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Preface

This book is the second edition of the third and last volume of a treatise on projec-

tive spaces over a finite field, also known as Galois geometries. The first volume,

Projective Geometries over Finite Fields (1979, 1998), with the second edition re-

ferred to as PGOFF2, consists of Parts I to III and contains Chapters 1 to 14 and

Appendices I and II. The second volume, Finite Projective Spaces of Three Dimen-

sions (1985), referred to as FPSOTD, consists of Part IV and contains Chapters 15

to 21 and Appendices III to V. The present volume comprises Part V and, in its first

edition, contains Chapters 22 to 27 and Appendices VI and VII. In this edition, the

chapters are numbered from 1 to 7. The scheme of the treatise is indicated by the

titles of the parts:

Part I Introduction

Part II Elementary general properties

Part III The line and the plane

Part IV PG(3, q)
Part V PG(n, q)

There are three themes within the book: (a) properties of algebraic varieties over

a finite field; (b) the determination of various constants arising from the combina-

torics of Galois spaces such as the maximum number of points of a subset under

certain linear independence conditions; (c) the identification in Galois spaces of var-

ious incidence structures. Many of the results on theme (a) could be equally well

stated over an arbitrary field. However, over a finite field, counting arguments come

more into play. A significant number of theorems count certain sets and establish

the existence of combinatorial structures. Most of Chapters 1 to 4 is on theme (a),

whereas Chapter 5 is on theme (c) and Chapter 6 is for the most part on (b). Chapter

7 is on themes (a) and (b).

Chapter 1 on quadrics develops their properties and gives one way of character-

ising them.

Chapter 2 on Hermitian varieties similarly develops their properties and charac-

terises them in the course of describing all sets of type (1, r, q + 1). This chapter is

xi



the one on algebraic varieties that differs most from the classical case, as Hermitian

manifolds over the complex numbers are not algebraic varieties.

Chapter 3 on Grassmann varieties and Chapter 4 on Veronese and Segre varieties

most closely follow a classical model in the description of their properties. Although

most of the characterisations of the Veronesean of quadrics and its projections re-

semble classical theorems over the complex numbers, the characterisation of Grass-

mannians is quite different. This is because the Grassmannian characterisation is in

terms of an incidence structure, a topic which was studied over the real and complex

numbers only for the entire projective space rather than any substructure, whereas

the Veronesean and its projections are studied as subsets of PG(n, q) in terms of

sections by subspaces. Chapter 4 also contains a section on Hermitian Veroneseans;

this section contains no proofs.

Chapter 5 begins with polar spaces, thereby unifying the subjects of Chapters 1

and 2, and it goes on to consider the special case of generalised quadrangles and

structures which are natural developments. In this chapter, not every theorem is

proved; in particular, no proofs are given for most of the characterisations of gen-

eralised quadrangles

Chapter 6 generalises to an arbitrary dimension results of Chapters 18 and 21

from the previous volume: an upper bound is found for the size of a k-cap and the

maximum size of a k-arc is found under some restrictions on n and q; the corre-

sponding arcs are generally normal rational curves.

Chapter 7 begins with ovoids and spreads of finite classical polar spaces, which

are then generalised to m-systems. Applications to maximal arcs, translation planes,

strongly regular graphs, linear codes, generalised quadrangles and semi-partial ge-

ometries are given. This is the only chapter without proofs.

The book is conceived as a work of reference and does not have any exercises.

However, each individual chapter is suitable for a course of lectures.

Apart from Chapter 5 and the short Chapter 7, complete proofs are given for

nearly all results. The last section of each chapter contains all references as well as

remarks both on the chapter itself and on related aspects that are not covered.

This volume may be considered as developing over finite fields aspects of the

three volumes of Hodge and Pedoe [183, 184, 185], particularly regarding quadrics

and Grassmannians. Burau [60] is also an appropriate analogy for quadrics, Grass-

mannians, Veroneseans and Segre varieties.

Compared to the first edition, this edition contains a considerable amount of new

material. In Chapter 4, the characterisation of quadric Veroneseans has been com-

pletely rewritten; there is also a section on Hermitian Veroneseans. Chapters 5 and

6 are updated, and contain several new and better proofs. Chapter 7 is new up to the

section on ovoids and spreads of finite classical polar spaces, and covers much new

material but without proofs.

Status of the subject

Apart from being an interesting and exciting area in combinatorics with beautiful

results, Galois geometries have many applications to coding theory, algebraic geom-
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xiii

etry, incidence geometry, design theory, graph theory, cryptology and group theory.

As an example, the theory of linear maximum distance separable codes (MDS codes)

is equivalent to the theory of arcs in PG(n, q); so all results of Sections 6.5 to 6.7

can be expressed in terms of linear MDS codes.

Finite projective geometry is essential for finite algebraic geometry, and finite

algebraic curves are used to construct interesting classes of codes, the Goppa codes,

now also known as algebraic-geometry codes. Many interesting incidence structures

and graphs are constructed from finite Hermitian varieties, finite quadrics, finite

Grassmannians and finite normal rational curves. Further, most of the objects studied

in this book have an interesting group; the classical groups and other finite simple

groups appear in this way.

Currently there are several international journals on combinatorics and geometry

publishing a large number of papers on Galois geometries; for example, Ars Com-

binatoria, Combinatorica, Designs, Codes and Cryptography, European Journal of

Combinatorics, Finite Fields and their Applications, Journal of Algebraic Combina-

torics, Journal of Combinatorial Designs, Journal of Combinatorial Theory Series

A, Journal of Geometry, and the conference series Annals of Discrete Mathematics.

Finite vector spaces and hence also finite projective spaces are of great impor-

tance for theoretical computer science. So, in many syllabuses of a computer science

degree, there is a course on discrete mathematics with a section on combinatorial

structures.

Related topics

There are some interesting topics either not covered or only touched upon in the

three volumes. In the Handbook of Incidence Geometry [55], edited by Buekenhout,

surveys of several of these topics are given. Recent surveys are contained in Current

Research Topics in Galois Geometry [298], edited by Storme and De Beule.

Finite non-Desarguesian planes are not discussed in the treatise. For references

see the chapters in the Handbook [55] on ‘Projective planes’ by Beutelspacher and

‘Translation planes’ by Kallaher. See also the book Foundations of Translation

Planes [28] by Biliotti, Jha and Johnson and the Handbook of Finite Translation

Planes [187], by Johnson, Jha and Biliotti.

Spreads and partial spreads in PG(n, q) are considered in Chapter 4 of PGOFF2,

in Chapter 17 of FPSOTD, and in Chapter 7 here. For blocking sets, only the plane

case is considered in Chapter 13 of PGOFF2. For the theory of spreads, partial

spreads and blocking sets in n dimensions, see Sections 7 and 8 of the chapter ‘Pro-

jective geometry over a finite field’ by Thas in [55], as well as Chapter 2 by De

Beule, Klein and Metsch and Chapter 3 by Blokhuis, Sziklai and Szőnyi in [298].

Flocks of quadrics in PG(3, q) are key objects for the constructions of some

new classes of translation planes and generalised quadrangles. They also have other

applications. For literature on flocks, see Chapter 7 by Thas in [55], and the books

Translation Generalized Quadrangles [352] by Thas, K. Thas and Van Maldeghem

and Finite Generalized Quadrangles [260] by Payne and Thas.

Preface



xiv Preface

Ovals and ovoids can be generalised by replacing their points withm-dimensional

subspaces. These have connections to generalised quadrangles, projective planes, cir-

cle geometries, flocks, and other structures; see the last two books.

In Chapter 5, the finite classical generalised quadrangles are considered. Gener-

alised quadrangles are the polar spaces of rank 2, the point of view of Chapter 5,

but are also the generalised n-gons with n = 4. Generalised 6-gons or hexagons ap-

pear in Chapter 1. Standard works on generalised n-gons are the books Generalized

Polygons [391] by Van Maldeghem and Moufang Polygons [385] by Tits and Weiss.

Although null polarities are mentioned in Chapter 7, they are not discussed in

detail, nor are pseudo-polarities; references are given there.

The book contains only a few group-theoretical results; also theorems on graphs

and designs are rare. Apart from the Handbook of Incidence Geometry, the books

of Dembowski [116], Beth, Jungnickel and Lenz [18, 20, 19], Brouwer, Cohen and

Neumaier [41], Cameron and van Lint [65], Hughes and Piper [186], Assmus and

Key [4] may be consulted. Much material is contained in the Handbook of Combi-

natorial Designs [73], edited by Colbourn and Dinitz.

Reference works on point-line incidence structures and diagram geometries are

Diagram Geometries [253] by Pasini, Points and Lines [288] by Shult, Diagram

Geometry [56] by Buekenhout and Cohen.

Codes are considered only in Section 2 of Chapter 6. For an introduction, see

Hill [170] or van Lint [388]. For further results and geometrical connections, see

Cameron and van Lint [65], MacWilliams and Sloane [222], Peterson and Weldon

[264], Tonchev [386]. For an introduction to Goppa’s algebraic-geometry codes, see

Pretzel [267], van Lint and van der Geer [389], Goppa [144], Moreno [240], Nieder-

reiter and Xing [242], Hirschfeld, Korchmáros and Torres [176].

For a range of other topics, see the Handbook of Finite Fields [241], edited by

Mullen and Panario.
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Terminology

The set V (n+1,K) is (n+1)-dimensional vector space over the field K and is taken

to be the set of vectors X = (x0, . . . , xn), xi ∈ K . Correspondingly, PG(n,K) is

n-dimensional projective space overK and is the set of elements, called points,P(x)
with x ∈ V (n+ 1,K)\{0}. When K = GF(q) = Fq , the finite field of q elements,

also called the Galois field of q elements, then V (n+1,K) is written V (n+1, q) and

PG(n,K) is written PG(n, q). The order of PG(n, q) is q. The number of points in

PG(n, q) is

θ(n) =
qn+1 − 1

q − 1
.

A projectivity, or projective transformation, from S1 to S2, with S1, S2 both

n-dimensional projective spaces over Fq , is a mapping T : S1 → S2 such that

P(x)T = P(xT ) for all vectors x �= 0 and some non-singular (n+1)×(n+1) matrix

T . The group of projectivities from PG(n, q) to itself is denoted PGL(n + 1, q). A

collineation from S1 to S2 is a mapping T : S1 → S2 preserving the incidence

of points and lines. The Fundamental Theorem of Projective Geometry states that

P(x)T = P(xσT ) with σ an automorphism of Fq . Mostly, the properties considered

are invariant under PGL(n+ 1, q).
A reciprocity of PG(n, q) is a collineation T from PG(n, q) to its dual space; if

T is a projectivity, then the reciprocity is a correlation of PG(n, q).
A subspace of dimension r in PG(n, q) is a PG(r, q) and is written Πr ; this

notation is used both specifically and generically. Then Π−1 is the empty set, Π0 is

a point, Π1 is a line, Π2 is a plane, Π3 is a solid, Πn−1 is a hyperplane. Also, π(u),
with u = (u0, . . . , un), with not all ui zero, denotes the hyperplane whose points

P(x0, . . . , xn) satisfy the equation

u0x0 + · · ·+ unxn = 0.

A subspace written πr can have any dimension. In PG(n, q), the vertices of the

simplex of reference are denoted U0,U1, . . . ,Un, where Ui has 1 in the (i+ 1)-th
coordinate place and zeros elsewhere, and U is the unit point. Dually,u0,u1, . . . ,un

xv



xvi Terminology

are the hyperplane faces of the simplex of reference and u is the unit hyperplane. The

set of all r-spaces in PG(n, q) is written PG(r)(n, q).
If two subspaces S,S ′ intersect in a point P , this will generally be written

S ∩ S
′ = P.

For any matrix M = (mij), the transpose M∗ = (m′

ij
) has m′

ij
= mji.

The ring Γ = Fq[X0, . . . , Xn] is the ring of polynomials in the indeterminates

X0, . . . , Xn over Fq . For F1, . . . , Fr non-zero forms, or homogeneous polynomials,

in Γ, the variety

V(F1, . . . , Fr) = {P(x) ∈ PG(n, q) | F1(x) = · · · = Fr(x) = 0}.

So the hyperplane π(u) is also written as

V(u0X0 + · · ·+ unXn).

The term ‘variety’ here is the set of rational points of a variety in the sense of alge-

braic geometry. A variety V(F ) is called a hypersurface. A hypersurface in PG(2, q)
is a plane algebraic curve; a hypersurface in PG(3, q) is a surface. If the hypersur-

faces F1 and F2 are projectively equivalent, then write F1 ∼ F2.

In keeping with the terminology of Chapter 8 of PGOFF2, in PG(2, q) an oval is

a (q + 1)-arc for q odd and a (q + 2)-arc for q even. Other authors use hyperoval or

complete oval in the latter case.

Occasionally, (r, s) denotes the greatest common divisor of r and s.

For more detailed explanation of the foregoing, see Chapter 2 of PGOFF2.



PART V

PG(n, q)



1

Quadrics

1.1 Canonical forms

Quadrics were introduced in Chapter 5 of PGOFF2. The properties of quadrics on

a line were developed in Chapter 6 and in a plane in Chapter 7. The properties of

quadrics in three dimensions were developed in Chapters 15 and 16 of FPSOTD.

Quadrics in five dimensions were also considered in Chapters 15, 17 and 20. First

the essential definitions are recalled. Let F ∈ Fq[X0, . . . , Xn], where

F =

n∑
i=0

aiX
2
i
+
∑
i<j

aijXiXj ,

be a quadratic form which is non-degenerate; that is, F is not reducible to a form

in fewer than n + 1 variables by a linear transformation. The variety V(F ) is a

non-singular quadric. Under projectivities of PG(n, q) there are one or two distinct

non-singular quadrics Q = V(F ) according as n is even or odd. Equivalently, the

projective linear groupPGL(n+1, q) acting on all non-singular quadrics in PG(n, q)
has one or two orbits as n is even or odd. Throughout the chapter, the notation Qn is

used for non-singular quadrics and Wn for general quadrics.

For n even, Qn ∼ Pn, where

Pn = V(X2
0 +X1X2 + · · ·+Xn−1Xn), parabolic.

For n odd, Qn ∼ Hn or En, where

Hn = V(X0X1 +X2X3 + · · ·+Xn−1Xn), hyperbolic;

En = V(f(X0, X1) +X2X3 + · · ·+Xn−1Xn), elliptic;

here f is irreducible over Fq .

In each of the three cases, write Qn = V(Fn), where Fn is the corresponding

quadratic form.

For the method to reduce F to canonical form, see Section 5.1 of PGOFF2.

© Springer-Verlag London 2016 1
J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer Monographs 
in Mathematics, DOI 10.1007/978-1-4471-6790-7_1 



2 1 Quadrics

Suppose now that the form F may be degenerate. Then the quadric Wn = V(F )
may be singular and is a cone ΠkQs, the join of the vertex Πk to a non-singular

quadric Qs in the subspace Πs with Πs ∩Πk = Π−1 and k + s = n− 1.

If F is reduced to canonical form Fs, then

Wn = Πn−s−1Qs = V(Fs),

where the vertex Πk = Πn−s−1 = V(X0, . . . , Xs) is the space of singular points

and Qs is non-singular in Πs = V(Xs+1, . . . , Xn).
When k = −1 then Wn = Π−1Qn = Qn and is non-singular.

Lemma 1.1. The number of projectively distinct quadrics in PG(n, q) is

1
2
[3n+ 1 + (n+ 1, 2)],

of which (n+ 1, 2) are non-singular and

1
2
[3n+ 1− (n+ 1, 2)]

are singular.

Proof. Each quadric may be written as Πn−r−1Qr for r ∈ Nn. For n even, there is

one non-singular quadric for each r = 0, 2, . . . , n and two non-singular quadrics for

each r = 1, 3, 5, . . . , n− 1. Hence the total number of quadrics is

1
2
(n+ 2) + 2. 1

2
n = 1

2
(3n+ 2).

For n odd, there are two quadrics for each r = 1, 3, 5, . . . , n and again one for each

r = 0, 2, . . . , n− 1. Hence the total number is

2.1
2
(n+ 1) + 1

2
(n+ 1) = 1

2
(3n+ 3). ��

For n ≤ 5 the quadrics in PG(n, q) are now described and listed in Table 1.1:

for n = 5, only the non-singular quadrics are listed.

Table 1.1. Quadrics for low dimensions

PG(1, q) H1 = V(X0X1) is two points U0, U1

E1 = V(f(X0, X1)) is empty

Π0P0 = V(X2
0 ) is a single point, the join of Π0 = U1 to the empty

quadric P0 in u1

PG(2, q) P2 = V(X2
0 +X1X2) is a conic, comprising q + 1 points, no three

of which are collinear

Π0H1 = V(X0X1) is a line pair u0, u1

Π0E1 = V(f(X0, X1)) is a single point U2

Π1P0 = V(X2
0 ) is a single line u0
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PG(3, q) H3 = V(X0X1 +X2X3) consists of (q + 1)2 points on

2(q + 1) lines, two through each point

E3 = V(f(X0, X1) +X2X3) consists of q2 + 1 points, no

three of which are collinear

Π0P2 = V(X2
0 +X1X2) is a cone, comprising the join of a point

to a conic

Π1H1 = V(X0X1) is a plane pair u0, u1

Π1E1 = V(f(X0, X1)) is a single line U2U3

Π2P0 = V(X2
0 ) is a single plane u0

PG(4, q) P4 = V(X2
0 +X1X2 +X3X4) consists of (q + 1)(q2 + 1)
points on (q + 1)(q2 + 1) lines with q + 1 lines

through each point

Π0H3 = V(X0X1 +X2X3) is a cone comprising the join

of a point to the hyperbolic surface H3, that is,

q(q + 1)2 + 1 points in 2(q + 1) concurrent planes

Π0E3 = V(f(X0, X1) +X2X3) is a cone comprising the join

of a point to the elliptic surface E3, that is,

q(q2 + 1) + 1 points on q2 + 1 concurrent lines

Π1P2 = V(X2
0 +X1X2) is the join of a line to a conic,

and so consists of q + 1 planes through a line,

no three in a solid

Π2H1 = V(X0X1) is a pair of solids u0, u1

Π2E1 = V(f(X0, X1)) is a single plane

Π3P0 = V(X2
0 ) is a single solid u0

PG(5, q) H5 = V(X0X1 +X2X3 +X4X5) consists of

(q2 + 1)(q2 + q + 1) points on 2(q + 1)(q2 + 1)
planes with 2(q + 1) planes through a point

E5 = V(f(X0, X1) +X2X3 +X4X5) consists of

(q + 1)(q3 + 1) points on (q2 + 1)(q3 + 1)
lines with q2 + 1 lines through a point

The properties of the singular quadrics follow inductively from the properties of

non-singular quadrics in lower dimension. So, for the most part, it is reasonable to

concentrate on the properties of non-singular quadrics.

1.2 Invariants

In the next theorem, two invariants are given. One, Δ, decides whether the quadric

Wn is singular or not: the other, α, decides whether Wn is hyperbolic or elliptic

in the odd-dimensional non-singular case. In these invariants, factors 1/2 and 1/4
appear. This means that, even in the characteristic two case, when the rest of the

formula is evaluated in general, the factors 2 and 4 that appear must be cancelled.

The invariant Δ is usually called the discriminant and α the Arf invariant.
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First, some results on quadratic equations over Fq are summarised. As always,

Fq
∗ = Fq\{0}; see Sections 1.4, 1.8 of PGOFF2 for more details. Define

C(t) =

{
1
2
(1 − t(q−1)/2), t ∈ Fq

∗, q odd;

t+ t2 + · · ·+ t2
h−1

, t ∈ Fq, q = 2h.

Then, for q odd,

T0 = {c ∈ Fq | x2
− c = 0 has two solutions}

= {t ∈ Fq
∗
| C(t) = 0};

T1 = {c ∈ Fq | x2
− c = 0 has no solutions}

= {t ∈ Fq

∗
| C(t) = 1}.

For q = 2h, the elements of Ti have trace i:

T0 = {c ∈ Fq | x2 + x+ c = 0 has two solutions}

= {t ∈ Fq | C(t) = 0};

T1 = {c ∈ Fq | x2 + x+ c = 0 has no solutions}

= {t ∈ Fq | C(t) = 1}.

Also, for q odd, |T0| = |T1| =
1
2
(q − 1); for q even, |T0| = |T1| =

1
2
q.

Another way of phrasing the above is to consider the group homomorphisms

Fq
∗

μ

→ Fq
∗

ρ

→ Z2 for q odd,

Fq

σ

→ Fq

ρ

→ Z2 for q even,

where Fq is regarded as the additive group and Fq
∗ the multiplicative group of the

field, with

tμ = t2, tσ = t+ t2, tρ = C(t).

Then μρ = 0, σρ = 0, ker ρ = T0.

As before, let Wn = V(F ) with

F =
n∑

i=0

aiX
2
i
+
∑
i<j

aijXiXj .

Define A = (aij), where aii = 2ai, aji = aij for i < j.

Let B = (bij), where bii = 0, bji = −bij = −aij for i < j. Then, with

X = (X0, X1, . . . , Xn) and X∗ the transpose of X ,

F = 1
2
XAX∗ = 1

2
X(A+B)X∗.

When q is even, the formulas for Δ and α in the next theorem should be interpreted

as follows. If, in A and B, the terms ai and aij are replaced by indeterminates Zi

and Zij , and Δ and α are evaluated as rational functions over Z, then Zi and Zij can

be specialised to ai and aij to give the result. In the lemma following the theorem, α

is obtained for small dimensions.
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Theorem 1.2. (i) The quadric Wn is singular or not according as Δ is zero or not,

where

Δ =

{
1
2
|A|, n even;

|A|, n odd.

(ii) For n odd, the non-singular quadric Qn is hyperbolic or elliptic according as

α ∈ T0 or T1, where

α =

{
(−1)(n+1)/2|A|, q odd;

{|B| − (−1)(n+1)/2|A|}/{4|B|}, q even.

Proof. With x = (x0, x1, . . . , xn) ∈ PG(n, q), under a projectivity x 
→ xT−1,

V(1
2
XAX∗) = V(1

2
X(A+B)X∗)


→ V(1
2
XTAT ∗X∗) = V(1

2
XT (A+B)T ∗X∗).

So, in (i), Δ 
→ Δ|T |2; thus, both Δ and Δ|T |2 are zero or neither is. In (ii), for

q odd, α 
→ α|T |2; thus, α and α|T |2 are both squares or both non-squares. For q

even, it may be shown that α 
→ α + t + t2, t ∈ Fq, under the projectivity. Hence

the invariance of the conditions has been established.

It now suffices to examine the invariants for the canonical forms:

Πn−s−1Ps = V(X2
0 +X1X2 + · · ·+Xs−1Xs),

Πn−s−1Hs = V(X0X1 +X2X3 + · · ·+Xs−1Xs),

Πn−s−1Es = V(X2
0 +X0X1 + dX2

1 +X2X3 + · · ·+Xs−1Xs),

with X2 + X + d irreducible over Fq . This gives the following values for |A| and

|B|:

Πn−s−1Ps : |A| =

{
(−1)n/2, s = n;

0, s < n;

Πn−s−1Hs : |A| =

{
(−1)(n+1)/2, s = n;

0, s < n;

|B| = 1, s = n;

Πn−s−1Es : |A| =

{
(1− 4d)(−1)(n+1)/2, s = n;

0, s < n;

|B| = 1, s = n.

So Δ �= 0 for s = n and Δ = 0 for s < n. With s = n, the invariant α is given by

Table 1.2. Since X2+X+d is irreducible, it follows from the table and the formulas

for C that C(α) = 0 when Wn = Hn and C(α) = 1 when Wn = En. ��
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Table 1.2. Values of the invariant α

Wn q odd q even

Hn 1 0

En 1− 4d d

Lemma 1.3. For q even and n = 1 or 3, the invariant α is given, modulo Fqσ, as

follows:

(i) n = 1, α = a0a1/a
2
01;

(ii) n = 3,

α =

∑
aiajkajlakl +

∑
aiaja

2
kl
+ (
∏

aij)
∑

(aklamn)
−1

(
∑

aijakl)2
,

where the summands in the numerator have four, six, and three terms respec-

tively and that of the denominator also has three terms.

Proof. (i) In this case,

A =

[
2a0 a01
a01 2a1

]
, B =

[
0 a01

−a01 0

]
.

So |A| = 4a0a1 − a201, |B| = a201,

α =
|B|+ |A|

4|B|
=

a0a1

a201
.

(ii) Here,

A =

⎡⎢⎢⎣
2a0 a01 a02 a03
a01 2a1 a12 a13
a02 a12 2a2 a23
a03 a13 a23 2a3

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 a01 a02 a03

−a01 0 a12 a13
−a02 −a12 0 a23
−a03 −a13 −a23 0

⎤⎥⎥⎦ ,
and, with ϕ the Pfaffian of the matrix B,

ϕ = a01a23 − a02a13 + a03a12,

|B| = ϕ2,

|A| = a201a
2
23 + a202a

2
13 + a203a

2
12

−2a01a23a02a13 − 2a01a23a03a12 − 2a02a13a03a12

+4
∑

aiajkajlakl − 4
∑

aiaja
2
kl
+ 16 a0a1a2a3.

So, in Z({ai, aij}),
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α =
|B| − |A|

4|B|
=

∑
aiaja

2
kl
−
∑

aiajkajlakl − 4 a0a1a2a3 + a01a23a03a12

ϕ2
.

Hence, over Fq ,

α =

∑
aiaja

2
kl
+
∑

aiajkajlakl + a01a23a03a12

ϕ2
.

However,

a01a23a02a13 + a02a13a03a12

ϕ2
=

a02a13

ϕ
+

(
a02a13

ϕ

)2

.

So, modulo Fqσ = {t+ t2 | t ∈ Fq},

α =

∑
aiajkajlakl +

∑
aiaja

2
kl
+ (
∏

aij)
∑

(aklamn)
−1

ϕ2
.

��

1.3 Tangency and polarity

Consider the non-singular quadric Qn = V(F ). With P �= Q, let P = P(A) and

Q = P(B), where A = (a0, . . . , an) and B = (b0, . . . , bn). Then

F (A+ tB) = F (A) + tG(A,B) + t2F (B), (1.1)

where

G(A,B) = F (A+B)− F (A)− F (B).

Definition 1.4. The line � is a tangent to Qn if |� ∩ Qn| = 1.

Lemma 1.5. Let P = P(A) ∈ Qn.

(i) If Q �∈ Qn, then G(A,B) = 0 ⇐⇒ PQ is a tangent to Qn.

(ii) If Q ∈ Qn, then G(A,B) = 0 ⇐⇒ PQ ⊂ Qn.

(iii) G(A,B) �= 0 ⇐⇒ |PQ ∩ Qn| = 2.

Proof. Since P ∈ Qn, equation (1.1) becomes

F (A+ tB) = tG(A,B) + t2F (B).

The point P(A + tB) ∈ Qn if and only if

0 = tG(A,B) + t2F (B) (1.2)

The solution t = 0 of (1.2) corresponds to P . Parts (i), (ii), and (iii) now follow. ��

Corollary 1.6. For q even, if one of P and Q is not on Qn, then PQ is a tangent if

and only if G(A,B) = 0.

.



8 1 Quadrics

Proof. When F (A+ tB) = 0, equation (1.1) becomes

0 = F (A) + tG(A,B) + t2F (B). (1.3)

If G(A,B) = 0, then this becomes

0 = F (A) + t2F (B), (1.4)

which has just one solution.

Conversely, if (1.3) has just one solution, the coefficient of t must be zero. ��

Definition 1.7. A pointP(A) is a nucleus of Qn if G(A,B) = 0 for all points P(B).

Corollary 1.8. (i) The quadric Qn has a nucleus if and only if q and n are both

even.

(ii) For q even, Pn in canonical form has precisely one nucleus N = U0.

Proof. This follows immediately from the forms for G(A,B). ��

Remark 1.9. It should be noted that (ii) applies in the case n = 0. The empty quadric

P0 has the point U0 as nucleus.

Definition 1.10. If G(A,B) = 0, the points P = P(A) and Q = P(B) are conju-

gate. If P is not a nucleus, then, with

G(A,X) = F (A+X)− F (A)− F (X), (1.5)

the hyperplane V(G(A,X)) is the polar hyperplane of P . When P ∈ Qn, then

V(G(A,X)) is the tangent hyperplane to Qn at P and is denoted TP = TP (Qn).
If P is the nucleus of Qn, then V(G(A,X)) = Πn.

Theorem 1.11. (i) TP (Qn) comprises the points on the tangents to Qn at P and

the lines on Qn through P.

(ii) TP (Qn) contains any subspace Πm such that P ∈ Πm ⊂ Qn.

Proof. (i) This follows from Lemma 1.5 (i) and (ii).

(ii) Since every line through P of Qn lies in the tangent space and every point of

Πm lies on such a line, so Πm ⊂ TP (Qn). ��

Lemma 1.5 and Corollary 1.6 also hold for general quadrics. In particular, when

Wn = ΠkQt = V(F ) is an arbitrary quadric and P ∈ Wn, the tangent space to Wn

at P , denoted TP (Wn), is V(G(A,X)) with G(A,X) as in (1.5).

Corollary 1.12. (i) TP (Wn) contains the vertex Πk.

(ii) If P ∈ Πk, then TP (Wn) = Πn, the whole space.
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It should be noted that if the notation F(i) = ∂F/∂Xi is adopted so that F(i)(A)
is the partial derivative of F with respect to Xi evaluated at A, then

G(A,X) =
∑

F(i)(A)Xi.

Thus the tangent space to a quadric as defined here coincides with that for an arbitrary

primal; see Section 2.7 of PGOFF2. A nucleus P(A) of Qn can also be defined as a

point at which F(i)(A) = 0, all i.

With the canonical forms of Section 1.1 and

f(X0, X1) = X2
0 +X0X1 + dX2

1 ,

the linear form G(A,X) is as follows:

Qn = Pn, G(A,X) = 2a0X0 + (a1X2 + a2X1) +

· · ·+ (anXn−1 + an−1Xn);

Qn = Hn, G(A,X) = (a1X0 + a0X1) + (a3X2 + a2X3) +

· · ·+ (anXn−1 + an−1Xn);

Qn = En, G(A,X) = (2a0 + a1)X0 + (a0 + 2da1)X1 + (a3X2 + a2X3) +

· · ·+ (anXn−1 + an−1Xn).

Lemma 1.13. Let Qn be a non-singular quadric.

(i) If q and n are not both even, the correspondence

P(A) ←→ V(G(A,X))

is a polarity. For q odd, the set of self-polar points is Qn. For q even, the polarity

is null and every point in PG(n, q) is self-polar.

(ii) If q and n are both even, the tangent hyperplanes to Pn are concurrent at the

nucleus N = U0.

Even though the points and tangent hyperplanes of Pn are not related by a po-

larity for q even, the following lemma plus Theorem 1.11 (ii) are strong enough to

prove facts about Pn for q even which follow from the polar theory for all other Qn.

Lemma 1.14. The tangent hyperplanes at r+ 1 independent points of a Πr lying on

Qn are themselves independent.

Proof. When (q, n) �≡ 0 (mod 2), this follows from Lemma 1.13 (i). This leaves

the case that q is even and Qn = Pn. With A = (a0, . . . , an) and P = P(A), then

TP (Pn) = V(G(A,X)) = V(AτX∗), where

Aτ = (0, a2, a1, a4, a3, . . . , an, an−1).

Suppose that the points P = P(Ai), i = 0, . . . , r, span Πr on Pn; that is, they

are independent. If the corresponding tangent hyperplanesV(AτX∗) are dependent,

so are the r + 1 points P(Aτ

i
). Hence, under the projectivity fixing Pn given by
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x0 
→ x0, x2j−1 ↔ x2j , j = 1, 2, . . . , 1
2
n,

the points P(Aσ

i
), where Aσ = (0, a1, a2, a3, a4, . . . , an), are dependent and hence

lie in a Πr−1. But P(Aσ

i
) is the projection of P = P(A) from the nucleus U0 of

Pn onto u0. Since the r + 1 points P(Aσ

i
) lie in Πr−1, so the r + 1 points P(Ai)

lie in the r-space U0Πr−1; this follows from the fact that P(Aσ

i
) lies on U0P(Ai).

However, by hypothesis, the r + 1 points lie in a Πr on Pn and are independent. As

Πr cannot be U0Πr−1, a contradiction is obtained. ��

Definition 1.15. If Πr ⊂ Qn, the tangent space at Πr is the intersection of the

tangent hyperplanes at r + 1 independent points P0, . . . , Pr of Πr; in symbols,

TΠr
(Qn) =

⋂
TPi

(Qn) .

Corollary 1.16. (i) The tangent space of Πr on Qn is a Πn−r−1 containing Πr.

(ii) Qn ⊃ Πr ⊃ Πs ⇒ TΠs
(Qn) ⊃ Πr.

Proof. (i) By the lemma, the tangent space is the intersection of r + 1 independent

hyperplanes and so is a Πn−r−1. By Theorem 1.11 (ii), it contains Πr.

(ii) This follows from Theorem 1.11 (i). ��

In the subsequent results, Π′

n−r−1 is the tangent space of Πr on Qn and Π′

n−m−1

is the polar space of Πm for the cases in which a polarity occurs.

If Πr ⊂ Wn, the tangent space

TΠr
(Wn) =

⋂
P∈Πr

TP (Wn).

Corollary 1.17. If Wn = ΠkQt and Πr ⊂ Wn so that Πr = ΠsΠe with Πs ⊂ Qt

and Πe ⊂ Πk, then

TΠr
(Wn) = TΠs

(Qt)Πk

and has dimension t− s+ k.

A tangent line meets Qn precisely in a point. Now consider what happens in

general when a subspace Πm meets Qn in a subspace Πr that is not the whole of

Πm.

Lemma 1.18. Suppose Πm �⊂ Qn and Πm ∩ Qn = Πr. Then the following hold:

(i) Πm ⊂ TP (Qn), for all P in Πr, whence Πm ⊂ Π′

n−r−1;
(ii) either (a) m = r + 1 and Πm ∩ Qn = Πm−1P0

or (b) m = r + 2 and Πm ∩ Qn = Πm−2E1;
(iii) when q is odd, Πm ∩ Π′

n−m−1 = Πr and ΠmΠ′

n−m−1 = Π′

n−r−1;
(iv) when q is even with n odd and m = r + 1, then Πm ⊂ Π′

n−m−1;
(v) when q is even with n odd and m = r + 2, then Πm ∩ Π′

n−m−1 = Πr and

ΠmΠ′

n−m−1 = Π′

n−r−1.
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Proof. (i) If P ∈ Πr, then any line l through P in Πm either lies in Πr and so is on

Qn or meets Πr and so Qn in the single point P . Thus l is a tangent through P or a

line of Qn through P ; hence l ⊂ TP (Qn).
(ii) A quadric Πn−s−1Qs is a Πr if and only if Qs is empty; that is, Qs = P0

or E1. Hence, if Πm ∩ Qn = Πr, then either Πr = Πm−1P0 or Πm−2E1. Then

Πm−1P0 is considered as a repeated Πm−1 and Πm−2E1 as a Πm−2 which is the

intersection of two Πm−1 lying over Fq2 .

(iii) Π′

n−m−1 is the intersection of the polar hyperplanes of points of Πm. So

every point of Πm ∩ Π′

n−m−1 lies in its own polar hyperplane, which implies that

Πm ∩ Π′

n−m−1 ⊂ Πr. Since Πm ⊂ Π′

n−r−1 by (i), so Π′

n−m−1 ⊃ Πr. But, by

hypothesis, Πm ⊃ Πr; so Πr ⊂ Πm ∩Π′

n−m−1. Thus Πm ∩Π′

n−m−1 = Πr and so

ΠmΠ′

n−m−1 = Π′

n−r−1.

(iv) Since q is even, the polarity defined by Qn is a null polarity. Thus, if two

particular points on a line l are conjugate, then any two points on l are conjugate and

l is self-polar: that is, l lies in its polar space. Hence the self-polar lines are the lines

of Qn and the tangents to Qn; see Corollary 1.6.

Now, if r = m − 1, then every line in Πm through a point P of Πm\Πr meets

Πr and is tangent to Qn. So P is conjugate to every point of Πm and consequently

Πm ⊂ Π′

n−m−1.

(v) Now, with r = m − 2, let P ∈ Πm\Πr and let Q ∈ Πm\{P}. Then PQ is

self-polar if and only if PQ ∩ Πr = Π0. However, through P , there is a line of Πm

missing Πr. But R in Πm is in Π′

n−m−1 if and only if R is conjugate to every point

Q of Πm. Hence Πm ∩ Π′

n−m−1 = Πr and ΠmΠ′

n−m−1 = Π′

n−r−1. ��

Lemma 1.19. If Πm �⊂ Qn, then the following are equivalent:

(i) Πr is the largest subspace on Qn such that Πm ⊂ TP (Qn) for all P ∈ Πr;
(ii) Πr is the largest subspace on Qn such that Πm ⊂ Π′

n−r−1;
(iii) Πr is the singular space of Πm ∩ Qn.

Proof. P is in the singular space of Πm ∩ Qn

⇐⇒ every line through P in Πm is a tangent or line of Qn

⇐⇒ Πm ⊂ TP (Qn).

Hence Πr is the singular space of Πm ∩ Qn if and only if

Πm ⊂

⋂
P∈Πr

TP (Qn) ⊂ Π′

n−r−1. ��

When the conditions of this lemma hold, then Πm touches Qn along Πr.

Corollary 1.20. In the case that n and q are not both even, suppose that Πm and its

polar space Π′

n−m−1 are not contained in Qn. If Πm ∩Qn = ΠkQt, then the space

Π′

n−m−1 satisfies the following:

(i) Π′

n−m−1 ∩ Qn has singular space Πk;
(ii) Πm ∩ Π′

n−m−1 ∩ Qn = Πk;
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(iii)

Πm ∩ Π′

n−m−1 =

{
Πk when q is odd, or q is even with t odd;
ΠkN when q is even with t even,

where N is the nucleus of Qt.

Proof. The hypothesis means that the set of points P in Πm ∩Qn such that |l∩Qn|

is 1 or q + 1 for every line l through P in Πm is Πk. Any such line l lies in TP (Qn)
but lies in Π′

n−m−1 only if it lies in the polar hyperplane of every point Q in Πm.

This occurs only if l lies in Πk or does not lie in Πk and Πml ∩ Πt lies in the polar

hyperplane of every point Q in Πt, where Qt ⊂ Πt. These two possibilities give the

respective cases for q even in (iii). ��

Lemma 1.21. Suppose that Πm �⊂ Qn. Let Πm ∩ Qn = ΠkQt and let Πd be any

subspace on ΠkQt containing Πk. Then

ΠmΠ′

n−d−1 = Π′

n−k−1,

where Π′

n−d−1 is the tangent space to Qn at Πd and Π′

n−k−1 is the tangent space at

Πk.

Proof. Since Πd ⊃ Πk , so Π′

n−d−1 ⊂ Π′

n−k−1. By Lemma 1.19, Πm ⊂ Π′

n−k−1.

So ΠmΠ′

n−d−1 = Π′

n−k−1.

To prove the converse, consider two cases.

(a) ΠkQt spans Πm

The space Πm ∩ Π′

n−d−1 is the tangent space of ΠkQt at Πd. Since Πd ⊃ Πk,

the dimension of Πm ∩ Π′

n−d−1 is t− (d − k − 1) + k = m− d+ k by Corollary

1.17. Hence the dimension of ΠmΠ′

n−d−1 is

m+ (n− d− 1)− (m− d+ k) = n− k − 1.

So ΠmΠ′

n−d−1 = Π′

n−k−1.

(b) ΠkQt does not span Πm

Then, as in Lemma 1.18, ΠkQt = Πk . So Πk = Πd and Πm ⊂ Π′

n−d−1. The

result follows. ��

Two quadrics have the same character if they are both parabolic, both hyperbolic

or both elliptic. An absolute definition of character is given in Section 1.4.

Lemma 1.22. For n ≥ 2, the tangent hyperplane TP at a point P of Qn meets Qn

in a cone PQn−2, where Qn and Qn−2 have the same character.

Proof. Choose P = Un. Also, let Un−1 be on Qn and let U0,U1, . . . ,Un−2 be in

TP . So TP = un−1 and

Qn = V(F (X0, . . . , Xn−1) +Xn−1Xn),

where F contains no term in X2
n−1. If F =

∑
i≤j

XiXj , substitute Xn for
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a0,n−1X0 + a1,n−1X1 + · · ·+ an−2,n−1Xn−2 +Xn.

So

Qn = V(F (X0, . . . , Xn−2, 0) +Xn−1Xn) (1.6)

and

Qn ∩ TP = V(Xn−1, F (X0, . . . , Xn−2, 0)) = PQn−2,

where

Qn−2 = V(Xn−1, Xn, F (X0, . . . , Xn−2, 0)). (1.7)

Reference to the canonical forms in Section 1.1 shows that Qn and Qn−2 have

the same character since the quadratic forms in (1.6) and (1.7) which define them

differ by Xn−1Xn. ��

1.4 Generators

A subspace of maximum dimension on a quadric Wn is a generator; its dimension

g = g(Wn) is the projective index of Wn. The more classical Witt index is g + 1;

this is not used here.

Definition 1.23. For Qn, the character w = w(Qn) is defined as follows:

w = 2g − n+ 3. (1.8)

Lemma 1.24. The character of non-singular quadrics is as follows:

Qn Pn Hn En

w 1 2 0

This lemma justifies the names parabolic, hyperbolic and elliptic for the respec-

tive quadrics. Sometimes it is convenient to invert (1.8) to give

g = 1
2
(n− 3 + w). (1.9)

Lemma 1.25. (i) For Qn and Qn−2, non-singular quadrics of the same character,

g(Qn) = g(Qn−2) + 1.

(ii)

Qn Pn Hn En

g 1
2
(n− 2) 1

2
(n− 1) 1

2
(n− 3)

(iii) Any subspace on Qn lies in a generator.
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Proof. (i) This follows directly from Lemma 1.22 and Theorem 1.11 (ii).

(ii) This follows from (i) and the knowledge of g(Qn) for low n.

(iii) Induction on n and a similar argument to (i) gives the result. ��

Lemma 1.26. A generator of Wn = ΠkQt is the join of the vertex Πk to a generator

of Qt.

Now the character w = w(Wn) of an arbitrary quadric Wn = ΠkQt is defined.

Recall that

k = dimension of singular space of Wn,

n = dimension of space in which Wn is defined by a quadratic form,

g = projective index of Wn.

Define

w = 2g − k − n+ 2. (1.10)

This agrees with (1.8) in the non-singular case, when k = −1.

Lemma 1.27. For a quadric Wn, the constants g and w are as follows:

Wn Πn−t−1Pt Πn−t−1Ht Πn−t−1Et

g n−
1
2
(t+ 2) n−

1
2
(t+ 1) n−

1
2
(t+ 3)

w 1 2 0

Note 1.28. (i) The character of Wn = ΠkQt is the same as for the base Qt.

(ii) When g = k = n, then w = 2. So it is consistent to write Πn = ΠnH−1 and

include the whole space Πn as the quadric V(0). This becomes relevant when

sections of a quadric by a subspace are considered.

Corollary 1.29. A quadric Wn = Πn−t−1Qt of character w has projective index

g = n−
1
2
(t+ 3− w). (1.11)

Lemma 1.30. If Πm ⊂ Qn and Π′

n−m−1 is the tangent space of Πm, then

Π′

n−m−1 ∩ Qn = ΠmQ
′

n−2m−2,

where Q′

n−2m−2 has the same character as Qn.

Proof. For P ∈ Πm, every line through P in Π′

n−m−1 is a tangent or a line of Qn.

So Πm lies in the singular space of Π′

n−m−1∩Qn. It must be shown that the singular

space is no bigger.

Suppose Πm = U0U1 · · ·Um. Then Qn = V(F ) with
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F = X0f0 + · · ·+Xmfm + g,

where each fi and g are forms in Xm+1, . . . , Xn. Since Qn is non-singular, the

forms f0, . . . , fm are linearly independent. Hence, by a change of coordinates,

F = X0Xm+1 + · · ·+XmX2m+1 + g′(Xm+1, . . . , Xn).

The non-singularity of F considered as a form in X0, . . . , Xn is equivalent to

the non-singularity of G = g′(0, . . . , 0, X2m+2, . . . , Xn) considered as a form

in X2m+2, . . . , Xn. Thus, in Π′

n−m−1 = V(Xm+1, . . . , X2m+1), the equation of

Π′

n−m−1 ∩ Qn is G = 0.

It follows that Π′

n−m−1∩Qn = ΠmQ′

n−2m−2. Any Πr lying onQn and contain-

ing Πm lies in Π′

n−m−1 by Corollary 1.16 (ii). Hence g(Qn) = g(ΠmQ′

n−2m−2).
So, if w and w′ are the characters of Qn and Q′

n−2m−2, then

1
2
(n− 3 + w) = n−m− 1− 1

2
(n− 2m− 2 + 3− w′),

whence w = w′. ��

For m = 0, the result was given by Lemma 1.22.

Now some numerical properties of the generators are considered before the

whole system is described. Let G = G(Qn) be the set of generators of Qn.

Notation 1.31. (i) ρ(d, n;w) = |{Πg ∈ G | Πg contains a fixed Πd }|.

(ii) λ(d, n;w) = |{Πg ∈ G | Πg meets a fixed generator in some Πd }|.

(iii) μ(c) = μ(c, n;w) = |{Πg ∈ G | Πg meets a fixed generator in a fixed Πg−c }|.

(iv) κ(n;w) = |G|.

In the subsequent results, the following numerical notation is frequently used.

Notation 1.32.

[r, s]
+
=

{
(qr + 1)(qr+1 + 1) · · · (qs + 1) for s ≥ r,

1 for s < r;

[r, s]
−
=

{
(qr − 1)(qr+1 − 1) · · · (qs − 1) for s ≥ r,

1 for s < r.

Theorem 1.33.

κ(n;w) = [2− w, 1
2
(n− w + 1)]+ = [2− w, g + 2− w]+

=

⎧⎨⎩
[2, s+ 1]

+
for E2s+1,

[0, s]
+

for H2s+1,

[1, s]
+

for P2s.

Proof. The set {(P,Πg) | P ∈ Πg ∈ G} is counted in two ways. By Theorem 1.11

and Lemma 1.22, the set {(P0,Πg) | P0 ∈ Πg ∈ G} for a fixed point P0 has size

κ(n− 2;w). Hence



16 1 Quadrics

κ(n− 2;w) |Qn| = κ(n;w) |Πg | .

However, from Section 5.2 of PGOFF2,

|Qn| =

⎧⎨⎩
(qs+1 + 1)(qs − 1)/(q − 1) for E2s+1,

(qs + 1)(qs+1 − 1)/(q − 1) for H2s+1,

(q2s − 1)/(q − 1) for P2s.

The result then follows by induction. ��

Theorem 1.34.

ρ(d, n;w) = [2− w, 1
2
(n− 1− 2d− w)]+.

Proof. By Corollary 1.16, the tangent space Π′

n−d−1 at Πd to Qn contains all gen-

erators through Πd. By Lemma 1.30,

Π′

n−d−1 ∩ Qn = ΠdQn−2d−2,

and has the same character w as Qn. Hence each generator of Qn through Πd is the

join of Πd to a generator of Qn−2d−2 and conversely. So

ρ(d, n;w) = κ(n− 2d− 2;w). ��

It may be noted that, when d = g,

ρ(d, n;w) = [2− w, 1− w]+ = 1,

confirming that the only generator containing a given Πg is Πg itself.

Lemma 1.35.

μ(c, n;w) = qc(c+3−2w)/2.

Proof. The only generator meeting Πg in Πg is Πg itself; hence μ(0) = 1. Now

proceed by induction on c and assume the formula true for all values less than c.

The number of generators meeting Πg in at least the fixed space Πg−c is

ρ(g − c, n;w) = [2− w, c+ 1− w]+ .

So, to find μ(c), subtract from ρ(g − c, n;w) the number of generators meeting Πg

in a (g − i)-space containing Πg−c for all i such that 0 ≤ i < c. Hence

μ(c) = ρ(g − c, n;w)−

c−1∑
i=0

μ(i)χ(g − c, g − i; g, q) ,

where

χ(g − c, g − i; g, q) = number of Πg−i through Πg−c in Πg

= [c− i+ 1, c]−/[1, i]− ,
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as in PGOFF2, Section 3.1. Hence

μ(c) = [2− w, c+ 1− w]+ −

c−1∑
i=0

qi(i+3−2w)/2[c− i+ 1, c]−/[1, i]− ,

which gives the result after some manipulation. ��

Lemma 1.36. For −1 ≤ d ≤ g,

λ(d, n;w) = qc(c+3−2w)/2[g − d+ 1, g + 1]−/[1, d+ 1]− ,

where c = g − d, g = 1
2
(n− 3 + w).

Proof. For 0 ≤ d ≤ g,

λ(d, n;w) = (number of generators meeting Πg in a given Πd)

× (number of Πd in Πg)

= μ(c)φ(d; g, q).

From Section 3.1 of PGOFF2,

φ(d; g, q) = [g − d+ 1, g + 1]−/[1, d+ 1]− .

For d = −1,

λ(−1, n;w) = κ(n;w)−

g∑
i=0

λ(i, n;w)

= q(g+1)(g+4−2w)/2

= μ(g + 1).
��

In Section 16.3 of FPSOTD, the theory of stereographic projection of a quadric

and an ovaloid of PG(3, q) was explained. Here the stereographic projection of a

non-singular quadric Qn onto a hyperplane from a point P0 on the quadric is consid-

ered. Precisely the same argument applies to a variety of degree d > 2 if P0 is taken

to be a point of multiplicity d− 1.

Let P0 be any point of Qn and let Πn−1 be a fixed hyperplane not containing P0.

Let V = TP0
(Qn) be the tangent hyperplane at P0, let W = V ∩ Qn be the tangent

cone, let V ′ = Πn−1 ∩V , and W ′ = Πn−1 ∩W . For example, when Qn = H3, then

Πn−1 is a plane, V is a plane meeting H3 in a line pair W , and V ′ is a line meeting

H3 in a point pair W ′.

For P ∈ Qn\{P0}, define P ′ = P0P ∩Πn−1. This gives the correspondence

P 
→ P ′, P0 
→ V
′.

Analytically, let P0 = U0, Πn−1 = u0,
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Qn = V(X0F1(X1, . . . , Xn) + F2(X1, . . . , Xn)), (1.12)

where degFi = i. Then V = V(F1) and W = V(F1, F2). If P = P(a0, . . . , an),
then P ′ = P(0, a1, . . . , an). Conversely, if P ′ = P(0, a1, . . . , an), then, from

(1.12), P = P(a0, . . . , an) with a0 = −F2(a1, . . . , an)/F1(a1, . . . , an).
Now the effect of stereographic projection on the generators of Qn is described.

Let Πg be a generator of Qn and let P0 ∈ Qn\Πg. Let Πn−1 be a fixed hyperplane

not containing P0; then Πg projects from P0 to Π′

g
= P0Πg ∩ Πn−1. Now Πg does

not lie on V = TP0
(Qn) as otherwise P0Πg would lie on Qn. So Πg meets V in a

Πg−1 lying in V and Qn and so in W = V ∩ Qn. Hence the projection of Πg onto

Πn−1 from P0 is a Π′

g
not lying in V ′ = Πn−1 ∩V but meeting W ′ = Πn−1 ∩W in

a Π′

g−1.

Conversely, a space Π′

g
of Πn−1 not on V ′ but containing a space Π′

g−1 of W ′

is joined to P0 by a Πg+1, which contains the generator P0Π
′

g−1 of Qn; the space

Πg+1 meets Qn residually in a Πg , not containing P0, which projects from P0 to the

space Π′

g
. However, V ′ is a Πn−2 in Πn−1 and W ′ is a quadric in V ′. From Lemma

1.22, W = P0Qn−2, where Qn−2 has the same character as Qn; hence W ′ is a

Qn−2.

The existence of a partition of the generators of Hn into two sets is now es-

tablished. Given two generators Πg and Π̄g, define them to be equivalent if their

intersection Πt has its dimension t of the same parity as g. It is shown that this re-

lation is an equivalence relation. Trivially, the relation is reflexive and symmetric.

Stereographic projection is used to show the transitivity. The key lemma follows.

Lemma 1.37. If two generators α1 and α2 of H2g+1 intersect in Πg−1, then a third

generator α3 intersects α1 and α2 in spaces whose dimensions have different parity.

Proof. Since α1 ∩ α2 = Πg−1, so α1α2 = Πg+1 and Πg+1 ∩ H2g+1 = Πg−1H1,

which consists of the pair {α1, α2}. By Lemma 1.19, Πg+1 touches H2g+1 along

Πg−1. Let Πg+1 ∩ α3 = Πm; then m ≥ 0, since 2g + 1 is the dimension of the

ambient space. Now, either (a) Πm lies in exactly one of α1, α2 or (b) Πm lies in

Πg−1. In case (b), the polar space Π′

2g−m
of Πm contains both Πg+1 and α3. So

Πg+1∩α3 = Πk, where k ≥ g+(g+1)− (2g−m) = m+1 > m, a contradiction.

So (a) holds.

Suppose therefore that Πm ⊂ α1, whence α1 ∩ α3 = Πm. Since Πg−1 and Πm

are both contained in α1, so Πg−1 ∩Πm = Πl, with l = (g − 1) +m− g = m− 1.

Hence α2 ∩ α3 = Πm−1. ��

Lemma 1.38. If the generators α1 and α2 of Hn with intersection Πt are projected

from a point P0 in Hn\(α1 ∪ α2) to spaces α′

1 and α′

2 containing the generators β′

1

and β′

2 of W ′ = Hn−2 with β′

1 ∩ β′

2 = Π′

s−1, then t and s have the same parity.

Proof. Take the point P0 and project stereographically onto Πn−1. Let β′

1 and β′

2 be

the spaces in which α′

1 and α′

2 meet W ′ = Πn−1 ∩ TP0
(Hn) ∩Hn.

As in the above description of stereographic projection,P0α
′

1∩Hn = α1+P0β
′

1

and P0α
′

2 ∩ Hn = α2 + P0β
′

2. Now α1 ∩ α2 = Πt and P0β
′

1 ∩ P0β
′

2 = P0Π
′

s−1,
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which are of respective dimensions t and s. Both these are of different parity to

dim(α1 ∩P0β
′

2), by Lemma 1.37, when the two triples of generators (α2, P0β
′

2, α1)
and (α1, P0β

′

1, P0β
′

2) are considered. So s and t have the same parity. ��

Theorem 1.39. When Qn = Hn, the relation on the generators is an equivalence

relation with two equivalence classes.

Proof. It remains to prove that the relation is transitive. Let Π
(1)
g ,Π

(2)
g ,Π

(3)
g be gen-

erators on Hn, with Π
(1)
g equivalent to Π

(2)
g and Π

(2)
g equivalent to Π

(3)
g . There exists

a point not on the generators, and so projection may be used. At the i-th stage, Π
(j)
g

corresponds to Π
(j)

g−i
⊂ Hn−2i and the parity of (g − i)− dim(Π

(1)

g−i
∩Π

(2)

g−i
) is the

same for all i, by Lemma 1.38; the parity of (g − i)− dim(Π
(2)

g−i
∩Π

(3)

g−i
) is also the

same for all i.

Successive projection gives three lines l1, l2, l3 on H3. As Π
(1)
g is equivalent to

Π
(2)
g , so g−dim(Π

(1)
g ∩Π

(2)
g ) is even; therefore 1−dim(l1∩ l2) is even. Thus l1 and

l2 are the same line or are skew. Similarly, l2 and l3 are the same or skew. So l1, l2, l3
belong to the same regulus of H3. Hence the dimension of l1 ∩ l3 is 1 or −1. Thus

1 − dim(l1 ∩ l3) is even, and so is g − dim(Π
(1)
g ∩ Π

(3)
g ). Hence Π

(1)
g is equivalent

to Π
(3)
g .

From Lemma 1.37 it follows that there are exactly two equivalence classes. ��

Each equivalence class is called a system of generators.

Corollary 1.40. Let Πg and Π̄g be distinct generators of Hn, with n = 2g+1. Their

possible intersections are as follows:

(i) n = 4s+ 1, g = 2s,

dim(Πg ∩ Π̄g) =

{
0, 2, 4, . . . , 2s− 2 same system,

1, 3, . . . , 2s− 1 different systems;

(ii) n = 4s+ 3, g = 2s+ 1,

dim(Πg ∩ Π̄g) =

{
−1, 1, 3, . . . , 2s− 1 same system,

0, 2, 4, . . . , 2s different systems.

For dimensions up to 9 of hyperbolic quadrics, Table 1.3 gives all the dimensions

of intersections of distinct generators that occur.

1.5 Numbers of subspaces on a quadric

Let N(m;n,w) be the number of subspaces Πm on the quadric Qn of character w.

In Section 1.4, the number of generators was determined; that is,

κ(n;w) = N(g;n,w) ,

where g = 1
2
(n + w − 3). Also, write N(Πm,Wn) for the number of m-spaces on

the quadric Wn; so

N(m;n,w) = N(Πm,Qn) .
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Table 1.3. Intersection of generators

Qn Dimension Same Different

of generator system systems

H1 0 − −1
H3 1 −1 0
H5 2 0 −1, 1
H7 3 −1, 1 0, 2
H9 4 0, 2 −1, 1, 3

Theorem 1.41. (i) m-spaces on a general quadric

N(m;n,w) =
[
1
2
(n+ 1− w)−m, 1

2
(n+ 1− w)

]
+

×
[
1
2
(n− 1 + w)−m, 1

2
(n− 1 + w)

]
−
/[1,m+ 1]− (1.13)

= [g + 2− w −m, g + 2− w)]
+

× [g + 1−m, g + 1]
−
/[1,m+ 1]− . (1.14)

(ii) m-spaces on particular quadrics

N(m; 2s− 1, 0) = N(Πm, E2s−1)

= [s−m, s]+[s− 1−m, s− 1]−/[1,m+ 1]− ; (1.15)

N(m; 2s− 1, 2) = N(Πm,H2s−1)

= [s− 1−m, s− 1]+[s−m, s]−/[1,m+ 1]− ; (1.16)

N(m; 2s, 1) = N(Πm,P2s)

= [s−m, s]+[s−m, s]−/[1,m+ 1]− . (1.17)

(iii) Points on a general and particular quadrics

N(0;n,w) = (q(n+1−w)/2 + 1)(q(n−1+w)/2
− 1)/(q − 1) (1.18)

= (qn − 1)/(q − 1) + (w − 1)q(n−1)/2 ; (1.19)

N(Π0, E2s−1) = (qs + 1)(qs−1
− 1)/(q − 1) ; (1.20)

N(Π0,H2s−1) = (qs−1 + 1)(qs − 1)/(q − 1) ; (1.21)

N(Π0,P2s) = (qs + 1)(qs − 1)/(q − 1) . (1.22)

(iv) Generators on a general and particular quadrics

κ(n;w) = [2− w, g + 2− w]+ (1.23)

=
[
2− w; 1

2
(n+ 1− w)

]
+
; (1.24)

κ(2s− 1; 0) = [2, s]+ ; (1.25)

κ(2s− 1; 2) = [0, s− 1]+ ; (1.26)

κ(2s; 1) = [1, s]+ . (1.27)
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Proof. First the number of points on Qn is calculated. By Lemma 1.22,

N(0;n,w) = qn−1 + 1 + qN(0;n− 2, w) . (1.28)

However, for dimensions 0 and 1,

N(0; 1, 0) = N(0; 0, 1) = 0, N(0; 1, 2) = 2 ;

induction gives (1.18) and (1.19).

Now, by Theorem 1.11 (ii), if P ∈ Πm ⊂ Qn, then Πm ⊂ TP (Qn)∩Qn, which

by Lemma 1.22 is PQn−2 of the same character as Qn. So Πm meets Qn−2 in a

Πm−1 and, conversely, every Πm−1 on Qn−2 determines a Πm on Qn through P .

Hence

N(m;n,w) = N(0;n,w)N(m− 1;n− 2, w)/θ(m) , (1.29)

where θ(m) = (qm+1 − 1)/(q − 1). Induction and (1.18) give the result. ��

Corollary 1.42.

N(Π0,Πn−t−1Qt) = (qn − 1)/(q − 1) + (w − 1)q(2n−t−1)/2 .

Proof. The joins of two points of the base to the vertex give (n− t)-spaces intersect-

ing in the vertex Πn−t−1. Hence

N(Π0,Πn−t−1Qt) = N(Π0,Qt)(θ(n − t)− θ(n− t− 1)) + θ(n− t− 1) ,

which gives the answer. ��

1.6 The orthogonal groups

The group of projectivities ofPG(n, q) is PGL(n+1, q). Let G(Qn) be the subgroup

of PGL(n+1, q) fixing the form defining Qn up to a scalar multiple. This is actually

the same as the group fixing Qn provided that Qn �= E1. The group G(Qn) is called

orthogonal and is also denoted by PGO(n + 1, q) for Pn, by PGO+(n + 1, q) for

Hn, and by PGO−(n+ 1, q) for En.

Also, let N (Qn) be the set of all quadrics in PG(n, q) projectively equivalent to

Qn; that is, N (Qn) is the orbit of Qn under the action of PGL(n+ 1, q). Again E1

is a special case and is considered here as a pair of conjugate points in PG(1, q2).
First, |G(Qn)| and |N (Qn)| are calculated.

Lemma 1.43. The number of quadrics Qn in PG(n, q), n ≥ 2, containing a given

Π0Qn−2 as a tangent cone is qn(q − 1).

Proof. Let Π0Qn−2 have vertex Π0 = Un−1 and base

Qn−2 = V(Xn, Xn−1, f2(X0, . . . , Xn−2)) .
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So the hyperplane containing Π0Qn−2 is un. Any quadric containing Un−1 and

Qn−2 has the form

Q = V(Xn(a0X0 + · · ·+ anXn) +Xn−1(b0X0 + · · ·+ bn−2Xn−2) + f2) .

The tangent hyperplane to Q at Un−1 is

V(an−1Xn + b0X0 + · · ·+ bn−2Xn−2).

Since this is un, so

b0 = · · · = bn−2 = 0, an−1 �= 0 .

Thus

Q = V(Xn(a0X0 + · · ·+ an−1Xn−1 + anXn) + f2) ,

which is non-singular since an−1 �= 0. Therefore an−1 may be chosen in q− 1 ways

and every other ai in q ways, giving qn(q − 1) possibilities for Q = V(F ). This

argument relies on the fact that, if Q �= Πn−2E1, then it uniquely defines the form F

up to a scalar multiple. ��

In this proof, when Qn = E3, then Π0Qn−2 = Π0E1 is a pair of conjugate

intersecting lines in the quadratic extension.

Theorem 1.44. (i) The values of |G(Qn)| are as follows:

|G(Pn)| = qn
2
/4

n/2∏
i=1

(q2i − 1) ; (1.30)

|G(Hn)| = 2q(n
2
−1)/4(q(n+1)/2

− 1)

(n−1)/2∏
i=1

(q2i − 1) ; (1.31)

|G(En)| = 2q(n
2
−1)/4(q(n+1)/2 + 1)

(n−1)/2∏
i=1

(q2i − 1) . (1.32)

(ii) The values of |N (Qn)| are as follows:

|N (Pn)| = qn(n+2)/4

n/2∏
i=1

(q2i+1
− 1) ; (1.33)

|N (Hn)| =
1
2
q(n+1)

2
/4(q(n+1)/2 + 1)

(n−1)/2∏
i=1

(q2i+1
− 1) ; (1.34)

|N (En)| =
1
2
q(n+1)

2
/4(q(n+1)/2

− 1)

(n−1)/2∏
i=1

(q2i+1
− 1) . (1.35)
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Proof. First, |N (Qn)| is calculated by counting the set

{(Qn, S) | Qn a non-singular quadric, S a tangent cone of Qn}

in two ways. Let M be the number of cones Π0Qn−2 in PG(n, q) for a fixed char-

acter w. Then

|N (Qn)|N(0;n,w) = Mqn(q − 1) .

However,

M = number of Πn−1 in PG(n, q)

×number of Π0 in Πn−1

×number of Qn−2 in a fixed Πn−2 of Πn−1

= θ(n) θ(n− 1) |N (Qn−2)| .

Thus

|N (Qn)| = θ(n) θ(n − 1) |N (Qn−2)| q
n(q − 1)/N(0;n,w)

=
(qn+1 − 1)(qn − 1)qn |N (Qn−2)|

(q(n+1−w)/2 + 1)(q(n−1+w)/2 − 1)
.

Since |N (P0)| = 1, |N (E1)| =
1
2
q(q − 1), |N (H1)| =

1
2
q(q + 1), induction now

gives |N (Qn)|.
Finally,

|PGL(n+ 1, q)| = |G(Qn)| |N (Qn)|

in each case, where

|PGL(n+ 1, q)| = qn(n+1)/2

n+1∏
i=2

(qi − 1).
��

For the orders of groups associated to these orthogonal groups, see Appendix I

of PGOFF2 or Appendix III of FPSOTD.

Consider the following involutory transformations which fix Qn. Let Q be any

point of PG(n, q)\Qn with the only restriction that, for q and n even, Q is not the

nucleus of Qn. Let μQ : Qn → Qn be defined as follows. For P ∈ Qn,

PμQ = P if PQ is a tangent to Qn ;

PμQ = P ′ if PQ meets Qn again at P ′ .

Lemma 1.45. The mapping μQ can be extended to an element of G(Qn).

Proof. Let Qn = V (F ), Q = P(B) /∈ Qn, P = P(A) ∈ Qn. If P ′ ∈ PQ, then

P ′ = P(A+ tB). If P ′ ∈ Qn, then, as in (1.3),

F (A+ tB) = F (A) + tG(A,B) + t2F (B) = 0 .
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Since P ∈ Qn, so F (A) = 0. Hence

tG(A,B) + t2F (B) = 0.

The solution t = 0 corresponds to P and the solution t = −G(A,B)/F (B) corre-

sponds to P ′. Hence P ′ = P(A−G(A,B)B/F (B)), which is the same point as P

when G(A,B) = 0, that is, when P lies in the polar hyperplane of Q. In any case,

μQ is given by

P(x) 
→ P

(
x−

G(x,B)

F (B)
B

)
.

Thus μQ can be extended to an element of G(Qn). ��

Since the identity is the only element of G(Qn) which fixes Q and all points of

Qn, the extension of μQ is necessarily unique. This extension is a perspectivity with

centre Q; the axis contains all points P of Qn for which PQ is tangent to Qn.

The extension of μQ is also denoted μQ.

Theorem 1.46. The group G(Qn) acts transitively on Qn.

Proof. Let P, P ′ be any two points of Qn. If PP ′ �⊂ Qn, let Q be any point on

PP ′\{P, P ′}. Then μQ maps P to P ′.

If PP ′ ⊂ Qn, choose P ′′ such that neither PP ′′ nor P ′P ′′ lies on Qn. The point

P ′′ exists, since otherwise Qn would be singular. Now choose Q on PP ′′\{P, P ′′}

and R on P ′P ′′\{P ′, P ′′}. Then PμQμR = P ′′μR = P ′′. ��

Notation 1.47. Let the quadric Qn have character w. Then

(i) S(m, t, v;n,w) is the set of m-spaces Πm in PG(n, q) with m �= n such that

Πm ∩ Qn is of type Πm−t−1Qt where Qt has character v;

(ii) N(m, t, v;n,w) = N(Πm−t−1Qt,Qn) = |S(m, t, v;n,w)|.

In Section 1.8, N(m, t, v;n,w) is determined and, in particular, it is shown when

it is zero, that is, when S(m, t, v;n,w) is empty. Here the number of orbits of

S(m, t, v;n,w) under the action of G(Qn) is given.

First consider PG(1, q). The quadric H1 consists of two points and the group

G(H1) = PGO+(2, q) has order 2(q − 1). As PGL(2, q) acts triply transitively on

PG(1, q), as in Section 6.1 of PGOFF2, there is a projectivity fixing both points of

H1 and moving P1 to P2, where P1 and P2 are any points off H1. So PGO+(2, q)
acts transitively on the points off H1.

The quadric E1 is empty in PG(1, q) but consists of two conjugate points on

PG(1, q2). So, if E1 = V(F ) with

F = X2
− bX + c = (X − α)(X − αq),

then, in non-homogeneous coordinates, the projectivity T : t 
→ t′ of PG(1, q2),
given by
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tt′{e+ e′ − (α+ αq)} − (t+ t′){ee′ − αq+1
}

+{(α+ αq)ee′ − αq+1(e + e′)} = 0,

is an involution with pairs (α, αq) and (e, e′). It therefore fixes E1 and takes e to

e′. Thus PGO−(2, q) acts transitively on the points of PG(1, q) off E1. The group

G(E1) = PGO−(2, q) has order 2(q + 1).
Next the conic P2 is examined. Let

O1 = S(0,−1, 2; 2, 1) = {points on P2},

O2 = S(0, 0, 1; 2, 1) = {points off P2},

O3 = S(1, 0, 1; 2, 1) = {tangents to P2},

O4 = S(1, 1, 2; 2, 1) = {bisecants of P2},

O5 = S(1, 1, 0; 2, 1) = {external lines of P2}.

Theorem 1.46 says that G(P2) acts transitively on O3. In fact, G(P2) acts triply

transitively on O1 and O3, by Corollary 7.15 of PGOFF2. Recall that, for q odd,

O2 = O
+
2 ∪ O

−

2 ,

where

O
+
2 = {external points of P2}, O

−

2 = {internal points of P2} ;

here, a point Q off P2 is external or internal according as it lies on two or no tangents

of P2, Section 8.2 of PGOFF2. For q even,

O2 = {N} ∪ O
′

2 .

where N is the nucleus, the meet of all the tangents, and each point of O′

2 lies on

precisely one tangent.

Lemma 1.48. (i) G(P2) acts transitively on O4 and O5.

(ii) G(P2) has two orbits on O2, namely O
+
2 and O

−

2 for q odd, and {N} and O′

2

for q even.

Proof. (a) For q odd, consider the action of G(P2) on O2, the points off

P2 = V(X2
0 +X1X2) .

Since each point of O+
2 is the intersection of two tangents, so G(P2) is transitive on

O
+
2 , the external points. By the polarity, it is transitive on O4, the bisecants.

Any external line contains an external point. Therefore, to show the transitivity

of G(P2) on O5 and, by the polarity, on O
−

2 , it suffices to show the transitivity on

the external lines through a particular external point. Let U0 be this point. Then the

line l(t) = V(X1 + tX2) is a bisecant or an external line as t is a non-zero square

or a non-square.

The projectivity Tc given by
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P(x0, x1, x2)Tc = P(cx0, x1, c
2x2)

fixes P2 and transforms l(t) to l(t/c2). So there is an element of the group trans-

forming any bisecant through U0 to any other bisecant through U0 and any external

line through U0 to any other external line through U0.

(b) For q even, G(P2) is similarly transitive on O4. Since any point of O′

2 is the

meet of a tangent and a bisecant, the triple transitivity of G(P2) on O1 ensures the

transitivity on O′

2.

To show the transitivity of G(P2) on O5, it suffices to consider the external lines

through a particular point of O′

2. Let Q = P(1, 0, 1) with P2 as above. Then the

line l(t) = V(X0 + tX1 + X2) contains Q and meets P2 at P(x0, x1, x2), where

t2x2
1+x1x2+x2

2 = 0. So l(t) is a bisecant or an external line according as t2 and so

t is in T0 or T1, that is, has trace 0 or 1, Section 1.2. Now the projectivity Tb, given

by

P(x0, x1, x2)Tb = P(x0 + bx1, x1, b
2x1 + x2) ,

fixes Q and P2 and transforms l(t) to l(t+ b+ b2). As t+ b+ b2 has the same trace

as t, any external line through Q can be transformed to any other. ��

For a section Πm−t−1Qt of Qn, let T = n+ t− 2m.

Theorem 1.49. For given m, t, v, n, w, the set S(m, t, v;n,w) acted on by G(Qn)
is either empty or has

(i) one orbit when (a) n is odd or (b) n is even and t is odd or (c) n is even, t is

even and T = 0;
(ii) two orbits when n is even, t is even and T > 0.

Proof. (1) t = m with (v, w) �= (1, 1)
First assume that m ≥ 2.

Let Π
(i)
m ∩ Qn = W

(i)
m with Π

(i)
m ∈ S for i = 1, 2 and let P ∈ W

(1)
m ∩ W

(2)
m .

Project Qn from P onto a hyperplane Πn−1 not containing P , as in Section 1.4.

Then Qn determines a quadric W ′ = Qn−2 in Πn−2, and W
(1)
m and W

(2)
m give

quadrics R1 and R2 of the same type but in dimension m− 2. By induction there is

a projectivity T of Πn−2 fixing Qn−2 and mapping R1 to R2. Let

Π(i)
m

∩ Πn−1 = Π
(i)

m−1, i = 1, 2.

Extend T to Πn−1, and let Π
(1)

m−1T = Π
(1a)

m−1. In Πn−1 there is an elation T′ with

axis Πn−2 mapping Π
(1a)

m−1 to Π
(2)

m−1. Hence TT′ maps R1 to R2, Π
(1)

m−1 to Π
(2)

m−1,

and Qn−2 to itself.

Taking P = Un with tangent hyperplane TP = un−1, the quadric Qn = V(F )
with

F = f(X0, . . . , Xn−1) +Xn−1Xn .

By a linear transformation,

F = g(X0, . . . , Xn−2) +Xn−1Xn .
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Then Qn−2 = V(g,Xn−1, Xn). So TT′ is given by a linear transformation on

X0, . . . , Xn−1 taking g to λg and Xn−1 to λ′Xn−1. Extend TT′ to the whole space

by letting Xn 
→ (λ/λ′)Xn. This gives a projectivity S fixing P and Qn, and map-

ping W
(1)
m to W

(2)
m .

Next, let W
(1)
m ∩W

(2)
m = ∅. Since G(Qn) acts transitively on Qn, there exists S1

in G(Qn) for which W
(1)
m S1 = W

(3)
m meets W

(2)
m . Then application of the preceding

argument gives an element S2 of G(Qn) with W
(3)
m S2 = W

(2)
m . Hence S1S2 is the

required element of G(Qn) taking W
(1)
m to W

(2)
m .

Since induction was used, the small cases have still to be considered.

First assume that m = t = 0. Then the section is a point off the quadric Qn with

n odd. For n = 1, the group G(Q1) acts transitively on the set of all points off Q1,

as discussed after Theorem 1.46. So let n ≥ 3. Assume that P1 and P2 are points off

Qn and let α1 and α2 be their polar hyperplanes. Then α1 ∩ Qn and α2 ∩ Qn are

non-singular quadrics P
(1)

n−1 and P
(2)

n−1 as n − 1 is even. It is sufficient to show that

there is an element T in G(Qn) with P
(1)

n−1T = P
(2)

n−1. By induction, as in a previous

argument, this reduces to the case n = 1 and m = t = 0.

Now let m = t = 1; then n is even. For n = 2 there is nothing to prove, due to

Lemma 1.48. So let n ≥ 4. If W
(1)

1 and W
(2)

1 are hyperbolic and meet at P , then by

projecting from P and applying a previous argument it follows that G(Qn) contains

an element which maps W
(1)

1 onto W
(2)

1 . If W
(1)

1 ∩W
(2)

1 = ∅ then proceed as in the

case W
(1)
m ∩W

(2)
m = ∅.

Finally, assume that W
(1)

1 and W
(2)

1 are elliptic, and let

W
(1)

1 = {P1, P
′

1}, W
(2)

1 = {P2, P
′

2}

with Pi, P
′

i
conjugate in a quadratic extension of Fq . Let Pi

′′ be a point of PiP
′

i
off

Qn, i = 1, 2. From the case m = t = 0, there is an element T in G(Qn) which

maps P1
′′ to P2

′′. Let

P1T = R1, P ′

1T = R′

1, R1P
′

2 ∩R′

1P2 = Q, R1P2 ∩R′

1P
′

2 = Q′.

If Q and Q′ are on Qn, then the plane containing R1, R
′

1, P2, P
′

2 is on Qn; so P2
′′

is on Qn, a contradiction. Assume therefore that Q is not on Qn. Then R1μQ = P ′

2

and R′

1μQ = P2. Thus TμQ maps W
(1)

1 to W
(2)

1 .

(2) t = m with w = v = 1
First assume m ≥ 2.

Let SP be the set of all elements of S containing the point P , and let GP be

the subgroup of G(Qn) fixing P . By projection of Qn from P onto a Πn−1 not

containing P and by using induction on m as in (1), GP has two orbits on SP .

Suppose that W
(1)
m and W

(2)
m are in SP and also in one orbit O of G(Qn); then

W
(1)
m T = W

(2)
m for some T in G(Qn). Let PT = Q. Now it is shown that there

exists T′ in G(Qn) fixing W
(2)
m and mapping Q to P . If PQ is not a line of W

(2)
m

then μR, with R on PQ but not on W
(2)
m , fixes Qn, fixes W

(2)
m and maps Q to P .
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Let PQ be a line of W
(2)
m . Consider a point R on W

(2)
m such that neither PR nor

QR is on W
(2)
m . Further, let A be a point on PR but not on W

(2)
m and let B be a point

on QR but not on W
(2)
m . Then μAμB fixes both Qn and W

(2)
m , and maps P to Q.

Hence W
(2)
m is in the orbit OP of W

(1)
m under GP . Since G(Qn) acts transitively on

Qn it follows that the number of orbits O of S under G(Qn) is the number of orbits

OP of SP under GP .

Since induction was used, the small cases still need to be considered. So assume

that m = t = 0; then the section is a point off Qn and n is even.

First consider q odd. Let P be a point off Qn, let Πn−1 be its polar hyperplane,

and let Qn ∩ Πn−1 = Qn−1. By (1) and Lemma 1.48, G(Qn) has two orbits on the

set of all sections Qn−1. Hence G(Qn) has two orbits on the set of all points off Qn.

Now suppose that q is even. By Lemma 1.48 it may be assumed that n ≥ 4. One

orbit consists of a single point, the nucleus N . So take distinct points P1 and P2 not

in Qn ∪ {N}. Let Ci be a conic on Qn with nucleus Pi, i = 1, 2. It suffices to show

that there exists T in G(Qn) with C1T = C2. Now C1 and C2 may be chosen in such

a way that P ∈ C1 ∩ C2. Project Qn from P onto a hyperplane Πn−1 not containing

P . In Πn−1 this gives a Qn−2 with nucleus N ′. The tangents to C1 and C2 at P meet

Πn−1 in points P ′

1 and P ′

2 distinct from N ′. By induction on n, the group G(Qn−2)
contains an element T′ with P ′

1T
′ = P ′

2. As in (1), T′ can be extended to an element

of G(Qn) that fixes both Qn and P , and maps C1 to C2. Hence this extension maps

P1 to P2. The smallest case, where n = 2 and m = t = 0, is contained in Lemma

1.48.

(3) −1 ≤ t ≤ m− 1

First let t = −1. Then Π
(1)
m ,Π

(2)
m ⊂ Qn. For m = 0 the result is contained in

Theorem 1.46. So assume that m > 0. Let P ∈ Π
(1)
m ∩ Π

(2)
m . By projection of Qn

onto a hyperplane not containing P and using induction on m as in (1), there is an

element T of G(Qn) that fixes P and maps Π
(1)
m to Π

(2)
m .

Now assume that Π
(1)
m ∩ Π

(2)
m = Π−1. If P1 ∈ Π

(1)
m , then there is a point P2 in

Π
(2)
m ∩ TP1

(Qn) since m > 0. Take Π
(3)
m ⊂ Qn with the line P1P2 in Π

(3)
m . Then

there exist T1 and T2 in G(Qn) such that T1 maps Π
(1)
m to Π

(3)
m and T2 maps Π

(2)
m

to Π
(3)
m . Hence T1T

−1
2 maps Π

(1)
m to Π

(2)
m .

Next, let t ≥ 0. Define Sm,t to be the set of all elements of S containing the

subspace Πm−t−1 as vertex of a section of Qn by an m-space, and let Gm,t be

the subgroup of G(Qn) fixing Πm−t−1. Suppose that Gm,t has M orbits on Sm,t.

Project Qn from Πm−t−1 onto Πn−m+t with Πm−t−1 ∩ Πn−m+t = ∅. Then Qn

determines a quadric Qn−2(m−t) of Πn−m+t, whose equations are now determined.

Let P0, . . . , Pm−t−1 be linearly independent points of Πm−t−1. Take Pi = Ui

and the tangent hyperplane TPi
(Qn) = um−t+i for i = 0, 1, . . . ,m − t − 1; then

Qn = V(F ) with

F = f(X2m−2t, . . . , Xn) + a0X0Xm−t + · · ·+ am−t−1Xm−t−1X2m−2t−1.

This gives

Qn−2(m−t) = V(f,X0, . . . , X2m−2t−1).
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Let Q
(1)

t
and Q

(2)

t
be sections of Qn−2(m−t) by subspaces Π

(1)

t
and Π

(2)

t
of

Πn−2(m−t), where Q
(1)

t
and Q

(2)

t
are of character v and belong to the same orbit

of G(Qn−2(m−t)). Then an element T mapping Q
(1)

t
to Q

(2)

t
is given by a linear

transformation on X2m−2t, . . . , Xn taking f to λf . Extending T by the transforma-

tion
Xi 
→ Xi, i = 1, . . . ,m− t− 1,
Xi 
→ λXi, i = m− t, . . . , 2m− 2t− 1

gives a projectivity fixing Πm−t−1 and Qn as well as mapping Πm−t−1Q
(1)

t
to

Πm−t−1Q
(2)

t
. If M ′ is the number of orbits of G(Qn−2(m−t)) on the set of all

sections Qt of character v of Qn−2(m−t), then it follows that M ≤ M ′. But, by

definition, M ≥ M ′, and so M = M ′.

Suppose that W
(1)
m and W

(2)
m are in Sm,t and also in one orbit O of G(Qn). Since

Πm−t−1 is the vertex of W
(1)
m and W

(2)
m , every element T of G(Qn) mapping W

(1)
m

to W
(2)
m fixes Πm−t−1 so is in Gm,t. Hence W

(2)
m is in the orbit Om,t of W

(1)
m under

Gm,t. Since G(Qn) acts transitively on the set of all (m − t − 1)-spaces on Qn, it

follows that the number of orbits O of S under G(Qn) is the same as the number M

of orbits Om,t of Sm,t under Gm,t. Hence the number of orbits of S under G(Qn)
is the number of orbits of G(Qn−2(m−t)) on the set of all sections Qt of character v

of Qn−2(m−t).

When n = 2m − t, then Qn−2(m−t) = Qt and so S has just one orbit under

G(Qn). When n �= 2m− t, and so n− 2(m− t) > t, then the number of orbits of

G(Qn−2(m−t)) on the set of all sections of character v was calculated in (1) and (2):

one orbit when (i) n is odd or (ii) n is even and t is odd; two orbits when n is even

and t is even. ��

1.7 The polarity reconsidered

Now the complete generalisations of Lemmas 1.22 and 1.30 are given, and sections

of Qn by subspaces Π and Π′ which are polar under the polarity of Qn are described.

Lemma 1.50. Let Qn have character w and projective index g, and let a section

Πm−t−1Qt have character v and projective index f . Then, with T = n+ t− 2m,

(i) T ≥ v − w;
(ii) T + w − v is even.

Proof. From (1.9) and (1.11),

g = 1
2
(n− 3 + w), f = m−

1
2
(t+ 3− v).

So g − f = 1
2
(T + w − v) and (ii) follows. However, g ≥ f since Πm−t−1Qt lies

on Qn; hence (i) is obtained. ��
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Table 1.4. Polar sections

q Qn ΠkV ΠkV ′

All Hn Πm−t−1Ht Πm−t−1HT−1

Πm−t−1Et Πm−t−1ET−1

Πm−t−1Pt Πm−t−1PT−1

All En Πm−t−1Ht Πm−t−1ET−1

Πm−t−1Et Πm−t−1HT−1

Πm−t−1Pt Πm−t−1PT−1

Odd Pn Πm−t−1Ht Πm−t−1PT−1

Πm−t−1Et Πm−t−1PT−1

Πm−t−1Pt

{
Πm−t−1HT−1

Πm−t−1ET−1

Theorem 1.51. Let Π = Πm have polar space Π′ = Πn−m−1 with respect to Qn.

Then the possibilities for Π ∩ Qn = ΠkV and Π′ ∩ Qn = ΠkV
′ are listed in Table

1.4.

Proof. By Corollary 1.20 and Lemma 1.30, Π′ ∩Qn has the same singular space Πk

as Π ∩Qn. So, if Π′ ∩Qn = Πm−t−1Qs, then

s = (n−m− 1)− (m− t− 1)− 1 = n+ t− 2m− 1 = T − 1.

Now it suffices to look at particular cases of each type of subspace using the standard

equations, as, for a given trio m, t, v, there are at most two orbits by Lemma 1.48. ��

Corollary 1.52. In the theorem, let Qn, V , V
′ have respective characters w, v, v′

and respective projective indices g, f, f ′. Then

(i) v′ = |2− w − v| unless w = v = 1, in which case v′ = 0 or 2;
(ii) f + f ′ − g = k − 1 + 1

2
(v + v′ − w).

Proof. (i) This follows from the theorem.

(ii) From (1.8) and (1.10),

w = 2g − n+ 3,

v = 2f − k −m+ 2,

v′ = 2f ′
− k − (n−m− 1) + 2 = 2f ′

− n+m− k + 3.

Elimination of m and n gives the formula. ��

To add something comparable to Theorem 1.51 for Pn with q even, the following

result is available; it only repeats a particular case of Lemma 1.30.
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Lemma 1.53. Let q be even. Then, in the notation of Theorem 1.51, with tangent

space replacing polar space, the result is as follows:

Quadric Section Tangent section

Qn ΠkV ΠkV
′

Pn ΠmH−1 ΠmPn−2m−2

The next result gives more information on the tangency properties when Qn does

not have a polarity.

Theorem 1.54. With q even, let N be the nucleus of the parabolic quadric

Pn = V(X2
0 +X1X2 + · · ·+Xn−1Xn).

(i) Every section of Pn through N is parabolic.

(ii) There is a bijection between m-spaces Πm through N of Pn and (m−1)-spaces

Πm−1 in u0:

Πm 
→ Πm−1 = Πm−1 ∩ u0, Πm−1 
→ Πm = U0Πm−1.

Here, Πm ∩ Pn is a Πm−t−1Pt with Πm containing N if and only if, with

Hn−1 = u0 ∩ Pn, the intersection Πm−1 ∩Hn−1 is one of

Πm−t−1Ht−1, Πm−t−1Et−1, Πm−t−2Pt.

Proof. If Πm ∩ Pn = Πm−t−1Pt and Πm−1 = u0 ∩ Πm, then Πm−1 meets Hn−1

in a section Πm−s−1Qs−1, which is reduced to canonical form by a projectivity μ of

PG(n, q) fixing u0 and U0. Hence μ has the matrix[
1 Z

Z∗ M

]
,

where Z = (0, 0, . . . , 0) and M is an n×n matrix with no further restriction. So the

possible canonical forms for Qs−1 and correspondingly Pt are given in Table 1.5.

This proves (ii) and so, a fortiori, (i). ��

1.8 Sections of non-singular quadrics

As in Section 1.6, let S(m, t, v;n,w) be the set of m-spaces Πm such that Πm ∩Qn

is of type Πm−t−1Qt, where Qn and Qt have respective characters w and v. Also,

|S(m, t, v;n,w)| = N(m, t, v;n,w) = N(Πm−t−1Qt,Qn)

and this number will be calculated. As special cases, the formula gives
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Table 1.5. Sections through the nucleus

Type Form for Qs−1 Πm−s−1Qs−1

1 X1X2 + · · ·+Xs−1Xs Πm−s−1Hs−1

2 f(X1, X2) +X3X4 + · · ·+Xs−1Xs Πm−s−1Es−1

3 X2
1 +X2X3 + · · ·+Xs−1Xs Πm−s−1Ps−1

Type Form for Pt Πm−t−1Pt

1 X2
0 +X1X2 + · · ·+Xs−1Xs Πm−s−1Ps

2 X2
0 + f(X1, X2) +X3X4 + · · ·+Xs−1Xs Πm−s−1Ps

3 (X0 +X1)
2 +X2X3 + · · ·+Xs−1Xs Πm−sPs−1

(1) the number of Πm lying on Qn, and here Πm ∩ Qn = ΠmH−1;

(2) the number of points Π0 not on Qn, and here Πm ∩ Qn = Π−1P0.

The formula gives the size of the orbits when G(Qn) operates on the lattice of sub-

spaces of PG(n, q), apart from the case w = v = 1. This fact is contained in Theo-

rem 1.49: when (w, v) �= (1, 1), the sections of Qn for a triple (m, t, v) form a single

orbit under G(Qn); when (w, v) = (1, 1), the sections for a given pair (m, t) form

one or two orbits, and the size of these orbits will also be determined.

To obtain the general result, some special cases are first required. These are sub-

sumed in the general result. In Section 1.5, the number

N(m;n,w) = N(m,−1, 2;n,w),

which is the number of m-spaces on Qn of character w, was determined.

The next special cases required are the numbers of bisecants, tangent lines and

skew lines to Qn; the total number of lines on Qn has already been determined in

Section 1.5.

Lemma 1.55.

(i) N(Π1,Qn) = [ 1
2
(n− 1− w), 1

2
(n+ 1− w)]+

×[ 1
2
(n− 3 + w), 1

2
(n− 1 + w)]−/[1, 2]− ; (1.36)

(ii) N(Π0P0,Qn) = {(qn − 1)/(q − 1) + (w − 1)q(n−1)/2
}

×{qn−2
− (w − 1)q(n−3)/2

} ; (1.37)

(iii) N(H1,Qn) =
1
2
qn−1

{(qn − 1)/(q − 1) + (w − 1)q(n−1)/2
} ; (1.38)

(iv) N(E1,Qn) =
1
2
qn−1(q{n+(w−1)

2
}/2

− w2 + w + 1)

×(q{n−(w−1)
2
}/2 + w2

− 3w + 1)/(q + 1) . (1.39)
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Proof. The number of lines on Qn through a point P is N(0;n−2, w), Lemma 1.22.

Hence the number of tangents through P is

θ(n− 2)−N(0;n− 2, w)

and the total number of tangents is

N(0;n,w){θ(n− 2)−N(0;n− 2, w)} ;

this gives (ii).

The number of bisecants through a point P of Qn is

θ(n− 1)− θ(n− 2) = qn−1 ;

hence

N(H1,Qn) = N(0;n,w) qn−1/2 .

The total number of lines in PG(n, q) is, from Theorem 3.1 of PGOFF2,

φ(1;n, q) = [n, n+ 1]−/[1, 2]− . (1.40)

Hence (iv) is obtained from the formula

N(E1,Qn) = φ(1;n, q)−N(Π1,Qn)−N(Π0P0,Qn)−N(H1,Qn) . ��

Corollary 1.56.

(i) N(1, 1, 0;n, 0) = N(E1, En)

= 1
2
qn−1(q(n+1)/2 + 1)(q(n−1)/2 + 1)/(q + 1) ; (1.41)

(ii) N(1, 1, 0;n, 2) = N(E1,Hn)

= 1
2
qn−1(q(n+1)/2

− 1)(q(n−1)/2
− 1)/(q + 1) ; (1.42)

(iii) N(1, 1, 0;n, 1) = N(E1,Pn)

= 1
2
qn−1(qn − 1)/(q + 1) . (1.43)

Theorem 1.57. The number of sections Πm−t−1Qt of character v on Qn of charac-

ter w is

N(m, t, v;n,w)

= q{T [t+1+vw(2−v)(2−w)]−v(2−v)(w−1)
2
}/2

×[ 1
2
{T + v + (1 + 3v − 2v2)w − v(2− v)w2

}, 1
2
(n+ 1− w)]+

×[ 1
2
{T + 2− v − (1− 5v + 2v2)w − v(2− v)w2

}, 1
2
(n− 1 + w)]−

÷{[v(2− v), 1
2
(t+ 1− v)]+[1,

1
2
(t− 1 + v)]−[1,m− t]−}, (1.44)

where T = n+ t− 2m.



34 1 Quadrics

Proof. Consider the spaces Πd lying on Qn and the spaces Πm meeting Qn in a

quadric ΠkQt of projective index d and character v. Let N0 be the number of such

Πm through a Πd. Also, let N ′(Πd,ΠkQt) be the number of Πd on ΠkQt containing

the vertex Πk. Then, counting pairs (Πd,Πm) gives

N(ΠkQt,Qn) = N0 N(Πd,Qn)/N
′(Πd,ΠkQt) . (1.45)

Here m = k + t+ 1. From (1.10),

v = 2d− (m− t− 1)−m+ 2 ,

whence

d = m−
1
2
(t− v + 3) . (1.46)

To find N0, consider all Wm = ΠkQt on Qn through a particular Πd. Let

Π′

n−d−1 be the tangent space of Πd with respect to Qn. Then, by Lemma 1.30,

Π′

n−d−1 ∩ Qn = ΠdQn−2d−2,

which has the same character w and projective index g as Qn.

The required spaces Πm must satisfy the following properties:

(a) Wm has projective index at most d;

(b) Πm touches Qn along Πk.

For (a), it is necessary and sufficient that Πm contains none of the (d + 1)-spaces

through Πd on ΠdQn−2d−2. If (a) is assumed, then it is necessary and sufficient for

(b) that ΠmΠ′

n−d−1 = Π′

n−k−1, using Lemma 1.21. This is equivalent to

Πm ∩ Π′

n−d−1 = Πr,

where

r = m+ (n− d− 1)− (n− k − 1) = m− d+ k . (1.47)

The space Πr contains Πd and, to satisfy (a), Πr ∩ ΠdQn−2d−2 = Πd. If r > d, so

Πr ∩Qn−2d−2 is either P0 or E1; hence

d ≤ r ≤ d+ 2. (1.48)

Three cases are distinguished according as Wm is parabolic, hyperbolic or ellip-

tic; that is v = 1, 2 or 0, where v = 2d− k −m+ 2, as in (1.10).

(1) Wm parabolic

Since 2 + 2d − k −m = 1 and r = m − d + k, so r = d + 1. Therefore, by (a),

Πr is any one of the Πd+1 which lie in Π′

n−d−1 and contain Πd without being on

ΠdQn−2d−2. So the number of Πr is, in the notation of Section 3.1 of PGOFF2,

χ(d, d+ 1;n− d− 1, q)−N(Π0,Qn−2d−2)

= θ(n− 2d− 2)−N(Π0,Qn−2d−2) = N1 . (1.49)
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The spaces Πm are those m-spaces containing such a Πr = Πd+1 with the condition

that Πm ∩ Π′

n−d−1 = Πr . If Πr is fixed, the number of these Πm is

ψ12(d+ 1, n− d− 1,m;n, q)

= q(m−d−1)(n−2d−2)[2d+ 3−m, d+ 1]−/[1,m− d− 1]−

= N2, (1.50)

by Theorem 3.3 of PGOFF2. Thus

N0 = N1 N2

= q{T (t+1)−(w−1)
2
}/2(q{T+(w−1)

2
}/2

− w + 1

×[m− t+ 1,m−
1
2
t]−/[1,

1
2
t]− , (1.51)

where N1 has been evaluated using (1.18) and d has been eliminated by (1.46). Here

n− 2d− 2 = n− 2m+ t− v + 3− 2 = T .

(2) Wm hyperbolic

Since 2 + 2d − k −m = 2 and r = m − d + k, so r = d and Πr = Πd. Thus the

spaces Πm are those m-spaces such that Πd = Πm ∩ Π′

n−d−1. By Theorem 3.3 of

PGOFF2, their number is

ψ12(d, n− d− 1,m;n, q)

= q(m−d)(n−2d−1)[2d+ 2−m, d+ 1]−/[1,m− d]−

= qT (t+1)/2[m− t+ 1,m−
1
2
(t− 1)]−/[1,

1
2
(t+ 1)]−

= N0, (1.52)

using (1.46) with v = 2.

(3) Wm elliptic

Since 2+2d−k−m= 0 and r = m−d+k, so r = d+2. Then, from (a), Πr is one of

the spaces Πd+2 in Π′

n−d−1 through the vertex Πd of ΠdQn−2d−2 but not containing

any point of the base Qn−2d−2. So Πd+2 is the join of Πd and a line external to

Qn−2d−2. Thus the number of Πr is the number of lines of PG(n − 2d − 2, q)
meeting Qn−2d−2 in some E1, that is, N(E1,Qn−2d−2). Now, (1.46) with v = 0
gives d = m−

1
2
(t+ 3), whence

n− 2d− 2 = n− 2m+ (t+ 3)− 2 = T + 1.

So, from (1.39),

N(E1,Qn−2d−2) =
1
2
qT (q{T+1+(w−1)

2
}/2

− w2 + w + 1)

×(q{T+1−(w−1)
2
}/2 + w2

− 3w + 1)/(q + 1)

= N1 . (1.53)
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The spaces Πm are those m-spaces meeting Π′

n−d−1 in such a Πr = Πd+2. If Πr is

fixed, the number of Πm is, by Theorem 3.3 of PGOFF2,

ψ12(d+ 2, n− d− 1,m;n, q)

= q(m−d−2)(n−2d−3)[2d+ 4−m, d+ 1]−/[1,m− d− 2]−

= qT (t−1)/2[m− t+ 1,m−
1
2
(t+ 1)]−/[1,

1
2
(t− 1)]−

= N2 . (1.54)

Thus

N0 = N1 N2

= qT (t+1)/2[m− t+ 1,m−
1
2
(t+ 1)]− N3

÷{(q + 1)[1, 1
2
(t− 1)]−}, (1.55)

where

N3 =

⎧⎪⎨⎪⎩
[ 1
2
T, 1

2
T + 1]+ for w = 0 ,

[ 1
2
T, 1

2
T + 1]− for w = 2 ,

[T, T + 1]− for w = 1 .

This completes the calculation of N0 in the three cases v = 1, 2, 0.

To apply the formula (1.45), the numbers N(Πd,Qn) and N ′(Πd,ΠkQt) are

required. By (1.46) and the definition,

N(Πd,Qn) = N(m−
1
2
(t− v + 3);n,w) ,

N ′(Πd,ΠkQt) = N(Πd−k−1,Qt) = N(1
2
(t+ v − 3); t, v) .

Thus, using (1.13) in Theorem 1.41,

N(Πd,Qn)/N
′(Πd,ΠkQt)

= [ 1
2
(T + 4− w − v), 1

2
(n+ 1− w)]+[

1
2
(T + 2 + w − v), 1

2
(n− 1 + w)]−

×[1, 1
2
(t− 1 + v)]−

÷{[2− v, 1
2
(t+ 1− v)]+[1,

1
2
(t− 1 + v)]−[1,m−

1
2
(t+ 1− v)]−}

= N4 . (1.56)

So (1.45) becomes

N(ΠkQt,Qn) = N(m, t, v;n,w) = N0 N4 .

Thus, from (1.51) and (1.56) with v = 1,

N(m, t, 1;n,w) = q{T (t+1+2w−w
2
)−(w−1)

2
}/2

×[ 1
2
(T + 1 + 2w − w2), 1

2
(n+ 1− w)]+

×[ 1
2
(T + 1 + 2w − w2), 1

2
(n− 1 + w)]−

÷{[1, 1
2
t]+[1,

1
2
t]−[1,m− t]−} . (1.57)
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From (1.52) and (1.56) with v = 2,

N(m, t, 2;n,w) = qT (t+1)/2

×[ 1
2
(T + 2− w), 1

2
(n+ 1− w)]+[

1
2
(T + w), 1

2
(n− 1 + w)]−

÷{[0, 1
2
(t− 1)]+[1,

1
2
(t+ 1)]−[1,m− t]−} . (1.58)

From (1.55) and (1.56) with v = 0,

N(m, t, 0;n,w) = qT (t+1)/2

×[ 1
2
(T + w), 1

2
(n+ 1− w)]+[

1
2
(T + 2− w), 1

2
(n− 1 + w)]−

÷{[0, 1
2
(t+ 1)]+[1,

1
2
(t− 1)]−[1,m− t]−} . (1.59)

The substitution of v = 1, 2, 0 in the ‘big formula’ (1.44) gives (1.57), (1.58), (1.59)

respectively. Thus (1.44) is established. ��

It may be noted that all the special cases of (1.44) required for its proof are

immediately retrievable from the general formula.

Example 1.58. The number of conics on a quadric Pn, n even:

v = w = 1, m = t = 2, T = n− 2,

N(P2,Pn) = q2(n−2)[ 1
2
n, 1

2
n]+[

1
2
n, 1

2
n]−

÷{[1, 1]+[1, 1]−[1, 0]−}

= q2(n−2)(qn − 1)/(q2 − 1) .

Now consider, under what conditions on the parameters m, t, v, n, w and the in-

variant T = n + t − 2m, the quadric Qn of character w has a section Πm−t−1Qt

of character v. First, the properties of the parameters that are contained within their

definition are listed.

Property 1.59. (a) n− w is odd;

(b) t− v is odd;

(c) T + w − v is even;

(d) n > m ≥ 0;

(e) m ≥ t ≥ 1− v;

(f) n ≥ (w − 1)2.

In Lemma 1.50, it was also shown that T ≥ v − w.

Theorem 1.60. Subject to the conditions (a)–(f) of Property 1.59, a quadric Qn of

character w has a section Πm−t−1Qt of character v if and only if

T ≥ |w − v| .
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Table 1.6. Values of f(v, w)

w 0 1 2
v

0 −2 −1 0
1 −1 −2 −1
2 0 −1 −2

Proof. From Notation 1.32, the integer [r, s]− = 0 if and only if r = 0. So, from

(1.44), the number N(m, t, v;n,w) > 0 if and only if

T + 2− v − (1− 5v + 2v2)w − v(2− v)w2 > 0 ;

that is, T > f(v, w) where f(v, w) is given in Table 1.6.

Since T + w − v is even, the minimum value g(v, w) of T is given as follows:

g(v, w) =

{
f(v, w) + 1 if f(v, w) + 1− (w − v) is even;
f(v, w) + 2 if f(v, w) + 1− (w − v) is odd.

Hence g(v, w) is given by Table 1.7. Thus g(v, w) = |w − v|. ��

Table 1.7. Values of g(v,w)

w 0 1 2
v

0 0 1 2
1 1 0 1
2 2 1 0

Corollary 1.61. The quadric Qn of character w has a section Πm−t−1Qt of char-

acter v if and only if

(a) n− w is odd and n ≥ (w − 1)2;
(b) t− v is odd;
(c) n > m ≥ t ≥ max(2m− n+ |w − v|, 1− v).

Corollary 1.62. The quadric Qn of character w has a section ΠkQt of character v

with k = m− t− 1 if and only if

(a) n− w is odd and n ≥ (w − 1)2;
(b) t− v is odd;
(c) 1− v ≤ t < n− k − 1;
(d) −2 ≤ 2k ≤ n− t− |w − v| − 2.
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Theorem 1.63. For a given Qn = Hn, En,Pn the number of projectively distinct

pairs (Πm,Πm−t−1Qt) where Πm ∩ Qn = Πm−t−1Qt is as follows:

Type of Hn En Pn

section

Hyperbolic 1
8
(n2 − 1) + n 1

8
(n− 1)(n+ 5) 1

8
n(n+ 6)

Elliptic 1
8
(n2 − 1) 1

8
(n− 1)(n+ 5) 1

8
n(n+ 2)

Parabolic 1
8
(n+ 1)(n+ 3) 1

8
(n+ 1)(n+ 3) 1

8
n(n+ 6)

Total 1
8
(3n+ 1)(n+ 1) + n 1

8
(3n+ 7)(n− 1) + n 1

8
n(3n+ 14)

Proof. For each m such that 0 ≤ m ≤ n− 1, Corollary 1.61 permits a count of the

values of t for which a section Πm−t−1Qt of character v exists. ��

By way of example, the different sections by an m-space for the three quadrics

E5, P6, H7 are listed in Table 1.8.

Since the sections of non-singular quadrics have been determined, it is possible

to say precisely what are the sections of a singular quadric.

Theorem 1.64. If, for a fixed t, the non-singular quadric Qn has a section ΠiQt of

character v, then ΠkQn has a section ΠjQt of character v for all j in the range

i ≤ j ≤ i+ k + 1.

Proof. A section of ΠkQn is the join of a section Πs of Πk to a section ΠiQt of Qn;

this join is Πs+1+iQt, where s may vary from −1 to k. ��

1.9 Parabolic sections of parabolic quadrics

Part of Theorem 1.49 is that, in the operation of G(Qn) on the set S(m, t, v;n,w)
of m-spaces Πm meeting Qn of character w in a section Πm−t−1Qt of character

v, the only case that two orbits may occur is when v = w = 1. The geometrical

explanation of this phenomenon is different for q odd and q even. From (1.44),

N(m, t, 1;n, 1) = qT (t+2)/2[ 1
2
(T + 2), 1

2
n]+[

1
2
(T + 2), 1

2
n]−

÷{[1, 1
2
t]+[1,

1
2
t]−[1,m− t]−} , (1.60)

where, as before,

T = n+ t− 2m.

This is the number of Πm such that

Πm ∩ Pn = Πm−t−1Pt. (1.61)

In this section only such Πm are considered.
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Table 1.8. Sections in dimensions 5, 6, 7

Hyperbolic Elliptic Parabolic

E5

m = 4 Π0E3 P4

m = 3 H3 E3,Π1E1 Π0P2

m = 2 Π0H1 Π0E1 P2,Π1P0

m = 1 H1,Π1 E1 Π0P0

m = 0 Π0 P0

P6

m = 5 H5 E5 Π0P4

m = 4 Π0H3 Π0E3 P4,Π1P2

m = 3 H3,Π1H1 E3,Π1E1 Π0P2,Π2P0

m = 2 Π0H1,Π2 Π0E1 P2,Π1P0

m = 1 H1,Π1 E1 Π0P0

m = 0 Π0 P0

H7

m = 6 Π0H5 P6

m = 5 H5,Π1H3 E5 Π0P4

m = 4 Π0H3,Π2H1 Π0E3 P4,Π1P2

m = 3 H3,Π1H1,Π3 E3,Π1E1 Π0P2,Π2P0

m = 2 Π0H1,Π2 Π0E1 P2,Π1P0

m = 1 H1,Π1 E1 Π0P0

m = 0 Π0 P0

For q odd, as in Theorem 1.51, the polar Π′

n−m−1 of Πm meets Pn in either

an elliptic or a hyperbolic section. If Π′

n−m−1 ∩ Pn = Πm−t−1ET−1, then Πm

is internal; if Π′

n−m−1 ∩ Pn = Πm−t−1HT−1, then Πm is external. This con-

forms with the notion of internal and external points of a conic as in Section 8.2 of

PGOFF2. Accordingly, write N−(m, t, 1;n, 1) for the number of internal Πm and

N+(m, t, 1;n, 1) for the number of external Πm such that (1.61) holds. Hence

N−(m, t, 1;n, 1) +N+(m, t, 1;n, 1) = N(m, t, 1;n, 1) . (1.62)

Theorem 1.65.

(i) N−(m, t, 1;n, 1) = qT (t+1)/2[ 1
2
(T + 2), 1

2
n]+[

1
2
T, 1

2
n]−

÷{[0, 1
2
t]+[1,

1
2
t]−[1,m− t]−} . (1.63)

(ii) N+(m, t, 1;n, 1) = qT (t+1)/2[ 1
2
T, 1

2
n]+[

1
2
(T + 2), 1

2
n]−

÷{[0, 1
2
t]+[1,

1
2
t]−[1,m− t]−} . (1.64)
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Proof. By definition,

N−(m, t, 1;n, 1) = N(n−m− 1, T − 1, 0;n, 1) ,

N+(m, t, 1;n, 1) = N(n−m− 1, T − 1, 2;n, 1) .

Application of (1.44) and some manipulation give the required answers, for which

(1.60) and (1.62) provide a check. ��

Corollary 1.66. For q odd, the set S(m, t, 1;n, 1) has one or two orbits under

G(Pn) according as T = 0 or T > 0. In the former case, the sections of

the orbit are all external and have polar sections Π′

n−m−1 ∩ Pn = Πr, where

r = n−m− 1 = m− t− 1.

Proof. This follows from Theorem 1.49, (1.63) and (1.64). When T = 0,

Π′

n−m−1 ∩ Pn = Πm−t−1HT−1 = Πr . ��

For q even, a space Πm such that (1.61) holds either does or does not contain the

nucleus N of Pn. If Πm does contain N , it is called nuclear; if Πm does not contain

N , it is called non-nuclear. Accordingly, write N0(m, t, 1;n, 1) for the number of

nuclear Πm and N1(m, t, 1;n, 1) for the number of non-nuclear Πm, both such that

Πm ∩ Pn = Πm−t−1Pt. So

N0(m, t, 1;n, 1) +N1(m, t, 1;n, 1) = N(m, t, 1;n, 1) . (1.65)

Theorem 1.67.

(i) N0(m, t, 1;n, 1) = qtT/2[ 1
2
(T + 2), 1

2
n]+[

1
2
(T + 2), 1

2
n]−

÷{[1, 1
2
t]+[1,

1
2
t]−[1,m− t]−} . (1.66)

(ii) N1(m, t, 1;n, 1) = qtT/2[ 1
2
T, 1

2
n]+[

1
2
T, 1

2
n]−

÷{[1, 1
2
t]+[1,

1
2
t]−[1,m− t]−} . (1.67)

Proof. From Theorem 1.54 (ii),

N0(m, t, 1;n, 1) = N(Πm−t−1Ht−1,Hn−1) +N(Πm−t−1Et−1,Hn−1)

+N(Πm−t−2Pt,Hn−1)

= N(m− 1, t− 1, 2;n− 1, 2) +N(m− 1, t− 1, 0;n− 1, 2)

+N(m− 1, t, 1;n− 1, 2) .

Applying (1.44) gives (1.66); then (1.65) gives (1.67). ��

Corollary 1.68. For q even, the set S(m, t, 1;n, 1) has one or two orbits under

G(Pn) according as T = 0 or T > 0. In the former case, the sections of the or-

bit are all nuclear and each is the section of Pn by the tangent space of a Πm−t−1

lying on Pn.
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Proof. This follows from Theorem 1.49, (1.66) and (1.67). In the case that T = 0,

then n− 2(m− t− 1)− 2 = t. So, by Lemma 1.53, the tangent space of a Πm−t−1

on Pn meets Pn in a section Πm−t−1Pt. ��

The corollaries to Theorems 1.65 and 1.67 for q odd and even can be combined

as follows.

Theorem 1.69. The set S(m, t, 1;n, 1) has one or two orbits under G(Pn) accord-

ing as T = 0 or T > 0. In the former case, each element of the orbit is the section

of Pn by the tangent space at a Πm−t−1 lying on Pn.

Example 1.70. Orbits of parabolic sections of P4. The five types of parabolic section

of P4 are as follows:

(a) P0, m = 0, T = 4, a point off P4;

(b) Π0P0, m = 1, T = 2, a tangent line meeting P4 in a point;

(c) Π1P0, m = 2, T = 0, a plane meeting P4 in a line;

(d) P2, m = 2, T = 2, a plane meeting P4 in a conic;

(e) Π0P2, m = 3, T = 0, a tangent solid meeting P4 in a cone.

In both cases (c) and (e), for q odd or even, there is a single orbit of (q + 1)(q2 + 1)
elements. In case (a), for q odd, there are 1

2
q2(q2−1) internal points and 1

2
q2(q2+1)

external points; for q even, there is the nucleus and q4−1 non-nuclear points. In case

(b), for q odd, there are 1
2
q(q4−1) internal tangents and 1

2
q(q+1)2(q2+1) external

tangents; for q even, there are (q + 1)(q2 + 1) nuclear tangents and (q + 1)(q4 − 1)
non-nuclear tangents. In case (d), for q odd, there are 1

2
q3(q − 1)(q2 + 1) internal

conics and 1
2
q3(q+1)(q2+1) external conics; for q even, there are q2(q2+1) nuclear

conics and q2(q4 − 1) non-nuclear conics.

1.10 The characterisation of quadrics

In this section, non-singular quadrics in Σ = PG(n, q) are characterised purely

in terms of their intersections with lines of Σ. The characterisation also applies to

infinite fields with only a slight rewording. First, a number of definitions are required.

Definition 1.71. (1) A set K in Σ is of type (r1, r2, . . . , rs) if

|l ∩K| ∈ {r1, r2, . . . , rs}

for all lines l.

(2) Let K be a set of type (0, 1, 2, q+1). A line meeting K in i points is an i-secant.

The alternative terms for a 0-secant, 1-secant, 2-secant, and (q + 1)-secant are

external line, unisecant or tangent, bisecant, and line on K or line of K. Some

authors use ‘tangent’ to mean 1-secant or (q+1)-secant, but this usage is avoided

here. However, in the context of this section, it is convenient to have a single term

for this idea. So a B-line is defined to be a 1-secant or a (q + 1)-secant. ,
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(3) The set K is quadratic if

(a) K is of type (0, 1, 2, q + 1);
(b) for each P in K, the union of B-lines through P together with P form the

tangent space TP = TP (K), which is either a hyperplane or Σ itself.

In (b), if P is not specifically included in TP (K), there is a difficulty when n = 1
and K consists of two points.

(4) The point P of the quadratic set K is singular if TP (K) = Σ; in other words,

there is no bisecant through P . If K has a singular point it is singular.

(5) If a quadratic set does not contain a line, it is an ovoid.

(6) A perspectivity of Σ is a projectivity fixing all lines through a certain point P0,

the centre. A quadratic set is perspective if there is a non-identity perspectivity

with centre Q fixing K for every Q in Σ not in K ∪
⋂

TP . Every non-singular

quadric in Σ is perspective, by Lemma 1.45.

Lemma 1.72. If K is a quadratic set and Πs is a subspace of Σ, then K′ = K ∩ Πs

is a quadratic set in Πs for which TP (K
′) = TP (K) ∩ Πs, where P is any point of

K′.

Proof. If l is a line of Σ, then it meets Πs in 0, 1 or q+1 points. Hence the possibil-

ities for |(l ∩Πs) ∩ K′| are given in Table 1.9.

Table 1.9. Intersection numbers for quadratic sets

|l ∩ K| 0 1 2 q + 1
|l ∩ Πs|

0 0 0 0 0
1 0 0, 1 0, 1 1

q + 1 0 1 2 q + 1

So K′ is a quadratic set. The other part follows similarly. ��

Corollary 1.73. If Π is a hyperplane and K is non-singular, then Π ∩ K has a sin-

gular point P if and only if Π = TP (K).

Theorem 1.74. In Σ = PG(n, q), n ≥ 2, a set K is a quadratic set if and only if

each plane section is a quadratic set.

Proof. One implication is included in Lemma 1.72. Suppose therefore that every

plane section of K is quadratic. Let l be a line and π a plane containing l. Since

K∩ l = (K∩ π)∩ l, it follows that K is of type (0, 1, 2, q+1). Further, l is a B-line

of K if and only if l is a B-line of K ∩ π for every plane π containing l.

For each P ∈ K, let the union of the B-lines through P be TP . If l1 and l2
are two of these B-lines, let π = l1 l2; then π ∩ K is a quadratic set whose tangent

hyperplane at P is π. So π is contained in TP , and TP is a subspace. As each plane

containing P has a line in TP , so TP is a hyperplane or the whole of Σ. ��
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Some properties of singular quadratic sets are now developed.

Theorem 1.75. The set of singular points of a quadratic set is a subspace.

Proof. Let P,Q be distinct singular points of the quadratic set K and let R be any

point of the line PQ. As PQ is a B-line at P , so PQ ⊂ K and R ∈ K. Let l be any

line through R. It must be shown that l is a B-line. So take R �= P and l �= PQ. If

l contains a point S in K with S �= R, the tangent hyperplane TS contains P and Q

since PS and QS are lines of K. So TS contains the line PQ and the point R. Hence

RS = l is a B-line and lies in K. So R is singular. ��

The next result shows that the theory of quadratic sets is entirely dependent on

the theory of non-singular ones. The structure is similar to that of quadrics.

Theorem 1.76. If K is a quadratic set, then K is a cone ΠsK
′, where Πs is the

subspace of singular points of K andK′ is a non-singular quadratic set in a subspace

Πn−s−1 disjoint to Πs.

Proof. Let Πn−s−1 be any subspace disjoint from Πs and let K′ = K ∩ Πn−s−1. If

K′ has a singular point P , then Πn−s−1 ⊂ TP (K) by Lemma 1.72. As Πs also lies

in TP (K) so TP (K) = Σ and P ∈ Πs, a contradiction. If Q ∈ K\(Πs ∪ Πn−s−1),
then QΠs ∩Πn−s−1 �= ∅. So there is a line P0P1 with P0 ∈ Πs, P1 ∈ Πn−s−1, and

Q ∈ P0P1. Hence P1 ∈ K′ and Q ∈ ΠsK
′; therefore K ⊂ ΠsK

′. However, every

point of ΠsK
′ is also in K. ��

Theorem 1.77. If K is a quadratic set in Σ = PG(n, q), n ≥ 2, then every plane

section of K is singular or empty if and only if K is a subspace or the union of two

hyperplanes.

Proof. In Σ, if K is a subspace, then, for any plane Π2, the intersection with K is

one of Π2, Π1, Π0, Π−1. If K = Πn−1 ∪Π′

n−1, then K∩Π2 = Π2 or Π1 ∪Π′

1. So,

in both cases, a plane section of K is singular or empty.

To prove the converse, suppose K is not a subspace. So there are points P and

P ′ with PP ′ not contained in K. Each plane π through PP ′ meets K in two lines

l and l′ with P ∈ l and P ′ ∈ l′. The line l is the only B-line of K through P in π.

Hence the tangent space of K at P is the hyperplane Πn−1 =
⋃

π
l, where the union

is taken over all planes π. Similarly, the tangent space of K at P ′ is the hyperplane

Π′

n−1 =
⋃

π
l′. Since K =

⋃
(l ∪ l′), so K = Πn−1 ∪ Π′

n−1. ��

Theorem 1.78. If K is a quadratic set in Σ other than a subspace, then the smallest

subspace containing K is Σ.

Proof. The set K must have at least one non-singular point P , whence TP is a hy-

perplane. So every line through P not in TP contains a second point P ′ of K. Thus

any subspace containing K contains every line not in TP and so must be Σ. ��

Definition 1.79. (1) A generator of K is a subspace contained in K and maximal

with respect to inclusion.
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(2) Any subspace contained in K is a sub-generator of K.

Theorem 1.80. Let K′ be a subset of the quadratic set K such that the line PQ is

contained in K for all P and Q in K′. Then the subspace spanned by K′ is a sub-

generator of K.

Proof. This is by induction on m = |K′|. The result is immediate for m = 0, 1, 2.

So let m > 2, let P ∈ K′ and let Πs be the subspace spanned by K′\{P}. By the

induction hypothesis,Πs is a sub-generator ofK. Every pointQ of the subspacePΠs

spanned by K′ lies on a line PP ′ with P ′ in Πs. The tangent hyperplane TP contains

K′\{P} and hence Πs. So every line PP ′ is a B-line at P and, since it contains two

points of K, lies in K; thus Q ∈ K. ��

Theorem 1.81. Let K be a quadratic set with a sub-generator Π and a point P of K

such that PΠ is not a sub-generator. Then

(i) the union ΠP of the lines of K through P and a point Q of Π is a sub-generator;
(ii) ΠP ∩ Π = TP ∩ Π and this subspace is a hyperplane in Π and in ΠP ;

(iii) dimΠP = dimΠ;
(iv) if Π is a generator of K, so is ΠP .

Proof. First, ΠP = PΠ∩ TP . So ΠP is a subspace and ΠP ∩Π = TP ∩Π. Further,

ΠP is a sub-generator by Theorem 1.80, where K′ = (ΠP ∩Π)∪{P} in the notation

used there. As ΠP cannot contain Π, so ΠP ∩ Π is a hyperplane of Π since TP is a

hyperplane of Σ. Hence P (ΠP ∩ Π) = ΠP is a hyperplane of PΠ and ΠP ∩ Π is a

hyperplane of ΠP . This proves (i) and (ii); part (iii) now follows.

Suppose ΠP is a generator and Π is not. Then Π is properly contained in a gener-

ator Π′. Hence, by (ii), Π′

P
∩Π′ is a hyperplane in Π′. So there is a line of K through

P not in ΠP , whence ΠP is not a generator. Thus, if ΠP is a generator, so is Π. The

converse result (iv) follows by symmetry. For, let Q be a point of Π\ΠP ; then QΠP

is not a sub-generator, unless PΠ is. As (ΠP )Q = Π, the result is proved. ��

Theorem 1.82. The generators of a quadratic set K all have the same dimension.

Proof. Suppose Π and Π′ are generators of dimensions r and r′ with r < r′. Let

B = {P0, . . . , Pr} be a generating set for Π. For each Pi, let Π′

i
be the union of

lines of K joining Pi to a point of Π′. Then Π′

i
∩ Π′ is either a hyperplane of Π′

or Π′ itself, by Theorem 1.81. As r < r′, the intersection of the Π′

i
is non-empty

since its codimension in Π′ is at most r. If P is in this intersection, then PΠ is a

sub-generator by Theorem 1.80 and so Π is not a generator. ��

As for quadrics, the dimension g of a generator of K is called the projective index

of K. It should be noted that this is one less than the Witt index.

Lemma 1.83. If Π is a sub-generator of a non-singular quadratic set K, then there

exists a generator disjoint from Π.
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Proof. If Π′ is a generator meeting Π and dim(Π′ ∩ Π) = j, it suffices to show that

there exists a generator Π′′ such that dim(Π′′ ∩ Π) = j − 1. There exists a point P

in K such that P (Π′ ∩ Π) is not a sub-generator; otherwise, every point of Π′ ∩ Π
would be singular for K. Hence (Π′∩Π)P is a sub-generator whose intersection with

Π′∩Π has dimension j−1, by Theorem 1.81. By the same result, Π′

P
is a generator,

and contains (Π′ ∩ Π)P . Since P (Π′ ∩ Π) is not a sub-generator,

Π′
∩ Π �⊂ Π′

P
. (1.68)

So

(Π′
∩Π)P ∩ (Π′

∩ Π) = Π′

P
∩ (Π′

∩ Π). (1.69)

It is now shown that

Π′

P
∩ Π′

∩ Π = Π′

P
∩Π. (1.70)

Assume on the contrary that there is a pointQ of Π∩Π′

P
not in Π′. Let Ω be the union

of Π′ ∩ Π, Π′

P
∩ Π′, and {Q}. The join of any two points of Ω is a sub-generator.

By Theorem 1.80, Ω spans a sub-generator K′. Since K′ contains the hyperplane

Π′ ∩ Π′

P
of Π′

P
and the point Q of Π′

P
, so Π′

P
⊂ K′. Since Π′

P
is a generator, so

Π′

P
= K′. Hence Π′

P
= K′ ⊃ Π′ ∩ Π, contradicting (1.68). So (1.70) holds. Now,

from (1.69),

(Π′
∩ Π)P ∩ (Π′

∩ Π) = Π′

P
∩ Π.

Since dim((Π′ ∩Π)P ∩ (Π′ ∩Π)) = j − 1, so dim(Π′

P
∩Π) = j − 1. Thus there is

a generator Π′′ = Π′

P
with dim(Π′′ ∩ Π) = j − 1. ��

Corollary 1.84. If K is a non-singular quadratic set in PG(n, q), its projective index

g satisfies 2g ≤ n− 1.

Proof. Let Π and Π′ be disjoint generators of K; then dimΠΠ′ ≤ n. So

2g = dimΠ + dimΠ′ = dim(ΠΠ′) + dim(Π ∩ Π′) ≤ n− 1. ��

Lemma 1.85. If Π is a sub-generator of the non-singular quadratic set K and Π is

contained in the generator Γ, then there exists a generator Γ′ such that Γ ∩ Γ′ = Π.

