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Foreword

The ‘‘Pillar I’’ of the Solvency II framework of the European Directive 2009/138/
EC requires that the solvency capital requirement (SCR) should reflect a level of
eligible own funds that enables insurance and reinsurance undertakings to absorb
significant losses and that gives reasonable assurance to policyholders and
beneficiaries that payments will be made as they fall due. This is, to begin with, the
prototype of the problem studied in this book: compute the minimum guaranteed
investment (MGI), even more stringent than the SCR, for hedging various kinds of
liabilities in an uncertain environment. However, the knowledge of this capital has
no value whatsoever if we do not know the ‘‘management rule’’ providing the
positive1 number of shares of the portfolio, the value of which absorbs all losses
and provides a real or guaranteed insurance2 that payments will be made.
Technically, the SCR is the capital required to ensure that the (re)insurance
company will be able to meet its obligations over the next 12 months with a
probability of at least 99.5 %. Actually, since the objective of this study is to
eradicate the risk, we replace the SCR by the MGI for which the probability of
meeting its obligation is 100 %. Also, we define it for precise floors describing
those obligations and for arbitrary exercise periods. The MGI depends also on a
forecasting mechanism. In order to avoid confusion, we shall use from now on the
concept of MGI instead of the very close concept of SCR, involving an arbitrary
percentage which does not tell us what happens during the remaining 0.5 %.

The Solvency II Directive requires a continuum of interventions whenever the
capital holding of the (re)insurance undertaking falls below the SCR. The inter-
vention becomes progressively more and more severe as the initial capital holding
approaches a smaller and harder threshold, the minimum capital requirement

1 In the case when ‘‘short selling’’ is authorized, the reasoning is adapted by introducing negative
number of shares and the upper bounds of the returns, which can be derived from the price tube.
2 The pleonasm is intended, since some management rules including an ‘‘I’’ in their
denomination do not insure the portfolio.

vii



(MCR). The interventions are regulated by regional supervisors allowing them to
withdraw authorizations from selling new contracts and winding up the company.3

Unfortunately, and strangely, this European Directive demands that The SCR is
calculated using Value-at-Risk techniques. Strangely, because a directive or a law
should mention the objectives, but not the technical or scientific methods for
reaching them, since good science is short-lived, following the Joseph Schumpeter
‘‘creative destruction’’ process of techniques by new ones, and not an ideology.
To the point when, today, the concept of ‘‘risk management’’ becomes crucial,
although this concept is meaningless without making precise what it means:
because we do not manage the risks, but we suffer them. It would be better to
define more specifically risk management as the measure of the consequences of
disasters and their remediation processes, even before planning their advent.
Forecasting the times when catastrophes may occur is useless if the feedbacks to
remedy their consequences are not implemented, even before knowing if and when
they occur.

Unfortunately, there are many variants of this ‘‘Value-at-Risk (VaR) tech-
niques.’’ In the best case, all but one is wrong. We refer to [156] which studies the
jungle of statistical risk measures, adding to the expectation of a random variable
all kinds of deviations which are variants of the variance. For instance, the
‘‘expected shortfalls’’ (or ‘‘conditional’’ (CVaR) or ‘‘average’’ (AVaR) values) are
coherent and, for some authors, more adequate measures of risks. The ‘‘model
risk’’ involved lies in the transition from the real-world perception of a problem to
mathematical assumptions and the nature of the conclusions. Once they are
accepted, there is no risk in deriving mathematically conclusions. Hence, the risk
lies in the design of the floor to be hedged (for instance, variable annuities in
insurance requiring sophisticated demographic studies) and in the forecasting of
the lower bounds of the returns of the risky asset. Once known, there is no risk in
deriving the MGI in a risky portfolio at the investment date and the management
rule governing the evolution of the shares of the portfolio the values of which are
always hedging the liabilities. Because hedging a floor is a precisely defined
tychastic viability problem which can be solved. The ‘‘mathematical risk model’’
therefore lies in the choice of the approach to deal with uncertainty on the future
behavior of prices of assets. The usual, if not, universally, assumption used in
mathematical finance is to regard the price, and thus, the portfolio, as a stochastic
process governed by a stochastic differential equation for translating mathemati-
cally the polysemous concept of uncertainty. Right or wrong, we take the risk of
choosing a different mathematical approach to uncertainty, among several ones.4

Their choice is based only on the validation of the results by investors. They are

3 Think-tanks such as the World Pensions Council (WPC) reacted by accusing the European
legislators to be dogmatic and naive in adopting the Basel III and Solvency II recommendations,
which, according to them, could be detrimental to private banks and insurance companies. The
welfare of their customers is not explicitly mentioned.
4 See Chap. 3, describing several mathematical approaches to uncertainty.
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the judges who have to choose5 the arguments in favor of one approach to
uncertainty.

Consequently, we do not take sides in the disputes concerning the choice of an
adequate statistical measure of risk.6 We suggest instead to use one of the scarce
past available information replacing ‘‘volatilimeters’’7: at each date, the prices of
the assets range in the interval delimited by the low and high prices. This deter-
mines the price interval in which the returns of the risky asset evolve. They then
play the rôle of tyches (Fig. 3.2) (a Greek word meaning ‘‘chance’’), a synonym of
random already preempted in probability. Dynamical game theory renders hints to
regard prices as tyches and to look for properties valid for all tyches: this became
the ‘‘tychastic’’ approach which, together with the ‘‘viability’’ approach to obey
‘‘viability constraints,’’ constitutes the originality of this book.

We then propose to use any forecasting mechanism of the price intervals for
deriving the SCR eradicating the risk during the exercise period on one hand, and
measuring the risk by computing the hedging exit time function associating with
smaller investments the date until which the value of the portfolio hedges the
liabilities on the other. This information, summarized under the name or tychastic
viability measure of risk is an ‘‘evolutionary’’ alternative to statistical measures,
when dealing with evolutions under uncertainty. Statistical measures such as the
VaR’s only estimate the ‘‘radius’’ of a king of deviation tube surrounding the
average. They do not compute precisely the minimal guaranteed investment under
which the floor is pierced by at least one forecast evolution, but estimate the SCR,
nor the adequate management rule, contenting themselves to approximate the set
of evolutions by Monte Carlo type of techniques. For these purposes, we designed
the VPPI robot-insurer, where VPPI stands for Viabilist Portfolio Performance
and Insurance. It computes the MGI in and the management rule answering the
solvability requirements by central banks, various committees and governments on
one hand, and the more general concept of insurance on the other.
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tychastic viability techniques to compute the value functions of financial products,
such as options of all kinds and the earlier version of the VPPI. They are indebted to
many colleagues, among which Alain Bensoussan (University of Texas at Dallas),

5 Hopefully like the ‘‘The Twelve Angry Men,’’ the jury of a homicide trial who were
unanimously convinced of the guilt but one dissident, who slowly reversed the initial opinion by
instilling a reasonable doubt.
6 For the mathematician who is not familiar with finance, we suggest the classic Options,
Futures, and Other Derivatives [123], by Hull and Finance de marché [152] by Portait and
Poncet.
7 Which are actually missing, even though they are implicitly ‘‘smiling’’.
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Preface

This book is divided into two parts, Part I, Description, Illustration, and Comments
of the Results (Chaps. 1–3), presenting the results obtained without mathematics,
which are postponed in Part II, Mathematical Proofs (Chaps. 4 and 5).

Chapter 1, The Viabilist Portfolio Performance and Insurance Approach,
describes in detail the VPPI robot-insurer guaranteeing the hedging of the floor.
It defines the data and the conclusions of the Asset-Liability Management prob-
lem, proposes a tychastic viability measure of risk described by the minimum
guaranteed investment (MGI) and, for smaller investments, the duration of the
hedging. Knowing the price after the investment date, the VPPI management rule
of the VPPI Robot-Insurer computes the number of shares of the risky asset, and
thus, the value of the portfolio. Knowing ‘‘historical’’ discrete time series, we can
replay the use of the VPPI management rule at each date after investment and
measure the performance of the portfolio. Other similar problems are investigated:
the VPPImpulse Robot-Forecaster assumes that, instead of computing a
‘‘Minimum Guaranteed Investment’’ associated with a forecast mechanism of the
lower bounds of risky assets, a ‘‘provisonned’’ value above the floor is given and
computes the lower bounds of the risky asset for which the provisonned value
allows to hedge the floor. Chapter 2, Technical and Qualitative Analysis of Tubes
is devoted to the design of a class of forecasting mechanisms of lower bounds of
risky returns and the study-related issues. We start from what is provided at each
date by the brokerage firms: the price tube, bounded by the High and Low prices,
in which the Last Price belongs. The distance between High and Low prices, called
the tychastic gauge of the price tube (spread in financial terminology), is another
measure of the polysemous concept of volatility. Its velocity provides an acces-
sible indicator of the evolution of tychastic volatility, as well as velocities and
accelerations of the prices that range over the price tube.

Section 2.2, Forecasting the Price Tube, deals with the VIMADES extrapolator
used in the VPPI robot insurer, for extrapolating both single-valued evolutions and
tubes, such as the price tube.

Detecting and/or forecasting the trend reversals of evolutions, when markets go
from bear to bull and back for example, are the issues of Sect. 2.4. We introduce a
‘‘trendometer’’
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1. sequencing time series by detecting dates at which trend reversal (minima and
maxima) emerge delineating congruence periods when the time series increases
(as bull markets) or decreasing (as bear market);

2. measuring the shock of the trend reversal by a jerkiness index.
We apply these results to our favorite discrete time series (prices, MGI, Value
of the portfolio, market alarms, etc.). Section 2.6 tackles the issue of the
detection of generators of patterns recognizing whether a dynamical system
(generator) provides evolutions remaining in the price tube around the last
price.
However, the ‘‘volatility issue’’ should not be confused with the question of
prediction, dealt with in Sect. 2.2, in which we define the concept of extrap-
olator and present the example of the VPPI robot-insurer involving the VI-
MADES Extrapolator. Section 2.3 is devoted to the sensitivity to tychastic
gauges of the MGI and the value of the portfolio.

Chapter 3, Uncertainty on Uncertainties, deals briefly with the mathematical
translation of the polysemous concepts of uncertainty. Section 3.1, Heterodox
Approaches, explains why we do not use the cushion management rules such as the
variants of the CPPI, widely known for not hedging the floor for certain evolutions
of prices governed by stochastic processes. In the stochastic approach, the MGI is
not computed (but, at best, estimated), and there is no regulation rule associating
with the revealed price of the risky asset, the amount of shares of the portfolio.
These were the drawbacks which triggered this VPPI study. Section 3.2, Fore-
casting Mechanism Factories, briefly summarizes other forecasting techniques,
statistical methods based on expectations and different measures of deviations such
as the (conditional) VaR, fractals, black swans and black duals, trends and fluc-
tuations provided by nonstandard analysis, analytical methods, etc. Section 3.3,
The Legacy of Ingenhousz, examines different mathematical translations of
‘‘uncertainty’’: stochastic uncertainty, naturally, but also tychastic uncertainty,
contingent uncertainty and its redundancy, impulse uncertainty. This section ends
with further explanations showing how to correct stochastic viability by tychastic
viability because stochastic viability is a (much too) particular case of tychastic
viability.

Chapter 4, Why Viability Theory? A Survival Kit provides a sketchy summary,
rather, a glossary of concepts of viability theory used in this analysis. Why?
Because, finance, as well as economics, involve scarcity constraints (on shares),
viability constraints (on the agents) and financial or monetary constraints, among
many other ones. Optimization under constraints exits since Lagrange, having
extensively being developed ever since and taught in mathematics, physics,
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engineering, and economics and finance curricula.8 Viability Theory is the
dynamical counterpart, dealing with uncertain dynamics under constraints. It was
introduced by Nagumo in 1944 and practically ignored until the middle of the
1970s. For uncertain systems under constraints, motivated by economics and
biological evolution, the story started at the end of the 1970s in the framework of
differential inclusions (the case of stochastic differential equations and inclusions
waited to be investigated in the 1990s).

Chapter 5, Portfolio Insurance in the General Case, uses these concepts to
define the value of the portfolio and the management of shares and their trans-
actions to hedge a floor depending not only on time, but also on the price of assets
(as in portfolio replicated options) and the shares. Section 5.1, Tychastic Viability
Portfolio Insurance, explains how to describe the value of the portfolio in terms of
‘‘guaranteed tubular viability kernels of capture basins.’’ This being done, the
viability algorithms carry over the computations illustrated in the first chapter.
Section 5.2, Mathematical Metaphors of the VPPI Management Rule, translates
the mathematical properties of viability theory in the context of insurance and
regulation of portfolio. They are not useful to compute the insurance and manage
the portfolio in a guaranteed way, but they provide mathematical metaphors
analogous to the ones we see in the financial literature. The (financial) Greeks pop
up, we can derive Hamilton-Jacobi-Bellman partial differential equations gov-
erning the evolution of the portfolio, describe the management rules in terms of
Greeks, etc. In summary, they tell tales about the portfolio in an esoteric mathe-
matical language.

Section 5.3, Viability Multipliers to Manage Order Books, briefly mentions how
the theory of ‘‘viability multipliers’’ leads to Hamilton-Jacobi- Bellman partial
differential equation providing the ‘‘transition time function’’ needed to conclude a
deal of ‘‘bid-ask’’ sizes at ‘‘bid-ask’’ prices, subjected to lower ask constraints and
upper bid constraints. This is a capture problem (bid and ask variables are equal)
under the above constraints. The ‘‘viability multipliers,’’ here the ‘‘bid weights’’
and ‘‘ask weights,’’ correcting the dynamics of the order book for providing viable
evolutions, are involved in the Hamilton-Jacobi-Bellman equation. They are the
missing controls allowing to guide the bid-ask variables towards a deal.

8 The idea of optimizing utility functions goes back to 1728 when Gabriel Cramer, the
discoverer of the Cramer rule in 1750, wrote that the mathematicians estimate money in
proportion to its quantity, and men of good sense in proportion to the usage that they may make
of it in a letter about the Saint-Petersburg paradox raised in the correspondence between Pierre
Rémond de Montmort and Nicolas Bernoulli, patriarch the Bernoulli family, father of Jean et
Jacques Bernoulli and grandfather of Daniel Bernoulli who published Cramer’s letter. This was
the beginning of the ‘‘log saga’’ since this first utility function was UðxÞ ¼ k logðx=cÞ which find
a bright future in the entropy function EðxÞ ¼ x logð1=xÞ. The history of maximization of
utility functions or mathematical expectation was punctuated by dissident views from
d’Alembert to Keynes and not that so many other authors.
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Part I
Description, Illustration

and Comments of the Results



Chapter 1
The Viabilist Portfolio Performance
and Insurance Approach

1.1 The VPPI Robot-Insurer

We propose in this book1 a “tychastic viabilist” approach for solving such problems

1. taking into account the “viability” constraint that the value of portfolio is always
above a floor (liabilities, variable annuities, etc.);

2. using the “tychastic” approach to translate mathematically the concept of uncer-
tainty (see Sect. 3.3).

Definition 1.1.1 (Management Rule) A management rule of a portfolio is a map
associating with each time and with the actual underlying last price observed at that
time the number(s) of shares of the risky asset(s) in the portfolio.

Remark Amanagement rule could be regarded as a Δ-rule indicating how to buy or
sell an amount of the underlying, not for keeping the value of the portfolio constant,
as inΔ-neutral hedging rule, but for hedging a cash-flow represented by the floor. The
management rule provides also the exposure of a risky asset in the portfolio, which
is the product of the number of shares of the asset by its last price. Knowing the
exposure, one can deduce the price in terms of the number shares when the investor
is a price-maker instead of being a price-follower. �

Weillustrate in this chapter the simplest case of a portfoliowith one risky asset only
andwithout constraints on the number of shares2 (which are briefly treated in Chap. 5
and Sect. 5.2). The VPPI robot-insurer is a software3 computing at investment date
the minimum guaranteed investment (MGI) and the management rule of a portfolio
hedging a floor.

1 Based on [33, 34, 37, 49, 50, 69, 149–151].
2 Since EuropeanOptions are nicknamed “vanilla options”, because their flavor is insipid andwidely
popular, we suggest to nickname this example as the “lychee VPPI” example.
3 The software of the VPPI Robot-Insurer of VIMADES has been registered on April 10, 2009, at
the INPI, the French Institut National de la Propriété Industrielle.

J.-P. Aubin et al., Tychastic Measure of Viability Risk, 3
DOI: 10.1007/978-3-319-08129-8_1, © Springer International Publishing Switzerland 2014
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4 1 The Viabilist Portfolio Performance and Insurance Approach

We illustrate the assumptions of the problem and their consequences on a portfolio
made of the Euro OverNight Index Average4 (EONIA) as riskless asset and of the
French Cotation Assistée en Continu (CAC 40) as the underlying (see Chap. 5 for the
general statement for the case of n risky assets and the proof). We chose the 75 days
exercise period from July 30 to September 12, 2012, short enough for the readability
of the graphics. The following figures are extracted from an automatized pdf report
provided by the demonstration version of the VPPI robot-insurer of VIMADES.

1.1.1 The Inputs of the Asset-Liabilities Insurance Problem

This is at the level of the data used by the VPPI robot-insurer that the “Model Risks”
are located.

Definition 1.1.2 (Data of the VPPI Robot-Insurer) The results provided by theVPPI
Robot-Insurer depend upon

1. Assets: a riskless asset and a “basket” of risky assets (or underlyings, or shares
of exchange-traded fund (ETF), etc.) which are the components of a portfolio;

2. Liabilities: the floor describing the contract to be satisfied at all dates of the
exercise period;

3. Forecasting mechanism: at the date of investment, the forecasting mechanism
provides the lower bounds of the future returns of the risky assets up to exercise
date.

We shall pay a special attention to floors describing variable annuities contracts
used in life insurance (see for instance [83, 84, 122, 128, 149–151]). Actually, any
floor can be used.5

Once the floor and the prediction mechanism are chosen, the tools of tychastic
viability theory allow us to design the VPPI robot-insurer allowing the investors to
eradicate the “gap risk” between the value of the portfolio and the floor (called the
cushion or the surplus) depending on the prediction mechanism.

1.1.1.1 The Floor of Portfolio Values

Let 0 the investment date and T > 0 the exercise date. The floor is described by
a time dependent function L : t ∈ [0, T ] �→ L(t) ≥ 0 and plays the rôle of a
threshold constraint. Theminimum guaranteed investment is required to guarantee (at
investment time) that the floor must never be “pierced” by the value of the portfolio6

(Fig. 1.1).

4 The European cousin of the American Fed Funds Effective (Overnight Rate) and the British
London Inter-Bank Offered Rate (LIBOR), object of recent criminal manipulations.
5 Even if it is not continuous, but “lower semicontinuous” (with jumps), which is the case of variable
annuities.
6 Or, inmathematical terms, that the evolution t �→ (t, W(t)) is viable in the epigraph of the function
L(·). It is the subset Ep(L) := {(t, W) ∈ R

2 such that W ≥ L(t)}. Hence (t, W(t)) is viable in the
epigraph of L if and only if, for all t ∈ [0, T ], inequality W(t) ≥ L(t) is satisfied.

http://dx.doi.org/10.1007/978-3-319-08129-8_5
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Fig. 1.1 Floor with “variable annuities”. We illustrate the functioning of the VPPI software for a
floor with “variable annuities” used in life insurance contracts: the insurer makes periodic payments
during an accumulation phase and receives periodic payments for the payout phase. It is no longer
continuous, but punctuated by “jumps” at the dates when payments are made or received. The
forbidden zone is below the floor and the viable evolutions must range above the floor (in its
“epigraph”)

1.1.1.2 The Forecasting Mechanism

The forecasting mechanism provides a time dependent function R� : t ∈ [0, T ] �→
R�(t) ≥ 0 associating the forecast lower bounds R�(t) of the risky asset. It is chosen
by the investor. For illustrating the example, we choose as forecasting mechanism
the VIMADES Extrapolator which depends on the history of the evolution, as well
as its derivatives up to a given order, in order to capture the trends. Here, we used the
velocity, the acceleration and the jerk of the past evolution during the four preceding
dates.

The following figure displays the forecasting of the CAC 40 index by the VPPI
extrapolator (Fig. 1.2):
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0
·10−2
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Forecast Lower Bounds of Returns

Forecast Lower Bounds

Fig. 1.2 Forecast lower bonds of the CAC 40 returns. See Sect. 2.2 for an explanation of how the
VIMADES extrapolator provides this time series needed to operate the VPPI robot-insurer

http://dx.doi.org/10.1007/978-3-319-08129-8_2
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The aim is to compute the value of a portfolio which is above the floor, such as
the evolution displayed above the floor:
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For that purpose, we need both a management rule integrated in the differential
equation governing the evolution of the portfolio, the VPPI management rule, and
an initial condition, the guaranteed minimum investment.

1.1.2 Outputs of Asset-Liability Insurance Problem

The portfolio is made of the number of units of the riskless asset and of the number
of units (shares, for risky assets) of the underlying:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0(t) the price of the riskless asset;
S(t) the price of the underlying;

R0(t) = S′
0(t)

S0(t)
the return of the riskless asset;

R(t) = S′(t)
S(t)

the return of the underlying;
P0(t) the number of shares of the riskless asset;
P(t) the number of shares of the underlying;
W(t) = P0(t)S0(t) + P(t)S(t) the value of the portfolio;

(1.1)

Once the floor and the forecast lower bounds of risky returns are given, the VPPI
robot-insurer provides the following results:

Definition 1.1.3 (The VPPI Robot-Insurer) The VPPI Robot-Insurer provides at
investment date

1. the minimum guaranteed investment (MGI), denoted by W♥;
2. the VPPI management rule associating with any date and the price of the risky

asset known at this date the number of shares of defining the value of the portfolio

guaranteeing that
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1. starting with an investment W ≥ W♥ larger than or equal to the MGI, the value
of the portfolio managed with the VPPI rule is “always” above the floor in the
sense that, for all evolutions of returns of the risky assets above their forecast
lower bounds, and for all dates up to the exercise period, the value of the portfolio
exceeds the floor;

2. starting with a positive investment W < W♥ strictly smaller than the MGI, for
any management rule, the floor is pierced before exercise time by at least one
evolution of asset prices, the returns of which are above the lower bounds of the
forecast one.

In other words, according to a formula suggested by Nadia Lericolais, the VPPI
robot-insurer takes advantage of highs while protecting against lows. For any t ∈
[0, T ], we denote by W♥

T (t) the MGI at date t computed on the remaining exercise
period [t, T ]. We observe that the MGI W♥ = W♥

T (0) is the MGI (at investment
date). The flow t �→ W♥

T (t) − L(t) describes the dynamical insurance cost of the

risky deviation from the floor and the set-valued map t � [L(t), W♥
T ] is the VPPI

insurance tube.
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Fig. 1.3 Insurance Tube during the Exercise Period. The bottom curve represents the floor t �→ L(t)
that should never be pierced by the portfolio value. The graph of theminimumguaranteed investment
(MGI) t �→ W♥

T (t) is displayed. The area between the floor and theMGI is the graph of the insurance
tube. The black curve represents the evolution of the actual underlying last price (the right scale)
to compare it with the behavior of the MGI

1.2 The VPPI Risk Eradication Measure

1.2.1 The Hedging Exit Time Function

We define the tychastic measure of viability risk, “intrinsic” in the sense that it
depends only on the floor and the forecasting mechanism, and not on the deriva-
tion of the results provided by the VPPI robot-insurer. The MGI plays the rôle of
a Key Risk Indicator (KRI), a measure to indicate how risky an activity at invest-
ment date. Viability candidates for being used as Key Performance Indicators (KPI)
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are examined at exercise date, at the end of the process, and are introduced later.
Definition 4.1.5 of tychastic measure of viability risk for general tychastic systems
becomes, in this particular example, the following definition:

Definition 1.2.1 (VPPI Tychastic Measure of Viability Risk) The VPPI approach
measures the risk at the date of investment by the data of:

1. the minimum guaranteed investment (MGI) W♥;
2. the guaranteed exit time of an initial investment 0 < W < W♥ strictly smaller

than the MGI, defined as the first date D♥(W) ∈ [0, T ] before exercise time T at
which the floor is pierced for at least a flow of returns above their forecast lower
bounds. The guaranteed exit time ranges between 0 (the worst) and the exercise
time (the best).

D=74

W♥ =426 .12

(426.12,74)

50 100 150 200 250 300 350 400
0

20

40

60

investment

ex
it

 t
im

e

Hedging Exit Time Function

exit timefunction

Fig. 1.4 Synthetic VPPI measure of risk eradication. This figure synthesizes the VPPI tychastic
measure of viability risk, providing the MGI W♥ at exercise date T (the north-east corner), and,
for smaller investments, the duration of the guarantee, displayed by the graph of the guaranteed
hedging exit time function

The guaranteed exit time W �→ D
♥(W) of an initial investment W < W♥ is the

inverse function of the “Mobile Horizon MGI” t �→ W♥
t (0), where W♥

t (0) is the
MGI at the investment date during the smaller exercise period [0, t] ⊂ [0, T ] (taken
for the same floor).

The inverse of the function t �→ W♥
t (0) associates with any positive investment

W < W♥ the guaranteed duration D
♥(W) of an initial investment W such that

W♥
D♥(W)

(0) = W .

1.2.2 The Mobile Horizon MGI

The Mobile Horizon MGI W♥
t (0) are “tangible” concrete numbers. These numbers

have an explicit meaning and are immediately usable: economic capital, which, in
[88], “measures [...] risk”, p.15, “is the financial cushion [...] to absorb unexpected
losses”, p. 258,“capital is also used to absorb risk”, p. 366, etc., whereasGuaranteed
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Minimum Cushions play the rôles of Insurance Premium, Net Present Value [NPV],
etc. There are many synonyms to denote this concept. The MGI W♥ plays the rôle of
the “expectation” of a random variable, and the guaranteed exit times W �→ D

♥(W)

the rôle of the “deviations” of a random variable used in the field of statistical
measures of risk (a “deviation” which could be played by the difference between the
exercise time and the guaranteed exit time). They are well defined functionals on the
floor evolution and the lower bounds of the forecast risky returns.7

Actually, the VPPI robot-insurer provides not only the functions t �→ W♥
T (t) and

t �→ W♥
t (0), but, for every exercise period [d, D] ⊂ [0, T ] contained in the initial

exercise period [0, T ] the value of the minimum guaranteed investment W♥
D (d) for

any 0 ≤ d ≤ D ≤ T . The graph of the function (d, D) �→ W♥
D (d) is theMGI surface.

