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Preface to the revised edition

The revision of this book has been a source of both pleasure and pain to the
authors. The pleasure has come from the opportunity to include new material,
almost all of which is intended to unify and tie together further the existing top-
ics, and to give the reader the best possible overview of the wonderful interplay
between partial differential equations and their real-world applications. This is all
in keeping with our unshakeable philosophy that partial differential equations offer
fabulously effective data compression: the basically simple structure of many par-
tial differential equations enables knowledge holders to make a quantitative model
of almost any `continuous' process going on around them.

The pain of revision has come from realising that on many occasions our zeal
in writing the first edition overstretched our accuracy. However, we have made
amends as scrupulously as we can; we have been immensely helped in this task,
and with the incorporation of new material, by the helpful comments of many of
our colleagues and collaborators. We are also very grateful to Alison Jones and
colleagues at Oxford University Press for their invaluable assistance in the final
stages of publication.

Oxford J.R.O.
S. D. H.

Edinburgh A. A. L.
Liverpool A. B. M.
January 2003



Preface to the first edition

In the 1960s, Alan Tayler, Leslie Fox and their colleagues in Oxford initiated `Study
Group' workshops in which academic mathematicians and industrial researchers
worked together on problems of practical significance. They were soon able to
show the world that mathematics can provide invaluable insight for researchers
in many industries, and not just those which at the time employed professional
mathematicians.

This message is the theme of Alan's book Mathematical methods in applied
mechanics [43], which contains many examples of how mathematical modelling
and applied analysis can be put to work. That book revealed the ubiquity of partial
differential equation models, but it did not lay out a co-ordinated account of the
theory of these equations from an applied perspective. Hence this complementary
volume was planned in the 1980s, first emerging as very informal lecture notes.

Much has happened since then. Alan's illness brought about two authorship
changes: first, Andrew Lacey and Sasha Movchan stepped in to help, and, after
Alan's tragic death in 1995, Sam Howison became involved as well. Additionally,
the past decade has seen many new practical illustrations and theoretical advances
which have been incorporated into the book, while still keeping it at around first-
year graduate level.

Only now can we see the debt we owe not only to Alan Tayler but also to
those who have supported us over the past ten years. In particular, we thank
June Tayler, Annabel Ralphs, Natasha Movchan and Hilary Ockendon for their
forbearance, Brenda Willoughby for typing help at a crucial stage, and Elizabeth
Johnston and her colleagues at Oxford University Press.

A book like this cannot be written without help from colleagues around the
world, far too many to mention here, but we would especially like to acknowledge
the many helpful comments we have received from post-docs, who are often the
most important people at the interface between mathematics and the real world.

Oxford J.R.O.
S. D. H.

Edinburgh A.A.L.
Liverpool A. A.B.M.

February 1999
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Introduction

Partial differential equations are central to mathematics, whether pure or applied.
They arise in mathematical models whose dependent variables vary continuously
as functions of several independent variables, usually space and time. Their most
striking attribute is their universality, a property which has enabled us to moti-
vate every mathematical idea in this book by real-world examples from fluid or
solid mechanics, electromagnetism, probability, finance and a host of other areas
of application. Moreover, this applicability is growing day by day because of the
flexibility and power of modern software tailored to suitable discretised approxi-
mations of the equations. Equally dramatic is the way in which the equations that
arise in all these areas of application can so easily motivate the study of fundamen-
tal mathematical questions of great depth and significance and, conversely, benefit
from the results of such investigations.

Whether or not it is in the context of a model of a physical situation, the anal-
ysis of a partial differential equation has many objectives. One of our principal
goals will be to investigate the question of well-posedness. We will give a more
precise definition of this in Chapter 2 but, roughly speaking, a partial differential
equation problem is said to be well posed if it has a solution, that solution is
unique, and it only changes by a small amount in response to small changes in the
input data. The first two criteria are reasonable requirements of a sensible model
of a physical situation, and the third is often expected on the basis of experimen-
tal observations. When thinking of well-posedness, we must also remember that
it is often impossible to find explicit solutions to problems of practical interest,
so that approximation schemes, and in particular numerical solutions, are of vital
importance in practice. Hence, the question of well-posedness is intimately con-
nected with the central question of scientific computation in partial differential
equations: given the data for a problem with a certain accuracy, to what accuracy
does the computed output of a numerical solution solve the problem? It is because
the answer to this question is so important for modem quantitative science that
well-posedness is a principal mathematical theme of this book.

Although many well-founded mathematical models of practical situations lead
to well-posed problems, phenomena that are seemingly unpredictable, or at the
least extremely sensitive to small perturbations, are not uncommon; examples in-
clude turbulent fluid flows described by the Navier-Stokes equations and dendrite
growth modelled by the equations of solidification. Pure and applied mathemati-
cians alike must therefore be prepared for both well-posed and ill-posed partial
differential equation models. Chaos in scalar ordinary differential equations can
occur if the order of the equation is at least three and so it is not surprising
that what is effectively an infinite-order ordinary differential equation may have

1



2 INTRODUCTION

`unpredictable' solutions. We must also remember that there are processes such
as Brownian motion, which are random on a molecular scale, and yet have many
properties which can be modelled by perfectly well-posed partial differential equa-
tions over much larger time and length scales. However, since we do not have the
space to describe chaos theory, we will not be able to discuss the very interesting
relationship between chaos and ill-posedness, although in Chapter 7 we will touch
on several examples which have highly unpredictable behaviour. Nonetheless, we
will be able to look at problems such as those involving exothermic chemical re-
actions where the model may be well-posed but its solution may only exist over a
limited region in time and space before a singularity, or `blow-up', occurs.

The advent of the computer has not only changed the attitude of the mathemat-
ical community to partial differential equations, but also the attitude of researchers
in most fields where quantitative solutions of problems are now necessary. Power-
ful computers have encouraged people to attack so many hitherto intractable or
novel problems that the number and variety of differential equations under study
is increasing at an enormous rate. This observation brings us to the single most
important practical reason for our writing this book, namely the `data compres-
sion' implicit in a partial differential equation model. It is an astonishing fact that
all the practical problems that we describe in this book, which range from paint
flow to solidification, and from option pricing to combustion, can be described in
a handful of symbols as the quasilinear system

A; 8x = b, (0.1)
i=1 i

together with suitable boundary conditions; here the unknown, u, is a vector func-
tion of the independent variables x;, i = 1, ... , m, while A; and b are, respectively,
square matrices and a vector which all depend on u and the x;. It is the crucial
fact that A{ and b do not depend on the derivatives of u that characterises quasi-
linearity. As we shall see later, we can even arrange for the right-hand side b to
be 0.

To get some idea why this format is all-embracing, suppose we were confronted
with a fairly general scalar first-order equation in two independent variables x, y
in the form

ax G (x, y, u, )
Setting q = Ou/Oy and

after differentiating with respect to y, we find the system

(0 1) 8x + (0 -OG/Oq) 8 = (OG/Oy + q OG/Ou) '



INTRODUCTION 3

which is in quasilinear form.'
There is a dramatic difference between (0.1) and the ordinary differential equa-

tion when m = 1, namely

A
du = b.

In this latter case, as long as A is invertible, which it usually is, and A-'b satisfies
an appropriate Lipschitz condition, there is a unique solution such that u = uo at
some point x = xo. However, it is clear that if u = u(x, y) and

Aax =b,

then, no matter how well behaved A and b are, we cannot solve this equation with
u(x, y) = uo(x) at y = yo unless AOuo/8x = b.

This observation is the basis of our discussion in Chapter 1, which concerns
the scalar case of (0.1) in which the term involving the highest derivative (which
is called the principal part of the equation) is

A'8i

We will begin by identifying boundary data for which we might expect a solution
to exist and data for which there is almost no hope of existence. This is the theme
that pervades the subsequent two chapters, which deal with systems like (0.1)
and simple scalar second-order equations, respectively. We will first have to worry
about ill-posedness in Chapter 2; there we shall see that when u is given on some
initial surface, we may well be able to find all its derivatives normal to that surface
but that this information only enables us to continue u a very small distance away
from the initial surface. However, it will become apparent in Chapters 3 and 5
that this restriction can sometimes be overcome by relaxing the requirement that
all components of u be given on this surface.

In addition to cataloguing well-behaved and badly-behaved solutions for simple
scalar second-order equations, Chapter 3 also provides an introduction to Chap-
ters 4-6, each of which deals with a class of scalar second-order equations which
occurs with unfailing regularity in branches of physics, engineering, chemistry, bi-
ology, and even social science and finance. Indeed, from the practical point of view
of students wanting to know how to get an analytical feel for the solutions of equa-
tions falling into these classes, these chapters form the meat of the book and can
he read more or less independently.

Chapter 7 is perhaps the most unusual one in the book because it addresses a
class of problems that are rarely compiled outside the research literature. Yet recent

'Eagle-eyed readers will notice that the first matrix is eminently invertible (because the partial
differential equation has been 'solved' for au/ex), while the second is not (because information
is lost when we differentiate). There is a lot more to this simple calculation, as we will see in §2.3
and §8.2. By the way, because we are aiming for a concise treatment, there are many footnotes in
this book, so please do not be deterred by them; they mostly contain digressions from the main
stream.



4 INTRODUCTION

inroads of mathematical modelling into practical problems, especially those arising
in industry, have revealed that many, many differential equation models have to be
solved in regions that are unknown a priori. These regions must be found as part
of the solution; typical examples are the melting of an ice cube or the sloshing
of water in a container. We call these problems free boundary problems and, in
Chapter 7, we endeavour to provide an entree into the great body of knowledge
that has grown up around them in recent years.

Despite the universality of (0.1), there are some advantages in studying fully
nonlinear equations in their primitive form; in Chapter 8 we revert to problems
in which A can indeed depend on 8u;/8z, as well as on u. Thus (0.1) is no
longer quasilinear and we will see that this means that we always encounter the
possibility of non-existence or non-uniqueness when we attempt to find the deriva-
tives of u in terms of its values on some known surface. This will be found to
lead to many fascinating generalisations of the theory of non-quasilinear ordinary
differential equations, such as envelope solutions and caustics, which means that
geometric interpretations are even more valuable than in earlier chapters. Chap-
ter 9 is a compendium of ideas concerning partial differential equations that do
not fit conveniently into the earlier chapters: it could have gone on for ever.

One crucial mathematical idea that will emerge from the first six chapters is
the value of being able to write down formally the solution of any linear partial
differential equation, i.e. one in which A, are independent of u and b is linearly
dependent on u in (0.1). This idea is a generalisation of the one that says that, in
order to solve a system of linear algebraic equations, we have to invert a matrix;
instead of writing that Ax = b usually implies x = A-1b, we say that Cu = f
usually implies u =,C-'f. We will see that 'G-" can, when it exists, be expressed
as an integral weighted by what is called a Green's function or Riemann function.
However, finding this function or even some of its simple properties is almost always
difficult and usually impossible. Hence readers should never be lulled into thinking
that, because of their apparent conceptual simplicity, linear partial differential
equations are either easy or boring.

There is one other remark we must make before we start. This is the regrettable
fact that, in order to keep this book as short as it is, we have had to exclude almost
all discussion of functional analysis, numerical methods, and in particular almost
all discussion of the multitude of results that can be obtained by `perturbation
theory'. In fact, we will restrict attention to those results that can fairly easily
be proved analytically or interpreted geometrically. It would have been easy in
principle to double the length of most of the chapters by appending some of the
important results that emerge from the relevant perturbation theory; it could
have been doubled again had numerical methods been included, and yet again by
describing the principal results from the modern function-analytic theory of partial
differential equations. However, we emphasise that many of the results we obtain
or cite would not have been discovered had not their originators experimented
with approximate methods at the start.

Another advantage of our self-imposed restrictions is that the only prerequi-
sites we hope the reader possesses are some familiarity with the idea of ordinary
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differential equations, functions of a single complex variable and the calculus of
functions of several real variables. Most of all we would like them to know the
Fredholm Alternative, but, in case this is unfamiliar, it is spelled out on p. 43.
Although these are not demanding prerequisites, it will help if the reader can also
bring to the book a relaxed mathematical attitude and a readiness to look at the
broader picture: this is not a'definition-theorem-proof' book, nor an exhaustive
catalogue of methods and techniques. The authors' background is in physical ap-
plied mathematics, which inevitably slants some of the motivational examples and
interpretations of the theory, but the basic message of well-posedness would have
been the same had they been numerical analysts or probabilists. The fact that
we have been able to eschew rigour and relegate certain calculations to the ex-
ercises means that we have been able to keep the book relatively short without
compromising its applicability.

*To make a first reading easier, we have marked the harder sections of the text
and exercises with an asterisk, so that they can be freely ignored by those who are
pressed for time.

A bibliography, which consists almost entirely of related textbooks, is provided
after Chapter 9.



1

First-order scalar quasilinear
equations

1.1 Introduction
Even though this chapter deals only with the simplest category of partial dif-
ferential equations, the theory that emerges is relevant to many important and
fascinating practical situations. An example is the flow of a thin coat of paint
down a wall, as illustrated in Fig. 1.1(a). Because the layer is thin, the velocity,
say u(x, y, t), is approximately unidirectional down the wall. Gravity is resisted
by the viscosity of the paint, resulting in a shearing force, which we assume to be
proportional to the velocity gradient 8u/8y. A force balance on a small fluid ele-
ment then shows that 82u/8y2 is a constant, -c, which is proportional to gravity
(see Fig. 1.1(b)). We assume that the paint sticks to the wall, so u = 0 on y = 0.
Also, since the shearing force is zero on the paint surface y = h(x, t), 8u/8y = 0
there, and hence

Fig. 1.1 (a) Paint on a wall. (b) Forces on a fluid element.

6



INTRODUCTION 7

u= 1 cy(2h - y).

Finally, conservation of mass in the thin film gives that the time rate of change
of the paint thickness must be balanced by the x-variation of the paint flow down
the wall. This flux is q(x,t) = ff udy; over a small time bt the amount lost
from a small element of length bx is approximately (q(x + bx, t) - q(x, t)) Of, and
balancing this with the excess, (h(x, t + bt) - h(x, t)) bx, gives

Oh
0

rh

T + TT u dy = 0,
0

that is,

t
20ha+cha = 0. (1.1)

In fact, such first-order equations occur whenever we have a `density', say
h(x, t), and a `flux', say q(h), which is a known function of h. Then conservation
of mass implies the kinematic wave equation

+ =0.aax)
Equations of this kind are used to model, for example, the flow of traffic on a
crowded road, blood flow through an elastic-walled tube such as an artery, or
lubricant flowing down the mould wall of a continuous-casting machine; they also
arise as special cases of the general theories of gas dynamics and hydraulics, as we
shall see in Chapter 2.

In a completely different vein, suppose p"(t) is the probability that, after time
t spent proof-reading an arduous text on differential equations, the draft still
contains n errors. Let us also assume that in a short time interval (t, t + bt) the
authors find and correct one and only one error with probability pnp"(t)bt. Since a
draft with n errors at time t+bt can only result from ones in which there were n or
n + 1 errors at time t, a simple counting argument using conditional probabilities
gives

p"(t + bt) = µ(n + 1)pn+1(t)bt + (1 - pn bt)pn(t).
00

Thus, as bt -+ 0, we find that the generating function p(x, t) = E p"(t)x" satisfies

`00 00

= E (14(n + 1)pn+1 -n
x" I

n=0 n=o

and hence that
OP + µ(x - 1)Ox = 0.

Both this equation and (1.1) must be supplemented by suitable initial or bound-
ary conditions. Thus, we might prescribe the initial paint thickness h(x, 0), while
a sensible condition for the proof-reading model would be to assume that there
are N errors when proof-reading starts, so that p(x, 0) = xN. Note, though, that
we might also want to specify other conditions for the paint model; for example,
if paint is applied by a brush moving with speed V, we might give h at x = Vt.



8 FIRST-ORDER SCALAR QUASILINEAR EQUATIONS

1.2 Cauchy data
Motivated by these examples and, obviously, by the principle that it is always best
to start from the simplest situation, we now develop a theory for general first-order
quasilinear equations. These are defined to be equations of the form

a(x, y, u) 8 + b(x, y, u) 8u = c(x, y, u), (1.2)

where it is important that a, b and c do not depend on the derivatives of u; we
also assume that a, b and c are smooth (i.e. continuously differentiable) functions
of their arguments.

Suppose that r is a curve in the (x, y) plane; we define Cauchy data to be the
prescription of u on r. It is convenient to write this boundary condition in the
parametric form

x = xo(s), y = yo(s), u = uo(s) for al <, s <, 82. (1.3)

Here xo, yo and uo are smooth2 functions of s such that there is no value of a for
which xo(a) = yo(s) = 0, the prime denoting differentiation with respect to s.

The boundary value problem of finding a continuously differentiable function u
satisfying (1.2) and (1.3) may be interpreted geometrically as that of constructing
a surface u = u(x, y), in the space (x, y, u), called the integral or solution surface,
which satisfies (1.2) and passes through the boundary curve defined by (1.3). This
is an obvious extension of the initial value problem for an ordinary differential
equation, which requires the construction of a curve (i.e. a graph) passing through a
boundary point. For an ordinary differential equation, say a(x, u) 8u/8x = c(x, u),
this is generally possible unless a = 0 at the boundary point, and for the partial
differential equation a subset of boundary curves is unacceptable for a similar
reason.

If we differentiate the boundary data with respect to s along the boundary
curve, then we find

, 8u , 8u ,
uo = 8x xo

+ 8y yo. (1.4)

Equations (1.4) and (1.2) evaluated on r, where a, b and c are known functions of
s, are two simultaneous equations for 8u/8x and 8u/8y on r. Hence 8u/8x and
8u/8y are determined uniquely on r, provided that the determinant of coefficients

Ia b ayo_bxoS0 foralls1 <, s<, 32-
X10 A

If this condition is satisfied and if a, b, c and the Cauchy data have Taylor series
at each point, it can easily be verified that the partial derivatives of u of all orders
are defined uniquely by the Cauchy data and the partial differential equation,
and a Taylor series expansion for u(x, y) about a point on I' can be constructed

2When xo, yo or uo, or a, b, c are not smooth the problem needs a completely new approach,
as we shall see in §1.6.
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formally. This forms the starting point for the Cauchy-Kowalevski existence and
uniqueness theorem, which considers the convergence of this Taylor series and
guarantees a unique solution if condition (1.5) is satisfied; it will be discussed
further in Chapter 2.

If condition (1.5) is not satisfied at a point s = so (or for a range of values of
a) then, in general, no solution exists in the neighbourhood of the boundary curve.
However, in the special case when

xo__1/'o__tb
a b c'

(1.2) and (1.4) are linearly dependent and 8u/8x and Ou/Oy exist but are not
uniquely determined at s = so. In this case many solution surfaces may pass
through a single boundary curve, and this suggests that curves satisfying these
ordinary differential equations have an important role to play, as we shall see in
the next section.

1.3 Characteristics
The partial differential equation (1.2),

8u 8ua-+ba =c,x
y

has a geometrical interpretation which is also the key to its solution given Cauchy
boundary data x = xo(s), y = yo(s) and u = uo(s) satisfying (1.5). The normal
to the solution surface in (x, y, u) space is (8u/8x, 8u/8y, -1), and we can rewrite
the partial differential equation in the form

(a,b,c) (_i)8z8y=0.
Thus, (a, b, c) lies in the tangent plane to the solution surface at each point. Hence,
if we construct a curve (x(t), y(t), u(t)), parametrised by t, by solving the ordinary
differential equations

x = d = a(x, y,u),

d
b = dl = b(x, y, u),

duu_dt
= c(z,y,u),

then this curve lies in a solution surface for all t. If, in addition, we require that
at t = 0

X = zo(s), y = yo(s), u = uo(s), (1.8)



10 FIRST-ORDER SCALAR QUASILINEAR EQUATIONS

normal (-au/ax. -as/ay, l)
M

boundary curve _$2

characteristic

characteristic projection

Fig. 1.2 Generation of the solution surface by characteristics.

then this solution surface also passes through the boundary curve. The solution
curves of (1.7) are called the characteristics;3 as a varies, the family of charac-
teristics generates a surface, as in Fig. 1.2, which we hope is the required solu-
tion surface. As also indicated in Fig. 1.2, the projections of the solution curves
of (1.7) onto the (x, y) plane are called the characteristic projections. It is not,
however, clear from this argument that the surface so constructed is smooth, or
even continuous; there might, for example, be kinks at which the derivatives of u
are discontinuous, or the surface might turn over on itself.

If the solution of the partial differential equation aOu/Ox + bOu/Oy = c is
required to be what is called a classical solution, then u and its first derivatives
must exist and make the left- and right-hand sides equal at each point. Despite the
plausibility of our geometric picture, the following analytical argument is necessary
to verify this.

Since a, b and c are functions of x, y and u but not t explicitly, the characteristic
equations (1.7) are a system of three autonomous ordinary differential equations
subject to the initial data (1.8). Now a, b and c are Lipschitz continuous, so the
Cauchy.-Picard theorem implies that the characteristic equations have a unique
local solution. Hence we may write

x = x(s, t), y = y(s, t), u = u(s, t), (1.9)

where x(s,O) = xo(s), y(s,O) = yo (s) and u(s,O) = uo(s). Moreover, from the
same theorem, x, y and u are differentiable functions of both s and t; they also
depend continuously on the boundary data.

3We will shortly give two other important reasons for considering the curves defined by (1.7),
which will motivate new definitions of characteristics applicable to more general partial differen-
tial equations.
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The relationships x = x(s, t), y = y(s, t) and u = u(s, t) are a parametric rep-
resentation of the solution surface, which gives u locally as a unique differentiable
function of x and y if there is a unique inverse of the transformation (s, t) H (x, y).
From the inverse function theorem, the necessary and sufficient condition for this
is that

8x/8s 8x/et x' z
# 0, 00

8y/8s y

where, here and henceforth, we write ' = 8/8s, ' = 8/8t. Using (1.7) this reduces
to

ay' - bx' A 0, oc,

which is certainly satisfied on the boundary curve t = 0, where it reduces to the
condition (1.5); by continuity, it is also satisfied in some neighbourhood of the
boundary. We thus have a local existence result for u. Moreover, it is trivial to
show that the function so constructed satisfies the original differential equation
a 8u/8x + b 8u/8y = c; we simply differentiate along the characteristics to give

u =c 8xx+8 y=aF+b8y

from (1.7). Note that this result shows that along a characteristic the partial
derivative terms in (1.2) reduce to a directional derivative of u in that direction.

1.3.1 Linear and semi inear equations
Although we have just derived a local existence result, there is still, of course,
the possibility that u develops singularities further away from r, and we will soon
see that this can easily happen for equations that are not linear. Linear equations
are those in which c(x, y, u) = a(x, y)u + fi(x, y) and a, b are independent of u.
The simplest example is that of kinematic waves with a = p = 0 and a, b both
constant. Then the characteristic equations are

z=a, y=b, uu=0,

so that
x = at + xo(s), y = bt + yo(s), u = uo(s),

which is another way of saying u = f (bx - ay) for some arbitrary function f ; the
boundary values simply propagate along the characteristic projections.

We now turn to a wider lass of equations for which the characteristic equa-
tions (1.7) can still be used easily. These are semilinear equations, defined to be
those that are linear in their principal part, namely the terms involving the highest
derivatives. Thus, for a 8u/8x + b 8u/8y = c, these equations are defined to be
such that the left-hand side, which contains all the derivatives, is linear in u in
that a and b depend on z and y alone; however, c may now depend nonlinearly on
the dependent variable u.
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The characteristic equations (1.7) now reduce to a first-order differential equa-
tion since the equation for u uncouples and

dy b

dx i a'
This equation has integral curves in the (x, y) phase-plane, which are non-inter-
secting except possibly at a critical point where a = b = 0.4 Subject to the
initial conditions x(s, 0) = xo(s) and y(s, 0) = yo(s), they constitute a global
one-parameter family of curves C in the (x, y) plane, namely the characteristic
projections (often, these curves C are themselves called the characteristics). There
is a unique characteristic projection, parametrised by t and labelled by s, through
any non-critical point; hence the map (s, t) '- (x, y) is invertible there, and so
ay'-bx'#0.

Assuming the characteristic projections are known, we can calculate how u
varies along them from (1.7), using either

duc du c
dx

_
a

or
dy

whichever is more convenient. Of course, if c depends nonlinearly on u, these
last ordinary differential equations might not have global solutions, as we will
see in Example 1.3, but the fact that (1.7) has decomposed into two first-order
scalar ordinary differential equations, which can be solved sequentially, is a very
substantial simplification, even if an explicit solution cannot be found in terms of
elementary functions. The following example illustrates what can happen when we
are lucky.

Example 1.1 Solve the following linear problem:

xx+y =(x+y)u with u=1 onx=1,1<y<2;

the initial data can be written in the parametric form

xo(s) = 1, yo(s) = s, uo(s) = 1 for 1 < s < 2.

In this example we expect singular behaviour to occur at x = y = 0, by analogy
with the theory of ordinary differential equations. The characteristic equations are

i=x, y = y, u = (x + y)u,

and the characteristic projections C are given by

dy_y
dx x'

As shown in Fig. 1.3, they are straight lines through the origin, which is a critical
point.

"See Exercise 1.9 for an example of behaviour near a critical point.
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V

i

x=1

Fig. 1.3 Characteristic projections for Example 1.1.

Integrating du/dx = (x + y)u/x along a characteristic C, on which y/x is
constant, and setting u = 1 at z = 1, we have

logu = /C (1 + !x) dx = (1 + !) (x - 1).
J x

This solution for u is only defined in the shaded wedge in Fig. 1.3; moreover, u is
singular as x -+ 0+, a result which is also apparent if we calculate the solution in
parametric form:

x=et, y=set, logu=(1+s) ferd-r=(1+s)(et-1).t
0

With x > 0, the Jacobian (8(x, y)/8(s, t) I = -e20 is never zero, so that s and t
may be eliminated locally to obtain u as a unique function of x and y. As t -4 -oo,
(x, y) -> (0, 0), the Jacobian tends to zero, and u is singular. We will often use the
jargon blow-up as a shorthand description for singularity development in either u
or its derivatives.

1.4 Domain of definition and blow-up
In the example above, the region of x > 0, y > 0 in which the solution exists is
enclosed by the characteristic projections through the end-points of the curve in the
(x, y) plane on which the boundary data is given, i.e. the projection of the boundary
curve. This region is known as the domain of definition. If the boundary condition
had instead been u = 1, x = 1 for yl < y < y2i then the domain of definition of
the solution would have been yl < y/x < y2i x > 0. A general property for all
quasilinear scalar equations is that the domain of definition is, at the very least,
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limited by the characteristic projections through the end-points of the projection
of the boundary curve. Further limitations on the domain of definition may result
if a and b vanish, or if u blows up as we integrate along a characteristic, or if the
Jacobian IO(x, y)/O(s, t) I vanishes on some curve in the (x, y) plane. In fact, the
domain of definition of the solution could never extend beyond such curves since,
on them, at least one of the derivatives of u is usually unbounded.

Note that the Jacobian vanishes where ay' = bx' but, in the general quasilinear
case, this limitation on the domain of definition cannot be determined without
first finding the solution u. For the semilinear case, however, &UI49x and 01U/8Y
are uniquely defined except possibly at critical points where a = b = 0, and, as
remarked earlier, the Jacobian IO(x, y)/O(s, t)I is necessarily non-zero except at a
critical point.

An example where the Jacobian vanishes on the boundary on which Cauchy
data is prescribed is the following.

Example 1.2 Solve

x-+yT =(x+y)u, (1.10)
y

(the same equation as in the previous example) with u = 1 on the circular arc r
defined by

xo = 2 - f cos s, yo = f sins for 0 s < 4 .

The limiting characteristic projections are y = 0 and y = x, and the domain of
definition is therefore 0 < y < x, as shown in Fig. 1.4.

However, there is a worry here because, when we evaluate the solution para-
metrically, we find

x= (2-vcoss)et, y= fsinset,

log u = (2 - cos s + v sin s) (et - 1)

x

Fig. 1.4 Example 1.2: the solution is only defined in 0 < y < x.
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and hence
x'y-y'i=2e2t (i- fcosa);

although this expression is non-zero for 0 < s < 7r/4, it vanishes where r is
tangent to the characteristic 8 = it/4. This sends us a danger signal, not for the
problem (1.10) as it stands, but for any problem in which we might attempt to
continue the Cauchy data up to or beyond the point T in Fig. 1.4. If we were to
continue on 1'1i we might only have problems on the characteristic y = x, but if
we tried r2 (any curve containing a segment of the characteristic y = x) or r3,
we would almost certainly pose ourselves a problem with no solution at all. In
the case of F2i our data would probably violate the characteristic equations (1.7),
and for r3i which meets the characteristic projections passing through r, the
data would probably be inconsistent with the information propagating along the
characteristics from F.

It is well known that the solutions to first-order nonlinear ordinary differential
equations can easily blow-up by developing singularities. The same can therefore
happen for semilinear equations, as the following example shows.

Example 1.3 Solve
8u 8u 2

8x+u inx>0

with
z

u = e-v on x = 0, i.e. x0=O, YO=s, uo = e '

Clearly, the parametric form of the solution is

x=t, y=t+s, u=e 1 t.
The nonlinear right-hand side of (1.11) is so strong that the solution blows up,
with u -* oo, on the curve x = ein-02. The domain of definition is the region
where x < e(y-z)2; there is no obvious way to define u beyond this region without
some drastic modification to our partial differential equation.

This kind of behaviour is rarely encountered in practice for first-order scalar
equations, but we will see many examples of it for higher-order equations in Chap-
ter 6. However, there is another more endemic kind of blow-up that occurs for
quasilinear first-order equations, to which we now turn.

1.5 Quasilinear equations
The general theory of integrals of three autonomous ordinary differential equations
z = a, U = b and u = c is much more difficult than that for the two such equations
which were obtained in the linear or semilinear case. Indeed, the extra degree
of freedom enjoyed by three-dimensional phase-spaces compared to phase-planes
means that we must be prepared for chaotic characteristics and hence `wrinkled'
integral surfaces, if indeed the integral surfaces can be defined at all. We therefore
begin by looking at quasilinear partial differential equations by example.
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When it comes to writing down explicit solutions, we may be fortunate enough
to encounter an equation as symmetric as

x(y - u) 8x + y(u - X) FY = u(x - y),

in which case it is easy to spot integrals of

dx dy du

x(y - u) y(u - x) u(x - y)

in the form'

x + y + u = xo(8) + yo(s) + uo(s), xyu = xo(s)yo(8)uo(8),

so that the characteristic projections are given by

x + y +
zo(8)yo( )uo(8)

= xo(s) + yo(s) + uo(s)

(1.12)

(1.13)

From the practical viewpoint, there is another serendipitous approach to the
characteristic equations which is often more convenient than working with the
parametric representation in terms of a and t. This is to note that, if we can spot
two independent integrals f (z, y, u) = constant and g(x, y, u) = constant, then the
general solution of the original partial differential equation (1.2) is G(f, g) = 0,
where G is arbitrary. To see this, note that the surface G = 0 meets a surface
f = c where G(c, g) = 0, i.e. where g = constant; hence the surface G = 0 is
composed of characteristics in accordance with Fig. 1.2, and this reflects the fact
that any two integral surfaces intersect in a characteristic. Clearly, the solution to
the example above can be obtained in this way, with f = xyu and g = x + y + u;
see Exercise 1.4. However, at the end of the day, the existence of explicit solutions
is a rare event indicative of some underlying symmetry which may be difficult to
discern; we will return to this general question in Chapter 6.

Parametric solution representations such as (1.13) may conceal a phenomenon
which can be studied conveniently by the simpler prototype

On On
8x+u8i=0. (1.14)

This is a kinematic wave in which z plays the role of time; the wave speed de-
pends linearly on the wave amplitude u, rather than quadratically as in the paint
model (1.1). We can get a good idea of what might happen here by watching waves
run up a shallow beach, where water at the crest of a wave moves faster than at

51n this context the componendo et dioidendo rule

61 - 62 - -Qn - A-bl - bs -
bn

-
E,Atbi

for any A,, is often useful.
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1

0

(a)

- x

y

(b)

Fig. 1.5 Characteristic projections of the solution of (1.14) and (1.15): (a) positive ramp;
(b) negative ramp.

a trough; in fact, solutions u of (1.14) can be shown to be a crude model of the
elevation of such waves. We consider Cauchy data appropriate to an initial value
problem in which u = f (y) on x = 0, so that

x0 =0, yo=8, uo=f(a),
and the solution is

x=t, y=tf(8)+8, u= f(8).
The general integral is given implicitly by u = f (y - ux) for any f .

We have the very helpful result that u is constant on the characteristic projec-
tions dy/dx = u, which are thus straight lines. Now consider the implications for
two kinds of `ramp' datas in which

0, y < 0,

ft(y) = ±y, 0 y < 1, (1.15)
t1, l Y.

The solution for z > 0 is given by considering the characteristic projections, shown
in Fig. 1.5, as

10, y < 0,
ut= y/(xf1), Oy<l±x,

fl, 1fx'< Y.
6Such a Cauchy problem violates our crucial earlier assumption of only considering smooth

data, but everything we are about to say would apply if we were to go through the chore of
replacing (1.15) by a smooth approximation and then taking a suitable limit.
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(a)

(b)

u

1

Fig. 1.6 Solution of (1.14) and (1.15): (a) positive ramp; (b) negative ramp.

The initial discontinuity in slope at y = 0 remains fixed on the characteristic
projection y = 0, but the slope discontinuity at y = 1 is propagated along the
characteristic projection y = 1±x, and the profile of of as a function of y remains
piecewise linear, as in Fig. 1.6. Thus the ramp u+ of positive slope becomes shal-
lower as x increases, whereas the ramp u_ of negative slope steepens until, at x = 1,
it is vertical; for x > 1, the profile is triple-valued. For the ramp of positive slope,
there is no value of z > 0 for which the solvability condition 8(x, y)/8(8, t) 0 0, 00
is violated but, for the negative slope ramp, there is a curve in x > I on which this
Jacobian vanishes. We emphasise that this statement applies even if we `smooth'
the ramp because it is an inevitable consequence of the nonlinearity in (1.14).
This 'turning-over' phenomenon is familiar to anyone who has applied paint too
thickly to a vertical wall; the model (1.1) is susceptible to a simple modification
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of the analysis just given. The same remark applies to traffic pile-ups, or other
situations described by the kinematic waves that we mentioned at the beginning
of the chapter. However, on the mathematical side, the phenomenon has serious
implications for the whole study of nonlinear partial differential equations because
these kinds of discontinuities are likely to be encountered whenever we try to use
nonlinear equations as mathematical models.

Before we consider what to do about this, let us also note that there is another
aspect to partial differential equation models involving discontinuities. This is the
observation that many physical phenomena that we would like to model can only
be represented at all conveniently by differential equations, possibly even linear
ones, whose solutions have discontinuities across boundaries which themselves have
to be determined as a part of the solution. Such configurations are called Jnee
boundary problems and we will devote a chapter to them later on. For the moment
we note that they could occur when modelling heat flow in a material that can
change phase or otherwise react chemically in a very thin layer, such as a flame; in
either case there is a discontinuity in the heat flux at the free boundary. Equally,
a free surface between two immiscible fluids can be considered as a discontinuity
in density, or a tumour growth boundary as a discontinuity in the concentration
of some biological agent. The only difference in principle between these examples
and (1.14) is that, in the latter case, the discontinuity occurs spontaneously as
x increases, while the above-mentioned physical examples have their singularity
imposed in the prescription of the problem.

This state of affairs motivates us to consider a more imaginative approach to
partial differential equations than that of prosaically searching for what we have
called classical solutions, in which the dependent variable and its derivatives are
all smooth enough to satisfy the differential equation everywhere. We could be
ambitious, and allow solutions to be singular at points (which could be relevant
to, say, models for explosions) or on tines (to model, say, vortices in fluids or
superconductors), but here we will only consider discontinuities across surfaces of
one dimension fewer than the dimension of the space of independent variables (i.e.
curves, as far as most of this chapter is concerned).

1.6 Solutions with discontinuities
Our first naive idea based on (1.14) (and its yet-to-be-revealed relevance to, say,
shock waves in gas dynamics) is to contemplate the idea of a `weak', as distinct
from `classical', solution as a combination of classical solutions, each defined on a
different domain. These domains are then going to be patched together in such a
way that, across the boundaries between domains on which there are discontinuities
in some derivatives, a suitably generalised form of the governing equation (1.2),

Ou Ou

aOx + 68y = c,

is satisfied. The definition will be made precise, even when u itself is discontinuous,
in the next section, but let us consider first the problem of looking for a solution
for which only the first derivatives of u may be discontinuous across some curve
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C in the (x, y) plane, while u itself is continuous there. If the curve is defined by
x = x(t), y = y(t) and we denote the limiting values of functions as this curve is
approached from either side by superscripts + and -, then

+ 8u+ 8u+ 8u 8uu =x8x +y8y tC=x8x +yay

Since u is continuous across C, so1is u, and therefore

x0++y[tul+_=0, (1.16)

where the square bracket notation denotes the `jump' or finite discontinuity in
the expression across C. The function u must also satisfy the partial differential
equation except on C, so by subtraction we have

a [fix] _ + b [1i_ = 0, (1.17)

where a and b are evaluated on C without ambiguity since u is continuous there.
The necessary condition for these gradient discontinuities to be non-zero is bi = ay,
and therefore C must be a characteristic projection.

Thus a further interpretation of characteristics is that they are lines on the
solution surface across which there need not be a continuously turning tangent
plane, but instead there is a `kink' or an `edge'? Such a solution is generated
when the boundary curve only has a piecewise continuous tangent vector; it is not
strictly speaking a classical solution since the partial differential equation is not
satisfied on C. However, C does separate regions in which classical solutions can
be defined and calculated without having to consider the size of the discontinuity.

In the linear case, with c(x, y, u) = a(x, y)u + 6(x, y), we can compute the
magnitude of the discontinuity as it propagates along C as follows. First observe
that, if i= aandy=b,

d
dt [fix]±-a[8 2] ++b[x8y]+.

Differentiating the original partial differential equation with respect to x and sub-
tracting values on either side of C, we obtain

a 102uD
b

[ 82u 1++ 8a [8u1++ fib loul+ _ a [8u1+
8x2 8x8y J _ fix fix J fix 8y fix

Hence from (1.17), and assuming b 0 0,

18)(1
_

.
dt fix _ Ox b fix fix

so that [8u/Ox]+ never vanishes if it is non-zero at t = 0.

7lndeed, this interpretation motivates an alternative starting point for our definition of char-
acteristics which, unlike that in §1.3, can be generalised to vector partial differential equations,
as we will see in Chapter 2.

(a_La +afib)[8u1+d [8u] +
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Motivated by the discussion in §1.5, we now consider a situation in which u
itself may be discontinuous. The dangers inherent in doing this can be illustrated
by looking at a class of problems of which the following is a simple example.
Consider the Cauchy problem

Ou Ou

{o,

y < 0,u(O,y)=1, y>0,

and let us enquire whether there is any special curve y = f (x), f (0) = 0, such that
the solution is

u= 0, y < f(x),
1, y >f(x). (1.19)

We can give a plausible answer even to the corresponding question for the general
semilinear case, in which the boundary data has a discontinuity in u at the point
s = so, where Si < so < 82. We know that there is a unique classical solution in
the domain bounded by the projections of the characteristics through the points
defined by sl and so - 0, and a further classical solution in the domain bounded
by the characteristic projections through so + 0 and sy. In the semilinear case
the characteristic projection is determined independently of the value of u, so
that a unique characteristic projection Co through s = so is defined (Fig. 1.7).
Thus a classical solution is defined in the two domains D± which are adjacent and
separated by Co. Hence one way of defining a generalised solution in a unique way
is to permit u to have a jump, or finite discontinuity, only across a characteristic
projection such as Co. This implies that f (x) = x in (1.19).

The size of the discontinuity in u is given by the limiting values of u on either
side of Co, which have to satisfy the characteristic equations (1.7), so that

dt [u]± _ (c)± .

z

Fig. 1.7 Discontinuous boundary data for a semilinear equation.
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If c is independent of u, the discontinuity in u remains constant; if c = a(x, y)u,
then, on CO,

r
[u]± = A exp J c a (x(r), y(r)) dr,

0

where A is constant.
However, in the quasilinear case the limiting characteristic projections Co and

Co are in general different since they depend on the values uo and uo , respectively.
Thus the two domains in which the classical solutions are defined may overlap or
not be adjacent, leading to multi-valuedness or non-existence, respectively. In this
case the existence of a discontinuity in the boundary data alters the solution over
a region larger than just the one characteristic. A new approach is needed, and it
will be described in the next section.

Before we proceed, we emphasise that we cannot be too careful in constructing
any theory of discontinuous solutions of partial differential equations. The moment
we allow the solution to be ill-behaved in any way that is not natural for the
equation, we may be like a fisherman who has cast his net so widely as to catch
every fish in the river. If this happens to us, we must be prepared to have to
filter out many candidate solutions which should not have been allowed in the first
place.

*1.7 Weak solutions
On a curve Co across which u or its first derivatives have discontinuities, the par-
tial differential equation a 0u/& + b 8u/8y = c has no meaning. However, we
have seen in the previous section that jumps, i.e. finite discontinuities, in the first
derivatives of u can be described by piecing together different classical solutions
across characteristics systematically and naturally. The motivation for this section
is to find a similarly systematic way of describing finite discontinuities in u itself.
Such discontinuities are often called shocks, a term originating from partial dif-
ferential equation models in gas dynamics. When shocks are present, the problem
is underdetermined when stated just as a partial differential equation; either a
condition on the value of the discontinuity must be given, or the problem must be
rewritten in such a way that it is meaningful even in the presence of shocks.

For ease of exposition we begin by illustrating the latter procedure for the
linear equation

a(x,y)8x + b(x,y) = a(x,y)u. (1.20)

We introduce an arbitrary differentiable function 1P(x, y), called a test function, so
that if u is differentiable and satisfies (1.20) then, for all z/i,

ax (,b) + 8y (ln'u) u (-(at) + b (bpi) + ad I . (1.21)

Thus, if u is prescribed on some initial arc I' and we integrate over a region
D between r and an arbitrary curve y, and +ii is restricted to vanish on y (see
Fig. 1.8(a)), then (1.21) allows us to use Green's theorem to obtain
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y y

(a)

x
(b)

x

Fig. 1.8 Regions of integration for weak solutions: (a) continuous solutions; (b) discon-
tinuous solutions.

jW(adv - b dx) .
IJn

u ((a) + (biIi) + dx dy. (1.22)

Now (1.22) is an identity which can make sense even when u is not differen-
tiable. Hence we define a weak solution of (1.20), with boundary data given on I',
as a function u satisfying (1.22) for all test functions' 0. The key point here is
that this definition does not require u to possess derivatives at all points, only that
the integrals exist; the onus of differentiability has been transferred from u to 0.
If, however, u is differentiable everywhere in a subdomain Do, then, by choosing
suitable test functions and reversing the steps in the argument above, it is easily
shown that u satisfies (1.20) everywhere in Do. A similar remark applies if u has
discontinuous derivatives across a characteristic. However, if u itself is discontin-
uous across an open curve Co, as in Fig. 1.8(b), then the application of Green's
theorem to regions D+ and D- separated by Co gives, after subtraction,

ip[u]±(ady-bdx)=0. (1.23)
fc.

Since [u]± 96 0 and vP is arbitrary, dy/dx = b/a and Co is a characteristic projec-
tion.

For quasilinear problems this procedure can only be used if the equation is
such that its principal part, i.e. the terms involving the highest derivatives, is in
divergence form OP/ax + OQ/8y, so that Green's theorem can be applied. In this
case,

8P OQ
8x+8y=c, (1.24)

'In some cases, such as models for gas dynamics, this definition can be motivated physically;
see [301.
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where P, Q and c are differentiable functions of x, y and u, and the equation is
called an inhomogeneous conservation law (or, when c = 0, simply a conservation
law).

The appropriatee weak solution is then defined to be a function u such that

fJ I PBx +Q y2 +ctj) dxdy = j1(Pdy - Qdx) (1.25)
II

for all admissible test functions i,i, and it is again easily verified that if u is differ-
entiable it must satisfy (1.24). As in (1.23), if u is discontinuous across Co,

f P
([P]± dy - [Q]± dx) = 0, (1.26)

a

and, as 0 is arbitrary, this implies that the slope of the shock at Co is given by
the Rankine-Hugoniot condition9

dy [Q]{
1 27=

dx [P]±'

( . )

This is no longer a characteristic projection in general, but as [u]± -> 0 it tends
to the characteristic projection defined by dy/dx = (8Q/8u)/(8P/8u).10

Example 1.4 Solve the following ((1.14) again):

8U au
8x +u8y = 0, u(O,y) = f(y)

By a simple generalisation of the discussion following (1.15), this problem fails to
have a classical solution for all x > 0 whenever there are values of y for which
f'(y) < 0. It does, however, have a weak solution defined by (1.25) with P = u,
Q = lug and c = 0. Then the possible curves Co separating domains in which
classical solutions exist have slope such that

dy [12

u2]_

u++u-
dx [u]+ 2

Now comes the catch alluded to on p. 22: different weak solutions may arise from
the same classical problem. Thus, in this example, if the partial differential equa-
tion were multiplied by u, so that P = xu2 and Q = sus, the definition of the
weak solution would be different and would lead to curves Co with slopes such
that

dy [3u3] u++u-
dx [1u2]+ # 2

2

sThis condition can also be derived from a simple `box' argument in which the jump in density
across a small box centred on the shock is balanced by the jump in flux, much as in the derivation
of mass conservation in §1.1. However, this argument is less easy to apply when there are more
dependent variables.

'°Note that the curve on which the solution of (1.11) is singular is not a characteristic either,
but it has a slope which tends to that of a characteristic as x - oo.
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Thus, in generalising the classical definition of a solution to the Cauchy prob-
lem, which leads to non-existence when shocks occur, we have lost uniqueness;
additional conditions are needed to retrieve this property. We can see this more
explicitly by returning to (1.14) with the initial data

0, y < 0,
u(O,y) _

11, y>0.

A solution for which u is continuous but its derivatives are not is

0, y < 0,U=
= y/Z, 0 < y < x,

11, x<y;

the discontinuities propagate on the characteristic projections y = 0 and y = x.
Thus it is a weak solution. However, another weak solution is

u= 0, y < x/2,
5l 1, y>z/2,

since it satisfies the shock condition (1.27) on y = x/2. Thus there is more than
one weak solution to this Cauchy problem, and in fact many such discontinuous
weak solutions can be constructed. The fears expressed on p. 22 have been realised
and some constraint or `filter' is needed to restore uniqueness. There are several
possibilities, three of which will be discussed at the end of Chapter 2.

* 1.8 More independent variables
We conclude with some brief comments about the extension of the ideas of this
chapter to scalar first-order quasilinear equations with more than two independent
variables, which arise in several applications. For example, when a thin layer of a
viscous liquid flows over a given curved surface z = F(x, y), where z is vertically
upwards, the appropriate generalisation of (1.1) is

8t - 3cA (8x (Ah"
8x

) + - 4h3

ax/ ,, = 0' (1.28)

here A = (1 + (8F/8x)2 + (8F/8y)2)-1/2, c is as in (1.1), and the thickness of

the fluid layer measured normal to the substrate, h, is now a function of x, y and
t.

The general equation has the form

m l9it
E a., 8x = c for m > 2, (1.29)
e=1

where ai and c are functions of x; and u. The appropriate generalisation of the
Cauchy data (1.3) is to prescribe u on a surface of dimension m -1 and, to do this,
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a change of style is appropriate compared to that used in § 1.3. With m coordinates
to deal with, it is worth paying the price of representing the surface as a level set
of a function, say ¢(x1, . . . , xm) = 0, rather than selecting one preferred variable
xm as a function of the others.

We know u on the surface 0 = 0, which determines the m -1 tangential deriva-
tives; together with the partial differential equation, this is in general sufficient to
determine all the first derivatives 8u/8xi on 0 = 0. To see whether this works
analytically, we change from (xi) to new variables (0, tpi), i = 1, ... , m - 1, where
Oi are functions which are independent of 0. Then, by the chain rule,

m
8o On

Ea'8xi 8(b+a Du=c,

where

a

m-1 m

jEE 8x;
(a; 0'1=1 i=1

Hence Ou/84, the derivative of u normal to 0 = 0, can be found as long as

8ai-#0.
i=1 8xi

(1.30)

(1.31)

Following (1.5), we say that 0 = 0, which is a surface of dimension m - 1, is a
characteristic surface of (1.29) if

a;
8d'

= 0. (1.32)
i=1 8x;

We now have what seems to be a partial differential equation for ¢, although we
will not need to solve it as such." In fact, since (1.32) only holds on 0 = 0, it is
effectively an (m - 1)-variable partial differential equation, albeit a nonlinear one
(see Exercise 1.16).

It is easy to see that this approach to characteristics coincides with the defini-
tion that a surface is only characteristic if it can sustain a jump in 8u/8xi across
it. Indeed, subtracting (1.30) on either side of ¢ = 0 gives

8&u o=0+(ai±.)
8xi [eel m=o- = 0.

However, the way in which such discontinuities propagate in 0 = 0 is a non-trivial
generalisation of the corresponding result when m = 2, namely that a disconti-
nuity at one point in the Cauchy data simply propagates along the characteristic
projection through that point. First, assume for simplicity that the a; are constant

11 In Chapter 8 we will see that the solution of equations such as (1.32) can always be reduced
to the solution of some ordinary differential equations.
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and c = 0. This means that the characteristics are hyperplanes and so we can take
0 to be a linear combination of the xi. Then, differentiating (1.30) with respect to
0 and subtracting on either side of 0 = 0, we obtain

ad! 2 +

IL
0=0+ai- I +(a.V)

00 1
0. (1.33)

_0_ m=u-

Hence, on a characteristic 0 = 0,

=0.
I 8"Oul

m=o+

Even when ai and c depend on x; and u, it is easy to see that the right-hand
side of (1.33) is replaced by a term that is simply proportional to (i3u/801 o+,
as in (1.18). Thus we have the interesting result that the coefficients ai define
a direction in the characteristic surface, called the bicharacteristic direction, in
which discontinuities propagate. Any jump in the Cauchy data at one point of the
initial surface only propagates along the one-dimensional bicharacteristic through
that point. Moreover, it is easy to see that the (m - 1)-dimensional characteris-
tic surfaces are each made up of an (m - 2)-parameter family of bicharacteristic
curves (see Fig. 1.9 for the case m = 3). Of course, bicharacteristics are simply
characteristics when m = 2; for m > 2, they can be used to construct the solution
parametrically by solving the bicharacteristic equations

dtt
; with dt = c,

together with the Cauchy data

u=Uo(S), x,=x;0(s), s=(si,...,Sm_i).

(1.34)

Fig. 1.9 Characteristic surface and bicharacteristic curve for (1.29).
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Example 1.5 Solve

with

8u On Onx8i+y8y+zaz =1

u=0 onx+y+z=1,
i.e.

uo(81,82) = 0, xo(81)s2) = s1, yo(s1,s2) = 82, zo(81,192) = 1 - 81 - s2.

The bicharacteristic equations are

i=x, y=y, z=z, a=1,
and the parametric solution is then

x = stet, y = stet, z = (1 - 81 - s2)e, u = t.

Non-parametrically, the solution is u = log(x+y+z) and the characteristic surfaces
are given by x 8q/8x + y 8¢/8y + z 84/8z = 0, which, by a generalisation of
the method described on p. 16, is easily seen to have the general solution ¢ =
F(x/y, x/z). Thus, the characteristic surfaces are cones of arbitrary cross-section
through the origin, and the bicharacteristics are the generators of these cones.

1.9 Postscript
It is helpful to have a catalogue of the number of arbitrary constants and functions
that we might expect to appear in the general solutions of differential equations,
and we conclude this chapter with such a list. Functions denoted by F are deter-
mined by the equation and those denoted by G are arbitrary.

For ordinary differential equations for functions u(x), we have the following.

First-order: The general solution is

F(u,x,GI) = 0,

where G1 is an arbitrary constant.

Second-order: The general solution is

F(u,x,G1,G2) = 0,

where G1,2 are constant. The pattern continues in this way for higher orders.

For partial differential equations, intuition suggests that the solutions depend
on arbitrary functions as follows.

First-order, two independent variables: The general solution is

Fo(u,x,y,G1(Fi)) = 0,

where G1 is an arbitrary function and F1 = F1 (u, x, y).
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First-order, three independent variables: The general solution is

Fo(u,x,y,z,G1(Fi,F2)) = 0,
where G1 is arbitrary and F1,2 = F1,2 (u, x, y, z).

Second-order, two independent variables: The general solution is

Fo (u,x,y,G1(F1),G2(F2)) = 0,

where G1,2 are arbitrary and F1,2 = Fi,2(u, x, y).

Second-order, three independent variables: The general solution is

Fo(u,x,y,z,G1(F1,F2),G2(Fs,F4)) =0,

where G1,2 are arbitrary and F1,2,3,4 = Fi,2,3,4 (u, x, y, z).

Again, the pattern continues for higher orders and more independent variables.
However, this list can be misleading should any of the functions or variables be
complex, as we shall see in Chapters 3 and 5.

Exercises
1.1. Consider the proof-reading model of §1.1 with N errors initially. Show that

the solution is
p(x,t)_(1+(x-1)e-l' NDoes

the result agree with your experience of reading this book, which has
been proof-read 33 times over two editions?

1.2. Suppose that p(x, t) is the number density of cars per unit length along
a road, x being distance along the road, and let u(x, t) be their velocity
(overtaking is illegal). Assuming that no cars enter or leave the road, show
that, if a(t) and b(t) are the positions of any two cars (so that da/dt = u(a, t)
and db/dt = u(b, t)), then

4
b(t)

P(x,t)dx
a( t)

is independent of time. Deduce that, if p and u are sufficiently well behaved,

OP a
8t + 8x (Pu) = 0.

Suppose further that u is a known decreasing function of p (why is this
realistic?). Show that information propagates through the traffic at a velocity
d(pu)/dp < u.

1.3. (i) Suppose that you can spot one integral f (x, y, u) = k = constant of the
characteristic equations

i _ y _ u
a(x, y, u) b(x, y, u) c(x, y, u)

and that you can solve for u = F(x, y, k). Assuming you are also lucky
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enough to be able to integrate dy/dx = b(x, y, F)/a(x, y, F) with k =
constant, explain how to find a second integral of the characteristic equa-
tions.

(ii) The function a is said to be homogeneous if, for all A,

a(Ax,Ay,Au) = A°a(x,y,u)

for some number a. Show that, if a, b and c are all homogeneous functions
with the same value of a, the two characteristic equations can be reduced
to a single first-order scalar differential equation.

Hint. Note that a, b and c are functions only of, say, u/x and y/x, multiplied
by x°; write u = xv({), where = y/x, to obtain an equation for dv/dC just
as a function of v and t.

1.4. Consider equation (1.12), for which two first integrals of the characteristic
equations are given by f(x,y,u) = x + y + u = constant and g(x,y,u) =
xyu = constant, and the general solution is G(f, g) = 0. Suppose that the
initial data is xo(s) = yo(s) = uo(s) = s. Show that one choice for G is
G(f, g) = (f /3)3 - g, and hence that the solution is given implicitly by
((x + y + u)/3)3 - xyu = 0.

1.5. Integrate the characteristic equations to show that the solution of

Ou 8u
y8x - 2xy = 2xu,

with u=y3when x=0and1<, y<, 2, is

u= (y + x2)4
y

What is the domain of definition of the solution in y > 0?
1.6. Integrate the characteristic equations to show that the solution of

3 0u Ou
x

ax &Y,

with

is

I
U 1+x2 ony=0, -oo<x<oo,

1 - 2x2y
1 + x2 - 2x2y

Show that the solution is not defined in y > 1/2x2 despite the fact that the
data is prescribed for all x.
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1.7. Suppose that
8u 8u 2 2xU0x -yuay =x -y

and that u = f (x) on x = y. Show that when

(i) f (x) = 0,
(n) f(x) = 2.,

(iii) f (x) = x,

u=f(x-y),
u = f xz + y2,
u=± VI"X-2

for xy > 0, and determine which sign should be taken in the first quadrant
and which in the third. Explain why the solutions are non-unique in case
(i) and why the solution cannot be defined when xy < 0. Describe the
surfaces z = u(x, y) geometrically. What change of variable would make
these problems easier?

1.8. Derive the parametric solution of

(x+u)8x+y =u+y2

in the form

y = yo(r)e`, u = (uo(s) - yo(s)) et + yo(s)e2t,

x = (xo(s) - y02 (s)) et + (uo(s) - y02 (a)) tet + y02 (s)e2t

Suppose that u = x on y = 1, -oo < x < oo. Show that
z

u(x, y) = i + logy
+ yz

What is the domain of definition of u?

1.9. Show that if
8u 8u

-y8x +x8y = f(x,y)

then, away from z=y=0,
e

u= j f (r cos 0, r sin 0) dO + F(r), (1.35)
0

where x = r cos 9, y = r sin 0 and F(r) is arbitrary. Now suppose that
f 2*0 f (r cos 0, r sin 8) dB = 0. Show that u can be defined for all (x, y) 0 (0, 0).
Suppose further that f (x, y) is analytic at (0, 0), so that it has a Taylor series
expansion which converges to f in a neighbourhood of the origin. Show that,
if u is also analytic at the origin, then

U 1
L +G(r2),

2 x+a J
where G(z) is analytic at z = 0 and a is arbitrary.
Hint. Try f = r sin 9 in (1.35).
(We are grateful to S. Dobrokhotov for this example.)
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* 1.10. Take u = 1-pin Exercise 1.2 for 0 < p c 1. How might you interpret p = 1?
Show that u and p are constant on the characteristics

dx
dt = 1 - 2p,

and show that the Rankine-Hugoniot condition for the speed of a shock
x = S(t) is

dS [p(1 - p)J±
dt [p]±

A queue is building up at a traffic light x = 1 so that, when the light turns
to green at t = 0,

p(x, 0) =
0, x < O and x > 1,

lx, 0<x<1.

Show that initially the characteristics, which are straight, are

x - a=t inx<tandx>t+1,wherep=0,
x-s=(1-2s)t int<x<1-t,where p=s,
x-1=(1-2s)t in 1-t<x<1+t,where p=s=(t-x+1)/(2t).

Deduce that a collision first occurs at x = 1/2 when t = 1/2, and that
thereafter there is a shock such that

dS S+t-1

1.11. Show that the solution of

dt 2t

Ou Ou

8x +u 8y-1'
with u=s/2onx=y=sfor0,< s<1,is

4x-2y-x2

and that the characteristics are

x2
y =

2
+ c(2 - x), c = constant.

What is the domain of definition of the solution?



EXERCISES 33

* 1. 12. Show that, if

for x > 0 with

u(0, y) =

Ou Ou

TX
+u'y=0

J0, y<,Oory,> 1,
Sly(1-v), O'< y<' l,

then, for 0 5 s <, 1, the characteristics are

y-s=s(1-s)X
with

Show also that

u = s(1 - s).

u2x2+u(1+x-2xy)+y2-y=0,
and show that u is continuous for small enough x. The envelope of the
characteristics is found by differentiating y - s = s(1 - s)x partially with
respect to s and eliminating a; show that this gives 4xy = (x + 1)2 and
deduce that a shock forms at x = y = 1.

* 1.13. Paint flowing down a wall has thickness u(x, t) satisfying

6+ u2 8z = 0 fort > 0.

Show that the characteristics are straight and that the Rankine-Hugoniot
condition on a shock x = S(t) is

dS
[§u3]+

dt (u)±

A stripe of paint is applied at t = 0 so that

u(x,0) =
0, x < 0 or x > 1,

11, 0<x<1.
Show that, for small enough t,

u=

0, x < 0,
(x/t)1/2, 0 < x < t,
1, t < x < S(t),
0, S(t) < x,

where the shock is z = S(t) = 1 + t/3. Explain why this solution changes at
t = 3/2, and show that thereafter

dS S
dt 3t
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* 1.14. Integrate along the bicharacteristics to show that, if

8u 8u 8u
u8x+z8y+az =y,

with u = x on z = 0, -oo < x, y < oo, then

t2 t3 t4 82t2
z = t , y=

2
+82i u=

6
+s2t+31, x= R+ 2 +s1(t+1).

Deduce that
_ 24x - 12yz2 + 5z4 1 3

U
24(1+z) +yz-3z

and that the domain of definition is bounded by z = -1.
* 1.15. Show that the projections of the bicharacteristics of (1.28) onto the (x, y)

plane are lines of steepest descent of the surface z = F(x, y), i.e. that they
are orthogonal to the level curves of F.

* 1.16. Suppose that (1.32) is satisfied on ¢ = 0 and that the equation = 0 can be
solved locally for xm = ii(x1, ... , x,,,- 1). Show that the differential equation

m-1 ftai-8xif-1

where a; = ai (x1, ... , xm_ 1, 0), holds in the space of (x1, ... , xm_ 1).

* 1.17. Suppose that u(x, y) is such that Ou/8x = 0 with

1, Y<0'

Now let the partial differential equation for u be replaced by

8u 82u
8x = C8y2'

for small positive e. Verify that a solution of this equation is

2 e:
9

2

f
V/

u(xy) _ e' ds

(this will be derived in Chapter 6). Show that, as a -, 0,

u->
1, Y<0'

1, y > 0,

for x > 0, and that this result is the same as that obtained by requiring u to
be discontinuous only on a characteristic. (This way of smoothing a shock
will be studied further in Chapter 2.)
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First-order quasilinear systems

2.1 Motivation and models
When we use vector systems of partial differential equations, we can model many
more physical situations than when we are restricted to the scalar case. For exam-
ple, as well as looking at the simple kinematic wave models of Chapter 1, we can
study situations which allow simultaneous wave propagation both backwards and
forwards. A famous example is that of shallow water waves where gravity and fluid
inertia balance each other in a shallow layer of water with a free surface, of depth
h(x, t), flowing above a horizontal bed along the x axis (Fig. 2.1(a)). Let the fluid
density be a constant p. Then if we assume the pressure p is nearly hydrostatic,
and set it equal to pg(h - y), the horizontal force balance12 for a river, whose bed
is the x axis, flowing nearly unidirectionally with velocity u(x, t) is

(8u 8ul 8p Oh
p +u8x = 8x

- -P98x. (2.1)

Also, as in the paint model of §1.1, conservation of mass gives

Oh 0
8t + 8x

(hu) = 0. (2.2)

We thus have a two-by-two system for u and h.
The shallow water equations can be shown to be (see Exercise 2.1) a special case

of the following three-by-three system of one-dimensional unsteady gas dynamics
(Fig. 2.1(b) ):

8p 8 _ 8u 8u _ 1 8p

at + 8x
0,

8t + uOx - p 8x,
(2.3)

+ )=0( 2)+p +) ( (2 4)u8 ,8P 8t (7 l)P 2u
.

for the pressure p, the density p (which now varies) and the velocity u, where 'y is a
constant greater than unity; these equations represent mass, force and energy bal-
ances, respectively. These are also the balances needed to model two-dimensional
steady gas dynamics with velocity (u, v) as the four-by-four system

121n a fluid flow the acceleration is not just the time derivative of the velocity; the convective
term u8u/8x needs to be added to account for the fact that the fluid accelerates as it moves
from place to place.

35
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x

(a) (b)

Fig. 2.1 (a) Open channel shallow water flow; (b) one-dimensional unsteady gas flow
driven by a piston.

8x(pu) + -(Pv) = 0, (2.5)

Ou Ou 1 8p Ov at, _ 18p
(2.6)

//

u8x
+v8y_ -PBx, u8x

+v _P ft,

p(u +vay/
\('Y

p1)p+2(u2+v2))+57(pu)+a()(pv) (2.7)

In both gasdynamics models the final equation expresses the fact that all the
work done on the gas by the pressure forces goes into changing the heat content
and kinetic energy.13 A further generalisation is to allow for chemical reactions
to occur in the gas, in which case (2.4) and (2.7) have non-zero right-hand sides
involving, in general, the reactant concentrations for which suitable rate equations
must be written down. Later in the chapter, we will consider a simple case when
these right-hand sides are localised in space, which will enable us to model the
dramatic `detonations' that can sometimes accompany shock waves.

As they stand, (2.5)--(2.7) are a complicated quasilinear system, so it is in-
structive to consider the simpler model obtained by 'linearising' about the con-
stant solution u = U, v = 0, p = po, p = po. We will discuss such linearisa-
tions in more detail in Chapter 7, but it can be shown that (2.7) often implies
p /P' = constant = po /pro' and thus that, if we write u = U + u, v = 0, p = po +13,
p = po +,p and neglect squares of barred quantities, we obtain

86 of, !m
P0 8x

+
ay

+ U
8x

= 0, (2.8)

2a 8A
UF. +

PO F. 0, (2.9)
06

2

uex+P0O° =o, (2.10)

where ao = typo/po (see Exercise 2.2); ao will later be seen to be the speed of sound
in the gas.

13We have also assumed that the gas obeys the so-called ideal gas law in which its temperature
is proportional to p/p.
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ax

-3pp- 4(x. t)

tension T

area A area A +8A

T

Aax -H

Fig. 2.2 Fibre-drawing.

8x

H (A+8A) (-.1 + a1 8x)

Fig. 2.3 Fibre-drawing: force balance.

Less well-studied systems of first-order equations arise in many industrial pro-
cesses. A fertile source is in the glass industry where, for example, the nearly
unidirectional drawing of an optical fibre of cross-sectional area A(x, t) with ve-
locity u(z, t) can be modelled by what is called an 'extensional flow' (Fig. 2.2).
This is one in which the principal viscous resistance is not one of shearing (as in
the paint model of Chapter 1) but of a normal stress os proportional to On/8x
giving a force proportional to Abu/Ox (Fig. 2.3). When we neglect the inertia of
the glass and integrate the momentum balance Bas/ex = 0, we obtain

cA8 = T(t), (2.11)

where T is the tension in the fibre; the constant c is proportional to the viscosity of
the glass, which measures its resistance to shearing and extension. 14 Conservation
of mass implies, as usual,

8A 0
i t

+8x(Au)=0, (2.12)

and so we have a slightly unconventional first-order system in which T is to be
determined by the boundary conditions.

14In the paint model of §1.1, the counterpart of this constant is inversely proportional to the
viscosity.



38 FIRST-ORDER QUASILINEAR SYSTEMS

Fig. 2.4 Glass sheet stretching: force balance.

An even more interesting configuration occurs when we consider the exten-
sion of a sheet of glass of thickness 2h(x, y, t), symmetric about the (x, y) plane
(Fig. 2.4). Then two-dimensional shearing of the velocity (u, v) occurs in the (x, y)
plane. When we integrate across the thickness of the sheet, the momentum bal-
ances for the normal and shear stresses a= and uy, and r, respectively, are

8(hu;) + 8(hr) _ 8(hr) + 8(huy) = 0. (2.13)
ex 8y 8x ey

The generalisations of the models of Fig. 1.1(b) and Fig. 2.3 can be shown to lead
to forces

ha.=2h28x+ M, hay=2h(ax+28y)'
!

TO
(2.14)

hr=h(a+8x) ,

where the constant viscosity has been set equal to unity for convenience. The mass
conservation equation in (2.3) generalises to

+ 8x (hu) + (hv) = 0, (2.15)

leaving us with the six-dimensional system (2.13)-(2.15).
Other examples in process engineering include the following.

Now of granular materials
A force balance in an inertia-free two-dimensional granular material in the absence
of gravity is also simply (2.13) with h = 1 (Fig. 2.5). On the assumption that flow
is taking place because the stresses are everywhere strong enough to overcome
friction, we can find the simple `yield criterion', which the stress must satisfy,
from an analysis using Coulomb's law of friction. This just says that we need to
ensure that at each point of a flowing granular material there is a `slip plane', on
an element of which the ratio of the shear (frictional) force to the normal force is
equal to the coefficient of friction, say tan ¢, while on all other planes the ratio is
less than tan 0.
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Fig. 2.5 Flow of a granular medium; a is the normal stress and rB the shear stress on
a surface with normal n.

Although this condition is easy to state in words, the calculation of Exercise 2.3
is needed to translate it into the statement that

r = - Caz
2 ay sin ¢ sin I tan-1 (ii)) (2.16)

which, with (2.13), gives a closed model for ozt oy and T.

Flow in packed beds and fluidised beds

There are many practical applications of systems of first-order partial differential
equations in chemical engineering. Quite apart from models for reactors, about
which we will say more in Chapter 6, almost any process involving heat or mass
transfer from one material phase to another results in a model involving first-order
derivatives in time and space.

The simplest situation occurs when the position of one material phase is known
in advance, as, for example, in a packed bed of solid particles through which a fluid
is being passed. Typically, we might be considering a regenerative heat exchanger
in which a cold gas at temperature 09 needs to be heated; this is done by passing
the gas with speed U through stationary solid particulate whose temperature is
9., which itself may have been heated by a different hot gas. Thus, in a one-
dimensional configuration, ignoring heat conduction, the only balance that needs
to be written down is that between heat convection and heat transfer in the thin
gas layer adjacent to each particle of the bed. For the gas, this yields an averaged
heat balance in the form

Poc9(L+ua0 =h(e.-e9), (2.17)

and, for the particulate,

p.c. ' = h(89 - 0,), (2.18)
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where p and c refer to density and specific heat, respectively, and h is an experi-
mentally determined `heat transfer coefficient'.

More complicated situations occur when both phases can move as, say, in
a fluidised bed, in which the gravity force acting to immobilise the particulate
phase can be overcome by the drag force of fluid flowing vertically from a porous
`distributor' at the bottom of the bed. It is notoriously difficult to model the
mechanics of this process but, if we are only interested in modelling the mixing
properties of the fluid in the bed, we can note from observation that in many
situations the gas flows in two modes. In addition to intergranular porous medium
flow as assumed in the regenerator, large, often kidney-shaped, bubbles of almost
pure gas rise continually from the distributor to the surface of the bed. Denoting
the gas concentrations in these modes by ca and cb, respectively, we find mass
balance laws

f 8ca
2c'- ) + ( (2.19)at ax

8cb 8cb
(2.20)fb

at
+ vb 8x) + k(cb - ca) = 0,

where fa and fb are the volume fractions occupied by pore space and bubbles,
respectively, vQ and Vb are the gas velocities in the two modes, and k is now a
mass transfer coefficient; all these parameters are assumed constant. This is the
so-called Van Deemter model for mixing in a bubbling fluidised bed, and it is
clearly a generalisation of (2.17) and (2.18).

It is not surprising that so many models of partial differential equations com-
prise combinations of first-order partial derivatives. This is because all the laws of
balance of mass, momentum and energy are typically expressed as

8t
(density) + V - (flux) = source,

and furthermore the constitutive laws describing the mechanical or thermody-
namic behaviour of many materials only involve first derivatives of certain phys-
ical variables. On top of this, problems involving electromagnetism demand the
incorporation of Maxwell's equations, which in their basic form are relationships
between the first partial derivatives of the electric and magnetic fields in space
and time. The only common physical situation where higher-order derivatives oc-
cur naturally at this modelling stage is quantum mechanics, about which we will
say more in Chapter 8.

With this powerful motivation, we now describe a framework within which
first-order systems with two independent variables may be considered. Alas, too
few of the examples listed above (or indeed of any nonlinear system of partial
differential equations) can be analysed as fully as those in Chapter 1, and those for
which substantial progress can be made can often be most conveniently written as
higher-order scalar equations. Hence this chapter does not offer any great insight
into the precise behaviour of the solution of any particular partial differential
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equation system; rather it describes how all such equations should be assessed
before any detailed analytical or numerical investigation is undertaken.

2.2 Cauchy data and characteristics
We first attempt to generalise the ideas of Chapter 1 to a real first-order system
of dimension two or greater and, until §2.6, we only consider the case of two
independent variables (x, y). We begin by considering two-by-two systems, for
which we seek a vector function u with components ul and u2 satisfying

Aau+Bou =c, (2.21)

where A = (aij) and B = (bij) are 2 x 2 matrices and c is a vector with two
components, all of whose entries and components are functions of x, y, ul and
u2. A three-dimensional geometrical interpretation is that we are looking for two
surfaces ul = ul(x,y) and u2 = u2(x,y); we expect appropriate boundary data
to be that each surface passes through its own prescribed initial curve. Such a
boundary condition can be written in parametric form as

u = uo(s), x = xo(8), y = yo(s) for st < 8 < s2.

This boundary data implies that the two partial derivatives of u must satisfy

,8u ,8u ()
uo = xo ax + yo ey , 2.22

where' again denotes d/ds. These partial derivatives are uniquely determined on
the boundary curve by the four equations (2.21) and (2.22) provided that

all a12 bii b12

a21 a22 b21 b22

xo 0 yo 0
0 xo 0 yo

$0 fort <s<s2 (2.23)

With yo = Axo, we may subtract suitable multiples of the last two columns from
the first two to obtain

det(B - AA) 96 0. (2.24)

The condition (2.24) clearly reduces to (1.5) in the one-dimensional case; it is also
true for first-order systems when A and B are n x n matrices. Now, in the scalar
case, the methods of Chapter 1 were sufficient to reduce the problem to a well-
behaved system of ordinary differential equations as long as (1.5) was satisfied.
Hence, assuming Lipschitz continuity, the scalar problem is well posed, by which
we mean that

the solution exists;
it is unique;
it depends continuously on the data.
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However, we will soon see that in the vector case n > 1, (2.24) is no longer sufficient
to ensure well-posedness (the `data' now being A, B, c and the Cauchy data for u).
Surprisingly, we will see that it does not even guarantee this property for linear
problems, in which the kind of singularity development described in §§1.4 and 1.5
could not occur. Thus, great care is necessary in posing appropriate boundary
conditions for the system (2.21).

In Chapter 1, a characteristic was defined by the characteristic ordinary dif-
ferential equations (1.7), for which there is no obvious generalisation to higher
dimensions. However, we can generalise the idea mentioned after (1.5), that if
Cauchy data is given on a curve which is the projection of a characteristic then
the partial derivatives are not uniquely defined on that curve. In a first-order
scalar problem, the Cauchy data defines the partial derivative in the direction of
the curve and it is the partial derivative normal to the curve that is ill-defined on a
characteristic projection. We thus define a characteristic (projection) of a system
by this property, and henceforth we will omit the word projection when discussing
the characteristic projections of a system.'s

With this definition, a characteristic of AOu/Ox + BOu/Oy = c is a curve
(x(t), y(t)) such that this equation evaluated on the curve and

=ux-+y-
y

(2.25)

do not have unique solutions for Ou/Ox and Ou/8y, which means that the left-hand
sides of these four equations are linearly dependent. This is just the calculation
leading to (2.24) with a replaced by t; hence we say that (x(t),y(t)) is a charac-
teristic if

det(Bx - Ay) = 0. (2.26)

This is a quadratic expression in dy/dx = y/x and may therefore not give real char-
acteristic directions at each point, unlike the situation in the scalar case. Hence,
we already see a fundamental contrast with the cases considered in Chapter 1:
the change in type (a concept that we will make precise in the next chapter) that
occurs when the characteristics change from being real to complex is no less dra-
matic than the striking new phenomena that occur when an aircraft penetrates
the sound barrier.16 This can be seen by the following simple calculations on the
equations (2.8)-(2.10), which is an example to which we will return repeatedly
throughout the rest of the book. In this example, u has three components but the
result (2.26) generalises trivially to any number of dimensions.

"An equivalent definition in the first-order scalar case was used in (1.17) to say that, if
the first derivatives of u are smooth except for jump discontinuities, then this jump must be
along a characteristic. We will return to this contrasting approach shortly; alas, the geometrical
interpretation for a system of dimension two is in a space of dimension four, so it is less easy to
visualise than it was for the scalar case.

'sit also yet further handicaps any generalisation of the approach of Chapter 1, for complex
characteristics would have to be considered in a four-dimensional real space, just for equations
with two independent variables.
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Example 2.1 (Steady two-dimensional gas dynamics) For the linearised gasdy-
namic model (2.8)-(2.10) we find

po 0 U 0 po 0 u
A U 0 as/po B= 0 0 0

J
, where u

0 U 0 0 0 ao/po

Hence, det(B -,\A) = AaflU(.A2 + as - U2) and we have three real characteristics
only if U2 > ao. When this inequality holds, the constant state about which
we have linearised is supersonic, and the characteristics in such a flow are the
streamlines of the unperturbed flow, dy/dx = 0, and the so-called `Mach lines'
dy/dx = ±(U2 - ao)1/2.

We will pursue the implications of the reality, or otherwise, of the characteristics
more generally in Chapter 3. For the moment, we note that there is still more
information buried in (2.25). Since (2.21) and (2.25) are linearly dependent along
a characteristic, a further relation holds along such a curve, in the form

Pill + Q62 = Ri, (2.27)

where P, Q and R are functions of u, x and y (Exercise 2.7). This expresses
the condition that the same linear combination of the right-hand sides of (2.21)
and (2.25) must sum to zero.

As an aside we remark that (2.27) can be derived more formally in terms
of the Fredholm Alternative, which we will encounter in so many guises
throughout the rest of the book as to justify our digressing to give a brief
description here. The Alternative is motivated by the real linear algebraic
equation

Ax = b, (2.28)

for a column vector x, where A is an n x n matrix. Suppose that there
is a row vector17 yT such that

yT A =
0T, (2.29)

i.e. zero is an eigenvalue of AT (and hence of A), and yT is the corre-
sponding left eigenvector. Then, premultiplying (2.28) by yT, it is clear
that x can only exist if

yTb=0.
Hence the Alternative: either A is invertible, so that y is necessarily zero
and x is unique, or A is not invertible and there are non-zero y, in which
case b must be orthogonal to all such y if x is to exist. In the latter case,
x is not unique, because any solution of Ax = 0, i.e. any right eigenvector
of A corresponding to the zero eigenvalue, can be added to it.

"Here and henceforth we denote the transpose of a vector or matrix by a superscript T.
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Now let us rephrase the Alternative in a way that will be extremely
useful later. Forget for the moment that matrices can be transposed, and
simply suppose that there is a matrix A' such that, for all z and w,

zTA'w = wTAz. (2.30)

Now let w = y. Since z is arbitrary, we see that y satisfies (2.29) if and
only if A`y = 0. The Fredholm Alternative now says that, for existence
to be assured, b must be orthogonal to the vectors annihilated by X.
Of course, for matrices A' is just the transpose of A, but the advantage
of (2.30) as a definition of X is that it avoids the use of the transpose,
which does not easily generalise to linear partial differential operators.
However, (2.30) immediately suggests a formulation of the Alternative
that forms the basis of many of the ideas for solving linear partial differ-
ential equations in Chapters 4-6.

Conditions (2.27) and (2.26) correspond to the characteristic equations (1.7)
in the scalar case but they are now no longer sufficient to determine ui and u2.
Indeed (2.27), which represents just one equation for two unknowns ul and u2, is
only `integrable'ls along the characteristic to give a relation between ul and u2
in special circumstances. Even for a linear problem for which real characteristics
can be obtained by integrating (2.26), enabling P, Q and R to be evaluated as
functions of t, (2.27) is not sufficient in general to determine ul and u2 unless
either R = 0 or the ratio Q/P is independent of t. For a nonlinear system in which
P, Q and R are functions of ul and u2 but not of x and y, (2.27) is integrable if
either R = 0 or

8u2 (R) 8u1 (R)
Functions of u which satisfy (2.27) along characteristics are called Riemann

invariants. Their existence creates a considerable simplification in the structure of
the problem and in certain special cases it may lead to solutions in terms of sim-
ple functions. It is especially fortunate that these cases include many physically
relevant solutions of the gasdynamics systems (2.3)-(2.7). However, the under-
determinacy of (2.27) in general cases explains why partial differential equations
cannot usually be reduced to first-order systems of ordinary differential equations.
It is only for scalar equations involving only first derivatives that such a reduction
is possible in general.

Finally, we note that, as in §1.6, an alternative definition of a characteristic
for the system (2.21) is a curve in the (x, y) plane across which 8u/8x and 8u/8y
may be discontinuous. The generalisation of (1.16) and (1.17) is

AlbJ±+B
[0u] ,

so that (2.26) is easily retrieved. L

18The sense in which (2.27) can be integrated is an interesting question, especially when we
consider equations with more independent variables, and we will return to this in §2.4 and
Chapter 9.



THE CAUCHY-KOWALEVSKI THEOREM 45

2.3 The Cauchy-Kowalevski theorem
We now discuss the most important theorem on the existence of solutions to a
general first-order quasilinear system

Aax+BB =c,

with n dependent variables and two independent variables. We shall impose Cauchy
data on x = 0, so it is crucial that this is not a characteristic. Setting x' = 0 in the
condition (2.24), det (x'B - y'A) 96 0, a necessary and sufficient condition that
x = 0 is not a characteristic is that A is invertible, and the system can be then
solved for 8u/8x. Furthermore, after multiplying by A-1, we can simultaneously
remove the inhomogeneous term A-1c and make A-1B autonomous (i.e. inde-
pendent of x and y) by introducing two new dependent variables (the details are
given in Exercise 2.5) to give a system of dimension n + 2.

We therefore restrict our attention to the homogeneous problem in the au-
tonomous form

8x = D(u) au, (2.31)
y

where u E R" and D is an n x n matrix.19 Let us focus on the Cauchy problem of
finding a solution of (2.31) in x > 0 (for definiteness) which satisfies the Cauchy
data

u(0,y) = uo(y), (2.32)

where uo is a differentiable function of y. The restriction that the boundary is
precisely the y axis does not lose us any generality; if the components of u were
prescribed on some other sufficiently smooth arc, we could change variables to
transform that arc into z = 0, provided of course that it was nowhere parallel to a
characteristic, so that the derivative of u normal to the curve could be computed
at every point.

Now if uo is prescribed, direct differentiation gives 8u/8y (0, y) and hence we
can find 8u/ 8x (0, y) from (2.31). In a similar way we may compute all the higher
derivatives of u by further differentiation of uo and the partial differential equa-
tion (2.31), assuming that this differentiation is allowed. The Cauchy-Kowalevski
theorem gives conditions under which the resulting double Taylor series expansion
about any point of x = 0 is convergent and unique. Before outlining the proof we
make some remarks to motivate the theorem and emphasise its highly restrictive
limitations.

First, we recall that the analogous theorem for an ordinary differential equa-
tion is the Cauchy-Picard theorem in which the problem is rewritten as an in-
tegral equation and the proof only requires the relatively weak condition that

19As suggested in the Introduction, a fairly general first-order scalar equation can be reduced
to a quasilinear system, and hence to the form (2.31), provided that it can be solved for the first
derivative with respect to x. The same is true for an nth-order equation but, as illustrated in
Exercise 2.4, we also see that the dimension of the system obtained may be greater than n. We
will see that (2.31) has a great conceptual advantage over the original formulation A 8u/8x +
B 8u/8y = c when it comes to the consideration of existence and uniqueness of solutions.



46 FIRST-ORDER QUASILINEAR SYSTEMS

the integrand be a Lipschitz-continuous function of u. Such an integral equation
formulation is not generally possible for partial differential equations and we may
expect that much stronger conditions have to be imposed on D and uo, with corre-
spondingly weaker results about the domain of definition, than the Cauchy-Picard
theorem provides. Second, let us consider the innocuous-looking example

8u 8v 8v 8u

for which

with data

ax=ay' ax=- ay'

D-(O1 0),

u(0, y) = f (y), v(0, y) = 0.

These are the Cauchy-Riemann equations for u + iv to be an analytic function of
z = x + iy, and hence the solution is

u + iv = f (-iz)

(-iz = y on x = 0), provided f (y) is a real analytic function of y, namely one that
has a Taylor series expansion which converges to f in a neighbourhood of y = 0 20
However, if f is not analytic at a point, e.g. f (y) = lye and we are near y = 0,
then there is no analytic solution to the Cauchy problem in any neighbourhood of
the origin. Equally disastrously, if, for example, f (y) = e/(y2 +62), where e, b > 0,
then

eu+iv =

and

62 - z2

_ e b-x 6+xU
26 y2 + (x - 6)2 + y2 + (x + 6)2

Thus, no matter how small c is, u fails to exist by becoming infinite at y = 0,
x = b, so that the boundary of the domain of definition of u may be arbitrarily
close to y = 0. Thus, the Cauchy-Riemann system provides a striking illustration
of the failure of well-posedness as defined after (2.24).

This example motivates the emphasis on the words analytic and local in the
following statement of the Cauchy-Kowalevski theorem.

Cauchy-Kowalevaki theorem If u0(y) is analytic at y = 0 and D(u) is an-
alytic at u = uo(0), then the Cauchy problem (2.31) and (2.32) has a unique
analytic solution21 locally near x = y = 0.

20This result is interesting because it shows that the solution u, v of the Cauchy-Riemann
system can be thought of as the analytic continuation of the function f(y) off the y axis. What
we are about to say is a restatement of warnings to be found in some books on complex variable
theory that analytic continuation is a dangerous process.

2' Note that this does not exclude the possibility that non-analytic solutions may exist and be
non-unique; this question is addressed by Holmgren's theorem.
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The word locally is particularly important and prevents the theorem from say-
ing anything about well-posedness.

We will only sketch the proof, to avoid cumbersome algebra; more details can
be found in [12). We begin by considering the scalar case for which (2.31) and
(2.32) become

8 = d(u)d, U(0' Y) = uo(y), (2.33)

and let us ignore for the moment the fact that (2.33) can be solved explicitly
using the methods of Chapter 1. Since d and uo are analytic we can write down
convergent Taylor expansions

00 00

d(u) = E dnu", uo(y) = > anyn, (2.34)
n=0 n=1

where we have, if necessary, subtracted the constant uo(O) from u. Our aim is to
show that u itself has a convergent Taylor expansion, so we seek a solution

00 [00U

= > L 0mnxmyn.

m=0 n=1
(2.35)

Substituting in (2.33), we obtain c,nn as a uniquely-determined polynomial in {d,,}
and {an }, moreover one with positive integer coefficients, a fact which is central
to the proof.

Now let the radii of convergence of the series in (2.34) be Rd and Ra, respec-
tively. Take two fixed numbers pd < Rd and pa < Ra. Because E dnpa converges,
the supremum over n of Idnlpa clearly exists, and so likewise does the supremum
of IanIpQ. We denote these numbers by Md and M. (they may be quite large).
Now consider the comparison function U that satisfies

119U ou= D(U) , U(0, Y) = Uo(y), (2.36)

where the Taylor series

D(U)=ED.Un=E! Un,n
n-o n=0 pd

Uo = > Any" = All. y
n=1 n=1 pa

have positive coefficients. If this function U has the Taylor expansion
00'` [00

U = Li L
C.nxmyn, (2.37)

m=0 n=1

we see that the relation between Cmn and D,,, An is the same as that between
cmn and dn, an. Because this relation is a polynomial with positive coefficients, it
is easy to see by the triangle inequality that
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ICmnl < ICmnl = Cmn.

However, (2.36) is

8U _ Md 8U
U(6 y) =

May
(2.38)

8x 1 - U/Pd 8y P-(1 - y/Pa )

which can be solved explicitly as in §1.3 and expanded in the form (2.37). This
gives the convergence of (2.37) and hence, by comparison, the convergence of (2.35)
to the unique analytic solution of the Cauchy problem. Now, of course, the prob-
lem (2.38) does not represent any real simplification over the problem (2.33), and
in any event both can be solved as in Chapter 1. However, the argument above
carries over almost unchanged when (2.33) is a vector equation for u, in which case
it is not solvable by the methods of Chapter 1. In this case (2.38) also becomes a
vector equation for U, but it transpires that all the components of U are equal so
that U can still be found explicitly as the solution of a scalar equation.

Note that the region in which the theorem guarantees existence of the solution
is restricted both by the size of Pa and Pd and by the possibility of blow-up of U;
the latter may impose quite a severe restriction when M. and Md are large, and
this emphasises the local nature of the theorem (see Exercise 2.6).

2.4 Hyperbolicity
We cannot overemphasise the restrictions on D and u that the Cauchy-Kowalev-
ski theorem demands, nor the requirement that the partial differential equation
can be written in the form 8u/8x = D(u) 8u/8y. However, even when all these
restrictions are met, because the theorem uses Taylor series expansions, it only
tells us about local existence and uniqueness and the Cauchy-Riemann system
demonstrates how local the existence result can be.

There are now two ways in which we can try to develop a more global theory for
those partial differential equations whose solutions can be expected to exist away
from any curve on which boundary conditions are posed. We could either look
for solutions of 8u/8t = D(u) Ou/8y which satisfy boundary conditions different
from, and less restrictive than, the Cauchy data (2.32) (for example, we could
prescribe fewer than n components of u on the boundary), or we could ask for
further restrictions on D whereby the Cauchy problem is well posed and hence
has a solution which is not restricted to some very small neighbourhood of the
y axis. We recall that in the first-order scalar equations of Chapter 1 no such
restriction was needed on the coefficient D.

The former approach leads us to the initial and boundary value problems for
elliptic and parabolic equations to be discussed in Chapters 5 and 6. The latter
idea leads to the concept of hyperbolicity and hyperbolic equations, which will be
described in detail in Chapter 4 for scalar second-order equations. However, we are
already in a position to describe an intuitive framework within which to answer
the question as to how D(u) should be restricted for the Cauchy problem for a
first-order system to be well posed.
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2.4.1 Two-by-two systems
We saw in §2.2 that, in certain cases, Riemann invariants exist for a system of
dimension two and hence a certain known function is constant along any charac-
teristic. Suppose now that the partial differential equation A 8u/Bx+B Ou/e9y = c
is in fact such that (2.26) yields two real distinct characteristics C1,2, and that the
consistency condition (2.27) can be integrated for both the Riemann invariants.
This occurs, for example, if A and B are constant and (2.26) has real distinct roots
for y/i. In this fortunate circumstance, if we prescribe u on a boundary r which is
nowhere tangent to C1,2, we can find u(P) by merely solving the pair of simultane-
ous algebraic equations given by the Riemann invariants at P (see Fig. 2.6(a)). We
can then immediately assert that the solution at P exists, is unique and depends
continuously on the data until or unless some pathology develops in the solution
of these algebraic equations. Thus the Cauchy problem is well posed.

In more general cases, we could imagine taking a sequence of points Pi close to
IF and iterating as indicated in Fig. 2.6(b), regarding A and B as constants in each
iteration. Hence, even when equations (2.26) and (2.27) do not have integrals, we
conjecture that, for a quasilinear first-order system of dimension two, the Cauchy
problem is well posed provided that (2.26) has two real distinct roots at each point
(x, y, u) of interest, that is, provided two characteristic directions exist at each
point. This provides the motivation for defining a hyperbolic system of dimension
two as one in which (2.26) has two real distinct roots for y/i. In general, these
roots depend on the solution u; even in the semilinear case when A and B depend
only on x and y, a system may be hyperbolic in only part of a given domain, so
that a problem of mixed type occurs. For the scalar equation aOu/8x+bOu/Oy = c
the problem is necessarily hyperbolic, and for the two-by-two vector case (2.21)
we distinguish the three possibilities, namely elliptic, parabolic and hyperbolic,
depending on whether there are no, one or two real characteristics, respectively.
This observation is the basis of the more detailed discussion of Chapter 3, where

(a) (b)

Fig. 2.6 Solution by characteristics: (a) A and B constant; (b) approximate solution
when A and B are functions of u.
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we will see that the parabolic case is especially delicate. Indeed, the case where
both A and B are the identity matrix is parabolic under this classification, even
though the system comprises two scalar hyperbolic equations.

2.4.2 Systems of dimension n
With n dependent variables, (2.26) shows that at most n characteristic directions
exist at a point. Guided by a motivational argument similar to that which led to
Fig. 2.6, the system is said to be hyperbolic at that point if (2.26) has n distinct
real roots for A = y/i.

In order to consider the possibility of R.iemann invariants for systems of di-
mension n, we define the left eigenvector I corresponding to a root A so
that

IT(B - AA) = OT.

Premultiplying the partial differential equation by IT, we obtain

ITA 18 +ABn 1 =ITC.
y

If t is a scalar variable parametrising the characteristic, the generalisation of (2.27)
is

ITAiu = lT c i. (2.39)

Again, it is just one ordinary differential relation for the variation of a combination
of the n components of u along the characteristic. As remarked earlier, only when
n = 1 is it a first-order ordinary differential equation for u which, in the linear case,
reduces to a quadrature. In general, it cannot be integrated except for constant
coefficient equations, when, along the characteristic,

ITAn = IT 1 c dx'. (2.40)

The unlikelihood of integrating (2.39), even in the case c = 0, can be seen at once
when n = 3, because it is well known that the Pfafan

P du = Pi (u) dul + P2 (u) du3 + P3 (u) du3

is proportional to a total differential dqS(u) if and only if

the curl being taken with respect to u. Thus, even autonomous equations with
c = 0 rarely have Riemann invariants as soon as n >, 3.

If n Riemann invariants do exist for a hyperbolic system, then on each charac-
teristic there is one algebraic relation between the n components of u. The exis-
tence and uniqueness of u are thus assured in some neighbourhood of a boundary
on which u is prescribed, assuming the boundary is nowhere parallel to a char-
acteristic. However, we must be careful with the definition of this neighbourhood
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Fig. 2.7 Domain of dependence of P (shaded).

when n > 2; for example, if boundary data u = uo(s) is only given on a segment
81 < 8 <, 82 of the initial curve, then clearly the domain of existence is restricted
to a region such that all n characteristics at each point P of the region intersect
the given segment of the boundary, as in Fig. 2.7 for the case n = 4.

If P is the intersection on one side of r of the extreme characteristics through
8 = 83 and s = 84, the domain enclosed by the boundary and these extreme
characteristics is called the domain of dependence of P. We have only indicated
this domain on one side of r in Fig. 2.7 because, for most hyperbolic problems
that arise as models of physical phenomena with two independent variables, one
of these variables is 'time-like'; that is, solutions are only required for which this
variable increases away from the `initial' data on the boundary.22 The solution
at P depends on the boundary data given within its domain of dependence and
is independent of boundary data given on sections of the boundary outside it.
Equally, a given point Q on the initial curve has a region of influence defined
by the extreme characteristics through it, as in Fig. 2.8; that is, a change in the
boundary data at Q would change the solution everywhere in its region of influence,
and only there.

The generalisation of Fig. 2.6 to cases where n > 2 suggests that solutions
may be constructed numerically by approximating the characteristic curves by
straight lines and approximating the differential relations (2.39) holding along
characteristics by algebraic relations. Thus Fig. 2.9 shows how the solution at P
may be obtained from a knowledge of u at four different points on the initial curve
in the case n = 4. By varying P, data on a new initial curve is obtained and the
process repeated. This procedure clearly fails if two characteristics become parallel,
in which case the problem ceases to be hyperbolic, or if two characteristics of the
same family intersect, as happened in §1.4 for the case n = 1.

22 We will see in §2.6 that hyperbolic systems with more than two independent variables allow
a much more precise definition to be made of the term time-like.
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Fig. 2.8 Region of influence of Q (shaded).

Fig. 2.9 The solution at P using linear approximations to the characteristics.

If Riemann invariants exist, some explicit results may be obtained in closed
form. The following examples (which refer to the models introduced in §2.1) and
remarks illustrate the kind of information that may be obtained.

2.4.3 Examples
Shallow water theory
In this example, described by (2.1) and (2.2), we identify (z, y) in our general
discussion above with (t, z), and we find

A=u±a, where a= &,
and the Riemann invariants are u ± 28, respectively. The system is always hyper-
bolic unless the river is dry, but the nonlinearity means that the characteristics
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can often intersect, corresponding to the formation of a `bore' or `hydraulic jump'.
In §4.8.1 we will see how to use these Riemann invariants to generate some useful
explicit solutions to (2.1) and (2.2).

This example illustrates the point that the existence of Riemann invariants is by
no means a necessary condition for a first-order system to have explicit solutions,
because we cannot usually locate the characteristics explicitly. Among the many
clever `tricks' for guessing explicit solutions, one possibility to keep in mind for
autonomous systems such as (2.1) and (2.2) is that of exchanging the roles of
dependent and independent variables. We see that, if we attempt the hodogrnph
transformation

x = X(u, h), t = T(u, h), (2.41)

so that, by the chain rule,
Ou 1 ax
at -dah'

etc., with the Jacobian
_8T Ox OT OX

Ou8h ahau
assumed non-zero, then we obtain the linear system23

Ox aT 8T_
ah - U - 5 7h + au 0'

8u - u u +h8h = 0,

where we have set g = 1 for simplicity. This of course only works because there are
no undifferentiated terms in the original equations (2.1) and (2.2), but it has an
interesting geometrical interpretation which will be discussed further in Chapter 4.

Unsteady one-dimensional gas dynamics

Rearranging (2.4) (with the help of (2.3)) as

Tt OX Ox

and again identifying (t, x) with (x, y), we find, after some calculations (Exer-
cise 2.10), that the system is always hyperbolic with

A=u or \=u±JJ_T
V P

as the slopes of the characteristics, on which

rypdp - pdp = 0, ryppdu + dp = 0,

respectively. Hence p/p7 is constant on dx/dt = u but, in general, Riemann in-
variants do not exist on all three families of characteristics.

23See (301 for a discussion of the corresponding system in gas dynamics.
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Steady two-dimensional gas dynamics

Our analysis in §2.2 of the linearised system (2.8)-(2.10) has already revealed the
existence of three real distinct characteristics when the basic flow is supersonic,
and it is only under these circumstances that the system is hyperbolic. A slightly
different situation arises for the full (unlinearised) system (2.5)-(2.7) where, after
more lengthy algebraic manipulations (Exercise 2.11), we find

=
v

A twice or A = tan (tan-' (V) f sin-' 7P

/
.

u u p(u2 + v2)

Now, there are four real roots when u2 + v2 > ryp/p, in which case the flow is again
said to be supersonic. However, the system is not strictly hyperbolic even when
the flow is supersonic because two of the eigenvalues, namely A = v/u, coincide; in
practice, however, the solutions usually behave as if the system were hyperbolic.

In both of the examples above, neighbouring members of the second or third
families of characteristics found above can intersect in general to form gasdynamic
shock waves. Much more will be said about these shock waves in the next section.

Flow of granular materials

The model (2.13) with h = 1, together with the relation (2.16) between r, o- and
oy, can, after a long calculation (started in Exercise 2.3, where tP is defined, and
continued in Exercise 2.14), be shown to be always hyperbolic with

A=-cot l0±I 4 21

and the Riemann invariants are

fcot0log1-o22av I+2,i

respectively. We remark that these characteristics are not the slip planes that were
needed to formulate the model.

Fluidised and packed beds

The two linear models (2.17) and (2.18), and (2.19) and (2.20) are clearly always
hyperbolic; the characteristics of the latter are given by

dx
dt = va, vb,

while for the former one of these characteristic `speeds' is zero. However, the pres-
ence of the undifferentiated terms means that there are no explicit Riemann in-
variants unless k or h is zero. Fortunately, the linearity of these models enables us
to circumvent this difficulty, as we shall see in Chapter 4.

As an aside, suppose that k = 0 in (2.19) and (2.20) and we were attempting to
solve the Cauchy problem in which ca and cb, which are now Riemann invariants,
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were prescribed on the non-characteristic curve t = 0. Now suppose further that
we were interested in modelling a fluidised bed of finite depth, and we were unsure
(as we often are) about the boundary conditions that should be applied at the top
and bottom of the bed. One thing we can be sure of at once is that we should not
impose values of either cQ or cb at the top of the bed, towards which the gas is
moving with velocity va or vb. If such values were prescribed, they would almost
certainly clash with the values of the Riemann invariants that follow from the
Cauchy data.

Optical fibre model

A transformation slightly less obvious than the hodograph transformation (2.41)
can be applied to the optical fibre model (2.11) and (2.12). For a given T, this
system is hyperbolic (unlike most models of slow viscous flow), with characteristics
dx/dt = u, the local fluid velocity, and t = constant, corresponding to infinite
propagation speed in the incompressible glass. However, the presence of T means
that there are no explicit Riemann invariants. Nonetheless, if we write the `partial'
hodograph transformation

x = x(A, t), u = u(A, t),

and rescale this so that r = fo T(t') dt', we find (Exercise 2.15) that x satisfies the
linear equation

82x 82x 1 ex
8A2 - c8A8r q 8A'

which can be solved explicitly for 8x/8A. This enables us to show that the char-
acteristics never intersect.

The whole question of finding whether any given quasilinear system has enough
symmetry to be able to be integrated explicitly is intimately connected with the
theory of groups that depend on a continuously-varying parameter. We will return
to this on several later occasions but, for now, the all-too-frequent occurrence of
shock waves as a result of the intersection of characteristics of hyperbolic systems
demands immediate attention.

«2.5 Weak solutions and shock waves
We have shown at the end of §2.2 that, for a hyperbolic system, the first derivatives
of u can be discontinuous across a characteristic, and in Chapter 1 we have given
several examples where characteristics may intersect to cause discontinuities in u
itself. Hence, following the discussion of weak solutions for the scalar equations of
Chapter 1, we examine the possibility of jump discontinuities in u across a curve r
for the system A 8u/8x + B Ou/ey = c. Because Green's theorem plays a crucial
role, we only really have any hope of generalising the theory presented in §1.7 for a
hyperbolic system when it is in conservation form. Hence we consider the problem
of defining a weak solution of

8u 8v
+ 8y

= C, (2.42)
8x
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where v and c are functions of u, x and y; for simplicity, initial data u = uo(y) is
given on x = 0 and the domain of interest is x > 0. For (2.42) to be hyperbolic, the
matrix (Ov;/Suj) must have n distinct real eigenvalues. If we now multiply (2.42)
by a test function O(x, y), differentiable everywhere in x > 0 and such that -+ 0
sufficiently rapidly as x or y -+ oo, then, using Green's theorem on the half plane
x > 0, we obtain

VP

c*+ v + 1 c I dx dy J (2.43)ff I u
>o \ 8x ey ey / 00

The statement (2.43) generalises (1.25), and our restrictions on the behaviour
of 0 have left us with a convenient right-hand side. The equation makes sense
even if u is discontinuous, and hence we define a weak solution of (2.42) to be a
function u satisfying (2.43) for all suitable test functions v/0. If the weak solution u
is continuous then clearly, retracing our steps, (2.43) implies (2.42) and a classical
solution is a weak solution. A weak solution need not, however, be continuous; if
it is discontinuous across a curve F then, carrying over the argument leading to
(1.27) and applying Green's theorem to (2.43) for the domain x > 0 excluding r,
we obtain

Ir [tGu]± dy = J [ 1'v]± dx. (2.44)
r

Since zji is continuous across r and (2.44) holds for all such ip, then, necessarily,

= [v]+, (2.45)(u)± TX

which is the jump or Rankine-Hugoniot condition for a general hyperbolic system
of conservation laws.

For a semilinear problem, v is equal to Du, where D is a matrix which does not
depend on u, and hence dy/dx is an eigenvalue of D. In this case discontinuities
in u can occur across any of the characteristics. In general, however, they lie on
curves called shocks, which are definitely not characteristics.

Of course, the approach above inherits all the non-uniqueness properties that
were encountered in Chapter 1 for the case n = 1. We will now describe two ways
in which this non-uniqueness might be resolved.

2.5.1 Causality
We begin by remarking that we can construct weak solutions by piecing together
classical solutions using the jump condition (2.45). At a point P on the shock there
are n characteristic directions on each side of it, as in Fig. 2.10 for the case n = 2.
These 2n characteristics through P form two classes, those that intersect x = 0
and those that do not.

On each characteristic which intersects x = 0, some information propagates
about the boundary data uo(y); in the special case when a Riemann invariant
exists on the characteristics, this takes the form of a prescribed algebraic relation
between the components of u as we approach the shock (from the left in Fig. 2.10).
For the shock strength (u) and direction to be defined uniquely it is necessary that
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Fig. 2.10 Incoming and outgoing characteristics near a shock; causality.

the correct number of relations be available to determine the values of u just
to the right of the shock. Thus, if k characteristics at P are `outgoing', that is
they do not intersect x = 0, then there are 2n - k relations to determine the 2n
unknown values of the components of u on either side of the shock, together with
n Rankine-Hugoniot conditions (2.45) involving the unknown shock slope dy/dx.
That totals 3n - k relations for 2n + 1 unknowns and hence k = n - I.

This simple-minded argument forms the basis for the method of causality for
uniquely defining the weak solution: any physically admissible shock must be such
that n - 1 characteristics through any point on it are outgoing.24

To illustrate the use of this causality method we consider two examples with
n = 1 and n = 3, whose classical solutions have already been discussed.

Example 2.2 (Equation (1.14) revisited) We have already encountered the equa-
tion

8x + 8y ( 2
u2) = 0 (2.46)

in §1.5, and it can be shown that in certain circumstances it provides an approx-
imation to the system (2.3) and (2.4) describing one-dimensional gas dynamics,
with x and y being time and space, respectively. In this context, an experimental
device known as a shock tube can be modelled by the initial conditions

_ Jo y < o
1, Y>01

(2.47)

for which two solutions were found in §1.7, one of which is continuous. The dis-
continuous solution is

u= 0, y < x/2,
Sl

1, y>x/2,

24We will describe this situation in more detail in §7.2.4 for a scalar equation.
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and the characteristic directions on the shock y = x/2 have slope zero in y < x/2
and unity in y > x/2, as in Fig. 2.11. They are therefore both outgoing so that
k = 2 > n - 1; the causality condition rejects this solution (we could indeed
construct many such inadmissible shocks). In fact, this argument applies to all the
weak solutions that we could find that satisfy the Rankine-Hugoniot relations with
a shock of non-zero strength. Hence there are no causal discontinuous solutions
and the continuous solution

0, y < 0,
u= y/x, 0'< y<x,

1, x < y,

which is automatically causal, is the only acceptable solution to the Cauchy prob-
lem.