Proof. This is by induction on dimΠ = m. If m = −1, the result is that of the

previous lemma. Suppose now that the property is satisfied for dimension m − 1,
with m ≥ 0. Let Π′ be a hyperplane of Π and let P be a point of Π\Π′. There exists

a generator Γ1 such that Γ ∩ Γ1 = Π′ since dimΠ′ = m − 1. Then Γ′ = (Γ1)P is

the required generator. ��

Theorem 1.86. Every sub-generator of a non-singular quadratic set K is the inter-

section of the generators containing it.

Proof. This follows from the preceding lemma. ��

Lemma 1.87. If K is a quadratic set in PG(n, q), n ≥ 2, which is not a subspace,

then any collineation σ fixing every point of K is the identity.
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Proof. Since K is not a subspace, it contains non-singular points P and Q. Hence σ

fixes every line through P other than a tangent line. It follows that σ also fixes these

tangent lines. So σ is a perspectivity with centre P . Similarly, it is a perspectivity

with centre Q. If R is any point not on the line PQ, the lines RP and RQ are fixed.

So R is fixed and σ is the identity. ��

Lemma 1.88. If K is a quadratic set in Σ = PG(n, q), n ≥ 2, and P in Σ\K is

a point not lying on all tangent hyperplanes, then there is at most one perspectivity

other than the identity with centre P which fixes K.

Proof. Since P exists, K is not a subspace. Let σ and σ′ be perspectivities with

centre P fixing K. Let P1P2 be a bisecant of K through P with P1, P2 ∈ K. First,

let Piσ
′ = Pi, i = 1, 2. Then σ′ fixes both TP1

and TP2
, whence σ′ is the identity, a

contradiction. So P1σ
′ = P2 and P2σ

′ = P1. Analogously, P1σ = P2, P2σ = P1.

So σ−1σ′ is a perspectivity with centre P fixing K, P1 and P2. Again, σ−1σ′ is the

identity, implying that σ = σ′. ��

Theorem 1.89. If K is a quadratic set other than a subspace and every plane section

of K is the empty set, a point, a line or a conic, then K is a quadric.

Proof. This is by induction on the dimension n. The result is in the hypotheses when

n = 1 or 2. So let n ≥ 3, and let P ′Q′ ∩ K = {P ′, Q′}. A hyperplane Π through

P ′Q′ therefore does not meet K in a subspace. So, by induction, Π∩K is a quadric.

If all points of K outside Π were singular, they would be contained in a subspace

Π′. So K ⊂ Π ∪ Π′, whence K has bisecants through each point of (K ∩ Π′)\Π, a

contradiction. So K has a non-singular point P not in Π. Choose coordinates such

that (i) P = U0, (ii) Π = u0, (iii) TP = un. Then

Π ∩ K = V

(
X0,

n∑
1

′ aijXiXj

)
.

The summation sign
∑

′

indicates summation over all i and j with i ≤ j, whereas∑
′′

indicates summation with i < j.

Consider the pencil of quadrics Ft, t �= 0, where

Ft = V

(
tX0Xn +

n∑
1

′ aijXiXj

)
.

Each Ft contains Π∩K, passes through P , and has TP (K) as the tangent hyperplane

at P .

Now, let Q be a point of Π ∩ K not lying in TP ; suppose Q = P(0, c1, . . . , cn),
cn �= 0. Not all points of Π ∩ K outside TP are singular for Π ∩ K. So, let Q be

non-singular for Π ∩ K; then

TQ(Ft) = V

(
tcnX0 + 2

n∑
1

aiiciXi +

n∑
1

′′ aij(ciXj + cjXi)

)
.
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However,

TQ(K) = V

(
λX0 + 2

n∑
1

aiiciXi +

n∑
1

′′ aij(ciXj + cjXi)

)
, with λ �= 0.

So there exists some t, say t = b, such that TQ(Fb) = TQ(K). It is now shown that

K = Fb.

Let R be a point of K other than P and not in Π. The points P,Q,R are not

collinear; so the plane α = PQR meets K in a conic C and Fb in a conic C′. Let

l = α∩Π; then P and R do not belong to the line l, although Q does. There are two

cases.

(a) l contains a point Q′ in K with Q′ �= Q. Then C and C′ have the points

P,Q,Q′ in common as well as the tangents at P andQ, by Lemma 1.72; thus C = C′.

Let A be any point not in the union of the planes α through PQ meeting Π in a

tangent l to K, and so in particular outside the hyperplane PTQ(Π∩K), which is the

union of the planes β through PQ meeting Π in a B-line to K. Then A belongs to K

if and only if it belongs to Fb.

(b) l is a tangent to K. Then RP belongs neither to K nor to Fb. Let S be a point

of K not in the hyperplane PTQ(Π ∩K). The plane PRS meets K and Fb in conics

D and D′ which coincide outside the line PR. Since PR is contained in neither D

nor D′, so D = D′; hence R ∈ Fb.

Thus K ⊂ Fb. Similarly Fb ⊂ K. This concludes the proof. ��

Theorem 1.90. In PG(n, q), a perspective quadratic set K which is not a subspace

is a quadric.

Proof. If the set is the union of two subspaces, neither of which is contained in the

other, then it follows, for example from Theorem 1.77, that K is the union of two

distinct hyperplanes and so is a quadric. From now on, assume that this is not the

case.

(a) n = 2. Here K must be non-singular and non-empty. So it has no three points

collinear and is therefore a (q + 1)-arc. Let U0,U1 be points of K and let U0U2

and U1U2 be the tangents at U0 and U1. Every point of u2 not in K is of the

form P(1,m, 0) with m �= 0. There exists a non-identity perspectivity σ with centre

P(1,m, 0) fixing K and U2 but interchanging U0 and U1. Hence the axis of σ is

V(mX0 +X1); if p = 2, the axis contains P(1,m, 0) and, if p �= 2, the axis passes

through the harmonic conjugate P(1,−m, 0) of P(1,m, 0) with respect to U0 and

U1. Thus U is mapped to P(1,m2,−m), whence K = V(X0X1 −X2
2 ).

(b) n > 2. Let Π be a plane such that Π ∩ K is not a subspace. If Π ∩ K is

non-singular, it is a conic by (a). If Π ∩ K is singular, it is a line pair and therefore a

quadric. Hence, by Theorem 1.89, K is a quadric. ��

To reach the final characterisation of quadrics, more properties of perspective

quadratic sets are required. For the next theorem, let P,Q be distinct points of a

quadratic set K, and define SPQ = TP ∩ TQ. For the remainder of this section, K is

always non-singular.
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Lemma 1.91. (i) SPQ has codimension two in Σ.

(ii) If A,B,C are collinear points of K, then SAB = SAC .

Proof. (i) If TP = TQ, then PQ ⊂ K. It is first shown that if R is any other point on

PQ, then TP = TR. Let A ∈ TP \PQ; then either AP and AQ are both tangents or

both lines of K.

(a) SupposeAP,AQ are tangents. The planeAPR lies in TP . If AR is a bisecant,

then it meets K in another point R′. So PR′ and QR′ are lines of K. Hence any line

l through R other than AR meets PR′ and QR′ in a point of K; so l ⊂ K. Thus the

plane APR lies in K. So AR is not a bisecant and is hence a tangent.

(b) Suppose AP,AQ are lines of K. Again, any line l through R other than AR

contains distinct points of K on AP and AQ, and so lies on K. Hence the plane APQ

lies in K. So AR is a line of K.

From (a) and (b), it follows that TP ⊂ TR. Since K is non-singular, TP = TR

for all R on PQ. Let A �∈ TP ∪ K. Then AR is a bisecant for every R on PQ; so

AP,AQ,AR all meet K again at the respective points P1, Q1, R1.

If P1, Q1, R1 are not collinear, then each side of the triangle P1Q1R1 meets the

line PQ in a point of K. So these sides are lines of K and the plane of the triangle

lies on K; thus A lies on K. So P1, Q1, R1 are collinear and R1 lies on P1Q1 for

every R on PQ.

Let PQ∩P1Q1 = S. Then AS is a tangent to K. Thus A ∈ TS and TS = Σ. So

K is singular, a contradiction. Hence TP �= TQ and so SPQ has codimension two.

(ii) If D ∈ SAB and D �∈ K, then AD and BD are tangents. If DC is not a

tangent, it meets K again at C′. The plane α = ABD lies in SAB , hence C ′ ∈ SAB ,

and AC ′ and BC ′ lie in K. This gives enough points of α on K to mean that α lies

in K, a contradiction. If D ∈ K\AB, then ABD ⊂ K. In both cases, D ∈ TC . ��

Lemma 1.92. If PQ is a bisecant of K, then SPQ is spanned by SPQ ∩K providing

SPQ ∩ K is non-empty.

Proof. The set SPQ ∩ K is non-singular, for a singular point R would be such that

TR contains SPQ as well as P and Q; so R would be singular for K, since SPQ and

P span SP . Now Theorem 1.78 gives the result. ��

Lemma 1.93. If σ is a perspectivity fixing K with centre R not in K and Pσ = Q,

where P,Q ∈ K and P �= Q, then the axis of σ contains SPQ.

Proof. Since Pσ = Q, so TPσ = TQ. Hence TP ∩ TQ = SPQ is in the axis of σ. ��

Let AB be a bisecant of K, with A,B ∈ K, and let P ∈ AB\K. Let l be a line

of K through A; then Bl �⊂ K. By Theorem 1.81, there exists a unique E on l such

that BE ⊂ K. Let C be a point of l\{A,E} and let D = PC ∩BE. See Figure 1.1.

Lemma 1.94. With A,B,C,D,E as in Figure 1.1,

(i) SAB �= SBC ;
(ii) SABSCD is a hyperplane.
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Fig. 1.1. Points on a quadratic set

B

E C
l

D

P

A

Proof. (i) If SAB = SBC , then SAB = SAC = SCD and TB contains A.

(ii) SAB ∩ SCD = TA ∩ TB ∩ TC ∩ TD

= TA ∩ TC ∩ TB ∩ TE, since TB ∩ TD = TE ∩ TB,

= TA ∩ TB ∩ TC , since TC ∩ TE = TA ∩ TC ,

using Lemma 1.91 (ii) twice. By (i), dim(TA ∩ TB ∩ TC) = n− 3. So SABSCD is

a hyperplane. ��

Lemma 1.95. Let σ be the perspectivity with centre P, axis SABSCD, and such that

Aσ = B. Then σ fixes K.

Proof. First it is shown that A,B �∈ SABSCD in order to guarantee the existence of

σ. Suppose that A ∈ SABSCD. As A �∈ SAB , so ASAB = TA = SABSCD. Hence

SCD ⊂ TA and so SAC = SCD. By Lemma 1.91 (ii), SAC ⊂ TE ; so SCD ⊂ TE .

Hence SED = SCD. Again by Lemma 1.91 (ii), SED ⊂ TB and so SCD ⊂ TB .

Consequently, SCD is contained in TC , TD, TA, TB. Hence SAB = SBC = SCD,

contradicting Lemma 1.94 (i). Analogously, B �∈ SABSCD.

Since E ∈ SAB ∩ SCD so E is on the axis. The perspectivity σ depends only on

K, P, A,B,C; so write

σ = σ(K, P, A,B,C) .

Now, σ maps every line of K through A to a line through B and every line of K

through C to a line through D. Hence

TAσ = (ASAB)σ = BSAB = TB ;

analogously, TCσ = TD.

Choose Q in K not in the plane ABC and consider the following two possibili-

ties.

(a) QE is not a line of K

Let l′ = QF , with F ∈ AC, be on K, and consider the solid Π3 = ABCQ. It

can be shown that Π3 ∩ K is non-singular. It follows that every point of Π3 ∩ K lies

on at most two lines of Π3 ∩ K. For any point R of Π3 ∩ K such that RE is not a

line of K, the tangent hyperplane TR intersects AE and BE in points A′ and B′;
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then RA′ and RB′ are lines of K. If R′ ∈ Π3 ∩ K is such that R′E is a line of K,

then choose E′ such that neither E′E nor E′R′ are lines of K. Then the previous

argument can be applied with R′ for R and E′ for E. Thus each point of Π3 ∩K lies

on exactly two lines of Π3 ∩ K. Hence Π3 ∩ K is a hyperbolic quadric, by Theorem

16.2.6 of FPSOTD.

In Π3 there exists a perspectivity σ′ with centre P and axis Π3 ∩SABSCD fixing

Π3 ∩ K and such that Aσ′ = B. Hence σ|Π3
= σ′ and Qσ ∈ K. It also follows that

Bσ = A, and so TBσ = TA. Since E is non-singular, such a point Q always exists.

(b) QE is a line of K

If QA and QB are lines of K, then Q ∈ SAB and so Qσ = Q. Thus it may be

assumed that QA is not on K. It may also be assumed that Q �∈ SABSCD, since

otherwise Qσ = Q. There exists a point E′ in SAB ∪ SCD such that E′ ∈ K and

QE′ is a bisecant of K. Otherwise, TQ contains SAB and SCD, by Lemma 1.92, as

SAB ∩K and SCD ∩K are not empty since they both contain E; this is excluded by

the fact that Q is neither singular nor in SABSCD.

Let E′ ∈ SAB . Through Q there is a line QA′ in K meeting AE′ in A′. Then

A′ �= E′, A. Now consider the perspectivity σ1 = σ(K, P, A,B,A′); so A′σ1 = B′

where B′ = PA′ ∩E′B. Applying the result of the previous paragraph to σ1 shows

that Qσ1 ∈ K. As σ and σ1 both interchange TA and TB , the map σσ−1
1 is the

identity, whence σ = σ1. ��

Theorem 1.96. In PG(n, q), a non-singular quadratic set containing a line is per-

spective.

Proof. This merely restates the previous lemma in a different form. ��

Theorem 1.97. In PG(n, q), a non-singular quadratic set K is a quadric or an

ovoid. If K is an ovoid, then it is one of the following:

(i) a (q + 1)-arc in PG(2, q);
(ii) an ovaloid of PG(3, q), q > 2;

(iii) an elliptic quadric in PG(3, 2).

Proof. The first part follows from Theorems 1.90 and 1.96. The second part follows

from Theorem 5.55. ��

1.11 Further characterisations of quadrics

In Section 1.10 two restrictions are put on a subset K of Σ = PG(n, q):

(a) K is of type (0, 1, 2, q + 1);
(b) K has a tangent space at each point P , which is either a hyperplane or Σ itself.

In this section, condition (b) is dropped. In what follows, condition (a) still holds.

So the definitions of Section 1.10 still apply for a set K is of type (0, 1, 2, q + 1). A

point P of K is singular if there is no bisecant of K through it. The set of singular

points of K is the singular space of K, and K is singular or non-singular according

as it has singular points or not.
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Lemma 1.98. The singular space S of K is a subspace of Σ.

Proof. Let P,Q ∈ S; then it must be shown that any other point R of PQ is also

singular. Since P is singular, so PQ ⊂ K. Let A ∈ K\PQ. Then the three lines

AP,AQ,PQ lie on K and hence the plane APQ also lies on K; so AR ⊂ K. Hence

R is singular. ��

Theorem 1.99. If K is a set of type (0, 1, 2, q+1) in Σ with singular space Πr, then

K is a cone ΠrK
′, where K′ is a non-singular set of type (0, 1, 2, q+1) in a subspace

Πn−r−1 skew to Πr.

Proof. Let Πn−r−1 be any space of dimension n− r − 1 skew to the singular space

Πr and let K′ = Πn−r−1 ∩ K. Now take A in Πr and A′ in K′; then AA′ ⊂ K. For

any point P of K\(Πr ∪ K′), the line AP ⊂ K. The space PΠr meets Πn−r−1 in a

point B; so B ∈ K′. Hence K is the cone ΠrK
′.

It must still be shown that K′ is non-singular; it is a set of type (0, 1, 2, q + 1)
from its definition. Suppose K′ has a singular point Q. Let P ∈ K\Πr and also let

B = PΠr∩Πn−r−1. If B = Q, then PQ ⊂ K. If B �= Q, then, with A = BP ∩Πr ,

the planes APQ and ABQ coincide. However, BQ ⊂ K and A is singular; so

ABQ ⊂ K. Thus PQ ⊂ K and Q is a singular point of K, which is a contradiction.

��

Theorem 1.100. A k-set of type (0, 1, 2, q+1) in PG(n, q), with n ≥ 3, q > 2, and

such that θ(n) > k ≥ θ(n− 1), is one of the following:

(a) Πn−1 ∪Π′

r
for some r = −1, 0, 1, . . . , n− 1;

(b) ΠtPn−t−1 for some t = −1, 1, . . . , n − 3 when n is even and equally some

t = 0, 2, . . . , n− 3 when n is odd;
(c) ΠtHn−t−1 for some t = −1, 1, . . . , n − 4 when n is odd and equally some

t = 0, 2, . . . , n− 4 when n is even;
(d) Wn ∪ Πr, where Wn is one of the quadrics (b) and Πr ⊂ ΠtN with N the

nucleus of a base Pn−t−1, and q is even;
(e) Πn−3K

′∪Πr, where K′ is a (q+1)-arc in a Π2 skew to Πn−3 and Πr ⊂ Πn−3N

with N the nucleus of K′, and q is even.

Theorem 1.101. In PG(n, q), with q > 3, n ≥ 4, a k-set of type (0, 1, 2, q+1) with

k = θ(n− 1)− qg+1, where g is the largest dimension of a subspace in K, is one of

the following:

(a) ΠtEn−t−1 for some t = −1, 1, . . . , n − 4 when n is odd and similarly some

t = 0, 2, . . . , n− 4 when n is even;
(b) Πn−4K

′, where K′ is a (q2 + 1)-cap in PG(3, q) skew to Πn−4 and q is even;
(c) Πn−2.

The last theorem has the following improvement.

Theorem 1.102. In PG(n, q), q > 3, n ≥ 3, q odd, a k-set of type (0, 1, 2, q + 1)
with θ(n) > k > θ(n−1)− qn−2+ qn−3 is either a quadric or Πn−1∪Π′

r
for some

r = −1, 0, 1, . . . , n− 1.
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From the previous three results, the following result for the non-singular case is

immediate.

Theorem 1.103. In PG(n, q) with n ≥ 4, q > 2, let K be a non-singular k-set of

type (0, 1, 2, q + 1).

(i) If θ(n) > k ≥ θ(n− 1), then one of the following holds:
(a) k = θ(n− 1), n is even and K = Pn;
(b) k = θ(n− 1) + q(n−1)/2, n is odd and K = Hn;
(c) k = θ(n − 1) + 1 and K = ΠtPn−t−1 ∪ {N} or K = Πn−3K

′ ∪ {N},

where K′ is a (q + 1)-arc in a Π2 skew to Πn−3, and N is the nucleus of

Pn−t−1 and K′ in the two cases.

(ii) If k = θ(n − 1) − qg+1, where g is the largest dimension of a subspace in K,

then n is odd, g + 1 = 1
2
(n− 1), and K = En.

(iii) If q is odd, q > 3 and θ(n) > k > θ(n− 1)− qn−2 + qn−3, then

(a) for n even, K = Pn;
(b) for n odd, K = Hn or En.

1.12 The Principle of Triality

On the hyperbolic quadric H7, known sometimes as the triality quadric or the Study

quadric after the discoverer of the principle, consider the two systems of generators

A and B. From Theorem 1.33,

|A| = |B| = 1
2
κ(7; 2) = 1

2
[0, 3]+ = (q + 1)(q2 + 1)(q3 + 1).

From Theorem 1.41 (iii),

|H7| = N(0; 7, 2) = (q3 + 1)(q4 − 1)/(q − 1) = 1
2
κ(7; 2).

Then it can be shown that the solids in A correspond to the points of a quadric H′

7

of PG′(7, q) such that solids in A containing a given line are mapped to the points

of a line of H′

7; similarly, the solids in B correspond to the points of a quadric H′′

7 of

PG′′(7, q) . A triality is a permutation τ of H7 ∪ A ∪ B such that

H7τ = A, Aτ = B, Bτ = H7,

and such that incidence is preserved, where incidence is defined as follows:

(1) a point is incident with a solid if it lies in the solid;

(2) two points are incident if their join lies on H7;

(3) two solids of the same system are incident if they meet in a line;

(4) two solids of different systems are incident if they meet in a plane.
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Then

H7
τ

→ A
τ

→ B
τ

→ H7

is induced by collineations

PG(7, q)
σ1

→ PG′(7, q)
σ2

→ PG′′(7, q)
σ3

→ PG(7, q)

such that

H7σ1 = H
′

7, H
′

7σ2 = H
′′

7 , H
′′

7σ3 = H7.

The map τ is called a triality by analogy with a duality of a projective space.

Example 1.104. To give an explicit example, a trilinear correspondence is intro-

duced. Write points as follows:

in PG(7, q) as P(x) with x = (x0, x1, . . . , x7);
in PG′(7, q) as P(y) with y = (y0, y1, . . . , y7);
in PG′′(7, q) as P(z) with z = (z0, z1, . . . , z7).

Let

H7 = V(X0X4 +X1X5 +X2X6 +X3X7),

H
′

7 = V(Y0Y4 + Y1Y5 + Y2Y6 + Y3Y7),

H
′′

7 = V(Z0Z4 + Z1Z5 + Z2Z6 + Z3Z7).

Consider the following trilinear form:

T (X,Y, Z) =

∣∣∣∣∣∣
X0 X1 X2

Y0 Y1 Y2

Z0 Z1 Z2

∣∣∣∣∣∣+
∣∣∣∣∣∣
X4 X5 X6

Y4 Y5 Y6

Z4 Z5 Z6

∣∣∣∣∣∣
+ X3(Z0Y4 + Z1Y5 + Z2Y6) +X7(Y0Z4 + Y1Z5 + Y2Z6)

+ Y3(X0Z4 +X1Z5 +X2Z6) + Y7(Z0X4 + Z1X5 + Z2X6)

+ Z3(Y0X4 + Y1X5 + Y2X6) + Z7(X0Y4 +X1Y5 +X2Y6)

− X3Y3Z3 −X7Y7Z7.

A pair (P(x),P(y)) of points in H7 ×H′

7 represents an incident pair in H7 ×A if

and only if the linear form T (x, y, Z) is identically zero in Z; the similar condition

applies for a cyclic permutation of x, y, z.

For example, to find the solid of A that corresponds to the pointP(y) of H′

7 when

y = (1, 0, . . . , 0), put this value of y in T (X, y, Z) and require that the coefficients

of all Zi, i ∈ {0, 1, . . . , 7} vanish. This gives the solid V(X1, X2, X4, X7).
The collineations σ1, σ2, σ3, with

PG(7, q)σ1 = PG′(7, q), PG′(7, q)σ2 = PG′′(7, q), PG′′(7, q)σ3 = PG(7, q),
(s0, s1, . . . , s7)σi = (s0, s1, . . . , s7), i = 1, 2, 3,

define a triality τ . Explicit calculations are possible using the form T (X,Y, Z).
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1.13 Generalised hexagons

Definition 1.105. A generalised hexagon is an incidence structure S = (P ,B, I) in

which P and B are non-empty, disjoint sets of points and lines, and for which I is a

symmetric point-line incidence relation satisfying the following properties.

(1) Each point is incident with 1 + t lines, with t ≥ 1, and two distinct points are

incident with at most one line.

(2) Each line is incident with 1 + s points, with s ≥ 1, and two distinct lines are

incident with at most one point.

(3) S contains no ordinary k-gon, as a subgeometry, for 2 ≤ k < 6.

(4) Any two elements of P ∪ B are contained in some ordinary 6-gon, again as a

subgeometry.

The integers s and t are the parameters of the generalised hexagon, and S has

order (s, t); if s = t, then S has order s. There is a point-line duality for a generalised

hexagon of order (s, t) for which in any statement ‘point’ and ‘line’ are interchanged,

and s and t are interchanged.

Theorem 1.106. The order of the known finite generalised hexagons is one of the

following:

(a) (s, 1) with s ≥ 1;
(b) (1, t) with t ≥ 1;
(c) (q, q) for q any prime power;
(d) (q, q3), and dually (q3, q), for q any prime power.

Example 1.107. Let S ′ = (P ′,B′, I′) be any finite projective plane of order s. Define

(a) P = P ′ ∪ B′;

(b) B = {(P ′, l′) ∈ P ′ × B′ | P ′ I′ l′};

(c) P I l with P ∈ P and l ∈ B if and only if P ∈ l.

Then S = (P ,B, I) is a generalised hexagon of order (s, 1). Conversely, any gener-

alised hexagon with t = 1 is of this type.

Trialities and generalised hexagons are closely related. Let H7 be the Study

quadric and let P6 be a parabolic quadric on it. If τ is a triality and l is a line of

P6, then τ maps the points of l onto the q+1 generators of A through a line l′ of H7.

Let B be the set of all lines l′ on P6. Then the incidence structure (P6,B, I), with I
the natural incidence, is a generalised hexagon of order q.

Up to duality and isomorphism, no other generalised hexagon of order q, with

q �= 1, is known. Also, all known generalised hexagons of order (q, q3), and dually

(q3, q), arise from trialities.
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1.14 Notes and references

Sections 1.1–1.9

These sections continue the material in Chapter 5 of PGOFF2. They are based on

Hirschfeld [174], although many details come from Segre [276]. In particular, the

proof of Theorem 1.57 is based on Segre’s treatment, although the formula (1.44),

due to Hirschfeld [173], is an amalgamation of several formulas established by

matrix-theoretic methods by Dai and Feng [81] and by Feng and Dai [132]. See

also De Bruyn [84].

The nature of the transitivity of the orthogonal group, as expounded in Theorem

1.49, seems more difficult in the projective space than in the vector space case. See

Higman [165], Artin [3], Dieudonné [122] for the vector space case, and Dye [124]

for the connection between the two cases. The size of the stabiliser in the orthogonal

group of an isotropic subspace in the vector space case has been calculated by Derr

[117].

Section 1.10

This section follows Buekenhout [54].

Section 1.11

The complication of further characterisations, even when the set K is non-singular is

illustrated by the work of Lefèvre [200]. Theorems 1.100 and 1.101 are due to Tallini

[302, 303] and Theorem 1.102 to Lefèvre-Percsy [202].

For characterisations of quadrics by intersection numbers, see Schillewaert [270]

and De Winter and Schillewaert [105].

Sections 1.12–1.13

See Hirschfeld and Thas [180], Tits [379], Van Maldeghem [391].
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Hermitian varieties

2.1 Introduction

In Fq = GF(q), q square, the map x 
→ x
√
q = x̄ is an involutory automorphism.

For a matrix A = (aij), write Ā = (āij). Then a Hermitian form F is an element of

Fq[X0, X1, X2, . . . , Xn] such that

F = XHX̄∗,

where X = (X0, X1, X2, . . . , Xn), H̄∗ = H and H �= 0. As in Section 5.1 of

PGOFF2, F can be reduced by a non-singular linear transformation to the canonical

form

Fr = X0X̄0 +X1X̄1 + · · ·+XrX̄r.

The variety V(Fr) in PG(n, q) is a Hermitian variety, which is non-singular

when r = n. The Hermitian variety V(Fr) is written Ur or Ur,q; that is,

Ur = V(X0X̄0 +X1X̄1 + · · ·+XrX̄r). (2.1)

Similarly to quadrics, V(Fr) = Πn−r−1Ur, where Ur is the non-singular Hermitian

variety in the r-space U0U1 · · ·Ur = V(Xr+1, . . . , Xn) and

Πn−r−1 = V(X0, . . . , Xr) = Ur+1Ur+2 · · ·Un;

that is, the points of Πn−r−1Ur comprise all the points of the lines joining any point

of Πn−r−1 to any point of Ur. As for quadrics, Πn−r−1 is the vertex of the cone and

Ur a base.

Theorem 2.1. There are n+1 projectively distinct Hermitian varieties in PG(n, q).

Proof. From above, there is one variety Πn−r−1Ur for each r in {0, 1, . . . , n}. ��

Lemma 2.2. A section of a Hermitian variety is still a Hermitian variety.

© Springer-Verlag London 2016 57
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Proof. If U = V(F ) is Hermitian with F in Fq[X0, X1, . . . , Xn], then a section by

a hyperplane V(L), where L = X0 − a1X1 − · · · − anXn, is U ′ = V(L,G), where

G(X1, . . . , Xn) = F (a1X1 + · · ·+ anXn, X1, . . . , Xn).

As G is a Hermitian form, so U ′ is a Hermitian variety in V(L). Thus the result

follows by induction. ��

The behaviour of low-dimensional varieties gives a feeling for higher dimen-

sional ones. In Table 2.1, all types up to five dimensions are described.

2.2 Tangency and polarity

The notation Un or Un,q is also used for any non-singular Hermitian variety of

PG(n, q). So consider Un = V(F ). Let P = P(A) and Q = P(B), where

A = (a0, . . . , an) and B = (b0, . . . , bn). If F (X) = XHX̄∗, then

F (A+ tB) = (A+ tB)H(Ā+ t̄B̄)∗

= AHĀ∗ + tBHĀ∗ + t̄AHB̄∗ + tt̄BHB̄∗.

So P(A + tB) lies on Un if and only if

0 = F (A) + tG(A,B) + t̄ G(A,B) + tt̄F (B), (2.2)

where G(A,B) = BHĀ∗.

The line l is a tangent to Un if |l ∩ Un| = 1.

Lemma 2.3. Let P = P(A) and Q = P(B).

(i) If F (A)F (B)−G(A,B)G(A,B) �= 0, then |PQ ∩ Un| =
√
q + 1.

(ii) If F (A)F (B)−G(A,B)G(A,B) = 0, then

(a) F (A) = F (B) = G(A,B) = 0 ⇒ PQ ⊂ Un;
(b) otherwise |PQ ∩ Un| = 1.

(iii) Suppose P ∈ Un.

(a) If Q �∈ Un, then PQ is a tangent to Un if and only if G(A,B) = 0.

(b) If Q ∈ Un, then PQ is a line of Un if and only if G(A,B) = 0.

Proof. (i), (ii) With F (A) = a, F (B) = b, G(A,B) = δ, (2.2) becomes

btt̄+ δ̄t̄+ δt+ a = 0; (2.3)

here b̄ = b, ā = a.

First, let a = b = 0. If δ = 0, then PQ ⊂ Un. Now, let δ �= 0. Then (2.3)

has t = 0 and t = ∞ as solutions corresponding to P and Q on Un. Every other t

satisfies

t
√
q−1 = −δ−(

√
q−1), (2.4)
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Table 2.1. Hermitian varieties in PG(n, q) for n ≤ 5

PG(0, q) U0 = V(X0X̄0) is empty

PG(1, q) U1 = V(X0X̄0 +X1X̄1) is
√
q + 1 points forming a subline PG(1,

√
q)

Π0U0 = V(X0X̄0) is the single point U1

PG(2, q) U2 = V(X0X̄0 +X1X̄1 +X2X̄2) is a Hermitian arc (unital) comprising

q
√
q + 1 points; through each point of U2 there is a unique line

meeting U2 in a Π0U0, whereas all other lines meet U2 in a U1

Π0U1 = V(X0X̄0 +X1X̄1) comprises
√
q + 1 lines concurrent at U2

Π1U0 = V(X0X̄0) is the single line u0

PG(3, q) U3 = V(X0X̄0 +X1X̄1 +X2X̄2 +X3X̄3) comprises (q + 1)(q
√
q + 1)

points on (
√
q + 1)(q

√
q + 1) lines; there are as many plane sections

Π0U1 as points and the remaining plane sections are of type U2

Π0U2 = V(X0X̄0 +X1X̄1 +X2X̄2) is a cone comprising the join of the

vertex U3 to a Hermitian curve

Π1U1 = V(X0X̄0 +X1X̄1) is
√
q + 1 collinear planes

Π2U0 = V(X0X̄0) is the plane u0

PG(4, q) U4 = V(
∑4

i=0 XiX̄i) comprises (q + 1)(q2
√
q + 1) points on

(q
√
q + 1)(q2

√
q + 1) lines with q

√
q + 1 lines through each point

Π0U3 = V(
∑3

i=0 XiX̄i) is a cone with vertex U4 and base a Hermitian

surface U3; its generators are planes

Π1U2 = V(X0X̄0 +X1X̄1 +X2X̄2) is a cone with vertex the line U3U4

and base a Hermitian curve; its generators are planes

Π2U1 = V(X0X̄0 +X1X̄1) comprises
√
q + 1 solids through the plane

U2U3U4

Π3U0 = V(X0X̄0) is the solid u0

PG(5, q) U5 = V(
∑5

i=0 XiX̄i) comprises (q2 + q + 1)(q2
√
q + 1) points on

(
√
q + 1)(q

√
q + 1)(q2

√
q + 1) planes

Π0U4 = V(
∑4

i=0 XiX̄i) is a cone with vertex U5 and base U4; its generators

are planes

Π1U3 = V(
∑3

i=0 XiX̄i) is a cone with vertex the line U4U5 and base the

surface U3 ; its generators are solids

Π2U2 = V(X0X̄0 +X1X̄1 +X2X̄2) comprises q
√
q + 1 solids through the

plane U3U4U5

Π3U1 = V(X0X̄0 +X1X̄1) is
√
q + 1 hyperplanes through the solid u0 ∩ u1

Π4U0 = V(X0X̄0) is the hyperplane u0

which has
√
q− 1 solutions by PGOFF2, Section 1.5(v). Thus |PQ∩Un| =

√
q+1.

If b = 0, a �= 0, then the substitution t 
→ t−1 gives an equation of the form

(2.3) with b �= 0.

Finally, if b �= 0, the substitution t 
→ t− δ̄/b transforms (2.3) to
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tt̄+ (ab− δδ̄)/b2 = 0. (2.5)

If ab−δδ̄ = 0, then |PQ∩Un| = 1; if ab−δδ̄ �= 0, then, again by PGOFF2, Section

1.5(v), (2.5) has
√
q + 1 solutions, which means that |PQ ∩ Un| =

√
q + 1.

(iii) This follows immediately from (i) and (ii) with F (A) = 0. ��

When G(A,B) = 0, the points P = P(A) and Q = P(B) are conjugate. With

X = (X0, X1, . . . , Xn), the hyperplane V(G(X,A)) is the polar hyperplane of P

and is denoted PU, the image of P under the Hermitian polarity U with matrix H . If

Πr = P0P1 · · ·Pr, then the polar space Πn−r−1 = ΠrU of Πr is

P0U ∩ P1U ∩ · · · ∩ PrU.

This is independent of the choice of P0, P1, . . . , Pr in Πr in the sense that, if

Πr = P0P1 · · ·Pr = Q0Q1 · · ·Qr,

then P0U∩ P1U∩ · · · ∩ PrU = Q0U∩Q1U∩ · · · ∩QrU. Two spaces are conjugate

if they are contained in polar spaces.

When P ∈ Un, the polar hyperplane of P is also the tangent hyperplane at P

and written TP or TP (Un). Similarly, if Πr = P0P1 · · ·Pr ⊂ Un, then the tangent

space at Πr is TΠr
= Πn−r−1 =

⋂
i
TPi

.

For Un in canonical form, that is, Un = V(X0X̄0 +X1X̄1 + · · ·+XnX̄n),

G(X,A) =
n∑

i=0

āiXi. (2.6)

Lemma 2.4. If Πr ⊂ Un, then the tangent space at Πr is a Πn−r−1 which contains

Πr and any Πs on Un through Πr.

Proof. This follows from Lemma 2.3 and the definition of tangent space. ��

It should be observed that the polarity of Un lies behind its reduction to the

canonical form (2.1). For, let U be any non-singular Hermitian variety with polar-

ity U in Πn = PG(n, q). Choose P0 in Πn\U and let π0 = P0U. Now, choose P1

in π0\U and let π1 = P1U. Continue this process and choose P0, P1, . . . , Pn so that

P0, P1, . . . , Pi span an i-space and so that Pi lies in (π0 ∩ π1 ∩ · · · ∩ πi−1)\U . Take

Ui = Pi, i = 0, 1, . . . , n, as the vertices of the simplex of reference. Hence

U = V(c0X0X̄0 + c1X1X̄1 + · · ·+ cnXnX̄n).

Now, a suitable choice of the unit point or, equivalently, the projective transformation

x′

i
= dixi, i = 0, 1, . . . , n, with did̄i = ci, gives the required form

U = V(X0X̄0 +X1X̄1 + · · ·+XnX̄n),

where the dashes have been omitted.
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When considering spaces lying on U , another canonical form is useful. Since Un

is projectively unique, it can also be written as V(Gn), where

Gn(X0, . . . , Xn)

=

{
X0X̄0 + (X1X̄2 +X2X̄1) + · · ·+ (Xn−1X̄n +XnX̄n−1), n even,

(X0X̄1 +X1X̄0) + · · ·+ (Xn−1X̄n +XnX̄n−1), n odd.
(2.7)

Lemma 2.5. The tangent hyperplane at a point P of Un is a cone Π0Un−2.

Proof. Let P = U0 and choose U1 ∈ Un, but not in the tangent prime TP . Choose

U2, . . . ,Un in TP ∩ TU1
. Then, by a suitable choice of unit point, Un = V(F ),

where

F = X0X̄1 +X1X̄0 + F ′(X2, . . . , Xn).

Then F ′ can be reduced to canonical form so that

F = X0X̄1 +X1X̄0 +X2X̄2 + · · ·+XnX̄n.

So

Un ∩ TP = V(X1, X2X̄2 + · · ·+XnX̄n)

= {P(λ, 0, x2, . . . , xn) | x2x̄2 + · · ·+ xnx̄n = 0}

= U0 Un−2. ��

Notation 2.6. Let μn = |Un|.

Corollary 2.7. The tangent hyperplane at P meets Un in qμn−2 + 1 points.

Theorem 2.8. The number of points on Un is

μn = {(
√
q)n+1 + (−1)n}{(

√
q)n − (−1)n}/(q − 1) (2.8)

= θ(n− 1) + {qn − (−
√
q)n}/(

√
q + 1). (2.9)

Proof. Any line through a point P of Un not in TP meets Un in
√
q other points.

Hence

μn =
√
q{θ(n− 1)− θ(n− 2)}+ qμn−2 + 1

= qn−1√q + 1 + qμn−2.

Put αn = μn/(
√
q)n. Then

αn = (
√
q)n−1 + (1/

√
q)n + αn−2.

Separate calculations for n even and odd give the desired result. ��

Now let μ
(t)
n = |Πt Un−t−1|; thus μn = μ

(−1)
n .

Corollary 2.9. μ(t)
n

= θ(n− 1) + {qn − (−
√
q)n+t+1

}/(
√
q + 1) . (2.10)
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Proof. Any two points of the base Un−t−1 are joined to the vertex Πt by two Πt+1

having precisely the vertex in common. Therefore

μ(t)
n

= θ(t) + {θ(t+ 1)− θ(t)}μn−t−1

and the result follows. ��

Let N (Un) be the set of non-singular Hermitian varieties in PG(n, q).

Lemma 2.10. The number of Hermitian varieties Un containing a given Π0 Un−2 as

tangent cone is

(q − 1)qn−1√q .

Proof. Let Π0 = Un−1 and Un−2 = V(Xn, Xn−1, Fn−2), where

Fn−2 = X0X̄0 + · · ·+Xn−2X̄n−2.

The hyperplane containing Π0 Un−2 is un. Any Hermitian variety containing Un−1

and Un−2 has the form

V(Xnf̄ + X̄nf +Xn−1ḡ + X̄n−1g + Fn−2),

where f is linear in X0, . . . , Xn and g is linear in X0, . . . , Xn−2. Since the tangent

hyperplane at Un−1 is un, so the only term involving X̄n−1 is cXnX̄n−1 with c �= 0
and hence the only term involving Xn−1 is c̄Xn−1X̄n; so g = 0.

The non-singularity of Un is equivalent to c �= 0. Thus the number of choices for

the form f and thus for Un is (q − 1)qn−1√q. This argument relies on the fact that,

if Un = V(F ), then Un defines F uniquely up to a scalar multiple. ��

Lemma 2.11. The number of cones Π0 Un−2 in PG(n, q) is

θ(n)θ(n− 1) |N (Un−2)| .

Proof. The number of cones

= number of Πn−1 in PG(n, q)× number of Π0 in Πn−1

× number of Un−2 in a fixed Πn−2 of Πn−1. ��

Notation 2.12. Let

[r, s] =

{∏
i=s

i=r
{(
√
q)i − (−1)i} for r ≤ s,

1 for r > s.

Theorem 2.13. The total number of Hermitian varieties in PG(n, q) is

|N (Un)| = qn(n+1)/4[2, n+ 1]−/[2, n+ 1] .
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Proof. Count {(Un,S) | Un a Hermitian variety, S a tangent cone of Un} in two

ways:

|N (Un)|μn = θ(n)θ(n − 1) |N (Un−2)| (q − 1)qn−1√q .

Hence

|N (Un)| =
θ(n)θ(n− 1)(q − 1)qn−1√q

μn

|N (Un−2)| .

Repetition of this recurrence relation gives the result, after a separate calculation for

n even and odd; it is only required that |N (U0)| = 1 and |N (U1)| =
√
q(q + 1),

from PGOFF2, Section 6.2. ��

The group G = G(Un), the unitary group, is the group of projectivities fixing

Un.

Corollary 2.14.

|G| = |G(Un)| = |PGU(n+ 1, q)| = qn(n+1)/4[2, n+ 1] .

Proof. All Un are projectively equivalent; in other words, N (Un) is a single orbit

under PGL(n+ 1, q). So

|G| = |PGL(n+ 1, q)|/|N (Un)| .

As |PGL(n+ 1, q)| = qn(n+1)/2[2, n+ 1]−, the result follows. ��

Lemma 2.15. If Πm ∩ Un = ΠvUs, then the polar space Π′

n−m−1 of Πm satisfies

the following:

(i) Π′

n−m−1 ∩ Un also has singular space Πv;
(ii) Πm ∩ Π′

n−m−1 = Πv.

Proof. The point P is in Πv if and only if every line l through P in Πm is either a

tangent or lies in Un. This is precisely the condition for P to be conjugate to every

point of Πm; hence Πv ⊂ Π′

n−m−1. Since a point P in Πv is conjugate to every point

of Π′

n−m−1, so Πv belongs to the singular space Π′

w
of Π′

n−m−1 ∩ Un. Similarly,

Π′

w
⊂ Πv and consequently Π′

w
= Πv .

Since every pointP ofΠm∩Π′

n−m−1 is conjugate to all points of Πm∪Π′

n−m−1,

it belongs to the singular space Πv both of Πm ∩ Un and of Π′

n−m−1 ∩ Un. Hence

Πv = Πm ∩ Π′

n−m−1. ��

Corollary 2.16. If Πm ∩ Un = ΠvUs, then Π′

n−m−1 ∩ Un = ΠvUT−1, where Πm

and Π′

n−m−1 are polar spaces, and T = n− 2m+ s.
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2.3 Generators and sub-generators

The following definitions are similar to those for quadrics.

Definition 2.17. (1) A generator of Un is a subspace of maximum dimension lying

on Un.

(2) A sub-generator of Un is any subspace lying on Un.

(3) The dimension of a generator is the projective index of Un; as for quadrics, it is

denoted by g = g(Un).

Lemma 2.18. The projective index g(Un) = �
1
2
(n− 1)�.

Proof. If Πg is a generator, then by Lemma 2.4 it lies in its own tangent space

Π′

n−g−1. So g ≤ n− g − 1 and hence g ≤
1
2
(n− 1).

When n is even, V(X0, X1, X3, . . . , Xn−1) is a space of dimension 1
2
n− 1 on

V(X0X̄0 + (X1X̄2 +X2X̄1) + · · ·+ (Xn−1X̄n +XnX̄n−1));

when n is odd, V(X0, X2, X4, . . . , Xn−1) is a space of dimension 1
2
(n− 1) on

V((X0X̄1 +X1X̄0) + · · ·+ (Xn−1X̄n +XnX̄n−1)).

So the upper bound is achieved. ��

Now the number of sub-generators of a given dimension is calculated.

Theorem 2.19. The number of Πr on Un is

νr,n = N(Πr,Un) = [n− 2r, n+ 1]/[1, r + 1]− . (2.11)

Proof. The following set is counted in two ways:

{(Πr,Πr−1) | Πr ⊂ Un,Πr−1 ⊂ Πr}.

Hence

νr,n θ(r) = νr−1,nM, (2.12)

where M is the number of Πr on Un through a given Πr−1.

To calculate M , consider the polar Π′

n−r
of Πr−1. It contains Πr−1 and meets

Un in Πr−1Un−2r with the same Πr−1 as vertex, by Lemma 2.15. So take a Πn−2r

in Π′

n−r
skew to Πr−1. It meets Un in a Un−2r whose points joined to Πr−1 form

the Πr of Un containing Πr−1. Thus M = μn−2r.

Now, (2.12) becomes

νr,n θ(r) = νr−1,n μn−2r. (2.13)

Iteration gives that

νr,n =
μn−2rμn−2(r−1) · · ·μn

θ(r)θ(r − 1) · · · θ(0)
.

Since θ(i) = (qi+1 − 1)/(q − 1) and μj is given by (2.8), the result follows. ��
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2.4 Sections of Un

If Πm ⊂ PG(n, q), then from Theorem 2.1 there are m+ 1 types of Hermitian var-

ieties in Πm, namely Πm−s−1Us for s = 0, . . . ,m. However, when the intersection

of Πm with Un is considered, it may also occur that Πm lies entirely on Un. Suppose

therefore that

Πm ∩ Un = ΠvUs ; (2.14)

then

s+ v = m− 1. (2.15)

The section is non-singular when v = −1, and Πm lies entirely on Un when s = −1.

The parameters n,m, v, s satisfy the following:

−1 ≤ v ≤ m, (2.16)

−1 ≤ s ≤ m, (2.17)

0 ≤ m ≤ n− 1. (2.18)

The question now is to determine for what values of v and s there is a section as

in (2.14).

Lemma 2.20. There is a section Πm ∩ Un = ΠvUs if and only if

T ≥ 0, (2.19)

where

T = n− 2m+ s. (2.20)

Proof. When m ≤ �
1
2
(n − 1)�, the condition T ≥ 0 means that m ≥ s ≥ −1, so

that (2.19) is equivalent to (2.17); then it must be shown that ΠvUs exists for each s

in I = {−1, 0, 1, . . . ,m} or, equivalently, for each v in I . When m > �
1
2
(n − 1)�,

condition (2.19) means that m ≥ s ≥ 2m−n or, equivalently,−1 ≤ v ≤ n−m−1.

Thus, if the result is established for m ≤ �
1
2
(n− 1)�, the polarity gives the result for

m > �
1
2
(n− 1)�.

Now let Πm = U0U1 · · ·Um = V(Xm+1, . . . , Xn) with m ≤ �
1
2
(n− 1)�. For

−1 ≤ s ≤ m, write

Ks =
s∑

i=0

XiX̄i +
m∑

j=s+1

(XjX̄2m+1−j +X2m+1−jX̄j) +
n∑

i=m+1

XiX̄i .

Then V(Ks) is non-singular and

V(Ks) ∩ Πm = V

(
s∑

i=0

XiX̄i, Xm+1, . . . , Xn

)
= ΠvUs. ��
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Corollary 2.21. For fixed m and n, the number of projectively inequivalent sections

Πm ∩ Un of Un is

m+ 2 when m ≤ �
1
2
(n− 1)� ,

n−m+ 1 when m > �
1
2
(n− 1)� .

The next result looks at the orbits of subspaces Πm under the action of the unitary

group G(Un) = PGU(n+ 1, q).

Theorem 2.22. (i) Two subspaces are in the same orbit of G(Un) if and only if they

have the same parameters m and s, where m is their dimension and Us is the

type of base of their intersection with Un.

(ii) If there is a projectivity T : Πm → Π′

m
such that (Πm ∩Un)T = Π′

m
∩Un, then

it can be extended to an element of G(Un).

Proof. The variety Un and the space Πm are reduced simultaneously to canonical

form. Consider the section ΠvUs, where Us ⊂ Πs; thus Πv and Πs are skew. The

polar of Πm is Π′

t
with t = n−m− 1.

By Lemma 2.15, Π′

t
contains Πv . Choose in Π′

t
a space Π′

w
skew to Πv with

Π′

w
Πv = Π′

t
; so

w = t− v − 1 = n−m− v − 2.

Since w ≥ −1, (2.19) is satisfied. By construction,Π′

w
is conjugate to Πm. The polar

Πd of Π′

w
has dimension

d = n− w − 1 = m+ v + 1.

Also Πd contains Πm. Choose in Πd a space Π′

v
skew to Πm with Π′

v
Πm = Πd in a

way that is specified below.

The set of points P of Πm such that P is conjugate to every point of Πm is Πv ,

and Πv is the same set with respect to Π′

t
. Hence, when w �= −1, the space Π′

w
meets

Un in a non-singular Hermitian variety. So Π′

w
and its polar space Πd are skew, as

any intersection would be singular for such a Hermitian variety, Lemma 2.15. Thus

Π′

w
Πd = PG(n, q) and Πd ∩ Un is non-singular.

Take in Πd the polar space Π2v+1 of Πs with respect to Πd ∩ Un. In Π2v+1 take

Π′

v
skew to Πv with Π′

v
∩Un non-singular. Then, with Sm = Π′

v
Πs, the set Sm∩Πv

is empty and Sm ∩ Un is non-singular. Also, in Sm, the polar of Πs with respect

to Sm ∩ Un is the v-space Π′

v
, which is skew to both Πv and Πs. Thus Π′

v
∩ Un is

non-singular and the polarity U of Un induces a reciprocity, as in PGOFF2, Section

2.1, between Π′

v
and Πv .

Thus there are four mutually skew spaces

Πs, Πv, Π
′

w
, Π′

v
.

By construction, the spaces Πs, Π
′

w
, Π′

v
are skew and mutually conjugate. Their join

is a space Πe with

e = s+ w + v + 2 = m+ w + 1,
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and Πe ∩Un is non-singular. For, if P is singular on Πe ∩Un, then P is conjugate to

all points of Π′

w
and to all points of Sm; so P ∈ Π′

w
∩ Sm, a contradiction.

As in the derivation of the canonical form following Lemma 2.4, in the three

spaces Πs, Π
′

w
, Π′

v
it is possible to choose s + 1, w + 1, v + 1 points so that they

form e+ 1 independent points in Πe with any two of these points conjugate.

The reciprocity induced between Π′

v
and Πv by U transforms the v + 1 points of

Π′

v
, which may be considered as vertices of a simplex, to v+ 1 faces of a simplex in

Πv; hence the vertices of this simplex in Πv form v + 1 independent points. These

v + 1 and the above e + 1 give n + 1 independent points. Thus, in a suitable or-

der, these points are the vertices of the simplex of reference of a coordinate system.

Correspondingly,

Πm = ΠvΠs = V(Xm+1, Xm+2, . . . , Xn) .

Table 2.2. Equation for Un

Πs Πv Π′
w Π′

v

Πs H1 0 0 0
Πv 0 0 0 H4

Π′
w 0 0 H2 0

Π′
v 0 H̄4 0 H3

Then Un = V(XHX̄∗) with H̄∗ = H , where H is the matrix of Table 2.2; here,

H1, H2, H3, H4 are square diagonal submatrices, the three matrices H1, H2, H3

have all their elements in F√
q , and the elements of H̄4 are the conjugates of the

elements of H4. The zero submatrices indicate the conjugacy of the spaces border-

ing the matrix H . A suitable choice of the unit point allows Hi to be reduced to the

identity matrix of the appropriate order. Thus the simultaneous reduction of Un and

Πm ∩ Un to canonical form has been achieved.

The first part of the theorem now follows since the canonical forms are deter-

mined by the integers n,m, v.

To prove the second part, note that, in the reduction to canonical form, the m+1
reference points chosen in Πm consist of v + 1 in Πv and s+ 1 in Πs, every two of

which are conjugate. Now, it is shown that, for any choice of v+1 independent points

P0, . . . , Pv in Πv , there exists Π′

v
in Π2v+1 and independent points P ′

0, . . . , P
′

v
in Π′

v

such that P ′

i
�∈ Un, Πv ∩Π′

v
= ∅, Π′

v
∩Un is non-singular,P ′

0, . . . , P
′

v
are mutually

conjugate, and Pi is conjugate to P ′

j
for i �= j. Therefore it is sufficient to show that,

for any v + 1 independent points Q0, . . . , Qv in Πv , there is a projectivity S fixing

Π2v+1 ∩ Un and Πv , and with PiS = Qi, i = 0, 1, . . . , v. Choose a space Π′′

v
on

Π2v+1 ∩ Un skew to Πv and choose independent points P ′′

0 , . . . , P
′′

v
in Π′′

v
with Pi
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conjugate to P ′′

j
, i �= j. With respect to the reference points P0, . . . , Pv, P

′′

0 , . . . , P
′′

v

and a suitable unit point, Π2v+1 ∩Un is represented by the canonical form G2v+1 as

in (2.7). This proves the existence of the projectivity S.

Since the projectivity T from Πm to Π′

m
transforms the chosen (m+ 1)-tuple in

Πm to such an (m+1)-tuple in Π′

m
, by the preceding paragraph the reference points

and the unit point may be chosen in a new system of coordinates (x′

0, x
′

1, . . . , x
′

n
) so

that

Π′

m
= V(X ′

m+1, . . . , X
′

n
)

and so that T has equations

x′

0 : x′

1 : · · · : x′

m
= c0x0 : c1x1 : · · · : cmxm ;

here, Un preserves its equation in these coordinates apart from changing Xi to X ′

i
.

Since Πm ∩ Un and Π′

m
∩ Un have the same equations, apart from changing Xi to

X ′

i
, so

c0c̄0 = c1c̄1 = · · · = cmc̄m .

The projectivity T has an extension to PG(n, q) with equations

x′

i
=

⎧⎨⎩
cixi, i = 0, . . . ,m;
c0xi, i = m+ 1, . . . ,m+ w + 1;
ci+m−nxi, i = m+ w + 2, . . . , n;

this is an element of G(Un). Thus the theorem is established. ��

Now, the size of the orbits in the previous theorem must be determined. Let

N(ΠvUm−v−1,Un) be the number of m-spaces Πm meeting Un in a section of type

ΠvUm−v−1. This number was determined in Theorem 2.19 in the case that v = m,

that is when Πm lies on Un.

Theorem 2.23. The number of sections ΠvUm−v−1 of Un is

N(ΠvUm−v−1,Un) = qT (s+1)/2[s+ 2, n+ 1]/{[1, T ][1, v + 1]−},

where

s+ v = m− 1, (2.15)

T = n− 2m+ s. (2.20)

Proof. The required numberN(ΠvUs,Un) is equal to the product of N(Πv,Un) and

the number of sections ΠvUs with a given Πv.

So, let Πv be given and let Πn−v−1 be skew to Πv with Πn−v−1 ∩ Un non-

singular; put Πn−v−1 ∩ Un = Un−v−1. If Π′

n−v−1 is the tangent space of Un at Πv ,

then Π′

n−v−1 ∩ Un−v−1 is a non-singular Un−2v−2. Each section ΠvUs is contained

in Π′

n−v−1, by Lemma 2.4, and ΠvUs ∩ Un−2v−2 is a non-singular U ′

s
. Conversely,

each non-singular U ′

s
on Un−2v−2 defines a section ΠvU

′

s
of the prescribed type.

Hence the number of sections ΠvUs with given Πv is N(Π−1Us,Un−2v−2).
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Now, N(Π−1Us,Ur) = ρs,r is calculated by counting the following set in two

ways:

{(Πs,Πs+1) | Πs ⊂ Πs+1, Πs ∩ Ur non-singular, Πs+1 ∩ Ur non-singular}.

For a given Πs, the number of such pairs (Πs,Πs+1) is the number of points of

Π′

r−s−1 not on Π′

r−s−1 ∩ Ur, with Π′

r−s−1 the polar space of Πr. Hence

ρs,r{θ(r − s− 1)− μr−s−1} = ρs+1,r{θ(s+ 1)− μs+1}.

Since ρr−1,r is the number of non-tangent hyperplanes to Ur in PG(r, q), so

ρr−1,r = θ(r) − μr.

Hence

ρs,r =
{θ(s+ 1)− μs+1}{θ(s+ 2)− μs+2} · · · {θ(r)− μr}

{θ(1)− μ1}{θ(2)− μ2} · · · {θ(r − s− 1)− μr−s−1}
.

By (2.9),

ρs,r =
{qs+1√q + (−

√
q)s+1} · · · {qr

√
q + (−

√
q)r}

{
√
q + 1}{q

√
q + (−

√
q)} · · · {qr−s−1

√
q + (−

√
q)r−s−1}

= q(s+1)(r−s)/2
{(
√
q)s+2 − (−1)s+2} · · · {(

√
q)r+1 − (−1)r+1}

{
√
q + 1}{(

√
q)2 − 1} · · · {(

√
q)r−s − (−1)r−s}

= q(s+1)(r−s)/2[s+ 2, r + 1]/[1, r − s] .

Hence, for r = n− 2v − 2,

ρs,n−2v−2 = q(s+1)T/2[s+ 2, n− 2v − 1]/[1, T ].

Since N(Πv,Un) = [n− 2v, n+ 1]/[1, v+1]− by (2.11), the final result follows. ��

2.5 The characterisation of Hermitian varieties

This is a continuation of the treatment in FPSOTD, Section 19.4, where Hermitian

surfaces were characterised as subsets of PG(3, q) meeting every line in 1, r or q+1
points with some further restrictions. Some definitions and results are recalled. A

subset K of PG(n, q) is a kr,n,q if r is a fixed integer with 1 ≤ r ≤ q such that

(1) |K| = k;

(2) |l ∩ K| = 1, r or q + 1 for each line l;

(3) |l ∩ K| = r for some line l.

A k1,n,q is a hyperplane. A k2,n,2 is the complement of a cap with at least one unise-

cant; the only cap of PG(n, 2) with no unisecant is the complement of a hyperplane.

From now on, assume that q > 2. From FPSOTD, Theorem 19.4.4, there are

seven types of plane section K′, with |K′| = k′, of such a K:
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I. a Hermitian arc (unital), that is, a set of type (1,
√
q + 1) with r =

√
q + 1 and

k′ = q
√
q + 1;

II. a subplane PG(2,
√
q), that is, a set of type (1,

√
q + 1) with r =

√
q + 1 and

k′ = q +
√
q + 1;

III. a set of type (0, r − 1) plus an external line, whence k′ = (r − 1)q + r and

r − 1 | q;

IV. the complement of a set of type (0, q + 1 − r), whence k′ = r(q + 1) and

(q + 1− r) | q;

V. the union of r concurrent lines, whence k′ = rq + 1;

VI. a single line, k′ = q + 1;

VII. a plane, k′ = q2 + q + 1.

Definition 2.24. (1) A point P of K is singular if every line through P is either a

unisecant or a line of K.

(2) The set K is singular or non-singular according as it has singular points or not.

In PG(3, q), the fundamental result is contained in FPSOTD, Theorem 19.5.13

and Section 19.6.

Theorem 2.25. Let K be a kr,3,q in Π3 = PG(3, q).

(i) When r = 1, then K is a plane.

(ii) When r = 2, then K is one of the following:

(a) Π2 ∪ Π0,

(b) Π2 ∪ Π1,

(c) Π2 ∪ Π′

2.

(iii) When r = q, then K is one of the following:
(a) (Π3\Π2) ∪ Π1 with Π1 ⊂ Π2,

(b) (Π3\Π1) ∪ Π0 with Π0 ⊂ Π1,

(c) Π3\Π0.

(iv) When 3 ≤ r ≤ q − 1, then one of the following occurs.

(a) If K is singular, then K is r planes through a line or a cone Π0K
′ with base

K′ a set of type I, II, III or IV as above.

(b) If K is non-singular, then

(1) for q odd, r =
√
q + 1 and K = U3,q;

(2) for q even and q > 4, either r =
√
q + 1 and K = U3,q or r = 1

2
q + 1

and K = R3, the projection of a quadric P4;
(3) for q = 4, K = U3,4 or K = R3 or K contains sections of type II.

A similar result is true in PG(n, q). First, singular sets are considered. As for

n = 3, the study of singular sets kr,n,q reduces to that of non-singular ones.

Lemma 2.26. The singular points of a kr,n,q form a subspace.

The subspace of singular points of K is the singular space of K.



2.5 The characterisation of Hermitian varieties 71

Theorem 2.27. If K is a singular kr,n,q with singular space Πd, then one of the

following holds:

(a) d = n− 1 and K is a hyperplane;
(b) d = n− 2 and K is r hyperplanes through Πd, with r > 1;
(c) d ≤ n− 3 and K = ΠdK

′, where K′ is a non-singular kr,n−d−1,q.

Now the cases r = 2 and r = q are considered.

Theorem 2.28. If K is a k2,n,q, then K = Πn−1 ∪ Π′

i
for some Π′

i
not contained in

Πn−1.

Proof. (a) n = 2. Suppose K contains no line. Then K is a k-arc meeting every line

of the plane, a contradiction. So K contains a line Π1. If K\Π1 contains a 3-arc then

K is the whole plane. Hence it follows that K = Π1 ∪ Π′

1 or Π1 ∪ Π0.

(b) n > 2.

(i) K is non-singular

The proof proceeds by induction on n. Since not every plane is contained in K,

some plane meets K in a line or a k′2,2,q. Hence K has a unisecant l with point of

contact Q.

Let Πn−1 be a hyperplane of PG(n, q) not containing Q and let K′ be the pro-

jection of K\{Q} from Q onto Πn−1. If l′ is any line of Πn−1 then, by (a),

Ql′ ∩ K = Π2, Π1 ∪ Π′

1, Π1 ∪ Π0, or Π1.

Hence |l′ ∩ K′| = 1, 2, or q + 1. Let l ∩ Πn−1 = {R}; then at least one line m

through R in Πn−1 meets K′ in two points. For, otherwise, every plane through l

meets K in a line and so Q is singular, a contradiction. So K′ is a k′2,n−1,q . Hence,

by the induction hypothesis, K′ = Πn−2 ∪ Π′

d
, for 0 ≤ d ≤ n − 2. Consequently,

K ⊂ QΠn−2 ∪QΠ′

d
.

(1) d < n − 2. If S ∈ QΠn−2\K, then there is a line through S with no point

in K, a contradiction; so QΠn−2 ⊂ K. If P1 and P2 are points of K\QΠn−2, the

line P1P2 meets QΠn−2 and so contains a third point of K; therefore P1P2 ⊂ K.

Hence, if |K\QΠn−2| ≥ 2, then K\QΠn−2 is an affine subspace of the affine space

PG(n, q)\QΠn−2 since q > 2. In this case, K = QΠn−2 ∪ Π′′

t
with t ≥ 1; since K

is non-singular, QΠn−2 ∩Π′′

t
= ∅, a contradiction. Therefore K = Πn−1 ∪Π0 with

Π0 not in Πn−1.

(2) d = n − 2. If QΠn−2 �⊂ K and QΠ′

n−2 �⊂ K, then there is a line with no

point in K, a contradiction. So, let QΠn−2 ⊂ K. Now, proceed exactly as in (1).

(ii) K is singular

The result follows from Theorem 2.27. ��

Now the case r = q is considered.

Theorem 2.29. If K is a kq,n,q in Πn = PG(n, q), q ≥ 3, thenK = (Πn\Πi)∪Πi−1

with Πi−1 ⊂ Πi for 0 ≤ i ≤ n− 1.
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Proof. Let Q be a point of Πn\K. If l1 and l2 are two unisecants through Q with

points of contact P1 and P2, the line P1P2 either belongs to K or is a q-secant. Since

q ≥ 3, there is another point P3 of K on P1P2. Each line l of the plane π = l1l2
through P3 other than P1P2 and QP3 is a unisecant of K since l ∩ l1 and l ∩ l2
are not in K. It follows that every line of π through P1 other than P1P2 is also a

unisecant and that all points of K in π lie on P1P2 . As K has no external lines, so

K ∩ π = P1P2. Thus it has been shown that, for any two unisecants through Q, all

the lines of the pencil determined by these two are unisecants and that the plane of

the pencil meets K in a line. Hence the unisecants through Q generate a Πi meeting

K in a Πi−1. Since every line through Q not in this Πi is a q-secant, it follows that

K consists of the points of Πi−1 plus the points not in Πi. ��

The previous two theorems mean that the rest of the characterisation can be re-

stricted to

3 ≤ r ≤ q − 1. (2.21)

Lemma 2.30. If K is a kr,n,q with 3 ≤ r ≤ q − 1 such that K has a section K′ by

a plane π containing a triangle of lines of K with π �⊂ K, then one of the following

occurs:

(a) K = Πn−3K
′, where K′ is a section of type IV;

(b) q = 2h, r = 1
2
q + 1, and the singular space of K has dimension at most n− 4.

Proof. Since π is not contained in K, the section K′ must be of type IV; that is, K′ is

the complement in π of a maximal arc of type (0, q + 1 − r). So, by Theorem 12.7

of PGOFF2, q ≡ 0 (mod q − r + 1); hence, with q = ph,

ph − r + 1 = pm (2.22)

for some m with 0 < m < h. Thus

r − 1 = pm(ph−m
− 1) . (2.23)

This gives two possibilities:

(1) r − 1 �= pm, in which case every plane section of K is of type IV, V, VI or VII;

(2) r − 1 = pm and ph−m − 1 = 1, whence p = 2,m = h− 1, and r = 1
2
q + 1.

In case (1), let Π3 be a solid through π. By the Corollary to Lemma 19.4.7 of

FPSOTD, there is a unisecant l1 of Π3∩K and so of K with point of contact P . Let l

be any line through P other than l1 and let π1 = ll1. The section π1∩K cannot be of

type IV or VII since they do not have unisecants. So π1 ∩ K is of type V or VI, that

is, r lines of a pencil or a single line; in both these cases, P is singular. So every solid

through π meets the singular space S of K, while S does not meet π since π ∩ K is

non-singular. Hence S = Πn−3 and K = Πn−3K
′.

In case (2), it may happen that (a) occurs. If it does not, then the dimension of S

is at most n− 4. ��
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This section continues the investigation under the hypothesis that a kr,n,q has no

section of type IV. The case when such a section occurs is investigated in Section

2.6.

Lemma 2.31. Let K be a kr,n,q with 3 ≤ r ≤ q − 1 such that (a) K contains a

hyperplane Πn−1 with K �= Πn−1, (b) K has no plane section of type IV. Then K is

the union of r hyperplanes of a pencil or K = Πn−3K
′ with K′ a plane section of

type III.

Proof. Let π be a plane in Πn−1 and let P be a point of K\Πn−1. First it is shown

that the solid Pπ contains a line l of K not in π. Suppose otherwise and consider the

set K′ = (K∩Pπ)\π. It is a k′-set of type (0, r− 1) in Pπ with 2 ≤ r− 1 ≤ q− 1.

By Lemma 19.4.7 of FPSOTD, such a set K′ does not exist.

Let P ′ = l ∩ π, let l′ be any line through P ′ other than l and let π′ = ll′. The

plane π′ meets Πn−1 in a line m �= l. So π′ has the two lines l and m in K in a

section of type V or VII; in the former case, the r lines contain P ′. Hence l′ is either

a unisecant or a line of K; so P ′ is singular. Thus K is singular and its singular space

S is necessarily in Πn−1. Also every plane in Πn−1 meets S. Thus the dimension of

S is at least n− 3. Now Theorem 2.27 gives the result. ��

For n = 3, the characterisation of Hermitian surfaces was completed in Section

19.5 of FPSOTD.

Definition 2.32. A subset K of PG(n, q) is regular if

(1) K is a kr,n,q;
(2) 3 ≤ r ≤ q − 1;
(3) K has no plane section of type IV.

Lemma 2.33. If K is a regular kr,n,q with n ≥ 4, then K cannot have plane sections

both of type I and of type II.

Proof. Let π be a plane meeting K in a section K′ of type I. Then, from Theorem

2.25, a solid through π meets K either in a cone PK′ or in a Hermitian surface U3,q .

If there are M solids of the latter type, then there are θ(n − 3) −M of the former.

Hence

k = q
√
q + 1 +Mq(q

√
q + 1) + {θ(n− 3)−M}{(q − 1)(q

√
q + 1) + 1}

= q
√
q(qn−2 +M) + θ(n− 2). (2.24)

If π0 is a plane meeting K in a plane section K0 if type II, then every solid through

π0 meets K in a cone PK0, by Theorem 2.25. Hence

k = q +
√
q + 1 + θ(n− 3){(q − 1)(q +

√
q + 1) + 1}

= θ(n− 1) + qn−2√q (2.25)

Equating (2.24) and (2.25) gives that

M = qn−3(1 +
√
q − q) < 0,

a contradiction. ��

.
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Lemma 2.34. If K is a regular kr,n,q with n ≥ 4, then K cannot have plane sections

both of type II and of type III.

Proof. If π is a plane meeting K in a section K′ of type III, then again by Theorem

2.25 any solid through π meets K in a cone PK′. Hence

k = (r − 1)q + r + θ(n− 3){(q − 1)[(r − 1)q + r] + 1}

= (r − 1)qn−1 + rqn−2 + θ(n− 3) . (2.26)

If there is a section of type III and of type II, then r =
√
q + 1. So substituting this

in (2.26) and equating it to (2.25) gives q = 1, a contradiction. ��

Lemma 2.35. If K is a regular kr,n,q with n ≥ 4, and K has plane sections of type

I and type III, then qn−3 solids through a plane of type I meet K in a Hermitian

surface.

Proof. Equating (2.24) and (2.26) with r =
√
q + 1 implies that M = qn−3. ��

Theorem 2.36. If K is a regular kr,n,q with n ≥ 3 and if there is a plane π meeting

K in a section K′ of type II, then K = Πn−3K
′.

Proof. The result is true for n = 3 by Theorem 2.25. So let n ≥ 4 and proceed by

induction. Thus every hyperplane through π meets K in a k′
r,n−1,q which is a cone

Πn−4K
′. The theorem will follow if it is shown that the points of any such Πn−4

are singular for K. For, considering a second hyperplane through π, it then follows

that K has at least a Πn−3 of singular points, and hence exactly a Πn−3 of singular

points.

Let Πn−1 be one such hyperplane and let P be a point of the vertex Πn−4, that

is, the singular space of Πn−1 ∩ K. Suppose that P is non-singular for K, and let l

be an r-secant of K through P ; necessarily, r =
√
q+ 1. The line l cannot belong to

Πn−1 and so a plane through l meets Πn−1 in a line l′ other than l, where l′ is a line

or a unisecant of Πn−1 ∩K. The number of lines through P in Πn−1 ∩ K is

{θ(n− 4)− θ(n− 5)}(q +
√
q + 1) + θ(n− 5) = qn−4√q + θ(n− 3); (2.27)

this is calculated by looking at the number of lines through P in each (n− 3)-space

Πn−4Q, where Q varies in K′. Thus the number of lines through P in Πn−1 but not

in K is

qn−4(q2 −
√
q) . (2.28)

Therefore the number of planes through l meeting Πn−1 in a line of K is given by

(2.27) and the number meeting Πn−1 in a unisecant of K by (2.28).

By Lemmas 2.33 and 2.34, each of these planes meetingΠn−1 in a line of K must

be a section of type V with r =
√
q + 1 and so has r(q − 1) + 1 = q

√
q + q −

√
q

points in common with K\l. Similarly, the other planes meet K in a section of type

II and so meet K\l in q points. Using these numbers to find the size of K\l gives

k − (
√
q + 1) = (qn−4√q + θ(n− 3))(q

√
q + q −

√
q) + qn−4(q2 −

√
q)q ,
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whence

k = θ(n− 1) + qn−2√q + qn−3(q − 1). (2.29)

Comparing this with (2.25) gives qn−3(q − 1) = 0. This contradiction proves the

result. ��

Lemma 2.37. Let K be a regular kr,n,q with n ≥ 3 that contains a hyperplaneΠn−1.

Then K is one of the following:

(a) r hyperplanes of a pencil;
(b) Πn−3KIII, where KIII is a plane section of type III.

Proof. Let π be any plane in Πn−1, and let P be any point of K\Πn−1. The solid Pπ

contains a line l of K not in π and therefore not in Πn−1; for, otherwise, the points

of K ∩ (Pπ\π) constitute a k′-set K′ with

k′ = (r − 2)(q2 + q + 1) + 1

and of type (0, r − 1) in Pπ. Such sets do not exist by Lemma 19.4.7 of FPSOTD.

Let P ′ = l ∩ π and let l′ be any line through P ′ other than l. The plane π′ = ll′

meets Πn−1 in a line m through P ′. Thus π′ contains the lines l and m of K. Hence

π′ meets K in r lines of a pencil with centre P ′ or lies in K. So l′ is either a line of K

or a unisecant at P ′. Thus P ′ is singular. Therefore the singular space Πd of K lies

in Πn−1, and every plane of Πn−1 meets Πd. Hence d ≥ n−3 and the result follows

from Theorem 2.27. ��

Theorem 2.38. If K is a regular kr,n,q with n ≥ 4 and if there is a plane π meeting

K in a section K′ of type III, then K = Πn−3K
′.

Proof. Let n = 4, and take two solids Π3 and Π′

3 through π. From Theorem 2.25,

Π3∩K = PK′ and Π′

3∩K = P ′K′. The section K′ is an ((r−2)q+r−1; r−1)-arc

plus an external line l. The points P and P ′ are distinct as are the planes α = Pl and

α′ = P ′l. The line PP ′ is skew to π, since otherwise it would belong to both Π3 and

Π′

3, and hence to π. The planes α and α′ lie in K. If it is shown that the solid αα′

lies in K, then the result follows from Lemma 2.37.

So suppose that the solid αα′ is not contained in K. Since αα′ contains two

planes in K, it meets K in r planes through the line l, by Theorem 2.25; hence PP ′

is an r-secant of K.

Any plane β through PP ′ does not lie in K and meets π in a point B. If B ∈ K′,

the lines BP and BP ′ lie in K and hence β ∩ K is r lines of a pencil. If B /∈ K′,

the lines BP and BP ′ are unisecants to K with contacts P and P ′; then β ∩ K can

contain no lines, as otherwise such a line would have to pass through P and P ′. So,

in this case, β ∩ K is of type I by Lemma 2.34 and r =
√
q + 1.

The planes β of the first type number (r−1)q+r and each meets K in r(q−1)+1
points off the line PP ′. There are θ(2)−{(r− 1)q+ r} planes β of the second type,

each of which contains q
√
q+ 1− r points of K\PP ′. Thus a count of the points of

K\PP ′ on the planes through PP ′ gives
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k − r = {(r − 1)q + r}{r(q − 1) + 1}+ {q2 + q + 1− (r − 1)q − r}

×{q
√
q + 1− r};

hence, with r =
√
q + 1,

k = q
√
q(q2 + q + 1) + q + 1. (2.30)

However, with r =
√
q + 1 and n = 4, the number k is given by (2.26); namely,

k = q3
√
q + q2(

√
q + 1) + q + 1.

Thus q
√
q = q2, a contradiction. This proves the result for n = 4.

Now let n ≥ 5. Each solid χ through π meets K in a cone QK′. It suffices to

show that Q is always singular. Let m be a line through Q. If it lies in the solid χ,

it cannot be an r-secant. Suppose therefore that m is not in χ and so is skew to π.

The 4-space mπ meets K in a k′
r,4,q that is a cone Π1K

′, by the previous part of

the proof. Also χ ∩ Π1 = {Q}. Hence Q is singular for k′
r,4,q; so the line m is not

an r-secant of k′
r,4,q and therefore not an r-secant of K. Thus Q is singular and the

result follows. ��

The previous results allow a summary for sections of a non-singular regular set.

Theorem 2.39. Let K be a regular, non-singular kr,n,q and let Π2 and Π3 be spaces

not contained in K. Then

(i) Π2 ∩ K is of type I, V or VI;

(ii) Π3 ∩ K is a plane, r planes of a pencil, Π0KI, or U3, where KI is a section of

type I.

Now the study of regular sets kr,n,q is continued for n ≥ 4 and q > 4.

Lemma 2.40. Let K be a non-singular, regular kr,n,q with n ≥ 4 and q > 4. Then

through any point P of K there passes a section of type I, whence q is a square and

r =
√
q + 1.

Proof. Suppose there is no unisecant through P . Let lr be an r-secant through P and

let π′, π′′ be distinct planes through lr. By Theorem 2.39, π′ ∩ K is r lines through

P ′ and π′′ ∩ K is r lines through P ′′; also π′π′′ ∩ K is r planes through P ′P ′′. It

follows that P ′ is singular for K, which is a contradiction. If l1 is a unisecant through

P , then, by Theorem 2.39, the plane π = l1lr meets K in a section of type I. ��

Definition 2.41. For any point P of a regular, non-singular set K, the tangent space

TP is the union of the unisecants and lines of K through P .

Lemma 2.42. The tangent space has the following properties:

(i) TP is a hyperplane;
(ii) the singular space of TP ∩ K is {P};

(iii) if P �= Q then TP �= TQ;
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(iv) a non-tangent hyperplane meets K in a non-singular k′
r,n−1,q .

Proof. Let L be the set consisting of the unisecants and lines of K throughP . By the

previous lemma, there is a plane π through P meeting K in a Hermitian arc K′. Let

l be the unisecant to K′ in π at P . Each of the θ(n− 3) solids Π3 through π meets K

either in a cone QK′ or U3. Let α be the tangent plane at P to Π3 ∩ K; here α must

contain l. The lines through P in α belong to L and so are the only lines of L in Π3.

Also, any line of L\{l} is joined to π by some Π3 and lies in the tangent plane at P

to Π3 ∩ K. Since distinct solids through π give distinct tangent planes, the number

of lines in L is qθ(n− 3) + 1 = θ(n− 2).
Now consider the pencil of lines containing two lines l1 and l2 of L. The plane

l1l2 cannot meet K in a section of type I. Hence l1l2 is of type V, VI or VII, by

Theorem 2.39. In each case, all the lines of the pencil are in L. Since |L| = θ(n−2),
the lines of L must be the set of lines through P in a hyperplane; that is, TP is a

hyperplane.

The set TP ∩ K is a k′1,n−1,q or a k′
r,n−1,q for which P is singular. Suppose that

TP ∩ K has another singular point P ′; then every point of PP ′ is singular. So every

point Q of PP ′ has TP as tangent hyperplane. Hence every line through Q not in TP

is an r-secant.

Let α be a plane through PP ′ but not contained in TP . Either α belongs to K or

meets it in a line or in r lines of a pencil with centre Q0, a point of PP ′. This means

that in α there is no r-secant through any point of PP ′ in the first two cases and

through Q0 in the third case. This contradicts the result of the previous paragraph.

Hence P is the only singular point of TP ∩ K. This is (ii). Parts (iii) and (iv) now

follow. ��

Corollary 2.43. For any point P in K, the meet TP ∩ K is a cone PK′, where K′ is

a regular, non-singular k′
r,n−2,q.

Proof. Let Πn−2 ⊂ TP with P /∈ Πn−2. Then K′ = Πn−2 ∩ K is non-singular and

meets every line of K through P . Conversely, since P is singular in TP ∩K, the join

QP is a line of K for every point Q of K′. Hence TP ∩ K = PK′. ��

Theorem 2.44. Let K be a non-singular, regular kr,n,q with n ≥ 3 and q > 4. Then,

with μn = |Un,q|,

(i) k = μn; (2.31)

(ii) every section of type I is a Hermitian curve.

Proof. (i) For n = 3, the theorem is part of Theorem 2.25. For n ≥ 4, let P be a

point of K and TP the tangent hyperplane to K at P . Thus TP ∩ K = PK′, where

K′ is a regular, non-singular k′
r,n−2,q . By the definition of TP , each of the qn−1 lines

through P not in TP is an r-secant of K. Since r =
√
q + 1 by Lemma 2.40,

k = qn−1√q + 1 + qk′.
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This is the same recurrence relation as for μn in Theorem 2.8. Since a Hermitian arc

has the same number of points as a Hermitian curve and the result is true for n = 3,

the result is true for all n.

(ii) For any section by a plane π of type I, by (2.24),

k = q
√
q(qn−2 +M) + θ(n− 2),

where M is the number of solids through π meeting K in a U3,q. From (2.31) above,

k = μn; that is, from (2.9),

k = qn/2{qn/2 − (−1)n}/(
√
q + 1) + θ(n− 1).

Hence

M = {qn−5/2
− (−1)nq(n−3)/2

}/(
√
q + 1).

Since M ≥ 1, the section π ∩ K is a Hermitian curve. ��

As in the previous results, let K be regular and non-singular, with q > 4. For

P ∈ K, the meet TP ∩ K is the tangent cone at P . From Corollary 2.43, the tangent

cone is PK′ with K′ ⊂ Πn−2. From Theorem 2.44 when n = 4 and Theorem 2.25

when n = 5, the tangent cone is a Hermitian variety.

Consider a Hermitian varietyW inPG(n, q) with singular spaceΠ0. If Π0 = Un

and W is reduced to canonical form

W = V(X0X̄0 +X1X̄1 + · · ·+Xn−1X̄n−1),

then associate to any point P = P(a0, a1, . . . , an) other than Un the hyperplane

ΠP = V(X0ā0 +X1ā1 + · · ·+Xn−1ān−1).

As ΠP does not depend on an, the hyperplane ΠP is associated to every point other

than Un on the line PUn. Hence the hyperplane ΠP is associated to the line PUn.

Conversely, associated to any hyperplane Π = V(b0X0 + · · · + bn−1Xn−1) is the

line

lΠ = {P(b̄0, b̄1, . . . , b̄n−1, t) | t ∈ Fq ∪ {∞}} .

If lΠ is associated to Π, with Un in Π, and if Π′ is any hyperplane not through Un,

then Π ∩ Π′ is the polar hyperplane of lΠ ∩Π′ with respect to W ∩Π′.

Theorem 2.45. Let K be a non-singular, regular kr,n,q with n ≥ 4 and q > 4. If

every tangent cone of K is a Hermitian variety, then K is a non-singular Hermitian

variety.

Proof. Let Π be a non-tangent hyperplane, let P be a point of Π ∩ K = K1 and let

Γ = TP ∩ K = PK′. The (n− 2)-space βP = TP ∩ Π is tangent to K1 at P and so

βP ∩ K1 is a cone PK′′, which is the same as Γ ∩ βP . Hence Γ ∩ βP has only one

singular point, namely P .

In the hyperplaneTP let lP be the line associated with βP as described before the

theorem; it is a 1-secant to K with point of contact P . To each P in K1 is associated

such a line lP .
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To see this when n = 4, consider the case that

K = U4 = V(X0X̄0 +X1X̄1 +X2X̄3 +X3X̄2 +X4X̄4).

Let Π = u4 and P = U3. Then

TP = u2,

K1 = U3 = V(X0X̄0 +X1X̄1 +X2X̄3 +X3X̄2, X4),

K
′ = U2 = V(X0X̄0 +X1X̄1 +X4X̄4, X2, X3),

βP = u2 ∩ u4,

K
′′ = U1 = V(X0X̄0 +X1X̄1, X2, X3, X4),

Γ = U3K
′,

βP ∩K1 = βP ∩ Γ = U3K
′′ = V(X0X̄0 +X1X̄1, X2, X4),

lP = U3U4 = V(X0, X1, X2).

It is now shown that the lines lP are concurrent at a point P0. To do this it suffices

to show that any two lines lP intersect. So, let P1, P2 be points of K1; for i = 1, 2,

let Ti be the tangent hyperplane at Pi, and let li be the line associated to Pi. To prove

that l1 and l2 meet, two cases are distinguished: (a) P1P2 �⊂ K; (b) P1P2 ⊂ K.

(a) The (n − 2)-space T1 ∩ T2 contains neither P1 nor P2 and so T1 ∩ T2 ∩ K

is a non-singular Hermitian variety. It follows that l1 and l2 are the lines joining P1

and P2 to the pole P0 of the (n − 3)-space T1 ∩ T2 ∩ Π = β1 ∩ β2 with respect to

the Hermitian variety T1 ∩ T2 ∩ K.

(b) Both β1 and β2 contain P1P2. Let α be a plane in Π through P1P2 but in

neither β1 nor β2; it does not lie in K. If α ∩ K = P1P2, then α would be in both

T1 and T2, and so in β1 ∩ β2. Also, if α met K in r lines of a pencil with centre

Pi, it would belong to βi. Thus α meets K in r lines of a pencil through a point P

of P1P2 with P �= P1, P2. Let m1 and m2 be two of these lines other than P1P2;

also let Q1 ∈ m1\{P}, and let Q2 ∈ m2\{P} with Q2 not on P1Q1 or P2Q1.

Then the points P1, P2, Q1, Q2 of K1 have no three collinear and none of the lines

P1Q1, P1Q2, P2Q1, P2Q2, Q1Q2 belong to K. Hence, from (a), the lines l′1 and l′2
associated to Q1 and Q2 meet in a point P0; they also must meet l1 and l2. Since

Pi, Q1, Q2 are not collinear, so li, l
′

1, l
′

2 are not coplanar, for i = 1, 2. Therefore l1
and l2 also contain P0.

The point P0 through which all the lines lP pass as P varies in K1 is called the

pole of Π; it is not in K ∪ Π.

From Theorem 2.44 (i), the number of lines lP is

k1 = μn−1 . (2.32)

On the other hand, let N denote the number of unisecants of K through P0. Then

counting the points of K on the lines through P0 gives

k = N + r{θ(n− 1)−N} ,

where r =
√
q + 1. Hence
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N = {(
√
q + 1)θ(n− 1)− k}/

√
q = k1 ,

using (2.31) and (2.32). Thus every unisecant through P0 is a line associated to a

point of K1. Hence K1 is the set of points of contact of the unisecants through P0,

and these points generate Π, which can now be called the polar hyperplane of P0

with respect to K.

From above, the correspondence which associates to a non-tangent hyperplane

Π its pole P0 is bijective. Let S be the bijection from the points to the hyperplanes

of PG(n, q) in which each point of K is mapped to its tangent hyperplane and each

point not on K is mapped to its polar hyperplane.

It must be shown that S is involutory; that is, if Π = PS and P ′ ∈ Π, then the

hyperplane Π′ = P ′S contains P . Let P and P ′ be off K, and let l be an r-secant

of K through P ′ in Π. The r lines PQ for Q ∈ l ∩ K are unisecants of K. So the

plane π = Pl meets K in a Hermitian curve U2 by Theorems 2.39 and 2.44 (ii). Also,

l is the polar of P with respect to U2, and so the polar l′ of P ′ with respect to U2

contains P . The line l′ contains the r points of contact of the tangents to U2 through

P ′. Hence the polar hyperplane Π′ of P ′ contains l′ and so P .

The other cases of P and P ′ are simpler. Thus the mapping S is bijective and

involutory, and transforms the points of a hyperplane Π into the hyperplanes through

the point P = ΠS−1, as well as vice versa. So S is a polarity for which K is the set

of self-polar points. Hence K = Un. ��

Theorem 2.46. If K is a non-singular, regular kr,n,q with n ≥ 4 and q > 4, then K

is a non-singular Hermitian variety.

Proof. From the previous result and Theorems 2.25 and 2.44 (ii), the result is true

for n = 4 and n = 5.

Let n ≥ 6 and proceed by induction. The tangent cone Γ at a point P of K has

base K′, which is a regular, non-singular kr,n−2,q. Since n − 2 ≥ 4, the set K′ is

a non-singular Hermitian variety by the induction hypothesis. So Γ is a Hermitian

variety and then Theorem 2.45 gives the result. ��

2.6 The characterisation of projections of quadrics

In Section 2.5, a description was given of sets K = kr,n,q with one of the following

properties:

(i) r = 1, 2 or q;

(ii) K is singular;

(iii) K is non-singular with no plane section of type IV, 3 ≤ r ≤ q − 1, and q > 4.

This leaves the case that K is non-singular, 3 ≤ r ≤ q− 1, and either q = 4 or K

has a plane section of type IV.

When q = 4, the topic is sets k3,n,4, that is, sets of type (1, 3, 5) in PG(n, 4)
with at least one 3-secant. As explained in Section 19.6 of FPSOTD, these sets form
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a vector space over F2 of dimension 1
3
(n+ 1)(n2 + 2n+ 3). In PG(3, 4) there are

seven distinct types of non-singular k3,3,4.

For the remainder of this section, although some notice is taken of the case q = 4,

the main topic is the case that

(a) K is non-singular and has a plane section of type IV;

(b) q > 4, n ≥ 3, 3 ≤ r ≤ q − 1.

It follows from Lemma 2.30 that q = 2h with h ≥ 2 and r = 1
2
q + 1.

Theorem 2.47. Let K be a non-singular kr,n,q with 3 ≤ r ≤ q − 1 having a plane

section of type IV. Then,

(i) if q > 4, K contains exactly one hyperplane Πn−1;
(ii) if q = 4 and K contains no section of type I or II, it contains exactly one hyper-

plane Πn−1.

Proof. For n = 3, the result is contained in Theorems 19.4.8 and 19.4.9 of FPSOTD,

which show that K is a set K1 that contains precisely one plane. Subsequently, in

Theorem 19.4.17, it is shown that K1 is R3, which is the projection of a quadric P4

onto a solid Π3 from a point other than the nucleus. Now suppose that n > 3.

By the Corollary to Theorem 19.4.7, there exists a unisecant l1 of K with point

of contact P ; let l2 be an r-secant through P . So the plane π = l1l2 is of type III.

Let Π4 be a 4-dimensional space containing π and consider the solids α1, . . . , αq+1

in Π4 containing π. Then αi ∩K is either a cone PiKIII with vertex Pi and a section

KIII = π ∩K or αi ∩K is a set R
(i)

3 ; this follows from Theorem 2.25 for q > 4 and

from Theorem 19.6.8 of FPSOTD for q = 4.

Suppose there are s cones with vertices P1, P2, . . . , Ps and q + 1 − s sets

R
(1)

3 , . . . ,R
(q+1−s)

3 . If Π4 ∩ K contains a solid Π3, then Π3 contains the line l0

of K in π, the plane l0Pi, and the plane Π
(j)

2 of K in R
(j)

3 . It follows that Π3 is

unique and is the union of the q + 1 planes l0Pi, Π
(j)

2 .

Now suppose that the q+1 planes l0Pi, Π
(j)

2 do not lie in a solid: they are in any

case the only planes in Π4 ∩ K through l0. Consider the solid Π′

3 containing two of

the planes; then Π′

3∩K is a cone with base type IV or V. If the base is of type IV, then

Π′

3 ∩ K contains exactly two of the q + 1 planes. Also, any other plane Π2 through

l0 in Π′

3 is of type V. This plane Π2 and π define a solid Π′′

3 for which Π′′

3 ∩ K is an

R3. Since Π2 is of type V and since l0 is in the plane on this R3, the line l0 contains

the exceptional point Q0 of R3. So π is also of type V, a contradiction. Thus Π′

3 ∩K

consists of 1
2
q + 1 planes through l0. Hence the solids Π′

3 and the sections of type

VII through l0 in such solids form a 2−(q+1, 1
2
q+1, 1) design, whence the number

of such solids is 2(q + 1)/(1
2
q + 1), which is not an integer. Thus the q + 1 planes

l0Pi, Π
(j)

2 are the q + 1 planes through l0 of a solid.

Consider now all the solids αi, i = 1, 2, . . . , N = (qn−2 − 1)/(q − 1), which

pass through π. Then αi ∩ K is a cone PiKIII or a set R
(i)

3 . Suppose there are t

cones with vertices P1, P2, . . . , Pt and N − t sets R
(1)

3 , . . . ,R
(N−t)

3 . If K contains

a hyperplane Πn−1, then Πn−1 contains the line l0, the plane l0Pi, and the plane
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Π
(j)

2 of K on R
(j)

3 . It follows that Πn−1 is unique and is the union of the N planes

l0Pi, Π
(j)

2 , which all contain l0. However, the solid containing at least two of these

planes contains exactly q + 1, by the same argument as above for the Π4 containing

π and the two planes. Hence the planes l0Pi, Π
(j)

2 are all the planes through l0 of a

hyperplane Πn−1. So K contains exactly one hyperplane Πn−1. ��

Corollary 2.48. If K is a non-singular kr,n,q with 3 ≤ r ≤ q − 1, then K contains

at most one hyperplane.

Proof. Suppose K contains two hyperplanes Πn−1, Π
′

n−1; they intersect in a Πn−2.

Let P be a point of Πn−2 and let l be an r-secant of K through P ; also let π be a

plane through l such that π ∩ Πn−2 = {P}. Now π contains l, and meets Πn−1 and

Π′

n−1 in lines of K; so π is of type IV. For q = 4, since any plane contains at least

one line of K, no plane section is of type I or II. Hence, by the theorem, K contains

exactly one hyperplane, a contradiction. ��

Let K contain the unique hyperplane Πn−1. As in Theorem 19.4.9 of FPSOTD

for PG(3, q), define J , the residual of K, to be

J = (PG(n, q)\K) ∪ Πn−1.

This may also be written J = K�Πn−1, where X�Y is the complement of the

symmetric difference of the two sets X and Y . For q = 4, this operation defines a

vector space over F2 on the sets K of type (1, 3, 5) as above; see Section 19.6 of

FPSOTD.

Corollary 2.49. If K is a non-singular kr,n,q with 3 ≤ r ≤ q − 1 and contains a

hyperplane Πn−1, then

(i) K contains a section of type IV and no section of type I or II;

(ii) J is also a non-singular set of type (1, 1
2
q+1, q+1) containing the same unique

hyperplane as K.

Proof. If |l ∩ K| = i for a line l not in Πn−1, then |l ∩ J | = q + 2 − i. So J is a

set of type (1, q + 2 − r, q + 1); note that 3 ≤ q + 2 − r ≤ q − 1. Suppose P is

a singular point of J . If P /∈ Πn−1, then any line l through P contains two points

of J and so |l ∩ J | = q + 1. Hence J = PG(n, q), a contradiction. If P ∈ Πn−1,

then any line through P contains 1 or q+1 points of K; that is, P is singular for K, a

contradiction. Hence J is a non-singular set of type (1, q + 2− r, q + 1) containing

Πn−1.

By Corollary 2.48, Πn−1 is the only hyperplane of K. Any plane section of K

contains at least one line and is consequently not of type I or II. Similarly J contains

no sections of type I or II. If l1 is a unisecant of K with point of contact P and if lr
is an r-secant through P , then the plane l1lr is of type III for K and hence of type IV

for J . Consequently r = 1
2
q + 1. In this argument, K and J can be interchanged. ��

The nature of sets K containing a hyperplane is now investigated in more detail.
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Definition 2.50. (1) A non-empty subset S of PG(d, q) is a projective Shult space

with ambient space PG(n, q) if

(a) S spans PG(n, q);
(b) there is a non-empty subset L of the set of lines in S such that, given a point

S ∈ S and a line l ∈ L not containing S, then the line SQ is in L for exactly

one or for all points Q of l.

(2) The Shult space S is non-degenerate if there is no point A ∈ S such that AQ ∈ L

for every point Q of S\{A}.

Projective Shult spaces in PG(n, q) are discussed in Section 5.3, and classified in

Theorems 5.51 and 5.52.

Definition 2.51. If K in PG(n, q) contains a hyperplane Πn−1 and P is any point of

K\Πn−1, then the support of P is

SP = {Q ∈ Πn−1 | PQ ⊂ K}.

In Theorem 2.56, it is in fact shown that SP is a non-degenerate, projective Shult

space in Πn−1, or possibly, when n = 4, an elliptic quadric. When n = 3, it is

proved in Lemma 19.4.16 of FPSOTD that SP is a conic.

The number of projectively distinct non-singular quadrics Qn in PG(n, q) is one

or two according as n is even or odd. For n even,Qn = Pn and, for n odd, Qn = Hn

or En. In the respective cases, the character w of Qn is 1, 2 or 0; see Section 1.4. Also

from (1.19),

|Qn| = qn−1 + qn−2 + · · ·+ q + 1 + (w − 1)q(n−1)/2.

The character w = 0 is also assigned to a (q2 + 1)-cap, of which E3 is an example.

Theorem 2.52. Let

(a) Qn+1 be a non-singular quadric of character w in PG(n+ 1, q), q even;
(b) Q be a point off Qn+1 other than the nucleus when Qn+1 = Pn+1;
(c) Πn be a hyperplane not containing Q.

Then the projection of Qn+1 from Q onto Πn is a non-singular set Rn of type

(1, 1
2
q + 1, q + 1) in Πn containing a hyperplane Πn−1 of Πn with

|Rn| =
1
2
qn + qn−1 + qn−2 + · · ·+ q + 1 + 1

2
(w − 1)qn/2.

Proof. Let l be a line in Πn. The plane Ql meets Qn+1 in a point, a line, a line pair

or a conic. In the case that Ql ∩Qn+1 = P2, either Q is the nucleus of P2, in which

case the lines joining Q to the points of P2 are q + 1 distinct tangents, or the lines

joining Q to P2 are 1
2
q bisecants and one tangent.

Let Rn = {P ′ = PQ ∩Πn | P ∈ Qn+1}; then Table 2.3 is obtained. Thus Rn

is of type (1, 1
2
q+1, q+1). The tangents to Qn+1 through Q meet Qn+1 in Pn, Pn

or Π0Pn−1 as Qn+1 is Hn+1, En+1 or Pn+1; they meet Πn in a hyperplane Πn−1.

Since θ(n− 1) is the number of tangent lines through Q to Qn+1, so
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Table 2.3. Intersection types

Ql ∩Qn+1 Point Line Line pair Conic

|l ∩Rn| 1 q + 1 q + 1 q + 1 or 1
2
q + 1

k = |Rn| = θ(n− 1) + 1
2
(|Qn+1| − θ(n− 1)) ,

whence k is as required.

To show that Rn is non-singular, it suffices to show that for any point P of Qn+1,

joined to Q by a line l there exists a plane π through l meeting Qn+1 in a P2 for

which Q is not the nucleus; if P projects to P ′, then π projects to a (1
2
q + 1)-secant

of Rn through P ′.

First, let l be a bisecant of Qn+1. Then every plane through l meets Qn+1 in a

conic P2 or a line pair Π0H1. If there are b0 of the former and b1 of the latter,

b0 + b1 = θ(n− 1),

(q − 1)b0 + (2q − 1)b1 + 2 = θ(n) + (w − 1)qn/2,

whence

b0 = qn−1
− (w − 1)q(n−2)/2 > 0.

Now let l be a tangent to Qn+1 through Q and let sn+1 be the number of planes

through l meeting Qn+1 in a line pair Π0H1. When Qn+1 = Pn+1 and the nucleus

of Pn+1 is on l, then sn+1 = 0; otherwise,

sn+1 = 1
2
(|Qn−1| − tn−1),

where tn−1 is the number of tangent lines to Qn−1 through a point P off Qn−1 other

than the nucleus. It follows that there is a bisecant m through Q such that the plane

ml does not meet Qn+1 in a line pair. So ml meets Qn+1 in a conic. ��

When n is even, Rn is also denoted R+
n

or R−

n
according as it is the projection

of Hn+1 or En+1.

A description of Rn is required which does not depend on projection from higher

space. So, let F (X0, X1, . . . , Xn−1) be a non-degenerate quadratic form over Fq

and let H be an additive subgroup of Fq of index 2. Let

Fλ = V(F (X0, X1, . . . , Xn−1) + λX2
n
)

be a quadric in PG(n, q); here F∞ = V(X2
n
) = un. Also it may be assumed that F

is one of the following forms:

(i) X2
0 +X1X2 + · · ·+Xn−2Xn−1, for n odd;

(ii) X0X1 +X2X3 + · · ·+Xn−2Xn−1 or f(X0, X1)+X2X3 + · · ·+Xn−2Xn−1

with f irreducible, for n even.
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Theorem 2.53. The set Rn =
⋃

λ∈H∪{∞}
Fλ for n ≥ 2.

Proof. Consider together the cases that Qn+1 = Pn+1, Hn+1, En+1. Now write

Qn+1 = V(Gn+1), so that in each case Gn+1 = Gn−1 + XnXn+1 with n ≥ 1.

From the above canonical forms, G0 = X2
0 in the parabolic case, G1 = X0X1 in the

hyperbolic case and G = f(X0, X1) in the elliptic case. Let Q = P(0, 0, . . . , 0, 1, 1)
and consider the pencil of hyperplanes in PG(n + 1, q) through the subspace

V(Xn, Xn+1). Let

Vt = V(tXn +Xn+1) ∩ Qn+1.

For t �= ∞,

Vt = V(Gn−1 + tX2
n
, tXn +Xn+1).

In particular, V0 = V(Xn+1) ∩Qn+1, V∞ = V(Xn) ∩Qn+1.

(i) For Qn+1 = Pn+1,

Gn−1 + tX2
n
= X2

0 +X1X2 + · · ·+Xn−2Xn−1 + tX2
n
.

So

Vt = Π0Pn−1, for all t.

(ii) For Qn+1 = Hn+1,

Gn−1 + tX2
n
= X0X1 + · · ·+Xn−2Xn−1 + tX2

n
.

So

Vt =

{
Pn for t �= 0,∞,

Π0Hn−1 for t = 0,∞.

(iii) For Qn+1 = En+1,

Gn−1 + tX2
n
= f(X0, X1) +X2X3 + · · ·+Xn−2Xn−1 + tX2

n
.

So

Vt =

{
Pn for t �= 0,∞,

Π0En−1 for t = 0,∞.

In each case, the Vt have a Qn−1 in common, of the same character w as Qn+1.

If A = P(a0, a1, . . . , an+1) lies in Qn+1, then QA meets Qn+1 again in

A′ = P(a0, a1, . . . , an−1, an+1, an). If A also lies in Vt, then

A = P(a0, a1, . . . , an, tan), A′ = P(a0, a1, . . . , an−1, tan, an),

whence A′ lies in V1/t. Further, QA is a tangent when t = 1, and so the tangents

through Q meet Qn+1 in V1.

Now project Qn+1 from Q to un+1 = V(Xn+1):

A = P(a0, a1, . . . , an, an+1) 
→ P(a0, a1, . . . , an−1, an + an+1, 0).

Hence V1 
→ V(Xn, Xn+1) and, for t �= 1,
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{Vt,V1/t} 
→ Wt = V

(
Gn−1 +

t

t2 + 1
X2

n
, Xn+1

)
.

For, regarding the projection as P(x) 
→ P(x′),

x′

0 = x0, . . . , x
′

n−1 = xn−1, x
′

n
= xn + xn+1, x

′

n+1 = 0.

So, if P(X) ∈ Vt for t �= 1, then xn+1 = txn, whence x′

n
= (t+ 1)xn. Also, Wt is

the same type of quadric as Vt.

Let K = {t/(t2 + 1) | t ∈ Fq\{1}}; then |K| = 1
2
q. It is now shown that K is

a group. Write t = λ/λ′; then t/(t2 + 1) = λλ′/(λ2 + λ′2). So

λλ′

λ2 + λ′2
+

μμ′

μ2 + μ′2
=

(λμ + λ′μ′)(λμ′ + λ′μ)

(λμ + λ′μ′)2 + (λμ′ + λ′μ)2
.

Therefore K is a subgroup of Fq of index 2. It has thus been shown that

Rn =
⋃
λ∈K

Wλ ∪V(Xn, Xn+1) .

Select F as Gn−1. By Lemma 19.4.12 of FPSOTD, K = βH for some β ∈ Fq\{0}.

So the projectivity P(x) 
→ P(x′), given by

x′

0 = x0, . . . , x
′

n−1 = xn−1, x
′

n
=
√
β xn ,

transforms Rn to the required form. ��

Now a result on the characterisation of elliptic quadrics in PG(3, q) for q even is

established that might have been shown in Chapter 16 or 18 of FPSOTD. A weaker

version is required in the subsequent theorem. For q odd, or q = 4, a (q2 + 1)-cap is

an elliptic quadric, by Theorem 16.1.7 of FPSOTD.

Lemma 2.54. A (q2 + 1)-cap K in PG(3, q) containing 1
2
(q3 − q2 + 2q) conics is

an elliptic quadric E3.

Proof. From above, it suffices to consider q even with q ≥ 8. First it is shown that

there exist points P and Q on K such that

(a) through P there are 1
2
q2 + 1 conics in K;

(b) through both P and Q there are 1
2
q + 1 conics in K.

If there were no point P for which (a) holds, then every point of K would be on

at most 1
2
q2 conics. Counting the size of the set

{(A, C) | A ∈ K, C a conic in K, A ∈ C}

in two ways gives the following:

1
2
(q3 − q2 + 2q)(q + 1) ≤ 1

2
q2(q2 + 1) ,
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a contradiction.

If, given P , there is no point Q of K for which (b) holds, then through P and any

one of the q2 points of K\{P} there can be at most 1
2
q conics of K . So, a count of

the set

{(A, C) | A ∈ K\{P}, C a conic in K containing A and P}

gives

(1
2
q2 + 1)q ≤

1
2
q · q2 ,

another contradiction.

Since P and Q satisfy (a) and (b), let TP and TQ be the tangents planes to K

at P and Q, let C0, C1, . . . , Cq/2 be distinct conics on K through P and Q, and let

C be a conic on K containing P but not Q. The plane π of C meets TP in a line

which is tangent at P to at most one Ci, say C0. Therefore π meets the planes of

C1, C2, . . . , Cq/2 in bisecants of K; if P1, P2, . . . , Pq/2 denote the points of K other

than P on these bisecants, where Pi ∈ Ci, then Ci ∩ C = {P, Pi}.

Let Q be the quadric containing C1, C2 and P3; the nine conditions necessary for

C1, C2 and P3 to lie on a quadric ensure the existence of Q, and it is impossible for

two quadrics to meet in two conics plus a point.

Since TP contains the tangent lines at P to C1 and C2, it is also the tangent plane

at P to Q; it also contains the tangent line to C at P . As Q contains the four points

P1, P2, P3, P4 of C and, as the tangent plane TP to Q at P contains the tangent to

C at P , so Q contains C. Also, each conic Ci, i = 3, . . . , 1
2
q, lies on Q, since Q

contains the three points P,Q, Pi of Ci and the tangent planes TP and TQ to Q at P

and Q contain the tangents of Ci at P and Q.

From (a), there exists a conic D on K which containsP but not Q and which does

not touch C0 at P . If D is substituted for C in the above argument, then it follows that

C0 lies on any quadric containing 1
2
q−1 of the conics C1, C2, . . . , Cq/2; hence Q also

contains C0.

The number of points in C0 ∪ C1 ∪ · · · ∪ Cq/2 ∪ C is at least

2 + (q − 1)(1
2
q + 1) + (1

2
q − 1) = 1

2
(q2 + 2q)

≥
1
2
(q2 + q + 4) .

Hence, by the Corollary to Lemma 18.1.8 of FPSOTD, K lies on Q; so K = Q. ��

To prove the next result a further definition is required.

Definition 2.55. A semi-quadric in PG(n, q) is a pair (P ,L) where P is a set of

points and L is a set of lines of PG(n, q) such that one of the following holds:

(1) P is a non-singular quadric Qn and L is the set of lines on Qn;

(2) P is a non-singular Hermitian variety Un and L is the set of lines on Un;

(3) P = PG(n, q) and L is the set of lines of a linear complex.
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Theorem 2.56. In PG(n, q) with n ≥ 4, let K be a non-singular kr,n,q still with

3 ≤ r ≤ q − 1 and containing a hyperplane Πn−1. If P is a point of K\Πn−1, then

the support SP of P is a non-singular quadric in Πn−1. Thus

SP =

{
Pn−1 for n odd,

Hn−1 or En−1 for n even.

Proof. If l is a line through P , then l contains a point of Πn−1, whence

|l ∩ K| = 1
2
q + 1 or q + 1.

Consider all lines l1, l2, . . . , lm through P which lie on K, and let li ∩ Πn−1 = Si;

that is, SP = {Si | i = 1, 2, . . . ,m}. Suppose that three distinct lines l1, l2, l3 lie in

a plane Π2 and consider a solid Π3 containing Π2 . Since Π3 ∩ K contains a plane

in Πn−1 as well as the lines l1, l2, l3, it is singular by Lemma 19.4.10 of FPSOTD.

In particular, it must be the join of a point to a plane section of type IV, V or VII;

that is, Π3 ∩ K consists of either q + 2 concurrent planes no three of which have a

line in common, or 1
2
q + 1 planes through a line or Π3 itself. In each case, the plane

Π2 lies on K and hence every line through P in Π2 is on K. So SP is a set of type

(0, 1, 2, q + 1) in Πn−1.

Now it is shown that SP is a non-degenerate Shult space in some subspace Πs of

Πn−1. Let l be a line of SP and Si a point of SP \{l}. Consider the solid Π3 = lli,

where li = PSi. Then Π3 ∩ K contains a plane of Πn−1, the plane Pl and the line

li skew to l. So Π3 ∩ K is Π3 or a cone with base of type IV and vertex V on l.

In the first case, the plane Sil is in SP ; in the second case, there is just one line

in SP through Si containing a point of l, namely V Si, since the plane PV Si lies

in K. Thus, if SP contains at least one line l, it is a projective Shult space of type

(0, 1, 2, q + 1) in some subspace Πs of Πn−1; if SP contains no line, it is a cap.

If Π3 is a solid containing P , then in each of the cases there is at least one line

of Π3 ∩ K through P ; so SP is non-empty. Suppose SP is degenerate with singular

point A. Let Q be a point of K\Πn−1 other than P , and let Π3 contain A,P,Q. Then

Π3 ∩ SP consists of lines through A. If Π3 ∩K is non-singular, then Π3 ∩ SP is the

support of P in Π3 ∩ K and so, by Lemma 19.4.10 of FPSOTD, is a (q + 1)-arc, a

contradiction. Thus Π3∩K is singular and is therefore the join of a point to a section

of type III, IV, V or VII.

(i) If the section is of type III, then Π3 ∩SP = {A} and A is the vertex of the cone.

Hence AQ is on K.

(ii) If the section is of type IV, then Π3 ∩ SP is a pair of distinct lines which meet

in the vertex V of the cone. Since V is the only singular point of Π3 ∩ SP , so

A = V and AQ is on K.

(iii) If the section is of type V, then Π3 ∩ SP is a line through A, namely the line of

intersection of the 1
2
q + 1 planes of Π3 ∩ K. Hence AQ is on K.

(iv) If the section is of type VII, then Π3 ∩K = Π3 and again AQ is on K.

In each case AQ is on K, whence A is a singular point of K, a contradiction.
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If SP contains no lines, it is a cap. If SP has a projective index at least one, then,

by Theorem 5.51, it is a semi-quadric in a subspace Πs of Πn−1. As SP is of type

(0, 1, 2, q+1), it cannot be a Hermitian variety. The symplectic case is also excluded

as every line of Πn−1 in SP is a line of it considered as a Shult space. Thus SP is a

cap or a non-singular quadric spanning a subspace Πs of Πn−1.

Suppose s < n − 1. Let l be a line of Πs with l ∩ SP = ∅, and let Π3 be a

solid containing P and l such that Π3 ∩ Πs = l. Then, in Π3 ∩ K, there is no line

containing P , a contradiction. Hence SP spans Πn−1.

It remains to show that when SP is a cap, then n = 4 and SP = E3. Let Π3 be

the solid containing P and three points S1, S2, S3 of SP . As Π3 ∩ K is necessarily

non-singular, it follows that it is an R3 and Π3 ∩ SP is a conic. So the points of SP

and the conics Π3 ∩SP form a 3− (m, q+1, 1) design with m = |SP |. However, if

Π3 is an arbitrary solid through P, S1, S2, then Π3 ∩K is non-singular and Π3 ∩ SP

is again a conic. Thus every plane through two points of SP meets it in a conic. The

number of planes through a line in Πn−1 is N = (qn−2 − 1)/(q − 1). Hence

m = N(q − 1) + 2 = qn−2 + 1.

However, the maximum numberM of points of a cap inPG(d, q) with q > 2 satisfies

M = q2 + 1 for d = 3 and M < qd−1 + 1 for d > 3: see Section 6.3; so n = 4 and

m = q2 + 1. Since every plane of the Π3 containing SP intersects SP in a conic or

just one point, so SP = E3 by Lemma 2.54. ��

Theorem 2.57. In PG(n, q), let K be a non-singular kr,n,q with 3 ≤ r ≤ q − 1
containing a hyperplane Πn−1 and let P be a point of K\Πn−1. If the support SP

of P has character w, then

k = 1
2
qn + qn−1 + qn−2 + · · ·+ q + 1 + 1

2
(w − 1)qn/2 .

Proof. For n = 3, this was proved in Theorem 19.4.9 of FPSOTD. For d ≥ 4,

Theorem 2.56 gives that

m = |SP | = |Qn−1| = qn−2 + qn−3 + · · ·+ q + 1 + (w − 1)q(n−2)/2 .

There are (qn − 1)/(q − 1) lines through P ; of these, m are lines of K and the

remainder are (1
2
q + 1)-secants. Hence

k = 1 + qm+ 1
2
q[(qn − 1)/(q − 1)−m]

= 1 + 1
2
qm+ 1

2
(qn − 1)/(q − 1)

= 1 + 1
2
[qn−1 + qn−2 + · · ·+ q + 1 + (w − 1)qn/2]

+ 1
2
[qn + qn−1 + · · ·+ q]

= 1
2
qn + qn−1 + qn−2 + · · ·+ q + 1 + 1

2
(w − 1)qn/2 . ��

This theorem shows that k is the same as |Rn| in Theorem 2.52. The aim now is

to show that, if K is as in the previous two theorems, then K = Rn. It is necessary

to deal separately with the cases of n odd and even.
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First a rather curious lemma is required. Consider the pencil L in PG(2, q), q

even, of plane quadrics Fλ, where

Fλ = V(X2
0 + bX0X1 + cX2

1 + λX2
2 ) ;

here, λ varies in Fq ∪{∞} and X2 + bX + c is irreducible. So F∞ = V(X2
2 ) is the

line u2 and F0 = V(X2
0 + bX0X1 + cX2

1 ) = {U2}, a point not lying on F∞. The

other q − 1 quadrics Fλ are all conics, no two of which have a point of intersection,

since F0 ∩ F∞ = ∅. If H is an additive subgroup of Fq, it is shown in Theorem

12.12 of PGOFF2 that K′ = ∪λ∈HFλ is a maximal arc. However, implicit in the

proof is the following result.

Lemma 2.58. Let H ⊂ Fq with |H | = 1
2
q and let K′ = ∪λ∈HFλ. If there is some

line l other than F∞ with l ∩ K′ = ∅, then H is an additive group and K′ is a

maximal arc of type (0, 1
2
q).

Proof. Let l = V (a0X0 + a1X1 + X2) with not both a0 and a1 zero. Note that

any line through U2 meets every Fλ. Let λ ∈ H and so l ∩ Fλ = ∅. However,

P(x0, x1, x2) ∈ l ∩ Fλ when

x2
0 + bx0x1 + cx2

1 + λ(a20x
2
0 + a21x

2
1) = 0 ;

that is,

x2
0(1 + λa20) + bx0x1 + (c+ λa21)x

2
1 = 0 ,

or

x2 + x+ d = 0 ,

where

x = (1 + λa20)x0/(bx1), d = (1 + λa20)(c+ λa21)/b
2 .

So

d = e0 + e1λ+ e2λ
2 ,

where

e0 = c/b2, e1 = (ca20 + a21)/b
2, e2 = a20a

2
1/b

2 .

Also, e1 +
√
e2 = (ca20 + ba0a1 + a21)/b

2 �= 0, since X2 + bX + c is irreducible.

Now, x2 + x+ d = 0 has two solutions or none in F2h as T (d) = 0 or 1, where

T (d) = d+ d2 + d4 + · · ·+ d2
h−1

.

The trace function T from F2h onto F2 is an additive homomorphism, and satisfies

T (u+ v) = T (u) + T (v),

T (u2) = T (u)2 = T (u).

Also, since X2 + bX + c is irreducible, so is X2 +X + c/b2, whence T (e0) = 1.

Thus
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T (d) = T (e0) + T (e1λ) + T (e2λ
2) = 1 + T (e1λ) + T (

√
e2λ)

= 1 + T ((e1 +
√
e2)λ) .

Now, as l ∩ Fλ = ∅ for each λ ∈ H , so T (d) = 1 for each λ ∈ H . Hence

T ((e1 +
√
e2)λ) = 0, or T (μ) = 0,

where μ = (e1+
√
e2)λ. The 1

2
q solutions μ of this equation form an additive group,

the kernel of the function T . So H is also an additive group. The rest of the lemma

follows as in Theorem l2.12 of PGOFF2. ��

It may be noted that, in this case, K′ is the complement of the dual of a regular

oval, where a regular oval is defined to be a conic plus its nucleus.

Theorem 2.59. In PG(n, q), n odd and n ≥ 5, let K be a non-singular kr,n,q with

3 ≤ r ≤ q − 1 containing a plane section of type IV and, for q = 4, also no section

of type I or II. Then K = Rn, the projection of the quadric Pn+1 in PG(n + 1, q)
onto PG(n, q).

Proof. By Theorem 2.53, it must be shown that K comprises 1
2
q + 1 quadrics of a

pencil, one being a hyperplaneΠn−1 and the others cones ViPn−1, i = 1, 2, . . . , 1
2
q.

From Theorem 2.47, K contains a unique hyperplane Πn−1. If P is any point of

K\Πn−1, then its support SP in Πn−1 is a quadric Pn−1, by Theorem 2.56. Let Q0

be the nucleus of Pn−1; the line PQ0 is a (1
2
q + 1)-secant of K. So let P ′ be any

point of K ∩ PQ0 other than P and Q0, and let S be any point of SP .

Suppose that P ′S is not a line of K. Consider the plane π = PP ′S. It contains

the two (1
2
q + 1)-secants PP ′ and P ′S, and the two (q + 1)-secants PS and SQ0;

so π is a section of type IV. However, choose a solid Π3 containing π in such a way

that Π3 ∩ Pn−1 is a conic P2. Then Π3 ∩ K is an R3. As π contains the nucleus Q0

of the conic P2, it is of type V, from Table 19.5 of FPSOTD; this contradicts that π

is of type IV. So P ′S is a line of K. Hence SP ′ = SP = Pn−1.

Now it is shown that if, for S, S′ ∈ Pn−1, the lines PS and P ′S′ intersect, then

S = S′. Suppose that S �= S′ and that PS ∩ P ′S′ = T . The plane π containing PS

and P ′S′ contains Q0 and therefore it is of type V. However, π contains the three

lines PS, P ′S′ and SQ0, which are not concurrent, a contradiction. Hence S = S′.

This means that if P1 and P2 are any two points on PQ0∩K other than Q0, then

the two cones P1Pn−1 and P2Pn−1, where PiPn−1 comprises the points on all joins

PiQ for Q in Pn−1, intersect exactly in Pn−1. So, if

PQ0 ∩ K = {Q0, P1, P2, . . . , Pq/2},

where P is some Pi, say P1, define

K0 = Πn−1 ∪

q/2⋃
i=1

PiPn−1.

Then K0 ⊂ K and
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|K0| = (qn − 1)/(q − 1) + 1
2
q + 1

2
q(q − 1)|Pn−1|

= (qn − 1)/(q − 1) + 1
2
q + 1

2
q(q − 1)(qn−1

− 1)/(q − 1)

= 1
2
qn + (qn − 1)/(q − 1)

= k,

by Theorem 2.57. So K0 = K.

Now coordinates are attached to K. Let

Πn−1 = V(Xn), Pn−1 = V(X2
0 +X1X2 + · · ·+Xn−2Xn−1, Xn)

Pi = P(
√
λi, 0, . . . , 0, 1)

with λ1 = 0. Then Q0 = U0 and

PiPn−1 = V(X2
0 +X1X2 + · · ·+Xn−2Xn−1 + λiX

2
n
) .

Lemma 2.58 can be used to now show that H = {λi | i = 1, 2, . . . , 1
2
q} is an

additive group. Select a plane Π2 meeting Πn−1 in a line skew to Pn−1, namely,

Π2 = V(bX0 + cX1 +X2, X3, X4, . . . , Xn−1),

where X2 + bX + c is irreducible. Then

Π2∩PiPn−1 = V(X2
0 +bX0X1+cX2

1 +λiX
2
n
, bX0+cX1+X2, X3, . . . , Xn−1).

So Π2 ∩ K consists of the line Π2 ∩ Πn−1 plus 1
2
q − 1 conics of a pencil plus the

point P1, the nucleus of each of the 1
2
q−1 conics. So Π2∩K is of type III containing

a unisecant l, which is a 0-secant of K\Πn−1 and is not the line Π2 ∩ Πn−1 of the

pencil. So, by the lemma, H is an additive group. Thus, by Theorem 2.53, K = Rn.

��

It remains to consider the case that n is even. Let K be a non-singular kr,n,q with

3 ≤ r ≤ q − 1 containing a hyperplane Πn−1 and let P ∈ K\Πn−1. Then, from

Theorem 2.56, SP = Hn−1 or En−1. Suppose it is shown when SP = Hn−1 that K

is projectively unique and so the projection of a quadric Hn+1. Now take the other

case and let K be such that SP = En−1; then

k = 1
2
qn + qn−1 + qn−2 + · · ·+ q + 1− 1

2
qn/2

and, with Q the residual of K,

|Q| = (qn+1
− 1)/(q − 1)− k + (qn − 1)/(q − 1)

= 1
2
qn + qn−1 + qn−2 + · · ·+ q + 1 + 1

2
qn/2.

So, for Q, the support of a point is an Hn−1 and hence Q is the projection of Hn+1.

Thus K is projectively unique and so the projection of En+1.

Theorem 2.60. In PG(n, q), n even and n ≥ 4, let K be a non-singular kr,n,q with

3 ≤ r ≤ q − 1 containing a plane section of type IV and, for q = 4, also no section

of type I or II. Then K is the projection of either a hyperbolic quadric Hn+1 or an

elliptic quadric En+1 in PG(n+ 1, q) onto PG(n, q).



2.6 The characterisation of projections of quadrics 93

Proof. By Theorem 2.47, K contains a unique hyperplaneΠn−1. If P is any point of

K\Πn−1, then its support SP in Πn−1 is a quadric Hn−1 or En−1, by Theorem 2.56.

However, by the remark above, it suffices to consider the case that SP = Hn−1. Now,

by Theorem 2.53, it must be shown that K comprises 1
2
q + 1 quadrics of a pencil,

one of which is the hyperplane Πn−1, another the cone PHn−1 and the remainder

parabolic quadrics P
(i)
n , i = 1, 2, . . . , 1

2
q− 1, each of which contains Hn−1 and has

P as its nucleus.

Each line l through P not joining P to Hn−1 meets Πn−1 in a point of K and is

therefore a (1
2
q+1)-secant of K: it contains 1

2
q−1 points other than P and the point

of Πn−1. The quadrics P
(i)
n are now constructed by suitably selecting from every

such line l one of the 1
2
q − 1 points for each quadric.

Let Πn−1 = un, let P = Un and let

SP = Hn−1 = V(X0X1 +X2X3 + · · ·+Xn−2Xn−1, Xn).

In Πn−1, take the line l = V(X0+X1, X2+X3, X4, . . . , Xn). Then l∩SP = {R},

where R = P(1, 1, 1, 1, 0, . . . , 0). If l′ is any line in Πn−1 not on SP , then in the

plane Pl′ there are through P two, one or no lines of K and respectively q − 1, q or

q + 1 lines (1
2
q + 1)-secant to K according as |l′ ∩ SP | = 2, 1 or 0; the plane Pl′

meets K correspondingly in a section of type IV, V or III. In particular, Pl meets K

in a section of type V. The line l contains the point Q = P(0, 0, 1, 1, 0, . . . , 0) in

Πn−1. So

PQ ∩ K = {Tλ = P(0, 0, λ, λ, 0, . . . , 0, 1) | λ ∈ H ∪ {∞}},

where |H | = 1
2
q and T∞ = Q. Consider, for λ �= ∞, the line

lλ = RTλ = {Mμλ = P(μ, μ, μ+ λ, μ+ λ, 0, . . . , 0, 1) | μ ∈ Fq ∪ {∞}}

of K, where M∞λ = R. Define, for μ �= ∞ and λ �= 0,∞, the set

Nμλ = SP ∩ SMμλ
.