The figure below provides the MGI surface of our example:

Fig. 1.5 The MGI surface. By taking D = T , we recover the MGI function t �→ W♥
T (t) (Fig. 1.3)

and by taking d = 0, the inverse D �→ W♥
D (0) of the hedging exit time function (Fig. 1.4)

The computation of the minimum guaranteed investment on the exercise period
[0, T ] depending on the forecasting mechanism, the farther we are from the exercise
date, the less precise the forecasting mechanism, the higher the minimum guaran-
teed investment. In order to study the sensitivity to the forecasting mechanism, it
is convenient to compute the minimum guaranteed investment d �→ W♥

d+δ(d) on
exercice periods with fixed duration δ for d ∈ [0, T − δ] which can been derived
from the graph of the function (d, D) �→ W♥

D (d) provided by the VPPI robot-insurer
as displayed in (Fig. 1.6).

7 They are particular cases of the concept of quantitative tychastic risk measure of an environment
under a tychastic system which is not ambiguous once the environment and the tychastic system
are given.
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Fig. 1.6 MGI for constant shorter durations. The graph of the minimum guaranteed investment (of
duration 0) is displayed in red for comparing it with the “sliding” minimum guaranteed investment
d �→ W♥

d+45(d) on exercise period of 45 dates, which is displayed (on the interval [0, 29]). These
two graphs are extracted from the graph of the function (d, D) �→ W♥

D (d) displayed in Fig. 1.5

1.3 Running the VPPI Management Rule

1.3.1 Insured Shares of the Portfolio

Once the MGI computed, it is used as the initial investment. Knowing at each future
date before the exercise date the actual value of the last (or closing) price of the asset,
and thus, its actual return, the VPPI management rule provides the number of shares
and thus, the value of the portfolio, of its exposure and of its liquid part.

1. If the actual return is above its forecast lower bound, the viability theorems guar-
antee that the value of the portfolio is above the floor;

2. If not, the guarantee may disappear since the assumption is no longer fulfilled,
and the value of the portfolio computed by the VPPI management may be below
the minimum guaranteed investment at this date. In this case, to keep the VPPI
management of the portfolio going, it is enough to borrow the difference between
the MGI value and the actual value of the portfolio for starting again at the MGI
value at that time by a ratchet mechanism. This debt, and the debts occurring each
time that the value of the portfolio is below the MGI because of the deficiency
of the forecasting mechanism, induce interests which have to be actualized at
investment date and subtracted from the actualized final cushion for defining the
ex post performance.

The knowledge at investment date of the minimum guaranteed investment, which
plays the rôle of a pricer, is only a part of the solution to the problem since it needs to
be complemented by the knowledge of the management rule to give it an operational
meaning.

The operational version of the VPPI requires at each new date t ∈ [0, T ]:
1. The forecast lower bounds of risky returns at each date of the remaining exercise

period [t, T ], which allows the investor to compute the MGI at date t;
2. the knowledge of the value of the portfolio at the preceding date;
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3. the actual price of the risky asset and thus, its actual return at date t, which is
known at this date.

Then the VPPI management rule provides the number of shares at time t, and, know-
ing the asset price, the exposure and the value of the portfolio.

For testing the operation results of the VPPI management rule on a benchmark,
we need to place ourselves at the exercise time and assume that, at each earlier date
of the exercise period, the lower bounds of the forecast risky assets up to exercise
time (for computing the MGI and the VPPI management rule) and the actual price
of the risky asset (for computing the number of shares) are known.8 Under these
assumptions, we can “replay” the past history as if the investor was never aware of
the future before him (Fig. 1.7).

1.3.1.1 Risky Shares of the Portfolio

The graph in (Fig. 1.7) displays the evolution of the number of shares.
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Fig. 1.7 Shares of risky asset provided by the VPPI management rule. The black curve represents
the evolution of the actual underlying last price (the right scale) to compare it with the evolutions
of the shares

1.3.1.2 Values of the Portfolio

The graphic below provides a synthetic grasp of the dual rôle of insurance and
performance obtained by the VPPI Management Rule by displaying at once the
floor t �→ L(t), the MGI (insurance) t �→ W♥

T (t) and the portfolio value W(t)
(performance) all along the remaining exercise period [t, T ]. It displays the graphs
of the VPPI insurance tube t � [L(t), W♥

T (t)] and of the VPPI performance tube
t � [L(t), W(t)] (Fig. 1.8).

8 This allows the investor to revise at each date the lower bounds of the risky assets for computing
the MGI by “rebalancing” the computation of the portfolio if he or her chooses to do so.
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Fig. 1.8 VPPI insurance and performance tubes. The bottom curve represents the floor t �→ L(t).
The graph of the minimum guaranteed investment (MGI) t �→ W♥

T (t) is still displayed, as well
as the graph of its VPPI insurance tube. The top curve is the graph of the value t �→ W(t) of the
portfolio managed by the VPPI management rule when, at each date, the price of the underlying
is known. The area between the graph of the value and MGI functions is the graph of its VPPI
performance tube

Since forecasting error may occur, then the value of the portfolio may pierce the
minimum guaranteed investment, so that the portfolio may pierce also the floor: it is
no longer guaranteed. However, the VPPI software integrates a ratchet mechanism
(see Definition 1.3.1) and computes the amount of units of riskless asset to compen-
sate this situation. The portfolio is no longer self-financed, since the value of the loss
has to be borrowed in the market (Fig. 1.9).
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Fig. 1.9 Error forecasting penalty. Loans for correcting prediction errors, compensating for the
difference between the value of the MGI and the portfolio value when it is lower than that of the
MGI, are provided by the integrated ratchet mechanism and their amount is represented by vertical
bars

1.3.2 Performance Measures

Key Performance Indicators (KPI) are examined at exercise date, at the end of the
process, whereas Key Risk Indicators (KRI) are determined at investment date, the
beginning of the period.
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Traditionally, the initial cushion is a cost to be compared with the actualized
final cushion by various spreads (here, between actualized final cushions and initial
cushions) and ratios (here, the ratio of these two cushions). They figure in an ever
increasing list of formulas expressingmore or less the same ideas formeasuring profit
and loss in different situations (after taxes, for instance, a question which is not dealt
with in this study). They form a zoo in which we find Returns on Equity9 (ROE),
Returns on Assets (ROA), Degrees of Financial Leverage (DFL), other Financial
Leverage Ratios, Net Present Values (NPV), as well as many other of polysemous
indexes with barbaric names. We present in the table below the insurance and per-
formance indexes we chose to compute in our portfolio insurance context, among
many other ones which involve the data provided by the VPPI robot-insurer. This
list is far from being exhaustive.

[Key Risk and Performance Indicators]

Riskless return over the exercise period e
∫

0
T R0(τ )dτ

At investment date, insurance:
Minimum Guaranteed Investment (MGI) W♥(0)

Minimum Guaranteed Cushion (MGC) W♥(0) − L(0)

At exercise date, performance:

Actualized Minimum Guaranteed Insurance (AMGI)
W(T) − L(T)

e
∫ T
0 R0(ϕ)dϕ

Cumulated Actualized Prediction Penalties (CAPP)
∫ T
0 e− ∫ t

0 R0(ϕ)dϕ(W♥(t) − W(t))+dt

Liquidating Dividend (Ldiv)
W(T) − L(T)

e
∫ T
0 R0(ϕ)dϕ(W♥(0) − L(0))

Net Liquidating Dividend (NetLdiv)

∫ T
0 e− ∫ t

0 R0(ϕ)dϕ(W♥(t) − W(t))+dt

e
∫ T
0 R0(ϕ)dϕ(W♥(0) − L(0))

The floor L(·) and the forecast lower bounds R�(t) of the risky asset being given,
the VPPI robot-insurer provides the MGI and the management rule for eradicating
the risk.

For this example, the VPPI robot-insurer provides in its report the following
synopsis:

1. At investment date, the insurance:

minimum guaranteed investment (MGI) 426.13

minimum guaranteed cushion (MGC) 386.5

9 How this wonderful word, which should exemplify, as in other Romance languages, impartiality,
fairness, justice, rightfulness, not to mention the concept of ethics, came to mean the interest of
shareholders in a company? When returns on equity around 15 % and more became standards after
the years 1980, equities became really inequitable.
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2. At exercise date, the Management of the portfolio:

actualized exercise value 109.12

cumulated prediction penalties −54.77

Hence we can “pilot” a portfolio above the floor by using the VPPI management
rule as we can pilot a vehicle by a “control map” for avoiding obstacles, using the
very same tools derived from viability theory (Fig. 1.10):

Fig. 1.10 Piloting a robot. The epigraph of the floor plays the rôle a road network, the value of
the portfolio the position of the robot, the exposure by the velocities. Viability theory computes the
management rule as the feedback (the command card). Viability encompasses all problems dealing
with the characterization of regulation maps governing viable evolutions

1.3.3 The VPPI Ratchet Mechanism

Recall that the cushion W(t) − L(t) at date t is the difference between the value
of the portfolio and the floor, and that the guaranteed cushion W♥(t) − L(t) is
the difference between the minimum guaranteed investment and the floor at this
time, always non negative when the forecasting mechanism operates correctly. The
(cushion) multiplier at date t is the ratio m(t) := P(t)S(t)

W(t)−L(t) of the exposure of the
portfolio over the cushion.Management rules by cushions impose a priorimultipliers
at each date, whereas the VPPI management rule provides a posteriori multipliers
which can be observed at each date (they are not necessarily constant under the VPPI
management rule).

One can thus compute the profit before insurance (the cushion) and the profit
after assurance (the difference between the value of the portfolio and the minimum
guaranteed investment).
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The VPPI insurance/performance ratio is the ratio of the benefice of the portfolio
after insurance (guaranteed cushion) and the benefice before insurance (cushion)
which summarizes these two profits.

Definition 1.3.1 (VPPI Insurance/Performance Ratio) The VPPI insurance/
performance ratio ρ(W(t)) of W(t) ≥ W♥(t) is defined by the ratio of the benefice of
the portfolio after insurance(guaranteed cushion) and the benefice before insurance
(cushion):

ρ(W(t)) := W(t) − W♥(t)

W(t) − L(t)
(1.2)

The VPPI insurance/performance ratio10 (or VPPI-KPI ratio) involves the min-
imum guaranteed investment and the VPPI management rule for computing the
portfolio provided by the robot-insurer, hence, its name. It is equal to 0 when the
minimum guaranteed investment is equal to the value of the portfolio (with a benefice
equal to 0) and equal to 1 when it is equal to the floor, in which case the benefice is
equal to the cushion W(t) − L(t) (Fig. 1.11).
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Fig. 1.11 VPPI ratio and cushion multiplier. The figure from the right displays the evolution of
the cushion multipliers, which, far to be constant, evolve and, sometimes, vanish. The one on the
left depicts the evolution of the VPPI insurance/performance ratio

10 This is the Bollinger percent index of the minimum guaranteed investment W♥(t) in the cushion
tube [L(t), W(t)] (see Definition 2.1.2).
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A ratchet mechanism prohibits a process to go backward once a certain threshold
is exceeded to force it to move forward. In finance,

• correct the errors of the forecasting mechanisms (it is integrated in all VPPI
software);

• irreversibly reap a part of the profit between the value of the portfolio and its MGI
whenever the VPPI insurance/performance ratio is above a given ratchet threshold
σ ∈ [0, 1[.

In the next lines, we drop the “(t)” for simplifying the notations.
When W ≥ W♥ is regarded as too high, the investor may be enticed to sell

part of the guaranteed cushion W − W♥ (profit after insurance). There exist many
possible scenarios for fixing the amount of the part of the benefice the investor
must sell. Here, knowing the minimum guaranteed investment W♥ and the VPPI
management rule, we define the VPPI ratchet mechanism which involves the VPPI

insurance/performance ratio ρ(W) := W−W♥
W−L (see Definition 1.3.1).

The VPPI ratchet mechanism tells the investor to sell part of his/her benefice
whether or not the VPPI insurance/performance ratio ρ(W) is above a given ratchet
threshold ρ ∈ [0, 1[ (the case when ρ = 1 amounts to the absence of ratchet).

Definition 1.3.2 (The VPPI Ratchet Mechanism) The VPPI ratchet mechanism
involves a ratchet threshold σ ∈ [0, 1] and replaces the value of the portfolio W
by its ratchet value when ρ(W) ≥ ρ is above the ratchet threshold:

C(σ; W , W♥) :=

⎧
⎪⎨

⎪⎩

W♥ + σ

1 − σ
(W♥ − L) if ρ(W) ≥ σ

W if ρ(W) ∈ [0,σ]
W♥ if ρ(W) < 0

(1.3)

which can be written

C(σ; W , W♥) :=
{
min

(
W , W♥ + σ

1−σ (W♥ − L)
)

if σ ∈ [0, 1]
W♥ if ρ(W) ≤ 0

(1.4)

Whenever ρ(W) < 0, the profit is actually a loss, so that the ratchet mechanism
integrates the correction mechanism of forecasting errors, the cost of which is equal
to W − W♥.

We observe that

C(σ; W , W♥) ≥ W♥ is the solution to ρ(C(σ; W , W♥)) = σ

so that C(σ; W , W♥) is the threshold of the value of the portfolio (associated with
the ratchet threshold ρ).
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1. When σ ≤ 0, then C(σ; W , W♥) = W♥, in which case the benefice is equal
to W − W♥, negative when a forecasting error on the lower bounds of the risky
returns occurs.

2. When σ = 1,
C(1; W , W♥) = min(W ,+∞) = W (1.5)

since σ
1−σ increases up to +∞. In this case, there is no ratchet since finite values

of portfolios are below the (infinite) value threshold.

We deduce at once that

1. the ratchet profit W − C(σ; W , W♥);
2. the profit after ratchet and insurance C(σ; W , W♥) − W♥;
3. the profit after ratchet C(σ; W , W♥) − L.

Using the VPPI robot-insurer with ratchet, the investor fixes at each date a ratchet
threshold that still guarantees that the value of the portfolio after ratchet is always
above the floor (integrating penalties to be borrowed bound when needed).

Remark Ratchets and impulse control—The general ratchetmechanism is analogous
to the one defining the robot-forecaster in Sect. 1.4, resetting the value of the provision
when the value of the portfolio hits the floor.

The VPPI ratchet mechanism which we use to reap a part of the fruits of the
value of the portfolio above a given ratchet threshold is an example of impulse
regulated tychastic system (see [28], Sect. 12.2). Impulse control systems offer other
suggestions of ratchet mechanisms. �

Remark Correction of the risky returns forecasting errors—The correction mecha-
nism we used allows the returns to be below the forecast lower bound on the risky
returns. We could have corrected the situation by replacing the wrong actual return
R(t) by max(R(t), R�(t)), so that the VPPI management rule using this correction
mechanism governs a portfolio hedging the floor. However, it could happen that the
value of the portfolio using a mistaken prediction R(t) < R�(t) is still above the
guaranteed minimum investment, so that correcting the forecast error at the level of
returns was not needed and that its cost was wasted. Furthermore, there is no simple
way to measure the loss produced by such corrections at the level of returns while
the cost produced by the ratchet correction mechanism are transparent. This is the
reason why we did not used this correction procedure. �

Remark The CPPI ratchet—Waiting for the floor to be pierced is the strategy used
with the CPPI management rule since it does not provide a value playing the rôle
of the minimum guaranteed investment as a threshold alarm. Hence, when such an
unfortunate event arises, the rule employed is to stop immediately the running of the
CPPI management rule, losing therefore the initial investment (an more, in case of
delays occurring with a too slow reaction). �
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1.3.4 The Diversification Paradox

For the time, we observe that there exists an overall pervasive reluctance to immobi-
lize a capital to invest, inherited from the proverb11 “Don’t put all your eggs in one
basket”. The question is to insure that the basket will never be dropped. In finance,
diversification means reducing risk by investing in a variety of assets. The expecta-
tion is that a diversified portfolio will have less risk than the weighted average risk
of its constituent assets, and often less risk than the least risky one of its constituents.
In short, diversification is more secure. This wish may be paradoxically at odds with
the safety sought because the diversification of the capital W♥

1 = ∑n
i=1 Wi hedging

an asset 1 in smaller amounts Wi invested in other assets i = 1, . . . , n implies that
W1 < W♥

1 and possibly that Wi < W♥
i for some assets i. If this is the case, an

investment in a given asset 1 hedges the floor whereas, once diversified, does not
cover the portfolio for some assets, worsening the risk taken.

Once a reference floor and a forecasting mechanism are given, the same for all
assets, the information provided by the computation of the MGI could be used by
credit rating organisms12 as transparent and automatic tools for rating assets

• either by classifying assets by their required minimum guaranteed investments at
investment date;

• or by studying the case of portfolio with many assets and computing the minimum
exposure13 of each asset and classifying them.

This provides the investor well defined mathematical tools to diversify safely and
cleverly her or his investment capital for eradicating the risk by choosing assets such
that the sum of their MGI is inferior to this investment capital.

We may also introduce performance classification at the exercise date of an exer-
cise period for a given reference floor and the same forecasting mechanism. These
two key risk and performance indexes allow to classify them by using multicriteria
analysis or pattern recognition. This important issue is beyond the scope of this book.
With such tools, the investor can allocate a given investment in portfolios associated
with a given investment W = ∑n

i=1 W♥
i among the set of different portfolios or by

choosing a portfolio W = W♥ of several risky assets.

11 It go back at least to 935B.C., in the book of Ecclesiastes of the bible: “But divide your investments
among many places, for you do not know what risks might lie ahead”. In China, the proverb

means that “A wily hare which has three burrows can keep itself safe”.
12 The part of the public regulatory authority advocated by the Solvency II directive was abdicated
in favor of private rating agencies.
13 The exposure of an asset in the portfolio is the product of the number of shares of asset by the
asset price. They could play the rôle of the “systematic risk” β measuring the sensitivity of the
expected excess asset returns to the expected excess market returns in capital asset pricing types of
models (CAPM) going back to the 1952 research of Harry Markowitz in [135].
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1.3.5 Mathematical Formulation of the VPPI Rule

Assuming that the portfolio is self-financed for simplicity, the value of the portfolio
is governed by a (very simple) tychastic regulated system, where controls are the
shares P(t, S, W) ∈ [P�(t, S, W), P�(t, S, W)] of the portfolio and the “tyches” are
the returns R(t) ≥ R�(t) of the underlying:

⎧
⎪⎪⎨

⎪⎪⎩

∀t ∈ [0, T ],
(i) W ′(t) = R0(t)W(t) + P(t)S(t)(R(t) − R0(t)) − C(t)
(ii) P(t) ∈ [P�(t, S(t), W(t)), P�(t, S(t), W(t))] (controls)
(iii) R(t) ≥ R�(t) (tyches)

(1.6)

where t �→ C(t) is the impulsive function associating with each t the amount of
periodic payments during an accumulation phase and receives periodic payments for
the payout phase.14

The liability or floor constraint requires that hedging constraint

∀t ∈ [0, T ], W(t) ≥ L(t) (1.7)

The hedging constraint (1.7) can be reformulated by saying that the evolution W(·) :
t �→ W(t) satisfies property

∀t ∈ [0, T ] W(t) ∈ K(t) := {W ∈ R such that w ≥ L(t)} (1.8)

stating that the evolution W(·) : t �→ W(t) is “viable in the floor tube” K(·) : t �
K(t) in the sense that W(t) ∈ K(t).

This is a tychastic viability problem: the guaranteed viability kernel of the floor
tube under the tychastic regulated system (1.6) (see Definition 4.1.4) is a tube
denoted by

∀t ∈ [0, T ], K♥(t) :=
{

W ∈ R such that W ≥ W♥(t)
}

⊂ K(t) (1.9)

By definition, the function W♥(·) : t �→ W♥(t) is the Minimum Guaranteed
Investment function. The retroaction map P♥(t, S, W) governs the evolution of port-
folios such that, for every R(t) ≥ R�(t), the solution to the differential equation

W ′(t) = R0(t)W(t) + P♥(t, S(t), W(t))S(t)(R(t) − R0(t)) − C(t) (1.10)

starting from W♥(0) is viable in the floor tube. We obtain the mathematical version
of Definition 1.1.3.

14 This “comb” t �→ C(t) the teeth (impulses) of which are the amounts C(t) at payment phases is
only lower semicontinuous. The evolutionary engine is then impulsive, and the theory of impulse
systems allows us to define their solutions. See Sect. 1.4 for another example of impulse systems
and 12.3 [28].
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Definition 1.3.3 (VPPI Decision Rule and MGI) The floor t �→ L(t) and the lower
bounds t �→ R�(t) of the returns on the underlying describing tychastic uncertainty
are given. Then the VPPI computes at each date t

1. the management rule P♥(t, S, W) ∈ [P�(t, S, W), P�(t, S, W)] (the feedback);
2. the minimum guaranteed investment (MGI) W♥(t);
3. and in particular the initial minimum guaranteed investment (“viability insur-

ance”) W♥(0);

such that

1. starting at investment date 0 from W0 ≥ W♥(0), then regardless the evolution of
tyches R(t) ≥ R�(t), the value W(t) of the portfolio governed by the management
module

W ′(t) = R0(t)W(t) + P♥(t, S(t), W(t))S(t)(R(t) − R0(t)) − C(t) (1.11)

is always above the floor, and, actually, above theminimumguaranteed investment
W♥(t);

2. starting at investment date 0 from W0 < W♥(0), regardless the management
rule P̂(t, S, W) ∈ [P�(t, S, W), P�(t, S, W)], there exists at least one evolution of
returns R(t) ≥ R�(t) for which the value of the portfolio managed by

W ′(t) = R0(t)W(t) + P̂(t, S(t), W(t))S(t)(R(t) − R0(t)) − C(t) (1.12)

pierces the floor.

The properties of guaranteed viability kernels and of portfolios with several assets
are investigated in Chaps. 4 and 5.

1.4 The VPPImpulse Management Robot-Forecaster

Wehave assumed up to now that it existed some lower limits to the underlying returns
(the worst case) when the lower bounds R�(t) are known. It is from that knowledge
that it has been possible to determine the VPPI management rule and the minimum
guaranteed investment W♥(t).

Since it may be difficult to determine the lower bounds R�(t), the question
arises to address the inverse problem: instead of computing the insurance tube
t � [L(t), W♥(t)],we assumeknownaprovisioned insurance tube t � [L(t), L♦(t)]
where L♦(t) ≥ L(t) is the provision. This provision is the right to borrow the amount
L♦(t) − L(t) on the market whenever the value of the portfolio hits the floor. The
problem is to derive the lower bounds R♦(t) of underlying returns guaranteeing that
the floor will never be pierced. This is possible by using an impulse management rule
allowing the investor to set instantly by an impulse (infinite velocity) the provision
L♦(t) whenever the value W(−t) = L(t) reaches the floor at time t and is reset to

http://dx.doi.org/10.1007/978-3-319-08129-8_4
http://dx.doi.org/10.1007/978-3-319-08129-8_5


1.4 The VPPImpulse Management Robot-Forecaster 21

W(t) = L(t). This is an example of impulse viability (see Sect. 12.3 [19, 28, 45–48,
67], the recent book [112], etc.)

In other words, we no longer attempt to predict the disaster (transgression of the
constraint, here, piercing the floor), but rather to build a reset feedback to remedy the
constraint violations. Instead of forecasting lower bounds R�(t) of future underlying
returns, either by statisticalmethods, or byusing theVIMADESExtrapolator of lower
and upper bounds of past prices of the underlying, impulse management assumes
known in advance the provisions (or loans) and compute the Guaranteed Minimum
Returns R♦(t).

The VPPImpulse (Viabilist Impulse Portfolio Performance and Insurance)
approach is exactly the inverse of the predictive approach:

Definition 1.4.1 (The VPPImpulse Robot-Forecaster) The data of the VPPImpulse
robot forecaster are

1. the floor t �→ L(t);
2. the provisions L♦(t) ≥ L(t);
3. the impulse management rule: if at date t, the value W(−t) := L(t) reaches the

floor, the investor borrows the amount L♦(t)− L(t) and switches immediately its
investment to the provisionned value W(t) := L♦(t).

The VPPI robot-forecaster provides

1. the VPPImpulse management rule;
2. the guaranteed minimum return (GMR) R♦(t), lower bound of returns of the

underlying,

above which, starting from an investment W(0) ≥ L(0), the value W(t) ≥ L(t) of
the portfolio remains always higher than the floor.

Remark Tychastic Reliability and Probability of Ruin—The approach provides an
answer to a problem that could be called “tychastic reliability” as it provides lower
bounds of returns (describing the boundary of the tychastic map) above which the
guarantee sought (the value of the portfolio must be greater than the floor) and the
means of ensuring it (by paying for a cash flow higher than the floor) to be reliable
at 100 %.

This allows us to interpret otherwise the impulse management mode, regarding
L♦(t) as the liability and L(t) ≤ L♦(t) as a tolerance to ruin. Instead of trying
to compute the probability of ruin tolerance, we seek and obtain the Guaranteed
Minimum Return which forbids to go beyond that tolerance to ruin. The framework
of “Solvency 2”, for example, requires that the difference between the value of
portfolio assets and provisions to hedge liabilities must be positive at every date,
possibly with a “probability of failure” (where equity is negative) below a given
threshold. In our framework, the probability of ruin is replaced by the Guaranteed
Minimum Returns (GMR). �
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We illustrate the operation of the VPPImpulse robot-forecaster with a portfolio
made of the riskless EONIA and of the underlying the CAC 40. The provision tube
determined by the floor and the provision is described in the following graphic:
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The VPPI robot-forecaster provides the guaranteed minimum return (Fig. 1.12):
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Fig. 1.12 Guaranteed minimum risky returns. The returns are read on the left scale. The provision
tube requires that the risky returns are above the upper graph (returns close to 0). The lower graph
displays the actual risky returns, which are much smaller. This is consistent with the insurance tube
displayed in Fig. 1.3 associated with the actual risky returns, which is much larger than the provision
tube

1.5 The VPPI Management Software

The VPPI robot-insurer is a particular case of viability algorithms, part of the emerg-
ing field of “set-valued numerical analysis”. These algorithms, and above all, their
software, handle at each iteration the computation of subsets, as in set-valued analy-
sis (see [44, 158]). Indeed, (guaranteed) viability kernel are subsets, as well as the
graphs of applications and set-valued maps, or epigraphs of functions [such as the
floor t �→ L(t) and the Mobile Horizon t �→ W♥(t)]. For instance, the VPPI robot-
insurer computes the graph of the VPPI management rule, which depends on the
floor and the forecasting mechanism, without providing an explicit analytical for-
mula. The pioneering work in this domain is [162], adapted to differential games
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and tychastic systems in [75] and to finance, in [49, 50, 161]. Viability algorithms
have been applied to many examples, from environmental sciences to robotics, some
of them being presented in [28]. Mutational analysis, and, in particular, morpholog-
ical analysis (see [20, 131]) provide evolutionary systems governing the evolution
of sets. They defined a differential calculus on metric spaces, and, among them, the
Hausdorff space of nonempty compact subsets of a vector space. This allows to study
the evolution of sets, nicknamed “tubes”, kinds of set-valued time series, such that
subsets of multi-assets in vector spaces or of portfolios. These techniques, beyond
the scope of this book, will play an important rôle in economy and finance.

