to answer the two questions above.
Based on the representation theory discussed in Chap. 2, two natural questions in
this direction are:

Question 5.6. Is it possible to define a lattice such that the corresponding family
f m;ng constitutes an orthonormal basis of L2.R/?

Question 5.7. Is it possible to define lattices for which the family f m;ng is a frame?

If we have orthonormal basis of wavelets or a frame, we know from Chap. 2 that
the answer to the two questions posed above is positive.

Chapter 3 of [20] brings a comprehensive discussion of frames of wavelets. The
explicit construction of some wavelet frames is given. In the chapters to follow we
will discuss the construction of different basis of wavelets.

Example 12 (Haar Basis). Consider the function

 .x/ D

8
ˆ̂<

ˆ̂:

1 if x 2 Œ0; 1=2/
�1 if x 2 Œ1=2; 1/
0 if x < 0 ou x > 1:

The graph of f is shown in Fig. 5.9. This function satisfies the admissibility
condition (5.8).
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Fig. 5.9 Haar wavelet

It is possible to show that the set  m;n, where

 m;n.u/ D 2�m=2 .2�mu � n/; m; n 2 Z ;

constitutes an orthonormal basis of L2.R/. Therefore we have an orthonormal basis
of wavelets. A direct, and long, proof of this fact is found in [20], Sect. 1.3.3. The
orthonormality of the set  m;n is easy to proof. The fact that the set generates the
space L2.R/ is more complicated. This will follow as a consequence of the theory
of multiresolution analysis that we will study in next chapter.

5.4 Comments and References

There are several possibilities of extending the wavelet transform to functions of
several variables, i.e. L2.Rn/. The interested reader should consult [20], p. 33,
or [37].

The beautiful examples 9 and 10 of this chapter were taken from [31].



Chapter 6
Multiresolution Representation

In the introductory chapter we stated that two properties of wavelets were respon-
sible for their applicability in the study of functions. One of these properties is
the wavelet time-frequency atoms we studied in the previous chapter. The second
property is the relationship of wavelets with multiresolution representation. This
relationship will be exploited in two different ways:

• From one side it allows the use of wavelets to obtain multiresolution representa-
tions of functions.

• On the other hand, it will be used as a tool to construct wavelets.

6.1 The Concept of Scale

Our perception of the universe uses different scales: Each category of observations
is done in a proper scale. This scale should be adequate to understand the different
details we need. In a similar manner, when we need to represent an object, we try to
use a scale where the important details can be captured in the representation.

A clear and well-known example of the use of scales occurs on maps. Using a
small scale we can observe only macroscopic details of the mapped regions. By
changing the scale we can observe or represent more details of the object being
represented on the map.

Multiresolution representation is a mathematical model adequate to formalize
the representation by scale in the physical universe. As we will see, this problem is
intrinsically related to the wavelets.

The idea of scale is intrinsically related with the problem of point sampling of
a signal. We call sampling frequency the number of samples in the unit of time.
The length of the sample interval is called the sampling period. When we sample
a signal using a frequency 2j, we are fixing a scale to represent the signal: Details
(frequencies) of the signal that are outside of the scale magnitude of the samples

© Springer International Publishing Switzerland 2015
J. Gomes, L. Velho, From Fourier Analysis to Wavelets,
IMPA Monographs 3, DOI 10.1007/978-3-319-22075-8_6
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will be lost in the sampling process. On the other hand, it is clear that all of the
details of the signal captured in a certain scale will also be well represented when
we sample using a higher scale, 2k, k > m.

These facts are well translated mathematically by the sampling theorem of
Shannon-Whittaker that relates the sampling frequency with the frequencies present
on the signal.

6.2 Scale Spaces

How to create a mathematical model to formalize the problem of scaling rep-
resentation in the physical universe? The relation between sampling and scaling
discussed above shows us the way. For a given integer number j, we create a
subspace Vj � L2.R/, constituted by the functions in L2.R/ whose details are well
represented in the scale 2j. This means that these functions are well represented
when sampled using a sampling frequency of 2j.

The next step consists in creating a representation operator that is able to
represent any function f 2 L2.R/ in the scale 2j. A simple and effective technique
consists in using a representation by orthogonal projection. This is the Galerkin
representation we discussed in Chap. 2. A simple and effective way to compute this
representation is to obtain an orthonormal basis of Vj. But at this point we will
demand more than that to make things easier: We will suppose that there exists a
function � 2 L2.R/ such that the family of functions

�j;k.u/ D 2�j=2�.2�ju � k/; j; k 2 Z ; (6.1)

is an orthonormal basis of Vj.
Notice that we are using here a process similar to the one we used when we

introduced the wavelet transform: We define different scales of � producing the
continuous family

�s.u/ D 1

jsj1=2 �
	u

s



:

The width of � and �s is related by

width.�/ D s width.�s/ :

Thus, as the scale increases or decreases, the width of �s does the same. Equa-
tion (6.1) is obtained by discretizing the parameter s, taking s D 2j; j 2 Z. Also, we
have demanded that the translated family

�j;k D �2j.u � k/ D 2�j=2�.2�ju � k/
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Fig. 6.1 Low-pass filter

is an orthonormal basis of Vj. Note that when j decreases, the width of �j;k also
decreases, and the scale is refined. This means that more features of f are detected
in its representation on the space Vj.

The representation of a function f 2 L2.R/ by orthogonal projection in Vj is
given by

ProjVj
.f / D

X

k

hf ; �j;ki�j;k :

We want the representation sequence .hf ; �j;ki/ to contain samples of the function
f in the scale 2j. In order to attain this we know from Theorem 2 of Chap. 3 that
the representation sequence .hf ; �j;ki/j;k2Z is constituted by the samples of a filtered
version of the signal f . More precisely,

hf ; �j;ki D F.k/ ;

where F is obtained from f by sampling with a filter of kernel �j;k: F D f � �j;k. In
order that the elements of the representation sequence are close to the samples of f ,
the filter kernel �j;k must define a low-pass filter. This can be attained by demanding
that O�.0/ D 1, because O�.!/ approaches 0 when ! ! ˙1. The graph of �
is depicted in Fig. 6.1. With this choice of �, representing a function at scale 2j

amounts to sample averages of f over neighborhoods of width 2j.
The space Vj is called space of scale 2j, or simply scale space.
It is very important that we are able to change from a representation in a certain

scale to a representation on another scale. For this we must answer the question:
How are the different scale spaces related?

Since the details of the signal which appear on scale 2j certainly must appear
when we represent the signal using a smaller scale 2j�1, we must have

Vj � Vj�1 : (6.2)

Given a function f 2 L2.R/, a natural requirement is

f 2 Vj if, and only if, f .2u/ 2 Vj�1 : (6.3)
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Fig. 6.2 Scaling of f by a scale factor of 2

In fact, the scaling of the variable of f by 2 reduces the width of f by the factor of
1=2 (see Fig. 6.2). Therefore the details of f go to a finer scale.

Applying successively the condition in (6.3), we obtain

f 2 Vj if, and only if, f .2ju/ 2 V0:

That is, all spaces are scaled version of the space V0. In particular, from the fact that
�j;k in Eq. (6.1) is an orthonormal basis of Vj, we conclude that

�0;k.u/ D �.u� k/

is an orthonormal basis of the scale space V0.
The space L2.R/, our universe of the space of functions, contains all of the

possible scales. This is reflected in the relation

[

j2Z
Vj D L2.R/ :

On the other hand, we have
\

j2Z
Vj D f0g :

In effect, this expression says that the null function is the only function that can
be well represented in every scale. In fact it should be observed that any constant
function can be represented in any scale, nevertheless the only constant function that
belongs to L2.R/ is the null function.

6.2.1 A Remark About Notation

It is important here to make a remark about the index notation we use for the
scale spaces, because there is no uniformity in the literature. We use the notation
of decreasing indices

� � �V1 � V0 � V�1 � V�2 � � � :
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From the discussion above, this notation is coherent with the variation of the scale
when we pass from one scale space to the other: As the indices decrease, the scale
is refined, and the scale spaces get bigger.

If we use a notation with increasing indices

� � �V�1 � V0 � V1 � � � ;

which also appears in the literature, then the base �j;k of the scale space Vj should
be constituted by the functions

�j;k.x/ D 2j=2�.2jx � k/ :

This is rather confusing because it is not in accordance with the notation used when
we discretized wavelets.

6.2.2 Multiresolution Representation

The scale spaces and their properties that we studied above define a multiresolution
representation in L2.R/. We will resume them into a definition to facilitate future
references:

Definition 1 (Multiresolution Representation). We define a multiresolution rep-
resentation in L2.R/ as a sequence of closed subspaces Vj, j 2 Z, of L2.R/,
satisfying the following properties:

(M1) Vj � Vj�1;
(M2) f 2 Vj if, and only if, f .2u/ 2 Vj�1.
(M3)

T
j2Z Vj D f0g.

(M4)
S

j2Z Vj D L2.R/.
(M5) There exists a function � 2 V0 such that the set f�.u � k/I k 2 Zg is an

orthonormal basis of V0.

The function � is called the scaling function of the multiresolution representation.
Each of the spaces Vj is called scale spaces, or, more precisely, space of scale 2j.

Example 13 (Haar Multiresolution Analysis). Consider the function

�.t/ D �Œ0;1� D
(
0 if x < 0 or t � 1
1 if x 2 Œ0; 1/ :

It is easy to see that � is a scale function of a multiresolution representation. In
this case,

Vj D ff 2 L2.R/I f jŒ2jk; 2j.kC 1/� D constant; k 2 Zg :
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That is, the projection of a function f on the scale space Vj is given by a function
which is constant on the intervals Œ2jk; 2j.k C 1/�. This is the Haar multiresolution
representation.

We should notice that conditions (M1), : : : (M5) that define a multiresolution
representation are not independent. In fact it is possible to prove that condition (M3)
follows from (M1), (M2), and (M5). Moreover, condition (M5) can be replaced
by the weaker condition that the set f�.u � k/g is a Riesz basis. Also, the reader
might have noticed that we have not imposed that the scale function � satisfies the
condition O�.0/ D 1 (as we know, this condition guarantees that � is a low-pass
filter). It can be proved that this low-pass filter condition follows from (M4). For a
proof of all of these facts we suggest consulting [28] or [20]. We will return to this
problem with more details in next chapter about construction of wavelets.

6.3 A Pause to Think

How to interpret geometrically the sequence of nested scale spaces in the definition
of a multiresolution representation?

In general, visualizing subspaces of some space of functions is not an easy task.
Nevertheless, in this case a very informative visualization of the nested sequence of
scale space can be obtained in the frequency domain.

Indeed, the orthogonal projection of a function f 2 L2.R/ in Vj is obtained using
a filtering operation of f with the different kernels �j;k, k 2 Z which define low-
pass filters. Indicating the cutting frequency of these filters by ˛j (see Fig. 6.3),
we conclude that each space Vj is constituted by functions whose frequencies are
contained in the interval Œ�˛j; ˛j�, ˛j > 0.

When we go from the space Vj to the space Vj�1 we change from the scale 2j to a
finer scale 2j�1. Therefore the frequency band increases to an interval Œ�˛j�1; ˛j�1�.
The graph of the spectrum of �j�1;k is the dotted curve in Fig. 6.3. The scale
space Vj�1 consists of the set of all the functions whose spectrum is contained in
Œ�˛j�1; ˛jC1�.

For each space Vj, with scale 2j, we have the representation operator
RjWL2.R/! Vj, given by the orthogonal projection over Vj

Fig. 6.3 Spectrum of the scaling function
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f(X)

V−1

V0

X

X

X
0

Fig. 6.4 Scale approximations of a function [20]

Rj.f / D ProjVj
.f / D

X

k

hf ; �j;ki�j;k:

From condition (M4) of the definition of a multiresolution representation, we have

lim
j!1 Rj.f / D f ; (6.4)

that is, as the scale gets finer we get a better representation of the function f . This is
illustrated in Fig. 6.4 (from [20]) we show a function f , and its representation on the
spaces of scale V0 and V�1 of the Haar multiresolution representation.

There is a different and very important way to interpret Eq. (6.4). Consider
the graph representation of the space Vj in Fig. 6.5. We see that the space Vj�1
is obtained from the space Vj by adding all of the functions from L2.R/ with
frequencies in the band Œ˛j; ˛j�1� of the spectrum. We indicate this “detail space”
by Wj. It follows immediately that Wj is orthogonal to Vj. Therefore we have

Vj�1 D Vj ˚Wj :
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Fig. 6.5 Frequency band between Vj and Vj�1

The space Wj contains the details of the signal in the scale Vj. The above equation
says that a function represented on a finer scale space Vj�1 is obtained from the
representation on a coarser scale space Vj, by adding details. These details can
be obtained using a band-pass filtering, whose passband is exactly the interval
Œ˛j; ˛j�1�. We have seen that the wavelets constitute linear time-invariant band-pass
filters. Therefore it seems natural that there might exist some relation between the
detail spaces and the wavelets. We will discuss this relation “with details” in next
section.

6.4 Multiresolution Representation and Wavelets

We have proved that given two consecutive scale spaces Vj � Vj�1, the orthogonal
complement Wj of Vj in Vj�1 could be obtained using a band-pass filter defined
on L2.R/. In this section we will show that this complementary space is in fact
generated by an orthonormal basis of wavelets.

For every j 2 Z, we define Wj as the orthogonal complement of Vj in Vj�1. We
have

Vj�1 D Vj ˚Wj :

We remind that the best way to visualize the above equality is by observing the
characterization of these spaces on the frequency domain (Fig. 6.5).

It is immediate to verify that Wj is orthogonal to Wk, if j ¤ k. Therefore by fixing
J0 2 Z, for every j < J0 we have (see Fig. 6.6)

Vj D VJ0 ˚
J0�jM

kD0
WJ0�k : (6.5)

We should remark that because of the dyadic scales used in the discretization, the
frequency bands do not have uniform length, they are represented in the figure using
logarithmic scale.
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Fig. 6.6 Frequency bands between Vj and VJo�j

In sum, Eq. (6.5) says that the signals whose spectrum is in the frequency band of
Vj, are the sum of the signals with frequency band in VJ0 with those signals whose
frequency band is in WJ0 , WJ0�1, : : : ; Wj. All of the subspaces involved in this sum
are orthogonals. If J0; k!1, it follows from conditions (M3) and (M4) that define
a multiresolution representation that

L2.R/ D
M

j2Z
Wj ;

that is, we obtain a decomposition of L2.R/ as a sum of orthogonal subspaces.
We have seen that the projection of a function f in each subspace Wj could be

obtained using a band-pass filter. In fact, this filtering process can be computed by
projecting f on an orthogonal basis of wavelets. This fact is a consequence of the
theorem below:

Theorem 5. For each j 2 Z there exists an orthonormal basis of wavelets
f j;k; k 2 Zg of the space Wj.

We will sketch the proof of the theorem because it has a constructive nature
which will provide us with a recipe to construct orthonormal basis of wavelets.

Basis of W0 Initially we observe that the spaces Wj inherit the scaling properties of
the scale spaces Vj. In particular,

f .u/ 2 Wj if, and only if, f .2ju/ 2 W0 : (6.6)

For this reason, it suffices to show that there exists a wavelet  2 W0 such that
the set f .u � k/g is an orthonormal basis of W0. In fact, in this case, it follows
from (6.6) that the set

f j;k.u/ D 2�j=2 .2�ju � k/g
is an orthonormal basis of Wj.
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Low-pass filter and scaling function Since � 2 V0 � V�1, and also ��1;k is an
orthonormal basis of V�1, we have

� D
X

k

hk��1;k ; (6.7)

where

hk D h�; ��1;ki; and
X

k2Z
jjhkjj2 D 1 :

Substituting ��1;k.u/ D
p
2�.2u� k/ in (6.7) we obtain

�.x/ D p2
X

k

hk�.2x � k/ : (6.8)

Applying the Fourier transform to both sides of this equation, we have

O�.
/ D mo

�



2

�
O�
�



2

�
; (6.9)

where

m0.
/ D 1p
2

X

k

hke�ik
 :

Note in Eq. (6.9) that O�� 

2

�
there exists a frequency band which has twice the

size of the frequency band of �.
/. Therefore, it follows from (6.8) that the function
m0 is a low-pass filter. The function m0 is called the low-pass filter of the scaling
function �. It is not difficult to see that m0 is periodic with period 2	 .

Characterization of W0 Now we need to characterize the space W0. Given f 2 W0,
since V�1 D V0˚W0, we conclude that f 2 V�1 and f is orthogonal to V0. Therefore

f D
X

n

fn��1;n ; (6.10)

where

fn D hf ; ��1;ni :

Computations similar to the ones we did to obtain the low-pass filter m0 of the
scaling function give us the equation

Of .
/ D mf

�



2

�
O�
�



2

�
; (6.11)



6.5 A Pause: : : to See the Wavescape 85

where

mf .
/ D 1p
2

X

n

fne�in
 :

After some computations, we can rewrite Eq. (6.11) in the form

Of .
/ D e
i

2 m0

�



2
C 	

�
�.
/ O�

�



2

�
; (6.12)

where � is a periodic function of period 2	 .

Choosing the Wavelet Equation (6.12) characterizes the functions from W0 using
the Fourier transform, up to a periodic function �. A natural choice is to define a
wavelet  2 W0 such that

O .
/ D e
�i

2 m0

�



2
C 	

�
O�
�



2

�
: (6.13)

Taking this choice, from Eq. (6.12), it follows that

Of .
/ D
 
X

k

�ke�ik


!
O .
/ ;

and applying the inverse Fourier transform, we have

f .x/ D
X

k

�k .x � k/ :

We need to show that defining  by the Eq. (6.13), 0;k is indeed an orthonormal
basis of W0. We will not give this proof here.

Details of the above proof can be found on [20] or [28].

6.5 A Pause: : : to See the Wavescape

If Vj is the scale space 2j, we have Vj�1 D Vj ˚ Wj. We know that Wj has an
orthonormal basis of wavelets f j;k; k 2 Zg, therefore if Rj is the representation
operator on the scale space Vj, we have, for all f 2 L2.R/,

Rj�1.f / D Rj.f /C
X

k2Z
hf ;  j;ki j;k : (6.14)
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The second term of the sum represents the orthogonal projection of the signal f
on the space Wj and it will be denoted by ProjWj

.f /. The terms of this representation
sequence are obtained using the discrete wavelet transform.

We know that the wavelet transform is a band-pass filtering operation, and the
scale spaces allow us to represent a function f in different resolutions. When we
obtain a representation of f in a certain scale 2j, we are losing details of the signal
to respect with its representation in the scale 2j�1. The lost details are computed by
the orthogonal projection on the space Wj, that is,

ProjWj
.f / D

X

k2Z
hf ;  j;ki j;k ; (6.15)

which is a representation of the signal f in the basis of wavelets of the space Wj.
It is useful to interpret the decomposition Vj�1 D Vj ˚ Wj in the language of

filters. The representation of a signal f in the scale Vj,

Rj.f / D
X

k2Z
hf ; �j;ki�j;k ;

is equivalent to filter the signal using the low-pass filter defined by the scaling
function �. The representation of the details of f in the space Wj, Eq. (6.15) is
obtained by filtering f with the band-pass filter defined by the wavelet transform
associated with  .

From the relation Vj�1 D Vj ˚Wj, we are able to write

Rj�1.f / D Rj.f /C ProjWj
.f /

Rj�2.f / D Rj�1.f /C ProjWj�1
.f /

:::

Note that each line of the equation above represents a low-pass filtering and a
band-pass filtering of the signal. Iterating this equation for Rj�2; : : : ;Rj�J0 , summing
up both sides and performing the proper cancellations, we obtain

Rj�J0 .f / D Rj.f /C ProjWj�1
.f /C � � �ProjWj�J0

.f / : (6.16)

The projection Rj.f / represents a version of low resolution (blurred version)
of the signal, obtained using successive low-pass filtering with the filters
�j; �j�1; : : : ; �J0�j. The terms ProjWj�1

.f /, : : :, ProjWj�J0
.f / represent the details of

the signal lost in each low-pass filtering. These details are obtained by filtering the
signal using the wavelets  j;  j�1; : : : ;  J0�j. Equation (6.16) states that the original
signal f can be reconstructed exactly from the low resolution signal, summing up
the lost details.
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6.6 Two-Scale Relation

In this section we will revisit some equations we obtained in the computations of
this chapter in order to distinguish them for future references.

Consider a scaling function � associated with some multiresolution representa-
tion. Then � 2 V0 � V�1 and ��1;n is an orthonormal basis of V�1. Therefore

� D
X

k2Z
hk��1;k ; (6.17)

with hk D h�; ��1;ki. This equation can be written in the form

�.x/ D p2
X

k2Z
hk�.2x � k/ : (6.18)

Similarly, given a wavelet  associated with a multiresolution representation
 2 V0, since V�1 D V0 ˚W0, we have that  2 V�1, and  is orthogonal to V0,
therefore

 D
X

k2Z
gk��1;k ; (6.19)

or,

 .x/ D p2
X

k2Z
gk�.2x� k/ : (6.20)

Equations (6.17) and (6.19) (or equivalently (6.18) and (6.20)) are called two-
scale relations, or scaling relations of the scaling function and the wavelet,
respectively. In several important cases, the sum that defines the two-scale relations
is finite:

�.x/ D p2
NX

kD0
gk�.2x � k/ :

It is not difficult to see that when this is the case, the support of the scaling function
� is contained in the interval Œ0;N�.

Also, note that if � is a solution of the equation defined by the two-scale relation,
then ��, � 2 R, is also a solution. In this way, to have uniqueness of the solution
we must impose some kind of normalization (e.g.,  .0/ D 1).

A priori, it is possible to construct a multiresolution representation and the
associated wavelet starting from an adequate choice of the function �. This choice
can be done using the two-scale relation (6.18). In a similar manner, the two-scale
Eq. (6.20) can be used to obtain the associated wavelet.
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6.7 Comments and References

The concept of multiresolution representation and its relation to wavelets was devel-
oped by S. Mallat [36]. In the literature it carries different names: multiscale analysis
or multiscale approximation. We have opted for multiresolution representation
because it fits better to the emphasis we have been given on function representation.

The material covered in this chapter can be found on [28]. Nevertheless the
notation of the indices in the scale space differs from the one used here.

For an exposition of the topics in this chapter using the language of operators in
function spaces the reader should consult [31]. The approach is algebraically very
clear and clean, nevertheless a lot of geometric insight is lost.