Now let us look at the case

Un =
0, y > 0,

I, y <0
(2.48)

A solution, indeed the only one satisfying the Rankine-Hugoniot relations, is

u= 0, y > x/2,
1, /2V < x ;

the characteristic directions on the shock have slope zero in y > x/2 and unity
in y < x/2, as in Fig. 2.12. They are therefore both incoming, that is they both
intersect x = 0, and hence k = 0. Thus k = n - 1 and this is indeed the unique
appropriate causal solution.

This example paves the way for a more complete discussion of gasdynamic
shock waves. The models (2.3)-(2.7) are already in conservation form and the jump
conditions determined from (2.45) represent the well-known Rankine-Hugoniot

Y

Fig. 2.11 Solution of (2.46) and (2.47) with too many outgoing characteristics.
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Y

-> r

Fig. 2.12 Causal solution of (2.46) and (2.48).

relations for gasdynamic shocks. For a one-dimensional shock moving with speed
V the result of applying (2.45) to (2.3) and (2.4) can be manipulated to yield

[p(V - u)]± = 0, [p + p(V - U)2]1 = 0,

[_-p-1)p + 2(`' - u)2J o,
(2.49)

corresponding to conservation of mass, momentum and energy, respectively (see
Exercise 2.17). For the existence of a shock, with [p]± 36 0, separating two regions
in the (z, t) plane in which the flow variables are constant, it can be shown further
that the flow must pass through a `compressive shock', across which p and p
increase, if it is to be modelled by a causal weak solution. Figure 2.13 shows the
(z, t) plane for (2.3) and (2.4) corresponding to a piston z = Vt driving a gas
in x > Vt. For V > 0 we have n = 3 and the causal weak solution has k = 2.
However, this value of k cannot be attained when V < 0, and thus no 'expansion
shock' appears in this case.

A similar argument can be applied to the two-dimensional system (2.5)-(2.7)
and, after lengthy algebra, it emerges that two possible Rankine-Hugoniot shocks
can 'bend' a prescribed supersonic stream around a corner, as in Fig. 2.14. Now
n = 4 (although one characteristic is double) and the appropriate weak solution
has k = 3; the shock with the smaller slope is the physically acceptable solution,
as is readily observed in wind tunnels.25

2.5.2 Viscosity and entropy
Causality is just one kind of mathematical filter that can be introduced in an effort
to try to render weak solutions of conservation laws unique. Two other methods

25We remark that other `shocks' that satisfy the Rankine-Hugoniot relation are possible. For
example, it is possible to satisfy (2.49) with [p]± = 0, [u)± = 0, u = U and [p)± # 0, and this is
called a contact discontinuity. For the two-dimensional system (2.5)-(2.7) the analogous shock
has a jump in density and tangential velocity and it is called a vortex sheet, a concept to which
we will return in Chapter 7. Both these `shocks' are degenerate in that they coincide with one
of the characteristics.
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Fig. 2.13 Characteristics for a shock generated by a piston (the particle paths are also
characteristics).

Fig. 2.14 Characteristics for a supersonic gas stream in a corner (the streamlines are
also characteristics).

devoted to the same goal are associated with the names of `viscosity' and `entropy'
but in fact all three methods are closely related to each other.

Viscosity methods can be most easily illustrated by referring back to the ex-
ample above, (1.14), thinking of it again in the context of gas dynamics. It can be
shown by modelling arguments, to which we will refer in more detail in Chapter 6,
that the effect of a small amount of viscosity e in the one-dimensional flow model
(2.3) and (2.4) has the effect of replacing (1.14) by

2

8x + 8y C2u2J - E8y2' (2.50)
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U00

y - V.r

Fig. 2.15 Smoothing of a shock by viscosity.

at least as far as relatively small disturbances are concerned.26 As shown in Exer-
cise 2.18, this equation, which is known as Bangers' equation, has solutions that
are travelling waves. These are such that u = U((y-Vx)/e), -co < y-Vx < +oo,
as long as

V = {U2]:/EU];

this is just the condition that the Rankine-Hugoniot conditions are satisfied by
the asymptotic values of u far `upstream' and `downstream' of the shock wave.
The shock has been smeared out over a region in which y - V x is of order a by
the presence of the viscosity, as in Fig. 2.15.

The introduction of viscosity not only retrieves the Rankine-Hugoniot condi-
tions for us, but also still more information is contained in (2.50). The analysis of
Exercise 2.18 shows that, in a travelling wave, U must be a decreasing function of
y - Vx. We will see in Chapter 6 that this has the physical interpretation that the
wave can only be compressive, and hence we have excluded `expansion' shocks, as
likewise did the causality condition for (2.50) with e = 0.

A further idea that is equivalent to causality in this case is that, if (1.14) is
again rewritten as

8 + F (v(u)) = 0,

then the convex function v = Ju2, known as the entropy, has to increase as a result
of the passage of the shock, irrespective of the sign of the shock velocity. Thus an
analogy can be drawn between causal shocks, viscous shocks and shocks across
which a convex function increases. The latter interpretation suggests an analogy
with the concept of entropy that arises in statistical mechanics.

In summary, the theory of weak solutions of hyperbolic conservation laws is
incomplete without the incorporation of extra information. When this information
is introduced in the form of causality, viscosity or entropy arguments, a unique

26Note that the introduction of such a viscosity term into the right-hand side of a conservation
law, which is the result of a modelling assumption, has different consequences depending on the
way in which the law is written; the solution of (2.50) would be quite different if the left-hand side
were 8/8x (Zu2) + 8/ay (.u3); viscosity thus legislates for a particular weak solution, reflecting
the modelling assumption that has been made.
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weak solution emerges in which the Rankine-Hugoniot conditions are satisfied
across any shock waves that are present. The concept of viscosity is a stronger
one than those of causality or entropy because it even allows us to predict the
Rankine-Hugoniot conditions as well as selecting a unique limiting solution as the
viscosity tends to zero.

2.5.3 Other discontinuities
A much more general discussion of discontinuous solutions of partial differential
equations will be given in Chapter 7. That chapter is rather lengthy, mostly because
of the delicate nature of the subject, and there could be no better example of this
than the modelling of gasdynamic shock waves in the presence of chemical reactions
which are localised near the discontinuity, which is then often called a detonation.
In this case, the right-hand side of (2.4) is replaced by a localised source term,
which means that the Ranldne-Hugoniot relation for the energy changes from
(2.49) to

L

7P +1(V-u)2l+=E,
('Y-1)P 2 J-

where E is the prescribed constant energy per unit mass released during the reac-
tion. When E is zero, we can, as mentioned above, derive non-unique weak solu-
tions in which [p)+-, [p]± and [uJ+ satisfy the Rankine-Hugoniot relations (2.49).
It can be shown that we can rearrange these relations into

ry + 1 - (ry - 1)/pP= (7 + 1)/3 - (7 _ 1)'

where p and p are the ratios of the downstream to the upstream pressures and
densities, respectively (upstream referring to gas that has not yet traversed the
discontinuity). Thus (p, 1/p) lies on a hyperbola called the Chapman-Jouguet
(C-J) curve, as shown in Fig. 2.16(a), with the point (1,1) corresponding to the
upstream condition. The unique causal weak solution corresponds to p > 1, 1/0 <
1, which is why the lower half of the C-J curve is shown dotted. All points on the
upper half represent admissible shocks.

However, when E is positive the denominator in the p, p relation is increased
by a positive multiple of E and the new C-J curve is shown relative to the old
one in Fig. 2.16(b); the point (1, 1) still represents the upstream condition. The
middle section of this curve is shown broken and is irrelevant, because it is easy
to see from the other Rankine-Hugoniot relations that, when p > 1 and 1/p > 1,
the velocity of the gas traversing the discontinuity is in the wrong direction, from
downstream to upstream. What is most important, however, is that when E > 0
we can no longer resort to entropy or causality arguments to render points on
the lower half of the C-J curve inadmissible. Compressive detonations certainly
exist, corresponding to the upper continuous branch of the curve in Fig. 2.16(b).
However, expansive `deflagration', corresponding to the lower continuous branch,
can also occur, although they are more prone to instability, as people who run
explosives laboratories know well.
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Fig. 2.16 The Chapman-Jouguet curve (a) without energy release, E = 0, and (b) with
energy release, E > 0.

*2.6 Systems with more than two independent variables
It would be nice to be able to end the chapter in the' same way as we did in
Chapter 1 by saying that the ideas developed thus far can be extended trivially to
systems with more than two independent variables. Unfortunately, apart from the
Cauchy-Kowalevski theorem, this is so far from being the case that readers with a
nervous disposition should perhaps refrain from scanning the following pages and
skip directly to Chapter 3.

When we attempt to generalise the ideas of characteristics to equations with
more than two independent variables, we immediately run into difficulties with
geometric visualisation. This is because, if we consider the general m x n system

A, Lu =c, u=(u,) for1<j<, n, (2.51)
=1

we have to seek the solution to the Cauchy problem by considering initial data for
which u is given on a manifold of dimension m - 1. Now if we ask what (m - 1)-
dimensional manifolds are such that the partial derivatives of u normal to the
manifold are not well defined, it is easiest to proceed by denoting such a manifold
by, say,

0(x1,... ,x,,,) = 01

and hence regard the manifold as a level set of a family of functions ¢ that are
smooth enough that we can change to 0 as a new independent variable. Then
(2.51) simply tells us that

Ai
(m8)O

u (2.52)
8x; Fo

is equal to a linear combination of c and the derivatives of u tangential to the
surface = 0, and is therefore known in terms of the Cauchy data. Hence, if we
define
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a0
00 = det Aj-q0--)

Q axt ..., axm ox;

we are led to define a characteristic surface 4' = 0 as one on which

0.0 ail
Q

axt , ... , axm) = 0. (2.53)

This clearly reduces to the first two of (1.7) and (2.26) when m = 2 and n = 1,
2, respectively. Equation (2.53) also reduces to (1.32) in the scalar case, and our
remarks about the interpretation of (1.32) as a partial differential equation apply
equally to (2.53).

In principle, it is easy to generalise the Cauchy-Kowalevski theorem to prove
the existence and uniqueness of solutions to the Cauchy problem when the data
is given on a non-characteristic manifold, given the usual crucial requirements of
locality and analyticity.

On the other hand, when m > 2, not only do we have the irksome task of
solving a partial differential equation for 0, but also it is more difficult to visualise
what (2.53) means for the surface 0 = 0. However, bearing in mind that the
normal to the surface is always (a¢/ax;) = (£;), say, we can see that (2.53), being
a homogeneous expression of degree n in these quantities, states that at any point
P of R1 this normal lies in a cone called the normal cone. The final piece of
geometry comes from realising that, as the normal swings around from being one
generator to another of this normal cone (as in Fig. 2.17), the small element of the
corresponding manifold 0 = 0 itself envelops the dual of the cone. If you cannot
swallow this geometrically, it is easy to see analytically. Taking P to be the origin
without loss of generality, the envelope of

m

0
;.t

as {; varies with Q(£1i ... , m) = 0 is given by

generator of
normal cone

(2.54)

Fig. 2.17 Normal and ray cones.
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(xi&i) - p = 0 for i = 1, ... , m, (2.55)

i=1

where p is a Lagrange multiplier. Hence we obtain

xi =,ULQI Q(61...It.,,) = 0 (2.56)

as the parametric representation of the envelope. It is clearly a homogeneous ex-
pression of degree n, this time in our base coordinates xi, and thus also represents
a cone, called the nzy cone. To visualise the characteristic surface, all we have to
think of is the ray cones dotted around in Rm; a surface is characteristic if it is
tangent to each ray cone at every point. For scalar equations, in which n = 1, the
ray cones all collapse into lines, as in Fig. 1.2.

Once this picture has emerged, the concept of hyperbolicity takes on an entirely
new flavour, because we no longer have a slope A whose reality or otherwise could
be used as a criterion. Instead, we are motivated to consider the possible geometry
of the normal and ray cones and ask how degenerate they are. For example, if
Q(ti,... , is positive definite, the null vector is the only generator of the normal
cone. We hope it is clear that the cones that have the greatest `structure' are those
for which there are n sheets all separated from each other; of course, some of these
sheets might be flat (hyperplanes) or lines (one-dimensional).

The surprising result, which can only be verified by obtaining certain integral
estimates on the bounds for u, is that the Cauchy problem for the system (2.51)
only turns out to be well posed in the sense defined after (2.24) when the normal
and ray cones have the maximum structure they could have. To be precise, the
Cauchy data must be prescribed on what is called a space-like hypersurface. Such
hypersurfaces only exist if the ray cone has the maximal number of sheets that
it could have and, in addition, all the sheets are `nested' inside each other. Then
the space-like hypersurfaces lie outside the `outer' sheet of the ray cone; directions
pointing inside this outer sheet are called time-like vectors.

We can illustrate this idea by combining two gasdynamics models, the unsteady
one-dimensional model (2.3) and (2.4), and the steady two-dimensional model
(2.5)-(2.7) and, as in the example on p.42, linearising about a uniform velocity
(U, 0) to give

Oil 8u _ _ ao 8p
+ U

8v OF)

+
G

ao 8p
8t 8x po 8x' 8t 8x po 8y'

8p 8p 2 eu 8v
(2.57)

8t + U 8x + pogo 8x
+ 8y = 0.

When U > 0, the cones in (x, y, t) space are as in Figs 2.18 and 2.19; the (x, y)
plane is always space-like but, when U > ao, the time axis is no longer time-liken

27The same phenomenon occurs in the theory of relativity, when a particle travels faster than
the speed of light in the material through which it is moving; it emits what is called Zerenkov
radiation.
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fo

to+Uti =

(a) (b)

Fig. 2.18 Normal cones for (2.57) when (a) U < ao and (b) U > ao, with to = t, ti = x
and t2 = y, so that ({o + U{,) (({o + Uti )2 - a2 (E + ai )) = 0.

x=Ut,y=0

Fig. 2.19 Ray cones for (2.57) when (a) U < ao and (b) U > ao, the union of x = Ut,
y = 0 and (x - Ut)2 + y2 = apt2.

Another new twist comes when we consider the alternative definition of char-
acteristics as surfaces across which 8u/8x; could have jump discontinuities. This
still works fine, and leads back to (2.53), because all we need to say is

(2.58)

and

[i9u1+6.T,=08xt=i

for all dxi such that E', {6x{ = 0. But this leaves open the question of the precise
behaviour of such a discontinuous solution within the characteristic surface. We
saw in Chapter 1 that if a discontinuity existed at any point of a characteristic then
it was forced to remain non-zero at all points of that characteristic in the absence
of any pathologies. To generalise this calculation to the situation here is tedious
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but, bearing in mind (2.58), we can see that the change of any jump [Ou/8x11
across the characteristic surface in a direction bx tangential to that surface is

x; x; -
J

However, the partial differential equation gives

m r 2
+au

ax;ax; -j_1 t

dx3.a8

terms linear in

Now we can only obtain information about [8u/ax;]± by suitably combining the
second-order derivatives, and this clearly gives that the tangential derivative of
the jump of some linear combination of Ou/8x, is only expressible in terms of that
jump when we take the derivative along the generator of the ray cone tangent to
the surface. This result generalises (1.34) and, with the jargon introduced there,
the curve formed by these generators is called the bicharacteristic. Intuitively, we
can think of bicharacteristics as the only curves in the characteristic manifold that
can transmit information. We give a physical interpretation of this in Chapter 4
and describe how to construct the bicharacteristics in §8.2.6.

Rankine-Hugoniot conditions can be written down for weak solutions of higher-
dimensional equations in conservation form, the simplest system being

8x v(u) = 0, (2.59)

where V _ (0/8x2, ... , 010x,,,) and u may be either a scalar or a vector, v being
a vector or (m - 1) x n matrix function of u, respectively; in the latter case, t v
is interpreted as the column vector formed by taking the divergences of the rows
with respect to x2, ... , x,,,. Then (2.45) generalises to

[ U ] (2.60)

across a shock manifold defined by xm) = 0.
We conclude with a surprisingly negative remark that can be made about non-

analytic partial differential equations with three or more independent variables.
Recall that, in the Cauchy-Riemann system, we have already displayed an equation
with two independent variables for which there is no solution in the neighbourhood
of a point at which non-analytic Cauchy data was prescribed. Now we can transfer
this result into the statement that the inhomogeneous Cauchy-Riemann equations

au av , 8v au
8x-8y=f(x), 8x+8y=0,

02u
+

][

(2.61)

with
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u=v=0 ony=O
have no analytic solution in a neighbourhood of y = 0 unless f is real and analytic.
To see this, note that u - f + iv is an analytic function whose real part is -f on
y = 0 and whose imaginary part is zero on y = 0.

This is already a striking result, but it only ensures non-existence of solutions
of (2.61) locally near y = 0. However, it is the starting point for H. Lewy's famous
demonstration that, even though f (x, y, t) may be CIO at every point in R3, the
linear partial differential equation

8u
i
8u - 2i(x+iy) 8u

= f (x, y, t)8x+ay
St

has no solution at all unless f is in addition analytic. The details are too lengthy
to reproduce here and we refer any reader who wishes to see the futility of trying
to construct an all-embracing theory of partial differential equations to (23, 36].

Exercises
2.1. Show that, if ry = 2 and p/p2 is constant, the gasdynamic equations (2.3) and

(2.4) reduce to the shallow water equations (2.1) and (2.2), with p in (2.3)
and (2.4) proportional to h in (2.1) and (2.2).

2.2. Show that when the substitution proposed before (2.8) is made in (2.5)-(2.7)
and squares of barred quantities are neglected, we obtain

T. (Pou+UP)+ y(pov)=0,
On =-poe , Ue =-port.

Show also that
p PO

P P (1+ \1 -ryPo/)
in this approximation and hence deduce (2.8)--(2.10).

2.3. In a granular material, let the forces on the sides of a rectangle of area baby
be (a, r) by on a side normal to the x axis and (r, ay) bx on a side normal
to the y axis, as in Fig. 2.20. Show that the forces on the diagonal are

cbs = (ayby+Tbx,a.bx+Tby)

and hence that

Now define

or = (ascos0+Tsin0,a.sin0+rcos0).

a2 +aVtan 20 = 27P=- 2 as - ay.

Show that the components of a along and perpendicular to n are

_ cos 2(t1 - 0) sin 2(r0 r - 0)

o"
-P +

T sin 20
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(r, ay) 8x

(17X , T) By

Fig. 2.20 Forces on an element of a granular medium.

Fig. 2.21 The Mohr circle.

respectively. Deduce that

(a + p)2 + rr = r2 cosec2 20,

a relation which is known as the Mohr circle in the (a,,, re) plane (see
Fig. 2.21). Identify the region in this figure that corresponds to the fric-
tion constraint Ire/anI 5 tan 0, show that in limiting equilibrium

r = psin0sin20, o- f = -p(1 - sin0cos2ji), a, = -p(1 +sin0cos20),

and hence deduce (2.16) when p > 0.
2.4. (i) The discussion on p.46 is equivalent to writing

820 02
8x2 + 8y2 -

0

as a first-order system of dimension 2 by setting

00 00 -u.
8x



TO FIRST-ORDER QUASILINEAR SYSTEMS

Can
z z axe+42+0=0

be written as a system of dimension 2?
(ii) Show that, if A and B are constant matrices and

u=

then

u2Cul)

8 + =0

can be written as a scalar second-order equation for ul or u2. Would the
same be true for a system with non-constant coefficients A and B?

2.5. Consider the non-autonomous inhomogeneous Cauchy problem

8u
= D(u, x, y) 5j + d(u, x, y),

8x

u=uo onx=O.

8x=0 with r1=y onx=O

Ot on

Ox Oy
with t=0 onx=O,

and setting

0

show that v satisfies the autonomous homogeneous Cauchy problem

with
v=vo onx=O,

where
D 0 d uo

D = OT 0 1 and vo = 0
OT00 y
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2.6. (i) Show that the solution of

8u Ou
= uay,8x

with u(0, y) = y, is u = y/(1- x).
(ii) For this example, in the notation of §2.3, d(u) = u and uo(y) = y. What

are R. and Rd? Take pa = pd = p > 0 and show that M. = Md = P.
Deduce that D(U) = p2/(p - U) and Uo(y) = py/(p - y), and hence
that the solution of OU/Ox = D(U) OU/Oy is given implicitly by

_p2x pU
Y= p-U+ p+U'

Deduce that U blows up on the lower branch of the parabola

y=
2

(1-x±2fx).
The distance from the nearest point on this curve to the origin controls
the radius of convergence of (2.35); how does this distance depend on p?

2.7. Suppose that

A
au + B

Ou = c,

and A is invertible. Suppose also that the row vector IT is such that

IT (01- 2A-' B) = OT, (2.62)

where (.,y) is such that (x(t),y(t)) is a characteristic. Show that ITU =
ITA-'ci, which is (2.27).

2.8. Suppose that a hyperbolic system can be written in terms of the Riemann
invariants r1,2 as

8x + A1(rl , r2) 8y) rl = 0, (8x + A2 (rl, r2) p.. J r2 = 0.

Show that x and y satisfy the linear system V N /

8r2 = Al(rl,r2)ur2,

2.9. Write the system

in the form

8y Ox ey ex
5,1 = A2(rl,r2)iirl .

Ou Ou OvF+-0'
8 +ey+2 + =0,

Ox-ay+2ay=0,

8x
+B-

Oy
=0

,

and show that it is hyperbolic with dy/dx = A = ±1, 3 on the characteristics.
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Find the left eigenvalues of B and obtain the Riemann invariants 3u - v - w,
u-v+w and u+3v+w.

* 2.10. Rearrange (2.3) and (2.4) into the form

op 0 On au lap ap ap On+-(pu) =0, +u-+-- =0, +u-+yp- =0,
at ax at ax p ax at ax ax

which could also be written as AOu/ax + B au/ay = 0, and show that the
system is hyperbolic and that the characteristic speed dx/dt = A satisfies
A = u or A = u±a, where a2 = 7P /p (a is the sound speed). By multiplying
by suitable row vectors tT satisfying tT (yI - iA-'B) = OT, obtain the
relations

7pp-pP=0, ±ypri-ap=0
on the characteristics, respectively, and deduce that there is one Riemann
invariant, namely p/p"' on dx/dt = u.
Assuming that p/p'' is the same constant everywhere, verify that the quan-
tities u ± 2a/(-t - 1) are constant on dx/dt = u ± a, respectively.

s 2.11. Repeat Exercise 2.10 for the system (2.5)-(2.7) by rearranging the equations
into the form A au/ax + B au/ay = 0, with u = (p, u, v, p) T and

u p 0 0 v 0 p 0
_ O u 0 1/p 0 v 0 0

0 0 u 0
B_

- 0 0 v 1/p
O yp0 u OOyp V

Deduce that the characteristic directions are given by dy/dz = A, where
A = v/u (twice) or

-UV ±
a u +v -a

,
a2=LP.A= a2-u2

P

Show that these results agree with the formulae for A on p.53. Also obtain
the relations

7PP-pP=0 and uu+vv+p =0
p

on A = v/u, and
yp(Au-v)+(v-Au)p=0

on the other characteristics, and find the Riemann invariants, if any exist.
2.12. Write the system of equations

av On

u- + =
y

v- + =u1/2
V

v

in the form
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A
TX

+ B ji = c. (2.63)

Assuming that u and v are strictly positive, show the characteristic directions
are given by A = y/i = ±(uv)-112. Show also that the corresponding left
eigenvectors of Exercise 2.7 are (v1/2,±u1/2) and that, when \ = 1/ uv,
(2.27) becomes

Show that the condition

v1/2ie + u1/2iu = 2(uv) 1/2i.

8; (R) 8u (R)11

for (2.27) is satisfied, and finally that

u1/2 + v1/2 = x + constant

on this characteristic.
2.13. The system (2.1) and (2.2), with h proportional to v2, can be written as

a +uay+2vOy=0,

2Ox + 2uey Oy = 0.

Show that this system is hyperbolic with characteristic directions A = dy/dx
= u ± v, and that u ± 2v are the corresponding Riemann invariants.
If u(0, y) = 0 and v(0, y) is continuous and takes the value 1 in y < 0, show
that u = 0 and v = 1 in x + y < 0, x > 0, assuming that no shocks form.
Show also that, for x + y sufficiently small and positive,

8 +(32 -1)O u-0,
\l

JJ

with u = 0 on x + y = 0. Verify that the equation is satisfied by

2(x + y)
U

3x

What properties must v(0, y) have for y > 0 for this solution to be relevant?
+2.14. To ease the calculations in Exercise 2.3, set 0 = it/2 and p = -(a. +oy)/2.

Using the relations

T = p sin 20, tan 20 =
27-

Qz - oy'

show that
a. = -p(1 - cos 2t'), ay = -p(1 + cos 2,P),
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and hence that

where u = (p, ,')' and

_ cos 2t' - I -2p sin sin 2t/i 2p cos 2t'A sin 20 2p cos 2 , '
B - -(1 + cos 20) 2p sin 21 '

Deduce that the system has a double characteristic

dx = A = - cot t',

on which t¢ is a constant. (If ¢ < 7r/2, it can be shown that the characteristics
split into

ax = -cot \OA: (4 2) )
and the Riemann invariants are t/' ± 1 cot 0logp.)

2.15. Suppose that A and r are related to x and t by

jA = A(x, t) and r = T (t') dt'.
o

Using the chain rule

8 -" 8x 8A' a -+ T8 + 8t 8A'
show that

OA 8x 8A _ 8z 8x

8x 1 8A and at
-Tax

/0A
Hence eliminate u between (2.11) and (2.12) to show that

82x 82x _ 1 8x
8A2 8A8r A 8A

2.16. The system

8v 8v
=

1 Oh 8(h2) 8(h2v) _
8t + v

8x h2 8x' 8t + 8x = 0
is an approximate model for a slender axisymmetric inviscid fluid jet of radius
h(x, t) and axial velocity v(x, t), aligned with the x axis. Show that, if x and
t are regarded as functions of v and h, the system becomes

8x at 1 at h at 8t 8x
Y h- v 8h

_
ha 8;

_
0' 2 8h

- v - + - = 0 .

Show further that eliminating x leads to
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2.17. The system (2.3) and (2.4) is derived from the physical conservation laws

OP N
aP+OQ=0

where

(i) P=P,Q=Pu;
(u) P = Pu, Q = P + Pu2;
(iii) P=p/(7-1)+2Pu2,Q=u(p/(7-1)+2pu2)+pu.
Show that the Rankine-Hugoniot relation for a shock moving with speed V
is [Q]± = V [P]+-, and hence from (i) that [pu]± = V [p]+-. Use this with (ii)
and (iii) to deduce the remaining conditions in (2.49).

2.18. Look for a travelling wave solution u(x, y) = U(z), with z = (y - Vx) /E, to
the equation

- (1 \
8x+- nuJ 02u

= E aye for -oc < z < oo.

Show that

T z-
U" - VU + constant,

and deduce that V = [nU"] oo /[. Show also that, when n = 2, U can
only tend to U(±oo) as z -> too if dU/dz < 0.



3

Introduction to second-order
scalar equations

3.1 Preamble
In Chapter 2 we tried to describe, in the simplest possible terms, the only reason-
ably general framework that exists concerning the solutions of the Cauchy problem
for arbitrary partial differential equations. Many pages could now be spent in ex-
plaining this framework in more detail, but we will instead devote the next three
chapters to a more specialised analysis of three commonly occurring classes of
second-order scalar equations. This will enable us not only to illustrate as simply
as possible the subtleties that can arise when 'non-hyperbolic' equations are being
solved, but also to look at the role played by the ideas proposed in Chapter 2 when
they are viewed in a more concrete setting.

When we start to consider specific second-order equations in Chapters 4-6,
we will find that we rapidly encounter formidable technical difficulties. Hence this
chapter is a preface that emphasises the central ideas that will need to be kept in
mind in the next three chapters.

Before we start, let us make one elementary observation to illustrate the care
that may have to be taken with what appear to be harmless enough second-order
scalar equations. It comes from a trivial piece of Fourier analysis and shows that the
qualitative behaviour of the solutions of second-order partial differential equations
with Cauchy data is far more diverse than in the case for initial value problems
for second-order ordinary differential equations. In the latter case, the Cauchy-
Picard theorem guarantees existence, uniqueness and continuous dependence on
the data, assuming only appropriate Lipschitz continuity. However, we shall see
that partial differential equations which are on the face of it much smoother can
in fact lose the property of continuous dependence on the Cauchy data. This fact,
which provides one of the basic motivations for trying to classify these partial
differential equations, is illustrated by considering the solutions of the two problems

(i)
au 02u

= (3.1)

(ii)

8y Ox2'

2--
8 22 (3.2)

in y > 0, with data

76
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u(x, 0) _ E an cosnx for -oo < x < oo. (3.3)
n=0

We assume that an are such that u(x, 0) has continuous second derivatives, which
clearly demands that an = o(n-2) as n -a co.

Separation of the variables gives the respective solutions as

00/
(i) u =

r `ane-nzYCosnx,

n=0
00

(ii) u = E n2 N Cos nx.
n=0

The series (3.4) has better convergence properties than (3.3) for y > 0, but the
series (3.5) does not even converge unless an decays very rapidly indeed as n -* oo.
For example, even if an = e-"', (3.5) blows up as y -* 1 (if an = e-`"3, f > 0,
blow-up is at y = e, however small that may be, and if an = O(e-`"), as is generic
for periodic analytic functions, there is no solution at all).

Similarly, if we consider the problems

02U
2 =

8zx2

, (3.6)

a
(iv)

802U 0
yz 8x2

(3.7)

for y > 0, with, for example, data

u(x, 0) = E a. cos nx,00

n=0

the Fourier series solutions are

(iii) E an cos ny cos nx,
n=0

8U
(x, 0) = 0,

00

E an cosh ny Cos nx,
n=0

(3.10)

respectively, and a similar contrast can be drawn to that between (3.4) and (3.5).
The switch from (3.6) to (3.7) can easily occur in practice, as has been an-

ticipated on p.42. Suppose that we have an `irrotational' solution of the system
(2.8)-(2.10) describing linearised steady gas dynamics, so that (6i, u) = V O. Elim-
inating p gives

U al a z
((\1- /8x2+Oy2-0; (3.11)

depending whether the Mach number U/ao is greater or less than unity, we are
effectively led to (3.6) or (3.7), respectively. In fact, the derivation of (3.11) breaks
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down when U/ao is too close to unity, and in some `transonic' flows the appropriate
model is

Now, as in (2.41), we can

where

to give

006,10 a2q _
ax axe

+ gy2 - 0.

make the hodograph transformation

x = X (U, V ), y = Y(U, V),

U
ax00 '

V ay,

(3.12)

02y a2y(J. + aU2 = 0. (3.13)

This equation is called the Picomi equation; it is more subtle than (3.6) or (3.7),
and we will return to it later.

A final motivation for studying the contrast between (3.6) and (3.7) comes
from our glass manufacture model (2.13)--(2.15). When we try to predict the centre
surface z = H(x, y), we have to consider a lateral force balance in Fig. 2.4, which
can be shown to give

z H 02H 02 H
ax 82 + 27 8ay + ay 2 = 0, (3.14)

where or, a and r are given in terms of the stretching velocity (u, v) by (2.14). To
be as unambitious as possible, we just consider the simplest velocity distribution,
which is linear in position with u = ax and v =,6y; we obtain

02H
(2a+0) +(a+2f)8H2 = 0. (3.15)

Hence, depending on the signs of the coefficients, we again have a situation in
which we see the fundamental importance of recognising the difference between
(3.6) and (3.7).

With this preamble in mind, let us now consider the Cauchy problem for scalar
second-order equations. It is much easier to begin with the semilinear case with
just two independent variables and we defer consideration of genuinely quasilinear
equations to the end of the chapter.

3.2 The Cauchy problem for semilinear equations
We consider second-order scalar problems with linear principal part in the form

2 202U

2
2baxay + C

2 = f (x, y, u, 8x, 21j) '
(3.16)

where a, b and c are functions of x and y. We can only use the transformation
ul = Ou/ax, U2 = Ou/ay to reduce this to a two-dimensional system, as considered
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in Chapter 2, when the right-hand side of this equation does not depend on u
(otherwise the resulting system is three-by-three). If this can be done, appropriate
Cauchy boundary data would be for ul and u2 to be given on some curve I' in
the (x, y) plane. However, even when f depends on u, it is reasonable to consider
Cauchy boundary data for (3.16) in the form

x = xo(s), y = yo(s), 8x = PO(s), a = q0(s) forsl <8<82. (3.17)

Now, by integrating along r, this implies that u = uo(s) is prescribed up to a
constant, and, if we know this constant, an equivalent2s set of data is

= vo(s) for sl < 8 < 82i (3.18)u = uo(8),
On

and it is this that is traditionally called Cauchy data for (3.16). In geometrical
terms the Cauchy data states that the solution surface u = u(x, y) not only has
to pass through a boundary curve whose projection is r but also has to have a
prescribed tangent plane on that curve, so that a `boundary strip' is given for this
surface.

A necessary but not always sufficient condition for the existence of a solution
of (3.16) is that the boundary data (3.18) defines the second derivatives 82u/8x2,
6'u/OxOy and 82u/8y2 uniquely on the boundary curve.29 In addition to

02u
a +26-x8 +c8 uu = f,z y y2

differentiation along r shows that these derivatives must satisfy

,
02u

, 82u
A = +

xo
8x2 y0 8x8y,,
82u

,
02u

= +40 y° 8y2 .xo
8x8y

Thus the condition is
a 2b c

xo l 0 # 0,

which reduces to

0 xo yo

ayo - 2bxoyo + cxo 0. (3.19)

This is the generalisation to second-order equations of (1.5) and it is equivalent
to (2.23) in the case that (3.16) can be identified with a two-by-two system.

28This is because duo/da = po dxo/ds+qo dyo/ds and 8u/8n = -qodxo/ds+po dyo/da when
we parametrise so that a is arc length.

Of course, this says nothing about higher derivatives of u.
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3.3 Characteristics
As in Chapters 1 and 2, we now define a characteristic of (3.16) to be a curve
in the (z, y) plane along which Cauchy data does not uniquely define the second
derivatives. Hence, given x(t), y(t), Ou/Ox (t) and Ou/8y (t) on a characteristic,
we can use the argument just given to state that

aye-2b4+C22=0.

This defines the two characteristic directions

dy bf b --ac
dx a

(3.20)

at a point, but they may not be real or distinct. Moreover, for existence (and non-
uniqueness) of the second derivatives, there is a further relation30 which holds on
a characteristic and can be written as

a f c
x P 0
0qy

= 0,

where we have used the standard notation p = Ou/8x and q = Ou/Oy. This reduces
to

aye + ciq = f4, (3.21)

but, thought of as an ordinary differential equation, this equation is only rarely
integrable with respect to t. However, if we are lucky enough to be able to integrate
it along a real characteristic, a linear combination of Ou/8z and Ou/Oy is known
along that characteristic; this is what we called a Riemann invariant on p. 44. Thus,
if we know a Riemann invariant on a family of characteristics, our second-order
partial differential equation is reduced to a first-order one.

Better still, if two real distinct families of characteristics exist and there is a
Riemann invariant for each of them, then it is possible to compute 8u/8z and
Ou/Oy, and hence obtain u algebraically, from the two relations provided by the
two Riemann invariants, and this is a key motivation for forthcoming definitions. It
is helpful to note that, when f = 0, (3.20) and (3.21) imply that on a characteristic

aP2 + 2b0¢ + c42 = 0. (3.22)

We remark that, as in (1.17), the alternative definition of a characteristic as a
curve across which there can be discontinuities in the second derivatives of u leads
at once to (3.20) but not to (3.21).

When we now come to decide what role the characteristics play in the solution
of a boundary value problem for (3.16), we note that, of the model problems
discussed in §3.1, equations (3.6) and (3.7) with the data (3.8) are clearly Cauchy
problems whose solutions have very different properties from each other, and that

30This is another consequence of the Fredholm Alternative.
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(3.6) has real characteristics while (3.7) does not. We also note that (3.1) and (3.2)
have the attributes of a Cauchy problem in that there are as many pieces of data
as there are y derivatives in the partial differential equations, and that they have
coincident real characteristics y = constant. A picture of how we should classify
equations such as (3.16) is now emerging, and corroboration is provided by noting
what happens to (3.16) if we change coordinates with the dual aim of identifying
invariant properties of the left-hand side of the equation and, if possible, writing
it in a simpler `canonical form'. We therefore consider a one-to-one transformation
C = C(x, y), q = rl(x, y), for which the Jacobian I8(e, n))/8(x, y)I is bounded and
non-zero. From the chain rule we find that

822 f 82u - = g (C,
8u 8u1 (3.23)

for some function g, where
/ \

= Q

\OX/2

+2b
2

Oxt9y \8y) ,

=a8-8--+b(a22+8-8q/ +cLt&I,
OX ex 8x 8y 8y ax / 8y 8y

a
")2

+ 2b all Z'hl +c
2.

Ox M)

(3.24)

(3.25)

(3.26)

Hence, in the new coordinates the discriminant of the characteristic equation (3.20)
becomes

02-Q')'=(b2-aC)IO
,rI)I

8(x,y) '

where b2 - ac is the discriminant in the old coordinates. Consequently, the reality
or otherwise of characteristics of (3.16) is invariant under our transformation.

This is the final piece of evidence that motivates us to classify an equation of
the form (3.16) as follows.

It is hyperbolic if b2 > ac. Then two real distinct characteristics exist and, if
(3.9) is a guide, the solution to the Cauchy problem is `well behaved'. This case
will be considered in more detail in Chapter 4.
It is elliptic if b2 < ac. Then there are no real characteristics and, if (3.10) is
a guide, the solution to the Cauchy problem is unpredictable to say the least.
This case will be considered in more detail in Chapter 5.
It is parabolic if b2 = ac. Then there is one `double' real characteristic and,
if (3.4) and (3.5) are a guide, the solution of what we have called the Cauchy
problem may or may not be well behaved. This is clearly the most delicate of the
three situations, but it is also the commonest in practice, at least in models of
industrial interest. This explains why Chapter 6, in which we consider parabolic
problems in more detail, is so lengthy.

This classification immediately suggests that we should be able to find coordi-
nate systems especially suitable for instant recognition of the type of any equation
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of the form (3.16), and we will indeed find such canonical forms shortly. However,
let us first digress to note that the practical examples mentioned in §3.1 suggest
some models that have the unfortunate property of being of mixed type, that is
they may be hyperbolic in some region in the (x, y) plane and elliptic in others.
In fact, it is a trivial exercise to show that the characteristics of the Tricomi equa-
tion (3.13) are as shown in Fig. 3.1 (see Exercise 3.5(b)); it is only hyperbolic in
U < 0, which can be shown to be the region of supersonic flow, and this region is
bounded by the sonic line U = 0. Equally, if we could justify allowing a and 6 to
be functions of position in (3.15), the hyperbolicity of that equation would depend
on how great the local extension and compression were. This sends us three clear
messages: first, that we expect the physical implications of any mathematical solu-
tion to change dramatically as we cross any sonic line from elliptic to hyperbolic;
second, that any boundary data that we propose in the hope of writing down a
well-posed problem may well have to change abruptly wherever the boundary in-
tersects a sonic line; third, that any numerical discretisation that we might use
should reflect the change in behaviour. Moreover, there is another important as-
pect of problems of mixed type that we have rather glossed over. In the Tricomi
model (3.13) and the glass sheet model (3.15), the position of the sonic line is
known in advance. For the Tlicomi equation, this was the result of the hodograph
transformation and, for the glass model, the output of some uncoupled problem
for the fluid velocity. In practice, however, the coefficients on the left-hand side
of (3.16) usually involve the dependent variable in some way, and the system is
`clever' enough to switch type from, say, hyperbolic to elliptic, in such a way as
not to exhibit any pathological behaviour such as (3.10). However, this discussion
leads us away from the se:nilinear cases we are considering, for which we have still
not addressed the question of canonical forms.

V

U

Fig. 3.1 Characteristics for the Tricomi equation (3.13).
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3.4 Canonical forms for semilinear equations
3.4.1 Hyperbolic equations
When the equation

82u 82u 82u
f (

8u 8u
a 8x2 + 2b

8x8y
+ caye = x, y, u, 8x , ay

is hyperbolic, two real characteristic directions exist at each point and define two
distinct families of characteristics. Now, assuming Lipschitz continuity conditions
on a, b and c, the characteristic condition (3.20), aye - 2bi) + cat = 0, is a pair of
ordinary differential equations for which integrals certainly exist, although it may
not be possible to write them down explicitly. Thus two characteristic variables
may be defined, constant values of one variable giving one characteristic family,
and constant values of the second variable giving the other. Such a definition is not
unique, since any well-behaved function of a characteristic variable thus defined
would also be a characteristic variable, and hence, in practice, such variables are
often chosen aesthetically. All that is necessary is that we choose l and rI in (3.23) so
that t (x, y) = constant and r7(x, y) = constant are in fact the integral curves of the
characteristic equations.31 Now, on 1:(x, y) = constant, (8£/8x).i + (8i;/8y)y = 0,
with a similar relation on 77(x, y) = constant. Substituting into (3.20), we find that
(81;/8x) / (81:/8y) and (8r7/8x) / (8q/8y) are the two (real and distinct) roots of

aa2 + 2bA + c = 0. (3.27)

Hence, in (3.24)-(3.26), a = 7 = 0. Also

20=a(8f
+491)2+2b(L

+ i'8x 8x 8x 8x Oy 8y 8y 8y

and this quantity is non-zero since (3.27) only has two roots for A. Thus a hyper-
bolic equation has the canonical form

Ft2;
= G It, rJ, u, 8t , 8 ) (3.28)

Different choices of characteristic variables merely lead to different right-hand sides
in this equation.

Example 3.1 (The wave equation) A very well-studied example leading to (3.28)
is

a° axe - aye = f (x, y), ao = constant, (3.29)

which, when f = 0, is referred to as the wave equation. The characteristics are given
by aoy2 = *2 and the problem is hyperbolic; one particular choice of characteristic

31This distinction is related to our discussion of the representation of characteristics in §§1.8
and 2.6.
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variables is t = x - aoy and n = x + aoy. It is easily verified that a = ry = 0 and
,6 = 2ao, so that a canonical form is, say,

9s

.9tN 4a02 f 2 n' 2ao) = n) (3.30)

This example reveals one of the benefits that can occasionally accrue from writ-
ing the equation in canonical form; it actually enables us to perform an explicit
integration to give the general solution of (3.30) as the d'Alembert representation

u =
Jf9(eii) d do + hl (t) + h2(n), (3.31)

where hl and h2 are arbitrary functions to be determined by the boundary condi-
tions. Alternatively, we could have derived this formula by integrating (3.29) along
the characteristics to give the R.iemann invariants

au 8ufan
8x

-
ay

= f/dy on x aoy = constant. (3.32)

Example 3.2 Things are not usually so easy, as can be seen by considering
z

y2 8x2 - x28y8222 = 0. (3.33)

The characteristics are given by yy = ±xi, and the equation is hyperbolic except
on the axes where x = 0 or y = 0, which we exclude from the domain of interest.
Characteristic variables are given by t = y2 - x2 and n = x2 + y2, and the two
families of characteristics are shown in Fig. 3.2; note that they touch on the axes.

A tedious calculation leads to

82u
=

1 Lou 8u

at- 2(q2 - t2) 8n 8t) (3.34)

which is in canonical form, but there are no Riemann invariants, and neither can
(3.34) be integrated explicitly.

3.4.2 Elliptic equations
In the elliptic case, real characteristic variables no longer exist and the integrals
of (3.20) are complex conjugate pairs of functions y(x). We choose f and n to
be the real and imaginary parts of these complex integrals so that the `complex'
characteristics are Z; tin = constant, and (8£/8x±iO /8x)x+(8{/8y±i8n/8y)y =
0. Substituting into (3.23) and taking real and imaginary parts we obtain a = ry
0 and 3 = 0. The canonical form is therefore

z02U2 n22 = G (to?, u, , 8 ) (3.35)

When G = 0, this equation is called Laplace's equation. The Cauchy-Riemann
system on p. 46 and the example (3.7) and (3.8) both show that Cauchy boundary
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Fig. 3.2 Characteristics for equation (3.33).

data is inappropriate if (3.35) is to be well posed with G = 0. In this case we
are simply restating the dangers about analytic continuation that we mentioned
in §2.3, but the statement is in fact true for all elliptic equations, semilinear or
otherwise. Hence, our first priority in Chapter 5 will be to decide what data is
appropriate for elliptic equations. Apart from the obvious statement that the im-
position of Cauchy data is too strong, the only general observation that can be
made about (3.35) is when G = 0. The analogue of (3.31) is

u = hl (£ + ir)) + h2V - iq), (3.36)

where hi must be analytic functions of their arguments for differentiation to be
justified. Since we are implicitly seeking real solutions,32 it is better to write (3.36)
as

u = R h( + iq),

which is the `general solution' of Laplace's equation, although we could equally
write u = 9 h(£ - hp). Note the contrast with (3.31), where the general solution

321n this context it is interesting to note that we can always write down an analytic function
h(( + iq) when we know its real part u(f, q); the formula is

h(f + iq) = 2u (4
2

i", 4 iq 1 + constant.
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involved two twice-differentiable functions rather than one analytic one. Not sur-
prisingly, the theory of functions of a complex variable is intimately related to the
solution of Laplace's equation in llt2 and Chapter 5 provides several illustrations
of how this theory can be put to practical use.

3.4.3 Parabolic equations
In the parabolic case, the characteristic equation (3.20) has a double root and
there is only one real characteristic variable. If we choose q to be this variable,
so that (8q/8x)i + (8q/8y)y = 0, then, on substituting into (3.26), ry = 0. As
always, there is some freedom of choice for a and, if a # 0, we may conveniently
choose t = x so that a = a (if a = 0 we choose = y, since then c 0 0). But
ry = (a 8q/8x + b 8q/8y)2/ a = #2 /a and hence ft =\ 0. The canonical form is thus

8 22 = G \t, q, u, 8t , aq
(3.37)

The subtlety of this case is illustrated by contrasting the parabolic equations
0 and 82u/8t2 = 8u/8q. The former, although trivial, behaves like

a hyperbolic equation because the general solution is t f (q) + g(q), where f and
g are arbitrary, and hence this solution is uniquely defined by Cauchy data on
any non-characteristic, i.e. any line excluding q = constant;33 the latter, which is
called the diffusion equation or heat equation, is so complicated as to occupy much
of Chapter 6.

We remark that, as often happens in applied mathematics, degenerate cases
are best understood by taking judiciously chosen limits of non-degenerate ones.
Here, a good idea of the kind of data that should be applied to parabolic equations
can be gleaned from the limit of the hyperbolic equation

z
8-e2 (3.38)

as a -a 0. This equation is an example of what will be studied in Chapter 4 as the
telegraph equation; its characteristics are q f of = constant, and we expect that
well-posed data would be, for example, the prescription

u = f (0, = g(f) )

on the non-characteristic q = 0. However, the characteristics are shown in Fig. 3.3,
suggesting that u may change much more rapidly in the q direction than in the

direction. In fact, if we neglect t derivatives altogether in (3.38), we obtain the
approximation 34

u rs f (0 -
which suggests that, when q is much bigger than e, the solution has 'forgotten'
about g(i;) and only remembers the data u = f We will verify that u = f is

"Recall that we have seen in §§2.4.2 and 2.4.3 that systems with a double characteristic can
exhibit the structure of hyperbolic systems.

34 Technically, there is a 'boundary layer' on q = 0.
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2tan- I F

Fig. 3.3 Characteristics for the telegraph equation.

in fact correct Cauchy data for the diffusion equation in rl > 0 when we come to
Chapter 6, although, as example (3.2) shows, it would not be for the `backward'
diffusion equation 82u/81;2 = -8u/8q in t' > 0.

3.5 Some general remarks
Quasilinear equations

None of the classifications described above can be carried through with any pre-
cision when any of the coefficients a, b or c in (3.16) depends on u and/or its first
derivatives. Unless we are so extremely lucky that (3.20) happens to be integrable,
the best we can do is to `freeze' these coefficients at some point or in some region of
the (x, y) plane at which we presume we know their values reasonably accurately,
and then proceed by regarding (3.16) as an equation with constant coefficients.
In fact, as already remarked, we implicitly adopted this strategy when we set up
the models (3.13) for transonic flow and (3.15) for a glass sheet. Nevertheless,
the information thus derived can be extremely valuable because not only does it
reveal the range of behaviour that the local solution might display, but also, for
hyperbolic problems, it provides the basis for an approximate iteration scheme on
the lines proposed in Figs 2.6 and 2.9. The dangers inherent in basing one's ideas
on `localised' approximations come not so much from misinterpreting the reality
or otherwise of the characteristics as in not noticing how nonlinearity may cause
singularities to develop. Indeed, we have seen in §1.4 how this can happen even
for first-order equations.

Goursat problems

In §3.2 we have only considered Cauchy problems, which, as we know, are well
posed for hyperbolic equations. However, some practical problems lead to hyper-
bolic equations for which, instead of Cauchy data such that u and 8u/8n are
given on a non-characteristic r, only u is prescribed on such a curve r. However,
to compensate, u is also given on a characteristic, say s = 60, in such a way as not
to violate any of the equations that are known to hold along that characteristic
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data given on
t=lpandr

E 0t
to

Fig. 3.4 Characteristics through P for the Goursat problem.

(Fig. 3.4). This is called a Goursat problem. It is easy to guess that it is well
posed by simply counting the number of pieces of information carried along the
characteristics passing through a typical point P, as we did in Figs 2.6 and 2.7.
For example, if we know the two independent Riemann invariants explicitly, the
data on r determines one functional relation between them and data on = Co
determines another.35 We will return to this in Chapter 4.

Subcharacteristics

There is a piece of jargon that is sometimes used when approximations are sought
for the solutions of second-order equations on the basis that some or all of the prin-
cipal part is multiplied by a small parameter, as in the telegraph equation (3.38):
such problems fall within the realm of singular perturbation theory and are well de-
scribed in texts such as [3,22, 25]. In particular, one phenomenon that emerges is
that, whenever the principal part is neglected entirely, we are generally left with a
scalar first-order equation, and such an equation always has a one-parameter fam-
ily of real characteristics. These curves are sometimes called subcharacteristics and
they can clearly carry much important information about the full solution. Unfor-
tunately, they often behave in a troublesome manner in the vicinity of boundaries,
particularly when the principal part of the equation is elliptic or when they `graze'
the boundary. Examples of both types of behaviour are given in Exercises 3.9 and
3.10.

More independent variables

When there are three or more independent variables, there is not much that can be
said here without getting into the discussion that we gave at the end of Chapter 2.
However, we can consider the generalisations of (3.6) and (3.7) to m dimensions
for a constant-coefficient equation of the form

35A particularly interesting example of this situation concerns the Coursat problem for the
Tticomi equation (3.13) when r is a curve that crosses the sonic line U = 0.
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02U
m-'

C72u

aye C572

00

u1Y=0 = an,...n.,,-i cos(nlxl) ... COS(nm-lxm-l),

can be written as

8u
y-0 - 0,

00

u = an,...nm_, cOs(ny) cOS(njx1) ... coS(nm-lxm-1),

with n2 = E' 1 cin; . This can be put more elegantly by saying that the solution
i__ I

grows exponentially in y for most choices of the real `wavenumbers' ni unless the
real quadratic form

uc8x)z-(9Y

(i.e. the generalisation of the left-hand side of (3.19)) has rank m and signature
m - 1. This characterisation of the quadratic form, which is invariant under the
kind of change of variables we considered in §3.4, is the basis of the generalised
definition of hyperbolicity for second-order equations with an arbitrary number of
independent variables. Unfortunately, it takes as many adjectives to describe non-
hyperbolic equations as it does to encompass all the rank and signature possibilities
of the relevant quadratic form. However, when the rank and signature are both m
the word elliptic is usually used. As explained in §2.6, characteristics of hyperbolic
equations are now manifolds, of dimension m - 1, which locally near any point
(y,xi) take the form of cones of one sheet enclosing the 'time-like' y direction.

Exercises
3.1. Suppose that a, b and c are constant and consider the two equations

L1u=J02U--a8 -b--eu=0, L2U=8 -a8,--b cu=0.

Write down the general solution in terms of two independent arbitrary func-
tions off and rl
(a) for L1, when c = 0 and either a or b vanishes;

(b) for L2, when b vanishes.

Separate the variables to show that in each case solutions can be found in
the form of exponentials in C and rl.
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3.2. Suppose Dj = aj 8/8x + bj 8/8y + cj, j = 1, ... , 4, where aj, bj and ej are
constant, and

Dju + D2v = 0,
D3u+D4v=0.

Show that u and v satisfy scalar second-order equations whose type depends
on the roots of

det (I aa,
a2 b, b23 a4

b3 b4 ) ) 0.

3.3. Show that the equations

02u 82u 02u 8u 82u 8u
(i)

8x2 = 0, (ii) 8x2 = u, (ill) 8x2 = 8x' (iv) 8xz = aU

can be written as first-order systems for u = (u,v)T, where v = 8u/8x, in
the form

A8x +B5 =c,
8u

where for cases (i)-(iii)

A - (0
0),

' B= (0 0),
and for case (iv)

A=(0 0), B=(O1 Q).

Show further that, when A is such that det(B - AA) = 0, then B - AA
has two linearly independent left eigenvectors in cases (i)-(iii), but only one
in case (iv). Show also that (i)-(iii) can usually be made to satisfy Cauchy
data, but that (iv) cannot.

3.4. By transforming to canonical form, show that the general solution of

02U 10 z z

8x22 + 3 8x8y + ayz
+ sin (x + y) = 0

is u = f (x - 3y) + g(y - 3x) + 18 sin (x + y), where f and g are arbitrary.
3.5. Show that the Ticomi-type equations

z z

( ) + 0a
x

8x2 8y2 '

02u 02u
(b) -y8x2 + 8y2 = 0,

( )
- z 0

c
x

8xz
+ W



EXERCISES 91

are hyperbolic in x < 0, y > 0 and x # 0, respectively, and that characteristic
coordinates are

(a) = y + 2(-x)12, *I = y - 2(-x)112,

(b) =3x+2y312, n=3x-2y312,
(c) =y+loglxl, 7i=y-loglxl.

Sketch the characteristics in each case and show that the corresponding
canonical forms are

(a)

(b)

(c)

3.6. Show that, if

i (L - ) /2(q -

/6(t - n),
02U OU au= - - -)/4.

8017 0% at

82u 82u
(x + ay) axe + aye = 0,

where a i4 0, the characteristics are given by

(z ± a)2 4az + 2a2 log(z ± a) + x = constant,

where z2 = x + ay. Show that, for small z, the characteristics through the
origin are

(x + ay)3/2 =
3ax

2

What happens if a = 0?
3.7. Show that the equation

u2x2
axe

+ 5xy 8x.y + 2y2 8-2 + 8x 8- + 5y = 0

is hyperbolic and that characteristic coordinates are = x2/y and q = y2/x.
Giving yourself lots of time, show that the canonical form is

02U
rl 8t = 0,

and hence that the general solution is u(t, q) = f (t)/q+g(iI), where f and g
are arbitrary. Hence, or otherwise, when u(1, y) = y2 and 8u/8x (1, y) = 1,
show that

1 (2
2 + 7y2 y2

U(-T' TT ;77
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3.8. Show that, when u(x,0) = uo(x) and Ou/Ot (x, 0) = vo(x), the d'Alembert
representation (3.31) gives

x+aot
u(x, t) = 2 (uo(x - aot) + uo(x + aot)) + - f_

vo(s) d8.
t Opt

3.9. Show that constants a and b can be chosen so that u = ay + bye-y'' satisfies

/ 02U 49U+-p+-=0 for-1<x<1,e1 -OX2 9y2 OX

with u(1, y) = y and u(-1, y) = -y. Check that, as a -4 0+, u becomes
constant on the subcharacteristics y = constant and satisfies one boundary
condition, but not the other. What happens when a -+ 0-?

3.10. Suppose that u(x, y, t) satisfies the elliptic equation

O2 +f2
02U

0 for0<y<1,

with

ay (x, 0, t) = 0, a (x, 1, t) + e2 5i2 (x, 1, t) = 0.

Show that a formal power series in which

u = uo(x,y,t) + e2u1(x,y,t) + ...

satisfies the equation and boundary condition up to terms of O(e2) if

uo = uo(x,t),

where uo satisfies the hyperbolic equation

0-2U0
O2uo = 0ax2 &2

This example, which is a simple model for the tides, shows that the solution
of an elliptic equation can sometimes be consistently approximated by that
of a hyperbolic equation.
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Hyperbolic equations

4.1 Introduction
Hyperbolic equations are the easiest scalar second-order equations to classify from
the point of view of the Cauchy problem. They occur commonly in practical appli-
cations, as is evident from studying the models of Chapter 2. Take, for example,
fluid dynamics. We have already remarked in Chapter 3 that a large class of
steady two-dimensional supersonic gas flows can be modelled by the hyperbolic
equation (3.11), (1- U2/ao)820/8x2 + 820/8y2 = 0. However, the requisite cross-
differentiation is not possible for evolutionary models such as the shallow water
model (2.1) and (2.2), or the unsteady gas dynamics model (2.3) and (2.4), except
in the frequently occurring acoustic limit in which the fluid is nearly in a state
of rest or uniform motion. Then, a linearisation procedure can be carried out as
on p. 65. For example, when we assume that u and h - ho in (2.1) and (2.2), or
u, p - po and p - po in (2.3) and (2.4), are small enough for their squares to be
negligible, we obtain the hyperbolic one-dimensional wave equation

820 2820

8t2 = ao 8x2 (4.1)

where as = gho or ao = rypa/po, respectively. Here ¢ is any one of the variables
u or h - ho in (2.1) and (2.2), or u, p - po or p - po in (2.3) and (2.4), the
remaining variables being related to 0 by simple linear transformations. Equally,
the regenerator and fluidised bed models (2.17)-(2.20) can be cross-differentiated
to give a constant-coefficient equation of the form

(
a

+ aTx + b) I it + cTx + d l u = eu, (4.2)

which is clearly hyperbolic and is a version of the telegraph equation mentioned
in §3.4.3; to see this set u = e°:+dev for suitable n and Q.

Multi-space-dimensional versions of such linear scalar second-order equations
are even more relevant for practical problems. Indeed, much of linear acoustics is
governed by

ae = aS V2ut

93
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in two or three space dimensions,36 and we will discuss how the solutions of such
hyperbolic equations depend on dimensionality in §4.6. Still more interesting is
the appearance of vector versions of (4.3), which should really be classified using
the methods of Chapter 2. However, a generalisation of the discussion of §3.4 will
give us enough of a basis to be able to discuss systems such as Maxwell's equations
and the equations of linear elasticity in §4.7.

Our first task in this chapter is to see how the theory for linear scalar second-
order equations in two independent variables can be put to good use. Since we know
that the Cauchy problem for such equations is well posed, we can immediately
set about finding representations of solutions, confident that such representations
make sense and depend continuously on the data. This is the first time in the book
that a general strategy for representing solutions is presented, and it is not the last,
so a careful preamble about the possible procedures and methodology is given in
§4.2. Moreover, there is one analytical technique, that of eigenfunction expansions,
which we review in §4.4 because it is of such importance in this and subsequent
chapters. Most of the rest of this chapter is devoted to the explicit solution of
linear equations, and we leave those few representations that are available for the
solution of nonlinear hyperbolic problems to the brief §4.8.

4.2 Linear equations: the solution to the Cauchy problem
We begin by considering linear equations that have been transformed to charac-
teristic variables (x, y), so that we have to solve

82u 8u 8uGu=8x8y+pex+qay+ru=f,

where p, q, r and f are functions of x and y, but not of u or its derivatives. We
take u and Ou/8n (or, equivalently up to a constant, 8u/8x and 8u/8y) to be
prescribed on some open curve r that is nowhere parallel to the characteristics,
which are the x and y axes. For definiteness we only look for the solution on one
side of this curve, say y increasing, as in Fig. 4.1.

The prescription for the representation for the solution of this general Cauchy
problem can be presented at two different levels and we leave it to the reader to
decide which route to take; they converge at the end of §4.2.2.

4.2.1 An ad hoc approach to Riemann functions
Motivated by §§3.3 and 3.4.1, we ask whether the d'Alembert formula (3.31) could
not be generalised to apply to (4.4). Now the key step in deriving (3.31) was
direct integration with respect to first x and then y, which is one of the many
ways of evaluating a double integral over the region D of Fig. 4.1. In the light of

36Here and henceforth we will use the applied mathematician's notation

_ 82 82 82V2
8s2 + 8y2 + 8z2'

where z, y, z denote spatial coordinates.
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Fig. 4.1 The Cauchy problem for u(C, n).

this observation, and remembering our discussion of transpose (adjoint) matrices
on p. 43, we consider defining an operator C', called the adjoint of C, such that
urv - vC'u is a divergence, i.e. it is of the form OP/8x + 8Q/8y, no matter what
the functions u and v are. This will enable its double integral over D to be replaced
by a line integral around the boundary W. Inspection of (4.4) shows that the only
possibility is to define

z
Cv =

8 v - 8
(pv) -

8
(qv) + rv, (4.5)

8x8y ax ay

so that we may use Green's theorem to obtain
\ \

I'D (vCu - uVv) dx dy = illD + v 2u-) dy + (us! - quv I dx. (4.6)

Now we want to choose v so that this formula can be used to tell us the value
u(t, p) of the solution at P. We see that we can remove all the terms whose values
we do not know if v satisfies

Vv = 0 in D,
8v = qv on AP, on which y = q,
8x (4.7)
8v = pv on BP, on which x =
8y

because the integrals along AP and BP can then be evaluated explicitly, integrat-
ing by parts where necessary. This gives

1 + dy + (u 8- quv 1 dx. (4.8)[uv] = ffD' dx dy -
a

We could have equally well found [uv]A, but the two results would have been
simply related by an integration by parts from A to B. Finally, we note that v
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is undefined to within a multiplicative constant so that, if v exists, it can be set
equal to unity at P.

The function v is called the Ricmann function for our problem and, if we can
convince ourselves that it exists, (4.8) gives us our desired representation of the
solution of the Cauchy problem. In fact, existence is no problem when (4.5) can
be formally converted to a linear Volterra integral equation; this happens, for
example, if p = q = 0, when

y

v(x, y) = 1 - f f:r r(x', y')v(x', y') dx' dy';
n

the convergence of a sequence satisfying 1 - f f to a unique v(x, y)
is easy to establish, as in the proof of Picard's theorem for ordinary differential
equations.

Even in the absence of any explicit formula for the Riemann function v, our
basic result (4.8) contains a wealth of valuable information about hyperbolic equa-
tions, to which we will return at the end of this section. However, we first present
an alternative, more complicated, but more systematic, story of the Riemann func-
tion which may be skipped by those anxious to get to explicit situations as quickly
as possible. We nonetheless urge those who wish to see a coherence between this
chapter and its successors to read on.

4.2.2 The rationale for Riemann functions
We begin this rather lengthy tale by recalling the Fredholm Alternative that we
encountered in §2.2 for the matrix equation

Ax = b, (4.9)

where x and b are column vectors, and A is an n x n matrix. If the solution exists,
we can simply write it as x = A-'b. However, we can write this in an especially
convenient way if we observe that, if yk is a vector such that37

Yk A = ek , i.e. ATYk = ek, (4.10)

where ek is the kth standard basis vector, then the kth component of x, which is
equal to ek x, can be written

(Yk A)x = YT(AX) = Ykb-

Thus we have found the kth component of x simply by taking the `inner product'
of (4.9) with Yk and of (4.10) with x and subtracting; all we needed was the
identity

XTATYk = Yk Ax.

This offers us a layout that can be used repeatedly for defining the inverse of all
kinds of linear differential operators. For example, suppose we consider the initial
value problem for a second-order linear ordinary differential equation in the form

370f course, yk is just the kth row of A.
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2

Cu = f(x), C = i + P(x)aj + q(x) for x > 0, (4.11)

with u(0) = du/dx (0) = 0 without loss of generality. We exploit the argument
above by identifying C with A it with x and f with b. We now try to define C,
b, R and an inner product ( , ) so that we can draw the analogies

Ax = b <-+ Cu(x) = f (x), u(0) = dZ (0) = 0;

ATYk = ek ++ b(x - l;);

Yk Ax =
xTATYk H (R(x,C), Cu(x)) = (u(x), C'R(x,C));

yk b = e,k x H (R(x, C), f (x)) = (b(x - l), u(x)).

The last line in the left-hand column gives x, component by component, and the
last line in the right-hand column is supposed to give u(t) at all possible values of
C. These analogies will work if we proceed as follows.

1. We define (u(x), v(x)) = fx u(x)v(z) dx for some suitable X > . The motiva-
tion for this is as follows: if we divide the range of integration into N subintervals
of width h, and approximate u(x) and v(z) b y step functions on each subin-
terval, the functions are represented by vectors of values u = (ui , ... , UN) and
v = (vi, ... , vN). The integral of uv is approximated by r uivih = u v h
which, under suitable conditions, becomes f uv dx as N -4 oc.

2. We define

C R = d R - dx (pR) + qR,

which makes uC R - RCu into an exact differential, and in addition we specify
that R(X) = dR/dx (X) = 0.

3. We define b(x - t) to be the so-called delta function, i.e. the limit of a sequence
of well-behaved functions that tend to zero except for very small values of x -1;,
but whose integral over any interval containing x = is unity. The sequence
could, for example, be defined by

1 _2b(x) = lim -e =
eto F r

(4.12)

By taking limits of integrals of members of this approximating sequence, the
vital result (b(x - {), u(x)) = u(t) in the last line of the analogy can be justified
as long as X > and, strikingly, it can be shown to follow from limits of any
reasonable sequence of approximating sequences like (4.12).

This last idea is one of the principal motivations for the axiomatic definition of
distributions or generalised functions [37, 42]. In this approach all the `epsilonology'
is swept away by defining the delta function and its relatives as linear functionals
that map a class of suitably smooth test functions to the real numbers 38 We define

The whole philosophy is closely related to that of the theory of weak solutions of hyperbolic
equations in the presence of shock waves, as discussed in §1.7.
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this map b y the inner product ( , ); thus, since the inner product of 6(x) and any
well-behaved test function t'(x) is t('(0), we could define 6 axiomatically by the
statement

6(x) : - ( O ) .

In this scenario, any well-behaved function f (x) would be defined as

f(x)'O(x)dx

for all test functions tli, assuming of course that the test functions are such as to
allow the integral to exist. We can go further and define a calculus of distributions
motivated by the formula for integration by parts, which says that

f (x)V,' (x) dx,00f f'(x)G(x) dx = -
00

provided that 0 vanishes sufficiently rapidly at x = ±oo. Thus we define 6'(x) by
the rule

(x)o(x) dx f00

00
6(x)0'(x) dx,f-'0000 6'

so that
6'(x) : 0 -+ -00);

the intuitively obvious statements

I 6(f)df=H(x)={0,
x<0,

00 111

1, X>0'

where H(x) is called the Heaviside function, and its consequence

H'(x) = 6(x)

(4.13)

are in accordance with this rule. It can be shown that the delta function, like
all distributions, satisfies the usual rules of calculus, especially that of integration
by parts for the product of a distribution and a smooth function. Moreover, it is
a simple matter to define distributions with, say, two independent variables; for
example, we could either consider 6(x)6(y) to be defined by39

6(x)6(y) = Inn1e (s+y
E-+o area

or as the functional that takes a test function io(x, y) to 0(0, 0).

It is interesting and important to show that the interpretation of 6(x)6(y) is independent of
any local change of coordinates that preserves area (see Exercise 4.1).
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At the end of the day, this calculus of distributions, combined with the analogy
above, leads to the solution of (4.11) in the form

uW = / uC*Rdx = J u(x)8(x - l;) dxX X
0 o
X

fo

X
f RGu dx = R(x, ) f (x) dx.=

0

The heart of the matter is that Green's theorem (here, integration by parts) can
be used to relate the integrals of uG'R and RCu despite the fact that R has
singularities and that GR is not even a function in the usual sense. Moreover,
noting that R satisfies the linear homogeneous equation C* R = 0 in 1: < x < X,
with R = dR/dx = 0 at x = X, we see that R = 0 for x > . Thus we simply have

u(1;) = R(x, ) f (x) dx.
fo

t

As a matter of jargon, operators G such that C = G' are called self-adjoint,
and problems for which C = G' and additionally R satisfies the same boundary
conditions as those for u are called self-adjoint problems. Cauchy problems for
hyperbolic equations do not fall into this category, even though C may equal G',
but certain problems for elliptic equations do, as we shall see in Chapter 5. In the
same way that self-adjoint real matrices, i.e. symmetric ones, have real eigenvalues
and orthonormal eigenvectors, so do self-adjoint real differential operators have
real eigenvalues and orthonormal eigenfunctions.

The procedure (4.5)-(4.8) now becomes an obvious generalisation. We simply
define

G'R(x, y; t, n) = 5(x - t)5(y - n)

The nice thing about the layout on p.97 is that, if we now take the boundary
conditions on R as Cauchy data

on any curve outside D (such as I' in Fig. 4.1), we immediately retrieve (4.8)
formally with v = R, G' as in (4.5) and the inner product

uv dx dy.(u(x, y), v(x, y)) = lID

We also note that R =- 0 in the unshaded region between f and D in Fig. 4.1,
because R satisfies homogeneous Cauchy data on I'.

However, the argument above raises a much more subtle question about the
nature of the Riemann function. Since R describes the response of a hyperbolic
equation to an `impulse' at x = t, y = 77, our general arguments about charac-
teristics lead us to expect that R vanishes except in x < t, y < rl, and suffers
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discontinuities of some sort on x = , y < 71, and on y = q, x < (i.e. BP and
AP, respectively, in Fig. 4.1). But what can we say about these discontinuities?
This is a difficult question whose answer demands that we first look at R in the
vicinity of x = , y = 97. Here, we expect the largest term in V R to be the highest
derivative 82R/8x Oy and, by direct integration and the use of (4.13),

82R
= b(x - C)8(y - rl) implies R = H(C - x)H(n - y);

that is, locally near x = £, y = q, R is unity in the quadrant x < £, y < q, and
zero outside. Note that this confirms that, as we approach P from inside D, R
tends to unity in accordance with the statement after (4.8).

Now, since R suffers jumps across x = C and y = n locally near P, we expect
from arguments such as those in §1.6 that these jumps persist although they may
change in strength, depending on the form of C. To find these changes, say across
x = {, we note that when we formally integrate C'R = 0 with respect to x across
BP we find

8R -{+0l
J

- ==f+o -
0.[pR}==C-o -

x={-0
But R_0onx= + 0 so, as we approach x = from D,

OR

8y
- pR _ 0,

in accordance with (4.7). The same kind of argument applies on AP.
We thus have achieved a complete agreement between our constructive ap.

proach to the Riemann function and the ad hoc approach of §4.2.1. While §4.2.1
may seem the easier, we will find that the hard work of this section will pay hand-
some dividends in the remaining chapters and especially at the end of Chapter 9.

4.2.3 Implications of the Riemann function representation
From now on we will reserve the notation R for the Riemann function so that (4.8)
becomes

rl (R+ \ \
u(P) - u(B) = J J Rf dx dy j RJ dy + - quR I dx.

JJ A / 6iT /
(4.14)

We remember that we could have written down a similar formula for u(P) - u(A)
and used it with (4.14) to derive the d'Alembert formula (3.31). We cannot write
down an explicit expression for R for the general hyperbolic equation (4.4), al-
though some examples where this is possible are given below. Nevertheless, the
existence of this function R, which is defined independently of the boundary data
and only depends on the differential operator, gives valuable qualitative informa-
tion about the solution of (4.4) which we summarise below.
1. The solution only depends on the Cauchy data between A and B, where the

characteristics through P meet the boundary curve, and the values of f in D,
the region between the two characteristics through P and the boundary curve.
This region is called the domain of dependence of P, as shaded in Fig. 4.1.
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Fig. 4.2 Region of influence of C.

2. The Cauchy data at a point C on the boundary curve only influences the
solution in the shaded quadrant in Fig. 4.2. This is called the region of influence
of C.
Both properties 1 and 2 are obvious from (4.14), and are special cases of the
corresponding definitions in Chapter 2 for a hyperbolic system.

3. The Cauchy data on AB defines a unique solution in the triangle APB in
Fig. 4.1, and corresponds to the domain of definition discussed in §2.4 for the
first-order system. This is also easily obtained from (4.14), given that the Rie-
mann function exists, by considering the difference of two possible solutions
satisfying the same equation and boundary conditions.

4. The solution u at P depends continuously on f, p, q, r and on the boundary
data, in the sense that a small change in the values of 8u/8x or 8u/8y on the
boundary curve r, or in the shape of r, results in a small change in the value
of u at P. This property, already anticipated in Chapter 2, may be obtained
from (4.14) by use of suitable inequalities, given that f, p, q and r are smooth
functions, and it confirms that the Cauchy problem is well posed.

5. Discontinuities in the form of jumps in the second derivatives of u in the bound-
ary data propagate along the characteristics through the point of discontinuity.
It is not, however, obvious how jump discontinuities in the boundary values
of the first derivatives of u or in u itself propagate along the characteristics
through the point of discontinuity and this cannot be discussed without the
introduction of a weak formulation. This will be done for the wave equation in
the next section.

Almost the only useful explicit forms for Riemann functions are for the wave
equation and the telegraph equation.

Example 4.1 (The wave equation) The canonical form for the wave equation
(4.1) is

02U
Gu = 8x8y = f
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Then the adjoint equation is

G R = ex-y = 0,

and C is self-adjoint. Also R = 1 on y = t and x = £, so that R = 1 (meaning, of
course, that R = H (C - z)H(r) - y) in the whole plane, where H(-) is the Heaviside
function); this was clearly going to happen the moment we compared (4.14) with
the d'Alembert representation (3.31).

Example 4.2 (The telegraph equation) In canonical form the telegraph equation
is

'Cu = 8x8
+ u = f.

y
As suggested in §4.1, the first-order derivatives in (4.2) can be eliminated by
simply multiplying u by an exponential function of x and t. The operator is again
self-adjoint and 82R/8x8y + R = 0 with

R=1 onx=., y,<q,andony=rl, x<,l;.

We can change the origin to (e, r1) and note the 'symmetry' that, if R = F(x -
{, y - rl) is a Riemann function, then so is F (A(x - l;), A-' (y - 9)), where A is any
constant. Thus R is only a function of the similarity variable40 (x - f)(y - 11) = s,
say, and the manipulation is easier if we write this as F(21/). Then F satisfies

d2F 1 dF
ds2

+ s ds + F = 0 for s > 0,

and F(0) = 1. Hence F(s) = J0(s), the Bessel function of the first kind and zero
order, and the Riemann function is

R=Jo(2 (C-x)(q-y)); (4.15)

again, this needs to be multiplied by H(l; - x)H(r) - y) to make it valid in the
whole plane. A more direct, but more tedious, derivation of (4.15) is given in §4.5.

4.3 Non-Cauchy data for the wave equation
In practice, the data that we wish to impose on scalar hyperbolic equations may be
different from Cauchy data prescribed, say, at an initial instant of time. In particu-
lar, there may be boundary conditions to be imposed as well as initial conditions,
and there may be singularities in the data that would invalidate the derivation
of the Riemann function representation (4.14). We have already encountered one
non-Cauchy problem, namely the Goursat problem, in §3.5. Another frequently oc-
curring case is that of the 'initial-boundary' value problem for the wave equation
(4.1) when, say, we are modelling waves on a string of finite length.

40We will say more about this kind of situation in Chapter 6.
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We begin by recalling our demonstration in the previous section that, given
the function u and its normal derivative on an initial curve r which is nowhere
tangent to either characteristic, then there is a unique solution for the linear hy-
perbolic problem. Moreover, in the first-order scalar case, any tangency between
the boundary curve r and a characteristic meant that the problem could easily
be ill-posed. Hence, an obvious question to ask is what kinds of data are possi-
ble for a second-order hyperbolic equation on a boundary curve r which touches
a characteristic at a point. The initial-boundary value problem for (4.1), in the
form

02u 202u
8t2 = %8x2,

with Cauchy data given on t = 0, x > 0 and further boundary data given on
x = 0, t > 0 (Fig. 4.3), is an extreme case; if the corner in this boundary curve
was smoothed, there would be one point of tangency with a characteristic x+aot =
constant.

This example is particularly convenient because the wave equation has the
useful property that the Riemann invariants Ou/8t±aoOu/8x are constant on the
characteristics x tact = constant, respectively. Thus the data at t = 0 immediately
allows us to find the solution at points P = (t;, r) such that t > aor (see Fig. 4.3).
Moreover, if the solution u is required to be continuous, together with its first
derivatives, across the characteristic x = aot, then, on each `negative' characteristic
(on which dx/dt = -ao) entering 0 < x < aot, the Riemann invariant aoOu/8x +
8u/8t is given by the values of u in x > aot. Since each of these characteristics
meets the boundary x = 0, t > 0, it is not in general possible to specify both 8u/8x
and &u/8t there. In fact, only one relation between them can be given, and the
general allowable linear boundary condition has the form of a scalar specification

asx+Q +ryu=6, (4.16)

where the coefficients must be functions of t such that a - ao,5 and ry do not
simultaneously vanish for any t. If, and only if, this last condition is satisfied, we

e

Fig. 4.3 Initial-boundary value problem for the wave equation.



104 HYPERBOLIC EQUATIONS

(a)

x

t

x

(b)

Fig. 4.4 Space- and time-like boundaries.

can determine Ou/8x and Ou/8t on x = 0, t > 0, and hence obtain the solution at
the point Q in Fig. 4.3, from the R.iemann invariants along QA' and QB'. Of course,
the solution thus constructed usually has discontinuous second derivatives across
the characteristic x = aot. One way by which we could avoid such discontinuities
would be to `relax' the Cauchy data on x = 0. Indeed, if only u or Ou/8n was
prescribed on x = 0 for all t and on t = 0 for all x, we could find a solution as
smooth as the data, the Goursat problem of §3.5 being an example of this.

The discussion above illustrates the fact that if a boundary curve touches a
characteristic then Cauchy data can only be given on one side of the point of
tangency. The problem is, however, more or less symmetric in x and t so that it
is apparently immaterial on which side the Cauchy data is posed; in our example
this data could have been given on x = 0, t > 0 with only one condition on t = 0,
x > 0. However, in this case the characteristics of slope -ao would be propagating
the information Ou/Ot +aoOu/Ox = constant backwards in time, and such a model
may be said to violate causality. Thus, if we associate with the characteristics
a direction corresponding to time increasing, we are led to a characterisation of
well-posed initial-boundary value problems. For such problems Cauchy data is
prescribed on a curve whose slope dx/dt is always greater than ao in modulus,
and a single condition such as (4.16) is prescribed on a curve or curves whose
slope is always less than ao in modulus.

Although with just one space variable there is no mathematical reason for intro-
ducing causality, the concept of a time-like direction can sometimes be introduced
on physical grounds for other second-order hyperbolic equations. The discussion
above shows that we need a time-like variable t and a space-like variable x, and
two families of characteristics along each member of which a direction of increasing
time can be determined."' Then, causality allows us to define a space-like boundary
to be such that at all points both characteristics C, in the positive time direction
point toward the same side, as in Fig. 4.4(a), or, for example, on t = 0, x > 0 in

41 Strictly speaking we should say that directions within a certain cone of directions defined
by the eigenvalues of the relevant matrix are 'time-like' and that surfaces lying outside this cone
are 'space-like' (see §2.6).
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Fig. 4.3. Likewise, a time-like boundary separates the characteristics in the positive
time direction, as in Fig. 4.4(b), or, for example, on z = 0, t > 0 in Fig. 4.3. We
need Cauchy data, involving two boundary conditions, on a space-like boundary
but only one condition is permissible on a time-like boundary, and, as in (4.16),
this condition must not contradict the information propagating along one of the
families of characteristics emanating from the Cauchy data.

*4.3.1 Strongly discontinuous boundary data
When the boundary data for a hyperbolic equation is not smooth, we may need
to generalise our idea of what constitutes a solution. In §2.5, we introduced weak
solutions for a first-order quasilinear hyperbolic system, and we now work through
these ideas for the simpler case of the wave equation

02u _ 202u
ate ' °`° e.r2

If the first derivatives of u are discontinuous at just one point of t = 0, say x = 0,
then the R.iemann function representation defines a solution which has continuous
derivatives except on x = fast. Following the ideas of weak solutions discussed
in §1.7 for scalar first-order equations, we say that a weak solution is a function u
which satisfies the identity

a `
r- aoa

1
dxdt = (0u -u4) dx, (4.17)L0(J 8t 8t f=0

where (i is a twice-differentiable test function which vanishes suitably rapidly as
z -+ ±oo and t -+ oo. If u is twice differentiable, integration of (4.17) by parts
easily shows that it satisfies the wave equation everywhere in t > 0. However, we
emphasise that (4.17) is a mathematical statement that has no physical foundation
in any conservation law such as (1.24).

If, on the other hand, u is continuous but Vu is discontinuous across a `shock'
curve C, we know that [Ou/8x] dx + [Ou/8t] dt = 0 across C and,42 using an
argument similar to that used in obtaining the Rankine-Hugoniot condition (1.27),
we find

0 [fix ] dt + ['u] dz = 0,
IC

(a2

for any test function t', so that l

[]dt+[8t]dx =0. (4.18)

Thus, as expected, C is a characteristic through x = t = 0 with slope dx/dt = fao;
across C, ao[Ou/Ox] ± [Ou/8t] = 0 and we obtain the jump conditions necessary
to define the solution uniquely in -aot < x < aot. For the wave equation, these

42 We use the notation [ ] in the same sense as in Chapter 1, to denote the jump from one side
of the shock to the other.
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jump conditions say that the Riemann invariants are continuous on the family
of characteristics intersecting the line of discontinuity C, which is exactly what
happened in the situation in Fig. 4.3. Because the appropriate Riemann invariants
are continuous, the d'Alembert solution still provides us with the weak solutions
of (4.1).

If u itself is discontinuous on the boundary, we may still use (4.18) to define a
weak solution but it is easier, and far less dangerous, to return to the system of
first-order conservation equations from which (4.1) was derived and use the ideas
of Chapter 2. This eventually shows that jumps in the dependent variables of any
two-by-two linear hyperbolic system can only propagate along the characteristics.

4.4 Transforms and eigenfunction expansions
Anyone confronted with an unfamiliar partial differential equation should always
be on the lookout for any symmetry properties that may enable special methods
to be used to generate explicit solutions. Indeed, we have already seen that the
wave equation (4.1) is simple enough that its general solution can be written down
in terms of two arbitrary functions. However, choosing these functions to satisfy
required initial and/or boundary conditions may be difficult.

Fortunately, there is a powerful method for circumventing this difficulty, and it
relies on the superposition principle for linear equations. The basic idea of synthe-
sising solutions with the desired properties from elementary solutions often goes
under the heading of 'Fourier representation', or `separation of the variables', or
'transform methods', and the idea is very simple. If any linear partial differential
equation, not necessarily a hyperbolic one, has a 'spectrum' of solutions ua whose
dependence on z and y can be separated so that

ua = X (x, A)Y(y, \) (4.19)

for some discrete or continuous parameter \, then a summation or integral over A
may allow arbitrary initial and/or boundary conditions to be satisfied. For exam-
ple, if the equation has constant coefficients, this is always a possibility because
X and Y can then be exponential functions of x and y, respectively.

The tools for carrying out the summation can be quite intricate, but they
are exemplified by the following two archetypal results. These both relate to the
commonly occurring situation in which X (x) satisfies

d2

LX = dxa = \X, (4.20)

so that A is an eigenvalue of L. Essentially, there are two basic possibilities.

Discrete spectrum

When we solve (4.20) on the interval (-L, L) with periodic boundary data, the
eigenvalues are A = -n2ir2/L2. Then, summation of multiples of eigenfunctions X
leads to the fundamental result of Fourier series, applied to suitable real functions
defined on (-L, L) and extended periodically. Any such function can be written
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as the sum of eigenfunctions of (4.20) with periodic boundary conditions in the
form

00 1 L

f (x) _ where Cn =
2L

f (x)cin,rz/L dx. (4.21)
Ln=_oo

Continuous spectrum
When we require (4.20) to hold for all x, with X bounded as lxi -4 oo, the
eigenvalues of (4.20) are A = -k2 for all real k, so that the spectrum is continuous,
and we are led to the fundamental result of Fourier transforms. This result is
derived formally from (4.21) by taking the limit L -+ oo after writing nn/L = k
and interpreting the sum as a Riemann integral; in the limit, 2Lcn is replaced by

j (k) = I f (x)eikz dx
l 00

(called the Fourier transform of f), and the inverse

becomes

f (x) = 2j I f (k)e-ikx dk, (4.23)
00

which is called the Fourier inversion formula. Thesef results, summarised as
1 00

J f (k)e-!kx dk, (4.24)j (k) = J f (x)eikz dx, f (x) = 2-
oo

_00

only apply to functions that behave well enough for the integrals to converge.

In more general cases, bewildering combinations of discrete and continuous
spectra can occur; all the fascinating and delicate theory behind these bald state-
ments can be found in [44].

Prompted by these results, we can summarise the key ingredients of the trans-
form/eigenfunction expansion philosophy as follows; the next six pages contain, in
condensed form, everything we will need to know about Fourier transforms and
distributions, although we will have more to say about eigenfunction expansions
in Chapter 5.

More general operators. For general self-adjoint ordinary differential operators
C with a discrete spectrum An and real eigenfunctions qn(x), we expect that
any real function f (x) has the expansion

ff(x)4(x)dx,f (x) = C(x) with Cn = (4.25)

as long as On form a complete orthonormal set; the integral, in common with
the other integrals with respect to x in this section, is over the region in which

(4.22)

f(x) 1 f L f(s)einne/L d8) C_inaz/Ln-j I\2L J_L
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the equation is to be solved. This can be proved when the eigenvalue problem
is set on a finite interval and there are no singularities in the coefficients in
,C; this is Sturm-Liouville theory. Moreover, when the interval is infinite or
semi-infinite, or when C has singular coefficients and has eigenvalues Ak labelled
by the continuous parameter k and corresponding orthonormal eigenfunctions
O(x, k), we need to consider the continuous transform

j (k) = / f (x)b(x, k) dx, f (x) = f f (k)c(x, k) dk, (4.26)

in which the range of the k integration is not always obvious. (Note that, when
we normalise the exponential in (4.22) by multiplying by 1/ 27r, and corre-
spondingly replace the factor 1/27r in the inversion in (4.24) by 1/ 27r, (4.21)
and (4.24) are almost special cases of (4.25) and (4.26), the only discrepancy
being in the sign of the arguments of the exponentials. We will resolve this
shortly.) When we come to use (4.25) and (4.26) to describe the solution of any
particular partial differential equation, we cannot overemphasise how important
it is that the x derivatives form a self-adjoint operator G. It is only when this
is the case that multiplying the equation L f = Akf by O(x, k) and integrating
over x gives the inner product relation

(O,Cf) = (Cm,f) = ak(0,f), (4.27)

so that the transform of C f can be written in terms of the transform of f . In
the Fourier transform example above, Ak = -k2, each eigenvalue being double,
and the orthogonal eigenfunctions are a z.

Complex eigenfunctions. The operator C = d2/dx2 is the simplest example of
a self-adjoint operator, and this is reflected in the fact that its eigenvalues,
-072 /L2 in the discrete case and -k2 in the continuous case, are real. Also,
with our periodic boundary conditions, its eigenfunctions are orthogonal sine
and cosine functions and the Fourier series (4.21) is often written in terms of
these real functions; however, combining them into complex exponentials not
only saves space but also helps conceptually. We can now see why the normalised
versions of (4.21) and (4.24) referred to above do not quite agree with (4.25)
and (4.26). The difference results from the fact that (4.25) and (4.26) only apply
when ¢ (x) and O (x, k) are real; when they are complex, the inner products
need to be generalised to (f, g) = f f§ dx, where g is the complex conjugate of
g. Also, we need to normalise so that f dx or f O(x, k) dx is

replaced byunity, and (4.25) and (4.26) are then correspondinglyJf(x)(x)dx,

f (x) = cn.O.(x) with c =

f (z) = f f (k)0(x, k) dk with 1(k) = J f k) dx.

The Laplace transform. Bearing in mind our encounter with causality in §4.3,
it is useful to be able to represent functions that are zero for negative time
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(here represented by x < 0). In that case it is convenient to write k = ip and
j (k) = j (p) to obtain, formally, the Laplace transform and its inverse,

1(p) = f ,* f (x)e-v= dx, f (x) = tai f f (p)egs dp. (4.28)
0

We have deliberately left the range of integration in p undefined for reasons
which result from the serious convergence questions associated with the Fourier
transform and its inverse. Indeed, the former does not even work for f (x) = 1.
This is the most difficult and confusing aspect of Fourier analysis and it can be
approached in the following two ways.

The complex Fourier transform. The first procedure applies to the Fourier trans-
form in its standard form (4.22) and is expounded in [8]. As in (4.28), we begin
by considering functions that vanish in x < 0, and then we assume that they
grow like a°s, a > 0, as x -4 +oo (but not like

e0z'+` fore > 0). Instead of try-
ing to find f (k), the basic idea is to consider the Fourier transform of f (x)e-`3s,
Q > a. The effect of introducing ,6 is exactly the same as that of complexifying
k in (4.22) and working on a contour !3 k > a, and this involves careful contour
integration (see Exercise 4.9). The principal result is that the inversion needs
to be taken along a contour which lies above all the singularities of j (k) in the
complex k plane. When the consequences are incorporated into the Laplace in-
version formula, the integral needs to be taken from y - ioo to y + ioo, where
the real number y is large enough for all the singularities of j (p) to lie to its left
in the complex p plane.
This procedure can equally be applied to functions that grow exponentially as
x -4 -oo and vanish in x > 0, allowing more general functions to be considered
by extending the argument of Exercise 4.9. However, functions that grow faster
than eos as (xj -+ oo can only be treated by more radical changes in the contour
integrals in (4.22). When faced with, say, f (x) = es', we define its transform as

F(C) = f e4ses3 dx,
r

where r is any contour starting at infinity in 5a/4 < argx < 7a/4 and ending
at infinity in a/4 < argx < 3a/4. We soon find that F(C) = i fe-('/°, and the
inversion formula is

1 f ive-('/°e-CZ d(,
TV-71 r

where f is again chosen so that the integral exists. Indeed, the representation

Ax) = tai , I a-1Z F(C) dCr

is a useful general technique for solving certain ordinary differential equations
(see Exercise 4.10).
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Fourier transforms and distributions. The second procedure is simply to permit
series such as (4.21) and integrals such as (4.22) to diverge in the usual sense
but to interpret them as generalised functions or distributions, as discussed on
p. 98. For example, the periodically extended function

f(x) _ 1, -L < x < 0,

j1, O<x<L,

has the Fourier series

f (x) =
00

-
4 sin

(2n + 1)7rx

n=O
(2n 11), L

Assuming that f'(x) = 25(x) in -L < x < L (the delta function comes from
the derivative of the jump at x = 0), it is tempting to write

00 4 (2n + 1)irx _ 00

fl(X) _ L cos L = 2 (-1)nb(x - n4
n- n=-00

Fortunately, this outrageous-looking statement is easy to justify. A series E Dn
of distributions is said to converge if the series of numbers E(Dn, 0) converges
in the usual sense whenever 0 is a test function. Term-by-term differentiation
is justified because E(D;,, ') = - E,(Dn,1("), and if 1' is a test function then
so is ii', so the right-hand side converges. All the difficulties associated with
the 'usual' convergence of series disappear here, because the test functions are
assumed to be so smooth.
This idea of defining properties of generalised functions by transferring them to
the test functions can be carried further to define the Fourier transform of a
distribution. The key here is the formal observation that, for functions f(z) and
9(x),

(f, 9) = foo V'0*0 f
(x)e'k: dx) 9(k) dk

J

I dx
CIO

= 1100 f (x) (f 9(k)edk\

V.
= (f,9),

as long as the orders of integration can be changed (this is called Parseval's
formula).-This suggests that we define the Fourier transform of a distribution
D to be D(k), where

(b,,O) = (D, ),

with the corresponding formula

(D, 0) = (D, )
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for the inverse D(x), where j is the inverse Fourier transform of 0 as given
by (4.24). When this is done, a beautiful theory emerges in which most use-
ful distributions have suitably defined Fourier transforms that are themselves
distributions. This theory enables us easily to confirm results such as

b(k) = j00e'ozdx = 1, 1 = e'dx = 2rb(k),
00

and hence that the inversion formula for j(k)§(k) is

1

00

f (k)9(k)e ik: dk
27r
f

oo

1

1-00 Yoo
f (y)eikv dy) (L.

00
9(z)edzl e= dk

J
00

00

f (y)9(z)6(x - y - z) dy dz
J

=
J

f(y)9(x - y) dy, (4.29)

00

the so-called convolution formula; the last integral is often written as f * 9.
Multidimensional Fourier transforms. We can formally generalise (4.22) to func-
tions f(x,y) by defining

0o ao

= f 1 f (x, y)e'(k,:+k,v) dx dy, (4.30)f (ki, k2)
ac a0

so that (4.23) suggests that

1

1-00

00 00

=
1 f (ki, dkl dk2, (4.31)

00

and the extension to more variables is obvious. Cases where the inversion can be
done explicitly are even rarer than for functions of one variable, and the question
of convergence becomes even more complicated. Nevertheless, we will see that
quite simple changes of variable in the integrals in (4.30) or (4.31) can sometimes
give us valuable insights. A spectacular example occurs when we consider f as
a function of k and 0, where kl = k cos 9 and k2 = k sin 0, so that f is equal to

f00
f (z, y)e'k(: cos a+v sin e) dx dy.

When we rotate the axes by writing

x = r cos 9 - t sin 9, y = r sin 9 + t cos 9,

this becomes



112 HYPERBOLIC EQUATIONS

00 /00

e"k''f(rcos8-tsin9,rsin0+tcos8)drdt.
a

Hence, as a function of k and 0, f is equal to

J_0eikrfR(*, 0) dr,
00

where

f R (r, 0) = f f (r cos 0 - t sin 0, r sin 0 + t cos 0) dt. (4.32)
00

This is called the Radon transform of f (x, y) and it is fundamental to the anal-
ysis of CAT scanning tomography. Suppose we shine a thin beam of X-rays
through a two-dimensional body at an angle 0; the transmitted intensity is then
determined by the integral of the absorption coefficient f (x, y) along the beam,
that is by the Radon transform of f in this direction. Repeating the scan at
the same angle 0 along parallel beams for each value of the lateral coordinate
r, and then scanning again for all 0 < 0 < rr, we find fR(r, 8). Then, in order
to retrieve f (x, y), all we need to do is to take the Fourier transform in r of
fR(r,0), transform into Cartesian coordinates, and invert f.
We must emphasise one severe limitation on the use of distributions in multiple
Fourier transforms. This is that, while we can perfectly easily define the Fourier
transform of 6(x)6(y) as a product of two one-dimensional transforms (which
is hence equal to unity), there is no satisfactory definition of, say, a(x)a(x).
This remark applies to any product of distributions with the same `independent
variable' unless, of course, they are functions in the usual sense.
The transform integral regarded as an integral equation. We might consider an-
other approach to the problem of recovering a function from its transform: in-
stead of using the inversion formula, we might try to find f (x), given its trans-
form j (k), by solving

f f(x)cb(x,k)dz = 1(k)

as an integral equation for f (x). Now readers familiar with the theory of integral
equations will be aware that Fredholm equations of the first kind, in which a
function f(x) has to be determined such that

b

K(f](t) = f K(z, t)f (z) dx = 9(t), (4.33)
a

for given K(z, t) and g(t), are usually ill-posed. One simple-minded reason for
this is that, if K is separable, so that K(x, t) = EN

i a.(x)fl (t), where N < oo,
then (4.33) can never have a solution unless g(t) is a linear combination of 8, (t);
moreover, if any functions fe (x) exist such that fa K(z, t) f, (x) dx = 0, then,
even if f (z) exists, it is indeterminate to within a linear combination of these
functions. More generally, if K is not separable and fQ f6 IK(x,t)1adxdt < oo,
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it is a standard result that, as long as a and b are finite, there exists an infinite
sequence of eigenvalues A. and a complete sequence of eigenfunctions f (x) such
that

6

An f K(x, t)ff(x) dx = fn(t),
a

and, moreover, A,, -p oo as n -+ oc. Because these eigenfunctions are complete,
every well-behaved function can be expanded as a generalised Fourier series in
terms of f,,. Now suppose that f (x) = F, a f,, (x); then the operator K is such
that

K[f](t) = E ! fn(t),

which is a series whose coefficients are ultimately smaller in modulus than the
original ones and thus represents a `smaller' function than the input f (x) (for
this reason such operators are called compact). Hence, if we try to solve (4.33) for
a compact operator IC by expanding g(t) = E b f (t) and equating coefficients,
we find a,, = A b,,. That is, f is less smooth than g, and so we can only hope
to find a solution if we restrict the class of possible right-hand sides g(t); this is
another indication of ill-posedness.
These observations might cause us to doubt the value of (4.24); the last thing we
want is for Fourier inversion to be ill-posed! However, we are reassured by the
facts that the kernel O(x, k) = e'lcx is not separable, the corresponding operator
IC has no null space and, most importantly, IC is not compact (to see this,
consider the `small' function f (x) = ee_E!=l, which converges uniformly to zero
as e --- 0; its Fourier transform is j (k) = 2e2/(e2 + k2) which, however, does not
tend uniformly to zero).

4.5 Applications to wave equations
From the practical point of view, the message that emerges from the discussion
of the previous section is that linear partial differential equations (hyperbolic or
otherwise) that are `symmetric' enough to have a spectrum of solutions (4.19)
can be solved by generalised Fourier methods, that the particular method will
depend on the problem in hand, and that technical pitfalls may well be encountered
concerning questions of convergence. With this in mind let us now consider some
simple hyperbolic problems.

4.5.1 The wave equation in one space dimension
Let us consider

02u
= 2 "2u fort > 0.

8t2 8x2
(4.34)

We have already given the d'Alembert solution to the Cauchy problem with
data at t = 0 in (3.31) and Exercise 3.8, but the constancy of the coefficients in
(4.34) also makes it suitable for Fourier analysis. If, for example,

u=0, 8t =vo(x) att=0,-oo<x<oo,
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the range of the respective independent variables indicates that the problem is
amenable to a Fourier transform in x or a Laplace transform in t (or both). The
result of the former is

and so

d2 + aok2u = 0,

u(k,t) = f(k)e'kaot + &)e-ikaot (4.35)

for some f and y; incorporating the initial data we find

u(k, t) _ fo(k)
sin aokt, (4.36)

from which

u(x, t)
= 1 0o vo(k) (e1k(aot-=) _ e-ik(aot+s)) dk,

2aao o0 2ik ` f (4.37)

with suitable assumptions about the behaviour of vo and vo. We can write this as

1
r00 0o (aot-z) ik(aot)

u(x't)
v°() (1100

e - e dk db
2ik 1

and use the result from contour integration that, when v is real,

f00 eivk

k
dk = fir

00

for v > 0 and v < 0, respectively (no matter which way we indent the contour at
k = 0), to show that the integral with respect to k vanishes, unless x - aot < a <
x + aot when it is ar. Hence (4.37) is in accordance with the d'Alembert solution

stool
u(x,t) = 12(uo(x - aot) + uo(x + aot)) +

-f vo(a)da, (4.38)
Tao -aot

which applies to this problem when u(x, 0) = no as well as Ou/Ot(x, 0) = vo. Thus,
we have effectively retrieved (3.31), albeit by a more long-winded but more pow-
erful method. However, (4.37) illustrates how concepts such as regions of influence
and domains of dependence can emerge naturally from Fourier representations;
outside a region of influence the solution is represented by an integral round a
contour containing no interior singularities, and is thus zero.

We also remark that (4.37) is a very typical result in the application of Fourier
transforms. In the case of this Cauchy problem, the method effectively retrieves
the general solution of the wave equation in terms of the arbitrary functions uo
and vo Of course, Fourier representations such as (4.37) satisfy the wave equa-
tion for arbitrary initial and boundary conditions, but often it is not so easy to
relate the arbitrary functions of k that enter into the Fourier representation to the
initial/boundary data for any particular problem.
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The alternative Laplace transform approach is even more messy: we obtain

2d2u 2-
ao dx2 -

p u = -vo(x),

for which the appropriate solution is

uo(x,p) = 2. (foo q + f e-W-=)/aovo(t) di;) , 2p > 0.

A formal reverse of the order of integration in the Laplace inversion gives the
d'Alembert solution (4.38) with u0 = 0 when we remember that

1 en(E-:)/aoe dp = J0, x - e; > apt,
27ri 7-ioo p 1, x -' < aot,

when Ry>0.
The initial/boundary value problem in which

u = 0, & = vo(x), for 0 < x < 1, (4.39)

with, say, it = 0 at x = 0 and x = 1, which is the two-boundary version of the
problem we presented in Fig. 4.3, can be attempted by either a Fourier series
in x (because X(x,.1) = sin (V1rx)) or a Laplace transform in t. Using the
specialisation of (4.21) to odd functions, so as to satisfy the boundary conditions,43
we find

00

u = E b sin n7rx sin niraot, (4.40)
n=1

where
2

bn = vo (x) sin nzrz dx,
n rao fo

which is sometimes a more convenient description of the solution than would be
the equivalent of (4.38), encompassing as it does all the possible discontinuities
running along the `zig-zag' characteristics in Fig. 4.5. The bottom left-hand corner
of Fig. 4.5 is Fig. 4.3.

We also remark that we can find the general solution of (4.34) by superposing
elementary solutions of the form 6(x - aot) and 6(x + aot). Instead of (4.35), we
obtain

00u(x,t) =
foo

(6(x - x' - aot)f(x') + 6(x - x' + aot)g(x')) dx'

= f(x - aot) + g(x + aot), (4.41)

where f and g are arbitrary; another route to this formula is given in Exercise 4.8,
and we will return to this observation below.

43This can be systematised by saying that we seek f. and X as in (4.20), with X(0) = X(1) = 0.



116 HYPERBOLIC EQUATIONS

t

F-1,

0 1
s

Fig. 4.5 Two-point boundary value problem for the wave equation.

4.5.2 Circular and spherical symmetry
We will deal with multidimensional wave propagation more seriously in the next
section, but when we have circular symmetry in two space dimensions the wave
equation is

02u _ ao (82u 18u
8t2 8r2 + 8r

(4.42)

If we generalise the shallow water model of §2.1 and linearise about a state of
rest as in §4.1, we can show that this models the waves that are generated on the
surface of a shallow pond when, for example, a stone is thrown in. For the Cauchy
problem

u = uo(r), at = vo(r)

we can still use a Laplace transform in t.
lem in spatial variables when u is time
'lt (R(r)e-'"i), is

at t = 0, 0 < r < oo, (4.43)

However, the relevant eigenvalue prob-
harmonic with frequency w, i.e. u =

d2R 1 dR _
CR = dr2 + r dr AR, (4.44)

in which A = -w2/ao and R is finite at r = 0 and as r -+ oc, and it is not self-
adjoint. In the light of the argument given after (4.25) we must first arrange that
the spatial eigenvalue problem is self-adjoint by rewriting (4.42) as

02

et ) = a0 (r 8r2 + 8r) = ao
8r

f r 8r (4.45)

Then, (4.44) becomes
d
dr

(r
aR )

= ArR,

which has well-behaved solutions at r = 0 when A is real and negative. We write
A = -k, so that R is proportional to Jo(kr), the Bessel function of first kind and2
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zeroth order. From (4.26) the appropriate spatial transformation is the so-called
Hankel transform

u(k, t) = frti(rt)Jo(kr)dr.

The inversion formula for this transform is found most easily by taking the double
Fourier transform of a function U(x, y, t) with respect to x and y, namely

"oU(kl, k2i t) (_
oc .l

f c eu(k,r+k2V)U(x, y, t) dx dy, (4.46)
l oc

for which (4.31) gives

1 fr00 00

U(x, y, t) r e-i(k,=+k2V)U(ki, k2, t) dki dk2.
47r 00J

When U(x, y, t) = u(r, t), (4.46) becomes
00 2x

U(kl,k2it) =
fo

ru(r,t) f e'kr`os0dOdr, where k2 = ki +l4,
Jo

= 27ru(k,t),

since, as can be verified by direct differentiation,

(4.47)

Similarly,

and so44

u(r, t) =
f00

ku(k, t)Jo(kr) dk.

If, for simplicity, we take uo = 0, we find that
roo

u(r, t) = 1 J vo(k)Jo(kr) sin aokt dk; (4.48)
ao o

this formula has important repercussions to which we will return later.
In three space dimensions, (4.42) is replaced by

82u _ 2 (02u 2 8u1 (4.49)
8t2 - a0 8r2 + r 8r J'

and now a surprising 'symmetry' occurs. By writing u = rv we find

82v_ 282v
8t2 =

an

,2'
and we are back in one space dimension. Thus, for hyperbolic problems, it is
sometimes easier to proceed when there are more independent variables than when
there are fewer, as we shall also discuss further in the next section.

44We will derive this 'transform pair' by another method in Chapter 5.

ku(k, t) (J a-ikr cos 0 do) dk2ru(r, t) =
2a fo"o 0
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*4.5.3 The telegraph equation
By the use of the exponential transformation mentioned at the end of §4.2.3, the
telegraph equation can always be considered in the form

202u 82u
8x2 8t2 -

_ 0, (4.50)

where c > 0 in practical problems, and the Cauchy problem with u and 8u/8t
prescribed for all x at t = 0 is suitable for a Fourier transform. When u is zero
initially, the analogue of (4.36) is

u = v0(k) sin ( aok2 + c) t, (4.51)
aok2 + c \\\\

the apparent branch points at k = ±if /ao being illusory (removable). The details
of the identification of the Fourier inversion of (4.51) with the Riemann function
representation of the solution derived in §4.2.3 are given in Exercise 4.12, but we
can give a quicker way of removing the guesswork used in deriving (4.15). Taking

= q = 0, we seek a Riemann function directly, satisfying

82

y + R = a(x)b(y)

with R non-zero only in x 5 0, y < 0. Then the Fourier transform of R with
respect to x satisfies

and so

O +
k

= ka(y)

iv/k

where H is the Heaviside function. Hence

R(x, y)
iH(-y) e-ikx-iv/k dk

27r a k=constant<0 k

the inversion contour being chosen as described in §4.4. This integral clearly van-
ishes when x > 0, by closing the contour in !a k < 0, but if x < 0 we can write it
as

iH(-y) f -; =vik'+l/k'l We
21r k'=constant<O

e
k

Now we deform the contour into the unit circle around the origin so that, when x
and y are both negative,

x, y) =
f2r

-Zi d6 Ja (2vR(

R(x ) --

It is interesting at this stage to recall our discussion at the end of §4.2.2 about
the propagation of discontinuities in the Riemann function. For the wave equation,
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R = 1 in x <, 0, y < 0 which, by differentiation, means that solutions are possible
in which u is precisely a sum of delta functions on x = 0 and y = 0. For the
telegraph equation, however, such delta functions can only propagate if there is a
non-zero wave field between the characteristics x = 0 and y = 0. We will discuss
this point further in the next section and in Exercise 4.12.