The VPPI robot-insurer provides an automatic report in .pdf format summarizes
graphically the results obtained by the demonstration version of the VPPI softwares.
The figures above are extracted from this report. The advanced VPPI software suite
features

1. Short Selling;
2. Portfolios with several assets;
3. Lower and upper constraints on the available shares of each risky asset;
4. Imposed schedule of transaction dates during the exercise period;
5. Ratchet mechanism;
6. Broker and management fees;
7. Options when the floor constraints depend both on time and price of the underly-

ing.Most of the options dependon theprices only at exercise date, yet, the software
uses as an input any (lower semi-continuous) function of time and prices (see an
account of viability methods for financial options in [161]). A NGARCH model
depending on the date and the previous one have been integrated in an impulse
viability algorithm by Michèle Breton and Patrick Saint-Pierre;

8. For insuring life insurances, the floor may depend on age for specifying hedging
portfolios depending on time and age (see [22, 23, 29–31]).

1.5.1 The Flow Chart of the VPPI Algorithm

One way to summarize the structure of the VPPI software is to provide the flow chart
of the viability software to solve this problem.

TheVPPI flow chart shows the division of the programme into two steps: knowing
the floor and the forecasting mechanism,

1. at investment date, the computation of the Minimum Guaranteed Investments
and the management rules (computed by the viability algorithm instead of being
expressed in an analytical formula);

2. at current dates up to exercise date, the use of the management rules for managing
the value of the portfolio knowing at each date the actual underlying return.

The first step is the discretization of continuous time by discrete dates, functions
by sequences and reformulate the data and concepts in this discrete framework (this
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step is not needed if the problem is directly formulated in discrete time, as it is
often the case). Then the viability algorithms are used to calculate iteratively guar-
anteed capture basin of targets viable in an environment and the feedback rule. They
use techniques of Set-Valued Numerical Analysis handling discrete subsets (grids)
mostly based on the lattice properties of guaranteed capture basins (See an account
of viability numerical methods in [161]).

The flow chart of the VPPI software indicates what are the inputs, provided in the
form of .csv files or .xls spreadsheet, and outputs of the software provided in .csv
file and automatically reported in a .pdf file.

Flow Chart of the VPPI Software
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1.5.2 The Flow Chart of the VPPImpulse Software

The flow chart of the VPPImpulse software summarizes the algorithm:
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Flow Chart of the VPPImpulse Software
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Chapter 2
Technical and Quantitative Analysis of Tubes

We assumed in the first chapter that a forecasting mechanism of the lower bounds of
the risky returns was given for computing the minimum guaranteed investment and
the value of the portfolio for hedging a floor. This chapter is devoted to the design
of such mechanisms and the study related issues.

The underlying approach is to start fromwhat is known in the past and provided at
each date by the brokerage firms: the price tube, bounded by theHigh and Lowprices,
inwhich theLast Price belongs.We regard the distance betweenHigh andLowprices,
called the tychastic gauge of the price tube, as another measure of the polysemous
concept of volatility. The tychastic gauge vanishes for riskless assets. The larger the
tychastic gauge, the more “tychastically volatile” the risky asset (see Sect. 3.3, The
Legacy of Ingenhousz, for explanations justifying this choice). By using tools of set-
valued analysis, we can “differentiate tubes” and compute the tube of velocities in
which range the derivatives of the Last prices, the tube of returns aswell as other ones.

Detecting and/or forecasting the trend reversals of evolutions, when markets go
from bear to bull and back, or minimum guaranteed investments, or market alarms
and tychastic gauges, etc., is mandatory. Section 2.4, brings original answers to this
question by applying the general study of reversal dates when trend reverses and
congruent periods during which time series increase or decrease on one hand, and
a measure of the violence or intensity of the time reversal by a nonlinear indicator,
the jerkiness indicator.

However, the “volatility issue” should not be confusedwith the question of predic-
tion: the tychastic gauge of a riskless asset vanishes, but the question of forecasting
its future remains open. This issue will be dealt with in Sect. 2.2, in which we define
the concept of extrapolator, examples of which are obtained by combining history
dependent differential equations and the regularization of Dirac combs of discrete
time series for extrapolating them. The VPPI robot-insurer involves the VIMADES
Extrapolator for extrapolating price tubes and thus, forecast lower bounds of risky
returns. Next, we study the sensitivity to tychastic gauges of theminimumguaranteed
investment and the value of the portfolio in Sect. 2.3.

The last issue studied in this chapter is the detection of generators of patterns
recognizing whether a dynamical system (generator) provides evolutions remaining
in the price tube around the last price. This is neither the case of exponential evolutions

J.-P. Aubin et al., Tychastic Measure of Viability Risk, 27
DOI: 10.1007/978-3-319-08129-8_2, © Springer International Publishing Switzerland 2014
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nor second-order polynomials ones, as the adequate algorithms show. It disclaims the
possibility for price candidates to be generated by geometric models1 (deterministic
as well as stochastic). However, detection by the VIMADES Extrapolator performs
better (see Sect. 2.6).

2.1 Tychastic Gauge and Derivatives of the Price Tubes

Recall that brokerage firms provide at each date t lower bounds S�(t) and upper
bounds S�(t) defining the price interval Σ(t) := [S�(t), S�(t)] of the risky asset
inside which the price S(t) evolves.

Definition 2.1.1 (Price Tubes and their Tychastic Gauge) The length S�(t)−S�(t) ≥
0 of the price interval is called its tychastic gauge. The price tube is the set-valued
map t � Σ(t) inside which remain the evolutions of prices t �→ S(t) ∈ Σ(t), called
selections of the price tube.

Intuitively, the larger the tychastic gauge of the price tube, the more uncertain
the evolution of prices. Gauging price tubes and forecasting then are two problems,
linked but different. The tychastic gauge of the price tube oscillates during this crisis
period:
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We can compute the return price tube surrounding the returns of the Last Prices
ranging over the price tube (see Sect. 4.2 for the definition of derivatives of tubes):
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1 See [24, Sect. 1.3, p. 23], for further comments on this crucial issue.

http://dx.doi.org/10.1007/978-3-319-08129-8_4
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Actually, the return price tube is deduced from the velocity price tube,which, together
with the acceleration tube, are displayed in the following figure:
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The tychastic gauge of the price tube is compared with the acceleration of the
Last Price in the figure below:

“Technical analysis”, the set of statistical methods used by chartists, studies evo-
lutions with respect to a tube surrounding them. Among them, the relation of the
last price located in the price tube have been studied by chartists. For instance, John
Bollinger introduced in the 1980s Bollinger bands, which are example of tubes, and
relate the tychastic gauge of the price tube to the last price:

Definition 2.1.2 (Bollinger Indexes) The Bollinger percent index of the last price
S(t) in the price tube Σ(t) := [S�(t), S�(t)] is used to measure the uncertainty of a
selection S(t) ∈ Σ(t) which is measured by the ratio %b (pronounced “percent b”)
S�(t) − S(t)

S�(t) − S�(t)
, which can be regarded as a relative tychastic gauge. The Bollinger

band width
S�(t) − S�(t)

S(t)
is the tychastic gauge relative to the last price.

We do not need this kind of information for computing the insurance tube, which
requires only to forecast the whole tube, not the behavior of one of its selections.
The Last Prices are only used for computing the value of performance.

We compute below the Bollinger indexes for the price tube and the display of the
tychastic gauge of the price tube and its Bollinger percent index:
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The following graphic displays the tychastic gauge of the price tube and its
Bollinger percent index:
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2.2 Forecasting the Price Tube

In the description of the uncertainty onprices described byprice tubes,we thus have to
distinguish two facets: thepredictability of the evolution of the price tube on one hand,
the “thickness” of the price tube, on the other hand, which could correspond to the
concept of volatility in some sense. This thickness summarizes the tychastic uncer-
tainty on the “risky” asset prices, and provides ameasure of this uncertainty.We call it
its tychastic gauge (seeDefinition 2.1.1) andwe compute it for the forecast price tube.

For operating the VPPI robot-insurer by using price tubes for describing the
uncertainty, we need to forecast the lower bounds of the risky returns.

We have seen how to differentiate price tubes and, in particular, how to provide
the tube of returns, and thus, its lower bound. The task which remains to underdo
is to forecast the price tube for forecasting the lower bound of its tube of returns.
For that purpose, we need to define the concept of extrapolation and to chose one
extrapolator to integrate in the VPPI robot-insurer.

Definition 2.2.1 (Extrapolator) Let us fix a duration δ ≥ 0, an integer p ≥ 0 and a
constant c > 0. Let us consider any (chronological) time t ∈ R, a temporal window
[t − δ, t] of aperture δ and an evolution S(·) : t ∈ [t − δ, t] �→ S(t) ∈ R. We denote
by E p

c (t − δ, t) the subset of future evolutions t ≥ 0 �→ A(t) ∈ R such that

sup
τ∈[t−δ,t]

|S(τ ) − A(t − δ + τ )| ≤ cδ p (2.1)

An extrapolator of order p and duration δ is a map Extr from C(t − δ, 0;R) �→
C(0, t + δ;R) such that

∀ S(·) ∈ C(t − δ;R), Extr(S(·)) ∈ E p
c (t − δ, t) (2.2)

There are many classical and less classical examples of extrapolators which fit
this definition. The most classical are Peano and Riemann “high order derivatives”
(see Applicazioni geometriche del calcolo infinitesimale, [145] by Giuseppe Peano
and [8, 9]). We shall review briefly how we can combine:

1. differential equations or inclusions providing extrapolators of continuous evolu-
tions and, next, how we can pass from discrete time series to evolutions
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2. imbedding procedures mapping time series to “Dirac combs” and regulating pro-
ceduresmapping them into functions to be extrapolated (we return to extrapolated
time series by taking the values of the extrapolation at future discrete times).

Each of these steps are subject to “model error” and there is no scientific criterion
enabling us to decide which one is the best. At most, we can compute or estimates
the constant c and the order p to check whether it is an extrapolator in the sense of
Definition 2.2.1.

1. Prediction: Historic Differential Inclusions
The knowledge of the past may allow us to extrapolate it by adequate history
dependent (or path dependent, memory dependent, functional) differential inclu-
sions associating with the history of the evolution up to each time t a set of veloci-
ties. “Histories” are evolutions ϕ ∈ C(−∞, 0; X) defined for negative times. The
history space C(−∞, 0; X) is a “storage” space in which we place at each t ≥ 0
any evolution x(·) defined on ] − ∞, T ] up to time T thanks to the translation
operator κ(−T ):

Definition 2.2.2 (Translations) For any T ∈ R, the translation κ(T )x(·) :
C(−∞,+∞; X) �→ C(−∞,+∞; X) of an evolution x(·) is defined by

(κ(T )x(·))(t) := x(t − T ) (2.3)

It is a translation to the right if T is positive and to the left if T is negative.
Regarding T ≥ 0 as an evolving present time, we can regard the translation
κ(−T ) : C(−∞,+∞; X) �→ C(−∞, 0; X) as a recording operator and trans-
lation κ(+T ) : C(−∞,+∞; X) �→ C(0,+∞; X) as a recalling operator in the
sense that

a. κ(−T )(x(·))− ∈ C(−∞, 0; X) can be regarded as the history of the evolution
up to time T of the evolution x(·);

b. κ(+T )(x(·))+ ∈ C(0,∞; X) can be regarded as the future of the evolution
from time T of the evolution x(·).

This operation is needed to define concatenation of evolutions:

Definition 2.2.3 (Concatenations) Let T ∈ R. The concatenation (x(·) 	T

y(·))(·) at T of an evolution x(·) ∈ C(−∞,+∞; X) and of an evolution
y(·) ∈ C(0,+∞; X) such that y(0) = x(T ) is defined by

{
(x(·)♦T y(·))(t) := x(t) if t ≤ T
(x(·)♦T y(·))(t) := y(t − T ) if t ≥ T

Observe that these two operations are independent of the algebraic structure of
the state space and are sufficient to define general evolutionary systems (see [28,
Definition 2.8.2, p. 70]. Hence, instead of studying evolutions t �→ x(t) ∈ X ,
we associate evolutions t �→ (κ(−t)x(·)) ∈ C(−∞, 0; X) in the history space.
Viability Theorems and their applications for history dependent dynamics and
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environment require a specific Clio analysis2 of history dependent maps intro-
duced in [46] (for studying portfolios where stochastic differential equations
are replaced by differential equations with memory). For instance, let a history
dependent functional v : ϕ ∈ C(−∞, 0;R) �→ v(ϕ) ∈ R. The addition oper-
ator ϕ �→ ϕ + hψ used in differential calculus in vector spaces is replaced by
the translation and concatenation operators ♦h associating with each history
ϕ ∈ C(−∞, 0; X) the function ϕ♦hψ ∈ C(−∞, 0; Rn) defined by

(ϕ♦hψ)(τ ) :=
{

ϕ(τ + h) if τ ∈] − ∞,−h]
ϕ(0) + ψ(τ + h) if τ ∈ [−h, 0]

Definition 2.2.4 (Clio Derivatives) The Clio derivative Dv(ϕ)(ψ) of a history
dependent functional v : ϕ ∈ C(−∞, 0; X) �→ v(ϕ) ∈ X is the limit

Dv(ϕ)(ψ) := lim inf
h→0+ ∇hv(ϕ)(ψ) ∈ X (2.4)

of “Clio differential quotients”

∇hv(ϕ)(ψ) := v((ϕ♦hψ)) − v(ϕ)

h
∈ X

Histories are the inputs of differential inclusions with memory

x ′(t) ∈ F(κ(−t)x(·)) (2.5)

where F : C(−∞, 0; X) � R
n is a set-valued map defining the dynamics of

history dependent differential inclusion.
One can also use history dependent differential equations or inclusions depending
on functionals on past evolutions,3 such as their derivatives up to a given order m:

x ′(t) ∈ F
((

D p(κ(−t)x(·)))|p|≤m

)
(2.6)

in order to take into account not only the history of an evolution, but its “trends”.
For instance, these history dependent differential inclusions have been be used
for forecasting the asset prices and manage portfolios.
The history dependent environments are subsets K ⊂ C(−∞, 0; X) of histories.
Actually, the first “general” viability theorem was proved by Georges Haddad in

2 The two sisters Mnemosyne and Lesmosyne, daughter of Heaven (Ouranos) and Earth (Gaia),
are respectively the goddesses of memory and forgetting. Clio, muse of history, and the eight other
muses, were born of the same breath out of the love between Zeus and Mnenosyne.
3 SeeNonoscillation Theory of Functional Differential Equations with Applications, [4] byAgarwal,
Berezansky, Braverman andDomoshnitsky (of theNikolai Viktorovich Azbelev’s school) for a recent
account of this field.
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the framework of history dependent differential inclusions at the end of the 1970s
(see [115, 116, 117] summarized in [15]). Since their study, motivated by the
evolutionary systems in life sciences, including economics and finance, is much
more involved than the one of differential inclusions, most of the viability studies
rested on the case of differential inclusions.

2. Dirac Combs of Discrete Time Series
Let us consider a discrete time series (chroniques) (x j ) j∈Z. Using Dirac mea-
sures δ j at dates j ∈ Z, we can imbed the discrete time series in the space of
distributions by associating with it its “Dirac comb”

D
(
(x j ) j∈Z

) :=
∑

j∈Z
x jδ j (2.7)

Dirac combs are only measures, but we can “regularize them” by taking their
convolution product (λ � x)(t) = ∫ +∞

−∞ λ(τ )x(t − τ )dτ . It inherits the differ-
entiability properties of λ, being as much differentiable than λ is (see Applied
Functional Analysis, [14], for instance). These functions λ are assumed to be inte-
grable with compact support [0, p] and total mass equal to one, not necessarily
positive (if λ is positive, we recover classical sliding average techniques). There-
fore, combining a regularization procedure of the Dirac tube of a discrete time
series, we obtain a smooth functions to which we can apply a given extrapolator.
Hence, there are as many extrapolation methods as such functions λ. The
VIMADES Extrapolator which is integrated in some versions of the VPPI robot-
insurer (however, the user is free to choose her or his forecasting mechanism)
belongs to this class for non negative functionsλwith compact support [0, p]. It is
based on techniques used in numerical analysis (see [10]): it takes into account the
extrapolation of all derivatives up to order p. One can check that it is an extrapola-
tor of order p and constant c applying to the class of time series the pth difference
of which are smaller than the constant c (in the sense of Definition 2.2.1).
For instance, taking p = 4, we obtain an extrapolator of order 4 which captures
the trends of the regularized time series: its values, its velocities, its accelerations
and its jerks (see [33, 34, 37]). In this case, the VIMADES Extrapolator needs to
know the four preceding dates of the time series to extrapolate. We first test the
performance of the VIMADES Extrapolator by using at each date the return of
the riskless asset.

The riskless tube is given directly by the brokerage firms, and not derived from a
price tube reduced to a simple curve. Even though it is regarded as deterministic in
this sense, its future is not known, and needs also to be forecast (being a single-valued
evolution, its tychastic gauge is equal to 0). The VIMADES Extrapolator is used to
extrapolate the riskless return:
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For forecasting the lower bounds of the risky returns, we need first to extrapolate
and forecast the price tube. In the example below, the discrete time series and price
tube are still those of the CAC 40 index used in Chap. 1, p. 17.

TheVIMADESExtrapolator needs historical data during the four preceding dates,
which are displayed below:
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Fig. 2.1 Historical Price Tube. Pythia gives a look into the historical price tube for preparing her
mantic process for extrapolating it, leaving to Tyche (see Fig. 3.2) the task of using this extrapolation
for computing the hedging exit time function. Nowadays, Pythia would use without doubt the
VIMADES Extrapolator!

Knowing them, the VIMADES Robot-Extrapolator4 provides the extrapolation
of the Last Price during the exercise period:
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4 The software of the Robot-Extrapolator of VIMADES has been registered on May 21, 2010, at
the INPI, the French Institut National de la Propriété Industrielle.

http://dx.doi.org/10.1007/978-3-319-08129-8_1
http://dx.doi.org/10.1007/978-3-319-08129-8_3
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The VIMADES Extrapolator forecasts the price tube the Highs of which are the
suprema of the extrapolated prices when the prices range over the price tube and
the Lows are the infima of those extrapolated prices (forecast Highs and Lows may
differ from the extrapolations of the Highs and Laws because the Extrapolator takes
into account past velocities, accelerations and as many derivatives as needed).
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Fig. 2.2 Forecast Price Tube. The uncertainty is described by a tube t �→ Σ(t): for instance, this
price tube has been forecast by the VIMADES Extrapolator from the past or historical price tube of
the CAC 40 index defined in Fig. 2.1 which forecasts the ex-post actual tube Fig. 2.3. Since we shall
deduce the computation of the lower bounds displayed in Fig. 2.8 from the price tubes, we moved
the dices of this figure to place them in the price tube for locating precisely where the uncertainty
is described and thus, the model risk

However, to take into account at each date the new information, we use it to refresh
the data of the four preceding dates by “moving”5 or “sliding” the VPPI extrapolator.
The VIMADES Extrapolator then provides the extrapolation of the price tube during
the exercise period: see Fig. 2.2. We may compare it with the actual one obtained
ex-post (Fig. 2.3).
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Fig. 2.3 The Extrapolated Price Tube and the ex-post Actual One

The Fig. 2.4 displays the errors produced by the VIMADES Extrapolator com-
paring the actual and the forecast price tubes.

5 This terminology is used for describing moving averages of all kinds. Here, this is the tube itself
which is moved instead of an average of one of its unknown evolution.
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Fig. 2.4 Error between Actual and Forecast Price Tubes. The errors between the forecast tube
computed ex-ante and the actual tube observed ex-post in this historical back testing are represented
in this figure. We observe that the errors concern the high prices when the prices increase and the
low prices in the opposite case

One can take this opportunity for testing the VIMADES Extrapolator and check
whether the extrapolation of the Last Prices series remains in the price tube (this
is not a theorem, but an a posteriori experimental observation). Figure 2.5 displays
the price tube, both the Last Price evolution and its extrapolation. The histogram
displays detection errors when the extrapolation does not belong to the price tube.
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Fig. 2.5 Detection of the extrapolation of the last price in the price tube. We apply the detection
of extrapolation patterns combining the detection techniques of patterns of the last price by its
extrapolation in its price tube (see Sect. 2.6 for other examples, such as detection on second-degree
polynomials (Fig. 2.13) and exponentials (Fig. 2.14) in the price tube)

We can compute the forecast return price tube by taking the upper and lower
bounds of the returns of the extrapolated prices ranging over the forecast tube. We
obtain the following tube bounded below by the lower bound of forecast risky returns
which was used in the examples provided in this book (Fig. 2.6):
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Fig. 2.6 Forecast returns. This figure displays the forecast return of the last price and the forecast
tube of price returns

In summary, knowing the price tube provided by the brokerage firms, we compute
the forecast price tube fromwhichwe deduced the forecast lower bounds R�(t) of the
risky returns displayed in Fig. 2.8: we can thus operate the VPPI robot-insurer which
compute the insurance tube, the VPPI measure of risk and the VPPI management
rule (Fig. 2.7).

The above example assumes that the future x(t + h) is known on some interval
[t, t + δ] for h ≤ δ. When this is not the case, we can use one of the many available
extrapolation procedure to deduce from the history of the evolution up to time t and
the extrapolation x̂(t + h) which are known on some interval [t, t + δ]. We then can
compute the extrapolated jerkiness indicator for forecasting trend reversals: integrat-
ing the VIMADES Extrapolator in the VIMADES Trendometer, we can forecast the
reversal dates at each date.
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Fig. 2.7 Forecasting trend reversals. This figure provides the time reversal when the prospective
derivatives is predicted by the VIMADES extrapolator (compare with Fig. 2.9)
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2.3 Sensitivity to the Tychastic Gauge

As we have seen, the apprehension of uncertainty involves several aspects which
interfere: the concept of tychastic gauge, measuring the thickness of the price tube,
and its forecasting. Using price tubes and their forecasting, we compute the mini-
mum guaranteed investment and the VPPI management rule. Naturally, the size of
the tychastic gauge influences both of them. A way to measure the influence of the
tychastic gauge is to compare it with the case without tychasticity (tychastic gauge
equal to 0), where the price tube is reduced to the actual price. We compute the
insurance and performance tubes obtained in this case with the same variable annu-
ities floor. However, we use the extrapolation of the actual price regarded as the price
tube without tychasticity, from which we forecast the lower bounds of the future
risky return:
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Fig. 2.8 Tychastic and non tychastic forecast lower bounds of returns of the CAC 40 returns. Since
the larger the price tube, i.e., the larger the tychastic gauge, the smaller the forecast lower bounds of
the risky return, the more tychastic is the uncertainty. This fact is illustrated by choosing the least
tychastic case when the price tube is reduced to the last price series (the non tychastic case)

However, there is no simple relation between the respective minimum guaranteed
investment between the tychastic and non tychastic cases. The tychastic minimum
guaranteed investment can be both above or below the non tychastic one:
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The situation is akin to the sensitivity of the value of the portfolio to small changes
in volatility, called Vega, a (pseudo-Greek) in option theory.
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The Key Risk Indicator (KRI) at investment date and the Key Performance Indi-
cators (KPI) at exercise date are summarized in this table:

minimum guaranteed investment (MGI) 409.18
minimum guaranteed cushion (MGC) 369.55
actualized exercise value 98.47
cumulated prediction penalties −239.89

For the sake of comparison, we compare it with the one we obtained under the
tychastic case:

minimum guaranteed investment (MGI) 426.13
minimum guaranteed cushion (MGC) 386.5
actualized exercise value 109.12
cumulated prediction penalties −54.77

The hedging exit time function is displayed below:
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The performance tube is depicted in
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and the error prediction penalties in
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2.4 Trend Reversal: From Bear to Bull and Back

Knowing when at some date a function reverses its trend from increasing behavior
to decreasing behavior provides alarms whenever the trend of the price of the assets
changes: from “bear markets” when the prices are falling, to “bull markets”, when
they are “rising”, and back. This problem is tackled at the level of technical analysis
of time series.

At each date, the VIMADES Trendometer

1. detects automatically whether it is a trend reversal date at which the function
achieves either a local minimum or a local maximum;

2. computes the (nonlinear) jerkiness indicator measuring the frequency and the
violence of the trend reversal at the aftermath of monotone periods when they
blow up, since bear and bull markets periods delineated by the transversal dates
are not jerky by definition (see [27]).

2.4.1 Trendometer

The trendometer detects all local extrema of a time series:
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It allows time series analysts to extract from a time series a trend skeleton sum-
marizing the time series by interpolating the trend reversal values and thus, cadences
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(difference between successive trend reversal dates) and average trend velocities
between successive trend reversal values:
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Cadences and trend velocities can be displayed for providing dynamical indicators
on the time series:
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2.4.2 Trend Jerkiness and Eccentricities

The VIMADES Trendometer measures also the jerkiness function of the time series
at every date:

The trend reversal dates of a time series are classified in chronological order, or
by decreasing jerkiness, or by increasing duration of their congruence periods (since
high jerkiness and short durations of congruence periods are two indicators of a jerky
situation):

The VIMADES Trendometer computes and classifies the dates in the four trigono-
metric quadrants: the North West quadrant R++, the North East quadrant R+−, the
South West quadrant R−− and the South East quadrant R−+. Definition 4.2.1 of
trend reversibility indexes provides in the lychee framework the following particular
case:
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Fig. 2.9 From bear to bull and back. The thin bars display the reversal values triggering alarms at
the reversal dates. The height of the thicker bars underlines the trend jerkiness index of the time
series at trend reversal dates: the colors distinguish the minimum reversal dates t↘↗ from bear to
bull markets at which the price achieves a local minimum and maximum reversal dates t↗↘ from
bull to bear markets

Definition 2.4.1 (The Trend Compass) The trend compass classifies the prices in
four qualitative cells:
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1. minimum time reversal cell (North East quadrant);
2. maximum time reversal cell (South East quadrant);
3. decreasing time congruence cell when the function decreases, or a “bear” period

(South West quadrant);
4. increasing time congruence cell when the function increases, or a “bull” period

(North West quadrant).
The trend compass classifies the dates in these four classes between reversal

and congruence phases, distinguishing the ascending ones (bear markets) and the
descending ones (bull market):
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Date Date Date Jerk. Jerk. Jerk. Durat. Durat. Durat.
class. of class. of class. of class. of class. of class. of class. of class. of class. of

durat. jerk. date durat. date jerk.