Then, for any point N ∈ Nμλ, the lines NP, NMμλ and Πn−1∩NPMμλ are all lines

of K. As π = NPMμλ contains the (1
2
q+1)-secant PMμλ and three concurrent lines

of K, it follows that π ∩K is of type V and Πn−1 ∩ π is a tangent to SP .

The point Sμλ = Πn−1 ∩ PMμλ = P(μ, μ, μ + λ, μ + λ, 0, . . . , 0) lies on l.

Then, not only is NSμλ = Πn−1 ∩ π a tangent to SP , but conversely, if SμλV is a

tangent to SP with point of contact V , then V ∈ Nμλ. Thus Nμλ is the set of contact

points of the tangents to SP from Sμλ. Let Mμλ be the cone with vertex Mμλ and

base Nμλ, and let Γ =
⋃

μ∈Fq

Mμλ. Now

Nμλ = {P(y0, y1, . . . , yn−1, 0) | F = G = 0} ,

where

F = μ(y0 + y1) + (μ+ λ)(y2 + y3), G = y0y1 + y2y3 + · · ·+ yn−2yn−1 .
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Fig. 2.1. The structure of K
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μλN
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So

Mμλ = {P(x0, x1, . . . , xn) | x0 = μ+ ty0, x1 = μ+ ty1, x2 = μ+ λ+ ty2,

x3 = μ+ λ+ ty3, x4 = ty4, . . . , xn−1 = tyn−1, xn = 1,

F = G = 0, t ∈ Fq ∪ {∞}} .

Elimination of μ, t, y0, y1, . . . , yn−1 from the equations forMμλ and homogenis-

ation give Gλ(x0, x1, . . . , xn) = 0, where

Gλ = X0X1 +X2X3 + · · ·+Xn−2Xn−1 + λ2X2
n
.

Thus Γλ is a subset of the quadric Qλ = V(Gλ), where λ ∈ H\{0}.

Each Nμλ is a Pn−2, whence

|Nμλ| = qn−3 + qn−4 + · · ·+ q + 1 .

Further,

Nμλ ∩ Nρλ = V(X0 +X1, X2 +X3, Xn, X0X1 +X2X3 + · · ·+Xn−2Xn−1)

= RPn−4

for μ �= ρ. So, if N =
⋂

μ∈Fq

Nμλ, then N = RPn−4 and
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|N | = qn−4 + qn−5 + · · ·+ q + 1 .

As Nμλ is a Pn−2 and Mμλ = MμλNμλ, it follows that

|Nμλ| = qn−2 + qn−3 + · · ·+ q + 1 .

Also, for any point N in N\{R}, the plane RTλN is on K, whence, for μ �= ρ,

TλN ⊂ Mμλ ∩Mρλ .

Conversely, if M ∈ Mμλ ∩ Mρλ for μ �= ρ and M �∈ RTλ, then MRTλ ∩ Πn−1

is a line of N , and so the plane MRTλ is on K, whence M ∈ TλN . This means

that Mμλ ∩ Mρλ = TλN ; this fact is also obtainable from the equations for

Mμλ, Mρλ, TλN . Therefore

M =
⋂

μ∈Fq

Mμλ = TλN and |M| = qn−3 + qn−4 + · · ·+ q + 1 .

Thus

|Γλ| = q(|Mμλ| − |M|) + |M| = qn−1 + qn−3 + qn−4 + · · ·+ q + 1 .

In fact, Qλ\Γλ consists of qn−3 lines through R. So let g be a line of Qλ through

R other than lλ. If g ⊂ Πn−1, then g is on K. Assume therefore that g �⊂ Πn−1. If

glλ is a plane of Qλ, then glλ ∩ Πn−1 is a line of SP , where SP ⊂ Qλ. It now

follows that glλ ⊂ TλN and so g ⊂ K.

If the plane glλ is not onQλ, then letΠ3 be a solid containing glλ and intersecting

Qλ in a hyperbolic quadric H3. The latter contains one line other than lλ of each

Mρλ for ρ ∈ Fq . These q lines form with g a regulus on H3. Let g′ be a line other

than lλ of the complementary regulus. Since |g′ ∩ K| ≥ q, so g′ is a line of K and

g ∩ g′ is on K, whence g is on K. Hence Qλ ⊂ K.

Any two Qλ intersect in SP . Thus Πn−1 ∪PSP ∪
⋃

λ∈H\{0}
Qλ is contained in

K and has the same number of points as K; so this set is K. Therefore

K =
⋃

t∈H′
∪{∞}

Ft,

where Ft = V(X0X1+X2X3+ · · ·+Xn−2Xn−1+ tX2
n
), |H ′| = 1

2
q and 0 ∈ H ′;

here F0 = PSP , F∞ = Πn−1.

Now, exactly as in the proof of Theorem 2.59, if a plane section of type III

through P is considered, Lemma 2.58 shows that H ′ is an additive subgroup of

Fq; for example, take the plane

Π2 = V(X0 +X1, bX1 + cX2 +X3, X4, . . . , Xn−1),

where X2 + bX + c is irreducible. Then, by Theorem 2.53, K is the projection of

Hn+1; that is, K = R+
n

. ��
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Theorem 2.61. In PG(n, q) with n ≥ 3 and q > 4, a non-singular kr,n,q with

3 ≤ r ≤ q − 1 is either a non-singular Hermitian variety with r =
√
q + 1 or the

projection of a non-singular quadric in PG(n+ 1, q) with r = 1
2
q + 1.

Proof. The case n = 3 was summarised in Theorem 2.25. When n ≥ 4 and the set

has no plane section of type IV, the result is given by Theorem 2.46; when n ≥ 4 and

the set has a plane section of type IV, the result is given by Theorems 2.59 and 2.60.

��

This theorem can be reworded as follows.

Corollary 2.62. The projectively distinct non-singular sets kr,n,q in PG(n, q), with

n ≥ 3, with 3 ≤ r ≤ q − 1 and with q > 4, are given in Table 2.4.

Table 2.4. Types of kr,n,q

n odd n even

q = ph, p > 2 h odd − −
h even Un Un

q = 2h h odd Rn R+
n , R−

n

h even Un, Rn Un, R+
n , R−

n

2.7 Notes and references

Sections 2.1–2.3

Although the theory of Hermitian forms over finite fields and their associated semi-

linear groups is already contained in books such as Jordan [188] and Dickson [119],

the first accounts with greater emphasis on the geometry rather than the group theory

were given independently by Bose and Chakravarti [37] and in the monumental paper

of Segre [279]. These sections follow in style the early sections on quadrics. See also

De Bruyn [84].

In Section 19.3 of FPSOTD, regular systems of lines on U(3, q2) are considered.

The only type that exists is a hemisystem; this is a subset L of the generators of

U(3, q2) such that through every point of U(3, q2) there pass exactly (q + 1)/2 lines

of L. Segre [279]constructed a hemisystem in the case q = 3. In 2005, Cossidente

and Penttila [77] constructed hemisystems for all odd q. See also Cossidente and

Penttila [78] and Bamberg, Giudici and Royle [12].
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Section 2.4

The proof of Theorem 2.22, which is Witt’s theorem, follows the treatment of Segre

[279]. The fundamental formula of Theorem 2.23 is due to Wan and Yang [396],

although they give a different proof.

Sections 2.5–2.6

These sections on the characterisation of Hermitian varieties as well as sets of type

(1, r, q + 1) are an amalgamation of Tallini Scafati [308], Hirschfeld and Thas [179,

178], and Glynn [139].

Lemma 2.54 was considerably improved by Brown [45]: a (q2 + 1)-cap K in

PG(3, q), q even and q �= 2, containing at least one conic is an elliptic quadric E3.

For other characterisations of Hermitian varieties by intersection numbers, see

De Winter and Schillewaert [104] and Schillewaert and Thas [271].
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Grassmann varieties

3.1 Plücker and Grassmann coordinates

Let Πr be an r-space in PG(n,K), n ≥ 3, 1 ≤ r ≤ n− 2, and let

P(x(0)),P(x(1)), . . . ,P(x(r)),

with x(i) = (xi

0, x
i

1, . . . , x
i

n
), be r + 1 linearly independent points of Πr. Write

Tx =

⎡⎢⎢⎢⎢⎣
x0
0 x0

1 · · · x0
n

x1
0 x1

1 · · · x1
n

...
... · · ·

...

xr

0 xr

1 · · · xr

n

⎤⎥⎥⎥⎥⎦ .

Also, write (i0 i1 · · · ir)x, or (i0 i1 · · · ir) if no confusion is possible, for the deter-

minant of order r + 1 whose columns are the (i0 + 1)-th, (i1 + 1)-th,. . . ,(ir + 1)-th
columns of the matrix Tx with i0, i1, . . . , ir ∈ {0, 1, . . . , n}. If two of the ij are

interchanged the sign of (i0 i1 · · · ir)x changes, and if two of the ij are equal then

(i0 i1 · · · ir)x = 0. Note also that at least one of the determinants (i0 i1 · · · ir)x is

not zero.

Lemma 3.1. Let P(x(0)),P(x(1)), . . . ,P(x(r)) and P(y(0)),P(y(1)), . . . ,P(y(r))
be two sets of r + 1 linearly independent points of the r-space Πr of PG(n,K),
where n ≥ 3 and 1 ≤ r ≤ n − 2. Then (i0 i1 · · · ir)y = t(i0 i1 · · · ir)x for some

t ∈ K\{0} which is independent of i0, i1, . . . , ir.

Proof. First, Ty = TTx with T = (tij) a non-singular (r+1)× (r+1) matrix over

K . Hence, if t = |T | �= 0, then (i0 i1 · · · ir)y = t(i0 i1 · · · ir)x for any i0, i1, . . . , ir
in {0, 1, . . . , n}. ��

Now choose c(n + 1, r + 1) ordered (r + 1)-tuples (i0, i1, . . . , ir) such that

i0, i1, . . . , ir are distinct elements of {0, 1, . . . , n} and such that the {i0, i1, . . . , ir}

© Springer-Verlag London 2016 99
J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer Monographs 
in Mathematics, DOI 10.1007/978-1-4471-6790-7_3 
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are all subsets of order r+1 of {0, 1, . . . , n}. Further, order the set V of these (r+1)-
tuples.

Reconsider the r + 1 linearly independent points P(x(0)),P(x(1)), . . . ,P(x(r))
of Πr. Then a coordinate vector of Πr is

L = (l0, l1, . . . , lc(n+1,r+1)−1),

where the lj are the elements (i0 i1 · · · ir)x with (i0, i1, . . . , ir) in V in the given

order. These elements lj are the coordinates of the r-space Πr of PG(n,K). By

Lemma 3.1, L is determined by Πr up to a factor of proportion. Write

Πr = Πr(L).

For n = 3 and r = 1 these coordinates were introduced in Section 15.2 of

FPSOTD. In this case, the coordinates are also called Plücker coordinates. In the

general case they are called Grassmann coordinates.

Consider a projectivity ξ of PG(n,K) with matrix A, and let Πrξ = Π′

r
with

Πr = Πr(L) and Π′

r
= Πr(L

′). By a standard matrix manipulation as in Lemma

15.2.8 of FPSOTD,

tL′ = LÃ ,

where t ∈ K\{0} and where the elements of Ã are, up to the sign, minors of order

r + 1 of the matrix A. Also, Ã is non-singular.

Next let π(u(0)),π(u(1)), . . . ,π(u(n−r−1)) be n − r linearly independent hy-

perplanes containing the r-space Πr of PG(n,K), where u(i) = (ui

0, u
i

1, . . . , u
i

n
).

Write

Tu =

⎡⎢⎢⎢⎢⎣
u0
0 u0

1 · · · u0
n

u1
0 u1

1 · · · u1
n

...
... · · ·

...

un−r−1
0 un−r−1

1 · · · un−r−1
n

⎤⎥⎥⎥⎥⎦ .

Also, write (j0 j1 · · · jn−r−1)u, or (j0 j1 · · · jn−r−1) if no confusion is possible,

for the determinant of order n − r whose columns coincide with the (j0 + 1)-th,

(j1+1)-th,. . . ,(jn−r−1+1)-th columns of the matrix Tu, with j0, j1, . . . , jn−r−1 in

{0, 1, . . . , n}. At least one of the n− r determinants (j0 j1 · · · jn−r−1) is not zero.

For each element (i0, i1, . . . , ir) of V an (n − r)-tuple (j0, j1, . . . , jn−r−1) is

chosen so that

(i0, i1, . . . , ir, j0, j1, . . . , jn−r−1)

is an even permutation of (0, 1, . . . , n). The set of these ordered (n−r)-tuples, which

number c(n + 1, r + 1) = c(n + 1, n− r), is denoted by W . Then the ordering of

V induces an ordering of W .

Consider again the n− r linearly independent hyperplanes containing Πr. Then

a dual coordinate vector of Πr is

L̂ = (l̂0, l̂1, . . . , l̂c(n+1,r+1)−1) ,
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where the l̂i are the elements (j0 j1 · · · jn−r−1)u with (j0, j1, . . . , jn−r−1) in W in

the given order. By the dual of Lemma 3.1, L̂ is determined by Πr up to a factor of

proportion.

Lemma 3.2. The coordinates ρli = l̂i for i = 0, 1, . . . , c(n+ 1, r + 1)− 1; that is,

up to a factor of proportion, L̂ is L.

Proof. Let P(x(0)),P(x(1)), . . . ,P(x(r)) be r+1 linearly independent points of Πr

with x(i) = (xi

0, x
i

1, . . . , x
i

n
), i = 0, 1, . . . , r. The lj are of the form (i0i1 · · · ir)x.

Consider n − r points P(x(r+1)),P(x(r+2)), . . . ,P(x(n)) of PG(n,K) such that

P(x(0)),P(x(1)), . . . ,P(x(n)), with

x(i) = (xi

0, x
i

1, . . . , x
i

n
), i = r + 1, r + 2, . . . , n ,

are linearly independent. As hyperplanesπ(u(0)),π(u(1)), . . . ,π(u(n−r−1)) choose

ΠrP(x(r+1))P(x(r+2)) · · ·P(x(r+i−1))P(x(r+i+1)) · · ·P(x(n)) ,

with i = 1, 2, . . . , n− r. So, for ui

j
take the cofactor of xr+i+1

j
in the matrix

D =

⎡⎢⎢⎢⎢⎣
x0
0 x0

1 · · · x0
n

x1
0 x1

1 · · · x1
n

...
... · · ·

...

xn

0 xn

1 · · · xn

n

⎤⎥⎥⎥⎥⎦ ,

j = 0, 1, . . . , n and i = 0, 1, . . . , n − r − 1. If E is the matrix obtained from D

by replacing each element xi

j
by its cofactor, then each minor of order n − r of E

is equal to the product of |D|n−r−1 and the algebraic complement of the similarly

placed minor in the matrix D. Hence

(j0 j1 · · · jn−r−1)u = |D|
n−r−1 (−1)d (i0 i1 · · · ir)x ,

where

{j0, j1, . . . , jn−r−1} ∪ {i0, i1, . . . , ir} = {0, 1, . . . , n},

with j0 < j1 < · · · < jn−r−1, i0 < i1 < · · · < ir, and

d = i0 + i1 + · · ·+ ir + r + 1+ (r + 2)(r + 1)/2 .

Now the result follows. ��

If n = 2r + 1 then often the ordering in W is chosen in such a way that

ρli = l̂i+c(2r+2,r+1)/2, where indices are taken modulo c(2r + 2, r + 1). Hence,

if (i0 i1 · · · ir)x is a coordinate of Πr and (j0 j1 · · · jr)u is a dual coordinate of Π′

r
,

then their positions differ by c(2r + 2, r + 1)/2, where

|{i0, i1, . . . , ir} ∪ {j0, j1, . . . , jr}| = 2r + 2.
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In Lemma 3.3, for n = 2r+1 and r even, the following condition is not imposed:

for a coordinate (i0i1 · · · ir)x of Πr and a dual coordinate (j0j1 · · · jr)u of Πr with

|{i0, i1, . . . , ir} ∪ {j0, j1, . . . , jr}| = n+ 1, the permutation

(i0, i1, . . . , ir, j0, j1, . . . , jr)

has to be even.

Lemma 3.3. Let Πr be an r-space of PG(n,K) with coordinates (i0 i1 · · · ir)x for

n ≥ 3. Also, let Πn−r−1 be an (n−r−1)-space with dual coordinates (i0 i1 · · · ir)u,
where 1 ≤ r ≤ n− 2. Then Πr ∩ Πn−r−1 �= ∅ if and only if∑

(i0 i1 · · · ir)x(i0 i1 · · · ir)u = 0 .

Proof. Choose r + 1 linearly independent points P(x(0)),P(x(1)), . . . ,P(x(r)) in

Πr and n − r linearly independent points P(y(0)),P(y(1)), . . . ,P(y(n−r−1)) in

Πn−r−1. Let

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0
0 x0

1 · · · x0
n

x1
0 x1

1 · · · x1
n

...
... · · ·

...

xr

0 xr

1 · · · xr

n

y00 y01 · · · y0
n

y10 y11 · · · y1
n

...
... · · ·

...

yn−r−1
0 yn−r−1

1 · · · yn−r−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then Πr ∩ Πn−r−1 �= ∅ if and only if Δ = 0. By the Laplace expansion of Δ along

the first r + 1 rows and by Lemma 3.2 the required result is immediate. ��

Corollary 3.4. Let Πr be an r-space of PG(n,K), where 1 ≤ r ≤ n−2 and n ≥ 3,
with coordinate vector L = (l0, l1, . . .). If lk = (i0 i1 · · · ir)x then lk = 0 if and

only if Πr ∩Uir+1
Uir+2

· · ·Uin
�= ∅, where {i0, i1, . . . , in} = {0, 1, . . . , n}.

Proof. Let Uir+1
Uir+2

· · ·Uin
= Πn−r−1. As Πn−r−1 = V(Xi0

, Xi1
, . . . , Xir

),
the space Πn−r−1 has (j0j1 · · · jr)u �= 0 if and only if

{j0, j1, . . . , jr} = {i0, i1, . . . , ir}.

By Lemma 3.3, (i0 i1 · · · ir)x = 0 if and only if Πr ∩ Πn−r−1 �= ∅. ��

Lemma 3.5. Let Πr be an r-space of PG(n,K), where 1 ≤ r ≤ n− 2 and n ≥ 3,
and let Πr ∩ V(Xi1

, Xi2
, . . . , Xir

) be a point P(x), where i1, . . . , ir are distinct

elements of {0, 1, . . . , n}. If P(x(0)),P(x(1)), . . . ,P(x(r)) are linearly independent

points of Πr, where x(i) = (xi

0, x
i

1, . . . , x
i

n
), then up to a factor of proportion

x = ((0 i1 · · · ir)x, (1 i1 · · · ir)x, . . . , (n i1 · · · ir)x) .
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Proof. Since Πr ∩ V(Xi1
, Xi2

, . . . , Xir
) is a point P = P(x), there is at least

one hyperplane V(Xi) not containing P(x) for some i in {0, 1, . . . , n}. Then, by

Corollary 3.4, (ii1i2 · · · ir)x �= 0. Hence the matrix

D =

⎡⎢⎢⎢⎢⎣
x0
i1

x0
i2

· · · x0
ir

x1
i1

x1
i2

· · · x1
ir

...
... · · ·

...

xr

i1
xr

i2
· · · xr

ir

⎤⎥⎥⎥⎥⎦
has rank r. If x = (x0, x1, . . . , xn) is the coordinate vector of P , then there are

elements t0, . . . , tr determined up to a factor of proportion and not all zero such that

xi = t0x
0
i
+ t1x

1
i
+ · · ·+ trx

r

i
,

i = 0, 1, . . . , n. Since

t0x
0
is
+ t1x

1
is
+ · · ·+ trx

r

is
= 0,

s = 1, 2, . . . , r and since rankD = r, take for the tj the minors of order r of D

with alternating signs. Hence, up to a factor of proportion, xi is (i i1 i2 · · · ir)x for

i = 0, 1, . . . , n. ��

Lemma 3.6. Let P(x(0)),P(x(1)), . . . ,P(x(r)), with x(i) = (xi

0, x
i

1, . . . , x
i

n
), be

r + 1 linearly independent points of the r-space Πr of PG(n,K), 1 ≤ r ≤ n − 2
and n ≥ 3. The point P(x), where x = (x0, x1, . . . , xn), is contained in Πr if and

only if

xi0
(i1 i2 · · · ir+1)x − xi1

(i0 i2 · · · ir)x + · · ·+ (−1)r+1xir+1
(i0 i1 · · · ir)x = 0,

(3.1)

for each choice of distinct i0, i1, . . . , ir+1 in {0, 1, . . . , n}.

Proof. The point P(x) is contained in Πr if and only if there exist elements

t0, t1, . . . , tr in K , not all zero, such that

x = t0x
(0) + t1x

(1) + · · ·+ trx
(r) .

Equivalently,

xi = t0x
i

0 + t1x
i

1 + · · ·+ trx
i

r
, (3.2)

i = 0, 1, . . . , n. Since the rank of the (r + 1) × (n + 1) matrix with elements xi

j
is

equal to r + 1, the system (3.2) of n + 1 linear equations in r + 1 unknowns has at

least one solution if and only if all minors of order r + 2 of the matrix⎡⎢⎢⎢⎢⎢⎢⎣

x0 x1 · · · xn

x0
0 x0

1 · · · x0
n

x1
0 x1

1 · · · x1
n

...
... · · ·

...

xr

0 xr

1 · · · xr

n

⎤⎥⎥⎥⎥⎥⎥⎦
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are zero. Expanding these minors along the first row, the conditions (3.1) are ob-

tained. ��

Theorem 3.7. For any r-space Πr of PG(n,K), 1 ≤ r ≤ n− 1 and n ≥ 3,

(i0 i1 · · · ir)(j0 j1 · · · jr)− (j0 i1 · · · ir)(i0 j1 · · · jr)

+ (j1 i1 · · · ir)(i0 j0 j2 · · · jr)

− · · ·+ (−1)r+1(jr i1 · · · ir)(i0 j0 · · · jr−1) = 0 , (3.3)

where i0, i1, . . . , ir, j0, j1, . . . , jr are arbitrarily chosen elements in {0, 1, . . . , n}.

Proof. Assume that Πr∩V(Xi1
, Xi2

, . . . , Xir
), with i1, i2, . . . , ir distinct, is a point

P(x). By Lemma 3.5, up to a factor of proportion,

x = ((0 i1 i2 · · · ir), (1 i1 i2 · · · ir), . . . , (n i1 i2 · · · ir)) .

Since P(x) belongs to Πr, by Lemma 3.6,

(i0 i1 · · · ir)(j0 j1 · · · jr)− (j0 i1 · · · ir)(i0 j1 · · · jr)

+ (j1 i1 · · · ir)(i0 j0 j2 · · · jr)

− · · ·+ (−1)r+1(jr i1 · · · ir)(i0 j0 · · · jr−1) = 0 , (3.4)

for any distinct i0, j0, j1, . . . , jr.

If Πr ∩V(Xi1
, Xi2

, . . . , Xir
), with i1, i2, . . . , ir distinct, is at least of projective

dimension one then, by Corollary 3.4, (ii1i2 · · · ir) = 0 for i = 0, 1, . . . , n. Hence

(3.4) is also satisfied in this case.

If i1, i2, . . . , ir or i0, j0, j1, . . . , jr are not all distinct, then (3.4) is trivially satis-

fied. In conclusion, (3.4) is satisfied whenever i0, i1, . . . , jr are arbitrarily chosen in

{0, 1, . . . , n}. ��

By Theorem 3.7, the coordinates of Πr satisfy a number of quadratic relations.

These relations (3.3) can also be written as follows:

(i0 i1 · · · ir)(j0 j1 · · · jr) =

r∑
s=0

(js i1 · · · ir)(j0 · · · js−1 i0 js+1 · · · jr) . (3.5)

In particular, putting j2 = i2, . . . , jr = ir, (3.5) becomes

(i0 i1 · · · ir)(j0 j1 i2 · · · ir) = (j0 i1 · · · ir)(i0 j1 i2 · · · ir)

+(j1 i1 · · · ir)(j0 i0 i2 · · · ir). (3.6)

These are the elementary quadratic relations. When r = 1 or r = n − 2, it follows

that (3.5) and (3.6) are the same. For r = 1, (3.6) was also derived in Lemma 15.2.2

of FPSOTD.

Now let 1 < r < n − 2; in this case, n ≥ 5. Suppose that (k0k1 · · · kr) �= 0 if

and only if
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{k0, k1, . . . , kr} = {0, 1, 2, 6, 7, . . . , r + 3} or {3, 4, 5, 6, 7, . . . , r + 3},

where k0, k1, . . . , kr ∈ {0, 1, . . . , n}. Then the relations (3.6) are satisfied. Since

(0 1 2 6 7 · · · r + 3)(3 4 5 6 7 · · · r + 3) �= 0, the relations (3.5) are not satisfied.

Hence elements (k0k1 · · · kr), where

(k0 k1 k2 · · · kr) = −(k1 k0 k2 · · · kr), (k0 k0 k2 · · · kr) = 0 (3.7)

and similar relations, which satisfy the elementary quadratic relations and which are

not all zero, do not necessarily correspond to some r-space of PG(n,K).

Theorem 3.8. Let 1 ≤ r ≤ n − 2, n ≥ 3. If the elements (k0k1 · · · kr), where

ki ∈ {0, 1, . . . , n}, are not all zero and satisfy both (3.7) and the quadratic relations

(3.5), then these elements correspond to exactly one r-space Πr of PG(n,K).

Proof. Suppose, for example, that (01 · · · r) �= 0. If there is an r-space Πr corre-

sponding to the c(n+ 1, r + 1) given elements, then, by Corollary 3.4,

Πr ∩V(X0, X1, . . . , Xr) �= ∅.

Hence

Πr ∩V(X0, X1, . . . , Xs−1, Xs+1, . . . , Xr)

is a point P(x(s)), s = 0, 1, . . . , r. By Lemma 3.5, up to a factor of proportion,

x(s) = (xs

0, x
s

1, . . . , x
s

n
),

where xs

i
= (0 1 · · · s− 1 i s+ 1 · · · r), s = 0, 1, . . . , r and i = 0, 1, . . . , n. Calcu-

lating the determinant

Δ = |xs

i
|, i, s = 0, 1, . . . , r,

it follows that (0 1 · · · r)r+1 �= 0. Hence the points P(x(0)),P(x(1)), . . . ,P(x(r)),
are linearly independent. Now it is shown that, up to a factor of proportion, the

given elements (k0k1 · · · kr) are the elements (k0 k1 k2 · · · kr)x corresponding to

the points P(x(s)) of Πr; more precisely, it is shown that

(k0 k1 k2 · · · kr)x = (k0 k1 k2 · · · kr)(0 1 · · · r)r. (3.8)

From above,

(0 1 · · · r)x = (0 1 · · · r)r+1. (3.9)

Also,

(0 1 · · · s− 1 i s+ 1 · · · r)x = xs

i
(0 1 · · · r)r (3.10)

= (0 1 · · · s− 1 i s+ 1 · · · r)(0 1 · · · r)r ,

s = 0, 1, . . . , r and i = 0, 1, . . . , n. Now proceed by induction on the number ν of

kj in the set {r + 1, r + 2, . . . , n}. Equation (3.8) is satisfied if ν = 0 or 1. Without

loss of generality, it must be shown that
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(j1 j2 · · · jν ν ν + 1 · · · r)x = (j1 j2 · · · jν ν ν + 1 · · · r)(01 · · · r)r , (3.11)

where j1, j2, . . . , jν ∈ {r + 1, r + 2, . . . , n} and ν > 1. Since both the elements

(k0 k1 k2 · · · kr) and (k0 k1 k2 · · · kr)x satisfy the quadratic relations (3.5), so

(0 1 · · · r)(j1 j2 · · · jν ν ν + 1 · · · r)

=

ν∑
s=1

(js 1 2 · · · r)(j1 j2 · · · js−1 0 js+1 · · · jν ν ν + 1 · · · r)

+

r∑
s=ν

(s 1 2 · · · r)(j1 j2 · · · jν ν · · · s− 1 0 s+ 1 · · · r)

=

ν∑
s=1

(js 1 2 · · · r)(j1 j2 · · · js−1 0 js+1 · · · jν ν ν + 1 · · · r) . (3.12)

Also,

(0 1 · · · r)x(j1 j2 · · · jν ν ν + 1 · · · r)x

=
ν∑

s=1

(js 1 2 · · · r)x(j1 j2 · · · js−1 0 js+1 · · · jν ν ν + 1 · · · r)x . (3.13)

By (3.9) and (3.10),

(0 1 · · · r)x = (0 1 · · · r)r+1,

(js 1 2 · · · r)x = (js 1 2 · · · r)(0 1 · · · r)r.

By induction,

(j1 j2 · · · js−1 0 js+1 · · · jν ν ν + 1 · · · r)x

= (j1 j2 · · · js−1 0 js+1 · · · jν ν ν + 1 · · · r)(0 1 · · · r)r .

Hence (3.13) becomes

(0 1 · · · r)r+1(j1 j2 · · · jν ν ν + 1 · · · r)x (3.14)

=

ν∑
s=1

(0 1 · · · r)2r(js 1 2 · · · r)(j1 j2 · · · js−1 0 js+1 · · · jν ν ν + 1 · · · r).

Comparing (3.14) with (3.12), and since (0 1 · · · r) �= 0, this gives

(j1 j2 · · · jν ν ν + 1 · · · r)x = (j1 j2 · · · jν ν ν + 1 · · · r)(0 1 · · · r)r ,

which is (3.11), as required. ��

Example 3.9. For n = 4 and r = 1, a coordinate vector of a line l is

L = ((01), (02), (03), (04), (12), (13), (14), (23), (24), (34)).
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The coordinates of l satisfy the following five quadratic relations :

(12)(34) + (23)(14) + (31)(24) = 0,
(02)(34) + (23)(04) + (30)(24) = 0,
(01)(34) + (13)(04) + (30)(14) = 0,
(01)(24) + (12)(04) + (20)(14) = 0,
(01)(23) + (12)(03) + (20)(13) = 0.

These relations, though linearly independent, must in fact be equivalent to three con-

ditions only, giving seven independent homogeneous parameters with which to de-

fine a line l.

Example 3.10. For n = 5 and r = 2, the 20 Grassmann coordinates of a plane π are

the following:

(012), (013), (014), (015), (023), (024), (025), (034), (035), (045),
(123), (124), (125), (134), (135), (145), (234), (235), (245), (345).

These coordinates satisfy the following quadratic relations:

(ijk)(uvw) = (ivw)(ujk) + (jvw)(iuk) + (kvw)(iju),

with i, j, k, u, v, w ∈ {0, 1, 2, 3, 4, 5}.

In particular for k = w the following elementary quadratic relations are obtained:

(ijk)(uvk) = (ivk)(ujk) + (jvk)(iuk),

with i, j, k, u, v ∈ {0, 1, 2, 3, 4, 5}.

It can be shown that, among these 20 Grassmann coordinates there are exactly

35 linearly independent quadratic relations. In fact, these relations are equivalent to

10 conditions only, giving 10 independent homogeneous parameters with which to

define a plane π in PG(5,K).

3.2 Grassmann varieties

Let PG(r)(n,K) be the set of all r-spaces of PG(n,K), with 1 ≤ r ≤ n − 2 and

n ≥ 3. If

L = (l0, l1, . . . , lc(n+1,r+1)−1)

is a coordinate vector of Πr ∈ PG(r)(n,K), then P(L) is a point of the projective

space PG(N,K), with N = c(n+ 1, r + 1)− 1.
The mapping which associatesP(L) to Πr is denoted byG. The algebraic variety

PG(r)(n,K)G of PG(N,K) is called the Grassmannian or the Grassmann variety

of the r-spaces of PG(n,K). It is denoted by Gr,n,K or Gr,n. In the finite case,

when K = Fq, it is also denoted by Gr,n,q . By Theorems 3.7 and 3.8, Gr,n is the

intersection of the quadrics of PG(N,K) represented by the equations (3.5). For

r = 1 and n = 3, the dimension N = 5 and (3.5) represents only one quadric of

PG(5,K). In this case, G1,3 is the hyperbolic quadric of Section 15.4 of FPSOTD.

This quadric G1,3 is also called the Klein quadric.
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Theorem 3.11. The Grassmannian Gr,n,q has φ(r;n, q) points.

Proof. |Gr,n,q| = |PG(r)(n, q)| = φ(r;n, q). ��

Theorem 3.12. No hyperplane of PG(N,K) contains Gr,n.

Proof. Suppose that the hyperplane π(u), where

u = (u0, u1, . . . , uN )

contains Gr,n. Consider the r-space Ui0
Ui1

· · ·Uir
of PG(n,K), where

{i0, i1, . . . , ir} ⊂ {0, 1, . . . , n}.

For this r-space, (k0 k1 · · · kr) = 0 whenever (k0, k1, . . . , kr) �= {i0, i1, . . . , ir}. If

li is the coordinate of Ui0
Ui1

· · ·Uir
corresponding to the set {i0, i1, . . . , ir} then

li �= 0 while all other coordinates of this r-space are zero. Since Gr,n is contained in

π(u), so ui = 0. Hence all coordinates of u are zero, a contradiction. ��

If V(F1),V(F2), . . . are the quadrics represented by (3.5), then

Gr,n,K = VN,K(F1, F2, . . .).

Also, Gr,n,K = V
N,K

(F1, F2, . . .) is the Grassmannian G
r,n,K

of the r-spaces of

PG(n,K).
The following result is stated without proof.

Theorem 3.13. (i) The algebraic variety Gr,n is absolutely irreducible and rational.

(ii) All points of Gr,n are simple.

(iii) The dimension of Gr,n is (r + 1)(n− r).
(iv) The order of Gr,n is

[(r + 1)(n− r)]!
((r))((n − r − 1))

((n))
,

where ((m)) = 1! 2! · · · m!.

Hence G1,3 has dimension 4 and order 2, while G1,4 has dimension 6 and order 5,

and G1,n has dimension 2(n− 1) and order [2(n− 1)]!/{(n− 1)!n!}. Also G2,5 has

dimension 9 and order 42, while Gr,2r+1 has dimension (r + 1)2 and order

[(r + 1)2]!
1! 2! · · · r!

(r + 1)! (r + 2)! · · · (2r + 1)!
.

Theorem 3.14. The Grassmannians Gr,n and Gn−r−1,n are projectively equivalent

for 1 ≤ r ≤ n− 2 and n ≥ 3.
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Proof. It may be assumed that n �= 2r + 1. So, suppose that the coordinate

of Πr in PG(r)(n,K) in position s + 1, and the dual coordinate of Πn−r−1 in

PG(n−r−1)(n,K) in the same position, correspond to the same ordered (r + 1)-
tuple

(i0, i1, . . . , ir), s = 0, 1, . . . , c(n+ 1, r + 1).

If P(x(0)),P(x(1)), . . . ,P(x(r)) are r + 1 linearly independent points of Πr, then

the hyperplanesπ(x(0)),π(x(1)), . . . ,π(x(r)) have a Πn−r−1 as intersection. Hence

any coordinate vector of Πr is also a dual coordinate vector of Πn−r−1. By Lemma

3.2, any dual coordinate vector of Πn−r−1 is also a coordinate vector of Πn−r−1.

Hence Gr,n = Gn−r−1,n .

If the assumption on positions at the beginning of the proof is not made, then

there is a projectivity of PG(N,K) of the form ρx′

i
= εixj which takes Gr,n to

Gn−r−1,n; here, εi ∈ {+1,−1} and i, j = 0, 1, . . . , c(n+ 1, r + 1)− 1. ��

Now the case n = 2r+1 is considered in more detail. It is assumed that, for any

two coordinates (i0 i1 · · · ir)x and (j0 j1 j2 · · · jr)x of Πr, where

|{i0, i1, . . . , ir} ∪ {j0, j1, . . . , jr}| = 2r + 2,

their positions in the coordinate vector of Πr differ by c(2r + 2, r + 1)/2 = m;

if li = (i0 i1 · · · ir)x and li+m = (j0 j1 j2 · · · jr)x, i ∈ {0, 1, . . . ,m − 1}, then

assume that the permutation (i0, i1, . . . , ir, j0, j1, . . . , jr) is even. Let Πr = Pr(L)
and Π′

r
= Pr(L

′) be r-spaces of PG(2r + 1,K), where

L = (l0, l1, . . .) and L′ = (l′0, l
′

1, . . .). (3.15)

By Lemmas 3.2 and 3.3, Πr ∩ Π′

r
�= ∅ if and only if

m−1∑
i=0

(lil
′

i+m
+ l′

i
li+m) = 0 for r odd,

m−1∑
i=0

(lil
′

i+m
− l′

i
li+m) = 0 for r even.

When r is odd, then associated to PG(r)(2r+1,K) is the polarity δ ofPG(N,K)
with bilinear form

m−1∑
i=0

(XiX
′

i+m
+X ′

i
Xi+m). (3.16)

If K = Fq with q odd, then δ is the orthogonal polarity defined by the hyperbolic

quadric

V

(m−1∑
i=0

XiXi+m

)
.

For r = 1 and n = 3 this quadric coincides with the Grassmannian G1,3. If K = Fq

with q even, then δ is a null polarity.
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When r is even, then associated to PG(r)(2r + 1,K) is the null polarity δ of

PG(N,K) with bilinear form

m−1∑
i=0

(XiX
′

i+m
−X ′

i
Xi+m). (3.17)

The polarity δ is the fundamental polarity associated to Gr,2r+1.

Consider in PG(2r + 1,K) the correlation η represented by

ρxi = ui, i = 0, 1, . . . , 2r + 1. (3.18)

If Πrη = Π′

r
with Πr = Pr(L), Π

′

r
= Pr(L

′) as in (3.15), then, by Lemma 3.2,

ρl′
i
=

{
li+m, i = 0, 1, . . . ,m− 1,
(−1)r+1li+m, i = m,m+ 1, . . . , N,

where the indices are taken modulo N + 1. Hence, to the correlation η, there corre-

sponds the following projectivity of PG(N,K) that leaves Gr,2r+1 invariant:

ρx′

i
=

{
xi+m, i = 0, 1, . . . ,m− 1,
(−1)r+1xi+m, i = m,m+ 1, . . . , N.

(3.19)

This projectivity is denoted by ζ.

Now, all subspaces of PG(N,K) contained in Gr,n are determined. First, the

lines on Gr,n are considered.

Definition 3.15. The set of all r-spaces Πr of PG(n,K) contained in a given (r+1)-
space Πr+1 and containing a given (r− 1)-space Πr−1 is a pencil of r-spaces and is

denoted by (Πr−1,Πr+1).

Theorem 3.16. The image of a pencil of r-spaces under G is a line of Gr,n, and

conversely.

Proof. Let Πr−1 be a given (r − 1)-space of PG(n,K) and let Πr+1 be a given

(r + 1)-space through Πr−1. Also, let l be a line of Πr+1 skew to Πr−1 and let

P(x(0)),P(x(1)), . . . ,P(x(r−1)) be r linearly independent points of Πr−1. Consider

distinct elements Π1
r
,Π2

r
of the pencil (Πr−1,Πr+1). The intersections of Π1

r
and

Π2
r

with l are denoted by P(x1
r
) and P(x2

r
). The coordinates of Πi

r
, i = 1, 2, are

determined by the matrix

T i

x
=

⎡⎢⎢⎢⎢⎢⎣
x(0)

x(1)

...

x(r−1)

xi

r

⎤⎥⎥⎥⎥⎥⎦ .
Let Πr be an arbitrary element of the pencil (Πr−1,Πr+1). A coordinate vector of

the point Πr ∩ l is of the form
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t1x
1
r
+ t2x

2
r
,

t1, t2 ∈ K and not both zero. Conversely, any vector of this type defines one element

Πr of (Πr−1,Πr+1). The coordinates of Πr are determined by the matrix

Tx =

⎡⎢⎢⎢⎢⎢⎣
x(0)

x(1)

...

x(r−1)

t1x
1
r
+ t2x

2
r

⎤⎥⎥⎥⎥⎥⎦ .

If

Li = (li0, l
i

1, . . .), i = 1, 2,

is the coordinate vector defined by the matrix T i

x
, then

t1L1 + t2L2

is the coordinate vector defined by the matrix Tx. Hence (Πr−1,Πr+1)G is the line

joining the points Π1
r
G and Π2

r
G.

Conversely, let l be a line on Gr,n and let P(L1),P(L2) be distinct points of

l. Suppose that the intersection of P(L1)G
−1 = Π1

r
and P(L2)G

−1 = Π2
r

is an

(r − 1)-space Πr−1. Then Π1
r
Π2

r
is an (r + 1)-space Πr+1; so

(Πr−1,Πr+1)G = P(L1)P(L2) = l.

Now it is shown that Π1
r
∩Π2

r
is an (r−1)-space. Let Π1

r
∩Π2

r
be a d-space, with

−1 ≤ d ≤ r − 1, let P(x(0)),P(x(1)), . . . ,P(x(d)) be d + 1 linearly independent

points of Πd, and also let P(x(0)),P(x(1)), . . . ,P(x(d)),P(x
(d+1)

i
), . . . ,P(x

(r)

i
)

be r + 1 linearly independent points of Πi

r
, for i = 1, 2. Let ξ be a projectivity of

PG(n,K) with

P(x(j))ξ = Uj , j = 0, 1, . . . , d,

P(x
(j)

1 )ξ = Uj , j = d+ 1, d+ 2, . . . , r,

P(x
(d+j)

2 )ξ = Ur+j , j = 1, 2, . . . , r − d.

In Section 3.1, it is shown that ξ induces a projectivity ξ̃ of PG(N,K) which leaves

Gr,n invariant. Then

P(L1)ξ̃ = (U0U1 · · ·Ur)G,

P(L2)ξ̃ = (U0U1 · · ·UdUr+1 · · ·U2r−d)G.

The pointsP(L1)ξ̃ andP(L2)ξ̃ are on the line lξ̃ of Gr,n. For the spaceU0U1 · · ·Ur,

the coordinate (k0 k1 · · · kr) �= 0 if and only if

{k0, k1, . . . , kr} = {0, 1, . . . , r};
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for the space U0U1 · · ·UdUr+1 · · ·U2r−d, the coordinate (k0 k1 · · · kr) �= 0 if

and only if

{k0, k1, . . . , kr} = {0, 1, . . . , d, r + 1, . . . , 2r − d}.

Since each point of lξ̃ is on Gr,n, for any two given elements t1, t2 ∈ K , not both

zero, there is an r-space Πr with

(0 1 · · · r) = t1, (0 · · · d r + 1 · · · 2r − d) = t2,

and (k0 k1 · · · kr) = 0 in all other cases. Choose t1, t2 �= 0. Then

(r r − 1 · · · 0)(0 1 · · · d r + 1 · · · 2r − d) �= 0.

By (3.5),

(r r − 1 · · · 0)(0 1 · · · d r + 1 · · · 2r − d)

=
d∑

s=0

(s r − 1 · · · 0)(0 · · · s− 1 r s+ 1 · · · d r + 1 · · · 2r − d)

+
2r−d∑
s=r+1

(s r − 1 · · · 0)(0 · · · d r + 1 · · · s− 1 r s+ 1 · · · 2r − d)

=

2r−d∑
s=r+1

(s r − 1 · · · 0)(0 · · · d r + 1 · · · s− 1 r s+ 1 · · · 2r − d).

Hence (s r − 1 · · · 0) �= 0 for some s ∈ {r + 1, r + 2, . . . , 2r − d}; that is,

{0, 1, . . . , r − 1, s} = {0, . . . , d, r + 1, . . . , 2r − d}.

Consequently, d = r − 1, and so Π1
r
∩ Π2

r
is an (r − 1)-space. ��

Theorem 3.16 is equivalent to saying that the images Π1
r
G and Π2

r
G of two dis-

tinct r-spaces Π1
r

and Π2
r

of PG(n,K) are on a common line of Gr,n if and only if

the intersection Π1
r
∩ Π2

r
is an (r − 1)-space or, equivalently, if and only if Π1

r
Π2

r
is

an (r + 1)-space.

Theorem 3.17. The number of lines on Gr,n,q is equal to

n+1∏
i=3

(qi − 1)

/{ r∏
i=1

(qi − 1)
n−r−1∏
i=1

(qi − 1)

}
. (3.20)

Proof. By Theorem 3.16, the number of lines of Gr,n,q is equal to the number of

pencils (Πr−1,Πr+1). Hence it is equal to the product of |PG(r−1)(n, q)| and the

number of (r + 1)-spaces containing a given Πr−1. So it is equal to
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φ(r − 1;n, q)χ(r − 1, r + 1;n, q)

=
[n− r + 2, n+ 1]−[3, n− r + 1]−

[1, r]−[1, n− r − 1]−

=
[3, n+ 1]−

[1, r]−[1, n− r − 1]−
,

as required. ��

Lemma 3.18. The number of lines on Gr,n,q through one of its points is equal to

θ(n− r − 1) θ(r) . (3.21)

Proof. The number of lines of Gr,n,q through a given point P on it is equal to the

number of pencils (Πr−1,Πr+1) with Πr−1 ⊂ Πr ⊂ Πr+1 and Πr = PG−1. Hence

this number equals

χ(r, r + 1;n, q)φ(r − 1; r, q) = θ(n− r − 1) θ(r) . ��

Lemma 3.19. A line l of PG(N,K) having at least three points in common with

Gr,n is entirely contained in it.

Proof. Since Gr,n is the intersection of the quadrics of PG(N,K) represented by the

equations (3.5), so the line l has at least three points in common with each of these

quadrics, and hence is contained in all the quadrics. It follows that l is contained in

Gr,n. ��

An s-space Πs which is contained in Gr,n but in no (s + 1)-space Πs+1 of Gr,n

is a maximal space or maximal subspace of Gr,n. The next result describes all such

maximal spaces.

Theorem 3.20. The variety Gr,n contains two systems SL and SG of maximal spaces:

(i) SL consists of the (n − r)-spaces Πn−r with Πn−rG
−1 the set of all r-spaces

through a common Πr−1;
(ii) SG consists of the (r + 1)-spaces Πr+1 with Πr+1G

−1 the set of all r-spaces

contained in a common Πr+1.

Proof. Let Πr−1 be an (r − 1)-space of PG(n,K) and let R be the set of all the

r-spaces containing Πr−1. If Π1
r
,Π2

r
are distinct elements of R, then Π1

r
∩Π2

r
is the

(r − 1)-space Πr−1, and so they belong to a pencil of r-spaces which is completely

contained in R. Hence, if P1 and P2 are distinct points of RG, then the line P1P2 is

contained in RG; so RG is a subspace of PG(N,K).
Let Πn−r be a subspace of PG(N,K) which is skew to Πr−1. The bijection

which maps each element of R onto its intersection with Πn−r is denoted by δ.

Then δ−1G is a bijection of Πn−r onto RG which maps the lines of Πn−r onto the

lines of RG, and so RG has dimension n − r. If RG is properly contained in the

subspace π of Gr,n, then let P ∈ π\RG. The r-space PG−1 of PG(n,K) does not
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contain Πr−1 but has an (r − 1)-space in common with each r-space through Πr−1.

This contradiction shows that the (n− r)-space RG is a maximal space of Gr,n.

Similarly, let Πr+1 be an (r+1)-space of PG(n,K) and let S be the set of all the

r-spaces contained in Πr+1. If Π1
r
,Π2

r
are distinct elements of S, then Π1

r
Π2

r
is the

(r + 1)-space Πr+1, and so they belong to a pencil of r-spaces which is completely

contained in S. Hence, if P1 and P2 are distinct points of SG, then the line P1P2

is contained in SG; so SG is a subspace of PG(N,K). Since the pencils of hyper-

planes of Πr+1 are mapped by G onto the lines of SG, so G induces a reciprocity

from Πr+1 to SG. Hence SG has dimension r + 1. If SG is properly contained in

the subspace π of Gr,n, then let P ∈ π\SG. The r-space PG−1 of PG(n,K) is not

contained in Πr+1 but has an (r − 1)-space in common with each r-space in Πr+1,

a contradiction. This shows that the (r + 1)-space SG is a maximal space of Gr,n.

Now consider an arbitrary maximal space π of Gr,n; then π has dimension at least

1. If l is a line of π, then each element of the pencil (Πr−1,Πr+1) = lG−1 has at

least an (r−1)-space in common with each element PG−1, where P ∈ π. So PG−1

contains Πr−1 or is contained in Πr+1. Suppose, for at least one point P ′ ∈ π\l, that

the r-space P ′G−1 contains Πr−1. For any element PG−1, with P ∈ π\(l ∪ {P ′}),
it is known that PG−1 ⊂ Πr+1 or Πr−1 ⊂ PG−1 and that PG−1 ∩ P ′G−1 is an

(r− 1)-space. Hence Πr−1 ⊂ PG
−1. So all elements of πG−1 contain Πr−1. Since

π is maximal, it is the image of the set of all r-spaces containing Πr−1. If, for at least

one point P ′ ∈ π\l, the r-space P ′G−1 is contained in Πr+1, then, analogously, π

is the image of the set of all r-spaces contained in Πr+1. ��

The system SL of maximal spaces of Gr,n corresponding to the (r − 1)-spaces

of PG(n,K) is called the Latin system and its elements the Latin (n − r)-spaces.

The system SG corresponding to the (r+1)-spaces of PG(n,K) is called the Greek

system and its elements the Greek (r + 1)-spaces. Note that the Latin and the Greek

spaces have the same dimension if and only if n = 2r + 1.

Let Πr−1 be an (r − 1)-space of PG(n,K) and let Πn−r be an (n − r)-space

skew to Πr−1. In the first part of the proof of Theorem 3.20, it was shown that G

induces a collineation ξ of Πn−r onto the corresponding maximal space of Gr,n.

From the first part of the proof of Theorem 3.16, ξ preserves the cross-ratio of any

four collinear points of Πn−r. Hence ξ is a projectivity.

Similarly, Let Πr+1 be an (r + 1)-space of PG(n,K). In the second part of the

proof of Theorem 3.20, it was shown that G induces a reciprocity ξ of Πr+1 onto

the corresponding maximal space of Gr,n. Again, by Theorem 3.16, ξ preserves the

cross-ratio of any four hyperplanes of Πr+1 in the same pencil, and hence ξ is a

correlation.

Lemma 3.21. (i) Any line l of Gr,n is contained in one Latin space and one Greek

space.

(ii) Any two distinct Latin or two distinct Greek spaces have at most one point in

common.

(iii) If Πn−r ∈ SL and Πr+1 ∈ SG, then Πn−r ∩Πr+1 is the empty set or a line.
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Proof. Let lG−1 be the pencil (Πr−1,Πr+1). Then the Latin space defined by Πr−1

is the only Latin space through l and the Greek space defined by Πr+1 is the only

Greek space through l.

For Πn−r ∈ SL and Πr+1 ∈ SG, let the corresponding spaces of PG(n,K)
be denoted by Π′

r−1 and Π′

r+1. If Π′

r−1 ⊂ Π′

r+1, then Πn−r ∩ Πr+1 is a line; if

Π′

r−1 �⊂ Π′

r+1, then Πn−r ∩ Πr+1 = ∅. ��

Let Tr(Πg,Πh) be the set of all r-spaces of PG(n,K) through the g-space Πg

and contained in the h-space Πh. In the previous notation, Tr(Πr−1,Πr+1), where

Πr−1 ⊂ Πr+1, is the pencil (Πr−1,Πr+1). Let G
(s)
r,n be the set of all s-spaces on

Gr,n.

Theorem 3.22. (i) For 0 ≤ s ≤ n − r, the set Tr(Πr−1,Πr+s), is an element of

G
(s)
r,n; here Πr−1 ⊂ Πr+s.

(ii) For 0 ≤ s ≤ r+1, the set Tr(Πr−s,Πr+1), where Πr−s ⊂ Πr+1, is an element

of G
(s)
r,n.

(iii) Any s-space of Gr,n, where 0 ≤ s ≤ max(n − r, r + 1), is obtained in one of

these ways.

Proof. (i) It is first shown that Tr(Πr−1,Πr+s) ∈ G
(s)
r,n for 0 ≤ s ≤ n−r. If Πn−r is

a space skew to Πr−1, then Πn−r ∩Πr+s = Πs. The maximal space of Gr,n defined

by Πr−1 is denoted by Π′

n−r
. Now consider the projectivity ξ : Πn−r → Π′

n−r
; then

Tr(Πr−1,Πr+s)G = Πsξ is an s-space Π′

s
of Π′

n−r
.

(ii) Similarly, Tr(Πr−s,Πr+1) ∈ G
(s)
r,n, where 0 ≤ s ≤ r+1. For, if the maximal

space of Gr,n defined by Πr+1 is denoted by Π′

r+1, consider, as above, the correlation

ξ : Πr+1 → Π′

r+1; then Tr(Πr−s,Πr+1)G is an s-space Π′

s
of Π′

r+1.

(iii) Conversely, considerΠ′

s
in G

(s)
r,n, where 0 ≤ s ≤ max(n−r, r+1). The space

Π′

s
is contained in at least one element of SL ∪ SG. So, either Π′

s
⊂ Π′

n−r
where

Π′

n−r
∈ SL or Π′

s
⊂ Π′

r+1 where Π′

r+1 ∈ SG. The (r − 1)-space corresponding to

Π′

n−r
is denoted by Πr−1 and the (r + 1)-space corresponding to Π′

r+1 is denoted

by Πr+1.

(a) Let Πn−r be an (n− r)-space of PG(n,K) skew to Πr−1. From the projec-

tivity ξ : Πn−r → Π′

n−r
, it follows that Π′

s
ξ−1 is an s-space Πs of Πn−r. Hence

Π′

s
G−1 is the set Tr(Πr−1,ΠsΠr−1 = Πr+s).
(b) From the correlation ξ : Πr+1 → Π′

r+1, it follows that Π′

s
ξ−1 is the set of all

hyperplanes of Πr+1 containing a fixed Πr−s. Hence Π′

s
G

−1 = Tr(Πr−s,Πr+1). ��

Remark 3.23. By Lemma 3.21, any s-space of Gr,n, where s > 1, is contained in

exactly one element of SL ∪ SG.

Theorem 3.24. For K = Fq, the sizes of SL,SG,G
(s)
r,n are as follows:

(i) |SL| = φ(r − 1;n, q) and |SG| = φ(r + 1;n, q);
(ii) for n < 2r + 1 and 1 < s ≤ n− r,

|G
(s)
r,n

| = φ(r − 1;n, q)φ(s;n− r, q) + φ(r + 1;n, q)φ(s; r + 1, q);
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(iii) for n < 2r + 1 and n− r < s ≤ r + 1,

|G
(s)
r,n

| = φ(r + 1;n, q)φ(s; r + 1, q);

(iv) for n > 2r + 1 and 1 < s ≤ r + 1,

|G
(s)
r,n

| = φ(r − 1;n, q)φ(s;n− r, q) + φ(r + 1;n, q)φ(s; r + 1, q);

(v) for n > 2r + 1 and r + 1 < s ≤ n− r,

|G
(s)
r,n

| = φ(r − 1;n, q)φ(s;n− r, q);

(vi) for n = 2r + 1 and 1 < s ≤ r + 1,

|G
(s)
r,n

| = 2φ(r + 1; 2r + 1, q)φ(s; r + 1, q);

(vii) for n = 2r + 1,
|SL| = |SG| = φ(r + 1; 2r + 1, q).

Proof. First,

|SL| = PG(r−1)(n, q) = φ(r − 1;n, q);

|SG| = PG(r+1)(n, q) = φ(r + 1;n, q).

When n = 2r + 1, then φ(r − 1; 2r + 1, q) = φ(r + 1; 2r + 1, q); hence (vii) is

shown.

Since any s-space of Gr,n, with s > 1, is contained in exactly one element of

SL ∪ SG, the number of these s-spaces is equal to the sum of the number of all s-

spaces in elements of SL and the number of all s-spaces in elements of SG. This

gives (ii)–(vi). ��

Theorem 3.25. If the parameters r, s, t, n satisfy

1 ≤ r ≤ n− 2, −1 ≤ t ≤ r − 2, r + 2 ≤ s ≤ n,

and Πt,Πs are subspaces of PG(n,K) with Πt ⊂ Πs, then Tr(Πt,Πs)G is projec-

tively equivalent both to Gr−t−1,s−t−1 and to Gs−r−1,s−t−1.

Proof. From Section 3.1 it may be assumed, without loss of generality, that

Πs = U0U1 · · ·Us, Πt = Us−tUs−t+1 · · ·Us.

For any Πr ∈ Tr(Πt,Πs) choose r − t linearly independent points

P(x(0)),P(x(1)), . . . ,P(x(r−t−1))

in Πr ∩U0U1 · · ·Us−t−1. Let

x(i) = (xi

0, x
i

1, . . . , x
i

s−t−1, 0, . . . , 0),
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i = 0, 1, . . . , r− t−1. The coordinates of Πr are determined by the (r+1)×(n+1)
matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
0 x0

1 · · · x0
s−t−1 0 0 · · · 0 0 0 · · · 0

x1
0 x1

1 · · · x1
s−t−1 0 0 · · · 0 0 0 · · · 0

...
... · · ·

...
...

... · · ·
...

...
... · · ·

...

xr−t−1
0 xr−t−1

1 · · · xr−t−1
s−t−1 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0 0 0 · · · 0

...
... · · ·

...
...

... · · ·
...

...
... · · ·

...

0 0 · · · 0 0 0 · · · 1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, with k0, k1, . . . , kr distinct,

(k0 k1 · · · kr) = 0

if {s− t, s− t+1, . . . , s} �⊂ {k0, k1, . . . , kr} or if {k0, k1, . . . , kr} �⊂ {0, 1, . . . , s}.

If both

{s− t, s− t+ 1, . . . , s} ⊂ {k0, k1, . . . , kr} ⊂ {0, 1, . . . , s},

{l0, l1, . . . , lr−t−1} = {k0, k1, . . . , kr}\{s− t, s− t+ 1, . . . , s},

then, up to the sign, (k0 k1 · · · kr) is equal to (l0 l1 · · · lr−t−1), where the latter is

calculated with respect to the matrix⎡⎢⎢⎢⎢⎣
x0
0 x0

1 · · · x0
s−t−1

x1
0 x1

1 · · · x1
s−t−1

...
... · · ·

...

xr−t−1
0 xr−t−1

1 · · · xr−t−1
s−t−1

⎤⎥⎥⎥⎥⎦ .

From these considerations it follows that Tr(Πt,Πs)G is projectively equivalent to

the Grassmann variety Gr−t−1,s−t−1. By Theorem 3.14, this variety is projectively

equivalent to Gs−r−1,s−t−1. ��

Corollary 3.26. The image of the set of all r-spaces of PG(n,K) containing a given

t-space Πt, where 1 ≤ r ≤ n − 2 and −1 ≤ t ≤ r − 2, is projectively equivalent

both to Gr−t−1,n−t−1 and to Gn−r−1,n−t−1.

Proof. This is Theorem 3.25 with s = n. ��

Corollary 3.27. The image of the set of all r-spaces of PG(n,K) contained in a

given s-space Πs, where 1 ≤ r ≤ n − 2 and r + 2 ≤ s ≤ n, is projectively

equivalent both to Gr,s and to Gs−r−1,s.
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Proof. This is Theorem 3.25 with s = −1. ��

Corollary 3.28. The Grassmannian Gr,n contains a subvariety projectively equiva-

lent to G1,n′ if and only if 3 ≤ n′ ≤ max(n− r + 1, r + 2).

Proof. For t = r − 2, Theorem 3.25 gives subvarieties projectively equivalent to

G1,s−r+1, where r + 2 ≤ s ≤ n; for s = r + 2 the theorem also gives subvarieties

projectively equivalent to G1,r−t+1, where −1 ≤ t ≤ r − 2.

For n′ > max(n− r+ 1, r+ 2), the variety G1,n′ contains (n′ − 1)-spaces. The

Latin spaces of Gr,n have dimension n − r < n′ − 1, and the Greek spaces of Gr,n

have dimension r+1 < n′ − 1. Hence, in this case, Gr,n cannot contain subvarieties

projectively equivalent to G1,n′ . ��

In the last part of this section all projectivities of PG(N,K) leaving Gr,n invari-

ant are determined. It is necessary to distinguish between the cases n = 2r + 1 and

n �= 2r + 1.

Theorem 3.29. If ξ is a projectivity of PG(N,K) leaving Gr,n invariant, then ξ also

leaves SL and SG invariant or interchanges them. For n �= 2r + 1, they are left

invariant.

Proof. First, ξ maps a maximal space of Gr,n onto a maximal space. For n �= 2r+1,

the Greek and Latin spaces have different dimensions, and so ξ leaves SL and SG

invariant.

Now assume that n = 2r + 1. Let Πr+1 ∈ SL ∪ SG; for example, Πr+1 ∈ SL.

Choose a space Π′

r+1 ∈ SL which has exactly one point P in common with Πr+1;

then Πr+1ξ ∩Π′

r+1ξ = Pξ. By Lemma 3.21, the maximal spaces Πr+1ξ and Π′

r+1ξ

both belong to SL or to SG.

Next consider any space Π′′

r+1 ∈ SL, Π
′′

r+1 �= Πr+1. The (r − 1)-spaces of

PG(2r+1,K) which correspond to Πr+1 and Π′′

r+1 are denoted by Πr−1 and Π′′

r−1.

There exists a finite number of distinct (r − 1)-spaces Π0
r−1,Π

1
r−1, . . . ,Π

k

r−1 such

that

Πr−1Π
0
r−1,Π

0
r−1Π

1
r−1, . . . ,Π

k−1
r−1Π

k

r−1,Π
k

r−1Π
′′

r−1

are r-spaces. Hence to Π0
r−1,Π

1
r−1, . . . ,Π

k

r−1 there correspond Latin spaces

Π0
r+1,Π

1
r+1, . . . ,Π

k

r+1

such that

Πr+1 ∩ Π0
r+1,Π

0
r+1 ∩ Π1

r+1, . . . ,Π
k−1
r+1 ∩ Πk

r+1,Π
k

r+1 ∩ Π′′

r+1

are points. By a previous argument, the maximal spaces

Πr+1ξ,Π
0
r+1ξ,Π

1
r+1ξ, . . . ,Π

k

r+1ξ,Π
′′

r+1ξ

all belong to SL or all to SG. Hence Πr+1ξ and Π′′

r+1ξ both belong to SL or both to

SG. Thus it has been shown that ξ maps the elements of SL either all to SL or all to

SG. Analogously, ξ maps all elements of SG to SL or to SG. Hence ξ leaves both SL

and SG invariant or interchanges them. ��
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From (3.18) and (3.19) in the case n = 2r+1 the correlation η of PG(2r+1,K)
represented by

ρxi = ui, i = 0, 1, . . . , 2r + 1,

induces a projectivity ζ of PG(N,K) which leaves Gr,2r+1 invariant. Then ζ inter-

changes the systems SL and SG of Gr,2r+1.

Let G(Gr,n) be the subgroup of PGL(N + 1,K) leaving Gr,n fixed.

Lemma 3.30. Let θ : ξ → ξ̃ map each element ξ of PGL(n+ 1,K) onto the corre-

sponding element ξ̃ of G(Gr,n). Then

(i) θ is a monomorphism of PGL(n+ 1,K) into G(Gr,n);
(ii) distinct elements of G(Gr,n) induce distinct permutations of Gr,n.

Proof. First it is shown that the identity mapping of Gr,n is induced only by the

identity I of PGL(N+1,K). Let I′ ∈ PGL(N+1,K) fix Gr,n point-wise. Choose

distinct points P, P ′ ∈ Gr,n, and let PG−1 = Πr, P
′G−1 = Π′

r
. There is a finite

number of elements Π0
r
,Π1

r
, . . . ,Πk

r
∈ PG(r)(n,K) such that

Πr ∩ Π0
r
,Π0

r
∩ Π1

r
, . . . ,Πk−1

r
∩ Πk

r
,Πk

r
∩ Π′

r

are (r − 1)-spaces. This means that there is a finite number of points P0, P1, . . . , Pk

on Gr,n such that PP0, P0P1, . . . , Pk−1Pk, PkP
′ are lines of Gr,n. Hence all points

of the subspace of PG(N,K) generated by Gr,n are fixed by I′. By Theorem 3.12,

all points of PG(N,K) are fixed by I′; hence I′ is the identity of PGL(N + 1,K).
From the preceding paragraph it follows that, if δ, δ′ ∈ G(Gr,n) coincide on Gr,n,

then δ = δ′.

Let ξ, ξ′ ∈ PGL(n + 1,K), with ξ �= ξ′. Then the mappings induced by ξ and

ξ′ on PG(r)(n,K) are distinct; hence ξ̃ �= ξ̃′. So θ is an injection of PGL(n+1,K)

into G(Gr,n). Again, consider elements ξ, ξ′ ∈ PGL(n + 1,K); then ξ̃ξ̃′ and ξ̃ξ
′

coincide on Gr,n. Hence ξ̃ξ̃′ = ξ̃ξ
′

and θ is a monomorphism of PGL(n+1,K) into

G(Gr,n). ��

Theorem 3.31. For n �= 2r+1, the mapping θ is an isomorphism of PGL(n+1,K)
onto G(Gr,n). For n = 2r + 1,

G(Gr,n) = PGL(n+ 1,K)θ ∪ (PGL(n+ 1,K)θ)ζ.

Proof. First suppose that n �= 2r + 1. It must be shown that

G(Gr,n) = PGL(n+ 1,K)θ.

Consider an element δ ∈ G(Gr,n). By Theorem 3.29, δ leaves SL and SG invariant.

Consider an (r + 1)-space Λ1
r+1 ∈ SG. The (r + 1)-space Λ1

r+1δ = Λ1
′

r+1 also

belongs to SG. The corresponding (r+1)-spaces of PG(n,K) are denoted by Π1
r+1

and Π1
′

r+1. By the remark just preceding Lemma 3.21, G induces a correlation of
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Π1
r+1 onto Λ1

r+1 and of Π1
′

r+1 onto Λ1
′

r+1. Hence GδG−1 induces a projectivity ξ1 of

Π1
r+1 onto Π1

′

r+1.

Next consider an (r + 1)-space Π2
r+1 of PG(n,K) for which Π1

r+1 ∩ Π2
r+1

is an r-space Πr. Corresponding to Π2
r+1 is an (r + 1)-space Λ2

r+1 ∈ SG. So, let

Λ2
r+1δ = Λ2

′

r+1 ∈ SG and let Π2
′

r+1 be the corresponding (r+1)-space of PG(n,K).

Again GδG−1 induces a projectivity ξ2 of Π2
r+1 onto Π2

′

r+1.

Since Π1
r+1 ∩ Π2

r+1 is an r-space, the intersection Λ1
r+1 ∩ Λ2

r+1 is a point P .

Hence Λ1
′

r+1 ∩ Λ2
′

r+1 is a point P ′, whence Π1
′

r+1 ∩ Π2
′

r+1 is an r-space Π′

r
. Since

Pδ = P ′, so Πrξ1 = Πrξ2 = Π′

r
. In Πr, now choose an (r − 1)-space Πr−1. If

Π1
r+1Π

2
r+1 = Πr+2, then Tr(Πr−1,Πr+2)G is a plane Π2. If the lines Π2 ∩ Λ1

r+1

and Π2 ∩ Λ2
r+1 are l1 and l2, then l1 ∩ l2 = P . The plane Π2δ = Π′

2 intersects

Λ1
′

r+1 and Λ2
′

r+1 in the lines l′1 = l1δ and l′2 = l2δ; also l′1 ∩ l′2 = P ′. Now, l′1G
−1

is the pencil (Πr−1ξ1,Π
1
′

r+1) and l′2G
−1 is the pencil (Πr−1ξ2,Π

2
′

r+1). These two

pencils belong to Π′

2G
−1; hence, by Theorem 3.22, all elements of the two pencils

contain a common (r − 2)-space and are contained in a common (r + 1)-space, or

contain a common (r−1)-space and are contained in a common (r+2)-space. Since

the elements of the pencils generate Π1
′

r+1Π
2
′

r+1, which is an (r + 2)-space, they all

contain a common (r − 1)-space.

Hence Πr−1ξ1 = Πr−1ξ2 = Π′

r−1. Consequently, the actions of ξ1 and ξ2 on

the set of all hyperplanes of Πr coincide, which means that ξ1 and ξ2 also coincide

on all points of Πr.

Consider distinct (r+1)-spaces Π3
r+1 and Π4

r+1 of PG(n,K). Let their intersec-

tion be an s-space Πs for some s ∈ {−1, 0, 1, . . . , r}. There exists a finite number

of distinct (r + 1)-spaces

Π3
r+1 = Π5

r+1,Π
6
r+1, . . . ,Π

k

r+1 = Π4
r+1

in PG(n,K) such that

Π5
r+1 ∩Π6

r+1,Π
6
r+1 ∩ Π7

r+1, . . . ,Π
k−1
r+1 ∩ Πk

r+1

are r-spaces which contain Πs. As in the preceding paragraphs, the spaces

Π5
r+1,Π

6
r+1, . . . ,Π

k

r+1

define projectivities ξ3 = ξ5, ξ6, . . . , ξk = ξ4. Also, ξi and ξi+1 coincide on all

points of Πi

r+1 ∩Πi+1
r+1, i = 5, 6, . . . , k− 1, and consequently coincide on all points

of Πs. Hence ξ3 and ξ4 coincide on all points of Πs.

Define ξ as follows. Let P be an arbitrary point of PG(n,K). Consider any

(r+1)-space Π0
r+1 containing P and the corresponding projectivity ξ0. Then define

Pξ = Pξ0. From the above, Pξ0 is independent of the choice of Π0
r+1 through P . If

l is a line of PG(n,K), then choosing Π0
r+1 through l it follows that lξ is a line of

PG(n,K); if Πr is an r-space of PG(n,K), then choosing Π0
r+1 through Πr gives

that ΠrGδ = ΠrξG. Hence ξ is a projectivity of PG(n,K) and ξθ = ξ̃ = δ. This

proves the theorem in the case that n �= 2r + 1.
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Finally, suppose that n = 2r + 1. From above,

PGL(2r + 2,K)θ ∪ (PGL(2r + 2,K)θ)ζ ⊂ G(Gr,2r+1).

Let δ ∈ G(Gr,2r+1) leave SL and SG invariant; then, as in the case n �= 2r + 1,

it follows that δ ∈ PGL(2r + 2,K)θ. Now suppose that δ interchanges SL and

SG. Then δζ−1 ∈ G(Gr,2r+1) and leaves both SL and SG invariant. Consequently

δζ−1 ∈ PGL(2r + 2,K)θ; that is, δ ∈ (PGL(2r + 2,K)θ)ζ. ��

It follows from this proof that (PGL(2r + 2,K)θ)ζ is induced by the set of all

correlations of PG(2r + 1,K).

Corollary 3.32. (i) For n �= 2r + 1,

|G(Gr,n,q)| = |PGL(n+ 1, q)| .

(ii) For n = 2r + 1,

|G(Gr,2r+1,q)| = 2 |PGL(2r + 2, q)| .

Proof. This follows immediately from the theorem. ��

Theorem 3.33. If δ is a permutation of Gr,n such that both δ and δ−1 fix G
(1)
r,n, then

δ can be extended to an element of G(Gr,n).

Proof. The permutations δ and δ−1 map each s-space Πs of Gr,n onto an s-space of

Gr,n. As in the proof of Theorem 3.29, it can be shown that, for n �= 2r + 1, both

δ and δ−1 leave each of SL and SG invariant, whereas, for n = 2r + 1, both δ and

δ−1 leave the pair {SL,SG} invariant. Similarly to the proof of Theorem 3.31, when

n �= 2r+ 1 the permutation δ naturally defines a projectivity ξ of PG(n,K); also, δ

is the restriction of ξθ = ξ̃ to Gr,n. Thus δ can be extended to ξ̃. When n = 2r + 1,

either δ or δζ−1 defines the projectivity ξ and is correspondingly the restriction of

ξθ = ξ̃ to Gr,n; here, δ can be extended to one of ξ̃ and ξ̃ζ. In both cases, δ can be

extended to an element of G(Gr,n). ��

3.3 A characterisation of Grassmann varieties

In this section it is always assumed that the objects considered are finite. However,

all theorems stated can be generalised to the infinite case. The main goal is to char-

acterise the finite Grassmann varieties in terms of their subspaces.

Let P be a non-empty set whose elements are called points, and let B be a non-

empty set consisting of subsets of P . The elements of B are called lines. The pair

(P ,B) is a partial linear space (PLS) if the following conditions are satisfied:

(1) any two distinct points in P belong to at most one line in B;

(2) any line in B contains at least two points of P ;

(3) B is a covering of P ; that is, P is the union of all elements of B.
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The points P, P ′ of P are collinear if there is a line l of B containing P and P ′;

in this case, write P ∼ P ′. If P and P ′ are non-collinear, write P �∼ P ′. Note that

P ∼ P . If P and P ′ are distinct points of the line l, then l is also denoted by PP ′.

Definition 3.34. (1) If any two points of P are collinear, then (P ,B) is a linear space

(LS).

(2) Otherwise, (P ,B) is a proper partial linear space (PPLS).

(3) A subset P ′ of the PLS (P ,B) is a subspace if any two of its points are collinear

and the line joining them is completely contained in P ′.

(4) The subspace P ′ is a maximal subspace if it is not properly contained in any

subspace of (P ,B).
(5) If each line l of the PLS (P ,B) contains at least three points, the space (P ,B) is

irreducible.

(6) A PPLS (P ,B) is connected if for any two points P, P ′ there exist points

P1, P2, . . . , Pk such that P ∼ P1 ∼ P2 ∼ · · · ∼ Pk ∼ P ′.

Consider the Grassmann variety Gr,n, 1 ≤ r ≤ n− 2. Let P = Gr,n and let B be

the set of all lines of Gr,n. Then (P ,B) is a PPLS whose subspaces are the subspaces

ofPG(N, q) contained in Gr,n and whose maximal subspaces are the maximal spaces

of Gr,n. Also, (P ,B) is irreducible and connected; see the proof of Lemma 3.30.

Lemma 3.35. Let (P ,B) be the PPLS corresponding to the Grassmann variety Gr,n.

Then (P ,B) satisfies the following conditions.

(i) If P, P ′, P ′′ ∈ P with P ∼ P ′ ∼ P ′′ ∼ P, then there is a subspace containing

these points.

(ii) The set of maximal subspaces is partitioned into two families SL and SG with

the following further properties.

(a) If π ∈ SL and π′ ∈ SG, then π ∩ π′ = ∅ or π ∩ π′ ∈ B.

(b) For each l ∈ B there is a unique π ∈ SL and a unique π′ ∈ SG such that

π ∩ π′ = l.

(c) If π, π′, π′′ are distinct elements of SL for which π ∩ π′, π′ ∩ π′′, π′′ ∩ π are

distinct points, then any element of SL other than π, π′, π′′ having distinct

points in common with π and π′ also has a point in common with π′′.

Similarly, if π, π′, π′′ are distinct elements of SG for which the spaces

π∩π′, π′∩π′′, π′′∩π are distinct points, then any element of SG other than

π, π′, π′′ having distinct points in common with π and π′ also has a point in

common with π′′.

(iii) There exist distinct subspaces π1, π2, . . . , πr+1 such that π1 ∈ B, πr+1 ∈ SG,

πi ⊂ πi+1 and such that there is no subspace π other than πi and πi+1 with

πi ⊂ π ⊂ πi+1.

Similarly, there exist distinct subspaces π1, π2, . . . , πn−r such that π1 ∈ B,

πn−r ∈ SL, πi ⊂ πi+1 and such that there is no subspace π other than πi and

πi+1 with πi ⊂ π ⊂ πi+1.
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Proof. Let P, P ′, P ′′ be distinct points of P , with P ∼ P ′ ∼ P ′′ ∼ P . It may

be assumed that P, P ′, P ′′ are not on a common line of B. The plane PP ′P ′′ has

three lines in common with each of the quadrics represented by equations (3.5), and

hence is contained in all these quadrics. So the plane PP ′P ′′ is contained in Gr,n.

Therefore P, P ′, P ′′ lie in a subspace of (P ,B).
Properties (ii)(a) and (ii)(b) are proved in Theorem 3.20 and Lemma 3.21. Let

π, π′, π′′ be distinct elements of SL for which π ∩ π′, π′ ∩ π′′, π′′ ∩ π are dis-

tinct points. The (r − 1)-spaces of PG(n, q) which correspond to π, π′, π′′ are

denoted by Πr−1,Π
′

r−1,Π
′′

r−1. Since π ∩ π′, π′ ∩ π′′, π′′ ∩ π are distinct points,

the spaces Πr−1,Π
′

r−1,Π
′′

r−1 contain a common (r − 2)-space Πr−2. If the space

π′′′ ∈ SL\{π, π
′, π′′} has distinct points in common with π and π′, then the (r− 1)-

space of PG(n, q) corresponding to π′′′ contains Πr−2. Hence π′′ and π′′′ have

a point in common. Similarly, let π, π′, π′′ be distinct elements of SG for which

π∩π′, π′∩π′′, π′′∩π are distinct points. The (r+1)-spaces of PG(n, q) which cor-

respond to π, π′, π′′ are denoted by Πr+1,Π
′

r+1,Π
′′

r+1. Since π∩π′, π′ ∩π′′, π′′∩π

are distinct points, the spaces Πr+1,Π
′

r+1,Π
′′

r+1 are contained in a common (r+2)-
space Πr+2. If the space π′′′ ∈ SG\{π, π

′, π′′} has distinct points in common with

π and π′, then the (r + 1)-space of PG(n, q) corresponding to π′′′ is contained in

Πr+2. Hence π′′ and π′′′ have a point in common.

Property (iii) follows immediately. ��

Let (P ,B) be a connected irreducible PPLS. It is a Grassmann space of index r,

with r ≥ 1, if the following axioms are satisfied.

A1. If P, P ′, P ′′ ∈ P with P ∼ P ′ ∼ P ′′ ∼ P , then there is a subspace of (P ,B)
containing these points.

A2. The set of maximal subspaces of (P ,B) is partitioned into two families, say S

and T , with the following properties.

I. If π ∈ S and π′ ∈ T , then π ∩ π′ = ∅ or π ∩ π′ ∈ B.

II. For each l ∈ B there is a unique π ∈ S and a unique π′ ∈ T such that

l ⊂ π and l ⊂ π′.

III. Let π, π′, π′′ be distinct elements of S for which π∩π′, π′∩π′′, π′′∩π are

distinct points. Then any element of S\{π, π′, π′′} having distinct points

in common with π and π′ also has a point in common with π′′.

A3. There exist r + 1 distinct subspaces πi such that π1 ⊂ π2 ⊂ · · · ⊂ πr+1, with

π1 ∈ B, πr+1 ∈ T , and such that there is no subspace π with πi ⊂ π ⊂ πi+1

other than π = πi, πi+1 for i = 1, 2, . . . , r.

Lemma 3.36. Let (P ,B) be the PPLS corresponding to the Grassmann variety Gr,n.

Then (P ,B) is a Grassmann space both of index r and of index n− r − 1.

Proof. Putting S = SL and T = SG in Lemma 3.35 shows that (P ,B) is a Grass-

mann space of index r; putting S = SG and T = SL shows that (P ,B) is a Grass-

mann space of index n− r − 1. ��

Definition 3.37. Let (P ,B) and (P ′,B′) be two Grassmann spaces.
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(1) A bijection ξ from P to P ′ is an isomorphism or collineation from (P ,B) to

(P ′,B′) if B′ is the set of all images of the elements of B under ξ.

(2) In this case, (P ,B) and (P ′,B′) are isomorphic.

If ξ is an isomorphism from (P ,B) to (P ′,B′), then ξ maps the subspaces and

maximal subspaces of (P ,B) onto the subspaces and maximal subspaces of (P ′,B′).
Let π and π′ be distinct maximal subspaces belonging to the same system D of

maximal subspaces of the Grassmann space (P ,B). If P ∈ π, P ′ ∈ π′, P �= P ′, then

by the connectivity of (P ,B) there exist distinct points P1 = P, P2, . . . , Pk = P ′

such that P1 ∼ P2 ∼ · · · ∼ Pk. Let πi be the element of D which contains the

line PiPi+1, i = 1, 2, . . . , k − 1. By A2.II, πi = πi+1 or πi ∩ πi+1 is a point,

i = 1, 2, . . . , k−1. If ξ is an isomorphism from (P ,B) to (P ′,B′) then πiξ = πi+1ξ

or πiξ ∩ πi+1ξ is a point. Hence, by A2.I, π1ξ, π2ξ, . . . , πkξ belong to the same

system D′ of maximal subspaces of (P ′,B′). Consequently, πξ and π′ξ belong to

D′. Therefore ξ maps each system of maximal subspaces of (P ,B) onto a system of

maximal subspaces of (P ′,B′).
Henceforth, it is assumed that (P ,B) is a Grassmann space of index r ≥ 2.

Lemma 3.38. (i) No line in B is a maximal subspace.

(ii) Two distinct elements of the same system of maximal subspaces have at most

one point in common.

Proof. Let l ∈ B be a maximal subspace, say l ∈ S. By A2.II, there is a π ∈ T

which contains l. Since T ∩S = ∅, so l is properly contained in π, and hence l is not

maximal, a contradiction. Consequently no element of B is a maximal subspace.

Suppose that π and π′ are distinct elements of T ∪ S which have distinct points

P and P ′ in common. The line l = PP ′ belongs to exactly one element of S and to

exactly one element of T . Hence π and π′ belong to distinct families. ��

Lemma 3.39. Let π, π′ ∈ S, π �= π′, and P ∈ π ∩ π′. If π′′ ∈ T , and if π ∩ π′′ = l

and π′ ∩ π′′ = l′ are lines , then l ∩ l′ = P and so π′′ contains P .

Proof. By Lemma 3.38, π ∩ π′ = P ; so l �= l′. Let Q ∈ l, Q′ ∈ l′, with P,Q,Q′

distinct; then P ∼ Q ∼ Q′ ∼ P . By A1, the points P,Q,Q′ are contained in a

subspace α1, and α1 is contained in a maximal subspace α2. If α2 ∈ S then, by

Lemma 3.38, π = α2 = π′, a contradiction; so α2 ∈ T . Since α2 contains the

distinct points Q,Q′ of π′′, so π′′ = α2 by Lemma 3.38; thus P ∈ π′′. Finally,

P ∈ π ∩ π′′ = l and P ∈ π′ ∩ π′′ = l′. ��

Lemma 3.40. Each element of T provided with its lines has the structure of the

points and lines of a projective space.

Proof. If π ∈ T , then π with its lines is a linear space. It is sufficient to show that in

that linear space the Veblen–Wedderburn axiom holds.

Let l1 and l2 be distinct lines of π, with l1 ∩ l2 = P ; if l3 and l4 are distinct lines

of π, each meeting both l1 and l2 at points other than P , then it must be shown that

l3 and l4 meet at a point.
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Let l1 ∩ l3 = P1, l2 ∩ l3 = P2, l1 ∩ l4 = Q1, l2 ∩ l4 = Q2. Through li there is

exactly one maximal subspace αi ∈ S, i = 1, 2, 3, 4. If αi = αj , i �= j, then αi ∩ π

contains all points of li∪ lj , in contradiction to A2.I. Hence the spaces α1, α2, α3, α4

are distinct. By Lemma 3.38,

α1 ∩ α2 = P, α1 ∩ α3 = P1, α2 ∩ α3 = P2,

α1 ∩ α4 = Q1, α2 ∩ α4 = Q4.

By A2.III, α3 and α4 have a common point Q. Since

Q ∈ α3 ∩ α4, π ∈ T , α3 ∩ π = l3, α4 ∩ π = l4,

so l3 ∩ l4 = Q, by Lemma 3.39. ��

Any projective space belonging to T contains projective planes. The set of all

these projective planes is denoted by C. Then any element of C is a subspace of

(P ,B), and is contained in exactly one element of T .

Lemma 3.41. Let

(a) π and π′ be distinct elements of T which intersect in the point P ;
(b) α1, α2, α3 be distinct elements of S containing P ;
(c) αi ∩ π = li ∈ B, αi ∩ π′ = l′

i
∈ B, i = 1, 2, 3;

(d) l1, l2, l3 belong to a common plane in π.

Then l′1, l
′

2, l
′

3 also belong to a common plane in π′.

Proof. The lines l1, l2, l3 are distinct, as are l′1, l
′

2, l
′

3. Let Π2 be the plane containing

l1, l2, l3, and let Π′

2 be the plane of π′ containing l′1 and l′2. It must be shown that

l′3 ⊂ Π′

2.

Let l be a line of Π2 which does not contain P , and let α be the element of S

which contains l. If α ∩ π′ is not a line, then let l′ be any line of Π′

2 which does not

contain P ; if α∩π′ is a line, then let l′ be any line of Π′

2 which is distinct from α∩π′

and does not contain P .

Let l ∩ li = Qi, i = 1, 2, 3, and let l′ ∩ l′
i
= Q′

i
, i = 1, 2. The five points

Q1, Q2, Q3, Q
′

1, Q
′

2 are distinct. Let α′ be the element of S which contains l′. Then

α, α′, α1, α2, α3 are distinct, with

α ∩ αi = Qi, i = 1, 2, 3, α′
∩ αi = Q′

i
, i = 1, 2.

Since α, α1, α2 meet in pairs in distinct points and since α′ has distinct points in

common with α1 and α2, then A2.III implies that α and α′ have a point in common.

Let α∩α′ = Q; here, Q is distinct from Q1 and Q′

1. Consequently, the maximal

subspaces α, α′, α1 meet in pairs in distinct points, and α3 meets α and α1 in the

distinct points Q3 and P . Hence, by A2.III, the intersection of α3 and α′ is a point

Q′. Since α3 ∩ π′ = l′3, α
′ ∩ π′ = l′, α3 ∩ α′ = Q′, by Lemma 3.39, l′ ∩ l′3 = Q′.

So l′3 contains distinct points P and Q′ of the plane Π′

2; that is, l′3 ⊂ Π′

2. ��
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Let P ∈ P and π ∈ C, with P ∈ π. Then the set consisting of all the elements of

S meeting π at lines through P is denoted by R(P, π).

Lemma 3.42. If π ∈ C with P ∈ π, then |R(P, π)| ≥ 3. If π, π′ ∈ C, with P ∈ π

and P ′ ∈ π′, then |R(P, π) ∩R(P ′, π′)| ≥ 2 implies that R(P, π) = R(P ′, π′).

Proof. Let π ∈ C, P ∈ P , where P ∈ π. Choose distinct lines l1, l2, l3 in π through

P . The elements of S containing l1, l2, l3 are denoted by α1, α2, α3; then α1, α2, α3

belong to R(P, π). If αi = αj , i �= j, then π∩α, with α the element of T containing

π, contains all points of li ∪ lj . This contradicts A2.I. Hence αi �= αj for i �= j, and

so |R(P, π)| ≥ 3.

Next, let π, π′ ∈ C, P ∈ π, P ′ ∈ π′, and |R(P, π) ∩ R(P ′, π′)| ≥ 2. Choose

distinct elements α1 and α2 in R(P, π) ∩R(P ′, π′). The points P and P ′ belong to

both α1 and α2. By Lemma 3.38, P = P ′. If π = π′, then R(P, π) = R(P ′, π′). So

assume that π �= π′. Let α and α′ be the elements of T which contain π and π′. For

at least one of α1, α2 the lines αi∩π and αi∩π′ are distinct, say α1∩π �= α1∩π′. If

α = α′ then the distinct linesα1∩π, α1∩π
′ belong toα∩α1, in contradiction to A2.I.

Hence α �= α′ and α ∩ α′ = P . Now consider a subspace α3 ∈ R(P, π)\{α1, α2}.

Since α3 ∩ α′ �= ∅, so it is a line l′. By Lemma 3.41, the lines α1 ∩ α′, α2 ∩ α′, l′

belong to a common plane. The lines α1 ∩ α′, α2 ∩ α′ belong to π′; hence l′ ⊂ π′.

This means that α3 ∈ R(P, π′). Consequently R(P, π) ⊂ R(P, π′). Analogously,

R(P, π′) ⊂ R(P, π). So R(P, π′) = R(P, π), and the theorem is proved. ��

The set whose elements are the subsets R(P, π) of S is denoted by R.

Lemma 3.43. The pair (S,R) is a connected irreducible PLS. Also, two elements in

S are collinear if and only if they have a common point in P .

Proof. Let π and π′ be two distinct elements of S. If π ∩ π′ = P , then let l be a

line in π through P . There is a subspace α ∈ T through l meeting π′ in at least one

point. Hence α ∩ π′ is a line l′. Let Π2 be the plane of T containing the lines l and

l′. Since π, π′ ∈ R(P,Π2), so π and π′ are collinear in (S,R). If π ∩ π′ = ∅, then

there is no element in R through π and π′.

Let π ∈ S and choose a line l in π. Through l there is a maximal subspace

π′ ∈ T . Let P ∈ l and let Π2 be a plane of π′ containing l. Then π ∈ R(P,Π2), and

so R is a covering of S. By Lemma 3.42, any element of R contains at least three

elements of S, and two distinct elements of S belong to at most one element of R.

Hence (S,R) is an irreducible PLS.

Let π and π′ be distinct elements of S. Choose P ∈ π and P ′ ∈ π′. Since (P ,B)
is connected, there are points P = P1, P2, . . . , Pk = P ′ with P1 ∼ P2 ∼ · · · ∼ Pk.

Let αi be the element of S containing the line PiPi+1, i = 1, 2, . . . , k − 1. Then

π ∩ α1 �= ∅, π′ ∩ αk−1 �= ∅, and αi ∩ αi+1 �= ∅, for i = 1, 2, . . . , k − 1. Hence the

three pairs {π, α1}, {αi, αi+1}, {π
′, αk−1} are collinear in (S,R). This shows that

(S,R) is connected. ��

Let P ∈ P , and let SP be the set of all elements of S containing P . Then SP is

a subspace of the PLS (S,R).
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Lemma 3.44. Let P be a point of P and let π be an element of T through P . If π is

the projective space PG(s + 1, q), then SP provided with its lines is isomorphic to

the linear space formed by the points and lines of PG(s, q).

Proof. Let L be the set of all lines of π through P . By A2.I, each element of SP

meets π in a line of L. Let φ be the mapping

φ : π′
∈ SP 
→ π′

∩ π ∈ L;

then φ is a bijection of SP onto L.

First, φ−1 maps each pencil of lines in L onto a line of (S,R) which is contained

in SP . Conversely, consider a line of the PLS (S,R) which is contained in SP . Such

a line is of type R(P,Π2). If α1 and α2 are distinct elements of R(P,Π2), then

α1 ∩ π and α2 ∩ π are distinct lines of π, which determine a plane Π′

2. By Lemma

3.42, R(P,Π2) = R(P,Π′

2). Then R(P,Π2)φ = R(P,Π′

2)φ consists of all lines of

Π′

2 through P . Hence R(P,Π2)φ is a pencil of lines in L.

Note that L provided with its pencils of lines is isomorphic to the structure of

points and lines of PG(s, q). Since φ is an isomorphism of the linear space formed

by SP and its lines onto the linear space formed by L and its pencils, it has been

shown that SP provided with its lines is isomorphic to the linear space formed by the

points and lines of PG(s, q). ��

Lemma 3.45. Each π in T is an (r+1)-dimensional projective space over the same

field Fq.

Proof. By A3, there is a maximal subspace α in T which is an (r + 1)-dimensional

projective space over some field Fq . Let π ∈ T \{α}, and choose a point P ∈ α and

a point P ′ ∈ π, with P �= P ′. Since (P ,B) is connected, there are distinct points

P = P1, P2, . . . , Pk = P ′ such that Pi ∼ Pi+1 for i = 1, 2, . . . , k− 1. Let αi be the

element of T containing PiPi+1; then αi and αi+1 have a common point Pi+1. Also,

α and α1 both contain P = P1, and αk−1 and π both contain P ′ = Pk. Suppose that

α1 is the projective space PG(r′+1, q′). By Lemma 3.44, SP provided with its lines

is isomorphic to the linear space formed by the points and lines both of PG(r, q) and

of PG(r′, q′). Hence r = r′ and q = q′. Repeating the argument, it finally follows

that π is PG(r + 1, q). ��

Corollary 3.46. Each SP , provided with its lines, is the linear space formed by the

points and lines of PG(r, q).

Proof. Let P ∈ P . Choose a line l containing P , and let π be the element of T

containing l. By Lemma 3.45, π is the space PG(r + 1, q). Now, by Lemma 3.44,

SP is the space PG(r, q). ��

Lemma 3.47. Let α1, α2, α3 be distinct elements of S which are pairwise collinear

in (S,R). If α1, α2, α3 contain a common point P of P , then there exists a projective

plane over Fq in (S,R) through them.
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Proof. By Corollary 3.46, SP is the projective space PG(r, q), which contains

α1, α2, α3 as points. Hence there is a plane over Fq in (S,R) which contains

α1, α2, α3. ��

Lemma 3.48. Let α1, α2, α3 be elements of S which are pairwise collinear in

(S,R), and suppose as subspaces of (P ,B) that they do not contain a common

point of P . Then there exists a projective plane over Fq in (S,R) which contains

α1, α2, α3.

Proof. Since α1, α2, α3 are distinct and do not belong to a common line of (S,R),
let α2 ∩ α3 = P1, α3 ∩ α1 = P2, α1 ∩ α2 = P3 in (P ,B). As α1, α2, α3

do not contain a common point, so P1, P2, P3 are distinct. By A2.II, the lines

P1P2, P2P3, P3P1 of B are distinct. By A1, there is a subspace of (P ,B) which

contains P1, P2, P3, and this subspace contains a line of αi, i = 1, 2, 3; hence it is

contained in an element π of T . Consequently P1, P2, P3 generate a projective plane

Π2 of π.

Now it is shown that

Π̃2 = {π′
∈ S | π′

∩ Π2 ∈ B}

is a projective plane of (S,R) which is isomorphic to Π2. Let π′

1, π
′

2 be any two dis-

tinct elements of Π̃2. They meet Π2 in two lines l1, l2 of B that are distinct; here, let

l1∩l2 = P . Hence π′

1 and π′

2 belong to the line R(P,Π2) in R; also R(P,Π2) ⊂ Π̃2.

Now, corresponding to each line l in Π2 there is an element of S containing l. This

gives an isomorphism from the dual of the plane Π2 to the linear space formed by

the elements of Π̃2 and the lines of (S,R) contained in Π̃2. Hence Π̃2 is a projective

plane isomorphic to the dual of Π2 and so also to PG(2, q). ��

Lemma 3.49. Each subspace of (S,R) is a projective space over Fq .

Proof. This follows immediately from the previous two lemmas. ��

Lemma 3.50. Let P be a point in P and let π be an element of S which does not

contain P . Then the set

D = {π′
∈ S | P ∈ π′, π ∩ π′

�= ∅}

is either a line in R or the empty set.

Proof. Assume that through P there are two distinct elements of S, say α1, α2, both

meeting π in points: π∩α1 = P1, π∩α2 = P2. By Lemma 3.38,P1 �= P2. Since the

points P1, P2, P are pairwise collinear, there is an element α in T containing these

points. If Π2 is the plane of α containing P1, P2, P , the line R(P,Π2) in (S,R)
consists of those elements in S containing P and any point of the line P1P2. Now

assume that α3 in S contains P , that α3 ∩ π �= ∅, and that α3 �∈ R(P,Π2). Let

π ∩ α3 = P3; then P3 �∈ P1P2. Again, P, P1, P3 are contained in some plane Π′

2

contained in some element of T . The intersection of the planes Π2 and Π′

2 is the line

PP1. Let α and α′ be the elements of T containing Π2 and Π′

2. By Lemma 3.38,
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α = α′. Hence the points P1, P2, P3 belong to α, and so the plane P1P2P3 belongs

to π ∩ α, contradicting A2.I. This proves that D is a line in R.

Next, assume that through P there is at least one element of S, say π′, which has

a point Q′ in common with π. The element of T containing the line PQ′ has a line l

in common with π. Let Q′′ ∈ l\{Q′}. Then P ∼ Q′′, and the element of S through

PQ′′ belongs to D. By the first part of the proof, D is a line in R. So it has been

shown that D = ∅ or a line in R. ��

Corollary 3.51. The set (S,R) is a proper PLS. More precisely, if P ∈ P , π ∈ S,

with P �∈ π, then there is at least one element of SP which has no point in common

with π.

Proof. Let π ∈ S and let P be a point not in π. Since SP is the projective space

PG(r, q), with r ≥ 2, and since D = ∅ or a line in SP , there are elements in SP

which do not belong to D. Hence there are elements through P which have no point

in common with π, which means that there exists at least one pair of non-collinear

points in (S,R). ��

Lemma 3.52. For any P ∈ P , the set SP is a maximal subspace of (S,R).

Proof. Suppose that SP is not maximal. Then there exists an element π ∈ S, with

π �∈ SP , such that π is collinear in (S,R) with each element of SP . By Lemma 3.43,

π has a point in common with each element of SP . By Corollary 3.51, SP contains

an element which has no point in common with π, a contradiction. ��

The family consisting of the maximal subspaces SP of (S,R) is denoted by T̃ .

Note that each element of T̃ is an r-dimensional projective space over Fq.

Lemma 3.53. Two distinct maximal subspaces in T̃ have at most one element of S

in common; that is, |SP ∩ SQ| ≤ 1 for distinct points P,Q ∈ P .

Proof. If P ∼ Q and P �= Q, then SP ∩ SQ is the unique element of S containing

the line PQ. If P �∼ Q, there is no element of S containing both P and Q. ��

Lemma 3.54. Let π, π′ be distinct elements of S containing the point P . If α1 and

α2 are distinct elements of S\{π, π′} both meeting π and π′ at distinct points, then

(i) α1 and α2 are collinear in (S,R);
(ii) any element α3 ∈ S belonging to the line α1α2 of (S,R) either meets both π

and π′ in distinct points or belongs to the line ππ′ of (S,R).

Proof. By A2.III, the maximal subspaces α1 and α2 have a point in common; that

is, they are collinear in (S,R). If α1 ∩ α2 = Q, then P �= Q since P �∈ α1 ∪ α2.

If Q ∈ π, then any α3 ∈ S belonging to the line α1α2 of (S,R) has a point in

common with π. Hence in (S,R) any such α3 is collinear with π.

Now let Q �∈ π. By Lemma 3.50, the set of all elements in S through Q and

having a point in common with π is the line α1α2 of (S,R). Hence each element of

the line α1α2 contains a point of π.
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Similarly, each element of the line α1α2 contains a point of π′.

Next, assume that the element α3 ∈ α1α2 contains P . It must be shown that α3

belongs to the line ππ′ of (S,R). So α3 ∈ SP and α3 ∩ α1 = Q. By Lemma 3.50,

the set of all elements in S through P and having a point in common with α1 is the

line ππ′ of (S,R). Hence α3 ∈ ππ′ and the result is proved. ��

Let π, π′ be distinct elements of S which are collinear in (S,R). Then π and π′

have a common point P . Denote by S(π, π′) the set consisting of all elements in S

that either belong to the line ππ′ of (S,R) or meet both π and π′ at points of P\{P}.

Lemma 3.55. The set S(π, π′) is a subspace of (S,R), which properly contains the

line ππ′ of (S,R).

Proof. Let π ∩ π′ = P and let α be an element of T containing P . By the axiom

A2.I, π ∩ α = l ∈ B and π′ ∩ α = l′ ∈ B. Let Q ∈ l\{P} and let Q′ ∈ l′\{P};

then Q ∼ Q′. The space π′′ ∈ S which contains the line QQ′ belongs to S(π, π′),
but not to ππ′. Hence S(π, π′) properly contains the line ππ′ of (S,R).

It must still be shown that S(π, π′) is a subspace of (S,R). Three cases are

considered.

(1) Let α1, α2 be distinct elements of S(π, π′) which both belong to the line ππ′.

Then α1, α2 are collinear in (S,R) and the line α1α2 = ππ′ is completely contained

in S(π, π′).
(2) Let α1, α2 be distinct elements of S(π, π′), and suppose that P �∈ α1 and

P �∈ α2. By Lemma 3.54, α1 and α2 are collinear in (S,R), and the line α1α2 is

completely contained in S(π, π′).
(3) Let α1, α2 be distinct elements of S(π, π′), where P �∈ α1 and α2 ∈ ππ′.

By Lemma 3.50, the spaces α1 and α2 have a common point Q. Hence α1 and α2

are collinear in (S,R). If Q ∈ π, then each α3 ∈ α1α2 contains a point of π; if

Q �∈ π, then, by Lemma 3.50, each α3 ∈ α1α2 contains a point of π. Similarly, each

α3 ∈ α1α2 contains a point of π′. Since α2 is the only element of S containing P

and Q, so all spaces in α1α2\{α2} belong to S(π, π′)\ππ′. Hence the line α1α2 of

(S,R) is completely contained in S(π, π′).
From (1), (2), (3), it follows that S(π, π′) is a subspace of (S,R). ��

Lemma 3.56. Each S(π, π′) is a maximal subspace of (S,R).

Proof. Let π ∩ π′ = P , and suppose that S(π, π′) is not maximal. Then there exists

an element π′′ in S not in S(π, π′) such that in (S,R) the element π′′ is collinear

with each element of S(π, π′). Hence π′′ has a point in common with each element

of S(π, π′). If P �∈ π′′, then π′′ meets both π and π′ at points of P\{P}. Hence

π′′ ∈ S(π, π′), a contradiction; so P ∈ π′′.

Let α1 ∈ S(π, π′)\ππ′. Since π′′ contains P and π′′ ∩ α1 �= ∅, by Lemma 3.50,

π′′ ∈ ππ′; hence π′′ ∈ S(π, π′), again a contradiction. ��

The family consisting of the maximal subspaces S(π, π′) of (S,R) is denoted

by S̃. By Lemma 3.55, each element of S̃ properly contains a line of (S,R).
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Lemma 3.57. Let π and π′ be two distinct collinear elements of (S,R), and suppose

that π ∩ π′ = P . Then SP and S(π, π′) are the only maximal subspaces of (S,R)
containing π and π′, and SP ∩ S(π, π′) = ππ′.

Proof. First, ππ′ is contained in both SP and S(π, π′); also, SP ∩ S(π, π′) = ππ′.

Now, let Π be any subspace of (S,R) through π and π′. It must be shown that

Π ⊂ SP or Π ⊂ S(π, π′).
If each element of Π contains P , then Π ⊂ SP . So, assume that π′′ ∈ Π and

P �∈ π′′. Since π′′ is collinear with π and π′, it meets π and π′ at distinct points;

hence π′′ ∈ S(π, π′). Each element π0 of Π which contains P has a point in common

with π′′ and hence, by Lemma 3.50 belongs to the line ππ′ of (S,R). This means

that π0 ∈ S(π, π′), and so Π ⊂ S(π, π′). ��

Corollary 3.58. The only maximal subspaces of (S,R) are the elements of S̃ ∪ T̃ .

Proof. This is immediate from Lemma 3.57. ��

Remark 3.59. From their definitions, S̃ ∩ T̃ = ∅.

Lemma 3.60. If α1, α2 are distinct elements of S(π, π′), then they have a common

point, and S(α1, α2) = S(π, π′).

Proof. Since α1, α2 ∈ S(π, π′), they are collinear in (S,R); so they have a common

point Q in P . By Lemma 3.57, SQ and S(α1, α2) are the only maximal subspaces

containing the line α1α2 of (S,R). Since S(π, π′) is a subspace containing the line

α1α2, so S(π, π′) ⊂ SQ or S(π, π′) ⊂ S(α1, α2). Since not all elements of S(π, π′)
have a common point, so S(π, π′) ⊂ S(α1, α2). Since S(π, π′) is maximal, it fol-

lows that S(α1, α2) = S(π, π′). ��

Lemma 3.61. If β, β′, β′′ are distinct elements in S̃ with the intersections

β ∩ β′ = {π′′
}, β′

∩ β′′ = {π}, β′′
∩ β = {π′

},

where π �= π′, then π, π′, π′′ have a point of P in common.

Proof. If π = π′′, then also π = π′, a contradiction. Hence π �= π′′ and analogously

π′ �= π′′. The spaces π, π′, π′′ are collinear in pairs in (S,R). By Lemmas 3.47

and 3.48, they are contained in a subspace γ of (S,R). Denote by β0 the maximal

subspace of (S,R) which contains γ. Since π, π′ ∈ β0 ∩ β′′, so β0 ∈ T̃ by Lemma

3.57. Hence there is some point P ∈ P for which β0 = SP . It follows that π, π′, π′′

all contain the point P . ��

Lemma 3.62. The pair (S,R) is a Grassmann space of index r − 1.

Proof. From Lemma 3.43 and Corollary 3.51, it follows that (S,R) is a connected

irreducible PPLS.

Let π, π′, π′′ be pairwise collinear elements of (S,R). By Lemmas 3.47 and

3.48, they are contained in a subspace of (S,R). This means that A1 is satisfied.
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The set of all maximal subspaces of (S,R) is partitioned into the families S̃ and

T̃ . Consider an element β ∈ T̃ and an element β′ ∈ S̃. Then β = SP for some

point P ∈ P . Take an element π ∈ SP ∩ β′ and let π′ ∈ β′\{π}. By Lemma 3.60,

β′ = S(π, π′). If π ∩ π′ = P , then Lemma 3.57 implies that SP ∩ S(π, π′) = ππ′.

Now assume that P �∈ π′. By Lemma 3.50, the set of all elements of SP which have

a point in common with π′ is a line l in R. Take π′′ in l\{π}; then π′′ ∈ S(π, π′). By

Lemma 3.60, S(π, π′) = S(π, π′′). Again, by Lemma 3.57, SP ∩ S(π, π′′) = ππ′′.

Hence, if β∩β′ �= ∅, then β∩β′ is a line of (S,R). This shows that A2.I is satisfied.

Let l be a line of (S,R). Suppose that π, π′ ∈ l, π �= π′, and let π ∩ π′ = P . By

Lemma 3.57, SP in T̃ and S(π, π′) in S̃ are the only maximal subspaces of (S,R)
containing l. Consequently A2.II is satisfied.

Next, let β, β′, β′′ be distinct elements in S̃ for which

β ∩ β′ = {π′′
}, β′

∩ β′′ = {π}, β′′
∩ β = {π′

}

are distinct elements of S. Now consider an element β0 ∈ S̃\{β, β′, β′′} having

distinct elements in common with β and β′. Let β0 ∩ β = {α} and β0 ∩ β′ = {α′}.

It is now shown that β0 ∩ β′′ �= ∅.

From Lemma 3.61, π, π′, π′′ contain a common point P in P and α, α′, π′′ con-

tain a common point Q in P .

First assume that P = Q. Since β ∩ SP = ∅ or a line of (S,R), the elements

π′′, π′, α are collinear in (S,R); similarly, π′′, π, α′ are collinear in (S,R). Hence,

in the projective space SP , the plane ππ′π′′ also contains α and α′. Consequently, in

(S,R), the lines αα′ and ππ′ meet at an element α′′ ∈ S. However, αα′ ⊂ β0 and

ππ′ ⊂ β′′, so that β0 ∩ β′′ �= ∅.

Next, assume that P �= Q, and so α �= π′. In (S,R), the elements α and π′ are

collinear; so α ∩ π′ = P ′ for some P ′ ∈ P . Similarly, α′ �= π and α′ ∩ π = Q′.

Now, P �= Q implies that the points P,Q, P ′, Q′ are distinct. In (P ,B), the points

P,Q, P ′ are pairwise collinear; hence they are contained in a maximal subspace τ of

(S,R). Since PQ and PP ′ are contained in the distinct elements π′′ and π′ of S, so

τ ∈ T . Similarly, the points P,Q,Q′ are contained in a maximal subspace τ ′ in T .

The subspaces τ and τ ′ have at least two points in common, and so they coincide.

Hence P,Q, P ′, Q′ ∈ T ; so the points P ′ and Q′ are collinear. Let π0 be the element

of S which contains P ′ and Q′. Since P ′ belongs to π0 and α, and since Q′ belongs

to π0 and α′, so π0 ∈ S(α, α′) = β0. Since P ′ belongs to π0 and π′, and Q′ belongs

to π0 and π, so π0 ∈ S(π, π′) = β′′. Consequently, β0 ∩ β′′ �= ∅. Since β0 ∩ β′′ �= ∅

in both cases, so A2. III is satisfied.

By Corollary 3.46, each SP in T̃ is an r-dimensional projective space over Fq .

This means that, for each SP in T̃ , there exist distinct subspaces β1, β2, . . . , βr of

(S,R) such that β1 is a line, that β1 ⊂ β2 ⊂ · · · ⊂ βr and that there is no subspace

β with βi � β � βi+1 for i = 1, 2, . . . , r − 1. This proves that A3 is satisfied.

Thus (S,R) is a Grassmann space of index r − 1. ��

Lemma 3.63. If (S,R) is isomorphic to the PPLS corresponding to the Grassmann

variety Gr−1,n, then (P ,B) is isomorphic to the PPLS corresponding to the Grass-

mann variety Gr,n.
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Proof. By hypothesis there exists a bijection ξ of S onto Gr−1,n such that the set

of all lines of Gr−1,n consists of all images under ξ of the elements of R. Then ξ

maps the maximal subspaces of (S,R) onto the maximal subspaces of Gr−1,n. By

the observation preceding Lemma 3.38, ξ maps each of S̃ and T̃ onto a system of

maximal spaces of Gr−1,n.

First let n �= 2r−1. Then the elements of SL, namely the Latin spaces of Gr−1,n,

and the elements of SG, the Greek spaces of Gr−1,n, have different dimensions. By

Corollary 3.46, the elements of T̃ have dimension r, which is the dimension of the

elements of SG.

Next, let n = 2r − 1. In Section 3.2, it was shown that G(Gr−1,2r−1) contains

elements interchangingSL and SG. It follows that also in this case it may be assumed

that ξ maps the elements of T̃ onto the elements of SG and the elements of S̃ onto

the elements of SL. As in Section 3.2, the mapping which associates the points of

Gr−1,n to the elements of PG(r−1)(n, q) is denoted by G.

Let Πr ∈ PG(r)(n, q), and let Rr−1(Πr) be the set of all (r − 1)-dimensional

subspaces of Πr. Then

Rr−1(Πr) ⊂ PG(r−1)(n, q) and Rr−1(Πr)G ξ−1 = SP ∈ T̃ .

Now consider the mapping

ψ : PG(r)(n, q) → P ,

defined by

Πrψ = P ⇐⇒ R
r−1(Πr)G ξ−1 = SP .

Then ψ is a bijection of PG(r)(n, q) onto P .

Let Πr,Π
′

r
,Π′′

r
be elements of PG(r)(n, q), with at least two of them distinct,

and let Πrψ = P, Π′

r
ψ = P ′, Π′′

r
ψ = P ′′. Then the following are equivalent:

(a) Πr ∩ Π′

r
∩ Π′′

r
is an element Πr−1 of PG(r−1)(n, q);

(b) R(r−1)(Πr) ∩R′(r−1)
(Πr) ∩R′′(r−1)

(Πr) = {Πr−1};

(c) (R(r−1)(Πr)G ξ−1) ∩ (R′(r−1)
(Πr)G ξ−1) ∩ (R′′(r−1)

(Πr)G ξ−1)

= {Πr−1G ξ−1
};

(d) SP ∩ SP ′ ∩ SP ′′ = {π} with π = Πr−1 G ξ−1 in S;

(e) P, P ′, P ′′ ∈ π.

Hence Πr ∩ Π′

r
∩ Π′′

r
is an element Πr−1 of PG(r−1)(n, q) if and only if P, P ′, P ′′

belong to a common element of S.

Let Πr and Π′

r
be distinct elements of PG(r)(n, q), with Πrψ = P, Π′

r
ψ = P ′.

If Πr ∩ Π′

r
∈ PG(r−1)(n, q), then by the preceding paragraph the points P and P ′

belong to a common element of S, and hence are collinear in (P ,B). Conversely,

if P and P ′ are collinear, then the line PP ′ belongs to an element of S, and hence

Πr ∩Π′

r
∈ PG(r−1)(n, q).

Assume again that Πr ∩ Π′

r
= Πr−1 ∈ PG(r−1)(n, q). Then each element of

PG(r)(n, q) through Πr−1 belongs to the unique π in S containing P = Πrψ and



134 3 Grassmann varieties

P ′ = Π′

r
ψ. Conversely, if P ′′ ∈ π, then P ′′ψ−1 contains Πr−1. So all elements of

PG(r)(n, q) through Πr−1 are mapped by ψ onto all points of π. It follows from

the preceding paragraph that each π in S corresponds in this way to a Πr−1 in

PG(r−1)(n, q).
Next, let α ∈ T and let P, P ′, P ′′ be three points of α which do not belong

to a common line of (P ,B). Since P, P ′, P ′′ are pairwise collinear, the spaces

Pψ−1 = Πr, P
′ψ−1 = Π′

r
, P ′′ψ−1 = Π′′

r
intersect in pairs at some element of

PG(r−1)(n, q). If Πr,Π
′

r
,Π′′

r
contain a common element of PG(r−1)(n, q), then

P, P ′, P ′′ belong to a common π in S. Hence α ∩ π contains three non-collinear

points, a contradiction. Consequently Πr,Π
′

r
,Π′′

r
do not contain a common element

Πr−1, whence they all lie in some Πr+1 in PG(r+1)(n, q).
Now, let Q be any point of α, and suppose that P, P ′, P ′′ are three points ofα that

do not belong to a common line of (P ,B). Then the r-spaces Πr,Π
′

r
,Λr = Qψ−1

belong to a common (r + 1)-space; hence Λr ⊂ Πr+1. Conversely, let Λr be any

r-space contained in Πr+1. Since Πr = Λr or Πr∩Λr is an (r−1)-space, the points

P and Q = Λrψ are collinear.

Similarly Q and P ′ are collinear as are Q and P ′′. If Q �∈ α, then the maximal

subspaces of (P ,B) containing PP ′Q, P ′P ′′Q, PP ′′Q are elements of S, which

gives a contradiction; hence Q ∈ α. So it has been shown that all elements of

PG(r)(n, q) contained in Πr+1 are mapped by ψ onto all points of α.

Consider now any Π′

r+1 in PG(r+1)(n, q). If Π1
r
,Π2

r
⊂ Π′

r+1, with Π1
r
�= Π2

r
,

then Π1
r
ψ = P1 and Π2

r
ψ = P2 are collinear. The points of the element of T through

the line P1P2 are mapped by ψ−1 onto the r-spaces belonging to the (r + 1)-space

Π′

r+1 which contains Π1
r

and Π2
r
. Hence each (r+1)-space of PG(n, q) corresponds

to some element of T .

Next, let l be a line of (P ,B). Then l is contained in a unique element π of S

and a unique element α of T ; also π ∩ α = l. So πψ−1 ∩ αψ−1 = lψ−1. Since

lψ−1 �= ∅, so it is the pencil (Πr−1,Πr+1) of r-spaces, with Πr−1 the (r− 1)-space

corresponding to π and Πr+1 the (r + 1)-space corresponding to α. Conversely,

consider a pencil (Πr−1,Πr+1) of r-spaces in PG(n, q). If π is the element of S

corresponding to Πr−1 and α is the element of T corresponding to Πr+1, then the

image (Πr−1,Πr+1)ψ = π ∩ α. Since (Πr−1,Πr+1)ψ �= ∅, so π ∩ α is a line l of

(P ,B).

It has been shown that ψ is a bijection of PG(r)(n, q) onto P such that B is the set

of all images of the pencils of r-spaces of PG(n, q). In other words, the Grassmann

space (P ,B) is isomorphic to the PPLS defined by the Grassmann variety Gr,n. ��

Theorem 3.64. (i) In a Grassmann space (P ,B) of index r = 1, any two distinct

elements of S have exactly one point in common.

(ii) If (P ,B) is a connected irreducible PPLS satisfying Al,A2.I,A2.II, and

A2.III′ : any two distinct elements of S have exactly one point in common,

then (P ,B) is a Grassmann space of index 1.
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Proof. Let (P ,B) be a Grassmann space of index r = 1. Then Lemmas 3.38 to

3.45 hold, so that each element of T is a projective plane over Fq . Let π and π′

be distinct elements of S, and suppose that π ∩ π′ = ∅. Let k be the minimum

number for which there exist distinct points P1, P2, . . . , Pk, with P1 ∈ π, Pk ∈ π′,

and P1 ∼ P2 ∼ · · · ∼ Pk. Then P2, P3, . . . , Pk−1 �∈ π ∩ π′. Note that k exists by

the connectivity of (P ,B). Assume that k > 2. Let π′′ be the element of S which

contains the line P2P3, and let α be the element of T which contains the line P1P2.

Since π ∩ α �= ∅, so π ∩ α is a line l of (P ,B). Similarly π′′ ∩ α is a line l′′. The

space α is a projective plane; hence l and l′′ have a common point P . The points

P, P3, P4, . . . , Pk are distinct, and P ∼ P3 ∼ P4 ∼ · · · ∼ Pk with P ∈ π. This

contradicts the assumption on the minimality of k. Hence k = 2, which means that

there are points P1 and P2, with P1 ∈ π, P2 ∈ π′ and P1 ∼ P2.

Let α′ be the element of T which contains the line P1P2. Since π ∩ α′ �= ∅,

so π ∩ α′ is a line m. Similarly π′ ∩ α′ is a line m′. Since α′ is a projective plane,

the lines m and m′ have a point in common, whence π ∩ π′ �= ∅, a contradiction.

Therefore any two distinct elements of S have exactly one point in common.

Next, let (P ,B) be a connected irreducible PPLS satisfying A1,A2.I,A2.II and

A2.III′. Then A2.III is trivially satisfied. Lemmas 3.38 to 3.45 are satisfied for a

certain r ≥ 1. Hence (P ,B) is a Grassmann space of index r. If r ≥ 2, then, by

Corollary 3.51, there exist disjoint elements in S, in contradiction to A2.III′. This

gives the conclusion that r = 1. ��

Theorem 3.65. Any Grassmann space of index r ≥ 1 is isomorphic to the PPLS

defined by some Grassmann variety Gr,n.

Proof. Let (P ,B) be a Grassmann space of index r, where r > 2. Assume that

each Grassmann space of index r − 1 is isomorphic to the PPLS defined by some

Grassmann variety Gr−1,n.

Then, by Lemmas 3.62 and 3.63, the space (P ,B) is isomorphic to the PPLS

defined by the Grassmann variety Gr,n. So it is only necessary to show that any

Grassmann space of index 1 is isomorphic to the PPLS defined by some G1,n.

Let (P ,B) be a Grassmann space of index 1. By Theorem 3.64, any two distinct

elements of S have exactly one point in common. Since Lemmas 3.38 to 3.45 hold,

each element of T is a projective plane over Fq. For any P in P , let Sp denote the

set of all elements of S through P . Further, let T̃ = {Sp | P ∈ P}. Consider a point

P of P and a plane α of T through P . Through each line in α through P , there is a

unique element of Sp; by A2.I, q+1 distinct elements of Sp are obtained in this way.

Hence (S, T̃ ) is an irreducible linear space, and it is now shown that it is isomorphic

to the linear space formed by the points and lines of some PG(n, q). It is sufficient

to show that the Veblen–Wedderburn axiom holds in (S, T̃ ).
Let π, π′, π′′ be distinct elements of S, let

π ∩ π′ = P ′′, π′
∩ π′′ = P, π′′

∩ π = P ′,

and assume that P, P ′, P ′′ are distinct. Further, let α and α′ be distinct elements of

S\{π′′}, let α∩π′′ = P ′, α′∩π′′ = P, α∩α′ = Q, and assume again that P, P ′, Q
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are distinct. It must be shown that P ′′ and Q belong to a common element of S; that

is, P ′′ ∼ Q. By A1, the pairwise collinear points P, P ′, P ′′ belong to a maximal

space π1, which by A2.II is an element of T . Similarly the pairwise collinear points

P, P ′, Q belong to a maximal space π2 in T . As the line PP ′ is contained in both π1

and π2, so π1 = π2 by A2.II. Hence P ′′ ∼ Q, and consequently (S, T̃ ) is isomorphic

to the linear space formed by the points and lines of some PG(n, q). Since the partial

linear space (P ,B) is proper, there exist disjoint lines in (S, T̃ ), and so n ≥ 3.

Now consider the mapping

Φ : T̃ → P , SP 
→ P.

Then Φ is a bijection of T̃ onto P . Let δ be a plane in (S, T̃ ) and let π, π′, π′′ be any

three independent points of δ. Further, let

π ∩ π′ = P ′′, π′
∩ π′′ = P, π′′

∩ π = P ′.

Then the points P, P ′, P ′′ are distinct. Since they are pairwise collinear in (P ,B),
there exists a maximal subspace α containing them; by A2.II, this subspace belongs

to T . Let β be an element of S containing a line l of α. Suppose that l is distinct

from the line PP ′. If PP ′ ∩ l = Q, then SQ contains π′′ and β, and has an element

in common with SP ′′ . But SP ′′ is the line ππ′ of (S, T̃ ), and hence β belongs to the

plane δ.

Conversely, let β be an element of the plane δ. Suppose, for example, that

β �= π′′; so let β ∩ π′′ = Q. Then the lines SP ′′ and SQ of (S, T̃ ) have an ele-

ment in common; hence P ′′ ∼ Q. Suppose that Q �∈ α. The pairwise collinear and

distinct points P, P ′′, Q are contained in a maximal subspace α′, which belongs to

T . Since α and α′ share the line PP ′′, so α = α′. Hence Q ∈ α, a contradiction.

Consequently Q ∈ α. From A2.I, β ∩ α is a line of (P ,B). Therefore it has been

shown that δ consists of all elements of S meeting α at a line of (P ,B). As the lines

of δ are the elements SP with P ∈ α, it follows that, for any plane α′′ of T , the set

of all spaces in S having a line in common with α′′ is a plane of (S, T̃ ).
Let π ∈ S, let δ be a plane of (S, T̃ ), and assume that π ∈ δ. From the preceding

paragraph, δ consists of all elements of S containing a line of some planeα of T . The

lines of the pencil (π, δ) of (S, T̃ ) are the elements SP with P in π ∩ α = l; hence

(π, δ)Φ = l. Conversely, consider any l′ in B. Let l′ ⊂ π′ ∈ S and l′ ⊂ α′ ∈ T .

Then l′Φ−1 is the pencil (π′, δ′) with δ′ the plane of (S, T̃ ) which consists of all

elements of S having a line in common with α′.

It has been shown that the Grassmann space (P ,B) of index 1 is isomorphic to

the PPLS defined by the Grassmann variety G1,n. ��

To end this section, some examples of proper partial linear spaces are given; these

show that none of the axioms A2.I,A2.II,A2.III, nor the conditions of connectivity

or irreducibility, can be deleted in the characterisation of Grassmann varieties.

Example 3.66. Let P consist of all 2-subsets of the set {1, 2, 3, 4}; let B consist of

the elements of the form {{a, b}, {a, c}} with a, b, c distinct. Then (S,B) is a con-

nected PPLS which satisfies A1,A2.I,A2.II,A2.III. However, it is not irreducible.
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Example 3.67. Let (P ,B) and (P ′,B′) be Grassmann spaces with P∩P ′ = ∅. Then

(P ∪ P ′,B ∪ B′) is an irreducible PPLS which satisfies A1,A2.I,A2.II,A2.III, but

which is not connected.

