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Preface

It was at that moment, that Fontanet came up with a third brain-
wave. “And what”, he exclaimed, “if we did a history of France, in
50 volumes, putting in every single detail?” I found the suggestion
fabulous, clapping my hands and shouting for joy in approbation.

We were sent off to bed. But, this sublime idea of a 50-volume
history of France, containing every single detail, kindled such
excitement that, for a full quarter of an hour, I lay there, unable
to sleep.

And so we launched out into this history. To tell the truth, I am no
longer quite sure just why we began with King Teutobochus. But,
we had to; it was what the project demanded. Our first chapter,
then, brought us face to face with King Teutobochus who, as the
measurement of his bones (which, incidentally, were discovered by
accident) can testify, was 30 feet tall.1 To be confronted by such
a giant, right from the start! Even Fontanet was taken aback.

“We’ll have to skip Teutobochus”, he said to me. But, I just didn’t
have the courage.

And so it was that the 50-volume history of France came to an
end at Teutobochus.

Anatole France, My Friend’s Book

This charming little lesson of methodology applies admirably to the subject
of this book. It is for the reader to judge what I have made of it. The first
steps in the theory of manifolds can, if one follows Fontanet’s footsteps, have
dire consequences; there is the danger of demotivation, of being discouraged
by the subject before realizing that the real difficulties lie elsewhere.

1. Anatole France (1844–1924, Nobel Prize 1921) is a French writer who has, unfortu-
nately, somewhat fallen into oblivion. He was a pacifist and a defender of human rights.
In this story he is referring to the period before the development of palaeontology, when
the bones of prehistoric animals were taken to be the remains of monsters or giants.
The interested reader is referred to the articles “Anatole France” and “Teutobochus”
in Wikipedia.
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VI An Introduction to Differential Manifolds

Smooth manifolds are the natural generalization of curves and surfaces. The
idea of a manifold appeared for the first time (and without discussion!)
in 1851, in Riemann’s inaugural lecture, and allowed him to construct a
satisfactory solution of the problem of analytic continuation of holomorphic
functions.

It took some 50 years for a precise definition to emerge. It is a question of
conceptualising, not the parts of a space Rn with large n, defined by a certain
number of equations, but, in a more abstract way, objects which, “a priori”,
are not within the “ordinary” space of dimension n, for which the notion of
smooth function still makes sense.

There are numerous reasons to be interested in “higher” dimensions. Perhaps
one of the more evident comes from classical mechanics. Describing the space
of configurations of a mechanical system rapidly depends on more than three
parameters: one already needs six for a solid.

The fact that it is not always desirable to consider objects as subsets of Rn

is more subtle. For example, the set of directions in three-dimensional space
depends on two real parameters, and naturally forms a manifold of dimension
two, called the projective plane. This manifold admits numerous realizations
as a subspace of Euclidean space, but these realizations are not immediately
obvious and it is not clear how to select a “natural” one amongst them.

These “abstract” manifolds furnish the natural mathematical setting for clas-
sical mechanics (both configuration and phase space), but also for general
relativity and particle physics.

I wanted to write a text which introduced manifolds in the most direct way
possible and principally explores their topological properties, while remaining
elementary. In this way a sphere stretched and dented remains a sphere, and
in the same setting as curves and surfaces. We will mostly be interested in
topological and differential properties over metric properties (length, curva-
ture, etc.).

The reader is expected to have a good knowledge of the basics of differential
calculus and a little point-set topology. Certain remarks, always enclosed
with �� will require a more elaborate foundation. The first chapter is dedi-
cated to classical differential calculus discussed in a way that will extend
easily to the manifold setting.

Our proper study of manifolds starts in the second and third chapters. I tried
to give significant examples and results as rapidly as possible.

One class of examples – Lie groups their homogeneous spaces – struck me as
deserving its own chapter. Chapters 5, 6 and 7 are devoted to differential
forms and their relationship to the topology of manifolds. Each chapter
depends on its predecessors with one exception: if Lie groups (Chapter 4)
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arise in subsequent chapters, it’s only through examples and occasionally
in exercises. Finally the last chapter treats the Gauss-Bonnet theorem for
surfaces. One attractive feature of this result is the variety of techniques it
brings into play. Above all it illuminates a phenomena that has never ceased
to fascinate me through the years: the appearance of integers (perhaps we
could say a quantization?) in geometry.

Each chapter starts with a relatively detailed introduction in which I give
motivations and an informal description of the contents appealing to the
reader’s geometric intuition. A section entitled “Comments” gives possible
extensions on the subjects introduced.

As I explained above, I decided mostly to limit myself to discussing differ-
ential structures. Except in the last chapter, metric structure is discussed
infrequently, and symplectic structure is omitted. I make up a little for this
in the “Comments” section and the annotated bibliography.

The numerous exercises (more than 150) are for the most part easy. Those
labelled with a star are a little more delicate for beginners. Those labelled
with two stars are not necessarily technical but of the “sit and think” style.
Many exercises can be thought of as complementary material to the book.
For this reason I have included the solutions to many of them.

Throughout the years that I taught the course in differential geometry at
Montpellier, I benefited from an agreeable, attentive and demanding audience
that would leave no question behind. Their attitude deeply encouraged me
as I was preparing the notes which became the first version of this book.

After this book was submitted to Grenoble Sciences, I benefited from
numerous remarks and stimulating suggestions from the reading committee.
I benefited greatly from the broad scientific perspective and temperaments
of these colleagues, and it was they who encouraged me to write the detailed
introductions I described above.

I wish also to thank Thomas Banchoff and Jeff Beall for allowing the publisher
to reproduce their beautiful realization of the Klein bottle on the front cover.

Last, but not least, I have been profoundly influenced by my mentor Marcel
Berger.

The translation into English was performed by Eric Bahuaud. I wish to thank
him for an excellent coordination. Moreover, he pointed out and helped me
to correct several bugs in the French version. I am of course responsible for
the remaining ones!

Our job was supervised by Stéphanie Trine with efficiency and bonne humeur.



VIII An Introduction to Differential Manifolds

How to use this book

The first chapter and a good part of Chapters 5 and 6 give a relatively
complete discussion of classical differential calculus, from the beginning to
Stokes’s theorem.

The ambition of Chapter 2 is to explain what smooth manifolds are and how
to use them to those that might find this notion too abstract or too technical.

Chapter 3 is more technical, precisely because it explains techniques that too
often pass without mention.

The final two chapters can be directly read as soon as one masters a little bit
of the notions of manifolds and differential forms.

We also note that a reader who, starting with the word “holomorphic” in
the index, completes all of the exercises referred to, will get a sense of the
different world of complex manifolds.

The book is self-contained as far as differential calculus goes. However it
would be in vain to discuss manifolds without a little topology. We very
briefly discuss simple connectedness and covering maps, and I have given
precise and usable statements of results, but at the expense of the book
being self-contained (as far as topology is concerned).

The French version is provided with electronic complements:

https://grenoble-sciences.ujf-grenoble.fr/pap-ebooks/lafontaine/home.

You will find in particular:

some perquisites: connexity, proper maps;

more exercises, more solutions;

Poincaré-Hopf theorem in any dimension;

sporadic isomorphisms between small-dimensional Lie groups.

Jacques Lafontaine
October 2014

https://grenoble-sciences.ujf-grenoble.fr/pap-ebooks/lafontaine/home
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Chapter 1

Differential Calculus

1.1. Introduction

In this chapter, we review and reinforce the basics of differential calculus in
preparation for our subsequent study of manifolds.

The majority of the concepts and results studied are generalization of
concepts and results from linear algebra. We have a veritable dictionary:

smooth function — linear map
local diffeomorphism — invertible linear map
submanifold — vector subspace

It’s necessary to understand and make this dictionary explicit.

1.1.1. What Is Differential Calculus?

Roughly speaking, a function defined on an open set of Euclidean space is
differentiable at a point if we can approximate it in a neighborhood of this
point by a linear map, which is called its differential (or total derivative).
This differential can be of course expressed by partial derivatives, but it is
the differential and not the partial derivatives that plays the central role.

The basic result, aptly called the “chain rule” assures that the differential of
a composition of differentiable functions is the composition of differentials.
This result gives, amongst other things, a convenient and transparent way
to compute partial derivatives of compositions, but for us this will not be
essential.

A fundamental notion is that of a diffeomorphism. By this we mean a differ-
entiable function that admits a differentiable inverse. By the chain rule, the
differential at every point of a diffeomorphism is an invertible linear map.

© Springer International Publishing Switzerland 2015 1 
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This property, which is an “evident” remark has an even stronger converse:
if the differential of a C1 function is invertible at a point, then it is a diffeo-
morphism in a neighborhood of this point to its image (this is the inverse
function theorem, see 1.13).

This central result, suitably exploited, gives “normal forms” to certain math-
ematical objects. Suppose for example f : R

n → R is of class C1, whose
differential at a point a is nonzero (this is to say that at least one of the
partial derivatives at this point is nonzero). By a local change of variables,
this function can be written in a neighborhood of the point in question as
a linear map, we can even use the map (x1, . . . , xn) �→ x1 (see 1.18 for the
precise statement). Put differently, we can find a diffeomorphism φ from a
neighborhood of 0 to a neighborhood of a such that

f
(
φ(x1, . . . , xn)

)
= x1 + f(a).

This result admits a geometric interpretation: suppose S is the set of points
in R

n that satisfies the equation f(x) = f(a). Then there exists, under the
same conditions, a diffeomorphism from a neighborhood U of a, that sends
U ∩ S to a piece of a hyperplane (see 1.20 and 1.21).

We can also ask what happens when the differential vanishes. We then look
at the second order Taylor polynomial, which is a quadratic form. If it is of
maximum rank, then after a change of variables, the function can be written
in a neighborhood of a as this quadratic form. This is the Morse lemma,
proved in Exercise 11. See also Lemma 3.44.

These results have the following points in common:

1. They are consequences (relatively immediate in the first case, slightly
disguised in the case of the Morse lemma) of the inverse function theorem.

2. They apply because a certain associated algebraic object is non-
degenerate.

3. They are local results: the normal form obtained for the mathematical
object studied is valid in a neighborhood of a point. Its necessary to keep
a simple example in mind: a little piece of the circle is homeomorphic and
even diffeomorphic to an interval, but this is not the case for the entire
circle.

There are other examples of results of this type in differential calculus,
for example the rank theorem (see Exercise 10). Looking ahead a little,
we mention also that a vector field which is nonvanishing at a point can
be written as a constant vector field (see Exercise 16 in Chapter 3), and
a symplectic form is locally equivalent to an alternating bilinear form of
maximum rank (Darboux’s theorem, see Exercise 14 and 17 in Chapter 5).
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1.1.2. In This Chapter

Sections 1.2 to 1.5 recall the basics of differential calculus in a way that
will extend to situations more general than classical vector calculus. We
take up this generalization in the next chapter. Several classical results
will not be revisited, for these one can consult [Lang 86] or [Hörmander 90]
for example: the Clairaut/Schwarz theorem on symmetry of mixed partial
derivatives, Taylor’s formula, and sequences and series of differentiable func-
tions. Our goal is to start our study of manifolds rapidly, and these results,
while important, enter less into this study.

Section 1.6 is devoted to a result that is not often part of a standard exposition
on differential calculus: if h is a continuous function from R into the group
of invertible n × n matrices such that h(t + t′) = h(t)h(t′), then h(t) is of
the form exp tA. In dimension 1, this is simply a classical characterization
of exponential functions. In higher dimensions, one must use the inverse
function theorem: it allows us to find a nonzero t0 such that h(t0) = expB
for a suitable matrix B, and we subsequently proceed more or less as in
dimension 1.

Critical points are introduced in Section 1.7. The equation which character-
izes them is often interesting in itself. We cannot resist the temptation to
give the following example. If C is a closed curve in the plane, which we
assume to be convex for simplicity, imagine the inscribed polygons for which
two consecutive sides satisfy the Descartes/Snell law (polygons formed by
light trajectories for physicists, billiard trajectories for mathematicians). If
the perimeter function

(m1, . . . ,mn) �−→
n∑

i=1

∥∥ #               »

mimi+1

∥∥ with the convention mn+1 = m1

admits a critical point (M1, . . . ,Mn), the points Mi are the vertices of a light
polygon, by Fermat’s principle or Section 1.2.2. The perimeter function,
being a function on the Cartesian product Cn, admits a maximum which is
realized by compactness. Knowing that the points where a function admits
a maximum are critical points, we have in principle a method of showing the
existence of these polygons. All of this works very well for triangles (try it!).
For n = 4 a difficulty occurs: if A and B are two points such that diam(C) =

‖ #    »

AB‖, the quadruplet (A,B,A,B) realizes the maximum perimeter, and it
corresponds to a degenerate polygon, with the diameter traversed four times!
Moral: more sophisticated methods of finding critical points are needed, for
which we refer for example to the excellent [Tabachnikov 95].

A function can admit many critical points. In the extreme case of a constant
function, every point of the domain is critical. But there is only one crit-
ical value, the constant in question. This extreme case illustrates the fact
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that critical values are never very numerous. Sard’s theorem (Theorem 1.41)
confirms this intuition: the set of critical values has measure zero. This is the
subject of Section 1.8. This result, whose extension to manifolds is straight-
forward, is used twice in this book. The first time is in Chapter 3. After
showing that every compact manifold of dimension n is embedded in R

N for
some non-explicit and poorly controlled N , Sard’s theorem will allow us to
lower the dimension down to 2n+1. The second time Sard’s theorem appears
will be in a much more fundamental way, in Chapter 7, to show that there
are always regular values (this is to say non-critical values). One does not
know how to “explicitly” find a regular value, but we know that nearly every
point is a regular value. This is a classical ruse in mathematics.

Finally, Section 1.9 is devoted to differential calculus in infinite dimensions.
This subject was very much in fashion in the 1960s. Generalization for its
own sake was fashionable and in the spirit of the times. However, it was
remarked by mathematicians working on dynamical systems that the inverse
function theorem in infinite dimensions gave an efficient proof of a basic result
on the existence and uniqueness of systems of differential equations (see the
Theorem 1.44). This method gives the smooth dependence of solutions with
respect to initial conditions for free, which is not so easy to obtain using
classical methods.

1.2. Differentials

1.2.1. Definition and Basic Properties

Definition 1.1. A function f from an open subset U in R
p with values in

R
q is differentiable at a point a in U if there exists a linear map L from R

p

to R
q such that

f(a+ h) = f(a) + L · h+ o(h).

We say L is the differential of f at a, or the total derivative of f at a.

The notation L · h instead of L(h) is chosen to emphasize the linearity. We
designate by h �→ o(h) a map from an open set in R

p with values in R
q such

that for norms ‖ ‖1 and ‖ ‖2 on the domain and range, we have

lim
h→0

‖o(h)‖2
‖h‖1

= 0.

This property does not depend on the choice of norms used in the formulation
above (this will no longer be case when we study differentiability in infinite
dimensions, see Section 1.9).
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Remark. We can rewrite the definition in the form

#                  »

f(a)f(x) = L · # »ax+ o( # »ax).

In fact, R
p and R

q are considered simultaneously as affine spaces, where
the points x and f(x) live, and vector spaces where we find the vectors # »ax
and

#                  »

f(a)f(x). This drives the reformulation of the definition by allowing
us to replace R

p and R
q by affine spaces E and F of dimensions p and q

respectively; in the equation above, L then denotes a linear map between
the vector spaces

#»

E and
#»

F associated to E and F . The affine point of view
is explained for example in the first chapter of [Audin 03].

Example: parametric curves

Consider the case of maps from R to an affine space F , and let
#»

F denote
the associated vector space. Every linear map from R to

#»

F is of the form
h �→ hv where v is a vector in

#»

F . By dividing by the real number h, we see
that differentiability at a is equivalent to the existence of a vector v ∈ #»

F such
that

f(a+ h)− f(a)

h
= v + ε(h), where lim

h→0
ε(h) = 0.

In other words, f is differentiable at a and the vector v is equal to f ′(a). It is
common to give maps from R to an affine space the name “parametric curves”.
The vector f ′(a) is then called the tangent vector to the curve at f(a).

We will see in a moment that there are important changes when we move
from R to a space with more than one dimension, i.e., from single variable
to multiple variable functions.

In any case, we have the following property:

Proposition 1.2. The map L is unique.

Proof. Suppose L′ is a second linear map satisfying the same property.
Choose h ∈ R

p, and consider an increment of the form th, where t is a
nonzero real number. We have

f(a) + L · th+ o(th) = f(a) + L′ · th+ o(th),

where
L · th− L′ · th = t(L · h− L′ · h) = o(th).

By dividing by t, we see that

L · h− L′ · h =
o(th)

t
,

and taking the limit as t → 0 gives L = L′.
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we denote the differential of f at a by dfa

Remark. In the previous argument we could restrict to positive values of t.
We deduce that a positive homogeneous function f of degree 1 (this is to say
a map from E to F such that f(tx) = tf(x) for all positive real numbers t)
that is differentiable at 0 is necessarily linear. In particular a norm is never
differentiable at the origin.

Uniqueness of the differential can also be seen from its explicit expression as
a function of partial derivatives of coordinate functions.

Proposition 1.3. If a map f from an open subset U in R
p to R is differ-

entiable at a ∈ U , then the first partial derivatives of f at a are defined
and

dfa · h =

p∑
i=1

∂if(a)h
i (if h = (h1, . . . , hp)).

Proof. A priori, we may write dfa ·h =
∑p

i=1 uih
i, where the real numbers

ui are to be determined. In writing the property of differentiability for an
increment of the form

h = (0, . . . , t, . . . , 0) (t in the i-th place),

we see that the function of one real variable

t �−→ f(a1, . . . , ai + t, . . . , ap)

is differentiable, and therefore differentiable at 0, its derivative being ui.

This result is easily generalized.

Proposition 1.4. If a map from an open subset U in R
p to R

q is differ-
entiable at a ∈ U , then the partial derivative of each component f i of f at
a exists, and the matrix of differentials with respect to the canonical basis of
the domain and range is (

∂jf
i(a)

)
1�i�q, 1�j�p

.

Proof. In expressing the property of differentiability component by compo-
nent, we see that f is differentiable if and only if each component f i is. It
therefore suffices to apply the preceding proposition to f i.

Definition 1.5. The matrix (∂jf
i)1�i�q, 1�j�p is called the Jacobian matrix

of f .
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By convention upper indices (superscripts) denote rows, and lower indices
(subscripts) denote columns. This is rooted in the Einstein summation
convention, which will be explained and justified in Section 5.2.

The rank of f at a is by definition the rank of daf (or the rank of the Jacobian
matrix).

The determinant of the Jacobian matrix (if p = q!), is called the Jacobian
of f , and will be denoted J(f).

If we replace Rp and R
q by vector spaces of dimension p and q represented by

the bases (ei)1�j�p and (e′i)1�i�q, the matrix of the differential represented
in these bases can be written in the same way, where we denote the i-th
component of f by f i, and the derivative at t = 0 of the function t �→
f i(a+ tej) by ∂jf

i(a). If E = F , the Jacobian of f is the determinant of the
endomorphism dfa.

To not weigh down this exposition, we will most often use the spaces R
n

equipped with their canonical basis. However, there exist many situations
(for example when we work with spaces of linear maps) where this is not the
natural thing to do.

1.2.2. Three Fundamental Examples

Length

In a Euclidean space, the length function (x, y) �→ ‖ # »xy‖ when (x, y) satisfies
x �= y has differential

(u, v) �−→
〈

# »xy

‖ # »xy‖ , v
〉
−
〈

# »xy

‖ # »xy‖ , u
〉
.

Cauchy-Riemann equations

A function from C to C is holomorphic if and only if it is C-differentiable
(i.e., we replace R by C in Definition 1.1 and we require that the differential
be C-linear).

Following the example of functions of a real variable, we have

f(z + h) = f(z) +Ah+ o(h), with A = lim
h→0

f(z + h)− f(z)

h
,

which allows us to write A = f ′(z). Regarded as a map from R
2 to R

2, the
map f is differentiable, and the Jacobian matrix is of the form(

a −b
b a

)
(if f ′(z) = a+ ib).
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We can obtain the Cauchy-Riemann equations as follows. View f as a differ-
entiable map from R

2 to R
2 with components P and Q. We have

∂1P = ∂2Q and ∂2P = −∂1Q.

In particular, its Jacobian determinant is |f ′(z)|2.

There are situations where it is preferable to calculate the differential without
appealing to coordinates.

Inverse of a matrix; determinant and trace

We will calculate the differentials

a) of a map ϕ : A �→ A−1 of Gl(Rn) to itself. (Note that in the process we
verify that Gl(n,R) is open in End(Rn).)

Choose a norm on R
n, and equip End(Rn) with the associated operator

norm:
‖A‖ = sup

‖x‖�1

‖Ax‖.

If A and B are two endomorphisms, we have ‖AB‖ � ‖A‖‖B‖. Then if
‖H‖ < 1, the series

∞∑
k=0

(−1)kHk

is convergent in norm, and therefore convergent. Let S be the sum and
note that S satisfies

S(I +H) = (I +H)S = I.

Thus I + H is invertible, with inverse S and the series expansion of
(I +H)−1 just obtained gives

‖(I +H)−1 − I −H‖ =

∥∥∥∥∥
∞∑
k=2

(−1)kHk

∥∥∥∥∥ �

∞∑
k=2

‖H‖k =
‖H‖2

1− ‖H‖ .

For ‖H‖ < 1/2, we have

(I +H)−1 = I −H + r(H), where ‖r(H)‖ < 2‖H‖2,

which shows the differential of ϕ at I is the map H �→ −H .

To pass to the general case, we write

(A+H)−1 =
(
A(I +A−1H)

)−1
= (I +A−1H)−1A−1.
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In using the same series expansion, we see that Gl(Rn) is open in End(Rn)
(if ‖H‖ < 1/‖A−1‖, then A+H is invertible), and the differential of ϕ at
A is the linear map

H �−→ −A−1HA−1.

Note the analogy with the derivative of the function 1/x!

b) of the map A �→ detA from End(Rn) to R.

We leave to the reader to verify, using multilinearity, that if a1, . . . , an
(resp. h1, . . . , hn) denotes the column vectors of the matrix A (resp. of the
matrix H), we have

d det
A

·H =
n∑

k=1

det(a1, . . . , ak−1, hk, ak+1, . . . , an).

However, there is a much more striking intrinsic expression.

We first examine the case where A = I. Now

det(I +H) = 1 +

n∑
k=1

hk
k + terms of degree � 2 with respect to hl

k,

which shows that the differential at I is none other than the map

H �−→ tr(H).

Now if A is invertible, we can write

A+H = A(I +A−1H),

as in a), and deduce that the differential of det at A is given by

H �−→ det(A) tr(A−1H).

To pass to the general case, we remark that

det(A) tr(A−1H) = tr(ÃH),

where Ã is the matrix of cofactors of A. As det is clearly a smooth function,
its differential in the general case is therefore

H �−→ tr(ÃH).

This formula is also a direct consequence of our initial calculation.
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1.2.3. Functions of Class C
p

We have seen that the components of a differentiable function are differen-
tiable. Conversely, a function defined on an open subset of Rp that admits
partial derivatives, i.e., such that the partial functions

t �−→ f(a1, . . . , ai + t, . . . , ap)

are differentiable, need not be differentiable if p > 1. A simple counterex-
ample is given by the following function of two variables

f(x, y) =
xy

x2 + y2
if (x, y) �= (0, 0), and f(0, 0) = 0,

which is not continuous at the origin but has partial derivatives at each point.
On the other hand, we have the following fundamental result.

Theorem 1.6. Let f be a map from an open subset U in R
p to R. If f

has partial derivatives on U that are continuous at a, then f is differentiable
at a.

Proof. Suppose that p = 2 to lighten the notation. The general case is
treated in the same fashion. Write a = (b, c). We have

f(b+ h, c+ k)− f(b, c) = f(b+ h, c+ k)− f(b+ h, c) + f(b+ h, c)− f(b, c).

On one hand we have

f(b+ h, c)− f(b, c) = ∂1f(b, c)h+ o(h).

On the other hand we can apply the mean value theorem to the function
t �→ f(b+ h, t),

f(b+ h, c+ k)− f(b+ h, c) = ∂2f(b+ h, c+ θk)k (0 < θ < 1).

However, because of the continuity of ∂2f at a,

∂2f(b+ h, c+ θk) = ∂2f(b, c) + o(h, k).

This is the most practical and frequently used criteria for differentiability. It
gives rise to the following definition:

Definition 1.7. A map from an open subset U of R
p to R

q is of class C1

(or continuously differentiable) if all of its partial derivatives of order 1 exist
and are continuous on all of U , of class Cp (or p-times continuously differ-
entiable) if its partial derivatives are of class Cp−1, and finally C∞ (we also
say smooth) if it is of class Cp for all p. Finally note that we often say that a
map is a Cp map (respectively C∞ map) map if it is of class Cp (respectively
of class C∞).
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It is clear that the sum of two functions of class Cp remains of class Cp. The
same holds for the product of two real valued functions.

Remark. Differentiability is defined at a point (more precisely it depends
only on the behavior of a function in an arbitrary neighborhood of the point
considered). By contrast, the property of being a Cp map only makes sense
on an open subset.

1.3. The Chain Rule

Theorem 1.8. Suppose f is a map from an open subset U of R
m to R

n,
and g is a map from an open subset V of R

n to R
p. Suppose that f is differ-

entiable at a ∈ U , with f(a) ∈ V , and further suppose that g is differentiable
at f(a). Then g ◦ f is differentiable at a, and

d(g ◦ f)a = dgf(a) ◦ dfa.

In other words, the differential of a composition is the composition of the
differentials.

Proof. We begin by remarking that since f is continuous at a, f−1(V ) is
a neighborhood of a, and therefore g ◦ f is defined on an open subset U ′

containing a. If a+ h ∈ U ′, we have

f(a+ h) = f(a) + L · h+ o(h).

Write k = L · h+ o(h). Then

g
(
f(a+ h)

)
= g(f(a) + k) = g

(
f(a)

)
+M · k + o(k)

= g
(
f(a)

)
+M · L · h+ o(h).

Remarks

a) At the level of Jacobian matrices of g and f , this result yields the formula

∂j(g ◦ f)i =
n∑

k=1

∂kg
i
(
f(a)

)
· ∂jfk(a),

which may also be written

[
d(g ◦ f)a

]i
j
=

n∑
k=1

[
dgf(a)

]i
k

[
dfa
]k
j
.
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b) Implicit usage of the chain rule is very common. For example, suppose
(E, 〈 , 〉) is an inner product space. If u and v are two maps from an open
subset U of Rn to E, the differential of f = 〈u, v〉 is given by

dfa · h = 〈dua · h, v(a)〉+ 〈u(a), dva · h〉.

We can either verify this directly, or consider f as a composition of maps
x �→

(
u(x), v(x)

)
from U to E × E and (y, z) �→ 〈y, z〉 from E × E to R.

Example: inversions

Suppose E is n-dimensional inner product space. Inversion with center p and
power k is the map Ip,k from E � {p} to itself defined by

#       »

pIp,k(x) = k
# »px

‖ # »px‖2 .

This map is clearly smooth.

Take p = 0, k = 1 and set I0,1 = I. The differential of I at a is therefore

dIa · h =
h

‖a‖2 − 2
〈a, h〉
‖a‖4 a =

1

‖a‖2Sa · h,

where we write

Sa · h = h− 2
〈a, h〉
‖a‖2 a.

It is clear that Sa ·a = −a and Sa ·h = h if h is an element of the hyperplane
orthogonal to a. Therefore Sa is the orthogonal reflection with respect to
this hyperplane. It is an isometry, and dIa is a (indirect) similarity.

f

0

g

a

I o f

I o g

I(a)

Figure 1.1: Inversion

Now let t �→ f(t) and t �→ g(t) be two parametric curves such that
f(0) = g(0) = a. By the chain rule, the tangent vectors at I(a) to the image
curves under I are dIa·f ′(0) and dIa·g′(0). Therefore the preceding discussion
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shows their angle (in absolute value) is the same as the one between f ′(0) and
g′(0). In other words, I preserves angles. We say such maps are conformal.
A theorem of Liouville states that if n � 3, all conformal maps from an open
subset of Euclidean space of dimension n � 3 to another are the restric-
tion of a product of inversions. (For a proof, see [Berger 87, Chapter 9].)
For n = 2 the situation is very different: we can see from the Cauchy-
Riemann equations (see Subsection 1.2.2) that f is conformal if and only if
it is holomorphic or antiholomorphic, while the products of inversions (called
Möbius transformations) are fewer in number (they form a finite-dimensional
group, see Exercise 16 in Chapter 2).

We return to the general discussion with an immediate consequence of the
chain rule.

Corollary 1.9. Every composition of maps of class Cp ( 1 � p � ∞) is itself
of class Cp.

Differential notation. This is justified by the chain rule. Starting from
the (obvious) remark that a linear map is differentiable and equal to its
differential, we denote (to distinguish the two if we want) dt as the differential
of the identity map from R to R, and dxi the differential of the i-th coordinate
of a vector x in R

p. Let f be a differentiable map from R
p to R. Denoting

hi the i-th component of the vector h we have

dfa · h =

n∑
i=1

∂if(a)h
i.

This gives us the value of the linear form dfa for the vector h. As dxi(h) = hi,
we may write

dfa =

n∑
i=1

∂if(a) dx
i.

In other words, the differential of f is a linear combination of coordinate
differentials, with coefficients being the partial derivatives.

Remark. If we simply write df , this can signify:

a) either that we consider the differential of f at a point implied by the
context;

b) or we consider the map x �→ dfx.

Such ambiguity is frequent in differential calculus.

Now if g is a differentiable map from R to R
n, the chain rule tells us that the

differential of f ◦g is obtained by replacing the dxi by the dgi, the differentials
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of the components of g, in the expression for df . We then write

dfx =

n∑
i=1

∂if(x
1, x2, . . . , xn) dxi,

and

d(f ◦ g)t =
n∑

i=1

∂if
(
g1(t), g2(t), . . . , gn(t)

)
dgi

=

(
n∑

i=1

∂if
(
g1(t), g2(t), . . . , gn(t)

)
g′i(t)

)
dt.

From this we deduce that the derivative of f ◦ g at t is equal to

n∑
i=1

∂if
(
g1(t), g2(t), . . . , gn(t)

)
gi′(t).

Remark. We will see two very different generalizations of the differential.
Next chapter we will see that the notion of a smooth function has meaning in
the more general setting of functions between manifolds (say for the moment
between curves and surfaces); we will call this the linear tangent map, and
denote it by Taf (see Section 2.6).

Afterward we will see the differential of functions extends to a linear operator
defined on differential forms (see Section 5.4), still denoted by d.

1.4. Local Invertibility

1.4.1. Diffeomorphisms

Definition 1.10. A map f from an open subset U of R
p to an open subset

V in R
q is a Ck diffeomorphism if it admits a Ck inverse. We say that U

and V are diffeomorphic.

Denote the inverse map by g. The chain rule applied to f ◦ g and g ◦ f tells
us that if a ∈ U , the linear maps dfa and dgf(a) are mutual inverses. In
particular, this forces p = q.

Remark. It is also true that an open subset of Rp cannot be homeomor-
phic to an open subset of R

q unless p = q. This result, called the invari-
ance of domain, is distinctly more difficult to prove, and appeals to alge-
braic topology (for a proof, see for example [Karoubi-Leruste 87, Chapter V]
or [Dugundji 65, Chapter XVII, no. 3]).
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Examples: balls and the product of intervals

a) All open intervals in R are mutually diffeomorphic, and diffeomorphic
to R.

It is clear that all bounded open intervals are mutually diffeomorphic, as
are all intervals of the form (a,∞) or (−∞, b). On the other hand we have
diffeomorphisms t �→ et from (0,∞) to R and t �→ t

1−t2
from (−1, 1) to R

(for example).

b) All open balls in R
n (under the Euclidean norm) are diffeomorphic to R

n.

Using a), we see that

x �−→ x

1− ‖x‖2

is a diffeomorphism of the open ball B(0, 1) to R
n.

c) In R
2, the interior of a square is diffeomorphic to an open disk.

It suffices to remark that the map

(x, y) �−→
(

x

1− x2
,

y

1− y2

)
is a diffeomorphism of the square (−1, 1)× (−1, 1) to R

2.

Of course there are analogous statements in every dimension. Later we will
see that R

n and R
n
� {0} are not diffeomorphic.

Warning. The example t �→ t3 from R to R shows that a smooth homeo-
morphism may not be a diffeomorphism. In fact its differential at 0 is not
invertible, as it vanishes.

Conversely:

Proposition 1.11. Suppose f is a homeomorphism from an open subset U
to an open subset V in R

p. If f is of class Ck, and if df is invertible at every
point, then f is a Ck diffeomorphism and(

dff(x)
)−1

= (dfx)
−1.

Proof. We appeal to an easy but useful lemma whose proof is left as an
exercise.

Lemma 1.12. If A is a bijective linear map between finite-dimensional
normed vector spaces, then there exists strictly positive constants m and M
such that

∀x �= 0, m‖x‖ < ‖A · x‖ < M‖x‖.
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Let g denote the inverse of f . Suppose a ∈ U and b = f(a). We first show
that g is differentiable at b. Since g is continuous

g(b+ h) = g(b) + Δ(h), where ‖Δ(h)‖ = o(1).

Composing this equation with f , we obtain

b+ h = b+ dfa ·Δ(h) + o(Δ(h))

and
Δ(h) = (dfa)

−1 · h+ (dfa)
−1 · o(Δ(h)).

Applying the lemma, Δ(h) = O(h) therefore the relation above gives

Δ(h) = (dfa)
−1 · h+ o(h).

Therefore g is differentiable at b, and dgb =
(
dfg(b)

)−1
.

The fact that g is Ck if f is Ck follows from the chain rule.

A much stronger result is true.

1.4.2. Local Diffeomorphisms

Theorem 1.13 (Inverse function theorem). Suppose f is a Ck map
( k � 1) from an open subset U in R

p to R
p, and a is a point of U where the

differential dfa is invertible. Then there exists an open subset V contained
in U and containing a such that f : V → f(V ) is a Ck diffeomorphism.

In other words, if the differential of f at a is an isomorphism as a linear map,
f is itself an isomorphism as a Ck map, provided we remain close to a.

Proof. The proof rests on a classical result of topology, the fixed point
theorem for contraction mappings, and we review the statement now. Note
that it’s necessary to use a version “with parameters”, that is easily obtained
in adapting the classical proof.

Theorem 1.14. Suppose (X, d) is a complete metric space, Y is a topological
space, and F : X×Y → X is a continuous map. Suppose that F is uniformly
contracting, this is to say that there exists a positive real number k < 1 such
that

d
(
F (x, y), F (x′, y)

)
� kd(x, x′)

for all x and x′ in X and y in Y .

Then, for all y ∈ Y , the equation F (x, y) = x has a unique solution. Let
ϕ(y) denote this solution. Then the map y �→ ϕ(y) is continuous.



Chapter 1 – Differential Calculus 17

Returning to the proof of the inverse function theorem, by pre and post
composing with translations, and precomposing again with df−1

a , we can
consider the case where a = f(a) = 0 and df0 = Id. By continuity of the
map x �→ dfx, there exists a closed ball B(0, r) ⊂ U on which ‖I − dfx‖ � 1

2 .
Therefore by the mean value theorem:

the restriction of f to B(0, r) is Lipschitz with constant 3
2 ;

the continuous map F (x, y)= x−f(x)+y sends B(0, r)×B(0, r
2 ) to B(0, r);

for all x and x′ with norm less than r,

‖F (x, y)− F (x′, y)‖ �
1

2
‖x− x′‖.

Therefore, by the fixed point theorem, Theorem 1.14, for y ∈ B(0, r
2 ),

there exists a unique x in B(0, r) such that F (x, y) = x, which is to say
f(x) = y, and the map g : y �→ x just defined is continuous. From this we
deduce the existence of open subset U ′ and V ′ containing 0 such that

g ◦ f|U ′ = Id|U ′ and f ◦ g|V ′ = Id|V ′ .

As a result f is a homeomorphism from U ′ ∩ g−1(V ′) to V ′ ∩ f−1(U ′).
Applying Proposition 1.11, we see in fact that f is a diffeomorphism.

Corollary 1.15. Suppose f is a Ck map from an open subset U ⊂ R
m

to R
n. If the differential of f is invertible everywhere, then for all open

subsets V of U , f(V ) is open in R
m.

Proof. The key idea is that every point in V is contained in an open set on
which f is a diffeomorphism.

Example: the “square root” of a endomorphism near the identity

There exists two open subset U and V containing I in Gl(n,R) such that for
every matrix B ∈ V there exists a unique matrix A ∈ U with square B. To
see this, note that

(A+H)2 = A2 +AH +HA+H2,

and so the map f : A �→ A2 is differentiable, with its differential at A given
by

H �−→ AH +HA.

However f is C1, and it suffices to apply the inverse function theorem at
A = I.

Definition 1.16. A local diffeomorphism is a Ck map (k � 1) from an open
subset U in R

p to R
p whose differential is invertible at every point.
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By the inverse function theorem, it is equivalent to say that every point in U
is contained in an further open subset V such that f|V is a diffeomorphism
to its image.

We also note that a Ck map (k � 1) whose differential at a point is invertible
is a local diffeomorphism from a neighborhood of this point to its image.

There is no reason for a local diffeomorphism to be injective; conversely, by
Proposition 1.11 every bijective local diffeomorphism is a diffeomorphism.
We note finally that a local diffeomorphism is an open map (which is to say
that the image of every open subset is open) by Corollary 1.15.

Examples

a) The map (r, θ) �→ (r cos θ, r sin θ) is a local diffeomorphism (0,∞) × R

to R
2
� {0}.

b) If we identify C with R
2, the map z �→ z2 is a local diffeomorphism of

R
2
� {0} to itself, and the map z �→ ez is a local diffeomorphism from R

2

to R
2
� {0}.

1.4.3. Immersions, Submersions

It is remarkable that we can still obtain “local” information about f supposing
only that its differential at a point a is injective or surjective. To simplify
the statements, we suppose that a = 0 and f(a) = 0, as the general case is
deduced without difficulty by performing translations.

Theorem 1.17. Let f be a C1 map from an open subset U of R
p to R

q.
Suppose that 0 ∈ U and the differential df0 is injective. Then there exists an
open subset V in R

q containing 0 and an open subset U ′ contained in U such
that f(U ′) ⊂ V , and a diffeomorphism ϕ of V to its image such that

ϕ
(
f(x1, . . . , xp)

)
= (x1, . . . , xp, 0, . . . , 0).

Proof. Necessarily p � q. Suppose f1, . . . , f q are the components of f . The
hypothesis means that the Jacobian matrix of f is of rank p. After permuting
the coordinates in the domain space if necessary, we can suppose that the
matrix

A =
(
∂jf

i(0)
)
1�i�p, 1�j�p

is invertible. We define a map g from U ×R
q−p to R

q by

g
(
x1, . . . , xp, y1, . . . , yq−p

)
=
(
f1(x), . . . , fp(x), y1+fp+1(x), . . . , yq−p+f q(x)

)
.

The Jacobian matrix of g is of the form(
A 0

I

)
.
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This is invertible, therefore there exists an open subset W containing 0 such
that g|W is a diffeomorphism to its image. The required diffeomorphism
is ϕ = g−1.

Remark. An immediate consequence of this theorem is the existence of
a local left inverse of f , this is to say a map from an open subset of R

q

containing 0 to an open subset of Rp such that f1 ◦ f = IdRp : it suffices to
take f1 = (ϕ1, . . . , ϕq), in other words to keep only the first q components
of ϕ.

Example. If p = 1 the image of f is a curve, and this theorem tells us every
sufficiently small piece of this curve can be transformed to a segment of a
straight line by a diffeomorphism.

V

f

(V )

R
p

R
p

R
q

R
q – p

Figure 1.2: Straightening a curve

A dual result concerns maps whose differential is surjective. This time, we
compose with a diffeomorphism on the domain side to obtain a linear map.

Theorem 1.18. Suppose f is a C1 map from an open subset U of R
p to R

q.
Suppose that 0 ∈ U and that the differential df0 is surjective. Then there
exists an open subset V in R

p containing 0 and a diffeomorphism ψ of W to
its image such that ψ(W ) ⊂ U and

f
(
ψ(x1, . . . , xp)

)
= (x1, . . . , xq).

Proof. Necessarily p � q. This time by permuting the xi coordinates, we
can suppose that the matrix

B =
(
∂jf

i(0)
)
1�i�q, 1�j�q

is invertible, and we define a map h from U to R
p by

h(x) =
(
f1(x), . . . , f q(x), xq+1, . . . , xp

)
.
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The Jacobian matrix of h at zero is of the form(
B ∗
0 I

)
and therefore there exists an open subset W in R

p containing 0 such that
h|W is a diffeomorphism to its image. If ψ is its inverse we find

f
(
ψ(x1, . . . , xp)

)
= (x1, . . . , xq).

Indeed, if x is of the form h(u) = (f(u), uq+1, . . . , uq), we have ψ(x) = u, and
therefore f

(
ψ(x)

)
= f(u).

Remark. In the same way as before, we deduce a theorem on the existence
of a local right inverse for f , this is to say a smooth map f1 from an open
subset of R

q containing 0 to an open subset of R
p containing 0 such that

f ◦ f1 = IdRq : it suffices to take f1(x
1, . . . , xq) = ψ(x1, . . . , xq, 0, . . . , 0).

Example. If q = 1, this result implies that, modulo a local diffeomorphism
of the domain space, this is to say a “change of variables”, a scalar function
with a nonzero differential is expressible as a linear form.

Remark. There is a more general statement, that includes both of the two
preceding results, the rank theorem, see Exercise 10.

Definitions 1.19. A Ck immersion from an open subset U ⊂ R
p to R

q is
Ck map from U to R

q with injective differential at each point. A Ck submer-
sion is a Ck map from U in R

q with surjective differential at each point.

With this notation, we note that p � q if f is an immersion, and p � q if f
is a submersion. Of course a map that is both an immersion and submersion
is a local diffeomorphism.

Remarks

a) If the differential at point a is injective (resp. surjective) there exists an
open subset containing a for which this property subsists. To see this,
we can use the preceding theorems by remarking that these properties
are equivalent to the nonvanishing of a determinant of order p (resp. of
order q) extracted from the Jacobian matrix. This condition is an “open”
condition.

b) ��Theorems 1.17 and 1.18 naturally lead to notions of continuous immer-
sion and submersion: a continuous map f from an open subset U in R

p

to R
q is a C0 immersion (resp. a C0 submersion) if after composition

on the range side (resp. domain side) with a suitable homeomorphism, it
becomes a injective (resp. surjective) linear map.��



Chapter 1 – Differential Calculus 21

hereafter, unless otherwise mentioned,

we assume all maps are smooth

1.5. Submanifolds

1.5.1. Basic Properties

Intuitively, a submanifold of dimension p in R
n is a union of small pieces each

of which can each be straightened in a way to form open subsets of Rp. One
can convince oneself for a circle that two pieces are necessary (and sufficient!).

Definition 1.20. A subset M ⊂ R
n is a p-dimensional submanifold of Rn

if for all x in M , there exists open neighborhoods U and V of x and 0 in R
n

respectively, and a diffeomorphism

f : U −→ V such that f(U ∩M) = V ∩ (Rp × {0}).

We then say that M is of codimension n− p in R
n.

This definition is better understood with Figure 1.3 kept in mind. We note
that p is unique, in other words that M is not a manifold of dimension p1 �= p.
The verification of this is left to the reader, unless they cannot wait until they
read the next chapter, where this question will be elucidated in a more general
setting.

f (U ) =V

R
p

M

U

f

Figure 1.3: Submanifold

Remark. In this definition we can of course replace 0 and R
p × {0} by any

point and any affine subspace of dimension p.
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In practice, a submanifold can be locally defined by systems of equations, or
by parametric representations. Loosely speaking, if the number of real param-
eters is equal to the dimension of the ambient space, then a p-dimensional
submanifold will be formed by n− p equations. As in linear algebra we call
n− p the codimension. We now formulate this remark carefully.

Theorem 1.21. Suppose M is a subset of Rn. The following properties are
equivalent:

i) M is a submanifold of dimension p of Rn;

ii) for all a in M , there exists an open subset U of Rn containing a and a
submersion g : U → R

n−p such that U ∩M = g−1(0);

iii) for all a in M , there exists an open subset U in R
n containing a, an

open subset Ω in R
p containing 0, and a map h : Ω → R

n which
is simultaneously an immersion in R

n and a homeomorphism of Ω
on U ∩M ;

iv) for all a in M , there exists an open subset U in R
n containing a, an open

subset V in R
p containing (a1, . . . , ap) and a smooth map G from V to

R
n−p such that, after permuting the coordinates, U ∩M equals the graph

of G.

Proof. We first show that i) implies ii) and iii). Let f be the diffeomorphism
defined on a neighborhood U of a ∈ M , as assured by i). Then f−1 is
a diffeomorphism of f(U) to U . Its restriction to R

p × {0} ∩ f(U) is an
immersion from this open set of Rp to R

n, and a homeomorphisms on U∩M ,
giving iii).

To see that i) implies ii), we consider the components (f i)1�i�n of f . By
hypothesis, their differentials are linearly independent at every point of U .
Set

g = (fp+1, . . . , fn).

We then have a submersion of U to R
n−p such that M ∩ U = g−1(0).

Now suppose that iii) is true. By Theorem 1.17, we may replace Ω by a
smaller open subset and find a diffeomorphism ϕ from an open subset U
containing h(0) = a to R

n, such that

(ϕ ◦ h)(x1, . . . , xp) = (x1, . . . , xp, 0, . . . , 0).

Then

ϕ(U ∩M) = ϕ(h(Ω)) = ϕ(U) ∩ (Rp × {0}).

Implication ii) ⇒ i) is proved in the same way using Theorem 1.18.
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We now show the equivalence of ii) and iv). The fact that iv) implies ii) is
elementary: if M is locally the graph of a function G : V → R

n−p as in the
statement, the components G1, . . . , Gn−p, of the map

g : x �−→
(
xi+p −Gi(x1, . . . , xp)

)
1�i�n−p

is a submersion which satisfies ii) upon restricting its domain of definition.
Conversely, given such a submersion, we can suppose after permuting the
coordinates as in the proof of Theorem 1.18 that the matrix(

∂i+pg
j(a)

)
1�i, j�n−p

is invertible. We therefore apply the inverse function theorem to the function

F : x �−→
(
x1, . . . , xp, g1(x), . . . , gn−p(x)

)
.

This function has a local inverse of the form

F−1 : x �−→
(
x1, . . . , xp, γ1(x), . . . , γn−p(x)

)
,

and thus M is locally the graph of

G : (x1, . . . , xp) �−→
(
γj(x1, . . . , xp, 0 . . . , 0)

)
1�j�n−p

.

Remarks

a) The implication ii) ⇒ iv) is known as the implicit function theorem.

b) Suppose g is a smooth map from an open subset U of Rn to R
p, and let

a in R
p be such that g−1(a) �= ∅. Then for g−1(a) to be a manifold, it

suffices to know that the differential of g is surjective at every point of
g−1(a). Indeed if this property is true at a point x, it is also true in a
neighborhood of x (for example because the surjectivity is equivalent to
the nonvanishing of a certain determinant of order p extracted from the
Jacobian matrix). This argument is very common.

1.5.2. Examples: Spheres, Tori, and the Orthogonal Group

a) The sphere Sn defined by

Sn =
{
x = (x0, . . . , xn) ∈ R

n+1 : x2
0 + · · ·+ x2

n − 1 = 0
}

is a submanifold of dimension n (and class C∞) in R
n+1. The map

f : Rn+1 → R defined above is of course a submersion at every point
of Sn, and its differential at x is dfx = (2x0, . . . , 2xn).
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b) The torus T n of dimension n defined by

T n =
{
z = (z1, . . . , zn) ∈ C

n : |z1|2 = · · · = |zn|2 = 1
}

or {
x = (x1, . . . , x2n) ∈ R

2n : (x2
1 + x2

2 − 1, . . . , x2
2n−1 + x2

2n − 1) = 0
}

is a submanifold of R2n � C
n. Here we can also apply the criterion iii)

by introducing the map

h : (t1, . . . , tn) �−→ (eit1 , . . . , eitn) from R
n to C

n.

The torus of revolution (cf. Exercise 13) is easier to see geometrically, but
is a little harder to manipulate.

Figure 1.4: Torus of revolution

c) The orthogonal group

O(n) =
{
A ∈ Mn(R) : tAA = Id

}
is a submanifold of dimension n(n−1)

2 on Mn(R) � R
n2

. We define

f : Mn(R) −→ Sym(n) by f(A) = tAA− Id,

where Sym(n) is the vector space of n × n symmetric matrices. Then
O(n) = f−1(0) and f is a submersion at every point of O(n). We note
then that

dfA ·H = tAH + tHA.

In particular if S is symmetric and A orthogonal we have

dfA

(
AS

2

)
= S.

We will see a proof using iii) in Section 1.6.
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d) The subset of R3 defined by the equation

x2 + y2 − z2 = 0 (cone of revolution)

is not a submanifold. A priori, it seems criteria ii) doesn’t work, but this
is not the reason! On the contrary, note the straight line with equation
x − y = 0 is also a solution of x3 − y3 = 0. The most convenient route is
to show that iii) is not true: see the figure below.

0

Figure 1.5: A cone with its vertex removed is no longer connected

1.5.3. Parametrizations

Definitions 1.22

a) A parametrization of a p-dimensional submanifold M of R
n is a map

from an open subset Ω in R
p to R

n that is simultaneously an immersion
in R

n and a homeomorphism of Ω to an open subset of M .

b) A local parametrization is a map from Ω to R
n that induces a

parametrization in a neighborhood of every point of Ω.

By Theorem 1.21 every submanifold can be covered by open subsets that are
images of parametrizations.

Examples

a) The map t �→ (cos t, sin t) from R to R
2 is a local parametrization of the

circle x2 + y2 = 1. Similarly, the map

(u, v) �−→ (cosu, sinu, cos v, sin v)

from R
2 to R

4 is a local parametrization of the torus T 2.
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b) The image of the map g from R
2 to R

3 defined by

g(u, v) = (sinu cos v, sinu sin v, cosu)

is the sphere S2. However, g is not a local parametrization unless
we remove the lines u ≡ π

2 mod π. In this case, we obtain a local
parametrization of the sphere with its two poles removed (recall that u
and v are spherical coordinates – latitude and longitude – on S2). To
show that S2 is a submanifold using this point of view, one must add
other parametrizations to g, for example

(x, y) �−→
(
x, y,±

√
1− x2 − y2

)
in a neighborhood of the north and south poles.

It is clear that a single parametrization will not suffice, because S2 is
a compact space, and cannot be homeomorphic to an open subset of R2.
This need to recourse to many parametrizations for such a simple subman-
ifold is one of the reasons justifying the introduction of manifolds.

Note. The lack of symmetry between criteria ii) and iii) in Theorem 1.21 is
not accidental. It is not true that the image of an open subset of Rp under
an immersion is always a submanifold. One reason is of course because an
immersion need not be injective (there can be double points). But even then
this is not true for injective immersions.

Counterexample. The map

g : t �−→
(
cos t, sin t, cos

√
2 t, sin

√
2 t
)

is an immersion from R to R
4, but g(R) is not a submanifold of R4.

��On the one hand, for every irrational number α, the set Z + αZ is dense
in R (compare to Theorem 4.40), which implies that g(R) is dense in the
torus T 2. On the other hand, it follows from the definition of submanifold
that this set is a locally closed subset (this is to say open subsets of their
closure) of the ambient space.��

We will see more of the details on this question in the next chapter.

1.5.4. Tangent Vectors, Tangent Space

Definition 1.23. Suppose A ⊂ R
p and a is an element of A. We say

that a vector v is tangent to A at a if there exists a differentiable map
c : (−ε, ε) → R

p such that c((−ε, ε)) ⊂ A, c(0) = a and c′(0) = v.
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Note. This definition, in contrast to one which consists in taking right-
sided derivatives of maps defined on [0, ε), is very restrictive, as the following
example shows.

Example. The only tangent vector to the origin to the curve C which is the
image of R under the map t �→ (t2, t3) is the zero vector: if u �→

(
c1(u), c2(u)

)
has image on C, then c′1(0) = 0, because c1(u) is always positive. Since
c2 = (c1)

3/2, we also have c′2(0) = 0. In contrast, the map u �→ (u, u3/2) from
[0, 1) to R

2 has image contained in C and a nonzero right derivative at the
origin.

In particular, this curve is not a submanifold because of the following
property.

Figure 1.6: A curve with a cusp is not a submanifold

Proposition 1.24. The tangent vectors at a point of a submanifold of
dimension p in R

n form a vector space of dimension p.

Proof. Suppose a is a point of a submanifold M , and f is a diffeomor-
phism defined on an open subset U containing a and such that f(U ∩M) =
f(U) ∩ (Rp × {0}). We can suppose that f(a) = 0. Now, if v is tangent at a,
the chain rule applies to f ◦ c and shows that df(a) · v ∈ R

p × {0}.

Conversely, if w ∈ R
p × {0}, and choosing ε in a way that

∀t, |t| < ε, tw ∈ f(U)

we see that the curve t �→ f−1(tw) defines a tangent vector to M at a, namely
df−1

0 ·w. Put differently, the set of tangent vectors is identified with the image
under the linear map df−1

0 of the vector subspace R
p × {0} of Rn.

Definition 1.25. The tangent space of a submanifold M of Rn at a point a,
denoted TaM , is the set of points m in R

n such that the vector #   »am is tangent
to M at a.
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By the preceding definition, the tangent space at a is a affine p-dimensional
subspace of the ambient space. It becomes a vector space with origin a from
which we regard the tails of tangent vectors. An important question, which
will be discussed below, is the position of a submanifold with respect to the
tangent space at a point. However once we pass to manifolds, the vector
point of view will be the pertinent one.

Arguments analogous to those found in the proof of Proposition 1.24 permit
us to write the tangent space of a submanifold given by a submersion or
parametrization. If g is a submersion defined on an open set U of a and such
that U ∩ M = g−1

(
g(a)

)
, then the tangent space at a is the kernel of the

linear map dga. Consider a curve t �→ c(t) defining a tangent vector, and
note that we have g

(
c(t)
)
= g(a) and therefore dga · v = 0. Thus Ker dga

is contained in TaM , and these two spaces are equal as they have the same
dimension; the n− p components of g give a system of n− p linear equations
in n unknowns by differentiation which are of maximum rank, and whose
solutions are tangent vectors.

Similarly, if M is defined in a neighborhood of a by a parametrization (such
that g(0) = a for example), the tangent space at a is the image in R

p of the
linear map dg0.

Example: surfaces in R
3

We explain all of this for 2-dimensional submanifolds of R3. If such a subman-
ifold S (as in “surface” !) is given in a neighborhood of a point (a, b, c) by the
equation f = 0 (where we suppose that f is a submersion), then the equation
of the tangent plane at (a, b, c) can be written

(x− a)∂1f(a, b, c) + (y − b)∂2f(a, b, c) + (z − c)∂3f(a, b, c) = 0.

If S is given in a neighborhood of the same point by a parametrization

(u, v) �−→
(
g(u, v), h(u, v), k(u, v)

)
,

with for example (a, b, c) =
(
g(0, 0), h(0, 0), k(0, 0)

)
, this same tangent plane

will be given by the parametric representation

(u, v) �−→

⎛⎜⎝a+ ∂1g(0, 0)u+ ∂2g(0, 0)v

b + ∂1h(0, 0)u+ ∂2h(0, 0)v

c+ ∂1k(0, 0)u+ ∂2k(0, 0)v

⎞⎟⎠.
To know the position of a surface with respect to a tangent plane, we can
always return to the case where S has tangent plane z = 0 at 0. The
surface is always the graph of a function (x, y) �→ G(x, y) in a neighbor-
hood of 0, whose differential at 0 is zero. By composition with a diffeo-
morphism of the domain space, we can “often” return to the case where
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G is a non-degenerate quadratic form (see the Morse lemma, Exercise 11).
Then in this neighborhood of 0, either S is on the same side of its tangent
plane at 0 as this quadratic form – or, what amounts to the same thing, the
quadratic form defined by the second derivatives of G at 0 – is of type ++
or −−, or S crosses its tangent plane if this quadratic form is of type ±,∓
(see Figure 1.7 and Exercise 22).

Figure 1.7: Minimum, maximum, saddle point

1.6. One-Parameter Subgroups

of the Linear Group

Recall that for a field K, we denote the multiplicative group of invertible
matrices from Kn to itself by Gl(n,K). The cases that interest us here are
K = R and K = C. If Kn is equipped with a norm, recall that there is an
associated norm on End(Kn) defined by

∀A ∈ End(Kn), ‖A‖ = sup
‖x‖�1

‖Ax‖.

Definition 1.26. The exponential of an endomorphism A ∈ End(Kn)
(K = R or C) is the endomorphism defined by

expA =

∞∑
k=0

Ak

k!
.

It is clear that this series converges: appealing to the properties of a norm of
a linear map, ∥∥∥∥Ak

k!

∥∥∥∥ �
‖A‖k
k!

,

and we have a norm convergent series in a finite-dimensional normed vector
space. We also see that

‖ expA‖ � e‖A‖.



30 An Introduction to Differential Manifolds

Moreover, we have the following properties:

Lemma 1.27

i) exp is continuous.

ii) If A and B commute,

exp(A+B) = (expA)(expB).

In particular, expA is invertible with inverse exp(−A).

iii) If P is invertible, exp(P−1AP ) = P−1(expA)P .

iv) det(expA) = etr(A).

v) exp tA = texpA, expA = expA.

Proof

i) is immediate: by the inequality above, we have a uniformly convergent
series on every compact subset.

ii) Since both sides are norm convergent series, the proof is the same as the
classical proof of the identity ez+z′

= ezez
′

for z and z′ in C. We use the
identity

(A+B)k =

k∑
i=0

(
k

i

)
AiBk−i

which is true if A and B commute.

iii) is immediate from i) after passing to the limit, as for every integer k,
P−1AkP = (P−1AP )k.

iv) The property is evident for diagonal matrices, and by iii) for diagonaliz-
able matrices (and even for real matrices that are C-diagonalizable), which
form a dense subset of End(Kn)). Therefore the property holds for all
matrices by continuity of exp and det (see Exercise 24 for another proof).

v) is clear.

It is clear from the definition that the exponential is differentiable at 0, and
the differential is the identity map. To be able to apply the inverse function
theorem, one must verify that exp is C1. The classical criterion of conti-
nuity and differentiability applies easily, but we can say much more by less
pedestrian means, so long as we are willing to do a little complex analysis.

Theorem 1.28. The exponential is smooth.

Proof. For every matrix whose spectrum is contained in the open disk
D(r) = {z : |z| < r} of the complex plane, we have

expA =
1

2iπ

∫
C(0,r)

(zI −A)−1ez dz.
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Indeed, we provisionally call the right hand side f(A). As f(P−1AP ) =
P−1f(A)P , it suffices to use the same density argument from the previous
lemma, and to show that f(D) = expD for diagonal matrices D, in which
case we return to Cauchy’s integral formula.

The integrand of the right hand side is smooth (in fact real analytic) on the
(open!) set of matrices whose spectrum is contained in D(r), and we conclude
by applying the theorem on the differentiation of integrals depending on
parameters.1

Remark. We can give an elementary but pedestrian proof of this result,
by using the usual theorem on the term-by-term differentiation of series of
functions.

Corollary 1.29. There exists an open subset U of End(Rn) containing 0
such that the exponential is a diffeomorphism from U to its image.

We now deduce the following fundamental result.

Theorem 1.30. For every continuous group homomorphism f of the addi-
tive group (R,+) to Gl(n,R), there exists a unique endomorphism A such
that

∀t ∈ R, f(t) = exp tA.

Remark. Conversely, by Lemma 1.27, t �→ exp tA is a continuous morphism
of (R,+) to Gl(n,R).

Proof. We can suppose f is not constant (if it is take A = 0!). Let U
be an open ball with center 0 in End(Rn) such that exp restricts to the
ball of double the radius (which we denote 2U) as a diffeomorphism. By the
continuity of f , there exists an interval I containing 0 such that f(I) ⊂ expU .
Since f is nonconstant there exists c ∈ I such that f(c) = A ∈ expU , with
A �= I. By the choice of U , there exists nonzero B ∈ U , such that expB = A.
Now it follows expB/2 = f(c/2).

Furthermore, given the choice of U , we have

f

(
c

2

)
= expB′, with B′ ∈ U.

Then
exp 2B′ = f(c) = expB,

while the endomorphisms 2B′ and B are both in the open subset 2U , on which
exp is a diffeomorphism, and in particular an injection. Therefore B′ = B/2.

1. This elegant argument was communicated to me by Max Karoubi on the terrace of a
Parisian café.
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The same reasoning proves that for every integer p,

exp
B

2p
= f

(
c

2p

)
.

Therefore by the algebraic properties of f , we have

exp
kB

2p
= f

(
kc

2p

)
for all integers k and p. But the real numbers of the form k

2p are dense in R,
and using continuity once more we see that

∀t ∈ R, exp tB = f(tc).

An analogous argument allows us to show that the exponential furnishes a
parametrization of certain subgroups of Gl(n,K).

Definitions 1.31

a) The special linear group, denoted Sl(n,K) is the subgroup of Gl(n,K) of
endomorphisms of determinant 1.

b) The orthogonal group, denoted O(n), is the subgroup of Gl(n,R) of endo-
morphisms such that tAA = I.

c) The special orthogonal group, denoted SO(n), is the subgroup Sl(n,R) ∩
O(n).

We have seen that O(n) is a submanifold of End(Rn). In the same way, it
is an immediate result from the end of Section 1.2.2 that Sl(n,R) is also
a submanifold. On the other hand the formulas of Lemma 1.27 show that
the exponential of a trace-free endomorphism is in Sl(n,R), and that the
exponential of an antisymmetric endomorphism is in O(n).

Proposition 1.32. There exists an open subset V containing 0 in the vector
space of trace-free endomorphisms (resp. in the vector space of antisym-
metric endomorphisms) such that exp |U is a parametrization of Sl(n,R)
(resp. of O(n)).

Proof. Let us look at the second case (the first one is straightforward).
To start we choose an open subset U containing 0 in End(Rn) such that
exp : U �→ exp(U) is a diffeomorphism, and is stable under the maps A �→ −A
and A �→ tA.

Let B ∈ exp(U) ∩O(n). There exists a unique A ∈ U such that B = expA.
Therefore we have

B−1 = exp(−A) and tB = exp tA,

therefore −A = tA by the choice of U . It then suffices to take V as the
intersection of U with the space of antisymmetric endomorphisms.
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1.7. Critical Points

Definitions 1.33

a) If f is a smooth map from an open subset U ⊂ R
m to R

n, a point x ∈ U
is called critical if

rank(dxf) < n.

b) A point is called regular if it is not critical.

If m = n, the regular points are those where the differential is invertible, i.e.,
those where the inverse function theorem applies.

If the range is one dimensional, a point x is critical if and only if dxf = 0.
Here is an important example.

Proposition 1.34. Let f be a C1 map from an open subset U in R
m to R.

If f admits a local maximum (resp. minimum) at a, i.e., if there exists a
further open subset V containing a such that

∀x ∈ V, f(x) � f(a) (resp. f(x) � f(a)),

then a is a critical point.

Proof. Suppose by way of contradiction that v is a vector such that daf ·v �=0.
If t is a sufficiently small real number, f(a+ tv)− f(a) = daf · tv + o(tv) is
nonzero and of the same sign as daf · tv. By choosing two such t of opposite
sign results in a contradiction.

To take full advantage of this result, it is best to be assured of the existence
of extrema, for example by using compactness.

This is why this property takes its interest when applied not only to open
subsets of Rm but to (possibly compact) submanifolds (and also to manifolds,
as we will see later).

Proposition 1.35. Let S be a submanifold of Rm, and f a real-valued func-
tion defined on an open subset containing S. If the restriction of f to S
admits a local maximum or minimum at a point a of S, then daf annihilates
the tangent space at a.

Proof. Let U be an open subset containing a such that there exists a diffeo-
morphism g on an open subset g(U) containing 0 such that g(U ∩ S) =
g(U) ∩ (Rp × {0}) (see Definition 1.20; note here p is the dimension of S).
By Proposition 1.34, the differential of f ◦g−1 at 0 is annihilated on R

p. The
statement now follows by the definition of the tangent space.
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Remark. In practice, we principally use this result when S is given in a
neighborhood of a by a submersion. If h1, . . . , hn−p are the coordinates of
such a submersion, the proposition above says precisely that dfa is a linear
combination of the (dhi)a. The coefficients of this linear combination are
called the Lagrange multipliers. Here is a sample application.

Theorem 1.36. Every self-adjoint endomorphism of an inner product space
is diagonalizable and admits an orthogonal basis of eigenvectors.

Proof. We proceed by induction on the dimension of E. The property is
clear in dimension 1. Let u be such an endomorphism. By definition, for
every x and y in E, 〈u(x), y〉 = 〈x, u(y)〉. The unit sphere S is compact,
so the function f(x) = 〈u(x), x〉 realizes its maximum at a point a in S.
Moreover, the function f is smooth, and its differential is

daf · h = 〈u(h), a〉+ 〈u(a), h〉 = 2〈u(a), h〉,

so the tangent space of S at a is orthogonal to u(a). By elementary linear
algebra, u(a) is co-linear to a, which is to say a is an eigenvector. As u is
self-adjoint, it fixes the subspace Ra⊥, which gives the inductive step.

Remarks

a) We have the same result in the hermitian case.

b) This type of argument is important in functional analysis. See for example
[Brezis 83, VI.4]. A typical example is the spectral decomposition for the
Laplacian. If D is a compact domain in R

n with smooth boundary, the
spectrum of the Dirichlet problem is the set of λ for which there exists a
function f ∈ C2(D) not identically zero such that

Δf = −λf with f|∂D = 0.

One shows that there is a sequence λ1 � λ2 � · · · � λp � · · ·, with
limp→+∞ λp = +∞, and that L2(D) admits an orthonormal basis of eigen-
functions. We note in passing that Δ is “formally2 self-adjoint” for the
inner product, which is to say that if f and g are C2 and vanish on the
boundary, ∫

D

fΔg dx1. . . dxn =

∫
D

gΔf dx1. . . dxn.

See Exercise 14 in Chapter 6, where one also shows, with the same hypoth-
esis on f that ∫

D

fΔf dx1. . . dxn =

∫
D

|dfx|2 dx1. . . dxn.

2. “Formally” because the operator is not defined on the whole space.
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This spectral decomposition start index check theorem is also a perfect
analogue of Theorem 1.36, and its proof rests, modulo adequate functional
analysis, on a study of the extrema of the functional

∫
D |dfx|2 dx1. . . dxn on

the unit sphere of L2(D). See for example [Attouch-Buttazzo-Michaille 06,
Chapter 7].

This variational method also gives a way to control the volume of paral-
lelepipeds in Euclidean space. Recall that the Lebesgue measure is normal-
ized by giving the value 1 to a parallelepiped (and therefore to all paral-
lelepipeds) defined by an orthonormal basis. If

P =

{
n∑

i=1

tiai, 0 � ti � 1

}
is the parallelepiped defined by n vectors a1, . . . , an,

vol(P ) = | det(a1, . . . , an)|,

with the determinant being taken with respect to an orthonormal basis. In
two dimensions, we know that vol(P ) = ‖a1‖‖a2‖| sinα|, where α denotes
the angle between vectors a1 and a2, and it is clear that vol(P ) � ‖a1‖‖a2‖,
and that equality is realized if and only if the vectors are orthogonal. An
analogous result is true in all dimensions.

Theorem 1.37 (Hadamard inequality). Suppose E is a Euclidean vector
space of dimension n, and P is the parallelepiped defined by n vectors
a1, . . . , an. Then

vol(P ) �

n∏
i=1

‖ai‖,

and equality is realized if and only if the ai are mutually orthogonal.

Proof. It suffices to prove the result when the ai are of norm 1. Suppose
(v1, . . . , vn) is an n-tuple of vectors for which the continuous map

(a1, . . . , an) �−→ | det(a1, . . . , an)|

attains it maximum. In a neighborhood of this n-tuple, this map is equal to
the determinant (or its negative).

By Proposition 1.35 applied to the partial functions

ai �−→ det(a1, . . . , an),

for all i, the determinant det(v1, . . . , vi−1, h, vi+1, . . . , vn) is zero once
〈vi, h〉 = 0, i.e.,

(vi)
⊥ ⊂ span(v1, . . . , vi−1, vi+1, . . . , vn).
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Since these two subspaces are of codimension 1, they are therefore equal, and
vi is orthogonal to each vk for k �= i. The system (v1, . . . , vn) is orthonormal,
and the maximum is equal to 1. Conversely, if equality is realized, the volume
is 1 which is maximal and the system is orthonormal.

1.8. Critical Values

Phenomena like “Peano’s curve” (a continuous surjection of [0, 1] onto
[0, 1]× [0, 1]) are not produced with differentiable functions. Here we make
this precise. We denote Lebesgue measure by μ.

Proposition 1.38. Suppose M ⊂ R
n is a submanifold of dimension p < n.

Then M is of measure zero in R
n.

It suffices to show that every x ∈ M is contained in an open subset U such
that U ∩M is of measure zero. We directly apply the definition of submani-
folds, and we consider an open subset U containing x and a diffeomorphism
f : U �→ V such that

f(U ∩M) = V ∩ (Rp × {0}).

The right hand side is clearly of measure zero, and the argument is reduced
to the following property:

Lemma 1.39. Suppose U ⊂ R
n is an open subset and f : U �→ R

n is a C1

map. The image under f of a set of measure zero is of measure zero.

Proof. Suppose E is such a set. It suffices to show that for every closed
ball B ⊂ U , f(E ∩B) is of measure zero. If

K = sup
x∈B

‖f ′(x)‖,

the mean value theorem shows that f is K-Lipschitz on B, therefore f trans-
forms every cube of measure δ to a set of smaller measure Knδ. Also, if
C ⊃ E ∩B is a union of cubes such that μ(C) < ε, we have

μ
(
f(E ∩B)

)
� μ

(
f(C)

)
< Knε.

In fact we can say much more. We begin with another definition.

Definition 1.40. If f is a smooth map of an open subset U ⊂ R
m to R

n,
a point y ∈ R

n is a critical value if there exists a critical point x such that
y = f(x). A point that is not a critical value is called a regular value.
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Remark. By the definition, a point that is not in the image of f is a regular
value. This convention is perfectly coherent with all of the results concerning
regular values.

Theorem 1.41 (Sard’s theorem). The set of critical values of a smooth
map from an open subset U ⊂ R

m to R
n is of measure zero.

We will only give the proof in the easiest case, when m � n. It suffices
to suppose that f is of class C1. We first note that the result is clear
if m < n. Every point is critical, and applying Lemma 1.39 to the map
f1 : U ×R

n−m → R
n defined by f1(x, y) = f(x) we see that f(U) is of

measure zero.

In the case m = n, the proof rests on the following lemma, which states that
a function of class C1 is “uniformly differentiable” on every compact subset.
To lighten the notation, we denote the differential of f at x by f ′(x) (instead
of dfx).

Lemma 1.42. If f is of class C1 on U , then for every connected compact
K ⊂ U , there exists a real number α > 0 and a function λ : [0, α] �→ R

+

such that

‖f(y)− f(x)− f ′(x) · (x− y)‖ < λ(‖x− y‖)‖x− y‖, with lim
t	→0

λ(t) = 0,

for all points x, y ∈ K such that ‖x− y‖ < α.

Proof. We have

f(y)− f(x) =

∫ 1

0

f ′(x+ t(y − x)
)
· (y − x) dt,

where∥∥∥∥ ∫ 1

0

f ′(x+ t(y − x)
)
· (y − x)− f ′(x) · (y − x) dt

∥∥∥∥
�

∫ 1

0

∥∥f ′(x+ t(y − x)
)
· (y − x)− f ′(x) · (y − x)

∥∥ dt.
The result is therefore a consequence of the uniform continuity of f ′ on K.

Proof of Theorem 1.41. Let C be the set of critical points. It suffices to
show that f(C ∩ A) is of measure zero for every cube A. We first note that
if x ∈ C, the vector space Im f ′(x) is contained in a hyperplane H ⊂ R

n.
Let r > 0, and y be such that ‖y − x‖ < r.
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By the lemma, the distance from f(y) to the affine hyperplane H ′ parallel
to H and containing f(x) is less than λ(r). On the other hand, if K =
supx∈B ‖f ′(x)‖, we have ‖f(y)− f(x)‖ < Kr. Also, f

(
B(x, r)

)
is contained

in a cylinder of base H ′ ∩B(f(x),Kr) and height 2rλ(r). Moreover,

μ
(
f
(
B(x, r)

))
� 2nKn−1rnλ(r).

Now, the cube A is included in at most (ak)n cubes with side 1
k , where we

have denoted the side length of A by a.

Each cube that meets C can be enclosed in a ball B
(
x, 2

√
n
k

)
, where x ∈ C.

Finally if ωnr
n denotes the volume of a ball of radius r, we find that

μ
(
f(A ∩ C)

)
� (ak)n2nKn−1ωn

(
2

√
n

k

)n

λ

(
2

√
n

k

)
� C(n, a,K)λ

(
2

√
n

k

)
,

from which the conclusion follows upon allowing k to tend to infinity.

For the (more difficult) proof in the case where m > n, see for example
[Hirsch 76] or [Golubitsky-Guillemin 73].

1.9. Differential Calculus

in Infinite Dimensions

The notion of differential and the chain rule extends word for word to the case
of normed vector spaces on the condition that we require the differential L
to be a continuous linear map. The inverse function theorem extends as
well to Banach spaces (we must of course suppose that the differential has
a continuous inverse3). Indeed the proof rests essentially on the fixed point
theorem for contraction mappings, valid for all complete metric spaces.

We will see this generalization is not straightforward and will shed light on
the situation in finite dimensions. We start with the following property, which
is the most elementary variant of what analysts call the “ω lemma”.

Proposition 1.43. Let I be a compact interval, U an open subset of Rn, and
f : U → R

n a C1 function. Then the set of continuous functions g : I → U
is an open subset of C0(I,Rn) (equipped with the uniform norm) on which
the map g �→ f ◦ g is continuously differentiable.

3. We can invoke Banach’s theorem that ensures that the inverse of a bijective continuous
linear map from one Banach space to another is continuous. In fact, in all of the
examples we are confronted with this continuity is very easily verified.
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Proof. The first part is classical: suppose g0 is a function such that
g0(I)⊂ U . As g0(I) is compact, its distance to the complement of U is a
strictly positive number α, and if ‖g − g0‖ < α, we have g(I) ⊂ U .

For the second part, we apply Lemma 1.42 to a suitable compact neighbor-
hood of g0(I). We have, in the notation of this lemma∥∥f(g(t))− f

(
g0(t)

)
− dfg0(t) ·

(
g(t)− g0(t)

)∥∥� λ(‖g(t)− g0(t)‖)‖g(t)− g0(t)‖,

which gives precisely the differentiability of g �→ f ◦ g, with the domain
C0(I,Rn) and rangeC0(I,R) equipped with the uniform norm. The differen-
tial of g0 is clearly the continuous linear map which assigns to h ∈ C0(I,Rn)
the real-valued function

t �−→ f ′(g0(t)) · h(t).
This map depends continuously on g0 by the uniform continuity of x �→ f ′(x)
on compact subsets.

It was remarked by Joel Robbin during the 1970s (see [Robbin 68]) that
one can show existence results for differential equations by using the Banach
inverse function theorem.

We consider the equation
x′ = f(t, x),

where f is (say) a function of class C1 on I × U , where I is an interval and
U is an open subset of Rn.

If we impose the initial condition x(t0) = x0 on the unknown function x :
J → U , (where J is a subinterval of I) this equation is equivalent to an
integral equation

x(t) = x0 +

∫ t

t0

f
(
u, x(u)

)
du.

The traditional proof of the existence and uniqueness theorem consists of
showing the map defined on the left hand side is a contraction on suitable
function space and admits a fixed point (for this approach, see for example
[Lang 86, Chapter 18], or [Hirsch-Smale-Devaney 03, Chapter 17]).

It is possible to use the inverse function theorem by proceeding as follows.
If [t0 − ε, t0 + ε] is an (unknown) interval of existence, we pose

t = t0 + εu and y(u) = x(t0 + εu)− x0.

The differential equation is therefore equivalent to

y′(u) = εf
(
t0 + εu, x0 + y(u)

)
.
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Let E be the Banach space of C1 functions on [−1, 1], with values in R
n

and zero at 0, equipped with the supremum norm of the derivative and
F = C0([−1, 1],Rn) equipped with the uniform norm. We define a map ϕ
from E ×R×R to F ×R×R by setting

ϕ(y, x0, ε) =
(
y′(u)− εf

(
t0 + εu, x0 + y(u)

)
, x0, ε

)
.

We see that ϕ is of class C1. It is now a consequence of Proposition 1.43
and an immediate generalization of Theorem 1.6 that assures that function
defined on a product space is C1 if each factor is separately C1.

The differential of ϕ at (0, x0, 0) is the linear map

(Y,X, E) �−→ (Y ′ − Ef(t0, x0), X, E) from E ×R×R to F ×R×R

whose inverse is evidently

(Z,X, E) �−→
(∫ u

0

(Ef(t0, x0) + Z(v)) dv,X, E
)
.

The inverse function theorem directly gives the local existence and uniqueness
of the solution, which is equal to ϕ−1(0, x0, ε) for ε > 0 sufficiently small. We
obtain as a bonus the differentiable dependence with respect to the initial
condition x0.

We have therefore proved the following result:

Theorem 1.44. There exists an open subset Ω ⊂ I × U and a function
φ : Ω → U of class C1 such that

i) for all x0 ∈ U , I × {x0} ∩ Ω is an open interval containing t0;

ii) f(t0, x0) = x0;

iii) ∂tφ(t, x0) = f
(
t, φ(t, x0)

)
;

iv) if u : J → U is a C1 function defined on an open interval J ⊂ I
containing t0, such that u(t0) = x0 and u′(t) = f

(
t, u(t)

)
for t ∈ J,

then u(t) = φ(t, x0) for all t ∈ J ∩ Ix0 .

1.10. Comments

Local models of maps

We have seen that every scalar function with nonvanishing differential at a
point a can be transformed by a local change of variables of the domain to a
linear function. Based on the strength of this success, we can ask ourselves
the more general question: if f is a smooth map on an open subset containing
a ∈ R

n, can we use a local diffeomorphism at a to bring us to the most simple
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model possible? This is exactly what was done in the case of maps whose
differential was injective, surjective, or more generally of constant rank in a
neighborhood of a (see Exercise 10).

For example, if the differential of f is zero, we ask if we can transform f to a
quadratic form. The answer is yes if the second order Taylor polynomial of
f is a non-degenerate quadratic form (see the Morse lemma, cf. Exercise 11).
Beyond that, things truly get complicated. This is the theory of singularities,
founded by Hassler Whitney and developed by René Thom, which is still
lively today, for which one may for example consult [Demazure 00] (lively,
and accessible), [Golubitsky-Guillemin 73] and [Arnold 78] (70 rich pages).

Of course this theory studies the local models of maps from R
p to R

q beyond
the simple case where the differential is of constant rank in a neighborhood
of a.

Transversality

Two submanifolds X and Y in R
n are said to be transverse if X ∩ Y = ∅

or if for all p ∈ X ∩ Y , TpX + TpY = R
n (we do not assume that this is a

direct sum). It is then easy to show that X ∩ Y is also a submanifold. We
really want to say that if we move two transverse submanifolds a little, they
remain transverse.

To see this, (and to give a precise meaning to this assertion) it is preferable
to generalize the definition in the following way: we consider a smooth map f
from an open subset of Rm to R

n and a submanifold X in R
n. Then we say

f is transverse to X at p ∈ R
m if Tf(p)X+Im(Tpf) = R

n or if f(p) /∈ X , and
that f is transverse to X if this is true for all p. For example, a submersion
is transverse at every point of the range space, and Theorem 1.18 admits a
natural and easy generalization that we will see next chapter (Theorem 2.30)
in the more natural case of manifolds:
If f is transverse to X, then f−1(X) is a submanifold of R

m of the same
codimension as X.

Thom’s theorem on transversality ensures notably that the set of transverse
maps to a closed submanifold is an open dense subset of the space of smooth
maps from R

m to R
n.

For a more precise and general statement (it is necessary to define an adequate
topology on C∞(Rm,Rn), and it proves to be useful to replace R

m and R
n

by manifolds) see [Golubitsky-Guillemin 73, Chapter II]. See also Exercise 29
of Chapter 2 for a weaker form of this statement.

Weakening of the regularity hypotheses

In this book we essentially work with smooth functions. It is not an easy
task to relieve ourselves of this hypothesis.
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It turns out that the space of smooth functions cannot be equipped with
a norm (which takes into account the convergence of all derivatives). Thus
they do not easily lend themselves to functional analysis.

In the majority of problems of analysis on domains of R
n or manifolds,

we frequently work with L2 spaces and Sobolev spaces (for example the
space of f such that f and ‖df‖ are L2), and then prove regularity theo-
rems. For example, this is the case in the Dirichlet problem mentioned after
Theorem 1.36, where after showing the existence of eigenfunctions in an suit-
able Sobolev space, one then proves that they are smooth.

We also mention Section 8.5.3; there we have piecewise C1 vector field, and
we need to use a theorem which requires that the field should be C2.

The analytic case

In place of working with smooth functions we can also work with analytic
functions. The inverse function theorem and the existence theorem for differ-
ential equations are both valid in this setting (see [Chaperon 08]). We will
not tackle these questions for reasons of internal coherence, given for example
our intensive use of “bump functions” (see Section 3.2)

1.11. Exercises

1. Let E and F be two vector spaces. Write the differential of a bilinear
map φ from E × E to F .

2. Laplacian and isometries

Suppose f is a C2 function from an open subset of Rn to R. The Laplacian
of f , denoted Δf , is defined by

Δf =

n∑
i=1

∂2
i f.

a) Suppose that f is defined on all of R
n (or on R

n
� {0}), and depends

only on the distance to the origin, in other words there exists a function
φ defined on R

+ (or R
+ − 0) such that

f(x) = φ(‖x‖).

Show that φ is of class C2 and calculate the derivatives in terms of φ.

b*) Characterize the linear maps A from R
n to R

n such that for all C∞

functions f , we have
Δf ◦A = Δ(f ◦A).
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c*) Suppose T is a C2 map from R
n to R

n satisfying the property above.
Show that the differential of T is an orthogonal linear map. What can we
deduce about T ?

3. Differentiation and integration

a) Suppose a, b, f are functions defined on R. Suppose that a and b are
differentiable, and f is continuous. Show that the function

F (x) =

∫ b(x)

a(x)

f(t) dt

is differentiable and calculate its derivative.

b) Repeat the question above replacing f(t) by h(t, x), where h is continuous
on R

2 and continuously differentiable with respect to the second variable.

4. Suppose f is a differentiable map from R
n
�{0} to R such that for all t > 0

we have

f(tx) = tαf(x) (where α is real).

We then say that f is homogeneous of degree α. Show that

dxf · x = αf(x) (Euler’s identity).

5. Show that R
2
� {0} is diffeomorphic to the complement of a closed ball

in R
2.

6. Cusps of the “second kind” and diffeomorphisms

Show that the map f : (x, y) �→ (x, y − x2) is a local diffeomorphism in a
neighborhood of 0. Sketch the curve t �→ (t2, t4 + t5) and its transformation
under f . What can you say?

7. Sketch the image of each of the following types of simple closed curve (i.e.,
a curve without double points) under the map z �→ z2 of C to C,

a) not surrounding the origin;

b) surrounding the origin;

c) passing through the origin.

8*. Cartan’s decomposition of the linear group

Consider Rn equipped with an inner product. A symmetric endomorphism S
is said to be positive if 〈Sx, x〉 � 0 for all x, and strictly positive if 〈Sx, x〉 > 0
for all x �= 0.
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a) Show that if S is strictly positive, then S is invertible; show that a
symmetric endomorphism is strictly positive if and only if there exists
a real number k > 0 such that

∀x ∈ R
n, 〈Sx, x〉 � k‖x‖2

(use diagonalization for symmetric matrices). Deduce that the set of
strictly positive endomorphisms is an open subset of R

n(n+1)
2 .

b) Show that every strictly positive endomorphism S has a unique strictly
positive square root, and the map

S �−→ T

is a diffeomorphism.

c) Suppose M is an invertible endomorphism on R
n. Show that there exists

an orthogonal endomorphism A and a strictly positive endomorphism S
such that M = AS. Show that A and S are unique and that the map

M �−→ (A,S)

is differentiable. Show that we have analogous results for a decomposition
of the form M = S′A′.

Note. This decomposition is also called the polar decomposition.

9*. For invertible S ∈ Sym(n), define a map fS from Mn(R) to Sym(n) by
fS(A) =

tASA. Show there exists an open subset U of Sym(n) containing S,
an open subset V of Mn(R) containing I, and a smooth map g from U to V
such that T = tg(T )Sg(T ). What property can you deduce for the quadratic
forms qS(x) =

txSx and qT (x) =
txT x defined by the matrices S and T ?

10*. Rank theorem

This result encompasses Theorems 1.17 and 1.18 as is stated as follows:

Let Ω be an open subset of Rn and f : Ω → R
m by a differentiable map of

constant rank r (which is to say that the rank of the differential is constant).
Then for all x0 ∈ Ω, there exists on the one hand a diffeomorphism ϕ of
an open subset U containing 0 in R

n to an open subset U ′ containing x0

in Ω, with ϕ(0) = x0, and on the other hand, a diffeomorphism ψ from an
open subset V ′ containing y0 = f(x0) on an open subset V � 0 in R

m, with
ψ(y0) = 0, such that the map ψ ◦f ◦ϕ : U → V coincides with the restriction
to U of a linear map of Rn to R

m.

a) Show that it suffices to examine the case where x0 = 0, f(x0) = 0, and
where f ′(0) is of the form

(x1, . . . , xn) �−→ (x1, . . . , xr, 0, . . . , 0).
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b) These conditions being satisfied, let g be the map from Ω to R
m defined by

g(x1, . . . , xn) = (f1(x), . . . , f r(x), xr+1, . . . , xn)

where f j denotes the j-th component of f . Show that g defines a diffeo-
morphism between two open neighborhoods of 0 in R

n, and that the
map f1 defined on an appropriate open neighborhood of 0 in R

n by
f1(g(x)) = f(x) is of the form

f1(x
1, . . . , xn) =

(
x1, . . . , xr, k1(x1, . . . , xr), . . . , km−r(x1, . . . , xr)

)
where k is a differentiable map from an open neighborhood of 0 in R

r

to R
m−r, satisfying k(0) = 0 and k′(0) = 0.

c) On an appropriate open neighborhood of 0 in R
m, we define a map h with

values in R
m by

h(y1, . . . , ym) =
(
y1, . . . , yr, yr+1+ k1(y1, . . . , yr), ym+ km−r(y1, . . . , yr)

)
.