03/08/12 0 240 03/10/12 0 6400 12/03/00 0 240
08/08/12 2 1 16/10/12 0 4672 09/10/01 0 504
09/08/12 0 504 31/10/12 1 4602 14/08/05 0 321
10/08/12 0 321 27/09/12 1 4555 29/07/03 0 19
13/08/12 0 19 09/11/12 0 4314 05/08/03 0 73
14/08/12 0 73 20/08/12 1 3721 09/07/17 0 648
16/08/12 1 20 15/10/12 1 3208 31/05/00 0 2053
20/08/12 1 3721 07/11/12 0 2884 28/05/05 0 1307
30/08/12 7 248 01/11/12 0 2827 23/12/01 0 1313
05/09/12 3 204 24/09/12 1 2590 09/02/00 0 6400
07/09/12 1 836 14/09/12 1 2195 15/10/12 0 153
12/09/12 2 2093 12/09/12 2 2093 04/01/00 0 1976
14/09/12 1 2195 20/09/12 0 2053 09/12/00 0 723
18/09/12 1 592 09/10/12 0 1976 27/09/07 0 40
19/09/12 0 648 02/10/12 0 1313 25/07/00 0 4672
20/09/12 0 2053 25/09/12 0 1307 23/11/07 0 5
24/09/12 1 2590 01/10/12 1 965 07/04/00 0 345
25/09/12 0 1307 07/09/12 1 836 23/10/11 0 2827
27/09/12 1 4555 10/10/12 0 723 19/01/00 0 207
01/10/12 1 965 19/09/12 0 648 08/03/10 0 2884
02/10/12 0 1313 18/09/12 1 592 14/04/02 0 99
03/10/12 0 6400 09/08/12 0 504 02/01/06 0 4314
05/10/12 1 266 25/10/12 0 345 13/08/01 1 20
08/10/12 0 153 10/08/12 0 321 02/02/07 1 3721
09/10/12 0 1976 05/10/12 1 266 20/06/12 1 836
10/10/12 0 723 30/08/12 7 248 21/08/02 1 2195
11/10/12 0 40 03/08/12 0 240 21/09/00 1 592
15/10/12 1 3208 06/11/12 0 207 11/10/08 1 2590
16/10/12 0 4672 05/09/12 3 204 10/03/00 1 4555
18/10/12 1 71 24/10/12 2 176 16/03/00 1 965
19/10/12 0 5 08/10/12 0 153 05/08/12 1 266
24/10/12 2 176 08/11/12 0 99 17/02/00 1 3208
25/10/12 0 345 29/10/12 1 76 01/01/00 1 71
29/10/12 1 76 14/08/12 0 73 23/09/05 1 76
31/10/12 1 4602 18/10/12 1 71 23/06/00 1 4602
01/11/12 0 2827 05/11/12 1 48 22/07/00 1 48
05/11/12 1 48 11/10/12 0 40 03/09/00 2 1
06/11/12 0 207 16/08/12 1 20 12/09/12 2 2093
07/11/12 0 2884 13/08/12 0 19 24/10/12 2 176
08/11/12 0 99 19/10/12 0 5 05/09/12 3 204
09/11/12 0 4314 08/08/12 2 1 30/08/12 7 248

The eccentricity index associates at each time the average of trend jerkiness during
a given period. This provides another indicator of a volatile behavior of the prices:
the higher this eccentricity index, the more “volatile” the evolution. For instance, if
the period is four dates, we obtain the following graph of the eccentricity of the price:
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Reversal Jerkiness Reversal Jerkiness Reversal Jerkiness
dates intensity dates intensity dates intensity

03/10/12 6399, 3995 09/10/12 1974, 7165 06/11/12 206, 3981
16/10/12 4671, 195 02/10/12 1312, 4576 05/09/12 203, 2652
31/10/12 4600, 8908 25/09/12 1305, 533 24/10/12 174, 968
27/09/12 4554, 1506 01/10/12 963, 8912 08/10/12 151, 973
09/11/12 4313, 3243 07/09/12 834, 662 08/11/12 97, 8416
20/08/12 3719, 6546 10/10/12 722, 4491 29/10/12 75, 4085
15/10/12 3206, 6275 19/09/12 647, 0114 14/08/12 71, 8112
07/11/12 2883, 3776 18/09/12 590, 5854 18/10/12 69, 848
01/11/12 2826, 0836 09/08/12 503, 4376 05/11/12 47, 1593
24/09/12 2589, 47 25/10/12 343, 792 11/10/12 39, 1841
14/09/12 2193, 683 10/08/12 319, 7732 16/08/12 18, 6272
12/09/12 2092, 0907 05/10/12 264, 5396 13/08/12 18, 3116
20/09/12 2052, 3989 30/08/12 246, 809 19/10/12 3, 608

08/08/12 0, 1832
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The VIMADES Trendometer provides automatically alarms warning investors
of the need to make an urgent qualitative assessment of the causes triggering jerky
periods, economic, financial, political, Panurgic (or mimetic behavior detecting a
collective erratic decision process by lack of trust in the forecast future, etc.).

The VIMADES Trendometer can be used for sequencing time reversals of other
series. For instance, to detect the trend reversal dates of the insurance tube:
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The VIMADES Trendometer detects the trend reversals of market alarms:
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It is interesting to compare the trend reversal of the market alarms with the ones
of the tychastic gauge:
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2.4.3 Detecting Extrema and Measuring Their Jerkiness

For individual continuous time evolutions, the trendometer detects all their local
extrema and measures their jerkiness (Fig. 2.10):
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Fig. 2.10 Applications of the trendometer to trigonometric functions. The trendometer can be
applied to detect and measure the strength of minima and maxima of differentiable functions,
such as the sum t ∈ [0, 75] �→ sin(x) + sin(

√
2x) + sin(

√
3x) of three trigonometric functions, as

suggested on page 146 of the bookA New Kind of Science, [177], byStephenWolframdisplaying two
regularly spaced families. They thus detect the zeros of its derivative t �→ cos(x)+√

2 cos(
√
2x)+√

3 cos(
√
3x). The figure above displays the graph of this function and the vertical bars indicate

the values at which the function reaches its extrema. The figure below displays the jerkiness of the
extrema at the dates when they are reached

For the sake of comparison with the example of the Wolfram book, we display
the trendometer applied to this function on the interval [0, 250]:

The two next figures display the abscissa and ordinates of the function in terms
of decreasing jerkiness of their extrema:
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By using a piecewise interpolation between the extrema, we obtain a “trend skele-
ton” summarizing the function:

Stephen Wolfram states: “Among all the mathematical functions defined, say, in
Mathematica, it turns out that there are also a few—not traditionally common in
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natural sciences—which yield complex curves which do not appear to have any
explicit dependence on representations of individual numbers”. This complexity,
such as chaos produced by iterated maps, is linked to the fact that viability kernels
of compact spaces under disconnecting maps (inverses of Hutchinson maps) are
uncountable Cantor sets (see Theorem 2.9.10, p. 80, [28]).

The trendometer provides a trend reversal of the Fermat rule:

Trend reversal of the Fermat rule The trendometer provides a “trend reversal”
of the Fermat rule. Instead of using the zeros of the derivative for finding all the local
extrema of any numerical function of one variable, the extrema of the primitive of a
function detected by the trendometer allows us to find zeros of the function.

2.4.4 Differential Connection Tensor of a Family of Series

Differential connection tensor of a family of series have emerged from two different,
yet, connected, motivations. The first one follows the observation that the classi-
cal definition of derivatives involves prospective (or forward) difference quotients.
Actually, the available and known derivatives are retrospective (or backward). They
coïncide whenever the functions are differentiable in the classical sense, but not in
the case of non smooth maps, single-valued or set-valued.

The later ones are used in differential inclusions (and thus, in uncertain control
systems) governing evolutions in function of time and state. We follow the plea of
some physicists for taking also into account the retrospective derivatives to study
prospective evolutions in function of time, state and retrospective derivatives, a par-
ticular, but specific, example of historical of “path dependent” evolutionary systems.
This is even more crucial in life sciences, in the absence of experimentation of uncer-
tain evolutionary systems. The second motivation emerged from the study of net-
works with junctions (cross-roads in traffic networks, synapses in neural networks,
banks in financial networks, etc.), an important feature of “complex systems”. At
each junction, the velocities of the incoming (retrospective) and outgoing (prospec-
tive) evolutions are confronted. This leads to the introduction of the “differential
connection tensor” of two evolutions, defined as the tensor product of retrospective
and prospective derivatives, which can be used for controlling evolutionary systems
governing the evolutions through networks with junctions (see [27]).

Given a family of temporal series (the prices of the 40 assets of the stock market
index CAC 40, for instance, as we shall see later), the differential connection tensor
is the tensor product6 of retrospective and prospective velocities which measures
the jerkiness between two functions, smooth or not smooth (temporal series) pro-
viding the trend reversal dates of the differential connection tensor. The differential

6 Recall that the tensor product p ⊗ q of two vectors p := (pi )i ∈ R
� and q := (q j ) j ∈ R

� is the
rank one linear operator

p ⊗ q ∈ L(R�,R�) : x �→ 〈p, x〉 q

the entries of which (in the canonical basis) are equal to (pi q j )i, j .
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connection tensor plays the role of covariance matrices of families of random vari-
ables: statistical events in the sample space are replacedbydates and randomvariables
by temporal series.

The question arises whether it is possible to detect the connection dates when the
monotonicity of a series of a family of temporal series is followed by a reversal of
the monotonicity of other series, in order to detect the influence of each series on the
dynamic behavior of other ones. When the two series are the same (diagonal entries),
we recover their reversal dates. The differential connection tensor measures the
jerkiness between two series, providing the other entries of the differential connection
tensor.

The VIMADES Tensor Trendometer7 software provides at each date the coeffi-
cients of the differential connection matrix.

2.4.4.1 Differential Connection Tensor Between Prices and Volumes

We describe the results obtained when we consider only two series for displaying
meaningful figures.

The entry of the first row and the first column is the jerkiness of the trend reversal
of the price, the first row and second column, the monotonicity jerkiness between
price and volume, the second line the first column, themonotonicity jerkiness volume
and price and the second row and second column, the jerkiness of the trend reversal
of the volume.

The selected series are those of an asset price and volume of securities exchange
during a daily session8 (Fig. 2.11).

At each date, the connection matrix displays the jerkiness measures among and
between the two series. For instance, on December 7, 2004, three weeks before
the big discontinuity, all four coefficients of the differential connection matrix are
different from zero:

(
0, 39 33
1, 80 153

)

(2.8)

At the discontinuity date, a small decrease of prices was followed by a large
increase in volume, as indicated by the differential connection:

(
0, 2 0
2,654 0

)

(2.9)

7 The software of the Tensor Trendometer of VIMADES has been registered on November 25,
2013, at the INPI, the French Institut National de la Propriété Industrielle.
8 It is calculated daily volume (number of shares traded) or by value of transactions. The volume
used here is the volume of securities, not their values. The volume is an important activity indicator
because it measures the interest of investors.
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Fig. 2.11 Price and volume series of wheat. This figure displays the series of “settlement prices” of
wheat and the volume of exchanges on the London Commodity Market from December 19, 2004 to
April 4, 2005 around the date of January 10, 2005, when an important discontinuity of the volume
happened (from 7,534 to 12,842 units). The number of dates is reduced for the visibility of this
graphical representation of the series of differential connection matrices

Figure 2.12 displays the dates at which at least the monotonicity of a series is
followed by the reversal of itself and/or another one:

A statistical study over the period from 05/01/2000 to 30/09/2013 shows the
proportions between the following dates:

1. trend reversal dates of the price series: 26 %
2. monotonicity reversal dates between price and volume series: 24 %
3. monotonicity reversal dates between volume and price series: 22 %
4. trend reversal dates of the price series: 28 %

2.4.4.2 Case of the Price Series of the CAC 40

We use the tensor trendometer for detecting the dynamic correlations between the
forty price series of the CAC 40. For instance, on August 6, 2010, the prices are
displayed in the following figure
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Fig. 2.12 Differential connection tensor between price and volume. In order to represent the detec-
tion of the different entries of the differential connectionmatrix between the price and volume series
at each date of the temporal window, we indicate by vertical bars between 0 and 1 the trend reversal
dates of the price series and by vertical bars between 0 and 4 the trend reversal dates of the volume
series, which occupy the diagonal of the differential connection matrix. The vertical bars between 0
and 2 detect the dates when monotonicity behavior of the price precedes the monotonicity behavior
of the volume whereas vertical bars between 0 and 3 detect the dates when monotonicity behavior
of the volume is followed by the monotonicity behavior of the price

At each date, it provides the 40 × 40 matrix displaying the qualitative jerkiness
for each pair of series when the trend of the first one is followed by the opposite trend
of the second one. At each entry, the existence of a trend reversal by a circles:
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The quantitative version replaces the circles by the values of the jerkiness:

We turn our attention to the CAC 40 series for detecting the financial crisis of the
beginning of our century.

The temporal window is from du 03/01, 1990 to 09/25, 2013.
The first figure displays the series of the CAC 40 indexes (close). The vertical

bars indicate the reversal dates and their height displays their jerkiness.
The second figure displays the velocities of the jerkiness between two consecutive

trend reversal dates, a ratio involving the variation of the jerkiness and the duration
of the congruence period (bull and bear). It is a dynamic view of the agitation of the
temporal series.

The analysis of this series, as other time series of asset prices, shows that often, the
jerkiness at minima (bear periods) is higher than the ones at maxima (bull periods).
For the CAC 40, the proportion of “bear jerkiness” (57 %) over “bull jerkiness”
(43 %). A possible explanation is a mimetic one: the fear of bear periods propagates
and amplifies for selling the shares whereas investors may wait to regain confidence
in bull phases.
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The third and fourth figures zoom on the 2000 Internet crisis (around May 4,
2000) and the 2008 subprime crisis (around October 10, 2008), which are detected
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thanks to the trendometer but not observed on simple examination of the time series
of the CAC 40.

The next figure displays the classification by decreasing jerkiness of

1. trend speeds. They are absolute values of the velocities of the jerkiness between
two consecutive trend reversal dates, a ratio involving the variation of the jerkiness
and the duration of the congruence period (bull and bear);

2. the absolute value of the “acceleration”;
3. the “cadences”, duration of the congruence period (bull and bear).
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The next table provides the first dates by decreasing jerkiness. The most violent
are those of the subprime crisis (in bold), then the ones of the year 2006 and, next,
the dates of the Internet crisis (in italics).
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Date Jerkiness Date Jerkiness Date Jerkiness

10/10/2008 94507, 21 03/01/2001 15153, 31 17/02/2000 10025, 57
23/01/2008 57315, 90 11/09/2002 15111, 43 28/10/2002 9962, 69
07/05/2010 53585, 50 10/03/2000 15055, 45 01/09/1998 9917, 22
05/12/2008 44927, 23 10/08/2011 15011, 24 15/02/2008 9905, 51
03/10/2008 43319, 41 27/08/2002 14958, 41 19/04/1999 9887, 67
19/09/2008 37200, 13 22/11/2000 14768, 91 26/10/2001 9556, 17
05/04/2000 34609, 80 03/04/2000 14280, 35 29/06/2000 9470, 44
21/01/2008 34130, 42 03/04/2001 14003, 47 25/02/2000 9438, 07
16/10/2008 29794, 42 18/07/2002 13813, 67 27/03/2001 9436, 84
21/11/2008 28840, 69 19/12/2000 13743, 01 15/05/2000 9411, 84
04/12/2000 27861, 03 12/03/2003 13707, 93 04/10/2011 9409, 14
12/11/2001 26039, 07 12/09/2008 13682, 85 17/01/2000 9398, 39
22/03/2001 25128, 11 01/12/2008 13207, 66 11/08/1998 9320, 83
27/04/2000 24577, 70 29/10/1997 13085, 95 20/11/2007 9291, 91
17/03/2008 24416, 22 04/03/2009 12845, 84 05/10/1998 9277, 96
14/10/2008 24007, 60 14/03/2007 12801, 09 29/07/1999 9253, 97
05/08/2002 22021, 61 24/06/2002 12658, 98 04/12/2007 9200, 48
14/09/2001 21658, 15 02/08/2012 12628, 14 04/02/2000 9093, 25
10/08/2007 21252, 50 24/05/2000 12456, 94 02/10/2002 8959, 94
13/11/2000 20662, 32 10/05/2000 12411, 27 13/09/2000 8897, 37
22/01/2008 20184, 96 28/07/2000 12145, 83 10/05/2010 8877, 39
14/08/2002 20052, 16 23/02/2001 11960, 59 30/09/2002 8845, 61
28/10/1997 19720, 61 04/11/2008 11904, 50 04/11/1998 8843, 75
14/06/2002 19114, 56 08/06/2006 11773, 65 09/08/2011 8833, 20
06/11/2008 18900, 51 30/10/2001 11733, 86 11/06/2002 8832, 22
03/08/2000 18621, 37 15/10/2001 11630, 50 07/07/2000 8797, 60
29/10/2002 18550, 19 24/03/2003 11294, 44 16/01/2001 8778, 74
08/10/1998 18307, 12 15/03/2000 11232, 52 27/04/1998 8721, 52
02/05/2000 18087, 38 17/09/2007 10948, 51 19/02/2008 8327, 20
21/09/2001 17771, 78 13/08/2007 10933, 30 20/11/2000 8299, 90
11/09/2001 17660, 69 25/10/2001 10809, 42 03/07/2002 8289, 95
16/08/2007 17398, 86 02/10/2008 10720, 31 28/06/2000 8258, 67
16/05/2000 17228, 62 23/10/2002 10675, 86 28/06/2010 8137, 05
04/04/2000 16958, 95 25/08/1998 10673, 02 31/01/2000 8093, 58
18/10/2000 16761, 07 30/03/2009 10672, 64 21/11/2000 8074, 23
29/09/2008 16502, 34 24/01/2008 10352, 96 28/01/2009 8049, 26
08/08/2007 16048, 09 20/03/2001 10294, 67 26/02/2007 8038, 76
21/03/2003 15703, 11 14/12/2001 10253, 40 31/01/2001 8033, 95
18/09/2008 15506, 17 31/07/2007 10134, 80 26/11/2002 7933, 90
22/05/2006 15470, 19 26/04/2000 10093, 65 08/08/2011 7821, 87
05/09/2008 15406, 87 02/09/1999 10080, 12 18/05/2010 7793, 80

The next figure displays the eccentricity of the CAC 40 series, which also detects
the Internet and Subprime bubbles, but takes into account the previous velocities,
accelerations and jerks of the preceding jerkiness.
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2.5 Dimensional Rank Analysis

It is tempting to compare several indicators, such as, for instance, acceleration of
prices and velocities of gauges. They do not take their values in the same space and
so, are not really comparable, except if we modify their values in such a way they
range over the same space of values.

In physics, since Isaac Newton and its “principle of similitude”, the purpose of
dimensional analysis is to compare physical quantities by “homogenizing” them
in terms of their “basic physical dimensions”, such as length, mass, time, electric
charges, etc., thanks to the Buckingham π Theorem (1914), rediscovering a theorem
due to Joseph Bertrand in 1878. They are used to define homogeneous measures

(without dimensions) of the form

∑n
i=1 pi xi

∏n
i=1 xai

i

where
∑n

i=1 ai = 1.

We borrow the same strategy whenever financial discrete time series are observed
or evaluated using a battery of “indicators” taking different values (returns, averages,
VaR, Sharpe ratios, etc.). Pattern recognition, segmentation, clustering and many
other techniques are used to detects the relevant indicators for detecting alarms,
anomalies or signals (see for instance Mc Queen’s k-means, Diday’s dynamical clus-
tering, Vapnik’s support vector machines and networks, neural networks, Pernot’s
Choix d’un classifieur en discrimination [148]), Diday’s symbolic data analysis (see
the bibliography of Symbolic Data Analysis: Conceptual Statistics and Data Mining,
[72]), etc.

In the case when evolutions described by time series are concerned, they “mine
the trajectory of a time vectorial series” for detecting the rôles of each component of
the vectorial series and classifying the trajectory (regarded as a cloud) in a posteriori
discovered classes.
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This “transversal” approach can be complemented by a joint study of time series
as evolutions, associating with them other indicators, classifying them according
several dynamic criteria.

In statistics, “ranking” refers to the data transformation in which numerical or
ordinal values are replaced by their rank for sorting them (Milton Friedman9 used this
procedure in his non-parametric statistical tests). This is a systematic way to perform
this task by replacing the incomparable ratings provided by different indicators by
the comparable ranks of their images, taking values in the same rank space.

Here, we consider the very special preliminary case when time series are defined
on a same time-interval (for examples, different indicators on a given time series).
Once ranked, the time series take their values in the same vector-space, the dimension
of which is the number of dates of the time interval. Once sorted either by rank (in
function of dates) or by date (in function of ranks), the homogeneous results are sent
as inputs to a time series classifier.

As an illustration, we used this approach for comparing the acceleration of the
price and the velocity of the price tube:
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Since the ranks are common, we can invert such ranking classification providing
for each rank, the dates at which the indicators achieve their ranks.
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9 The non-parametric statistical Friedman test was developed in 1937 by the Milton Friedman for
detecting differences in treatments of several discrete-time series, which was integrated in many
statistical software packages. It is related to the Durbin test and the Kruskal-Wallis analysis of
variance by ranks (see for instance Rank Correlation Methods, [125] by Maurice Kendall).
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Classification by ranks allows us to single-out the dates at which the ranks lie in
given classes. For instance, we choose in the following tables to detect the dates at
which the three first and last ranks are achieved.

Dates First Three Ranks Last Three Ranks

Acceleration 04/10/2012 21/08/2012 21/09/2012 20/09/2012 20/09/2012 08/11/2012
Gauge velocity 20/08/2012 09/10/2012 01/10/2012 26/10/2012 26/10/2012 28/09/2012

2.6 Detecting Patterns of Evolutions

Thequestion arises to single out dynamical systems regarded as “pattern generators”:
they govern well identified time series regarded as patterns of interest. For instance,
linear or polynomial of fixed degree, piecewise polynomials of fixed degree, expo-
nentials, periodic functions, etc., among the thousands examples studied for many
centuries.

The problem is to deliver a differential equation, if any, which provides evolutions
viable in a tube, hints at laws explaining the evolution they govern, providing more
information than pattern recognition mechanisms which may reproduce patterns
(such as statistical models, interpolation by spline functions, the VPPI extrapolator,
etc.) without providing interpretations of the phenomenon involved, if any.

We may also look at this problem in an inverse way by “detecting” the exponen-
tial evolutions viable in the “tube” delimited at each date by low and high prices
surrounding the evolution of the CAC-40.10

A generator of detectors of patterns should provide

1. a viable pattern generator in a given class of dynamical systems;
2. the pattern regulator providing at each time the adequate parameters kept constant

as long as the recognition of a pattern is possible (such evolutions are called
“heavy”, in the sense of heavy trends);

3. the largest window on which pattern recognition occurs;
4. the detected pattern.

Once detected, the pattern generator and regulator may allow us to explain and
reproduce the underlying dynamics concealed in the time series as a prediction
mechanism. Hence, it is relevant to design generators of detectors which provide

10 One can take other tubes, such as the tube made of a “snake” of a given (large) “radius” around
it. For instance, the radius can be an error or a relative threshold imposed a priori. For instance, the
Keltner channels, introduced in the 1960s by Chester Keltner is the tube surrounding a time series
of “radius” equal to twice the average of the High, Low and Last Prices which could be used as a
tube instead of the price tube.
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1. the sequence of impulse or punctuation dates providing the ending date of the
largest window over which the time series is recognized by a pattern generated
by the pattern generator. Such instants are regarded as “anomaly dates”;

2. the length or duration of the window between two successive anomaly dates,
denominated by their “cadence”;

3. on each window, the restriction of the time series and its recognizing pattern.
The sequence of patterns on the successive windows constitute the “punctuated
evolution” generated by the impulse differential inclusions describing the pattern
generator.

We provide the examples of detection by second-degree polynomial and exponentials
to test whether there patterns consistent with the price tube (Fig. 2.14):
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Fig. 2.13 Binomial detection of the last price in the price tube. This figure displays the price tube,
the last price and its detection by an second degree polynomial pattern (see Fig. 2.5 for the detection
by extrapolation)
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Fig. 2.14 Exponential detection of the last price in the price tube. This figure displays the price
tube, the last price and its detection by an exponential pattern. Contrary to the binomial detection
(see Fig. 2.13). In this example, there is never more exponential detection than between two
consecutive dates, so that no geometric model of price evolution is consistent with the observation
of the price tube
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2.7 Classification of Indicators Used in Technical Analysis

It is time to conclude this short introduction to some chartist and/or technical analysis
of time series. The situation becomes complicated since there are many series to
study by . . . associating with them other time series . . . to which we can apply
several operators: the jerkiness indicator for detecting dates or trend reversals and
their jerkiness, and the congruent periods they delineate, the extrapolated or forecast
series, etc.

1. With any series (close, MGI, the portfolio value) are associated

(a) Dynamic indicators (yields, velocities, accelerations);
(b) Integral indicators (sum and average between two dates), during congruent

periods, for instance;
(c) Indicators specific to the nature of the series;

2. The VIMADES Extrapolator which extrapolates

(a) the series of extrapolationswithout sliding and its limit,which canbe regarded
as an “asymptotic index”, replacing or complementing standard averages
(the extrapolation without sliding of the returns from the current date to the
exercise date is used for computing the MGI);

(b) the series of sliding extrapolations and forecasts of the returns (and deriva-
tives, acceleration, etc.);

(c) the series of relative errors of the sliding extrapolation

3. With any pair of series (riskless and risky assets), the market alarms, MGI, Value
Portfolio, etc.

4. With any tube (price tube, for example):

(a) Gauge of the tube, the tubes of returns, velocities, accelerations;
(b) Velocity of gauge, etc.;

5. With any tube and a series therein, Bollinger percent and Bandwidth, the VPPI
insurance/performance ratio (see Definition 1.3.1) (which is associated with
Bollinger percent of the MGI between the floor and the value of the portfolio);

6. The VIMADES Trendometer which “sequences” series by computing the trend
reversal dates at which extrema are achieved, and thus delineate the congruence
period between two consecutive trend reversal dates, and classifies the dates in
four classes (trend compass): dates at which a minimum is achieved, a maximum,
at which the series is increasing (bear market) and at which it is decreasing (bull
market).
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(a) At each date, the VIMADES Trendometer combines the values of the series,
the reversal dates, the congruence duration, the jerkiness.