Example 3.68. Let (P ,B) be a Grassmann space with lines having at least four

points. Let l ∈ B, and let (l,L) be an irreducible linear space with |L| > 1. Then

(P , (B\{l})∪L) is a connected irreducible PPLS which satisfies A1,A2.II,A2.III,
but not A2.I.

Example 3.69. Let (P ,B) be a Grassmann space. If the elements of S are projective

spaces of dimension s overFq, then embed one element Πs of S in a projective space

Πs+1 of dimension s + 1 over Fq for which Πs+1 ∩ P = Πs. Let L be the set of

all lines of Πs+1. Then (P ∪ Πs+1,B ∪ L) is a connected irreducible PPLS which

satisfies A1,A2.I,A2.III, but not A2.II.

Example 3.70. Let (P ,B) be a Grassmann space with lines having at least four

points. Choose a point P in P and let B′ = {l\{P} | l ∈ B}, P ′ = P\{P}.

Then (P ′,B′) is a connected irreducible PPLS which satisfies A1,A2.I,A2.II; for

neither of the systems of maximal subspaces is A2.III satisfied.

It is not known whether or not A1 can be deleted in the characterisation of Grass-

mann varieties.

3.4 Embedding of Grassmann spaces

Let (P ,B) be a Grassmann space. If P is a point set of PG(n, q) and B is a line set of

PG(n, q), then (P ,B) is embedded in PG(n, q). Grassmann varieties are examples

of embedded Grassmann spaces. In this section all embedded Grassmann spaces are

determined.

First it is shown that not every embedded Grassmann space is a Grassmann

variety. Consider the Grassmann variety G1,7 of the lines of PG(7, q). The num-

ber of points of G1,7 is a polynomial of degree 12 in q. The number of points

on the lines having at least two points in common with G1,7 is a polynomial

a0q
25 + a1q

24 + · · · + a24q + a25. By Theorem 3.12, the projective space gener-

ated by G1,7 has dimension 28. Hence, for q large enough, PG(28, q) contains a

point P such that each line through it has at most one point in common with G1,7.

Let Π27 be a hyperplane of PG(28, q), which does not contain P . The intersec-

tion of the cone PG1,7 with the hyperplane Π27 is a variety which, together with the

projections of the lines of G1,7 is a Grassmann space embedded in Π27. Assume that

this Grassmann space (P ,B) is a Grassmann variety. Since the maximal subspaces

of (P ,B) have dimensions 2 and 6, the only candidates for the Grassmann variety

are G1,7 and G5,7. By Theorem 3.12, these two projectively equivalent varieties are

not contained in a PG(27, q), a contradiction. So, this is an example of a Grassmann

space which is embedded in a projective space, but which is not a Grassmann variety.

To determine all embeddings of Grassmann spaces, it is necessary to introduce

homomorphisms between projective spaces. Let ψ be the semi-linear transformation
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of the vector space V (m + 1,K) into the vector space V (n + 1,K) defined by the

m×n matrix T over K and the automorphism σ of K . The kernel of ψ is a subspace

of V (m+ 1,K) and the image of ψ is a subspace of V (n+ 1,K). Also,

dim(kerψ) + dim(im ψ) = m+ 1.

Now consider the projective spaces over K defined by V (m+ 1,K), V (n+ 1,K),
the kernel of ψ, and the image of ψ. These spaces are respectively denoted by

PG(m,K), PG(n,K), P (kerψ), and P (im ψ). Then

dim(P (kerψ)) + dim(P (im ψ)) = m− 1.

The semi-linear transformation ψ induces a mapping ξ from PG(m,K)\P (kerψ)
onto P (im ψ). Such a mapping ξ is a homomorphism of PG(m,K) into PG(n,K)
or onto P (im ψ). If ψ is bijective, that is, if T is a non-singular (n + 1) × (n + 1)
matrix over K , then ξ is a collineation between projective spaces.

Now consider the Grassmann variety Gr,n of the r-spaces in PG(n, q). The pro-

jective space generated by Gr,n is denoted by PG(N, q). Suppose that ξ is a homo-

morphism of PG(N, q) into PG(N ′, q), where kerψ �= {0} and with the condition

that any line of PG(N, q) having at least two distinct points in common with Gr,n has

no point in common with P (kerψ). Then ξ maps the points and lines of Gr,n onto

the points and lines of a Grassmann space (P ,B) which is embedded in P (im ψ).
Since the dimension of P (im ψ) is less than N , an argument of one of the previous

paragraphs shows that (P ,B) is not a Grassmann variety. The example given at the

beginning of this section is constructed in this way.

It is now shown that any Grassmann space embedded in a projective space can

be obtained in the way described above. The proof is given for Fq , but is valid for

any field K .

Theorem 3.71. Let (P ,B) be a Grassmann space of index r that is embedded in

a projective space PG(s, q) and let ξ be an isomorphism from the PPLS defined by

Gr,n onto the PPLS (P ,B). Then there is a unique homomorphismψ from PG(N, q),
the space generated by Gr,n, into PG(s, q) that induces ξ on Gr,n.

Proof. Let (P ,B) be a Grassmann space of index r, with r ≥ 1, which is embedded

in PG(s, q). It may be assumed that P generates PG(s, q). From Section 3.3, there

is an isomorphism ξ from the PPLS corresponding to some Grassmann variety Gr,n

onto (P ,B). The projective space generated by Gr,n is denoted by PG(N, q).
It is sufficient to prove the theorem for the pair (r, n), where 1 ≤ r ≤ n − 2,

under the assumption that it is already established for all pairs (r′, n′) �= (r, n), with

r′ ≤ r, n′ ≤ n, and 1 ≤ r′ ≤ n′ − 2.

Let π be a hyperplane of PG(n, q). If r ≤ n−3, then, by Corollary 3.27,G maps

the r-spaces of π onto the points of a subvariety Gr,n−1 of Gr,n; if r = n− 2, then G

maps the (n−2)-spaces of π onto the points of a maximal (n−1)-space π′ of Gn−2,n.

For r ≤ n−3, the images under ξ of the points and lines of Gr,n−1 form a Grassmann

space (P ′,B′) isomorphic to Gr,n−1; for r = n− 2, a maximal (n− 1)-space π′ξ of
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(P ,B) is obtained. Let PG(N ′, q) be the projective space generated by Gr,n−1. For

r ≤ n − 3, the induction step gives a unique homomorphism ψπ from PG(N ′, q)
into PG(s, q) which coincides with ξ on Gr,n−1; if r = n − 2, the restriction of

ξ to π′ is a collineation ψπ of π′ onto π′ξ. The semi-linear transformations ψ̄π of

V (N ′ + 1, q) into V (s+ 1, q) which correspond to ψπ are determined by π up to a

scalar multiple.

Next, let P be a point of PG(n, q). When r ≥ 2, then, by Corollary 3.26, G

maps the r-spaces through P onto the points of a subvariety Gr−1,n−1 of Gr,n; when

r = 1, then G maps the lines through P onto the points of a maximal (n − 1)-
space π′′ of G1,n. For r ≥ 2, the images under ξ of the points and lines of Gr−1,n−1

form a Grassmann space (P ′′,B′′) isomorphic to Gr−1,n−1; for r = 1, a maximal

(n − 1)-space π′′ξ of (P ,B) is obtained. Let PG(N ′′, q) be the projective space

generated by Gr−1,n−1. For r ≥ 2, the induction hypothesis implies that there is a

unique homomorphism ψP from PG(N ′′, q) into PG(s, q) which coincides with ξ

on Gr−1,n−1; when r = 1, the restriction of ξ to π′′ is a collineation ψP of π′′ onto

π′′ξ. It may be noted that the semi-linear transformations ψ̄P of V (N ′′ + 1, q) into

V (s+ 1, q) which correspond to ψP are determined by P up to a scalar multiple.

It is now shown that ψπ and ψP have the same associated field automorphism.

First suppose that P ∈ π. The notation of the preceding paragraphs is used. Let W

be the image under G of the set of all r-spaces of π containing P . If r �= 1, n − 2,

then, by Theorem 3.25, W = Gr,n−1 ∩ Gr−1,n−1 is a Grassmann variety Gr−1,n−2.

If r = n− 2 and n �= 3, then W = π′ ∩ Gn−3,n−1 is a maximal (n− 2)-space α′ of

Gn−3,n−1; if r = 1 and n �= 3, then W = π′′ ∩ G1,n−1 is a maximal (n − 2)-space

α′′ of G1,n−1; if r = 1 and n = 3, then W = π′ ∩ π′′ is a line l.

Let l be a line of W , and let P1, P2, P3, P4 be any four distinct points of l. Then

PiψP = Piψπ = Piξ, i = 1, 2, 3, 4.

Let Piξ = Qi, i = 1, 2, 3, 4. Then the cross-ratio {Q1, Q2;Q3, Q4} is equal to

{P1, P2;P3, P4}
σ and to {P1, P2;P3, P4}

σ
′

, where σ and σ′ are the field automor-

phisms associated to ψP and ψπ; hence σ = σ′.

Next, let P �∈ π. Consider a point Q and a hyperplane α of PG(n, q), where

P ∈ α, Q ∈ α, Q ∈ π. The field automorphisms associated to ψP , ψα, ψQ, ψπ

are respectively denoted by σ, ρ′, ρ, σ′. By a previous argument, σ = ρ′ = ρ = σ′;

hence σ = σ′.

Now let P and P ′ be distinct points of PG(n, q). By considering a hyperplane

through P and P ′, it is seen that the field automorphisms associated to ψP and ψP ′

coincide. Similarly, with π a hyperplane of PG(n, q), the field automorphism asso-

ciated to ψπ is independent of the choice of π. This common field automorphism,

associated to each P and each π, is denoted by σ.

The following notation is required. For i = 0, 1, . . . , n, let ψi = ψUi
and let

ψi = ψui
. Recall that Ui ∈ uj for i �= j. For the corresponding semi-linear trans-

formations, write ψ̄i and ψ̄i. Consider now homomorphisms ψi and ψj with i �= j.

Let W
j

i
be the image under G of the set of all r-spaces of uj containing Ui. On

W
j

i
the homomorphisms ψi and ψj coincide with ξ. First, let W

j

i
be the Grassmann
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variety Gr−1,n−2 and let PG(N∗, q) be the projective space generated by Gr−1,n−2.

Let Φ̄i be the restriction of ψ̄i and Φ̄j the restriction of ψ̄j to V (N∗ + 1, q). By in-

duction, the semi-linear transformations Φ̄i and ψ̄j differ only by a scalar multiple.

If W
j

i
is a projective space Πm, then again let Φ̄i and Φ̄j be the restrictions of ψ̄i

and ψ̄j to V (m+ 1, q); again, they differ only by a scalar multiple. In both cases, it

is possible to choose ψ̄i and ψ̄j in such a way that Φ̄i and Φ̄j coincide. This process

is called normalisation.

Fix ψ̄n and normalise each of ψ̄0, ψ̄1, . . . , ψ̄n−1 with respect to it. Next normalise

ψ̄0 with respect to ψ̄1, and ψ̄n with respect to ψ̄0. Then normalise ψ̄1, ψ̄2, . . . , ψ̄n−1

with respect to ψ̄n. Now consider ψ̄i and ψ̄j , i �= j and i, j ∈ {0, 1, . . . , , n−1}. The

image under G of the set of all r-spaces through Ui and Uj is denoted by Wi,j ; the

image underG of the set of all r-spaces of un throughUi andUj is denoted by Wn

i,j
.

Let PG(M, q) be the projective space generated by Wi,j and let W̄n

i,j
be the set of

all vectors representing the points of Wn

i,j
. By previous arguments, the restrictions of

ψ̄i and ψ̄j to V (M + 1, q) differ only by a scalar multiple. Since ψ̄i and ψ̄j coincide

on W̄n

i,j
⊂ V (M + 1, q) and W̄n

i,j
contains a non-zero vector, it follows that the

restrictions of ψ̄i and ψ̄j to V (M + 1, q) coincide. Repeating this argument shows

that any two elements of ψ̄1, ψ̄2, . . . , ψ̄n, ψ̄
1, ψ̄2, . . . , ψ̄n coincide on the intersection

of their common domain and Ḡr,n, the set of all vectors representing the points of

Gr,n.

Let V (N + 1, q) be the vector space generated by Ḡr,n. If Ei is the vector

of V (N + 1, q) with one in the (i + 1)-th place and zeros elsewhere, then the

vectors E0, E1, . . . , EN are contained in Ḡr,n. Consider the vector Ei. It is in

the common domain of r + 1 semi-linear transformations ψ̄i0
, ψ̄i1

, . . . , ψ̄ir
. Then

ψ̄i0
Ei = ψ̄i1

Ei = · · · = ψ̄ir
Ei. Now define as follows a semi-linear transformation

ψ̄ from V (N + 1, q) into V (s+ 1, q) with associated field automorphism σ:

ψ̄Ei = ψ̄ij
Ei, with i = 0, 1, . . . , N, j = 0, 1, . . . , r.

Consider now the basis {Ei0
, Ei1

, . . .} of the domain ψ̄i; then ψ̄Eij
= ψ̄iEij

. Hence

ψ̄ agrees with ψ̄0, ψ̄1, . . . , ψ̄n. Next consider the basis {Ej0
, Ej1

, . . .} of the domain

of ψ̄j . Then, since ψ̄j agrees with any ψ̄i, it follows that ψ̄Eji
= ψ̄jEji

. Hence

ψ̄ agrees with ψ̄0, ψ̄1, . . . , ψ̄n. Thus the homomorphism ψ from PG(N, q) into

PG(s, q), which corresponds with ψ̄, agrees with ψ0, ψ1, . . . , ψn, ψ
0, ψ1, . . . , ψn.

For a point P of PG(n, q), let its weight w(P ) be the number of non-zero co-

ordinates, and let the weight of a set of linearly independent points be the sum of

its members’ weights. The weight of an r-space of PG(n, q) is the minimum of all

the weights of its linearly independent sets of size r + 1; then the smallest possible

weight of an r-space is r + 1. The weight of a point Q of Gr,n is the weight of the

r-space QG−1 of PG(n, q). Let Πr be an r-space of weight at most 2r + 1. Such a

space must have a point of weight one in one of its independent sets of size r + 1
of minimal weight. Hence this space contains one of the points Ui, and so ξ and ψ

agree on the corresponding point of Gr,n.

It is now shown by induction on the weight that ξ and ψ agree on all the points

of Gr,n. First, assume that ξ and ψ agree on all points of Gr,n of weight r + 1,
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r + 2, . . . , h− 1 and let h ≥ 2r + 2. Let P be a point of Gr,n of weight h. Suppose

that P0, P1, . . . , Pr define the r-space Πr = PG−1 of PG(n, q). Now it may be

assumed that h =
∑

r

i=0 w(Pi). There exist indices i and j, with i �= j, for which

w(Pi) ≥ 2, w(Pj) ≥ 2; so take P0, P1 with w(P0) ≥ 2, w(P1) ≥ 2 and also

let Pi = P(Xi), i = 0, 1. Now choose points Qi = P(Yi), i = 0, 1, 2, 3, with

X0 = Y0 + Y1, X1 = Y2 + Y3, and

w(Q0) < w(P0), w(Q1) < w(P0), w(Q2) < w(P1), w(Q3) < w(P1).

Then P0, Q0, Q1 are distinct as are P1, Q2, Q3. Suppose that Q0 ∈ Πr; then also

Q1 ∈ Πr. At most one of the points Q0, Q1 belongs to Πr−1 = P1P2 · · ·Pr; so

assume that Q1 �∈ Πr−1. Then the points Q1, P1, P2, . . . , Pr define Πr, and

w(Q1) +

r∑
i=1

w(Pi) <

r∑
i=0

w(Pi) = h,

a contradiction. Hence Q0 �∈ Πr; similarly Q1, Q2, Q3 �∈ Πr.

Let

Π1
r
= Q0P1P2 · · ·Pr , Π2

r
= Q1P1P2 · · ·Pr ,

Π3
r
= Q2P0P2 · · ·Pr , Π4

r
= Q3P0P2 · · ·Pr .

The r-spaces Π1
r

and Π2
r

are distinct, as are Π3
r

and Π4
r
. For i = 1, 2, 3, 4, write

Πi

r
G = Ai. Since w(Ai) < h, so, by induction, ψ and ξ agree on the four Ai. As the

r-spaces Π1
r

and Π2
r

have an (r − 1)-space in common, so, by Theorem 3.16, A1A2

is a line of Gr,n; similarly, so is A3A4. Since Π1
r
∩Π2

r
�= Π3

r
∩Π4

r
, so A1A2 �= A3A4.

As Πr belongs to the pencils defined by both the pairs {Π1
r
,Π2

r
} and {Π3

r
,Π4

r
}, so

A1A2 ∩A3A4 = P . Hence

Pψ = (A1A2)ψ ∩ (A3A4)ψ = (A1)ψ(A2)ψ ∩ (A3)ψ(A4)ψ

= (A1)ξ(A2)ξ ∩ (A3)ξ(A4)ξ = (A1A2)ξ ∩ (A3A4)ξ

= Pξ .

Therefore ξ and ψ agree on P . This shows that ξ and ψ agree on all points of Gr,n.

Finally, it is shown that ψ is uniquely defined by ξ. To do this, let ψ′ be a homo-

morphism fromPG(N, q) to PG(s, q) which agrees with ξ on Gr,n. A corresponding

semi-linear transformation is denoted by ψ̄′. Then, for the restrictions

ψ̄′

0, ψ̄
′

1, . . . , ψ̄
′

n
, ψ̄′0, ψ̄′1, . . . , ψ̄′n (3.22)

of ψ̄′, the map ψ̄′i is normalised with respect to ψ̄′j for all i �= j. From the uniqueness

of the homomorphisms ψ0, ψ1, . . . , ψn, ψ
0, ψ1, . . . , ψn, it follows that the transfor-

mations (3.22) are the transformations

ψ̄0, ψ̄1, . . . , ψ̄n, ψ̄
0, ψ̄1, . . . , ψ̄n

up to a common factor of proportion. Hence ψ̄ and ψ̄′ are equal up to a factor of

proportion. Therefore ψ = ψ′. ��
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3.5 Notes and references

Section 3.1

This is taken from Segre [277].

Section 3.2

For more details on Grassmann varieties, see for example Burau [60], and Hodge

and Pedoe [183], where Theorem 3.13 is proved.

Section 3.3

This is taken from Tallini [307], Bichara and Tallini [25, 26]. The final section on the

independence of the axioms is due to Bichara and Mazzocca [22].

Let Γ = (P ,L,B) be a finite Buekenhout incidence structure of points, lines and

blocks admitting the diagram

and satisfying the following:

(Sp) blocks are subspaces of (P ,L);
(Sp∗) each line is the intersection of any two blocks containing it.

These structures were determined by Sprague [295, 296]. Essentially, this is an al-

ternative proof of the characterisation theorem in Section 3.3. An infinite version of

Sprague’s theorem is proved in Shult [286]. Shult [288] points out that, in several pa-

pers and books, including Section 24.5 of GGG1, these two axioms are overlooked.

In Sprague’s original paper [296], these axioms are unstated, but are used in the

proof. If the axioms are not satisfied, there are counterexamples; see Shult [288].

Characterisations of the Grassmann varieties G1,n and G2,n, in terms of points

and lines only, are given by Lo Re and Olanda [209] and Biondi [29]. In these papers

the authors prove that their axioms are equivalent to the axioms A1, A2, A3, and then

apply Theorem 3.65.

The Grassmann varieties associated to an affine space are characterised by

Bichara and Mazzocca [23, 24]. Other characterisations of Grassmann varieties are

discussed in Section 5.10.

Section 3.4

This is taken from Wells [397]. However, Theorem 3.71 was first obtained by

Havlicek [158, 159].
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Veronese and Segre varieties

4.1 Veronese varieties

The Veronese variety of all quadrics of PG(n,K), n ≥ 1, is the variety

V =
{
P(x2

0, x
2
1, . . . , x

2
n
, x0x1, . . . , x0xn, x1x2, . . . , x1xn, . . . , xn−1xn) |

P(X) is a point of PG(n,K)}

of PG(N,K) with N = n(n + 3)/2, where X = (x0, x1, . . . , xn); then V is a

variety of dimension n. It is also called the Veronesean of quadrics of PG(n,K),
or simply the quadric Veronesean of PG(n,K). It can be shown that the quadric

Veronesean is absolutely irreducible and non-singular.

Let PG(N,K) consist of all points P(Y ) with

Y = (y00, y11, . . . , ynn, y01, y02, . . . , y0n, y12, . . . , y1n, . . . , yn−1,n).

For yij also write yji. Then V belongs to the intersection of the quadrics V(Fij) and

V(Fabc) with i, j ∈ {0, 1, . . . , n}, i �= j and a, b, c ∈ {0, 1, . . . , n}, with a, b, c

distinct, where

Fij = Y 2
ij
− YiiYjj , Fabc = YaaYbc − YabYac.

It is now shown that the variety V is the intersection of these (n+ 1)n2/2 quadrics.

Lemma 4.1. The quadric Veronesean V of PG(n,K) is the intersection of all

quadrics V(Fij) and V(Fabc).

Proof. Let P = P(Y ), with

Y = (y00, y11, . . . , yn−1,n),

be a point of the intersection of the quadrics V(Fij) and V(Fabc). Then

(y00, y11, . . . , ynn) �= (0, 0, . . . , 0),

© Springer-Verlag London 2016 143
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since y00 = y11 = · · · = ynn = 0 and y2
ij
− yiiyjj = 0 imply that yij = 0 for all

i, j. Suppose, for example, that y00 �= 0. Put

y00 = 1 = x0, y01 = x1, y02 = x2, . . . , y0n = xn.

Let i, j ∈ {1, 2, . . . , n} with i �= j. Then, since y00yij − y0iy0j = 0, so yij = xixj .

Since y20j − y00yjj = 0 for j �= 0, so yjj = x2
j
. Hence yij = xixj for all i, j in

{0, 1, 2, . . . , n}; that is, P belongs to the quadric Veronesean V . ��

Theorem 4.2. The quadric Veronesean V of PG(n,K) consists of all points P(Y ),
with Y = (y00, y11, . . . , yn−1,n), of PG(N,K) for which rank [yij ] = 1.

Proof. Let P(Y ) be a point for which rank [yij ] = 1. Then P(Y ) belongs to the

intersection of the quadrics V(Fij) and V(Fabc). By Lemma 4.1, P(Y ) belongs to

the quadric Veronesean V .

Conversely, let P(Y ) be a point of the Veronesean V . Then

yijyab − yibyaj = xixjxaxb − xixbxaxj = 0,

for all i, j, a, b ∈ {0, 1, . . . , n}. Hence rank [yij ] = 1. ��

Let ζ : PG(n,K) → PG(N,K), with N = n(n + 3)/2 and n ≥ 1, be defined

by

P(x0, x1, . . . , xn) 
→ P(y00, y11, . . . , yn−1,n)

with yij = xixj . Then ζ is a bijection of PG(n,K) onto V . It then follows that the

variety V is rational.

Theorem 4.3. The quadrics of PG(n,K) are mapped by ζ onto all hyperplane sec-

tions of V .

Proof. Let V(F ), with F =
∑

aijXiXj , be a quadric Q of PG(n,K). Then Qζ

consists of all points P(Y ) of V for which
∑

aijyij = 0; that is, Qζ is a hyperplane

section of V .

Conversely, let H be the intersection of V and the hyperplane V(
∑

aijYij)
of PG(N,K). Then Hζ−1 consists of all points P(X) of PG(n,K) satisfying∑

aijxixj = 0; that is, Hζ−1 is a quadric of PG(n,K). ��

Theorem 4.3 explains why V is called the Veronesean of quadrics of PG(n,K).

Corollary 4.4. No hyperplane of PG(N,K) contains the quadric Veronesean V .

Theorem 4.5. The Veronese variety V of all quadrics of PG(n,K), n ≥ 1, has order

2n.

Proof. Let K be the algebraic closure of K , and let V be the corresponding extension

of V . In PG(N,K) take the intersection ΠN−n ∩ V. Let Π1
N−1,Π

2
N−1, . . . ,Π

n

N−1

be n linearly independent hyperplanes of PG(N,K) through ΠN−n. Then, writing

Hi = V ∩Πi

N−1, it follows that
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|V ∩ ΠN−n| = |H1ζ
−1

∩H2ζ
−1

∩ · · · ∩ Hnζ
−1

|.

SinceH1ζ
−1,H2ζ

−1, . . . ,Hnζ
−1 are n linearly independent quadrics ofPG(n,K),

so |V ∩ΠN−n| = 2n for a general ΠN−n in PG(N,K). This means that the quadric

Veronesean of PG(n,K) has order 2n. ��

Notation 4.6. Henceforth, the quadric Veronesean of PG(n,K), n ≥ 1, is denoted

by V2
n

n
or simply Vn. For n = 1, the VeroneseanV2

1 is a conic of PG(2,K); referring

to the classification of plane quadrics in Section 7.2 of PGOFF2, a conic is a non-

singular plane quadric. For n = 2, the Veronesean is a surface V4
2 of order 4 in

PG(5,K). For n = 3, the Veronesean is a variety V8
3 of dimension 3 and order 8 of

PG(9,K).

Remark 4.7. For n = 1 and any four points P1, P2, P3, P4 on PG(1,K), the cross-

ratio {P1, P2;P3, P4} = {P1ζ, P2ζ;P3ζ, P4ζ}.

From now on it is assumed that K is the finite field Fq, although many of the

results also hold in the case of a general field.

Theorem 4.8. The number of points on Vn is |Vn| = θ(n).

Proof. The variety Vn is bijectively mapped by ζ−1 onto PG(n, q). Hence Vn has

θ(n) points. ��

Let ξ be a projectivity of PG(n, q). Then ξ defines a permutation ξ′ of the quadric

Veronesean Vn.

Lemma 4.9. The permutation ξ′ of Vn is induced by a projectivity ξ̃ of PG(N, q).

Proof. Let Fq be the algebraic closure of Fq, and let ζ′ be the bijection which maps

the quadric Q = V(F ), with F =
∑

aijXiXj , of PG(n,Fq) onto the hyperplane

V(
∑

aijYij) of PG(N,Fq). For any hyperplane ΠN−1 of PG(N,Fq), let ΠN−1η

be the hyperplane ΠN−1ζ
′−1ξζ′, with ξ the extension of ξ to PG(n,Fq). Then η is

a permutation of the set of all hyperplanes of PG(N,Fq). Since ξ maps a pencil of

quadrics onto a pencil of quadrics, the permutation η maps a pencil of hyperplanes

onto a pencil of hyperplanes. Also, ξ leaves invariant the cross-ratio of any four

elements of any pencil of quadrics of PG(N,Fq). It follows that η is a projectivity of

the dual space of PG(N,Fq). Let ξ̃ be the corresponding projectivity of PG(N,Fq),

with ξ̃ the projectivity induced by ξ̃ on PG(N, q). Now it follows that ξ̃ leaves Vn

invariant and induces ξ′ on Vn. This proves that ξ′ is induced by at least one element

ξ̃ of PGL(N + 1, q). ��

Theorem 4.10. If Πs is any s-dimensional subspace of PG(n, q), then Πsζ is a

quadric Veronesean Vs, which is the complete intersection of Vn and the space

PG(s(s+ 3)/2, q) containing Vs.
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Proof. By Lemma 4.9, let Πs contain the points P(E0),P(E1), . . . ,P(Es), where

Ei is the vector with 1 in the (i + 1)-th place and zeros elsewhere. So Πsζ consists

of the points P(Y ), where, up to permutation, the coordinates of the vector Y are

x2
0, x

2
1, . . . , x

2
s
, x0x1, x0x2, . . . , x0xs, . . . , x1xs, . . . , xs−1xs, 0, 0, . . . , 0,

where xi ∈ Fq and (x0, x1, . . . , xs) �= (0, 0, . . . , 0). Hence Πsζ is a quadric Verone-

sean Πs.

The subspace π of PG(N, q) which contains Vs is the intersection of the hyper-

planes V(Yij), with i and j not both belonging to {0, 1, . . . , s}. Then the intersection

of π and Vn corresponds to the set of all points P(x0, x1, . . . , xn) of PG(n, q) with

xs+1 = xs+2 = · · · = xn = 0; that is, π ∩ Vn = Vs. ��

As a particular case, the lines of PG(n, q) are mapped onto conics of Vn.

Theorem 4.11. The quadric Veronesean Vn is a θ(n)-cap of PG(N, q), where the

dimension N = n(n+ 3)/2.

Proof. Suppose that P1, P2, P3 are distinct collinear points of Vn. Let π be a plane

of PG(n, q) containing the points P1ζ
−1, P2ζ

−1, P3ζ
−1. By Theorem 4.10, πζ

is a quadric Veronesean V4
2 which is contained in a subspace Π5 of PG(N, q).

The mapping ζ defines a bijection of the set of all plane quadrics of π containing

P1ζ
−1, P2ζ

−1, P3ζ
−1 onto the set of all hyperplanes of Π5 containing P1, P2, P3.

There are q2 + q + 1 plane quadrics of π through P1ζ
−1, P2ζ

−1, P3ζ
−1, and there

are q3+q2+q+1 hyperplanes of Π5 throughP1, P2, P3. This yields a contradiction;

so Vn is a θ(n)-cap of PG(n, q). ��

Now a converse of Theorem 4.10 is established.

Theorem 4.12. For (q, s) �= (2, 1), any quadric Veronesean Vs contained in Vn,

with n > 1, is of the form Πsζ, with Πs some s-dimensional subspace of PG(n, q).

Proof. First, the theorem is proved for s = 1 with q ≥ 3. So let C be a conic which

is contained in Vn. Let P1, P2, P3 be three distinct points of C, and let π be a plane

of PG(n, q) containing P1ζ
−1, P2ζ

−1, P3ζ
−1. By Theorem 4.10, πζ is a quadric

Veronesean V4
2 in a subspace Π5 of PG(N, q). Take the q2 + q + 1 hyperplanes of

Π5 containing C. If π′ is any of these hyperplanes, then (π′∩V4
2 )ζ

−1 = C′ is a plane

quadric of π which contains the set Cζ−1 of order q + 1. In this way the q2 + q + 1
distinct plane quadrics of π containing Cζ−1 are obtained. Hence Cζ−1 is necessarily

a line of the plane π. It has therefore been shown that, for any conic C on Vn, the set

Cζ−1 is a line of PG(n, q).
Next, the theorem is established for s = q = 2. So let V4

2 be a quadric Veronesean

which is contained in Vn. Let P1, P2, P3, P4 be four distinct points of V4
2 , and let

Π3 be a solid containing P1ζ
−1, P2ζ

−1, P3ζ
−1, P4ζ

−1. By Theorem 4.10, Π3ζ is a

quadric Veronesean V8
3 in a subspace Π9 of PG(N, 2). Consider the 15 hyperplanes

of Π9 containing V4
2 . If π′ is any of these hyperplanes, then (π′ ∩ V8

3 )ζ
−1 = Q

is a quadric of Π3 which contains the set V4
2 ζ

−1 of size 7. In this way, 15 distinct
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quadrics of Π3 are obtained, all containing V4
2 ζ

−1. Hence V4
2 ζ

−1 is necessarily a

plane of the solid Π3. It has therefore been shown that, for any Veronesean V4
2 on

Vn, the set V4
2 ζ

−1 is a plane of Πn.

Consider any quadric Veronesean Vs contained in Vn, with q ≥ 3. Let Q1, Q2 be

distinct points on Vsζ
−1 = R. The points Q1ζ and Q2ζ are contained in a conic C

of Vs. By the first part of the proof, Cζ−1 is the line Q1Q2. As Cζ−1 ⊂ Vsζ
−1, the

line Q1Q2 belongs to R. Hence R is a subspace of PG(n, q). Since both |R| and

|Vs| equal θ(s), so R is an s-dimensional subspace of PG(n, q). Thus any quadric

Veronesean Vs contained in Vn is of the form Πsζ, with Πs some s-dimensional

subspace of PG(n, q).
Finally, consider any quadric Veronesean Vs contained in Vn, with q = 2 and

s > 2. Let Q1, Q2 be distinct points on Vsζ
−1 = R. Further, let V4

2 be a quadric

Veronesean on Vs containing Q1ζ and Q2ζ. By the second part of the proof the set

V4
2 ζ

−1 is a plane of PG(n, 2). As V4
2 ζ

−1 ⊂ Vsζ
−1 the plane V4

2 ζ
−1 belongs to

R. Consider a second quadric Veronesean V4
′

2 on Vs containing Q1ζ and Q2ζ. This

yields a second plane V4
′

2 ζ−1 belonging to R. So the line V4
2 ζ

−1 ∩V4
′

2 ζ−1 = Q1Q2

belongs to R. Hence R is a subspace of PG(n, 2). Since |R| = |Vs| = θ(s), so R is

an s-dimensional subspace of PG(n, 2). Thus any quadric Veronesean Vs contained

in Vn is of the form Πsζ, with Πs some s-dimensional subspace of PG(n, 2). ��

Let q = 2. Then any triple of points on Vn is a conic. As for n > 1 there are

more triples of points on Vn than lines in PG(n, 2), so Theorem 4.12 does not hold

for (q, s) = (2, 1) with n > 1.

Corollary 4.13. For q �= 2, any two points of Vn are contained in a unique conic of

Vn.

Proof. Let P1, P2 be distinct points of Vn. Then P1ζ
−1 and P2ζ

−1 are contained in

a unique line of PG(n, q); that is, P1 and P2 are contained in a unique V2
1 , which is

a conic. ��

Corollary 4.14. For (q, s) �= (2, 1), the quadric Vn contains φ(s;n, q) quadric

Veroneseans Vs.

Proof. The number of Veroneseans Vs on Vn is the number of s-dimensional sub-

spaces of PG(n, q). ��

Let ξ be a projectivity of PG(n, q). Then ξ defines a permutation ξ′ of Vn which,

by Lemma 4.9, is induced by a projectivity ξ̃ of PG(N, q). However, ξ1 �= ξ2 implies

that ξ̃1 �= ξ̃2. Let G(Vn) be the subgroup of PGL(N + 1, q) leaving Vn fixed.

Theorem 4.15. Let n ≥ 2 with (q, n) �= (2, 2). Then, for any projectivity ξ of

PG(n, q),

(i) the corresponding permutation ξ′ of Vn is induced by a unique element ξ̃ of

G(Vn);

(ii) the mapping θ : PGL(n+1, q) → G(Vn), given by ξ 
→ ξ̃, is an isomorphism.



148 4 Veronese and Segre varieties

Proof. Let ξ̃ be any element of G(Vn). The corresponding permutation of Vn is

denoted by ξ′. It is now shown that ξ′ corresponds to a projectivity of PG(n, q).
Let ξ be the permutation of the points of PG(n, q) which corresponds to ξ′. First,

let q ≥ 3. Since, on Vn, the map ξ′ transforms conics to conics, so, on PG(n, q), the

permutation ξ maps lines to lines. By Remark 4.7, ξ leaves the cross-ratio of any

four collinear points invariant. By the fundamental theorem of projective geometry,

the permutation ξ is a projectivity of PG(n, q). Next, let q = 2, n > 2. Since, on

Vn, the map ξ′ transforms a V4
2 to another one V4

′

2 , so, on PG(n, 2), the permutation

ξ maps planes to planes. Hence ξ is a projectivity of PG(n, 2). Consequently, for

(q, n) �= (2, 2), the map ξ′ corresponds to a projectivity of PG(n, q).
Next, consider any projectivity ξ of PG(n, q) and also the corresponding permu-

tation ξ′ of Vn. Assume that ξ′ is induced by the projectivities ξ̃ and ξ̃′ of PG(N, q).

It must be shown that ξ̃ = ξ̃′.

If η̃ = ξ̃′ξ̃−1, then η̃ induces the identity mapping of Vn. Consider distinct points

P1, P2 on Vn. If q = 2, then η̃ fixes all points of the line P1P2.

Now let q > 2. The points P1, P2 are contained in exactly one conic C on Vn. Let

π be the plane of C; then the projectivity η̃ fixes all points of C, and so fixes each point

of π. In particular, η̃ fixes all points of the line P1P2. By Corollary 4.4, the Verone-

sean Vn generates PG(N, q). Let P1, P2, . . . , PN+1 be linearly independent points

on Vn. The projectivity η̃ fixes each point of the line PiPj , for i, j = 1, 2, . . . , N +1

and i �= j. It follows that η̃ is the identity mapping of PG(N, q); so ξ̃ = ξ̃′.

Since ξ �= η implies that ξ̃ �= η̃, it has been shown that θ : ξ 
→ ξ̃ is an isomor-

phism of PGL(n+ 1, q) onto G(Vn). ��

Let q = n = 2. Then, for any projectivity ξ of PG(2, 2), the corresponding

permutation ξ′ of V2 is induced by a unique element ξ̃ of G(V2); but the group order

|PGL(3, 2)| < |G(V2)| = 7!. For n = 1, Theorem 4.15 also holds.

Corollary 4.16. |G(Vn)| = |PGL(n+ 1, q)| for (q, n) �= (2, 2).

In the rest of this chapter, to avoid exceptions, when q = 2 a conic of the quadric

Veronesean Vn is by definition any triple of points of Vn which is the image of a line

of PG(n, 2).
Apart from the conic, the quadric Veronesean which is most studied and charac-

terised is the surface V4
2 of PG(5, q). In the second part of this section, some inter-

esting properties of this surface are established, several of which can be generalised

to all Veroneseans.

So consider the quadric Veronesean V4
2 . By Corollary 4.14, the variety V4

2 con-

tains q2 + q + 1 conics and, by Corollary 4.13, any two points of V4
2 are contained

in a unique one of these conics. Since the conics of V4
2 correspond to the lines of

PG(2, q), any two of these conics have a unique point in common.

To the quadrics of PG(2, q) there correspond all hyperplane sections of V4
2 . The

hyperplane is uniquely determined by the plane quadric if and only if the latter is not

a single point. If the quadric C of PG(2, q) is a repeated line, then the corresponding

hyperplane Π4 of PG(5, q) meets V4
2 in a conic; if C is two distinct lines, then Π4
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meets V4
2 in two conics with exactly one point in common; if C is a conic, then Π4

meets V4
2 in a rational quartic curve.

The planes of PG(5, q) which meet V4
2 in a conic are called the conic planes of

V4
2 .

Theorem 4.17. Any two conic planes π and π′ of V4
2 have exactly one point in

common, and this common point belongs to V4
2 .

Proof. Let π ∩ V4
2 = C and π′ ∩ V4

2 = C′ As |C ∩ C′| = 1, suppose that π ∩ π′ is

a line and let π ∪ π′ be contained in two distinct hyperplanes of PG(5, q). To these

hyperplanes there correspond two distinct quadrics of PG(2, q), which both contain

the distinct lines Cζ−1 and C′ζ−1. This contradiction proves the theorem. ��

Theorem 4.18. The union of the conic planes of V4
2 is the hypersurfaceV(F ) = M3

4

of order three, where

F =

∣∣∣∣∣∣
Y00 Y01 Y02

Y01 Y11 Y12

Y02 Y12 Y22

∣∣∣∣∣∣ . (4.1)

Proof. Let l = V(u0X0 + u1X1 + u2X2) be any line of PG(2, q). Then, by multi-

plying this form in turn by X0, X1, X2, it follows that the conic C = lζ is the section

of V4
2 by the plane

V(u0Y00+u1Y01+u2Y02, u0Y01+u1Y11+u2Y12, u0Y02+u1Y12+u2Y22). (4.2)

A point P(y00, y11, y22, y01, y02, y12) belongs to a conic plane, that is, a plane of the

form (4.2), if and only if F (y00, y11, y22, y01, y02, y12) = 0. ��

Theorem 4.19. The hypersurface M3
4 has (q2 + q + 1)(q2 + 1) points.

Proof. The hypersurface M3
4 is the union of the q2 + q + 1 conic planes of V4

2 .

By Theorem 4.17, any two conic planes have exactly one point in common which

belongs to V4
2 . Also, each point of V4

2 belongs to at least one conic plane. Hence

|M
3
4| = (q2 + q + 1)q2 + (q2 + q + 1) = (q2 + q + 1)(q2 + 1). ��

If the characteristic of Fq is two, then M3
4 = V(F ), where

F = Y00Y11Y22 + Y00Y
2
12 + Y11Y

2
02 + Y22Y

2
01. (4.3)

In this case, M3
4 contains the plane U3U4U5. It may be noted that this plane has no

point on V4
2 .

Lemma 4.20. If the characteristic of Fq is 2, then the Veronesean V4
2 is the intersec-

tion of the quadrics V(F01),V(F02),V(F12), where

F01 = Y 2
01 + Y00Y11, F02 = Y 2

02 + Y00Y22, F12 = Y 2
12 + Y11Y22. (4.4)
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Proof. With Y = (y00, y11, y22, y01, y02, y12), let

P(Y ) ∈ V(F01) ∩V(F02) ∩V(F12).

Then

y201 = y00y11, y202 = y00y22;

so y201y
2
02 = y200y11y22. Since y212 = y11y22, it follows that y201y

2
02 = y200y

2
12. Hence

y01y02 = y00y12; so P(Y ) belongs to V(F012) in the notation of Lemma 4.1. Anal-

ogously, P(Y ) belongs to V(F120) and V(F201). By Lemma 4.1,

V
4
2 = V(F01) ∩V(F02) ∩V(F12). ��

Theorem 4.21. The hypersurface M3
4 has the Veronesean V4

2 as double surface.

Proof. First M3
4 = V(F ), where

F = Y00Y11Y22 + 2Y01Y02Y12 − Y00Y
2
12 − Y11Y

2
02 − Y22Y

2
01. (4.5)

The partial derivatives of F are

∂F

∂Y00

= Y11Y22 − Y 2
12 = −F12,

∂F

∂Y11

= Y00Y22 − Y 2
02 = −F02,

∂F

∂Y22

= Y00Y11 − Y 2
01 = −F01,

∂F

∂Y01

= 2(Y02Y12 − Y22Y01) = −2F201,

∂F

∂Y02

= 2(Y01Y12 − Y11Y02) = −2F120,

∂F

∂Y12

= 2(Y01Y02 − Y00Y12) = −2F012.

If the characteristic of Fq is not two, then the singular points of M3
4 are the

elements of

M
3
4∩V(F12)∩V(F02)∩V(F01)∩V(F012)∩V(F120)∩V(F201) = M

3
4∩V

4
2 = V

4
2 .

If the characteristic of Fq is two, then the singular points of M3
4 are the elements

of M3
4 ∩V(F12) ∩V(F02) ∩V(F01). By Lemma 4.20, this set is again V4

2 .

Finally, it is straightforward to check that all singular points of M3
4 are double

points. ��

The tangent lines of the conics of V4
2 are the tangents or tangent lines of V4

2 .

Since no point of the surface V4
2 is singular, all tangent lines of V4

2 at the point P of

V4
2 are contained in a plane π(P ). This plane π(P ) is the tangent plane of V4

2 at P .
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Since P is contained in exactly q + 1 conics of V4
2 and since no two conic planes

through P have a line in common, the tangent plane π(P ) is the union of the q + 1
tangent lines of V4

2 through P . Also π(P ) ∩ V4
2 = {P}.

All the tangent lines and tangent planes of the surface V4
2 belong to the hypersur-

face M3
4. Since M3

4 is the union of the conic planes of V4
2 , any point of M3

4 is on at

least one tangent or bisecant of V4
2 . As any two points of V4

2 are contained in a conic

of V4
2 , each bisecant of V4

2 is a line of M3
4. Hence M3

4 can also be described as the

union of all tangents and bisecants of V4
2 .

Theorem 4.22. For any two distinct points P1 and P2 of V4
2 , the tangent planes

π(P1) and π(P2) have exactly one point in common.

Proof. Let P1 and P2 be distinct points of V4
2 , and let C be the conic of V4

2 through

P1 and P2. The tangent li of C at Pi is contained in π(Pi), i = 1, 2, and so π(P1)
and π(P2) have the point l1 ∩ l2 = Q in common.

Suppose that Q′ ∈ π(P1)∩ π(P2) with Q′ �= Q. Then PiQ
′ is tangent to a conic

Ci of V4
2 , i = 1, 2. If C1 = C2, then C1 = C2 = C and so Q = Q′, a contradiction;

so C1 �= C2. If C1 ∩ C2 = {P}, then the conic planes containing C1 and C2 have the

distinct points P and Q′ in common, contradicting Theorem 4.17. Hence it has been

shown that π(P1) ∩ π(P2) = {Q}. ��

Theorem 4.23. Suppose that the characteristic of Fq is two. Then each tangent plane

of V4
2 meets the plane U3U4U5 in a line, each conic plane meets U3U4U5 in a

point, and U3U4U5 consists of the nuclei of all conics on V4
2 .

Proof. It was observed above that, in the case of characteristic two, the plane

U3U4U5 belongs to the hypersurface M3
4. If P is any point of V4

2 and Q is any

point of the plane U3U4U5, then, by Lemma 4.20, the line PQ has only the point

P in common with V4
2 .

Let π be any conic plane of V4
2 , and let π be represented by (4.2). Then

π ∩U3U4U5 = V(u1Y01 + u2Y02, u0Y01 + u2Y12, u0Y02 + u1Y12).

Since the rank of the matrix ⎡⎣u1 u2 0
u0 0 u2

0 u0 u1

⎤⎦
is 2, so |π ∩ U3U4U5| = 1. Let π ∩ U3U4U5 = Q and π ∩ V4

2 = C. Since

|PQ ∩ C| = 1 for any point P of C, the point Q is the nucleus of C. Also, by

Theorem 4.17, the nuclei of distinct conics of V4
2 are distinct. So any conic plane of

V4
2 has exactly one point in common with U3U4U5, which is therefore the set of the

nuclei of all conics on V4
2 .

Finally, let π(P ) be the tangent plane of V4
2 at P . Since each line of π(P ) through

P is tangent to some conic of V4
2 , it contains the nucleus of this conic and hence

contains a point of U3U4U5. Hence π(P ) and U3U4U5 have a line in common. ��
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Definition 4.24. In the case of characteristic two, the plane U3U4U5 is the nucleus

of the Veronesean V4
2 .

Let l = V(F ), where F = u0X0 + u1X1 + u2X2 be any line of PG(2, q). If C

is the plane quadric whose point set coincides with l, then to C there corresponds the

hyperplane Π4 = V(F ′) of PG(5, q), where

F ′ = u2
0Y00 + u2

1Y11 + u2
2Y22 + 2u0u1Y01 + 2u0u2Y02 + 2u1u2Y12. (4.6)

Such a hyperplane Π4 is a contact hyperplane of V4
2 . The contact hyperplanes of V4

2

are those which have exactly one conic on V4
2 .

First, let the characteristic of Fq be 2. Then the contact hyperplane Π4 always

contains the nucleus U3U4U5.

Let Π2 be the conic plane containing lζ = Π4∩V
4
2 . By Theorem 4.23, the contact

hyperplane Π4 is generated by the conic plane Π2 and the nucleus U3U4U5. By the

same theorem, the contact hyperplane Π4 contains the q + 1 planes tangent to V4
2 at

the points of the conic lζ.

Next, let the characteristic of Fq be odd. Consider a point P of PG(2, q), and

also distinct lines l, l1, l2 through P . Then, for i = 1, 2, there is a hyperplane Πi

4

of PG(5, q) corresponding to the plane quadric Ci = l ∪ li. Here Πi

4 contains the

tangent lines at Pζ of the conics lζ, l1ζ, l2ζ. Hence Πi

4 contains the tangent plane

π(Pζ) of V4
2 at Pζ, for i = 1, 2. The plane quadric that is the repeated line l belongs

to the pencil defined by C1 and C2; so the contact hyperplane Π4 corresponding to C

belongs to the pencil defined by Π1
4 and Π2

4. Hence Π4 also contains π(Pζ). Thus,

also in this case, the contact hyperplane Π4 defined by the line l contains the q + 1
planes tangent to V4

2 at the points of the conic lζ.

From (4.6) it also follows that, if the characteristic of Fq is not two, the set of all

contact hyperplanes of V4
2 is simply the dual of V4

2 .

Theorem 4.25. When the characteristic of Fq is not two, PG(5, q) admits a polarity

that maps the set of all conic planes of V4
2 onto the set all tangent planes of V4

2 .

Proof. Let l = V(u0X0 + u1X1 + u2X2) be a line of PG(2, q). By (4.2), the conic

plane defined by the line l is

V(u0Y00 + u1Y01 + u2Y02, u0Y01 + u1Y11 + u2Y12, u0Y02 + u1Y12 + u2Y22).

Next, let P(A) = Q, where A = (a0, a1, a2), be a point of PG(2, q). For any

line m of PG(2, q) through Q, the corresponding contact hyperplane of V4
2 contains

the tangent plane of V4
2 at Qζ. Hence the tangent plane π(Qζ) belongs to every

hyperplane

V(u2
0Y00 + u2

1Y11 + u2
2Y22 + 2u0u1Y01 + 2u0u2Y02 + 2u1u2Y12),

where u0, u1, u2 satisfy

u0a0 + u1a1 + u2a2 = 0.

Hence the following points are elements of π(Qζ):
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P(2a0, 0, 0, a1, a2, 0), P(0, 2a1, 0, a0, 0, a2), P(0, 0, 2a2, 0, a0, a1).

Let η be the polarity of PG(5, q) represented by

ρv00 = 1
2
y00, ρv11 = 1

2
y11, ρv22 = 1

2
y22,

ρv01 = y01, ρv02 = y02, ρv12 = y12,

where

V(v00Y00 + v11Y11 + v22Y22 + v01Y01 + v02Y02 + v12Y12)

is a variable hyperplane of PG(5, q). Then π(Qζ)η is the conic plane defined by the

line l of PG(2, q), where

l = V(a0X0 + a1X1 + a2X2).

Hence the polarity η maps the set of all conic planes of V4
2 onto the set of all tangent

planes of V4
2 . ��

Corollary 4.26. Let the characteristic of Fq be odd. Then, for any three distinct

points P1, P2, P3 of V4
2 , the intersection π(P1) ∩ π(P2) ∩ π(P3) is empty.

Proof. Suppose that π(P1) ∩ π(P2) ∩ π(P3) �= ∅. By Theorem 4.22,

π(P1) ∩ π(P2) ∩ π(P3) = {Q}.

So the hyperplane Qη contains the three distinct conic planes π(Pi)η, i = 1, 2, 3.

Hence the quadric of PG(2, q) which corresponds to Qη has at least three distinct

linear components, a contradiction. ��

4.2 Characterisations

4.2.1 Characterisations of V2n

n
of the first kind

First, two properties are proved which hold for the quadric Veronesean Vn. The

planes of PG(N, q), N = n(n + 3)/2, meeting Vn in a conic are called the conic

planes of Vn.

Lemma 4.27. Two distinct conic planes of Vn with non-empty intersection meet in

exactly one point, and this point lies in Vn.

Proof. Let Π′

2 and Π′′

2 be distinct conic planes of Vn and let P ∈ Π′

2 ∩ Π′′

2 . Assume

that P ∈ Vn.

First, let q be odd. The point P belongs to at least one bisecant l of Π′

2∩Vn = C′.

By Corollary 4.13, the line l is not contained in the plane Π′′

2 . Let C′ ∩ l = {P1, P2}

and Π′′

2 ∩ Vn = C′′. The plane of PG(n, q) containing the line C′′ζ−1 and the point

P1ζ
−1 is denoted by Π2, with ζ as in Section 4.1. Then Π2ζ is a Veronesean V4

2

containing C′′ and P1. The point P2 belongs to the space PG(5, q) containing V4
2 .
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By Theorem 4.10, V4
2 is the complete intersection of PG(5, q) and Vn, and so P2

belongs to V4
2 . The points P1 and P2 are contained in a unique conic of V4

2 and

a unique conic of Vn. Consequently C′ is a conic of V4
2 . Now, by Theorem 4.17,

P ∈ V4
2 , contradicting that P �∈ Vn; hence P ∈ Vn. Since Vn is a cap it follows that

P is the unique common point of Π′

2 and Π′′

2 .

Next, let q be even. If P is not the nucleus of C′ = Π′

2 ∩ Vn or C′′ = Π′′

2 ∩ Vn,

then the argument of the preceding paragraph shows again that P ∈ Vn. So assume

that P is the nucleus of both C′ and C′′. Let P ′ ∈ C′\C′′. Then the line PP ′ is

a tangent to the conic C′ and hence is a tangent of the algebraic variety Vn. The

plane of PG(n, q) containing the line C′′ζ−1 and the point P ′ζ−1 is denoted by Π2.

Then Π2ζ is a Veronesean V4
2 containing C′′ and P ′. The line l belongs to the space

PG(5, q) containing V4
2 ; hence l is a tangent of V4

2 . By Section 4.1, the Veronesean

V4
2 contains a unique conic C which is tangent to l at P ′. Since P is the nucleus of

C′′, by Theorem 4.23 it belongs to the nucleus of V4
2 . Then, again by Theorem 4.23,

the point P is the nucleus of the conic C. Hence the conics C and C′′ have a common

nucleus. This contradicts Theorem 4.23. This proves that again P ∈ Vn. Since Vn is

a cap, it now follows that P is the unique common point of Π′

2 and Π′′

2 . ��

Lemma 4.28. Let C be a conic of Vn and let P be a point of Vn\C. Then the union

of the tangents at P of the conics of Vn which pass through P and a point of C is a

plane.

Proof. Let Π2 be the plane of PG(n, q) which contains the line Cζ−1 and the point

Pζ−1. Then Π2ζ is a Veronesean V4
2 which contains C and P . By Corollary 4.13, the

q+1 conics of Vn which contain P and a point of C are precisely the q+1 conics of

Vn through P . From the remarks preceding Theorem 4.22, the union of the tangents

at P to the q + 1 conics of V4
2 through P is the tangent plane of V4

2 at P . ��

Let Ω be a subspace of PG(N, q), with Ω ∩ Vn = ∅, and let Π be a subspace of

PG(N, q), with Ω∩Π = ∅ and where Π and Ω generate PG(N, q). Assume that the

projection of Vn from Ω onto Π is bijective between Vn and its image Φ in Π. Then

Lemmas 4.27 and 4.28 also hold for the set Φ.

In this section it is shown that a weak version of Corollary 4.13, together with

Lemmas 4.27 and 4.28, characterise the (bijective) projections of the Veronesean Vn.

From now on, let K be a set of k points of some projective space PG(N, q), with

N > 2, where K generates PG(N, q). Further, let Γ be a set of (q + 1)-arcs, where

each element of Γ is the complete intersection of K and some plane. The elements

of Γ are called Γ-arcs, and the planes of the Γ-arcs are Γ-planes. The tangents of the

Γ-arcs are Γ-tangents. The Γ-tangent which is tangent to C ∈ Γ at P ∈ C is denoted

by t(P, C).
Suppose that K satisfies the following:

(a) any two distinct points of K belong to a Γ-plane;

(b) any two distinct intersecting Γ-planes meet on K;

(c) if C is a Γ-arc and P belongs to K\C, then the tangents at P of the Γ-arcs passing

through P and a point of C are coplanar.
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Note that, for q > 2, the set Γ is uniquely determined by K. Indeed, since q > 2,

any (q + 1)-arc C on K contains at least four different points P1, P2, P3, P4. Let

P = P1P2 ∩ P3P4, let Π2 be a Γ-plane containing P1, P2, and let Π′

2 be a Γ-plane

containing P3, P4. Then P �∈ K and P ∈ Π2 ∩ Π′

2. By (b), Π2 = Π′

2 and so C is a

Γ-arc.

If B1,B2, . . . ,Bk are point sets of PG(N, q), then 〈B1,B2, . . . ,Bk〉 denotes the

subspace of PG(N, q) generated by B1 ∪ B2 ∪ · · · ∪ Bk.

Lemma 4.29. (i) The set K is a k-cap.

(ii) Any two distinct points of K are contained in a unique Γ-arc.

(iii) A Γ-tangent t(P, C) is tangent to a unique Γ-arc through P .

Proof. Let P, P ′ ∈ K and let Π2 be a Γ-plane containing P and P ′. Since Π2 ∩ K

is an arc, so K ∩ PP ′ = {P, P ′}. Hence K is a k-cap. Let Π′

2 be another Γ-plane

containing the line PP ′. By (b), the line Π2∩Π′

2 is a line of K, contradicting the first

part of the proof. Finally, consider a Γ-tangent t(P, C), and let t(P, C) = t(P, C′),
with C �= C′. By (b), the Γ-planes containing C and C′ meet on K. Since t(P, C) is

the intersection of these Γ-planes, the set K contains a line, a contradiction. ��

As K is a cap, it is called a Veronesean cap. The unique Γ-arc containing the

points P, P ′, with P �= P ′, of K is denoted by [P, P ′]. For P ∈ K and C a Γ-arc

not passing through P , the plane containing the tangents at P of the Γ-arcs passing

through P and a point of C is denoted by π(P, C). By Lemma 4.29, the number of

Γ-arcs containing P and a point of C is exactly q+1, and π(P, C) is the union of the

corresponding Γ-tangents.

Lemma 4.30. The incidence structure S formed by the points of K and the (q + 1)-
arcs of Γ is the incidence structure of points and lines of a projective space of order

q and some dimension n ≥ 2.

Proof. By Lemma 4.29, the incidence structure S is a linear space in which all lines

have size q + 1. It suffices to check the Veblen–Young (or Pasch) axiom. So let

C1 and C2 be two elements of Γ meeting in a point P ∈ K, and let C3, C4 ∈ Γ,

with P /∈ C3 ∪ C4, be such that they both meet C1 and C2 in distinct points

{Pij} = Ci ∩ Cj , i ∈ {1, 2} and j ∈ {3, 4}. It must be shown that C3 and C4

are not disjoint. Both planes π(P13, C2) and π(P13, C4) contain the distinct lines

t(P13, C1) and t(P13, [P13, P24]); hence they coincide. Consequently, there is some

pointP ′ ∈ C4 such that t(P13, [P13, P
′]) = t(P13, C3). But then Lemma 4.29 implies

that C3 = [P13, P
′]. Hence P ′ ∈ C3 ∩ C4. ��

The natural number n is called the dimension of K. Then K has θ(n) points.

Corollary 4.31. Let S ′ be a subspace of S of dimension r, 2 ≤ r < n, with K′ the

set of points of S ′ and Γ′ the set of Γ-arcs in S ′. Then K′ satisfies (a), (b), (c) and

hence is a Veronesean sub-cap of K of dimension r with Γ′ as the prescribed set of

(q + 1)-arcs.
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For any point P in K, let T (P ) =
⋃
t(P, C), with the union taken over all Γ-arcs

containing P .

Lemma 4.32. For any pointP, the set T (P ) is an n-dimensional projective subspace

of PG(N, q).

Proof. Let R,R′ be distinct points of T (P ), where R,R′, P are not collinear. Let

PR = t(P, C) and PR′ = t(P, C′). For A ∈ C\{P} and B ∈ C′\{P}, the

plane π(P, [A,B]) coincides with the plane PRR′. Since π(P, [A,B]) ⊂ T (P ) and

π(P, [A,B]) = PRR′, the line RR′ belongs to T (P ). Hence it follows that T (P ) is

a projective subspace of PG(N, q).
Since the projective space K has dimension n, the number of Γ-arcs through P is

equal to θ(n−1). Hence the number of tangents t(P, C) in T (P ) is equal to θ(n−1).
Thus the projective space T (P ) is n-dimensional. ��

For any point P of K the space T (P ) is called the tangent space of K at P .

In the next theorem a bound on N is obtained.

Theorem 4.33. The dimension N ≤ n(n+ 3)/2.

Proof. Proceed by induction on n, first assuming n > 2. Let S ′ be a hyperplane of

S and P a point of S not in S ′. Then, by induction, the point set K′ of S ′ generates

a subspace PG(N ′, q) of PG(N, q) with N ′ ≤ (n− 1)(n+2)/2. Let P ′ ∈ K\{P}.

Then [P, P ′] ∩ K′ = {P ′′} and P ′ ∈ P ′′t(P, [P, P ′]) ⊂ T (P )PG(N ′, q). Hence

PG(N, q) = T (P )PG(N ′, q), implyingN ≤ 1+n+(n−1)(n+2)/2 = n(n+3)/2.

If n = 2, then the same argument can be made but replacing K′ by an element of

Γ. ��

Theorem 4.34. When n = 2, then

(i) N = 5;
(ii) the plane S is isomorphic to PG(2, q);

(iii) all Γ-arcs are conics;

(iv) K is the Veronesean V4
2 whose conic planes are the Γ-planes of K.

Proof. Let Π2 be a fixed Γ-plane and put C = K ∩ Π2. First it will be shown that

M = 5. Let P ∈ K\C. From the proof of Theorem 4.33, PG(N, q) = T (P )Π2.

Suppose by way of contradiction that there exists P ′ ∈ T (P ) ∩ Π2. The line PP ′

is tangent to a certain Γ-arc [P, P ′′], for some P ′′ ∈ C. But now P ′ /∈ K and yet P ′

belongs to Π2 and the Γ-plane containing [P, P ′′], contradicting (b). It now follows

that N = 5.

Now consider a plane Π′

2 skew to Π2 and denote by ρ the projection fromΠ2 onto

Π′

2. It will be shown that ρ is injective on K\C. Indeed, if Pρ = Rρ, for P,R ∈ K\C

and P �= R, then PΠ2 = RΠ2 and contains [P,R]. Hence Π2 and the Γ-plane

containing [P,R] have a line in common, which by (b) belongs to K, a contradiction.

So ρ is injective on K\C. The points of K\C on a Γ-arc C′ of K different from C

are mapped onto q points of a line of Π′

2; the missing point is the projection of the
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tangent line, minus its point on C, of C′ at the point C ∩ C′. So a set A of q2 points

of Π′

2 and q2 + q lines of Π′

2 is obtained, all containing exactly q points of A. Let

l∞ be the remaining line of Π′

2. Assume by way of contradiction that l∞ contains a

point V ∈ A. Then consider two distinct lines l1, l2 through V , distinct from l∞. The

unique points X1 of l1 and X2 of l2 not in A are distinct and not contained in l∞.

But now the line X1X2 contains at most q−1 points of A, a contradiction. Hence l∞
contains no point of A, and so it contains the projections of all tangent lines minus

their points on C, as mentioned above. It now also follows that the projective plane S

is isomorphic to Π′

2, and so to PG(2, q). Consequently, the plane S can be denoted

by PG(2, q).
Consider the inverse image in K of the intersection of A and the line containing

U ′ρ and (T (U)\C)ρ. Therefore, given a point U ∈ C and a point U ′ ∈ K\C, the

space T (U)U ′ meets K in [U,U ′]. Let (∗) denote this property.

Next it is shown that the Γ-arcs are conics. Consider two points P1, P2 ∈ C.

Project K\C from the line P1P2 onto some solid Π3 of PG(5, q) skew to P1P2. Let

ρ′ be this projection map. Then the image of the q points not on C of a Γ-arc C′ �= C

containing P1, together with the image of its tangent line (minus its point on C) at

C ∩ C′ is a line of Π3; similarly for Γ-arcs on K through P2. Also, the set of images

of tangent lines at P1 to Γ-arcs different from C through P1, together with the image

of Π2\P1P2, is also a line of Π3 and similarly for P2. So a set of (q + 1)2 points

of Π3 containing two sets of q + 1 mutually skew lines is obtained, and lines of

different sets intersect in exactly one point; hence these (q+1)2 points are the points

of a hyperbolic quadric H. It follows that the image D′ under ρ′ of any Γ-arc D not

containing P1 nor P2 is a conic section of H. Hence D is, as the intersection of a

plane and a quadratic cone P1P2D
′, itself a conic.

Now consider three points P0, P1, P2 of K which form a triangle in PG(2, q).
Let V4

2 be the quadric Veronesean in PG(5, q) associated with PG(2, q), and denote

for each point or subset E of PG(2, q) the corresponding point or subset on V4
2 by

E∗. The set of conics of V4
2 will be denoted by Γ∗. Since V4

2 satisfies in particular (a),

(b), (c), V4
2 may be treated as a Veronesean cap and thus appropriate notation may

be used. The Γ-arcs [P0, P1], [P1, P2], [P2, P0] generate PG(5, q), because the space

they generate contains both T (P0) and [P1, P2], and by the first section of the proof

this space is 5-dimensional.

Now project K\[P0, P1] and V4
2\[P

∗

0 , P
∗

1 ] from the planes containing [P0, P1]
and [P ∗

0 , P
∗

1 ] onto the planes Π2 and Π∗

2; then Π2 and the Γ-plane of [P0, P1] are

skew, and Π∗

2 and the Γ∗-plane of [P ∗

0 , P
∗

1 ] are skew. There is a collineation σ from

Π2 to Π∗

2 which maps the projection of a point P ∈ K\[P0, P1] onto the projection

of P ∗. Let θ be the field automorphism associated to σ. Then there is a collineation

(of conics, that is, a bijection preserving the cross-ratio, up to a field automorphism)

between [P0, P2] and [P ∗

0 , P
∗

2 ], and between [P1, P2] and [P ∗

1 , P
∗

2 ], with associated

field automorphism θ, and mapping P onto P ∗. By extending these collineations to

the Γ-planes 〈[P0, P2]〉 and 〈[P1, P2]〉 of [P0, P2] and [P1, P2], and permuting the

indices, it follows that there are collineations αi : 〈[Pj , Pk]〉 → 〈[P ∗

j
, P ∗

k
]〉, for all

i, j, k, with {i, j, k} = {0, 1, 2}, with associated field automorphism θ, mapping P

to P ∗, for all P ∈ [P0, P1] ∪ [P1, P2] ∪ [P2, P0].
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Now α0 and α1 extend to a common collineation α′ between 〈[P1, P2], [P0, P2]〉
and 〈[P ∗

1 , P
∗

2 ], [P
∗

0 , P
∗

2 ]〉. Consider anyΓ-arc C, with P0, P1, P2 /∈ C. LetR be the in-

tersection of the line P0P1 and the tangent line l2 of [P0, P1] at C∩[P0, P1]. Consider

the tangent lines l0 and l1 of [P1, P2] and [P0, P2] at C∩[P1, P2] and C∩[P0, P2]. Let-

ting 〈C〉 play the role of Π2 in the first part of the proof, it follows that the subspace

〈l0, l1, l2〉 is 4-dimensional and meets K in C. Choose the plane Π′

2 in the second

section of the proof so that it contains P0P1. As 〈l0, l1〉 is a solid in the hyperplane

〈[P1, P2], [P2, P0]〉, it follows that 〈l0, l1〉 intersects the line P0P1 in R. Hence the

restriction of α′ to P0P1 coincides with the restriction of α2 to P0P1. So there exists

a collineation α : PG(5, q) → PG(5, q) such that α induces αi on 〈[Pj , Pk]〉, for all

i, j, k, with {i, j, k} = {0, 1, 2}.

Now let P ∈ K be arbitrary, but not belonging to the Γ-planes containing

[P0, P1], [P1, P2], [P2, P0]. Put P ′

i
= [P, Pi] ∩ [Pj , Pk], for {i, j, k} = {1, 2, 3}.

Then, by (∗), the point P is the intersection of K with Φ, where

Φ = T (P0)P
′

0 ∩ T (P1)P
′

1 ∩ T (P2)P
′

2.

Hence P ∗ is the intersection of V4
2 with Φ∗, where

Φ∗ = T (P ∗

0 )P
′

0
∗
∩ T (P ∗

1 )P
′

1
∗
∩ T (P ∗

2 )P
′

2
∗.

It is now shown that Φ = {P}. First, [P1, P2] ⊂ T (P1)P
′

0; hence

PG(5, q) = T (P0)〈[P1, P2]〉 = T (P0)T (P1)P
′

0P
′

1.

Consequently, T (P0)P
′

0 ∩ T (P1)P
′

1 is a line of PG(5, q), which contains P and

P ′ = t(P0, [P0, P1]) ∩ t(P1, [P0, P1]). As P ′ �= P ′

2 and as T (P2) ∩ 〈[P0, P1]〉 is

empty, the assumption P ′ ∈ T (P2)P
′

2 would imply that T (P2)P
′

2 is a hyperplane, a

contradiction. Hence {P} = Φ. However, in a similar way, {P ∗} = Φ∗. It follows

that Pα = P ∗, and the theorem is proved. ��

The projection map ρ in the second section of the proof shows the following.

Lemma 4.35. If n = 2 and C ∈ Γ, then the planes T (P ), with P ∈ C, generate a

hyperplane of PG(5, q) which meets K precisely in C.

Consider now the general case.

Theorem 4.36. If n ≥ 2 and N ≥ n(n + 3)/2, then N = n(n+ 3)/2 and K is the

quadric Veronesean Vn of dimension n.

Proof. The proof proceeds by induction on n, the case n = 2 being proved in The-

orem 4.34. So suppose now that n > 2. By Theorem 4.33, N = n(n + 3)/2.

Select two distinct hyperplanes S1 and S2 of S. These correspond to two Verone-

sean sub-caps K1 and K2 of K of dimension n − 1. It will be shown that 〈K1〉

and 〈K2〉 have dimension (n − 1)(n + 2)/2. By Theorem 4.33, the dimension ni

of 〈Ki〉 is at most (n − 1)(n + 2)/2, with i = 1, 2. From the proof of Theorem

4.33, PG(N, q) = T (P )〈Ki〉 for any P ∈ K\Ki, and hence, by Lemma 4.32,
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n(n+ 3)/2 ≤ 1 + n+ ni ≤ n(n+ 3)/2, implying that ni = (n− 1)(n+ 2)/2, for

i = 1, 2. So 〈K1〉 and 〈K2〉 have dimension (n− 1)(n+ 2)/2. Put 〈Ki〉 = Ωi, with

i = 1, 2. The caps K1 and K2 meet in a Veronesean cap K3 of dimension n− 2.

Let 〈K3〉 = Ω. Considering K3 as a Veronesean sub-cap of K1, the dimension of

Ω is (n− 2)(n+ 1)/2. Now consider a Γ-arc C not meeting K1 ∩ K2. For q > 2, it

is immediate that PG(N, q) is generated by K1,K2 and C.

Now let q = 2. Let P = C\(K1∪K2). If P ′ ∈ K\(K1∪K2∪C), then consider a

Veronesean sub-cap K′ of K of dimension two containing P and P ′. The space 〈K′〉

of dimension five is generated by K1∩K′, K2∩K′ and P . Hence P ′ ∈ 〈K1,K2, P 〉.

So, also for q = 2, PG(N, q) is generated by K1, K2 and C. As N = n(n + 3)/2
it follows that Ω1 ∩ Ω2 = Ω and that Ω1Ω2 ∩ 〈C〉 is a line. Also, by induction, the

caps Ki, for i = 1, 2, 3, are projectively equivalent to quadric Veroneseans and can

be identified as such.

Now proceed very similarly as in the proof of Theorem 4.34. Let Vn be the

quadric Veronesean in PG(N, q) associated with S = PG(n, q) and denote for any

point or point set B of S the corresponding point or point set on Vn by B∗. It is now

shown that K and Vn are projectively equivalent and that a collineation of PG(N, q)
can be chosen which maps any point P ∈ K to the point P ∗ ∈ Vn. These assertions

may be included in the induction hypothesis as they are valid for the case n = 2,

by Theorem 4.34. Hence there is a collineation α0 : 〈C〉 → 〈C∗〉 with associated

field automorphism θ0, and collineations αi : Ωi → 〈K∗

i
〉, with associated field

automorphisms θi, i = 1, 2, mapping P to P ∗, for every P in C and Ki, i = 1, 2;

here α0 is obtained by restriction to C, after considering a Veronesean sub-cap of

dimension two of K containing C.

Let K′ be a Veronesean sub-cap of dimension two of K containing C, and let

V2 be the corresponding Veronese variety on Vn. Considering the restriction of αi

to K′ ∪ Ki, with i = 1, 2, it follows from Theorem 4.34 that θ0 = θ1 = θ2, that

there exists a collineation α′ from Ω1Ω2 onto 〈K∗

1 ,K
∗

2〉 having as restriction to Ω1

and Ω2 the collineations α1 and α2, and that α0 and α′ coincide on 〈C〉 ∩ Ω1Ω2.

Hence there exists a collineation α : PG(N, q) → PG(N, q) such that Pα = P ∗,

for all P ∈ C ∪ K1 ∪ K2. Now let P be any other point of K. Then there is a unique

Veronesean cap of dimension two on K containing C and P , namely, the plane in S

defined by the line C of S and the point P . It has a uniqueΓ-arc in common with both

K1 and K2, and hence, as in the proof of Theorem 4.34, it follows that Pα = P ∗.

The theorem is thus established. ��

Now the main result of this section is proved, keeping all the previous notation.

Theorem 4.37. If n = 3, then either N = 8 or 9. In the latter case, K is the quadric

Veronesean of dimension three.

Proof. Consider a quadric sub-Veronesean K1 of dimension two on K. It will be

shown that the 5-dimensional space 〈K1〉 contains at most one point of K\K1. Let

P, P ′ ∈ (K\K1)∩〈K1〉, P �= P ′. The set of all Γ-arcs contained in K1 is denoted by

Γ1. The unique Γ-arc C containing P, P ′ has some point P1 in common with K1 and

therefore is entirely contained in 〈K1〉. It follows that T (P1) is completely contained
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in 〈K1〉. Let Π2 be a plane containing an element of Γ1, but not containing P1.

Then, by comparing dimensions, it follows that there exists a point U of PG(N, q)
in T (P1)∩Π2. By Lemma 4.32, there is a Γ-arc C′ throughP1 with tangent line P1U

at P1. Hence the plane 〈C′〉 meets Π2 in a point not belonging to K, contradicting

(b). So it has been shown that 〈K1〉 contains at most one point of K\K1. Note that

the last part of the argument shows that no space T (P1), P1 ∈ K1, is contained in

〈K1〉.

Assume that the point P ∈ K\K1 is contained in 〈K1〉. Choose a second quadric

sub-Veronesean K2 �= K1 of dimension two on K with P /∈ K2. The intersection

C′′ = K1 ∩ K2 belongs to Γ. It will be shown that 〈K1〉 ∩ 〈K2〉 = 〈C′′〉. Assume,

by way of contradiction, that 〈K1〉 ∩ 〈K2〉 contains a solid Π3 containing 〈C′′〉. Let

P ′′ ∈ K2\K1 be arbitrary. By comparing dimensions and as P ′′ �= P , the tangent

plane at P ′′ of K2 has at least one point R �= P ′′ in common with Π3. Hence there is

a point R′ ∈ C′′ such that RP ′′ is tangent to [R′, P ′′]. So the line R′R is contained

in 〈[P ′′, R′]〉, implying that it must be a tangent line to [P ′′, R′] because otherwise

〈K1〉 contains a point of [P ′′, R′]\{R′}, contradicting that {P} = (K\K1) ∩ 〈K1〉.

Consequently, T (R′) is generated by the tangent plane of K1 at R′ and the line R′R.

Hence T (R′) is contained in 〈K1〉, contradicting the last remark in the previous

paragraph. So it has been shown that 〈K1〉 ∩ 〈K2〉 = 〈C′′〉. Hence N ≥ 8.

The assertion for N = 9 follows from Theorem 4.36. ��

Theorem 4.38. (i) When n = 3 and N = 8, then there exists a projective space

Π9 = PG(9, q) containing PG(8, q), a point R of Π9, and a quadric Verone-

sean K of dimension three in Π9, with R /∈ K, such that K is the projection of

K from R onto PG(8, q).
(ii) The Veronesean K can be chosen in such a way that K ∩ K is the union of two

quadric sub-Veroneseans of dimension two of both K and K, and K is uniquely

determined by this intersection, by the point R and by one point P ′ ∈ K with

P ′ not belonging to K ∩ K with RP ′ ∩ K non-empty.

Proof. The proof of Theorem 4.37 yields the existence of two quadric sub-Verones-

eans K1 and K2 of K such that 〈K1,K2〉 = PG(8, q) and 〈K1〉 ∩ 〈K2〉 is a Γ-

plane. Now embed PG(8, q) as a hyperplane in some 9-dimensional space PG(9, q)
and let R be any point of PG(9, q)\PG(8, q). Let P ∈ K\(K1 ∪ K2) and choose

P ′ ∈ PR,P �= P ′ �= R, arbitrarily. Let Q ∈ K\(K1 ∪ K2) be arbitrary, Q �= P .

The conic [P,Q] either has different points P1, P2 in common with K1 and K2 or

has a point Z in common with K1 ∩ K2. In the first case, define the point Qθ as the

intersection of the plane P1P2P
′ with the line RQ; this is well defined since both

objects are contained in the solid P1P2PR. In the second case, define Qθ as the

intersection of the plane t(Z, [P,Z])P ′ with the line RQ. If U ∈ K1 ∪ K2, then put

Uθ = U . Also, Pθ = P ′. Define K as the set of points Qθ such that Q ∈ K. Then θ

is a well-defined map from K to K. It follows that θ is bijective and that its inverse

is the restriction to K of a projection mapping with centre R and image PG(8, q).
Note that 〈K〉 = PG(9, q). It is now shown that for every conic C ∈ Γ, the set Cθ is

a conic on K.
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If C ⊂ K1∪K2, then this is immediate. Also, if C containsP , then it follows from

the construction. Now suppose that P /∈ C and that C is not contained in K1 ∪ K2.

Then P and C are contained in the 5-dimensional space PG(5, q) containing the

unique quadric sub-Veronesean V2 of dimension two which contains both P and C.

Now, V2 either has distinct conics C1 and C2 in common with K1 and K2 or V2

contains the conic K1 ∩ K2.

Consider the first case and let U ∈ C be arbitrary. If [U, P ] contains distinct

points of K1 and K2, then Uθ is contained in the 5-dimensional space 〈C1, C2, P
′〉.

If [U, P ] contains the unique common point W of C1 and C2, then the tangents at W

of [U, P ], C1, C2 are coplanar by (c), and so again Uθ is contained in 〈C1, C2, P
′〉. If

R ∈ 〈C1, C2, P
′〉, then P ∈ 〈C1, C2〉, so P ∈ C1 ∪ C2, a contradiction. Hence, in this

first case, Cθ is the intersection of the cone RC with 〈C1, C2, P
′〉, implying that Cθ is

a conic on K.

Now consider the second case. If U ∈ C, then Uθ is contained in the 5-

dimensional space Π5 generated by P ′ and all tangent planes of V2 at points of

K1 ∩ K2; see also Lemma 4.35. If R were contained in Π5, then P would be in Π5,

so P ∈ Π5 ∩K; hence P ∈ K1 ∩K2 by Lemma 4.35, a contradiction. Hence, in this

second case, Cθ is the intersection of the cone RC with Π5, implying as before that

Cθ is a conic on K.

Therefore it follows that every two points of K are contained in a unique conic

which is the image under θ of some element of Γ. Let Γ be the set of all these conics

on K. Then it has been shown that K satisfies (a) for Γ. Let Π2 and Π′

2 be two planes

of PG(9, q) containing the images under θ of distinct Γ-arcs C and C′. Suppose

Π2 ∩ Π′

2 �= ∅. As 〈C, C′〉 is at least 4-dimensional, the point R does not belong to

Π2Π
′

2 and |Π2 ∩ Π′

2| = 1. So 〈C〉 ∩ 〈C′〉 �= ∅, and consequently C ∩ C′ is a point by

(b). It follows that Π2 ∩ Π′

2 is a point of K. This shows that K satisfies (b).

Finally, it is shown that (c) is satisfied for K. Therefore, let V ∈ K and let C be a

conic of K which is the image under θ of an element of Γ; assume also that V /∈ C.

By (c) applied to K, the tangents at V of the elements of Γ which contain V and a

point of C, are contained in a solid Π3 containing R.

First let q > 2. By considering θ−1 it follows that all elements of Γ which contain

V and a point of C belong to the 5-dimensional space Π′

5 generated by C and two

elements C1 and C2 of Γ, defined by V and distinct pointsU1 and U2 of C. This space

Π′

5 does not contain R, as otherwise, by applying θ−1, there arises a Veronesean sub-

cap of dimension 2 on K contained in a 4-dimensional space. It now follows that the

tangents at V of the elements of Γ which contain V and a point of C are contained in

the plane Π3 ∩ Π′

5. By Theorem 4.36, K is a quadric Veronesean of dimension 3.

Now let q = 2. If it is shown that the image under θ of the point set of any

Veronesean cap of dimension 2 on K is contained in a 5-dimensional space, then the

argument of the previous paragraph applies and the theorem is proved. This is true

for K1 and K2. Now consider the set K3 = (K\(K1∪K2))∪(K1∩K2). In the present

situation, [P,Q] contains a point UQ of K1 ∩ K2, for all Q ∈ K\(K1 ∪ K2), with

P �= Q. All lines t(UQ, [P,UQ]) belong to a common 4-dimensional space Π4 which

intersects the Veronesean cap of dimension 2 defined by P and K1 ∩K2 in K1 ∩K2.

Hence all planes t(UQ, [P,UQ])P
′ belong to a common 5-dimensional space Π′′

5 .
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This space Π′′

5 does not contain R as otherwise Π4 contains P , a contradiction. By

construction, all corresponding points Qθ are contained in Π′′

5 , for all Q in the set

K\(K1 ∪K2), with P �= Q. These points Qθ together with P ′ and K1 ∩K2 form the

point set that is the image under θ of the Veronesean sub-cap K3 of dimension 2.

Last, consider a Veronesean cap K4 of dimension 2 on K other than K1,K2,K3,

and hence not containing K1 ∩K2. Put {Z} = K1 ∩ K2 ∩ K4 and let Q1, Q2 be the

other points of K3 ∩ K4. Put Ci = K4 ∩ Ki, with i = 1, 2, 3. By (c), the tangent l

to C3 at Z is contained in 〈C1, C2〉. The conic C3θ is {Z,Q1θ,Q2θ}, and, from the

construction of θ, it follows that l is tangent to C3θ at Z . Hence 〈K4θ〉 = 〈C1, C2, C3θ〉

is 5-dimensional and does not containR, as otherwiseK4 is in a 4-dimensional space.

The theorem is thus established. ��

Lemma 4.39. If N < n(n+ 3)/2, then there exist two distinct Veronesean sub-caps

K1,K2 of dimension n− 1 such that 〈K1,K2〉 = PG(N, q).

Proof. Suppose M < n(n+ 3)/2. Coordinatise the projective space PG(n, q) with

respect to a basis E0, E1, . . . , En of the underlying vector space and consider the

points P ∗

i
= P(Ei) and the points P ∗

ij
= P(Ei − Ej), with i, j ∈ {0, 1, . . . , n}

and i �= j. Note that P ∗

ij
= P ∗

ji
; so it may be assumed that i < j. Denote the

corresponding points on K by Pi and Pij . Let P ∗ ∈ PG(n, q) and let l(P ∗) be

the minimal number of points of {P ∗

0 , P
∗

1 , . . . , P
∗

n
} needed to generate a subspace

containing P ∗. Put S = {Pk, Pij | 0 ≤ k ≤ n and 0 ≤ i < j ≤ n}. For any

P ∈ K, let P ∗ be the corresponding point of PG(n, q). If l(P ∗) = 1, then P ∈ 〈S〉.

If l(P ∗) = 2, then P belongs to some plane PiPjPij , with i < j, and so belongs

again to 〈S〉.

Now, assume that l(P ∗) > 2 and, first, take q > 2. Let P ∗ = P(
∑

riEi), with

ri ∈ Fq , and ri �= 0 for i ∈ {0, 1, . . . , l(P ∗) − 1}, but with ri = 0 otherwise. Then

take a line m∗ of PG(n, q) through P ∗ and the point Q∗ = P(D), where the vector

D is defined as follows. If not all ri are equal, say r0 �= r1, let D = E0 + E1; if all

ri are equal, let D = E0+ tE1, with t �= 0, 1. Then m∗ contains three distinct points

Q∗

1, Q
∗

2, Q
∗

3 such that l(Q∗

i
) ≤ l(P ∗) − 1, for i = 1, 2, 3. By induction on l(P ∗),

it follows that Q1, Q2, Q3 ∈ 〈S〉, and hence P ∈ Q1Q2Q3 ⊂ 〈S〉. If q = 2, then,

without loss of generality, let P ∗ = P(D =
∑

Ei), with 0 ≤ i ≤ l(P ∗)− 1. Hence

P is contained in the 5-dimensional space Π5 generated by the Veronesean sub-cap

of dimension 2 determined by

P(E0), P(E1), P(E0 + E1 +D), P(E0 + E1), P(E0 +D), P(E1 +D);

note that these six points correspond to six points of PG(N, 2) which generate Π5.

By induction it now follows that P ∈ 〈S〉. Hence 〈S〉 = PG(N, q).
Since N < |S|− 1 = n(n+3)/2, some element P of S satisfies P ∈ 〈S\{P}〉.

Without loss of generality, let P = P0 or P = P01. In the first case choose the

two Veronesean sub-caps K1 and K2 of dimension n− 1 as being determined by the

hyperplanes V(X0) and V(X0 +X1 + · · ·+Xn) of PG(n, q), while in the second

case choose them as being determined by the hyperplanes V(X0) and V(X1) of

PG(n, q). ��
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Finally, the main result is shown.

Theorem 4.40. There exists a projective space PG(n(n + 3)/2, q) containing the

space PG(N, q), a subspace Π of PG(n(n + 3)/2, q) skew to PG(N, q), and a

quadric Veronesean Vn of dimension n in PG(n(n + 3)/2, q), with Π ∩ Vn = ∅,

such that K is the bijective projection of Vn from Π onto PG(N, q). The subspace Π
can be empty, in which case K is the quadric Veronesean Vn.

Proof. By Theorems 4.34, 4.36, 4.37, 4.38, the theorem is already established for

n = 2, 3 and N = n(n+ 3)/2.

Suppose N < n(n + 3)/2. Let K1,K2 be as in Lemma 4.39. Embed PG(N, q)
as a hyperplane in a projective space PG(N + 1, q) and let R be any point of the

differencePG(N+1, q)\PG(N, q). Further, let P be any point of K\(K1∪K2), and

choose arbitrarily a point P ′ = Pθ other than P and R on the line RP . Also, choose

an element C of Γ through P which has different points P1 and P2 in common with

K1 and K2. As in the proof of Theorem 4.38, define Qθ for Q ∈ C. For Q ∈ K1∪K2,

let Qθ = Q. Now, let Q ∈ K be arbitrary, but not in K1 ∪ K2 ∪ C. Then there is

a Veronesean sub-cap V2 of dimension two of K containing C and Q; also V2 has

different conics C1 and C2 in common with K1 and K2. Define Qθ as the intersection

of the spaces 〈C1, C2, P θ〉 and RQ. The set of all points Qθ, with Q ∈ K, is denoted

by K.

Let D be any element in Γ. It is shown that Dθ is a conic. If C ∩D �= ∅, then this

follows immediately from the construction. Assume now that C ∩ D = ∅. Consider

the unique Veronesean sub-cap K3 of dimension three containing C and D. Then

K3 meets K1 and K2 in different sub-Veroneseans V ′

2 and V ′′

2 of dimension two,

meeting in a conic D′ of Γ. If P /∈ 〈V ′

2,V
′′

2 〉, then Dθ is the intersection of the space

〈V ′

2,V
′′

2 , P θ〉 with the cone RD; hence it is a conic itself. If P ∈ 〈V ′

2,V
′′

2 〉, then this

follows from Theorem 4.38 and its proof. Let Γ be the set of all conics Dθ on K.

As in the proof of Theorem 4.38, it is shown that (a) and (b) are satisfied forK and

Γ, and also (c) for q > 2. So let q = 2. With this notation, the Veronesean sub-cap V2

contains the points P,Q, P1, P2, U ∈ C1 ∩ C2, the third point Q1 of C1 and the third

point of C2. Hence U ∈ [P,Q]. So t(U, [P,U ]) is in the plane t(U, C1)t(U, C2). It

follows that t(U, [P,U ])P ′∩RQ = 〈C1, C2, P
′〉∩RQ. Now consider any Veronesean

sub-cap Ṽ2 of dimension two on K and let K̃3 be a Veronesean sub-cap of dimension

three on K containing Ṽ2 and P . Relying on the foregoing and the case q = 2 of the

proof of Theorem 4.38, it follows that the set Ṽ2θ belongs to a 5-dimensional space

which does not contain R. Hence (c) holds.

Induction on N now completes the proof of the main theorem. ��

4.2.2 Characterisations of V2n

n
of the second kind

By Theorem 4.22, for any two distinct points P1 and P2 of the Veronesean V4
2 , the

tangent planes π(P1) and π(P2) have exactly one point in common. By a classical

theorem, the Veronesean V4
2 overC is the only surface generatingPG(n,C), n ≥ 5,

which is not a cone (with non-trivial vertex) and which satisfies the property just
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mentioned. In this section, the aim is to prove similar characterisation theorems in

the case of a Galois field Fq and the Veronesean V2
n

n
.

Consider the quadric Veronesean V2
n

n
and the corresponding Veronesean map

from PG(n, q) into PG(Nn, q), with Nn = n(n+3)/2. Then, by Theorem 4.10, the

image of an arbitrary hyperplane of PG(n, q) under the Veronesean map is a quadric

Veronesean V2
n−1

n−1 and the subspace of PG(Nn, q) generated by it has dimension

Nn−1 = (n − 1)(n + 2)/2. Such a subspace is called a V2
n−1

n−1 -subspace, or, for

short, a Vn−1-subspace, of V2
n

n
or of PG(Nn, q): this is an abuse of language, since

the subspace does not lie in V2
n

n
. The image of a line of PG(n, q) is a conic. If q is

even, then the intersection of all tangent lines of a conic is the nucleus of the conic. In

the next theorem it is shown that for n > 2 the set of all these nuclei is a Grassmann

variety. For n = 2, by Theorem 4.23 the set of all these nuclei is a plane, called the

nucleus of V4
2 .

Theorem 4.41. If q is even, then the set of all nuclei of the conics on V2
n

n
, with

n > 2, is the Grassmann variety G1,n of the lines of PG(n, q) and hence generates

a subspace of dimension Nn−1.

Proof. Let q be even and n > 2. If l is the line of PG(n, q) determined by the points

P(x0, x1, . . . , xn) and P(y0, y1, . . . , yn), then the image of l under the Veronesean

map is the set of points

P(x2
0s

2 + y20t
2, . . . , x2

n
s2 + y2

n
t2, x0x1s

2 + y0y1t
2

+(x0y1 + x1y0)st, . . . , x0xns
2 + y0ynt

2 + (x0yn + xny0)st, . . . ,

xn−1xns
2 + yn−1ynt

2 + (xn−1yn + xnyn−1)st),

with s, t ∈ Fq and (s, t) �= (0, 0). This is a conic C in the plane generated by the

three points

P(x2
0, . . . , x

2
n
, x0x1, . . . , x0xn, . . . , xn−1xn),

P(y20 , . . . , y
2
n
, y0y1, . . . , y0yn, . . . , yn−1yn),

P(0, . . . , 0, x0y1 + x1y0, . . . , x0yn + xny0, . . . , xn−1yn + xnyn−1).

It can be checked that the last point is the nucleus of C and the result follows. ��

The subspace of dimension Nn−1 generated by the Grassmann variety G1,n is

called the nucleus of the Veronesean V2
n

n
.

In Section 4.1 it was mentioned that, for q even, all contact hyperplanes of V4
2

contain the nucleus of V4
2 . For later reference, call this the nucleus property of V4

2 .

In the next theorem, this is generalised to all n ≥ 2, but first the definition of contact

hyperplane in the general case is given.

Let PG(n − 1, q) = V(F ), where F = u0X0 + u1X1 + · · · + unXn, be any

hyperplane of PG(n, q), with n ≥ 2. If Q is the quadric whose point set coincides

with PG(n − 1, q), then to Q there corresponds the hyperplane V(F ′) of the space

PG(n(n+ 3)/2, q), where



4.2 Characterisations 165

F ′ = u2
0Y00 + u2

1Y11 + · · ·+ u2
n
Ynn

+2u0u1Y01 + · · ·+ 2u0unY0n + · · ·+ 2un−1unYn−1,n.

Such a hyperplane is called a contact hyperplane of V2
n

n
. The contact hyperplanes of

V2
n

n
are the hyperplanes which contain exactly one Vn−1-subspace of V2

n

n
.

Theorem 4.42. If q is even, then the nucleus of V2
n

n
is the intersection of all contact

hyperplanes of V2
n

n
.

Proof. From the proof of Theorem 4.41, the subspace V(Y00, Y11, . . . , Ynn) of

PG(n(n+3)/2, q) is the nucleus of V2
n

n
. As V(u2

0Y00+u2
1Y11+ · · ·+u2

n
Ynn), with

(u0, u1, . . . , un) �= (0, 0, . . . , 0), are the contact hyperplanes of V2
n

n
, so the nucleus

is the intersection of the contact hyperplanes. ��

For later reference, call this the nucleus property of V2
n

n
.

In Theorem 4.25 it was shown that PG(5, q), with q odd, admits a polarity which

maps the set of all conic planes of V4
2 onto the set of all tangent planes of V4

2 . Sim-

ilarly it may be shown that PG(Nn, q), with q odd, admits a polarity θ which maps

the set of all Vn−1-subspaces of V2
n

n
onto the set of all tangent spaces of V2

n

n
. This

polarity is represented by the equations

ρv00 = y00/2, ρv11 = y11/2, . . . , ρvnn = ynn/2,
ρv01 = y01, ρv02 = y02, . . . , ρvn−1,n = yn−1,n,

where

V(v00Y00 + v11Y11 + · · ·+ vn−1,nYn−1,n)

is a variable hyperplane of PG(Nn, q). The images of the points of V2
n

n
are the

contact hyperplanes of V2
n

n
.

Now let Sn be the set of all Vn−1-subspaces of the quadric Veronesean Vn in

PG(Nn, q), with Nn = n(n+ 3)/2. The set Sn has the following properties, which

can be verified using coordinates:

(a) every two members of Sn generate a hyperplane of PG(Nn, q);
(b) every three members of Sn generate PG(Nn, q);
(c) no point is contained in every member of Sn;

(d) the intersection of any non-empty collection of members of Sn is a subspace of

dimension Ni = i(i+ 3)/2 for some i ∈ {−1, 0, 1, . . . , n− 1};

(e) if q is even, then there exist three members π, π′, π′′ of Sn with

π ∩ π′ = π′
∩ π′′ = π′′

∩ π.

For n = 2 and arbitrary q, property (d) follows immediately from (a), (b), (c).

From now on, let S be a collection of θ(n) = qn+ qn−1+ · · ·+ q+1 subspaces

of dimension Nn−1 = (n − 1)(n + 2)/2 of PG(Nn, q), with Nn = n(n + 3)/2,

such that the following conditions are satisfied:

(I) every two members of S generate a hyperplane of PG(Nn, q);
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(II) every three members of S generate PG(Nn, q);
(III) no point is contained in every member of S.

Definition 4.43. (1) The set S is called a Veronesean set of subspaces.

(2) In the particular case where no three members of S meet in the same subspace,

necessarily of dimension Nn−2, the set S is called an ovoidal Veronesean set of

subspaces.

(3) A set of subspaces in (1) which is not ovoidal is called proper.

(4) If a collection S of subspaces of dimension Nn−1 satisfies (I), (II) and (III), but

no three members of S meet in the same subspace, and if S contains θ(n) + 1
elements, then S is called a hyperovoidal Veronesean set of subspaces.

One of the purposes of this section is to classify the proper Veronesean sets of

subspaces, and to show that every ovoidal Veronesean set of subspaces is contained

in a unique hyperovoidal Veronesean set of subspaces.

Further it is shown that, for q ≥ n, every Veronesean set of subspaces satisfies

the following:

(IV) the intersection of any non-empty collection of members of S is a subspace

of dimension i(i+ 3)/2 for some i ∈ {−1, 0, 1, . . . , n− 1}.

A further condition may be formulated:

(V) if q is even, then there exist π, π′, π′′ ∈ S with

π ∩ π′ = π′
∩ π′′ = π′′

∩ π.

If S is a proper Veronesean set of subspaces satisfying also (IV), then it will be

shown that either it must be the collection of Vn−1-subspaces of a quadric Verone-

sean V2
n

n
in PG(Nn, q), or that q is even and there is a unique subspacePG(Nn−1, q)

such that S ∪{PG(Nn−1, q)} is the set of Vn−1-subspaces together with the nucleus

of a quadric Veronesean V2
n

n
in PG(Nn, q). Also, it will follow that, if S∗ is a set

of θ(n) + 1 subspaces of dimension Nn−1 = (n− 1)(n+ 2)/2 of PG(Nn, q) such

that (I), (II), (III) hold for S∗ and either also (IV) holds, or q ≥ n, then q is even

and either S∗ is the set of all Vn−1-subspaces together with the nucleus of a quadric

Veronesean V2
n

n
in PG(Nn, q), or it is a hyperovoidal Veronesean set of subspaces.

The proof proceeds by induction on n, but the smallest case n = 2 is handled in

the course of proving the general case.

It is convenient in many situations to consider the dual projective space. The

dual of an object B of PG(Nn, q) is denoted by B. In particular, denote the dual of

PG(Nn, q) by PG(Nn, q). So consider a set S of θ(n) n-dimensional subspaces of

PG(Nn, q), satisfying the following properties:

(I′) every two members of S meet in a point of PG(Nn, q);
(II′) no three members of S have a point in common;

(III′) no hyperplane of PG(Nn, q) contains all members of S.

The rough idea of the strategy is to fix one member π of S and to consider all

intersections of π with the other elements of S. This allows the use of induction.

However, these intersections do not always satisfy (I), (II), (III); if they do not, then
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another member of S is considered. To start, the properties of the set Sπ of subspaces

of π of dimension Nn−2 = (n − 2)(n + 1)/2 obtained by intersecting π with all

elements of S\{π} are collected.

Note that, for any element π of S , every point of π is incident with a unique

element of S\{π}, by (I′) and (II′), except for a unique point, called the nucleus of

π.

For sake of completeness (IV′) and (V′) are also formulated:

(IV′) any non-empty collection of members of S generates a subspace of dimen-

sion Nn −Ni − 1 for some i ∈ {−1, 0, 1, . . . , n− 1};

(V′) when q is even, then there exists a 2n-dimensional space containing at least

three elements of S.

Lemma 4.44. If q ≥ n or if S satisfies (IV), then any two elements of Sπ, with

π ∈ S, generate a hyperplane of π.

Proof. The lemma is immediate if S satisfies (IV). So assume that q ≥ n.

Let π1, π2 ∈ S\{π}, with π ∩ π1 �= π ∩ π2. Then

〈π ∩ π1, π ∩ π2
〉 ⊂ π ∩ 〈π1, π2

〉,

and the last is a hyperplane of π by (II). Hence, it remains to show that 〈π∩π1, π∩π2〉

has dimension at least Nn−1 − 1. This is equivalent to showing that the dimension

of π ∩ π1 ∩ π2 is at most 2Nn−2 −Nn−1 + 1 = n(n− 3)/2 = Nn−3. Suppose by

way of contradiction that the dimension of π ∩ π1 ∩ π2 is larger than Nn−3. Then

the dimension of 〈π, π1, π2
〉 is at most 3n− 2. Put

γ1 = 〈π, π1
〉, γ2 = 〈γ1, π2

〉.

Since π and π1 meet in a point, the subspace γ1 has dimension 2n. If γ1 = γ2, then

π ∩ π1 = π ∩ π2, contrary to the assumption.

Now it is shown that there is a sequence (π3, π4, . . . , πn+1) of elements of S

such that, for all i ∈ {2, 3, . . . , n},

(i) the subspace γi defined inductively by γi = 〈γi−1, πi〉 has at least an i-

dimensional subspace in common with πi+1,

(ii) γi does not contain πi+1.

Putting i = n in (i) and (ii), these two conditions give a contradiction, in view of

the fact that πn+1 has dimension n.

The sequence is now constructed by an inductive argument, adding π2 to the

sequence, putting π = γ0, and noting that π2 has at least one plane in common

with γ1. For this first step, the intersection with πi+1 is larger than asked for in (i).

Suppose now that there is already a sequence (π2, π3, . . . , πk), for some integer k in

{2, 3, . . . , n}, satisfying (i) and (ii) for all i ∈ {1, 2, . . . , k − 1}. First, note that the

dimension of γk is bounded by

dim γ2 + (n− 2) + (n− 3) + · · ·+ (n− (k − 1))

≤ 3n− 2 + (n− 2)(n− 1)/2 = (n(n+ 3)/2)− 1;
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hence γk is contained in a hyperplane of PG(Nn, q). Condition (III′) therefore guar-

antees the existence of a subspace (πk+1)′ not contained in γk.

Now, there are at least qn − 1 elements of S meeting (πk+1)′ in a point outside

γk, and it is shown that, for all i ∈ {2, 3, . . . , k}, there are at most (qn−1)/(q−1)−i

of these meeting πi in a point of γi−1. Indeed, the i subspaces π, π1, . . . , πi−1 meet

πi in a point of γi−1 and have no points outside γk; therefore there still remain

(qn − 1)/(q − 1) − i points of πi
∩ γi−1 that possibly could be contained in a

(necessarily unique) element of S meeting (πk+1)′ in a point outside γk. The result

follows.

A counting argument, using the fact that k ≤ n ≤ q, now shows that at least

one element πk+1 of S meets (πk+1)′ in a point outside γk and meets πi in a point

outside γi−1, for all i ∈ {2, 3, . . . , k}. Putting k = n, a subspace πn+1 is obtained

having an n-dimensional subspace in common with γn, but not contained in γn, a

contradiction. The lemma is thus established. ��

Now assume either that S also satisfies (IV) or that q ≥ n.

Some more notation and terminology are required. For π′ ∈ S\{π}, define

[π, π′] to be the set of elements of S containing π ∩ π′. The dual of [π, π′] is de-

noted by [π, π′]. The π-number of π′ is the size of [π, π′]. The spectrum Spec(π) of

π is the set of all π-numbers of elements of S\{π}. It is shown that for the π-number

there are a limited number of possibilities.

Lemma 4.45. (i) For q even, Spec(π) ⊂ {2, q, q + 1}.

(ii) For q odd, Spec(π) ⊂ {q, q + 1}.

Proof. First it is shown that if, for some π′ ∈ S, there is a π-number at least three,

then it is either q or q+1. So, suppose that π′, π′′ ∈ S\{π}, with π′ �= π′′, meet π in

the same subspace γ. Dualise the situation. By (III′), there is an element τ ∈ S not

contained in γ. By Lemma 4.44, τ meets γ in a line ζ, which has the distinct points

σ, σ′, σ′′ in common with π, π′, π′′. Since every element of S contained in γ must

meet τ , by (I′), necessarily in a point of ζ , and since these points must all be distinct,

it follows already that the π-number of π′ is not larger than q + 1.

Suppose now, by way of contradiction, that the π-number of π′ is strictly less than

q. Then there are at least two points on ζ that are not contained in an element of S

that is entirely contained in γ. One of these points cannot be the nucleus of τ ; so there

is at least one point δ of ζ that is contained in an element τ ′ of S\{τ} that does not

belong to γ. The subspace τ ′ meets γ in a line ζ
′

intersecting π, π′, π′′ in θ, θ
′

, θ
′′

. Let

{η} = π ∩ π′, and let α be the plane spanned by η and ζ. Then, α = 〈π, ζ〉 ∩ 〈π′, ζ〉.

But since 〈π, ζ〉 = 〈π, δ〉 = 〈π, ζ
′

〉, and similarly 〈π′, ζ〉 = 〈π′, ζ
′

〉, it follows that

ζ
′

is contained in α. Hence π′′ has the two distinct points σ′′ and θ
′′

in common with

α, implying that π′′ meets both π and π′ in points of α; these intersections are on the

lines 〈η, σ, θ〉 and 〈η, σ′, θ
′

〉. So all elements of S that are contained in γ meet π in

points of α.

Now select a point δ
′

of π, distinct from the nucleus of π, and not lying in α.

There is a unique element τ ′′ ∈ S\{π} containing δ
′

, and by the foregoing τ ′′ is not
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contained in γ. Interchanging the roles of τ ′′ and τ , it follows that π ∩ π′′ is a point

of the line 〈η, δ
′

〉, a contradiction. Hence Spec(π) ⊂ {2, q, q + 1}.

Suppose now that q is odd. It is shown that the π-number of π′ ∈ S\{π} cannot

be two. Assume, by way of contradiction, that the π-number of such a π′ is two.

Consider an arbitrary τ ∈ S\{π, π′}. Then, again putting γ = 〈π, π′〉, the space τ

meets γ in a line ζ . Let {η} = π ∩ π′. As in the previous section, the intersection

of γ and any element τ ′ ∈ S\{π, π′, τ} containing some point of ζ , is a line ζ
′

contained in the plane 〈η, ζ〉. If the nucleus of τ were not on ζ , then there would be

q − 1 choices for τ ′, and since no three of the corresponding lines ζ
′

, together with

ζ, ζ
π
= α ∩ π, ζ

π′ = α ∩ π′ meet in a common point, there arises a (q + 2)-arc,

a contradiction. Hence there is a unique point θ on the line ζ
π

not contained in an

element of S\{π} that contains a line of α.

By way of contradiction, suppose that θ is not the nucleus of π. Then there is an

element τ ′′ ∈ S\{π} containing θ. If ζ
′′

is the intersection of τ ′′ with γ, then a pre-

vious argument shows that there are q− 2 > 0 elements of S different from τ ′′, π, π′

meeting γ in a line of the plane 〈η, ζ
′′

〉. These q − 2 elements also contain points

of the line ζ
π

different from η and θ, and so their intersections with γ are contained

in α. It follows that α = 〈η, ζ
′′

〉, and so τ ′′ contains a line of α, a contradiction.

Hence θ is the nucleus of π. But τ was arbitrary in S\{π, π′} and this contradicts

the uniqueness of the nucleus of π. The lemma is thus proved. ��

Now the case q �= 2 with each spectrum a subset of {q, q+1} is considered, and

also the case q = 2 for which each spectrum is {3}.

An extra axiom is required.

(An) Assume that S satisfies (I) to (V). Then either S is the set of Vn−1-

subspaces of a quadric Veronesean V2
n

n
in PG(Nn, q), or q is even, there are two

elements π, π′ ∈ S with the property that no other element of S contains π ∩ π′, and

there is a unique subspace η of dimension (n − 1)(n + 2)/2 such that S ∪ {η} is

the set of Vn−1-subspaces together with the nucleus of a quadric Veronesean V2
n

n
in

PG(n(n+ 3)/2, q).

Lemma 4.46. (i) Let q > 2 and suppose that Spec(π) ⊂ {q, q + 1}. Then

Spec(π) = {q + 1}. If this holds for every element of S and if for n > 2
the axiom (An−1) is satisfied, then S is the set of Vn−1-subspaces of a quadric

Veronesean V2
n

n
.

(ii) If q = 2, if Spec(π) = {3} for every element of S and if for n > 2 the axiom

(An−1) is satisfied, then the same conclusion holds.

Proof. Assume that q > 2 and that Spec(π) ⊂ {q, q+1}. Suppose that the π-number

of some π′ ∈ S\{π} is q. Let τ ∈ S be such that it does not contain π ∩ π′, and

let τ ′ ∈ [π, τ ], with π �= τ ′ �= τ . This means that 〈π, τ 〉 = 〈π, τ ′〉, which implies

that the lines 〈π, τ〉 ∩ π′ and 〈π, τ ′〉 ∩ π′ coincide. Denoting this line by ζ
τ
= ζ

τ ′ , it

follows that there are two possibilities:

(a) all points on ζ
τ

are contained in an element of [π, τ ] when the π-number of τ is

q + 1;
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(b) all but exactly one point of ζ
τ

are contained in an element of [π, τ ] when the

π-number of τ is q.

Also, there are exactly q points on the line ζ = τ ∩ γ, with γ = 〈π, π′〉, contained in

elements of [π, π′]. So there remains a unique point θ on ζ which is not contained in

any element of [π, π′]. It is now shown that θ is the nucleus of τ .

Assume, by way of contradiction, that θ is not the nucleus of τ . Then, let β be the

unique element of S\{τ} containing θ. As in the proof of the previous lemma, this

implies that the intersection of β with γ is a line ζ
′

contained in the plane α spanned

by ζ and the point η, with {η} = π ∩ π′. Also, every element of [π, π′] meets ζ
′

in a point not belonging to ζ, and hence has a line in common with α; this implies

that every element of [π, π′] has a point in common with ζ
τ

, which is contained in

α. This contradicts the observation made in the previous paragraph on the points of

ζ
τ

. Consequently, θ is the nucleus of τ .

Hence, as τ was essentially arbitrary, all nuclei are contained in γ. If the π-

number of τ were also equal to q, then similarly all nuclei would be contained in

〈π, τ〉. Assume, by way of contradiction, that this is the case. Let β
′

be an element

of S containing no point of 〈π, τ〉 ∩ π′ and no point of 〈π, π′
〉 ∩ τ . Then the nucleus

of β
′

is on the line 〈π, τ〉∩β
′

and on the line 〈π, π′
〉∩β

′

. Hence these lines coincide

and so β
′

intersects 〈π, τ〉 ∩ π′ and 〈π, π′
〉 ∩ τ , a contradiction.

It follows that the π-number of all elements of S\[π, π′] is equal to q+1. Count-

ing the number of sets [π, π′′], with π′′ ∈ S\[π, π′], gives (qn+qn−1+· · ·+q2+1)/q,

which is not an integer. This is a contradiction, and so the spectrum of π is the sin-

gleton {q + 1}.

Suppose now that Spec(π) = {q + 1} for all π ∈ S, and let q ≥ 2. First assume

that n = 2. Let V be the set of points of PG(5, q) that are contained in precisely

q + 1 elements of S. Note that

|V| =
(q2 + q + 1)(q2 + q)/2

(q + 1)q/2
= q2 + q + 1,

by counting the ordered triples (π′, π′′, P ) with π′, π′′ ∈ S, π′ �= π′′, and P a point

of π′ ∩ π′′, in two ways. Also, there are precisely q + 1 points of V in each member

of S. It is shown that V is a cap. First it is established that, whenever a point P ∈ V

is contained in a line of PG(5, q) intersecting V in at least three points, then the set

of q + 1 points in any element of S containing P is a line of PG(5, q), leading to a

contradiction.

Let P, P ′, P ′′ be three distinct points of V on a common line m. Let πP ∈ S

contain P . First suppose that m is not contained in an element of S. Let πP ′ and

πP ′′ be two elements of S containing P ′ and P ′′, and such that the intersections

with πP , say R′ and R′′, are distinct; these elements exist because there are q + 1
elements of S through each point of V . If P,R′, R′′ were not collinear, then the plane

πP would be generated by these three points; but then the planes πP ′ and πP ′′ would

generate a 4-dimensional space containing R′, R′′, P ′, P ′′, hence also containing P

and thus containing πP , contradicting (II). Fixing πP and πP ′ , but not πP ′′ , there
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arise at least q distinct points on PR′\{P,R′}, a contradiction. So m is contained in

an element π of S.

Assume that πP does not contain m. From a previous argument it follows that the

points of V in πP are contained in a line. Similarly, interchanging the roles of P ′, P ′′

and two arbitrary points of πP ∩V different fromP , it follows that also π∩V is a line.

But now every member of S has that property, since every member of S contains a

point of πP . Hence V consists of the union of q2 + q + 1 lines and consequently is

a projective plane Π2 of PG(5, q). Every element of S meets Π2 in a line, which

implies that the (q2+ q+1)(q2+ q)/2 distinct hyperplanes containing two elements

of S all contain Π2. But there are only q2 + q + 1 hyperplanes in PG(5, q) through

Π2, a contradiction. Consequently, V is a cap.

It now follows that, for every π ∈ S, the set π ∩ V is a (q + 1)-arc. Hence, on

V , there is a set O of size q2 + q + 1 of (q + 1)-arcs, meeting in pairs in a point,

and such that every point is contained in q + 1 of these (q + 1)-arcs. It follows that

every two distinct points of V are contained in a unique (q+1)-arc. In order to apply

Theorem 4.34 to conclude that V is the quadric Veronesean V4
2 , it must be shown that

the tangent lines at any fixed point P ∈ V to the (q + 1)-arcs O ∈ O containing P

are coplanar. To that end, consider an arbitrary plane π ∈ S containing P and project

V\π from π onto a plane Π2 of PG(5, q) skew to π; denote by θ the projection map.

First it is shown that θ is injective on V\π. Let P ′, P ′′ ∈ V\π and suppose

that P ′θ = P ′′θ. Let π′ ∈ S contain P ′ and P ′′. Then 〈π, P ′, P ′′〉 = 〈π, π′〉 is

3-dimensional, a contradiction. Now let π′ ∈ S\{π} be arbitrary. Since 〈π, π′〉 is 4-

dimensional, the projection of (π′\π)∩V consists of q points on a line m′ of Π2. Let

R′ be the unique point on m′ that is not an image under θ of any point of (π′∩V)\π.

By way of contradiction, let R′ be the image of a pointR ∈ V\π; necessarily R /∈ π′.

The q+1 planes of S through R, minus their intersection points with π, are mapped

under θ into q+1 different lines of Π2 throughR′, since every three distinct elements

of S generate PG(5, q). Hence there is an element π′′ ∈ S through R which yields

m′. So π, π′, π′′ are contained in the hyperplane 〈π,m′〉 of PG(5, q), contradicting

(II). It now follows that the set of planes of S\{π} through P corresponds under

θ with the set of q + 1 lines of Π2 containing a fixed point P ∗ of Π2, and that the

3-dimensional subspace Π3 = 〈π, P ∗〉 meets every element π′ ∈ S\{π} containing

P in a line mπ′ through P disjoint from V\π. So mπ′ is tangent to the (q + 1)-arc

π′ ∩ V at P . Now fix π′ ∈ S\{π} with P ∈ π′. Then, similarly, there is a solid

Π′

3 containing π′ and the tangent lines at P to the elements of O containing P . As

Π3 �= Π′

3, so all these tangent lines are contained in the plane Π3 ∩ Π′

3. This shows

the lemma for n = 2.

Next, suppose that n > 2. Consider the set Sπ = {π∩ π′ |π′ ∈ S\π}, and

calculate |Sπ| = θ(n − 1). In π = PG(Nn−1, q) the set Sπ satisfies (I) and (III)

for the parameter n − 1 instead of n. It is now shown that it also satisfies (II). Let

[π, π′] �= [π, τ ], with τ ∈ S\{π}, and let ζ
τ

be as above. Then, all points of ζ
τ

are

contained in elements of [π, τ ]. Hence any τ ′ ∈ S\([π, π′]∪ [π, τ ]) meets π′ outside

〈π, τ〉. This means that

〈π, π′
〉 ∩ 〈π, τ 〉 ∩ 〈π, τ ′〉 = π,
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and the dual of this is exactly (II). Also, if S satisfies (IV), then Sπ satisfies (IV); if

q ≥ n, then q ≥ n − 1. Hence, by (An−1), the set Sπ is either the set of all Vn−2-

subspaces of a quadric Veronesean V2
n−1

n−1 , or q is even and Sπ is the nucleus together

with all Vn−2-subspaces but exactly one of a quadric Veronesean V2
n−1

n−1 , or it is an

ovoidal Veronesean set of subspaces.

It is now shown that the last two cases cannot occur. In both these cases, there is

an element of Sπ , which can be taken to be π ∩ π′, with the property that it contains

θ(n − 1) − 1 subspaces of dimension Nn−2 arising as intersections of π ∩ π′ with

other elements of Sπ; if Sπ is not ovoidal, then take for π′ the nucleus of V2
n−1

n−1 . Let

δ be such a subspace of dimension Nn−2 and let τ ∈ S\[π, π′] contain δ. Then all

q+1 elements of [π, τ ] contain δ, but they define q+1 distinct members of Sπ′ , each

of which is defined by q different elements of S. As there are θ(n − 1)− 1 choices

for δ, there are at least

qn+1 + qn + · · ·+ q3 + (q + 1) (4.7)

elements in S, a contradiction; the last ‘q+1’ in (4.7) comes from the q+1 elements

of [π, π′]. It follows that Sπ is the set of all Vn−2-subspaces of a V2
n−1

n−1 .

Consider now the set V of all points of PG(Nn, q) that are contained in precisely

θ(n − 1) elements of S. From the previous section, it immediately follows that, for

each element π of S, the intersection π ∩ V is a quadric Veronesean V2
n−1

n−1 . Denote

by Γ the set of all conics contained in these intersections π∩V . Now let P ′, P ′′ ∈ V ,

P ′ �= P ′′. Then there are elements π′, π′′ ∈ S with P ′ ∈ π′ and P ′′ ∈ π′′. Suppose

π′ �= π′′. The θ(n−1) elements of S containingP ′ meet π′′ in distinct subspaces, by

(I) and the fact that their intersection contains P ′; hence P ′′ is contained in at least

one of them. Consequently P ′ and P ′′ are contained in a common member of S, and

hence P ′ and P ′′ are contained in a conic of Γ. Assume, by way of contradiction,

that P ′, P ′′ ∈ V with P ′ �= P ′′ are contained in distinct conics C′ and C′′ of Γ. Let

R ∈ C′′\C′. As before, it follows that, if n > 2, then C′ is contained in at least one

of the θ(n − 1) elements of S containing R. So C′ and C′′ are distinct conics of a

quadric Veronesean V2
n−1

n−1 sharing two distinct points, a contradiction. So any two

distinct points of V are contained in exactly one conic of Γ.

Now let C be any member of Γ and assume that P ∈ V\C. As before, if n ≥ 3,

then C is contained in at least one of the θ(n− 1) elements of S containing P . So P

and C are contained in a common member π of S and, since π ∩ V is a Veronesean,

the tangents at P of the conics through P which have a point in common with C all

lie in a fixed plane. By a similar argument, it follows that two distinct elements of Γ
containing P always generate a 4-dimensional space. Now assume that C′, C′′ ∈ Γ,

with C′ �= C′′, and that P ∈ 〈C′〉 ∩ 〈C′′〉. It will be shown that P ∈ C′ ∩ C′′.

If P /∈ C′ ∩ C′′ and P is not the nucleus of at least one of C′, C′′, say P is not

the nucleus of C′, then there is an element π of S containing C′′ and two distinct

points P ′ and P ′′ of C′. If π also contains C′, then, as C′ and C′′ are conics of some

V2
n−1

n−1 , it follows that P ∈ C′ ∩ C′′, a contradiction. If π does not contain C′, then P ′

and P ′′ are contained in common distinct elements of Γ, again a contradiction. Now

assume that P is the common nucleus of C′ and C′′. Let R ∈ C′′. Then R and C′ are
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contained in a common element π of S. As P is the common nucleus of C′ and C′′

the space π cannot contain C′′. So π∩〈C′′〉 = PR. Let R′ ∈ C′′\{R}. If n > 3, then

by similar arguments R,R′ and C′ are contained in a common element π′ of S. As

π′ ∩ V is a quadric Veronesean V2
n−1

n−1 , the conics C′ and C′′ of π′ ∩ V cannot have a

common nucleus. So n = 3.

If R,R′, R′′ are distinct points of C′′, then 〈R, C′〉, 〈R′, C′〉, 〈R′′, C′〉 are con-

tained in respective elements π, π′, π′′ of S. The 5-dimensional spaces π, π′, π′′ are

distinct and share the plane 〈C′〉. Let U ∈ C′. Then U and C′′ belong to a Veronesean

V4
2 , so the tangents of V4

2 at U are coplanar. Let D,D′,D′′ be the conics contain-

ing {U,R}, {U,R′}, {U,R′′}. Since the tangents at U of D,D′,D′′ are coplanar,

D′′ belongs to 〈π, π′〉. Consequently, π′′ ⊂ 〈π, π′〉. So π, π′, π′′ are in the same

hyperplane, a contradiction. Therefore P ∈ C′ ∩ C′′.

By Theorem 4.36, it now follows that Γ is the set of all conics on a quadric

Veronesean V2
n

n
. Finally, by Theorem 4.15, S is the set of all Vn−1-subspaces of

V2
n

n
. ��

From now on assume that there exists some member of S whose spectrum con-

tains 2. Then q is even by Lemma 4.45. First consider the case where the spectrum

contains 2 and has size at least two.

Lemma 4.47. Let π ∈ S be such that 2 ∈ Spec(π) and |Spec(π)| ≥ 2. Then the

following hold.

(i) Spec(π) = {2, q, q + 1}.

(ii) If q > 2, then there exists a unique element π′ ∈ S\{π} such that |[π, π′]| = 2
and there are precisely q−1 elements π′′ ∈ S\{π} such that |[π, π′′]| = q. Also,

Spec(π′) = {2} and the spectrum of any other element of S is {2, q, q + 1}.

(iii) If q = 2, then there are precisely two elements of S\{π} with π-number 2, one

of which has spectrum {2}, while any other element of S has spectrum {2, 3}.

Proof. Let π, π′ ∈ S be such that |[π, π′]| = 2 and let τ ∈ S\{π} be such that

l = |[π, τ ]| > 2. As before, let γ = 〈π, π′
〉 and let ζ be the intersection of γ with τ .

The elements of [π, τ ] must meet π′ in the line joining π∩π′ and τ ∩π′; on the other

hand, the elements of S\{π, π′, τ} containing a point of ζ intersect γ in lines which

are contained in the plane 〈η, ζ〉, with {η} = π ∩ π′. It follows that there are at least

q − 1 points on the line ζ
′

joining η to π ∩ τ contained in elements of [π, τ ]\{π}, if

l = q+1, and at least q−2 such points if l = q. A similar statement holds for the line

ζ
′′

joining η with π ∩ τ ′, for every τ ′ ∈ [π, τ ]\{π}. It readily follows that, if q > 2,

then every such line ζ
′′

coincides with ζ
′

. Suppose now that q > 2. Then there are

precisely q points on the line ζ
′

contained in elements of [π, τ ]\{π}, if l = q + 1,

and precisely q − 1 such points if l = q. Since the line ζ
′

is uniquely determined by

[π, τ ], every element π′′ of S\{π} with π-number 2 must intersect π on the line ζ
′

.

It follows that π′ = π′′ if l = q + 1, and there is at most one choice for π′′
�= π′ if

l = q.
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So suppose that such a space π′′
�= π′ exists. Put {η′} = π ∩ π′′. Then every

element τ ′ ∈ S\[π, τ ], with π′
�= τ ′ �= π′′, has π-number q, and so, by the pre-

vious arguments, all elements of [π, τ ′]\{π} have a point in common with η̄η̄′, a

contradiction. Hence, for q > 2, there is just one π′ ∈ S\{π} with |[π, π′]| = 2.

Suppose now that q = 2 and put [π, τ ] = {π, τ , τ ′}. The only possible reason for

the line ζ
′

not to contain π ∩ τ ′ is that there is no element of S\{π, π′, τ} containing

a point of ζ; in other words, the nucleus of τ is contained in γ. Assume, by way

of contradiction, that there are at least three elements of S\{π} with π-number 2.

Then for at least two of them, say π′ and π′′, the points π ∩ τ , π′
∩ τ , π′′

∩ τ and

the nucleus θ of τ are distinct collinear points, a contradiction. So in the case q = 2,

there are at most two elements in ζ with π-number 2, say π′ and π′′, and a counting

argument shows that there are exactly two elements in S with π-number 2. Putting

π∩π′ = {η} and π∩π′′ = {η′}, the same argument also shows that, if π∩τ = {α}

and π ∩ τ ′ = {α′
}, then the line ᾱᾱ′ contains either η or η′, and if it contains, say,

η′, then the nuclei of τ and τ ′ are contained in γ.

With this notation, it is shown that the spectrum of π′′ is equal to {2}. For, if

[π′′, τ ] contains an element τ ′′ /∈ {π′′, τ}, then τ ′′ meets π in the point α′, a contra-

diction. Similarly, |[π′′, τ ′]| = 2 and so there are at least three elements of S\{π′′}

with π′′-number 2, namely π, τ and τ ′. So, by previous arguments, there cannot be

an element with π′′-number q + 1 = 3. Hence Spec(π′′) = {2}.