Show that h defines a diffeomorphism between two open neighborhoods
of 0 in R

m, and that the map f2 defined in a neighborhood of 0 of Rm

by h(f2(x)) = f1(x) is of the form

f2(x
1, . . . , xn) = (x1, . . . , xr , 0, . . . , 0).

Deduce for all y0 ∈ f(Rn), the preimage f−1(y0) is a submanifold of
dimension n− r in R

n.

Application. By considering the map f defined by f(M) = tMM , show that

O(n) =
{
M ∈ GL(n,R) : tM = M−1

}
is a submanifold of dimension n(n−1)

2 in GL(n,R).

What difference is there with the proof given in 1.5.2?

11**. Morse lemma

Let f : U �→ R be a smooth function on an open subset U of Rn. Suppose
that 0 ∈ U is a non-degenerate critical point. This means that df0 = 0 and
that the quadratic form defined by the matrix

S =
(
∂2
ijf(0)

)
1�i, j�n

is non-degenerate. Show that there exists a diffeomorphism φ from an open
subset containing 0 to another such that

f(φ−1(x)) = f(0) +

p∑
i=1

x2
i −

n∑
i=p+1

x2
i ,

where (p, n− p) is the signature of the quadratic form to associated to S.



46 An Introduction to Differential Manifolds

Hint. First show by applying Lemma 3.12 twice that there exists a smooth
map h defined on an open subset of Rn containing 0 with values in Sym(n),
such that f(x) = f(0) + txh(x)x and h(0) = S. Then use Exercise 9.

12. Show that the graph of a smooth map from R
p to R

q is a p-dimensional
submanifold of Rp+q.

13. Write the equation of the surface in R
3 given by rotating the circle with

center (a, 0, 0) and radius r in the plane xOy about the Oy axis. Show that
this is a submanifold if and only if a > r (a torus of revolution). Show, by
using a well chosen parametrization that this submanifold is homeomorphic
(and even diffeomorphic by using notions of the next chapter) to S1 × S1.

14. Show that the graph of the function x �→ |x| is not a submanifold of R2.

15. Show that if X is a submanifold of Rn, the set of ordered pairs (x, v) ∈
R

n × R
n such that x ∈ X and v is tangent to X at x is a submanifold

of Rn ×R
n.

16. Consider the circular helix with parametric equation

t �−→ (a cos t, a sin t, bt)

in an orthonormal frame. Show that the surface given by the set of straight
lines which meet both the helix and the axis Oz orthogonally (the right
helicoid) is a submanifold of R3.

17. Show that

f : t �−→
(

sin 2t

1 + cos2 t
,

2 sin t

1 + cos2 t

)
is a periodic immersion of R to R

2 with period 2π. The image of each
interval of length less than π is a submanifold. On the other hand, f(R)
is not a submanifold (it is a closed “figure eight” curve, called Bernoulli’s
lemniscate).

18*. Is the intersection of the unit sphere x2 + y2 + z2 = 1 and the cylinder
with equation x2 + y2 − x = 0 a submanifold?

19. Pseudo-orthogonal group

Let Q be the quadratic form in R
n defined by

Q(x) =

p∑
i=1

x2
i −

n∑
i=p+1

x2
i .

Show that the set of matrices A ∈ MnR such that Q(Ax) = Q(x) for all x is
a submanifold of dimension n(n− 1)/2.
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20. Let P be a homogeneous polynomial in n + 1 variables on R such that
the ∂iP have no zero in common other than 0 (for example P (x) =

∑n
i=0 x

k
i ).

Show that the intersection of the unit sphere and of P−1(0) is a submanifold.

21*. Sphere with two holes

Show that the subset of R3 defined by the equation

(
4x2(1 − x2)− y2

)2
+ z2 − 1

4
= 0

is a submanifold of dimension 2. Consider the intersections by the planes
z = constant, and deduce that this submanifold is a sphere with two holes,
in order words a connected sum of two tori.

22*. Position of a hypersurface with respect to a tangent plane

Denote the coordinates of Rn+1 by (x0, . . . , xn). Let S be a submanifold of
codimension 1 that contains 0 and has the hyperplane x0 = 0 as the tangent
plane at the origin.

a) Show that S can be defined in a neighborhood of 0 by the graph of a
function (x1, . . . , xn) �→ f(x1, . . . , xn) where 0 is a critical point.

b) Suppose that the quadratic form Q defined by

(x1, . . . , xn) �−→
n∑

i,j=1

(
∂2
ijf(0)

)
xixj

is non-degenerate. Show that if Q is positive definite (resp. negative defi-
nite), then f admits a local minimum (resp. maximum) at 0.

c) Now suppose that Q has signature (p, n− p), with 0 < p < n. Show that
every neighborhood of 0 simultaneously contains points of S situated both
above and below T0S. Show that there exists an open subset U containing
0 such that (U ∩ S ∩ T0S) � {0} is a submanifold of dimension n − 1 of
T0S that we specified. What happens if we add 0? (Start with the case
n = 2.)

23. The exponential is not a group morphism

a) Compute exp(A+B) and (expA)(expB) for the matrices

A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
.

b) Show that if exp t(A + B) = (exp tA)(exp tB) for every real t, then A
and B commute.



48 An Introduction to Differential Manifolds

24. Justify the details of the argument in Lemma 1.27 iv); give another proof
by calculating the derivative of the map t �→ det(exp tA) at 0.

25. Let f : D(0, r) → C be a nonconstant C-differentiable function such
that f(0) = 0. Show that there exists an integer k > 0, a disk D(0, r′) and a
diffeomorphism φ : D(0, r′) → φ

(
D(0, r′)

)
⊂ D(0, r) such that f

(
φ(u)

)
= uk.



Chapter 2

Manifolds: The Basics

2.1. Introduction

“The notion of a manifold is hard to define precisely.” This is the famous
opening of Chapter III of Leçons sur la Géométrie des espaces de Riemann
by Elie Cartan. It is followed by a stimulating heuristic discussion on the
notion of manifold which can still be read with pleasure. For additional
historic perspective we also mention Riemann’s inaugural lecture, translated
with annotations for the modern reader in [Spivak 79].

2.1.1. A Typical Example: The Set of Lines in the Plane

To see how things go, let us start with a simple – yet not too simple – example,
the set of straight lines in the plane. A straight line depends on 2 real
parameters. We can formalize this somewhat vague idea by choosing a system
of Cartesian coordinates and representing each line by its equation relative
to this frame. All non-vertical lines are represented by a unique equation of
the form y = ax+ b, and so we may encode this by the ordered pair (a, b) of
real numbers. In the same way, all non-horizontal lines are represented by a
unique equation of the form x = cy + d, which we may again encode by the
corresponding pair (c, d). Lines that are neither vertical nor horizontal have
two possible encodings. We can pass easily from one code to the other by
the formulas

c =
1

a
d = − b

a
(2.1)

which clearly show that passing from one code to the other is a diffeomor-
phism.

In fact, it is not too difficult to see that the set of straight lines can be viewed
as a topological space in which the non-vertical and non-horizontal lines are
two open subsets homeomorphic to R

2, with the transformations above being
homeomorphisms.
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We have just seen that the straight lines of the plane form a smooth manifold
of dimension 2. The preceding open subsets, with the homeomorphisms of R2

we have written, are called charts, and the formula (2.1) is called a transition
map.

Amongst other things, this point of view lets us define the notion of a smooth
function on the set of straight lines: it will be a function such that the
restriction to non-vertical lines is smooth in the variables (a, b), and the
restriction to horizontal lines is smooth in (c, d). The formulas in 2.1 show
that this point of view is consistent and well-defined: these two properties
are equivalent for lines that are neither vertical nor horizontal.

There are other ways of representing lines in the plane. To avoid distin-
guishing between the “non-horizontal” and “non-vertical” cases, we can write
the equation of a line in the form ux+ vy+w = 0 (with (u, v) �= (0, 0)). But
another difficultly appears, because now a line is not specified by a unique
triple as any nonzero multiple of (u, v, w) yields the same line. In fact, as will
be explained in Section 2.5, by identifying proportional triples (u, v, w) (here
(u, v, w) �= (0, 0, 0)), we form a 2-dimensional manifold, called the projective
plane. The set of straight lines then appears as the projective plane with a
point removed, this point corresponding to the forbidden triples (0, 0, w).

Using the structure of the Euclidean plane, we can also represent straight lines
by their direction and their distance from the origin: a line with direction
vector (cos θ, sin θ) has an equation of the form

(− sin θ)x+ (cos θ)y − p = 0

where p is the (signed) distance from the line to the origin, measured in the
direction orthogonal to the line. Now be careful: we have just written a
bijection between the set of oriented lines and the cylinder S1 × R. The
latter object is a manifold: we can realize it as a submanifold of R3. We can
also say that it is a product of two manifolds of dimension 1.

The equations of oriented lines

(− sin θ)x+ (cos θ)y − p = 0 and (− sin θ′)x+ (cos θ′)y − p′ = 0

represent the same line if and only if

p′ = −p and θ′ = θ + π (modulo 2π).

This relation defines an action of Z/2Z on the cylinder S1 × R: the set of
lines appears also as the quotient of the cylinder by this action (the reader
may recognize a ghost of the Möbius strip). This example shows that it is
important to define a notion of quotient for manifolds. The details are given
in Section 2.7. The simplest case is of a quotient by a finite group action
without fixed points.
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2.1.2. In This Chapter

The notions of manifolds and smooth maps between manifolds are discussed
in a general setting.

This setting allows us to give a proof of the fundamental theorem of algebra
due to J. Milnor, which is more or less as follows.

A polynomial P with complex coefficients is a smooth map from the complex
plane to itself. Its extension to the Riemann sphere by continuity is again
smooth (with the identification of S2 with C ∪ {∞} – to be made precise
below). If f is this extension, it can have only a finite number of singular
points (the zeros of P ′ and the point at infinity) and therefore singular values.
An argument mixing topology and differential calculus shows that the cardi-
nality of f−1(y) is finite and locally constant when y varies over the regular
values. But this set is the complement of a finite subset of the sphere S2 and
is therefore connected, which shows that the cardinality of f−1(y) is in fact
constant. Finally, this constant is nonzero since P is not constant.

We then derive two particularly important examples of manifolds, the real
and complex projective spaces.

Following this, we extend the notions from the previous chapter: immer-
sions, submersions, tangent space, and submanifolds from the vector calculus
setting to the more general setting of manifolds. The examples of manifolds
that we give along the way will also motivate two fundamental notions which
are difficult to define if you restrict yourself to submanifolds of Rn, that of a
fibration, and that of a covering space.

Some definitions, that of a smooth map and most of all that of a tangent
vector, may seem painful upon introduction. Happily we have a toolbox
(composition, restriction to the domain or the range) which we can often use
directly (after all, the rigorous notion of a real number is not easy, but the
everyday work of the analyst rarely needs this!).

2.2. Charts, Atlases

2.2.1. From Topological to Smooth Manifolds

Definition 2.1. An n-dimensional topological manifold is a Hausdorff 1

topological space where every point is contained in an open subset homeo-
morphic to an open subset of R

n.

1. We can always suppose that the topology is defined by a metric; the price we pay
is a little more complication when we define certain constructions (tangent bundle,
quotients).
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We obtain the same definition by taking smaller open subsets in supposing
that M admits a refinement of the covering by open subsets homeomor-
phic to open balls in R

n. The invariance of domain (see for example
[Karoubi-Leruste 87, 5.3] or [Dugundji 65, XVII.3]) assures that if two open
subsets of R

n and R
m are homeomorphic, then m = n. Therefore two

homeomorphic manifolds have the same dimension.

Examples. From their definition, the n-dimensional submanifolds of a
vector space are n-dimensional topological manifolds. The graph of the func-
tion x �→ |x| (or of any continuous function from R to R) is a topological
manifold of dimension 1, because the projection onto the first factor is a
homeomorphism to R.

On the other hand, the union X of solutions to the straight-line equations
y = x and y = −x in R

2 is not a topological manifold. Indeed, the comple-
ment of (0, 0) in any of its neighborhoods has at least four connected compo-
nents, which precludes the existence of an open subset of X containing (0, 0)
and homeomorphic to an interval.

Definitions 2.2

a) A chart of a topological manifold X is an ordered pair (U,ϕ) consisting of
an open subset U of X (the domain of the chart) and a homeomorphism
ϕ from U to an open subset of Rn.

b) An atlas of X is a family (Ui, ϕi)i∈I (not necessarily finite) of charts,
such that the domains Ui cover X.

Sometimes we will not mention the domain of the chart. The expression local
coordinate system is a common synonym for a chart.

This terminology speaks for itself: the surface of the Earth is a sphere S2

that we can consider as a manifold of dimension 2. The charts are flat repre-
sentations, necessarily partial (a compact space cannot be homeomorphic to
an open subset of Rn), and an atlas is necessary if we want to represent the
entire Earth.

A point can clearly belong to the domain of many charts. Then the following
property is clear:

If two charts (U,ϕ) and (V, ψ) are such that U ∩ V �= ∅, then the map

ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V )

is a homeomorphism.

In the case of a submanifold of Euclidean space, we can say much more: the
map above is a diffeomorphism. This is an immediate consequence of the
following proposition.
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Proposition 2.3. Let M ⊂ R
n be a submanifold of dimension p, and let

(Ω1, g1) and (Ω2, g2) be two parametrizations.

Then
g−1
2 ◦ g1 : Ω1 ∩ g−1

1

(
g2(Ω2)

)
−→ Ω2 ∩ g−1

2

(
g1(Ω1)

)
is a diffeomorphism.

Proof. Let m ∈ g1(Ω1)∩g2(Ω2) (there is nothing to show if this intersection
is empty). By Definition 1.20 there exists an open subset U containing m and
a diffeomorphism f from U to R

n such that f(U ∩M) = f(U) ∩ ({0} ×R
p).

Then f ◦ g1 and f ◦ g2 are immersions from Ω1 and Ω2 to R
n. Now if we

consider these maps as maps with values in R
p, we obtain smooth homeo-

morphisms with invertible differentials, and therefore these maps are diffeo-
morphisms. The same argument applies to

(f ◦ g2)−1 ◦ (f ◦ g1) = g−1
2 ◦ g1.

As is often the case in mathematics, we take a property verified in its natural
setting and elevate it to an axiom.

Definitions 2.4

a) Two charts (U1, ϕ1) and (U2, ϕ2) of a topological manifold M are
compatible to order k ( 1 � k � ∞) if U1 ∩ U2 = ∅ or if the map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) −→ ϕ2(U1 ∩ U2)

(called a transition function) is a Ck diffeomorphism.

U1

U2

2 o 1
–1

1(U1)

2(U2)

1

2

R
n

Figure 2.1: Transition function

b) A Ck atlas of a topological manifold M is an atlas (Ui, ϕi)i∈I of M such
that any two charts are compatible to order k.

Take for example a smooth submanifold of codimension 1 in R
n, defined

by a submersion f : R
n → R. This submanifold admits a smooth atlas
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with cardinality at most n (where the domains are open subsets Ui of M
where the i-th partial derivative of f is nonvanishing). But every smooth
parametrization has an inverse compatible with this atlas. This drives the
following definitions.

Definitions 2.5

a) A Ck atlas of a topological manifold M is said to be maximal if it contains
every chart compatible with the charts in the atlas (one also finds the words
“complete” and “saturated” in the literature). Such an atlas also called a
Ck differentiable structure.

b) A differentiable manifold of class Ck is a topological manifold equipped
with a differentiable structure of class Ck.

Every atlas is clearly contained in a unique maximal atlas, obtained by adding
all possible compatible charts. For example, by Proposition 2.3 a smooth
submanifold of Rn has a natural smooth structure. This structure is obtained
by taking the atlas formed by the inverses of every (!) parametrization.

In practice, we define a differentiable structure by taking an atlas that is “not
too large”: the differentiable structure is given by the corresponding maximal
atlas. We already proceeded in this way for submanifolds of Rn.

2.2.2. First Examples

The sphere

The differentiable structure on the sphere Sn defined by the equation∑n
i=0 x

2
i = 1 can be defined by an atlas consisting of two charts. Let N and

S denote the North and South poles of Sn (this is to say N = (1, 0, . . . , 0)
and S = (−1, 0, . . . , 0)) and set

U1 = Sn
� {N} and U2 = Sn

� {S}.
We obtain homeomorphisms, denoted iN and iS , of U1 and U2 to R

n, called
stereographic projection from the North and South pole, by assigning to each
x ∈ Ui the intersection of the straight line passing through x and N (i = 1)
or S (i = 2) with the hyperplane x0 = 0. Explicitly,

iN(x) =
(x1, . . . , xn)

1− x0
and iS(x) =

(x1, . . . , xn)

1 + x0
,

Though we will not use this fact again, one verifies easily that iN (resp. iS)
is the restriction to Sn of the inversion with center N (resp. S) of power 2.

One can also verify that

i−1
N (y) =

(|y|2 − 1, 2y1, . . . , 2yn)

(|y|2 + 1)
and i−1

S (y) =
(−|y|2 + 1, 2y1, . . . , 2yn)

(|y|2 + 1)
.
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N

x

S

iN (x )

iS (x )

Figure 2.2: The sphere seen as a manifold

Now iS ◦ iN−1 is the diffeomorphism from R
n
� {0} to itself given by

y �−→ y

‖ y ‖2 (inversion with center 0 and power 1).

For n = 1, there is an even simpler atlas.

The circle S1 can be equipped with an atlas whose transition functions are
translations. Starting with the local parametrization h : t �→ (cos t, sin t) we
remark that h|(0,2π) and h|(−π,π) are homeomorphisms to U1 = S1

� {(1, 0)}
and U2 = S1

� {(−1, 0)} respectively. We call φ1 and φ2 the inverse homeo-
morphisms. We note (this is what makes this example a little puzzling despite
its simplicity) that U1 ∩U2 has two connected components, which we denote
U+ and U− for the obvious reasons. Now

φ1(U1 ∩ U2) = φ1(U
+) ∪ φ1(U

−) = (0, π) ∪ (π, 2π)

and

ϕ2

(
ϕ−1
1 (t)

)
=

{
t if t ∈ (0, π)

t− 2π if t ∈ (π, 2π).

We now present another example of a manifold which is of interest because
it cannot be realized in an obvious way as a submanifold of Euclidean space.

The manifold of affine straight lines of the plane

We saw this example in the introduction! See Section 2.1.1.
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2.3. Differentiable Functions;

Diffeomorphisms

If we search for a definition of a Ck map between Ck manifolds, it is natural
to require that the charts and inverse be Ck, and that a composition of Ck

maps be Ck. These requirements impose the following definition.

Definition 2.6. Let M and N be two Ck manifolds. A continuous map f
from M to N is said to be a Ck map if for every a ∈ M , there exists a chart
(U,ϕ) of M , with a ∈ U , and a chart (V, ψ) of N , with f(a) ∈ N , such that
the map

ψ ◦ f ◦ ϕ−1 : ϕ
(
f−1(V ) ∩ U

)
−→ ψ(V )

is of class Ck.

Remarks

a) This definition leads to the following commutative diagram

U
f

ϕ

V

ψ

ϕ(U)
ψ◦f◦ϕ−1

ψ(V )

with a small precaution: one must modify the open subset of the domain
(for example consider not U but U ∩f−1(V )) so that the compositions are
well-defined.

b) It is important to assume that f is continuous to be sure that ψ ◦ f ◦ϕ−1

is defined on an open subset of Rm (if dimM = m).

One of the charts is not necessary if the domain or range manifold is an
open subset of Euclidean space. A very important case is that of N = R.
A continuous map from M to R is Ck if f ◦ϕ−1 is Ck for every chart (U,ϕ).
It follows that the sum and the product of two real-valued Ck functions on
a manifold is Ck.

c) It suffices to verify this property for a Ck atlas that defines the differen-
tiable structures on M and N .

Example. Suppose that M is a p-dimensional submanifold of R
n, and

f : Rn → N is a Ck map. Then the restriction of f to M is of class Ck: by
taking Definition 1.20, we return to the clear case where M = U ∩R

p ×{0},
for an open subset U ⊂ R

n.
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Example: extension “to infinity” for polynomials

For z ∈ C, let
P (z) = a0z

n + a1z
n−1 + · · ·+ an,

where the ak are complex constants, with a0 �= 0, and n > 0. We consider
the sphere S2 as a subset of C×R. Denote the stereographic projection from
the North and South poles by iN and iS respectively (see Figure 2.2).

We define f : S2 → S2 by

f(x) = i−1
N

(
P (iN (x))

)
if x �= N, and f(N) = N.

(Heuristically, as C is diffeomorphic to S2
� {N}, we may consider S2 as C

where we add a point at infinity, and then f is the continuous extension of P .)

It is easy to see that f is continuous, and we will see that f is smooth. On
S2

�{N} this is true because iN ◦f ◦ i−1
N = P is smooth. It remains therefore

to study the situation in the neighborhood of N , which can be done with a
chart (S2

� {S}, iS). In a neighborhood of 0 in C we have

(
iS ◦ f ◦ i−1

S

)
(z) =

{(
iS ◦ i−1

N ◦ P ◦ iN ◦ i−1
S

)
(z) if z �= 0

0 if z = 0.

Knowing that (iS ◦ i−1
N )(z) = 1/z, we see

(
iS ◦ i−1

N ◦ P ◦ iN ◦ i−1
S

)
(z) =

1

P
(
1
z

)
=

zn

a0 + a1z + · · ·+ anzn
.

Because n > 0 and a0 �= 0, the expression obtained is smooth in a neighbor-
hood of 0, and gives 0 for z = 0, where it was not defined a priori.

We return to the general theory. We must verify the following property.

Proposition 2.7. Every composition of Ck maps is Ck.

Proof. Consider three manifolds M , N , and P , maps f ∈ Ck(M,N) and
g ∈ Ck(N,P ). For a ∈ M , we take charts (U,ϕ), (V, ψ), (W,χ) of M ,
N , P , with open subsets U , V , W containing a, f(a), g(f(a)) respectively.
The proof can then be read from the commutative diagram

U
f

ϕ

V

ψ

g
W

χ

ϕ(U)
ψ◦f◦ϕ−1

ψ(V )
χ◦g◦ψ−1

χ(W )
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In the second line, we have Ck maps defined on open subsets of vector spaces,
where composition is χ ◦ g ◦ f ◦ ϕ−1. Be careful: this map is defined only on
ϕ
(
U ∩ f−1(g−1(W ) ∩ V )

)
(ouch!). This is not the important point, the key

point is having an open subset containing a.

In particular, if f is a Ck map from R
m to a manifold M , and if N is a

submanifold of Rm, the restriction of f to N is Ck.

A little less immediate, but also important is the following property.

Proposition 2.8. If M is a submanifold of Rn and if f is a Ck map from
an open subset U ⊂ R

m to R
n such that f(U) ⊂ M , then f is Ck as a map

from U to M .

Proof. The property is clear when M is a vector subspace of Rn. The defi-
nition of submanifold allows us to reduce to this case. Let a ∈ U , f(a) ∈ M ,
V an open subset Rn containing f(a) for which there exists a diffeomorphism
g of V to its image such that

g(V ∩M) = g(V ) ∩ (Rp × {0}) (p = dimM).

By the preceding remark, f ◦ g is then a Ck map from U to R
p, and the

restriction of g to V ∩M is a chart of M .

Example: the orthogonal group

We saw in Section 1.5 that O(n) is a submanifold of End(Rn) (in fact of the
open subset Gl(n,R) in End(Rn)). The maps A �→ A−1 and (A,B) �→ AB
are clearly Ck maps from Gl(n,R) to itself and from Gl(n,R)×Gl(n,R) to
Gl(n,R) respectively. We have just seen that these two maps remain Ck as
maps of O(n) to itself and of O(n) × O(n) to O(n) respectively. The group
O(n) appears also as a manifold for which the multiplication and inverse
maps are smooth. Such a group is called a Lie group. This situation will be
studied more systematically in Chapter 4.

The previous remarks motivate the definition of a product of two manifolds.

Definition 2.9. If M and N are two Ck manifolds equipped with the atlas
(Ui, ϕi)i∈I and (Vj , ψj)j∈J , the manifold structure on the product M ×N is
given by the atlas

(Ui × Vj , ϕi × ψj)(i,j)∈I×J .

It is very easy to verify that the projections pr1 : M × N → M and
pr2 : M ×N → N are of class Ck, and that for fixed n ∈ N (for example),
the restriction of pr1 to M × {n} is a diffeomorphism onto M .
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Definition 2.10. A Ck diffeomorphism between two manifolds M and N is
a Ck bijection with Ck inverse.

Example: quadrics

In the product E × F of two inner product spaces of dimensions p and q,
the quadric Q is the solution of the equation ‖x‖2 − ‖y‖2 = 1, and is a
submanifold of dimension p + q − 1. As a manifold, Q is diffeomorphic
to Sp−1 ×R

q.

The differential of f(x, y) = ‖x‖2 − ‖y‖2 is given by

df(x,y) · (h, k) = 2〈x, h〉 − 2〈y, k〉.

This differential is surjective at every point of Q, which is therefore a subman-
ifold of codimension 1 in R

p+q. The map

(x, y) �−→
(

x√
1 + ‖y‖2

, y

)
of Q to Sp−1× R

q

is smooth. It admits an inverse map, given by

(u, y) �−→
(√

1 + ‖y‖2u, y
)

where u ∈ Sp−1,

which is smooth for the same reasons. In particular, Q is connected if p > 1,
and has two connected components if p = 1. All this applies as well to

S0 =
{
x ∈ R : x2 = 1

}
= {−1, 1}!

Warning. Two differentiable structures on the same set can be diffeo-
morphic but distinct, in other words defined by different maximal atlases.
See Exercise 27.

from this point on, unless explicitly mentioned,

all manifolds and all maps are assumed to be smooth

In using charts in the previous definitions, we see a guiding principle: every
definition or property of open subsets of Rn which is invariant under diffeo-
morphisms extends to manifolds.

Definition 2.11. If M and N are two manifolds, a map f : M → N is a
local diffeomorphism if every point of M is contained in an open subset U
such that f|U is a diffeomorphism to its image.



60 An Introduction to Differential Manifolds

At this stage, we can ask if there exists a version of the inverse function
theorem adapted to manifolds. The answer is of course yes, on the condition
that we define the differential in this setting. We will see this in Section 2.6.
Beforehand, we give an example that shows we already have the means to
prove significant theorems.

2.4. Fundamental Theorem of Algebra

Theorem 2.12. Every nonconstant polynomial with complex coefficients has
at least one zero in C.

In the proof we will use the following notion as seen in Section 1.40 that
generalizes to manifolds.

Definition 2.13. Let X and Y be two manifolds of the same dimension, and
f : X → Y a smooth map. A point a ∈ X is said to be a regular point of f if
f restricts to a local diffeomorphism on a neighborhood of a. A point b ∈ Y is
called a regular value of f if its inverse image f−1(b) consists only of regular
points.

In particular, every point b /∈ f(X) is a “regular value”.

Theorem 2.14. Let X and Y be manifolds of the same dimension, with X
compact. Let f : X → Y be a smooth map, with y a regular value of f . Then

i) f−1(y) is finite;

ii) there exists an open set V containing y such that:

∀z ∈ V, card
{
f−1(z)

}
= card

{
f−1(y)

}
.

Proof. If f−1(y) = ∅ it suffices to prove ii). But f(X) is the image of a
compact subset X under a continuous map, so it is a compact subset and is
therefore closed in Y . It suffices to take V = Y � f(X).

If f−1(y) �= ∅ we first note that it is a compact subset of X , as it is a closed
subset of a compact set. Let x ∈ f−1(y). By hypothesis, x is a regular
point of f : there exists an open set Ux containing x such that f|Ux

is a
diffeomorphism between Ux and f(Ux). In particular, x is the only point
of Ux where f(x) = y. The family (Ux)x∈X is an open cover of f−1(y).
We can extract a finite subcover (Uxi

)1�i�p, which shows that f−1(y) is a
finite subset with p elements (more concisely we can say the topological space
f−1(y) is both compact and discrete, and therefore finite).
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By replacing each open set Uxi
by a possibly smaller open set, we can suppose

that the Uxi
are mutually disjoint. We set

V = f
(
Ux1 ∩ · · · ∩ f(Uxp

)
)
� f

(
X − Ux1 − · · · − Uxp

)
.

This is an intersection of finitely many open sets containing y.

If z ∈ V , then by construction z has a preimage under f in each Uxi
, and it

has no other preimages since V is disjoint from f
(
X �

⋃
1�i�pUxi

)
. In other

words, card
(
f−1(z)

)
= p.

Proof of the fundamental theorem of algebra. Let P (z) = a0z
n+

a1z
n−1+ · · ·+an be a nonconstant polynomial with complex coefficients. We

can associate an “extension to infinity” to P , denoted f , defined and studied
in Section 2.3. We will see that f has a finite number of non-regular values.

On S2
�{N}, f has the same number of non-regular values as P (we composed

on the right and left by diffeomorphisms). But the differential of P at a point
z is precisely multiplication by the complex number P ′(z), seen as a linear
map of R

2 in R
2 (see Section 1.2.2).

The non-regular points of P are those such that P ′ is zero. There are only
finitely many of these, and so P has only a finite number of non-regular values.
The same holds for f seen as a map of S2

� {N} to itself, and therefore for
f as a map of S2 in S2 (if necessary, we adjoin the North pole).

Let F denote the set of these values. Since F is finite, S2
� F is connected.

By Theorem 2.14, the function

x �−→ card
{
f−1(x)

}
is locally constant on S2

� F , therefore constant by connectedness. This
constant is nonzero. If not, f , and moreover P have only singular values,
which says that P ′ is identically zero and therefore P is constant, contrary
to the hypothesis.

All points in S2
�F , and therefore all the points in S2 are values taken by f .

Returning to the definition of f , we deduce that all of the points of C are
values taken by P .

2.5. Projective Spaces

When we draw in perspective or study geometric optics, we must take
“infinity” into account. To do this, we adjoin extra points to the usual plane
or space, namely one point for each plane or spatial direction. The model
situation for perspective proceeds as follows: we represent Rn as the (affine!)
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subspace {1}×R
n of Rn+1. Perspective with respect to the origin is a bijec-

tion between {1} ×R
n and the set of (vectorial) straight lines of Rn+1 that

are not contained in {0} ×R
n (see Figure 2.3). These are the straight lines

of {0} ×R
n which model the points at infinity. Projective space formalizes

this situation.

0 R
n

1 R
n

Figure 2.3: A chart of projective space

Definition 2.15. The real projective space of dimension n, denoted Pn
R is

the quotient space of Rn+1
� {0} by the equivalence relation

x ∼ y if and only if x and y are collinear,

equipped with the quotient topology (for this notion, see the beginning of
Section 2.7).

Let p : Rn+1
� {0} → Pn

R be the quotient map. Recall that a subset U of
Pn

R is open if and only if p−1(U) is open in R
n+1

� {0} (this is practically
the definition of the quotient topology).

We can then consider Pn
R as the set of straight lines in R

n+1. Another
interpretation is possible: the restriction of ∼ to Sn identifies the points x
and −x, and the real projective space is homeomorphic to the quotient of Sn

under this identification. One verifies that Pn
R is Hausdorff (see also 2.7.1).

From this we deduce that Pn
R is compact, being the image of Sn under the

continuous map p.

Definition 2.16. The (n+1)-tuple x = (x0, . . . , xn) is a homogeneous coor-
dinate system of p(x).

It is convenient to denote the homogeneous coordinates of x by [x] =
[(x0, . . . , xn)].

We will equip Pn
R with the atlas (Ui, φi)0�i�n which makes it into a mani-

fold. Set

Vi =
{
x = (x0, . . . , xn) ∈ R

n+1 : xi �= 0
}

(0 � i � n)
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and define the maps Φi : Vi → R
n by

Φi(x) =

(
x0

xi
, . . . ,

x̂i

xi
, . . . ,

xn

xi

)
where the symbol ̂ signifies that the corresponding term has been omitted.
These maps are continuous and

Φi(x) = Φi(y) if and only if p(x) = p(y).

From the properties of quotient topology, Ui = Φi(Vi) is an open subset
of Pn

R, and Φi passes to the quotient and gives a continuous and bijective
map φi from Ui to R

n. Explicitly,

φi([x]) =

(
x0

xi
, . . . ,

x̂i

xi
, . . . ,

xn

xi

)
.

The inverse map is given by

φ−1
i (y0, . . . , yn−1) = p(y0, . . . , yi−1, 1, yi, . . . , yn−1),

which shows that φi is a homeomorphism of Ui to R
n.

The transition functions φj ◦ φ−1
i are diffeomorphisms from φi(Ui ∩ Uj)

to φj(Ui ∩ Uj), because for yj �= 0 we have

(φj ◦ φ−1
i )(y0, . . . , yn−1) =

(
y0
yj

, . . . ,
yi−1

yj
,
1

yj
, . . . ,

ŷj
yj

, . . . ,
yn−1

yj

)
.

Thus we have a smooth manifold structure on Pn
R.

In an analogous way we can define complex projective space Pn
C. In every-

thing said above, it is sufficient to replace R by C, and to remark that a map
of the form

(z, t) �−→ z

t
from C×C� {0} to C

is smooth, provided we consider it as a map from R
2 ×R

2
� {0} to R

2.

Remark. ��We can also define complex (analytic) manifolds. A complex
structure is defined by an atlas with values in C

n such that the transition
functions are complex analytic. A simple examination of the formulas above
show this is the case for Pn

C. In view of the very particular properties of
complex analytic functions (maximum principle, etc.), the world of complex
manifolds is very different and we will only mention it occasionally.��

It is instructive to understand the classical notions of complex analysis in
terms of manifolds. For example, reviewing the discussion at the begin-
ning of Section 2.3 on the extension of polynomials to infinity, we see that
meromorphic functions are holomorphic functions with values in P 1

C.
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In a manner analogous to the real case, we can consider the restriction of the
equivalence relation to the set of vectors in C

n+1 of norm 1, which is to say
the sphere

S2n+1 =

{
(z0, z1, . . . , zn) ∈ C

n+1 :
n+1∑
i=0

|zi|2 = 1

}
.

Denoting the quotient map as always by p, it is clear that p(S2n+1) = Pn
C

(which shows in passing the compactness of complex projective space), and
that, for z, z′ ∈ S2n+1, we have p(z) = p(z′) if and only if z = uz′, where u
is a complex number of unit modulus. In other words, if we consider

p : S2n+1 −→ Pn
C

the inverse map of p of a point in Pn
C is a great circle of S2n+1. Moreover,

we have:

Lemma 2.17. The open subset p−1(Ui) of S2n+1 is diffeomorphic to S1×Ui.

Proof. We take the case i = 0 to lighten the notation. A point x ∈ U0 has a
unique homogeneous coordinate system of the form (1, ζ1, . . . , ζn) (the point
(1, φ−1

0 (x)) of Cn+1). Now a point (z0, . . . , zn) of S2n+1 satisfies p(z) = x if
and only if

(z0, z1, . . . , zn) =
u√

1 +
∑n

i=1 |ζi|2
(1, ζ1, . . . , ζn).

The map (u, ζ) �→ z is a diffeomorphism from S1 ×C
n to p−1(U0), and the

required diffeomorphism is obtained by composing with Id×φ0

We have just seen a particular case of the following situation.

Definition 2.18. Let E and B be two Ck manifolds (0 � k � +∞). A Ck

map p from E to B is a fibration (with base B and total space E), if for
every x ∈ B there exists an open subset U containing x, a Ck manifold F
and a diffeomorphism φ : U × F → p−1(U) such that p

(
φ(y, z)

)
= y for all

y in U and z in F .

We also say that E is a fibered space. We note that the restriction of p to
p−1(U) is equal to pr1 ◦ φ−1, which proves (looking ahead a little, see 2.6.2)
that p is a submersion. For b in B, p−1(b) = Eb is a closed submanifold of E,
of dimension dimE − dimB, that we call the fiber of (or over) b. For b ∈ U ,
Eb is diffeomorphic to F . In fact, if the base B is connected, the manifold F
is “always the same”.

Lemma 2.19. If p : E → B is a fibration with connected base, then the
fibers Eb are diffeomorphic.
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Proof. We choose a point b0 in B. For all b ∈ B, there exists a continuous
path γ : [0, 1] → B joining b0 and b. Every x ∈ γ([0, 1]) is contained in an
open subset Ux satisfying the property of Definition 2.18. By compactness,
we can find a finite number of subsets U1, . . . , Um covering γ([0, 1]). We may
suppose that b0 ∈ U1, b ∈ Um, and that Ui∩Ui+1 �= ∅ for 1 � i � m−1. Then
the fibers Ex for x ∈ Ui are mutually diffeomorphic, and diffeomorphic to
the fibers Ex for x ∈ Ui+1. We conclude that Eb0 is diffeomorphic to Eb.

This property justifies the name model fiber for F . This allows us to see that
a submersion is not necessarily a fibration (Theorem 1.18 seems to say the
contrary, but one must shrink the open subset of the domain space, which
need not be of the form p−1(U) for an open subset U of the range). For an
explicit counterexample, see Section 2.9.

Lemma 2.17 says exactly that

p : S2n+1 −→ Pn
C

is a fibration with model fiber S1. An analogous argument to the one in the
lemma shows that

p : R
n+1

� {0} −→ Pn
R

is a fibration with fiber R
∗.

Definitions 2.20

a) The trivial fibration is the one for which E = B × F and p = pr1; we say
that a fibration is trivializable if there exists a diffeomorphism φ from E
to B × F such that p = pr1 ◦ φ.

We say that φ is a trivialization.

b) An isomorphism between two fibrations E1 and E2 having the same base
B is a diffeomorphism f : E1 → E2 such that p2 ◦ f = p1.

For example, a trivializable fibration is isomorphic to the trivial fibration.
Definition 2.18 says exactly that every fibration becomes trivializable above
sufficiently small open subsets of the base. In other words, every fibration is
locally trivial.

Example: the Hopf fibration

For
(u, v) ∈ S3 =

{
(u, v) ∈ C

2 : |u|2 + |v|2 = 1
}
,

we set
h(u, v) =

(
2uv, |u|2 − |v|2

)
.

We will see that h is a fibration of S3 over S2 with fiber S1.
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It is immediate that h sends S3 to the sphere S2 seen as{
(z, t) ∈ C×R : |z|2 + t2 = 1

}
.

If we set N = (0, 1) and S = (0,−1) the calculations of 2.2 show that

iN
(
h(u, v)

)
=

u

v
and iS

(
h(u, v)

)
=

v

u

As a result, S2
� {N} are S2

� {S} local trivializations for a fibration whose
model fiber is the set of complex numbers of unit modulus (see the proof
of Lemma 2.17).

From this we deduce an explicit diffeomorphism between P 1
C and S2,

given by

[(u, v)] �−→ i−1
N

(
u

v

)
if v �= 0 and [(u, v)] �−→ i−1

S

(
v

u

)
if u �= 0.

The inverse diffeomorphism may be written

(z, t) �−→ [(z, 1− t)] if t �= 1 and (z, t) �−→ [(1 + t, z)] if t �= −1.

In the same way, we can see that P 1
R is diffeomorphic to S1: if we restrict

to R
2, we obtain the map

h : (u, v) �−→ (u2 − v2, 2uv) from S1 to S1;

see Figure 2.4.

2 

h(u,v)

(–1,0)

straight line with slope v−u

Figure 2.4: From the projective line to the circle

We can also write z = u+ iv, and note that upon passing to the quotient, the
map z �→ z2 from S1 to S1 gives a diffeomorphism between S1/ ± I and S1

(see Section 2.7).



Chapter 2 – Manifolds: The Basics 67

2.6. The Tangent Space; Maps

2.6.1. Tangent Space, Linear Tangent Map

Up to now, we have spoken of smooth maps between manifolds but not their
differentials! To define these, we must first define the tangent space to a
point m in a manifold M . We take inspiration from what we have done for
submanifolds of Rn, by using curves passing through m. We denote CM

m (or
simply Cm if there is no ambiguity) the set of smooth curves c : I �→ M
defined on an open interval I containing 0 and such that c(0) = m.

Definition 2.21. Two curves c1 : I1 → M and c2 : I2 → M in Cm are
tangent at m if c1(0) = c2(0) = m and if there exists a chart (U, φ), such
that m ∈ U and

(φ ◦ c1)′(0) = (φ ◦ c2)′(0).
We also say these curves have the same velocity at m.

This condition is independent of the choice of chart: if (V, ψ) is a second
chart defined in an open subset containing m, the chain rule gives

(ψ ◦ ci)′(0) = d(ψ ◦ φ−1)φ(m) · (φ ◦ c)′(0).
We have therefore defined an equivalence relation on Cm.

Taking inspiration from the case of submanifolds of R
n, we are driven to

make the following definition.

Definition 2.22. Let M be a smooth manifold and let m ∈ M . A tangent
vector to M at m is an equivalence class of the equivalence relation above.
The set of tangent vectors at m is denoted TmM .

Given a chart (U, φ) in a neighborhood of m, we define a map θφ from TmM
to R

n (if n = dimM), by
θφ(ξ) = (φ ◦ c)′(0)

(the right hand side is well defined as it depends only on the equivalence
class of c). By the same definition, θφ is injective. Also, θφ is surjective: a
vector v ∈ R

n is the image under θφ of the equivalence class of the curve
t �→ φ−1(tv). Therefore the map θφ : TmM �→ R

n is a bijection.

Now let (V, ψ) be another chart such that m ∈ V , and v ∈ R
n. Then

(θφ ◦ θ−1
ψ )(v) = d(φ ◦ ψ−1)ψ(m) · v.

We obtain a linear map. This allows us to give TmM the structure of a vector
space over R: if ξ, η ∈ TmM, λ ∈ R, we set

ξ + η = θ−1
φ

(
θφ(ξ) + θφ(η)

)
and λξ = θ−1

φ

(
λθφ(ξ)

)
,

and the result does not depend on φ.
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Definition 2.23. The tangent space to M at m, denoted TmM is the set of
tangent vectors at m equipped with the vector space structure defined above.

Examples

a) If U if an open subset of M , the preceding construction shows that TmU
is canonically isomorphic to TmM .

b) The vector space tangent to an affine space E at a is identified with the
vectorized Ea of E at a: at v ∈ Ea we associate the equivalence class of
the curve t �→ a+ tv.

c) If M and M ′ are two manifolds, the tangent space at (m,m′) to M ×M ′

is the direct sum TmM ⊕ Tm′M ′.

We are now ready to define the differential of a smooth map between two
manifolds.

Definition 2.24. If X and Y are two manifolds, and f : X → Y is a smooth
map, the linear tangent map at x ∈ X, denoted Txf is the map obtained by
passing to quotient in the map c �→ f ◦ c from CX

x to CY
f(x).

Let (U, φ) and (V, ψ) be charts of X and Y , where the domains U and V
contain x and f(x) respectively. From the differentiability of ψ ◦ f ◦ φ−1

(see Definition 2.6) and the fact that (ψ ◦ f ◦φ−1) ◦ (φ ◦ c) = ψ ◦ f ◦ c, we see
immediately that the images of the two tangent curves are tangent. Moreover
we have the following commutative diagram

TxX

θφ

Txf
Tf(x)Y

θψ

R
p

dφ(x)(ψ◦f◦φ−1)
R

q

where p = dimX and q = dimY .

Examples

a) If M if a submanifold of Rn, and i : M → R
n is the natural inclusion, Tmi

is an isomorphism between TmM and the tangent space of Definition 1.25.

b) If φ is a chart, Txφ is the isomorphism θφ seen above.

c) If f is a smooth map from M to R, Txf is a linear map from TxM to
Tf(x)R � R; if (U, φ) is a chart whose domain contains m, then Txf ◦ θ−1

φ

is the differential of f ◦φ−1 : φ(U) → R. We continue to denote the differ-
ential of a map with values in R by dfx (we note that certain authors,
Bourbaki and Berger-Gostiaux for example, make a distinction between
Txf , the linear map from TxM to TxR, and dfx, the linear map from TxM
to R).
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Proposition 2.25. If f : X → Y and g : Y → Z are two smooth maps
between manifolds, then

∀x ∈ X, Tx(g ◦ f) = Tf(x)g ◦ Txf.

Proof. We take charts (U, φ), (V, ψ) and (W,χ) in a neighborhood of x,
f(x), g(f(x)) respectively. The given property is a consequence of the defi-
nitions and the ordinary chain rule applied to the functions

φ ◦ f ◦ ψ−1 and ψ ◦ g ◦ χ−1.

2.6.2. Local Diffeomorphisms, Immersions, Submersions,
Submanifolds

After we establish the results of this section, the results of Section 1.4
concerning the inverse function theorem and its consequences extend word
for word to manifolds.

Theorem 2.26. Let X and Y be two manifolds of dimensions m and n
respectively, and let f : X → Y be a smooth map, and x ∈ X.

i) If Txf is bijective, there exists an open subset U containing x such that
f|U is a diffeomorphism to f(U).

ii) If Txf is injective or surjective, there exists open subsets U containing x
and V containing f(x), and charts (U, φ) and (V, ψ) such that

(ψ ◦ f ◦ φ−1)(x1, . . . , xn) =

{
(x1, . . . , xn, 0, . . . , 0) if Txf is injective

(x1, . . . , xm) if Txf is surjective.

Proof. Write f with the help of charts and apply the results of Section 1.4.

It is therefore natural to extend the definitions seen in Section 1.4 to
manifolds.

Definitions 2.27

a) A map f from a manifold X to a manifold Y is a immersion (resp. a
submersion) if for every x ∈ X the linear tangent map is injective
(resp. surjective).

b) A subset M of a manifold X of dimension n is a p-dimensional subman-
ifold of X if for every x in M , there exists open neighborhoods U and V
of x in X and 0 in R

n respectively, and a diffeomorphism

f : U −→ V such that f(U ∩M) = V ∩ (Rp × {0}).

It is of course the same to say that for every x ∈ M there exists a chart
(U, φ), where x ∈ U , such that φ(U ∩M) is a submanifold of Rn.
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c) A map f from X to Y is an embedding if f(X) is a submanifold of Y
and if f is a diffeomorphism of X to f(X).

d) The rank of f at x is the rank of the linear map Txf .

e) If f : X → Y is smooth, a point x ∈ X is said to be a critical point if
rg(Txf) < dim Y ; the image of a critical point is a critical value.

Example: local extrema

For a map f : X → R, a point a ∈ X is critical if and only if the differential
df vanishes at a. Proposition 1.34 extends immediately: if a ∈ X and f
admits a local extrema at a then, a is a critical point. This reduces to the
case of f ◦ φ−1, where φ is a chart whose domain contains a.

We note also that in the case where X is a submanifold of Rn, the notion of
critical point is equivalent to that of constrained extremum. Indeed suppose
X is of codimension p and defined in a neighborhood of a point a by a
submersion g = (g1, . . . , gp) in R

p. Let f be a smooth function on R
n. The

point a will be critical for f|X if and only if dfa vanishes on TaX , or

p⋂
i=1

Kerdgia ⊂ Ker dfa.

Since the linear forms dgia are independent by hypothesis, we find this reduces
to saying that there exists real numbers (λi)1�i�p (called Lagrange multi-
pliers) such that

dfa =

p∑
i=1

λidg
i
a.

Example: projective hypersurfaces

Let P be a homogeneous polynomial in n+1 variables, whose partial deriva-
tives ∂iP are never simultaneously vanishing if x �= 0. The subset of Pn

R

consisting of points whose homogeneous coordinates satisfy P (x) = 0 is a
submanifold of Pn

R.

Suppose for example that the first homogeneous coordinate x0 is nonzero,
and use the charts seen in Section 2.5. Then

φ0(U0 ∩M) =
{
u ∈ R

n : P (1, u1, . . . , un) = 0
}
.

By Euler’s identity (see Chapter 1, Exercise 4),

(degP )P (1, u1, . . . , un) = ∂0P (1, u1, . . . , un) +

n∑
i=1

ui∂iP (1, u1, . . . , un).
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Now, at a point of φ0(U0 ∩M), the derivatives ∂iP (1, u1, . . . , un) cannot be
simultaneously zero without ∂0P (1, u1, . . . , un) also vanishing.

These considerations also apply to complex projective space.

Proposition 2.28

i) If f : X → Y is a submersion, then for all y ∈ Y , the inverse image
f−1(y) is a (possibly empty) submanifold of X.

ii) If X is compact and if f : X → Y is an injective immersion, then f is
an embedding of X in Y .

Proof. Let (U, φ) be a chart of X whose domain contains x such that
f(x) = y, and let (V, ψ) be a chart Y whose domain contains y. Then
ψ ◦ f ◦ φ−1 is again a submersion, and we reduce to the case of open subsets
of R

n. (See Theorem 1.21.) For ii), we first note that because we assume
X to be compact, f is a homeomorphism to its image. Then if (U, φ) is
a chart in a neighborhood of x ∈ X , f ◦ φ−1 is an immersion and a local
homeomorphism, and the arguments of 1.21 apply once more.

Warning. This result is false when X is not compact. We have already seen
an example of this situation in Section 1.5.3. It is now easier to see this
example as the immersion of R in T 2 given by

t �−→
(
cos t, sin t, cos

√
2 t, sin

√
2 t
)

(see Figure 2.5). The image of this map is often called the Kronecker line.
The allusion to the great number theorist Leopold Kronecker comes from the
arithmetic character of this example.

Figure 2.5: Kronecker line
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It is not even sufficient to have an injective immersion whose image is closed.
To see this, we can take the restriction to (−∞, 1) of the immersion

t �−→
(
t2 − 1

t2 + 1
,
t(t2 − 1)

t2 + 1

)
from (−∞, 1) to R

2,

often called “the snake that bites its belly”.

Figure 2.6: The snake that bites its belly

In both of these cases, the induced topology on the image is not locally
Euclidean. Otherwise, these two examples do not have much in common,
and the second is fairly artificial. Some colleagues in Montpellier suggested
the following definition.

Definition 2.29. An immersion i of a manifold X into a manifold Y is
strict if for every manifold Z and every smooth map f : Z → Y such that
f(Z) ⊂ i(X), the map i−1 ◦ f is smooth.

The Kronecker line is given by a strict immersion, but the snake is not.

Remark. When we have an immersion (resp. a strict immersion) from X
to Y , we also say that X is a immersed submanifold (resp. strictly immersed)
in Y . This notion is important in the theory of foliations, but we will not
have occasion to use it much in the sequel.

We finish this section with an important generalization of Proposition 2.28.

Theorem 2.30. Let f : X → Y be a smooth map, and let Z be a smooth
submanifold of Y . Suppose that for every x in X such that f(x) ∈ Z we have

Im(Txf) + Tf (x)Z = Tf(x)Y (transversality hypothesis).

Then f−1(Z) is a submanifold of X, with codimension equal to codim(Z) if
it is nonempty.
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Remarks

a) This statement still makes sense if f−1(Z) = ∅.
b) When Z is a point, we recover the first part of Proposition 2.28.

Proof. Being a local question, by choice of an appropriate chart we can
reduce to the case where Y is an open subset of Rn and Z = (Rp × {0}) ∩ Y .
By hypothesis, there exists a vector subspace Z ′ of Im(Txf) such that
R

n = Z ′⊕
R

p × {0}. Let Φ be the projection on Z ′ parallel to R
p × {0}.

Then f−1(Z) = (Φ ◦ f)−1(0). It then suffices to verify that the differential
of Φ ◦ f seen as a function with values in Z ′ is surjective. But

Im(Φ ◦ Txf) ⊃ Φ(Z ′) = Z ′.

Finally,
codim

(
(Φ ◦ f)−1(0)

)
= dimZ ′ = n− p = codimZ.

2.7. Covering Spaces

We begin by reviewing a few notions related to the quotient topology
(for details, see [Dugundji 65, XVI.4], [Munkres 00, 2.22] or [Massey 77,
Appendix A]).

If X is a topological space and if R is an equivalence relation on X , there
exists a natural topological structure on X/R. By definition, a subset U
of X/R is open if and only if its inverse image under the quotient map
p : X �→ X/R is open in X . This definition is made to ensure the following
property: a map f from X/R to a topological space Z is continuous if
and only if f ◦ p : X → Z is continuous. In other words, the continuous
maps on X/R are continuous maps on X that are constant on equivalence
classes.

Now if X is a manifold, there is no reason that X/R, equipped with the
quotient topology is still a manifold: the topological constraints are too
strong. Further, if we want smooth maps on X that pass to the quotient
to still be smooth, it is natural to require that if g = f ◦ p is such a map, the
differential of g determines that of f . As Txg = Tp(x)f ◦ Txp, this will be the
case if p is a submersion (in which case the equivalence classes will become
closed submanifolds).

We will not go much further, and we note simply that the idea of a
quotient manifold is not immediate. For more details, see [Godement 05,
Chapter 4, § 9]. We will only give this partial consideration, starting with
the important case of a quotient of a manifold by a discrete group. Even in
this case, some topological prerequisites are indispensable.
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2.7.1. Quotient of a Manifold by a Group

Definitions 2.31

a) A left action by a group Γ on a set X is a map

(γ, x) �−→ γ · x from Γ×X to X

such that
e · x = x and γ1 · (γ2 · x) = (γ1γ2) · x

for any x ∈ X, γ1, γ2 ∈ Γ.

b) A continuous action of a group Γ on a topological space X is an action
such that for all γ the map x �→ γ · x is continuous.

c) A smooth action of a group Γ of a manifold X is an action such that for
all γ the map x �→ γ · x is smooth.

Remarks

a) In the definition, a) reduces to giving a morphism from Γ to the group of
bijections of X .

b) It follows from the definitions that for fixed γ, the map x �→ γ · x is a
homeomorphism in case b), and a diffeomorphism in case c).

c) We can reformulate b) (resp. c)) by saying that map (γ, x) �→ γ · x is a
continuous map, from Γ × X to X , Γ being equipped with the discrete
topology. This allows us to link topological group actions with Lie group
actions that we will see in Chapter 4.

To avoid trivialities, we will need the following definition.

Definition 2.32. A group action is effective if for γ �= e the map x �→ γ · x
is distinct from the identity, or in other words if the homeomorphism γ �→
(x �→ γ · x) from Γ to the group of bijections of X is injective.

In this case, we again denote the map x �→ γ · x by γ.

Example. The action of Z on R defined by (n, x) �→ (−1)nx is not effective,
but the analogous action of the group {±1} is. This is an example of a general
situation described in Exercise 18, that justifies why we usually consider
effective actions.

Definition 2.33. If E is a topological space on which a group Γ acts, the
quotient of E by Γ, denoted E/Γ, is the space of orbits of Γ, or put differently
the quotient of E by the equivalence relation

x � y ⇐⇒ ∃γ ∈ Γ, y = γ · x,

equipped with the quotient topology.
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We let p denote the quotient map. Recall that the orbit of a point x in E is
its equivalence class, this is to say the subset {γ · x}, γ ∈ Γ of X . We denote
this by Γ · x.

We have in mind the case where E is a manifold, and we look for sufficient
conditions on the action of Γ so that E/Γ will be a manifold. First, we check
that E/Γ is locally compact. The essential point is the Hausdorff property.

Definition 2.34. A discrete group Γ acts properly on a locally compact
space X if for every pair of compact subsets K and L of X, the set{

γ ∈ Γ : γ(K) ∩ L �= ∅
}

is finite.

Note that some references call this a “discontinuous action”, which is both
questionable and widespread.

Examples and counterexamples

a) Every finite group acts properly.

b) The action of Z on R given by

(n, x) �−→ x+ n

is proper, but the one given by

(n, x) �−→ 2nx

is not.

c) The group Z
n acts properly on R

n by translations: it suffices to check
that every compact subset of Rn is contained in a sufficiently large cube
{(x1, . . . , xn) : |xi| � A}. Conversely, if α is an irrational number, the
action of Z2 on R given by

(m,n, x) �−→ x+ αm+ n

is not proper. (We can verify for example that the quotient topology of
the space of orbits is the trivial topology.)

For more examples and counterexamples, see Exercise 19.

Theorem 2.35

i) For a map f from E/Γ to a topological space X to be continuous, it is
necessary and sufficient that f ◦ p is continuous.

ii) The image of an open subset of E under p is an open subset of E/Γ.



76 An Introduction to Differential Manifolds

iii) If E is locally compact and if Γ is a discrete group acting properly, then
E/Γ is locally compact.

Proof. Recall that by definition of the quotient topology, a subset V of E/Γ
is open if and only if p−1(U) is open; i) is then immediate.

For ii), it suffices to remark that

p−1
(
p(U)

)
=
⋃
γ∈Γ

γ(U)

is open once U is open, as the γ give homeomorphisms of E.

We move on to iii). To show that E/Γ is Hausdorff, the essential point is
that it suffices to see if y /∈ Γ · x, that there exists neighborhoods V and W
of x and y respectively such that

γ(V ) ∩ γ′(W ) = ∅

for all γ, γ′ ∈ Γ, or again
V ∩ γ(W ) = ∅

for all γ ∈ Γ. First, as E is locally compact, x and y have compact disjoint
neighborhoods K and L. The action of Γ is proper, and so γ(L) only meets
K for a finite number of γ, say

γ1, . . . , γn.

However x �= γi(y) for any i, therefore by continuity x and y are contained
in compact neighborhoods Ai and Bi such that

Ai ∩ γi(Bi) = ∅.

It now suffices to take

V = K ∩
(

n⋂
i=1

Ai

)
W = L ∩

(
n⋂

i=1

Bi

)
.

Local compactness now follows immediately from ii).

We now examine the case where the quotient space is a manifold. The
action x �→ ±x of Z/2Z on R gives a simple example of a proper action
whose quotient is not a manifold. We can also remark that if an element γ
different from the identity has a fixed point, p is very likely not a submersion:
if γ(a) = a and if for example Taγ − Ia is invertible, then from the equality
Tap◦Taγ = Tap, we may deduce by differentiating p◦γ = p at a that Tap = 0!
The following definition is made to avoid this situation.

Definition 2.36. A group Γ acting on a set E is said to be free if

∀γ �= e, ∀x ∈ E, γ · x �= x.
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The quotient map of a free and proper discrete group action on a locally
compact space has remarkable properties meriting study themselves.

Definition 2.37. A continuous map p : X → B is a covering map with
base B and total space X if every b ∈ B is contained in an open subset U such
that p−1(U) is a union (possibly infinite) of mutually disjoint open subsets
(Vα)α∈A of X, such that the restriction of p to each Vα is a homeomorphism
on U .

If X and B are manifolds and p is a smooth map, by replacing homeomor-
phims in the previous definition with diffeomorphisms, we obtain the notion
of smooth covering.

If B is connected, the definition implies that the cardinality of p−1(x) is
constant. We call this cardinality the degree of the covering.

Remarks

a) A covering is in fact a fibration where the fibers are endowed with the
discrete topology (compare to Theorem 2.14).

b) If X is a manifold, we may instead suppose every b ∈ B is contained in a
connected open subset U such that the restriction of p to each connected
component of p−1(U) is a diffeomorphism (or a homeomorphism).

Examples

a) If I is any subset equipped with the discrete topology, the projection of
I×B to B is a covering: for each i ∈ I, {i}×B is an open and closed subset
of the total space that is homeomorphic to the base. Such a covering is

V3

U

B

V2

V1

V2

V1

U

B

V3

X

Figure 2.7: Local trivialization
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called trivial. More generally, a covering p : X → B is called trivializable
if there exists a discrete space I and a homeomorphism f : B × I → X
such that p◦f is the projection of B× I to B. We note that the definition
of coverings can be reformulated by saying that every point in the base is
contained in an open subset U such that p : p−1(U) → U is trivializable.

We note that a covering whose total space X is connected is not trivializable
unless p is a homeomorphism.

b) Take X = R, B = S1, and

p(t) = (cos t, sin t).

Let τ ∈ (0, π). For each t0, we consider the open subset

U =
{(

cos(t0 + t), sin(t0 + t)
)
, t ∈ (−τ, τ)

}
.

Then
p−1(U) =

⋃
n∈Z

(t0 − τ + 2nπ, t0 + τ + 2nπ).

t0 – t0 t0 + t0 + 2

p

eit0

Figure 2.8: Covering of the circle by the line

c) Take X = B = C
∗, or X = B = S1, and in both cases

p(z) = zk.

Here, the same argument as in b) shows that each b ∈ B is contained
in an open subset U such that p−1(U) is composed of k open subsets
homeomorphic to U .

d) If f : X → Y is a smooth map between two manifolds of the same
dimension, and if X is compact, f is a covering of the set of regular
points to the set of regular values. The is the content of the statement of
Theorem 2.14.
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In case b), p passes to the quotient as a homeomorphism (and even a
diffeomorphism, as we will soon see) of R

2/2πZ to S1. In case c), two
points have the same image under p if and only if they are transformed
to each other by a rotation about the center 0 and angle 2rπ/k. These
rotations define a group action Zk = Z/kZ, and from this we deduce that
S1/Zk is homeomorphic to S1.

This is an example of the situation described by the following theorem.

Theorem 2.38

i) If a discrete group Γ acts freely and properly on a locally compact space
X, the map

p : X −→ X/Γ

is a covering map.

ii) If in addition X is a manifold on which Γ acts smoothly, there exists a
unique smooth structure on X/Γ on which p is a smooth covering map.

We rely mainly on the following lemma.

Lemma 2.39. Under the same hypotheses, every x ∈ X is contained in an
open subset V such that the images γ(V ) are mutually disjoint.

Proof. Suppose W is a compact neighborhood of x. By the properness
hypothesis, W can only meet a finite number of its images under elements
of Γ, say γ1(W ), γ2(W ), . . . , γp(W ). For each i between 1 and p, we can
find disjoint open subsets W ′

i containing x and W ′′
i containing γi(x). It then

suffices to take

V = W ∩
( ⋂

1�i�p

W ′
i ∩ γ−1

i

(
W ′′

i

))
.

Then by construction V will not meet γi(V ), and since V ⊂ W , V will not
meet the other γ(V ).

Proof of Theorem 2.38. If we write U = p(V ), we see that

p−1(U) =
⋃
γ∈Γ

γ(V ).

The restriction of p to each γ(V ) is by construction a bijection on U , which
is continuous and open, and therefore a homeomorphism, which shows the
first part.

If, in the case where X is a smooth manifold, we want p to be a smooth
covering, the manifold structure on the quotient space is imposed. Indeed,
let y ∈ X/Γ, and let U contain y such that p−1(U) is a union of disjoint open
subsets diffeomorphic to U . By i), if V is any one of them, the others are
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of the form γ(V ), where γ runs over Γ. By replacing V by a smaller open
subset containing x in V with image y, we can always suppose that V (and
therefore γ(V ) for each γ) is diffeomorphic to an open subset of Rn. Then if

φγ,V : γ(V ) −→ R
n

is a chart, the same must be true of

φγ,V ◦ p−1
|γ(V ) : U −→ R

n.

The compatibility condition is satisfied. For the same U , the transition func-
tion is(

φγ,V ◦ p−1
|γ(V )

)
◦
(
φγ′,V ◦ p−1

|γ′(V )

)−1
= φγ,V ◦

(
p−1
|γ(V ) ◦ p|γ′(V )

)
◦ φ−1

γ′,V

= φγ,V ◦ γ−1 ◦ γ′ ◦ φ−1
γ′,V ,

which is the local expression of a diffeomorphism γ−1 ◦ γ′. For two distinct
open subsets U and U ′ with nonempty intersection, we proceed in the same
way, after we remark that there exists a γ0 such that

p−1(U ∩ U ′) =
⋃
γ∈Γ

γ
(
V ∩ γ0(V

′)
)
.

Corollary 2.40. Under hypothesis ii) above, for a map f from X/Γ to a
manifold Y to be smooth, it is necessary and sufficient that f ◦ p be smooth.

Proof. It suffices to use the fact that p is a local diffeomorphism.

Examples: real projective space and tori

a) The group Z/2Z with two elements acts properly and freely on Sn by
x �→ ±x, and the quotient manifold is diffeomorphic to Pn

R. This permits
a more geometric view of projective geometry: the projective plane with
a disk removed is homeomorphic to the quotient of the sphere with two
diametrically opposite disks removed. The quotient can also be obtained
by starting with a rectangle and identifying opposite sides after inverting
the direction. The space obtained is called the Möbius strip.

��This is an example of a manifold with boundary (this notion will be
introduced in Chapter 6) whose boundary has a single connected compo-
nent. Projective space itself can be seen as a Möbius strip with a disk
adjoined to the boundary. One might suspect that such a realization is
impossible in the 3-dimensional space. In fact, there does not exist an
embedding of P 2

R in R
3, because P 2

R is not orientable (this assertion
will be explained and proved in Section 6.2), while every compact subman-
ifold with codimension 1 in R

n is orientable.��
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Figure 2.9: From the projective plane to the Möbius strip

b) The action (n, x) �→ x + n of Z on R is proper and smooth, and the
manifold R/Z is diffeomorphic to S1. We obtain such a diffeomorphism
by the map x �→ exp 2iπx upon passing to the quotient. Similarly, Zn acts
freely on R

n, and the quotient R
n/Zn is diffeomorphic to the torus T n.

2.7.2. Simply Connected Spaces

Instead of forming the quotient of a manifold by a group, we can reverse
the process and look for coverings of a given manifold. This is the object of
elementary homotopy theory (cf. [Dugundji 65], [Stillwell 08] for the essen-
tials, [Fulton 95] and [Massey 77] for further details) and we will state some
of the basic results without proof but with sufficient examples to give an idea
of what is going on.

The fundamental property is that of a simply connected space. This is, more
or less, path connectedness in the space of closed curves.

Definitions 2.41

a) A loop in a topological space X is a continuous map from S1 to X.

b) Two loops in X given by maps f and g are homotopic if there exists
a continuous map H : [0, 1] × X → X such that, for every x in X,
H(0, x) = f(x) and H(1, x) = g(x)

c) A path connected space is said to be simply connected if every loop is
homotopic to a constant map.
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A clear but important example is that of R
n: two loops in R

n (or more
generally a convex subset of Rn) are homotopic. In particular, the convex
subsets of Rn are simply connected. It is also immediate that the product
of two simply connected spaces is also simply connected.

The following result gives a machine to produce more examples.

Proposition 2.42.2 Let X be a topological space written as U ∪ V , where U
and V simply connected open subsets whose intersection is path connected.
Then X is simply connected.

For a proof, see [Apéry 87, p. 25]. This result is a particular case of the Van
Kampen theorem (see [Massey 77, IV.2]).

Corollary 2.43. The sphere Sn (for n � 2) and complex projective space
Pn

C are simply connected.

Proof. We view Sn as {
x ∈ R

n+1 :

n∑
i=0

x2
i = 1

}

and we apply the proposition to U = {x ∈ Sn : x0 < 1
2} and V = {x ∈ Sn :

x0 > − 1
2}

For Pn
C, we use homogeneous coordinates. By Section 2.5, the open subsets

U and V defined by z0 �= 0 and z1 �= 0 respectively are diffeomorphic to C
n,

and their intersection is diffeomorphic to the complement of a complex hyper-
plane of Cn.

This argument apples neither to S1 nor to Pn
R: in this case, U ∩ V is not

connected. In fact, in general it is often easy to prove a space is simply
connected, while proving a space is not simply connected is much harder. It
is true that S1 and Pn

R are not simply connected, and this is a consequence
of homotopy theory, and more precisely the following fundamental result.

Theorem 2.44.3 Every covering of a simply connected manifold is trivializ-
able. In particular, every connected covering of a simply connected manifold
is a diffeomorphism.

So in particular Pn
R, which admits a covering of degree 2 by Sn, is not

simply connected.

2. Stated without proof.

3. Stated without proof.
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Corollary 2.45 (monodromy theorem). Let p : Y → X be a covering
of a smooth manifold X, and let X ′ be a smooth simply connected manifold,
and let f : X ′ → X be a smooth map. Let a′ be a point of X ′. Then for
all points b ∈ Y such that p(b) = f(a′), there exists a unique smooth map
g : X ′ → Y such that p ◦ g = f and g(a′) = b.

Proof. Introduce

Y ′ =
{
(x′, y) ∈ X ′ × Y : f(x′) = p(y)

}
.

We show this is a submanifold of X ′ × Y . Indeed, it is the inverse image
of the diagonal of X × X under (f, p) : X ′ × Y → X × X ; the image of
T(x′,y)(f, p) contains {0} × TxX (here we denote the common value of f(x′)
and p(y) by x), which is transverse in T(x,x)X×X to the tangent space to the
diagonal. We can therefore apply Theorem 2.30. Let p′ and f ′ be restrictions
to Y ′ of the projections of X ′ × Y to its factors. Then p′ : Y ′ → X ′ is a
covering: if U is a trivializing open subset of p, we verify that f−1(U) is a
trivializing open subset of p′. As X ′ is simply connected, this covering is
trivializable: the restriction of p′ to each connected component of Y ′ is a
diffeomorphism by Theorem 2.44. Let Y ′

0 be the connected component that
contains (a′, b), and q the inverse diffeomorphism of the restriction of p′ to Y ′

0 .
Then we can take g = pr2 ◦ q.
We now verify uniqueness. Let g1 and g2 be two smooth maps such that
p ◦ g1 = p ◦ g2 = f , with g1(a

′) = g2(a
′) = b. Now the set x ∈ X ′ such that

g1(x) = g2(x) is nonempty, closed (this is a general property of continuous
maps), and open (this uses the fact that p is a covering). As X ′ is connected,
g1 = g2.

We may prove (see the same references above) that every manifold X is diffeo-
morphic to a quotient Y/Γ, where Y is a simply connected manifold, and Γ
is a group acting freely and properly on Y . The group Γ and the manifold Y ,
which are unique up to isomorphism and diffeomorphism respectively, are
called the fundamental group and universal cover of X . Thus, the funda-
mental group of T n is Z

n, and that of Pn
R is the group with two elements,

Z/2Z.

2.8. Countability at Infinity

We end this chapter by gathering several elementary but useful topological
properties of manifolds.

By the definition, a smooth manifold (and even a topological manifold) is
locally compact, and locally connected (this is to say every point admits a
base of connected neighborhoods). In particular, every connected component
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of a manifold M is an open subset of M , and thus a submanifold of the same
dimension. Therefore the study of a manifold reduces to that of its connected
components. Moreover we have the following property.

Proposition 2.46. A connected open subset of a (topological) manifold is
path connected.

Proof. On such an open subset U , we define an equivalence relation by
saying that two points x and y are equivalent if there exists a continuous
map c from a closed interval [a, b] in U such that c(a) = x and c(b) = y. The
equivalence classes are open, and therefore there is exactly one.

As in the Euclidean case, we would like a submanifold with strictly posi-
tive codimension to be of measure zero in the ambient manifold, and more
generally to have a statement analogous to Sard’s theorem. We first give a
definition.

Definition 2.47. Let X be a manifold. A subset E ⊂ X is negligible if
for every x ∈ X there exists a chart (U, φ), with U containing x, such that
φ(U ∩ E) is of measure zero in φ(U).

By Lemma 1.39, this property is independent of the chart chosen. Further,
it is immediate that every countable union of negligible sets s negligible.

The proof of Sard’s theorem seen in Chapter 1 (Theorem 1.41) then extends,
but with one condition: as we applied arguments with charts in the domain
space, we will need to assume the existence of a countable atlas. We are led
to the following definition.

Definition 2.48. A manifold X is countable at infinity if it is a union of a
countable collection of compact subsets.

Remark. This property is often called the second axiom of countability.

��This reduces to saying that the point at infinity of the Alexandrov compact-
ification X̂ of X has a countable neighborhood base, which explains the termi-
nology. We recall (see [Dugundji 65, XI.8.4]) that X̂ is the disjoint union of
X and a point ω, “the point at infinity”. We define a topology on X̂ by
taking a base of open subsets formed by the open subsets of X and the sets
ω ∪ (X �K), where K runs overs the set of compact subsets of X .��

With this hypothesis satisfied, the manifold structure can be defined by an
at most countable atlas. If X =

⋃
n∈N

Kn, where the Kn are compact, and if
(Ui, φi)i∈I is an atlas that defines the differentiable structure on X , each Kn

can be covered by a finite number of open subset Ui. Then the manifold X
itself can be covered by a countable number of Ui, because every countable
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union of finite sets is countable. We have therefore proved the following
result.

Theorem 2.49. Let X and Y be two manifolds, and let f : X → Y be a
smooth map. If X is countable at infinity, the set of critical values of f is a
negligible subset of Y .

We will use this result only in the case where dimX � dimY , which we have
proved. For the general case, see [Hirsch 76].

henceforth, we assume all manifolds

are countable at infinity

Manifolds that are not countable at infinity are relatively pathological. An
amusing example, which uses the theory of ordinals, is that of the long line, or
transfinite line obtained by gluing together an uncountable number of copies
of R. For an explicit description, see [Spivak 79, Appendix], or [Douady 05,
pp. 14–15].

2.9. Comments

How to get manifolds

The real numbers are defined by Dedekind cuts or by equivalence classes of
Cauchy sequences. These points of view are rarely used in everyday (math-
ematical) life, where we manipulate given real numbers defined for example
as the solution of an equation or a sum of a series.

The same is true for manifolds. The simplest examples are submanifolds of
Euclidean space. (This simplicity can be misleading: it is not always easy to
extract precise topological information from a system of equations, just as it
is not easy to know if a real number given as the sum of a series is rational,
algebraic or transcendental.)

We have seen certain group actions on manifolds give manifolds by passing
to the quotient, and we will see in Chapter 4 another type of quotient.

Finally, Exercise 28 suggests the possibility of obtaining manifolds by gluing
two or more manifolds along diffeomorphic open subsets.

Topological manifolds and smooth manifolds

After we defined manifolds, we were very discreet about the question of exis-
tence and uniqueness. We will be very brief about this subject, as it leads
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to difficult questions. In two dimensions, one shows that every topological
manifold has a unique smooth structure up to diffeomorphism. This result
is false in higher dimension: there are topological manifolds that do not
have even a C1 structure, and others which have many non diffeomorphic
smooth structures. The first example, that of the sphere S7 was discov-
ered by Kervaire and Milnor in the 1950s. This manifold admits simple
descriptions: we can realize it (as the “standard” sphere S7, see Exercise 16
in Chapter 7) as the total space of an appropriate fibration on S4 with S3

fibers, or as a submanifold of codimension 3 in R
10 given by polynomial equa-

tions. Conversely it is difficult to show that the manifold then obtained is
not diffeomorphic to S7 with its standard structure. To get an idea of what
happens, see [Dieudonné 88, VII.B].

If n �= 4, the differentiable structure of Rn is unique (always up to diffeomor-
phism, see [Stalling 62]), but it has been known since the 1980s that there
exists an infinite number of non diffeomorphic smooth structures on R

4! For
an idea of this construction see [Lawson 85].

To return to more accessible considerations, which are at the root of rich
geometric theory, we can study atlases whose transitions functions preserve a
local geometric property of Rn to some extent. One obtains richer structures
than a simple manifold structure. We now give a few examples.

Foliations

A foliation of codimension q on an n-manifold M is a collection of charts on
M with values in the open subsets of the form U × V , where U and V are
open in R

p and R
q respectively, and with transition functions of the form

(x, y) �−→
(
f(x, y), g(y)

)
where x ∈ U, y ∈ V.

The equations y = constant then define strictly immersed submanifolds of
codimension q in the ambient space X (these are not submanifolds in general)
called the leaves, and which form a partition of X . The coordinates y show
that locally we can parametrize the leaves by a “transverse” submanifold of
dimension q. Even in the simple case where the leaves are defined by a global
submersion, their topological type can change: the function f(x, y, z) =
(1 − x2 − y2)ez defines a foliation of codimension 1 on R

3 whose leaves f−1(c)
are diffeomorphic to R

2 if c > 0, and to S1×R if c � 0. To learn more about
this subject, see for example [Hector-Hirsch 81].

Flat structures

We can impose even stronger constraints on the transition functions. An
extreme case consists of requiring that they be translations. This is actually
too restrictive: one can show that a manifold of this type is a torus.
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If the transition functions are affine isometries of Rn, the situation is more
interesting, but also restrictive. We obtain flat Riemannian manifolds. These
are quotients of Rn by a discrete subgroup of isometries acting without fixed
points. For each n, there are only finite many such topological types of such
manifolds, and all are quotients of the torus (for more details, see [Wolf 84]).

Affine manifolds are obtained by requiring that the transition functions be
affine transformations of Rn. This situation is much richer, and is still myste-
rious even today: we must study not only quotients of Rn under the action of
a discrete subgroup of the affine group, but also of quotients of certain open
subsets of Rn by such actions. The simplest example of such a situation is
that of the quotient of Rn

� {0} by the group generated by the homothety
x �→ λx (λ �= 1).

In an analogous way, we can take charts with values in open subsets of Pn
R

or of Sn, and require that transition functions are given by elements of
PGl(n+ 1,R) – see Exercise 5 below – in the first case (projective mani-
folds), or of the Möbius group – see Exercise 12 – in the second (conformally
flat manifolds). For such questions, see for example [Kulkarni-Pinkall 88].

2.10. Exercises

1. A non Hausdorff space locally homeomorphic to R

Let X be the real line with two origins. In other words, X = R
∐
{α}, with

open subsets of X being the unions of open subsets of R and sets of the form
U�{0}∪{α}, where U is open in R. Show that every point of X is contained
in an open subset diffeomorphic to R, but X is not Hausdorff.

2. Equip R
2 with its canonical Euclidean structure. At every point a, asso-

ciate the function fa, defined on the manifold M of straight lines by the
formula

fa(d) = (dist(a, d))2.

Show that the function fa is smooth.

3. Show that the set of points (x, y, z, t) ∈ R
4 such that

x2 + y2 = z2 + t2 =
1

2

is a submanifold of S3, diffeomorphic to S1 × S1. In the same way, give
examples of submanifolds of S2n−1 diffeomorphic to (S1)n.
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4. The unitary and special unitary groups

a) Show, by using an appropriate submersion, that the set U(n) of unitary
matrices (matrices of order n with complex coefficients such that tAA = I)
is a submanifold of R

2n2

of dimension n2. Use the exponential map to
obtain a parametrization of U(n).

b) In the same way show that the set SU(n) of special unitary matrices
(defined by the conditions A ∈ U(n) and detA = 1) is a submanifold of
dimension n2 − 1.

c) Show that SU(2) is diffeomorphic to S3.

5. Projective group

a) Show that every invertible linear map A ∈ Gl(n+1,R) defined by passing
to the quotient Pn

R is a diffeomorphism, and that the group of diffeo-
morphisms so obtained is isomorphic to Gl(n+ 1,R)/R∗I.

b*) Explicitly write the action of Sl(2,R) on S1 obtained.

Note. This group is denoted PGl(n+1,R), and is called the projective group.
Everything proceeds in the same way if we replace R by C.

6. Projective quadrics

a) Let q be a quadratic form of maximum rank on R
4, and let p be the

canonical projection of R4
�{0} to P 3

R. Show that p(q−1(0)) is a (possibly
empty) submanifold of P 3

R.

b) Show that if q is of type (1, 3) or (3, 1) this submanifold is diffeomorphic
to S2.

c) Show that if q is of type (2, 2) this submanifold is diffeomorphic to
P 1

R× P 1
R, which is to say S1 × S1.

d*) More generally, given a non-degenerate quadratic from q on R
n+1, study

the topology of the manifold p
(
q−1(0)

)
.

7. Generalities involving immersions and submersions

a) Show that the composition of two immersions (resp. submersions) is an
immersion (resp. a submersion).

b) Let X and Y be two manifolds, and let f : X → Y be a smooth map.
Show that the graph of f is a closed submanifold of X × Y , and that the
map g : x �→ (x, f(x)) is an embedding.

8. Given an example of an embedding of T 3 into R
4 and of S2×S2 into R

5.
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9. Let v : I → R
n+1

� {0} be a smooth map (I ⊂ R denotes an open
interval) and let p : Rn+1

� {0} → Pn
R be the canonical projection. Show

that p ◦ v is an immersion in t if and only if the vectors v(t) and v′(t) are
independent.

10. More examples of embeddings

a) Let f be a T -periodic smooth map of R to a manifold X , which is injective
on [0, T ). Show that f(R) is a submanifold of X diffeomorphic to S1.
(We call such a submanifold a closed curve.)

b) Show that the map

(u, v) �−→ (un, . . . , un−k, vk, . . . , vn) from R
2
� {0} to R

n+1

defines an immersion of P 1
R to Pn

R. Is this immersion an embedding?

11. A little more on submersions

a) Let f : X → Y be a submersion of a manifold X to a manifold Y . Show
that f(X) is open in Y . Deduce that if X is compact and Y is connected,
then f is surjective. Does this property persist if X is not compact?

b) Let Z be a submanifold of Y . Show (still supposing that f is a submersion)
that f−1(Z) is a submanifold of X .

c*) Example: if h : S3 → S2 is the Hopf fibration, show that the inverse
image of a closed curve in S2 is a submanifold of S3 which is diffeomorphic
to S1 × S1.

12. Let M be a manifold. Show that the tangent space to the diagonal
of M ×M is the diagonal of TmM × TmM .

13. An embedding of the projective plane into R
4: the Veronese surface

a) Show that the map v from R
3 to R

6 given by

v(x, y, z) =
(
x2, y2, z2,

√
2xy,

√
2yz,

√
2zx
)

defines an immersion of S2 into R
6.

Hint. First show that v is an immersion of R3
� {0} into R

6.

b) Is the map v injective? Show that it defines a homeomorphism V from
P 2

R to v(S2).

c) Show that v(S2) is a submanifold of R
6 and that V is an embedding

of P 2
R into R

6 (use the fact that the map p : (x, y, z) �→ [(x, y, z)] from
S2 to P 2

R is a local diffeomorphism).
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d) Show that v(S2) = V (P 2
R) is included in H ∩S5 , where H is an (affine)

hyperplane of R6 and S5 is the unit sphere. Deduce that there exists an
embedding of P 2

R into R
5 and even into R

4.

��Conversely, there does not exist an embedding of P 2
R into R

3. Indeed,
every compact hypersurface of R

n is orientable (see [Hirsch 76]), while
P 2

R is not orientable (see Chapter 6 for this notion and result). There
are, on the other hand, many immersions of the projective space into R

3.
One can find explicit examples and beautiful pictures in [Apéry 87].��

14. Define a map p from SO(n+ 1) to Sn by

p(g) = g · e0,

where e0 is the first vector in the canonical basis of Rn+1.

a) Show that p is smooth, and that the inverse image of a point is a subman-
ifold of SO(n+ 1) diffeomorphic to SO(n).

b*) Show that p is a fibration.

15. A surjection from projective space to the sphere of the same dimension

a) Show that the subset of points of Pn
R where a homogeneous coordi-

nate (the first for example) is zero forms a submanifold diffeomorphic
to Pn−1

R.

b) Consider the map from R
n+1

� {0} to R
n+1 defined by

(t, x1, . . . , xn) �−→
(

2tx1

t2 + ‖x‖2 , . . . ,
2txn

t2 + ‖x‖2 ,
−t2 + ‖x‖2
t2 + ‖x‖2

)
,

where

‖x‖2 =

n∑
i=1

x2
i .

Show that this map defines a map p from Pn
R to Sn by passing to the

quotient, and that p is smooth. What is the inverse image of the North
pole N = (0, . . . , 0, 1)? of the South pole (0, . . . , 0,−1)?

c) Using stereographic projection from the North pole N , show that p induces
a diffeomorphism from Pn

R� p−1(N) to Sn
� {N}.

d) What can we say about p for n = 1?

e) Show that the set of points in Pn
R where a homogeneous coordinate (the

first for example) is nonzero is connected. Assuming the fact that the
complement of a simple closed curve in S2 has two connected components,
deduce that P 2

R is not homeomorphic to S2.
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f) Now consider the map from C
n+1

� {0} to C
n ×R given by

(ζ, z1, . . . , zn) �−→
(

2ζz1
|ζ|2 + ‖z‖2 , . . . ,

2ζzn
|ζ|2 + ‖z‖2 ,

‖z‖2 − |ζ|2
|ζ|2 + ‖z‖2

)
,

where

‖z‖2 =
n∑

i=1

|z2i |.

Imitating the above, show that we can also define a smooth map q from
Pn

C to S2n, which induces a diffeomorphism between Pn
C�Pn−1

C and
S2n

� {N}. What happens for n = 1?

16*. Conformal compactification of Rn; Möbius group 4

a) Equip the space R
n with its usual Euclidean norm, and define a map p

from R
n to Pn+1

R by the formula

p(x) =

[(
1

2
, x,

1

2
‖x‖2

)]
.

Show that p is a diffeomorphism from R
n to the “quadric” Qn of Pn+1

R

define by the equation

4X0Xn+1 −
n∑

i=1

X2
i = 0

with the point [(1, 0, . . . , 0)] excluded.

b) Show that Qn is diffeomorphic to Sn.

c) We write O(1, n + 1) for the subgroup of Gl(n + 2,R) that leaves the
quadratic form

4X0Xn+1 −
n∑

i=1

X2
i

(with signature (1, n+1)!) invariant, and PO(1, n+1) the corresponding
subgroup of PGl(n+2,R) (see Exercise 5). Show that PO(1, n+1) is the
subgroup of PGl(n + 2,R) which leaves Qn globally invariant. By using
translation by p as in a), show that the following transformations extend
in a unique way to transformations of PO(1, n+ 1):

1) linear isometries;

2) homotheties;

3) translations;

4) inversion x �→ x
‖x‖2 .

4. This exercise is addressed to readers having some notions of “elementary geometry”,
such as those expounded in [Berger 87] for example.
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Conversely, let r ∈ O(1, n+1) be a reflection. (Recall that this means that
r2 = 1, r �= I, and that r leaves a hyperplane invariant point by point.)
Show that the projective transformation associated to r is obtained by
extending an inversion.

17*. Blow up

Let E be the subset of P 1
R×R

2 defined by the equation

xY − yX = 0

(here we write the coordinates of a point in R
2 as (x, y), and the homogeneous

coordinates of a point in P 1
R as (X,Y )). In other words, E is the set of

ordered pairs (p,D) formed by a point p ∈ R
2 and a straight line D passing

through the origin such that p ∈ D.

a) Show that E is a submanifold of dimension 2 in P 1
R × R

2 (E is called
the blow up of R2 at 0; c) and d) give the reasons for this terminology).

b) Show that the restrictions to E of the projections from P 1
R×R

2 to the
factors are smooth maps.

c) Let π be the restriction of E of the second projection. Show that π−1(0)
is diffeomorphic to P 1

R. Show that π induces a diffeomorphism from
E � π−1(0) to R

2
� {0}.

d) Let r denote the inverse of the diffeomorphism in c). Then let c be a
smooth map from I = (−ε, ε) to R

2 such that

c(t) �= 0 for t �= 0, c(0) = 0, c′(0) �= 0.

Show that the map
r ◦ c : I � {0} −→ E

extends in a unique way to a continuous map c : I → E. Show that c is
smooth (use the Hadamard lemma, Lemma 3.12).