(b) Classifies the four dimensional series (value, jerkiness, reversal date, congru-
ence duration) sorted by increasing or decreasing values of the jerkiness, the
reversal dates, and congruence duration.

Note that the VIMADES Extrapolator and Trendometer may be applied to each
series, and that the trajectories of vectors of indicators regarded as “clouds of data”
can be “mined” by data analysis techniques.



Chapter 3
Uncertainty on Uncertainties

The concept of uncertainty deals with the idea that some kind of evolutionary system
governs a set of (more than one) evolutions starting from any initial state (Fig. 3.1).

Fig. 3.1 Consulting the Oracle Painting by John Waterhouse, 1884 (The Tate Gallery, London)

Was it a problem? Apparently not, since “everyone knows” that stochastic
processes provide a mathematical translation of chance.

J.-P. Aubin et al., Tychastic Measure of Viability Risk, 63
DOI: 10.1007/978-3-319-08129-8_3, © Springer International Publishing Switzerland 2014
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3.1 Heterodox Approaches

Yet, theVPPI approachdiffers in severalways fromother portfolio insurancemethods
for hedging liabilities with portfolios of risky assets or underlying, as the reader who
overcame the preceding pages could observe:

1. from the choice of the management rules;
2. from the way of translating mathematically the uncertainty;
3. from the choice of statistical measures of risk.

3.1.1 A priori Defined Management Rules

It is quite tempting to use a priori simple and seducing management rules such as,
for example,

1. the Buy and Hold management rule, which consists in laying down initially and
once and for all the risky part of the portfolio (see [159] for instance);

2. the Constant Proportion Portfolio Insurance(CPPI) management rule, which
specifies a priori “cushion multiplier” (see [70, 153] for instance).

They have been accused to trigger the crashes of October 1987 and October 1989,
and have not been spared by criticisms since the 2008 subprime crisis.

The CPPI (see [71]) is a fund management technique widely used and sold by
financial institutions. This dynamic trading strategy introduced by André Perold in
1986 (in an unpublished manuscript [146]) provides participation to the performance
of the underlying asset, but ... could result in very significant losses, violating the “I”
appearing in the CPPI.

In their paper [74], Boulier and Kanniganti describe it in the following way: [...]
An alternative approach [...] is based on the following two ideas: first, the portfolio
is always maintained above a certain minimum level called the floor, the difference
or the “surplus” being called the “cushion”—the floor is assumed to grow at a fixed
rate (for example, at the risk-less rate of interest) such that at the maturity of the
fund, it is at least equal to the guaranteed amount; second, the exposure to the market
at any moment is determined as a (non-decreasing) function of the cushion, usually
a constant multiple of the cushion. [...] The CPPI is a technique easy to understand
and implement, and independent of time. [...] There is a small risk of the portfolio
crashing through the floor in between two balancements, as happened with some
assured portfolios during the 1987 crash. In such a case, it is impossible even to
meet the guarantee. Therefore, one objective of management might be to minimize
this possibility.

Cont and Tankov point out in [86] the fact that the CPPI does not eradicate the
risk: “Yet the possibility of going below the floor, known as “gap risk”, is widely
recognized by CPPI managers: there is a nonzero probability that, during a sudden
downside move, the fund manager will not have time to readjust the portfolio, which
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then crashes through the floor. In this case, the issuer has to refund the difference,
at maturity, between the actual portfolio value and the guaranteed amount. It is
therefore important for the issuer of the CPPI note to quantify and manage this
“gap risk”.

Why do such failures appear? One of the very simple reasons lies in the fact that
the Buy and Hold, CPPI and other management rules belong to the class of rules
designed by “direct approaches”:

Direct Approach It consists in studying properties of evolutions governed by an
evolutionary system used as a “model”: gather the larger number of properties of
evolutions starting from each initial state. It may be an information both costly and
useless, since our human brains cannot handle simultaneously too many observations
and concepts.

Moreover, it may happen that evolutions starting from a given initial state satisfy
properties which are lost by evolutions starting from another initial state, even close
to it (sensitivity analysis) or governed by perturbed dynamical systems (stability
analysis). The laws of supply and demand in economy, among which the Walras
tâtonnement and the Hahn-Negishi non-tâtonnement laws,1 the Hebb learning rule
in neural networks, most of the (linear) feedbacks of robotics and automatics, the
majority of “models” in physical sciences are examples of a priori regulation or
retroaction rules designed in the framework of the direct approach. Themathematical
tradition of the era that preceding the advent of computers in the middle of the
XXth century required mathematical results to be expressed in explicit analytical
mathematical formulas needed to calculate them numerically “by hand” through the
various tables of “special functions”. A treat for the mathematicians, but very often
at the exorbitant price of much too restrictive assumptions. This tradition of “the
search for the lost formula” is no longer justified since it is possible to develop
suitable algorithms and software for obtaining numerical information in the absence
of explicit formulas. This is what does matter.

Viability theory departs from main stream modelling by a direct approach and
uses instead an inverse approach for providing mathematical metaphors:

Inverse Approach A set of prescribed properties of evolutions being given, study
the (possibly empty) subsets of initial states from which

1. starts at least one evolution governed by the evolutionary system satisfying
the prescribed properties, subset providing a qualitative evaluation of viable
“contingent uncertainty”;

1 TheWalras tâtonnement regulates the price fluctuations in function of the excess demand (the law
of supply and demand), which enjoys the strange property to govern prices under which transactions
are not viable until the infinite time when the process converges to its equilibrium, whereas dynamical
processes governing both the transactions and the price fluctuation, such as the one devised in 1962
by Hahn and Negishi, which are rather bilateral tâtonnements than non tâtonnement which are not
viable. Viability theory allows us to derive a posteriori bilateral tâtonnements governing viable
evolutions of commodities (shares) and prices instead of guessing a priori systems independently
of the economic constraints (see [17, 24]).
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2. all evolutions starting from it satisfy these prescribed properties, subset providing
a qualitative evaluation of viable “tychastic” uncertainty.
These two subsets coincide whenever the evolutionary system is deterministic.

The VPPI management rule belongs to this category: it is not given a priori, but
derived from the data of the floor and the forecasting mechanism; however, it is not
described by a simple explicit analytical formula (it is a functional of the floor and the
forecast lower bounds of the risky returns). Nevertheless, its graph can be computed
by an algorithm, and thus, provides the shares and the values of the portfolio. The
table below summarizes the analogies and differences between the VPPI and the
CPPI, difficult to asses since one is obtained by an inverse approach and the other
one(s) by a direct approach (see [34]).

Comparisons between VPPI and CPPI

VPPI CPPI

Multipliers Computed Given
Management rule Computed Given
Insurance Computed (MGI) Statistically estimated
Prediction errors Computed and corrected (ratchet

mechanism)
Statistically estimated

Forecasting mechanisms Any method for predicting lower Stochastic
bounds of returns, e.g.,

Extrapolator of VIMADES
processes (with jump

processes)

The mathematical “opacity” of the VPPI management rule requires from the
investor

• confidence in the conclusions of mathematical theorems which he cannot always
prove by himself;

• validation of the relevance of the conclusion to the problem of interest;
• and, above all, appreciate the “cost of the assumptions” and the “value of their
conclusions” once they are translated in the financial domain for validating them
as adequate mathematical metaphors.

Unfortunately, the VPPI management rule lacks their simply understandable for-
mulation, since it is not provided by explicit analytical formulas, but computed by
the opaque VPPI software. Yet, he may be reassured because he is really insured;
the “I” of VPPI is perfectly legal whenever the floor and the forecasting mechanism
are given.

3.1.2 The Uncertain Hand

Economic theory is dedicated to the analysis and the computation of supply and
demand adjustment laws in the hopeof explaining themechanismsof price formation,
which is vain if these laws are given a priori. In the last analysis, it is assumed that the
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choice of the prices is made by the Adam Smith’s invisible hand of the “Market”, the
new deity in which many economists and investors believe. They are even confident
that He uses for that purpose the Black and Scholes formula for computing options,
for instance, and trust that they can implicitly be released as a “volatilimeter” by
inverting it. His worshippers may not realize that He may listen to their prayers, but
that He is reacting to their actions in a carefully hiddenway. Unfortunately, economic
theory does not provide explicit or computable pricing mechanisms of assets and
underlying, the commodities of the financial markets constituting portfolios.2

In most financial scenarios, investors take into account their ignorance of the
pricing mechanism. They assume instead that prices evolve under uncertainty, and
that they canmaster this uncertainty. They still share the belief that the “Market knows
best” how to regulate the prices, above all without human or political regulations. The
question became to known how to master this uncertainty. For that, many of them
trade the Adam Smith invisible hand against a Brownian movement, since it seems
that this unfortunate hand is shaking the asset price like a particle on the surface of
a liquid. It should then be enough to assume average returns and volatilities to be
known for managing portfolios.

We accept the same attitude, but we exchange the Adam Smith invisible hand
on the formation of asset prices against tychastic uncertainty instead of a stochastic
one for deriving management rules of the portfolio satisfying the required scarcity
constraint: the value of the portfolio is always larger or equal to the liabilities.

3.1.3 Quantitative and Qualitative Insurance
Evaluations and Measures

A pervasive attitude is to “measure” subsets by numbers, the quantitative approach.
However, the charm of the setR of real numbers could be contested by the rough and
crude information represented by real numbers, above all when they describe this
information by different rates, numbers without dimensions, i.e., without qualities.
Measure theories provide suchmeasure tools. This quantitative approach should and
can be complemented by a qualitative approach measuring subsets by subsets.3 This
a more demanding task for human brains for grasping quickly and summarizing the
information, but a richer one.4 Viability theory offers such a tool box.

2 See [24], for more details on economic and monetary issues.
3 More generally, subsets can be measured by elements of a lattice supplied with structures such
as Boolean algebras or rings instead of the arithmetical operations on the real numbers. They also
provide evaluation and comparison procedures of their elements, but not a (quantitative) measure,
since the meaning of “measure” generally involves the real numbers.
4 Quantitative approaches are easily processed by the left hemisphere of the brain whereas three-
dimensional subsets are dealt with principally in the right hemisphere.
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3.1.3.1 Quantitative Approach

The set of real numbers equipped with the usual ordering is the favorite candidate for
providing measure processes of subsets A ⊂ E of a familyA ⊂ P(E) by a function
a : A �→ R. This is the case of several families of subsets of a space E . For instance,

1. If A is a σ-algebra, the concept of Kolmogorov measures and, among them,
Lebesgue measures, provide the best known examples.

2. If the set A is the set of compact subsets and if we equip R with the max-
plus algebra (for the operations max(a, b) and a + b), the “measure” A �→
supx∈A μ(x) associated with an upper semicontinuous function μ : E �→ R

provides another example of measures, associating with each compact subset A
the maximum value and the subset M� ⊂ A of maximizers5 of the function μ.

They are examples of measures introduced by Maslov [137] (see also [138]):

Definition 3.1.1 (Maslov Measure) Let D ⊂ P(X ) be a subset stable by finite
unions. A set-defined map M : D �→ R ∪ {+∞} satisfying

⎧
⎨

⎩

(i) M(X) > −∞
(i i) M(∅) = +∞
(i i i) ∀ K , L ∈ D, M(K ∪ L) = min(M(K ), M(L))

is called a (lower) Maslov measure. Maslov probabilities are those satisfying

M(X) = 0

The Cramer transform introduced for studying large deviations links those two
examples of measures (see, for instance, [6] on the duality between probabilities and
optimization, [5, 18, Sect. 3.6]). It is also in this context that one can define concepts
similar to those of fuzzy sets to formulate mathematically other connotations of
chance (see [42]).

3.1.3.2 Qualitative Approach

The concepts of viability theory (invariance kernels and guaranteed viability kernels,
etc.) are maps taking their values in the family of subsets, endowed with the inclu-
sion order relation. Each of these applications may serve as an evaluation process.
The guaranteed viability kernel provides a procedure for evaluating the concept of
(tychastic) warranty (and thus, of its insurance), as large as the guaranteed viability
kernel is small (Sect. 1.2 and Definition 4.1.5 in the general case of tubular envi-
ronments). This does not forbid to combine qualitative and quantitative approaches,
if necessary: use these kernels and basins as “qualitative evaluations”, first, and

5 The subset of “black swans” of A in the sense of Graciela Chichilnisky.

http://dx.doi.org/10.1007/978-3-319-08129-8_1
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second, use Kolmogorov, Maslov and other measurement procedures of subsets to
further furnish a quantitative measure by numbers. This combination of qualitative
and quantitative measures could offer meaningful and useful new instruments. This
is just the case of the minimum guaranteed investment we used in the VPPI approach
of the Asset Liability Management problem.

3.2 Forecasting Mechanism Factories

There is a myriad of ways for forecasting the upper and lower bonds of the prices,
from chartists6 to the most sophisticated econometric methods, including symbolic
data analysis7 allowing us to make predictions about future events.

The task of listing and summarizing them being overwhelming, we content our-
selves to list a few of them which could be used for extrapolating time series and
their returns.

3.2.1 Are Statistical Measures of Risk Solve Solvency II?

Even though we do not use statistical measures of risk because we do not represent
a portfolio as a stochastic process, we cannot exclude them, as well as many other
ones, which are used by a vast majority of the profession. We shall not review
statistical and probabilistic techniques, pointing only, besides the pioneering study by
[7], the elegant contribution [156] using convex analysis and the Legendre-Fenchel
Transform as an umbrella to cover many of these risk measures, too rich to be
summarized here without betraying it. See also the tutorial [155] and generalized
linear regressions in [157]. We refer to [2] on dynamic risk measures, to [3] on
expected shortfalls, to [118] on duality, to [124] on vector-valued risk measures and
their references. The Lévy jump processes have been use in [85, 86]. We refer to [73]
for a survey of techniques borrowed to statistical physics. The statistical measures
of risk do not really answer the requirements of the Solvency II directive because

1. they do not eradicate the risk, measured by a number, the value of the MGI at the
date of investment, they only estimate it;

2. even if by luck the initial investment is above the MGI, the arbitrary management
rules such as the Constant Proportional Portfolio Insurance (CPPI) or the Buy
and Hold management rule do not necessarily solve the insurance problem;

3. the dynamics of the uncertain systemaremost of the time assumed to be stochastic,
in which case it is impossible to use at each date the actual returns of the assets

6 See Sect. 2.6.
7 See for instance [72, 93], which provide a range of methods for extracting knowledge from
complex datasets.

http://dx.doi.org/10.1007/978-3-319-08129-8_2
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to manage the portfolio, since these methods provide only statistical measures of
the set of evolutions. They do not allow the manager to use this information for
computing the shares of the assets. Statistical methods such as the Monte-Carlo
ones provide a set of possibilities of evolutions of the portfolio (see Sect. 3.3);

4. The “tube” associating with any date the interval between the low and high prices
in which range the last prices is not viable under the geometric stochastic model.

These drawbacks, added to the ones generated by the theory of general
equilibrium in micro economics (see [17, 24], for instance) triggered dissidence
leading to “viability theory” for taking into account evolutions always satisfying
given constraints (for instance, the value of the portfolio must be above the floor, the
number of shares of the assets must be available, etc.) and to “tychastic uncertainty”.
The results obtained so far, summarized in Chap. 4, Tychastic Viability Survival Kit,
allow us to overcome the drawbacks due to the use of both stochastic differential
equations and of a priori universal and arbitrary management rules. Although we
shall describe it in the simplest context, the VPPI approach is general8 and can be
applied to many other evolutionary insurance problems. We doubt that the Basel
committees will revise their directives and prescriptions to leave open the choice
of the mathematical techniques used by the financial institutions. However, despite
directives requiring that “only” VaR techniques must be used, some financial insti-
tutions could advance in front and beyond bureaucratic directives! For this is not a
reason not to attempt challenging the almost universal belief that the probability and
stochastic framework is the only way to translate uncertainty arising in life sciences.

3.2.2 Fractals, Black Swans and Black Duals

Statistical risk measures and the use of stochastic differential equations (particularly,
the geometric model) have been fiercely criticized from several sides. Benoît Man-
delbrot spent many and long years in examining financial series and looking for their
fractal9 behavior, described in [132]. He was joined by Nassim Taleb, who wrote
with him on random jumps rather than random walks in [133]. He is the author of
the celebrated [166] in which he introduces the concept of black swans for describ-
ing rare events [168, 169], among many other publications (for instance, [94, 100,
113, 167], etc.) The measure of the sensitivity dependence on initial conditions of
a dynamical system and bifurcation have been investigated in [96] by measuring

8 The MGI defined by the VPPI is based on the “guaranteed viability kernels” of an environment
(associated with the floor) under a tychastic system (defined by the forecast lower bounds of the
returns) regulated by the shares of the portfolio. It enjoys its properties, amongwhich its computation
by the viability kernel algorithm.
9 Fractals can be defined rigourously as viability kernels of subsets under a special class of discrete
systems, which are Cantor sets of which several concepts of fractal dimension can be provided.
Also, the chaotic (actually, the fluctuating) behavior of solutions to the Lorenz system can also be
rigourously studied since one can prove that the strange attractor is contained in a viability kernel
(see [28]). Chaos was also introduced in economics in 1981 by Day [92].

http://dx.doi.org/10.1007/978-3-319-08129-8_4
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the highest eigenvalue of a matrix of elasticities for detecting excessive reactions.
See [176] on this topic and the footnote 9. We refer to [171]. Graciela Chichilnisky
speaks also of black swans in a long series of articles, [77, 79, 80, 81, 82], but in
another context. She replaces the functionals on Lebesgue spaces L p(Ω) of inte-
grable functions (1 ≤ p < +∞) by functionals on the space L∞(Ω) supplied
with the norm sup essω|x(ω)| (essential supremum), which, motivated by neuroeco-
nomics, she interprets as the “topology of fear”. Among the dual10 L∞�

(Ω) of con-
tinuous linear functionals on L∞(Ω) (which could be nicknamed the “black dual”),
she distinguishes functionals which are “sensitive to frequent and to rare events” in
the rough sense that they classify functions on sets with large and small measures.
She proves that there exist functionals which are both sensitive to frequent and rare
events, which are convex combinations of purely and countably additive measures,
extending in this way the classical Von Neumann and Morgenstern axioms. In the
case of spaces R�, she introduces combinations of linear functionals, which are
insensitive to rare events, and nonlinear functionals such that min, max, which are
insensitive to frequent events and single out the states achieving these optimization
problems,11 regarded as “black swans”. These functionals being Maslov measures
(see Definition 3.1.1), these measures are combinations of Kolmogorov and Maslov
measures.

3.2.3 Trends and Fluctuations in Nonstandard Analysis

Michel Fliess and his collaborators have used the Cartier-Perrin Theorem [76] in
nonstandard analysis for decomposing an evolution as the unique sum of a trend
and of a fluctuation, as candidates to replace the rôles of the expectation and of
the deviation in statistical measures of risk. They designed algorithms exploiting
this formula in many “quite convincing computer simulations” (see, for instance,
[102–104]). Nonstandard Analysis was invented by Robinson in [154] and partly
reformulated by Nelson [143] under the name of Internal Set Theory.12 It “trans-
lates” mathematically the Leibnizian concept of infinitesimals. For instance, a (non
standard) “infinitely large integer” ω, regarded as being greater than any (standard)
integer, summarizes the (standard) formulation “∃ ω such that ∀n ∈ N, n ≤ ω”. It is
intended to replace theCauchy machinery which we all of us have learned to operate,
and not yet ready to pay the price of mastering the added abstraction level despite
the gain in simplification (see the elegant presentation of this attractive nonstandard
analysis in [130] and a tutorial in [95]). Most concepts of “standard” analysis can be

10 The complement of L1(Ω) in the black dual L∞�
(Ω) = L1��

(Ω) is characterized by the
Ioffe-Levin-Valadier theorem, stating that p ∈ L∞�

(Ω) if there exists a decreasing sequence of
Borel subsets An ⊂ Ω with empty intersection such that, for any x ∈ L∞(Ω),

〈
p,χ� An − x

〉 = 0
where χA denotes the characteristic function of A. This means that p is supported by every An (see
[11, p. 449]).
11 See footnote 5.
12 Nelson was also the author of the books [142, 144].
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translated in an equivalent expression in nonstandard analysis. This is what Cartier
and Perrin did by designing a nonstandard “integration theory on finite sets” allowing
them to define S-integrable functions and prove that they can be decomposed in an
unique way as the sum of a L-integrable function and a “fast oscillating” function.
A function is fast oscillating if, on every (nonstandard) limited interval, its integral
is a (nonstandard) “infinitely small” number (the standard version of this definition
involving six quantifiers is too involved to be reproduced here). The fast oscillating
part of the evolution is interpreted as its “noise” of “fluctuations” and the L-integrable
part as its “trend”.

3.2.4 Analytical Factories

Several attempts to study time series, or chroniques, or signals, in brief, evolutions,
originating in different fields, share at least a same root: the decomposition of a func-
tion in components on a basis of “special functions”. They provide the core of the
techniques for approximating, interpolating and extrapolating functions. Knowing
a basis of a function space, a function can be replaced by the sequence of its com-
ponents, and, conversely, any sequence, interpreted as a sequence of components of
special functions, reconstruct a function. Therefore, this point of view provided an
immense reservoir of approximation (a class of methods known as Galerkin ones).
This also triggered the need to compare bases, and thus, the requirement of measur-
ing errors. In the best case when the function spaces are Hilbert spaces (in which
“all reasonable statements are true”), the norms of the projectors of best approxi-
mation, the orthogonal ones, are all equal to 1, and thus, cannot be used to compare
approximation procedures. Introducing a Hilbert space V ⊂ H dense in a Hilbert
space H such that the balls of V are compact in H , it is possible to construct the
optimal orthonormal basis13 in the following sense. Denote by P�

� the projector onto
the vector space spanned by the � first elements of the optimal basis and by P� any
projector on a vector space of dimension �. Then

‖I − P�
� ‖L(V,H) := sup

x =0

‖x − P�
� (x)‖H

‖x‖V
≤ ‖I − P�‖L(V,H)

The optimal basis may be difficult to construct for given Hilbertian function
spaces. Hence we need a criterion guaranteeing that a sequence of
projectors ‖P�‖ converges to the identity with the optimal speed of convergence: if

‖I − P�‖L(V,H) sup
x =0

‖P�‖V

‖P�‖H
≤ M < +∞, then ‖I − P�‖L(V,H) ≤ M‖I −

P�
� ‖L(V,H).

13 The optimal orthonormal basis is made of the eigenvectors of a continuous linear operator (the
“duality map”) canonically associated with the Hilbert space V . See Sect. 11.6 and Theorem 11.6,
[14].
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In the case of spaces of evolutions, such bases can be constructed using “moving
or sliding averages” regularizing a function on neighborhoods of the points where it
is defined. They have been extensively used in econometrics and signal processing.
This is also the corner stone of the decomposition of functions by wavelets, elements
of a basis formed of translations of homotheties of a given function, the “mother
wavelet”. The wavelet theory, competing with the Fourier basis, was discovered and
developed mathematically by Meyer and collaborators (see [139] and, for financial
applications [109]).

3.3 The Legacy of Ingenhousz

This story started14 in 1785 when Jan Ingenhousz, a Dutch physiologist, biologist
and chemist, discovered what was not yet called the Ingenhouszian movement, but
better known as the Brownian movement, rediscovered by the botanist Robert Brown
in 1827, however much less known than “pedesis” (fromGreek “leaping”). Thorvald
Nicolai Thiele was the first to propose a mathematical theory of Brownian motion
at the end of the nineteenth century and laid down the foundations of time series
analysis15 (see the book [129]).

Jan Ingenhousz16 described the irregular motion of coal dust particles on the
surface of alcohol, randomly zigzagging as anyone would do in such conditions.
He could not forecast that, centuries later, his discovery would trigger, in part, the
development of stochastic differential equations! Quoting him is an hommage and a
way to revive his memory.

A long list of physicists and mathematicians, Pierre de Fermat, Blaise Pascal,
Daniel Bernoulli, SadiCarnot, RudolfClausius, JamesMaxwell, LudwigBoltzmann,
Thorvald Thiele, Louis Bachelier, Albert Einstein, Paul Langevin, Henri Lebesgue,
RenéGâteaux, NorbertWiener, Paul Lévy, Andreï Kolmogorov, JosephDoob, Viktor
Maslov, Ruslan Stratonovitch, Wolfgang Döblin, Kiyoshi Ito, among so many oth-
ers, devised mathematical metaphors of “uncertainty” motivated by parlor games,
thermodynamics and physical problems. However, they all followed same directions
during the xxth century, involving probabilities and stochastic dynamics. It became
“THE” quasi unique mathematical framework to translate mathematically the con-
cept of uncertainty, and “applied” in almost all fields. From physics, the area where
it originated, through finance, thanks to the staggering mathematical contribution
of Bachelier in 1900, to life sciences. A stochastic process is a specific evolution
described by a map t �→ X

x
ω(t) starting at x at initial time and parameterized by

14 Actually, when the Epicurean Lucretius observed “what happens when sunbeams are admitted
into a building and shed light on its shadowy places. You will see a multitude of tiny particles
mingling in a multitude of ways... their dancing is an actual indication of underlying movements of
matter that are hidden from our sight” in De rerum natura.
15 Including a concept of filter, later refined by Peter Swerling (1958) and Rudolph Kalman (1960),
since known as the Kalman filter (for discrete time) and Kalman-Bucy filter (for continuous time).
16 Who also discovered photosynthesis and cellular respiration.
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events ω ∈ Ω . So far, so good, but questions may be raised, that we shall try to
answer, as well as other legitime questions on some of the dissident approaches
followed in this book.

However, are living beings behaving like dust particles in an inebriating
environment? Is the stochastic translation of uncertainty always relevant for living
systems?

A radical answer stating that risk is immeasurable, not possible to calculate, was
proposed by Knight [127], in which he stated: “Uncertainty must be taken in a
sense radically distinct from the familiar notion of Risk, from which it has never
been properly separated [...]. The essential fact is that ‘risk’ means in some cases a
quantity susceptible of measurement, while at other times it is something distinctly not
of this character; and there are far-reaching and crucial differences in the bearings
of the phenomena depending on which of the two is really present and operating [...].
It will appear that a measurable uncertainty, or ‘risk’ proper, as we shall use the
term, is so far different from an unmeasurable one that it is not in effect an uncertainty
at all”.