Chapter 7
The Fast Wavelet Transform

The Fast Wavelet Transform (FWT) algorithm is the basic tool for computation
with wavelets. The forward transform converts a signal representation from the
time (spatial) domain to its representation in the wavelet basis. Conversely, the
inverse transform reconstructs the signal from its wavelet representation back to
the time (spatial) domain. These two operations need to be performed for analysis
and synthesis of every signal that is processed in wavelet applications. For this
reason, it is crucial that the Wavelet Transform can be implemented very efficiently.

In this chapter we will see that recursion constitutes the fundamental principle
behind wavelet calculations. We will start with a revision of the multiresolution
analysis to show how it naturally leads to recursion. Based on these concepts, we
will derive the elementary recursive structures which form the building blocks of the
fast wavelet transform. Finally, we will present the algorithms for the decomposition
and reconstruction of discrete one-dimensional signals using compactly supported
orthogonal wavelets.

7.1 Multiresolution Representation and Recursion

The efficient computation of the wavelet transform exploits the properties of a mul-
tiresolution analysis. In the previous chapters, we have seen that a multiresolution
analysis is formed by a ladder of nested subspaces

� � �V1 � V0 � V�1 � � �

where all Vj are scaled versions of the central subspace V0.

© Springer International Publishing Switzerland 2015
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From the above structure, we can define a collection of “difference” subspaces
Wj, as the orthogonal complement of each Vj in Vj�1. That is,

Vj D VjC1 ˚WjC1 :

As a consequence, we have a wavelet decomposition of L2.R/ into mutually
orthogonal subspaces Wj

L2.R/ D
M

j2Z

Wj :

Therefore, any square integrable function f 2 L2.R/ can be decomposed as the
sum of its projection on the wavelet subspaces

f D
X

j2Z
ProjWj

. f /

where ProjWj
. f / is the projection of f onto Wj.

From Vj D VjC1 ˚WjC1, it follows that any function fj 2 Vj can be expressed as

fj D ProjVjC1
. f /C ProjWjC1

. f / :

This fact gives us the main recursive relation to build a representation of a function
using the wavelet decomposition.

If we denote the projections of f onto Vj and Wj, respectively, by fj D ProjVj
. f /

and oj D ProjWj
. f /, we can write

fj D fjC1 C ojC1‚ …„ ƒ
fjC2 C ojC2

:

Applying this relation recursively we arrive at the wavelet representation

fj D fjCN C ojCN C � � � C ojC2 C ojC1

where a function fj in some Vj is decomposed into its projections on the wavelet
spaces WjC1 : : :WjCN , and a residual given by its projection onto the scale space
VjCN . This recursive process can be illustrated by the diagram in Fig. 7.1.

f j → f j+1 → f j+2 → ·· · → f j+N
↘ ↘ ↘ ↘

o j+1 og+1 · · · o j+N

Fig. 7.1 Wavelet decomposition of a function f
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f j+N → f j+N−1

+N−1

→ ·· · → f j+1 → f j
↗ ↗ ↗ ↗

o j+N o j · · · o j+1

Fig. 7.2 Wavelet reconstruction process of a function f

We assumed above that the process starts with a function fj which already belongs
to some scale subspace Vj. This is not a restriction because we can take the initial
j arbitrarily small (i.e., a fine scale). In practice, we work with functions that have
some natural scale associated with them.

The wavelet decomposition gives an analysis of a function in terms of its
projections onto the subspaces Wj. Note that, since by construction Wj ? Wl if
j ¤ l and Vj ? Wj, this decomposition of a function is unique once the spaces Vj

and Wj are selected.
It is also desirable to reconstruct a function from its wavelet representation using

a recursive process similar to the decomposition in Fig. 7.1. It turns out that, since
Wj � Vj�1 and Vj � Vj�1, the original function can be obtained from the projections,
and the wavelet reconstruction is essentially the reverse of the decomposition, as
illustrated in Fig. 7.2.

The reconstruction gives a mechanism for the synthesis of functions from the
wavelet representation.

To implement the wavelet decomposition and reconstruction we need to compute
the projections onto the spaces Vj and Wj. We know that the set of functions
f�j;nI n 2 Zg and f j;nI n 2 Zg, defined as

�j;n.x/ D 2�j=2�.2�jx � n/ (7.1)

 j;n.x/ D 2�j=2 .2�jx � n/; (7.2)

are, respectively, orthonormal basis of Vj and Wj. Therefore, the projection operators
ProjVj

and ProjWj
are given by inner products with the elements of these bases

ProjVj
. f / D

X

n

h f ; �j;ni�j;n D
X

n

�Z
f .x/�j;n.x/dx

�
�j;n (7.3)

ProjWj
. f / D

X

n

h f ;  j;ni j;n D
X

n

�Z
f .x/ j;n.x/dx

�
 j;n : (7.4)

The problem now is how to compute the projection operators ProjVj
and ProjWj

efficiently. In fact, we would like to avoid altogether computing the integrals
explicitly. To find a solution we take advantage of the fact that the recursive
decomposition/reconstruction processes require only projections between consec-
utive subspaces of the multiresolution ladder. For that purpose we will rely on the
two-scale relations.
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7.2 Two-Scale Relations and Inner Products

We have seen before that the interdependencies between two consecutive subspaces
in a multiresolution analysis are formulated by the equations below, called two-scale
relations

�.x/ D
X

k

hk��1;k.x/ (7.5)

 .x/ D
X

k

gk��1;k.x/ : (7.6)

Using these two relations, we can express the basis functions of the scale and
wavelet spaces, Vj and Wj, at level j in terms of the basis functions of the subsequent
scale space Vj�1, at finer level j� 1. This is possible because, since Vj�1 D Vj˚Wj,
both Vj � Vj�1 and Wj � Vj�1.

Substituting (7.1) into (7.5), we have

�j;k.x/ D 2�j=2�.2�jx � k/

D 2�j=2
X

n

hn 2
1=2�.2�jC1x � 2k � n/

D
X

n

hn �j�1;2kCn.x/

D
X

n

hn�2k �j�1;n.x/ : (7.7)

Similarly, substituting (7.2) into (7.6), we have

 j;k.x/ D 2�j=2 .2�jx � k/

D 2�j=2
X

n

gn 2
1=2�.2�jC1x � 2k � n/

D
X

n

gn�2k �j�1;n.x/ : (7.8)

Now, we need to find a way to use the sequences .hn/n2Z and .gn/n2Z to help us
compute recursively the inner products h f ; �j;ki, and h f ;  j;ki. This can be easily
done by inserting the expressions obtained for �j;k and  j;k into the inner products.

h f ; �j;ki D
*

f ;
X

n

hn�2k�j�1;n

+
D
X

n

hn�2kh f ; �j�1;ni (7.9)

hf ;  j;ki D
*

f ;
X

n

gn�2k�j�1;n

+
D
X

n

gn�2kh f ; �j�1;ni (7.10)
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7.3 Wavelet Decomposition and Reconstruction

Using the two-scale relations, we showed how to relate the coefficients of the
representation of a function in one scale 2j�1, with the coefficients of its repre-
sentation in the next coarse scale 2j and with coefficients of its representation in
the complementary wavelet space. It is remarkable that from the inner products of
the function f with the basis of Vj�1, we are able to obtain the inner products of
f with the basis of Vj and Wj, without computing explicitly the integrals! This is
the crucial result for the development of the recursive wavelet decomposition and
reconstruction method described in this section.

7.3.1 Decomposition

The wavelet decomposition process starts with the representation of a function f in
the space V0. There is no loss of generality here because, by changing the units, we
can always take j D 0 as the label of the initial scale.

We are given the function f D ProjV0. f /, represented by the coefficients .ck/ of
its representation sequence in the scale space V0. That is

ProjV0 . f / D
X

k

Œh f ; �0;ki�0;k.x/� D
X

k

c0;k�0;k : (7.11)

In case we only have uniform samples f .k/, k 2 Z of the function, the coefficients
.ck/ can be computed from the samples by a convolution operation. This fact is well
explained in Sect. 3.7 of Chap. 3 (see Theorem 2).

The goal of the decomposition is to take the initial coefficient sequence .c0k/k2Z,
and transform it into the coefficients of the wavelet representation of the function.
The process will be done by applying recursively the following decomposition rule

ProjVj
. f / D ProjVjC1

. f /C ProjWjC1
. f / : (7.12)

In this way, the process begins with f 0 2 V0 D V1˚W1, and in the first step, f 0 is
decomposed into f 1Co1, where f 1 D ProjV1 . f / and o1 D ProjW1

. f /. The recursion
acts on f j, decomposing it into f jC1 C ojC1, for j D 0; : : :N. The components oj

are set apart. In the end we obtain the wavelet representation of f , consisting of the
residual scale component f N and the wavelet components o1; : : : oN .

The core of the decomposition process splits the sequence .cj
k/ of scale coeffi-

cients associated with f j into two sequences .cjC1
k / and .djC1

k /, of scale and wavelet
coefficients associated, respectively, with f jC1 and ojC1.
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We can view this process as a basis transformation where we make the following
basis change .�j;k/k2Z ! .�jC1;k;  jC1;k/k2Z. Note that both sets form a basis of the
space Vj. Equations (7.9) and (7.10) give the formulas to make the transformation
on the coefficients of the bases:

cjC1
k D

X

n

hn�2kcj
n (7.13)

djC1
k D

X

n

gn�2kcj
n (7.14)

with the notation a D .a�n/n2Z.
Note that we are computing the coefficients .cjC1

k / and .djC1
k / by discrete

convolutions, respectively, with the sequences .hn/ and .gn/. Note also that we
are retaining only the even coefficients for the next step of recursion (because of
the factor 2k in the indices). This is a decimation operation.

In summary, if we start with a sequence .c0n/, containing n D 2J coefficients,
it will be decomposed into the sequences .d1n=2/, .d

2
n=4/, . . . .dJ

n=2J /, and .cJ
n=2J /.

Note that the decomposition process outputs a wavelet representation with the same
number of coefficients of the input representation.

Another important comment is that, up to now, we implicitly assumed doubly
infinite coefficient sequences. In practice, we work with finite representations,
and therefore it is necessary to deal with boundary conditions. This issue will be
discussed in more detail later.

7.3.2 Reconstruction

The reconstruction process generates the coefficients of the scale representation
from the coefficients of the wavelet representation. We would like to have an exact
reconstruction, such that the output of the reconstruction is equal to the input of
the decomposition. This is possible because we have just made an orthogonal basis
transformation.

In order to bootstrap the recursive relations for the reconstruction process, we
recall that one step of the decomposition takes a function representation f j�1 and
splits into the components f j and oj.

f j�1.x/ D f j.x/C oj.x/

D
X

k

cj
k�j;k.x/C

X

k

dj
k j;k.x/ : (7.15)

We need to recover the coefficients .cj�1
n / from .cj/ and .dj/

cj�1
n D h f j�1; �j�1;ni : (7.16)
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Substituting (7.15) into (7.16), we obtain

cj�1
n D

*
X

k

cj
k�j;k C

X

k

dj
k j;k; �j�1;n

+
(7.17)

D
X

k

cj
kh�j;k; �j�1;ni C

X

k

dj
kh j;k; �j�1;ni : (7.18)

Because both �0 2 V�1 and  0 2 V�1, they can be represented as a linear
combination of the basis f��1;nI n 2 Zg. Therefore �0 D P

nh�0; ��1;ni��1;n and
 0 DP

nh  0; ��1;ni��1;n. Since this representation is unique, using the two-scale
relations (7.5) and (7.6), we know that

hn D h�0; ��1;ni (7.19)

gn D h 0; ��1;ni : (7.20)

The above results provide a reconstruction formula for the coefficients cj�1
n from

the coefficient sequences of the decomposition at level j.

cj�1
n D

X

k

hn�2kcj
k C

X

k

gn�2kdj
k

D
X

k

h
hn�2kcj

k C gn�2kdj
k

i
(7.21)

The reconstruction process builds the final representation .c0n/, from bottom up. At
each step, it combines the sequences .cj

n/ and .dj
n/ to recover the intermediate .cj�1

n /,
from j D J; : : : ; 1.

7.4 The Fast Wavelet Transform Algorithm

The fast wavelet transform (FWT) algorithm is a straightforward implementation of
the method described in the previous section. It consists of the recursive application
of Eqs. (7.13) and (7.14) for the forward transform, and of Eq. (7.21) for the inverse
transform.

In this section we present the pseudo-code, in C-like notation, of an imple-
mentation of the FWT algorithm. The code was structured for clarity and simple
comprehension.
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7.4.1 Forward Transform

The input of the algorithm is an array v, with 2mC1 elements, containing the
coefficient sequence to be transformed, and the number of levels m. It uses the global
arrays containing the two-scale sequences h and g. There are also global variables
associated with these sequences: their number of elements hn and gn; and their
offset values ho and go (i.e., the origins h0 and g0 of the sequences .hn/ and .gn/).
The main procedure wavelet_fwd_xform executes the iteration of the basic
wavelet decomposition.

wavelet_fwd_xform(v, m, h, g)
{

for (j = m; j >= 0; j--)
wavelet_decomp(v, pow(2,j+1));

}

The procedure wavelet_decomp performs the decomposition for just one
level, splitting the array v0 of size 2jC1 into two arrays v and w with sizes 2j. The
result is accumulated into the input array v, such that in the end of the decomposition
the array v is partitioned into [vN | wN | ... | w2 | w1], with sizes,
respectively, 1; 1; : : : ; 2m; 2m�1.

wavelet_decomp(v, n)
{

zero (w, 0, n);
for (l = 0; l < n/2; l++) {

i = (2*l + ho) % n;
for (k = 0; k < hn; k++) {

w[l] += v[i] * h[k];
i = (i+1) % n;

}
i = (2*l + go) % n;
m = l + n/2;
for (k = 0; k < gn; k++) {

w[m] += v[i] * g[k];
i = (i+1) % n;

}
}
copy (w, v, n/2);

}

The procedure uses a local array w that must have, at least, the same size of v. It
calls two auxiliary procedures, zero that fills and array with zeros, and copy that
copies one array to another.
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7.4.2 Inverse Transform

The inverse transform takes as input an array containing the wavelet representation,
in the format produced by wavelet_fwd_xform, and converts it into a scale
representation.

The procedure wavelet_inv_xform executes the iteration of the basic
reconstruction step.

wavelet_inv_xform(v, m)
{

for (j = 0; j <= m; j++)
wavelet_reconst(v, pow(2, j+1));

}

The procedure wavelet_reconst performs the reconstruction combining the
components vj and wj of the input array to reconstruct vj-1. It replaces [vj
wj...] with [vj-1...]. Note that the number of elements of vj and wj is 1=2
of the number of elements of vj-1, therefore they use the same space in the array.

wavelet_reconst(w, n)
{

zero(v, 0, n);
for (k = 0; k < n; k++) {

i = floor((k-ho)/2) % (n/2);
m = (k - h.o) % 2;
for (l = m; l < hn; l += 2) {

v[k] += w[i] * h[l];
i = (i-1) % (n/2);

}
i = floor ((k-go)/2) % (n/2);
m = (k - go) % 2;
for (l = m; l < gn; l += 2) {

v[k] += w[i + n/2] * g[l];
i = (i-1) % (n/2);

}
}
copy(v, w, n);

}

7.4.3 Complexity Analysis of the Algorithm

The computational performance of the algorithm is very important. Let’s determine
what is the computational complexity of the fast wavelet transform.
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The computation of each coefficient is a convolution operation with the two-scale
sequences. Assuming that these sequences have n coefficients, then the convolution
requires n multiplications and n � 1 additions.

In order to make the decomposition of a coefficient sequence at level j, from
Vj into VjC1 and WjC1, we have to compute 2j new coefficients: 2jC1 for the two
components f jC1 and ojC1. Since each coefficient requires 2n � 1 operations, we
have a total of 2j.2n � 1/ operations for one-level transformation.

The full decomposition process is applied for j log2.m/ levels. Therefore, we have

O D 2j.2n � 1/C 2jC1.2n� 1/C � � � C 2.2n� 1/

factoring out .2n � 1/ and noting that m D 2j, we obtain:

O.m.2n� 1/Œ1C 2�1 C 2�2 C � � � C 2�jC1�/

O

�
m.2n� 1/ 1 � 2

�j

1 � 2�1

�

O.mn/:

The above analysis leads us to the following conclusions:

• The complexity is linear with respect to the size of the input sequence;
• The size of the two-scale sequences has a direct relation with the algorithm

complexity.

7.5 Boundary Conditions

Since in practice we work with finite sequences, it is necessary to take special care
with the computation near the beginning and the end of the sequences (boundaries).

In order to compute the coefficients in the boundary regions, we have to perform
a discrete convolution with the two-scale sequences, and therefore, we may need
coefficients that lie beyond the boundaries of the sequence. Note that, for this reason,
the boundary region is determined by size of the two-scale sequences. This situation
is illustrated in Fig. 7.3.

There are some techniques to deal with boundary conditions:

• Extending the sequence with zeros (see Fig. 7.4(a));
• Periodization by translation of the sequence with x.N C i/ 
 x.i/ (Fig. 7.4(b));
• Periodization by reflection of the sequence with x.N C i/ 
 x.N � i C 1/ and

x.�i/ 
 x.i � 1/ (Fig. 7.4(c));
• Use basis functions adapted to the interval (we are going to discuss this option

later).
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Fig. 7.3 Boundary regions for convolution between finite sequences

a

b

c

Fig. 7.4 Options for boundary computation. a Extending with zeros. b Periodization. c Reflection

In the implementation of the fast wavelet transform algorithm presented in
Sect. 7.4, we deal with the boundary problem by a simple periodization of the
sequence. This is accomplished using the coefficient with indices i % m.
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7.6 Comments and References

The fast wavelet transform algorithm was introduced by Stephane Mallat [35].
One of the first references on the computational implementation of the algorithm
appeared in [45].

The code for the fast wavelet transform algorithm presented in this chapter was
based on the pseudo-code from [30]. This algorithm was implemented in [6].

The book [65] describes a complete system for computation with wavelets,
including the fast wavelet transform.



Chapter 8
Filter Banks and Multiresolution

The goal of this chapter is to translate the theory of Multiresolution Representation
to the language of Signal Processing.

Therefore, this chapter takes an important step in the change from the
mathematical universe (continuous domain) to the representation universe (discrete
domain), in the route to implementation.

The reader not familiar with signal processing will find basic concepts of linear
systems and filters in Appendices A and B.

8.1 Two-Channel Filter Banks

We are going to study in greater detail a particular case of a type of filter bank
that will be very important to understand the multiresolution representation in the
discrete domain.

Consider a low-pass filter L and a high-pass filter H. We define an analysis
filter bank S using those two filters together with downsampling operators as shown
in Fig. 8.1.

Let’s study the operations in the above system: the input signal .xn/ is processed
by the filter L in order to obtain its low frequency components .y0n/, and also by
the filter H to obtain its high frequency components .y1n/. After this first level of
processing the filtered signals .y0n/ and .y1n/ constitute together a representation
of the original signal .xn/, but with twice as much samples. In order to reduce the
size of these two signals to the size of the original signal, we should discard terms.
This can be achieved by performing a downsampling operation (see Appendix A).
The output of the analysis bank, S.xn/, is therefore a representation of the input
signal in terms of its low and high frequency components, with the same size of the
original signal. A natural question now is:

© Springer International Publishing Switzerland 2015
J. Gomes, L. Velho, From Fourier Analysis to Wavelets,
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(  2)

(  2)H

L

xn

z0n

y0n

y1n
z1n

Fig. 8.1 Diagram of a Two-Channel Analysis Filter Bank

(  2)

(  2)

L1

H1

z0n

xn

z1n

Fig. 8.2 Two-Channel Synthesis Filter Bank

x[n] x[n]

H

L (  2)(  2)

(  2) (  2)

L1

H1

Fig. 8.3 Two-Channel Analysis and Synthesis Filter Bank

Question 8.1. Can we reconstruct the original signal .xn/ from the representation
S.xn/ produced by the analysis bank?

Because the downsampling operator # 2 is not invertible, the answer to this
question on neither immediate nor obvious. An attempt of a solution is to define
a synthesis filter bank QS as shown in Fig. 8.2.

More precisely, we apply an upsampling operator to the components of the two
channels, low-pass and high-pass, and then use a pair of filters L1 and H1 such that
these processed components when combined reconstruct the original signal.

The combination of these two filter banks S and QS, forming a composite analysis
and synthesis filter bank QS ı S, is shown in the diagram of Fig. 8.3.

The filter bank S is called analysis bank because it produces a representation
of the signal in terms of its frequencies. The filter bank QS is called synthesis bank
because it reconstructs the signal from its representation. When the output of the
composite filter bank QS ı S is the same as the input signal, that is
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.Oxn/ D QSS.xn/ D .xn/ ;

we say that the filter bank has the property of perfect reconstruction. Usually, we
have perfect reconstruction, but with a delay of the signal, which is not a problem
because we can compensate that with a signal advance within the system.

8.1.1 Matrix Representation

Suppose that the filters L and H are defined as the convolution operators

L.xn/ D
3X

kD0
a.k/x.n� k/

and

H.xn/ D
3X

kD0
b.k/x.n � k/ :

Then, the analysis bank is given by the matrix

S D
0

@
# L
��
# H

1

A ;

or, using the results of applying the operator # 2 to a matrix,

S D

0

BB@

a.3/ a.2/ a.1/ a.0/
a.3/ a.2/ a.1/ a.0/

b.3/ b.2/ b.1/ b.0/
b.3/ b.2/ b.1/ b.0/

1

CCA :

It is clear that the perfect reconstruction property is related with the invertibility
of the matrix S. In fact, if S is invertible, we can make the synthesis bank as QS D S�1,
and we have exact reconstruction. An important particular case occurs when the
linear system S is orthogonal, in this case the matrix of S is an orthogonal matrix.
This system has the perfect reconstruction property and the synthesis filter, the
inverse matrix QS is determined by the transpose of the analysis matrix S: QS D ST.

Question 8.2. Why we have discussed two-channel filter banks with perfect recon-
struction?
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The answer to this question is easy: Given a multiresolution analysis, we know
that the associated scaling function is a low-pass filter and the corresponding
wavelet is a band-pass filter. We are going to show that, in the discrete domain,
the multiresolution analysis defines a filter bank similar to the two-channel filter
bank QS ı S, which has the property of perfect reconstruction. Furthermore, we will
describe an algorithm that implements all the operations of the filter bank (analysis
and synthesis) in linear time, proportional to the number of samples of the input
signal (note that this is equivalent to the algorithm described in last chapter).