Next, it is shown that Spec(π′) = {2, 3}. Suppose, by way of contradiction,

that Spec(π′) = {2}. First note that the argument in the previous paragraph implies

that the nucleus of π is on the line η̄ᾱ, as otherwise τ ′ contains the third point of

η̄ᾱ as well as α′. Analogously, the nucleus of π is on the line η̄ᾱ′. This yields a

contradiction. It also follows that |[π′, τ ]| = |[π′, τ ′]| = 3, and so the nucleus of π is

on η̄η̄′. Taking into account all previous arguments, it follows that π′′ is the unique

element of S with spectrum {2}, and the other elements are divided in pairs {ϕ, ϕ′}

with respect to the relation “ϕ′ has ϕ-number 2”. Also, the nucleus of ϕ and the

points ϕ ∩ ϕ′, ϕ ∩ π′′ are collinear, and the two intersection points of the elements

of [ϕ, β]\{ϕ}, where β /∈ {ϕ, ϕ′, π′′}, with ϕ are collinear with ϕ ∩ π′′.

Further, it is shown that the nucleus of any ρ ∈ S is contained in the space

〈π, π′
〉 = γ. This is immediate if ρ ∈ {π, π′}. Suppose now that ρ /∈ {π, π′}, and

also assume that ρ �= π′′. If the nucleus of ρ were not contained in γ, then the unique

element ρ′ of [π, ρ]\{π, ρ} would meet γ in a line of the plane spanned by η and

ρ ∩ γ, implying that the intersection points π ∩ ρ and π ∩ ρ′ would be collinear with

η, contradicting an earlier observation. Now it has still to be proved that the nucleus

of π′′ is contained in γ. Suppose this is not the case. Then the third point of the line

joining η′ and π′
∩π′′ is on an element β of S intersecting π, π′, π′′ in distinct points

of the line β ∩ γ. But the nucleus of β is also on that line, a contradiction.

A similar result on the nuclei of the elements of S is now shown for q > 2.

A counting argument shows the existence of at least one element τ ∈ S\{π} with

π-number q. It is now shown that the nuclei of all elements of S are contained in

γ∗ = 〈π, τ〉. Note that, similarly to the first part of the proof of Lemma 4.46, this

implies that the only elements of S\{π} with π-number q are those of [π, τ ].



4.2 Characterisations 175

Now the assertion on the nuclei is shown. Put {ξ} = π∩ τ . Let ϕ be any element

of S\[π, τ ]. There is a unique point ξ
′

on the line ζ
ϕ

= γ∗ ∩ ϕ not contained in

an element of [π, τ ]. If this point would not be the nucleus of ϕ, then it would be

contained in an element ϕ′
�= ϕ of S. By previous arguments, it follows that the

elements of [π, τ ]\{τ} would meet τ in points of the line τ ∩ 〈ξ, ζ
ϕ
〉. But this line

contains the points of intersection of τ with any element of [π, ϕ]∪ [π, ϕ′]. It follows

that the π-number of both ϕ and ϕ′ is 2, a contradiction. This proves the assertion.

It is now shown that all elements of S\{π′} have π′-number equal to 2. If not,

then, by the first section of this proof, each element of S\{π′, π} has π′-number q or

q+1, and, from above, q− 1 elements of S\{π′} have π′-number q. Hence one can

find ϕ ∈ S\{π, π′} such that ϕ has π-number q+ 1 and π′-number q+1. It follows

from previous arguments that at least q− 2 elements of [π, ϕ]\{π, ϕ} meet γ in lines

belonging to the plane generated by η, with {η} = π ∩ π′, and γ ∩ ϕ. By symmetry,

this also holds for at least q − 2 elements of [π′, ϕ]\{π′, ϕ}, a contradiction.

Finally, it is shown that the spectrum of any element of S\{π′} is {2, q, q + 1}.

Assume, by way of contradiction, that the spectrum of ϕ ∈ S\{π′} contains at

most two elements. As Spec(π′) = {2}, the spectrum of ϕ contains 2. In the case

that |Spec(ϕ)| = 2, then, with π and ϕ interchanged, Spec(ϕ) = {2, q, q + 1}, a

contradiction. Hence Spec(ϕ) = {2}, again a contradiction, as there is exactly one

element of S\{π} with π-number 2. Hence Spec(ϕ) = {2, q, q+1} for any element

ϕ ∈ S\{π′}. ��

Lemma 4.48. If S is a proper Veronesean set of subspaces with the property that 2
is contained in the spectrum of at least one element of S and if, for n > 2, axiom

(An−1) is satisfied, then S is the set of all Vn−1-subspaces but one, together with

the nucleus of a quadric Veronesean V2
n

n
.

Proof. As S is proper, there is an element of S whose spectrum contains 2 and at

least one of q, q+1; if q = 2, then there is an element of S whose spectrum is {2, 3}.

Lemma 4.47 implies that there is a unique element π′ of S with spectrum {2}, and

all other elements of S have spectrum {2, q, q + 1} for q > 2, and {2, 3} for q = 2.

Also, for π ∈ S\{π′}, there is a unique set [π, τ ] of size q, with τ ∈ S\{π, π′},

and all elements of S\([π, τ ] ∪ {π′}) have π-number q + 1. It also follows from the

proof of Lemma 4.47 that, for each element ϕ with π-number q+1, the set of points

π ∩ ϕ′, with ϕ′ ∈ [π, ϕ]\{π}, is contained in a line ζ
ϕ

, which contains the common

point η of π and π′. The unique line ζ
τ

of π through η that cannot be obtained in this

way, contains the q − 1 points of intersection of π with the elements of [π, τ ]\{π}
and also the nucleus of π.

It is now shown that the set of all nuclei is an n-dimensional subspace PG(n, q)
of PG(Nn, q). From the fact that there are exactly θ(n) nuclei, it suffices to show

that all points of the line joining any two distinct nuclei are again nuclei. In other

words, it is sufficient to show the following:

(1) the nuclei of all elements of [π, ϕ] are collinear;

(2) the nuclei of all elements of [π, τ ] ∪ {π′
} are collinear.



176 4 Veronese and Segre varieties

Put γ∗ = 〈π, τ 〉, and for each element ϕ′ of [π, ϕ]\{π}, put γ∗
∩ ϕ′ = ρ

ϕ′ .

Note that the unique point of such a line ρ
ϕ′ which is not contained in any element

of [π, τ ] is the nucleus ξ
′

of ϕ′, since, by the proof of Lemma 4.47, all nuclei are

contained in 〈π, τ 〉. Previous arguments imply that, for each τ ′ ∈ [π, τ ]\{π}, the

points π∩ τ ′ and ϕ′
∩ τ ′, with ϕ′ ∈ [π, ϕ]\{π}, constitute a line δτ ′ = 〈π, ϕ〉∩ τ ′. It

follows that the q disjoint lines ξ
ϕ
, δτ ′ , with τ ′ varying in [π, τ ]\{π}, all meet each

of the q + 1 disjoint lines ζ
τ
, ρ

ϕ′ , with ϕ′ varying in [π, ϕ]\{π}. Hence the nuclei

of all elements of [π, ϕ] are contained in the unique ‘missing’ line of the hyperbolic

quadric containing the 2q + 1 mentioned lines. This shows (1).

Let ζ
π′ be the intersection of γ∗ with π′. This line contains the point η, hence

〈ζ
π′ , ζτ 〉 is a plane α. Since, for every τ ′ ∈ [π, τ ], the τ ′-number of π′ is 2, the

plane α contains, for every such τ ′, the line ζ
∗

τ ′ consisting of all points τ ′ ∩ τ ′′, with

τ ′′ ∈ [π, τ ]\{τ ′}, the point π′
∩ τ ′, and the nucleus of τ ′. Note that ζ

∗

π
= ζ

τ
. So the

set of lines O = {ζ
∗

τ ′ | τ ′ ∈ [π, τ ]} ∪ {ζ
π′} is a dual (q + 1)-arc in α. As all nuclei

are contained in γ∗, the nucleus of π′ belongs to ζ
π′ . Hence, noting that q is even

by Lemma 4.45, the q + 1 nuclei of the elements of [π, τ ] ∪ {π′
} form the nucleus

line of the dual (q + 1)-arc O, proving (2). Consequently, the set of all nuclei is an

n-dimensional subspace PG(n, q) of PG(Nn, q).

Now it is shown that also the set S̃ = (S ∪ {PG(Nn−1, q)})\{π
′}, where

PG(Nn−1, q) is the dual of PG(n, q), is a Veronesean set of subspaces. Condition

(I) follows from the fact that PG(n, q) meets every element of S in a unique point.

Condition (II) follows from the fact that no point of PG(n, q) is contained in two

distinct elements of S . Condition (III) is also satisfied.

Assume, by way of contradiction, that the PG(Nn−1, q)-number of ϕ ∈ S\{π′}

equals 2. Then a subspace ϕ′ ∈ S\{π′}, ϕ′ �= ϕ exists, for which |[ϕ, ϕ′]| = q.

By the foregoing, PG(n, q) is a subspace of 〈ϕ, ϕ′
〉, and so ϕ′ ∈ [PG(Nn−1, q), ϕ],

a contradiction. Now, no spectrum contains 2. Next, it is shown that, if S satisfies

condition (IV), then so does the set S̃ . This follows immediately from the fact that,

for any two distinct ϕ, ϕ′ ∈ S\{π′}, with |[ϕ, ϕ′]| = q, the equation

〈ϕ, ϕ′
〉 = 〈ϕ,PG(n, q)〉 = 〈ϕ′,PG(n, q)〉

holds.

As for n > 2 axiom (An−1) is also satisfied, it follows that S∗ is the set of all

Vn−1-subspaces of a quadric Veronesean V2
n

n
. Finally, by the nucleus property of

V2
n

n
, the subspace π′ is the nucleus of V2

n

n
. ��

Now the main results can be stated and proved.

Theorem 4.49. Let S be a collection of θ(n) subspaces of dimension (n−1)(n+2)/2
of the projective space PG(n(n+ 3)/2, q), with n ≥ 2, satisfying (I)–(V). Then one

of the following holds:

(a) S is the set of Vn−1-subspaces of a quadric Veronesean V2
n

n
in the space

PG(n(n+ 3)/2, q);
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(b) q is even, there are two elements π, π′ ∈ S with the property that no other element

of S contains π ∩ π′, and there is a unique subspace PG(Nn−1, q) such that

S ∪ {PG(Nn−1, q)} is the set of Vn−1-subspaces together with the nucleus of a

quadric Veronesean V2
n

n
in PG(n(n+ 3)/2, q).

When n = 2, the statement holds under the weaker hypothesis of S satisfying (I),

(II), (III), (V). In both cases, but with (q, n) �= (2, 2) in the latter case, V2
n

n
is the

set of points of PG(n(n + 3)/2, q) contained in at least θ(n − 1) − 1 elements of

S; in the exceptional case there are 13 points contained in at least 2 elements of S,

where 6 are coplanar while the others form V4
2 .

Proof. The first part of the statement follows from Lemmas 4.46 and 4.48. For

n = 2, condition (IV) is trivially satisfied. Now, any point of V2
n

n
is contained in

exactly θ(n− 1)Vn−1-subspaces. Conversely, let P be a point of PG(n(n+3)/2, q)
contained in θ(n− 1) Vn−1-subspaces of V2

n

n
. The Veronesean V2

n

n
is the image of

some Πn and the Vn−1-subspaces correspond to θ(n− 1) hyperplanes of Πn. In Πn,

there are distinct intersecting lines l and m such that l is the intersection of some

of these hyperplanes, and such that m is the intersection of some of these hyper-

planes. To l and m, there correspond conics Cl and Cm on V2
n

n
such that the point

P ∈ 〈Cl〉 ∩ 〈Cm〉; it follows that P ∈ V2
n

n
. Now it follows that, for (q, n) �= (2, 2),

the Veronesean V2
n

n
is the set of points of PG(n(n + 3)/2, q) contained in at least

θ(n − 1) − 1 elements of S. If (q, n) = (2, 2) and S is not the set of V1-subspaces

of a V4
2 , then there are 13 points contained in at least 2 elements of S, where 6 are

coplanar while the others form V4
2 ; here, the 6 coplanar points are contained in the

nucleus of V4
2 . ��

For q large enough, this set of axioms can be reduced.

Theorem 4.50. Let S be a set of θ(n) subspaces of dimension (n−1)(n+2)/2 of the

projective space PG(n(n + 3)/2, q), with n ≥ 2, satisfying (I), (II), (III). If q ≥ n,

then S also satisfies (IV).

Proof. For n = 2, condition (IV) is trivially satisfied. So let n > 2. Consider the set

Sπ = {π ∩ π′ |π′ ∈ S\{π}}. Relying on Lemma 4.44, it was shown in the proof of

Lemma 4.46 that Sπ satisfies (I), (II) and (III). By induction it follows that (IV) is

satisfied. ��

For q odd, this is a most satisfying characterisation, since conditions (I)–(IV)

really characterise the set of Vn−1-subspaces of a quadric Veronesean V2
n

n
, and for

q ≥ n conditions (I), (II), (III) do this.

There are two corollaries.

Corollary 4.51. If S∗ is a set of θ(n) + 1 subspaces of dimension (n− 1)(n+ 2)/2
of PG(n(n + 3)/2, q) such that (I), (II), (III), (V) hold for S∗ and either (IV) also

holds or q ≥ n, then q is even and S∗ is the set of all Vn−1-subspaces together with

the nucleus of a quadric Veronesean V2
n

n
in PG(Nn, q). Also, V2

n

n
is the set of points

of PG(n(n+ 3)/2, q) contained in θ(n− 1) elements of S∗.
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Proof. There is an element π in S∗ such that S∗\{π} also satisfies (I)–(V). If q

were odd, then by Theorem 4.49 all contact hyperplanes of some V2
n

n
would contain

π, a contradiction. Hence q is even. Now, again by Theorem 4.49, S∗ is the set

of all Vn−1-subspaces together with the nucleus of a quadric Veronesean V2
n

n
in

PG(Nn, q). Finally, from the proof of Theorem 4.49, V2
n

n
is the set of points of

PG(n(n+ 3)/2, q) contained in θ(n− 1) elements of S∗. ��

Corollary 4.52. Let S be a set of k ≥ θ(n) subspaces of dimension m − n − 1 of

PG(m, q), with m ≥ n(n+ 3)/2 and such that q ≥ n. Suppose that

(a) every pair of elements of S is contained in some hyperplane of PG(m, q);
(b) no three elements of S are contained in a hyperplane of PG(m, q);
(c) no point is contained in all elements of S;
(d) for q even there exist three distinct elements π, π′, π′′ of S with

π ∩ π′ = π′
∩ π′′ = π′′

∩ π.

Then

(i) m = n(n+ 3)/2;
(ii) either k = θ(n) and S is the set of Vn−1-subspaces of a quadric Veronesean

V2
n

n
or q is even, k ∈ {θ(n), θ(n) + 1} and S consists of k elements of the set

of Vn−1-subspaces together with the nucleus of a quadric Veronesean V2
n

n
.

In both cases, for q even but with (q, n) �= (2, 2), if S contains the nucleus of

V2
n

n
, then V2

n

n
is the set of points of PG(m, q) contained in at least θ(n − 1) − 1

elements of S; in the exceptional case there are 13 points contained in at least 2
elements of S, where 6 are coplanar while the other 7 form V4

2 .

Proof. If elements π, π′ of S, with π �= π′, did not generate a hyperplane, then

the number of hyperplanes containing π and one element of S\{π} is at least

(θ(n) − 2) + (q + 1), a contradiction as π is contained in exactly θ(n) hyperplanes

of PG(m, q).
Assume, by way of contradiction, that m > n(n + 3)/2. As in the proof of

Lemma 4.44, and with that notation, there is a sequence (π̄3, π̄4, . . . , π̄n+1) of el-

ements of S in the dual space PG(m, q) of PG(m, q) satisfying (i) and (ii) of that

proof, for all i ∈ {2, 3, . . . , n}. Again, as in the proof of Lemma 4.44, this gives a

contradiction. Hence m = n(n+ 3)/2. Now Corollary 4.52 follows from Theorems

4.49, 4.50 and Corollary 4.51. ��

For q odd, relying on the polarity θ which interchanges the Vn−1-subspaces and

tangent spaces of V2
n

n
, the following results are obtained.

Theorem 4.53. Let S be a collection of θ(n) subspaces of dimension n of the pro-

jective space PG(n(n+ 3)/2, q), with q odd and n ≥ 2, satisfying (I′)–(IV′). Then

S is the set of all tangent spaces of a quadric Veronesean V2
n

n
in PG(n(n+3)/2, q).

In particular, if n = 2, then the statement holds under the weaker hypotheses of

S satisfying (I′)–(III′). Also, V2
n

n
is the set of all points contained in exactly one

element of S .
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Theorem 4.54. Let S be a set of θ(n) subspaces of dimension n of the projective

space PG(n(n + 3)/2, q), with q odd and n ≥ 2, satisfying (I′)–(III′). If q ≥ 2,
then S also satisfies (IV′).

Corollary 4.55. Let S be a set of k ≥ θ(n) subspaces of dimension n of PG(m, q),
with q odd, m ≥ n(n+ 3)/2 and such that q ≥ n. Suppose that

(a) every two elements of S have a non-empty intersection,

(b) every three distinct elements of S have an empty intersection,

(c) no hyperplane contains all elements of S.

Then

(i) m = n(n+ 3)/2, k = θ(n);
(ii) S is the set of all tangent spaces of a quadric Veronesean V2

n

n
;

(iii) V2
n

n
is the set of all points contained in exactly one element of S.

Something more can be said in the case that S does not satisfy (V).

Theorem 4.56. Let S be an ovoidal Veronesean set of subspaces of the projective

space PG(n(n + 3)/2, q), with n ≥ 2. Then q is even and S can be extended to a

hyperovoidal Veronesean set of subspaces of PG(n(n+3)/2, q). Also, if n = 2, then

q ∈ {2, 4} and S is uniquely determined in both cases, up to a projectivity.

Proof. It is shown that the set of all nuclei of members of S is an n-dimensional sub-

space of PG(Nn, q). Therefore it suffices to prove that all points of the line joining

two arbitrary distinct nuclei are nuclei. So let π′, π′′ ∈ S, with π′ �= π′′, and let ξ
′

be the nucleus of π′ and ξ
′′

the nucleus of π′′. Let π′
∩ π′′ = {η}. Further, let δ

′

be

an arbitrary point on the line ηξ
′

different from η and ξ
′

. Let τ ∈ S\{π′
} contain δ

′

,

and let ζ be the intersection of τ with 〈π′, π′′
〉. As before, any element of S meeting

ζ has a line in common with the plane 〈η, ζ〉, and the set of all these lines is a dual

(q + 1)-arc if the nucleus of τ is on ζ, or a dual (q + 2)-arc if the nucleus of τ is

not on ζ . In the latter case, the point ξ
′

is contained in a unique line, different from

the line η ξ
′

, of that dual (q+2)-arc, contradicting the definition of a nucleus. Hence

there is a dual (q + 1)-arc and it now follows, interchanging the roles of π′′ and τ

if necessary, that the unique line of 〈η, ζ〉 extending the dual (q + 1)-arc to a dual

(q + 2)-arc contains q + 1 nuclei amongst which are ξ
′

and ξ
′′

. Hence the set of all

nuclei of members of S is an n-dimensional subspace PG(n, q) of PG(Nn, q). So

S∪{PG(n, q)} is a hyperovoidal Veronesean set of subspaces of PG(n(n+3)/2, q).
Now take the case n = 2. Consider the hyperovoidal Veronesean set of subspaces

S∪PG(2, q) = S∗. By the first part of this proof, every three distinct elements of S
∗

define q + 2 elements of S
∗

, which all intersect a common plane in a line. Let B be

the set with as elements these sets consisting of q + 2 elements of S
∗

. Now count in

different ways the number of ordered pairs (π,O), with π ∈ S
∗

, O ∈ B and π ∈ O.

Then

|B|(q + 2) = (q2 + q + 2)(q2 + q + 1)(q2 + q)/(q + 1)q.
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Hence q+2 divides 12, and so q ∈ {2, 4}. Also, if q = 2, then S and S
∗

are uniquely

defined, up to a projectivity. For q = 4, there is, up to a projectivity, just one example,

which is related to the simple Mathieu group M22; see Section 4.7. ��

Remark 4.57. The set S
∗

, provided with the elements of B, is an extension of a

projective plane of order q. Hence q ∈ {2, 4}. For q = 4, this extension is the unique

3–(22, 6, 1) Witt design. This design admits M22 as an automorphism group; this is

not the full automorphism group.

The unique example for q = 2 can be generalised as follows to any n, with n ≥ 2.

Let AG(n + 1, 2) be an affine space in PG(n + 1, 2). Consider, in the Grassmann

variety of the lines of PG(n + 1, 2), all subspaces corresponding to the sets of all

lines with a common point in AG(n+ 1, 2). Then this gives a dual hyperovoidal set

of subspaces in PG(n(n+ 3)/2, 2).
For n ≥ 3 with q > 2, a classification of ovoidal and hyperovoidal sets of

subspaces remains open.

4.2.3 Characterisations of V2n

n
of the third kind

Relying on Subsection 4.2.2, a simple and elegant characterisation of the finite

quadric Veronesean V2
n

n
is obtained.

Theorem 4.58. Under the conditions that m ≥ n(n + 3)/2, n ≥ 2 and q > 2, let

θ : PG(n, q) → PG(m, q) be an injective map, such that the image of any line of

PG(n, q) under θ is a plane (q + 1)-arc in PG(m, q), and such that the image of θ

generatesPG(m, q). Then m = n(n+3)/2, the image of θ is the quadric Veronesean

V2
n

n
, and the images of the lines of PG(n, q) are the conics on V2

n

n
.

Proof. Let θ : PG(n, q) → PG(m, q) be an injective map from PG(n, q) into

PG(m, q), with n ≥ 1 and q > 2, such that the image of any line of PG(n, q)
is a plane (q+1)-arc in PG(m, q), and such that the image of θ generates PG(m, q).
Let π be the subspace of PG(m, q) generated by the image under θ of any hyperplane

Πn−1 of PG(n, q). It is shown that the dimension of π is at least m− n− 1.

For n = 1, this follows since in this case m = 2 and the dimension of the image

of a point is zero. Now let n > 1. Let π′ be the subspace of PG(m, q) generated by

the image of a hyperplaneΠ′

n−1 of PG(n, q), with Πn−1 �= Π′

n−1, and let l be a line

of PG(n, q) not contained in Πn−1 ∪ Π′

n−1 for which l ∩ Πn−1 �= l ∩ Π′

n−1. Let

Π2 = 〈lθ〉. Since q > 2, it follows that every point P of PG(n, q) is contained in a

line l′ of PG(n, q) meeting l∪Πn−1∪Π
′

n−1 in three distinct points. Since the images

under θ of these points generate 〈l′θ〉, the point Pθ is contained in 〈π, π′,Π2〉. Hence

PG(m, q) = 〈π, π′,Π2〉. If w is the dimension of π, w′ the dimension of π′, and u

the dimension of π∩π′, then this implies that m ≤ w+w′−u+1. By the induction

hypothesis u ≥ w′ − n; hence m−w ≤ w′ − u+ 1 ≤ n+ 1 and the result follows.

Now it is shown that, for n ≥ 2 and m ≥ Nn = n(n+3)/2, a direct consequence

is the equality m = Nn. From a chain of subspaces Π1 ⊂ Π2 ⊂ · · · ⊂ Πn−1 in

PG(n, q), it follows that m ≤ 2 + 3 + · · · + n + (n + 1) = Nn. Hence m = Nn.



4.2 Characterisations 181

Also, in this case, the dimension of the subspace of PG(m, q) generated by the image

of a k-dimensional subspace Πk of PG(m, q) is equal to Nk = k(k + 3)/2, for

k ∈ {0, 1, 2, . . . , n}. It also follows that, with the notation of the previous paragraph,

if n ≥ 2 and m ≥ Nn, then π and π′ meet in a subspace of dimension Nn−2,

and 〈π, π′,Π2〉 = PG(Nn, q). Since every hyperplane Π′′

n−1 /∈ {Πn−1,Π
′

n−1} of

PG(n, q) either contains a line meeting Πn−1 ∪ Π′

n−1 in just two points, or else

meets every such line in a unique point outside Πn−1 ∪Π′

n−1, the images under θ of

three distinct hyperplanes generate PG(Nn, q).
Hence the set

S = {〈Πn−1θ〉 | Πn−1 is a hyperplane of PG(n, q)}

satisfies (I), (II) and (IV) of Subsection 4.2.2. Assume, by way of contradiction, that

there is a pointP contained in all elements of S. ThenP is contained in all subspaces

〈Πn−2θ〉 with Πn−2 a subspace of dimension n − 2 in a given hyperplane Πn−1 of

PG(n, q). Similar arguments imply that P is contained in all planes 〈lθ〉 with l any

line of a given plane Π2 of PG(n, q). As 〈lθ〉 ∩ 〈l′θ〉 is lθ ∩ l′θ, a contradiction is

obtained. Hence, (III) is also satisfied.

Next, it is shown that (V) is satisfied. Since every subspace of dimension n − 2
in PG(n, q) is contained in q + 1 hyperplanes of PG(n, q), with the notation of

Subsection 4.2.2, the size of [π, π′] is q + 1 for any two distinct π, π′ ∈ S. So, again

with the same terminology, the spectrum of every element of S is {q + 1}.

From Theorem 4.49, it now follows that the image of θ, which is precisely the

set of points of PG(Nn, q) contained in θ(n − 1) elements of S, is the quadric

Veronesean V2
n

n
; the images of the lines of PG(n, q) are precisely the conics on

V2
n

n
. ��

Remark 4.59. 1. For q = 2, every cap of size 2n+1 − 1, n ≥ 2, in some projective

space PG(m, 2), with m ≥ n(n + 3)/2 and where the cap generates PG(m, 2),
can be seen as the image of a mapping θ of PG(n, 2) into PG(m, 2) satisfying

the conditions of Theorem 4.58. Hence the condition q > 2 in the statement of

Theorem 4.58 is necessary.

2. For n = 2, the plane PG(2, q) in the statement of Theorem 4.58 can be replaced

by any projective plane, which is not necessarily Desarguesian, with q + 1 points

on any line.

4.2.4 Characterisations of V2n

n
of the fourth kind

First, the Veronese surface V4
2 is characterised by considering its common points

with the planes and hyperplanes of PG(5, q). Then, without proof, recent character-

isations of V2
n

n
are given, where again the common points of V2

n

n
with subspaces

are considered. Since the hyperplane sections of V4
2 correspond to the quadrics of

PG(2, q), any hyperplane Π4 of PG(5, q) has 1, q + 1 or 2q + 1 points in common

with V4
2 . Now consider the intersections of V4

2 with the planes of PG(5, q).

Lemma 4.60. Any plane π of PG(5, q) meets V4
2 in 0, 1, 2, 3, or q + 1 points.
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Proof. Suppose that the plane π contains at least four distinct points Q1, Q2, Q3, Q4

of V4
2 . Then q > 2. By Corollary 4.13, the points Qi and Qj , i �= j, are contained

in a unique conic of V4
2 . Let C′ be the conic defined by Q1 and Q2, and let C′′ be

the conic defined by Q2 and Q3. Suppose that C′ �= C′′. By Theorem 4.17, the conic

planes π′ and π′′ containing C′ and C′′ generate a hyperplaneΠ4. With the notation of

Section 4.1, the set (Π4∩V
4
2 )ζ

−1 is a quadric of PG(2, q); hence |Π4∩V
4
2 | ≤ 2q+1.

Since π ⊂ Π4, so Q4 ∈ Π4; since also C′ ∪ C′′ ⊂ Π4, it follows that

|Π4 ∩ V
4
2 | ≥ |C

′
∪ C

′′
∪ {Q4}| = 2q + 2,

a contradiction. Thus C′ = C′′, and so C′ = π∩V4
2 . It follows that |π∩V4

2 | = q+1. ��

Now the intention is to characterise, for q > 2, the Veronesean V4
2 by the number

of its common points with the hyperplanes and planes of PG(5, q).
From now on, let K be a set of k points of PG(m, q), m ≥ 5, with the following

properties:

(A) |Π4 ∩ K| ≤ 2q + 1 for any four-dimensional subspace Π4 of PG(m, q) with

equality for some Π4;

(B) any plane of PG(m, q) meeting K in four points meets it in at least q+1 points.

Lemma 4.61. For any line l, either l ⊂ K or |l ∩ K| ≤ 3.

Proof. The lemma is immediate for q ≤ 3. So, for q ≥ 4, let l be a line of PG(m, q),
where l �⊂ K and |l∩K| = s. Suppose that 4 ≤ s ≤ q and let Π4 be a 4-dimensional

space containing the line l. By (B), any plane π of Π4 containing l has at least q + 1
points in common with K. Consequently,

|Π4 ∩ K| ≥ (q2 + q + 1)(q + 1− s) + s ≥ q2 + q + 1 + s ≥ q2 + q + 5.

By (A), |Π4 ∩ K| ≤ 2q + 1. So q2 + q + 5 ≤ 2q + 1, a contradiction. ��

Lemma 4.62. For the set K with q ≥ 5, there is no pair (l1, l2) of skew lines in the

following cases:
(i) l1 and l2 are both lines of K;

(ii) l1 is a line of K and l2 is a trisecant of K;
(iii) l1 and l2 are both trisecants of K.

Proof. (i) Let l1 and l2 be distinct skew lines of K, and let Π3 be the solid defined

by them. So |Π3 ∩ K| ≥ 2q + 2. Hence any four-dimensional space of PG(m, q)
containing Π3 has more than 2q + 1 points in K. This contradicts (A).

(ii), (iii) Here, l2 is a trisecant and l1 is a trisecant or line of K. Then there exist

distinct planes π, π′, π′′ containing l2 and also a point of l1 ∩ K. By (B), each of

|π ∩ K|, |π′ ∩ K|, |π′′ ∩ K| is at least q + 1. Hence the solid Π3 = l1 l2 contains

at least 3(q + 1 − 3) + 3 = 3q − 3 points in K. Consequently, any 4-dimensional

subspace of PG(m, q) through Π3 has at least 3q − 3 points in K. Since q ≥ 5, so

3q − 3 > 2q + 1, contradicting (A). ��
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Lemma 4.63. If K contains distinct lines l1 and l2, then l1 ∩ l2 �= ∅ and K = l1 ∪ l2.

Proof. From the first part of the proof of Lemma 4.62, l1 ∩ l2 �= ∅. Let Q ∈ K, with

Q �∈ l1 ∪ l2. Then any four-dimensional subspace containing l1, l2 and Q has at least

2q + 2 points in K, contradicting (A). Hence K = l1 ∪ l2. ��

Lemma 4.64. If K lies in a plane π of PG(m, q), then |K| = 2q + 1 and there are

the following possibilities:
(a) |l ∩K| ≤ 3 for any line l in π, with equality for some line l;
(b) the set K consists of a line l and a q-arc K′ of π, where l ∩ K′ = ∅;
(c) the set K consists of two distinct lines of π.

Proof. Any 4-dimensional subspace containing π has at most 2q+1 points in K. As

K ⊂ π, it follows that |K| ≤ 2q + 1. Since at least one 4-dimensional subspace has

exactly 2q + 1 points in K, so |K| = 2q + 1.

First, assume that K does not contain a line. By Lemma 4.61, any line of π has

at most three distinct points in K. If there is no line of π with exactly three points in

K, then K is a (2q+1)-arc, contradicting Theorem 8.5 of PGOFF2. So π contains at

least one trisecant of K.

Next, let l be a line which lies in K. If the q points of K\l lie on a line l′, then

K = l ∪ l′ by Lemma 4.63. Now assume that there is no line containing K\l. Then,

by Lemma 4.61, the set K\l is a q-arc of π. ��

Lemma 4.65. Let q ≥ 5 and suppose that K generates a solid Π3. Then K = l∪K∗,

with K∗ a q-arc of some plane π, with l a line not contained in π, and l ∩ K∗ = ∅.

Proof. Any 4-dimensional subspace containing Π3 has at most 2q + 1 points in K.

As K ⊂ Π3, so |K| ≤ 2q+ 1. Since at least one 4-dimensional subspace has exactly

2q + 1 points in K, so |K| = 2q + 1.

Two cases are distinguished.

(1) K does not contain a line

By Lemma 4.61, any line has at most three points in K.

First, suppose that K has at least one trisecant l. Let Q ∈ K\l. By condition (B),

the plane π = Ql has at least q+1 points in K. Since K generates the solid Π3, there

is at least one point Q′ in K\π. By (B), the plane π′ = Q′l has at least q + 1 points

in K. If Q′′ ∈ K\(π ∪ π′), then the plane π′′ = Q′′l has at least q + 1 points in K;

so |K| ≥ 3(q + 1 − 3) + 3 = 3q − 3. Hence 2q + 1 ≥ 3q − 3, whence q ≤ 4, a

contradiction. Consequently, K ⊂ π ∪ π′.

Suppose now that K has a trisecant l′, with l′ �= l. Then l′ lies in π or π′; say,

l′ ⊂ π. The plane π∗ = Q′l′ has at least q + 1 points in K, at most three of which

belong to π′. Hence at least q+1− 6 points of π∗ ∩K do not belong to π∪π′. Since

K ⊂ π ∪ π′, so q ≤ 5. As it was assumed that q ≥ 5, hence q = 5.

By the same argument, the line l′′ = π∗ ∩ π′ is a trisecant of K and the point

l′∩ l′′ of l is not in K. On the lines l, l′, l′′ there are nine points of K. Since |K| = 11,

there is a point Q∗ ∈ K\(l ∪ l′ ∪ l′′), say Q∗ ∈ π. Since q = 5, at least one of the

lines joining Q∗ to a point of l′ ∩ K has a point in l ∩ K. Such a line l∗ is a trisecant
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of K. Then the plane Q′l∗ contains at least one point of K\(π ∪ π′), a contradiction.

So it has been shown that l is the only trisecant of K.

Let l ∩ K = {Q1, Q2, Q3}. Then (π ∩ K)\{Qi} is a ki-arc of the plane π for

i = 1, 2, 3. Analogously, (π′ ∩ K)\{Qi} is a k′
i
-arc of the plane π′ for i = 1, 2, 3.

However, since |K| = 2q + 1 and K ⊂ π ∪ π′, so

(ki − 2) + (k′
i
− 2) + 3 = 2q + 1,

for i = 1, 2, 3. Hence ki+k′
i
= 2q+2. Without loss of generality, let k1 ≥ q+1. From

Section 8.1 of PGOFF2, the k1-arc (π ∩ K)\{Q1} has at least (q − 1)/2 bisecants

passing through Q1. It follows that the plane π contains at least two trisecants of K

through Q1, a contradiction.

It has been shown that K has no trisecant; that is, K is a (2q + 1)-cap of the

solid Π3. Assume that no four points of K are coplanar; then K is a (2q + 1)-arc

of Π3. By Theorems 21.2.4 and 21.3.8 of FPSOTD, |K| ≤ q + 1, contradicting that

|K| = 2q + 1. Hence Π3 contains a plane π which has at least four points in K. By

condition (B), |π∩K| ≥ q+1. Since π∩K is a k′-arc of π, so |π∩K| ∈ {q+1, q+2}.

Hence |K\π| ≥ q − 1.

Let l be a line containing at least two distinct points of K\π. Since K is a cap,

the point l ∩ π is not in K. If π ∩ K is a (q + 1)-arc of π and q is even, then, since

q − 1 > 2, it may be assumed that l does not contain the nucleus of π ∩ K. Since

q ≥ 5, the point l ∩ π is on at least two bisecants l1 and l2 of π ∩ K. By (B), the

planes ll1 and ll2 have at least q + 1 points in K. Hence

|K| ≥ 2(q + 1− 2) + 2 + (q + 1− 4) = 3q − 3.

So 2q + 1 ≥ 3q − 3, whence q ≤ 4, a contradiction. Hence case (1) cannot occur.

(2) K contains a line l

Since K generates the solid Π3, Lemma 4.63 shows that l is the only line on K.

Suppose that K\l contains distinct collinear points Q1, Q2, Q3. By Lemma 4.61, the

line Q1Q2 is a trisecant of K; by Lemma 4.62, the line Q1Q2 has a point on the line

l. So Q1Q2 has at least four distinct points in K, a contradiction.

Hence K\l is a q-cap of Π3. On K\l, the distinct points P1, P2, P3 can be chosen

so that the plane π = P1P2P3 does not contain l. Since P1, P2, P3, π ∩ l are four

distinct points of K, the plane π contains at least q+1 points of K. As |K| = 2q+1,

so |π ∩ K| = q + 1 and K consists of l and the q-arc K∗ = (π ∩ K)\l. ��

Lemma 4.66. Let q ≥ 5 and suppose that K generates an s-space Πs with s ≥ 4.

Then any line l which is not contained in K has at most two points in K.

Proof. Let l be a line not contained in K and suppose that |l ∩ K| > 2. By Lemma

4.61, |l ∩ K| = 3. Since K generates Πs and s ≥ 4, there are points P1, P2, P3 in K

such that l, P1, P2, P3 generate a Π4. For 1, 2, 3, let Πi

2 be the plane containing l and

Pi. Since |Πi

2 ∩ K| ≥ 4, so |Πi

2 ∩ K| ≥ q + 1. Hence |Π4 ∩K| ≥ 3q − 3. By (A), it

follows that 3q − 3 ≤ 2q + 1; so q ≤ 4, a contradiction. ��



4.2 Characterisations 185

Corollary 4.67. Let q ≥ 5 and suppose that K generates an s-space Πs with s ≥ 4.

Then K is a k-cap or K contains a unique line l and any other line has at most two

points in K.

Proof. This follows from Lemmas 4.62, 4.63, 4.66. ��

Henceforth, let K be a set of k points of PG(5, q) satisfying the following:

(A′) |Π4 ∩ K| ∈ {1, q + 1, 2q + 1} for any hyperplane Π4 of PG(5, q) but also that

|Π4 ∩ K| = 2q + 1 for some hyperplane Π4;

(B) any plane of PG(5, q) with four points in K has at least q + 1 points in K.

Lemma 4.68. For q ≥ 5, any set satisfying (A′) and (B) is a (q2+ q+1)-cap which

generates PG(5, q).

Proof. By (A′), the set K does not generate a line. Assume that K generates a plane

Π2. By Lemma 4.64, there is a line l of Π2 with |l∩K| ∈ {2, 3}. Let Π4 be a hyper-

plane of PG(5, q) which contains l but not Π2. Then |Π4∩K| ∈ {2, 3}, contradicting

(A′). Next, suppose that K generates a solid Π3. By Lemma 4.65, K = l ∪ K∗, with

K∗ a q-arc of some plane Π2 and l a line not contained in Π2 skew to K∗. Let Π′

2 be a

plane containing two points of K∗ and one point of l\Π2; then |Π′

2 ∩K| = 3. Hence

any hyperplane containing Π′

2 but not Π3 has exactly three points in K, contradicting

(A′).
Finally, let K generate a hyperplane Π4. By (A′), |K| = 2q + 1 and each solid

Π3 of Π4 has 1 or q + 1 points in K. Let l be a line with at least two points in K and

let Π2 be a plane of Π4 containing l. Further, let |l ∩ K| = a1 and |Π2 ∩ K| = a2.

Counting the points of K in the solids of Π4 containing Π2,

(q + 1− a2)(q + 1) + a2 = 2q + 1.

Hence a2 = q. Counting the points of K in the planes of Π4 containing l,

(q − a1)(q
2 + q + 1) + a1 = 2q + 1.

Hence

q3 + q2 − a1q
2
− a1q − q = 1.

Consequently q divides 1, a contradiction. So it has been shown that K generates

PG(5, q).
Now, it must be shown that K is a k-cap. By Lemma 4.66, it is sufficient to prove

that K does not contain a line. So assume that K contains some line l. By Corollary

4.67, any plane through l has at most one point in K\l. Let Π3 be a solid skew to l.

By projecting K\l from l onto Π3, a set K′ of size k − (q + 1) is obtained. By (A′),
any plane of Π3 has 0 or q points in K′. Let {Πi

2 | i = 1, . . . , q3 + q2 + q + 1} be

the set of planes of Π3 and let ti be the number of points of K′ in Πi

2. Counting the

set {(P,Πi

2) | P ∈ K′, P ∈ Πi

2} in two ways gives∑
ti = (k − q − 1)(q2 + q + 1). (4.8)
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Now, counting the set {(P, P ′,Πi

2) | P, P
′ ∈ K′;P, P ′ ∈ Πi

2;P
′ �= P} in two ways

gives ∑
ti(ti − 1) = (k − q − 1)(k − q − 2)(q + 1). (4.9)

Since ti ∈ {0, q} for all i, so
∑

ti(ti − q) = 0. Hence∑
ti(ti − 1)− (q − 1)

∑
ti = 0. (4.10)

By (4.8), (4.9), (4.10),

(k − q − 1)(k − q − 2)(q + 1)− (q − 1)(k − q − 1)(q2 + q + 1) = 0.

Since k �= q + 1, so

(k − q − 2)(q + 1)− (q − 1)(q2 + q + 1) = 0.

Thus

k = (q3 + q2 + 3q + 1)/(q + 1).

Therefore q + 1 divides q3 + q2 + 3q + 1 and so q + 1 divides 2, a contradiction.

Hence it has been shown that K is a k-cap.

Finally it must be shown that k = q2 + q + 1. Let {Πi

4 | i = 1, . . . , θ(5)} be

the set of hyperplanes of PG(5, q) and let si be the number of points of K in Πi

4.

Counting the set {(P,Πi

4) | P ∈ K, P ∈ Πi

4, i ∈ θ(5)} in two ways gives∑
si = k(q4 + q3 + q2 + q + 1). (4.11)

Now, counting the set {(P, P ′,Πi

4) | P, P
′ ∈ K; P, P ′ ∈ Πi

4; P
′ �= P ; i ∈ θ(5)} in

two ways gives ∑
si(si − 1) = k(k − 1)(q3 + q2 + q + 1). (4.12)

As K is a k-cap, so counting the number of ordered 4-tuples (P, P ′, P ′′,Πi

4) for

distinct points P, P ′, P ′′ in K and Πi

4, with i varying, in two ways gives∑
si(si − 1)(si − 2) = k(k − 1)(k − 2)(q2 + q + 1). (4.13)

Since si ∈ {1, q + 1, 2q + 1} for all i,∑
(si − 1)(si − q − 1)(si − 2q − 1) = 0, (4.14)

which expands to∑
si(si − 1)(si − 2)− 3q

∑
si(si − 1)

+(q + 1)(2q + 1)
∑

si − (q + 1)(2q + 1)θ(5) = 0. (4.15)

From (4.11), (4.12), (4.13), (4.15),
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k(k − 1)(k − 2)(q2 + q + 1)− 3qk(k − 1)(q3 + q2 + q + 1)

+(q + 1)(2q + 1)k(q4 + q3 + q2 + q + 1)− (q + 1)(2q + 1)θ(5) = 0.

Hence

(q2 + q + 1)k3 − 3(q4 + q3 + 2q2 + 2q + 1)k2

+(2q6 + 5q5 + 9q4 + 9q3 + 11q2 + 9q + 3)k

−(2q7 + 5q6 + 6q5 + 6q4 + 6q3 + 6q2 + 4q + 1) = 0.

It follows that, if k �= q2 + q + 1, then

(q2 + q + 1)k2 − (2q4 + q3 + 3q2 + 4q + 2)k

+(2q5 + 3q4 + q3 + 2q2 + 3q + 1) = 0. (4.16)

If si = 1 for at least one hyperplane Πi

4, then there exists at least one solid with

exactly one point in K. Now suppose that there is at least one hyperplane Πj

4 with

sj = q + 1. If P ∈ Πj

4 ∩ K, then there exists a line Π1, a plane Π2, and a solid Π3

of Πj

4, with P ∈ Π1 ⊂ Π2 ⊂ Π3 and |Π1 ∩ K| = |Π2 ∩ K| = |Π3 ∩ K| = 1. Thus,

also in this case, there exists a solid with exactly one point in K.

Next, assume that si = 2q + 1 for all hyperplanes Πi

4. Then, by (4.11),

θ(5)(2q + 1) = kθ(4).

Hence

k = q(2q + 1) + (2q + 1)/θ(4).

It follows that θ(4) ≤ 2q + 1, a contradiction. So there is always a solid Π3 with

exactly one pointP in K. Now, counting the points ofK in all hyperplanes containing

Π3 shows that

k ≡ 1 (mod q). (4.17)

Suppose that k �= q2 + q + 1; that is, k satisfies (4.16). Let

F (x) = (q2 + q + 1)x2
− (2q4 + q3 + 3q2 + 4q + 2)x

+(2q5 + 3q4 + q3 + 2q2 + 3q + 1).

Then

F (q + 1) = q4 − q2 > 0, F (q + 2) = −q4 + q3 + q2 + q + 1 < 0.

Consequently, F (x) has a root k′ = q + c, with 1 < c < 2. Since k ≥ 2q + 1, so

k′ �= k. The sum of the roots of F (x) is

k + k′ = k + q + c = (2q4 + q3 + 3q2 + 4q + 2)/(q2 + q + 1).

Hence

k = 2q2 − 2q + 2− c+ 3q/(q2 + q + 1). (4.18)
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By (4.17), q divides 2q2 − 2q + 1 − c + 3q/(q2 + q + 1). It follows that q divides

1− c+ 3q/(q2 + q + 1). Since 1 < c < 2,

|1− c+ 3q/(q2 + q + 1)| < q,

whence

1− c+ 3q/(q2 + q + 1) = 0. (4.19)

Now, by (4.18) and (4.19),

k = 2q2 − 2q + 1.

Hence

F (2q2 − 2q + 1) = q2(q − 2)(q − 4) = 0,

a contradiction, since q ≥ 5. Therefore k = q2 + q + 1. ��

Lemma 4.69. In PG(5, 3), any set K satisfying (A′) is a 13-cap which generates

PG(5, 3).

Proof. By (A′), the set K does not generate a line. So, suppose that it generates a

plane Π2. By Lemma 4.64, there is a line l of Π2 with |l ∩ K| ∈ {2, 3}. Let Π4

be a hyperplane of PG(5, 3) which contains l but not Π2. Then |Π4 ∩ K| ∈ {2, 3},

contradicting (A′).
Next, suppose that K generates a solid Π3. Then |K| = 7 and each plane of

Π3 has one or four points in K. Let P and P ′ be distinct points of K. If the line

PP ′ = l has b points in K, then a count of the points of K in the planes of Π3

through l gives 4(4 − b) + b = 7, whence b = 3. Let l ∩ K = {P, P ′, P ′′} and

Π2 ∩ K = {P, P ′, P ′′, P ′′′} with Π2 some plane of Π3 through l. Then the line

PP ′′′ has only two points in K, a contradiction.

Finally, suppose that K generates a hyperplane Π4. By (A′), |K| = 7 and each

solid Π3 of Π4 has one or four points in K. Let l be a line with at least two points inK,

and let Π2 be a plane of Π4 containing l. Further, let |l∩K| = a1 and |Π2∩K| = a2.

Counting the points of K in the solids of Π4 containingΠ2 gives 4(4−a2)+a2 = 7;

hence a2 = 3. Counting the points of K in the planes of Π4 containing l gives

13(3− a1) + a1 = 7; hence a1 = 8/3, a contradiction. So it has been shown that K

generates PG(5, 3).
Now it is shown that K is a k-cap. First suppose that there is a line l which

contains exactly three points P, P ′, P ′′ of K. Let R1, R2, R3 be points of K\l such

that the planes lR1, lR2, lR3 generate a hyperplane Π4; then |Π4 ∩ K| = 7. Also

|lRi ∩ K| ∈ {4, 5} for i = 1, 2, 3. If the plane lR1 contains five points of K, then

a count of the points of K in the hyperplanes through the solid lR1R2 shows that

|K| = 4(7 − 6) + 6 = 10. However, a count of the points of K in the hyperplanes

through the solid lR2R3 gives |K| = 4(7 − 5) + 5 = 13. This contradiction shows

that the plane lR1 contains exactly four points of K. Analogously, the planes lR2

and lR3 contain exactly four points of K.

Let (K ∩ Π4)\l = {R1, R2, R3, R4}. By a previous argument,

|K ∩ lR1R2| = |K ∩ lR2R3| = |K ∩ lR1R3|.
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It follows that R4 does not belong to any of the solids lR1R2, lR2R3, lR1R3. As

above, counting the points of K in the hyperplanes through the solid lR1R2 gives

|K| = 13. Let Π3 be a solid skew to l and let K\l = K′; then lK′ ∩ Π3 = K′′ is a

set of 10 points of Π3. No three points of K′′ are collinear, and any plane containing

at least three points of K′′ contains exactly four points of K′′. So K′′ is an ovaloid of

Π3. Hence {P, P ′, P ′′} is the only set consisting of three collinear points of K.

For a hyperplane Πi

4 of PG(5, 3), let si be the number of points of K in Πi

4.

Counting in two ways the number of ordered pairs (R,Πi

4), with R ∈ K ∩ Πi

4 and

Πi

4 varying over all hyperplanes, gives∑
si = 13.121 = 1573. (4.20)

Counting the ordered triples (R,R′,Πi

4) with distinct R,R′ in K ∩ Πi

4 gives∑
si(si − 1) = 13.12.40 = 6240. (4.21)

Now a count of ordered 4-tuples (R,R′, R′′,Πi

4) with distinct R,R′, R′′ in K ∩ Πi

4

gives ∑
si(si − 1)(si − 2) = (13.12.11− 6).13 + 6.40 = 22470. (4.22)

From (4.20), (4.21), (4.22),∑
si = 1573,

∑
s2
i
= 7813,

∑
s3
i
= 42763. (4.23)

These equations imply that∑
(si − 1)(si − 4)(si − 7) = 162. (4.24)

Since (A′) is satisfied, so si ∈ {1, 4, 7}, whence∑
(si − 1)(si − 4)(si − 7) = 0,

contradicting (4.24). Hence there is no line containing exactly three points of K.

Now suppose that there is a line l which is contained in K. Let R1, R2, R3 be

points of K\l such that the planes lR1, lR2, lR3 generate a hyperplane Π4; then

|Π4 ∩K| = 7. Hence the planes lR1, lR2, lR3 each contain exactly five points of K,

and the solids lR1R2, lR2R3, lR1R3 each contain exactly six points of K. Counting

the points of K in the hyperplanes through lR1R2 makes |K| = 4.(7− 6) + 6 = 10.

Let Π3 be a solid skew to l and let K\l = K′. Then lK′ ∩ Π3 = K′′ is a set of six

points of Π3. As no four of these six points are coplanar, so K′′ is a 6-arc of Π3.

By Theorem 21.2.1 of FPSOTD, an arc of PG(3, 3) has at most five points, giving a

contradiction. Thus it has been shown that K is a k-cap.

Finally, it must be shown that k = 13. For distinct points P, P ′, P ′′ in K and Πi

4,

count in two ways, similarly to above, the ordered pairs (P,Πi

4), the ordered triples

(P, P ′,Πi

4), and the ordered 4-tuples (P, P ′, P ′′,Πi

4):
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si = 121k; (4.25)∑

si(si − 1) = 40k(k − 1); (4.26)∑
si(si − 1)(si − 2) = 13k(k − 1)(k − 2). (4.27)

As above, since si ∈ {1, 4, 7} for all i, so∑
(si − 1)(si − 4)(si − 7) = 0, (4.28)

which implies that∑
si(si − 1)(si − 2)− 9

∑
si(si − 1) + 28

∑
si − 10192 = 0. (4.29)

Substituting from (4.25), (4.26), (4.27) into (4.29), gives

13k3 − 399k2 + 3774k− 10192 = (k − 13)(13k2 − 230k + 784) = 0.

As the quadratic does not have integer roots, so k = 13, completing the proof. ��

Lemma 4.70. Any solid Π3 of PG(5, q), q = 3 or q ≥ 5, meets K in at most q + 2
points.

Proof. Let |Π3 ∩ K| = m and suppose that m ≥ q + 2. Counting the points of K in

the hyperplanes through Π3 gives

k = (q + 1)(2q + 1−m) +m.

By Lemmas 4.68 and 4.69, k = q2 + q + 1. Hence m = q + 2. ��

Lemma 4.71. When q = 3 or q ≥ 5, suppose that the plane Π2 meets K in more

than three points. Then Π2 ∩ K is a (q + 1)-arc and so, for q odd, is a conic.

Proof. Let |Π2 ∩ K| = n. From (B), n ≥ q + 1. Since K is a cap, n ≤ q + 2 by

Theorem 8.5 of PGOFF2. If n = q + 2, then any solid containing Π2 and a point of

K\Π2 has at least q+3 points in common with K, contradicting Lemma 4.70. Hence

n = q+1, and Π2 ∩K is a (q+1)-arc of Π2. By Theorem 8.14 of PGOFF2, Π2 ∩K

is a conic when q is odd. ��

Lemma 4.72. For q = 3 or q ≥ 5, any two points of K are contained in a unique

plane meeting K in a (q + 1)-arc.

Proof. Let P and P ′ be distinct points of K, and suppose that no plane through the

line PP ′ meets K in a (q + 1)-arc. Then, by Lemma 4.71, any plane through PP ′

has at most three points in K. Now project the set K\{P, P ′} from the line PP ′ onto

a solid Π3 skew to PP ′. This gives a set K′ of q2 + q − 1 points in Π3. Since any

hyperplane of PG(5, q) through PP ′ meets K in q + 1 or 2q + 1 points, any plane

of Π3 meets K′ in q − 1 or 2q − 1 points. For a plane Πi

2 of Π3, let si = |K′ ∩ Πi

2|.
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Again count, for distinct points R,R′ in K′ and Πi

2, the ordered pairs (R,Πi

2) and

the ordered triples (R,R′,Πi

2):∑
si = (q2 + q − 1)(q2 + q + 1); (4.30)∑

si(si − 1) = (q2 + q − 1)(q2 + q − 2)(q + 1). (4.31)

Since si ∈ {q − 1, 2q − 1} for all i, so∑
(si − q + 1)(si − 2q + 1) = 0. (4.32)

Hence∑
si(si − 1) + 3(1− q)

∑
si + (q − 1)(2q − 1)(q3 + q2 + q + 1) = 0. (4.33)

Substituting from (4.30), (4.31) into (4.33) gives

(q2 + q − 1)(q2 + q − 2)(q + 1) + 3(1− q)(q2 + q − 1)(q2 + q + 1)

+(q − 1)(2q − 1)(q3 + q2 + q + 1) = 0;

that is,

q2(q − 1)(q − 2) = 0,

contradicting that q > 2. Consequently, there exists a plane through PP ′ which

meets K in a (q + 1)-arc.

Now suppose that PP ′ is contained in distinct planes Π2 and Π′

2 meeting K in

(q + 1)-arcs. Then the solid defined by these planes meets K in at least 2q points,

contradicting Lemma 4.70. Hence the points P, P ′ are contained in a unique plane

meeting K in a (q + 1)-arc. ��

Lemma 4.73. Let q = 3 or q ≥ 5. The number of planes meeting K in (q + 1)-arcs

is q2 + q + 1, and any two distinct planes meeting K in a (q + 1)-arc have exactly

one point in common.

Proof. Let b be the number of planes meeting K in a (q + 1)-arc. By Lemma 4.72,

with k = |K|,

k(k − 1)/{(q + 1)q} = b.

Since k = q2 + q + 1, so also b = q2 + q + 1. If Π2 and Π′

2 are distinct planes

meeting K in (q + 1)-arcs, and if they meet in a line, then the solid containing them

meets K in at least 2q points, contradicting Lemma 4.70.

Now suppose that Π2 ∩ Π′

2 = ∅. For any point P in Π2 ∩ K and any point P ′

in Π′

2 ∩ K, there is exactly one plane containing PP ′ and meeting K in a (q + 1)-
arc. Hence there are at least 2 + (q + 1)2 planes meeting K in a (q + 1)-arc. This

contradicts the first part of the proof. Therefore Π2 and Π′

2 have exactly one point in

common. ��

Theorem 4.74. If K is a set of k points of PG(5, q), q /∈ {2, 4}, which satisfies (A′)
and (B), then K is a Veronesean V4

2 .
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Proof. Let L be the set of all planes intersecting K in a (q + 1)-arc. By Lemma

4.73, |L| = q2 + q + 1 and any two elements of L meet in exactly one point. Hence

condition (I) of Subsection 4.2.2 is satisfied.

Now it is shown that condition (III) of Section 4.2.2 is also satisfied. Let Π2 ∈ L,

let P ∈ Π2, let P ′ ∈ Π2 ∩ K with P �= P ′, and let P ′′ ∈ K\Π2. Then the element

Π′

2 of L containing P ′ and P ′′ has only the point P ′ in common with Π2. Hence

P /∈ Π′

2. Since P was arbitrarily chosen in Π2, this means that there is no point

belonging to all elements of L.

Let Π2,Π
′

2,Π
′′

2 be three distinct elements of L. If Π2,Π
′

2,Π
′′

2 generate a hyper-

plane Π4, then |Π4 ∩ K| ≥ 3q, contradicting that |Π4 ∩ K| ∈ {1, q + 1, 2q + 1}.

Hence Π2,Π
′

2,Π
′′

2 generate PG(5, q). This is condition (II).

Now, by Theorems 4.49 and 4.56, the set K is a Veronesean V4
2 . ��

Remark 4.75. For q = 3, any set K satisfies condition (B). Hence any set K of

PG(5, 3) which satisfies (A′) is a Veronesean V4
2 .

In the next three lemmas, assume that q = 4 and that K satisfies (A′) and (B).

Lemma 4.76. The set K generates PG(5, 4).

Proof. By (A′), the set K does not generate a line. Assume that K generates a plane

Π2. By Lemma 4.64 there is a line l of Π2 with |l ∩ K| ∈ {2, 3}. Let Π4 be a hyper-

plane of PG(5, 4) which contains l but not Π2. Then |Π4∩K| ∈ {2, 3}, contradicting

(A′). Next, assume that K generates a solid Π3; then |K| = 9. By considering the

hyperplanes of PG(5, 4) which intersect Π3 in a plane, each plane of Π3 has either

one or five points in K. Let P and P ′ be distinct points of K. Suppose that the line

PP ′ = l has b ≥ 2 points in K. Counting the points of K in the planes of Π3 through

the line l gives 5(5−b)+b = 9, whence b = 4. Let l∩K = {P, P ′, P ′′, P ′′′} and let

Π2 ∩ K = {P, P ′, P ′′, P ′′′, R}, with Π2 some plane of Π3 through l. Then the line

RP has only 2 �= b points in K, a contradiction. Finally, assume that K generates a

hyperplane Π4. By (A′), again |K| = 9 and each solid Π3 of Π4 has either one or

five points in K. Let l be a line with at least two points in K, and let Π2 be a plane of

Π4 containing l. Further, let |Π2 ∩ K| = b. Counting the points of K in the solids of

Π4 containing Π2 gives 5(5 − b) + b = 9, whence b = 4. This contradicts (B), and

the lemma is proved. ��

Lemma 4.77. The set K is a cap.

Proof. Let l be a line of PG(5, 4). By Lemma 4.61, either l ⊂ K or |l ∩ K| ≤ 3.

First assume that l ∩ K = {P, P ′, P ′′}. Then select three points R1, R2, R3 in

K\{P, P ′, P ′′} so that 〈l, R1, R2, R3〉 is a hyperplane Π4. Then |Π4 ∩ K| = 9. By

(B), 〈l, Ri〉 necessarily contains five points of K, i = 1, 2, 3. The solid 〈l, R1, R2〉

contains either seven or eight points of K. If 〈l, R1, R2〉 contains eight points of

K, then it contains the three planes 〈l, Ri〉, i = 1, 2, 3, which is a contradiction.

Therefore |K∩〈l, R1, R2〉| = 7. Considering the hyperplanes of PG(5, 4) containing

〈l, R1, R2〉, it follows that |K| = 17. Now project K\l from l onto a solid Π3 of
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PG(5, 4) skew to l. This produces a set K′ of size seven in Π3 which intersects each

plane of Π3 in either one or three points. However, such a set K′ does not exist.

Next, assume that K contains a line l. Choose points R1, R2, R3 ∈ K\l such that

〈l, R1, R2, R3〉 is a hyperplane Π4; then |Π4 ∩ K| = 9. So (K ∩ Π4)\l consists of

four points R1, R2, R3, R4. By the previous paragraph, R4 /∈ 〈l, Ri〉, i = 1, 2, 3, as

otherwise there is a line containing exactly three points of K. Now project K\l from

l onto a solid Π3 of PG(5, 4) skew to l. This gives a set K′ which intersects each

plane of Π3 in zero or four points. It follows that each line of Π3 contains either zero

or c points, with c a constant. If Π2 is a plane of Π3 with |Π2 ∩ K′| = 4, then each

line of Π2 contains either zero or c points of this set of size four, a contradiction. ��

Lemma 4.78. The cap K contains exactly 21 points.

Proof. Put |K| = k. Let {Πi

4 | i = 1, . . . , θ(5)} be the set of hyperplanes of

PG(5, 4), and let si = |K ∩ Πi

4|. Counting in two ways the number of ordered

pairs (P,Πi

4), with P ∈ K ∩ Πi

4,

1365∑
i=1

si = 341k. (4.34)

Counting in two ways the number of ordered triples (P, P ′,Πi

4), with P, P ′ ∈ K∩Πi

4

and P �= P ′,
1365∑
i=1

si(si − 1) = 85k(k − 1). (4.35)

The set K is a cap; so counting in two ways the number of ordered 4-tuples

(P, P ′, P ′′,Πi

4), with distinct P, P ′, P ′′ ∈ K ∩ Πi

4,

1365∑
i=1

si(si − 1)(si − 2) = 21k(k − 1)(k − 2). (4.36)

Since si ∈ {1, 5, 9} for all i,

1365∑
i=1

(si − 1)(si − 5)(si − 9) = 0.

Hence

1365∑
i=1

si(si − 1)(si − 2)− 12

1365∑
i=1

si(si − 1) + 45

1365∑
i=1

si − 61425 = 0.

By (4.34), (4.35), (4.36),

21k(k − 1)(k − 2)− 1020k(k − 1) + 15345k− 61425 = 0.

Hence



194 4 Veronese and Segre varieties

7k3 − 361k2 + 5469k − 20475 = 0.

It follows that k = 21 or k = 25.

Assume, by way of contradiction, that k = 25. If Π3 is a solid in PG(5, 4) which

contains c ≥ 6 points of K, then, considering the hyperplanes of PG(5, 4) containing

Π3,

|K| = 25 = c+ 5(9− c);

so c = 5, a contradiction. If Π2 is a plane of PG(5, 4) which contains at least four

points of K, then, by (B), the plane Π2 contains at least five points of K; so there

exists a solid which contains at least six points of K, a contradiction. Hence any four

points of K are linearly independent.

Let P be a fixed point of K and let ti be the number of hyperplanes of PG(5, 4)
which contain P and intersect K in i points, with i = 1, 5, 9. A count of pairs

{P ′,Π4}, with P ′ ∈ K, P �= P ′, with Π4 a hyperplane, and with P, P ′ ∈ Π4, gives

4t5 + 8t9 = 2040. Similarly, a count of triples {P ′, P ′′,Π4}, with P ′, P ′′ distinct

points of K, different from P , and with P, P ′, P ′′ ∈ Π4, gives 6t5 + 28t9 = 5796.

Finally, a count of 4-tuples {P ′, P ′′, P ′′′,Π4}, with distinct P ′, P ′′, P ′′′ ∈ K differ-

ent fromP and with P, P ′, P ′′, P ′′′ ∈ Π4, gives 4t5+56t9 = 10120; this contradicts

the previous two equations. So k = 21 and the lemma is proved. ��

Theorem 4.79. Let K be a set of points of PG(5, q), satisfying (A′) and (B). Then

(i) for q > 2, the set K is a Veronesean V4
2 in PG(5, q);

(ii) for q = 2, it is either a quadric Veronesean V4
2 or an elliptic quadric in some

subspace PG(3, 2).

Proof. By Theorem 4.74 it may be assumed that q ∈ {2, 4}.

First, let q = 4. From the previous three lemmas, it follows that Lemmas 4.70 to

4.73 hold. Let L be the set of all planes of PG(5, 4) intersecting K in a 5-arc. As in

the proof of Theorem 4.74, it is shown that K either is V4
2 or L is the unique ovoidal

Veronesean set of planes of PG(5, 4). Lemmas 4.72 and 4.73 imply that any point

of K is contained in five planes of L. Hence L is not an ovoidal Veronesean set of

planes, and so K is a V4
2 .

Finally, suppose that q = 2. Let Π4 be a hyperplane of PG(5, 2) containing five

points of K. If these five points generate Π4, then, considering the three hyperplanes

containing a common solid of Π4 which contains four points of K, it follows that

|K| = 7 and that any six points of K generate PG(5, 2). In this case, K is a quadric

Veronesean V4
2 . So assume now that these five points of Π4 do not generate Π4. This

implies that |K| = 5. Now it can be shown that K generates a solid Π3. As every

plane of that solid contains either one or three points of K, it follows that K is an

elliptic quadric of Π3. ��

From now on, let K be a set of points of PG(m, q),m ≥ 5, with the following

properties :

(A′′) |Π4∩K| = 1, q+1, or 2q+1 for any four-dimensional subspace Π4 of PG(m, q)
with equality for some Π4;
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(B′) any plane of PG(m, q) meeting K in four points meets it in at least q+1 points.

Corollary 4.80. (i) When q > 2, then m = 5 and K is a Veronesean V4
2 in

PG(5, q).
(ii) When q = 2, then m = 5 and K is either a quadric Veronesean V4

2 of PG(5, 2)
or an elliptic quadric in some solid Π3.

Proof. First let q > 2 and assume, by way of contradiction, that m > 5. Consider a

subspace Π4 which intersects K in 2q+1 points, a subspace Π5 of PG(m, q) which

contains Π4, and a subspace Π6 of PG(m, q) which contains Π5. By Theorem 4.79,

the set Π5 ∩ K = K′ is a Veronesean V4
2 in Π5. Let K′′ = K ∩ Π6. Considering the

hyperplanes of Π6 which contain Π4,

(q + 1)(q2 − q) + 2q + 1 = |K
′′
|.

Hence |K′′| = q3 + q + 1. From Theorem 4.79, it follows that any plane containing

at least four points of K′′ intersects K′′ in a (q + 1)-arc. Let Γ be the set of these

(q + 1)-arcs; by Theorem 4.79, any two points of K′′ belong to exactly one element

of Γ. If P ∈ K′′, then there are exactly q2 +1 elements of Γ containing P . Counting

in two ways the number of pairs {P,K}, with P ∈ K′′, K ∈ Γ, P ∈ K ,

(q3 + q + 1)(q2 + 1) = |Γ|(q + 1).

Hence q+1 divides (q3+q+1)(q2+1), a contradiction. So m = 5 and, by Theorem

4.79, K is a Veronesean V4
2 in PG(5, q).

Next let q = 2. Consider a subspace Π4 which intersects K in five points. If

these five points generate a solid, then, considering the 5-dimensional subspaces of

PG(m, 2) containing Π4, it follows that K consists of these five points. Now m = 5
by (A′′).

So from now on assume that any five points of K are linearly independent. Sup-

pose, by way of contradiction, that m > 5. Let Π6 be a subspace of PG(m, 2)
containing at least five points of K. As in the case q > 2, it follows that |K′′| = 11
with |K ∩ Π6| = K′′. Also, by Theorem 4.79, any six points of K′′ are linearly in-

dependent. Any 5-dimensional subspace Π5 of Π6 containing at least six points of

K′′ contains exactly seven points of K′′. Let Γ′ be the set of all such sets Π5 ∩ K′′

of size seven. Counting the number of elements of Γ′ containing two given points

of K′′ gives c(9, 4)/c(5, 4) = 126/5, a contradiction. Hence m = 5 and then, by

Theorem 4.79, K is a quadric Veronesean V4
2 in PG(5, 2). ��

Some recent characterisations of V2
n

n
are now given, where again the numbers

of common points of V2
n

n
with subspaces are considered. As the proofs are technical

and quite long, they are omitted.

Theorem 4.81. With Nn = n(n + 3)/2, q ≥ 5 and n ≥ 2, a set K of θ(n) points

generating PG(Nn, q) is a quadric Veronesean V2
n

n
if and only if the following con-

ditions are satisfied.
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(a) If a plane of PG(Nn, q) intersects K in more than three points, then it contains

exactly q + 1 points of K. Also, any two distinct points are contained in a plane

containing q + 1 points of K.

(b) If a solid Π3 of PG(Nn, q) intersects K in more than four points, then there are

four points of Π3∩K contained in a plane of Π3; in particular, by (a), this implies

that if |Π3 ∩K| > 4, then |Π3 ∩K| ≥ q + 1.

(c) If a 5-dimensional subspace Π5 of PG(Nn, q) intersects K in more than 2q + 2
points, then it intersects K in exactly q2 + q + 1 points.

Remark 4.82. For q < 5, any quadric Veronesean V2
n

n
satisfies conditions (a), (b),

(c) of Theorem 4.81.

A counterexample to the previous theorem, for n > 2 and q = 2, is given by

removing one point of V2
n

n
and replacing it by a point of PG(Nn, 2) for which the

rank of the matrix in Theorem 4.2 is maximal.

A counterexample, for q = 3 and n = 2, is given by the point set consisting of

the points of an elliptic quadric E3 of a solid Π3 of PG(5, 3) and three points on a

line l of PG(5, 3) which does not intersect Π3.

Theorem 4.83. With Nn = n(n+3)/2, a set K of θ(n) points generatingPG(Nn, q),
q ≥ 5 and n > 2, is a quadric Veronesean V2

n

n
if and only if the following conditions

are satisfied:

(a) for any plane π of PG(Nn, q), the intersection π ∩ K contains at most q + 1
points of K;

(b) if a solid Π3 intersects K in more than four points, then |Π3 ∩ K| ≥ q + 1 and

Π3 ∩ K is not a (q + 1)-arc;
(c) if a 5-dimensional subspace Π5 of PG(Nn, q) intersects K in more than 2q + 2

points, then it intersects K in exactly q2 + q + 1 points; also, any two distinct

points of K are contained in a 5-dimensional subspace of PG(Nn, q) containing

q2 + q + 1 points of K.

Remark 4.84. For q < 5, any quadric Veronesean V2
n

n
also satisfies conditions (a),

(b), (c) of Theorem 4.83.

For n = 2, a counterexample to the previous theorem is obtained as follows.

Consider in PG(5, q) a point P on a (q2 + 1)-cap O in PG(3, q), where, for q = 2,

the cap O is assumed to be an elliptic quadric. Let l be a tangent line of O at P .

Next, consider a second solid Π′

3 intersecting Π3 precisely in l and let K be a plane

(q + 1)-arc for which l ∩K = {P}. Then O ∪K satisfies (a), (b), (c) of Theorem

4.83 but is not a Veronesean V4
2 .

4.3 Hermitian Veroneseans

In this section, Hermitian Veroneseans are introduced. Also, several properties and

characterisations of these Hermitian Veroneseans are stated. There are many similar-

ities with properties and characterisations of quadric Veroneseans. However, due to

their length and technicality, the proofs are omitted.
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Here xq , with x ∈ Fq2 , is also denoted by x. An (n+1)×(n+1) matrix M over

Fq2 is Hermitian if M∗ = M , where M∗ is the transpose of M and M is the result

of applying x 
→ x to each entry of M . The space of all (n+1)× (n+1) Hermitian

matrices over Fq2 , with n ≥ 1, is denoted by H(n + 1, q2); this space is a vector

space of dimension (n+1)2 over Fq; the group GL(n+1, q2) acts on H(n+1, q2)

with the action I given by MI = TMT
∗

.

For 1 ≤ i ≤ n + 1, let Hi(n + 1, q2) be the set of matrices in H(n + 1, q2) of

rank i and let PHi(n+1, q2), or simply PHi, be the set of spaces of dimension one

spanned by the matrices in Hi(n+1, q2). Then each PHi is an orbit of GL(n+1, q2)
under the induced action on the projective space PG(H(n + 1, q2)) of dimension

n2 + 2n over Fq. Note that PH1 is canonically in one-to-one correspondence with

the projective space PG(n, q2).
This can be seen as follows. Let V = Kn+1 consist of all column vectors over

Fq2 of length n + 1. For P = P(x) ∈ PG(V ), put Pδ = P(xx∗); here, xx∗

is a matrix of rank one in H(n + 1, q2) and so Pδ is in PH1. The linear group

GL(n+ 1, q2) preserves this action:

P(Tx)δ = P((Tx)(Tx)∗) = P(T (xx∗)T
∗

) = (P(x)δ)I.

Since GL(n+ 1, q2) is transitive on PH1, it follows that PG(V )δ = PH1. In fact,

δ is an injective map from PG(V ) onto PH1.

Next, note that PH1 is a cap in PH = PG(H(n+1, q2)), that is, no three points

are collinear. The set PH1 is called the Hermitian Veronesean of PG(n, q2).
Now, an alternative description of PH1 in PG(n2+2n, q) is given. This amounts

to choosing an explicit basis in the vector space H(n+ 1, q2), and then applying the

map δ. Let r ∈ Fq2\Fq be arbitrary. Then the map δ above can be given as

P(x0, x1, . . . , xn)δ = P((yij)),

with xi ∈ Fq2 , i = 0, 1, . . . , n, yii = xixi, yij = xixj + xixj for i < j, and

yij = rxixj + r xixj , for i > j. This representation is called the r-representation.

From the r-representation it follows that the inverse image with respect to δ of

the intersection of PH1 with a hyperplane of PG(n2+2n, q) is a Hermitian variety,

and conversely every Hermitian variety of PG(V ) arises in this way. It follows that

PH1 is not contained in a hyperplane of PG(n2+2n, q). The lines of PG(V ) have a

natural interpretation in terms of the geometry of PH: the span in PH of the image

lδ, with l a line of PG(V ), is a solid denoted by ξ(l). Since lδ is a cap of size q2 +1
in the solid ξ(l), it is an ovoid for q > 2; then lδ is always an elliptic quadric in ξ(l)
and ξ(l) ∩ PH1 = lδ. Thus the lines of PG(V ) can be interpreted as certain solids

of PH in which the points of PH1 form an elliptic quadric. Denote by Σ the set of

all these solids. Further, for a point P ∈ PH1 and ξ ∈ Σ with P ∈ ξ, let TP (ξ) be

the tangent plane to ξ ∩PH1 at P in ξ.

Now some important properties of the Hermitian VeroneseansHn,n2+2n = PH1

are listed.

Theorem 4.85. Let Hn,n2+2n be a Hermitian Veronesean in PG(n2 + 2n, q). Then
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(i) each elliptic quadric in some PG(3, q) ⊂ PG(n2 + 2n, q) contained in

Hn,n2+2n corresponds to a line of PG(V );
(ii) every n-dimensional subspace over Fq of PG(V ) corresponds to a quadric

Veronesean Vn over Fq on Hn,n2+2n, and 〈Vn〉 ∩ Hn,n2+2n = Vn.

Definition 4.86. A solid generated by an elliptic quadric on Hn,n2+2n is an elliptic

space of Hn,n2+2n.

Every elliptic space corresponds to a line of PG(V ) and vice versa.

Theorem 4.87. Let Hn,n2+2n be a Hermitian Veronesean in PG(n2 + 2n, q).

(i) Any two distinct points P, P ′ of Hn,n2+2n lie in a unique element of Σ, denoted

by ξ[P, P ′].
(ii) Two distinct solids of Σ are either disjoint or meet in a unique point of

Hn,n2+2n.

(iii) Let ξ ∈ Σ, P ∈ Hn,n2+2n, P /∈ ξ and put O = ξ ∩Hn,n2+2n. Then⋃
P ′

∈O

TP (ξ[P, P
′])

is a projective subspace of dimension four.

4.4 Characterisations of Hermitian Veroneseans

This section contains characterisations of Hermitian Veroneseans similar to the char-

acterisations of the first, third and fourth kind of the quadric Veroneseans.

4.4.1 Characterisations of Hn,n2+2n of the first kind

Let K be a subset of the point set of PG(N, q), N > 3, which generates PG(N, q)
and for which there exists a set Σ of solids of PG(N, q), called the elliptic spaces of

PG(N, q), such that for any ξ ∈ Σ, the set K(ξ) = K ∩ ξ is an ovoid in ξ. When

ξ ∈ Σ and P ∈ K(ξ), the tangent plane of K(ξ) at P in ξ is denoted by TP (ξ).
Suppose that K satisfies the following:

(a) any two distinct points P, P ′ of K lie in a unique element of Σ, denoted by

[P, P ′];
(b) if ξ1, ξ2 ∈ Σ, with ξ1 �= ξ2 and ξ1 ∩ ξ2 �= ∅, then ξ1 ∩ ξ2 ⊂ K;

(c) if P ∈ K and ξ ∈ Σ, with P /∈ ξ, then the planes TP ([P, P
′]), with P ′ ∈ K(ξ),

are contained in a common 4-dimensional subspace of PG(N, q), denoted by

T (P, ξ).

It can be shown that K is a cap, and subsequently K is called a Hermitian cap.

By Theorem 4.87, any Hermitian Veronesean is a Hermitian cap.

Consider the Hermitian Veronesean Hn,n2+2n in PG(n2+2n, q), and let Πm be

a subspace of PG(n2 + 2n, q) of dimension m, which does not intersect any elliptic
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space, nor any T (P, ξ), with P ∈ Hn,n2+2n and ξ an elliptic space not containing P .

If Πn2+2n−m−1 is a subspace of dimension n2 + 2n−m− 1 skew to Πm, then the

projection of Hn,n2+2n from Πm onto Πn2+2n−m−1 is also a Hermitian cap. Such a

Hermitian cap is a quotient of the Hermitian Veronesean Hn,n2+2n.

Theorem 4.88. Let K be a Hermitian cap in the projective space PG(N, q), N > 3.

(i) If Σ is the corresponding set of elliptic spaces, then K together with the set

Ξ = {K(ξ) | ξ ∈ Σ} is the point-line incidence structure of a projective space

PG(n, q2), with n > 1.

(ii) The cap K is projectively equivalent to a quotient of the Hermitian Veronesean

Hn,n2+2n.

In order to obtain this result, some particular cases and lemmas are proved, some

of which are of independent interest. In particular, the following result is significant.

Theorem 4.89. Let

(a) K be a Hermitian cap in the projective space PG(N, q), N > 3;
(b) Σ be the corresponding set of elliptic spaces;
(c) Ξ = {K(ξ) | ξ ∈ Σ}.

Then the following hold:

(i) K, together with the set Ξ, is the point-line structure of a projective space

PG(n, q2), n > 1, and N ≤ n2 + 2n;
(ii) if N = n2 + 2n, then K is projectively equivalent to Hn,n2+2n;

(iii) if n ∈ {2, 3}, then K is projectively equivalent to Hn,n2+2n;
(iv) if K ∩ 〈Πn−1〉 = Πn−1 for every hyperplane Πn−1 of PG(n, q2) and with

〈Πn−1〉 the subspace of PG(N, q) generated by Πn−1, then K is projectively

equivalent to Hn,n2+2n.

Theorem 4.88 is similar to Theorem 4.40 on Veronesean caps. Also, note that

the set of elliptic spaces of a Hermitian cap K in PG(N, q) is uniquely determined

if q > 2. This follows immediately from (b) in the definition of Hermitian cap, by

considering two coplanar bisecants with no common point on K of a hypothetical

ovoid contained in K and not lying in an elliptic space of K. If q = 2, this is not

clear.

4.4.2 Characterisation of Hn,n2+2n of the third kind

Relying on Subsection 4.4.1, a characterisation of Hn,n2+2n, similar to the charac-

terisation of the third kind of V2
n

n
, is obtained.

As always, a finite projective space has order q if q + 1 is the number of points

on any line.

Theorem 4.90. Let

(a) S = (P ,B, I) be a finite projective plane of order q2 > 4;
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(b) P be a subset of the point set of PG(d, q), with d ≥ 8, not contained in a hyper-

plane of PG(d, q);
(c) the points incident with any line l of S form an ovoid in some solid ξl of PG(d, q).

Then

(i) d = 8;
(ii) the plane S is Desarguesian;

(iii) P is projectively equivalent to the Hermitian Veronesean H2,8 of PG(2, q2).

A representation of a point-line incidence structure S as in this theorem is an

ovoidal embedding of S. Hence, by Theorem 4.90, all ovoidal embeddings of all

finite projective planes of order q2 > 4 are classified.

Theorem 4.91. Let

(a) S = (P ,B, I) be the point-line geometry of a finite projective space of order

q2 > 4 and dimension n ≥ 2;
(b) P be a subset of the point set of PG(d, q), with d ≥ n2 + 2n, not contained in a

hyperplane of PG(d, q);
(c) the points incident with any line l of S form an ovoid in some solid ξl of PG(d, q).

Then d = n2 + 2n and P is projectively equivalent to the Hermitian Veronesean

Hn,n2+2n of PG(n, q2).

Hence all ovoidal embeddings of all point-line geometries of the finite projective

spaces of dimension n ≥ 2 and order q2 > 4 are classified. In fact, Theorem 4.90 is

part of Theorem 4.91, but it is formulated separately to emphasise that, for n = 2, it

is not assumed that S is Desarguesian.

4.4.3 Characterisation of H2,8 of the fourth kind

In this subsection the Hermitian Veronesean H2,8 is characterised by considering its

common points with solids and hyperplanes of PG(8, q).
Since hyperplanes of PG(8, q) meet H2,8 in point sets that correspond to singular

and non-singular Hermitian curves in PG(2, q2), the size of such an intersection is

either q2 + 1, q3 + 1, or q3 + q2 + 1. It is now shown that each solid of PG(8, q)
which intersects H2,8 in at least q+3 points intersects it in q2 +1 points. So, let Π3

be such a solid. Suppose first that Π3 ∩H2,8 generates Π3 and let P1, P2, P3, P4 be

four points of PG(2, q2) which correspond to four points of Π3 ∩ H2,8 generating

Π3.

First, assume that P1, P2, P3, P4 are four points on a line l of PG(2, q2). Then,

to l there corresponds an ovoid on H2,8 in some solid of PG(8, q), and this solid

coincides with Π3. So, in this case, Π3 ∩ H2,8 is an ovoid of Π3 and thus contains

q2 + 1 points.

Suppose next that P1, P2, P3 lie on a line l and that P4 is not on l. Then each

point of Π3 ∩H2,8 is also contained in every hyperplane of PG(8, q) containing the

images of P1, P2, P3, P4. Hence every point of PG(2, q2) corresponding to a point
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of Π3 ∩H2,8 is contained in every Hermitian curve containing P1, P2, P3, P4. If P ,

with P �= P4, is a point of PG(2, q2) not on the subline over Fq of l defined by

P1, P2, P3, then either P does not belong to the singular Hermitian curve defined by

the three lines P4P1, P4P2, P4P3, if P is on l, or there is a point P ′ on l and a line l′

through P ′ such that P does not belong to the singular Hermitian curve defined by

the three lines l, l′, P ′P4, if P is not on l. Hence Π3 ∩ H2,8 contains at most q + 2
points, a contradiction.

Suppose now that {P1, P2, P3, P4} is a 4-arc in PG(2, q2). By considering the

three, unique singular Hermitian curves containing the lines P1P2, P1P3, P1P4, the

lines P2P1, P2P3, P2P4, and the lines P3P1, P3P2, P3P4, it follows that every point

P of Π3 ∩H2,8 corresponds to a point of the subplane PG(2, q) of PG(2, q2) which

contains P1, P2, P3, P4. Hence P is contained in the quadric Veronesean V4
2 on H2,8

which is the image of PG(2, q). Since V4
2 generates a 5-dimensional subspace Π5 of

PG(8, q), so Π3 is the intersection of two hyperplanes of Π5. Consequently, the size

of Π3∩H2,8 is the size of the intersection of two distinct plane quadrics in PG(2, q).
Since this is at most q + 2, a contradiction is obtained.

Finally, suppose that Π3 ∩H2,8 does not generate Π3. Then it generates a plane

since H2,8 is a cap. Hence Π3 ∩ H2,8 is a plane k-arc, and so k ≤ q + 2, again a

contradiction.

Theorem 4.92. Let K be a set of points of PG(8, q), q �= 2, with |K| = q4 + q2 +1.

Then K is projectively equivalent to H2,8 if and only if the following conditions are

satisfied:

(a) every hyperplane of PG(8, q) intersects K in either q2+1, q3+1 or q3+ q2+1
points;

(b) if a solid of PG(8, q) intersects K in at least q + 3 points, then it intersects K in

precisely q2 + 1 points.

4.5 Segre varieties

To begin with an example, let L1 and L2 be projective lines over the field K . If

L1 = {P(s1, t1)} and L2 = {P(s2, t2)}, then their Segre product or Segre variety

is

S1;1 = {P(s1s2, s1t2, t1s2, t1t2)}

in PG(3,K). Note that S1;1 is the hyperbolic quadric H3 = V(X0X3 −X1X2).
In general, let P1,P2, . . . ,Pk be projective spaces with Pi = PG(ni,K), for

i = 1, 2, . . . , k, where each ni ≥ 1. Let

Pi = {P(X i)},

with X i = (x
(i)

0 , x
(i)

1 , . . . , x(i)
ni

).

Let Nr = {0, 1, . . . , r} for any r ≥ 1, and let



202 4 Veronese and Segre varieties

η : Nn1
×Nn2

× · · · ×Nnk
−→ Nm

be a bijection, with m+ 1 = (n1 + 1)(n2 + 1) · · · (nk + 1).

Definition 4.93. The Segre variety of the k given projective spaces is

S = Sn1;n2;...;nk
=
{
P(x0, x1, . . . , xm) | xj = x(i1,i2,...,ik)η = x

(1)

i1
x
(2)

i2
· · ·x

(k)

ik
,

P(X i) a point of Pi

}
in PG(m,K).

As (x
(i)

0 , x
(i)

1 , . . . , x
(i)
ni
) �= (0, 0, . . . , 0) all i, so (x0, x1, . . . , xm) �= (0, 0, . . . , 0).

The integers n1, n2, . . . , nk are the indices of the variety S, which has dimension

n1 + n2 + · · ·+ nk. Also, Sn1;n2;...;nk
is absolutely irreducible and non-singular. It

has order
(n1 + n2 + · · ·+ nk)!

n1!n2! · · · nk!
.

Any point P(x0, x1, . . . , xm) of the Segre variety satisfies the equations

x(i1,i2,...,ik)η x(j1,j2,...,jk)η

−x(i1,...,is−1,js,is+1,...,ik)η x(j1,j2,...,js−1,is,js+1,...,jk)η = 0. (4.37)

Theorem 4.94. The Segre variety Sn1;n2;...;nk
is the intersection of all quadrics of

PG(m,K) defined by the equations (4.37). Also, any point of PG(m,K) satisfying

the equations (4.37) corresponds to a unique element of P1 × P2 × · · · × Pk.

Proof. Let P(x′

0, x
′

1, . . . , x
′

m
) be a point satisfying the equations (4.37). Without

loss of generality, let x′

(0,0,...,0)η
= 1. If the points Pi = P(x

(i)

0 , x
(i)

1 , . . . , x
(i)
ni
) of

Pi define the given point of PG(m,K), then x
(1)

0 x
(2)

0 · · ·x
(k)

0 �= 0. Hence, take

x
(1)

0 = x
(2)

0 = · · · = x
(k)

0 = 1. Then

x(i1,0,...,0)η = x
(1)

i1
, x(0,i2,0,...,0)η = x

(2)

i2
, . . . , x(0,0,0,...,0,ik)η = x

(k)

ik
,

with is = 0, 1, . . . , ns. Consequently, the given point of PG(m,K) corresponds to

at most one element of P1 × P2 × · · · × Pk.

Consider the k points Pi = P(x
(i)

0 , x
(i)

1 , . . . , x
(i)
ni
) with

x′

(i1,0,...,0)η
= x

(1)

i1
, x′

(0,i2,0,...,0)η
= x

(2)

i2
, . . . , x′

(0,0,0,...,0,ik)η
= x

(k)

ik
.

For these points,
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x′

(i1,i2,...,ik)η
= x′

(i1,i2,...,ik)η
x′

(0,0,...,0)η

= x′

(i1,i2,...,ik−1,0)η
x′

(0,0,...,0,ik))η

= x′

(i1,i2,...,ik−1,0)η
x
(k)

ik

= x′

(i1,i2,...,ik−1,0)η
x′

(0,0,...,0)ηx
(k)

ik

= x′

(i1,i2,...,ik−2,0,0)η
x′

(0,0,...,ik−1,0)η
x
(k)

ik

= x′

(i1,i2,...,ik−2,0,0)η
x
(k−1)

ik−1
x
(k)

ik

= · · · = x
(1)

i1
x
(2)

i2
· · ·x

(k)

ik
= x(i1,i2,...,ik)η.

Hence, to the element (P1, P2, . . . , Pk) in P1 × P2 × · · · × Pk, there corresponds

the given point of PG(m,K). ��

Let

δ : P1 × P2 × · · · × Pk → Sn1;n2;...;nk
(4.38)

be defined by

(P(x
(1)

0 , x
(1)

1 , . . . , x(1)
n1

), . . . , P(x
(k)

0 , x
(k)

1 , . . . , x(k)
nk

)) 
→ P(x0, x1, . . . , xm),

with

xj = x(i1,i2,...,ik)η = x
(1)

i1
x
(2)

i2
· · ·x

(k)

ik
.

By Theorem 4.94, the mapping δ is a bijection.

Theorem 4.95. Given pointsP1, P2, . . . , Pi−1, Pi+1, . . . , Pk of the respective spaces

P1,P2, . . . ,Pi−1,Pi+1, . . . ,Pk, the set of all points (P1, P2, . . . , Pk)δ, with Pi any

point of Pi, is an ni-dimensional projective space.

Proof. Up to order, the coordinates of (P1, P2, . . . , Pk)δ are of the form

x
(i)

0 r1, x
(i)

1 r1, . . . , x
(i)
ni

r1, x
(i)

0 r2, x
(i)

1 r2, . . . , x
(i)
ni

r2, . . . ,

x
(i)

0 r(m+1)/(ni+1), . . . , x
(i)
ni

r(m+1)/(ni+1),

with r1, r2, . . . , r(m+1)/(ni+1) constants, which are not all zero. However, since

P(x
(i)

0 , x
(i)

1 , . . . , x
(i)
ni
) is a variable point of Pi, it follows that the set of all points

(P1, P2, . . . , Pk)δ is an ni-dimensional projective space on Sn1;n2;...;nk
. ��

The variation of (P1, P2, . . . , Pi−1, Pi+1, . . . , Pk) gives a system Σi of ni-

dimensional projective spaces on Sn1;n2;...;nk
.

Theorem 4.96. (i) Any two distinct elements of Σi are skew.

(ii) Each point of Sn1;n2;...;nk
is contained in exactly one element of each Σi.

(iii) For i �= j, an element of Σi meets an element of Σj in at most one point.
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Proof. Let Πni
and Π′

ni

in Σi correspond to the distinct (k − 1)-tuples

(P1, P2, . . . , Pi−1, Pi+1, . . . , Pk),

(P ′

1, P
′

2, . . . , P
′

i−1, P
′

i+1, . . . , P
′

k
),

where Pj , P
′

j
∈ Pj . For any points Pi, P

′

i
∈ Pi, the two k-tuples (P1, P2, . . . , Pk),

(P ′

1, P
′

2, . . . , P
′

k
) are distinct; so (P1, P2, . . . , Pk)δ �= (P ′

1, P
′

2, . . . , P
′

k
)δ. Therefore

Πni
∩ Π′

ni

= ∅.

Let (P1, P2, . . . , Pk)δ be any point of Sn1;n2;...;nk
; this point lies in the space

Πni
of Σi corresponding to the points P1, P2, . . . , Pi−1, Pi+1, . . . , Pk.

Finally, let the spaces Πni
in Σi and Πnj

in Σj correspond to the (k − 1)-tuples

(P1, P2, . . . , Pi−1, Pi+1, . . . , Pk) and (P ′

1, P
′

2, . . . , P
′

j−1, P
′

j+1, . . . , P
′

k
), with i, j

distinct. If Πni
∩ Πnj

�= ∅, then Ps = P ′

s
for all s with s �= i, j. If Ps = P ′

s
for all

s with s �= i, j, then (P1, P2, . . . , Pi−1, P
′

i
, Pi+1, . . . , Pk)δ is the unique common

point of Πni
and Πnj

. ��

From now on, it is assumed that K = Fq , although many of the results hold in a

general field.

Theorem 4.97. The cardinalities of the Segre variety and its projective spaces Σi

are as follows:

(i) |Sn1;n2;...;nk
| = θ(n1)θ(n2) · · · θ(nk);

(ii) |Σi| = θ(n1)θ(n2) · · · θ(nk)/θ(ni).

Proof. Since the mapping δ of (4.38) is a bijection, so (i) follows. By Theorem 4.96,

the elements of Σi form a partition of Sn1;n2;...;nk
, which gives (ii). ��

Example 4.98. (1) For n1 = n2 = · · · = nk = 1, the dimension m = 2k−1 and the

order of Sn1;n2;...;nk
is k!. Here, the elements of Σi are lines, |S1;1;...;1| = (q + 1)k

and |Σi| = (q + 1)k−1. As at the start, S1;1 is a hyperbolic quadric of PG(3, q). For

k = 3, the dimension m = 7, the order of S1;1;1 is 6, the size |S1;1;1| = (q + 1)3,

and |Σi| = (q + 1)2.

(2) For n1 = n2 = · · · = nk = n, the dimension m = (n + 1)k − 1 and the

order of Sn1;n2;...;nk
is (kn)!/(n!)k. Also, |Sn;n;...;n| = θ(n)k and |Σi| = θ(n)k−1.

When k = n = 2, then m = 8, the order of S2;2 is 6, the size |S2;2| = (q2+ q+1)2,

and |Σi| = q2 + q + 1.

(3) When k = 2, then m = (n1+1)(n2+1)−1 = n1n2+n1+n2 and the order

of Sn1;n2
is (n1 + n2)!/(n1!n2!). Also, |Sn1;n2

| = θ(n1)θ(n2), with |Σ1| = θ(n2)
and |Σ2| = θ(n1).

For n1 = n2 = n, then m = n(n+ 2), the order of Sn;n is (2n)!/(n!)2, the size

|Sn;n| = θ(n)2, and |Σi| = θ(n).
When n1 = 1 and n2 = n, then m = 2n + 1, the order of S1;n is n + 1, the

size |S1;n| = (q + 1)θ(n), with |Σ1| = θ(n) and |Σ2| = q + 1. In the particular

case that n1 = 1 and n2 = 2, then m = 5, the order of S1;2 is 3, with the size

|S1;2| = (q + 1)(q2 + q + 1); also, |Σ1| = q2 + q + 1 and |Σ2| = q + 1.
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Now, the variety Sn1;n2
is considered in more detail. Several of its properties can

be generalised to all Segre varieties.

Theorem 4.99. On the Segre variety Sn1;n2
, each element of Σ1 meets each element

of Σ2 in a single point.

Proof. If Πn1
corresponds to the point P2 of P2 and Πn2

to the point P1 of P1, then

Πn1
∩ Πn2

= {(P1, P2)δ}. ��

Theorem 4.100. No hyperplane of PG(m, q) contains the Segre variety Sn1;n2
.

Proof. Suppose the hyperplane Πm−1 = V(F ), with F =
∑

j
ajXj , contains

Sn1;n2
. Then, with the notation aj = a(i1,i2)η = bi1i2 ,

n1∑
i1=0

n2∑
i2=0

bi1i2x
(1)

i1
x
(2)

i2
= 0

for all x
(1)

0 , x
(1)

1 , . . . , x
(1)
n1

and all x
(2)

0 , x
(2)

1 , . . . , x
(2)
n2

. Now, fix the first set of ele-

ments, namely x
(1)

0 , x
(1)

1 , . . . , x
(1)
n1

. Since

n2∑
i2=0

(
n1∑

i1=0

bi1i2x
(1)

i1

)
x
(2)

i2
= 0

for all x
(2)

0 , x
(2)

1 , . . . , x
(2)
n2

, it follows that, for any i2 ∈ {0, 1, . . . , n2},

n1∑
i1=0

bi1i2x
(1)

i1
= 0

for all x
(1)

0 , x
(1)

1 , . . . , x
(1)
n1

. Hence bi1i2 = 0 for both all i1 ∈ {0, 1, . . . , n1} and all

i2 ∈ {0, 1, . . . , n2}. So a0 = a1 = · · · = am = 0, a contradiction. ��

Now introduce the following notation:

x
(1)

0 = y0, x
(1)

1 = y1, . . . , x
(1)
n1

= yn1
,

x
(2)

0 = z0, x
(2)

1 = z1, . . . , x
(2)
n2

= zn2
,

xj = x(i1,i2)η = xi1i2
.

Also, let (i1, i2)η = i1(n2 + 1) + i2. The equations (4.37) become

xi1i2
xj1j2

− xj1i2
xi1j2

= 0. (4.39)

Theorem 4.101. The Segre variety Sn1;n2
consists of all points P(X), with

X = (x00, x01, . . . , x0n2
, x10, . . . , x1n2

, . . . , xn1n2
),

of PG(m, q) for which rank [xij ] = 1.
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Proof. By Theorem 4.94, Sn1;n2
consists of all points P(X) satisfying (4.39). This

implies the result. ��

Theorem 4.102. The intersection of Sn;n and the subspace

Πn(n+3)/2 = V(X01 −X10, X02 −X20, . . . , Xn−1,n −Xn,n−1)

is the quadric Veronesean Vn of all quadrics of PG(n, q).

Proof. This follows immediately from Theorems 4.2 and 4.101. ��

Let ξi be a projectivity of Pi, i = 1, 2, and let ξ be defined by

(P1, P2)δξ = (P1ξ1, P2ξ2)δ

for all P1 in P1 and P2 in P2. Then ξ is a permutation of the Segre variety Sn1;n2
;

also, ξ fixes both Σ1 and Σ2.

When n1 = n2 = n, let ψ1 : P1 → P2 and ψ2 : P2 → P1 be projectivities.

Define ψ by (P1, P2)δψ = (P2ψ2, P1ψ1)δ for all P1 in P1 and P2 in P2. Then ψ is

a permutation of Sn;n that interchanges Σ1 and Σ2.

Let G(Sn1;n2
) be the subgroup of PGL(m + 1, q), with m = n1n2 + n1 + n2,

that fixes Sn1;n2
.

Theorem 4.103. (i) The permutation ξ of Sn1;n2
is induced by a unique element ξ̃

of G(Sn1 ;n2
).

(ii) When n1 = n2 = n, then the permutation ψ of Sn;n is induced by a unique

element ψ̃ of G(Sn;n).

Proof. Let ξi be the projectivity of Pi, i = 1, 2, with matrix Ai = [a
(i)

jk
]. If

(x00, x01, . . . , xn1n2
)ξ = (x′

00, x
′

01, . . . , x
′

n1n2
),

then

x′

i1i2
= y′

i1
z′
i2

=

n1∑
r=0

a
(1)

ri1
yr

n2∑
s=0

a
(2)

si2
zs

=

n1∑
r=0

n2∑
s=0

a
(1)

ri1
a
(2)

si2
yrzs =

n1∑
r=0

n2∑
s=0

a
(1)

ri1
a
(2)

si2
xrs. (4.40)

Hence ξ is induced by the element ξ̃ of G(Sn1;n2
) with matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)

00 A2 a
(1)

01 A2 · · · a
(1)

0n1
A2

a
(1)

10 A2 a
(1)

11 A2 · · · a
(1)

1n1
A2

...
...

...

a
(1)

n10
A2 a

(1)

n11
A2 · · · a

(1)
n1n1

A2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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The matrix A is the Kronecker product A1 ⊗ A2 of A1 and A2. A consequence is

that |A| = |A1 ⊗A2| = |A1|
n2+1|A2|

n1+1.

Suppose that ξ is also induced by the element ξ̃′ of G(Sn1;n2
), where ξ̃′ has

matrix A′ = [a′
jk
]. Then the projectivity ξ̃′ξ̃−1 with matrix A′A−1 = B induces

the identity mapping on Sn1;n2
. Let B = [bjk] and put bjk = b(j1j2)(k1k2), where

(j1, j2)η = j and (k1, k2)η = k. Then

tyk1
zk2

=

n1∑
j1=0

n2∑
j2=0

b(j1j2)(k1k2)yj1zj2

for some t ∈ Fq , for all P(Y ) of P1 with Y = (y0, y1, . . . , yn1
) and all P(Z) of

P2 with Z = (z0, z1, . . . , zn2
). Letting Y = (1, 0, . . . , 0) and Z = (1, 0, . . . , 0)

gives b(00)(k1k2) = 0 if (k1, k2) �= (0, 0). More generally, b(j1j2)(k1k2) = 0 for

(k1, k2) �= (j1, j2). So

tyk1
zk2

= b(k1k2)(k1k2)yk1
zk2

,

for all P(Y ) of P1 and P(Z) of P2. Thus b(k1k2)(k1k2) is independent of k1 and k2.

Therefore B = tI and and so ξ̃′ = ξ̃. So it has been shown that the permutation ξ of

Sn1;n2
is induced by a unique element ξ̃ of G(Sn1;n2

).
Now assume that n1 = n2 = n. Similarly to above, let ψ1 : P1 → P2 and

ψ2 : P2 → P1 be projectivities defined by the matrices D1 and D2. Define ψ by

(P1, P2)δψ = (P2ψ2, P1ψ1)δ for all P1 in P1 and P2 in P2. Put Di = [d
(i)

jk
] for

i = 1, 2, and

(x00, x01, . . . , xnn)ψ = (x′

00, x
′

01, . . . , x
′

nn
).

Then

x′

i1i2
= y′

i1
z′
i2

=

n∑
r=0

d
(2)

ri1
zr

n∑
s=0

d
(1)

si2
ys

=
n∑

r=0

n∑
s=0

d
(2)

ri1
d
(1)

si2
zrys =

n∑
r,s=0

d
(2)

ri1
d
(1)

si2
xsr. (4.41)

Since (4.41) represents an element ψ̃ of PGL(m+1, q), the permutationψ is induced

by the element ψ̃ ∈ G(Sn;n). Let ζ̃ ∈ PGL(m+1, q), with m = n2+2n, be defined

by x′

sr
= xrs for all r, s = 0, 1, . . . ,m. For any point P of Sn;n, the coordinates of

P ζ̃ satisfy (4.39); so, by Theorem 4.94, the point P ζ̃ is in Sn;n. Hence ζ̃ ∈ G(Sn;n)

and ψ̃ζ̃ has matrix D1 ⊗ D2. So, by the first part of the proof, the projectivity ψ̃ζ̃

corresponds to (ξ1, ξ2), with ξi the projectivity of Pi with matrix Di, i = 1, 2.

If ψ is also induced by the element ψ̃′ of G(Sn;n), then ψ̃ζ̃ and ψ̃′ζ̃ induce the

same permutation of Sn;n. Now, by the preceding paragraph and the first part of the

proof, it follows that ψ̃ζ̃ = ψ̃′ζ̃ , whence ψ̃ = ψ̃′. The conclusion is that ψ is induced

by a unique element ψ̃ of G(Sn;n). ��
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Since Sn1;n2
is the intersection of the quadrics (4.39), any line l of PG(m+1, q)

meets Sn1;n2
in 0, 1, 2 or q + 1 points. In the next lemma it is shown that the lines

of the elements of Σ1 and Σ2 are the only lines which are completely contained in

Sn1;n2
.

Lemma 4.104. Any line l of Sn1;n2
is contained in an element of Σ1 or Σ2.

Proof. Let l be a line of Sn1;n2
and let P and P ′ be distinct points of l. Further, let

(P1, P2)δ = P and (P ′

1, P
′

2)δ = P ′. Assume that P1 �= P ′

1 and P2 �= P ′

2. With

U′

0 = P(1, 0, . . . , 0) and U′′

0 = P(1, 0, . . . , 0),
U′

1 = P(0, 1, 0, . . . , 0) and U′′

1 = P(0, 1, 0, . . . , 0),

let ξ1 be a projectivity of P1 = PG(n1, q), for which P1ξ1 = U′

0, P
′

1ξ1 = U′

1, and

ξ2 be a projectivity of P2 = PG(n2, q), for which P2ξ2 = U′′

0 , P
′

2ξ2 = U′′

1 . The

element of G(Sn1;n2
) which corresponds to (ξ1, ξ2) is denoted by ξ̃. Then lξ̃ is also

a line of Sn1;n2
.

The line lξ̃ contains the points (U′

0,U
′′

0 )δ = U0 and (U′

1,U
′′

1 )δ = Un2+2,

where Ui = P(Ei) with Ei the vector with one in the (i + 1)-th place and zeros

elsewhere. Hence lξ̃ also contains the point P(E0 + En2+2) = R. However, the

coordinates of R do not satisfy (4.39); thus R /∈ Sn1;n2
, giving a contradiction.

Therefore, either P1 = P ′

1 or P2 = P ′

2; suppose the former.

Let P ′′ be any point of l and let (P ′′

1 , P
′′

2 )δ = P ′′. If P ′′

1 �= P1, then, by the

preceding paragraph, P ′′

2 = P2 and P ′′

2 = P ′

2, a contradiction. So P ′′

1 = P1. This

gives the conclusion that l is a line of the element of Σ2 that corresponds to the point

P1 of P1. ��

An s-space Πs which is contained in Sn1;n2
but in no (s + 1)-space Πs+1 of

Sn1;n2
is a maximal space or maximal subspace of Sn1;n2

. The next result describes

what they are.

Theorem 4.105. The maximal spaces of the Segre variety Sn1;n2
are the elements of

Σ1 and Σ2.

Proof. Let Πs be a maximal subspace of Sn1;n2
and suppose that Πs is not contained

in an element of Σ1 ∪Σ2. Choose a point P in Πs and also a line l of Πs through P .

By Theorem 4.96 and Lemma 4.104, the line l is contained in a unique element π′

of Σ1 ∪ Σ2. Since Πs is not contained in π′, there exists a line l′ through P which

is contained in Πs but not in π′. Let π′′ be the unique element of Σ1 ∪ Σ2 which

contains l′; then π′ ∩ π′′ = {P}. Since Πs �= (Πs ∩ π′) ∪ (Πs ∩ π′′), there exists

a line l′′ through P not in π′ ∪ π′′. The line l′′ is contained in a unique element π′′′

of Σ1 ∪ Σ2. Thus P is contained in at least three distinct elements of Σ1 ∪ Σ2, a

contradiction.

Hence Πs is contained in an element of Σ1 ∪ Σ2. Since Πs is maximal, it is an

element of Σ1 ∪ Σ2. ��

Corollary 4.106. Each s-space of Sn1;n2
, s > 0, is contained in a unique element

of Σ1 ∪ Σ2.
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Proof. Let Πs be an s-space of Sn1;n2
, with s > 0. This space is contained in a

maximal subspace of Sn1;n2
and, by the theorem, in an element π of Σ1 ∪ Σ2. By

Theorem 4.96, the space π is uniquely determined by Πs. ��

Notation 4.107. With [r, s]− =
∏

i=s

i=r
(qi − 1) for r ≤ s and [r, s]− = 1 for r > s,

as in PGOFF2,

φ(r;n, q) = |PG(r)(n, q)| = [n− r + 1, n+ 1]−/[1, r + 1]−.

Corollary 4.108. Let n1 ≤ n2. The number of s-spaces contained in Sn1;n2
is

(i) θ(n1)φ(s;n2, q) + θ(n2)φ(s;n1, q), for 0 < s ≤ n1;
(ii) θ(n1)φ(s;n2, q), for n1 < s ≤ n2.

Proof. This follows from Corollary 4.106. ��

Theorem 4.109. Let Pi ∈ Pi and let PG(di, q) be a di-space of Pi, i = 1, 2. Then

(i) ({P1} × PG(d2, q))δ is a d2-space and (PG(d1, q) × {P2})δ is a d1-space of

Sn1;n2
;

(ii) all subspaces of Sn1;n2
are obtained as in (i);

(iii) for di > 0, i = 1, 2, the set (PG(d1, q)×PG(d2, q))δ is a Segre variety Sd1;d2

on Sn1;n2
;

(iv) Sd1;d2
= Sn1;n2

∩ Πm′ , where m′ = d1d2 + d1 + d2 and Πm′ is the m′-space

generated by Sd1;d2
;

(v) all Segre varieties of Sn1;n2
are obtained as in (iii).

Proof. By Theorem 4.103, coordinates can be chosen so that PG(d1, q) contains the

points

U′

0 = P(E′

0), U
′

1 = P(E′

1), . . . , U
′

d1
= P(E′

d1
),

and that PG(d2, q) contains the points

U′′

0 = P(E′′

0 ), U
′′

1 = P(E′′

1 ), . . . ,U
′′

d2
= P(E′′

d2
),

where E′

i
and E′′

i
are vectors with 1 in the (i+1)-th place and zeros elsewhere. Then

(PG(d1, q)× PG(d2, q))δ = V is the set of all points

(y0z0, y0z1, . . . , y0zn2
, y1z0, y1z1, . . . , y1zn2

, . . . , yn1
zn2

),

with

zd2+1 = zd2+2 = · · · = zn2
= 0 and yd1+1 = yd1+2 = · · · = yn1

= 0.

When d1 = 0, then V is a d2-space of Sn1;n2
; when d2 = 0, then V is a d1-space

of Sn1;n2
. When d1, d2 > 0, then V is a Segre variety Sd1;d2

. The subspace Πm′ ,

with m′ = d1d2 + d1 + d2, of PG(m, q) generated by Sd1;d2
is the intersection of

the hyperplanes V(Xi1i2
) where i1 > d1 or i2 > d2. For any point of Sn1;n2

in the

intersection of these hyperplanes, yi1 = 0 for i1 > d1 and zi2 = 0 for i2 > d2.

Hence Sd1;d2
= Sn1;n2

∩ Πm′ .
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When d1 = 0, then δ defines a projectivity from PG(d2, q) onto the d2-space

(PG(d1, q) × PG(d2, q))δ; similarly, when d2 = 0, then δ defines a projectivity

from Πd1
onto the d1-space (PG(d1, q)× PG(d2, q))δ.

Conversely, let Πd2
be a d2-space contained in Sn1;n2

. By Corollary 4.106, the

space Πd2
is contained in an element of Σ1 ∪ Σ2. Suppose, for example, that Πd2

is contained in an element Πn2
of Σ1. Let Πn2

δ−1 = {P1} × PG(n2, q). Since δ

defines a projectivity from PG(n2, q) onto Πn2
, so Πd2

δ−1 = {P1} × PG(d2, q),
where PG(d2, q) is a d2-space of PG(n2, q).

Next, let Sd1;d2
be a Segre subvariety of Sn1;n2

. The systems of maximal sub-

spaces of Sd1;d2
are denoted by Σ′

1 and Σ′

2, where the elements of Σ′

i
are contained in

elements of Σi, i = 1, 2. Let P ∈ Sd1;d2
and Pδ−1 = (P1, P2). The elements of Σ′

1

and Σ′

2 containing P are denoted by Πd2
and Πd1

. Let Πd2
δ−1 = {P1}×PG(d2, q),

where PG(d2, q) is a d2-space of PG(n2, q), and let Πd1
δ−1 = PG(d1, q)× {P2},

where PG(d1, q) is a d1-space of PG(n1, q). The points of Sd1;d2
are the points P ′,

where {P ′} = Π′

d1
∩Π′

d2
, with Π′

d1
∈ Σ′

2 and Π′

d2
∈ Σ′

1. It follows that Sd1;d2
con-

sists of the points P ′, where {P ′} = Πn1
∩Πn2

with Πn1
any space of Σ2 containing

a point of Πd2
and Πn2

any space of Σ1 containing a point of Πd1
. Hence Sd1;d2

δ−1

consists of all ordered pairs (P ′

1, P
′

2) with P ′

1 ∈ PG(d1, q) and P ′

2 ∈ PG(d2, q).
Therefore Sd1;d2

= (PG(d1, q)× PG(d2, q))δ. ��

Corollary 4.110. Let n1 ≤ n2. For given d1, d2, with 0 < d1 ≤ n1, 0 < d2 ≤ n2

and d1 ≤ d2, the number of Segre subvarieties Sd1;d2
of Sn1;n2

is

(i) φ(d1;n1, q)φ(d2;n2, q) + φ(d1;n2, q)φ(d2;n1, q), for d1 < d2 ≤ n1;
(ii) φ(d1;n1, q)φ(d2;n2, q) for d1 = d2 ≤ n1 and d1 ≤ n1 < d2.

Proof. This follows from Theorem 4.109. ��

Corollary 4.111. Let Πs, with s ≥ 1, be an s-space of Sn1;n2
contained in an ele-

ment Πn1
of Σ2. Then the elements of Σ1 meeting Πs in a point are the elements of

a system of maximal spaces of a Segre subvariety Ss;n2
of Sn1;n2

.

Proof. Let Πsδ
−1 = PG(s, q) × {P2}, with P2 a point of PG(n2, q) and PG(s, q)

an s-space of PG(n1, q). Then the elements of Σ1 having a point in common with

Πs are the elements of a system of maximal spaces of (PG(s, q) × PG(n2, q))δ,

which is a Segre subvariety Ss;n2
of Sn1;n2

. ��

Let ξi be a projectivity of PG(ni, q), i = 1, 2, and let ξ̃ be the correspond-

ing element of G(Sn1;n2
). By Theorem 4.103, the map θ : (ξ1, ξ2) → ξ̃ defines

a monomorphism from PGL(n1 + 1, q) × PGL(n2 + 1, q) to G(Sn1;n2
). Now let

n1 = n2 = n, let ζ1 be the projectivity from PG(n1, q) = Π1
n

onto PG(n2, q) = Π2
n

with matrix I , and let ζ2 be the projectivity from Π2
n

onto Π1
n

with matrix I .

By (4.41), the element of G(Sn;n) which corresponds to (ζ1, ζ2) is the element

ζ̃ ∈ PGL(m+1, q), m = n2 +2n, defined by x′

sr
= xrs for all r, s = 0, 1, . . . ,m.

Theorem 4.112. (i) For n1 �= n2, the mapping θ : (ξ1, ξ2) → ξ̃ is an isomorphism

from PGL(n1 + 1, q)× PGL(n2 + 1, q) to G(Sn1;n2
).
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(ii) For n1 = n2 = n,

G(Sn;n) =

(PGL(n+ 1, q)× PGL(n+ 1, q))θ ∪ ((PGL(n+ 1, q)× PGL(n+ 1, q))θ)ζ̃ .

Proof. Let n1 �= n2, and let ξ̃ ∈ G(Sn1 ;n2
). By Theorem 4.105, Σ1ξ̃ = Σ1 and

Σ2ξ̃ = Σ2. Hence ξ̃ defines permutations ξ1 of PG(n1, q) and ξ2 of PG(n2, q). To

the points of a line l of PG(n1, q) there correspond the elements Π0
n2
,Π1

n2
, . . . ,Πq

n2

of a system of maximal n2-spaces of the Segre subvariety S1;n2
= (l×PG(n2, q))δ

of Sn1;n2
. From the second paragraph of the proof of Theorem 4.109, δ defines

a projectivity from l onto any line (l × {P2})δ = m, with P2 ∈ PG(n2, q).
The n2-spaces Π0

n2
ξ̃,Π1

n2
ξ̃, . . . ,Πq

n2
ξ̃ are the elements of a system of maximal

n2-spaces of the Segre subvariety S1;n2
ξ̃ = S ′

1;n2
of Sn1;n2

. By Theorem 4.109,

S ′

1;n2
= (l′ × PG(n2, q))δ, with l′ some line of PG(n1, q). Again from the proof of

Theorem 4.109, δ defines a projectivity from l′ onto the line mξ̃. Hence lξ1 = l′, and

ξ1 induces a projectivity from l to l′. It follows that ξ1 is a projectivity of PG(n1, q).
Analogously, ξ2 is a projectivity of PG(n2, q). Hence (ξ1, ξ2)θ is the given ξ̃. There-

fore (PGL(n1 +1, q)×PGL(n2 +1, q))θ = G(Sn1;n2
), which proves the first part

of the theorem.

Next, let n1 = n2 = n, let PG(n1, q) = Π1
n

and let PG(n2, q) = Π2
n

. Consider

any element η̃ in G(Sn;n). Then either Σ1η̃ = Σ1 and Σ2η̃ = Σ2 or Σ1η̃ = Σ2

and Σ2η̃ = Σ1. In the former case, as in the first part of the proof, there exists

projectivities ξ1 of Π1
n

and ξ2 of Π2
n

such that (ξ1, ξ2)θ = η̃. In the latter case,

Σiη̃ζ̃ = Σi for i = 1, 2. of Π1
n

and η2 of Π2
n

such

that (η1, η2)θ = η̃ζ̃. Since ζ̃−1 = ζ̃ , so (η1, η2)θζ̃ = η̃. This gives the conclusion. ��

Corollary 4.113. (i) For n1 �= n2,

|G(Sn1;n2
)| = |PGL(n1 + 1, q)| |PGL(n2 + 1, q)|.

(ii) For n1 = n2 = n,

|G(Sn;n)| = 2 |PGL(n+ 1, q)|2.

Proof. This follows from the theorem. ��

Theorem 4.114. For n1 = n2 = n, let ψ1 be a projectivity from PG(n1, q) = Π1
n

onto PG(n2, q) = Π2
n

. Then the set of all points (P1, P1ψ1)δ, with P1 ∈ Π1
n

is a

quadric Veronesean Vn.

Proof. Coordinates can be chosen so that ψ1 has matrix I . Then (P1, P1ψ1)δ is the

set of all points

P(y20 , y0y1, . . . , y0yn, y1y0, y
2
1, y1y2, . . . , y1yn, . . . , y

2
n
),

with (y0, y1, . . . , yn) �= (0, 0, . . . , 0). Hence (P1, P1ψ1)δ is a quadric Veronesean

Vn. Since (P1, P1ψ1)δ is the intersection of Sn;n and the space

V(X01 −X10, X02 −X20, . . . , Xn−1,n −Xn,n−1),

it is the quadric Veronesean Vn described in Theorem 4.102. ��

Hence there exist projectivities η1
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Remark 4.115. With ψ1 as in Theorem 4.114, let ψ2 = ψ−1
1 . Also, let ψ̃ be the

element of G(Sn;n) that corresponds to (ψ1, ψ2). Then the points P = (P1, P2)δ of

Sn;n which are fixed by ψ̃ are determined by (P2ψ2, P1ψ1)δ = (P1, P2)δ. Hence

these points are of the form (P1, P1ψ1)δ with P1 ∈ Π1
n

. By Theorem 4.114, the set

of all these fixed points is a quadric Veronesean Vn.

Finally, the coordinates of the maximal spaces merit a brief description. Con-

sider the element (PG(n1, q) × {P2})δ = Πn1
of Σ1, where P2 = P(Z) and

Z = (z0, z1, . . . , zn2
). The space Πn1

is generated by the independent points

Ri = P(Xi), i = 0, 1, . . . , n, where

X0 = (z0, z1, . . . , zn2
, 0, . . . , 0),

X1 = (0, . . . , 0, z0, z1, . . . , zn2
, 0, . . . , 0)

with z0 in the (n2 + 2)-nd place,

...

Xn1
= (0, . . . , 0, z0, z1, . . . , zn2

).

The coordinates of Πn1
are denoted by (i0 i1 · · · in1

) with i0 < i1 < · · · < in1
and

{i0, i1, . . . , in1
} a subset of order n1 + 1 of {0, 1, . . . , n1n2 + n1 + n2 = m}.

Let Vk = {k(n2 + 1), k(n2 + 1) + 1, . . . , k(n2 + 1) + n2}, k = 0, 1, . . . , n1,

and iks = k(n2 + 1) + s. Then

(i0 i1 · · · in1
) = 0 when (i0 i1 · · · in1

) /∈ V0 × V1 × · · · × Vn1
.

If

(i0 i1 · · · in1
) ∈ V0 × V1 × · · · × Vn1

, with i0 = i0s0 , i1 = i1s1 , . . . , in1
= in1sn1

,

then (i0 i1 · · · in1
) = zs0 zs1 · · · zsn1

.

With m = n1n2 + n1 + n2, let Σ1G be the image of Σ1 on the Grassmannian

Gn1,m
. When n1 = 1, then, from above, it follows that Σ1G is the Veronesean of

quadrics of PG(n2, q). When n2 = 1, then Σ1G is a normal rational curve of order

n1+1. In particular, when n1 = n2 = 1, then Σ1G and Σ2G are conics of the Klein

quadric G1,3.

4.6 Regular n-spreads and Segre varieties S1;n

In Section 17.1 of FPSOTD, regular spreads of lines in PG(3, q) were studied in

detail. In particular, the reguli contained in such a spread were considered. Some of

the results are extended here to regular spreads of n-spaces in PG(2n+ 1, q).

Definition 4.116. (1) A partition of PG(2n+ 1, q) by n-spaces is an n-spread.

(2) A system of maximal n-spaces of a Segre variety S1;n is an n-regulus.

(3) A 1-regulus is a regulus.
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Theorem 4.117. If, in PG(2n+1, q), n ≥ 1, the n-spaces Πn,Π
′

n
,Π′′

n
are mutually

skew, then the set of all lines having a non-empty intersection with Πn,Π
′

n
,Π′′

n
is a

system of maximal spaces of a Segre variety S1;n.

Proof. Coordinates are chosen so that Πn contains the points

U0 = P(E0), U1 = P(E1), . . . , Un = P(En),

where Ei is the vector with one in the (i+1)-th place and zeros elsewhere. Through

each Ui, i = 0, 1, . . . , n, there is exactly one line li meeting Π′

n
and Π′′

n
in a point.

Suppose that intersections of l0, l1, . . . , ln with Π′

n
generate a space Π′

n′ and

with Π′′

n
generate a space Π′′

n′′ . Then the (n′ + n′′ + 1)-space generated by Π′

n′ and

Π′′

n′′ contains the points U0,U1, . . . ,Un and hence Πn. Since Πn ∩ Π′

n′ = ∅, so

n = n′′; analogously, n = n′. Hence take li ∩ Π′

n
= {Ui+n+1}, i = 0, 1, . . . , n,

with Ui+n+1 = P(Ei+n+1). Let li ∩ Π′′

n
= {Qi}, i = 0, 1, . . . , n, and let U be

a point of Π′′

n
contained in none of the (n − 1)-spaces generated by n of the points

Q0, Q1, . . . , Qn. Then U may be taken as P(E) with E = (1, 1, . . . , 1). Then it

follows that Qi = P(Ei,i+n+1) with Ei,i+n+1 the vector with one in the (i + 1)-th
and (i+ n+ 2)-nd places and zeros elsewhere, i = 0, 1, . . . , n.

Let P = P(Z), with Z = (z0, z1, . . . , zn, 0, . . . , 0), be any point of Πn, and

let l be the line through P having a non-empty intersection with Π′

n
and Π′′

n
. Let

l ∩ Π′

n
= {P ′} with P ′ = P(Z ′) and Z ′ = (0, . . . , 0, z′0, z

′

1, . . . , z
′

n
); also, let

l ∩ Π′′

n
= {P ′′} with P ′′ = P(Z ′′) . Then, with r0, r1 �= 0,

Z ′′ = (r0z0, r0z1, . . . , r0zn, r1z
′

0, r1z
′

1, . . . , r1z
′

n
).