We shall not go that far, since the only alternative at the time of Knight, 1921,
was probabilistic and stochastic uncertainty. We suggest a middle way, tychastic
uncertainty.

3.3.1 Stochastic Uncertainty

Providing filtrationsFt of events at each time t and a probability P onΩ , a Brownian
process B(t), a drift ρ(x) and a diffusion (volatility, in finance) σ(x), these stochastic
processes are governed by stochastic differential equations

dx(t) = ρ(x(t))dt + σ(x(t))d B(t) (3.1)

1. The sample set Ω and the random events are not always explicitly identified
(in practice, one can always choose the space of all evolutions or the interval
[0, 1] in the proofs of the theorems). Only the drift and volatility are assumed to
be explicitly known;

2. Stochastic uncertainty does not study the “package of evolutions” t �→ X
x
ω(t)

(when ω ∈ Ω), but functionals over this package, such as the different moments
and their statistical consequences (averages, variance, etc.) used for evaluating
risk. Stochastic differential equations provide only measure functionals on the
package of evolutions, but not on individualized evolutions associated with evolv-
ing events t �→ ω(t) ∈ Ω;

3. Even though in some cases, Monte-Carlo methods provide an approximation of
the set of evolutions (for constant ω only), there is no mechanism used for select-
ing the one(s) (depending on evolving ω(t)) satisfying such or such prescribed
property whenever, for every time t > 0, the effective realization ω(t) is known.
This excludes a direct way to regulate the system by assigning to each state the
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proper ω(t) (which may even not belong to an approximated set of evolutions
computed by Monte-Carlo type of methods);

4. Required properties are valid for “almost all” constant ω.

Furthermore, the viability characterization of (tubular) environments under
stochastic differential equations and inclusions are very restrictive (see [38–40] and
[89–91]). The way to hide the events ω is well known: random variables are con-
cealed behind their laws, which only matter.

Random variables have been designed and developed to represent mathematically
an interpretation of uncertainty. Set-Valued Analysis provides also another approach
of uncertainty, since they associatewith any input a subset of outputs. Even though the
development of analysis started with the study of “correspondances” or “relations”
or “multivalued maps”, Bourbaki imposed a ban in favor of single-valued maps: the
argument was that a set-valued map from X to Y is a single-valued map from X to
the “hyperspace” P(Y ) of subsets of Y . Measures are instead maps from a subsetA
of the hyperspace P(Ω) to a space Y .17 Is it possible to combine these two faces of
mathematical uncertainty? Georges Matheron answered this question by pioneering
the study of random sets (random set-valued variables): see [136], which triggered
an abundant literature, from measurable set-valued maps (see [44, Chap. 8] and its
references), integration of set-valued maps, law of large numbers (see for instance
[121]), and more generally, stochastic variational analysis (see [174, 175]), etc.

3.3.2 Tychastic Uncertainty

An economist, Frank Knight, proposed a radical uncertainty in his book Risk, Uncer-
tainty and Profit, [127] published in 1921: he argued that decisionmaking rules based
on the maximisation of the expected utility could not be governed by any probability
model. So that he suggest that uncertainty was akin to the rejection of probabilistic
models, the only ones known at his time.

If we agree with its rejection of probabilistic representation of all forms of
uncertainty, we do not share his certainty on his radical uncertainty, often called
Knightian uncertainty.

In the uncertainty “hide and seek” game, the tychastic approach does not hide
the event ω, but looks at them carefully as well as the evolutions they generate,
when the events are realized and observed after the initial date when uncertainty is
dealt with. We replace the former random18 events ω ∈ Ω by tyches v ∈ V (t, x)

ranging over a “tychastic” set that depends on the time and the state. This allows us

17 Hence, the temptation to study “hypermaps” from an hyperspace P(Y ) to an hyperspace P(Y ),
to which we are yielding in [41].
18 originating in the French “randon”, from the verb “randir”, sharing the same root as the English
“to run” and the German rennen. When running too fast, one looses the control of himself, the race
becomes a poor ”random walk”, bumping over scandala (stones scattered on the way) and falling
down, cadere in Latin, a matter of chance since it is the etymology of this word.
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to take into account a meaning of uncertainty without statistical regularity. Tyches
are parameters often called perturbations, disturbances (as in “robust control” or
“differential games against nature”) (Fig. 3.2):

Fig. 3.2 Tyche. The concept
of tychastic uncertainty was
introduced by Charles Peirce
in 1893. The goal of the
Goddess Tyche was to disrupt
the course of events either for
good or for bad. Tyche became
“Fortuna” in Latin, “rizikon”
in Byzantine Greek, “rizq”

in Arabic. In Chinese,
the two characters “reaction,

change”, translate the
concept of tychasticity

The data of the “tychastic map” (t, x) � V (t, x), a “tychastic reservoir”, so to
speak, replaces the probability triple (Ω,Ft ,P) and the Brownian motion. A tychas-
tic system associates with any x the set of evolutions governed by the differential
inclusion

x ′(t) := f (t, x(t), v(t)) where the tyches v(t) ∈ V (t, x(t)) (3.2)

x (t)  = f(t, x(t), v(t))
parameterized by ty-
ches v ∈ V (t, x)

Tychastic “impacts”
v(t) ∈ V (t, x(t))

Evolutions of
states x(t)

Evolutions of tyches
v(t) ∈ V (t, x(t))
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1. Tyches are identified and involved in velocities (or growth rates) which can then
be used in dynamic regulation of evolutions when the realizations of events are
actually observed and known at each date during the evolution;

2. For this reason, the results are computed in the worst case (eradication of risk
instead of its statistical evaluation);

3. Required properties are valid for “all” evolutions of tyches t �→ v(t) ∈ V (t, x(t))
instead of “almost all” constant ω’s.

Size of the Tychastic Map The larger the tychastic map, the smaller the invari-
ance kernel, the more severe is the insurance against tychastic uncertainty.

3.3.3 Contingent Uncertainty and Its Redundancy

How to offset tychastic uncertainty?

1. By introducing a reservoir of controls or regulons described by the contingent
map x � U (t, x);

2. By building retroaction maps (t, x) �→ ũ(t, x) ∈ U (t, x)withwhichwe associate
the tychastic system

x ′(t) := f (x(t), ũ(t, x), v(t)) where v(t) ∈ V (t, x(t)) (3.3)

x (t) = f(t, x(t),u (t), v(t))
parameterized by controls

u ∈ U(t,x) and tyches v ∈ V (t,x)

Feedback u(t) = u(t,x(t))
Evolutions of
states x(t)

Evolutions of tyches
v(t) ∈ V (t,x (t))
Evolutions of con-

trols u(t) ∈ U(t,x (t))

Definition 3.3.1 (Guaranteed Viability Kernel) The guaranteed viability kernel is
the union of the invariance kernels associated with each retroaction map (t, x) �→
ũ(t, x). A viable retroaction map (t, x) �→ ũ(t, x) is a retroaction map such that
guaranteed viability kernel is viable under the tychastic system (3.3).

The size of the contingent map describes the contingent redundancy of the reservoir
of controls or regulons:

Size of the Contingent Map The larger the contingent map, the larger the guar-
anteed viability kernel, the less severe is the insurance against tychastic uncertainty
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3.3.4 Impulse Contingent Uncertainty: Anticipation

Impulse contingent uncertainty involves an “impulse reservoir” defined by a reset
map � : X �→ X composed of a set of reset feedbacks, defined on its domain
Dom(�), regarded as a “trap”, on which viability is at stake. Reset maps (or impulse
contingent maps) remedy instantaneously, with infinite velocity (impulse) for restor-
ing any state in the trap reached by an evolution by mapping it to a new “initial
condition” outside the trap fromwhich the evolution starts again. Very often, the trap
is a subset of the boundary of the environment, but not always.

This impulse contingent management method avoids prediction of disasters, but
offers opportunities to recover from them when they occur. Instead of seeking an
insurance from a tychastic reservoir assumed to be known or predicted (predictive
approach), the impulse approach allows the decision maker to correct the situation
whenever the states reaches the trap. The viability kernel of a regulated impulse
system “evaluates” the subset of initial states from which discontinuous evolutions
satisfy the prescribed properties. It seems that the strategy to build a reservoir of
reset feedbacks is used by living beings to adapt to their environment before the
primates that we are unwisely seek to predict their future while being quite unable
to do so. The impulse approach announces the death of the seers and the emergence
of a demiurge remedying unforeseen disasters, because most often unpredictable.

Size of the Impulse Map The larger the impulse map, the larger the guaranteed
impulse viability kernel, the less severe is the insurance against tychastic uncertainty.

3.3.5 Correcting Stochastic Systems by Tychastic Systems

Only the future risky return R(t) is uncertain, in the sense that it is not known at
investment date. We shall leave the Pandora box of uncertainty ajar in this chapter
just to explain our choice of regarding the risky return R(t) as a “tyche” ranging over
the forecast lower bounds R�(t) of the risky asset S(t).

However, for operating the robot-insurer to hedge the floor, we chose to derive
the forecast of lower bounds of the risky returns from the rare information provided
at each date by the brokerage firms, the “price tube”19: lower bounds (Low) S�(t)
and upper bounds (High) S�(t) defining the price interval �(t) := [S�(t), S�(t)] of
the risky asset inside which the “Last Price” S(t) evolves.

Why should we waste this rare and precious information since we may use it for
deriving the lower bounds R�(t) of the risky asset? The almost universal assumption
in mathematical finance is that the price is a stochastic process governed by a sto-

chastic differential equation, themost familiar being R(t) := d S(t)

S(t)
= ρ(t)dt + σ(t)

19 A “tube” is the nickname for “thick evolutions” t �→ �(t) associating with every time t a subset
�(t), the graph of looks like a tube containing evolutions t �→ S(t) ∈ �(t) called selections of the
tube (see Definition 4.0.2).
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d B(t) where B(t) is a Brownian motion, ρ(t) is a reference return and σ(t) is a
volatility (instead of the tychastic gauge: see Definition 2.1.1).

Unfortunately, the price tube t � �(t) is not invariant under the stochastic
differential equation, in the sense that, starting from a price S ∈ �(0), most of

the price evolutions Sω(t) governed by
d S(t)

S(t)
= ρ(t)dt + σ(t)d B(t) are not viable

in the price tube. But do we need to assume that the evolution of the risky prices is
governed by a stochastic differential equation? For this reason and other ones detailed
in Sect. 3.3.1 and due to the lack of a trustworthy “volatilimeter”providing σ(t), we
shall not follow the stochastic track. Because other strategies exist, since Set-Valued
Analysis (see for instance, [44]) allows to differentiate the price tube t � �(t) by
introducing its (forward) derivative D�(t, S)(1) at prices S ∈ �(t) (see Theorem
5.1.1) and since Viability Theory (see [28]) states that the price tube t � �(t) is
invariant under the differential inclusion20

∀t ∈ [0, T ], S′(t) ∈ D�(t, S(t))(1) (3.4)

in the sense that for all initial states S ∈ �(0), all evolutions of prices t �→ S(t) are
viable in the price tube in the sense that

∀t ∈ [0, T ], S(t) ∈ �(t)

Theorem 5.11 provides formulas for computing the derivatives of price tubes.
Knowing the derivative of the price tube, we thus derive the tube of their returns,
and thus, the evolutions of their lower bounds t �→ R�(t) that can be computed
(see Sect. 2.1).

The question arises whether the viability property on the price tube t � �(t)
holds true when the data are governed by standard stochastic differential equations:
we introduce a space Ω , filtrations Ft , a probability P, a Brownian process B(t), a
drift γ(S) and a volatility σ(S), allowing us to define the Ito stochastic differential
equation

d S(t) = ρ(t)S(t)dt + σ(t)S(t)d B(t) (3.5)

We observe that all realizations Sω(t) of the stochastic process S cannot be viable
in the tube �(t). Is there a way to replace the stochastic differential equation (3.5)
by a tychastic system under which the tube t � �(t) is invariant? Halim Doss
gave a positive answer by deriving a cure from the Stroock-Varadhan Support
Theorem21 (see [43, 99, 164, 165] for more details, as well as the papers [38–40] and

20 To be rigorous, we have to assume that the tube is a Lipschitz set-valued map.
21 WhenH is a Borelian of C(0,∞;Rd ), we denote by PX(x,·) the law of the random variableX(x, ·)
defined by

PX(x,·)(H) := P({ω | X(x,ω) ∈ H}) (3.6)

http://dx.doi.org/10.1007/978-3-319-08129-8_2
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[89–91] for stochastic viability). For that purpose, we introduce the Stratonovitch

drift ρ(t)S(t) − σ(t)S2(t)

2
and the Stratonovitch tychastic system

S′(t) = ρ(t)S(t) − σ(t)S2(t)

2
+ σ(t)S(t)v(t) where v(t) ∈ R (3.8)

where the parameters v ∈ R play the rôle of “tyches” defined below. Indeed, the
tyches v consistent with differential inclusion (3.4) should range over the interval

v(t) ∈ V (t, S(t)) := D�(t, S(t))−ρ(t)S(t)+ σ(t)S2(t)

2
−σ(t)S(t)v(t) (3.9)

since, in this case,

S′(t) = ρ(t)S(t) − σ(t)S2(t)

2
+ σ(t)S(t)v(t) where v(t) ∈ V (t, S(t)) (3.10)

boils down to the differential inclusion S′(t) ∈ D�(t, S(t)) under which the price
tube �(t) is viable.

The assumption underlying the use of the Brownian motion is that there is no
bound on the velocities of the data (which, in the Stratonovich framework, is trans-
lated by the requirement that v(t) ∈ R). Knowing that the velocities must belong to
the graphical derive D�(t, S)(1) of the tube �(t), this amounts to saying that the
tyches v range all over the tychastic tube V (t, S(t)) instead of R.

Starting with a stochastic differential equation, we assume that the “volatility”
σ is known. This is a nightmare since there is not known fiable “volatilimeter”.
This question triggered a thousand of studies to determine the volatilities (“smiling”
implicit viability,22 for instance). So, it may be more efficient to use an inverse
approach starting with the only knowledge at our disposal, that the prices must
remain in the tube �(t) and, consequently, that the velocities have to be chosen in
D�(t, S(t)), bypassing the ineffective use of volatilities.

(Footnote 21 continued)
Therefore, we can reformulate the definition of the stochastic core of a set H of evolutions in the
form

StocX(H) = {x ∈ R
d | PX(x,·)(H) = 1} (3.7)

In other words, the stochastic core of H is the set of initial states x such that the subset H has
probability one under the law of the stochastic process ω �→ X(x,ω) ∈ C(0,+∞;Rd ) (if H is
closed, H is called the support of the law PX(x,·)). The Stroock-Varadhan Support Theorem states
that under regularity assumptions, this support is the core of H under the tychastic system (3.10).
22 See also [28] Theorem 15.2.9, p. 603, deriving from the Hamilton-Jacobi-Bellman partial differ-
ential equation governing the evolution of the portfolio (instead of the linear second-order Black and
Scholes partial differential equation) concealing the tychastic tube of the risky returns, providing
another, but similar, approach to the implicit volatility problem.
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This is one of the reasons why we advocate the use of tychastic systems instead of
stochastic systems because they provide at least the very first requirement that prices
should range over the graphical derivative D�(t, S(t)) provided by set-valued analy-
sis, which enjoys practically all properties of usual derivatives of single-valuedmaps.



Part II
Mathematical Proofs



Chapter 4
Why Viability Theory? A Survival Kit

The study of uncertain dynamical systems under viability (or state) constraints is
the purpose of viability theory which gathers the concepts and mathematical and
algorithmic results addressing this issue (see [15, 17, 28] and, for a nonmathematical
account, [21]). It deals with the confrontation between

1. time-dependent (or tubular) constraints K: t �→ K (t) ⊂ X (in Chap. 1, we used
the tube t � K (t) := L(t) + R+ above the floor);

2. and a controlled or regulated tychastic system x ′(t) = f (t, x(t), u(t), v(t)) para-
meterized by controls u ∈ U (t, x) and tyches v ∈ V (t, x)where (t, x) � U (t, x)

is the contingent tube and (t, x) � V (t, x) is the tychastic tube.1

The problem is formulated as follows: find

1. the guaranteed tubular viability kernel GuarTubViab(K) ⊂ K;
2. the retroaction map associating with any (t, x) ∈ GuarTubViab(K) controls

u♥
K

(t, x),

such that, for any initial state x ∈ GuarTubViab(K), for all tyches v(t) ∈ V (t, x(t)),
the evolution governed by

x ′(t) = f (t, x(t), u♥
K (t, x(t)), v(t))

is viable in the tube K in the sense that for all t , x(t) ∈ K (t).
The solution to this problem is given in terms of subsets: the guaranteed tubular

viability kernel GuarTubViab(K) and the graph of the retroaction map (graphical
approach of maps) and uses the tools of set-valued analysis and mutational analy-
sis. They are not obtained through analytical formulas, but can be computed in the
framework of “set-valued numerical analysis”. The viability algorithms and soft-
ware discovered in [162] handle at each iteration subsets instead of vectors. They
are subject to the “dimensionality curse”, which limit the dimension of the problem.

1 They are examples of the viability approach to differential games extensively studied (see for
instance [15, Chap. 14, p. 451; 75]).

J.-P. Aubin et al., Tychastic Measure of Viability Risk, 85
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In other words, instead of handling functions as in classical analysis, viability
theory manipulates subsets as in set-valued analysis (see [44] by J.-P. Aubin and
H. Frankowska or [158] by R.T. Rockafellar and R. Wets for instance), and, in par-
ticular, graphs of maps and epigraphs of extended real-valued functions.

Time being a polysemous word, we distinguish the concept of chronological time
T ∈ R (spatial metaphor of time2), the concept of duration d ∈ R+ (for which there
exists a legitimate origin d = 0) and current time t ∈ [d, D] ranging over temporal
windows [d, D] of aperture Δ := D − d ∈ R+ delineated by investment dates d
and exercise dates D ≥ d (see [24, Chap. 5]).

Here, we stress that the concepts we introduce and study depend upon temporal
windows [d, D] indexed either by pairs (d, D) or upon temporal windows [d, d +Δ]
indexed by (d,Δ) when apertures Δ := D − d play an important rôle (for instance,
when we assume that they are constant for obtaining sliding temporal windows).

Each chronological time T generates the retrospective temporal windows
[T − Δ, T ] of aperture Δ ∈ [0,+∞] when the past is known, the present instant
T ≡ [T, T ] of duration 0 and the prospective temporal windows [T, T + Δ] when
the future is unknown and has to be forecast.

Mathematically, we pass from a prospective study of future evolutions x(·): d �→
x(d) defined on R+ to a retrospective analysis of past evolutions ←−x (·) defined on
temporal windows [T − D, T] by setting ←−x (t) := x(T − t), where d := T − t
is the duration from t ≤ T to T . Past evolutions may be remembered and more or
less reconstructed, whereas future evolutions are “uncertain” at the beginning of a
temporal window.

Definition 4.0.1 (Tubes and Viable Evolutions) Tubes are nicknames for “set-valued
evolutions” K : t ∈ R � K (t) ⊂ X .

Whenever the tubes and evolutionswe study depend on a temporalwindow [d, D],
they are mentioned in the notations: tubes K[d, D]: t ∈ [d, D] � K[d, D](t) ⊂
X and evolutions x[d, D] : t ∈ [d, D] � x[d, D](t) ⊂ X . Whenever we study
temporalwindow independent concepts on a fixed interval [0,T], we drop themention
[0, T ] to simplify the notations.

Tubes are characterized by their graph

Graph(K[d, D]) := {(t, x) such that t ∈ [d, D] and x ∈ K (t)} ⊂ [d, D] × X

(4.1)

An evolution x[d, D](·) : t ∈ [d, D] �→ x[d, D](t) is viable in the tubeK on [d, D] if

∀t ∈ [d, D], x(t) ∈ K (t) (4.2)

2 With no consensus on the origine of time, however. “What was God doing before He created
the Heavens and the Earth?” asked Augustine of Hippo in his confessions. Is His eternity only
forward in time and not backward? Introducing the concepts of temporal windows and exit time
function bypasses the question of origin of time, and save the physicists the burden of studying
what happened before the “Big Bang”.
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4.1 Regulated Tychastic Systems

4.1.1 Tychastic Systems

Consider

1. a vector space X := R
d (interpreted as a state space) and a vector space V := R

d

(regarded as a tychastic space of tyches);
2. a (single-valued) map f :R × X × V �→ X defining the differential equation

x ′(t) = f (t, x(t), v(t)) parameterized by tyches v (interpreted as a tychastic
system);

3. a set-valued map V : x � V (t, x) (interpreted as tychastic (set-valued) map);
4. a family Ṽ of tychastic retroactions ṽ : (t, x) :R+ × K �→ ṽ(t, x) ∈ V (t, x).

We associated with these data the set-valued map

f[Ṽ ](t, x) :=
⋃

ṽ∈Ṽ

f (t, x, ṽ(t, x))

and the tychastic system

x ′(t) ∈ f[Ṽ ](t, x(t)) (4.3)

It generates the evolutionary system SṼ :R × X � C(0,∞; X) where SṼ (d, x)

is the set of solutions x(·) of x ′(t) ∈ f[Ṽ ](t, x(t)) such that x(d) = x .

4.1.2 Tubular Invariant Kernels and Absorption Basins

We consider a tubular (environment) tube K : t �→ K (t) ⊂ X and a tubular (target)
tube C : t �→ C(t) ⊂ K (t).

Definition 4.1.1 (Tubular Invariant Kernels and Absorption Basins) For every tem-
poral window [d, D], the tubular absorption basin TubAbs f[Ṽ ](K,C)[d, D] under
the tychastic system (4.3) is the subset of elements x ∈ K (d) such that all evolutions
t ∈ [d, D] �→ x(t) governed by x ′(t) = f (t, x(t), v(t)) where v(t) ∈ V (t, x(t))
satisfy

⎧
⎨

⎩

(i) x(d) = x
(i i) ∀t ∈ [d, D], x(t) ∈ K (t)
(i i i) x(D) ∈ C(D)

(4.4)

If C(D) = K (D), condition (4.5), (iii) is superfluous and the tubular absorption
basin is called the tubular invariance kernel TubInv f[Ṽ ](K)[d, D]. For D := +∞,
we simply set TubInv f[Ṽ ](K)[d].
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Remark The tubular invariance kernel TubAbs f[Ṽ ](K,C)[d, D] is a prospective one
since it selects elements x ∈ K (d) at the investment date d to satisfy conditions
at the exercise date D. We can also study the retrospective version of the above
prospective one by introducing a departure tube B : t � B(t) ⊂ K (t) and asso-
ciating with temporal window [d, D] the retrospective absorption duration tube←−−−−
TubAbs f[Ṽ ](K,C)[d, D] under the tychastic system (4.3), which is the subset of
elements x ∈ K(D) such that all evolutions t ∈ [d, D] �→ x(t) governed by
x ′(t) = f (t, x(t), v(t)) where v(t) ∈ V (t, x(t)) satisfy

⎧
⎨

⎩

(i) x(d) ∈ B(d)

(i i) ∀t ∈ [d, D], x(t) ∈ K (t)
(i i i) x(D) = x

(4.5)

We pass from the retrospective tubular invariance kernel to the (prospective) one
by the transform x̂(t) := x(D − t) defined on the interval [0, D − d] of duration
T := D − d, starting from x̂(0) = x(D) and arriving at x̂(T ) = x(d). �

Aubin et al. [28, Chaps. 8, 10, 11] provide in all details the properties of the tubular
absorption basins and invariance kernels.3

3 They are derived from the time-independent version of these concepts [28, Definitions 2.11.2,
p. 89]: by introducing the characteristic system

{
(i) δ′(t) = +1
(i i) x ′(t) = f (δ(t), x(t), v(t)) where v(t) ∈ (δ(t), x(t))

(4.6)

the graph of TubAbs f[Ṽ ] (K,C)[·, D] is the (time-independent) absorption basin of the graph of the
tube:

Graph(TubAbs f[Ṽ ] (K,C)[·, D]) := Abs(4.6)(Graph(K), {D} × C(D)) (4.7)

For D := +∞, we obtain

Graph(TubInv f[Ṽ ] (K)) := Inv(4.6)(Graph(K)) (4.8)

Indeed, to say that an element (d, x) belongs to Abs(4.6)(Graph(K ); {D} × C(D)) means that for
all evolutions t �→ (d + t,−→x (t)) where −→x (·) starts at −→x (0) = x governed by

x ′(t) = f (d + t,−→x (t),−→v (t)) where −→v (t) ∈ V (d + t,−→v (t))

there exists t� ≥ 0 such that

−→x (t�) ∈ {D} × C(D)

and

∀t ∈ [0, t�], −→x (t) ∈ K (d + t)

This means that t� = D − d. Setting x(t) := −→x (t − d) and v(t) := −→v (t − d), we infer that
x(d) = x , that for all t ∈ [0, D], x ′(t) = f (t, x(t), v(t)) where v(t) ∈ V (t, x(t)) and x(D) = x .
In other words, that x ∈ TubAbs( f,V )(K , C)[d, D] and thus, that (d, x) belongs to its graph.

The case when D = +∞ is obtained when we take for tubular target the empty set, so that
we introduce the invariance kernel of the tubular environment and observe that in the above proof,
t� = +∞. �
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We observe that the map

(K,C, Ṽ ) �→ TubAbs f[Ṽ ](K,C) (4.9)

is increasing with respect to K and C, but decreasing with respect to the tychastic
map Ṽ .

The larger the tychastic map, the more “uncertain” is the tychastic system, the
smaller are its tubular absorption basins and invariance kernels.

Observe also that for each fixed investment date d, the tubular invariance kernel
D ≥ d � TubAbs f[Ṽ ](K,C)[d, D] is decreasing: if d ≤ D1 ≤ D2, then

TubInv f[Ṽ ](K,C)[d, D1] ⊃ TubInv f[Ṽ ](K,C)[d, D2] (4.10)

because all evolutions starting at d viable on the interval [d, D2] are viable in the
interval [d, D1]. �

The basic theorem, on which all the other ones are based, states that from all
x ∈ TubAbs f[Ṽ ](K,C)[d, D], all evolutions governed by the tychastic system satisfy
the stronger viability property x(t) ∈ TubAbs f[Ṽ ](K,C)[t, D] for all t ∈ [d, D]. In
other words, it states that starting from x ∈ TubAbs f[Ṽ ](K,C)[d, D], all evolutions
are actually viable in the tube t � TubAbs f[Ṽ ](K,C)[t, D] instead of being viable
in the larger tube t � K (t).