8.2 Filter Banks and Multiresolution Representation

In the mathematical universe (continuous domain) it is easy to convince ourselves
that a multiresolution analysis defines a filter bank. This was already done earlier,
but for the sake of reviewing the concepts and notation, we will repeat here.

If � is the scaling function associated with the multiresolution analysis

� � � � V1 � V0 � V�1 � � � �
then Vj�1 D Vj ˚ Wj, where Wj is the complementary (or wavelet) space. Given
f 2 L2.R/, we have that

ProjVj�1
.f / D ProjVj

.f /C ProjWj
.f / :

Also, ProjVj
.f / represents the low-pass component of the function f , and ProjWj

.f /
represents the band-pass component of the function f both defined by the wavelet
transform. Intuitively the low-pass component gives a representation of f in the scale
2j, and the band-pass gives the details that are lost when f is represented in this scale.

Using the notation

Lj.f / D ProjVj
.f /; and Hj.f / D ProjWj

.f / ;

we have

f D Lj.f /C Hj.f / :

Applying successively this decomposition to the component Lj.f / of low frequen-
cies of the signal, we arrive at

f D Lk
j .f /C Hk.f /C Hk�1.f /C � � � C Hj.f / : (8.1)

In summary, the signal f is decomposed into a low frequency component (i.e., in a
scale that cannot capture details), Lk

j .f /, together with high frequency components,
Hn.f /; n D k; k � 1; : : : ; j, which contain the details lost when going to a low
resolution representation of f .
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Equation (8.1) states that we can recover the function f exactly from the low res-
olution component by adding the high resolution components properly. Therefore,
we have a (continuous) two-channel filter bank, with perfect reconstruction.

The decomposition operations of the analysis filter bank are illustrated by the
diagram below

Lj L2
j( f )( f )

( f ) ( f ) ( f )

( f )Lk
j

· · ·

f Hj( Hj+1 Hk

The reconstruction operations of the synthesis filter bank are illustrated by the
diagram below

( f )

( f ) ( f ) ( f )

( f )( f )Lk( Lk+1 Lj f

· · ·

Hk Hk+1 Hj

Our objective now is to study the above filter bank that corresponds to a
multiresolution analysis, in the discrete domain.

8.3 Discrete Multiresolution Analysis

All ingredients for the discretization of a multiresolution analysis, and to revisit the
associated filter bank in the discrete domain, are already of our knowledge.

If  is the wavelet associated with a multiresolution analysis, we have

 j;k.x/ D 2
�j
2  .2�jx � k/ : (8.2)

We also have the two-scale relation that gives  as

 .x/ D
X

n

gn��1;n.x/ D
p
2
X

n

gn�.2x � n/ ;
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where � is the corresponding scaling function, and gn D h ; ��1;ni. Using this
relation in (8.2), we have

 j;k.x/ D 2
�j
2

X

n

gn2
1=2�.2�jC1x � 2k � n/

D
X

n

gn

X

n

gn2
�jC1
2 �.2�jC1x � .2kC n//

D
X

n

gn�j�1;2kCn.x/ :

Making a change in the indices, we can rewrite the above equation in the form

 j;k.x/ D
X

n

gn�2k�j�1;n : (8.3)

Then, it follows that

hf ;  j;k.x/i D
X

n

gn�2khf ;  j�1;ni : (8.4)

We can write the expression above using the filter operators so that the reader
can more easily identify it with a filter bank. Indeed, it is immediate for the reader
to verify that Eq. (8.4) above is equivalent to

hf ;  j;k.x/i D .# 2/Œ.hf ;  j�1;ni/ � g�n� : (8.5)

The two-scale relation for the function � of the multiresolution analysis is
given by

� D
X

n

hn��1;n :

Computations similar to the ones we did from the two-scale relation for the wavelet
give

�j;k.x/ D
X

n

hn�2k�j�1;n : (8.6)

From that, it follows

hf ; �j;k.x/i D
X

n

hn�2khf ; �j�1;ni : (8.7)

As before, we can write this expression using the convolution and downsampling
operators:

hf ; �j;k.x/i D .# 2/Œ.hf ; �j�1;ni/ � h�n� : (8.8)
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8.3.1 Pause to Review

Eqs. (8.4) and (8.7) give the decomposition and reconstruction formulas of the
filter bank associated with a multiresolution analysis. We are going to study these
equations in more detail.

Without loss of generality, we can assume that the function f is defined initially
in some scale as f 0. This scale is associated with some sampling frequency in which
f can be represented by a sequence of samples. We suppose that f 0 D ProjV0 .f /, that
is f 0 is the discretization of f in the scale space V0. Because V0 D V1CW1, we have
that

f 0 D f 1 C o1 :

Furthermore,

f 0 D
X

n

c0n�0;n I

f 1 D
X

n

c1n�1;n I

o1 D
X

n

d1n�1;n :

From Eqs. (8.7) and (8.4), we have

c1k D
X

n

hn�2kc0n I

d1k D
X

n

gn�2kc0n :

These equations allow us to obtain a representation of f in the finer scale V�1 from
the initial representation sequence .c0n/n2Z, in the scale V0.

From a linear algebra point of view, we are just making a change of basis: From
the basis f�0;ngn2Z of the space V0 to the basis f�1;n;  1;ngn2Z.

Indicating by L the matrix of the operator in (8.5) and by H the matrix of the
operator in (8.8), we can write

.c1n/ D L.c0n/ and .d1n/ D H.c0n/ :

Similarly,

f 1 2 V1 D V�2 ˚W�2

and, therefore

f 1 D f 2 C o2; f 2 2 V�2; o2 2 W�2 :
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Thus,

f 2 D
X

n

c2n�2;n; o2 D
X

n

d2n 2;n ;

with

.c2n/ D L.c1n/; and .d2n/ D H.c1n/ :

We have an analysis filter bank that is given by the diagram shown below

(d1
n) (d2

n) (dk
n)

· · ·

(c0
n)

L

H

(c1
n)

L

H

(c2
n)

L

H

(ck
n)

The above filter bank is a very particular case of a filter bank called pyramid
bank. In fact, the pyramid structure is the best form to represent the type of filter
bank in a diagram. For example, consider an initial signal given by a sequence of
samples with 8 elements, that is,

f 0 D .c00; c01; c02; : : : ; c07/:

The successive analyses of f 0 by the filter bank are represented in the inverted
pyramid, shown in the diagram below:

c0
0 c0

1 c0
2 c0

3 c0
4 c0

5 c0
6 c0

7

d1
0 d1

1 d1
2 d1

3

c1
0 c1

1 c1
2 c1

3

d2
0 d2

1

c2
0 c2

1

d3
0

c3
0
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In the first level (base of the pyramid) we have the initial sequence of samples
of f . In the second level we obtain the coefficients .c1n/ of the lower resolution scale
and the detail coefficients .d1n/. We continue with the operation of the filter bank,
going through each level of the pyramid until we reach a sequence with only one
element .c30/ (which gives the average of the signal).

In matrix notation, the filter is represented by the structure

S D

0

BB@

Lk j
Hk j
�� � �
j I

1

CCA � � �

0

BB@

L1 j
H1 j
�� � �
j I

1

CCA

0

BB@

L

�
H

1

CCA : (8.9)

The order of each block

0

@
Lk

��
Hk

1

A

with the low-pass filter Lk and high-pass filter Hk is half of the order of the preceding
block

0

@
Lk�1
��

Hk�1

1

A

with filters Lk�1 and Hk�1. Accordingly, the order of the block with the identity
matrix doubles its size in each matrix. This product of matrices is the matrix
representation of the filter bank of the multiresolution analysis. When this matrix
is applied to the initial vector .c0n/ it produces the complete multiresolution
decomposition. The vector resulting from this operation S..c0n// is

.cJ0 ; dJ0 ; dJ0�1; : : : ; d0/ ; (8.10)

where

dk D .dk
0; d

k
1; : : : ; d

k
m/; k D J0; J0 � 1; : : : ; 0 :

Example 14 (Haar Multiresolution Analysis). The two-scale relations of the Haar
multiresolution analysis are

�.t/ D �.2t/C �.2t � 1/
 .t/ D  .2t/ �  .2t � 1/ :
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For a signal represented by four samples, the corresponding filter bank matrix in
the first level has order 4 and is given by

�
L
G

�
D

0

BB@

1 1

1 1

1 �1
1 �1

1

CCA :

To make this matrix an orthogonal operator, we have to multiply its elements by
r D 1=p2, obtaining the matrix

0

BB@

r r
r r

r �r
r �r

1

CCA :

In the next level of scale the matrix is given by

�
r r
r �r

�
:

Therefore the matrix of the filter bank is

0
BB@

r r
r �r

1

1

1
CCA

0
BB@

r r
r r

r �r
r �r

1
CCA :

8.4 Reconstruction Bank

Since the scaling function and wavelet are orthonormal bases, the operators involved
into the analysis filter bank are also orthonormal. Therefore, the inverse operation
for the synthesis filter bank is given by the adjoint matrix (i.e., the transpose of the
conjugate). Indeed, the filter bank gives perfect reconstruction.

For completeness, we are going to derive the reconstruction expressions. We have

f j�1 D f j C dj

D
X

k

cj
k�jk C

X

k

dj
k j;k :
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Therefore

cj�1
n D hf j�1; �j�1;ni
D
X

k

cj
kh�j;k; �j�1;ni C

X

k

dj
kh j;k; �j�1;ni

D
X

k

Œhn�2kcj
k C gn�2kdj

k� (8.11)

where we have used Eqs. (8.3) and (8.7) in the last line.
The Eq. (8.11) is the synthesis equation (reconstruction) of the filter bank asso-

ciated with the multiresolution: it allows us to obtain the representation sequence
.cj�1

n / of the function f in a finer scale, from the sequences .cj
n/ and .dj

n/ in a lower
resolution scale and its complement.

The reconstruction diagram is shown below

(cJ0− j
n ) (c J0− j+1

n ) (c J0−1
n ) (c J0

n )

· · ·

(d J0− j
n ) (d J0− j+1

n ) (d J0−1
n )

In summary, using a representation of the signal f at a low resolution CJ0�j and
the details corresponding to the information differences at intermediate resolutions
.dJ0�j

n /, .dJ0�j�1
n /, : : :, .dJ0�1

n /, we reconstruct exactly the representation cJ0 of the
signal at the scale 2J0 .

8.5 Computational Complexity

When we start with a function at some scale 2j we have j levels in the pyramid,
which correspond to j submatrices in the matrix that defines the filter bank of
the multiresolution analysis. If the associated low-pass and high-pass filters have
a kernel with T elements, we have T non-zero entries in each line of the matrix.
Therefore, we have a product of TL non-zero elements in the computation of the first
level of the filter bank, where L D 2j is the number of samples of the representation
sequence of the input signal.

In the second level we have TL=2 products, in the third level TL=4 products,
and so on. The number of products is reduced by one half in each level. Therefore,
the total number of product to compute the analysis operation of the filter bank is
given by
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TL

�
1C 1

2
C 1

4
C � � � C 1

2j�1

�
< 2TL :

We conclude that the computational complexity in the decomposition computa-
tion of a multiresolution analysis is linear with the length of the input signal.

In terms of matrices, the reconstruction is given by the conjugate transpose of
the matrix S in (8.9), because the analysis operator is orthogonal. It follows trivially
that the computational complexity of the reconstruction filter bank is the same as
the decomposition bank: i.e. is also linear with the length of the input signal.

8.6 Comments and References

We have shown in this chapter that the multiresolution analysis defines a filter
bank with perfect reconstruction. The filter bank has a pyramidal structure, and the
decomposition and reconstruction operations can be computed in linear time relative
to the length of the input signal.

The study of filter banks with perfect reconstruction started in the beginning of
the 80s, and advanced independently of the studies in the area of wavelets, which
intensified in the middle of the 80s (the Haar wavelet is known since the beginning
of this century, but it was not associated with the context of wavelets).

We already mentioned in the previous chapter that the concept of multiresolution
analysis was introduced by Stephane Mallat. In fact, Mallat also discovered the
relation of filter banks and multiresolution analysis as we described in this chapter.
He also developed the recursive algorithm to implement these operations, as we
described in the previous chapter. This algorithm is known in the literature by
various names: Mallat algorithm, pyramid algorithm or fast wavelet transform.

The multiresolution analysis is covered in various books [20, 28, 63] and [55].
This last reference [55] is one of the few which adopts a matrix notation.



Chapter 9
Constructing Wavelets

The proof of the existence of a wavelet associated with a multiresolution
representation described in Chap. 6 has a constructive flavor. In this chapter we
will go over details of this proof with the purpose of obtaining a recipe to construct
wavelets.

9.1 Wavelets in the Frequency Domain

We start by analyzing the dilation equation, and looking at the bases functions �
and  in the frequency domain.

9.1.1 The Relations of O� with m0

Taking the Fourier transform of the two-scale equation

�.x/ D p2
X

n

hn�.2x � n/ (9.1)

gives

O�.!/ D 1p
2

X

n

hne�in!=2 O�.!=2/ : (9.2)

Equation (9.2) can be rewritten as

O�.!/ D m0.!=2/ O�.!=2/ (9.3)
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with

m0.!/ D 1p
2

X

n

hne�in! : (9.4)

The function m0 is 2	-periodic, and m0 2 L2.Œ0; 2	�/, because
P

n2Z jhnj2 <1.
We also know that, by definition,

Z 1

�1
�.x/dx D 1

hence, O�.0/ D 1, and therefore

m0.0/ D 1 : (9.5)

Applying Eq. (9.3) recursively for w=2;w=4; : : :, we get O�.!/ D m0.!=2/m0.!=4/O�.!=4/ : : :, and arrive at the infinite product formula

O�.!/ D 1p
2	

1Y

jD1
m0.2

�j!/ : (9.6)

A very important point is to show that this product converges to a function in L2.R/.
Details of this proof can be found in [20].

We can see that O� is completely characterized by m0, as � is completely
characterized by the sequence .hn/. Note also that knowing m0 gives us .hn/. This
is the first important connection between wavelets in the spatial and frequency
domains.

9.1.2 The Relations of O with m1

Similarly, if we express the two-scale relation for the wavelet function  in the
frequency domain,

 .x/ D p2
X

n

gn .2x � n/ (9.7)

we get

O .!/ D 1p
2

X

n

gne�in!=2 O�.!=2/ (9.8)

or

O .!/ D m1.!=2/ O�.!=2/ (9.9)
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with

m1.!/ D 1p
2

X

n

gne�in! (9.10)

where m1 is also 2	-periodic.
Note that, O is defined in terms of O� through m1, in the same way  is defined

in terms of � through .gn/ in the spatial domain.

9.1.3 Characterization of m0

In order to define the properties of m0, we use the fact that �.u � k/, the integer
translates of � form an orthonormal basis of V0. This imposes some restrictions
on m0.

Z 1

�1
�.x/�.x � k/dx D

Z 1

�1
j O�.
/j2eik
d
 D ık;0 (9.11)

D
Z 2	

0

eik

X

l2Z
j O�.
 C 2	l/j2d
 D ık;0 (9.12)

The above equation implies that

X

l

j O�.
 C 2	l/j2 D 1

2	
: (9.13)

Substituting Eq. (9.3) in (9.13), with ! D 
=2, we have

X

l

jm0.! C 	l/j2j O�.! C 	l/j2 D 1

2	
: (9.14)

We can split the sum into terms with even and odd l, and since m0 is 2	-periodic we
have

jm0.!/j2
X

l

j O�.!C2l	/j2Cjm0.!C	/j2
X

l

j O�.!C.2lC1/	/j2 D 1

2	
(9.15)

substituting (9.13), and simplifying, we obtain

jm0.!/j2 C jm0.! C 	/j2 D 1 : (9.16)

This is the first important condition characterizing m0, via orthonormality of �.
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If we put together Eq. (9.5) with (9.13), we conclude that

m0.	/ D 0 : (9.17)

This gives us a hint that m0 is of the form (i.e., factorizes as)

m0.!/ D
�
1C ei!

2

�m

Q.!/ (9.18)

with m � 1, and where Q is a 2	-periodic function. (Observe that ei	 D �1. So,
when ! D 	 the first term vanishes, and the product has to vanish.) We impose
Q.0/ D 1, to ensure that m.0/ D 1, and also Q.	/ ¤ 0, so that the multiplicity of
the root of m0 at 	 is not increased by Q.

9.1.4 Characterization of m1

Now, to link m1 with m0 we use the orthogonality between � and . More precisely,
the constraint that W0 ? V0 implies that  ? �0;k and

Z 1

�1
O .!/ O�.!/eik!d! D 0 (9.19)

or, in terms of the Fourier series

Z 2	

0

eik!
X

l

O .! C 2	l/ O�.! C 2	l/d! D 0 (9.20)

hence

X

l

O .! C 2	l/ O�.! C 2	l/ D 0 (9.21)

for all ! 2 R.
Substituting in the above equation the expressions (9.3) and (9.9) of O� and O in

terms of, respectively, m0 and m1, we obtain after regrouping the sums for odd and
even l

m1.!/m0.!/C m1.! C 	/m0.! C 	/ D 0 : (9.22)

This is the second important condition that characterizes m0 and m1.
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We also know that m0.w/ and m0.wC 	/ cannot be zero simultaneously because
of (9.16), therefore m1 can be written using m0 and a function �

m1.!/ D �.!/m0.! C 	/ (9.23)

such that � satisfies

�.!/C �.! C 	/ D 0 : (9.24)

The simplest choice is �.!/ D eiw, which gives m1 satisfying the above equation

m1.!/ D e�i!m0.! C 	/ : (9.25)

Note that m1 is defined in terms of m0, as expected. This also gives O in terms of O�
O .!/ D ei!=2m0.!=2C 	/ O�.!=2/ : (9.26)

From the above relations, we can construct an orthogonal wavelet from a scaling
function �, using (9.25) and choosing the coefficients fgng as

gn D .�1/nh�nC1; (9.27)

that is,

 .x/ D p2
X

n

.�1/nh�nC1�.2x� n/ : (9.28)

We conclude that, since m1 is trivially defined from m0, all we need to construct
orthogonal scale and wavelet bases is to find a function m0 satisfying (9.16)
and (9.22), or, equivalently, find the coefficients .hn/ of the representation sequence
of m0.

Example 15 (Haar Wavelet). The scaling function of the Haar multiresolution
representation is given by

�.x/ D
(
1 if x 2 Œ0; 1/
0 otherwise :

From the two scaling relation

�.t/ D p2
X

k

ck�.2t � k/;
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we have

cn D
p
2

Z C1

�1
�.t/�.2t � n/dt :

It is easy to see that only �.2t/ and �.2t�1/ are not disjoint from �.t/, therefore
only the coefficients of c0 and c1 are non-null (see Fig. 9.1). An easy computation
shows that

c0 D c1 D
p
2

2
:

Therefore the two-scale equation can be written as

�.x/ D �.2x/C �.2x � 1/ :

This equation is illustrated in Fig. 9.1: In (a) we have the graph of � and in (b) we
have the sum of the functions �.2x/ and �.2x � 1/.

The two-scale relation (9.28) for the wavelet in this case is given by

 .x/ D �.2x/� �.2x� 1/;

which gives the Haar wavelet already introduced before (see Fig. 9.2).

Unfortunately the Haar example does not give a good view of the reality. The
above reasoning is correct and promising but taking this trail to get to the wavelets
involves a lot of work.

a b

Fig. 9.1 Double scale relation of the Haar scaling function
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Fig. 9.2 Haar wavelet

9.2 Orthonormalization Method

Given a function �.u/ satisfying the two-scale relation (6.18), it may happen that
the translated functions �.x � n/ do not constitute an orthonormal basis. We can
overcome this fact.

In fact, we have stated before that the orthonormality condition (M5) in the defi-
nition of a multiresolution representation could be relaxed with the weaker condition
that �.x � n/ is a Riesz basis. This fact is the essence of the orthonormalization
process stated in the Theorem below:

Theorem 6. If f�.u � kg, k 2 Z, is a Riesz basis of the space V0, and we define a
function �# by

O�#.
/ D 1p
2	

O�.
/qP
k j O�.
 C 2	k/j2

; (9.29)

then �#.u � k/, k 2 Z, is an orthonormal basis of V0.

The proof of the theorem can be found in [20], p. 139.
In spite of using a weaker condition on (M5), the task of showing that a set

of functions is a Riesz basis is not an easy one, in general. Moreover there exists
the other conditions which must be satisfied in order to have a multiresolution
representation. This problem can be solved using the result from

Theorem 7. If � 2 L2.R/ satisfies the two-scale relation

�.x/ D
X

k

ck�.2x � k/ ;
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with

X

k

jckj2 <1 ;

and

0 < ˛ <
X

k

j O�.
 C 2	k/j2 � ˇ <1 ; (9.30)

then � defines a multiresolution representation.

9.3 A Recipe

In this section we will summarize the above results to construct a multiresolution
representation, along with the associated wavelet.

Step 1 We start from a function � which defines the kernel of a low-pass filter.
A sufficient condition for this is that � satisfies

Z

R

�.u/du ¤ 0 ;

and also that � and O� have a good decay at infinity.

Step 2 We verify if the function � of the previous step satisfies the two-scale
relation (6.18) and the condition (9.30).

Step 3 If we have a function satisfying the two previous steps, but �.u � k/ is not
an orthonormal basis, then we can obtain an orthonormal basis from �, according to
Theorem 6.

Step 4 The wavelet associated with the multiresolution representation can be
computed using Eq. (6.13) from the previous chapter.

9.4 Piecewise Linear Multiresolution

The Haar multiresolution representation allows us to obtain successive approxima-
tions of a function using functions that are constant by parts. Now we will use the
recipe from the previous section to obtain a multiresolution representation whose
scale space approximates a function f 2 L2.R/ using piecewise linear functions.
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a b

Fig. 9.3 Piecewise linear scaling function

We take as a candidate for the scaling function � the function

�.x/ D
(
1 � jxj if x 2 Œ0; 1�
0 if x < 1 or x > 1 :

The graph of � is shown in Fig. 9.3(a).
Certainly the function � satisfies all of the conditions in Step 1 of our recipe.