Application. If for example F is the “folium of Descartes” given by the
equation x3 + y3 − 3xy = 0 in R

2 (which we can draw), there exists a
unique smooth submanifold F̃ of E such that F̃ ∩ π−1(0) consists of two
points such that the restriction of π to F̃ � F̃ ∩π−1(0) is a diffeomorphism
to its image.

e) Show that E is diffeomorphic to the manifold of straight lines M seen in
subsection 2.2.2.

f) If φ is a diffeomorphism from an open subset U in R
2 containing 0, such

that φ(0) = 0, show that there exists a unique diffeomorphism φ̂ of π−1(U)
such that π ◦ φ̂ = φ ◦ π. Deduce a definition for the blowup at a point for
any two dimensional manifold.
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18. Let Γ be a group acting on a set X , and let Γo be the kernel of the group
morphism γ �→ (x �→ γ · x) of Γ into the group of bijections of X . Show
that this is a “natural” action of the quotient group Γ/Γo on X , and that this
action is effective. Compare to Exercise 5.

Is the action of SO(n + 1) on X = Pn
R obtained by passing the natural

action on R
n+1 to the quotient effective?

19. Show that the action of Z on R
2 defined by

n · (x, y) = (2nx, 2−ny)

is not proper, and neither is the induced action on R
2
� {0}. Show that we

obtain a proper action if we restrict to the half-plane y > 0.

20. Let Γ = Z/nZ act on R
2 � C by rotations in the angle 2kπ/n with

respect to the origin. Show that the quotient space is a manifold (diffeomor-
phic to R

2), and that the quotient map is smooth but not a submersion.

21. The Möbius strip again

Take Γ = Z, X = R×R, and

n · (x, y) = (x + n, (−1)ny).

Show that this is a free and proper action, and that R
2/Γ is diffeomorphic

to the quotient of S1×R by the action of the group with two elements given
by the transformation

(u, y) �−→ (−u,−y).

Let M be the manifold obtained. Show that M is diffeomorphic to the
manifold of straight lines of the plane seen in Section 2.2.2, as well as P 2

R

with a point removed.

Show that this manifold is also the total space of a vector bundle of dimen-
sion 1 on the circle, and that this vector bundle is nontrivial. (For the
definition of a vector bundle, see Section 3.5.2.)

22. Lens spaces

a) Show that the only subgroup (non reducible to the identity element) of
O(2n+1) that acts freely on S2n (the action induced by the linear action
on R

2n+1) is the group with two elements {Id,− Id}.
b) Consider S3 as the set of points satisfying{

(z, z′) ∈ C×C : |z|2 + |z′|2 = 1
}
.
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Let p be a positive integer, and u a p-th root of unity in C. Show that

k ·
(
z, z′

)
=
(
ukz, ukz′

)
,

defines a free group action of the group Γ = Z/pZ on S3 , and therefore
that S3/Γ is a manifold.

23. Suspension of a diffeomorphism

a) If X is a manifold and φ is a diffeomorphism of X , we can define an action
of Z on R×X by

n · (t, x) =
(
t+ n, φn(x)

)
.

Show that this action is free and proper.

b*) Show that the quotient manifold is a fibered space with base S1 and
typical fiber X .

24. Coverings and local diffeomorphisms

a) Let f : X → Y be a local diffeomorphism. Show that if X is compact and
Y is connected, then f is a covering map.

b) Give an example of a surjective local diffeomorphism from a connected
manifold to a compact manifold that is not a covering map.

25. Try to reprove the fundamental theorem of algebra for polynomials with
real coefficients. What goes wrong?

26. Suppose the differentiable structures of M and N are given by maximal
atlases (Ui, ϕi)i∈I and (Vj , ψj)j∈J . Is the atlas

(Ui × Vj , ϕi × ψj)(i,j)∈I×J

on M ×N maximal?

27. Distinct diffeomorphic structures

Show that the atlas
(
R, 3

√
t
)

defines on R is a distinct differentiable mani-
fold structure from the canonical structure given by (R, t). Now show these
structures are diffeomorphic.

28**. Connected sum

Let M1 and M2 be two smooth manifolds of dimension n, and let (U1, φ1)
(resp. (U2, φ2)) be a chart of M1 (resp. M2) such that φi is a diffeomor-
phism on Ui to the open ball B(0, 2) (here R

n is equipped with its canonical
Euclidean norm). Let C be the annulus {x ∈ R

n : 1
2 < ‖x‖ < 2}.
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1 2

M1 M2

C

2 o f o 1
–1

Figure 2.10: Connected sum

a) Show that x �→ x
‖x‖2 is a diffeomorphism of C.

b) Consider the topological space X obtained by taking the disjoint union of

M1 � φ−1
1

(
B(0, 1/2)

)∐
M2 � φ−1

2

(
B(0, 1/2)

)
and identifying φ−1

1 (C) and φ−1
2 (C) by means of the diffeomorphism

φ2 ◦ f ◦ φ−1
1 (in other words, we quotient this sum by the equivalence

relation: x and y are equivalent if they are equal, or if one of them
(say x) belongs to φ−1

1 (C), and the other belongs to φ−1
2 (C) and if

y = (φ2 ◦ f ◦ φ−1
1 )(x).

Show that Mi � φ−1
i

(
B(0, 1/2)

)
is homeomorphic to its image under the

quotient map.

Let Vi be this image, equipped with the differentiable structure inherited
by this homeomorphism (this is to say the unique differentiable structure
such that this homeomorphism is a diffeomorphism).

Show that there exists a (unique) differentiable structure on X such that
the inclusions Vi → X are diffeomorphic to their images in X . The space
X , equipped with this differentiable structure, is the connected sum of M1

and M2, and is denoted M1�M2.

c) Show that M�Sn is diffeomorphic to M , and that T 2�T 2 is diffeomorphic
to the “sphere with two holes” of Exercise 20 of Chapter 1.

d**) Show that R
2�P 2

R is diffeomorphic to the blow up of R
2 at 0

(cf. Exercise 17).
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29*. Weak transversality theorem

Let X , T and Y be three manifold, and let f : X×T → Y be a smooth map.
Suppose that f is transverse to a submanifold M of Y . Show that for almost
every t ∈ T , the map ft : X → Y is transverse to M (use Sard’s theorem in
the case where the dimension of the domain is larger than that of the range).

30. Let M be a connected topological manifold of dimension at least two.
Show that the complement of every finite set is connected.



Chapter 3

From Local to Global

3.1. Introduction

This chapter consists of variations on the following themes:

on a smooth manifold, there are “many” smooth functions;

there are also “many” diffeomorphisms.

We note that the first property is obvious for submanifolds of Rn, but the
second is not any easier for submanifolds than for the “abstract” manifolds
seen in the previous chapter.

The existence of continuous functions of compact support (other than the zero
function) on R

n is banal. The existence of smooth functions with compact
is less so. This property, explained in detail in Section 3.2, is fundamental:
if U is an open subset of a manifold that is diffeomorphic to R

n, then we can
transport every smooth function with compact support on R

n to this open
subset. This function will again be of compact support within U , which allows
us to extend the function to be zero outside of U . Thanks to this procedure,
we find sufficiently many functions to embed every compact manifold into R

N

(Theorem 3.7).

Warning. On a submanifold of RN , we get many smooth functions for free,
by restricting smooth functions in R

N to this submanifold, but here things are
inverted: it is the existence of smooth functions on a manifold that allows us
to realize it as a submanifold.1 This embedding theorem furnishes a conve-
nient way to prove approximation results (see for example Theorem 7.20
or Lemma 8.19).

1. None of this is true for complex manifolds: on a compact complex manifold, the holo-
morphic functions are constant by the maximum principle.
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The next part of the chapter is devoted to vector fields. These are used in
modeling a lot of natural phenomena, the speed of points in a solid or a
moving fluid, the gravitational vector field, the electric field, etc. For the
mathematician, a vector field is above all a “infinitesimal transformation”
(they were once called this) and even an infinitesimal diffeomorphism.

On an open subset U ⊂ R
n, a vector field can be seen as a smooth map

from U to R
n. On a manifold, it is necessary to give for every m ∈ M a

vector vm in the tangent space at m, and one may give a sense of smoothness
with respect to m. The price we pay is a smooth manifold structure on the
tangent bundle, defined as the disjoint union of tangent spaces. Things are
facilitated by interchanging a geometric and algebraic point of view: vector
fields on a smooth manifold are identified with derivations of C∞(M), this
is to say linear maps of C∞(M) to itself that satisfy the Leibnitz rule (see
Definition 3.14).

This point of view also permits us to define a fundamental notion, the
bracket [X,Y ], which takes into account the non-commutativity of infinites-
imal diffeomorphisms X and Y . This non-commutativity is expressed in
Proposition 3.37 and Theorem 3.38.

We naturally associate to every vector field a differential equation, that of its
trajectories. The term flow for the expression φt(x), which denotes the value
of the solution at time t that starts at x when t = 0, evokes the example of a
velocity vector field above. The setting of manifolds is then very convenient:
unlike what can happen in R

n, the solutions of this equation on a compact
manifold extend to all of R, and in this case the flow defines a one-parameter
group of diffeomorphisms (Theorem 3.39).

An important consequence is the fact that, if f is a smooth function on a
compact manifold, the sub-level sets f � a and f � b have the same topology
between any two levels containing no critical points (Theorem 3.40).

Finally, we return to the embedding theorem to deduce that every manifold
(which is countable at infinity) of dimension 1 is diffeomorphic to the circle
or the line. The surprise: although this is a very natural result, it is relatively
difficult to prove.

3.2. Bump Functions;

Embedding Manifolds

As we explained in the introduction, we must start by proving the existence
of smooth functions with compact support, first on R

n, and then on any
manifold.
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Definition 3.1. A bump function on a manifold M is a smooth function
f with values in [0, 1] such that there exists two open subsets U and V with
compact closure, and with U ⊂ V , such that

supp f ⊂ V and f(x) = 1 for x ∈ U.

We recall that the support of a continuous function is the closure of the set
of points where it is nonzero.

y

x0

Figure 3.1: A bump function

Proposition 3.2. If U and V are two open balls of Rn with the same center
and with U ⊂ V , there exists a smooth function equal to 1 on U and with
support contained in V .

Proof. We begin by remarking that the function fa of one real variable
defined by

fa(t) = exp
1

t2 − a2
if |t| < a and fa(t) = 0 if |t| � a

is smooth. The same is true for the function

ga(t) =

∫ t

−∞ fa(u) du∫ +∞
−∞ fa(u) du

which is zero for t � −a and equal to 1 for t � a. Now if b > a, the function
ga(b− t) equals 1 on [0, b− a] and 0 if t > a+ b. On R

n, it suffices to take a
function of the form ga(b− ‖x‖2).

We immediately give a spectacular example using bump functions: this
theorem, whose proof is due to Émile Borel, ensures that we can arbitrarily
prescribe the sequence of derivatives at a point of a smooth function. As this
result will not be used in the sequel, we will merely give a sketch of the proof.

Theorem 3.3. Let (an)n�0 be a sequence of real numbers. Then there exists
a smooth function f ∈ C∞(R) such that

f (n)(0) = an for all n.
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Proof. Let ρ be a bump function R such that{
ρ(x) = 1 if |x| < 1

2

ρ(x) = 0 if |x| > 1.

Set

f(x) =

∞∑
n=0

an
xn

n!
ρ(bnx), where bn = |an|+ n.

One verifies that f is smooth, and that

∀n, f (n)(0) = an.

To obtain the existence of smooth functions on any manifold, we repeatedly
use the following elementary but fundamental property:

Proposition 3.4. Let U and V be two open subsets of a manifold M , such
that M = U ∪ V , and let f : U → N and g : V → N be two smooth maps
to a manifold N , whose restrictions to U ∩ V are equal. Then there exists a
smooth function h : M → N such that

h|U = f and h|V = g.

In particular, if U is an open subset of M , and if N = R, every smooth
function with compact support in U extends to M as a smooth function that
is zero outside of U : it suffices to apply the above to U and M � supp f .

Corollary 3.5

i) Let U be an open subset of a manifold M . Then for every a ∈ U , there
exists an relatively compact open subset V containing a such that V ⊂ U ,
and a bump function equal to 1 on V and with support in U .

ii) If K is a compact subset of M , and U ⊃ K is an open subset, then there
exists a bump function supported in U and equal to 1 on K.

Proof

i) Let (U ′, ϕ) be a chart with domain included in U such that ϕ(a) = 0. We
can then find two strictly positive real numbers r1 and r2 (with r1 < r2)
such that

B(0, r1) ⊂ B(0, r2) ⊂ ϕ(U ′),

and a bump function g on R
n equal to 1 on B(0, r1) and 0 outside of

B(0, r2). A priori, the function g ◦ ϕ is not defined on U . However, since
its support is included in ϕ−1

(
B(0, r2)

)
, it therefore extends by the above

as a smooth function on M that is zero outside of U . By construction, it
equals 1 on ϕ−1

(
B(0, r1)

)
.
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ii) Every point x ∈ K is contained in an open subset of a chart Vx ⊂ U on
which we can apply i). We obtain for each x an open subset Wx containing
x such that Wx ⊂ Vx, a bump function fx equal to 1 on Wx, and with
support contained in Vx. The open subsets Wx form an open cover of K,
and we extract a finite subcover (Wxi

)1�i�k. Then the function

g = 1−
k∏

i=1

(1− fxi
)

equals 1 on the union of the (Wxi
), and

supp g ⊂
k⋃

i=1

Vxi
.

To fully use this result, we will need the following purely topological property.

Lemma 3.6. Let (Ui)i∈I be a finite open cover of a compact manifold M .
Then there exists an open cover (Vi)i∈I such that Vi ⊂ Ui for each i.

Proof. Every x ∈ M is contained in an open subset Ui(x) of the cover.
There also exists an open subset Wx containing x such that

Wx ⊂ Ui(x)

(this property, which is clear for R
n, is true for topological manifolds by

definition). Then the (Wx)x∈M from an open cover of M , from which we can
extract a finite subcover (Wxk

)1�k�p. The result follows, by taking

Vi =
(⋃

Wxk

)
i(xk)=i

.

Although these tools are quite rough, they allow us to show that every mani-
fold is in fact a submanifold of Rn. The conceptual importance of this result
speaks for itself.

Theorem 3.7. Every compact manifold admits an embedding into a space
R

m for some m.

Proof. Let (Ui, ϕi)1�i�N be a finite atlas of M . By Corollary 3.5 and
Lemma 3.6 there exists an open cover (Vi)1�i�N such that Vi ⊂ Ui for each i,
and for each i a bump function fi with support contained in Ui and equal to 1
on Vi. By Proposition 3.4, the function fiϕi, extended by 0 outside of Ui,
gives a smooth map from M to R

n, where n = dimM . Let

F = (f1ϕ1, . . . , fNϕN , f1, . . . , fN),
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and observe we obtain a smooth map from M to R
N(n+1), which is an immer-

sion. Indeed, each x belongs to an open subset Vi, and the i-th block of TxF
is then equal to Txϕi, which is bijective, which shows that TxF is injective.

We now show that F is injective. Let x and y be two points of M such that
F (x) = F (y). In particular,

∀i, fi(x) = fi(y).

The Vi cover M , there exists i such that fi(x) �= 0. Then x and y belong
to Ui, and for this i, the inequality

fi(x)ϕi(x) = fi(y)ϕi(y)

gives ϕi(x) = ϕi(y), and x = y because ϕi is bijective. By applying Proposi-
tion 2.28 we conclude an injective immersion into a compact manifold is an
embedding.

By using completely different techniques, we can improve this result.

Corollary 3.8 (Whitney’s “easy” embedding theorem). Every compact
manifold of dimension n embeds into R

2n+1.

Proof. We start with an embedding of f of X into R
m for some m. We

will see that by composing f with a well chosen projection, we can obtain
an embedding into R

m−1. To do this, we equip R
m with an inner product,

and we introduce for every unit vector v ∈ Sm−1 the projection pv onto the
subspace orthogonal to v in R

m.

Let Y = f(X). For the restriction of pv to Y to be injective, it is necessary
and sufficient that for all distinct x and y in Y , the vector

x− y

‖x− y‖

is different from v, where again v does not belong to the image of the map

(x, y) �−→ x− y

‖x− y‖ from Y × Y �Δ to Sm−1,

and where we have denoted the diagonal of Y by Δ.

By Sard’s theorem (Theorem 2.49), there exists such v since 2n < m− 1.

For pv |Y to be an immersion, it is necessary and sufficient – see Figure 3.2 –
that v does not belong to any subspace tangent to Y (note that this is the
infinitesimal version of the preceding condition). We introduce

Z =
{
(x, v) ∈ X × SN−1 : v ∈ Tf(x)Y

}
.



Chapter 3 – From Local to Global 103

y

x

x

v

Figure 3.2: A projection can cause singularities to appear

We verify that Z is a submanifold of dimension 2n−1 of X×SN−1 (see Exer-
cise 15 of Chapter 1). In particular pr2(Z) is of measure zero since 2n < m.

By iterating the preceding argument, we see that X admits an immersion
into R

2n and an embedding into R
2n+1.

Remarks

a) The same property remains true for manifolds that are countable at
infinity, and the proof is essentially the same (see [Hirsch 76]).

b) With much more work and completely different techniques, H. Whitney
proved that every smooth compact manifold of dimension n is embedded
in R

2n (see [Adachi 93]). This result is optimal, but we can do better
in certain cases: for example P 2

R is not embeddable in R
3, but

every orientable surface is, as we see from the classification of surfaces
(see Section 7.10).

3.3. Derivations

3.3.1. Derivation at a Point

With now return to the tangent space with a different point of view, by
exploiting the fact, already seen in Proposition 3.4, that smoothness is a
local property.

Definition 3.9. Let X be a topological space and x ∈ X. Two functions
each defined on an open subset containing x are said to have the same germ
at x if there exists a further open subset of x on which both are equal.
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In other words, we introduce the following equivalence relation on the set of
functions defined on an open subset of x

(f : U −→ R) ∼ (g : V −→ R)

if and only if there exists an open subset W containing x, W ⊂ U ∩ V such
that

f|W = g|W .

The set of germs is the quotient set of this equivalence relation. Continuity
at x for example depends only on the germ. If f is a function defined on an
open subset U of x, we denote its germ by ḟ . However we will often abuse
notation and denote a germ by one of its representatives.

The set of germs is naturally equipped with a ring structure: we define
addition and multiplication through the representatives.

We are interested in the case of manifolds, and denote by FmM the germ of
smooth functions at m on the manifold M . This is clearly a subring of the
ring of germs.

Remarks

a) The notion of germs given here is also of interest for continuous, Cp or
analytic functions. For example, the ring of germs of holomorphic func-
tions of one complex variable at 0 is identified with the ring of infinite
series with nonzero radius of convergence. For smooth functions, the situ-
ation is much more complicated: if m ∈ R

n, the Taylor series at m of
a smooth function in a neighborhood of m depends only the germ of f ,
but knowing this series does not determine the germ. See for example the
function fa of Proposition 3.2, where all of the derivatives at a are zero.

b) For every manifold M and every point m ∈ M , the space FmM is
isomorphic to F0R

n. Indeed we take a chart (U,ϕ) with m ∈ M and
ϕ(m) = 0, and we associate to every function f defined on an open subset
V containing m the function f ◦ ϕ−1 defined on ϕ(U ∩ V ). The map
f �→ f ◦ ϕ−1 passes to the quotient and gives an isomorphism (amongst
many others!) between FmM and F0R

n.

Let v be a vector in R
n. If f is a smooth function on an open subset

containing 0, the directional derivative of f with respect to v, this is to
say the number

T0f · v =

n∑
j=1

∂jf(0)v
j

depends only on the germ of f at 0. We will use algebraic properties of the
map ḟ �→ T0f ·v to give a definition of the tangent space to a manifold which
uses neither charts nor coordinates on R

n.
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Definition 3.10. A derivation at a point m of M is a linear map
δ : FmM → R such that for ḟ , ġ ∈ FmM we have

δ
(
ḟ · ġ

)
= f(m)δ

(
ġ
)
+ g(m)δ

(
ḟ
)
.

The name derivation is justified by analogy with the product rule, and also
by the following result:

Theorem 3.11. There is a natural bijection between R
n and the derivations

of FmR
n. More precisely, for such a derivation, δ, there exists a unique

vector v ∈ R
n such that

δ(f) = Tmf · v =

n∑
j=1

∂jf(m)vj .

We will use the following lemma, which is a fundamental technical tool.

Lemma 3.12 (Hadamard lemma). For all 1 � p � ∞, every Cp function
defined on an open ball with center 0 in R

n can be written in the form

f(x) = f(0) +

n∑
j=1

xjhj(x),

where the hj are Cp−1. Moreover, hj(0) = ∂if(0).

Proof. We have

f(x)− f(0) =

∫ 1

0

d

dt
f(tx) dt =

n∑
j=1

xj

∫ 1

0

∂jf(tx) dt,

and the existence of the hj then results from the theorem of differentiation
through an integral. A direct calculation shows that necessarily hj(0) =
∂jf(0). (We note that the hj are not unique, even if this proof gives possible
explicit choices.)

Proof of Theorem 3.11. Let ḟ ∈ FmR
n, and f be a representative of ḟ .

We have δ(f) = δ(f − f(m)), since by definition

δ(1.1) = δ(1) + δ(1) and therefore δ(constant) = 0.

By the lemma,

δ(f) =

n∑
j=1

δ(xj −mj)hj(m) and hj(m) = ∂jf(m).

It is clear that the map
f �−→ ∂jf(m)

depends only on ḟ , and that it is itself a derivation.
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This result extends directly to manifolds, and lets us give a new definition of
the tangent space, which does not appeal to charts.

Theorem 3.13. If M is a smooth manifold and m ∈ M , the set of deriva-
tions on FmM is isomorphic to TmM : for every derivation δ, there is a
unique ξ ∈ TmM such that

δ(f) = dfm · ξ.

Proof. Let (U,ϕ) be a chart such that m ∈ U and ϕ(m) = 0. If δ is a
derivation in FmM , the map

g �−→ δ(g ◦ ϕ)

is a derivation in F0R
n. Now let v be the vector such that δ(g ◦ϕ) = g′(0) ·v.

Then, if f = g ◦ ϕ, we have

δf = dfm · ξ,

where ξ = θ−1
ϕ (v) (see Definition 2.23).

3.3.2. Another Point of View on the Tangent Space

We will see another definition of the tangent space, which synthesizes between
the velocity vector (Definition 2.21) and derivation point of view.2 There is
a price to pay: a little more algebraic formalism. This subsection can be
omitted on a first reading, and will not be used in the sequel.

For a manifold M and a point m ∈ M , we consider the set CM
m of curves

c : (−1, 1) �→ M such that c(0) = m, and we introduce the vector space T M
m

of (finite) real linear combinations of elements of CM
m , or in other words the

R-vector space whose basis consists of elements of CM
m .

For a germ ḟ ∈ FM
m and c ∈ CM

m , we write

B(ḟ , c) =
d

dt
f
(
c(t)
)
|t=0

.

On the right hand side, f in fact denotes a function defined on an open subset
containing m and representing ḟ , it is clear, as in the analogous situations
studied in Section 3.3, that the result does not depend on the representative
of ḟ chosen.

We extend B to FM
m × T M

m by linearity, this is to say by setting

B

(
ḟ ,

k∑
i=1

λici

)
=

k∑
i=1

λiB(ḟ , ci).

2. This enlightening point of view was communicated to me by Marc Troyanov.
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By construction B is a bilinear form on FM
m × T M

m . We also introduce the
kernel of B, which by definition is

(FM
m )0 =

{
ḟ ∈ FM

m : ∀u ∈ T M
m , B(ḟ , u) = 0

}
(T M

m )0 =
{
u ∈ T M

m : ∀ḟ ∈ FM
m , B(ḟ , u) = 0

}
.

Under these conditions, B passes to the quotient, and gives a non-degenerate
bilinear form

b : FM
m /(FM

m )0 × T M
m /(T M

m )0 −→ R.

All of this input is “natural”, which is to say equivariant with respect to
diffeomorphisms. If φ is a diffeomorphism from an open subset U containing
M to an open subset U ′ in a manifold M ′, then f �→ f ◦ φ−1 defines a vector
space isomorphism from FM

m to FM ′

φ(m), and c �→ φ ◦ c defines, by extending
linearly, an isomorphism of T M

m to T M ′

φ(m). We denote these isomorphisms
by T

′(φ) and T(φ). It is immediate that

B(T′(φ) · f,T(φ) · u) = B(f, u)

T(ψ ◦ φ) = T(ψ) ◦ T(φ) (3.1)

T
′(ψ ◦ φ) = T

′(ψ) ◦ T′(φ).

As a result of these remarks, T M
m /(T M

m )0 is “naturally” identified with TmM ,
this is to say that there exists an isomorphism IsM,m such that, with the
preceding notation,

Tmφ ◦ IsM,m = IsM ′,φ(m) ◦ T(φ).

Indeed, two curves c1 and c2 are tangent at m in the sense of definition 2.21
if and only if c1 and c2 are equivalent modulo (TmM )0: if c1 − c2 ∈ (T M

m )0,
testing the equality B(ḟ , c1) = B(ḟ , c2) for the germs of the coordinate func-
tions of a local chart φ, we see that (φ ◦ c1)

′(0) = (φ ◦ c2)
′(0). Conversely,

if this equality is true for a chart φ, this is to say if the curves φ ◦ c1 and
φ ◦ c2 in R

n have the same velocity, then φ ◦ c1 − φ ◦ c2 ∈
(
T0R

n)0
and by

equations (3.1), c1 − c2 ∈ (T M
m )0. In summary, we have a map from CM

m to
TmM which extends by linearity to T M

m , and passes to the quotient giving
an injection T M

m /(T M
m )0. The map is also surjective, again by equation (3.1),

it suffices to verify this for R
n, which is elementary: we take the curves

t �→ tv.

Moreover, by the same definition of B, the map ḟ �→ B(f, c) is a derivation
at a point which depends only on the equivalence class of c. To see that every
derivation at a point is of this form, it suffices, again by equation (3.1), to do
this for R

n and to apply Theorem 3.11.

As a bonus, this point of view gives a natural realization of the cotangent
vector space, because thanks to the bilinear form b the space FM

m /(FM
m )0

appears as the dual of TmM .
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Considering again the formulas (3.1) for a not necessarily invertible map φ,
we also see that T(φ) gives a linear map from T M

m /(T M
m )0 to T M

φ(m)/(T M
φ(m))

0

by passing to the quotient which is identified with Tmφ.

3.3.3. Global Derivations

We now “globalize” the preceding situation.

Definition 3.14. A derivation (we will sometimes say global derivation if
we want to insist on the difference with what preceded) on a smooth manifold
M is a linear map δ from C∞(M) to itself such that

for f, g ∈ C∞(M), δ(f · g) = f · δ(g) + g · δ(f).

This definition has a purely algebraic character, but allows us to “localize”
derivations:

Theorem 3.15. Let δ be a derivation on a manifold M . Then

i) If f and g are two smooth functions whose restrictions to an open subset
U ⊂ M are equal,

(δf)|U = (δg)|U .

ii) For every open subset U ⊂ M , there exists a unique derivation on U ,
denoted δ|U , such that

δ|U
(
f|U
)
= (δf)|U for f ∈ C∞(M).

Proof

i) By linearity, it suffices to show that if f vanishes on U , then so does δf . For
each x ∈ U , we take an open subset V containing x such that V ⊂ U and
a bump function h with support in U , equal to 1 on V . Then f = (1−h)f
and therefore

δf = (1− h)δf + fδ(1− h).

Therefore δf is zero for each such V , and so on U as well.

ii) There is a (small!) difficulty which comes from the fact that a smooth
function on U does not in general extend to M . For each x in U , we take
an open subset V and a function h as in i). Then, if f ∈ C∞(U), by
Proposition 3.4 the function fh is defined and smooth on all of M , and for
y ∈ V we write (δ|Uf)(y) =

(
δ(fh)

)
(y). By i), the function δ|Uf is thus

defined without ambiguity, and we obtain a derivation having the desired
properties.

We come to the characterization of derivations on open subsets of U ⊂ R
n.

It is clear that for i ∈ [1, n], the map f �→ ∂if is a derivation, and more
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generally, if X1, . . . , Xn are smooth functions,

f �−→ LXf =

n∑
i=1

Xi∂if

is a derivation. Better still:

Theorem 3.16. The vector space of derivations on an open subset U of Rn

is isomorphic to C∞(U,Rn).

Proof. Associate to X in C∞(U,Rn) the derivation LX given by the
formula above. The map X �→ LX is injective: if X is nonvanishing at a ∈ U ,
there exists a smooth function f such that (LXf) (a) = Taf ·X(a) �= 0.

We now show the surjectivity in the case of R
n. If δ is a derivation, we

remark first that as in the case of derivations at a point, δ vanishes for
constant functions. For y ∈ R

n, we write the decomposition

f(x)− f(y) =

n∑
i=1

(xi − yi)hi,y(x)

from the Hadamard lemma. Then

(δf)(y) =
(
δ
(
f − f(y)

))
(y) =

n∑
i=1

δ(xi − yi)(y)hi,y(y) =

n∑
i=1

δ(xi)(y)∂if(y).

The same argument applies to an convex open subset: it is convexity that
allows us to apply the Hadamard lemma to the function x �→ f(x) − f(y).
We pass to the general case by applying Theorem 3.15 to open balls in U .

Confronted with the analogous result for derivations at a point, this result
leads us to adopt new terminology.

Definition 3.17. A vector field on an open subset U of Rn is a smooth map
from U to R

n. The map LX from C∞(U,R) to itself, introduced above is
called the derivation associated to X .

We have just seen that if δ is a derivation on U ⊂ R
n, the map X : U → R

n

which is associated to it by Theorem 3.16 can be interpreted as attaching
to x ∈ U a vector Xx ∈ TxU � R

n in a smooth fashion, which justifies the
name vector field. We will see that derivations on any manifold admit an
analogous characterization to that of Theorem 3.16. This requires certain
results on derivations and vector fields on open subsets of Rn, which extend
easily to manifolds.
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3.4. Image of a Vector Field; Bracket

If X ∈ C∞(U,Rn) is a vector field on an open subset U of Rn, we hereafter
denote its value at the point x by Xx. Then, the associated derivation is
given by

(LXf) (x) = Txf ·Xx.

The derivation associated to the constant vector field equal to the i-th vector
in the canonical basis of Rn is simply f �→ ∂if , and we denote this vector
field by ∂i. Then, X can be written

n∑
i=1

X i∂i, where the X i are smooth functions.

If ϕ : U → V is a diffeomorphism, the composition g �→ g ◦ ϕ is a ring
isomorphism between C∞(V ) and C∞(U). Conjugation by this isomorphism
allows us to move a derivation on U to a derivation on V .

Definitions 3.18. Let ϕ : U → V be a diffeomorphism between open subsets
of R

n, and let δ be a derivation on U . The image of δ under ϕ is the
derivation

g �−→
(
δ(g ◦ ϕ)

)
◦ ϕ−1

on V . If X is the vector field associated to δ, we denote ϕ∗X the vector
field associated to the image of δ, and we also say that this vector field is the
image of X under ϕ.

Then,

Lϕ∗Xf =
(
LX(f ◦ ϕ)

)
◦ ϕ−1.

Proposition 3.19. We have

(ϕ∗X)y = Tϕ−1(y)ϕ ·Xϕ−1(y).

Proof. By the chain rule,(
δ(g ◦ ϕ)

)
(x) = Tx(g ◦ ϕ) ·Xx = Tϕ(x)g(Txϕ ·Xx),

hence the result follows by replacing x by ϕ−1(y).

Examples

a) The image of the vector field ∂i under a translation is the same vector
field.
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b) The image under the homothety hλ : x �→ λx of the vector field

n∑
i=1

X i∂i

is the vector field
n∑

i=1

λ(X i ◦ hλ)∂i.

c) The image of the vector field d
dx on R under the exponential map is the

vector field x d
dx on R

∗
+.

Remark. We can easily check for a smooth map ϕ : U �→ V we can define
the image of a derivation at a point δm by

δϕ(m) · g = δm · (g ◦ ϕ),

and that if δm is given by a tangent vector v ∈ TmU , then δϕ(m) is given
by Tmϕ · v. Conversely, to define the image of a global derivation, we are
obliged to “climb up” from V to U , thus to suppose that ϕ is invertible, and
that ϕ−1 is smooth. We check for example that if ϕ is the map t �→ t3

from R to R, there does not exist a vector field X on R such that Xϕ(t) =
Ttϕ · (d/dt)t.

If δ1 and δ2 are two derivations their composition is not a derivation, because

δ1(δ2(fg)) = δ1(δ2f)g + (δ1f)(δ2g) + (δ1g)(δ2f) + δ1(δ2g)f.

However this formula also lets us see that δ1 ◦ δ2 − δ2 ◦ δ1 (which is what the
algebraists call the commutator of δ1 and δ2) is a derivation.

Definition 3.20. The Lie bracket of two vector fields X and Y , denoted
[X,Y ], is the vector field corresponding to the derivation LXLY − LY LX .

Proposition 3.21. If X and Y are given on an open subset U of Rn by

X =

n∑
i=1

X i∂i and Y =

n∑
i=1

Y i∂i

then

[X,Y ] =

n∑
i=1

Zi∂i, where Zi =

n∑
j=1

(
Xj∂jY

i − Y j∂jX
i
)
.
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Proof. If f is a smooth function,

LXLY f = LX

(
n∑

i=1

Y i∂if

)

=

n∑
i,j=1

(
Xj∂jY

i∂if +XjY i∂2
ijf
)
.

Reversing the roles of X and Y and applying the Clairaut-Schwarz theorem,
we obtain the result.

Remarks

a) It is often convenient, to avoid calculation errors, to use the definition of
the bracket over the formula above. Thus we see much more rapidly, for
example, that

[fX, gY ] = f(LXg)Y − g(LY f)X + fg[X,Y ].

b) The bracket has a local character: if V is an open subset of U , and if X
and Y are two vector fields on U , [X|V , Y|V ] = [X,Y ]|V . This property
can be seen using the explicit formula, but it is more instructive to note
that it is a consequence of Theorem 3.15.

Example. Let A be the vector field x �→ Ax on R
n, where A is an n × n

matrix. (Such a vector field is called linear.) In coordinates,

Ax =
n∑

i=1

(
n∑

j=1

aijx
j

)
∂i .

Then [
A,B

]
x
= (BA−AB) · x.

(Watch the sign!)

Lemma 3.22 (Jacobi identity). If X, Y , Z are three vector fields, then

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0.

Proof. On the corresponding derivations, the algebraic verification is
immediate.

The derivation point of view also allows us to reduce the proof the following
result to an easy but tedious exercise.

Proposition 3.23. If X and Y are two vector fields on U , and if ϕ is a
diffeomorphism from U to V , then

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ].
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3.5. The Tangent Bundle

3.5.1. The Manifold of Tangent Vectors

On a manifold, as we have seen, the notion of derivation makes sense. Under
these conditions, we would like to have analogous result to Theorem 3.11
for derivations at a point: a derivation on a manifold M should allow us
to associate to each point m in M a tangent vector Xm of TmM , with this
correspondence being smooth in a sense that we will make precise. To do
this, we will show that the set of tangent vectors is itself a manifold in a
natural way. We first set

TM =
∐

m∈M

TmM.

For the moment, TM is the disjoint union of different tangent vector spaces
to M , without a topology. For each chart (U,ϕ), the map

Φ : (x, ξ) �−→ (ϕ(x), Txϕ · ξ)

is a bijection from TU to ϕ(U)×R
n.

Given an atlas (Ui, ϕi)i∈I of M , we equip TM with a topology by imposing
the following conditions:

1) the sets TUi are open subsets of TM ;

2) the maps Φi are homeomorphisms.

Then Ω ⊂ TM is open if and only if Φi(Ω ∩ TUi) is an open subset of
ϕ(Ui) × R

n for every i. To see that these conditions are consistent, we
remark that by the same definition of tangent space, if Ui ∩Uj �= ∅, the map

Φi ◦ Φ−1
j : ϕj(Ui ∩ Uj)×R

n −→ ϕi(Ui ∩ Uj)×R
n

given by

(y, v) �−→
(
(ϕi ◦ ϕ−1

j )(y), Ty(ϕi ◦ ϕ−1
j ) · v

)
is a homeomorphism and even a diffeomorphism.

We have therefore defined a topology on TM which makes it a topological
manifold with the atlas (TUi,Φi)i∈I . As this atlas is smooth, TM is a smooth
manifold of dimension 2 dimM . At this stage, it is important to remark that
if M is a Cp manifold (with p > 0), then TM is a Cp−1 manifold. This
manifold is called the tangent bundle to M . We justify this name.

Proposition 3.24. The canonical projection p from TM to M is a fibration.
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Proof. It suffices to introduce the map

ψi : p−1(Ui) = TUi −→ Ui ×R
n given by ψi(ξx) = (x, Txϕ·ξx).

We can say more: the restriction of ψi to the fiber TxM is a vector space
isomorphism from TxM to R

n. If M1 and M2 are two manifolds and
f : M1 → M2 is a smooth map, by considering all the (Txf)x∈M1 simultane-
ously, we find a map that we denote Tf from TM1 to TM2, which is smooth
(and Cp−1 if f is Cp) and such that the restriction to each fiber TxM1 is the
linear map Txf . This translates into the commutative diagram

TM1
Tf

p1

TM2

p2

M1
f

M2

Moreover, if M3 is a third manifold and g : M2 → M3 a smooth map, by the
“manifold” version of the chain rule (see Proposition 2.25), T (g◦f) = Tg◦Tf .

3.5.2. Vector Bundles

This situation is the prototype of a more general situation that merits descrip-
tion.

Definition 3.25. A real (resp. complex) vector bundle of rank k on a mani-
fold B is a fibered space (E, p,B) such that

i) the typical fiber F and the fibers p−1(b), b ∈ B are real (resp. complex)
vector spaces of dimension k;

ii) for every local trivialization ϕ, the restriction of ϕ to p−1(b) (which sends
p−1(b) to {b} × F ) induces a vector space isomorphism on F .

The fiber p−1(b) is denoted Eb.

Examples

a) The product bundle M ×R
k, called the trivial bundle of rank k over M .

b) The tangent bundle to a manifold of dimension n is a real vector bundle
of rank n.

c) If M is a submanifold embedded into an inner product space E, the normal
bundle to M , denoted N(M) is the set of ordered pairs (x, v) of M × E
such that v is orthogonal to TxM ; the projection to M is the restriction
to M × E of pr1.

The rank of this bundle is the codimension of M in E. See Exercise 20.
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The following definitions parallel those seen in Section 2.5 for bundles.

Definitions 3.26

a) A morphism between two vector bundles (E1, p1, B1) and (E2, p2, B2) (not
necessarily of the same rank) is a smooth map f : E1 → E2 which maps
fibers to fibers (this is to say that there exists a map g : B1 → B2 that
makes the following diagram

E1
f

p1

E2

p2

B1
g

B2

commute), and such that the restriction to each fiber (E1)b is a linear map
from (E1)b to (E2)g(b).

b) If f is a diffeomorphism (in which case the map from fiber to fiber is a
vector space isomorphism) we say that f is a vector bundle isomorphism.

c) A bundle is trivializable if it is isomorphic to a trivial bundle. A manifold
whose tangent bundle is trivializable is called parallelizable.

Example. The circle S1 is parallelizable, as seen in Figure 3.3.

Figure 3.3: Tangent bundle of S1

For more examples, see Exercise 12, Chapter 4, and the discussion which
follows Proposition 3.28. These situations are something of an exception.
The following notion is the key to better understand the tangent bundle, and
vector bundles in general.
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Definitions 3.27

a) A section of a vector bundle E with base B is a smooth map s from B to
E such that p ◦ s = IdB (which is to say that s(x) ∈ Ex for every x in B).

b) A vector field on a manifold is a section of the tangent bundle.

We denote the set of (smooth) sections of E by C∞(E), and therefore
C∞(TM) is the set of vector fields on M . There exists a natural vector
space structure on C∞(E) which is obtained by requiring that

(s+ t)(x) = s(x) + t(x) (fiberwise addition in Ex).

The zero section defines an embedding of B into E.

Sections of a trivial bundle B × R
k are of the form x �→

(
x, f(x)

)
, and are

thus identified with functions defined on B with values in R
k. In particular,

if U is an open subset of Rn, C∞(TU) is identified with C∞(U,Rn). As in
the case with open subsets of Rn, we hereafter denote the value of a vector
field X at x by Xx instead of X(x).

If (Ui, ϕi)i∈I is an atlas of M , we see using the corresponding atlas of TM
that a vector field may be given by a family of maps Xi ∈ C∞(Ui,R

n) such
that

∀x ∈ Ui ∩ Uj, Xi(x) = Tϕj(x)

(
ϕi ◦ ϕ−1

j

)
·Xj(x).

We can also give the functions X i = Xi ◦ ϕ−1
i . For each i, we thus have a

vector field on ϕi(Ui), and the condition above is equivalent to(
ϕj ◦ ϕ−1

i

)
∗ Xi = Xj on ϕj(Ui ∩ Uj).

This simply says that on Ui, ϕi∗X = Xi.

Proposition 3.28. A vector bundle E of rank k over a manifold B is trivi-
alizable if and only if there exists k sections whose values at every point x ∈ B
form a basis for Ex.

Proof. If (ei)1�i�k is the canonical basis of Rk and if ϕ is a trivialization
of E, we introduce k sections

x �−→ ϕ−1(x, ei).

Conversely, let (sα)1�α�k be k everywhere linearly independent sections. We
decompose ex ∈ E relative the basis sα(x), in other words write

ξx =

n∑
α=1

λα(ξx)X
α
x .
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We leave to the reader the task of verifying, using the property of local
trivializations, that the functions λα are smooth on E. We find a trivialization
ϕ by writing

ϕ(x) = (p(x), λ1(x), . . . , λn(x)).

We have just seen that ϕ is smooth; as for its inverse, it is explicitly given by

ϕ−1(x, v1, . . . , vk) =
k∑

α=1

vαs
α(x).

Examples

a) For a vector bundle of rank 1 to be trivializable, it is necessary and suffi-
cient that it admit a nonvanishing section. An important example of a
nontrivializable vector bundle of rank 1 is the infinite Möbius strip, seen
as a bundle over S1 (see Exercise 21).

b) We will see below (see Theorems 6.17 and 7.23) that for each vector field X
on S2n, there exists a point x such that Xx = 0x (such a point is called
a zero of the vector field considered). It follows that spheres of even
dimension are not parallelizable. On the other hand, by question c) of
Exercise 4 in Chapter 2, the 3-dimensional sphere is parallelizable: the
sphere is diffeomorphic to SU(2), as the multiplicative group of quater-
nions of norm 1, and we will see in the next chapter that every Lie group
is parallelizable.

c) ��For analogous but more subtle algebraic reasons, S7 is parallelizable
(see [Steenrood 51] for example). Conversely, the only parallelizable
spheres are S1, S3 and S7. This is a profound result of A. Dold (see [Bott-
Milnor 58]).��

3.5.3. Vector Fields on Manifolds; The Hessian

As in the case of open subsets of Rn, we associate to every vector field X the
map f �→ LXf from C∞(M) to itself defined by

(LXf)(x) = Txf ·Xx

and we have the same characterization of derivations.

Theorem 3.29. The map L : X �→ LX is a bijection from C∞(TM) to the
set of derivations on M .

Proof. We first note that L is injective. Indeed let a ∈ M be such that
Xa �= 0. Then, if (U,ϕ) is a chart whose domain contains a, there exists
a function f ∈ C∞(U) such that LXf(a) �= 0: the vector Taϕ · Xa has at
least one nonzero coordinate, which we suppose to be the k-th coordinate,
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and let f be the k-th component of the chart ϕ. If V is an open subset
containing a such that V ⊂ U , by Corollary 3.5 there exists a smooth function
f equal to 1 on V and with support contained in U . Now fg ∈ C∞(Rn) and
LX(fg)(a) = LX(f)(a).

We now show that L is surjective. Let (Ui, ϕi)i∈I be an atlas of M , and let
δ be a derivation. By Theorem 3.15, every open subset U ⊂ M, δ induces a
derivation of C∞(U). Then the map

h �−→ ϕi ◦
(
δ(h ◦ ϕ−1

i )
)

is a derivation of C∞ (ϕi (Ui)). We already know in this case by Theorem 3.16
that there exists a vector field Y i on ϕi(Ui) such that

ϕi ◦
(
δ(h ◦ ϕ−1

i )
)
= LY ih.

Then, if X i = ϕ−1
i ∗Y i, then clearly δUi

= LXi . Therefore if Ui ∩Uj �= ∅, the
derivations LXi and LXj induce the same derivation on Ui ∩ Uj , and by the
first part the vector fields X i and Xj have the same restriction to Ui∩Uj .

an immediate consequence of this theorem is that

the definitions and properties of the image and

lie bracket of vector fields on open subsets of R
n

extend to manifolds

This can also be seen in a pedestrian yet instructive way by using the compat-
ibility conditions given above.

Remark. The derivation point of view lets us justify a very convenient abuse
of notation: if (U,ϕ) is a local chart of M , we will denote the image of the
vector field ∂i on ϕ(U) under ϕ−1 again by ∂i. We always write this with a
choice of chart understood. A vector field on U can then be uniquely written
in the form

n∑
i=1

X i∂i with X i ∈ C∞(U).

We finish this paragraph with an important application to critical points.

Theorem 3.30. Let f : M → R be a C2 function on a manifold M , let a
be a point where dfa = 0, and let u, v be two tangent vectors at a. Let X
and Y be two vector fields defined on an open subset containing a, such that
Xa = u, Ya = v. Then

X · df(Y )(a) = Y · df(X)(a) (∗)

depends only on u and v.
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Proof. By the definition of the bracket,

X · df(Y )− Y · df(X) = [X,Y ] · f = df([X,Y ]),

which gives the first statement. The second statement follows from the fact
that the left hand side of (∗) shows that as a function of X , the quan-
tity considered depends only on Xa, and the right hand side depends only
on Ya.

We now associate to every function having a critical point at a the symmetric
bilinear form on TaM given above.

Definitions 3.31

a) The symmetric bilinear form thus obtained is called the Hessian of f at a.

b) A critical point is called non-degenerate if this bilinear form is non-
degenerate.

Of course for two vector fields defined by local coordinates, with the notations
of the remark above, we have

Hess fa(∂i, ∂j) = ∂2
ijf
(
ϕ(a)

)
. (∗∗)

We consider the associated quadratic form more often than this symmetric
bilinear form, and this quadratic form is also called the Hessian, We see
from (∗∗) that if the Hessian is positive definite (resp. negative definite) at a,
the critical point corresponds to a local minimum (resp. a local maximum).

Note. On R
n, analysts commonly use the Hessian matrix ∂2

ijf and the asso-
ciated bilinear form. We then have

Hess(f ◦ ϕ)(a)(u, v) = Hess(f)(Taϕ · u, Taϕ · v) + Tϕ(a)f · Hessϕ(u, v).

This formula allows us to give an equivalent definition of Hessian at a critical
point for C2 functions on a manifold, using the definition of tangent space
directly.

3.6. The Flow of a Vector Field

It is time to introduce a more geometric side of vector fields. For a vector
field x �→ Vx in the plane, simply tracing the vectors Vx seen as vectors with
origin at x allows us to see curves to which these vectors are tangent.
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Figure 3.4: Trajectories of the vector field (x,−y) in the plane

Definition 3.32. A trajectory or integral curve of a vector field X on a
manifold M , is any C1 curve t �→ c(t), defined on an open interval I ⊂ R

with values in M such that

∀t ∈ I, c′(t) = Xc(t).

For an open subset U of R
n, if X =

∑n
i=1 X

i∂i, this amounts to saying
that the components of c are solutions of the system of first order differential
equations

dci

dt
= X i(c1, . . . , cn) (1 � i � n).

As the functions X i are smooth, we can apply the classical result concerning
the existence and uniqueness of systems of differential equations seen in
Section 1.9.

Theorem 3.33. Let X be a vector field on an open subset U of R
n and

x a point in U . Then there exists an open interval I containing 0 such that
c(0) = x; if c1 : I1 → U is another trajectory with the same property, c and c1
coincide on I ∩ I1.
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Using the terminology of Section 3.3, this means that the germ of c is unique.
We may then show that there exists a unique maximal interval of defini-
tion of c. We denote the corresponding trajectory by cx. We can now give
a more precise version of the preceding statement (“dependence on initial
conditions”):

If Ix is the (maximal) interval of definition of cx, the union of the Ix × {x},
as x varies over U , is an open subset Ω of R × U , containing {0} × U ,
for which the map

(x, t) �−→ cx(t)

is smooth.

Examples. If U = R and Xx = x, we have cx(t) = xet, and Ω = R ×R.
However if X(x) = x2, then

cx(t) =
x

1− tx
and Ω =

{
(x, t) ∈ R

2 : xt < 1
}
.

Thus the trajectories are not necessarily defined on all of R.

1/x1

x1

Figure 3.5: Blow up in finite time
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We return to the general case. The system of differential equations given
in Definition 3.32 is autonomous (this is to say that the variable t does not
explicitly enter into the right hand side of the system). As a consequence,
if t �→ c(t) is a trajectory, the same is true for t �→ c(t+a) for any real number
a. Taking the uniqueness into account, we obtain the identity

cx(t+ a) = ccx(a)(t).

We will rewrite this relation (valid under the condition that both sides make
sense) by emphasizing the “spatial” variable over the “temporal”. In other
words, we write

ϕX
t (x) = cx(t).

In particular ϕX
0 (x) = x, and the identity above gives

ϕX
t+t′(x) = ϕX

t

(
ϕX
t′ (x)

)
.

This abuse of notation allows us to write the following assertion: if the right
hand side is defined (this is to say if (t′, x) and

(
t, ϕX

t′ (x)
)

are in Ω) then the
left hand side is also defined, and they are equal. We then write, with the
obvious abuse of notation

ϕX
t+t′ = ϕX

t ◦ ϕX
t′ = ϕX

t′ ◦ ϕX
t .

Definition 3.34. The map ϕX : Ω → U is called the flow of the vector
field X.

The ϕX
t are diffeomorphisms onto their image. (But note: their domain of

definition can be different from U if t �= 0. See the example which follows
Theorem 3.33.) Because of the identity above, we also call ϕX the local one-
parameter group of diffeomorphisms associated to the vector field X . This
is not always a group! The word local is there to emphasize the possible
restrictions on the domains of definition of ϕX and the ϕX

t . We omit the X
in this notation when there is no ambiguity. Before we proceed further, we
recall a few typical examples in R

n.

1. If X =
∑n

i=1 a
i∂i (constant vector field), ϕt(x) = x+ ta.

2. If X =
∑n

i=1 x
i∂i (radial vector field), ϕt(x) = etx.

3. If A is the linear vector field associated to the endomorphism A, defined
by Ax = Ax, we have ϕt(x) = (exp tA) · x.

We note that as a bonus, the preceding discussion gives a proof of the fact
that

exp(t+ t′)A = (exp tA)(exp t′A).

The following property, which is very useful in practise, allows us to pass
from the flow to the vector field.
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Lemma 3.35. Let h be a smooth map defined on an open subset I × U
containing {0} × U with values in U such that

i) h(t, h(t′, x)) = h(t+t′, x) as soon as both sides of this equation are defined;

ii) h(0, x) = x;

iii) d
dth(t, x)|t=0 = Xx.

Then h(t, x) = ϕX
t (x) everywhere where h is defined.

Proof. It suffices to remark that

d

dt
h(t, x)|t=t0 =

d

dt
h(t+ t0, x)|t=0 =

d

dt
h(t, h(t0, x))|t=0 = Xh(t0,x).

Definitions 3.36. A map h satisfying the conditions of Lemma 3.35 is a
local one-parameter group, and the vector field

Xx =
d

dt
h(t, x)|t=0

is the infinitesimal generator of h.

We now study the flow of the image of a vector field.

Proposition 3.37. Let X be a vector field on an open subset U ⊂ R
n and

let ψ : U �→ V be a diffeomorphism. If ϕt is the flow of X, then the flow of
the image ψ∗X is

ψ ◦ ϕt ◦ ψ−1.

Proof. By Lemma 3.35 applied to h(t, x) = ψ ◦ ϕt ◦ ψ−1(x), it suffices to
remark that

d

dt

(
ψ ◦ ϕt ◦ ψ−1

)
(x)|t=0 = Tψ−1(x)ψ ·Xψ−1(x) = ψ∗Xx.

Example. Recall the linear vector field A associated to A ∈ End(Rn), and
consider the diffeomorphism given by an invertible matrix P . Then

P∗Ax = PAP−1 · x,

and we recover the fact that expPAP−1 = P (expA)P−1.

Moreover, if the matrix P is itself of the form exp tB, then

(exp tB)(expA)(exp−tB) =
(
1 + tB +O(t2)

)
A
(
1− tB +O(t2)

)
= A+ t(BA−AB) +O(t2)

and it follows

d

dt
(exp tB)(expA)(exp−tB) · x = (BA−AB) · x.
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But this can also be written

d

dt

(
(exp tB∗A)x

)
t=0

=
[
A,B

]
x
.

This final property is true in a much more general context.

Theorem 3.38. Let X and Y be two vector fields on an open subset U
of R

n, and let ϕY
t be the flow of Y . Then(

d

dt

)(
ϕY
t∗X

)
|t=0

= [X,Y ].

Proof. We use the following property, which is a version of the Hadamard
lemma with parameters.

Let f : [−ε, ε]× U → R be a smooth map such that f(0, x) = 0. Then f can
be written

f(t, x) = tg(t, x)

where g is smooth and
∂f

∂t
(0, x) = g(0, x).

We now reason using derivations, and consider the effect of ϕt∗X on a func-
tion f . So let f(t, x) = f

(
ϕt(x)

)
− f(x), and set gt = g(t, .) with g0 = LY f .

Then

(Lϕt∗X)f =
(
LX(f ◦ ϕt)

)
◦ ϕ−t (by Theorem 3.16)

=
(
LX(f + tgt)

)
◦ ϕ−t

= (LXf) ◦ ϕ−t + t(LXgt) ◦ ϕ−t.

The derivative with respect to t of the first term, evaluated at t = 0 is
−LY (LXf, ) and that of the second is LXg0 = LXLY f .

Remark. Let X , Y and Z be three vector fields, and ϕt the flow of Z.
Differentiating the identity

ϕZ
t∗[X,Y ] =

[
ϕZ
t∗X,ϕZ

t∗Y
]

with respect to t, we obtain

[[X,Y ], Z] = [[X,Z], Y ] + [X, [Z, Y ]],

again recovering Jacobi’s identity.

everything we have seen in this paragraph

applies to manifolds
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The only place where we used a result specific (at least superficially) to
open subsets of R

n is Theorem 3.33: this result appeals to the classical
theory of differential equations. But if X is a vector field on a manifold M
equipped with an atlas (Ui, ϕi)i∈I , and if θi,t is the flow of the vector field
ϕi∗X on ϕi(Ui), then

ϕ−1
i ◦ θi,t ◦ ϕi

is a one-parameter group of diffeomorphisms on Ui, which by construction
has infinitesimal generator given by X . We deduce that

ϕ−1
i ◦ θi,t ◦ ϕi = ϕ−1

j ◦ θj,t ◦ ϕj

on Ui ∩Uj , because a one-parameter group is determined by its infinitesimal
generator.

Moreover, to study flows of vector fields, compact manifolds are actually a
more natural and agreeable setting than open subsets of Rn for the following
reason:

Theorem 3.39. If X is a vector field on a compact manifold M , then the
flow of X is defined on R ×M . In particular, for every t, ϕt is a a diffeo-
morphism of M .

Proof. At the outset, the domain of definition of the flow ϕ is an open
subset of Ω ⊂ R × M , containing {0} × M , and the domain of definition
of the trajectory cx is the interval Ix = Ω ∩ R × {x}. Set Ix = (α, β), and
suppose for example that β < +∞. If (tn) is a sequence of real numbers
which increases to β, then by compactness of M , the sequence

(
cx(tn)

)
has

a limit point y (after taking a subsequence if necessary). Then there exists
an ε > 0 and an open subset U containing y such that (ε, ε)× U ⊂ Ω.

Then let tn be such that |tn−β| < ε and cx(tn) ∈ U . The trajectory s �→ d(s)
with initial condition d(0) = cx(tn) is defined on an interval (ε, ε), and by
Theorem 3.33, d(s) = cx(tn + s) if tn + s ∈ Ix. Let

c̃x(t) =

{
cx(t) if t ∈ Ix

d(t− tn) if tn � t < tn + ε

and we obtain a trajectory with extends cx beyond the limit β of Ix, contra-
dicting the maximality hypothesis of Ix. The relation

ϕX
t+t′ = ϕX

t ◦ ϕX
t′ = ϕX

t′ ◦ ϕX
t

is now true for any t, t′ and x. In particular, ϕt is a diffeomorphism with
inverse ϕ−t.
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Remarks

a) This result is still true for vector fields with compact support on noncom-
pact manifolds: it suffices to remark that nonconstant trajectories of a
vector field are contained in the support of the vector field.

b) We also deduce that a smooth manifold, whether compact or not, admits
“many” diffeomorphisms. It suffices to see, by using a chart and a bump
function with support contained in the domain of the chart, that a mani-
fold always admits nontrivial vector fields with compact support. We can
deduce (see Exercise 15) that the group of diffeomorphism is k-transitive
for all k.

The next result shows why it is useful to be able to construct such diffeomor-
phisms.

Theorem 3.40. Let f be a smooth real-valued function on an compact mani-
fold M . For every real number a, set

Ma =
{
x ∈ M : f(x) � a

}
.

If a < b and f−1([a, b]) does not contain a critical point, then there exists a
diffeomorphism of M from Ma to M b.

Proof. Suppose M is embedded in Euclidean space R
N , which is possible

by Theorem 3.7. Then we send Ma to M b by “pulling” along the orthogonal
trajectories of the submanifolds f = constant (see Figure 3.6).

a  f  b

f =a

f =b

Figure 3.6: From one level-set to another
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More precisely, given f we define a vector field ∇f by requiring

〈∇mf, u〉 = dfm(u), ∀m ∈ M, u ∈ TmM,

where we denoted the Euclidean inner of R
N product by 〈, 〉. The set of

critical points of f is closed, thus f−1([a, b]) is contained in an open subset
of U without critical points. Now let g be a bump function, equal to 1
on f−1([a, b]) and supported in U . We define a vector field on M by

Xm =
g(m)

〈∇fm,∇fm〉∇fm.

If ϕt is the corresponding flow, we have

d

dt
f
(
ϕt(m)

)
= dfϕt(m) ·Xϕt(m) = g(m) � 0,

and
d

dt
f
(
ϕt(m)

)
= 1 if m ∈ f−1([a, b]).

As a result, ϕb−a(M
a) = M b and ϕa−b(M

b) = Ma.

Remarks

a) ��The embedding of M into R
N is not essential. We took the gradient of f

with respect to the Riemannian metric 〈 , 〉|M , but any other Riemannian
metric would have also worked.��

b) If we use the notion of manifold with boundary, we can say that Ma and
M b are diffeomorphic.

c) The same result is true if M is not compact, provided that f−1([a, b]) is
compact. On the other hand this last hypothesis is essential, as we can
see by removing a point.

3.7. Time-Dependent Vector Fields

To find the trajectories of a vector field on an open subset of Rn or even a
manifold reduces to solving a system of autonomous differential equations.
On the other hand, a non-autonomous system of differential equations on an
open subset of Rn, that is to say a system of the form

dci

dt
= X i(t, c1(t), . . . , cn(t)

)
(1 � i � n)
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can be reduced to an autonomous system on R× U given by

dτ

dt
= 1

dci

dt
= X i(τ(t), c1(t), . . . , cn(t)

)
(1 � i � n).

This extends without difficulty to manifolds.

Definition 3.41. If M is a manifold and I ⊂ R is an interval, we call a
smooth map X from I×M to TM such that p

(
X(t, x)

)
= x (here we denoted

the projection of TM to M by p) a time-dependent vector field.

We hasten to associate to X the vector field X̃ on I ×M defined by

X̃(t,x) =
(
1, X(t, x)

)
.

Adapting Definition 3.32, we call a trajectory of X any curve c : J → M ,
where J ⊂ I, such that c′(t) = Xc(t)(t). The trajectories of X are then
projections to M of trajectories of X̃ on I×M . The theorem of local existence
and uniqueness of trajectories immediately extends: it is no more difficult
to pass to systems of autonomous differential equations than to the non-
autonomous ones. From the flow point of view, we note that if c is the
trajectory such that

c′(s) = X
(
s, c(s)

)
and c(t) = x,

then we have
ϕX̃
s (t, x) =

(
t+ s, c(t+ s)

)
.

If the manifold M is compact, we have a weaker but still useful version (we
no longer have a one-parameter group of diffeomorphisms) of Theorem 3.39.

Theorem 3.42. Let X be a time dependent vector field on a compact
manifold M . Suppose that X is defined on I = (α, β) × M (we assume
−∞ � α < β � +∞). Then:

i) The trajectories of X are defined for all t ∈ I.

ii) If s �→ Fs(t, x) is the position at time t + s of the trajectory that passes
through x at time t, then x �→ Fs(t, x) is a diffeomorphism of M for all
s ∈ (α − t, β − t).

iii) Conversely, let s �→ Gs be a path of diffeomorphisms of M (in other
words, (s, x) �→ Gs(x) is a smooth map of J ×M to M and x �→ Gs(x)
is a diffeomorphism for all s ∈ J). Suppose that 0 ∈ J and further
G0 = IdM . Then

Y (t, x) =
d

ds

(
Gs(G

−1
t (x))

)
s=t
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is a time-dependent vector field on M , and s �→ Gs(x) is the trajectory
which passes through x at time 0.

Proof

i) It suffices to consider the argument of Theorem 3.39, which did not use the
fact that the differential equation under consideration was autonomous.

ii) Now let ϕs be the flow of (1, X) on I ×M . We have

ϕs(t, x) =
(
s+ t, Fs(t, x)

)
.

Applying the property of being a one-parameter group to the component
in M , we obtain

Fs1+s2(t, x) = Fs1

(
t+ s2, Fs2(t, x)

)
.

We see in particular that for fixed t ∈ (α, β) and s ∈ (α − t, β − t),
x �→ Fs(t, x) is a diffeomorphism with inverse x �→ F−s(s+ t, x).

iii) Now let s �→ Gs be a smooth path of diffeomorphisms, and

Y (t, x) =
d

ds

(
Gs

(
G−1

t (x)
))

|s=t

be the associated time-dependent vector field. Then

Y
(
t, Gt(x)

)
=

d

ds
Gs(x)|s=t,

which shows that the curve t �→ Gt(x) is a trajectory of the vector field Y .
This is by hypothesis the trajectory which passes through x at time 0.

In the same way that a vector field gives rise to a one-parameter group
of diffeomorphisms, a time-dependent vector field gives rise to a family of
one-parameter diffeomorphisms. This justifies the following definition:

Definition 3.43. The time dependent vector field defined in 3.42 is called
the infinitesimal generator of the family of diffeomorphisms s �→ Gs.

The construction of families of diffeomorphisms from their infinitesimal gener-
ator is a very useful tool, invented by Jürgen Moser (1928–1999), and called
Moser’s trick. As an example we use it for the following result (proved also in
Exercise 11 of Chapter 1). For other examples of Moser’s trick, see Exercise 17
of Chapter 5 and Exercise 19 of Chapter 7.

Theorem 3.44 (Morse lemma). Let f : U → R be a smooth function
defined on an open subset of Rn and let a ∈ U be a non-degenerate critical
point of f (see Definition 3.31). Then there exists open subsets V and W
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containing a and contained in U and a diffeomorphism ϕ from W to V such
that ϕ(a) = a and

f
(
ϕ(x)

)
− f(a) =

∑
i,j

∂2
ijf(a)(x

i − ai)(xj − aj).

Proof. We may always suppose that a = 0 and f(a) = 0. Two applications
of Hadamard’s lemma allows us to write f in the form

f(x) =
∑

1�i, j�n

hij(x)x
ixj ,

with hij = hji and hij(0) = ∂2
ijf(0), for some smooth functions hij . In a ball

with center 0 contained in U we write, for t ∈ [0, 1],

ft(x) =
∑

1�i, j�n

hij(tx)x
ixj .

Thus f1 = f , while f0 is the desired local model. We will show that there
exists a path of diffeomorphisms t �→ ϕt, such that

ft ◦ ϕt = f0 and ϕ0 = Id .

Let f ′
t(x) be the partial derivative with respect to t of the function (t, x) �→

ft(x). In differentiating the preceding relation with respect to t, we see that
the infinitesimal generator X of ϕt satisfied

f ′
t

(
ϕt(x)

)
+ (dft)ϕt(x) ·Xϕt(x)(t) = 0.

We must therefore find a time-dependent vector field such that

f ′
t(y) + (dft)y ·Xy(t) = f ′

t(y) +
∑
k

∂kft(y)X
k(t, y) = 0.

The difficulty comes from (dft)0 = 0. However, knowing that

f ′
t(y) =

∑
k,i,j

∂khij(ty)y
kyiyj ,

and

∂kft(y) =
∑
i,j

thij(ty)y
iyj + 2

∑
i

hki(ty)y
i,

we are assured of finding such a vector field if the coordinates Xk are solutions
of the linear system

∑
k

(
2hki(ty) + t

∑
j

∂khij(ty)y
j

)
Xk(t, y) +

∑
k,j

∂khij(ty)y
kyj = 0
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(1 � i � n). As 0 is a non-degenerate critical point, the determinant of the
matrix (hki(0))1�k, i�n is nonzero. The same will be true of the determinant
of a system if y is sufficiently close to 0, say for ‖y‖ < r. To be sure that
the time-dependent vector field thus found is the infinitesimal generator of a
path of diffeomorphisms defined up to time 1, we employ a method proved
many times in this chapter: we multiply by a bump function with support
in B(0, r) equal to 1 on B(0, r/2).

Remark. In particular, the reduced form obtained shows that non-
degenerate critical points are isolated.

3.8. One-Dimensional Manifolds

We will use the embedding theorem from earlier in this Chapter to prove the
following result.

Theorem 3.45. A manifold which is connected and countable at infinity of
dimension 1 is diffeomorphic to S1 if it is compact, and to R

n if it is not
compact.

The proof of this “intuitive” result is delicate. By Theorem 3.7, such a
manifold C admits an embedding in R

n (we can even say in R
3 by using

Theorem 3.8, but this will not be necessary). We will start with such an
embedding, but first a few preliminaries on curve parametrizations.

Definition 3.46. Let ϕ : (a, b) → C be a parametrization of a one-
dimensional submanifold of Euclidean space. We say ϕ is an arc-length
parametrization if for every t in (a, b) the velocity vector ϕ′(t) has norm 1.

Such parametrizations always exist, and we have uniqueness up to a change
of orientation and starting point. More precisely:

Lemma 3.47. Let ψ : J → C be a parametrization of C. Then there
exists an arc-length parametrization with the same image ψ(J). Moreover, if
ϕ1 : I1 → C and ϕ2 : I2 → C are two such parametrizations, there exists a
c such that ϕ2(t) = ϕ1(c+ t) where ϕ2(t) = ϕ1(c− t).

Proof. Choose to ∈ J and set

S(t) =

∫ t

to

‖ψ′(u)‖ du.

The function S is smooth and its derivative is everywhere nonzero. If I =
S(J), the function ψ ◦ S−1 : I → C gives an arc-length parametrization.
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Now let ϕ1 and ϕ2 be two parametrizations with image ψ(J), defined on
open intervals I1 and I2. Then function ϕ−1

1 ◦ ϕ2 is a diffeomorphism from
I2 to I1. Moreover, by differentiating

ϕ2 = ϕ1 ◦
(
ϕ−1
1 ◦ ϕ2

)
,

we see that |(ϕ−1
1 ◦ ϕ2)

′(t)| = 1, and thus that the derivative (ϕ−1
1 ◦ ϕ2)

′(t)
is constant and equal to 1 or −1.

Proof of Theorem 3.45. Let ϕ : (a, b) �→ C be an arc-length parame-
trization. We may suppose this parametrization to be maximal (possibly
with a = −∞ or b = −∞). We will see that ϕ is surjective by showing
that its image ϕ((a, b)) is open and closed in C. First ϕ((a, b)) is open
as ϕ : (a, b) → C is a local diffeomorphism. Now let

x ∈ ϕ((a, b))� ϕ((a, b)).

We have x = limn	→+∞ ϕ(tn), where (tn) is a sequence of points in (a, b).
Passing to a subsequence, we may suppose that (tn) converges. The limit is
either a point of (a, b) or a or b. The first case is impossible as we supposed
that x is not in the image of ϕ. Suppose for example that the limit is b, and
let ψ : (−ε, ε) → C be an arc-length parametrization of a neighborhood of x
in C, such that ψ(0) = x. Then ϕ(tn) ∈ ψ(J) for n sufficiently large. More
precisely, we have ϕ(tn) = ψ(ηn), for a unique ηn which tends to 0 as n tends
to infinity. By the lemma,

ϕ(t) = ψ(ηn ±
(
t− tn)

)
.

For n sufficiently large, the right hand side furnishes an extension of ϕ past b,
contrary to the maximality hypothesis.

If ϕ is injective, we have a injective immersion from an interval (a, b) to E,
thus the image is a submanifold. Such an immersion is an embedding (we
leave this last point which is not immediately obvious to the reader), and is
a diffeomorphism between (a, b) and C, which proves that C is diffeomorphic
to R.

Now suppose that ϕ is not injective, and let t1 and t2 be such that ϕ(t1) =
ϕ(t2). By translating the parameter t, we may suppose that t1 = 0 and
t2 = c > 0. The vectors ϕ′(0) and ϕ′(c) are two vectors with norm 1 tangent
to C at the same point, thus ϕ′(0) = ±ϕ′(c). The second case is impossible:
the lemma applied to the parametrizations ϕ(t) and ϕ(c − t) on [0, c] gives
ϕ(t) = ϕ(c − t), and by differentiating ϕ′(t) = −ϕ′(c − t), and ϕ′(c/2) = 0,
which is impossible.

So ϕ′(0) = ϕ′(c). The lemma then gives ϕ(t) = ϕ(c + t) until c+ t ∈ (a, b);
however if (a, b) �= R, this relation also gives an extension of ϕ past
(a, b). Thus (a, b) = R and ϕ is periodic. Let T be its smallest period.
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If ϕ(t1) = ϕ(t2), then by the reason above ϕ(t2− t1+ t) = ϕ(t) for any t, and
t2 − t1 is an integer multiple of T . Then, by passing to the quotient, ϕ gives
an injective immersion of R/Z to C, thus an embedding.

Remark. We have given very simple “intrinsic characterization” of one-
dimensional manifolds. On the other hand, their embeddings in R

3 can be
much more complicated that the “standard” embedding t �→ (cos t, sin t, 0).
This embedding extends to an embedding of the closed disk. The same is not
true for the trefoil knot

t �−→
(
(2 + cos 3t) cos 2t, (2 + cos 3t) sin 2t, sin 3t

)
(this is not an obvious assertion, despite Figure 3.7).

Figure 3.7: Trefoil knot

For a taste of Knot Theory, which is now experiencing an explosion of interest,
see [Adams 94].

3.9. Comments

More about immersions and embeddings

The proof of Whitney’s theorem foreshadows the fact that once we know that
immersions and embeddings of a given manifold exist, they are numerous. For
example one shows (cf. [Hirsch 76, Chapter 2]) that if M is compact, the set
of immersions of M to R

2 dimM is open and dense in C∞(M,R2 dimM ) ��for
the compact-open topology��.
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Hence the question of the classification of these immersions. To answer we
introduce the notion of isotopy. Two immersions f and g from M to N
are isotopic if there exists a smooth map H : [0, 1] × M → N such that
H(0, x) = f(x), H(1, x) = g(x), and such that the map x �→ H(t, x) is
an immersion for all t. It is easy to see for example that two immersions
sufficiently close in C1 on a compact manifold are isotopic. The classification
of immersions up to isotopy is started for example in [Adachi 93].

We explain what happens for M = S1. This is easier than in higher dimen-
sions, but still interesting.

1. Two immersions of S1 to Rn are always isotopic if n � 3 (we invite the
reader to prove this by imitating the proof of Whitney’s theorem).

2. Two immersions f and g of S1 to R2 are isotopic if and only if their
“hodographs” t �→ f ′(t)/‖f ′(t)‖ and t �→ g′(t)/‖g′(t)‖ are homotopic (in
other words, if their oriented tangent vectors make the “same number of
turns”). This is the Whitney-Gauenstein theorem, proved for example
in [Adachi 93], [Berger-Gostiaux 88, 9.4.8] or [Do Carmo 76, 1.7].

If we now replace immersion by embedding in the definition of isotopy, we
may show (ibidem) that there are two embedding isotopy classes of S1 in R2

(the trigonometric sense and the needles of a watch sense). If we replace R2

by R3, the problem of classifying embedding isotopies of S1 is similar to the
problem of classifying knots mentioned in the previous paragraph.

Morse theory

We saw in this Chapter that the topological type of a “sub level” {f � a}
of a smooth function on a manifold does not change so long as we do not
cross a critical level (which is to say a level containing a critical point).
What happens when we meet a critical point? The simplest case is that
where there are only two critical points (this is the minimum number on a
compact manifold, a constant function does not have a distinct maximum
and minimum value). The answer is given by Reeb’s theorem:

If M is a compact manifold that admits a smooth function with exactly two
critical points then M is homeomorphic to a sphere.

We cannot conclude that M is diffeomorphic to Sn (we will see why in Exer-
cise 25, where we prove Reeb’s theorem in the easier case where the crit-
ical points are non-degenerate: it is clear that a homeomorphism of Sn can
be extended to a homeomorphism of the closed ball, but the corresponding
property for diffeomorphisms is false).

In the general case, if p ∈ M is a non-degenerate critical point (and therefore
isolated by Theorem 3.44), the Morse lemma allows us to control the change
of topology as we pass from the sublevel f � f(p)− ε to f � f(p) + ε, as a
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function of the index of the critical point p, which is defined as the number
of negative squares in the Morse lemma (see [Milnor 63] and [Hirsch 76] for
more detailed statements and suggestive pictures). From this we deduce for
example, the weak Morse inequality (ibidem):

If f is a function on M having only non-degenerate critical points, and if
ck(f) is the number of critical points of index k, then

dimHk(M,R) � ck(f)

and

∑
k

(−1)kck(f) =
∑
k

(−1)k dimHk(M,R).

The cohomology spaces dimHk(M,R) will be defined in Chapter 7.
��However, the differential form point of view adopted in this book makes
the proof of the Morse inequalities inconvenient. On the other hand they are
easy to prove with a little algebraic topology.��

Dynamical systems

By this we mean the study of the global trajectories of vector fields (and
more generally the study of iterates of a diffeomorphism whether obtained
by a flow or not).

Exercises 6, 7 and 10 give some of the few cases where the structure of the
trajectories is well understood. Another “trivial” example is that of the vector
field ∂x + α∂y on T 2 = R

2/Z2: if α is rational, then the trajectories are all
closed curves, if α is irrational, the trajectories are all strictly immersed
submanifolds which are everywhere dense.

In the general case, even for vector fields on R
2 with polynomial coefficients3

it is out of the question to hope for an explicit expression for the trajectories.

Whence the importance of a qualitative study: the behavior of the trajectories
when t tends to infinity, stabilities, existence of dense orbits, or periodic ones,
etc. The first to recognize this was without doubt Henri Poincaré, see for
example the book [Charpentier-Ghys-Lesne 10].

For these questions, see also [Demazure 00], [Arnold 78; 92], [Hirsch-Smale-
Devaney 03] and above all [Katok-Hasselblatt 95].

3. This example is not a random example: the fact that there exists only a finite number
of closed trajectories is a difficult result (� 1987).
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Why vector bundles?

The justification for most the notions introduced in this book is the usage
made of them in the sequel. This is not true for vector bundles which will be
seldom used here.

The fact that all of the algebraic operations on vector spaces have analogues
in the vector bundle setting is useful to obtain a convenient description of
the tangent bundle, see for example Exercises 20 to 23.

Another justification comes from the study of complex manifolds. The fact
that there are no nonconstant holomorphic functions on a compact complex
manifold could render a mathematician very unhappy. However there exists
certain holomorphic vector bundles with numerous holomorphic sections that
can take the place of the smooth functions in this book. Exercise 27 gives an
example of this situation. Complex geometry uses holomorphic bundles inten-
sively, see for example [Debarre 05], [Griffiths-Harris 94] or [Demailly 12].

Connections

We give a few words on this notion that will barely be touched in this book.

We can see connections as a convenient way to do higher-order differential
calculus. The differential of a vector field or the second differential of a
function require the introduction of an iterated tangent bundle T (TM), where
manipulation is difficult. To avoid this, we introduce the following definition,
which mimics the properties of the directional derivative in R

n.

Definition 3.48. A connection on a manifold M is a bilinear map ∇ from
C∞(TM)× C∞(TM) to C∞(TM) with the following properties.

∇fXY = f∇XY

∇XfY = df(X)Y + f∇XY

(X and Y are vector fields, and f is a smooth function).

The same argument using bump functions as in Theorem 3.15 shows that,
like derivations, connections localize. Namely

(∇XY )|U = ∇X|U
Y|U

for every open subset of U . The first property then implies that the value at
m of ∇XY , for a given vector field Y , depends only on Xm. The second is
essentially the Leibnitz rule. Localization allows us to work in the open set
of chart. If in such an open subset X =

∑n
i=1 X

i∂i and Y =
∑n

i=1 Y
i∂i, we

define the Christoffel symbols by the formula

∇∂j
∂k =

n∑
i=1

Γi
jk∂i.
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A direct calculation then shows

∇XY =

n∑
i=1

Zi∂i

with

Zi =

n∑
k=1

∂kY
iXk +

n∑
j,k=1

Γi
jkX

jXk.

Connections always exist. For example, if M is embedding in R
n, we can

define a connection ∇XY as follows: if TmY is the linear tangent map to Y
at m seen as a map of M to R

N , we may take ∇XY to be the orthogonal
projection of TmY ·Xm onto the tangent space to M at m.

The word connection is derived from connect: a connection permits us to
associate to each piecewise C1 path c : [a, b] → M from x to y a linear
map from TxM to TyM . See any book on Riemannian Geometry for details.
��The example immediately above is that of the Levi-Civita connection of the
Riemannian metric on M induced from the Euclidean metric on R

N . This
Euclidean metric was implicitly introduced when we spoke of the orthogonal
projection.��

3.10. Exercises

1. Show that if M is a compact smooth manifold, the set of smooth functions
is dense in C0(M) in the topology of uniform convergence (use the Stone-
Weierstrass theorem).

2*. Another theorem of Whitney

a) Show that every open subset of Rn is a countable union of open balls.

b) Now let F be a closed subset of Rn. We can then write for points xp and
certain positive numbers rp,

R
n
� F =

⋃
p∈N

B(xp, rp).

Let fp be a smooth nonnegative function which is strictly positive on
B(xp, rp) and with support equal to B(xp, rp) (we will give an explicit
example of such a function). Let

Mp = sup
x∈Rn,|α|�p

∣∣∣∣ ∂αfp
∂xα1

1 . . . ∂xαn
n

(x)

∣∣∣∣ , where α =

n∑
i=1

αi.
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Show that the function

f(x) =
∑
p∈N

1

p!Mp
fp(x)

is smooth, and that f−1(0) = F . (In other words, every closed subset
of Rn is the zero set of a smooth function.)

3. Let f be a smooth function on R such that f( 1n ) = 0 for each integer n (by
the previous exercise, there exists such functions whose restriction to every
neighborhood of zero is not identically zero). Show that every derivative of f
is zero at the origin.

4. Show that the ring of germs of continuous functions at 0 on R
n does not

admit a nonzero derivation.

5. Show that the ring of germs of smooth functions at 0 is not an integral
domain. What happens for the ring of germs of analytic functions?

6. The cross product seen as a bracket

Consider R
3 with the vector fields

X = z∂y − y∂z; Y = x∂z − z∂x; Z = y∂x − x∂y .

a) Show these vector fields are linearly independent over R. What is their
flow? Let E be the vector space on R which they span. Show that E is
stable under bracket.

b) Let ϕ : E �→ R be given by

ϕ(aX + bY + cZ) = (a, b, c).

Show that ϕ is an isomorphism, and that

ϕ([V,W ]) = ϕ(V ) ∧ ϕ(W ),

where ∧ denotes the cross product.

c) What is the flow of aX + bY + cZ?

7. North-South and North-North dynamics on the sphere

Consider the sphere S2 embedded in R
3 in the usual way. Let iN denote

stereographic projection from the north pole, and let ht denote the homothety
with center (0, 0, 0) and factor et of the plane z = 0.

a) Show that i−1
N ◦ ht ◦ iN extends in a unique way to a diffeomorphism gt of

S2, and that gt ◦ gt′ = gt+t′ .
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b) Show that the only fixed points of gt are the north and south poles. Verify
that for all x ∈ S2 we have

lim
t	→+∞ gt(x) = N and lim

t	→−∞ gt(x) = S.

c) Verify that the infinitesimal generator of the one-parameter group gt is
given for all x ∈ S2 by the orthogonal projection of (0, 0, 1) onto TxS

2.

d*) Taking inspiration from the construction done in a), give an example of
a vector field on S2 having a single zero, and sketch its trajectories.

8. Let X and Y be two vector fields on a manifold, with ϕ and ψ the corre-
sponding flows. Show that ϕs and ψt commute for all s and t sufficiently
small if and only if [X,Y ] = 0.

9. Let X be a vector field on a manifold such that [X,Y ] = 0 for any vector
field Y . Show that X = 0.

10. Give an example of a vector field on S2n−1 which is nowhere vanishing.
(Note that

S2n−1 =

{
(z1, . . . , zn) ∈ C

n :

n∑
i=1

|zi|2 = 1

}
,

and use the one-parameter group vt(z) = (eitz1, . . . , e
itzn).)

Note. We will see later that on even dimensional spheres, every vector field
has at least one zero.

11. Show that TSn−1 is diffeomorphic to the submanifold of Cn defined by
the equation

n∑
i=1

z2i = 1.

12*. Examples of parallelizable manifolds

a) Give three vector fields on S3 that are everywhere independent.

b**) Show that the manifold S1 × Sn is parallelizable.

13. Let ϕ : M → N and ψ : N → P be diffeomorphisms. Show that

ψ∗ ◦ ϕ∗ = (ψ ◦ ϕ)∗ .

14*. Prove the inverse function theorem by Moser’s trick. What can we say
of this proof?
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15*. Transitivity of the group of diffeomorphisms

a) Show that for all positive real numbers r and r′ (with r′ > r), and points x
and y in the open ball B(0, r), there exists a diffeomorphism v of Rn such
that v(x) = y and v(z) = z if ‖z‖ > r′, using the flow of an appropriate
vector field.

b) Let M be a manifold. Show that every point x ∈ M has a neighborhood
V with the following property:

For every y ∈ V , there exists a diffeomorphism j of M such that j(x) = y
(we can reduce to a) by using suitable charts).

c) Show that if M is connected, the group of diffeomorphisms acts transitively
on M .

d) Show that if dimM > 1, this group is k-transitive for all k, in other words
if (x1, . . . , xk) and (y1, . . . , yk) are two k-tuples of mutually distinct points,
there exists a diffeomorphism ϕ of M such that ϕ(xi) = yi for all i ∈ [1, k].

16*. Normal form of a nonvanishing vector field

a) Let X =
∑n

i=1 X
i∂i be a vector field on an open subsets U of R

n

containing the origin. Suppose that X1(0) �= 0. Let ϕt be the local
flow of X . Show that the map

F : (x1, . . . , xn) �−→ ϕx1(0, x2, . . . , xn)

is a local diffeomorphism in a neighborhood of 0.

b) Show that F−1
∗ X = ∂1.

Hint. Use Proposition 3.37.

c) Let M be a smooth manifold, and X a vector field on M . Show that for
all a such that Xa �= 0, there exists a chart (U,ϕ), where U contains a,
such that X|U = ∂1.

��The local classification of vector fields having an isolated zero is far from
being this easy. It involves arithmetic conditions on the differential of X at
the zero. See for example [Demazure 00].��

17*. Simultaneous reduction of a commuting system of vector fields

Let L1 . . . , Lp be p everywhere independent vector fields on a manifold M
that satisfy

∀ i, j [Li, Lj ] = 0.

We will prove that for all m ∈ M , there exists an open subset U containing
m and a system of local coordinates on U such that Li|U = ∂

∂xi if 1 � i � p.

The preceding exercise shows that this property is true for p = 1, and we
proceed by induction.
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a) Suppose the property is true for p, and let L1, . . . , Lp+1 be p+1 mutually
commuting independent vector fields. Show that there exists local coor-
dinates (x, y), where x = (x1, . . . , xp) and y = (y1 . . . yn−p) in a neighbor-
hood of every point m such that

Li =
∂

∂xi
if 1 � i � p;

Lp+1 =

p∑
i=1

ai(y)
∂

∂xi
+

n−p∑
j=1

bj(y)
∂

∂yj
.

b) Using the previous exercise, show that we can arrange this system (x, y)
so that

Lp+1 =

p∑
i=1

ai(y)
∂

∂xi
+

∂

∂y1
.

c) Conclude the result with the help of a change of coordinates of the form

ξi = xi + ϕi(y) (1 � i � p), ηj = yj (1 � j � n− p).

18*. Frobenius theorem

A system of p everywhere linearly independent vector fields L1, . . . , Lp on
a manifold M is said to be completely integrable if for every m ∈ M there
exists an open subset U containing m and a p-dimensional submanifold Y
(called an integral submanifold), contained in U and containing m such that
Li(y) ∈ TyY for all y ∈ Y and for all i ∈ [1, p]. (Here the adverb “completely”
indicates that we can find submanifolds tangent to the “field of p-planes”
generated by the Li whose dimension is as large as possible.)

We will show that a system of p vectors is completely integrable if and only
if there exists p3 smooth functions cijk such that

[Lj, Lk] =

p∑
i=1

cijkLi. (F)

(This condition is uninteresting when p = 1: Theorem 3.33 says precisely
that a nonzero vector field is a completely integrable “system”.)

a) Let L′
1, . . . , L

′
p be a second system of vector fields such that for every

m ∈ M the vectors L′
i(m) generate the same vector subspace as the Li(m)

(so that this system is completely integrable if and only if the first system
is). Show that

L′
i(m) =

p∑
j=1

aji (m)Li(m),

where the aji are smooth functions. Deduce the systems L1, . . . , Lp and
L′
1, . . . , L

′
p simultaneously satisfy condition (F).
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b) Show this condition is necessary.

c) To show that this condition is sufficient, we reduce to the previous exercise,
by showing that if the system L1, . . . , Lp satisfies (F), every point of M is
contained in an open subset U on which there exists a system L′

1, . . . , L
′
p

such that:

1) the L′
i(x) are linearly independent for all x ∈ U ;

2) L′
i =

∑p
k=1 a

k
i Lk, where aki ∈ C∞(U);

3) for all i and j in [1, p], [L′
i, L

′
j] = 0.