*4.5.4 Waves in periodic media
The study of the solutions of

02U ,
8t2 =

ao(x)(92U

1' (4.52)

where as is periodic in x, is important for many practical problems, for example
electromagnetic wave propagation in crystalline solids such as semiconductors. The
relevant spatial eigenvalue problem, when u is harmonic in time with frequency w,
is 2X 2dx2d+ awo(x) k=0,

(4.53)

with w real, so there are few explicit solutions for such problems. Nonetheless,
(4.53) is susceptible to Floquet theory (2], which roughly speaking says that as w
increases the qualitative behaviour of X alternates; when w lies in some intervals,
called stop bands, the two independent solutions of (4.53) either grow or decay
as jxI -+ oo, but when w lies in the complementary `pass band' intervals these
eigensolutions are all quasiperiodic in x, and are hence physically acceptable for
problems in which (4.52) holds in -oo < x < oo. It is only at the boundaries
between the pass and stop bands that X can be periodic. Hence, even without
an explicit solution in front of us, we can see a new phenomenon that can occur
for hyperbolic equations: waves may be able to propagate along characteristics
but their spatial penetration may be much greater when frequencies lie in certain
bands than in others. In fact, such dispersive behaviour is quite general, because,
even for the telegraph equation (4.50), which has constant coefficients, waves with
frequency w are such that the wavenumber

w2
k = 2 -c,Vao

*4.5.5 General remarks
Continuing to catalogue examples like this would entrain us ever deeper into
problem-specific technicalities. However, all the examples we could have displayed
would reveal conformity with the predictions of the Riemann function represen-
tation (4.14). They all have domains of dependence and regions of influence, the
only example that might have given us pause for thought in this respect being the
telegraph equation (4.50). This equation does admit solutions of the form

u = Rek(z-v:),



120 HYPERBOLIC EQUATIONS

where

(4.54)

and, in the physically realisable case c > 0, this appears to predict the propagation
of waves travelling faster than the characteristic speed ao. However, what happens
in any practical initial value problem where, say, Cauchy data at t = 0 has compact
support (i.e. vanishes outside a finite range of x) is that the Fourier components
with wavenumber k can disperse, i.e. rearrange themselves within the region of
influence of the Cauchy data at a speed greater than ao; the representation (4.14)
shows that none of this rearrangement is felt outside this region of influence.
Another way of looking at this is to say that the discontinuities that inevitably
occur on the boundary of the region of influence are described by very large values
of k and, from (4.54), this boundary has speed ao.

This raises the general question of the way in which the solution sorts itself
out within the region of influence of the Cauchy data. We can see from Exer-
cise 4.22 that, for the one-dimensional wave equation (4.1) (and hence the three-
dimensional radially-symmetric equation (4.49)), any initially localised data for u
with 8u/8t (x, 0) = 0 gives a response that varies just in the vicinity of the char-
acteristics x = tact emanating from the source. Our region of influence argument
led us to anticipate that there is no disturbance in x > aot or x < -aot, but it
did not reveal that in between these characteristics there is a `zone of silence' in
which u is zero (in three dimensions, u vanishes in 0 < r < aot). However, when
we consider the circularly-symmetric wave equation (4.42) or the telegraph equa-
tion (4.50) with localised Cauchy data, we can show that the solution is non-zero
(almost) everywhere in the region 0 < r < aot (and this is borne out by the mo-
tion of a leaf floating on a pond when a stone is thrown nearby). We have already
hinted at this at the end of §4.5.3, and we will have more to say about it in the
next section.

4.6 Wave equations with more than two independent variables
Turning to wave equations with three or more independent variables, there are two
related ideas that we have already touched upon but wish to discuss in greater
detail in this section before we frame our notion of hyperbolicity in this more
general case.

4.6.1 The method of descent and Huygens' principle
The ideas of this section are best illustrated by the now-familiar acoustic model

s
8ta = a0Vzu (4.55)

in three space dimensions, for which we have shown via (4.49) that the general
radially-symmetric incoming and outgoing solutions are

u = I F(r ± aot), (4.56)
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respectively, when r is a spherical polar coordinate. These solutions all decrease as
r increases with r ± aot fixed, which reflects the merciful spreading out of sound
waves in three-dimensional space; they are all also singular at r = 0, representing
the possibility of focusing, which is absent in one-dimensional problems. Alas, no
representation as simple as (4.56) exists in two space dimensions, for reasons which
will soon become apparent. However, we can use (4.56) to generate the explicit
solution of the general Cauchy problem45 in which

u = uo(x), at = vo(x) at t = 0, (4.57)

where x = (x, y, z). As in (4.41), we proceed by superimposing weighted solutions
of the form (4.56) in the case where F is localised and, by causality, we only take
outgoing waves; in other words we write

u(x) y, z, t) =
r f r b(r r aot) f(x

, y , z') dx' dy' dz', (4.58)

where r2 = (x-x')2+(y-y')2 J+J(z-z')2, which clearly satisfies (4.55) for arbitrary
weight functions f. The presence of the delta function in the integral ensures that
we need only account for values of f on the surface of a sphere with the centre
(x, y, z) and radius aot. Hence, changing to spherical polar coordinates (r, 0, 0)
and integrating with respect to r, we obtain a surface integral over the sphere of
radius aot. Remembering that the surface element is aot2 sin 9 dO d¢, we obtain

u = 4rraot Cf,

where

f A

Cf= 1 f(x+aotsin0cosO,y+aotsin0sinO,z+aotcos0)sin9d9do.
0

(4.59)

For this retarded potential solution, it is clear that

u=0 att=0 and
8uI

= 47raoG f Jt_o = 4aaof(x,y,z),
at t=o

by direct integration. Hence, setting f = vo/(47rao) gives us the solution to (4.57)
when uo = 0. However, we can solve the complete Cauchy problem by making the
crafty observation that if u satisfies (4.55) then so does Ou/8t. Thus, 818t (tC f )
is a solution of (4.55) for all t > 0 and, by the argument above, its value at
t = 0 is 4aaof; simply taking f = (1/41rao)uo enables the first part of (4.57) to
be satisfied. Finally, we note that 02/&2 (t C f) = as t V 2 C f , since t C f satisfies
(4.55), and hence vanishes at t = 0. Thus, we have solved the Cauchy problem in
the form

u=tCvo+&(tCuo).

45This problem can be shown to have a unique solution by an energy argument similar to that
in Exercise 4.13.
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Fig. 4.6 Huygens' principle.

In interpreting this expression for the solution, we note that, in the integral
(4.59), the only values of vo that appear are on the surface of a sphere Sp(t) of
radius aot and centre (x, y, z) (denoted by P in Fig. 4.6). Hence, if both uo and
vo are only non-zero in a finite domain Do and P is not in Do, then the solution
obtained is zero until t is large enough, say t > t,, ,,, for Sp(t) to intersect Do.
Also, the solution is again zero for values of t large enough, say t > t,", that
Sp(t) no longer intersects Do, so that Do is totally inside Sp(t). The solution is
therefore non-zero in Do only for tmin < t < tmax; the disturbance prescribed in
Do at t = 0 propagates with a distinct leading and trailing wave-front. This is a
manifestation of what is called Huygens' principle.

As in §4.5.1, it is interesting to compare this procedure with that of taking a
Fourier transform, again for the special case in which

u(X,0) = 0, 8t(X,0) = vo(X)

We can see at once that the Fourier transform of u(x, y, z, t) is

u(ki, k2, k3, t) = vo(ki, k2, ka)
sin aokt

aok

where k2 = kl + k2 + k3. Hence, whereas (4.58) is the three-dimensional generali-
sation of (4.41), the corresponding analogue of (4.37) is

u(x,y,z,t) =
1

I I. f
-,(k,.+k2y+k,z) sin akkt (4.60)

e vo(kl, k2, k3) dkl dk2 dks.
00

Moreover, we can retrieve (4.58) by substituting for vo in terms of v and writing
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u(x,y,z,t) _

8x3ao N vo(x',y',z') (JJfsinaokta-'k''COseksin6d9dOdk) dx'dy'dz',

where r2 = (x-x')2+(y-y')2+(z-z')2 and (k, 0, 0) are spherical polar coordinates
centred at k1 = k2 = k3 = 0. Hence, integrating with respect to 9 and 0,

in ao Tt sin kr 1 , , ,s4x1

ao

/ / / , , ,

(f-,
u(x, y, z, t) =

1
J f f vo(x , y , z) dk) dx dy dz

00

1

4- JJJ
v0

(x',y',z')6(r rant)dx'dy'dz'.

To obtain the solution for a two-dimensional initial value problem we may
use the method of descent on the result (4.59). If we assume that uo and vo are
independent of z and Do is an infinite cylinder with generators in the z direction,
then

102x

a

Gvo =
1 J vo(x+aotsin0cos¢, y+aotsin9sin0)sin9d0dO.

4x 0

With the substitution p = aotsin0, so that IpI < a0t,
1 /2a aot

pdpdO
Gvo =

Zxaot
J

fo
vo(x + p o, y + pain 0) (a8t2 -e)112'

and p and 0 are two-dimensional polar coordinates. Hence, in Cartesian coordi-
nates = p cos t¢ + x and , = p sin 0 + y, this reduces to

,CVO _ 1 f r r!) dk dri
(4.61)21raotJJ (a02t2-(x-f)2-(y-q)2)'/2,

where the integration is now over IpI < aot. If the initial data is defined and non-
zero on a region A0 (the two-dimensional cross-section of Do) then, for all t > train,
the interior of the circle of radius aot intersects A0, and the integral (4.61) is non-
zero. This ties in with our remark at the end of §4.5.5 about leaves floating on
the surface of a shallow pond, and it is consistent with the prolonged rumbling
heard after the initial clap of thunder caused by lightning strikes which, although
jagged, are sufficiently elongated to generate an approximately two-dimensional
sound field.

A further application of the method of descent reduces (4.61) to the d'Alembert
formula and both leading and trailing wave-fronts occur In one space dimension
for initial data with compact support, i.e. vanishing outside a finite interval.

We remark that the ideas above can also be used on inhomogeneous wave
equations of the form

8t2 - aoV2u = f (X, t). (4.62)

As observed by Duhamel, if we let v(x, t, r) be the solution of the homogeneous
equation (f =- 0) with v = 0 and Ov/8t = f (x, r) at t = r, solve for v using (4.59),
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and set u = fo v(x, t, z) dr, we satisfy (4.62) with zero Cauchy data. This simply
reflects the fact that the source term f is equivalent to a superposition of `pulsed'
initial value problems.

It is interesting to compare the ease with which (4.61) can be obtained by the
method of descent with the difficulty that confronts a Fourier analysis. Suppose,
for example, that we consider the problem in two space dimensions with u = 0
and 8u/8t = vo at t = 0, and use the two-dimensional Fourier transform

u(x, y, t)ei(k1:+k2y) dx dy.u(ki , k2, t) =
J
. F (4.63)

0000

As in the three-dimensional case, we find that

u(k,t) = vo(k,t)smkkt, (4.64)

where k2 = kl +k2. Following (4.36) and Exercise 4.8, and (4.60), we can write u in
the form of a convolution integral if we can invert the function
sin(aokt)/aok. This immediately forces us into delicate convergence questions of
the type mentioned in §4.4. One hair-raising possibility is to use the imaginary
part of the following blind assertion: with p2 = x2 + y2,

froo foo eiaokte i(k,s+kZy) 2w foo

J dkt dk2 = - J eik(aot-pcog0) dk d9
00 00 aok ao 0

i c2w d9
- ao Jo aot - pcos9

= f2,ri(aov1at2_p2)', p < aot,
0, p > aot.

(4.65)

Squeamish readers may prefer to work backwards from the answer and check that
the double Fourier transform of (4.65) is

21ri 2wfaot peikpcoa9
dpdB, (4.66)

oao fo aot2 - p2

which is an integral that can, with the use of tables [19], be reduced to eiaokt/aok
The discussion above, like that at the end of the preceding section, raises the

general question of identifying how much of the region of influence of any com-
pactly supported Cauchy data is actually excited when we are simply considering
the wave equation (4.55). It is tempting to conjecture that in one and three dimen-
sions the solution always has a sharp `beginning' on the outgoing characteristic
surfaces through the boundary of the support, and a sharp `conclusion' according
to Fig. 4.6; we get no such sharp conclusions in two dimensions. While, strictly
speaking, this statement is true, it is important to remember that it only applies
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to the constant-coefficient wave equation (4.55). Any inhomogeneity such as a
spatial variation in ao probably destroys the property that the conclusion of the
disturbance is sharp.

We conclude this section by mentioning how Fourier transforms lead to yet
another interesting representation of solutions of the wave equation. In all the
cases we have considered with Cauchy data u = 0 and Ou/8t = vo at t = 0,46 we
have found that the Fourier transform of u is a = vo(sin aokt)/(aok). As described
after (4.36) and in Exercise 4.8, this gives the explicit one-dimensional solution as

ae
iks - sin a0kt

u(x,t) e- vo(k) dk
! oo a0k

= 2ao (Vo(x + aot) - 4o(x - aot)), (4.67)

where Vo(x) = vo(x).

However, in two dimensions, instead of (4.65), we can write

2a

u(x, y, t) = f foo
(e-"'(' coa O+Vsin ¢)-iaokt

-e-ik(scosm+Vsin43)+iaokt) F(k,0)dkdo,

where kl = k cos ¢, k2 = k sin O and F = vo/(47r2aok). Thus, when we integrate
with respect to k, we have a Fourier inversion with arguments z cos '+y sin 0f aot.
Hence,

2w

u(x,y,t) = f (F(xcos0+ysin0+aot,¢) -F(xcos0+ysin¢-aot,O))do.
0

(4.68)
While this 'plane-wave' superposition is less useful than (4.61) for solving initial
value problems, it is interesting that it involves just one integral of an arbitrary
function of two variables.

Finally, in three dimensions, the obvious generalisation of (4.68) is the plane-
wave superposition

w fo2w r2w

u(x,y,z,t)= J (F(xsinocos9+ysin¢sin9+zcos0+aot,0,
0

- F(x sin 0 cos 0 + y sin 0 sin 0 + z cos 0 - aot, 0)) do d9.
(4.69)

4.6.2 Hyperbolicity and time-likeness
In §4.3 we have already made some remarks about the way in which the idea
of time-like directions can be introduced mathematically into the theory of ini-
tial/boundary value problems in one space dimension in order to suggest well-
posed data. In more space dimensions, such considerations have greater physical

46Remember we can consider more general initial value problems using the ideas of p. 121.
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(a)

Vy2 ++ z2

(b)

Fig. 4.7 Response to a localised source for (4.70) when (a) U = 0, (b) 0 < U < ao and
(c) ao < U.

significance, as can be seen by considering acoustics in a medium moving with
speed U. When we linearise the equations of gas dynamics (generalised to three
space dimensions) about the state u = Ui, p = po and p = po, as we did in §2.6,
we find that the disturbance pressure, density and velocity potential all satisfy

)2U
8t + Uax = aov2u. (4.70)

Clearly, this equation can be reduced to (4.55) by the coordinate transformation
x - Ut = X, but we propose to study it in a fixed frame of reference, with Cauchy
data (4.57) prescribed at t = 0, with vo = 0 and uo localised near the origin.
In three space dimensions when U = 0, this means that the sequence of spheres
representing the evolution of the support of the response u is as given by

u = 1 F(r - aot),r

with F a delta function of argument r - aot (see Fig. 4.7(a)). However, these
spheres have their centres shifted in the x direction, as in Figs 4.7(b) and (c) for
0 < U < ao and U > ao, respectively. These pictures correspond to the effect of
a `burst' of sound from the origin, which we know is localised on the surface of
successive spheres

(x - Ut)2 + y2 + z2 = aot2, (4.71)

at successive intervals of time.47
There is clearly an important distinction between Figs 4.7(b) and (c), and it

is one that we have anticipated in §4.3. In the first case, the time axis lies in the
interior of (4.71), thought of as a manifold in four-dimensional space, which is
what we called the ray cone in Chapter 2. Moreover, in this case, all points in

47If, instead of postulating an initial point source in Fig. 4.7(a), we were to postulate an initial
'wave' which was non-spherical, the subsequent evolution of that wave, which, as we will see in
Chapter 8, can be traced by moving along the normal at each point with speed ao, could easily
lead to the front developing singularities.



MORE THAN TWO INDEPENDENT VARIABLES 127

r r

(a) (b)

Fig. 4.8 Time-like and space-like ray cones for (4.70).

space eventually receive the acoustic signal. However, if U > ao, the time axis lies
outside the cone (4.71), as shown schematically in Fig. 4.8, and time (with (x, y, z)
fixed) is no longer 'time-like'. In this latter case only those directions (x, y, z) inside
the so-called Mach cone, namely

2x2

y
2 + z 2 < (p

so
forx>0,

receive the signal.
This example illustrates the idea that the definition of hyperbolicity needs to

say more than simply that `the characteristics are real' if it is to have a good phys-
ical interpretation. There must also be some distinction made between different
directions in the space of the independent variables, and in particular time-like
directions need to be identified as those interior to the inner sheet of the ray
cone. Hence we now formally define a linear scalar second-order partial differential
equation with m independent variables as hyperbolic at a point if there is a real
characteristic (ray) cone of dimension m - 1 through that point. This definition
clearly accords with the ideas of §2.6.

We note that the example (4.70) can be used to illustrate Huygens' principle
in a time-independent situation. Suppose we consider steady flow so that (4.70)
becomes

U2 02" = a4V2u, (4.72)

which is hyperbolic if U > ao. From the representation (4.62) with an appropriate
change of notation, we see that a point disturbance at x = y = z = 0 in a three-
dimensional flow (say, for example, the flow past a small bullet in a wind tunnel)
produces a disturbance both on and inside the Mach cone y2 + z2 = aox2/(U2 -
ao). The bullet leaves a broad wake, but this would not be the case for a two-
dimensional flow (say, past a straight wire placed perpendicular to the stream along
the z axis), whose presence would only be felt on the cone y2 = aox2/(U2 - ao).
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Incidentally, the model (4.72) also enables us to give a physical interpretation
of the bicharacteristics that were introduced in §2.6. The Mach cone is simply the
characteristic surface across which any of the flow variables can have a jump in its
second derivatives. Now suppose the bullet is replaced by the slender pointed nose
of an aircraft model and that a thin aerial protrudes from the nose through the
Mach cone. Since the aerial only intersects the cone at one point, it propagates a
discontinuity just along the bicharacteristic through that point which, in this case,
is just the generator of the Mach cone. Any `fatter' object that protrudes through
the Mach cone would generate a new component of the characteristic surface.

As a final remark to lead into the next section, we note that, had we considered
an equation more complicated than 8zu/8tz = 4V2u, such as one with variable
coefficients, then diagrams such as Fig. 4.7 would for small time become more
complicated. In particular, the spherical `waves' in Fig. 4.7 would locally become
ellipsoids whose shape depended on the coefficients in the equation, and the ray
cones would correspondingly have elliptical cross-sections. The geometric complex-
ity would become much worse if the cones were to lose their local convexity; this
cannot happen for scalar second-order equations, but it may for vector equations,
as we shall soon see.

*4.7 Higher-order systems
One of the basic motivations for studying partial differential equations is that so
many everyday phenomena are modelled by systems of such equations. Indeed, in
the preceding sections we have explained how even a scalar hyperbolic equation
can not only underpin much of the science of acoustics but also describe various
other kinds of small-amplitude wave motion. We now consider two other areas of
applied science which lead to vector second-order hyperbolic equations.

4.7.1 Linear elasticity

The first concerns the propagation of acoustic waves in solids, whose modelling
involves some elementary elasticity theory. As is the case for all continuum mechan-
ics, we introduce a vector field u(x, t) to describe the configuration of the medium.
In this case it represents the displacement of a particle from an unstressed reference
configuration, i.e. the particle which is at x in the reference configuration moves
by u(x, t). We also need to model the forces in the medium, and this should be
done by introducing a stress tensor (as, for example, in (40]). Here we side-step this
process by merely noting that elastic solids resist both shear forces (Fig. 4.9(a))
and tensile/compressive forces (Fig. 4.9(b)).

An example of the former would be the shearing of a sheet of rubber with a
displacement u in the x direction that is only a function of y and t. In the simplest
model, we could propose that the shear force per unit area in the sheet is p Ou/Oy,
where µ is the constant `shear modulus', and hence an argument like that used in
§2.1 gives that the equation of motion is
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Fig. 4.9 (a) Shear stresses and (b) tensile stresses in an elastic medium.

where p is the density of the sheet. Equally, if we were to stretch a rubber band
along its length so that its displacement is u(x, t) in the x direction, the tensile
force would be A' au/8x and the equation of motion would be

82u _ a r a1L

8t2 8x 8x

where A' is another positive constant. The effect of combining these two mecha-
nisms in order to synthesise the displacement u(x, t) of a general isotropic linearly
elastic solid is not quite a simple summation, because of the coupling between
compression/tension and shear. Hence we simply quote the end result,

8z
p -t?. = (A + 2p)VV u - iV A (V A u), (4.73)

where p, the shear modulus of the material, is as above and A is related to Young's
modulus A' by A' = µ(3A + 2p)/(A + p).

We are thus confronted with a system of three linear second-order equations,
but there is no reason why we cannot combine the approach used in §2.6 with that
used earlier in this chapter: we simply define m(x, y, z, t) = 0 to be a characteristic
surface if it is one on which the prescription of Cauchy data u and 8u/8n does
not yield a unique local solution. Writing

0 0 e¢
ax, ay, 8z ) =

as in §2.6, we find, after some manipulation, that

(µ(fi +{z +fs) -pa)((A+2ll)(fi +{2 +ts) =0. (4.74)

Hence, in the language of §2.6, the normal cone comprises two components rather
than the single `sheet' of fluid acoustics in §4.6.2 above. The corresponding ray
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cone also comprises two sheets. This is geometrically obvious from the fact that
the normal cone has concentric circles as cross-sections to = constant, but we can
also compute the ray cone analytically; from the prescription in (2.54)-(2.56), it
is given parametrically by

z At,= AC2=z-A£3 +Ado=0,
p p A p

and
x -Alt. = y -A= z -AA3 = t +Ai; =0o ,A+2p A+2p A+2p p

(x2 + y2 + z2 - c8t2)(x2 + y2 + z2 - yt2) = 0, (4.75)

where c; = p/p and y = (A+2p)/p are the so-called `S' and `P' wave speeds. The
physical interpretation is that acoustic waves in an elastic solid can propagate at
two distinct velocities, as is apparent from seismograph traces.48

This example shows us that, if we wish to generalise the arguments about
hyperbolicity given at the end of §4.6 to higher-order systems, we must be prepared
to consider 'multi-sheeted' normal and ray cones rather than the single-sheeted
cones of Fig. 4.8. Fortunately, both the cones (4.74) and (4.75) consist of two
`nested' convex cones, and energy estimates like those mentioned in Exercise 4.13
can be used to prove well-posedness of the solution whenever Cauchy data is
prescribed on a space-like surface, i.e. on one that lies `outside' the outer sheet of
the ray cone; this implies that the normal to a conical space-like surface always
lies in a time-like direction inside the outer sheet of the ray cone. As in §4.6, this
geometry provides a strong motivation for the definition of hyperbolicity for higher-
order systems to be associated not only with the system of partial differential
equations but also with the relevant time- and space-like directions in the space of
the independent variables. However, the fact that (4.74) has two components now
opens up the possibility that their union might not be convex, and we will return
to this situation at the end of this section.

Finding solutions of (4.73) in practical situations entails many serious technical
details, especially when it comes to applying boundary conditions. One common
approach is to consider solutions in the form

u = t (u'(x)e i"t) for w E U,

where u' satisfies an equation in the so-called frequency domain with only three
independent variables. However, this latter equation is no longer hyperbolic and
will be dealt with in the next chapter. Whether we deal with systems in the
real time domain or the frequency domain by transform methods, we inevitably
encounter difficulties caused by having to consider the Fourier inversion of rational
functions involving high-degree polynomials (sextic in this case). Hence we will not
consider any explicit solutions in this chapter.

4aln fact, earthquake recording is complicated by the presence of the stress-free boundary of
the earth, which is responsible for generating a third wave speed, as shown in Exercise 4.16.
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4.7.2 Maxwell's equations of electromagnetism
We conclude by mentioning perhaps the most famous of all higher-order systems
of linear partial differential equations, Maxwell's equations of electromagnetism.
Despite their importance, these equations are far more difficult to explain than
any we have yet encountered. Hence, we will only give a brief account of their
derivation. The starting point is Faraday's law of induction, which concerns the
basic mechanism for dynamos and aerials. It says that any time-varying magnetic
flux through a closed loop L produces an electric field E around L, and is easy to
verify in a laboratory where, if L is a conductor, the electric field drives a current
round it. Denoting the magnetic field by H, the rate of change of magnetic flux
through L, i.e.

011ffH.dS=JJ.dSwhere

D spans L. If L happens to be a conductor, the electric field generated
drives a current round L which, by Ohm's law, is itself proportional to

fE.dx=JJVAE.dS.

Thus, since D is arbitrary, 8H/Ot oc V A E. The constant of proportionality turns
out to be negative and the equation is usually written as

VAE= -p . (4.76)

However, the electric field is generated whether or not L is conducting and Maxwell
proposed that this, the first of his equations, should hold everywhere and not just
for conductors in which E is associated with a current.

The second, and even more intuitive, of Maxwell's equations comes from an-
other experimental observation. This is the Biot-Savart law, which asserts that
a current j flowing steadily along a straight wire creates a magnetic field H az-
imuthally around the wire and that its strength decays inversely with the square of
the distance from the wire. Hence the magnetic field H(x) caused by any current
loop L is proportional to

- /' (x-x')Adx'
L Ix - x113

' (4.77)

in the usual units the constant of proportionality is 1/41r. It is then plausible to
propose that, for an arbitrary steady spatially-distributed current j,

VAH=j, (4.78)

but we will have to wait until Chapter 5 before we can see why (4.77) can be
viewed as the 'solution' of (4.78).

The Biot-Savart law does not allow for the effects of time-varying currents or
charge distributions but, if we assume conservation of charge, we must ensure that
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j is related to the charge density p by an equation analogous to the conservation
laws mentioned in §2.1. Thus,

+ V j = 0. (4.79)

However, in the same way that the divergence of a gravitational force field is
proportional to the local mass density, we can propose that

(4.80)

where e is a constant called the permittivity. Maxwell's great contribution was to
assert that the effect of time dependence is to change (4.78) to

VAH=j+fO, (4.81)

thereby ensuring consistency with (4.79).49
We are not quite finished, as it can be seen from the partial differential equation

point of view that an additional scalar equation for H is necessary for us to have
any hope of uniqueness. To see this, let us restrict ourselves to free space where
there is no charge and no current, so that

VAH=e OE
and VAE=-µ8t. (4.82)

Although these are six equations for six unknowns, the degeneracy of the curl
operator means that, using these equations alone, E and H can each only be
determined to within the gradient of a scalar, time-independent function. However,
(4.80) gives50

(4.83)

which removes the non-uniqueness in E, and a similar scalar equation is also
necessary for H. Fortunately, the consequence of the commonly-held belief that
there are no magnetic monopoles is that

V H = 0, (4.84)

which, unlike (4.83), holds even in the presence of charges or currents.

49We must warn the reader that (4.76) and (4.81) are usually derived much more fundamentally
in physics texts in terms of the so-called magnetic induction B and displacement current D rather
than H and E, respectively. In many practical situations the distinction Is fortunately irrelevant
from the mathematical standpoint.

50We remark that V E = 0 is also true to a good approximation in many cases of steady
current flow, for example in metals. In such situations we can often use the bulk version of Ohm's
law, j = oE, where or is a material property called the electrical conductivity, to show from (4.79)
and (4.80) that

5i +E(op+Ve-E)=0;
when o is constant, we must have p = 0 (indeed, any initial charge density decays on the time-
scale c/o). It is only when u has large spatial variations that charge can accumulate; an example
of this is the surface charge layer that can occur when or jumps between a conductor and an
insulator.
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Combining these equations and using the identity V A VA = V2 gives
that, in a vacuum,

(L2t2 - CV) H = (8t2 - C2V2) E = 0,

where c2 and hence the magnetic and electric fields both satisfy vector
wave equations with speed of propagation c, the velocity of light. From previous
arguments, both equations are hyperbolic with time-like directions in x2+y2+z2 <
c2 t2 (the normal cone is c2 ({1 + t2 + t3) - &o = 0) but, combined as a sixth-order
system for H and E, we find a mathematical degeneracy because the normal cone
does not have distinct components.

The examples above from acoustics and electromagnetism give us an excellent
physical framework in which to interpret characteristic surfaces in multi-variable
partial differential equations. These `manifolds' O(x, y, z, t) = 0 are, as we know,
surfaces across which discontinuities in the second derivatives of the dependent
variable can propagate. Hence, it is natural to think of them as 'wave-fronts', as
we did in Fig. 4.8. Many people also have a good physical intuition about light
rays and sound rays but it can sometimes be quite difficult to identify such rays
with the generators of the ray cone in any time-dependent propagation problem.
One difficulty, at which we have already hinted, is that the normal cone may not
be nested or convex, as it was for linear elastic waves or electromagnetic waves in
a vacuum. A commonly occurring configuration is that of two cones of elliptical
cross-section, as in Fig. 4.10, and, indeed, this geometry can be shown to arise
when a sufficiently anisotropic electromagnetic medium is modelled by replacing
E in (4.82) by a suitable constant matrix multiplied by E. Now suppose we try
to calculate the ray cones in such a situation. The ray cones corresponding to the

t
Fig. 4.10 Normal cones for an anisotropic medium; Co = t, 41 = x and (2 = y.
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All Pi
6, Bl B

(c)

Fig. 4.11 (a) Cross-section to = constant of normal cone; (b) formal t = constant
cross-section of ray cone; (c) convex hull of t = constant cross-section of ray cone.

two elliptical components of the normal cones also have elliptical cross-sections,
as shown in Fig. 4.11, where the normal OA, in Fig. 4.11(a) gives rise to the
tangent at Ai in Fig. 4.11(b), etc. However, a difficulty arises when we carry out
the calculation in the direction np, because this gives rise to two tangents, at Pi
and Pa; indeed, the normals belonging to the normal cone at P comprise the fan
of vectors shown in Fig. 4.11(a). The details of the calculation are tiresome (see
Exercise 4.19), but they eventually reveal that each vector in this fan gives rise to
the double tangent P1P2' in Fig. 4.11(c). Hence the non-convexity of the normal
cone has created a new component of the ray cone and this construction of the
`convex hull' of the ray cone can be shown to be valid quite generally. Its physical
interpretation is that no plane light wave could be propagated with a normal np
to its wave-fronts; instead the light would spread out in all the directions between
PP and Pz.

This concludes our discussion of linear hyperbolic equations for the moment.
There is a great deal more that can be said about such equations, even at quite
a general level, and, in particular, we would cite the important practical issue of
what constitute well-posed boundary conditions at interfaces between two adjacent
regions in each of which a hyperbolic equation is to be satisfied. For example, it is
vital that the correct components of the relevant solution vectors are continuous
at an interface between two different elastic solids or two different electromagnetic
media. A good rule of thumb is to ensure that when the hyperbolic equation is
written just in terms of the first derivatives of physically relevant quantities, the
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`integration by parts' or `weak solution' identities such as (2.43) are satisfied. An
illustration of this can be found in Exercise 4.17.

4.8 Nonlinearity
We have already seen in Chapter 1 that the presence of nonlinearity usually results
in fundamental changes in the properties of solutions of previously linear partial
differential equations. While, as a general rule, every nonlinear equation needs to
be treated on its own merits, there are just a few general statements that can be
made and general techniques that can be tried. Of course, when these techniques
apply, they are worth their weight in gold.

There is one approach that is peculiar to hyperbolic equations, where we have
seen that a common effect of nonlinearity is that of shock formation as a result of
characteristics intersecting. But, before such catastrophes occur, there may be the
following possibilities.

4.8.1 Simple waves
We remarked in Chapter 2 that characteristics are usually of little value in ob-
taining explicit solutions of hyperbolic systems. Even for a scalar second-order
quasilinear equation with two independent variables, it is very unlikely that we
can find Riemann invariants, i.e. functions of x, y, u, flu/8x and flu/fly that are
constant on a family of characteristics. Moreover, when such a happy circumstance
does occur, the initial and boundary conditions almost certainly do not prescribe
the values of these invariants. However, one situation exists where we can always
make progress, and it occurs surprisingly often in practice: it is when we consider
the effect of a sudden change in the boundary data on a solution that is trivial
before the change occurs. A prototypical example is that of two-dimensional gas
flow with speed U. and Mach number M,o > 1 past an initially straight wall
(Figs 4.12 and 4.13). The relevant nonlinear hyperbolic equation is

(a)

(b)

Fig. 4.12 (a) Smooth and (b) abrupt expansion of a gas flow.
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(a)

(b)

Fig. 4.13 (a) Smooth and (b) abrupt compression of a gas flow.

2

"
82U

Fu
Ox2

+ G
8xOy

+ H
ay2

= 0, (4.85)

where F, G and H depend on Ou/8x and Ou/8y only, but their precise form
does not concern us here. All that matters is that there should exist Riemann
invariants, i.e. functions of Bu/8x and Ou/8y that are constant on each family of
characteristics C*. The undisturbed unidirectional flow in x < 0 gives known, and
in fact constant, values for On/8x and &u/8y there, so that the characteristics are
straight. Additionally, these values of 8u/8x and Ou/Oy give Cauchy data on the
non-characteristic x = 0 and this Cauchy problem must be solved in conjunction
with the change of boundary conditions that occurs at x = 0, y = 0. To ensure
uniqueness of the solution, we must also insist that there is no `upstream influence',
so that the region of influence of the origin is to the right of the characteristics
OA in Figs 4.12 and 4.13.

Now the key observation is that, since the Riemann invariants are explicitly
known as functions of 8u/8x and Ou/Oy, and since they are constant everywhere
in the undisturbed flow, then, assuming no jumps occur in these variables, one
Riemann invariant is constant in the disturbed flow, at least until any character-
istics of the same family start to intersect. Let us look first at the configuration
of Fig. 4.12, where the Riemann invariant on the characteristics C- is constant.
Hence, at least to begin with, the disturbed solution is simply given by solving
a first-order scalar equation; we have already seen an example of this in Exer-
cise 2.13. Moreover, the constancy of the Riemann invariant on C- means that
the characteristics C+, on which a second function of On/8x and 8u/8y is con-
stant, are straight, and in this case they can be determined explicitly in terms of
the boundary conditions.

This is the typical situation in simple wave flow. The adjacency of the region
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of interest to a region in which the solution has known constant values for its
Riemann invariants means that the order of the problem can be reduced, which
often means that it can be solved explicitly.

In either the smooth or sharp geometries in Fig. 4.12, the C+ characteristics
form what is called an expansion fan. However, when the geometry is as in Fig. 4.13,
these C+ characteristics converge and eventually a shock forms; in the extreme
case of an abrupt comer, as in Fig. 2.14, this shock is initiated at the corner.

The configuration of Fig. 4.12(b) is interesting because the characteristics in
the fan are y/x = constant and we find that Vu only depends on y/x, not on x or
y independently. Following the derivation of (4.15), this is our second encounter
with what we will call a similarity solution in Chapter 6, because the solution at
(x, y) is effectively the same as that at (Ax, Ay) for any constant A. We will see later
that, if such an invariance exists, it can always be used to find certain solutions of
a partial differential equation in m independent variables as solutions of a related
equation with m - 1 independent variables.

Finally, it is interesting to note that combinations of straight shocks and expan-
sion fans of the type described above, so-called N-waves, are sometimes found to
describe the asymptotic behaviour of the solution of Cauchy problems for general
hyperbolic equations. For example, it can be shown that as t -- oo the solution of

8u 8

8t
+ ex f(u)=O for -oo < x < oo, t > 0,

with u(x, 0) = uo(x) and f convex (i.e. d2 f /dxa > 0), tends to an N-wave as
t -+ oo, with the number of shocks being related to the number of maxima of uo.

Unfortunately, gasdynamic flows involving interacting simple waves, or more
general partial differential equations with three or more independent variables,
rarely admit such simple solutions. However, gas dynamics suggests one other
powerful technique which applies to some more general problems, hyperbolic or
otherwise.

4.8.2 Hodograph methods
Suppose we have a second-order scalar hyperbolic equation in two variables (such
as the transonic flow model (3.12)) whose coefficients depend only on the first
derivatives of u. It is natural to consider a change of independent variables to
(8u/8x, 8u/8y), but what would be the best choice of a dependent variable in
such a case?

We can answer this question geometrically. If we think of the solution u(x, y)
as a surface S in (u, x, y) space and ask how to define w so that the surface
w = w(Ou/Ox, 8u/8y) in (w, $u/8x, 8u/8y) space is as closely related to S as
possible, we recall `geometric duality'. In this concept, instead of only regarding a
surface as a collection of points satisfying u = u(x, y), we equally regard it as the
envelope of its tangent planes

(x - xo)(xo,yo) + (y - yo)y(xo,yo) = u - uo,
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as (xo, yo) vary with uo = u(xo, yo). Hence, writing p = 8u/8x and q = au/8y in
order to save ink, if we think of x and y as functions of p and q and define

w(p,q) = px(p,q) + qy(p,q) - u(x(p,q),y(p,q)), (4.86)

then this tangent plane is

w = wo = p(xo, yo)xo + q(xo, yo)yo - uo.

Thus, with w defined by (4.86), the surface w = w(p,q) defined pointwise in
(w, p, q) space is the same surface as u = u(x, y) in (u, x, y) space, and w is the
variable that we should work with.

Equation (4.86) is called the Legendre transform of u and it means that the
formula for the tangent planes to u = u(x, y) in (x, y, u) space involves no differ-
entiations in w space, and vice versa. Partial differential equations whose solution
surfaces possess this property are clearly promising candidates for explicit solutions
if we formulate them correctly. To do this we need the identity

a Spa aq e
Y X_ 8xOp+exOq'

so that
aw ax 8y 8u 8w
8p

= x + p 8p
+ q

8p
-

8p = x, aq = y

Now let us carry this further. Since

_ 8p 82w Oq 02w _ Sp 02w 8q 82w
1 _ 8x 8p2 + 8x Op 8q' 8x 8p 8q + 8x 8q2 '

we have the easy relationships

02u 1 02w 02u _ 1 02w 82u 1 02w

8x2

_
O 8q2 ' 8x 8y 0 8p 8q' 82y 0 8p2 '

where the discriminant

_ 82w 82w 82w 2 _ 82u 82u 82u
8p2 8q2 8pOq) - (8x2 8y2 - (8x

8y)2)-l

(4.87)

Equations such as (4.85) are eminently suitable for this kind of change of vari-
ables. Indeed, this is the reason that the method is so-called because in mechanics
the hodograph is the plane of velocities. The ensuing linear equation is

2

F(p, q) aqs - G(p, q) 8p 8q + H (p, q) Spa = 0,

and various further simplifications are sometimes possible.
The most important realisation provoked by this gasdynamic example is that

A, as defined by (4.87), is infinite in the following cases.
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1. In a uniform stream, the whole of the regions above and to the left of OA in
Figs 4.12 and 4.13 map into a single point (U,,,, 0) in the hodograph plane.

2. In a simple wave, such a region maps into the curve in the hodograph plane
corresponding to the constancy of the relevant Riemann invariant.

These observations prompt us to ask the question `when can the hodograph trans-
formation go wrong?' Trouble will only come if A is zero or infinite, preventing
the map from (x, y) to (p, q) from being one-to-one, and we can make two remarks
about this. First, the equation A = oo has the geometric interpretation that the
surface u = u(x, y) (w = w(p, q)) is developable; this means that it is generated
by the tangent lines to some curve 1' or, more technically, it has zero Gaussian
curvature.b" Hence, when A = oo, it is not surprising that there are many points
on the developable where the normal vectors (p, q, -1) are identical, because the
tangent plane to u = u(x, y) everywhere along a generator of the developable is
just the `osculating plane' at the point where the generator touches r. Second,
the equation A = 0 is itself an interesting non-quasilinear equation for w(p, q), to
which we will return in Chapter 8.

Although the hodograph method can be applied equally to elliptic and parabolic
equations, the remarks above indicate that it must be used with caution. We must
also draw the reader's attention to the sad fact that, in practice, the dependence
of the physical boundary conditions on (x, y) often makes it impossible to find
appropriate boundary conditions for w. The principal exception in fluid dynamics
is when the flow direction is known to be constant on the boundary, i.e. when the
boundary comprises only straight segments, and we will return to this situation in
Chapter 7.

4.8.3 Liouville's equation
There is one other device that we cannot resist mentioning here because of its ap-
plicability to an elliptic equation as well as a hyperbolic one. It concerns Liouville's
equation

02u

- eL8x 8y

for which the apparently retrograde step of differentiating with respect to x un-
covers an exact derivative with respect to y, namely

a 82u 1 8u 2

0
8y 8x2 2 (8x )

We are amply repaid because we see that 8u/8x satisfies the ordinary differential
(Ricatti) equation

82u 2 - f(x)

8x2
(8x8u)

51A developable is a special case of a ruled surface, i.e. one formed by glueing together a
one-parameter family of straight lines.
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for some function f. Hence, by writing52

Ou 2 Ov

Ox v 8x'

so that u(x, y) = 2 log (F(y)/v(x, y)) for an arbitrary function F(y), we have
reduced Liouville's equation to the linear problem

02V 1

x2
+ 2 f (z)v = 0.

Although this gives the general solution, containing as it does the two arbitrary
functions f (x) and F(y), the dependence of u on f and F is far from transparent.
However, we can make more progress by noting that we could equally well have
differentiated first with respect to y, giving that u(z, y) = 2log (G(z)/w(x, y)),
where

02W

8y2 + 29(y)w = 0,

for two more arbitrary functions g(y) and G(x). The final coup is to exploit the
structure of solutions of second-order linear equations, writing

v(x,y) = a,(y)vl(z) + a2(y)v2(x), w(x,y) = bi(x)wi(y) + b2(x)w2(y),

so that, since F(y)/v(x, y) = G(x)/w(x, y),

G(x)vi(x) F(y)wj(y) for i = 1, 2,
bi(z) ' al(y)

where y is constant. But the constancy of the Wronskians of the equations for v
and w shows that we can take

v2 (x) = VI (Z) f ; v(S) , w2 (y) = wi (y) f y

from which there are functions X (x) and Y (y) such that

1 X 1 Y
V1 = X,, V2 = X,, wl = Y,, W2 = Y,,

and so
F _ 7 X1(x)Y1(y)
v wlvl + w2v2 ='y y 1+X(x)Y(y)

The final step is to take -y = f, so that the general solution of Liouville's equation
is given in terms of two arbitrary real functions X(x) and Y(y) as

u(x,y) = log (_2X'(x)Y'(y)(1 + X(x)Y(y))2

Other choices of y give the general solution of 02u/Ox Oy = ce" for c # 1.

52The rationale for this transformation will be explained in Chapter 6.
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*4.8.4 Another method
Apart from the many other ingenious tricks that exist in the literature, but are
too specialised to list here, there is one other `heavy gun' that can sometimes be
wheeled out when dealing with nonlinear hyperbolic equations, and that is soliton
theory [15]. This method is complicated technically and, since some of its most
famous successes concern non-hyperbolic equations, we will defer discussion until
Chapter 9. Meanwhile, readers might like to consider what they would do if faced
with the Sine-Gordon equation

82u 82u

8x2 - 8t2 = sin u,

which arises in superconductivity modelling.

Exercises
4.1. Verify the result in footnote 39 by showing that, if t = ax + by and n =

cx + dy, then

00 f e2+V2h/' dds1= det
a b

1-00
lf

\c dJ

4.2. Show that, if C = 82/8t2 - 82/8x2 and homogeneous Cauchy data u =
8u/8t = 0 is given on t = 0, then D in Fig. 4.1 is the triangle with vertices
at (x, t), (x - t, 0) and (x + t, 0), and R = 1/2. Hence show that the solution
of Cu = e-x-i in t > 0 is

-e-r d dr =
4

((2t + 1)e-x-e - e-:+t)u(x, t) =
J 1fD e

82u _ 82u
= 1

8y2 8x2

almost everywhere in x > 0, y > 0, with u(x, 0) = 8u/8y (x, 0) = 0 for
x > 0, and u(O,y) = 0 for y > 0.
By extending u to be an odd function in x, so that u(-x, y) = -u(x, y), and
using a Riemann function, or otherwise, show that

u=
fy2/2, x > y,

x(2y - x)/2, y 3 x.

Verify that u and its first derivatives are continuous and evaluate the jumps
in its second derivatives across the characteristic y = x.
Why did we say that the equation is satisfied only `almost everywhere' and
not everywhere?
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4.4. Show that, if
02u 02u_

8x2 8y2 = 0'

then the Riemann invariants
8u 8u

are constant on the characteristics y ± z = constant.
Suppose u satisfies Cauchy data

u=
2

(1 - 2xy), = 1 - 2xy

on the semicircle r2 = x2 + y2 = 1, y < 0. Show that a solution exists in the
form a(x-y)2+b(x+y)2+c, where a, b and c are constant and that, for this
solution, Ou/Ox + 8u/8y = 0 everywhere and 8u/8x - Ou/Oy = constant on
x - y = constant. However, the problem is ill-posed because the boundary
is tangent to characteristics at (f1/f, -1/f). Show non-existence when
the data is perturbed so that

8x - iii j4 2(x-y)

on the arc between (1/f,-1/f) and (1,0).
4.5. Suppose that

82u 82u
= 0

8x2 8y2

almost everywhere in y > 0, with

u=ou=0 ony=0,x>0, u=0, Ou=1 ony=0,x<0.

Use a Riemann function to show that

u=-0 inx>y>0, u=-y in-x>y>0.

By computing the Riemann invariants show that

8u 8u 1

8y 8x 2

in -y < x < y and check that u, but not its first derivatives, is continuous
across x = ±y. Confirm these results using d'Alembert's solution.
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4.6. Suppose that
Ou Ou

8t + 8x = b(x - 2 t2)

for t > 0, with u(x, 0) = 0. Show that putting £ = x -
2

t2 gives

(1-t)8C+ =aW,

with 0) = 0. Deduce that, for t < 1, u = 0 for x > t and x < It'. Show
further that

t
1

1 t2)u(x,
t

as x 2

and hence that
t)( - I-x,u 1+2(x-t)

2for t <z<t<1.
By considering the characteristics in the t) plane, show that this solution
holds for t < 2 and that, for t > 2,

_ 0, x<tandx> Zt2,
u(x, t) -1/ 1 + 2(x - t), Zt2 < x < t.

Remark. Note that it would be easy to get the wrong answer to this question
without the substitution = x- s t2. It is good technique to use the argument
of a delta function as an independent variable where possible.

* 4.7. A problem in the dynamics of the overhead power wire for an electric loco-
motive leads to the model

&28x2 =0 for xiO X(t),t>0,

where X is a prescribed smooth function with 0 < X'(t) < 1 (t is time, X (t)
is the locomotive position and u is the displacement of the wire). Across
x = X, there are prescribed discontinuities

x+O

jX_o = -V(X(t),t), [u]x-O = 0.IL
Suppose u = Ou/8t = 0 at t = 0. By modifying the argument leading to (4.8)
to account for the discontinuities across x = X, show that

u(x,t) = I IVV,r) (I - (X'(r))2) dr,

where the integral is taken along the part of £ = X (r) that lies within
r - t < C - x < t - r, r > 0. If X = t2/2 and V = 1, show that, for
0 < x < t < 2x,

U
Ss\ !

=
Z

3 where x-
2

=t-l;,
and comment on the well-posedness of this situation.
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4.8. Show that the Fourier transform in x of 8(x ± aot) is a*'*Qt. Now recall that
the Fourier transform of the general solution of the one-dimensional wave
equation (4.35) on p.114 is

u(k, t) = f (k)eikaot + 9(k)e-fkoot

Use the convolution theorem to derive the general solution itself in the form

u(x, t) = f(x + aot) + g(x - aot).

4.9. (i) Suppose that f (x) = 0 in x < 0 and F(x) = f (x)e-131 -> 0 as x -+ +oo
for some # > 0. Define

°OF(k) T j F(x)elk: dx
J ao

and, assuming F can be suitably analytically continued, define f by

j (k) = F(k - is).

Show that the inversion formula
00F(x) = 2; r P(k)e-'kr dk

J 00
becomes i oo+iR

f (x) _ - f f (rc)e-I"s dr..2 ! 00+i$

Show also that this implies that the Laplace inversion formula is
7+i00

f(x) = 12ri , 1_i0o
f(p)evx dp,

where ry is such that all the singularities of f lie in R p < y.

Suppose that

for t > 0, with

02u _ 82u

8t2 8x2

u(x,0) = 0, 8t(x,0) 0,=
le0z,

x<0,
x>0,

for some a > 0. Show that

u(x,t) = 1 r"0+'p (- sin rct)e-"" dre

21r -3°+io rc(a +

for 8 > a > 0, and hence use the calculus of residues to show that

0, x < -t,
u(x, t) _ (e°(x+t) - 1)/2a, -t < x < t,

(e°(:+0 - e°(z-t))/2a, t < x.
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4.10. Suppose that f (x) satisfies Airy's equation

ax+xf =0.

Verify that a solution is

P x) = e-C*F(() d(,it
where F(C) = e8' and I' is such that the integral exists and the change
in e-(e/3-Zc from one end of f to the other is zero. Find two choices of t
that cannot be deformed into each other.

4.11. (i) Take the Laplace transform of Bessel's equation of order zero,

rdao+ dr°+rJo=0,

and use the facts that Jo(r) is analytic at r = 0 and f O° Jo(r) dr = 1 to
show that the Laplace transform of Jo is

1+p2-

(ii) Show that, if r is such that differentiation under the integral sign is
permissible, then

dtJ
satisfies Bessel's equation of order v,

ddrV +r dr +1r2)Jv=O.
Deduce that the Laplace transform of J,, is proportional to

1 1

1+p2 (p+ 1+p2)'

* 4.12. (i) Show that, if 1 + k2 is defined so that it asymptotes to k as Ik) -+ oo in
all directions in the Argand diagram, a branch cut must be introduced
between k = ±i.

(ii) When we take ao = c = 1, the inversion of (4.51) is

U(x,
t) = 2z i_: (J' vo(()eikf dC)

sill ((t 1 + k2 a tkx dk.
,° J l+k

With the definition of 1 + k given above, reverse the order of integra-
tion and consider

Ioo eik(( -:)fit 1+ dk
°° 1+k

along the contour of Fig. 4.14, inside which there are no singularities.
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Show that

Fig. 4.14 Contour for Exercise 4.12.

r sin (t 1 + k eik((-x)

dk
1+k2

0,

1 cosh(s (x - t)) Cos (t 1 - s2
= 2 ds, x-t<<z+t,

0 1-s
0, z+t <

with the non-zero contribution coming from the integrals along either
side of the branch cut. Finally, quote the result that

j os1scosh(as)

1 - s
d8 =

2 A ( 62 - a2) ,

which follows from (4.47) on p. 117, to retrieve the Riemann function
solution

x+t
u(x, t) = 1 J o ( t2 - (x - f)2) vo(t) df

2 z-t
Check that, if we had defined 1 + k to tend to k if R k > 0 and -k if
It k < 0 as IkI -> co, we would obtain a domain of dependence of (x, t)
that included points ((,0) such that it - xj > r. Why would this be
physically unrealistic?

4.13. Suppose that
82u _ 02u 82u 82u

8t2 872
+

8y2 + 8Z2

in all space with u = 8u/8t = 0 at t = 0, and that u decays sufficiently fast
at infinity for
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fJJR

()dxdYdz
3

tobe integrated by parts. Show that the energy
2Iff, (()2

+ IVuI2) axdyaz

is identically zero and hence that the Cauchy problem (4.55) and (4.57) has
a unique solution.

4.14. Show that, if
2 2

t2 - 8x2 + 8y2
for 0 < x, y < 7r,

with u=Oonx=O,irandony=0,ir,andu=OandOu/8t=1 att=0,
then

16 O° sin(2m + 1)xsin(2n + 1)y sin (t,/-(2m+ 1)2 + (2n + 1) )
u_x2 Eo

(2m + 1)(2n + 1) (2m +-1)2+ (2n + 1)2
Show also that, if the boundary conditions are u = 0 in the triangle bounded
by y = 0, x = 7r and x = y, then there is a formal solution

u = anm (sin nx sin my - sin mx sin ny) sin (t n2 + m2) .

4.15. Show that, if u(x, y, t) satisfies the same equation and boundary conditions
as in the first part of Exercise 4.14, and that if

u(x, y, 0) = E a,nn sin mx sin ny,00

m,n=1
00

U
(x, y, 0) = E bmn sin mx sin ny,

then its Laplace transform is

m,n=1

00u(x, y, P) _ F P amn + b"'n sin mx sin ny.
2+m2+n2

Hence retrieve the solution of Exercise 4.14.

* 4.16. Suppose u satisfies the elasticity equations (4.73) and is of the form

u = lrt ((u l(x,y),u2(x,y),0)Te-1wt) for y < 0.

Suppose also that
/

(Out 8u2 _ 8u2 Out 8u2 _
8J + 8x) 2P a1/ + 8x + ay) 0

on y = 0, which corresponds to the traction-free boundary of a half-space
(the earth, say). Noting the fact that, if t e0':+k2Y_ ?t) is a solution of (4.73),
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(kl , k2 i w) lies in the normal cone ki + k2 = w2/c2, use (4.75) to check that,
for any constants A and B,

u1 = kAe'kz+dr k2-w2/cps
U2 iA k2 - w2 e'kz+y k -m cp

and

ul = iB k2 - w2 eikr+u k72-w2/c; u2 = kBeikz+y k W2/c;

are both candidate solutions of (4.73). Show further that the boundary con-
ditions are satisfied if k = w/c, where

(2_)2_4(1_) ('1) =0.
(It can be shown that this equation has a root in which c > c, > c; it
corresponds to the famous Rayleigh wave of seismometry.)

* 4.17. According to Maxwell's equations, the static magnetic field H = (Hi, H2i
H3 )T in an inhomogeneous medium satisfies

VAH=O,
where µ is a function of position. Suppose the interface z = 0 separates a
medium in which µ = µ+ = constant from one in which µ = µ- = constant.
By using Green's and Stokes' theorems show that a weak solution satisfies

[PH3]:=00± = 0, [H1]z O- _ [H2]z=o± = 0.

* 4.18. Consider a time-varying electromagnetic field in a homogeneous conducting
medium in which Ohm's law relates the current density and electric field by
j = aE, where a is the conductivity, and suppose there is no charge density.
Show that

02E a 8E
+ e - C2 V2 E,

8t2 8t
where c2 = 1/(eµ). Hence show that, if E = E(x, t), its components can be
found in terms of solutions to the telegraph equation.

* 4.19. As shown in Chapter 2, if the normal cone is Q(to, t1, t2, ...) = 0, where
t; = 8tio/8x, are the components of the normal to the characteristics (wave-
fronts) <p = constant, the ray cone is given by F, x,fr = 0, where xi =
p 8Q/8t;. Take xo = t, xi = x and x2 = y and show that, if the normal cone
is

(i) at, + bf2 - to = 0,
2 2

(ii) a2 + - to = 0,

( ) 6 2-q2=0,
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then the ray cone is

W
x

= 6 = -t,
(ii) a2x2 + b2y2 = t2,

(iii) 4xy = t2.

Draw a typical cross-section o = constant, t = constant in each case, in-
cluding the case a = b = e, a -> 0 in (ii). Use the acquired knowledge to
relate the local geometry near a point on a cross-section to = constant of
the normal cone to the geometry of a cross-section t = constant of the ray
cone, and hence verify Fig. 4.11.

4.20. Suppose that
82u 82u

8x2 =
8y2.

Show that, if u(x, y) = v(p, q), where p = Ou/ax and q = Ou/sy, then

82v a2v
as .9p ap

8p2
= q2 , long as

8x # ay-

4.2 1. (i) Following (4.13), define V2 log r in two dimensions by the identity

2a 00 r2,, 00f J IOV2(log r)rdrd9 = / J (log r)(V2V') rdrd9
0 0 0 0

in polar coordinates. By showing that

2, 00 2a a \
( bIr_, +eloge I _ f dO1 I OV2(log r)rdrd9

= fo
0 c \ aT re/

2a r00

+ 1 r (log r) r dr dO
0 e

(be careful about the direction of the normal and the orientation of the
contour!) and taking the limit as a -+ 0, show that

\72 (log r) = 2ir6(x)6(y).

(ii) Show that, if u = 0 in x < 0 and y < 0 and

a
= a(x)a(y),

8x

ey

then u = H(x)H(y). Does

82u 02u

OX2 - i = 6(x)a(y)

have a solution that vanishes in x < 0 and y < 0?
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* 4.22. The displacement u(x, t) of an elastic string satisfies

82u 82u = 0 for -oo < x < oo.
8t2 - 8x2

Show that, if u(x, 0) = 0 and 8u/8t (x, 0) vanishes except for jxj < c, where
it is a constant vo, then u = evo in e - t < x < -e + t, t > e. By taking
a suitable limit show that, when u(x, 0) = 0 and 8u/8t (x, 0) = 25(x), then
u(x, -t) is the Riemann function for the wave equation written in this form,
in the domain t < 0 and with 37) = (0, 0). (This Riemann function is
defined to satisfy

82u 82u_ _- 25(x)5(t);
8t2 8x2

as in Exercise 4.2 the factor 2 is introduced because the equation is not in
canonical form.) Show also that, if u(x, 0) = 5(x) and 8u/8t (x, 0) = 0, then

u(x,t) = 2(5(x + t) + 5(x - t)).
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Elliptic equations

In this chapter we will, as usual, begin by discussing some physical situations
that are modelled by elliptic equations, as defined in a rather unfocused way in
Chapter 3. Most of the examples involve scalar second-order equations, several of
which are special cases, such as steady states, of evolution models discussed in
Chapters 4 and 6.

The methods we will use in the subsequent analysis of these models are more
ad hoc than those used on hyperbolic equations, for the simple reason that we
have no general well-posedness statement analogous to that for the Cauchy prob-
lem for hyperbolic equations. Moreover, we will find that the influence of the data
for elliptic problems, especially singularities in the boundary data, is much less
localised and `coherent' than it is for hyperbolic equations, where we recall that
many kinds of singularities merely propagate along characteristics. These are the
reasons why this chapter is longer than its predecessor; however, the most powerful
tools we develop are Green's functions, which are direct analogues of the Riemann
functions of Chapter 4, and eigenfunction expansions. Whereas most of the illus-
trations of Chapter 4 revolved around the wave equation, here the paradigm is
Laplace's equation.

The range of applicability of elliptic equations is vast, as will be apparent
from the following section where we will present models arising in gravitation,
electromagnetism, mechanics, heat flow, chemical reactions and acoustics.

5.1 Models
5.1.1 Gravitation
Some of the most famous models in the history of applied mathematics lead to
elliptic equations, the most revered perhaps being that of Newtonian gravitation.
This is based on the observation that `point' masses attract each other along the
line joining them with a force proportional to the inverse square of the distance
between them. Hence, with a suitable normalisation, the force field of a unit point
mass (soon to be related to a Green's function) is the gradient of a potential

0=1 (5.1)

in spherical polar coordinates; 0 is unique up to the addition of a constant. Sum-
ming over a distribution of such masses, the potential of a general density distri-
bution p(x) is

151
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O(x) = 1J J
p(x') IX -

X1

X11
(5.2)

and it is a simple calculation to show that, away from any matter, 0 satisfies the
famous Laplace's equation

V20=0.
(5.3)

Functions satisfying this equation are said to be harmonic functions. However, it
is less easy to show that, in the presence of matter, 0 satisfies Poisson's equation
in the form

V20 = -47rp. (5.4)

The most elementary procedure is to consider the integral in (5.2) with a small
sphere around x excised, write down its Laplacian and use Green's theorem, but
we will see this in a more general setting in §5.5.

Presented this way, the theory of gravitation does not seem to be a problem in
differential equations, because the solution of Poisson's equation (5.4) is known to
be (5.2). But often this formula is tedious to compute and we will soon see that
the partial differential equation formulation is of inestimable conceptual value.

5.1.2 Electromagnetism
Almost equally venerable are models for electrostatics and magnetostatics, which
can be derived at a glance from §4.7.2. In the absence of any charge p and current
j, and with 8/8t = 0 in a steady state, we find

VAH=VAE=O. (5.5)

Hence both the magnetic and electric fields are the gradients of potentials, which,
like (5.2), are only defined to within an additive constant; but they both satisfy
Laplace's equation because, by (4.83) and (4.84), V H = V E = 0. Now we have a
more clear-cut partial differential equation situation because these electromagnetic
fields can be modelled as if they are created at boundaries, or at infinity, where
E and H satisfy certain conditions. We will not give these conditions here except
to say that the commonly occurring problem of finding the electric field outside a
charged perfect conductor demands that the electric potential 0, where E = -0t,
is constant on the conductor. The charge, which is confined to an exceedingly thin
layer near the surface of the conductor, turns out to have a density proportional to
the normal derivative 80/8n, a fact that can be inferred by reinstating the charge
density p, so that V20 = -p/e, where a is the permittivity, and using (5.2). The
problem of designing a lightning conductor involves solving Laplace's equation
with 0 constant on the conductor and calculating where 8c6/8n is largest, because
this is where the lightning will strike.

Indeed, many everyday situations involve charge distributed on a long thin
straight wire and it is easy to see that in such cases the electric potential in plane
polar coordinates is proportional to log r. Only the field, not the potential, goes
to zero as we move away from the wire, in distinction to the potential (5.1) which
decays as we move away from a point charge.
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More commonly, we have to model currents flowing in electrically conducting
materials. Then, if the current flow is steady, we can often use the experimentally
observed Ohm's law

j = QE, (5.6)

where a > 0 is the conductivity, taken to be constant for simplicity. When we take
this in conjunction with Maxwell's equations (5.5), we have that j = -aVo, where
yet again 0 satisfies V20 = 0. Note that if we then needed to find the magnetic
field we would have to solve

VAH=j, (5.7)

we can take the curl of the first equation to obtain a vector version of Poisson's
equation, but (5.7) itself is an as-yet-unclassified system for H to which we will
return in Chapter 9.

There are many, many other interesting situations involving Maxwell's equa-
tions and Ohm's law which we do not have space to mention in detail here. For
example, it is often possible to reduce the model to ordinary differential equa-
tions when currents only flow in wires, and to two-dimensional partial differential
equations for flow in metal sheets.

5.1.3 Heat transfer
We will use this even more familiar discipline to begin to write down some concrete
problems for elliptic equations. Suppose heat is being conducted in a medium D
whose temperature is T (x) and in which there is a volumetric heat source f (x),
as in the element of an electric fire, or in food cooked in a microwave oven, or in
the radioactive decay process in the core of the earth. Now Fourier's law of heat
conduction states that the heat flux is given, analogously to (5.6), by

q = -kVT, (5.8)

where k > 0 is the thermal conductivity. Hence conservation of energy requires
that, for any region D in the material,

fi -k8nd5
- ffj V (kVT)dx= Jffv fdx (5.9)

in a steady state; here, as usual, 8/0n denotes the derivative along the outward
normal to the boundary OR This is true over any region in the conductor so that,
when k is constant, we again retrieve Poisson's equation

kV2T = -f (x). (5.10)

We are almost always given a boundary value problem for T, there being three
very common situations.

The Dirichlet problem
Suppose the boundary is an excellent thermal conductor (e.g. a metal). Then its
temperature is nearly constant, or at least a prescribed function of position on the
boundary:

T = To(x) on OD. (5.11)
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The Neumann problem

Suppose the region outside D is a very bad conductor, such as air. Then the normal
heat flux is zero or, more generally, a prescribed function of position:

-k = q(x) on 8D. (5.12)

The Robin problem

The Robin problem arises when the heat flux at the boundary is proportional to
the difference between the boundary temperature and some ambient temperature.
This might be the case if D is a solid (such as your skin) around which a relatively
hot (or cold, usually) fluid at temperature To(x) flows, and heat transfer takes
place across a thin `boundary layer' in the fluid. There are then experimental and
theoretical reasons to write down

= h (T - To (x)) on OD,-k
On

(5.13)

where It is called a heat transfer coefficient. Thermodynamics requires that h > 0,
so that heat flows from hotter regions to colder ones.

On physical grounds (5.12) is suspicious because, assuming D is bounded, we
could not expect to be able both to prescribe the heat flux on OD and yet have a
steady state in which T is independent of time. We can quantify this suspicion by
integrating (5.10) over D and using Green's theorem to yield

fffl.f(x)dx_fJ1.qdS=0 (5.14)

for the Neumann problem. Here we have inserted the factors of unity to highlight
that this is simply a statement of the Fredholm Alternative; the `right-hand side'
of the Neumann problem, which is a combination of f and q, must be `orthogonal'
to any relevant eigenfunctions, in this case constants. Moreover, when (5.14) is
satisfied, even though T exists, it is undetermined to within the addition of any
eigenfunction. We will see later that this non-existence/non-uniqueness does not
happen with (5.13) if h > 0.

There are countless other variations and applications of the Laplace and Pois-
son equations, and we will cite only three very briefly. First, since Fick's law of
molecular diffusion, namely that mass flux is proportional to concentration gradi-
ent, is mathematically identical to Fourier's law, the mathematics of beat transfer
by conduction and of mass transfer by diffusion are identical.53 Second, there are
numerous situations where heat and mass transfer are intimately coupled, as in
the case of many commonly occurring chemical reactions. We will study these in
more detail in Chapter 6 but for now we simply note that the temperature in a
steady-state reaction might be modelled by the uncoupled thermal model (5.10) in

331n fact, they are both based on the microscopic models of Brownian motion, which will be
discussed further in a simple-minded way in §6.1.
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regions where the source term is a function, possibly nonlinear, of T. This function
represents local heat generation near the reacting regions and is positive or nega-
tive depending on whether the reaction is exothermic or endothermic, respectively.
Finally, it is often important to consider convective and radiative heat transfer as
well as conduction. The former is relatively easy to incorporate because we simply
have to include a term pc f f f v VT in (5.9), where v is the velocity, p is the
density and c the specific heat54 This leads to the convection-difusion elliptic
equation

pcv VT = kV2T + f (x), (5.15)

where, if we are lucky, v is prescribed independently as the result of some un-
coupled dynamics model. Alas, the dynamics and heat transfer are all too often
coupled.

Radiation is much more difficult to model, as we shall see in Chapter 6, but
a simple case is that in which a `black body' radiates from its boundary, and
all the beat transfer in the interior is by conduction alone. On experimental and
theoretical grounds we can then write down the Stefan-Boltzmann law

q(x) = e(T4 - To) (5.16)

in (5.12), where, again, To is an ambient temperature (now measured in absolute
terms) and a is a constant called the emissivity (see [41] and §6.6.1.2); note that,
when T is close to To, (5.16) can be approximated by (5.13) with h = 4ET0 3.

All discussion of such nonlinear effects, be they from chemical reactions or
radiation, is deferred to the end of the chapter.

5.1.4 Mechanics
5.1.4.1 Inviscid fluids

Continuum mechanics provides another justifiably famous source of elliptic equa-
tions. One of the most familiar is that of inviscid incompressible hydrodynam-
ics [27]. The fact that the fluid is incompressible means that the velocity field
v(x, t) satisfies

V.v=0, (5.17)

but it is a long story to prove that many inviscid flows can be well approximated
by writing down the condition that the vorticity V A v satisfies

VAv=0.

and thus that v is the gradient of a potential 0. We will discuss this point further
in Chapter 9, but, for the moment, let us assume that 0 exists, although it is only
defined to within addition of an arbitrary function of time, and is harmonic from
(5.17). Typical boundary conditions now take the form of homogeneous Neumann
conditions because the relative velocity is tangential to any stationary impermeable

34 However, if the material is a gas we must be much more careful about our definition of
specific heat and also to incorporate the `work done against compression'.
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boundary;SS this condition is associated with the fact that, for these inviscid flows,
we only have Laplace's equation to solve, and hence in `streaming flows' we have a
Neumann problem in an infinite domain exterior to an obstacle. A more interesting
model is that for a vortex, as may occur, approximately, in emptying the bath,
where we could seek a two-dimensional flow in which the velocity is azimuthal,
i.e. in the 8 direction in plane polar coordinates (r, 8), getting faster and faster
as we approach the `core' of the vortex r = 0. An inspection of (5.3) shows that
a suitable potential, indeed the only one, is proportional to 0. We also note that
this flow provides a non-constant, albeit multiple-valued, solution of the Neumann
problem with homogeneous boundary conditions in a circular annulus centred
at the origin, and it gives an early warning that the connectivity of D may be
important in considering the uniqueness of solutions of elliptic equations.

5.1.4.2 Membranes

The easiest way to visualise solutions of Laplace's equation is by looking at the
shape of a membrane such as a drum, whose boundary is deformed slightly out of
plane. Like a soap film, the membrane is assumed to be capable of supporting a
tension T which is assumed to be isotropic, i.e. the same in all directions. Then a
normal force balance reveals that the displacement w satisfies 82w/8t2 = a2eV2w,
where ap = T/p, p being the surface density of the membrane; this is because
the components of the tension forces out of the plane add up to T multiplied by
the small mean curvature, which is approximately V2w. (In one dimension, this
model reduces to that for waves on an elastic string, which is just the familiar wave
equation (4.1).) Thus the equilibrium displacement is indeed a two-dimensional
harmonic function with Dirichlet boundary conditions, assuming the perimeter
is prescribed and nearly planar. Also, it is easy to see that the application of
a pressure difference p across the membrane enables us to visualise solutions of
Poisson's equation with p as the right-hand side.

5.1.4.3 Torsion

A less well-known, but no less important, model leading to the Laplace equation in
two dimensions arises in the study of torsion in linear elasticity. Torsion bars are
often used in motor car suspensions, and, in the simplest configuration, they are
metal circular cylinders which are stress free except for equal and opposite torques
about the axis which are applied at each end of the cylinder. To describe this we
will again eschew the conventional tensorial formulation of elasticity theory and
proceed on the justifiable assumption that the displacement from the unstressed
state in any cross-section of the torsion bar aligned along the z direction is a rigid
body rotation about the z axis which varies linearly in z (Fig. 5.1).

Hence we write the displacement as

u = a (-yz, xz, w(x, Y)), (5.18)

"This is in contrast to the paint flow of §1.1, where the paint adheres to the wall.



MODELS 157

z

Fig. 5.1 Torsion of a bar.

where a is constant and represents the amount of twist applied to the bar.56 Now
this vector is divergence free, so that material is only undergoing shear and not
compression or expansion. Thus, from (4.73) of §4.7, in equilibrium VA(VAu) = 0,
so that

V2w=0. (5.19)

The key modelling feature of any torsion bar is that the shear forces on the curved
boundary OD of the cross-section of the bar are zero. Those in the x and y di-
rections are automatically zero because the displacement in the section is a rigid
body one, but the shear force axially (in the z direction) must also vanish. It can
be shown, using the ideas at the beginning of §4.7, that the displacement in this
direction contributes

8w 8wpa
8x ,

ey , 0 n

to this shear, where n is the outward normal to 8D. Meanwhile, the in-plane
components of u contribute

pa f 8z (-yz), z (xz), 0) n

and in total we are left with the Neumann condition

8w
8n

= (y, -x, 0) - n on OD. (5.20)

Mercifully, but not surprisingly, the orthogonality condition corresponding to (5.14)
is satisfied automatically.

58Notice the apparently counterintuitive fact that the axial displacement (in the z direction)

is independent of z.
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Finally, we must specify the tractions, i.e. the stresses that are applied to the
ends of the bar to produce the torsion. The shear stresses on these ends comprise
the two terms

(8w Out 1
pa(-Y, x, 0) +µa 8x, 8y,0) ,

and hence the total moment applied about the origin in any cross-section is

M=µaJJDIxz+yz-y8x+x )dxdy. (5.21)

The fundamental problem of torsion is to solve (5.19) subject to (5.20) and (5.21)
in order to relate M to a and hence determine the 'torsional rigidity'. But many
torsion bars are hollow and we must remember our earlier warning about non-
uniqueness in multiply-connected domains.

5.1.4.4 Plane strain and slow viscous flow

Continuing the previous discussion, suppose we have an infinitely long bar which
is not subject to torsion but whose curved boundary does have tractions applied
to it perpendicular to the axis. We now have what is called plane strain57 with

u = (u(x,y),v(x,y),0), (5.22)

which implies there are both shear and tensile/compressive stresses in the bar.
We now need both terms in the right-hand side of the equations of linear elastic-
ity (4.73), so that

z z

µ 2u+(J1+p) (8z +49X ft 0,

=0.

It is a simple matter to cross-differentiate and show that both u and v satisfy the
biharmonic equationb8

04th = V4v = 0, (5.23)

where

20x20y2 +
8y04

V4 = (OZ)2 = C94x4x

+2004 4

In practice, it turns out often to be convenient to reformulate this model in
terms of the stresses (see Exercise 5.1). This is very important to gain insight into

57The displacements are non-zero only in the (x, y) plane. The complementary situation in
which the displacement has the form (0,0, w(x, y)) is called antiplane strain, and it is easy to
see that V2w = 0.

"Although the biharmonic equation is fourth order, its solution turns out to be so similar to
that of an elliptic second-order equation that we describe it as elliptic; when it is written as a
first-order system, it is indeed elliptic according to the ideas of §§3.3 and 3.4.
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the kinds of boundary conditions that might be imposed on the biharmonic equa-
tion, and we note that the application of tractions on 8D involves the prescription
of a two-dimensional vector there. This vector is in fact a linear combination of
the first derivatives of u and v, and hence we must be prepared for `twice as much'
boundary data as for Laplace's equation.

Two-dimensional problems of slow viscous flow also lead to the biharmonic
equation. There the assumption of a shear viscosity p in a fully two-dimensional
flow59 gives that the forces generated by the pressure p must balance the shear
forces, in the absence of inertia. Hence, with velocity v = (u, v)T, we can follow
the argument leading to (4.73), with A = 0, to derive the model

2u
V VZV== 24)(5P P P Zv /\ V

and, assuming incompressibility as in (5.17),

.

V v = 0. (5.25)

Now, following the idea of introducing a potential, as already used several times
in this chapter, we eliminate (5.25) by writing u = O/8y and v = -O0/8x, where
io is a stream function. Then we can take the curl of (5.24) to show that u, v and
,j, all satisfy the biharmonic equation (p only satisfies Laplace's equation, but,
regrettably, in a realistic model boundary conditions can never be prescribed just
for p). Moreover, because the flow is viscous we expect that on an impermeable
boundary v itself is prescribed rather than just v - n, as was the case for an inviscid
fluid; hence we again have two boundary conditions to be satisfied.

We note that, if a slow viscous flow occurs in a porous medium such as a
sugar-lump, sponge or rock, the simplest model is to assume Darcy's law to relate
the velocity and pressure. This means that the slow viscous flow model (5.24)
is abandoned and replaced by Darcy's experimental observation that, on a scale
much bigger than the pore size,

V=-kVP
A

(5.26)

in the absence of gravity, which is clearly analogous to the Fourier, Fick and
Ohm laws mentioned above; k is a positive constant called the permeability and
it depends only on the geometry of the pores. However, there is a serious question
about what we mean by v in such a complicated configuration and we must be
careful to remember that the fluid does not occupy the whole of space. Nonetheless,
by regarding v as measuring the mass flux, it can still be argued that 0 for an
incompressible fluid, and we end up with Laplace's equation again. It is uncommon
for an increase in the geometric complexity of a problem to be accompanied by a
decrease in its analytical complexity!

Not surprisingly, these examples enable much `technology transfer' between
fluid and solid mechanics.

59Rather than the quasi-one-dimensional flows such as the paint flow of §1.1.
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5.1.5 Acoustics

There is no better illustration of the delicacy of elliptic differential equations than
the vitally important science of acoustics, i.e. small-amplitude wave propagation
in fluids or solids.80 We will only consider the former here, and then only in the
so-called frequency domain where we assume the sound field is being generated by
a loudspeaker operating at just one frequency w. Then, in the simplest case, when
we write 0 = 34 (u(x)e-"dl) in the wave equation 820/8t2 = 4V20, we find

(V2 + k2)u = 0, (5.27)

where k = w/ao; (5.27) is known as Helmholtz' equation.81 The seemingly similar
model

(V2 - k2)u = 0, (5.28)

called the modified Helmholtz equation, has absolutely nothing to do with acoustics,
as will soon become evident from a study of its mathematical properties. However,
(5.27) and (5.28) can be related in the context of chemical reactions because we
have seen that, if the heat source is proportional to the temperature, (5.10) reduces
to (5.27) or (5.28) when the reaction is exothermic or endothermic, respectively.

There is also another clear physical reason to expect the properties of solu-
tions to (5.27) and (5.28) to differ widely. Suppose we have any of the boundary
conditions (5.11)-(5.13) but with zero forcing. With these homogeneous boundary
conditions, u = 0 is a solution of the problem, but is it the only one? We would
expect an acoustic resonator, modelled by (5.27), to be able to vibrate of its own
accord; in other words, we would expect the existence of eigenfunctions, and prob-
ably many of them. We will soon see that a trivial application of Green's theorem
shows that, whereas (5.28) admits only the zero solution, there is no such unique-
ness result for (5.27). Of course, our experience suggests that non-zero solutions
only exist at certain 'eigenfrequencies' w = w;, but this is not always true. Our
investigation into this problem will inevitably involve a little of the vast theory of
eigenfunctions of elliptic differential operators, but only the rudiments are needed
later in this chapter.

One other crucial remark needs to be made concerning acoustics in the fre-
quency domain, and that concerns the model in cases where the physical domain
of interest extends to infinity. Since the model describes wave motion, we expect
it to be able to distinguish between situations in which waves are `incoming' from
those in which they are `outgoing'; this suggests that we need more precise condi-
tions at infinity for Helmholtz' equation than we would for Laplace's equation in
an infinite physical domain.

801n solids we usually obtain vector elliptic equations, which are closely analogous to Maxwell's
equations in the frequency domain.

61The complex time dependence of 0 means that we need to take complex combinations of
real solutions of Helmholtz' equation. The choice of e-i't rather than ei' is made in order to
simplify later formulae.
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5.1.6 Aerofoil theory and fracture
We conclude this section with two examples which highlight the global importance
of the specification of any local singular behaviour that may occur in the solution
of elliptic equations. A trivial illustration of the sort of thing that can happen is
the Dirichlet problem for Laplace's equation

V2u=0

in the open sector

0<r<1, 0<9<2
in plane polar coordinates, with u = 0 on the boundary. If we insist that u is
bounded at the corners of the domain, the only solution is u = 0. However, it is
easy to verify that

u a (r2 - 2/ sin 29r

satisfies all the conditions except for boundedness at the origin. Thus a singularity
at one point of the boundary makes its presence felt everywhere. Such singularities
could occur in any of the aforementioned situations, but we just mention two
striking examples which perhaps have more everyday technological importance
than any others in this book.

5.1.6.1 Aerofoils

In §5.1.4.1 above, we blandly asserted that the boundary condition on, say, an
impermeable obstacle placed in an irrotational streaming flow, such as in a wind
tunnel, is the Neumann condition for a velocity potential satisfying Laplace's equa-
tion. Moreover, it is well known that a properly designed aerofoil has a sharp trail-
ing edge, i.e. OD must not be smooth if the aerofoil is to work well. The details
of the fluid mechanics of this situation are too intricate to enter into here [29]
but one simple scenario can be plausibly laid out. Suppose that a two-dimensional
aerofoil with surfaces y = ff(x), 0 < x < c, is so thin and so nearly aligned with
the flow that it is always close to the line y = 0, 0 < x < c, and that the free
stream velocity in the x direction is U (see Fig. 5.2). Then, as in the linearised

Fig. 5.2 Flow past an aerofoil.
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models (3.11) and (4.70), 0 is almost equal to Ux and so we can write ¢ = Ux + 4)
to obtain

V20 = 0, 1V41-, 0 as JxJ -* oo, (5.29)

but we will see later that we must consider the decay rate at infinity more carefully
than we have in (5.29) if we are to explain the theory of flight. Lastly, we can
replace the exact condition of tangential flow, namely 84/8y = f (x) 8¢/8x on
the aerofoil y = ft(x), by

00
5 =Uff(x) ony=±0,0<x<c. (5.30)

We are thus led to a boundary value problem for a harmonic function in a multiply-
connected domain; we might regard the discontinuity that inevitably occurs across
the segment 0 < x < c of the x axis as a line of singularities, and in particular
we may expect especially violent singularities at the `leading' and `trailing' edges
(0, 0) and (0, c). One problem for elliptic theory is to decide what to do about
these singularities, which will also be crucial to our understanding of the theory
of flight.

5.1.6.2 Brittle fracture

Our final example concerns the modelling of cracks in perfectly elastic solids. A
realistic configuration is illustrated in Fig. 5.3(a) for a crack y = 0, -c < x < c,
in a material in plane strain under tension in the y direction. However, we will
confine ourselves to the easier cracks that can occur in antiplane strain with a
displacement field u = (0, 0, w (x, y)) where w is a harmonic function. There is no
traction on the crack surfaces, so that

8 -+0 asy-i0,-c<x<c (5.31)

from above or below, so that the problem can still be represented as in Fig. 5.3(a).
Also, assuming symmetry,

w = 0 on y = 0, IzI > c, (5.32)

where the material is pristine. Finally, we suppose the crack is subject to a uniform
shearing at large distances, modelled by

w -ry aslyl -goo, (5.33)

where ,r is a constant.
The symmetry about y = 0 means that we need only solve the problem in

a half-plane, in contrast to the aerofoil model (5.30), where we need to find a
harmonic function in the doubly-connected region exterior to the aerofoil (unless,
of course, the aerofoil is symmetric and f+ = -f_).

The boundary conditions (5.31) and (5.32) are an example of what is called a
mixed boundary problem, the data being part Neumann and part Dirichlet. This
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(a) (b)

Fig. 5.3 (a) Brittle fracture in pristine material; (b) partly opened pre-existing sack.

switch engenders possible singularities at the tips of the crack which we can readily
see by separating the variables in local polar coordinates (r, 0), say near z = c,
y = 0. The function rA sin AB is a local 'eigensolution' as long as

where n is an integer, because it is only for these values of A that w = 0 on 0 = 0
and 8w/80 = 0 on 0 = a. As in aerofoil theory, we shall see that this 'singular
behaviour' has far-reaching implications for the predictions of the mathematical
models. Even at this early stage one might, for example, enquire as to the difference
between models for a crack and for a 'contact' region. The latter could arise if the
two slabs in Fig. 5.3(b), each containing a slight indentation in -c < x < c, had
been brought together; how would the mathematics distinguish this situation from
that in Fig. 5.3(a), which involves a crack surrounded by pristine material?

With all these examples as motivation, we now embark on as general an account
of the theory of elliptic partial differential equations as we are able to give in a
book of this type. We will clearly have much to say about Laplace's equation and
the effects of singularities in the data, and we will confine most of our comments to
two-dimensional problems. However, a great deal of our discussion generalises quite
easily to higher dimensions and sometimes to higher-order and vector equations
as well.

5.2 Well-posed boundary data
5.2.1 The Laplace and Poisson equations
We could begin our discussion by repeating the procedures of Chapter 4 and
writing Laplace's equation in characteristic variables z = z + iy and i = x - iy as

02u+8su482u
0,8x2 8y2 8z 02

noting that u is the sum of a function of z and a function of z. Then the solutions
satisfying analytic Cauchy data, say, u(x, 0) and 8u/8y (x, 0) given, can be written
down from d'Alembert's formula (4.38) as
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1
u(x, y) =

2

(u(z, 0) + u(f, 0)) +
2i

(5.34)
/r

but we already know from our discussion of the Cauchy-Riemann system and
analytic continuation that this recipe is ill-posed. This is a relief because we can see
from the models in §5.1 that it would be a disaster if well-posedness for Laplace's
equation demanded analytic Cauchy data.

Let us therefore reconsider Poisson's equation in the form

Vu = f (x, y). (5.35)

Motivated by the models in §5.1, we begin by considering (5.35) in a closed
bounded region D but with only a single boundary condition rather than the
Cauchy data needed for (5.34). All possible linear conditions are encompassed by
the Robin condition, which we will write in the form

au +0T =g on OD, (5.36)

where a, 0 and g are given functions of position, and we recall that 8/8n denotes
the outward normal derivative; we expect a and j9 to be of the same sign from
(5.13). Our immediate worry that we may have allowed the solution too much
freedom by reducing the number of boundary conditions is unfounded because of
the following theorem.

Uniqueness theorem Suppose u satisfies V2u = f in a bounded domain D with
smooth boundary 8D, with an + 0 8u/49n = g on OD. Then, if a solution exists,
it is unique provided that a never vanishes and f3/a > 0.

An elementary proof uses Green's theorem over D in the form

ffV.(UVU)dxdY=f U8n ds, (5.37)

8D

where U is the difference between any two solutions of (5.35) and (5.36). Since a
never vanishes,

r

(OU)
a

J JD
IVU12 dxdy = - J d8; (5.38)

&D

considering the signs of the two sides of this equation, we we that both sides must
vanish and thus IVUI = 0 almost everywhere in D. This means that U is constant
almost everywhere and hence zero from the boundary condition.62 Although we
have stated it in two dimensions, the theorem holds in any number of dimensions,
with the same proof.

62We cannot exclude the possibility that U is non-zero on a set of measure zero, but then
U would probably not satisfy Laplace's equation on such a set and we will not deal with such
`pathologies' in this book.
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As a corollary, we note that, when a = 0,

IL
IVU12

dxdy = 0,

so that u (if it exists) is non-unique to within addition of a constant. Thus, for
example, the solution to the torsion problem of §5.1.4.3 is only determined to
within an additive constant in w, which just corresponds to moving the bar bodily
along its axis. It is also possible to give specific examples to show that, if /3 96 0
and a/,6 changes sign on OD, or if o//3 < 0, uniqueness can no longer be assured
(see Exercise 5.4). We recall that the latter case corresponds to heat flow from
cold to hot in (5.13). Also, it is clear from Green's theorem that, when a = 0, no
solution exists unless, as in (5.14),

LlID
(5.39)

0

The uniqueness theorem and its corollary have been stated assuming that OD
and the data are as smooth as necessary. We must also remember the example at
the beginning of §5.1.6, where, even though Dirichlet data were prescribed at all
points of 8D except one, the existence of a singularity at that point resulted in a
solution that was non-zero in the interior of D. This can happen whether or not
8D is smooth, and it will cause us much trouble later in this chapter.

These results will come as no surprise to experts in two-point boundary value
problems with Robin boundary conditions for ordinary differential equations, but
here, in addition to the singularity problem we have mentioned, we have to worry
about the possibility that D is not simply connected. Suppose, for example, we
adopt the following commonly used device to solve the torsion problem (5.19)-
(5.21). There is often a computational and theoretical advantage in working with
a Dirichlet problem rather than the Neumann problem for to, so we introduce its
harmonic conjugate // for which a simple calculation reveals the Dirichlet problem

V2'=0,

where the zero-stress condition (5.20) requires that

ty -

2

(x2 + y2) =constant on 8D,

the constant being arbitrary when D is simply connected. Things are even eas-
ier computationally if we can take the constant to be zero and write 63
5 (x2 + y2) + 0, so that

V2+G=-2 with tp = 0 on 8D. (5.40)

Now, if D is an annulus, as is often the case in practice, ' is a different constant
on each component of the boundary of the annulus, but what is the difference

63 is called the Prandd stress function.
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between these constants? We certainly do not have a well-posed Dirichlet problem
without this knowledge. The answer lies in the fact that, in transforming from the
physical variable w to a stress function st', we have introduced an indeterminacy
and we must be sure that when we eventually retrieve w from ii, by solving the
Cauchy-Riemann equations, we have a physically acceptable displacement. In this
case the w we retrieve is multi-valued unless

fJOD t9
da = - J D On ds

is zero around any circuit in the annulus that cannot be shrunk to zero. Hence
is uniquely defined by the condition that

I
aids+I a

8D 8n 8D On
(5.41)

taken around any such circuit (the first term on the left-hand side is in any case
a constant independent of the circuit).

This calculation reveals a common bugbear of working with `potentials' such as
' or is they are often helpful theoretically and computationally but their arbitrari-
ness (or so-called `gauge invariance') calls for constant vigilance. This example, and
the vortex problem in §5.1.4.1, illustrate the message that great care must always
be taken when considering uniqueness for elliptic problems in multiply-connected
domains.

5.2.2 More general elliptic equations
We have already seen in our discussion of the Helmholtz equation in the introduc-
tion that questions of existence and uniqueness can depend very sensitively on the
coefficients of elliptic equations. Hence we will not enumerate statements about
equations other than the Laplace and Poisson equations, except to say that the
ideas above can be tried but they may or may not work. As an example, we cite
the biharmonic equation V4u = 0 with `Dirichlet data' in which u and Ou/On are
prescribed on a dosed boundary 8D. The problem of uniqueness can be resolved
by considering the difference w = u - v, for which

0 =
fJwOawdxdy = ff (V. (wV(V2w)) - Vw V(V2 w)) dxdy

ffa (V. (V2wVw) - (V2w)2) dxdy = ff (V2w)2 dxdy,

each divergence integrating to zero by Green's theorem. Hence V2w = 0 and,
because of the boundary data, w = 0.

The use of Green's theorem to prove uniqueness is only at all easy when the
differential equation is in divergence form. This makes uniqueness theory difficult
for vector equations, and for higher-order equations other than the biharmonic
equation. Also, problems of mixed elliptic and hyperbolic type pose their own
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peculiar challenges for existence and uniqueness.64 Fortunately, there is one other
tool that we can use in many practical situations.

5.3 The maximum principle
It is almost obvious that, if Laplace's equation holds in a closed domain D, the
maxima and minima of u occur on 8D; one would never see a membrane, as
modelled in §5.1.4.2, with a `bump' in it, unless, of course, a pressure difference
was applied across it. This is certainly true if we exclude points at which 82u/8x2
and 82u/8y2 both vanish because, if one is positive and the other negative in the
interior of D, at any critical point where 8u/8x= 8u/8y = 0, we have

82u82y

'"Uy)28x2 822
< 0

8x

and so the critical point must be a saddle. To make this argument rigorous we note
that, if an auxiliary function V satisfies Poisson's equation (5.35) with f > 0, then
certainly one of 821'/8x2 or 82V/8y2 is positive and so V cannot have a maximum
in the interior of D. It may have a minimum or saddle in the interior, but any
maximum is on 8D. Hence, if V2u = 0 and we write V = u + Ere/4 (where e > 0,
r2 = x2 + y2 and (0, 0) is assumed to be in D), V2 V = e > 0 and so any maximum
of V is on 8D. Hence

2 2

u+E4

where k 1v lbiu are the maximum values of V and u, respectively, on 8D and
R is the largest distance from the origin to 8D. Letting E - 0 in u < Afu +
e(R2 - r2)/4, we see that any maximum of u also occurs on 8D (and, similarly,
any minimum).

The maximum principle enables us to rederive part of the uniqueness theorem
in §5.2 and also to do much more, as we now see.

Uniqueness

For Dirichlet data for Poisson's equation, the difference between two solutions
is a harmonic function vanishing on the boundary. The fact that it attains its
maximum and minimum there means it is zero.

Comparison theorem

Consider two Poisson equations V2u, = f (x, y), i = 1, 2, with the same right-hand
side f and smooth Dirichlet data g; = g, (x, y), such that 91 < g2 pointwise. Then
ul(x,y) < u2(x,y) in D because u2 - ul attains its positive minimum on 8D.
Similarly, if 91 = 92 but the Poisson equations have different right-hand sides ft
and f2 with f, > f2 pointwise, then ul (x, y) < u2 (x, y).

s"Note that our accumulated knowledge of hyperbolic and elliptic equations can be used to
help to understand mixed equations such as (3.13) which are elliptic and hyperbolic on either
side of a `sonic line', in the case that data is given on a curve I' that crosses this line. Clearly we
would have an overdetermined problem if we prescribed Cauchy data on the 'hyperbolic part' of
I' if that data enabled us to find both u and its normal derivative on the sonic line.
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Continuous dependence on the data

This is a trivial extension of the comparison theorem when we let 91 -4 92 (from
above and below). A similar result describes the dependence of u on f.

This last result is the first real evidence that the Dirichlet problem for Poisson's
equation is in fact well posed. But we must remember that we have not yet proved
existence!

In this book we will not delve much further into the vast number of uses to
which the maximum principle and its generalisations can be put, although we note
that the principle can also be used when the dependent variable u satisfies suitable
differential inequalities, as we will see in §5.11, or more general elliptic equations.
The question of existence is the hardest of all and requires a lengthy chain of
arguments, of which the starting point is often the following methodology.

5.4 Variational principles
In certain circumstances, which occur almost as frequently as those under which
the maximum principle applies, it may be possible that the solutions of elliptic
equations are minima or other stationary points of a variational integral. Indeed,
in subjects such as thermodynamics and nonlinear elasticity, it is common to
model processes in terms of such minimisation procedures and only consider the
associated Euler--Lagrange equations as partial differential equation problems a
posteriori. This strategy has great advantages in the computer age, when discrete
approximations to an integral (as, for example, in the finite element method) are
very easy and convenient compared to discrete approximations of a differential
equation. However, in this book we always take the viewpoint that the partial
differential equation is the fundamental model.

As an example, supposing f is given and u minimises

E(u) = IL 12 (Vu12 + f (x, Y)u I dx dy, (5.42)

with or without boundary conditions, we would vary u to find

vn . Vu + qf) dx dy + Q(, 2)E(u + n) - E(u) = IL (

-IL2u - dx dy + Q(r2 ),

neglecting boundary conditions. Because n is arbitrary, E can only attain a sta-
tionary value when u is a solution of Poisson's equation (5.35).

The advantages of working with mine E(u) are not confined to numerical algo-
rithms. For example, we could consider using any one of a number of optimisation
algorithms analytically to construct sequences such that E (un+1) < E (un).
Then, if we could prove that {un}, or at least a subsequence thereof, converges,
the limit would, in many circumstances, be a'weak solution' of Poisson's equation,
i.e. a function which could be proved to satisfy Poisson's equation when multiplied
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by an arbitrary test function and integrated by parts. If we could prove enough
about its regularity, we might then even be able to prove that this weak solution
was a classical one in that the left- and right-hand sides of Poisson's equation were
equal everywhere in D. This is not so unlikely because we know from Chapter
3 that elliptic equations cannot `propagate' singularities; all the singularities we
have encountered make their `presence' felt everywhere, but their effect away from
the boundary has always been very smooth, in fact analytic. Further details of
this procedure can be found in [12], where iterations other than those suggested
by E(u) are used as starting points."

We remark that variational principles have one of their most important prac-
tical applications in the study of eigenvalue problems for elliptic equations, as we
shall see briefly in §5.7.1.

5.5 Green's functions
Green's functions provide the most important technique for gaining insight into the
structure of solutions of linear elliptic equations. These functions are the analogues
of Riemann functions for hyperbolic equations, but whereas Rientann functions
are multidimensional generalisations of Green's functions for initial value prob-
lems for second-order ordinary differential equations, Green's functions for elliptic
equations extend the theory of two-point boundary value problems for ordinary
differential equations.

As usual, we begin with Poisson equations and, as in §4.2, we can proceed in two
ways, both of which reach the same conclusion. Either we can go through a fairly
lengthy analysis using classical functions, or we can take a short cut, requiring
more `infrastructure', by using generalised functions.

5.5.1 The classical formulation
We begin with the Dirichlet problem

V2u = f in D, u = g on OD, (5.43)

where D is a smooth, bounded, simply-connected domain in R2, and we write
x = (z, y).

Our starting point is to recall that the two-point boundary value problem for
the ordinary differential equation

a
0L 1

d
0 44)5) = u(u = )

x2
= f(z), u( = , ( .

is formally solved by

uW = f f (x)G(x, E) dx,t (5.45)
0

where

ebA common one is that resulting from time-stepping in an evolution equation of the type
considered in Chapter 6.



170 ELLIPTIC EQUATIONS

,CG = dal = 0 for x 5 £,

with G(0, i;) = G(1, i;) = 0, G continuous and

(5.46)

(5.47)

Equation (5.45) states that u is the integral of f over (0, 1) weighted by a Green's
function G which has a slope discontinuity at x = i; of just the right size to ensure
that

d2 1

d2 I f (x)G(x, ) dx = f (C)

We can see that this is the case by simply multiplying (5.44) by G and (5.46) by
u, subtracting, and integrating over 0 < x < 1.66

Motivated by this result for ordinary differential equations, we seek a function
G(x, 4) such that, for each E E D,

V2G=0 forx#t. (5.48)

Now, as above, we multiply this equation by u and Poisson's equation (5.43)
by G, subtract, and integrate over D to try to `pick out' u(4). To do this we need
G to satisfy the following conditions.

1. We must have G = 0 on OD, or else we would be left with unwanted boundary
contributions involving Ou/On$&D.

2. We need G to have a suitable singularity at x = analogous to the `kink'
in (5.47).

The second condition is difficult to motivate, but if we guess that this singularity
is isotropic, i.e. the behaviour of G is independent of the direction87 of x - E, we
are forced to try

G(x,4) = constant log lx - E1 + 0(1) as x - 4. (5.49)

With hindsight, we choose the constant to be 1/2r and now we apply Green's
theorem in the form

J
(u_c)ds=ff (uV2G - GV2u) dx,

e(D_D,) D-v,

"Precisely the same argument applies when
2

C
dz2 +P(x)_ +9(x),

as long as we replace CO in (5.46) by

2G
C'G = dx2 - dx (p(x)G) + 4(x)G,

(5.50)

C' being the operator adjoint to C.
87This is unlike the situation in §4.2, where the characteristic directions were vital.
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where D, is a circle with centre E and radius a that has been excised from D.
Noting that 8/BnJ8D. _ -8/8r in polar coordinates centred at E, we find

,) (l f) +0(1)) ed8ID,
Cu- - G' ds = /p2 (u(4) (-2 e) 5;i (

27r

(5.51)

as e -> 0, for some Z such that It - I < e. Substituting into (5.50) and using
(5.43), (5.48) and the data on OD, and taking the limit a -> 0, we end up with our
desired formula

uW = ff G(x, )f (x) dx + (5.52)
18D

There are two immediate remarks to be made about this result.

It is easy to see that an equation similar to (5.52) applies to the Robin problem,
as long as G satisfies the homogeneous form of the Robin boundary condition.
Also it is easy to modify the argument to cater for other second-order elliptic
operators, except that when the operator is not self-adjoint, say when

we have to work with the adjoint operator defined by

VG = V2G - 8x (aG) - (bG).

Although we have defined Green's functions in a framework analogous to that
for Riemann functions, their properties are very different: G depends on the
domain D, whereas R is independent of the initial curve. Moreover, G can only
vanish at isolated points, whereas R is zero for all x > £ and all y > ',. The heart
of the analogy is revealed by the `short-cut' approach, which we now describe.

5.5.2 Generalised function formulation
Precisely in line with §4.2.2, we could, instead of writing (5.49), define G to be
such that

V2G = 8x2 + e GG = 6(x - 4) for 4 E D, (5.53)
y

where we recall 6(x - = 6(x - C)6(y - i) is zero except at x = and is such
that f fD 6(x - 4) dx = 1. Then, assuming that G = 0 on 8D, we can derive (5.52)
in one line by assuming Green's theorem holds for ffD (uV2G - GV2u) dx. As
usual, we simply multiply (5.53) by u, Poisson's equation V2U = f by G, integrate
over D and subtract to get
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OG dsIID (uV2G - GV2u) dx =
(u Gam) ds =

fg(x)

=1 f (u(x)a(x - ) - G(x, 4)f (x)) dx

(x, )f (x) dx.= u(f) - fL G

As discussed in §4.2.2, the justification for the use of Green's theorem is the nub of
the matter and further reassurance concerning its validity is given in Exercise 5.9.

We can now set out our general theoretical framework for an elliptic operator
G with adjoint C. Everything relies on the fact that, if, as functions of x,

CG(x) = d(x - 4) and Cu(x) = f (x),

then, with homogeneous boundary conditions, the identity

A
implies that

(G(x, t)Cu(x) - u(x)CsG(x, t)) dx = 0

(x, 4) f (x) dx.uW = AD G

We can now make some more remarks.
Equation (5.53) emphasises the ancestry of all Green's functions that we outlined
in §4.4. They are such that a linear operator annihilates them at all points
except one. Moreover, if the operator C is self-adjoint with appropriate boundary
conditions, then G is symmetric, i.e.

G(x, C) = G(C, x).

To prove this simply set
CG(x,7I) = 6(x - t])

and use the fact thIL

(G(x, n)CG(x, ) - G(x, )C`G(x, ri)) dx = 0.

This fact is important when reconciling the views of people who boldly assert
that the solution of Poisson's equation with zero Dirichlet boundary data is

u(x) = (5.54)

just aslong as G2G(x, = 8(x-t), by simply differentiating under the integral
sign. Of course, their G is simply the `transpose' of G defined by (5.53) and,
for any self-adjoint operator, there is no confusion. Indeed, this argument shows
that when C iA C the Green's function satisfies CG = 6(x - as a function of
4, as well as CG = 8(x - 4) as a function of x.
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When we extend (5.53) to Rm, we simply find that the singular part of (5.49)
is replaced by

wm
-rm_2 form > 3,

where wm is the surface area of the unit sphere in R1, namely68

f mir"/2/(m/2)!, m even,
wm = lx(m-1)/22m ((m - 1)/2)!/(m - 1)!, m odd.

(5.55)

If D is infinite and u -+ 0 at infinity, G is precisely this function and it models
a point `charge' or point `mass'; this is just our comment before (5.1). When
m = 2, a physical interpretation of (5.49) is as the electrostatic field due to a
line charge as mentioned in §5.1.2. We also remark that the singularity in the
Green's function of an arbitrary elliptic operator takes the form above after the
equation has been put into canonical form.
The whole question of the existence of G is as vexed as that of the existence of
solutions for general elliptic equations, discussed briefly at the end of the last
section 89 Of course, if G does exist, formulae such as (5.52) provide a ready tool
to demonstrate the continuous dependence of the solution on the data. However,
there is one commonly occurring situation where G definitely does not exist and
the procedures above must be modified. Suppose we try to solve the Neumann
problem for Poisson's equation V2u = / as in (5.35), with 8u/8n = g(x) on
8D, and we know that (5.39) is satisfied. We know at once that G only exists
if the term that forces G to be non-zero, namely the right-hand side 6(x - 4)
of (5.53), is orthogonal to the constant eigenfunction. But 6(x - f) has a unit
integral so this can never happen. Fortunately, there are at least two ways out
of this difficulty. One is to give G an extra degree of freedom by choosing

V2GM = 6(x - r;) + cb(x - +I),

pick c = -1 to satisfy orthogonality, and arrive at

uW - u(rl) = lID
IOD

(5.56)

the right-hand side is easily seen to be the sum of a function of t and a function
of q. Another way is to choose

"To prove this quickly, note that

,,m/2 = fm e"2 dx = w,n I r'"-le-'2 dr, where r = lxi.
'^ 0

69We remark that, if we have proved the existence of the solution of a boundary value prob-
lem for an elliptic equation, we can use this information to deduce the existence of a Green's
function. Fbr example, for the Dirichlet problem for Laplace's equation in two dimensions,
G = (1/2a) log ix - 4 + GR(x,C), where GR, the regular part of the Green's function, satis-
fies the boundary value problem G2CR = 0 in D and CR = -(I /2w) log Ix - 41 on 8D.
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V2Gtif = b(x - l;) + c 1, (5.57)

using the fact that 1 is an eigensolutiou. Now pick -1/c to be the area of D to
ensure orthogonality and a formula similar to (5.56) emerges.

As mentioned after (5.52), our definition of G easily generalises to the Robin
problem where (5.36) holds with neither fi nor a equal to zero. If u satisfies
Poisson's equation with this condition, we simply set V2G = 8(x - f) with
aG +,6 OG/On = 0 on OD to ensure that fan (G Ou/On - uOG/On)ds can be
written in terms of G and g alone.
There is one other very important remark to be made about Green's functions

from the computational viewpoint. This is that, if we relax the boundary condi-
tions that we have imposed on G, we can always use (5.50) to relate the values of
u in D to integrals involving both u and Ou/On around 8D. Hence, by taking a
suitable limiting process, as in Exercise 5.13, we can derive a linear integral equa-
tion for the values of u or Ou/On on OD for any of the boundary value problems
involving (5.36). The form of this integral equation depends on the problem and
the way in which we manipulate (5.50), but it is the basis of the so-called boundary
integral method [6] for solving Laplace's equation and many other elliptic equa-
tions. Discretising the integral equation over the whole of OD gives fewer linear
algebraic equations to he solved than would be necessary with a conventional finite
difference or finite element discretisation, but the other side of the coin is that the
matrices resulting from the boundary integral discretisation are `full', in that they
have few zero entries.