Moreover, it is easy to see that � also satisfies the two scaling relation

�.x/ D 1

2
�.2xC 1/C �.2x/C 1

2
�.2x � 1/ : (9.31)

This relation is illustrated in Fig. 9.3(b).
The Fourier transform of � is given by

O�.!/ D 1p
2	

�
sin.!=2/

!=2

�2
: (9.32)

An immediate calculus shows that

2	
X

k2Z
j O�.! C 2	kj2 D 2

3
C 1

3
cos! D 1

3

	
1C cos2

	w

2




: (9.33)

Therefore the condition (9.30) is satisfied. From Theorem 7, � defines a
multiresolution representation.

Nevertheless, it is easy to verify that the family �.u � k/; k 2 Z, is not
orthonormal. Therefore we must apply the orthonormalization process (Theorem 6)
to obtain a scaling function that defines a multiresolution orthonormal basis.
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1.5 2

1

−1

0

1.0
φ

0.5

−0.5
−5 −5 500 5

0

a b

Fig. 9.4 a Scaling function of the piecewise linear multiresolution. b Wavelet of the piecewise
linear multiresolution

Substituting (9.32) and (9.33) in (9.29), we have

O�#.
/ D
r

3

2	

4 sin2
	



2





2
	
1C 2 cos2

	



2



1=2 ;

that is the Fourier transform of the scaling function we are looking for. The graph
of O�# is shown in Fig. 9.4(a). The graph of the associated wavelet  .x/ is shown in
Fig. 9.4(b).

9.5 Shannon Multiresolution Analysis

From classical Fourier analysis we know the low-pass ideal filter �WR! R, whose
transfer function is given by

O�.!/ D �Œ�	;	� D
(
1 if x 2 Œ�	; 	�
0 if x < �	 or x > 	 :

The impulse response of the filter is given by the function

�.x/ D sinc.x/ D sin.	x/

	x
:

The graph of this function is shown in Fig. 9.5.
It is natural to expect that the function � defines a multiresolution representation.

This is in fact true, but we will not give the details here. It is called Shannon
multiresolution representation. Shannon multiresolution representation divides the
frequency domain into bands according to the illustration shown in Fig. 9.6.
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Fig. 9.5 Impulse response of the ideal reconstruction filter

Fig. 9.6 Band decomposition using Shannon multiresolution representation

The wavelet  associated with Shannon multiresolution representation is the
ideal band-pass filter, defined by

O D �I ; where I D Œ�2	;�	/ [ .	; 2	� :

The graph of this filter is shown in Fig. 9.7.
This wavelet is called Shannon wavelet. It has an analytic expression given by

 .x/ D �2 sin.2	x/C cos.2	x/

	.2xC 1/ :

The graph is shown in Fig. 9.8.
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Fig. 9.7 Ideal band-pass filter
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Fig. 9.8 Shannon wavelet

9.6 Where to Go Now?

Up to this point we have seen how to obtain atomic decompositions using wavelets,
we have studied the role the wavelets in the multiresolution representation, we have
shown the existence of orthonormal basis of wavelets and we have described a
method to construct such basis using multiresolution representation.

Certainly, in applications we need to have at our disposal a great abundance of
basis of wavelets. Therefore the natural path to follow should point in the direction
of devising methods to construct basis or frames of wavelets.

In order to amplify the range of possible applications, we should impose
additional conditions to the wavelets we construct. Among many conditions we
could mention:

• regularity;
• symmetry;
• compact support;
• orthogonality with polynomials of degree � n.
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The construction of wavelets satisfying some of the above properties, as well
as a discussion about the importance of these properties in different types of
applications is of fundamental importance. In Chap. 10, we will present a framework
for generating wavelets using a filter design methodology.

9.7 Comments and References

In this chapter we have described how wavelets can be constructed. Devising
robust techniques to construct wavelets is a very important research topic. The
reader should realize that each application demands bases of wavelets with different
properties. We will cover this in the chapters to follow.

The Haar wavelet and the wavelet associated with the piecewise linear multires-
olution representation are part of a family of wavelets called spline wavelets. This
family is related to a multiresolution representation that approximates a function
f 2 L2.R/ using piecewise polynomials of degree � n. These types of wavelets are
studied in [13].



Chapter 10
Wavelet Design

We have seen in the previous chapters that orthogonal wavelets can be defined from
a multiresolution analysis. This framework provides the basic relations to construct
wavelets and to compute the fast wavelet transform.

As we discussed in Chap. 9, the scaling and wavelet functions, � and  , are
completely characterized by the two-scale sequences .hn/ and .gn/, respectively.
Therefore, a direct method to generate new wavelets consists in finding � and  
that satisfy the two-scale relations, and whose integer translates form orthonormal
bases of V0 and W0.

This simple approach can be used to produce examples of wavelets, but it
presents two main difficulties: first, it does not give a systematic way to find the
functions � and  ; second, it relies on an orthonormalization step which produces
infinitely supported bases.

It is clear that we need a more effective and flexible method to design wavelets.
In this chapter, we present an approach to generate wavelets based on a frequency
domain analysis. We will exploit the fact that the two-scale sequences are the
coefficients of a two-channel discrete filter bank. Consequently, we can use the filter
design methodology for creating wavelets.

10.1 Synthesizing Wavelets from Filters

In this section we review the restrictions on the filter function m0, with the purpose
of discovering an expression for it that can be computed.

© Springer International Publishing Switzerland 2015
J. Gomes, L. Velho, From Fourier Analysis to Wavelets,
IMPA Monographs 3, DOI 10.1007/978-3-319-22075-8_10
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10.1.1 Conjugate Mirror Filters

The functions m0 and m1 can be interpreted as the discrete Fourier transform of a
pair of discrete filters H D .hn/ and G D .gn/, respectively, as we discussed in the
previous chapter. The function m0 is a low-pass filter for the interval Œ0; 	=2�, and
the function m1 is a band-pass filter for the interval Œ	=2; 	�.

From these observations, and from the definition of � and  in the frequency
domain, we conclude that the main part of the energy of O� and O is concentrated,
respectively, in the intervals Œ0; 	� and Œ	; 2	�.

The fact that m0.0/ D m1.	/ and m1.0/ D m0.	/ together with the relation
m1.!/m0.!/ C m1.! C 	/m0.! C 	/ D 0 makes H and G a pair of filters that
are complementary. These filters are called conjugate mirror filters, because their
frequency responses are mirror images with respect to the middle frequency 	=2
(also known as the quadrature frequency).

The above means that the wavelet transform essentially decomposes the
frequency space into dyadic blocks Œ2j	; 2jC1	� with j 2 Z.

Note that it is possible to construct m0 and m1 that are quadrature mirror
filters, but do not correspond to any functions � and  in L2.R/ as defined by a
multiresolution analysis. In order to guarantee that infinite product formula (9.6)
will converge to the Fourier transform of a valid �, the function m0 must satisfy
jm0.!/j2C jm0.!C	/j2 D 1, the orthogonality condition for �.� � k/. In addition,
we have to impose extra conditions on m0 to ensure that

P
l j O�.! C 2	lj2 D 1=2	 .

(See [20] for the technical details.)

10.1.2 Conditions for m0

First, let’s revisit the two main conditions, (9.16) and (9.22), that the function m0

must satisfy to generate orthogonal scaling functions and wavelets. They can be
summarized as:

Condition 1: m0.!/m0.!/C m0.! C 	/m0.! C 	/ D 1
Condition 2: m1.!/m0.!/C m1.! C 	/m0.! C 	/ D 0

where, in the first equation we expanded jm0.!/j2 D m0.!/m0.!/.
Notice that these two conditions can be written in matrix form as

�
m0.!/ m0.! C 	/
m1.!/ m1.! C 	/

��
m0.!/

m0.! C 	/
�
D
�
1

0

�

or Mx D y, where M is called the modulation matrix, in the filter bank theory.

M D
�

m0.!/ m0.! C 	/
m1.!/ m1.! C 	/

�
:
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We will return to this matrix later, in the more general context of biorthogonal
wavelets and perfect reconstruction filters.

For orthogonal wavelets, we were able to transform Condition 2, into

m1.!/ D e�i!m0.! C 	/ ;

using the quadrature mirror filter construction (see Eq. (9.25) of previous chapter).
Therefore, we only need to determine m0.!/ such that Condition 1 is satisfied.

The goal now is to go from Condition 1 to a formula for m0.

10.1.3 Strategy for Computing m0

What we would really like at this point is to obtain a closed form expression for m0.
Unfortunately, this would not be possible. There are no simple formulas for the
coefficients .hn/ of m0. But, we will be able to compute .hn/ numerically.

Instead of working directly with m0, we will consider jm0j2. We define the
function P.!/ as the product m0.!/m0.!/

P.!/ D
 

NX

lD0
hle

il!

! 
NX

nD0
hne�in!

!

D
NX

kD�N

ake�ik! : (10.1)

Our strategy is to decompose the problem of finding m0 satisfying Condition 1
into two simpler sub-problems:

1. Find a function P.!/ that satisfy P.!/C P.! C 	/ D 1;
2. From P obtain m0, factoring P.!/ into m0.!/m0.!/.

It turns out that it is better to work with P than with m0, because using P,
the analysis of Condition 1 is much simpler. This strategy makes possible to
find an explicit expression for P.!/, and therefore, the formulas to compute its
coefficients .ak/. From that, we can obtain m0 through the spectral factorization
of P (i.e., taking a “square root”).

We will see, in the next two chapters, how to derive a closed form expression for
P.!/, respectively, in the context of orthogonal scaling functions, where P.!/ D
m0.!/m0.!/, and in the more general context of biorthogonal scaling functions,
where P.!/ D m0.!/fm0.!/ (i.e., the functions m0 and fm0 can be different).

In the rest of this chapter, we will assume that P is known, and we will
concentrate on the details of how to get m0 from P.
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10.1.4 Analysis of P

First, to simplify the exposition, we will make a change of notation. We express
rei! D z, with r D jzj, to convert from the ! notation to the z notation. Let P.z/
restricted to the unit circle r D 1 denote P.!/. So, Eq. (10.1) becomes

P.z/ D
NX

kD�N

akzk : (10.2)

There are many things we can say about P, even without knowing the specific
expression of P.

• P is a Laurent polynomial of degree N, with both positive and negative exponents.
This is apparent in Eq. (10.2).

• P.z/ � 0 is real and non-negative, because P.z/ D jm0.z/j2 (in the orthogonal
case).

• P has real coefficients ak, k D �N; : : : ;N, because m0 has real coefficients.
• P is symmetric, with ak D a�k, because m0.z/ multiplies its conjugate m0.z/.

Taking into consideration also Condition 1, we can say more about P. Using the
fact that eiwC	=2 D �eiw, we write Condition 1 in the z notation as:

P.z/C P.�z/ D 1 : (10.3)

The terms with odd coefficients cancel in Eq. (10.3) (and there is nothing we can
say about them). But, we can conclude that, except for the constant term, all other
even coefficients of P have to be zero to make (10.3) true.

a2m D
�
1=2 if m D 0
0 if m ¤ 0 (10.4)

In the filter theory, the function P which satisfy (10.3) is called a halfband filter.
When it comes from P.z/ D jm0.z/j2, it is the autocorrelation filter of m0. It gives
the power spectral response, and m0 is the spectral factor. Figure 10.1 shows a graph
of P.

10.1.5 Factorization of P

The function P.z/ is a Laurent polynomial of degree N. Since it is symmetric
there are N C 1 independent coefficients in P. In the next two chapters, we will
derive a formula to compute these coefficients. Assuming that the coefficients of P
are known, the remaining problem is to factor P to obtain m0.
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Fig. 10.1 Halfband Filter

A regular polynomial of degree d can be represented in two forms:

B.z/ D
dX

nD0
bnzn D

dY

iD1
.z � zi/

where bn are the coefficients of B, and zi are the roots of B.
The factorization of the polynomial P can be done by finding the zeros (roots)

of P. There are several methods for this purpose. One of the most effective of these
methods consists in computing the eigenvalues the companion matrix. The roots of a
regular polynomial B of degree d are the eigenvalues of the d� d companion matrix

B D

0
BBBBBBBB@

�bd�1
bd

�bd�2
bd

� � � �b1
bd

�b0
bd

1 0 : : : 0 0

0 1 : : : 0 0
:::

: : :
:::

0 0 � � � 1 0

1
CCCCCCCCA

(10.5)

where B.z/ D det.B � zI/ is the characteristic polynomial of B.
In order to apply the factorization method, we need first to convert the Laurent

polynomial P.z/ to the equivalent polynomial zNP.z/ in regular form.
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P.z/ D
NY

iD0
.z� zi/

NY

jD0
.z�1 � zj/

zNP.z/ D 1

2
aN

2NY

iD0
.z � zi/

with aN ¤ 0.
This polynomial can be factored using any numerical package that implements

the eigenvalue method discussed above.
The factorization will give us the roots of P. Our knowledge about P will help us

to discriminate between the different types of roots:

i. Since P has real coefficients, the complex roots will occur in pairs that are
conjugate (i.e., if zk D x C iy is a root, then zk D x � iy is also a root). This
ensures that, in the orthogonal case, we will be able to compute the “square root”
of m0.

ii. The coefficients of P are also symmetric. With real symmetric coefficients ak, we
have P.z/ D P.1=z/. If zi is a root, then 1=zi is also a root. Thus, when zi is inside
the unit circle, 1=zi is outside (roots with jzij D 1, on the unit circle have even
multiplicity).

In summary, P has 2N roots. The complex roots come in quadruplets
zj; z�1

j ; zj; z�1
j , and the real roots come in duplets rl; r�1

l . Therefore, regrouping
these types of roots, we have

zNP.z/ D 1

2
aN

JY

jD1
.z � zj/

�
z� 1

zj

�
.z � zj/

�
z � 1

zj

�

KY

kD1
.z � zk/

2.z� zk/
2

LY

lD1
.z� rl/

�
z � 1

rl

�
:

Once we obtain the 2N roots of zNP.z/, it is necessary to separate then, assigning
factors M to the polynomial m0.z/, and the remaining 2N � M factors to the
polynomial m0.z/, (or Qm0.z/). In the orthogonal case, one factor is the transpose of
the other, but in the biorthogonal case, this restriction is not imposed, and the dual
scaling functions can be different. Note that, the polynomial m0.z/ with degree N is
not unique even for orthogonal scaling functions. In the next two chapters we will
discuss the rules for separating the roots of P, and effects of different choices.

The function m0 is completely determined after we assign a set of roots from P
to it. But, we still don’t have the coefficients .hn/ of m0, since it is in product form.
Given the roots zk of the degree N polynomial

m0.z/ D c
NY

kD1
.z� zk/ (10.6)
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the coefficients hn can be computed with an iterated convolution. Then, we
normalize the coefficients multiplying them by a scaling constant.

The coefficients .hn/ give the filter m0, and from them we get the coefficients
.gn/ of the filter m1, using (9.27).

Now, let’s summarize the steps required to generate a scaling and wavelet
functions using a filter design methodology:

1. Choose a Polynomial P satisfying Condition 1. Generate its coefficients ak using
an explicit formula (see Chaps. 11 and 12).

2. Find the roots zk of P by a factorization method.
3. Separate the roots zk into two sets. Assign one set of roots to the polynomial

factor m0 and the other set of roots to m0 (or to fm0).
4. Compute the coefficients hn of m0 from its roots, using iterated convolution.
5. Obtain the coefficients gn of m1 from hn.

10.1.6 Example (Haar Wavelet)

A concrete example will illustrate the wavelet design methodology.
We choose the following degree 1 polynomial:

P.z/ D 1

4
z�1 C 1

2
C 1

4
z :

This is the lowest degree polynomial which satisfies Condition 1

P.z/C P.�z/ D 1 :

We convert P to regular form, multiplying by z

zP.z/ D 1

4

�
1C 2zC z2

�
:

This polynomial has one root at z D �1 with multiplicity 2. Therefore P is factored
into

P.z/ D 1

2
z�1 .zC 1/ 1

2
.zC 1/

D
�
1C z�1

2

��
1C z

2

�
:

The low-pass filter is

m0.!/ D 1

2
C 1

2
e�i! D 1p

2

�
1p
2
C 1p

2
e�i!

�
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Fig. 10.2 Haar filter m0

with coefficients h0 D h1 D 1=
p
2 which gives the Haar scaling function

�.x/ D p2
�
1p
2
�.2x/C 1p

2
�.2x � 1/

�
D �.2x/C �.2x � 1/ :

Figure 10.2 shows a plot of m0.!/.
Notice that, since

m0.!/ D 1C e�i!

2
D
�

e�i!=2 C ei!=2

2

�
e�i!=2 D cos.!=2/e�i!=2

the scaling function in frequency domain O� is the sinc function

O�.!/ D 1p
2	

1Y

jD1
cos.2�j!=2/e�i2�j!=2 D 1p

2	
e�i!=2 sin.!=2/

!=2

which is the Fourier transform of the box function �.x/ D 1 for x in the interval
Œ0; 1� (this is the Haar scaling function, as expected). A derivation of this formula
can be found in [20], p. 211. Figure 10.3 shows a plot of j O�.!/j.

The coefficients of the high-pass filter m1 are given by gn D .�1/nh1�n

g0 D 1p
2
; g1 D � 1p

2
:

The function

 .x/ D p2
�
1p
2
�.2x/� 1p

2
�.2x� 1/

�
D �.2x/� �.2x � 1/

is the Haar wavelet.
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Fig. 10.3 Magnitude of the frequency response of O�.!/ for the Haar function

10.2 Properties of Wavelets

In the last section we have seen how to synthesize wavelets in the frequency domain.
The procedure was based on the factorization of a polynomial P.!/. In this section
we will investigate how the properties of the scaling and wavelet functions relate to
characteristics of P. This connection will reveal the “design variables” that we can
control to generate wavelets with desired properties.

10.2.1 Orthogonality

The multiresolution analysis, by definition, leads to orthogonal scaling functions and
wavelets. In this way, the functions f�j;nI n 2 Zg, and f j;nI n 2 Zg are, respectively,
orthonormal basis of the subspaces Vj and Wj, for all j 2 Z. The subspaces Wj are
mutually orthogonal, and the projection operators produce optimal approximations
in the L2.R/ sense.

Orthogonality is very a desirable property, but it imposes severe restrictions
on the candidate scaling and wavelet functions. We will see in Chap. 12 that
orthogonality can be replaced by biorthogonality, which is less restrictive, giving
us more freedom to design wavelets.
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10.2.2 Support of � and  

In this chapter we have been concerned only with compactly supported basis
functions.

The support width of the scaling and wavelet functions is determined, respec-
tively, by the length of the coefficient sequences .hn/ and .gn/. More precisely, if
hn D 0 for n < 0; n > N, then the support of � is the interval Œ0;N�. When  
is defined as in (9.28), then the support of  is the interval Œ�M;M C 1�, where
M D .N � 1/=2.

The length of the coefficient sequences .hn/ and .gn/ is given by the degree of
the polynomial m0.z/. Consequently, the degree of the product polynomial P.z/,
determines the support width of the associated basis functions.

10.2.3 Vanishing Moments and Polynomial Reproduction

Two related properties of a multiresolution analysis are: the vanishing moments
of the wavelet functions; and the ability of the scaling functions to reproduce
polynomials. These are probably the most important properties in the design of
wavelets.

Given a mother wavelet function  .x/ with p vanishing moments, that is
Z

x` .x/dx D 0 (10.7)

for ` D 0; 1; : : : ; p � 1. Then, the following equivalent properties are verified:

• The wavelets  .x � k/ are orthogonal to the polynomials 1; x; : : : ; x p�1.
• The combination of scaling functions �.x � k/ can reproduce exactly the

polynomials 1; x; : : : ; x p�1.

These properties are important in the rate of convergence of wavelet approxima-
tions of smooth functions and in singularity detection using wavelets.

Vanishing moments are also a necessary (but not sufficient) condition for a
wavelet to be p� 1 times continuously differentiable, i.e.  2 Cp�1.

In order to make the connection between the number of vanishing moments of
a wavelet and the condition imposed on the filter function m1.!/, we note that
Eq. (10.7) implies that

d`

d!`
O 
ˇ̌
ˇ̌
!D0
D 0 (10.8)

for ` < p. (This can be verified expanding  in a Taylor series.) But, we know
from (9.26) that O .!/ D e�i!=2m0.!=2C 	/ O�.!=2/, and also from (9.5) that
O�.0/ ¤ 0, this means that m0 is p � 1 times differentiable in ! D 	 . Furthermore
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d`

d!`
m0

ˇ̌
ˇ̌
!D	
D 0 (10.9)

for ` < p.
As a consequence of the above, m0 must have a zero of order p at ! D 	 .

Therefore, m0 is of the form

m0.!/ D
�
1C ei!

2

�p

Q.!/ (10.10)

with m0 2 Cp�1 and Q 2 Cp�1.
We already knew that a wavelet should integrate to zero, i.e. it should have at

least one vanishing moment. We also knew that m0 should have at least one zero
at 	 , i.e., it should be of the form (10.10) with p >D 1.

The zero at 	 from m0 produces factor . 1Cz
2
/2p in the polynomial P.

10.2.4 Regularity

Smooth basis functions are desired in applications where derivatives are involved.
Smoothness also corresponds to better frequency localization of the filters.

The local regularity of a function at a point x0 can be studied using the notion
of Lipschitz continuity. A function f .x/ is C˛ at x0, with ˛ D n C ˇ, n 2 N and
0 < ˇ < 1, if f is n times continuously differentiable at x0 and its nth derivative is
Lipschitz continuous with exponent ˇ.

jf .x/.n/ � f .x0/
.n/j � Cjx � x0jˇ : (10.11)

For global regularity, the above must hold for all x0.
Typically, compactly supported scaling functions and wavelets are more regular

in some points than in others. They also have non-integer Lipschitz exponents.
The regularity of scaling functions and wavelets is difficult to determine. The

techniques for this investigation involve either the estimation of the decay of O� in
the frequency domain, or the estimation of the convergence rate of the recursive
construction of � in the spatial domain. The first class of techniques is more suitable
for a global analysis, while the second class of techniques is better for a local
analysis.

The regularity of � and  is related with the number of vanishing moments of
 , and consequently is related with the multiplicity p of the zeros at 	 of m0. The
regularity is at most p � 1 if we consider integer exponents, and at most p � 1=2 if
we consider fractional exponents. We remark that in many cases, the regularity is
much smaller than p � 1 because of the influence of the factor Q.
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Another important observation is that, for a fixed support width of �, the choice
of factorizations of P that leads to maximum regularity is different from the choice
with maximum number of vanishing moments for  .