Being a local question, it suffices to work on an open subset of Rn. From a
linear change of variables, we may suppose that Li(0) = ∂i for all i ∈ [1, p].
If

Li(x) =

n∑
i=1

aji (x)∂j ,

then there exists an open subset containing 0 where the matrix(
aji (x)

)
1�i, j�p

is invertible. Let (bji ) be the inverse matrix, and let

L′
i =

p∑
j=1

bjiLi.

c1) Show that

L′
i(x) = ∂i +

∑
k>p

cki (x)∂k.

c2) By using (F), show that [L′
i, L

′
j] = 0.

19*. Geometry of completely integrable systems

Let M be a manifold equipped with a completely integrable system. We
say that two points x, y ∈ M are equivalent if there exists a finite sequence
Y1, . . . , Yk of integral submanifolds such that x ∈ Y1, y ∈ Yk and Yi∩Yi+1 �= ∅
for 1 � i � k − 1. Show that equivalence classes are strictly immersed
submanifolds.

Note. This equivalence classes are called maximal integrals of the system.

20. Normal bundle

a) Let f be an immersion, not necessarily injective, of a manifold M into
Euclidean space E. Show that the set of pairs (x, v) of M×E such that v is
orthogonal to Txf(TxM) is a vector bundle over M of rank dimE−dimM
(the projection is of course the restriction of pr1). This bundle is called
the normal bundle, as in the case of submanifolds.
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b) Show that the normal bundle to Sn seen as the set of vectors of norm 1
in Euclidean space of dimension n+ 1 is trivializable.

c) Repeat the same question for a submanifold X of Rn of the form f−1(0),
where f is a submersion of Rn to R

p.

21*. Tautological bundle

a) We define a vector bundle of rank 1 on Pn
R, called the tautological bundle,

and denoted γn, as follows. The total space ξ is the subset of Pn
R×R

n+1

of pairs ([x], v) such that v belongs to the line defined by [x], with the
projection being the restriction of pr1. It is the same to say that if x =
(x0, . . . , xn) is a system of homogeneous coordinates of [x] ∈ Pn

R, the
total space is characterized by the equations

xivj − xjvi = 0 , (0 � i < j � n)

(compare with the first question of Exercise 17 in Chapter 2).

b) Show that for n = 1 the total space is diffeomorphic to the manifold of
affine lines in the plane, and that the projection associates to each line its
(non oriented!) direction.

c**) Show that γn is not trivializable.

22*. Construction of some vector bundles

a) Direct product.

If ξ1 = (E1, p1, B1) and ξ2 = (E2, p2, B2) are two vector bundles, then so
is

(E2 × E2, p1 × p2, B1 ×B2),

with each fiber

(p1 × p2)
−1(b1, b2) = (E1)b1 × (E2)b2

equipped with the product vector space structure. This bundle is denoted
ξ1 × ξ2.

b) Pullback bundle.

If ξ = (E, p,B) is a vector bundle and f : B′ → B a smooth map, then

E′ =
{
(b′, e) ∈ B′ × E : f(b′) = p(e)

}
,

equipped with the restriction of the first projection is the total space of a
vector bundle on B′, denoted f∗ξ. The restriction of the second projec-
tion gives a bundle morphism. A silly but important example: if M is a
submanifold of Rn, or more generally if f : M → R

n is an immersion, the
pullback of TRn by f is the trivial bundle M ×R

n.
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c) Direct sum, or Whitney sum.

If ξ1 = (E1, p1, B) and ξ2 = (E2, p2, B) are two vector bundles with the
same base B, the Whitney sum is the bundle Δ∗(ξ1 × ξ2), where Δ : B →
B ×B is the diagonal map. It is denoted ξ1 ⊕ ξ2.

Example. The Whitney sum of the tangent bundle and the normal bundle
to a submanifold of Rn is the trivial bundle.

23**. Tangent bundle to Pn
R

a) Identify TSn with the set of pairs (x, v) ∈ R
n+1×R

n+1 such that ‖x‖ = 1
and 〈x, v〉 = 0. Show that TPn

R is identified with the quotient of TSn

obtained by identifying (x, v) and (−x,−v), and that the quotient map is
a morphism of vector bundles.

b) Define a bundle of rank n on Pn
R, denoted γ⊥

n , whose total space is{
([x], v) ∈ Pn

R×R
n+1 : 〈x, v〉 = 0

}
.

Thus the Whitney sum γn ⊕ γ⊥
n (see Exercise 21) is the trivial bundle of

rank (n+ 1) on Pn
R.

Show that TPn
R is isomorphic to Hom(γn, γ

⊥
n ).

24*. Tubular neighborhood of a submanifold

Let M be a compact submanifold of Euclidean space, and N(M) the normal
bundle to M . We define a map f : N(M) → E by

f(x, v) = x+ v (for (x, v) ∈ N(M) ⊂ M × E, see Exercise 20).

a) Show that f is a local diffeomorphism at (x, 0).

b) For r > 0, write

Nr(M) =
{
(x, v) ∈ N(M) : ‖v‖ < r

}
.

Show that there exists a ε > 0 such that f is a diffeomorphism from Nr(M)
to its image if r < ε (take inspiration from the proof of Lemma 6.18).

The image f(Nr(M)) is called a tubular neighborhood of M , and is
denoted Vr(M).

We mention in passing that if y is in a tubular neighborhood, and if y =
f(x, v), then dist(y,M) = ‖v‖.

25*. Reeb’s theorem: the easy case

Let M be a compact n-dimensional manifold and f a smooth real-valued
function on M admitting exactly two non-degenerate critical points. Show
that M is homeomorphic to Sn.
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Figure 3.8: Tubular neighborhood

Hint. Using Theorems 3.40 and 3.44 we decompose M into three pieces, two
of which are homeomorphic to the closed disk Dn, and the third to a product
I×Sn−1. We can glue these homeomorphisms and obtain an homeomorphism
of M to Sn by remarking that every homeomorphism of Sn−1 extends to a
homeomorphism of Dn.

26. A useful technical lemma

a) Show that in Euclidean space, the open subset B(0, 1)� {0} is diffeomor-
phic to B(0, 1)�B(0, r) (with r < 1 of course!).

b) Show that we can require such a diffeomorphism to equal the identity on
the annulus X = {x : r′ < ‖x‖ < 1, for any r′ ∈ (0, r)}.

c) Let M be a manifold and p1, . . . , pr distinct points. Show that there
exists disjoint open subsets U1, . . . , Ur such that pi ∈ Ui for all i and
M � {p1, . . . , pr} are diffeomorphic to M �

⋃
1�i�r U i.

27*. A modest invitation to complex geometry

a) Show that the tautological bundle of Pn
C, this is to say the bundle of

complex lines defined in the same way as the tautological bundle of Pn
R,

is a holomorphic vector bundle (in other words that the local trivializations
are holomorphic).

b) Show that this bundle does not admit nonzero holomorphic sections.

c) Show that its complex dual admits n+1 linearly independent holomorphic
sections.

28*. A supplement to Section 3.3.2

In the ring FM
x of germs of smooth functions at x, introduce the ideal mx

of germs of functions vanishing at x and the ideal m2
x generated by finite

sums
∑k

i=1 gihi, where the gi and the hi are in mx. Show that the cotangent
bundle TxM

∗ is naturally (in the sense of 3.3.2) isomorphic to mx/m
2
x (use

Hadamard’s lemma).



Chapter 4

Lie Groups

4.1. Introduction

The notion of group was singled out around 1830 by Évariste Galois in his
work on algebraic equations. This initial work was with finite groups.

Forty years later, the work of Galois inspired the Norwegian mathematician
Sophus Lie, who rather than studying invariance of algebraic equations was
studying the invariance properties of ordinary and partial differential equa-
tions and put the need for other types of groups into focus. These were
formerly called “finite and continuous groups”, which in today’s language
conveys groups of finite topological dimension. In fact many of the examples
discovered were smooth manifolds, with smooth group operations. Today we
call such groups Lie groups.

It was rapidly conjectured, but proved only in 1950 (the proof occupies
an entire book, [Montgomery-Zippin 55]) that every topological manifold
equipped with a continuous group operation is a Lie group. It is not surprising
that many of the groups that arise in geometry and physics are Lie groups.
The examples that we will see are all subgroups of the linear group Gl(n,R).
Conversely, it can be proved that every Lie group is locally isomorphic to a
subgroup of a linear group. Nonetheless, the general theory loses none of its
relevance: it is needed for the proof of this result which is far from obvious.
Even at the elementary level where we begin, the theory sheds light on
essential phenomena, where we study the link between group properties and
those of a particular algebraic structure on the tangent space to the identity
element. This structure is naturally identified with left invariant vector fields,
and is stable under the bracket seen in the preceding chapter. This resulting
algebraic structure, called the Lie algebra, reflects the properties of the group.

In the group to algebra direction, everything passes remarkably. The Lie
algebra of a commutative group is commutative, and that of a subgroup is a
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subalgebra of the Lie algebra of the original group. The linear tangent map
to a group morphism gives a morphism of Lie algebras.

In the direction from algebra to group, things are not as nice. The Lie algebra
of a Lie group depends only on the properties of the group in a neighborhood
of the identity element. Two groups having the same identity component have
the same Lie algebra, as well as two groups where one is a covering of the
other. There are examples of this situation in dimension 1: the group (R,+)
(simply connected), SO(2) � S1 (connected but not simply connected), O(2)
(whose identity component is SO(2)) have the same Lie algebra. Here is a
second example. The groups SU(2) (simply connected as it is homeomorphic
to S3), SO(3) (connected but not simply connected as it is a quotient of
order 2 of SU(2), see Exercise 5) and O(3) (whose identity component is
SO(3)) have the same Lie algebra, which turns out to be R

3 equipped with
the cross product.

This chapter gives the rudiments of this theory, with numerous examples.
The existence and properties of the Lie algebra of a Lie group comes from the
properties of the flow of a vector field and the bracket seen in the preceding
chapter. We also give several topological results that allow one to understand
passing in the direction from algebra-group.

We finish with the important notion of homogeneous space. At the algebraic
level, this is a set E on which a group G acts transitively (to avoid ambiguity
we should speak of a G-homogeneous space). There is then a bijection from E
to the quotient of G by the isotropy subgroup Gx of a point x, this is to say
to the subgroup of g such that g ·x = x; if we change the point, this subgroup
is replaced by a conjugate. If G is a Lie group and if Gx is closed in G, we
have a manifold structure on which G acts by diffeomorphisms. This gives a
convenient way to see many geometric objects as manifolds. An important
and typical example is that of the set of vector subspaces of a fixed dimension
of a finite dimensional vector space (the Grassmannians).

For a historical and epistemological study of Lie’s original point of view,
see [Merker 10]. The elementary but instructive example of the Riccati equa-
tion is treated in [Berger 87, 6.8.7].

4.2. Left Invariant Vector Fields

Definition 4.1. A Lie group is a group G equipped with a smooth manifold
structure such that the maps

(g, h) �−→ gh from G×G to G
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and
g �−→ g−1 from G to G

are smooth.

It is enough to assume, of course, that the map

(g, h) �−→ gh−1 from G×G to G

is smooth.

Examples

a) The additive group R
n is a Lie group.

b) The linear group Gl(n,R) of automorphisms of the vector space R
n is a

Lie group: this is an open subset of End(Rn), and therefore a manifold
of dimension n2, and the smoothness of the group operations can be seen
from explicit formulas (this is one of the very rare occasions where the
explicit formulate for the inverse of a matrix gives something!).

c) If G and H are two Lie groups, G×H , equipped with the product group
structure and the product manifold structure, is a Lie group.

d) The circle S1, seen as the multiplicative group of complex numbers of
unit modulus is a Lie group. The product Lie group (S1)n is called the
n-dimensional torus (by analogy with the case n = 2). We will see that
this is, up to isomorphism, the only compact connected Abelian Lie group
of dimension n.

e) By Section 1.5 and Proposition 2.8 the orthogonal group O(n) is a Lie
group. The same result and Exercise 4 of Chapter 2 shows that U(n) and
SU(n) are Lie groups.

f) The group A(n,R) of affine automorphisms Rn, which is to say the trans-
formations

x �−→ Ax+ b, where A ∈ Gl(n,R)

is a Lie group. Indeed, A(n) is identified with Gl(n,R) × R
n equipped

with the law of composition

(A, b)× (A′, b′) = (AA′, Ab′ + b).

In particular,
(A, b)−1 = (A−1,−A−1b).

It is convenient to see A(n,R) as the subgroup of Gl(n+ 1,R) formed by
the matrices (

A b
0 . . . 0 1

)
.
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g) We again mention the Heisenberg group H (see Exercise 11 for a justifica-
tion of this name) of matrices of the form⎛⎝1 x z

0 1 y
0 0 1

⎞⎠
and the Galilean group G of classical mechanics. The action of an element
of G on space-time parametrized by (x, t) ∈ R

3 ×R is defined by

(A, v, b, τ)·(x, t) = (Ax+vt+b, t+τ), where A ∈ SO(3), v, b ∈ R
3, τ ∈ R

(v as in velocity!). In an analogous way to f), G can be considered as the
subgroup of Gl(5,R) of matrices of the form⎛⎝ A b c

0 0 0 1 τ
0 0 0 0 1

⎞⎠.

h) Finally we give the example of the Lorentz group O(3, 1) of automorphisms
of the quadratic form

x2 + y2 + z2 − t2

(see Exercise 19 of Chapter 1 for a justification), which comes up in special
relativity.

Definitions 4.2

a) A morphism between two Lie groups G and H is a map f : G → H which
is both a group homomorphism and a smooth map.

b) Lie groups G and H are said to be isomorphic if f is both a group isomor-
phism and diffeomorphism.

c) A Lie subgroup of G is a submanifold which is also a subgroup.

Examples

a) Of course O(n) is a Lie subgroup of Gl(n,R). The group SO(n) (called the
special orthogonal group) of orthogonal transformations of determinant 1 is
a Lie subgroup of O(n), because it is a subgroup and open subset of SO(n):
we have a partition

O(n) = SO(n) ∪O−(n) where O−(n) =
{
A ∈ O(n) : det(A) = −1

}
.

b) The connected component of the identity element of a Lie group is a Lie
subgroup of G (of the same dimension since it is open in G; it is a subgroup
by Proposition 4.30 below). We call it the identity component of G and
we denote it by Go. We will see for example that O(n)o = SO(n).
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To each element g of a Lie group G, we associate right and left translations,
denoted by Rg and Lg respectively, and defined by

Rg · x = xg and Lg · x = gx.

By virtue of the associativity of the group operation, we have

Lg ◦ Lh = Lgh and Rg ◦Rh = Rhg.

In particular, Rg and Lg are diffeomorphisms of G. Moreover, again associa-
tively implies that Rg and Lh commute, as h(xg) = (hx)g !

By Section 3.4, if X is a vector field on G, we can define for every g ∈ G the
vector field Lg∗X and Rg∗X .

Definition 4.3. A vector field X on a Lie group G is left invariant
(resp. right invariant) if

∀g ∈ G, Lg∗X = X (resp. Rg∗X = X).

We denote the diffeomorphism x �→ x−1 of G by I.

Proposition 4.4. The (left or right) invariant vector fields have the follow-
ing properties:

i) The sum and the Lie bracket of two left invariant (resp. right invariant)
vector fields are left invariant (resp. right invariant).

ii) The image of a left invariant (resp. right invariant) vector field under I
is right invariant (resp. left invariant).

iii) If X is left invariant (resp. right invariant), the same is true for Rg∗X
(resp. Lg∗X).

Proof. The first property is a direct consequence of Proposition 3.23. For
the second, it suffices to note that the relation

(gx)−1 = x−1g−1

can be written
I ◦ Lg = Rg−1 ◦ I.

Finally for the third property, if X is left invariant, then using the fact that,
right translations commute with left translations we have

Lh∗ (Rg∗X) = Rg∗ (Lh∗X) = Rg∗X.

However, we need to know that left invariant vector fields exist. The following
result does the job.
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Proposition 4.5. If G is a Lie group, the map X �→ Xe is an isomorphism
between the vector space of left invariant vector fields on G and the tangent
space TeG.

Proof. If a vector field X on G is left invariant, then necessarily

Xg = TeLg ·Xe,

which shows injectivity. Conversely, given a vector v ∈ TeG, it is necessary
that the map of G to TG given by

g �−→ TeLg · v

is a vector field (which will then be left invariant by construction). It suffices
to show that this map defines a derivation. For f ∈ C∞(G), we denote
by Lvf the function

g �−→ Tgf · (TeLg · v).

It is clear that Lv(fg) = (Lvf)g + f(Lvg), and it remains to show that the
function Lvf is smooth.

Let c : (−ε, ε) �→ G be a smooth curve such that c(0) = e and c′(0) = v.
Now, by the chain rule,

Lvf(g) =
d

dt
f
(
gc(t)

)
|t=0

.

However the function (t, g) �→ f
(
gc(t)

)
is smooth on (−ε, ε) × G, and the

same is true of its partial derivative with respect to t.

Corollary 4.6. Every Lie group is a parallelizable manifold.

Proof. It suffices to take any basis of TeG and then form the corresponding
left invariant vector fields from the preceding proposition. Now apply Propo-
sition 3.28.

In particular, every vector field on G can be written as a linear combination
(with coefficients in C∞(G)) of left invariant (or right invariant) vector fields.

We now examine the trajectories of a left invariant vector field.

Definition 4.7. A one-parameter subgroup of a Lie group G is a morphism
from (R,+) to G, in other words, a smooth map h from R to G such that

h(t+ s) = h(t)h(s)

for all t, s ∈ R.
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Examples

a) If A ∈ Mn(R), then t �→ exp tA is a one-parameter subgroup of Gl(n,R)
by Lemma 1.27. If A is antisymmetric (resp. is traceless) we obtain one-
parameter subgroups of O(n) (resp. Sl(n,R)).

b) In fact, if G is a Lie subgroup of Gl(n,R) and φ is a continuous morphism
from (R,+) to G, then φ is a one-parameter subgroup of G, and there
exists a unique A ∈ TIG ⊂ End(Rn) such that φ(t) = exp(tA). Indeed we
know by Theorem 1.30 that φ(t) = exp(tA) for some A in End(Rn). Now
t �→ φ(t) is a smooth curve contained in G, and A = φ′(0) ∈ TIG.

Given a one-parameter subgroup of G, we can associate to it a one-parameter
group of diffeomorphisms of G defined by

φ(t, x) = xh(t).

In other words, φt is the right translation Rh(t).

Theorem 4.8. If h is a one-parameter subgroup of a Lie group G, the
infinitesimal generator of

φ(t, x) = xh(t)

is a left invariant vector field. Conversely, the flow φ of a left invariant vector
field X on G is defined on R ×G, and there exists a unique one-parameter
subgroup hX such that

φt(g) = ghX(t)

for all t ∈ R and g ∈ G. Further, hX(t) = φt(e).

Proof. Let X be the infinitesimal generator of φt. By Proposition 3.37, the
flow of Lg∗X is Lg ◦ φt ◦ (Lg)

−1. However

Lg ◦ φt ◦ (Lg)
−1(x) = gφt(g

−1x) = gg−1xh(t) = φt(x),

which shows that Lg∗X = X .

Conversely, if X is left invariant and if φt is its flow, the same argument
shows that

φt(g) = gφt(e).

The domain of definition of φ therefore contains an open subset of the form
(−ε, ε)×G. From the relation

φt+t′ = φt ◦ φt′ for |t|, |t′| < ε

2
,

we deduce the conditions

φt(e)φt′(e) = φt+t′(e).

Set hX(t) = φt(e), the same argument as that of Theorem 3.39 allows us
to extend hX as a morphism from R to G, and therefore φ to the whole
of R×G.
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4.3. The Lie Algebra of a Lie Group

4.3.1. Basic Properties; The Adjoint Representation

For a Lie group, we have just seen that it is the same thing to have

a left invariant vector field;

a vector in the tangent space to the identity;

a one-parameter subgroup.

In particular, every algebraic operation defined on one of these objects, such
as the bracket for left invariant vector fields, can be transported to the others.

Definition 4.9. A Lie algebra over a field K is a vector space L over K,
equipped with a bilinear map from L × L to L, called the bracket, denoted
[ , ], such that

i) ∀X ∈ L, [X,X ] = 0.

ii) ∀X,Y, Z ∈ L, [[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0 (Jacobi identity).

Examples

a) Any vector space equipped with the zero bracket is a Lie algebra. This is
the only case (at least in characteristic not equal to 2) where a Lie algebra
is commutative, as calculating [X+Y,X+Y ] shows that [X,Y ]+[Y,X ] = 0.

b) The results of Section 3.6 may be reformulated by saying that for every
smooth manifold M , the vector space C∞(TM) equipped with the Lie
bracket is a Lie algebra (of infinite dimension, since C∞(M) is already
infinite dimensional).

c) By Proposition 4.4, the left invariant (or right invariant) vector fields on
a Lie group form a finite-dimensional Lie algebra.

Definition 4.10. A morphism of Lie algebras L and L′ over the same field
K is a linear map f from L to L′ such that

∀X,Y ∈ L, f([X,Y ]) = [f(X), f(Y )].

If f is invertible, it is clear that f−1 is also a morphism. We then say that
f is a Lie algebra isomorphism.

Example. Again by Proposition 4.4, I∗ is an isomorphism between the alge-
bras of left and right invariant vector fields on G.

By transporting the structure, the tangent space to the identity of a Lie group
is equipped with a Lie algebra structure.
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Definition 4.11. The Lie algebra of a Lie group G, denoted G, is TeG
equipped with the bracket above.

In the sequel, we will frequently use the identification between TeG and the
left invariant vector fields.

Remark. A Lie group and its identity component have the same Lie algebra,
since TeG = TeGo.

Definition 4.12. Given a Lie group G with Lie algebra G, the map which
associates to X ∈ G the value of the one-parameter group associated to X at
time 1 is called the exponential map, and is denoted exp.

If for example G = Gl(n,R), TeGl(n,R) = End(Rn), and X ∈ End(Rn) = G

give rise to the vector field whose value at A is AX (with the identifica-
tions used when we work with open subsets of Rn). The exponential map is
obtained by integrating the differential equation

A′(t) = A(t)X with initial condition A(0) = I.

We recover the exponential of matrices seen in Chapter 1. It is immediate,
but a bit pedestrian to show that in this case [A,B] = AB − BA. We will
soon see a more conceptual proof. Returning to the general case, we easily
verify that the principal properties of the exponential map subsist.

Proposition 4.13. The exponential map is a smooth map from G to G,
and a local diffeomorphism from a neighborhood of 0 ∈ G to a neighborhood
of e ∈ G.

Proof. The fact that exp is smooth comes from the smoothness of solutions
of a family of differential equations depending smoothly on a parameter (here
the space of parameters is G!). By the same definition of exp, we have

d

dt
exp tX|t=0 = X.

The differential of exp at 0 is therefore the identity, and we apply the inverse
function theorem.

We have seen that if X ∈ C∞(TG) is left invariant, then the same is true
for Rg∗X . A question arises to interpret this property in terms of tangent
vectors at e and in terms of one-parameter subgroups.

Proposition 4.14. We have

(Rg∗X)e =
d

dt

(
g−1 exp tXg

)
|t=0

.
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Proof. The flow of X is given by φt(x) = x exp tX , and by Proposition 3.37
that of Rg∗X is given by(

Rg ◦ φt ◦Rg−1

)
(x) = xg−1 exp tXg.

The one-parameter subgroup of G associated to Rg∗X is then

t �−→ g−1 exp tXg.

We define

Ad g ·X =
(
Rg−1∗X

)
e
=

d

dt
g exp tXg−1

|t=0.

Now, for X,Y ∈ G we have

Ad g · [X,Y ] = [Ad g ·X,Ad g · Y ].

Further
Ad g1g2 = Ad g1 ◦Ad g2.

(It is this relation that explains the choice of Rg−1 over Rg.) In other words,
Ad is a morphism of G to the group of automorphisms of the Lie algebra G.

Definition 4.15. The map Ad is called the adjoint representation of G.

When we study differential calculus on a Lie group, it is very useful to write
everything at the identity element, and the adjoint representation is made
for this.

Proposition 4.16. For X,Y ∈ G, we have

d

dt
Ad(exp tX) · Y|t=0 = [X,Y ].

In particular, if G is commutative, the bracket is identically zero.

Proof. This result is a particular case of Theorem 3.38.

Example. We have seen that TeG is identified with End(Rn), and exp with
the exponential map of endomorphisms. Now

Ad g ·A =
d

dt

(
g exp tAg−1

)
|t=0

= gAg−1,

and

[B,A] =
d

dt

(
(exp tB)A(exp−tB)

)
|t=0

= BA−AB.
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4.3.2. From Lie Groups to Lie Algebras

We are now ready to state one of the basic results of the theory, which makes
one hope for the existence of a dictionary between properties of Lie groups
and those of Lie algebras.

Theorem 4.17. Let G and H be two Lie groups, and f : G → H a
morphism. Then Tef : G → H is a Lie algebra morphism. Further, if f
is an isomorphism, Tef is an isomorphism.

Proof. The starting point is to note – clearly – that the image under f of
the one-parameter subgroup t �→ h(t) of G is a one-parameter subgroup of H .
So if Y ∈ TeG, there exists a unique Z ∈ TeH such that

f(exp tY ) = exp tZ

and taking the derivative with respect to t of both sides of this equation at
t = 0, we see that Z = Tef · Y . Now, for fixed g ∈ G,

f(g exp tY g−1) = f(g)(exp tZ)f(g−1).

By the definition of Ad, we also have

f(g exp tY g−1) = f
(
exp t(Ad g · Y )

)
.

Taking the derivative with respect to t at t = 0 of both sides of the equality

f
(
exp t(Ad g · Y )

)
= f(g)(exp tZ)f(g−1)

we find
Tef(Ad g · Y ) = Ad f(g) · (Tef · Y ).

It suffices now to write this equality for g = exp tY , to take the deriva-
tive at t = 0, and then apply the preceding proposition. Indeed, if f is an
isomorphism, Tef is bijective.

Remark. If G = H , and if f is conjugation by an element of g of G, then
Tef = Adg.

Example: determinant and trace

We consider the homomorphism det : Gl(n,R) �→ R
∗. We have Te det = tr

(see Section 1.2.2). On the other hand, it follows from the proof of
Theorem 4.17 that the bracket of the Lie algebra of a commutative group
(R∗ here) is the zero bracket. We deduce from this theorem that for
A,B ∈ End(Rn)

tr[A,B] = 0 whence tr(AB) = tr(BA).

This result is well known, but the argument above gives a conceptual reason.
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Remark. The example of Gl(n,R) reminds us the exponential map has
no reason to be a group homomorphism. Moreover, it has no reason
to be either injective or surjective. It is indeed surjective for compact
connected Lie groups. The simplest general proof uses Riemannian geom-
etry (cf. [Spivak 79] or [Gallot-Hulin-Lafontaine 05, p. 100]), and for this
reason we will not give it here. See Exercise 7 for different examples and
counterexamples.

Another application of Theorem 4.17 is the following result:

Corollary 4.18. If H is a Lie subgroup of G, the Lie algebra of H is a Lie
subalgebra of the Lie algebra of G.

Proof. This is immediate: if j is the natural injection of TeH = H into
TeG = G, then again by Theorem 4.17 j[X,Y ] = [jX, jY ].

4.3.3. From Lie Algebras to Lie Groups

Using Lie algebras allows us to prove the following result, which is a beautiful
generalization of Theorem 1.30:

Theorem 4.19. Every continuous group homomorphism from one Lie group
to another is necessarily smooth. In particular, a topological group has at
most one Lie group structure.

Proof. This is a consequence of the following three results, which are impor-
tant in their own right.

Proposition 4.20. If h is a continuous group homomorphism from R to a
Lie group G (in other words, a one-parameter subgroup of G), there exists a
unique X ∈ G such that h(t) = exp tX.

Proof. The fact that exp is a local diffeomorphism at 0 allows us to repeat
the arguments of 1.30.

Lemma 4.21. Let (X1, . . . , Xn) be a basis of G. Then the map from R
n

to G given by

(t1, . . . , tn) �−→ (exp t1X1) . . . (exp tnXn)

is a local diffeomorphism in a neighborhood of 0.

Proof. The map above is smooth, and the image under the differential of 0
of the i-th canonical coordinate vector of Rn is clearly Xi.
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Lemma 4.22. Let f : G → H be a homomorphism of groups. Then

i) For f to be smooth, it suffices that f be smooth in a neighborhood of the
identity element of the domain.

ii) Suppose that f is smooth. To see that f is a local diffeomorphism (respec-
tively an immersion or a submersion), it suffices that the differential at
the identity element be an isomorphism (resp. an injection or surjection).

Proof. We will only need the first of these two properties for the proof of
the theorem at hand, but we have grouped them together since their proofs
are similar. It suffices to observe that as f is a homomorphism, we may write
it in the form

f(gh) = Lf(g)f(h).

This shows that if f is smooth on an open subset U containing e, it is also
smooth on gU for any g, and therefore on the whole group.

The second property is obtained in the same fashion, as under the hypotheses
f is already a local diffeomorphism (resp. immersion or submersion) in a
neighborhood of e ∈ G.

Remainder of the proof of Theorem 4.19. Let X1, . . . , Xn be a basis
of G. For each i ∈ [1, n], the map

t �−→ f(exp tXi)

is a one-parameter subgroup of H , and there exists a Yi ∈ H such that

f(exp tXi) = exp tYi

for any t. Consequently,

f
(
(exp t1X1) . . . (exp tnXn)

)
= f(exp t1X1) . . . f(exp tnXn)

= (exp t1Y1) . . . (exp tnYn).

Write
φ(t1, . . . , tn) = (exp t1X1) . . . (exp tnXn),

this shows that f ◦φ is smooth. By the first lemma, f is therefore smooth in
a neighborhood of e, and therefore everywhere by the second lemma.

The essential question now is to place Lie algebras on the same level as Lie
groups. More precisely:

a) Is a Lie algebra G the Lie algebra of a Lie group?

b) Suppose G is the Lie algebra of a Lie group G, and suppose H is a Lie
subalgebra of G. Does there exist a Lie subgroup H of G whose Lie algebra
is H?
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c) Suppose two Lie groups G1 and G2 are given, as well as a Lie algebra
morphism φ : G1 �→ G2. Does there exists a morphism of groups
F : G1 �→ G2 where TeF = φ?

The answer to question a) is yes. It is known as Lie’s third theorem. For a
modern proof, see [Duistermaat-Kolk 99, 1.8 and 1.14].

Question c) can in principle be reduced to b): if F exists, its graph will be a
Lie subgroup of G1 ×G2 whose Lie algebra will be the graph of φ. Further,
since F is continuous, its graph is closed. Here is where things can go wrong:
there are Lie subalgebras that cannot be the Lie algebra of a closed Lie group.
The answer to questions b) and c) is in general no.

Counterexamples. For b), it suffices to take G1 = G2 = S1, and the
morphism (of commutative Lie algebras!) from R to R given by x �→ αx,
where α /∈ Z. The morphisms of S1 are of the form t �→ tk, where k ∈ Z (see
Exercise 8), and so it is impossible to lift φ to a morphism of S1.

For a), we take G = S1 × S1 and for H a line with irrational slope α in R
2.

As the one-parameter subgroup

x �−→ (eix, eiαx)

is tangent to H at the identity, the only possible candidate for H is the image
of this one-parameter subgroup, which is not a submanifold as we saw in
Section 1.5, but merely a strictly immersed submanifold.

This example is typical of what happens in general.

We finish this section with results that will not be used in the sequel.

Theorem 4.23. Let G be a Lie group and let H be a subalgebra of the Lie
algebra G of G. There exists a Lie group H and a strict injective immersion
of H into G whose image is the subgroup of G given by expH.

For a proof, see for example [Godement 05, 6.49] or [Duistermaat-Kolk 99,
1.10].

Remark. This property justifies the terminology employed in the case where
the image of H is not a Lie subgroup. A given injective immersion of H into
G is called an immersed Lie subgroup.

Warning. Certain authors, for example Duistermaat-Kolk still call these Lie
subgroups.

We can deduce from this result a partial (and optimal in view of the coun-
terexamples above) answer to the question of whether we can lift Lie algebra
morphisms to Lie groups.
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Corollary 4.24. Let G and H be two Lie groups, and let f : G → H be a
morphism of Lie algebras. Then there exists neighborhoods U and V of the
identity elements of G and H, and a smooth map F from U to V such that

i) TeF = f ;

ii) if x1, x2 and x1x2 lie in U , then F (x1)F (x2) = F (x1x2).

Moreover, the germ of f at e is determined uniquely by these properties.

Proof. The graph of F is a Lie subalgebra of G × H, where we apply the
first part of Theorem 4.23. Let Y be a integral submanifold passing through
the identity element of G×H . By restricting to Y we may suppose this is a
graph: indeed, the differential of the projection to G at e, restricted to Y is the
projection of the graph of f onto G, which is an isomorphism. This projection
is therefore locally invertible, and the inverse is of the form x �→

(
x, F (x)

)
,

where F is a smooth map from an open subset U of G containing e to an
analogous open subset V of H . Again by Theorem 4.23, if x1 and x2 lie in U ,
the product (x1, F (x1))(x2, F (x2)) =

(
x1x2, F (x1)F (x2)

)
lies in Y , and as Y

is the graph of F , we have F (x1x2) = F (x1)F (x2). The uniqueness of the
germ of F comes from the uniqueness of the germ of an integral manifold of
the graph of f .

Remark. If G is simply connected, every Lie algebra morphism of G to
the Lie algebra H of a Lie group H lifts to a morphism of G to H
(see [Stillwell 08, 9.6]; note that the author supposes that H is also simply
connected, but this is not used).

The difficulties we have just seen justify a topological detour.

4.4. A Digression on Topological Groups

A topological group is a group equipped with a topology such that the group
operation and its inverse are continuous. In particular, right and left trans-
lations are homeomorphims, as is the inverse map.

For two open subsets A and B of the group, we write

AB =
{
ab, a ∈ A, b ∈ B

}
An =

{
a1a2 . . . an, ai ∈ A

}
A−1 =

{
a−1, a ∈ A

}
.

Now, if U ⊂ G is open, AU and UA are both open: there are clearly unions
of open subsets. Further, continuity of multiplication and of the inverse can
be explained in the following way.
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Lemma 4.25. For every open subset U containing e, there exists an open
subset V containing e such that V 2 ⊂ U , and an open subset W containing e
such that W−1 ⊂ U . In particular, the symmetric open subsets (those such
that U = U−1) form a neighborhood basis at e.

Consequently:

Theorem 4.26. Let G be a topological group. The following are equivalent:

i) G is Hausdorff.

ii) The set {e} is closed.

iii) For every g ∈ G, {g} is closed.

Proof. It is clear that i) implies ii). Further, since translations are homeo-
morphisms, properties ii) and iii) are equivalent, and it suffices to show that
the identity element e and any g �= e may be separated in order to show ii)
implies i).

So let V be an open subset containing e but not g. By virtue of conti-
nuity of multiplication, there exists an open subset W containing e such that
W ·W ⊂ V , is open and we may suppose it is symmetric by using the conti-
nuity of x �→ x−1. Then W and g ·W are two disjoint open subsets containing
e and g respectively.

To study subgroups of a topological group, it is useful to take the same
approach as in algebra, this is to say to allow the subgroup to act on the
group. Recall that G acts on itself on the left and right (by means of left and
right translations respectively), and that these actions are transitive. The
actions of a subgroup H ⊂ G however, are not transitive as soon as H �= G.
We therefore introduce the equivalence relation

xRy ⇐⇒ ∃h ∈ H such that y = Rhx

⇐⇒ x−1y ∈ H.

The equivalence classes are of the form gH ; these are the orbits of the
right action of H on G. We also call these the left equivalence classes of G
modulo H , which is natural as each of them is of the form LgH . The quotient
set is denoted G/H (G on the left and H on the right, to remind us of the
situation just described).

The left translation of two equivalent elements are equivalent, therefore left
translations pass to the quotient. If we continue to denote the translations
just obtain on G/H by Lg, we again have

Lg1 ◦ Lg2 = Lg1g2 .
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In other words, there is a left action of G on G/H . This action is transitive.
Indeed, if x, y ∈ G/H are represented by x, y ∈ G, we have

y = yx−1x and consequently y = Lyx−1x.

Finally we note that Lg fixes the equivalence class of the identity (which is
equivalent to saying that H is globally invariant at the group level) if and
only if g ∈ H .

Example. Let G be the group SO(n+1) and let H be the subgroup formed
by the matrices of the form ⎛⎜⎜⎝

1 0 · · · 0
0
...
0

A

⎞⎟⎟⎠
where A ∈ SO(n). Then g and g′ are equivalent modulo H if and only if
the matrices which represent them have the same first column. G/H is in
bijection with Sn, and the action of G on G/H is simply the usual action of
SO(n+ 1) on Sn (compare with Exercise 14 in Chapter 2).

Thus, Sn is identified with SO(n + 1)/SO(n) (with the understanding that
the realization of SO(n) as a subgroup of SO(n+1) is the one written above).

If we now study the situation from the topological point of view, we equip
G/H with the quotient topology: if p : G → G/H is the canonical map,
U ⊂ G/H is open if and only if p−1(U) is open in G. Then every continuous
map of G to a topological space X which is constant on equivalence classes
passes to the quotient as a continuous map of G/H to X . In particular we
have a continuous bijection of SO(n + 1)/SO(n) to Sn, which is a homeo-
morphism as these two spaces are compact. Once we know (see the end of
the chapter) that SO(n+1)/SO(n) is a smooth manifold, we will show that
this bijection is a diffeomorphism.

Theorem 4.27. Let G be a topological group with subgroup H. Then

i) the map p : G → G/H is open;

ii) G/H is Hausdorff if and only if H is a closed subgroup of G;

iii) if H is open, G/H is endowed with the discrete topology. In particular,
every open subgroup of a topological group is closed.

Proof

i) If U is open, then so is UH . However

p−1
(
p(U)

)
= UH.
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ii) If G/H is Hausdorff, every point is closed, therefore equivalence classes
are closed in G. Conversely suppose H is closed. Let x, y be distinct points
of G/H , and x, y ∈ G such that p(x) = x and p(y) = y. Then x and y are
not equivalent: x is not a member of the closed set yH . There exists an
open subset U containing E such that

Ux ∩ yH = ∅,

and an open subset V containing e such that V 2 ⊂ U . We have

V 2xH ∩ yH = ∅ and therefore V xH ∩ V yH = ∅.

Then p(V xH) and p(V yH) contain x and y respectively, and are open
by i) and disjoint by construction.

iii) If H is open, every equivalence class is open, and the points of G/H are
open by i).

Example. As we saw, the space SO(n+ 1)/SO(n) is homeomorphic to Sn,
the homeomorphism given by the map of SO(n+1) to Sn which has an orthog-
onal matrix associated to its first column. We may then deduce the result
below. We can show this in an elementary manner by using the reduced form
of orthogonal matrices. However the method used, which can be generalized
to other situations, merits attention.

Theorem 4.28. For each n, the group SO(n) is connected.

We proceed by induction on n. First, SO(1) is the trivial group, and
SO(2) � S1. The induction step comes from the following lemma, which
is important in its own right.

Lemma 4.29. Let H be a subgroup of a topological group G. If G/H and
H are connected, then G is also connected.

Proof. It suffices to verify that every continuous map f from G to a discrete
set with two elements D is constant. First, as H is connected, every equiva-
lence class of G modulo H is connected, therefore f is constant on equivalence
classes, and passes to the quotient as a continuous map f : G/H → D.
However since G/H is connected, f is constant, as f = f ◦ p.

Remark. We can easily show using the same idea that the total space of a
fibration is connected if the base and fiber are connected. In fact, this lemma
is merely a particular case of this result: we will see that p : G → G/H is a
fibration. The statement below however, is specific to groups.

Proposition 4.30. Let V be a connected symmetric (V −1 = V) open subset
containing e and let G0 be the connected component of the identity of G.
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Then

G0 =

∞⋃
n=1

V n,

and G0 is a normal subgroup of G.

Proof. To begin,
⋃∞

n=1 V
n is a subgroup of G which is open because it is

union of open subsets, and closed by Theorem 4.27. This subset is also a
connected subset of G: indeed, V n is the image of the connected set

n times︷ ︸︸ ︷
V × · · · × V under the continuous map (g1, g2, . . . , gn) �−→ g1g2 . . . gn

from Gn to G. We therefore have a union of connected subsets whose inter-
section contains e. Finally,

⋃∞
n=1 V

n, is open, closed and connected, thus it
must be the connected component containing the identity in G.

Further, for any g ∈ G, the conjugate gG0g
−1 of G0 is connected and contains

e (it is a subgroup!), thus is included inside G0.

Corollary 4.31. If G is a Lie group, G0 is given by expG. In particular,
G0 is countable at infinity.

Proof. We apply the preceding results to V = expU , where U ⊂ G is a
symmetric open subset containing 0 on which exp is a diffeomorphism.

We now give some results on discrete subgroups of topological and Lie groups.

Definition 4.32. A subgroup Γ of a topological group G is discrete if the
topology induced on Γ by G is the discrete topology.

We begin with an elementary property.

Proposition 4.33. In a Hausdorff topological group, every discrete subgroup
is closed.

Proof. Let Γ be a discrete subgroup of G, and x∈Γ�Γ. For every symmetric
open subset containing e, the open subset xV meets Γ. Let γ ∈ xV ∩ Γ. By
the Hausdorff hypothesis, there exists a symmetric open subset W containing
e such that γ /∈ xW . We can take W ⊂ V .

However xW also contains a point γ′ in Γ. Thus γ−1γ′ ∈ V 2. However
γ �= γ′, and Γ is discrete: this is impossible for the good choice of V .

To say a little more, it is natural to assume the ambient group is connected:
if not, by taking the product of the group with another equipped with the
discrete topology, we can realize any group as a discrete subgroup of a Lie
group.
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Proposition 4.34. Let G be a connected group, and Γ a discrete normal
subgroup. Then Γ is contained in the center of G.

Proof. For fixed γ in Γ, the map x �→ xγx−1 sends G to Γ as Γ is normal.
As this is a continuous map, its image is connected. As the image is discrete,
the image must be a point. Taking x = e, we see this point is γ.

Such groups play an important role when we consider covering spaces of
topological groups. We will only brief consider coverings of Lie groups, and
leave the (easy) generalizations to the reader.

Definition 4.35. A covering map of a Lie group is a group homomorphism
p : G → H which is a covering map of the underlying manifolds.

The characterization of these maps is very simple.

Theorem 4.36. Let Γ be a discrete normal subgroup of a Lie group G. Then
there exists a unique Lie group structure on the quotient G/Γ such that the
canonical map π : G → G/Γ is a covering map of Lie groups.

Conversely, let p : G → H be a Lie group homomorphism such that Tep is
an isomorphism. Then p is a covering map, the kernel p−1(e) is a discrete
normal subgroup, and p passes to the quotient as a Lie group isomorphism
between G/p−1(e) and H.

Proof. The action of Γ = p−1(e) by translations (say on the right) is clearly
free, and also proper: if A and B are two compact subsets of G, the set
of γ ∈ Γ such that γ(A) meets B is equal to Γ∩AB−1. This is the intersection
of a compact subset with a discrete subset, and is therefore a finite set. By
Theorem 2.38, the quotient G/Γ admits a unique manifold structure such
that π : G → G/Γ is a covering map.

Moreover, π is a group homomorphism as Γ is normal. It remains to show
that G/Γ is a Lie group. It suffices to note that the action of Γ × Γ on
G×G obtained by (γ, γ′)(x, y) =

(
γ(x), γ′(y)

)
is once again free and proper.

The map (x, y) �→ π(xy) passes to the quotient as a smooth map and is the
multiplication in G/Γ.

Conversely, if p : G → H is a homomorphism such that Tep is invertible,
then by Lemma 4.22 p is a local diffeomorphism. It follows that p−1(e) is
discrete, and is closed because it is a subgroup, by Proposition 4.33. This
subgroup is normal as p is a group homomorphism.

Let U be an open subset containing the identity of G, such that p|U is diffeo-
morphic to its image V and such that U · U ∩ p−1(e) = {e}. Then p−1(V )
is a disjoint union of γ · U for γ in p−1(e), and the restriction of p to each
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of these is a diffeomorphism. For h ∈ H , p−1hV has an analogous property,
which shows that p is a covering map.

Let π : G → G/p−1(e) be the covering obtained in the first part of the
theorem. Then there exists a map p : G/p−1(e) → H such that p = p◦π. As
π and p are local diffeomorphisms, so is p. Moreover, for algebraic reasons,
p is a group isomorphism. It is therefore a Lie group isomorphism.

Remarks

a) The fact that in this situation p−1(e) is Abelian and is even contained in
the center was not used. But this property is important, and it is tied
to the fact that the fundamental group of a Lie group is Abelian (see
Exercise 18).

b) The start of the proof uses only that Γ is normal. From this we deduce that
if Γ is a discrete subgroup of a Lie group G, there exists a unique manifold
structure on the quotient G/Γ such that π : G → G/Γ is a covering map.
Thus in principle we can construct many manifolds. However it is very
difficult in general to construct “sufficiently large” discrete subgroups (this
is to say such that G/Γ is compact) of a given Lie group. For an example
of such a construction with G = Sl(2,R), see [Godement 05, 1.5].

c) Examples of covering maps are given in Exercises 5 and 9.

This theorem dashes the hope of characterizing a Lie group, even a connected
one, by its Lie algebra. We may however state “Lie’s third theorem” (also
called Cartan’s theorem) in the following way.

Theorem 4.37. Let G be a finite dimensional Lie algebra. There exists a
unique simply connected Lie group G, up to isomorphism, whose Lie algebra
is G. Further, every connected Lie group with Lie algebra G is isomorphic to
the quotient of G by a discrete normal subgroup.

One finds in [Duistermaat-Kolk 99, 1.14] an interesting proof that uses
Banach Lie groups.

4.5. Commutative Lie Groups

4.5.1. A Structure Theorem

We will now see a simple but important example, where we can use the
techniques above to describe all of connected Lie groups of a given Lie algebra.
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Theorem 4.38. The Lie algebra G of a commutative Lie group is Abelian.
Conversely, a connected Lie group whose Lie algebra is Abelian is commu-
tative. More precisely, such a group is isomorphic to the quotient of its Lie
algebra (seen as an additive group) by a discrete subgroup.

Proof. If G is commutative, then in particular g exp tXg−1 = exp tX for
any g ∈ G and X ∈ G, and differentiating with respect to t at t = 0:

Ad g ·X = X.

Writing this relation for g = exp tY and differentiating again with respect
to t we find that [X,Y ] = 0. Conversely, we have the

Lemma 4.39. If two elements X and Y of a Lie algebra of a
group G commute, then expX and expY commute, and exp(X + Y ) =
(expX)(expY ).

Proof. It suffices to “lift” the preceding reasoning. Write f(t) = Ad exp tX ,
and we first see that

d

dt
f(t) · Y|t=0 = 0,

and then

d

dt
f(t) · Y|t=u =

d

dt
f(t+ u) · Y|u=0

= f(u) · d

dt
f(t) · Y|t=0 = 0.

Thus, Ad(exp tX) · Y = Y for every t, which says that the one-parameter
subgroups

s �−→ exp sY and s �−→ exp tX exp sY exp−tX

have the same infinitesimal generator, and are therefore equal. To show
the second assertion, it suffices to note that under these conditions, t �→
(exp tX)(exp tY ) is again a one-parameter subgroup. Then we have

(exp tX)(exp tY ) = exp tZ, where Z =
d

dt
(exp tX)(exp tY )t=0 = X + Y.

End of the proof of Theorem 4.38. We have just seen that exp is a
morphism of the additive group G to G. This is a local diffeomorphism
at 0, and therefore everywhere by Lemma 4.22. Consequently, expG is an
open subgroup of G0, and is therefore closed by Theorem 4.27, and equal
to G everywhere since G is connected. Moreover, exp is a covering map by
Exercise 4. By Theorem 4.36, G is therefore Lie group isomorphic to the
quotient of G by the discrete subgroup Ker(exp).
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It remains to determine the structure of discrete subgroups of a real vector
space.

Theorem 4.40. The discrete subgroups of a finite-dimensional real vector
space are the subgroups generated as additive groups by k independent vectors.

Proof. We first show that if v1, . . . , vk are k independent vectors, the set Γ
of linear combinations with integer coefficients of the vi is discrete in the
vector space E. It suffices to check that for each compact subset K in E, K∩Γ
is finite. We complete the vi to a basis of E. Let N be the sup norm associated
to this basis. As all norms on a finite dimensional vector space are equivalent,
there exists a C > 0 such that K ⊂ BN (0, C). Then, if γ =

∑k
i=1 pivi is in Γ,

we have |pi| � C for all i, and therefore card(Γ ∩K) � (2C + 1)n, if n is the
dimension of E.

The converse is proved by induction on n. Let Γ be a discrete subgroup.
Each compact neighborhood of 0 contains only a finite number of elements
of Γ. If n = 1 and Γ �= {0}, there then exists a nonzero v ∈ Γ with absolute
minimum value, which we may suppose to be positive. For x ∈ Γ, we write

x = nv + r with n ∈ Z, 0 � r < v.

Then r = x− nv ∈ Γ, which is only possible if r = 0.

Now suppose the result is true for n, and we show it is true for n+ 1. As Γ
is discrete, if it does not reduce to {0} it contains a nonzero element v0 with
minimal norm. Then the distance from Γ � Zv0 to the line Rv0 is strictly
positive. If not, there exists a sequence (wk) of points of Γ � Zv0 and a
sequence of real numbers λk such that

lim
k→∞

‖wk − λkv0‖ = 0.

We write λk = [λk] + μk, with [λk] ∈ Z and |μk| < 1/2, and we deduce that

lim
k→∞

∥∥(wk − [λk]v0
)
− μkv0

∥∥ = 0.

Now for k sufficiently large, the element wk − [λk]v0 of Γ � Zv0 has norm
strictly less than that of v0, which contradicts the hypothesis.

If p denotes the quotient map from E to E/Rv0, the subgroup p(Γ) of E/Rv0
is then discrete. By the induction hypothesis there exists vectors f1, . . . , fk
of E/Rv0 such that

p(Γ) =

k⊕
i=1

Zfi.

Let v1, . . . , vk ∈ Γ be such that p(vi) = fi. Then, if x ∈ Γ, we have

p(x) =

k∑
i=1

nifi, with ni ∈ Z
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and therefore

x−
k∑

i=1

nivi ∈ Re ∩ Γ = Zv0.

Definitions 4.41

a) The integer k, which is independent of the choice of vi since it is the
dimension of the vector space generated by Γ, is called the rank of Γ.

b) A discrete subgroup with maximal rank of a vector space is called a lattice.

Simultaneous application of the two theorems above gives the following result:

Corollary 4.42. Every connected commutative Lie group is isomorphic to
either R

p × (S1)q, or (S1)q if it is compact.

Recalling two dimensions, it is common to call compact commutative Lie
groups tori, and to denote the torus of dimension q by T q.

Remark. The metric study of lattices is a profound problem in geometry of
numbers. See [Martinet 03].

4.5.2. Towards Elliptic Curves

Let P ∈ C[X,Y, T ] be a homogeneous polynomial of degree 3, and E ⊂ P 2
C

the set of points of the complex projective plane whose projective coordinates
satisfy P (x, y, t) = 0. By Section 2.6.2, if the partial derivatives of P are not
simultaneously vanishing away from the origin, E is a submanifold. We say
that X is a smooth cubic curve. Using algebraic techniques which we omit,
we can reduce to the case where

P (X,Y, T ) = Y 2T −X3 − pXT 2 − qT 3 (Weierstrass curve).

It turns out E is a manifold if and only if the three roots of the polynomial
X3 + pX + q are distinct; furthermore we see that E is path connected and
so connected.

Moreover, we can equip E with a group structure in the following way. We
choose a point O once and for all. For two points A and B of E, if R is the
third point of intersection of the projective line AB with E (if A = B we
take the tangent at A), A + B is the third point of intersection of the line
OR with E. It is clear that this is a commutative operation with identity O,
and the group operation is smooth. It is more delicate (in fact it is a pretty
argument in classical algebraic geometry explained in [Hellegouarch 01, 4.4])
to see that the operation is associative. Then, by Corollary 4.42, E is diffeo-
morphic as a real manifold to a torus of dimension 2 (another proof of this
result is given in Exercise 8 of Chapter 8).
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��In fact, by using the remark that follows the definition of complex projec-
tive space (see Section 2.5), we see that E is a complex manifold of dimen-
sion 1 and that the composition law that we have just defined is holomorphic.
Adapting the argument of this section to the complex case, we see that E is
C-diffeomorphic to C/Γ, where Γ is a lattice of dimension 2.

Conversely, using the function ℘Γ associated to the lattice Γ (Weierstrass’s
elliptic function), we construct a C-diffeomorphism of C/Γ to a Weierstrass
cubic curve (see [Hellegouarch 01, 2.5]). Such a curve is called an elliptic
curve as it may be parameterized by elliptic functions.��

We also note, even though we will not need this property, that a compact
complex connected Lie group is commutative (see Exercise 18). This opens
the door to complex tori, this is to say complex manifolds C

n/Γ, where Γ
is a lattice of dimension 2n. This is also a rich theory (see for example
[Debarre 05]).

4.6. Homogeneous Spaces

We have seen that if G is a topological group and H ⊂ G is a closed subgroup,
the quotient space G/H of left equivalence classes of G modulo H is a
Hausdorff topological space, and left translations pass to the quotient and
give a left transitive action of G on G/H . If we suppose further that G
is a Lie group, we can say much more. By virtue of the following result,
whose proof we omit, H is automatically a Lie subgroup. (See for example
[Duistermaat-Kolk 99, 1.10.7].)

Theorem 4.43 (Cartan-von Neumann).1 Every closed subgroup of a Lie
group is Lie subgroup.

Remark. Conversely, every Lie subgroupH of G is closed in G: as a subman-
ifold, it is open in its closure H , therefore closed in H by 4.27.

Example. The group of automorphisms of a Lie algebra G of finite dimen-
sion is a Lie group: it is clearly a closed subgroup of Gl(G).

Remark. This result allows us to dispense with proof that SO(n), U(n),
SU(n), are Lie groups, since they are closed subgroups of the real or complex
linear group. However, if we want further information (think of the dimension
for example) we must determine the Lie algebra of the group anyhow.

1. Proof omitted.
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Theorem 4.44. If H is a closed subgroup of a Lie group G, there exists a
unique smooth manifold structure on the quotient G/H such that the quotient
map p : G → G/H is a submersion.

As always with manifolds, the idea is to be guided by linear algebra, and
more precisely in this case, by the fact that the quotient vector space G/H is
isomorphic to a complement of H in G.

Lemma 4.45. Let M ⊂ G be a complement of H. Then there exists open
subsets U ⊂ M and V ⊂ H, containing 0, such that the map f defined by

f(X,Y ) = (expX)(expY )

is a diffeomorphism from U × V to its image in G.

Proof. This is immediate by the inverse function theorem, the differential
of f at 0 is the map

(X,Y ) �−→ X + Y from G to M
⊕

H.

Lemma 4.46. With the same hypotheses, there exists an open subset U
containing 0 in M such that for all g ∈ G, the map φg given by

X �−→ p(g expX)

is a homeomorphism of U to its image.

Proof. It suffices to study the case where g = e. Choose U, V as in the
preceding lemma, with the additional condition that if W = f(U × V ), W 3

is again contained in an open subset for which the lemma applies. Then
if X,X ′ have the same image under φ, we have

expX ′ = expXh with h ∈ H ∩W 2,

and applying Lemma 4.45 to W 3, we see that X = X ′ and h = e. Further,
φ is open, as if U ′ is an open subset of U , then f(U ′ × V ) is open in G, and
therefore so is its image under p by Theorem 4.27. However

φ(U ′) = p(f(U ′ × V )).

Proof of Theorem 4.44. Choose an open subset U containing 0 in M as
in the preceding lemma. This lemma says precisely that G/H is a C0 manifold
with charts (

p(g expU), φ−1
g

)
.

If we want that p is a submersion for a C∞ structure, we need that the φg

are diffeomorphisms. This will yield the uniqueness of the smooth structure,
and to show its existence, it suffices to check the compatibility condition.
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Let g and g′ be such that

T = p(g expU) ∩ p(g′ expU) �= ∅.

Any x ∈ T may be written in a unique way as p(g expX) or p(g′ expX ′),
and we must show the map X �→ X ′ from φ−1

g (T ) to φ−1
g′ (T ) is smooth. For

X0 ∈ φ−1
g (T ), there exists a (unique) h ∈ H such that

g expX0h = g′ expX ′
0.

Right translation Rh is a diffeomorphism, and we can thus find open subsets
W1 and W ′

1 of g expW and g′ expW respectively, containing g expX0 and
g′ expX ′

0 respectively, such that RhW1 = W ′
1. However if X is such that

g expX ∈ W1, Lemma 4.45 and the chain rule imply that g expXh may be
written g′ expX ′ expY , and the map X �→ X ′ is smooth. On the other hand

p(g expX) = p(g expXh) = p(g′ expX ′ expY ) = p(g′ expX ′).

Corollary 4.47. Under the same hypotheses:

i) p admits local sections, in other words, for every x ∈ G/H there exists
an open subset U containing x and a smooth map

σ : U −→ G such that p ◦ σ = Id|U ;

ii) in particular, p is a fibration with model fiber H;

iii) if X is a manifold and f is a map of G/H to X, then f is smooth if and
only if f ◦ p : G �→ X is smooth.

Proof. By the preceding proof, and with the same notation, the map
σ : p(g expU) �→ G mapping x ∈ g expU to g expφ−1

g (x), (or less for-
mally, for which p(g expX) associates g expX) is a smooth section above
p(expU). Under these conditions, we have an explicit diffeomorphism
between p−1(p(expU)) and p(exp(U))×H , given by

h(g) =
(
p(g), g(σ(p(g)))−1

)
.

Finally, if f : G/H �→ X is such that f ◦ p is smooth, and if U is an open
subset of G/H above which p admits a section, then

f|U = f|U ◦ (p ◦ σ|U ) = (f|U ◦ p) ◦ σ|U

is smooth.

What we have just seen is an example of the following situation.

Definition 4.48. A left action of a Lie group G on a smooth manifold X is
a smooth map (g, x) �→ g ·x from G×X to X such that g1 ·(g2 ·x) = (g1g2) ·x.
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Here we have an action of G on G/H given by g · x = p(gg′) if x = p(g′). It
is clear that the result is independent of g′ and smoothness can be seen as in
the Corollary 4.47 by using a local section.

The properties seen in 2.7.1 for discrete groups have analogues here. The
definition of a free or effective action is the same. For a proper action, we
replace finite in the Definition 2.34 with compact. A new notion appears,
that of an almost effective action, which means that the subgroup

GId =
{
g ∈ G : g · x = x for all x ∈ X

}
is a discrete subgroup of G. In practice, when we work with subgroups of
linear groups, we prefer to work with almost effective actions over passing to
the quotient (for example, most of the actions considered in the exercises are
almost effective).

We will now see that every smooth manifold on which a Lie group acts tran-
sitively is of the form stated in Theorem 4.44.

Theorem 4.49. Let X be a manifold equipped with a smooth and transitive
action of a Lie group G having a finite number of connected components. For
a ∈ X, the stabilizer

Ga =
{
g ∈ G : g · a = a

}
of a is a Lie subgroup, and the map F : g → g · a passes to the quotient as a
diffeomorphism of G/Ga to X.

Lemma 4.50. F is a submersion.

Proof. From the fact that the maps x �→ g · x are diffeomorphisms of X ,
the rank r of F is constant. Write n = dimG, p = dimX . By the rank
theorem (see Exercise 10 of Chapter 1), there exists for every g ∈ G an open
subset U of G containing g, an open subset V of X containing g · a, and
diffeomorphisms φ, ψ of U and V to open subsets of Rn and R

p respectively
such that (

ψ ◦ F ◦ φ−1
)
(u1, . . . , un) = (u1, . . . , ur, 0, . . . , 0).

This equation shows that F (U) is a submanifold of X of dimension p−r, and
therefore a negligible subset of X if r < p. However, the open subsets U form
a covering of G, thus we may extract a countable subcover (see Section 2.8).
Thus F (G) is a negligible subset of X . As F (G) = X by transitivity, we
arrive at a contradiction.

Proof of Theorem 4.49. By the lemma, Ga = F−1(a) is a submanifold
of dimension n− p.
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If h ∈ Ga, we have

F (gh) = gh · a = g · (h · a) = g · a = F (g),

so F passes to the quotient, and gives a smooth map f from G/Ga to X
by iii) of Corollary 4.47. As

TgF = Tp(g)f ◦ Tgp,

we see that f is a submersion, and therefore a local diffeomorphism for dimen-
sional reasons, and finally a diffeomorphism as it is a bijection.

Remark. If b is another point of X , and if g ∈ G is such that g · a = b, then
the conjugation

h �−→ ghg−1

gives an isomorphism between Ga and Gb, and also by passing to the quotient,
a diffeomorphism of G/Ga to G/Gb.

Definition 4.51. A smooth manifold on which a Lie group G acts transi-
tively is called a homogeneous space.

It is important to note that there can be many transitive actions on the same
manifold. This is the case for the spheres of odd dimension for example (for
a more precise statement, see Exercise 13).

Example: Grassmannians

The p-Grassmannian of a vector space E, denoted Gp(E), is the set of its
vector subspaces of dimension p. If E = R

n, we write Gn,p. It is clear that
the natural action of Gl(n,R) on R

n gives a transitive action on Gn,p. The
subgroup Tn,p of linear maps which fix a plane P0 generated by the first p
vectors of the canonical basis is given by matrices of the form(

A B
0 C

)
where A and C are invertible matrices of order p and n−p, and B is a matrix
with p rows and n−p columns. Then, Gn,p is in bijection with Gl(n,R)/Tn,p,
and inherits a smooth manifold structure.

We can also equip R
n with its natural inner product and let the orthogonal

group act on Gn,p. The action is always transitive, as every orthonormal
system of vectors may be completed to an orthonormal basis. Any g ∈ O(n)
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which fixes P0 also fixes P⊥
0 , and it is therefore of the form(

A 0
0 C

)
,

where A ∈ O(p) and C ∈ O(n− p). Thus, Gn,p also appears as the homoge-
neous space O(n)/O(p)×O(n−p). With the help of Theorem 4.44, the reader
is invited to check that these two representations give the same manifold
structure. In passing we mention that it is useful to note that Gn,1 = Pn−1

R

and that dimGn,p = p(n− p).

4.7. Comments

Group actions

Actions of compact Lie groups on manifolds are well understood. See
[Audin 03, Chapter 1] and [Duistermaat-Kolk 99, Chapter 2].

Haar measure

We will see in the exercises of Chapter 6 an elementary (and important) prop-
erty of Lie groups: the existence of a translation invariant measure. While
this measure, the so-called Haar measure, exists for every locally compact
group, the case of Lie groups is much easier to treat.

Analytic structure

Unlike the case of a general manifold, on a Lie group we have at our
disposal the exponential map and its local inverse. This gives a distinguished
parametrization and chart. It is natural to write the group operation in this
chart.

The Campbell-Hausdorff formula assures that

expX expY = expH(X,Y ),

where H : G × G → G is analytic in a neighborhood of 0. Further, it is
the sum of a series of Lie monomials, which is to say expressions using only
iterated brackets of X and Y . We have

H(X,Y ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X ]] + . . .

In particular, in a neighborhood of the identity element, multiplication is
given by the bracket. One finds a crafty and (relatively) simple proof
in [Stillwell 08, Chapter 7].
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A few words on classification

To go further, a deep study of Lie algebras is necessary. For example, the
result stated in the introduction, that every Lie group is locally isomorphic
to a subgroup of the linear group, is obtained by combining the analogous
result for Lie algebras (Ado’s theorem, see [Postnikov 94]) and Lie’s third
theorem.

However, there exist Lie groups that are not isomorphic to any subgroup of
a linear group: this is the case with the universal cover of Sl(2,R). For the
details, see [Doubrovine-Novikov-Fomenko 85, Chapter I, § 3]. This leads to
beautiful geometry. This universal cover is also treated in a detailed way
in [Godement 05, 2.7].

A milestone of the algebraic theory is the classification of simple Lie alge-
bras, which is to say algebras with no nontrivial ideal. This classification
permits us to give the classification of compact almost simple groups (i.e.,
groups without a non discrete normal subgroup). Modulo finite coverings, or
quotients by finite groups, we obtain the following list:

SO(n) n �= 4; SU(n); Sp(n)

(this last group is defined in the solution to Exercise 13), and five so called
exceptional groups (see [Onishchik-Vinberg 90]). One finds in [Berger 87]
a purely geometric proof of the simplicity of SO(n) for n = 3 or n > 4,
and in [Stillwell 08, Chapter 6] an elementary proof of the simplicity of the
corresponding Lie algebras. For the non simplicity of SO(4), see the final
part of Exercise 5.

“Infinite” Lie groups

The group of diffeomorphisms of a compact manifold, the group of diffeomor-
phisms preserving a volume or symplectic form are sometimes called “infinite
Lie groups”, where infinite refers to infinite dimension. Serious difficulties
present themselves.

For example, the Ck diffeomorphisms clearly form a group. However, a simple
examination of the proof of Proposition 1.43 shows that multiplication is
differentiable for the Ck−1 norm only. This problem can already be seen at
the level of vector fields, as the bracket of two Ck vector fields is only Ck−1. In
the smooth case, to have a good notion of differentiability of the composition
law, we must leave the setting of normed spaces (see [Hamilton 82, p. 148] for
a detailed description). Then, even if the characterization of one-parameter
subgroups seen in Section 1.6 is valid in the Banach manifold setting, it is of
no help.

Since a vector field X on a compact manifold M gives rise to a one-
parameter group of diffeomorphisms, it is nevertheless tempting to say the
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group Diff(M) of smooth diffeomorphisms of M is Lie group with Lie algebra
C∞(TM). After all, C∞(TM) is a Lie algebra, and we can define the expo-
nential as in the classical case, by posing expX = φX

1 . Even for the simplest
compact manifold, the circle S1, there exists diffeomorphisms arbitrarily close
to the identity that are not the value at time 1 of a flow (for an example, see
[Pressley-Segal 86, 3.3]). The exponential map is therefore not a local diffeo-
morphism at 0, which is troublesome. This has not stopped the active study
of diffeomorphism groups of manifolds, but this is a another story. For two
very different aspects of the study of Diff(S1), see [Hector-Hirsch 81] (for the
“dynamical systems” aspect) and [Pressley-Segal 86] (for the “representation”
aspect).

We note also an interesting use of Banach Lie groups to prove Lie’s third
theorem. See [Duistermaat-Kolk 99].

4.8. Exercises

1. The group structure of the Artinian plane2

a) Show that matrices of the form(
cosh t sinh t
sinh t cosh t

)
form a Lie group isomorphic to R.

b) Show that this group is the identity component of the group O(1, 1) of
matrices which preserve the quadratic form x2 − y2, and that O(1, 1) has
four connected components.

2. The field of quaternions

a) Show that complex matrices of the form(
u −v
v u

)
form a subring of M2(C) where every nonzero element is invertible, and
is therefore a field. This field is called the quaternions and is denoted H.

b) It is traditional (and convenient) to write

I =

(
0 −1
1 0

)
; J =

(
i 0
0 −i

)
; K =

(
0 i
i 0

)
.

2. That is to say the plane equipped with the quadratic form x2
− y2. Some algebraists

call it the hyperbolic plane, but we find this name rather confusing.
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Denoting the (2, 2) identity matrix by E, show that every quaternion q
may be written in a unique way in the form aE + bI + cJ + dK, where a,
b, c, d are real, and where

I2 = J2 = K2 = −E,

IJ = −JI = K, JK = −KJ = I, KI = −IK = J.

c) From now on we write the quaternions in this way. We often replace E,
I, J and K by the corresponding lower case letters. The subset RE of H
is a subring isomorphic to R, and we identify it with R. We write

q = aE − bI − cJ − dK.

Check that
qq = qq = (a2 + b2 + c2 + d2),

(this reproves that every nonzero element of H is invertible), and that

q1q2 = q2 q1.

Check also that the center of H (this is to say the set of elements of
H which commute with every element of H) is equal to R. We write
Re(q) = a, Im(q) = bI + cJ + dK. A quaternion is said to be real if
Im(q) = 0, (which is equivalent to q = q), purely imaginary, or more
succinctly pure if Re(q) = 0 (which is equivalent to q + q = 0).

d) Finally we write ‖q‖ =
√
qq. This is a norm on H seen as a R-vector

space as in c). Show that

‖q1q2‖ = ‖q1‖‖q2‖.

3. The group of multiplicative quaternions

a) Show that the multiplicative group H
∗ of H is a Lie group.

b) For every quaternion q, we write

exp(q) =

∞∑
n=0

qn

n!
.

Show that the right hand side is a norm convergent series, and if q and q′

commute, we have

exp(q + q′) =
(
exp(q)

)(
exp(q′)

)
.

c) Show that every one-parameter subgroup of the multiplicative group H
∗

is of the form
t �−→ exp(tq).
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Deduce that the Lie algebra of H
∗ is H equipped with its vector space

structure over R and the bracket

[q, q′] = qq′ − q′q.

d) Show that the multiplicative group of quaternions of norm 1 is isomorphic
to SU(2). State and prove the corresponding result for the Lie algebras.

4. Show that a morphism of Lie groups which is also a local diffeomorphism
is a covering map.

5*. Quaternions and rotations

a) We identify R
3(as a vector space) with the pure quaternions. If s is a

quaternion of norm 1 and h is a pure quaternion, we define

ρ(s) · h = shs.

Show that ρ(s) ·h is again a pure quaternion, and that the linear map ρ(s)
is in O(3).

b) Show that ρ(s) ∈ SO(3), using a connectedness argument.

c) Show that
ρ(s)ρ(s′) = ρ(ss′).

Calculate the differential of ρ at e, and deduce that ρ is a local diffeomor-
phism.

d) Show that ρ is surjective, and that Ker(ρ) = ±e. Deduce that SO(3) is
isomorphic to S3/± e, or to SU(2)/± I.

e) Show that the axis of rotation of ρ(s) is given by the imaginary part of
the quaternion s. To determine the angle, proceed as follows:

e1) Show that two conjugate rotations have the same angle.

e2) Show that for every pure quaternion t of norm 1, there exists a quater-
nion q of norm 1 such that qtq = i (use d)).

e3) Every quaternion s of norm 1 can be written in a unique way as αe+βt,
where t is a pure quaternion of norm 1, and with α and β real numbers
such that α2+β2 = 1. Show that the angle of rotation of ρ(s) depends
only on α and β and compute it.

e4) Numerical application: let R1 and R2 be rotations of angle 2π/3 with
axes (1, 1, 1) and (1, 1,−1) respectively. Determine the rotation R1◦R2.

f) We may consider the map ρ1 from S3 × S3 to Gl(R4) defined by

ρ1(s, t) · q = sqt.

Imitating the above, show that ρ1 is a surjective morphism of Lie groups
from S3×S3 to SO(4), and deduce that SO(4) is isomorphic to S3×S3/±I.
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6. Ideals and normal subgroups

Let G be a Lie group and let H be a normal Lie subgroup of G. Show, taking
inspiration from the proof of Theorem 4.17, that the Lie algebra H of H is
an ideal in the Lie algebra G of G. Show conversely, that a connected Lie
subgroup whose Lie algebra is an ideal is a normal subgroup.

7. Examples of exponentials

a) Show that exp is surjective for the following groups:

Gl(n,C);

SO(n);

U(n);

the group of affine transformations x �→ ax+ b of the real line such that
a > 0.

b) Show that the subset N ⊂ Gl(3,R) of matrices of the form⎛⎝1 x z
0 1 y
0 0 1

⎞⎠
is a Lie subgroup, for which the exponential map is a diffeomorphism.

c) Show that if A ∈ Sl(2,R), we have

tr(A2) � −2

(use the Hamilton-Cayley theorem). Deduce the exponential map for
Sl(2,R) is not surjective, and determine its image.

8. Show that every morphism of S1 seen as the set of complex numbers of
unit modulus is of the form t �→ tk, where k ∈ Z.

9. Comparison between Sl(2,R) and the Lorentz group in dimension 3

a) Show that on the vector space Sym(2) of symmetric matrices of order 2,
the determinant defines a quadratic form of type (1, 2).

b) For A ∈ Sl(2,R), and M ∈ S we write

ρ(A) ·M = tAMA.

Show that ρ defines a morphism of Sl(2,R) to O(1, 2).

c) Show that Ker ρ = {± Id}, and that ρ is a covering map. Deduce the
existence of an isomorphism

Sl(2,R)/{±I} � SOo(1, 2).

d*) Give another proof of this isomorphism by using Exercise 16 of Chapter 2.
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10*. Let N be the group of Exercise 7 b). Show that the subgroup NZ of N
formed by matrices with integer coefficients is discrete, and that the manifold
N/NZ is compact.

11*. How many connected components does the pseudo-orthogonal group
O(p, q) have?

Hint. Let O(p, q) act on the submanifold of Rp+q given by the equation

−x2
1 − · · · − x2

p + x2
p+1 + · · ·+ x2

p+q = 1.

12. Universal covering of the unitary group

a) Let
Ũ(n) =

{
(A, t) ∈ U(n)×R : det(A) = e2iπt

}
.

Show that the restriction of the projection on the first factor to Ũ(n) is a
Lie group covering, with base U(n) and with kernel I × Z.

b) Show that Ũ(n) is isomorphic to SU(n)×R.

(This shows, by the following exercise, that Ũ(n) is the universal covering
of U(n).)

13. Some homogeneous spaces

a) Prove the following homeomorphisms:

S2n+1 � U(n+ 1)/U(n) � SU(n+ 1)/SU(n).

Deduce that the groups SU(n) and U(n) are connected for any n.

b) Show that SU(n) is simply connected.

c) Show that the set of matrices of the form⎛⎜⎜⎝
det(A) 0 · · · 0
0
...
0

A

⎞⎟⎟⎠,

where A ∈ O(n) forms a subgroup of SO(n + 1) isomorphic to O(n).
Abusing notation, denote this group by O(n) and establish the homeo-
morphism

SO(n+ 1)/O(n) � Pn
R.

d) With the analogous notation, establish

SU(n+ 1)/U(n) � Pn
C.

e) Prove that all of these homeomorphisms are diffeomorphisms.
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14*. Orbits of a compact group action

Let G be a compact Lie group acting differentiability on a smooth manifold
M . Show that the orbits of G (this is to say the subsets of M of the form
G · x, where x ∈ M is fixed) are submanifolds of M .

Hint. Use the rank theorem and Theorem 4.49.

We take G to be the stabilizer of a point for the natural action of SO(n+1)
on Pn

R. Which manifolds are diffeomorphic to the orbits of G in Pn
R? Try

the same question replacing Pn
R by Pn

C and SO(n+ 1) by SU(n+ 1).

15. Show that on the vector space of polynomials, the linear operators

P �−→ P ′, P �−→ XP and Id

generate a Lie algebra isomorphic to that of the Heisenberg group seen at
the beginning of this chapter.

(In quantum mechanics, the position and the momentum are represented by
operators – namely, in dimension 1, multiplication by x and the derivative –
this is why this Lie algebra in called the Heisenberg algebra.)

16*. Manifolds of matrices of a given rank

Study the orbits of the action of Gl(p,R)×Gl(q,R) on Mp,q(R) given by

(P,Q) ·M = PMQ−1.

17*. ��A complex Lie group is a complex analytic manifold (see Section 2.5)
equipped with a group structure such that the map (g, h) �→ gh−1 is complex
analytic (this is the case for Gl(n,C) and Sl(n,C), but absolutely not the
case for U(n) or SU(n)!). Show that every complex compact connected Lie
group is commutative using the adjoint representation.��

18*. Universal covering of a Lie group

Let G be a Lie group, let p : G̃ → G be a universal covering of G and let ẽ

be a point of G̃ such that p(ẽ) = e. Applying the monodromy theorem 2.45
to the map (x, y) �→ p(x)p(y) of G̃ × G̃ to G, show that there is a unique
Lie group structure on G̃ with identity element ẽ for which p is a morphism.
Deduce that the fundamental group of a Lie group is Abelian.
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Differential Forms

5.1. Introduction

5.1.1. Why Differential Forms?

Does there exist a theory of integration – first for p-dimensional submanifolds
of Euclidean space –, and more generally for manifolds? We can start with
what we call line integrals, which is to say the circulation of a vector field V
along a curve. This is classically defined as the integral∫ b

a

〈
Vc(t), c

′(t)
〉
dt.

Here, c : [a, b] → R
n is a curve parametrization (in fact a piece of the

parametrization as we restricted the parameter to the interval [a, b]) and
〈 , 〉 is an inner product on R

n. Replacing the vectors Vc(t) by linear forms
αc(t) has the advantage of no longer requiring the inner product. We can
then integrate curves on any manifold X , the “field of linear forms” x �→ αx,
for all x ∈ X , where αx is a linear form on the tangent space TxX , by
writing ∫

c

α =

∫ b

a

αc(t)

(
c′(t)

)
dt.

We must of course specify the regularity of the αx with respect to x. This
question will be resolved in the same way as for vector fields.

The passage to submanifolds of dimension p > 1 is done in two steps. For
fixed x, which is to say from an infinitesimal point of view, we reduce to an
algebraic problem: to define an element of volume for vector subspaces of
dimension p (the different possible tangent spaces) of a vector space of dimen-
sion n (as it happens Rn � TxR

n or TxX , if X is the n-dimensional ambient
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manifold). Knowing that the volume of parallelepipeds in dimension n is
calculated with determinants, and that determinants are alternating n-linear
forms, we are driven to introduce alternating p-linear forms, which generalize
both linear forms and determinants. Then dependence with respect to x is
treated as in p = 1.

5.1.2. Abstract

Algebraic preliminaries (alternating multilinear forms) are treated in
Section 5.2. Then, in the following four sections, we study differential forms
on open subsets of Rn at length. These are easier objects to manipulate than
vector fields: every smooth map φ : U → V (regardless of the dimensions
of the spaces U and V ) allows us to “pullback” differential forms on V . The
pullback of a function f (a form of degree 0) is simply f ◦φ, and the extension
to forms is done easily using the linear tangent map of φ.

However the main interest in differential forms is the existence of a natural
(which is to say that it commutes with pullback under smooth maps, the
precise statement is Proposition 5.22) linear operator d which associates to
each form of degree p a form of degree p+1. This operator is the generalization
of the differential of a function (the case where p = 0). For example d allows
us to give a unified presentation of the gradient, divergence and curl, and the
algebraic properties of these operators. We deduce a remarkably concise form
of the Maxwell equations in Section 5.8, this new form readily generalizes to
other physical situations (see for example [Atiyah 79]).

The fundamental property of this operator is the vanishing of d2. This is a
generalization of the fact that ∂2

ij = ∂2
ji for smooth functions. A fundamental

question is the existence of a converse of this property. For example, if a form
of degree 1 satisfies dα = 0, does there exist a function such that α = df?
By the Poincaré lemma (see Section 5.6) the answer is yes (and for every
degree) on open subsets diffeomorphic to R

n. In general the answer is no. A
fundamental counterexample is that of the form x dy−y dx

x2+y2 on R
2
� {0}. This

corresponds to the fact that there is no way to determine the argument of
a complex number in a continuous fashion. We finally note that, thanks to
the fact that d commutes with pullbacks, and in particular the pullback by
a diffeomorphism, the transcription of these properties to manifolds may be
done painlessly.

The reader whose appetite is whetted by this long and nonetheless incom-
plete introduction is strongly encouraged to read (at least) the introduc-
tion of [Whitney 57]. Another beautiful reference, for physical motivation,
is [Misner-Thorne-Wheeler 73].
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5.2. Multilinear Algebra

5.2.1. Tensor Algebra

Let E be a vector space over a field K. The dual space L(E,K) = E∗ is the
vector space of K-linear maps from E to K, also called linear forms. Suppose
E has dimension n, and suppose (ei)1�i�n is a basis. If

v =

n∑
i=1

viei

is the decomposition of a vector with respect to this basis, we denote by ei∗

the linear form v �→ vi, which associates to every vector its i-th coordinate.
Then if α ∈ E∗, we have

α(v) =
n∑

i=1

viα(ei) =
n∑

i=1

α(ei)e
i∗(v)

for all v. In other words the linear form α may be written as the linear
combination

α =
n∑

i=1

α(ei)e
i∗.

In particular, (ei∗)1�i�n is a basis of E∗, called the dual basis to (ei)1�i�n.

We use the Einstein summation convention. When we index a family of
vectors or a vector field, we write a lower index. A good mnemonic is to think
of vector fields ∂i. When we index forms, we use an upper index, whether
actual forms like ei∗, or their values on a vector such as the numbers vi.
When we decompose a vector (resp. a form) with respect to a basis, we place
the indices of the coefficients in upper (resp. lower) position as we have just
done. Physicists have profited from the convention that an expression where
the same index appears both in upper and lower position as representing a
sum over this index. For our part we will not omit the summation signs, but
we will adopt the convention above for the placement of indices. This usage
allows us to see at a glance whether we are working with vectors or forms.

Definition 5.1. A linear k-form on E is any map

L :

k times︷ ︸︸ ︷
E × · · · × E −→ K

such that the component functions

xr �−→ L(x1, . . . , xk)

are linear forms on E.
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The sum of two linear k-forms and the product of a linear k-form by a scalar
are clearly linear k-forms.

Furthermore, if we write vectors (xr)1�r�k with respect to a given basis
(er)1�r�k, we see that L is determined by nk scalars

L(ei1 , ei2 , . . . , eik)

and therefore linear k-forms form a vector space of dimension nk.

Definition 5.2. The tensor product of a linear k-form f and a linear l-form
g is a linear (k + l)-form given by(

f ⊗ g
)
(v1, . . . , vk+l) = f(v1, . . . , vk)g(vk+1, . . . , vk+l).

For example, if α and β are two linear forms,

(α⊗ β)(u, v) = α(u)β(v),

which shows by the way that α ⊗ β �= β ⊗ α if α and β are not propor-
tional. The defining formula shows that ⊗ defines a bilinear map from
Lk(E,K)× Ll(E,K) to Lk+l(E,K) for any k and l, and we have

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h,

with the value of both sides at (x1, . . . , xk+l+m) given by

f(x1, . . . , xk)g(xk+1, . . . , xk+l)h(xk+l+1, . . . , xk+l+m).

Given a basis of E and the corresponding dual basis of E∗, this associative
property allows us to introduce the nk tensor products

ei1∗ ⊗ · · · ⊗ eip∗.

If we write k vectors xi as

xi =

n∑
j=1

ξji ej

then
(ei1∗ ⊗ · · · ⊗ eik∗)(x1, . . . , xk) = ξi11 ξi22 . . . ξikk .

Thus, as in the simplest case of E∗ = L(E,K), the ei1∗ ⊗ · · · ⊗ eik∗ form a
basis of Lk(E,K). We also call this space the k-th tensor power of E∗, and
we denote it by

⊗k
E∗.

Definition 5.3. The tensor algebra of E∗, denoted by T (E∗), is the direct
sum

∞⊕
i=0

k⊗
E∗

equipped with the product obtained by extending ⊗ by linearity.
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This is an associative algebra. ��The algebraic minded reader may verify
the following so-called “universal” property which characterizes T (E∗): every
linear map from E∗ to an associative algebra A extends in a unique way to
a morphism of algebras from T (E∗) to A.��

5.2.2. Exterior Algebra

Definition 5.4. A linear k-form is alternating if for every permutation σ
of [1, k] we have

f(x1, . . . , xk) = ε(σ)f(xσ(1), . . . , xσ(k)),

where we denote the signature of σ by ε(σ). The integer k is the degree of f .

Example. Every linear form is alternating. A 2-form is alternating if and
only if

f(x, y) = −f(y, x) for all x, y ∈ E.

It is equivalent to say (if K is not of characteristic 2, for example if K = R

or C, which we assume hereafter) that f(x, x) = 0 for all x. Indeed, in this
case

f(x+ y, x+ y) = 0 = f(x, x) + f(x, y) + f(y, x) + f(y, y) = f(x, y) + f(y, x).

By using the fact that every permutation is the product of transpositions, we
can deduce the following important property.

Proposition 5.5

i) A linear k-form is alternating if and only if

f(x1, . . . , xk) = 0 when two of the xi are equal.

ii) If the vectors x1, . . . , xk are linearly dependent,

f(x1, . . . , xk) = 0 for every alternating k-form f.

Proof. i) is a direct consequence of the above. For ii), note that if the xi are
not all zero then at least one is a combination of the others. By a permutation
of the variables (f is alternating!) we may suppose x1 is a combination of
the others. Thus

x1 =
k∑

i=2

λixi

and therefore

f(x1, . . . , xk) =

k∑
i=2

λif(xi, x2, . . . , xi, . . . , xk) = 0.
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The vector space of alternating linear k-forms is denoted
∧k E∗. We have

1⊗
E∗ =

1∧
E∗ = E∗

and we declare that
0⊗

E∗ =

0∧
E∗ = K.

An important case is where k = dimE: the theory of determinants says
exactly that dim

∧n E∗ = 1, and more precisely that

f(x1, . . . , xn) =

∣∣∣∣∣∣∣
ξ11 . . . ξn1
...

. . .
...

ξ1n . . . ξnn

∣∣∣∣∣∣∣ f(e1, . . . , en).
More generally

Proposition 5.6. If f ∈
∧k

E∗ and if (ei)1�i�n is a basis of E, we have

f(x1, . . . , xk) =
∑

1�i1<···<ik�n

∣∣∣∣∣∣∣
ξi11 . . . ξik1
...

. . .
...

ξi1n . . . ξikk

∣∣∣∣∣∣∣ f(ei1 , . . . , eik).
Proof. First, multilinearity gives

f(x1, . . . , xk) =
∑

i1,...,ik

ξi11 . . . ξikk f(ei1 , . . . , eik).

Moreover, if f is alternating, then by Definition 5.4 the only terms that
remain are those where the indices ir are pairwise distinct: the required
formula is obtained by regrouping the sequences i1, . . . , ik corresponding to
the same partition of k elements of [1, n] and in applying the formula for the
expansion of a determinant.

Corollary 5.7. dim
∧k

E∗ =
(
n
k

)
. In particular,

∧k
E∗ = 0 if k > n.

The example of two forms of degree 1 shows that the tensor product of two
alternating forms is not alternating. Nonetheless a little work allows us to
equip the set of alternating forms with a multiplicative structure.

Definition 5.8. The antisymmetrization of a linear k-form f, denoted Alt f ,
is given by

(Alt f)(x1, . . . , xk) =
1

k!

∑
σ∈Sk

ε(σ)f(xσ(1), . . . , xσ(k)),

where we denote the group of permutations of {1, 2, . . . , k} by Sk, and the
signature of the permutation σ by ε(σ).