It is with sadness that we must tell the reader that explicit formulas for Green's
functions rarely exist (see [34] for a catalogue). However, things seem a little better
than they are for Riemann functions; although we can only cope with a small
handful of equations, there are quite a few geometries that have enough symmetry
for us to be able to find G.

5.6 Explicit representations of Green's functions
5.6.1 Laplace's equation and Poisson's equation
We have seen that the Green's functions that are as well-behaved as possible at
infinity in Rl" are (1/2ir) logr and -1/4zrr for in = 2 and m = 3, respectively.
Things rapidly become more complicated when boundaries are introduced, as we
now see.

5.6.1.1 Circles and spheres: Dirichlet and Neumann conditions

Suppose D is a circle with centre x = 0 and radius a in R. For the geometrically
minded, we can proceed by defining the point inverse tot by r;' = all;/412 and set
R = Ix - j and R' = Ix - 4'I, as in Fig. 5.4.70 Then R/R' = 141 /a when r = lxi =
a, and log R and log R' are both solutions of Laplace's equation since changing

"When X lies on the circle, triangles XOP and QOX are similar because they have a common
angle a-a between sides in the same ratio, as OQ/OX = OX/OP by the image condition; hence,
R = R'1tl/a when jxj = a.
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Fig. 5.4 Image points in a circle or sphere.

the origin does not change the equation. Thus, recalling that G - (1/27r) log R is
bounded as R -+ 0, and since G = 0 on r = a, the formula for G is

G = 2_- (logR-log(R'!i)). (5.58)

This is an example of the method of images, ' being the image of t in r = a. With
reference to electrostatics, the idea is that the field generated by a line charge
inside a perfect conductor in the form of a circular cylinder is the same as that with
the conductor replaced by an equal and opposite line charge through the inverse
point; this idea of replacing boundary conditions by appropriate distributions of
singularities is one to which we will return several times. To calculate u(t) we need
to let a be the polar angle off and calculate

On

- 8G)

r=a dr r=a

47rR28r
(r2+IEI2-2rItlcos(9-a))

r=a

(r2+2_2rf1c059_)
4rrR'2 8r

a2_1 4 1 2

2,raR2

r=a

since R/R' = IEI /a. Hence, when f = 0, we derive the famous Poisson integral

u(f) = a2 - IFI2

fo

2" 2 9(B) dO (5.59)
2'r ICI + a2 - 2a ItI cos(9 - a)

This method also works if we consider the region exterior to r = a, with one
important proviso. Since the region is both infinite and multiply connected we may
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need to take especial care to exclude eigensolutions. For the Dirichlet problem, it
is sufficient to say that u = o (log r) as r -4 oo so as to exclude the eigensolutions

In \
log a and (rm -

rn
I (A cos nO + B sin nO),

wheren is an integer greater than zero, and A and B are constants.
No formula such as (5.59) is available for the Robin condition (5.13), but the

Green's function for the Neumann problem can still be represented by images.
We will leave the details to Exercise 5.17, where it is shown that when Its > a
the image system comprises two line charges inside the circle when we exclude
eigensolutions for which u = constant 9 + o(1) as r -+ oo. On the other hand, if
Its < a, we know there is no usual Green's function and we have to resort to (5.56);
the formula quoted in Exercise 5.18 is an example of this.

Since Fig. 5.4 could equally well be drawn in R1, the ideas of inversion can
often be used for spheres as well as for circles, with G = -1/47rr + 0(1) near the
singularity in spherical polar coordinates.71

For the next class of problems, Green's functions can be found by `turning a
handle' (in fact, by taking Fourier transforms).

5.6.1.2 Half-spaces

Suppose we have to solve Laplace's equation in y > 0 in R2, with Dirichlet data
u = gp(x) on y = 0 and suitable behaviour at infinity to ensure uniqueness. Then
we can either use images directly, or take the limit of (5.58), to find that

G
- 27r log IX - 4'1

so that the solution, which we write as7L uD(x, y), is

UD(X,Y) = 1 f
0" 9D(,)d (5.60)

7r oo (x - l;)2 + y2

Note that uD (x, y), as defined by (5.60), also satisfies Laplace's equation for y < 0;
its normal derivative is continuous across y = 0, but UD itself has a jump of 29D
there. It also shows that the behaviour at infinity that we need is u = O(1/r) as
r2 = z2 + y2 -, oo.

We could have derived this result more methodically by introducing the Fourier
transform of uD,

uD(k,y) = fuDxYei
91 We will not pursue this here, but there is another mysterious-looking connection between

inversion and Laplace operators in IR"'. This is that, if u(r, B1, ... , B,"_ 1) is a harmonic function
in R", with r being distance from the origin and being polar angles, then so is
r2-mu(n2/r,B1,...,8m_1). This result basically comes from separating the variables in polar
coordinates and noting that powers of r always appear as pairs of the form ra and r-a-"+2.

721n this section, for ease of presentation, we use the Green's function to find u(x) rather than
u(4) as hitherto. There should be no confusion as G is symmetric.
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using the postulated decay at infinity, to obtain

d2uD - k2uD = 0,dye

with

(5.61)

UD(k, 0) = 9D(k) = f
a

9D(x)e'kz dx.

oc

Hence, assuming we restrict ourselves to real k,

UD(k, y) = 9D(k)e-Ikly = 9D(k)H(k, y), (5.62)

say. Now the Fourier inversion of H can be

f
performed on the real axis to give

H(x,y)
r00

a ikZ-lklar dk = -
00

a-ka' cos kx dk =
A z2 +_ -

J ( y2a 2).

Hence (5.60) follows by the convolution theorem{; clearly

OG ,7=0

This method has the advantage of working for Neumann and Robin as well as
Dirichlet data, and in principle it can be used for any constant-coefficient elliptic
equation in a half-space.

If UN(x, y) is the solution of the Neumann problem in y > 0, in which
OUN/ay (x, 0) = gN(x) is given, it is easy to show that a Green's function is

G- 2a
(logIx - C + loglx-0)

so that
1 '00

1N(x,Y) = Zx
f 9 N + y2) (5.63)
/ o0

and an arbitrary constant can be added. Note that UN (X, y) can only be bounded
at infinity if f°°00 gN (t) dt = 0, which is the analogue of the usual solvability
condition in a finite domain. Note also that UN(x, y) satisfies Laplace's equation
for y < 0 and is continuous across y = 0, but that its normal derivative has a jump
of 29N(x). Moreover, this solution, which is a superposition of Green's functions
that are singular on the x axis, has a simple interpretation as a'source distribution'
in fluid mechanics, gravitation or electromagnetism.

Still in connection with the half-plane geometry, there is one very useful piece
of jargon that can be introduced. It is easy to see that the Fourier transform of
UN is

k a Ikly,UN(k,y) = -LL
Jkl

and hence the Dirichlet and Neumann data for u are related by

§N (k) = - IkI9D(k). (5.64)

This is an example of a so-called Dirichlet-to-Neumann map and it sheds further
light on the ill-posedness of the Cauchy problem for Laplace's equation in y > 0.
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By the Cauchy-Kowalevski theorem, there is a unique local solution to this Cauchy
problem if 9D and 9N are the transforms of arbitrary analytic functions, but the
solution only exists globally in y > 0 and has the required properties at infinity if
9D and 9N are related by (5.64). To interpret this result, one procedure is to note
that 9D is the convolution of ON and the Fourier inverse of -1/Iki. Unfortunately,
the latter is difficult to invert although, if we are daring, we can show that ik/IkI is
the Fourier transform of 1/ax (but we must use the arguments of §4.2.2 and then
wait for Exercise 5.21 to see this). This suggests that dgD/dx, whose transform is
-ikgD, is the convolution of gN and 1/7rx, which tempts us to write

d9D = _I /00 9N(f) dC
dx 7r J 0 -x '

(5.65)

providing we can make sense of the integral. A precisely similar argument for (5.64),
rewritten as

yields

9N(k) = ik
(kI)

9D(k),

00 d9D
9N (x) a£x , (5.66)d

but again we need to interpret the integral. Fortunately, we can revert to (5.60)
and integrate by parts to write it as

1
uD(x, y) 00_ - J tan- £ - x dgp dt

7r Y

for y > 0, where we must define the inverse tangent as lying between -ir/2 and
it/2. As y y 0,

tan-' (% =2-£yx+o(y)
for - x > 0 and - z < 0, respectively. Hence, in order to find the limiting be-
haviour of UD (z, y) as y 10, we need to split the integral into lim,0 00 2+ti + J 0O )
so that, when y is small,

uD(x+y)=Em(- f
2 - E

2
dt dt

00 /

0" ( -2+y+... d£ dal+i
f+ [ /

=9D(x)+EPVr
a

d9D --x+...,

where

PV
rm

d9D = lim
X -f

+ d9D dt (5.67)
/-00 d1 - x !-+0 (,00

f
+E dt t - z
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is called a principal value integral. We can now differentiate with respect to y and
set y = 0 to find

F00
9N(x) = 1 PV

d9°
d ,r dt f - x (5.68)

which tells us how to interpret the integrals above. The right-hand side of (5.68)
is called the Hilbert transform of dgD/d{.

5.6.1.3 Strips and rectangles

It is a simple exercise to repeat the transform calculations above in the strip
0<y<1,-oo<x<oo,say, with

u(x, y) = FX 9(f)H( - x, y) df, (5.69)

where now
1

K
e_ik= sinh ky

dk.H(x, y) =
27t sinh k

The function H is again the y derivative of the Green's function evaluated at rj = 1
and, by writing it as an infinite series of contributions from poles at k = in7r,
n = 0,±I,..., we can interpret the Green's function in terms of an infinitely
repeated series of images in y = 0 and y = 1.

It is sometimes possible to solve problems in semi-infinite strips by using a
different kind of image. Suppose that u is harmonic in the half-strip 0 < y < co,
0<x<1,andthat

u(x,0) = g(x) for 0 < x < 1, u(0,y) = u(1,y) = 0 for y > 0,

together with boundedness conditions at (0, 0) and (1, 0). We simply extend the
problem periodically to -oo < x < oo with u odd in x; then (5.60) gives

1 1
du(x, y) _ f g(0 ( (x - 2n - C)2 + y2 - (x - (2n + 1) - {)2 + y2) ,

=-x
(5.70)

which is much quicker than using Green's functions. We could also have proceeded
by separating the variables, to obtain a series which converges well for large y, in
contrast to (5.70), which works well for small y.

To those who find the prospect of similarly constructing series of images in
a rectangle daunting, the following technique for finding Green's functions will
come as a relief; in fact it works in any bounded domain for which we know the
eigenfunctions of the Laplacian. Suppose we want to solve the Dirichlet problem
for Laplace's equation in -a < x < a, -b < y < b, with, of course, appropriate
boundedness conditions at each vertex. As usual,

VG = 5(x - 06(y - r,), (5.71)
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with G = 0 on the boundary.73 What we now do is define the finite Fourier
transform of G, which is a generalisation of the Fourier series we discussed in §4.4.
There we expanded arbitrary functions in terms of complete sets of eigenfunctions
of the appropriate eigenvalue problems; here for an arbitrary function F(x, y) we
simply define

b f °IL = f f F(x, y) sin minax
sin

6Wiry
dx dy, (5.72)

b o

where the kernel is just an eigenfunction of the Laplacian with zero Dirichlet
conditions, and corresponding eigenvalue -(m27r2/a2+n27r2/b2). Multiplying both
sides of (5.71) by this kernel and integrating gives

2 2 2 2la
J

.Gmn = - sin sin n6 / (
, a2 + W2

The inversion formula for (5.72) in this case is exactly that for Fourier series,
namely

G = 1 m7rx n7ry

ab
mn sin a sin b (5.73)

m.n

Of course, (5.72) can be generalised and used to obtain G in a general domain
provided that we know the eigenfunctions of the Laplacian in that domain. We
return to this question in §5.7.2.

5.6.2 Helmholtz' equation
Because of its importance in diffraction theory, we will accord Helmltoltz' equation
a special section. We will restrict ourselves to two dimensions for simplicity, and
we see that the Green's function for the whole plane satisfies

(02 + k2) G = b(x - t;). (5.74)

By writing this in polar coordinates, we see that, instead of G being a combination
of log r and a constant as it was for Laplace's equation, it is now a combination of
the Bessel functions Jo(kr) and Yo(kr). Clearly, we need G to have a logarithmic
singularity with strength 1/27r as r = Ix - t j -+ 0, which, from known properties of
}o, demands that G = However, we need to specify
the behaviour as r -+ oo more carefully before we can proceed. In particular, we
need to prescribe how much of the solution represents an `outgoing' wave as r - oo.
To do this we recall from Chapter 4 that waves in which u - f (r + aot) as r -+ 00
are incoming and those in which u - f (r - aot) are outgoing.74 Writing

731n fact, the problem for G is a good model for certain industrial processes involving current
flow in a conducting plate to which an electrode is attached at x y = q; G is simply the
electric potential.

74The functions f (r ± aet) are not, of course, exact solutions of the wave equation except
in one space dimension, but as r -4 oo we expect arbitrary waves to become more and more
one-dimensional.
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` - eik(rfaat)
J

and remembering the factor e-i7t in our derivation of (5.74), we obtain the moti-
vation for a radiation condition for Helmholtz' equation in the form

OG - ikG = o(G)
8r

as r -+ oo, which is just a concise way of writing that G tends to a+ikr multiplied
by some function which may decay algebraically in r, rather than a-'kr multiplied
by such a function. In fact, it can be shown by using asymptotic methods (see
Exercise 8.11) that this radiation condition can be written more precisely as the
Sommerfeld radiation condition

lim r1'2 (G - ikG f = 0.r-oc
\\\

(5.75)

A quick glance at the asymptotic expansions of Jo and Yo [8] shows that the only
combination that satisfies (5.75) is a multiple of the Hankel function

Hou)(kr) = Jo(kr) +i}o(kr). (5.76)

Thus

G=-4Ho1)(kIx -tl), (5.77)

which, as expected from §5.1.5, is complex; it is still symmetric in x and t because
V2 + k2 is self-adjoint.

It would be sadistic to inflict on the reader a list of Green's functions for
Helmholtz' equation in the presence of boundaries, even though there are precious
few of them; one example is that of a rectangle with zero Dirichlet data, where we
can use a simple modification of (5.73), as long as -k2 is not an eigenvalue of the
Laplacian (see Exercise 5.16). However, we can point out that, although the pres-
ence of finite boundaries in an otherwise infinite domain requires that G should,
as usual, satisfy appropriate homogeneous boundary conditions on them, the ra-
diation condition (5.75) remains unaltered.75 We simply cite what can happen if
the geometry is simple enough. Suppose, for example, that

2

5r2 +r9r+r j02 +2u=0

7511 can be shown that the presence of finite boundaries merely introduces a 'directivity'
into the far-field so that

G- A(el,...,em-i)eikr
r(m-t)/2 '

where m is the dimensionality and Os,...,O,,,_1 are polar angles (see Chapter 8); this makes
an interesting contrast with the far-field of the Green's function for Laplace's equation, which is
isotropic in general.
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in polar coordinates, with u = f (0) on r = 1. Then the solution in r > 1 that
satisfies (5.75) is

u(r, 0) _ t E (an cos n0 + bn sin n8) H,(,) (kr),00

n=0

and the solution in r < 1 is

u(r, 0) = (en cos n0 + do sin nB) Jn (kr).00

n=O

Here an, bn, cn and do are easily related to the Fourier coefficients of f (0). Also
J,(x), the Bessel function of the first kind of order n, satisfies

d
dxn + 1 dn + (i_ TZ )in = 0, Jn(x) = 2nn (1 + O(x2)) as x -a 0,

while Y, (x), the Bessel function of the second kind, is equal to

J,,(x) cos nir - J_(x)
sin nir

(5.78)

for non-integral n, and to the limit of this expression for integral n; it is singular at
the origin (for more details see [8]); the combination J. +iYn is known as a
Hankel function of order n. For future reference, we note that J,,(x) is proportional
to x" fo cos(x cos 0) sin'" 0 dB; this result is true even for n complex.

Lastly, we note that the situation becomes more complicated when the bound-
aries extend to infinity because the condition for outgoing waves may have to be
modified.

5.6.3 The modified Helmholtz equation
The modified Helmholtz equation,

(V2 - k2)u = 0,

has quite different properties from the ordinary Helmholtz equation, because in
an unbounded domain its solutions either grow or decay exponentially at infinity,
rather than algebraically. Its Green's function in R2 is the solution of

d2G 1 dG 2

dr2 +rdr -kG=0

that decays at infinity and has the correct logarithmic behaviour at the origin,
namely G = -(1/2r)Ko(kr), where Ko(kr) is a modified Bessel function of the
third kind, equal to (br/2)H0("(ikr). It is left to the reader to show that the
Green's function in R3 is -e kr/47rr; note that neither of these Green's functions
is oscillatory.
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* 5.7 Green's functions, eigenfunction expansions and transforms
Results such as the series (5.73) suggest that we look more closely at the relation-
ships between Green's functions, eigenfunctions and transforms. They motivate
thinking of the Green's function G(x, t) for a self-adjoint operator C as a super-
position of eigenfunctions Oa(x) that satisfy Co,, = Aoa, and then regarding our
basic formula (5.52) as a transform formula in the sense of §4.4. Put another way,
the solution of Cu = f emerges as a superposition of 4a whose coefficients are easy
to find because

J Oaf dx = J ¢a Cu dx = J uLoa dx = A J u¢,\ dx.

Each elliptic problem can thus be solved by its customised transform, taken with
respect to its eigenfunctions 0a, and this procedure can be modified to cater for
non-self-adjoint operators. However, before we can describe the method we need
to review a few important results about eigenfunctions and eigenvalues of elliptic
operators.

5.7.1 Eigenvalues and eigenfunctions
Most of what we need to know about this large subject is a generalisation of
the Sturm-Liouville theory for two-point boundary value problems for self-adjoint
second-order ordinary differential equations [44]. In that theory, a principal result
is that the eigenvalues are real and the eigenfunctions are complete and can be
orthonormalised, those corresponding to different eigenvalues being orthogonal
automatically. The orthogonality results are proved in the same way as for matrices
but the completeness is more complicated. One relatively painless way to generalise
this procedure to a Dirichlet problem in more dimensions is to note that, if we
define the bilinear form a(u, v) of two suitable functions u and v by

u dxa(u, v) =
1D ID

uLv dx = vL

for a self-adjoint elliptic operator C defined in a domain D, then the Rayleigh
quotient

ID
a(u, u) dx/ J (uI2 (Ix, where u = 0 on OD,

D

is minimised" by the eigenfunction Oo corresponding to the lowest (smallest in
modulus) or principal eigenvalue of

Cu=Au, u=0 on OD.

Moreover, the (n + 1)th eigenfunction 4n can be found by carrying out the same
minimisation over test functions u that are orthogonal to their n predecessors.

761'his is an easy exercise in the calculus of variations (see Exercise 5.15).
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Completeness can then be proved by using this minimisation property to show
that the remainder after n terms in a Fourier series type of expansion is bounded
by the inverse of the nth eigenvalue, in the mean-square sense (see [48]). This
procedure also works for Neumann and Robin problems, assuming the correct sign
in the latter boundary condition.

Another result of great practical importance is that the lowest eigenfunction of
the Dirichlet eigenvalue problem has one sign. For second-order ordinary differen-
tial equations this is proved relatively easily by considering the way in which the
zeros of a function u(x) such that Cu = Au, u(O) = 0, `bunch up' near x = 0 as \
increases. However, this idea does not work for elliptic equations and, instead, we
set ourselves the task of showing that the zeros (or nodal lines) of the (n + 1)th
eigenfunction 0n divide D into no more than n + 1 subdomains. As explained in
detail in [12, 21], we assume the contrary and suppose there are m > n + 1 such
subdomains. Then, picking any n + 1 of these and denoting by ¢ni the restriction
of the eigenfunction to the ith of these n + 1 domains (i.e. ¢,, is 0n in the ith
subdomain and zero elsewhere), we can construct a test function

n

u = L. ai0ni
i-0

that is normalised and also orthogonal to the preceding eigenfunctions , ... ,
4'n_1. For this test function, the Rayleigh quotient becomes

at f OniLOni dx/ a?0ni dx = \n,
i=0 D i=0

since Lq5ni = AnOni. This does not prove rigorously, but it does strongly suggest,
that u is the (n + 1)th eigenfunction; but we know it cannot be because u has
singularities on n nodal lines. We hope this contradiction will give the reader
enough confidence henceforth to assert that the principal eigenfunction has one
sign.

5.7.2 Green's functions and transforms
With this background, let us now embark on our discussion of Green's functions
and transforms. The series (5.73) for the Green's function of a rectangle suggests
the following result. Suppose the spectrum A. of a self-adjoint elliptic operator C
is discrete,77 that zero is not an eigenvalue,78 and that the real orthonormalised
eigenfunctions are 0n(x); then

G(x, On (x,)0 (4). (5.79)
n n

This result can be derived by writing G as En cn(f)On(x) and observing that
LG = En cn(5)An4n(x) can only equal 6(x - r:) if c,n(t)Am = we simply

"This usually means D is bounded, 8D is not too irregular and the operator has no unbounded
coefficients when written in canonical form.

78When zero is an eigenvalue, we must employ the devices used to introduce generalised Green's
functions in §5.5.



TRANSFORMS 185

multiply each side by 0,,,(x) and integrate. Moreover, either by using (5.79) with
A = 0 assumed not to be an eigenvalue, or by directly taking a finite Fourier
transform, the solution of Cu = f is

u(F,) = (Lf )4n(x) dx f ) (5.80)
/ An

This formula is fundamental to our discussion in the next section, but before we
put it into practice we need to make some remarks about normalisation and how
to cater for complex eigenfunctions.

We assume we have a self-adjoint operator G and boundary or boundedness
conditions such that the normalised eigenfunctions7 0a satisfying G¢.% = AOa are
complete (when it is convenient, we will use 0a to denote what we called O(x, k)
in (4.26), where A and k are related in a known way). This means that an arbi-
trary function f (x) can be expanded, either as a series Ea fa¢a(x), or an integral
f 1.\O.\ (x) dA, or a combination of both, depending on whether the spectrum is
discrete, continuous, or both, respectively. In any case, if the eigenfunctions are
orthonormal, we expect that

fA _ / dx; (5.81)
U

this is just the familiar Fourier series result in the discrete case and usually the
continuous spectrum result can be derived by taking a limit such as L -> 00
when the Fourier series is on the interval (-L, L). However, we must be careful
about what we mean by normalisation when we take this limit and, to illustrate
this important point, let us return to our Fourier transform discussion in §4.4.
Suppose we take C = d2/dx2, 0 < x < oo, and we seek eigenfunctions that vanish
at x = 0 and are bounded as x -+ oo. The only possibility is that A is a negative
number, in which case 0a is proportional to sin kx, k = but what is the
normalisation? To answer this question, we specialise the Fourier transform and
its inverse to odd functions to show that

u(x) =
2 / (f° u() sinkdI sin kx dk.

o

Now, this double integral is, formally,

2 00 00

u({) sinkCsinkxdkd
7r o 0

and so we can make the interpretation

f
00

sin k{ sin kx dk = 2 b(x - ). (5.82)
0

T91Ve denote the spectrum by the single scalar A even though a is parametrised by m numbers
when there are m independent variables x.
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Thus the normalised eigenfunctions are s(x, k) = 217r sin kx and we have what
is called, to within a multiplicative constant, the Fourier sine transform. If we
define

/e(k) = jf(x)5(xik)dx,

the inversion formula is

f (x) = f M fa (k)4(x, k) dk.
0

In practice, most people work with 7r/218(k) and retain the factor 2/a in the
inversion; the same remark about normalisation applies to the Fourier transform.

The lesson to be learnt from this discussion is that, if we define fA by (5.81),
we should always be able to use the inversion formula

f (x) = f fa0a dA, (5.83)

as long as we are prepared to use results like (5.82) to define the normalisation.
We must also be careful in defining the range of integration, which is very problem
dependent and leads to a sum over a discrete set of A when the spectrum is discrete.
In such a case, f, is a superposition of delta functions and (5.83) is a generalised
Fourier series.

We finally remind readers of the symmetry of (5.81) and (5.83) compared to the
Fourier transform formulae i(k) = f f (x)e'kx dx and f (x) = (1/27x) f f (k)e`'ks dk.
This reflects the fact that (5.81) depends on 0,\ being real. Since we use the complex
eigenfunctions e'k; for the Fourier transform, all inner products for such problems
need to be defined for Hermitian operators, as explained in §4.4. Thus we need to
define

(u, v) = f u(x)v(x)dx, (5.84)

D

which means that, in (5.81), the Fourier coefficients are with respect to the con-
jugate eigenfunctions. When the eigenfunctions are complex, the crucial result on
which the theory of transforms depends, and of which (5.82) is a special case, is

f ¢a(x)Q.%(x') dA = d(x - x'), (5.85)

where the integration is taken over whatever range is used in (5.81).

5.8 Transform solutions of elliptic problems
As happens all too often with very general theories, we soon encounter hideous
technical complications when we try to apply the ideas of §5.7 to specific elliptic
problems, even in two dimensions. This is simply because of the difficulty of iden-
tifying and characterising the eigenvalues and eigenfumctions of partial differential
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operators in any useful way. Fortunately, there is a widely occurring class of prob-
lems where we can decompose these eigenfunctions into those of ordinary differen-
tial operators, and we will henceforth restrict our attention to this class. They are
characterised by the property that the variables are separable, so that the partial
differential operator can be manipulated into the form C(x, y) = C1(x) + £2(y),
where Cl and G2 only involve coefficients and differentials in x and y, respec-
tively. For simplicity, we will also restrict attention to cases where the original
differential equation is homogeneous, i.e. has zero right-hand side; when the right-
hand side is non-zero it is possible to proceed by expanding it in terms of the
eigenfunctions of C, but this often leads to considerable technical difficulties. As-
suming separability and homogeneity, the representation of u as a double series
u = E cmnomn(x, y), where Co.. = Amncmn, simplifies to u = E caOa(x),ia(y),
where C j Oa (x) = A O.% (x) and C2+ba (v) = -\ (y). For homogeneous problems in
which separability is not possible, all that we can say is that the solution can be
represented as a series in $mn, but an explicit formula for Omn is rarely available.

Let us now turn to some examples.

5.8.1 Laplace's equation with cylindrical symmetry: Hankel transforms
Suppose we wish to solve Laplace's equation in cylindrical polars,

02U 1 9U I 02U 02U

r2 + r 8r + T2_ a_2 2 + 8z2
0 (5.86)

U 8

in z > 0 with u(r, 8, 0) = g(r), so that the solution is independent of 6, and with
whatever decay rate is needed at infinity to ensure uniqueness. We recall that, to
find the solution (5.60) of the half-plane problem in two dimensions, it was easy to
take a Fourier transform in x and solve the resulting ordinary differential equations
in y. This was because the eigenfunctions of d2/dx2 are so easy to find. When we
separate the variables here we find

dz
ar2 +

r r = AmA.

Hence we have no problem with the z derivatives in (5.86), which lead to eigen-
functions e'`4, but to take a transform in r we need to consider the spectrum
of d2/dr2 + (1/r) d/dr, which is not a self-adjoint operator. Hence, as in §4.5.2,
for the function 0,\(r) that describes the dependence of u on r, we consider not
the eigenvalue problem

d + r ddr = Ana

but, instead, the self-adjoint problem

(5 87).
dr
d (rdd ! ) = Aro

The factor r on the right-hand side introduces a slight complication into the ar-
gument in §5.7, namely that a weight function has to be introduced into the inner
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products: with reference to (5.81), if G is self-adjoint and £4 = Aq(x)¢,a, where
0a is real, we simply find that, in one dimension, our basic Fourier transform
formula must be changed to

fa = ff(x)q(x)A(x)dx, f (x) = f faoa (x) dA, (5.88)

assuming now that Ox are normalised so that f q¢2 dx = 1. In terms of generalised
functions, this equation merely reflects the fact that (5.85) has become

f cba(x)ci (x')q(x') dA = 6(x' - x). (5.89)

For (5.87), the eigenfunctions are 0 = Jo(kr) and Yo(kr), where A = -k2,
0 < k < oo, and Jo and 'a are Bessel functions of zero order. The latter is
discarded because it is unbounded as r -+ 0 and we require the solution of (5.86) in
the region r >, 0. To conform with conventional usage, we label the eigenfunctions
with k = instead of A and, as in §4.5.2, write the Hankel transform

Ii(k, z) =
fM

rJo(kr)u(r, z) dr;
0

we thereby obtainso

with
d2 - k2u = 0 for r > 0,

(5.90)

(5.91)

u(k,0) = g(k).

In order to write down the inversion formula for (5.90) from the recipe in §5.7.2,
we must first normalise Jo(kr). We have effectively done this in (4.48), but a
more direct procedure is to revert to a limit of the type considered in §4.4 and
consider functions v(r) defined on 0 < r < R, with v(0) bounded and v(R) = 0,
subsequently letting R -+ oc. The `Fourier series' corresponding to the operator
d/dr(r d/dr) is

v(r) = EanJo(knr), (5.92)

where kn is such that Jo(kR) = 0 and

R
an = f rv(r)Jo(knr) dr /LR (kr) dr .rJ

0

Now, letting R -4 oc and using the famous result that Jo(x) is approximately
2/ix cos(x - it/4) for large x, we find that (1/R) f rJo dr -+ 1/irk,,.

801f you prefer not to write this down at once from §5.7, simply evaluate
1

, or orJ
S Jo(kr) ( (r ) + r' 2 ) - u 1 ' (r B_ Jo(kr)) + k2rJo(kr))1 dr = 0.
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Thus, since, for large k, the k are almost separated by x/R, the sum (5.92) can
be thought of as a Riemann integral, giving

v(r) -+ f °° kv(k)Jo(kr) dk, (5.93)
0

as R -4 oo, where

rv(r)Jo(kr)dr; (5.94)v(k) = f

this is just the formula before (4.48). The asymptotic behaviour of Jo(x) for large
x means that no normalising factor needs to be introduced into (5.93), in the same
way that none would have been needed for Fourier transforms had we worked with
(1/ 2ir)e'kx instead of elk,. Thus we can assert that81

u(r, z) = J OO kJo(kr)u(k, z) dk
0

and we can now solve our problem by substituting u = g(k)e ka into this inversion
formula.

Reverting to our discussion at the beginning of this section, we could have
adopted a full-blooded approach and tackled the problem in r and z simultaneously
as a brute-force application of the ideas of §5.7. The eigenfunctions would have
been 4(r, z; kl , k2) = e'k't Jo(k2r), with kt and k2 real and positive, and writing

00 00

ci= f (r,z;ki,k2)u(r,z)rdrdz
0

would have given (ki - kz )Q, = 0. The only possibility would then be for ¢ to be
a generalised function82 with support at kt = k2 and this would also have led,
eventually, to the same result.

We also point out that there is another important method for many prac-
tical problems for Laplace's equation with axial symmetry. In (5.63), we super-
imposed two-dimensional Green's functions, but for (5.86) we can superimpose
three-dimensional ones to write the general solution as

0= ro d
(r, z) r2 + (z - {)

(5.95)

for some suitable weight function g (we also note that this would be reminiscent
of the general solution (4.61) for the wave equation, were we to boldly replace aot
by iz). It is fairly easy to see (as in Exercise 5.33) that 0 decays at infinity and
that 0 = -2g(z) logr + O(1) as r -a 0.

"The equation (5.89) reads
TO

O r'kJo(kr')Jo(kr) dk = B(r' - r);
0

anyone puzzled by this can see the explanation about normalisation after (5.98).
"The interested reader should verify that the only distribution f(x) that satisfies xf(x) = 0

for all x is a constant multiple of the delta function.
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5.8.2 Laplace's equation in a wedge geometry; the Mellin transform
When the separation of variables strategy is applied to, say, Laplace's equation in
a wedge with data on 9 = 0 and 9 = a in polar coordinates, it leads us to the
eigenvalue problem

d20a 1 dO A

dr2 + r dr = r2
for the function 0a describing the r dependence of u, because the only term involv-
ing a 0 derivative is (1/r2) 82/862. As in (5.87), we write this in the self-adjoint
form

dr (r d2) =rya, (5.96)

with eigenfunctions rfk, where A = V. Suppose we require u to be bounded as
r -+ 0 and as r -+ oo. It is tempting to define u(k, 0) = fo rk-lu(r, 0) dr in line
with (5.88), but we could never define an inversion formula because of the difficulty
of normalising r*. This is an all-too-common situation in transform theory but it
can be overcome by the idea introduced in §4.4 of 'complexifying' the transform
as a function of k. In Chapter 4 we found that we could only obtain bounded
eigenfunctions of d2/dx2 as (xi -+ oo if A is real and negative; here we only get.
boundedness as r -> 0, oo if A in (5.96) is real and negative, i.e. if k is purely
imaginary. Hence, we define the Mellin transform by

u(k, 6) = jr1_1u(r,0)dr (5.97)

for suitable complex values of k. Instead of an inversion involving an integral like
fa rku(k, 6) dk, we expect

fn(k)r_cuk,9)dk;u(r, 0) = (5.98)

here n(k) is another annoying normalising factor and the sign change in rk _+
r-k comes about because the fact that k is imaginary requires us to work with
conjugate inner products, as in Fourier transforms. We hope that by now the
reader is comfortable enough with generalised functions to say that

fioo W)k-lr k dk = i r°o (r,)-'eiklog(r'/r)
dk

100

= 21rib(r' - r);

the penultimate step comes from (5.89) and the discussion before (4.29), and the
final one from the fact that, if f (x) is monotone and f (0) = 0, then b (f (x)) _
f'(0)I-16(x). Hence n(k) = 1/21ri. We remark that, in the same way that Fourier

transforms can be applied to functions that are not square-integrable by 'shifting'
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k up and down in the complex plane, so can (5.98) be made more widely applicable
by taking the inversion contour from c - ice to c + ioo for some appropriate real
constant c.

We can make our usual statement that, although the Mellin transform is usually
defined as (5.97) with k replaced by s, it would really be more self-consistent to
replace k by is (the same remark applies to the Laplace transform).

As an example, suppose that

2 2

52 +r8r+r 892 =0,
with

u=uo(r) onO=a and
Co =0 onO=0,0<r<oo.

When we proceed as with the Hankel transform, we find that

2 -k2u=0,

with

and so

Thus

If, say,

u=uo(k) on 9=a, dB =0 on8=O,

u(k,9) = uo(k)
cos k8

coska

(5.99)

u(r,O) j r_kuo(k)coskadk. (5.100)ia

uo =
f1, 0<r<1,
10, 1<r<oc,

we need to take ltk > 0 in (5.97), so that uo = 1/k and then, with k = irc,

11 1 r
U

Z
c
cosh sin(iclogr)d

x
,J ,

0

the first term coming from the residue at k = 0.

*5.8.3 Helmholtz' equation
For this section only, we replace the k in Helmholtz' equation by unity, in order
to avoid a notational clash. In a half-plane, transform methods for Helmholtz'
equation, now written (V2 + 1) u = 0, are cursed by the presence of branch points
in the transform plane (which we still denote by k). For example, when Dirichlet



192 ELLIPTIC EQUATIONS

data u(x, 0) = g(x) is given on y = 0, the simple formula (5.62) for Laplace's
equation is replaced by

u(k,y) = g(k)e`y k `' (5.101)

and great care has to be taken over the definition of k --1 and the appropriate
choice of inversion contour (remember we have to consider complex functions u).
We will content ourselves with just one transform solution which will be useful
later in this chapter and in Chapter 8. This concerns scattering of radiation by a
half-line and is called the Sommerfeld problem.

As in §5.1.5, we consider a plane sound wave in which the incoming field is
u4114c = e-ircoe(e+a) incident at an angle a on a rigid barrier along the negative
x axis, on which u vanishes (see Fig. 5.5). We are led to the following boundary
value problem for Helmholtz' equation in -7r < 9 < 7r:

492U 2

Ore + r Or
+

r2 092
+ u = 0,

with

(5.102)

u->0 as8->-n,a,
and u satisfies an appropriate outgoing condition as r - oo. In the `shadow' region
it - a < 9 < ir, this is simply (5.75), namely

Ou - iu = o(r-1/2). (5.103)
Or

However, in the directly illuminated region -lr + a < 9 < 1r - a, (5.103) must be
satisfied by u - e ircos(O+a), and in the reflected region -ar < 9 < -ir + a, it must
be satisfied by u - e-ircos(e+a) + e-ircos(6-a)

As in earlier examples, we have an easy eigenvalue problem for the operator
02/092, but now the eigenvalue problem in r takes the self-adjoint form

Fig. 5.6 The Sommerfeld problem.
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dr (rddr) + rQA = Ana
(5.104)

Since the solutions of (5.104) behave like rt"a or, when A = 0, like log r as r -+ 0,
we require A to be negative, as in the Mellin transform. Setting A = -K2, we can
then only satisfy the radiation condition (5.103) if ¢a is proportional to

JiK (r) + iY,, (r) = H 1 l (r),

the Hankel function of complex order. Thus we define the Kontorovich-Lebedev
transform of u as

U'K(e) = J
(r)u(r,0)dr,

r
and, in line with (5.91) and (5.99), we find that

d2iK
d92 - K2i1" = 0. (5.105)

Unfortunately, the generalisation of the argument in §5.7 now involves not only the
intricacies of the normalisation, but also a very careful accounting in the Hermitian
inner products. Hence we simply quote the result

u(r, 0) = - 2
J

Kfi,e (9)Ji, (r) dK, (5.106)

which can be manipulated into many other forms. Another justification of (5.106)
is given in Exercise 5.14.

However, there is a further complication as far as the Sommerfeld problem is
concerned. We have indicated the need to subtract out the incident field in order
to be able to satisfy the condition (5.103), but this leaves us with a boundary
condition for u on 9 = frr which is non-zero as r -+ 0. Thus, further contortions
are needed before we can apply the Kontorovich-Lebedev transform, and we will
not plough through to the final solution here; it is given in Exercise 5.39.

Not surprisingly, this solution can be derived by various other `tricks', one of
which is mentioned in the next section. However, the details are less important
than the fact that even this hard example is readily amenable in principle to a
systematic transform analysis.

We remark that among the many implications of the theory of elliptic equations
for wave propagation in the frequency domain is the principle of reciprocity. This
is the physical interpretation of the symmetry of Green's functions for self-adjoint
elliptic problems. The statement from §5.6.2 that G(x, 4) = G(4, x) for Helmholtz'
equation says that the wave field at x caused by a `point source' at 4 is identical
to the wave field at f caused by a point source at x. One very useful case is the
limit 141 -+ oo, when we can use the results of scattering problems, such as the
Sommerfeld problem above, to infer the far-field radiated by a source near the
scattering obstacle in an otherwise quiescent medium.



194 ELLIPTIC EQUATIONS

*5.8.4 Higher-order problems
We conclude this section with a brief discussion of a few points that may need to be
borne in mind when Green's functions and transforms are applied to higher-order
equations. The first concerns the biharmonic equation

V4u=0

for which the Green's function in two dimensions satisfies

VG = b(x - {)b(y -,I). (5.107)

One way to proceed in the whole of R2 is to invert the double Fourier transform
(kl + 2k? ki + k2) _', but it is more straightforward to look for radially-symmetric
solutions of

d2
2

(-T2 +rdr) G=0 forr>O, (5.108)

where r2 = (x - t)2 + (y - q)2. Hence G is a linear combination of r2, r2 log r,
log r and a constant, and we might then guess that, since

z

8s (dz2 + r dr) (rz log r - r2) = 2a
log r'

we might have

G
8s'

(r2logr - r2) . (5.109)

However, to reassure ourselves that there should be no additional log r terms
in G, we need to compute V4 log r in accordance with the procedure described in
Exercises 4.13 and 4.21, where it was shown that V2(log r) = We sim-
ply look at (V40,logr) = lime_,o f fr>E logrV4Odxdy for suitable test functions
vii. Since V2 log r = 0 when r > 0, repeated use of Green's theorem gives

(fir,V4logr) = limJJ j'V4logrdxdy
e-+0 r>e

l V40logrdxdy+1 _ (V21,)logeds
r>e r_e

- f _V2 Pds) .

r=e e

The second term on the right-hand side tends to zero and the last to -2nv2rk(0, 0)
as a - 0, which is a term we do not want, and hence there is no log r term in G.

The biharmonic equation may look to be a relatively benign generalisation of
Laplace's equation. Indeed, because

04
4 16V =

8z2 8z2'

its 'general solution' can be written down in two dimensions in terms of com-
plex variables as 3t(2f(z) + g(z)), where z = x + iy, 2 = x - iy and f and g
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are arbitrary analytic functions. However, it admits no maximum principle, and
the fact that it is fourth order often destroys the possibility of easily finding ex-
plicit eigenfunction representations. Also, the fact that most practical, and prob-
ably well-posed, boundary value problems only have two pieces of data on the
boundary of a closed domain D means that we can rarely expect to prove that
f fp uV4v dx dy = f fn vV4u dx dy; hence, even if we have a complete set of eigen-
functions in which to expand, they are not usually orthonormal (see Exercise 5.28).

Another kind of complexity arises when we consider vector systems of equa-
tions. One that we have encountered in §4.7.2 concerns the steady case of Maxwell's
equations in the form

VAH=j, (5.110)

It turns out that, in practice, these equations often have to be solved for H given
both j and some physically relevant boundary conditions. Although we do not wish
to present a systematic discussion of vectorial Green's functions until Chapter 9,
we can point out a famous way of solving (5.110) using scalar Green's functions.
We remove the constraint V H = 0 by writing H = V A A, where A is called the
magnetic vector potential, and now we see that if we satisfy the `gauge condition'
V A = 0 we are simply left with a vector Poisson equation

V2A = -j.

Our by-now-familiar Green's function argument gives the solution as

fll CdxA(4) = a x(x)4

(5.111)

in Te, and, taking the curl, we find

H(F) -
1

j(x) A (f $ x) dx,!J (5.112)Ix
- F1

which is the famous Biot-Savart law of electromagnetism. If j is simply a current
in a wire, the calculation of H reduces to a single curvilinear integral.

5.9 Complex variable methods
At one level, it could be said that complex variable theory solves all problems for
Laplace's equation in two dimensions, because the general solution is the real part
of an analytic function of x + iy (or x - iy). Indeed, we can formalise this statement
by writing the solution of Vu = 0 in y > 0, with u(x, 0) = f (x), as a Fourier
inversion

from which we find

u(x, y) = 27r J
e-Ikz-Ikly f(k) dk,

a

u(x, y) = f+ (z - iy) + f_ (x + iy), (5.113)

where
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f- (k) = f(k), k > 0,
f- (k) =

0, k > 0,
0, k < 0, f (k), k<0.

It is interesting to compare this result with (4.67) for the wave equation; in the
same vein, we can write the solution of the three-dimensional Laplace's equation
in z > 0, with u(x, y, 0) = f (x, y), as

°°
u(x, y, z) = J e-'(k1Z+k2V)-k: f(ki, kz) dk1 dk2,

°°

foos
oo

where k2 = k2 + kz and k > 0. Transforming to polar coordinates, we obtain
1 2a °°

u(x y z) =
2s

eik(..0+vginb-iz)F(k ¢)dkdo,
o o

where F = 21rk j. Making the observation that led to (4.68), we derive the repre-
sentation

`2w
u(x, y, z) = J F(x cos Ji + y sin o - iz, i) do. (5.114)

0

When complemented by a similar formula with z replaced by -z (or, equivalently,
one in which 0 is shifted by 7r), we retrieve the general solution of Laplace's
equation in three dimensions as a single integral. We also make the following
remarks.

If u is axisyminetric about the z axis, we can write

F(x cos o + y sin ii - iz, o) = G(z + it cos(9 - o)),

where x = r cos 0 and y = r sin 0, and hence that

u(x, y, z) = fG(z+ircos)d; (5.115)

clearly 7rG(z) = u(0, 0, z).

We could relate these ideas to the three-dimensional generalisation of (5.95) on
p. 189, namely

n
f. n) d dq

(x, y, z) = f 00a oo z
+(x-S)2+(y"'I)2.

However, this representation involves convolution integrals with functions that
are complex versions of those in (4.65). Here we simply mention that (5.95) is
singular at the singularity distribution along x = y = 0. If we required an ax-
isymmetric potential function that was analytic on the z axis, we could consider

fs+ir 9(f) dl;
f-ir r2 + (z - t)2

which would immediately retrieve (5.115) above. Note that this approach does
not work for source distributions in two dimensions, such as (5.63) on p. 177.
But, in two dimensions, we can simply resort to (5.113).
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These observations are intriguing but, alas, they are usually of little help in
solving practical boundary value problems. Instead, we must usually resort to the
Green's function and transform techniques of the previous sections. Nevertheless,
as we now explain, there are some powerful constructive complex variable methods
that are especially valuable for Laplace's equation in two dimensions.

5.9.1 Conformal maps
Three of the most distinctive features of an analytic function f (z) of a complex
variable z = x + iy are as follows.

1. Its real and imaginary parts are harmonic functions, he. they satisfy Laplace's
equation in x and y.

2. As long as f'(z) 54 0, f (z) maps regions from the z plane into the plane of
(= f (z) such that mapped curves intersect at an angle equal to that between
the original curves.

3. Laplace's equation in R2 is `conformally invariant', because when we write

(_ (+ill= f(z) = f(x+iy)

we find

axe+ay =If'(z)!2(g
02

+al
These facts are of profound significance to the solution of Laplace's equation and
its `square', the biharmonic equation. We have already mentioned that, if a partial
differential equation is invariant under certain classes of transformations, we may
be able to perform some simplifications, but here the fact that the transformations
involve functions of a complex variable makes things especially interesting. One
consequence is that we can conformally map Laplace's equation problems into
other Laplace's equation problems, although the boundary conditions may not
be invariant under the map. However, one of the most sensational implications is
that, if we have to solve Laplace's equation in a simply-connected closed domain D
with prescribed Dirichlet, Robin or Neumann data, and we can explicitly map D
conformally into the interior or exterior of the unit circle, or a half-plane, then we
can use our knowledge of Green's functions and/or transforms to solve the mapped
problem. The catch here is that we must find the conformal map explicitly; its
existence is known from the Riemann mapping theorem,83 although extra care
must be taken when using this theorem for multiply-connected regions.

One immediate corollary is that Green's functions for Dirichlet and Neumann
problems map into Green's functions. Considering the Dirichlet problem for sim-
plicity, suppose ( = f (z, zo) maps the domain D into the unit circle in the ( plane,
with z = zo going into 0, so that the ( plane Green's function is (1/27r) log
Then we claim

G(z, zo) =
2

log If (z, zo) I (5.116)

83 We will say more about this in Chapter 7.
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is the Green's function in the z plane. This function vanishes on OD and, as
z -+ zo, G - (1/27x) log I f'(zo, zo)I Iz - zoo, and so has the right behaviour sinces4
f'(zo, zo) 96 0. A trivial illustration is provided by

f (z, zo) =
a(z zo)

(5.117)
a

-
xzo

with a real, which takes z = zo onto (= 0. Also, since Ia2 - zozI = adz - zol when
Izj = a, this map takes IzI = a onto I(I = 1 and clearly agrees with (5.58). Equally,
(5.59) is simply a deduction from the Cauchy integral formula (see Exercise 5.22).

Another simple application concerns the Green's function for the Dirichlet
problem in a wedge 0 < 0 < a in polar coordinates. Since C = z'/* maps this
wedge into a half-plane, the formula before (5.60) gives

1 z*/a - z"/a
G(z, zo) =

27r log z*/a - 410 (5.118)
0

this result can be obtained, eventually, by the method of images if a is a rational
multiple of 7r, in which case the images terminate.85

We cite one very useful example of the direct use of conformal maps in aerody-
namics (271. Consider a streaming flow at angle a past an ellipse x2/a2 +y2/b2 = 1.
The velocity potential 0 satisfies V2o = 0, with 8q5/8n = 0 on the ellipse and

0=Uo(xcosa+ysin a)+o(r) (5.119)

as x2 + y2 - oo, but we must remember to be careful about uniqueness since we
are in an exterior domain. It is easy to look up in a book, or, better, use the fact
that x = a cos 0 and y = b sin 8 on the ellipse, that the ellipse is given in terms of
elliptic coordinates by i; = to, 0 5 7l < 21r, where

z = x + iy = c cosh(f + h7) = c cosh (', (5.120)

with c2 = a2 - b2 and o =
2

log((a + b)/(a - b)). Hence we simply need to find a
function 0+iO of C that is analytic in f > to, maps this region onto the exterior of
the ellipse, and has zero imaginary part on { = to (so that 8O/8n = 0) and tends
to cUUe-la cosh C as t -4 +oo (to satisfy (5.119)). An answer is

0 + iv' = A cosh(t; - to - ia), (5.121)

where A is real and such that Ae-E0-1° = cUoe-ta. Thus, with A = crooe{e,
(5.121) with (5.120) appears to solve the problem. We will return to this later.

"The requirement that t = f (z) is one-to-one is tacit. This means that / is a univalent
function of z, which is a stronger requirement than simply saying '/' exists and is nowhere zero
or infinite'.

"The question of the commensurability of wedge angles with A does not seem to matter so
much for Laplace's equation as for Helmholtz' equation, which is not conformally invariant. But
images can still sometimes work in the latter case.
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*5.9.2 R.iemann-Hilbert problems
Complex variable theory gives us the possibility of solving much more general
boundary value problems for Laplace's equation than the Dirichlet and Neumann
problems we have considered so far. In particular, much is known about how to
extend analytic functions (and hence harmonic functions) across boundaries. This
suggests that, instead of solving Laplace's equation on one side of a boundary with,
say, Dirichlet data prescribed on that boundary, we may be able to solve it on both
sides of the boundary, with a given relationship between the data on either side of
the boundary. The crack and aerofoil problems of §5.1.6 are archetypal examples of
this situation. Not only will we find that we can handle such problems successfully,
but also, as an added bonus, we will be able to use our technique in the transform
plane to solve some mixed boundary value problems, where the data switches from
Neumann to Dirichlet.

The most stringent form of continuation of analytic functions is that of analytic
continuation. Even though we know this is an ill-posed procedure, there are some
situations where analytic continuation is useful, in particular when it can be carried
out explicitly. One such case is when !a w(z) = 0 on y = 0; then the Schwarz
reflection formula

w(z) = u(x, -y) - iv(x, -y)

gives the analytic continuation of w(z) = u(x, y) + iv(x, y) from y > 0 into y <
0. This formula is a limiting case of the result that w(a2/z) gives the analytic
continuation into Izi < a of a function w(z) whose imaginary part vanishes on
Jz) = a. This latter result is of some value in solving homogeneous Neumann
problems in irrotational flow (see Exercise 5.26).

In general, though, the singularities that inevitably occur when we continue
analytically indicate that we have demanded too much regularity at the boundary.
The motivation for Riemann-Hilbert problems comes from considering functions
that are harmonic in a domain D excluding a curve r, across which they have
a jump discontinuity of some kind rather than being analytic there; r may be a
closed curve dividing D into two parts D±, or it may be open. For example, if r
is the real axis, we know from (5.60) that the functions

ut (x, y) = f
j' d

ir f.0o (x - t)2 + y2
(5.122)

are harmonic in D.4. (y > 0) and D_ (y < 0), and satisfy the same Dirichlet data
u = g(x) on y = 0; however, 8u/Oy suffers a jump across y = 0 (see Exercise 5.32).
Similarly, for the Neumann problem, (5.63) shows that Ou/Oy is continuous but
u suffers a jump. We emphasise that we could only find a function that satisfies
both Dirichlet and Neumann data on y = 0 by the ill-posed process of analytic
continuation, but we can solve well-posed Dirichlet or Neumann problems in y > 0
or y < 0 at the expense of introducing singularities on the x axis.

This discussion paves the way for solving problems such as the thin aerofoil
model (5.29) and (5.30) by asking more generally about the Riemann-Hilbert
problem in which an analytic function w(z) must be found in D in such a way
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that a linear combination of the limiting values of w as the curve r is approached
from either side is prescribed. If r is closed, we write w(z) as w+(z) or w_(z), as
appropriate; otherwise, we can write w(z) unambiguously in all of D except on r.
The key lies in the famous Plemelj formula in which w is represented as a Cauchy
integral

w(z) __ 21 f f(s) ds (5.123)
Iri r

for some suitable function f (s). A cheap way to see what happens as z approaches
a point t at which r is smooth is to deform r as in Fig. 5.6 and take the limit
e -+ 0; note that this procedure requires that we define f (s) away from r, which
may not necessarily be allowed, but in fact everything can be proved as long as f
is merely Holder continuous. First, we denote the principal value of the contour
integral by

PV J f (s) ds = lim
f f (s) ds (5.124)

r $ - t a-+o r\OD. 8-t
where OD( is the dotted segment in Fig. 5.6, which is in accord with our earlier
use of the term in (5.67). When r is dosed, we then find that, at any point z = t
on r, the limiting values of w(z) on either side of r are

wt(t) = f
2

f (t) + 2I PV / f
(s) ds

r s-t ,

and these yield the Plemelj formulae

w+ (t) - w- (t) = f (t), (5.125)

(t) = IPV ff(8) ds
(t) + (5 126)W+ w_

iri
.

These formulae still apply when r has end-points or corners, and f can be
allowed to have integrable singularities at such points of r. This fact is important
in what follows, when we will be interested in solving equations like (5.126) for
f given w+ + w_. Remember that special care must be taken to prescribe the
behaviour of the solutions of elliptic equations near places where the boundary
data is singular.

Fig. 5.6 Contour for the Plemelj formulae.
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Transcending these technicalities, what the Plemelj formulae really tell us is that
if, instead of prescribing the value of w(z) on r, which is equivalent to prescribing
two pieces of information for 82 w and would lead to an ill-posed Cauchy problem
for w, we prescribe the lesser information of w+ - w_ (or the values of w+ + w_
if we could solve the integral equation (5.126)), then we do have a seemingly well-
posed problem for w. In fact, there are some boundary value problems for Laplace's
equation where this allows us to write down the solution at once. For example,
consider

V2u = 0 in D, the region outside r: y = 0, 0 < x < c, (5.127)

with

lim u(x, y) = ±g(x) for 0 < x < c, (5.128)
vi.to

respectively, and u - 0 at infinity. Then u = R w, where ? (w+ + w_) = 0 on I'.
Hence, from (5.126) we can find a solution in which f is real, and then from (5.125)
f = 2g, so that

w(z) _ Sri
J ,

the real part of this equation is just an example of (5.122).
Equally, if, instead of (5.128), we have

tlrito 8y - f9(x), (5.129)

we consider dw/dz = 8u/8x - i 8u/8y to obtain u = ? w, where (5.126) shows that
there is a solution in which f is purely imaginary on the x axis. Then, from (5.125),
f = -2ig there, and hence

dw _ 1 /'` 9(f) dt
dz ,r o T - z

Integration gives that

u(x,y) = 21r J
f (t) log((x - C)2 + y2) d (5.130)

0

to within an additive constant, as in (5.63). Note that both (5.122) and (5.130)
can be interpreted as distributions of singularities along y = 0, 0 < x < c, or
equivalently as Green's function formulae. Physically, the singularities in (5.122)
are called dipoles because they involve derivatives of the `source' or 'monopole'
(1/27r)logr that appears in (5.130).

We cannot use the Plemelj formulae directly to solve boundary value problems
for Laplace's equation unless the values of the function or its normal derivative
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are precisely equal and opposite. This is not the case, say, for the aerofoil prob-
lem (5.29) and (5.30), but there is a trick we can always use to turn arbitrary
Riemann problems into ones we can solve directly. Suppose all we know is that

a(t)w+(t) + $(t)w_(t) = y(t) (5.131)

on 1', with a, $ and y prescribed and analytic, and a and $ non-zero. We look
first at the homogeneous problem

a(t)W+(t) + /3(t)W_ (t) = 0, (5.132)

which we can solve in principle since

log W+ - log W_ = log a (5.133)
\\

hence, from the Plemelj formulae for log W,

W.+ (z) = exp (. f log (-/j/ a) d£)
r - J

At this point we are reminded of our earlier strictures about non-uniqueness,
because different choices for the branch of the logarithm give rise to different
W; clearly, any entire function can be added to log W without affecting (5.133).
Note also that, if D extends to infinity, our solution for W automatically satisfies
log W = O(1/z) there. Setting this aside for the moment, we go back to (5.131),
which becomes

`W )+ - WW ) - aW"+ ,BW_'

and which can be solved for w/W, and hence w, explicitly. The resulting formula
looks more complicated than it really is, but it can contain the answers to some
key technical questions, as illustrated by the aerofoil problem. We only consider
the most interesting case of a vanishingly-thin wing in which f+ = f- = f, so
that, from (5.30),

8 -4Uf,
as y approaches I', the line y = 0, 0 < x < c, from above and below. We work with
w(z), where dw/dz = i 8q5/8y and

la.(dwl
dzJ)+ dzJJ

Hence, (dw/dz)+ - (dw/dz)_ is\real and we write

_ ( dw g(x),

(LW

(5.134)

(5.135)

where, from (5.123) and (5.125),
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dw 1 / ` gV 4 (5.136)
dz 2Mri o l - z

Now the other Plemelj formula (5.126) gives that

dw (dw) 1 ` g(t) dl;
( z)++ dz _

=
in Jo -x

is purely imaginary, but all that (5.134) tells us is that

2U f' = 1 PV
f0c

d
ir t-x (5.137)

The Plemelj formulae have merely turned the problem into a Cauchy singular
integral equation for g.

To proceed further, we use (5.132) to turn what we know about (dw/dz)+ +
(dw/dz)_ into an equation for (dw/dz)+ - (dw/dz)_, so we let W be such that

W+ (X) + W_ (x) = 0. (5.138)

Then our desired formula for dw/dz comes from

1 -2 I) ( ) ,[( 139)(5W+-dz ++ dz _W+
.

the left-hand side is ((1/W)dw/dz)+ - ((1/W)dw/dz)_ and hence, from (5.125)
and (5.123),

dw _ _W(z) JC Uf'()d
. (5,140)

W+(f)( - z)
Thus, from (5.135), we find that

c

d2W+ (x)

fPV(x) = (5 141)9 a WT (o R - x)0
.

which provides the solution of (5.137) 86
But what is W (z)? It is possible to solve (5.138) by inspection, but we can be

more systematic and take logarithms to give

log W+ - log W_ _ (2k + 1)iir, k an integer;

hence, by (5.125) and (5.123),

1W=2kl
c

d: c)2k2 1l (z

(5.142)

og 2 J z- og zo

Thus

W ( ) = constant ( ) 143)(5+ z
x

.

It is implicit in (5.143) that the branch cut for ((c - z)/z)(2k+1)/2 is taken between
z = 0 and z = c, which is necessary because W is analytic at z = oo.

"Although (5.140) and (5.136) look different, they are the same when g satisfies (5.141).
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Now, at last, we must address the uniqueness question. As anticipated from
many earlier remarks, we expect further information about the behaviour of the so-
lution at the leading and trailing edges of the wing to be necessary for uniqueness,87
and this is true with a vengeance here. It would take us too far into aerodynam-
ics to explain properly why the physically relevant solution should have dw/dz
bounded near z = c and tending to infinity like z-1/2 near z = 0, a requirement
known as the Kutta-Joukowsky condition. However, if we assume that this is what
is required, and retain the condition dw/dz = O(1/z) at infinity, we simply need
to take k = 0 in (5.143), the branch cut for W being along the aerofoil. For the
record, our final formula (5.140) is

dw iU (z - c\ 1/2 fc ( \ I/2 f'(e) d
(5.144)

dz 2r ` z /J

An interesting piece of quality control is possible to check this result. A simple
aerofoil shape for which it is possible to obtain the streaming flow exactly is the
ellipse, for which a putative solution is (5.121). However, if we let b -> 0 in (5.121)
so that the ellipse becomes a flat plate, we soon find that we do not obtain agree-
ment with (5.144) as a, which is effectively tends to zero; indeed, when IzI ->
oo, (5.144) gives dw/dz = irU/2rz +o(1/z), where 1:' = fo (t/ (C - ds;,
but (5.121), in which to is now the difference between the complex potential and
Use-iaz, gives that dw/dz is of O(1/z2). This is because in (5.121) we omitted to
include any eigensolutions88 in which w is of the form (real constant) - i log z+0(1)
as z -+ oo. The simplest way to do this is to map the ellipse to a circle and add
an eigensolution 0 = KB in polar coordinates (see Exercise 5.27). Now this for-
mula only agrees with (5.144) when we choose the particular value of K, namely
rU/2r, that makes dw/dz finite at the trailing edge z = c; putting K = 0 would
correspond to setting W = (a(a - c))-1/2 after (5.142). Moreover, by considering
the pressure in the fluid, it can be shown that the lift on the aerofoil is directly
proportional to K; hence the practical point as far as flight is concerned is that,
without the eigensolution brought in by the Kutta-Joukowsky condition, the aero-
foil cannot generate any lift!

The aerofoil problem is an important, but special, problem for which we are
lucky that the Plemelj formulae lead immediately to a physically acceptable solu-
tion, because (5.135) has the correct behaviour as z -+ oo. In the examples which
follow, the interplay between the behaviour at infinity and the singularities at the
ends of the interval is less straightforward.

*5.9.3 Mixed boundary value problems and singular integral equations
We have encountered a prototypical mixed boundary value problem in our model
(5.31) and (5.32) for fracture mechanics. In fact, it is one of the simplest elliptic

87Were we to relax the requirement that log W be of the form (5.124), we could obtain many
more solutions, such as W(z) = z(2m+1)/2(z - c)(2n+1)/2, where m and n are integers.

"The importance of the double-connectedness of the flow region in admitting these eigenso-
lutions has been anticipated at the end of §5.2.1.
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problems with singularities in the boundary data, yet it can be used to illustrate
some very complicated methodology. We recall that we have to solve V2w = 0 in
R2 with the slit y = 0, -c < x < c, (i.e. F) removed, with t9w/Oy = 0 on y = 0,
-c<x<c,andw=0ontherest ofthexaxis, andwith to =-ry+0(1)at
infinity. We write w = ry + u for simplicity to give

V2u = 0 for y > 0, (5.145)

with

F=--Tu=0 ony=0,Ixl>c, =-T ony=0,Ixi<c, (5.146)

and, of course, we require not only that u -4 0 as x2 + y2 -+ oo, but also some
specification of the behaviour of u at the crack tips (±c, 0).

One way to proceed is to represent u as the response to a distribution of
singularities89 along the crack; following the calculation that stemmed from (5.66),
we write

j()u(x, y) _ tan-1 (_!L) dfor - < tan-' y x < 2 , (5.147)

8u 1 g(t)(t - x) d=
e

and, as in (5.68), it is easy to show that we are left with the singular integral
equation

-T = PV! /
C

g(t)
d

for JxJ < c. (5.148)
1r , -x

From (5.137), this is just the non-trivial problem of a flat aerofoil. However,
whereas the nature of the singularities at z = -c, c and oo in the aerofoil prob-
lem make it solvable by direct application of the Plemelj formulae to (5.123), the
physical requirements of the crack model mean that extra eigensolutions must be
introduced. These eigensolutions can be realised by noticing that W, as introduced
in (5.138), can be multiplied by (z+c)m(z -c)", where m and n are integers which
must be chosen to give the correct behaviour at z = -c, c and oo, corresponding
to the physical requirement that JVul grows at most as the inverse square root of
distance from the crack tips and u -+ 0 at infinity. Fortunately, in this instance we
can avoid solving a Riemann-Hilbert problem simply by spotting that the relevant
solution is

u=3(-Tz+T z2-c2), (5.149)

where z2 - 72 -ti z as z -+ oo (alternatively, see Exercise 5.29). This reveals the
famous phenomenon of stress intensification at the tips: we find that, on y = 0,

891n solid mechanics, such singularities are sometimes referred to as (virtual) dislocations.
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u=

while

I
-r c -x , IxI <c,

Ou -r, IxI < c,
Oy r (x/ x2 - IxI > C.

The size of the coefficient r of the stress in IxI > c can make all the difference
between a brittle material failing or not! But the interesting mathematical result
is that the relevant solution of (5.148) is90 g(x) = -7-x/,,/c2 -- x2.

We note that both this problem and the aerofoil problem display a kind of
`rigidity' in respect of their singularity behaviour. In both cases, we could have
made the behaviour at some of the singular points (i.e. the ends of r and infinity)
better or worse at the expense of making that at the others worse or better. Equally
we could, and indeed have, made the behaviour at the trailing edge of an aerofoil
better than at the leading edge, but we could never attain finite velocity at both
edges unless the flow were symmetric about the x axis.

*5.9.4 The Wiener-Hopf method
Our experience with aerofoil and fracture models now puts us in a position to
describe the most famous systematic technique associated with mixed boundary
value problems. This is the so-called Wiener-Hopf method and we do not even
need a model as complicated as (5.145) and (5.146) to illustrate it. Suppose we
have the elliptic mixed boundary value problem

V2u=0 fory>0,

with
u=0 ony=O,x>0, 88u=0 ony=0,x<0,

y

and, in polar coordinates, u = r1/2 sin(9/2) + 0(r-1/2) as r2 = x2 + y2 -+ 00,
together, of course, with a prescription of the singularity at the origin to which
we will return shortly. The answer is trivial to spot, but supposing we steadfastly
persist with a Fburier transform approach, writing u(k, y) = f oo u(x, y)eikZ dx,
we obtain 2-

2f,- k2fi = 0, so u = A(k)e-lklar.

We do not know A(k) because we know neither u nor Ou/Oy all the way along
y = 0. But we could set

You can check this result by writing f = csin0 in (5.148) to give

PV rc t df - PVrw/2 sinedO =x+xPV 11 2dt
.! c -t t-x f...,,12 sine-a a 12t-x(1+t2)'

where t = tan(e/2). The final integral can be evaluated in terms of elementary functions and
found to be zero. An alternative derivation of the result using contour integration is given in
Exercise 5.30.
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8u x > 0, 0, x > 0,
0, x < 0, u(x'

0)
9(x), x < 0,(x'

O)
= {f(x),

where f (x) is unknown for x > 0 and, conversely, g(x) is unknown for x < 0. We
then obtain A(k) = g(k) = - f (k)/ ski. This gives just two equations for the three
unknowns A, f and g but there are two vital pieces of information from which
we can squeeze the solution. The first is that, since i(k) fo00 f (x)e'k= dx, the
integral exists and i(k) is analytic if £ k is large enough and positive, specifically
in an upper half-plane; the second is that, similarly, g(k) is analytic if !' k is large
enough and negative, specifically in a lower half-plane.

Hence we have something very like a Riemann-Hilbert problem because there
may be a line in the complex k plane, probably !a k = constant, on which f and
g are both analytic, or there may even be a strip where the regions of analyticity
overlap. If so, the traditional Wiener-Hopf procedure is to write f = f+ and
9 = 9- (the subscripts indicate the domain of analyticity), and recast

f+(k) + Ikl9-(k) = 0

in the form

f+ +K 9- = 0, (5.150)

where the `factors' K+(k) and K_(k) of (kl are analytic in upper and lower half-
planes of the complex k plane, respectively. If (5.150) holds, then the argument
usually goes that f+K+ is analytic in an upper half-plane and its analytic contin-
uation into the lower half-plane is, by (5.150), equal to -g_K_, which is known
to be analytic there. Thus f+K+, and hence -g_K_, is entire, that is it has no
singularities for finite k, and both these functions are equal to an entire function
E(k), say. Determining this entire function is easy using Liouville's theorem as
long as the behaviour of u at infinity is prescribed sufficiently carefully, but the
`factorisation' is the spectre that hangs over the whole procedure. In principle,
it holds no terrors for people familiar with Riemann-Hilbert problems because,
in order to write an arbitrary non-zero function K(k) as a ratio of '-' and `+'
functions K_ /K+, we first write y(k) = - log K(k) and consider

G(k) 2Iri f k'(k/k dk'

along a contour !3 k = ko; then this defines one function, G+, that is analytic in
!ak > ko, and another one, G_, analytic in 3k < ko. Moreover, by the Plemelj
formula, the difference between these two functions is y(k) as k - ko ± 0. We
have thus identified two functions G± such that y(k) = G+ - G_, and hence
we have performed our `factorisation' for the function K(k) = exp(-y(k)). Of
course, the resulting formulae are just as unpleasant as those encountered in most
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Riemann-Hilbert problems. Indeed, although it is possible to carry out this proce-
dure for log Ikl and hence complete the calculation leading to (5.150) after suitable
contortions with the integrals, we can fortunately spot that we can write

Ikl = li a(k - ie)1/2 (k + ie)1/Z,

where the branch cuts must lie along (if, ioo) and (-ie, -ioo), respectively. Hence,
we have the possible factorisations

K_(k) = (k - ie)1/2E(k), the branch cut going from if to +ioo,

K+(k) = (k + if)-1/2 E(k), the branch cut going from -ie to -ioo,

where E(k) is some other entire function. So, letting f - 0 and keeping the branch
cuts as above, we have

k-1/2f+(k) = -k'/29_(k) = E(k)

Now we guess that the singular behaviour we need to specify as r -+ 0 is
g(r) = 0(r'/2) and f (r) = O(r-'/2); it will soon become apparent that any other
power-law behaviour in r would lead to non-existence or non-uniqueness. Then it
is plausible (and this is shown in Exercise 5.35) that, as k - oo,

0

9-(k) = O fo(-x)1/2eika dx) = 0(k-3/2)

for k < 0, and

f+(k) = O (f°°x_h/2eidz) = O(k'/2)

for 3' k > 0. Hence, as k -, oo,

k-1/2f+(k) = -k'/29-(k)

E(k)
E(k)

Now we are ready to use Liouville's theorem. Provided that E(k) only vanishes
at k = 0, we have that E(k)/E(k) = C/k for some constant C. In order for E to
have this property, when we choose the factors K+ and K_, we must ensure that
they do not vanish in the upper and lower half-planes, respectively. If we did not
insist on this condition, we would not be able to pin down E/E, and hence j+(k)
and §- (k).
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We now have f+(k) = Ck-1/2, and so, by inversion,
G. oo+i0 -ikz dk (00+10 dsiC - i°a

Mx)x) = f =
a2

00+io V k -y J-oo+io V(s

Finally, with a suitable choice of C (which we could also have made by inspection
from the behaviour of i(k) for small k, once it has been identified), we retrieve
our expected result that

1

f = -2r1/2
since, of course, u = r1/2 sin(0/2).

The example above does scant justice to the Wiener-Hopf method, which is
undoubtedly the most powerful practical method to solve many mixed bound-
ary value problems, especially for Helmholtz' equation and its generalisations. As
an illustration, we refer the reader to [24] where the solution of the Sommerfeld
problem is derived.

We conclude our discussion with two final remarks about singularities in elliptic
problems.

*5.9.5 Singularities and index
The questions raised in the introductory section concerning the difference between
`crack' problems and `contact' problems in elasticity further highlight the impor-
tance of prescribing the singular behaviour of solutions of elliptic equations near
the boundary. It would take too long to go into the practical modelling of contact
or Hertz problems here because they involve configurations at least as complicated
as plane strain (see §5.1.4.4) and hence the biharmonic equation. Suffice it to say
that they involve mixed boundary value problems where the perimeter of the con-
tact region marks the change in the boundary conditions and hence the location
of the singularities. However, contact problems differ from many crack problems
in that the contact region is not known a priori; it can decide for itself where it
would like to be, and the idea is that the contact region should be determined
by the fact that the strong stress intensification that we find in fracture does not
occur. This class of problems will be considered more thoroughly in Chapter 7, but
there is one configuration that illustrates the contrast between crack and contact
problems and is simple enough to be considered here.

Suppose that, instead of considering contact between two general elastic bodies,
we take a large smooth fiat membrane initially in the (x, y) plane, and deform it
by requiring it to lie above a thin smooth wire z = f (x), lying in y = 0; we assume
for simplicity that f is a smooth, even function with d2 f /dx2 < 0 and f (0) > 0.
Thus, the transverse displacement z = u(x, y) satisfies

V2u=0 except on y = 0, -c < x < c,
with

u(x,0) = f(x) for IxJ < c, Ou(x,0) = 0 forW > c,

where the unknown number c defines the boundary of the contact region; we do not
expect any stress intensification to occur at x = ±c. We also need to prescribe the
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behaviour of u as x2+y2 -4 oc, and we recall that in the crack problem (5.145) and
(5.146) we prescribed a tensile stress so that IVul -+ constant at large distances;
here, we expect IVul to be much smaller at infinity.91

Using our theory of mixed boundary value problems, we set w(z) = u + iv and
find immediately that the solution that is symmetric in x, has no stress intensifi-
cation at (±c, 0), and is as small as possible as I z I -> oo is

dw_au au i /`c

c2

1 df 0
dz axay r

c2z2

d S tt " x

Note the contrast between this formula and a typical fracture formula, in which
both the square roots would be reciprocated. Also, since

f df
=O

e

by symmetry, u grows only logarithmically in Izj as jzj -+ oo, so that, far from
the obstacle, u is approximately proportional to the Green's function for Laplace's
equation, centred at the obstacle; thus, at large distances, the effect of the obstacle
is that of a point force.

Crucially, c must be such that the membrane is in equilibrium with the forces
applied at its boundary. Writing u = K log(x2 + y2)1/2 + 0(1) at infinity, where
K tells us how hard we are pushing the membrane down onto the obstacle, we see
that

1

e t df dt = K.
1r f , VT---V cl

(5.151)

It is this condition that finally determines c.

The way in which the strengths of the singularities enter into these models from
mechanics illustrates the general idea of characterising singularities in terms of an
index. This concept has its basis simply in the computation of the change in the
argument of an analytic function described by a Cauchy integral as we traverse
a closed curve in the complex plane. This argument principle is equivalent to
counting the number of zeros of the analytic function whose real part is the relevant

91%Ve could equally consider the problem of closing a previously opened crack in which a
displacement uo such that

uo(y,0) _ !1(x), Ixl < co,
to, Ixl > co

has been set up. Then the boundary conditions would be

au

-
(x, 0)= o for Ixj< c, u= 1(x), c < IxI < co,

10, co < 1X1-

It is now possible for u = -ry + 0(1) as y - oo, where r is the crack closing stress, and our
task is to find c such that Ou/8y (c, 0) is bounded.
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solution of Laplace's equation on both sides of the boundary. Thus it generalises
the result that, if

a(t)w+(t) +Q(t)w-(t) = 0

on a closed boundary I', then the total number of zeros of w+(z) and w_(z) in
their domains of definition is the change in the argument of -a/Q as we go around
r. Clearly, the change of argument provides a global measure of the `strengths',
i.e. the powers of z that control the local behaviour at all the singularities on
the boundary for a solution of Laplace's equation, as described in detail in [201.
Riemann-Hilbert theory can be used to reduce the problem to that of a singular
integral equation, and then index theory can be thought of as a generalisation of the
Fredholm Alternative as applied to conventional integral equations with square-
integrable kernels [421: the statement is simply that there is only a unique solution
when the sum of the powers of r (the distance from any particular singularity)
occurring in the local behaviour of the solution is equal to the index.

*5.10 Localised boundary data
Because singularities in the solutions of elliptic boundary value problems do not
propagate as they do for hyperbolic problems, there can be no counterpart in
this chapter of the analysis of the response to localised Cauchy data that we gave
in §4.5.5 and Exercise 4.22. However, we can pose the following interesting and
practically useful question:

`Suppose the solution of an elliptic boundary value problem varies by 0(1) or
less in a region D of dimension 0(1) or greater. Now introduce Dirichlet or
Neumann conditions on the boundary 8DE of a small subset of D. Does this
cause the solution to change by 0(1) except in a region close to 8DE?'
For example, suppose D is the unit disc and the harmonic function u(x, y)

vanishes on its boundary. Then u 0. However, if we additionally require u = 1
on x2 +y2 = e2, then the solution is u = log(x2 +y2)/(2loge), which is small
unless x2 + y2 is small. We would need to impose Dirichlet data of O(log e), or
Neumann data of 0(1 ft), in order to produce an 0(1) change in u away from 8DE.
However, our methodology for models of cracks and aerofoils tells us that, if D is
1R2 and u = 1 on the curves y = e f t (x) near y = 0, 0 < x < 1, with u bounded on
8DE and u = 0(1) at infinity, then, as e -> 0, u -> (91 + 92)/zr in terms of polar
angles 91 and 92 centred at (0, 0) and (1, 0), respectively. Hence, even though the
region excluded from D has zero area as e -* 0, the imposition of 0(1) Dirichlet
data on its boundary does now change the solution by 0(1) even when we are not
close to the boundary.

The jargon appropriate to this situation comes from the electrostatic model
of §5.1. For the case of constant Dirichlet data uo, the ratio

1
JO

Buds
UO D, On

is called the capacity of 8D,; as a -+ 0 it is O(Ilogcl-1) in the first example and
0(1) in the second. It can be shown more generally that, for Laplace's equation, a
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point in two dimensions has zero capacity and a smooth curve has finite capacity.
Equally, in three dimensions a point or a smooth curve has zero capacity but a
smooth surface has finite capacity. The long-range influence of more convoluted
boundaries 8D, is an important question that often arises in studies of the ef-
fects of surface roughness. This is best answered using the asymptotic method of
homogenisation, and the theory of capacity is described in detail in [33].

5.11 Nonlinear problems
Most of the problems considered in this chapter so far have been linear and most
of the methods we have discussed only apply to linear problems. Despite the het-
erogeneity of the results, compared say to the unity of Chapter 4, the general
picture that emerges is that those linear problems that we have been able to anal-
yse are either well posed (unless, of course, we were solving with Cauchy data), or
fail to have solutions except in special cases. This is an inevitable consequence of
the Fredholm Alternative, even though the presence of partial derivatives makes
matters much more complicated technically than for linear algebraic equations or
linear ordinary differential equations. In particular, the presence of singularities in
the data, either on the boundary or in the coefficients of the differential equations,
calls for great care.

We now wish to work towards a scenario of what might be expected to happen
when noninearity is introduced, and in particular to study the influence of the
nonlinear terms as they get larger and larger in comparison with the linear ones.
It is very likely that problems that are well posed linearly are still well posed for
small enough nonlinearity, but much more dramatic behaviour can be expected in
other cases. However, we are even less likely to be able to rely on explicit solutions
to nonlinear equations than we are for linear ones. Hence most of this section deals
with methods that lead to general existence, uniqueness and smoothness results.
We begin by briefly recalling a few of the common practical situations that can
only be modelled by nonlinear elliptic equations.

5.11.1 Nonlinear models
An exothermic chemical reaction produces heat at a rate which depends on the
temperature T, normally via an `Arrhenius' function f (T) oc a---/RTE where E
and R are constants. If the heat flux is equal to -VT, then T satisfies

V2T + f (T) = 0. (5.152)

Whether or not such a steady-state model can have solutions depends physically
on whether heat conduction can remove the heat produced by the reaction quickly
enough. A similar model applies to reactions controlled by concentration, with T
replaced by the reaction concentration c. When f (c) > 0 such a reaction is called
autocatalytic.

In fluid mechanics, when we consider steady two-dimensional inviscid flow,
without the assumption of irrotationality that we made in §5.1.4.1, we find that if
we define the vorticity

w = V A (u(x, y), v(x, y), 0) = (0, 0, w(x, y))
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then the curl of (2.6), with p taken constant, becomes u 8w/8x + v 8w/8y = 0.
Hence, since the stream function t[i is such that u 8t/1/8x + v 8t,/8y = 0 and
w = -VIP,

V2,' + p o) = 0,
where f is some function to be determined by the problem, rather than being
prescribed directly as in (5.152).92

As in §5.1.3, it is not hard to imagine generalisations to include convective terms
which introduce first-order derivatives into (5.152), or to vector-valued dependent
variables.

In a different vein, we have already remarked in §4.8 that subsonic steady
inviscid gas flow leads to a quasilinear elliptic equation for the velocity potential
which can be linearised by the hodograph method. Also, very simple generalisations
of some of the situations listed in §5.1 lead to other quasilinear examples. For
example, suppose the Darcy flow in §5.1.4.4 had been of a compressible gas rather
than an incompressible liquid. Then the mass conservation equation V - (pv) = 0
gives

V (p(P)VP) = 0 (5.153)

for an isothermal flow in which p is a prescribed function of the pressure P.
Equally, unidirectional flow of a variable-viscosity incompressible fluid with ve-
locity (0, 0, w(x, y)) only satisfies the slow flow equations (5.24) and (5.25) if 93

V (pVw) = 0; (5.154)

when the fluid is non-Newtonian we can sometimes set p = p(Vw). Note that
(5.153) can be transformed into Laplace's equation by using the Kirchhoff trans-
form u = f P p(P) dP. However, (5.154) is not so easily linearisable; when p =
IVwIP-2 it is called the p-Laplace equation, and the commonly occurring Darcy
flow in which the velocity-pressure law takes the nonlinear form IvIv = -kVP
leads to the 3/2-Laplace equation for P. An elementary calculation (see Exer-
cise 5.43) shows that the p-Laplace equation is only elliptic if p > 1, so one must
not be deceived into thinking that all conservation laws of the form (5.154) are
automatically elliptic.94

5.11.2 Existence and uniqueness
5.11.2.1 Comparison methods

For semilinear equations we can use consequences of the maximum principle as
in §5.3 to find solutions as limits of sequences of approximations from above or
below. Consider, for simplicity, an equation of the type

92The same model arises in connection with plasma confinement (17], and it will be referred
to again in Chapter 7.

This is also the condition for the Navier-Stokes equations to be satisfied, as we will see in
Chapter 9.

94 Note that the current flow in an electric window heater could be modelled by V V. (cV4) = 0,
where 0 is the potential and a is the conductivity (the reciprocal of the resistivity); if we wish
to have uniform electric heating, then the product of the current density aV4 and the electric
field -0o must be constant, which leads to the hyperbolic equation V . (V¢/IVO12) = 0.
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V2u + f (u) = 0 in D, (5.155)

with Dirichlet data
u = g(x) on OD, (5.156)

although the method works equally well with Robin boundary conditions. The
function f is assumed to be Lipschitz continuous in u. Motivated by the comparison
theorem in §5.3, a function u(x) is said to be an upper solution (or supersolution)
if it satisfies

V2p1 + f (U) 5 0 in D and u > g(x) on OD.

Equally, if u satisfies these with the inequalities reversed, it is called a lower so-
lution (or subsolution). If we can find such a pair u and u, and if the important
inequality u < u is satisfied, then there is sometimes a constructive proof that there
is at least one solution of (5.155) and (5.156) lying between them. Suppose, for ex-
ample, that f in (5.155) is such that there is a K >, 0 for which F(u) f (u) + Ku
is an increasing function for all u of interest. Since

V2u - Ku + F(u) = 0,

we proceed iteratively, defining uo = u and

V2un - Ku + 0 in D,

with
u = g(x) on OD

for n > 1. Now, by generalising the maximum principle to cover the differential
inequality V2u - Ku < 0, and using the properties of F, it can be shown that the
functions u form an increasing sequence of lower solutions, bounded above by Ti.
These necessarily converge to some u, which is a solution of the original problem.

Another important use of upper and lower solutions is in estimating the size
of solutions.

Example 5.1 Suppose that V2u + f (U) = 0 in D, u ,>0 on 8D, f (u) >, 1 and
the sphere lxi 5 1 is inside D. Can we find a lower bound for u in D?

We only have to look at the simple problem

V2v+1=0 inlxl<1 with v=0 on jxl = 1. (5.157)

Clearly, v = (1 - Ix12)/2m, where m is the spatial dimension, and u is an upper
solution for (5.157). Thus any solution u is never less than (1 - Ix12)/2m.

5.11.2.2 Variational methods
Several of the remarks make in §5.4 carry over to nonlinear elliptic problems in
the event that they are Euler--Lagrange equations. Such is the case, say, for the
p-Laplace equation, whose solutions give stationary points of the functional

J(u) = IVuidx. (5.158)
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One especially interesting and well-studied variational problem concerns the
calculation of minimal surfaces, namely surfaces u = u(x, y) such that the area

fJD(l+ ()2+ 5lidxdy

is minimised. The Euler-Lagrange equation,

8u 82u 8u 8u '92u Ou
2 cu

1

(j)2)

ax2
- 2a

ay ax ey + C1 + (9x)) aye = 0,

is elliptic; for small u, it is approximated by Laplace's equation for a membrane,
as described in §5.1.4.2.

Theoretically, the most important attribute of weak or variational methods for
elliptic problems is that they may allow us to study situations in which singularities
occur, and we will discuss this further in the next section. The philosophy is
exactly as for the theory of weak solutions of hyperbolic equations in Chapter 2,
although, of course, the form of the singularities is very different in the two cases.
We will shortly encounter several such situations, but we will eschew the functional
analysis that is needed to enable variational methods to be brought to bear on what
are often very delicate problems. For example, it can easily happen that, for the
generalisation of (5.158) to fD(jVuIP - F(u)) dx, F is so large that J(u) only has
-oo as a lower bound.

5.11.3 Parameter dependence and singular behaviour
Comparison methods can sometimes be used to prove that solutions depend con-
tinuously on the data and we expect this to be the case for most elliptic equations
with appropriate boundary conditions. However, when large changes in the data
occur, there can be surprising behaviour, which has far-reaching implications for
many practical problems.

5.11.3.1 Nonlinear eigenvalue problems

Nonlinear elliptic boundary value problems are frequently posed as nonlinear
eigenvalue problems. For instance, an approximation to the exothermic chemical
reaction problem gives rise to the equation96

V2u + Aeu = 0 in D. (5.159)

The parameter A can be thought of as a non-dimensional heat of reaction or
reactant concentration. In a typical situation of interest with Dirichlet conditions,
say

u = 0 on 8D, (5.160)

we might want to know whether or not there is a solution and, if there is, whether
it is unique.

"When A < 0, this equation is the elliptic form of Lionville's equation; it also appears in
differential geometry for the 'kernel function' and we will see it again in §5.12 and Chapter 6.
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Taking X to be sufficiently small, corresponding to a low rate of reaction, we can
see that the problem (5.159) and (5.160) has a solution in which u is everywhere
small. One way to do this is to use upper and lower solutions. Clearly, u = 0
satisfies the boundary condition, while Vu + Ael > 0, and so zero is a lower
solution. Now we write U = uw, where p is a positive constant and where w
satisfies a trivial Poisson equation:

V2w+1=0 inD with w=0 on W.

We see that U satisfies the boundary condition and V2U + Aen = AeNw - p < 0,
provided that pe-µw > A in D. Hence U, which is positive since w > 0, is an upper
solution if

A < pexp (-psupD{w}).

It follows that for A (esupD{w})-1 there is a positive solution.
An alternative existence proof follows from the contraction mapping theorem.

This relies upon the existence of a mapping, T, taking one function defined on D
to another, such that, in a suitable norm, IIT(v - w)II < kJIv - wfl for some k < 1.
The fixed point of T gives the solution. In this case, if T is defined to map w into
v, where

V2v + Aew = 0 with v = 0 on 8D,

then the proof based on the iteration u = Tu,,_1 is seen to be essentially the
same as that using upper and lower solutions.

The Helmholtz problem (5.27) can be used to demonstrate non-existence of
solutions to (5.159) and (5.160). We know from §5.7.1 that we can take 0 and p
to be the positive principal eigenfunction and eigenvalue of -V2, respectively, so
that

-V20 = pd, in D with 0=0 on OD;
if we define the Fourier coefficient a = fD 4u dx, integration by parts shows that

a = lA
apeu dx > A Ie°1l,

A JD A

where I = fD v dx; in the last step we have used Jensen's inequality.96 For A > p/e,
no a can satisfy the inequality and no solution can exist for such values of A. This,
and similar, nonlinear eigenvalue problems have a bounded spectrum, by which
we mean there is some A', which is less thanp/e in the above example, such that
there is at least one solution for A < A' but no solution for A > A'.

"Jensen's inequality states that, if w(x) > 0 is such that fD\ wdx = 1, then

wf(u) dx > j (r wu dx)
ID JJD

for arbitrary smooth u, provided that f is convex, i.e.

f(aa + (1 - a)b) 5 of(a) + (1 - a)f(b)

for 0 <, a <, 1 (see Exercise 5.51).
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Fig. 5.7 Response diagrams for (5.161).

To see more precisely how solutions depend upon A, it is easiest to start with
the special case in which D is the unit ball in m dimensions. If we assume u is
radially symmetric so that u = u(r) in polar coordinates,97 the problem reduces
to the ordinary differential equation

d22+m-ld dru
r (5.161)

dr
+Aeu=0,

with u(1) = 0 and a regularity condition at r = 0, namely that du/dr (0) = 0 for
m = 1 and u is bounded form > 1. On making the change of variables r = e' and
u = v - 2 log s (which is only needed for m > 1), the differential equation becomes
autonomous. More details of this transformation are given in Exercise 5.47, but
the fact that it allows us to reduce the problem to one in a phase-plane allows
us to plot the response diagrams of, say, the maximum value of u as a function
of A, and these diagrams are found to be as in Fig. 5.7. Amongst the interesting
features are non-uniqueness and unboundedness; when we identify the solution as
an equilibrium state for a parabolic problem in Chapter 6, we will also find a change
of stability at A = A. From an applied mathematical viewpoint, stability usually
needs to be discussed in the framework of an evolutionary model, which is precisely
what we will do in §6.6.4. However, for elliptic problems that are Euler-Lagrange
equations it is possible to conjecture stability results such as these without appeal
to time-dependent generalisations. In such cases, if it can be shown that a solution
branch is a global minimiser of the energy, the solution is likely to be stable as a
steady state of any reasonable evolution model. If we are lucky, the link between

"That this has to be the form of u can be proved rigorously in certain circumstances (see
Exercise 5.46).
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the 'time-dependent' and 'energy' concepts can be made by using the energy as a
Lyapunov function, as in the theory of ordinary differential equations.

This discussion provokes two other questions. The first concerns the possibility
of `spontaneous' singularities appearing in the solution domain.

5.11.3.2 Singularities

We know from our general discussion in Chapter 3 that singularities in the solution
of elliptic problems cannot propagate, in that they cannot exist on manifolds of
dimension one fewer than the space of independent variables, but there is nothing
to prevent more isolated singularities occurring. Indeed, for m > 3 in (5.159) and
(5.160), it can be shown that there is a value A.. such that there are solutions u
and parameters A with u tending to infinity at some interior point of D as A -+ Ate.
Additionally, the singular solutions U are weak

fD

in the sense that

JD
V' DU dx = \'e' dx

for all test functions tii in some suitable space. We can see this explicitly for the
symmetric case98 (5.161), when A,,. = 2(m - 2) and U = -2logr.

The discussion above raises the question of the relationship between the pos-
sible forms of the response diagram when umax is large and the growth of f for
equations of the form

V2u + \f(U) = 0, (5.162)

with, say, zero Dirichlet data. In particular, if f grows as a power as u -a oo, how
does the response depend on this power and the dimension m? It is easily seen
by direct integration that, when m = 1 and f (u) /u -4 oo as u - oo, then there
are large solutions for small A, as in Fig. 5.7(a). More generally, and motivated by
the analysis of (5.161), it can be shown that, for smooth, bounded, m-dimensional
regions D, the following scenarios are possible.
1. If f grows linearly, with f (u)/u -; K > 0 as u -+ oo, there are large solutions

for A close to P/K, where p is the principal eigenvalue for

V2¢ + 110 = 0 in D with 0 = 0 on OD. (5.163)

2. If the growth is sublinear, so that f (u)/u -> 0 as u -+ co, and f (u) > 0, then
u exists and umaz is large for large values of A.

3. If f (u) is identically a power, say f (u) = uV with p > 1, the form of the response
diagram depends crucially upon the relation between p and m. In this case, there
is always the trivial solution u _ 0. For m = 1 or 2, or p < (m+2)/(m-2) with
m > 3, there is a non-trivial solution for all A. For p > (m+2)/(m-2) with m >
3, there is no non-trivial solution. The special value, p = pc _ (m+2)/(m-2), is
called the critical Sobolev exponent. This case is distinguished in that it allows

981t can be shown that A 0 < A' for 3 < m <, 9, and Ao, = A' for m >, 10. In two dimensions
there is an apparently similar situation, where there is a solution satisfying the equation for
0 < r < I and the condition at r = 1, and having logarithmic growth as r -, 0. This singular
solution is not a weak solution.
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us to proceed more easily in solving the equation that corresponds to (5.161)
via a phase-plane analysis (see Exercise 5.48).

5.11.3.3 Non-uniqueness and bifurcations

The discussion above has revealed how easy it is for solution branches of nonlinear
elliptic equations to cease to exist or tend to infinity at critical values of the control
parameter A. Another kind of pathology is that of bifurcation, by which we mean
the branching of a new solution from another `reference' solution as the parameter
is varied.

These kinds of behaviour can be approached systematically by careful exami-
nation of the local dependence of the solution on the parameter. Let us begin with
the simplest case of the nonlinear eigenvalue problem

V2u+Af(u) = 0 in D with u = 0 on OD, (5.164)

in which f(0) = 0 and f'(0) 96 0, and let us see whether any solutions can exist
near the trivial solution u = 099 The key step is to search in the vicinity of a
particular value of A, say Ao, by writing A - Ao = e and, in the first instance,
expanding u in the form

u = UO + EUj +F2 U2+ ... ; (5.165)

thus we are effectively seeking the derivative of u with respect to A. Equating the
coefficients of like powers of c, we soon see that

V2ut + Ao f'(0)u1 = 0 in D with Ut = 0 on OD,

so that ut can only be non-zero if -Ao f'(0) is an eigenvalue of the Laplacian in
D, with corresponding normed eigenfunction 0. Writing ul = ao, where a 96 0,
we find that u2 satisfies

OZU2 + Ao f'(0)u2 + 2 Aoa2 f"(0)02 + a f'(0)o = 0.

Hence, by the Fredholm Alternative, U2 can only exist if a satisfies

(5.166)

dx = 0. (5.167)aAo f"(0) ¢3 dx + f'(0)
IDIIf

fD 03 dx # 0, we then have what is called a transcritical bifurcation from the
zero solution. The bifurcation solution is locally, for A near the eigenvalue Ao, an
eigenfunction aqs of known amplitude. Moreover, the discussion of §5.7.1 shows that
bifurcation at the principal eigenvalue leads to one-signed bifurcation solutions (see
Exercise 5.49).

When 1(u) = sin u, (5.164) is a model for the buckling of an elastic strut (the 'Euler strut'),
where u is the transverse displacement and a is the compressive load applied along the strut.
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Now let us look at cases of (5.164) where we have a non-trivial reference solution
uo(x, A). Adopting the same notation as in (5.165), we now find

`2u1 + Aof' (uo(x)) ul = _f (tza(r)) in D with ul = 0 on 8D.
(5.168)

Hence there is a unique solution for uo unless Ao is an eigenvalue of the (less trivial,
because of the x dependence in the coefficient of ul) eigenvalue problem in which
the right-hand side of (5.168) is set equal to zero. If A0 is such an eigenvalue, there
are two possibilities.

The most likely is that f (uo) is not orthogonal to the eigenfunction 0 corre-
sponding to Ao. In this case ul does not exist and any solutions that are `close' to
uo cannot be found by the prescription (5.165). What this means is that we must
seek a more general representation for u, say in the form

u=up+IEI112u'1 +E u2+ , (5.169)

and this is precisely the behaviour we saw near the turnover points A = A* in the
previous section. Locally the solution depends on IA - A011/2, and no bifurcation
occurs. Indeed, we could say that A - A0 is a locally smooth function of maxD uo.

The second possibility is that

ID
O(x) f (uo(x)) dx = 0.

In this case, by the Fredholm Alternative, there is a continuum of solutions of
(5.168). Noting that the derivative of (5.164) with respect to A gives that

V2 00 + Af'(uo)8- _ -f (uo),

we see that 8uo/8A is a particular integral of (5.168) which vanishes on 8D, and
hence that

u1 Ao + a¢,=

where a is again an arbitrary constant. The problem for u2 is now

02u2 + Aof '(uo)u2 + (8A + CIO) (f'(uo) + Aof"(uo) co) 0.

However, by differentiating (5.164) twice with respect to .\ and using the Fredholm
Alternative in reverse, we find that (8uo/8A) f'(uo) + (Ao/2)(8u0/8A)2 f"(uo) is
orthogonal to ¢, and hence a third application of the Alternative to (5.166) shows
that either a = 0 or

_fD 02 (f'(llo) +Aof"(uo) 8A) dx/ ID 1 AoO3 f"(uo) dx. (5.170)

The case a = 0 just means that (5.165) is the Taylor expansion of uo (x, A) about
A = Ao, and is analogous to the smooth continuation of the zero solution in the
case f (0) = 0. Hence (5.170) corresponds to another transcritical bifurcation.
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We notice that either (5.167) or (5.170) fails when certain integrals vanish
(fD (a f"(uo) dx for (5.170)), and in this case we again have to revert to a repre-
sentation like (5.169). However, this will not now lead to a turnover in the response
curve, but rather a `transverse' bifurcation in which the bifurcating solution branch
is perpendicular to the reference branch; this is called a pitchfork bifurcation.

We conclude with the observation that sometimes it is possible to show that
at most one solution exists to (5.164). We illustrate this by showing that there is
at most one positive solution if f (u)/u is a strictly decreasing function. We must
make the assumption that all solutions are smooth, and, if there are two solutions,
then they intersect at a reasonably regular surface. We suppose that u and v are
two distinct, positive solutions. Then u - v is positive in some region D+ and
vanishes on aD+. Integration by parts over D+ yields

f (vf(u) - uf(v)) dx = faD+ u
(av - aud8.

p+ \ an an J

Since the left-hand side is negative while the right-hand side is non-negative, the
assumption is contradicted.

5.11.3.4 Other irregular behaviour

We have already noted, in §5.11.3.2, that solutions to nonlinear equations may be
infinite at some points whose position is not known in advance, unlike solutions of
linear problems whose interior singularities are determined by the coefficients in
the equations. However, two weaker types of irregularity can arise. For example,
if we look at the radially-symmetric solution of V V. (IVulVu) - 1 = 0, then IDul =
O(r3/2) for r -+ 0. The solution, although differentiable everywhere, is not twice
differentiable at the origin. Another type of behaviour, which will be considered
further in Chapter 7, is exhibited by semilinear problems in which f (u) is not
Lipschitz continuous, such as

V2u=up inD with u=g>0 on8D
and 0 < p < 1. If the region D is big enough, it can be shown (see Exercise 5.50)
that there is a `dead core', defined to be a region contained in D, say Do, in which
u = 0. Outside Do, u is positive. On the boundary BDo, 8u/8n as well as u is
zero, and clearly this solution is not analytic on BDo.

5.12 Liouville's equation again
We conclude this chapter by pointing out a remarkable relationship between the
elliptic version of Liouville's equation in two dimensions and Green's functions.
Suppose we return to §5.9.1, and consider the problem for the Green's function
G(z, zo) for Laplace's equation in a closed region with Dirichlet boundary data.
Let us assume that the region can be mapped conformally onto (J 1 by the map

( = P4
We assumed earlier that the point zo is mapped onto ( = 0, so the mapping is
different for each choice of zo. Here, we will let zo vary, so we assume that this
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point is mapped to Co and keep f fixed. Then, using the mapping of (5.117) to
map the unit disc onto itself, the Green's function is simply-

G(z' zo) =
1

2a log 1 -
(coo

= 2a (log Iz - zol + H(z, zo)),

say. Now set H(z, z) = T(z) so that,10° taking the limit z -> zo,

T(z) = log If'(z)I l {5.171)1-If(x)12/

Then it is easy to show that

V2T(z) = -V2log(1 - If(z)I2)

= -4If'(z)I2
82

log(1- CC)a( a
= 4e2T,

which, with a trivial change of variable, is Liouville's equation (5.159). Clearly,
the argument above suggests that (5.171) is the general solution to this nonlinear
equation, but we knew this anyway from the discussion in 0.8.3. Writing u =
2T+log2 and

V2u = 4eu

as
82u = eu

8z02 '

and formally setting X = if (z) and Y = if (z) and ry = iv, we find that

u = 2log 21f'(z)I 1
1-If(z)I2 'C

which is (5.171)!

5.13 Postscript: V2 or -0?
Many textbooks, especially the more theoretical ones, use the symbol A for the
Laplace operator, and write Laplace's equation as

-Au=0

rather than V2u = 0. Apart from the different notations for the Laplacian, there
are theoretical reasons for introducing the minus sign, as it automatically ensures

100The function H(z, zo), which can be loosely called the 'regular part of the Green's function',
has many important applications (see Exercise 5.52). The function T(z) Is known as the Bergman
kernel function.
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positivity of many quantities of central importance. For example, when Poisson's
equation is written -Du = f, with u = 0 on OD, positive data f gives a positive
solution u. Likewise, the Green's function for the operator -A with homogeneous
boundary data is positive. as are its eigenvalues and 'Fourier symbol' Jk12. It is
also often natural to think of an elliptic equation as arising out of the large-time
behaviour of an evolution problem such as the parabolic equation au/at - V2u =
f, which again leads to -Au = f. Set against this, the vast majority of 'end-
users' of partial differential equations conventionally write V2 and think of Green's
and Riemann functions as the solutions of 'Lu = 6', and we have followed that
convention in this book.

Exercises
5.1. Show that (5.23) and (5.24) are compatible with the existence of an Airy

stress function A(x, y) such that

i9
'u 9uy4 \(ax+ay)+2p-a2 ax o:,

62A au av 1 av
7x- ax+ay+2,uay

a2L
(aY av 1

ax a + ax = r,

= ay,

and that V4A = 0. The condition that the traction on a boundary y = f (x)
is zero can be shown to be

asLf-T=rLf-sy=0.

Show that these conditions imply that

4 = constant,
8A = 0 on the boundary.
an

(In a simply-connected domain the constant can be taken to be zero without
loss of generality.)

5.2. Show that the boundary value problem

V2u=c=constant forx2+y2=r2 <1,

with

5T=2 onr=1,

only has solutions for c = 4 and that, in this case, u = r2 + a is a solution
for an arbitrary constant a.
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5.3. Suppose that V2u = 0, 1 < r < 2, in two-dimensional polar coordinates,
with

+alu=kcos9 onr=1 and &+a2u=0 onr=2.

Seek a solution in which u is a function of r multiplied by cos 9, and show that
it exists and is the only one of this form unless 6a1a2 + 5a1 -10x2 - 3 = 0.
Repeat the calculation when cosO is replaced by cos n9. Deduce that there
is a unique solution to any of these problems unless al and a2 satisfy a
countably infinite number of conditions.

5.4. Show that, if
V2u=0 for-ar<x<ar,-ar<y<ar,

with

u=0 on y = 0, ar and 8x = ±yu on x = far, respectively,

then there is a non-trivial solution when ry tanh nar = n, where n is an integer.

5.5. Suppose V2u = 0 in a square and that u = 1 on one side of the square, u = 0
on the other three sides, and u is bounded. Show that u = a at the centre
of the square. What is the corresponding result for a cube?

5.6. Suppose
V2u-cu= f in D,

with
u=g on OD,

where D is bounded and OD is smooth. If u exists, show that it is unique if
c > 0. If c < 0 and f = g = 0, and D is the region r2 = x2 + y2 < 1, show
that

u = constant Jo (rte)
is a solution as long as is a zero of the Bessel function Jo(x), which
satisfies

d2Jo 1 dJo
dx2 + x dx + Jo = O.

If c < 0 and 1=9 = 0, and D is the region 1 <x2 + y2 + z2 <4, show that
there are non-trivial solutions if c = -n2ar2, n = 1,2,3,....

5.7. By setting E = 0 in (5.59), show that a solution of Laplace's equation in two
dimensions satisfies

u(0)=2 a; uds,
8D

where 8D is a circle with centre 0 and radius a. This is called the mean
value theorem. Derive the maximum principle from this result. What is the
corresponding result in three dimensions?
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5.8. Why does the maximum principle not hold for
2

G=dx2+A2 for0<, x<, 1,

with A > 7r? Show a similar result for C = V2 + Al, 0 x2 + y2 + z2 '< 1, by
using the fact that sin(irr)/r satisfies Cu = 0, with u = 0 on r = 1.

5.9. Suppose that u(x, y) tends to zero as rapidly as you wish as r2 = x2+y2 -4 00
and V22u isrintegrable everywhere. Show that

r00(. J u02 log(r2 + E) dx dy = 1 f I log(r2 + E) V2u dx dy.
2 J o0 00 0o J oa

Show further that the left-hand side is
AN ru dr dB[00

2E
J r2+ E20 ( )

Now let e 10 and either integrate by parts in r or assume the main contribu-
tion to the integral comes from near r = 0. Show that its value is 27ru(0, 0)
to lowest order, and deduce that, if G = (1/27r) log r, then

LL:
oo

uV2Gdxdy = L:cV2udxdy =
F.

5.10. If V2u = 0 in r2 = x2 + y2 < 1, and u(cos8, sin 9) = g(O), separate the
variables to show that

00

u = 2 + 1: (anr" cos n8 + bnr" sin n9)
n=1

where an and b" are the Fourier coefficients of g. Show that this formula can
also be derived from (5.59).

5.11. Show that, if Vu = 0 in a rectangle, and u is a given smooth bounded
function on one side of the rectangle and zero on the other sides, then the
bounded solution can be written as an explicit Fourier series. Deduce that
the same is true for arbitrary smooth Dirichlet data on all four sides of the
rectangle.

5.12. Show that, if V2u(r, 9) = 0 in 0 <, r < 1, 0 <, 0 < a, with

r2, 0 = a, 0 < a < 7r/2,
u= 0, 8=0,

sin 20, r = 1,

then
2 sin 20u = r
sin 2a

Show further that if a = a/2 then
2

u = -2 (sin(20) log r + 0 cos(20)) .
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* 5.13. (i) Show that

f0

f 21r 1- r cos(9 - a)
g(8) dO -> 1 J

2,r

g(O) dO + lrg(a)
0

r
1+r2-2rcos(O-a) 0

as r 1 1 by splitting the integral into

J0Q-r+I at(+1 +E,

where r=1-6and 8«E. J
(ii) Now suppose that u(r, 9) satisfies V2u = 0 in r2 = a2 + y2 < 1, with

5r + yu = g(B) on r = 1.