10.2.5 Symmetry or Linear Phase

Symmetry is important in many applications of wavelets, such as image processing
and computer vision. This property can be exploited in the quantization of images
for compression, and in the boundary processing of finite signals using symmetric
extension (i.e. periodization by reflection of the data).

The symmetry of the basis functions implies in symmetric filters. It is easy to see
from (9.1) that � will be symmetric only if the coefficients .hn/ are symmetric.

Symmetric filters are called linear phase filters. This is because filters with
symmetric coefficients have a linear phase response.

The phase angle (or argument) of a complex number z D a C bi is the angle
between the vector .a; b/ and the horizontal axis. The tangent of this angle is the
ratio of the imaginary and real parts of z:

tan.!/ D =.z/<.z/ D
b

a
: (10.12)

The same definition extends to a complex function m.z/. This notion becomes more
evident if we use the polar representation of a complex number z D jzjei�.!/, where
jzj is the magnitude of z and �.!/ is the phase angle of z.

A filter function m.!/ DP
k akeik! is said to have linear phase if �.!/ is of the

form K! where K is a constant (i.e., it is linear in !). This means that m.!/ can be
written as

m.!/ D ceiK!M.!/ (10.13)

where c is a complex constant, and M is a real valued function of !, not necessarily
2	-periodic. Linear phase filters have symmetric or antisymmetric coefficients
around the central coefficient N=2. Therefore, hk D hN�k for symmetric filters
and hk D �hN�k for antisymmetric filters. Note that, when filter coefficients ak

are symmetric, or anti-symmetric, the phase is linear because terms with same
coefficients can be grouped. For example, if the filter is symmetric and has an even
number of coefficients

m.!/ D
N=2X

kD0
hk.e

�ik! C e�i.N�k/!/ D e�i N
2 !

0

@
N=2X

kD0
hk.e

ik! C e�ik!/

1

A

D e�i N
2 !

0

@
N=2X

kD0
2hk cos.k!/

1

A :
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We can see that in this case the phase is N=2!. Similar expressions hold for the case
of symmetric filters with odd number of coefficients, as well as for antisymmetric
filters.

We can conclude from the above discussion that, in order to obtain symmetric
(antisymmetric) scaling functions and wavelets, it is necessary to factor the polyno-
mial P into symmetric polynomials m0 (and fm0). Therefore, in the factorization
of P the roots zj and z�1

j must stay together. We remark that, although P is a
symmetric polynomial, it obviously can be factorized into two polynomials that are
not symmetric.

In the next chapter, we will demonstrate that symmetry and orthogonality are
incompatible properties, except for the case of Haar wavelets. This is because
orthogonal filters require that the roots zj and z�1

j are separated and assigned one to
m0 and the other to m0.

Nonetheless, despite the orthogonality restriction, it is possible to design filters
that are close to linear phase and result in basis functions that are least asymmetric.
This can be accomplished by selecting from each pair of roots z, z�1, the one which
contributes the least to nonlinearity of the filter phase. For this purpose, we have to
compute the nonlinear contribution of the factors .z � zk/ and .z � z�1

k / to the total
phase of m0.

10.2.6 Other Properties

There are several other properties that are relevant to applications, but are only
achievable by some types of wavelets. Below we discuss a few of them.

• Analytic Form: The analytic expression for the scaling function and wavelet
is, in general, not available. These functions are defined indirectly through the
filter coefficients .h/ and .g/. Nonetheless, the definition of the scaling function
and wavelet in analytic form is very useful in many applications. One important
example of wavelet basis with closed form analytic expression is the family of
B-Spline wavelets.

• Interpolation: The interpolation property makes it trivial to find the values of
the scaling coefficients from samples of the function. When the scaling function
�.k/ D ık, for k 2 Z, the coefficients cj

k D hf ; �ji of the projection ProjVj
.f / of

f on Vj, are just the values f .2jk/ of f sampled on a grid with spacing 2�j.
• Rational Coefficients: Filter coefficients that are rational numbers make com-

puter implementation more efficient and precise. It is even better if the coef-
ficients are dyadic rational numbers. In this case, division by a power of two
corresponds to shifting bits.
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10.3 Classes of Wavelets

From our discussion of the various properties of wavelets, we can conclude that
it is not possible to achieve all of them at the same time. The reason is that
different properties may be incompatible with each other, and imply in conflicting
requirements on the filter function m0. For example, on one hand, the support width
is proportional to the number of filter coefficients and consequently small support
requires a low-degree m0. On the other hand, the number of vanishing moments
depends on the multiplicity of the zero at 	 of m0, and consequently a large number
of vanishing moments requires a high degree m0.

To make things even more complicated, there is a great interdependency among
the different requirements. For instance, m0 is of the form 1=2.1 � ei!/nQ.!/.
While the first factor controls the vanishing moments, the second factor is necessary
to guarantee orthogonality. If we increase the degree of the first, we also have to
increase the degree of the second.

Naturally, as in any design process, there is always a trade-off between different
properties relative to their importance in a given application.

In general terms, there are two main classes of wavelets that combine some of
the above properties in the best way.

10.3.1 Orthogonal Wavelets

Orthogonal wavelets are the best choice in some cases. Unfortunately, except for the
Haar case, orthogonal wavelets cannot be symmetric.

It is possible to design orthogonal wavelets with more or less asymmetry.
Other properties that are important for orthogonal wavelets are: support width,

number of vanishing moments, and regularity.
In Chap. 11, we will discuss how to generate compactly supported wavelets, and

how to control the various properties.

10.3.2 Biorthogonal Wavelets

Biorthogonal wavelets have most of the qualities of orthogonal wavelets, with the
advantage of being more flexible.

There are many more biorthogonal wavelets than orthogonal ones. For these
reasons, they make possible a variety of design options and constitute class of
wavelets most used in practical applications.

Biorthogonal wavelets can have symmetry. They are associated with perfect
analysis/reconstruction filter banks.

In Chap. 12 we will discuss how to generate biorthogonal wavelets.
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10.4 Comments and References

The framework for wavelet design in the frequency domain has been developed
since the early days of wavelet research by Yves Meyer, [43], and Stephane
Mallat, [36], among others. The initial methods investigated could only produce
orthogonal wavelets with infinite support. The major breakthrough was made by
Ingrid Daubechies in 1988, [18].

Gilbert Strang presents in his book, [55], a complete and detailed framework for
generating wavelets using the filter design methodology.

Carl Taswell developed a computational procedure to generate wavelet filters
using the factorization of the polynomial P, [60].



Chapter 11
Orthogonal Wavelets

In this chapter we will investigate the construction and design of compactly
supported orthogonal wavelets. We will derive a closed form expression for the
polynomial P, introduced in the previous chapter, and we will show how to factor P
in order to generate orthogonal wavelets with different properties.

11.1 The Polynomial P

We saw in the previous chapter that the trigonometric polynomial P.z/, with z D ei!

is the key element in the construction of compactly supported wavelets. There,
we described a method to synthesize wavelets by factoring P as a product of two
polynomials. But, in order to apply this method, we need first an explicit expression
for P, i.e. a formula to compute the coefficients ak of P.ei!/

Pn
kD�n akeik! .

To find a closed form expression for P we recall the two conditions that P must
satisfy in the context of orthogonal filter banks.

• P is a reciprocal product polynomial

P.ei!/ D jm0.e
i!/j2 (11.1)

where m0 has a zero of order n at ! D 	 (or ei! D �1).
• P is a halfband filter

P.ei!/C P.ei!C	/ D 1 : (11.2)

We need to find a polynomial P of the form (11.1), such that Eq. (11.2) is true. We
will address these two conditions one at time, and we will combine them afterwards
to obtain an expression for P.

© Springer International Publishing Switzerland 2015
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11.1.1 P as a Product Polynomial

The polynomial P.z/ D jm0.z/j2 is generated from m0, which in turn is of the form

m0.e
i!/ D

�
1C ei!

2

�n

Qn.e
i!/ : (11.3)

The factor .1C ei!/n is a consequence of the fact that m0 has a zero of order n at 	 .
We get an expression for P by substituting Eq. (11.3) into (11.1)

P.ei!/ D jm0.e
i!/j2 (11.4)

D m0.e
i!/ m0.ei!/ (11.5)

D m0.e
i!/ m0.e

�i!/ (11.6)

D
�
1C ei!

2

�n �
1C e�i!

2

�n

jQn.e
i!/j2 : (11.7)

Since j1 C e�i! j2=2 D .1 C cos!/=2, the condition of n zeros at 	 appears in
P as

P.!/ D
�
1C cos.!/

2

�n

jQn.e
i!/j2 : (11.8)

The factor jQn.ei!/j2 in P gives extra degrees of freedom to satisfy the halfband
property expressed in Eq. (11.2).

A question comes up at this point. Is it possible to factor every polynomial
P.ei!/ � 0 into a product jm0.ei!/j2? The answer is yes. This is guaranteed by
the Riesz Lemma.

Lemma 11.1 (Riesz). If A.!/ � 0 is a trigonometric polynomial of degree M,
invariant under the substitution ! ! �!, A has to be of the form

A.!/ D
MX

mD0
am cos m!

with am 2 R. Then there exists a polynomial B of order M

B.!/ D
MX

mD0
bmeim!

with bm 2 R, such that jB.!/j2 D A.!/.

A proof of this lemma can be found in [20], p. 172.
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The above result guarantees that a factorization of P using the method described
in the previous chapter is possible. In fact, the proof is constructive and follows the
steps necessary for the spectral factorization. Note that P is a polynomial in cos!
as enunciated by the lemma.

11.1.2 P and the Halfband Property

We derived above a partial expression for P. We found that P has to be decomposed
into two factors P.!/ D p1.!/q1.!/, where p1.!/ D .1C cos!/n=2 provides the
zeros at 	 and q1 are chosen such that the halfband property is verified.

To relate P and the halfband filter property in Eq. (11.2), we use the following
theorem:

Theorem 11.1 (Bezout). If p1 and p2 are two polynomials with no common zeros,
then there exist unique polynomials q1 and q2 such that

p1.y/q1.y/C p2.y/q2.y/ D 1 (11.9)

where p1, p2, q1, q2, are of degree n1, n2, n2 � 1, n1 � 1, respectively.

A proof of this theorem can be found in [20], p. 169.
For reasons that will become clear later, let’s apply Bezout’s theorem to the

particular case where p1.y/ D .1 � y/N and p2.y/ D yN . The theorem says that
there exist unique polynomials q1, q2 of degree� N � 1, such that

.1 � y/Nq1.y/C yNq2.y/ D 1 : (11.10)

When we substitute y for 1 � y, Eq. (11.10) becomes

.1 � y/Nq2.1 � y/C yNq1.1 � y/ D 1 : (11.11)

Because q1 and q2 are unique, necessarily q1.y/ D q2.1 � y/, and also q2.y/ D
q1.1� y/.

This allows us to find an explicit formula for q1.

q1.y/ D .1 � y/�N Œ1 � yNq1.1 � y/�

D .1 � y/�N � yNR.y/

D
N�1X

kD0

 
N C k � 1

k

!
yk � yNR.y/ (11.12)

where we expanded the first N terms of the Taylor series for .1 � y/�N . Since the
degree of .q1/ � N � 1, q1 is equal to its Taylor expansion truncated after N terms.



146 11 Orthogonal Wavelets

Therefore, we can drop yNR.y/ and make q1.y/ D .1 � y/�N . This gives a closed
form expression for q1, which is the unique lowest degree solution for (11.10).

.1� y/NBn.y/C yNBn.1� y/ D 1 (11.13)

where Bn.y/ is the binomial series for .1� y/�N , truncated after N terms

Bn.y/ D
N�1X

kD0

 
N C k � 1

k

!
yk : (11.14)

Higher degree solutions for (11.10) also exist with q1.y/ D Bn.y/ � yNR.y/,
provided that R.y/ satisfies R.y/� R.1 � y/ D 0.

11.1.3 The Expression of P

Now we put together the two results above to obtain an expression for P. So far we
know the following:

i. P is of the form P.!/ D
	
1Ccos.!/

2


n jQn.ei!/j2
ii. A polynomial of the form P.y/ D .1 � y/nBn.y/ has the halfband property.

To relate (i) and (ii) we make a change of variables

ei! C e�i!

2
D cos.!/ D 1 � 2y

which gives

y D 1 � cos.!/

2
and 1 � y D 1C cos.!/

2
:

Therefore, we can write P as

P.!/ D
�
1C cos.!/

2

�n n�1X

kD0

 
nC k � 1

k

!�
1 � cos.!/

2

�k

: (11.15)

It is clear that Bn is the solution for jQnj2 which makes P satisfy the halfband
property.

Making another change of variables we obtain an expression for P in terms of
the complex variable z D ei! .
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1C cos.!/

2
D
�
1C ei!

2

��
1C e�i!

2

�
D

�
1C z

2

��
1C z�1

2

�

1 � cos.!/

2
D
�
1 � ei!

2

��
1 � e�i!

2

�
D

�
1 � z

2

��
1 � z�1

2

�

Substituting this into Eq. (11.15) we arrive at the closed form expression for P in
the z-domain

P.z/ D
�
1C z

2

�n �
1C z�1

2

�n n�1X

kD0

 
nC k � 1

k

!�
1 � z

2

�k �
1 � z�1

2

�k

:

(11.16)

Note that to produce P in the form of a Laurent polynomial P.z/ DPn
kD�n akzk,

it is necessary to expand the factors in each term, and then collect the resulting terms
with same exponent. This would be required to factorize P.z/ directly, but we will
see that it is more efficient to compute the roots of P.y/ D .1 � y/nBn.y/ and make
the change of variables afterwards.

11.1.4 The Factorization of P

The two forms of the polynomial P.z/ and P.y/ are related by the change of variables

.zC z�1/=2 D 1 � 2y : (11.17)

We write this as a composition of conformal maps .f ı g/.z/ D y, where f is the
Joukowski transformation [42],

x D f .z/ D zC z�1

2

z D f �1.x/ D x˙
p

x2 � 1

and g is an affine transformation

y D g.x/ D .1 � x/=2

x D g�1.y/ D 1 � 2y :

The expressions for the change of variables are

y D g.f .z// D .1 � .zC z�1/=2/=2 (11.18)

z D f �1.g�1.y// D 1 � 2y˙
p
.1 � 2y/2 � 1 : (11.19)
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Notice that this change of variables in (11.19) associates two values of z for
each value of y. Equation (11.18) is, in fact, a quadratic equation for z. It is clear
from (11.17) that one z is inside the unit circle and the other 1=z is outside.

The polynomial P.y/ D .1 � y/nBn.y/, from Subsect. 11.1.3, has degree 2n � 1,
but because of the change of variables, it will result in a polynomial P.z/ of degree
4n � 2. Thus, P.z/ will have 4n � 2 roots. From these, 2n roots come from the first
factor .1�y/n, and correspond to the multiple root at z D �1. The remaining 2n�2
complex roots come from the binomial factor Bn.y/.

The polynomial jQn.ei!/j2 is a reciprocal polynomial with real coefficients. Thus,
its roots are in reciprocal and complex conjugate pairs. The change of variables
z D f �1.g�1.y// yields a doubly valued solution with reciprocal pairs fz; z�1g. The
polynomial jQn.z/j2, expressed in regular form, can be factored by regrouping these
pairs as complex quadruplets fz; z�1; Nz; Nz�1g and real duplets fr; r�1g

jQn.z/j2 D
KY

iD1
U.zI zi/

LY

jD1
V.zI rj/ (11.20)

U.zI zi/ D .z� zi/.z � z�1
i /.z � Nzi/.z � Nz�1

i / (11.21)

U.zI rj/ D .z� rj/.z � r�1
j / (11.22)

where K D .n � 1/=2 and L D .n � 1/ mod 2.
The factored polynomial z2n�1P.z/, in regular form, is obtained by including the

multiple zeros at z D �1.

z2n�1P.z/ D .zC 1/2n
KY

iD1
U.zI zi/

LY

jD1
V.zI rj/ (11.23)

The filter function m0.z/ can be computed from this factorization by noting that

P.z/ D jm0.e
i!/j2 D m0.e

i!/m0.ei!/ D m0.e
i!/m0.e

�i!/ D m0.z/m0.z
�1/ :

m0.z/ D c
KY

iD1
.z � zi/.z� Nzi/

LY

jD1
.z� rj/ (11.24)

where c is a constant, and zi and rj are selected from the elements of each reciprocal
pair fz; z�1g.

In consequence of the special structure of P, it is more efficient to compute the
2n� 1 roots of P.y/ first, and using a change of variables, generate the 4n� 2 roots
of P.z/. The roots of m0 are then selected from those roots. Therefore, the spectral
factorization of m0 is done in two steps:
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1. Find the n � 1 roots of Bn.y/, and make a change of variables to produce the
2n � 2 roots of jQn.z/j2. From these, select appropriately n � 1 roots and assign
them to m0.

2. Include the n roots at z D �1 from the factor
�
1Cz
2

�n
of
�
1Cz
2

�n� 1Cz�1

2

�n
, and

assign them also to m0.

The orthogonal filter function m0.z/ will have these 2n � 1 roots.

11.1.5 Analysis of P

The family of orthogonal filters generated from the polynomial P.y/ D .1�y/nBn.y/
is called maxflat in the filter design literature. This is because the factor .1�y/n gives
a maximum number of zeros at y D 1 (or z D �1). Consequently, the filter response
of the filter is maximally flat at ! D 	 .

In fact, the polynomial P of degree 2n � 1 is determined from n conditions at
y D 1 and at y D 0. P.y/ is the unique polynomial with 2n coefficients which
satisfies these n conditions at the endpoints, i.e. P.y/ and its first n � 1 derivatives
are zero at y D 0 and at y D 1, except that P.0/ D 1.

Figure 11.1 shows a graph of P.y/ for n D 2 and 4. Observe that P decreases
monotonically from P.0/ D 1 to P.1/ D 0. The slope of P at y D 1

2
is proportional

to
p

n. As n increases, P becomes simultaneously steeper at the midpoint and flatter
at both endpoints.

This property is very important because it means that P (and its “square root”
m0) as a filter will preserve low frequencies (near ! D 0) and will cut off high
frequencies (near ! D 	).

Gilbert Strang studied the asymptotic behavior of the zeros of P.y/ as n ! 1.
In [54], there is an insightful analysis of the factors Bn.y/ in P.y/ D .1 � y/nBn.y/,
and jQn.z/j2 in P.z/ D j. 1Cz

2
/nj2jQn.z/j2. We recall that P.y/ and P.z/ are related by

0.2 0.4 0.6 0.8 1.0
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0.4
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Fig. 11.1 P - the maxflat polynomial generator
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Fig. 11.2 Limit curves for the roots of Bn.y/ and jQn.z/j2 (from [54])

the change of variables .1 � 2y/ D .zC z�1/=2. Also, it is shown that, as n !1,
the roots of Bn.y/ approach the limiting curve j4y.1� y/j D 1, whereas the roots of
jQn.z/j2 approach the curve jz� z�1j D 2.

Figure 11.2 shows a plot of the graphs of these two curves in the complex plane.
Note that, because the change of variables yields a doubly valued solution, the curve
in y actually corresponds to two curve segments jzC 1j D p2 and jz � 1j D p2.
These curves meet at z D ˙i, which correspond to y D 1=2.

11.2 Examples of Orthogonal Wavelets

In this section we show how to generate, from the polynomial P, particular families
of orthogonal wavelets.

We have seen in the previous section that the factorization of P.z/ produces roots
that can be grouped as quadruplets of complex zeros .z� zi/.z� z�1

i /.z�Nzi/.z�Nz�1
i /

and duplets of real zeros .z � rj/.z � r�1
j /. In the spectral factorization of P.z/ D

jm0.z/j2, we have to choose from each pair of reciprocal roots fzk; z�1
k g of P, either

zk or z�1
k as a root of m0. Also, if we require that m0 is a polynomial with real

coefficients, complex conjugate pairs must stay together. Therefore, in this case, we
can select either Nzk with zk or Nz�1

k with z�1
k .

Even with these restrictions for separating the roots of P.z/, we have many
choices to Taylor m0 according to design constraints. Typically, for P of degree
m, there are 2

m
4 different choices for m0. Let’s now take a look at the most

important ones.
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11.2.1 Daubechies Extremal Phase Wavelets

The simplest systematic choice for designing orthogonal wavelets produces the so-
called extremal phase wavelets. This corresponds to selecting always the roots inside
(or outside) the unit circle, with jzj < 1 (or jzj > 1), from each reciprocal pair of
roots fz; 1z g of P.

The resulting orthogonal wavelets will have the minimum (or maximum) phase
among all compactly supported wavelets of degree m. This corresponds to scaling
functions and wavelets that are the most asymmetric basis functions. We remark
also that the minimum and maximum phase are complementary choices. They lead
to m0 and the complex conjugate of m0. Thus, the basis functions are mirror images
of each other for these two choices.

Example 16 (Daubechies Wavelets of Order 2). In this case n D 2. Therefore
P.y/ D .1 � y/2B2.y/, with B2.y/ D 1C 2y.

P.y/ D .1 � y/2.1C 2y/ : (11.25)

The change of variables y! z gives

P.z/ D
�
1C z

2

�2 �
1C z�1

2

�2
1

2

��zC 4 � z�1� : (11.26)

The factor B2.y/ has one root at y D �1=2. Equation (11.17) for the change of
variables gives the roots of jQ2.z/j2 at z D 2˙p3. The factor .1� y/2 will produce
the four zeros at z D �1 of P. The roots of P.z/ include all these zeros, and are
.�1;�1;�1;�1; 2�p3; 2Cp3/.

The choice of the root for Q2.z/ inside the unit circle z D 2 � p3 leads to the
minimum phase m0 with roots .�1;�1; 2 �p3/. Figure 11.3 shows the roots of P
and m0.