Since Z ′′ is a linear combination of the vectors E0,n+1, E1,n+2, . . . , En,2n+1, it

follows that r0zi = r1z
′

i
, i = 0, 1, . . . , n. Hence take zi = z′

i
all i. Then any point

of the line l is of the form P(X), where

X = (y0z0, y0z1, . . . , y0zn, y1z0, y1z1, . . . , y1zn),

with (y0, y1) �= (0, 0). Therefore all lines l form a system of maximal spaces of a

Segre variety S1;n. ��

Corollary 4.118. If Πn,Π
′

n
,Π′′

n
are mutually skew n-spaces in PG(2n+ 1, q), with

n ≥ 1, then there is exactly one n-regulus containing all three spaces.

Proof. A Segre variety S1;n containing the spaces Πn,Π
′

n
,Π′′

n
is necessarily the

union of the θ(n) lines having a point in common with these three spaces. In the

theorem it was shown that this union is a Segre variety S1;n. The system of maximal

spaces containing Πn,Π
′

n
,Π′′

n
of this unique Segre variety S1;n is the unique n-

regulus containing these three spaces. ��

Notation 4.119. The n-regulus containing Πn,Π
′

n
,Π′′

n
is denoted R(Πn,Π

′

n
,Π′′

n
).

Theorem 4.120. The number of n-reguli in PG(2n+ 1, q) is

|PGL(2n+ 2, q)|/{|PGL(2, q)||PGL(n+ 1, q)|}.
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Proof. The number of n-reguli in PG(2n+1, q), n > 1, is the number of Segre var-

ieties S1;n in PG(2n+1, q), which is |PGL(2n+2, q)|/|G(S1;n)|. So, by Corollary

4.113, this is the required number.

For n = 1, the number of reguli in PG(3, q) is twice the number of Segre var-

ieties S1;1 in PG(3, q). The number of S1;1 is |PGL(4, q)|/|G(S1;1)|. By Corol-

lary 4.113, this is |PGL(4, q)|/{2|PGL(2, q)|2}. Hence the number of reguli is

|PGL(4, q)|/{|PGL(2, q)|2}. ��

Let l0, l1, . . . , ln be n+1 lines of PG(2n+1, qn+1) which generate the space and

are conjugate in Fqn+1 over Fq . Also, let P0 be any point of l0 and let P1, . . . , Pn

be the points conjugate to P0. Then Pi ∈ li for i = 0, 1, . . . , n and the points

P0, P1, . . . , Pn generate an n-space Π̄n of PG(2n + 1, qn+1). The intersection of

Π̄n and PG(2n+1, q) is an n-space Πn of PG(2n+1, q). The set of these qn+1+1
spaces Πn is denoted by S(l0, l1, . . . , ln). In PG(3, q), the set S(l0, l1) is an elliptic

congruence or, equivalently, a regular spread, as in Lemma 17.1.2 of FPSOTD.

Lemma 4.121. The set S(l0, l1, . . . , ln) is an n-spread of PG(2n+ 1, q).

Proof. Suppose that Πn and Π′

n
correspond to distinct points P0 and P ′

0 of l0. Then

Π̄n ∩ li �= Π̄′

n
∩ li for i = 0, 1, . . . , n, with Π̄n the extension of Πn and Π̄′

n
the

extension of Π′

n
. Suppose that Πn ∩ Π′

n
�= ∅; then the space generated by Πn and

Π′

n
has dimension less than 2n+ 1 and its extension contains the lines l0, l1, . . . , ln,

a contradiction. Hence Πn ∩ Π′

n
= ∅.

Since |S(l0, l1, . . . , ln)| = |l0| = qn+1 +1, the set S(l0, l1, . . . , ln) is a partition

of PG(2n+ 1, q). This gives the result. ��

Definition 4.122. For n > 1, an n-spread of PG(2n + 1, q) is regular if there exist

lines l0, l1, . . . , ln of PG(2n+ 1, qn+1) for which S = S(l0, l1, . . . , ln).

Theorem 4.123. (i) The following are equivalent:
(a) if Πn,Π

′

n
,Π′′

n
are three distinct elements of the n-spreadS of PG(2n+1, q),

then the whole n-regulus R(Πn,Π
′

n
,Π′′

n
) is contained in S;

(b) S is an n-spread of PG(2n+ 1, q) such that the n-spaces of S meeting any

line not in an element of S form an n-regulus.

(ii) A regular n-spread satisfies (a) and (b).

Proof. (a) ⇒ (b). Suppose that S satisfies (a), and let l be a line not contained

in an element of the n-spread S. Also, let P, P ′, P ′′ be distinct points of l and let

Πn,Π
′

n
,Π′′

n
be the n-spaces of S containing these points. ThenR(Πn,Π

′

n
,Π′′

n
) ⊂ S.

The elements of R(Πn,Π
′

n
,Π′′

n
) are the n-spaces of S containing a point of l. Hence

the n-spaces of S meeting l form an n-regulus.

(b) ⇒ (a). Suppose that S satisfies (b), and let Πn,Π
′

n
,Π′′

n
be distinct elements

of S. Also, let l be a line meeting them. The n-regulus consisting of the q + 1 ele-

ments of S meeting l contains Πn,Π
′

n
,Π′′

n
and hence is R(Πn,Π

′

n
,Π′′

n
). Therefore

R(Πn,Π
′

n
,Π′′

n
) ⊂ S.
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Finally, let S be the regular n-spread S(l0, l1, . . . , ln). Consider a line l not

contained in an element of S. The elements of S meeting l are Π0
n
,Π1

n
, . . . ,Πq

n
.

The q + 1 spaces Πn of R(Π0
n
,Π1

n
,Π2

n
) meet l, l0, l1, . . . , ln in the extension

PG(2n+ 1, qn+1) of PG(2n+ 1, q). Hence R(Π0
n
,Π1

n
,Π2

n
) = {Π0

n
,Π1

n
, . . . ,Πq

n
},

and so {Π0
n
,Π1

n
, . . . ,Πq

n
} is an n-regulus. Thus (b) is satisfied. By the previous part

of the proof, (a) is also satisfied. ��

Theorem 4.124. For q > 2, an n-spread S of PG(2n+ 1, q) satisfying (a) or (b) in

the statement of Theorem 4.123 is regular.

Proof. See Section 4.7. ��

Remark 4.125. For q = 2, conditions (a) and (b) are trivially satisfied. Many exam-

ples of non-regular n-spreads in PG(2n+ 1, 2) are known.

Theorem 4.126. (i) The number of n-reguli contained in a regular n-spread of

PG(2n+ 1, q) is

qn(q2n+2
− 1)/(q2 − 1) = qn(q2n + q2n−2 + · · ·+ q2 + 1).

(ii) The number of regular n-spreads of PG(2n+ 1, q) is

q2n(n+1)[1, 2n+ 1]−/{(q
n+1

− 1)(n+ 1)}.

Proof. (i) Let S be a regular n-spread of PG(2n + 1, q). By Theorem 4.123, the

number of n-reguli contained in S is the number of subsets of order three of S

divided by the number of subsets of order three of an n-regulus. Hence this number

is

(qn+1 + 1)qn+1(qn+1
− 1)/{(q + 1)q(q − 1)} = qn(q2n+2

− 1)/(q2 − 1).

(ii) Let Π0
n
,Π1

n
,Π2

n
be mutually skew n-spaces of PG(2n+ 1, q). For any point

P ∈ Π0
n

, let l be the line containing P and meeting the n-spaces Π1
n

and Π2
n

, and let

l ∩ Π1
n
= {P ′} and l ∩ Π2

n
= {P ′′}.

To show that ψ : P ′ → P ′′ is a projectivity, from the proof of Theorem 4.117

coordinates can be chosen so that the Segre variety S1;n containing R(Π0
n
,Π1

n
,Π2

n
)

consists of all points P(X) with

X = (y0z0, y0z1, . . . , y0zn, y1z0, y1z1, . . . , y1zn),

and with

ψ : P ′ = (0, . . . , 0, z0, z1, . . . , zn) → P ′′ = (z0, z1, . . . , zn, 0, . . . , 0)

for all (z0, z1, . . . , zn) �= (0, . . . , 0). Hence ψ is a projectivity.

Next, let S be a regular n-spread of PG(2n+ 1, q), where

S = S(l0, l1, . . . , ln) = S(m0,m1, . . . ,mn).
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Consider elements Π0
n
,Π1

n
,Π2

n
,Π3

n
of S not belonging to the same n-regulus. For

any point P of Π0
n

, let l be the line containing P and meeting the n-spaces Π1
n
,Π2

n
,

and let l′ be the line containing P and meeting the n-spaces Π1
n
,Π3

n
. In addition, let

l ∩ Π1
n
= {P ′} and l′ ∩ Π1

n
= {P ′′}. Then ψ : P → P ′ and ψ′ : P → P ′′ are

projectivities from Π0
n

to Π1
n

. Hence ψ−1ψ′ = δ : P ′ → P ′′ is a projectivity of Π1
n

to itself. Since Π0
n
,Π1

n
,Π2

n
,Π3

n
do not belong to the same n-regulus, so δ is not the

identity.

In the extension PG(2n + 1, qn+1) of PG(2n + 1, q), let li ∩ Π
1

n
= {Pi}

and mi ∩ Π
1

n
= {Qi} for i = 0, 1, . . . , n, where Π

1

n
is the extension of Π1

n
.

Note that, in PG(2n + 1, qn+1), the points P0, P1, . . . , Pn, Q0, Q1, . . . , Qn are

fixed by δ. Since the conjugate points P0, P1, . . . , Pn, as well as Q0, Q1, . . . , Qn,

are linearly independent, so {P0, P1, . . . , Pn} = {Q0, Q1, . . . , Qn}. It follows that

{l0, l1, . . . , ln} = {m0,m1, . . . ,mn}.

Now, the number of all regular n-spreads of PG(2n + 1, q) containing a given

n-regulus R is calculated. Let Πn ∈ R and let S be a regular n-spread containing

R. Then S = S(l0, l1, . . . , ln), where {l0, l1, . . . , ln} is uniquely defined by S.

The points Pi, with {Pi} = li∩Πn and Πn the extension of Πn, i = 0, 1, . . . , n,

are linearly independent in Πn. Conversely, consider n+1 linearly independent and

conjugate points P0, P1, . . . , Pn of Πn. If S1;n is the extension of the Segre va-

riety S1;n defined by R, then S1;n contains exactly one line li through Pi which

meets all elements of R, i = 0, 1, . . . , n. The lines l0, l1, . . . , ln are conjugate

and generate PG(2n + 1, qn+1), and so they define a unique regular n-spread

S = S(l0, l1, . . . , ln). Hence the number of regular n-spreads containing R is the

number of sets {P0, P1, . . . , Pn}. Let Πn = V(Xn+1, Xn+2, . . . , X2n+1) and let

P0 = P(Y0), with

Y0 = (f0(α), f1(α), . . . , fn(α), 0, 0, . . . , 0),

fi(T ) = ai0 + ai1T + · · ·+ ainT
n, aij ∈ Fq,

Fqn+1 = {a0 + a1α+ · · ·+ anα
n
| ai ∈ Fq}.

The points Pi, i = 1, 2, . . . , n, which are conjugate to P0 are the points Pi = P(Yi),
with

Yi = (f0(α
q
i

), f1(α
q
i

), . . . , fn(α
q
i

), 0, 0, . . . , 0).

The points P0, P1, . . . , Pn are linearly independent in Πn if and only if ΔΔ′ �= 0,

where

Δ =

∣∣∣∣∣∣∣∣∣
1 α α2 · · · αn

1 αq (αq)2 · · · (αq)n

...
...

... · · ·
...

1 αq
n

(αq
n

)2 · · · (αq
n

)n

∣∣∣∣∣∣∣∣∣
, Δ′ =

∣∣∣∣∣∣∣∣∣
a00 a01 · · · a0n
a10 a11 · · · a1n

...
... · · ·

...

an0 an1 · · · ann

∣∣∣∣∣∣∣∣∣
.

Since

Δ =
n∏

i>j=0

(αq
i

− αq
j

),
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so Δ �= 0. Therefore the points P0, P1, . . . , Pn are linearly independent if and only

if Δ′ �= 0. So the number of such sets {P0, P1, . . . , Pn} is equal to

|GL(n+ 1, q)|/{(qn+1
− 1)(n+ 1)}.

This is also the number of all regular n-spreads containing R.

From Theorem 4.120 and the first part of Theorem 4.126, it now follows that the

number of all regular n-spreads of PG(2n+ 1, q) is

|PGL(2n+ 2, q)|

|PGL(2, q)| |PGL(n+ 1, q)|
·

|GL(n+ 1, q)|

(qn+1 − 1)(n+ 1)
·

q2 − 1

qn(q2n+2 − 1)

= q2n(n+1)

2n+1∏
i=1

(qi − 1)/{(qn+1
− 1)(n+ 1)} . ��

Corollary 4.127. The number of lines l0 of PG(2n+1, qn+1) for which l0, together

with its conjugates l1, l2, . . . , ln, generate PG(2n+ 1, qn+1) is

q2n(n+1)[1, 2n+ 1]−/(q
n+1

− 1).

Proof. To each such line l0 there corresponds one regular n-spread S(l0, l1, . . . , ln)
of PG(2n+1, q), and to each regular n-spread there correspond n+1 of these lines.

Hence the number of such lines l0 is equal to n + 1 times the number of regular

n-spreads. ��

Theorem 4.128. (i) The group PGL(2n + 2, q) acts transitively on the set of all

regular n-spreads.

(ii) The subgroup G(S) consisting of projectivities fixing a given regular n-spread

S has order

(n+ 1)qn+1(qn+1
− 1)(q2n+2

− 1)/(q − 1).

Proof. Let S = S(l0, l1, . . . , ln) and S ′ = S(l′0, l
′

1, . . . , l
′

n
) be regular n-spreads of

PG(2n + 1, q), with Π0
n
,Π1

n
,Π2

n
distinct elements of S and Π0

′

n
,Π1

′

n
,Π2

′

n
distinct

elements of S ′. There is an element ξ in PGL(2n + 2, q) for which Πi
′

n
ξ = Πi

n

for i = 0, 1, 2. By Theorem 4.117, R(Π0
′

n
,Π1

′

n
,Π2

′

n
)ξ = R(Π0

n
,Π1

n
,Π2

n
). Also, let

l′0ξ∩Π
0

n
= P ′

0 and l0∩Π
0

n
= P0, with Π

0

n
the extension of Π0

n
. Now, coordinates are

chosen so that Π0
n
= V(Xn+1, Xn+2, . . . , X2n+1), P0 = P(Y0) and P ′

0 = P(Y ′

0 ),
where

Y0 = (f0(α), f1(α), . . . , fn(α), 0, 0, . . . , 0),

Y ′

0 = (f ′

0(α), f
′

1(α), . . . , f
′

n
(α), 0, 0, . . . , 0),

with

fi(T ) = ai0 + ai1T + · · ·+ ainT
n, aij ∈ Fq,

f ′

i
(T ) = a′

i0 + a′
i1T + · · ·+ a′

in
T n, a′

ij
∈ Fq,

Fqn+1 = {a0 + a1α+ · · ·+ anα
n
| ai ∈ Fq}.
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From the proof of Theorem 4.126, the matrices A = [aij ] and A′ = [a′
ij
] are non-

singular. Also, from the proof of Theorem 4.117, it may be assumed that

Π1
n
= V(X0, X1, . . . , Xn), Π2

n
= V(X0−Xn+1, X1−Xn+2, . . . , Xn−X2n+1).

Given the projectivity η of PG(2n+ 1, q) with matrix[
A′A−1 0

0 A′A−1

]
∗

,

then Πi

n
η = Πi

n
, i = 0, 1, 2, and so R(Π0

n
,Π1

n
,Π2

n
)η = R(Π0

n
,Π1

n
,Π2

n
). Extended

to PG(2n+ 1, qn+1), this projectivity η maps P0 to P ′

0. Then

l0η = l′0ξ, l0ηξ
−1 = l′0, {l0, l1, . . . , ln}ηξ

−1 = {l′0, l
′

1, . . . , l
′

n
}.

Hence Sηξ−1 = S ′.

Since PGL(2n + 2, q) acts transitively on the set of all regular n-spreads of

PG(2n + 1, q), so, with S a regular n-spread, the order of G(S) is equal to

|PGL(2n + 2, q)| divided by the number of all regular n-spreads. Thus Theorem

4.126 gives the result. ��

Lemma 4.129. Let

(a) PG(2n+ 1, q2) be an extension of the projective space PG(2n+ 1, q);
(b) Πn,q be an n-space over Fq in PG(2n+ 1, q2) skew to PG(2n+ 1, q);

(c) P ∈ Πn,q and P̃ be the conjugate of P with respect to Fq2 over Fq .

Then the lines of PG(2n + 1, q) which are intersections of PP̃ and PG(2n+ 1, q)
form a system of maximal spaces of a Segre variety S1;n of PG(2n+ 1, q).

Proof. The intersection of the line PP̃ and the space PG(2n + 1, q) is a line of

PG(2n+1, q). Let P0, P1, . . . , Pn+1 be n+2 points of Πn,q such that any n+1 of

them are linearly independent in Πn,q . If l0, l1, . . . , ln+1 are the corresponding lines

of PG(2n+ 1, q), then any n+ 1 of them generate PG(2n+ 1, q).
Let Q0, Q1, Q2 be three distinct points of the line l0. Through Qi there is exactly

one n-space Πi

n,q
of PG(2n + 1, q) which has a point in common with each of the

lines l1, l2, . . . , ln+1, i = 0, 1, 2. Let S1;n be the Segre variety of PG(2n + 1, q)
defined by the n-regulus R(Π0

n,q
,Π1

n,q
,Π2

n,q
) = R. The extensions of Πn,q,R,S1;n

to PG(2n+ 1, q2) are denoted Πn,q,R,S1;n. The space Πn,q is the unique n-space

of PG(2n+1, q2) containing P0 and meeting the lines P1P̃1, P2P̃2, . . . , Pn+1P̃n+1

in a point; hence Πn,q belongs to R. If l is a line of S1;n meeting all elements of R,

then the extension l of l has a point P in Πn,q . Since l is a line of PG(2n + 1, q),

the line l also contains the conjugate point P̃ . The set of all points P is projectively

equivalent to Π0
n,q

and hence is a projective n-space Π′

n,q
over Fq . Since the points

P0, P1, . . . , Pn+1 are contained in a unique n-space over Fq , so Π′

n,q
= Πn,q . The

result is thus established. ��
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4.6.1 Construction method for n-spreads of PG(2n + 1, q)

Consider a projective space PG(2m, q2) and let P be a partition of it by projective

2m-spaces Πi

2m,q
over Fq, i = 1, 2, . . . , (q2m+1 + 1)/(q + 1). By Theorem 4.29

of PGOFF2, such a partition P exists. Embed PG(2m, q2) in the extension space

PG(4m + 1, q2) of PG(4m + 1, q), and assume that PG(2m, q2) does not contain

a point of PG(4m + 1, q). By Lemma 4.129, the 2m-space Πi

2m,q
defines a Segre

variety Si

1;2m of PG(4m+ 1, q). These (q2m+1 + 1)/(q+ 1) Segre varieties form a

partition of PG(4m+1, q). Hence the q2m+1+1 maximal 2m-spaces of these Segre

varieties form a 2m-spread S of PG(4m+ 1, q).
Next, consider a projective space PG(2m+ 1, q2), m ≥ 0. Let P be a partition

of this space consisting of α spaces Πi

2m+1,q of dimension 2m + 1 over Fq and β

spaces Πj

m,q2
of dimensionm overFq2 ; then α(q+1)+β = q2m+2+1. By Theorem

4.1 of PGOFF2, such a partition always exists for α = 0. Embed PG(2m+1, q2) in

the extension PG(4m+ 3, q2) of PG(4m+ 3, q), and assume that PG(2m+ 1, q2)
does not contain a point of PG(4m + 3, q). By Lemma 4.129, the (2m + 1)-space

Πi

2m+1,q defines a Segre variety Si

1;2m+1 of PG(4m+3, q). The m-space Πj

m,q2
and

its conjugate Π̃j

m,q2
generate a (2m + 1)-space Πj

2m+1,q2
of PG(4m + 3, q2), and

Πj

2m+1,q2
∩PG(4m+3, q) is a (2m+1)-space Πj

2m+1,q of PG(4m+3, q). The α

Segre varieties Si

1;2m+1 and the β spaces Πj

2m+1,q form a partition of PG(4m+3, q).

Let Σi be the system of maximal (2m+1)-spaces of Si

1;2m+1 for m �= 0, and let Σi

be a system of lines of Si

1;2m+1 for m = 0. Then the elements of Σ1∪Σ2 ∪· · · ∪Σα

together with the β spaces Π1
2m+1,q,Π

2
2m+1,q, . . . ,Π

β

2m+1,q form a (2m+1)-spread

S of PG(4m+ 3, q).

4.7 Notes and references

Section 4.1

For more details on quadric Veroneseans and their projections, see for example

Bertini [17], Burau [60], Godeaux [142], Semple and Roth [283], Herzer [161].

Due to the finiteness of the field, the proofs of Theorems 4.12 and 4.15 had to be

modified from the proofs for C.

The following important result on Veroneseans over C is due to Kronecker and

Castelnuovo.

Theorem 4.130. (i) Any surface of PG(m,C) that contains ∞2 plane quadrics is

the Veronesean V4
2 or one of its projections.

(ii) Any surface of PG(3,C) having ∞2 reducible plane sections is either the pro-

jection of V4
2 or a scroll.

Consider the Veronesean V4
2 in PG(5,C) and let l be a line meeting M3

4 in three

distinct points. By Theorem 4.21, V4
2 is a double surface of M3

4 and so l is skew to

V4
2 . The projection of V4

2 from l onto a solid Π3, with l ∩ Π3 = ∅, is a surface F4
2
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of order four and is a Steiner surface. It has three double lines which meet in a triple

point of the surface. In a suitable coordinate system,

F
4
2 = V(X0X1X2X3 −X2

2X
2
3 −X2

3X
2
1 −X2

1X
2
2 ).

Section 4.2

Mazzocca and Melone [229] formulate (a), (b) and (c), but they assume conics in-

stead of (q + 1)-arcs; in their paper such sets are called Veronesean caps. For q odd,

they establish Theorem 4.36. In this paper, there is no bound on the dimension of

the ambient projective space. In GGG1, there are some counterexamples; an extra

condition is added to make the characterisation work. The proof of Mazzocca and

Melone is modified so as to hold also in the even case. In Thas and Van Maldeghem

[361], the extra condition is again deleted and conics are replaced by (q+1)-arcs. In

particular, the original problem of Mazzocca and Melone is completely solved in the

finite case. To obtain the main theorem, which is Theorem 4.40, a completely new

proof is developed.

Let M be the algebraic variety formed by the tangent spaces of Vn. Melone

[234] gives a characterisation of M in terms of its points and the lines contained in

the tangent spaces of Vn.

Concerning Theorems 4.37 and 4.38, it turns out that the case N = 8 does not

exist; so necessarily N = 9.

The particular case n = 2, with q odd, of Theorem 4.49 is due to Tallini [304].

All other results of Section 4.2.2 are taken from Thas and Van Maldeghem [360]. In

Theorem 4.56, the uniqueness in the case (n, q) = (2, 4) is taken from Del Fra [114].

Section 4.2.3 comes from Thas and Van Maldeghem [360].

For q odd and q > 3, the characterisation Theorem 4.79 is taken from Ferri [134].

The proof of Lemma 4.68 has been modified from the latter. Lemma 4.69 is essential

for the characterisation of V4
2 in the case q = 3. For any q, Thas and Van Maldeghem

[362] copy the proof in GGG1, except for q ∈ {2, 4}, for which they produce a

separate argument. Theorems 4.81 and 4.83 as well as Remarks 4.82 and 4.84 are

taken from Schillewaert, Thas and Van Maldeghem [272].

Section 4.3

This section is taken from Cooperstein, Thas and Van Maldeghem [76]; see also

Cossidente and Siciliano [79] for the case n = 2.

Section 4.4

Theorems 4.88 and 4.89 are also taken from [76]. Theorems 4.90 to 4.92 are

taken from Thas and Van Maldeghem [363]. For more characterisations of quadric

and Hermitian Veroneseans, including the infinite cases, see Schillewaert and Van

Maldeghem [273, 274], Thas and Van Maldeghem [366, 365], Akça et al. [1].
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Section 4.5

For more details on Segre varieties, see, for example, C. Segre [281], Godeaux [142],

Burau [60], Melone and Olanda [235]. For n2 = 1, the normal rational curve Σ1G

on the Grassmannian Gn1,2n1+1 is also considered by Herzer [162]. Other character-

isations of Segre varieties are contained in Thas and Van Maldeghem [365, 367].

Section 4.6

Theorem 4.124 is due to Bruck and Bose [51]. Its proof depends on deep theorems

about translation planes. In André [2], in Segre [278], and in [51], it is shown that

the study of n-spreads in PG(2n + 1, q) is equivalent to the study of finite trans-

lation planes. The n-spread is regular if and only if the corresponding translation

plane is Desarguesian. To a translation plane of order 2n+1 there always corresponds

an n-spread of the space PG(2n + 1, 2). Since there are many non-Desarguesian

translation planes of order 2n+1, Dembowski [116], it follows that there are many

non-regular n-spreads in PG(2n+ 1, 2). This explains Remark 4.125.

In Bruen and Thas [52] there is a construction of translation planes which is

equivalent to the second construction in the last part of the section. In this connection,

Corollary 2 of Lemma 17.6.6 of FPSOTD shows that PG(3, 4) can be partitioned

into 14 lines and one PG(3, 2). The corresponding translation plane of order 16 is

non-Desarguesian and can be shown to be isomorphic to the plane discovered by

Lorimer [210]. The partitions described in the second construction are called mixed

partitions of PG(2m+1, q2). In recent years, several papers on such partitions have

been written; see, for example, Mellinger [231, 233, 232], Ebert and Mellinger [127].

Finally, interesting invariants, formulas and properties related to Segre varieties

and Veroneseans are contained in Glynn [141], Havlicek, Odehnal and Saniga [160],

Kantor and Shult [197].
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Embedded geometries

5.1 Polar spaces

Definition 5.1. A polar space S of (finite) rank n or projective index n−1, n ≥ 3, is

a set P of elements called points together with distinguished subsets called subspaces

with the following properties.

(1) A subspace together with the subspaces it contains, is a d-dimensional projective

space with −1 ≤ d ≤ n− 1.

(2) The intersection of any two subspaces is a subspace.

(3) Given a subspace π of dimension n − 1 and a point P in P\π, there exists a

unique subspace π′ containing P such that the dimension of π ∩ π′ is n− 2. The

subspace π′ contains all points of π which are joined to P by some subspace of

dimension 1.

(4) There exist disjoint subspaces of dimension n− 1.

Definition 5.2. A polar space has rank 2 or projective index 1 if it is an incidence

structure consisting of the triple S = (P ,B, I) in which P and B are disjoint, non-

empty sets of objects called points and lines, and for which I is a symmetric point-line

incidence relation satisfying the following axioms.

(1) Each point is incident with 1 + t lines, where t ≥ 1, and two distinct points are

incident with at most one line.

(2) Each line is incident with 1 + s points, where s ≥ 1, and two distinct lines are

incident with at most one point.

(3) If P is a point and l is a line not incident with P , then there is a unique pair

(P ′, l′) ∈ P × B for which P I l′ IP ′ I l; see Figure 5.1.

Polar spaces of rank 2 are usually called generalised quadrangles. The integers

s and t are the parameters of the generalised quadrangle and S has order (s, t); when

s = t, then S has order s. There is a point-line duality for generalised quadrangles

of order (s, t), for which in any definition or theorem the words ‘point’ and ‘line’ are

interchanged and the parameters s and t are interchanged. Normally, it is assumed

© Springer-Verlag London 2016 223
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Fig. 5.1. The polar space axiom in the rank 2 case

l′

P ′ l

P

without further remark that the dual of a given theorem or definition has also been

given.

The main reason for the difference between the axioms in the cases n = 2 and

n ≥ 3 is that, in the latter case, the axioms applied to n = 2 do not imply that

each line contains a constant number of points and similarly that each point is on a

constant number of lines.

Isomorphisms and automorphisms of polar spaces are defined in the usual way;

similarly for isomorphisms (or collineations), anti-isomorphisms (or reciprocities),

automorphisms, anti-automorphisms, involutions, and polarities of generalised quad-

rangles.

Example 5.3. (a) Let Q be a non-singular quadric of PG(d, q) of projective index

n− 1 with n ≥ 2. Then Q together with the projective subspaces lying on it is a

polar space of rank n.

(b) Let U be a non-singular Hermitian variety of PG(d, q2), d ≥ 3. Then U together

with the subspaces lying on it is a polar space. The projective index of this polar

space is the maximum dimension of subspaces lying on U .

(c) Let ζ be a null polarity of PG(d, q), with d odd. Then PG(d, q) together with

all subspaces of the self-polar (d − 1)/2-dimensional spaces is a polar space of

projective index (d− 1)/2.

(d) Let

P = {Pij | i, j = 0, 1, . . . , s}, s > 0,

B = {l0, l1, . . . , ls,m0,m1, . . . ,ms},

Pij I lk if and only if i = k,

Pij I mk if and only if j = k.
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Then (P ,B, I) is a generalised quadrangle of order (s, 1). Up to an isomorphism,

there is only one generalised quadrangle of order (s, 1), for any given s > 0. The

generalised quadrangles with t = 1 are called grids.

(e) Let π be a plane of PG(3, q), q even, and let O be an oval in π. Further, let

P = PG(3, q)\π, let B be the set of all lines of PG(3, q) not contained in π but

containing a point of O, and let I be the incidence of PG(3, q). Then (P ,B, I) is

a generalised quadrangle of order (q − 1, q + 1) and is denoted by T ∗

2 (O).

A complete classification of the polar spaces of rank at least three has been ob-

tained by Tits. This is the result, without proof, in the finite case.

Theorem 5.4. If S is a finite polar space of rank at least three, then S is isomorphic

to one of (a), (b), (c).

The examples (d) and (e) show that this theorem is not valid in the rank 2 case.

In fact, many other examples of generalised quadrangles are known.

Definition 5.5. (1) A Shult space S is a non-empty set P of points together with

distinguished subsets of cardinality at least two, called lines, such that for each

line l of S and each point P of P\l, the point P is collinear with (or adjacent

to) either one or all points of l; two not-necessarily-distinct points P1 and P2 are

collinear (or adjacent), with the notation P1 ∼ P2, if there is at least one line of

S containing P1 and P2.

(2) The space S is non-degenerate if no point of S is collinear with all other points.

(3) A subspace X of S is a set of pairwise collinear points such that any line meeting

X in more than one point is contained in X .

(4) The space S has rank n or projective index n− 1, where n ≥ 1, if n is the largest

integer for which there is a chain X0 ⊂ X1 ⊂ · · · ⊂ Xn of distinct subspaces

X0 = ∅, X1, X2, . . . , Xn.

From Theorem 5.4, it follows that, for any finite polar space S of rank n ≥ 3,
the point set P together with the subspaces of dimension 1 is a Shult space of rank

n. In fact this result also holds for infinite polar spaces. Next, let S be a generalised

quadrangle of order (s, t). If each line of S is identified with the set of its points,

then a Shult space of rank 2 is obtained.

The following converse, stated without proof, is due to Buekenhout and Shult.

Theorem 5.6. (i) A non-degenerate Shult space of rank n ≥ 3, all of whose lines

have cardinality at least three, together with its subspaces, is a polar space of

rank n.

(ii) A Shult space of rank 2, all of whose lines have cardinality at least three and

all of whose points are contained in at least three lines, is a generalised quad-

rangle.

Definition 5.7. If S is a degenerate Shult space, then the point set consisting of all

points of S which are collinear with each point of S is the radical of S and is denoted

by R; it is a subspace of S.
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An equivalence relation ρ is defined on the point set P of S by putting P ρP ′ if

and only if the set of all points collinear with P coincides with the set of all points

collinear with P ′. Let ρ(P ) denote the equivalence class containing the point P for

the relation ρ; then ρ(P ) = R for all P in R.

Lemma 5.8. Let S be a degenerate Shult space with radical R. If the set of all points

collinear with the point P is contained in the set of all points collinear with the point

P ′, then either P ρP ′ or P ′ ∈ R.

Proof. Assume that P ′ /∈ ρ(P ) and P ′ /∈ R. Then P and P ′ are distinct collinear

points, and there exists a point T which is not collinear with P ′. Let l be a line

containing P and P ′, and let T ′ be a point of l collinear with T . Since P ′ /∈ ρ(P )
there exists a point Z which is collinear with P ′ but not with P . Let m be a line

containing Z and P ′. On m\{P ′} there is a point Z ′ which is collinear with T .

Since Z is not collinear with P , also Z ′ is not collinear with P . On a line m′ through

T and Z ′ there is a point W which is collinear with P . Hence W is collinear with P ′.

Since W and Z ′ are collinear with P ′, also T is collinear with P ′, a contradiction.

Therefore P ′ ∈ ρ(P ) or P ′ ∈ R. ��

Let P be a point of S which is not contained in the radical R. A corollary of

Lemma 5.8 is that R∪ρ(P ) is a subspace of S. Now a new structure S ′ is introduced

with point set P ′ and line set B′:

(1) a point is a class ρ(P ) with P /∈ R;

(2) a line of S ′ is a set {ρ(P ) | P ∈ l} with l a line of S not contained in a subspace

of the form ρ(T ) ∪R.

Then the following result is readily obtained.

Theorem 5.9. If R �= P , then the structure S ′ is a non-degenerate Shult space.

Finally, for a non-degenerate Shult space, the radical R is defined to be the empty

set.

5.2 Generalised quadrangles

Only finite generalised quadrangles are considered.

A start is made by giving a brief description of three families of examples known

as the classical generalised quadrangles, all of which are associated with classical

groups.

(a) Consider a non-singular quadric Q of projective index 1 in the projective

spacePG(d, q), with d = 3, 4, or 5. Then the points ofQ together with the lines ofQ,

which are the subspaces of maximal dimension on Q, form a generalised quadrangle

Q(d, q) with the following parameters:

s = q, t = 1, when d = 3,
s = q, t = q, when d = 4,
s = q, t = q2, when d = 5.
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Since Q(3, q) is a grid, its structure is trivial. From Section 1.1, the quadric Q

has the following canonical form:

Q = H3 = V(X0X1 +X2X3), when d = 3;
Q = P4 = V(X2

0 +X1X2 +X3X4), when d = 4;
Q = E5 = V(f(X0, X1) +X2X3 +X4X5), when d = 5,

where f(X0, X1) is an irreducible binary quadratic form.

(b) Let U be a non-singular Hermitian variety in the projective space PG(d, q2),
with d = 3 or 4. Then the points of U together with the lines on U form a generalised

quadrangle U(d, q2) with parameters as follows:

s = q2, t = q, when d = 3,
s = q2, t = q3, when d = 4.

From Section 2.1, U has the following canonical form:

U = V(Xq+1
0 +X

q+1
1 + · · ·+X

q+1

d
).

(c) The points of PG(3, q), together with the self-polar lines of a null polarity ζ,

form a generalised quadrangle W(q) with parameters

s = q, t = q.

From Chapter 15 of FPSOTD, the lines of W(q) are the elements of a general

linear complex of lines of PG(3, q). Further, a null polarity of PG(3, q) has the

following canonical bilinear form:

X0Y1 −X1Y0 +X2Y3 −X3Y2.

The examples (d) and (e) of Section 5.1 show that there exist generalised quad-

rangles other than the classical ones and their duals. The order of each known gener-

alised quadrangle is one of the following:

(s, 1) with s ≥ 1;
(1, t) with t ≥ 1;
(q, q) with q a prime power;
(q, q2), (q2, q) with q a prime power;
(q2, q3), (q3, q2) with q a prime power;
(q − 1, q + 1), (q + 1, q − 1) with q a prime power.

Definition 5.10. Let S = (P ,B, I) be a generalised quadrangle of order (s, t).

(1) Two, not-necessarily-distinct points P, P ′ of S are collinear provided that there

is some line l for which P I l IP ′; write P ∼ P ′. Hence P �∼ P ′ means that P

and P ′ are not collinear.

(2) Dually, for l, l′ ∈ B, they are concurrent or non-concurrent; write l ∼ l′ or l �∼ l′.
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(3) When P ∼ P ′, it is also said that P is orthogonal or perpendicular to P ′; simi-

larly for l ∼ l′.

(4) The line incident with distinct collinear points P and P ′ is denoted PP ′, and the

point incident with distinct concurrent lines l and l′ is denoted l ∩ l′.

For P ∈ P , put P⊥ = {P ′ ∈ P | P ∼ P ′}, and note that P ∈ P⊥. The trace

of a pair {P, P ′} of distinct points is defined to be the set P⊥ ∩ P ′⊥ and is denoted

{P, P ′}⊥; then |{P, P ′}⊥| = s+ 1 or t+ 1 according as P ∼ P ′ or P �∼ P ′. More

generally, if A ⊂ P , the ‘perp’ is defined by A⊥ =
⋂
{P⊥ | P ∈ A}. For P �= P ′,

the span of the pair {P, P ′} is

sp(P, P ′) = {P, P ′
}
⊥⊥ = {Y ∈ P | Y ∈ Z⊥ for all Z ∈ P⊥

∩ P ′⊥
}.

When P �∼ P ′, then {P, P ′}⊥⊥ is also called the hyperbolic line defined by P and

P ′, and |{P, P ′}⊥⊥| = s + 1 or |{P, P ′}⊥⊥| ≤ t + 1 according as P ∼ P ′ or

P �∼ P ′.

A triad (of points) is a triple of pairwise non-collinear points. Then, given a triad

T = {P, P ′, P ′′}, a centre of T is just a point of T ⊥.

These definitions are illustrated by some examples.

Example 5.11. (a) Let P �∼ P ′ in W(q), and let ζ be the null polarity defining

W(q). If l is the polar line of the line PP ′ of PG(3, q), then {P, P ′}⊥ = l and

{P, P ′}⊥⊥ = PP ′. Hence each hyperbolic line of W(q) contains q + 1 points.

(b) Let P �∼ P ′ in Q(4, q); then {P, P ′}⊥ is a conic. For q odd, the double perp

{P, P ′}⊥⊥ = {P, P ′}, and for q even, {P, P ′}⊥⊥ is the intersection of Q and

the plane PP ′N , where N is the nucleus of the quadric Q. In the even case

{P, P ′}⊥⊥ is a conic, and each hyperbolic line contains q + 1 points.

(c) Let P �∼ P ′ in Q(5, q), and let ζ be the polarity defined by Q. If π is the polar

solid of the line PP ′ of PG(5, q), then {P, P ′}⊥ is the elliptic quadric π ∩Q of

π, and {P, P ′}⊥⊥ = {P, P ′}.

(d) Let P �∼ P ′ in U(3, q2), and let ζ be the unitary polarity defined by U . If l is the

polar line of the line PP ′ of PG(3, q2), then {P, P ′}⊥ = U ∩ l and the double

perp {P, P ′}⊥⊥ = PP ′ ∩ U . Hence each hyperbolic line has q + 1 points.

(e) Let P �∼ P ′ in U(4, q2), and let ζ be the unitary polarity defined by U . If π is

the polar plane of the line PP ′ of PG(4, q2), then {P, P ′}⊥ is the non-singular

Hermitian curve π ∩U , and {P, P ′}⊥⊥ = PP ′ ∩ U . Hence each hyperbolic line

has q + 1 points.

(f) Consider again W(q) and its defining polarity ζ. If T = {P, P ′, P ′′} is a triad

of W(q) for which P, P ′, P ′′ are collinear in PG(3, q), then T ⊥ = {P, P ′}⊥

and so |T ⊥| = q + 1. If T = {P, P ′, P ′′} is a triad for which P, P ′, P ′′ are not

collinear, then the pole of the plane PP ′P ′′ is the unique centre of T .

(g) Finally consider again Q(5, q) and the corresponding polarity ζ. For the triad

T = {P, P ′, P ′′} of Q(5, q), the perp T ⊥ is the conic Q ∩ π, where π is the

polar plane of the plane PP ′P ′′. Hence, in this case, any triad has q + 1 centres.

Let S = (P ,B, I) be a generalised quadrangle of order (s, t), and put |P| = v

and |B| = b.
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Theorem 5.12. (i) v = (s+ 1)(st+ 1); (ii) b = (t+ 1)(st+ 1).

Proof. Let l be a fixed line of S and count in different ways the number of ordered

pairs (P,m) ∈ P × B with P�I l, P I m, and l ∼ m. Then v − s − 1 = (s + 1)ts,

whence v = (s+ 1)(st+ 1). Dually, b = (t+ 1)(st+ 1). ��

Theorem 5.13. The integer s+ t divides st(s+ 1)(t+ 1).

Proof. If E = {{P, P ′} | P, P ′ ∈ P and P ∼ P ′}, then it is evident that (P , E) is a

strongly regular graph with parameters

v = (s+ 1)(st+ 1), k = n1 = st+ s, λ = p111 = s− 1, μ = p211 = t+ 1.

The graph (P , E) is called the point graph of the generalised quadrangle. Let the

point set P = {P1, P2, . . . , Pv} and let A = [aij ] be the v × v matrix over R for

which aij = 0 if i = j or Pi �∼ Pj , and aij = 1 if i �= j and Pi ∼ Pj ; that is, A is

an adjacency matrix of the graph (P , E).
If A2 = [cij ], then (a) cii = (t+ 1)s; (b) i �= j and Pi �∼ Pj imply cij = t+ 1;

(c) i �= j and Pi ∼ Pj imply cij = s− 1. Consequently,

A2
− (s− t− 2)A− (t+ 1)(s− 1)I = (t+ 1)J ;

here I is the v × v identity matrix and J is the v × v matrix with each entry equal

to one. Evidently, (t + 1)s is an eigenvalue of A, and J has eigenvalues 0, v with

respective multiplicities v − 1, 1. Since

((t+ 1)s)2 − (s− t− 2)(t+ 1)s− (t+ 1)(s− 1)

= (t+ 1)(st+ 1)(s+ 1) = (t+ 1)v,

the eigenvalue (t + 1)s of A corresponds to the eigenvalue v of J , and so (t + 1)s
has multiplicity 1. The other eigenvalues of A are roots of the equation

x2
− (s− t− 2)x− (t+ 1)(s− 1) = 0.

Denote the multiplicities of these eigenvalues θ1, θ2 by m1,m2. Then

θ1 = −t− 1, θ2 = s− 1, v = 1 +m1 +m2,

s(t+ 1)−m1(t+ 1) +m2(s− 1) = tr(A) = 0.

Hence

m1 = (st+ 1)s2/(s+ t), m2 = st(s+ 1)(t+ 1)/(s+ t).

Since m1,m2 are positive integers, s+ t divides both (st+1)s2 and st(s+1)(t+1).
Note that s+ t divides (st+ 1)s2 if and only if it divides st(s+ 1)(t+ 1). ��

Theorem 5.14 (Higman’s inequality). If s > 1 and t > 1, then t ≤ s2, and dually

s ≤ t2.
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Proof. Let P, P ′ be two non-collinear points of S. Put

V = {T ∈ P | P �∼ T and P ′ �∼ T };

so |V| = d = (s+ 1)(st+ 1)− 2 − 2(t+ 1)s+ (t + 1). Denote the elements of V

by T1, T2, . . . , Td and let

ti = |{Z ∈ {P, P ′}⊥ | Z ∼ Ti}|.

Count in different ways the number of ordered pairs (Ti, Z) ∈ V × {P, P ′}⊥ with

Z ∼ Ti to obtain ∑
i

ti = (t+ 1)(t− 1)s. (5.1)

Next count the number of ordered triples (Ti, Z, Z
′) ∈ V × {P, P ′}⊥ × {P, P ′}⊥,

with Z �= Z ′, Z ∼ Ti, Z
′ ∼ Ti, to obtain∑
i

ti(ti − 1) = (t+ 1)t(t− 1). (5.2)

From (5.1) and (5.2), it follows that∑
i

t2
i
= (t+ 1)(t− 1)(s+ t).

With dt̄ =
∑

i
ti, the inequality 0 ≤

∑
i
(t̄− ti)

2 simplifies to

d
∑
i

t2
i
−

(∑
i

ti

)2

≥ 0,

which implies

d(t+ 1)(t− 1)(s+ t) ≥ (t+ 1)2(t− 1)2s2,

or

t(s− 1)(s2 − t) ≥ 0,

completing the proof. ��

There is an immediate corollary of the proof.

Corollary 5.15. When s > 1 and t > 1, the following are equivalent:

(i) s2 = t;
(ii) d

∑
t2
i
− (
∑

ti)
2 = 0 for any pair {P, P ′} of non-collinear points;

(iii) ti = t̄ for i = 1, 2, . . . , d and any pair {P, P ′} of non-collinear points;
(iv) each triad of points has a constant number of centres, in which case this number

is s+ 1.
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Theorem 5.16. If s �= 1, t �= 1, s �= t2, and t �= s2, then t ≤ s2 − s and dually

s ≤ t2 − t.

Proof. Suppose s �= 1 and t �= s2. By Theorem 5.14, t = s2−x with x > 0, and, by

Theorem 5.13, the integer s+ s2 − x divides s(s2 − x)(s+ 1)(s2 − x+ 1). Hence,

modulo s+ s2 − x,

0 ≡ x(−s)(−s+ 1) ≡ x(x − 2s).

If x < 2s, then s + s2 − x ≤ x(2s − x) forces x ∈ {s, s + 1}. Consequently,

x = s, x = s+ 1, or x ≥ 2s; so t ≤ s2 − s. ��

The only classical generalised quadrangle which has t = s2 is Q(5, q); the only

classical example with s = t2 is U(3, q2). In Example 5.11 (g), it was shown that

any triad of Q(5, q) has q + 1 centres.

In the next two theorems, isomorphisms and anti-isomorphisms between the

classical generalised quadrangles are described.

Theorem 5.17. (i) Q(4, q) is isomorphic to the dual of W(q);
(ii) Q(4, q) and W(q) are self-dual if and only if q is even.

Proof. Let H5 = G1,3 be the Klein quadric, that is, the Grassmannian of the lines

of PG(3, q). The image of W(q) on H5 is the intersection of H5 with a non-tangent

hyperplane PG(4, q) of PG(5, q); see Section 15.4 of FPSOTD. The non-singular

quadric H5 ∩ PG(4, q) of PG(4, q) is denoted by Q. The lines of W(q) which are

incident with a given point form a flat pencil of lines; hence their images on H5 form

a line of Q. Now it follows that W(q) is anti-isomorphic to Q(4, q).
In Theorem 16.4.13 of FPSOTD, it was shown that W(q) is self-dual if and only

if q is even. By the first part of the proof, also Q(4, q) is self-dual if and only if q is

even. ��

In Section 16.4 of FPSOTD, it was shown that W(q) admits a polarity if and only

if q = 22h+1 with h ≥ 0.

An algebraic proof of the existence of an anti-isomorphism between Q(5, q) and

U(3, q2) can be found in Section 19.2 of FPSOTD. Here it is shown in a purely

geometrical way that Q(5, q) and U(3, q2) are anti-isomorphic.

Theorem 5.18. The generalised quadrangle Q(5, q) is isomorphic to the dual of

U(3, q2).

Proof. Let Q be an elliptic quadric in PG(5, q). ExtendPG(5, q) to PG(5, q2). Then

the extension of Q is a hyperbolic quadric H5 in PG(5, q2). Hence H5 is the Klein

quadric of the lines of PG(3, q2). So to Q in H5 there corresponds a set V of lines in

PG(3, q2). To a given line l of the generalised quadrangle Q(5, q) there correspond

q + 1 lines of PG(3, q2) that all lie in a plane and pass through a point P .

Let U be the set of points on the lines of V . Then, to each point of Q(5, q), there

corresponds a line of V , and to each line l of Q(5, q) there corresponds a point P of
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U . To distinct lines l, l′ of Q(5, q) correspond distinct points P, P ′ of U , as a plane

of H5 contains at most one line of Q. Since a point T of Q(5, q) is on q2 + 1 lines

of Q(5, q), these q2 + 1 lines are mapped onto the q2 + 1 points of the image of

T . Hence an anti-isomorphism is obtained from Q(5, q) onto the structure (U ,V , I),
where I is the natural incidence relation. So (U ,V , I) is a generalised quadrangle

of order (q2, q) embedded in PG(3, q2). But now, by a result of Buekenhout and

Lefèvre, which is part of Theorem 5.51, the generalised quadrangle (U ,V , I) must

be U(3, q2). ��

5.3 Embedded Shult spaces

Definition 5.19. (1) A projective Shult space S is a Shult space for which the point

set P is a subset of the point set of some projective space PG(d,K), and for

which the line set B is a non-empty set of lines of PG(d,K).
(2) In this case, the Shult space S is (fully) embedded in PG(d,K).
(3) If PG(d′,K) is the subspace of PG(d,K) generated by all points of P , then

PG(d′,K) is the ambient space of S.

Examples (a), (b), (c) of Section 5.1 are projective Shult spaces. The aim is

to show that these are the only non-degenerate Shult spaces embedded in a Galois

space; a direct proof is given, without relying on Theorems 5.4 and 5.6.

Theorem 5.20. A non-degenerate Shult space S of rank 2 embedded in PG(d, q) is

a generalised quadrangle.

Proof. Let P be the point set of S, and let B be the line set of S. On each line of

B there are exactly q + 1 points. Let P ∈ P , l ∈ B, and P /∈ l. By the definition

of Shult space, B contains one or q + 1 lines through P which are concurrent with

l. If B contains q + 1 lines through P and concurrent with l, then the plane Pl is a

subspace of S. This yields a contradiction since S has rank 2. So there is exactly one

line of S through P which is concurrent with l.

Let P, P ′ be distinct points of P for which PP ′ is not a line of B. If l is any line

of B through P , then there is exactly one line l′ of B through P ′ which is concurrent

with l. It follows that the number of lines of B through P is equal to the number of

lines of B through P ′.

Now it is shown that any point P of P is contained in at least two lines of B.

Since S is non-degenerate, there is a line l in B which does not contain P . Let l′ be

the line of B through P which is concurrent with l. The common point of l and l′ is

denoted by P ′. Since S is non-degenerate, there is a point P ′′ �= P ′ in P such that

P ′P ′′ is not a line of B. The line of B which contains P ′′ and is concurrent with l is

denoted by l′′. Then P /∈ l′′ and l′ ∩ l′′ = ∅. So the line of B which contains P and

is concurrent with l′′ is distinct from l′. Consequently, P is contained in at least two

distinct lines of B.
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Now consider distinct points T, T ′ of P , where TT ′ is in B. Let m be a line of B

through T which is distinct from TT ′, and let m′ be a line of B through T ′ which is

distinct from TT ′; then m∩m′ = ∅. Let M ∈ m\{T },M ′ ∈ m′\{T ′}, with MM ′

not in B; then T ′M /∈ B and TM ′ /∈ B. By a previous argument, the number of

lines of B through T is equal to the number of lines of B through M ′, which equals

the number of lines of B through M , which in turn equals the number of lines of B

through T ′. Therefore each point of P is contained in a constant number t+1, where

t ≥ 1, of lines of B.

Therefore S is a generalised quadrangle of order (q, t). ��

Theorem 5.21. Let S be a non-degenerate projective Shult space of rank 2 with am-

bient space PG(d, q). If some point of S is contained in exactly two lines of S, then

d = 3 and S is the generalised quadrangle Q(3, q).

Proof. By Theorem 5.20, S is a generalised quadrangle of order (q, 1). Since S is a

grid, so d = 3 and S = Q(3, q). ��

Let S be a Shult space embedded in PG(d, q). Let P be the point set of S and let

B be the line set of S. If P, P ′ ∈ P and if there is at least one line of B through P

and P ′, then P and P ′ are adjacent; write P ∼ P ′. So there should be no confusion

between collinearity in PG(d, q) and adjacency in S.

For the subspace ofPG(d, q) generated by the point sets or pointsV1,V2, . . . ,Vk,

the notation 〈V1,V2, . . . ,Vk〉 is used. If π is a subspace of PG(d, q), then π ∩ S (or

S ∩ π) denotes the structure with point set π ∩ P and line set the set of all lines

of S contained in π. If PG(d, q) is the ambient space of S, then 〈π ∩ P〉 does not

necessarily coincide with π.

Assume, from now on, that S is a projective Shult space with point set P , line

set B, and ambient space PG(d, q).

Theorem 5.22. (i) The radical R of a degenerate Shult space S is a subspace of

PG(d, q).
(ii) Let R have dimension r �= −1, and let PG(d− r − 1, q) = π be a subspace of

PG(d, q) which is skew to R. If R �= PG(d, q), then

(a) π ∩ S is a non-degenerate Shult space;
(b) P is the union of all lines joining every point of R to every point of π ∩ S;
(c) two points of P\R are adjacent if and only if their projections from R onto

π are adjacent.

Proof. In Section 5.1, it was already mentioned that R is a subspace of the Shult

space S. Hence R has the property that the line joining any two distinct points of

R is completely contained in R. Hence R is a subspace of PG(d, q). Let R have

dimension r, with r < d, and let PG(d − r − 1, q) = π be a subspace of PG(d, q)
which is skew to R. Also, in Section 5.1 the equivalence relation ρ on P was intro-

duced: P ρP ′ if and only if the set of all points collinear with P coincides with the

set of all points collinear with P ′. Let ρ(P ) denote the equivalence class containing
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the point P . If P ∈ P\R, then it was shown in Section 5.1 that R ∪ ρ(P ) is a sub-

space of S and hence a subspace of PG(d, q). Now it is shown that R ∪ ρ(P ) is the

projective (r + 1)-space RP .

Let P ′ ∈ RP , with P ′ /∈ R∪{P}, and let P ′′ = PP ′∩R. If T ∼ P , then, since

T ∼ P ′′, also T ∼ P ′. Analogously, T ∼ P ′ implies T ∼ P ; hence P ′ ∈ ρ(P ),
and so RP ⊂ R∪ ρ(P ). Next, let P1 ∈ ρ(P )\{P} and suppose that PP1 ∩R = ∅;

then PP ′ ⊂ ρ(P ). Since P /∈ R there is a point T not adjacent to P . On PP ′ there

is at least one point T ′ adjacent to T . Since T ′ ∈ ρ(P ), so T ∼ P , a contradiction.

Hence PP1 ∩R �= ∅, and so P1 ∈ RP . Consequently, R∪ ρ(P ) ⊂ RP . It follows

that R∪ ρ(P ) = RP .

The set P is the union of all lines joining every point of R to every point of π∩S.

Let ρ(P ) �= ρ(P ′), with P, P ′ /∈ R, let T ∈ ρ(P ), T ′ ∈ ρ(P ′), and let P ∼ P ′.

Since T ∈ ρ(P ) so T ∼ P ′ and, similarly, since T ′ ∈ ρ(P ′) so T ∼ T ′. It now

follows that two points of P\R are adjacent if and only if their projections from R

onto π are adjacent. Finally, by Theorem 5.9, π ∩S is a non-degenerate Shult space.

��

The non-degenerate Shult space π ∩ S is a basis of S.

Lemma 5.23. Let S be a non-degenerate Shult space in PG(d, q) and let P, P ′ be

adjacent points of S. Then

(i) there is a point T in S such that T �∼ P and T �∼ P ′;
(ii) each point of S is contained in a constant number t + 1 of lines of B, where

t ≥ 1.

Proof. Suppose (i) is false. As S is non-degenerate, there is a pointP1 with P1 �∼ P ′;

so P1 ∼ P . There is also a point P2 for which P2 �∼ P and P2 ∼ P ′. Let l be a line

through P1 intersecting P ′P2 in P ′

2. Then P ′

2 �= P ′ and P �∼ P ′

2. If T is a point on l

other than P1 and P ′

2, then T �∼ P and T �∼ P ′.

Let M,M ′ ∈ P , with M �∼ M ′. If m is any line of B through M , then there is a

unique line of B through M ′ concurrent with m, and conversely. It follows that the

number of lines of B through M is equal to the number of lines of B through M ′.

Next, let M,M ′ ∈ P , with M �= M ′ and M ∼ M ′. There is a point T in S such that

T �∼ M and T �∼ M ′. The number of lines of B through T is equal to the number of

lines of B through M and to the number of lines of B through M ′. Again the number

of lines of B through M is equal to the number of lines of B through M ′. Hence the

number of lines of B through the point M ∈ P is a constant t + 1. Let m ∈ B with

M /∈ m. On m there is a point M ′ which is collinear with M ; so M ′ is contained in

at least two lines of B. Therefore t ≥ 1. ��

Lemma 5.24. If π is a subspace of PG(d, q) for which π ∩ P is non-empty, then

π ∩ S is a Shult space. If S is non-degenerate and π is a hyperplane, then π ∩ P

generates π.

Proof. Let π be a subspace of PG(d, q). If π ∩P is non-empty, then it is immediate

that π ∩ S is a Shult space. Now let S be non-degenerate and let π be a hyperplane.
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Since PG(d, q) is the ambient space of S, there is a point P in P\(π∩P). It suffices

to show that an arbitrary line l of B is in 〈π ∩ P , P 〉.

Suppose that l meets π in some point P ′. If P ∈ l, the result follows. So suppose

P /∈ l. If P ∼ P ′′ with P ′′ ∈ l\{P ′}, there is a line l′ of B through P and P ′′ which

is in 〈π ∩ P , P 〉. Hence P ′′ ∈ 〈π ∩ P , P 〉, and consequently l is in 〈π ∩ P , P 〉.

Finally, supposeP /∈ l and suppose that P ′ is the only point of l which is adjacent

to P . Let R be a point not adjacent to P ′. The line PP ′ contains a point R′ for which

R′ ∼ R. As R′ ∈ 〈π∩P , P 〉, so RR′ ⊂ 〈π∩P , P 〉. Let T ∈ RR′\{R′} with T /∈ π.

Then T ∈ 〈π ∩ P , P 〉. Let T ′ ∈ l with T ∼ T ′. Then T ′ �= P ′, since otherwise

R ∼ P ′. The line TT ′ is contained in 〈π∩P , P 〉; hence T ′ ∈ 〈π ∩P , P 〉. Therefore

P ′T ′ = l is contained in 〈π ∩ P , P 〉. ��

Definition 5.25. (1) For P in P , put P⊥ = {P ′ ∈ P | P ′ ∼ P}. Then P⊥ is the

union of all lines of B through P .

(2) A tangent to S at P ∈ P is any line l through P such that either l ∈ B or

l ∩ P = {P}.

(3) The union of all tangents to S at P is the tangent set of S at P and is denoted by

S(P ). The relation between S(P ) and P⊥ is that P⊥ = P ∩ S(P ).
(4) A line l of PG(d, q) is a secant of S if l intersects P in at least two points but is

not a member of B.

Lemma 5.26. For each P ∈ P , the set 〈P⊥〉 ⊂ S(P ).

Proof. It must be shown that, for each line l through P in 〈P⊥〉, either l ∈ B or

l intersects P exactly in P . So suppose that P ∈ l /∈ B, l ⊂ 〈P⊥〉. First, let l1
be a line of B through P and let l2 be a second tangent to S at P for which the

plane π = 〈l1, l2〉 contains l. If l were not a tangent at P it would contain some

point P ′, where P �= P ′ ∈ P . There would be a unique line m ∈ B through P ′

and intersecting l1 in P1, with P1 �= P . As m is contained in π, so m meets l2 in

a point P2, with P2 �= P . Then P, P2 ∈ l2 implies l2 ∈ B, since l2 is a tangent to

S containing at least two points of S. But then l1 and l2 are two lines of S through

P intersecting m, contradicting P �∼ P ′ and the assumption that S is a Shult space.

Hence l must be a tangent.

Now, suppose there is an integer k such that 〈P⊥〉 is generated by k lines

l1, l2, . . . , lk of S through P . Let π(i) = 〈l1 ∪ l2 ∪ · · · ∪ li〉, i = 2, 3, . . . , k. From

the first case, π(2) ∈ S(P ). Now use induction on i. Assume π(i) ⊂ S(P ), and let

l be some line of π(i+1) through P . Take l �= li+1 and l �⊂ π(i). Then the plane

π = 〈l, li+1〉 intersects π(i) in a line l′. By the induction hypothesis, l′ is tangent to

S at P , so that π = 〈l′, li+1〉 satisfies the hypothesis of the first case. Hence l is a

tangent to S at P , and it follows that π(i+1) ⊂ S(P ). ��

Lemma 5.27. For any point P in P , the set 〈P⊥〉 �= PG(d, q).

Proof. If 〈P⊥〉 = PG(d, q), then, by Lemma 5.26, S(P ) = PG(d, q). But then P is

adjacent to all points of S, and so S is degenerate, a contradiction. ��

Lemma 5.28. The dimension of 〈P⊥〉 is independent of P in P .
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Proof. If P �∼ P ′, with P, P ′ ∈ P , then it must be shown that 〈P⊥〉 ∩ 〈P ′⊥〉 is a

hyperplane in 〈P⊥〉. As 〈P⊥ ∩P ′⊥〉 ⊂ 〈P⊥〉 ∩ 〈P ′⊥〉 and, since S is a Shult space,

so P and P⊥ ∩ P ′⊥ generate 〈P⊥〉. Hence 〈P⊥〉 ∩ 〈P ′⊥〉 is a hyperplane of 〈P⊥〉,

or 〈P⊥〉 ∩ 〈P ′⊥〉 = 〈P⊥〉. If 〈P⊥〉 = 〈P⊥〉 ∩ 〈P ′⊥〉, then 〈P ′⊥〉 ⊂ 〈P⊥〉 ⊂ S(P ),
contradicting that P �∼ P ′. Consequently, 〈P⊥〉 ∩ 〈P ′⊥〉 is a hyperplane of 〈P⊥〉.

Analogously, 〈P⊥〉∩〈P ′⊥〉 is a hyperplane of 〈P ′⊥〉. It follows that 〈P⊥〉 and 〈P ′⊥〉

have the same dimension.

Next, let P ∼ P ′ with P, P ′ distinct points of P . By Lemma 5.23, there is a

point T in S such that T �∼ P and T �∼ P ′. Now, from above, dim〈T⊥〉 = dim〈P⊥〉

and dim〈T⊥〉 = dim〈P ′⊥〉. Hence dim〈P⊥〉 = dim〈P ′⊥〉. ��

Lemma 5.29. The point P in P is the unique point of S adjacent to all points of P⊥.

Proof. Let P ′ ∈ P\{P} be adjacent to all points of P⊥; so P ′ ∈ P⊥. Since S is

a Shult space, all points of the line PP ′ are adjacent to all points of P⊥. Now take

a point T ∈ P\P⊥. Since 〈P⊥〉 ⊂ S(P ), we have T /∈ 〈P⊥〉. There is a line m

through T intersecting PP ′ in a point P ′′, and so 〈P ′′⊥〉 contains 〈P⊥〉 properly.

This contradicts Lemma 5.28. ��

Lemma 5.30. For each P in P , the subspace 〈P⊥〉 is a hyperplane of PG(d, q).

Proof. Consider a point P ′ in P\〈P⊥〉. By Lemma 5.24, 〈P⊥, P ′〉 ∩ S is a Shult

space S ′. Assume that S ′ is degenerate with radical R′. If R ∈ R′, then R is adjacent

to all points of P⊥. By Lemma 5.29, R = P . Hence P ′ ∼ P , a contradiction.

Consequently S ′ is non-degenerate. Now assume that 〈P⊥, P ′〉 �= PG(d, q), and let

P ′′ ∈ PG(d, q)\〈P⊥, P ′〉. Consider a point T in S ′, with T ∼ P ′′. If T is contained

in t+1 lines of S and t′+1 lines of S ′, then t ≥ t′+1. But P is contained in exactly

t+1 lines of S ′. Hence t = t′, contradicting t > t′. Therefore 〈P⊥, P ′〉 = PG(d, q),
whence 〈P⊥〉 is a hyperplane of PG(d, q). ��

Lemma 5.31. The hyperplane 〈P⊥〉, for P in P , is the tangent set S(P ) of S at P .

Proof. From Lemmas 5.26 and 5.30, 〈P⊥〉 is a hyperplane contained in S(P ). If

equality did not hold, there would be some tangent l at P not in 〈P⊥〉.

Let l1 be a line of S through P and let Π2 be the plane 〈l, l1〉. If there were a

point P ′ ∈ Π2 ∩ P with P ′ /∈ l1, there would be a line m of B through P ′ meeting

l1 in a point other than P . But m would be in Π2 and hence would meet l in a point

of P other than P , an impossibility. Hence each line of Π2 through P is a tangent of

S at P.

Let l2 be a line of S through P , with l2 �= l1. If m, with m �= l1, is a line of

Π2 through P , then, by the previous paragraph, each line of 〈l2,m〉 through P is a

tangent of S at P . Hence each line of Π3 = 〈l, l1, l2〉 through P is a tangent of S at

P .

Let l3 be a line of S through P , with l3 not in the plane 〈l1, l2〉. If m′, with m′

not in the plane 〈l1, l2〉, is a line of Π3 through P , then, by the previous paragraph,

each line of 〈l3,m
′〉 through P is a tangent of S at P . Hence each line of the space

Π4 = 〈l, l1, l2, l3〉 through P is a tangent of S at P .
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Continuing in this way shows that each line of 〈P⊥, l〉 = PG(d, q) through P is

a tangent of S at P . Consequently, P belongs to the radical of S, a contradiction as

S is non-degenerate.

The conclusion is that 〈P⊥〉 = S(P ). ��

The tangent set S(P ) of S at P , for P in P , is also called the tangent hyperplane

of S at P .

Lemma 5.32. Let l be a secant of S containing three distinct points P,A,A′ of P .

Then the perspectivity σ of PG(d, q) with centre P and axis S(P ) mapping A onto

A′ leaves P invariant.

Proof. The map σ fixes all points of S(P ) and thus fixes P⊥. Let P ′ ∈ P\P⊥. First,

suppose that P ′ is not on l and let π be the plane 〈P,A, P ′〉. If m = 〈A,P ′〉, then m

intersects S(P ) at a point P ′′, fixed by σ. Hence mσ = 〈A′, P ′′〉.

If m is a line of S, then P ′′ ∈ P and so the tangent 〈P, P ′′〉 is a line of S. Thus

the plane 〈P,A, P ′′〉 = π is in the tangent hyperplane S(P ′′). Hence, since A′ ∈ π,

it follows that A′ ∼ P ′′, that mσ is a line of S, and that P ′σ is a point of S.

Ifm is not a line of S, suppose there is a pointD ∈ P\S(P ) with D ∈ A⊥∩P ′⊥.

The argument above, with D in the role of P ′, shows that Dσ ∈ P . Then, with D

and Dσ playing the roles of A and A′, it follows that P ′σ ∈ P . On the other hand,

suppose A⊥ ∩ P ′⊥ ⊂ S(P ). Consider a line l1 of B containing P , and let P1 be

defined by P1 ∈ l1 and A ∼ P1 ∼ P ′. By Lemma 5.23, there is a point T ∈ P with

T �∼ P and T �∼ P1. The line of B through T which is concurrent with l1 is denoted

by m1. Let D,D′ be defined by D,D′ ∈ m1 and A ∼ D, D′ ∼ P ′. Then D,D′ are

distinct points of P\S(P ). Repeated applications of the argument above show that

Dσ, D′σ, and finally P ′σ are all in P .

Secondly, suppose P ′ is on l, and use the fact that, if D is any point of P not on

l, then Dσ ∈ P . It follows readily that P ′σ ∈ P . ��

Lemma 5.33. If A,B,C are three collinear, distinct points of P , then the intersec-

tions S(A) ∩ S(B), S(B) ∩ S(C), S(C) ∩ S(A) coincide.

Proof. It is shown that S(A) ∩ S(B) ⊂ S(C).
First, suppose that A,B,C are on a line l of S. Let P ∈ S(A) ∩ S(B). If

P ∈ P\l, then P ∼ A and P ∼ B, and so P ∼ C. If P ∈ l, then P ∈ S(C). Now

let P /∈ P . Suppose that PC is a secant of S, and let C′ ∈ PC∩P with C �= C′. The

plane 〈A,P,B〉 is in S(A); hence AC ′ ∈ B. Analogously, BC′ ∈ B. Consequently,

C ∼ C′, a contradiction. So PC is a tangent of S at C.

Secondly, suppose that A,B,C are on a secant l of S. Let P ∈ S(A) ∩ S(B).
If P ∈ P , then P ∼ A and P ∼ B, and so the line AB is in S(P ). Hence P ∼ C

and so P ∈ S(C). Now let P /∈ P , and suppose that P /∈ S(C). Then there is a

second point C ′ of P on the line PC. Consider the perspectivity σ with centre A and

axis S(A) mapping C onto B. By Lemma 5.32, Pσ = P . This perspectivity σ fixes

P ∈ S(A) and so σ maps the line PC onto the line PB. Hence C ′σ is a point of

PB\{B} on P , a contradiction since P ∈ S(B). Consequently, P ∈ S(C). Hence

S(A) ∩ S(B) ⊂ S(C).
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Analogously, S(A) ∩ S(C) ⊂ S(B) and S(B) ∩ S(C) ⊂ S(A). Therefore

S(A) ∩ S(B),S(B) ∩ S(C), and S(C) ∩ S(A) coincide. ��

Lemma 5.34. All secant lines contain the same number of points of S.

Proof. Let l and l′ be secant lines of S. First, suppose that l and l′ have a point

P of P in common, and let m be any secant line through P . If some m contains

more than two points in P , consider, by Lemma 5.32, the non-trivial group G of

all perspectivities with centre P and axis S(P ) leaving P invariant. The group G is

regular on the set of points of m in P other than P . Hence each secant through P

has 1 + |G| points of P , so that l and l′ have the same number of points of S. If no

m is incident with more than two points of P , then l and l′ contain two points of S.

Secondly, suppose l and l′ do not have any point of P in common, and choose

points P and P ′ of P on l and l′. If P �∼ P ′, then PP ′ is a secant, and so meets P in

the same number of points as do l and l′, by the above. If P ∼ P ′, then, by Lemma

5.23, there is a point T in S such that P �∼ T �∼ P ′. Now apply the above argument

to the secants l, PT , TP ′, l′. ��

Definition 5.35. (1) For a point P of PG(d, q), the collar SP of S for P is the set

of all points P ′ of S such that P = P ′ or the line 〈P, P ′〉 is a tangent to S at P .

For example, if P ∈ P , then SP is just P⊥. If P /∈ P , the collar SP is the set of

points P ′ of P such that 〈P, P ′〉 ∩ P = {P ′}.

(2) For all P ∈ PG(d, q), the polar Pζ of P with respect to S is the subspace of

PG(d, q) generated by the collar SP . So, if P ∈ P , then Pζ = 〈P⊥〉 = S(P ).

Lemma 5.36. For any point P of PG(d, q), let P1 and P2 be distinct points of SP .

Then P ∩ 〈P1, P2〉 ⊂ SP .

Proof. Suppose P ′ ∈ P ∩ 〈P1, P2〉, P1 �= P ′ �= P2. Since P ∈ S(P1) ∩ S(P2), by

Lemma 5.33 the point P is also in S(P ′) and hence P ′ ∈ SP . ��

Lemma 5.37. Each line l of S intersects the collar SP , with P ∈ PG(d, q), in ex-

actly one point, unless each point of l is in SP .

Proof. When P ∈ P , the result is immediate. So suppose that P /∈ P and put

π = 〈l, P 〉. If π ∩ P = l, then each point of l is in SP . So suppose P ′ ∈ π ∩ P ,

P ′ /∈ l. Let 〈P, P ′〉 ∩ l = {T }; then T �∼ P ′. Hence P ′ is adjacent to a unique point

T ′ of l. By Lemma 5.31, each line of π through T ′ is tangent to S at T ′, and hence

T ′ ∈ SP . Also, by Lemma 5.36, T ′ is the unique point of l in SP unless each point

of l is in SP . ��

Lemma 5.38. Either Pζ = 〈SP 〉 is a hyperplane or Pζ = PG(d, q).

Proof. Again assume that P /∈ P . If the assertion is false for some point P , then

Pζ is contained in some (d − 2)-space π of PG(d, q). By Lemma 5.37, each line

l of B intersects π. Therefore, if P ′ is a point of S not in π, then SP ′ = P ′⊥ is

contained in 〈π, P ′〉. As 〈SP ′ 〉 is a hyperplane, so 〈π, P ′〉 = 〈SP ′ 〉 = SP ′ . Any line

l′ of S through P ′ must contain another point P ′′ of P not in π. Then it follows that

S(P ′) = 〈π, P ′〉 = 〈π, P ′′〉 = S(P ′′). This contradicts Lemma 5.29. ��
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Lemma 5.39. If Pζ is a hyperplane, then SP = P ∩ Pζ.

Proof. By definition, SP ⊂ P ∩ Pζ. Suppose there were a point P ′ of P ∩ Pζ not

in SP . Then either some line l of S through P ′ does not lie in Pζ, or Pζ = S(P ′).
In the first case, l intersects Pζ exactly in P ′. As P ′ /∈ SP , so l is on no point of SP ,

contradicting Lemma 5.37. In the second case, as P ′ /∈ SP , each line of B through

P ′ has exactly one point in SP . So on any line of B through P ′ there is a point

P ′′ �= P ′ of S(P ′)\SP . By Lemma 5.29, S(P ′) �= S(P ′′); so there is a line of B

through P ′′ but not in Pζ = S(P ′), leading back to the first case. ��

Lemma 5.40. Let P be a point of PG(d, q) and let A,A′ be distinct points of P\{P}

collinear with P but not in Pζ. Then the perspectivity σ of PG(d, q) with centre P

and axis Pζ mapping A onto A′ leaves P invariant.

Proof. Since A,A′ /∈ Pζ, so Pζ is a hyperplane. First, let P ∈ P . SinceA,A′ /∈ Pζ,

the line 〈P,A,A′〉 is a secant of S. In this case, the result is known by Lemma 5.32.

Now let P /∈ P . Note that σ fixes all points of P∩Pζ. Let P ′ be a point of P\Pζ not

on 〈A,A′〉. Let π be the plane 〈P,A, P ′〉 and m the line 〈A,P ′〉. If m∩Pζ = {P ′′},

then mσ = 〈A′, P ′′〉.

If m is a line of S, then P ′′ ∈ P ∩Pζ = SP by Lemma 5.39. So 〈P ′′, P 〉 and m,

and hence π, are in the tangent hyperplane S(P ′′). Then A′ ∈ π ⊂ S(P ′′), showing

that mσ = 〈A′, P ′′〉 ∈ B; that is, P ′σ ∈ P .

If m is not a line of S, suppose there is a point D ∈ P\Pζ with D ∈ A⊥ ∩P ′⊥.

The previous argument, with D in the role of P ′, shows that Dσ ∈ P . Then, with

D and Dσ playing the roles of A and A′, it follows that P ′σ ∈ P . On the other

hand, suppose A⊥ ∩P ′⊥ ⊂ SP . Let T ∈ A⊥ ∩P ′⊥. Now assume that each point of

A⊥ ∩ P ′⊥ is adjacent to T . Since each line of B through P ′ has a point in common

with SP , it follows that T is adjacent to all points of P ′⊥, contradicting Lemma 5.29.

Hence there exists a point T ′ ∈ A⊥ ∩ P ′⊥, with T �∼ T ′. Let D ∈ 〈A, T 〉\{A, T },

and let D′ ∈ 〈P ′, T ′〉 with D ∼ D′. If D′ = P ′, then A ∼ P ′, a contradiction. If

D = T ′, then T ∼ T ′, a contradiction. However, D �= D′, which means that D and

D′ are distinct points of P\Pζ. Repeating the argument above shows that Dσ,D′σ,

and P ′σ are all in P .

Finally, suppose that P ′ is on 〈A,A′〉, and use the fact that, if D is any point of

P not on 〈A,A′〉, then P ′σ ∈ P . It follows readily that P ′σ ∈ P . ��

By Lemma 5.34, all secant lines of S contain the same number α of points of S;

note that α ≥ 2.

Lemma 5.41. If α �= 2, there is no point in all tangent hyperplanes of S.

Proof. Suppose that P belongs to all tangent hyperplanes of S. If P ∈ P , then

P = P⊥, contradicting the non-degeneracy of S; so P /∈ P . Let P ′, P ′′ ∈ P , with

P ′ �∼ P ′′. Then the plane π = 〈P, P ′, P ′′〉 contains no line of S, since otherwise

at least one of the tangents 〈P, P ′〉, 〈P, P ′′〉 contains at least two distinct points of

S. Since P ′ �∼ P ′′, so π �⊂ S(P ′); hence 〈P, P ′〉 is the only line of π which is

tangent to S at P ′. Counting the points of π ∩ P on the lines of π through P ′ gives
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q(α − 1) + 1. For each point T ∈ π ∩ P , the line 〈T, P 〉 is a tangent of S at T ;

so the number of points in π ∩ P is at most the number of lines of π through P .

Consequently, q(α− 1) + 1 ≤ q + 1. Hence α = 2. ��

Theorem 5.42. When α = 2, then S is formed by the points and lines of a non-

singular quadric of PG(d, q).

Proof. Each line of PG(d, q) contains 0, 1, 2, or q + 1 points of S. Since the union

of all tangent lines at any point of P is a hyperplane, P is a non-singular quadratic

set in the sense of Section 1.10. By Theorem 1.97, P is a non-singular quadric of

PG(d, q), and all lines in B are lines of the quadric P . Conversely, let l be a line of

the quadric P . Since l contains more than α = 2 points of P , it is a line of B. Hence

B is the set of all lines of the quadric P . ��

From now on, it is assumed that α > 2. By Lemma 5.41, there is no point in all

tangent hyperplanes of S.

Lemma 5.43. If S has rank at least three, then Pζ is a hyperplane for any P in

PG(d, q).

Proof. Suppose that S contains a plane π. If P ∈ P , then Pζ is the hyperplane

〈P⊥〉 = S(P ). By way of contradiction, let P /∈ P with Pζ = PG(d, q). By

Lemma 5.37, each line of π has at least one point in SP . Hence consider in π two

points P1 and P2 of SP . By Lemma 5.36, the line 〈P1, P2〉 is contained in SP . Hence

SP contains at least one line of B. Also, the set SP , together with the lines of S in

SP , forms a projective Shult space S ′ with ambient space 〈SP 〉 = Pζ = PG(d, q).
The Shult space S ′ cannot be degenerate, since otherwise SP would be contained in

a tangent hyperplane of S, contradicting that 〈SP 〉 = PG(d, q). Consequently, the

lines of S ′ throughT ∈ SP generate a hyperplaneπ′ of PG(d, q). Hence π′ = 〈T⊥〉,

and so the tangent hyperplanes of S ′ are tangent hyperplanes of S.

Let T ∈ SP , and consider the secant lines of S ′ through T . As the tangent

hyperplanes S ′(T ) and S(T ) coincide, these secant lines are also the secant lines of

S through T . Hence, by Lemma 5.36, all points of P non-adjacent to T are in SP .

Next, let T ′ ∈ T⊥\{T }. By Lemma 5.29, there is a point T ′′ in T ′⊥ which is not

adjacent to T . The line 〈T ′, T ′′〉 contains q points not adjacent to T . Hence these q

points are in SP . By Lemma 5.36, T ′ is also in SP . Consequently, SP = P . So P is

in all tangent hyperplanes of S, contradicting Lemma 5.41. ��

The next few lemmas show that Lemma 5.43 also holds in the rank 2 case, that

is, in the case of a generalised quadrangle.

Lemma 5.44. If S is a generalised quadrangle, then α = (t/qd−3) + 1 and d = 3
or 4.

Proof. If S is a generalised quadrangle, then S has order (q, t). Since S is non-

degenerate, so d ≥ 3. The secant lines through a point P of P are the qd−1 lines of

PG(d, q) throughP which do not lie in the tangent hyperplaneS(P ). Hence the total
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number of points of S is (α−1)qd−1+|P⊥|. By Theorem 5.12, |P| = (1+q)(1+qt).
Hence α = (t/qd−3)+1. By Theorem 5.14, t ≤ q2, so that 2 < α ≤ (q2/qd−3)+1;

this implies that d = 3 or d = 4. ��

Lemma 5.46. Let S be a generalised quadrangle with ambient space PG(3, q). If

P1, P2, P3 ∈ P are non-collinear in PG(3, q) and D = {P1, P2, P3}, then the

linear closure D = P ∩ 〈P1, P2, P3〉.

Proof. Let S have order (q, t). If the plane π = 〈P1, P2, P3〉 contains a line of S,

then P ∩〈P1, P2, P3〉 consists of t+1 distinct concurrent lines of B. In this case, the

lemma follows immediately.

Hence suppose π contains no lines of B. As d = 3, by Lemma 5.44, any secant

line intersectsP in exactly t+1 points. Take a pointP , withP �= P1, on 〈P1, P2〉∩P .

The t+1 secant lines 〈P, T 〉, where T is a point of P∩〈P1, P3〉, intersect P in points

which are in the linear closure D. As each of these lines 〈P, T 〉 intersects P in t+ 1
points, there are t(t+ 1) + 1 points of P on these lines. Hence |D| ≥ t2 + t+ 1.

If Lemma 5.46 were false, there would be a point T ′ in (P ∩ π)\D. Then every

line of π through T ′ contains at most one point of D; so there are at least t2 + t+ 1
lines of π through T ′. Hence t2 + t + 1 ≤ q + 1, and so t2 < q. By Theorem 5.14,

it follows that t = 1. Consequently, α = 2, a contradiction. The conclusion is that

D = P ∩ 〈P1, P2, P3〉. ��

Lemma 5.47. Let S be a generalised quadrangle with ambient space PG(4, q). If

P1, P2, P3 ∈ P are non-collinear in PG(4, q) and D = {P1, P2, P3}, then the

linear closure D = P ∩ 〈P1, P2, P3〉.

Proof. Let S have order (q, t). As before, suppose that π = 〈P1, P2, P3〉 contains

no line of S. Fix a point P ∈ P ∩ π and a line l ∈ B incident with P . Also, let

π′ = 〈P1, P2, P3, l〉. By Lemma 5.24, π′ ∩S is a Shult space with ambient space π′.

For π′ ∩ S there are the following possibilities:

(a) π′ ∩ S is non-degenerate and then, by Theorem 5.20, π′ ∩ S is a projective

subquadrangle of S;

(b) π′ ∩ S is degenerate, and the lines of π′ ∩ S contain a distinguished point of π′.

If (a) holds, then, by Lemma 5.46, P ∩ π is the linear closure of D in S. If (b) holds,

two cases are possible.

(i) There exists a line l′ in B through a point of π such that 〈π, l′〉 intersects S in

a subquadrangle. Then Lemma 5.46 still applies.

(ii) For each line l′ of B intersecting π, the lines of 〈π, l′〉 ∩ S all contain a point

Ti of l′ not in π. Here the hyperplane 〈π, l′〉 is the tangent hyperplane of S at Ti.

Hence π contains 1 + t points of P : these are P1, P2, . . . , Pt+1, and Pj ∼ Ti for

all i and j. Further, by the definition of the points Ti, the lines of S through a given

Definition 5.45. A subset C of P is called linearly closed

P, P ′∈ C, with P 6= P ′, the intersection 〈P, P ′〉 ∩ P

set D of P generates a linear closure in P or S.

in if, for all poi ntsP or S

is contained in . Thus any sub-C

D



242 5 Embedded geometries

point Pj are the lines 〈Pj , Ti〉. Hence there are exactly 1+ t points Ti. This means S

has two disjoint sets {Pj}, {Ti} of 1+ t pairwise-non-adjacent points with Pj ∼ Ti,

0 ≤ i, j ≤ t. If T ′ ∈ 〈Pj , Ti〉 ∩ 〈Pj′ , Ti′〉, with j �= j′ and i �= i′, then a triangle

PjTi′T
′ is obtained in S, a contradiction, since S is a generalised quadrangle. Hence

there are exactly (q − 1)(t+ 1)2 + 2(t+ 1) points of S on the lines 〈Pj , Ti〉. Since

(q − 1)(t+ 1)2 + 2(t+ 1) ≤ |P| = (q + 1)(qt+ 1),

so (t − q)t(q − 1) ≤ 0, whence t ≤ q. Then α = (t/q) + 1 ≤ 2, contradicting that

α > 2. ��

Lemma 5.48. Let {P1, P2, . . . , Pk} be a set of points of the generalised quadrangle

S. Then the linear closure of {P1, P2, . . . , Pk} in S is P ∩ 〈P1, P2, . . . , Pk〉.

Proof. First note that if q = 2 then, since α > 2, any line of PG(d, q) containing at

least two points of P is entirely contained in P . Hence P is a subspace of PG(d, q)
and P = PG(d, q). Consequently, in this case, the lemma follows.

Now let q > 2. The result is immediate when k = 1 or k = 2. By Lemmas

5.46 and 5.47, the result also holds if 〈P1, P2, . . . , Pk〉 is a plane. Further, it may be

assumed that the points Pi are linearly independent in PG(d, q). Now apply induc-

tion; so suppose the result is true for k − 1 points P1, P2, . . . , Pk−1, 3 ≤ k − 1.

For D = {P1, P2, . . . , Pk}, with Pk ∈ P\〈P1, P2, . . . , Pk−1〉, indices can be cho-

sen so that 〈P1, P2, . . . , Pk−1〉 �⊂ S(P1). Put li = 〈P1, Pi〉, i = 2, 3, . . . , k, and let

π be any plane through lk contained in 〈l2, l3, . . . , lk〉 = 〈P1, P2, . . . , Pk〉. Then π

intersects 〈l2, l3, . . . , lk−1〉 in a line l.

If it is shown that P ∩ 〈lk, l〉 ⊂ D, the desired result follows immediately. Sup-

pose l contains at least two points of P . By the induction hypothesis, the points of P

on l are all in {P1, P2, . . . , Pk−1}. Lemmas 5.46 and 5.47 then show that P ∩ 〈lk, l〉

is in D. Now suppose that l is a tangent line whose points are not all in P . If 〈lk, l〉

contains no point of P not on lk, there is nothing more to show.

So suppose P is a point of P ∩ 〈lk, l〉 but not on lk. Consider the plane π′ gener-

ated by l and a secant through P1 in the space 〈l2, l3, . . . , lk−1〉; such a secant exists

since S(P1) does not contain 〈P1, P2, . . . , Pk−1〉. This plane π′ is not in the tangent

hyperplane S(P1); so l is the unique tangent at P1 in π′. Hence there are two secants

m1,m2 in π′ and through P1. Each of the planes 〈lk,m1〉, 〈lk,m2〉 is not in S(P1)
and hence contains exactly one tangent at P1. Consider in 〈lk,m1〉 a secant m, with

m �= lk, such that the plane 〈m,P 〉 intersects 〈lk,m2〉 in a secant m′. Note that m

exists, because 〈lk,m1〉 has at least four lines through P1. By the induction hypothe-

sis, the points of P on m1 and m2 belong to {P1, P2, . . . , Pk−1}. Hence, by Lemmas

5.46 and 5.47, the points of P on m and m′ belong to D. But, as P ∈ 〈m,m′〉, again

by Lemmas 5.46 and 5.47, P ∈ D. ��

Lemma 5.49. If S is a generalised quadrangle, then Pζ is a hyperplane for any P

in PG(d, q).

Proof. If P ∈ P , then Pζ is the hyperplane 〈P⊥〉 = S(P ). So suppose P /∈ P .

Consider the intersection Pζ ∩ P . By Lemmas 5.36 and 5.48, all points of Pζ ∩ P
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are in SP , implying that SP = Pζ∩P . If Pζ were not a hyperplane, then, by Lemma

5.38, Pζ = PG(d, q), implying SP = P . Hence P belongs to all hyperplanes of S,

contradicting Lemma 5.41. Therefore Pζ is a hyperplane. ��

Theorem 5.50. (i) The mapping P 
→ Pζ is a polarity of PG(d, q);
(ii) P is the set of all self-conjugate points of ζ;

(iii) B consists of all lines l of PG(d, q) such that l ⊂ lζ.

Proof. First, it is shown that P → Pζ defines a bijection from the set of all points

of PG(d, q) onto the set of all hyperplanes of PG(d, q). By Lemmas 5.43 and 5.49,

Pζ is a hyperplane for any P ∈ PG(d, q). Assume that P �= P ′ and Pζ = P ′ζ. Let

X ∈ 〈P, P ′〉 and Y ∈ SP = P∩Pζ = P∩P ′ζ = SP ′ , with Y �= X,P, P ′. The lines

〈Y, P 〉 and 〈Y, P ′〉 are tangents of S; hence the line 〈Y,X〉 is also a tangent of S. If

Y = P and Y �= X , then the line 〈Y,X〉 = 〈Y, P ′〉 is a tangent of S. Analogously,

if Y = P ′ and Y �= X , then the line 〈Y,X〉 = 〈Y, P 〉 is a tangent of S. Hence

SP ⊂ SX for any X ∈ 〈P, P ′〉. Consequently, Pζ = 〈SP 〉 ⊂ 〈SX〉 = Xζ; so

Pζ = Xζ since Pζ and Xζ are hyperplanes. Let P ′′ ∈ P\Pζ; then P �= P ′′ �= P ′.

Let X be the common point of 〈P, P ′〉 and the hyperplane P ′′ζ. Then X = P ′′,

or 〈X,P ′′〉 is a tangent; so P ′′ ∈ Xζ. Hence P ′′ ∈ Pζ = Xζ, a contradiction. It

follows that P �= P ′ implies that Pζ �= P ′ζ. Since PG(d, q) is finite, so P → Pζ

defines a bijection of the set of all points of PG(d, q) onto the set of all hyperplanes

of PG(d, q).
Next, suppose that P ′ ∈ Pζ, with P �= P ′. Now, let A ∈ P\Pζ, and also let

A′ ∈ 〈P,A〉∩P with A′ �= P and A′ �= A. By Lemma 5.40, the perspectivity σ with

centre P and axis Pζ mapping A onto A′ leaves P invariant. Since P ′ is on the axis

of σ, so P ′σ = P ′; hence P ′ζσ = P ′ζ. From above, Pζ �= P ′ζ; so P ′ζ contains

the centre P of σ. Therefore it has been shown that P ′ ∈ Pζ implies that P ∈ P ′ζ.

This means that ζ is a polarity of PG(d, q).
Let S ′ be the Shult space defined by the polarity ζ. The point set of S ′ is denoted

by P ′ and the line set of S ′ by B′. If P ∈ P , then P ∈ Pζ and hence P ∈ P ′; so

P ⊂ P ′. Also B ⊂ B′. Assume that P ′ ∈ P ′\P and let T, T ′ be distinct points of

SP ′ .

First, suppose that the plane 〈P ′, T, T ′〉 = π contains no lines of B. Then the

plane π �⊂ S(T ) since T �∼ T ′; so 〈P ′, T 〉 is the only line of π tangent to S at T . A

count of the points of π ∩ P on the lines of π through T gives q(α − 1) + 1. Since

P ′ ∈ P ′, the lines 〈P ′, T 〉 and 〈P ′, T ′〉 are contained in P ′ζ; so, for each point

A ∈ π ∩P , the line 〈P ′, A〉 is contained in P ′ζ. Consequently, 〈P ′, A〉 is tangent to

S at A. So the number of points in π ∩P is at most the number of lines of π through

P ′. Therefore q(α− 1) + 1 ≤ q + 1, whence α = 2, a contradiction.

Secondly, suppose that the plane π contains a line l of B. Since 〈P ′, T 〉 and

〈P ′, T ′〉 are tangents of S, it follows that l = 〈T, T ′〉. Hence any two points of SP ′

are adjacent in S. By Lemma 5.36, T⊥ ⊃ SP ′ . Hence Tζ ⊃ P ′ζ and so Tζ = P ′ζ,

giving T = P ′, a contradiction. Thus P ′ = P . Next, let l′ ∈ B′. If D,D′ are distinct

points of l′, then D′ belongs to the tangent hyperplane Dζ of S ′ at D. As D′ ∈ Dζ

and D,D′ ∈ P , the line l′ = 〈D,D′〉 belongs to B. Therefore B = B′. Hence
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S = S ′, which means that P is the set of all self-conjugate points of the polarity ζ

and that B consists of all lines l with l ⊂ lζ. ��

Theorem 5.51. Let S be a non-degenerate projective Shult space with ambient space

PG(d, q). Then one of the following holds:

(a) S is formed by the points and lines of a non-singular quadric of PG(d, q);
(b) q is a square and S is formed by the points and lines of a non-singular Hermitian

variety of PG(d, q);
(c) d is odd, the points of S are the points of PG(d, q), and the lines of S are the

lines of PG(d, q) in the self-polar (d− 1)/2-dimensional spaces with respect to

some null polarity ζ of PG(d, q).

Proof. If α = 2, then, by Theorem 5.42, it is case (a). If α > 2, then, by Theorem

5.50, it is one of the cases (b), (c). ��

Theorem 5.52. Let S be a projective Shult space with ambient space PG(d, q). Then

S is one of the following types.

(a) S is formed by the points and the lines of PG(d, q), d ≥ 1. The radical R of S is

PG(d, q).
(b) The point set of S is the union of k spaces PG(r+1, q) through a PG(r, q), where

k > 1 and r ≥ 0. The line set of S is the set of all lines in these (r + 1)-spaces.

The radical R of S is PG(r, q).
(c) S is formed by the points and lines of a quadric Q of projective index at least one

of PG(d, q), d ≥ 3. The radical R of S is the space of all singular points of Q.

(d) The order q is a square and S is formed by the points and lines of a Hermitian

variety U of PG(d, q), d ≥ 3. The radical R of S is the space of all singular

points of U .

(e) The points of S are the points of PG(d, q), d ≥ 3. There are skew subspaces Πr

and Πd−r−1, with r ≥ −1, and d−r−1 odd and at least three; the lines of S are

all the lines of PG(d, q) in the (r + 2)-spaces joining Πr to the lines of Πd−r−1

in the self-polar (d − r − 2)/2-spaces of some null polarity ζ in Πd−r−1. The

radical R of S is Πr.

Proof. First, let S be non-degenerate. By Theorem 5.51, it is either case (c) with

R = ∅, or case (d) with R = ∅, or case (e) with R = ∅.

Next, let S be degenerate with radical R and let R = PG(d, q). Then case (a)

holds.

Now, let S be degenerate with radical R = Πr and−1 < r < d. Let Πd−r−1 be a

subspace of PG(d, q) skew to R. By Theorem 5.22, Πd−r−1∩S is a non-degenerate

Shult space, the point set of S is the union of all lines joining every point of R to

every point of Πd−r−1 ∩ S, and two points of P\R are adjacent if and only if their

projections from R onto Πd−r−1 are adjacent. If Πd−r−1 ∩ S contains at least one

line, then Πd−r−1∩S is a non-degenerate projective Shult space with ambient space

Πd−r−1. In this case, by Theorem 5.51, one of (c), (d), (e) with R �= ∅ occurs.

Finally, suppose that Πd−r−1 ∩ S contains no line; this gives case (b). ��
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Definition 5.53. Consider a pair S = (P ,B), where P is a non-empty point set of

PG(d, q) and B is a (possibly empty) line set of PG(d, q). If B �= ∅, then let P be

the union of all lines of B.

(1) The subspace Πd′ of PG(d, q) generated by all points of P is the ambient space

of S.

(2) A tangent to S at P ∈ P is any line l through P such that either l ∈ B or

l ∩ P = {P}.

(3) The union of all tangents to S at P is the tangent set of S at P , and is denoted

S(P ).
(4) The set S is a semi-quadratic set of PG(d, q), d ≥ 2, if PG(d, q) is the ambient

space of S and if, for each P ∈ P , the tangent set S(P ) is either a hyperplane or

PG(d, q).
(5) If S(P ) = PG(d, q), then P is a singular point of S.

(6) The set of all singular points of S is the radical R of S.

(7) A semi-quadratic set S of PG(d, q) is a semi-ovaloid if B = ∅; in this case

R = ∅.

Theorem 5.54. The pair S = (P ,B) is a semi-quadratic set of PG(d, q), d ≥ 2, if

and only if one of the following holds.

(a) S is of type (a), (c), (d), (e) in the statement of Theorem 5.52. In each of these

cases the radical of the Shult space S coincides with the radical of the semi-

quadratic set S.

(b′) (1) The point set of S is the union of k spaces Πr+1 through a Πr, where k > 1
and d− 3 ≥ r ≥ −1.

(2) The line set of S is the set of all lines in these (r + 1)-spaces.

(3) If Πd−r−1 is skew to Πr, then P ∩ Πd−r−1 is a semi-ovaloid of Πd−r−1.

(4) The radical R of S is Πr.

Proof. Let S = (P ,B) be a semi-quadratic set of PG(d, q), d ≥ 2. It is shown that

S is a Shult space. Let P ∈ P , l ∈ B, and P /∈ l. Since the tangent set S(P ) is a

hyperplane or PG(d, q) itself, so |l ∩ S(P )| = 1 or l ⊂ S(P ). If P ′ ∈ l ∩ S(P ),
then 〈P, P ′〉 is a line of B. Hence P is adjacent to one point or to all points of l. It

follows that S is a Shult space.

First, assume that B �= ∅. Then S is a projective Shult space with ambient space

PG(d, q). So one of the cases (a) to (e) in the statement of Theorem 5.52 occurs.

Conversely, each Shult space of type (a), (c), (d), or (e) is a semi-quadratic set. Now

consider a Shult space of type (b), and let Πd−r−1 be skew to Πr, r ≥ 0. Then S

is a semi-quadratic set if and only if P ∩ Πd−r−1 is a semi-ovaloid of Πd−r−1 with

d− r − 1 ≥ 2. In each of these cases the radical of the Shult space S coincides with

the radical of the semi-quadratic set S.

Secondly, assume that B = ∅. Then the semi-quadratic set S is a semi-ovaloid of

PG(d, q). This gives case (b′) with r = −1. ��

Let S = (P , ∅) be a semi-ovaloid of PG(d, q), d ≥ 2. Any tangent of S has

exactly one point in common with S, and the tangent set S(P ) of S at P ∈ P is

always a hyperplane. In the next theorem all semi-ovaloids are classified.
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Theorem 5.55. Let S = (P , ∅) be a semi-ovaloid of PG(d, q), then there are only

two possibilities.

(a) d = 2 and q + 1 ≤ |P| ≤ q
√
q + 1. If |P| = q + 1, then P is a (q + 1)-arc of

PG(2, q); if |P| = q
√
q + 1, then P is a Hermitian arc of PG(2, q).

(b) d = 3 and |P| = q2 + 1. For q > 2, the set P is an ovaloid of PG(3, q); for

q = 2, the set P is an elliptic quadric of PG(3, 2).

Proof. Let S = (P , ∅) be a semi-ovaloid of PG(2, q). Let P ∈ P and let l be the

tangent of S at P . If the line m contains P and m �= l, then |m ∩ P| > 1. Counting

the points of P on the lines through P gives |P| ≥ q + 1. If |P| = q + 1, then each

non-tangent contains exactly zero or two points of P , whence P is a (q + 1)-arc of

PG(2, q). Conversely, any (q + 1)-arc of PG(2, q) is a semi-ovaloid of PG(2, q).
Next, let S = (P , ∅) be a semi-ovaloid of PG(d, q), d > 2. Let l be a tangent of

S at P ∈ P . If π is a plane through l which does not belong to the tangent set S(P ),
then π ∩ S is a semi-ovaloid of π. Counting the points of S in the planes through l

gives

|P| =
∑
π

(|P ∩ π| − 1) + 1 ≥ q · qd−2 + 1 = qd−1 + 1.

Let S = (P , ∅) be a semi-ovaloid of PG(d, q), d ≥ 2. From the first part of the

proof,

|P| ≥ qd−1 + 1. (5.3)

Let P = {P1, P2, . . . , Pα} and PG(d, q)\P = {T1, T2, . . . , Tβ}, with

α+ β = (qd+1
− 1)/(q − 1).

Further, let ti be the number of tangents of S through Ti, i = 1, 2, . . . , β. Now, count

in different ways the number of ordered pairs (Ti, Pj), where 〈Ti, Pj〉 is a tangent of

S; this gives
β∑

i=1

ti = αq

d−2∑
k=0

qk. (5.4)

Next, count in two ways the number of ordered triples (Ti, Pj , Pj′), with Pj �= Pj′

and 〈Ti, Pj〉, 〈Ti, Pj′ 〉 tangents to S. Hence

β∑
i=1

ti(ti − 1) = α(α − 1)

d−2∑
k=0

qk. (5.5)

From (5.4) and (5.5), it follows that

β∑
i=1

t2
i
= α(α+ q − 1)

d−2∑
k=0

qk.

With βt̄ =
∑

β

i=1
ti, the inequality 0 ≤

∑
β

i=1
(t̄− ti)

2 simplifies to
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β

β∑
i=1

t2
i
−

(
β∑

i=1

ti

)2

≥ 0;

this implies that

βα(α + q − 1)

d−2∑
k=0

qk − α2q2

(
d−2∑
k=0

qk

)2

≥ 0.

As β =
∑

d

k=0
qk − α, manipulation gives

(α − 1)2 ≤ qd+1. (5.6)

Next, let d = 2. From (5.3) and (5.6) it follows that

q + 1 ≤ α ≤ q
√
q + 1.

If q + 1 = α, then in the first part of the proof it was shown that P is a (q + 1)-arc.

Let α = q
√
q + 1. Then

0 =

β∑
i=1

(t̄− ti)
2;

so ti = t̄ = (
∑

β

i=1
ti)/β = αq/β =

√
q + 1, i = 1, 2, . . . , β. From Section 12.3

of PGOFF2, the set of all tangents of S forms a dual Hermitian arc of PG(2, q), and

hence P is a Hermitian arc of PG(2, q).
Next, let d = 3. From (5.3) and (5.6), it follows that α = q2 + 1. Any line l

through Pi ∈ P , but not in S(Pi), contains at least one point of P\{Pi}. Since there

are q2 such lines l through Pi and |P\{Pi}| = q2, it follows that l contains exactly

two points of P . Hence P is a (q2 + 1)-cap of PG(3, q). If q > 2, then P is an

ovaloid; if q = 2, then the 5-cap P is an elliptic quadric of PG(3, 2).
Finally, let d > 3; then (5.3) contradicts (5.6). ��

Let S = (P , ∅) be a semi-ovaloid of the plane PG(2, q). If P ∈ P and all non-

tangents through P intersect P in more than two points, then S ′ = (P\{P}, ∅) is

still a semi-ovaloid of PG(2, q). In PG(2, 3), there is a class of semi-ovaloids with

six points: take the vertices of a quadrangle together with two of its diagonal points.

5.4 Lax and polarised embeddings of Shult spaces

Definition 5.56. (1) A Shult space S with point set P is laxly embedded in PG(d,K),
d ≥ 2, if, for P ⊂ PG(d,K), each line l of S is a subset of a line l′ of PG(d,K),
and distinct lines l1, l2 of S define distinct lines l′1, l

′

2 of PG(d,K).
(2) If Πd′ is the subspace of PG(d,K) generated by all points of P , then Πd′ is the

ambient space of S.
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(3) A lax embedding is full if, in (1), l = l′ for each line l of S. The embeddings

considered in Section 5.3 are full embeddings.

(4) The embeddings described in Theorem 5.51 are the natural embeddings of the

classical finite non-degenerate Shult spaces.

(5) A lax embedding in PG(d, q) of a Shult space S, with point set P , is weak or

polarised if, for any point P of S, the subspace generated by the set

A = {P ′
∈ S | P ′ is collinear with P}

meets P precisely in A.

Remark 5.57. If the non-degenerate Shult space S is isomorphic to the Shult space

arising from a non-singular parabolic quadric Pn in PG(n, q), n even and n ≥ 4,

then S has two natural embeddings which are not projectively equivalent: the points

and lines of Pn and the points of PG(n−1, q) together with the lines of PG(n−1, q)
in the self-polar (n − 2)/2-dimensional spaces with respect to some null polarity ζ

of PG(n− 1, q).

It can be shown that, for a non-degenerate Shult space S laxly embedded in

PG(d, q), (5) is equivalent to the following condition (5′):

(5′) the set of all points of S collinear in S with any given point of S is contained in

a hyperplane of PG(d, q).

All full embeddings described in Theorem 5.52 are polarised and all full embed-

dings described in Theorem 5.51 satisfy conditions (5) and (5′).

In what follows, ‘embedded in PG(d,K)’ means that PG(d,K) is the ambient

space.

The next three theorems contain the complete classification of all Shult spaces

weakly embedded in PG(d, q). However, proofs are not given. First, the universal

weak embedding of the generalised quadrangle W(2) in PG(4,K) is described.

Let P1, P2, P3, P4, P5 be consecutive vertices of a proper pentagon in W(2). Let

K be any field and identify Pi, i ∈ {1, 2, 3, 4, 5}, with the point of PG(4,K) with

coordinates (0, . . . , 0, 1, 0, . . . , 0) , where the 1 is in the i-th position. Identify the

unique point Qi+3 of W(2) on the line PiPi+1 and different from both Pi and Pi+1,

with the point (0, . . . , 0, 1, 1, 0, . . . , 0) of PG(4,K), where the 1’s are in the i-th and

the (i + 1)-th positions, and where subscripts are taken modulo 5. Finally, identify

the unique point Ri of the line PiQi of W(2) and different from both Pi and Qi, with

the point whose coordinates are all 0 except in the i-th position, where the coordinate

is −1, and in the positions i−2 and i+2, where it takes the value 1; again subscripts

are taken modulo 5. It is an elementary exercise to check that this defines a weak

embedding of W(2) in PG(4,K). This embedding is the universal weak embedding

of W(2) in PG(4,K).

Theorem 5.58. Let S be a generalised quadrangle of order (s, t), s, t �= 1, weakly

embedded in PG(d, q). Then either s is a prime power, Fs is a subfield of Fq and S

is fully embedded in some subgeometry PG(d, s) of PG(d, q), or S is isomorphic to

W(2) and the weak embedding is the universal one in PG(4, q) with q odd.
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Theorem 5.59. Let S be a non-degenerate Shult space of rank at least three, all of

whose lines have size at least three. If S is weakly embedded in PG(d, q), then S is

fully embedded in some subgeometry PG(d, q′) of PG(d, q), for some subfield Fq′

of Fq .

Let S be a finite Shult space of rank at least three all of whose lines have size at

least three. Then the radical R of S together with the lines of S in R is the point-line

incidence structure of a projective space over some field Fq′ . Let the dimension of

R be denoted by r(S), or r for short.

Definition 5.60. A Shult space is classical if it arises, up to isomorphism, from a

quadric, a Hermitian variety, or a null polarity.

Theorem 5.61. Let S be a classical Shult space with rank(S) = R and satisfy-

ing R − r ≥ 4. If S is weakly embedded in PG(d, q), then there is a projective

space PG(d, q), d ≥ d, containing PG(d, q) such that S is the projection from a

Π
d−d−1,q

⊂ PG(d, q) into PG(d, q) of a classical Shult space S which is fully em-

bedded in some subgeometry PG(d, q′) of PG(d, q), for some subfield Fq′ of Fq.

Surprisingly, also for the weakest form of embeddings, the lax embeddings,

strong results are obtained. First, a lax embedding of the generalised quadrangle

U(3, 4) arising from a non-singular Hermitian variety U in PG(3, 4) is described.

A double-six in PG(3,K), with K any field, is a set of 12 lines

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

such that each line meets only the five lines not in the same row or column. A double-

six lies on a unique non-singular cubic surface F , which contains 15 further lines.

Any non-singular cubic surface F of PG(3,K), with K an algebraically closed ex-

tension of K , contains exactly 27 lines. These 27 lines form exactly 36 double-sixes.

With the notation introduced above, there exists a unique polarity β of PG(3,K)
such that aiβ = bi, i = 1, 2, . . . , 6. As the other 15 lines of the corresponding cubic

surface are the lines cij = 〈ai, bj〉 ∩ 〈aj , bi〉, with i, j = 1, 2, . . . , 6 and i �= j, so

cijβ = 〈ai ∩ bj , aj ∩ bi〉. For every double-six, any line l of it together with the five

lines different from l and concurrent with l, form a set of six lines every five of which

are linearly independent when regarded as six points on the Klein quadric.

Conversely, given five skew lines a1, a2, a3, a4, a5 with a transversal b6 such that

each five of the six lines are linearly independent, then the six lines belong to a

unique double-six, and so belong to a unique, non-singular cubic surface. A double-

six and a cubic surface with 27 lines exist in PG(3,K) for every field K except

K = Fq with q = 2, 3, 5. Let F be a non-singular cubic surface of PG(3,K). If

P ∈ F is on exactly three lines l1, l2, l3 of F , then P is an Eckardt point of F ;

if F is non-singular these lines l1, l2, l3 belong to the tangent plane of F at P . A

tritangent plane is a plane containing three lines of F . If F has 27 lines, then F has

45 tritangent planes. A trihedral pair is a set of six tritangent planes divided into two
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sets, each set consisting of three planes pairwise intersecting in a line not belonging

to F , such that the three planes of each set contain the same set of nine distinct lines

of F . If F contains 27 lines, then the 45 tritangent planes form 120 trihedral pairs.

Consider a non-singular cubic surface F in PG(3,K) and assume that F has

27 lines. Let S ′ = (P ′,B′, I′) be the following incidence structure: the elements

of P ′ are the 45 tritangent planes of F , the elements of B′ are the 27 lines of F ,

a point π ∈ P ′ is incident with a line l ∈ B′ if l ⊂ π. Then S ′ is the unique

generalised quadrangle of order (4, 2); for the uniqueness, see Corollary 5.82. Let D

be one of the double-sixes contained in B′ and let β be the above polarity fixing D. If

P = P ′β, B = B′β, and I is symmetrised containment, then S = (P ,B, I) is again

the unique generalised quadrangle of order (4, 2). This generalised quadrangle S is

contained in the dual surface F̂ of F which also contains exactly 27 lines. If lines in

B are identified with their set of points, S is laxly embedded in PG(3,K). If P ∈ P

and the three lines of S incident with P are contained in a common plane π, then πβ

is an Eckardt point of F .

If D is a double-six contained in B, then the 15 lines of B not contained in

D, together with the 15 points of P not on lines of D, form the unique gener-

alised quadrangle of order 2; for the uniqueness, see Theorem 5.73. In this way the

36 subquadrangles of order 2 of S are obtained. If P, P ′ are non-collinear points

of S, then let {P, P ′}⊥ = {R,R′, R′′}, {R,R′}⊥ = {P, P ′, P ′′} in S. Then

{Pβ, P ′β, P ′′β,Rβ,R′β,R′′β} yields a trihedral pair of B′. In this way the 120

trihedral pairs are obtained. If l,m, n are skew lines of B, then |{l,m, n}⊥| = 3 in

S, say {l,m, n}⊥ = {l′,m′, n′}. So also any three skew lines of B′ are concurrent

with three skew lines of B′. In total, B′ admits 360 such configurations.

As already mentioned, S = (P ,B, I) is laxly embedded in PG(3,K). Con-

versely, let S = (P ,B, I) be any lax embedding in PG(3,K) of U(3, 4); up to iso-

morphism, U(3, 4) is the unique generalised quadrangle of order (4, 2). Let D be any

double-six contained in B; then D consists of the 12 lines not belonging to a subquad-

rangle of order 2. Let β be the polarity fixing D described above, and let B′ = Bβ.

The double-six D belongs to a unique non-singular cubic surface F . With the nota-

tion introduced above, the other 15 lines of F are the lines cij = 〈ai, bj〉 ∩ 〈aj , bi〉.

So cijβ = 〈ai ∩ bj , aj ∩ bi〉, and, by considering a subquadrangle Q(4, 2) of the

generalised quadrangle Q(5, 2), it follows that 〈ai∩ bj , aj ∩ bi〉 is a line of S. Hence

cijβ is a line of S. Consequently,B′ is the set of the 27 lines of a unique non-singular

cubic surface F . It follows that every lax embedding of U(3, 4) in PG(3,K) is of

the type described above. So, such a lax embedding is uniquely defined by five skew

lines a1, a2, a3, a4, a5 together with a transversal b6 such that each five of the six

lines are linearly independent. Such a configuration exists for every field K except

for K = F2,F3,F5.

The embedding S is polarised if and only if the 45 tritangent planes of F de-

fine 45 Eckardt points. If K = Fq, then necessarily q = 4m, and for each such q

a polarised embedding of the generalised quadrangle of order (4, 2) is possible. If

U(3, 4) is embedded in PG(3, q) and if the embedding S is polarised, then, by The-

orem 5.58, S is a full embedding of U(3, 4) in a subgeometry PG(3, 4) of PG(3, q),
for a subfield F4 of Fq; so S is a Hermitian surface of PG(3, 4). This result can be
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extended to infinite fields. So, if U(3, 4) admits a polarised embedding in PG(3,K),
then F4 is a subfield of K and the embedding is full in a subgeometry PG(3, 4) of

PG(3,K).
Hence the following result is obtained.

Theorem 5.62. Let K be any field and let S be a lax embedding of U(3, 4) in

PG(3,K). Then

(i) |K| �= 2, 3, 5 and S arises from a non-singular cubic surface F ;
(ii) the embedding is polarised if and only if F admits 45 Eckardt points;

(iii) in the latter case, the field F4 is a subfield of K and S is a Hermitian surface

in a subgeometry PG(3, 4) of PG(3,K).

Similarly to the projective case, lax, weak (or polarised) and full embeddings of

point-line geometries in an affine space AG(d,K) can be defined. In the follow-

ing theorem, lax embeddings of generalised quadrangles of order (s, t), s > 1, in

PG(d, q), d > 2, are considered.

Theorem 5.63. If the generalised quadrangle S of order (s, t), s > 1, is laxly em-

bedded in PG(d, q), then d ≤ 5.

(i) If d = 5, then S ∼= Q(5, s) and the full automorphism group of S is induced by

PGL(6, q). Also, one of the following holds:
(a) it is weakly embedded and hence, by Theorems 5.58 and 5.51, fully and

naturally embedded in some subgeometry PG(5, s) of PG(5, q);
(b) s = 2, q is odd and there exists up to an element of PSL(6, q), a unique

(non-weak) lax embedding, which is a full affine embedding if q = 3;
(c) for s = 2, q = 3h, the (non-weak) lax embedding is a full embedding in

some affine subgeometry AG(5, 3) over the subfield F3 of Fq .

(ii) If d = 4, then s ≤ t.

(a) If s = t, then S ∼= Q(4, s) and one of the following occurs.

1. s �= 2, q is odd, and S is weakly embedded; hence, by Theorems 5.58 and

5.51, it is fully and naturally embedded in some subgeometry PG(4, s) in

PG(4, q).
2. s = 2, q is odd, and S is weakly embedded in PG(4, q), that is, S is the

universal weak embedding of W(2) in PG(4, q) by Theorem 5.58.

3. s = 3, q ≡ 1 (mod 3), and there exists, up to an element of PSL(5, q),
a unique (non-weak) lax embedding. Further,

I. the case q = 4 corresponds to a full affine embedding;
II. the case q even corresponds to a full affine embedding in an affine

subgeometry over the subfield F4 of Fq;
III. the group PSp(4, 3) acting naturally as an automorphism group on

W(3) is induced on S by PSL(5, q); if q is a square and if also
√
q ≡ −1 (mod 3), then the full automorphism group PGSp(4, 3)

of S is the group induced by PΓL(5, q); otherwise, PΓL(5, q) just

induces PSp(4, 3).
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(b) If s > 2, then t �= s+ 2.

(c) If t2 = s3, then S ∼= U(4, s) and S is weakly embedded and hence, by

Theorems 5.58 and 5.51, fully and naturally embedded in some subspace

PG(4, s) of PG(4, q).
(d) If S ∼= Q(5, s), then there exists a PG(5, q) containing PG(4, q) and a

point P ∈ PG(5, q)\PG(4, q) such that S is the projection from P onto

PG(4, q) of a generalised quadrangleS ∼= Q(5, s) which is laxly embedded

in PG(5, q), and hence determined by (i).

(iii) d = 3.

(a) If t = 1, then S is a subquadrangle of order (s, 1) of some Q(3, q).
(b) If s = t2, then S ∼= U(3, s) and one of the following holds:

1. S is weakly embedded in PG(3, q) and hence, by Theorems 5.58 and

5.51, fully and naturally embedded in some subgeometry PG(3, s) of

PG(3, q);
2. (s, t) = (4, 2) with q /∈ {2, 3, 5} and S arises from a non-singular cubic

surface in PG(3, q); see Theorem 5.62.

(c) If S is classical or dual classical, but not isomorphic to W(s) with s odd,

then the following classification is obtained.

1. S is not dual to U(4, s2/3).
2. If S ∼= U(4, s), then there exists a PG(4, q) containing PG(3, q) and a

point P ∈ PG(4, q)\PG(3, q) such that S is the projection from P onto

PG(3, q) of a generalised quadrangle S ∼= U(4, s) which is fully and

naturally embedded in a subgeometry PG(4, s) of PG(4, q), for some

subfield Fs of Fq, with s a square.

3. If S ∼= Q(4, s), then there exists a PG(4, q) containing PG(3, q) and

a point P ∈ PG(4, q)\PG(3, q) such that S is the projection from P

onto PG(3, q) of a generalised quadrangle S ∼= Q(4, s) which is laxly

embedded in PG(4, q), and hence determined by (ii)(a).

4. If S ∼= Q(5, s), then there exists a PG(5, q) containing PG(3, q) and a

line l of PG(5, q) skew to PG(3, q) such that S is the projection from l

onto PG(3, q) of a generalised quadrangle S ∼= Q(5, s) which is laxly

embedded in PG(5, q), and hence determined by (i).

Lax embeddings of non-degenerate Shult spaces of rank at least three are consid-

ered in the next theorem.

Theorem 5.64. Let S be a non-degenerate Shult space of rank at least three all of

whose lines have size at least three and which is laxly embedded in PG(d, q), where

d ≥ 3.

(i) If S is not the Shult space arising from a null polarity of PG(2m + 1, s), s

odd, then there exists a PG(n, q) containing Πd = PG(d, q), a Πn−d−1 in

PG(n, q) skew to Πd and a non-degenerate classical Shult space S ∼= S fully

and naturally embedded in a subgeometry PG(n, s) of PG(n, q), such that S

is the projection of S from Πn−d−1 onto Πd.
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(ii) If d ≥ 4 and if S arises from a null polarity of PG(2m + 1, s), m ≥ 2 and s

odd, then there exists a PG(2m + 1, q) containing Πd and a subspace Π2m−d

of PG(2m+1, q) skew to Πd such that S is the projection from Π2m−d onto Πd

of a non-degenerate Shult space S ∼= S which is fully and naturally embedded

in a subgeometry PG(2m+ 1, s) of PG(2m+ 1, q).

Remark 5.65. The lax embeddings in PG(3, q) of the generalised quadrangles

W(s), s odd, and of the non-degenerate Shult spaces of rank at least three aris-

ing from a null polarity of PG(2m+ 1, s), m ≥ 2 and s odd, are not yet classified.

The classification of lax embeddings of Shult spaces in PG(2, q), without extra con-

ditions, seems to be hopeless.

5.5 Characterisations of the classical generalised quadrangles

In this section the most important characterisations of the classical generalised quad-

rangles are reviewed. Apart from a few exceptions the proofs are long, complicated,

and technical. So, proofs are given only in the simpler cases. First, some new ideas

are introduced.

Definition 5.66. Let S = (P ,B, I) be a finite generalised quadrangle of order (s, t).

(1) If P ∼ P ′, P �= P ′, or if P �∼ P ′ and |{P, P ′}⊥⊥| = t+ 1, the pair {P, P ′} is

regular.

(2) The point P is regular if {P, P ′} is regular for all P ′ ∈ P , P ′ �= P .

(3) A point P is co-regular if each line incident with P is regular.

(4) The pair {P, P ′}, P �∼ P ′, is anti-regular if |P ′′⊥ ∩ {P, P ′}⊥| ≤ 2 for all

P ′′ ∈ P\{P, P ′}.

(5) A point P is anti-regular if {P, P ′} is anti-regular for all P ′ ∈ P\P⊥.

(6) The closure of the pair {P, P ′} is

cl(P, P ′) = {P ′′
∈ P | P ′′⊥

∩ {P, P ′
}
⊥⊥

�= ∅}.

Theorem 5.67. Let S = (P ,B, I) be a generalised quadrangle of order s > 1.

(i) For a regular point P, the incidence structure πP with point set P⊥, with line

set the set of spans {P ′, P ′′}⊥⊥, where P ′, P ′′ ∈ P⊥ with P ′ �= P ′′, and with

the natural incidence is a projective plane of order s.

(ii) For an anti-regular point P and a point P ′ in P⊥\{P}, the incidence structure

π(P, P ′) with point set P⊥\{P, P ′}⊥, with lines the sets {P, P1}
⊥\{P} with

P ∼ P1 �∼ P ′ and the sets {P, P2}
⊥\{P ′} with P ′ ∼ P2 �∼ P, and with the

natural incidence is an affine plane of order s.

Proof. Both parts are straightforward verifications of the axioms. ��

Definition 5.68. (1) An ovoid of S is a set O of points of S such that each line of S

is incident with a unique point of O.
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(2) A spread of S is a set R of lines of S such that each point of S is incident with a

unique line of R.

Remark 5.69. It follows that any ovoid or spread of S has exactly 1 + st elements.

Definition 5.70. (1) Let s2 = t > 1; then, by Corollary 5.15, any triad {P, P ′, P ′′}

has |{P, P ′, P ′′}⊥| = s+ 1. Thus |{P, P ′, P ′′}⊥⊥| ≤ s+ 1 and {P, P ′, P ′′} is

3-regular provided that |{P, P ′, P ′′}⊥⊥| = s+ 1.

(2) The point P is 3-regular if and only if each triad containing P is 3-regular.

These definitions are illustrated by some examples.

In Section 5.2, it was observed that each hyperbolic line of W(q) contains q + 1
points. Hence all points of W(q) are regular. Dually, all lines of Q(4, q) are regular.

By Theorem 5.17, all lines of W(q), with q even, are regular. Dually, all points of

Q(4, q), q even, are regular. From the examples in Section 5.2, it follows that each

point of Q(4, q), q odd, is anti-regular, and, dually, that each line of W(q), q odd,

is anti-regular. Further, each hyperbolic line of U(3, q2) contains q+1 points; hence

each point of U(3, q2) is regular. Dually, each line of Q(5, q) is regular.

Consider Q(5, q) and the corresponding polarity ζ. If T = {P, P ′, P ′′} is a triad

of Q(5, q), then T ⊥ is the conic Q ∩ π, where π is the polar of the plane PP ′P ′′,

and T ⊥⊥ is the conic Q∩ PP ′P ′′. So |T ⊥⊥| = q + 1, and consequently each point

of Q(5, q) is 3-regular. Dually, each line of U(3, q2) is 3-regular.

The generalised quadrangle Q(4, q) always has ovoids, and has spreads if and

only if q is even; see Section 7.2. Further, Q(5, q) has spreads but no ovoids, and

U(4, q2) has no ovoids. For q = 2, the Hermitian variety U(4, q2) has no spreads;

for q > 2, the existence of a spread is an open problem.

Historically, the next result is probably the oldest combinatorial characterisation

of a class of generalised quadrangles. A proof is essentially contained in a paper

by Singleton, although he erroneously thought he had proved a stronger result; but

the first satisfactory treatment may have been given by Benson. Undoubtedly, it was

discovered independently by several authors; see Section 5.10.

Theorem 5.71. A generalised quadrangle S of order s �= 1 is isomorphic to W(s) if

and only if all its points are regular.

Proof. All points of W(s) are regular.

Conversely, let S = (P ,B, I) be a generalised quadrangle of order s �= 1, for

which all points are regular. Now define the incidence structure S ′ = (P ′,B′, I′),
with P ′ = P , with B′ the set of spans of all point pairs of P , and I′ the natural

incidence. Then S is isomorphic to the substructure of S ′ formed by all points and

the spans of all pairs of points collinear in S.