We can easily verify that f = Alt f if and only if f is alternating.
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Example. If f ∈
∧2 E∗,

(Alt f)(x, y) =
1

2

(
f(x, y)− f(y, x)

)
.

Definition 5.9. The exterior product of f ∈
∧k E∗ and g ∈

∧l E∗, denoted
f ∧ g, is the (k + l)-form

f ∧ g =
(k + l)!

k!l!
Alt(f ⊗ g).

Example. If k = l = 1, (f ∧ g)(x, y) = f(x)g(y)− f(y)g(x).

This product has the following properties, which we will assume, and whose
proof (for which one can consult [Spivak 79, first volume, Chapter 7])
primarily uses properties of permutation groups.

1. Anticommutativity:

g ∧ f = (−1)klf ∧ g if f ∈
k∧
E∗ and g ∈

l∧
E∗.

2. Associativity:

f ∧ (g ∧ h) = (f ∧ g) ∧ h if f ∈
k∧
E∗, g ∈

l∧
E∗, h ∈

m∧
E∗.

In particular f ∧ f = 0 if f is of odd order. This property is false for forms
of even order: if α, β, γ and δ are linearly independent linear forms, and if
ω = α ∧ β + γ ∧ δ, we have

ω ∧ ω = 2α ∧ β ∧ γ ∧ δ �= 0.

(See Exercises 1 and 2 for more details on these issues.)

Another important case is that of the product of k forms of degree 1. By
induction on k and by using the properties above we can verify that

(f1 ∧ · · · ∧ fk)(x1, . . . , xk) =

∣∣∣∣∣∣∣
f1(x1) . . . fk(x1)

...
. . .

...
f1(xk) . . . fk(xk)

∣∣∣∣∣∣∣
This allows a reinterpretation of Proposition 5.6 by writing

f =
∑

1�i1<···<ik�n

f(ei1 , . . . , eik)e
i1∗ ∧ · · · ∧ ei

∗
k .

In particular, the determinant with respect to the basis (ei)1�i�n is the alter-
nating form e1∗ ∧ · · · ∧ en∗.



192 An Introduction to Differential Manifolds

Definition 5.10. The exterior algebra of E∗ is the vector space

∧
E∗ =

∞⊕
k=0

∧
E∗ =

n⊕
k=0

∧
E∗

equipped with the product above and extending ∧ by linearity.

The fact that
∧k

E∗ = 0 if k > dimE is already a consequence of Proposi-
tion 5.5. However, the first time we wrote

∧
E∗ the dimension did not enter

explicitly. We also note that dim
∧
E∗ = 2n, and that the forms of even

degree mutually commute.

Definition 5.11. Let E and F be two vector spaces, and f : E → F a linear
map. The transpose of f , denoted tf , is the map from F ∗ to E∗ given by

tf(L) = L ◦ f.

It is immediate that tf is linear, and that the map f �→ tf is also linear.
Further, if E, F , G are three vector spaces, and if f ∈ L(E,F ), g ∈ L(F,G),
a direct application of the definition shows that

t(f ◦ g) = tg ◦ tf.

The definition extends immediately to the case where L is a multilinear map,
by writing in a similar way(

tf(L)
)
(x1, . . . , xk) = L

(
f(x1), . . . , f(xk)

)
.

Note that
tf(S ⊗ T ) = tf(S)⊗ tf(T ),

and that tf(S) is alternating as soon as S is. We again have

tf(S ∧ T ) = tf(S) ∧ tf(T ).

If f ∈ L(E,E), the transpose tf also gives an endomorphism of
∧k

E∗

for every k. For k = dimE, this is an endomorphism between spaces of
dimension 1, which is therefore of the form ω �→ cω, where c is a scalar. If
(ei)1�i�dimE is a basis of E, by Proposition 5.6 this scalar is the determinant
of the f(ei) with respect to the ei, which therefore is independent of the basis
chosen. We thus recover the determinant of an endomorphism. The formula
t(f ◦ g) = tg ◦ tf gives a proof of the equation

det(f ◦ g) = (det g)(det f).



Chapter 5 – Differential Forms 193

Remark. At the end of this voluntarily naive algebraic exposition,1 it is
good to point out it is not necessary when defining tensor or exterior algebra
to have a vector space considered as a dual space. The remark following
Definition 5.3 allows a direct definition of the tensor and exterior algebra of
a vector space. In a more down to earth manner, it suffices to redo all of the
above suppressing the stars: if (ei)1�i�n is a basis of an n-dimensional vector
space, a basis of T (E) is furnished by nk symbols

ei1 ⊗ · · · ⊗ eik ,

and we write

(ei1 ⊗ · · · ⊗ eik)⊗ (ej1 ⊗ · · · ⊗ ejl) = ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl .

A tensor is an element of T (E).

The exterior algebra
∧
E is defined in the same way. It is of course necessary

and not difficult in both cases to prove that the algebraic structure obtained
does not depend on the choice of basis used to define it. ��A possible solution
is to return to the point of view given at the beginning of the section: in
finite dimensions every vector space is “naturally” isomorphic to the dual of
its dual��. Finally note that every linear map from E to F extends to a map
f⊗ from

⊗
E to

⊗
F and a map f∧ of

∧
E to

∧
F ; we have

(f ◦ g)⊗ = f⊗ ◦ g⊗ and (f ◦ g)∧ = f∧ ◦ g∧.

5.2.3. Application: The Grassmannian of 2-Planes
in 4 Dimensions

Let E be a vector space of dimension 4, and let ω be a nonzero element
of
∧4

E. We define a bilinear form B on
∧2

E by

u ∧ v = B(u, v)ω.

We will show that B is symmetric, non-degenerate and of signature (3, 3),
and deduce that the set of 2-planes of E is in bijection with the quadric
of P 5

R of solutions to

x1y1 + x2y2 + x3y3 = 0

in homogeneous coordinates.

1. For example it is possible and conceptually preferable to give a definition “without
denominators” of the exterior product.
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Let (a, b, c, d) be a basis of E such that a ∧ b ∧ c ∧ d = 1
2ω. We introduce a

basis u1, u2, u3, v1, v2, v3 of
∧2

E by writing

u1 = a ∧ b+ c ∧ d v1 = a ∧ b− c ∧ d
u2 = a ∧ c− b ∧ d v2 = a ∧ c+ b ∧ d
u3 = a ∧ d+ b ∧ c v3 = a ∧ d− b ∧ c.

Using the commutativity of the exterior product of even degree forms, and
relations of the form

(a ∧ b) ∧ (a ∧ c) = −(a ∧ a) ∧ (b ∧ c) = 0,

we see that

B(ui, uj) = −B(vi, vj) = δij and B(ui, vj) = 0,

which proves the first assertion.

If now P ⊂ E is a 2-plane, and (e, f) is a basis of E, introduce the 2-vector
e ∧ f . If (e′, f ′) is another basis, we have

e′ ∧ f ′ =
(
det(e′, f ′)/(e, f)

)
(e ∧ f).

We associate to every 2-plane the element [e∧f ] of projective space associated
to
∧2

E. Furthermore, by Exercise 2, a 2-vector w is of the form e∧ f if and
only if w ∧ w = 0. We deduce the result by writing w in the form

x1u1 + x2u2 + x3u3 + y1v1 + y2v2 + y3v3.

We can show that the manifold in question is diffeomorphic to S2×S2/{I, σ},
where σ(x, y) = (−x,−y) (see Exercise 6 of Chapter 2).

5.3. The Case of Open Subsets

of Euclidean Space

5.3.1. Forms of Degree 1

We saw in Chapter 1 why the differential of a function f ∈ C∞(U) (where U
is an open subset of Rn or more generally a vector space E of dimension n)
may be written in the form

df =

n∑
i=1

∂if(x) dx
i.
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If we are interested in the dependence as a function of x ∈ U , we obtain a
smooth map from U to E∗ = L(E,R). More generally

Definition 5.12. A differential form of degree 1 on an open subset U of a
vector space is a smooth map from U to E∗.

We denote the set of these forms by Ω1(U). A form α may be written

n∑
i=1

αi dx
i,

αi ∈ C∞(U) for all i, with the dxi being coordinates with respect to a fixed
basis (the natural basis if E = R

n). We denote the value of α at x by αx.
A first justification of this point of view is the possibility of a definition of a
line integral that does not appeal to coordinates.

Definition 5.13. Let I ⊂ R be a closed interval, and let c : I → U be
a C1 parametrized curve. The integral of a differential form α along c is the
number ∫

c

α =

∫
I

n∑
i=1

αi

(
ci(t)

)
c′i(t) dt =

∫
I

αc(t)

(
c′(t)

)
dt.

(For every t we apply the linear form αc(t) to the vector c′(t).)

Passing from vector fields to differential forms in Euclidean space;
gradient

If E is equipped with an scalar product 〈 , 〉, which is to say if E is an inner
product space, and if X is a vector field on E, we define the circulation of X
along c as ∮

c

X =

∫
I

〈
Xc(t), c

′(t)
〉
dt.

The inner product defines an isomorphism between E and E∗, denoted v �→ v�

(as it lowers coordinate indices, see Section 5.2). The inverse isomorphism is
denoted α �→ α�. These isomorphisms are defined by the relations

∀w ∈ E, v�(w) = 〈v, w〉 and 〈α�, w〉 = α(w).

We deduce an isomorphism between the vector space of vector fields on an
open subset E and the differential forms of degree 1, which is denoted in the
same way. Thus in an inner product space, the circulation of a vector field
and the integral of a differential form of degree 1 along a curve are equivalent
notions. However only the last one can be defined in the case where E is
simply a vector space. It will be the only one to extend directly to manifolds,
��whereas the circulation of a vector field is defined only with the help of
Riemannian metric.��
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We take advantage of this to define the gradient of a function f on Euclidean
space. This is the vector field, denoted ∇f , defined by ∇f = df �.

A classical question, notably in physics, it to know whether a vector field
is a gradient vector field (or the derivative of a potential, in the language
of the physicists). This question is in fact a vector field version of a more
natural and general question for differential forms: given a differential form
α ∈ Ω1(U), under what conditions is there a function f ∈ C∞(U) such that
α = df? By virtue of a theorem of Clairaut/Schwarz on the interchanging of
derivatives, a necessary condition is

∂iαj(x) = ∂jαi(x) for all x ∈ U and i, j ∈ [1, n].

This condition is by no means sufficient.

Theorem 5.14. On R
2
� {0}, there is no function f of class C1 such that

the differential form

α =
x dy − y dx

x2 + y2

equals df .

This is a consequence of the following lemma.

Lemma 5.15. For every parametrized curve c : [a, b] → U such that c(a) =
c(b) and every function f ∈ C1([a, b], U) we have∫

c

df = 0.

Proof. It suffices to remark that∫
c

df =

∫ b

a

n∑
i=1

∂if
(
c(t)
)
c′i(t) dt = f

(
c(b)

)
− f
(
c(a)

)
.

Proof of Theorem 5.14. It suffices to integrate α along the unit circle,
parametrized by c(t) = (cos t, sin t), where t ∈ [0, 2π]. We find

∫
c α = 2π.

We will not go further for the moment. The integration of forms of degree 1
(Definition 5.13) and the problem of writing a form α ∈ Ω1(U) as df gener-
alizes to more general objects which we now define.

5.3.2. Forms of Arbitrary Degree

Definition 5.16. A differential form of degree p on an open subset U of a
vector space E is a smooth map from U to

∧p E∗.
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The vector space of forms of degree p on U is denoted Ωp(U).

Choose a basis (ei)1�i�n for E. If α ∈ Ωp(U), for any x ∈ U we obtain an
alternating form αx of degree p, which may be written

αx =
∑

1�i1<···<ip�n

αi1,...,ip(x)e
∗
i1 ∧ · · · ∧ e∗ik .

Recalling that the linear form ei∗ is the differential of the function x �→ xi,
we write

αx =
∑

1�i1<···<ip�n

αi1...ip(x) dx
i1 ∧ · · · ∧ dxip .

The algebraic operations defined in Section 5.2 for alternating forms extend
naturally: for α ∈ Ωp(U) and β ∈ Ωq(U), we define α ∧ β as the form of
degree p+ q whose value at x is

(α ∧ β)x = αx ∧ βx.

By convention
∧0 E∗ = R, and so the forms of degree 0 are smooth functions.

The definition of the product of a form of degree p by a function fits this
framework. Finally, the properties of anticommutativity and associativity
persist in this setting.

In a way analogous to Definition 5.10, we write

Ω(U) =

∞⊕
k=0

Ωk(U) =

dim(U)⊕
k=0

Ωk(U).

Any form belonging to a summand of this sum is said to be homogeneous.

Finally we note an obvious property, which we will use frequently in the
sequel.

Lemma 5.17. Ω(U) is generated as an algebra by functions and their differ-
entials.

Remark. We can say a little more, as Ω(U) is clearly generated by smooth
functions and the dxi. However the formulation of this lemma, which does
not use coordinates, generalizes directly to manifolds.

Definition 5.18. Let U and V be open subsets of a vector space, and let f
be a smooth map from U to V . The pullback by f of α ∈ Ω(V ), denoted
f∗α, is the form on U defined by

(f∗α)x = t(Txf) · αf(x).

In other words, if α is of degree p, by the definition of the transpose

(f∗α)x (v1, . . . , vp) = αf(x)(Txf · v1, . . . , Txf · vp).
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If dim V = m, and if f1, . . . , fm are the coordinates of f and if

αy =
∑

1�i1<···<ip�m

αi1,...,ip(y) dy
i1 ∧ · · · ∧ dyip ,

we have

(f∗α)x =
∑

1�i1<···<ip�m

αi1,...,ip

(
f(x)

)
df i1 ∧ · · · ∧ df ip .

Here we have replaced y by f(x) and dyi by df i, as is common when applying
the chain rule.

Examples

a) Take U = R, V = R
∗
+ and f(t) = exp t. Then f∗(dx/x) = dt.

b) If U = V = R
2, and f(r, θ) = (r cos θ, r sin θ), we have

f∗(dx ∧ dy) = rdr ∧ dθ.

c) More generally, if U and V are two open subsets of the same dimension n,
then

f∗(dx1 ∧ · · · ∧ dxn) = (detTxf)(dx
1 ∧ · · · ∧ dxn).

d) By the definition of a line integral, if c : [a, b] → U is a parametrized
curve, ∫

c

α =

∫ b

a

c∗α.

The algebraic properties of the transpose extend to f∗.

Proposition 5.19. Pullback has the following algebraic properties:

i) If f ∈ C∞(U, V ) and if α, β ∈ Ω(V ), then

f∗(α ∧ β) = (f∗α) ∧ (f∗β).

ii) If f ∈ C∞(U, V ) and g ∈ C∞(V,W ), then

(g ◦ f)∗ = f∗ ◦ g∗.

Proof. i) is an immediate consequence of the algebraic properties of the
transpose seen in Section 5.2. To show ii), we introduce a method that will
be used systematically in this chapter, and is based on Lemma 5.17.

The property is true for functions: if α ∈ C∞(W ), we have

(g ◦ f)∗α = α ◦ (g ◦ f) = (α ◦ g) ◦ f = f∗(α ◦ g) = f∗(g∗α).
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It is also true for forms of degree 1 by the chain rule. Indeed if α ∈ Ω1(W )
and if β = g∗α, we have

βx(v) = αg(x)(Txg · v)

and (
f∗β

)
y
(w) = βf(y)(Tyf · w)

= αg(f(y))

(
Tf(y)g · (Tyf · w)

)
= α(g◦f)(y)

(
Ty(g ◦ f) · w

)
.

Under these conditions, by applying i), we see that ii) is then true for every
degree.

5.4. Exterior Derivative

The definition of the pullback seen in the previous section applies perfectly
to covariant tensors, this is to say to the maps from an open subset U of Rn

to T (Rn∗).

However, differential forms have the following specific property: it is possible
to think of them as an extension of the differential of functions.

Theorem 5.20. There exists a unique linear map d : Ω(U) → Ω(U) having
the following properties:

i) deg dα = p+ 1 if degα = p;

ii) on Ω0(U), d is the differential of functions;

iii) if α is homogeneous, d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ;

iv) d ◦ d = 0.

Proof. We first show uniqueness. We have d(dxi) = 0 for all i ∈ [1, n], and
by using iii) we see by induction on k that

d
(
dxi1 ∧ · · · ∧ dxik

)
= 0 for all i1, . . . , ik ∈ [1, n].

Using ii) and iii) again, we see that necessarily

d(f dxi1 ∧ · · · ∧ dxik ) = df ∧ dxi1 ∧ · · · ∧ dxik .

Consequently, if α is a differential form of degree p written as

α =
∑

1�i1<···<ip�n

αi1,...,ip dx
i1 ∧ · · · ∧ dxip ,
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we must have

dα =
∑

1�i1<···<ip�n

dαi1,...,ip ∧ dxi1 ∧ · · · ∧ dxip . (∗)

We now verify such a formula holds. Properties i) and ii) are clear. To
prove iii), it suffices, by using linearity, to check the case where

α = f dxi1 ∧ · · · ∧ dxip and β = g dxj1 ∧ · · · ∧ dxjq .

Then

d(α ∧ β) = d(fg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

dα ∧ β = g df ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

α ∧ dβ = f dxi1 ∧ · · · ∧ dxiq ∧ dg ∧ dxj1 ∧ · · · ∧ dxjq .

However, by the properties of the differential on functions, d(fg) = g df+f dg.
The right hand side of the first equality then decomposes into two terms. The
first is the right hand side of the second inequality, and using the commutation
properties of the exterior product given in Section 5.2, the second is the right
hand side of the third inequality, multiplied by (−1)p.

It remains to show that d ◦ d = 0. We first see by using (∗) that forms with
constant coefficients have zero differential. Therefore using (∗) once more,
we reduce to the case where we must show d(df) = 0 for every function.
However

d(df) =

n∑
j=1

d(∂jf) ∧ dxj

=

n∑
i,j=1

∂i(∂jf) dx
i ∧ dxj

=
∑

1�i<j�n

(
∂i(∂jf)− ∂j(∂if)

)
dxi ∧ dxj = 0

by symmetry of second derivatives.

Definition 5.21. The operator d is called the differential or the exterior
derivative.

Example. For an open subset of R3, the differential of a form α = Adx +
B dy + C dz of degree 1 is

dα = (∂xB − ∂yA) dx ∧ dy + (∂yC − ∂zB) dy ∧ dz + (∂zA− ∂xC) dz ∧ dx,
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and that of a form β = P dy ∧ dz +Qdz ∧ dx +Rdx ∧ dy of degree 2 is

dβ = (∂xP + ∂yQ+ ∂zR) dx ∧ dy ∧ dz.

With the conventions that we have made, the formulas evoke the curl and
divergence from vector calculus. We will return to this later. See also
Exercise 4.

Proposition 5.22. The exterior derivative and pullback commute. In other
words, if U and V are two open subsets of a vector space and if ϕ ∈ C∞(U, V ),
we have

ϕ∗(dα) = d(ϕ∗α) ∀α ∈ Ω(V ).

Proof. ϕ∗d and dϕ∗ are linear maps from Ω(V ) to Ω(U), which increase
a form’s degree by 1. They are equal on functions of degree 0, the equality
d(ϕ ◦ f) = ϕ∗df is equivalent to the chain rule for functions f and ϕ. They
are also equal for forms of degree 1: due to linearity is suffices to check fdg,
where f, g ∈ C∞(V ). However

ϕ∗(d(fdg)) = ϕ∗(df ∧ dg) = ϕ∗df ∧ ϕ∗dg

= d(ϕ∗f) ∧ d(ϕ∗g) = d
(
(ϕ∗f)d(ϕ∗g)

)
= d
(
ϕ∗(fdg)

)
.

Further, if α is of degree p, we have

(ϕ∗d)(α ∧ β) = (ϕ∗dα) ∧ ϕ∗β + (−1)pϕ∗α ∧ (ϕ∗dβ)

(dϕ∗)(α ∧ β) = (dϕ∗α) ∧ ϕ∗β + (−1)pϕ∗α ∧ (dϕ∗β).

With this we can proceed by induction on degree.

Example: the angular form

a) This point of view lets us give another proof that the form

α =
x dy − y dx

x2 + y2

is not exact on R
2
� {0}. Let S1 be the circle defined by the equation

x2 + y2 = 1, and let i : S1 → R
2 be the canonical injection. By Propo-

sition 5.22, if α is exact, then i∗α is too. However there cannot exist a
function f ∈ C∞(S1) such that i∗α = df : the differential of a smooth
function on a compact manifold will vanish at some point (say where the
maximum is attained), while i∗α never vanishes on S1: a tangent vector
to S1 at a point (cos θ, sin θ) is of the form a(− sin θ, cos θ), and on this
vector α equals a. At this stage we would prefer to work in polar coordi-
nates. Writing f(r, θ) = (r cos θ, r sin θ), we find

f∗(x dy − y dx) = r cos θ(sin θ dr + r cos θ dθ)− r sin θ(cos θ dr + r cos θ dθ)

= r2 dθ.
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Thus f∗α = dθ. Alas f is not a diffeomorphism, but only a local diffeo-
morphism from R

∗
+ × R to R

2
� {0}. The fact that α is not exact says

exactly that there is not an “angle function” defined on R
2
� {0}. Writing

dθ is justified by the fact that there exists local determination of the angle
given by local inverses of f , any two of which, when restricted to an open
connected subset where they are defined, differ by a constant.

b) There exists a generalization of α in higher dimension. This is the solid
angle form αn ∈ Ωn−1(Rn

� {0}), defined by

αn =
1

‖x‖n
n∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

We can verify directly that dαn = 0. We sketch a more instructive proof.
If R ∈ SO(n), R∗αn = αn; and if ht is the homothety with center 0
and with respect to t, h∗

tαn = αn for t > 0. By Proposition 5.22, the
form dαn has the same properties. However, inspired by the techniques
of Exercise 6, we can show that there does not exist a form of degree n
on R

n
� {0} which is invariant under homotheties and by rotations with

center 0. Thus αn is closed.

We can generalize Theorem 5.14: there does not exist a form β in
Ωn−2(Rn

� {0}) such that dβ = αn. The proof uses an integration procedure
which generalizes line integrals, and will be the subject of the next chapter.

Another interpretation of differential forms is possible, where we deduce an
expression for the exterior derivative d with using coordinates. For any form
α ∈ Ωp(U), and p vector fields X1, . . . , Xp on U we associate the function
α(X1, . . . , Xp) defined by(

α(X1, . . . , Xp)
)
(x) = αx

(
(X1)x, . . . , (Xp)x

)
.

In other words, for each x, we take the value of the alternating αx on the
vectors (X1)x, . . . , (Xp)x. If α =

∑n
i=1 αi dx

i and X =
∑n

i=1 X
i∂i, then

α(X) =
n∑

i=1

αiX
i.

More generally, if

α =
∑

1�i1<···<ip�n

αi1,...,ip dx
i1 ∧ · · · ∧ dxip ,

and

Xk =

n∑
i=1

ξik∂i
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we obtain

(
α(X1, . . . , Xp)

)
(x) =

∑
1�i1<···<ip�n

αi1,...,ip(x)

∣∣∣∣∣∣∣
ξi11 (x) . . . ξ

ip
1 (x)

...
. . .

...
ξi1p (x) . . . ξ

ip
p (x)

∣∣∣∣∣∣∣
by applying Proposition 5.6. In particular, the coefficient αi1,...,ip is equal
to α(∂i1 , . . . , ∂ip).

Proposition 5.23. If α is a differential form of degree p, the map

(X1, . . . , Xp) �−→ α(X1, . . . , Xp)

is an alternating linear p-form on C∞(T (U)) considered as a module over
the ring C∞(U). Conversely, if T is such a form, there exists a unique
differential form of degree p such that(

T (X1, . . . , Xp)
)
(x) = αx

(
X1(x), . . . , Xp(x)

)
Proof. The first statement is a direct consequence of the definitions.
Conversely, if Xk =

∑n
i=1 ξ

i
k∂i, linearity with respect to C∞(U) gives

T (X1, . . . , Xp) =
∑

1�i1<···<ip�n

∣∣∣∣∣∣∣
ξi11 (x) . . . ξ

ip
1 (x)

...
. . .

...
ξi1p (x) . . . ξ

ip
p (x)

∣∣∣∣∣∣∣ T (∂i1 , . . . , ∂ip),
and the required form is

α =
∑

1�i1<···<ip�n

T (∂i1 , . . . , ∂ip) dx
i1 ∧ · · · ∧ dxip .

Thus, if α ∈ Ωp(U), the question arises to express dα as an alternating linear
p+ 1-form on C∞(TU).

Theorem 5.24. If α ∈ Ωp(U), we have

dα(X0, . . . , Xp) =

p∑
i=0

(−1)iXi · α(X0, . . . , X̂i, . . . , Xp) +

+
∑

0�i<j�p

(−1)i+jα([Xi, Xj], X0, . . . , X̂i, . . . , X̂j , . . . , Xp),

where the symbol ̂ indicates that the corresponding term is omitted.

Example. For p = 1, we have

dα(X,Y ) = X · α(Y )− Y · α(X)− α([X,Y ]).

In particular, if α = df , this form reduces to the definition of the bracket.
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Proof. The right hand side of the stated formula is C∞(U)-linear, by virtue
of the relation

[fX, Y ] = f [X,Y ]− (Y · f)X.

It then suffices to verify the formula for the ∂i vector fields. But

dα(∂i0 , . . . , ∂ip) =

p∑
k=0

(−1)k∂k(αi0,...,îk,...,ip
).

5.5. Interior Product, Lie Derivative

We can define the action of a vector field on differential forms, which is an
“infinitesimal” version of pullback.

Definition 5.25. The Lie derivative associated to a vector field X (for the
moment defined only on an open subset of Rn) is a linear map

LX : Ωp(U) −→ Ωp(U)

which to a differential form α associates(
d

dt

)
(ϕ∗

tα)|t=0,

where ϕt is the local one-parameter group associated to X.

It is easy to check that we obtain a differential form: for fixed x ∈ U , (ϕ∗
tα)x is

an alternating linear p-form depending differentiably on t, therefore is again
alternating p-linear with respect to t. To see that this form depends in a
smooth way on x, it suffices to check its coefficients. However

(LXα)i1...ip =
d

dt

[
αϕt(x)(Txϕt · ∂i1 , . . . , Txϕt · ∂ip)

]
t=0

is clearly smooth.

Example. For X = ∂i, we of course have

LXα =
∑

1�i1<···<ip�n

∂iαi1,...,ipdx
i1 ∧ · · · ∧ dxip .

In practice, to calculate the Lie derivative explicitly, it is very useful to use
the following characterization.
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Theorem 5.26. The operator LX is characterized by the following proper-
ties:

i) if f ∈ C∞(U), LXf = df(X) = X · f ;

ii) LX ◦ d = d ◦ LX, or in other words, LX and d commute;

iii) for all differential forms α and β, we have

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

(The last property indicates that LX is a derivation of the algebra Ω(U).)

Proof. We first check these properties are satisfied by LX . This is clear
for i). We obtain ii) by differentiating the identity

ϕ∗
t ◦ d = d ◦ ϕ∗

t ,

with respect to t, obtained by applying Proposition 5.22 to the flow ϕt of X .
Similarly, iii) is obtained by differentiating the identity

ϕ∗
t (α ∧ β) = (ϕ∗

tα) ∧ (ϕ∗
tβ)

with respect to t.

Conversely, condition i) determines Lx on forms of degree 0, i.e., functions,
ii) and iii) determine LX on forms of degree 1, and finally iii) determines LX

for all degrees.

Corollary 5.27. If X and Y are two vector fields, we have

LX ◦ LY − LY ◦ LX = L[X,Y ].

Proof. The two sides of the equation coincide on C∞(U) by the definition
of the bracket, and both commute with d. Both sides satisfy property iii)
of the preceding proposition: we saw in Section 3.4 that the bracket of two
derivations is a derivation.

Application: divergence of a vector field

We calculate LX(dx1 ∧ · · · ∧ dxn) for a vector field X on R
n. First

LX(dx1 ∧ · · · ∧ dxn) =

n∑
i=1

dx1 ∧ · · · ∧ dxi−1 ∧ LXdxi ∧ dxi+1 ∧ · · · ∧ dxn.

(Start with Theorem 5.26 iii) and think of the derivative as the product of n
factors.) Then

LX dxi = d(LXxi) = d

(
n∑

j=1

Xj∂jx
i

)
= dX i.
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Thanks to the properties of the exterior product, only the coefficient of dxi

in dX i will occur in the i-th term of the sum above. Thus

LX(dx1 ∧ · · · ∧ dxn) =

(
n∑

i=1

∂iX
i

)
dx1 ∧ · · · ∧ dxn.

The function
∑n

i=1 ∂iX
i is called the divergence of the vector field X .

In view of the way we’ve obtained the divergence, we can see that it measures
the infinitesimal change of volume along the flow of X . This explains its use
in the equations of physics which express conservation laws. For example,
in fluid dynamics, the conservation of mass of an incompressible fluid is
expressed by the equation

∂tρ+ div(ρV ) = 0,

where ρ(x, y, z, t) is the mass density at a point (x, y, z) at time t, and V is
the velocity at this point. The conservation of electric charge is expressed by
a similar equation (see Section 5.8.2).

Theorem 5.26 gives another expression for LX , which will be particularly
useful for the sequel. For this, we will (again!) need a definition.

Definition 5.28. The interior product of a differential form α of degree
p > 0 by a vector field X is a form of degree p− 1, denoted iXα, given by

(iXα)x(v1, . . . , vp−1) = αx(Xx, v1, . . . , vp−1).

If f ∈ Ω0(U) = C∞(U), we write iXf = 0.

Example. If X is the radial vector field
∑n

i=1 x
i∂i,

iX(dx1 ∧ · · · ∧ dxn) =

n∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Application: curl of a vector field

LetE be an oriented inner product space of dimension 3, and ω = dx∧dy∧dz,
where (x, y, z) are the coordinates with respect to a positively-oriented
orthonormal basis.

The curl of a vector field X on E is defined by the equation

icurlXω = d(X�).

As a result of the calculation which follows Definition 5.21,

curl

(
A

∂

∂x
+B

∂

∂y
+C

∂

∂x

)
=(∂yC−∂zB)

∂

∂x
+(∂zA−∂xC)+

∂

∂y
(∂xB−∂yA)

∂

∂z
.
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The name comes from the following example. The instantaneous velocity
vector field of a solid body moving in Euclidean space in a frame with respect
to the solid is given by the formula

Vm = Va +Ω ∧ #   »am,

where (for this occurrence only) ∧ denotes the vector (cross) product. The
vector Ω is called the instantaneous rotation. One verifies immediately that
curlV = Ω.

We note that to define the divergence we need only to give an alternating form
of maximal degree up to sign; to define the gradient, we need a positive-
definite inner product; to define the curl we need a positive-definite inner
product and an orientation (see Section 6.2) on a 3-dimensional space (physi-
cists indicate this by saying the gradient is a polar vector and the curl is an
axial vector).

The three operators that we have defined on differential forms are connected
by the following formula, which we will use often.

Theorem 5.29 (Cartan’s formula). If X is a vector field on U , and if ω
is a differential form, we have

LXω = d(iXω) + iX(dω).

Proof. Write
PX = d ◦ iX + iX ◦ d.

We will verify directly that PX has all of the properties that characterize LX .
First,

PXf = iXdf = df(X) = LXf.

Next,
PX ◦ d = d ◦ iX ◦ d = d ◦ PX

since d◦d = 0. Finally, by the properties of the exterior product, if degα = p,
we have

iX(α ∧ β) = (iXα) ∧ β + (−1)pα ∧ iXβ.

Then

d
(
iX(α ∧ β)

)
=
(
d(iXα)

)
∧ β + (−1)p−1(iXα) ∧ dβ +

+ (−1)pdα ∧ iXβ + (−1)2pα ∧
(
d(iXβ)

)
,

while

iX
(
d(α ∧ β)

)
=
(
iX(dα) ∧ β

)
+ (−1)p+1dα ∧ iXβ +

+ (−1)p(iXα) ∧ dβ + (−1)2pα ∧ iXdβ.
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Taking the sum, we find that

PX(α ∧ β) = (PXα) ∧ β + α ∧ PXβ.

Therefore by Theorem 5.26, PX = LX .

We may also be interested in the derivative of ϕ∗
tω for any t, where we denote

the flow of X by ϕt. It is immediate that

d

ds
ϕ∗
sω|s=t =

d

ds
ϕ∗
s+tω|s=0 = ϕ∗

t

(
d(iXω) + iX(dω)

)
.

We will also frequently have to evaluate the derivative of ϕ∗
tω at t in the case

where ϕt is a family of diffeomorphisms such that ϕ0 = Id, which does not
necessarily arise from a flow. In this case Cartan’s formula still applies.

Theorem 5.30. If s �→ ϕs is a one-parameter family of diffeomorphisms
with infinitesimal generator X such that ϕ0 = I, and if Xt denotes the vector
field on M obtained by fixing t, we have

d

ds
ϕ∗
sω|s=t = ϕ∗

t

(
d(iXt

ω) + iXt
(dω)

)
.

Proof. We first consider the case t = 0. The linear map L1 : α �→ d
dsϕ

∗
sα

from Ω(M) to itself is a derivation. It coincides with LX0 on functions, since

L1f =
d

ds
f
(
ϕs(x)

)
|s=0

= df ·X0.

Next, as d(ϕ∗
sα) = ϕ∗

s(dα), we see by differentiating with respect to s that
L1 and d commute (here we use a natural property of forms depending on a
parameter, which will be justified in the next section). The derivations LX0

and L1, which coincide on functions and differentials of functions are equal
on all of Ω(M).

To pass to the general case, we introduce the flow ψs of the vector field (1, X)
on R×M . By Section 3.7, this flow is of the form

(t, x) �−→
(
t+ s, Fs(t, x)

)
,

with ϕs(x) = Fs(0, x), and we remark that by Theorem 3.42

ϕ∗
t+hα = ϕ∗

t (ϕ
t∗
h α), with ϕt

h(x) = Fh(t, x).

The result is obtained by differentiating both sides of this equation with
respect to h at h = 0, since by the first part, applied to the family Fh(t, x)
(t fixed), we have

d

dh
ϕt∗
h α|h=0 = LXt

α.
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5.6. Poincaré Lemma

5.6.1. Star-Shaped Open Subsets

We are now able to answer a question posed in Section 5.3: given a form
α =

∑n
i=1 αidx

i of degree 1 such that ∂iαj = ∂jαi, must there exist a
function f such that α = df? We first introduce a little vocabulary to pose
this question in a more general setting.

Definitions 5.31. A differential form of degree p on an open subset of R
n

is said to be closed if dα = 0, and said to be exact if there exists a form β
of degree p− 1 such that dβ = α. We then say that β is a primitive of α.

By Theorem 5.20, every exact form is closed, and Theorem 5.14 gives an
example of a closed form of degree 1 that is not exact. We now show that
on certain open subsets, we can obtain an explicit primitive for every closed
form. We begin with a simple example.

Proposition 5.32. If α =
∑n

i=1 αi dx
i is a closed form on R

n, the function

f(x) =

n∑
i=1

xi

∫ 1

0

αi(tx) dt

has α as its differential.

Proof. A direct calculation gives

df =

n∑
i=1

(∫ 1

0

αi(tx) dt

)
dxi +

n∑
i=1

(
xi

n∑
j=1

(∫ 1

0

t∂jαi(tx) dt

)
dxj

)
.

The coefficient of dxj in the second term is
n∑

i=1

xi

∫ 1

0

t∂jαi(tx) dt =

∫ 1

0

n∑
i=1

txi∂iαj(tx) dt =

∫ 1

0

t
d

dt
αj(tx) dt,

where again, by integrating by parts,

αj(x) −
∫ 1

0

αj(tx) dt.

Examining the proof above highlights the role played by the following
property.

Definition 5.33. An open subset U ⊂ R
n is said to be star-shaped (with

respect to a) if there exists a ∈ U such that for all x ∈ U , the line segment
[a, x] is contained in U .
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It is the same to say that U is stable under positive homothety with center
a and scaling less than 1.

Examples. A convex open subset is star-shaped (here for any a ∈ U by the
definition of convexity). On the other hand, R

n
� {0} is not star-shaped.

Figure 5.1 shows two open subsets of R2 diffeomorphic to the open ball, one
that is star-shaped and one that is not.

Figure 5.1: The property of being star-shaped is not invariant

under diffeomorphism

It might seem curious to introduce a property that is not invariant under
diffeomorphism. The answer comes from the proof of the theorem below: on
a star-shaped open subset, we have an explicit representation for the primitive
of any closed form. Of course, once this property is proved, we will know by
Proposition 5.22 that on an open subset diffeomorphic to an star-shaped open
subset (for example a ball), closed forms are exact.

Theorem 5.34 (Poincaré’s lemma). If U ⊂ R
n is a star-shaped open

subset, every closed form on U is exact.

The proof rests on the following property, which is of interest in its own right.

Lemma 5.35. Let X be a vector field on U , whose local flow ϕt is defined
on all of U for t ∈ I, where I denotes an interval. Then for every closed
form α on U , the form

ϕ∗
t1α− ϕ∗

t0α

is exact, for all t0, t1 ∈ I.

Proof. We write

ϕ∗
t1α− ϕ∗

t0α =

∫ t1

t0

(
d

dt
ϕ∗
tα

)
dt,
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and remark that

d

du
(ϕ∗

uα)u=t =
d

du

(
ϕ∗
u(ϕ

∗
tα)]

)
u=0

= LX(ϕ∗
tα).

Applying Cartan’s formula (Theorem 5.29), and by using the fact that the
pullback of a closed form is closed, we obtain

d

dt
ϕ∗
tα = (d ◦ iX + iX ◦ d)(ϕ∗

tα) = d
(
iX(ϕ∗

tα)
)
,

and consequently

ϕ∗
t1α− ϕ∗

t0α =

∫ t1

t0

(
d
(
iX(ϕ∗

tα)
))
dt = d

(∫ t1

t0

(
iX(ϕ∗

tα)
)
dt

)
.

Remark. This result persists (see Chapter 7) when replacing ϕt by a
family of smooth maps depending differentiably (��and even continuously��)
on t.

Proof of Theorem 5.34. By applying a translation, we can suppose that
U is star-shaped with respect to the origin. Considering again the calculations
of the lemma for the vector field X = x with flow ϕt(x) = etx, we obtain,
for t0 < 0:

α− ϕ∗
t0α = dω,

where

ωx(v1, . . . , vp−1) =

∫ 0

t0

αetx

(
etx, etv1, . . . , e

tvp−1

)
dt.

It will be convenient to write et = u, and hλ(x) = λx. We then see that
α− h∗

λα = dβλ, where

(βλ)x(v1, . . . , vp−1) =

∫ 1

λ

up−1αux(x, v1, . . . , vp−1) du.

Allowing λ to tend to 0, we see that α = dβ, with

βx(v1, . . . , vp−1) =

∫ 1

0

up−1αux(x, v1, . . . , vp−1) du.

Remark. It is of course possible to verify directly that dβ = α from the
formula above. This is what we did for p = 1. The proof that we just
presented explains the origin of this formula.

Example. On a star-shaped open subset with respect to 0, the primitive
of f(x) dx1 ∧ · · · ∧ dxn given by this proof is

β =

n∑
i=1

(−1)i−1xi

(∫ 1

0

un−1f(ux) du

)
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.
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5.6.2. Forms Depending on a Parameter

We have implicitly used the notion of a differential form depending on a
parameter, which is worth further explanation.

Definition 5.36. A one-parameter family of differential forms on an open
subset U ⊂ R

n is a smooth map from I × U to
∧p

R
n∗, where I ⊂ R is an

interval.

In other words, we have for each t ∈ I a differential form

α(t) =
∑

1�i1<···<ip�n

α1�i1<···<ip�n(t, x) dx
i1 ∧ · · · ∧ dxip ,

with the coefficients being smooth functions on I ×U . We can perform (and
in fact we have performed) the following operations on such a family:

a) differentiation with respect to the parameter.

We write (
d

dt
α(t)

)
x

(v1, . . . , vp) =
d

dt

(
α(t)x(v1, . . . , vp)

)
.

In coordinates, the coefficients of d
dtα(t) are obtained by differentiating those

of α(t) with respect to t. In particular, we again obtain a one-parameter
family.

b) integration with respect to the parameter.

For a, b ∈ I, we write

(Ibaα)x(v1, . . . , vp) =

∫ b

a

α(t)x(v1, . . . , vp) dt.

In other words, the coefficients of this form are obtained by integrating the
coefficients of α(t) with respect to t over [a, b]. By the classical results of
differentiating under a summation, we see that Ibaα ∈ Ωp(U).

The most important property of these operations is commuting with d, which
was used in the proof Poincaré’s lemma.

Lemma 5.37. If t �→ α(t) is a one-parameter family of differential forms,
the operations of differentiating and integration with respect to the parameter
t commute with d. In other words

d

(
d

dt
α(t)

)
=

d

dt

(
dα(t)

)
d
(
Ibaα
)
= Iba

(
dα
)
.
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Proof. It suffices to prove the result for α = a(x, t)dxi1 ∧ · · · ∧ dxip . The
first assertion comes from the Schwarz theorem applied to the variables t
and xi. It is more elegant to proceed as follows: knowing that α us a form
on I × U , we write

dα = dUα(t) + dt ∧ α′(t),

where dU denotes the differential on U . Iterating we see

d(dα) = dU
(
dUα(t)

)
+ dt ∧

(
dUα(t)

)′ − dt ∧ dUα′(t).

As d ◦ d = 0 and dU ◦ dU = 0, we find

dt ∧
(
dUα(t)

)′
= dt ∧ dUα′(t),

where
(
dUα(t)

)′
= dt ∧ dUα′(t), which is what we wanted to prove. We

also note that we have seen a particular case: if X is a vector field, the Lie
derivative LX commutes with d.

The second assertion comes from the theorem of differentiating under an
integral, applied to the variables xi.

5.7. Differential Forms on a Manifold

If M is a submanifold of dimension m in R
n, and if α ∈ Ωp(Rn), we can

naturally define the restriction of α to M : for each x ∈ M , the restriction
to TxM of the alternating linear p-form αx is again an alternating linear
p-form. We can define differential forms on a smooth manifold by taking
inspiration from this remark: for each x ∈ M we want an alternating linear
p-form on TxM . If we want to extend all of the constructions introduced for
open subsets of Rn, we must say in one way or another that αx depends on x
in a smooth fashion. We have already seen this problem for vector fields, and
we proceed in the same way.

For a smooth manifold M , we denote by
∧p

T ∗M the disjoint union∐
x∈M

p∧
T ∗
xM.

Imitating what we did in Section 3.5, we equip
∧p T ∗M with a structure of

a vector bundle over M . For each chart (U,ϕ), we introduce the set
p∧
T ∗
xU =

∐
x∈U

p∧
T ∗
xM

and the bijection

Φ : αx �−→
(
ϕ(x), t(Txϕ)

−1(αx)
)
.



214 An Introduction to Differential Manifolds

Given an atlas (Ui, ϕi)i∈I of M , we prove exactly as in Section 3.5 that there
exists a unique topology on

∧p
T ∗M such that the

∧p
T ∗Ui are open subsets

and the Φi are homeomorphisms. In the same way as before we see that the
(
∧p T ∗Ui,Φi)i∈I form a smooth atlas.

The only modification is the calculation of ϕi ◦ ϕ−1
j . We are forced to take

transposes and inverses of maps in the diagram

R
n

Tyϕ
−1
j−−−−→ Tϕ−1

j (y)M
T
ϕ
−1
j

(y)
ϕi

−−−−−−→ R
n.

For (y, ω) ∈ ϕj

(∧p T ∗Ui ∩
∧p T ∗Uj

)
, we also find that

(ϕi ◦ ϕ−1
j )(y, ω) =

(
ϕi ◦ ϕ−1

j (y), t
(
Ty(ϕi ◦ ϕ−1

j )
)
· ω
)
.

We again have a vector bundle, of rank
(
n
p

)
, equipped with local trivializations

p∧
T ∗Ui

ψi−→ Ui ×
p∧
R

n

with ψi(αx) = (x, t(Txϕ)
−1 · αx).

Definitions 5.38

a) We call
∧p

T ∗M the bundle of alternating forms on M ; for p = 1, the
bundle obtained, denoted T ∗M , is called the cotangent bundle.

b) A differential form of degree p on a smooth manifold M is a section of π,
this is to say a smooth map α : M →

∧p
T ∗M such that for all x,

α(x) ∈
∧p

Tx
∗M .

As we did for vector fields, we denote the linear p-form on TxM thus obtained
by αx.

As in the case of open subsets of Rn, the set of differential forms of degree p
on M is denoted Ωp(M), and we write

Ω(M) =

dimM⊕
p=0

Ωp(M).

The exterior product of two forms α and β of degrees p and q respectively is
the form of degree p+ q defined by

(α ∧ β)x = αx ∧ βx.

This is a smooth section: by using charts of the form (U,ϕ) and (
∧p

T ∗U,Φ),
everything follows from the fact that transposition respects the exterior
product.
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The key example of differential forms are the differentials of functions. If f is
smooth, we must check that the map df : x �→ Txf of M to T ∗M is smooth.
However if (U,ϕ) is a chart and (T ∗U,Φ) is the associated chart of T ∗M , we
have

Φ ◦ df ◦ ϕ−1(y) =
(
y, d(f ◦ ϕ−1)y

)
.

In particular, if f is one of the coordinate functions ϕi, we arrive simply
at dyi.

This remark allows us to express differential forms in the domains of charts.

Proposition 5.39. If α is a differential form of degree p on M and if
(U,ϕ1, . . . , ϕn) is a chart, there exists uniquely determined smooth functions
ai1i2...ip (with 1 � i1 < i2 < · · · < ip) on U , such that

∀x ∈ U, αx =
∑

1�i1<···<ip�n

ai1...ip(x) dϕ
i1
x ∧ · · · ∧ dϕip

x .

Proof. With the same notation Φ ◦ α ◦ ϕ−1(y) is of the form (y, ω), where
ω ∈ Ωp

(
ϕ(U)

)
. Thus,

ωy =
∑

1�i1<···<ip�n

ωi1...ip(x) dy
i1 ∧ · · · ∧ dyip .

Then ai1i2···ip = ωi1i2···ip ◦ ϕ−1.

Remark. The functions ϕi are of no particular interest, so it may be prefer-
able to say that on the domain of a chart U , the ring of differential forms
is generated by functions and differentials of functions. The same property
remains true for the whole manifold M (except that we can no longer take
the differential of n functions as we could for the domain of a chart). We
invite the reader to prove this, with the aid of a partition of unity (see the
next chapter).

The pullback of a form under a smooth map is also defined without difficulty.

Theorem 5.40. Let f : M → N be a smooth map, and α ∈ Ωp(N) a differ-
ential form. Then the family of alternating linear p-forms indexed by x ∈ M
given by

βx(v1, . . . , vp) = αf(x)(Txf · v1, . . . , Txf · vp)
is a differential form on M .

Proof. We remark that the operation defined in the statement respects the
exterior product fiber by fiber. By the preceding proposition, it suffices to
check the case of the differential of a function. But if α = du, then β = d(u◦f)
by the chain rule.
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Definition 5.41. The differential form whose existence is assured by this
theorem is the pullback of α by f , and is denoted f∗α.

Example. If M is a submanifold of a manifold N , for example a submanifold
of Euclidean space, and if i : M → N is the canonical injection, for α ∈ Ω(N)
the form i∗α is called the restriction of α to N for obvious reasons.

In particular, the proof of the fact that (f ◦ g)∗ = g∗ ◦ f∗ remains valid in
the case of manifolds, as it depends only on the chain rule.

Similarly, to define the exterior derivative, it suffices to see that Theorem 5.20
is valid in the manifold case. Given this importance, we reformulate the
statement.

Theorem 5.42. If M is a smooth manifold, there exists a unique smooth
map d : Ω(M) → Ω(M) having the following properties:

i) deg dα = p+ 1 if degα = p;

ii) on Ω0(M), d is the differential of functions;

iii) if α is homogeneous, d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ;

iv) d ◦ d = 0.

Proof. The arguments of the proof of Theorem 5.20 are valid when
replacing Euclidean coordinates xi with local coordinates, thanks to the
lemma below.

Lemma 5.43. If d satisfies the hypothesis of Theorem 5.42, if U is an open
subset of M and if α and β are differential forms such that α|U = β|U ,
then dα|U = dβ|U .

Proof. Let a be a point of U , V an open subset containing a such that
V ⊂ U , and let f be a function with support contained in U , equal to 1
on V . Then f(α− β) = 0, and d

(
f(α− β)

)
= 0 by linearity. However

d
(
f(α− β)

)
= fd(α− β) + df ∧ (α− β).

At a, we have df = 0 by ii) and the choice of f , and f(a) = 1. We deduce
that (dα)a = (dβ)a, and since the choice of a is arbitrary, we deduce that
dα|U = dβ|U as stated.

We may now conclude that all of the properties of the exterior derivative on
forms on open subsets of Rn that we have seen extend to manifolds, as the
proofs use only the axiomatic characterization of d obtained in Theorems 5.20
and 5.42. Thus, if f : M → N is a smooth map, we still have

f∗ ◦ d = d ◦ f∗.
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The Lie derivative and the interior product by a vector field are defined
exactly as in the Euclidean case, and

LX = d ◦ iX + iX ◦ d.

Finally we give the “manifold” version of Poincaré’s lemma.

Theorem 5.44. If M is a smooth manifold, every point x ∈ M is contained
in an open subset U having the following property: if α ∈ Ωp(U) is closed,
there exists a form β ∈ Ωp−1(U) such that dβ = α.

Proof. It suffices to choose U diffeomorphic to a ball.

This lemma is decidedly local. We will see in the subsequent chapters how
the same problem viewed globally, i.e., on all of M brings the topology of
the manifold into play. We have already seen examples of this situation: we
saw as a result of Theorem 5.14 that R

2
� {0} is not diffeomorphic to any

star-shaped open subset.

Remark. One method to study differential forms on a manifold begins with
Proposition 5.23, by defining differential forms of degree p on M as the alter-
nating linear p-forms on C∞(TM) considered as a module over the ring
C∞(M). It is not difficult to verify, by using bump functions, that this
definition is equivalent to the one we have presented. To define d, we can
either take the axiomatic point of view, or define dα, under the inspiration
of Theorem 5.24, by the formula

dα(X0, . . . , Xp) =

p∑
i=0

(−1)iXi · α
(
X0, . . . , X̂i, . . . , Xp

)
+

+
∑

0�i<j�p

α
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp

)
.

This is a conceptually satisfying point of view (and can be especially helpful
when developing a theory of differential forms in infinite dimension) but is
more technically complicated. To convince yourself of this, you are invited
to verify that d ◦ d = 0 using this definition directly!

A third point a view, more down to earth, is suggested by the local expressions
of vector fields seen in Section 3.5. Given an atlas (Ui, ϕi) on a manifold M ,
a choice of a differential form α on M is equivalent to a choice of αi on each
open subset ϕi(Ui) ⊂ R

n, with the compatibility condition

αi|ϕi(Ui∩Uj) = (ϕi ◦ ϕ−1
j )∗(αj |ϕj(Ui∩Uj)).

There is once inconvenience: nearly every proof will require the use of charts.
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5.8. Maxwell’s Equations

One of the great successes of differential forms is the simple and condensed
formulation of Maxwell’s equations in special relativity. We first briefly recall
the “classical” (non relativistic) formulation. We account for electromagnetic
phenomena with two vector fields, the electric field E and the magnetic field
B. The momentum of a particle with charge q and velocity v satisfies the
equation

dp

dt
= q(E + v ∧B) (here ∧ denotes the vector product).

On the other hand, E and B satisfy the following system of equations

curlE = − ∂B

∂t
divB = 0

curlB = J +
∂E

∂t
divE = ρ

where we have denoted the current by J and the charge density by ρ. The
first and the second lines of this system of equations are called the first and
second group of Maxwell’s equations.

We can view the components of E and B as the six components of an alter-
nating form of degree 2 on Minkowski space. To do this, we will give a brief
description of this space. For more information, and most of all for discus-
sion of the physical aspects, see the course by Feynman ([Feynman-Leighton-
Sands 63], especially Mainly Electromagnetism and Matter) for example as
well as the introduction to [Misner-Thorne-Wheeler 73]. This section was
greatly inspired by these references.

5.8.1. Minkowski Space

Minkowski space M is a 4-dimensional vector space equipped with a
quadratic form of signature + − −−. By analogy with the Euclidean case,
we can define pseudo-orthonormal or Lorentzian bases on M , (ei)0�i�3, by
the condition

ϕ(ei, ej) = 0 if i �= j; ϕ(ei, ei) = −1 if i �= 0 ; ϕ(e0, e0) = 1,

where ϕ is the bilinear form associated with q. If (t, x, y, z) denotes the
coordinates of a vector w in with respect to such a basis, then

q(w) = t2 − x2 − y2 − z2.

Similarly,
ϕ(w1, w2) = t1t2 − x1x2 − y1y2 − z1z2.
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Performing calculations on velocity vectors, and hence tangent vectors is done
with a slight change in the point of view: by using the canonical parallelism of
a vector space, we consider Minkowski space as a real vector space of dimen-
sion 4 equipped with a quadratic differential form with constant coefficients.
Given a Lorentzian basis, this quadratic form can be written

dt2 − dx2 − dy2 − dz2.

The associated bilinear form defines an isomorphism between vector fields
and differential forms of degree 1, which we denote by � as in Section 5.3.1:
this isomorphism is similarly defined by replacing the Euclidean inner product
with ϕ. If (t, x, y, z) are coordinates with respect to a Lorentzian frame,

�
∂

∂x
= dx, �

∂

∂y
= dy, �

∂

∂z
= dz, but �

∂

∂t
= −dt.

5.8.2. The Electromagnetic Field as a Differential Form

Starting with the electric E = (Ex, Ey, Ez) and magnetic B = (Bx, By, Bz)
fields, expressed in a given Lorentzian frame, we define a form of degree 2 by
writing

F = Ex dx ∧ dt + Ey dy ∧ dt + Ez dz ∧ dt +

+ Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy
(∗)

(the letter F is traditional: F as in “field” or better yet, F as in Faraday).

A direct calculation shows the first group of Maxwell’s equations is equivalent
to the condition

dF = 0

(the vanishing of the part with dt as a factor gives the first equation, and the
vanishing of the coefficient of dx ∧ dy ∧ dz the second).

The second group of equations is expressed in an analogous way, given a few
additional algebraic developments. On forms of degree 2 we introduce the
operator ∗ by the relations

∗(dx ∧ dt) = dy ∧ dz ∗(dy ∧ dz) = −dx ∧ dt

∗(dy ∧ dt) = dz ∧ dx ∗(dz ∧ dx) = −dy ∧ dt

∗(dz ∧ dt) = dx ∧ dy ∗(dx ∧ dy) = −dz ∧ dt

Of course ∗ may be defined intrinsically: there exists a “natural” extension
of ϕ to p-forms such that,

∀α, β ∈ Ω2(M), α ∧ β = ϕ(α, ∗β)ω,
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where ω is the volume form with equal to 1 on Lorentzian bases. We then
have

∗F = Ex dy ∧ dz + Ey dz ∧ dx+ Ez dx ∧ dy −
− (Bx dx ∧ dt+By dy ∧ dt+Bz dz ∧ dt).

The second group of Maxwell’s equations can then be written

d(∗F ) = 0

in a vacuum, and
d(∗F ) = 4π ∗ J

in the presence of electric charges. We denote by J the current, defined by

J = Jx dx+ Jy dy + Jz dz + ρ dt.

We observe that since d2 = 0, the 3-form ∗J is closed. This property may be
written

div J +
∂ρ

∂t
= 0,

which is a statement of the conservation of electric charge.

5.8.3. Electromagnetic Field and the Lorentz Group

For a formulation independent of coordinates, it is necessary to reverse things.
The Faraday tensor is a form of degree 2 on M, subject (say in a vacuum)
to the conditions

dF = 0 and d(∗F ) = 0,

which, after similar formulations do not rely on any particular coordinates.

On the other hand, electric and magnetic fields are not defined only with
respect to a given Lorentzian frame R; we can recover them by writing F
under the form (∗) with respect to coordinates in this frame. We deduce how
E and B transform in this frame. Let (t′, x′, y′, z′) be the coordinates in a
new Lorentzian frame R′, and suppose for simplification that (y′, z′) = (y, z).
By Exercise 1 of Chapter 4,(

t′

x′

)
=

(
coshu sinhu
sinhu coshu

)(
t
x

)
It is convenient to introduce v = − tanhu: at order 1 with respect to v,
we have x′ = x − vt, and the corresponding Galilean situation is that of a
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uniform translation with velocity v. Comparing the expressions for F in the
two frames we find

E′
x = Ex B′

x = Bx

E′
y =

1√
1− v2

(Ey − vBz) B′
y =

1√
1− v2

(By + vEz)

E′
z =

1√
1− v2

(Ez + vBy) B′
z =

1√
1− v2

(Bz − vEy).

Finally we see how to obtain directly the equations of motion for a charged
particle from the Faraday tensor. With respect to a frame R, the motion is
given by a function

c : t �−→
(
x(t), y(t), z(t), t

)
.

We write the spatial coordinates x, y, z as a function of time constrained
to this frame. The “classical” velocity in this frame must be less than the
velocity of light, or in other words√

x′2(t) + y′2(t) + z′2(t) < 1

which amounts to saying that q
(
c′(t)

)
> 0.

Thus the interior product of F with c′(t) is given by

q
(
−
(
Ex dx + Ey dy + Ez dz

)
−
(
vyBz − vzBy

)
dx −

−
(
vzBx − vxBz

)
dy −

(
vxBy − vyBx

)
dz +

(
Exvx + Eyvy + Ezvz

)
dt
)

Returning to the corresponding vector, we obtain

−
(
ic′(t)F

)�
= q(E + v ∧B) + 〈E, v〉 ∂

∂t
,

where the scalar and vector products were computed in the (Euclidean!)
frame formed by ∂

∂x , ∂
∂y , ∂

∂z . We recover not only the derivative of the
momentum, but also the derivative of energy.

This formula is still not satisfying, as it depends on a specific frame (a physi-
cist would say an observer). With out appealing to a frame, the motion
of a particle is given by a curve in Minkowski space, every parametrization
u �→ γ(u) of this curve satisfies the condition q

(
γ′(u)

)
> 0. In a Lorentzian

frame ∂
∂x , ∂

∂y , ∂
∂z , ∂

∂t this condition may be written

t′(u)2 − x′(u)2 − y′(u)2 − z′(u)2 > 0.

This allows us to choose a parameter such that t′(u) = 1. This is the time
with respect to the frame, up to an additive constant.
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However there exists a parametrization which depends only on the curve, and
not the frame, obtained by the condition

q
(
γ′(τ)

)
= 1.

This parameter, which brings to mind the arc-length in the Euclidean case,
is called the proper time of the particle. With respect to the given time with
respect to the frame R preceding, we have

dτ =
√
1− v2 dt =

√
1− x′(t)2 − y′(t)2 − z′(t)2

The vector γ′(τ) is called the four-vector velocity, and mγ′(τ), analogous to
the classical moment, the energy-momentum. The equation of motion is then
written

−
(
iγ′(τ)F

)�
=

d

dτ

(
mγ′(τ)

)
This is of course only the start of a long story, for which we refer the reader
to the books that we have already mentioned.

5.9. Comments

Differential forms and tensors

Most of the constructions of this chapter apply to covariant tensors. Like
Definition 5.16, a covariant tensor of order p on an open subset U of a vector
space E is a smooth map from U to E∗. Similarly, the construction at the
beginning of this paragraph allows us to define for every manifold M the
vector bundle

⊗p
T ∗M and covariant tensors of order p are sections of this

bundle.

Proposition 5.23 and its proof remain valid.

In the same way we define the pullback φ∗ by a smooth map φ, and the Lie
derivative with respect to a vector field. Once more we have that

(φ ◦ ψ)∗ = ψ∗ ◦ φ∗.

Similarly, for two tensors S and T on M ,

φ∗(S ⊗ T ) = φ∗S ⊗ φ∗T

LX(S ⊗ T ) = LXS ⊗ T + LXT ⊗ S.

On the other hand, we can show that the differential d has no analogue
(even if we only require having a linear operator on tensors that commutes
with φ∗). This explains the overarching role of differential forms and the
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operator d when we study manifolds without any structure other than the
differential structure.

One finds in the celebrated physics course by R. Feynmann [Feynman-
Leighton-Sands 63, volume II, Chapter 31] a clear description of certain
symmetric tensors of order 2 and 4 that arise in the physics of solids.

Riemannian metrics

This being said, symmetric 2-tensors, this is to say sections of the bundle
S2T ∗M of symmetric bilinear forms on M , play an important role. A
Riemannian metric on a manifold M is a symmetric tensor g whose asso-
ciated quadratic form gx is positive definite. The first example is of course
Euclidean space. We then have

g =

n∑
i=1

dxi ⊗ dxi,

with xi being the coordinates an in orthonormal basis. Every submanifold of
Euclidean space is itself equipped with a Riemannian metric: to see this it
suffices to check that the restriction of a quadratic form to a vector subspace
remains positive definite. More formally, if φ : M → M ′ is an embedding,
and if g is a Riemannian metric on M ′, φ∗g is a Riemannian metric on M .
Applying Whitney’s embedding theorem, we then see that every manifold
can be equipped with a Riemannian metric.

The word metric is justified by the fact that g automatically defines a
distance: we begin by defining the length of a curve c : [a, b] → M by
the integral ∫ b

a

√
g
(
c′(t), c′(t)

)
dt,

and then the distance between two points as the infimum of the lengths
of curves which join them. Warning: even in the case of submanifolds of
Euclidean space, this distance is not in general the distance induced by the
ambient space.

In the same way that smooth manifolds are natural generalizations of curves
and surfaces in R

3, we can say that Riemannian manifolds, i.e., mani-
folds equipped with a Riemannian metric, generalize curves and surfaces in
Euclidean space. The fundamental difference is the following. While every
manifold is locally diffeomorphic to R

n, a Riemannian manifold is not in
general locally isometric to Euclidean space. Riemannian geometry studies
the relationship between the metric properties of a Riemannian manifold and
the topological properties of the underlying smooth manifold.



224 An Introduction to Differential Manifolds

To learn more, see for example [Milnor 63, Chapter III], [Gallot-Hulin-
Lafontaine 05] and [Berger 03]. One will also find in Chapter 8 the rudiments
of Riemannian geometry in dimension 2.

Further, supposing that M is oriented (which is not necessary but simplifies
the exposition), we can associate to g a canonical volume form ωg, character-
ized by the fact that it equals 1 on every oriented orthonormal frame (this will
be made precise next chapter for submanifolds of Euclidean space, equipped
with the induced Riemannian metric). We can then define as in Section 5.5
a divergence operator divg : C∞(TM) → C∞(M) by means of the formula

LXωg = (divg X)ωg.

The second order differential operator Δg = divg(∇g) is a natural general-
ization of the Laplacian Δ =

∑n
i=1 ∂

2
i . The study of the Laplacian is another

slightly more analytical aspect of Riemannian geometry (cf. the annotated
bibliography at the end of the book).

Lorentzian manifolds

A Lorentzian manifold is a manifold equipped with a symmetric tensor g such
that the quadratic form gx is of signature (dimM − 1, 1) at each point. The
easiest example is Minkowski space introduced in Section 5.8. The impor-
tance of these metrics comes from the fact they model spacetimes in general
relativity.

There are importance differences with the Riemannian setting: a given mani-
fold need not have a Lorentzian structure; the restriction of the tensor g to
a submanifold could be either Riemannian, Lorentzian or singular.

Conversely, Riemannian, Lorentzian or more general pseudo-Riemannian
manifolds (which is to say the associated quadratic form gx is non-degenerate
for all x) have three important properties in common.

1. The tensor g defines a measure (more precisely a density, see Section 6.7)
on the manifold.

2. The metric defines an fiber isomorphism between TM and T ∗M , which
allows one to identify differential forms and vector fields. We have already
used this isomorphism in the Euclidean case to define the gradient of a
function. The gradient is defined in the more general pseudo-Riemannian
setting.

3. The tensor g allows one to define a connection on TM , which is to say
a directional derivative on vector fields. Geometrically this gives us the
ability to compare tangent vectors at different points on the manifold.

For more details on pseudo-Riemannian geometry, see [Doubrovine-Novikov-
Fomenko 90].
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Symplectic Manifolds

A symplectic manifold is a manifold equipped with a differential form ω of
degree 2, with maximum rank at each point (which already implies that
the dimension is even) and which is closed. The standard example is R

2n

equipped with the form

ω =
n∑

i=1

dxi ∧ dxi+n.

To every function H on a symplectic manifold (M,ω) we can associate a
Hamiltonian. This is the vector field XH defined by

iXH
ω = dH.

The existence and uniqueness of XH comes from the hypothesis on the rank
of ω. Further more, as dω = 0, the Cartan formula gives

LXH
ω = d(iXH

ω) + iXH
dω = ddH = 0.

As a consequence, XH has remarkable dynamical properties (Poincaré recur-
rence theorem, cf. [Arnold 78, Chapter 3]).

On the other hand, we leave to the reader the (easy) task of showing that
on the round sphere S2 embedded in R

3, the (Riemannian!) gradient of a
coordinate function is not the Hamiltonian for any symplectic form on S2

(use Exercise 7 of Chapter 3).

The interest in symplectic manifolds was first raised in mechanics: many
problems from classical mechanics, for example the Kepler problem, the three
body problem and more generally frictionless systems can be reduced to the
study of the trajectories of a Hamiltonian vector field (see [Arnold 78] once
more).

Warning. Darboux’s theorem (see Exercises 14 and 17) ensures that every
symplectic form may be locally written in the form

∑n
i=1 dx

i ∧ dxi+n in a
certain coordinate system, but this is not a great help for the global study of
symplectic manifolds and Hamiltonian vector fields.

5.10. Exercises

1. Decomposable and indecomposable alternating forms

An alternating p-linear form on a vector space E of dimension n is called
decomposable if it may be written as the exterior product of p linear forms,
and indecomposable otherwise.



226 An Introduction to Differential Manifolds

a) Show that every form of degree n or n− 1 is decomposable.

Hint. If ω ∈
∧n−1

E∗, introduce the map

θ �−→ θ ∧ ω

from E∗ to
∧n

E∗.

b) Let θ ∈ E∗. Show that a p-form α may be written in the form

α = θ ∧ θ′

if and only if, θ ∧ α = 0 (we the say that α is divisible by θ).

c) Show that if α, β, γ, δ are independent linear forms, the 2-form

ω = α ∧ β + γ ∧ δ

is indecomposable.

2. Forms of degree 2; symplectic group

Let E be a real vector space of dimension n, equipped with an alternating
bilinear form ω.

a) Show that there exists a basis B =
(
θ1, θ2, . . . , θn

)
of E∗ and an integer

p �
n
2 such that

ω = θ1 ∧ θp+1 + · · ·+ θp ∧ θ2p

and the integer p depends only on ω (we can show that if ω nonvanishing,
there exists two vectors a and b and a subspace E′ of E such that E =
E′⊕

Ra
⊕

Rb, with ω(a, b) = 1 and ω(a, x) = ω(b, x) = 0 for all x ∈ E′).

b) Show that the codimension of the vector space

F =
{
x ∈ E : ∀y ∈ E, ω(x, y) = 0

}
is equal to 2p. For this reason, the integer 2p is called the rank of ω.

c) Show that p is the smallest integer such that ωp �= 0. In particular a
2-form ω is decomposable if and only if ω ∧ ω = 0.

d) Let u be an automorphism of E. Show that u leaves ω invariant, this is
to say that

ω
(
u(x), u(y)

)
= ω(x, y) ∀x, y ∈ E

if and only if the matrix A of u in the dual basis of B satisfies AtSA = S,
where S is the matrix

S =

⎛⎝ 0 Ip 0
−Ip 0 0
0 0 0

⎞⎠ .
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Deduce a characterization of the elements of the symplectic group
Sp(n,R), defined as the group of automorphisms of R

2n that leave the
form ω given by

ω(x, y) =
∑

1�i�n

(
xiyn+i − xn+iyi

)
invariant.

e) Show that Sp(n,R) is a 2n2 + n-dimensional Lie subgroup of GL(2n,R),
and determine its Lie algebra.

3*. An application of exterior algebra to Lie groups

Set E =
∧2 (

R
4∗). Given a nonvanishing 4-form ω on R

4, we consider the
bilinear form B on E defined in Section 5.2.3

a) Show that every element of GL(4,R) leaving the form ω invariant defines
an automorphism of E respecting B.

b) Deduce the existence of a Lie group morphism

ρ : SL(4,R) −→ O(3, 3)

with image the identity component of O(3, 3) and with kernel Z/2Z.

c) Similarly deduce, starting with C
4 instead of R4, a morphism of ��complex

Lie groups�� from Sl(4,C) to SO(6,C) (we denote O(n,C) the subgroup
of Gl(n,C) which leaves the quadratic form

∑n
i=1 z

2
i invariant. This is a

noncompact complex Lie group; SO(n,C) denotes the subgroup of endo-
morphisms of determinant 1).

d) Equip C
4 with a hermitian product and show that

SU(4)/{±I} � SO(6).

4. Gradient, divergence, curl

a) Prove the following identities using the properties of exterior algebra:

curl(grad f) = 0

div(curlV ) = 0

div(fV ) = f div V + (grad f) · V
curl(fV ) = f curlV + (grad f) ∧ V

div(u ∧ v) = v · (curlu)− u · (curl v).

Here ∧ denotes the vector (cross) product.

b) Show that the local flow of a vector field V on R
n leaves ω = dx1∧· · ·∧dxn

invariant if and only if div V = 0.
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5. Homogeneous forms

A differential form ω on R
n is said to be homogeneous of degree α if

h∗
t (ω) = tαω,

where we have denoted the homothety with respect to t (t > 0) by ht.

a) Show that if ω is of degree k, then this amounts to saying that the coeffi-
cients are homogeneous of degree n− α.

b) Show that the differential of a homogeneous form is homogeneous of the
same degree.

6*. Forms invariant under a group

a) Let ω be the differential form on R
n+1 equal to

n∑
i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

(the notation ̂ indicates that the corresponding terms is omitted). Show
that if φ ∈ Sl(n + 1,R), then ω is invariant under φ, and is (up to a
constant factor) the only form of degree n having this property.

b) Let ω be a differential form of degree k on Sn such that φ∗ω = ω for
any φ ∈ SO(n+ 1). Show that if 0 < k < n, then ω = 0.

7. Calculate the primitive of a given closed form of degree 2 on R
n explicitly,

using the formula which is provided at the end of the proof of Poincaré’s
lemma.

8. Forms invariant under a Lie group

a) If G is a Lie group of dimension n, show that the forms of degree p invariant
under left translation (we call these left invariant forms) form a vector
space of dimension

(
n
p

)
.

b) Show, without using the structure theorem of commutative Lie groups,
that if G is commutative, every left invariant form is closed.

c) Take G = Gl(n,R). Show that the coefficients of the matrix X−1dX ,
where X = (xj

i )1�i, j�n, are left invariant forms. Re-derive the expression
of the bracket of G by differentiating X−1dX and using Theorem 5.24.

d) Consider the group G of matrices of the form(
a b
0 1

)
, a, b ∈ R, a �= 0.

Show that this is a Lie group. Determine the differential forms of degree 1
and 2 on G that are left invariant. Repeat this for right invariant forms.
What can you conclude?
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9. Interior product and Lie derivative

Prove the following identity concerning the operators iX and LX acting on
differential forms on a manifold M :

i[X,Y ] = LX ◦ iY − iY ◦ LX .

10. Complex forms

A complex differential form of degree k on an open subset U ⊂ R
n is a

smooth map from U to ∧Rn⊗C, where we have denoted the C-vector space
of alternating p-linear maps from R

n to C by ∧Rn ⊗C. We write

dzk = dxk + i dyk, dzk = dxk − i dyk.

If df is the differential of a smooth complex-valued function, we define ∂f
∂zk

and ∂f
∂zk by the formula

df =

n∑
k=1

(
∂f

∂zk
dzk +

∂f

∂zk
dzk
)
.

a) Express ∂f
∂zk and ∂f

∂zk as a function of ∂f
∂xk and ∂f

∂yk .

b) Show that a map (say C1 ) from C = R
2 to C is holomorphic if and only

if ∂f
∂z = 0. Deduce that the Jacobian of f seen as a map from R

2 to R
2 is

equal to |f ′(z)|2 (note that dz ∧ dz = −2i dx ∧ dy).

c) Let P be the half-plane consisting of complex numbers with strictly posi-
tive imaginary part. Show that maps T of the form

T (z) =
az + b

cz + d
, where a, b, c, d ∈ R, ad− bc > 0

are diffeomorphisms of P which leave the differential form ω = dx∧dy
y2

invariant.

11. Let ω be a differential form of degree p on R
n, with p < n. Suppose that

the restriction of this form to every hyperplane of the form xk = constant
(1 � k � n) vanishes. Show that ω = 0.

12. Forms invariant under rotation

a) Show that the differential forms

α = x dx + y dy and β = x dy − y dx

on R
2 are invariant under the group of rotations SO(2). (We can of course

verify this by a direct calculation. But there are more elegant proofs.)
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b) Show that every differential form of degree 1 on R
2
� {0} invariant under

SO(2) is of the form
f(r)α + g(r)β,

where r =
√
x2 + y2, and with f and g smooth functions on R

2
� {0}.

Which forms of degree 1 on R
2 are invariant under SO(2)?

c) We now work in dimension 3. Write

r =
√
x2 + y2 + z2

and denote by X the vector field

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

We will now show that every form of degree 1 on R
3
�{0} invariant under

the action of SO(3) is of the form f(r) dr.

c1) Show that if α is SO(3)-invariant, iXα is also.

c2) Show that the map

(t, u) �−→ tu from R
+∗ × S2 to R

3
� {0}

is a diffeomorphism.

c3) Let α ∈ Ω(R3
� {0}) be such that iXα = 0, and where the restriction

to each sphere with center 0 vanishes. Show that α = 0.

c4) Show that every SO(3)-invariant 1-form on S2 vanishes.

c5) Deduce the conclusion.

d) Does the argument above generalize to higher dimensions?

13. Consider the sphere S2 embedded in R
3. Let X be the vector field

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

a) Show that the restriction of the 2-form iX(dx ∧ dy ∧ dz) to the sphere
never vanishes (in other words, it is a volume form on S2; see the next
chapter for more details). We denote this form α.

b) Show that on the complement of the equator z = 0,

α =
dx ∧ dy

z
.
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c) Let I be the stereographic projection from the north pole N = (0, 0, 1)
from S2

� {N} to the plane z = 0.

Write out I and I−1 (for clarity, denote the coordinates of R2 × {0} by
(u, v), and calculate I−1∗α.

14*. Darboux’s theorem

Let M be a manifold of dimension 2n equipped with a closed 2-form ω with
rank 2n at each point (in other words a symplectic form). We will show that
every point a ∈ M admits a coordinate neighborhood U with coordinates(
x1, . . . , x2n

)
such that

ω|U = dx1 ∧ dxn+1 + · · ·+ dxn ∧ dx2n (Darboux’s symplectic theorem).

In what follows we suppose that a = 0 in the coordinates considered. This is
not a restriction but merely simplifies the argument.

If X1 and X2 are two commuting vector fields, we recall (see Exercise 17 of
Chapter 3) that if at a point a ∈ M , X1 and X2 are linearly independent,
a admits an open neighborhood U with local coordinates (x1, . . . , xn) such
that Xi|U = ∂

∂xi for i = 1, 2.

a) First suppose n = 1. Show that if
(
y1, y2

)
is an arbitrary system of

coordinates at a, we can find a differentiable function defined in a neigh-
borhood of a such that

(
y1, h

)
is a system of coordinates that works in a

neighborhood of a.

b) We now study the general case. If f is a differential function such that
f (a) = 0 and dfa �= 0, show that there exists a unique vector field X2 on
M such that iX2ω = df and a differentiable function g such that X2g = 1
on an neighborhood of a. Show that if X1 is the vector field defined
by iX1ω = dg, we have the relations

ω (X1, X2) = 1 and [X1, X2] = 0.

We then consider the local coordinates
(
y1, . . . , y2n

)
on a neighborhood V

of a such that X1 = ∂
∂y1 at every point of V . Show that(
−f, g, y3, . . . , y2n

)
=
(
x1, . . . , x2n

)
is a coordinate system on an open subset U ′ containing a such that

ω|U ′ = dx1 ∧ dx2 +
∑

2<i<j�2n

ωij

(
x3, . . . , x2n

)
dxi ∧ dxj .

Deduce the result.
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15*. Darboux’s theorem for contact forms

Let M be a manifold of dimension 2n + 1 equipped with a 1-form θ such
that θ ∧ (dθ)n �= 0 at every point (this is called a contact form). We will
show that at every point a admits a neighborhood U with local coordinates
(x0, . . . , x2n) such that θ|U = dx0 + x1dxn+1 + · · ·+ xndx2n.

a) Show there exists a unique vector field R on M such that iRθ = 1
and iRdθ = 0 (we can consider the map from TM to T ∗M defined by
X �→ iXθ · θ + iX dθ).

b) If
(
y0, . . . , y2n

)
is a local coordinate system at a such that R = ∂

∂y0 ,
show that dθ defines a symplectic form on the submanifold defined
by the equation y0 = 0. Deduce the result by using the preceding exercise
and modifying the coordinate y0 as necessary.

16*. Differential forms on Pn
R

Let p : Rn+1
� {0} → Pn

R be the canonical projection.

a) Show that
p∗ : Ω(Pn

R) −→ Ω(Rn+1
� {0})

is injective.

b) Show that the image of p∗ is the set of forms ω ∈ Ω(Rn+1
� {0}) such

that

h∗
λω = ω

iXω = 0 (X is the radial vector field).

17*. Darboux’s theorem by Moser’s trick

Darboux’s theorem is purely local, and so we may reduce to the case of a
symplectic form on an open subset U of Rn.

a) Let a ∈ U . Show that by a linear change of coordinates, we can reduce to
the case where

ωa =
(
dx1 ∧ dxn+1 + · · ·+ dxn ∧ dx2n

)
a

b) Write

ω̃ = dx1∧dxn+1+ · · ·+dxn∧dx2n and ωt = tω+(1−t)ω̃ (0 � t � 1).

Show there exists an r > 0 such that the restriction of the ωt to the open
ball B(a, r) is non-degenerate, and consequently symplectic.

c) Imitating the technique of Theorem 3.44, show the existence of a family
(φt)0�t�1 of diffeomorphisms of B(a, r) such that

∀t ∈ [0, 1], φ∗
tωt = ω̃,

and deduce the result.
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18*. Volume form

a) Consider Rn with the “standard” volume form ω0 = dx1 ∧· · ·∧dxn. Let r
and R be two positive real numbers, with R > r. Show that for every
a, b ∈ B(0, r) there exists a diffeomorphism f of Rn such that f(a) = b,
f(x) = x if ‖x‖ � R and f∗ω0 = ω0.

b) Let M be a manifold equipped with a volume form ω. Show that for all
a ∈ M there exists an open subset U containing a and a diffeomorphism
of g from U to an open subset of Rn such that ω = g∗ω0.

c) Conclude from a) and b) that the group of diffeomorphisms of M which
preserves ω acts transitively on M .



Chapter 6

Integration and

Applications

6.1. Introduction

If f is a function of a real variable with continuous derivative,∫ b

a

f ′(t) dt = f(b)− f(a).

This is the so-called “fundamental theorem of calculus”. The Russians pay
homage to the two founders of differential and integral calculus by calling
this the “Leibnitz-Newton formula”. Stokes’s theorem, which is the pivotal
result of this chapter, is a generalization of this formula to higher dimensions.
It gives a good example of a situation where elaboration of the statement is
harder than the proof itself.

The starting point of the fundamental theorem is the convention∫ b

a

g(t) dt = −
∫ a

b

g(t) dt if a � b.

This comes from integration on an oriented interval instead of merely an
interval, which is to say an interval where one chooses a starting and ending
point. If I = [a, b], there are two possible orientations, depending on whether
we take a or b as the origin.

It is this step – moving to an integral seen as a measure of an “oriented”
object – which will be generalized. Alas, we’re in a tricky situation. On R

there is one natural orientation given by the usual order. This is no longer
the case for curves in R

2, even if they are straight lines. This is also no
longer the case in vector spaces (we are only referring here to the “naive”
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notion of orientation, the precise details will be given in Section 6.2). There
are (apparently obligatory) references to everyday life when orienting the
circle (the “counterclockwise” sense) and three dimensional space (the “right
hand” rule). This issue is discussed in detail in [Feynman-Leighton-Sands 63,
volume I, Chapter 52]. All that we can really do is compare orientations. This
is illustrated by the existence of manifolds for which a choice of coherent
orientation is impossible. This impossibility can be seen “experimentally”.
Indeed anticipating what we will discuss formally in Section 6.2, on every
oriented surface of oriented Euclidean three space, we can define a normal
vector field in the following way: if p is a point on the surface and Rp is a
positively oriented orthonormal frame of the tangent plane at p, np is the
unique unit vector at p such that the frame (Rp, np) is positively oriented
in R

3. This is impossible for the Möbius strip, as seen in Figure 6.1.

Figure 6.1: Möbius strip

We start with a discussion of these orientation problems, before starting our
study of integration theory.

An important role is played by regular domains of a manifold. These are more
or less compact subsets whose boundary is a submanifold of codimension 1
(possibly not connected, as in the case of a compact interval of R). The
fundamental theorem generalizes by replacing [a, b] by a regular domain D
of dimension n, {a, b} by the boundary ∂D, and f by a differential form α of
degree n− 1. We have ∫

D

dα =

∫
∂D

α,

with the bulk of the work being to define these objects. This generalization
extends Green’s theorem, the Divergence theorem and the classical Stokes’s
theorem that concerns surface with boundary in three dimensional space,
where it seems we live.

Integration on manifolds and Stokes’s theorem do more than just provide a
more conceptual framework for the classical theorems we have mentioned.
As an example, we end this chapter with two topological applications: “the
hairy ball theorem” (the sphere S2 cannot be combed without a cowlick, in
other words every vector field on S2 vanishes at some point), and Brouwer’s
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theorem (every continuous map from a closed ball to itself has a fixed point),
which can be proved without using algebraic topology.

6.2. Orientation: From Vector Spaces

to Manifolds

6.2.1. Oriented Atlas

We say that two bases (ei)1�i�n and (e′i)1�i�n of a real vector space E of
dimension n have the same orientation if the determinant of (ei)1�i�n with
respect to (e′i)1�i�n is positive. We thus obtain an equivalence relation on
the set of bases of E and a orientation of E is by definition a choice of one
of these two equivalence classes.

Exterior algebra allows us to express this intrinsically: the vector space∧dimE
E∗ is of dimension 1. Let ω ∈

∧dimE
E∗

� {0} be a basis of this
space. Then the bases (ei)1�i�n and (e′i)1�i�n define the same orientation
if and only if ω(e1, . . . , en) and ω(e′1, . . . , e

′
n) have the same sign. Indeed, by

Proposition 5.6

ω(e′1, . . . , e
′
n)

ω(e1, . . . , en)
= det

(
(e′1, . . . , e

′
n), (e1, . . . , en)

)
,

where the notation det
(
(e′1, . . . , e

′
n), (e1, . . . , en)

)
indicates that we compute

the “usual” determinant of the components of the basis (e′1, . . . , e′n) expressed
in terms of the basis (e1, . . . , en).

Choosing an orientation thus reduces to choosing a frame ω of
∧dimE

E∗,
and the equivalence class of bases (e1, . . . , en) such that ω(e1, . . . , en) > 0.
If we replace ω by tω, where t is a positive real number, the orientation is
unchanged.

Thus, choosing an orientation is equivalent to choosing one of the two
connected components of

∧dimE
E∗

� {0}.
To extend the notion of orientation to manifolds, it is necessary to speak of
orientations on the tangent spaces TxM varying differentiably with x. The
discussion which follows is parallel to that just given for vector spaces.

Definitions 6.1

a) An oriented atlas of a manifold M is any atlas (Ui, ϕi)i∈I such that the
change of coordinates ϕi ◦ ϕ−1

j has positive Jacobian.

b) An orientable manifold is a manifold for which there exists an oriented
atlas.
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For example the atlas on the sphere S2 consisting of stereographic projections
from the north and south poles is not an oriented atlas: the transition
map between charts is the inversion x �→ x

‖x‖2 , which reverses orientation
(see Section 1.3). If we replace one of the charts by its composition with
a reflection with respect to a line, we then obtain an oriented atlas. This
shows that S2 is an orientable manifold. We will soon see a more elegant
proof.

These definitions are directly inspired by the discussion of oriented bases of
a vector space: we want to orient TxM by means of the basis formed by the
vectors (Tϕ(x)ϕ

−1 · ek)1�k�n, where (ek)1�k�n is the canonical basis of Rn.
Oriented atlases are defined to make this notion consistent.

Given two oriented atlases (Ui, ϕi)i∈I and (Vj , ψj)j∈J , we can associate a
map s from M to {±1} in the following way. Any x ∈ M belongs to at least
one of the Ui and one of the Vj , and the sign of the Jacobian of ϕi ◦ψ−1

j does
not depend on the choice of i and j. Indeed, if x ∈ Ui′ ∩ Vj′ , we have

ϕi′ ◦ ψ−1
j′ = (ϕi′ ◦ ϕ−1

i ) ◦ (ϕi ◦ ψ−1
j ) ◦ (ψj ◦ ψ−1

j′ ).

The map s (as in sign!) is locally constant, therefore constant on M if
connected. We say that the atlases (Ui, ϕi)i∈I and (Vj , ψj)j∈J give the same
orientation if s = 1. We also obtain an equivalence class on oriented atlases.
This discussion also shows that if m is connected there are exactly two equiv-
alence classes.

Definitions 6.2

a) An orientation of an oriented manifold is a choice of equivalence class in
the oriented atlas.

b) An oriented manifold is a manifold with an orientation.

c) Let M and N be two manifolds oriented by oriented atlases (Ui, ϕi)
and (Vj , ψj) respectively. A local diffeomorphism f : M → N preserves
(resp. reverses) the orientation if the Jacobian of ψj ◦ f ◦ ϕ−1

i is positive
(resp. negative) where it is defined.

A consequence of the preceding discussion is that this condition does not
depend on the choice of an atlas in the same equivalence class. We also note
the analogy with the sign conditions of the determinant in linear algebra.

Oriented atlases play the same role for manifolds as bases for vector spaces
seen in the opening discussion. But there is an important difference: as we
will soon see, a given manifold need not possess an oriented atlas.
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6.2.2. Volume Forms

Following the analogy with linear algebra, we can define orientation by means
of differential forms of degree dimM .

Definition 6.3. A volume form on a manifold M is a everywhere nonvan-
ishing differential form of maximum degree dimM .