4

Fig. 11.3 Roots of P.z/ with n D 2
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The filter function m0 is then

m0.z/ D
�
1C z

2

�2
Q2.z/ (11.27)

D c.1C z�1/2.1 � .2 �p3/z�1/ (11.28)

D 1

4
p
2

	
.1 �p3/C .3Cp3/z�1 C .3 �p3/z�2 C .1 �p3/z�3




(11.29)

D h0 C h1z
�1 C h2z

�2 C h3z
�3 : (11.30)

The coefficients fhng of m0 are approximately 0:4830, 0:8365, 0:2241, �0:1294.
Figure 11.4 shows a plot of the Daubechies scaling function �D;2 and wavelet

 D;2. Figure 11.5 shows the graphs of the Fourier Transform of the Daubechies
scaling function �D;2 and wavelet  D;2.
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Fig. 11.4 Daubechies (D2) Scaling Function and Wavelet
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11.2.2 Minimal Phase Orthogonal Wavelets

The choice of m0 having all roots with absolute value less (or greater) than one leads
to wavelets with a very marked asymmetry.

Symmetry and orthogonality are conflicting requirements for compactly sup-
ported wavelets. It can be shown that the Haar basis constitutes the only scaling
functions and wavelets with compact support which are orthogonal.

We are not going to demonstrate this result, but it is intuitive to understand, from
the requirements on filter m0, why orthogonality and symmetry are incompatible.
Recall from the rules for separating the roots of P.z/ that:

• for orthogonal filters, z and z�1 must go separately; and
• for symmetric filters z and z�1 must stay together.

The above facts imply that a symmetric orthogonal FIR filter m0.z/ can only have
two non-zero coefficients. In this case,

P.z/ D
�
1C z

2

��
1C z�1

2

�
;

which corresponds to the Haar wavelets with

m0.z/ D .1C z�1/=
p
2 :

Nonetheless, it is possible to construct compactly supported orthogonal wavelets
that are less asymmetric than the ones in the previous subsection.

In order to generate the least asymmetric basis functions, we have to select the
roots of P such that m0 is as close as possible to linear phase. Therefore, we need to
estimate the contribution of each root to the phase nonlinearity of m0.

Since m0 is of the form

m0.!/ D
�
1C e�i!

2

�nY

`

.e�i! � z`/.e
�i! � Nz`/

Y

k

.e�i! � rk/ (11.31)

where z`; Nz`; rk are the roots of m0 and we have substituted z D e�i! in Eq. (11.23).
The phase of m0 can be computed from the phase of each z`; Nz`, and rk.

Since z` D r` e�i˛` and Nz` D r` ei˛`

.e�i! � r` e�i˛`/.e�i! � r` ei˛`/ D e�i!.e�i! � 2r` cos˛` C r2`e
i!/ (11.32)

their phase contribution tan! D =z=<z is

arctan

�
.r2` � 1/ sin!

.r2` C 1/ cos! � 2r` cos˛`

�
: (11.33)
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1
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f y
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Fig. 11.6 Least Asymmetric Scaling Function and Wavelet, with n D 4

Similarly, since

.e�i! � rk/ D e�i!=2.e�i!=2 � rkei!=2/ (11.34)

the phase contribution of rk is

arctan

�
.rk C 1/
.rk � 1/ tan

!

2

�
: (11.35)

To find the polynomial m0 of degree n with the smallest phase nonlinearity it is
necessary to compare all possible combination of roots. In practice, there are 2

n
2�1

choices. For n D 2 or 3, there is effectively only one set of basis �D;n,  D;n. For
n � 4, we have to evaluate the total phase nonlinearity of m0 for all 2

n
2�1 solutions.

Figure 11.6 shows the graph of the least asymmetric � and  for n D 4.

11.2.3 Coiflets

Up to this point we have assumed that m0 is the unique lowest degree polynomial
which satisfy (11.2), i.e. jm0.y/j2 D .1 � y/nBn.y/. We can use a higher degree
jm0.y/j2 D .1 � y/nŒBn.y/ � ynR.y/� to provide more freedom in the design o
orthogonal wavelets. The price to pay is a wider support of the basis functions for
a given number of vanishing moments. The minimum support width 2n � 1 for  
with n vanishing moments is achieved when R 
 0.

Daubechies resorted to such higher degree solutions to construct a family of
wavelets named “coifflets,” because R. Coiffman requested them motivated by the
research in [3]. This basis functions are more regular and symmetric than the ones
presented in the previous subsections. More precisely, the scaling functions and
wavelets are designed so that:

Z
�.x/dx D 1;

Z
x`�.x/dx D 0 (11.36)
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Fig. 11.7 Coifflets of order 4

for ` D 1; : : : ;L � 1 and

Z
x` .x/dx D 0 (11.37)

for ` D 0; : : : ;L � 1.
In other words, both  and � have n vanishing moments, except that the scaling

function integrates to one. This implies that hf ; ��J;ki 	 2J=2f .2�Jk/, making very
simple to obtain the fine scale coefficients hf ; ��J;ki from samples of f .

Figure 11.7 shows a plot of the coifflets of order 4.

11.3 Comments and References

The main result for the construction of compactly supported orthogonal wavelets
is due to Ingrid Daubechies. She formulated the expression for the halfband
polynomial P based on the multiresolution analysis conditions in the frequency
domain and also in the restriction of finite length filters [18]. Based on this
formulation, she discovered the family of extremal phase compactly supported
orthogonal wavelets, which are known as Daubechies Wavelets. In her book [20],
she gives a good overview of this methodology, and also presents examples of
several other families of compactly supported wavelets.

Carl Taswell in [58, 59] presents algorithms for the generation of the Daubechies
orthogonal wavelets and for the computation of their regularity.

The book by Gilbert Strang and Truong Nguyen gives a comprehensive treatment
of the framework for generating wavelets from a filter bank viewpoint, [55].



Chapter 12
Biorthogonal Wavelets

We have seen in the previous chapters that orthogonality is a very strong constraint
for the construction of wavelets. This restricts significantly the design choices of
wavelet basis. For example, we showed in Chap. 11 that the Haar wavelet is the only
orthogonal basis which is symmetric and has compact support.

A practical solution, that allows more flexibility on the choice of wavelet
functions with desirable properties, is to replace orthogonality by a biorthogonality
condition.

In this chapter we will introduce biorthogonal wavelet basis, will discuss its
relations with perfect reconstruction filter banks, and will present a framework for
the design of biorthogonal wavelets.

12.1 Biorthogonal Multiresolution Analysis and Filters

12.1.1 Biorthogonal Basis Functions

Biorthogonal wavelets constitute a generalization of orthogonal wavelets. Under this
framework, instead of a single orthogonal basis, a pair of dual biorthogonal basis
functions is employed: One for the analysis step and the other for the synthesis step,
i.e. we have reciprocal frames as defined in Chap. 2.

© Springer International Publishing Switzerland 2015
J. Gomes, L. Velho, From Fourier Analysis to Wavelets,
IMPA Monographs 3, DOI 10.1007/978-3-319-22075-8_12
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Recall that, in the context of orthogonal multiresolution analysis, we have defined
the projection operators onto the subspaces Vj and Wj, respectively:

ProjVj
.f / D

X

k

analysis
‚ …„ ƒ
hf ; �j;ki �j;k

„ ƒ‚ …
synthesis

; and ProjWj
.f / D

X

k

analysis
‚ …„ ƒ
hf ;  j;ki  j;k

„ ƒ‚ …
synthesis

;

where the functions � and  perform a double duty, i.e. they are used for:

• analysis: compute the coefficients of the representation of f in terms of the basis
� and  of the spaces Vj and Wj, respectively, cj

k D hf ; �j;ki and dj
k D hf ;  j;ki;

• synthesis: reconstruct the projection of f onto Vj and Wj, from the coefficients
of the representation, respectively, ProjVj

.f / D P
k cj

k�j;k and ProjWj
.f / D

P
k dj

k j;k.

The more general framework of biorthogonal multiresolution analysis employs
similar projection operators

Pjf D
X

k

hf ; �j;ki Q�j;k ; and Qjf D
X

k

hf ;  j;ki Q j;k;

where the pair of functions �, Q� and  , Q are used to share the workload: one
function of the pair acts as the analyzing function, while the other acts as the
reconstruction function.

The functions � and  are called, respectively, primal scaling function and
wavelet. The functions Q� and Q are called, respectively, dual scaling function
and wavelet. The fact the roles of these functions can be interchanged is called
duality principle. Although other conventions are possible, here we will assume
that the primal functions are used for analysis, while the dual functions are used for
synthesis.

In terms of a multiresolution analysis, this scheme leads to a family of biorthog-
onal scaling functions and wavelets that are dual basis of the approximating and
detail spaces.

More precisely, we define a pair of scaling functions �j and Q�j that are,
respectively, Riesz basis of the subspaces Vj and QVj. Similarly we define a pair of
wavelet functions  j and Q j that are, respectively, Riesz basis of the subspaces Wj

and QWj.
These functions generate dual multiresolution analysis ladders

� � � � V1 � V0 � V�1 � � � �
� � � � QV1 � QV0 � QV�1 � � � �
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where V0 D Spanf�0;kjk 2 Zg and QV0 D Spanf Q�0;kjk 2 Zg. The spaces Wj and QWj

generated by  j;k and Q j;k are, respectively, the complements of Vj in Vj�1 and of QVj

in QVj�1. In other words, Vj�1 D Vj CWj and QVj�1 D QVj C QWj. The intersection of
these spaces is null, i.e. Vj \ Wj D f;g and QVj \ QWj D f;g, but the spaces Vj, Wj,
and also QVj, QWj, are not orthogonal, in general.

In order to compensate for the lack of orthogonality within the approximating
and detail spaces, we impose instead a biorthogonality relation between the primal
and dual multiresolution ladders, such that

Vj ? QWj and QVj ? Wj (12.1)

and, consequently,

Wj ? QWl (12.2)

for j ¤ l.
The two multiresolution hierarchies and their sequences of complement spaces

fit together according to an intertwining pattern.
The above biorthogonality condition implies that the basis of these spaces must

relate as

h Q�.x/;  .x � k/i D
Z
Q�.x/ .x � k/dx D 0 (12.3)

h Q .x/; �.x � k/i D
Z
Q .x/�.x � k/dx D 0 (12.4)

and

h Q�.x/; �.x � k/i D
Z
Q�.x/�.x � k/dx D ık (12.5)

h Q .x/;  .x � k/i D
Z
Q .x/ .x � k/dx D ık; (12.6)

which can be extended to the multiresolution analysis by a scaling argument
resulting in

h Q�j;k; �j;mi D ık;m; j; k;m 2 Z (12.7)

h Q j;k;  l;mi D ıj;lık;m; j; k; l;m 2 Z : (12.8)
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12.1.2 Biorthogonality and Filters

The two pairs of scaling function and wavelet, �,  , and Q�, Q , are defined
recursively by the two pairs of filters m0, m1, and fm0, fm1.

In the frequency domain these relations are

O�.!/ D m0.!=2/ O�.!=2/; O .!/ D m1.!=2/ O�.!=2/
OQ�.!/ Dcm0.!=2/

OQ�.!=2/; OQ .!/ Dcm1.!=2/
OQ�.!=2/

where

m0.!/ D 1p
2

X

k

hk e�ik!; m1.!/ D 1p
2

X

k

gk e�ik!

fm0.!/ D 1p
2

X

k

Qhk e�ik!; fm1.!/ D 1p
2

X

k

Qgk e�ik! :

By computing the Fourier Transform of the inner products in Eqs. (12.3)
to (12.6), and using the same argument of Chap. 10 for the characterization of m0

and m1, we can see that the biorthogonality condition in the frequency domain is
equivalent to

X

k

OQ�.! C k2	/ O�.! C k2	/ D 1
X

k

OQ .! C k2	/ O .! C k2	/ D 1
X

k

OQ .! C k2	/ O�.! C k2	/ D 0
X

k

OQ�.! C k2	/ O .! C k2	/ D 0

for all ! 2 R.
This means that the filters m0, m1 and their duals fm0, fm1 have to satisfy

fm0.!/m0.!/Cfm0.! C 	/m0.! C 	/ D 1 (12.9)

fm1.!/m1.!/Cfm1.! C 	/m1.! C 	/ D 1 (12.10)

fm1.!/m0.!/Cfm1.! C 	/m0.! C 	/ D 0 (12.11)

fm0.!/m1.!/Cfm0.! C 	/m1.! C 	/ D 0 : (12.12)
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The set of equations above can be written in matrix form as

�
fm0.!/ fm0.! C 	/
fm1.!/ fm1.! C 	/

��
m0.!/ m1.!/

m0.! C 	/ m1.! C 	/
�
D
�
1 0

0 1

�

or

QM.!/MT .!/ D I (12.13)

where M is the modulation matrix introduced in Chap. 10

M.!/ D
�

m0.!/ m0.! C 	/
m1.!/ m1.! C 	/

�
(12.14)

and I is the identity matrix.

12.1.3 Fast Biorthogonal Wavelet Transform

Because � and  define a multiresolution analysis, we have that

�.x/ D
X

k

hk�.2x � k/ and  .x/ D
X

k

gk�.2x� k/ : (12.15)

Similarly, Q� and Q also define a multiresolution analysis, and therefore

Q�.x/ D
X

k

Qhk Q�.2x � k/ and Q .x/ D
X

k

Qgk Q�.2x � k/ : (12.16)

We can derive the coefficients of the filters Qm0 and Qm1 by combining the
above two equations with the biorthogonality relations h Q�j;k; �j;mi D ık;m and
h Q j;k;  l;mi D ıj;lık;m. This gives us

Qhk�2l D h Q�.x � l/; �.2x � k/i (12.17)

Qgk�2l D h Q .x � l/; �.2x � k/i (12.18)

and also

hk�2l D h�.x� l/; Q�.2x � k/i (12.19)

gk�2l D h .x � l/; Q�.2x � k/i : (12.20)

By writing �.2x � k/ 2 V�1 in terms of the bases of V0 and W0, we get the
two-scale relation
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�.2x � k/ D
X

l

Qhk�2l�.x � l/C
X

l

Qgk�2l .x � l/ (12.21)

and, since primary and dual functions are interchangeable, we also have

Q�.2x � k/ D
X

l

hk�2l Q�.x � l/C
X

l

gk�2l Q .x � l/ : (12.22)

The fast biorthogonal wavelet transform uses the above decomposi-
tion/reconstruction relation. The algorithm employs the two pairs of primary and
dual filters and except for this difference, it is essentially similar to the orthogonal
case, presented in Chap. 7.

The pair of filters em0, em1 is employed in the decomposition step and the pair of
filters m0, m1 in the reconstruction step.

In the decomposition step we employ a discrete convolution with the filter
coefficients .hk/ and .gk/ of the filters m0 and m1.

cjC1
n D

X

k

hk�2ncj
k (12.23)

and

djC1
n D

X

k

gk�2ncj
k : (12.24)

Conversely, in the reconstruction step, we employ a discrete convolution with the
filter coefficients, .Qhk/ and .Qgk/, of the filters fm0 and fm1

cj�1
l D

X

n

Qhl�2ncj
n C

X

n

Qgl�2ncj
n : (12.25)

Remember that, as we already noted, the roles of these two filter banks can be
interchanged.

12.2 Filter Design Framework for Biorthogonal Wavelets

12.2.1 Perfect Reconstruction Filter Banks

The filters m0, fm0, m1, fm1 define a two-channel filter bank, where m0, m1 are,
respectively, the low-pass and high-pass filters used in the analysis step, and fm0,
fm1 are, respectively, the low-pass and high-pass filters used in the synthesis step,
as shown in Fig. 12.1. Once again, we note that the role of these filters can be
interchanged.
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m0 ↓ 2 c j ↑ 2 m̃0

c j−1 <
⊕ � ĉ j−1

m1 ↓ 2 d j ↑ 2 m1

Fig. 12.1 Biorthogonal Filter Bank

We would like this two-channel filter bank to have the property of perfect
reconstruction. This means that a signal can be exactly reconstructed by the
synthesis filters from the coefficients of the representation constructed by the
analysis filters. These conditions can be derived by following a discrete signal, .xn/,
through the filter bank.

The output of the low-pass channel can be written in a compact notation using
the z-notation (see Appendix B).

We will do this in three stages: First, we perform a discrete convolution of anal-
ysis low-pass filter with the signal, whose z-transform is m0.z/x.z/. This is followed
by downsampling and upsampling, which in the z-domain is 1=2 Œm0.z/x.z/ C
m0.�z/x.�z/�. Finally, we perform a discrete convolution of the resulting coefficient
sequence with the synthesis filter, whose z-transform is

1

2
fm0.z/ Œm0.z/x.z/C m0.�z/x.�z/� : (12.26)

The output of the high-pass channel is obtained in a similar manner

1

2
fm1.z/ Œm1.z/x.z/C m1.�z/x.�z/� : (12.27)

The filter bank combines the outputs of the low-pass and high-pass channel by
adding these two expressions, which gives

Ox.z/ D 1

2
Œfm0.z/m0.z/Cfm1.z/m1.z/� x.z/

C 1
2
Œfm0.z/m0.�z/Cfm1.z/m1.�z/� x.�z/

where we rearranged the expression to separate the term involving x.z/ from the
terms involving x.�z/.
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Note that the downsampling/upsampling operators introduced aliasing in the
signal, manifested by the appearance of terms x.�z/, as well as x.z/. By substituting,
z D e�i! and�z D e�i!C	 , it is apparent that the frequencies wC	 appear as aliases
of frequencies w in the signal (see Appendix A for details).

For perfect reconstruction we must have Ox.z/ D x.z/, which implies in two
conditions:

• alias cancellation: the aliasing components caused by subsampling in the low-
pass channel and in the high-pass channel cancel each other.

fm0.z/m0.�z/Cfm1.z/m1.�z/ D 0

or, making z D e�i!

fm0.!/m0.! C 	/Cfm1.!/m1.! C 	/ D 0 (12.28)

• no distortion: the signal is reconstructed without loss or gain of energy.

fm0.z/m0.z/Cfm1.z/m1.z/ D 2

or

fm0.!/m0.!/Cfm1.!/m1.!/ D 2 : (12.29)

12.2.2 Conjugate Quadrature Filters

We have four filters to design, m0, m1, fm0, fm1. These filters must satisfy the
conditions for perfect reconstruction. An interesting option is to investigate how
we can determine some of the filters from the others, such that conditions (12.28)
and (12.29) are automatically satisfied.

First, we use a conjugate quadrature scheme as done in Chap. 10, to define the
high-pass filters in terms of the low-pass filters:

m1.!/ D e�i!fm0.! C 	/ (12.30)

fm1.!/ D e�i!m0.! C 	/ : (12.31)

This option takes care of the alias cancelation, and guarantees that Eq. (12.28) is
satisfied, as it can seen by substituting (12.30), (12.31) into (12.28).

Next, to express the no-distortion condition in terms of only m0 and fm0, we
rewrite Eq. (12.29) using (12.30), (12.31).

fm0.!/m0.!/Cfm0.! C 	/m0.! C 	/ D 2 (12.32)
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Note that, when we normalize the filters (multiplying their coefficients by
1=
p
2), Eq. (12.32) is exactly (12.9), the first condition for biorthogonality of the

filters m0, fm0, m1, fm1. The other conditions (12.10), (12.12), and (12.11) can
be derived from the perfect reconstruction conditions (12.28) and (12.29), using
the conjugate quadrature relations (12.30) and (12.31). This demonstrates that
biorthogonal wavelets are associated with a subband filtering scheme with exact
reconstruction.

12.2.3 The Polynomial P and Wavelet Design

Now, we define the product filter P.!/ Dfm0.!/m0.!/, and Eq. (12.32) becomes

P.!/C P.! C 	/ D 2 : (12.33)

To design the filters m0, fm0, m1, fm1 that generate biorthogonal wavelets, we use
the following procedure:

1. Choose a polynomial P satisfying Eq. (12.33)
2. Factor P into fm0 m0

3. Use (12.30) and (12.31) to obtain m1 and fm1.

Observe that this procedure is very similar to the one described in Chap. 10. In
fact, we are using the same filter design framework to create wavelet basis. The main
difference is that now, the analysis filters can be different from the synthesis filters,
because we have two biorthogonal multiresolution hierarchies. This gives us more
freedom to design wavelets with desired properties.

As we have seen in Chap. 10, in order to satisfy the perfect reconstruction
condition, the polynomial P.!/ D PN

kD�N D akeik! must be a halfband filter,
i.e. the terms with index k even must have coefficient ak D 0, except for a0 D 1,
such that the terms with index k odd, which have coefficients ak 6D 0, will cancel in
Eq. (12.33), because ei2k.!C	/ D �ei2k! . The only remaining term will be a0 D 1,
resulting in P.!/ C P.! C 	/ D 2 (or when the filters are normalized a0 D 1=2

and P.!/C P.! C 	/ D 1).
Also, because both � and Q� define multiresolution analyses, the polynomials

m0.!/ and fm0.!/ must have at least one zero at 	 (see Chap. 11 for details).
Therefore, P.!/ Dfm0.!/m0.!/ has to be of the form

P.!/ D ˇ̌�1C ei!
�nˇ̌2

B.ei!/ : (12.34)

The advantage of biorthogonal wavelets over orthogonal wavelets is that we can
factorize P.!/ in two different polynomials m0, fm0 instead as the “square” of a
single polynomial m0.
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12.2.4 Factorization of P for Biorthogonal Filters

Let us see one example of the different design choices for the factorization of P.!/
into m0.!/ and fm0.!/, from [55].

We will design the polynomial P such that it will have four zeros at 	

P.!/ D j.1C e�i!/2j2B.ei!/

D .1C e�i!/2.1C ei!/2B.e�i!/ :

Making z D e�i!

P.z/ D .1C z�1/2.1C z/2B.z/

D .z�2 C 4z�1 C 6C 4zC z2/B.z/

D z2.1C z�1/4 B.z/ :

We have to choose B so that even powers are eliminated from P, making it a halfband
polynomial. The solution is B.z/ D �z�1 C 4 � z

P.z/ D .z�2 C 4z�1 C 6C 4zC z2/.�z�1 C 4 � z/

D �z�3 C 9z�1 C 16C 9z� z3 :

We normalize it to make a0 D 1

P.z/ D 1

16
.�z�3 C 9z�1 C 16C 9z� z3/ : (12.35)

Note that P satisfies the perfect reconstruction conditions and also has four zeros
at �1.

We have several choices to factorize P.z/ into fm0.z/m0.z/. The polynomial P has
six roots f�1;�1;�1;�1; 2 �p3; 2Cp3g. The four roots at z D �1 come from
.1C z�1/4, and the other two roots at c D 2 �p3 and 1=c D 2Cp3 come from
B.z/.