Take G = (1/2a)log Ix - 41 in (5.52) to show that

u(E) = J
(uG - G ) do,

o Or r=11

and hence that, on r = 1, u satisfies the equation

\
U(1' a)

2a
_ -! f g(o) log (I2 sin (0

_
2

a)1)
dB

0

+ j2wu(1,o) (log (2sin (0
_

2
) ) + d9.

5.14. (i) Suppose that the function u(r, 0) is written as a double Fourier inverse,

-(kcos 9+k2 9dki dk2.u(r, 8) = i_: f k2)e
00

Show that u can satisfy the Helmholtz equation V2Uu + u = 0 if u =
2ir8(p - 1) f (0), where p2 = k1 + k4, tan ¢ = k2/k1 and f is arbi-
trary. Hence derive the Sommerfeld representation for the solution of
the Helmholtz equation in the form

-ircos(9-0)f(0)d,u(r,O)
=

fo

a

(ii) The Kontorovich-Lebedev inversion formula (5.106) on p. 193 suggests
that ao

u(r,O) = f JIK(r)e iK9g(rc)dlc

00

is also a general solution of the Helmholtz equation. Verify that this
formula can be deduced from the Sommerfeld representation above by
showing that its formal Fourier transform with respect to 8,

f00 2a 00

.f eik9-r-e(9-0)f(0) d8d0 = f Jik(r)ekm
o 00

f(r) dm

= J,k(r)g(k), say.
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5.15. Show that, if the real symmetric matrix A has real eigenvalues Aj and or-
thogonal eigenvectors x;, so that x; Ax; = Aix; xi, then, for any vector
y = E c,x the smallest eigenvalue AO satisfies

TAy,\O
yTy

Show that the eigenfunctions 0 and eigenvalues -A of the problem

V20 +,\o = 0 in a region D,

with

8n + a¢ = 0 on 8D,

where 8/8n is the outward normal derivative, satisfy

,\L02 dx=J ,712 dx+a fq ds.
D D

Deduce, as in the matrix case, that the smallest, or principal, eigenvalue
satisfies

A0 < (fD1vv12dx+ajDv2d8)/Lv2dx

for any smooth v.

5.16. Suppose that the eigenvalues An and normalised eigenfunctions ¢n(x) of the
Dirichlet problem for the Laplacian in a domain D are known: that is,

V2.0a
= Anon in D with ¢n = 0 on OD.

Multiply by 0n and use Green's theorem to show that A. < 0. Show further
that the Green's function G(x, 4) for the modified Helmholtz equation, which
satisfies

V2G-k2G=6(x-C) in D with G = 0 on 8D,

has the expansion

G(x,4) _
On(x)O. Wn_0 An - k2

Show that the expansion is also valid for the Helmholtz equation provided
that -k2 is not equal to any of the A. When -k2 = An for some n, show
how to construct a modified Green's function using the arguments of p. 173,
by solving

(V2 - An) G(x, F,) = 6(x - F) + c4n(x)On(0

via an eigenfunction expansion with a suitable choice of c.
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5.17. (i) Suppose that, in the notation of (5.58),

V2u=O inr>a,

with
9u

8r g(9) on r = a.

Using Green's theorem, show that, as r -+ oo,

2x
u = alogrI g(O)dO+O(1).

0

(ii) Again using the notation of (5.58), show that, on r = a with a = 0,

er (RR') = I1 (ItI2 + a2 - 2aIEI cos8),

where now IfI > a, and hence that

RRl 8r (RR') a

(iii) Deduce that

27r log
RR

is a Green's function for the exterior Neumann problem.
5.18. Consider the interior Neumann problem

V2u=0 inr<a,

with
8u =g(8) onr=a,

where fo g(9) d9 = 0. Show that, when n = 0 in the notation of (5.56),x

GM = 2s log
RR

+ constant.r

Does the value of the constant matter?
5.19. From the same geometrical consideration that led to (5.58), show that the

Green's function for the Dirichlet problem for Laplace's equation in a sphere
of radius a is

4 (IX 1 RIIx
a

E'Il '
where 4' is the point inverse to 4 in the sphere.



EXERCISES 229

5.20. Suppose 8 and 9' are two-dimensional polar coordinates centred at A and B,
respectively. Show that 8-8' is a harmonic function in any doubly-connected
region surrounding, but not including, A or B. What Dirichlet data does it
satisfy on any circle through A and B? Hence find the bounded solution of
V2u = 0 for r < 1 in plane polar coordinates, with

u(1,9)- 1, 0<8<7r,
-1, -7r<9<0.

s 5.21. Suppose a solution of V2Z4 = 0 in y > 0 is such that u(x, 0) = gD(x) and
Ou/Oy (x, 0) = gN(x). Show that the Fourier transforms of 9D and ON satisfy

9N(k) = -IkI9D(k),

and hence that

9N = -ih(x) * 9D(x), 9D(x) = ih(x) * 9N(x),

where * denotes convolution and

h(k) =
1, k > 0,

1-1, k < O.

Show that
0

2-r
/ e-1 jkj h(k)e -ikxdk = (ix1 + ix1 e) fore > 0

and take the limit as e -3 0 to deduce that h(x) _ -i/irx. Show that if
9D = 1/(1 + x2) then ON = (x2 - 1)/(x2 + 1)2, and verify (5.66) or (5.68).
Confirm the results by considering the function 1/(z + i).

5.22. Show that, if f is analytic in Izi < 1, so that

P z) = 21
f f (t) dt

-1=1

then, for IzI < 1,

2w
f (eie)eie d9

2A f (eie)eie dB
f (z) = 2a

J
eie - z and 0 =

Jo 1 -.fete

Combine these results to give R f (z) = u(x, y), where

1
u(x, y)

- r2
fo

2w u(cos 0, sin 0) dO
= 2fr 1 + r2 - 2r cos (8 -tan-1(y/x))



230 ELLIPTIC EQUATIONS

5.23. Suppose that u(x, y) satisfies

V2u=0 my>0,

with u(x, 0) = uo(x), where uo(x) -+ 0 sufficiently rapidly as x -+ ±00. Show
from the Green's function representation of the solution that

1 ,r/2
u(x, y) uo(x + y tan 0) dB.

a -,r/2

Verify by direct differentiation that V2u = 0.

5.24. Suppose that 0(r, z) satisfies

820 180 82
8r2 + ; + . = 0 ' 0ro, z) _ 0o(z)

Take Hankel transforms to show that, for z > 0,

00

0(r, z) = J k f (k)e ktJo(kr) dk,
0

where k f (k) is the inverse Laplace transform of 0(0, z). Now change the
order of integration in f Y+iao

z) = 1 f 0(0, z)ek<-kz Jo(kr) dk d(
tai Y-ioo

and use the result of Exercise 4.11 to show that

0(r, z) =
1

I f 0(0,z+itcoso)d8.
0

5.25. Show that, if S = f (z) is analytic, then the Neumann data satisfied by a
function on a curve in the z plane is equal to that satisfied by the function
on the corresponding curve in the C plane multiplied by I f'(z)I.

5.26. Show that, if 0 is the velocity potential in an irrotational flow and 0 + i1o =
w(z) describes a particular flow, then

(62)
W(Z) + 1

z

describes a flow in which V0 is tangent to jzj = a.
Note. If f (z) = u(x, y) + iv(x, y), then

7(z) = T T = u(x, -y) - iv(x, -y).
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5.27. Show that, for a > b, (5.121) can be written as

+its- UOa+b a-io(z+ z2-c2) +ebo(z - )

a+b a-b
Show further that, if there is a circulation r around the aerofoil, so that
0 + jib = Uxze-i° + (it/27r) logz + 0(1) as jzj --> oo, then the term

it
log

I z

+ z2 --C2

27r e

must be added to this formula. By considering dw/d(, show that, in the
limit b -+ 0 and c -> a, dw/dzI,,_, is finite if r = 27W, ccoef0 sin a.

5.28. Suppose we try to solve the biharmonic equation V4u = 0 in 0 < x < 1,
0 < y < 1, with u = Ou/Ox = 0 on x = 0,1, and u and Ou/8y prescribed on
y = 0, 1. Separate the variables to show that candidate solutions are

u(x, y) _ ((Ax + B) cos kx + (Cx + D) sin kx)e±k",

as are such functions multiplied by y, where A, B, C and D are constants, and
k is a complex root of k = f sink. Are these functions mutually orthogonal
for different k?

s 5.29. Consider the crack problem of §5.9.3. Show that the boundary values of the
function

On auW(z) _
ax - lay

satisfy
Ou Ou

8x (-8y -r =0

on the whole real axis except at x = ±c, and deduce that 3'((W(z)-ir)2) = 0
there. Use Schwarz reflection to show that W(z) can be extended to an
analytic function with singularities only at z = ±c and z = cc. Use symmetry
and the behaviour of u at infinity to show that the least singular possibility
for W(z) is

-T Z
(W(Z) - iT)2 =

z2 - r2'
and hence retrieve (5.149).101

* 5.30. By considering the limit R -> oo. show that

( d(
CI=R>c (2 - c2 (- xJ

= 27ri,

where x is real and -c < x < c, and the branch cut is taken along the
interval (-c, c) of the real line. Deform the contour to one wrapped around

2 2

101 We are indebted to Dr A. K. Head for this remark.
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the branch cut, taking care near S = x, to deduce the result of footnote 90
on p. 206.

* 5.31. Suppose that V2u(x, y, z) = 0 in z > 0, with u(x, y, 0) = gD(x, y) and u -+ 0
at infinity. Show that, if

u(k1, k2, z) = u(x, y,
z)e,(k,x+ksv) dx dy,f 00 I_00

and if

then

Deduce that

say, and also that

_ limH=-

8z (x, y, 0) = 9N (x, y),

1

9D=- 1+ 9N-

09D - ik1

8x k1 + k2
9N = H9N1

1 1 e-c ki+k2e i(k,x+ksq) dki dk2
41r2 8x c-+0 -00 -oo k1 + k2

- - 1
lim

d9 x
(i cos(9 - tan-1(y/x)) + E)2 21r(x2 + y2)3/249.2 c-+0 fo,w

5.32. (i) Show that, if V2ut = 0 in y > O and y < 0, and ut = 9D() on y = 0,
where 9D is continuous and 9D(x) -+ 0 as IxI - oo, then, on y = 0,

L +
2PV

foo 9 () -9D(x) dt( - x)2Vou

(ii) Show that, if V2uf = 0 in y > 0 and y < 0, and But/ey = 9N(X) on
y = 0, where ON -+ 0 sufficiently fast as Ixl -+ oo, then, on y = 0,

[u] ± _ i f009N (e) log Ix - f I
00

5.33. Show that, if r K 6 « 1, the integralf co
9(C) dC

00 (z - e)2 + r2

can be approximated by

)

f a+a dea g(t) dt +
( +

00 g(t) dt
9 z

J_00 z - e J:+6 -z
Show further that the middle term is

2g(z) cosh-1 I * I = 2g(z) log 12r J (i+o ()),
and deduce that the original integral tends to -2g(z) log r as r - 0.
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5.34. Suppose that O(r, z) satisfies

020 100 2

ar r 0r +
8z2 ' (0, z) = 1 + Z2*

Show that
0(r, z) = R

1

r2+(z+i)
Where are the singularities of 0?

5.35. Assume that f (x) is integrable, and differentiable in 0 < x < oo. Integrate
by parts to show that

I(k) = f x1/2 f(x)el1

= 2k (9(0) r x-1/2eikr dx + fo x-1 /2
(9(x) - g(0)) etk: dxf

where g(x) = f (x) + 2x f'(x). Deduce that

1(k) = 2k3/2 VF!22

ask ->oo.
Note. fo s'1/2e"ds= (1+i) r/2.

5.36. (i) Generalise the argument following (5.128) to show that, if V2u = 0 in
y > 0, with u -+ 0 as y i oo and u(x,0) = g(x), where g(x) - 0 as
x -+ ±oo, then u(x, y) = N w(z), where

-z
Deduce that w(z) = O(z-1) as Izj -- oo unless f o. g(C) dC = 0.

(ii) Now suppose that V'2v = 0 in y > 0, with v -4 0 as y -4 oo and

(x,0) = f(x) for x < 0, v(x,0) = g(x) for x > 0.

where f and g vanish at moo, respectively. Write

W(z) = F -

and let w(z) = z1/2W(z). Show that, on the real axis,

x1/29'(x), x > 0,Rw(z) = h(x) _
-(-x)1/2f(x), x <0,
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and deduce that
z-1/2 0o

h(C) dCW(z)
ai 1_00 C - z

Remark. This result can easily be generalised. If v and 8v/8y are prescribed
alternately on several intervals of the real axis, then the premultiplier z'/2,
whose function is to swap real and imaginary parts (to turn Neumann data
into Dirichlet), is replaced by a suitable product with square roots at the
ends of the intervals. Further, if a mixed boundary value problem of this type
is given in a domain that can be mapped onto a half-plane (for example, a
polygon, by the Schwarz-Christoffel map; see p.342), then the solution can
also be written down; in this case the Neumann data is multiplied by the
derivative of the mapping function (see Exercise 5.25).

5.37. Suppose that u(z, y) satisfies the convection-diffusion equation

V. Du=V2u

in a domain D exterior to a semi-infinite boundary r : y = ±f (x), 0 < x <
oo, where f (0) = 0 and f (x) > 0 for x > 0. Suppose also that v = V0, where
0 is given and satisfies V20 = 0, that v -+ (1, 0) at infinity, and finally that
u = 1 on I' and u -+ 0 at infinity.
Show that, after the Boussinesq transformation, in which 0 and its harmonic
conjugate 10 (the stream function) are used as independent variables, the
problem becomes

02u 02u _ 8u

87 + 802 80

in the (¢, t) plane with the positive real axis deleted, and

u=1 on0=0,4'>0, u--*0 at infinity.

Show that u = erfc ,I, where (£ + irq)2 = x + iy (see Exercise 5.38 for confir-
mation).

* 5.38. Suppose that

in y > 0, with
V2u 8x

u(x,0) = 1 for x > 0, 8u(z,0)=0 for x < 0,

and ui0as x2+y2 -+ oo except on y = 0, x > 0.

(i) Show that, if z = x + iy = ( + irq)2, then

02u+02u _2/ 8u 8u\
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with

u
2 fOF *,

where n = r112 sin 0/2 in polar coordinates.

(ii) Derive the same result by setting u = f tee'kt dx, where

u(x,0) = f(x) for x < 0, (x,0) = g(x) for x > 0;

first write that
k - ik

in the notation of §5.9.4, where k' - ik - Ikl as Iki - oo with k real,
and then Justify writing k2 - ik = (v)+( k - i)_. Thus show that
9+ = ( i/k)+, from which the solution in (i) can be deduced by contour
integration.

* 5.39. (i) After removing the incident field, the Sommerfeld problem (5.102) and
(5.104) becomes

(V2+1)u=0,
with

u = -e-'x COs ° on y = 0, x < 0,

together with a radiation condition. Letting

ILY

v=o+

u(x,0) = f(x) for x > 0,

1

= g(x) for x < 0,
8,=o-

show, as in Exercise 5.38, that

i __ _ 9-(k)
f+(k) + (k-- cosa)_ 2 k - 1'

where '1k2 - 1 tends to Ikl as k -+ oc with k real. Assuming that
the radiation condition can only be satisfied if k2 - 1 is defined as
(Vly--l)_ ( k + 1 +, show that

f+(k)( k+1)++i( k+1- c5sa+1
k - coca

g_ (k) _ i cos a + l
2( (k-cosa)_'

and hence use Liouville's theorem to show that
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(§-(k)k-1/_-2i cos a + 1
k - cos a

Remark. The inversion for g(k) can be manipulated to give

i(l n/4)
u(r,O)

e (.i(cos(j))
+Flr(-v(2-rcosCB

2a111,

where
00

Fr(z) = e-iZ2 / eit0 dt.

This solution can be shown to satisfy the radiation condition after
(5.102).

(ii) Verify that each of the two terms in u(r, B) satisfies Helmholtz' equation
by setting u = ei''v and seeking v as a function of the variable t in Ex-
ercise 5.38, taking the x axis in that exercise to lie along the boundaries
of the directly illuminated and reflected regions, respectively.

5.40. Show that, in the parabolic coordinates of Exercise 5.38, the Helmholtz equa-
tion with k = 1 becomes

a7 +l2 + 4(£2 + q2)u = 0.

Although this is not apparently a traditional separation of variables situa-
tion, show that solutions exist in which u(t, q) = U(t)V (q), where

U"+4(C2+A)U=O, V"+4(q2-A)=0,

and A is the separation constant.
The functions_U and V are called parabolic cylinder functions. Show that,
if U(t) = ei(2U(C), then

U"+4itU'+AU=0.

Verify, using the ideas of p. 109, that U has the integral representation

U = fe_it2/8t_1_i)dt

for an appropriate contour r.
e 5.41. The following alternative derivation of (5.112) shows that VA can be thought

of as the adjoint of and vice versa.
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(i) Suppose that V A G = 0 and V H = 0. Use the identity

to show that, if G and H vanish sufficiently rapidly at infinity, then

f
00 00 OO

f. foo
(ii) Suppose that V A H = j and V - G = 6(x - F). Show that

H= J .J . /
00

jAGdx.

(iii) Finally, show that

G O ( 4rlx-fl
is an appropriate Green's vector to deduce (5.112). Further properties
of vector distributions are discussed in Exercise 9.3.

5.42. Show that the function A in Exercise 5.1 satisfies

84A
8z2 8z2 -

0

and write it as

A= 2(201(Z) + Z02(z) +X1(Z) + X2(z)),

where 01,2 and X1,2 are analytic. Use the fact that A is real to show that
(z) = 01(z) and X2(z) = X1(z) in the notation of Exercise 5.26, and hence

that
A = W(IO,(z) + X1(z)).

Show also that

oz +oy = 4?-0i(z),
oz-oy-2ir=2(20'(z)+Xi(z))

5.43. (i) Expand the equation V (lVuIP-'Vu) = 0 and use the criteria of Chap-
ter 3 to show that, if 0 < IVul < oo, then the equation is elliptic for
p > 1, parabolic for p = 1 and hyperbolic for p < 1.

(ii) Derive a variational formulation for the boundary value problem

V 1 = 0 in D with u = 0 on 8D.

Show that the resulting functional is neither bounded above nor below
ifp<1.
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5.44. The surface z = u(x, y) passes through the closed curve of intersection of
z = f (x, y) and the closed cylinder h(x, y) = 0. Show that, if the area

dx dy

1 (au/ax)2 + (8u/ay)2

is minimised, then

/
rau

)2).92U 8uau a2u 2 a2u+ \ 8x2 - 2 ax ay ax ay
+ (1 +

(OU)

ax) aye = 0

in the interior of h(x, y) = 0, with u = f on the boundary. Show that this
equation can be written as

V
Vu

0;
l+IVuI2

the left-hand side of this equation is called the mean curvature of the surface
z = u(x, y), which is the sum of the two principal curvatures.

5.45. Suppose that D is a domain in the (x, y) plane with a smooth boundary.
The equation

Vu _c° TU-17)

in D, with Vu n = cosy on 8D, is a model for a surface of constant mean
curvature formed by the vertical displacement under the action of surface
tension of a fixed volume of fluid occupying a cylinder whose walls, on OD,
are in the z direction. Show that there can be no solution if

< c(1 + sect
7)1"2,

where p is the length of the perimeter of D and A is the area of D.

5.46. (i) Use the argument of §5.3 to show that, if a > 0 and

V2u + Ae' = 0 in D with u = 0 on OD, (5.172)

then u is positive. Show also that zero is a lower solution. Assuming that
there is a positive solution, use induction and the maximum principle to
show that there is a smallest positive solution um.

(ii) Show that, if T is an orthogonal matrix and x' = Tx, then the Laplacian
in x is equal to that in x'. Deduce that, if D is a sphere, um is radially
symmetric.
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* 5.47. Show that radially-symmetric solutions of (5.172) satisfy

d2u m - ldu
dr2+ r

dr+Ae"=0 for0<r<1,

with u(1) = 0 when D is the unit sphere in m dimensions. Make the change
of variables s = log r and v = u + 2s + log A (the motivation for this will
come in §6.5) to obtain

d2u dvds2+(m-2)ds+e"=2(m-2) fors<0,

where

and

v(0) = log A

v=2s+uo+logA+o(1) ass -- -oo,

uo being the value of u at r = 0. When in = 2, show that

ds 1

dv 2(2 - et')%

with s = 0 when v = log A, s -4 v/2 as v -> -oo and, by integrating
this explicitly or by considering the graph of s(v), show that there are no
solutions or two solutions according as A > 2 or A < 2, respectively.
Show that, for m >, 3. the phase-plane of (v, dv/ds) has one critical point
at (log 2(m - 1),0), and that this is a stable spiral point (focus) for m < 9.
Suppose that v < vo on the spiral in which dv/ds - 2 as v -+ -00. Show
that there is only a solution if log A < vo and that there are infinitely many
solutions when A = 2(tn - 2).

5.48. Show that radially-symmetric solutions in m dimensions of

V2u+Aup=O fore>1,A>0

satisfy u = r2/(1-p)A1/(1-p)v, r = e", where

dz z-+ m-2+ 4 dv+vp+
2 m-2+ 2 v=0.

ds2 ( 1-p ds 1-p 1-p
JIu= lonr= 1. show that

t+ = A-1/('-p) at s = 0, v -+ constant - e-20/(l -p) ass -+ -oc.

Show that this equation can be integrated when p is equal to the critical
Sobolev exponent, p = (m + 2)/(tn - 2), to give

Cd4/

2

+
(m_2) U2m/(m-2) - (in_2)21,2

= 0.

Deduce that in this case A cannot exceed vo-1, where vo is the maximum
value of v on the closed trajectory through the origin in the (v, dv/ds) plane.
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5.49. Consider the problem of bifurcation from the zero solution of the equation

V2u + A(u - cau2) = 0 in D with u = 0 on OD,

at the principal eigenvalue )b. Suppose 00 is a corresponding positive eigen-
function. Show that 00 is a lower solution if A > A0 and that the maximum
value of 00 does not exceed (A - Jb)/aA. Deduce that there is a solution that
is strictly positive when A > A0, so that the bifurcation is either transcritical
or what is called `supercritical'.

* 5.50. Verify that w = Mr2/(' ) is a solution of

V2w=w' for0<p<1,
in the unit sphere in m dimensions, with value M > 0 on the boundary as
long as

MP-1=12p(m-2+12p).

Now suppose that it is an upper solution in which V2u = u' in D, with
u = TY > M on OD, where D encloses the unit sphere. Making suitable
assumptions about uniqueness and the applicability of the maximum princi-
ple, show that u = 0 at the centre of the sphere. By adjusting the position of
the sphere slightly, show that it vanishes in a subregion of D, i.e. that there
is a `dead core'.

5.51. (Jensen's inequality) Suppose that f" > 0, so that, for any X and Y,

f(Y)1> f(X) + (Y - X) f'(X).

Let w(x) > 0 and fD w(x) dx = 1. Show that, for any X and any smooth
u(x),

w(x) f (u(x)) dx % f w(x) (f (X) + (u(x) - X) f'(X )) dxL D

and hence that

f w(x) f (u(x)) dx > f I f w(x)u(x) dx) .
D \ D

* 5.52. A small massive ball rests at x = , y = n on a membrane stretched hori-
zontally over a wire 8D in the (x, y) plane; the point ({, rI) is to be found.
Show that the vertical displacement z = u(x, y) approximately satisfies

V2u =
W

b(x - t)b(y - 71) with u = 0 on 8D,
To-

where W is the weight of the ball and To is the tension in the membrane.
Show further that, if the ball and membrane are both smooth, then t+iq = t;,
where, in the notation of (5.171),

dT - 0
dz

z=c
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Parabolic equations

Preamble
As we have already mentioned, and as this chapter emphasises, parabolic equations
probably occur more commonly than any other type of partial differential equation
in applied science. However, that is not the only reason why this chapter is one
of the longest of the book. It also reflects the vast amount of knowledge that has
been gained about many parabolic problems over recent decades. This has come
about as the result of the stimulus of the many practical applications combined
with the applicability of a wide variety of mathematical techniques.

We have a difficult task to present all this material in an accessible form,
simply because there are so many model problems and techniques. The only at-
tributes of parabolicity that transcend the whole chapter are the nearly universal
smoothing property of parabolic operators and the difference between forward
and backward parabolic equations. The techniques we use will extend beyond the
Riemann-Green and Fourier methods that were applied to hyperbolic and elliptic
problems; although we will not use complex variable theory other than to evaluate
integrals, we will describe a battery of other methods such as maximum principles,
comparison theorems, energy methods and group invariance.

In this chapter we follow convention and denote the diffusion coefficient by D;
hence all spatial domains are denoted by Il.

6.1 Linear models of diffusion
6.1.1 Heat and mass transfer
Parabolic equations arise as models of many physical processes. The most basic
is the heat equation which describes the flow of heat by conduction through a
stationary, homogeneous, isotropic material. This is the time-dependent version of
the problem introduced in §5.1.3, so that the temperature T is no longer steady
and the heat content per unit volume, pcT, changes with time; here p is the density
and c is the specific heat. Again taking Fourier's law of heat conduction, so that
the heat flux is q = -kVT, conservation of heat in the presence of a heat source
per unit volume f now gives

pcas= kV2T + f,

assuming that p, c and the thermal conductivity k are all positive constants.

241
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In the absence of any heat source, (6.1) reduces to

OT
= DVZT, (6.2)

where D = k/pc is known as the thermal diffusivity, and we will refer to both (6.1)
and (6.2) as heat equations. In both (6.1) and (6.2) we would expect to know the
distribution of T at t = 0 in addition to boundary conditions imposed on spatial
boundaries (possibly moving with finite speed) of the type described in §5.1.3.

These equations are often also referred to as diffusion equations because they
also model diffusive mass transfer. Suppose one material, say strawberry sauce, is
free to move under the sole action of molecular diffusion through another, station-
ary, material, say yoghurt, and suppose the concentration c(x, t), defined to be
the ratio of the masses of sauce and yoghurt per unit total volume, is low. Then
Fick's law relates the mass flux of the mobile phase to c by q = -DVc, where D
is called the diffusivity. Conservation of mass implies that

at
for constant diffusivity. If, however, the medium is moving with velocity v there
is also mass transfer by convection. We can model this either by generalising
the argument leading to (6.1) or by simply realising that the total mass flux is
q = cv - DVc, so that c satisfies the convection-diffusion equation

ac = DVzc - V. (cv),

which, if V v = 0, can be written as

(I+V.v c=DV2C. (6.3)

A version of (6.3) arises when modelling the distribution c of a pollutant in
a river along the x axis. With a unidirectional flow v = (v(y, z), 0, 0), we would
write

0c 0C = z z z

8t
+ v8x D (8xz + W2 + az2 ) ' (6.4)

but it now probably makes physical sense to interpret D as representing the effects
of turbulence rather than molecular diffusion. The term 82c/8xz in (6.4) is often
ignored when the river is long, and in such cases the boundary conditions at the
downstream end of the river are ignored. When this approximation is made and
when we restrict ourselves to steady states, c satisfies

z\
19C =v8x D (8yz + 8zz I , (6.5)

which shows that time does not have to be the independent variable on the left-
hand side of a diffusion equation; in steady convection, `distance downstream' is
synonymous with `time' in conventional heat conduction.
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6.1.2 Probability and finance
Diffusion equations can also be obtained from `random walk' or `Brownian motion'
models. A very simple derivation of the one-dimensional equation is as follows; it
is similar to the proof-reading model of §1.1. Suppose that, at a time t, some
particles occupy the lattice sites x = 0, ±k,..., and that the concentration c(x, t)
is defined to be the expected number of particles at the site at x at time t. Over
the next time step, say of length h, any one particle can move to the right or left,
both with probability p, or remain at its present position, with probability 1 - 2p.
The new expected number at x is

c(x, t + h) = pc(x - k, t) + (1 - 2p)c(x, t) + pc(x + k, t), (6.6)

so that

c(x,t + h) - c(x,t) = p(c(x + k,t) - 2c(x,t) + c(x - k,t)). (6.7)

Taking the step size and lattice separation to be small, and expanding in Taylor
series about (x, t), with kz/h = D/p, we recover the heat equation

at =
D02Cx. (6.8)

This is reassuring because heat conduction comes about through the random agi-
tation of certain modes of oscillation of atoms. If the probabilities of moving left
and right had been different from each other, there would have been a drift term
proportional to Oc/Ox, as in the one-dimensional form of (6.3).

In a similar vein, financial modelling also gives rise to parabolic equations.
Suppose we consider an option, which is a contract giving its holder the right (but
not the obligation) to buy (or sell) some asset, such as a number of stock-market
shares, at some specified time, say T, when the exercise price, a previously agreed
sum of money E, is paid for the asset. Suppose the underlying asset is a share
which is expected to gain in value in 0 < t < T, but whose price is subject to
unpredictable fluctuations. Suppose we buy an option instead of the share; we can
gain if the share rises but, on the other hand, we may lose all our money if the
share falls, since there is no point in paying E for something which costs less than
that in the market. However, we can `hedge' the option position by setting up a
`portfolio' of the option and a certain number of shares, trying to use the share
holding to protect ourselves against unpredictability. As we now see, this process
allows us to calculate the value V(S, t) of the option to buy a share at time T
as a function of the current time t and the asset value S. We suppose we have a
cash balance M, and we hold a number A, which may vary in time, of the assets.
Thus, having bought one option, the portfolio value is P = M + Si + V. The
cash balance accrues interest at a rate r, say; it also changes when we buy or sell
assets and so, in a short time dt, we receive rMdt in interest and spend -S dA
on assets. In the same time, the asset price changes by dS and the option value
by dV, so the overall change in the portfolio is

dP=rMdt-SdA+SdA+AdS+dV = rM dt + A dS + dV.
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We now make three important modelling assumptions. The first is that the instan-
taneous 'rate of return' on the asset varies randomly, so that

dS
S

=
µ dt + or dX, (6.9)

where p is a deterministic 'growth rate' for the asset; more importantly, dX is a
small normal random variable102 of mean zero and variance dt which models the
uncertain response of the share price to the arrival of new information, and a is a
parameter which measures how 'volatile' the share price is. We can estimate the
change in V = V(S, t) in a time interval dt by writing

dV = dt + 8
S

ds + 2852 (dS)2 + .

Now dS is given by (6.9), and we take the second bold step of assuming that
the largest contribution to dS2 is a2S2 dX2 and then replacing dX2 by dt, since
X has zero mean and variance dt. This second step is equivalent to the assumption
that is needed to go from (6.7) to (6.8), namely k2 = 0(h), and it can be described
systematically using Ito's lemma from stochastic calculus [31]. The upshot is that

dS + 10_2S2 8SV2 dt + o(dt).dP = rM dt + A dS + dt +
as

This enables us to make the key observation that we can instantaneously remove
all the randomness, represented by dS, from our portfolio by choosing A to be
-ay/as.

The final step is to use the idea of no arbitrage, which is the technical term for
the non-existence of a 'free lunch'. In this context, it means that it is impossible to
earn more than the risk-free interest rate r for a risk-free portfolio, so dP = rP dt
and hence we derive the Black-Scholes equation

l

5
+ 2a2S2S2 = r CV - Sas) (6.10)

for the value of our option. Note that, as compared tollthe heat equation, the
Black-Scholes equation is a 'backward' parabolic equation with a convective term
rS OV/aS and a 'source' term rV, and we expect intuitively that a final condition
should be imposed. This is that V equals S - E at t = T, provided that S > E,
which represents the proceeds of exercising the option and immediately selling the
asset; if, on the other hand, S < E, the holder will not wish to pay more for the
asset than it is worth, and in this case the option is not exercised, so V = 0. We
note that if S vanishes at some time it remains zero, according to (6.9), so the
boundary condition V = 0 at S = 0 must also hold.103

'°2There have been many more large swings in world markets than would be consistent with
the assumption of a normal random variable; this model must be used with caution!
103Tho discussion we have given is just the starting point of an enormous range of valuation

problems for 'vanilla' and 'exotic' options in the Black-Scholes framework; most of them are
boundary value problems for the Black-Scholes equation or a variant of it, and we refer the
reader to [47[.
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6.1.3 Electromagnetism
The heat equation also appears in vector form in electromagnetism. We recall from
§4.7.2 that, in a suitable system of units and with no net charge, the electric field
E, magnetic field H and current density j satisfy

-µaH=VxE, VxH=j+eBE,

Suppose that we are now considering situations where the time scale is much longer
than that for electromagnetic wave propagation, which here means that a is small;
the second equation then becomes j = V x H to lowest order. Suppose also that
current-carrying material is present, which means that to close the model there
must be a law relating j and E in the material. For many materials this is Ohm's
law, j = aE, where a is the electrical conductivity, assumed constant. Combining
the equations, and using the fact that V A (V A E) = -O2E since V E = 0, yields
the vector diffusion equation

ej
_ 1V j, (6.11)at Aa

just as long as a is a constant. This equation is also satisfied by E and H, and is
called the equation of eddy currents.

6.1.4 General remarks
The prevalence of models of the form

8 (6.12)

suggests that we start our analysis of parabolic equations by studying linear prob-
lems of this type. where f depends on it at most linearly, while v and D are
independent of u. The independent variables x and t are usually identified with
space and time, respectively. The variable t may be increasing (dt > 0) or decreas-
ing (dt < 0), and we will soon see the vital role of the sign of D dt. In the examples
above this product is positive for models being used to predict the future via a for-
ward equation. The only backward equation is the Black-Scholes equation, which
models the assimilation of information, rather than its loss, as the expiry date
approaches; at expiry, the option value is known with certainty. Note that, if D is
constant, then it can be taken to be ±1 by a suitable change of variables that does
not involve time reversal. Also, concerning nomenclature, (6.12) is often called a
convection -diffusion or reaction-diffusion equation, depending whether f = 0 or
v = 0, respectively.

However, before we can start work on (6.12). we need to consider the vital
questions of what are likely to be the appropriate initial and boundary conditions.

6.2 Initial and boundary conditions
As shown in Chapter 3, the characteristics of (6.12) in one space dimension are
given by dt2 = 0, so that each line t = constant is a double characteristic (in more
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Fig. 6.1 Boundary curves C1,2 and the parabolic boundary I'.

dimensions, t = constant are characteristic surfaces). Information thus propagates
at infinite speed along the characteristics. Moreover, it is easy to see that the
relation (3.21) that has to hold along characteristics is automatically satisfied
when (3.20) is true. Hence we can expect to be able to prescribe initial data u =
g(x) at t = 0, which is often the case in practical applications. Additionally, unless
the equation holds in the whole space, boundary data must also be imposed. 10" As
in §5.1.3, the only linear boundary conditions are Dirichlet, Neumann or Robin,
with u, the outward normal derivative 8u/8n, or the combination Ou/8n + au
being specified, respectively; in the last case,105 we must remember our earlier
strictures about the sign of a on p. 164.

For problems with only one space dimension, the boundary conditions are im-
posed on two curves C1,2 in the (x, t) plane, as in Fig. 6.1. So as not to be parallel
to characteristics, these curves must be nowhere perpendicular to the t axis. Thus
they have finite speed, and they are usually constant in time, i.e. parallel to the
t axis, so that the characteristics intersect each such boundary once. Moreover,
since we expect the temperature in a heat conducting material to be determined
just by its initial value and what happens on its boundary, we also expect only
one boundary condition on the 'time-like' boundaries C1,2. For problems with
more than one space dimension, the elliptic combination of second-order deriva-
tives in (6.12) together with our discussion in §5.2 suggests the appropriateness of
imposing one condition on a closed time-like boundary rather than two in some
places and none in others.

The relevance of Fig. 6.1 to the physical interpretation of the models derived
above suggests that we refer to the conditions imposed at t = 0 as initial conditions
for problems to be solved in t > 0, so that t = 0 is called 'space-like'. Remember

104 For problems in unbounded domains, growth conditions at infinity are needed to ensure
uniqueness, as we shall see in §6.4.2.
105We take 6 = I in our earlier version of the Robin boundary condition.
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that the first example of §3.1 confirms that one initial condition should be given
rather than one `final' one. This is also apparent from considering the limiting
procedure of obtaining the heat equation from the hyperbolic equation

282u 8u 02u
8t2 + 8t = 8x2

as a -> 0, where the argument of §3.4.3 also suggests that when D dt > 0 only one
initial condition should be imposed at t = 0.

There are many methods for proving existence and uniqueness results for
parabolic equations, most of which are too abstract for this book. As in the pre-
vious two chapters, we will mostly be concerned, especially in §§6.4 and 6.5, with
explicit representations of solutions, so that the existence question will not arise.
However, the maximum principle is such a generally applicable tool for proving
uniqueness that we will begin by describing its use in §6.3, before going on to
describe techniques used to obtain explicit solutions to linear equations in integral
and series form. Another way of obtaining special solutions that has only received
brief attention in Chapters 4 and 5 is that of reducing the number of independent
variables through invariance properties. We consider this in some detail in §6.5,
before applying it to nonlinear equations in §6.6, where other methods suitable for
studying such equations are also reviewed. The final section takes a quick look at
some second-order parabolic systems and higher-order parabolic equations.

6.3 Maximum principles and well-posedness
Even more than in the elliptic case, the idea of maximum principles is invaluable
in assessing well-posedness properties of parabolic equations. Parabolic maximum
principles, like those of the preceding chapter, apply in any number of space di-
mensions. The maximum principle for the simplest inhomogeneous heat equation
states that, if

Ou = V2u + f (X, t)
N

and f < 0, then u takes its maximum on the parabolic boundary, denoted by r,
where the initial and boundary conditions are given (see Fig. 6.1). Thus, when the
equation holds for x in it and 0 < t < T, u is largest either on 8fl or at t = 0. This
is of course what we expect physically. If heat is being lost through a volumetric
heat sink with f < 0, then heat flows into 0 from the boundary and is removed in
the interior, and the maximum temperature must be on the boundary if it is not
at t = 0; equally, with f > 0, u takes its minimum on the parabolic boundary.

The proof is similar to that for the maximum principle for Laplace's equation
in §5.3. Consider first f < 0; then, at an interior maximum 8u/8t = 0, Vu = 0
and V2u < 0, leading to a contradiction. For a maximum on t = T, 8u/8t 0,
Vu = 0 and V2u < 0, again leading to a contradiction, so the maximum must lie
on F. To consider f < 0, write v = u + elx12/2m, taking m to be the number of
space dimensions. Then

8v 28t_pv=f-E<0,
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and hence v takes its maximum on r. Thus u < v < maxr v S eat/2m + M, where
M is the maximum value of u on 1' and a is the largest value of jxj. Taking the
limit as e -> 0, we see that u < M, so that u has its maximum value on I ; note
that, in this case, u can also take this value in the interior of fZ when t > 0.

It can be shown that the maximum principle also holds for the more general
equation

at + v Vu = Dv2u + f(x, t),

as long as D is positive and v is bounded, and also when a more general elliptic
operator

Gu=E 0 (iiiOxi

replaces the Laplacian, (a4) being a positive definite matrix. However, more care
must be taken with the slightly modified equation 8u/8t = V2u + au. Consider,
for example, the one-dimensional case when u = 0 on x = 0,1 and it = sin ax at
t = 0, 0 < x < 1. The maximum value of it on the parabolic boundary is unity, but
the exact solution is u = e(°-n2)e sin 7rx, whose maximum in t > 0 exceeds unity
when a > 7r2.

The maximum principle is the key tool for proving the fundamental uniqueness
theorem for the Dirichlet problem

8u
8t

+ v vu = v2u +f(x, t) for x in ft, t > 0, (6.13)

u(x, 0) = g(x) for x in f2, (6.14)

u = h(x) forxon8fl,t>0. (6.15)

This follows because the difference of any two solutions satisfies (6.13)-(6.15) with
f, g and h replaced by zero, and, since this difference must take its maximum
and minimum values on r, it must be zero everywhere. Also, small changes in the
initial and boundary data bound any consequent change in the solution so that,
assuming a solution exists, the problem is also well posed.

*6.3.1 The strong maximum principle
Some uniqueness results rely on the use of the strong maximum principle which
applies to parabolic inequalities. Suppose u is such that

<V2u

for x in ft and 0 < t < T, with v a bounded function of x and t, and again let
M be the maximum of u on r. Then, roughly speaking, this principle states that
either it is less than M for all x in fZ and 0 < t < T, and 8u/8n is strictly positive
at any point on 811 where u = M, or it is identical to M for all x over some interval
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0 < t < r < T; a more precise statement and proof are given in [35]. This stronger
result enables us to show, for example, that, if

in Q,

with u > 0 at t = 0 and 8u/8n+au >, 0 on 8Q, where a > 0, then it 3 0 for x in 51,

t > 0. This result follows from the fact that any strictly negative minimum, say m,
of it is attained on Oft, by the maximum principle; hence, by the strong maximum
principle, either u > in in 52, which implies the contradiction 0 > 8u/8n = -am
at a point of Of), or u - m over a time interval containing t = 0, which is also a
contradiction.

Interestingly, the sign of a is not so important when we consider the uniqueness
of the solution of the Robin problem (6.13) and (6.14) with

+ an = h(x) on 80. (6.16)

To establish this uniqueness, we need the strong maximum principle. Suppose
that a > 0 and that the difference between two solutions is somewhere positive.
Then the maximum difference Al is taken on the boundary. Since the difference is
not identically Al, the normal derivative, according to the strong maximum prin-
ciple. is positive, contradicting the boundary condition. Similarly, the difference
cannot be negative. If. on the other hand, a < 0, we can make a change of variable
u = g(x)u', with g chosen to be strictly positive in fl and such that 8g/8n+ag > 0
on 852; then we can use the argument above for u' and uniqueness again follows.
This is in sharp contrast to the elliptic case of the Robin problem of §5.2.1, where
we recall that uniqueness depended essentially on the sign of a.106

Note that, if we had attempted to solve any of the problems above in t < 0, that
is'backwards in time', then the maximum principle would have allowed a maximum
to occur at t = r < 0. No uniqueness or well-posedness would follow. Indeed, ill-
posedness of the backward heat equation through lack of continuous dependence
on the data has already been demonstrated in §3.1 and will be encountered again
and again. The situation is even worse when we come to consider the existence of
solutions of backward heat equations, as we shall see in the next section.

6.4 Green's functions and transform methods for the heat
equation

6.4.1 Green's functions: general remarks
In attempting to construct Riemann functions for hyperbolic equations in Chap-
ter 4 and Green's functions for elliptic equations in Chapter 5, the quickest pro-
cedure was to use Green's theorem on the integral of GCu - uC'G over a suitable
domain. There C denoted the differential operator, so that Cu = f, and C' was the
adjoint operator. chosen so that the integrated was in divergence form. We hope

1060f course, the large-time behaviour of the solution of the parabolic problem depends crucially
on the sign of a.
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that by now the reader has become sufficiently familiar with the generalised func-
tions approach to this procedure that the classical approach will be unnecessary
here. Hence, to construct a Green's function for the heat equation

Cu = at - V2u = f (X, t) (6.17)

in a region Sl with initial and Dirichlet boundary conditions u(x, 0) = g(x) in 11
and u = h(x) on ail, we require that G(x, t; t;, r) satisfies

C*G = -

8
- V2G = 8(x - l;)6(t - r) in fl. (6.18)

Furthermore, we need
G=0 on011, (6.19)

and, remembering the analogy with the ordinary differential equation initial value
problem (4.11), we set

G=0 fort=T>r. (6.20)

Recalling that G is defined by working backwards from i = T, and since the
delta function is non-negative, it is apparent from the maximum principle that G
is positive. More importantly, from (6.17)-(6.20), we obtain

vZu,,+u (IT +V2Gdxdt= fr f fGdxdt-u(4,r),ff (G('N / o n

nd this yields the fundamental result thata

u(C r) = fo u(x, 0)G(x, 0; E, r) dx + ffr fGdxdt -
frf

u0 dx dt. (6.21)
n

Aswas the case for the corresponding Riemann and Green's function represen-
tations in Chapters 4 and 5, (6.21) can easily be used to prove well-posedness
for parabolic equations just as long as we know that G exists and is unique. In-
deed, these representations (4.14), (5.52) and (6.21) have removed the sting from
our three classes of linear partial differential equations, because they display the
structure of the `inverses' of all the partial differential operators that we have
encountered in these chapters. The value of those three results cannot be overes-
timated.

Before we set about finding G in special cases, we first make our customary
general remarks about the effect of the singularity induced by the right-hand side
of (6.18) at points away from x = t:, t = r. First, by thinking of the limit of a
hyperbolic problem when the characteristics coincide, we are led to expect some
kind of discontinuity in G to propagate along the characteristic t = r, although we
will have to wait until the next section to see exactly what this discontinuity is.
We can, however, elucidate what happens on t =,r by the following comparison.
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Consider the effect of taking a Laplace transform of the problem

But -StV2 u1 = 8(x)6(t),

with ul (x, t) = 0 for t < 0. The answer is

ut (x,p) = f ul (x, t)e-Pi dt = lilm f ui (x, t)e Pt (it,

where pul - V2u1 = 6(x).
However, if

with

OU2-V2u2=0 int>0,
8t

(6.22)

U2 = 6(x) at t = 0, (6.23)

then p2-6(x)-V2u2=0.
Hence ul = u2 in t > 0, i.e. the effect of the right-hand side of (6.22) is equivalent
to that of the boundary condition (6.23). This means that, by replacing t by r - t,
we can assert that (6.18)-(6.20) is equivalent to

,CG=0 for 0 < t < r, (6.24)

with
G = 0 on 00, (6.25)

and
G = 6(x - 4) at t =,r, (6.26)

G=O in t > r. (6.27)

Hence we see that G represents a `hot spot' at t = r, and that it is a function
only of x, E and r - t. As a function of x and t, G satisfies the adjoint backward
heat equation (6.18), while as a function of t; and r it satisfies the original forward
equation (6.17). We will replace G(x, t; t;, r) by G(x, r - t; 4) in future.

6.4.2 The Green's function for the heat equation with no boundaries
This is the simplest geometry of all and its study will enable us to identify the
precise form of the singularity at x = t;, t = r, which we expect to be independent
of 0 in any given number of space dimensions. We begin in just one dimension,
and it is convenient to set f' = r - t, x' = x - and G(x - , r - t) = G'(x', t'),
to give the initial value problem

8G' _ 02G'
for t' > 0,

8t' az12 (6.28)

G' = 5(x') for t' = 0, G' -+ 0 as Ix'I -> oo,

which can be solved explicitly in a variety of ways, say by Fourier transforms. The
solution describes the conduction of heat from a localised hot spot in an infinite
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conducting medium, and to help with this interpretation we replace x', t' and
G'(x', t') by x, t and G(x, t), respectively.

In terms of the Fourier transform 0(k, t) = f f.. eilzG(x, t) dx, the problem
becomes

8 _ -k2C for t > 0, G(k, 0) = 1. (6.29)

This gives

0(k, t) = e-k't,

and, from the Fourier inversion theorem,

Q(x, t) = 2n ,J
e-k2t-ik: dk

= Zee-:2/4t f "0 e-t(k+i:/2t)' dk
J 00

00+1.T/2f

27rf f oo+iz/2f

where we have written k = s/f - ix/2t. The final integrand is analytic in 0 <
3 s < x/2 f, and vanishes for large Ks. By Cauchy's theorem, the integral is
equivalent to one along the real axis. Thus, finally,

e-:2/4c
G(x, t) = 2 2t fort > 0, (6.30)

since f r. C-8
2 ds = N ,1; its delta function behaviour at t = 0 is an example

of (4.12). The formula (6.30) reveals an essential singularity in 9 at t = 0, with all
the time derivatives vanishing except at x = 0; this is the very weak singularity
that propagates along the characteristic through the origin when a heat source is
switched on there. We expect this singularity to be generic along the characteristic
r = t for any G satisfying (6.18).

When we revert to our original notation, in which x and t are the physical
variables, the solution of (6.24)-(6.27) on the whole line in one dimension is

2
1 e-(=-()2/4(*-t)G(x, r - t; f) _ Q(x - , r - t) =

ir(r - t)

We can now use the statement

G(x,r-t;e) =
2 a(r - t)

1 Z te-(=-V - ) + 0(1) asx - , t-4r

(6.31)

to replace (6.26) in the same way that

G= 2TrlogIx-E1+O(1)
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was used for Laplace's equation in two space dimensions in (5.49). The function
(6.30) is called the elementary or fundamental solution of the heat equation and
it allows us to make several remarks.107

When u(x, 0) = g(x), the Green's function representation gives

2 W

foo
g(x)e-(r-E)'/4rdx, (6.32)

00

which can be thought of as the result of distributing elementary solutions on t = 0
with density g. This solution can be seen to be analytic for t > 0 in both x and
t, even for quite irregular initial data,los and it confirms that u is positive for
positive initial data.

Although (6.32) gives an explicit representation for the solution, it implicitly
demands that g(x) does not grow too rapidly as lxi -* oo. The growth condition to
ensure that (6.32) does represent the unique solution is that there should exist some
constant K such that Iol = O(e'r2) as lxi -* oo. This can be proved by considering
the problem on a finite interval with zero initial data, as in Exercise 6.4. However,
we can see that non-zero `eigensolutions', which satisfy u(x, 0) = 0, might possibly
exist by noting that

0o x2n

u(x,t)
f(n)(t)(2n)!

(6.33)
n=O

satisfies the heat conduction equation for all x and t >, 0 just as long as f is in-
finitely differentiable and the series converges. By allowing f and all its derivatives
to vanish as t . 0, (6.33) is such an eigensolution as long as the series converges (see
Exercise 6.5). Unfortunately, it is quite difficult to extract the behaviour of (6.33)
as Ixl -1 00.109

At a more elementary level, (6.30) permits us again to demonstrate explicitly
the ill-posedness of the backward heat equation. Suppose that we seek u such that

On 02u
8t

+ 8x2 = 0 fort > 0,

with u = fe-r'/aE/2vf7r at t = 0 and u -+ 0 as Jxi -+ oo, so that u(x, 0) - 0 as
e -+ 0 for all x. Then, from (6.30),

ee-xZ/4(c-t)u= ,
2 ir(e - t)

which tends to infinity at x = 0 as t -+ e, and e can be taken as small as we please.

107The implication of (6.30) for the Brownian motion model (6.8) is described in Exercise 6.6.
106Note that, at a jump discontinuity of g, u(4, r) tends to the average of g from either side of

4asr->0.
109It is possible to show the surprising result that the heat equation can be solved in -oc <

x < oo with arbitrary data at t = 0 and at t = T > 0, assuming we allow sufficient growth as
JxJ -+ oo. On the other hand, if lu(x,t)l < eKx2 as x - too for all K > 0, then the solution to
the initial value problem exists and is unique for all t > 0.
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The form of the solution (6.32) also indicates that, during the evolution of u,
details of the initial data are lost and all that is remembered after a long time is
some multiple of the fundamental solution. We can see this by writing

u({, 7-) = (47r7-) -112

F00

g(x)e-N2/4ea2/4r+Zp/2f dz,

where { = f y. For large r, this can be approximated by

2 err f 9(x)e-v'14 dx = 2 o e-42 r (6.34)
ao

where go is the total amount of heat in the initial condition."°
Many of the statements above can be trivially generalised to the case lZ = W",

m > 1. The principal result is that (6.31) becomes

G(x,r - t; r:) = (41r(r - t))-m/2e-1x-EI2/4(r-t) for 0 < t < r (6.35)

when we revert to our original variables; (6.35) can be derived by an rn-dimensional
Fourier transform and exploiting the spherical symmetry in x-r;, and we will derive
it in another way in §6.5.

6.4.3 Boundary value problems
6.4.3.1 Green's functions and images

In principle, we can now subtract out the singular behaviour of the Green's function
implied by (6.30) or (6.35) to obtain a boundary value problem for the `regular
part' of G in which all the data is well behaved. However, the problem of finding
G in any particular example is just as hard as it was for elliptic equations and
we again have to revert to a case-by-case enumeration. There are just two general
remarks we can make first.

From the fact that the Laplace operator is self-adjoint, we expect that the
spatial part of G is symmetric for appropriate boundary conditions, i.e.

G(x, r - t; £) = G(4, r - t; x),

but clearly there is no symmetry when we exchange t and r. Moreover, it can
be shown, by methods that will regrettably have to wait until Chapter 8, that
the presence of boundaries makes G different from the form (6.35) by a function
characterised by the property that it increases as the `geodesic distance' d(x,4)
between x and f decreases, at least for small values of r - t; d is the shortest
distance between x and t, travelling along the boundary if necessary. This makes
an interesting comparison with the `boundary correction' to the Green's function
for Laplace's equation, discussed in §5.12.

We conclude this section with some explicit representations for Green's func-
tions in simple cases. A much more comprehensive catalogue can be found in (9].
We begin with two examples in one space dimension.

110 When go = 0, a more precise estimate shows that, in general, u is of O(r-3/2) as r -a oo.
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-2-t -2+1 - (; 2-t 2+t

Fig. 6.2 Hot spot at x = , and its images.

Example 6.1 (The Neumann problem for the unit interval) The general problem
is to solve

2Clu

8t 8x2+f for 0 < x < 1, t > 0,

On- ho

Ox
forx=0, 8u

ex
=ht forx=1, u=g(x) att=O.

The Green's function G must then satisfy

8G0 onx=Oandx=l, G=6(x-C) att=r.
8x

We can proceed by generalising the method of images introduced in §5.6.1.3. Re-
calling that (47rt)-t/2e-(x-E)'/at represents the temperature evolving from a hot
spot at t = 0. x = t;, to obtain zero derivatives at x = 0 an image hot spot must
be introduced at x = -C. Then, in order to satisfy 8G/Ox = 0 at x = 1, further
images are needed at r = 2 - C and T = 2 + t;. Repeating, there is the `real' hot
spot at x = {, with images at x and ..., -4 f t;, -2 t l:, 2 4 f c, .. .
(see Fig. 6.2).

Thus. the Green's function istlt

00G(x, T - t; (47r(T - t))-1/2 E (e-(2+2rn-EU2/a(r-t) + e-(x +2m+()2/4(r-1)

m=--oo J
(6.36)

which is clearly symmetric in x and l;, and positive. This problem can also be
approached by separating the variables, as in the next example.

Example 6.2 (Zero Dirichlet data for the unit interval) As with hyperbolic and
elliptic equations, separation of variables can be used to find Green's functions as
Fourier series. The problem for heat flow in the unit interval with zero Dirichlet
data is

ou 02u for0<x<
8t 8x2

u=0 onx=Oandx=l, u=g(x) att=0.

... An alternative derivation is given in Exercise 6.8.
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Separable solutions u = T(t)X(x) are

u = e-msn2 t sin(mzrx), m an integer,

{sin mn x} being a complete orthogonal set of eigenfunctions of the self-adjoint
operator d2/dx2 with zero Dirichlet conditions.

The general solution is then

00

u = E a,,,e-m " t sin(mxx);
M=1

the Fourier coefficients a,,, are determined by the initial condition as

1 (C) sin(mirl;) dC.a,,, = 2 fo g

The solution to the boundary value problem is then

1u(x, t) = 2 f 9() e-m2t sin(max) sin(m7r) d, (6.37)
m=1

and hence, by (6.21), the Green's function is G(x, r - t; C), where

G(x, r - t; ) = 2 E e-m2a2(T_t) sin(mirx) sin(mzrl;). (6.38)or

M=1

Of course, (6.38) can be written in a form similar to that of (6.36) by replacing
every other hot spot by an equal and opposite `cold Spot'. 112 We also note that G
can be written as a theta function (see Exercise 6.8 in the Neumann case).

We remarked in Chapter 5 that Fourier series representations give useful infor-
mation about the behaviour of the solution as we move away from the boundary in
elliptic problems. Here, the Fourier series expression for the Green's function is par-
ticularly useful for finding the long-time behaviour: as long as fp g(x) sin(7rx) dx 14
0, for large values of t the dominant term in the series is that for the smallest m,
namely ate-* sin ax. This confirms our expectation that a body which starts
hot cools exponentially in time if the temperature at its surface is maintained at
zero. For an insulating boundary, in which Ou/8x = 0 on x = 0, 1, the leading
eigenvalue is zero and it is easy to show that u -+ g as t -+ oo, where g = fo g dx
is the average initial temperature (see Exercise 6.9). Both (6.37) and the solution
of the Neumann problem indicate the smoothing effect of diffusion: the higher
harmonics decay rapidly for large time, as presaged in Chapter 3. We note that
series solutions such as (6.36) are more useful than (6.37) for estimating short-
time behaviour, since then the `physical' hot spot term dominates (except near
the boundary, where there is also an image contribution); however, the converse
is true for large times.

112The equivalence between the two is an example of the Poisson summation formula.
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6.4.3.2 Boundary value problems in higher dimensions

Problems in higher dimensions are less likely to be susceptible to image methods,
but can sometimes be approached using separation of the variables and eigenfunc-
tion expansions in the spatial variables. Consider, for example, the following Robin
boundary value problem in a bounded domain:

8t =V2u in 0, 8n+au=0 onOfl, u=g att=0.

We have already made some general remarks about this problem following (6.16)
but we can discover a lot more by writing the solution as

00U(4, 7-) _ E 9me-'-'0m(S),
m=0

where the suitably normalised solve the Helmholtz eigenvalue problem

V2¢+A0=0 in fl, 8n+aO=0 on Oft,

with eigenvalues Ao < Al A2 < , and 9m = fo qS,,,(x)g(x) dx. Hence

u(t;, r) = f g(x) F, e-"'"r0m(x)0,n(t) dx. (6.39)1m=0
This not only reveals the result that the Green's function is G(x, r - t; F), where

00

G(x,t,C) = E e-11- 10m(x)om(a
m=0

but it also predicts that u(x, t) tends to go0o(x)e"a0t as t -+ oo provided .go 0 0.
Now let us consider what this representation implies for the dependence of

the solution on a. When a is positive, which corresponds to Newtonian cooling,
the principal eigenvalue is positive, indicating that u decays to zero. However,
with an `energy input' boundary condition, possibly representing an active or
controlled boundary, a is negative and so is the leading eigenvalue, so solutions
grow exponentially in time; stability is lost but not well-posedness. We remark
that, if Ofl = Of)- UOfl+ with a >, 0 on Ofl+ and a < 0 on Ofl_, then the relative
sizes of the two parts of the boundary and the magnitudes of a determine the sign
of Ao, as illustrated by the following example.

Example 6.3 (Robin data on a square) Consider the solution of the heat equa-
tion in the square -1 < x, y < 1, with the boundary conditions

Bun+au=0 ony=fl, 8n,Bu=0 onx=fl,

where a,13 > 0, so heat is put in on the sides x = ±1 and extracted from y = ±1.
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The principal eigenfunction is ¢o = cosh px cos vy, with

A0 =
v2

- 1 A it = tank-1 Q, v = tan-1 a,

where 0 < v < 7r/2. Thus Ao = 0 if tan-1 a = tanh-1 fi, while if Q > tanh(a/2)
then, no matter how large a is, Ao < 0 and the trivial solution is unstable.

6.4.3.3 Transform methods

When boundaries are absent in heat conduction problems, the spatial operator
has a continuous spectrum, which is, of course, why we used Fourier transforms
rather than Fourier series to obtain (6.30). Moreover, solutions are often sought
over an infinite time interval 0 < t < oo, which also suggests the possibility of
Laplace transforms. However, it can often be puzzling to try to decide the best
variables in which to attempt a transform, and experience is the only guide to
which transform is easiest technically. Hence we include some further examples of
transform solutions.

Example 6.4 (Fourier versus Laplace transforms (i)) Suppose that, instead of
taking a Fourier transform, we had tried to derive (6.32) by a Laplace transform
in which 00

u(x, p) = fu(x,t)e_Ptdt.

Then we would have obtained

d2u
axe - P i _ -9(x),

and, since we want u to decay as Ixi -+ oc,

2JPU(x,p) = f g(t)e-d + J
dC,

oc x

where f is defined to have positive real part. In order to retrieve (6.32) we now
have the irksome task of reversing the order of integration in the Laplace inversion
of u, which involves using the fact that the inverse Laplace transform of e-fPx/f
is e-x2/41/ 9rt.

Example 6.5 (Fourier versus Laplace transforms (ii)) Suppose we try to solve
the boundary value problem

with

Ou _ 02u

Ot Ox2'

u(O,t) = h(t) fort > 0 and u(x,0) = 0 for x > 0,

by taking a Laplace transform in t. We find

u(x,p) = h(p)e x11_P,

(6.40)

where, as usual, t fp > 0. Hence, by the convolution theorem,
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tu(x, t) = f h(s)w(x, t - s) ds, (6.41)
0

where w is such that w(x, p) = e-=\. After some manipulations of the inversion
integral, it can be shown that

w(x, t) =
1 f ept sin x VP- dp,
1r o

(6.42)

which can in turn be shown to be equal to xe'=2I4t/2 7rt3 (see Exercise 6.13 for
further discussion).

Things are much easier if, motivated by the nature of the spectrum of d2/dx2
with a zero Dirichlet condition at x = 0, we define the Fourier sine transform as
in §5.7.2 by

u, (k, t) = fu(x7t)sinkxdx.r
This gives

u,(k, t) = e-k21 f kh(r)ek2, dr,
0

and, by inversion,

tu(x, t) _ f ke-k2t sin kx
\

f h(r)ek2T d7- dk,
0 o

which is just (6.41) combined with (6.42) when we reverse the order of integration
and write k = f.
Example 6.6 (Another two-point boundary value problem) Let us again solve the
heat conduction equation, but now with the conditions

u(ir,t)=g(t) fort>0, u(0,t)=0 fort >0, u(x,0)=0 for0<x<ir.

We could try separating the variables, but imposing the boundary condition at
x = 7r is difficult. We could use the Green's function (6.38), but the Laplace
transform is even easier because

u(x, p) = 9(p)
sinh fx
sinh fpr'

and we have a straightforward convolution representation as long as we can invert
sinh fpx/ sinh fprr. The only singularities of this function are simple poles at
f = fin, n = 1, 2,3,..., and the corresponding residues of e' sinh fpx/ sinh 'Pr
are (- 1)"+1(2n/ir) sin(nx)e-n2t. Hence

2 °O t
2

u(x,t) =
7r

J(_1)'n sin(nz)e' ey(t-s)ds.
n=1
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*6.4.4 Convection-diffusion problems
The inclusion of a convective term (v V)u alongside the time derivative in the
heat equation makes the spatial partial derivatives non-self-adjoint. This makes
it awkward to use eigenfunction expansions because non-orthogonality means we
have no obvious recipe for the coefficients. Of course, if there are no boundaries
and v is constant, then it is possible to remove the convective term by changing
position to x - vt. To illustrate the intricacies that can arise when v is not con-
stant, we conclude this section by taking the Laplace transform of the simplified
convection-diffusion equation (6.4) for pollutant flux in a river. For simplicity, the
term Oc/8x2 is neglected and the river is assumed to be two-dimensional, so that
c = c(z, y, t). We assume that the flow is in the x direction with speed v(y) > 0,
that the river occupies 0 < y < 1, x > 0, that there is no pollutant flux at the
banks y = 0, 1 and that the water is initially pure. Thus the Laplace transform
c(x, y, p) = for' c(z, y, t)e-PI dt satisfies

D- 8 for0<y<1,x>0,

with
8c
a =o aty=o,1 and e =iq(y,p) at z = 0,

y

where co(y, t) is the input of pollutant at x = 0.
This complicated problem for c can be best solved by an eigenfunction expan-

sion resulting from separating the variables in x and y. The result is

00

c(x, y, p) _ (y, p), (6.43)
M=0

where 0,n are normalised eigenfunctions satisfying

x

D (P - \.v(y))*m = 0,

with
dim
dy

=0 at y = 0,1,

and

. = Cotkm dy6D
fo

i

It is only at all easy to find An when p is small; this can be shown to correspond
to t being large, which is often a limit that is of great practical interest. As shown
in Exercise 6.19, for small p

ao = p Dope .}.
vo v:
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where vo = fo v(y) dy, and D° is as given in Exercise 6.19. This means that the
inverse Laplace transform of the first term in (6.43) satisfies the famous Taylor
diffusion model

z

at +v0 ax = D°ax2;
we can see this simply by taking the Laplace transform of the Taylor diffusion
model and examining its behaviour for small p. The effect of the y dependence
of it, which represents the `shear' in the flow, is thus equivalent to longitudinal
diffusion in the x direction.

Convection-diffusion problems become even more difficult to solve when the
velocity changes sign in the region of interest. I" Suppose, for example, we consider
the problem above in the steady state but with v(y) = 2y - 1. This means we have
to solve a parabolic equation which is forwards in x in y > 1 and backwards in
x in y < 1. Hence we do not expect to be able to prescribe an input everywhere
at x = 0 but only the values of c(0, y) for a < y < 1, and similarly c(L, y) for
0 < y < 1 for some L > 0.114 In practice, if we try to separate the variables as in
the earlier examples, we find

C(x, Y) _ E Ame-"-z0m(y),
m

where the eigenfunctions w. satisfy

Dd2oln + am(2y - 1)Vj,,, = 0, dOm (0) =
dV;m

(1) = 0.dye dy dy

In fact 1,bm is an Airy function (see Exercise 4.10) and the eigenvalues \,n are both
positive and negative, whereas they were all positive in the simpler cases discussed
earlier. Although the V,,,, are complete in 0 < y < 1, they are not complete in
either 0 < y < 1 or .1 < y < 1, and hence the boundary conditions

CA Y) = EAmtI'm(y),
m

c(L,y) - .4me_.1'"Llp.(y)

do not yield the coefficients Am in a straightforward way.

It is an interesting attribute of parabolic equations that several of the examples
above are susceptible to a totally different method of solution which can even be
applied to nonlinear problems, and this is what we will describe in the next section.

113This happens frequently in industrial processes such as distillation, where 'counter-current'
mass transfer takes place.
114There are many other more general 'forward-backward' problems, often called Cevrey

parabolic problems, such as steady problems in which v changes sign across a general bound-
ary.
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6.5 Similarity solutions and groups
It is an immediate observation that, if u(x, t) satisfies

8u _ 02u
at Oxa'

then so does the function u(px, p2t), where it is an arbitrary constant. This sug-
gests the possibility of finding solutions for which

u(x, t) = u(px, µ2t) (6.44)

for all x and t. Now, for any particular value of t, we can always set It = 1/ f, so
this identity means that u = F(x/ f) for some function F. In fact, when we write
rl=x/f we soon find

d2

2

F+2dF=0' i.e. F=Aerf(2)+B,
2n q

where erf y is the error function (2/Va) fo e-°' ds, and A and B are constants.
This observation puts us in a position to solve the beat equation subject to any

initial/boundary conditions for which the data is invariant under the transforma-
tion

x= 1x', t= 1

2
t', u=u'.

I' µ

For example, with u(0, t) = I and u(x, 0) = 0,

rx/2fu(z,t)=1-=J e-82 ds=erfc(2

where erfc y is the complementary error function.

(6.45)

This solution procedure can be somewhat mystifying at first sight, so we now
give a more systematic account of what are commonly called similarity solutions.

The basic idea is very simple. We just ask the following question.
`What changes of the dependent and/or independent variables make, or leave,
the equation autonomous in one or more independent variable(s), i.e. cause
those variable(s) to appear in the equation only through differentiation?'

The reason that this is interesting is that if the equation is autonomous in x then
it has solutions independent of x. Of course, these are special solutions, but firstly
they are much easier to find than the general solution, and secondly we may be
lucky enough to be able to use them to fit the initial and boundary conditions.
Indeed, we have seen this process in action in (4.15), where we reduced the number
of independent variables from two to one and found the R.iemann function of the
telegraph equation by simply solving an ordinary differential equation. In another
vein, even if our solution fails to satisfy all the requisite conditions, it might still
give us an approximate answer in some limits, such as for small or large time.
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Indeed, in (6.34) we have already seen the solution of a general initial value problem
tending to a function that has a special form as time tends to infinity.

Although no systematic answer is available to the question just posed, one
very helpful observation can be made. This comes from studying what happens
to a function of just one variable, say f (x), when we make an arbitrary change of
variable. If f (x) appears as part of the solution of a differential equation. and hence
needs to be differentiated and subject to other manipulation, any change of variable
x' = g(x) in general generates all the complexities associated with 'functions of a
function'. However, these mostly melt away if we consider a particular family of
transformations,

x' = 9(x,,\), (6.46)

where A is a continuously varying parameter' 11 chosen so that g(x, 0) = x, provided
that g satisfies one, admittedly stringent, condition. This is that

199

as (x; A) = Fi (.\) F2 (9(x; A))

for some F, and F2. If this is the case we can reparametrise so that

a9 = F(9),
a1\

(6.47)

and, using the fact that g(x, 0) = x, we can see what happens to f . After a little
manipulation of the relevant series, we find

f (x') = f (9(x; A))

9
2 29

x+a a + a, a2 +...= f & x=o 2. as 1X=0

f(x)+A 0gl f'(x)as=o

+ ! (aa9 Ia=o

f ,(X)

+
aa(3)2I

af"(x))
+ .. .

Now, if we define the infinitesimal generator U by the operation

of (x) = (L0 ) f (x) =dx

then equation (6.48) collapses into

(6.48)

(6.49)

f(x') = f(x)+Auf(x)+
2

21U2f(x)+ . (6.50)

This is because

15The parameter µ in (6.44) is equal to e', as we shall see below; this ensures that g(x, 0) = x.
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) 21'(x)U2f (x) _ ( 89 I - 8xd

Lo

=

(8 A) 0A I ax

(Ia=o)
f'(x),

a-o a=o OJX

and we know that

and, from (6.47),

d Og
dx 0aI

= P(X)
A=O

029 I = F,(9)' I = F'(x)F(x).
0A a=o OA a=o

Thus (6.47) is the key ingredient that allows (6.48) to be written as (6.50); this
procedure can be applied to all orders in A and the series can be formally summed
to

f (x') = exp(AU)f (x)

To apply this idea to differential equations, we have to deal with at least two
variables, whether dependent or independent, in which case (6.46) and (6.49) gen-
eralise to

with

x' = 9(x,y;A), y' = h(x,y;A), (6.51)

and

8a G(9, h), Lh = H(9, h), (6.52)

9(x,y;0) = x, h(x,y;0) = y, (6.53)

U = GJa-o 0 + Hja=o
FX ay

(6.54)

6.5.1 Ordinary differential equations
Suppose that x and y are, respectively, the independent and dependent variables in
an ordinary differential equation. The statement that the equation is autonomous
in x is equivalent to saying that it is invariant under the transformation x' =
x+A, y' = y, which clearly satisfies (6.52). More generally, we might ask `Could the
given ordinary differential equation be made autonomous by a change of variables?'
The answer is yes if it is invariant under a transformation (6.46), because we simply
change to a new independent variable X and a new dependent variable Y such
that UY = 0 and UX = 1. This means that the differential equation for Y(X) is
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invariant when X is translated by an arbitrary constant and Y is left undisturbed.
For example, consider the linear equation

d2
x2 +

4(x)y = 0, (6.55)

which is not autonomous but is invariant with g = x, h = e''y, G = 0, H = h and
U = y 8/8y."6 This tells us that, if we take, for example, Y = x and X = logy in
(6.55), then we obtain an equation autonomous in X; in fact, it is

TX2/\d7_ /\dXl2=4(Y)

In this case we do not use the autonomy directly to seek a solution independent
of X; rather we note that the autonomy ensures that the order of the differential
equation can be lowered, say by considering dY/dX as a function of Y. Equally,
suppose we happen to know that yo(x) satisfies (6.55). Then the equation is in-
variant with g = x and h = y + Ayo(x). This tells us to take, say, Y = x and
X = y/yo(x), which is the well-known rule for lowering the order of a linear ordi-
nary differential equation when one solution is available.

6.5.2 Partial differential equations
To keep things as simple as possible, we begin by just considering transformations
of the independent variables. Thus, suppose that x and y are independent variables
in a partial differential equation for u(x, y) and we apply a transformation (6.51)-
(6.53) which leaves the equation invariant. Now, in order to reduce the number of
independent variables from two to one, all we have to do is solve for a new variable
Y such that lAY = 0, and transform to Y and any other independent variable, X
say. We then have a partial differential equation which is invariant under a one-
parameter change of variables in X; hence it has a solution in which u = F(Y).
For example, in the calculation before (4.15),

2

8xey+R=0,

the transformation g = µx, It = y/µ leaves the equation invariant. Then, writing
p = ea gives

G=g=eax, H=-h=-e-ay, U=xB--yya,

and hence Y = xy. More relevant for this chapter, the transformation x' = G =
g = eax, t' = H/2 = h = e2-\t leaves the equation 8u/8t = 82u/8x2 invariant, so

U=xB +2t8 ;

thus, as observed at the beginning of this section, a possible choice of the
`autonomous' independent variable, which we called Y above, is x2/t.

116 We write h = eay rather than It = ay for convenience, because it means that A = 0 is the
identity and no reparametrisation is needed to obtain (6.47).
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Of course, similarity solutions can always be written down by inspection by
people clever enough to spot them. The point about (6.51)-(6.53) is that it pro-
vides a relatively systematic procedure for finding the similarity solutions once
g and h are available. This method is far from trivial, as will be illustrated on
the following pages, and many computer packages are currently available for au-
tomating the procedure and some of its generalisations. Such generalisations will
not be considered here except to remark that we could consider firstly `extended'
transformations in which the functions g and h depend upon the dependent vari-
able and its derivatives as well as the independent variables, or, secondly, multi-
parameter transformations in which g = 9(x, AI , A2) and (6.47) is replaced by, say,
a9/aA1 = F(11(9) and 09/0A2 = P2)(9).

Concerning terminology, the requirements (6.47) and (6.51)-(6.53), together
with the existence of inverses, are conditions for g in (6.47) or (g, h) in (6.51)-
(6.53) to form what is called a Lie group or continuous group of transformations.
The trivial manipulations necessary to show that (6.47) is equivalent to the crucial
group-closure condition, namely that, for all A and A, g(g(x; A); µ) = g(x; v) for
some v = v(A, p), are given in Exercise 6.20.

With these thoughts in mind, we are now in a position to describe a more sys-
tematic way of finding similarity solutions of the heat equation than that described
at the beginning of this section. Suppose we consider a general continuous group
of transformations of the independent variables

x' = f (x, t; A), t' = g(x, t; A), (6.56)

where the group parameter is such that A = 0 is the identity, so that x =_ f (x, t; 0)
and t = g(x, t; 0), and the closure operation is addition, which can be achieved
without loss of generality as in (6.51)-(6.53). Thus, for small A,

x'=x+AU+ t'=t+AV+ (6.57)

where the components U and V of the infinitesimal generator U = U a/ax+V a/at
are just functions of x and t. This means that, for small A, the chain rules for
changing the variables are, to 0(A),

8t -
/

1 + A 8t) 8t' + A 8t ax'' a ' (1 - A at) at at ax
a_ aV a aU) a a_ aV 0 ( aU) a
ax = A ax at, + 1 + A

ax ax'' ax' - -A x at + 1 - A ax l ax'
(6.58)

We can now enforce the crucial invariance property by selecting U and V, and
hence the group, by the condition that the heat conduction equation be left in-
variant under the transformation. Using the chain rule as above, the heat equation
with x' and t' as independent variables is
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av au aU Ou a2u a2U au &V DU
1 +a

ax, `ax2ax,+ax28t'/
aU a2u air 82v

(6.59)
XIM,

to lowest order117 as A -+ 0, and so we require

aV aU 02U av 02v aU (

T = 0' at = axe , 8t = axe + 2 a'x . 6.60)

At first sight it looks as if we are no better off than we were with the heat conduc-
tion equation, but (6.60) is an overdetermined system of three equations in only
two unknowns and it soon transpires that the only solutions are

U=T +d, V=ct+e, (6.61)

where c, d and e are constants. Hence, when d = e = 0, we can use ax'/49a = cz/2
and at'/a\ = ct to find

x' =e Ac/2 X, t' = ea`tt, (6.62)

which gives (6.44) with a change in notation. Alternatively, with c = 0, d = v and
e = 1, we have

x'=x+Av, t'=t+,\, (6.63)

leading to `travelling wave' solutions of the form u = F(x - vt); such a Galilean
transformation is always possible for autonomous partial differential equations.

Concerning the procedure above, we note the following points.

1. The independent variables such as x/v' and x - vt, corresponding to (6.62)
and (6.63), respectively, could be enumerated quite systematically by solving
for a variable f such that

U =(Ux+v8/f=0. (6.64)

2. In all cases u must satisfy a suitable ordinary differential equation. For (6.63),
we find

d2F
dC2

+vd =0,

so F = A + Be-v(x-91), where A and B are constants.
3. Systems such as (6.60) can easily look formidable, even though they are always

linear and overdetermined. One of the boons of modern symbolic manipulations
is that several packages are available to automate the process of deriving and
solving such systems, and we will return to this in Chapter 9.

117In fact, using the group property (6.51)-(6.53) it can be shown that this implies invariance
to all orders in A.
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4. It is relatively easy to generalise (6.57) to account for transformations of the
dependent variable u. This is done in Exercise 6.21, where it is easily seen to
lead to similarity solutions of the form

u=t°F( ), (6.65)

for any constant a. We recall that our fundamental `heat source' solution (6.30)
is of this form with a = -1/2.
An important example is that of the fundamental solution of the heat equation

in space dimension m > 1, which can be determined as one of these similarity
solutions. Spherical symmetry demands that

Ou_82u m-1Ou
8t Or2 + r 8r'

where r = jxj and an obvious similarity solution is u = t°F(r/ft) = t°F(rl). The
value of a must be such that the total amount of heat is conserved, i.e.

f u(x, t) dx = t° f F (r/;) dx = constant t°+"'/2
- mV t

is constant, and it is seen that a = -m/2. The equation for F is now

a2rF+(m 1+2) d + 2F=0. (6.66)

Miraculously, there is an explicit solution F = constant e-17 2/4 which satisfies the
regularity condition dF/dq (0) = 0. When we finally require fR" u dx = 1, we find
that

u(x, t) = (4rt)-m/2e-r2/4t ,

in accordance with (6.35).

Another generalisation is the inclusion of a constant source term in the heat
equation, when again a similarity solution of the form (6.65) may be appropriate.
For example, the half-line problem

-6i=
FU

in x > 0, (6.67)

with u = 0 on x = 0 and u = 0 at t = 0, models uniform heating in a half-
space with zero initial and boundary conditions. Now a similarity solution of the
form (6.65) is vital to give us enough freedom to allow group invariance: (6.67)
is invariant under the group x' = e'x, t' = e2At, u' = e2'u, and so we write
u = tF(q) and t = x/ f . This yields

d2F rl dF
drl2 +2d -F+1=0 foul>0,

with F(0) = 0 and, since tF(x/t1/2) -+ 0 as t -+ 0, F(rl)/rl2 -i 0 as n -+ oo. It can
be shown that this is enough information for the solution to be written down in
terms of parabolic cylinder functions (these are defined in Exercise 5.40).
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*6.5.3 General remarks
Despite all the efforts that have been put into the development of a systematic the-
ory for similarity solutions, several puzzling aspects remain. The principal short-
coming of the group invariance approach is that, at the end of the day, someone
has to `spot' the group under which the differential equation is invariant; the ap-
proach has made the identification task easier than that of spotting the similarity
variables directly, but it has not automated it.

We wish to draw attention to two other aspects of the theory. The first is
the relationship between the invariance approach and that of separation of the
variables. The latter method has been freely used in the preceding chapters with
little or no comment, and in every case of its use the reader has had to 'eyeball'
the fact that separation was feasible. Group invariance sheds some light on this
situation for, if we return to the argument leading to (6.65) and in particular to
the calculation of Exercise 6.21, we soon see that the heat equation is invariant
under the group whose infinitesimal generator is

U=U a +V8 +H -,
where one solution for U, V and W is

U = (Al + 2A2t)x + A3 + A4t,

V=A5+Alt+A2t2,

W = (A6 - 1 1 1A2x21
U,A2t - 2Adx - 4

(6.68)

and A; are constants. (The general solution has an arbitrary solution of the heat
equation added to W.) Now it is easy to see that one possibility is

U As
+ AeuB 8,

so Y, = t and Y2 = ue-°t, where a = A6/A3, are both invariants for which
UY = 0. Hence there is a solution in which 12 = F(Y 2 ), i.e.

U = e' F(t),

which is just the result of separation of variables!
Although we do not advocate this approach to separation of variables in this

book, it is interesting to note that when we apply it to Laplace's equation, even
with the restriction that only the independent variables x and y are candidates for
transformation, we find that

where the infinitesimal generator U = U 8/8x + V 8/8y, and that U and V satisfy
the Cauchy-Riemann equations
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OU 0V 8V OU

8x8y' Ox8y
(see Exercise 6.24). Hence, U and V are harmonic conjugates and we have recovered
the conformal invariance of §5.9.1.

This leads to our final observation. Clearly, the more terms that enter a partial
differential equation and its initial and boundary conditions, the less likely it is
to admit a group invariance. Hence, similarity solutions are often of most prac-
tical value as representations of the asymptotic behaviour of the solution in the
neighbourhood of certain interesting points in the space of independent variables
at which the initial and boundary conditions take a simple form. For example,
whenever we `switch on' a boundary value for the solution of a parabolic equation
that is different from its initial value, we expect the starting behaviour near this
boundary to be described by the similarity solution (6.45), where x is the coordi-
nate normal to the boundary. Such a result, if true, is of great value in ensuring
that discretised versions of the problem start off in the right way, because no Tay-
lor expansion exists near t = 0, x = 0. Equally, given any suitably localised initial
distribution of heat on the line -oo < x < oo, we expect the temperature to tend
to the similarity solution (6.34) as t -> oo. This is because, at a large distance from
the origin in the (x, t) plane, the initial data can be approximated by a multiple
of the delta function.tts

Such expectations are often correct but their proof is beyond the scope of this
text. We will, however, mention one fascinating aspect of `local similarity', which
can best be illustrated by an example of an elliptic Dirichlet problem. Suppose

V2U=0

in two-dimensional polar coordinates, with

0, 9=0, 0<r<1,
U= r2, 6=a, 0<r<1,

f(9), r=1, 0<9<a.

Assume, for the moment, that we are not clever enough to be able to solve the
problem exactly by separation of the variables, yet we still seek to find the be-
haviour of u near the `singular point' r = 0. A local similarity solution, obtained
in practice by separation of variables, is u oc r" sin nB, where, to satisfy the bound-
ary conditions, we need n = 2 and

r2 sin 29
U =

sin 2a
(6.69)

However, this approximation clearly fails at a = it/2. All is revealed when we
consider the exact solution

1"81f f(x) is smooth and its integral is unity, then it is an easy exercise to show that
Iim,-+o(UE)f(x/c) = 6(x).
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n7rOr2 00sin 20
u

sin 2c,
+ E bnr" I° sin (- f , (6.70)

n=1

where the b,, are Fourier sine series coefficients defined by

f(9) -
\sin 29 JO (

b
nag

for
gin 2a =

n sin ` a J 0 < 6 < a.
n=1

The series (6.70) is valid for all a with 0 < a < a as long as a $ 7r/2, and,
indeed, can even be modified to work with a = it/2 (see Exercise 6.25). Hence, it
is clear that (6.69) is only the dominant term as r - 0 when a < 7r/2; for larger
values of a, this term is swamped by the first Fourier term blrl/11 sin(ir9/a),
which is still a similarity solution but one whose relevance is not obvious from a
cursory glance at the differential equation and boundary conditions near r = 0.
Indeed, its determination requires that we both solve an eigenvalue problem to
find the requisite power of r and then use global information to find b, . This is an
example of what is called second-kind similarity. It is of great practical importance
because it is often vital to know whether the local behaviour near a singularity of
a solution of a partial differential equation is controlled by local rather than global
considerations.

6.6 Nonlinear equations
6.6.1 Models
6.6.1.1 Semilinear equations

Reaction-diffusion equations are frequently semilinear and of the form

T8u = V2u+ f(u,x,t).
(6.71)

Typically they appear as models in population dynamics, with the inhomogeneous
term depending upon a local population density, and in physical chemistry or
chemical engineering, where f varies with temperature and/or chemical concen-
tration in a reactor. The function f may be positive or negative to model say birth
or death, or exothermic or endothermic reactions, respectively.

If the problem is homogeneous and autonomous, f = f (u). For example, if u
is the concentration of some chemical undergoing an Nth-order chemical reaction,
f (u) = AuN. On the other hand, if u is the temperature in an exothermic reaction,
f is often of the form Ae"'(1+e0This is a resc.aling119 of the Arrhenius function
introduced in §5.11.1 and, since a is usually very small in practice, f is often
replaced by )eu, as in (5.159). Other autonomous models arise in situations where
diffusion is trying to spread out the dependent variable uniformly in space while
nonlinearity is trying to maintain it at a certain value. A famous example is the

"'The Arrhenius function of temperature T is e-R/RT, which can be written in the form
Aeu/(1+eu) by setting T = To(1 + cu), c = RTe/E and A = e-B/RTO, where To is a suitably
chosen reference temperature.
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Fisher equation for a population u in which f = u - u2, the first term representing
a linear birth rate and the second the limiting effect of the food supply, which
diminishes as u - 1. Another is the Cahn-Allen equation in which f = u - u3; u
is now the fraction of material that is undergoing a certain kind of phase change
from one stable phase u = -1 to another stable phase u = 1.

Often semilinear equations contain small parameters multiplying f or the
Laplacian in (6.71), and Exercise 6.26 indicates how such parameters can be ex-
ploited.

6.6.1.2 Quasilinear equations

Many problems in fluid dynamics lead to quasilinear rather than semilinear para-
bolic equations. A simple example concerns the flow of a compressible fluid through
a porous medium. Taking u to represent the fluid density, then Darcy's law (5.26),
which relates the velocity v to the pressure p by v = -(k/p)Vp, the equation of
conservation of mass, Ou/Ot + V (uv) = 0, and an equation of state, p = p(u),
can be combined to give

au = V . (K(u)Vu),T
where K(u) is proportional to udp/du. If we further specialise to the case of an
isothermal perfect gas, we have p oc u while, for an adiabatic situation in which
no heat is transferred to or from the gas, p oc uti with ry > 1. In either case the
model can be written as the porous medium equation

_ V. (u' Vu), (6.72)

where n is a positive constant.
This equation also arises in the study of thermal radiation, where energy is

transferred electromagnetically as well as by conduction or convection. Thus, at
any point, there is not only the absolute temperature T (x, t), but also an electro-
magnetic energy density Q which depends on the direction y through the point x,
so we write

Q = Q(x,Y, t), 1Y1=1; (6.73)

electromagnetic energy propagates at the speed of light c in all directions y in an
isotropic material. In the absence of heat conduction, the key modelling assump-
tions are that the material emits electromagnetic energy at a rate /3T4 per unit
volume,120 where ,B is constant, and absorbs it at a rate proportional to Q. Thus,
since c is large, the two energy balances are

(6.74)

where the gradient is with respect to x, and

120The fourth power can be explained by the fact that the density of the energy emitted by
a `black body' as a function of the frequency w of the radiation is, by quantum statistics,
8ah(w/c)3/(ehW/kT - 1), where h is Planck's constant, k is Boltzmann's constant and T is
absolute temperature. Integrating over 0 < w < oo, we find that the total energy emitted is
proportional to T4.
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Q dS - 4rrl3T'c-- = (aQ - 8T4) dS = a 4 (6 75)p ,,t J 1=1lYl=1
.

where p is the density, c is the specific heat and a is a constant. The presence
of the integral in (6.75) means that, as is the case with most radiative transfer
problems, the model is an integro-differential equation rather than a partial dif-
ferential equation. However, it can be approximated by a differential equation in
the so-called `optically thick' limit in which 0 and a are large and comparable in
an appropriate non-dimensionalisation. Then the dependence of Q on y is weak
and, substituting iteratively in (6.74), we can write

Q = a 1 Ta - a (Y . V)T' + Ql (y . p)2T4 + ...1 . (6.76)

Now

J
T'dS=47rT4, fIYl=u yl=t lyl=t

and

(y. V)2T4 dS = 3 V2 (T4),fYI=u

so only the last term in (6.76) ultimately contributes to (6.75), which is simply
(6.72) with n = 3 after a trivial rescaling.121

The porous medium equation also models the thickness It of a viscous drop
spreading under gravity over a horizontal surface. as we can see by modifying the
derivation of the paint model of §1.1. The horizontal velocity is again proportional
to y(2h - y)G'p, but now p is nearly hydrostatic and thus approximately equal
to pg(h - y), so the horizontal components of Vp and Vh are, to leading order,
proportional to each other. Finally, the equation of conservation of mass gives

Oh = V(hs`h)

with a suitable scaling of time.
A similar equation can model the horizontal spreading of highly fissured vol-

canos, which can be considered as shallow porous media through which magma
flows from below. The upper surface of the volcano moves normal to itself with
a velocity proportional to the rate of arrival of the magma. Again taking h to be
the height of the volcano surface above some horizontal datum, the magma pres-
sure is also approximately hydrostatic, so that the Darcy velocity of the magma

121 Unfortunately, radiative heat transfer in many processes such as glass manufacture is often
midway between optically thick and optically thin, but porous medium equation models are still
often used.



274 PARABOLIC EQUATIONS

is proportional simply to -Vh. The total horizontal flow rate is then proportional
to -hv'h and conservation of mass means that

Oh

8t = V (hVh),

and we can anticipate solutions of this equation in which h has the topography of,
say, Mount Fuji.

Another example from fluid dynamics which leads to a quasilinear equation
different from the porous medium equation is Burgers' equation (2.50), which arises
in the theory of viscous one-dimensional gas dynamics; because of its importance,
its detailed derivation is given in Exercise 6.27.

We conclude our modelling discussion by quickly mentioning another famous
quasilinear equation which describes the two-dimensional steady flow of an incom-
pressible fluid flowing in a boundary layer on a wall. This is the Prandtl equation
for the stream function '(x, y) which, for the case of flow past a flat plate, takes
the form

Oi,
for 0 < y < oc, x > 0, (6.77)

8y 8x8y 8x 8yT 8y3

with

z/5=-y =0 aty=0 (6.78)

and
V) = y + O(1) at infinity. (6.79)

In this model the fluid velocity is, as usual, (80/8y, -Ski/8x) and some specifi-
cation of the behaviour at the `leading edge' x = y = 0 is necessary to close the
problem. The derivation of (6.77)-(6.79) is too complicated to describe here but
the basic idea will be given in Chapter 9. Suffice it to say that the left-hand side
of (6.77) models the inertia of the flow, the right-hand side models viscous forces,
(6.78) expresses the fact that the fluid adheres to the plate and (6.79) represents
the uniform flow outside the boundary layer. While (6.77) is not strictly speaking
parabolic, it can be made so by means of a partial hodograph transformation sim-
ilar to that described in §4.8.2. When we regard u = ft/8y as a function of x and
,y, the chain rule gives that

O2' 8u
aye - u

8lp'
8z1p _ 8u erg 8u 831 _ 8 8u
8a8y 8x + 8x 8y3 - u T , 0 (u 8+p) '

and hence (6.77) becomes
8u_ 8 (Uau)
8x e0 00

which is just a special case of (6.72). However, in many applications it is easier to
work with (6.77) directly.
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6.6.2 Theoretical remarks
We have already remarked that almost all nonlinear partial differential equations,
be they hyperbolic, elliptic or parabolic, need to be treated on their own merits.
Concerning parabolic equations, a good rule is to start by asking the following
questions.

1. Are there steady solutions?
2. Are there spatially homogeneous solutions?
3. Are there any symmetries that can be exploited to find similarity solutions, as

in §6.5? (Questions 1 and 2 are really special cases of this.)

Other general questions which might also be posed are as follows.
4. Is the solution allowed to change sign? In all the examples above, except the

Burgers and the Cahn-Allen equations, the physical interpretation demands
that the dependent variable is non-negative.

5. Does the maximum principle apply? (When it does, it can be used to answer
the previous question.)

6. Is there degeneracy, i.e. is the equation `properly parabolic'? For example, the
porous medium equation, which can be written as

= u"v2u + nu"-11Qu12,o
is not uniformly parabolic because as u -+ 0 the coefficient of the elliptic opera-
tor V2u vanishes. Indeed, regarding the right-hand side as u"-1(uV2u+nI Vuj2),
it is the gradient rather than the Laplacian of u that dominates when u be-
comes small, indicating that the equation looks more and more like a first-order
equation in this limit.

For degenerate problems it is possible, as we shall see later in this section and
again in Chapter 7, for there to be a fire boundary separating the support of u,
i.e. the region where u > 0, from the region where it vanishes. Of course, if such a
free boundary does occur, say for the porous medium equation, we cannot expect
the differential equation (6.72) to hold in its vicinity, because some derivatives
of u almost certainly fail to exist. Hence, as in Chapter 1, we need to consider
the possibility of defining a weak solution by integration in a suitably generalised
sense.

The next two sections are devoted to some answers to these questions for
equations of porous medium, reaction-diffusion and Burgers type.

6.6.3 Similarity solutions and travelling waves
Consider first the porous medium equation (6.72). It has no non-trivial spatially
homogeneous solutions, and steady asymmetric solutions in more than one space
dimension are hard to find, as we learned from the p-Laplacian problem of §5.11.1.
However, in one space dimension we can find travelling waves which describe a
free boundary separating a region in which u > 0, say t = x - V t < 0, from
one in which u =_ 0. Such a phenomenon would have been quite impossible for
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U

(a) (b)

Fig. 6.3 Diffusion from an initially localised source: (a) non-degenerate; (b) degenerate.

a non-degenerate parabolic equation; for example, we know from (6.32) that the
solution to a Cauchy problem for the heat equation is strictly positive for t > 0
for data that is positive only on a small interval and zero elsewhere (Fig. 6.3).

Writing u = F(£) in flu/8t = 8/8x (u"8u/8x) gives

d{( d)+Va =0,
so that one possibility is

r(nV(Vt-x))1l", x<Vt,
(6.80)

Note that, if n >, 1, u ceases to be differentiable at x = Vt and so the porous
medium equation certainly does not hold there. However, we can see that

V
ztms ( n 8x

u") , (6.81)

which can be thought of as a Rankine-Hugoniot relation, as in §2.5. Indeed, this
equation expresses conservation of mass at x = Vt in the fluid dynamics inter-
pretations of §6.6.1.2. In any case, the way is open to construct a theory of weak
solutions of the porous medium equation by writing down the space-time integral
of (6.72), after multiplication by suitable test functions, and seeking functions u
that may be as badly behaved as (6.80), yet satisfy the integral identity. This is
precisely the procedure that we adopted in Chapter 1, and, not surprisingly, we
find that (6.81) is automatically satisfied by any weak solution. The analysis is
too intricate to describe here but it is interesting that no 'entropy-like' criterion
is now needed to ensure uniqueness.

Unexpected scenarios sometimes emerge when we seek travelling wave solutions
of semilinear equations. For the autonomous case of (6.71), flu/8t = V2u + f (U),
we encounter the ordinary differential equation

d2F
+ V

dF
+ f (F) =

for which a phase-plane analysis can be carried out in terms of F and dF/dr;. For
the Fisher equation, where / = F(1-F), Exercise 6.28 reveals that travelling waves
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are possible in which the population F tends to zero ahead of the wave ({ -i +oo),
and to unity behind the wave ( -> -oo), but that V must exceed"' 2. The effect of
the nonlinearity is to legislate against the slow waves in the continuous `spectrum'
V > 0 that exists for the heat equation with zero temperature as C -+ +oo.

A contrast emerges when we proceed to the semilinear equations with a cubic
nonlinearity. When f = u(u - a) (1 - u) with 0 < a < 1/2, so that fo f (u) du >
0, the phase-plane in Exercise 6.29 reveals that there is a unique positive wave
speed for which u = F(t) connects the stable equilibrium points F(oo) = 0 and
F(-oo) = 1. However, when a = 1/2, which is effectively the Cahn-Allen equation,
fo f (u) du = 0. Then the unique wave speed is also zero and the only travelling
wave connecting u = 0 to u = 1 is the steady state.

We anticipated the structure of travelling wave solutions of Burgers' equation

after (2.50). In Exercise 2.18 we effectively showed that, if V > 0 and

-V d{ + F d{ =
a2dz

(6.83)

and F takes any prescribed values F± as -+ ±oo, respectively, then

V = 2(F++F_).

Hence the wave speed can take any value, but we also recall that the restriction
F_ > F+ must be imposed. Note the importance of the quadratic nonlinearity in
(6.83). If a model ever led to Burgers' equation with a cubic nonlinearity, such as

8u 20u _ 02u
8t + u

Ox 8x2'

we would find that travelling waves described by

- V d t + F2 dt =
d2ez

would not necessarily be constrained by the restriction F_ > F+. This can be
shown to allow the possibility of shock waves of expansion as well as compression,
which would have serious implications for the discussion in §2.5.2.

The existence of all these travelling waves can be viewed, perhaps perversely,
as resulting from the invariance of the relevant partial differential equations under
arbitrary translations of x and t. Greater invariance is possible for equations with
fewer terms, so let us now return to the porous medium equation (6.72). We just
consider one-dimensional problems for simplicity (although many of the arguments

12211 can be shown that the wave of minimum speed, 2, is the one that is observed as t -+ on,
because it has the best stability properties.
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carry over to cases with radial symmetry) and we also restrict attention to n = 1
for ease of presentation. Then we can either follow the group theory analysis of
§6.5 or simply observe that

u=t'F x

satisfies the porous medium equation as long as

to-i (aF - fln n !
t2a-2$

T17
(Fr).

Hence 0 = (a + 1)/2 and

F 2
dij2
F+t F I2+fltId- -(2,8-1)F=0. (6.84)

Group theory users have an `advantage here because they can observe that (6.84)
itself has an invariance which enables us to write

F-rl2G, dF
-rlH,

an

and deduce the first-order equation

dH _ (G+/3)H+(1-2f)G+H2
dG G(2G - H)

The phase-plane analysis of this equation allows us to describe a wide variety
of solutions of the porous medium equation. For example, the critical point G =
-1/6, H = -1/3, which corresponds to F = -q2/6, enables us to construct the
solution

_ 1x2/ (6(to - t)),
0,

<0, t<to,
x.,0, t<to

in 0 < t < to, which is singular as t t to. Again, when 6 = J, F = e (a2 - q2) gives

U _ it-1/3 (a2 - x2/t2/3), lxi < atl/3,
0, Ixl) X1/3, (6.85)

which is even more interesting because it represents the spread of a `blob' which
was initially localised at x = 0, as in Fig. 6.3(b). In fact, this 'Barenblatt-Pattle'
solution can be shown to tend to a multiple of b(x) as t - 0; it is also of the
form (6.80) near the points x = fats/3

There are other possibilities, including ,B = 1 which retrieves (6.80), but (6.85)
has the most practical relevance. When written down in the radially-symmetric
case, it can indeed predict the shape of Mount Fuji with good accuracy.

Perhaps the most dramatic, and certainly one of the most helpful, of all simi-
larity reductions of parabolic equations occurs with the fearsome-looking Prandtl
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model (6.77). With hindsight it is quite easy to see its invariance under the trans-
formation

x=e 2ax1, y=a-ay', e-AV,

and hence the possibility of similarity solutions of the form

= X112F(t?), ' = xy
22

This leads to the well-known boundary value problem for the Blasiu4 equation

d3F 1 d2F =0
dq3 + 2

F
dq2 '

with F = dF/dn = 0 at r1 = 0 and dF/di7 -3 1 as rl --> +oo. As with (6.84), the
Blasius equation admits further group invariances, and it can in fact be written as
a first-order equation by seeking dF/d,7 as a function of F and then working with
log F (see Exercise 6.31).

We conclude this section by making some brief remarks about the way in which
similarity solutions and travelling waves may fit into the general structure of the
solution of a Cauchy problem in which u is given at t = 0. Sometimes we encounter
problems in which a small parameter distinguishes the magnitude of space and time
derivatives. For example, we could consider the semilinear problem (6.71) in the
form

= eV2u + f (U), (6.86)

so that, when e = 0, the only steady states to which u could evolve are the stable
zeros of f (u). However, even in one space dimension, the perturbation analysis of
(6.86) as a -> 0 is a difficult `singular' perturbation problem. This is because, in
some situations, the `front' separating regions in which u is near different stable
zeros of f moves exponentially slowly in c.

In two space dimensions, the situation can become even more intriguing. Sup-
pose we consider the Cahn-Allen equation in which fa f (u) du = 0, and, for sim-
plicity, restrict attention to problems with circular symmetry, so that

(
2

f7t -E \&2 + +Ut13.

Now suppose there is a front, which we denote by r = R(t), separating the region
r > R, in which u is very close to -1, from the region r < R, in which u is
very close to 1. Near r = R we expect u to change rapidly, as was the case when
Burgers' equation was written as (2.50), so that we can approximate the solution
by uo, where

6t = F du2o+uo-'+b,

and uo is a travelling wave of the form

(6.87)

no = F(r - R).
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Now (6.87) is one equation for the two unknown functions f and R. However, as
is common when parabolic equations are being approximated in thin regions, we
can retrieve extra information from the correction to teo, denoted by ul. We find

But a2ut 2 1-RF(r-R)+ =e-2 +(1-3uo)ut+F,(r-R),

and it is intuitively clear123 that ut can only be uniformly smaller than uo if

R = -R.

This so-called curvature flow law, that the velocity of the front is proportional to
its curvature, can even be shown to apply to non-circular configurations, and it
gives a much simpler characterisation of the motion of the front than could ever
be derived, say, for the motion of a shock wave in a hyperbolic problem. It is
interesting to note that, if we write the front as y = f (x, t) in a general situation,
then the law becomes

Of

'at -
82x2

ax/1+ af) (6.88)

which is yet another quasilinear parabolic equation with fascinating properties.124
We note that, if we solve this curvature flow equation when f is initially straight
save for a small bump, then the straight segments move immediately, even though
their initial velocity is zero everywhere, because diffusion takes place instanta-
neously. The curvature flow (6.88) also describes `curve shortening'; rewriting it
as in Exercise 6.33, it can be shown that the total length of the curve decreases
with time.

Finally, let us return to the role of travelling waves in the solution of Burgers'
equation. This gives us the opportunity to mention one of the most spectacular
results about nonlinear parabolic equations, namely that the Cauchy problem for
Burgers' equation in -oo < x < oo can be solved exactly. We return to our group
invariance discussion, where we noticed that the order of the ordinary differential
equation d2y/dx2 + y = 0 could be lowered by changing to a new variable logy. If
we reverse the roles of the dependent and independent variables in that discussion
so that X = x, this effectively results in the Ricatti equation dZ/dx + Z2 +
I = 0, where Z = dY/dx. Hence, slightly changing the notation and working
backwards, the equation d2 W/dx2 - W dW/dx = 0 can be linearised by setting
W = -2d/dx (logy). Let us therefore write'25

U = -28z logv

t23This very shaky argument about the particular integral for ul can be systematised by using
the Fredholm Alternative.
124If the front velocity is proportional to the negative curvature, we obtain a realisation of a

nonlinear backwards heat equation.
125This transformation is the same as the one we used on Liouville's equation in Chapters 4

and 5.
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in Burgers' equation (6.82), the famous Hopf-Cole transformation. We obtain

a

ax

(v
Ot - axe)) _ °'

and so, if v satisfies the heat equation with initial condition

v(x, 0) = exp (-- 2 f df) ,

then u = -(2/v) Ov/Ox is the solution of Burgers' equation with u(x, 0) = g(x).
Thus, steady solutions of Burgers' equation can be identified with separable solu-
tions of the heat equation.

6.6.4 Comparison methods and the maximum principle
One tool that is very useful for the qualitative study of certain kinds of semilinear
parabolic equations is the comparison method, which is based on the maximum
principle. The idea is a generalisation of that introduced in §5.11.2.1 for nonlinear
elliptic problems. Taking, for example, the semilinear problem

8u
2

_
u + f (U)

8t
V in Q,

(6.89)

' +au=0 on Oft,

then u is said to be a lower solution if

u=g att=0,

8t 5 Q2M+ f(m) in fl, 8n + aim < 0 on 00, -4 "9 at t = 0. (6.90)

Similarly, if u satisfies the reverse inequalities, then u is an upper solution. As long
as f is Lipschitz continuous, the strong maximum principle that we described in
§6.3 can be applied directly to u - g and U - u to guarantee that .4 ' u ' U. This
means that local existence, uniqueness and continuous dependence on the data can
sometimes be determined via a monotone iteration scheme starting from either -4
or U and based on the Picard theorem for ordinary differential equations. As in
§5.11.2.1, we have to assume that a constant K can be chosen so that f (u) + Ku
is increasing; then we can consider the iteration given by

u" - V2u" + Ku" = f (u"-I) + Kui in 11,

8n + au" = 0 on 011, u,, = g at t = 0,

for n > 1. The starting point can be taken as either uo = g or uo = U. Now, since

5,(Ui - u0) - V2(ui - u0) + K(ui - u0) > 0,

on taking uo = u, the argument after (6.90) applied to ui - uo shows that ui > uo.
The strong maximum principle can then be applied inductively to show that, if
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un_1 < un < U, then un < un+1 < U. It follows that un is an increasing sequence
bounded by U, and hence that un - u as n -i oo for some u between u and U. The
proofs are generalisations of the arguments in §5.11.2. The fact that u is a solution
to the initial-boundary value problem can be deduced, assuming the existence of
a Green's function G, by constructing an iteration scheme for an integral equation
of the form

u(x,t)= / Ggdt+J'jG(f(u) +K u)ddr; (6.91)
Jn o

the uniqueness of the solution u follows as with the Picard-type argument for
ordinary differential equations.126

Example 6.7 (The Fisher equation) Consider the following problem:

= a 22 + u(1 - u) for 0 < x < 1, (6.92)

with u = 0 on x = 0 and x = 1, and u = sinrx at t = 0.
Obvious upper and lower solutions are U = I and u = 0, respectively, but a

better choice of upper solution is u = Ae-"t sin irx, with A>, 1 and 0 < a < 7r2 -1.
The latter choice immediately shows that u - 0, and the population tends to
extinction, as t -p oo.