This amounts to saying that ωx(v1, . . . , vn) �= 0 for all x ∈ M and every basis
(v1, . . . , vn) of TxM .

Lemma 6.4

i) If ϕ : M → N is a local diffeomorphism and if ω ∈ Ωn(N) is a volume
form on N , then ϕ∗ω is a volume form on M .

ii) If ω ∈ Ωn(M) is a volume form, then every form α of degree n can be
written in a unique way as fω, where f ∈ C∞(M).

Proof.

i) If x ∈ M and v1, . . . , vn ∈ TxM , then by the definition of the pullback,

(ϕ∗ω)x(v1, . . . , vn) = ωϕ(x)(Txf · v1, . . . , Txf · vn).

If v1, . . . , vn are linearly independent, then so are their images under Txϕ
by hypothesis, and so the right hand side is nonzero as ω is a volume form,
thus the left hand side is nonzero as well.

ii) The result is true for every open subset of a chart Ui as it is true for the
forms ϕ−1∗

i ω and ϕ−1∗
i α. Thus there exists a function fi ∈ C∞(Ui) such

that
α|Ui

= fi
(
ω|Ui

)
.

If Ui∩Uj �= ∅, the restrictions of fi and fj to Ui∩Uj coincide: if x ∈ Ui∩Uj

and if v1, . . . , vn are n independent vectors in TxM , then

αx(v1, . . . , vn) = fi(x)ωx(v1, . . . , vn) = fj(x)αx(v1, . . . , vn).

By hypothesis αx(v1, . . . , vn) �= 0, thus fi and fj coincide on Ui∩Uj , which
shows that there exists a function f ∈ C∞(M) such that f|Ui

= fi, which
is also unique since the fi are uniquely determined.

Theorem 6.5. A compact manifold is orientable if and only if it admits a
volume form.

Proof. Let ω ∈ Ωn(M) be a volume form and let (Ui, ϕi)i∈I be a finite
atlas of M . By the lemma,

ϕ−1∗
i ω = fi dx

1 ∧ · · · ∧ dxn,
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where fi ∈ C∞(ϕi(Ui)) is everywhere nonzero. By interchanging coordinates,
we can suppose that fi > 0. Then (Ui, ϕi)i∈I is an oriented atlas. Indeed
from the relation

(ϕj ◦ ϕ−1
i )∗(fj dx1 ∧ · · · ∧ dxn) = fi dx

1 ∧ · · · ∧ dxn

we deduce that the Jacobian at u ∈ ϕi(Ui ∩ Uj) of ϕj ◦ ϕ−1
i is the strictly

positive number
fi(u)

fj
(
ϕj ◦ ϕ−1

i (u)
) .

Conversely, if M is orientable, there exists a finite oriented atlas (Ui, ϕi)i∈I .
For each i ∈ I, we define ωi ∈ Ωn(Ui) by

ωi = ϕ∗
i (dx

1 ∧ · · · ∧ dxn).

To construct a volume form on the entire manifold from the ωi, we use bump
functions. By the Lemma 3.6, there exists an open covering (Vi)i∈I such that
Vi ⊂ Ui for all i, and by Corollary 3.5 for each i there exists a bump function
fi with compact support in Ui and equal to 1 on Vi. We deduce the existence
of an n-form αi on M given by

(αi)x = fi(x)(ωi)x if x ∈ Ui, and (αi)x = 0 if x /∈ Supp fi.

Then
α =

∑
i∈I

αi

is a volume form. Indeed, every x ∈ M belongs to at least one Vi0 and on
ϕi0 (Vi0) the form

ϕ−1∗
i0

α =
∑

i:Ui∩Ui0 �=∅
ϕ−1∗
i0

αi

=

(
1 +

∑
i�=i0, Ui∩Ui0 �=∅

(fi ◦ ϕ−1
i0

) Jac(ϕi ◦ ϕ−1
i0

)

)
dx1 ∧ · · · ∧ dxn

is everywhere nonzero as the transition maps have positive Jacobian.

Remarks

a) With the orientation given by ω, the oriented bases (v1, . . . , vn) of TxM
are those for which

ωx(v1, . . . , vn) > 0.

b) This result is still true for noncompact manifolds which are countable at
infinity, which is to say, as we said in Chapter 2, all reasonable mani-
folds. The proof that the existence of a volume form implies orientability
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does not use any topological assumptions on the manifold. For the
converse, one must use a more refined argument than partitions of unity.
(See [Spivak 79].)

c) A volume form is an everywhere nonvanishing section of the vector bundle∧n T ∗M . This bundle is of rank 1, so we may reformulate Theorem 6.5
by saying that a manifold (countable at infinity) is orientable if and only
if the bundle

∧n
T ∗M is trivializable.

This result is at the heart of most of the proofs of (non) orientability.

Example. The sphere Sn is orientable: the restriction to Sn of the form
ω ∈ Ωn(Rn+1) defined by

ω =
n∑

i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

is everywhere nonvanishing, since if (v1, . . . , vn) is a basis of TxS
n,

ωx(v1, . . . , vn) = det(x, v1, . . . , vn) �= 0.

We can easily check that for the restriction to the open subset Uk =
{x ∈ Sn : xk �= 0} we have

ω =
1

xk
dx0 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn.

On the other hand:

Theorem 6.6. If n is even, the projective space Pn
R is not orientable.

Proof. We consider Pn
R as the quotient of Sn by the group {Id, σ}, where

σ(x) = −x. We denote the corresponding covering map by p : Sn → Pn
R.

If α ∈ Ωn(Pn
R) is a volume form, then ω = p∗α is a volume form on Sn.

Then
ω = fω0,

where ω0 is the volume form of Sn of the example above, and f ∈ C∞(Sn)
is nowhere vanishing.

Since p ◦ σ = p, we have σ∗ω = ω. On the other hand, σ∗ω0 = (−1)n+1ω0 =
−ω0 if n is even. However, we also have

σ∗ω = σ∗(fω0) = −(f ◦ σ)ω0.

Consequently, f attains both signs on Sn, and so must vanish somewhere,
which is impossible. So Pn

R is not orientable if n is even.
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On the other hand, we can see that odd-dimensional real projective spaces
are orientable by examining homogeneous coordinate charts. However it is
simpler and more instructive to show that the volume form ω0 of Sn, which
this time is σ-invariant, passes to the quotient as a volume form on Pn

R.
This comes from the following

Proposition 6.7. Let Γ be a discrete group acting properly and smoothly on
a manifold X, and let p : X → X/Γ be the covering map to the quotient.
If ω is a differential form on X such that

γ∗ω = ω ∀γ ∈ Γ,

then there exists a unique differential form α on X/Γ such that p∗α = ω.
Further, if ω is a volume form, then α is too.

Proof. We recall that the linear tangent map at p is invertible. For x ∈ X/Γ
and v1, . . . , vk we set

αx(v1, . . . , vk) = ωy

(
(Typ)

−1 · (v1)x, . . . , (Typ)
−1 · (vk)x

)
.

With the hypothesis on ω, the right hand side does not depend on the choice
of y in p−1(x): changing y amounts to replacing it by some γ(y), and by the
properties of covering maps,

(Tγ(y)p)
−1 = Tyγ ◦ (Typ)

−1.

To show this defines a differential form, it suffices to check this for restrictions
to a open subsets U ⊂ X/Γ satisfying the defining property of coverings. In
other words we may assume that U is of the form p(V ), where V is an open set
in X such that the γ(V ) are mutually disjoint. Then p|V is a diffeomorphism,
and by the definition of α, we have

α|U = (p|V )−1∗(ω|V ).

This formula also shows that α is a volume form if ω is.

Example. The projective spaces P 2n+1
R are orientable as we have just seen;

tori are orientable.

6.2.3. Orientation Covering

We can take up the discussion of Section 6.2.1 from another point of view, by
“putting together” the orientations. An orientation at a point x of M is given
by a connected component of

∧n
T ∗
xM � {0}x, and the set of orientations

of TxM can be seen as the quotient of
∧n

T ∗M � M by the multiplicative
action of R∗

+ on each fiber (namely, we take away from
∧n

T ∗M the union of
the {0}x as x varies over M , which is to say the image of the zero section of
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the vector bundle
∧n T ∗M , which is identified with M). It is possible to give

this quotient a manifold structure. This type of construction is important,
but as we will not use it in this book, we prefer to skip it by introducing a
Riemannian metric on M .

Such a metric allows us to define a norm on
∧n

T ∗
xM : we declare that for

each orthonormal basis (e1,x, . . . , en,x) of TxM , the covector e∗1,x ∧ · · · ∧ e∗n,x
has norm 1. We denote by M̃ the fibration of unit spheres of

∧n
T ∗M ,

in other words
M̃ =

{
ωx : x ∈ M and ‖ωx‖x = 1

}
.

Of course, the unit sphere of
∧n

T ∗
xM , which is a vector space of dimension 1,

consists of two points. The map p : M̃ → M defined by p(ωx) = x is
therefore a covering of order 2. The interchange of two elements of each
fiber, denoted σ, defines an action of the group of two elements on M̃ , such
that M/{I, σ} � M .

We define a differential form Ψ of degree n on M̃ by

Ψωx
(v1, . . . , vn) = ωx(Tωx

p · v1, . . . , Tωx
p · vn)

for n tangent vectors to M̃ at ωx.

Theorem 6.8. The form Ψ is a volume form on M̃ such that σ∗Ψ = −Ψ;

the manifold M is orientable if and only if the covering map p : M̃ → M is

trivial, or if and only if M̃ is not connected.

Proof. Let a ∈ M , and let U be a trivializing open subset for p. Then
p−1(U) = W1 ∪W2, where the Wi are disjoint and p|Wi

is a diffeomorphism
pi from Wi to U . The inverse diffeomorphism is a local section with norm 1
of
∧n

T ∗M , and therefore a volume form on U . Suppose for example that
ωa ∈ W1, and let ω ∈ Ωn(U) be the corresponding volume form. Then
Ψ|W1

= p−1∗
1 ω, which proves that Ψ is an n-form which never vanishes. The

relation σ∗Ψ = −Ψ is an algebraic consequence of the definition.

Next, if the covering is trivial, it admits a global section q and q∗Ψ is a
volume form on M . Conversely, if α is a volume form on M , the form α

‖α‖
defines a section of p.

Finally, by Theorem 2.44, the total space of a covering of degree 2 with
connected base is connected if and only if the covering is nontrivial.

One can show that changing the Riemannian metric results in replacing M
with a diffeomorphic manifold. We also remark that by Theorem 2.44, a
simply connected manifold is orientable.

Definition 6.9. We call M̃ the orientation covering of M .
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Examples. The orientation covering of the Klein bottle is the torus T 2, that
of the Möbius strip is the cylinder, and that of the projective plane is the
sphere S2.

6.3. Integration on Manifolds;

A First Application

6.3.1. Integral of a Differential Form of Maximum Degree

On R
n there exists a natural measure, the Lebesgue measure, which up

to a multiplicative factor, is the unique translation invariant measure. On
the other hand, there is not a “natural” measure on a manifold in general.
However we saw in Section 2.8 a natural notion of a negligible set. This
should be compared with the existence of a natural family of measures on
any manifold which are given by differential forms of maximum degree.

As always when integrating, it is convenient to add hypothesis to avoid prob-
lems of noncompactness.

Definition 6.10. The support of a differential form α is the closure of the
set of points x where αx �= 0.

We denote the set of compactly supported differential forms by Ω0(M).

We begin with open subsets of Rn. Once and for all, we suppose these sets
are oriented by the form dx1 ∧ · · · ∧ dxn, which amounts to saying that we
orient R

n by means of its natural basis.

Definition 6.11. Given a form α ∈ Ωn
0 (U), where U is an open subset

of R
n, we call the expression∫

U

f dx1 . . . dxn if α = f dx1 ∧ · · · ∧ dxn

the integral of α, denoted
∫
U α.

It seems we have pulled a sleight of hand! In reality, the following property
shows interest in this point of view.

Proposition 6.12. Let ϕ : U → V be a diffeomorphism and let α ∈ Ωn
0 (V ).

Then ∫
U

ϕ∗α = ±
∫
V

α

depending on whether ϕ preserves or reverses the orientation.
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Proof. We have α = f dx1 ∧ · · · ∧ dxn and

ϕ∗α = (f ◦ ϕ)ϕ∗(dx1 ∧ · · · ∧ dxn) = (f ◦ ϕ)Jac(ϕ) dx1 ∧ · · · ∧ dxn.

However by the change of variable formula for multiple integrals,∫
V

f dx1 . . . dxn =

∫
U

(f ◦ ϕ)|Jac(ϕ)| dx1 . . . dxn.

This invariance under diffeomorphism opens the door to generalization to
manifolds. The idea is to decompose a form as a sum of forms supported in
the domains of charts, and to integrate each. This decomposition uses the
following notion.

Definition 6.13. Given a covering (Ui)i∈I of a manifold M , a partition of
unity subordinate to the cover is a family of nonnegative smooth functions
(pi)i∈I such that

Supp pi ⊂ Ui and
∑
i∈I

pi = 1.

Proposition 6.14. For every finite open covering of compact manifold,
there exists a subordinate partition of unity.

Proof. We again use Corollary 3.5 and Lemma 3.6: there exists an open
covering (Vi)i∈I such that Vi ⊂ Ui for all i, and for each i a bump function
qi equal to 1 on Vi with support contained in Ui. Now the function

q =
∑
i∈I

qi

is strictly positive everywhere, and it suffices to take pi =
qi
q .

We are now in good shape to integrate differential forms on a compact
oriented manifold.

Theorem 6.15. If M is an oriented compact manifold of dimension n, there
exists a unique linear map INT from Ωn(M) to R such that for every form
α with support contained in an open subset of a chart (U,ϕ), we have

INT (α) =

∫
ϕ(U)

ϕ−1∗α

if ϕ preserves the orientation.

Proof. Let (Ui, ϕi)i∈I be an atlas (we can take it to be finite since M is
compact) compatible with the orientation of M , and let (pi)i∈I be a subor-
dinate partition of unity. Then every form α ∈ Ωn(M) may be written

α =
∑
i∈I

piα =
∑
i∈I

αi (∗)
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where Suppαi ⊂ Ui. Then, necessarily

INT (α) =
∑
i∈I

∫
ϕi(Ui)

ϕ−1∗
i αi ,

which shows the uniqueness of INT .

To establish existence, we must show that the result we obtain does not
depend on the choices made. Let (Vj , ψj) be another finite atlas compatible
with the orientation and let (qj)j∈J be a corresponding subordinate partition
of unity. We may then write

α =
∑

(i,j)∈I×J

piqjα.

The support of the form αij = piqjα is contained in Ui ∩ Vj (in particular
αij = 0 if Ui ∩ Vj = ∅), and it suffices to check for these forms that the two
results coincide. This result is Proposition 6.12.

Definition 6.16. The map INT (α) is called the integral of ω over the
oriented manifold M , and is denoted

∫
M ω.

An immediate consequence of the proof of Theorem 6.15 is that for an n-form
α(t) depending continuously (resp. smoothly) on a parameter t, the function
t �→

∫
M α(t) is continuous (resp. smooth) as we can apply classical results of

integral calculus. We also see that Proposition 6.12 extends to any oriented
manifold.

6.3.2. The Hairy Ball Theorem

We give a spectacular application of this result.

Theorem 6.17. If n is even, then every vector field on Sn admits a zero.

Proof. Consider Sn as the set of vectors of unit norm in R
n+1 with the

standard inner product. Then a vector field on Sn can be identified with
a map X from Sn to R

n+1 such that 〈x,X(x)〉 = 0. If X is everywhere
nonvanishing, we can suppose that ‖X(x)‖ = 1 for all x by replacing the
vector field by X/‖X‖. Define

fε(x) = x+ εX(x).

We thus obtain a smooth map from Sn to the sphere Sn
(√

1 + ε2
)

(here we
have denoted the sphere of radius r and center 0 in R

n+1 by Sn(r)).

Lemma 6.18. There exists an ε0 > 0 such that fε is a diffeomorphism
for ε < ε0.
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Proof. Define ω ∈ Ωn(Rn+1) by

ω =
n∑

i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

We will abuse notation and denote any restriction of ω to ω|Sn(r) by ω. Orient
Sn(r) by ω. The formula giving fε shows that f∗

ε ω is a differential form which
depends polynomially on the parameter ε. More precisely,

f∗
ε ω = ω + εα(ε),

where α(ε) is a form which depends on ε polynomially, and is thus continuous
a fortiori. By the properties of volume forms, we can write, with the same
regularity conditions

f∗
ε ω = (1 + εgε)ω,

which shows that f∗
ε ω is a volume form if ε is sufficiently small, and that fε

is an immersion.

We now show that fε is injective for ε sufficiently small. If not, there exists
a sequence εk approaching 0, and distinct points xk, yk ∈ Sn such that

xk + εkX(xk) = yk + εkX(yk),

and therefore
xk − yk
‖xk − yk‖

= −εk
X(xk)−X(yk)

‖xk − yk‖
However the left hand side has norm 1, while the right hand side tends to
zero by the mean value theorem (applied to the function x �→ X(x/‖x‖) on
an appropriate annulus).

Under these conditions, fε is an injective local diffeomorphism from Sn(1)
to Sn

(√
1 + ε2

)
, and thus a diffeomorphism since its image, necessarily

open and closed, is the whole sphere Sn
(√

1 + ε2
)
.

End of the proof of Theorem 6.17. With the notations and orienta-
tion conventions of the lemma,∫

Sn(r)

ω = rn+1

∫
Sn

ω = cnr
n+1.

(We will calculate cn later, its precise value is not important here.) On the
other hand, ∫

Sn(r)

ω =

∫
Sn

f∗
ε ω.

We already know by the proof of the lemma that this last expression is a
polynomial in ε. For ε sufficiently small we then have,

cn(1 + ε2)
n+1
2 = P (ε),

which is clearly impossible if n is even.
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Remarks

a) This argument is due to J. Milnor. Next chapter we will see a more
classical proof using degree theory.

b) We could have avoided the lemma above by invoking the existence of a
natural topology on the set of C1 maps of a compact manifold to itself
for which Diff(M) is open (see [Hirsch 76, Chapter 2] for the details).
Conversely, we note in passing that the set of homeomorphisms of a
compact metric space K is not open in C0(K,K) as we have already
seen for K = [0, 1] or K = S1.

6.4. Stokes’s Theorem

6.4.1. Integration on Compact Subsets

Exactly as in the classical case of Lebesgue measure, we will now define the
integral of differential forms of degree n on a compact subset of an oriented
manifold of dimension n. We begin with the case where the compact subset
K is included in the open domain of a chart U . If ϕ is the corresponding
chart, and if ϕ−1∗α = f dx1 ∧ · · · ∧ dxn, we of course define∫

K

α =

∫
ϕ(K)

f dx1 . . . dxn.

By Proposition 6.12, the result is independent of the chart chosen.

In the general case, if (Ui, ϕi)i∈I is an atlas of M , we can cover K by a finite
number of open subset Ui, take a partition of unity subordinate to this cover
(this requires a slight modification of Proposition 6.14 which we leave to the
reader) and proceed as in the proof of Theorem 6.15.

Definition 6.19. The number thus obtained is the integral of the form α
over the compact subset K.

Of course, if K and L are two disjoint compact subsets,
∫
K∪L α =

∫
K α+

∫
L α.

Better still:

Proposition 6.20. If K and L are two compact subsets with negligible inter-
section, ∫

K∪L

α =

∫
K

α+

∫
L

α.

Proof. If K ∪L is included in the domain of a chart, this result is the same
as for the Lebesgue integral in R

n. If not, the preceding discussion allows us
to reduce to this case through partitions of unity.
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As an immediate consequence we obtain the following result, whose statement
is a little heavy, but is very useful.

Proposition 6.21. Let M be a compact manifold, let (Di)i∈I be a finite
family of compact subsets of Rn, and for each i, let ϕi be a smooth map with
values in M , defined on an open subset containing Di, and whose restriction
to int(Di) is a parametrization preserving the orientation. Suppose that

i) M �
(⋃

i∈I ϕi

(
int(Di)

))
is negligible.

ii) ϕi

(
int(Di)

)
∩ ϕj

(
int(Dj)

)
= ∅ if i �= j. Then∫
M

α =
∑
i∈I

∫
Di

ϕ∗
iα.

Example. Consider the spherical coordinate map

F : (θ, ϕ) �−→ (cos θ cosϕ, sin θ cosϕ, sinϕ)

from R
2 to S2 (spherical coordinates). Then F is a diffeomorphism from

(0, 2π)× (−π
2 ,

π
2 ) to S2 minus the “origin meridian” θ = 0.

For the orientation of S2 given by F , if α ∈ Ω2(S2), we have∫
S2

α =

∫
[0,2π]×[−π

2 ,π2 ]

F ∗α.

(See Exercises 6 and 7 for examples of calculations.)

6.4.2. Regular Domains and Their Boundary

Definition 6.22. A compact D ⊂ M is a regular domain if it equals the
closure of its interior and if the boundary is either empty or an embedded
submanifold of dimension n− 1.

This submanifold will be denoted ∂D, and called the boundary of D.

Examples

a) A compact manifold is a regular domain with empty boundary.

b) A closed ball is a regular domain in Euclidean space; the hemisphere
x0 � 0 is a regular domain of the sphere.

c) In a normed space E, the closed annulus

C(r1, r2) =
{
x ∈ E : r1 � ‖x‖ � r2 (with r1 < r2)

}
is a regular domain whose boundary has two connected components, the
spheres with center 0 and radii r1 and r2 respectively. More generally, for
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any integer k, there exist regular domains whose boundary has k connected
components.

d) A square or closed half-disk in the plane are not regular domains: they
are equal to the closure of their interior, however their boundaries are not
submanifolds.

We now make the structure of a regular domain more precise.

Lemma 6.23. Let D ⊂ M be a regular domain. Then:

i) D has a finite number of connected components, each of which is a regular
domain.

ii) For every p ∈ ∂D, there exists an open subset U containing p and a chart
ϕ : U → R

n such that

ϕ(U ∩D) =
{
x ∈ ϕ(U) : x1

� 0
}
.

Proof. We leave i) as an exercise. It remains to show ii). By the definition
of submanifold, there exists an open U containing p and a chart ϕ such that

ϕ(U ∩ ∂D) =
{
x ∈ ϕ(U) : x1 = 0

}
.

Furthermore, we can always choose U and ϕ so that ϕ(U) is an open ball
with center 0. Then the open subset ϕ(int(D) ∩ U) of ϕ(U) � {x1 = 0} has
empty boundary. Therefore it is either equal entirely to ϕ(U)�{x1 = 0} or to
one of the connected components of this open set. But the first alternative is
excluded as ϕ(int(D)∩U) has a nonempty boundary in ϕ(U). By modifying
ϕ by changing x1 to −x1, we may suppose that

ϕ(int(D) ∩ U) =
{
x ∈ ϕ(U) : x1 < 0

}
.

By taking the closure, we deduce that

ϕ(D ∩ U) =
{
x ∈ ϕ(U) : x1

� 0
}
.

Theorem 6.24. The boundary of a regular domain of an orientable manifold
is itself orientable.

Proof. Fix an orientation of the ambient manifold M . If p ∈ ∂D, there
exists an open subset U containing p and a chart ϕ : U → R

n satisfying the
conditions of the previous lemma. Further, by changing x2 to −x2, we can
suppose that the chart ϕ preserves orientation.

The choices being made for ϕ, we introduce the map ϕ1 from U ∩ ∂D to
R

n−1 which associates to p ∈ U ∩ ∂D the coordinates x2, . . . , xn. We verify
that we thus obtain an oriented atlas of ∂D. Indeed let (V, ψ) be another chart
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having the same properties, and denote by y1, . . . , yn the coordinates of ψ.
At a point of ϕ(U ∩ V ∩ ∂D), the matrix of the differential of the transition
map ψ ◦ ϕ−1 is of the form⎛⎜⎜⎜⎜⎜⎝

∂y1

x1 0 . . . 0

∂y2

∂x1

...
∂yn

∂x1

(
∂yi

∂xj

)
2�i, j�n

⎞⎟⎟⎟⎟⎟⎠
(in fact this is the matrix of a linear map which transforms the hyperplane
x1 = 0 to the hyperplane y1 = 0), with ∂y1

∂x1 > 0. Under these conditions,
the determinant of the matrix(

∂yi

∂xj

)
2�i, j�n

,

which is the differential of the transition map ψ1 ◦ ϕ−1
1 , is positive.

Orientation of the boundary

In this proof we have given an orientation to ∂D. We call the oriented
boundary of D the manifold ∂D equipped with this orientation. This orien-
tation can also be defined using frames. For p ∈ ∂D, let np ∈ TpD be a
non-tangential vector to ∂D. We say that np is an outward-pointing vector
if for every curve c : [0, 1] → D such that c(0) = p and c′(0) = np,
c(t) /∈ D for t > 0 sufficiently small. Alternatively by what we have said
above dϕ1

p(np) > 0 for one and therefore all charts ϕ seen in the preceding
theorem. Thus a frame v1, . . . , vn−1 of Tp∂D is positively-oriented if and only
if the frame np, v1, . . . , vn−1 of TpD is positively-oriented.

In the case of a regular domain of Euclidean space, ��and more generally of
an oriented Riemannian manifold��, it is easy to define this orientation of the
boundary by means of a volume form. Indeed we have a natural choice of
np by taking the normal to Tp∂D. We then define a vector field along ∂D,
which is to say a smooth map N from ∂D to TRn such that Np ∈ Tp∂D
for all p. Let ω be the volume form equal to 1 for all positively-oriented
orthonormal frames (of course, if x1, . . . , xn with respect to a positively-
oriented orthonormal basis, ω = dx1 ∧ · · · ∧ dxn). We define a volume form
σ on ∂D by

αa(v1, . . . , vn−1) = ωa(Na, v1, . . . , vn−1).

The orientation of ∂D is then defined by σ. We note that with a light abuse
of notation we can write α = iN(ω|∂D).
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Examples

a) Consider the disk with center 0 and radius a in R
2 equipped with the

natural Euclidean norm. The boundary is the circle of center 0 and
radius a. In a neighborhood of a point p on the circle, we take polar
coordinates (r, θ). In these coordinates, the volume form dx ∧ dy may
be written rdr ∧ dθ, and with the notations of Lemma 6.23, we can take
ϕ1 = r − a, ϕ2 = θ. The orientation of the circle is given by dθ. In other
words, θ �→ (a cos θ, a sin θ) preserves the orientation. We say that the
circle is oriented counterclockwise.

b) We can reconsider the discussion for a circular annulus C(a, b), where
a < b. As a result of the above, the circle of radius b is oriented in the
trigonometric sense. Conversely, in a neighborhood of the circle of radius
a we must take ϕ1 = a − r, thus ϕ2 = −θ. The orientation is thus the
opposite to the trigonometric orientation.

Figure 6.2: Oriented boundary of an annulus

In the same way, if D is a closed annulus of Euclidean space, ∂D has two
connected components which are spheres with opposite orientations.

c) Figure 6.3 can be deduced in the same way as in b).

Figure 6.3: Another oriented boundary
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d) Let M be a compact submanifold of codimension 1 in R
n. Then by

Alexander’s theorem (cf. [Bredon 94]), Rn
�M has two connected compo-

nents, one of which is bounded. The closure of the bounded component
is a regular domain with boundary M . In particular, M is orientable.
For n = 2, this result is called Jordan’s theorem. It is already nontrivial
(see [Berger-Gostiaux 88, 9.2]) or [Do Carmo 76, 5.7].

e) The case where dimD = 1 merits special attention as the preceding proof
does not apply directly. Now ∂D consists of a finite number of points (in
fact 2 if D is connected). An “orientation” of a point is a choice of sign ±
(the forms of degree 0 are functions which are constant here). A boundary
point p is assigned the sign + if in a neighborhood of p,D is defined by
x � 0, where x is a local coordinate compatible with the orientation of D,
and is assigned − otherwise. Notice {b} − {a} is the oriented boundary
of [a, b] in R.

6.4.3. Stokes’s Theorem in All of Its Forms

Theorem 6.25 (Stokes). Let D be a regular domain of an oriented mani-
fold M of dimension n, ∂D is oriented boundary, and let α ∈ Ωn−1(M).
Then ∫

∂D

α|∂D =

∫
D

dα.

Example. If D is the interval [a, b] ⊂ R, then α is a function f , and with
the preceding convention we have∫

∂[a,b]

f = f(b)− f(a),

and we recover the fundamental theorem of calculus:

f(b)− f(a) =

∫ b

a

f ′(x) dx.

Proof. First, take an open set V containing D whose closure is compact.
We can cover V by a finite number of domains of charts Ui such that if Ui

intersects ∂D, then Ui∩∂D = {x, x1 = 0}, the orientation of ∂D being given
on Ui∩∂D by ϕ∗

i (dx
2 ∧· · · ∧dxn). If fi is a partition of unity subordinate to

this cover, we have α =
∑

i∈I fiα, and it suffices to prove the result for the
αi = fiα, which is to say for forms supported within the open subset Ui.

Thus let α be such that Suppα ⊂ Ui. There are three cases to consider:

1) If Suppα ⊂ M �D, then α vanishes on ∂D, and dα vanishes on D. The
result is then clear.
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2) If Ui ⊂ D � ∂D, then α vanishes on ∂D, and∫
D

dα =

∫
ϕi(Ui)

ϕ−1∗
i (dα) =

∫
ϕi(Ui)

d(ϕ−1∗
i α).

As ϕ−1∗
i α has compact support, this integral is again equal to∫

Rn

d(ϕ−1∗
i α).

However ϕ−1∗
i α may be written

n∑
k=1

fk dx
1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn,

and

d(ϕ−1∗
i α) =

(
n∑

k=1

(−1)k+1 ∂fk
∂xk

)
dx1 ∧ · · · ∧ dxn.

Therefore ∫
Rn

d(ϕ−1∗
i α) =

n∑
k=1

(−1)k+1

∫
Rn

∂fk
∂xk

dx1 . . . dxn.

By Fubini’s theorem, the k-th term may be written∫
Rn−1

(∫ +∞

−∞

∂fk
∂xk

dxk

)
dx1 . . . d̂xk . . . dxn.

However because fk has compact support, we have∫ +∞

−∞

∂fk
∂xk

dxk = 0

for all k, which shows that
∫
D dα = 0 and proves the theorem in this case.

3) It remains to examine the case where Ui intersects ∂D. In this case,∫
D

dα =

∫
ϕi(D∩Ui)

d(ϕ−1∗
i α).

With the notations of 2) and the hypotheses on the support, this integral
is equal to ∫

Rn
−

(
n∑

k=1

(−1)k+1 ∂fk
∂xk

)
dx1 . . . dxn,
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where R
n
− = {x ∈ R

n, x1 � 0}. We calculate this integral as in 2) by
integrating first the k-th term with respect to xk. If k � 2, we obtain 0
for the same reasons as before. Finally∫

D

dα =

∫
Rn−1

(∫ 0

−∞

∂f1
∂x1

dx1

)
dx2 . . . dxn

=

∫
Rn−1

f1(0, x
2, . . . , xn) dx2 . . . dxn

As ϕi(∂D ∩ Ui) = ϕi(Ui) ∩ {x, x1 = 0}, with the choice of orientation of
∂D this last integral is equal to

∫
∂D

α.

Corollary 6.26. If α is a differential form of degree n − 1 on a compact
oriented manifold M of dimension n,∫

M

dα = 0.

In particular, a volume form on a compact manifold is never exact.

Remark. Compactness is an essential hypothesis for the last assertion. For
example, on R

n, one has

d(x1dx2 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn.

One of the interests in Stokes’s theorem is the unification of several integral
formulas in dimension 2 and 3.

a) Green’s theorem.

This is the case where D is a regular domain in R
2, and α is a differential

form of degree 1. One has∫
∂D

P dx+Qdy =

∫
D

(∂xQ− ∂yP ) dx dy.

The plane is oriented by dx∧ dy, and we have subtly replaced dx∧ dy by the
Lebesgue measure dxdy.

We will not dwell further on this elementary example. However, it shows
that weakening the hypothesis made on D is a natural question: it is easy to
check directly that Green’s formula holds for a square! For Stokes’s theorem
in a very general setting, see [Whitney 57, Chapter 3].

b) Divergence theorem.

Here D is a regular domain of R3. If ω = dx ∧ dy ∧ dz and if X is a vector
field on R

3, recall (see Section 5.5) that

d(iXω) = LXω = (divX)ω.
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Stokes’s theorem gives ∫
∂D

iXω =

∫
D

(divX)ω (∗)

where if X = P∂x +Q∂y +R∂z,∫
∂D

P dy ∧ dz +Qdz ∧ dx+Rdx∧ dy =

∫
D

(∂xP + ∂yQ+ ∂zR) dx∧ dy ∧ dz.

Once written, this formula uses only the volume form ω and not the inner
product structure. It can also be reinterpreted in terms of flux (in the
language of physicists) or a surface integral (in the language of the math-
ematicians) of a vector field. To do this, we introduce on S = ∂D the
outward normal vector field N and the volume form σ = iNω introduced
in 6.4.2 (see Figure 6.4). The flux of the vector field X across S, denoted∫
S X , is by definition the integral∫

S

〈X,N〉σ.

By noting that

X = 〈X,N〉N + Y, where Y is tangent to S,

we see that
iXω|S = i〈X,N〉Nω|S = 〈X,N〉σ.

N X

Figure 6.4: Flux across a surface
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The formula (∗) above then gives∫
S

X =

∫
D

(divX) dx ∧ dy ∧ dz where S = ∂D.

c) “Classical” Stokes’s theorem.

This concerns regular domains of surfaces in R
3. We again denote such a

domain by S, and suppose its boundary ∂S = C is connected. Then for
α ∈ Ω1(R3), we have ∫

C

α =

∫
S

dα.

This formula can be rewritten in terms of a vector field if we utilize the
Euclidean metric. Let X be a vector field and α = X� the differential form
associated by the metric (cf. 5.3.1). Recall the curl of X is defined by

icurlXω = d(X�)

Taking b) into account, Stokes’s formula can then be written (see Figure 6.5)∮
C

X =

∫
S

curlX if C = ∂S.

N

S

C

Figure 6.5: Flux and circulation

6.5. Canonical Volume Form of a

Submanifold of Euclidean Space

We will see that on Euclidean space, the inner product furnishes a natural
measure on submanifolds. First recall what happens in R

n. The Lebesgue
measure is characterized up to a factor by its invariance under translation.
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To determine it completely, it suffices to know the measure of a reference set,
for example a parallelepiped

P0 =

{
n∑

i=1

tiei, 0 � ti � 1

}
,

where (ei)1�i�n is a basis of Rn.

Then, if we normalize Lebesgue measure by declaring that vol(P0) = 1, the
volume of a parallelepiped constructed by n vectors a1, . . . , an, is the abso-
lute value of the determinant of the system a1, . . . , an with respect to the
basis (ei)1�i�n.

This normalization of the Lebesgue measure on R
n does not give a normal-

ization of vector subspaces of dimension k < n. To convince ourselves of this,
take the case n = 2, k = 1. Imagine that area determines a normalization
of the Lebesgue measure on lines. Then every linear transformation of R2

which preserves area and leaves the subspace R×{0} invariant conserves the
Lebesgue measure of this subspace. This is impossible because these linear
transformations are of the form (

a b
0 1/a

)
.

Everything changes if Rn is equipped with an inner product, for example the
canonical inner product

〈x, y〉 =
n∑

i=1

xiyi.

Now the reference set is a parallelepiped constructed from an orthonormal
basis, and if E ⊂ R

n is a vector subspace of dimension k, we can now take the
reference set for E to be a parallelepiped constructed from an orthonormal
basis of E. The following algebraic property allow us to perform explicit
calculations.

Lemma 6.27 (Gram determinants). If e1, . . . , en is an orthonormal
basis, for any vectors a1, . . . , an, we have(

det
(
(a1, . . . , an), (e1, . . . , en)

))2
= det

(
〈ai, aj〉1�i, j�n

)
.

Proof. We may suppose that 〈 , 〉 is the canonical inner product on R
n,

and e1, . . . , en the canonical basis. Then if

ai =

n∑
k=1

αk
i ek,
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we have

〈ai, aj〉 =
n∑

k=1

αk
i α

k
j .

Thus the matrix
〈ai, aj〉1�i, j�n

is the product of the matrix of coordinates of ai by its transpose.

It remains to transport these constructions to submanifolds of Rn.

Theorem 6.28. Let M be an oriented submanifold of R
n of dimension p.

Then there exists a unique volume form σ on M such that if v1, . . . , vk is a
positively-oriented orthonormal basis of TxM , then

σx(v1, . . . , vk) = 1.

If U is an open subset of R
p and F : U → R

n is a local parametrization
of M compatible with the orientation, we have

F ∗σ =
√
det(〈∂iF, ∂jF 〉)1�i, j�p dx1 ∧ · · · ∧ dxp.

Proof. The condition in the statement determines αx ∈
∧n

T ∗
xM in a

unique way from the uniqueness of σ. Now, if ∂1, . . . , ∂p is the canonical
basis of TuR

p and F is a local parametrization of M to an open subset U
containing u, by Lemma 6.27 we have

σF (u)(TuF · ∂1, . . . , TuF · ∂p) =
√
det(〈∂iF, ∂jF 〉)1�i, j�p,

with the sign + if F preserves orientation. This proves the second part of
the statement, and also the existence of σ, as we have obtained smooth local
expressions.

Definition 6.29. The volume form above is the canonical volume form
of M . Note that it depends both on an inner product of R

n as well as a
choice of orientation (it changes sign if we change the orientation of M or
of R

n).

Examples

a) We saw in Section 3.8 that a submanifold of dimension 1 in R
n is given

by an embedding c of R or of S1. Such an embedding determines an
orientation of C and the corresponding volume form is equal at the point
c(t) to ‖c′(t)‖ dt.

b) Let Sn be the unit sphere in R
n+1. We can choose an orientation of Sn

by deciding that a basis v1, . . . , vn of TxS
n is positively-oriented if and
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only if the basis x, v1, . . . , vn of Rn+1 is positively-oriented. The canonical
volume form is then given by

σx(v1, . . . , vn) = det(x, v1, . . . , vn),

where the determinant is taken with respect to a positively-oriented
orthonormal basis. We note that σ is the restriction of

ix(dx
0 ∧ · · · ∧ dxn) =

n∑
i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

to Sn.

Remark: the volume form of a Riemannian manifold

��More generally, if M is a oriented manifold equipped with a Riemannian
metric g, we associate to g a volume form ωg by deciding that

(ωg)x(v1, . . . , vn) = 1

for positively-oriented orthonormal frames (v1, . . . , vn) of TxM . By the same
argument as in Theorem 6.28, if F : U → M is a local parametrization of M
and if

F ∗g =
∑

i,j=1n

gij dx
i ⊗ dxj ,

then

F ∗ωg =
√
det(gij)1�i, j�n dx1∧ · · · ∧ dxn. ��

Definition 6.30. The volume of a compact submanifold M of R
n is the

integral over M of “its” canonical volume form σ.

We put quotes because σ depends on the orientations of M and of Rn. But
it is clear that

∫
M

σ does not depend on these. For dimM = 1 we speak of
the length, and for dimM = 2 the area.

Remark. We can define the volume (finite or infinite) of a noncompact mani-
fold M as the upper bound of the integrals of σ taken over regular domains
of M .

By using Proposition 6.21, we see by an easy calculation that

area(S2) =

∫ 2π

0

∫ π
2

−π
2

cosφdθ dφ = 4π.

We move on to higher dimensions.
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Proposition 6.31. The volume of the unit sphere in R
n+1 is equal to

2π
n+1
2

Γ(n+1
2 )

.

Proof. We will calculate the integral∫
Rn+1

e−‖x‖2

dx0 ∧ · · · ∧ dxn

in two ways. On one hand, by Fubini’s theorem, this integral equals In+1,
where

I =

∫ ∞

−∞
e−t2 dt.

On the other hand, if F : R
+ × Sn → R

n+1 is given by F (r, u) = ru, we
have

F ∗(dx0 ∧ . . . ∧ dxn) = rn dr ∧ σ,

where σ is the canonical volume form of Sn (to see this, it suffices to evaluate
the two forms above at (r, u) on ∂

∂r and an orthonormal basis v1, . . . , vn
of TuS

n). This formula shows that F is a diffeomorphism on R
n+1

� {0}.
Then∫
Rn+1

e−‖x‖2

dx0∧· · ·∧dxn =

∫
R+×Sn

e−r2rn dr∧σ = vol(Sn)

∫ ∞

0

e−r2rn dr.

However ∫ ∞

0

e−r2rn dr =
1

2

∫ ∞

0

e−tt
n−1
2 dt =

1

2
Γ

(
n+ 1

2

)
.

As vol(S1) =
∫
S1 x dy − y dx = 2π, for n = 1 we obtain I =

√
π and the

result follows.

In particular, vol(S2p−1) = 2πp

(p−1)! . We also note that by Stokes’s theorem∫
Sn

σ =

∫
Bn+1(1)

(n+ 1) dx0 ∧ · · · ∧ dxn,

and thus

vol(Bn+1(1)) =
1

n+ 1
vol(Sn).

The preceding calculation used a result analogous to Fubini’s theorem, which
we state as follows:

Lemma 6.32. Let X and Y be two compact oriented manifolds, and let
X × Y be their product equipped with the product orientation (see Exercise 1).
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Let p : X × Y → X and q : X × Y → Y be the canonical projections. Then
if α ∈ ΩdimX(X) and β ∈ ΩdimY (Y ), we have∫

X×Y

p∗α ∧ q∗β =

(∫
X

α

)(∫
Y

β

)
.

Proof. Let (Ui, ϕi)i∈I (resp. (Vj , ψj)j∈J ) be a finite oriented atlas of X
(resp. of Y ). Then (Ui × Vj , ϕi × ψj)(i,j)∈I×J is an oriented atlas of X × Y ,
which by definition gives the product orientation by the atlases on the factors.
Now if (fi)i∈I (resp. (gj)j∈J ) is a partition of unity subordinate to the cover
(Ui)i∈I (resp. (Vj)j∈J ), then (figj)(i,j)∈I×J is a partition of unity subordi-
nate to the cover (Ui × Vj)(i,j)∈I×J of X × Y . It suffices to prove the prop-
erty for forms figjp

∗α ∧ q∗β. We have thus reduced to the classical Fubini
theorem.

We finish this paragraph with spectacular result, the isoperimetric inequality.

Theorem 6.33.1 Let D be a regular domain of n-dimensional Euclidean
space. Then we have the inequality(

vol(∂D)
)n(

vol(D)
)n−1 �

(
vol(Sn−1)

)n(
vol(B(0, 1))

)n−1 .

Further, the equality occurs if and only if D is a ball.

For example, for n = 2, we have(
length(∂D)

)2
� 4π area(D),

with the equality attained if and only if D is a disk.

In proving this, one might think that a relation between the volume of
a domain and that of its boundary involves the use of Stokes’s theorem.
There is indeed such a proof, but this is the most recent of all. It is due to
M. Gromov, from the 1980s. See [Berger-Gostiaux 88, 6.6.9].

6.6. Brouwer’s Theorem

In this paragraph, we will see a topological application of Stokes’s theorem.

Theorem 6.34. Let U be an open subset of R
n containing the closed unit

ball Bn. Then there does not exist a smooth map of U to ∂Bn = Sn−1 whose
restriction to Sn−1 is the identity.

1. Statement only, not used in the sequel.
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Proof. Let F = (f1, . . . , fn) be such a map. Then the restriction to Sn−1

of the differential forms

x1 dx2 ∧ · · · ∧ dxn and f1 df2 ∧ · · · ∧ dfn

coincide. In particular,∫
Sn−1

x1 dx2 ∧ · · · ∧ dxn =

∫
Sn−1

f1 df2 ∧ · · · ∧ dfn.

Apply Stokes’s theorem to each side. On the one hand∫
Sn−1

x1 dx2 ∧ · · · ∧ dxn =

∫
Bn

dx1 ∧ dx2 ∧ · · · ∧ dxn = vol(Bn) �= 0.

On the other hand∫
Sn−1

f1 df2 ∧ · · · ∧ dfn =

∫
Bn

df1 ∧ df2 ∧ · · · ∧ dfn.

However, by hypothesis
∑n

i=1(f
i)2 = 1, and so

∑n
i=1 f

i df i = 0, from which
it follows

df1 ∧ · · · ∧ dfn = 0,

a contradiction.

Remark. Methods of algebraic topology permit a proof of a C0 version
of this result: there does not exist a continuous map from Bn to Sn−1

whose restriction to Sn−1 is the identity. However, as we will see, differ-
ential methods also allow us to prove purely topological results, such as the
following result due to Brouwer.

Theorem 6.35. Every continuous map from a closed ball in Euclidean space
to itself admits a fixed point.

Proof. We will reduce to the preceding result. First, an approximation
result will allow us to return to the smooth case.

Lemma 6.36. For every continuous map of the closed unit ball Bn to itself,
and for each ε > 0, there exists numbers r1 and r2 with r1 < 1 < r2 and a
smooth map g from the open ball B(r2) to the open ball B(r1) such that

∀x ∈ Bn, ‖f(x)− g(x)‖ < ε.

Proof. By the Stone-Weierstrass theorem applied to the components of f ,
there exists a a map P = (p1, . . . , pn), where the pi are polynomials such that

sup
x∈Bn

‖f(x)− P (x)‖ <
ε

4
.
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We check g = P/(1 + ε
2 ) satisfies the required conditions. First, for x ∈ Bn

we have

‖g(x)‖ �
1 + ε

4

1 + ε
2

= 1− ε

4 + 2ε
.

By virtue of uniform continuity of g (say on B(3/2)), we can then find a r2 > 1
such that g(x) < 1− ε

8 if ‖x‖ < r2. Further, if x ∈ Bn we have

∥∥f(x)− g(x)
∥∥ �

∥∥f(x)− P (x)
∥∥ + ∥∥∥∥(1− 1

1 + ε
2

)
P (x)

∥∥∥∥ < ε.

Proof of Theorem 6.35. We argue by contradiction. Let h be a contin-
uous map without fixed point from the closed ball Bn to itself. Then by
compactness of the ball, the number

δ = inf
x∈Bn

‖h(x)− x‖

is strictly positive. Apply the lemma to h with ε = δ
2 , and let g be the smooth

map we obtain. Now if x ∈ Bn, we have

‖x− g(x)‖ > ‖x− f(x)‖ − ‖f(x)− g(x)‖ >
δ

2

thus g(x) �= x. If x ∈ B(r2) � Bn, as g(x) ∈ B(r1), we have g(x) �= x. This
lets us construct a map k from B(r2) to Sn−1 whose restriction to Sn−1 is
the identity: the straight line which joins x and g(x) (which is well defined
because g(x) �= x) cuts Sn−1 at two distinct points, and we take k(x) to be
the point of intersection such that g(x) is exterior to the segment [x, k(x)]
(see Figure 6.6).

S n –1

g(x)

k(x)

x

B(r2)

Figure 6.6: Brouwer’s theorem by contradiction
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Explicitly, k(x) is of the form

g(x) + t
(
x− g(x)

)
where t � 0,

which shows that t is the unique positive root of the second degree equation

‖x− g(x)‖2t2 + 2〈g(x), x− g(x)〉t+ ‖g(x)‖2 − 1 = 0,

and that k is smooth. By applying Theorem 6.34, we obtain a contradiction.

Remark. ��Of course there exist purely topological proofs of these results
which use cohomology of the ball and sphere. The proof we have given has
the advantage of being much more elementary. In reality, it is not far from
the other proof: we will see in the next chapter how cohomology in maximal
dimension can be interpreted in terms of integration.��

6.7. Comments

Integration on chains: towards algebraic topology

We can of course integrate forms of degree p on regular domains of
p-dimensional submanifolds. Stokes’s theorem∫

∂D

α|∂D =

∫
D

dα

can be seen as a duality formula between operators α �→ dα and D �→ ∂D.
However if we want to consider ∂ as a linear map, we must work in a more
general setting than domains with boundary: for each p we introduce the
vector space Cp(M) of p-chains, namely of formal linear combinations

∑
λiSi

(say with real coefficients) of submanifolds with boundary of dimension p.2

We then define ∂ : Cp(M) → Cp−1(M) by posing

∂
(∑

λiSi

)
=
∑

λi∂Si.

We have ∂ ◦∂ = 0 simply because the boundary of a manifold with boundary
is a smooth manifold (without boundary).

We are thus driven to introduce in each dimension the homology groups

Hp(X) = Ker(∂p)/ Im(∂p−1)

2. We are cheating a bit in this summary.
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which play a dual role to the de Rham groups Hp(X) defined at the beginning
of the next chapter. More precisely, by Stokes’s theorem, the map

(c, α) �−→
∫
c

α,

where c is a chain of dimension p and α is a form of degree p, passes to
the quotient and defines a bilinear map from Hp(X) × Hp(X) to R, and if
the manifold X is compact, one may prove that this bilinear form is non-
degenerate.

For more details, see [Greenberg-Harper 81], or [Dieudonné 88] once more.

Non orientable manifolds

A Möbius strip, made with scissors and glue does have an area! To have
a theory of integration valid on non orientable manifolds, we introduce the
notion of density. A density is a measure δ on X such that for every chart
(U,ϕ), the pushforward ϕ∗δ is of the form fϕμ, where μ denotes the Lebesgue
measure of Rn and fϕ is a strictly positive smooth function at each point,
with the compatibility condition

fψ = fϕ ◦ (ϕ ◦ ψ−1)|Jac(ϕ ◦ ψ−1)|

if the domains of ϕ and ψ intersect. Imitating the proof of Theorem 6.5, we
see there always exists densities on compact manifolds. To define integration
with respect to a density, we simply repeat the details of section 6.3. For
more details on densities, see [Berger-Gostiaux 88, 3.3].

6.8. Exercises

1. Orientability and oriented atlases

a) Show that for every manifold M , the tangent bundle TM is orientable.

b) Show that the product of two orientable manifolds is orientable if and only
if each factor is orientable.

2. Orientability and volume forms

a) Let X be a submanifold of Rn of the form f−1(0), where f : Rn �→ R is
a smooth map whose differential at every point x ∈ X is surjective. Show
that X is orientable.

b) Same question for a submanifold of X of Rn of the form f−1(0), where f
is a smooth map from R

n to R
p having the same property.

c) Is a submanifold of an orientable manifold orientable?
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d) Does an orientable submanifold of an orientable manifold have a “natural”
orientation (like the boundary of a regular domain of a oriented manifold)?

3. The Klein bottle

a) Show that the quotient K of T 2 = S1×S1 by the group with two elements
{I, σ}, where

σ(θ, ϕ) = (−θ, ϕ+ π)

is a non orientable manifold (this manifold is called the Klein bottle). Using
spherical coordinates, construct a smooth map from X to S2.

b) Show that the formulas

x(u, v) =
(
r + cos

u

2
sin v − sin

u

2
sin 2v

)
cosu

y(u, v) =
(
r + cos

u

2
sin v − sin

u

2
sin 2v

)
sinu

z(u, v) = sin
u

2
sin v + cos

u

2
sin 2v

(with r � 2) define an immersion of the Klein bottle into R
3.

Sketch this map. Do you recognize one of the designs on the cover of this
book?

4. Equip the unit sphere Sn ⊂ R
n+1 with the volume form

σ =
n∑

i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

and calculate (using convenient values of the function Γ, and taking inspira-
tion from the calculation of the volume of Sn) the integrals

I(p0, . . . , pn) =

∫
Sn

(x0)p0 . . . (xn)pnσ.

5. Let ω be a differential form of maximal degree on a compact manifold M ,
and let X ∈ C∞(TM) be a vector field. Show that∫

M

LXω = 0.

6. Calculate the volume of the domain given by the equation

x2

a2
+

y2

a2
+

z2

c2
� 1

(this is the interior of an ellipsoid of revolution).
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7. Archimedes’s formula

Let ω be the volume form x dy ∧ dz + y dz ∧ dx + z dx ∧ dy on the sphere
S2 ⊂ R

3.

a) Using spherical coordinates, determine an explicit primitive of ω on
S2

� {S ∪N} which is invariant under the rotations about the north-south
axis (we denote the north and south poles N and S respectively).

Application. Calculate the area of a “spherical segment”

Σh,k =
{
(x, y, z) ∈ S2 : h � z � k

}
.

b) Determine an explicit primitive of ω on S2
� {S} invariant under the

rotations about the north-south axis.

8. Haar measure of a Lie group

a) Show that on a Lie group G of dimension n, there exists a nonzero left
invariant (resp. right invariant) differential form of degree n that is unique
up to a multiplicative factor, and that this form is a volume form. By
abuse of terminology, we call the measure defined by this form “the” left
(or right) Haar measure on G.

b) What is the Haar measure on R? on R
∗? on C? on T

n?

c) Show that the Haar measure (either left or right) on Gl(n,R) is defined
by the form

(detX)−n
∧

1�i�j�n

dxi,j .

9*. Compact subgroups of the linear group

Let G be a compact subgroup of Gl(n,R). Using the Haar measure on G,
show that there exists a positive definite quadratic form q on R

n such that

∀g ∈ G, ∀x ∈ R
n, q(gx) = q(x).

Deduce that there exists a g ∈ Gl(n,R) such that

gGg−1 ⊂ O(n).

10. Modulus of a Lie group

a) Let G be a Lie group, and let ω be a left Haar measure on G. Show
that R∗

gω is also a left Haar measure. Deduce the existence of a smooth
function (denoted mod and called the (Haar) modulus of G), such that

R∗
gω = mod(g)ω, ∀g ∈ G.

Show that mod is a morphism of G to R
∗, and to R

∗
+ if G is connected.
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b) Show that mod(g) = ±1 if G is compact.

c) Show that mod(g) = det(Ad g−1). Calculate mod for G = A(1,R).

d) A Lie group is called unimodular if mod(g) = ±1, in other words if the
left and right Haar measures coincide. We say in b) that every compact
group is unimodular, and in Exercise 9 that Gl(n,R) is unimodular. Show
that a connected Lie group is unimodular is and only if the endomorphism
Y �→ [X,Y ] of G is trace free for all X ∈ G. Application: show that
the Heisenberg group and Sl(n,R) are unimodular, but that the group of
affine isomorphisms x �→ ax + b of the real line is not. ��More generally,
nilpotent groups and connected semi-simple groups are unimodular for the
same reason. (See for example [Hall 03, C.4].)��

11**. Cauchy-Crofton formula

Represent the set of oriented lines of the Euclidean plane by S1 × R, by
associating to each oriented line its “Euler equation” (see Section 2.1.1)

x cos θ + y sin θ − p = 0.

a) Show that the differential form dp∧dθ is invariant under the natural action
of the group of affine isometries of the plane.

b) Let C be a closed curve of the plane with length L parametrized by arc
length s. Let F be the map from [0, L]× [0, π] to S1 ×R which associates
(s, ϕ) with the line which passes through the point with arc-length param-
eter s and making an angle of ϕ with the (oriented) tangent to the curve
at this point. Show that

F ∗(dp ∧ dθ) = sinϕds ∧ dϕ.

c) Deduce for almost every line D, the set D ∩ C is finite, and that∫
S1×R

card(D ∩ C) dp ∧ dθ = 2L.

��There are many formulas of this type, cf. [Santaló 76].��

12. Center of mass; Guldin’s theorem

a) Let D be a regular domain of Rn seen as affine space. Choose an origin,
inner product and an orientation, and write

m(D) =

(∫
D
xiω
)
1�i�n∫

D
ω

,

where ω is the volume form defined by the inner product and orientation.
Show that m(D) depends neither on the origin, metric nor orientation.
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b) Verify that the map F from S1 ×R
∗
+ ×R to R

3 given by

(r, θ, z) �−→ (r cos θ, r sin θ, z)

is a diffeomorphism to R
2
� {0} ×R. If ω is the volume form of R3 for

its canonical inner product structure, calculate f∗ω.

c) Let D be a regular domain of R∗
+ ×R, and a the distance of m(D) to the

second coordinate axes. Show that

vol
(
f(D)

)
= 2πa · area(D)

(we say that f(D) is the “domain of revolution” given by D).

13. Archimedes’s theorem

We consider the regular domain D as a solid body immersed in liquid with
mass density ρ. Space is measured with respect to an orthonormal frame
(i, j, k), the surface of the liquid represented by the plane (i, j) and a constant
gravitation force given by −gk. Then, by the fundamental principle of hydro-
statics, the infinitesimal weight at p ∈ ∂D is −zgρσn, where σ is the volume
form of ∂D, z is the distance of the surface of the liquid and n is an outward
unit normal to ∂D. Then the resulting pressure forces and their moments
in m ∈ R

3 are given by∫
∂D

−ρgznσ and
∫
∂D

(
#   »pm ∧ zn

)
ρgσ,

where once and for all ∧ denotes the cross product. Show that∫
∂D

−ρgznσ = gρ vol(D)k

and ∫
∂D

(
#   »pm ∧ zn

)
ρgσ = −gρ vol(D)

(
#               »

m(D)m ∧ k
)
.

14. Let D be a regular domain of Rn. The normal derivative of a smooth (or
even C1) function on D, denoted ∂f

∂n is a function on ∂D given by 〈∇f,N〉,
where N is the outward unit normal.

a) Show that if f and g are two C2 functions C2 on D, and if σ∂D denotes
the canonical volume form on ∂D, we have∫

D

(fΔg − gΔf) dx1 ∧ · · · ∧ dxn =

∫
∂D

(
f
∂g

∂n
− g

∂f

∂n

)
σ∂D

(write the left hand side as the integral of a divergence).
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b) Show that if f is a harmonic function on D (which is to say if Δf = 0) that
vanishes on ∂D, then f = 0 everywhere. Try the same question supposing
that ∂f

∂n vanishes on ∂D.

15. Tubular neighborhood of a curve

This exercise uses several elementary results about parametrized curves.
Let c : R/LZ → E be an embedded C2 curve in the Euclidean plane of
length L, parametrized by arc-length.

Show that the area of a tubular neighborhood Vr(c) (see Exercise 24 of
Chapter 3) is equal to 2rL.

��More generally, if M is a submanifold of dimension p in R
n equipped with

the standard Euclidean norm, we have

vol
(
Vr(M)

)
=

[ p2 ]∑
k=0

akr
n−p+2k,

where a0 = vol(M) vol
(
Bn−p(1)

)
, and the ak only depend on the Rieman-

nian geometry of M . For an explanation of these invariants, see [Berger-
Gostiaux 88, 6.9.8] and the references therein.�� See also Theorem 8.24.



Chapter 7

Cohomology and

Degree Theory

7.1. Introduction

In the preceding chapters we saw several ways to show that two open subsets
of Rn, and more generally two manifolds, are not diffeomorphic.

For example, Theorem 5.14 shows that on R
2
� {0} there exist forms which

are not exact, thus this open subset of R2 is not diffeomorphic to R
2. The

same argument works for R
n
� {0}. The “solid angle” form is closed but not

exact because its restriction to a sphere with center 0 is a volume form which
has nonzero integral.

Another type of argument is possible: the complex exponential furnishes a
nontrivial covering of R2

� {0} by R
2, and so we see that R

2
� {0} is not

simply connected. This argument is in some sense better as we see that R
2

and R
2
� {0} are not homeomorphic, but in some sense worse because the

argument does not extend to higher dimensions.

The de Rham cohomology spaces, which form the subject of this chapter,
take into account the failure of the Poincaré lemma: in each degree these
spaces are the quotient of the vector space of closed forms by the subspace of
exact forms. These are the simplest invariants which allow one to show that
two manifolds are not diffeomorphic.

We begin by describing what happens in the maximal dimension. The point
of departure is a well known but under-appreciated analytical fact: the prim-
itives of a periodic function are periodic if and only if the integral of this
function over a period is zero. While this is a criteria for exactness on closed
forms on the circle, this property extends to compact connected orientable
manifolds. The integral of forms of degree n = dimX on such a manifold
gives an isomorphism between the de Rham space Hn(X) of maximum degree
and R (Theorem 7.9).
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This information, which appears relatively weak if we only consider mani-
folds, becomes much richer as soon as we are interested in maps between
manifolds. Indeed the correspondence which associates to a manifold X its
de Rham space Hk(X) of degree k is what mathematicians call a functor. If
f : X → Y is a smooth map, we obtain a linear map f∗ : Hk(Y ) → Hk(X)
(this is passing to the quotient in the inverse image seen in Chapter 5).
This functor is called “contravariant” as it reverses the direction of the arrow
(for functorial machinery, which is useful but must not be abused, see the
beginning of [Douady 05]) or [MacLane 71].

For compact orientable manifolds of the same dimension, in maximum degree,
f∗ is a linear map between spaces of dimension 1, this is to say multiplication
by a number. This number which is a priori any real number, is in fact an
integer, called the degree, which also has a geometric interpretation.

Very roughly, the degree of a map f from a manifold X to a manifold Y
of the same dimension is the number of solutions of the equation f(x) = y
(X and Y here are assumed to be connected and compact). We really want to
say that such a number depends continuously on y and f . Earlier we say in
Chapter 2 (see Theorem 2.14) that on the regular values of f , the cardinality
of f−1(y) is finite and locally constant. But this point of view is naive: the
drawing below of a graph of a function from R to R (easily embeddable as
S1 = P 1

R), shows that one must take into account the orientation (here, of
the fact that f can be increasing or decreasing). As the picture suggests, the
number of solutions of the equation f(x) = y does not depend on the regular

Figure 7.1: Equation f(x) = y
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value y only if we impose the sign + for the x if f preserves orientation, and
the sign − if x reverses orientation. This is stated carefully in Theorem 7.18.

The continuity of the degree with respect to f uses the first point of view,
which gives an expression by means of differential forms. As it is simultane-
ously continuous and an integer, the degree is constant on every continuous
family of smooth maps from a given manifold to another (this is invariance
by homotopy, see Section 7.4.3). This property has important applications:
fundamental theorem of algebra, the index of a vector field at zero, the linking
number of curves in R

3.

We then describe cohomology in any degree. The calculation here relies on
combining two ideas:

replace the space under study by a simpler space having the same coho-
mology (a star-shaped open subset with respect to a point) by remarking
that cohomology depends only on the “homotopy type” (the details are
given in Section 7.7);

using a convenient decomposition of the space under study into subspaces
with known cohomology.

An example of this technique is the Mayer-Vietoris sequence, explained
in Section 7.8.

��Finally, we mention that de Rham cohomology spaces are in fact topological
invariants, which is to say invariants under homeomorphism between differ-
entiable manifolds (see for example [Bott-Tu 86, II.9] for a precise statement
and proof).��

7.2. De Rham Spaces

If X is a manifold, let F k(X) be the vector space of closed differential forms
of degree k. As d◦d = 0, the vector space dΩk−1(X) of exact forms of degree
k is a vector subspace of F k(X) by the Poincaré lemma. The quotient vector
space of closed forms by exact forms measures the “failure of exactness” of
closed forms of degree k on X .

Definitions 7.1

a) The quotient

F k(X)/dΩk−1(X)

is a vector space called the k-th cohomology space of X and is denoted
Hk(X).
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b) If α ∈ F k(X), its image [α] under the quotient map is called the coho-
mology class of α.

c) Two closed forms are said to be cohomologous if they define the same
cohomology class, which is to say their difference is exact.

Remarks

a) One may prove if X is compact then the spaces Hk(X) are finite dimen-
sional (see for example [Bott-Tu 86], and Exercise 21 for an idea).

b) There exist other notions of cohomology, see [Greenberg-Harper 81]. The
subject of this chapter is de Rham cohomoloy, named in honor of Georges
de Rham, a Swiss mathematician of the past century. We will omit his
name hereafter.

Examples

a) As there do not exist forms of degree −1, the group H0(X,R) is equal
to F 0(X): it consists of functions with zero differential, which is to say
functions that are locally constant. In other words, H0(X,R) � R

c, where
c is the number of connected components of X .

b) Hp(X) is always zero if p > dim(X).

c) The Poincaré lemma says exactly that if U is a star-shaped open subset
then Hp(U) = 0 if p > 0.

d) We come to the simplest compact manifold, the circle S1, which will be
convenient to consider as R/Z. Now a differential form f(t) dt on R passes
to the quotient as a form on S1 if and only if the function f is periodic with
period 1, and is exact if and only if the function f has a periodic primitive
with period 1. However if f is periodic with period 1, the integral∫ t+1

t

f(u) du

is independent of t. Indeed, if we regard this as a function of t, its derivative
is f(t + 1) − f(t) = 0! The value of this integral is precisely the integral
of the quotient form on S1. In other words

Theorem 7.2. A form ω ∈ Ω1(S1) is exact if and only if it has zero integral,
and the integration map

α �−→
∫
S1

α

induces an isomorphism from H1(S1) to R. This isomorphism depends only
on the choice of orientation of the circle.
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This result extends, as we will now see, to every compact oriented manifold.
We can interpret it as converse to Stokes’s theorem for compact manifolds
(see Corollary 6.26).

7.3. Cohomology in Maximum Degree

We start with an “elementary” property concerning the space R
n, which is

analogous to the previous result.

Theorem 7.3. A differential form α ∈ Ωn(Rn) with compact support admits
a primitive if and only if ∫

Rn

α = 0

We proceed by induction on n. The result is a consequence of the following
lemma, which is a version of the theorem “with parameters”, and allows the
induction.

Lemma 7.4. Let u �→ α(u) be a family of differential forms of degree n
with compact support contained in (0, 1)n that depends differentiably on a
parameter u ∈ U ⊂ R

k. Then, if∫
(0,1)n

α(u) = 0,

there exists a family u �→ β(u) of compactly support forms of degree n − 1
such that

∀u ∈ U, β(u) = dα(u).

Proof. We proceed by induction on n. For n = 1, the result is immediate:
α(u) may be written as f(x, u)dx, where f ∈ C∞((0, 1) × U). Further,
there exists a closed interval [a(u), b(u)] ⊂ (0, 1) such that f(x, u) = 0
if x /∈ [a(u), b(u)], and by hypothesis∫

(0,1)

f(x, u) dx =

∫ b(u)

a(u)

g(x, u) dx = 0.

So the function

g(x, u) =

∫ x

0

f(t, u) dt

gives a family of primitives of α(u) satisfying the required conditions.
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Now suppose the property is true for n−1, and let α(u) be a family of n-forms
on (0, 1)n satisfying the conditions of the lemma. Then

α(u) = f(x1, . . . , xn, u)dx1 ∧ · · · ∧ dxn

may be written β(xn, u) ∧ dxn, where β(xn, u) is a form of degree n − 1 on
(0, 1)n−1 parametrized by (xn, u) ∈ (0, 1)× U . Let σ ∈ Ωn−1((0, 1)n−1) be a
compactly supported form such that

∫
(0,1)n−1 σ = 1. We write

β(xn, u) =

(∫
(0,1)n−1

f(x1, . . . , xn, u) dx1 . . . dxn−1

)
σ.

By construction, the form β(xn, u) − β(xn, u) has compact support in
(0, 1)n−1 and zero integral, and by the induction hypothesis,

β(xn, u)− β(xn, u) = d
(
γ(xn, u)

)
,

where γ(xn, u) is a family of forms of degrees n− 1 parametrized by (xn, u).

Denote by γ′(u) the family of forms (depending on the parameter u) on (0, 1)n

whose restriction to the plane xn = xn
0 is γ(xn

0 , u). In other words, γ′(u)
is obtained taking γ(xn, u) and allowing xn to be regarded as a parameter
instead of a variable. Then, with an obvious abuse of notation for the left
hand side, we have

dγ′(u) ∧ dxn = dγ(xn, u) ∧ dxn

and consequently (by omitting the parameter u),

α = β ∧ dxn + dγ′ ∧ dxn.

The first term may be written σ ∧ F (xn, u)dxn, where the function F (·, u)
has zero integral. It is therefore of the form σ ∧ dG, where the function G
is compactly supported in (0, 1). This is, up to sign, the differential of a
compactly supported form Gσ (since dσ = 0). Similarly, the second term is
the differential of xndγ′ up to sign, which is also of compact support as we
can see from its definition.

Remark. The careful reader will see several implicit uses of the projec-
tions p : (x1, . . . , xn) �→ (x1, . . . , xn−1), inclusions ixn : (x1, . . . , xn−1) �→
(x1 . . . , xn−1, xn), and the pullbacks of forms by these maps. We made these
omissions for clarity instead of rigor.

The property stated below for compact manifolds is deduced by using succes-
sive applications of this theorem to suitable open sets.
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Theorem 7.5. Let X be a compact connected oriented manifold of dimen-
sion n. A differential form of degree n on X is exact if and only if its integral
vanishes.

Proof. The fact that an exact form of maximum degree on a compact
oriented manifold has vanishing integral follows from Stokes’s theorem. To
prove the converse, we will need “reference formulas” for the forms σ which
appeared in Lemma 7.4.

Lemma 7.6. For every open subset U of an oriented manifold X, there exits
a form σ ∈ Ωn(X) with compact support contained in U such that

∫
X
σ = 1.

Proof. Let ϕ : U → R
n be a chart preserving the orientation, and f a

smooth function with compact support contained in ϕ(U) and with integral
equal to 1. It suffices to take σ as the form which equals ϕ∗(fdx1∧· · ·∧dxn)
on U and 0 on X � ϕ−1(Supp(f)).

The “only if” direction of Theorem 7.5 is a consequence of the following result,
which has its own uses:

Proposition 7.7. Under the same hypothesis as in Theorem 7.5, let α and
σ ∈ Ωn(X). Suppose that Supp(σ) is included in an open subset of a chart,
and that

∫
X σ = 1. Then there exists a form β ∈ Ωn−1(X) and a real number

t such that

α− tσ = dβ.

Further, t =
∫
X α.

By covering X by a finite number of open charts and taking a partition of
unity subordinate to this cover, by additivity we reduce to the case where α
has support contained in an open subset of a chart. If this open subset is
the same as the corresponding one for σ, we are finished by Theorem 7.3. In
general this is not the case, so we make a sequence of corrections to reduce
to this case.

Lemma 7.8. Let X be a connected topological space, and (Vi)i∈I an open
covering of X. Then for all x, y ∈ X, there exists a finite sequence Vi0 , . . . , Vip

of open subsets of the covering such that

x ∈ Vi0 , y ∈ Vip and Vik ∩ Vik+1
�= ∅ if 0 � k < p.

Proof. For x ∈ X , denote by C(x) the set of y ∈ X for which the property
stated is satisfied by the pair (x, y). It is clear that C(x) is an nonempty
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open set and that C(x) = C(x′) as soon as C(x)∩C(x′) �= ∅. Thus, the C(x)
form a partition of X into open subsets, and therefore C(x) = X .

End of the proof of Theorem 7.5. By the lemma, we are in the follow-
ing situation: there exists a sequence U0, . . . , Up of open subsets of charts,
such that

Suppα ⊂ U0; Suppσ ⊂ Up ; Uk ∩ Uk+1 �= ∅ if 0 � k < p.

We denote the corresponding charts by ϕk, and suppose these charts preserve
the orientation and that ϕk(Uk) ⊂ (0, 1)n. By Lemma 7.6, there exists for
every k (0 � k < p) a differential form σk of degree n with support contained
in Uk∩Uk+1 such that

∫
X
σk = 1. By Theorem 7.3, there exists a differential

form β0 with compact support contained in ϕ0(U0) such that

ϕ−1∗
0 α− tϕ−1∗

0 σ0 = dβ0,

where

t =

∫
X

α =

∫
ϕ0(U0)

ϕ−1∗
0 α.

We write ϕ−1∗
0 β0 = γ0. The form γ0 ∈ Ωn−1(U0) has compact support

contained in U0. It thus extends to a form on all of X that vanishes on
M � Supp(γ0), and we again have

α− tσ0 = dγ0.

Similarly, by applying Theorem 7.3 to ϕk(Uk) for 0 � k < p, we see that
there exists a form βk with compact support contained in ϕk(Uk) such
that

ϕ−1∗
k σk − ϕ−1∗

k σk+1 = dβk,

and by the preceding argument, a form γk ∈ Ωn−1(X) such that

σk − σk+1 = dγk.

For the same reasons, we have also

σp − σ = dγp.

Finally, we find that

α− tσ = d

(
γ0 + t

p∑
k=0

γk

)
.

Putting everything together, we arrive at the following fundamental result.
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Theorem 7.9. If X is a compact connected orientable manifold of dimen-
sion n, Hn(X) is of dimension 1; further, given an orientation of X, the
integration map

α �−→
∫
X

α

from Ωn(X) to R passes to the quotient as an isomorphism between Hn(X)
and R.

Proof. It suffices to show the second part. The map α �→
∫
X α passes to

the quotient thanks to Stokes’s theorem; Theorem 7.5 says exactly that the
map obtained by passing to the quotient is injective, and Lemma 7.6 says
that it is surjective.

Corollary 7.10. If X is a compact non orientable manifold of dimension n,
Hn(X) = 0.

Proof. It suffices to give the proof when X is connected. We use the termi-
nology of Section 6.2.3. Let p : X̃ → X be the orientation covering, and let
α ∈ Fn(X). As X̃ is compact, connected, and orientable, there exists a real
number t and an (n− 1)-form β on X̃ such that

p∗α = tΨ+ dβ.

Taking the pullback under σ, and recalling that p ◦ σ = p, we obtain

p∗α = −tΨ+ d(σ∗β).

Thus

p∗α =
d(β + σ∗β)

2
.

However the form β+σ∗β is σ-invariant, and therefore of the form p∗γ. Thus
α = dγ

2 since p∗ is injective.

One may prove that the maximum degree cohomology of a noncompact
manifold is zero (see for example [Bott-Tu 86, p. 87]). We will not use this
result.

7.4. Degree of a Map

7.4.1. The Case of a Circle

We will again consider two points of view, by considering S1 as the unit circle
in the Euclidean plane (or the set of complex numbers of unit modulus),
and as the quotient R/2πZ. The identification between these two models
is given by the quotient map θ �→ p(θ) = (cos θ, sin θ), which we also view
as θ �→ p(θ) = eiθ.
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Definition 7.11. Let f : R → S1 be a continuous function. A lift of f is a
continuous function F : R → R such that f = p ◦ F .

Theorem 7.12. Liftings always exist; two liftings of the same function differ
by an integer multiple of 2π.

Proof. First we consider the case of a function f defined on a compact
interval [a, b]. As f is uniformly continuous, there exists a η > 0 such that
if |x− y| < η then ‖f(x)− f(y)‖ < 1 (here, we take the standard Euclidean
norm of R2, or, what amounts to the same thing, the modulus in C). Thus
the image of every interval of length less than η is contained in a semicircle,
which is to say an open subset trivializing the cover p. By decomposing [a, b]
into a union of contiguous intervals with length less than η, we may define
f piece by piece by composition with a well chosen local inverse of p. In
this procedure, the only arbitrary choice is of F (a), subject to the single
constraint eiF (a) = f(a).

If f is defined on R, we obtain a lift by taking appropriate lifts of restrictions
of f to the intervals [n, n+ 1], n ∈ Z.

If F1 and F2 are two lifts of the same function, we have

ei
(
F1(x)−F2(x)

)
= 1,

so that F1(x)−F2(x) is always an integer multiple of 2π. However a contin-
uous function on R with integer values is constant.

Remark. This result is a special case of the monodromy theorem, namely
Theorem 2.45.

Now if g is a continuous map from S1 to S1, we can apply the above to
f = g ◦ p.

Definition 7.13. The degree if a continuous map g from S1 to S1 is the

number F (2π)−F (0)
2π , where F is a lift of f = g ◦ p (this number does not

depend on the lift by Theorem 7.12).

As p
(
F (2π)

)
= p
(
F (0)

)
, this number is an integer. We note also the following

property, which makes the link with the definition of degree in higher dimen-
sions.

Proposition 7.14. If g is of class C1,

deg(g) =
1

2π

∫
S1

g∗(dθ).
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Proof. Noting that the angular form is the restriction of Imdz
z to S1, we

see in the notation of Definition 7.13, that

g∗(dθ) =
∫ 2π

0

f∗(dθ)

=

∫ 2π

0

F ∗(p∗dθ)
=

∫ 2π

0

F ′(θ) dθ.

Everything relies on the fact that despite the notation dθ is not exact on S1,
while p∗(dθ) is indeed exact on R.

By examining the proof of Theorem 7.12 closely, one can check that the
degree is continuous in the topology of uniform convergence and therefore
constant on each homotopy class of maps. We leave as a further exercise to
the reader to prove that two continuous maps form S1 to S1 of the same
degree are homotopic (or see [Berger-Gostiaux 88]).

We now consider higher dimensions.

7.4.2. Definition and Basic Properties in the General Case

To take full advantage of cohomology, it is necessary to use the fact that the
correspondence

manifold −→ cohomology vector space

is “functorial”, which is to say that to every smooth map between manifolds,
there is a natural association of a linear map hk(f) between cohomology
spaces of degree k.

Proposition 7.15. Let X and Y be two manifolds, and let f : X→Y be a
smooth map. Then, for every integer k, the map

f∗ : Ωk(Y ) −→ Ωk(X)

sends closed forms to closed forms, exact forms to exact forms, and passes
to the quotient as a linear map

hk(f) : Hk(Y ) −→ Hk(X).

If Z is a third manifold, and g : Y → Z a smooth map,

hk(g ◦ f) = hk(f) ◦ hk(g).

In particular, if f is a diffeomorphism, hk(f) is a vector space isomorphism.



284 An Introduction to Differential Manifolds

Proof. These assertions are immediate consequences of the relations

f∗ ◦ d = d ◦ f∗ and (g ◦ f)∗ = f∗ ◦ g∗.

This property is particularly nice if we consider the n-th cohomology space
of two n-dimensional manifolds.

Corollary 7.16. Let X and Y be two compact connected oriented manifolds
of the same dimension n, and let f : X → Y be a smooth map. Then there
exists a real number, denoted deg(f), such that

∀α ∈ Ωn(Y ),

∫
X

f∗α = deg(f)

∫
Y

α.

Proof. Let σ ∈ Ωn(Y ) be such that
∫
Y σ = 1. Then there exists a form

β ∈ Ωn−1(Y ) such that

α−
(∫

Y

α

)
σ = dβ.

Then

f∗α−
(∫

Y

α

)
f∗σ = f∗(dβ) = d(f∗β).

By integrating we obtain∫
X

f∗α =

(∫
Y

α

)(∫
X

f∗σ
)
,

and the stated property with deg(f) =
∫
X
f∗σ.

Remark. Clearly this property can be stated in a more conceptual manner
at the level of cohomology of degree n. Denoting

∫
X

(resp.
∫
Y

) the isomor-
phism between Hn(X) (resp. Hn(Y )) and R given by integration of forms
of degree n, and a the map x �→ ax from R to R, we have a commutative
diagram

Hn(Y )
hn(f)

∫
Y

Hn(X)

∫
X

R
deg(f)

R

These spaces are of dimension 1, and by using the isomorphisms with R given
by integration, hn(f) becomes a linear map from R to R, which is to say
multiplication by a real number, namely deg(f).

Definition 7.17. The number deg(f) is called the degree of f .
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Remark. If X = Y , and if we give the domain and range the same orienta-
tion, the degree of f : X→Y is independent of choice of orientation.

In fact we will see that deg(f) is an integer.

Theorem 7.18. Let X and Y be two compact oriented manifolds of the same
dimension, and f : X → Y a smooth map. For every regular value y of f ,
we have:

deg f =
∑

x∈f−1(y)

orxf

where orxf = +1 if Txf preserves the orientation, and orxf = −1 otherwise.
In particular

i) deg f is an integer, which changes sign if we change the orientation of X
or of Y ;

ii) if f is not surjective, deg f = 0;

iii) the parity of the integer card
(
f−1(y)

)
is the same for every regular value

y of f .

Proof. Let y be a regular value, which exists by Sard’s theorem (Theo-
rem 2.49). By Theorem 2.14, f−1(y) is finite, and there exists an open
subset V containing y such that if f−1(y) = {x1, . . . , xk}, we have

f−1(V ) =

k⋃
i=1

Ui,

where the Ui are mutually disjoint, xi ∈ Ui and f|Ui
is a diffeomorphism from

Ui to V . Now let σ be a differential form of degree n = dimY , with support
contained in V , and such that∫

Y

σ =

∫
V

σ = 1.

By the definition of degree, deg f =
∫
X f∗σ. However, clearly

∫
X

f∗σ =

k∑
i=1

∫
Ui

f∗σ,

and ∫
Ui

f∗σ = ±
∫
V

σ,

depending on whether the diffeomorphism f|Ui
preserves or reverses orienta-

tion. If y /∈ f(X), we repeat the above with a form σ with support contained
in the open subset V = Y � f(X), in which case f∗σ = 0.
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Example. Let Y be a compact orientable manifold and p : X → Y a
covering map. By Lemma 6.4, X is also orientable, and the two manifolds can
be equipped with orientations that are preserved by p. Under these condi-
tions, if X is compact, the degree of p that we have just defined is the same
as the degree of p of the covering map.

7.4.3. Invariance of the Degree under Homotopy;
Applications

Since the degree is an integer, we can expect its invariance under a continuous
deformation. The notion of homotopy, which generalizes homotopy of loops
(see Definition 2.41) allows us to make this remark precise.

Definition 7.19. Two smooth maps f and g from a manifold X to a
manifold Y are said to be homotopic if there exists a continuous map
H : X × [0, 1] → Y (called a homotopy between f and g) such that

i) ∀x ∈ X, H(x, 0) = f(x), H(x, 1) = g(x);

ii) the map x �→ H(x, t) is smooth for all t.

One can prove (see [Dieudonné 72]) that if there exists a continuous map H
satisfying i), there also exists a smooth homotopy H ′ on X × [0, 1].

Examples

a) Two maps with values in a convex open subset or a star-shaped open
subset are always homotopic.

b) A more interesting case is that of two smooth maps f and g from a mani-
fold X to Sn such that

∀x ∈ X, ‖f(x)− g(x)‖ < 2,

where we have denoted the Euclidean norm of Rn+1 by ‖ ‖, and so this
condition says that f(x) and g(x) are never diametrically opposite. Then
f and g are homotopic. As the segment [f(x), g(x)] never intersects the
origin, we have the homotopy

H(x, t) =
tf(x) + (1− t)g(x)

‖tf(x) + (1− t)g(x)‖ .

In fact, this is a general property.

Theorem 7.20. Let X and Y be two compact manifolds, and let d be a
metric defining the topology of Y . Define

ρ(f, g) = sup
x∈X

d
(
f(x), g(x)

)
.
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There exists an r > 0 such that any two maps f, g from X to Y such that
ρ(f, g) < r are homotopic.

Proof. First observe that if d and d′ are two metrics defining the topology
of Y , the identity map from (Y, d) to (Y, d′) is uniformly continuous, so it
suffices to prove the result for a particular metric. We embed Y into some RN

(see Theorem 3.7) and we take d to be the distance induced by the Euclidean
distance on RN .

Recall from the tubular neighborhood theorem (see Exercise 24 of Chapter 3)
that there exists an r > 0 such that the open subset of RN defined by

Vr(Y ) =
{
y ∈ R

N : d(y, Y ) < r
}

has the following properties:

1) for every y ∈ Vr(Y ) there exists a unique point of Y (which we denote
p(y) such that d

(
y, p(y)

)
= d(y, Y );

2) the map y �→ p(y) so defined is smooth.

Now let f and g be two smooth maps from X to Y such that ρ(f, g) < r.
Then every point of the segment [f(x), g(x)] in R

N belongs to Vr(Y ). It then
suffices to take

H(t, x) = p
(
tf(x) + (1 − t)g(x)

)
for the required homotopy.

This result shows that the homotopy classes form open subsets of C∞(X,Y )
in the topology of uniform convergence. It is not surprising then that we can
associate discrete invariants to a homotopy class.

Theorem 7.21. If f and g are two homotopic smooth maps between
two compact connected orientable manifolds of the same dimension, then
deg(f) = deg(g).

Proof. If H is a homotopy between f and g, write ft(x) = H(x, t). Let
σ ∈ Ωn(Y ) be a form of maximum degree and integral 1. Then the family of
forms f∗

t σ depends continuously on the real parameter t, and by the remark
which follow definition 6.16 the function

t �−→
∫
X

f∗
t σ

is continuous. On the other hand, its value at t is deg(ft), which is to say
an integer. However a continuous function with integer values defined on an
interval is constant. In particular, deg(f) = deg(f0) = deg(f1) = deg(g).
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Corollary 7.22. If X is a compact orientable manifold, the identity map
from X to X is not homotopic to a constant map (or even to a non-surjective
map).

Remark. We will see in the appendix a more general version of this result,
which includes compact non orientable manifolds. However the proof appeals
to a version of Sard’s theorem not given in this book. We emphasize that
compactness is essential, as the counterexample of Rn shows.

This invariance of the degree under homotopy has numerous applications.
We will only see a few of the main ones. We begin with another proof of
Theorem 6.17, called the “hairy ball theorem”.

Theorem 7.23. If n is even, every vector field on Sn has a zero.

Proof. As in 6.17, we consider Sn embedded in R
n+1. A vector field is

identified with a map X : Sn → R
n+1 such that 〈x,X(x)〉 = 0. If X is

everywhere nonvanishing, we can replace X by X
‖X‖ to obtain a vector field

of norm 1. Define

H(x, t) = (cosπt)x + (sinπt)X(x).

As ‖H(x, t)‖ = 1, we have indeed defined a homotopy between H(x, 0) = x
and H(x, 1) = −x. The map x �→ −x has degree (−1)n+1, from which it
follows

(−1)n+1 = 1,

and we conclude n is odd.

Next, we note that an approximation argument allows us to define the degree
for maps which are only continuous.

Lemma 7.24. Let X and Y be two compact manifolds. The set of smooth
maps from X to Y is dense in the set of continuous maps with the topology
of uniform convergence.

Proof. We proceed as in Theorem 7.20 and reuse the terminology and nota-
tion given there. Let Vr(Y ) be a tubular neighborhood of Y in a Euclidean
space R

N , and let ε < r. If f : X → Y is continuous, then by the Stone-
Weierstrass theorem, there exists a smooth function g : X → R

N such that
d(f, g) < ε. Then p ◦ g is a smooth map from X to Y which is within ε
of f .

Now, with the same notation as Theorem 7.20, if f : X → Y is smooth,
every smooth approximation within r

2 (and we have just seen that there are
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such maps) are homotopic and therefore have the same degree. We define
this number to be the degree of f .

7.4.4. Index of a Vector Field

By making our study of the zeros of a vector field more precise, we can refine
the hairy ball theorem. To every isolated zero x of a vector field ξ, we may
associate an integer called the index of ξ at x in the following way: we choose
a chart (U,ϕ) such that ϕ(x) = 0 and that x is the only zero of ξ contained
in U . The index, denoted indx ξ, is the degree of the map

y �−→ η(y)

‖η(y)‖ from Sn−1(ε) to Sn−1, (∗∗)

where η = ϕ∗ξ, Sn−1(ε) denotes a small sphere with center 0 and radius ε
contained in ϕ(U).

Theorem 7.25. The degree of the map (∗∗) is independent of both ε and the
chart.