The topological properties of invariance kernels (closure and stability of tubular
basins and kernels, etc.) as well as their tangential characterizations are proved under
the assumption that the map f and the tychastic set-valued map V are Lipschitz. In
particular, the viability algorithms allow us to compute them.

4.1.3 Viability Risk Measures Under Tychastic Systems

We introduce the following general definition of tychastic measure of viability risk
of a tube with respect to a tychastic system (instead of a stochastic one).

Definition 4.1.2 (Exit Time Function) Let K be a tubular environment. The “tychas-
tic measure of viability risk” on the interval [d, D] is defined by the exit time function

∀x ∈ K (d), τ[Ṽ ](K)(d, x) := inf
x(·)∈SṼ (d,x)

inf
{δ≥d such that x(δ)/∈K (δ)}

δ (4.11)

The smaller this exit time function τ[Ṽ ](K)(d, x), the riskier is the element x ∈
K (d). This is in this sense that τ[Ṽ ](K)(d, x) is a tychastic measure of viability risk of
the element x ∈ K (d) under the tychastic system, thanks to the following theorem.

Theorem 4.1.3 (Viability Risk Measures under Tychastic Systems)

1. the tubular invariance kernel TubInv f[Ṽ ](K,C)[d, D] is the set of elements x ∈
K (d) such that τ[Ṽ ](K)(d, x) ≥ D;
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2. otherwise, for any x ∈ K (d)\TubI nv f[Ṽ ](K,C)[d, D], τ[Ṽ ](K)(d, x) < D,
and there exists at least one evolution x(·) ∈ SṼ (d, x) which leaves the tubular
environment strictly before D.

Consequently, elements x ∈ K (d)\TubInv f[Ṽ ](K,C)[d, D] can be regarded as
“risky elements” of K (d), the function τ[Ṽ ](K) providing the duration (or exit time)
of at least one evolution x(·) ∈ SṼ (d, x) in the tube K.

The exit tube Exi t (K[d, D]) of the tube K is the subset of elements x ∈ K (d)

such that τ[Ṽ ](K)(d, x) = 0.

4.1.4 Regulated Tychastic Systems

We further introduce

1. a space U := R
b (interpreted as a control space or regulon space);

2. a map f :R × X × U × V �→ X defining the differential equation x ′(t) =
f (t, x(t), u(t), v(t)) parameterized by controls u and tyches v (interpreted as a
controlled or regulated tychastic system);

3. a set-valued map U : (t, x) � U (t, x) (interpreted as the contingent set-valued
map);

4. a family Ũ of contingent retroactions ũ: (t, x) : R+ × K �→ ũ(t, x) ∈ U (x).

We associate with these new data the set-valued map

f [̃u,Ṽ ](t, x) := f[Ṽ ](t, ũ(t, x))

and the controlled (or regulated) tychastic system

x ′(t) ∈ f[Ũ ,Ṽ ](t, x) :=
⋃

ũ∈Ũ

f[Ṽ ](t, ũ(t, x)) (4.12)

It generates the evolutionary system S[Ũ ,Ṽ ] :R × X � C(0,∞; X) where
S[Ũ ,Ṽ ](d, x) is the set of solutions x(·) of x ′(t) ∈ f[Ũ ,Ṽ ](t, x(t)) such that x(d) = x .

Definition 4.1.4 (Guaranteed Viability Kernel) The guaranteed capture basin of the
tubular target C viable in the tube K is defined by

GuarTubViab f[Ũ ,Ṽ ](K,C)[d, D] :=
⋃

ũ∈Ũ

TubAbs f[̃u,Ṽ ](K,C)[d, D] (4.13)

which depends on the tubes K and C on one hand and on the pair [Ũ , Ṽ ] made
of retroactions ũ ∈ Ũ defining the contingent uncertainty and ṽ ∈ Ṽ defining the
tychastic uncertainty, on the other hand.

A retroaction u♥ ∈ Ũ (or, in financial terms, a management rule) is viable if
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TubCapt f[u♥,Ṽ ](K,C)[d, D] = GuarTubCapt f[Ũ ,Ṽ ](K,C)[d, D] (4.14)

Whenever C(D) = K (D) for all D, we obtain the concepts of guaranteed tubular
viability kernel GuarTubViab f[Ũ ,Ṽ ]((K)[d, D]).

We note that the map

(K,C, Ũ , Ṽ ) �→ GuarTubAbs f[Ũ ,Ṽ ](K,C)

is increasing respect toK, C and Ũ , on the one hand, and decreasing with respect to
Ṽ , on the other hand (for the inclusion relation).

If tychastic uncertainty (described by the size of Ṽ ) increases, the guaranteed
viability kernel decreases, so it is necessary to also increase the contingent map Ũ
(translating contingent uncertainty) for increasing the guaranteed viability kernel and
thus, for allowing the regulated tychastic system to offset the viability severeness due
to the tychastic map Ṽ .

Once the tubular environment K is given, the map

(Ũ , Ṽ ) �→ GuarTubViab f[Ũ ,Ṽ ](K)[d, D]

leads to a new concept of “game” on set-valued maps involving as strategies the sets
Ũ and Ṽ and taking values in the family of (closed) subsets of the state space. In
this context, a viable retroaction u♥ “achieves the union” involved in the definition
of the guaranteed capture basin as we say that an element achieves the supremum of
a function, or, else, that it belong to a kind of “Arg∪”. These definitions “play” with
the quantifiers “for all” ∀ and “there exists” ∃ and their exchanges under negations.
This interplay is at the root of game theory (here, dynamical games) and, naturally,
in logics: Wilfred Hodges introduced “independence-friendly logic”, known for its
“branching quantifiers” ∀ and ∃ used respectively by . . . Abélard and Éloïse.4

Such “games” remain to be studied in depth.
Viability theory provides mathematical and algorithmic properties of guaranteed

tubular viability kernels.
We mention only that the basic theorem of tubular absorption basins extend to

the guaranteed tubular capture basins. For all x ∈ GuarTubCapt f[Ũ ,Ṽ ](K,C)[d, D],
there exists a feedback ũ ∈ Ũ such that all evolutions governed by the regulated
tychastic system satisfy the stronger viability property: for all t ∈ [d, D], x(t) ∈
GuarTubCapt f[Ũ ,Ṽ ](K,C)[t, D].

The viability algorithms provide means to compute the guaranteed viability ker-
nels and to program them (see [162, 75] amongmanyother papers). It is this algorithm
which is used in Chap. 1.

4 see for instance [11, 18, 134].

http://dx.doi.org/10.1007/978-3-319-08129-8_1
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4.1.5 Viability Risk Measures Under Regulated
Tychastic Systems

We introduce the following general definition of tychastic measure of viability risk
of a tube with respect to a tychastic system (instead of a stochastic one).

Definition 4.1.5 (Exit Time Function) Let K be a tubular environment. The “tychas-
ticmeasure of viability risk” on the interval [d, D] is defined by the exit time function
defined for every x ∈ K (d)

τ[Ũ ,Ṽ ](K)(d, x) := sup
ũ∈Ũ

inf
x(·)∈Sũ,Ṽ (d,x)

inf
{δ≥d such that x(δ)/∈K (δ)}

δ (4.15)

The smaller this exit time function τ[Ũ ,Ṽ ](K)(d, x), the riskier is the element x ∈
K (d). It is in this sense that τ[Ũ ,Ṽ ](K)(d, x) is a tychastic measure of viability risk of
the element x ∈ K (d) under the tychastic system, thanks to the following theorem.

Theorem 4.1.6 (Viability Risk Measures under Tychastic Systems)

1. The guaranteed tubular viability kernel GuarTubViab fŨ ,[Ṽ ](K,C)[d, D] is the set
of elements x ∈ K (d) such that τ[Ũ ,Ṽ ](K)(d, x) ≥ D;

2. Otherwise, for any x ∈ K (d)\GuarTubViab f[Ṽ ](K,C)[d, D], τ[Ũ ,Ṽ ](K)

(d, x) < D, and there exists at least one evolution x(·) ∈ SṼ (d, x) which leaves
the tubular environment strictly before D.

Consequently, elements x ∈ K (d)\GuarTubViab f[Ṽ ](K,C)[d, D] canbe regarded
as “risky elements” of K (d), the value τ[Ũ ,Ṽ ](K) providing exit time (and thus, the
duration of the evolution in the tube) of at least one evolution x(·) ∈ SṼ (d, x) in the
tube K.

The exit tube Exit(K[d, D]) of the tube K is the subset of elements x ∈ K (d)

such that τ[Ũ ,Ṽ ](K)(d, x) = 0.

4.2 Graphical Derivatives of Tubes

We introduced the retrospective prospective derivatives of an evolution x(·) and their
trend reversibility. This definition can be extended to tubes5:

5 Graphical derivatives of set-valued maps had been introduced in [12] (1981) as an adaptation to
set-valued maps of the Fermat geometrical definition of derivatives: the graph of derivative is the
tangent cone to the graph. By lack of space, we gave directly the Leibniz analytical version (see

[44]: we set here
−→
D K (t, x) := DK (t, x)(+1) and

←−
D K (t, x) := −DK (t, x)(−1)). For governing

the evolution of tubes in the same way as differential equations govern the evolutions, the pointwise
version of “velocities” of tubes had been introduced in 1992 under the name of transitions and are
used to define mutational equations governing the evolution of tubes (see [20], by J.-P. Aubin and
[121] by Thomas Lorenz).
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Definition 4.2.1 (Retrospective and Prospectives Derivatives of Tubes) Let us
consider a tube K and x ∈ K (t).

1. A direction ←−v ∈ ←−
D K (t, x) belongs to the retrospective (graphical) derivative

of K at x ∈ K (t) if

lim inf←−v h→←−v , h→0+
d(x − h←−v h, K (t − h))

h
= 0 (4.16)

2. A direction −→v ∈ −→
D K (t, x) belongs to the prospective (graphical) derivative of

K at x ∈ K (t) if

lim inf−→v h→−→v , h→0+
d(x + h−→v h, K (t + h))

h
= 0 (4.17)

Whenever we replace the lim inf by lim in the above definitions, we shall say that
these retrospective and prospective directions are adjacent.

Prospective derivatives of a tube play an important rôle in the characterization of
the tubular invariance kernels (and absorption basins):

Theorem 4.2.2 (Tubular Invariance Theorem) Let us consider a closed tube K: t ∈
[0, T ] � K (t) ⊂ C and C ⊂ K (T ). We assume that f (t, x, v) is measurable with
respect to t and Lipschitz with respect to x and v and that V (t, x) is closed and
Lipschitz with respect to x. Then the tubular absorption basin is the largest tube
L ⊂ K such that

∀t < T,∀ x ∈ L(t),∀ v ∈ V (t, x), f (t, x, v) ∈ −→
D L(t, x, v) (4.18)

The statement for guaranteed tubular viability kernels (and capture basins) is a
little more involved:

Theorem 4.2.3 (Guaranteed Tubular Viability Theorem) Let us consider a closed
tubeK: t ∈ [0, T ] � K (t) ⊂ C and C ⊂ K (T ). We assume that for all t , We assume
that f (t, x, u, v) is measurable with respect to t , Lipschitz with respect to x and v

and affine with respect to u, that V (t, x) is closed Lipschitz and U (t, x) is closed
and has closed graph, convex images and linear growth (they are called “Marchaud
set-valued maps”). Then the guaranteed tubular viability kernel is the largest tube
L ⊂ K such that
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{∀t < T, ∀ x ∈ L(t), ∃u ∈ U (t, x) such that

∀v ∈ V (t, x), f (t, x, u, v) ∈ −→
D L(t, x, v)

(4.19)

These theorems are the most difficult ones to prove, and play a crucial rôle by
characterizing tubular invariance kernels and guaranteed tubular viability kernels in
terms of their prospective derivatives.



Chapter 5
General Viabilist Portfolio Performance
and Insurance Problem

5.1 Tychastic Viability Portfolio Insurance

The investment date is denoted by d and the exercise date by D, defining the exercise
period (or interval) [d, D]. They are used as parameters. The current time t ∈ [d, D]
ranges over the exercise interval and the time to exercise is D − t .

5.1.1 The Data

The insurance of a “floor” describing, for instance, liabilities or variable annuities,
is hedged by a portfolio made of shares of assets, as well as transaction tubes.

5.1.1.1 The Floor to Be Hedged

We introduce the floor L defined by

(t, S, P) �→ L(t, S, P) := L(t, S0, . . . , Sn, P0, . . . , Pn) ∈ R ∪ {+∞} (5.1)

to be hedged by portfolios.1 In particular, involving the prices of the assets in the
floor allows us to integrate the study of portfolios replicating options of all kinds
(see, for instance, [49, 50, 69]).

1 Since the floor takes infinite values, it conceals tubular constraint: (S, P) ∈ K (t) if and only if
L(t, S, P) < +∞. This classical trick of epigraphical analysis allows us to simplify the notations,
knowing that at the very end, formulas should be made explicit for involving the associated tubular
constraint.

J.-P. Aubin et al., Tychastic Measure of Viability Risk, 95
DOI: 10.1007/978-3-319-08129-8_5, © Springer International Publishing Switzerland 2014
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5.1.1.2 Price, Share and Transaction Tubes

We consider n + 1 assets i = 0, . . . , n. An asset2 is characterized by its price Si and
is allocated in number of units of assets or, shares Pi .

1. Prices: ⎧
⎨

⎩

Si (t) the price of asseti, i = 0, . . . , n;
S�

i (t) the lower bound (LOW) of the price of asset i;
S�

i (t) the upper bound (HIGH) of the price of asset i.
(5.2)

2. Shares and Transactions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pi (t) the number of units (shares) of asset i;
P�

i (t) the minimal number of units of asset i;
P�

i (t) the maximal number of units of asset i;
Gi (t) = P ′

i (t), the number of transactions of asset i;
G�

i (t) the minimal number of transactions of asset i;
G�

i (t) the maximal number of transactions of asset i.

(5.3)

3. Portfolio:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W (t) =
n∑

i=0

Pi (t)Si (t)

W ′(t) =
n∑

i=0

(P ′
i (t)Si (t) + S′

i (t)Pi (t)), the velocity of the portfolio.

(5.4)

This velocity of a value, sometime called impetus,3 is introduced because, together
with initial or final conditions, they provide the values W (t) of the portfoliowhenever
we know an adequate condition, initial or terminal, for instance, implying that a
certain set of required properties is satisfied. Therefore, the purpose of this study is
to provide the right-hand sides to the velocities and these initial or terminal conditions.

For simplicity, we denote by

⎧
⎪⎨

⎪⎩

Σi (t) = [S�
i (t), S�

i (t)], the price tube of asset i
Πi (t) = [P�

i (t), P�
i (t)], the share tube of asset i

Γi (t) = [G�
i (t), G�

i (t)], the transaction tube of asset i

(5.5)

by S := (S0, . . . , Sn) the price (basket), P := (P0, . . . , Pn) the share (basket) and by

2 An asset i is riskless at time t if its lower and upper bounds coincide: S�
i (t) = S�

i (t). If we want
to distinguish a riskless asset on exercise period, we assign to it the label 0 (actually, we shall not
use the fact that an asset is risky or not).
3 The terminology of impetus has been introduced in [24] for denoting the sum of the transaction
value P ′

i (t)Si (t) of asset i and of the price impact S′
i (t)Pi (t) on asset i.
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⎧
⎪⎨

⎪⎩

Σ(t) := [S�(t), S�(t)] := ∏n
i=0[S�

i (t), S�
i (t)] (the vector price tube)

Π(t) := [P�(t), P�(t)] := ∏n
i=0[P�

i (t), P�
i (t)] (the vector share tube)

Γ (t) := [G�(t), G�(t)] := ∏n
i=0[G�

i (t), G�
i (t)] (the vector transaction tube)

One could assume that the price tube Σ(t) should be more general than a product of
intervals, but some more complex subset such as an ellipsoid, in order to take into
account “correlations” between the prices of the shares.4

5.1.2 Derivatives of Interval Valued Tubes

We derive the formulas of the derivatives of interval valued tubes.

Theorem 5.1.1 [Derivative of an Interval Tube] Assume that the functions S�(·) and
S�(·) are continuous. Recall that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) D↑S�(t)(1) := lim inf
h �→0+

S�(t + h) − S�(t)

h
(epiderivative of S�(·) at tin the direction 1)

(i i) D↓S�(t)(1) := lim sup
h �→0+

S�(t + h) − S�(t)

h
(hypoderivative of S�(·) at t in the direction 1)

(5.6)

Then the (prospective) derivative of the interval tube Σ(·) := [S�(·), S�(·)] at t (in
the prospective or forward direction 1) is equal to

−→
D Σ(t, S) =

⎧
⎪⎪⎨

⎪⎪⎩

[D↑S�(t)(1),+∞[ if S = S�(t) < S�(t)
] − ∞,+∞[ if S ∈ ]S�(t), S�(t)[
] − ∞, D↓S�(t)(1)] if S = S�(t) > S�(t)
[D↑S�(t)(1), D↓S�(t)(1)] if S = S�(t) = S�(t)

(5.7)

Proof Indeed, to say that V ∈ R belongs to the derivative
−→
D Σ(t, S)means that there

exist sequences hn > 0 and Vn converging to 0 and V respectively and satisfying

∀ n, S + hn Vn ∈ [S�(t + hn), S�(t + hn)]

4 This is not a problem for computing the minimum guaranteed investment and the VPPI manage-
ment rule, but complicates the analytical formulas presented below (and which are not used in the
viability algorithms). However, extrapolation of the lower and upper bounds of the price tubes, the
only available information, is sufficient since it “preserves” or “conserves” past interdependency
relations between the prices of the assets. If such is the case, it is safe to assume that the price tubes
are the products of price interval tubes of each asset.
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This means that
⎧
⎪⎪⎨

⎪⎪⎩

S�(t + hn) − S�(t)

hn
+ S�(t) − S

hn
= S�(t + hn) − S

hn
≤ Vn

≤ S�(t + hn) − S

hn
= S�(t + hn) − S�(t)

hn
+ S�(t) − S

hn

By taking lim inf of the left-hand side and lim sup on the right-hand side respec-
tively, we thus infer that

1. if S = S�(t), then D↑S�(t)(1) ≤ V ;
2. S�(t) < S < S�(t), then V ∈ R, because S�(t) − S < 0 and S�(t) − S > 0;
3. if S = S�(t), then D↓S�(t)(1) ≥ V .

Conversely, assume that both S�(·) and S�(·) are continuous. Hence if S�(t) <

S < S�(t), then (t, S) belongs to the interior of the graph of Σ(·), so that its tangent
cone, the graph of DΣ(t, S), is the whole space. When S = S�(t), Theorem 6.1.6,
[44], states that Graph(

−→
D S�(t)) = [D↑S�(t)(1), D↓S�(t)(1)] ⊂ Graph(DΣ(t, S)).

The same is true for S�(t). �

We deduce the support function of the derivative of the tube:

Corollary 5.1.2 (Support Function of an Interval Tube) Let A ∈ R. We denote by

σ(S, A) := sup
S′∈−→

D Σ(t,S)

AS′ (5.8)

the support function of the prospective derivative
−→
D Σ(t, S) of the tube Σ(·) at t . It

is equal to

1. If S ∈]S�(t), S�(t)[, then

{
if A �= 0, σ(S�(t), A) = +∞
if A = 0, σ(S, 0) = 0

(5.9)

2. If S = S�(t), then

⎧
⎨

⎩

if A < 0, σ(S�(t), A) = AD↑S�(t)(1)
if A = 0, σ(S�(t), 0) = 0
if A > 0, σ(S�(t), A) = +∞

(5.10)

3. If S = S�(t), then

⎧
⎨

⎩

if A < 0, σ(S�(t)(t), A) = +∞
if A = 0, σ(S�(t), 0) = 0
if A > 0, σ(S�(t), A) = AD↓S�(t)(1)

(5.11)
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We also need to compute the lower support function of the intersection of
the derivative of the price tube and of the transaction tube t � −→

D Π(t, P) ∩
[G�(t), G�(t)]:
Corollary 5.1.3 (Lower Support Function of an Interval Tube) Let B ∈ R. The
lower support function

π(P, B) := inf
P ′∈−→

D Π(t,P)∩[G�(t),G�(t)]
B P ′ (5.12)

is equal to
• if B < 0, π(p, B) ={

B min[D↓ P�(t)(1), G�(t)] if P = P�(t)
BG�(t) if P�(t) ≤ P < P�(t)

• if B = 0, π(p, B) = 0

• if B > 0, π(p, B) ={
B max[D↑ P�(t)(1), G�(t)] if P = P�(t)

BG�(t) if P�(t) < P ≤ P�(t)

(5.13)

Let us also mention that the derivative of the “floor tube” t �→ K (t) :=
[L(t),+∞[ is equal to

−→
D K (t, L) =

{ [D↑L(t)(1),+∞[ if L = L(t)
] − ∞,+∞[ if L > L(t)

(5.14)

5.1.3 The Insurance and Performance Problem

The insurer

1. Chooses the method which allows him to extrapolate or forecast the price tubes
of each asset. Indeed, the price tubes are known before the investment date and
can be forecast after investment date up to exercise date by any available method,
among which technical analysis of chartists, statistics for determining averages
and trends in prices for forecasting purposes, neural networks,5 the VPPI Extrap-
olator (see Sect. 2.1). We do not need to assume that the prices are governed by
stochastic differential equations.

2. Is free to determine the

a. lower and upper bounds on the number of shares of each asset defining the
share tube;

5 See for instance, [16, 119, 126, 173].

http://dx.doi.org/10.1007/978-3-319-08129-8_2
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b. lower and upper bounds6 on the transactions of each asset defining the
transaction tube,

constraining the shares and their transactions for

a. hedging the portfolio;
b. “offsetting the tychastic uncertainty on the prices” described by the extrapo-

lation of the price tube.

Upper bounds on shares are finite, and are provided, in the last analysis, by scarcity
constraints defining the set of available shares. A natural lower bound on shares is
equal to 0, since shares are financial commodities, and thus, positive or equal to 0.7

These bounds on shares and transactions, together with the extrapolation method of
price tubes, are the characteristic parameters defining the robot-insurer.

From these data, viability theory allows us to compute at each date of the exercise
period the transactions and the numbers of shares (feeding back on the observed
prices at this instant) constituting a portfolio hedging the floor whatever the prices
ranging in the forecast price tube. It is in this precise sense that the hedging of the
floor by a risky portfolio is defined in this study.

At exercise date D, we introduce a performance index U ≥ L(D, S, P) imposing
not only that W (D) ≥ L(D, S, P), but actually that W (D) ≥ U .

The regulated tychastic system governing the evolution of prices (tyches), of
shares of the portfolio (controls) and of the value of the portfolio is:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) S′
i (t) ∈ DΣi (t)(t, Si (t)), i = 0, . . . , n (tyches)

(i i) P ′
i (t) ∈ DΠi (t)(t, Pi (t)) ∩ Γi (t)(t), i = 0, . . . , n (controls)

(i i i) W ′(t) =
n∑

i=0

(Pi (t)S′
i (t) + P ′

i (t)Si (t))
(5.15)

starting at (S, P, W ) at investment date d.

Definition 5.1.4 [The Performance-Insurance Set] The performance-insurance set
V(S, P)[d, D] ⊂ R

2 is defined in the following way

1. starting with (U, W ) ∈ V(S, P)[d, D], the VPPI management rule associates
with any price in the price tube n + 1 shares and transactions governing an
evolution of the value of the portfolio which is

a. above the floor during the exercise period;
b. above the performance index at exercise time.

2. starting with a pair (U, W ) /∈ V(S, P)[d, D], for any management rule, there
exists at least one evolution of prices in the forecast price tube such that

6 which can be chosen to take infinite values when no other bounds on the transactions than the
ones derived from the price tube are imposed.
7 However, for taking into account short selling, when it is (unfortunately) authorized, shares which
are not owned can be regarded as negative shares, so that the lower bounds may be negative, but
finite.
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a. the floor is pierced before exercise time;
b. or the exercise value of the portfolio is strictly smaller than the performance

index U .

We observe that if

1. W1 ≤ W2 and if (U, W1) ∈ V(S, P)[d, D], then (U, W2) ∈ V(S, P)[d, D];
2. U1 ≤ U2 and if (U2, W ) ∈ V(S, P)[d, D], then (U1, W ) ∈ V(S, P)[d, D].
This means that V(S, P)[d, D] = V(S, P)[d, D] + R+ × R− and has a Pareto
boundary (the southeast border).

There are many methods for selecting elements in the Pareto boundary.8 Among
them, we single out

1. the guaranteed performance value

U �(S, P; W )[d, D] := sup
(U,W )∈V(S,P)[d,D]

U ∈ {−∞} ∪ R ∪ {+∞} (5.16)

which measures the maximal exercise performance U �(S, P, W )[d, D] of the
portfolio the investment value of which is equal to W ;

2. the minimum guaranteed investment portfolio value

W �(S, P; U )[d, D] := inf
(U,W )∈V(S,P)[d,D]

W ∈ {−∞} ∪ R ∪ {+∞} (5.17)

which measures the minimum investment guaranteed value W �(S, P, U )[d, D]
of the portfolio the exercise value of which is equal to U ;
When the performance index U := L(D, S, P) is equal to the value of the floor
at exercise date, we obtain the minimum guaranteed investment (MGI):

W ♥(S, P)[d, D] := inf
(L(D,S,P),W )∈V(S,P)[d,D]

W ∈ R ∪ {+∞} (5.18)

3. Between these two extreme situations, we could be interested in an optimal com-
promise (U �(S, P; U, W )[d, D], W �(S, P; U, W )[d, D])obtained as the projec-
tion of the “shadow optimum” (U �(S, P; W )[d, D], W �(S, P; U )[d, D]) onto
V(S, P)[d, D].9
The construction of the minimum guaranteed investment function is obtained as

the viability solution to this problem:

Theorem 5.1.5 [Viability Characterization of the Performance-Insurance Set] We
introduce the characteristic system

8 This a situation analogous to the capital asset pricing types of models of Harry Markowitz
in [135].
9 For the supremum norm instead of the Euclidian norm which requires the convexity of the
V(S, P)[d, D]. See more details in Sect. 10.2 of [11], and Proposition 12.4 of [18].
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i) δ′(t) = 1
(i i) S′

i (t) ∈ DΣi (t)(t, Si (t)), i = 0, . . . , n (tyches)
(i i i) P ′

i (t) ∈ DΠi (t)(t, Pi (t)) ∩ [G�
i (t), G�

i (t)], i = 0, . . . , n (controls)
(iv) U ′(t) = 0

(v) W ′(t) =
n∑

i=0

(Pi (t)S′
i (t) + P ′

i (t)Si (t))

(5.19)
starting at (d, S, P, W ). We consider the tubular environment K defined by

K (t) := {(S, P, U, W ) such that W ≥ L(t, S, P)} (5.20)

the tubular target (whenever U ≥ L(D, S, P)) C, defined by

C(t) := {(S, P, U, W ) ∈ K (t) such that W ≥ U } (5.21)

and their guaranteed tubular capture basin GuarTubCapt(5.19)(K,C)[d, D].
Then the performance-insurance set V(S, P)[d, D] ⊂ R

2 is characterized by

{V(S, P)[d, D] :={
(U, W ) such that(d, S, P, U, W ) ∈ GuarTubCapt(5.19)(K,C)[d, D]}

(5.22)

This theorem is sufficient since the performance-insurance set inherits the math-
ematical properties of the tubular guaranteed tubular capture basins summarized in
Chap. 4, and detailed in Chaps. 10 and 11 of [28].