This example suggests that, in more general semilinear cases, bounds on the
solution can be determined simply by using the leading eigenfunction for the prob-
lem that we obtain when we linearise about a steady state. Thus, suppose that U
is a steady state of

8u
=

8t
V2u + f (U) in Cl, u = h(x) on 852, (6.93)

and we linearise by writing u = U + u to give, approximately,

06
8t

= V2u + f'(U)u in Cl, u = 0 on Oft. (6.94)

In order to use the familiar technique of linear stability theory, to which we have
already alluded in §5.11.3, we would now have to determine the real principal
eigenvalue po of the spectral problem

V20 + f'(U)q5 + p o = 0 in 52, 0 = 0 on Cl; (6.95)

if po is positive we expect the steady state to be stable. However, in this case,
we can prove the stability by our comparison method because we can exploit the

126As usual, once we have a representation like (6.91) for the solution of any partial differential
equation, we have effectively reduced the problem to one for an ordinary differential equation,
as will be discussed further in Chapter 9.
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single-signedness of the principal eigenfunction 00, shown in §5.7.1. Taking 00 > 0,
we pick a number c to be so small that

f (U - ce-0tOo) - f (U) - ce-lt,of'(U)

is of o(c) as c - 0 for some 6 with 0 < 6 < po. Then, if we set

u= U- ce-Stgo, u= U+ ce-6'0o,

we find that

- V2u - f (u) = c(f - po)e-$t0o + o(c),

8-u
- 021E - f (U) = c(po - Y)e_$too + o(c),

8t

so that, if c is positive, u and u are lower and upper solutions, respectively. Finally,
taking initial data with U - coo < u(x, 0) U + cOo, we deduce that

U-ce-0100<u U+ce-,1tto,

and hence that u->Uast-+oo.
We can make one general remark about the case when h = ho = constant

in (6.93) with U = ho. Then (6.95) is just Helmholtz' equation, which has positive
eigenvalues. Thus, as long as f'(ho) < 0, we can be sure that po > 0, and so diffu-
sion can never destabilise a stable solution of the spatially homogeneous problem.
In §6.7.2, this will be seen not to be true for a parabolic system.

Precisely the same ideas can be used to prove instability for problems for which
the linearisation has a negative principal eigenvalue, but, in cases where po = 0, the
linearised problem gives the least information about stability. Then the technique
of upper and lower solutions is even more important, as shown by the example

8u 82u
+ u3

8t 8
for 0 < x < 1, (6.96)

x2

with 8u/8x = 0 on x = 0 and x = 1. Solutions to the spatially homogeneous
problem are now exact solutions to the parabolic equation and boundary condi-
tions, and hence they serve as upper and lower solutions for initial-boundary value
problems. Thus, the equilibrium u = 0 is unstable.

The discussion above shows that there is plenty of scope for using comparison
theorems and information about the eigenvalues of Helmholtz' equation to infer the
stability or otherwise of steady states of semilinear parabolic equations. Another
example is given in Exercise 6.35, but here we will just mention a specific situation
that has important implications for exothermic combustion theory, as modelled
after (6.71). When Af(u) > 0, the `smallest' steady solution U of

N = V2u + \f (u) in n with u = 0 on 8f)

is stable. The proof goes as follows.
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From our discussion in §5.11.3, we assume that U depends continuously on A
in some interval 0 < A < A. Hence we take A, such that 0 < Al < A2 < A and
let the corresponding steady states U; serve as lower and upper solutions for the
evolution problem with A = Ao, A, < Ao < A2. Then, if the initial condition is
sufficiently close to Uo, so that

U1 < u(x,0) < U2,

then the comparison method ensures that u remains between U, and U2. Hence,
the stability of the steady state Uo follows when we let A, t Ao and A2 . A0.

*6.6.5 Blow-up
We have frequently seen in this book that nonlinearity can generate singularities in
the solutions of well-posed partial differential equations, be they elliptic, hyperbolic
or parabolic. Such singularity development is a global phenomenon, depending on
data quite remote from the singularity location, and this aspect makes prediction
difficult.

For semilinear equations, some very helpful clues can be found by studying the
monotonicity of the solution in time using the comparison method. Suppose, for
example, that in the Robin problem (6.89) the initial data u(x, 0) = g(x) is a lower
solution, i.e. that it satisfies (6.90) with 8u/8t = 0. Hence u(x, t) > g(x) and we
can show127 that Ou/8t >, 0 for a short time. Thus we can take u(x, h) as a new
subsolution starting from a small enough time t = h. Repeating the process shows
that 8u/8t stays positive and hence, if we can additionally find a smallest steady
state greater than g, then u must tend to this steady state as t -+ oo.

These arguments reveal the following general alternative for semilinear scalar
problems: if g is a lower solution, then, because u is increasing, either u tends to
the smallest equilibrium above g, or u is unbounded. Consider, for example, the
ignition model of §6.6.1 in which

8u =V2u+Ae"
in fl, u = 0 on 851, u=0 att=0. (6.97)

St

We recall from §5.11.3.1 that the steady-state behaviour is characterised by the
existence of a A* such that the continuous minimal branch w of positive solutions
emanating from the origin in the response diagram first turns over at A = A. For
the evolution problem, the initial condition zero is certainly a strict lower solution,
so Ou/8t > 0 for A > 0. Hence, if A < A', then u -> w as t -i oo. In fact, we can
extend the argument above to show that the smallest equilibrium state is stable
both from above and below.

In contrast, if A > A* in (6.97), and indeed if A <, A' and u(x, 0) is too large,
there is the possibility that u is unbounded as t -+ oo. Moreover, it may well
happen that u goes to infinity in finite time, in which case we say that blow-up
has occurred. To demonstrate the inevitability of blow-up when A is sufficiently

127To do this, we need to note that u(x, h) > u(x, 0) for h >, 0. By considering the evolution of
uh(x, t) = u(x, t + h), we can see that uh(x, t) > u(x, t) and hence, taking the limit h j 0, we
find that 8u/8t >, 0.
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large, we need only consider the behaviour of the leading Fourier coefficient of the
expansion of u in terms of the eigenfunctions of the Helmholtz problem

V2¢i + AO, = 0, 4, = 0 on Oft (6.98)

Taking 00 to be positive and such that fn Oo dx = 1 without loss of generality,
and setting a = fn udo dx, we find

at = fo 00 8t dx _ f ¢o(Aeu + V2u) dx = Oo (Aeu - pou) dx,
n fn

by Green's theorem. Now, noting that, by Jensen's inequality (see footnote 97 on
p. 216)

00u dx) ,
Jn

¢oeu dx > exp (fo

we have

dt
> Ae° - pa,

which clearly implies that a blows up if A is sufficiently large.
Such arguments can be used even when A < A to show that blow-up also

occurs if the initial data g is sufficiently large (see Exercise 6.35 and (6.99) below).
In fact, many further aspects of blow-up can be addressed, such as the behaviour
near A = A' or the prediction of the spatial variation of u near blow-up. The
latter is of especial practical importance because of the occurrence of hot spots in
large stores of solid material which may be undergoing even a gentle exothermic
reaction.128

Rather than go into these intricate details here, we conclude by briefly men-
tioning one other qualitative approach to blow-up, namely the use of integral
estimates. These may require considerable ingenuity but, for the semilinear equa-
tion Su/8t = V2u + f (U), with zero Dirichlet data, we can multiply by Ou/Ot and
integrate to give

1(0)2 dx =f (f(u)j -Vu.v Jdx
Tt at°

= -1 d f
(IDu12 - F(u)) dx,2dt a

where F(u) = 2 fu f (8) d8. Thus the `energy'

E _ In

(IVuI2 - F(u)) dx

is decreasing. We now use the Rayleigh--Ritz characterisation (see §5.7.1) of the
positive principal eigenvalue po in (6.98) as min fn IVu12 dx /f n u2 dx. This im-
plies that E > fn (µou2 - F(u)) dx and all we need is for this integral to be

128Such hot spots have even been proposed as a mechanism for spontaneous human combustion.
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positive for small u to guarantee stability of the zero solution. This is the case if,
say, f(u)=uP,p>1.

On the other hand, suppose we consider

u2 dx.j =

2
fo

Now, a simple calculation shows that, when f (u) = uP, again with p > 1,

dt = f (uP+1 - IVuI2) dx =

P

+
1

f uP+t dx - E(t).

We can estimate fn uP+t dx in terms of J by again using Jensen's inequality and
the monotonicity of E to give

dt
> constant J(u'+I )/2 - E(0). (6.99)

Hence, if u(x, 0) is large enough that E(O) < 0, we again have finite-time blow-up.
As a postscript to this section, we remark that blow-up can occur even for

linear parabolic problems, as was hinted at in the discussion after (6.33). Our
remarks there show that blow-up is generic for the backwards heat equation, but
that it can also occur for forward equations is revealed by setting129

u = vez2/2 (6.100)

in the heat equation Ou/Ot = 02u/Ox2. This yields the seemingly innocuous for-
ward equation

0v 82v+2xF+(x2+1)v.
(6.101)

0t 0x2 Ox

Hence, if we seek solutions in which v = g(x) at t = 0, we obtain from (6.30) and
(6.100) that

00

v(x t) = 1 9(t)e(f2-=2)/2-(f-=)2/4t df
at J_00

instead of (6.32), which, assuming that g(x) does not decay too fast as lxi -+ oo,
clearly blows up when the sign of 1/2 - 1/4t changes at t = 1/2. This behaviour,
which may seem unexpected from a casual glance at (6.101), can be interpreted
either in terms of the fact that the solution es2/4(t-t)/ of the heat equation
blows up as t t 1 because of its growth at infinity, or because of the unbounded
spatial variation of the coefficients in (6.101).

*6.7 Higher-order equations and systems
We conclude this arduous but important chapter by citing some more exotic
parabolic equations which further emphasise the sensitive dependence of the so-
lutions on the data. Our illustrations involve models of physical processes that

129The authors are grateful to Dr R. Hunt for this remark.
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lead to equations of order higher than two, either in scalar or vector form. How-
ever, we will restrict attention to equations of first order in time and even order
in space because they are the only ones which bear passing resemblance to those
discussed earlier in the chapter. Scalar third-order equations, for example, can ex-
hibit oscillatory behaviour that is in many ways more reminiscent of the solution
of hyperbolic problems, as we shall see in Chapter 9.

Even with our self-imposed restrictions, we still encounter a problem of pre-
sentation that has already become apparent in the previous chapter. This is the
fact that the higher order a class of differential equations becomes, the less easy
it is to make any general statements about the properties of the solutions. Thus,
particular examples of the class must increasingly be studied individually. In or-
der for this section not to degenerate into ever more detailed accounts of specific
problems, we will only give the reader a glimpse of the possible pitfalls and what
is possible concerning modelling and methodology. Hence we will do scant justice
to what can often be achieved in any special case.

6.7.1 Higher-order scalar problems
One source of fourth-order parabolic equations is via the `regularisation' of ill-
posed second-order problems. For example, as mentioned in §6.6.1, it is popular
to model phase separation in solids by introducing u to represent the fraction
of material that has transformed but, rather than use the Cahn-Allen model, to
assume that

8t = V2 f (u), (6.102)

where f is related to u using statistical thermodynamics. In fact, f (u) is the
derivative of the so-called free energy F(u) of the material, as shown in Fig. 6.4,
the `potential wells' at u = ±1 representing the distinct phases; the regions in
which Jul > 1 are unphysical.

If the boundary and initial data lie entirely within one phase, i.e. near u = -1
or near u = 1, then the coefficient of V2u in the right-hand side of (6.102), which

f(u)'

-- I

F(a)

Fig. 6.4 Free energy for phase separation.
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is simply f'(u), remains positive, the maximum principle applies, and the problem
is well posed. But then there is no change of phase. To get different phases the
solution must contain regions where u is near both ±1, and hence, in places, u
takes values for which f' < 0, the so-called `spinodal' region. In this region, the
equation is a backward heat equation, and if the initial data is also spinodal the
problem is ill-posed. We comment that, for times before the blow-up that would
generally occur in the spinodal region, maxima tend to increase and minima to
decrease. Thus u changes so that it abhors the spinodal region and takes values
that increasingly correspond to phase separation.

In any event, (6.102) needs to be regularised, and one way in which this can
be done is by including a higher-order term with the correct sign, and one such
regularised equation is

8u
= V2f (u) - e2V4tL,

8t
where a is a small constant. This fourth-order parabolic equation is called the
Cahn-Hilliard equation, and the final biharmonic term can be identified with the
energy density contained in the surface of the interface between the phases. The
reason for the choice of sign, and, indeed, a guide to the well-posedness of such an
equation, is given by considering a linear one-dimensional problem with oscillatory
initial data in the spirit of §3.1. Consider

s

a ax2 - e2 8x4 for t > 0 with u (x, 0) = sin nx. (6.103)

This has the solution u(x,t) = eatsinnx, with J = n2(1 - e2n2). Although low
wavenumbers in which n < 1/e give rise to temporal growth, solutions with high
wavenumbers with n > 1/e decay; the zero solution is unstable, which it was not
in the case of the heat equation, but there is no longer any indication of arbitrarily
rapid growth, as happens with the backward heat equation. Likewise, as long as a is
real, the term -e2V4u in the Cahn-Hilliard equation acts to limit rapid variations
of u, confirming the expectation that the material reduces its interfacial energy.
The lack of stability to low wavenumber perturbations is a clear indication that
there is no maximum principle for this particular equation. Although instability
and the failure of the maximum principle for (6.103) result from the -82u/8x2
term, the maximum principle in fact also fails for 8u/8t = -84u/8x4, as we can
see by taking

and
u=105-24t>0 forx=±3,0<t<2

u=x4+24>0 att=0for-3<, x<3,
so that the fourth-order equation has solution u = x4 + 24(1 - t). This is positive
for 0 S t < 1 and is negative in an expanding interval for 1 < t < 2.

Note that, although Green's functions and transform methods can, in principle,
be applied to parabolic equations of any order, terms like a-p'/4 would appear
when we tried, say, a Laplace transform in time on a fourth-order linear equation.
This makes the inversion more unwieldy than for the heat equation.
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Another class of problems leading to fourth-order parabolic equations concerns
the flow of thin viscous films, such as paints or other coatings, under the action of
surface tension. As usual, we denote the thickness of the film by h and its pressure
by p; unlike the thin films mentioned in §6.6.1, the pressure, which in the absence
of gravity is approximately equal to its value at the film surface, is now equal to the
surface tension multiplied by the curvature. Hence p is approximately proportional
to -V2h, assuming that the film is thin and that (VhI is small, where V is the
two-dimensional gradient in the plane of the film. We can, however, still use the
lubrication theory approximation to give that the in-plane velocity is proportional
to -h2Vp, so the mass flux in turn is proportional to h3 V2h. Finally, conservation
of mass now means that

at = -V . (h3V(V2h)) , (6.104)

with an appropriate scaling, and we have a fourth-order diffusion equation with
cubic `diffusivity'.

Like the Cahn-Hilliard equation, (6.104) is an equation about which a great
deal more could be said. While the former is susceptible to some of the methods
described in §6.6 for semilinear equations, especially the integral estimates ap-
proach, the latter clearly possesses some group invariance that can be exploited
to find similarity solutions. Unfortunately, the degeneracy in (6.104) when h = 0
is much more acute than it was for the porous medium equation, which is a pity
because painters are often interested to know criteria for the occurrence of 'pin-
holing', in which h tends to zero locally in space and time.130

In line with the remarks at the beginning of this section, we conclude with a
cautionary tale about vector equations.

6.7.2 Higher-order systems
When different species of population interact, or when more than one chemical
concentration is of importance in a reaction, or when simultaneous heat conduction
and mass diffusion are considered, models arise in the form of coupled systems of
parabolic equations. In the absence of convection, the basic form of such a system
can sometimes be written as

au
8t

in S2,

where u and f are now vectors with n components, Vu is the n x m matrix
(8ui/Ox,), and D is an n x n diagonal matrix with positive diagonal elements.131
Each component of u satisfies a boundary condition on Oft.

One particular property of these systems is the occurrence of the so-called Ttrr-
ing or double-diffusive instability. Even though diffusion acts as a stabilising and
smoothing mechanism for a single equation, we now have the following possibil-
ity: u can be a constant steady state such that f(u) = 0 and it can be stable as

13011 can, however, be proved that, if h is strictly positive on the parabolic boundary r of
Fig. 6.1, then h is strictly positive in the interior.

131 in some thermodynamic models D is symmetric rather than diagonal.
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the solution of the ordinary differential equation du/dt = f(u), so that all the
eigenvalues of the Jacobian matrix (8 f;/8u f) have negative real part, yet u can be
unstable as a solution of the parabolic system. Consider, for example, the linear
system

Ou 14 2 2 _u
8t _ (0 1) 8x2

+ 2 12 ) u for 0 < x < 27r,

u=0 forx=0andx=27r.

The system of ordinary differential equations

dt = (2 12) u = Au, say,

has zero as its only steady state. Its stability is determined by the eigenvalues A
of A; these satisfy A2 + A + 2 = 0, so the eigenvalues have negative real parts and
zero is a stable solution.

The boundary value problem has solutions of the form

Cul ) eµt sin kx
u2

for k = 1/2,1,3/2,..., provided that

0.2 - 14k2 - µ -2u(B-µI)u _-
2 1-k2-µ (U2,) =

The eigenvalue µ now satisfies

µ2 + (1 + 15k2)µ + 4 - (1 - k2)(2 + 14k2) = 0.

The trace of the matrix B remains negative but the determinant is also negative,
and so the eigenvalues are real and of opposite signs, if (1 - k2)(2 + 14k2) >
4. Taking k = 1/2 this inequality is indeed satisfied and the trivial solution is
unstable. The effect of the coupling between the components of u is similar to
that of the coupling terms in the system dx/dt = -z + Ay, dy/dt = -y + Ax for
A>1.

Despite the importance of these systems, for example in oceanic instabilities
where temperature and density interact, their mathematical theory is far less well
advanced than in the scalar case. Particular problems are encountered when the
diffusivity matrix D is not diagonal and depends on u, because of the difficulty of
predicting whether or not D is positive definite and hence whether the system is
strictly parabolic.
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Exercises
6.1. Suppose a pollutant concentration c satisfies

-t + vx = DV c, v = constant,

with

and

ac =0 on y = ±d
ay

c=co atx=0, c=c.1 atx=L.
Write x = LX, y = dl' and t = (L/v)r to obtain

ac ac a2c 2 a2c
(6.105)8r+al' k(Y}'2+b 8X2

where k = DL/vd2 and d = d/L. Show there is a steady solution c = c(X)
which tends to co as 6 -+ 0 except near X = 1.
If 6 << 1 and the last term in (6.105) is neglected, which boundary conditions
would you expect to be able to satisfy?

6.2. Find the time-periodic solution of

pe
OT

= k
02T

2
f o r x > 0 with -kWTx = Q coswt

o

and T bounded as x -+ oo. Take w = 27r (year)-' to give a reason why the
hottest (coldest) day of the year might be expected to occur about six weeks
after the longest (shortest) day.

6.3. Suppose w is the difference between two solutions of

au = V2u+au+ f(x,t) in f2,
Ti

with

and

an + au = g(x, t) on aft

u = h(x) at t = 0,

where a and a are constants and a > 0. Show that

Ti f w2 dx
+

f (I VwI2 - awe) dx + fan w2 dS = 0.

Deduce that

+ constant) J w2 dx < 0,(dt
d

a

and thus that w = 0.
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* 6.4. Suppose
82u 8u

8x2
=

at
m-L<x<oo,

with

u(x, 0) = 0, u(-L, t) = uo = constant, u - 0 as x -> +oo.

Show that there is a solution
00

u(x, t) = t! J e"2' dtl.
(x+L)/f

Since fx e-"2/4 dq < e-X2/4 for large positive X, if uo = eKL2 and L >> 1,
then

u < eKL2-(x+L)'/4i2Wz

unless x is large and negative. Deduce that, if the boundary condition is
replaced by u <

eKxs

for all x sufficiently large and negative, and some
K > 0, then u = 0 for t sufficiently small.

6.5. Show that, if f (t) is infinitely differentiable, then

011

u(x, t)
= x2" d°f(t)

E (2n)! dtn
n=O

satisfies the heat equation. Deduce that there are non-zero solutions of the
heat equation that satisfy u(x, 0) = 0 for all x.

6.6. A particle moves along the real line, starting at the origin and taking a step of
±h with equal probability 1/2 in each time step k. If p(x, t) is the probability
density function of its position at time t, use the argument of §6.1.2 to show
that, in the limit h, k -+ 0 with h2 = k,

8p _ 182p
8t 2 8x2

Explain why the appropriate initial condition is p(x, 0) = 6(x), and show
that p(x, t) = (1/ 27rt)e x'/2E, the probability density of a normal distribu-
tion with mean zero and variance t.
Remark. This is the density function of Brownian motion. The discrete ran-
dom walk (before taking the limit h, k -a 0) has a translated binomial distri-
bution, and the normality of the limiting distribution is an example of the
central limit theorem; it can also be established by taking the limit of the
binomial probabilities.

6.7. It is observed numerically that

00

(e_ta)2 X3.142.
-00

Use a periodic solution of the one-dimensional heat equation to prove that
200
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6.8. Let G(x, t; t) satisfy

with

OG 02G for0<x<1,t>0,
8t 8x2

8G=0 atx=0,1 and G=8(x-t) att=0.
ax

Show that the Laplace transform of G in time satisfies

d2G-pG=6(x-.), dG =0 atx=0,1,
d,2

and hence that

cosh cosh ((1 - t)f) I (fsink f) , 0 <, x < t,
G(x,. ;p) = cosh ( J) cosh ((1 - x),/) / (f stnh f) , t < x <<, 1.

Deduce that

G(x, t; ) = 1 I Gept dp
2ri 9tp=constant>0

I

E_xOC(-1)"e_,,2,2, cosnrxcosnr(1- (), x < C

cosnrCcosnr(1 -x), C s x,

and hence that

G(x, t; ) = I + 2 e-n2r2t cos nrx cos nvC.
n=1

Remarks.

(i) The Green's function for this problem is G(x, r - t; f ). The function G
here can be identified with G' on p. 251.

(ii) G can be written as
\ /

,
2

(03
"21) -93 I x2-,e-"')

where 93 is a theta function. \
(iii) This result can be related to (6.36) by expanding G as a power series

in e-2,/P- and inverting term by term.

6.9. If
2OU

= a2 for t > 0, 8 = 0 at x = 0,1, u(x,0) = uo(),

use the result that

(, r) = uo(x)G(x, r; e) dx,fu

where G is given in Exercise 6.8, to show that u(t, r) -+ fo uo(x) dx. as
r-1o0.
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6.10. Suppose the Neumann condition in Exercise 6.9 is replaced by the Dirichlet
condition G = 0 at x = 0, 1. Show that G becomes

00

2 E e-nz"zt
sin n7rx sin n7r

n=1

00
\e(x-E-2m)'/4t - e-(x+E-2m)z/4t)

7rt m=-moo ` JJ

6.11. Suppose that f (x) is periodic with period 27r and has the Fourier series

00

f (x) _ E (an cos nx + bn sin nx) ,

n=N

with the first N - 1 harmonics absent. Use the large-t behaviour of the
periodic solution of Ou/8t = 8au/8x2 fort > 0, with u(x, 0) = f (x), to show
that, for large t, u(x, t) has at least 2N zeros in each period. Deduce from
the maximum principle that, as t increases, zeros of u can disappear but not
appear, and hence show that f (x) has at least 2N zeros in each period.

6.12. Show that the Green's function for 8u/8t = 82u/8x2 in x > 0, with u
prescribed at x = 0, is, for t < r,

G(x, r - t; f) _ (e-(x-E)'/4(T-t) - e-(x+E)'/4(T-t)
2 7r(r - t)

Using the result that

2u
02G OG)

8t) G - (8x2 + 8 u) dx dt = u(t:, r),fr 1 o
show that, if u = g(t) on x = 0 and u = h(x) at t = 0, then

+ r g(t)e-E'/4(r-t)
dt2/F J (r - t)3/2

6.13. Suppose w(x, t) has Laplace transform w = e vim, t i > 0. By deforming
the inversion contour to lie along the negative real axis, show that, for -y > 0,

1 f +i0o 1
00

w(x, t) = / evt- fx dp = - fo e-°t sin (x ') ds.
27ri 7-ioo 7

Deduce that

-2 8 00
-v' x -x2/4t

w(x, t) =
Wt 8x

f e cos dy = 2(at)3/2 e
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6.14. By taking Laplace transforms, show that the solution of

8u 82u
inx>0,t>0,8t - 8x2

with

u=0 att=0
and

u=g(t) onx=0,

is given by the Duhamel formula

where

82v 8v

u(x,t) =J tg(t-r)-(x,r)dr,
0

v(0 t)=1t>0 v(x 0)=0inx>0 , ., ,, ,
8x2 8t

How is v related to the Green's function for this problem? What is the
physical interpretation of the formula for u?

* 6.15. Show that, if

V2G = a in fl, t > 0,

with
G = 0 on 8f1 and G = b(x - 4) at t = 0,

then the eigenvalues Ao, AI, ... of the Helmholtz problem

(V2+A)o=0 in 11, 0=0 on Of?

are such that

e--\^ =
J

G(x, t; x) dx.
n=o

Assuming you can approximate G for small t by

1 e_k_ I'/4f
2 '(4irt)m/

where m is the dimension of 11, show that, as t -+ 0, En oe-A^t is approx-
imated by vol(f))/(4rt)m/2.
Remark. To make this rigorous, you need to show that the contribution from
the region near the boundary, where the approximation for G is invalid, is
negligibly small as t -+ 0.



296 PARABOLIC EQUATIONS

6.16. Show that the Green's function for

+ (V. V)u = V2u in 12,

where v is prescribed, and where u is given on Of) and at t = 0, satisfies

5F+ V (Gv) + V2G = b(x - t;)b(t - r),

with G = 0 on 812 and at t = T > r. Hence show that, if 11 is the real line
-oo < z < oo and v is a constant vector in the x direction, then, for t < T,

G(x, r - tit) = I e-(=-E+IvI(r-t))'/4(r-t)
2 7(r- t)

6.17. Verify that the similarity solution of

Ou _ 02u 02u
8t

8x2+Oyz inz>0,y>0,t>0,

with u=latt=0,andu=0onx=Dandy=0, is

u=erf(2)erf(2rt

where erf,1 = (2/ f) fo e-'' da.
6.18. Suppose that

+F =02U
int>0,x>0,y>0,2

and u(0,y,t) = u(x,y,0) = 0 and u(x,0,t) = 1. Would you expect u to be

an analytic function of x and t? Show that

u=
(erfc 0 < t < x,
Slerfc (y/2v' ), x < t,

where erfc ri = 1 - erf q, satisfies the equations and boundary conditions
except at x = t. What discontinuity occurs at x = t?

* 6.19. Suppose that

with

z
Da a -(p-Av(y))0=0 fore>0,

y

dv'=0 aty=0,1.
dy

For small p, write to = io(o) +p*(1) +p2'(2) + and A = pa(t) +p2 \(2) +
and equate powers of p to show that
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Vi(o) = co = constant, Am = vo,
fI

where vo = J v(y) dy,
0

VI(1) = c-° f (y - y') (vo - v(y')) dy' + constant
Dvo 0

and
v

D dy2 = (1_(I)_A(2)Vo.
vo

Deduce that

_ v f 1
A

r _ V(Y) Do
d)1

_2) (1) / vg ,
co 0 0 o 0

say, where

Do =z fi[jV(l_.1)dy']2dyo.
o

6.20. (i) Suppose x' = g(x, A) and x" = g(r', µ), where g is a group and g(x, 0) _
x. By differentiating with respect to µ and setting p = 0, show that
ag/aA is the product of a function of g and a function of A.

(ii) Suppose
109

aA (x, A) = F(g(x, A))

and g(x,0) = x. Show that there is a function G such that g = G(A+
G'' (x)) and hence verify the closure condition for x H 9(x,,\) to form
a group.

*6.21. Let (6.56) be generalised to

x' = f (x, t; A), t' = g(x, t; A), u' = h(x, t, u; A)

and

U=Ua +v8 +wau;
when u is replaced by u' in (6.59), and the O(A) terms are collected on the
left-hand side, show that there is a new term

8W' au' _ OW OW 02u' 02W au' 92W au' 2 02W
A - au at' at + au 2F- axl + au2 { ax') + ax72

Deduce that the heat equation is invariant as long as

al' 82V aU av
at = axe + 2ax' ax = °°

au a2u a2w acs' 02% 02w

at - 5x2 2 axau' at = axe ' au2
=0.
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Verify that (6.68) satisfies these equations and deduce that one possibility
is f = ea/2x, g = eat and h = e"Yau, where ry is an arbitrary constant, and
that is invariant under the transformation group if

(2 ax+tat+7u )t;=0.

Finally, show that x/ f and u/t" are both invariant, so that a solution of
the heat equation is u = t7F(x/ f ), where

dn2 +2dFj -ryF=0.

6.22. Show that the wave equation

02u
= c2V2u

ate

is not invariant under the Galilean group of transformations

x'=x-At, y'=y, z'=z, t'=t
(for which the group operation is v = A +,u in the notation of p. 266), where
the constant A, with IAA < c, represents the speed of the (x', y', z') coordinate
system along the x axis. Show that it is, however, invariant under the Lorentz
transformation

x'=7(x-At), y'=y, z'=z, t'=ry(t-LT ),

where ry = 1/ VF--AY/7, and that these transformations form a group with
group operation v = (A + p)/(1 + Ap/c2).
Remark. Recalling that the components of the electric and magnetic fields in
a vacuum satisfy the wave equation above, this invariance is consistent with
the fact that the speed of light c is the same in all inertial frames, the basic
postulate of the theory of special relativity. It is also possible to show that a
suitable formulation of Maxwell's equations is invariant under Lorentz trans-
formations. The group operation of the Lorentz transformations corresponds
to the relativistic formula for the addition of velocities.

6.23. The equation
au =88x2au forx>0,t>0
8t

models advection in a viscous flow, where x is the distance from a solid
boundary and t is the distance downstream. Show that the equation is in-
variant when we set

x' = eA/3x, t' = eat, u' = e'rau.
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Deduce that t''F(x/t'/3) is a solution as long as
2 172

dj+3dq-71SF=0,
and that one possibility is u = t-2/3 exp(-x3/9t).

6.24. Show that, if
2

e
+

02U

2
= 0

is invariant under x' = f (x, y; A), y' = g(x, y; A), then the components U
and V of the infinitesimal generator satisfy

8U 8V 8V 8U
8x 8y ' 8x 8y

6.25. Suppose that V2u = 0, with

10, 8=0, r<1,U=
= r2, 8 = 7r/2, r < 1,

f (8), r = 1,

in two-dimensional polar coordinates. Show that
00

u = -? r2 (8 cos 28 + log r sin 28) + E bnr2 sin 2n9,
n=1

where

f(8) + ! O cos 29 = E bn sin 2nO for 0 < 8 < 2
n=1

(This question generalises the result of Exercise 5.12.)

* 6.26. Suppose that

with

eV2u+f(u) in n,at

8n + eu = 0 on 8f1.

Show that, if you write u = uo + eul + for small a and formally equate
powers of e, you obtain

V2UO = 0, = 0 on on,,
on

so that uo = uo(t). Then show that

V2u1 = dt - f (uo) with 1 = -uo on 8f2,

and deduce that
duo area(M)
at - f('°) = uo

vol(52)
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*6.27. The system

at + y4u) u) =
0,

au 8u ap a2uP

at + "ax) + ax a9,

at+u +-YP =e(7-1)(ax)z

with a and y constant, models viscous effects in one-dimensional gas dy-
namics (the right-hand sides of the second and third equations describe the
resistance to extension (as in (2.11)) and the rate of working of this resis-
tance, respectively). Suppose that u, p-po and p- po are all small, where po
and po are constant. Then the flow is localised about waves travelling with
speed dx/dt = ±ao, where ao = 7Po/po. To study a wave near x = aot in
detail, write x = aot + 6y; when terms of order e, e2/6 and 5 are neglected,
show that the perturbations satisfy

8p au au 015 8P 8u-ao
8y + Po 8y = 0, -poao 5i + 4 = 0, -ao 8y + 7po = 0.

The linear dependence of these equations means that we must retain terms
quadratic in the perturbation along with terms involving a and 6. We only
get a sensible answer when e = A62 for some 0(1) constant A. Show that,
with these assumptions, the largest terms to be retained on the right-hand
side of the three equations are

8p 8p au au 8u 82u 8u-68t -u8y -p8y, -5po& -pou8y +68y2 +aop8y,

- 06-J!LP - uay -1P3i,

respectively. Finally, use cross-differentiation to show that

Of, 02u 7 + 1 _ au _
-2po at + AByz - PO 6 uay 0,

which is (2.50) with a change of notation.

6.28. Suppose that
z

+U 1 -U)
8t = ,9X2

and u = F(x - Vt), with V > 0. Show that
dz

+VdF +F(1-F)=0,

and that the (F, F') phase-plane has a saddle point at (1, 0), and a stable
node or spiral at (0, 0), depending whether V > 2 or V < 2, respectively.
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Fig. 6.5 Phase-plane for travelling waves of the Fisher equation.

Show that the phase-plane is as shown schematically in Fig. 6.5 and deduce
that there is a monotone F in which F -+ 0 as x - V t - +oo and F - 1 as
x - Vt -+ -oo,as long asV>, 2.

6.29. Show that travelling wave solutions of

=a 22+u(1-u)(u-a) for0<a<2

satisfy

d
a

2a +VdF +F(1-F)(F-a)=0.

Using the fact that the phase-plane of (F,dF/4) for a < F < 1 is similar to
that of Fig. 6.5 for 0 < F < 1, show that travelling waves with F(-oo) = a
and F(oo) = 1 exist if

V i Vmin for some Vmin > 2a(1 - a).

By considering a sequence of phase-planes as V decreases, show that there
is a unique value of V < Vmin such that there is a travelling wave with
F(-oo) = 0 and F(oo) = 1, and that this value is zero when a = z.

6.30. Suppose that
8u 8 1 8u
8t 8x u2 8x

Define vb to satisfy
00 1 8u
at

_u2
8x'

and make the partial hodograph transformation from (x, t) to (0, t) to show
that v = 1/u satisfies the heat equation

8v 02v
at 8.-j2
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6.31. Blasius' equation,
d2F d2F
dq3

2F
dqa

0'

is autonomous (i.e. invariant under q' = q + A), so we can lower its order by
writing F = G and dF/di7 = H to give

d2H a

HdGa + (dG) + Z1 GaG = 0.

This equation is itself invariant under G' _ (1 + A)G, H' = (1 +.\)2H, for
which the infinitesimal generator is

U = G8G +2HaH.

Show that UX = 1 and UY = 0 are satisfied by Y = H/G2 and X = log G,
and derive an autonomous second-order equation for Y(X).

6.32. Suppose that

with

OU 02U u

8t = 8x2
+ e for x > 0,

u=0 onx=0, u=0 att=O.
Show that - log(1 - t) is an upper solution and - log(1 - t + h(x, t)) is a
lower solution as long as 8h/8t = 8ah/8xa, with It = t on x = 0 and h = 0
at t = 0. Deduce that u(x,1) -+ oo as x -+ oo.

* 6.33. Suppose that a smooth plane curve r = r(s, t), where s is the are length from
any prescribed point on the curve and t is time, evolves by a curvature flow
in which its velocity v along its normal n is equal to its curvature lc(s, t).
Defining the unit tangent by t = 8r/8s, show that

y=xn+u(s,t)tat
for some function u(s, t). Use the Serret-tenet formulae

to show that
8u-aa=0.

8t
57 U38, T

Show that, if the curve is simple and closed and has length L(t), so that
fo x ds = 27r, then

a (L(t), t)

dd

= - [icL]o = -K(L(t), t) [u]o
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Deduce that
dL
dt

a2(s, t) ds,
0

so that the curve grows shorter. If the curve encloses a region ft, show that
the rate of change of area of fl is fan v, ds, and hence that the area of ft
decreases at the rate 2ir.
If two simple dosed curves evolve by curvature flow, and one is initially
inside the other, show that it remains inside (consider what would happen
if they were to touch, the inside curve having larger curvature at the point
of contact). Show that the curve e-(x-l"') = cosay, V > 0, is a travelling
wave solution of (6.88). This curve, known as the Grim Reaper because any
other curves in its path vanish in finite time by the comparison result just
shown, also occurs as the free boundary for a famous Hele-Shaw flow in a
parallel-sided channel, called a Saffman- Taylor finger (see Exercise 7.19).

6.34. Suppose that

Ou
=

V2u + f (U) in ft with u = 0 on Oft,
8t

that f > 0, and that f (u)/u is a decreasing function for u > 0. Suppose also
that there is a positive steady state uo and that u - uo = w is small. Show
that, approximately,

8w = V2w + f'(uo)w.
8t

Now suppose that AO is the principal eigenvalue of

V20 + (f'(uo) + \)o = 0, 0=0 on Oft,

and that lAo is the principal eigenvalue of

V2.0 +(f(u0)+p)0, 0 on 011.
uo

Using the appropriate generalisation of the Rayleigh quotient to characterise
AO and po, show that (i) p0 <, AO and (ii) ppo = 0. Deduce that uo is linearly
stable.

6.35. Suppose that
8u

= V2u + Af(u)at
in fl, with u = 0 on Oil and u = g at t = 0, where f is convex and positive.
Suppose also that 00 is the principal eigenfunction of V2¢ + µo = 0 in 0,
.0 = 0 on 80, with corresponding eigenvalue po and with f ¢o dx = 1. Use
Jensen's inequality to show that a(t) = fo u4o dx satisfies

ad
> Af (a) - poa

with a(0) = Oogdx.
at
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Deduce that u blows up in finite time if

f
°O da

(o) )tf (a) - poa

is bounded.

* 6.36. Suppose that

8u 02u
for 0 < x < 1, t > 0 with u(z, 0) = 0

8t 8x2

and either one boundary condition is prescribed at each end of the interval
0<x<1,

u(0, t) = uo(t), u(1, t) = u1(t),

or two boundary conditions are prescribed at x = 0 and none at x = 1,

all
u(0,t) = uo(t), (0,t) = vo(t).

Solve formally by taking a Laplace transform in t and, by considering the
convergence of the inverse transform, show that the problem is well posed
with the first conditions but not with the second.
Repeat for the equation 8u/8t = 83u/8x3 with all permutations of boundary
conditions at x = 0 and x = 1. How does your result compare with the case
8u/8t = -83u/8x3?

6.37. Consider the system

On 82u
+ au + bv,

8v
= D 02v + cu + dv,

8t 8x2 8t 8x2

where a, b, c, d and D are constants, and suppose that

a + d < 0 < ad - bc,

so that the solution u = v = 0 is asymptotically stable when diffusion is
neglected (0/8x = 0). Show that there are solutions in which u and v are
proportional to eat sin kx, with t A > 0, if

Dk4 - (d + aD)k2 + ad - be < 0;

show that this is possible only if ad < 0, be < 0, and, if a (or d) is negative,
D is less than (or greater than) the smaller root of

(az - d)2 + 4bcz = 0.
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ice

phase bounduy r at , + st

pluue bounduy r at r

Fig. 7.1 The Stefan condition.

discussed in the previous three chapters, so, in each case, we will focus attention
on what happens at the free boundary.

7.1.1 Stefan and related problems
We begin with this, the most famous free boundary problem for parabolic equa-
tions, because of its importance in subjects ranging from metal making to option
pricing. In its simplest guise, the Stefan problem arises as a model for a continu-
ous medium that can transfer heat solely by conduction, so that, as in (6.1), the
temperature u satisfies the heat equation

pc F= kV2u. (7.1)

The crucial new ingredient is that we allow the material to change phase, for
example to melt, freeze, vaporise or condense, at a temperature u = u,n which
we assume to be a given constant. Thus we need to solve (7.1), with suitable
initial and fixed boundary conditions, on either side of a free boundary, the phase
boundary. A simple conservation of heat at this boundary is illustrated in Fig. 7.1
for melting. For a small area A of ice, say, this gives

pLAvn 6t = (-kVu n] lo i A 6t, (7.2)sid
where vn is the velocity of the free boundary normal to itself and L is the latent
heat per unit mass that needs to be supplied to the ice at u = u,n - 0 to convert
it to water at u = Urn + 0. Hence, in addition to the Dirichlet condition

U .9 um (7.3)

as we approach the free boundary r from either side, we also have the Stefan
condition on the normal derivatives,133

mnThis `box' argument is analogous to that noted in §1.7 as an alternative way of deriving the
Rankine-Hugoniot conditions.
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Free boundary problems

7.1 Introduction and models
This chapter is the most unconventional in the book. Whereas hyperbolic, elliptic
and parabolic problems have been studied over many decades, and many texts
are devoted to each, the subject of free boundary problems has attracted few
specialised publications despite its importance in modern applied mathematics.
In fact, we have already encountered several examples of this type of problem,
although we have not classified them as such. For example, the thin film flows
described in Chapter 1, the shock waves in Chapter 2, the contact problem in
Chapter 5, and the porous medium equation of Chapter 6 could all be posed as
problems involving the solution of partial differential equations in domains that
are unknown a priori; not only the solution of the equations but also the domain
of definition of the equations must be determined. We were able, by judicious
approximation, to reduce the film flow problem to a differential equation for the
shape of the free boundary, which in this case is the surface of the film, but all
the other examples have the distinctive attribute that the free boundary geom-
etry must be calculated and the field equations must be solved simultaneously.
We will adopt this as our working definition of free boundary problems132 and
we note immediately that they are inevitably nonlinear, because the solutions of
partial differential equations almost never depend linearly on the geometry of the
boundaries within which they are to be solved.

We should naturally expect such problems to require more information to be
specified at the free boundary than would be necessary for well-posedness of the
classical initial value or boundary value problems that we have considered hitherto.
Deciding how much extra information is necessary is one of the first challenges for
the development of the theory; in many examples the modelling process suggests
the correct information to be prescribed, but this is not always the case.

The principal reason why this topic has only recently gelled into a coherent
subject can be traced to the spread of applied mathematics into areas of science
which previously lacked detailed quantitative analysis. These applications revealed
many new examples of free boundary problems and we begin by listing some of
them. In most cases we will be dealing with `field' equations identical to those

132The equation of curve shortening (6.88) may be used to describe the evolution of a curve,

but we will not refer to this as a free boundary problem.
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[kVu n] solid
iiquid = _pLv,,. (7.4)

Note that, if we write r as f (x, y, z, t) = 0, then n = V f / IV f I and

V. 8t 11V A I. (7.5)

The condition (7.4) is the `extra' information referred to above; if L = 0 and there
is no phase change, we can simply read off IF as the isotherm u = u,,,.

This model is very simplistic and we need to make several remarks. First, we
have made no comment about whether or not u > u,,, in the liquid or u < u,,, in the
solid. We will see later that the question of whether these inequalities hold or not
has far-reaching implications for the mathematical structure of the model. Second,
the model is a gross simplification of what happens in most practical melting or
freezing situations, because we have neglected many important phenomena such
as convection, radiation and, most of all, the presence of impurities. The latter is
one of the reasons why um should not necessarily be thought of as a prescribed
constant, and it can be shown that even small variations in u,,, can drastically alter
the predictions.134 Nonetheless, the Stefan problem is challenging mathematically
and at once reveals all the nonlinearity inherent in any free boundary problem.
Even though the field equation (7.1) is linear, we can never superimpose two
solutions of a free boundary problem and hope to generate a third because their
domains of definition are different, and this neutralises many of the techniques we
have been describing in previous chapters. In fact, the only obvious simplification
we are ever likely to be able to make to a Stefan problem is to consider its 'one-
phase' specialisation. If, say, the ice is at u =_ u,,, - 0 or the water at u =_ u, + 0,
then clearly we need only solve on one side of IF, which may ease our computational
task. Any free boundary problem in which the solution is trivial on one side of the
free boundary will henceforth be referred to as one-phase.

There are many, many models related to the Stefan problem.135 Suppose, for
example, we neglect the specific heat term, i.e. the left-hand side of (7.1), still of
course retaining the time derivative in (7.5), and also consider a one-phase problem.
This leaves us with the Hele-Shaw free boundary problem in the theory of viscous
flow. The basic idea of its derivation there is as follows. Viscous fluid is forced
either by pumping or suction through the narrow gap between two parallel plates
z = 0 and z = h, as in Fig. 7.2. The equations relating the two 'in-plane' velocity
components (u, v) to the pressure p are quite simple when we neglect inertia and
the in-plane shear force, and only allow for the shear that occurs as we traverse
the gap from z = 0 to z = h. We find

02u 8p 82v 8pP=;' I` 8z2 = a

134This is as we might hope, since only a small change in composition can change iron into
steel, or turn an icy road into a wet one, by the addition of carbon or salt, respectively.
138An interesting example is that of Type I superconductivity, where, if the geometry is right,

the scalar magnetic field H satisfies the parabolic form of Maxwell's equations (as in (6.11)) and
the 'Meissner effect' requires H = 0 in the superconducting region. The Stefan condition follows
from a balance of magnetic flux.
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t suction or injection

Fig. 7.2 A Hele-Shaw cell.

so that
u z(h - z)
V

=- 2p VP,

h
=0

where V = (8/8x, 8/8y). Then, conservation of mass requires that the third ve-
locity component w be related to u and v by

8u 8v 8w
Y.-

+
8y + T.

_ 0,

so, integrating (7.7) with respect to z and using the fact that w = 0 on z = 0 and
z = h, (7.6) gives

V2p=0. (7.8)

Finally, suppose that when we look down on the (x, y) plane of the cell, we
see a free boundary r, as in Fig. 7.2. Conservation of momentum can be used to
assert that the pressure satisfies

p = constant (7.9)

along r, which is analogous to (7.3), and conservation of mass requires that the
normal velocity of r should equal the average of (u, v) n across the gap between
the plates.136

Hence

- = constant v,,, (7.10)

which is the one-phase version of (7.4). It is a simple exercise using (7.5) to show
that (7.9) and (7.10) can be written as

tsWe will see these conditions in another fluid-dynamical context shortly. Their validity for
the Hele-Shaw cell is contentious from the modelling viewpoint.
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6 - IVPI2 = 0, (7.11)

with a suitable resealing of p.
One of the great virtues of this model is that it has a simple generalisation which

is one of the easiest free boundary problems to visualise: simply squeeze together
two transparent sheets with a drop of viscous liquid, such as shampoo or treacle,
sandwiched between them, because setting w = 8h/8t on z = h merely converts
(7.8) into a Poisson equation with a term proportional to Oh/8t on the right-
hand side. However, the Hele-Shaw problem also models the important process
of electrochemical machining, where a metal `workpiece' is to be eaten away into
a desired shape by being immersed in an electrolyte. Then, if 0 is the electric
potential in the relatively poorly conducting electrolyte, and we are away from the
thin layers of high charge density near the workpiece, the argument in §5.1.2 gives

V20 = 0, (7.12)

with, say, 0 = 0 on the workpiece. Moreover, it is observed that dissolution at the
workpiece occurs at a rate proportional to the local electric field, so that, again,

00 = constant v,,; (7.13)
On

the sign of 0 in the problem changes if deposition occurs, as in the process of
electroforming.

Almost the same model arises in porous medium flow in the absence of gravity.
Suppose the flow is modelled as in §5.1.4.4 but that, as in Fig. 7.3, the porous
medium contains a free boundary 1' separating adjacent regions, in one of which
the pores are full of water, so that the medium there is `saturated', and in the
other the pores are completely dry (partial saturation always occurs in reality,
but often only over quite thin regions). We again have Laplace's equation for the
pressure in the saturated region and the arguments leading to the Hele-Shaw free
boundary conditions can be repeated. If, on the other hand, gravity is important,
so that Darcy's law is

v = -V (p + y) (7.14)

in non-dimensional variables with y vertical, then, in incompressible flow,

Fig. 7.3 Porous medium flow.
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(7.15)

The mass conservation condition at the free boundary f = 0, where p vanishes,
becomes

8 - Vpf =Of
(see Fig. 7.3).137 Since p = 0, we can, as in (7.11), write this condition as

etIVP12=Oy

(7.16)

A further generalisation would be to suppose that the free boundary separates
two immiscible fluids with different viscosities µ1,2, such as oil and water. Then, in
the absence of any interfacial forces, such as capillarity, the momentum and mass
balances at 1' yield the so-called Muskat problem, whose free boundary conditions
in suitable dimensional variables are

1 OPwater _18poil
Pwater = poll, Awater = Roil 8n = -vn

in the absence of gravity. The Hele-Shaw model can then be retrieved as a one-
phase limit (see Exercise 7.2).

7.1.2 Other free boundary problems in diffusion
An interesting problem in finance describes the valuation of a particular kind of
option called an American put option. This differs from the 'European' call option
described in §6.1.2 in two ways. The first is that the holder has the right to sell the
asset for a specified amount E, instead of buying it. The second is that the right to
sell can be exercised at any time up to the pre-assigned expiry date, t = T, rather
than only at t = T. This introduces the idea of an 'optimal exercise price' into the
modelling and converts what was a conventional parabolic equation model into
a free boundary problem in which the free boundary is the graph of the optimal
exercise price as a function of time t.

Suppose we have the flexibility inherent in American options. To accord with
the absence of arbitrage, the option value must be at least equal to the proceeds
of exercising it, since exercise can take place at any time. We can extend the
discussion after (6.10) to note that, if S < E, then the net result of buying the
option, at a cost of -V, and exercising it immediately to yield E - S, is E - S - V.
Hence, in the absence of 'free lunches', for 0 < t < T, V >, E - S, and a similar
argument shows that we must also have V > 0. Furthermore, if S falls to zero, then
it remains there, and the holder should obviously exercise the option immediately
in order to gain from the interest on the proceeds. There must therefore be a range
of values 0 < S < S' (t) in which the option should be exercised, so in this range

137The configuration in which the porous medium is a rectangle separating two reservoirs of
water of different prescribed depths is now so famous that it is referred to as the dam problem.
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its value is E - S, while for S' (t) < S < oc the Black-Scholes equation still holds.
We therefore seek solutions of

8t +
2a2S2 6S2 =r [ V - S5S I for S'(t) < S < oc, (7.17)

where V -* 0 as S -; oo and, if the option is still unexercised at t = T,

V(S,T) = max(E - S,0). (7.18)

As explained above, we also expect that

V(S,t)3max(E-S,0) for0<t<T, (7.19)

with equality only holding in the region 0 < S < S*(t), where the option is
exercised. This simple-minded argument does not give a free boundary problem
for V in the style of §7.1.1. However, further consideration of the optimal exercise
strategy (see Exercise 7.4) reveals that 1' satisfies the free boundary conditions

V=E-S, as1 atS=S'(t), (7.20)

these two free boundary conditions being analogous to specifying the melting tem-
perature and balancing the energy at the free boundary of a Stefan problem.

The question of determining what extra information should be assigned at the
free boundary is also illustrated by the modelling of flames as combustion problems,
usually in gases, in which the important chemical reactions only occur in the flame
sheet. In many cases of practical interest the thickness of flame sheets is much less
than the typical dimensions of the environment in which the flame exists, and
hence a free boundary model might be appropriate. Unfortunately, combustion
modelling is such a complicated subject that we can only mention two simple free
boundary approaches that can be used to predict flames. The relevance of each
approach depends crucially on whether the reactants are provided 'ready-mixed'
and capable of being ignited, say by a spark, or whether diffusional mass transfer
has to occur in order to create the correct `stoichiometric' mixture.

The former case leads to what is called a premixed flame, and in theory it should
be modelled by coupled equations for the temperature T and reactant concentra-
tion c, as in §6.7.2. The key modelling assumption that leads to a free boundary
problem is that the dimensionless rate of reaction is, as in §§5.11.1 and 6.6.1, of
the form Ace-EST, where A is constant and the dimensionless `activation energy'
E is large. This implies that the reaction term is negligible except where the tem-
perature is near its highest value, say To, which is now an unknown of the model.
It can then be expected that the reaction is confined to a thin region where T
is close to To but where c is still appreciable. Assuming purely conductive heat
transfer (as, say, for combustion in a solid such as a cigarette), in one dimension
we are led to the model

OT 02T
at

= k 8-2 (7.21)
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in the region ahead of the flame, say x > s(t), with

T=To (7.22)

at and behind the flame, x < s(t). We now see another one-phase free boundary
problem beginning to emerge in x > s(t), but, at the moment, we know neither
To nor OT/8x as x l s(t).

We can make some further progress by assuming that the mass consumption
is proportional to the rate of reaction, so that the reaction zone near the flame is
modelled by

8 2cOT
EST

8c= k- + Ace D ace-'/ (7.23)
8t 8x2

8t=
' Ti -

'

where a is a constant analogous to A. As discussed in §6.7.2, such parabolic systems
are not easy and here we make the further assumption that the reaction front is
a slow travelling wave solution of (7.23) in which T is close to To. Thus, when we
neglect 0/8t and notice that

c-+0, T-+To

behind the flame, we can add and integrate to find that

akT + ADc = akTo.

(7.24)

(7.25)

Finally, approximating a-E/T by e-E/ToeE(T_To)/To , as in §6.6.1, we can integrate

02T a _EITo E(T-To)/To =
Ox2 + De (To - T)e - 0

once, and use (7.24) again and the fact that T - To is relatively large and negative
ahead of the flame, to give

- OT I
_ = 2a Toe-E/27°. (7.26)

8x =_a(e) DE

This gives the second Stefan condition to go with (7.22), but To is still undeter-
mined; we will return to this question in §7.5.1.1.

A quite different situation occurs when the ambient combustible material is
not supplied in a premixed form. Suppose instead that there are just two reacting
components, for example fuel at concentration cl and oxygen at concentration c2i
and that they only react where they diffuse into each other. For `fast' reactions,
the concentration of oxygen is negligible on the `fuel side' of the flame, and vice
versa, in which case we simply have to solve diffusion equations for c{ on either side
of the flame, at which cl = c2 = 0. Also, since all the chemical reaction takes place
at the free boundary, a `stoichiometric' condition holds there. This is jargon for
the fact that, because chemicals react in fixed ratios (for example, two hydrogen
molecules and one oxygen molecule combine to create water), the rates at which
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chemicals are used up at a flame are proportional to each other. Hence there is a
linear relationship between the two mass flows,

On = -" On '

where A is a constant. This is a model for so-called diffusion flames, and contrasts
with the Muskat problem.

Flame modelling in gases is often further complicated by the presence of con-
vection, which is strongly coupled to the equations of heat and mass diffusion, and
can lead to phenomena such as quenching or, with compressibility important, to
detonation or deflagration, as discussed in §2.5.3.

Less dramatic diffusion processes may lead to free boundary problems which
are so `mild' that the free boundary conditions may be implicit in the modelling
statement. In fact, we have already encountered such a situation with models lead-
ing to the porous medium equation (6.72), Op/Ot = V (p"Vp), in the derivation
of which we tacitly assumed that the pressure p (or the film thickness h if that is
the dependent variable) is positive. However, it is easy to imagine that the `active'
region in which p > 0 abuts an inert one in which p = 0. Now p = 0 is a solution
of (6.72), so this prompts the question `suppose we have an initial value problem
in which the data vanishes in some region and is strictly positive elsewhere; does
it make sense to try to solve the equation as it stands for t > 0 and hope the free
boundary separating the active and inert regions comes out in the wash?' Strictly
speaking, the mathematical answer to this question is no, unless the derivatives
of p are such as to make V (p' V p) vanish at the free boundary; only in such a
case could the left- and right-hand sides of (6.72) be equal there. Everything boils
down to the smoothness of the solution and we will have to focus on this in our
later discussion of the porous medium equation.

Another interesting situation occurs in the oxygen consumption problem in
which oxygen is removed from a biological tissue by chemical action at a rate
which is approximately independent of the amount of oxygen remaining, just as
long as the latter is positive. A very simple one-dimensional model for the oxygen
concentration c is

Oc 02c

8t 8x2
-1, (7.27)

which at first sight seems to be a simple linear case of the reaction-diffusion
problems studied in §6.6. However, the simple solution c(x, t) = constant - t shows
that we must take care to enforce the physical requirement that c >, 0. Thus,
in line with some earlier models in this chapter, we could propose a one-phase
free boundary model in which regions where c > 0 adjoin regions where c = 0,
and (7.27) only holds in the former. The two free boundary conditions would be
c = 0 and, by conservation of mass, Oc/8x = 0. However, an alternative approach,
in the spirit of Chapter 6, would be to replace the right-hand side of (7.27) by
-H(c), where

H(c) _ 1, c > 0,
0, c<0,
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the Heaviside function, is clearly a nonlinear function of c.138 The relationship
between these approaches thus leads to yet another mathematical question akin to
those raised in connection with the porous medium equation and with the model
for American options, and we will see that its answer lies in some interesting
theories of weak solutions for parabolic equations.

7.1.3 Some other problems from mechanics
In Chapter 2 we have already encountered one of the most intensively studied free
boundary problems, namely that of shock waves in compressible fluids. We recall
that the most difficult aspect of our discussion there concerned the question of
uniqueness, for either the classical formulation or the weak formulation. In both
cases we found that, in order to obtain a unique physically acceptable solution, we
needed to append an extra restriction to the Rankine-Hugoniot relations. This was
despite the fact that these relations apparently already contain an extra equation
over and above those that would be needed for a Cauchy problem with a smooth
solution on a prescribed domain. For example, for the simple model

8u au
(7 28)

at
+ u

8x
0,

with Cauchy data u(x, 0) = uo(x), a count of the number of pieces of information
would not lead us to expect to be given any data other than the Rankine-Hugoniot
condition in order to be able to determine the unknown position, x = 8(t), of
a shock. However, our discussion at the end of §1.7 tells us that the Rankine-
Hugoniot condition allows us too much freedom and that a further restriction is
needed to obtain a unique physically acceptable solution.

Bearing this idea in mind, we now list some further free boundary problems in
mechanics.

7.1.3.1 Fluid dynamics
A venerable source of free boundary problems is the mechanics of continua that
have a `free surface', which in mechanics often means a 'stress-free' surface. The
simplest case occurs in irrotational inviscid fluid dynamics which provides a model
for, say, water in motion beneath an atmosphere which exerts no stress other
than a constant pressure. Then, in the absence of surface tension, a momentum
balance demands that the water pressure p is equal to atmospheric pressure. Now,
as will be shown in Chapter 9, it is a simple deduction from the time-dependent
generalisation of (2.5) and (2.6) to show that, when the density p is constant, p is
given everywhere in the water by Bernoulli's equation

P + + gy + 8 = constant, (7.29)

where y is the vertical coordinate and 0 is the velocity potential, which satisfies
Laplace's equation. Hence, if we denote the water surface by y = 77(x, t), then, in
a two-dimensional problem,

13SThis is a special case of the problem of `dead cores' in more general chemical reactions in
which the right-hand side of (7.27) is proportional to cp, as mentioned at the end of §5.11.3.
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i§F
IV0I2 + 99 + = constant on y = il. (7.30)

Also, we know that, whether or not y = sl is stress free, no fluid particles can
cross this surface, i.e.

a4)
= vn, (7.31)

where, as usual, vn is the normal velocity to the surface. Using (7.5), we have our
second free boundary condition,

a = an
ay at +

am

ax ax
on y = r1. (7.32)

It is possible to non-dimensionalise the variables, so that (7.30) becomes

+ 2 Io012 + Fq = constant, (7.33)

where F is a dimensionless number called the number; the larger the value
of F, the larger is the effect of fluid inertia relative to gravity.

We can already see an opportunity for `technology transfer' from gas dynamics.
For, suppose we replace the atmosphere by a second active inviscid irrotational
fluid, with a constant density p' 0 p, could we not regard the free surface as a
`shock' and derive (7.30)-(7.32) directly? After all, the fluid dynamics equations
were originally conservation statements, although we have rather lost sight of this
when we transformed to the variable 0. Anyway, the answer to our question is in
the affirmative because the Rankine-Hugoniot condition for the mass conservation
equation, namely

at + V (pu) = 0, (7.34)

is [p] vn = [pu n), which leads to (7.32) when p' = 0 and u = p.0.139
The simplest class of such inviscid free surface flows and, indeed, the only class

that is at all tractable as far as explicit solutions are concerned, occurs when

139For the momentum conservation equation in three dimensions, we must regrettably write the
conservation law in suffix notation as

8x (p&v + pu,u,) = 0, (7.35)

where u = (u;) and 6,, is the identity matrix. We then find that

[pn + p(u n)uj = [pu]v,,,

which leads to (7.33) when g = 0. Note also that, when p # p' and neither is zero, then (7.32)

and (7.35) also admit the possibility that

[p]=0,

which is what we called a contact discontinuity on p.59, and which is illustrated by (7.37).
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the flow is steady and two-dimensional, and F is infinite in (7.33). Then the free
boundary conditions for Laplace's equation become

= 0, tool = 1, (7.36)

without loss of generality, and we have what is called a Helmholtz flow. 110
An interesting complication is introduced into these kinds of inviscid flows

when, in a two-phase problem, we permit relative tangential motion to occur across
the free boundary, even across a free boundary where there is no density discon-
tinuity. Then we have what is called a vortex sheet, at which the free boundary
conditions for the velocity potential ¢i on either side are

t t2 2 + &1

= 1 X0I X0 7 37021 + cons an ,¢11 + ( . )

which is conservation of normal momentum, and

1901 1902

= v"
(7.38)

On 8n '

which is conservation of mass.
Further possibilities arise when we consider rotational inviscid flows. In steady

two-dimensional situations we have seen in §5.11.1 that the stream function b(x, y)
satisfies

-V2tb = f(,p), (7.39)

where f (,t') is the vorticity and is usually an unknown function. However, there is
often experimental evidence that the vorticity is localised in a patch and, if this is
the case, we could take f to be a function with compact support. The question then
arises as to what free boundary conditions should be imposed at the boundary of
the patch.141 As for free surface flows, no particles can cross the free boundary r,
which is thus a level curve of 0 in steady flow, with t' continuous at r. Also, since
the pressure must be continuous to ensure momentum conservation, the Bernoulli
condition requires that the tangential velocity 80/8n must be continuous at r.142

The list of problems of this type is long enough, even without introducing
the effects of viscosity, which leads to considerable algebraic complications (see
Exercise 7.6). Hence our final examples come from solid mechanics.

7.1.3.2 Solid mechanics

Stress-free boundaries are also ubiquitous in solid mechanics, but fortunately many
elastic bodies only undergo such small displacements that their free surfaces may
be regarded as being more or less in prescribed positions. This enables previously

140These free boundary conditions also arise in certain very simple models of flame propaga-
tion (7].
141 Precisely the same problem arises when we model the magnetic confinement of a plasma (an

ionised gas) in a long tube.
142Again, we will have to wait until Chapter 9 to explain the Bernoulli condition.
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contact set

rigid obstacle z = f (x. y)

Fig. 7.4 Obstacle problem for a membrane.

mentioned theories of linear elasticity to be used, but there is one situation where
nonlinearity cannot be avoided, even though the displacements are small. This
happens whenever two elastic bodies come into contact because, even though the
small transverse displacements on a smooth contact region can be regarded as
part of the data for the problem, the perimeter of the contact region is an un-
known free boundary. We have already encountered such problems in §§5.1.6.2
and 5.9.5, but, because we only considered two-dimensional configurations there,
the contact perimeter consisted of discrete points. We showed that their location
could be determined by applying appropriate singularity conditions in their vicin-
ity and equations such as (5.151) reveal the nonlinearity of the problem. Similar
contact problems in three-dimensional elasticity reveal the same dimension deficit,
in that the lowest-order problem is to find the one-dimensional perimeter of a
two-dimensional contact set. We will return to this topic of 'codimension-two' free
boundaries at the end of the chapter, but there is one special case that is rela-
tively easy to model yet leads to a conventional `codimension-one' free boundary
problem. This is when one of the bodies is rigid and smootht43 and the other thin
and extensible enough to be modelled as a smooth membrane, as in Fig. 7.4.

We then have what is called an obstacle problem, which is simple to state if we
assume that the membrane is stretched, with a fixed perimeter r o and only has a
small deflection when it comes into contact with the rigid obstacle z = f (x, y). As
in §5.1.4.2, in equilibrium the transverse displacement u(z, y) satisfies

V2u=0 (7.40)

wherever the membrane is not in contact, i.e. when u > f, but otherwise u = f
and we have a free boundary r to the contact region. Although it is obvious that
u = f on r, we again have our familiar question of what extra information needs
to be imposed there. This situation is simple enough that we can see at once
that equilibrium can only be maintained in the vicinity of r if the tension T is
continuous and the force is the same as we approach r from either side; this
is the same as carrying out the balance that led to (7.30), with the free boundary
being a curve rather than a surface. Hence our free boundary conditions are simply

1431f the contacting bodies are rough, then the interesting problem arises of determining another
free boundary, namely that between the regions of sliding contact and the regions of adhesion.
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u= f (7.41)
and

(7.42)

These conditions are analogous to the singularity conditions that we imposed on
the contact or crack-closing problems described in Chapter 5. Other free boundary
(but not stress-free boundary) problems arise in elastic-plastic deformation, where
the boundary of the region of plastic flow is to be determined, and in various other
solid mechanics problems involving fracture or slip.

We now continue with our standard procedure of trying to describe the math-
ematical ideas with which the above problems can be analysed and, sometimes,
solved. We begin by discussing well-posedness, which provides some surprises when
compared to our discussion of this topic in Chapters 4-6.

7.2 Stability and well-posedness
As already mentioned, the inevitable nonlinearity of free boundary problems makes
them less susceptible to mathematical analysis than the linear equations on which
we have largely focused in the last three chapters. The only general approach that
is available is to study the response of the system in the vicinity of a solution, be
it ever so trivial, that we are lucky enough to know explicitly. In fact, we adopted
this philosophy when we discussed qualitative properties of general second-order
equations; in Chapters 2 and 3, we sometimes `froze' the coefficients of a nonlin-
ear equation at prescribed constant values and looked for the local behaviour, as
described by the resulting linear equation. We hope that such an investigation can
at least tell us how robust the model is to small perturbations, and now we apply
the idea to some free boundary problems.

Before we start, we remark that the systematic application of small perturba-
tion theory in applied mathematics often relies on the ideas of asymptotic expan-
sion, which we have deliberately eschewed in this book. For the remaining chapters
we make one concession to asymptotic analysis by using the notation A - B as
e -+ 0 to express the fact that A/B -+ 1 as e - 0. As usual, we quantify the
difference A - B, for example, as 0(e) ('roughly the same size as e') or o(e) ('much
smaller than e'); see [22] for precise details.

Our procedure, which often goes under the heading of linear stability theory,
follows ideas introduced in §5.11.3 and taken further in §6.6.4. We suppose we
know an explicit solution of the field equation(s) which is compatible with the
free boundary conditions, for simplicity restricting ourselves to one-dimensional
problems. We then seek a solution in which the free boundary has an asymptotic
expansion

x = 8(t; e) -.90(t) + esl (t) + (7.43)

in terms of some small parameter a which measures the size of the disturbance
that we are considering. Since the free boundary conditions are to be evaluated at
x = s(t, e), they can also be expanded asymptotically; typically, we can write the
value of any function f (x, t) on the free boundary as
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f(8(t; E), t) - f (80(t), t) + eal (t)ax (so(t), t) + . (7.44)

Hence, when we write the solution of the field equations as

u(x,t;E) - uo(x,t) + Eul(x,t) + ...,

we find that

u(8(t; E), t; E) - u0(80(t), t) + E (Ui (so M, t) + 81 (t) a
OU0

(80(t), t)) + O(f2). (7.45)

It is important always to remember to include both the terms in the large brackets
in (7.45).

Now uo is known and hence, assuming we are allowed to equate terms of O(E)
to zero independently, we are left with boundary conditions that are not only
linear in u1, but are to be evaluated on the known boundary so(t). Hence the
problem for ul should be amenable to the methods of the previous three chapters.
Unfortunately, it is rare for us to know enough about the original free boundary
problem to be able either to justify the key step of equating the coefficient of f
to zero or to assess the quality of the approximation uo + Eui to the full solution
rigorously. However, we will be undeterred by this fact since we will see from
the examples below that predictions from this linearised approach agree so well
with many pieces of physical evidence. Surprisingly, when we start to consider
various problems for u1, we will find that free boundary problems are prone to
instability and ill-posedness far more than any of the models considered in previous
chapters. The interesting examples are more than one-dimensional, so we will need
to generalise (7.45) to show that the value of a function u(x, y, t; e) on a free
boundary x = s(y, t; E) - so(t) + Es1(y, t) + is given by

u(8(y, t; E), y, t; f) - uo(80(t), y, t)

+E ul(so(t),y,t) +81(y,t) ax (8o(t),Y,t)/ +0(E2).

(In the next example we will follow convention in that the unperturbed interface
is y = 0, but this should cause no confusion.)

7.2.1 Surface gravity waves
A very well-documented example concerns the solution of Laplace's equation for
a velocity potential ¢(x, y, t) in y < q(x, t), subject to (7.32) and (7.33), in the
vicinity of the zero solution ¢ = 0, +I = 0 (the constant in (7.33) can be taken to
be zero without loss of generality). To aid the bookkeeping, we introduce a small
parameter, as in (7.43), and write

0=E01, 17 =011,

to give
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V201 = 0 in y < E711, (7.46)

with

E (0018- 221 + O(E2) = 0 (7.47)

and J

e l 01 + 171 + 0(e2) = 0 (7.48)

on y = erb. Approximating as above, we replace these free boundary conditions
by

a1 = at1, 1+Fr11=0 ony=0. (7.49)

Crass-differentiation gives

F , y1 = 0 on y = 0, (7.50)

and we are left with an unconventional boundary value problem for the potential
01 in y < 0. The presence of the second time derivative means that it does not fall
into any of the categories in Chapters 4-6; however, since the coefficient of this
time derivative is constant in time, which always happens when the unperturbed
solution is independent of time, we can seek solutions as Fourier superpositions of
cos At and sin At, where A = constant. It makes life easier if we write

01(x, y, t) = R (x, y))

and then seek values of A that yield non-trivial solutions for 1. The fact that
(7.46) and (7.50) have no forcing terms means that we are led to an eigenvalue
problem for \, and we will be tempted to regard the problem as (linearly) ill-posed
if and only if at least some of these eigenvalues have negative imaginary part. In
such a case, an arbitrary small spatial disturbance grows exponentially rapidly in
time; equally, if all eigenvalues have positive imaginary part, then we regard the
problem as linearly stable, and if there are only eigenvalues with zero and positive
imaginary part it is neutrally stable. Of course, to obtain an eigenvalue problem
we must first close the model for 0. Hence we need other boundary conditions that
describe how the liquid is contained; for simplicity, we assume that it extends to
y = -oo and that -oo < x < oo, and that it is at rest at large distances from the
surface.

Carrying out this procedure, we obtain

021 = 0, (7.51)

with the Robin condition

(7.52)
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and the boundedness condition

asy -> -oo.

We recall from §5.2.1 that the sign in the Robin condition is vital in deciding the
uniqueness of solutions of Laplace's equation, and here, if A is real, this sign is such
that Oi = 0 is probably not the only solution to (7.51) and (7.52). By separation
of the variables, we soon find that there are indeed non-zero solutions in which

1 = W (A(k)ekyfikx

where A(k) is an arbitrary function of k, just as long as 3 k > 0 and

A=± F . (7.53)

Physically, this corresponds to a `wave train' on the free boundary in which 71
is proportional to tei(±k=+a+), so that the wave speed is A/k, assuming this is
real. Notice that IVd I is only bounded as IxI - oo if k is real, and so we only
have physically acceptable `eigensolutions' of the linearised water wave problem if
the eigenvalue A is real, which corresponds to what we have called a continuous
spectrum in Chapter 5. The fact that A2 must be positive reinforces our earlier
statement about uniqueness.

Thus the rest state of water with a horizontal free surface is neutrally stable.
The result (7.53) is often called a dispersion relation because it relates the wave-
length of the disturbance, 27r/k, to its temporal behaviour, described by A. We can
generate solutions of the Cauchy problem, i.e. the initial value problem for (7.46)

and (7.50). by superimposing terms of the form .4(k)etio k/F eikreky, perhaps even
with complex values of k, which simply corresponds to taking a Fourier transform
in x. Note that we must be careful about the initial conditions to be imposed on
such Cauchy problems. For free surface flows we need to prescribe both the initial
potential and surface elevation because of the appearance of two time derivatives
in the free boundary conditions.

7.2.2 Vortex sheets
The approach of the previous section can be applied to many inviscid fluid free
boundary flows, to consider capillary waves, waves on flowing fluids, or the effect
of finite depth. Here we give just one other application to the stability of a vortex
sheet separating two infinite fluids in y > 0, y < 0, with the same density and
in the absence of gravity. flowing parallel to each other with velocity (U±.0). We
now have to solve for two potentials and the free surface,

0+.U+x+eo+ +.. . O-.U_x+eoi +...,
where, from (7.38) and (7.37), the linearised free boundary conditions are

a0; _ a71 a71, a0-1 = an, an,
ay - at +

17+

ax ay at
+ U_

ax '
am,

+ U+
am, = ao + U_Oat ax at ax
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on y = 0. Writing

0i = tA+(k)eiiat+k=)e-ky' R A_(k)e'(11t+k2)eky,

where t k > 0, and assuming U+ 96 U_, we soon find the dispersion relation

A= 2(-(U++U_)±i(U+-U_)).

A similar result applies when the phase of 0 is At - kx; we find

A= 2((U++U-)T- i(U+-U_)).

Hence, if we require k to be real so that IVO± I are bounded at infinity, any wave
train on the vortex sheet grows exponentially in time whenever U+ U_. The
situation is almost as bad as for the (ill-posed) backward heat equation; since
Jai = 0(k) as k -+ oo, the larger k is (i.e. the shorter the wavelength), the greater
is the temporal growth rate, although it is not as rapid as the 0(k2) growth for the
backward heat equation. This is our first encounter with an everyday free boundary
problem which appears to exhibit ill-posedness when we try to predict its evolution
forward in time. Its catastrophic consequences can be seen the moment we consider
solving an initial value problem for 0 and m , with initial surface displacement
171(x, 0) = rlio(x) by, say, taking a Fourier transform in x. The resulting solution,
say for r1i, contains terms such as

f00
f7io(k)e-ik:ei.%(" dk

00 '

and, even if q10 is so well-behaved that i o = 0(exp(-aJkI)) as IkI -, oo, this
integral diverges as soon as t > 2a/IU+ - U_1. In other words, finite-time blow-up
can occur for arbitrarily small time, even with very smooth initial data, as was the
case for the backward heat equation in §6.4.2. In order to emphasise how frequently
this situation can occur, we now describe the linear stability analysis of one other
prototypical example.

7.2.3 Hele-Shaw Sow
For the one-phase Hele-Shaw problem described in §7.1.1, we can easily see that
there is an exact travelling wave solution in which the free boundary is again
straight. When we take the free boundary conditions as p = 0 and Op/On = -v
for simplicity, it is

p(x, y, t) _ -V (x - V t) for x < V t,

as long as the pressure gradient is V. Hence V < 0 represents a free boundary
that retreats into the liquid under suction, while V > 0 represents an advancing
boundary. Our usual linearisation procedure gives

p(x, y, t) -V (x - V t) + epi (x, y, t) + ... ,
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with free boundary

leading to

X-Vt+E?I1(y,t)+... ,

V2pi=0 for x < Vt,
and the linearised boundary conditions

E(Pi -Vni)+O(F2)=0

and

at

-EOy1J-V+Ea-I OP-i +O(F2)=V -Eal +O(E2)

on x = Vt + et7, + O(E2). Hence, to lowest order,

ap, al,,pi = Vij,,
ax Of

on x = Vt.

Now the time t appears explicitly in the location of the boundary of our linearised
problem, so we must define a travelling wave variable = x - V t before we can
seek a solution that is proportional to an exponential in t. This gives

8{2 + 2 =0 m<0, (7.54)

with
api _ _ 0,91

Pi = ti,71,
at at

on ( = 0. Hence, if we assume on physical grounds that I Vpi I is bounded as
-+ -oo, then we must have p, (t, y, t) = R A(k)ei(atfky)ekt, k > 0, and

iA = -kV. (7.55)

Hence, we have another dramatic switch from apparent well-posedness to ill-
posedness as we go from a `blowing' problem, V > 0, to a `suction' problem,
V<0.

We remark that the Hele-Shaw analogy suggests that one-phase Stefan prob-
lems in which either supercooling (liquid temperature below u,,,) or superheating
(solid temperature above ur,) occurs are unstable; in either case the unstable
boundary recedes into the active phase. Unfortunately, the algebraic complexity
is too great for us to describe the two-dimensional stability analysis that justifies
this statement.

These last two examples lead us to the realisation that, whereas all the par-
tial differential equation models that we encountered in Chapters 4-6 were really
predicated on the idea that well-posedness was a sine qua non for them to be
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accessible to mathematical study, with free boundary problems we have been led
into a world where, if our stability arguments are a reliable guide, there is just
about as much likelihood of ill-posedness as of well-posedness. In fact, many of the
problems described in §7.1 simply switch their stability characteristics according to
the direction of propagation of the free boundary or the sign of the driving mech-
anism. We can see this by changing the sign of F in (7.53), which corresponds to
reversing gravity or upturning a glass of water, and the same thing often happens
in diffusion problems.

7.2.4 Shock waves
Equally interesting, and perhaps even more far-reaching, is the outcome of a linear
stability analysis of the simple hyperbolic equation (7.28),

8u Ou

Of
+ u

8x
= 0. (7.56)

We consider small one-dimensional perturbations to the travelling wave

u= U+, x>Vt,
(7.57)

U X < Vt,

where the free boundary, i.e. the shock wave, has velocity V satisfying the Rankine-
Hugoniot condition

V =
2

(U+ + U-). (7.58)

Linearised perturbations to the field equation are found by writing u - U±±eui +
in x > Vt + eel (t) + and x < Vt + esl (t) + , respectively, to give, to

lowest order,

u +Uf88 =0.

Hence
u (x, t) _ aft Ateiat(r-=/U}>, A± = constant.

Naive substitution shows that ui satisfy the perturbed Rankine-Hugoniot condi-
tion as long as

i = I R(A_e;A_i(i_v/t-) + A+e'A+t(1-v/u+)). (7.59)

So it seems that any values of at, real or complex, are permissible! That this is
not in fact the case can only be seen by returning to the basic philosophy of our
linear stability analysis, as follows.

Up to this point we have been content to write down solutions in which the
free boundary suffered a small physically reasonable spatial perturbation, in par-
ticular a harmonic one, and seek whatever temporal behaviour would result from
this spatial disturbance. In some cases we have gone further and asked about the
implications for an initial value problem in which the initial data differed slightly
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Fig. 7.5 Shock/characteristic orientation (cf. Figs 2.11 and 2.12).

from that which would have led to the unperturbed solution. In all these cases,
this initial value problem has been solvable, in principle, by temporal and spatial
superposition of the eigensolutions we have written down, although we have seen
that blow-up may soon occur. All we needed was enough initial data to guarantee
uniqueness, i.e. as many pieces of information as time derivatives in the model,
in order to have the solution as a Fourier integral. However, when we adopt this
approach for the hyperbolic equation (7.56), we see that we cannot even deter-
mine s, from (7.59) unless both the `waves' eiA*(t_z/u*) that propagate along the
characteristics of the linearised problem impinge on the unperturbed free bound-
ary x = Vt. In fact, (7.59) simply could not have been written down had we not
made the implicit assumption that the relative configuration of the characteristics
of (7.56) and the shock was as in Fig. 7.5(a) and not Fig. 7.5(b,c,d).'41 Put an-
other way, we could only accept Fig. 7.5(b,c,d) if we lived in a world that we knew
to be strongly influenced by shock waves from which new information emanated;
only for Fig. 7.5(a) can the free boundary evolution be predicted from our models
of gas dynamics, and, in this case, the free boundary is stable in the sense that it
can evolve temporally in synchronisation with any harmonic wave that impinges
on it from either side.

The fact that shock waves can exist as stable coherent free boundaries in gas
dynamics has been famous for many years, which is why we were able to introduce
them as early as §1.7 of this book. As with most free boundary problems, the
computer is now the principal tool for predicting shock wave behaviour, except in
certain simple configurations.

Although we have not considered the stability or well-posedness of all the
models in §7.1, the examples above illustrate the kind of behaviour that may be
encountered. We can summarise by stating that, on the basis of the specialisation
to Hele-Shaw flow, Stefan problems appear to be well-posed if neither supercool-
ing nor superheating occurs. Also, a stability analysis of (7.14) and (7.16). as in
Exercise 7.20, shows that porous medium free boundaries are well posed when the
saturated region is below the free boundary, and ill-posed otherwise, unless the

144%Ve have in fact encountered this situation already in Chapter 2 in our discussion of causality.
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free boundary is moving in the vertical direction, and even then a saturated region
above a free boundary may be stable if the boundary moves down with sufficient
speed. However, no general remarks will be made here about flames or contact
problems, for which the stability analysis is much more complicated.

The analyses above can all be refined greatly using various asymptotic meth-
ods, in particular the methods of weakly nonlinear stability analysis. But none
of these refinements can overshadow the ease with which free boundary problems
can apparently be ill-posed. We say `apparently' because our examples may have
given the impression that linear instability is synonymous with ill-posedness, but
it must be remembered that the relationship between these concepts depends very
much on the form of the dispersion relation between the temporal growth rate A
and the wavelength 27r/k. Even if A is positive for all k, it may depend on k so
weakly that the transform procedure mentioned at the end of §7.2.1 may converge
for all t > 0; this would be the case, for example, for surface gravity waves with
F<0.

It is clearly time to make some remarks about the few rigorously justifiable
theories that are available for certain classes of free boundary problems. We begin
with techniques that may be used to analyse classical free boundary problems, i.e.
ones in which the field equations and free boundary conditions are to be satisfied
pointwise.

7.3 Classical solutions
7.3.1 Comparison methods
Some information about the position of free boundaries and the size of solutions
can occasionally be gleaned from comparison methods. The 'stable' one-phase
Stefan problem is a case in point. For simplicity, we take ur = 0 and all the other
coefficients in (7.1) and (7.2) to be unity. Intuitively, we argue as follows: consider
two solutions ul and u2 with ul > u2 > 0 so that, at some time, u1,2 > 0 in f11,2,
respectively, with H2 C fly, and ul > U2 in 112 (see Fig. 7.6).

Now suppose that at some later time the expanding free boundary 1'2 catches
up with rl, so that ul = u2 = 0 at some point where these free boundaries touch,
and where we shall assume they are smooth. From the strong maximum principle
for parabolic equations, mentioned in §6.3, the normal velocities of %, denoted by
v,,;, satisfy

Fig. 7.6 Comparison of free boundaries.
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Out 8u2
vt=-8n >vn2=-8n

contradicting the catching-up assumption. It can be noted that, with the `unstable'
version of the problem when fit C 02 but ut < u2 <, 0, the argument fails
completely, and in these cases the boundaries can cross. This irregular behaviour
is consistent with the instability result for the Hele-Shaw problem with suction,
which is simply a special case of the supercooled Stefan problem.

7.3.2 Energy methods and conserved quantities
Despite the nonlinearity of free boundary problems, it may be possible to extract
some information by more or less straightforward integration. For example, for the
porous medium equation in one dimension,

Ou _ 8
C

Ou
8t )8x u 8-. '

with

u(x,0) = uo(x) for -oc < x < oo,

it is trivial to show conservation of mass in the form

J
0

u(x, t) & = 0 uo(x) dx,
00 !! 00

and that the centroid is fixed, so that

f00

00

(7.60)

xu(x, t) dx = constant, (7.61)

assuming uo(x) decays sufficiently rapidly as (xj - oo. Again, for a Hele-Shaw flow
in a region fl driven by a single source or sink at the origin, an obvious integration
of V2p = 0, with p = 0 and Op/On = -v on the free boundary, and

p-'-Qlogr as r2=x2+y2-+0, (7.62)

gives that the area Cl of the fluid changes at a rate equal to the source strength
Q'45 However, this problem also has an infinite number of conserved quantities

11 z m dx dy, m=1,2,..., (7.63)

where z = x + iy, a fact to which we shall return later.

t45Note that p is proportional to the Green's function for the fluid domain with Dirichlet
boundary conditions.
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Sometimes these methods can point to impending disaster. Consider the one-
phase one-dimensional Stefan problem

On 02,u
for x < s(t), (7.64)

8t - C7x2

with
u = 0, 8 = - dt at x = s(t), (7.65)

with supercooled initial data u(x,O) = uo(x) < 0, 0 < x < so, and assume that
8u/8x (0, t) = 0 for t > 0. Integration of the field equation, which is simply an
expression of global conservation of heat, gives

fos

(t)so
s(t) + u(x, t) dx = so + 0 uo(x) dx. (7.66)

o

Now, if the solution exists for all t > 0, then there exists an s, such that
s(t) - s,,. > 0 and u(x, t) -+ 0 as t -* oo. Hence, if uo is so large and negar
tive that so + fo ° uo dx < 0, then we have a contradiction and so we have 'finite-
time blow-up', as in §6.6.5. The physical interpretation of this blow-up is that
if, in supercooled solidification, the latent beat released at the free boundary is
conducted away too quickly because u is too large and negative nearby, then the
steep temperature gradient at the front makes it move so fast (by the condition
Ou/8x = -ds/dt) that the gradient steepens even further and the free boundary
moves even faster. If the sign of u is reversed, so that the `active' phase is liquid
above the melting temperature, the free boundary moves in the other direction
and instability becomes stability. Moments such as (7.63) can be used to reveal
more information about blow-up when so + fo ° uo dx > 0 (see Exercise 7.9).146

7.3.3 Green's functions and integral equations
Although Green's functions cannot be used directly to solve free boundary prob-
lems, we can sometimes collapse information from the field equation onto the free
boundary and hence reduce the problem to a nonlinear integral equation, as in the
boundary integral method mentioned at the end of §5.5.2. As an example, consider
again the one-phase Stefan problem (7.64) and (7.65) for -oo < x < s(t), with
u(x, 0) = uo(x), assumed to behave suitably as x -+ -oo, and where no =- 0 in the
passive phase x > s(0). We define G(z, r - t; {) such that

2

- (aa2 + 8t
) = 6(x - e)6(t - r) fort < r,

as usual. However, we make no specification about the boundary behaviour of G,
so that the Green's function for the whole line, written as

2
1 e-(s-t)'/4(*-t),E(x - C, r - t) =

a(r - t)
'461n fact, the blow-up can occur even if the inequality is not satisfied, as long as uo is large

and negative near x = so.
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will suffice, as shown in [38]. Then the usual integration in the form

for

e(*) 82E 8E 82u _ 8u
Jo \u axa + at) - E (8x2 at

}) dx dt

shows that

u(C, r) = U0 V) * E(C r) - f
r

ds(t) E( - s(t), r - t) dt, (7.67)

where * denotes convolution as usual. When the latent heat is zero the second
term is absent and this is simply (6.32). Now, as long as we are careful, we can
differentiate with respect to x and take the limit as t t 8(t), as in Exercise 7.10,
to obtain

1 ds 1 f r ds(t) (s(r) - s(t)
E (s(r) - s(t)

2 dr 8t' (u° * E) 2 0 at l r _ t , r - t) dt;
E=B(r)

(7.68)
taking the limit directly in (7.67) would yield a less tractable first-kind integral
equation. An iterative analysis may now be used to demonstrate existence and
uniqueness of the classical solution under appropriate conditions on Uo(x) [38].

Unfortunately, this technique does not readily generalise to multidimensional
free boundary problems, a matter to which we will return in §7.5. To make much
more progress with such problems, we must be less ambitious and consider gener-
alised rather than classical solutions, but, before we do this, we make one seemingly
trivial remark that is often overlooked. We can clearly transform any free bound-
ary problem to one in a fixed domain by a simple change of variable, such as

= x/s(t) or = x - s(t) for the one-dimensional Stefan problem. The price we
pay is that the field equation then involves coefficients that are global functions
of u and hence difficult to analyse. However, such transformations can be of great
computational advantage.

* 7.4 Weak and variational methods
Since classical free boundary problems are so difficult to analyse rigorously, it is
natural to try to ease the mathematical task by demanding a less stringent defini-
tion of the concept of solution. One possibility is to follow the ideas introduced in
§1.7 and to try to define a weak solution by multiplying the field equation by test
functions and integrating in such a way that the free boundary and the conditions
imposed on it are automatically incorporated into the integral formulation. Alter-
natively, we could try to generalise the variational approach described in §5.4 in
such a way that the free boundary conditions are automatically satisfied by the
minimisers.

In either case the philosophy is the same: we are seeking a formulation which
makes sense even in the presence of whatever discontinuities are inherent in the
free boundary conditions. The skill comes in writing down a formulation which has
good existence and uniqueness properties. Even if this formulation is too unwieldy
for as to have much hope of finding explicit formulae for generalised solutions, we
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may hope that numerical discretisations can be devised that could be proved to
tend to the weak or variational solution when the appropriate step size decreases.

In Chapter 1 we have already seen the dangers of this philosophy. As we re-
minded ourselves in §1.7, when we used (1.22) to define weak solutions of hy-
perbolic equations, we found we had cast our net too widely and we needed extra
information before we could hope for uniqueness. In this chapter we are confronted
with a far wider range of problems, in which the field equation may be elliptic,
parabolic or hyperbolic, and for which all manner of free boundary conditions may
be prescribed. Hence, we have a major theoretical task ahead of us, and we begin
by making two general observations.

First, it will come as no surprise if we announce that the chances of finding a
generalised formulation of an arbitrary free boundary problem are very small,147
even though a surprising number of practically relevant problems are suitable
cases for treatment. Second, a crucial diagnostic feature is the `strength' of the
conditions at the free boundary, i.e. how many derivatives, if any, the solution may
be expected to have there. This especially concerns variational approaches because
we have a chance of formulating the problem as in §5.4 when, and only when, the
free boundary conditions are benign enough that only the highest derivatives in the
field equation are discontinuous. We saw there that the Euler-Lagrange equation is
of one order higher than that of the derivatives appearing in the Lagrangian; hence
a minimisation problem might still make sense and have the above-mentioned
degree of smoothness. We begin by considering this desirable situation.

7.4.1 Variational methods
The simplest situation of all arises when the free boundary emerges directly from
the kind of variational statement of the type used in §5.4. Suppose, for example,
that we wish to solve the vorticity problem (7.39). Replacing 10 by u and letting
u > 0 in the patch of vorticity, it is natural to consider

min f ( 2

IVuI2 + F(u)) dx, (7.69)

where
dF -

t

- f (u), u > 0,
du 0, u < 0,

and the minimisation is taken over suitable test functions satisfying the required
conditions at fixed boundaries. To prove rigorously that this variational statement
has a unique solution is still hard work, even when, say, f is differentiable and
f (O) = 0. However, for our purposes, it is even more important that the varia-
tional statement achieves the objectives of any generalised solution, namely that
it includes all classical solutions. Hence we need to show that, if a free boundary
exists at which u = 0, then the minimiser has the correct behaviour there, with
8u/8n being continuous. We can see this by assuming that we can write the free

147We recall that we could only define weak solutions of hyperbolic equations when they were
in conservation form.
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boundary as S(x) = 0, with S > 0, where u > 0, and splitting (7.69) into contri-
butions from either side. When we change (u, S) to (u + du, S + 5S) we obtain, to
lowest order,

f bu (V 2u + f (u)) dx + J>0 u<0

r ([&u15=0+6u
=o 5S=o_

-
+Js

f1 1 5=0+
bs

- IVul + F(u)] ds. (7.70)
2 s=o- IoSI

taking the normal direction into the region where u > 0. The first two terms
vanish by (7.39). and F is continuous; hence, since bu and SS are independent, u
and Ou/On are continuous.

An even more subtle situation arises when we try the same idea on the obstacle
problem (7.40)-(7.42). Since the obstacle topography f does not in general satisfy
V f = 0, we cannot expect to get a solution by minimising the Dirichlet integral
f Ioul2 dx over all small, smooth-enough perturbations. But it is natural, phys-

ically and mathematically, to consider the restricted or unilateral minimisation
problem

min f
2

IVuI2 dx,
u_f

together with suitable conditions on u at the boundary of the membrane.

(7.71)

Again, it transpires that this minimisation can indeed yield an acceptable gen-
eralised solution to the obstacle free boundary problem just as long as u and Vu
are continuous at the free boundary. but now the proof requires quite a different
idea. In particular, it relies on the interesting identification between the following
three concepts.

1. The unilateral minimisation statement (7.71).
2. The so-called linear complementarity statement

V2u < 0, u > f, (V2u)(u - f) = 0. (7.72)

3. The so-called variational inequality over the fixed domain !1 containing both
the `contact' and 'non-contact' regions:

fo
forally f, (7.73)

assuming that v satisfies suitable fixed boundary conditions.
It is difficult to establish the equivalence between the original problem (7.40)-
(7.42) and (7.71)-(7.73) rigorously, although (7.40)-(7.42) clearly implies the lin-
ear complementarity statement (7.72) (note that, when the membrane is in contact
with the obstacle, its linearised curvature O2u must be negative). To relate the
unilateral minimisation (7.71) and the variational inequality (7.73). note that, if
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ul and u2 are candidates for (7.71), then so is eu1 +(1 -e)u2 for any a such that148
0 < e < 1. Hence the minimiser is such that

jl IVul2 dx < J IV (eul + (1 - e)u2) 12 dx.

For small e, the right-hand side is equal to

1 I Vu212 dx + 2e j Vu2 0(u1 - u2) dx + 0(e2),
t

and so, with u2 = u and ul = v,

L
and the converse is obvious since IVU12 - IVvI2 = -2Vu 0(v - u) - IV(u - v)12.
Further details can be found in [17], where the advantages of each of the refor-
mulations (7.71)-(7.73) over the original problem (7.40)-(7.42) are also explained
in detail; in particular, the variational inequality is a good starting point for ex-
istence and uniqueness results, and the unilateral minimisation and the linear
complementarity formulation can have easy numerical implementations, as we will
see shortly.

This kind of approach only works if, firstly, the field equations are Euler-
Lagrange equations of a well-behaved functional and, secondly, the free boundary
conditions are sufficiently smooth. We have mentioned the latter fact several times
already and it is clear that this smoothness is needed to relate, say, (7.72) to
(7.73). Hence, if we are faced with a free boundary problem lacking the requisite
smoothness, it is tempting to try to transform it to one with better `regularity'.

A famous class of problems susceptible to such smoothing are the flows of a
liquid in a porous medium modelled by the steady versions of (7.14)-(7.16). For
these problems we can simply integrate with respect to the vertical independent
variable y (the Baiocchi transformation) and write the free boundary as y = h(x)
to give

v
fn

p(x, y') dy' = u(x, y).

We restrict ourselves to stable situations where the saturated part of the porous
medium lies below the dry part. Then u >, 0 in the saturated region because p 3 0,
and, extending u and p to be zero in the dry region, a simple calculation gives

02u= 1, y<h,
with u= =0 aty=h. (7.74)

y > h, )

We thus have a free boundary problem which can be reformulated as a linear
complementarity problem similar to (7.72), or as the variational inequality

148Functional analysts say that the minimisation is over a convex cone in a suitable function
space.
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fVu.V(v_u)dx)f(u_v)dx (7 .75)

where the test functions v(x, y) are positive and satisfy appropriate fixed bound-
ary conditions, and Cl is the entire porous medium, including both saturated and
unsaturated regions.

An even more striking example of a smoothing transformation concerns the re-
lationship between the one-phase Stefan problem (7.64) and (7.65) and the oxygen
consumption problem (7.27). For the latter, we have seen that a physical argument
of mass balance at the interface suggests the free boundary conditions

c = TX = 0 at x = s(t). (7.76)

Now suppose oxygen is being consumed in 0 < x < s(t), with Oc/Ox = 0 at X. = 0
and s(0) = 1. The condition (7.76) gives enough smoothness for the complemen-
tarity formulation

8C OCa \ a//cl- a+11=0, c'0, Ot-Ox2'-1 (7.77)

to be shown to be equivalent to //what is called an evolution variational inequality

f (-1)(v- c)dx (7.78)

for all positive v(x, t) satisfying appropriate conditions at x = 0, 1; with our par-
ticular initial and boundary data, we just need v = 0 at z = 1. Again, it is difficult
to prove the equivalence of (7.27), (7.77) and (7.78), although (7.77) and (7.78)
can be used to prove existence and uniqueness of weak solutions. But what is in-
teresting is that the Stefan problem (7.64) and (7.65) does not have the requisite
smoothness for a complementarity or variational formulation, yet it is apparently
intimately related to (7.27): when we formally set

c9c = u (7.79)

in (7.27), we obtain
Ou 02u

(7.80)

Moreover, since
Ot Ox2

09C Occ_ r _ =0 onx=s(t),
we see that is = 0 on x = s(t) and, since

02c ds 2

Ox2dt+OX Ot
0 onx=s(t),

we find Oude
8x dt

on x = s(t),

which is (7.64) and (7.65). Hence the Stefan problem is, formally, the time deriva-
tive of the oxygen consumption problem, and this applies in higher dimensions as
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well. However, there is a catch here because we can only use (7.80) on the un-
constrained version of (7.27) in which the sign of c is not specified, rather than
the nicely-behaved constrained problem that can be written as (7.77) and (7.78).
In fact, we have indicated that, in two space dimensions, the Stefan problem can
behave very badly, and hence so can the unconstrained oxygen consumption prob-
lem. Yet the constrained oxygen consumption problem has perfectly good exis-
tence, uniqueness and continuous-dependence properties, at least as far as weak
solutions are concerned.

The complementarity approach can also be applied to some other models de-
scribed in the introduction, such as the dead core model mentioned in §5.11.3.
Equally, for the American option model a simple calculation shows that

1
at + 2QZsZ

02V
2 r (v - s8S J . (7.81)

In financial terms, this is a natural requirement which says that the return on
a perfectly hedged option portfolio (the left-hand side) is never more than the
risk-free rate on the same portfolio (the right-hand side). If it is optimal to hold
the option, we have equality, but if we are in the exercise region it is suboptimal
to hold the option and so the return on the hedged portfolio is less than the
risk-free rate. This inequality can be used with the condition V >, max(E - S, 0)
and the fact that, whatever S, one or other of these inequalities is an equality, to
make a linear complementarity statement [47]. This in turn can be shown to imply
the smoothness condition that 8V/8S is continuous at the free boundary, i.e. the
classical free boundary conditions (7.20) hold (see Exercise 7.5).149

As our final example, we return to the smooth elastic contact problems men-
tioned in §7.1.3.2. Amazingly, they can all be formulated as variational inequalities
because, first, the elastic energy is minimised over the three-dimensional bulk of
the contacting solids, the Euler-Lagrange equations being (4.73) with 8/8t = 0;
second, the normal displacement and tractions are continuous (the tangential trac-
tion is zero) on the contact region, which to lowest order lies in a prescribed surface
S and is bounded by the one-dimensional free boundary r; third, no traction is
applied on S outside the constant region. The reason that this is a variational
inequality is now clear: on one side of r, conventional boundary conditions are
prescribed and, on the other side, the no-traction condition is the natural bound-
ary condition [12] for the elastic energy. Put crudely, the variational inequality
is clever enough to select that curve r on which the boundary conditions can
switch from contact conditions to natural boundary conditions with the requisite
smoothness, just as it does for the American option.

In summary, it is a red-letter day when a free boundary problem can be cast into
a variational formulation. Not only does this usually mean that rigorous statements
can be made about existence and uniqueness of a generalised solution, but the
numerical calculation of this solution can be relatively trivial. For example, for the
vector linear complementarity problem

1491n this respect the no-arbitrage condition acts rather like the second law of thermodynamics.
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u>0, Au>b, UT(Au-b)=0, (7.82)

where positivity of a vector u means positivity of each component u;, we can put

r` a;juj I
, (7.83)uk+1 = 1

H
(ia - L. L.

where A = (a;? ), and introduce a relaxation parameter w so that

uk+i = max (0, uk + w (uk+i - uj) )

gives an easily implemented updating for u; +1 in terms of 0, as described in
more detail in [13, 17, 47]. Hence, for example, option valuation can be carried
out quickly enough for the traders on Wall Street.

Despite all the success stories mentioned above, there remain many more free
boundary problems where there is inevitably insufficient smoothness for us to be
able to proceed variationally. Sometimes, however, we can have recourse to the
following method.

7.4.2 The enthalpy method
The enthalpy approach to the prototypical Stefan problem is similar in spirit to the
idea of weak solutions to hyperbolic equations. It is based on thinking of the free
boundary condition (7.4) as a Rankine-Hugoniot relation for a partial differential
equation in conservation form. Indeed, we recall that the one-dimensional heat
equation

On 02u

8t - k
8x2

was derived from the integrated form of the conservation law

8t (h(u)) + 8x
(_k±) = 0, (7.84)

where h = pcu is the heat content or enthalpy of the material. We now observe
that, if we set the melting temperature um to be zero, without loss of generality,
and write

h(u) _ pcu, u < 0 (solid),

pcu + pL, u > 0 (liquid),
(7.85)

then the Rankine-Hugoniot condition for (7.84) is [-k au/Ox] dd = pL ds/dt, insoli
accordance with (7.4). However, the other free boundary condition u = 0 is not
a Rankine-Hugoniot condition but rather the label of the temperature at which
the nonlinearity occurs; it indicates that the Stefan problem is really a limiting
nonlinear diffusion problem.
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To make a mathematical theory out of these ideas, we begin by dealing just
with continuous functions, replacing (7.85) by u = F(h), where

h/pc, h < 0,
F(h) = 0, 0 < h < pL, (7.86)

h/pc - L/c, pL < h,

and regarding (7.84) as an equation for F(h). Then we need to interpret (7.84)
properly, given that 8u/8x and 82u/8x2 do not exist at the free boundary. To
do this, we simply multiply (7.84), with u regarded as a function of h, by a test
function v which, in the simplest case of the Cauchy problem on -oo < x < oo,
vanishes for sufficiently large x and at t = T, and is infinitely differentiable. Hence
we can motivate the definition of a weak solution of this Stefan problem as a pair
of functions u and h satisfying (7.86) and such that

fT f3CC
(h Bt dxdt = f_:hht_ 0) dz (7.87)

for all such test functions. The argument leading to (1.27) can then be used to
prove that any such u satisfies (7.3) and (7.4) (with u,,, = 0) at a phase boundary,
where 8u/8x is discontinuous. Moreover, this pair of functions (u, h) can be proved
to exist and to be unique (see [17)). The general idea of the proof is a by-product
of the most important practical implication of (7.87), which is the result that the
temporal discretisation

hn+l - hn =
!-

8t ex
k

8x un+1= F (hn+1) + (7.88)

which is easily implemented, converges to the unique weak solution. It is inter-
esting to note that the convergence of the analogous discretisation for hyperbolic
equations cannot be proved; this is because the weak solution is then not unique. In
fact, it is, in general, much more difficult to implement discretisations of the weak
formulation of hyperbolic conservation laws than it is for diffusive ones. We recall
that in the former case all the free boundary conditions are Rankine-Hugoniot
conditions for conservation laws, whereas in the Stefan problem the condition
[kVu n);oludid = -pLvn is triggered by the discontinuity in the enthalpy. The
rapid transition across, say, a gasdynamic shock wave can easily generate spurious
high-frequency oscillations in the solution of the discretised weak formulation, and
these oscillations can propagate as waves throughout the flow more easily than
can the oscillations generated at a phase boundary by the solution of (7.88).

The algorithm (7.88) is known as the enthalpy method for the Stefan problem.
It is a simple matter to generalise the method to more than one space dimension,
even when it comes to proving existence and uniqueness of the weak solution; this
is in contrast to the classical solution whose existence is hard to prove in more
than one dimension.

We see the most dramatic implication of the enthalpy method when we enquire
about the relationship between classical and weak solutions of the Stefan problems.
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(a)

(c)

(b)

Fig. 7.7 The Stefan problem with volumetric heating.

Although. as stated above, we can prove that, when any two regions in which u is
infinitely differentiable are joined by a free boundary where (7.3) and (7.4) hold, we
have a weak solution, it is not the case that such free boundaries are the only ones
that can appear in weak solutions. Indeed, it can be proved that, if we consider
the slightly modified problem with a volumetric heat sourcetso

8u 5(32 UT+Q for0<.c<1,T 8x'

with

(7.89)

u(x,0) = -1. Ou(0't)=0. (7.90)

then, by the enthalpy method, for Q > 2 the solution evolves as in Fig. 7.7(a).
This observation is most easily made by plotting the output for the appropriate

modification of the algorithm (7.88). We see the appearance of a so-called mushy
region in which it = 0 and h increases for tt < t < N. The Stefan free boundary
conditions (7.3) and (7.4) are satisfied on neither of the boundaries of this mushy

'50This is a simple model for melting by constant volumetric heating, say in resistance welding:
two metal sheets in - l < x < 0 and 0 < x < I are to be welded along the r axis with their outer
faces r = ti held at the initial temperature -l.
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region; only after the mushy region has vanished (Fig. 7.7(b)) does such a classical
Stefan free boundary emerge, for example at t = t5.

Additionally, it can be shown that, if we were to insist that the only free bound-
ary in the problem was to be one at which the classical Stefan conditions (7.3)
and (7.4) were satisfied, then the solution would evolve quite differently, and, as in
Fig. 7.7(c), it would involve a superheated region in which the solid temperature
exceeds the melting temperature. We recall that our stability argument for the
case of zero specific heat in §7.2.3 suggested that such superheating yields a free
boundary that is unstable to small disturbances in two dimensions.