Proof. The first part is clear. For the second, it suffices to show that the
degree of a map analogous to (∗∗) defined by a diffeomorphism f from an
open ball B(0, r) ⊂ R

n is independent of f . We first note that f is homotopic
to T0f through a family of diffeomorphisms by Exercise 3, and that under
these conditions, the maps

y �−→ f∗η
‖f∗η‖

and y �−→ A∗η
‖A∗η‖

(here T0f = A) are themselves homotopic. We have therefore reduced to the
case of a linear map. If detA > 0, A is homotopic to the identity through a
family of invertible linear maps because Gl+(n,R) is connected.

Finally, if f is a orientation-preserving diffeomorphism from B(0, r) to
its image, the maps f∗ξ(y)

‖f∗ξ(y)‖ and ξ(y)
‖ξ(y)‖ have the same degree. If f reverses

orientation, the same connectedness argument allows us to reduce to the case
of a reflection σ with respect to a hyperplane. But then

σ∗ξ = σ ◦ ξ ◦ σ−1,

and the same relation persists for ξ
‖ξ‖ . The degree remains the same by

Lemma 7.30 below.

Example in two dimensions

This being a local question, it suffices to work in a neighborhood of 0 in R
2.

Figures 7.2 and 7.3 show vector fields that vanish at the origin.
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Figure 7.2: Index 1: a source and sink

Figure 7.3: Index −1

Figure 7.2 corresponds for example to linear vector fields X �→ AX , where
the eigenvalues of A are real and of the same sign (strictly positive for a
source, strictly negative for a sink).

Figure 7.3 represents a zero of index −1. We obtain this for a linear vector
field when the eigenvalues are real and of opposite sign.

Another example: gradient vector fields

We now calculate the index of the gradient of a function at a critical point.
Here the answer is independent of the metric.

Theorem 7.26. Let f be a smooth function on a manifold M and let a be a
non-degenerate critical point of index d. Then for every Riemannian metric
on M , the index of the vector field ∇f at a is equal to (−1)d.



Chapter 7 – Cohomology and Degree Theory 291

Proof. This is a local question, so we may reduce to the case where M is
an open subset of Rn and a = 0. The proof of the result follows from a series
of remarks.

1. The argument of the preceding theorem shows that if φ is a diffeomorphism
from U to its image such that φ(0) = 0, ∇f and ∇(f ◦ φ) have the same
index. We can thus apply the Morse lemma (Lemma 3.44) to reduce to
the case where

f(x) = −x2
1 − · · · − x2

d + x2
d+1 + · · ·+ x2

n.

2. The Euclidean gradient is then

∇f = −2

d∑
i=1

xi ∂

∂xi
+ 2

n∑
i=d+1

xi ∂

∂xi

and a direct calculation shows the index of this vector field is (−1)d.

3. Any two Riemannian metrics on the same manifold are homotopic,
simply take the convex combination tg1+(1− t)g2, t ∈ [0, 1]. In particular
a Riemannian metric on U is homotopic to

∑n
i=1(dx

i)2 thus the gradients
corresponding to the same function are homotopic.

The Poincaré-Hopf theorem (see [Spivak 79, Chapter 11], or the following
chapter for the surface case) assures that if X is a compact manifold, and ξ
is a vector filed on X having only isolated zeros,

χ(X) =
∑

x∈Z(ξ)

indx(ξ)

where χ(X) is the Euler-Poincaré characteristic of X , defined by

χ(X) =

dimX∑
k=0

(−1)k dimHk(X,R),

and Z(ξ) is the set of zeros of ξ. Consequently, the hairy ball theorem
(Theorem 7.23) is true for every compact manifold with nonzero Euler char-
acteristic (we will soon see that χ(S2p) = 2).

Applying Theorem 7.26 we obtain the following special case:

Let X be a compact manifold, and f a smooth function on X whose critical
points are non-degenerate (and therefore there are only finitely many by the
Morse lemma). Then

χ(X) =
∑

x∈crit(f)

(−1)indx(f).
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7.5. Fundamental Theorem of Algebra:

Revisited

7.5.1. Two Proofs of the Fundamental Theorem of Algebra
Using Degree Theory

To calculate the degree of a map, we have two methods at our disposal (see the
proof of Theorem 7.18): we may either use the definition directly, or consider
the inverse image of a regular point. In the latter case, it is important to
know whether the orientation is preserved or not. An important case is that
of holomorphic functions: we saw in Section 1.2 that if f is a holomorphic
function defined on an open subset U ⊂ C, its Jacobian at z, regarded as
a function on an open subset of R

2 is |f ′(z)|2, so that the orientation is
preserved at every regular point.

From this property we can deduce two proofs of the fundamental theorem of
algebra. The first is very close to that of Chapter 2, the second openly uses
invariance under homotopy.

We proceed as in Section 2.4, associating to each polynomial P of one complex
variable the map f : S2 → S2 defined by

f(x) = i−1
N

(
P
(
iN (x)

))
if x �= N, and f(N) = N.

Theorem 7.27. If P is nonconstant, then f and therefore P are surjective
maps.

Proof. We saw in Section 2.4 that P and consequently f have only a finite
number of singular points if P is nonconstant. Let x be a regular value of f
such that x �= N (the argument above dispenses with using Sard’s theorem;
it turns out N is a singular value, but this is not important here). Then
f preserves the orientation at every point of f−1(x): it suffices to see the
representation of f in the chart iN . We have then reduced to showing that
P preserves orientation, which is true by Section 1.2.2. As a consequence
deg(f) > 0. In particular f and P are surjective.

The second proof stems from the following property.

Theorem 7.28. The degree of f is equal to the degree of the polynomial P .

Proof. For t ∈ [0, 1], we write

h(z, t) = a0z
n + t(a1z

n−1 + · · ·+ an)

and

H(x, t) = i−1
N

(
h
(
iN(x), t

))
if x �= N and H(N, t) = N.



Chapter 7 – Cohomology and Degree Theory 293

Then the calculation done in Section 2.4 shows that H defines a homotopy
between f and the map g defined analogously starting with the polynomial
Q(z) = zn. To calculate the degree of g we proceed as in Theorem 7.18.
Given a regular value x = i−1

N (1) for example, we know that g−1(x) has
n elements, since the equation zn = 1 has n solutions. By Section 1.2.2,
deg(g) = n, and by invariance of homotopy, deg(f) = n.

Corollary 7.29. There exists maps from S2 to S2 of every degree.

The antipodal map is of degree −1, it suffices to apply the following lemma,
which is important in its own right.

Lemma 7.30. Let X,Y, Z be three compact connected oriented manifolds of
the same dimension, and let f ∈ C∞(X,Y ) and g ∈ C∞(Y, Z). Then

deg(g ◦ f) =
(
deg(g)

)(
deg(f)

)
.

Proof. Let σ be a form on Z of maximum degree and integral 1. Then

deg(g ◦ f) =
∫
X

(g ◦ f)∗σ =

∫
X

(
f∗(g∗σ)

)
= deg(f)

∫
Y

g∗σ =
(
deg(f)

)(
deg(g)

)
.

7.5.2. Comparison of the Different Proofs of the
Fundamental Theorem of Algebra

It is instructive to compare these proofs of the fundamental theorem of
algebra with each other, and with other existing proofs. In the final analysis,
each proof puts into play a very simple yet fundamental property of C.

In Chapter 2, the key role is played by connectedness of C with a finite set
of points removed, which is grossly false for R.

In 7.27 above, it was the fact that the map z �→ az from C to C preserves
orientation (if a �= 0), which is again false for false for R.

In 7.28, we used the preceding property and a homotopy argument. This
homotopy argument, when used directly, shows that P has nonzero degree,
and is therefore surjective. The same homotopy argument allows us to show
that a polynomial with real coefficients, extended to infinity is homotopic to
the map x �→ ±xn extended in the same way. Unfortunately this map is of
degree ±1 if n is odd (the case where the intermediate value theorem amply
suffices), and 0 is n is even.

We now discuss proofs that use the theory of holomorphic functions. One of
these starts with the Cauchy integral formula: if f is a meromorphic function
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on the disk D(0, r), with oriented boundary C(r), one may show that∫
C(r)

f ′(z)
f(z)

dz = 2iπ
(
Z(f)− P (f)

)
,

where Z(f) and P (f) denote the number of zeros and the number of poles
of f in D. If f is a polynomial of degree n, we have P (f) = 0. On the other
hand, if r is sufficiently large, we can write

f ′(z)
f(z)

=
n

z
+

ε(z)

z
with lim

|z|	→∞
ε(z) = 0.

For r sufficiently large we have∣∣∣∣ ∫
C(r)

ε(z)

z
dz

∣∣∣∣ < 1

2
,

thus

1

2iπ

∫
C(r)

f ′(z)
f(z)

dz =
1

2iπ

∫
C(r)

n

z
dz = n

since these two integrals are integers. This argument is essentially the same as
the argument used to prove the invariance of the degree under homotopy. We
also note that the Cauchy integral formula puts into play the connectedness
of C� {0} in a way we do not necessarily think of.

Another proof uses Liouville’s theorem for entire functions: if P has no zero,
the function 1

P is holomorphic and bounded on P , and therefore constant. It
is difficult to find a shorter argument. But the proof of Liouville’s theorem
rests on the Cauchy integral formula. We also note that the fact that 1

P is
bounded rests on a comparison of P (z) and zn which we also used in the
preceding proof... as in Theorem 7.28.

We next consider “elementary” proofs. One consists of a proof by contradic-
tion that inf |P (z)| = 0. A compactness argument proves that the minimum
is attained, and after a change of variable we can suppose the minimum is
at 0. Then

P (z) = an

(
1 +

n∑
k=1

an−k

an
zk

)
= an

(
1 +Q(z)

)
,

where if P is nonconstant, Q(z) has a principal part of czk as z tends to zero.
Taking z sufficiently small so that czk is a negative real number, we can then
make |P (z)| less than |an|, obtaining a contradiction. Here the ability to take
n-th roots of complex numbers plays the key role.

The other elementary proof by contradiction uses the maximum amount of
algebra. Replacing P by PP we see that it suffices to do the proof for
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polynomials with real coefficients. We write the degree of the polynomial
as n = 2km where m is odd, and an ingenious argument using symmetric
polynomials allows us to proceed by induction on k (see [Samuel 08, p. 53];
this argument is independent of the rest of the book). It is only for the base
case (for k = 0!) that we need a topological argument.

All of these proofs have in common a connectedness argument. The final four
proofs are due to Gauss. One can find further proofs in [Douady 05].

7.6. Linking

The object of this paragraph is in some sense opposite to that of Section 7.4:
rather than give mathematical proofs of phenomena conforming to our
perception of space, we instead “define” (incompletely anyway, given the
difficulty of the subject) a notion suggested by this perception. It seems
that the first questions that were posed by linking stemmed from questions
in electromagnetism. (See Exercise 8.)

It will be useful to define a curve as an embedding of S1 into R
3, a pair of

disjoint curves as two embeddings f, g : S1 → R
3 such that f(s) �= g(t) for

all s and t in S1.

Definition 7.31. Two pairs of disjoint curves (f1, f2) and (g1, g2) are said
to be homotopic if there exists smooth maps

Hi : S1 × [0, 1] −→ R
3 (i = 1, 2)

such that
Hi(u, 0) = fi(u), Hi(u, 1) = gi(u),

and for all fixed t ∈ [0, 1] the two maps

u �−→ Hi(u, t) (i = 1, 2)

define a pair of disjoint curves.

Remark. Intuitively, we allow deformations of the curves, but we may not
cut them. The fact that at each instant the curves are disjoint is essential.

Definition 7.32. A pair of curves is said to be trivial is they are homotopic
to the pair(

t �−→ (cosπt, ε sinπt, 0) , u �−→ (3 + cosπu, ε′ sinπu, 0)
)
,

with ε, ε′ = ±1, or in other words to a pair formed by two disjoint circles in
the plane z = 0. A nontrivial pair of curves is said to be linked.
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Example. The pair (f, g) formed by two circles defined by

f(s) = (cos s, sin s, 0)

g(t) = (1 + cos t, 0, sin t)
(∗)

(see Figure 7.4) is linked. To see this, it suffices to extract from this pair of
curves a quantity invariant under homotopy.

z 

y 

x 

Figure 7.4: Two linked circles

Definition 7.33. The linking number E(f, g) of a pair of curves f, g is the
degree of the map F from S1 × S1 to S2 given by

F (s, t) =
f(s)− g(t)

‖f(s)− g(t)‖ .

Note that if we replace f (for example) by f ◦ϕ, where ϕ ∈ Diff(S1), we have

E(f ◦ ϕ, g) = ±E(f, g)

depending on whether ϕ preserves or reverses the orientation. We note also
that

E(f, g) = −E(g, f).

Remark. Let C and C ′ be two compact oriented submanifolds of dimen-
sion 1 in R

3. Using the fact that these manifolds are diffeomorphic to S1

(Theorem 3.45), we define the linking number E(C,C ′) of C and C ′ as
E(f, g) for parametrizations compatible with the orientations. By an abuse
of language, we call a compact oriented submanifolds of dimension 1 a curve.
Warning: the parametrizations arise explicitly when we consider homotopies
by pairs of curves.



Chapter 7 – Cohomology and Degree Theory 297

The following property is an immediate consequence of the preceding defini-
tions and the invariance of the degree under homotopy.

Proposition 7.34. If the pairs of curves (f, g) and (f1, g1) are homotopic,
E(f, g) = E(f1, g1).

We deduce that the pair of curves of the Example (∗) is linked. Indeed,

F−1(0, 0, 1) =

{(
0,

3π

2

)}
.

It suffices then to verify that the point (0, 3π
2 ) is regular. Setting t = 3π

2 + t′,
we see that the projection of F (s, t) onto the plane {z = 0} admits the
asymptotic expansion

(−t′, s) +O(s2 + t′2)

in a neighborhood of (0, 3π
2 ).

This shows that (0, 3π2 ) is a regular point of F and that F preserves the
orientation at this point (here S2 is oriented as usual with its standard volume
form). Thus, E(f, g) = 1.

We can also understand linking in a more geometric way, by regarding the
intersections of one of the curves with a surface bounded by the other. The
first step is the following.

Theorem 7.35. If a curve C is the oriented boundary of a surface Σ that
does not intersect C′, then E(C,C′) = 0.

Proof. Let

δ : R
3 ×R

3
�Δ −→ S2 be given by δ(x, y) =

x− y

‖x− y‖

(here we denote the diagonal by Δ), and let ω be the standard volume form
on S2. By the definition of linking number, we have

E(C,C′) =
1

4π

∫
C×C′

δ∗ω,

and therefore by Stokes’s theorem

E(C,C′) =
1

4π

∫
Σ×C′

dδ∗ω =
1

4π

∫
Σ×C′

δ∗dω = 0.

On the contrary, if two curves are linked, our drawings suggest that every
surface that bounds one curve also meets the other curve. We can make this
precise in the following way.
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Theorem 7.36. Let C and C′ be two closed curves in R
3, and Σ be a surface

whose oriented boundary is C. Suppose that Σ∩C′ is finite, and that for all x
in this intersection we have

TxΣ ∩ TxC
′ =

{
0
}
.

Then
E(C,C′) =

∑
x∈Σ∩C′

orx(Σ ∩C′),

where orx(Σ ∩ C′) = +1 if the union of a positively-oriented basis of TxΣ
and a positively-oriented basis of TxC

′ is a positively-oriented basis of R
3,

and orx(Σ ∩ C′) = −1 otherwise.

x

x

C

C'

Figure 7.5: If C = ∂Σ and C′ are linked, Σ intersects C′

Proof (sketch). We proceed exactly as in the proof of the preceding
theorem. Given Σ, we take a small disk Dx for each x ∈ Σ ∩ C′ with
boundary γx. Then, using the same notations, Stokes’s theorem and the
fact that dω = 0, implies that

0 =

∫
(Σ�

⋃
x∈Σ∩C′ Dx)×C′

dδ∗ω =

∫
C×C′

δ∗ω −
∑

x∈Σ∩C′

∫
γx×C′

δ∗ω.

Therefore
E(C,C′) =

∑
x∈Σ∩C′

E(γx, C
′).

To determine E(γx, C
′) we proceed exactly as in Example (∗): by homotopy,

we can reduce to the case where γx is a circle, say horizontal, and where C′

intersects the plane of the circle orthogonally at x. Then, in the notation of
Definition 7.33, F−1(0, 0, 1) has only one element if the radius is sufficiently
small, and one may check that the sign associated is indeed orx(Σ∩C′).

To finish, we mention that linking arises in magnetostatics. If C is an elec-
tric circuit traversed by a uniform current of intensity I, the circulation of
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the magnetic field created by the circuit along C′ is, up to a multiplicative
constant determined by the physical units, equal to

I

∫
C×C′

δ∗ω = IE(C′, C),

as C.-F. Gauss knew. See also Exercise 8.

7.7. Invariance under Homotopy

We now move on to the study of cohomology in any degree. We will need
properties of differential forms on manifolds of the form M ×R. The reader
is invited to consult Poincaré’s lemma in Section 5.6 where we surreptitiously
introduced analogous tools.

Let p denote the canonical projection p : M ×R→M . For each real number
t, we have an injection jt : M→M ×R defined by jt(x) = (x, t). Note that

p ◦ jt = IdM and ju ◦ p = ru,

where ru : M ×R→M ×R is defined by ru(x, t) = (x, u). Finally we denote
the vector field ∂

∂t on M ×R by T .

Definitions 7.37. We say a differential form α ∈ Ωp(M × R) is basic if
there exists a form β ∈ Ωk(M) such that α = p∗β, and semi-basic if iTα = 0.

In other words a basic form can be expressed without t or dt, and a semi-basic
form without dt, see below for more detail.

Example. A basic form is necessarily semi-basic (since T(x,t)p annihilates
tangent vectors to the factor R), but the converse is false. If we take for
example U = R, the form tdx is semi-basic but not basic. Of course a semi-
basic form on M ×R may be simply identified with a one-parameter family
of differential forms on M as seen in Section 5.6.

Lemma 7.38

i) The map p∗ : Ωk(M) → Ωk(M ×R) is injective.

ii) A form α ∈ Ωk(M ×R) is basic if and only if

iTα = 0 and LTα = 0

Proof

i) For p∗α = 0 it is necessary and sufficient that for each x ∈ M and t ∈ R,

tT(x,t)p(αx) = 0



300 An Introduction to Differential Manifolds

or again, if for each k-tuple v1 . . . vk of tangent vectors to (x, t),

αx(T(x,t)p · v1, . . . , T(x,t)p · vk) = 0.

This allows us to deduce the result since the linear tangent map T(x,t)p is
surjective everywhere. The same reasoning proves that p∗ is injective as
soon as p is a surjective submersion.

ii) Being a local property (on M !) and invariant under diffeomorphism, it
suffices to consider the case of open subsets of Rn. A form α ∈ Ωk(U ×R)
may be written

α =
∑

i1<i2<···<ik

fi1i2...ik(x, t) dx
i1 ∧ · · · ∧ dxik +

+
∑

j1<j2<···<jk−1

gj1j2...jk(x, t) dt ∧ dxj1 ∧ · · · ∧ dxjk−1 .

We have iTα = 0 if and only if dt does not arise in the decomposition
above, which is to say if the functions gj1j2...jk are zero. Then by the
definition of the Lie derivative, LTα is obtained by differentiating the
functions fi1i2...ik with respect to t, thus if LTα = 0 the fi1i2...ik are
independent of t. The converse is clear.

Another spin on this proof is the following property.

Lemma 7.39. Every form α ∈ Ωk(M ×R) can be decomposed as

α = β + dt ∧ γ,

in a unique way, where β ∈ Ωk(M×R) and γ ∈ Ωk−1(M×R) are semi-basic.

Proof. The result is immediate, since a form on M ×R is semi-basic if and
only if dt does not arise in its decomposition in local coordinates. Intrinsically,
we can note that γ = iTα.

The following property, which uses the notation of Section 5.6, is close to
Cartan’s formula.

Proposition 7.40. Let α ∈ Ωk(M×R) be a closed form. Then, for a, b ∈ R,
we have

j∗bα− j∗aα = Iba(LTα) = d
(
Iba(iTα)

)
+ Iba

(
iT (dα)

)
,

where

Ibaα =

∫ b

a

(j∗t α) dt.
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Proof. We will first show that for α ∈ Ω(M ×R), we have

d

dt
j∗t α = j∗t (LTα).

Note that the two sides of this equation are depend only on the β component
of the preceding lemma. In other words, it suffices to consider the semi-basic
case. By the arguments of Lemma 7.38, we reduce to forms on U ×R, where
U is an open subset of R

n, of the form f(x, t) dxi1 ∧ · · · ∧ dxik . But then
both sides are clearly equal to ∂tf(x, t) dx

i1 ∧ · · · ∧ dxik .

With this assertion proved, we have, by using Cartan’s formula and the prop-
erties of one-parameter families of forms from Section 5.6:

j∗bα− j∗aα =

∫ b

a

(
d

dt
j∗t α
)
dt

=

∫ b

a

(
j∗t (LTα)

)
dt

=

∫ b

a

(
j∗t
(
d(iTα) + iT (dα)

))
dt

= d
(
Iba(iTα)

)
+ Iba

(
iT (dα)

)
.

An immediate consequence is the following.

Theorem 7.41. Let f and g be two smooth maps from a manifold M to a
manifold N . Suppose that there exists a smooth homotopy between f and g.
Then hk(f) = hk(g) for every integer k.

Proof. Let F : M × [0, 1] → N be a homotopy, and α ∈ Ωk(N) a closed
form. Then Proposition 7.40 says exactly that f∗α and g∗α are cohomolo-
gous.

Remark. There was a (very) slight abuse of notation in the previous proof.
The considerations above do not apply directly to M × [0, 1]. Instead we
can deduce for example that this theory is in fact C1, and that F can be
extended to a homotopy F1 : M × [a, b] → N , with a < 0, b > 1, such that
F1 is additionally constant in t on intervals [a, a− ε] and [b− ε, b]. ��We can
also appeal to the theory of manifolds with boundary.��

Definition 7.42. A (smooth) map f : M→N is a homotopy equivalence if
there exists a (smooth) map g : N → M such that g ◦ f is homotopic to IdM

and f ◦ g is homotopic to IdN . We then say that M and N are of the same
homotopy type.

This notion can of course be defined in a purely topological setting.
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Examples

a) The map ju of the preceding paragraph (and its “homotopy inverse” p) are
homotopy equivalences.

b) If U ⊂ R
n is a star-shaped open subset with respect to a ∈ U , the

inclusion a → U is a homotopy equivalence. This situation is sufficiently
important to merit a definition.

Definition 7.43. A topological space is contractible if the identity map is
homotopic to a constant map (in other words if the constant map is a homo-
topy equivalence).

The following result is then a consequence of Theorem 7.41.

Theorem 7.44. If f : M→N is a homotopy equivalence between manifolds,
then hk(f) is an isomorphism for all k. In particular, if V is a contractible
manifold, Hk(M × V ) and Hk(M) are isomorphic.

Examples

a) The Poincaré lemma now becomes a special case of this result.

b) The sphere with two points removed is diffeomorphic to Sn−1 × (−1, 1)
(see Figure 7.6). An explicit diffeomorphism, when these two points are
the poles, is

(t, x) �−→
(

x√
1− t2

, t

)
(we have written x0 = t, x = (x1, . . . , xn)). As a result

Hk
(
Sn

� {N,S}
)
� Hk

(
R

n
� {0}

)
� Hk

(
Sn−1

)
.

Sn –1

Sn

S

N

Figure 7.6: From Sn−1 to Sn
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7.8. The Mayer-Vietoris Sequence

7.8.1. Exact Sequences

This section gives a taste of algebraic topology. Ssee for example [Fulton 95]
for further development. The following notion plays an important role.

Definition 7.45. A sequence

E0
f0−−→ E1

f1−−→ E2 . . . En−1
fn−1−−→ En

of vector spaces and linear maps is said to be exact if Ker fi = Im fi−1.

In particular, fi ◦ fi−1 = 0 for all i, but this condition alone does not imply
exactness.

Fundamental example

Let M be a manifold of dimension n. Denote the differential on forms of
degree k by dk. The sequence

Ω0(M)
d0−−→ Ω1(M)

d1−−→ Ω2(M) . . . Ωn−1(M)
dn−1−−→ Ωn(M) −−→ 0

satisfies dk ◦ dk−1 = 0. It is exact if M is contractible, but it is not exact in
general. De Rham cohomology exactly measures the “failure of exactness”.

Exact sequences play a fundamental role in the calculation of cohomology
groups. The following properties are clear and will be used systematically.

The sequence

E
f−→ F −→ 0

is exact if and only if f is surjective. Similarly, the sequence

0 −→ E
g−→ G

is exact if and only if g is injective. Combining these two remarks we see that
the sequence

0 −→ E
f−→ F −→ 0

is exact if and only if f is an isomorphism.

The following property is merely a translation of exactness.

Proposition 7.46. If the sequence

0 −→ E0
f1−→ E1 . . . En−1

fn−→ En −→ 0



304 An Introduction to Differential Manifolds

is exact, and if the Ei are finite dimensional, we have

n∑
i=0

(−1)i dimEi = 0.

Proof. We proceed by induction on n. For n = 1 this is the example above.
If the sequence

0 −→ E0
f1−→ E1

f2−→ E2 −→ 0

is exact, f2 is surjective, then

E2 � E1/Ker f2.

So

dimE2 = dimE1 − dimKer f2 = dimE1 − dim Im f1 = dimE1 − dimE0

since f1 is injective. In the general case, we decompose the sequence

0 −→ E0
f1−→ E1 . . . En−1

fn−→ En −→ 0

into
0 −→ E0

f1−→ E1 . . . En−2
fn−1−→ Im fn−1 −→ 0

and
0 −→ Ker fn −→ En−1

fn−→ En −→ 0.

We know that
dimKer fn − dimEn−1 + dimEn = 0,

and by the induction hypothesis,

n−2∑
i=0

(−1)n−2 dimEi + (−1)n−1 dim Im fn−1 = 0.

It suffices then to take the sum or difference of these two equalities depending
on the parity in n.

7.8.2. The Mayer-Vietoris Sequence

Now let M be a manifold, and let U, V be two open subsets such that
U ∪ V = M . Define a linear map

r : Ωk(M) −→ Ωk(U)
⊕

Ωk(V ) by r(ω) = (ω|U , ω|V )

and a linear map

s : Ωk(U)
⊕

Ωk(V ) −→ Ωk(U ∩ V ) by s(α, β) = α|U∩V − β|U∩V .
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Lemma 7.47. The sequence

0 −→ Ωk(M)
r−→ Ωk(U)

⊕
Ωk(V )

s−→ Ωk(U ∩ V ) −→ 0

is exact.

Proof. The injectivity of r is clear by the equality Im r = Ker s (two forms
on two open subsets U and V glue together to a form on the union if and only
if they coincide on the intersection). To see that s is surjective, introduce a
partition of unity (f, g) on M subordinate to the cover (U, V ). Write

U = (U ∩ V ) ∪ (U � Supp g)

and for γ ∈ Ωk(U ∩ V ) define α ∈ Ωk(U) by

α = gγ on U ∩ V and 0 on U � Supp g.

(since gγ = 0 on U ∩V �Supp g). In the same way, define a form β ∈ Ωk(V )
starting with −fγ. By construction, s ((α, β)) = γ.

It is clear that if ω ∈ Ωk(M) is closed (resp. exact) and if r(ω) = (α, β), the
forms α and β are closed (resp. exact). If α ∈ Ωk(U) and β ∈ Ωk(V ) are
both closed or exact, the same is true of s ((α, β)). Thus, r and s pass to the
quotient and define linear maps which we denote by R and S on cohomology.

Proposition 7.48. The sequence

Hk(M)
R−→ Hk(U)

⊕
Hk(V )

S−→ Hk(U ∩ V )

is exact.

Proof. As a consequence of the preceding discussion, S ◦ R = 0, and
so ImR ⊂ KerS. To see that KerS ⊂ ImR, it suffices to check that if
(α, β) ∈ Ωk(U)

⊕
Ωk(V ) is a pair of closed forms such that s(α, β) = dγ,

then there exists ω ∈ Ωk(M), and (α1, β1) ∈ Ωk−1(U)
⊕

Ωk−1(V ) such
that r(ω) = (α − dα1, β − dβ1). However, by the preceding lemma, γ is
of the form s(α1, β1). The forms α−dα1 ∈ Ωk(U) and β−dβ1 ∈ Ωk(V ) have
the same restriction to U ∩ V . Indeed, restricting to U ∩ V , we have

(α− dα1)− (β − dβ1) = (α− β)− d(α1 − β1) = (α− β)− dγ = 0

by hypothesis.

Conversely, it is not true in general that R is injective: if α = dα′ and
β = dβ′, there is no reason that the forms α′ and β′ have the same restriction
to U ∩ V . Similarly, S is in general not surjective: if γ = s(α, β), the proof
of Lemma 7.47 shows that α and β are not closed in general. However this
phenomena, with the aid of the differential on Ωk(U ∩ V ), will allow us to
map Hk(U ∩ V ) into Hk+1(M).
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Theorem 7.49. There exists a linear map

∂ : Hk(U ∩ V ) −→ Hk+1(M)

such that the sequence

Hk(U)
⊕

Hk(V )
S−→ Hk(U ∩ V )

∂−→ Hk+1(M)
R−→ Hk+1(U)

⊕
Hk+1(V )

is exact.

By applying this and the preceding result in every degree, and omitting the
degree in the notation of R, S, ∂, we deduce the existence of a “long” exact
sequence called the Mayer-Vietoris sequence.

0−→H0(M)
R−→H0(U)

⊕
H0(V )

S−→H0(U ∩ V )
∂−→H1(M)−→· · ·

∂−→Hk(M)
R−→Hk(U)

⊕
Hk(V )

S−→Hk(U ∩ V )
∂−→Hk+1(M)−→· · ·

S−→Hn−1(U ∩ V )
∂−→Hn(M)

R−→Hn(U)
⊕

Hn(V )
S−→Hn(U ∩ V )−→0

Proof. Let γ ∈ F k(U ∩ V ). By Lemma 7.47, there exists forms α ∈ Ωk(U)
and β ∈ Ωk(V ) such that

α|U∩V − β|U∩V = γ.

Then the restrictions of dα and dβ to U ∩V are equal, and again by the same
lemma, there exists a form ω ∈ Ωk+1(M) such that

ω|U = dα and ω|V = dβ.

This shows that ω is closed.

Now let
(α′, β′) ∈ Ωk(U)

⊕
Ωk(V )

be a pair of forms such that s(α′, β′) are cohomologous to γ, and thus to the
form γ + dγ′. Then there exists δ ∈ Ωk(M), α′′ ∈ Ωk(U) and β′′ ∈ Ωk(V )
such that

α′ = α+ α′′ + δ|U
β′ = β + β′′ + δ|V

with
dγ′ = r(α′′, β′′).

Thus the restrictions of α′ and β′ to U ∩ V are the same, and the pair of
forms defined by (α′, β′) on M is ω+dδ. This shows that the correspondence
between γ and ω gives a well defined map at the level of cohomology which
we denote ∂.

It remains to prove that the sequence is exact. It is immediate that ∂ ◦S = 0
and R ◦ ∂ = 0, which is to say ImS ⊂ Ker∂ and Im ∂ ⊂ KerR. Conversely,
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we have ∂[γ] = 0 if and only if the construction above taken at the level of
forms results in an exact form. This means that if γ = s(α, β), there exists a
form δ ∈ Ωk(M) such that

dδ|U = dα and dδ|V = dβ.

But then α − δ ∈ F k(U), β − δ ∈ F k(V ), and consequently [γ] =
S([α− δ], [β − δ]).

The equality KerR = Im ∂ is proved in the same way. If R([ω]) = 0, we have
ω|U = dα and ω|V = dβ, the restriction of α − β to U ∩ V is closed, and by
the definition of ∂, we have [ω] = ∂([α], [β]).

Remark. The map ∂ is itself “natural” in a sense that we will leave to the
reader to make precise, as it takes longer to explain than to understand.

7.8.3. Application: A Few Cohomology Calculations

It is instructive to use this method to calculate the cohomology of S1. Take
two distinct points p and q, and set U = S1

�{p}, V = S1
�{q}. Then U and

V are diffeomorphic to R, thus U ∩ V has two connected components, each
of which is also diffeomorphic to R. The Mayer-Vietoris sequence becomes

0 −→ H0(S1) −→ H0(U)
⊕

H0(V ) −→ H0(U ∩ V ) −→ H1(S1) −→ 0.

Thus Proposition 7.46 shows that dimH1(S1) = 1. While we do not learn
anything new, the method generalizes to Sn.

Theorem 7.50. If 0 < k < n, Hk(Sn) = 0, and dimHn(Sn) = 1.

Proof. We proceed by induction on n. We have just seen the result is true
for n = 1. Choose two distinct points of Sn (the north and south poles of
the embedded sphere if we want to better visualized the situation, but in
reality these choices are not important), and write the same Mayer-Vietoris
sequence as above. For 1 < k � n, the part of the sequence

Hk−1(U)
⊕

Hk−1(V ) −→ Hk−1(U ∩V ) −→ Hk(Sn) −→ Hk(U)
⊕

Hk(V )

can be written

0 −→ Hk−1(U ∩ V ) −→ Hk(Sn) −→ 0.

By Theorem 7.44, Hk−1(U ∩V ) is isomorphic to Hk−1(Sn−1), and the result
follows in this case by applying the induction hypothesis. For k = 1, we write

0 −→ H0(Sn) −→ H0(U)
⊕

H0(V ) −→ H0(U ∩ V ) −→ H1(Sn) −→ 0.

By applying Proposition 7.46, we see that H1(Sn) = 0 if n > 1.
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Corollary 7.51. Hk(Rn
� {0}) is one dimensional if k = 0 or n − 1, and

vanishes otherwise.

Proof. The canonical inclusion of Sn−1 into R
n
�{0} is a homotopy equiv-

alence.

The same method allow us to calculate the cohomology of projective spaces.
We will treat the complex projective case, which is simpler than that of the
real projective space.

Theorem 7.52. We have

H2k+1(Pn
C) � 0 and H2k(Pn

C) � R if 0 � k � n.

Proof. Consider the vector space Cn+1 with its canonical basis, the point p
given in homogeneous coordinates by (1, 0, . . . , 0), and the subset E of Pn

C

formed by the set of points whose first homogeneous coordinate vanishes.
This is a compact submanifold of Pn

C diffeomorphic to Pn−1
C. The chart

ϕ0 :
[
(z0, z1, . . . , zn)

]
�−→

(
z1

z0
, . . . ,

zn

z0

)
is a diffeomorphism of Pn

C� E to C
n � R

2n.

On the other hand:

Lemma 7.53. The embedding j : Pn−1
C → Pn

C� {p} given by[
(u1, . . . , un)

]
�−→

[
(0, u1, . . . , un)

]
is a homotopy equivalence.

Proof. Define p : Pn
C� {p} → Pn−1

C by[
(u0, u1, . . . , un)

]
�−→

[
(u1, . . . , un)

]
.

Thus h ◦ j is the identity map on Pn−1
C, while j ◦ h is homotopic to the

identity of Pn
C as

H
(
t,
[
(u0, u1, . . . , un)

])
=
[
(tu0, u1, . . . , un)

]
.

End of the proof of Theorem 7.52. Write U = Pn
C � {p} and V =

Pn
C�E. Then U ∩V is diffeomorphic to R

2n
� {0}, and the lemma lets us

proceed by induction. The result is true for n = 1 by the above, since P 1
C

is diffeomorphic to S2. For k < 2n, the exact sequence

Hk−1(U ∩ V ) −→ Hk(Pn
C) −→ Hk(U)

⊕
Hk(V ) −→ Hk(U ∩ V )

gives
0 −→ Hk(Pn

C) −→ Hk(Pn−1
C) −→ 0,
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from which the result follows in this case. For k = 2n, consider the exact
sequence

H2n−1(U)
⊕

H2n−1(V ) −→ H2n−1(U ∩ V )

−→ H2n(Pn
C) −→ H2n(U)

⊕
H2n(V ),

which can also be written

0 −→ H2n−1(R2n
� {0}) −→ H2n(Pn

C) −→ 0.

7.8.4. The Noncompact Case

For the most part, everything we have done so far concerns compact mani-
folds. However we saw a key result for R

n, which we reformulate with the
help of the following definition.

Definition 7.54. Let M be a manifold. The quotient vector space of
compactly supported closed forms of degree k by compactly supported exact
forms of the same degree is called the cohomology space with compact support
of degree k and will be denoted Hk

c (M).

Example. Theorem 7.3 says exactly that Hn
c (R

n) � R, with the isomor-
phism given by passing the map α �→

∫
M

α to the quotient. One may prove
this result is true for all orientable manifolds. Of course if M is compact,
then Hk

c (M) = Hk(M).

We can also extend degree theory to noncompact oriented manifolds, under
the condition that we restrict to proper maps, which are maps such that the
inverse image of every compact set is compact. If f is proper and smooth,
it is clear that the inverse image of a compactly support form remains of
compact support, and that the inverse image of a regular value is finite.

If α is a form of degree k, and β is a n − k form with compact support on
an oriented manifold of dimension n, the integral

∫
M

α ∧ β is well defined.
Moreover, if we replace α by α + dα′ (with α′ having compact support)
and β by β+ dβ′, then by Stokes’s theorem, the result will not change. Thus
we have a bilinear map

PD : Hk(M)×Hn−k
c (M) −→ R.

Theorem 7.55 (Poincaré duality).1 The bilinear form PD thus defined is
non-degenerate when M admits a “good” finite covering.

1. Proof omitted.
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In particular, dimHk(M) = dimHn−k
c (M). These good coverings are defined

in Exercise 21.

7.9. Integral Methods

It is possible to calculate the cohomology of the tori T n using an appropriate
Mayer-Vietoris sequences, see Exercise 5. We will proceed in another way,
using a method of interest in its own right which uses the Lie group structure
of the torus. We begin with a particular case of Theorem 7.41 above.

Proposition 7.56. Let M be a compact manifold, and let X be a vector field
on M with flow ϕt. Then for every form α ∈ F k(M), the forms ϕ∗

tα and α
are cohomologous.

Proof. It suffices to use the homotopy F (u,m) = ϕtu(m). We note that by
the proof of Proposition 7.40, an explicit primitive of ϕ∗

tα− α is given by

d

(∫ t

0

(ϕ∗
uiXα) du

)
.

Example. Let M = Sn. The reader can verify, by using classical results
on the structure of orthogonal matrices (see also Exercise 7 of Chapter 4)
that every g ∈ SO(n + 1) is of the form expX , where X ∈ o(n + 1). As a
result, if α ∈ F k(Sn) then the forms g∗α and α are cohomologous. We also
note, to shed further light on the result above, that this property is false if
g ∈ O(n + 1): if σ is the antipodal map on S2p and if ω is a volume form
on S2p, then σ∗ω and ω are not cohomologous.

We come to T n, which is, by Section 4.5, the compact connected Lie group of
dimension n which is isomorphic to R

n/Zn. By Proposition 6.7 the differen-
tial forms on T n are identified with the Z

n-invariant differential forms on R
n,

which is to say forms that can be decomposed as∑
i1<i2<···<ip

fi1i2...ip dx
i1 ∧ · · · ∧ dxip ,

where the functions fi1i2...ip are periodic with period 1 with respect to the xi.
An important case is where the functions fi1i2...ip are constants. We again
denote the p-form obtained on T n by dxi1 ∧· · ·∧dxip . This is hardly an abuse
of notation: is the same form in local coordinates associated to the covering
p : Rn → R

n/Zn. With this notation, a p-form on T n can be written∑
i1<i2<···<ip

fi1i2...ip dx
i1 ∧ · · · ∧ dxip ,
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where the functions fi1i2...ip are now (smooth) functions on T n. If the fi1i2...ip
are constant, we say that the form has constant coefficients. We note that
these forms have a simple intrinsic characterization: these are the forms such
that L∗

uα = α for every translation Lu (since the group is commutative,
we need not distinguish between left and right translations). This is why
we will hereafter denote the vector space of forms with constant coefficients
by Ωinv(T

n). We have dimΩp
inv(T

n) =
(
n
p

)
and dimΩinv(T

n) = 2n.

In particular, Ωn
inv(T

n) is generated by the volume form ω = dx1 ∧ · · · ∧ dxn.
Note that ∫

Tn

dx1 ∧ · · · ∧ dxn = 1.

Definition 7.57. The average of a p-form

α =
∑

i1<i2<···<ip

fi1i2...ip dx
i1 ∧ · · · ∧ dxip

on T n is the form

α =
∑

i1<i2<···<ip

(∫
Tn

fi1i2...ipω

)
dxi1 ∧ · · · ∧ dxip .

It is clear that α has constant coefficients. We can also see this obvious
property in the following way, which might seem needlessly complicated, but
applies to all compact Lie groups (see Exercise 17).

We begin with the following trivial remark. If f ∈ C0(T n), then the average
of f is∫

Tn

f(x1 + u1, . . . , xn + un) dx1 ∧ · · · ∧ dxn =∫
Tn

f(x1 + u1, . . . , xn + un) du1 ∧ · · · ∧ dun.

This being said, we can consider the translations L∗
uα of α as a family of

p-forms parametrized by u ∈ T n. We define the integral of this family with
respect to u as in 5.6.2 and integrate the coefficients with respect to the
measure dμ defined by du1 ∧ · · · ∧ dun. Then

α =

∫
Tn

L∗
uα dμ.

The measure dμ is clearly translation invariant, thus for v ∈ T n we have

L∗
v (α) =

∫
Tn

L∗
v(L

∗
uα) dμ =

∫
Tn

L∗
u+vα dμ =

∫
Tn

L∗
uαdμ = α.
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The main idea to calculate the cohomology of tori is to note that a closed
form is cohomologous not only to all of its translates as we have just seen,
but also to average of all of its translates.

Theorem 7.58. The map α �→ α passes to the quotient as an isomorphism
between Hp(T n) and Ωinv(T

n). In particular

dimHp(T n) =

(
n

p

)
.

Proof. The proof rests on the following key property.

Lemma 7.59. If α ∈ Ωp(T n) is closed, α and α are cohomologous.

Proof. We have already seen that L∗
uα and α are cohomologous. Better

still, if u = expX ,

L∗
uα− α = d

(∫ 1

0

(iXL∗
tuα) dt

)
.

To integrate a relation of this type with respect to u, we must control the
dependence of X with respect to u. The Lie algebra of T n is Rn with the zero
bracket, and expX = XmodZn. The exponential map is a diffeomorphism
of (− 1

2 ,
1
2 )

n to an open subset U of T n whose complement is of measure zero.
We let exp−1 denote the inverse diffeomorphism, and for u ∈ U write

β(u) =

(∫ 1

0

(iexp−1uL
∗
tuα) dt

)
.

Now the family of forms β(u), extended arbitrarily to all of T n is integrable,
and by integration over T n, we obtain

α− α = d

(∫
Tn

β(u) du

)
.

Remainder of the proof of Theorem 7.58. By integrating the equal-
ity L∗

udα = dL∗
uα over T n, we see that

dα = dα.

Thus, the average of a closed form is closed, and the average of an exact form
is zero : it is the differential of a form with constant coefficients. We deduce
that the map α �→ α passes to the quotient as a map L : Hp(T n)→Ωp

inv(T
n).

As α = α, L is surjective. On the other hand, the lemma tells us that if
α = 0, then α is cohomologous to 0, in other words that L is injective.

This method applies to spheres – where it gives nothing new – and to compact
Lie groups (see Exercises 15 and 18), ��and more generally to symmetric
spaces�� (see for example [Greub-Halperin-Van Stone 76, volume 2]).
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Remark. As a bonus we have a distinguished representative of the form α
in its cohomology class. More generally, it is true for compact Lie groups,
where each cohomology class contains a unique bi-invariant differential form.

��Obtaining a distinguished representative of each cohomology class comes
from Riemannian geometry. A Riemannian metric g on a manifold X can be
extended to an inner product on each bundle

∧p
T ∗X . If X is compact, we

obtain a norm from the inner product on Ωp(X), defined by

‖α‖2g =

∫
X

g(αx, αx)ωg.

The Hodge-de Rham theorem (see [Booss-Bleecker 85]) then ensures the exis-
tence of a unique form realizing the minimum norm in each cohomology
class. For example, if G is a compact Lie group equipped with a bi-invariant
Riemannian metric (there are always such metrics by an integration argu-
ment analogous to that of Exercise 8 of Chapter 6) the forms which minimize
the norm in their cohomology class are precisely the bi-invariant forms.��

7.10. Comments

The only compact manifolds for which there is a complete classification are
manifolds of 1 and 2 dimensions. Theorem 3.45 ensures that every compact
connected 1-dimensional manifold is diffeomorphic to S1. In two dimensions,
with techniques from algebraic topology [Massey 77, Chapter I] or Morse
theory [Hirsch 76] one may show:

1) that every compact connected orientable manifold is diffeomorphic to S2

or to a connected sum (see Exercise 28 of Chapter 2) of k tori;

2) that every compact connected non orientable manifold is diffeomorphic
to the connected sum of k projective planes (the reader who has solved
Exercise 28 of Chapter 2 can show that P 2

R�P 2
R is diffeomorphic to the

Klein bottle).

In particular, every compact simply connected manifold of dimension 2 is
diffeomorphic to S2. The methods for calculating cohomology spaces that
we have discussed allow us to see that these manifolds are pairwise non
diffeomorphic: we can show using an appropriate Mayer-Vietoris sequence
that

dimH1(

k times︷ ︸︸ ︷
T 2� · · · �T 2) = 2k

and

dimH1(

k times︷ ︸︸ ︷
P 2

R� · · · �P 2
R) = k − 1.
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In higher dimension, even if we restrict to simply connected manifolds, the
situation is much more complicated. The Poincaré conjecture (every simply
connected compact 3-dimensional manifold is homeomorphic to S3) resisted
proof for more than a century, having been proved in 2003 by G. Perelman
(see [Charpentier-Ghys-Lesne 10, Chapter 12] for an overview of the ideas
that arise in the proof).

Starting in dimension 4, there are many compact simply connected manifolds
which are non diffeomorphic. For example, S4, S2 × S2 and P 2

C are not
diffeomorphic: the dimensions of their second cohomology group are 0, 2
(see Exercise 10 below), and 1, respectively. For more examples, we can
observe that the connected sum of two simply connected manifolds is also
simply connected by Proposition 2.42. This method is far from exhausting
the list of compact simply connected 4-dimensional manifolds, but it would
take us too far afield to say more.

To remain in the point of view developed in this book, we mention that

H∗(X)
def
=

dimX⊕
k=0

Hk(X)

has a multiplicative structure, inherited from the multiplication of differential
forms: if α, β and γ are three homogeneous closed forms, then

(α+ dβ) ∧ γ = α ∧ γ ± d(β ∧ γ).

Thus, the exterior product passes to the quotient as a bilinear map from
Hk(X) ×H l(X) to Hk+l(X), called the cup product, which is of maximum
rank by Poincaré duality.

The example of cohomology of degree 2 in dimension 4 is particularly inter-
esting. Indeed, if X is a compact oriented manifold, the cup product of two
classes of degree 2 is identified with a symmetric bilinear form on H2(X),
which is non-degenerate by Poincaré duality. The signature of the associ-
ated quadratic form furnishes a new differential invariant, which we call the
signature of the manifold. Taking connected sums of projective planes and
products of spheres, we can see without difficulty that any real quadratic
form can be realized as a cup product in dimension 4.

Alas (or perhaps happily from the mathematician’s point of view) this proce-
dure is a little primitive.

One can define, by other methods than those using differential forms, a coho-
mology with integer coefficients (see for example [Bredon 94] or [Bott-Tu 86]).
We then obtain a much finer invariant by considering the cup product
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on integer cohomology of degree 2 as an integer coefficient quadratic form.
Of course, the world of integer quadratic forms is much richer and more
complicated than the real case. See [Serre 96, Chapter 5] for a glimpse of
this theory. There has been an interaction between number theory, topology
and hard analysis which has seen dramatic developments (see for example
[Lawson 85]).

7.11. Exercises

1*. Degree of the map q �→ qn from S3 to S3

Here we use freely what we have already developed regarding quaternions.
In particular recall that the inner product is given by

〈q, q′〉 = �(qq′).

a) Show that if q is a pure quaternion of norm 1, q2 = −1. Deduce that if q
is a pure quaternion and n is an integer, we have

(e cos t+ q sin t)n = e cos(nt) + q sin(nt).

b) Let s be a nonzero quaternion. Show that for n > 2 the equation qn = s
admits n distinct solutions if s is not real, and infinitely many solutions
if s is real. More precisely, the set of solutions in this case is the disjoint
union of n submanifolds diffeomorphic to S2 (if s is negative), to {e} and
to n−1 submanifolds diffeomorphic to S2 (if s is positive). What happens
if n = 2?

c) We will show that every point in S3 distinct from −e is a regular value of
the map f : q �→ qn from S3 to itself (we first treat the case of values of
the form c+ di, c, d real).

c1) Calculate the differential of f .

c2) Consider q = a + bi (a, b both nonzero real numbers). Then
TqS

3 = Riq
⊕

E, where E is the (real) vector space spanned by j and
k. Show that

Tqf · x =

{
nqn−1x if x ∈ Riq

q−n q2n−1
q−1 x if x ∈ E.

(Note that qx = xq if x ∈ E.) Deduce that every quaternion of S3 of
the form c+ di (c, d real, d �= 0) is a regular value of f .
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d) Writing q ∈ S3 in the form ae+ bs (a and b real, and s a pure quaternion
of norm 1), show that TqS

3 admits an orthogonal decomposition of the
form

Rq′
⊕

E,

where q′ commutes with q and uq = qu for u ∈ E. Deduce a generalization
of c2), and conclude that every non real quaternion of S3 is a regular value
of f .

e) Show that f has degree n.

2. Quaternionic polynomials

a) Imitating the constructions of the book, identify H with R
4 and associate

to every polynomial with coefficients in H a smooth map from S4 to S4.

b) Show that every nonconstant polynomial with coefficients in H has a zero.

3*. A useful lemma... used in Section 7.4.4

a) Let f be a diffeomorphism of R
n such that f(0) = 0. Find a homo-

topy H between f and its differential at 0, such that the Ht are again
diffeomorphisms (such a homotopy is called an isotopy).

b) Show that every diffeomorphism of R
n preserving the orientation is

isotopic to the identity.

4**. Examples of links

a) Use the preceding exercise to make sense of the notion of linking of curves
in S3.

b) Let H be the Hopf fibration of S3 to S2. Show that for all a, b ∈ S2, the
curves H−1(a) and H−1(b) are linked, and their linking number is 1.

c) Consider the Möbius strip with boundary, which is the image of [0, 4π]×
[0, 3/4] under the map

(θ, r) �−→
(
cos θ

(
1 + r cos

θ

2

)
, sin θ

(
1 + r cos

θ

2

)
, r sin

θ

2

)
.

Calculate the linking number of the closed curves obtained by taking
r = 1/4 and r = 3/4.

5*. Existence of maps from Sn to Sn with arbitrary degree

a) Let f be a strictly increasing smooth map from [0, 1) to [a,+∞), where
a > 0. Show that the map

x �−→ f(‖x‖2)x

defines a smooth diffeomorphism from the open ball B(0, 1) to R
n.
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b) With an appropriate choice of f , and using stereographic projection, show
that there exists a smooth map g from R to Sn such that

b1) g is a diffeomorphism from B(0, 1) to Sn
� {p};

b2) g(x) = p if ‖x‖ � 1 (here p ∈ Sn is fixed once and for all).

c) Let X be a manifold of dimension n. Show that for all m ∈ X there exists
an open subset U containing m and a smooth map h from X to Sn such
that

c1) h is a diffeomorphism from U to Sn
� {p};

c2) h(x) = p if x ∈ X � U .

d) Deduce from c) that if X is compact connected and oriented, there exists
smooth maps from X to Sn of every degree.

6. Let G be a compact and connected Lie group, and fk the map x �→ xk

from G to itself.

a) For all g ∈ G, write

ϕg,k = Lg−k ◦ fk ◦ Lg.

Show that Tgfk and Teϕg,k have the same rank, and that

Teϕg,k =

k−1∑
r=0

Ad g−r.

b**) Show that at every regular point Tgfk preserves the orientation. Deduce
that fk is surjective.

c) Show that for G = SO(2n) or SO(2n+ 1), the degree of f is equal to kn.

7*. Show that every map from Sn to Sn with degree not equal to (−1)n+1

has a fixed point.

8. Ampère’s theorem

Let C and C′ be two disjoint simple closed curves in oriented three dimen-
sional Euclidean space, given by arc-length parametrizations f : R/LZ → E
and g : R/L′

Z → E. The magnetic field created by an electrical current of
intensity I traversing C is given by

Hx =
1

4π

∫ L

0

If ′(s) ∧
#         »

f(s)x∥∥ #         »

f(s)x
∥∥3

where ∧ denotes the cross product (this is the Biot-Savart law, see for example
[Feynman-Leighton-Sands 63, volume II, Chapter 14]).
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a) Show that ∮
C′

H = I

∫ L′

0

∫ L

0

det
(
f ′(s),

#               »

f(s)g(t), g′(t)
)∥∥ #                »

f(s)g(t)
∥∥3 ds dt.

b) Deduce that ∮
C′

H = IE(C′, C).

9. Summarize the different proofs of the fact that H1(S1) � R.

10. Cohomology of a finite quotient

Let Γ be a finite group acting freely on a manifold X , let Y = X/Γ be the
quotient manifold, and p : X → Y the corresponding covering map.

a) Show that
hk(p) : Hk(Y ) −→ Hk(X)

is injective.

b) Show that the image of hk(p) from Hk(Y ) to Hk(X) is formed by
γ-invariant cohomology classes for all γ ∈ Γ.

c) Application. Calculate the cohomology of real projective space and the
Klein bottle (defined in Exercise 3 of Chapter 6).

11. Cohomology of a product

a) Let X and Y be two compact connected orientable manifolds of dimensions
p and q respectively. Show that the groups Hp(X × Y ) and Hq(X × Y )
are nonzero.

b) ��More generally, the “Künneth formula” ensures that

Hr(X × Y ) �
⊕

p+q=r

Hp(X)
⊗

Hq(Y ).��

Check this formula in the case of a product of spheres.

12*. Show that every smooth map from Sn to T n (for n > 1!) has degree
zero. Try to generalize this result by changing either the domain or target
manifold.

13. Calculate the cohomology of T 2, and then the cohomology of T n using
an appropriate Mayer-Vietoris sequence.
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14*. Hopf invariant

a) Let f be a smooth map from S3 to S2, and α ∈ Ω2(S2). Show that the
form f∗α is exact.

b) Suppose we fix orientations on S2 and S3. Let α ∈ Ω2(S2), and let β be
a primitive of f∗α. Show that the integral∫

S3

β ∧ f∗α

is independent of the choice of β.

c) Show that this integral is zero if α is exact.

d) Let α ∈ Ω2(S2) be such that
∫
S2 α = 1. Show that∫
S3

β ∧ f∗α

is also independent of the choice of α satisfying this condition.

e) The above shows that this integral depends only on f . We call this the
Hopf invariant of f and we denote it by H(f). If ϕ is a smooth map from
S3 to S3, show that

H(f ◦ ϕ) = deg(ϕ)H(f).

f) If g is a smooth map from S2 to S2, show that

H(g ◦ f) = deg(g)2H(f).

g) Show that H(f) = 0 if f is not surjective. Calculate H(f) when f is the
Hopf fibration. Show that H(f1) = H(f2) if f1 and f2 are homotopic, and
deduce that the Hopf fibration is not homotopic to a constant map.

15*. Invariant forms and cohomology

a) By imitating the method of Section 7.9, show that every closed form on
Sn is cohomologous to an SO(n+ 1)-invariant form.

b) Show that if 0 < k < n, every SO(n + 1)-invariant form α ∈ Ωk(Sn) is
zero. Deduce another method to calculate the cohomology of spheres.

16. Quaternionic projective space

a) Repeating the constructions of Section 2.5, define the projective space
Pn

H as an appropriate quotient of Hn+1
�{0}, and equip it with a smooth

manifold structure. Warning: there are two ways to proceed with either
left or right multiplication, but these give diffeomorphic manifolds.
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b) In the same way, show the existence of a fibration

p : S4n+3 −→ Pn
H

whose fibers are diffeomorphic to S3, and deduce that P 1
H is diffeomor-

phic to S4.

c) Repeating the arguments of Theorem 7.52, show that the cohomology
of Pn

H is zero in every degree that is not a multiple of 4, and that
H4k(Pn

H) � R for 0 � k � n.

17. Bi-invariant forms on a Lie group

a) Let G be a Lie group. Denote by I the map x �→ x−1. What is the
differential of I at the identity element?

b) A differential form α on G is bi-invariant if

L∗
gα = α and R∗

gα = α

for any g ∈ G.

Show that if α is bi-invariant, then the same is true for dα and I∗α.

c) Show that if α is bi-invariant (or even only left or right invariant) and
αe = 0, then α = 0.

d) Show that for every form α ∈ Ωk(G), we have

(I∗α)e = (−1)kαe.

Deduce that if α is bi-invariant and of degree k, we have

I∗α = (−1)kα.

Deduce that every bi-invariant form on a Lie group is closed.

e) Using the techniques of Section 7.9, show that for a compact connected
Lie group G,

Hp(G) � Ωp
inv(G),

where we have denoted the vector space of bi-invariant forms of degree p
by Ωp

inv(G) (use the fact that the exponential map of a compact Lie
group is surjective). Show that the algebra InvG

∧
G∗ of alternating

Ad(G)-invariant forms on G is isomorphic to Ωinv(G).

f) Example. Take G = SO(n). Show that

(X,Y, Z) �−→ tr(XY Z −XZY )

is an alternating trilinear form on so(n), which is Ad(G)-invariant, and
nontrivial if n � 3. Deduce that H3(SO(n)) �= 0 for n � 3.
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18. Cohomology of the sphere with two punctures

a) Show that the connected sum of two orientable manifolds is orientable.

b) Using an appropriate Mayer-Vietoris sequence, show that

dimH1(T 2�T 2) = 4.

19*. Moser’s theorem

Let ω0 and ω1 be two volume forms on a compact n-dimensional manifold M ,
such that

∫
M

ω0 =
∫
M

ω1. We will show that there exists a diffeomorphism
φ of M such that φ∗ω1 = ω0. This results in the existence of a family of
diffeomorphisms t �→ φt (0 � t � 1) such that φ0 = Id and

φ∗
tωt = ω0, where ωt = (1− t)ω0 + ω1.

To show the existence of such a family, we use Moser’s trick (compare to the
proof of Theorem 3.44).

a) Show that ωt is a volume form for all t ∈ [0, 1].

b) Deduce that if α ∈ Ωn−1(M) there exists a unique time-dependent vector
field Xt such that iXt

ωt = α.

c) Using Theorem 5.30, show that there exists a time-dependent vector field
Xt which generates a family of diffeomorphisms φt having the desired
properties.

20. Let M be a compact orientable n + 1-dimensional manifold with
connected boundary ∂M , and let f be a smooth map from M to a compact
orientable manifold of dimension n. Show that the degree of f|∂M is zero.

21*. Good coverings

We say an finite open covering (Ui)1�i�r of a n-dimensional manifold M is a
good covering if every nonempty intersection of open subsets of the covering
is diffeomorphic to R

n.

a) Show that if M admits a good covering, the de Rham cohomology
spaces are finite dimensional. (Use induction on r and a Mayer-Vietoris
sequence.)

b) Give examples of good coverings for Sn, T n, P 2
R.

Note. One may prove with techniques of Riemannian geometry (see
[Do Carmo 92]) that every compact manifold admits a good covering.



Chapter 8

The Euler-Poincaré

Characteristic and the

Gauss-Bonnet Theorem

8.1. Introduction

The Gauss-Bonnet theorem is at the heart of the geometry of manifolds.
It mixes topology (triangulations, cohomology spaces), differential geometry
(index of singular points of vector fields) and Riemannian geometry. We do
not have the space to illustrate all of these ideas in detail. To keep with
the spirit of the book, the proofs we give will use differential geometry to
the greatest extent possible. We nonetheless believe it would be interesting
to sketch a purely Riemannian proof in this introduction. The price we pay
is using certain notions that have not been introduced (geodesics, geodesic
curvature), of which we give the idea.

8.1.1. From Euclid to Carl-Friedrich Gauss
and Pierre-Ossian Bonnet

It was known since at least the time of Euclid that the sum of the angles of a
triangle was π. This result is equivalent to the parallel postulate in Euclidean
geometry.

It is possible to extend Euclid’s results to curved triangles, by introducing a
correcting terms that takes into account the failure of the sides to be straight
lines. We introduce, for an arc of a C2 curve parametrized by arc-length,
the geodesic curvature k(s) defined by τ ′(s) = k(s)n(s) (see for example
[Do Carmo 76, 4.4]). Here, s is the arc-length parameter, τ(s) is the oriented
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unit tangent vector, and n(s) is the vector such that the frame
(
τ(s), n(s)

)
is positively oriented.

For a triangle formed by three C2 arcs with angles (βi)1�i�3, we then have

β1 + β2 + β3 = π +

∫
T

k(s) ds

or, by introducing the exterior angles αi,

α1 + α2 + α3 +

∫
T

k(s) ds = 2π.

1

2

3

Figure 8.1: Gauss-Bonnet for a triangle

In case there is no angle at a point, αi = 0 and βi = π, we obtain∫
T

k(s) ds = 2π.

This is the Umlaufsatz or theorem of turning tangents, see [Berger-
Gostiaux 88, 9.5] or [Chavel 83, 4.6].

These results are natural: knowing that k(s) = ϕ′(s), where ϕ is the angle
τ(s) forms with a fixed vector, this simply says that the unit tangent vector
turns exactly 2π. Natural does not mean easy to prove however, as in the
example of Jordan’s theorem which ensures that the complement of a simple
closed curve has two connected components.

This formula was generalized by C.-F. Gauss (who did not publish it) and by
P.-O. Bonnet to triangles constrained to a surface. The curves which replace
straight lines are geodesics, which is to say curves that minimize length, and
the function k(s), whose vanishing characterizes geodesics, is the algebraic
measure of the orthogonal projection of the acceleration onto the tangent
plane. (See [Do Carmo 76, p. 248].)
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However, there is now an additional correction term which involves the Gaus-
sian curvature K of the surface (defined below, Definition 8.11). As we will
see, K measures the failure of the surface to be locally isometric to the
Euclidean plane.

The formula becomes

β1 + β2 + β3 = π +

∫
T

k(s) ds+

∫∫
T

K dA, (8.1)

where dA is a measure on the surface defined in 6.29, which comes from the
ambient Euclidean structure.

In fact, this formula remains true for any Riemannian surface (not necessarily
embedded in R

3), and dA is again the natural measure associated to the
metric (see Definition 8.8). See [Spivak 79, volume 3, p. 396] or [Do Carmo 76,
Chapter 2] for detailed explanation.

A particularly important case is Girard’s formula, which ensures that any
geodesic triangle (which is to say a triangle whose sides are arcs of great
circles) on the sphere of radius 1 satisfies

Area(T ) = β1 + β2 + β3 − π.

(See [Berger 87, 18.3.8.4].)

8.1.2. Sketch of a Proof of the Gauss-Bonnet Theorem

Now let S be a compact surface equipped with a Riemannian metric g and
a triangulation (for this notion, which we think of intuitively here, see Defi-
nition 8.4). The sum of the left hand side of equation (8.1) over all of the
triangles equals 2πv, where v is the number of vertices. The sum of the
right hand side is πf +

∫∫
T KdA, where f is the number of faces, because in

the integrals over the boundary of the triangles, each edge arises twice with
opposite orientation. We thus obtain∫∫

S

K dA = π(2s− f).

The number e of edges satisfies 3f = 2e (if we count 3 edges per face, each
is counted twice), so that 2v − f = 2v − 3f + 2f = 2(v − e+ f). Finally

1

2π

∫∫
S

KdA = v − e+ f (Gauss-Bonnet theorem).

The interest in v− e+ f comes from the fact that this number, taken for any
triangulation is unchanged if we cut each face into further triangles. This
formula at once shows that 1

2π

∫∫
S KdA is an integer which is independent

of the Riemannian metric on S, and that e − v + f is independent of the
triangulation of S chosen. This integer is the Euler-Poincaré characteristic,
denoted χ(S).
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8.1.3. Abstract

We will not adopt this point of view, which is amply developed in the refer-
ences we have cited. To remain in the spirit of the book, we will prove the
Gauss-Bonnet theorem with less Riemannian geometry and more differential
geometry, without passing through the Gauss-Bonnet formula for triangles.

We first show that for a compact surface equipped with a triangulation or a
tiling, v − e+ f is equal to the alternating sum of its cohomology spaces.

We then give the rudiments of Riemannian geometry by the moving frame
method, where a Riemannian metric g is given by local g-orthonormal frames.

Then, if X is a vector field on a compact orientable Riemannian surface,
the idea is to introduce the vector field of orthonormal frames ( X

‖X‖ , Y ). This
is only defined on S�{p1, . . . , pr} (we have supposed that X has only a finite
number of zeros, denoted (pi)1�i�r). An argument using Stokes’s theorem
shows that the integral of curvature is equal to the sum of the indices of X
at the singular points, multiplied by 2π. We are then in the same situation
as we were at the end of 8.1.2: having obtained an equality between two
mathematical objects with no relation between them, a metric and vector
field, we play one off the other. There are some technicalities: the method
of moving frames requires that we use C2 vector fields. However we will
associate to every triangulation a piecewise C1 vector field whose sum of
indices is equal to χ(S) (See Section 8.5.2). Working around these delicate
points is handled by Lemmas 8.19 and 8.20.

8.2. Euler-Poincaré Characteristic

8.2.1. Definition; Additivity

For a manifold whose cohomology spaces are finite dimensional, for example
a compact manifold, it is very convenient to encode the dimensions of these
spaces in the Poincaré polynomial, defined by

PM (t) =

∞∑
i=0

dim
(
Hk(M)

)
tk.

Definition 8.1. The Euler-Poincaré characteristic of a manifold M whose
cohomology groups are finite dimensional is the integer

χ(M) =

∞∑
i=0

(−1)kdimHk(M),

in other words, the value of the Poincaré polynomial at t = −1.
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We give a few examples.

Manifold M PM (t) χ(M)

Contractible 1 1

Sn 1 + tn 1 + (−1)n

Pn
C

∑n
k=0 t

2k n+ 1

T n (1 + t)n 0

P 2n
R 1 1

Compact orientable reciprocal polynomial 0 in odd dimensions

Product M1 ×M2 PM1 (t)PM2(t) χ(M1)χ(M2)

We remind the reader that if P is a polynomial, then P is said to be a
reciprocal polynomial if

P (t) = tdeg(P )P

(
1

t

)
.

The next to last line in the table is a reformulation of Poincaré duality. The
last line gives a concise and easily remembered way to express the cohomology
of a product of two manifolds. This is the Künneth formula, which will
not be proved here. See [Bott-Tu 86, I.5] or [Karoubi-Leruste 87, II.5] for a
proof).

The Euler-Poincaré characteristic clearly gives less information than the coho-
mology spaces, but it is easier to calculate, and it admits many pleasant
geometric interpretations.

Theorem 8.2 (“Additivity” of the Euler-Poincaré characteristic).
Let M be a manifold. Suppose that M = U ∪ V , where U and V are open
subsets, and that the cohomology spaces of at least three of the following four
manifolds M , U , V and U ∩V are finite dimensional. Then the same is true
for the fourth space, and we have

χ(U ∪ V ) + χ(U ∩ V ) = χ(U) + χ(V ).

Proof. Everything comes from the Mayer-Vietoris sequence. The first part
is a consequence of the rank theorem. For the second part, it suffices to
notice that in the long exact sequence of Theorem 7.49, there is a gap of 2
between the cohomology of U ∪ V and that of U ∩ V , and then to apply
Proposition 7.46.

Corollary 8.3. If M and N are two compact manifolds of the same even
dimension,

χ(M�N) = χ(M) + χ(N)− 2.
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Proof. By Exercise 28 of Chapter 2, M�N = M ′ ∪ N ′, where M ′ and N ′

are respectively diffeomorphic to M and N with a closed ball removed, and
M ′ ∩N ′ is diffeomorphic to I × Sn−1. By the preceding theorem, we have

χ(M) = χ(M ′) + 1

χ(N) = χ(N ′) + 1

χ(M�N) = χ(M ′) + χ(N ′)

from which the result follows.

8.2.2. Tilings

A result of Euler (which was suspected by Descartes) ensures that for every
convex polyhedron in R

3 having f faces, v vertices and e edges, f +v−e = 2
(see [Hopf 83, p. 3] for a pleasant argument). The fact that 2 = χ(S2) is more
than a coincidence: this fact is true for any polyhedron drawn on a surface
homeomorphic to S2 and can be seen in a more general setting.

Definitions 8.4

a) A polygon in a surface S is the image of a polygon P of the plane under
a diffeomorphism defined on an open subset containing P . The vertices of
the polygon are the images under φ of the vertices of P . The edges are
the φ((a, b)), where a and b denote two consecutive vertices in P .

b) A tiling of S is a finite number of polygons P1, . . . , PF whose interiors
(called the faces of the tiling), edges and vertices form a partition of S.
When the polygons are triangles, we say that the tiling is a triangulation.

We note that S is necessarily compact, and that an edge is shared between two
polygons. Tilings always exist (Theorem 8.18 gives a more precise statement).
We can use this result to obtain a classification of surfaces, see [Fulton 95,
Chapter 17] or [Massey 77, Chapter I].

Theorem 8.5. For every tiling of a compact surface S having f faces, v
vertices and e edges,

f + v − e = χ(S).

Proof. By decomposing the polygons into triangles, we reduce to the case
of a triangulation (each polygon with n sides is replaced by n− 2 triangles:
we have added n− 3 edges and n− 3 faces, so that f + s− a is unchanged,
see Figure 8.2).

Let σ1, . . . , σf be triangles of the new tiling. For each of these, we have
a 2-simplex (a triangle) σ′

i of R
2, an open subset Wi containing σ′

i and a
diffeomorphism φi : Wi → φi(Wi) such that σi = φi(σ

′
i). It will be convenient
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Figure 8.2: Decomposition of a polygon into triangles

to equip S with a distance function defining its topology (this is only a
convenience which allows us to shorten what follows).

First step. We chose a point qi in the interior of each 2-simplex σi (for
example the image under φi of the barycenter of the vertices of σ′

i) and a
r > 0 such that the closed ball B(qi, 2r) is included in the interior of σi for
all i. We write

M1 = M �

f⋃
i=0

B(qi, r)

U1 =

f⋃
i=0

B(qi, 2r).

By Theorem 8.2,

χ(M) + χ

(
f⋃

i=0

B(qi, 2r)�B(qi, r)

)
= χ(M1) + χ(U1).

On the left hand side, one has disjoint annuli which retract onto S1 and are
therefore of zero characteristic. We thus have

χ(M) = χ(M1) + χ(U1) = χ(M1) + f.

Second step. Using the parametrizations φi, join the pair of points qi, qj
corresponding to adjacent simplexes by a piecewise C1 arc that meets the
common edge at only a single point. Choose these arcs so that their only
point in common are the endpoints, see Figure 8.3.

Let Δ be the union of these arcs. We write

M2 = M1 � V ρ(Δ)

U2 = V2ρ(Δ)�

f⋃
i=0

B(qi, r/2) with ρ << r.
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1

q1

q2

q3

q4

23

4

Figure 8.3: Mayer-Vietoris decomposition of M

We have again

χ(M1) + χ(M2 ∩ U2) = χ(M2) + χ(U2).

Now, U2 has the homotopy type of e disjoint segments, and M2 ∩ U2 of 2e
such segments. On the other hand, M2 is homeomorphic to the union of v
disjoint open discs, so that

χ(M2) = v − e

and χ(M) = v − e+ f as stated.

Remark. This method generalizes to higher dimensions at the price of a few
more technical results on triangulations. The method is the same: ��from
the manifold we remove appropriate neighborhoods of k-skeletons of the dual
triangulation.��

Corollary 8.6. Let M be a compact manifold, and let p : M ′ → M be a
covering map of order d. Then χ(M ′) = dχ(M).

Proof. Fix a triangulation of M . It then suffices to remark that every
simplex is contained in a trivializing simply connected open subset. As a
consequence, the preimage under p of these simplexes gives a triangulation
of M ′, which contains d times the simplexes in each dimension.
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From additivity property of Theorem 8.2 and the multiplicativity with respect
to finite coverings that we have just seen, we may suspect that the Euler-
Poincaré characteristic localizes and can be interpreted in terms of measure.
This is indeed the case, as we will see, so long as we have a Riemannian
metric.

8.3. Invitation to Riemannian Geometry

As we saw at the end of Chapter 5, a Riemannian metric g is a symmetric
bilinear form such that for every m ∈ M , the associated quadratic form is
positive definite on TmM . In local coordinates, g can be written∑

1�i,j�n

gij dx
i dxj ,

with
gij(m) = gm(∂i, ∂j).

Instead of working with coordinates, we can instead specify vector fields
forming an orthonormal frame (it suffices to apply the Gram-Schmidt
orthonormalization procedure to the frame field (∂i)1�i�n). If (X1, . . . , Xn)
is such a vector field on an open subset U , the metric on U may be written as

n∑
i=1

(θi)2,

where the 1-forms θi are the coordinates with respect to the Xi. This view-
point is known as the method of moving frames. The field of orthonormal
frames (X1, . . . , Xn) and the dual system of forms (θ1, . . . , θn) (the coframe)
mutually determine each other.

Warning. These two points of view are in a certain manner contradictory:
there is no reason that there exist local coordinates such that the vector fields
(∂i)1�i�n form an orthonormal frame. Indeed if such is the case, the metric
can be written in these coordinates as

∑n
i=1(dx

i)2, while the fundamental
theory of Riemannian geometry (Theorem 8.12) says precisely that this is
impossible in general.

We begin with a simple remark.

Lemma 8.7. If on an open subset U a Riemannian metric may be written

n∑
i=1

(θi)2

with closed forms, the metric is locally isometric to a Euclidean metric.
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Proof. Let a ∈ U be fixed. By the Poincaré lemma, (Theorem 5.44),
there exists an open subset V containing a and smooth functions fi
on V such that θi = df i. As the quadratic form

∑n
i=1(θ

i)2 is non-
degenerate, df1 ∧ · · · ∧ dfn �= 0 at each point of V , and the map x �→
F (x) =

(
f1(x), . . . , fn(x)

)
from V to R

n is of maximum rank. Let W ⊂ V
be an open subset containing a for which F is a diffeomorphism to its image.
Then on W we have

g =

n∑
i=1

(df i)2 = F ∗
(

n∑
i=1

(dyi)2

)
.

Unfortunately, this result only scratches the surface on the question of when a
Riemannian metric is locally Euclidean: a metric g can be locally decomposed
in many ways as the sum of squares of linear forms, but there is no simple
way to know if these forms are closed.

From this point on, we will consider only dimension 2. The method of moving
frames is easy to describe in this case. Indeed if (X1, X2) and (X ′

1, X
′
2) are two

orthonormal frames for the same metric on an open subset U , and if these
vector fields define the same local orientation on U , there exists a map R
from U to SO(2) such that(

X ′
1

X ′
2

)
= R

(
X1

X2

)
and

(
θ′1

θ′2

)
= R

(
θ1

θ2

)
. (8.2)

If we introduce complex-valued forms Θ = θ1 + iθ2 and Θ′ = θ′1 + iθ′2,
(8.2) may be written

Θ′ = e−iφΘ with R =

(
cosφ sinφ

− sinφ cosφ

)
. (8.3)

We remark in passing that θ1∧θ2 is independent of the orthonormal (co)frame
chosen, and gives a globally defined volume form.

Definition 8.8. The form θ1 ∧ θ2 is the canonical volume form of the
oriented Riemannian manifold.

One may easily check that for an embedded surface this volume form coincides
with that of Definition 6.29.

The real point of departure of the method of moving frames is the following
result:

Lemma 8.9. Let g be a Riemannian metric on a surface S which may be
written in an open subset U in the form g = (θ1)2 + (θ2)2. Then there exists
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a unique form ω ∈ Ω1(U) such that

dθ1 = −ω ∧ θ2

dθ2 = ω ∧ θ1.

Proof. Immediate: if dθ1 = aθ1 ∧ θ2 and dθ2 = bθ1 ∧ θ2, then ω =
−aθ1 − bθ2.

Definition 8.10. The form ω is called the connection form associated to the
frame field (X1, X2).

Remark. In a smooth manifold, we do not have a means to compare tangent
vectors at different points. However, additionally specifying a Riemannian
metric allows such a comparison. This is what justifies the name for ω. ��The
Levi-Civita connection of the metric g is given here by

∇X1X1 = ω(X1)X2 ∇X2X1 = ω(X2)X2

∇X1X2 = −ω(X1)X1 ∇X2X2 = −ω(X2)X1.

We will not use this result.��

With the 1-form Θ = θ1 + iθ2 introduced above, the equations of Lemma 8.9
can be written

dΘ = iω ∧Θ.

Let U ′ be another open subset on which the metric can be written g =
(θ′1)2 + (θ′2)2. If U ∩ U ′ is nonempty and the two frames define the same
orientation, then by (8.2)

Θ′ = (e−iφ)Θ.

Computing differentials, we obtain

dΘ′ = (e−iφ) dΘ− i(e−iφ) dφ ∧Θ

= (e−iφ)iω ∧Θ− i(e−iφ) dφ ∧Θ

= i(ω − dφ) ∧ (e−iφ)Θ

= i(ω − dφ) ∧Θ′.

Thus, the form ω′ associated to the coframe (θ′1, θ′2) can be written

ω′ = ω − dφ. (8.4)

Warning. We have used the usual abuse of notation with the angular form:
if the function e−iφ is well defined on U ∩U ′, the function φ itself only admits
local determinations up to 2kπ, so that dφ is nonetheless well defined. It is
closed, but not necessarily exact. Later it will prove to be useful to work
with open subsets that need not be star shaped.
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As a result of (8.4) dω = dω′ on U ∩ U ′. Thus there exists a closed 2-form
Ω on the manifold, equal to dω on every open subset equipped with a local
coframe. On such an open subset Ω may be written Kθ1 ∧ θ2, where K
is a smooth function. If we change the (co)frame while keeping the same
orientation, Ω and θ1 ∧ θ2 will not change, therefore neither will K. Finally,
if we interchange θ1 and θ2, the forms ω, dω and θ1 ∧ θ2 are changed to their
opposite, thus K is unchanged. It is thus a smooth function on the manifold.

Definitions 8.11. If (M, g) is a Riemannian manifold, then K is the Gaus-
sian curvature. Further, if the manifold is oriented, Ω is curvature form or
Euler form.

We use an index g if we want to emphasize the dependence with respect to
the metric.

We are now ready to formulate the fundamental theorem of Riemannian
geometry (in dimension 2).

Theorem 8.12. The Gaussian curvature is a local Riemannian invariant.
More precisely:

i) if f : (M, g) → (M ′, g′) is an isometry between Riemannian manifolds
of dimension 2 whose Gaussian curvatures are Kg and Kg′ , then Kg =
Kg′ ◦ f ;

ii) (M, g) is locally isometric to the Euclidean plane if and only if Kg is
identically zero.

Proof

i) If (θ1, θ2) is a local coframe for (M ′, g′) on an open subset U , then
(f∗θ1, f∗θ2) is a local coframe for (M, g) on the open subset f−1(U),
and by construction f preserves the local orientations defined by these
coframes. If ω is the connection form associated to the coframe (θ1, θ2),
as

df∗Θ = f∗(dΘ) = if∗ω ∧ f∗Θ,

the connection form of g for the coframe (f∗θ1, f∗θ2) is f∗ω. The curvature
form is therefore

Ωg = d(f∗ω) = f∗dω = f∗Ωg′ ,

from which i) follows.

ii) For the Euclidean plane, we can take θ1 = dx and θ2 = dy, and the
curvature is zero. Conversely, let (θ1, θ2) be an orthonormal coframe of
a Riemannian manifold with zero curvature. Then dω = 0. By shrinking
the open subset of the definition, we can write ω in the form dφ. We then
introduce the coframe (θ′1, θ′2) defined by

θ′1 + iθ′2 = (e−iφ)(θ1 + iθ2).
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For this new coframe, by equation (8.4) we have ω′ = 0, while the
forms θ′1 and θ′2 are closed. We therefore have reduced to the case of
Lemma 8.7.

Remark. We had to apply the Poincaré lemma twice. In fact curvature
is an invariant of order two. It turns out that there are no Riemannian
invariants of order 1. Indeed, if (M, g) is a Riemannian manifold, one can
show that for all m ∈ M , there exists a chart (U, φ) (called an exponential
chart, see [Do Carmo 92] or [Gallot-Hulin-Lafontaine 05]) such that φ(m) = 0
and

φ−1∗(g)x =

n∑
i=1

dxi2 +O(‖x‖2).

Unfortunately, this result is difficult to see with the method of moving frames.

Two curvature calculations

On the unit sphere of three dimensional Euclidean space, in “latitude-
longitude” coordinates

(u, v) �−→ (cosu cos v, cosu sin v, sinu)

the metric induced by the Euclidean metric dx2 + dy2 + dz2 can be written

du2 + cos2 u dv2.

The singularity observed at u = ±π
2 , which is to say at the poles, is in fact

a false singularity, its corresponds to values of the parameters for which the
coordinates do not give an immersion. On S2

� {N,S}, the forms du and
(cos u)dv form an orthonormal coframe. We note that

d(du) = −(sinu) dv ∧ dv (= 0!)

d
(
(cosu)dv

)
= (sinu) dv ∧ du

The connection form is thus (sinu)dv, the curvature form is (cosu)du ∧ dv
and the Gaussian curvature is equal to 1 on S2

� {N,S}, and thus on all
of S2 by continuity.

Another example where the curvature is easily calculated is the Poincaré half
plane, which is to say the upper half plane in R

2 of points with positive y

coordinate, equipped with the metric dx2+dy2

y2 . We will calculate curvature
using the coframe (dxy , dy

y ). We obtain

d

(
dx

y

)
=

dx

y
∧ dy

y
and d

(
dy

y

)
= −dx

y
∧ dx

y
.

The curvature form is therefore −d(dxy ) = − dx∧dy
y2 and the curvature

equals −1.
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8.4. Poincaré-Hopf Theorem

8.4.1. Index of a Vector Field: Revisited

In two dimensions, the index of a vector field is the degree of a map from S1

to S1. We may therefore adopt the point of view of Section 7.4.1. Let X be
a vector field on an open subset U of the oriented Euclidean plane having an
isolated zero at a. Let r > 0 be such that D(a, r) ⊂ U . We may suppose
that r is so small that there are no other zeros in this disk.

Let u be a fixed unit vector and R(φp) the rotation from u to Xp

‖Xp‖ . This
defines a function on D(a, r) � {0} having the same regularity as X , and
by Section 7.4.1,

indaX =
1

2π

∫
C(a,r)

dφ

(intuitively, the degree is the number of turns that X winds around a).

If we change the reference vector, dφ is unchanged. However two generaliza-
tions will be useful.

1. We can replace u by a vector field that is nonvanishing on the disk.

2. We can replace the Euclidean angle by the angle defined by any Rieman-
nian metric.

Indeed, let U be a nonvanishing vector field on D(a, r). By shrinking r,
we can suppose that at every point p ∈ C(a, r) the inner product 〈u, Up〉
is positive. We can then replace R(φp) by the rotation R(φ1

p) from Up

‖Up‖
to Xp

‖Xp‖ , as the two maps form C(a, r) to S1 are homotopic.

Now let g be any Riemannian metric on the disk. We can again replace R(φ1
p)

by the rotation R(φ2
p) of the Euclidean plane (TpR

2 � R
2) equipped with

the inner product gp from Up

‖Up‖ to Xp

‖Xp‖ (note that the norm is also defined
by g).

In fact, if we do this for the family of metrics tg + (1 − t)(dx2 + dy2),
for t ∈ [0, 1], we obtain a homotopy between R(φ1) and R(φ2).

8.4.2. A Residue Theorem

Theorem 8.13. Let (S, g) be a compact oriented Riemannian surface, let
Ωg be its curvature form, and let X be a vector field on S having r zeros
p1, . . . , pr. Then

1

2π

∫
S

Ωg =

r∑
i=1

indpi
X.
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Proof. On S�{p1, . . . , pr} we introduce the frame field formed by X̃ = X
‖X‖

and the field Ỹ such that at every point (X̃m, Ỹm) is an direct orthonormal
frame. Let ω ∈ Ω1(S� {p1, . . . , pr}) be the associated connection form. If X
has no zeros, ω is defined on all of S, and∫

S

Ω =

∫
S

dω = 0

which proves the result in this case.

Otherwise for each zero pi, obtain a chart (Ui, fi), where pi ∈ Ui and
fi(pi) = 0. If r > 0 is sufficiently small, the closed disk D(0, r) and its
boundary C(0, r) are contained in the fi(Ui). Then∫

S

Ω = lim
r→0

∫
S�

⋃
k
i=1 f−1

i (D(0,r))

Ω

= − lim
r→0

r∑
i=1

∫
f−1
i (C(0,r))

ω

by Stokes’s theorem.

We can already see that everything significant happens in the neighborhood
of these zeros. However note that the form ω is not defined at the pi.

We now study each integral ∫
f−1
i (C(0,r))

ω

separately. On Ui, the Riemannian metric can also be given by a positively-
oriented orthonormal frame (Zi

1, Z
i
2). Let ω0 be the corresponding connection

form. By equation (8.4),
ω = ω0 − dφ,

where φ denotes the angle between the vectors Zi
1 and X̃. Then∫

f−1
i (C(0,r))

ω =

∫
f−1
i (C(0,r))

ω0 −
∫
f−1
i (C(0,r))

dφ.

The form ω0 is well defined and smooth on all of Ui, thus the first term of the
right hand side tends to 0 as r tends to 0. The second term is constant and
equal to the index of U at pi and therefore to the index the vector field X
(up to multiplication by 2π), by the preceding section. Finally

− lim
r→0

r∑
i=1

∫
f−1
i (C(0,r))

ω =

r∑
i=1

indpi
X.
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We thus have an equality between two quantities which do not a priori have
anything to do with each other. The first applies to any Riemannian metric
(and note there is no reason a priori to obtain an integer), and the second
to any vector field. This result simultaneously shows that

∑
a∈Z(X) indaX

is independent of the vector field X (with isolated zeros) on S and that∫
S
Ωg is independent of the metric.

A particular choice of a metric or of a vector field gives a result valid for
every metric and every vector field.

Corollary 8.14

i) For every Riemannian metric g on S2,

1

2π

∫
S2

Ωg = 2,

as before, Ωg denotes the curvature form of the metric.

ii) For every vector field X on S2 having finitely many zeros,∑
x∈Z(X)

indx(X) = 2.