Each of the polynomials m0.z/ and fm0.z/ will have, at least, one root at z D �1.
Therefore, we can select the roots for the filter m0 (or fm0) in one of the following
ways, — the other filter fm0 (or m0) will have the remaining roots:

i. m0 of degree 1: .1C z�1/
ii. m0 of degree 2: .1Cz�1/2, or .1Cz�1/ .c�z�1/, or .1Cz�1/ .1=c�z�1/

iii. m0 of degree 3: .1C z�1/3, or .1C z�1/2 .c � z�1/ .

We have six different choices for the factorization of P. For each choice the roots
are separated in two sets, and we can select which set of roots go to the analysis
filter m0 and to the synthesis filter fm0.
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In option (i), one factor is .1C z�1/, which is the filter for a box function. The
other factor is a degree 5 polynomial 1

16
.�1 C z�1 C 8z�2 C 8z�3 C z�4 � z�5/.

The filter bank will have filters with 2 and 6 coefficients for analysis and synthesis,
respectively.

In option (ii), the first possibility is one factor equal to 1
2
.1C 2z�1C z�2/, which

is the filter for the hat function, and the other factor equal to 1
8
.�1C 2z�1C 6z�2C

2z�3 � z�4/. This choice corresponds to the order 2 B-spline biorthogonal wavelet,
that will be discussed in the next section. It is best to use the hat scaling function for
synthesis, resulting in a 5=3 filter bank. The other possibilities are not so interesting.

In option (iii), we have two different possibilities, both very important. The first
possibility is a factorization as 1

8
.1C3z�1C3z�2Cz�3/, and 1

2
.�1C3z�1C3z�2�

z�3/. Notice that this choice results in a pair of linear phase filters which correspond
to symmetric scaling functions and anti-symmetric wavelets. The second possibility
is a factorization with m0.z/ D fm0.z/ D 1

4
p
2
Œ.1 C p3/ C .3 C p3/z�1 C .3 �p

3/z�2C .1�p3/z�3�. This choice gives us the Daubechies orthogonal wavelet of
order 2, that we presented in the previous chapter. Notice that the orthogonal filters
have extremal phase, which correspond to the most asymmetric scaling functions
and wavelets.

Figure 12.2 shows the graph of the biorthogonal scaling functions and wavelets
derived in case (i), and Fig. 12.3 plots the frequency response of the corresponding
filters.

Figure 12.4 shows the graph of the biorthogonal scaling functions and wavelets
derived in case (ii), and Fig. 12.5 plots the frequency response of the corresponding
filters.

Figure 12.6 shows the graph of the biorthogonal scaling functions and wavelets
derived in option (a) of case (iii), and Fig. 12.7 plots the frequency response of the
corresponding filters.

Figure 12.8 shows the graph of the orthogonal D2 Daubechies scaling functions
and wavelets derived in option (b) of case (iii), and Fig. 12.9 plots the frequency
response of the corresponding filters.

12.3 Symmetric Biorthogonal Wavelets

One of the advantages of biorthogonal over orthogonal wavelets is that we can
have symmetry. In this section we present some families of symmetric biorthogonal
wavelets, developed by Ingrid Daubechies [20], using different factorizations of the
polynomial P.

For symmetric filters we have to factorize P such that the roots zi and z�1
i must

stay together when we split the roots between m0 and fm0. Therefore, we have
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Fig. 12.2 Biorthogonal box scaling functions a and wavelets b

zNP.z/ D aN
NY

iD1
.z � zi/

�
z � 1

zi

�
(12.36)

where each pair of roots, fzi; 1=zig, must be assigned either to m0 or to fm0.

12.3.1 B-Spline Wavelets

B-Splines of order N are piecewise polynomials that come from the convolution of
N box functions. In terms of the two-scale relations, they can be constructed from a
filter function m0.z/ of the form

m0.z/ D
�
1C z�1

2

�N

: (12.37)

Each factor,
�
1Cz�1

2

�
, corresponds to a convolution with a box function.
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Fig. 12.3 Frequency response of low-pass a and high-pass b filters

To construct biorthogonal B-spline wavelets we can split the polynomial P
introduced in the previous chapter as:

fm0.z/ D
�
1C z�1

2

� QM
(12.38)

where QM D 2 Q̀ is even or eM D 2 Q̀ C 1 is odd, and

m0.z/ D
�
1C z�1

2

�M `CQ̀�
X

mD0

 
`C Q̀ � 
 Cm

m

!�
1 � z

2

�m �
1 � z�1

2

�m

(12.39)

where M D 2` is even, or M D 2`C 1 is odd, and 
 D 0 if M is odd, or 
 D 1 if
M is even.

Note that this formulas give explicit expressions for fm0 and m0. We have, thus
a family of biorthogonal B-spline wavelets, in which the synthesis scaling function
Q� is a B-spline of order QM. For a fixed QM, there is an infinity of choices for M,
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Fig. 12.4 Biorthogonal Hat scaling functions a and wavelets b

resulting in biorthogonal functions with increasing regularity and support width.
Also, we remark that fm0 depends only on QM, while m0 depends on both M and QM.

In Fig. 12.10 we show one example of a biorthogonal B-spline wavelets and
scaling functions of order 2 (linear spline), QM D 2, with M D 2 and 4.

This family of wavelets has two main advantages: First, there is a closed
form expression for the B-spline scaling functions Q� and wavelets Q ; Second, the
coefficients for all filters fm0, fm1, m0, m1 are dyadic rationals, which make them
suitable for fast and exact computer implementations.

The major disadvantage of biorthogonal B-spline wavelets is that the analysis and
synthesis functions have very different support widths, as can be seen in Fig. 12.10.
This may or may not be a problem in some applications.
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Fig. 12.5 Frequency response of low-pass a and high-pass b filters

12.3.2 Wavelets with Closer Support Width

It is possible to construct wavelets with closer support width by choosing an
appropriate factorization of the polynomial P. The goal is to find filter functions
m0 and fm0, that have both linear phase and similar degree.

We determine all roots of P, real zeros ri, and pairs of complex conjugate zeros
fzj; zjg

P.z/ D c
Y

iD1
.z � ri/

Y

jD1
.z � zj/.z� zj/ : (12.40)

For a fixed degree N D ` C Q̀, we have a limited number of factorizations.
Therefore, we can generate all the different combinations of roots, such that ri,
fzj; zjg are assigned either to m0 or to fm0, and select the option `C Q̀, that makes the
lengths of m0 and fm0 as close as possible.
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Fig. 12.6 Biorthogonal quadratic B-spline scaling functions a and wavelets b

Figure 12.11 shows an example of symmetric biorthogonal wavelets designed
using this method.

12.3.3 Biorthogonal Bases Closer to Orthogonal Bases

Motivated by a suggestion of M. Barlaud, Ingrid Daubechies developed a family
of biorthogonal wavelet bases that are close to an orthogonal basis. Barlaud tried
to construct biorthogonal wavelets using the Laplacian pyramid filter, designed by
P. Burt [8], as either m0 or fm0. These experiments lead to the discovery that the Burt
filter is very close to an orthonormal wavelet filter.

The particular construction for the Burt filter was then generalized by Daubechies
to a family of biorthogonal wavelets that are close to orthogonal. She used the
extended formula for the polynomial P, including the factor R.zN/, as discussed
in the previous chapter.
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Fig. 12.7 Frequency response of low-pass a and high-pass b filters

The filter functions for this family are defined as

m0.z/ D S.z/C aR.z/; and fm0.z/ D S.z/C bR.z/ (12.41)

where the S, R are given below, and the constants a, b are computed by an
optimization procedure to guarantee the biorthogonality of the filters.

S.z/ D
�
1C z

2

�2K �
1C z�1

2

�2K K�1X

kD0

 
K � 1C k

k

!�
1 � z

2

�2k �
1 � z�1

2

�2k

(12.42)

R.z/ D
�
1 � z�2

4

�2K �
1 � z2

4

�2K

(12.43)

Note that the filters m0 andfm0 differ only by the constants a and b, therefore they
are very close to an orthogonal filter.
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Figure 12.12 shows a plot of a wavelet constructed using this procedure.
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Fig. 12.9 Frequency response of low-pass a and high-pass b filters

12.4 Comments and References

The first examples of biorthogonal wavelets were developed independently by [14]
and [62].

It is possible to construct biorthogonal wavelets such that the primal and dual
scaling and wavelet bases generate a single orthogonal multiresolution analysis. In
this case, the scaling function and wavelets are called semi-orthogonal. The name
“pre-wavelets” is also employed to designate this type of wavelets. An extensive
treatment of this subject can be found in [13].
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Chapter 13
Directions and Guidelines

In this concluding chapter we will review the material covered in the book, and give
some directions for further studies on the subject of wavelets.

13.1 History and Motivation

The field of wavelets, despite being relatively recent, is vast and is developing very
rapidly. This is true in relation to both the theoretical aspects of wavelets, and the
applications.

Wavelets are a product of groundwork from many areas, ranging from pure math-
ematics and physics to engineering and signal processing. Independent research in
these areas pursued similar goals using different approaches. The objective was
to develop tools to describe functions in time and frequency simultaneously. The
separate lines of investigation reached a mature point, and in the beginning of the
1980s, the confluence of this interdisciplinary sources was formalized originating
the theory of wavelets. The subsequent unification of the field was a key factor to
make wavelets popular in applied mathematics, and also to give a significant impulse
to new research.

Today, wavelets are well established. The basic theory is completely developed
with successful applications in a large number of areas. Nonetheless, research is
perhaps even more active than before, with new results appearing from a growing
scientific community. Also, the application base is consolidating and expanding to
new areas, with new experimental systems and commercial products being released.

Considering the facts mentioned above, it would not be possible to cover the
whole field of wavelets in a single text. Indeed, there are currently more than 20
textbooks, entirely dedicated to the various aspects of wavelets. Not to mention, an
enormous number of conference proceedings and special issues of journals devoted
to wavelets. Most of these texts are for experts, or for people with basic knowledge

© Springer International Publishing Switzerland 2015
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of wavelets. Even some of the introductory books cover a lot of material with a
fast pace, assuming maturity and dedication from the reader. For this reason, we
believe that there is still a need for a conceptual textbook about the fundamentals of
wavelets.

13.2 A Look Back

In this book, we tried to give a comprehensive, but accessible, introduction to the
field of wavelets. Our goal was to follow a route from Fourier Analysis to wavelets,
showing how the traditional tools for function representation in frequency domain
evolved to the new tools for joint time-frequency descriptions. This approach
combined the concepts from function analysis with the intuition from signal
processing.

It is instrumental to take a look back and review the main topics that we covered
in this book. They include:

• motivation and schemes for representation of functions;
• the Fourier transform as a tool for frequency analysis;
• the Windowed Fourier transform and the search for time-frequency localization;
• the continuous Wavelet transform as an adapted time-frequency function decom-

position;
• the multiresolution representation as a tool to discretize and reconstruct func-

tions;
• discrete wavelet bases and a filter bank methodology for design and computation;
• and finally we described the main families of wavelet bases.

As we stated earlier, these items constitute only the fundamental concepts behind
wavelets. In order to go from this basic level to more advanced topics and to practical
applications, the reader can continue the learning process in various directions.
Below, we will discuss some of the important aspects of wavelets not covered in
this book, and will indicate some of the possible options for further studies.

In this book, we restricted ourselves to functions defined on the whole real line,
which correspond to signals with infinite duration. This is the simplest case, and
certainly makes the theory more accessible.

We also discussed only the basic schemes for time-frequency decomposition of
a function. In particular, we have emphasized descriptions using non-redundant
wavelet bases. This is perhaps the most important representation in practical
applications.

Lastly, we didn’t consider any concrete application of wavelet, besides a few
simple example scattered throughout the book.
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13.3 Extending the Basic Wavelet Framework

The basic wavelet framework presented in this book can be further developed in
three main directions:

1. extending wavelets to general domains;
2. defining generalized representations using time-frequency decompositions, and
3. applying the wavelet framework to solve problems in applied mathematics.

We now briefly discuss what has been done in these three areas.

13.3.1 Studying Functions on other Domains

The first generalization is to study wavelets in other domains different than the real
line.

It is natural to define wavelets in n-dimensional Euclidean spaces. The path to
follow consists in extending the 1-D results that we have obtained to dimension
n > 1. That is, to study wavelet transforms and multiresolution analyses on the space
L2.Rn/. We have several options in this direction. Some concepts and results extend
naturally. There are two ways to construct wavelets in R

n. The first way is based
on a tensor product of one-dimensional wavelets. This extension is straightforward,
and leads to a separable wavelet transform which can be implemented efficiently
by multi-pass 1-D methods [20]. The second way is through a multidimensional
multiresolution hierarchy generated by a single multivariate scaling function in R

n

[50].
Another important extension is to define wavelets on compact subsets of the

Euclidean space R
n. A particular case concerns wavelets that are adapted to the

unit interval I D Œ0; 1�. For this purpose, we have to construct a multiresolution of
L2.I/, which is not generated from a single function anymore, but includes functions
that adapt to the boundaries of the interval [15]. This construction extends naturally
to rectangular regions of higher dimensions.

The final relevant extension should point us in the direction of defining wavelets
and multiresolution analysis on arbitrary manifolds. Note that the methods we have
described in this book make strong use of the Euclidean space structure, because of
the translations used to obtain the wavelet basis. For this extension, we clearly need
a methodology different from the Fourier Analysis. The Lifting scheme [57] and the
similar construction in [17] are promising approaches in this direction.
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13.3.2 Defining other Time-Frequency Decompositions

The second extension is to formulate function representations based on other time-
frequency decomposition schemes.

Redundant wavelets bases are required for some operations. In particular,
dyadic wavelets give a translation invariant representation that can be used for
characterization of singularities and edge detection [39, 40]. Also, the steerable
pyramid provides an orientation tuning mechanism [49].

Another generalization consists of decompositions based on different tilings
of the time-frequency plane. Some examples are the wavelet packet basis [65],
and the local cosine basis, also known as Malvar wavelets [41]. Some of these
representations rely on a redundant dictionary of time-frequency atoms that can be
used to construct descriptions adapted to individual functions. Best basis selection
[16] and matching pursuit [38] are some of the optimization methods used to
generate these representations. Similar techniques have been reported in [11] and
[12].

A last generalization is a decomposition using a basis composed of several
different functions, known as multiwavelets [41, 56].

13.3.3 Solving Mathematical Problems

The third direction is to study how wavelets can be applied in the solution of
mathematical problems. This means that we will use wavelets to represent operators
and to exploit the properties of this representation in order to derive more efficient
computational schemes.

Wavelets have been used to solve integral equations [4], differential equations
[2], and optimization problems. We remark that this last scheme has strong
connections with multigrid methods.

13.4 Applications of Wavelets

Wavelets have been applied in many different areas. Here we will give an overview
only of the applications in Computer Graphics and related areas.

We list below some of the main problems associated with the representation and
processing of: geometric models, images, animation video sound and multimedia,
that have been successfully solved using wavelets.

• Signal and Image Processing

– Data compression
– Progressive Transmission



13.5 Comments and References 183

– Noise reduction
– Filtering

• Vision

– Edge detection
– Texture Analysis
– Feature Classification

• Visualization and Graphics

– Radiosity
– Volume Rendering
– Paint Systems

• Geometric Modeling

– Wavelets on surfaces and Variable resolution meshes
– Multiscale Editing
– Optimization of geometry
– Synthesis of fractal surfaces

• Animation

– Time-space constraints
– Motion learning

• Other Areas

– Medical Imaging
– Geology
– GIS and Cartography
– Music
– Speech synthesis and recognition
– Databases for images and video.

A good review of wavelet application in computer graphics can be found in [47]
and [51, 52]. A book dedicated entirely to this subject is [53].

Other sources of reference are the previous SIGGRAPH courses dedicated to
wavelets [22, 48].

13.5 Comments and References

As a last remark, we mention that the Internet is a valuable source of information
on current research and application of wavelets. From the many excellent websites,
and other on-line resources, we would like to single out one: “The Wavelet Digest”,
an electronic newsletter moderated by Win Sweldens (http://www.wavelet.org/).

http://www.wavelet.org/


Appendix A
Systems and Filters

In this appendix we will review the basic concepts of Signal Processing to introduce
the terminology and notation.

A.1 Systems and Filters

The word “system” has a very generic meaning in engineering. A system may
change the input signal in different ways, producing an output signal.

A good example of a system is the human sound perception. It captures sounds,
classifies and interprets them, in a way that we are not only able to understand the
meaning, but we are also capable to identify the source of the sound. This complex
task is accomplished by a long chain of processes. Among other things, the input
sound is analyzed, separating its various frequency components using a set of filters
with different sensibilities (this is performed by the cochlea, the basilar membrane,
and other elements of the auditory system).

The term “filter” is employed to designate certain types of systems that alter
only some frequencies of an input signal. The name has exactly this meaning: it
implies that a selection is taking place and some frequency bands are altered, either
attenuated or emphasized.

In the mathematical universe, a signal is modeled by a function. Therefore, we
can model a system by a transformation S W F1 ! F2 between two function spaces,
as illustrated in Fig. A.1.

The systems constitute the mathematical model to study the various operations
involving processing of signals in the physical universe. We can give some
examples:

© Springer International Publishing Switzerland 2015
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f System S( f) = g

Fig. A.1 Basic System

• The human eye is a system that processes electromagnetic signals in the visible
range of the spectrum;

• A television camera has as input an electromagnetic signal (as the human eye),
and its output is a video signal.

A.1.1 Spatial Invariant Linear Systems

In general, a system is characterized by some of its properties. Below, we describe
the most relevant properties for our study:

Linearity

A system S is linear if:

1. S.f C g/ D S.f /C S.g/
2. S.˛f / D ˛S.f /

where f and g are two input functions (signals) and � 2 R. In particular, S.0/ D 0.
If a system S is linear and a signal f is represented by an atomic decomposition,

for example:

f D
1X

jD�1
hf ; 'ji'j :

Its output S.f / can be written as:

S.f / D
1X

jD�1
hf ; 'jiS.'j/ :

That is, it is sufficient to know the output of the system for the basic decomposition
atoms to predict the processing of any signal in this representation.
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Fig. A.2 Delay Operation

Spatial Invariance

A system S is spatial invariant if it is possible to perform shifts in the signal, before
or after its processing by the systems, and yet obtain the same result. That is,

S.f .t � t0// D S.f /.t � t0/ :

This class of system is generally called “time invariant” when the functions are of
type f W R ! R, i.e. they have only one variable which usually represents the
time evolution. When we work in higher dimensions, this time analogy is not valid
anymore (even though time may still be one of the variables).

Given t0 2 R, the operator R W F1 ! F2 defined by

R.f / D f .t � t0/

is called delay operator by t0, or translation operator by t0. Geometrically it makes
a translation of t0 units to the right in the graph of f , which is equivalent to a delay
of t0 time units in the signal (see Fig. A.2).

A system S is linear and spatial invariant if a delay in the input is equal to the
same delay in the output

SRt0 D Rt0S :

Impulse Response

In this subsection we will characterize the spatial invariant linear systems.
The impulse response, h of a system S is the image h D L.ı/ of the signal Dirac

ı by the system.
If f is an arbitrary signal, we have:

f .x/ D
Z 1

�1
f .t/ı.x � t/dt :
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If the system is spatial invariant, it follows from the above equation that:

S.f .x// D
Z 1

�1
f .t/S.ı.x � t//dt

D
Z 1

�1
f .t/h.x � t/dt :

The integral above is indicated by f � h, and is called convolution product. It is
easy to verify that f � h D h � f . This result is summarized in the theorem below:

Theorem 8. A spatial invariant linear system S is completely determined by its
impulse response h D S.ı/. More precisely, S.f / D h � f for any signal f .

The impulse response h gives a complete characterization of the system and, for
this reason, it is called filter kernel.

A.1.2 Other Characteristics

For the moment, we will concentrate our attention only on these two properties
mentioned above: linearity and time invariance. Nonetheless, there are many other
important characteristics that deserve to be mentioned:

Finite Impulse Response

A system S has finite impulse response, (FIR), if its impulse response has compact
support,

supp.S.ı// � Œ�L;L�; L <1 :

The name originates from the fact that in the discrete domain, the impulse response
of these filters is represented by a finite sequence.

Causality

Causality is a property which says that the output of the system depends only on
previous facts in the input. That is, the system does not have any knowledge of the
future.

A good example of a system in this class is the human ear, because sounds are
processed strictly in chronological order.
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Stability

Many stability conditions can be defined for a system, each of them related to
the needs of different applications. A common stability condition is to enforce
continuity of the operator which defines the system:

jjS.f / � cjjf jj :

In other words, if the input signal has finite energy, the same occurs with the output
signal.

Taking the norm of sup: jjf jj D sup.f /, this condition reduces to:

sup.S.f // � c sup.f / :

A system which satisfies this condition is called in the literature BIBO system
(“Bounded Input–Bounded Output”).

A.2 Discretization of Systems

We have to work with discrete systems to be able to implement the model of
continuous systems in the computer. Therefore, we need to resort to methods to
represent systems, which ultimately are methods to represent functions. Discrete
systems operate with discrete signals.

A.2.1 Discrete Signals

As we have seen, various phenomena in the physical universe clearly have a discrete
nature, such as turning a light on or off. Other phenomena, may even be conceived
as continuous, but they are observed (measured) at discrete instants of time, for
example, the variation of the tides.

Independently of a system being intrinsically continuous or discrete, in actual
computer implementations we need to work with discrete representations of the
system.

It is clear in my opinion a signal f we obtain a discretization that associates to
the signal a sequence of “samples” .fn/, n 2 Z. We will use the notation f Œn�, f .n/
or even fn to indicate the n-th “sample” of the signal. A sequence of samples of the
signal will be indicated by .fn/. Sometimes, we will write .fn/n2Z to emphasize that
we are referring to a sequence.

The representation of a finite energy signal is defined by an operator RWF ! `2,
of the space of signals into the space `2 of the square summable sequences: R.f / D
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.fn/. The most common form of representation of a signal is given by its projection
in a closed subspace V � F . If f'jg is an orthonormal base of this space, then

R.f / D
X

k

hf ; 'ji'j :

Therefore, the samples of the signal are given by f .j/ D hf ; 'ji. Nonetheless,
the reader could imagine that a sampling sequence is represented by uniform
sampling the signal with rate �t: f .n/ D f .n�t/ (we have seen that this is a good
approximation for most cases of interest).