Let T = {P, P ′, P ′′} be a triad of points in S. Counting all points on the lines

joining a point of {P, P ′}⊥ and a point of {P, P ′}⊥⊥ gives

(s+ 1)2(s− 1) + 2(s+ 1) = (s+ 1)(s2 + 1) = |P|.

Hence P ′′ is on at least one line joining a point of {P, P ′}⊥ to a point of {P, P ′}⊥⊥,

and so T ⊥ �= ∅. Now, by Theorem 5.67 (i), it follows that any three non-collinear
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points of S ′ generate a projective plane of order s. Since |P ′| = s3+s2+s+1, so S ′

is the design of points and lines of PG(3, s). All spans in S of collinear point pairs

containing a given point P form a pencil of lines in PG(3, s). By Theorem 15.2.13

of FPSOTD, the set of all spans of collinear point pairs is a general linear complex

of lines of PG(3, q) or, equivalently, is the set of all self-polar lines of a null polarity

ζ. Thus S ∼= W(s). ��

The next result is a slight generalisation of the preceding theorem and is stated

without proof.

Theorem 5.72. A generalised quadrangle S of order (s, t), s �= 1, is isomorphic to

W(s) if and only if each hyperbolic line has at least s+ 1 points.

Theorem 5.73. Up to isomorphism, there is only one generalised quadrangle of or-

der 2.

Proof. Let S be a generalised quadrangle of order 2. Consider two points P, P ′ with

P �∼ P ′, and let {P, P ′}⊥ = {Z1, Z2, Z3}. Let {Z1, Z2}
⊥ = {P, P ′, U}, let Y be

the unique point of PZ3 collinear with U , and let Y ′ be the unique point of P ′Z3

collinear with U. If Y, Z3, Y
′ are distinct, then U is incident with the four distinct

lines UZ1, UZ2, UY, UY ′, a contradiction since t = 2. Thus Y = Z3 = Y ′, and

so U ∼ Z3. Hence |{P, P ′}⊥⊥| = 3. So every point of S is regular and now, by

Theorem 5.71, S ∼= W(2). ��

The following four characterisations are stated without proof.

Theorem 5.74. A generalised quadrangle S of order s �= 1 is isomorphic to W(2h)
if and only if it has an ovoid O each triad of which has at least one centre.

Theorem 5.75. A generalised quadrangle S of order s �= 1 is isomorphic to W(2h)
if and only if it has an ovoid O each point of which is regular.

Theorem 5.76. A generalised quadrangle S of order s �= 1 is isomorphic to W(2h)
if and only if it has a regular pair {l1, l2} of non-concurrent lines with the property

that any triad of points lying on lines of {l1, l2}
⊥ has at least one centre.

Theorem 5.77. Let S be a generalised quadrangle of order s �= 1 with an anti-

regular point P . Then S is isomorphic to Q(4, s) if and only if there is a point P ′ in

P⊥\{P}, for which the associated affine plane π(P, P ′) is Desarguesian.

Corollary 5.78. Let S be a generalised quadrangle of order s �= 1 having an anti-

regular point P . If s ≤ 8, then S is isomorphic to Q(4, s).

Proof. Since each plane of order s ≤ 8 is Desarguesian, the result follows. ��

Theorem 5.79. Let S be a generalised quadrangle of odd order s > 1 with co-

regular point P . Then S ∼= Q(4, s) if and only if, for at least one line l incident with

P, the projective plane πl is Desarguesian.
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Corollary 5.80. Let S be a generalised quadrangle of order s, with s ∈ {5, 7}. If S

contains a co-regular point, then S ∼= Q(4, s).

Proof. As the projective planes of order 5 and 7 are unique, the result follows from

Theorem 5.79. ��

The following characterisation theorem is very important, not only for the theory

of generalised quadrangles, but also for other areas in combinatorics. The proof is

again very long, and so it is not given.

Theorem 5.81. Let S be a generalised quadrangle of order (s, s2).

(i) When s > 1, then S ∼= Q(5, s) if and only if all points of S are 3-regular.

(ii) When s is odd and s > 1, then S ∼= Q(5, s) if and only if it has a 3-regular

point.

(iii) When s is even, then S ∼= Q(5, s) if and only if it has at least one 3-regular

point not incident with some regular line.

(iv) When s is odd and s > 1, then S ∼= Q(5, s) if and only if the following proper-

ties hold:
(a) there are distinct collinear points P and P ′ such that each triad containing

P with centre P ′ is 3-regular;
(b) each triad containing P ′ with centre P is 3-regular;
(c) there is at least one 3-regular triad {P1, P2, P3} with P1 IPP ′ and where

{P1, P2, P3}
⊥ does not contain a point incident with PP ′.

Corollary 5.82. Up to isomorphism there is only one generalised quadrangle of the

following orders: (i) (2, 4); (ii) (3, 9).

Proof. (a) Let S be a generalised quadrangle of order (2, 4). If {P1, P2, P3} is a triad

of points, then {P1, P2, P3}
⊥⊥ = {P1, P2, P3}. Hence |{P1, P2, P3}

⊥⊥| = 1 + s,

every point is 3-regular, and, by Theorem 5.81 (i), S ∼= Q(5, 2).
(b) Let S be of order (3, 9). Let {P1, P2, P3} be a triad of points, and let

{P1, P2, P3}
⊥ = {U1, U2, U3, U4}, {U1, U2, U3}

⊥ = {P1, P2, P3, P4}. The num-

ber of points collinear with U4 and also with at least two points of {U1, U2, U3} is

at most six, and the number of points collinear with U4 and incident with some line

P4Ui, i = 1, 2, 3, is at most three. Since 3 + 6 < 10 = t + 1, there is a line l in-

cident with U4, but not concurrent with P4Ui, i = 1, 2, 3, and not incident with an

element of {Ui, Uj}
⊥, i �= j, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. The point incident with l and

collinear with Ui is denoted by Zi, i = 1, 2, 3; the points Z1, Z2, Z3 are distinct.

Since S has no triangles, the point P4 is not collinear with any Zi, forcing P4 ∼ U4.

Hence the triad {P1, P2, P3} is 3-regular, and so every point of S is 3-regular. Now,

by Theorem 5.81, S ∼= Q(5, 3). ��

Definition 5.83. (1) The generalised quadrangle S ′ = (P ′,B′, I′) of order (s′, t′) is

a subquadrangle of the generalised quadrangle S = (P ,B, I) of order (s, t) if

P ′ ⊂ P , B′ ⊂ B, and if I′ is the restriction of I to (P ′ × B′) ∪ (B′ × P ′).
(2) If S ′ �= S, then S ′ is a proper subquadrangle of S.
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Remark 5.84. If |P| = |P ′| it follows that s = s′ and t = t′; hence, if S ′ is a proper

subquadrangle, then P �= P ′, and dually B �= B′.

Some examples are given.

Example 5.85. (a) Consider Q(5, q), with Q a non-singular quadric of projective

index 1 in PG(5, q). Intersect Q with a non-tangent hyperplane Π4. Then the

points and lines of Q′ = Q∩Π4 form the generalised quadrangle Q′(4, q). Here

s2 = t = q2, s = s′ = t′. Since all lines of Q(5, q) and of Q′(4, q) are regular,

both have subquadrangles of order (s′′, t′′) with t′′ = 1 and s′′ = s′ = s, each of

which is a hyperbolic quadric in some solid of PG(5, q).
(b) Let U = U(4, q2), a non-singular Hermitian variety of PG(4, q2) and intersect

U with a non-tangent hyperplane Π3. Then the points and lines of U ′ = U ∩ Π3

form the generalised quadrangle U ′(3, q2). In this case, the parameters are

t = s3/2 = q3, s = s′, t′ =
√
s.

Since all points of U ′(3, q2) are regular, so U ′(3, q2) has subquadrangles with

t′′ = t′ =
√
s and s′′ = 1.

(c) Now consider Q(4, q) and extend Fq to Fq2 . Then Q extends to Q and Q(4, q)
to Q(4, q2). Here, Q(4, q) is a subquadrangle of Q(4, q2), with t = s = q2 and

t′ = s′ = q.

Next consider the role of subquadrangles in characterising Q(5, q). Proofs are

again omitted.

Theorem 5.86. Let S be a generalised quadrangle of order (s, t) with s > 1 and

t > 1. Then S is isomorphic to Q(5, s) if and only if either (i) or (ii) holds:

(i) every triad of lines with at least one centre is contained in a proper subquad-

rangle of order (s, t′);
(ii) for each triad {P, P ′, P ′′} with distinct centres Z,Z ′, the five points P, P ′, P ′′,

Z,Z ′ are contained in a proper subquadrangle of order (s, t′).

For a generalised quadrangle S of order (s, t), let {l1, l2, l3} and {m1,m2, m3}

be two triads of lines for which li �∼ mj if and only if {i, j} = {1, 2}. Let Pi be the

point defined by li IPi Imi, i = 1, 2. This configuration T of seven distinct points

and six distinct lines is a broken grid with carriers P1 and P2; see Figure 5.2.

The broken grid T satisfies axiom (D) with respect to the pair {l1, l2} provided

the following holds: if l4 ∈ {m1,m2}
⊥ with l4 �∼ li, i = 1, 2, 3, then {l1, l2, l4} has

at least one centre. Interchanging li and mi gives the definition of axiom (D) for T

with respect to the pair {m1,m2}. Further, T is said to satisfy axiom (D) provided

it satisfies axiom (D) with respect to both pairs {l1, l2} and {m1,m2}.

Let P be any point of S. Then S is said to satisfy axiom (D)′
P

if the broken

grid T satisfies axiom (D) with respect to {l1, l2} whenever P I l1; it satisfies axiom

(D)′′
P

if T satisfies axiom (D) with respect to {m1,m2} whenever P I l1.

Now, another interesting characterisation of Q(5, s) is the following.
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Fig. 5.2. Broken grid

l1 l2 l3
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m2
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P1
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Theorem 5.87. Let S be a generalised quadrangle of order (s, t), with s �= t, and

s > 1, t > 1.

(i) If s is odd, then S ∼= Q(5, s) if and only if S contains a co-regular point P for

which (D)′
P

or (D)′′
P

is satisfied.

(ii) If s is even, then S ∼= Q(5, s) if and only if all lines of S are regular and S

contains a point P for which (D)′
P

or (D)′′
P

is satisfied.

In order to conclude this section dealing with characterisations of Q(5, s), one

more basic concept is introduced.

Definition 5.88. Let S = (P ,B, I) be a generalised quadrangle of order (s, t). If

B⊥⊥ is the set of all spans {P, P ′}⊥⊥ with P �∼ P ′, then let S⊥⊥ = (P ,B⊥⊥,∈).

(1) S satisfies property (A)P for P ∈ P , if for any m = {P ′, P ′′}⊥⊥ ∈ B⊥⊥ with

P ∈ {P ′, P ′′}⊥, and U ∈ cl(P ′, P ′′)∩(P⊥\{P}) with U /∈ m, the substructure

of S⊥⊥ generated by m and U is a dual affine plane.

(2) S satisfies property (A) if it satisfies (A)P for all P ∈ P .

(3) The dual of (A)P is denoted by (Â)l and of (A) by (Â).

So S satisfies (A) if, for any m = {P ′, P ′′}⊥⊥ ∈ B⊥⊥ and any U in the set

cl(P ′, P ′′)\({P ′, P ′′}⊥ ∪ {P ′, P ′′}⊥⊥), the substructure of S⊥⊥ generated by m

and U is a dual affine plane.

Again, the proof of the following theorem is not given.

Theorem 5.89. Let S be a generalised quadrangle of order (s, t), s �= t, t > 1.

(i) If s > 1, and s is odd, then S is isomorphic to Q(5, s) if and only if (Â)l is

satisfied for all lines l incident with some co-regular point P .

(ii) If s is even, then S is isomorphic to Q(5, s) if and only if all lines of S are

regular and (Â)l is satisfied for all lines l incident with some point P .

Definition 5.90. A finite net of order k ≥ 2 and degree r ≥ 2 is an incidence struc-

ture N = (P ,B, I) of points and lines satisfying the following axioms.
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(1) Each point is incident with r lines and two distinct points are incident with at

most one line.

(2) Each line is incident with k points and two distinct lines are incident with at most

one point.

(3) If P is a point and l is a line not incident with P , then there is a unique line m

incident with P and not concurrent with l.

For a net of order k and degree r, it follows that |P| = k2 and |B| = kr. Also,

r ≤ k + 1, with r = k + 1 if and only if the net is an affine plane of order k.

The following theorem gives the relation between regularity in generalised quad-

rangles and dual nets.

Theorem 5.91. Let P be a regular point of the generalised quadrangleS = (P ,B, I)
of order (s, t), s �= 1. Then the incidence structure, with

(a) point set P⊥\{P},

(b) line set the set of all spans {Q,Q′}⊥⊥, where Q,Q′ ∈ P⊥\{P}, Q �∼ Q′,

(c) incidence the natural one,

is the dual of a net of order s and degree t + 1. If, in particular, s = t > 1, then a

dual affine plane of order s arises.

Proof. This is a straightforward exercise. ��

Let P be the set of all points of PG(n, q) which are not contained in a fixed

subspace PG(n − 2, q), with n ≥ 2, let B be the set of all lines of PG(n, q) having

no point in common with PG(n − 2, q), and let I be the natural incidence. Then

(P ,B, I) is the dual of a net of order qn−1 and degree q + 1; this dual net is denoted

by Hn

q
.

Definition 5.92. A point-line incidence geometry S = (P ,B, I) satisfies the Veblen–

Pasch axiom if and only if the following condition is satisfied:

(VP) if l1 IP I l2, l1 �= l2, and m1
�IP �Im2, li ∼ mj , for all i, j ∈ {1, 2}, then

m1 ∼ m2.

Theorem 5.93. Let S be a dual net of order s+ 1 and degree t+ 1, with s < t+ 1.

If S satisfies (VP), then S is isomorphic to the dual net Hn

q
, which has s = q and

t = qn−1 − 1.

The following characterisation theorem of Q(5, s) is in terms of regularity and

dual nets.

Theorem 5.94. Let S be a generalised quadrangle of order (s, t) with s �= t, s > 1
and t > 1.

(i) If s is odd, then S is isomorphic to the classical generalised quadrangleQ(5, s)
if and only if it has a co-regular point P and if for each line l incident with P

the corresponding dual net ND

l
satisfies (VP).
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(ii) If s is even, then S is isomorphic to the classical generalised quadrangle

Q(5, s) if and only if all its lines are regular and, for at least one point P

and all lines l incident with P, the corresponding dual nets ND

l
satisfy (VP).

The next characterisation theorem ofQ(5, s) involves subquadrangles and ovoids.

Theorem 5.95. Let S be a generalised quadrangle of order (s, s2), s �= 1, having

a subquadrangle S ′ isomorphic to Q(4, s). If in S ′ each ovoid OP consisting of all

the points collinear with a given point P of S\S ′ is an elliptic quadric, then S is

isomorphic to Q(5, s).

Definition 5.96. (1) Let S = (P ,B, I) be a generalised quadrangle of order (s, t),
and define B∗ = {{P, P ′}⊥⊥ | P, P ′ ∈ P , P �= P ′}. Then S∗ = (P ,B∗,∈) is a

linear space; see Section 5.10.

(2) So as to have no confusion between collinearity in S and collinearity in S∗, points

P1, P2, . . . , Pr of P which are on a line of S∗ are S∗-collinear.

(3) A linear variety of S∗ is a subset P ′ ⊂ P such that P, P ′ ∈ P ′, P �= P ′, implies

{P, P ′}⊥⊥ ⊂ P ′.

(4) If P ′ �= P and |P ′| > 1, the linear variety is proper; if P ′ is generated by three

points which are not S∗-collinear, P ′ is a plane of S∗.

Now a fundamental characterisation of the generalised quadrangle U(3, s) is

stated.

Theorem 5.97. Let S = (P ,B, I) be a generalised quadrangle of order (s, t), with

s �= t, s > 1, and t > 1. Then S is isomorphic to U(3, s) if and only if the following

hold:

(a) all points of S are regular;
(b) if the lines l and l′ of B∗ are contained in a proper linear variety of S∗, then also

the lines l⊥ and l′⊥ of B∗ are contained in a proper linear variety of S∗.

A beautiful characterisation theorem, but with a long and complicated proof, is

the following.

Theorem 5.98. A generalised quadrangle S of order (s, t), s3 = t2 and s �= 1, is

isomorphic to U(4, s) if and only if every hyperbolic line has at least
√
s+ 1 points.

Relying on this result, another characterisation of U(4, s) can be given.

Theorem 5.99. Let S have order (s, t) with 1 < s3 ≤ t2. Then S is isomorphic to

U(4, s) if and only if each trace {P, P ′}⊥, with P �∼ P ′, is a plane of S∗ which is

generated by any three non-S∗-collinear points in it.

Next, conditions are given which simultaneously characterise several classical

generalised quadrangles.

Definition 5.100. (1) A point U of S is semi-regular provided that P ′′ ∈ cl(P, P ′)
whenever U is the unique centre of the triad {P, P ′, P ′′}.
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(2) A point U has property (H) when P ′′ ∈ cl(P, P ′) if and only if P ∈ cl(P ′, P ′′),
whenever {P, P ′, P ′′} is a triad consisting of points of U⊥. If follows that any

semi-regular point has property (H).

Some examples are now given.

In W(q),Q(4, q),Q(5, q), and U(3, q2) all points and lines are semi-regular and

have property (H). In U(4, q2) all points are semi-regular and have property (H); all

lines have property (H). Finally, it is shown that no line of U(4, q2) is semi-regular.

Consider three distinct lines l,m, n of U(4, q2) with l ∼ n ∼ m �∼ l. Further, let r

be a line of U(4, q2) for which r ∼ n, l �∼ r �∼ m, and which is not contained in the

solid PG(3, q2) defined by l and m. Then n is the unique centre of the triad {l,m, r},

but r /∈ cl(l,m) since cl(l,m) consists of all lines concurrent with at least one of

l,m. Hence n is not semi-regular. So property (H) does not imply semi-regularity.

The following characterisation of U(4, s2) involves subquadrangles.

Theorem 5.101. A generalised quadrangle S of order (s2, s3), with s �= 1, is iso-

morphic to U(4, s2) if and only if any two non-concurrent lines are contained in a

proper subquadrangle of order (s2, t), with t �= 1.

Now, six characterisations, most of them involving more than one classical gen-

eralised quadrangle, are stated without proof.

Theorem 5.102. Let S have order (s, t) with s �= 1. Then |{P, P ′}⊥⊥| ≥ (s2/t)+1
for all P, P ′, with P �∼ P ′, if and only if one of the following occurs:

(a) t = s2;
(b) S ∼= W(s);
(c) S ∼= U(4, s).

Theorem 5.103. In the generalised quadrangle S of order (s, t), each point has

property (H) if and only if one of the following holds:

(a) each point is regular;
(b) each hyperbolic line has exactly two points;
(c) S ∼= U(4, s).

Theorem 5.104. Let S be a generalised quadrangle of order (s, t). Then each point

is semi-regular if and only if one of the following occurs:

(a) s > t and each point is regular;
(b) s = t and S ∼= W(s);
(c) s = t and each point is anti-regular;
(d) s < t, each hyperbolic line has exactly two points, and no triad of points has a

unique centre;
(e) S ∼= U(4, s).

Theorem 5.105. In a generalised quadrangleS of order (s, t), all triads {P, P ′, P ′′}

with P ′′ /∈ cl(P, P ′) have a constant number of centres if and only if one of the fol-

lowing occurs:
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(a) all points are regular;
(b) s2 = t;
(c) S ∼= U(4, s).

Theorem 5.106. The generalised quadrangle S of order (s, t), s > 1, is isomorphic

to one of W(s),Q(5, s), or U(4, s) if and only if, for each triad {P, P ′, P ′′} with

P /∈ cl(P ′, P ′′), the set {P} ∪ {P ′, P ′′}⊥ is contained in a proper subquadrangle

of order (s, t′).

Theorem 5.107. Let S be a generalised quadrangle of order (s, t) with not all points

regular. Then S is isomorphic to Q(4, s), with s odd, to Q(5, s), or to U(4, s) if and

only if each set {P} ∪ {P ′, P ′′}⊥, where {P, P ′, P ′′} is a triad with at least one

centre and P /∈ cl(P ′, P ′′), is contained in a proper subquadrangle of order (s, t′).

Next, a characterisation is given in terms of matroids. A finite matroid is an

ordered pair (P ,M) where P is a finite set of elements called points, and M is a

closure operator which associates to each subset X of P a subset X , the closure of

X , such that the following conditions are satisfied:

(1) ∅̄ = ∅, and {P} = {P} for all P ∈ P ;

(2) X ⊂ X for all X ⊂ P ;

(3) X ⊂ Y ⇒ X ⊂ Y for all X ,Y ⊂ P ;

(4) P ′ ∈ X ∪ {P}, P ′ /∈ X ⇒ P ∈ X ∪ {P ′} for all P, P ′ ∈ P and X ⊂ P .

The sets X are called the closed sets of the matroid (P ,M). It is immediate that

the intersection of closed sets is always closed. A closed set X has dimension h if

h+ 1 is the minimum number of points in any subset of X whose closure coincides

with X . The closed sets of dimension 1 are the lines of the matroid.

Theorem 5.108. Suppose that S = (P ,B, I) is a generalised quadrangle of order

(s, t), s > 1 and t > 1. Then B∗ = {{P, P ′}⊥⊥ | P, P ′ ∈ P and P �= P ′} is the

line set and P is the point set of some matroid (P ,M) having all sets P⊥, P ∈ P ,

as closed sets, if and only if one of the following occurs:

(a) S ∼= W(s);
(b) S ∼= Q(4, s);
(c) S ∼= U(4, s);
(d) S ∼= Q(5, s);
(e) all points of S are regular, s = t2, and every three non-S∗-collinear points are

contained in a proper linear variety of the linear space S∗ = (P ,B∗,∈).

Now a characterisation of Q(4, q) and Q(5, q) is given that uses Theorem 5.123

on Moufang generalised quadrangles. The statement of the theorem, however, is

purely combinatorial.

Let S be a generalised quadrangle of order (s, t), s > 1 and t > 1. A quadri-

lateral of S is just a subquadrangle of order (1, 1). A quadrilateral V is said to be

opposite a line l if the lines of V are not concurrent with l. If V is opposite l, the

four lines incident with the points of V and concurrent with l are called the lines of
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perspectivity of V from l. Two quadrilaterals V and V ′ are in perspective from l if one

of the following holds:

(1) V = V ′ and V is opposite l;

(2) (i) V �= V ′,

(ii) V and V ′ are both opposite l,

(iii) the lines of perspectivity of V , and of V ′, from l are the same.

Theorem 5.109. The generalised quadrangle S = (P ,B, I) of order (s, t), s > 1
and t > 2, is isomorphic to Q(4, s) or Q(5, s) if and only if, given a quadrilateral

V opposite a line l and a point P ′, P ′ �I l, incident with a line of perspectivity of V

from l, there is a quadrilateral V ′ containing P ′ and in perspective with V from l.

Remark 5.110. If t = 2 and s > 1, then, by Theorems 5.13 and 5.14, s ∈ {2, 4}.

Now, by Theorem 5.73 and Corollary 5.82, S ∼= Q(4, 2) or S ∼= U(3, 4). It can be

checked that in these two cases the quadrilateral condition of the preceding theorem

is satisfied.

This section on characterisation theorems of purely combinatorial type is con-

cluded with a fundamental characterisation of all classical and dual classical gener-

alised quadrangles with s > 1 and t > 1. The reader is reminded of properties (A)
and (Â) introduced in Definition 5.88.

Again, let B⊥⊥ be the set of all hyperbolic lines of the generalised quadrangle

S = (P ,B, I), and let S⊥⊥ = (P ,B⊥⊥,∈). Then S satisfies property (A) if, for

any m = {P, P ′}⊥⊥ ∈ B⊥⊥ and any U ∈ cl(P, P ′)\({P, P ′}⊥ ∪ {P, P ′}⊥⊥), the

substructure of S⊥⊥ generated by m and U is a dual affine plane. The dual of (A) is

denoted by (Â).

Theorem 5.111. Let S = (P ,B, I) be a generalised quadrangle of order (s, t), with

s > 1 and t > 1. Then S is a classical or a dual classical generalised quadrangle if

and only if it satisfies either condition (A) or (Â).

In the last part of this section, some important characterisations of classical

generalised quadrangles, formulated in terms of automorphisms, are given without

proof. The trivial cases s = 1 and t = 1 are excluded.

Definition 5.112. Let S = (P ,B, I) be a generalised quadrangle of order (s, t) with

an automorphism τ .

(1) If τ fixes each point of P⊥, P ∈ P , then τ is a symmetry about P .

(2) If τ is the identity or if τ fixes each line incident with P but no point of P\P⊥,

then τ is an elation about P . It is possible to prove that any symmetry about P is

automatically an elation about P .

(3) The generalised quadrangle S is an elation generalised quadrangle with elation

group G and base point or centre P , if there is a group G of elations about P

acting regularly on P\P⊥; briefly, (S(P ), G) or S(P ) is an elation generalised

quadrangle.
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(4) If the group G is abelian, then the elation generalised quadrangle (S(P ), G) is

a translation generalised quadrangle with translation group G and base point

or centre P . It may be shown that the base point P of a translation generalised

quadrangle is co-regular.

(5) If there is a group G of automorphisms fixing all lines incident with P and act-

ing transitively, but not necessarily regularly, on P\P⊥, then P is a centre of

transitivity.

(6) If there is a group G of automorphisms fixing all points incident with l and acting

transitively, but not necessarily regularly, on B\l⊥, then l is an axis of transitivity.

(7) If the group of symmetries about P has maximum size t, then P is a centre of

symmetry, in which case P is regular.

(8) If the group of symmetries about a line l has maximum size s, then l is an axis of

symmetry; in this case, l is regular.

(9) Suppose that l and m are non-concurrent axes of symmetry of S. Then it follows

that every line of {l,m}⊥⊥ is an axis of symmetry, and S is a span-symmetric

generalised quadrangle with base span {l,m}⊥⊥.

Definition 5.113. Let P, P ′ ∈ P , P �∼ P ′.

(1) A generalised homology with centres P, P ′ is an automorphism τ of S which

fixes all lines incident with P and all lines incident with P ′. The group of all

generalised homologies with centres P, P ′ is denoted H(P, P ′).
(2) The generalised quadrangle S is (P, P ′)-transitive if, for each P ′′ ∈ {P, P ′}⊥,

the group H(P, P ′) is transitive on both the set {P, P ′′}⊥\{P, P ′′} and the set

{P ′, P ′′}⊥\{P ′, P ′′}.

Finally, the Moufang conditions are defined.

Definition 5.114. (1) The generalised quadrangle S is a Moufang generalised quad-

rangle if the following condition and its dual are satisfied:

for any point P and any two distinct lines l and m incident with P , the group

of automorphisms of S fixing l andm point-wise andP line-wise is transitive

on the lines (�= l) incident with a given point P ′ on l, where P ′ �= P .

(2) If one of these mutually dual conditions is satisfied, S is a half Moufang gener-

alised quadrangle.

Definition 5.115. (1) Let {P, l} be any incident point-line pair of S; such a pair is

called a flag of S.

(2) Let Q I l, with Q �= P . The flag {P, l} is called a Moufang flag if the group of

automorphisms of S fixing l point-wise andP line-wise is transitive on the points

collinear with Q which are not incident with l.

(3) If every flag of S is a Moufang flag, the generalised quadrangle S is 3-Moufang.

(4) For the flag {P, l} of S, let R Im IP and n IQ I l such that R �= P, n �= l and

Q�Im. The flag {P, l} is half 3-Moufang at P if the group of automorphisms of

S fixing P line-wise and l point-wise is transitive on the set {R,Q}⊥\{P} for

all R and Q; the flag {P, l} is half 3-Moufang at l if the group of automorphisms

of S fixing P line-wise and l point-wise, is transitive on the set {m,n}⊥\{l} for

all m and n.
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(5) The generalised quadrangle S is half 3-Moufang if either every flag {P, l} of S

is half 3-Moufang at P , or every flag {P, l} of S is half 3-Moufang at l.

(6) If all points of S are centres of transitivity, and all lines are axes of transitivity,

then S is a 2-Moufang generalised quadrangle.

Theorem 5.116. Let (S(P ), G) be a translation generalised quadrangle of order

(s, t), s > 1, t > 1.

(i) If s is prime, then S ∼= Q(4, s) or S ∼= Q(5, s).
(ii) If all lines are regular, then S ∼= Q(4, s) or t = s2.

(iii) Let t = s2 with s odd. Then (S(P ), G) is isomorphic to Q(5, s) if and only if

for a fixed point P ′, with P ′ �∼ P, the group H(P, P ′) has order s− 1.

(iv) Let t = s2 with s even. Then (S(P ), G) is isomorphic to Q(5, s) if and only if

all lines are regular and for a fixed point P ′, with P ′ �∼ P, the group H(P, P ′)
has order s− 1.

(v) If t = s2, with s = p2 and p prime, and if all lines are regular, then (S(P ), G)
is isomorphic to Q(5, s).

(vi) Let t = s2 with s even. Then (S(P ), G) is isomorphic to Q(5, s) if and only if

S has a classical subquadrangle S ′ of order s containing the point P .

Theorem 5.117. A generalised quadrangle S of order (s, t), s, t �= 1 and s even for

s �= t, is a translation generalised quadrangle for two distinct collinear base points

if and only if S is isomorphic to Q(4, s) or Q(5, s).

It may be shown that Q(4, q) and Q(5, q) are translation and elation generalised

quadrangles for any choice of the base point.

Theorem 5.118. For q even, let S(P ) be an elation generalised quadrangle of or-

der (q, q2) containing a classical subquadrangle S ′ of order q containing P . Then

S(P ) ∼= Q(5, q).

A characterisation of Q(5, q) may also be given in terms of axes of symmetry.

Theorem 5.119. A generalised quadrangle S of order (s, s2), s �= 1, is isomorphic

to Q(5, s) if and only if each line is an axis of symmetry.

The following theorem concerns span-symmetric generalised quadrangles.

Theorem 5.120. Let S be a span-symmetric generalised quadrangle of order (s, t),
where 1 < s ≤ t < s2. Then s = t is a prime power and S is isomorphic to Q(4, s).

The following characterisations again involve more than one classical generalised

quadrangle.

Theorem 5.121. The group of symmetries about each point of the generalised quad-

rangle S of order (s, t), s > 1, t > 1, has even order if and only if one of the

following holds:

(a) S ∼= W(s);
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(b) S ∼= U(3, s);
(c) S ∼= U(4, s).

Theorem 5.122. Let S = (P ,B, I) be a generalised quadrangle of order (s, t), with

s �= 1, t �= 1. Then S is classical if and only if S is (P, P ′)-transitive for all

P, P ′ ∈ P with P �∼ P ′.

Theorem 5.123. A generalised quadrangle S of order (s, t), s �= 1 and t �= 1, is a

Moufang generalised quadrangle if and only if S is classical or dual classical.

The next result allows the previous theorem to be considerably strengthened.

Theorem 5.124. Let S be a generalised quadrangle of order (s, t), s �= 1 and t �= 1.

Then S is a Moufang generalised quadrangle if and only if one of the following

equivalent conditions holds:

(i) it is a half Moufang generalised quadrangle;
(ii) it is a 3-Moufang generalised quadrangle;

(iii) it is a half 3-Moufang generalised quadrangle;
(iv) it is a 2-Moufang generalised quadrangle.

Remark 5.125. Many of the theorems in this section also hold in the infinite case.

5.6 Partial geometries

Definition 5.126. A (finite) partial geometry is an incidence structure S = (P ,B, I)
in which P is a set of points, B is a set of lines and I is a symmetric point-line

incidence relation satisfying the following axioms:

(1) each point is incident with 1 + t lines, with t ≥ 1, and two distinct points are

incident with at most one line;

(2) each line is incident with 1 + s points, with s ≥ 1, and two distinct lines are

incident with at most one point;

(3) if P is a point and l is a line not incident with P , then, with α ≥ 1, there are

exactly α points P1, P2, . . . , Pα and α lines l1, l2, . . . , lα such that P I li IPi I l
for i = 1, 2, . . . , α.

Remark 5.127. From the axioms, a partial geometry with α = 1 is a generalised

quadrangle.

Definition 5.128. (1) The integers s, t, α are the parameters of the partial geometry.

(2) Given two points P, P ′ of S that are not necessarily distinct, they are collinear,

written P ∼ P ′, if there is some line l for which P I l IP ′; so P �∼ P ′ means

that P and P ′ are not collinear.

(3) Dually, for l, l′ ∈ B, write l ∼ l′ or l �∼ l′ as they are concurrent or non-

concurrent.
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(4) The line incident with distinct collinear points P and P ′ is denoted PP ′.

(5) The point incident with distinct concurrent lines l and l′ is denoted l ∩ l′.

Let S = (P ,B, I) be a partial geometry with parameters s, t, α. Put |P| = v and

|B| = b.

Theorem 5.129. (i) v = (s+ 1)(st+ α)/α;
(ii) b = (t+ 1)(st+ α)/α.

Proof. Let l be a fixed line of S and count in different ways the number of ordered

pairs (P,m) ∈ P × B with P �I l, P Im, and l ∼ m. This gives

(v − s− 1)α = (s+ 1)ts,

whence the result. Dually, b = (t+ 1)(st+ α)/α. ��

Corollary 5.130. The elements st(s+ 1)/α and st(t+ 1)/α are integers.

Theorem 5.131. The integer α(s+ t+ 1− α) divides st(s+ 1)(t+ 1).

Proof. This is analogous to the proof of Theorem 5.13. ��

Theorem 5.132 (The Krein inequalities). The integers s, t, α satisfy the following

inequalities:

(s+ 1− 2α)t ≤ (s− 1)(s+ 1− α)2; (5.7)

(t+ 1− 2α)s ≤ (t− 1)(t+ 1− α)2. (5.8)

When equality holds in (5.7), the number of points collinear with three points

P1, P2, P3 depends only on the number of collinearities in {P1, P2, P3}; when equal-

ity holds in (5.8), the number of lines concurrent with three lines l1, l2, l3 depends

only on the number of concurrencies in {l1, l2, l3}.

Proof. See Section 5.10. ��

Partial geometries S can be divided into four, non-disjoint classes.

(I) S has α = s+1 or, dually,α = t+1; when α = s+1, then S is a 2-(v, s+1, 1)
design.

(II) S has α = s or, dually, α = t; when α = t, then S is a net of order s+ 1 and

degree t+ 1.

(III) When α = 1, then S is a generalised quadrangle.

(IV) When 1 < α < min(s, t), then S is proper.

Example 5.133. (a) Let S be the design formed by the points and lines of PG(n, q),
with n ≥ 2; then S is a 2-(θ(n), q + 1, 1) design.

(b) The points and lines of AG(n, q), n ≥ 2, form a 2-(qn, q, 1) design.

(c) Let K be a maximal (qn − q + n;n)-arc in PG(2, q), with n ≥ 2. Then the

points of K together with the non-empty intersections l ∩K with lines l of the plane
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form a 2-(qn − q + n, n, 1) design. For n < q, the points of PG(2, q)\K and the

lines having empty intersection with K form a dual design with parameters

s = q, t = q/n− 1, α = q/n.

(d) When d classes of parallel lines in AG(2, q) are deleted, where 0 ≤ d ≤ q−1,

then a net of order q and degree q + 1− d is obtained.

(e) If P = PG(n, q)\Πn−2 and B is the set of lines of PG(n, q) skew to Πn−2,

n ≥ 2, with I the natural incidence, then S = (P ,B, I) is a partial geometry with

parameters s = q, t = qn−1 − 1, α = q. This dual net is denoted by Hn

q
.

(f) Let K be a maximal (qn−q+n;n)-arc in PG(2, q), with 2 ≤ n < q; then, by

Theorem 12.47 of PGOFF2, q is even. Let P = PG(2, q)\K, let B be the set of all

lines having non-empty intersection with K, and let I be the natural incidence. Then

S(K) = (P ,B, I) is a partial geometry with parameters

s = q − n, t = q(n− 1)/n, α = (q − n)(n− 1)/n. (5.9)

(g) Take K of (f) to be in the plane Π2, which is then embedded in PG(3, q).
Now, let P ′ = PG(3, q)\Π2, let B′ be the set of all lines of PG(3, q) meeting K

in a single point, and let I′ be the natural incidence. Then T ∗

2 (K) = (P ′,B′, I′) is a

partial geometry with parameters

s = q − 1, t = (q + 1)(n− 1), α = n− 1. (5.10)

(h) By Theorem 12.12 of PGOFF2, there exist maximal (2m+h − 2h +2m; 2m)-
arcs in PG(2, 2h) for any m with 1 ≤ m < h. Hence there exist partial geometries

with the following parameters:

(a) s = 2h − 2m, t = 2h − 2h−m, α = (2m − 1)(2h−m
− 1); (5.11)

(b) s = 2h − 1, t = (2h + 1)(2m − 1), α = 2m − 1. (5.12)

Such a partial geometry has α = 1 or is proper. A partial geometry of type (a) is a

generalised quadrangle if and only if h = 2 and m = 1. This gives the following

model of the unique generalised quadrangle with 15 points and 15 lines: points of S

are the 15 points of PG(2, 4)\K, with K a given oval; lines of S are the 15 bisecants

of K; incidence is the natural one. A partial geometry of type (b) is a generalised

quadrangle if and only if m = 1. In this case, K is an oval of PG(2, q), q = 2h, and

T ∗

2 (K) is the generalised quadrangle described in Section 5.1.

Up to duality, the parameters of the known partial geometries are the following:

(1) s = 2h − 2m, t = 2h − 2h−m, α = (2m − 1)(2h−m − 1), with h �= 2 and

1 ≤ m < h;

(2) s = 2h − 1, t = (2h + 1)(2m − 1), α = 2m − 1, with 1 < m < h;

(3) s = 22h−1 − 1, t = 22h−1, α = 22h−2, with h > 1;

(4) s = 32m − 1, t = (34m − 1)/2, α = (32m − 1)/2, m ≥ 1;

(5) s = 26, t = 27, α = 18;

(6) s = t = 5, α = 2;

(7) s = 4, t = 17, α = 2;

(8) s = 8, t = 20, α = 2.
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5.7 Embedded partial geometries

Definition 5.134. (1) A projective partial geometry S = (P ,B, I) is a partial geom-

etry for which the point set P is a subset of the point set of some projective space

PG(n, q) and the line set B is a set of lines of PG(n, q).
(2) In this case, S is embedded in PG(n, q).
(3) If PG(n′, q) is the subspace of PG(n, q) generated by the points of P , then it is

the ambient space of S.

Theorem 5.135. If S = (P ,B, I) is a partial geometry with parameters s, t, α which

is projective with ambient space PG(n, s), then one of the following holds:

(a) α = s + 1 and S is the 2-(θ(n), s + 1, 1) design formed by the points and lines

of PG(n, s);
(b) α = 1 and S is a classical generalised quadrangle;
(c) α = t+1, n = 2, PG(2, s)\P is a maximal (sd−s+d; d)-arc K of PG(2, s), s

even, with d = s/α and 2 ≤ d < s, and B consists of all lines of PG(2, s) not

meeting K;
(d) α = s, n ≥ 2 and S = Hn

s
.

Proof. If α = s+1, then S is a 2-(v, s+1, 1) design. Hence S consists of all points

and lines of a subspace Πm of PG(n, s). Since PG(n, s) is the ambient space of S,

so m = n. Therefore S is the design formed by the points and lines of PG(n, s).
If α = 1, then by Theorem 5.51 the partial geometry S is a classical generalised

quadrangle.

Now let α = t + 1. Since any two lines of S meet, the ambient space of

S is a plane PG(2, s). Each line of PG(2, s) not in B has exactly s/α points in

PG(2, s)\P . If α = s, then S is the dual affine plane H2
s

. If 2 ≤ d < s with

d = s/α, then PG(2, s)\P is a maximal (sd − s + d; d)-arc K; so s is even by

Theorem 12.47 of PGOFF2, and B is the set of all lines of PG(2, s) not meeting K.

Now suppose that 1 < α < s and α �= t+ 1. In this case, n ≥ 3.

First, let n = 3. Suppose that l is a line of S and P is a point of S with P /∈ l;

let π be the plane Pl of PG(3, s). The points and lines of S in π constitute a partial

geometry Sπ with parameters

sπ = s, tπ = α− 1, απ = α.

Hence the points of π not in Sπ form a maximal (s(sα−1 + α−1 − 1); sα−1)-arc of

π. Consequently, s is even by Theorem 12.47 of PGOFF2.

Let m be any line of PG(3, s) that contains at least two points P ′, P ′′ of S. Take

a line m′ ∈ B, with m �= m′ and P ′ ∈ m′. Considering the plane P ′′m′, the set

P ′′m′\P is an (s(sα−1 + α−1 − 1); sα−1)-arc of the plane P ′′m′, and therefore

|m ∩ P| ∈ {s + 1, s + 1 − sα−1}. Hence each line of PG(3, s) meets P in one of

0, 1, s+1−sα−1, or s+1 points; that is, P is a set of type (0, 1, s+1−sα−1, s+1)
in PG(3, s). Here, the (s+ 1)-secants of P are the lines of S.

Now it is shown that P has no 1-secants. Suppose the contrary and that l is a

1-secant with {P} = l ∩ P . Let the lines through P be m1,m2, . . . ,mt+1. Suppose
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that each plane lmi contains exactly s+ 1 points of P . Since n = 3, each line m of

B contains at least one point of P ∩ lmi = mi for every i. It follows that all lines of

S lie in a common plane; so PG(3, s) is not the ambient space of S, a contradiction.

Consequently, |P ∩ lmi| > s+ 1 for at least one index i; say, P ′ ∈ (P ∩ lmi)\mi.

From the previous paragraph, the line l contains s+ 1− sα−1 or s+ 1 points of the

partial geometry Sπi
, where πi = P ′mi = lmi. Hence 1 ∈ {s+ 1, s+ 1 − sα−1},

a contradiction. So P has no 1-secant; that is, P is of type (0, s+ 1− sα−1, s+ 1).
Next, it is shown that such a set cannot exist when 1 < α < s. Counting the

points of P on all lines of PG(3, s) containing a fixed point of P gives

|P| = 1 + (t+ 1)s+ (s2 + s− t)(s− sα−1). (5.13)

Also, from Theorem 5.129,

|P| = (s+ 1)(st+ α)/α. (5.14)

From (5.13) and (5.14), it follows that t = (s + 1)(α − 1). Since α �= s + 1, so

P �= PG(3, s). Taking A ∈ PG(3, s)\P and counting the points of P on all lines

of PG(3, s) containing A shows that s + 1 − sα−1 divides |P|. Hence sα + α − s

divides

(s+ 1)(s2α+ sα− s2 − s+ α) = (sα+ α− s)(s2 + s+ 1)− s2.

Thus sα+ α − s divides s2. With s = 2h, α = 2k, where 0 < k < h, this becomes

that 2h + 1− 2h−k divides 22h−k, a contradiction.

It has been shown that, for 1 < α < s and α �= t+ 1, necessarily n > 3.

So, let 1 < α < s, α �= t + 1, with n > 3. Let l be a line of S, let π be the

plane defined by l and a point P in P\l, and let PG(3, s) be the solid defined by π

and a point P ′ in P\π. Let P1, P2 be distinct points of P in PG(3, s). Counting the

number of pairs (l1, l2), with l1, l2 ∈ B, and both in PG(3, s) with P1 ∈ l1, P2 ∈ l2,

and l1 ∼ l2, in different ways, it appears that the number of lines of B in PG(3, s)
containing P1 equals the number of lines of B in PG(3, s) containing P2. It follows

that the points and lines of S in PG(3, s) constitute a partial geometry S ′ with para-

meters t′, s′ = s, α′ = α. Since 1 < α′ < s′ and α′ �= t′ + 1 as S ′ is not contained

in a plane, such a geometry cannot exist.

So the only possibilities for α are 1, s+ 1, t+ 1, s.

Consider, therefore, the case that α = s with α �= 1, t+1; then n ≥ 3. Let l be a

line of S, and suppose that the point P of S is not on l. The points and lines of S in

the plane π = Pl form a partial geometry with parameters

s = s′, t′ = α− 1 = s′ − 1, α′ = α = s′;

that is, it is a dual affine plane of order s. If the line m of PG(n, s) contains at least

two points of P , then m lies in at least one plane π in which S induces a dual affine

plane of order s. Hence P is a set of type (0, 1, s, s+ 1) in PG(n, s), and a line m

of PG(n, s) contains s+ 1 points of P if and only if m belongs to B. Also, if P has

no 1-secant, then all planes of PG(n, s) through a fixed line l of S contain a point
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of P\l; hence the points of S in such a plane are the points of a dual affine plane of

order s. It follows that

|P| = s+ 1 + (s2 − 1)(sn−1
− 1)/(s− 1) = sn + sn−1. (5.15)

Conversely, if |P| = sn + sn−1, then P admits no 1-secant.

Now it is shown that P has no 1-secant. First, let n = 3. By an argument analo-

gous to the above, P has no 1-secant; so P = s3 + s2. Now, induction is used. Sup-

pose that any projective partial geometry with α = s but α �= 1, t+ 1, and ambient

space PG(n−1, s), n ≥ 4, has no 1-secant. Next, assume thatS = (P ,B, I) is a pro-

jective partial geometry with these parameters and ambient space PG(n, s), n ≥ 4,
which has at least one 1-secant l.

Let l ∩ P = {P}. Consider a line m of B containing P and n − 2 points

P1, P2, . . . , Pn−2 of P such that m,P1, . . . , Pn−2 generate a hyperplane Πn−1.The

geometry induced by S in Πn−1 is a partial geometry with parameters t̄, s̄ = s = ᾱ

and ambient space Πn−1. Here, ᾱ �= 1, t̄ + 1 since n − 1 > 2. By the induction

hypothesis,

|P̄| = |P ∩ Πn−1| = sn−1 + sn−2. (5.16)

Let m1,m2, . . . ,mt+1 be the lines of B through P . The plane lm1 contains s + 1
points of S. If the intersection of P and the solid lm1mi, with i > 1, generates

lm1mi, then the set P∩lm1mi has no 1-secant, a contradiction. Hence, for all i > 1,

the set P ∩ lm1mi is contained in the plane m1mi, whence |P ∩ lm1mi| = s2 + s.

Let P ′ be any point of P\m1. Then the plane P ′m1 contains s lines through P ′

which also belong to B. Therefore P ′ belongs to at least one of the solids lm1mi,

with i �= 1. It follows that

|P| ≤ θ(n− 3)(s2 − 1) + s+ 1 = sn−1 + sn−2, (5.17)

where θ(n − 3) is the number of solids containing the plane lm1. From (5.16) and

(5.17), it now follows that P = P ∩Πn−1; hence PG(n, s) is not the ambient space

of S, a contradiction. So P has no 1-secant.

Therefore |P| = sn+sn−1 and P is of type (0, s, s+1). Hence PG(n, s)\P is of

type (0, 1, s+ 1) and so PG(n, s)\P is a subspace Πn−2 of PG(n, s) of dimension

n − 2. The lines of B are the lines of PG(n, s) skew to Πn−2. Thus S = Hn

s
, and

the theorem is established. ��

Any projective partial geometry S = (P ,B, I) satisfies the Veblen–Pasch axiom:

(VP) if l1 IP I l2, l1 �= l2, m1
�IP �Im2, li ∼ mj , for all i, j ∈ {1, 2}, then also

m1 ∼ m2.

The known partial geometries satisfying (VP) are as follows:

(i) all known generalised quadrangles;

(ii) all known partial geometries with α = t+ 1;

(iii) the partial geometries isomorphic to the design formed by the points and lines

of some PG(n, q);
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(iv) the partial geometries isomorphic to some Hn

q
.

Theorem 5.136. Let S be a dual net of order s+ 1 and degree t+ 1 with s < t+ 1.

If S satisfies (VP), then S is isomorphic to a partial geometry Hn

q
with parameters

s = q, t = qn−1 − 1.

Proof. See Section 5.10. ��

5.8 (0, α)-geometries and semi-partial geometries

Definition 5.137. A (finite) (0, α)-geometry, where α > 1, is an incidence structure

S = (P ,B, I) in which P and B are disjoint, non-empty sets of points and lines,

and for which I is a symmetric point-line incidence relation satisfying the following

axioms:

(1) two distinct points are incident with at most one line;

(2) if a point P and a line l are not incident, then there are 0 or α points which are

collinear with P and incident with l;

(3) each line is incident with at least two points and each point is incident with at

least two lines;

(4) S is connected; this means that, for any two elements T and T ′ of P ∪ B, there

exist elements T1, T2, . . . , Tr ∈ P ∪ B such that T I T1 I T2 I · · · I Tr I T ′.

Terms such as ‘collinear’ and ‘concurrent’ and notation such as ∼ and �∼ are

defined as for generalised quadrangles and partial geometries.

Theorem 5.138. Each point is incident with a constant number 1 + t of lines and

each line is incident with a constant number 1 + s of points, where t, s ≥ 1.

Proof. Let P and P ′, with P �= P ′, be collinear points of S; let 1 + t and 1 + t′ be

the respective number of lines incident with P and P ′. Counting in different ways

the number of ordered pairs (l, l′), with P I l, P ′ I l′, l �= l′, l ∼ l′, gives

t(α− 1) = t′(α− 1);

hence t = t′. By the connectedness of S, each point of S is incident with 1+ t lines.

Dually, each line is incident with 1 + s points. ��

Definition 5.139. The integers s, t, α are the parameters of the (0, α)-geometry.

Let |P| = v and |B| = b. It should be noted that v and b are not uniquely

determined by s, t, α.

Definition 5.140. A (finite) semi-partial geometry is an incidence structure S, where

S = (P ,B, I), in which P and B are disjoint, non-empty sets of points and lines,

and for which I is a symmetric point-line incidence relation satisfying the following

axioms:
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(1) each point is incident with 1 + t lines, with t ≥ 1, and two distinct points are

incident with at most one line;

(2) each line is incident with 1 + s points, with s ≥ 1, and two distinct lines are

incident with at most one point;

(3) if a point P and a line l are not incident, then there are 0 or α points, where

α ≥ 1, which are collinear with P and incident with l;

(4) if two points are not collinear, then there are μ points, where μ > 0, collinear

with both;

(5) The integers s, t, α, μ are the parameters of the semi-partial geometry.

From the definitions, a semi-partial geometry with α > 1 is a (0, α)-geometry.

The semi-partial geometries with α = 1 are also called partial quadrangles. A semi-

partial geometry is a partial geometry if and only if the zero in axiom (3) does not

occur; this is equivalent to the condition μ = (t + 1)α. This gives the following

diagram, where ‘−→’ indicates ‘generalises to’:

generalised quadrangle −−−−→ partial geometry⏐⏐( ⏐⏐(
partial quadrangle −−−−→ semi−partial geometry

Theorem 5.141. Let S = (P ,B, I) be a semi-partial geometry with parameters

s, t, α, λ, μ and with |P| = v, |B| = b. Then

(i) v(t+ 1) = b(s+ 1);
(ii) v = 1 + (1 + t)s(1 + t(s− α+ 1)/μ).

Proof. Counting the ordered pairs (P, l), with P ∈ P , l ∈ B, P I l, in different

ways gives

v(t+ 1) = b(s+ 1).

Now, counting the ordered triples (P, P ′, P ′′), with P, P ′, P ′′ ∈ P and P ∼ P ′,

P �∼ P ′′, P ′ ∼ P ′′, in different ways gives

v(t+ 1)st(s+ 1− α) = v(v − (t+ 1)s− 1)μ;

this implies the result. ��

Corollary 5.142. Both the following are integers:

st(t+ 1)(s+ 1− α)/μ, st(μ+ (t+ 1)2(s+ 1− α))/(μ(s + 1)).

Proof. This follows from the fact that v and b are integers. ��

Theorem 5.143. For α �= s+ 1,
(i) α divides st(t+ 1) and st(s+ 1);

(ii) α divides μ;
(iii) α2 divides μst;
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(iv) α2 divides t(α(t + 1)− μ);
(v) α2 ≤ μ ≤ α(t+ 1).

Proof. For any non-incident point-line pair (P, l), the symbol [P, l] is the number

of points collinear with P and incident with l. For any line l, let vl be the number

of points P for which [P, l] = α; for any point P , let bP be the number of lines l

for which [P, l] = α. For a fixed line l, the following set is counted in two different

ways:

{(P, l′) | P ∈ P , l′ ∈ B, P �I l, P I l′, l ∼ l′}.

This gives vl α = (s + 1)ts, and so α divides st(s+ 1). Similarly, for a fixed point

P , the following set is counted in two different ways:

{(P ′, l) | P ′
∈ P , l ∈ B, P �I l, P ′ I l, P ∼ P ′

}.

This gives bP α = (t+ 1)st, and so α divides st(t+ 1).
Let P and P ′ be two non-collinear points. Then the number of lines l for which

P I l and [P ′, l] = α is μ/α. Therefore α divides μ.

Consider again two non-collinear points P and P ′. Let

β = |{l | l ∈ B, P �I l, P ′ �I l, [P, l] = α, [P ′, l] = 0}|.

Now count in different ways the following set:

{(l, l′) | l, l′ ∈ B, P �I l, P ′ �I l, P I l′, l ∼ l′, [P ′, l] = 0}.

Since there are μ/α lines l′ with P I l′ and [P ′, l′] = α, so

βα = (t+ 1− μ/α)s(t− μ/α) + (μ/α)(s− α)(t + 1− μ/α)

= ((t+ 1)α− μ)(st− μ)/α.

Since α divides μ and also st(t+ 1), so α2 divides μst.

Now consider two distinct collinear points P and P ′. Then the set

{l | l ∈ B, P �I l, P ′ �I l, [P, l] = α, [P ′, l] = 0}

has size

t(s+ 1− α)(t+ 1− μ/α)/α.

Since α divides all three of μ, st(t+ 1), μst, so α2 divides t(α(t+ 1)− μ).
Finally, let P and P ′ be two non-collinear points. The number of lines l with

P I l and [P ′, l] = α is μ/α. Hence μ/α ≤ t + 1. Equality occurs if and only if S

is a partial geometry. Let P I m, P ′ I m′, m ∼ m′. Since [P,m′] = α, there are at

least α lines l with P I l and [P ′, l] = α. Therefore α ≤ μ/α. ��

If α = s+ 1, then S is a 2-(v, s+ 1, 1) design.

Theorem 5.144. If S = (P ,B, I) is a semi-partial geometry with parameters s, t, α,

μ and with α �= s+ 1, then
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(i) D = (t(α− 1) + s− 1− μ)2 + 4((t+ 1)s− μ) is a square, except in the case

s = t = α = μ = 1 where S is a pentagon and D = 5.

(ii) [2(t+ 1)s+ (v − 1)(t(α − 1) + s− 1− μ+D1/2)]/(2D1/2) is an integer.

Proof. Let E = {{P, P ′} | P, P ′ ∈ P , P ∼ P ′}. Then (P , E) is a strongly regular

graph with the following parameters:

v = 1 + (1 + t)s(1 + t(s− α+ 1)/μ),

k = n1 = st+ s,

λ = p111 = t(α − 1) + s− 1,

μ = p211 = μ.

The graph (P , E) is the point graph of the semi-partial geometry.

Let P = {P1, P2, . . . , Pv} and let A = [aij ] be the v × v matrix over R for

which aij = 0 if i = j or Pi � Pj and aij = 1 if Pi ∼ Pj ; that is, A is an adjacency

matrix of the graph (P , E). If A2 = [cij ], then

(a) cii = (t+ 1)s;

(b) i �= j and Pi � Pj imply that cij = μ;

(c) i �= j and Pi ∼ Pj imply that cij = t(α− 1) + s− 1.

So

A2
− (t(α − 1) + s− 1− μ)A− (s(t+ 1)− μ)I = μJ, (5.18)

where I is the identity matrix and J is the all-one matrix.

The matrix A has an eigenvalue s(t + 1), whereas J has an eigenvalue 0 with

multiplicity v − 1 and v with multiplicity 1. Since

(s(t+ 1))2 − (t(α− 1) + s− 1− μ)s(t+ 1)− (s(t+ 1)− μ) = μv,

the eigenvalue s(t + 1) of A corresponds to the eigenvalue v of J , and so s(t + 1)
has multiplicity 1. The other eigenvalues of A are roots of the equation

x2
− (t(α − 1) + s− 1− μ)x − (s(t+ 1)− μ) = 0. (5.19)

Denote the multiplicities of these eigenvalues θ1, θ2 by m1,m2. The discriminant

D = (t(α− 1) + s− 1− μ)2 + 4(s(t+ 1)− μ).

If D = 0, then, as μ ≤ (t+ 1)α ≤ (t+ 1)s, so

t(α− 1) + s− 1− μ = s(t+ 1)− μ = 0;

hence t(α − (s + 1)) = 1, a contradiction. Therefore D �= 0 and so θ1 �= θ2. From

(5.19),

θ1 = (t(α− 1) + s− 1− μ+D1/2)/2,

θ2 = (t(α− 1) + s− 1− μ−D1/2)/2.
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Since 1 +m1 +m2 = v and s(t+ 1) +m1θ1 +m2θ2 =
∑

aii = 0, so

m2 = (2(t+ 1)s+ (v − 1)[t(α− 1) + s− 1− μ+D1/2])/(2D1/2).

It follows that

(2(t+ 1)s+ (v − 1)[t(α− 1) + s− 1− μ+D1/2])/(2D1/2)

is an integer.

Now suppose that D is not a square. Then, as m2 is an integer,

2(t+ 1)s+ (v − 1)[t(α− 1) + s− 1− μ] = 0. (5.20)

Since (v − 1) > (t+ 1)s, so

0 < μ− t(α− 1)− s+ 1 < 2.

Hence μ = s+ t(α− 1). From (5.20),

v = 2(t+ 1)s+ 1. (5.21)

By Theorem 5.141,

v = 1 + (t+ 1)s

(
1 +

t(s− α+ 1)

s+ t(α− 1)

)
. (5.22)

From (5.21) and (5.22), it follows that

α = 1 + s(t− 1)/(2t). (5.23)

Hence

μ = s(t+ 1)/2. (5.24)

From (5.23), 2t divides s(t − 1); so t divides s. Since μ ≤ α(t + 1), so s ≤ 2t by

(5.23) and (5.24). Since t divides s, so s ∈ {t, 2t}.

First, suppose s = 2t. Then α = t and μ = t(t + 1), which in turn implies that

D = (1 + 2t)2, a contradiction since D is not a square.

So s = t, α = (t + 1)/2 and μ = t(t + 1)/2. By Theorem 5.143, α2 divides

μst, and so t+ 1 divides 2t3; hence t = 1. Consequently,

s = t = α = μ = 1, v = b = 5, D = 5.

This means that S is a pentagon. ��

Theorem 5.145. If S is a semi-partial geometry, but not a partial geometry, then

b ≥ v.
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Proof. Let S = (P ,B, I) be a semi-partial geometry with parameters s, t, α, μ and

assume that S is not a partial geometry; so μ < α(t+ 1).
Let P = {P1, P2, . . . , Pv} and B = {l1, l2, . . . , lb}. The corresponding adja-

cency matrix of the point graph of S is denoted by A = [aij ]. Let M = [mij ] be the

v × b matrix over R for which mij = 0 if Pi
�I lj and mij = 1 if Pi I lj; that is, M is

an incidence matrix of the geometry S. It follows that

MM∗ = (t+ 1)I +A. (5.25)

Suppose that v > b. As rank M ≤ b, so rank MM∗ ≤ b. Therefore the v × v matrix

MM∗ is singular, whence −(t+ 1) is an eigenvalue of A. Then, by (5.19),

(t+ 1)2 + (t(α − 1) + s− 1− μ)(t+ 1)− (s(t+ 1)− μ) = 0,

which is equivalent to t(μ − α(t + 1)). Hence μ = α(t + 1), and so S is a partial

geometry, which is a contradiction.

Hence, if S is not a partial geometry, then b ≥ v. ��

Theorem 5.146. The dual of a semi-partial geometry S is a semi-partial geometry if

and only if S is a partial geometry or v = b. If v = b, then S and its dual S have the

same parameters.

Proof. Let S = (P ,B, I) be a semi-partial geometry with dual S .

Suppose that S is also a semi-partial geometry. If S is not a partial geometry,

then S is not a partial geometry. By Theorem 5.145, b ≥ v and v ≥ b. Hence S is a

partial geometry or v = b.

If S is a partial geometry, then S is a partial geometry and consequently also a

semi-partial geometry. Now suppose that S is not a partial geometry, but let b = v.

With the notation of Theorem 5.145, since μ �= α(t + 1), so −(t + 1) is not an

eigenvalue of A. Hence MM∗ is non-singular, as is the v × v matrix M . By (5.25),

M∗ = (s+ 1)M−1 +M−1A,

as b = v and so s = t. Hence

M∗M = (s+ 1)I +M−1AM.

Let M−1AM = B = [bij ]. Then bii + s + 1 is the number of points incident with

li; so bii = 0. Further, bij , for i �= j, is the number of points incident with li and

lj . Hence B is an adjacency matrix of the point graph of S . Also B2 = M−1A2M ;

hence, by (5.18),

B2 = (sα− 1− μ)B + (s(s+ 1)− μ)I + μM−1JM.

Since MJ = JM = (s+ 1)J , so

B2 = (sα − 1− μ)B + (s(s+ 1)− μ)I + μJ. (5.26)

Let B2 = [dij ]; then, by (5.26), dij = μ for li � lj . As
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dij =
v∑

r=1

birbjr,

so dij is the number of lines lr with li ∼ lr ∼ lj . It follows that S is also a semi-

partial geometry with the same parameters as S. ��

A list of some of the known (0, α)-geometries and semi-partial geometries is

now given.

Example 5.147. (a) Let O be an ovoid of PG(3, q), q > 2, or an elliptic quadric of

PG(3, 2). Suppose that PG(3, q) is a hyperplane of PG(4, q). The points of S are

those of PG(4, q)\PG(3, q). The lines of S are the lines of PG(4, q) that contain a

point of O but are not contained in PG(3, q). Here, I is the incidence of PG(4, q).
Then S is a partial quadrangle with parameters

s = q − 1, t = q2, α = 1, μ = q2 − q.

(b) Consider a subgeometry PG(2, q) of the plane PG(2, q2) and suppose that

PG(2, q2) is a plane of PG(3, q2). The points of S are those ofPG(3, q2)\PG(2, q2)
and the lines of S are the lines of PG(3, q2) that contain a point of PG(2, q) but are

not contained in PG(2, q2). Here, I is the incidence of PG(3, q2). Then S is a semi-

partial geometry with parameters

s = q2 − 1, t = q(q + 1), α = q, μ = q(q + 1).

(c) Let U be a Hermitian arc in PG(2, q2). With the same construction as in (b),

a semi-partial geometry is obtained; its parameters are

s = q2 − 1, t = q3, α = q, μ = q2(q2 − 1).

(d) Let Πn−2 be an (n − 2)-dimensional subspace of PG(n, q), n ≥ 3. The

points of S are the lines of PG(n, q) skew to Πn−2. The lines of S are the planes

of PG(n, q) meeting Πn−2 in a point. Incidence here is inclusion. Then S is a semi-

partial geometry with parameters

s = q2 − 1, t = qn−2 + qn−3 + · · ·+ q, α = q, μ = q(q + 1).

(e) Let P be the set of all lines in PG(n, q), n ≥ 3, let B be the set of all planes

in PG(n, q), and let I be inclusion. Then S = (P ,B, I) is a semi-partial geometry

with parameters

s = q(q + 1), t = qn−2 + qn−3 + · · ·+ q, α = q + 1, μ = (q + 1)2.

(f) Let U be a non-singular Hermitian surface in PG(3, q2). Points of S are the

points of PG(3, q2)\U ; lines of S are the 1-secants of U and incidence is the natural

one. Then S is a semi-partial geometry with parameters

s = q2 − 1, t = q3, α = q + 1, μ = q(q + 1)(q2 − 1).
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(g) Let Q be an elliptic quadric of PG(5, q). Let P be a point off Q and let Π4

be a hyperplane not containing P . The projection of Q from P onto Π4 is denoted

by Q′. Also, let Q′′ be the set of points P ′ of Q′ for which PP ′ is a 1-secant of Q.

If q is odd, then Q′′ is a non-singular quadric of Π4; if q is even, then Q′′ is a solid

of Π4. Let P = Q′\Q′′, let B be the set of all lines of Π4 that are contained in Q′

but not in Q′′, and let I be the incidence of Π4. Then S = (P ,B, I) is a semi-partial

geometry with parameters

s = q − 1, t = q2, α = 2, μ = 2q(q − 1).

For q even, see also Section 2.6.

(h) Let U be a non-singular Hermitian surface in PG(3, q2), and let l be a fixed

line of U . The points of S are the points of U\l; lines of S are the lines of U not

meeting l and incidence is containment. Then the dual of S is a partial quadrangle

with parameters

s = q − 1, t = q2, α = 1, μ = q2 − q.

(i) Let V be a set with h elements, h ≥ 4, let V2 = {T ⊂ V | |T | = 2}, and let

V3 = {T ⊂ V | |T | = 3}. If I is inclusion, then Sh = (V2,V3, I) is a semi-partial

geometry with parameters

s = α = 2, t = m− 3, μ = 4.

(j) Let M be an (n+ 1)× (n+ 1) skew-symmetric matrix over Fq with n ≥ 2;

then rank (M) = 2k with k > 0. The mapping ζ fromPG(n, q) to its dual defined by

M is a null polarity when M is non-singular. The subspace of PG(n, q) containing

all points having no image with respect to ζ is the radical R of ζ; it has dimension

n− 2k.

The points of S are the points of PG(n, q)\R. The lines are the lines l of

PG(n, q)\R for which l �⊂ lζ when n ≥ 3 and lζ /∈ l when n = 2. The incidence is

the natural one. Then S = (P ,B, I) is a (0, α)-geometry with parameters

s = α = q, t = qn−1
− 1.

This geometry is denoted by W (n, 2k, q).
When k = 1, then W (n, 2k, q) is the dual net Hn

q
introduced in Section 5.6; see

also Section 5.7. When 2k = n + 1 and so n is odd, then this is the case of the null

polarity. Here, W (n, n+ 1, q) is a semi-partial geometry with μ = qn−1(q − 1),
and is also denoted W (n, q). In all other cases, W (n, 2k, q) is not a semi-partial

geometry; that is, it is a proper (0, α)-geometry.

(k) Take a quadric Q in PG(n, 2), n ≥ 3, and suppose that Q is not one of the

following:

(1) Πn−1;

(2) Πn−1 ∪Π′

n−1, Πn−1 �= Π′

n−1;

(3) H3 in PG(3, 2);
(4) Πn−4H3, n ≥ 4.
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Let B be the set of lines skew to Q, let P be the set of points of PG(n, 2) on at

least one line of B, and let I be the natural incidence. Then S = (P ,B, I) is a (0, 2)-
geometry.

If n = 2d − 1 and Q = En, then S is a semi-partial geometry, denoted by

NQ−(2d− 1, 2) with parameters

s = α = 2, t = 22d−3 + 2d−2
− 1, μ = 22d−3 + 2d−1.

If n = 2d − 1 and Q = Hn, then S is a semi-partial geometry, denoted by

NQ+(2d− 1, 2) with parameters

s = α = 2, t = 22d−3
− 2d−2

− 1, μ = 22d−3
− 2d−1.

If n = 2d and Q = Pn, then S is a semi-partial geometry, denoted by NQ(2d, 2)
with parameters

s = α = 2, t = 22d−2
− 1, μ = 22d−1

− 22d−2.

In all other cases, S is a proper (0, 2)-geometry.

(l) Let Q = H3 in PG(3, 2h), h ≥ 2. Let B be the set of lines skew to Q, let P

be the set of points of PG(3, 2h)\Q and let I be the incidence of PG(3, 2h). Then

S = (P ,B, I) is a proper (0, 2h−1)-geometry NQ+(3, 2h) with parameters

s = 2h, t = 22h−1
− 2h−1

− 1.

.

(m) Let Q = E5 in PG(5, q), q odd. Let P be a subset of Q which meets every

line of Q in 1
2
(q + 1) points. Let B be the set of lines of Q and let I be the incidence

of PG(5, q). Then S = (P ,B, I) is a partial quadrangle with parameters

s = 1
2
(q − 1), t = q2, μ = 1

2
(q − 1)2.

For each odd q, at least one example is known.

(n) For the parameter sets in the following table, there is at least one semi-partial

geometry:

s t α μ Conditions

1 r − 1 1 1 r = 2, 3, 7

6 6 6 36

1 9 1 2

1 15 1 4

1 21 1 6

2 10 1 2

2 55 1 20

3 77 1 14

qm+1 − 1 qm+2 qm qm+1(qm+1 − 1) q = 2h, m ≥ 2

qm − 1 qm+1 2qm−1 2qm(qm − 1) q = ph, m = 2;

q = 2h, m ≥ 3
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5.9 Embedded (0, α)-geometries and semi-partial geometries

A projective (0, α)-geometry or semi-partial geometry S = (P ,B, I) is a (0, α)-
geometry or semi-partial geometry whose point set P is a subset of the point set

of some PG(n, q) and whose line set B is a set of lines of PG(n, q). Also, S is

embedded in PG(n, q). If PG(n′, q) is the subspace of PG(n, q) generated by the

points of P , then PG(n′, q) is the ambient space of S.

A (0, α)-geometry or semi-partial geometry embedded in PG(2, q) is a partial

geometry. As these were classified in Section 5.7, the dimension of the ambient space

is now taken to be at least 3.

Let S = (P ,B, I) be a projective (0, α)-geometry or semi-partial geometry with

parameters s, t, α, where α > 1, and with ambient space PG(3, s). Consider a pair

l, l′ of intersecting lines and let π = l l′. The points and lines of S in π constitute a

partial geometry S(π) with parameters s(π) = s, t(π) = α−1, α(π) = α, together

with m(π) isolated points, where a point P of S in π is isolated if no line of S

through P is contained in π. By Theorem 5.135, there are the following possibilities

for S(π).
(a) The parameter α = s + 1 and S(π) is the 2-(s2 + s + 1, s + 1, 1) design

formed by all points and lines of π.

(b) The points of π not in S(π) form a maximal (sd − s+ d; d)-arc K(π) of π,

with s even, d = s/α, and 2 ≤ d < s. The lines of S(π) are the lines of π not

meeting K(π).
(c) The parameter α = s and π contains exactly one point P (π) which is not in

S(π). The lines of S(π) are the lines of π not containing P (π).

Lemma 5.148. (i) The number m = m(π) of isolated points in π is independent

of the choice of π.

(ii) The number of lines in S is

b = α−1(sα− s+ α)[(s+ 1)(t+ 1)− αs] +m(t+ 1), (5.27)

and the number of points of S is

v = [α(t+1)]−1(s+1)(sα− s+α)[(s+1)(t+1)−αs]+m(s+1). (5.28)

Proof. The number of points of S(π) is (s + 1)(sα − s + α)/α and the number of

lines is sα− s + α. The number of lines of S containing exactly one point of S(π)
is (t + 1 − α)(s + 1)(sα − s + α)/α and the number of lines of S containing an

isolated point in π is (t+ 1)m(π). Hence

b = sα− s+ α+ α−1(t+ 1− α)(s+ 1)(sα− s+ α) +m(π)(t+ 1),

giving the result. So m = m(π) is independent of the choice of π.

Counting the number of ordered pairs (P, l), with P ∈ P , l ∈ B, P I l, in

different ways shows that |P|(t+ 1) = |B|(s+ 1), from which (5.28) follows. ��

Lemma 5.149. With respect to S, there are three possible types of planes in the

ambient space PG(3, s):
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(A) those containing sα− s+ α lines of S and

ρa = α−1(s+ 1)(sα− s+ α) +m (5.29)

points of S;
(B) those containing exactly one line of S and

ρb = s+ 1 + [α(t+ 1)]−1s(s+ 1)(t+ 1− α)(α − 1) +m (5.30)

points of S;
(C) those containing no line of S and

ρc = [α(t+ 1)]−1(sα− s+ α)[(s+ 1)(t+ 1)− αs] +m (5.31)

points of S.

Proof. Let π be a plane of the ambient space PG(3, s).
If π contains at least two lines of S, then the points and lines of S in π constitute

a partial geometry S(π) with parameters

s(π) = s, t(π) = α− 1, α(π) = α,

together with m isolated points. Hence π contains sα−s+α lines of S and ρa points

of S.

Next, suppose that π contains exactly one line of S. Then, with ρb the number of

points of S in π,

b = 1 + (s+ 1)t+ (ρb − s− 1)(t+ 1).

So, by Lemma 5.148, ρb is as stated.

Finally, suppose that π contains no line of S. If ρc is the number of points of S

in π, then

b = ρc(t+ 1).

Again, Lemma 5.148 gives the result. ��

Corollary 5.150. If there is at least one plane of type (B) and at least one plane of

type (C), then t+ 1 divides s.

Proof. From the theorem, (t+ 1)(ρb − ρc) = s, whence the result. ��

Theorem 5.151. If S = (P ,B, I) is a projective semi-partial geometry with param-

eters s, t, α, μ and with ambient space PG(3, s), then one of the following holds:

(a) α = s+ 1 and S is the 2-((s2 + 1)(s+ 1), s+ 1, 1) design formed by all points

and lines of PG(3, s);
(b) α = 1 and S is a classical generalised quadrangle;
(c) α = s and S = H3

s
;

(d) α = s and S = W (3, s);
(e) α = s = 2 and S = NQ−(3, 2).
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Proof. If S is a partial geometry, then Theorem 5.135 gives one of the first three

cases.

So, suppose that S is not a partial geometry. Then μ < (t + 1)α and, from

Theorems 5.143 and 5.145, α2 ≤ μ and |B| = b ≥ |P| = v. So b(s+ 1) = v(t+ 1)
implies that t ≥ s. By Theorem 5.143, α divides μ, and so μ < (t+1)α implies that

μ ≤ αt.

Let α = 1. Then, by Theorem 5.141,

v = 1+ (1 + t)s(1 + ts/μ).

Hence v ≤ s3+ s2+ s+1 implies μ(s2+ s− t) ≥ st(t+1). Since μ ≤ t, it follows

that st(t + 1) ≤ t(s2 + s − t) and so t ≤ s − 1 + 1/(s+ 1) < s, a contradiction.

Hence α �= 1.

For the next step, let α = s + 1. From the connectedness of S, it follows that S

α �= s+ 1. As there is always a plane of type (A), either s = α or s = 2h.

Now suppose that there is a plane of type (C). The number of points of S in π is

ρc = v/(s+ 1). Let P be a fixed point of S in π, and count in different ways the set

{(P ′, P ′′) | P ′, P ′′
∈ P\{P}, P ′′

∈ π, PP ′, P ′P ′′
∈ B}.

This gives

(ρc − 1)μ = (t+ 1)st, ρc = 1 + (t+ 1)st/μ,

and so

v = s+ 1 + (s+ 1)(t+ 1)st/μ. (5.32)

By Theorem 5.141,

v = 1 + (1 + t)s(1 + t(s− α+ 1)/μ). (5.33)

From (5.32) and (5.33), it follows that μ = α(t+ 1), a contradiction. Consequently,

there is no plane of type (C).

From (5.28),

m =
v

s+ 1
−

(sα− s+ α)[(s + 1)(t+ 1)− αs]

α(t+ 1)
, (5.34)

with v given by (5.33).

Let P, P ′ ∈ P with P �= P ′ and PP ′ �∈ B, and let π be a plane containing PP ′.

If π is of type (B), or if π is of type (A) with at least one of P, P ′ isolated in π,

then π does not contain a point P ′′ ∈ P\{P, P ′} with PP ′′ and P ′P ′′ in B. If π is

of type (A) and neither P nor P ′ is isolated in π, then π contains exactly α2 points

P ′′ ∈ P\{P, P ′} for which PP ′′ and P ′P ′′ are lines of B. Considering all planes

through PP ′, it follows that α2 divides μ.

Now suppose that all planes of PG(3, s) are of type (A). Counting all points of

P in all planes through a given line l of B,

is a 2 (v, s+ 1, 1) design, a contradiction since S is not a partial geometry. Hence-
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v = s+ 1 + (s+ 1)(ρa − s− 1), (5.35)

with ρa given by (5.29). Hence

m =
v

s+ 1
−

(s+ 1)(sα− s+ α)

α
+ s. (5.36)

From (5.34) and (5.36), it follows that

t = (s+ 1)(α− 1). (5.37)

Counting in different ways the set {(P, π) | P ∈ P , π a plane through P},

v(s2 + s+ 1) = (s3 + s2 + s+ 1)ρa. (5.38)

Eliminating ρa from (5.35) and (5.38) gives

v = (s2 + 1)(s+ 1),

and so P = PG(3, s). Now, from Theorem 5.141 and (5.37),

μ = (α− 1)(sα− s+ α).

Since α divides μ, it divides s. Let s = ph and α = pr, with p prime and r ≤ h.

Since α2 divides μ, so p2r divides ph+r−ph+pr, whence pr divides ph−ph−r+1.

Hence h = r, which means that s = α. So

s = α, t = α2
− 1, μ = α2(α− 1), m = 1.

So any plane contains exactly one point P (π) not in P , and the lines of B in π are

the lines not containing P (π). Therefore the structure S ′ consisting of all points of

PG(3, s) and all lines of PG(3, s) not in B is a projective generalised quadrangle.

By Theorem 5.51, S ′ is a classical generalised quadrangle; so, since PG(3, s) is the

point set of S ′, the structure S ′ is the generalised quadrangle W(s) arising from a

null polarity of PG(3, s). Thus S is the semi-partial geometry W (3, s).
Next, suppose that there is at least one plane π of type (B). Let l be the unique

line of B in π. Fix a point P on l and count in different ways the set

{(P ′, P ′′) | P ′, P ′′
∈ P\{P}, P ′′

∈ π\l, P ′ /∈ π, PP ′, P ′P ′′
∈ B}.

This gives

(ρb − s− 1)μ = ts(t+ 1− α). (5.39)

Now fix a point Q in π\l, and count in different ways the set

{(Q′, Q′′) | Q′, Q′′
∈ P\{Q}, Q′′

∈ π\{Q}, Q′ /∈ π, QQ′, Q′Q′′
∈ B}.

Hence

(ρb − 1)μ = ts(t+ 1). (5.40)
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From (5.39) and (5.40), it follows that μ = αt. Hence

ρb = α−1s(t+ 1) + 1,

and, from Theorem 5.141,

v = 1 + α−1s(t+ 1)(s+ 1).

Eliminating t gives

v = 1 + (ρb − 1)(s+ 1). (5.41)

Count in different ways the set

{(R, r) | R ∈ P ∩ π, r ∈ B\{l}, R ∈ r};

this gives

b− 1 = (s+ 1)t+ (ρb − s− 1)(t+ 1).

Since v(t+ 1) = b(s+ 1), it follows that

v =
(s+ 1)(st+ t+ 1)

t+ 1
+ (ρb − s− 1)(s+ 1). (5.42)

From (5.41) and (5.42), it follows that s = t. By Theorem 5.144, either

D = 1 + 4s(s+ 1− α)

is a square or D = 5. Since 1 < α < s+1, so 1+ 4s(s+1−α) > 5, and so D is a

square. Consequently, there exists a positive integer g for which

s(s+ 1− α) = g(g + 1).

As s is a prime power, it divides either g or g + 1. Hence

g + 1 ≥ s > s+ 1− α ≥ g.

It follows that s+ 1− α = g, s = g + 1, α = 2. Therefore

s = t, α = 2, μ = 2t, D = (2s− 1)2.

Also, since α2 divides μ, so t = s = 2h. By Theorem 5.144, 2
√
D divides

2(t+ 1)s+ (v − 1)(t(α− 1) + s− 1− μ+
√
D),

and so 2h+1 − 1 divides (2h + 1)(22h + 1)2h−1. Hence h ∈ {1, 3}. This gives two

cases:

(I) s = t = α = 2, μ = 4;

(II) s = t = 8, α = 2, μ = 16.
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Case (I). Here v = 10. Now, from (5.34), (5.29) and (5.30),

m = 0, ρa = 6, ρb = 4.

Since there are no planes of type (C), no three points of Q = PG(3, 2)\P are

collinear. Hence Q is a 5-cap of PG(3, 2). Since ρa = 6 and ρb = 4 so any plane of

PG(3, 2) contains one or three points of Q. Therefore Q is an elliptic quadric and B

consists of the 10 external lines of Q. So it has been shown that S = NQ−(3, 2).
Case (II). Here v = 325. Now, from (5.34), (5.29) and (5.30),

m = 0, ρa = 45, ρb = 37.

Let π be a plane of type (B), let l be the line of B in π, and let K be the set of the

28 points of P in π\l. If P, P ′ are distinct points of K, then, since μ > 0, it follows

that there is at least one plane π′ of type (A) through PP ′. Since π′ is of type (A)

and m = 0, the line PP ′ contains five points of π′ ∩ P . Since PP ′ contains exactly

one point of l, it contains four points of K. Hence K is a maximal (28; 4)-arc of π.

Therefore each line of PG(3, 8) has 1, 5 or 9 points in P . In fact, from Section 19.4

of FPSOTD, P is a non-singular 285,3,8 of PG(3, 8). Then, from Theorems 19.4.8

and 19.4.9, v = (83/2)+ 82+8+1 = 329, contradicting that v = 325. So this case

cannot occur. ��

Theorem 5.152. Let S = (P ,B, I) be a (0, α)-geometry with parameters s, t, α,

which is projective with ambient space PG(3, s). If m = 0, then one of the following

holds:

(a) α = s+ 1 and S is the 2-((s2 + 1)(s+ 1), s+ 1, 1) design formed by all points

and lines of PG(3, s);
(b) α = s and S = H3

s
;

(c) α = s = 2 and S = NQ−(3, 2).

Proof. From the definition of a (0, α)-geometry, α > 1.

Suppose that all lines of some plane π of type (A) belong to B; then α = s+ 1.

It follows that all lines of each plane of type (A) belong to B. Let l be a line of B

not contained in π. If l ∩ π = P , and if l1, l2, . . . , ls+1 are the lines of π through P ,

then all lines of the plane lli through P belong to B, for i = 1, 2, . . . , s + 1; hence

t = s2+s. From (5.27), b = (s2+1)(s2+s+1) and, from (5.28), v = (s2+1)(s+1).
This gives (a).

Now suppose that, in each plane of type (A), there is at least one line not in B.

Then either s = α or s = 2h. Let π be a plane of type (A) and let l be a line of π

which does not belong to B. Since m = 0, so |l ∩ P| = (sα − s + α)/α. Let τ be

the number of planes of type (A) through l. The number of lines of B containing a

point of l and contained in a plane of type (A) through l is τ(sα− s+α). Hence the

number of planes of type (B) through l is

(t+ 1)(sα− s+ α)/α− τ(sα − s+ α) = (sα− s+ α)(t + 1− τα)/α. (5.43)
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From (5.43), t+1 ≥ τα. Since the number of planes of type (B) through l is at most

s+ 1− τ , so

(sα− s+ α)(t+ 1− τα)/α ≤ s+ 1− τ. (5.44)

This inequality is equivalent to

t+ 1− τα ≤ 1 +
1

α− 1
−

t+ 1

(α− 1)(s+ 1)
. (5.45)

Hence 0 ≤ t+ 1− τα ≤ 1, and so either t+ 1 = τα or t = τα.

Let t + 1 = τα. Then the number of planes of type (B) through l is zero. By

way of contradiction, assume that S contains at least one plane π′ of type (B). Let l′

be the line of B in π′. Also, let π′′ be a plane of type (A) not containing l′, and let

π′′ ∩ π′ = l′′. Since l′′ /∈ B, it is contained in no plane of type (B), a contradiction

since π′ is of type (B). Consequently, there are no planes of type (B). Therefore S is

a partial geometry, whence, by Theorem 5.135, (b) follows.

Next, let t = τα. Then, by (5.44), s ≥ t. Let π be a plane of type (A) and let P

be any point of S in π. Now count in different ways the number η of ordered pairs

(π′, l′) with π′ a plane of type (B) having its line of S throughP and with l′ = π∩π′

not in B. Since there are t/(α− 1) planes of type (A) through a given line of S and

thus s+ 1− t/(α− 1) planes of type (B) through that line, so

η = (t+ 1− α)[s+ 1− t/(α− 1)]. (5.46)

For a given line l′ /∈ B of π through P , the number of lines l′′ of B through P , for

which l′l′′ is of type (B), is t+ 1− τα = 1. Hence

η = s+ 1− α. (5.47)

From (5.46) and (5.47),

s+ 1− α = (t+ 1− α)[s+ 1− t/(α− 1)]. (5.48)

Since s ≥ t,

s+ 1− α ≥ (t+ 1− α)[s+ 1− s/(α− 1)],

which is equivalent to

t+ 1− α ≤ 1 +
α− α2 + s

αs+ α− 2s− 1
. (5.49)

Since t = τα, so t+ 1− α ≥ 1 and α− α2 + s ≥ 0. However,

(α − α2 + s)/(αs+ α− 2s− 1) ≥ 1

if and only if α = 2 and s ≥ 3. This means that t = α whenever α �= 2. But since

there are t/(α− 1) planes of type (A) through a given line of S, the case α �= 2 and

t = α cannot occur. Therefore α = 2. Then (5.48) becomes (s − t)(t − 2) = 0.

Consequently s = t or t = 2.
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Now suppose that α = 2 and s = t. Since m = 0, the dual of S is a semi-partial

geometry S∗ with parameters

s∗ = t, t∗ = s, α∗ = α, μ∗ = αt/(α− 1).

Here, s∗ = t∗ and so, by Theorem 5.146, S is also a semi-partial geometry. Now,

Theorem 5.151 with s = t and α = 2 gives S = NQ−(3, 2).
Finally, let α = 2 and t = 2; then τ = 1 and s = 2h. Let π be a plane of type

(A) and let l be a line of π which does not belong to B. It was shown that the number

of planes of type (B) through l is 1 + s/2. If there is at least one plane of type (C),

then, by Corollary 5.150, 2h is divisible by 3, a contradiction. So there are no planes

of type (C). It follows that each of the planes through l is either of type (A) or of

type (B), and so 2 + s/2 = s + 1, whence s = 2. Again s = t and α = 2 and so

S = NQ−(3, 2). ��

Theorem 5.153. Let S = (P ,B, I) be a (0, α)-geometry with parameters s, t, α,

which is projective with ambient space PG(3, s). If m �= 0, then there is no plane of

type (B).

Proof. Suppose that there is at least one plane of each type. The total number of

planes of type (A) is
bt

(α− 1)(sα− s+ α)
. (5.50)

By (5.27), this is[
1

α
(δ((s+ 1)(t+ 1)− αs)) +m(t+ 1)

]
t

(α− 1)δ
, (5.51)

with δ = sα− s+ α. The number of planes of type (B) is

b(s+ 1− t(α− 1)−1). (5.52)

By (5.27), this is[
1

α
(δ((s + 1)(t+ 1)− αs)) +m(t+ 1)

]
(s+ 1− t(α − 1)−1). (5.53)

The total number of planes of type (A) and (B) is at most (s2 + 1)(s + 1). Adding

(5.51) and (5.53) gives[
α−1(δ((s+ 1)(t+ 1)− αs)) +m(t+ 1)

]
(s+ 1)(δ − t)/δ

≤ (s2 + 1)(s+ 1), (5.54)

α−1((s+ 1)(t+ 1)− αs)(sα − s+ α− t)

+m(t+ 1)

(
1−

t

sα− s+ α

)
≤ s2 + 1. (5.55)

As m �= 0, a line l of the plane π of type (A), which does not belong to B, exists; so
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|l ∩ P| = (sα− s+ α)/α.

Hence α divides s. By Corollary 5.150, t + 1 divides s. Since α ≤ t + 1 and s is a

prime power, so α divides t+ 1.

As, by assumption, there is at least one plane of type (B), so, by (5.52),

t < (α− 1)(s+ 1). (5.56)

Hence

m(t+ 1)

(
1−

t

sα− s+ α

)
>

m(t+ 1)

sα− s+ α
> 0. (5.57)

By (5.55) and (5.57),

α−1((s+ 1)(t+ 1)− αs)(sα − s+ α− t) < s2 + 1,

which is equivalent to

α+ αs− t− 1−
αs(α+ s)

t+ s
+

αs(t+ 1)

(s+ 1)(t+ s)
< 0. (5.58)

From this it follows that

t+ 1 +
αs(α+ s)

t+ s
> αs,

t(t+ 1) + s(t+ α2
− αt+ 1) > 0. (5.59)

Note that t+α2−αt+1 < 0 if and only if t > α+(α+1)/(α− 1). Let l, l′, l′′

be distinct non-coplanar lines of B through P in P . The α lines of B in ll′ through

P are l = l1, l
′ = l2, l3, . . . , lα. A count of the lines of B through P in the α planes

l′′li shows that t ≥ α2 − α. If α ≥ 3, then α2 − α > α + (α + 1)/(α − 1) and

t+ α2 − αt+ 1 < 0. So, from (5.59),

s <
t(t+ 1)

αt− α2 − t− 1
. (5.60)

Since t+ 1 divides s, so t+ 1 < s; then, from (5.60),

(α− 2)t < α2 + 1. (5.61)

Previously it was shown that α divides t+1; so t ≥ α2 −α implies that t ≥ α2 − 1.

Hence, from (5.61), (α− 2)(α2 − 1) < α2 + 1, whence α ≤ 3 and so α ∈ {2, 3}.

Suppose that α = 3. From (5.61), t < 10; since t ≥ α2 − α, so t ≥ 6. As α and

t+1 divide s, so t = 8. From (5.59), s < 12 and so s < 9. This gives a contradiction

as s �= α implies that s = 2h.

Next, let α = 2 and t = 3. From (5.58), s < 3, a contradiction since t+1 divides

s.

Finally, let α = 2 and t �= 3. Since α divides t + 1, so t > 3. As α divides s,

so s = 2h. As t + 1 divides s, so t ≥ 7. With s = (t + 1)r, (5.59) implies that
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(r − 1)(t− 5) < 5. Since t ≥ 7 and r = 2k, so r ∈ {1, 2}. If r = 1, then s = t+ 1
and (5.58) gives t(t − 1) < 4, contradicting that t ≥ 7. If r = 2, then s = 2(t + 1)
and (5.59) gives t < 10. Hence s = 16 and t = 7, contradicting (5.58). Thus planes

of type (B) and (C) cannot both occur.

Suppose that there are no planes of type (C), but at least one plane of type (B).

Then, by (5.52),

t < (α− 1)(s+ 1). (5.62)

The total number of planes of types (A) and (C) is (s2 + 1)(s + 1). Hence, from

(5.50) and (5.52),

b

(
1−

t

sα− s+ α

)
= s2 + 1. (5.63)

From (5.63) and (5.27),

m(t+ 1) =
t(s2 + 1)

sα− s+ α− t
+ 1− (s+ 1)s(t+ 1− α)

+(s+ 1)(t+ 1)(s/α− 1). (5.64)

If all the points of PG(3, s) are elements of P , then ρa = s2 + s + 1 and so,

by (5.29), m = (s + 1 − α)s/α. Since v = (s2 + 1)(s + 1), so (5.28) implies that

t = (α− 1)(s+1), contradicting (5.62). Hence PG(3, s) contains at least one point

which does not belong to P .

Let P ∈ PG(3, s)\P , and let τb denote the number of planes of type (B) through

P . Counting the pairs (π, l), with l ∈ B and π = lP shows that

b = τb + (s2 + s+ 1− τb)(sα− s+ α),

and so, using (5.27),

m(t+ 1) = −τb(s+ 1)(α− 1) + (sα− s+ α)(s+ 1)×

(s− α−1(t+ 1) + 1). (5.65)

From (5.65), s+ 1 divides m(t+ 1); therefore, by (5.64), s+ 1 divides

1 + [t(s2 + 1)/(sα− s+ α− t)].

Hence s+ 1 divides t+ 1. Since t+ 1 ≤ (s+ 1)(α− 1), so

either t+ 1 = (s+ 1)(α− 1) or t+ 1 ≤ (s+ 1)(α− 2). (5.66)

Let P ′ ∈ P . The number of planes of type (A) containing at least one line of B

through P ′ is t(t+ 1)/[α(α− 1)]. The number of planes of type (B) having its line

of B through P ′ is

(t+ 1)[s+ 1− t/(α− 1)].

Since P ′ is in exactly s2 + s+ 1 planes, so

t(t+ 1)/[α(α− 1)] + (t+ 1)[s+ 1− t/(α− 1)] ≤ s2 + s+ 1,
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which can be written as

t2 − t(αs+ α− 1) + s2α ≥ 0. (5.67)

The corresponding discriminant is D = (αs + α − 1)2 − 4s2α. So D < 0 if either

α = 3 and s > 4 or α = 2. When α = s = 3 and α ≥ 4, then D > 0. Since m �= 0,

it cannot be that α = s + 1 = 3; since α < s + 1, so α divides s and it cannot be

that α = 3 and s = 4.

There are now six cases to consider.

Case 1 : t+ 1 ≤ (s+ 1)(α− 2), D > 0, t ≥ 1
2
(αs+ α− 1 +

√
D)

From these inequalities,

sα− 2s+ α− 2 ≥ t+ 1 ≥
1
2
(αs+ α+ 1 +

√
D); (5.68)

s2(4 − α) + 2s(5− 2α) + 2(3− α) ≥ 0. (5.69)

If α ≥ 4, then s2(4 − α) ≤ 0, 2s(5− 2α) < 0, 2(3 − α) < 0, a contradiction. For

α = s = 3, (5.68) becomes 4 ≥ t+ 1 ≥ 9, again a contradiction.

Consequently, D > 0 implies one of the following:

(a) t+ 1 > (s+ 1)(α− 2);
(b) t < 1

2
(αs+ α− 1 +

√
D).

By (5.66), (a) is equivalent to t + 1 = (s + 1)(α − 1); by (5.67), D > 0 and (b)

imply that t ≤ 1
2
(αs+ α− 1−

√
D).

Case 2 : t ≤ 1
2
(αs+ α− 1−

√
D), D > 0, t ≥ 2s+ 1

From these inequalities,

4s+ 2 ≤ 2t ≤ αs+ α− 1−
√
D; (5.70)

s2(4 − α) + 3s(2− α) + 2− α ≥ 0. (5.71)

If α ≥ 4, then s2(4 − α) ≤ 0, 3s(2 − α) < 0, 2 − α < 0, a contradiction. If

α = s = 3, (5.71) also gives a contradiction.

Thus D > 0 and t ≤ 1
2
(αs+ α − 1 −

√
D) imply that t < 2s+ 1. Since s+ 1

divides t+ 1, so t = s.

Case 3 : t ≤ 1
2
(αs+ α− 1−

√
D), D > 0, t = s

From (5.64),

m(s+ 1) =
s(s2 + 1)

sα− 2s+ α
+ 1− (s+ 1)s(s+ 1− α)

+(s+ 1)2(s/α− 1); (5.72)

mα(sα − 2s+ α) = −s(α− 2)[(α− 1)(s− α)(s+ 1) + sα]. (5.73)

Since D > 0, so α > 2. Hence the left-hand side of (5.73) is positive and the right-

hand side is negative, a contradiction.
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Case 4 : t+ 1 = (s+ 1)(α− 1), D > 0
Counting the planes of type (A) through a line of B shows that α − 1 divides t;

so α− 1 also divides t+ 1. Hence α = 2, contradicting that D > 0.

Case 5 : α = 2, D < 0
From (5.62), t < s+ 1. Since s+ 1 divides t+ 1, so t = s. Then (5.64) implies

that m = 0, a contradiction.

Case 6 : α = 3, s > 4, D < 0
From (5.62), t < 2s+2. Since s+1 divides t+1, so t = s or t = 2s+1. If t = s,

then (5.64) is equivalent to (5.73), giving 3m(s+ 3) = −s(2(s− 3)(s+1)+ 3s), a

contradiction. If t = 2s+ 1, then (5.64) becomes 2m = −(2s2 + 5s+ 3)/6, again

a contradiction.

The conclusion is that there are no planes of type (B). ��

Corollary 5.154. Let S = (P ,B, I) be a (0, α)-geometry with parameters s, t, α,

which is projective with ambient space PG(3, s). If m �= 0, then t = (s+1)(α− 1);
if also there is no plane of type (C), then m = s(s− α+ 1)/α and P = PG(3, s).

Proof. Suppose that m �= 0. By Theorem 5.153, there is no plane of type (B). Now,

from (5.52), it follows that t = (s+ 1)(α− 1).
If there is also no plane of type (C), then every plane is of type (A); so, from

(5.50),
bt

(α− 1)(sα− s+ α)
= (s2 + 1)(s+ 1).

So b = (s2 + 1)(sα − s + α) and v = (s2 + 1)(s + 1). Now, by (5.28), the result

follows. ��

Corollary 5.155. Let S = (P ,B, I) be a (0, α)-geometry with parameters s, t, α,

which is projective with ambient space PG(3, s). If there is at least one plane of type

(B), then s = α = 2 and S = NQ−(3, 2).

Proof. By Theorem 5.153, m = 0. Now, by Theorem 5.152, S is either the design

formed by all points and all lines of PG(3, s) or S = H3
s

or S = NQ−(3, 2).
However, only NQ−(3, 2) admits planes of type (B). ��

Theorem 5.156. Let S = (P ,B, I) be a projective (0, α)-geometry with parameters

s, t, α, with ambient space PG(3, s) and with m = 1. Then one of the following

holds:

(a) α = s and S = W (3, s);
(b) α = s/2, s = 2h, h > 1 and S = NQ+(3, s).

Proof. Suppose α �= s; then s = 2h. Now, count the number τ of lines of PG(3, s)
containing exactly (sα− s+ α)/α points of P . In a plane of type (A) there are

s2 + s+ 1− (sα − s+ α)− (s+ 1) = (s− α)(s+ 1)
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such lines. By (5.50) and Corollary 5.154, there are b(s+1)/(sα− s+α) planes of

type (A). So, by (5.27), the number of planes of type (A) is

(s+ 1)[(s+ 1)(s− s/α) + 2].

If a line l /∈ B of PG(3, s) contains ρ points of P , then the number of planes of type

(A) containing l is ρ(t+ 1)/(sα− s+ α) = ρ. It follows that

τ = (s− α)(s+ 1)2[(s+ 1)(s− s/α) + 2]α/(sα− s+ α). (5.74)

Hence sα− s+ α divides the following:

(s− α)(s+ 1)2[(s+ 1)s(α− 1) + 2α],

(s− α)(s+ 1)2α(s− 1) = (s2 − αs+ s− α)(αs+ α)(s − 1),

s3(s− 1).

As α = 2k, with 0 < k < h, so 2h+k − 2h + 2k divides 23h(2h − 1), and so

2h − 2h−k + 1 divides 23h−k(2h − 1). Since (2h − 2h−k + 1, 23h−k) = 1, so

2h − 2h−k + 1 divides (2h − 1); therefore 2h − 2h−k + 1 divides 2h−k − 2. If

2h−k �= 2, then 2h − 2h−k + 1 ≤ 2h−k − 2, implying that 2h − 2h−k+1 < 0; so

α = 2k < 2, a contradiction. Hence 2h−k = 2, whence α = s/2. Thus either α = s

or α = s/2.

Assume that α = s; then t = s2 − 1. By (5.27) and (5.28), b = s4 + s2 and

v = (s2 + 1)(s+ 1); hence P = PG(3, s). By (5.50), the number of planes of type

(A) is (s2 + 1)(s+ 1). Consequently, there are no planes of type (C). In any plane π

of type (A) there is exactly one point P not in P , and the lines of π not in B form the

pencil of π through P . Now, by Theorem 15.2.13 of FPSOTD, the lines of PG(3, s)
which are not in B are the lines of a general linear complex. Hence S = W (3, s).

Next, assume that α = s/2; then t = (s − 2)(s + 1)/2. By (5.27) and (5.28),

b = s2(s−1)2/2 and v = s(s2−1). A plane of type (A) contains s2 points of P and

s(s − 1)/2 lines of B; a plane of type (C) contains s(s − 1) points of P . By (5.50),

there are s(s2 − 1) planes of type (A), and so (s+ 1)2 planes of type (C).

A line l /∈ B containing ρ points of P is in ρ planes of type (A). Hence, if such

a line l contains at least one point of P , then l is in at least one plane π of type (A)

and |l ∩ P| ∈ {s − 1, s, s + 1}. Therefore, for any line l of PG(3, s), necessarily

|l ∩ P| ∈ {0, s− 1, s, s+ 1}.

LetP ′ = PG(3, s)\P ; then |P ′| = (s+1)2, and any line with at least three points

in P ′ lies entirely in it. Now, by Theorem 16.2.2 of FPSOTD, P ′ is a hyperbolic

quadric or consists of a plane and a line or is a cone joining an oval to a vertex. By

definition, P ′ does not contain a plane. If it is a cone, then there are planes through

the vertex which contain exactly s2 + s points of P . Such planes cannot be of type

(A) nor of type (C), a contradiction. Hence P ′ is a hyperbolic quadric. As no line of

B has a point in P ′ and as b = s2(s− 1)2/2, so B consists of all lines having empty

intersection with the quadric P ′. Thus S = NQ+(3, s). Also, s �= 2, as for s = 2
the geometry NQ+(3, s) is not connected. ��
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Theorem 5.157. In a (0, α)-geometry S = (P ,B, I) with ambient space PG(3, s),
the number m of isolated points satisfies m �= 2.

Proof. Suppose that m = 2. Now count the number τ of lines of PG(3, s) containing

exactly (sα−s+3α)/α points ofP . In any plane of type (A) there is exactly one such

line. By (5.50) and Corollary 5.154, there are b(s+ 1)/(sα− s+ α) planes of type

(A). By (5.27), the number of planes of type (A) is (s+1)[s(s+1)(α− 1)+3α]/α.

However, if a line l not in B contains ρ points of P , then l is in ρ planes of type (A).

Hence

τ = (s+ 1)[s(s+ 1)(α− 1) + 3α]/(sα− s+ 3α).

Consequently, sα−s+3α divides (s+1)[s(s+1)(α−1)+3α], and so s−s/α+3
divides

(s− s/α+ 3 + s/α− 2)[(s− s/α+ 3)(s+ 1)− 3(s+ 1) + 3];

so s− s/α+ 3 divides 3s(s/α− 2).
Let s = ph with p prime; then α = pk with 0 < k ≤ h. If α = s, then for any

plane of type (A) the union of its sα− s+α = s2 lines of B is a set of order s2 + s;

so m ≤ 1, a contradiction. Hence k < h and so p = 2. It has therefore been shown

that 2h − 2h−k + 3 divides 3.2h(2h−k − 2).
Since (2h − 2h−k + 3, 2h) = 1, the integer 2h − 2h−k + 3 divides 3(2h−k − 2).

Let 2h−k �= 2. Then 2h − 2h−k + 3 ≤ 3(2h−k − 2), and so 2h − 2h−k+2 + 9 ≤ 0,

whence 2h − 2h−k+2 < 0. Hence 2k < 4, and so k = 1. Consequently, 2h−1 + 3
divides 3(2h−1 − 2); so 2h−1 + 3 divides 2h−1 − 2. Hence h = 2 and 2h−k = 2, a

contradiction. Therefore h = k + 1.

Let π be a plane of type (A) and let P be a point of π not in P . Since s/α = 2
and m = 2, the set π\P is an s-arc K of π. However, K contains P , and K together

with the two isolated points of π forms an oval of π. It follows that π contains exactly

two lines of B through P having s points in common with P . The number of planes

of type (A) through P is b/(sα − s + α) = s2 − s + 1. Therefore the number of

lines through P having exactly s points in P is 2(s2 − s+ 1)/s. Hence s divides 2;

so s = 2 and α = 1, a contradiction. ��

Theorem 5.158. Let S = (P ,B, I) be a (0, α)-geometry with parameters s, t, α

which is projective with ambient space PG(3, s). If s is odd, then S is a semi-partial

geometry and hence is known.

Proof. By the first part of Section 5.9, either α = s + 1 or α = s. If α = s + 1,

then m = 0, and, by Theorem 5.152, S is a partial geometry; so α = s. By (5.29),

ρa = s2 + s +m. So m ∈ {0, 1}. If m = 0, then, by Theorem 5.152, S is a semi-

partial geometry; if m = 1, then, by Theorem 5.156, S is a semi-partial geometry.

��

Theorem 5.159. If S is a (0, α)-geometry which is projective with ambient space

PG(3, 2), then S is a semi-partial geometry and hence is known.

Proof. As m < 3, the result follows from Theorems 5.152, 5.156 and 5.157. ��
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By Theorems 5.153, 5.156, 5.157, 5.158, 5.159 all projective (0, α)-geometries

with ambient space PG(3, s) are known if either m ≤ 2, s is odd, or s = 2.

In the first edition of General Galois Geometries it was wrongly conjectured that

any projective (0, α)-geometry with ambient space PG(3, s) is one of the following:

(a) m = 0 and S is either the design formed by all points and all lines of PG(3, s),
or S = H3

s
, or S = NQ−(3, 2);

(b) m = 1 and either S = W (3, s), or s �= 2 is even and S = NQ+(3, s).

Let S = (P ,B, I) be a geometry whose point set P is a subset of the point set of

some PG(3, q), q > 2, and whose line set B is a non-empty set of lines of PG(3, q).
If P generates PG(3, q), then PG(3, q) is the ambient space of S. From Theorems

5.152 and 5.153 it follows that S is a projective (0, α)-geometry with ambient space

PG(3, q) if and only if every pencil of lines of PG(3, q) contains either 0 or α, with

α > 1, lines of B.

A point set K of the non-singular hyperbolic quadric H5 of PG(5, q) is a (0, α)-
set if every line of H5 contains either 0 or α points of K. By considering H5 as the

Klein quadric G1,3, that is, as the image of the line set of PG(3, q) under the Klein

correspondence, it is seen that any projective (0, α)-geometry with ambient space

PG(3, q), q > 2, is equivalent to a (0, α)-set, with α > 1, of H5, and conversely.

For q > 2, the deficiency of a projective (0, α)-geometry S with ambient space

PG(3, q), and also of the corresponding (0, α)-set of H5, is δ = q(q+1−α)/α−m.

Four special cases are the following:

(1) S consists of all points and all lines of PG(3, q), with α = q + 1, δ = 0;

(2) S = W (3, q), with α = q, δ = 0;

(3) S = H3
q

, with α = q, δ = 1;

(4) S = NQ+(3, 2h), with α = q/2, δ = q + 1.

For α < q, with q > 2 and α > 1, the (0, α)-sets of H5, and so the projective

(0, α)-geometries with ambient space PG(3, q), are known in the following cases:

(a) q = 2h, h > 1, for any α ∈ {2, 22, . . . , 2h−1}, and any δ ∈ {1, q + 1};

(b) q = 22e+1, e > 0, α = 2, for any δ ∈ {q +
√
2q + 1, q −

√
2q + 1}.

See Section 5.10.

Lemma 5.160. Let S = (P ,B, I) be a projective (0, α)-geometry with ambient

space PG(n, s), n ≥ 3. If P is any point of P , then the t + 1 lines of B through P

do not lie in the same hyperplane of PG(n, s).

Proof. Suppose that the t + 1 lines of B through P are contained in a hyperplane

Πn−1. If l is one of these lines, then a point P ′ ∈ l, with P ′ �= P , lies on t+ 1 lines

l, l1, l2, l3, . . . , lt of B. On li\{P
′} there are α− 1 (≥ 1) points which are joined to

P by a line of B. It follows that li is contained in Πn−1 for i = 1, 2, . . . , t. Since S is

connected, repeated application of this argument shows that S is contained in Πn−1,

a contradiction. ��
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Suppose that S = (P ,B, I) is a projective (0, α)-geometry with ambient space

PG(n, s), n ≥ 3. Let P ∈ P and let l1, l2, . . . , lr, r ≥ 2, be lines of B through

P that generate a PG(n′, s), with 2 ≤ n′ ≤ n. Further, let S ∩ PG(n′, s) denote

the structure formed by all points and lines of S in PG(n′, s). By definition, the

connected component of S ∩ PG(n′, s) through P is the structure S ′ formed by

all elements T of S ∩ PG(n′, s) for which there exist elements T1, T2, . . . , Tu of

S ∩PG(n′, s) with T IT1 I · · · ITu IP . Then S ′ is a projective (0, α)-geometry with

ambient space PG(n′, s). In particular, each point of S ′ is incident with the same

number t′ + 1, t′ ≥ 1, of lines of S ′.

Theorem 5.161. Let S = (P ,B, I) be a projective (0, α)-geometry with ambient

space PG(n, s), n ≥ 4, s > 2. Then S is either the design formed by all points and

lines of PG(n, s) or S = W (n, 2k, s) with 2k ∈ {2, 4, . . . , n+ 1}.

Proof. It is shown that α = s or α = s+ 1.

(I) n = 4

Let P be a point of S. By Lemma 5.160, there exist lines l1, l2, l3, l4 of B through P

that are not contained in a solid. Let PG(3, s) be the solid containing l1, l2, l3. The

connected component S ′ of S ∩PG(3, s) through P is a projective (0, α)-geometry

with ambient space PG(3, s). Since s > 2, Corollary 5.155 implies that no plane of

PG(3, s) contains exactly one line of S ′. Considering all planes of PG(3, s) through

l1, it follows that the parameter t′ of S ′ is (α − 1)(s+ 1). Hence the parameter t of

S satisfies t > (α− 1)(s+ 1).
Let l be any line of S through P , and assume that l is contained in a plane π

such that l is the only line of S in π. The other lines of S through P are denoted by

l′1, l
′

2, . . . , l
′

t
. The solid defined by π and l′

i
is denoted by πi for i = 1, 2, . . . , t. Then

P belongs to at least α − 2 lines l′
j
, j �= i, of πi. Now suppose that P is on exactly

α lines of S ∩ πi, for all i = 1, 2, . . . , t; that is, the lines of S ∩ πi through P lie in a

plane. Considering all solids of PG(4, s) through π shows that t ≤ (α− 1)(s+1), a

contradiction. Hence there exist lines l′
i
, l′

j
, j �= i, such that πi = πj and with l′

i
, l′

j
, l

not coplanar. Since the plane π of πi contains exactly one line of the connected

component of S ∩ πi through P , so Corollary 5.155 gives a contradiction. Therefore

each plane π through l contains exactly sα− s+ α lines of S.

Now, let PG(3, s) be a solid in PG(4, s) not containing P . The t+ 1 lines of B

throughP meet PG(3, s) in the t+1 points P0, P1, . . . , Pt. From above, each line of

PG(3, s) contains either 0 or α points of the set V = {P0, P1, . . . , Pt}. Considering

all lines of PG(3, s) through P0 gives that t = (s2 + s + 1)(α − 1). If π is any

plane of PG(3, s) through P0, then π∩V is a maximal (sα− s+α;α)-arc of π. Let

α �= s+ 1 and let l′ be a line of π not meeting this arc. From the planes of PG(3, s)
through l′, it follows that sα − s + α divides t + 1. Hence sα − s + α divides

s(sα− s+α)− s+α, and so sα− s+α divides s−α. Since sα− s+α > s−α,

so s = α. Therefore either α = s+ 1 or α = s.
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(II) n > 4

Let P be a point of S. By Lemma 5.160, there exist lines l1, l2, l3, l4 of B through P

which generate a subspace PG(4, s) of PG(n, s). The connected component S ′ of

S∩PG(4, s) throughP is a projective (0, α)-geometry with ambient space PG(4, s).
Hence, from (I), either α = s+ 1 or α = s.

Suppose that S is a projective (0, α)-geometry with ambient space PG(n, s),
with s > 2, α = s+ 1, n ≥ 4. Let P be a point of S, and let l, l′ be two lines of S

through P . Since α = s+ 1, every line of the plane ll′ is a line of S. It follows that

the union of all lines of S through P is a subspace PG(n′, s) of PG(n, s). Now, by

Lemma 5.160, n′ = n. Hence S is the design formed by all points and all lines of

PG(n, s).
Next, let S be a projective (0, α)-geometry with ambient space PG(n, s), with

s > 2, α = s, n ≥ 4. It is shown that t = sn−1 − 1. Considering all planes

containing a given line l of B indicates that this is equivalent to proving that no plane

through l contains exactly one line of B. By (I), this holds for n = 4; in this case,

t = s3 − 1.

Now proceed by induction on n. For any line l of S, assume that it is contained

in a plane π and that no other line of S is in π. Let P ∈ l and let the other lines of B

through P be l1, l2, . . . , lt. The solid through π and li is denoted by πi, i = 1, . . . , t.
Then P belongs to at least α − 2 lines lj, j �= i, of πi. Now suppose that P is on

exactly α lines of S ∩ πi, for all i = 1, . . . , t. Considering all solids of PG(n, s)
through π shows that t ≤ sn−2 − 1. By Lemma 5.160, it may be assumed that

l, l1, l2, . . . , ln−1 generatePG(n, s). LetPG(n−1, s) = ll1 · · · ln−2 and letS ′ be the

connected component of S ∩ PG(n− 1, s) through P . By the induction hypothesis,

the parameter t′ of S ′ is sn−2−1. Since ln−1 is not in PG(n−1, s), so t > sn−2−1,

contradicting that t ≤ sn−2 − 1. Therefore, each plane through l contains exactly s2

lines of B; this is equivalent to the relation t = sn−1 − 1.

Let P be any point of S and let l0, l1, . . . , lt be the lines of B through P . Further,

let Πn−1 be a hyperplane not through P and let li ∩ Πn−1 = Pi for i = 0, 1, . . . , t.
From above, any line of Πn−1 meets V = {P0, P1, . . . , Pt} in 0 or s points. Hence

V is the complement of a hyperplane of Πn−1. Therefore, the union of l0, l1, . . . , lt
is the complement of a hyperplane of PG(n, s).

Now consider the incidence structure S ′ formed by all points of PG(n, s) and

its lines not in B. By the above, the union of all lines of S ′ through any point of

PG(n, s) is a hyperplane. Hence S ′ is a projective Shult space. Since PG(n, s) is

the point set of S ′, so either (b) or (e) of Theorem 5.52 occurs. In case (b), with the

notation of Theorem 5.52, r = n− 2 and k = s+1; then S = Hn

s
= W (n, 2, s). In

case (e), S = W (n, 2k, s) with 2k ∈ {4, 6, . . . , n+ 1}. ��

Theorem 5.162. Let S = (P ,B, I) be a projective semi-partial geometry with am-

bient space PG(n, s), n ≥ 4. If α > 1 and s > 2, then it is one of the following

types:

(a) α = s+ 1 and S is the design formed by all points and all lines of PG(n, s);
(b) α = s and S = Hn

s
;
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(c) α = s, n is odd and S = W (n, s).

Proof. First, S is a projective (0, α)-geometry with ambient space PG(n, s), where

s > 2, n ≥ 4. By Theorem 5.161, S is the design formed by all points and lines of

PG(n, s) or S = W (n, 2k, s) with 2k ∈ {2, 4, . . . , n + 1}. In Section 5.8, it was

observed that W (n, 2k, s) is a semi-partial geometry if and only if either 2k = n+1,

in which case n is odd, or k = 1. When k = 1, then S = W (n, 2, s); however, when

2k = n+ 1, then S = W (n, n+ 1, s) = W (n, s). ��

Theorem 5.163. Let S = (P ,B, I) be a projective semi-partial geometry with ambi-

ent space PG(n, s), n ≥ 3 and α > 1. Then it is one of the following types:

(a) α = s+ 1 and S is the design formed by all points and all lines of PG(n, s);
(b) α = s and S = Hn

s
;

(c) α = s = 2 and S = NQ−(3, 2).

Proof. For any plane π containing at least two lines of B, let π̄ be the set of all lines

of π in B; then |π̄| = sα−s+α. Let P̄ denote the set of all these sets π̄. Now consider

the structure S̄ = (P̄ ,B, Ī), where, for π̄ ∈ P̄ and l ∈ B, the relation π̄ Ī l holds when

l ∈ π̄. Then S̄ is a (0, α)-geometry with ᾱ = α, t̄ = (α−1)(s+1), s̄ = t/(α−1)−1.

Two lines of B are concurrent in S̄ if and only if they are concurrent in S. Hence S̄

is also a dual semi-partial geometry.

First suppose that S is a partial geometry. Then, by Theorem 5.135, either (a) or

(b) holds.

Now suppose that S is not a partial geometry. Then s ≥ t by Theorem 5.145;

hence s̄ < t̄. Again, by Theorem 5.145, S̄ is a partial geometry. Consequently, for

any line l ∈ B and any element π̄ ∈ P̄ with l /∈ π̄, the line l is concurrent with α

lines of B in π. So, for any point P ∈ P with P /∈ π, the lines of B through P are

contained in the solid Pπ. Hence n = 3 by Lemma 5.160. Now suppose that m �= 0
and let P ′ be a point of P in π which is on none of the sα − s + α lines of B in

π. If P ′ ∈ l′, with l′ ∈ B, then l′ does not meet any line of B in π, a contradiction.

Therefore m = 0. Since S is not a partial geometry, so S = NQ−(3, 2) by Theorem

5.152. ��

Remark 5.164. The determination of all projective (0, 2)-geometries with ambient

space PG(n, 2) is complicated. However, this problem has been completely solved,

and the main references are given in Section 5.10.

Open problems

Concerning the determination of all projective (0, α)-geometries with ambient space

PG(n, s), for given α, n, s, the following problems are still open.

(a) Determine all projective partial quadrangles, that is, α = 1, with ambient space

PG(n, s), n ≥ 4.

(b) Determine all projective dual partial quadrangles, that is, α = 1, with ambient

space PG(n, s), n ≥ 3. An infinite class of projective dual partial quadrangles,

which are not generalised quadrangles, is given by (h) of Example 5.147.
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(c) Determine all projective (0, α)-geometries with ambient space PG(3, s) when

s = 2h, h > 1.

5.10 Notes and references

Section 5.1

Theorem 5.4 is due to Tits [380], and Theorem 5.6 is due to Buekenhout and Shult

[59]. Example (e) for a generalised quadrangle is taken from Hall [148]. Lemma 5.8

and Theorem 5.9 are from [59].

Now two important characterisations of Grassmann varieties are stated, in which

generalised quadrangles play a central role. Let S = (P ,B) be a pair consisting of a

non-empty finite set P of points and a set B of distinguished subsets of cardinality at

least three of P called lines. For any point P let P⊥ be the set of all points collinear

with P , and for any line l let l⊥ be the set of all points collinear with each point of

l. Suppose that S is connected, that P contains at least two non-collinear points, and

that P⊥\{P} is connected for each point P . A subspace of S is a set X of pairwise

collinear points such that any line meeting X in more than one point is contained

in X . A subspace that is not properly contained in a larger subspace is called a max

space. Now consider the following conditions:

(a) for any point P and any line l, the point P is collinear with 0, 1 or all points of l;

(b) if P and P ′ are non-collinear points such that |P⊥ ∩ P ′⊥| ≥ 2, then P⊥ ∩ P ′⊥

with the lines it contains is a generalised quadrangle;

(c) if P ∈ P and l ∈ B such that P⊥ ∩ l = ∅ but P⊥ ∩ l⊥ �= ∅, then P⊥ ∩ l⊥ is a

line;

(c′) each line is contained in exactly two max spaces.

Theorem 5.165. If S satisfies (a), (b), (c), then either S is a non-degenerate Shult

space of rank 3 or S is the incidence structure formed by all points and all lines of a

Grassmann variety Gr,n, with n ≥ 3 and 1 ≤ r ≤ n− 2.

Theorem 5.166. If S satisfies (a), (b), (c′), then S is the incidence structure formed

by all points and all lines of a Grassmann variety Gr,n, n ≥ 3, 1 ≤ r ≤ n− 2.

In the case of these Grassmann varieties, the generalised quadrangle of (b) is

always the classical grid Q(3, q). The corresponding versions of these theorems have

also been proved in the infinite case. Theorem 5.165 is due to Cooperstein [75] and

Cohen [72], and Theorem 5.165 is due to Hanssens [154] and Hanssens and Thas

[155].

Section 5.2

This is taken from Payne and Thas [259].
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Generalised quadrangles were introduced by Tits [379]. The classical generalised

quadrangles, all of which are associated with classical groups, were first recognised

as generalised quadrangles also by Tits. Higman [163, 164] first proved Theorem

5.14 by a complicated matrix-theoretic method. The argument given here was used

by Bose and Shrikhande [38] to show that, when t = s2 > 1, then each triad has

1+ s centres; Cameron [63] first observed that the above technique also provides the

inequality.

Concerning proper subquadrangles, the following theorem is due to Payne [254];

see also Thas [319], and Payne and Thas [259].

Theorem 5.167. Let S ′ = (P ′,B′, I′) be a proper subquadrangle of the generalised

quadrangle S = (P ,B, I). Then the following hold:
(i) either s = s′ or s ≥ s′t′;

(ii) if s = s′, then each external point is collinear with 1 + st′ points of S ′;
(iii) if s = s′t′, then each external point is collinear with 1 + s′ points of S ′.

The dual holds similarly.

Now, generalised quadrangles with small parameters are briefly described. The

detailed proofs of all these results can be found in Payne and Thas [259]. Here, let

S = (P ,B, I) be a generalised quadrangle of order (s, t), with 2 ≤ s ≤ 4 and s ≤ t.

By Theorems 5.13 and 5.14, (s, t) is one of the following:

(2, 2), (2, 4), (3, 3), (3, 5), (3, 6), (3, 9),

(4, 4), (4, 6), (4, 8), (4, 11), (4, 12), (4, 16).

A short proof shows that up to isomorphism there is only one generalised quadrangle

of order 2. The uniqueness of the generalised quadrangle of order (2, 4) was proved

independently at least five times, by Seidel [282], Shult [284], Thas [317], Freuden-

thal [138] and Dixmier and Zara [123]. Payne [255] and independently Dixmier and

Zara [123] showed that a generalised quadrangle of order 3 is isomorphic to W(3) or

its dual Q(4, 3). The uniqueness of the case (3, 5) was proved by Dixmier and Zara

[123], who also proved the uniqueness of the case (3, 9); the latter was independently

done by Cameron, for which see Payne and Thas [258]. The non-existence in the case

of order (3,6) was also shown in [123]. Payne [256] proved the uniqueness of the

generalised quadrangle of order 4. The long proof required a correction by Tits; see

Payne and Thas [259]. Single examples are known in the cases (4, 6), (4, 8), (4, 16),
but nothing is known about the cases (4, 11) and (4, 12).

Section 5.3

Theorems 5.51, 5.52, 5.54 are taken from Buekenhout and Lefèvre [57, 58] and

Lefèvre-Percsy [201]. Theorem 5.55 is due to Thas [318].

All finite projective generalised quadrangles were first determined by Bueken-

hout and Lefèvre [57] by a proof most of which is valid in the infinite case. Inde-

pendently, Olanda [251, 252] gave a typically finite proof; Thas and De Winne [347]
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gave a different combinatorial proof under the assumption that the 3-dimensional

case is already settled.

The infinite case was settled by Dienst [121, 120]. For projective Shult spaces of

rank at least three, the infinite case was completely solved in [58] and [201]. Because

the generalised quadrangles, and more generally the Shult spaces, in this book are

finite, the presentation of Buekenhout and Lefèvre has been modified.

All finite generalised quadrangles fully embedded in the affine space AG(d, q),
for d ≥ 2, were determined by Thas [325]. The 3-dimensional case was settled

independently by Bichara [21].

Section 5.4

For d = 3, Theorem 5.58 is due to Lefèvre-Percsy [207], and, for d > 3, to Thas

and Van Maldeghem [357], although the former used a stronger definition for ‘weak

embedding’, proved by the latter to be equivalent to the notion in Section 5.4. Weak

embeddings of Shult spaces in PG(d, q), d ≥ 3, were introduced by Lefèvre-Percsy

[204, 206, 207], but only in the case d = 3 was a complete classification obtained.