To prove this result we have a choice: we can take the metric with constant
curvature on S2, or we can take the vector field which is the infinitesimal
generator of the group of rotations about the north-south axis. The two
poles are zeros of index 1. Finally we could also take the gradient of a
coordinate function of the round sphere embedded in R

3. Such a function
has two non-degenerate critical points, a maximum and minimum, and its
gradient has index 1 at these two points.

Corollary 8.15

i) For every metric g on T 2, ∫
T 2

Ωg = 0.

ii) For every vector field X on T 2 having finitely many zeros,∑
x∈Z(X)

indx(X) = 0.

Again there is a choice: we can take a nonvanishing vector field or a metric
with zero curvature. It is easy to see that there exists such fields and such
metrics: if Γ is a lattice of R

2 then constant vector fields and the metric
dx2 + dy2 are Γ-invariant and pass to the quotient.
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Warning. Two locally Euclidean tori R2/Γ and R2/Γ′ are not isometric
in general. Such tori are isometric if and only if the lattices Γ and Γ′ are
isometric. See for example [Gallot-Hulin-Lafontaine 05, 2.24].

8.5. From Poincaré-Hopf

to Gauss-Bonnet

8.5.1. Proof Using the Classification Theorem for Surfaces

We have just checked the common value of both sides of the equation in
Theorem 8.13 for the sphere S2 and the torus T 2 is the Euler-Poincaré
characteristic.

The result remains true for other compact surfaces. We could prove this
using the same method (with a metric or a well chosen vector field), but this
it not so easy.

To pass to the general case, there exists an instructive but pedestrian method.
We can invoke the theorem of classification of surfaces stated in Section 7.10.
We know that a compact orientable surface S is a connected sum of p tori.
By Corollary 8.3, we have χ(S) = 2− 2p.

A fallout of the proof of the classification theorem is the existence of a function
f ∈ C∞(S) having 2p + 2 non-degenerate critical points, a maximum, a
minimum, and p “saddle points” of index 1. This allows us to extend the
results of Corollaries 8.14 and 8.15 to every compact surface.

Theorem 8.16. Let S be a compact surface, g a Riemannian metric on S,
and X a vector field with finitely many zeros. Then

χ(S) =
1

2π

∫
S

Ωg =
∑

x∈Z(X)

indxX.

Proof. If S is orientable and a connected sum of p tori, it suffices to apply
Theorem 8.13 to the gradient of a function f of the type we have discussed.

If S is not orientable, let p : S̃ → S be its orientation covering. Under these
conditions:

1. By Corollary 8.6, χ(S̃) = 2χ(S).

2. Let X be a vector field on S, and X̃ its lift under p. Above each zero of
X there are two zeros of X̃ , which have the same index.

3. If g is a Riemannian metric on S, then the curvature form Ωg is not defined
a priori. However its integral is well defined nonetheless! To see this we
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proceed as follows. If U is a connected orientable open subset of S, the
choice of an orientation allows us to define Ωg and

∫
U
Ωg. If we change the

orientation to its opposite, Ωg is changed to −Ωg, and by the definition of
the integral of forms, the integration operator∫

: Ω2(U) −→ R

is also changed by a sign, so that
∫
U Ωg is independent of the orientation.

Now introduce a tiling of S by domains (Di)1�i�N homeomorphic to disks,
and set ∫

S

Ωg =

n∑
i=1

∫
Di

Ωg.

The above shows that the right hand side is independent of the choice of
tiling. Moreover, the covering p is trivial above each domain, i.e., for each i,
the preimage p−1(Di) is the union of two disjoint domains D′

i and D′′
i ; if we

equip S̃ with the metric g̃ = p∗g, then above each of them p is a local isometry.
Thus ∫

S̃

Ωg̃ =

n∑
i=1

∫
D′

i

Ωg̃ +

n∑
i=1

∫
D′′

i

Ωg̃

= 2

(
n∑

i=1

∫
Di

Ωg

)

= 2

∫
S

Ωg.

Putting these remarks together gives the result in the non orientable case.
To summarize the proof tersely: we pass to the orientation covering and
everything gets multiplied by two.

Remark. Incidentally this proves that
∫
S Ωg can be defined even though S is

not orientable. ��Instead, we could have introduced the density dAg defined
by the metric, and considered

∫
S Kg dAg.��

8.5.2. Proof Using Tilings: Sketch

A more direct method consists in associating to every tiling of a surface a
vector field having a zero of index 1 at each vertex, a zero of index 1 at the
interior of each face, and a zero of index −1 in the interior of each edge.

We begin with a triangle of the plane. We draw the segments connecting the
midpoints, and orient the twelve segments thus obtained in a way that each
vertex is always a source, and the center of mass a sink (this procedure is
known as the barycentric subdivision by topologists).
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Figure 8.4: Barycentric subdivision

This construction when, transported to simplexes of a triangulation, suggests
the existence of a vector field having the following zeros:

1) the vertices of the triangulation, of index +1 (sources);

2) a zero exactly at the interior of each simplex of dimension 2, of index 1
(sink);

3) a zero exactly at the interior of each simplex of dimension 1, of index −1
(saddle points).

Figure 8.5: Zooming in on a triangle of the subdivision

The sum of the indices of such a vector field equals f+v−e. Using everything
above as well as Theorem 8.13, we see that

1) the quantity
∫
S
Ωg is independent of the Riemannian metric on S;

2) the quantity
∑

x∈Z(X) indxX is independent of the vector field X (assumed
to have only finitely many zeros);

3) the quantity f + v − e is independent of the triangulation.

Furthermore, each of these three quantities is equal to χ(S) by 8.5.

8.5.3. Putting the Preceding Arguments Together

We can pose two objections to the above arguments. The existence of a vector
field having the “right” indices was mostly suggested rather than proved. In
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the best case this vector field is only piecewise C1, but Theorem 8.13 assumes
the vector field is C2. To make things rigorous, we need to be little more
precise with our triangulations.

Definitions 8.17. A finite simplicial complex is a finite set S and a family
Φ of subsets of S satisfying the following properties:

i) the singleton elements of S belong to Φ;

ii) if F ∈ Φ, then so is every finite subset of F .

The singleton elements are called the vertices of the complex, the subsets with
k+1 elements are the faces of dimension k. The maximum value of k is the
dimension of the complex.

We associate to each simplicial complex its geometric realization defined in
the following manner. We index the elements of the canonical basis of RS

by elements of S. Let (es)s∈S be this basis. To each face F we associate
the convex hull |F | of the es for s ∈ F . The geometric realization is then
the union of the |F | for F taken over Φ, equipped with the topology induced
by R

S. This is a compact topological space.

Examples

a) If Φ consists of every subset of a set with n + 1 elements, the geometric
realization is the standard simplex of dimension n (a segment for n = 1, a
triangle for n = 2).

b) Let S be a set with six elements labeled n, s, a, b, c, d, and consider the
simplicial complex whose faces of dimension 2 are

{n, a, b}, {n, b, c}, {n, c, d}, {n, d, a},
{s, a, b}, {s, b, c}, {s, c, d}, {s, d, a}.

This is called the octahedral complex. The geometric realization of S is
homeomorphic to S2.

In fact, the geometric realization of a simplicial complex is a polyhedron, and
simplicial complex itself codes the incidence relations of the polyhedron.

Warning. Comparing to the notion of polyhedron from elementary geom-
etry (see [Berger 87]) this situation here is simultaneously more general (the
dimension of maximal faces for the inclusion can vary) and less general (the
faces are simplexes).

The existence theorem for tilings invoked in Section 8.2.2 can now be refined.
The following result can be found in [Massey 77, Chapter I].
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Theorem 8.18.1 Let M be a compact C1 manifold of dimension n. There
exists a simplicial complex and a homeomorphism f from its geometric real-
ization X to M that has the following property: for every face F of dimen-
sion n, there exists a chart (U, φ) such that f(|F |) ⊂ U and such that the
restriction of φ ◦ f to |F | is affine.

Warning. This result, whose proof uses the embedding theorem and a
transversality argument (see [Whitney 57, IV.B]), is false for topological
manifolds as soon as n � 3. This is beyond the scope of the book.

We are now able to make the informal arguments of Section 8.5.2 more
precise. First, on a triangle (before subdivision), we can give an explicit
formula for the vector field we suggested earlier. Denoting the vertices
by a, b, c, we take the vector field defined by

X(m) = u2 #   »ma+ v2
#  »

mb+ w2 #  »mc,

where we have denoted the barycentric coordinates of the point m
by u, v, w. Since this construction is equivariant under affine transforma-
tions, Theorem 8.18 allows us to obtain a piecewise C1 vector field having a
zero of index 1 on each face and vertex and a zero of index −1 on each edge
on every compact triangulated surface.

The existence of a C2 vector field having the same properties is a consequence
of the following lemmas.

Lemma 8.19. Let X be a continuous vector field on a compact manifold M ,
let D ⊂ M be a domain with boundary and let g be a Riemannian metric.
For every α > 0, there exists a vector field Y which is smooth on D such that

∀m ∈ D, ‖Ym −Xm‖gm < α.

Proof. It suffices to complete the proof for a Riemannian metric.

Indeed, by compactness, there exists for every pair (g1, g2) of such metrics,
strictly positive constants A and B such that

A(g1)m(v, v) � (g2)m(v, v) � B(g1)m(v, v)

for all m ∈ M and v ∈ TmM .

We thus embed M in R
N and we work with the Riemannian metric induced

from the Euclidean metric. The restriction of X to D can be seen as a
continuous function on D with values in R

N , which we can approximate
uniformly to within α by polynomials Z(m) restricted to D by the Stone-
Weierstrass theorem. The orthogonal projection of Z(m) to the tangent space
to M at m gives the desired vector field.

1. Proof omitted.
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Lemma 8.20. Let X be a continuous vector field on a compact manifold M
having a finite number of zeros. There exists a C2 vector field on M having
the same zeros and indices.

Proof. Let a1, . . . , ar be the zeros of X . For each of these, choose a chart
(Ui, φi) such that φi(ai) = 0. We can always suppose that the Ui are mutually
disjoint, and we choose an r > 0 such that φ−1

i

(
B(0, r)

)
⊂ Ui for all i. We

take
D = M �

⋃
1�i�r

φ−1
i

(
B(0, r)

)
.

For a Riemannian metric g, introduce the vector field X ′ = X
‖X‖ on D. By

Lemma 8.19 there exists a vector field X ′′ on D such that ‖X ′
m −X ′′

m‖ < 1/2

for all m ∈ D.

Now we must fill in the holes, for which it suffices to work chart by chart.
Take Yi = (φi)∗X ′′ on S(0, r), and extend this to the ball by writing Yi(ρx) =
ρ2

r2 f(ρ)Ui(x) for x ∈ S(0, r), where f : [0, r] → R
+∗ is a C2 function such

that f(r) = 1, f ′(r) = 1, f ′′(r) = 0. The desired vector field may be taken
to be equal to X ′′ on D and to (φ−1

i )∗Yi on φ−1
i

(
B(0, r)

)
.

These two lemmas now complete the argument.

Corollary 8.21. Let X be a continuous vector field on a compact surface S
having finitely many zeros a1, . . . , ap. Then

p∑
k=1

indak
X = χ(S).

8.6. Comments

The case of embedded surfaces

A two-dimensional submanifold S of three-dimensional Euclidean space
is naturally equipped with the induced Riemannian metric, obtained by
restricting the ambient inner product to each tangent space. On every open
subset U ⊂ S equipped with a local orientation, we can define the normal
vector field nx. If (X1, X2) is a orthonormal frame on U compatible with the
orientation, nx will be the unit normal such that the frame

(
(X1)x, (X2)x, nx

)
is positively oriented. The Gauss map is the map from U to S2 which asso-
ciates to x the point Γ(x) defined by

#         »

0Γ(x) = nx. The shape operator (or
Weingarten map) S is the differential of x �→ nx. One verifies that this is a
symmetric endomorphism of (Tx, gx). Either one of these takes into account
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the shape of S in the ambient space. See [Do Carmo 76, Chapter 3] for more
details. We also use the second fundamental form (in this terminology, the
first fundamental form is the induced metric) which is the symmetric bilinear
form on TxS defined by

IIx(u, v) = gx(u,S · v).

The interpretation of this form is as follows: if u is a unit tangent vector to S
at x, IIx(u, u) is the curvature of the plane curve formed by intersecting S
with the plane spanned by nx and u.

We then have the following result (see [Do Carmo 76, p. 234]).

Theorem 8.22 (Gauss’s theorema egregium)

i) If � is the canonical volume form of S2, and Ωg is the curvature form,
Γ∗� = Ωg.

ii) If Kg is the curvature, det(S) = Kg.

If S is orientable, which is the case if it is a compact submanifold, the Gauss
map can be defined globally. Then we have

Corollary 8.23. Let S be a compact oriented submanifold of R
3 seen as

oriented Euclidean space, and let Γ be the Gauss map defined by this orien-
tation. Then

deg(Γ) =
1

2
χ(S).

Proof. By definition of the degree,
∫
S Γ∗� = deg(Γ)

∫
S2 �. However, by

Proposition 6.31,
∫
S2 � = 4π , while Γ∗� = Ωg. Thus it suffices to apply

Theorem 8.16.

From these two results we obtain the following expression for the volume of
tubular neighborhoods of a compact surface.

Theorem 8.24. With the same hypothesis as Corollary 8.23, let Vr(S) be a
tubular neighborhood of S. Then

vol
(
Vr(S)

)
= 2r

(
area(S)

)
+

4πr3

3
χ(S).

The volume of tubular neighborhoods of submanifolds was first studied by
Hermann Weyl in a prophetic article (cf. [Weyl 39]). For a systematic study,
see [Gray 04].
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Canonical Riemannian metrics on a surface

We saw that on S2 there is a metric of constant curvature +1 (this metric is
essentially unique by [Gallot-Hulin-Lafontaine 05, 3.F]), and on T 2 there are
metrics of zero curvature. These results extend to P 2

R and the Klein bottle
by passing to the quotient.

The other surfaces have negative Euler-Poincaré characteristic. If these
surfaces admit a metric with constant curvature, the curvature must be nega-
tive by the Gauss-Bonnet theorem. Such metrics do exist (this is one of the
major discoveries of H. Poincaré, see [Charpentier-Ghys-Lesne 10] and also,
for a very detailed account, [De Saint-Gervais 10]). These can be obtained
by a quotient of the Poincaré half-plane by a discrete and cocompact group
of isometries. The study of these metrics has remained an active area of
research. For an introduction, see [Buser 92].

A few words on higher dimensions

In higher dimensions, everything that we have said about vector fields and
triangulations generalizes without difficulty. However curvature becomes, in
the words of Misha Gromov, a “monster of linear algebra”, starting from
the fact that one must discover the correct integrand. This is very nicely
explained in the final chapter of the work by M. Spivak, which has an evoca-
tive title: “The Gauss-Bonnet theorem and what it means for mankind”.
We know of no better reference to invoke the ubiquity of the Gauss-Bonnet
theorem (which due to the decisive contribution of S.S. Chern in higher
dimensions is also called the Chern-Gauss-Bonnet theorem).

8.7. Exercises

1. Find a free action of Z/2Z on P 2n+1
C. Show that there does not exist

such an action on P 2n
C.

2. Write an S1-invariant metric in polar coordinates as dr2+f2(r) dθ2 (away
from the origin). Calculate the curvature.

3. Calculate the curvature of a torus of revolution equipped with the metric
induced by Euclidean space.

4. Give an example of a vector field on S2 having a zero of index 2.

5**. Write the underlying simplicial complex of a regular icosahedron.
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6*. Ramified coverings

Let S and S′ be two surfaces. A ramified covering is a map from S to S′ such
that for all x ∈ S there exists charts (U,ϕ) (x ∈ U) and (U ′, ϕ′) (f(x) ∈ U ′)
such that

ϕ(x) = ϕ′(f(x)) = 0 and ϕ′ ◦ f ◦ ϕ−1(z) = zkx

where k is a positive integer, and where we identify R
2 with C.

a) Show that the integer k is independent of the charts having the property
above. We call this integer the index of ramification of x.

b) If S and S′ are holomorphic manifolds of dimension 1, every holomorphic
map is a ramified covering.

In the sequel, and in the following exercises, we suppose that S is compact
and connected.

c) Show that f is surjective.

d) Show that the set Σ of points where kx > 1 is finite.

e) Show that the restriction of f to S � Σ is a covering of S′
� f(Σ). Its

degree (which is necessarily finite under our hypothesis) is also the degree
of f as a map from S to S′.

7*. Riemann-Hurwitz formula

Let f : S → S′ be a ramified covering of degree d. Show that

χ(S) = dχ(S′)−
∑
x∈Σ

(kx − 1)

Hint. Starting with a triangulation of S′, show that there exists another
triangulation such that the points of f(Σ) are vertices, and imitate the proof
of Corollary 8.6.

8*. A smooth projective algebraic curve of degree 3 is a torus

Let P (x) = x3+px+q be a polynomial of degree 3 with complex coefficients,
with three distinct zeros.

a) Supposing that P is real with real zeros, sketch the curve with equation
y2 = P (x) in R

2. How many connected components does it have?

b) Show that this equation defines a complex submanifold of C×C of dimen-
sion 1, and that this submanifold is connected.

c) Equip P 2
C with a system of homogeneous coordinates x, y, t. Show that

the equation y2t = x3 + pxt2 + qt3 defines a compact and connected
submanifold of P 2

C. Denote this submanifold by E.
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d) Show that the map (x, y) �→ x of the curve y2 = P (x) to C extends by
continuity to a unique holomorphic map from E to P 1

C.

e) Find the ramification points of this map. Deduce that χ(E) = 0 and that
E is diffeomorphic to a torus.



Appendix:

The Fundamental Theorem

of Differential Topology

Manifolds with boundary (of dimension n) are defined in the same way as
manifolds in Section 2.2, by taking charts with values in the half-space{

(x1, . . . , xn) : x1
� 0
}

The only additional problem is how to define smooth functions on a half-
space. It suffices to replace partial derivatives with respect to x1 at
(0, x2, . . . , xn) by left derivatives. The interior int(M) of a manifold with
boundary M is the set of points which are diffeomorphic to an open subset
of R

n. This is clearly a smooth manifold of dimension n. The reader is
invited to check that M � int(M) is a smooth manifold of dimension n− 1,
denoted ∂M .

Examples of manifolds with boundary include the half-space itself, closed
balls, and also regular domains. Theorem 6.24 extends to manifolds with
boundary: the boundary of an oriented manifold with boundary is orientable
and inherits a natural orientation. Stokes’s theorem extends to oriented mani-
folds with boundary.

The notion of a manifold with boundary does not appear to play an important
role in this book. However this notion is unavoidable, as it is really this
which arises in Stokes’s theorem. To illustrate we will sketch, in the spirit of
[Guillemin-Pollack 74] (even though this result is not in this book) the proof
what we could call with good reason the “fundamental theorem of differential
topology”.

Theorem. Let X be a compact connected manifold (without boundary) of
dimension at least 1. Then the identity map from X to X is not homotopic
to a constant map.

© Springer International Publishing Switzerland 2015  
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Proof. Let H be such a homotopy, which is to say a smooth map from
X × [0, 1] to X such that for all x ∈ X , H(x, 0) = x and H(x, 1) = a, where
a ∈ X is fixed. By Sard’s theorem, the function H admits at least one regular
values y. If dim(X) � 1, y is distinct from a.1

Now H−1(y) is a compact submanifold of X × [0, 1] of dimension 1, possibly
with boundary, and

∂H−1(y) = ∂(X × [0, 1]) ∩H−1(y) = (X × {0} ∪X × {1}) ∩H−1(y).

By the definition of H , we have

H−1(y) ∩ (X × {0}) = (y, 0) and H−1(y) ∩ (X × {1}) = ∅,

therefore ∂H−1(y) = (y, 0). But this is impossible, since by a refinement
of Theorem 3.45 (which is easy to show using the same methods, or see
[Guillemin-Pollack 74]) every compact connected manifold of dimension 1
with nonempty boundary is a compact interval of R: in any case, ∂H−1(y)
must have an even number of elements.

Remarks

a) Besides the classification of manifolds with boundary of dimension 1, this
result uses an extension of the notions of regular point and regular value
to manifolds with boundary. If f : M → M ′ is a smooth map from one
manifold with boundary to another, a point x of M is a regular point
if either it belongs to the interior M � ∂M and if it is regular for the
restriction of f to the interior of M , or if it is regular for the restriction
of f to the boundary. A point y of the target is a regular value if f−1(y)
consists of regular points in the sense above. We also prove the result used
above without difficulty (ibidem): f−1(y) is a submanifold with boundary
of M and ∂f−1(y) = (∂M) ∩ f−1(y).

b) In this proof the “difficult” Sard theorem (the case where the dimension of
the domain manifold is strictly greater than the dimension of the target,
see [Golubitsky-Guillemin 73, Chapter 2, § 1] or [Hirsch 76, Chapter 3,
Theorem 1.3]) plays a key role. One must assume from the start that
the homotopy is C2. Then an approximation argument (see Lemma 7.24)
allows us to pass to the general case.

1. This theorem is clearly false in dimension 0. Still it is not useless to indicate where
the hypothesis on dimension arises. I thank Antoine Chambert-Loir for this remark,
which is deeper than it first seems.
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2. Laplacian and isometries

b) Testing the property on functions of the form f(x) = xkxl, we see that A
must be orthogonal. A direct calculation then shows that this condition
is sufficient.

c) Note that

Δ(f ◦ T ) =
∑
i,k,l

∂2
kl(f ◦ T )∂iT k∂iT

l +
∑
k

∂k(f ◦ T )ΔT k,

where T k denotes the k-th component of T . Testing the property on linear
forms and functions of the form xkxl, we check that the Jacobian of T at
each point is an orthogonal matrix.

It follows that T preserves the length of curves, and consequently the
Euclidean distance. It is thus an affine isometry.

3. Differentiation and integration

We find

F ′(x) = h
(
b(x), x

)
− h
(
a(x), x

)
+

∫ b(x)

a(x)

h(t, x) dt

5. We reduce to the case where the center of the ball is the origin and work
in polar coordinates.

Warning. C � {0} is not biholomorphically equivalent to C with a closed
disk removed.

7. We again obtain a simple closed curve for a), a curve with a double point
at the origin for b), and a curve with a cusp at the origin for c).

© Springer International Publishing Switzerland 2015  
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8*. Cartan decomposition of the linear group

a) If (ei)1�i�n is an orthonormal basis of eigenvectors of S, the associated
eigenvalues, which are equal to 〈S(ei), ei〉 are strictly positive. It follows
that

∀x ∈ R
n, 〈Sx, x〉 � k‖x‖2, with k = inf

1�i�n
λi.

b) Uniqueness of T comes when S = T 2, then S and T commute. Denoting
the open subset of Sym(n) consisting of strictly positive endomorphisms
by Sym+(n), check that the map S �→ S2 is a bijection on Sym(n) with
invertible differential. If S ∈ Sym+(n) and if ST + TS = 0, we see that
T = 0 by taking a basis which diagonalizes S.

9*. The differential of fS is surjective at A = I. It then suffices to apply
Theorem 1.18. In other words, if T is sufficiently close to S, the quadratic
form qT is equivalent to qS modulo a change of basis which depends differ-
entiably on T .

It is elementary to show that a quadratic form associated to a matrix T
sufficiently close to S (which we suppose to be non-degenerate) has the
same signature as the form associated to S, by Sylvester’s law of inertia
(cf. [Berger 87, Chapter 13]). But the calculation of the differential allows us
to make this result more precise. Under this form, it plays a key role in proof
of the Morse lemma.

10*. Constant rank theorem

See [Demazure 00, Chapter IV].

11*. Morse lemma

The first part is elementary. Using the map g of Exercise 9, we see that

h(x) = tg
(
h(x)

)
Sg
(
h(x)

)
,

and therefore

f(x) = f(0) + tu(x)Su(x) where u(x) = g
(
h(x)

)
· x.

The differential of u at 0 is the identity map, and the inverse function theorem
applies. If y �→ v(y) is the local inverse to u, we have

f
(
v(y)

)
= f(0) + tySy.

13. We find

(x2 + y2 + z2 + a2 − r2)2 − 4a2(x2 + y2) = 0 ;
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a convenient parametrization is given by

(θ, ϕ) �−→
(
(a+ r cos θ) cosϕ, (a+ r cos θ) sinϕ, r sin θ

)
.

15*. We check that the differential of the map

(x, v) �−→
(
f(x), Txf · v

)
at the point (x, v) is surjective when Txf is surjective.

16. The set of lines is the given by the surface

x cos
z

b
− y sin

z

b
= 0,

called the helicoid. ��It is the only ruled minimal surface in R
3, see for

example [Spivak 79, volume 3].��

18. Let C be the intersection. Considering the rank of the matrix(
x y z

2x− 1 y 0

)
we see that C � (1, 0, 0) is a submanifold of dimension 1. If C is itself a
submanifold of dimension 1, then the tangent at (1, 0, 0) will be parallel to
the plane x = 0, and thus the projection of C onto this plane parallel to
the line y = z = 0 will be a submanifold in a neighborhood of (0, 0). The
equation of this projection, obtained by eliminating x is

y2 − z2 + z4 = 0.

This is not a submanifold, since the tangent vectors at 0 are multiples of (1, 1)
and (1,−1).

19. Pseudo-orthogonal group

Let Jp,q be the matrix (
Ip 0
0 −Iq

)
, where p+ q = n.

The condition of the statement is equivalent to

tAJp,qA = Jp,q,

and we proceed as in the case of the orthogonal group by using the map
A �→ tAJp,qA, from Mn(R) to Sym(n).
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22. Position of a hypersurface with respect to the tangent plane

b) It suffices to apply Taylor’s formula.

c) The first assertion also comes from Taylor’s formula (take x in a space
where Q is positive definite, and in a space where Q is negative definite).

Using Exercise 11 allows us to be more precise: there exist smooth func-
tions ϕ1, . . . , ϕn, whose differentials at 0 are independent, defined on a
neighborhood of 0 and such that for x in this neighborhood,

f(x) =
(
ϕ1(x)

)2
+ · · ·+

(
ϕp(x)

)2 − (ϕp+1(x)
)2 − · · · −

(
ϕn(x)

)2
.

This allows us to see the intersection S ∩ T0S � {0} with an appropriate
neighborhood of 0 is mapped by a diffeomorphism to an open subset of
the n− 1 dimensional cone given by the equation

p∑
i=1

y2i −
n∑

i=p+1

y2i = 0,

with the origin removed.

23. The exponential is not a group morphism

b) It suffices to identify the coefficients of t2 in the series expansion of both
sides.

25. The function f can be expanded as an entire series about 0 in D(0, r),
and can be written ∞∑

n=k

anz
n with ak �= 0

where again

akz
k

(
1 +

∞∑
n=1

cnz
n

)
= zkg(z).

Here, k denotes the smallest integer such that ak �= 0. The inverse function
theorem, applied to the function u �→ uk at 1, shows that g can be written
hk, where h is holomorphic on a disk D(0, r′), of radius possibly less than r.
Then, since h(0) = 1, the inverse function theorem also applies to z �→ zh(z)
at 0, whose inverse is the C-diffeomorphism required.

Chapter 2

2. If a has coordinates (x0, y0), and d has equation ux + vy + w = 0, check
that

(dist(a, d))2 =
(ux0 + vy0 + w)2

u2 + v2
.
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It then suffices to use the charts for the manifold of lines seen in the intro-
duction.

4. The unitary and special unitary groups

a) We use the same method as in Section 1.5.2 for the orthogonal group by
showing that the map A �→ tAA from Mn(C) to the set of Hermitian
matrices is a submersion for A such that tAA = I. Warning: the set of
Hermitian matrices of order n is a real vector space of dimension n2.

The exponential map gives, by imitating the proof of Proposition 1.32,
a parametrization defined on a neighborhood of 0 to the vector space of
antihermitian matrices, also of dimension n2.

b) We use the map

A �−→ detA from U(n) to S1 �
{
z ∈ C : |z| = 1

}
,

for example, after noting that a unitary matrix has a determinant of unit
modulus.

c) A direct calculation shows that the special unitary matrices of order 2 can
be written (

a −b
b a

)
,

where of course |a|2 + |b|2 = 1.

5. Projective group

a) We can either use the real Hopf fibration or conjugate the transformation
t �→ at+b

ct+d by stereographic projection iN . We find the map from S1 to S1

defined by

(x, y) �−→

⎛⎜⎜⎜⎝
2(ac+ bd) + 2(ac− bd)x+ 2(ad+ bc)y

a2 + b2 + c2 + d2 + (a2 − b2 + c2 − d2)x+ 2(ab+ cd)y

a2 + b2 − c2 − d2 + (a2 − b2 − c2 + d2)x+ 2(ab− cd)y

a2 + b2 + c2 + d2 + (a2 − b2 + c2 − d2)x+ 2(ab+ cd)y

⎞⎟⎟⎟⎠
It is clear that it is preferable (and more natural!) in this case to consider
S1 as the projective line.

6. Projective quadrics

b) For an appropriate basis of R4, the quadric Q is the set of points whose
homogeneous coordinates satisfy

x2 + y2 + z2 − t2 = 0.
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The last homogeneous coordinate from a point of Q is thus nonzero, and
we finish by sending Q to R

3 by the chart

[x, y, z, t] �−→
(x
t
,
y

t
,
z

t

)
.

c) The equation of Q in homogeneous coordinates can be written as

x2 + y2 − z2 − t2 = 0, and also XY − ZT = 0.

Note that X
Z = T

Y and X
T = Z

Y , and define a smooth map f = (f1, f2)
from Q to P 1

R× P 1
R by setting

f1([X,Y, Z, T ]) =

{
[X,Z] for (X,Z) �= (0, 0)

[T, Y ] for (T, Y ) �= (0, 0)

and

f2([X,Y, Z, T ]) =

{
[X,T ] for (X,T ) �= (0, 0)

[Z, Y ] for (Z, Y ) �= (0, 0).

d) If the quadratic form is of type (r, s) (with rs �= 0 if we require that Q be
nonempty), we check that Q is diffeomorphic to the quotient of Sr−1×Ss−1

by the “double antipodal map” (x, y) �→ (−x,−y).

8*. To embed T 3 in R
4, the idea is to “thicken” the embedding (θ, ϕ) �→

(eiθ, eiϕ) from T 2 into C
2 � R

4. Take for example

(θ, ϕ, ψ) �−→
(
eiθ
(
1− cosψ

2

)
, eiϕ

(
1− sinψ

2

))
.

The product of the standard embedding with itself gives an embedding of
S2 × S2 into R

6, whose image is included in a sphere S5. It then suffices to
use an appropriate stereographic projection.

11. A little more on submersions

b) Let X be the hyperbola with equation xy = 1 in R
2, and f the restriction

of the first projection to X . This is a submersion (even a local diffeomor-
phism) at every point which it is not surjective.

c) It suffices to remark that the Hopf fibration is trivializable above S2 with
one point removed.

13. Veronese surface

d) We remark that V (P 2
R) is contained in a sphere S4, and we take a

stereographic projection with respect to a point not in the image.



Solutions to the Exercises 357

The explanation of this mysterious formula is the following. We associate
to each line v the operator pv of orthogonal projection onto v. In an
orthonormal basis where a unit vector in the v direction has coordinates
(x, y, z), the matrix of pv is ⎛⎝x2 xy xz

xy y2 yz
xz yz z2

⎞⎠.

In the same way we can associate to a k-plane P of R
n equipped with

its Euclidean structure the orthogonal projection operator onto P , thus
obtaining an embedding of the Grassmannian Gk,n of k-planes of Rn into
Euclidean space.

14. A useful fibration

b) Every unit vector v can be completed to an orthonormal basis depending
differentiable on v, provided that v is not collinear to a given vector v0.
This comes from the Gram-Schmidt orthonormalization procedure.

16. Conformal compactification of Rn; Möbius group

The following three transformations: isometry x �→ Ax, homothety x �→ λx
and translation x �→ x+ a are projective maps defined by the matrices⎛⎜⎜⎜⎜⎝

1 0 . . . 0 0
0
...
0

A

0
...
0

0 0 . . . 0 1

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
1
λ 0 . . . 0 0
0
...
0

In

0
...
0

0 0 . . . 0 λ

⎞⎟⎟⎟⎟⎠,

and ⎛⎜⎜⎜⎜⎝
1 2a 0
0
...
0

In
ta

0 0 . . . 0 1

⎞⎟⎟⎟⎟⎠.

Similarly, we associate to inversion x �→ x
|x|2 the projective map defined by⎛⎜⎜⎜⎜⎝

0 0 . . . 0 1
0
...
0

In

0
...
0

1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠.
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17*. Blowup

c) The inverse diffeomorphism is given by r(x, y) =
(
[x, y], (x, y)

)
.

d) It suffices to apply the Hadamard lemma to c.

e) One obtains a diffeomorphism from M to E by proceeding as follows: to
a line d in R

2 we associate the orthogonal line that passes through the
origin, and the intersection of this line with d. Explicitly this map is given
by

[(u, v, w)] �−→ ([u, v],−wuu2 + v2,−wvu2 + v2).

f) The map ϕ̂ is necessarily given by

ϕ̂([x, y], x, y) =
(
[ϕ(x, y)], ϕ(x, y)

)
if (x, y) �= (0, 0)

ϕ̂([X,Y ], 0, 0) = ([dϕ0 · (X,Y )], 0, 0).

One must check this map is smooth. Denote the coordinates of ϕ by f
and g, and start with the parametrization

ψ : (x, t) �−→
(
[1, t], (x, xt)

)
.

For x �= 0, we have

(ϕ ◦ ψ)(x, t) =
(
[f(x, xt), g(x, xt)], f(x, xt), g(x, xt)

)
.

By the Hadamard lemma, there exist smooth functions f1, f2, g1, g2, equal
at 0 to the partial derivatives of f and g such that

f(x, xt) = xf1(x, xt)+xtf2(x, xt) and g(x, xt) = xg1(x, xt)+xtg2(x, xt).

Then

(ϕ◦ψ)(x, t)=
(
[f1(x, xt)+tf2(x, xt), g1(x, xt)+tg2(x, xt)], f(x, xt), g(x, xt)

)
.

However, by the hypotheses on ϕ,(
f1 + tf2
g1 + tg2

)
=

(
f1 f2
g1 g2

)(
1
t

)
is nonzero for all t if x is sufficiently close to 0. The remainder is left to
the reader.

Note. This construction works in exactly the same way in complex
geometry, where it is especially important. See for example [Audin 04,
Chapter VIII].

18. In Exercise 5, Γ = Gl(n + 1,R) and Γo = R
∗I. The natural action of

SO(n+ 1) on X = Pn
R is effective if and only if n is even.
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19. The map z �→ zn descends to the quotient and gives a continuous and
bijective map from C/Γ to C; the inverse bijection is also continuous and is
the map which sends z to any of its n-th roots, identified modulo Γ. This
lets us transport the C-differential structure to C/Γ. The quotient map is
then smooth, but its differential at 0 vanishes.

22. Lens spaces

a) This comes from the fact that 1 is an eigenvalue of every matrix in
A ∈ SO(2n+ 1).

b) More generally, we can consider the action of Z/pZ on S3 given by

k · (z, z′) = (ukz, ukrs′),

where r is a number that is relatively prime with p. Let the manifold thus
obtained be denoted Lr,p. One proves, and this is difficult, that L1,5 and
L2,5 are not homeomorphic. For more details on these manifolds, which
have subtle topological properties, see [Wolf 84] and [Milnor 66].

24. Coverings and local diffeomorphisms

a) It is clear that f(X) is open (since f is a local diffeomorphism) and closed
(it is a compact subset of Y ), which shows that f is onto. From there it
suffices to use Theorem 2.14.

b) For example, consider the covering of the projective space by the sphere
and restrict it to the sphere with one point removed.

25. S1 with a finite set of points removed is not connected as soon as there
are more than two points!

26. No. For example, we can restrict ϕi × ψj to an open subset of Ui × Vj

which is not a product of open subsets.

28*. Connected sum

b) I was very discrete on the issue of the uniqueness of the connected sum.
The only reference I know of on this subtle issue is a series of exercises
in [Dieudonné 72, XVI.26, problems 12 to 15].

d**) It suffices to note that R
2�P 2

R is diffeomorphic to P 2
R with a point

removed, and to use Exercise 17 e).

30. Let f : M �F → {0, 1} be a continuous function. We must show that f
is constant. If a ∈ F there exists an open subset U containing a but none of
the other points of F .

The function f is constant on U � {a}, as it is a connected subset by the
hypothesis on dimension. It extends by continuity to U , and to a continuous
map f̃ : M → {0, 1}, which is constant since M is connected.
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Chapter 3

1. The Stone-Weierstrass theorem applies since by Corollary 3.5 the algebra
of smooth functions separates points.

3. We argue by contradiction using Taylor’s formula.

4. Let f be a continuous function which vanishes at 0, and is positive or zero
in a neighborhood of 0, and let g =

√
f . Then

δḟ = δġ2 = g(0)δġ = 0,

so δḟ = 0. From linearity we deduce that δ vanishes for all germs that vanish
at zero (by writing f = sup(f, 0) + inf(f, 0)), and then for all germs.

5. Let f be the function of a real variable defined by f(x) = exp(−1/x) if
x > 0 and f(x) = 0 if x � 0, and let g be the function x �→ f(−x). Now f
and g are smooth, and have non-vanishing germs at 0, while fg = 0. On the
other hand, the ring of germs of analytic functions is a subring of the ring
R[[X ]] of formal power series, which is an integral domain.

7. North-South and North-North dynamics on the sphere

a) It suffices, as in Section 2.3, to write i−1
N ◦ht ◦ iN in the chart (S2

�S, iS).
Then

(iS ◦ i−1
N ◦ ht ◦ iN ◦ i−1

S )(y) = e−ty.

d*) It suffices to start with a one-parameter group of translations.

Remark. Checking the Poincaré-Hopf theorem for these examples (Corol-
lary 8.14) is easy but instructive.

8. Start with the fact, which is clear but fundamental, that a vector field is
invariant under its own flow. If [X,Y ] = 0, by Theorem 3.38

d

ds
ϕs∗Y|s=0 = 0.

But we also have

d

ds
ϕs∗Y|s=so =

d

ds
ϕs∗(ϕso∗)Y|s=0 = −[X,ϕso∗Y ],

and
[X,ϕso∗Y ] = ϕso∗[ϕ−so∗X,Y ] = ϕso∗[X,Y ] = 0.

Thus ϕs∗Y = Y for all s. However the flow of ϕs∗Y is ϕs ◦ ψt ◦ ϕ−s by
Proposition 3.37. The result is elementary in the other direction.
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9. It suffices to prove the result for open subsets of Rn. Taking the vector
fields ∂i for Y , we see that the coefficients of X are (locally) constant. We
can then take xi∂i as the test vector field.

12*. Examples of parallelizable manifolds

a) We use Exercise 10 by remarking that there is more than one way to view
the unit sphere of R4 as{

(z, z′) ∈ C
2 : |z|2 + |z′|2 = 1

}
.

b**) Let T be the vector field z �→ iz on S1 seen as the set of complex
numbers z of modulus 1. With Sn embedded in the usual way in R

n+1,
introduce (n + 1) vector fields X i whose value at x is the orthogonal
projection onto TxS

n of the i-th basis vector ei. Explicitly,

X i
x = ei − xix.

Now introduce n+ 1 vector fields on S1 × Sn defined by

xiT +X i,

and check that their values at every point (z, x) of S1×Sn are independent
vectors.

15*. Transitivity of the group of diffeomorphisms

a) It suffices to use the flow of a vector field of the form f(b − a), where f
is a bump function with support contained in B(0, r′) and equal to 1 on
B(0, r) (of course r < r′!).

c) Say that two points of M are equivalent if they correspond under a diffeo-
morphism. We obtain an equivalence relation whose equivalence classes
are open by b).

d) An argument analogous to a) lets us argue by induction on k Note that
the result is grossly false in dimension 1, as soon as k � 3.

16*. Normal form of a non-vanishing vector field

a) The Jacobian matrix of F at 0 is⎛⎜⎜⎝
X1(0) 0 . . . 0
X2(0)

...
Xn(0)

In−1

⎞⎟⎟⎠
b) We have

(F−1 ◦ ϕX
t ◦ F )(x1, . . . , xn) = (x1 + t, x2, . . . , xn),

and we apply Proposition 3.37.
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20. Normal bundle

c) Let f1, . . . , fp be the components of f . By hypothesis the differentials dfi
are everywhere linearly independent. Thus the normal bundle admits p
everywhere linearly independent sections, given by

Ni =

n∑
k=1

∂kfi∂k.

21*. Tautological bundle

a) Above the open subset Ui = {[x] ∈ Pn
R : xi �= 0}, take the trivialization

([x], v) �−→ ([x], vi).

b) See Exercise 17 e) of Chapter 2.

c**) The vector bundle γn is of rank 1. It is thus a trivialization if and only
if there exists an everywhere non-vanishing section. We can then suppose
this section has norm 1 everywhere (for the norm on the fibers induced
by the Euclidean norm of Rn+1). We thus obtain a right inverse s of the
canonical projection p : Sn �→ Pn

R. This is impossible: the map s will be
surjective as it is open and Sn is compact. We deduce that p is injective,
a contradiction.

22*. Constructions of some vector bundles

See for example [Hirsch 76, Chapter 4]. In fact, every “functorial” construc-
tion on vector spaces (dual, product, tensor, etc.) has a meaning for vector
bundles.

23**. Tangent bundle to Pn
R

b) To the equivalence class of (x, v) we associate the linear map from (γn)[x]
to (γ⊥

n )[x] which maps λx to λv. We thus obtain a morphism of vector
bundles from TPn

R to Hom(γn, γ
⊥
n ) which is injective on the fibers. This

is an isomorphism since two fibers have the same rank.

We can also show that the Whitney sum of TPn
R and the trivial bundle of

rank 1 is isomorphic to the Whitney sum of n+1 copies of γn (see [Milnor-
Stasheff 74, p. 45]), which requires a little more agility in handling vector
bundles, without being really difficult.

24*. Tubular neighborhood of a submanifold

Take inspiration from the proof of Lemma 6.18, or see [Hirsch 76, 4.5],
[Berger-Gostiaux 88, 2.7].
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Chapter 4

3. The multiplicative group of quaternions

b) Imitate the proofs of Section 1.6.

d) It suffices to redo the presentation of Exercise 2 a). We note in passing
that the Lie algebra of the group of quaternions of norm 1 consists of pure
quaternions.

4. Let ρ : G → H be a local diffeomorphism. By the inverse function
theorem, there exists an open subset U of G containing the identity such
that U ∩Kerρ = {e}, thus Ker ρ is a discrete subgroup of G. We then easily
see that ρ descends to the quotient as a Lie group isomorphism from G/Kerρ
to H .

5*. Quaternions and rotations

a) Note that
ρ(s) · h+ ρ(s) · h = s(h+ h)s.

On the other hand,

‖ρ(s) · h‖2 = shsshs = s‖h‖2s = ‖h‖2ss = ‖h‖2.

b) By a), det
(
ρ(s)

)
= ±1. However since s runs over a connected space, the

values taken by the determinant form a connected subset of R.

c) The linear tangent map to ρ at e associates to the pure quaternion σ the
linear map Teρ(σ) defined by

Teρ(σ) · h = σh+ hσ = [σ, h].

We deduce that Teρ is injective by Exercise 2 d).

d) The image of ρ is open and closed. The fact that Ker(ρ) = ±e again
comes from Exercise 2.

e) Write s = Re(s) + σ, where σ is pure. Then ρ(s) · σ = σ.

e2) This comes from the transitivity of the action of SO(3) on the unit
sphere and the surjectivity of ρ.

e3) The quaternion s = α + βt is thus conjugate in H to α + iβ. To
calculate the angle we can reduce to the previous case. The axis of
rotation of ρ(s) is then i. To find the angle, it suffices to calculate the
transformation of a vector orthogonal to i, for example j. We obtain

ρ(s) · j = (α+ iβ)j(α− iβ) = (α2 − β2)j + 2αβk.

If the axis of rotation is oriented by i, the angle θ satisfies

cos θ = α2 − β2 and sin θ = 2αβ.
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7. Examples of exponentials

c) The image of the exponential of Sl(2,R) is the set of matrices of Sl(2,R)
whose eigenvalues are positive.

8. Let h be such a morphism. Then u �→ h(eiu) is a morphism from R to S1,
which must be of the form u �→ eiau by Proposition 4.20. As this morphism
must be periodic with period 2π, a is an integer.

9. Comparison between SL(2,R) and the Lorentz group of dimension 3

For questions b) and c), the arguments are essentially the same as those
of Exercise 5.

For d), look in Exercise 16 of Chapter 2 what happens in dimension 1.

11*. Four.

13. Some homogeneous spaces

a) Once more it suffices to note that

S2n+1 =

{
(z0, . . . , zn) ∈ C

n+1 :

n∑
i=0

|zi|2 = 1

}
.

We thus check that U(n + 1) and SU(n + 1) act transitively on S2n+1,
with the stabilizer of (1, 0, · · · , 0) consisting of matrices of the form⎛⎜⎜⎝

1 0 . . . 0
0
...
0

A

⎞⎟⎟⎠,

where A belongs to U(n) or SU(n) in each case.

b) Remark. ��In the same way, the group

Sp(n+ 1) = Gl(n+ 1,H) ∩O(4n+ 4)

acts transitively on

S4n+3 =

{
(q0, . . . , qn) ∈ H

n+1 :

n∑
i=0

|qi|2 = 1

}
,

and there is a diffeomorphism S4n+3 � Sp(n+ 1)/Sp(n).��

It was shown in the 1950s by Armand Borel that we thereby obtain all
compact groups that act transitively on the spheres, after we add three
exceptional cases.
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c) The analogous embedding of U(n) into SU(n+ 1) is given by

A �−→

⎛⎜⎜⎝
det(A) 0 . . . 0

0
...
0

A

⎞⎟⎟⎠.

14*. Orbits of a compact group action

In the case of Pn
R, the orbits of G � O(n) other than the fixed point are

diffeomorphic to Sn−1, with the exception of one of them which is diffeomor-
phic to Pn−1

R.

In the case of Pn
C, the orbits of G � U(n) other than the fixed point

are diffeomorphic to S2n−1, with the exceptions of one of them which is
diffeomorphic to Pn−1

C.

The structure of orbits of a compact Lie group acting differentiably on
a manifold is well understood. See for example [Audin 04, Chapter I] or
[Duistermaat-Kolk 99].

16*. Manifold of matrices of a given rank

The matrices M and PMQ−1 have the same rank. Conversely, if M has
rank r, there exists matrices P and Q in Gl(p,R) and Gl(q,R) respectively
such that

M = P

(
Ir 0
0 0

)
Q−1.

The orbits of the action of Gl(p,R) × Gl(q,R) on Mp,q(R) are matrices of
rank r (0 � r � inf(p, q)). From this we deduce the set of matrices (p, q) of
rank r is a homogeneous space of dimension r(p + q − r).

17*. ��The adjoint representation is an analytic function on G with values
in Gl(dimG,C). It is thus constant by the maximum principle, since G is
compact and connected.��

Chapter 5

2*. Forms of degree 2; symplectic group

a) If ω �= 0, there exists necessarily independent vectors x and y such that
ω(x, y) �= 0, hence two independent vectors a and b such that ω(a, b) = 1.
The kernel of the linear forms x �→ ω(a, x) and x �→ ω(b, y) are distinct
hyperplanes, whose intersection is of codimension 2, and furnishes the
subspace E′ required. This lets us proceed by induction on the dimension
of E.
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b) By the definition of the exterior product, F contains
⋂

1�i�2p Ker θi. To
check the opposite inclusion, we introduce the basis (ei)1�i�n whose dual
is (θi)1�i�n, and note that

ω(x, ei) =

{
−θi+p(x) for 1 � i � p

θi−p(x) for p+ 1 � i � 2p

c) Let (αi)1�i�2p be a family of 2p linear forms on a vector space. Noting that
the multilinear alternating forms of even degree generate a commutative
subalgebra of

∧
E∗, we prove by induction on k that(

p∑
i=1

θ2i−1 ∧ θ2i

)p

= p! θ1 ∧ · · · ∧ θ2p.

d) Let

Jn =

(
0 In

−In 0

)
.

The matrices of endomorphisms of R2n leaving ω invariant are character-
ized by the relation

tMJnM = Jn.

From here, to show that Sp(n,R) is a Lie group, we proceed as we did
for the orthogonal group, except that the map M �→ tMJnM sends M2nR

to the antisymmetric matrices. The Lie algebra of Sp(n,R) consists of
marries such that

tMJn + JnM = 0,

which is to say block matrices

(
A C
B D

)
such that

⎧⎪⎨⎪⎩
tB = B
tC = C
tA = −D

3*. An application of exterior algebra to Lie groups

a) and b) To g ∈ Gl(4,R), associate the map ρ(g) from E to E defined by

ρ(g)(α ∧ β) = tg−1(α) ∧ tg−1(β)

if α and β are linear forms. The calculations from the end of Section 5.2
show that ρ is a group morphism, and sends Sl(4,R) to O(3, 3). Check
that the differential of ρ at the identity is injective. It is then surjective for
dimensional reasons. Thus Im(ρ) is an open subgroup (and thus closed)
of O(3, 3) which is connected as it is the continuous image of a connected
set. It is thus the connected component of the identity of O(3, 3).
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6*. Forms invariant under a group

a) Use the fact that

ω = iX(dx0 ∧ · · · ∧ dxn), where X is the radial vector field.

To see that Ω is the only form of degree n which is invariant under
Sl(n+ 1,R), note first that Sl(n+ 1,R) acts transitively on R

n+1
� {0},

and such a form is determined on R
n+1

� {0} by its value at e0 =
(1, 0, . . . , 0) for example. We thus reduce to showing that e1∗ ∧ · · · ∧ en∗

is the only n-linear alternating form (up to a factor) which is invariant
under the subgroup of Sl(n + 1,R) which fixes e0 (here we denoted the
basis dual to the canonical basis of Rn+1 by (ei∗)0�i�n).

b) Take inspiration from 12, c4) further below.

7. The primitive of
α =

∑
1�i<j�n

αijdx
i ∧ dxj

thus obtained is

β =
∑

1�i<j�n

(∫ 1

0

αij(ux) du

)
(xi dxj − xj dxi).

8. Forms invariant under a Lie group

b) It suffices to calculate dω(V0, . . . , Vp) for left invariant vector fields by
applying Theorem 5.24.

c) We have dX−1 = −X−1dXX−1 (compare to the case of the linear group
seen in Section 1.2). If Ω = X−1dX , we have

dΩ + Ω ∧ Ω = 0,

where the matrix Ω ∧ Ω is defined by

(Ω ∧Ω)ji =
∑
k

(Ω)ki ∧ (Ω)jk.

If U and V are two left invariant vector fields, we deduce that

dΩ([U, V ]) = (Ω ∧ Ω)(U, V ).

We discover the expression for the bracket by evaluating each side at the
identity element.

d) Restrict the matrices X−1dX and (dX)X−1 to G. The vector space of left
invariant forms of degree 1 is generated by a−1da and a−1db, and that of
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the right invariant forms by a−1da and −a−1bda + db. The left invariant
(resp. right invariant) forms of degree 2 are proportional to a−2db ∧ da
(resp. to a−1db ∧ da): a very simple example of a noncommutative group
makes property b) false.

9. Interior product and Lie derivative

We remark that the linear operator Q = LX ◦ iY − iY ◦ LX decreases the
degree of a homogeneous form by 1, and that if α is homogeneous of degree p,
we have

Q(α ∧ β) = Q(α) ∧ β + (−1)pα ∧Q(β).

From here, one imitates the proof of the Cartan formula.

Note. A little terminology to help explain this property: d is an antiderivation
of degree 1, and iX and Q are antiderivations of degree −1.

12. Forms invariant under rotation

a) Set r =
√
x2 + y2. One has α = d(r2/2), by the invariance of α under the

action of SO(2), since the differential commutes with pullback. On the
other hand, β = iXω, where X is the radial vector field defined by Xp = p
if p ∈ R

2, and ω = dx ∧ dy. For g ∈ SO(2) we have

(g∗β)p(v) = βg(p)(g(v)) since g is linear

= ωg(p)

(
g(p), g(v)

)
= det

(
g(p), g(v)

)
= det(p, v) since det(g) = 1

= βp(v).

b) If a form γ ∈ Ω1(R2) is SO(2)-invariant, it is determined once we know
the linear forms γp as p runs over a half-line.

Let the rotation of angle θ be denoted Rθ. If v = (v1, v2) is a vector in R
2,

then a priori

γ(r,0)(v) = a(r)v1 + b(r)v2, where a and b are smooth functions on R
+.

Now

γ(r cos θ,r sin θ)(v) = γ(r,0)(R
−1
θ · v)

= a(r)(v1 cos θ + v2 sin θ) + b(r)(−v1 sin θ + v2 cos θ).

In other words,

γ(x,y)(v) =
a(r)

r
(xv1 + yv2) +

b(r)

r
(−yv1 + xv2)

is

γ =
a(r)

r
α+

b(r)

r
β.
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Now if γ is defined on all of R2, we have

γ(r,0)(v) = a(r)v1 + b(r)v2,

where a and b are smooth odd functions on R. By Hadamard’s lemma,
we have a(r) = ra1(r) and b(r) = rb1(r), where a1 and b1 are smooth
and additionally even. Applying Taylor’s formula, we see that if f is an
even function of class Ck (1 � k � ∞) on R, then t �→ f(

√
t) is also Ck

on [0,∞)1. Reusing the preceding reasoning, we see that a SO(2)-invariant
form on R

2 can be written

f(r2)α+ g(r2)β,

where f and g are smooth functions on [0,∞).

c1) This was treated in a) (the dimension is not important here), c2) is
classical, and c3) is a consequence of the decomposition

R
3 = Rp

⊕
TpS

2(‖p‖),

where S2(r) denotes the sphere with center 0 and radius r.

c4) For p ∈ S2, we define sp ∈ SO(3) by

sp(p) = p; sp(v) = −v if 〈v, p〉 = 0.

Now, if γ ∈ Ω1(S2) is SO(3)-invariant, we have

γp(v) = (s∗pγ)p(v) = γp(sp · v) = −γp(v),

where γ = 0.

d) Using a generalization of c4) that we leave to the reader, the same result
is true for SO(n)-invariant 1-forms on R

n
� {0}. If 1 < k < n − 1, we

can use the same ideas to prove that there are no SO(n)-invariant k-forms
on R

n
� {0} other than 0. Writing ω = dx1 ∧ · · · ∧ dxn, we see that the

SO(n)-invariant n-forms are of the form f(r)ω, and the SO(n)-invariant
(n− 1)-forms are of the form f(r)iXω.

13. We find

(I−1)∗α =
4du ∧ dv

(1 + u2 + v2)2
.

14*. Darboux’s theorem

See [Arnold 78, Chapter 8, § 43].

1. A function g is said to be of class C1 on [0,∞) if it is continuously differentiable
at 0 and of limt→0 g′(t) = g′

d
(0). Denote the function [0,∞) thus obtained by g′.

We say that g is Ck on [0,∞) if g′ is Ck−1, etc.
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17*. Darboux’s theorem by Moser’s trick

a) See Exercise 2.

b) We write ωt = ω̃+ t(ω− ω̃), and we remark that the coefficients of (ω− ω̃)
can be made less than a given ε > 0 for an appropriate choice of r. Then

ωn
t = ω̃n(1 + f),

where f is bounded in absolute value by n!ε.

c) Let X(t) be the infinitesimal generator of ϕt. By Theorem 5.30,

d

dt
ϕ∗
tωt = ϕ∗

t (ω − ω̃ + diX(t)ωt).

Furthermore, by the Poincaré lemma, there exists a form α of degree 1 on
B(a, r) such that dα = ω − ω̃. To check that d

dtϕ
∗
tωt = 0, it suffices to

choose X(t) such that
α+ iX(t)ωt = 0.

Since the form ωt has rank n everywhere, we see by Exercise 2 that this
condition determines a unique vector field X(t). We thus have

ϕ∗
tωt = ϕ∗

0ω̃ = ω = ϕ∗
1ω.

Chapter 6

1. Orientability and oriented atlases

a) Let (Ui, ϕi)i∈I be an atlas of M . Write Φi = Tϕi. The transition maps
from the atlas (TUi,Φi)i∈I of TM are

(ϕj ◦ ϕ−1
i )(x, u) =

(
(ϕj ◦ ϕ−1

i )(x), Tx(ϕj ◦ ϕ−1
i ) · u

)
.

The Jacobian matrices are of the form(
Tx(ϕj ◦ ϕ−1

i ) 0
A Tx(ϕj ◦ ϕ−1

i )

)
and their determinant equals

(
det
(
Tx(ϕj ◦ ϕ−1

i )
))2

.

2. Orientability and volume forms

a) If ω = dx1 ∧ · · · ∧ dxn, check that i∇fω induces a volume form on f−1(0).

b) Similarly, the form α defined by

αx(v1, . . . , vn−p) = ω(∇f1
x , . . . ,∇fp

x , v1, . . . , vn−p)

induces a volume form on f−1(0).
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c) No, since every compact or second countable manifold, whether orientable
or not embeds into an appropriate R

n. Conclusion: if X ⊂ R
n is a

nonorientable submanifold, it is impossible to realize X as the set of zeros
of a submersion defined on a whole neighborhood of X .

4. If one of the pk is odd, I(p0, . . . , pn) = 0. If they are all even,

I(p0, . . . , pn) =

n∏
k=0

Γ
(
1+pk

2

)
Γ(1+n

2 )
.

6. We find
4πa2c

3
.

7. Archimedes’s formula

a) Let ω be the volume form x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy on the sphere
S2 ⊂ R

3.

It will be convenient to consider

f : (ϕ, θ) �−→ (cos θ cosϕ, cos θ sinϕ, sin θ)

as a diffeomorphism from S1 × (−π2, π2) to S2
� {N,S}. For z �= 0, we

have

f∗ω = f∗
(
dx ∧ dy

z

)
= cos θ dϕ ∧ dθ,

thus f∗ω = cos θ dϕ ∧ dθ on all of S2
� {N,S} by continuity. As

cos θ dϕ ∧ dθ = −d(sin θ dϕ), we can take the following form as a primitive
of ω on S2

� {N,S}:

(f−1)∗(− sin θ dϕ) =
z(y dx − x dy)

x2 + y2
=

z(y dx− x dy)

1− z2
.

Another possible primitive of cos θdϕ ∧ dθ is (1− sin θ)dϕ. Thus

(f−1)∗
(
(1− sin θ) dϕ

)
=

(1 − z)(x dy − y dx)

1− z2
=

x dy − y dx

1 + z
.

The form above, which is defined on S2
� {S}, is again a primitive of ω.

b) We have∫
Σh,k

ω =

∫
f−1(Σh,k)

cos θ dϕ ∧ dθ =

∫
∂f−1(Σh,k)

− sin θ dϕ = 2π(k − h).

By continuity (or by using the other primitive) this formula is again valid
if h = −1 or k = 1.
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8*. Haar measure of a Lie group

a) This is a particular case of what we saw in Exercise 8 of Chapter 5 on
invariant forms on a Lie group.

b) Of course we find respectively dx, x−1dx, dx ∧ dy (if z = x + iy),
dx1 ∧ · · · ∧ dxn.

c) If Y and X = (xj
i )1�i, j�n are two (n, n) matrices, the matrix Y X can be

obtained by juxtaposing n column matrices Y Xj , where Xj = (xj
i )1�i�n.

For fixed j, by the results of Section 5.2.2

Y ∗
( ∧

1�i�n

dxj
i

)
= det(Y )

∧
1�i�n

dxj
i ,

thus

L∗
Y

( ∧
1�i, j�n

dxj
i

)
=
(
det(Y )

)n ∧
1�i, j�n

dxj
i ,

hence the invariance under left translations of

det(X)−n
∧

1�i, j�n

dxj
i .

The invariance under right translations is seen in the same way.

9*. Compact subgroups of the linear group

The group G is closed in Gl(n,R), and is thus a Lie subgroup. Abusing
notation, denote the right Haar measure of G by dg. Let ϕ be any positive
definite quadratic form on R

n. Write

q(x) =

∫
G

ϕ(gx) dg.

By linearity of the integral, we obtain a quadratic form. This form is posi-
tive definite, as q(x) is obtained by integrating the strictly positive function
(for x �= 0) g �→ ϕ(gx) against the volume. Finally, since the diffeomorphism
Rh of G preserves the orientation, we have

q(x) =

∫
G

R∗
h(ϕ(gx) dg) =

∫
G

ϕ(ghx)R∗
h dg

=

∫
G

ϕ(ghx) dg = q(hx).

In other words, G is included in the orthogonal group of the quadratic form q.
This quadratic form which is positive definite is equivalent to the standard
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form 〈x, x〉, which can be seen by noting there exists a g ∈ Gl(n,R) such
that q(x) = 〈gx, gx〉. As a result

gGg−1 ⊂ O(〈 , 〉) = O(n).

In particular, this result implies that O(n) is a maximal compact subgroup
of Gl(n,R) (which is to say if H ⊃ O(n) is compact, then H = O(n), and
that every maximal compact subgroup of Gl(n,R) is conjugate to O(n)).

��More generally, one shows that all maximal compact subgroups of a Lie
group are conjugate. See for example [Helgason 78].��

10. Modulus of a Lie group

a) If ω is left invariant, then R∗
gω is also, since right and left translations

commute. This is also a volume form since Rg is a diffeomorphism. The
remainder is left to the reader.

b) The only compact subgroup of R∗
+ is 1.

c) If g is the affine transformation x �→ ax+ b, mod(g) = a−1.

d) See the reference given in the statement.

11**. Cauchy-Crofton formula

a) It suffices to check the invariance under rotations about the origin and
translations. Denoting an oriented line by (p, θ), a rotation of angle α
transforms (p, θ) to (p, θ + α). Translation by the vector (a, b) transforms
(p, θ) to (p+ a cos θ + b sin θ, θ).

b) Introduce the angle α of the oriented tangent to the curve with arc-length
parameter s with the axis Ox. Now,

(
x′(s), y′(s)

)
= (cosα, sinα), and we

see that F is smooth since

F (s, ϕ) =
(
x(s) sin(α+ ϕ)− y(s) cos(α+ ϕ), ϕ+ α− π

2

)
.

We note that p is also equal to x(s) cos θ + y(s) sin θ, thus (with a little
abuse of notation)

dp = (x′(s) cos θ + y′(s) sin θ) ds+ (something) dθ

= cos(α − θ) ds+ (something) dθ = sinϕds+ (something) dθ.

However F ∗dθ = dϕ+ (something) ds, where

F ∗(dp ∧ dθ) = sinϕds ∧ F ∗dθ = sinϕds ∧ dϕ.

c) The formula shows that (s, ϕ) is a critical point if and only if ϕ = kπ:
the critical values are the tangent lines to the curve. They form a set of
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measure zero. It is not necessary to invoke Sard’s theorem to see this,
since the set of critical points is already of measure zero. Now, if a line
D is not tangent to C at any point, D ∩ C is finite: otherwise, being a
compact set, it will have an accumulation point which would necessarily
be a point of tangency of D with C.

As we will not use Stokes’s theorem, we can consider dp ∧ dθ and
sinϕds ∧ dϕ as positive measures (ϕ ∈ [0, π]!). Let Mk be the set of
lines such that card(D∩C) = k, and M ′

k its inverse image under F . Then∫
M ′

k

sinϕds ∧ dϕ = k

∫
Mk

dp ∧ dθ,

hence ∑
k

∫
M ′

k

sinϕds ∧ dϕ =

∫
M

card(D ∩ C) dp ∧ dθ.

The left hand side equals∫
[0,L]×[0,π]

sinϕds ∧ dϕ = L

∫ π

0

sinϕdϕ = 2L.

13. Archimedes’s theorem

See [Berger-Gostiaux 88, 6.5].

14. Laplacian

a) We have
fΔg − gΔf = div(f∇g − g∇f).

b) Start with the identity

fΔf = div(f∇f) + 〈∇f,∇f〉.

15*. Tubular neighborhood of a curve

a) Let n(s) be the unit normal to c at a point corresponding to parameter s,
chosen so that the orthonormal frame

(
c′(s), n(s)

)
is positively oriented.

The tubular neighborhood is given by the parametrization

F : (s, t) �−→ c(s) + tn(s) with s ∈ [0, L] and t ∈ [−r, r].

If we denote the curvature by k(s), we have

∂F

∂s
=
(
1− tk(s)

)
c′(s)

∂F

∂t
= n(s)
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and therefore

F ∗(dx ∧ dy) = det

(
∂F

∂s
,
∂F

∂t

)
ds ∧ dt =

(
1− tk(s)

)
ds ∧ dt.

Then

area
(
Vr(c)

)
=

∫
Vr(c)

F ∗(dx ∧ dy) =

∫
[0,L]×[−r,r]

(
1− tk(s)

)
ds dt.

The last integral equals∫ L

0

(∫ r

−r

(
1− tk(s)

)
dt

)
ds =

∫ L

0

2r ds = 2rL.

Chapter 7

3*. A useful lemma... used in Section 7.4.4

a) Such a homotopy is given by

H(t, x) =
f(tx)

t
if t �= 0,

H(0, x) = T0f · x.

(everything works thanks to Hadamard’s lemma).

b) Replacing f by f − f(0), we can reduce to the case where f(0) =
0. If f preserves orientation, T0f ∈ Gl+(n,R), which is connected
(indeed Gl+(n,R) is diffeomorphic to R

n(n+1)/2×SO(n) by Exercise 8 of
Chapter 1) and SO(n) is connected by Theorem 4.28.

Note. These arguments are known as “Alexander’s trick”.

4*. Examples of linkings

a**) If (c, d) is a pair of smooth curves in S3, there exists a point p which
does not belong to Im(c)∪Im(d) by the easy part of Sard’s theorem. Let h
by a diffeomorphism from S3

� {p} to R
3 preserving orientation. Then by

the preceding exercise and Proposition 7.34, E(h ◦ c, h ◦ d) is independent
of h. The result obtained no longer depends on the choice of p, by c) of
the preceding exercise (we let the reader fill the holes).

b) We use the fact that S2 with a point removed is an open subset trivializing
a diffeomorphism to R

2. Then if a, b, c, d are four distinct points of S2,
we can always suppose these belong to such an open subset U . Further,
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we can join a to c, and b to d by smooth disjoint paths contained in U .
Then, using the trivialization of H , we easily see that the pair of curves(
H−1(a), H−1(b)

)
and

(
H−1(c), H−1(d)

)
are homotopic. For an explicit

calculation, take for example a = N and b = S: after a suitable stereo-
graphic projection, the curves H−1(b) and H−1(a) become a circle in the
x0y plane and the axis 0z in R

3.

c) Take as a target the calculation of the degree of (1, 0, 0). We find the
linking number equals 2.

5*. Existence of maps from Sn to Sn of every degree

b) Let ip denote stereographic projection with respect to p. The function g
defined by

g(x) =

{
i−1
p

(
f(‖x‖2)x

)
if ‖x‖ < 1

p if ‖x‖ � 1.

is then smooth as soon as f tends to infinity “sufficiently fast”, for example
if f(t) = et.

c) Let ϕ : Rn → V be a diffeomorphism to an open subset V of X containing
m such that ϕ(0) = m, and let U = ϕ

(
B(0, 1)

)
. Then the map h : X → Sn

defined by

h(x) =

{
g
(
ϕ−1(x)

)
if x ∈ V

p if x /∈ V

works.

d) It is clear that deg(h) = ±1. The degree equals 1 if we oriented Sn in a way
that g|B(0,1) preserves orientation, and if the chart ϕ is compatible with
the orientation of X . To find a map of degree k we similarly proceed by
starting with k diffeomorphisms of Rn on disjoint open subsets V1, . . . , Vk,
and preserving the orientation (which is possible since X is orientable).
Proceeding as in c) we see there exists open subsets Ui ⊂ Vi and a smooth
map h : X �→ Sn which for all i is a orientation preserving diffeomorphism
from Ui to Sn

� {p} and which sends Sn
�
⋃
Ui to p.

6. Degree of the k-th power function

a) Proceed by induction on k, by deriving the identity:

ψk,g(exp tX) = (g exp tX)kg−k = (g exp tX)k−1g1−kgk(exp tX)g−k.

b**) By compactness, the eigenvalues of Ad g have modulus 1, and by
connectedness det(Ad g) = 1. We deduce the product of eigenvalues of
Teψk,g is nonnegative. Thus deg(fk) > 0 since there exist regular values.

c) If g is the product of n different plane rotations of 2pπ
k , it is a regular value

of fk : SO(2n) → SO(2n). The case of SO(2n + 1) can be done in the
same way.
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7*. If f has no fixed point, the points f(x) and −x are never diametrically
opposite, thus f is homotopic to the antipodal.

10. Cohomology of a finite quotient

a) Let α ∈ F k(Y ). We must show that if p∗α is exact, then so is α. Since
for all γ ∈ Γ we have γ∗ ◦ p∗ = p∗, from the equation p∗α = dβ we deduce

p∗α =
1

card(Γ)

∑
γ

γ∗dβ = d

(
1

card(Γ)

∑
γ

γ∗β
)
.

The form

β =
1

card(Γ)

∑
γ

γ∗β

is Γ-invariant, thus of the form p∗β′. We have

p∗α = d(p∗β′) = p∗(dβ′)

thus α = dβ′ since p∗ is injective.

b) This is proved in the same way.

c) If K is the Klein bottle, then H1(K) � R and H2(K) = 0.

For all k > 0, Hk(Pn
R) = 0, with one exception: H2m+1(P 2m+1

R) � R.

11. Cohomology of a product

a) For example let π : X × Y → X be the projection onto the first factor,
and let α be a volume form on X . The form π∗α is closed, while∫

X×{y}
π∗α =

∫
X

α �= 0.

b) Mayer-Vietoris once more.

12*. We begin with the volume form ω = dx1 ∧ · · · ∧ dxn on T n. Then
f∗(dx1) is a closed form of degree 1 on Sn. It is thus exact, and the same is
true for f∗ω = f∗(dx1) ∧ f∗(dx2 ∧ · · · ∧ dxn).

13. The decomposition T n = (T n−1 × S1
� {p})∪ (T n−1 × S1

� {q}) allows
us to proceed by induction on n.

14*. Hopf Invariant

g) If f is not surjective, we imitate the argument which shows that a non-
surjective map is of degree 0 (the end of the proof of Theorem 7.18).

The invariance under homotopy is a consequence of Theorem 7.41. We
find H(f) = 1 for the Hopf fibration.
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��One can show that H(f) is an integer. This can be seen by showing that
if a and b are two regular values of f , then

H(f) = E
(
f−1(a), f−1(b)

)
(compare to Exercise 4 and see [Hopf 35]).��

The Hopf fibration is the first example of a map of one manifold to another
of lower dimension which is not homotopic to a constant.

15. Invariant form and cohomology

a) We already know if g ∈ SO(n + 1) and α ∈ F k(Sn), the forms g∗α and
α are cohomologous. Using the same argument as in the case of the torus
(compare to Theorem 7.58), we will show that α is cohomologous to

α =

∫
SO(n+1)

g∗αdg,

where dg denotes the Haar measure normalized by the condition
∫
dg = 1.

To see this, it suffices to note, by imitating the argument of Lemma 7.59,
that the exponential of SO(n+1) (which is surjective) admits a measurable
right inverse; it suffices to find this inverse on the set (of full measure) of g
whose eigenvalues are distinct.

b) This is Exercise 6 of Chapter 5.

17. Bi-invariant forms on a Lie group

b) Use the fact that I ◦ Lg = Rg−1 ◦ I.

d) If α is bi-invariant of order k, then dα is bi-invariant of order k + 1. We
have

I∗(dα) = (−1)k+1dα = d(I∗α) = (−1)kdα.

e) If G is compact and connected and if α ∈ F p(G), the forms L∗
gα and R∗

gα
are cohomologous to α by Proposition 7.56. Using the fact that right and
left translations commute, and that the Haar measure of a compact group
is bi-invariant, we see that the form

α =

∫∫
G×G

R∗
g(L

∗
hα) dg dh

is bi-invariant. We show that this form is cohomologous to α as in
Lemma 7.59 with the help of a measurable right inverse of exp. From
there, knowing that every bi-invariant form on G is closed, the proof of
the fact that α �→ α descends to the quotient as a isomorphism from Hp(G)
to Ωp

inv(G) is the same as for G = T n.
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f) The form in question is Ad(G)-invariant since the trace is invariant under
conjugation. We check that it is nontrivial if n � 3 by evaluating on
the standard basis of so(3). ��Calculating the cohomology of compact Lie
groups in principle reduces to a purely algebraic problem by the preceding
problem. For more details, see volume IX of the work of Dieudonné,
and [Greub-Halperin-Van Stone 76, volume II].��

18*. Cohomology of the sphere with two punctures

b) We write T 2�T 2 = U ∪ V where U and V are the complements of a
closed ball in T 2, and U ∩ V is an annulus. We then need to calculate the
cohomology of U . This can be done by using a Mayer-Vietoris sequence
on a decomposition of the form T 2 = U ∪B, where B is an open ball.

Chapter 8

2. We find

−f ′′

f
.

3. We use the notation of Exercise 13 of Chapter 1. The parametrization
obtained can be written

F : (φ, θ) �−→ (a+ r cos θ)u(φ) + r sin θ k,

with u(φ) = (cosφ, sinφ, 0) and k = (0, 0, 1). We compute

∂φF = (a+ r cos θ)u
(
φ+

π

2

)
and ∂θF = −r sin θu(φ) + r cos θ k.

In this parametrization the metric induced from the Euclidean metric can be
written

(a+ r cos θ)2 dφ2 + r2 dθ2.

We can thus take the orthonormal coframe given by θ1 = (a+ r cos θ)dφ and
θ2 = rdθ. Taking the equalities dθ1 = −(r sin θ)dθ ∧ dφ and dθ2 = 0, in the
notation of Section 8.3, we deduce

ω = (sin θ) dφ, Ω = (cos θ) dφ ∧ dθ, K =
cos θ

r(a+ r cos θ)
.

We note, unsurprisingly, that the integral of Ω over the torus vanishes.

4. See Exercise 7 of Chapter 3.

5**. See [Berger 87, 12.4].
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6*. Ramified coverings

a) We can give a geometric characterization of kx: for every sufficiently small
open subset U containing x, there are kx points of U � {x} where f takes
the same value.

b) See Exercise 25 of Chapter 1 (and its solution).

c) As a result of the hypothesis made on f , f is an open map. Thus, f(S) is
an open and closed subset of S′.

d) It follows from the definition that Σ consists of isolated points, and its
complement is the set of points where f is a local diffeomorphism. Thus
Σ is a discrete and closed subset of S, and thus finite since S is compact.

e) Σ and f(Σ) are discrete and closed. On S′
� f(Σ), which is connected

by Exercise 30 of Chapter 2, the cardinality of f−1(y) is finite, locally
constant by Theorem 2.14 and therefore constant.

For (much) more details on ramified coverings, see [Fulton 95] or [Farkas-
Kra 91].

7**. Riemann-Hurwitz formula

If p is ramification point interior to a face, we obtain a new triangulation
where p is a vertex by joining this point to three vertices. We proceed in
this way for each of the ramification points interior to the faces. If p is
a ramification point interior to an edge, we arbitrarily choose one of the
2-simplexes for which this edge is a side, and we obtain a new triangulation
where p is a vertex by joining to the vertex opposite in these 2-simplexes.
Iterating this procedure, we obtain a triangulation where the set of vertices
contains all of the points of f(Σ). If this triangulation has f faces, e edges
and v vertices, then χ(S′) = f + v − e.

Suppose that there are v1 ramification points. By properties of coverings,
since f is trivial above each face (with the vertices that are points of ramifi-
cation removed if necessary), we can lift our triangulation by f to a triangu-
lation of S having df faces, de edges, and v1 + d(v − v1) vertices. Thus,

χ(S) = dχ(S′)− (d− 1)v1.

For more details, see [Fulton 95, 19.c].

8*. A smooth projective algebraic curve of degree 3 is a torus

a) It suffixes to apply Theorem 1.21. The submanifold obtained has two
connected components, one diffeomorphic to S1, and the other to R.

b) We have a complex submanifold of dimension 1 of C × C for the same
reasons.
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Denote this submanifold by E1. Let a1, a2, a3 be the three zeros of P . We
will show that E1 � {(a2, 0), (a3, 0)} is path connected. Let p = (b, c) ∈
E1, with c �= 0, and q = (a1, 0). Let γ : [0, 1] → C be a continuous
path connecting b to a1 and such that γ((0, 1]) avoids a1, a2 and a3. By
imitating the argument of Theorem 7.12, we see that there exists a path
γ1 : [0, 1] → C connecting c and 0 and such that (γ1(t))

2 = P (γ(t)).

c) This is an example of what we saw in Section 2.6.2 (a projective hyper-
surface). Note that E1 is identified with the set of points of E such that
t �= 0, which is to say to E � [(0, 1, 0)]. In particular, E is connected.

d) As x tends to infinity, the point (x, y) of E1 tends to [(0, 1, 0)]. In a
neighborhood of this point, we take the chart [(x, y, t)] �→ (X = x

y , T = t
y ),

in which the equation for E can be written

X3 + pT 2X + qT 3 − T = 0.

Finally, if we take the chart given by X for E in a neighborhood of
[(0, 1, 0)], and in the range the chart (x, u) �→ u

x of P 1
C, the map r reads

X �−→ T

X
= X2 + pT 2 + q

T 3

X
.

A direct calculation shows that T ′(0) = 0 and T ′′(0) �= 0. This shows
that this last map, which is a priori not defined for X = 0, extends by
continuity to 0, and the extension map is holomorphic and of the form

X �−→ X2 +O(X3)

in the neighborhood of 0.

e) We have just seen that the point at infinity of E (in other words the point
[(0, 1, 0)]) is a ramification point of index 2. An analogous argument shows
that the zeros of P also give ramification points of order 2. The map is
clearly a local diffeomorphism at the points (x, y) such that P (x) �= 0.

The Riemann-Hurwitz formula gives

χ(E) = 2χ(P 1
C)− 4 = 0.

Knowing that E is orientable (since it is a complex manifold), we know
that E is diffeomorphic to a torus by the classification theorem for surfaces.

One can refine this result: with complete different methods of complex anal-
ysis (modular forms) one may show there exists a ring Λ of C such that E is
C-diffeomorphic to C/Λ. See [Hellegouarch 01, Chapter V].



Bibliography

General Overview

This bibliography contains mainly books and monographs: I wanted to give a
short list to better encourage consulting the references given. The references
for the various results cited in the end of chapter comments have inevitably
elongated the list however. In suggesting references to learn more about these
subjects, I don’t pretend to give the most recent reference, just a typical
reference and one accessible to a reader of the present book.

In what follows, I have made a few comments without systematically
repeating the remarks from the end of chapter comments. The reader
should also be aware of the extensive bibliography at the end of volume 5
of [Spivak 79], as well as that of [Guillemin-Pollack 74].

Prerequisites

For differential calculus, see for example [Lang 86], and the first chapter of
[Hörmander 90]. For point set topology [Dugundji 65] contains more than is
necessary (notably the basics of homotopy theory).

The local theory of curves and surfaces in R
3 is not logically necessary,

but helps enormously in understanding. See for example [Audin 03] and
[Do Carmo 76].

Other points of view

The first part of [Berger-Gostiaux 88] is close to this book (however it contains
no material on Lie groups), and contains global results on plane curves. The
second part is devoted to the local theory of surfaces, and has a fairly complete
exposition of Riemannian geometry without proofs. It possesses an abundant
bibliography.
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[Lee 03] is also similar to this book with the inconvenience (or advantage!)
of being much longer.

[Guillemin-Pollack 74] studies manifolds through the thread of transversality.

We end this review with two much larger works. [Doubrovine-Novikov-
Fomenko 85; 92] (eight hundred pages) covers practically everything in this
book and the books we cite, and addresses virtually everything mentioned in
the chapter comments. However one must often complete proofs for oneself
or consult another book.

Finally [Spivak 79]: five volumes, more than two thousand pages! The first
volume more or less treats the themes of this book (with a further introduc-
tion to Riemannian geometry). The second volume takes up the basics of
Riemannian geometry from an historical point of view, and notably contains
an annotated translation of Riemann’s celebrated inaugural lecture. The final
three volumes are devoted to Riemannian geometry.

Higher level books on the topology of manifolds

Naturally following this book we mention for example [Hirsch 76], [Bott-
Tu 86]. These references are quite readable for someone who has mastered
the content of this book. [Doubrovine-Novikov-Fomenko 90] is also very inter-
esting, but more difficult.

Related subjects

Singularities, dynamical systems

[Demazure 00] are course notes from l’École polytechnique that are relatively
simple and spares no explanations, examples and in particular physical exam-
ples.

In a very different style (70 page pocketbook versus 300, with numerous
exercises), we cite [Arnold 92].

We also mention [Hirsch-Smale-Devaney 03], which is very pleasant and of a
more classical style.

Finally, one must not be afraid of the 800 pages of [Katok-Hasselblatt 95],
from which one can even benefit by browsing.

Symplectic geometry and topology

The “why” of symplectic geometry is not readily clear. In addition to an
introduction, one finds answers to this question in [Audin 04] and [Arnold 78].
A more recent reference is [McDuff-Salamon 98], which takes into account the
upheavals that occurred starting in 1985.
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Lie groups

We only mention books which focus on “groups” with respect to “Lie algebras”.

[Stillwell 08], falsely naive despite its title, treats basic questions with
elegance and economy.

[Duistermaat-Kolk 99] has a very geometric point of view. Notably it treats
actions of compact Lie groups on manifolds, which is rarely done in other
books.

[Onishchik-Vinberg 90], very complete, is more difficult.

Riemannian geometry

[Milnor 63] has a rapid and effective exposition. [Do Carmo 92] considers
mostly the “metric” aspects of the subject, while [Chavel 83] is concerned
primarily with “analysis on manifolds”. [Gallot-Hulin-Lafontaine 05] is a
compromise between these points of view.

For a comprehensive survey, see the monumental [Berger 03].

Complex geometry

This subject was introduced (a little) through the exercises. For a very
geometric introduction after this book, see [Debarre 05], [Griffiths-Harris 94].
We mention also that [Fulton 95] contains an introduction to Riemann
surfaces, and [Farkas-Kra 91] provides very complete exposure to the subject.
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adjoint representation, 156
alternating form, 189
Ampère’s theorem, 317
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atlas, 52
axial vector, 207
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blow up, 92, 358
Borel’s theorem, 99
bracket, 112, 124, 138, 139, 154, 203
Brouwer’s theorem, 263
bump function, 99
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Cartan’s decomposition, 43
Cartan’s formula, 207
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classification of surfaces, 313
closed form, 209
codimension, 21, 72
complex projective space, 63–64, 66, 71,

82, 308–309
conformal maps, 13
connected sum, 94, 313, 327, 359
connection, 136, 333
contractible, 302

covering space, 77–80, 94, 166, 174,
180, 181

cross product, 138
cup product, 314
curl, 206, 218, 227
cusp, 27, 43

D

Darboux’s theorem, 231, 232, 369–370
degree (of a covering), 77
degree (of a differential form), 196
degree (of an alternating form), 189
density, 266
derivation, 205
derivation at a point, 103–108
diffeomorphism, 14, 59, 94, 125–127,

140
discrete subgroup, 165–167, 169
divergence, 205–206, 218, 227, 256

E

effective action, 74
Einstein summation convention, 7, 187
elliptic curve, 170, 347, 380
embedding, 70, 71, 88, 101–103
Euler’s identity, 43
exact form, 209
exact sequence, 303–304
exponential, 29–32, 155, 176
exterior algebra, 189–192
exterior product, 191
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F

fibration, 64–66, 113, 164, 173
flow of a vector field, 122
flux, 256
free action, 76
Frobenius theorem, 140, 142
functions of class Cp, 10
fundamental theorem of algebra, 60–61,

292–295

G

Gauss map, 344
Gauss-Bonnet formula, 325
Gaussian curvature, 334–335
germ, 103–108, 145
Girard’s formula, 325
global derivation, 108–111
good covering, 321
gradient, 127, 195, 196, 227, 290
Grassmannian, 175, 193
group action, 74, 93–94, 173, 183

H
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Hadamard inequality, 35
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interior product, 206, 229
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Jacobi identity, 112
Jacobian, 7
Jacobian matrix, 6

K

Künneth formula, 327
Klein bottle, 267, 318

L

Lagrange multipliers, 34
Lens spaces, 93
Lie bracket, 111
Lie derivative, 204
Lie subgroup, 150
local diffeomorphism, 17, 94
Lorentz group, 150

M

manifold with boundary, 321, 349
maximal atlas, 54
Möbius group, 91, 357
Möbius strip, 50, 80, 93, 117, 236, 244
model fiber, 65
modulus (of a Lie group), 268
monodromy theorem, 83
morphism (Lie algebra), 154
morphism (of a Lie group), 150
morphism (of a vector bundle), 115
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Moser’s theorem, 321
Moser’s trick, 129, 232, 321, 370
moving frames, 331

N

normal bundle, 142, 362
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parallelizable, 115, 117, 139, 152
parametrization, 25–26
partition of unity, 245
Poincaré duality, 309
Poincaré polynomial, 326
Poincaré-Hopf theorem, 291
polar vector, 207
product of manifolds, 58
projective group, 91
projective space, 90–242
proper action, 75, 93
pseudo-orthogonal group, 46, 353
pullback (of a differential form),

215–216
pullback of a differential form, 197

Q

quadric, 88, 193, 355
quaternions, 178–180, 315–316, 363

R

ramified coverings, 347
rank, 7, 33, 70
rank theorem, 20, 44, 174
real projective space, 61–63, 66, 70, 80,

89–90, 356
Reeb’s theorem, 134, 144
regular domains, 249
regular value, 37, 60, 285
Riemann-Hurwitz formula, 347

S

Sard’s theorem, 37, 84–85, 350
second fundamental form, 345
section of a vector bundle, 116
simply connected spaces, 81–83
smooth, 10

solid angle form, 202
special orthogonal group, 32, 164
special unitary group, 88, 355
spectral decomposition, 34–35
sphere, 54, 66, 82, 246
sphere with two holes, 47
star-shaped, 209
submersion, 19, 22, 69, 88
support, 99, 244
surface integral, 256
symplectic group, 226, 365

T

tangent space, 27
tangent vector, 26
tautological bundle, 362
tensor, 187–189
tensor product, 188
tiling, 328–330
topological manifolds, 51
torus, 24, 80, 312, 338
trace, 157
transition function, 53
transversality, 41, 72, 96
triangulation, 328
tubular neighborhood, 144, 287, 345

U

unimodular group, 269
unitary group, 88, 182, 355, 364–365
universal covering, 83, 182, 183

V

vector bundle, 114–117, 142–144
Veronese surface, 89, 356
volume form, 233, 239–242, 321

W

Whitney embedding theorem, 102–103
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