When the signal f is represented by a sequence .fn/, the description of the data
elements which represent the physical measurements of the signal is done through
the integer variable n. It is important to have a memory about the representation
method employed, specially to make possible the reconstruction of the signal. In the
case of point sampling, for example, it is important to know the sampling rate �t.

If the representation sequence is finite, we have in fact a representation vector

.fn/ D .f .i/; f .iC 1/; : : : ; f .j// :

Otherwise, the representation sequence is an infinite vector

.fn/ D .: : : ; f .�2/; f .�1/; f .0/; f .1/; f .2/; : : :/ :

A.2.2 Discrete Systems

Given a system S W F1 ! F2, we can take the representation R1 W F1 ! `2 and
R2 W F2 ! `2, to produce the following diagram,

F1

S�����! F2

R1

??y
??yR2

`2
S�����! `2

where S is the representation of the system S, that is, the discretized system S.
If S is linear and F1, F2 have a finite dimensional representation, that is,

R.F1/ D R
m and R.F2/ D R

n, then S W Rm ! R
n is a linear transformation,

and can be represented by a matrix of order n �m:

0

BBB@

a11 � � � a1m

a21 � � � a2m
:::
: : :

:::

an1 � � � anm

1

CCCA :
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In case the representation of the spaces F1, F2 is not finite dimensional, we have
SW `2 ! `2. It is useful to represent these operators by infinite matrices

0
BBBBBB@

:::

y.�1/
y.0/
y.1/
:::

1
CCCCCCA
D

0
BBBBBB@

: : :

a�1;�1 a�1;0 a�1;1
a0;�1 a0;0 a0;1
a1;�1 a1;0 a1;1

: : :

1
CCCCCCA
�

0
BBBBBB@

:::

x.�1/
x.0/
x.1/
:::

1
CCCCCCA
:

If the system S is linear and spatially invariant, we know that

S.f / D h � f

where h is the kernel of the filter, h D S.ı/. In the discrete domain h D .hn/ and
f D .fn/, hence:

S.fn/.n/ D ..hn/ � .fn//.n/

D
C1X

kD�1
h.k/f .n � k/ ; (A.1)

which is the direct expression for the convolution product.
Taking .fn/ D .ın/, where .ın/ is the discrete version of the Dirac delta:

.ın/.k/ D
(
1 if k D 0I
0 if k ¤ 0:

then

S.ın/ D h � ın D h ;

as it was expected.
The reader should observe that Eq. (A.1), which defines the output of a discrete

linear system, is a finite difference linear equation:

y.n/ D
C1X

kD�1
h.k/f .n � k/ ;

where S.fn/ D .yn/.
Because S is linear, we know that S is given by a matrix (possibly infinite). Now,

we will obtain the matrix S using Eq. (A.1). For this, we need some linear algebra
notation.
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Indicating by R the unit delay operator: that is R.fn/ D .fn�1/ we have that

f .n � k/ D Rk.fn/

in other words, f .n� k/ is obtained from the signal .fn/ applying k delay operations.
In particular, if k D 0, we have

f .n � 0/ D f .n/ D R0.fn/ D I.fn/

where I is the identity operator. In this way, Eq. (A.1) can be written in operator
form:

S.fn/ D
C1X

kD�1
h.k/Rk.fn/ : (A.2)

Given a matrix .aij/, which can be infinite, the elements ajj constitute the main
diagonal.

0
BBBBBB@

: : :

a0;0
a1;1

a2;2
: : :

1
CCCCCCA

For each d 2 Z, d > 0, the elements .ajCd;j/ are the elements of the d-th lower
diagonal.

0

BBBBBBBBBBB@

: : :

0

0 0

� 0 0
0 � 0 0
0 � 0 0

: : :

1

CCCCCCCCCCCA

Similarly, the elements .aj;jCd/ are the elements of the d-th upper diagonal.
The identity operator is represented by the identity matrix

I D
(

aj;j D 1
ai;j D 0 if i ¤ j;

whose elements in the main diagonal are equal to 1, and the other elements are zero.
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The unit delay operator

R.fn/ D f .n � 1/

is represented by the matrix I�1 whose first lower diagonal consists of ones and the
other elements are zero:

I�1 D
(

ajC1;j D 1
ai;j D 0 if i ¤ jC 1:
0
BBBBBBBBB@

: : :

0

1 0

0 1 0

0 1 0
: : :

1
CCCCCCCCCA

(A.3)

More generally, the matrix of the operator Rk, shifted by k units, is:

I�k D
(

ajCk;j D 1
ai;j D 0 if i ¤ jC k;

that is, all elements outside the k-th lower diagonal are zero, and the elements of this
diagonal are equal to one.

Similar results hold for the operation

f .n/ �! f .nC k/

of time advance, considering the upper diagonals.
Observing Eq. (A.2) we see that the matrix of S is a matrix whose main, lower,

and upper diagonals are constant. More precisely, the k-th diagonal is constituted by
the elements h.k/.

0

BBBBBBBBB@

: : :

� � � h.1/ h.0/ h.�1/ � � �
� � � h.1/ h.0/ h.�1/ � � �
� � � h.1/ h.0/ h.�1/ � � �

� � � h.1/ h.0/ h.�1/ � � �
: : :

1

CCCCCCCCCA
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Observe that in the rows of this matrix we have the vector of the system impulse
response, translated by one unit to the right from one line to the next. Because the
output .yn/ will be the result of the inner product of the n-th line of the matrix by
the input vector .xn/, we can either shift the input .xn/ before the multiplication
or shift the output .yn/ after the multiplication: the result will be the same. This
was expected, because the system represented by this matrix is linear and spatially
invariant.

It is easy for the reader to verify that if the system is causal, all upper diagonals
are zero (because the system cannot use advances of the signal in time). Therefore,
the matrix is lower triangular.

Example 17. Consider the filter defined by the difference equation

y.n/ D 3x.n � 1/C 2x.n � 2/C x.n � 3/ :

Then, we can rewrite this difference equation in the form of a convolution product

y.n/ D
X

k

h.k/x.n� k/

where

h.k/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

0 if k � 0;
3 if k D 1;
2 if k D 2;
1 if k D 3;
0 if k � 4;

or, alternatively .hn/ D .: : : ; 0; 0; 3; 2; 1; 0; 0; : : :/.
The matrix of this filter is given by

0
BBBBBBBBBBB@

:::

Ox.3/
Ox.4/
Ox.5/
Ox.6/
Ox.7/
:::

1
CCCCCCCCCCCA

D

0

BBBBBBBBBBBBB@

: : :

0

3 0

2 3 0

1 2 3 0

0 1 2 3 0

0 1 2 3 0
: : :

1

CCCCCCCCCCCCCA

�

0

BBBBBBBBBBBBB@

:::

x.0/
x.1/
x.2/
x.3/
x.4/
x.5/
:::

1

CCCCCCCCCCCCCA

:

Note that the filter is causal
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Question A.1. What would happen if the coefficients of the difference equation
were not constant?

The equation would be described as

yn D � � � C h0.n/xn C h1.n/xn�1 C h2.n/x :

In this case the filter kernel .hn/ is a sequence which varies with the index (time),
therefore, it is necessary now to represent it as:

.hn/ D .: : : ; h�1.n/; h0.n/; h1.n/; : : :/ :

The convolution product cannot be used to characterize the operation and its
“generalization” is

.yn/ D
X

k

hk.n/xn�k :

Finally, the matrix representation does not have constant diagonals:

0

BBBBBB@

:::

y�1
y0
y1
:::

1

CCCCCCA
D

0

BBBBBB@

: : :

� � � h1.�1/ h0.�1/ h�1.�1/ � � �
� � � h2.0/ h1.0/ h0.0/ � � �
� � � h3.1/ h2.1/ h1.1/ � � �

: : :

1

CCCCCCA
�

0

BBBBBB@

:::

x�1
x0
x1
:::

1

CCCCCCA
:

A.3 Upsampling and Downsampling Operators

Besides the delay operator, two other operators are important in the study of discrete
filters: they are the downsampling and upsampling operators.

The downsampling operator of order q, # qW `2 ! `2, is defined as

.# q/.un/ D .unq/ :

That is, the operator discards all terms of a sequence, except the terms which are
multiple of q. This operator is also known in the literature as the decimation operator
of order q.

Here, we will only study the case where q D 2. In this case the operator discards
alternating terms in the sequence, retaining only the terms with even index:

.# 2/.un/ D .u2n/ :
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The matrix of this operator is given by

0
BBBBB@

1

0 0 1

0 0 1

0

� � �

1
CCCCCA
:

This matrix is obtained from the identity matrix I, by including a column of zeros in
alternation. Or equivalently, we can shift the lines of the matrix one unit to the right
in alternation.

It is immediate to verify that the downsampling operator is not invertible.
However, it has an inverse to the right, which is the upsampling operator:

." 2/.: : : ; x�1; x0; x1; : : : / D .: : : ; x�1; 0; x0; 0; x1; 0; : : : / :

That is,

." 2/.un/.k/ D
(

u.k/ if n D 2k

0 if n D 2kC 1 :

The upsampling operator simply intercalates zeros in between the elements of the
representation sequence.1

It is easy for the reader to verify that the upsampling operator " 2 is the inverse
to the right downsampling operator # 2, that is .# 2/." 2/ D I. However, ." 2/
.# 2/ ¤ I, as we can see below:

." 2/.# 2/

0
BBBBBB@

:::

u�1
u0
u1
:::

1
CCCCCCA
D

0

BBBBBBBBBBBBB@

:::

u�2
0

u0
0

u2
0
:::

1

CCCCCCCCCCCCCA

:

In terms of matrices, it is easy to see that the matrix of the operator" 2 is obtained
by intercalating rows of zeros in the identity matrix

1We can define the upsampling operator of order q, intercalating q zeros.



A.4 Filter Banks 197

" 2 D

0
BBBBBBB@

1 0

0 0

1 0 0

0 0

1 0

� � �

1
CCCCCCCA

:

This is equivalent to translate the columns of the identity matrix by one unit to the
bottom.

It is immediate to verify that the matrix of the upsampling operator is the
transpose of the matrix of the downsampling operator, and vice versa. The relation
between the operators of downsampling and upsampling can be stated using
matrices:

.# 2/." 2/ D I;

and

." 2/.# 2/ D

0

BBBBBBBB@

1

0

1

0

1
: : :

1

CCCCCCCCA

:

Once more, we observe that the upsampling operator is the inverse to the right,
but is not an inverse to the left. At this point we can argue that the nature of the
mathematical objects is against us: as we will see, the most important operation is
to recover a signal after downsampling, and not the other way around.

A.4 Filter Banks

A filter bank is a system composed of several filters, together with delay, upsampling
and downsampling operators.

A filter bank with two filters, downsampling, and upsampling is illustrated in
Fig. A.3.
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x H 2 2 G x̂

Fig. A.3 Example of a Filter Bank

A.5 Comments and References

A basic reference for signal processing is [44]. It includes the whole theory of
signals and systems, from the continuous to the discrete. Another good source, but
somewhat older, discussing only continuous systems is [32].

For a book more applied to the project and analysis of filters, the reader can
use [1].

The literature of signal processing has several sources for the reader interested in
systems with multirate filter banks, one of them is [61].



Appendix B
The Z Transform

The behavior of filters in the frequency domain gives a good intuition of some of its
characteristics, which are difficult to grasp by looking only at the filter coefficients
in the time domain. We have seen that the Fourier transform is a tool used to study
a signal in the frequency domain. In this appendix, we will introduce a similar,
but more general transform, the Z-transform, which in fact contains the Fourier
transform.

B.1 The Z Transform

Given a linear, time invariant, discrete system S with impulse response .hn/, and an
input signal .xn/, the output is then .yn/ D .hn/ � .xn/. However, let’s choose an
input signal with a special structure:

x.n/ D zn ; z 2 Z

in this case, the output signal is then:

.yn/ D .hn/ � .xn/ D
C1X

kD�1
h.k/x.n� k/

D
C1X

kD�1
h.k/zn�k D zn

C1X

kD�1
h.k/z�k

© Springer International Publishing Switzerland 2015
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that is, the value of the output signal y.n/ is obtained by multiplying x.n/ by a
constant. This constant, however, varies with the value of z, which was fixed for
each input signal:

y.n/ D H.z/zn

where

H.z/ D
C1X

kD�1
h.k/z�k :

We should remark that if an arbitrary signal is decomposed as a direct sum of
basic atoms, it would be sufficient to know the effect of the system over its atoms
to be able to predict the result of the system on any input signal. For this reason, we
have chosen our input signal as a sum of different complex exponentials:

x0.n/ D
X

k

akzn
k

and, applying it to the system S, we can use its linearity property to obtain:

y0.n/ D
X

k

akH.zk/z
n
k :

Using a linear algebra terminology, the complex exponentials zn
k are eigenvector

functions of S, and H.zk/ are their respective eigenvalues.
Exploiting the above intuition, we will introduce the Z transform.
Given a discrete signal .xn/, its Z transform is given by:

X.z/ D Z fx.n/g D
1X

kD�1
z�kx.k/ : (B.1)

Together with X.z/ it is necessary to know the corresponding Convergence
Region, that is, the regions of the complex plane in which the variable z is defined,
such that this transform converges.

Remark B.1. Based on this transform, making z D ei2	w, we obtain the Fourier
transform for discrete aperiodic signals (DTFT – “Discrete Time Fourier Trans-
form”).
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B.1.1 Some Properties

Several important properties of the Z transform will help in the manipulation of
discrete systems. We will see that these properties contribute to the intuitive view
alluded to in the beginning of this Appendix.

• Linearity;

Z fx1.n/C x2.n/g D Z fx1.n/g CZ fx2.n/g

• Time Shift;

Z fx.n� l/g D
1X

kD�1
z�kx.k � l/ D

1X

kD�1
z�kClx.k/

D zlZ fx.n/g

• Time Reversal;

x.n/$ X.z/  ! x.�n/$ X.z�1/

This property, as the next one, is easily verified, just by applying the definition of
the transform.

• Convolution in Time is Multiplication in Frequency;

Z fx1.n/ � x2.n/g D X1.z/X2.z/

Remark B.2. The function delta, ı, exhibits a special behavior. We have seen
when it was the input of a system, the output was the impulse response function,
which characterizes the filter. This has two main reasons: First, the convolution
product in the time domain is equivalent to multiplication in frequency; Second,
the representation of the delta function in the frequency domain is:

Z fı.n/g D 1 :

This means that the function delta ı.n/ is the neutral element of the convolution
operation in time and of the multiplication operation in frequency.

B.1.2 Transfer Function

The impulse response h.t/ of a filter has a correspondent in the frequency domain,
which is called Transfer Function.



202 B The Z Transform

Given a system S, its impulse response h D S.ı/ completely defines the filtering
operation

S.f / D h � f :

What would be the interpretation of the fact above in the frequency domain, using
the Z Transform?

Suppose that S.xn/ D .yn/, that is,

.yn/ D .hn/ � .xn/ :

Going to the frequency domain, and using the properties of the Z transform, we
have:

Y.z/ D Z f.hn/ � .xn/g D Z f.hn/g:Z f.xn/g D H.z/X.z/ :

We isolate H.z/ D Z f.hn/g, and call this expression Transfer Function:

H.z/ D Y.z/

X.z/
:

Again, it is necessary to be careful with the convergence of this expression, and
the division operation takes care that the zeros of X.z/ are outside the convergence
region.

The transfer function H.z/ gives exactly information on how the input frequen-
cies .xn/ will be altered in order to produce the output .yn/. This connection was
one of the goals of our intuitive view. A linear, time invariant, discrete system will
react in a predictable manner according to the complex exponentials applied to its
input. Its output will be given as the same input exponential, but with a different
“amplitude.”

Considering that a filter is exactly the system that makes this type of transfor-
mation, then the Z transform is a good way to describe filters. What would be the
disadvantages of using .hn/?

One is immediate: the variable z is not discrete, it is also defined in the entire
complex plane (in the Convergence Region). To store it in the computer it is
necessary to do some kind of “sampling.” The other option would be the use of a
symbolic machinery, but the manipulation would be more difficult and less efficient.

For the tasks of filter design and evaluation, the importance of the Z transform is
undisputable. To obtain the transfer function H.z/ from the linear difference equa-
tion with constant coefficients, i.e. the convolution product, is a direct operation: the
coefficients of the equation are exactly the coefficients of a polynomial in z:

Z fy.n/g D Z

(
X

k

bkx.n � k/

)
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Y.z/ D
 
X

k

bkz�k

!
X.z/

and then,

H.z/ D
X

k

bkz�k :

In a more general form, we can have:

Z

(
NX

kD0
aky.n � k/

)
D Z

(
X

k

bkx.n � k/

)

 
NX

kD0
akz�k

!
Y.z/ D

 
X

k

bkz�k

!
X.z/

in this case H.z/ is a ratio of polynomials

H.z/ D
P

k
bkz�k

NP
kD0

akz�k

:

Example 18. Going back to the system of example 17, in the previous chapter,
it will be instructive to determine the system transfer function, and look at its
frequency behavior

Ox.n/ D 3x.n � 1/C 2x.n � 2/C x.n � 3/
Z fy.n/g D Z f3x.n� 1/C 2x.n� 2/C x.n � 3/g :

Exploiting the linearity and time shift properties, we have:

Y.z/ D 3z�1X.z/C 2z�2X.z/C z�3X.z/

and factoring out X.z/,

H.z/ D Y.z/

X.z/
D 3z�1 C 2z�2 C z�3 :
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Fig. B.1 Modulus of the frequency response of a filter

In order to really visualize the behavior of a filter in the different frequencies that
compose the input signal, it is sufficient to evaluate the transfer function H.z/ for
the values of z D eiw, where w D Œ0; 	�. In this last example jH.ejw/j is shown in
Fig. B.1.

B.1.3 The Variable z and Frequency

Writing the complex variable z in polar form, we obtain

z D ˛eiw; where 0 < w < 	

The discrete domain has a limited interval of possible frequencies due to the
sampling process. Making a normalization, all these possible frequencies will be
contained in the interval Œ0; 	�, where 	 has a direct relation with 1=2 of the
sampling frequency used in the discretization process.

Therefore, it makes sense to consider the function H.eiw/ as a periodic function.
Again, H.eiw/ is also the DTFT of the non-periodic filter .hn/ and every DTFT is
periodic with a period of 2	 .

Through the behavior of systems in the various frequency regions, it is possible
also to classify the filters into basic types, such as low-pass, high-pass, band-pass,
etc., as we have seen in Chap. 3.
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B.2 Subsampling Operations

In this section we will discuss the downsampling and upsampling operators in the
frequency domain. We will derive the expressions for these operators using the z-
notation.

B.2.1 Downsampling in the Frequency Domain

The downsampling operator, introduced in the previous chapter, takes a discrete
sequence .xk/k2Z and removes all elements with odd indices, keeping only even
index elements. Therefore, v D .# 2/x implies that vk D x2k.

In order to derive the expression for the downsampling operator in the frequency
domain, we will take a sequence .un/, which has all the elements with even index
from an arbitrary sequence .xn/, and the elements with odd indices equal to zero

un D
(

xn if n is even

0 if n is odd :

That is, u D .: : : ; x0; 0; x2; : : :/. Clearly, .# 2/x D .# 2/u. So, let’s write the Fourier
transform of u

U.!/ D
X

n even

xne�in!

D 1

2

X

all n

xne�in! C 1

2

X

all n

xne�in.!C	/ :
(B.2)

The expression for U was split into two terms, so that when they are added together
only the terms with even indices remain. This is because, if n D 2l is even, then
e�i.2l/.!C	/ D e�i2l!C2l	 D e�i2l! , preserving the even index elements. But, if n D
2l C 1 is odd, then e�i.2lC1/.!C	/ D e�i.2lC1/!C.2lC1/	 D e�i.2lC1/!C	 D �e�i2l! ,
removing the odd index elements.

Therefore, the expression of U.!/ in the frequency domain can be written in
terms of X.!/ as U.!/ D 1

2
ŒX.!/C X.! C 	/�.

Now, using U.!/which contains only even index terms, we can write the formula
for the downsampling operator in frequency domain just by halving the frequencies
V.!/ D U.!=2/.

V.!/ D 1

2

h
X
	!
2



C X

	!
2
C 	


i
: (B.3)

The downsampling operation corresponds to a change in the sampling rate, as it
is implied by halving the frequencies ! ! !=2. This may cause aliasing, which
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X(w)
X(w)X(w+π)

Fig. B.2 Downsampling Operator

is essentially a frequency folding, manifested by the introduction of a new term in
!=2C 	 . This process is illustrated in Fig. B.2.

In the Z -domain, the downsampling operator is

V.z/ D 1

2



X.z1=2/C X.�z1=2/

�
: (B.4)

B.2.2 Upsampling in the Frequency Domain

The upsampling operator, also introduced in the previous chapter, takes a discrete
sequence .xk/k2Z and an interleave zeros in between the sequence elements.

u D ." 2/v,
(

u2k D vk

u2kC1 D 0

In the frequency domain, this operation has a simple expression. We only retain
the terms with even index n D 2k, because terms with odd index are zero, u2kC1 D 0.

U.!/ D
X

une�in! D
X

u2ke�i2k!

D
X

vke�i2k!
(B.5)

So, u D ." 2/v is U.!/ D V.2!/, or U.z/ D V.z2/.
The upsampling operation causes imaging. A bandlimited function V.!/ with

period 2	 is mapped into a function U.!/ D V.2!/ with period 	 . Compressed
copies of the graph V.2!/ appear in the spectrum of U.!/. This is illustrated in
Fig. B.3.
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X(w) U(w) = X(2w)π

Fig. B.3 Upsampling Operator

B.2.3 Upsampling after Downsampling

In a filter bank it is common to apply both the downsampling and upsampling
operations. This is because, usually downsampling is part of the analysis bank, and
upsampling is part of the synthesis bank.

Let’s see how these two operations can be combined together:

v D .# 2/x and u D ." 2/v

this result is u D ." 2/.# 2/x, which in the frequency domain is

U.!/ D 1

2
ŒX.!/C X.! C 	/� (B.6)

or in the Z-domain

U.z/ D 1

2
ŒX.z/C X.�z/� : (B.7)

B.3 Comments and References

A good reference for the use of filter banks and their relations with wavelets is [55].
A more general book about multirate systems and filter banks is [61].
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