The physical interpretation of Fig. 7.7(a), with its prediction of coexisting
liquid and solid phases, demands much more detailed physical scrutiny than we
can give here, but it is likely that Fig. 7.7(a) is more realistic than Fig. 7.7(c) in
many practical situations. What has happened mathematically is that the enthalpy
formulation has legislated against superheating (as it would against supercooling)
because of the nature of the function h(u) in (7.85). We remember that at no
point in our classical formulation did we prohibit superheating or supercooling
and the weak formulation is a valuable reminder that these constraints are just as
important as they were in the oxygen consumption problem.

Although the Stefan model is one of the commonest free boundary problems
where a weak formulation is available, the idea can be tried on any problem in
divergence form. For example, when applied to the one-dimensional porous medium
equation (6.72), it gives

u=0, un-18
= d (7.91)

as free boundary conditions for a weak solution, the second of which can sometimes
be interpreted as conservation of mass at the free boundary. However, we must
remind the reader of the fragility of the situation. It only needs, say, the melting
temperature or latent heat to be a function of position for the weak formulation
of the Stefan problem to cease to be available.

Free boundary problems are one area of partial differential equations theory
where rigorous existence and uniqueness proofs and justifiable numerical algo-
rithms far outnumber the techniques available for finding explicit solutions. Some
of the few techniques that are available are described below.

7.5 Explicit solutions
Only two of the techniques described in Chapters 4-6 can be used with confidence
to find explicit solutions of free boundary problems. They are, firstly, the use of
similarity variables which, we recall, includes travelling waves, and, secondly, the
use of complex variables if the field equation happens to be Laplace's equation or,
perhaps, the biharmonic equation. The use of complex variables leads to the idea
of conformal invariance and thus can be regarded as a special case of a similarity
method, but the associated techniques are distinctive enough to merit separate
discussion.
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7.5.1 Similarity solutions
All the remarks about similarity and group invariance made in §6.5 apply to any
differential equation, with a free boundary or otherwise. However, success always
relies on identifying the relevant group, so we will simply list some informative
examples.

7.5.1.1 Travelling waves: similarity variable x - Vt

When the independent variables x and t do not appear explicitly in the field
equations we can always seek solutions that depend just on x -1't for some con-
stant V and, for certain one-dimensional free boundary problems, this allows the
free boundary to be at x = Vt. For example, the one-phase Stefan problem (7.64)
and (7.65), in which water occupies the region x < I't, has a solution u = F(x-1't)
as long as

where, since the ice in

Hence

ddseF+1'd
=0,

x > 1't has temperature u = 0,

F(0)=0, aF(0)_-1.

(7.92)

(7.93)

u(x, t) _ -1 + e-t (=_t (7.94)

and we see that, if V > 0. and we have what we regarded in §7.3.2 as a stable
situation with the water temperature above zero, then u -4 +oo as x -1't - -oo.
However, if 1' < 0, then u -4 -1 as x - Vt -> -oo and we will see the significance
of this limiting value shortly.

Travelling wave solutions can be sought for many of the other models described
in §7.1. At one extreme, the Rankine-Hugoniot equations themselves provide very
simple travelling wave solutions for shocks in hyperbolic conservation laws, while
the problem for travelling two-dimensional surface gravity waves is still a chal-
lenging task for numerical and mathematical analysts, unless the wave slope is
small.

In combustion theory. our indeterminacy after (7.26) can be resolved by mod-
elling flames travelling into a premixed environment with (7.21), (7.22) and (7.26),
and, after making the key assumption that we can neglect the reaction ahead of
the flame. seeking a travelling wave. We find the profiles

T(x,t) = T.t + (To - T4)e-t c.(x.I) = CO (I (7.95)

for the temperature and concentration, respectively, in x > s(t) = 1'I. where
T., and co are, respectively, the values of the temperature and concentration far
ahead of the flame. The compatibility condition (7.25), when applied to (7.95)
for small positive values of r - Vt. shows that To is given by Te) - T.t = .-loo/n.
which has the simple physical interpretation that the rise in temperature is that
achieved by the complete reaction. Finally, (7.26) gives the flame velocity as V _

2a/DE(kTo/(Tu - T.t ))e-Fr2T,
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Unfortunately, this approximate solution loses self-consistency at large dis-
tances ahead of the flame because the reaction terms in (7.23), although small,
dominate the derivatives unless TA is absolute zero. This is the so-called `cold
boundary difficulty'. The contradiction can be explained away by the fact that, in
real life, the model only applies for finite times and in bounded regions. Indeed,
if we apply the condition T = TA at a finite, but suitably large, distance ahead
of the flame, (7.95) gives a good approximation to T and 8T/8x except, possibly,
near this cold boundary.

There is a famous travelling wave solution of the equations (2.3) and (2.4) of
unsteady one-dimensional gas dynamics, where we recall that the free boundary
conditions at a shock moving with speed V are given by (2.49). We examine the
flow produced by instantaneously pushing a piston with speed Vp into a tube
containing gas at rest at pressure po and density po. By seeking a solution in
which u, p and p are all constants for Vpt < x < V t, it is relatively easy to see
that the free boundary velocity is

ry + 1 FV2 16 42V4 CVp+ +ry+1)2

where a2 = rypo/po (see Exercise 7.12). Similarity solutions also exist in multi-
dimensional steady flow past wedges and cones, where non-uniqueness can occur
(non-existence of the solution is also possible).

7.5.1.2 Other similarity variables
With a particular class of initial and boundary conditions, the Stefan problem
provides an informative reduction of a partial differential equation free boundary
problem to one for an ordinary differential equation.151 It is easy to see that,
as long as the initial temperatures on either side of x = s(t) are constant, with
one phase in s(t) < x < oo and the other in -oo < z < s(t), the initial and free
boundary conditions are all invariant under the transformation x' = eax, t' = e2at,
s' = eaa, u' = u. Hence, as in (6.44), we can set

s(t) = at1"2, n = xt-1 "2 and u = U(rl), (7.96)

where a is a constant, to give

d2*
(7.97)

In the one-phase case with water in -oo < z < s(t), and u(x, 0) = uo = constant
and s(O) = 0, we find

U(a)=O, d (a) = - - 2,

and hence, from (7.97),

Isi We recall that a similar group invariance argument was used to find some free boundaries
for the porous medium equation in §6.6.
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2aea=Ia ra a-t2/4 dt
J o0

Fig. 7.8 Solving (7.98).

ea214I e-+1214 dr1 = uo.
a 0

This transcendental equation for a can be shown to have a unique solution when
uo > -1 (see Exercise 7.1), and equations like it have found many applications
ranging from estimates for the time necessary to freeze food to the valuation of
American options. However, from Fig. 7.8, it is easy to see that no real solution
exists when uo < -1 which, like the argument after (7.66), shows that, even
in one space dimension, only a certain amount of supercooling can be tolerated.
This critical value of uo is that which just allows the existence of the travelling
wave (7.94).

7.6.2 Complex variable methods
Complex variable methods can be used to advantage on many free boundary prob-
lems for Laplace's equation. For example, they have been particularly effective in
studying the class of gravity-free, inviscid, irrotational, steady flows introduced as
Helmholtz flows satisfying (7.36). The key point about these flows is that the free
boundary conditions can be written just in terms of the gradient of the potential
0. Hence we can write these conditions trivially in terms of the complex velocity
potential u,(z) = 0 + itl&, where z = r + iy, as

= constant on I

T Z_
= 1. (7.99)

Thus, if we work in the hodograph plane152 of the complex variable dw/dz = u - iv,
then we simply have that w, which is an analytic function of z and hence of

152This term is now introduced for reasons quite different from those in Chapter 4; note that
the axes are now u and -v.
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dw/dz, has constant imaginary part on part of the unit circle. If this Dirichlet
problem for tb(u, v) can be solved, then its solution gives a functional relation
between w and dw/dz, that is, an ordinary differential equation which reduces to
a quadrature. Unfortunately, the Dirichlet problem also involves the conditions on
any fixed boundaries that may be present in the flow, and these usually become
unmanageable when written in terms of u - iv. However, this disaster is avoided
when any such fixed boundaries are straight. This means that, when we work
with log dw/dz = W (z), say, so that the free boundary is t W = 0, then ' W =
- tan- ' (v/u) is constant on the fixed boundaries. Thus the region of the W plane
corresponding to the fluid flow has a polygonal boundary. But, since 0 is constant
on both the free and fixed boundaries, the same statement can be made about the
geometry of the flow domain in the w plane, which is often just a half-plane. Hence
we can resort to the general Schwarz-Christoffel map to relate W to w; this map is
a particular explicit realisation of the powerful Riemann mapping theorem, which
states that there is a unique conformal map between simply-connected regions in
two complex planes when three conditions are satisfied: the interiors of the regions
must map into each other, the boundaries must map into each other, and three
pairs of boundary points must be identified with each other (see [16]). The details
can be quite intricate (see Exercises 7.14 and 7.15), but the key idea is simple: it
is the uniqueness of the mapping that pins down W(z), and hence dw/dz, as a
function of w. In this way, an extraordinary variety of flows involving single and
multiple jets and cavities can be constructed, subject only to the restriction that
the fixed boundaries are straight; see [4) for a comprehensive description of this
technique.

Almost as effective is the application of conformal maps to another class of
steady flows, namely those through porous media in the presence of gravity, as
modelled by (7.14) and (7.16). Now the free boundary conditions are

p = 0, (7.100)

IVp12+LP = 0, (7.101)

which again suggests consideration of the hodograph plane dw/dz = u - iv, where
now (u, v) = -V (p + y). The facts that (7.101) states that u2 + (v + 1/2)2 = 1/4
on the free boundary, and that the flow direction is - arg dw/dz, mean that the
flow domain in the hodograph plane is now bounded by a circle and straight lines.
This demands more ingenuity when mapping onto the w plane but many examples
can be solved this way.

It is unfortunate that so few evolution problems are susceptible to conformal
mapping methods. A little progress can be made with one irrotational inviscid
gravity-free flow (see Exercise 7.16) but things are much better for Hele-Shaw
flows. Since these flows are limiting cases of Stefan problems, for which there are
few multidimensional solutions, almost anything we can say in two dimensions is
of great practical value.

The power of the method is most apparent when we consider the problem
of blowing or sucking fluid from a single point, which is the simplest possible
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driving mechanism in practice, and can be realised by mounting a hypodermic
syringe in one of the plates of the cell. What we shall be able to do will prove far
more valuable than the Green's function reductions, such as (7.67). That method
allowed us to collapse the problem onto the free boundary, but only in the form
of a `global' integro-differential equation that was to be satisfied there, and from
which it is difficult to find any useful explicit solutions. Using complex variables,
we can write one of the free boundary conditions as a local differential relation
for the mapping function. Although the problem is still global in nature because
of the relationship between the real and imaginary parts of an analytic function,
luckily the Hele-Shaw problem has so much `structure' that we can find a huge
range of explicit solutions.

The argument goes as follows. Assume we can map the boundary of the fluid
region 11 univalently (i.e. one-to-one) onto the unit circle in an auxiliary C plane,
say with z = f ((, t), with the source or sink at z = 0 being mapped to ( = 0.
Then the problem in the ( plane is to find a harmonic function p vanishing on the
unit circle and with the singularity

p ^- -
Q

log ICI as ICI -> 0,

where Q is the strength of the source. Hence

P= -fit Q log (7.102)

and we simply need to find f in order to be able to relate C back to z. To do this
we recall the kinematic condition (7.11), which requires that

aP - IVPI2 = 0 (7.103)

on the free boundary. Now

2w Op =
18(I

1 Of lot
Q 8t Cot s fixed C of/ac'

also, on ICI = 1,
2 2

Q2 IopI2 °
ICI2 I

dz I Iof/a(I2

(7.104)

(7.105)

Thus we arrive at our unconventional differential equation for f in the form

9 CLf 8f Q (7.106)8( 8t) 27r

on ICI = 1, with f being analytic in I(I < 1. This formulation enables many free
boundary explicit solutions of the Hele-Shaw problem to be written down. For
example, with

f =a, (t)( + a2(t)C2 (7.107)
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and a, real, without loss of generality, by equating coefficients on SCI = 1, we find
that

al dt + 2a2 dt =
Q

'

a, dt + 2a2 dt =
0,

and hence

a, + 24 = Qt + constant, a2la2 = constant;

a sequence of free boundaries in which a limason at t = 0 terminates in a cardioid
at t = t2 is shown in Fig. 7.9.

Experimentation with such polynomial maps other than multiples of the iden-
tity suggests that any sequence of contracting (suction) free boundaries generated
by these maps terminates before all the fluid is extracted, forming a cusp in the
free boundary, and indeed this can be proved to be true. Perhaps this is not so
surprising since we know that `contracting' Hele-Shaw flows are known to be lin-
early unstable from §7.2.3. What we now see is that nonlinearity seems to do little
to ease their fate and, on the contrary, it engenders finite-time blow-up.

We can now note that the moment conservation (7.63) is a simple deduction
from (7.105) since

dt
fjzmdzdy

=
fzvnds

Fig. 7.9 Cuspidal blow-up for the map (7.107).
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KI=t Idf/dCI 2a d(
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this is zero for m > I because f (0, t) = 0. We should also mention that analytic
continuation methods can sometimes be used to solve (7.106) as a functional differ-
ential equation everywhere within the unit circle; this procedure is closely related
to the idea of the Schwarz function introduced in Exercise 7.18.

This discussion of blow-up leads us to the last topic we wish to mention in
connection with free boundary problems.

* 7.6 Regularisation
We repeat our statement that, more than any others, the partial differential equa-
tion problems discussed in this chapter raise the spectre of ill-posedness as a pos-
sible attribute of everyday models of real-world phenomena. In Chapters 4-6, we
have only cited the backwards heat equation and the Cauchy problem for elliptic
equations as possible examples of ill-posedness, but they are models that rarely, if
ever, occur in practice."J3 As a paradigm, however, the backwards heat equation
is exceedingly helpful because it is easy to analyse by, say, transform methods, and
it enables us to ask the question 'suppose the modelling of a practical problem led
to the backward heat equation with a small extra regularising term, say

at = -a22 +EJ(u)' u(z,0) = uo(z); (7.108)

what could we say about the response as e -> 0?1154
As discussed in §6.7.1, one 7 which does indeed regularise the backward heat

equation and make (7.108) into a well-posed Cauchy problem for e > 0 is .(u) _
-r04u/ax4, in which case the Fourier transform solution is

u = 1
yo(k)e-ikx+k21-tk4 dk.

2ir _x
(7.109)

As e decreases to zero this integral becomes more and more irregular, tending to
a function which may blow up in finite time.

Unfortunately, representations such as (7.109) are unavailable for free bound-
ary problems and their regularisation then represents a challenging area of current
research. In practice. there are always physical regularisation mechanisms avail-
able such as 'surface energy' in phase changes (or surface tension or viscosity in

153This statement assumes we exclude inverse problems in which we try to 'postdict' the past;
they will be mentioned again in Chapter 9.

154This is an example of the so-called Tikhonov regularisation of ill-posed problems.
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free surface flows), surface chemical reactions and several other sources of 'dissipa-
tion'. Indeed, these mechanisms are much more likely to exist near a free boundary,
where the continuum models we have constructed have solutions that change in-
finitely rapidly, than away from it. The mathematical consequence is that higher
derivatives can thereby be introduced into the free boundary conditions. These of-
ten have the advantage of increasing the likelihood of well-posedness, as in (7.109),
but the disadvantage of being difficult to analyse.

The idea of introducing higher derivatives into free boundary conditions is
not the only tool in the mathematician's regularising armoury. Indeed, we have
already seen one dramatic example where a simple reformulation of the Stefan
problem in terms of the enthalpy, as in (7.84), eliminated superheating. This was
achieved at the expense of introducing new free boundaries and a mushy region
into the solution. It is equally possible to smooth out the free boundary altogether,
say by replacing h(u) in (7.85) by the function in Fig. 7.10. For such a smooth
monotone h(u), it is possible to prove existence and uniqueness relatively easily,
but the bounds that are needed cannot easily be established uniformly in the limit
as c -+ 0. Such an approach leads on to a whole hierarchy of smoothed models in
which an auxiliary function f (x, t) is introduced to model the fraction of material
that has undergone a transition at the free boundary. Thus the Stefan problem is
written as

au of a2u

at + L at = 8x2,

together with a rate equation for the evolution of f which, in some suitable limit,
would give f to be zero or unity depending which side of the free boundary was
being considered. This brings us back full-circle to the ideas of reaction-diffusion
equations introduced in Chapter 6.

h(u) p(u + L)

pL

3u

WPu

Fig. 7.10 Smoothing the enthalpy.
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Finally, we remark that we could make an even more radical regularisation of
the superheated or supercooled one-phase Stefan problem by identifying it with an
oxygen consumption problem, as in (7.80). We have seen that this identification
can be made as long as the concentration c is allowed to change sign. However,
we could restrict c to be positive, thereby making the oxygen consumption model
well posed, but this might entail the generation of extra components of the free
boundary. Hence, if we allow the Stefan problem to admit new components in its
free boundary in precisely the same way, then we are performing a regularisation
by `nucleation'.

* 7.7 Postscript
We conclude this chapter with a brief introduction to a special class of free bound-
ary problems of wide practical applicability but whose mathematical character is
quite different from most of those discussed hitherto. These are problems in which
the free boundary has two dimensions fewer than the dimensionality of the govern-
ing partial differential equations. Hence they can be called codimension-two free
boundary problems, in contrast to the codimension-one problems of §7.1.

We have in fact already encountered such configurations in our discussion of
contact problems in elasticity. However, contact problems are special in that the
free boundary is constrained to lie in the prescribed surface in which contact occurs,
and it is quite possible for a one-dimensional free boundary to move more freely
in three-dimensional space. Such situations arise in modelling materials such as
superfluids and superconductors, but they are most readily visualised by looking
at the motion of vortices in water. We recall from §5.1.4.1 that the model for such
a vortex in two-dimensional inviscid flow involves finding a velocity potential i
which has a singularity of the form, say,

2

near a vortex at the origin of polar coordinates (r, 9). Put in terms of distributions,
the velocity v and stream function ' satisfy

v = curl (0, 0, 0) , curl v = (0, 0, -V2 ') = (0, 0, 6(x)), (7.110)

where x = (x, y), together with initial and boundary conditions away from the
origin. This model is adequate for a vortex whose position is given a priori, but,
if the vortex is free to move, then extra information is needed before we can
formulate a free boundary model for its dynamics. In two dimensions this comes
from Helmholtz' law which, crudely speaking, asserts that the vortex responds to
the regular part of VO, i.e. that a vortex whose position is x(t) moves such that

dt - xlimtly ( - 2 ) , (7.111)

when 0 is now measured relative to x(t). `Unfortunately, this law, which asserts
that the vortex moves with the `regular part' of the local fluid velocity, is difficult
to justify without a complicated asymptotic analysis.
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The situation is more interesting in three dimensions when (7.110) becomes

curl v = 8r (x - X(s, t)),

where x = X(s, t) describes the vortex curve r at time t, and the vector delta
function is defined in terms of scalar delta functions as

d(x - x') dx'.br(x) = Jr

Now, referring back to (4.77), we find that

xI
(7.112)v(x't)

4rr r
x

)Ix - x'1
d

3J (

and, to make further progress, we must study the behaviour of v as we approach
r.155 Unfortunately, (7.112) is singular as x -1' r and a tedious calculation is
necessary to show that, when we are a dimensionless distance d from r,

1 _ (logd)
v

N
2adea 47r

1 rcb + ,

where ee is a local azimuthal vector, k is the principal curvature of I' and b is the
binormal. Hence, if we follow (7.111) and assert that the velocity of r is governed
by the regular part of the locally induced flow, then the vortex velocity yr is
governed by the partial differential equation

yr
9x

(log do) nb (7.113)

when do is some `cut-off' that needs to be preassigned.156 What has happened is
that the intensity of the singularity at the vortex is so strong that it controls its
motion independently of any externally-imposed velocity field, in sharp contrast
to typical models for codimension-one problems. We note also that (7.113) is a
generalisation of the equation of curvature flow (6.88) and its only known exact
solution is a rotating helix given parametrically by

x= (acos(s-wt),asin(s-wt),b(s-Vt)), (7.114)

where a and b are constants and the constant rotation rate w and translation speed
V are related as shown in Exercise 7.21. When w = 0 and b -+ 0 with bV finite,
this solution represents a `smoke ring', and we will return to it in §9.2.3.

115 Had we adopted this approach for any of the codimension-one problems described earlier,
say by using the integral representation (7.68), we would have found well-defined limits as we
approached r from either side and hence the jump conditions with which we have become familiar.
156This device of introducing a cut-off can be thought of as a physical regularisation of the

singularity that would occur if do = 0.
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Exercises
7.1. Consider the Stefan problem

On 02u

8t = 8x2'

with

u=0 and

at z = s(t), and

x 0 8(t),

s(0) = 0, u(x,0)
no = constant, x < 0,

u, = constant, x > 0.

Show that there is a solution u(x, t) = U(i1), where n = x/f and s(t) = af,
as long as

\ 1

e-9'/4 d9 I -
1

+ ui (f.00 e-112 /4 d17 I = 0.
2

e°2/4 + uo (
a

foo
When uo = 0, use the result that ae°' /4 f, e-n'/4 di, is monotone and tends
to 2 as a - oo to show that there is a solution for a if ul > -1 but not if
u, <-1.
Remark. The Stefan condition as written here, with a latent heat of 1, forces
the liquid to lie in x > s(t) and the solid in x < s(t). The liquid is supercooled
and solidifies (a > 0) if uo = 0 and -1 < ul < 0. Likewise, the solid is
superheated and melts if ul = 0 and 0 < uo < 1. The non-existence of
solutions for ul < -1 or uo > 1 is discussed in §7.5.1.

7.2. Suppose, in a Muskat problem, V2pU, = 0 on one side of an interface and
V2po = 0 on the other side (see §7.1.1). Also suppose that gravity is negligible
and that the free boundary conditions are e-'8p,,/8n = Op./On = -vn,
where 0 < e QC 1. Write p,,; = ep,.,o + , po = poo + and equate
coefficients of e to show that poo satisfies the Hele-Shaw problem

O2poo = 0 with Poo = 0,
8

=
On

-vn

at the free boundary. What problem does p,,,o satisfy?
7.3. Consider the one-dimensional obstacle problem with a smooth concave ob-

stacle f (x), where f is even, f (0) = 0 and d2 f /dx2 < 0. Consider the linear
complementarity formulation of p. 331,

d2u d2u
dx2

50, u - f 3 0, (u-f)2 =0,
with u(-1) = u(1) = 0. Suppose that the contact region is -x' < x < x'.
Assume that, as can be justified using the theory of distributions, we can
write
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I
Z.+ dzu du
. _ dx2

dx =
dx

df
dx

Show that, if the right-hand side of this equation is positive, then we do not
have dzu/dxz < 0. Show also that, if the right-hand side is negative, then
we cannot have u - f > 0. Deduce that du/dx is continuous at x = x'.

* 7.4. Consider an American put option as in §7.1.2, with optimal exercise value
S*(t),and V(S,t)=E-Sfor 0<S<S'(t).
(i) Suppose that at time t the option is alive and S falls to S* (t). Show that,

if lim 515. V (S, t) = E - S* (t) + A, where A > 0, then after the next time
step dt the option should be exercised with probability 1/2 + O(dt) for
a profit of A + O( dt), while with probability 1/2 + O(dt) its value will
change by only O( dt). Deduce that arbitrage forces V to be continuous
atS=S*.

(ii) Now suppose that S = S' as in part (i) and that OV/8S (S", t) <
-1. Show that the option value falls below the payoff for values of S
just above S' and explain why this is impossible. Finally, suppose that
8V/8S (S', t) > -1, and show by a sketch of V as a function of S that
the option value would be greater if S' were smaller, and that taking
S' smaller would decrease the value of 8V/8S (S', t). Deduce that the
option has its maximum value to the holder if S' (t) is chosen to make
8V/8S continuous there.

7.5. The linear complementarity form of the American put option problem of
p. 334 is

G4' = + 2a222 8S2 + rS 85 - rV < 0, V - max(E - S, 0) > 0,

(,CV) (V - max(E - S, 0)) = 0,

together with V(S, T) = max(E - S, 0). Adapt the argument of Exercise 7.3
to show that 8V/8S is continuous at the optimal exercise boundary S =
S" (t).

* 7.6. Slow viscous flow in two dimensions is modelled by

pV2u = Vp, V u = 0,

where p = constant, u = (u, v) and the force per unit area on a surface with
normal n is

(-p + 2p 8u/8x p (8u/8y + 8v/8x) nl
p (8u/8y + 8v/8x) -p + 2p Ov/8y (n2)

Show that
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(i) there is a tJ such that

a1U aV,
U

8y
, v=-ax,

and that
04'1(1 = 0;

(ii) there is an .4 such that

z
-p+2µ0a =-2µaa

, -p+2µ' =-2paa-z,
tax

Y2
ay ax

(&U
FY

02A
(8y + ax) 2µ

ax ay'

and that
V4A=0.

In a steady slow flow with a stress-free free boundary r, show that 1/J =
constant and alas(VA) = 0 on r, where a/Os denotes the derivative along
r. Show that this implies A = constant and OA/01n = 0 on r. In what
geometries can .4 be set equal to zero on r without loss of generality?

* 7.7. Suppose there is a constant surface tension in the slow flow of Exercise 7.6 so
that the force per unit area on the free surface is -T1cn, where T = constant
and K is the curvature. Show that, without loss of generality,

A = constant,
OA = T
an 2µ'

7.8. Suppose a smooth rigid indenter y = f (x) displaces a smooth elastic half-
space by a small amount over the region lxi < c. Denote the force per unit
area on the boundary of the half-space by

Cr2

a.) (1)

Formulate boundary conditions for the displacement (u, v) and forces on
y=0as

ay = r = 0, v < f(x) for jxj > c,

T=O. v = f(x), oy < 0 for lxi < c.

Write these conditions in linear complementarity form.

7.9. Suppose that
aU _ 0211 for0<x<s(t),
at axe

with
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u=0, 8 =-s atx=8(t),

5x(O,t) = 0 and u(x,0) = uo(x) < 0 with 8(0) = 80.

Show that
a(e)

dt 282 + f xu(x, t) dxl = u(o, t) , 0,
o

and hence that, if

2so + fo xuo(x) dx < 0,

hen neither can there be a steady state in which u = 0 and s > 0, nor cant
8 vanish.

Remark. This method of proving blow-up can be extended to functions

a (1(8) + f'
f'(x)u(x, t) dx)

0

as long as f has suitable properties.

* 7.10. Show that

lim
00

a (x-t)'/4tdt =
oo

e -t/4 df s f
and that

d
f'e-(.-t)'14t _ - 2 f.(x - tdt for x > 0.

However, show also that this last derivative at x = 0 is not equal to

1 f°° e t/4 dt
2 o ft

Remark. It can be shown that

d

J
/ t e_(x_t)2/4t dt 1 t ef ( 0=f rf (0),_t/4 dl t -

7tL 2
0

7tZOO

00

which explains the factor 1/2 on the left-hand side of (7.68).

7.11. A circular membrane has zero transverse displacement on the circle x2 +
y2 = 1, z = 0, but it is constrained to lie above the smooth obstacle z =
e(1 - 2(x2 + y2)), where e is small and positive. Show that the radius R of
the contact region satisfies 2R2(1- 2 log R) =1.
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7.12. The conditions ahead of (0) and behind (1) a gasdynamic shock moving with
speed V. are related by (2.49), namely

[p(Vs - uAo = (p + P(Vs - u)2)

P(V, - u) ( 7P + 1(V, - u)2
L \(1'-1)P 2 )10

= 0.

Deduce that, if a piston moves with speed Vp into a tube of stationary gas
in which p = po and p = po, then the free boundary (shock) has speed V
where

V2-7 +2 1 VPV,-ao=0, ao=.220

* 7.13. Show that the Rankine-Hugoniot conditions of Exercise 7.12 imply

(ui - uo)2 = (Pi - Po) (I- 1 and
Po = (7 + 1)Po + (_- 1)P1

Po P1 Pi (7 - 1)Po + (7 + 1)P1

Deduce that, if a shock wave with pressure pi behind it propagating into
stationary gas in which p = po and p = po reflects from a plane wall to
which it is parallel, then the pressure behind the reflected shock is p2, where

p2 = ((3-1 - 1) - (7 - 1)J Of -1)L- + Of + 1)A PO PO

* 7.14. A two-dimensional jet of inviscid irrotational fluid, of thickness 2h00 and
moving to the right with speed 1, enters a semi-infinite rectangular cavity
with walls at y = ±1, as shown in Fig. 7.11; the y axis is tangent to the free
surface.
Ignoring gravity and surface tension, show that the boundary value problem
for the complex potential w(z) = 0+i ti for the upper half of the flow is that
w(z) is analytic in the fluid region, with

Fig. 7.11 A jet entering a box.
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A'

A
B C D

E'

Fig. 7.12 Potential and hodograph planes for the flow of Exercise 7.14.

0 = 0 on ABCDE,

t[i=ham, IV012=1 onE'A'.

Taking the reference point for 0 so that w = 0 at C, show that the potential
and hodograph (u - iv = dw/dz) planes are as in Fig. 7.12. When these two
planes are mapped onto each other (do not attempt this unless you are feeling
very strong), to give dw/dz = F(w) for some holomorphic F, the solution
of this differential equation contains one arbitrary constant. Noting that the
positions of both A (or, by symmetry, E) and B are specified, deduce that
there is a relation between ho, and L.
Now consider the case L = oo, with stagnant fluid far inside the cavity. Show
that B, C and D coincide at the origin in the hodograph plane, and that
the flow domain is the whole interior of the semicircle shown. Show that

dw _ 1 - eaw/2h irw

dz 1+ eaw/2h - -tank-.4h
Find w satisfying w = ih at z = i/2, the tip of the air finger shown in
Fig. 7.11. Show that the free surface for this flow, w = O+ih,,, -oo < 0 < oo,
satisfies

eR:/2h cos
x(y -

a) = 1.2h
Finally, show that the condition y -+ ±ho, as x - -oo is only consistent with
this equation if h = 4, so that the finger occupies half of the cavity, and
that the free surface is the same shape as the Grim Reaper of Exercise 6.33
and the Saffman-Taylor finger of Exercise 7.19.
Remark. It can be shown that hoo is an increasing function of L. As L -- 0,
the flow consists of a thin jet along AB which turns through a right angle
at B (this flow can easily be analysed in its own right), runs up BCD, turns
through another right angle at D and finally runs along DE.

s 7.15. Inviscid fluid flows in the x direction with unit speed past a plate x = 0, Jyi <
1. There is a wake, bounded by the separation streamlines y = ±1(x), x > 0,
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in which the pressure is constant. Show that the free boundary problem for
the separation streamline y = f (x), x > 0, is

V2q5=0 fory>0, 0-x at infinity,

with

and

00
y-(x,0) = 0 for x < 0

80
On

0, JV =1 ony= f(x),x>0.
Show that the flow region in the plane of w = O+iip can be taken to be Vi > 0,
with i = 0, ¢ < 0 being the upstream dividing streamline, 0 = 0, 0 < 0 < Oo
the plate and zG = 0, ¢o < 0 the free boundary. Show also that, in the plane
of W = log (dw/dz), these three curves are 3 W = 0, 0 > R W > -oo;
!` W = -ir/2, -oo < R W < 0; R W = 0, -ir/2 < a W < 0, respectively.
The Schwarz-Christoffel result can be used to show that the flow region in
the W plane can be related to that in the w plane (namely !3w > 0) uniquely
by the formula

w = ¢o cosech2 W, where Oo = 0(0,1).

Show that this leads to the holomorphic differential equation

dw _ 1---
dz

o w
'

Integrate this equation along the plate to obtain an equation for 00, and then
integrate along the free boundary to show that it is given parametrically by

z = i I o-w-./
Remark. The Schwarz-Christawful formula says that, if a; are the interior
angles of a dosed polygon, then the map

z - zo = ref (S), rc, zo complex constants,

where
df = n a
d( real constants,

takes the real axis in the ( plane into a polygon with these interior angles,
with t;; mapping into the vertices of the polygon and the upper half of the S
plane mapping into the interior of the polygon. For fixed (;, different choices
of zo, argit and jrcl correspond to translation of the polygon, rotation of the
polygon, and expansion or contraction of the polygon with the ratio of its
sides fixed, respectively. Hence, given a target polygon with vertices z;, the
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images of any three points (3, (2 and (3 can be chosen to be z1, z2 and z3,
respectively; however, the shape of the polygon is then uniquely determined
by (4, (3.... and the Riemann mapping theorem shows that z4, Z5.... do
indeed define (4, (5, etc. uniquely.

* 7.16. At time t = 0, a two-dimensional body y = f (x) - V t (where f (O) = 0,
d2 f /dx2 > 0 and f is even in x) impacts a half-space of inviscid liquid y < 0
from above. The free boundary problem for the velocity potential 0 is, in
the absence of gravity,

°20 = 0 in the liquid, with 0 -+ 0 as y -+ -oo,

with
8¢ 8q ey84 1 2 8¢8y-8t+8x

8x' ° +8t=o
on the free boundary y = q(x, t), and

00 V+df04
8y dx 8x

on the wetted surface of the body.
Show that V can be taken equal to unity without loss of generality and that,
when the body is a wedge, with f = alxI, the problem is then invariant
under the transformations x' = eAx, y' = eay, t' = eat, q' = ear?, 4' = eao.
Deduce the existence of a similarity solution 0 = tO(X, Y), q(x, t) = tH(X),
x/t = X, y/t = Y, where

8X2 + 8Y2 =
0 in the liquid,

with

- tX 8X +YBY) + 2

1

t(8X )2 +

(87y)2)
= 0'

dH 01 dH
BY =H - dX +BXd[

onY=H(X),and

8Y = -1 + a on on the wetted part of Y = aX - 1,

8.0
=

8Y
0 onX=0,Y<-1.

820 824

* 7.17. Suppose that the impacting body in Exercise 7.16 is y = e (f (x) - t), where
0< e<< 1 and t is not too large. Show that, if = e + , q = eqo +
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and terms quadratic in e are neglected, then the boundary conditions can
all be imposed on y = 0 in the form

8¢0 - !°
=

8 °
°,

for jxj > d(t),at - 8t ay
and

000 = -1 for lxi < d(t),
8y

for some function d(t). Taking 00 = 0 on y = 0, {xi > d(t), use the methods
of §5.9 to show that

00 z+ z2-d2)

is the solution with the least singular behaviour at the `codimension-two'
free boundary lxi = ±d(t). Deduce that the pressure, which from Bernoulli's
equation is approximately -84o/et, is infinite at these points.
Remark. The evolution of d(t) can be predicted in terms of f (x) if it is
assumed that go(d(t) + 0, t) = f (d(t)) - t.

* 7.18. Suppose that p satisfies a Hele-Shaw free boundary problem in which V2p =
0, with p = 0 and Op/On = -v,, at the free boundary, denoted by t = w(x, y).
Show that

/ ru(x, y, t) =
J

p(x, y, r) drf
W

satisfies the obstacle problem

V2u = 1

Show also that

with U= n =0 on t = w.

0 )9(z, t) = \8x - i (u 4(x2 + y2))

is analytic, and that z = g(z, t) on the free boundary.
Remark 1. An analytic curve f (x, y) = 0 can be written as = g(z), where
f ((z + g(z)) /2, (z - g(z))/2i) = 0. The function g is called the Schwarz
function of the curve and you may like to show that it satisfies g(g(z)) =
z, which is the consistency condition necessary when we replace one real
equation (f (x, y) = 0) by the complex equation # = g(z). Its determination
involves the solution of a Cauchy problem for its real or imaginary parts,
and so it is very likely to have singularities close to the curve.
Remark 2. For the Hele-Shaw problem above, the singularities of 9 within
the fluid are independent of t unless they coincide with those of p, because
8u/8t = p.

* 7.19. Consider Hele-Shaw flow in a parallel-sided channel -x < y < ir, -oo <
x < oo, in which the fluid is removed at a constant rate from x = +oc
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so that its velocity there is (V, 0). Show that, if z = f (S, t) maps the fluid
region onto I(I < 1 and the sink at x = +oo is mapped onto S = 0, then
f ((, t) = - log( +O(1) as S -+ 0, and that Q in (7.106) is replaced by -2rV.
Use (7.106) to show that the map

z=f(C,t) t -log( +2(1-A)log\1 2S)

gives a travelling wave solution, moving with speed U = V/A, for any value
of A between 0 and 1. Set t; = ei9 to show that the interface has the equation
e(:-Ut)/2(1-a) = cosy/2A) and hence show that as z -+ -oo the interface is
asymptotic to the lines y = fAir.
Remark. There is an exact unsteady solution in which a small, nearly sinu-
soidal perturbation to a planar interface evolves into this Safman--Taylor
finger as t -+ oo. The value of A is not specified by the simple model we
have used, and the question of its determination is an example of `pattern
selection'. Note that the value A = 1/2, which is often seen in experiments,
gives the Grim Reaper solution of curvature flow (see Exercise 6.33).

7.20. When gravity is important in a Muskat problem, the free boundary condi-
tions are

Pw = Po, -KwFn (Pw + Pw9y) _ K. (Po + Pogy) = VII,

where pw and po are the pressures on either side of the boundary, Kw,o =
kw,o/µw,o and y is vertical. Show that a travelling wave solution exists in
which the free boundary is y = V t and

( l
P. = -

V
+ Pw9) (y - V0, P. = - (v + Pog) (y - V0.Kw \ Ko /

Show that, if the free boundary is perturbed to y = V t + ee°t sin kx, k > 0,
and f is small, then

O - 9KwKo(Po - Pw) + (Kw - Ko)V
k K. + K.

and deduce that, even if a heavy and more viscous fluid overlies a light one,
the flow is stable if V is sufficiently large and negative.

7.21. Show that the principal normal n and binormal b of (7.114) are

n = (- cos(s - wt), - sin(a - wt), 0),

b
a2 + b2 (bsin(s - wt), -bcos(a - wt), a),

and that the curvature is a/(a2 + b2). Deduce that the velocity of a point
on (7.114) satisfies (7.113) as long as

V+ 1 log do

4w a2 +
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Non-quasilinear equations

8.1 Introduction
Several practical situations give rise to partial differential equations that are not
quasilinear. For example, suppose u(x, y) is the elevation of a pile of dry sand
that is heaped on a table in limiting equilibrium, so that if any more sand was
poured from above it would slide off. Then the angle between the normal to the
surface u = u(x, y) and the vertical (0, 0,1) is a prescribed constant -y, the angle
of friction, so that

1+ I//

\ 2
+

(,U),) s1 -1/2llI8 J = cost.

With a slight change of variables, this can be transformed into the famous eikonal
equation ()2

+ \/a 1. (8.1)

There is another application of (8.1) that has implications far beyond those for
sand piles. This concerns approximate solutions of Helmholtz' equation describing
wave propagation in the frequency domain. We recall that the equation was derived
from the wave equation 820/8r2 = aSV24 by writing

0 = (e"'+'(x, y)) , (8.2)

where we have replaced t in the wave equation by r to avoid later confusion in
notation. In dimensionless variables this gives Helmholtz' equation

(V2 + k2)lp = 0, (8.3)

as in (5.27), where k = wL/ao and L is a characteristic length scale over which
the waves propagate. Now, for the propagation of light, w/aa 107 m'1 typically,
and so, on an everyday length scale for which L - 1 m, k is large. In this case,
the asymptotic approximation of Helmholtz' equation is called the theory of geo-
metric optics. It relies on the WKB asymptotic procedure for ordinary differential
equations, which suggests that we write

tPA(x, y; k)e"k"(=,v) as k i oo, (8.4)

359
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so that

Vii - (ikAVu + VA)eik",

V2ii _ (-k2AIVU12 + 2ikVA Vu + ikAV2u + V2A)eik",

and equating terms of 0(k2) leads at once to (8.1) for u.157
Equation (8.1) also has its origins in the less well known, but no less interesting,

problem of heat conduction over short time intervals. We have seen in (6.35) that,
in an infinite two-dimensional medium, the response to a heat source at x = y =
t = 0 is the Green's function (1/47rt)e-(=3+12)/°t. Thus, when there are boundaries
in the problem, we are motivated to try the WKB ansatz

T , _ e v(Z.y)/t

in the heat conduction equation aT/8t = V2T to give, to lowest order as t -+ 0,

Cex)2+C8y)2 v.

Thus u = 2v'V satisfies (8.1).
In the light of the models above, we expect the solutions of (8.1) to have inter-

esting properties, since they should predict geometrical shapes ranging from the
topography of heaps of granular materials to the patterns of light rays. Certainly,
non-quasilinear ordinary differential equations often have properties that are much
more interesting than quasilinear ones, as demonstrated in (32).

In one sense, however, there is no need to devote a chapter to this topic because,
as explained in Chapter 2, any partial differential equation can always be written
as a quasilinear system. However, this can often only be done at the expense of
cross-differentiation, which leads to loss of information and a greatly expanded
system; also, from the practical point of view, it is much easier to interpret mathe-
matical predictions in terms of the basic physical variables rather than complicated
derivatives thereof.

8.2 Scalar first-order equations
8.2.1 Two independent variables
We recall from §1.3 that the quasilinear first-order equation

a
su

+
bau8x8 = c
i!

could be approached by exploiting either its geometrical interpretation or the ease
with which all the derivatives of u can be computed in terms of known Cauchy

'"Those familiar with the 'stationary phase' approximation to Fourier integrals will be able
to show that, when a Fourier transform solution of (8.3) is available, its high-frequency limit is
often dominated by the contribution from a saddle point whose location is found by a procedure
precisely equivalent to the solution of (8.1) by Charpit's method, as described in the next section.
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data. Neither of these options is immediately open when we study equations of
the form

F(x, y, u, p, q) = 0, (8.6)

where p = au/ax and q = au/ay. Moreover, our earlier theory suggests that there
is little chance of reducing (8.6) to a system of ordinary differential equations as
we could in the quasilinear case. We say this because cross-differentiation leads to
the system

OF Op OF aq
aax + aa

OF OF
a-Pa (8.7)

OF Op OF aq OF OF-=-- -q+
(8 8)

8uaPay ga 8y
au
ax =P, (8.9)

ey =q, (8.10)

Op Oq =0- (8.11)
axFY

for the vector w = (u, p, q)'. Hence, when we choose three suitably independent
equations from this set, as will be done below, we expect to be in the situation
described in §1.3; only very rarely would a system of partial differential equations
with three scalar dependent variables be integrable along characteristics. However,
(8.7)-(8.11) is a very special system, as we will see shortly.

From the geometrical point of view, (8.6) is much more complicated than (8.5).
It says that the normal to the solution surface at each point must lie in a cone
(called the normal cone, despite possible confusion with §2.6) since, when we
`freeze' x, y and u, (8.6) is a relation just between the direction cosines of the
normal to the solution surface u = u(x, y). Only in the quasilinear case does the
normal cone degenerate into a plane.

Let us now address the Cauchy problem of determining w from a knowledge
of its values on an arbitrary curve in the (x, y) plane. Using t to parametrise the
characteristics, we soon find that the partial derivatives of w must also satisfy the
relations

(8.12)

(8.13)

(8.14)

where, as usual, ' = d/dt. We can discard (8.9), (8.10) and (8.12) for the time
being because, together with (8.6), they are consistent equations for au/ax and
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Ou/Oy. Furthermore, by eliminating Op/Ox and Oq/Oy, the remaining equations
can be written as

OF Op OF Oq -- x --y
y

t OF OF1 OF
,q

-
(8.15)Ogex

iWaj
OF Op OF Oq = -i-y + x

aq5u`Oy
(OF OF) OF-n+ P

16)(88g 8xap 8y ap ,8x au .

Op Oq =o (8.17)
Oy Ox

The characteristics are, as usual, defined as the curves on which the normal deriva-
tive of w is not determined uniquely by (8.6) and its value on the curve; hence,

on a characteristic,

OF OF
0.

. OF -xaq = (8.18)

Moreover, consistency in (8.15)--(8.17) requires that the right-hand sides of (8.15)
and (8.16) be equal and opposite and hence zero, by (8.18).

Lastly, we have freedom to choose our parameter t, and easily the most conve-
nient choice is to make

so that
_ OF

y
Oq

The consistency conditions now reduce to

OF OF OF OFP=-8x -Pau, q=-ay -qau,

and finally we return to (8.12) to see that

OF OFu=pap +qaq.

Gathering these equations together, we have

OF OF OF OFx= 8P, y= a, u=Pa+qa,q pq
OF OF OF OFP=-8z -Pau, qay -qau,

(8.19)

and these are called Charpit's equations. Given appropriate initial data at t = 0,
they have a unique solution, at least for small t, but, whereas this initial data was
readily available in the quasilinear case, it now demands knowledge of p and q as
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well as u at the initial curve t = 0. To be precise, given Cauchy data x = xo(s),
y = yo(s) and u = uo(s), we need to be able to solve the two equations

F(xo, yo, uo, po, qo) = 0 and uo = poxo + g0yo

simultaneously for po and qo, where' = d/ds, and the non-vanishing of y'OF/Op-
.c' OF/Oq is the condition for local solvability, as already revealed in (8.18). Then,
if we write the corresponding solution of (8.19) as

x = x(s, t), y = y(s, t), u = u(s, t), p = p(s, t), q = q(s, t)

and if IO(x, y)/O(s, t) I is neither zero nor infinite, we assert that

the result of eliminating s and t gives the solution u = u(x, y) of the partial
differential equation F(x, y, u, p, q) = 0.

If this statement is true, it is a spectacular result because we have reduced the
task of solving an arbitrary scalar first-order partial differential equation with
two independent variables to that of solving five autonomous ordinary differential
equations, something which, as mentioned above, we have no right to expect. We
must clearly scrutinise the statement much more closely but, before we do that,
we issue two warnings.

Firstly, the determination of po and qo is almost certainly non-unique unless
the original equation (8.6) is quasilinear. Hence, as with non-quasilinear ordinary
differential equations, extra information is usually needed before we can begin our
integration of Charpit's equations.

Secondly, since the ordinary differential equations (8.19) are nonlinear, it is
quite likely that their solution blows up at some finite time or, even if it exists
globally, it may possibly behave chaotically. The same was true for the quasilinear
case but now, when we consider the global structure of the solution, we may expect
singularities other than 'shocks' to be capable of developing.

Let us now return to our assertion above. Its justification requires not only that
we verify that u explicitly satisfies (8.6), but also that w is such that p = Ou/8x and
q = Ou/Oy. since these relations are not guaranteed by the assertion (remember
that p and q were originally introduced by these relations, but from (8.7) onwards
we have been thinking of w as a vector with three independent components). The
verification that w satisfies (8.6) is immediate since

OF _ OF. OF. OF OF OF.
Ot

Oxr+ Oyy+ Ouu+ Opp+ Oqq=

on using (8.12)-(8.14); at t = 0, F = 0, so that F = 0 for all t and s, and hence
for all x and y.

To show that p = Ou/Ox and q = Ou/Oy, it is sufficient to show that ft = p1+6
and u' = px' + qy'. The former condition is immediate from (8.12)-(8.14); for the
latter, we consider the function O(s, t) = u' - px' - qy'. Then, differentiating 0 and
using the partial derivative of u. = pi + qy with respect to s, we have
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=p'i+q'y_px'-Q,y'

= BFx, + BFy, + OF, + OF, + OF
(x + 4U,)8x 8y 8p 8q u

_ OF OF
8s - 4 8u '

where OF/8s is calculated keeping t constant. But F e 0, so that 8F/8s = 0; also
¢ = 0 at t = 0. Hence -0 = 0 for all t (no matter what the function 8F/8u is) and
u' = px' + qy', so that p and q are indeed the derivatives of u.

We can now generalise our definition of characteristics by saying that Charpit's
equations (8.19) define characteristics in the five-dimensional space (x, y, u, p, q),
or, equivalently, a characteristic strip in the three-dimensional (x, y, u) space. That
is, at each point (x, y) a surface element is defined, and the solution surface is
formed by 'glueing together' the characteristic strips. This solution only exists
where the Jacobian I8(x, y)/8(s, t)I # 0, that is when

x'
8OF OF

q # y' -5p7, (8.20)

and, as already mentioned, this condition must be satisfied by the Cauchy data.
(A simpler derivation of (8.14)-(8.20) for the case 8F/8u = 1 is given in (5) and
Exercise 8.5.)

A geometrical derivation of Charpit's equations follows from the observation
that the dual cone of the normal cone, that is the cone which is the envelope of the
planes normal to each generator of the normal cone, touches the solution surface
at each point. The solution surface is therefore the envelope of all these dual cones
(which are also called Monge cones). For the quasilinear case the normal cone is a
plane since ap+ bq = c, and its dual degenerates into a line in the direction (a, b, c)
which must be tangent to the solution surface. In the fully nonlinear case we may
construct this Monge cone by finding the envelope of the planes (x - x' )p + (y -
y')q = u - u' through the point (x', y', u') and subject to F(x*, y', u', p, q) = 0.
As in §2.6, the envelope is given by

x-x'=Aa ' y-y*=Ar'
where p, q and A must be eliminated between these four relations. Eliminating A,
we obtain x-x' _ y-y' _ u-u'

8F/8p 8F/8q p 8F/8p + q OF/8q'

and thus a small vector (bx, by, du) lying in a characteristic strip satisfies

8x _ by
8

du = bt
8F/8p F/8q

_
p 8F/8p + q 8F/8q

say, for (x, y, u) near (x', y', u'). We cannot eliminate p and q, but we can obtain
expressions for by and bq given by
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- 8x - p
OF)

(
by =

Ox
bx +-y8 by = bt

OF
8u J

bq =
8q6x

+
8qby

= 6t (_
OF OF )a-8y5 -95 ,

using (8.7)-(8.11). Finally, letting bt -+ 0, Charpit's equations (8.19) are recovered.
This discussion clearly reveals the existence of the so-called integral conoids

formed by all the characteristics passing through a given point in (x, y, u) space.
The integral conoid is the global extension of the Monge cone at that point and
the solutions of the Cauchy problem for (8.6) can also be thought of geometrically
as the envelope of all the integral conoids through the initial curve. As indicated
in Fig. 8.1, this construction reveals the non-uniqueness we mentioned earlier in
this section, and the situation could be far more complicated than that for the
single-sheeted conoids that we have sketched.

A final general remark concerns those situations in which we may be unable
to solve Charpit's equations yet we may be lucky enough to be able to guess a
two-parameter family of solutions of (8.6) in the form u = f (x, y; a,#). Then it is
easily verified that the eliminant of a between

u = f(x,y;a,f(a)) and
8a + do Lf

0
a 0,6

is also a solution for any function 9(a). Thus, if a solution to (8.6) with two ar-
bitrary constants can be found, then many more solutions can be generated by
different choices of $(a). Indeed, as mentioned in §1.9, we expect the general solu-
tion of any first-order partial differential equation with two independent variables
to contain at least one arbitrary function of one variable in this way. In the quasi-
linear case considered in §1.5, the general solution was obtained by setting one
constant of integration of the characteristic ordinary differential equation to be an

(a)

Cauchy data prescribed on initial curve

(b)

Fig. 8.1 Solution of the Cauchy problem: (a) the quasilinear case; (b) the non-quasilinear
case.
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arbitrary function of the other. In general, however, Charpit's equations demand
that a more elaborate procedure be followed.

8.2.2 More independent variables
While the arguments above could never be extended to either scalar higher-order
equations or vector equations, the generalisation to m independent variables is
quite painless. Changing notation to

F(x;, u, p;) = 0, where p; = 8a for i = 1, ... IM, (8.21)

Charpit's equations are simply

OF
x; _ (8.22)

ap;
OF OF

Pi = - ax; - p' au ' (8.23)

OFu=Ep;-. (8.24)
1 aPi

Anyone familiar with classical mechanics can now make an observation: if F is
independent of u, then (8.22) and (8.23) are simply Hamilton's equations for a
mechanical system in which x; are generalised coordinates, p; are generalised mo-
menta and F is the Hamiltonian. Since it is easy to generalise our assertion that
Charpit's equations give the solution of the partial differential equation to this
case, we have thus derived the remarkable result that any problem in classical
mechanics with a finite number of degrees of freedom is equivalent to a scalar
first-order partial differential equation in which OF/au = 0. We will explore the
implications of this further in §8.3.

We remark that, even though the Cauchy problem involves data specified on
an (m -1)-dimensional surface, the solution of (8.21) is still expressed in terms of
ordinary differential equations which hold along the one-dimensional curves that
we have called characteristics. This situation is a generalisation of that in §1.8
and hence, when m > 2, it is reasonable to call these one-dimensional curves
bicharacteristics, reserving the adjective characteristic for surfaces of dimension
m-1.

The preceding theory paves the way for many exciting investigations into a
great variety of problems in science and industry, and we now describe some of
these, beginning, as always, with the simplest configurations.

8.2.3 The eikonal equation
Charpit's equations are greatly simplified when F does not depend explicitly on
x, y and u. In this case, p = 4 = 0 on a characteristic, so that p = po(s), q = qo(s)
and the characteristic projections in the (x, y) plane, often called rays, are straight
lines with slope (OF/Oq)0 / (OF/Op)o (as usual, the suffix zero denotes values on
the initial curve). On these rays,
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COF) rOF) r 8F 8F)x=xo+t
ap

y=yo+t aq J u=uo+tlpap
+g57 ,

(8.25)

0 0

and the solution may be obtained by first eliminating t and then s. The solution
surface is a special case of a ruled surface since, at each point, there is a straight
line lying in the surface; such surfaces will be discussed again in the final section
of this chapter.

8.2.3.1 Sand piles

When (8.1) is used to model a sand pile on a horizontal base, the boundary condi-
tions are u = 0 on x = xo (s), y = yo (s). 158 Thus pox'+qoy'=Oand po+qo =1,
so that

fyo
Po -

((x0I )2 +
(yp)2)1'2

where the sign must be chosen so that the sand pile lies in u > 0. The ray equations
(8.25) reduce to

x = 2tpo + xo, y = 2tgo + yo, u = 2t,

and, assuming the base has a smooth boundary, the solution can be obtained
locally by eliminating s between x - xo = upo and y - yo = uqo. This may not be
at all simple to do explicitly and we consider two special cases.

For a circular base, we have

xp = COS s, yo = Sin s,

and we find

and

po = - cos s, qo = - sins

u = 1 - (x2 +Y2)1/2.

Thus the sand pile is a cone of circular cross-section and apex u = 1, x = y = 0;
it is in fact the integral conoid at this point, as shown in Fig. 8.2.

Fig. 8.2 Sand pile on a circular base.

158With these boundary conditions, the solution is is also the minimum distance from (x,y) to
the curve x = xo(s), y = yo(s); see Exercise 8.2.
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The solution breaks down at the apex, as may be confirmed by evaluating the
Jacobian I8(x, y)/8(s, t)J in the form

2py' - 2qx' = 2(2t(q po - goA) + yopo - xogo) = 2(2t - 1).

This vanishes when t = 1/2, u = 1 and x = y = 0, thus limiting the domain of
definition to t < 1/2, the interior of the circle minus the centre.

For an elliptical base, we write xo = a cos s and yo = b sins, with a > b, and
po = - cos 0 and qo = - sin 0, where b tan 8 = a tan s. To avoid the algebraic
complexity of a direct elimination of a and 0, we just consider the ray pattern. A
typical ray has equation

y - b sin s = tan 8(x - a cos s), a > b > 0, (8.26)

and intersects y = 0 and, by symmetry, at least one other ray, where x =
((a2 - b2)/a) cos s. Thus the solution breaks down on y = 0, JzJ < (a2 - b2)/a,
and the surface has a 'ridge line'. The height of this ridge line is tedious to find,
but at x = 0, where s = 7r/2 and 0 = 31r/2, u = b; at x = (a2 - b2)/a, s = 0 and
8=zr,sothat u=b2/a.

The discussion above has an intuitive component because of our bald assertion
that a ridge line exists. This clearly accords with everyday experience with, say, a
spoon heaped with fine dry sugar, but in the next example we will see that there
are other mathematical solutions of (8.1) which do not 'stop' at the ridge. In fact,
the ridges are reminiscent of the shocks we encountered in the quasilinear theory
of Chapters 1 and 2, and we will have more to say about their mathematical status
shortly.

8.2.3.2 Geometric optics

Since geometric optics is described by the same equation as that for sand piles, it
might be thought that there is nothing more to say about it. However, the physical
interpretation of the dependent variable is so different that a separate theoretical
development is necessary.

The characteristic projections of (8.1) in the (x, y) plane, which are of course
straight lines, are called light rays in the geometric optics applications. They are
parallel to Vu and hence are normal to the level sets of u which are the contour
lines in the sand pile example. However, if we return to the time domain, as in (8.2),
it is natural to define a wave front as a level curve of the phase of 0.189 Hence,
remembering the definition of u in (8.4), if u = uo defines a wave-front at r = ro,
and (xo, yo) is a point on it, then, at a later time Ti, the wave-front is given by
u = ul = u0 + rl - -r0; it is the projection in the (x, y) plane of the envelope of the
integral conoids (Monge cones in this case) evaluated at u = ul, namely

(x - x0)2 + (y - yo)2 = (ul - 'uo)2 = (rl - 7o)2, (8.27)

where xo and yo vary over the wave-front at r = ro. As in Fig. 8.3, (8.27) represents
a family of circles of prescribed radius and this is called Huygens' construction. If

""This is in accord with the nomenclature in §4.6.
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wave-fronts at r = rl

Fig. 8.3 Huygens' construction.

the wave speed is not constant, say if the medium has variable refractive index,
then k is a function of position, the rays are curved and Huygens' construction
only holds for small time intervals.

Two serious difficulties must be addressed before we can begin to use geometric
optics to represent solutions of practical interest in wave propagation. The first
concerns a phenomenon that we have already encountered in our study of sand
piles, namely the intersection of characteristics. In optics, the interpretation of
characteristic intersection differs fundamentally from that in Chapter 1 and at the
end of the previous example. In both these latter situations, the dependent vari-
able was required to be single-valued, and hence the intersection of characteristics
motivated the introduction of a shock or ridge, respectively. However, for wave
applications there is no restriction that the phase u should be single-valued nor
even that it should be real (which leads to another topic to be mentioned later).
Indeed, since there is no reason why many waves should not exist at any point,
we can happily continue our characteristics through any intersection point, and
in general they form an envelope'60 called a caustic. A famous example is the
solution of Charpit's equations for IVul2 = 1, with data

uo = s on x0 = cos s + sins, yo = sin s - cos s, (8.28)

a circle of radius f. We soon find that

p = p0 = - sins or p0 = cons,

q=qo=toss or qo=sins,

and, redefining the parameter t so that dx/dt = p, etc.,

16°In special cases, of course, the rays may 'focus' at a point, but such a geometry is not stable
to small perturbations. Stable envelopes can be classified using catastrophe theory [1].
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Fig. 8.4 Circular caustic in a circle.

x = cos a - (t -1) sin 8 or x =sins + (t + 1) cos s,

y =sins + (t - 1) cos s or y= - cos s + (t + 1) sin s,

u=s+t,
respectively. There are two values of po and qo corresponding to any value of a,
and the rays envelop a circular caustic on x2 + y2 = 1, as shown in Fig. 8.4.

In this situation the caustic separates a region of greater illumination, x2+y2 >
1, through each point of which there are two rays, from one of less illumination,
a.2 + y2 < 1, where there are no real rays, and all caustics share this attribute of
separating brighter regions from darker ones."' However, the one that is easiest
to see in practice is the nephroid formed by sunlight reflecting from the curved
vertical side of a nearly-filled coffee mug; here the bright region has four rays
through any point and in the dark region there are just two rays through any
point (see Exercise 8.8 and Fig. 8.8).

The bunching of the rays in Fig. 8.4 suggests that the region of greatest illu-
mination is near the caustic. To see this more precisely, we note that, in general,
the solution

x = Po(s)t + xo(s), y = go(a)t + yo(s), u = t + oa(s), (8.29)

where
dxo dyo duo

p02 + = 1 and
d.R ds q0 - ds

yields a Jacobian (see Exercise 8.11)

,8(s,) I = (goPo - Poq') (t + T (s))

where

"'This is because, as we shall see, the field inside the caustic is exponentially small in the
parameter k in (8.4).
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T (s) = goxo - Poyo

goroo - pogo'

Hence, unless gopo = poq'o, which only happens for plane waves in which u is real
and linear in x and y, there is always a caustic at t = -T(s). Now this has serious
implications for the amplitude A in (8.4). By equating terms of 0(k) to be zero
in the ansatz there, A satisfies

AV2u + 2Vu VA = 0. (8.30)

This linear partial differential equation for A has an explicit solution by the meth-
ods of Chapter 1; following Exercise 8.11, we find that

A(8) = Ao(8) T (s)
t + T(s) '

(8.31)

indicating an increased illumination as t -* -T(s). In the example (8.28), T = -1
and A has an inverse square-root singularity as t t 1. This is clearly a warning
that the geometric optics ansatz has broken down and we must make a different
high-frequency approximation to Helmholtz' equation near the caustic, but this
would not be in the spirit of the book.162

A less symmetric example of a caustic has just been encountered in the el-
liptic sand pile solution (8.26). Continuing the characteristics through the ridge
lines gives the ray picture shown in Fig. 8.5, and it soon becomes clear that caus-
tics develop cusps whenever a boundary with constant Dirichlet data for u has a
maximum or minimum in its curvature (see Exercise 8.9).

In summary, the problems created by intersecting characteristics for wave prob-
lems are more innocuous than when u is required to be single-valued. Although
the caustics perturb the ray model locally, they do not affect the solution globally
in the way that shocks or ridge lines do.

Our second serious difficulty with practical ray theory occurs when we consider
configurations that involve physical boundaries. One of the commonest concerns
the scattering of a plane wave, say with rays parallel to the x axis and wave-
fronts parallel to the y axis, by a smooth convex obstacle163 (see Fig. 8.6) at
which Dirichlet or Neumann conditions are imposed. This situation might arise
in tomography, radar or ultrasonic testing and, at first sight, all we have to do is
follow the familiar rules of optics and draw the reflected rays, as in Fig. 8.6.

'62Those who may doubt the geometric optics approach may, in this case, look at the function

=Jk (k x2+y2)exp(iktan-'
x

which is an exact solution of Helmholtz' equation, and take the limit as k -, oo; the solution
corresponding to (8.28) is the asymptotic limit of t/,eik*I4 for x2 + y2 > 1, as long as we are not
close to the caustic.

isWhen the scatterer is a circular cylinder, it is possible to write down the reflected field exactly
by separating the variables. Unfortunately, the asymptotic form of the eigenfunction expansion,
which involves H,il l (kr) cos n9, is not easy to find.
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(0, b)

(a, 0)

Fig. 8.5 Caustic in an ellipse.

Fig. 8.6 Scattering of a plane wave by a circular cylinder.

The justification or otherwise of this procedure is a surprisingly complicated
matter, requiring first the analysis of the basic reflection process. Suppose, say, we
have Dirichlet data 0 = 0 and an incident wave eikz. When we write the total field
as eikx + tai , eik: - Ae1", at the boundary we have Aoeikun = eikzo, i.e. u0 = xo
and A° = 1. The direction of the scattered ray is (po,qo), which satisfy

duo dxo dxo dyo

a8 = a8 = p°
a8 + q° ds

this says that the angle between the tangent to the scatterer and the reflected ray is
the same as that between the tangent and the incident ray. This is called specular
reflection and, although we have only derived this law for geometric optics, it
happens to be obeyed by plane wave solutions of the full scalar wave equation.
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This argument works in general unless the scatterer has corners or, as at P
in Fig. 8.6, the ray is at `grazing' incidence. 164 In either case, modifications have
to be made to the geometric optics ansatz which are much too complicated to be
discussed here, but form the basis of J. B. Keller's Geometric Theory of Diffraction
[5]. The modifications are by no means local to the body, involving, for example,
the shadow boundaries. Also, if the scatterer has any concavities, then caustics
are almost inevitably present.

We conclude this brief discussion of a very large subject with three remarks.
First, there is no reason why we should not apply a WKB-style ansatz to the full
wave equation rather than considering the single Fourier component (8.2). There
is then no large parameter k in which to expand asymptotically, but we can justify
the procedure in cases where the wavelength is much smaller than the length scale
over which we are considering the solution. Thus, writing

where Vu is large, we obtain

\a /2+ \5i/2 -
(8r)2.

(8.32)

This equation can, of course, be solved by Charpit's method (see Exercise 8.12),
but it is precisely the equation for the characteristic surfaces of the two-dimensional
wave equation, as given in a different notation in §2.6. Thus, the geometric optics
approach coincides with our theory of characteristics, as has already been evident
from the discussion of rays and wave-fronts in this chapter and Chapter 4; the
rays are simply the bicharacteristics associated with Charpit's method. However,
geometric optics has the advantage of being susceptible to improvement by in-
cluding the effects of longer wavelengths, because we can proceed to compute A
in (8.4) as a series in inverse powers of k; the theory of characteristics is merely
the 'zero-wavelength' limit.165

Secondly, there is no reason why we should not apply geometric optics to the
modified Helmholtz equation

(V2 - k2),0 = 0. (8.33)

We have already seen that this equation describes physical problems that are quite
different from wave propagation, yet, by setting tG - Aek", we obtain (8.1) again!
However, the difference between the physical interpretation of (8.33) and (8.3) has
already emerged: for problems for which (8.33) is the correct model, u must be
single-valued and hence the `ridge line' solution would be the appropriate one for,

164Note that the breakdown of the ray solution at P can be likened to that near a caustic
because two rays, one incident and one reflected, coincide at P.
165However, we must remember the situation mentioned in Chapter 4, where a highly localised

initial condition for the wave equation could create an equally localised response near the char-
acteristics emanating from the source, and also a non-trivial response away from these charac-
teristics.
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say, a chemical reaction occurring in an elliptical container, as in (8.26). More-
over, starting from (8.33), we could carry out a 'shock'-type analysis of the ridge
structure in the same spirit as in Chapters 2, 6 and 7 (see Exercise 8.14).

Finally, we mention what is perhaps the most challenging aspect of geomet-
ric optics. This is the fact that u does not have to be real for (8.1) to apply to
wave propagation, although a complex u would correspond to 0 being either ex-
ponentially large or exponentially small. We can see a hint of this in our simplest
example (8.28) because, if s and t are such that x2 + y2 < 1, then it is easy to see
that u is complex. But such values of a and t are also complex and this means that
we are led to the idea of complex rays, in which x and y must also be complexified.
Further discussion of this subject, which is not at all well developed, cannot be
given here.

*8.2.4 Eigenvalue problems
The application of geometric optics to find high eigenfrequencies using Helmholtz
or other wave-related equations turns out to be surprisingly difficult and delicate.
We will content ourselves with describing one simple example which will be of
great motivational value in the next section.

Suppose we wish to find large values of A such that the problem

V21p + At = 0 (8.34)

in the circle
x2 + y2 C R2,

with either homogeneous Dirichlet or Neumann boundary data, has non-trivial
solutions, i.e. -A is an eigenvalue of V2. Let us assume that A is large enough that
we can approximate i' in the form

+G(x, y; A) - A(x,
y)e'JXL(=.v),

where u satisfies IVu12 = 1. The phase u can only be determined from Charpit's
equations if we know its value at the boundary. This data determines 8u/8& and
±Ou/8r in polar coordinates. Since the ray is in the direction of Vu, the com-
ponents of Vu are (sin 0, cos 0), also in polar coordinates, where 0 is the launch
angle of the two possible rays through any point P on the boundary, as shown in
Fig. 8.7. On each of these rays, near P, the two phases are

ut -rup+R(8-8p)cos¢f (R-r)sin0+ .

We must satisfy the boundary condition ' = 0, and, since we cannot do this
by taking A = 0 on r = R (as then A vanishes everywhere), we achieve this by
setting

',(x, y) = A(x, y) (ei'u+ - e'vf%u- )

The only potential problem with this procedure is that the `+' ray might, after
a number of bounces as in Fig. 8.7(a), return to P as a '-' ray, bringing with it
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(a) (b)

Fig. 8.7 Eigenvalues of the Laplacian in a circle.

a value of u+, obtained by integrating Charpit's equations along this ray, that is
inconsistent with u_ at P. This consistency requirement will lead to the deter-
mination of the eigenvalues. Now for most values of 0, namely those for which
cos-1(Ro/R) is an irrational multiple of zr, where RD is as in Fig. 8.7(b), this does
not occur. However, we must also recognise that the rays launched at the angle 0
from different points on the boundary have an envelope (caustic) with radius Ro
(see Fig. 8.7(b)), which is itself a route along which the phase u+ can travel. Thus
we must consider trajectories such as that from P to Q, around the caustic any
number of times ending at Q', and back to P. When we work out the change in
u+ along such a trajectory, it must be an integer multiple of 27r if we are to be
consistent with u_ at P. After a simple calculation, this leads to the conditions

2aRof = 27rni, (8.35)

2v (R2 - Ro - Ro cos-1 (R)) = 21r%, (8.36)

for some integers n1 and n2. Finally, we are led to the requirement that the eigen-
value \ is such that the eliminant of Ro between equations (8.35) and (8.36) is
satisfied for some integers n1 and n2. It can be shown that this gives a good ap-
proximation to the n2th zero of the Bessel function J,,, (fR) that appears in the
exact solution of (8.34).

Unfortunately, this is not an easy technique to use on more general prob-
lems. Even a slight modification to the boundary can lead to formidable geometric
and analytical difficulties in ray tracing. Furthermore, any attempt to increase
the accuracy of results by including the amplitude A as well as u becomes quite
complicated. One inaccuracy in (8.35) is immediately apparent because we have
assumed that u is continuous when a ray grazes the circle r = RD. In fact, a local
calculation of the type mentioned after (8.31) shows that u always changes by it/2
at a grazing point, and hence n2 in (8.36) should at the very least be replaced by
n2 + 1/4.

One insight we may gain from this ray analysis concerns the qualitative be-
haviour of the eigenfunctions corresponding to the large eigenvalues. Figure 8.7(b)
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suggests that the eigenfunctions corresponding to the launch angle 0 will be 1o-
caused near the caustic r = Ro. Were we to try a similar analysis in a rectangular
domain, the absence of any caustics suggests that the eigenfunctions are not lo-
calised in this geometry, as can be verified by considering their exact representation
in terms of trigonometric functions.

8.2.5 Dispersion
The ideas described above are by no means confined to (8.1). Indeed, general
models involving linear partial differential equations for wave propagation with
constant coefficients have solutions in which the dependent variables are all pro-
portional to e'(k.x-"'), as long as some dispersion relation

F(k, w) = 0 (8.37)

holds between the wavenumber vector k and the frequency w. This approach to
dispersion is simply a repetition of the ideas of §7.2.1; the fact that the model
permits wave solutions at all means that there are real values of k and w that
satisfy (8.37). For linear problems, the property that a model admits a dispersion
relation with real k and w is another approach to hyperbolicity, as defined in §3.3.
It has the advantage of applying to models, such as that for surface gravity waves
in §7.2.1, which contain more information than just partial differential equations;
for instance, F could be crucially dependent on the boundary conditions, as in the
example below.

The theory of this chapter has a really useful role to play when we apply the
WKB methodology to linear wave propagation models by writing all the depen-
dent variables in the form Ae'k". The highest derivatives are the only relevant
terms because, as stated above, the restriction of the WKB approach is that the
wavelength is much less than any length scale of interest, and thus it is a `short
wavelength' or 'far-field' approximation. In any case, the operator 8/8xj is equiv-
alent to multiplication by ik,, and (8.37) implies that u satisfies

F,-
//

f = 0. (8.38)

For the simple example (8.32), it is easily seen from Charpit's equations that,
not only are the components of Vu and 8u/Or constant along characteristics, but
also that u itself is constant. The fact that the phase u does not change along
a characteristic (or ray) results from the fact that all disturbances, no matter
what their frequency or wavelength, travel at the same speed. Hence there is no
dispersion, i.e. no `mixing' of waves of different wavelengths.

An example in which dispersion is important is the famous problem of the
far-field of the wave pattern created by a ship travelling with speed V in the x
direction on an infinitely deep ocean. As shown in Exercise 8.15, the dispersion
relation is

(-w+Vkl)° =92(ki +k2), (8.39)

where x and y are horizontal coordinates in the ocean surface, g is the acceleration
due to gravity and k = (kl, k2). Hence, in the steady state in which w = 0, the
WKB approximation for the phase u of the surface elevation satisfies



SCALAR FIRST-ORDER EQUATIONS 377

V4p4 = g2(p2 + q2), (8.40)

where, as usual, p = Ou/Ox and q = Ou/Oy. Now, in the WKB approximation, the
ship is effectively a point, say the origin, and hence we are only interested in the
integral conoid through it, which is given by

x. = (41 *4p3 - 2g2p)t, y = -2g2gt, u = 2V4p4t,

together with (8.40). The most striking feature emerges when we consider the ray
slope, which is -pq/(p2 + 2q2) for any value of V (or g), and has a maximum of
1/(2vr2). Hence the waves are confined to a wedge of semi-angle sin-' (1/3), within
which there are two curved wave-fronts through any point touching on the wedge,
each carrying a different phase. The limiting straight rays are caustics at which
the Jacobian vanishes, and there a large-magnitude `bow wave' is seen, as shown
in the photograph in [45, p. 117].

8.2.6 Bicharacteristics
One bonus of the m,-dimensional generalisation of the situation of Fig. 8.1 is that we
are now in a position to construct the bicharacteristics of m-dimensional hyperbolic
equations, as introduced in §2.6, of the form

m
A; c.

8a';

Indeed, the fact that the characteristics satisfying (8.22)-(8.24) yield the genera-
tors of the Monge cone locally means that we only have to find the characteristics
of (2.53), namely

Q
80 ao det E A 00 = 0.

Thus, for the wave equation

82u

-
_ 2 82u

at2
a0

(02U

YX- + aye )
we need the characteristics of

ao

((ax)z+(ay)2/
-Cam/2'

which, with ao = 1, is (8.32). For the characteristic cone through the origin, these
are simply the generators

x=pr, y=qr, t=rr, where p2+q2=aor2,

but the geometry can easily become more complicated (see Exercise 8.13).
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* 8.3 Hamilton-Jacobi equations and quantum mechanics
The purpose of this section is to give a brief account of how the theory of partial
differential equations holds the key to the link between classical and quantum
mechanics. It is of course an intricate story and we will only give the very simplest
outline of what is involved.

We begin by recalling that many classical mechanics problems with a finite
number of degrees of freedom can be recast as Hamilton's equations

-8H(g1,P1) i9H(qj,pj)
for i n,P' -

8qi 8Pi

for the generalised coordinates qi(t) and generalised momenta pi(t). In §8.2.2 we
have already remarked that these equations are Charpit's equations for the follow-
ing differential equation for u:

H(q,p)=O, q={qj), P={Pi}_{8
};

(8.41)

we simply have to replace x in (8.21) by q to conform with popular convention
and to suppress the dependence of p and q on time t. Hence we have a route from
Newton's laws via Charpit's equation to (8.41), which is called the Hamilton-
Jacobi equation. However, both Newton's laws and the Hamilton-Jacobi equation
are equivalent to the principle of least action, namely that the action

rT
u = JL(q, il) dt (8.42)

o

is minimised over all possible q when the integration is taken along a solution of
Newton's equations (i.e. along a ray of Charpit's equations), assuming q(O) and
q(T) are prescribed. Here L is called the Lagrangian and the equivalence of (8.42)
and Newton's laws is given in [46]. It is interesting to remark that the equivalence
of (8.42) to the Hamilton-Jacobi equation (8.41) is analogous to the equivalence
between Fermat's principlelse and the eikonal equation (8.1) (see Exercise 8.17).

We now ask ourselves `what partial differential equations may give rise to the
Hamilton-Jacobi equation in the WKB limit, in the way that Helmholtz' equation
gave rise to (8.1)?' This question clearly has no unique answer, since the WKB
approximation does not usually `balance' the highest derivatives and all the lower-
derivative terms in any given linear differential equation, but one possibility is the
Schrodinger equation

H (qi, -ih 8 )r4(gi) = E9y(q ). (8.43)
8qi

Here t' is called the wave function and E is a constant, the energy level of the
system; h is also a constant which is very small when we work on scales much

166This states that the travel time (which is equivalent to arc length in a homogeneous medium)
adopted by a light ray is a minimum compared to other geometrically possible paths.
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greater than the size of an atom (i.e. much greater than 10 angstroms or so).
We require the dependence of H(q, p) on its last n arguments to be a linear
combination of powers, giving for example

e) = hy ntt az
H (qi, -'h

aq; - 2m aq2 + V (qi), (8.44)

which is the Hamiltonian of a single particle of mass m moving in a potential V
in n dimensions. The WKB ansatz ' - Ae1°(q,)/h can be expected to yield a good
approximation on a scale of many angstroms and it gives

H(g1,p1) = E,

which, since E is constant, is equivalent to (8.41) as long as we identify the de-
pendent variable with the phase u of the wave function t'.187 Thus the relation of
the wave function in quantum mechanics to the trajectories of classical mechanics
is analogous to that between the electromagnetic field and the light rays of geo-
metric optics; both hinge on the role played by the phase of the wave function.
Note that, when we identify Hamilton's equations of mechanics with Charpit's
equations for the Hamilton-Jacobi equation (8.41), the parameter t along the
characteristics must be taken to be real time. Indeed, T in (8.42) is real time in
the Lagrangian formulation. However, the parameter along the characteristics of
the eikonal equation (8.1) cannot be thus identified because (8.1) only applies to
the spatial description of a single high-frequency component in the solution of the
wave equation. Indeed, it is helpful to think of the ray parameter in this case as a
weighted distance, as explained in Exercise 8.17.

A quantity of primary practical interest in quantum mechanics is the spectrum
of energy levels E, which emerge as eigenvalues in this theory. We can attempt
to find the energy levels for small h by generalising the argument of §8.2.4, which
corresponds to a very simple case in which V = 0 in two dimensions. To do this we
must generalise the all-important conditions that the change of phase along any
closed path, in particular a ray path, if one can be found, is an integer multiple
of 21rnh. Now we already know u in principle, assuming we have been able to
integrate Hamilton's equations because, by Charpit's method,

du rn
OH n dqi

dt = p'8p, _ p` at

so

Ju=u+ p;dg, (8.45)
i=1

where uo is the value of the phase on the boundary. It is a well-known result
of classical mechanics that the minimisation of the action (8.42) yields (8.45),

167 Unfortunately, when there are many particles, each has to have its own wave function t and
the dimensionality of the resulting differential equation is the number of degrees of freedom of
the system, which may be enormous.
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and hence we can also identify the vitally important phase function u with the
minimising action. Moreover, in principle we only have to ensure that

n

pi dqi,
i-1

which is the change of phase along any closed path, is 2nirh. As in §8.2.4, even
when we are fortunate enough to be able to take this integral along a closed ray
path, care must be taken when evaluating the contributions from regions where
the path touches an envelope. Unfortunately, this may be a laborious task, except
in very simple geometries, because there will be many more `families' ui than the
two we encountered in geometric optics.

* 8.4 Higher-order equations
A remarkable number of phenomena have been illuminated by using non-quasi-
linear equations directly, and many of them would have been obscured had we
prosaically differentiated the equations into quasilinear systems. Indeed, many
aspects of the topics that we have mentioned richly deserve to be taken further, but
most of them would require a considerable background knowledge of asymptotics.

Another reason for not proceeding further with non-quasilinear equations is
that none of the results mentioned so far can be generalised to equations other
than scalar first-order ones. Such generalised equations are relatively rare, but one
interesting example is the Monge-Ampere equation of differential geometry, defined
below. In its simplest form it concerns developable surfaces, i.e. ones that are
envelopes of a one-parameter family of planes. Such surfaces are of great practical
importance, say, in making curved sheets of glass or metal by bending plane sheets,
to which they are isometric. They are special cases of ruled surfaces, as mentioned
after (8.25). A simple paper bending experiment shows that a developable surface
is necessarily the envelope of a one-parameter family of planes, say

p(A)x + q(A)y = u + A (8.46)

as A varies. Hence it is the eliminant of A between (8.46) and

p'(A)x + q'(A)y = 1.

Now (8.46) is a Legendre or `contact' transformation, as in §4.8, and

8u OA _
8x = P +

(zp,

(A) + yq(A) - 1) 8x = P,

and similarly Ou/8y = q. Thus, since p and q are both functions of one variable A,

8x
(

) (8.47)

for some function f, and we have an equation that can be solved by (8.25). It can
also be observed that (8.47) is the general first integral of the simplest form of the
Monge-Ampere equation
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rt - s2 = 0, (8.48)

where r = 82u/8x2, s = 02u/OxOy and t = 82u/8y2. This equation has the
geometric interpretation that the Gaussian curvature, which is the square root of
the product of the two principal curvatures of the surface u = u(x, y), is zero.

Now, in the spirit of this book, if we were confronted directly with (8.48), the
best we could do would be to convert it into a quasilinear 3 x 3 system such as

ray + tOy - 2sOy = 0,

tOx + rO - 2sOy = 0,

Or Os =
8y a

0,
x

which can easily be shown to possess just one double characteristic on which

/ \z
t I I + 2s + r = 0, i.e.

ax
- t = - 3 , (8.49)

and also on which the Riemann invariant s/t (or r/s) is constant. Thus the char-
acteristic is always straight. Moreover, we can interpret it geometrically by con-
sidering the second fundamental form

r dx2 + 2s dx dy + t dy2 (8.50)

for the surface u = u(x, y). This form determines the curvature of the normal
cross-section of the surface in the direction (dx, dy) and, for a developable surface,
this curvature is zero on the (straight) generator through any point. Hence (8.49)
implies that the characteristic through any point in the (x, y) plane is simply the
projection of this generator.

Our final geometrical remark concerns the differential equation satisfied by a
general ruled surface, not just a developable one. The condition for the surface
u = u(x,y) to contain a straight line at every point is that, for any (x, y), there
are constants A and µ such that

u(x+r,y+Ar) a u(x,y)+ pr

for all r. Differentiation with respect to r reveals that

_On On

8x + A8y =

the arguments of the derivatives still being (x + r, y + Ar), and we soon find that

092 z

8x
+2A8 a +a28 u =o

y
y2
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so that A = (-s ± s2 - rt It, the arguments again being taken at (x + r, y +
Ar). A final differentiation with respect to r gives that u satisfies the third-order
quasilinear equation

8A 8A

Ox
+ A ay = 0,

and it is a simple exercise to show that this equation is always satisfied by any
solution of (8.48).

We conclude this section with an interesting postscript to our discussion of gas
dynamics in §4.8. In the special case of inviscid axisymmetric flow, the relevant
generalisation of (2.5)-(2.7) can be shown to lead not to (4.85) but rather to

02U 2 2

F8x2 +G8x8 + H- +
18u - 0,

y 0y2 y ay

where again F, G and H are functions only of 8u/8x = p and 8u/8y = q (y is now
a cylindrical polar coordinate). When we now use the Legendre transformation

w(p,q)=xF +yby-u,

so that x = 8w/8p and y = 8w/8q, we obtain

F82w-G02w +H82w+ q 92W-92-W

(82w)2 0.
8q2 8p8q 8p2 8w/Oq 8P2 8q2 - \ 8p8q /

Hence we are led to an `inhomogeneous' Monge-Ampere equation in which rt - 82
(where now r = 82w/8g2 and so on) is non-zero. We observe that, if rt - s2 is a
known function of position, so that the right-hand side of (8.48) is a prescribed
function of x and y, then the calculation leading to (8.49) is the same, and, more-
over, when the discriminant of the quadratic for the characteristics, which is equal
to this function, is negative there are no real characteristics, while when it is posi-
tive there are two. The adjectives elliptic and hyperbolic are especially appropriate
here because the former case is now associated with a surface of positive Gaussian
curvature (for example, a sphere) and the latter with one of negative Gaussian
curvature (for example, a saddle). For positive Gaussian curvature, the fundamen-
tal form (8.50) never vanishes. For negative Gaussian curvature, it vanishes in two
directions (dx, dy) called the asymptotic lines, which are lines that are bisected by
the directions of maximum and minimum curvature. The case rt - s2 = 0 can be
described as parabolic; the double characteristics are the asymptotic lines. This
agrees with our experience of paper bending; if, say, we constrain one end of a rect-
angular sheet to lie on a circle, then the paper forms a cylinder whose generators
are the asymptotic lines. Likewise, a sector of a circular annulus can be bent into
a cone and, indeed, inspection of a lightly-crumpled sheet of paper suggests that
its displacement is made up of a large number of roughly conical patches joined
along creases which we may interpret as `ridge lines' for the solution.
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More interestingly, equations of the type

rt - s2 = Ar + Bs + Ct, (8.51)

where A, B and C depend only on the first derivatives of the dependent variable,
have been discussed in detail in (12]. They have the remarkable property that (8.49)
becomes \2

(t - A) l z I +(2s+B)d +r-C=O,

and it is easy to see that there are two or no real characteristics according as

B2 > 4AC or B2 < 4AC,

respectively, the type of (8.51) is again determined only by its right-hand side.
All these phenomena are related to the fact that rt - s2 = 0 is the Euler-

Lagrange equation for, say, f f (pet + 2pqs + qtr) dx dy. One can always hope for
there to be some special structure for any equation in which the non-quasilinear
terms are invariants of the Hessian matrix (82u/(9x;8xj ); after all, the Laplacian
is just the trace of this matrix.

Exercises
(Take p = 8u/8x and q = 8u/8y throughout.]

8.1. When sand is piled as high as possible on a table, its surface is u = u(x, y),
where p2 + q2 = 1. The table is a tilted rectangle so that

u(x, 0) = 0 for 0 < x < 1, u(x, a cos a) = a sin a for 0 < x < 1,
u(0,y)=u(1,y)=ytana for0<y<acosa,

where 0 < a < a/4 and a > 1. Solve Charpit's equations in a triangular
region adjacent to each edge of the table to show that the surface consists
of the planes

u=y, u=ytana+x 1-tan2a,
u=ytana+(1-x) 1-tan2a, u=a(cosa+sina)-y,

which intersect at ridge lines. Show that the highest point of the pile is
u = a(cos a + sin a)/2 as long as a cos a <, 11,V1 - tan a.
What would happen if the table were L-shaped and horizontal?

8.2. Let d(x, y) be the shortest distance from the point (x, y) to the smooth curve
y = f (x). Show that

d2 = (x-X)2+(y-f(X))2,
where

x - X +(y - f(X)) f'(X) =0.
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Deduce that these formulae provide the general solution of

( 8d)2+ \8U/2
1.

You can see this without differentiation by taking the origin at (x, y) with
the x axis along the normal from (x, y) to the curve, showing that 8d/8y = 0,
and noting that IOdI2 is invariant under rotation of the axes.

8.3. Suppose that u satisfies Clairaut's equation

u = xp + yq - f(p,q)

Show that, if u = u0(a) on x = xo(s), y = yo(s), then

x = xoet +

8p

(po, qo) (et -1),

y = yoet +
88f

(po,go)(et - 1),

u = uoet - (po Lf (po, qo) + qo 8q (po, qo) - f(po, qo)) (et - 1),

where po(s) and qo(s) satisfy

t4 = pox' + goyo, uo = xopo + yogo - f(po,go)

Noting that, when p and q are constant, Clairaut's equation is that of a
plane in (u, x, y) space, deduce that u = ax + fly - f (a, 0) is a solution for
any constants a and 9. Hence show that the general solution is the result of
eliminating a between

u = ax + F(a)y - f (a, F(a)),

x + d (u_ 8q (a, F(a))) - (a, F(a)) = 0,

where F is arbitrary.
Remark. This is the only first-order equation whose general solution can be
written down without any integrations, by virtue of the Legendre transfor-
mation (4.86).

8.4. Suppose that pq = 1 with u = 0 on x + y = 1. Use Charpit's method to
show that u = x + y - l or u = -(x + y - 1). Show also that, if u = uo(s)
on x = xo(s), y = yo(s), then a solution only exists if u' > 4xoy .
By finding the solution for which all the characteristics pass through x =
y = 0, show that the integral conoid through the origin is u2 = 4xy.
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8.5. Suppose that u = f (x, y, p, q). Show that p and q satisfy the 2 x 2 system

Of 8P Of 89 Of
8p 8x 8q 8x P 8x'
Of 8p Of 8g 8f

8pOy8gayq-

8y

Deduce that the characteristics are given by

dy - Of/Of
twice,

dx 8q 8p

and use the Fredholm Alternative to show that, along a characteristic.

dx _ dy _ dp _ dq

8f l8P Of /Oq p - 9f /8x q - Of /8y

Deduce from the differential equation that these ratios are also equal to

/(8f ')
du pap +g8q

* 8.6. Suppose that

with

8u __ 82u
for 0 < x < 1,8r 8x2

u(x,0) = 0, u(0,r) = 1, u(1,r) = 100.

Use a WKB ansatz it - a(x, r)e_t (z)/r, or the similarity solution (6.45), to
indicate that, despite the different wall temperatures, the location at r = 0+
of the minimum value of it is at x = 1/2.

8.7. Check that u = -x satisfies the equation of geometric optics and that it
represents a plane wave of light incident from x = +oo. When this light is
incident on a parabolic reflector y2 = 4x, the reflected field has to satisfy
u = -x on the parabola. Denote the values of p and q on the parabola by
po = coss and qo = sins, and show that u = uo = -xo(s), x = xo(s),
y = yo(s) satisfy

-xo = Poxo + goyo, yoyo = 2xo1

Deduce that yo = -2tan(s/2) and xo = tan2(s/2), and hence that the
reflected rays are

y=(x-1) tans,

so that they all pass through the focus (0, 1).
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Fig. 8.8 The nephroid caustic in a circle; only the left-hand half is illuminated by the
rays from x = +oo.

8.8. Suppose the reflector in Exercise 8.7 is x2 + y2 = 1, x < 0. Show that the
Cauchy data is

u= -xo(s), x = xo(s) = cos 2, y = yo(s) =sin 2

Hence show that the reflected rays are

s
x sin s- y cos s= sin

for it < s < 31r.

Show that, for s - 2a = E, AEI K 1, the reflected rays all pass close to x = - 121
y = 0, and that, when terms of 0(E4) are neglected,

1).E 3x++ -y=0.
16

Deduce that near (- s , 0) the envelope of the rays is, approximately,

Y = 382 (-(x + 1/2))3/2 .

The full envelope, which is called a nephroid from its resemblance to a kidney,
is shown in Fig. 8.8.

8.9. Show that, when the eikonal equation is solved inside the ellipse x2/a2 +
y2/b2 = 1, with u = 0 on the ellipse, the rays are normal to the boundary
and their envelope is the caustic shown in Fig. 8.5, namely

a2-b2 a2-b2
X= a c o s 3 s, y=

b
sin3 s for 0 5 s< 27r.
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8.10. Suppose that the temperature T(x) satisfies the convection-diffusion equa-
tion

(v °)T = e°2 T,

where v(x) is a prescribed velocity field. Show that, if we seek a WKB solu-
tion in which T - Ae"(x)/,, then

(V. °)u = IVuI2.

Show also that Charpit's equations are

dx_v-2
dt p' dt dt

where p = Vu. and deduce that to lowest order the isotherms T = constant
bisect the angle between the characteristics and the streamlines, which are
parallel to v.

8.11. (i) Let t be a variable along a ray for the eikonal equation p2 + q2 = 1,
scaled so that dx/dt = p, etc., and so

x = pot + xO, y = qot + yo.

Define

Show that

where, as on p.371,

Show from (8.30) that

T(s) = 9ox0 - lto?lo
gopo - pogo

2 OA = -°2U.
_q _N

Invert J and use the relation

8p 8qv2uax+a
Ss , 8s

=po8x+go8y

to show that V2u = J-18J/8t. Deduce that

j= e(x,U) = xo+tpo Ilo+tq'o
8(s, I) Po qo

IJI = (gopo - pogo) (t + T(s)),

(A2J) = 0, °2u
= T + t'zit-

where T is defined after (8.29). Finally deduce (8.31).
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(ii) Suppose that such a ray extends to infinity. Show that

A2
AST

(x2 +
y2)1/2

so that the 'directivity' of the field radiated to infinity is A02 T. (We used
this result in §5.6.2.)

(iii) Suppose that u = 0 and A = 1 on the initial curve r. Show that on
each ray

A = p(s)

p(s) + t'

where p(s) is the radius of curvature of I' at the point at which the ray
leaves it. (It will help to take s to be arc length along I', so that the
curvature is 1/p = yox'o - xoyo.) Show that this implies that, in the
absence of caustics, as t --> oo,

A -+ Ao (gox'o - Polio)
1/2

r1/2 \ qoA - pogo'

where Ao(s) is the initial amplitude. Deduce that, when uo(s) = 1,
Arl/2 is eventually inversely proportional to the curvature at the launch
point. (In three dimensions it can be shown that it is the inverse of the
Gaussian curvature that controls the far-field directivity; hence it is
necessary to solve a Monge-Ampere equation in order to deduce the
shape of the body from its scattered field.)

8.12. Suppose that ao is constant and

ao ((8 )2 +
(8

)2) _
()2,

with Cauchy data u = uo(x, y) at r = 0. Show that po, qo and vo (where
v = 8u/8r) are given by

8uo 8uo f VrIT+--qoy
Po - 8x , qo - 8y , vo =

ao

Deduce that the solution is

u(z, y, r) = uo(X, Y),

where
2votx=2pot+X, y=2got+Y, r=-a .
ao

If uo is localised near x = y = 0, show that the solution is localised near the
circle x2 + y2 = aot2.



EXERCISES 389

Remark. When used as an approximation to the solution of

02'1 _ 2 (52,0 a2w\
ate

a°
ax2 aye J

this result appears to violate Huygens' principle (see §4.6.2). However, the
WKB approximation only describes very rapidly varying solutions and does
not pick up more gradual variations inside the characteristic cone x2 + y2 =
aot2.

* 8.13. For the 'inhomogeneous wave equation'

020 _ 2 (a20 a20\
ate - ao(y) ax2 + eye J

which is a model for sound propagation in an ocean or atmosphere whose
density varies vertically, show that the ray cones are ¢(x, y, t) = constant,
where

r \ 1 = (L,)2,

and that the bicharacteristics satisfy

dx dy dt r
dT = A aT = q, aT = - QD ,

dp_ 0dq_r2 d 1 dr-0,
dr ' dr 2 dy \a0}' dT

where r = 00/0r. Show that in t > 0 the projections of the rays through
the origin are normal to the projections of the cross-sections t = constant of
the ray cones through the origin.
When ao = 1/(l + y), for y > -1, show that the ray cone through the origin
is

where

2r3T2 ,x=pr, y=yr+4r2T2, t=-rT-rvr2- 1

\ 2

p2 + (a-i- 1r 2T) = (1 + y)r2.

* 8.14. Suppose 0 satisfies the modified Helmholtz equation

V21p -k27y=0

in the rectangle -1 < x < 1, -a < y < a, with 7jr = 1 on the boundary.
Show that the solution is

_ 2 (-1)n
7r n_on+1/2

x (cos((n + 1/2)7rx) cosha,,y + cos ((n + 1/2)7ry/a) cosh $nxl
cosh [tna cosh $n J
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where an = (n + 1/2)2ir2 + k2 and 62 = (n + 1/2)2ir2/a2 + P. Show also

that

0 = 2e -k cosh kx + 2e-k' cosh ky

satisfies the equation, that it is the limit of the exact solution as k -> oo,
and that it approximately satisfies the boundary conditions except near the
corners. If this solution is written as Ae`k" (=,y), show that, to lowest order,

u--(x+l), x-1, -(y+a), y-a

near

x=-1, x=1, y=-a, y=a,
respectively, and compare this with the answer to Exercise 8.1.
Remark. Near the ridge line x = y, 0 is approximately a-kz + e-ky, which
suggests that across a ridge line u is continuous, tending to x on one side
and y on the other, but Vu has a jump discontinuity; specifically,

19u l
- _ On .

8n _ 8n +

* 8.15. Small-amplitude waves created by a ship moving along the x axis with speed
-V on an ocean z < 0 are modelled by

V20=0 forz<0,

with

8z 8t ' gt + g1I = 0 on z = 0,= 077 00

where 4(x, y, z, t) is the velocity potential and i(x, y, t) is the surface elevar
tion. Show that, if i; = x + Vt,

00 .017+V e0+V0Gt+gq=0 onz=0.8z - 8t 84 8t 8c

Now let

Show that

and that

n = R (? oei(-wt+k1 f+kzy))

O _ Rei(-wt+k,(+k2y)+s k. +ks

92(ki + ks) _ (-w + Vkl)4.
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s 8.16. In an optimal control problem for x(t), it is desired to choose u(t) to minimise
a cost fo L(x,u)dt when x evolves according to i = f(x,u). Assuming
sufficient differentiability with respect to x and u, show that

OL(x,x) _ OL 0f -
8x u e?te = p,

say,

and
aa(x,.x) Of Ou(x,x) _ Of Of

ax au ' Ox --57X/ Du

Deduce from the Euler-Lagrange equation that

d OL(x,i) 0L(x,x) dp 8L OLOf Of
dt ax Ox - d Ox + Ou ax Du

8L Of=P- 8x +pax
=0.

Show further that, if H(x, p) is defined to be -L + pf, where L and f are
now thought of as functions of x and p, then

OH(x,p) _ _aL Of (_ OL Ofl Ou(x,p) -
8a 8x + P 8x + au +P) ax -P ,

f+ (-8uL +LOf NBx,P) = 'j;
P

thus the system is optimally controlled by a solution of Charpit's equations.
Show that if x(0) = xo is prescribed then the second boundary condition is
p(1) = 0.

* 8.17. (i) Fermat's principle states that light travelling from the origin to x in a
medium in which the speed of light is a(x) does so along a path which
minimises the optical path length

u(x) _ r' d8

u u
a

between the origin and x. Writing the path as x = X(t), so that

u(x) = T X) dt, where X(T) = x, X(0) = 0,
1show

that the Euler-Lagrange equations for X are

d ( :k )
+ 'I[' Va = 0,

.= d

Show further that, when r is defined by dr/dt = aIXI, these equations
can be written as

dp = 1 V (a(X)),
dx

= P.dr a3 dr
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(ii) Show that IVu(X)( = 1/a(X) and that the equations above are Char-
pit's equations for this partial differential equation.

(iii) Show that Charpit's equations are those for a Hamiltonian system in
which

H(X,p) 1
1pl,

1

Remarks.
(a) By taking 1/a to be a suitable curvature, this idea can be used to reduce

the problem of finding geodesics on a curved surface to the solution of a
Hamilton-Jacobi equation.

(b) In Lagrangian mechanics-
(i) We take the minimum of the action

u(qi) = fT

L (Q=(t),Qi(t)) dt, dt'
over all paths Qi(t) with Qi(T) = qi, where L is the Lagrangian.
Thus the Euler-Lagrange equations are

dpi OL OL

at -aQi, pi=aQi

(ii) By varying qi slightly, we show that, for arbitrary 6Qi,

OQi (Qi(T)) bQi = L (Q1(T),Qi(T)) ST,

and hence that [[
L Ni Q' = L,

which means that
Ou OL

aQi =-. = pi
from (i).

(iii) We note that, since d/dT(u(Q1) - fT L dt) = 0 (from the definition
of u), u satisfies the Hamilton-Jacobi equation

pi dQ! - L = H(Q,,pi) = constant;dt
moreover, Charpit's equations are

dpi OH dQi OH
dt - - Oqi' dt = api'

which are just Hamilton's equations.
(c) Note that the parameter tin Lagrangian mechanics is both the parameter

along the characteristics and real time. In the Fermat model dr = ads
and r must be thought of as a weighted arc length along a light ray.



*9
Miscellaneous topics

9.1 Introduction
Our discussion over the past eight chapters has covered much ground but only
scratched the surface of what is known about many methods for special classes of
pdes 188 In this miscellany we will attempt to take the reader further into some
of the `tricks of the trade'. However, before going into detail, we will make some
general remarks about some areas of mathematics that are not only germane to
the classical theory of pdes, but also so large and important as to warrant their
own text books; yet we have scarcely mentioned them thus far.

The first concerns the study of inverse problems, some of which go under the
name of parameter identification. This is a subject whose philosophy is almost
orthogonal to ours in that it starts with observations about a phenomenon that
may be modelled by some pde, and then asks `what are the coefficients and bound-
ary data for the relevant pde?' This is a very difficult procedure for the following
reasons.

1. It is essentially nonlinear; even if a pde is linear, its solutions rarely depend
linearly on its coefficients.

2. It can so easily be ill-posed. For example, suppose that the gravitational poten-
tial 0 produced by a finite two-dimensional body of unknown constant density
p satisfies the Poisson equation

02,0 = -p,

and we can make measurements about this potential on a circle r = R, enclosing
but not touching the body. What observations would be enough to determine
its shape? Clearly, even a knowledge that 84/8r = g is constant on r = R does
not determine q,, because any circular body with radius 2Rg/p is possible.isa
Even more difficult challenges are provided by the determination of unknown

spatially-varying coefficients such as thermal conductivity. When, as is often the
case, the measurements lead to an ill-posed underdetermined problem for the un-
knowns, there is clearly great scope for finding what is likely to be the `best guess'
by using various kinds of regularisation; see [18].

1881n this chapter only, we will abbreviate 'partial differential equations' to 'pdes'.
1691n fact, non-circular bodies are also possible in this case; examples can be constructed using

the Hele-Shaw model of Chapter 7.

393
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In view of these difficulties we will not take this discussion much further, ex-
cept to note those aspects of the theory that we have developed in the previous
chapters that might be of especial value in inverse problems. One commonly used
technique for elliptic equations is to prescribe Dirichlet data and observe the re-
sulting Neumann data, or vice versa. The relationship between these data is a
generalisation of the Dirichlet-to-Neumann map (5.65) and (5.68) and contains
information about the parameters in the pde away from the boundary; hence it
can be of some help in turning parameter identification problems into integral
equations. In another vein, the spectrum of a pde problem involving an eigenvalue
as a parameter may easily be measured in practice by observing or hearing its
`normal modes' of vibration; this then poses the problem of reconstructing the ap-
propriate Helmholtz equation (or whatever it might be) from the spectrum. This
is a notoriously difficult problem, pioneered by a famous paper entitled `Can you
hear the shape of a drum?',170 and it transpires that knowledge of the spectrum
of, say, the Dirichlet problem alone is not sufficient to find the shape. To explain
this and its importance to modern developments in radar and tomography requires
far more knowledge of spectral theory than we were able to present in Chapter 5.
This also applies to the more practically important problem of finding the shape
or properties of a scatterer that is being insonified or irradiated by some incident
wave field, as in §8.2.3. Indeed, the one theory we have encountered that is invalu-
able in such `inverse scattering' problems is that of geometric optics. As long as
the scattering body is much larger than the incident wavelength, the fact that the
fields scattered by arbitrary bodies can be more or less drawn by hand means that
it is pretty easy to build up intuition concerning the causes of any given scattered
field. But the precise mathematical theory at arbitrary wavelength is much more
difficult; some progress can be made in one space dimension, as we shall see at the
end of this chapter.

While inverse problems can easily lead to underdetermined systems, in which
the model is lacking information, the opposite phenomenon of overdetermined sys-
tems can also occur. In particular, such systems can arise where the ideas of
group symmetry are being used, as in §6.5. There we saw that the invariance of a
pde under a certain Lie group (or generalisation thereof) can only be assured if the
functions defining the group are such that all the coefficients in the transformed
pde coincide with those of the original. This inevitably leads to an enormous sys-
tem of pdes for the defining functions, usually much larger in dimension than the
number of defining functions.

An account of overdetermined systems can be found in [10]; here we simply
note that the basic question of whether such a system has any solution at all171
can be approached systematically by repeated cross-differentiation. The idea is
to hit the system with more and more partial derivatives with respect to all
the independent variables, and use the equality of mixed derivatives until either
there is a contradiction or any further differentiation leads to equations which are

170Kac, M. (1966). 'Can you hear the shape of a drum?', Amer. Math. Monthly, 73(4), 1-23.
171Compare, for example, the systems (i) 8u/8x = 8u/8y = 0 and (ii) 8u/8x = 0, 8u/8y = x

for the single function u(z,y).
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automatically satisfied. Of course, this is a tedious procedure and much time can
be saved by using symbolic manipulators, which are now often incorporated into
packages that search systematically for group symmetries.

Another area that has gone almost unnoticed in this book concerns the study
of stochastic piles, which is an increasingly important area as far as applications
are concerned. One reason for this is the demand for risk quantification in areas
of human activity ranging from insurance and finance to management and social
policy. Unfortunately, the mastery of the subject makes two demands on the stu-
dent, namely a good knowledge of stochastic processes in general as well as the
development of the calculus needed for continuous-time random processes. In §§1.1
and 6.1 we have given a very crude description of some problems in this area, but
we overlooked both of the issues just mentioned; if we were to take the subject
any further we would immediately have to plunge more deeply into these topics.
Hence we refer the reader to [31].

Our final apologia concerns the lack of discussion of pdes with non-smooth
coefficients. Although we have placed much emphasis on non-smooth boundaries
and boundary data, our only discontinuous-coefficient examples were the oxygen
consumption model of §7.1.2 and the enthalpy formulation of the Stefan problem
of §7.4.2. It is only too easy to assume that, if a pde has discontinuous coefficients,
then the solution can be synthesised by piecing together smooth functions on either
side of some interface. Such an intuitive approach not only relies on the existence
of an interface, but also on its smoothness, and we recall the unexpected mushy
regions that can occur in Stefan problems.172 The whole question of how general
pdes should be interpreted at places where the coefficients are discontinuous is even
more delicate than those arising in the theory of shocks for conservation laws.

This chapter cannot attempt to compensate for the lack of coverage of these
aspects of pdes. Instead, we will end the book by making some observations about
some models and methods that do not fall directly under the headings of Chap-
ters 1-8, but which illustrate the power and limitations of some of the ideas in
those chapters. Inevitably. all the following sections are open-ended.