Above all, they can be computed thanks to viability algorithms which have been
programmed, as the example described in Chap. 1, shows.

By overlooking the performance aspect and restricting our investigation to the
insurance aspect by setting U = L(D, S, P), we obtain a viability characterization
of the minimum guaranteed investment:

Definition 5.1.6 [Viability Characterization of the MGI] The minimum guaranteed
investment is the viability solution defined by

W ♥(S, P)[d, D] := inf
(d,S,P,W )∈TubGuarViab(5.19)(K)

W ∈ R ∪ {+∞} (5.23)

5.2 Mathematical Metaphors of the VPPI Management Rule

The viability algorithms compute the performance-insurance subset, so that the via-
bility characterization is sufficient for practical and professional purposes. However,
Theorem 4.2.3 and Sect. 5.1.1 provide mathematical metaphors, kinds of bed-time
stories, bringing some mathematical lighting by providing analytical formulas.

http://dx.doi.org/10.1007/978-3-319-08129-8_4
http://dx.doi.org/10.1007/978-3-319-08129-8_1
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Not only the minimum guaranteed investment function (t, S, P) �→ W ♥(S, P)

[t, D] ∈ R ∪ {+∞} provides the useful information we were looking for, but its
partial derivatives, when they exist, measure the sensitivity with respect the variables
involved. They are nicknamed in the financial literature by capital Greek letters mak-
ing up the standard list of financial Greeks (which use also lower case Greek letters

in its statistical component!). For instance, the partial derivative
∂W ♥(S, P)[t, D]

∂Si
measuring the sensitivity with respect to prices is denoted by the “Greek” Δ. It is
usually regarded as the advised or prescribed number of shares concealed in this
function.10 Even though it is missing in the standard list of financial Greeks (be-
cause the shares are seldom involved as variables of value functions in the financial

literature), we introduce the new Greek11
∂W ♥(S, P)[t, D]

∂Pi
measuring the sensi-

tivity to the number of shares and we interpret it as the advised or prescribed price
(in the framework of marginal economic theory of prices). Hence we are lead to
introduce the

1. excess demand12:
∂W ♥(S, P)[t, D]

∂Si
− Pi ;

2. excess price13:
∂W ♥(S, P)[t, D]

∂Pi
− Si ,

for comparing shares and prices concealed in the minimum guaranteed investment
function with actual ones.

The knowledge of these partial derivatives with respect to time, prices and shares,
when they exist, provides analytical formulas describing the management rules
P

♥(t, S) (which is obtained by the viability algorithms which do not use these for-
mulas and bypass the fact the derivatives do not necessarily exist).

How are these partial derivatives related? By a non linear Hamilton-Jacobi-
Bellman partial differential equation with discontinuous coefficients14

∂W (t, S, P)

∂t
+

n∑

i=0

∂W (t, S, P)

∂Si
σ♥

i (t, Si ) +
n∑

i=0

∂W (t, S, P)

∂Pi
π♥

i (t, Si ) = 0

(5.24)

10 The Greek Θ := ∂W ♥[D](D − t, S, P)

∂t
measures the sensitivity with respect to the time to

exercise τ := D − t . We shall not use the other “Greeks” since, using an inverse approach, we are
insensitive to sensitivity analysis (see Chap.3).
11 Yet to be nicknamed, to the best of our knowledge. We shall use Ω in this book.
12 The excess demand is the right-hand side of the Walras tâtonnement governing the evolution of
prices (through Adam Smith’s visible hand) without making transactions and waiting infinity for
the market to be cleared. The scarcity constraints are not viable under the Walras tâtonnement.
13 Both excess demand and excess prices can be involved in a “bilateral tâtonnement” regulating
viable economic evolutions by using the two hands of Adam Smith’s invisible Man.
14 Provided in formulas (5.28) and (5.29).

http://dx.doi.org/10.1007/978-3-319-08129-8_3
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satisfying the hedging constraint

∀ (d, S, P), W (d, S,P♥(t, S)) ≥ L(d, S,P♥(t, S))

This partial differential equation plays the rôle of the Black-Scholes partial differ-
ential equation providing the value of a portfolio (replicating European options)
regarded as a stochastic process inheriting the stochasticity assumption of the prices.
Our Hamilton-Jacobi-Bellman partial differential equation is instead an ugly nonlin-
ear first-order partial differential equation with discontinuous coefficients instead of
a nice looking linear second-order partial differential equation.15

Although we do not need it for computing the minimum guaranteed investment
function nor the VPPI management rule, this partial differential equation tells eco-
nomic or financial stories (going back the Walras tâtonnement) that compensate its
unsightliness. This is the reason why we offer a sketchy account of some of the
mathematical properties for making short this long and tortuous story in the few
next pages. The viability and invariance theorems characterizing the guaranteed cap-
ture basin and viability kernels by tangential conditions imply that the minimum
guaranteed investment function (t, S, P) �→ W ♥(S, P)[t, D] ∈ R ∪ {+∞} is the
smallest lower semicontinuous solution to a non linear Hamilton-Jacobi-Bellman
partial differential equation with discontinuous coefficients.

The solution of this Hamilton-Jacobi-Bellman equation is, at best, only lower
semicontinuous, and thus, a non differentiable solution to a partial differential equa-
tion! However, non smooth analysis jointly with set-valued analysis (their combi-
nation is called variational analysis16) allows us to give a meaning to solution of
partial differential equations which are only lower semicontinuous by extending the
concept of derivatives of non differentiable functions in a different, but parallel, way
than distributions (see Sect. 18.9 of [28], The Graal of the Ultimate Derivative).
One can prove that the minimum guaranteed investment function W ♥ is a Barron-
Jensen/Frankowska viscosity solution to the Hamilton-Jacobi-Bellman (5.24), satis-
fying the hedging constraint. We refer for instance to [51, 87, 101, 105, 106, 107],
for readers who want to learn more.

For simplicity, we assume from now on that the minimum guaranteed investment
function is differentiable (otherwise, their partial derivatives are replaced by their
subgradients) and derive the derivatives of the set-valued price and shape maps (see
Sect. 5.1.2).

15 However, the value function of the portfolio is the solution to both the Black-Sholes partial
differential equation and of an equivalent Hamilton-Jacobi partial differential equation thanks to
the Stroock-Varadhan theorem (see [43, 99]).
16 See for instance [44, 158].
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5.2.1 Construction of the VPPI Management Rule

Assume that theminimumguaranteed investment function (t, S, P) �→ W ♥(t, S, P)

:= W ♥(S, P)[t, D] is differentiable on the exercise interval [d, D] (for simplicity,
we drop the bounds d and D of the exercise interval from now on, since they are
fixed). We introduce the partial derivatives

Ω(Pi ) := ∂W ♥(t, . . . , Si , . . . , Pi , . . .)

∂Pi
and Δ(Si ) := ∂W ♥(t, . . . , Si , . . . , Pi , . . .)

∂Si
(5.25)

of the minimum guaranteed investment function.
For simplicity, we drop also the labels i of the assets, the context indicating

whether the following formulas involve S := Si , P := Pi , P♥(t, S) := P
♥
i (t, S) and

G
♥(t, S) := G

♥
i (t, S) or the corresponding price, share and transaction vectors.

1. The VPPI Share Rule: it is defined by

P
♥(t, S) =

⎧
⎨

⎩

max(P�(t),Δ(S�(t))) if S = S�(t) and Δ(S�(t)) ≤ P�(t)
Δ(S) if S ∈ ]S�(t), S�(t)[ ∩ Δ−1[P�(t), P�(t)]

min(P�(t),Δ(S�(t))) if S = S�(t) and Δ(S�(t)) ≥ P�(t)
(5.26)

2. The VPPI Transaction Rule: it is defined by

G
♥(t, S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• 0 if Ω(P♥(t, S)) = S
• D↑ P�(t)
if P♥(t, S) = P�(t) and Ω(P�(t)) > S
• max[D↑ P�(t)(1), G�(t)]
if P�(t) < P

♥(t, S) ≤ P�(t) and Ω(P♥(t, S)) > S
• D↓ P�(t)
if P♥(t, S) = P�(t) and Ω(P�(t)) < S
• min[D↓ P�(t)(1), G�(t)]
if P�(t) ≤ P

♥(t, S) < P�(t) and Ω(P♥(t, S)) < S

(5.27)

The functions σ♥(t, S) and π♥(t, S) involved in the Hamilton-Jacobi-Bellman
equation (5.24), are defined respectively by

• σ♥(t, S) :=
⎧
⎨

⎩

(Δ(S�(t)) − P
♥(t, S�(t)))D↑S�(t) if S = S�(t)
0 if S ∈ ]S�(t), S�(t)]

(Δ(S�(t)) − P
♥(t, S�(t)))D↓S�(t) if S = S�(t)

(5.28)
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and

• π♥(t, S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• 0 if Ω(P♥(t, S)) = S
• (Ω(P�(t)) − S)D↑ P�(t)
if P♥(t, S) = P�(t) and Ω(P�(t)) > S
• (Ω(P♥(t, S)) − S)max[D↑ P�(t)(1), G�(t)]
if P�(t) < P

♥(t, S) ≤ P�(t) and Ω(P♥(t, S)) > S
• (Ω(P�(t)) − S)D↓ P�(t)
if P♥(t, S) = P�(t) and Ω(P�(t)) < S
• (Ω(P♥(t, S)) − S)min[D↓ P�(t)(1), G�(t)]
if P�(t) ≤ P

♥(t, S) < P�(t) and Ω(P♥(t, S)) < S

(5.29)

5.2.2 Sketch of the Proof

5.2.2.1 Construction of the Hamilton-Jacobi-Bellman Equation

Under adequate assumptions, the viability and invariance theorems characterize the
tubular viability kernels, since their graphs are examples of guaranteed absorption
basin. Theorem 4.2.3 (see also Theorem 14.5.2 of [15]) characterizes them by tan-
gential conditions. Namely, for any (t, S, P, W ) ∈ TubGuarViab(5.19)(K )[t, D] :=
E p(W ♥), {

∃ P ′ ∈ −→
D Π(t, P) such that ∀ S′ ∈ DΣ(t, S),

(1, S′, P ′, W ′) ∈ TE p(W♥)(t, S, P, W )
(5.30)

Recall (see Theorem 18.6.10 of [28]) that if W = W ♥(t, S, P),

TE p(W♥)(t, S, P, W ♥(t, S, P)) := E p(D↑W ♥(t, S, P))

we deduce that
{

∃ P ′ ∈ −→
D Π(t, P) such that ∀ S′ ∈ −→

D Σ(t, S),

D↑W ♥(t, S, P)(1, S′, P ′) ≤ W ′ = 〈
P ′, S

〉 + 〈
P, S′〉 (5.31)

Assuming that the function W ♥ is differentiable, this can be written in the form

⎧
⎪⎪⎨

⎪⎪⎩

∃ P ′ ∈ −→
D Π(t, P) such that ∀ S′ ∈ −→

D Σ(t, S),
∂W ♥(t, S, P)

∂t

+
〈
∂W ♥(t, S, P)

∂S
, S′

〉

+
〈
∂W ♥(t, S, P)

∂P
, P ′

〉

≤ 〈
P ′, S

〉 + 〈
P, S′〉

(5.32)
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or, equivalently,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂W ♥(t, S, P)

∂t
+ inf

P ′∈−→
D Π(t,P)

sup
S′∈−→

D Σ(t,S)(〈
∂W ♥(t, S, P)

∂S
− P, S′

〉

+
〈
∂W ♥(t, S, P)

∂P
− S, P ′

〉)

≤ 0

(5.33)

Hence we have to compute for each asset i

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

• sup
S′

i ∈DΣi (t,S)(1)

(
∂W ♥(t, S, P)

∂Si
− Pi

)

S′
i

• inf
P ′

i ∈DΠi (t,Pi )(1)

(
∂W ♥(t, S, P)

∂Pi
− Si

)

P ′
i

Computing these functions provides along the way the VPPI share and transaction
rules. For that purpose, we need the following Minimax Lemma on minimax of
bilinear functions on products of intervals:

Lemma 5.2.1 [Minimax Lemma] The minimax maxP minV V P on the product of
intervals [V �, V �] × [P�, P�] is reached at one of the four vertices of [V �, V �] ×
[P�, P�]:

V / P 0 < V V ≤ 0 ≤ V V < 0
0 < P (V , P ) (V , P ) (V , P )

P ≤ 0 ≤ P (V , P )
V/P V ≥ 0 V ≤ 0

P ≥ 0 (V , P ) (V , P )
P ≤ 0 (V , P ) (V , P )

(V , P )

P < 0 (V , P ) (V , P ) (V , P ) (5.34)

5.2.2.2 Construction of the Share Rule

For simplicity, we drop the label i in the following computations. Corollary 5.1.2,
implies that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if S = S�(t), then P ≥ Δ(S�(t))
and σ(S�(t),Δ(S�(t)) − P) = (Δ(S�(t)) − P)D↑S�(t)

if S ∈]S�(t), S�(t)], then P = Δ(S) and σ(S,Δ(S) − P) = 0
if S = S�(t), then P ≤ Δ(S�(t))
and σ(S�(t),Δ(S�(t)) − P) = (Δ(S�(t)) − P)D↓S�(t)

(5.35)

Taking into account the requirement that P ∈ [P�(t), P�(t)], we infer that
1. if S = S�(t), then Δ(S�(t)) ≤ P where P ∈ [P�(t), P�(t)]. Hence,
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{
P

♥(t, S�(t)) := max(P�(t), Δ(S�(t))) if Δ(S�(t)) ≤ P�(t),
so that σ(S�(t)), Δ(S�(t)) − P

♥(t, S�) = (Δ(S�(t)) − P
♥(t, S�(t)))D↑S�(t)

2. if S ∈]S�(t), S�(t)[, then Δ(S) must belong to [P�(t), P�(t)]: we thus define
{
P

♥(t, S) := Δ(S) if S ∈]S�(t), S�(t)[∩Δ−1[P�(t), P�(t)],
so that σ(S,Δ(S)) − P

♥(t, S) = 0

3. if S = S�(t), then Δ(S�(t)) ≥ P where P ∈ [P�(t), P�(t)]. Hence,
{
P

♥(t, S�(t)) := min(P�(t), Δ(S�(t))) if Δ(S�(t)) ≥ P�(t),
so that σ(S�(t), Δ(S�(t))) − P

♥(t, S�(t)) = (Δ(S�(t)) − P
♥(t, S�))D↓S�(t)

5.2.2.3 Construction of the Transaction Rule

Knowing that P = P
♥(t, S), we infer from Corollary 5.1.3, that

• if Ω(P♥(t, S)) − S < 0, G♥(t, S) ={
min[D↓ P�(t)(1), G�(t)] if P

♥(t, S) = P�(t)
G�(t) if P�(t) ≤ P

♥(t, S) < P�(t)

• if P♥(t, S) − S = 0, G♥(t, S) = 0

• if Ω(P♥(t, S)) − S > 0, G♥(t, S) ={
(Ω max[D↑ P�(t)(1), G�(t)] if P♥(t, S) = P�(t)

G�(t) if P�(t) < P
♥(t, S) ≤ P�(t)

(5.36)

and

• if Ω(P♥(t, S)) − S < 0, π♥(t, S) ={
(Ω(P♥(t, S)) − S)min[D↓ P�(t)(1), G�(t)] if P♥(t, S) = P�(t)

(Ω(P�(t)) − S)G�(t) if P�(t) ≤ P
♥(t, S) < P�(t)

• if Ω(P♥(t, S)) − S = 0, π♥(t, S) = 0

• if Ω(P♥(t, S)) − S > 0, π♥(t, S) ={
(Ω(P�(t)) − S)max[D↑ P�(t)(1), G�(t)] if P♥(t, S) = P�(t)

(Ω(P�(t)) − S)G�(t) if P�(t) < P
♥(t, S) ≤ P�(t)

(5.37)
As we can see from the above formulas, the VPPI share and transaction rules

are discontinuous. They display a bang bang due to the definition of the value of a
portfolio as a bilinear form. �
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5.3 Viability Multipliers to Manage Order Books

In the theory of options as well as for the hedging of a floor by portfolios, no trading
takes place. Order books offer a practical way to trade commodities and prices to
arrive at a satisfying deal.

The functioning of order books has been the topic of a huge literature, most of it
devoted to their statistical properties (see [73], and its bibliography). The approach
is based on the assumption that ‘zero intelligence’ agents reproduce the observed
patterns in the markets by introducing ‘zero intelligence’ agents. Other approaches
assume that rational agents are looking for optimal strategies (infinite intelligence?).
The study of the frequency of the “impulse” dates at which deals are concluded is a
topic of “econophysics”.

We suggest to use the theory of viability multipliers (see Sect. 12.2 of [28] for
a compendium on this topic) to design a Hamilton-Jacobi-Bellman providing the
“transition time function” needed to conclude a deal of “bid-ask” sizes at “bid-ask”
prices, subjected to lower ask constraints and upper bid constraints defined below.
Neither stupid nor rational, we assume that agents are given some adaptive gift for
using “controls” (furnished by viabilitymultipliers) to arrive at a dealwhile satisfying
the constraints.

5.3.1 Order Books

The order book provides at each instant the number of shares and the price that
the buyer or seller are asking/bidding for immediate purchase (bid) or sale (ask).
The highest bid and the lowest ask are referred as the top of the book. They are
interesting because they signal the prevalent market and the bid and ask price that
would be needed to get an order fulfilled. The difference between the highest bid and
the lowest ask is called the spread. The four variable are

{
Sa(t) = ask price & Pa(t) = ask size
Sb(t) = bid price & Pb(t) = bid size

(5.38)

The vector (Sa, Pa, Sb, Pb) is called the state of the order book. We introduce the
following growth rates associated of the state of an order book:

{
Ra(t) = S′

a(t)
Sa(t) ask return & Oa(t) = P ′

a(t)
Pa(t) ask order

Rb(t) = S′
b(t)

Sb(t) bid return & Ob(t) = P ′
b(t)

Pb(t) bid order
(5.39)

Antagonistic profit and cost constraints have to be satisfied. On the purchase side,
Pb(t)Sa(t) represents the cost for the buyer of the size Pb(t) at the ask price Sa(t),
which should be bounded above, whereas Pa(t)Sb(t) is the gain by the seller of the
sale of the size Pa(t) at the bid price Sb(t), which should be bounded below:



110 5 General Viabilist Portfolio Performance and Insurance Problem

{
Pa(t)Sb(t) ≥ kb(t) (ask constraint)
Pb(t)Sa(t) ≤ ka(t) (bid constraint)

(5.40)

The regulons (regulatory controls) provided by the viability multipliers take the form
of two weights

Qa(t) = ask weight & Qb(t) = bid weight (5.41)

Example of an order book: We present an example of order book, where the
letter D in the status column signals the “impulse time” (an example of kairos) when
a deal is concluded before another trading negotiation starts. The discrete time series
are “punctuated” by these impulse times, which form a specific subsequence of times.

Status Time quote Bid size Bid price Ask price Ask size

P 11:00:11.617 100 81, 18 81, 27 178
P 11:00:11.617 171 81, 18 81, 27 178
P 11:00:11.648 71 81, 18 81, 27 178
P 11:00:11.664 100 81, 185 81, 27 178
P 11:00:11.727 171 81, 185 81, 27 178
P 11:00:11.727 71 81, 185 81, 27 178
P 11:00:11.727 100 81, 19 81, 27 178
P 11:00:21.180 171 81, 19 81, 27 178
P 11:00:21.242 71 81, 19 81, 27 178
P 11:00:21.242 100 81, 195 81, 27 178
D 11:00:25.899 100 81, 195
P 11:00:25.899 71 81, 19 81, 27 178
P 11:00:25.899 163 81, 17 81, 27 178
D 11:00:25.899 71 81, 19
D 11:00:25.899 200 81, 18
D 11:00:25.899 163 81, 17
D 11:00:25.899 66 81, 15
P 11:00:25.899 34 81, 15 81, 27 178
P 11:00:26.289 86 81, 195 81, 27 178
P 11:00:26.399 86 81, 195 81, 27 278

5.3.2 Transaction Time Function

Definition 5.3.1 [Transaction Time Function] The transaction time function (in
short, the transaction function) (Sa, Pa, Sb, Pb) �→ �(Sa, Pa, Sb, Pb) is the solution
to the partial differential equation
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ (Sa, Pa, Sb, Pb) satisfying Pa Sb ≥ kb(t) and Pb Sa ≤ ka(t),

inf
(Qa ,Qb)∈S2

[

Qb

(

Pb
∂�

∂Sa
+ Sa

∂�

∂Pb

)

− Qa

(

Sb
∂�

∂Pa
+ Pa

∂�

∂Sb

)]

+ Ra Sa
∂�

∂Sa
+ Oa Pa

∂�

∂Pa
+ Rb Sb

∂�

∂Sb
+ Ob Pb

∂�

∂Pb
= −1

(5.42)

satisfying the boundary condition

�(Sa, Pa, Sa, Pa) = 0

We shall prove that the transaction time function associates with the state
(Sa, Pa, Sb, Pb) the minimal time for an evolution starting from (Sa, Pa, Sb, Pb),
regulated by the system

⎛

⎜
⎜
⎝

S′
a(t)

P ′
a(t)

S′
b(t)

P ′
b(t)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Ra(t) 0 0 +Qb(t)
0 Oa(t) −Qa(t) 0
0 −Qa(t) Rb(t) 0

+Qb(t) 0 0 Ob(t)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Sa(t)
Pa(t)
Sb(t)
Pb(t)

⎞

⎟
⎟
⎠ (5.43)

using the weight Qa and Qb to reach the transition state when Sa = Sb and when
Pa = Pb, while satisfying viability constraints (5.40).

5.3.3 Order Books Dynamics

We now address the question of building the regulated system (5.43) and the partial
differential equation (5.42). The definition of returns and orders can be rewritten in
the following system

{
S′

a(t) = Ra(t)Sa(t) & P ′
a(t) = Oa(t)Pa(t)

S′
b(t) = Rb(t)Sb(t) & P ′

b(t) = Ob(t)Pb(t)
(5.44)

However, constraints Pb(t)Sa(t) ≤ ka(t) and Pa(t)Sb(t) ≥ kb(t) may not be
viable under this decentralized system. However, system (5.44) can be corrected by
viability multipliers Qa(t) and Qb(t) for obtaining the system

{
S′

a(t) = Ra(t)Sa(t) + Qb(t)Pb(t) & P ′
a(t) = Oa(t)Pa(t) − Qa(t)Sb(t)

S′
b(t) = Rb(t)Sb(t) − Qa(t)Pa(t) & P ′

b(t) = Ob(t)Pb(t) + Qb(t)Sa(t)
(5.45)

regulated by the weights Qa(t) and Qb(t).
The theorem on viability multipliers (Theorem 12.2.6 of [28]) implies that the

constraints (5.40):
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⎧
⎨

⎩

Pa(t)Sb(t) ≥ kb(t) (ask constraint)
and
Pb(t)Sa(t) ≤ ka(t) (bid constraint)

are viable under the corrected control system.
Adding more constraints leads to the addition of more viability multipliers. For

instance, we may impose that

∀ t ≥ 0, Sa(t) ≥ Sb(t) and Pa(t) ≥ Pb(t)

This leads to the introductionof newviabilitymultipliers Qs(·) and Q p(·) for building
a new correction of the original system written in matrix form

⎛

⎜
⎜
⎝

S′
a(t)

P ′
a(t)

S′
b(t)

P ′
b(t)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Ra(t) 0 0 +Qb(t)
0 Oa(t) −Qa(t) 0
0 −Qa(t) Rb(t) 0

+Qb(t) 0 0 Ob(t)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Sa(t)
Pa(t)
Sb(t)
Pb(t)

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

+Qs(t)
+Q p(t)
−Qs(t)
−Q p(t)

⎞

⎟
⎟
⎠

(5.46)

We restricted our study to the basic financial (or scarcity) constraints. �

5.3.4 The Viability Solution

In order to find the transaction solution, we introduce the characteristic system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′
a(t) = Ra(t)Sa(t) + Qb(t)Pb(t) + Qs(t)

P ′
a(t) = Oa(t)Pa(t) − Qa(t)Sb(t) − Qs(t)

S′
b(t) = Rb(t)Sb(t) − Qa(t)Pa(t) + Q p(t)

P ′
b(t) = Ob(t)Pb(t) + Qb(t)Sa(t) − Q p(t)

τ ′(t) = −1

(5.47)

The environment KT is defined by

{KT := {(Sa, Pa, Sb, Pb, τ ) such that
Pa Sb ≥ kb(T − τ ), Pb Sa ≤ ka(T − τ ), Sa ≥ Sb and Pa ≥ Pb} (5.48)

and the target CT by

CT := {(Sa, Pa, Sb, Pb, τ ) ∈ KT such that Sa = Sb and Pa = Pb} (5.49)

The viability solution of the partial differential equation (5.42) is defined by
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�(Sa, Pa, Sb, Pb) := inf
(Sa ,Pa ,Sb,Pb,τ )∈Capt(5.47)(KT ,CT )

τ (5.50)

satisfying the boundary condition

�(Sa, Pa, Sa, Pa) = 0

and the viability constraints (5.40). The regulation map is provided by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(Sa, Pa, Sb, Pb) :=
{

(Q�
a, Q�

b) ∈ S
2 such that

Q�
b

(

Pb
∂�

∂Sa
+ Sa

∂�

∂Pb

)

− Q�
a

(

Sb
∂�

∂Pa
+ ∂�

∂Sb

)

:= inf
(Qa ,Qb)∈S2

(

Qb

(

Pb
∂�

∂Sa
+ Sa

∂�

∂Pb

)

− Qa

(

Sb
∂�

∂Pa Pa + ∂�
∂Sb

)}
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