9.2 Linear systems revisited
We recall that our principal entree into the theory of applied pdes was via quasilin-
ear systems of the type A; 8u/8x; = c which, as suggested in the Introduc-
tion, cover all pdes with sufficiently smooth coefficients and with the coefficient of
the relevant highest derivative being non-zero. We now reconsider some aspects of
such systems in the light of what we have learned in Chapters 4-6. Little new gen-
eral methodology emerges, but several special methods are available for particular
problems.

Not surprisingly, for linear systems, the ideas of using Green's and Riemann
functions that were so successful in Chapters 4-6 can be generalised, but this can
only be done at some technical cost, as shown below.

172Further difficulties could arise in other practical problems, for example, if frictional effects
were modelled by terms whose sign depends on the direction of motion.
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9.2.1 Linear systems: Green's functions
First let us recall the situation for systems of ordinary differential equations (odes).
The 'Cauchy problem' for x(t) such that

dx - A(t)x = b(t) (9.1)at
is to find x in t > 0, with

x(0) = x0

prescribed. This can be solved in principle by finding the Green's matrix G(t, r)
such that -dG-GA =0 (9.2)

with

,
dt

G=I att=r, (9.3)

where I is the identity.113 This formulation for G can easily be seen to be equivalent
to

dG- - GA = d(t - r)I 4)(9

with

,at

G(T, r) = 0 for some T > r,

.

(9.5)

which is analogous to the Riemann function formulation; equation (9.4) simply
means that

G(r - 0, r) - G(r + 0, r) = I,
and hence

G(r-0,r)=I.
With either definition of G, we can proceed by premultiplying (9.1) by G and post-
multiplying (9.2) by x, as was done repeatedly in Chapters 4-6, and subtracting,
to obtain

dt (Gx) = Gb, (9.6)

and hence

G(t, r)b(t) dtx(r) = G(0, r)x(0) + T (9.7)
J0

since G(r, r) = I. Note that, if A = constant, so that'74 G = e-A(t-r) for t < r,
and b tends to a constant vector as r -> oo, then it is easy to see that, as r -* oo,
(9.7) gives

just as long as the eigenvalues of A have negative real parts.

173G is simply related to the so-called fundamental matrix that is often used in texts on odes X111.
t74 We define the matrix exponential by

°O tnA"ewe =2_
n=0

-'1
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Two-point boundary value problems for (9.1) can also be solved in this way.
Suppose, for example, that we have the `Dirichlet' problem when x = (x 1, ... ,
X2.)T, with (xl,...,xn)T = 0 at t = 0 and t = 1; then

1x(r) = J G(t, r)b(t) dt, (9.8)
n

where, to satisfy the boundary conditions, G is such that its last n columns vanish
at t = 0 and t = 1. We can define G either by

or by (9.2) and

-dG _ GA = d(t - r)Iat (9.9)

r+0
[G] r-0 = A. (9.10)

It is quite easy to relate (9.7) and (9.8) to the Green's function solutions of
the scalar equations that we described in §§4.2.1 and 5.5.1, respectively. Indeed, if
we were to write any of the scalar linear equations considered in Chapters 4-6 as
first-order systems, as we always could, we would find that the Green's functions
for these problems were simply appropriate entries in the Green's matrix defined
by generalisations of (9.2) and (9.3) or (9.9) and (9.10). However, unless A is a
constant matrix, it is unlikely that (9.1) could be recast as a scalar equation and
thus, in general, the method described above is helpful. The reason for the added
complexity of a matrix rather than a scalar Green's function is that, in order to
solve a system, we need to know how each component of x responds to being driven
by each and every component of b.

Bearing these points in mind, let us now turn to the Cauchy problem for the
linear hyperbolic system

A;
8u + Bu = f for x> > 0, (9.11)

=i ax'
with

u = 0 on, say, xl = 0; (9.12)

we assume that xi = 0 is not a characteristic as defined in (2.53). To solve this
problem formally, we define a Green's (or R.iemann) matrix as the solution of

- (GA;) + GB = 6(x - C)I, (9.13)
i=1

OXj

the delta function with vector argument being defined as in §4.2, and with G
vanishing on a surface analogous to I' in Fig. 4.1. Then, proceeding as usual,

m f r

L>0
8(GAru)

dx = u(f) - J J
...I Gf dx

x 8x1 W 0o z,>0

= 0. (9.14)
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If, instead, we specify the initial data u = uo(x') for xl = 0, where x' _
(x2i ... , xm)', and f = 0, our integration provides the standard formula

uW = J _ GA1uodx'. (9.15)

What is not standard is the fact that, for m-dimensional problems, even for
x1 < t1, G is a distribution with `mass' concentrated on the (m - 1)-dimensional
characteristic surfaces through x = t. Hence the integrals in (9.14) and (9.15) in-
clude contributions from these surfaces and their intersection with x1 = 0, as well
as from the region inside. This is a crude generalisation of the discussion about
propagation of discontinuities for the Riemann functions that we gave at the end
of §4.2.2.

An exactly similar calculation can be carried out for the Dirichlet problem for
an elliptic system of the form (9.11) with, say,

u=(tf.l,...ru2n)T, and (ul,...,un)T =0

on the boundary 3D of a closed region D. We again define G to satisfy (9.13), but
now its last n columns vanish on 3D. The asymptotic behaviour of G near x = f
is now less easy to discern than it is for the ode case, as can be illustrated with
the following model.

9.2.2 Linear elasticity

In §4.7.1, we have already encountered the famous Navier-Lame equations of linear
elasticity. In the case of static equilibrium in three dimensions, they are

Cu = pV2u + (A + µ)VV u = -f(x), (9.16)

where u is the displacement, f is the body force per unit volume and A and is are
the so-called Lame constants which characterise the material.

In view of the identities

and

it is easy to see that, when suitable boundary conditions are prescribed for u, the
operator G is self-adjoint.

There are two remarks to be made before we start. First, the system is second
order rather than first; although it could, with labour, be recast in the form (9.11),
there is no reason why any of the discussion above should be confined only to
linear systems of first-order pdes, and we will thus proceed directly with (9.16).
Secondly, (9.16) has constant coefficients and hence could, by cross-differentiation,
be reduced to a scalar equation for, say, any of the components of u. This is also
an unnecessarily tiresome procedure because, although the outcome is relatively
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simple (see Exercise 9.4), the physical significance of the Green's matrix is soon
obscured.

For simplicity, let us just consider the solution of (9.16) in the case when
the elastic continuum extends to infinity in all directions, and let us assume
that Jul grows no faster than lxi at infinity and that the strain components
8u;/8x; + au;/ax; decay at least as fast as O(1/IxI3).175 We note that the rigid
body displacement u = c. where c is constant, satisfies Cu = 0 and the decay
conditions above, and hence the Alternative implies that176

J
for all c, so that

11(x) dx = 0.

Also Cu = 0, with the decay conditions, is satisfied by u = w A x for constant w,
which corresponds to a rigid body rotation (since we are only considering small
displacements u, a rotation is

f
rby a vector product). Hence

f
that f exerts zero net force and moment on

the elastic continuum.
Now, again using the fact that C is self-adjoint, we are guided by (9.13) to

simply define the Green's matrix G to be the solution of

CG(x - 4) = -6(x - 4)I. (9.17)

with
G(x - 4) -> 0 as lxI -> oo. (9.18)

each side being interpreted entry by entry. It is easy to see that G is symmetric
and depends only on x - 4; our usual procedure gives at once that

f ((CG) u - GCu) dx = - J(o(x - 4)u(x) - G(x - 4)f(x)) dx, (9.19)

and hence, since the left-hand side vanishes, that

u(4) =
J

G(x - 4)f(x) dx.

It is interesting to note that, were we to carry out this calculation ab initio without
relying on the validity of (9.19) for distributions (cf. the comments after (4.13)),

175These conditions ensure that the elastic strain energy is finite.
176For the rest of this section we denote integrals over the whole of three-dimensional space by

f . dx.
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then the application of Green's theorem yields a contribution from a small sphere
centred at t that can be interpreted in terms of the forces applied to that sphere.
Thus G can be interpreted physically in terms of the response to arbitrarily di-
rected point forces applied to the medium at x = 4 (and hence we do not expect
its entries to decay as rapidly at infinity as we insisted for u above).

In order to find G explicitly, we simply look at the Fourier transform of (9.17).
Defining

G(k, t) = r G(x - t)e'k'x dx,

where the transform variable k is now a vector, it is easy to see that177

(9.20)

ik'fkkT II -G(k ) ( .
(9 21).e,4 j 2= p(A + 2p) IkI4

.

Some care is needed with the Fourier inversion of this singular function (see Ex-
ercise 9.5), but it transpires that the entries in G are

G+,(x - 4) =
A + p 1 A + 3pai} + (xi - G)(x,Z fit) (9.22)

87rp(A+2p) Ix - fl
The presence of off-diagonal elements would have been difficult to spot directly
from (9.17), and they illustrate the statement made above, that each component
of f influences all the components of u. The columns of G are precisely the above-
mentioned displacement vectors associated with the `point forces' along the coor-
dinate axes.

When boundaries are present, (9.22) still describes the local behaviour of G
near x = , but, not surprisingly, the application of the concept of images is now
much more complicated than in §5.6.

9.2.3 Linear inviscid hydrodynamics
We now consider what can happen to singular solutions of systems that have a
real characteristic but are not hyperbolic, thereby again illustrating the surprising
way in which the components of f in (9.11) can influence the components of u.
We will study a very simple model of inviscid hydrodynamics which shows how
the fundamental concepts of lift and drag on a body moving through a stationary
liquid can be understood in terms of distributional solutions of a system of linear
pdes. The model is a truncated version of the incompressible Euler equations, to
which (2.3)-(2.7) are related, and to which we will refer again in §9.4.4. When the
fluid is being driven by a localised force that is so weak that only linear terms need
be retained, these equations take the dimensionless form17e

S +Vp=f,
0 at t = 0, and we now study the response to various forms of f which

might describe different kinds of small bodies moving through the fluid.

177 By kkT we mean the matrix (kikt).
1781n this chapter only, we revert to the conventional use of u as the fluid velocity in hydrody-

namics.
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In all cases we assume the fluid extends to infinity in all directions and is at
rest there. Also, we expect that much of the flow is irrotational because, in regimes
where f = 0, the vorticity V A u is independent of time. Hence, if the vorticity is
zero initially, then we expect it to stay zero, but we will encounter some surprises
in this respect.

A lift force in two dimensions

Consider a small lifting body, such as an aerofoil moving along the x axis. We
assume that the lift force Lj, in the y direction, is prescribed, along with the
aerofoil position X(t)i. When we take axes moving with the aerofoil, we expect u
and p to satisfy

8 - X(t) 8 +Vp = V u = 0, (9.23)

where l; = x - X (t). When L and X are constant., so that we can set Ou/Ot = 0,
we find that the Fourier transform

u(k, y) =
o0 oc

ueiktf+ik2Y d{ dyZ. f00

is given by

with

u =
L

k + k (k2i - k1j),

(9.24)

ik2L
kl +

It is a simple matter to invert these transforms using the fact that the transform
of logr is -27r/(kl + ka) because V2logr = 21r&(x)6(y); the answer is

L 1 Lyu =
2rX + y 2 " - P = 2x02 + y2) , (9.25)

which is the velocity field of a vortex centred at x = X (t), y = 0. Hence a small
moving aerofoil can be identified with such a vortex.

A quite different result sometimes emerges when we allow the velocity and the
lift on the aerofoil to vary. As long as L = I'X, where I' is constant, we find

d ik, .r I'Xeik, X

dt (ue ) = k4(-k2i+k1j), (9.26)

and hence we retrieve (9.25). However, as soon as L s PX, (9.26) cannot be
integrated directly and u acquires a `history'. For example, if L = rxH(t), where
H is the Heaviside function, (9.25) is replaced by

I yi-xj\\yi-&j_
U

27r

_
f 2

+ y2 x2 + y2 1 , (9.27)
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which shows that a `starting vortex' is shed at the origin x = y = 0.179 Our
expectation that the flow would be irrotational away from the aerofoil is unjustified
in this case; the single real characteristic of (9.23) has propagated information
about the motion of the aerofoil.

Drag in two dimensions

This is an interesting problem to pose because it is well known that d'Alembert's
paradox [27J precludes the existence of a drag force on a body moving with constant
velocity in an irrotational flow. However, if we attempt to model a drag force D
by naively replacing (9.23) by

at - X a + Vp =

D and X are constant and 8u/8t = 0,

u- A(k2 k2)
(k i-ks.l), P= kDk , (9.29)

and inversion leads to the appearance of a delta function in the components of u
as we approach the drag-producing body at f = y = 0. In fact, it is well known
that drag on an accelerating body, usually referred to as added mass, must be
modelled by

o - X 8u + Vp = 0, V- u =M61 wgy). (9.30)

The last term is a `mass dipole' and it leads to the velocity field

s
u = 2

(8F82

a(logr)i +
80Y

(logr)j) , r2 = f2 +y2, (9.31)

which differs from the inverse transform of (9.29) by the aforementioned delta
function in u. Hence (9.28) is not a good representation of a drag force. The
correct representation (9.30) models the flow generated by a small non-lifting body
for arbitrary k and the exact solution of the Euler equations reveals that M is
proportional to X.

Three-dimensional flow

The situation becomes even more interesting in three dimensions. When a small
aerofoil at (Vt, 0, 0) is modelled by

-V + Vp = L6(06(y)b(x)j, V u = 0,

we find the three-dimensional Fourier transform

179When viscosity is taken into account, this vortex diffuses through the whole flow field, which
is eventually steady and such that f u ds around the aerofoil is equal to r, which is called the
circulation.
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L

Fig. 9.1 Horseshoe vortex.

iLk2
u

Vkl(k2 + k22 +
k2)k.

Hence u = V O, where

L y x - Vt
-47rVy2+z2 1-

((x-Vt)2+y2+z2)1/2

so now, even in steady flow, a wake is shed along the degenerate characteristic
y = z = 0, x < Vt. This is the famous `horseshoe vortex' [26] (see Fig. 9.1).

Our approach can even shed light on the well-known phenomenon of vortex
ring propagation, as produced, say, by a suitably exhaled puff of cigarette smoke.
Using the technique described above, we can show that the solution of a steady
axisymmetric flow modelled by

-V 8 + Vp = (z)i, V V. u = 0

is
u _ D(g2 _ - zz, 3t b, 2z)

for (t, y, z) 0 0,
41r y2 + z2) /2

which is the far-field of a vortex ring (see [39] and (7.114)). This velocity field
differs by a delta function at the origin from that produced by a mass dipole as in
(9.30), but, more importantly, it shows that we can regard the motion produced
by a smoke ring as equivalent to that generated by a suitable point force in the
equations of motion.

9.2.4 Wave propagation and radiation conditions
For linear systems of pdes which model wave propagation, it is possible to proceed
directly in the time domain by analysing the equation with three independent
space variables and time t, say by using Riemann matrix ideas. However, we have
often remarked that, if the coefficients in the system are independent of time,
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then it is easier and frequently of more practical interest to restrict attention to
monochromatic waves in the frequency domain by writing the dependent variables
as functions proportional to a-i' t, say 180 We did that for the scalar wave equa-
tion in §§5.1.5 and 8.1, and some of the ideas in those sections carry over to the
vector case. However, many fascinating problems arise, such as the question of
propagation through periodic media. As mentioned in §4.5.4, in one dimension
this leads to the notions of pass and stop bands bounded by eigenvalues of a pe-
riodic Sturm-Liouville problem, but this framework relies on the well-developed
Floquet theory for odes with periodic coefficients. It is much harder to understand
multidimensional configurations of this kind because of the geometric complexity
of the waves as they reflect from each periodic cell boundary. It is a great pity
that we cannot discuss this further here because of the fundamental importance
of wave propagation in crystal lattices.

Another issue that arises when we consider problems in the frequency domain
for unbounded wave-bearing media that are uniform at large distances is the ques-
tion of the radiation conditions that generalise the Sommerfeld condition (5.75)
which was so vital in ensuring uniqueness for scalar problems. For example, for
Maxwell's equations (see §4.7.2) we may suppose that the leading-order far-field
radiation due to any bounded source of non-zero intensity decays with distance
in proportion to e'kr/r (or eikr/f in two dimensions), where k = w/c is the
wavenumber. Now all electromagnetic waves are transverse waves in the sense that
the directions of the fields E and H are perpendicular to the direction of propaga-
tion of any wave; this is a trivial consequence of (4.82) in the frequency domain,
because, when we seek such solutions in which E = E(k r) and H = H(k r),
both E and H are clearly perpendicular to r. Hence we may write that, at large
distances, where k and r are nearly parallel,

eikr eikrEH--h,r r
where e and h are both azimuthal and are independent of r to lowest order.
Then (4.82), suitably scaled, gives at once the radiation conditions

O= VAE-iwH.i(kAe-wh) =ol 1 1

/\l

r/
O= V AH+iwE.i(kAh+we) = o 11)rG

asr-aoo.
Similarly, in elasticity, the wave equations (4.73) imply that, far from any

bounded region of sources, u decays like uoeikr/r, where again k is radial. As
expected, we find that either

k = k where uo k, = 0 and w2 = k°µ

P

'80Such waves can always be superimposed to generate solutions in the time domain, but this
may be easier said than done.
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corresponding to transverse shear waves (S-waves), or

k = kp, where uo A ky = 0 and w2 =
k»(,\+ 2µ)

P

corresponding to longitudinal compressive waves (P-waves). Hence the radiation
condition is that, at large distances,

elks eik,r
u-u8-+up-,

r r

where u8 k8 =0 and uy A kp =0.

9.3 Complex characteristics and classification by type
We have highlighted in many places the dramatic differences between ellipticity,
parabolicity and hyperbolicity. One attempt that has been made to reconcile these
two concepts is Garabedian's theory of complex characteristics [21). The basic idea
relies on the fact that the solution of an elliptic partial differential equation is
usually an analytic function of the independent variables. Hence, for the elliptic
equation

020 820

0{2 + 9y2 °,

we could seek solutions analytic in _ + irl and note that this implies that
020 82¢
3 2 +

X12
= 0.

Subtracting the two equations, we see that

820 020
aye 2 = 0,

which is a hyperbolic equation in (y, 7)). However, this procedure inevitably involves
analytic continuation of the boundary data which, as we have already remarked,
is a dangerous procedure, and it is only justified as long as no singularities are
encountered in the continuation into rl $ 0 (see Exercise 9.7).

Armed with our knowledge of ray theory from Chapter 8, we can gain further
insight into the pitfalls encountered in trying to unify ellipticity, parabolicity and
hyperbolicity. Consider, for example, the following problems in y > 0:

2 2

ate- +8-=0,
y

(9.32)

with
0(x, 0) = e-: /2`, e > 0, (9.33)

and either

(i) a>0 and asy-oo
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or

(ii) a<0 and ony=0.

It is easy to see that the decay condition is sufficient to ensure uniqueness in the
elliptic case (i); the Cauchy data, which is equivalent to saying that 0 is a function
of x - Vr--ay, ensures uniqueness in case (ii). (When a = 0, the `parabolic' case,
the only solution that is bounded at infinity is O(x, y) = e z2/2i.)

Although the parameter a can be scaled out of either problem, we might expect
that sensible limits could be retrieved as a -> 0. Indeed, it is possible that in this
limit 0 would be closely related to the Green's function or the Riemann function,
respectively, and we will see the precise relation later. Now a ray theory ansatz in
which Ae°/[ yields the eikonal equation

a MY + MU), =0,

and Charpit's method then gives u = -s2/2, where, in case (i),

2

x=s(1-t), y=fib, u -_(xf

2

,

and so there is no possibility of exponential decay as y -+ oo. In case (ii), however,
we have

x=s(1-t), y= - st
,

2

Thus in case (ii) the characteristics are x = s + y//&, and we have retrieved
the hoped-for propagation of the data along the characteristic x = ys, but
case (i) has woefully failed to reveal anything like the singularity associated with
the Green's function for (9.32). The ray ansatz has worked well when the equation
is hyperbolic but leads to solutions with unbounded oscillations and growth in the
elliptic case.

Now we can solve either case by Fourier transforms. The answer is

e
dk, (9.34)(i) O(x, Y) _ F00

dk; (9.35)
- 2 J ooirv

in each case the coefficient of y in the exponent is determined uniquely by the
data.

We now have to rely on some results from the theory of asymptotic expansions
of integrals [22]. As a - 0, (9.35) is always approximated by the saddle point
contribution that emerges when we write k = rc/e to obtain

00
1 e-(K2/2+1 Udsc

7r 2e _.
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K2 K2

K1

Fig. 9.2 Inversion contours for case (i) and case (ii); we have taken x = 0 in both cases.
The steepest descents direction at the saddle is shown dashed.

The saddle point is at r. = i(x - yvr--a), leading to a term e-2in 4.
However, the integral for case (i) must be written as

00

W
I dK,

a 2e
which is always approximated by its end-point contribution from near r. = 0,
namely eyV/Q-/(ay2 +x2), which is proportional to the y derivative of the Green's
function for (9.32) with Dirichlet data on y = 0.

Thus we see that the switch from elliptic to hyperbolic can be identified with the
presence or absence of a saddle point on the inversion contour for a Fourier integral.
In case (i), the inversion path cannot be deformed into a 'steepest descents' contour
(see Fig. 9.2(i)), but in case (ii) it can (Fig. 9.2(ii)). Note that the function that
emerges from the ray ansatz has no Fourier transform in the usual sense and is
hence legislated against when we write down (9.34).

9.4 Quasilinear systems with one real characteristic
Annoyingly, practical problems often give rise to systems of pdes which, like that
in §9.2.3, are neither elliptic nor hyperbolic in the sense of Chapter 3 and are
often nonlinear as well. Hence they usually need to be treated individually on
their merits and here we will simply list three examples.

9.4.1 Heat conduction with ohmic heating
In models of many electric devices, such as thermistors, the equations of conductive
heat transfer must be coupled with those of electromagnetism via the resistance
or 'ohmic' heating of the device. In one of the simplest configurations, the current
density j is related to the electric potential 0 by Ohm's law

j = -a(T)VO, (9.36)

where the electric conductivity a is a positive function of the temperature T. In
quasi-steady conditions, conservation of charge gives
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V j = V (-a(T)V ) = 0. (9.37)

Meanwhile, the resistance heating generates a volumetric heat source -j V0 and
so the energy equation in suitable units is

_V2T+a(T)IV I2. (9.38)

Following §2.6, it is easy to check that the only real characteristic surfaces of (9.37)
and (9.38) are t = constant but, as is often the case, this gives disappointingly
little information about the structure of the solution. It simply suggests that the
imposition of initial conditions on T and boundary conditions for T and 0 might
be sufficient to guarantee well-posedness, at least as long as a is strictly positive.
The only other obvious indicator is when there is enough symmetry (e.g. as in a
one-dimensional problem) for (9.37) to be integrated explicitly and 0 eliminated
to yield a parabolic equation for T, which may be 'non-local' if the thermistor
is coupled to an external circuit. In the steady case, however, in two dimensions
the resulting elliptic system has the remarkable property that it is invariant under
conformal maps, and hence, if the boundary conditions have the right form, many
explicit solutions can be found (see Exercise 9.8).

9.4.2 Space charge
Another interesting electromagnetic phenomenon occurs when a field is generated
that is strong enough to inject ions into the medium in which it is acting. This can
happen in the air around a high-voltage DC transmission line; another example is
the use of electrostatic precipitation to remove small particles from power-station
emissions or to apply a coating of charged paint particles to a metal workpiece.
Since all the current is carried by the mobile ions, it is reasonable to take the
current density j to be the product of the average charge density p and the average
particle velocity v, so that

j=Pv
In many cases, v is found by balancing the electrostatic force on an ion or charged
particle, which is proportional to -V¢, with a viscous drag force proportional to
v. Hence, in suitable units,

j = -PD0
Now, conservation of charge gives

8p -
8t V WO) = 0, (9.39)

whereas Maxwell's equations with c = 1 demand that p and 0 are related by
Poisson's equation

V20 = -p. (9.40)

When we now follow §2.6, we find the normal cone again has only one real com-
ponent and that it is a plane. The characteristic cone is thus the line (-VO,1) in
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space-time. In a steady problem this gives considerable insight because it is easily
seen that (9.39) reduces to

OO_Vp-p2=d +p2=0,

where d/dr denotes differentiation along a characteristic. Moreover, in steady two-
dimensional problems, there is a `stream function' V' such that

00 any 00 00PTX-8g/' p5i _-ax,

and vy is constant on a characteristic, which is thus orthogonal to the equipoten-
tials. All these observations enable us to simplify the problem by transforming to
hodograph variables ¢ and t'. Some solutions are given in Exercise 9.9.

9.4.3 Fluid dynamics: the Navier-Stokes equations
It is very helpful to keep several of the ideas introduced above in mind when con-
sidering the far more important and difficult Navier-Stokes equations of hydrody-
namics. This is probably the most intensively studied of all systems of nonlinear
pdes and it is a synthesis of two different models described earlier in the book. For
incompressible flow, the system is

8u 1 (9.41)
8t

+(u.p)u--Vp+RVZU' V.
u-0'

with appropriate initial and boundary conditions. The only parameter is R, the
Reynolds number, which is inversely proportional to the viscosity of the fluid.
Concerning the derivation of (9.41), we can only remark that when R -+ oo we
formally retrieve the inviscid flows described in Chapter 2, and when R -4 0 and
p = O(R-1) we return to the slow flows of Chapter 5. A systematic derivation
can be found in [29], where the relevance of the boundary layer equation (6.77) for
large finite R is also explained.

In this book we have already seen that, as a result of various approximations,
(9.41) is the progenitor of many systems of pdes, some elliptic and some hyper-
bolic. Nonetheless, there are no rigorous results concerning existence, uniqueness
or well-posedness for the full system unless R is quite small. Unfortunately, many
interesting and important flows occur at large values of R (say 108 in aerodynam-
ics) and, indeed, the phenomenon of turbulence is widely believed to be described
by (9.41) with R large. Thus, it is not surprising that (9.41) is so challenging the-
oretically and we begin our discussion by only looking at the formal limit R = oo.

9.4.4 Inviscid flow: the Euler equations
Adopting our standard philosophy, we begin by looking for real characteristic
surfaces for the system

8 V u=0. (9.42)
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When we `freeze' the operator u V locally in the vicinity of some point of the
flow, we find that, when we write ¢(x, t) = constant as a characteristic surface
with 80/8t = to and 8q/8xi = ti, the normal cone is

3

2 =0.0 + tti4 i
i=1 (i=1

(9.43)

Hence, there is again only one real component of the characteristic surface, and it
degenerates into the line

dx = _

u
(9.44)

dt '

which is called the particle path. Moreover, it is easy to see that, in steady flow
in which Ou/8t is zero in (9.42), the quantity p+

i
Iul2 is a Riemann invariant on

these particle paths, which are then called streamlines (t then simply parametrises
distance along the paths). This result is one version of what is called Bernoulli's
equation in hydrodynamics and this simple exercise in Riemann invariants is of
fundamental importance in calculating hydrodynamic forces. However, more in-
formation can be gleaned from (9.42) by looking at the following generalisation of
the idea of Riemann invariants.

In Chapter 4, we simply set ourselves the task of finding functions of the
dependent and independent variables that are conserved along characteristics, at
least in two-dimensional problems. But why should we not seek functions, even
vector or matrix-valued ones, of the derivatives of u that might be conserved
along characteristics? "I At first sight this seems a tiresome idea because not only
is the evaluation of the equations to be satisfied by the derivatives tedious, but the
introduction of ever higher derivatives leads to ever more overdetermined systems
for these derivatives. However, look at what happens when we just consider the first
spatial derivatives of u and p in (9.42): if we nimbly exploit the homogeneity of the
nonlinear term and eliminate p by cross-differentiation, in two space dimensions
(x, y), where u = (u, v), we obtain

C +ux +v l ( 8x 0. (9.45)

Hence the vorticity

ou-8 (9.46)

is conserved along the characteristic; when the flow is steady, the Bernoulli function
p +

z
(u2 + v2) is also conserved along the characteristic.

The generalisation of this idea to three-dimensional flows is even more fascinat-
ing. We can either be motivated by (9.46) or prompted by our earlier discussion
of hydrodynamics to define

w=VAu, (9.47)

181 The idea of looking for conserved derivatives can also be applied to the group theory approach
of §6.5; then the groups act on what are called jet spaces.
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and now the cross-differentiation exercise yields

8t
+(u.V)w-(w-0)u=0, (9.48)

and this equation has implications as dramatic as those of (9.45) for the theory of
inviscid hydrodynamics. We have already seen in §9.2.3 that the linearised equation
of inviscid flow has irrotational solutions, i.e. ones in which w = 0, if w vanishes
initially. We can now see that this result also applies to the full nonlinear Euler
equations. This is trivial to see from (9.45) and less easy from (9.48); in any case,
as anticipated in Chapter 5, there is a large class of irrotational flows for which
there exists a velocity potential 0 such that

u = V O. (9.49)

For these potential flows, (9.42) implies that the nonlinear Euler equations have
been reduced to the simplest example of Chapter 5, namely

V20=0. (9.50)

It can also be easily shown, by considering its gradient, that for potential flows
the quantity

8 +1IV012+p (9.51)

is a global invariant, not just a constant on any one characteristic, as would be
obtained by the argument above.

We will say more about the velocity potential later, but let us first return
to the rather mysterious equation (9.48), which does not, at first sight, appear
to be a conservation statement along the characteristics (9.44). However, we must
remember that we are now dealing with the vector w and this forces us to reconsider
what we mean by conservation along a curve. As illustrated in Fig. 9.3, it only
makes geometric sense to say that w is conserved along (9.44) if its value at time t+
8t is related to its value at time t according to that diagram. We begin by drawing
the vector w(t) through P, consider the evolution of P and the nearby point P
to Q and Q', respectively, and demand that w(t + bt) is in the direction QQ'. A

w(t + at)

Fig. 9.3 Conservation of vorticity.
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simple calculation (Exercise 9.11) shows that (9.48) is precisely the condition for
w to be conserved in this geometric sense.

We remark that even this idea of conservation needs to be taken one step fur-
ther when considering fluids such as liquid crystals, whose anisotropic structure
requires their properties at any `particle' to be described by a matrix or linear
transformation which is transported by that particle. This then necessitates con-
sideration of conservation of a linear transformation along a vector field such as
(9.44). Hence we require a characterisation of matrices A such that, whenever a
and a' are conserved, i.e.

a
(9.52)

and Aa = a' at t = 0, then Aa = a' for all t. As shown in Exercise 9.12, this
requires that

at + (u V)A = Aft - AA, (9.53)

where the vorticity matrix A has entries

_ 1 Ou; 8ui
H'' 2(a, 0,

We conclude our brief discussion of the Euler equations by making some spec-
ulations about possible boundary conditions to go with the initial condition in u
that we will clearly need. For irrotational flow we would usually have Neumann
data for the elliptic equation (9.50), but in the rotational case the situation is
much less clear. We can, however, proceed to make an educated guess on the basis
of ideas of transmission of information along characteristics, as well as ideas from
ellipticity in Chapter 5. If (9.42) was hyperbolic, we would expect to have to know
four pieces of Cauchy data prescribing u and p at the boundary, or six pieces
if we worked with u and w. However, from (9.43) we see that there is a single
real component of the ray cone, namely the particle path, as well as the complex
component associated with the Laplace operator. Moreover, there is a time-like
direction, which means that information is only transmitted along a particle path
in the direction of the flow. Now we recall that, when w = 0 on any inlet at which
particle paths enter the domain of interest, the problem reduces to Laplace's equa-
tion, for which only one piece of Cauchy data (typically u n) is needed. Hence,
we surmise that, when w $ 0, we need more information than just the value of
u n. We cannot give the precise specification here but, as shown in Exercise 9.13,
a prescription of w itself would lead to an overdetermined problem.

9.4.5 Viscous Sow
As hinted earlier, there is little that can be said in this text about the horrifyingly
difficult Navier-Stokes system (9.41). As in our earlier example of ohmic heating,
we find that, for finite values of R, (9.41) is parabolic and that the only real
characteristic manifolds are t = constant. Also (9.48) becomes
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8w 1

T, RV2w; (9.54)

this suggests that viscosity acts to diffuse the vorticity, which is then no longer
conserved in the sense of Fig. 9.3.

Apparently, the only remaining avenues are to look for explicit solutions, should
the geometry be symmetric enough, or to seek estimates to help with existence
and uniqueness results (see, for example, [14]), or to follow the fertile approach
of looking for approximate solutions. Indeed, we have come across several such
approximations at various places in this book, but they have all been quite crude
compared to the varied and often delicate asymptotic theories that have been de-
veloped in recent decades. However, one striking exact result has recently emerged
in the special case of two-dimensional steady flow. This is the realisation that is
then possible to write down the general solution of the two-dimensional Navier-
Stokes equations in terms of two arbitrary functions! The details of this result
are too complicated to describe here's' but they start with the idea of confor-
mal invariance. We recall that in two dimensions the general solution of Laplace's
equation can be written as

u = W f (z),

where f is an arbitrary analytic function, while in §5.8.4 we saw that the general
solution of the biharmonic equation is

u = R (2g(z) + h(z)) ,

where g and h are arbitrary analytic functions. Now, in steady flow, (9.54) can be
thought of as a nonlinear generalisation of the biharmonic equation because. if we
introduce a stream function e' such that u = (8th/8y, -80/0x), then we find

1
4 a(V'' V20) (9.55)

RC
V1

My, X)

Moreover, we recall from §5.12 that even the nonlinear Liouville equation could
be solved by regarding z and 5 as independent variables, leading to its reduction
to a Ricatti equation. The same sort of idea works here; (9.55) can be written as

4 aat
(az

8tp a at a)
R

82t

at at 8z J 8z82 '
which in turn can be split into the sum of a function and its conjugate as

2 84ti) r 02 2
80 193V,

R 8z28z2
+ 2i 5z8i + 8z az8z2

2 a4tp a'tp 12 alp
03V,

+ { R az'az'
2i

8zaz J + az az2az) = u

'82See the paper 'Parametrization of general solutions for the Navier-Stokes equations'. Quart.
Appl. Math., 52, 335-41, 1994, by K. B. Ranger.
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Each term in curly brackets is a perfect second differential so that

a2 2 a2 (a P\21l
ai:2 (R8z +i 8zl /J O,

and this eventually enables ' to be written in terms of two arbitrary functions of
zandz.

9.5 Interaction between media
As pdes are used to model more and more complicated configurations in science
and technology, we inevitably encounter composite problems where different pdes
have to be conjoined in some form or other. A now-classic example, motivated by
the study of flutter in aircraft structures or the underwater acoustics of ships and
submarines, is the following lass of problem.

9.5.1 Fluid/solid acoustic interactions
The simplest situation we might envisage is that of a'fluid-loaded' elastic solid: the
solid itself can transmit waves but so can the fluid in which it is immersed, and a
vital question concerns which medium is preferred by sound waves excited locally
near the solid. Typically, in two space dimensions in the frequency domain, we may
have to solve a Helmholtz equation in an inviscid fluid y > 0 with a wave operator
in the boundary instead of the conventional Dirichlet or Neumann data discussed
in Chapter 5. The simplest configuration is when the solid is a membrane. Then
the fluid velocity potential is R (e`'1'90(x, y)) and 0 satisfies

(V2+k2)0=0 for y > 0. (9.56)

If the transverse displacement of the membrane is u, the boundary condition is

ac2 2 +k2u=vp ony=0; (9.57)OX2

here c is the wave speed in the membrane relative to that in the fluid, v is a
positive constant which measures the `fluid loading', and p is the pressure exerted
by the fluid. To close the model we need to use Bernoulli's equation on y = 0 and
a kinematic condition which, for small disturbances, gives

p = iw'(x, 0), -iwu =

8U

(x, 0), (9.58)

together with a specification of the source and any radiation condition that may
be necessary.

This type of problem offers many new challenges and opportunities. On the neg-
ative side, the radiation condition is even less obvious than it was for the systems
considered in Chapter 5, but equally the problem is linear and hence susceptible to
Green's function techniques and, in this geometry, to Fourier transforms. As often
happens with seemingly simple practical problems like this, the technical details
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are quite formidable and would require more space than we have here. However,
the predictions can be quite surprising and it turns out that, for a source localised
in the membrane, it is only when c < 1 that this source radiates energy uniformly
to infinity in the fluid. This is a simple generalisation of the difference between
supersonic and subsonic flow (see Exercise 9.15).

9.5.2 Fluid/fluid gravity wave interaction
Whenever two media interact at a common interface that moves appreciably, a free
boundary model can be formulated for the motion of the interface. One common
situation where this happens is when immiscible inviscid fluids of different density
flow past each other, as discussed in §7.1. Moreover, when the interface motion is
so small that the problem can be linearised as in §7.2, all such composite problems
can, in principle, be `condensed' into a statement that involves variables defined
only on the boundary between the different regions that are involved. For example,
if in (9.56) we write the Dirichlet-to-Neumann operator

a0 (x, 0) = C4(x, 0), (9.59)

then (9.57) becomes

(c2
2

+ k2) CO(x, 0) = VW20(x, 0). (9.60)

Of course, ,C is now a global operatorls3 and we are immediately led into the realm
of integro-differential equations, which is, in principle, beyond the scope of this
book. However, there are many interesting new ideas involved and the derivation
of one spectacular example is described in Exercise 9.16; it is the Benjamin-Ono
equation, ft au a

fit + u
fix ( 8x2)

where ii denotes the Hilbert transform. We will mention it again in §9.7.

(9.61)

9.6 Gauges and invariance
At several stages throughout the book we have encountered situations where pdes
have been more or less `solved' not by integration but by insouciance. This happens,
for example, in two-dimensional incompressible fluid dynamics, where we stated
boldly that the equation of mass conservation 8u/fix+8v/8y = 0 is automatically
`solved' by the existence of a stream function 0 such that u = 8*/8y and v =
-80/fix. Most recently, we made the same statement concerning the velocity
potential ¢ in (9.49). At a slightly higher level, after (5.110) we asserted that one

'83In fact,

Cu(x) = f oo Holi(k(x - f))(t)df,
00

where Ho'l is the Hankel function of the first kind.
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of Maxwell's equations, V H = 0, could be `solved' using the existence of a vector
potential A such that H = V AA (or of a skew-symmetric matrix whose divergence
is H). Quantities like 0, 0 and A are often called gauges. Before mentioning some
other interesting examples, we can make two obvious general remarks.
1. Most pdes do not possess gauges, or at least not in an obviously identifiable

form.

2. There is always a price to pay for using gauges because of their non-uniqueness.
In the cases mentioned above, &, ¢ and A are arbitrary to within additive
constants and an additive gradient of a function, respectively, while A could be
pinned down to within a constant by requiring that, in the time-independent
case, V A = 0, in which case it is called the Coulomb gauge. To ensure well-
posedness for models for these gauges in the sense of Chapter 2, it is necessary
to relax the requirement of uniqueness to allow for these transformations.

Nevertheless, it is a matter of common experience that the convenience of reduc-
ing the size of a system of pdes usually more than outweighs any disadvantages
resulting from introducing the gauge and, indeed, gauges may play a vital role in
modelling practical problems.

An interesting illustration of the complexity of the idea of gauge functions
comes from asking the following question: `How can we characterise three-compo-
nent functions u(x, y, z) in terms of the number of independent scalar functions
that are needed to define them?' A more informative answer than simply saying
'three, one for each of the three components of u' is provided by the following
hierarchy of vector fields.
1. Suppose the 'vorticity' vanishes:

VAu=O. (9.62)

This is a highly degenerate first-order system of pdes whose normal cone is the
whole space; the calculation in §2.6 yields zero for any (l;,, e2, es ). Nevertheless,
it is well known that a necessary and sufficient condition for (9.62) to hold is

u = V4) (9.63)

for some scalar gauge function 0 which is only determined to within a constant.
Hence u is characterised analytically by one function, to within a constant, and
geometrically by the fact that the field u(x) is everywhere normal to a family of
surfaces 0 = constant. However, this geometric condition would also be satisfied
if

u = 41 V¢2 (9.64)

for some functions 01 and 02. This leads us to the next layer in the hierarchy,
which follows.

2. Suppose the helicity, u V A u, vanishes:

(9.65)

This scalar equation is automatically satisfied by (9.64) and is clearly even more
underdetermined than (9.62). However, it can be shown that (9.65) implies
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(9.64), where 02 is undetermined, at least to within a multiplicative constant.
Hence it follows that (9.65) is necessary and sufficient for the existence of a
family of two-dimensional surfaces to which u is everywhere orthogonal. If (9.65)
appeared as part of a system of pdes for u, it could be replaced by the existence
of two gauge functions 01 and 02.

3. The least degenerate situation is when

f (9.66)

is a given function f that does not vanish in the region of interest. Then the best
that can be said is that any characterisation of u requires three scalar functions
and, generalising (9.64), these could be the so-called Clebsch potentials, which
represent u in the form

u=01VO2+003. (9.67)

The gauge invariance of 01, t2 and ¢s is now even less clear than when the
helicity vanishes.

We cannot discuss these questions further here but merely remark that helicity
has an important role to play in magneto-hydrodynamics [28]. Even for the Euler
equations (9.42) and (9.48) with no boundaries, it is easy to see that, with V n u =
W,

d Ju.wdx=J \a +u.VI(u.w)dx

= f(-Vp.+u.(a.V)u)dx

_ JV.(-pw+(w.u)u)dx; (9.68)

this vanishes, assuming p and u decay sufficiently rapidly at infinity, and hence
the total helicity is a conserved quantity.

9.7 Solitons
The Benjamin-Ono equation (9.61) is one example of a small class of nonlinear
models, most of them pdes, which have had an influence on science out of all
proportion to their numbers. One other example that is simple enough to derive
here concerns the suspension of a large number of rigid pendulums (e.g. paper
clips) from an elastic object with torsional stiffness (e.g. an elastic band) aligned
along the x axis, as in Fig. 9.4. In the absence of gravity, torsional waves could
propagate down the system according to the well-known one-dimensional wave
equation

C2
22e 20

= 0,
8x2 at2

(9.69)

where 8(x, t) is the angular displacement of the pendulum at the point x from the
downward vertical and c is the torsional wave speed. Equally, in the absence of
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Fig. 9.4 Realisation of the Sine-Gordon equation.

any spatial variation but in the presence of gravity, a pendulum of length I would
respond according to the simple pendulum equation

0,0
ate+Istn0=0.

Putting these two mechanisms together, we find the famous Sine-Gordon equa-
tion184

2 !to
ate 9C 8X2 - 8t2 =

l
sine. (9.70)

Thus far, the only two obvious remarks that this book would have had to
say about the Sine-Gordon equation are that it is hyperbolic (we would not even
have been able to say that much about the Benjamin-Ono equation) and that
there are travelling wave solutions involving hyperbolic secants (and hyperbolic
tangents for (9.61)). The discovery that the Cauchy initial value problem can be
solved almost explicitly for the Sine-Gordon and Benjamin-Ono equations, and for
some other equations to be mentioned later, came about through a coincidence of
several seemingly unrelated trains of thought, involving conservation laws, group
transformations, eigenvalue problems, scattering theory and inverse problems; the
greatest stimulus came from numerical experiments concerning the remarkable
way in which certain travelling wave solutions, called soliton8, can `pass through'
each other and emerge unscathed, much as if they were solutions of the prototype
wave equation (9.69). Even thirty years after the pioneering work, it is still more
difficult to motivate the key ideas of soliton theory than any of the others in the
book, partly because of the absence of any elementary geometrical interpretation.

The closest we have come to soliton theory in the preceding chapters has been
in Chapter 6 when we described the possibility of using groups of transformations
to simplify certain pdes. There, we only sought simple `similarity transformations'
of the dependent and independent variables. Even the generalisation of the ideas
of §6.5 to include derivatives of the dependent variable would soon have led us into

184This equation arises in far less transparent situations than this, such as for the variation of
the order parameter in a small gap (Josephson junction) between two Type-I1 superconductors.



SOLITONS 419

unjustifiably complicated technicalities. However, there is no limit to the imagina-
tion that might be exercised when asking about objects that might be left invariant
when a pde is satisfied. Simple answers to this question that we have seen have
been that the object could be a function (e.g. a Riemann invariant) or a functional
(such as the integrated density in a conservation law). But suppose we were to ask
a question that might be posed by a scientist interested in quantum mechanics:
`could an operator that depends on an unknown function be invariant when that
function evolves according to some pde?' This is a much more recherche question
than its predecessors, as can be seen if we consider the simplest non-trivial linear
operators, namely 2 x 2 matrices. In particular, we ask `are there any odes that
a1 (t) must satisfy so that

A(t) = (a,l(t)) (9.71)

evolves in such a way that its eigenvalues and hence its invariants are constant
in time?' Not only might this be an interesting question in its own right, but it
also leads to the possibility of finding out something about the solution of the
differential equations satisfied by aid by working backwards from the eigenvalues.

Thus, suppose
Ax(t) = Ax(t),

where all the eigenvalues A are independent of t. Then there exists an invertible
matrix C(t) such that

A(t) = C-1(t)A(0)C(t).

Hence

dt, = dt (C-') A(0)C + C-' A(0)
at-

=BA-AB,

where

B dt (C-') C = -C-' ddC,

since C-' C = I. Note that

so that

(A - AI) (T -Bx)
=

0,

(9.72)

dx - Bx = T(t)x (9.73)
at

for some scalar function T(t). Note also that, if C were orthogonal,'85 in which
case BT = -B, then we would find from the identity

d (XT X) = XT (Bx + Tx) + (XTBT + TXT) X

181 If any of the matrices, eigenvalues or eigenvectors is complex, transpose must be replaced by
Tcomplex conjugate transpose, and C would have to be unitary, so that CC = I.
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that, as long as Ix12 is independent of time, T(t) = 0 and the evolution of x would
be governed by

dx = Bx. (9.74)at
The calculation leading to (9.72) is the motivation for the famous Lax formu-

lation of soliton theory,iss which requires the generalisation of (9.72) to general
linear operators. To illustrate the finite-dimensional theory, we can construct a
system of odes for the a,3 in (9.71) by choosing any 2 x 2 matrix B whose en-
tries are functions of a;3. But we must be careful about how many of the a;3 we
allow to vary. If three were constant, from (9.72) we would obtain four odes for
the one variable entry; moreover, since the eigenvalues would only depend on this
one entry, it would have to be constant. The other extreme would be to allow
all four entries to vary and obtain four odes for them, with the constancy of the
eigenvalues ensuring the existence of two conserved quantities. It is easiest to look
at the intermediate case

A all x(t) (9.75)
y(t) a22 '

where alt and a22 are given constants. Then it is easy to see that, no matter what
choice we make for B, provided only that it is chosen to ensure that A is of the
form (9.75), we end up with dx/dt = F(x, y) and dy/dt = -(y/x)F(x, y), so that
xy, which determines both eigenvalues, is indeed constant.

Now let us extend this argument to the infinite-dimensional case. Suppose A is
a linear differential operator in x with coefficients that involve functions of x and
t, and again, to keep the spectrum of A constant in time, we require that

OA = BA - AS. (9.76)
at

This is to be interpreted as saying that

WO = (BA - AB) 4i

for arbitrary smooth functions O(x, t). Now, however, we demand further that
these functions are such that (BA-AB)0 does not involve any differentiation of 0
but is purely 0 multiplied by functions involving the coefficients in A and B; hence
we will be led to one or more pdes for the coefficient functions in A and B. (This
corresponds to BA - AB being a square matrix in the finite-dimensional case; we
could not have carried through example (9.75) unless B were a 2 x 2 matrix). In
particular, for historical reasons, we could choose

A = - 8x2 + u(x, t), so that OAt = 9 ,

'"Note the analogy between (9.72) and (9.53) and, when C is orthogonal, with the idea of
angular velocity in classical mechanics.
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and
3

B= -4ax3 + 3 (u
8x + OX-U)

We would then find that (9.76) is the famous Korteweg-de Vries (KdV) equationls7

8t +
8z3

6u
8x

(9 77)

and equations such as (9.70) can emerge similarly when more complicated choices
are made for A.

The way is now open to construct the following intriguing recipe proposed for
the Cauchy problem for (9.77).

1. Given u(x, 0) = uo(x), find the eigenvalues of the operator A(uo) (in the KdV
case, A(uo) = -82/8x2 + uo) with suitable boundary conditions.

2. Knowing the constancy of these eigenvalues, try to find A at a later time and
from it solve an inverse problem to read off u(x, t).
This plan is much easier to state than it is to implement, because of the diffi-

culty of step 2. Hence we will restrict attention to the simplest case of the Cauchy
problem for the KdV equation with uo prescribed and positive in -oo < x < 00
and decaying sufficiently rapidly as IxI -> oo. Then u(x, t) is such that the eigen-
value problem

_8 +GAt/i = 8x2 + u(x, t)t = for -oo < x < oo, (9.78)

with bounded, has a real spectrum independent of t even though A evolves
in time according to (9.76). Also, because of our assumptions about u, we expect
the spectrum to contain all negative values A = -w2, and possibly some discrete
positive values A = wn with corresponding eigenfunctions t(n) (x, t).

Now comes the key observation that this spectrum describes the modes of oscil-
lation of a one-dimensional elastic continuum modelled by the hyperbolic equation

02 Ip 02 Ip

8x2 872

in fact, setting A = -w2, 0 is related to i by

J

00t'(x,w; t) = tp(x, r; dr,

(9.79)

and, by inversion, tG is a suitably weighted sum of terms t e-'"r and
Note that this is the first time in the book that we have taken a Fourier transform
with respect to a time-like variable but, in one space dimension, time and space

'"This spectacular equation can be derived from classical inviscid hydrodynamics by combining
the ideas of shallow water theory and those of modulated travelling waves (see Exercise 9.16).
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are mathematically interchangeable. Indeed, in the following discussion we shall
at various points be thinking of both x and r as the 'time-like' variable.

We remember that we can compute the t derivatives of and t/inl, and hence
of 10, from the generalisation of (9.73) to the infinite-dimensional case. However,
since t only enters (9.79) as a parameter, we will drop the explicit t dependence
of u, and ' for the time being.

The nice thing about (9.79) is its physical interpretation, because we can imag-
ine we are, say, a geologist who wishes to identify an inhomogeneity u(x) from a
knowledge of the modes of vibration of that medium. One way to proceed is to
oscillate the medium at all frequencies and record its response, and this is conve-
niently done by exciting a pulse at some point x = X, where X is sufficiently large
and negative to be remote from the inhomogeneity. The situation is illustrated
schematically in Fig. 9.5; the pulse propagates in the positive x direction, and the
reflected wave r is observed at x = X. Since

tV-6(x-X -r)+r(x+r+X) asx-> -oo, (9.80)

the argument of r being chosen because we anticipate no reflection from x = 0(1)
until r + X = 0(1), the relevant Cauchy data to model this excitation is

0= b(-r) + r(r + 2X ), = b'(-r) + r'(r + 2X) at x = X. (9.81)

Our knowledge of Riemann functions from Chapter 4 puts us in a good position
to analyse this problem. The Riemann function for (9.79) is found by setting

region of inhomogeneity

Fig. 9.5 Excitation of the half-space x > X; 0 vanishes below the characteristic
x = r + X, denoted by C.
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the right-hand side equal to a product of delta functions of x and r but, from
Exercise 4.22, we could equally have considered a suitable combination of delta
functions as Cauchy data. For example, if we set vil to be the solution of (9.79)
with

zG1 = 8(-r), 8x1 = b'(-r) at x = X, (9.82)

we find that 01 - d(x - r - X) is a bounded function of x, r and X which, for
convenience, we write as

01 -6(X-T-X) _T1(x,X,r+X), (9.83)

where 11'1 is non-zero only in X - x < r < x - X. Now let us write = x - r and
9 = x + r, so that

02Y'1
__ 4u (S 2 ) 01;

since the 'singular support' of ?/i1 is at x = r + X, we integrate from ( = X - 0 to
= X + 0 to see that u can be retrieved from a knowledge of T 1 via the equation

lim
8P1 = 1 d'1'1(r+X X,r+X) = 1u(r+X)' (9.84)

4 I-X+o N 2 dT ' 4

note that 'I' 1 loses its explicit dependence on X as we approach x = r + X.
Let us return to our geologist, who will find it much harder to simulate (9.82)

than (9.81). Let us therefore try to synthesise the solution with data (9.81) from
01 and 02, where

8-!1 = -d'(-r) at x = X; (9.85)

as in (9.83), 1G2 = d(-x - r + X) + 11'2(x, X, r + X), where again W2 is bounded
and non-zero only in X - x < r < x - X. The data at x = X for the respective
Fourier transforms are

a1wX -zy = 1 + e- r,

'1 = 1

dip
= iw(1 - e-21wXF),

dx
dtii1

9.86)
,

2=1

dx

d
,

dx

and so = 1 + i i2e-2iwx. Hence, by the convolution theorem,

O (x, T) = 01(x, r) + r (r + 2X) * 02(x, 7-)

_ r(T'+2X)(6(X -x-(r-r'))
x

+Q'2(x,X,r-r'+X))dr'
=6(x-X - T)+ 91 (x, X, r + X) + r(r + x + X)

rr+x-X
+J r(r'+2X)1P2(x,X,r-r'+X)dr'. (9.87)

-Z +X
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We need only make two final observations to turn this into an equation for 4' in
terms of r.

1. The equations for ' 1 and 'P2 are

82,p1

-
82*1 - u(x)'Pj = 3(x - r - X)u(x),

8x2 erg
82w2 O'P2 = 5(-x - r + X)u(x) = 6(x + r - X)u(x)( )'-8x2

,u x 2
8T2

with zero Cauchy data on x = X. Hence

*1(x,X,r+X) = 92(X, X, --r + X),

so that the integral in (9.87) is

frr+x-x rx
( r(r'+2X)WY1(x,X,r'-r+X)dr' =

J
r(r"+y)'P2(x,X,r")dr",-

r z+X 2X-x

say,wherey=r+Xandr"=r'-r+X.
2. By causality, r/i =- 0 in x - X > r, i.e. x > y. Hence,_when we denote the

asymptotic limit as X -* -oo of 'P 1(x, X, r + X) by 'P 1(x, r), we obtain a
linear Fredholm integral equation for W1 in terms of r:

+Y1(x,y)+r(x+y)+J r(r"+y)(x,r")dr" = 0. (9.88)
00

In principle, we can solve this so-called Marchenko equation for'P1 in x > y
given r, and thus retrieve u from (9.84).
The final piece in the overall jigsaw is a formula for the evolution of r as a

function of t. We remember that

1 °O

''(x,r;t) = 2-J (x,w;t)e 1(x,t)ew"r,
°0 n

where, by comparison with (9.80), as x --r -oo,

(x, w; t) eiw(x-X) + f (w, t)e-iw(z+X),

4 (n)(x,t) - f (n) Mew- 2,

with wn > 0, so that

roe
r(x + r, t) = 2r< f r' (w, t)e "'(=i r) dr + T(n) (t)ew (:+r)

J 00 n

moreover, B - -483/8x3 as x - -oo. To study the evolution in t of i and
0(n), we must use the infinite-dimensional generalisation of (9.73) or, if we work
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with eigenfunctions whose norm is independent of t, we can use the simpler equa-
tion (9.74). Adopting the former strategy, we find that (n) can only evolve as an
acceptable eigenfunction if T (t) = 0, so that

ft(n)
8t

while (x, w; t) must satisfy

i.e.
df(n)

dt
-4wnr(n),

= 80 + T, V),

(9.89)

where

e-iw(x+X) Of = -4e-iwX (iw3Te-iws - iw3eiws) +e-iwXTw (e1' s e'ws) .

Hence,

Tw = -4iw3 and _ -8iw3f, (9.90)

and 1'(n) and r can be found in terms of their initial values.
To recapitulate, the procedure is, given uo, to

(i) find r(n)(0), r"(w,0) and w,, as a `direct' problem in spectral theory;
(ii) update r(n) (t) and T(w, t) from (9.89) and (9.90);

(iii) solve (9.88) for 'I;
(iv) find u(x, t) from (9.84).
The terms in the solution u that correspond to the discrete spectrum wn are called
solitons (see Exercise 9.17) and they have many fascinating properties [15]. Indeed,
they are the simplest of the travelling wave solutions that we mentioned at the
beginning of this section and the inverse scattering theory explains beautifully how
they eventually emerge from arbitrary initial data and how they interact with each
other.

Putting inverse scattering theory into practice is often easier said than done,
even in simple cases. The simplest of all is when uo = u(x,0) _- 0. Then f(,,) (0) _
r' (w, 0) = 0, and so r = 0; then (9.88) gives ' 1 = 0 and (9.85) that u(x, t) =-P,
with tli = 6(x - X - r). Less trivially, suppose u(x, 0) is so small that r and W1
are also small, and the integral in (9.88) can be neglected. Also suppose there is
no discrete spectrum. We first need to find f (w, 0) in terms of uo, which we do by
writing i/i(x,w;0) = eiw(x-X) + , where

&2
dX2 + w2 = uo(x)eiw(:-X)

to lowest order, with e-i" (x+x)r"(w, 0) as x -+ -oo and proportional to eiwx
as x -+ +oo. Since, by variation of parameters,

s264 = e"('-x) uo(S) dS - e-iw(x+X) 1 u ( )e2im1 dC,

Joo00



426 MISCELLANEOUS TOPICS

we find
T( 0) = uo(2w)

Now, from (9.90),

w,

2iw

00

r(x + T, t) = 2x f esiW3teiw(x+r)*(w, 0) dw,
00

and so
00

I (T + X, X, T + X) = -r(2(T + X), t) = -2x f 2iw) dw.
!!J ao

Finally, reinstating the dependence of u on t,

u(r+X,t) =2d WI(T+X,X,T+X),

and so, setting 2w = k,

00

u(x, t) = 2a dk,
J o0

which is just the result of taking a Fourier transform in x of BU/at +83u/8x3 = 0.
This interpretation of inverse scattering theory as a generalisation of Fourier

transforms makes such a fitting end piece to our book because it illustrates how a
little basic knowledge about pdes can lead to some of the most ingenious mathe-
matical procedures ever devised for their solution.

Exercises
9.1. Suppose V2u(r, 9) = 0 in 4 < r2 < 9 and we wish to find u(2, 9) from a

knowledge of u and 8u/8r on r = 3. Show that, if

=
3 cos 9 - 1 Ou

=
6 - 10 cos 9

u(3,9)
10-6cos8' 8x(3,9) (10-6cos8)2'

then u(2,8) = (2cos9 - 1)/(5 - 4cos8).
Explain why we are lucky to have been able to do this and why we would
have been unable to find u(1/2, 9) when V2u = 0 in 1/4 < r2 < 9.
Remark. If u and 8u/8r were constant on r = 3, we could find u(R, 0) for
any R > 0. This suggests we can `regularise' the inverse problem by taking
averages of the data over r = 3, which corresponds to neglecting the high-
frequency Fourier components in u(3, 9) and 8u/8r (3, 9), thereby extending
the applicability of the Cauchy-Kowalevski theorem.

9.2. Consider a Hele-Shaw free boundary problem of the type described in Chap-
ter 7 (in three dimensions, a porous medium flow without gravity), in which,
for t > 0, fluid is injected at the origin x = 0 at a constant rate Q into an
initial domain 1)(0) containing the origin.
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(i) Setting the pressure p(x, t) = 0 outside the fluid domain 11(t), define

u(x, t) = J p(x, r) dr,t
0

and show that, as in §7.4.1,

10, in fl(0)\{0},
1, in l1(t)\ft(0),
0, outside f2(t).

Show also that u and Vu are continuous on 8f2(0) and 80(t).
(ii) Now fix t > 0 and set O(x, t) = u(x, t) + (Qt/21r) log jxl in two dimen-

sions (O(x, t) = u(x, t) - Qt/47rlxl in three dimensions) to show that ¢
is a constant multiple of the gravitational potential due to mass of con-
stant density occupying the annular region between 011(t) and 8fl(0).
Noting that u(x, t) = 0 outside 1(t), deduce that knowledge of the
gravitational potential outside a domain, together with the assumption
of constant mass density, are not sufficient to determine the domain
uniquely.

(iii) In two dimensions, use the Green's function representation for O(z, t)
(z = x + iy and ( = f + i71) to show that, outside S2(t),

8x-iay
121r Off t

dtd? x-(n+t)rf C°dCdq8x 8 1Q(0) x - C 2tr n.o Jln(t)10(o)

for large IzI. Deduce from part (ii) that knowledge of all the moments
of a domain need not determine the domain uniquely.

9.3. One way to define a three-dimensional vector distribution v is by the formula

(v, t/i) = J v t/i dx,

where t, is a smooth vector test function, all of whose components vanish
rapidly at infinity. Use the formulae

where t,) and a, b are scalar and vector functions, respectively, to motivate
the three definitions

(Vv, ') = -(v, V 0)
(in which v is a scalar distribution and the inner product on the right is the
usual scalar one),

(V v, 0) = -(v, Vtii)
(in which t/i is a scalar test function), and

(V A v, b)= (v,VA0).
Show that V A (Vv) = 0 and V V. (V A v) - 0 for all scalar and vector
distributions v and v, respectively.
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9.4.

9.5.

(ii) Show that

2x2

T

x2\1 47r (k22 + kk - kl) 87rk1

Cr3 k4 r) k4

MISCELLANEOUS TOPICS

By twice taking the curl of (9.16) with f = 0, show that each component u;
of u satisfies V 4 u; = 0.

(i) Using the result from Chapter 5 that

D2 I r I = -4ab(x)b(y)a(z),

show that

111
'e,krdr-rrl=k2,

where k2 = kl + Ice + k3 = Jk12. Note that this result involves the inter-
pretation of divergent integrals if it is to be obtained directly. However,
following Exercise 5.32, we can write

e-ik-rdk = x f r e-i(kSv+k,t)-: k;+t-; dk2 dk3

fffs k2 R2 &2 k3
2A oo= e-pz-i0(ysin0+tc030)dpdq,

0 0

and
8xklk2.

0
(iii) Suppose that G is a Green's matrix satisfying

pV2G+(.1+µ) (v (I)
, v (8 2) ' V 8 -&(x-F)I,

Ox;

where I is the identity and we are using the summation convention so
that

OGil OGII OG21 8G31

8xi - Oxl + Ox2 + Ox3
etc., and xl = x, etc. Show that G is given by (9.21) and, using (i) and
(ii), that G is given by (9.22).

9.6. Show that, in two dimensions, the Green's matrix for (9.16), which is such
that G = O(log Ixi) as jxi - oo, is given by

G(x) - 1 rc log lxi + xi /1x12 xlx2G( /1x12

2xp(1 + r.) ( xlx2/Ix12 -r. log IxI + x2/Ix12

where is = (A + 3p)/(A + p).
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9.7. Suppose that y) satisfies

O2+2-0
for y > 0, with Cauchy data

E 1902+62' 8y

on y = 0 (compare this with the example on p.46). Show that, when is
`complexified' as on p. 405, the resulting problem for 0 in terms of y and Y)
is

for y > 0, with

024 020
= 0aye

E 00
T2

= o=_rj2'
y

on y = 0. Draw the characteristic diagram, describe the propagation of the
singularities at t) = ±5, y = 0, and deduce that the original problem is
ill-posed.

9.8. Consider the steady-state thermistor equations of §9.4.1 in the rectangle
0 < z < a, 0 < y < b. Suppose that the boundary conditions are

8; 8T
= 0 on the sides

8n 8n y-0'b'

so that these sides are both thermally and electrically insulated, and

0=0, T=To atx=0, ¢=V, T=To atx=a,
so that these ends are held at constant temperature To while a potential
difference V is applied across the device. Show that there is a one-dimensional
symmetric solution in which 0 = V/2 on the centre line x = a/2, which is
also the hottest part of the device, provided that

2 /'O0 dtV < 8
J 0

Q(t) .

Remark. This solution can be shown to be unique. Now suppose the time-
independent thermistor equations are solved in a two-dimensional region D
whose boundary is divided into four parts on which the boundary conditions
above apply, alternately constant Dirichlet and homogeneous Neumann. Be-
cause the equations with these special boundary conditions are invariant
under conformal maps, D can be mapped onto a rectangle in which the
solution is as above. Thus the level curves of T and 0 coincide, so that
T = T(¢), and the above restriction on V is necessary for existence of a
solution, independently of the geometry.
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9.9. (i) Show that the time-independent space charge equations of §9.4.2 have
a solution in which 0 = logr + 92 and p = -2/r2, and that the stream
function is t' = 28/r2.

(ii) Show that p can be eliminated from the time-independent space charge
equations to give the third-order equation

V.(V20V(V20

Suppose that, in two dimensions, the equipotentials 0 = constant coin-
cide with the level curves of a harmonic function 1, so that = F(+).
Deduce that

V1 VJV4'I _
4

log(F'(4;)F"(4;)) G(4;), say.

Writing = 2 (w(z) + w(x) ), so that Q4 = 2 (w' + w', i(w' - m')) T,
show that

w"(z) 01(z)+

(w' (w'(z))z
Differentiate with respect to z and then 2 to show that the only possible
form for G is G(4) = a4+ + b for real constants a and b. Hence show that

rr

(w'(z))2 taw + k,

where k is a complex constant, and show that b = k + k. Finally, show
that w is determined by

w
z = cl r e-k.- }as2 do,

where cl is a constant, and that 0 and 4 are related by

f 4 E
1/2

0 = c2 J(J e'61_ 0" dt) dl;,

where c2 is purely real if the inner integral is positive.
Remark. Part (ii) gives a three-parameter family of solutions, parametrised
by a, b and k (the constants cl and c2 can be scaled out). Further properties
of these solutions are described in the paper 'Congruent harmonic functions
and space charge electrostatic fields', IMA J. Appl. Math., 39,189-214,1987,
by S. A. Smith. Unfortunately, they do not satisfy any physically convenient
boundary conditions.

9.10. (i) Show that, when Ou/8t = 0, (9.42) can be written as

1ViuI2-uA(VAu)=-Vp

and hence that p + is constant on a characteristic dx/dt = u.
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(ii) Show that, if u = V4' in (9.42), then the gradient of (9.51) is zero.
9.11. In Fig. 9.3, denote P by x(t) and P' by x(t) + Ew(x(t), t). In a small time

bt, P moves to Q and P to Q', where Q is x(t) + u(x, t)bt and Q' is x(t) +
ew(x(t), t) + u(x(t) + ew(x(t), t))bt. Deduce that

QQ'-PP'=ew-Vubt,

to lowest order in bt. Now show that (9.48) implies that

Ew (x(t + bt), t + bt) - ew (x(t), t) = E(w - V )U bt;

deduce that P'Q' = Ew(x(t + bt), t + bt) and hence that, if PQ lies along w
at t, then P'Q' lies along w at t + bt.

9.12. Show that, if a and a' evolve according to (9.52) and

Aa = a',

then

- -a= ((Aa) V)u-A(a-V)u d
= 8 +(u-V).at dt at

Deduce that, in two dimensions at least, dA/dt satisfies (9.53).
9.13. Suppose that u and w satisfy the degenerate quasilinear system

w=VAu, V u=0,
and that data is to be prescribed on z = 0 for a solution in z > 0. Show that
a knowledge of the tangential components of u there determines the normal
component of w, and hence that prescribing u and w on z = 0 would lead
to an overdetermined problem.
Remark. It can be shown that it is sufficient for just three pieces of scalar
information to be prescribed on z = 0. For example, we could prescribe u
or, more likely, the normal component of u and the tangential components
of w.

9.14. Suppose that a sprung piston at x = X (t) oscillates with small amplitude
about x = 0 in a tube under the action of a pressure -p. The model is

d2X
+ 02X = 1,p,

dt2

where p is given by the acoustic model

2 2

P= 8 ax
1Z=O'

at
020

=

2

a0-.
2

for x > 0.

Show that solutions are possible in which 0 = R Ae'ikz',ei, which corre-
sponds to outgoing waves as x -+ +oo, as long as ao = w/k and w =
(11 VI + iv/k. The fact that w is complex means that the energy radiating
to x = +oo damps the piston motion.



432 MISCELLANEOUS TOPICS

9.15. Suppose d,, p and u satisfy (9.56)-(9.58), with k > 0. Show that solutions
are possible in which

O=R (Ae-y K -k +!Kz)

for some constant K. It can be` shown that these solutions are physically
acceptable as long as t K ---k7 > 0 for IKI > k, and K - k < 0 for
IK) < k, the latter being a manifestation of the radiation condition. Show
that

(cK2 - k2) K2 - k2 - vk2 = 0,
and hence that, for small v (i.e. when the membrane is only slightly affected
by the fluid), either

c < 1 and K is clos e to
-

(1 + (- )2kVc \\\\ 1 c '
or c > 1 and either

lK i t , + ivc loses c o 2kf (

or

K is cl se to
v2

k I 1 + )o
2k2 (C - 1)2

Remark. The physical interpretation of this result is that either waves can
propagate `subsonically' along the membrane and decay as y increases in the
fluid, or they can propagate supersonically and either (i) radiate into the
fluid and decay as x increases or (ii) not radiate and decay as y increases.
(The authors are grateful to Dr R. H. Tew for this example.)

9.16. (i) When water flows in a shallow, nearly horizontal, layer of depth ,j(x, t)
with velocity u(x, t), (7.28) and (7.29) become, after expanding 0 as a
power series in y,

017 ft
8x+a+EUO =0,

8t+8 +e Wuq)+38 3) U,

respectively, where a is a small parameter. Show that, when we set x-t =
and r = et, we obtain

8
u)

+ e

(au
+ u

8u)
er8t' 0'

8t;(u-?I)+e(8t +8£t +38 ) -0,
and deduce the KdV equation in the form

222 +833 0

as the lowest-order approximation for small e.
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(ii) When the shallow layer in (i) is overlain by a half-space of light fluid,
the equations for u and it can be resealed to become

ax+ 8 +fua -0,

57,( ,

ax.

where p is the pressure at the base of the lighter fluid. If the lighter fluid
flows irrotationally with velocity potential , then, after linearisation in
the usual way, it follows that, to lowest order,

p+ LO+17 =0,
ay

ony=0,

where 0 in y > 0. Show that

am a)
ax ay ony = 0,

where 7 l denotes the Hilbert transform, and follow the argument of (i)
to derive the Benjamin-Ono equation in the form

/ 2
2IT+3 81 -8 -?{1 at2I) -0.

9.17. For the KdV equation in the form

au OU 3

a + 6u a +
ax3

= 0,

show that a travelling wave solution in which u = u(x - ct) exists for all
c > 0, and that

u=2sech2(v'(x-2

a)).
Show also that sech (f (x - ct)/2) is the principal eigenfunction for (9.78)
in this case.
Remark. It can be shown that, when u(x, 0) = (c/2)sech2 (fx/2), the dis-
crete spectrum of (9.78) is the single point c/4.

9.18. For the Sine-Gordon equation

a2u a2u

axe ate
=sin u,

show that there are travelling wave solutions symmetric about x = ct and
that

_
u

4 tan- I tanh ((x - ct) /2 c2-1), c>1,
4 p (()/ vc2 tan-1 ex p2 -1 c<1.



Conclusion

We will conclude by recapitulating what we think are the principal lessons to be
learned from an overview of what we have tried to describe in this book.

The first is the concept of well-posedness, so dramatically illustrated by the
contrast between the Cauchy problems for elliptic and hyperbolic equations. Even
the simplest examples in §3.1 give a reliable guide of how a change in sign in one
term in the equation can change all the rules of the game. It is our biggest source
of regret that it is only at all easy to give a general answer to the question of
well-posedness for hyperbolic equations and that the reality or otherwise of the
characteristics can lead to such a dichotomy; maybe in years to come, the theory
of complex characteristics will have developed to an extent that this distinction is
at least more blurred.

The second, closely related topic is that of the qualitative nature of the solu-
tion. It is always important to ask questions like `can the equation admit "wave
solutions" that propagate in the interior of the domain, as in Chapter 4, or does the
equation immediately smooth away any irregularities in the data, as in Chapters 5
and 6?'

Concerning the representation of solutions, the only all-embracing concept to
emerge is that of the formal solution of an arbitrary linear equation in terms of the
inverse of the differential operator. This is an integral of the relevant data weighted
with a suitable Green's or Riemann function, unless the Fredholm Alternative
dictates otherwise.

No such general principles apply when it comes to writing down explicit solu-
tions of partial differential equations. It is always a red-letter day when an explicit
solution emerges in an uncontrived situation and it reflects some kind of symmetry
or invariance property. However, the latter may be even harder to discern than
the solution itself. In this respect, we can only hope that the reader has not been
daunted by the plethora of tricks that have been invented to treat special types of
equation on a case-by-case basis, even though the list of those we have described
is far from exhaustive; we have only tried to describe those devices that seem to
offer most insight and generality.

There are two important aspects of the mathematics of partial differential
equations that have been woefully underemphasised in this book. The first is any
discussion of `perturbation methods'. As mentioned in the Introduction, this would
have been possible at the cost of a change in character and size. The great potential
of the ideas that we have excluded can be glimpsed in Chapter 7, where stability
theory was seen to be the basic tool for building up a theoretical framework for free
boundary problems, and in Chapter 8, where the Geometric Theory of Diffraction
is a vital aid to the understanding of high-frequency wave propagation.
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The second lacuna is the lack of any treatment of the relationship between what
we have expounded and the understanding that can be obtained from numerical
computations. Again, it would have been possible, with help, to have doubled the
length of the book by including in each chapter comments about algorithms, con-
vergence, error estimates and stability analysis. Or we could have simply included
figures obtained by the easy route of attacking the differential equation with the
best available software. Apart from our desire for brevity, our only justification for
these omissions is that the delicacy of so many of the situations we have encoun-
tered demands the need for a quality control that only a mathematical approach
can provide.

We also thought about including more discussion of the implications of the
mathematics that motivated the individual equations. In many cases these can
be quite startling, ranging from the prediction of unexpected instabilities to sug-
gestions for easy and reliable algorithms that enable processes to be optimised.
But this, along with greater emphasis on the theoretical aspects, would have made
greater demands on the reader than we wanted to impose.

At the end of the day, the feature of writing this book that has given the au-
thors most pleasure has been the exposition, in fairly simple mathematical terms,
of the quantitative understanding of so many phenomena of practical importance
in everyday life. We know of no other branch of theoretical science where so many
situations could be modelled and analysed in anything like four hundred pages,
starting more or less from scratch. However, the seemingly comprehensive success
of partial differential equations in this respect must not let students be lulled into
a false sense of security. For one thing, they are rather special models that are
much better behaved in general terms than, say, discrete models. Also, it must al-
ways be remembered how dangerous it is to step away from those situations where
analytic equations are used in conjunction with analytic solutions. Although we
have only encountered one example (on p.67) where the whole theory crashes in
the face of non-analyticity, the literature contains many cases where artificially
introduced singularities can destroy all intuition about classification and qualita-
tive behaviour. Our discussion in Chapter 7 has shown that even the most prosaic
examples of models with discontinuous coefficients can lead to situations where,
with our current knowledge, there is no systematic way to make mathematical
sense of the partial differential equations.
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Index

acoustic limit, 93
acoustics, 93, 126, 1fi0

interaction between media, 414
action, 378, 319
added mass, 402
adjoint

elliptic operator, 171
hyperbolic operator, 95
ordinary differential operator, 110

parabolic operator, 249
aerofoil, 161

solution by 201
Airy stress function, 223

slow viscous flow, 351
Airy's equation, 1145
d'Alembert solution, 84, 92. 100 102 LL4

by transform methods, 113
Laplace's equation, 103
weak solution, IN

analytic continuation, 46, ,10
antiplane strain, 158, 162
arbitrage, 244, 334
Arrhenius reaction rate, 212, 221
asymptotic lines, 382
autocatalytic, 212

Baiocchi transformation, 332
Benjamin-Ono equation, 415, 41Z
Bergman kernel function, 222
Bernoulli's equation, 314. 410
Bessel function

Laplace transform, 145
bicharacteristic

first-order quasilinear system, 6Z
first-order scalar non-quasilinear

equation, 366
first-order scalar quasilinear equation, 27
physical interpretation, 128

bifurcation, 219
pitchfork, 221
transcritical, 219

biharmonic equation
general solution in IIta 194
Green's function in R1, 194
in slow viscous flow, IN
plane strain, 158
uniqueness of solutions, 166

Biot-Savart law, 131, 1.9,5
black body radiation, 155

Black--Scholes equation, 244
Blasius equation, 229

reduction of order, 302
blow-up

first-order scalar quasilinear equation, 18
free boundary problems, 326
Hele-Shaw problem, 344
integral estimates, 285
linear parabolic equation, 286
nonlinear elliptic equation, 218
nonlinear parabolic equation, 284
supercooled Stefan problem, 328

boundary integral method, 124
boundary layer, 214

Blasius equation, 229
Boussinesq transformation, 234
brittle fracture, LH2
Brownian motion, 243. 292

fundamental solution, 253
buckling of elastic strut, 219
Burgers' equation, 61, 21.4

cubic nonlinearity, 22!
Hopf-Cole transformation, 280
travelling wave, 277, 280

Cahn-Allen equation, 272
front evolution, 219
travelling wave, 2ZZ

Cahn-Hilliard equation, 2$8
canonical form

second-order scalar semilinear equation,
81

elliptic, 84
hyperbolic, 63
parabolic, 86

wave equation, 84
capacity, 211
catastrophe theory, 369
Cauchy data, 8 25, 41
Cauchy problem

first-order scalar non-quasilinear
equation, 3fi1

second-order linear hyperbolic equation,
94

well-posedness, 1111
Cauchy-Kowalevaki theorem, 9 45, 4fi
Cauchy-Riemann equations, 4fi
causality, 56, 104

439



440 INDEX

unsteady one-dimensional gas dynamics,
59

caustic, 3fi9
circular, 37.0
in ellipse, all.
nephroid, 370. 386

Oerenkov radiation, 65
change of type, 42. 162
Chapman-Jouguet curve, 62
characteristic

complex, 405
first-order scalar non-quasilinear

equation, 362
first-order scalar quasilinear equation, 9
first-order two-by-two quasilinear

system, 42
second-order scalar semilinear equation,

811

characteristic projection, Q 12, 42
characteristic strip, 364
characteristic surface

m x n first-order quasilinear system, 6A
Euler equations, 410
first-order quasilinear system, 66
first-order scalar non-quasilinear

equation, 366
first-order scalar quasilinear equation, 26

characteristic variables, 83
wave equation, 84

Charpit's equations, 362
and optimal control, 391
eikonal equation, 366

chemical reaction, 212
Arrhenius function, 212. 271
autocatalytic, 212
dead core, 314
endothermic, 2Z1
exothermic, 2Z1
in gas dynamics, 36
Nth-order, 2Z1
WKB approximation, 374

circulation, 402
Clairaut's equation, 384
classical solution

first-order scalar quasilinear equation,
10,19

free boundary problem, 326
Poisson's equation, 168

Clebsch potentials, 412
cold boundary difficulty, 339
combustion

cold boundary difficulty, 339
deflagration, 313
detonation, 313
flame

diffusion, 312
premixed, 311
propagation, 311
travelling wave, 339

spontaneous human, 285

stability analysis, 283
compact operator, 113
comparison theorem

free boundary problems, 326
Poisson's equation, 16Z
semilinear elliptic equation, 213
Stefan problem, 326

complementary error function, 262
complex characteristics, 405
complex ray, 374
componendo et dividendo, 1St
conformal mapping, 192

Schwarz-Christoffel formula, 342. 3M
conservation law, 24, 40, 55

Rankine-Hugoniot condition, 24, 5¢
shock, 55
weak solution, 24. 55

conserved quantities
Hele-Shaw problem, 327
porous medium equation, 322
Stefan problem, 328

contact discontinuity, b9. 315
contact problem, 209, 316

variational inequality, 334
continuous group, 266
contraction mapping theorem, 216
convection-diffusion equation, 155, 242,

260
Boussinesq transformation, 234
counter-current, 261
WKB apprmdmation, 387

convolution, 111
crack, 162. ,204

stress intensification, 205
Crank-Gupta problem, see oxygen

consumption problem
critical Sobolev exponent, 218
curvature flow, 280

curve shortening, 280
Grim Reaper solution, 303

dam problem, 310
Darcy flow

compressible, 213, 272
free boundary problem, 309

Baiocchi transformation, 332
complex variable methods, 342
dam problem, 310
Muskat problem, 310

incompressible, 159
Darcy's law, 1.59
dead core, 221. 314
deflagration, 62. 313
delta function 6(x), 9.7

derivative of, 98
detonation, 36, 62. 313
developable surface, 139, 380
diffusion equation, 86
Dirichlet boundary condition, 1.53
Dirichlet-to-Neumann map, 177, 394. 411
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dispersion, 119. 326
dispersion relation, 321

ship waves, 326
surface gravity waves, 321
vortex sheet, 321
WKB approximation, 326

distillation, 261
distribution, 91

convergence of series, 1111
derivative of, 98
Fourier transform, 109
vector, 427

divergence form, 23
domain of definition

first-order scalar equation, 13
domain of dependence

first-order quasilinear system, 51
second-order linear hyperbolic equation,

100
double-diffusive instability, 289
drum, hearing shape of, 324
dual cone, 364
Duhamel's method

heat equation, 295
wave equation, 123

earthquakes, 130
eddy currents, 245
eigenfunction expansion, 106

continuous spectrum, 102
discrete spectrum, 106
of Green's function, 180, 184

eikonal equation, 359
Charpit's equations, 366
Helmholtz' equation, 359
rays, 366
sand pile, 359

electric locomotive, 143
electric potential, 152. 407
electrochemical machining, 309
electromagnetism, see Maxwell's equations
electrostatics, 152

capacity, 2U
potential, 152, 407
space charge, 408

ellipse, flow past, 198
elliptic equation

boundary integral method, 114
nonlinear

blow-up, 218
dead core, 221
response diagram, 212

second-order scalar semilinear, 81
canonical form, 84

self-adjoint
symmetry of Green's function, 112

two-by-two system, 49
elliptic operator, adjoint, 171. 132
emissivity, 155.
enthalpy, 335

enthalpy method, 335
Stefan problem with volumetric heating,

336
entropy, 59, 81
error function, 262
Euler strut, 218
Euler's equations of hydrodynamics, 408

characteristic surface, 410
helicity conservation, 412
normal cone, 410

evolution variational inequality, 333
exercise price, 243

optimal for American option, 310
expansion fan, 132
expansion shock, 59. 61

Faraday's law of induction, 131
Fermat's principle, 378, 391
Fick's law, 154. 242
finite Fourier transform, 180
first-order equation

arbitrary functions in solution, 28
first-order scalar equation

linear, U
propagation of discontinuities, 20
weak solution, 22

non-quasilinear
bicharacteristics, 366
Cauchy problem, 361
characteristic strip, 364
characteristic surface, 366
characteristics, 362
Charpit's equations, 362
in R"`, 366
integral conoid, 365
Monge cone, 364
normal cone, 361

quasilinear, a
bicharacteristic, 27
blow-up, 1.4 18
Cauchy data, a
characteristic projections, 10
characteristics, 9, 20
classical solution, 10 12
domain of definition, 13
integral surface, 8
local existence, 11
parametric solution, 10
propagation of discontinuities, 20
shock, 22
solution surface, a
weak solution, 19

reduction to quasilinear system, 2
semilinear, LL

first-order system
linear, 395

Green's matrix, 396
radiation condition, 403
Riemann matrix, 398

quasilinear, 2
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bicharacteristic, 6Z
characteristic, 42
characteristic projection, 42
characteristic surface, 64
domain of dependence, 51
normal cone, 64
propagation of discontinuities, 66
Rankine-Hugoniot conditions, 62
ray cone, 65
region of influence, 51
Riemann invariants, 44
shock, 55
weak solution, 55

Fisher equation, 272
comparison methods, 282
travelling wave, 276

flame, 19
diffusion, 312
premixed, 311

cold boundary difficulty, 339
travelling wave, 339

flame propagation, 311
Floquet theory, 119.
fluid jet, 74
fluidised bed, 39, 93

characteristics, 54
Van Deemter model, 40

Fourier series, 102
Fourier sine transform, 186
Fourier transform, 107

and Radon transform, LL2
complex, 109
convolution formula, LU
finite, 1B0
of distribution, L09

Fourier's law, 153. 241
Fredholm Alternative, 43

characteristics, 80
Neumann problem for Poisson's

equation, 154
free boundary problem, 19. 305

classical solutions, 326
codimension-two, 347
comparison methods, 326
complex variable methods, 341
degenerate parabolic equation, 275
explicit solution techniques, 338
inviscid hydrodynamics, 31A
linear complementarity statement, 331
linear stability, 318
obstacle problem, 317
one-phase, 30Z
regularisation, 345
slow viscous flow, 350
variational inequality, 331
variational principle, 330
weak solution, 329

free energy, 287
frequency domain, 130. 160. 404
Froude number, 315

fundamental solution of heat equation, 253

Galilean transformation, 267. 298
gas dynamics

contact discontinuity, 59
linearised, 126
one-dimensional unsteady

acoustic limit, 93
characteristics, 53
link with shallow water waves, 68
model, 35
Rankine-Hugoniot conditions, 58
travelling wave shock, 340

shock
linear stability, 324

supersonic flow, 43
two-dimensional steady

axisymmetric, 382
characteristics, 42, 54
expansion fan, 137
flow in corner, 59
linearised, 336 ZZ
model, 35
shock, 59
simple wave flow, 135
sound speed, 36
supersonic flow, 54
transonic, 78

two-dimensional unsteady
linearised, 65

weak solution, 23
gauge, 415

Clebsch potentials, 41Z
Coulomb gauge, 416
helicity, 417
invariance, 166
Maxwell's equations, 195

Gaussian curvature, 381
generalised function, see distribution
geodesic distance, 254
geometric duality, 137. 364
geometric optics, 359

caustic, 369
eigenvalue problems, 374
Fermat's principle, 391
Huygens' construction, 368
parabolic reflector, 385
rays, 368
scattering, 311
specular reflection, 312

Geometric Theory of Diffraction, 373
Gevrey problem, 261
glass sheet model, 38, 78
Goursat problem, 87. 104
granular material flow model, 38

characteristics, 54
Mohr circle, 69
Riemann invariants, 54

gravitation, lh1
Green's function
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and conformal maps, 198
biharmonic equation in R2, 114
compared with Riemann function, 111
expanded in eigenfunctions, 180, 184
heat equation, 249

Dirichlet problem In interval, 255
in all R, 251
in all R'", 254
Neumann problem in interval, 255
regular part, 254
Robin problem, 252

Helmholtz' equation In R2, 180
Laplace's equation, see Poisson's

equation
modified Helmholtz equation in R2, 182
modified, for Poisson's equation, 123
non-self-adjoint elliptic equation, L71
Poisson's equation

classical formulation, 162
Dirichlet problem in circle, 124
Dirichlet problem in half-space, 1Z4
Dirichlet problem in rectangle, 179
Dirichlet problem in sphere, 116
Dirichlet problem in strip, 122
Dirichlet problem outside circle, 1Z5
in all R'", 173
Neumann problem in circle, 116
Neumann problem in half-space, in
Neumann problem outside circle, 126
Robin boundary condition, 171., 174
singularity in $"', 123
via distributions, 171
wedge geometry, 128

regular part, 173, 198, 222
Stefan problem, 328

Green's matrix, 396
linear elasticity, 399

Grim Reaper
in curvature flow, 343
in inviscid hydrodynamics, 354
same as finger, 358

Hamilton's equations, 366, 328
Hamilton-Jacobi equation, 378
Hankel function, 181
Hankel transform, 117. 188
heat equation, 86

backward, 345
characteristics, 245
elementary solution, 283
Fourier transform, 258
fundamental solution, 253, 268
Green's function, 249

Dirichlet problem in interval, 255
in all R, 251
in allRm,254
Neumann problem in interval, 255
regular part, 254
Robin problem, 251

Laplace transform, 258

large-time behaviour, 254 256
maximum principle, 241
ohmic heating, 407
Robin problem in square, 252
similarity solution, 296
WKB approximation, 364

heat transfer coefficient, 184
Heaviside function, 98
Hele-Shaw problem, 30Z

blow-up, 344
complex variable methods, 342
conserved quantities, 327, 344
explicit solutions, 343
linear stability analysis, 322

helicity, 411
conservation for Euler equations, 412

Helmholtz flow, 33fi
complex variable methods, 341

Helmholtz' equation, 1511
acoustic interaction, 414
geometric optics, 359
Green's function in 1R2, 184
radiation condition, 181
reciprocity, 1.93
separable in parabolic coordinates, 236
Sommerfeld representation of solution,

226
transform methods, 121
WKB approximation, 352

Hermitian operator, 186
Hertz problem, 209
Hessian matrix, 393
Hilbert transform, 129
hodograph plane, 341
holograph transformation

fluid jet model, 24
nonlinear hyperbolic equation, 132
partial, 55. 224
shallow water waves, 53
transonic flow, 28
two-dimensional gas dynamics, 138

Holmgren's theorem, 4f
Hopf-Cole transformation, 284
Huygens' construction, 368
Huygens' principle, 1.22
hyperbolic equation, 93

dispersion, 119
first-order system of dimension 1 50
second-order scalar linear, 04 ]22

Cauchy problem, 94
domain of dependence, 1QQ
region of Influence, 141
Riemann function, 94
weak solution, 145

second-order scalar semilinear, 81
canonical form, 83
characteristic variables, 83

two-by-two system, 42
hyperbolicity, 48, 655 122
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ideal gas law, 36
index, 210
infinitesimal generator, 26.3
initial-boundary value problem, 102
integral conoid, 365
integral surface, a
inverse problem, 393

Helmholtz' equation, 384
inverse scattering, 394, 421

Marchenko equation, 424
inviscid hydrodynamics, 155

aerofoil theory, 161
and KdV equation, 421
Bernoulli's equation, 314, 410
complex velocity potential, &U
Euler's equations, 409
flow past ellipse, 188
free boundary conditions, 314
Helmholtz flow, 316
hodograph plane, 341
irrotational flow, 411
Kutta-Joukowsky condition, 204
linearised, 400

added mass, 402
drag force, two dimensions, 402
horseshoe vortex, 403
lift force, two dimensions, 401
three-dimensional, 402
vortex ring, 403

particle path, 410
Rankine-Hugoniot conditions, 315
rotational flow, 316
stream function, 213
streamline, 410
surface gravity waves, 319

dispersion relation, 321
velocity potential, 155, 411
vortex, 156

motion, 347
vortex sheet, 316

linear stability, 321
vorticity, 5555.212
water-entry problem, 358

irrotational flow, 77. 411
it3's lemma, 244

Jensen's inequality, 216, 240
jet spaces, 410

kinematic wave equation, L 16
Kirchhoff transform, 213
Kontorovich-Lebedev transform, 193
Korteweg-deVries (KdV) equation, 421

inverse scattering, 421
Marchenko equation, 424

Kutta-Joukowsky condition, 204

Lame constants, 398
Laplace transform, 108

Bessel's equation, 145

Laplace's equation, 84. 152
capacity, 211
conformal maps, 197
cylindrical symmetry, 181
Darcy flow, 15.4
Dirichlet-to-Neumann map, 1ZZ
general solution

three dimensions, 196
Green's function, see Poisson's equation,

Green's function
maximum principle, 167
mean value theorem, 224
method of images, 115
Poisson integral, 115
potential flow, 155. 411
Riemann-Hilbert problem, 199
visualisation via membrane, 156
wedge geometry, 190

Green's function, 198
Lax pair, 420
Legendre transformation, 138

axisymmetric gas dynamics, 382
two-dimensional gas dynamics, 138

Lewy non-existence example, 62
Lie group, 266, 399
lightning conductor, 152
linear complementarity problem, 331

American put option, 334, 350
numerical solution, 334
obstacle problem, 331, 349

linear elasticity
Airy stress function, 223
antiplane strain, 158, 1.62
contact problem, 316

variational inequality, 334
crack, 102
Green's matrix, 399
model, 128
normal cone, 129
P-wave, 130
plane strain, 158
radiation condition, 405
ray cone, L30
Rayleigh wave, 148
S-wave, 130
static, 398
torsion bar, 156

linear equation
first-order scalar, 11

weak solution, 22
linear stability

Hele-Shaw problem, 322
shock waves, 324
vortex sheet, 321

Liouville's equation
elliptic, 215. 221
hyperbolic, 139

Lorents transformation, 298
lower solution

elliptic equation, 214



INDEX 445

parabolic equation, 281
lubrication theory, 289

Mach cone, 12Z
bicbaracteristic in, 128

Mach number, ZZ
magnetic monopoles, 132
magnetic vector potential, 10
Marchenko equation, 424
mass conservation, Z
maximum principle

heat equation, 24Z
Laplace's equation, 192
Poisson's equation, 16!
strong, 248

Maxwell's equations, 131
Coulomb gauge, 419
eddy current approximation, 245
electric potential, 152. 407
gauge condition, 195
gauge solutions, 416
invariance under Lorentz group, 288
magnetic vector potential, 195
radiation condition, 404
steady-state, 152. 195
telegraph equation, 148

mean curvature, 238
mean value theorem, 224
Mellin transform, LOU
membrane, L56
method of descent, 123
method of images, 175

heat equation in interval, 255
strip, 115

minimal surface, 21S
mixed boundary problem, 162. 204

index, 21.0
mixed-type equation, 49
modified Green's function, 123
modified Helmholtz equation, 160

Green's function in Ilt2, 182
Mohr circle, fig
moments, 344
Monge cone, 394
Monge-Amphre equation, 380
mushy region, 339
Muskat problem, 310

N-wave, 13!
Navier-Lame equations, see linear

elasticity
Navier-Stokes equations, 408

general steady solution in two
dimensions, 412

Neumann boundary condition, 154
neutral stability, 320
no-arbitrage condition, 244
non-existence of solutions (Lewy example),

6Z
non-quasilinear equation

first-order scalar
bicharacteristics, 366
Cauchy problem, 391
characteristic strip, 394
characteristic surface, 366
characteristics, 362
Charpit's equations, 362
in R"', 366
integral conoid, 365
Monge cone, 364
normal cone, 361

higher-order scalar, 380
normal cone, 64

anisotropic electromagnetic waves, 133
Euler equations, 410
first-order non-quasilinear equation, 391
linear elasticity, 123
two-dimensional acoustics, 65

obstacle problem, 31Z
linear complementarity form, 331, 349
variational inequality, 331

Ohm's law, 131, 132. 15y3, 407
optical fibre model, 3Z

characteristics, 56
partial hodograph transformation, 55

optically thick, 273
option

American put, 316
linear complementarity, 334. 351

European call, 243
exercise price, 243

overdetermined system, 394
oxygen consumption problem

evolution variational inequality, 333
link with Stefan problem, 333
model, 313

p-Laplace equation, 213
variational principle, 214

P-wave, 130
radiation condition, 405

paint
flow down wall, 133

initial condition, Z
wave speed, 16

flow on curved surface, 25
pin-holing, 288

parabolic boundary, 24Z
parabolic cylinder function, 236
parabolic equation

blow-up, 281
comparison methods, 281
degenerate, 275
forward-backward, 261
Green's function, 249
higher-order scalar, 289
higher-order system, 289
lower solution, 281
quasilinear, 272
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second-order scalar semilinear, 81, 271
canonical form, 86
travelling wave, 276

stability analysis, 282
two-by-two system, 42
uniqueness theorem, 248
upper solution, 281

parabolic inequality, 248
parabolic maximum principle, 241
parabolic reflector, 385
parameter identification, 393
Parseval's formula, 110
particle path, 410
permittivity, 132
Pfaffian, 50
phase separation, 282
pitchfork bifurcation, 221
plane strain, 158
Plemelj formulae, 200
Poisson integral, 17L
Poisson summation formula, 256
Poisson's equation, 152, 164

classical solution, 109
comparison theorem, 162
continuous dependence on data, 168
Green's function

classical formulation, 169
Dirichlet problem in circle, 124
Dirichlet problem in half-space, 1Z6
Dirichlet problem in rectangle, 119
Dirichlet problem in sphere, 116
Dirichlet problem in strip, 129
Dirichlet problem in wedge, 198
Dirichlet problem outside circle, 115
in all It", 113
Neumann problem in circle, 1Z6
Neumann problem in half-space, 1Z6
Neumann problem outside circle, 126
Robin boundary condition, 1Z1
singularity in Rm, 1Z3
via distributions, 171

maximum principle, 167
uniqueness theorem, 164
variational principle, 168
vector, 153
weak solution, 168

population dynamics, 271
porous medium equation, 272

l3arenblatt- Pattle solution, 278
conserved quantities, 327
free boundary condition, 31.3
shape of Mount Fuji, 278
similarity solution, 275. 277
weak solution, 338

porous medium flow, see Darcy flow
potential flow, 155, 411
Prandtl boundary layer equation, 274
principal eigenvalue, 183
principal part, 3 11
principal value integral, 128

principle of least action, 328
proof-reading, errrors in, L 29
propagation of discontinuities

first-order m x n system, 66
first-order scalar linear equation, 20
first-order scalar quasilinear equation, 20
in dependent variable, 106
second-order linear hyperbolic equation,

1111

quasilinear equation
first-order scalar, 8

bicharacteristic, 2Z
blow-up, 14, 18
Cauchy data, 8
characteristic projections, 10
characteristic surface, 26
characteristics, 9 20
classical solution, 10. 19
domain of definition, 13
integral surface, 6
local existence, 11
parametric solution, 10
propagation of discontinuities, 20
solution surface, &
weak solution, 19

second-order scalar, BZ
quasilinear system

first-order, 41
one real characteristic, 407

radiation, 272

optically thick medium, 273
radiation condition, 181

elastic waves, 405
electromagnetic waves. 4114
linear system, 403
Sommerfeld problem, 192

Radon transform, U2
random walk, 243
Rankine-Hugoniot condition

and Stefan problem, 335
detonation, 02
first-order m x a system, 67
free boundary problems, 314
inviscid hydrodynamics, 31,4
porous medium equation, 276
scalar conservation law, 24
unsteady one-dimensional gas dynamics,

63
vector conservation law, 56

ray, 366
complex, 374

ray cone, 65
anisotropic electromagnetic waves, 133
linear elasticity, 130
two-dimensional acoustics, 65

Rayleigh quotient, 183
Rayleigh wave, 140
reaction-diffusion equation, 245, 2Z1
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reciprocity, 123
regenerator, 32
region of influence

first-order quasilinear system, 51
second-order linear hyperbolic equation,

101

regularisation
free boundary problem, 345
phase separation, 288
Tikhonov for backward heat equation,

345
underdetermined inverse problem, 393
vortex dynamics, 348

resistance welding, 336
response diagram, 21Z
retarded potential, 121
Reynolds number, 409
ridge line, 368, 3Z3
Riemann function, 24

compared with Green's function, 171
distributional approach, 29
existence, 26
inverse scattering, 422
jumps in, 22
telegraph equation, 102. 118
wave equation, 101

Riemann invariant, 44
Bernoulli's equation, 410
first-order system of dimension n, 50
granular material flow, 54
second-order scalar semilinear equation,

811

shallow water waves, 52
two-by-two system, 42
two-dimensional steady gas flow, 136,

132
wave equation, 84, 1113

Rlemann matrix, 326
Riemann-Hilbert problem, 192

aerofoil problem, 201
Robin boundary condition, 154

surface gravity waves, 320
rotational flow, 316
ruled surface, 139. 367, 381

S-wave, 1311
radiation condition, 405

Saffman-Taylor finger, 303. 358
sand pile, 352

rays, 367
ridge line, 368

scattering, 418
geometric optics, 321

Schr8dinger's equation, 378
Schwarz function, 345, 35Z
Schwarz reflection, 189
Schwarz-Christoffel formula, 342, 355
second-order equation

arbitrary functions in solution, 28

second-order scalar quasilinear equation,
82

second-order scalar semilinear equation
canonical form, 81
Cauchy problem, Z8
characteristic, 80
classification, 81
elliptic, 81
Goursat problem, 87
hyperbolic, 81
mixed type, 81
more than two independent variables, 88
parabolic, 81
Riemann invariant, 80
subcharacteristics, 88

seismology, 1311
seismometry, 148
self-adjoint, 22
semilinear equation

first-order scalar, 11
second-order scalar, Z8

semilinear system, 56
separation of variables, 106. 182

Helmholtz' equation, 236
via Lie groups, 269

shallow water waves
acoustic limit, 23
and KdV equation, 921
characteristics, 52

connection with gas dynamics, 68
hodograph transformation, 53
model, 35
Riemann invariants, 52

shear modulus, 128, 1.22
ship wave equation, 326
shock

as free boundary problem, 319
first-order quasilinear system, 55
first-order scalar quasilinear equation, 22
linear stability, 324
one-dimensional unsteady gas dynamics,

58
smoothing, 34
travelling wave gasdynamic, 340
two-dimensional steady gas dynamics, 52
vector conservation law, 55

,hock tube, 5Z
similarity solution, 262

expansion fan, 132
free boundary problems, 339
heat equation, 296
local, 274
porous medium equation, 275, 2ZZ
second kind, 271
Stefan problem, 340
wedge-entry problem, 356

similarity transformation, 418
simple wave flow, 136

expansion fan, 132
Sine-Gordon equation, 141, 418



448 INDEX

singular integral equation, 203. 204
slow viscous flow, 159

Airy stress function, 351
drop spreading under gravity, 273
drop spreading with surface tension, 282
free boundary problem, 3511
Hele-Shaw cell, 302
non-Newtonian, 213

soliton
KdV equation, 921
Lax formulation, 420

solution surface, 8
Sommerfeld problem, 192

radiation condition, 192
solution, 235

Sommerfeld radiation condition, 181
Sommerfeld representation, 226
sonic line, 82
space charge, 408
space-like, 65, 104

boundary, 104
heat equation, 24fi

specular reflection, 372
sphere in R'", surface area, 123
spinodal, 288
squeeze film, 309
stationary phase, 3611
Stefan condition, 30
Stefan problem

comparison method, 326
conserved quantities, 328
enthalpy method, 336
formulation, 3011
Green's function approach, 328
impurities, 302
in superconductivity, 302
integral equation formulation, 328
link with oxygen consumption problem,

333
mushy region, 3311
Neumann similarity solution, 3411
one-phase, 302
regularisation, 3411
supercooled, 323

blow-up, 328
travelling wave solution, 339
with volumetric heating, 336

Stefan--Boltzmann law, 155. 272
stoichiometric condition, 311. 312
stream function, 213

boundary layer equations, 224
in slow flow, 189
Navier-Stokes equations, 413

streamline, 410
stress intensification, 205
strong maximum principle, 248
subcharacteristics, 88
subsolution, 214
supersolution, 214
supersonic, 43

support, 276
surface gravity waves, 319

between two fluids, 415

'1hylor diffusion, 261
telegraph equation, 8fi

electromagnetism, 148
for regenerator model, 93
Fourier transform, 118
propagation of discontinuities, 119
Riemann function, 102, 18
similarity variable, 1D2

test function, 22, 106
distribution, 9Z

thermal diffusivity, 242
thermistor, 407, 429
thunder, 123
tides, model for, 92
time-like, 55 65, 104

boundary, 104. 196
heat equation, 246

direction
acoustics, 127
electromagnetic waves, 133
Euler equations, 412

tomography, 112
torsion bar, 156

Prandtl stress function, 1115
traffic model, L 2,9 32
transcritical bifurcation, 219
transform

complex Fourier, 109
finite Fourier, 180
Fourier, 102
Fourier sine, 186
Hankel, 117. 188
Hilbert, 129
Kontorovich--Lebedev, 193
Laplace, 108
Mellin, 190
Radon, 112

transonic flow, 78
hodograph transformation, 78

travelling wave
Burgers' equation, 277. ,280
Cahn-Allen equation, 277
Fisher equation, 276
semilinear parabolic equation, 276

Ilricomi equation, 78, 82, 90
characteristics, 82

Turing instability, 2811

unilateral minimisation problem, 331
unitary, 419
univalent, 198
upper solution

elliptic equation, 214
parabolic equation, 281

variational inequality, 331
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contact problem, 334
evolution, 333
obstacle problem, 331

variational principle
free boundary problem, 3311
minimal surface, 214
nonlinear elliptic equation, 2L4
p-Laplace equation, 214
patch of vorticity, 334
Poisson's equation, 168
unilateral minimisation, 331
variational inequality, 331

velocity potential, 77, 411
complex, 341

virtual dislocation, 205
viscosity, 6 37. 52

variable, 213
volcano growth, 273
vortex, 19. 1511

dynamics, 347
horseshoe, 403
starting, 402

vortex ring, 403
vortex sheet, 59, 3111

linear stability, 321
vorticity, 155. 212

conservation, 410, 412
matrix, 412

water-entry problem, 356
wave

electromagnetic, 131
anisotropic, 133
radiation condition, 4114

N-wave, 13Z
P-wave, 134
Rayleigh, 138
S-wave, 134
simple, 1,35
surface gravity, 319

wave equation, 83, 23
d'Alembert solution, 92, 100, 102,

114
canonical form, 84
characteristic variables, 84
Duhamel's method, 123
frequency domain, 134
general solution

one dimension, 84, 115
three dimensions, 125
two dimensions, 125

Goursat problem, 104
Hankel transform, LIZ
Huygens' principle, 122
in periodic media, 119
initial-boundary value problem, 142
interface conditions, 134
kinematic, s 16
method of descent, 123
more than two independent variables,

12(1
non-Cauchy data, 102
one-dimensional

transform methods, 113
two-point boundary value problem,

115
retarded potential solution, 121
Riemann function, 101
Riemann invariants, 894 103
strongly discontinuous data, 105
three-dimensional radially-symmetric,

117. 120
two-dimensional axially-symmetric, 1111
weak solution, 1115

weak solution, 22, 9Z
enthalpy method, 335
first-order quasilinear system, 55
first-order scalar linear equation, 22
free boundary problem, 322
Poisson's equation, 16$
porous medium equation, 338
scalar conservation law, 24
vector conservation law, M
wave equation, 145

well-posed, 1, 41
parabolic equation, 24Z
Poisson's equation, 168

Wiener--Hopf method, 206
WKB approximation, 359

dispersion, 376

year, coldest day of, 291
Young's modulus, 1.28

zone of silence, 1211
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