Theorem 5.59, which contains the complete classification in the case where the

Shult space has rank at least three and is non-degenerate, is due to Thas and Van

Maldeghem [354]; the degenerate case is handled in Theorem 5.61 and is also taken

from Thas and Van Maldeghem [356]. For details on double-sixes, cubic surfaces,

tritangent planes, trihedral pairs and the case q = 4, see Chapter 20 of FPSOTD.

Theorems 5.62 and 5.63 on lax embeddings of generalised quadrangles are due to

Thas and Van Maldeghem [359, 364]; Theorem 5.64 on lax embeddings of Shult

spaces is also taken from Thas and Van Maldeghem [358].

Section 5.5

The detailed proofs of most of Theorems 5.67 to 5.116 can be found in Payne and

Thas [259, 260]. Theorem 5.71, which is probably the oldest combinatorial char-

acterisation of a class of generalised quadrangles, was discovered independently by

several authors; for example, Singleton [293], Benson [16], and Tallini [306]. The-

orem 5.72 is due to Thas [321], Theorems 5.74 and 5.75 to Thas [315], Theorems

5.76 and 5.77 to Payne and Thas [258], and Theorem 5.77 independently to Maz-

zocca [228].

Theorem 5.79 is taken from Thas [339]. The first three parts of Theorem 5.81

are due to Thas [324], part (iv) to Brown and Thas [49, 50], and Theorem 5.81(i)

independently to Mazzocca [227]. Theorems 5.86 and 5.87 are taken from Thas [324]

and Theorem 5.89 from Thas [327]. Theorem 5.91 on generalised quadrangles and

dual nets is due to Payne and Thas [259, 260], and Theorem 5.93 on dual nets to

Thas and De Clerck [346].

Theorem 5.94 was proved by Thas and Van Maldeghem [355], Theorem 5.95

in the even case by Thas and Payne [350], in the odd case by Brown [43], and a

proof for both cases may be found in Brouns, Thas and Van Maldeghem [39] and

in Brown [46]. Theorem 5.97 is taken from Tallini [306], Theorem 5.98 from Thas
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[320], Theorem 5.99 from Thas and Payne [349], and Theorem 5.101 from Thas and

Van Maldeghem [359]. Theorem 5.102 is due to Thas [321], Theorems 5.103 and

5.104 to Thas and Payne [349] and Thas [321], and Theorems 5.105, 5.106, 5.107 to

Thas [321]. Theorem 5.108, which is a characterisation in terms of matroids, is taken

from Mazzocca and Olanda [230]. A considerable shortening of the original proof

was given by Payne and Thas [259, 260].

Theorem 5.109 is due to Ronan [269]. This approach includes infinite generalised

quadrangles and relies on topological methods. Payne and Thas [259, 260] offer

an ‘elementary’ treatment which is more combinatorial than topological, and which

corrects a slight oversight in the case t = 2. Theorem 5.111 is taken from Thas [327].

Theorem 5.116(i)–(v) is due to Payne and Thas [259, 260], while (vi) is due to

Brown and Lavrauw [48]. The proof of Theorem 5.117 can be found in K. Thas

[370, 375, 376], Theorem 5.118 in K. Thas [377], and Theorem 5.119 in Kantor

[194] and K. Thas [368]. Theorem 5.120 on span-symmetric generalised quadrangles

is due independently to Kantor [196] and K. Thas [371]. Theorem 5.121 was proved

by Ealy [126], Theorem 5.122 by Thas [330, 331].

Using the language of BN pairs, Fong and Seitz [136, 137] obtained a character-

isation of the finite generalised polygons, in particular the finite classical generalised

quadrangles. Tits [381, 382, 383, 384] and Tits and Weiss [385] determined all finite

and infinite Moufang generalised polygons; the finite case, in particular Theorem

5.123, is essentially the theorem of Fong and Seitz. De Medts [99, 100] unified and

shortened the proof of Tits and Weiss for generalised quadrangles. The proofs of the

different parts of Theorem 5.124 can be found in Thas, Payne and Van Maldeghem

[351], Van Maldeghem [391], Tent [309], Haot and Van Maldeghem [156, 157] and

K. Thas and Van Maldeghem [378].

In order to state Theorem 5.97 the notion of linear space was used. Here, a linear

space is an incidence structure S∗ = (P ,B∗,∈) with P a non-empty set, B∗ a non-

empty set of subsets of P , where each of the subsets has cardinality at least two, and

having the property that any two distinct elements (points) of P are contained in a

unique element (line) of B∗.

Section 5.6

Partial geometries were introduced by Bose [36]. Theorem 5.132 is taken from

Cameron, Goethals and Seidel [64]. The proper partial geometries S(K) are due

to Thas [313, 316] and independently to Wallis [394]; the proper partial geometries

T ∗

2 (K) are due to Thas [313, 316]. For surveys on partial geometries, see De Clerck

[85], Thas [322], Brouwer and van Lint [42], De Clerck and Van Maldeghem [93],

and De Clerck [87]; constructions of partial geometries are also contained in Mathon

[226], De Clerck [86], De Clerck, Delanote, Hamilton and Mathon [90], and Hamil-

ton and Mathon [151].
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Section 5.7

Theorem 5.135 is taken from De Clerck and Thas [91] and Theorem 5.136 is taken

from Thas and De Clerck [346]. All finite partial geometries embedded in the affine

space AG(d, q), d ≥ 2, were determined by Thas [325].

Section 5.8

Partial quadrangles were introduced by Cameron [63], semi-partial geometries by

Debroey and Thas [111, 112, 113] and (0, α)-geometries by De Clerck and Thas

[92]. Theorems 5.138 to 5.145 are taken from [111]. Theorem 5.146 is due to De-

broey [109, 110], but here a new and simpler proof is given. Most of the examples of

semi-partial geometries can be found in Brouwer and van Lint [42], Cameron [63],

Debroey and Thas [111], Thas [328], De Clerck and Thas [92], Hall [147], De Clerck

and Van Maldeghem [93], Thas [342], De Clerck [87], De Winter [102], De Winter

and Thas [106], Cossidente and Penttila [77], Devillers and Van Maldeghem [118],

and De Winter and Van Maldeghem [108].

Section 5.9

Lemmas 5.148, 5.149 and Theorems 5.152, 5.153, 5.163 are taken from De Clerck

and Thas [92]. Theorem 5.151 is due to Debroey and Thas [113]; Theorems 5.156

and 5.157 are unpublished results of Thas. Several constructions of (0, α)-sets of

H5, or, equivalently, of projective (0, α)-geometries with ambient space PG(3, q),
are due to De Clerck, De Feyter, and Durante [88]. Lemma 5.160 and Theorems

5.161, 5.162 are taken from Thas, Debroey, and De Clerck [348].

Farmer and Hale [130] proved that any projective (0, s)-geometry with ambient

space PG(n, q), s > 2, n ≥ 3, is a W (n, 2k, s) with 2k ∈ {2, 4, . . . , n + 1}. For

the results on (0, 2)-geometries, see Shult [285], Hall [147], Thas, Debroey, and De

Clerck [348], and GGG1, Section 26.9.

All finite semi-partial geometries embedded in the affine space AG(d, q), with

d ∈ {2, 3}, were determined by Debroey and Thas [112]. Many results on (0, α)-
geometries and semi-partial geometries embedded in AG(d, q) were obtained by De

Clerck and Delanote [89], Brown, De Clerck, and Delanote [47], De Winter [103],

and De Feyter [94, 95, 96, 97, 98]. In this series of papers, De Feyter determines all

(0, 2)-geometries and semi-partial geometries with α = 2 embedded in AG(d, 2h),
up to the classification of all sets of type (0, 1, k), k > 2, in PG(d− 1, 2h).
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Arcs and caps

6.1 Introduction

A (k; r, s;n, q)-set K is defined to be a set of k points in PG(n, q) with at most r

points in any s-space such that K is not contained in a proper subspace. This is a

slight variation on the definition of Section 3.3 of PGOFF2, where the last condition

is not present. The large question is to describe all such sets. Four questions particu-

larly are of interest. The set K is complete if it is not contained in a (k+1; r, s;n, q)-
set.

I. Find the maximum value m(r, s;n, q) of k.

II. Characterise the sets, the maximum sets, with this value of k.

III. Find the size m′(r, s;n, q) of the second-largest, complete (k; r, s;n, q)-set.

IV. Characterise the complete (k; r, s;n, q)-sets.

Question IV includes I, II, and III. The importance of III is that, if K is a

(k; r, s;n, q)-set with k > m′(r, s;n, q), then K is contained in a maximum set.

So upper bounds on m′(r, s;n, q) permit inductive arguments.

In fact, these questions are examined only when r = s + 1, and then only in the

cases s = 1 and s = n− 1.

A (k; 2, 1;n, q)-set is a k-set with at most two points on any line of PG(n, q)
and is also called a k-cap. The number m(2, 1;n, q) is written as m2(n, q). The only

precise values known are the following:

m2(n, 2) = 2n; (6.1)

m2(2, q) =

{
q + 1, q odd,

q + 2, q even;
(6.2)

m2(3, q) = q2 + 1, q > 2; (6.3)

m2(4, 3) = 20; (6.4)

m2(5, 3) = 56; (6.5)

m2(4, 4) = 41. (6.6)

© Springer-Verlag London 2016 305
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Upper bounds for m2(n, q) are determined in Sections 6.2 to 6.4. In the case that

s = n − 1, a (k;n, n − 1;n, q)-set is a k-set not contained in a hyperplane with at

most n points in any hyperplane of PG(n, q) and is also called a k-arc; for n = 2, a

k-cap and a k-arc are equivalent. The numberm(n, n−1;n, q) is written m(n, q); by

definition m(2, q) = m2(2, q). Values obtained in previous chapters are as follows:

m(n, q) = n+ 2 for q ≤ n+ 1; (6.7)

m(2, q) =

{
q + 1, q odd,

q + 2, q even;
(6.8)

m(3, q) = q + 1, q > 3. (6.9)

All other values known and all the values determined in Sections 6.5 to 6.7 are

m(n, q) = q + 1 or q + 2. This leads naturally to the following.

Conjecture 6.1 (The Main Conjecture for Arcs).

(1) If q > n+ 1 with q odd, then m(n, q) = q + 1.

(2) If q > n+ 1, with q even and n /∈ {2, q − 2}, then m(n, q) = q + 1.

In deciding the value of m(n, q), the value of m′(2, q), the size of the second

largest complete arc in PG(2, q), is crucial. It is also useful to write, for q ≥ 5,

f(q) = q −m′(2, q). (6.10)

For q ≤ 5, there is only one complete plane arc and m′(2, q) is not defined. For

other small values of q the results are as in Table 6.1.

q 7 8 9 11 13 16 17 19 23 25 27 29 31 32

m′(2, q) 6 6 8 10 12 13 14 14 17 21 22 24 22 24

f(q) 1 2 1 1 1 3 3 5 6 4 5 5 9 8

Table 6.1. Complete plane arcs

Also

m′(2, q) ≤ q − 1
4

√
q + 25

16
, q odd; (6.11)

the slightly weaker result

m′(2, q) ≤ q − 1
4

√
q + 7

4
, q odd, (6.12)

has been frequently used. Further,
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m′(2, q) ≤ q −
√
q + 1, q even, q > 2; (6.13)

m′(2, q) = q −
√
q + 1, q = 22m, m > 1; (6.14)

m′(2, q) ≤ 44
45
q + 8

9
, q prime; (6.15)

m′(2, q) ≤ q − 1
4

√
pq + 29

16
p+ 1, q = p2m+1, m ≥ 1, p odd; (6.16)

m′(2, q) ≤ q −
√
2q + 2, q = 22m+1, m ≥ 1; (6.17)

m′(2, q) ≤ q − 1
2

√
q + 5, q = ph for p ≥ 5; (6.18)

m′(2, q) ≤ q − 1
2

√
q + 3, q = ph, p ≥ 3; q = 32e when p = 3;

q ≥ 232 and q �= 36 or 55; (6.19)

m′(2, q) ≤ q − 22 when q = 55; (6.20)

m′(2, q) ≤ q − 9 when q = 36; (6.21)

m′(2, q) ≤ q − 9 when q = 232; (6.22)

m′(2, q) ≤ q − 5 when q = 192; (6.23)

m′(2, q) < q − 1 when q > 13 except possibly for q = 37, 41, 43,

47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83. (6.24)

It is convenient to record an elementary result which is subsequently applied in

Section 6.3.

Lemma 6.2. If A,B,C are three sets such that C ⊃ A ∪B, then

|A ∩B| ≥ |A|+ |B| − |C| .

Proof. |A ∩B| = |A|+ |B| − |A ∪B| ≥ |A|+ |B| − |C|. ��

6.2 Caps and codes

Let K be the k-cap {P1, . . . , Pk} where Pi = P(ai0, ai1, . . . , ain). This gives the

k × (n+ 1) matrix

A = [aij ] i = 1, . . . , k; j = 0, . . . , n,

which is a matrix of K. Any permutation of the rows of A or multiplication of a row

of A by an element of Fq
∗ gives another matrix of K. For any projectivity T, write

KT = {P1T, . . . , PkT}.

So the caps K1 and K2 are (projectively) equivalent if K1T = K2 for some projec-

tivity T.
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Lemma 6.3. Let K1 and K2 be caps with matrices A1 and A2. Then K1 and K2 are

equivalent if and only if A2 can be obtained from A1 via a sequence of operations of

the following type:

(C1) multiplication of a column by a non-zero scalar;
(C2) interchange of two columns;
(C3) addition of a scalar multiple of one column to another;
(R1) multiplication of a row by a non-zero scalar;
(R2) interchange of two rows.

Proof. The operation of T on K1 corresponds to a sequence of operations of types

(C1), (C2), and (C3). The operations (R1) and (R2) leave K1 fixed. ��

If A2 can be obtained fromA1 as in the lemma, then A1 and A2 are C-equivalent.

An [N, d]-code over Fq is usually defined to be a d-dimensional subspace of the N -

dimensional vector space V (n, q). In this section, it is more convenient to replace a

vector by its non-zero multiples. So an [N, d]-code is a Πd−1 of PG(N − 1, q). It

is also convenient to represent the points of an [N, d]-code by column vectors rather

than row vectors. A generator matrix A for an [N, d]-code C is thus an N ×d matrix

whose columns generate C. Other generator matrices of C are obtained from A via

operations of types (C1), (C2), (C3).

Two codes are equivalent if one can be obtained from the other by a permutation

of the coordinate indices combined with multiplication of some coordinates by a

non-zero scalar.

Lemma 6.4. Let C1 and C2 be codes with generator matrices A1 and A2. Then C1

and C2 are equivalent if and only if A1 and A2 are C-equivalent.

Proof. From the definition of equivalent codes, a generator matrix of C2 is obtained

from a generator matrix of C1 by operations (R1) and (R2). ��

If K is a k-cap in PG(n, q) with matrix A, the code C of K is the [k, n + 1]-
code with generator matrix A; such a code is a cap-code. It is assumed that K is not

contained in a subspace of lower dimension than n.

Theorem 6.5. Let K1 and K2 be caps with codes C1 and C2. Then K1 is equivalent

to K2 if and only if C1 is equivalent to C2.

Proof. This follows from Lemmas 6.3 and 6.4. ��

An [N, d]-code is projective if the rows of a generator matrix are distinct points

of PG(N − 1, q). Any cap-code is projective.

With, as usual, θ(n) = |PG(n, q)|, given a [k, n+ 1]-code C, denote by M(C) a

k×θ(n) matrix whose columns are the points of C. Given a linearly independent set

{X0, . . . , Xt} of PG(k − 1, q), let M(X0, . . . , Xt) denote a k × θ(t) matrix whose

columns are the points Xj .

Lemma 6.6. The number of zeros in the i-th row of the matrix M(X0, . . . , Xt) is

θ(t) if all the Xj have zero in the i-th row and is θ(t− 1) otherwise.
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Proof. Let Πt be the subspace spanned by X0, . . . , Xt. Intersect Πt with V(Xi).
Then Πt ∩V(Xi) = Πt if Πt ⊂ V(Xi) and Πt ∩V(Xi) = Πt−1 if Πt �⊂ V(Xi). ��

Given a projective [k, n+ 1]-code C, let M1 be the matrix obtained from M(C)
by omitting one row and also those columns having a non-zero entry in that row. By

Lemma 6.6, M1 is a (k − 1)× θ(n − 1) matrix whose columns are the vectors of a

[k−1, n]-code C1. The code C1 is a residual code of C. The code C has k residuals,

one for each row of C; some or all of these residuals may be equivalent codes. By

identifying the vectors of C1 with those of C from which one zero entry has been

omitted, C1 can be regarded as a [k, n]-subcode of C. If A1 is a generator matrix for

a residual code C1 of C, then C is equivalent to a code with generator matrix

A =

[
0 1
A1 ∗

]
.

The matrix A1 is a residual of A. If C1 and A1 are residuals of C and A, then C and

A are extensions of C1 and A1.

Theorem 6.7. A projective code C is a cap-code if and only if every residual code of

C is projective.

Proof. Suppose C1 with matrix A1 is a non-projective residual of C with matrix A

an extension of A1. Then two rows, the i-th and j-th, say, of A1 are the same, up to

a scalar multiple; so the first, (i+ 1)-th and (j + 1)-th rows of A are collinear. So C

is not a cap-code.

Conversely, suppose C is not a cap-code and let A be any generator matrix of

C. Then three rows, say the first, second and third of A, are collinear. However,

using suitable column operations, A is C-equivalent to a matrix whose first row is

(0, 0, . . . , 0, 1). Since column operations preserve the collinearity of rows 1, 2 and 3,

the residual obtained by omitting the first row is non-projective. ��

To fix ideas, consider the small example of the 4-arc (= 4-cap) K in PG(2, 2)
with points P(1, 0, 0),P(0, 1, 0),P(0, 0, 1),P(1, 1, 1). A matrix for K is

A =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 1

⎤⎥⎥⎦ .
It is a generator matrix for a [4, 3]-code C for which a suitable M(C) is

M(C) =

⎡⎢⎢⎣
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 1 0 0 0 1

⎤⎥⎥⎦ .
The residuals with respect to the four rows of M(C) are
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0 1 1
1 1 0

⎤⎦ ,
⎡⎣ 1 0 1
0 1 1
1 1 0

⎤⎦ ,
⎡⎣ 1 0 1
0 1 1
1 1 0

⎤⎦ ,
⎡⎣ 1 1 0
1 0 1
0 1 1

⎤⎦ .
Now, the weight distribution of a cap-code is considered. Let X be a vector, that

is, a column of the code C.

The weight of X , denoted w(X), is the number of non-zero entries in X . Denote

the vectors of a [k, n + 1]-code C by X1, X2, . . . , Xθ(n) and let wi = w(Xi), for

i ∈ Nθ(n). Order the Xi so that w1 ≥ w2 ≥ · · · ≥ wθ(n). The ordered θ(n)-tuple

(w1, . . . , wθ(n)) is the weight distribution of C. Equivalent codes have the same

weight distribution. It turns out that cap-codes have large minimum weight. For a

[k, n + 1]-code C, let C⊥ be the dual code; that is, C⊥ is the [k, k − n − 1]-code

consisting of points P(Y ) in PG(k − 1, q) such that XY ∗ = 0 for all X in C. If C

is a code of the cap K, then C⊥ has minimum weight at least four; for, if any vector

in C⊥ had three or less non-zero entries, its orthogonality with C would force C to

be non-projective or would induce a collinearity of the corresponding three rows of

C. Conversely, if C⊥ has minimum weight at least four, then C is a cap-code. Thus

m2(n, q) is the maximum value of N for which one error can be corrected and three

detected with certainty by an [N,N − n− 1]-code.

Theorem 6.8. Let K be a k-cap in PG(n, q) with code C. Then the minimum weight

of C, as well as that of any residual, is at least k −m2(n− 1, q).

Proof. Let X be any vector in C and suppose X has t zeros. Let A be a generator

matrix of C with X as first column. Since the rows of A form a cap and since any

subset of a cap is also a cap, it follows that those rows having a zero as first coordinate

form a t-cap in a hyperplane of PG(n, q). Hence t ≤ m2(n − 1, q) and therefore

w(X) = k − t ≥ k − m2(n − 1, q). The result holds for a residual C1, since any

vector in C1 is obtained from a vector in C by omitting one zero and so leaving the

weight unchanged. ��

Lemma 6.9. Let (w1, . . . , wθ(n)) be the weight distribution of a projective [k, n+1]-
code C. Then

(i)
∑

wi = kqn; (6.25)

(ii)
∑

w2
i
= kqn−1

{k(q − 1) + 1}. (6.26)

Proof. (i) By summing over columns, the number of non-zero entries in M(C) is∑
wi and, by Lemma 6.6, is also kqn by summing over rows.

(ii) Let Z1, Z2, . . . , Zk be the rows of the matrix M(C) and also let B be the

k(k − 1)(q − 1)× θ(n) matrix with rows Zi + λZj , (i, j) ∈ N2
k
, i �= j, λ ∈ Fq

∗.

Since C is projective, the rows of B are all non-zero; so, by Lemma 6.6, each row

has θ(n−1) zeros. The i-th column of B has wi(wi−1)+(k−wi)(k−wi−1)(q−1)
zeros. Counting the zero entries of B via columns and rows thus gives
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q
∑

w2
i
− {1 + (2k − 1)(q − 1)}

∑
wi + θ(n)k(k − 1)(q − 1)

= k(k − 1)(q − 1)θ(n− 1). (6.27)

Substituting
∑

wi from (6.25) gives the result. ��

Now write m1 = m2(n − 1, q). Then Theorem 6.8 says that, for a cap-code,

wi ≥ k −m1. So consider the amended weights ui given by

ui = wi − (k −m1). (6.28)

Then u1 ≥ u2 ≥ · · · ≥ uθ(n) ≥ 0 and (u1, . . . , uθ(n)) is the amended weight

distribution of C. For a residual code C1 of C, let (v1, . . . , vθ(n−1)) consist of the

amended weights of the corresponding columns of M(C) with

v1 ≥ v2 ≥ · · · ≥ vθ(n−1) ≥ 0;

each vi is some uj . By abuse of language, (v1, . . . , vθ(n−1)) is called the amended

weight distribution of C1.

Lemma 6.10. Let C be a projective [k, n+ 1]-cap-code with amended weight distri-

bution (u1, u2, . . . , uθ(n)). Then

(i)
∑

ui = m1θ(n)− kθ(n− 1); (6.29)

(ii)
∑

u2
i
= k2θ(n− 2) + k(qn−1

− 2m1θ(n− 1)) +m2
1θ(n). (6.30)

For a residual code C1 of C with amended weight distribution (v1, v2, . . . , vθ(n−1)),

(iii)
∑

vi = (m1 − 1)θ(n− 1)− (k − 1)θ(n− 2); (6.31)

(iv)
∑

v2
i
= (k − 1)2θ(n− 3) + (k − 1){qn−2

− 2(m1 − 1)θ(n− 2)}

+(m1 − 1)2θ(n− 1). (6.32)

Proof. Equations (6.29)–(6.32) are just restatements of the previous lemma. ��

It should be noted that (6.31) and (6.32) only hold because a residual of a cap-

code is projective, which is not true for general codes.

Theorem 6.11. Let C be a [k, n+1]-cap-code with weight distribution and amended

weight distribution (w1, w2, . . . , wθ(n)) and (u1, u2, . . . , uθ(n)). Then

(i) w1 + w2 ≤ m1(q − 1) + k; (6.33)

(ii) u1 + u2 ≤ m1(q + 1)− k. (6.34)

For a residual of C with amended weight distribution (v1, v2, . . . , vθ(n−1)),
(iii) v1 + v2 ≤ m1(q + 1)− q − k. (6.35)
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Proof. (i) By Lemma 6.6, each row of the k×(q+1) matrix M(X1, X2) has at least

one zero. Hence, counting the zeros of M(X1, X2) gives

(k − w1) + (k − w2) +
∑

λ∈Fq

∗

{k − w(X1 + λX2)} ≥ k.

By Theorem 6.8, w(X1 + λX2) ≥ k −m1. So

w1 + w2 ≤ k +m1(q − 1).

(ii), (iii) These follow immediately. ��

Now the bounds of Theorems 6.8 and 6.11 together with the identities of Lemma

6.10 give restrictions on m2(n, q).

Theorem 6.12. For n ≥ 4 and q �= 2,

m2(n, q) ≤ qm2(n− 1, q)− q + 1. (6.36)

Proof. Induction on n is used. Suppose K is a k-cap in PG(n, q) with code C. A

residual code C1 is a projective [k − 1, n]-code. So, if C1 has weight distribution

w′

1, . . . , w
′

θ(n−1)
, then Lemma 6.9 gives∑

w′

i
= (k − 1)qn−1 (6.37)

and Theorem 6.8 gives ∑
w′

i
≥ (k −m1)θ(n − 1). (6.38)

Hence (6.37) and (6.38) imply that

k ≤ m1q + (m1 − qn−1)(q − 1)/(qn−1
− 1). (6.39)

Next, it is deduced by induction that m2(n, q) ≤ qn−1 + 1. First, by Theorem

16.1.5 of FPSOTD, m2(3, q) = q2 + 1. However, the induction hypothesis is that

m1 = m2(n− 1, q) ≤ qn−2 + 1. Then (6.39) gives

k ≤ qn−1 + 1− (qn−1
− qn−2)/(qn−1

− 1)

and so k ≤ qn−1 + 1. Hence m1 ≤ qn−2 + 1. Substituting this in the second

occurrence of m1 in (6.39) implies that

k ≤ m1q + (qn−2 + 1− qn−1)(q − 1)/(qn−1
− 1) ≤ m1q − q + 1. ��

Now (6.36) is improved by showing that equality cannot hold.

Theorem 6.13. For n ≥ 4 and q �= 2,

m2(n, q) ≤ qm2(n− 1, q)− q. (6.40)
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Proof. Suppose K is a k-cap with k = qm1 − q + 1. Let C1 be any residual of the

code C of K and let C1 have amended weight distribution (v1, . . . , vθ(n−1)). Then

(6.31) and (6.32) give∑
vi = m1 − 1, (6.41)∑
v2
i
= (m1 − 1){qn−1

− (q − 1)(m1 − 1)}. (6.42)

Since
∑

v2
i
≤ (
∑

vi)
2,

qn−1
− (q − 1)(m1 − 1) ≤ m1 − 1;

this gives m1 ≥ qn−2 + 1. However, in Theorem 6.12 it was shown inductively that

m1 ≤ qn−2 + 1; that is, m1 = qn−2 + 1. By (6.40) and since

m2(n− 2, q) ≤ qn−3 + 1,

it now follows that m2(n− 2, q) = qn−3 + 1. Proceeding in this way,

m2(s, q) = qs−1 + 1

for all 3 ≤ s < n. To prove the theorem, it therefore suffices to show that

m2(4, q) < q3 + 1.

This is shown geometrically in Theorem 6.16.

Alternatively, suppose K is a (q3 + 1)-cap in PG(4, q). Then (6.41) and (6.42)

give (∑
vi

)2
=
∑

v2
i
= q4.

So

(v1, v2, . . . , vθ(n−1)) = (q2, 0, . . . , 0),

(w′

1, w
′

2, . . . , w
′

θ(n−1)) = (q3, q3 − q2, . . . , q3 − q2).

Thus, each of the k residuals of C contains a vector of weight q3. Since any vector

of weight q3 is contained in (q3 + 1)− q3 = 1 residual, there are k distinct vectors

of weight q3 in C. In particular,

w1 + w2 = 2q3.

However, from (6.33),

w1 + w2 ≤ (q2 + 1)(q − 1) + q3 + 1 < 2q3. ��

The next result is an improvement.
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Theorem 6.14. In PG(n, q), q > 2,

(i) m2(n, q) ≤ qm2(n− 1, q)− (q + 1) for n ≥ 4; (6.43)

(ii) m2(n, q) ≤ qn−4m2(4, q)− qn−4
− 2θ(n− 5) + 1 for n ≥ 5. (6.44)

Proof. (i) See Section 6.8.

(ii) This follows from (i) by induction. ��

For q odd, there is a major improvement; the larger n is, the better the improve-

ment.

Theorem 6.15. In PG(n, q), n ≥ 4, q = ph with p odd,

m2(n, q) ≤
nh+ 1

(nh)2
qn +m2(n− 1, q).

6.3 The maximum size of a cap for q odd

In this section some upper bounds for m2(n, q) are proved. First, a general bound is

given that is useful in that it holds for all q > 2. The first result is also implicit in

Theorem 6.13.

Theorem 6.16. For q > 2 and n ≥ 4,

m2(n, q) ≤ qn−1. (6.45)

Proof. Suppose there exists a k-cap K with k = qn−1 + 1. First, it is shown that,

for q even, any plane meets K in at most q + 1 points. Suppose therefore that π ∩ K

is a (q + 2)-arc for some plane π, and consider the θ(n − 3) solids Π
(i)

3 through π,

i ∈ Nθ(n−3). If |Π
(i)

3 ∩ (K\π)| = di, then∑
di = qn−1 + 1− (q + 2) = qn−1

− q − 1. (6.46)

Since m2(3, q) = q2 + 1,

di + q + 2 ≤ q2 + 1,

whence

di ≤ q2 − q − 1. (6.47)

So ∑
di ≤ (q2 − q − 1)θ(n− 3)

= qn−1
− q − θ(n− 3)

< qn−1
− q − 1,
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for n ≥ 4. This contradiction implies that K has no (q + 2)-arc as a plane section.

Now, for all q > 2, let P1 and P2 be points of K and consider the θ(n−2) planes

through the line P1P2. They contain at most

(q − 1)θ(n− 2) + 2 = qn−1 + 1 = k

points. So each of these planes must meet K in a (q + 1)-arc.

Consider a hyperplane Πn−1 through P1P2. The θ(n − 3) planes through P1P2

in Πn−1 all meet K\{P1, P2} in q − 1 points, whence

|Πn−1 ∩K| = (q − 1)θ(n− 3) + 2 = qn−2 + 1.

So K′ = Πn−1 ∩ K is a (qn−2 + 1)-cap. It follows from this argument that any

hyperplane meeting K meets it either in a single point or in a (qn−2 + 1)-cap. Let

Q be a point of K. There are qn−1 bisecants of K through Q and so the number of

unisecants through Q is θ(n− 1)− qn−1 = θ(n− 2) . Let �1 and �2 be two of them.

Then every line through Q in the plane �1�2 is also a unisecant to K, as otherwise the

plane �1�2 would meet K in a (q + 1)-arc with two unisecants at Q, a contradiction.

So the set S of points on the unisecants through Q has the property that the line

joining two points of S is in S. Thus S is a subspace and hence a hyperplane, which

is called the tangent hyperplane to K at Q.

Let P1 and P2 be two points of K with tangent hyperplanes T1 and T2. As T1 and

T2 are distinct, they meet in a Πn−2 skew to K. Let r be the number of hyperplanes

throughΠn−2 other than T1 and T2 which are tangent to K and s the number of other

hyperplanes through Πn−2 meeting K. So

r + s ≤ q − 1. (6.48)

Counting the points of K\{P1, P2} gives

r + s(qn−2 + 1) = qn−1
− 1. (6.49)

However, from (6.48),

r + s(qn−2 + 1) ≤ q − 1− s+ s(qn−2 + 1)

= q − 1 + sqn−2

≤ q − 1 + (q − 1)qn−2

= (q − 1)(qn−2 + 1). (6.50)

But, (q − 1)(qn−2 + 1) < qn−1 − 1. So (6.49) and (6.50) cannot both hold. This

proves the theorem. ��

Now, Theorem 6.16 is improved first for q odd and then for q even. In both cases,

however, it is necessary for q to be sufficiently large. The main result for q odd is

a consequence of the following result, which appeared as the corollary of Theorem

18.4.8 of FPSOTD.
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Theorem 6.17. In PG(3, q), q odd and q ≥ 67, if K is a complete k-cap which is

not an elliptic quadric, then

k < q2 − 1
4
q3/2 + 2q.

More precisely,

k ≤ q2 − 1
4
q3/2 +R(q),

where

R(q) = (31q + 14
√
q − 53)/16.

To obtain a similar result in PG(4, q), consider a k-cap K and examine the sec-

tions of K by three solids through a plane π which has a sufficiently large intersection

with K.

Lemma 6.18. InPG(4, q), q ≥ 67 and odd, let K be a k-cap and π a plane such that

π∩K is an s-arc with s > q− 1
4

√
q+ 7

4
. Then there do not exist three distinct solids

for i = 1, 2, 3.

Proof. Suppose that the lemma is false. Then, by Theorem 6.17, each Ki is contained

in a (unique) elliptic quadric Qi. So Q1∩Q2∩Q3 is the unique conic in π containing

π ∩ K.

(I) There exists a quadric Q meeting αi in Qi, i = 1, 2, 3

The set M = K1 ∪ K2 ∪ K3 is an m-cap contained in K with

m = s+
∑

(ki − s) = k1 + k2 + k3 − 2s.

As s ≤ q + 1, so

m > 3(q2 − 1
4
q3/2 +R(q))− 2(q + 1)

= 3(q2 − 1
4
q3/2) + 1

16
(61q + 42

√
q − 191). (6.51)

There are two possibilities for Q. Either Q = P4, the non-singular quadric, or else

Q = Π0E3, the singular quadric with vertex Π0 and base E3.

(a) Q = P4

First, P4 comprises (q2 + 1)(q + 1) points on the same number of lines with

q + 1 lines through a point. Through each point of a line � on P4 there pass q other

lines, whence q(q + 1) lines �′ on P4 meet �. No two of these lines �′ meet off �, as

otherwise their plane would meet P4 in a cubic curve. Also, P4 contains q2(q + 1)
points off �. So, through each point of P4\� there is exactly one line �′. The m-cap

M has at most two points on � and on each �′, and every point of M lies on � or

some �′. Hence

m ≤ 2 + 2q(q + 1) = 2(q2 + q + 1). (6.52)

From (6.51) and (6.52),

α1, α2, α3 containingπ such thatKi = αi∩K is a k -cap with ki > q2− 1
4
q3/2+R(q)i
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3(q2 − 1
4
q3/2) + 1

16
(61q + 42

√
q − 191) < m ≤ 2(q2 + q + 1).

Hence

q2 − 3
4
q3/2 + 3

4
(29q + 42

√
q − 223) < 0,

a contradiction.

(b) Q = Π0E3

Through Π0 there are q2 + 1 generators of Q each containing at most two points

of M. So

m ≤ 2(q2 + 1). (6.53)

From (6.51) and (6.53),

3(q2 − 1
4
q3/2) + 1

16
(61q + 42

√
q − 191) < m ≤ 2(q2 + 1).

Hence

q2 − 3
4
q3/2 + 1

16
(61q + 42

√
q − 223) < 0,

a contradiction.

(II) There is a pencil Φ of quadric hypersurfaces through Q1 and Q2 none of which

contains Q3

The members of Φ cut out on α3 a pencil Φ′ of quadric surfaces all containing the

conic C, the unique conic through π ∩ K. One member of Φ′ is π repeated, and

Q3 /∈ Φ′. So Φ′ cuts out on Q3 a set of quartic curves C ∪ C′ with C′ quadric curves

in planes π′ of a pencil in α3; each quadric C′ is either a conic or a point. Denote the

set of quadrics C′ by Ψ. Then C ∈ Ψ and the planes π′ have a common line � in π.

As k3 − (q + 1) > 2(q + 1) + (q − 2)(q − 1
4

√
q), there are at least three planes

π′ other than π meeting K3 in a k′-arc K′ with k′ > q − 1
4

√
q. Since K′ ⊂ Q3, each

of these K′ is contained in a conic C′ = π′ ∩Q3. For at least one of these planes the

quadric V of Φ meeting Q3 in C ∪ C′ is non-singular. It is now shown that, for such

a K′, there exists a line P ′P1P2, where P ′ ∈ K′, P1 ∈ K1, P2 ∈ K2.

Take a point P ′ ∈ C′\C. Since it is simple for V , the tangent space TP ′(V) to V

at P ′ meets V in a cone P ′P2. So there are q + 1 lines �′ of V in TP ′(V). As C′ is

non-singular, the space TP ′(V) does not contain C. Consequently, TP ′(V) meets C

in at most two points whence at most two lines �′ meet π. The others, in number at

least q − 1, all meet α1 in a point P1 of Q1 and α2 in a point P2 of Q2, with P1, P2

not in C. Also P1 �= P2 since α1 ∩ α2 = π and P1, P2 /∈ π. Further, Pi �= P ′ for

i = 1, 2, since every point of αi ∩ C′ lies on C.

Let P ′ ∈ K′\C and note that |K′\C| > q − 1
4

√
q − 2. For each such P ′, there

are at least q − 1 points P1. Conversely, each P1 is derived from at most two P ′,

namely K′ ∩ TP1
(V), unless TP1

(V) contains π′ and hence K′. The exceptional case

can only occur twice, when P1 lies on the polar line of the plane π′. Thus each P ′

gives at least q−3 points P1, apart from the exceptions; each P1 comes from at most

two P ′. Thus, with A = {P1 ∈ Q1 obtainable from some P ′ ∈ K′},
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|A| > 1
2
(q − 1

4

√
q − 2)(q − 3)

= 1
2
q2 − 1

8
q3/2 − 5

2
q + 3

8

√
q + 3.

Let B = K1, C = Q1 and K∗

1 = {P1 ∈ K1 obtainable from some P ′ ∈ K′}.

Then K∗

1 = A ∩B. So, by Lemma 6.2,

|K
∗

1 | >
1
2
q2 − 1

8
q3/2 − 5

2
q + 3

8

√
q + 3 + (q2 − 1

4
q3/2 +R(q))− (q2 + 1)

= 1
2
q2 − 3

8
q3/2 − 1

16
(9q − 20

√
q + 21).

The line P ′P1 with P ′ in K′ and P1 in K∗

1 meets α2 in a point P2 of Q2\C. Such a

P2 is obtained at most twice when |TP2
(V) ∩K′| ≤ 2, unless TP2

(V) ⊃ π′, which

can occur for at most two points P2, where the polar line of π′ meets Q2. Thus, with

A = {P2 ∈ Q2 obtainable from some P1P
′},

|A| ≥ 2 + 1
2
(|K∗

1 | − 2|K′
\C|) ≥ 2 + 1

2
|K

∗

1| − (q + 1)

= 1
4
q2 − 3

16
q3/2 − 1

32
(41q − 20

√
q − 11).

Now, let B = K2 and C = Q2. Therefore, if

K
∗

2 = {P2 ∈ K2 | P ′P1P2 is a line with P ′
∈ K

′, P1 ∈ K
∗

1},

Lemma 6.2 gives

|K
∗

2| >
1
4
q2 − 3

16
q3/2 − 1

32
(41q − 20

√
q − 11)

+(q2 − 1
4
q3/2 +R(q))− (q2 + 1)

= 1
4
q2 − 7

16
q3/2 + 1

32
(21q + 48

√
q − 127)

> 0.

So there is a line meeting K′,K1,K2 in distinct points. Therefore K is not a cap,

which provides the desired contradiction. ��

Theorem 6.19. In PG(n, q), n ≥ 4, q ≥ 197 and odd,

m2(n, q) < qn−1
−

1
4
qn−3/2 + 2qn−2.

In fact, for q ≥ 67 and odd,

m2(n, q) < qn−1
−

1
4
qn−3/2

+ 1
16
(31qn−2 + 22qn−5/2 − 112qn−3 − 14qn−7/2 + 69qn−4)

− 2(qn−5 + qn−6 + · · ·+ q + 1) + 1,

where there is no term −2(qn−5 + · · ·+ 1) for n = 4.

Proof. Let K be a k-cap in PG(n, q).
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(I) n = 4

(a) There is no plane π such that π ∩ K is an s-arc with

s > q − 1
4

√
q + 7

4
.

Take a line � meeting K in two points. There are q2 + q + 1 planes π through � each

meeting K in an m-arc with m ≤ q − 1
4

√
q + 7

4
. So

k ≤ 2 + (q2 + q + 1)(q − 1
4

√
q − 1

4
)

= q3 − 1
4
q5/2 + 1

4
(3q2 − q3/2 + 3q −

√
q − 1)

< q3 − 1
4
q5/2 + 1

16
(31q2 + 22q3/2 − 112q − 14q1/2 + 85).

(b) There is a plane π such that π ∩ K is an s-arc with s > q − 1
4

√
q + 7

4
.

Then, by Lemma 6.18, for q ≥ 67, there are at most two solids through π meeting

K in an elliptic quadric, and, for the other q − 1 solids α through π,

|α ∩ K| ≤ q2 − 1
4
q3/2 +R(q).

So

k ≤ s+ 2(q2 + 1− s) + (q − 1)[q2 − 1
4
q3/2 + 1

16
(31q + 14

√
q − 53)− s]

= q3 − 1
4
q5/2 + 1

16
(47q2 + 18q3/2 − 84q − 14q1/2 + 85)− sq

< q3 − 1
4
q5/2 + 1

16
(47q2 + 18q3/2 − 84q − 14q1/2 + 85)− q(q − 1

4

√
q + 7

4
)

= q3 − 1
4
q5/2 + 1

16
(31q2 + 22q3/2 − 112q − 14q1/2 + 85)

< q3 − 1
4
q5/2 + 2q2 for q ≥ 197.

(II) n > 4

The induction formula of Theorem 6.14 gives that

m2(n, q) ≤ qn−4m2(4, q)− qn−4
− 2(qn−5 + · · ·+ 1) + 1

< qn−1
−

1
4
qn−3/2 + 1

16
(31qn−2 + 22qn−5/2

−112qn−3
− 14qn−7/2 + 69qn−4)

−2(qn−5 + · · ·+ 1) + 1 for q ≥ 67

< qn−1
−

1
4
qn−3/2 + 2qn−2

− qn−4

−2(qn−5 + · · ·+ 1) + 1 for q ≥ 197

< qn−1
−

1
4
qn−3/2 + 2qn−2 for q ≥ 197.

��

6.4 The maximum size of a cap for q even

Before looking at an upper bound for m2(n, q) for q even and q > 2, it is necessary to

improve the upper bound for m′

2(3, q), the size of the second largest cap in PG(3, q);
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alternatively, if a k-cap of PG(3, q) has k > m′

2(3, q), then it is contained in a

(q2 + 1)-cap. In Theorem 18.3.2 of FPSOTD it was shown that, for q even with

q > 2,

m′

2(3, q) ≤ q2 − 1
2

√
q + 1.

For any k-cap K in PG(n, q), as above, a 1-secant line is called a tangent or a

unisecant, a 2-secant line is a bisecant, and a 0-secant line is an external line. Also,

let t be the number of tangents through a point P of K; for a point Q not in K, let

σ1(Q) be the number of tangents throughQ and let σ2(Q) be the number of bisecants

through Q.

Lemma 6.20. For a k-cap K in PG(n, q),

(i) t+ k = θ(n− 1) + 1;
(ii) σ1(Q) + 2σ2(Q) = k.

Lemma 6.21. In PG(n, q) with q even, if Q is a point not on the k-cap K such that

σ2(Q) ≥ 1, then σ1(Q) ≤ t.

Proof. See Lemma 18.3.1 of FPSOTD, where the proof is given for PG(3, q), but it

extends immediately to PG(n, q). ��

Corollary 6.22. If K is a complete k-cap of PG(n, q), with n ≥ 3 and q even, then

σ1(Q) ≤ t for all points Q off K.

Lemma 6.23. Let K be a complete k-cap in PG(3, q) with q even. If Π is a plane

such that |Π ∩ K| = x, then t(t− 1) ≥ q(q + 2− x)x.

Proof. As each of the q2 + q + 1 lines through a point P ∈ PG(3, q)\Π meets Π in

a point, each of the t(k − x) tangents through the points of K\Π meets Π in a point

of Π\K. As there are x(q + 2− x) tangents to K on Π, so, counting the pairs (Q, �)
with � a tangent of K, Q ∈ Π\K and Q ∈ �,∑

Q∈Π\K

σ1(Q) = t(k − x) + x(q + 2− x)q

≤ t(q2 + q + 1− x) = t(t+ k − 1− x).

Hence t(t− 1) ≥ q(q + 2− x)x. ��

Theorem 6.24. For q even, q ≥ 8,

m′

2(3, q) ≤ q2 − q + 5.

Proof. Let K be a complete k-cap in PG(3, q), with q even, q ≥ 8 and k < q2 + 1.

Suppose there exists a plane Π0 such that 4 ≤ |Π0 ∩K| ≤ q− 2. Let x0 = |Π0 ∩K|

and f(y) = q(q + 2− y)y. Then, by Lemma 6.23,

t(t− 1) ≥ f(4) = f(q − 2) = 4q(q − 2).
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So

t ≥ 1
2

{
1 +
√
1 + 16q(q − 2)

}
≥ 2q − 2.

Therefore k ≤ q2 − q + 5.
Suppose that either |Π∩K| ≤ 3 or |Π∩K| ≥ q− 1 for any plane Π of PG(3, q).

Let l1, . . . , lt be the t tangents to K through a point P ∈ K. There are three cases to

consider.

(I) There exists exactly one plane Πli
through any li such that |Πli

∩ K| ≤ 3 for

1 ≤ i ≤ t

Suppose that there is exactly one plane Π throughP with |Π∩K| ≤ 3. Then Πli
= Π

for all i. Hence all tangents to K through P are in Π. Therefore t ≤ q + 1 and so

k ≥ q2 +1, a contradiction. So there are at least two planes Πj , j = 1, 2, through P

such that |Πj ∩K| ≤ 3. Each plane Πj contains at least q − 1 tangents to K through

P . Thus t ≥ 2(q − 1) and so k ≤ q2 − q + 4.

(II) There exist two planes through some tangent lc, 1 ≤ c ≤ t, with at most three

points in K

Any plane through lc meets K in at most q + 1 points since lc is a tangent of K.

Counting the points of K on the q + 1 planes through lc shows that

k − 1 ≤ 2× 2 + (q − 1)q.

So k ≤ q2 − q + 5.

(III) There is no plane through some tangent ld, 1 ≤ d ≤ t, with at most three

points in K

Then |Πi ∩ K| ≥ q − 1 for any plane Πi through ld. By (6.13), Πi ∩ K can be

completed to a (q + 2)-arc, which meets ld in a point Pi other than P . As there are

q+1 points Pi and only q points on ld for them to occupy, so two of the Pi coincide;

say P1 = P2. Thus the number of tangents to K through P includes the joins of P1

to the points of Π1 ∩ K and Π2 ∩ K. Hence t ≥ σ1(P1) ≥ 2(q − 2) + 1, whence

k ≤ q2 − q + 5. ��

Theorem 6.25. In PG(3, 4),

(i) m′

2(3, 4) = 14;
(ii) a complete 14-cap consists of the points on the generators of a cone Pβ, where

P is the vertex and β is a PG(2, 2), outside a PG(3, 2) containing P and β.

Proof. See Section 6.8. ��

Theorem 6.26. Let q be even.

(i) For q ≥ 8,
m′

2(3, q) < q2 − (
√
5− 1)q + 5.
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(ii) For q ≥ 16,
m′

2(3, q) ≤ q2 − q + 2.

(iii) For q ≥ 128,
m′

2(3, q) ≤ q2 − 2q + 8.

Proof. See Section 6.8. ��

Now the maximum number of points on a cap in PG(4, q) is considered.

Theorem 6.27. For q even, and q ≥ 8,

m2(4, q) ≤ q3 − q2 + 6q − 3.

Proof. Suppose there exists a complete k-cap K in PG(4, q) with

k > q3 − q2 + 6q − 3. (6.54)

Then, with t the number of tangents through a point of K,

t < 2q2 − 5q + 5, (6.55)

by Lemma 6.20(i). A contradiction is obtained in several stages.

(I) K contains no plane q-arc

Suppose that π is a plane such that π ∩ K is a q-arc Q. Consider two subcases.

(a) Suppose there exist three solids δ1, δ2, δ3 containing the plane π such that, for

i = 1, 2, 3,

|δi ∩ K| > q2 − q + 5.

Then, by Theorem 6.24, δi ∩ K can be completed to an ovoid Oi. So Oi ∩ π is a

(q + 1)-arc Q ∪ {Ni}. However, since Q can be contained in no more than two

(q + 1)-arcs, at least two of the Ni coincide; say N1 = N2. The joins of N1 to the

points of δ1 ∩ K and δ2 ∩K are all tangents to K. Hence

σ1(N1) > 2(q2 − 2q + 5) + q. (6.56)

Since K is complete, σ1(N1) ≤ t by Lemma 6.21. So (6.55) and (6.56) imply that

2q + 5 < 0,

a contradiction.

(b) If there are at most two solids δ1 and δ2 through π such that, for i = 1, 2,

|δi ∩ K| > q2 − q + 5,

then, counting the points of K on the solids through π,

k ≤ (q − 1)(q2 − 2q + 5) + 2(q2 + 1− q) + q

= q3 − q2 + 6q − 3,

in contradiction to (6.54).
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(II) There exists no solid δ such that q2 + 1 > |δ ∩ K| > q2 − q + 5

Suppose δ exists. Let δ ∩ K = K′. Then K′ can be completed to an ovoid O by

Theorem 6.24. Let N ∈ O\K′ and let N ′ ∈ K′. Consider the q + 1 planes of δ

through NN ′. Since each of these planes meets O in a (q+1)-arc, each plane meets

K′ in at most a q-arc. By (I), there is no q-arc on K; so each of these planes meets K′

in at most a (q − 1)-arc. Therefore a count on the points of K′ gives

q2 − q + 5 < |K
′
| ≤ (q + 1)(q − 2) + 1,

whence 6 < 0, a contradiction.

(III) For a point N not in K, there do not exist planes π1, π2 with π1 ∩ π2 = {N}

and such that πi ∩ K is a (q + 1)-arc with nucleus N for i = 1, 2

Suppose π1 and π2 exist. Let δ be a solid containing π1. Then δ∩K contains at least

q + 2 tangents through N , of which q + 1 are in π1 and one of which is in π2; so

|δ ∩K| < q2 + 1. Suppose now that

|δ ∩K| ≤ q2 − q + 5

for any such solid δ. Then a count on the points of K in the solids through π1 gives

k ≤ (q + 1)(q2 − 2q + 5) + (q + 1);

that is,

k ≤ q3 − q2 + 4q + 6. (6.57)

But (6.54) and (6.57) imply that 2q− 9 < 0, a contradiction; thus there exists a solid

δ such that

q2 + 1 > |δ ∩K| > q2 − q + 5.

But this contradicts (II). So π1 and π2 do not exist.

(IV) The tangents through any point Q off K lie in a solid

Let δ be a solid not containing Q and let V be the set of intersections of tangents to

K through Q with δ. It is shown that each point of V is on at least two lines of V .

Let R ∈ V and let r be the corresponding tangent. Suppose, for at most one plane

π through r, that |π ∩ K| = q + 1. Then, since there is no q-arc on K, counting the

points of K on the planes through r gives

k ≤ (q2 + q)(q − 2) + q + 1,

a contradiction to (6.54).

Now let π1 and π2 be planes through r meeting K in (q + 1)-arcs. If Q is the

nucleus of both π1 ∩K and π2 ∩K, then there are two lines of V through R, namely

π1 ∩ δ and π2 ∩ δ. Therefore, suppose that Q is not the nucleus of π1 ∩ K. If, for at

most one solid δ′ through π1, the equality |δ′ ∩K| = q2 + 1 holds, then, by (II),
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k ≤ q2 + 1 + q(q2 − q + 5− q − 1),

whence

k ≤ q3 − q2 + 4q + 1. (6.58)

But (6.58) contradicts (6.54). Thus there are two solids δ1 and δ2 through π1 for

which δi ∩K = Oi is an ovoid. Then Q is the nucleus of a (q+1)-arc Mi on Oi for

i = 1, 2. The tangents of Mi meet δ in a line �i through R, and the lines �1 and �2
are distinct since Q is not the nucleus of π1 ∩ K. Thus R always lies on at least two

lines of V .

If there existed two skew lines in V , then there would be two planes π1 and π2

through Q with π1 ∩ π2 = {Q} and Q the nucleus of both π1 ∩ K and π2 ∩ K, in

contradiction to (III). Thus the lines of V either all have a common point or all lie in

a plane. Since each point of V is on at least two lines of V , all lines of V lie in plane.

Hence V is a subset of a plane and the tangents to K through Q lie in a solid.

(V) The final contradiction is obtained by counting the tangents of K

Consider the function

G(x) = x(q3 + q2 + q + 2− x).

It attains its maximum value for x = 1
2
(q3 + q2 + q + 2). Since, by Theorem 6.16

and (6.54),

q3 ≥ k > q3 − q2 + 6q − 3 > 1
2
(q3 + q2 + q + 2),

so

kt = k(q3 + q2 + q + 2− k) ≥ G(q3) = q3(q2 + q + 2). (6.59)

By (IV), all tangents through a point Q off K lie in a solid, which contains at

most q2 + 1 points of K. However, an ovoid has exactly q + 1 tangents through an

external point. So, throughQ, there are at most q2 tangents of K. A count of the pairs

(R, r) where R is a point off K and r a tangent to K through R gives

(q4 + q3 + q2 + q + 1− k)q2 ≥ ktq. (6.60)

From (6.54), (6.59) and (6.60),

(q4 + q3 + q2 + q + 1− q3 + q2 − 6q + 3)q

> kt ≥ q3(q2 + q + 2).

Hence

q4 + 2q2 − 5q + 4 > q4 + q3 + 2q2,

and

q3 + 5q − 4 < 0,

the final contradiction. ��

Similar methods give an improvement to this result.
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Theorem 6.28. (i) m2(4, 8) ≤ 479;
(ii) for q even, q > 8,

m2(4, q) < q3 − q2 + 2
√
5q − 8;

(iii) for q even, q ≥ 128,

m2(4, q) ≤ q3 − 2q2 + 14q − 20.

Proof. See Section 6.8. ��

Finally, upper bounds for the size of a k-cap in PG(n, q) can be obtained when

q is even, q > 2 and n ≥ 5.

Theorem 6.29. Let q be even, with q > 2 and n ≥ 5.

(i) m2(n, 4) ≤
118
3

· 4n−4 + 5
3
;

(ii) m2(n, 8) ≤ 478 · 8n−4 − 2(8n−5 + · · ·+ 8 + 1) + 1;

(iii) m2(n, q) ≤ qn−1− (n− 4)qn−2+(n− 3)2qn−3 for q ≥ 8 and 4 ≤ n ≤ 2q/3;

(iv) m2(5, q) < q4 − q3 + 5q2 + 3q − 1 for q ≥ 16;

(v) m2(n, q) < qn−1− qn−2+5qn−3+2qn−4+2(qn−5+ qn−6+ · · ·+ q)+ q−1
for q ≥ 16 and n > 5;

(vi) m2(n, q) < qn−1−qn−2+2
√
5qn−3−9qn−4−2(qn−5+qn−6+· · ·+q+1)+1

for q ≥ 16;

(vii) m2(n, q) ≤ qn−1−2qn−2+14qn−3−21qn−4−2(qn−5+qn−6+· · ·+q+1)+1
for q ≥ 128.

Proof. Parts (i), (ii), (vi), (vii) follow from (6.6), Theorem 6.28 and Theorem

6.14(ii). For (iii), (iv) and (v), see Section 6.8. ��

6.5 General properties of k-arcs and normal rational curves

As in Section 21.1 of FPSOTD, a rational curve Cd of order d in PG(n, q) is the set

of points

{P (t0, t1) = P(g0(t0, t1), . . . , gn(t0, t1)) | t0, t1 ∈ Fq}, (6.61)

where each gi is a binary form of degree d and they have no non-trivial common

factor. The curve Cd may also be written
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{P (t) = P(f0(t), f1(t), . . . , fn(t)) | t ∈ Fq
+
}, (6.62)

where fi(t) = gi(1, t). As the gi have no non-trivial common factor, at least one

fi has degree d. Also Cd is normal if it is not the projection of a rational C′

d
in

PG(n+ 1, q), where C′

d
is not contained in a hyperplane.

Theorem 6.30. Let Cd be a normal rational curve in PG(n, q) not contained in a

hyperplane. Then

(i) q ≥ n;
(ii) d = n;

(iii) Cn is projectively equivalent to

{P (t) = P(tn, tn−1, . . . , t, 1) | t ∈ Fq
+
}; (6.63)

(iv) Cn consists of q + 1 points no n+ 1 in a hyperplane;
(v) if q ≥ n+2, there is a unique Cn through any n+3 points of PG(n, q) no n+1

of which lie in a hyperplane;
(vi) there is a subgroup H of PGL(n + 1, q) isomorphic to PGL(2, q) that acts

3-transitively on Cn.

Proof. (i)–(v) See Theorem 21.1.1 of FPSOTD.

(vi) With Cn as in (6.63), the transformation τ given by t 
→ (at + b)/(ct + d),
with ad− bc �= 0 induces the transformation

(tn, tn−1, . . . , t, 1)


→ ((at+ b)n, (at+ b)n−1(ct+ d), . . . , (at+ b)(ct+ d)n−1, (ct+ d)n)

= (tn, tn−1, . . . , t, 1)T

for a suitable non-singular matrix T . Hence H = {T | τ ∈ PGL(2, q)}. ��

Now, further properties of Cn are considered. With Cn as in (6.61), write the

derivative ∂gj/∂ti = gi
j
. If, for a given i in {0, 1}, not all gi

j
(t0, t1) are zero, then

the point with gi
j
(t0, t1) as (j + 1)th coordinate is denoted by P i(t0, t1). If such is

the case for both i and if P (t0, t1) �= P i(t0, t1) also for both i, then

P (t0, t1)P
0(t0, t1) = P (t0, t1)P

1(t0, t1)

since

t0g
0
j
(t0, t1) + t1g

1
j
(t0, t1) = ngj(t0, t1).

For at least one i in {0, 1}, the point P i(t0, t1) exists and is distinct from

P (t0, t1); for such an i, the line P (t0, t1)P
i(t0, t1) is the tangent of Cn at P and

is denoted by �p.

Lemma 6.31. Let q ≥ n ≥ 3, let Cn be a normal rational curve, and let P be a point

of Cn.
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(i) The image of the projection map G of Cn\{P} from P onto a hyperplane Π not

containing P together with P ′ = �P ∩ Π is a normal rational curve in Π, and

is denoted by CnG.

(ii) No two tangents to Cn intersect.

(iii) If �P lies in a hyperplane Π′, then |Π′ ∩ Cn| ≤ n− 1.

(iv) �P ∩ Cn = {P}.

(v) If Q,R ∈ Cn\{P}, then QR does not meet �P .

Proof. (i) Take Cn in canonical form

{P (t) = P(tn, tn−1, . . . , t, 1) | t ∈ Fq

+
}.

By Theorem 6.30 (vi), choose P = U0. Let G′ be the projection of Π from P onto

the hyperplane u0. Then, for t ∈ Fq ,

PGG
′ = P(0, tn−1, tn−2, . . . , t, 1).

Also the tangent �P = U0U1, which meets u0 in U1. So {PGG′ | t ∈ Fq} ∪ {U1}

is the normal rational curve

{P(0, tn−1, tn−2, . . . , t, 1) | t ∈ Fq
+
}.

Thus CnG is a normal rational curve of degree n− 1 in Π.

(ii) Let P = P (t) and Q = P (s), s, t ∈ Fq, s �= t. To show that �P ∩ �Q = ∅,

consider the matrix ⎡⎢⎢⎣
tn tn−1 · · · t3 t2 t 1

ntn−1 (n− 1)tn−2 · · · 3t2 2t 1 0
sn sn−1 · · · s3 s2 s 1

nsn−1 (n− 1)sn−2 · · · 3s2 2s 1 0

⎤⎥⎥⎦ .
It has rank 4, since the submatrix formed by the last four columns has determinant

(t − s)4. So, when P,Q �= U0, the lines �P and �Q do not meet. By the transitivity

of the group, this is also true when P = U0 .

(iii) Let Π′ = V(a0X0 + a1X1 + · · · + anXn) and take P = U0. From (i),

�P = U0U1; so �P lies in Π′ if and only if a0 = a1 = 0. Hence, apart from P , a

point P (t) of Cn lies in Π′ if and only if

a2t
n−2 + · · ·+ an = 0.

This has at most n− 2 solutions.

(iv) U0U1 ∩ Cn = {U0}.

(v) Take P = U0, Q = Un, and R = U. ��

Theorem 6.32. If q ≥ n+ 2, then

(i) the group G(Cn) of projectivities in PG(n, q) fixing Cn is isomorphic to the

projective linear group PGL(2, q), given by the transformations

t 
→ (at+ b)/(ct+ d),

with ad− bc �= 0, acting on (6.63);



328 6 Arcs and caps

(ii) the number of normal rational curves in PG(n, q) is

νn = q(n−1)(n+2)/2[3, n+ 1]−

=

n∏
i=0

(qn+1
− qi)/{q(q2 − 1)(q − 1)}.

Proof. (i) From Theorem 6.30(vi), there is a subgroup H of G(Cn) isomorphic to

PGL(2, q). It must be shown that H = G(Cn).
Now, suppose that an element U of G(Cn) is given by the matrix A = [aij ], with

0 ≤ i, j ≤ n, and Cn is taken in the form (6.63). Since

(tn, tn−1, . . . , t, 1)A = (

n∑
i=0

ai0t
n−i,

n∑
i=0

ai1t
n−i, . . . ,

n∑
i=0

aint
n−i)

= (sn, sn−1, . . . , s, 1),

there exists a permutation ρn of Fq
+ such that tρn = s, whence

tρn =
n∑

i=0

ai0t
n−i/

n∑
i=0

ai1t
n−i.

It is now shown by induction on n that there exist a, b, c, d in Fq with ad−bc �= 0
such that

tρn = (at+ b)/(ct+ d).

For n = 1,

tρn = (a00t+ a10)/(a01t+ a11);

so the result is proved.

Assume that the result is true for

Cn−1 = {P(tn−1, tn−2, . . . , t, 1, 0) | t ∈ Fq
+
}, n ≥ 2.

By the transitivity of H , take UnU = Un; hence ani = 0, 0 ≤ i ≤ n − 1, and

an0 = an1 = 0 in particular. So

tρn =

n−1∑
i=0

ai0t
n−i/

n−1∑
i=0

ai1t
n−i

=

n−1∑
i=0

ai0t
n−1−i/

n−1∑
i=0

ai1t
n−1−i.

Since the tangent at Un is fixed, also an−1,i = 0 for 0 ≤ i ≤ n− 2.

Let G be the projection map from Un onto un. Then, as in Lemma 6.31(i), let

Cn−1 = CnG. Let A′ = [a′
ij
], 0 ≤ i, j ≤ n − 1 with a′

ij
= aij . Also let U ′ be the

projectivity on un corresponding to the matrix A′. Then, for t ∈ Fq
+\{0},

P(tn, . . . , t, 1)GU ′ = P(tn−1, . . . , t, 1, 0)U ′ = P(tn, . . . , t, 1)UG ∈ Cn−1.
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Also Un−1U
′ = Un−1 ∈ Cn−1. Since Cn−1U

′ is also a normal rational curve of

order n − 1, so Cn−1U
′ = Cn−1 by Theorem 6.30(v). So U ′ is a projectivity of un

fixing Cn−1. However,

tρn−1 =

n−1∑
i=0

a′
i0t

n−i−1/

n−1∑
i=0

a′
i1t

n−1−i

=

n−1∑
i=0

ai0t
n−1−i/

n−1∑
i=0

ai1t
n−1−i

= tρn.

By the induction hypothesis, ρn has the required form.

(ii) Since Cn is projectively unique and since G(Cn) = PGL(2, q), so

νn = |PGL(n+ 1, q)|/|PGL(2, q)|. ��

Now consider the existence of k-arcs in PG(n, q).

Theorem 6.33. A k-arc in PG(n, q), k ≥ n + 4, exists if and only if a k-arc exists

in PG(k − n− 2, q).

Proof. Choose n + 1 points of a k-arc K as the simplex of reference. Consider the

(k − n− 1)× (n+ 1) matrix M whose rows are the vectors of the other k − n− 1
points of K. Since no n+ 1 points of K lie in a hyperplane, taking n− s+ 1 points,

where 0 ≤ s ≤ min(k−n− 1, n+1), of the simplex of reference and s other points

shows that all s×s minors of M are non-zero. So now take the rows of the transpose

M∗ as vectors of points in PG(k−n− 2, q) and add the simplex of reference in this

space. This gives a k-arc K′ in PG(k − n− 2, q). The process is reversible. ��

As in Chapter 3, let Gr,n denote the Grassmannian of r-spaces in PG(n, q). Let

Ak,n be the set of all k-arcs in PG(n, q). Now consider a relation between Gn,k−1

and Ak,n.

Let K = {P1, . . . , Pk} be a k-arc in PG(n, q) with k ≥ n+ 3, let G(K) be the

group of projectivities fixing K, and let g(K) = |G(K)|. Let Pi = P(Xi). Then to

K there correspond (q − 1)kk! matrices each with k rows and n+ 1 columns:⎡⎢⎢⎢⎢⎣
ρ1Xi1

ρ2Xi2

...

ρkXik

⎤⎥⎥⎥⎥⎦ . (6.64)

Here {i1, . . . , ik} = {1, . . . , k} and ρi ∈ Fq
∗. Every subdeterminant of order n+ 1

is non-zero, since K is a k-arc. This matrix is denoted by

M = MR,σ, (6.65)
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where R = (ρ1, . . . , ρk) and σ = (i1, . . . , ik). Now, take the columns of MR,σ as

the vectors of n+1 points in PG(k− 1, q). These points define a PG(n, q) which is

denoted Πn(M). From the (q− 1)kk! matrices M , the (q− 1)kk! subspaces Πn(M)
of PG(k − 1, q) are obtained; these are not necessarily distinct. Suppose that for

two matrices M and M ′ the equation Πn(M) = Πn(M
′) holds. Then there exists a

unique non-singular (n+ 1)× (n+ 1) matrix A such that

MA = M ′. (6.66)

However (6.65) also defines a unique projectivity of PG(n, q) fixing K.

Conversely, if B is the matrix of a projectivity fixing K, then

Πn(ρMB) = Πn(M)

for all ρ �= 0; that is, (q− 1)g(K) matrices M give the same Πn(M). So, to K, there

correspond

χ(K) = (q − 1)k−1k!/g(K) (6.67)

distinct subspaces Πn of PG(k − 1, q).
The Grassmannian Gn,k−1 is embedded in PG(N, q), with N = c(k, n+1)− 1,

and contains

[k − n, k]−/[1, n+ 1]−

points, Section 3.2. From above, it follows that to the k-arc K correspond χ(K)
points of Gn,k−1 lying in no face of the simplex of reference of PG(N, q). Now

consider how many k-arcs correspond to one of these χ(K) points Q of Gn,k−1.

To Q corresponds one Π′

n
of PG(k − 1, q). The number of ordered (n + 1)-tuples

(Q1, . . . , Qn+1) of linearly independent points of Π′

n
is

φ =
n∏

i=0

(qn+1
− qi)/(q − 1)n+1.

So, to Π′

n
there correspond

(q − 1)n+1φ =

n∏
i=0

(qn+1
− qi)

matrices M .

Suppose now that the two k× (n+ 1) matrices Y and Z have, as their columns,

vectors of n + 1 linearly independent points of Π′

n
and give the same k-arc K′ of

PG(n, q). Then

Y A = Z

for a unique non-singular (n+1)× (n+1) matrix A, which consequently defines a

projectivity of PG(n, q) fixing K′. Conversely, a projectivity of PG(n, q) fixing K′

gives q− 1 matrices corresponding to Π′

n
. So K′ comes from (q− 1)g(K′) matrices

corresponding to Π′

n
.
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Since the k-arcs K and K′ come from two ordered (n + 1)-tuples of linearly

independent points of Π′

n
, they are projectively equivalent; hence g(K) = g(K′).

So, to Q of Gn,k−1 there correspond

n∏
i=0

(qn+1
− qi)/[(q − 1)g(K)]

k-arcs of PG(n, q) and these are precisely the ones projectively equivalent to K.

Let Vn,k−1 denote the set of points of Gn,k−1 on no face of the simplex of ref-

erence and let Vn,k−1(K) denote the set of χ(K) points corresponding to the k-arc

K. Hence Vn,k−1 is partitioned by the sets Vn,k−1(K). In Ak,n, which is the set of

k-arcs of PG(n, q), let Ak,n(K) denote the set of k-arcs corresponding to a point

of Vn,k−1(K). Then the sets Ak,n(K) partition Ak,n. If Ak,n(K) is mapped onto

Vn,k−1(K), then a bijection of the quotient set corresponding to the partition of Ak,n

and the quotient set corresponding to the partition of Vn,k−1 is obtained. This dis-

cussion gives the following results.

Theorem 6.34. (i)

|Ak,n(K)| =

n∏
i=0

(qn+1
− qi)/[(q − 1)g(K)]. (6.68)

(ii)

|Vn,k−1(K)|/|Ak,n(K)| = (q − 1)kk!/
n∏

i=0

(qn+1
− qi). (6.69)

(iii)

|Vn,k−1|/|Ak,n| = (q − 1)kk!/

n∏
i=0

(qn+1
− qi). (6.70)

Theorem 6.35. For q ≥ max(n+ 2, k − n), n ≥ 2, k ≥ n+ 4,

|Ak,k−2−n|/|Ak,n| = νk−2−n/νn

=

k−2−n∏
i=0

(qk−n−1
− qi)/

n∏
i=0

(qn+1
− qi). (6.71)

Proof. To a point of Vn,k−1 there corresponds a Πn of PG(k − 1, q) skew to every

(k − 2 − n)-dimensional edge of the simplex of reference of PG(k − 1, q), and

conversely. By the principle of duality, the number of such Πn is the same as the

number of Πk−2−n of PG(k−1, q) skew to every n-dimensional edge of the simplex

of reference. Hence

|Vn,k−1| = |Vk−2−n,k−1|. (6.72)

The result now follows from (6.70), (6.72) and Theorem 6.30(vii). ��
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There are numerous consequences that can be drawn from Theorems 6.33 and

6.35. For the moment, only results that follow from properties of PG(2, q) and

PG(3, q) are considered.

Corollary 6.36. (i) m(q − 3, q) = q + 1 for q ≥ 5;
(ii) m(q − 2, q) = q + 1 for q odd with q ≥ 5;

(iii) m(q − 2, q) = q + 2 for q even with q ≥ 4.

Proof. (i) For q ≥ 5, |Aq+2,3| = 0 ⇒ |Aq+2,q−3| = 0.

(ii) For q odd with q ≥ 5, |Aq+2,2| = 0 ⇒ |Aq+2,q−2| = 0.

(iii) (a) For q even with q ≥ 4, |Aq+2,2| > 0 ⇒ |Aq+2,q−2| > 0;
(b) also, for q even, |Aq+3,3| = 0 ⇒ |Aq+3,q−2| = 0. ��

Corollary 6.37. For q ≥ n+ 3, n ≥ 2, if every (q + 1)-arc of PG(n, q) is a normal

rational curve, then every (q+1)-arc of PG(q−n−1, q) is a normal rational curve.

Proof. For q ≥ n+ 3, n ≥ 2,

|Aq+1,q−n−1| = νq−n−1 ⇐⇒ |Aq+1,n| = νn. ��

6.6 The maximum size of an arc and the characterisation of such

arcs

In Sections 21.2 and 21.3 of FPSOTD it is shown that m(3, q) = q + 1 for q > 3;

also a (q + 1)-arc is a twisted cubic for q odd, while, for q even, it is of the form

{P(t2
m

+1, t2
m

, t, 1) | t ∈ F2h ∪ {∞}}

for some m coprime to h. This result is now generalised to higher dimensions.

Theorem 6.38. Let K be a k-arc in PG(n, q) with k ≥ n + 3 ≥ 6. If there exist

points P0 and P1 in K such that the projections K0 of K\{P0} from P0 and K1 of

K\{P1} from P1 onto a hyperplane Πn−1 are both contained in normal rational

curves in Πn−1, then K is contained in a unique normal rational curve of PG(n, q).

Proof. Let L = {P0, . . . , Pn+2} be an (n+ 3)-arc in K. For i = 0, 1, let Li and Ki

be the projections from Pi of L\{Pi} and K\{Pi} onto Πn−1. By Theorem 6.30(v),

there exist unique normal rational curves C in PG(n, q) and C(0), C(1) in Πn−1 such

that L ⊂ C,L0 ⊂ C(0),L1 ⊂ C(1). Since K0 and K1 are assumed to be in normal

rational curves, so K0 ⊂ C(0) and K1 ⊂ C(1). As K is contained in P0K0 and in

P1K1, so

K\{P0, P1} ⊂ (P0C
(0)

∩ P1C
(1))\P0P1; (6.73)

the right-hand side of (6.73) is now shown to lie in C.

Let C = {Qj | j ∈ Nq} with Qj = Pj for j ∈ Nn+2. Also let D(i) be the

projection of C\{Pi} onto Πn−1 from Pi for i = 0, 1. Since D(i) ∪ {�Pi
∩ Πn−1}
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is a normal rational curve in Πn−1 containing Li by Lemma 6.31(i), so it coincides

with C(i) by Theorem 6.30(v). Thus a line on the cone PiC
(i) other than P0P1 is

either the tangent �Pi
or a line PiQj , where j �= 0, 1. Let �0 be a line on P0C

(0) and

�1 a line on P1C
(1) such that neither line is P0P1 but with �0 and �1 intersecting. If

�0 = �P0
, then �1 �= �P1

by Lemma 6.31(ii); thus �1 = P1Qj for some j �= 0, 1.

Since the plane π = �0�1 contains P0, P1, Qj , there exists a hyperplane containing

n points of Cn as well as �0, contradicting Lemma 6.31(iii). Thus �0 = P0Qu and

�1 = P1Qv for u, v �= 0, 1. Since π contains at most three points of C, so Qu = Qv.

Hence �0 ∩ �1 is a point of C. Thus K\{P0, P1} ⊂ C\{P0, P1}, whence K ⊂ C. ��

Theorem 6.39. (i) Let K be a (q + 2)-arc in PG(n, q) with q + 1 ≥ n + 3 ≥ 6.

If P0 and P1 are points of K and Πn−1 is a hyperplane containing neither P0

nor P1, then the projections K0 of K\{P0} and K1 of K\{P1} from P0 and P1

onto Πn−1 cannot both be normal rational curves.

(ii) If every (q + 1)-arc in PG(n − 1, q), with q + 1 ≥ n + 3 ≥ 6, is a normal

rational curve, then m(n, q) = q + 1.

Proof. (i) Suppose K0 and K1 are normal rational curves in Πn−1. For a point P

in K\{P0, P1}, let K′ be the (q + 1)-arc K\{P}. Then, by Theorem 6.38, K′ is a

normal rational curve in PG(n, q). Let �Pi
be the tangent of K′ at Pi for i = 0 and 1,

and let K′

i
be the projection of K′\{Pi} from Pi onto Πn−1. Then K′∪{�Pi

∩Πn−1}

is a normal rational curve in Πn−1 by Lemma 6.31(i). So Ki = K′

i
∪ {�Pi

∩ Πn−1}

since both curves have q points in common and q ≥ n − 1 + 3. Thus �Pi
= PiP

contradicting Lemma 6.31(ii).

(ii) If there is a (q + 2)-arc K in PG(n, q), then K0 and K1 are (q + 1)-arcs and

so normal rational curves, contradicting (i). ��

Theorem 6.40. In PG(4, q), q ≥ 5,

m(4, q) = q + 1.

Proof. (i) For q odd, since every (q+1)-arc in PG(3, q) is a twisted cubic, the result

follows by Theorem 6.39(ii).

(ii) For q even, suppose there exists a (q + 2)-arc K = {P,Q,R1, R2, . . . , Rq}.

Take a solid Π3 in PG(4, q) containing neither P nor Q. Let K1 and K2 be the

projections of K\{P} and K\{Q} onto Π3 from P and Q. In Theorem 21.3.10 of

FPSOTD, it is shown that, at any point L of a (q + 1)-arc L, there are precisely

two lines, called special unisecants, such that every plane through such a unisecant

meets L in at most one point other than L; further, the special unisecants to L are

the generators of a hyperbolic quadric H3. Let H
(1)

3 and H
(2)

3 be the corresponding

quadrics containing K1 and K2. Also, let PQ∩Π3 = S, let PRi ∩Π3 = Pi, and let

QRi ∩ Π3 = Qi, i ∈ Nq . Then K1 = {S, P1, . . . , Pq} and K2 = {S,Q1, . . . , Qq}.

Since the plane PQRj meets Π3 in a line, so S, Pj , Qj are collinear, for j ∈ Nq ,

on the line �j . Also let � and m be the special unisecants at S to K1. Then, each of

the q planes ��j meets K1 in precisely two points S and Pj , and also meets K2 in

precisely two points S and Qj . So �, and similarly m, is a special unisecant to K2
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at S. Thus the two quadric cones PH
(1)

3 and QH
(2)

3 contain the planes �(PQ) and

m(PQ). They therefore intersect residually in a quadric surface W3 which either (a)

lies in a solid Π′

3, or (b) lies in no solid. However, W3 contains R1, . . . , Rq . In case

(a), Π′

3 contains at most four points of K and so q ≤ 4. In case (b), W3 is a pair

of planes with just one common point, which can contain at most six points of K,

whence q ≤ 6. Thus both (a) and (b) are impossible. ��

Theorem 6.41. In PG(n, q), q odd, n ≥ 3,

(i) if K is a k-arc with k > q − 1
4

√
q + n −

1
4
, then K lies on a unique normal

rational curve;
(ii) if q > (4n− 5)2, every (q + 1)-arc is is a normal rational curve;

(iii) if q > (4n− 9)2,
m(n, q) = q + 1.

Proof. (i) This follows by induction from Theorem 6.38 and Theorem 10.25 of

PGOFF2.

(ii) q + 1 > q − 1
4

√
q + n−

1
4
⇔ q > (4n− 5)2.

(iii) This follows from Theorem 6.39(ii) and part (ii). ��

The next result shows that, in part (ii) of this theorem, some restriction on q is

necessary.

Theorem 6.42. In PG(4, q), q odd,

(i) for q ≤ 7, a (q + 1)-arc is a normal rational curve;
(ii) for q = 9, there exist precisely two projectively distinct 10-arcs, the normal

rational curve and one other.

Proof. (i) For q = 3 and 5, the result is immediate. For q = 7, Corollary 6.37 with

n = 2 can be applied.

(ii) With F9\{0} = {σi | i ∈ N7, σ
2 = σ + 1}, every 10-arc in PG(4, 9) other

than a normal rational curve is projectively equivalent to

K = {P(1, t, t2 + σt6, t3, t4) | t ∈ F9} ∪ {P(0, 0, 0, 0, 1)};

see Section 6.8. The 10-arc K projects to the unique complete 8-arc in PG(2, 9), as

in Section 14.7 of PGOFF2. ��

Remark 6.43. Theorem 6.33 and Corollary 6.36 can be applied to the previous re-

sults.

The situation is surprisingly different for (q + 1)-arcs in PG(4, q) with q even,

as is now demonstrated.

Let K = {P0, P1, . . . , Pq} be a (q+1)-arc in PG(4, q), q = 2h, h ≥ 3. At each

point Pi of K there is an induced incidence structure S(Pi) isomorphic to PG(3, q),
whose points, lines, and planes are the lines, planes and solids of PG(4, q) through

Pi; the incidence is that induced by PG(4, q). As usual, a subspace of dimension r
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is denoted Πr; however, Πi

s
also denotes an s-dimensional subspace of S(Pi). Thus

a Πr through Pi is also a Πi

r−1. This notation is only used for the remainder of this

section.

From the definition of K any solid through Pi contains at most three other points

of K. Thus the set of q lines PiPj , j ∈ Nq\{i}, is a q-arc Ki of S(Pi). By Theorem

6.71 for q > 16, this arc Ki can be completed to a (q+1)-arc K′

i
of S(Pi) by adding

a unique Π1 through Pi; for q ≤ 16, see Section 6.8. Let this line be denoted �i and

called the tangent line to K at Pi. From Theorem 21.3.10 of FPSOTD, the points

of K′

i
lie on a hyperbolic quadric, denoted Qi. Let Si denote the quadric cone of

PG(4, q) whose points lie on the Πi

0 of Qi; that is, Si = PiH3, where H3 is a solid

section of Qi regarded as a set of Π0.

Lemma 6.44. (i) The tangent lines �i of K are pairwise skew.

(ii) For i �= j, the solid �i�j meets K in {Pi, Pj}.

(iii) There is a unique plane αij through Pi and Pj which is both a Πi

1 of Qi and a

Πj

1 of Qj . Further, Pi�j is a Πi

1 of Qi and Pj�i is a Πj

1 of Qj .

Proof. (i) By construction, �i ∩ K = {Pi}. Suppose �i ∩ �j is a Π0; then �i�j is a

Π2 as well as a Πi

1 and a Πj

1. By Theorem 21.3.10 of FPSOTD, through PiPj there

are exactly two special unisecants Πi

1 of K′

i
, and these are generators of Qi. Any Π3

containing a special unisecant Πi

1 of K′

i
through PiPj meets K′

i
in at most one Πi

0

other than PiPj . Hence, for �i �⊂ Π3, any such Π3 meets K in Pi, Pj , and at most

one further point; for �i ⊂ Π3, it meets K in Pi, Pj . Since �i ⊂ Π3 if and only if

�j ⊂ Π3, these two Πi

1 of Qi are also Πj

1 of Qj through PiPj . Thus the two cones

Si and Sj intersect in these Π2 and hence residually in a quadric surface Q. Since

K\{Pi, Pj} is in Q and q+1 ≥ 9, the surface Q does not contain a plane. So Q lies

in a solid and also contains the q − 1 ≥ 7 points of K\{Pi, Pj}, a contradiction.

(ii), (iii) Project K\{Pi, Pj} from PiPj onto a plane Π2 skew to PiPj ; the pro-

jection of K\{Pi, Pj} is a (q − 1)-arc K′ of Π2. Then both Pj�i ∩ Π2 = {Q} and

Pi�j∩Π2 = {Q′} extend K′ to a q-arc. From Section 10.3 of PGOFF2, K′∪{Q,Q′}

is a (q + 1)-arc. Hence �i�j ∩ K = {Pi, Pj}, Pi�j is a Πi

1 of Qi and Pj�i is a Πj

1 of

Qj . Let Q′′ be the unique point of Π2 which extends K′ ∪ {Q,Q′} to a (q + 2)-arc.

Then the plane Q′′PiPj = αij is both a Πi

1 of Qi and a Πj

1 of Qj . ��

Lemma 6.45. For a given i, the planes Pi�j , for j in Nq\{i}, are q of the Πi

1 of a

regulus Ri of Qi.

Proof. Let �j and �k be distinct lines of K with j, k �= i. By Lemma 6.44(ii), the

point Pi /∈ �j�k, and hence Pi�j and Pi�k are skew Πi

1; they are generators of Qi,

by Lemma 6.44(iii), and so belong to a regulus Ri. ��

Lemma 6.46. Let gi and g′
i

be the two Πi

1 of Qi through �i and let gi ∈ Ri. Then

g′
i
∩ �j is a Π0, for j �= i.

Proof. Let g′
i

belong to the regulus R′

i
complementary to Ri. By the previous

lemma, Pi�j ∈ Ri for j �= i. Since lines of complementary reguli meet, so g′
i
∩Pi�j

is a Πi

0. Thus g′
i
∩ �j is a Π0. ��
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Corollary 6.47. Through each �i there are two Πi

1 of Qi; they are gi, which is skew

to all �j for j �= i, and g′
i
, which meets all �j for j �= i.

Lemma 6.48. The q + 1 generators g′
i

of Qi contain a unique Π1, denoted by �,

which is disjoint from K and meets the �i in distinct points.

Proof. For i �= j, let g′
i
∩ �j = {Q} and g′

j
∩ �i = {R}. Since �i and �j are skew,

so Q and R are distinct points. Since �i ⊂ g′
i

and �j ⊂ g′
j
, so g′

i
∩ g′

j
= QR. Thus

g′0, . . . , g
′

q
are q + 1 planes Π2, meeting in pairs in a Π1; so either they pass through

a common Π1 or they lie in a common Π3. The latter is impossible since K lies in

the space they generate. So they meet in a Π1, denoted by �. Now, � is disjoint from

K, since otherwise every g′
i

would contain � ∩ K. Since �i ⊂ g′
i

and �i �⊂ g′
j
, j �= i,

so |�i ∩ �| = 1. Since the �i are skew, each point of � lies on a unique tangent line �i
of K. ��

Theorem 6.49. In PG(4, q), q = 2h, every (q+1)-arc K is a normal rational curve.

Proof. For h = 1 and 2, the result is immediate. So, let h ≥ 3 and use the above

notation. For K = {P0, . . . , Pq}, it is possible to choose coordinates so that

P0 = U0, P1 = U4, A = α01∩g0∩g1 = U2, B = �∩�1 = U3, C = �∩�0 = U1,

and U is any point of K\{P0, P1}. Note that

��0 = g′0, ��1 = g′1, A�0 = g0, A�1 = g1

and P0P1A = α01.

Let β1 = g1g
′

1 = u0 and consider the (q + 1)-arc β1 ∩ K′

0. This (q + 1)-arc (in

a Π3) contains the points C = U1, P1 = U4, and P0U ∩ β1 = P(0, 1, 1, 1, 1). The

special unisecants of β1 ∩ K′

0 at C and P1 are the intersections of β1 with the Π0
1 of

Q0 containing �0 and P0P1; these unisecants are therefore

CA = g0 ∩ β1, CB = � = g′0 ∩ β1, P1B = P0�1 ∩ β1, P1A = α01 ∩ β1.

Thus these unisecants intersect at A = U2 and B = U3.

It now follows from Theorem 21.3.15 of FPSOTD and its proof that

K0 = β1 ∩ K
′

0 = {P(0, 1, μ, μσ, μσ+1) | μ ∈ Fq

+
},

where σ is a generator of the automorphism group of Fq; hence xσ = x2
n

for some

n coprime to h. Since, by definition, K0 is �0 ∩ β1 together with a projection of

K\{U0} from U0,

K = {P(1, f(μ), μf(μ), μσf(μ), μσ+1f(μ)) | μ ∈ Fq
+
}

for some function f : Fq → Fq with f(0) = 0, f(1) = 1. ��
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Next consider the (q + 1)-arc β0 ∩ K′

1, where β0 = g0g
′

0 = u4. Similarly to the

above,

K1 = β0 ∩ K
′

1 = {P(1, λ, λτ , λτ+1, 0) | λ ∈ Fq

+
},

where τ is an automorphism of Fq such that xτ = x2
m

with m coprime to h. Since

K1 is �1 ∩ β0 together with a projection of K\{U4} from U4, so

K = {P(1, λ, λτ , λτ+1, f ′(λ)) | λ ∈ Fq} ∪ {U4},

where f ′ is a function on Fq with f ′(0) = 0, f ′(1) = 1. The two forms for K are the

same if, for all λ and μ in Fq ,

f(μ) = λ, μf(μ) = λτ , μσf(μ) = λτ+1, μσ+1f(μ) = f ′(λ).

Hence

μ = λτ−1, μσ−1 = λ, and λ = (λτ−1)σ−1.

From the definitions of τ and σ,

λτ = λ2
m

, λσ = λ2
n

;

Let 1 ≤ n ≤ m < h; so, mod (2h − 1),

(2m − 1)(2n − 1) ≡ 1,

2m+n
− 2m − 2n ≡ 0,

2m − 2m−n
− 1 ≡ 0.

Since 0 ≤ 2m − 2m−n − 1 < 2h − 1, so

2m − 2m−n
− 1 = 0.

Therefore m = n = 1. Thus

K = {P(1, λ, λ2, λ3, λ4) | λ ∈ Fq
+
},

where λ = ∞ gives the point U4.

Theorem 6.50. For q ≥ 5, n ≥ 5,

m(n, q) ≤

{
q + n− 3, q odd,

q + n− 4, q even.

Proof. For q odd, the result follows from Theorem 6.39 and induction, using the

fact that a (q + 1)-arc in PG(3, q) is a normal rational curve. For q even, a similar

argument applies, but now the fact that a (q+1)-arc in PG(4, q) is a normal rational

curve must be used. ��

Theorem 6.51. (i) If n ≤ 2p− 3, q = ph, with p prime, then m(n, q) = q + 1.
(ii) If q ≥ n+1 ≥ p+1 ≥ 4, q = ph, with p prime, then m(n, q) ≤ q−p+n+1.

(iii) For n ≤ p− 1, all (q + 1)-arcs are normal rational curves.

Remark 6.52. Theorem 6.33 and Corollary 6.36 can be applied to Theorem 6.51.

Theorem 6.53. If p is a prime with p > n+ 1, then m(n, p) = p+ 1.

Proof. See Section 6.8. ��
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6.7 Arcs and hypersurfaces

In this section, a connection is obtained between arcs and hypersurfaces. The main

aim is to obtain an upper bound for m(n, q) with q even. To do this, a more sophis-

ticated notion of algebraic variety than in the previous chapters is required.

Let H,H1, . . . , Hr be forms in Ω = Fq[X0, . . . , Xn]; in fact, H,H1, . . . , Hr are

always linear. The variety A in PG(n, q) defined by H and H1, . . . , Hr is denoted

A = A(H,H1, . . . , Hr)

and consists of the pair (V(A), I(A)), where V(A) = V(H,H1, . . . , Hr) is the set

of zeros of H,H1, . . . , Hr in PG(n, q) and I(A) = I(H,H1, . . . , Hr) is the ideal

generated by H,H1, . . . , Hr in Ω; that is,

V(A) = {P(X) ∈ PG(n, q) | H(X) = H1(X) = · · · = Hr(X) = 0},

I(A) = {F ∈ Ω | F = GH +G1H1 + · · ·+GrHr

for some G,G1, . . . , Gr ∈ Ω} .

The number of points in V(A) is denoted by |A|.

If A and B are varieties in PG(n, q), then A is algebraically contained in B,

denoted A ⊂ B, if I(A) ⊃ I(B). The varieties A and B are (algebraically) equal if

I(A) = I(B). A variety A = A(H) with degH = d is a hypersurface of degree d.

If A = A(H,H1, . . . , Hr) is a variety with H, Hi �= 0, all i, and Hr+1, . . . , Hu

are other linear forms in Ω\{0}, then

A ∩ π1 ∩ · · · ∩ πu = A ∩ πr+1 ∩ · · · ∩ πu

is the variety A(H,H1, . . . , Hu), where πj is the hyperplane V(Hj), j = 1, . . . , u.

As H1, . . . , Hr are linear, the terms V(Hj) and A(Hj) are used interchangeably.

Theorem 6.54. In Σ = PG(n, q), n ≥ 3, let K = {π1, π2, . . . , πk} be a set of

hyperplanes, any three of which are linearly independent, and such that to πi is

associated a hypersurface Φi of Σ of degree d with the following properties:

(a) Φi ∩ πi ∩ πj = Φj ∩ πi ∩ πj for all distinct i, j;
(b) |Φi ∩ πi ∩ πj | < θ(n− 2) for all distinct i, j;
(c) |Φi ∩ πi ∩ πj ∩ πu| < θ(n− 3) for all distinct i, j, u.

Then there exists a hypersurface Φ in Σ of degree d such that, for all i,

Φ ∩ πi = Φi ∩ πi. (6.74)

Proof. The proof is by induction on k. For k = 1, there is nothing to prove. Suppose

that k ≥ 2 and that the statement holds for k− 1. Let Φ′ be a hypersurface of degree

d such that, for 1 ≤ i ≤ k − 1,

Φ′
∩ πi = Φi ∩ πi. (6.75)
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Then, for 1 ≤ i ≤ k − 1,

Φ′
∩ πk ∩ πi = Φi ∩ πi ∩ πk = Φk ∩ πk ∩ πi. (6.76)

Let Φ′ = A(D′),Φk = A(Dk) and πj = A(Hj), j = 1, . . . , k. By (6.76), for

1 ≤ i ≤ k − 1,

I(D′, Hk, Hi) = I(Dk, Hk, Hi).

So

D′ = uiDk + riHk + siHi,

where ui, ri, si ∈ Fq[X0, . . . , Xn]. Comparing terms of degree d shows that

D′ + tiDk ∈ I(Hk, Hi), (6.77)

with ti ∈ Fq; here ti �= 0, since otherwise |Φ′ ∩ πk ∩ πi| ≥ θ(n − 2), whence

|Φi ∩ πi ∩ πk| ≥ θ(n− 2), a contradiction.

It is now shown that ti = tj . From (6.77),

(ti − tj)Dk = (D′ + tiDk)− (D′ + tjDk) ∈ I(Hk, Hi, Hj). (6.78)

Since Dk /∈ I(Hk, Hi, Hj) by (c), so (6.78) implies that ti − tj = 0. Write ti = λ

and note that λ �= 0. Next, choose coordinates so that πk = A(X0) and

πi = A(ai0X0 + · · ·+ ainXn) for 1 ≤ i ≤ k − 1.

For 1 ≤ i ≤ k − 1, put

D′ + λDk = GHk +Gi(Hi − ai0Hk),

where Gi is chosen so that it contains no terms in X0. Thus

D′ + λDk −GHk = Gi(Hi − ai0Hk) = Gj(Hj − aj0Hk).

Hence

Gj(Hj − aj0Hk) = F

k−1∏
i=1

(Hi − ai0Hk), (6.79)

since πk, πi, πj are linearly independent for distinct k, i, j.

Finally, it is shown that Φ = A(D), with

D = D′
− F

k−1∏
i=1

Hi,

has the required properties. The only thing to check is that Φ ∩ πk = Φk ∩ πk; that

is, I(D,Hk) = I(Dk, Hk). This can be shown as follows:
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I(D,Hk) = I(D′
− F

k−1∏
i=1

Hi, Hk)

= I(D′
− F

k−1∏
i=1

(Hi − ai0Hk), Hk)

= I(GHk − λDk, Hk)

= I(Dk, Hk). ��

Remark 6.55. For k ≥ 3, hypothesis (b) follows from the others. This is because

|Φi ∩ πi ∩ πj | = θ(n − 2) implies |Φi ∩ πi ∩ πj ∩ πu| = θ(n − 3), contradicting

(c).

Theorem 6.56. In Σ = PG(n, q), n ≥ 3, let K = {π1, π2, . . . , πk}, k ≥ n, be a set

of hyperplanes, any n of which are linearly independent, such that, for each plane

πi1
∩πi2

∩ · · · ∩πin−2
, there is an associated hypersurface C{i1,...,in−2}

of degree d.

Suppose

(a) C{i1,...,in−2}
∩ πi1

∩ πi2
∩ · · · ∩ πin−1

= C{j1,...,jn−2}
∩ πj1

∩ · · · ∩ πjn−1
for all

subsets {i1, . . . , in−1} = {j1, . . . , jn−1} of size n− 1 of {1, 2, . . . , k};
(b) |C{i1,...,in−2}

∩ πi1
∩ πi2

∩ · · · ∩ πin
| = 0 for any subset {i1, . . . , in} of size n

of {1, . . . , k}.

Then there exist hypersurfaces Φ,Φ1, . . . ,Φk in Σ of degree d such that

(i) Φi1
∩ πi1

∩ · · · ∩ πin−2
= C{i1,...,in−2}

∩ πi1
∩ · · · ∩ πin−2

for all distinct

i1, . . . , in−2;
(ii) Φ ∩ πi = Φi ∩ πi for 1 ≤ i ≤ k.

Proof. For n = 3, the statement holds by the previous theorem and the subsequent

remark. Consider the 3-space πi1
∩ · · · ∩ πin−3

. Again, by the previous theorem

and remark, in this 3-space and so in Σ, there exists a hypersurface Φ{i1,...,in−3}
of

degree d with

Φ{i1,...,in−3}
∩ πi1

∩ · · · ∩ πin−2
= C{i1,...,in−2}

∩ πi1
∩ · · · ∩ πin−2

for any in−2 ∈ Nk\{i1, . . . , in−3}. Also, in each 4-space πi1
∩ · · · ∩ πin−4

and so

in Σ, there exists a hypersurface Φ{i1,...,in−4}
of degree d with

Φ{i1,...,in−4}
∩ πi1

∩ · · · ∩ πin−3
= Φ{i1,...,in−3}

∩ πi1
∩ · · · ∩ πin−3

for any in−3 ∈ Nk\{i1, . . . , in−4}. For distinct in−3, in−2 in Nk\{i1, . . . , in−4},

Φ{i1,...,in−4}
∩ πi1

∩ · · · ∩ πin−2
= Φ{i1,...,in−3}

∩ πi1
∩ · · · ∩ πin−2

= C{i1,...,in−2}
∩ πi1

∩ · · · ∩ πin−2
.

Continuing in this way,

Φi1
∩ πi1

∩ πi2
= Φ{i1,i2}

∩ πi1
∩ πi2
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for hypersurfacesΦi1
,Φ{i1,i2}

of degree d and any i2 in Nk\{i1}. Hence, for distinct

i2, . . . , in−2 in Nk\{i1},

Φi1
∩ πi1

∩ · · · ∩ πin−2
= Φ{i1,i2}

∩ πi1
∩ · · · ∩ πin−2

= C{i1,...,in−2}
∩ πi1

∩ · · · ∩ πin−2
.

Finally, a hypersurfaceΦ of degree d in Σ is obtained such that, for any i1 in Nk and

for any i2, . . . , in−2 in Nk\{i1},

Φ ∩ πi1
= Φi1

∩ πi1
,

Φ ∩ πi1
∩ · · · ∩ πin−2

= Φi1
∩ πi1

∩ · · · ∩ πin−2

= C{i1,...,in−2}
∩ πi1

∩ · · · ∩ πin−2
. ��

The essential construction

In PG(n, q), n ≥ 3, q = 2h, let K = {π1, π2, . . . , πk}, k ≥ n + 1, be an arc of

hyperplanes; that is, every n+1 hyperplanes in K are linearly independent or, equiv-

alently, no n+1 hyperplanes in K have a point in common. For distinct i1, . . . , in−1,

there are exactly t = q + n− k points on the line πi1
∩ · · · ∩ πin−1

contained in no

other hyperplane of K. With S = {i1, . . . , in−1}, denote this set of t points by

ZS = {Z
(1)

S
, . . . ,Z

(t)

S
}.

In the plane Π2 = πi1
∩ · · · ∩ πin−2

, the other points of K cut out a (k − n+ 2)-arc

of lines. As q + 2− (k − n+ 2) = t, so by Theorem 10.1 of PGOFF2, the points in

ZS lie on an algebraic curve C{i1,...,in−2}
of degree t in Π2 with

C{i1,...,in−2}
∩ πin−1

= ZS .

Also

C{i1,...,in−2}
∩ πin−1

= C{j1,...,jn−2}
∩ πjn−1

for all equal subsets {i1, . . . , in−1} and {j1, . . . , jn−1} of size n− 1 in Nk. Further,

|C{i1,...,in−2}
∩ πin−1

∩ πin
| = 0

for any subset {i1, . . . , in} of size n in Nk.

By Theorem 6.56, the curves C{i1,...,in−2}
for a fixed i are algebraically contained

in a hypersurface Φi1
in πi1

of degree t with

Φi1
∩ πi2

∩ · · · ∩ πin−2
= C{i1,...,in−2}

;

the varieties Φ1, . . . ,Φk are algebraically contained in a hypersurface Φ = Φ(K) of

PG(n, q) of degree t with Φ ∩ πi = Φi for 1 ≤ i ≤ k. The hypersurface Φ = Φ(K)
is the hypersurface associated to K.

Theorem 6.57. In PG(n, q) with n ≥ 3, and q = 2h, let K = {π1, . . . , πk},

where k ≥ n + 1, be a k-arc of hyperplanes. For distinct i1, i2, . . . , in−1 in Nk,

let Z{i1,...,in−1}
denote the set of t = q + n− k points on the line πi1

∩ · · · ∩ πin−1

that lie on no other hyperplane of K. Then
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(i) there exists a curve C{i1,...,in−2}
of degree t in the plane πi1

∩ · · · ∩ πin−2
such

that

C{i1,...,in−2}
∩ πin−1

= Z{i1,...,in−1}
;

(ii) for fixed i, the curves C{i1,...,in−2}
are algebraically contained in a hypersurface

Φi1
of πi1

of degree t with Φi1
∩ πi2

∩ · · · ∩ πin−2
= C{i1,...,in−2}

and each

variety Φi1
is algebraically contained in a hypersurface Φ = Φ(K) of PG(n, q)

of degree t with Φ(K) ∩ πi = Φi;
(iii) if k > 1

2
q + n− 1, the hypersurface Φ(K) is unique;

(iv) with k > 1
2
q + n − 1, if L = {π1, . . . , πk, . . . , πu} is an arc of hyperplanes

containing K, the hypersurface Φ(K) has components Φ(L), πk+1, . . . , πu;
(v) if k > 1

2
q+n−1, there is a bijection between hyperplanes of PG(n, q) extend-

ing K to a (q + 1)-arc and linear components over Fq of Φ(K).

Proof. (i), (ii) These were proved in the previous theorem and the subsequent re-

marks.

(iii) Since k−n+2 > t = q− k+n, it follows from Theorem 10.1 of PGOFF2

that the curve C{i1,...,in−2}
is unique. Suppose Φ and Φ′ are distinct hypersurfaces of

degree t for which

Φ ∩ πi1
∩ · · · ∩ πin−2

= Φ′
∩ πi1

∩ · · · ∩ πin−2
= C{i1,...,in−2}

.

Let Φ = A(D) and Φ′ = A(D′).
First, let n = 3 and fix an index i1. As in Theorem 6.54, there exists λ in Fq

∗

for which D + λD′ vanishes at all points of the k − 1 lines πi1
∩ πi2

with i2 �= i1.

The surfaces Φ and Φ′ both have degree t = q + 3 − k. Since k > 1
2
q + 2, so

k − 1 > t = q + 3 − k. Therefore D + λD′ vanishes at all points of πi1
. Since

the surface Φ′′ = A(D + λD′) contains all points of the lines πi1
∩ πi2

it follows

that Φ′′ has the k planes π1, . . . , πk as components. However, k > t = deg(Φ′′), a

contradiction. So Φ′ = Φ.

Next, let n > 3 and proceed by induction on n. Since k− 1 > 1
2
q+(n− 1)− 1,

assume that the varieties Φi1
= Φ′

i1
are unique for i1 in Nk. Fix an index i1. Again,

as in Theorem 6.54, there exists λ in Fq
∗ such that D + λD′ vanishes at all points

of the (n− 2)-spaces πi1
∩ πi2

, of which there are k − 1. Now, both Φ and Φ′ have

degree t = q+n− k. Since k > 1
2
q+n− 1, so k− 1 > t. Hence D+λD′ vanishes

at all points of πi1
. Since Φ′′ = A(D + λD′) contains all points of πi1

∩ πi2
the

hypersurface Φ′′ has the k hyperplanes as components. As k > t = deg(Φ′′), a

contradiction is obtained and Φ = Φ′.

(iv) Φ(K)∩πi1
∩· · ·∩πin−1

consists of the set Φ(L)∩πi1
∩· · ·∩πin−1

together

with the points

πi1
∩ · · · ∩ πin−1

∩ πk+1, . . . , πi1
∩ · · · ∩ πin−1

∩ πu.

Since Φ(K) is unique, the required factorisation is obtained.

(v) Suppose K ∪ {π} is a (k + 1)-arc of hyperplanes. By (iv), π is a linear

component of Φ(K). Conversely, let σ be a linear component over Fq of K. Let

πi1
, . . . , πin

be any n hyperplanes in K. Then these n hyperplanes and σ have no
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point in common, since such a point would lie onΦ(K)∩πi1
∩· · ·∩πin

, contradicting

the defining property of Φ(K). So no n+ 1 hyperplanes in K ∪ {σ} have a point in

common, whence K ∪ {σ} is a (k + 1)-arc of hyperplanes. ��

Theorem 6.58. Let K = {π1, . . . , πk} be a k-arc of hyperplanes in PG(n, q), n ≥ 3
and q = 2s. If k > 1

2
q + n− 1, then K is contained in a unique complete arc.

Proof. Let K′ and K′′ be distinct complete arcs of hyperplanes containing K, and

assume that π ∈ K′\K′′. By Theorem 6.57(v), π is a component of Φ(K). Since

π /∈ K′′, by part (iv), the hyperplane π is a component of Φ(K′′). Again, by part (v)

the arc K′′ can be extended to an arc K′′ ∪ {π} where π /∈ K′′. This contradicts the

completeness of K′′. ��

Now these results are applied in PG(3, q), q = 2h. First, the necessary results

for n = 3 are restated.

Theorem 6.59. Let K = {π1, . . . , πk} be a k-arc of planes in Σ = PG(3, q), with

q = 2h. For any two distinct planes πi and πj , let Zij be the set of points of πi ∩ πj

in exactly two planes of K. Then

(i) there exists an algebraic curve Ci in πi containing all sets Zij and such that

Ci ∩ πj = Zij ;
(ii) there exists an algebraic surface Φ = Φ(K) of degree t = q + 3 − k alge-

braically containing the curves Ci and with Φ ∩ πi = Ci.

Suppose further that k > 1
2
q + 2. Then

(iii) the surface Φ is unique;
(iv) if L = K ∪ {πk+1, . . . , πu} is a u-arc of planes, u > k, the surface Φ(K)

factors into Φ(L), πk+1, . . . , πu;
(v) there is a bijection between planes of Σ extending K to a (k+1)-arc and linear

components over Fq of Φ(K);
(vi) K is contained in a unique complete arc of Σ.

Lemma 6.60. Let k > q −
√
q + 2, q = 2h. With notation as in Theorem 6.59,

(i) the curve Ci of degree t = q + 3− k factors into t lines forming an arc of lines

in πi;
(ii) these t lines �i1, . . . , �it, called S-lines, together with the k − 1 lines πi ∩ πj ,

j ∈ Nk\{i}, form a (q + 2)-arc of lines in πi;
(iii) each S-line lies in a unique plane of K;
(iv) each point P on an S-line lies on exactly one other S-line.

Proof. (i) This follows from Section 10.3 of PGOFF2.

(ii),(iii) These follow from Theorem 6.59.

(iv) Each point Z
(u)

ij
in Zij lies on one S-line �ia in πi and on one S-line �jb in

πj . If P is on �ia and is not of type Z
(u)

ij
, then, by (ii), P lies on exactly one other

S-line, which will be of type �jb with b �= a. ��
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Theorem 6.61. Let K = {π1, π2, . . . , πk} be an arc of planes in Σ = PG(3, q), with

q = 2h and k > 1
2
q + 2. Assume that K is contained in a (q + 1)-arc L of planes in

Σ. Then

(i) Φ(K) factors into t− 2 linear components over Fq and one quadratic compo-

nent H, where t = q + 3− k and H is a hyperbolic quadric H3;
(ii) Φ(L) = H;

(iii) each plane of L is a tangent plane to H;
(iv) for any plane π in L the planes of L\H together with H cut out a (q + 2)-arc

of lines in π.

Proof. (i), (ii) Let L = {π1, π2, . . . , πq+1}. By the definition of an arc, q > 2.

From Theorem 6.59(iv), Φ(K) factors into Φ(L), πk+1, . . . , πq+1 with Φ(L) = H

of degree 2. Since q > 2, Theorem 21.3.8 of FPSOTD says that L is complete. From

Theorem 6.59(v), the quadric H is irreducible.

Let πk+1 = π′

1, . . . , πq+1 = π′

t−2. Each plane π′

j
in L\K intersects each plane

πi of K in a line. Also, if π′

j
, π′

u
, π′

v
are distinct, then π′

j
∩ π′

u
∩ π′

v
∩ πi = ∅ since

these four planes belong to an arc. Therefore the t− 2 planes π′

1, . . . , π
′

t−2 cut out a

(t− 2)-arc of lines in πi.

Let Ci be the curve of degree t in πi corresponding to the arc K. Then Ci has

t− 2 linear components π′

1 ∩ πi, . . . , π
′

t−2 ∩ πi and one component H(i) = H ∩ πi

of degree 2. For each j �= i with πj in K, each of the lines π′

u
∩ πi contains exactly

one of the t points Z
(u)

ij
. If a �= b, then π′

a
∩πi∩Zij �= π′

b
∩πi∩Zij since otherwise

π′

a
, π′

b
, πi and πj have a point in common, contradicting that these four planes are

part of an arc of planes of Σ. Therefore H(i) contains exactly two points of Zij , say

Z
(1)

ij
and Z

(2)

ij
, i �= j. Then |H(i)| ≥ 2(k − 1) > q + 2. Since |H(i)| > q + 2, so

H ∩ πi cannot be a conic. It follows that H ∩ πi factors into a pair of distinct lines

xi, yi with xi ∩ Zij = Z
(1)

ij
, yi ∩ Zij = Z

(2)

ij
, and Z

(1)

ij
�= Z

(2)

ij
. Hence each plane

of K contains exactly two lines of H. Further, each line of H is on at most one plane

of K. So H contains at least 2k > q+4 lines. It follows that H cannot be a cone and

is in fact a hyperbolic quadric of Σ.

(iii), (iv) Let π be any plane of L. The planes of L\{π} cut out a q-arc of lines

in π since L is an arc of planes in Σ. Hence Φ(L) ∩ π is a curve C of degree 2. Also,

since q + 1 > q −
√
q + 2, it follows from Section 10.3 of PGOFF2 that C factors

into two lines �,m, which are therefore lines of Φ(L). Since Φ(L) is a hyperbolic

quadric, (iii) follows. By Lemma 6.60(ii), part (iv) also follows. ��

For the remainder of this section assume that q > 2.

Lemma 6.62. Let K be a k-arc of planes in PG(3, q), q = 2h. If

(q − 1)/t2 + 2/t > t

with t = q + 3− k, then k > q −
√
q + 2.

Proof. Suppose that k ≤ q −
√
q + 2; that is,

√
q ≤ t− 1. Therefore
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(q − 1)/(q + 1 + 2
√
q) ≥ (q − 1)t2.

This implies that

t− 2/t ≥
√
q + 1− 2/t ≥

√
q + 1− 2/(

√
q + 1) > 1 > (q − 1)/t2.

So t− 2/t > (q − 1)/t2, a contradiction. ��

Theorem 6.63. Let K = {π1, π2, . . . , πk} be a complete k-arc of planes in the space

Σ = PG(3, q), q = 2h. If (q − 1)/t2 + 2/t > t, then each Ci factors into t S-lines

and each S-line belongs to a hyperbolic quadric algebraically contained in Φ(K).

Proof. From Lemmas 6.60(i) and 6.62, the curve Ci in πi factors into t S-lines. Let

�iu be a fixed S-line in πi. By Lemma 6.60(iv), there are exactly q+1 S-lines distinct

from �iu having a point in common with �iu; denote these by �1, �2, . . . , �q+1. Let

i, j, g be distinct. The S-lines in πj are the lines �jv and the S-lines in πg are denoted

by �gw. Let fvw be the number of lines �r having a point in common with �jv and

�gw. If �r is not in πj nor in πg , then �r is concurrent with one line of type �jv and one

of type �gw. If �r is in the plane πj , then it is concurrent with t lines �jv and one line

�gw. If �r is in πg , it is concurrent with t lines �gw and one line �jv . Consequently,

t∑
v,w=1

fvw = q − 1 + 2t.

Averaging gives f̄ = (q−1)/t2+2/t. Therefore there exist two S-lines, say �jv = �′

and �gw = �′′, for which fvw ≥ f̄ = (q − 1)/t2 + 2/t. Now it is shown that

�iu = �, �′ and �′′ are mutually skew.

Suppose for example that �′ and �′′ meet in a point P . Since

fvw ≥ (q − 1)/t2 + 2/t

and since, by Lemma 6.60(iv), P lies on exactly two S-lines, the plane �′�′′ contains

at least (q − 1)/t2 + 2/t S-lines. Because �′�′′ ∩ Φ(K) is an algebraic curve of

degree t or �′�′′ is a component of Φ = Φ(K), so (q − 1)/t2 + 2/t ≤ t or else the

plane �′�′′ is a component of Φ. By assumption (q − 1)/t2 + 2/t > t; so the plane

�′�′′ is a component of Φ. But then, by Theorem 6.59(v), the plane �′�′′ extends K,

contradicting the fact that K is complete. It follows that the lines �, �′, �′′ are mutually

skew.

If λ is the integer defined by (q− 1)/t2 +2/t+1 > λ ≥ (q− 1)/t2 +2/t, then

there are at least λ S -lines of the form �i, say �1, . . . , �λ, which meet �, �′, �′′. Hence

�1, �2, . . . , �λ belong to a regulus R. Let m be a line of the complementary regulus

R′. Then m has at least λ > t points in common with Φ = Φ(K). Consequently,

m is a line of Φ. So the hyperbolic quadric H3 with reguli R,R′ is a component of

Φ. Therefore, each S-line �iu belongs to a hyperbolic quadric which is algebraically

contained in Φ. ��

Lemma 6.64. If q − 1
2

√
q + 9

4
< k < q + 1, then, for any plane π of PG(3, q), the

curve Φ ∩ π is reducible over Fq .
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Proof. As k > q −
√
q + 2 and since there is an integer between q − 1

2

√
q + 9

4
and

q + 1, so q ≥ 32. It may be assumed that no S-line is contained in π. Then any

S-line has exactly one point in common with π. Since the number of S-lines is equal

to k(q + 3− k) = kt and each point is on either zero or two S-lines, so

|Φ ∩ π| ≥ kt/2.

Suppose that Φ ∩ π is absolutely irreducible, that is, irreducible over Fq . By

Corollary 2.29 of PGOFF2,

(q + 3− k)k/2 ≤ q + 1 + (q + 2− k)(q + 1− k)
√
q.

Consequently, either k ≥ q+1 or k ≤ q− 1
2

√
q+ 9

4
−1/(4+8

√
q) < q− 1

2

√
q+ 9

4
,

a contradiction. Therefore Φ ∩ π is reducible over Fq . ��

Lemma 6.65. If q− 1
2

√
q+ 9

4
< k < q+ 1, and k is even, then, for each plane π of

PG(3, q), the curve Φ ∩ π = C contains a line as a component over Fq .

Proof. It may be assumed that no S-line is contained in π. By Lemma 6.64, the curve

C is reducible over Fq . Also 2 < t < 1
2

√
q + 3

4
and q ≥ 32. If C′ is an absolutely

irreducible component of C of degree m, with m ≥ 4, then it can now be shown that

|C′| < (q + 1)m/2.

If C′ is not defined over Fq then |C′| ≤ m2, Lemma 2.24(i) of PGOFF2; if C′ is

defined over Fq then, by the Hasse–Weil bound, |C′| ≤ q+1+ (m− 1)(m− 2)
√
q.

Since q+1+(m−1)(m−2)
√
q ≥ m2, it follows that |C′| ≤ q+1+(m−1)(m−2)

√
q.

Suppose that

q + 1 + (m− 1)(m− 2)
√
q ≥ (q + 1)m/2.

Then, either

1
4

√
q + 3

2
+ 1/(4

√
q) + 1

4
{(
√
q − 2)2 + 2− 4/

√
q + 1/q}1/2 ≤ m

or
1
4

√
q + 3

2
+ 1/(4

√
q)− 1

4
{(
√
q − 2)2 + 2− 4/

√
q + 1/q}2 ≥ m.

Hence, either

m > 1
4

√
q + 3

2
+ 1

4
(
√
q − 2) = 1

2

√
q + 1

or

m < 1
4

√
q + 3

2
+ 1/(4

√
q)− 1

4
(
√
q − 2) = 2 + 1/(4

√
q).

This contradicts that 4 ≤ m < t < 1
2

√
q + 3

2
. Hence |C′| < (q + 1)m/2.

If C′′ is an absolutely irreducible component of C of odd degree m, with m ≥ 5,

then it is now shown that |C′′| < 1
2
(m− 3)(q + 1) + q + 1+ 2

√
q. Note that, by the

Hasse–Weil bound, q + 1+ 2
√
q is the maximum number of points of an absolutely

irreducible plane cubic curve over Fq .

As for C′,

|C
′′
| ≤ q + 1 + (m− 1)(m− 2)

√
q.
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Since 5 ≤ m ≤ q + 1− k < 1
2

√
q − 5

4
, so q ≥ 256. Assume that

1
2
(m− 3)(q + 1) + q + 1 + 2

√
q ≤ q + 1 + (m− 1)(m− 2)

√
q.

Then, either

m ≤
1
4

√
q + 1/(4

√
q) + 3

2
−

1
4
{(
√
q − 6)2 + 2− 12/

√
q + 1/q}1/2

or

m ≥
1
4

√
q + 1/(4

√
q) + 3

2
+ 1

4
{(
√
q − 6)2 + 2− 12/

√
q + 1/q}1/2.

Since q ≥ 256, so 2− 12/(
√
q) + 1/q > 0. Hence, either

m < 1
4

√
q + 3

2
+ 1/(4

√
q)− 1

4
(
√
q − 6) = 3 + 1/(4

√
q),

or

m > 1
4

√
q + 3

2
+ 1

4
(
√
q − 6) = 1

2

√
q.

This contradicts that 5 ≤ m < 1
2

√
q− 5

4
, and so |C′′| < 1

2
(m−3)(q+1)+q+1+2

√
q.

Now suppose that C contains no linear component over Fq , but contains β ≥ 0
linear components over Fq. Since C has odd degree, the number of components over

Fq of C of odd degree is odd. By the preceding sections and using the fact that

2(q + 1 + 2
√
q) < 3(q + 1),

(i) for β even,

|C| ≤
1
2
(t− β − 3)(q + 1) + β + (q + 1 + 2

√
q)

≤
1
2
(t− 3)(q + 1) + q + 1 + 2

√
q;

(ii) for β odd,

|C| ≤
1
2
(t− β)(q + 1) + β < 1

2
(t− 3)(q + 1) + q + 1 + 2

√
q.

Hence, in each case,

|C| ≤
1
2
(t− 3)(q + 1) + q + 1 + 2

√
q.

Consequently,

1
2
k(q + 3− k) ≤ |C| ≤

1
2
(q − k)(q + 1) + q + 1 + 2

√
q.

So, either

k ≤ q + 2− {(
√
q − 3)2 + 2

√
q − 7}1/2

or

k ≥ q + 2+ {(
√
q − 3)2 + 2

√
q − 7}1/2.

Hence, either

k < q + 2− (
√
q − 3) = q −

√
q + 5

or

k > q + 2 + (
√
q − 3) = q +

√
q − 1.

This contradicts that q − 1
2

√
q + 9

4
< k < q + 1. Therefore C contains a line as a

component over Fq. ��
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Theorem 6.66. If q− 1
2

√
q+ 9

4
< k < q+ 1 and k is even, then Φ contains a plane

as a component over Fq .

Proof. Let πi be a plane of the k-arc. In πi there are q+3−k = t < 1
2

√
q+ 3

4
S-lines

which form an arc of lines in πi. Since q ≥ t(t− 3)/2 + 2, this arc is incomplete by

Theorem 9.12 of PGOFF2; so there is a line � which intersects the t lines of the arc

at t different points. Hence |� ∩ Φ| = t and the t points of Φ ∩ � are simple for Φ.

Considering the q + 1 planes of PG(3, q) through � and using Lemma 6.65, at least

one point P of Φ∩� is contained in at least (q+1)/t lines of Φ. Hence P is contained

in at least 2
√
q − 4 + (1

2

√
q + 4)/(1

2

√
q + 3

4
) lines of Φ. It follows that the tangent

plane πP of Φ at P contains more than 2
√
q − 4 lines of Φ. Since 2

√
q − 4 > t, the

plane πP is a component of Φ. ��

Theorem 6.67. Any k-arc K of PG(3, q), with q even, k even, and with the bound

q − 1
2

√
q + 9

4
< k < q + 1, can be extended to a (k + 1)-arc.

Proof. This follows immediately from Theorems 6.59(v) and 6.66. ��

Lemma 6.68. If q −
1
2

√
q + 9

4
< k < q + 1 and k is odd, then, for each plane π

of PG(3, q), the curve Φ ∩ π = C either contains a line as component over Fq or

consists of t/2 conics defined over Fq.

Proof. It may be assumed that no S-line is contained in π. If C′ is an absolutely

irreducible component of C of degree m, with q + 2 − k > m > 4 and q > 512,

then it is now shown that |C′| < 1
2
(m− 4)(q + 1) + q + 1 + 2

√
q. Note, that by the

Hasse–Weil bound, q + 1+ 2
√
q is the maximum number of points of an absolutely

irreducible plane cubic curve over Fq . Ignore for the moment the condition q > 512.

If C′ is not defined over Fq, then |C′| ≤ m2; if C′ is defined over Fq , then

|C
′
| ≤ q + 1 + (m− 1)(m− 2)

√
q.

Hence |C′| ≤ q + 1 + (m− 1)(m− 2)
√
q. Since 5 ≤ m ≤ q + 1− k < 1

2

√
q − 5

4
,

so q ≥ 256. Suppose that

1
2
(m− 4)(q + 1) + q + 1 + 2

√
q ≤ q + 1 + (m− 1)(m− 2)

√
q. (6.80)

Then, either

m ≤
1
4

√
q + 3

2
+ 1/(4

√
q)− 1

4
{(
√
q − 11)2 + 2

√
q − 20/

√
q + 1/q − 83}1/2

or

m ≥
1
4

√
q + 3

2
+ 1/(4

√
q) + 1

4
{(
√
q − 11)2 + 2

√
q − 20/

√
q + 1/q − 83}1/2.

For q > 1024, the inequality 2
√
q − 20/

√
q + 1/q − 83 > 0 holds. Hence, for

q > 1024, either

m < 1
4

√
q + 3

2
+ 1/(4

√
q)− 1

4
(
√
q − 11) = 17

4
+ 1/(4

√
q)



6.7 Arcs and hypersurfaces 349

or

m > 1
4

√
q + 3

2
+ 1

4
(
√
q − 11) = 1

2

√
q − 5

4
.

This contradicts that 5 ≤ m < 1
2

√
q −

5
2

. For q = 256, the inequality (6.80) is

satisfied; for q = 512, (6.80) and the inequality 5 ≤ m ≤ q+1−k < 1
2

√
q− 5

4
give

m = 10 and k = 503; for q = 1024, (6.80) is in contradiction to 5 ≤ m < 1
2

√
q− 5

4
.

Let C′′ be an absolutely irreducible component of degree four of C. If C′′ is not

defined over Fq , then |C′′| ≤ 16 < 2(q+1). If C′′ is defined over Fq , then the bound

|C′′| ≤ q + 1 + 6
√
q holds; so |C′′| ≤ 2(q + 1), for q ≥ 32. Hence |C′′| ≤ 2(q + 1)

is always true.

Now suppose that, over Fq , the curve C neither contains a line nor consists en-

tirely of conics and irreducible quartic curves. Suppose also that q /∈ {256, 512}. Let

β be the number of absolutely irreducible components of degree three and let α be

the number of absolutely irreducible components of degree at least five. If α = 0,

then, since q + 3 − k = t is even, β is even and so α + β is even. Also α + β > 0.

By the preceding sections,

|C| ≤
1
2
(t− 3β − 4α)(q + 1) + (α+ β)(q + 1 + 2

√
q).

Further, note that 2(q + 1 + 2
√
q) < 3(q + 1). If α+ β is odd, so α �= 0; then

|C| ≤
1
2
(t− α− 3)(q + 1) + q + 1 + 2

√
q ≤

1
2
(t− 4)(q + 1) + q + 1 + 2

√
q.

If α+ β is even, so α+ β ≥ 2; then

|C| ≤
1
2
(t− α− 6)(q + 1) + 2(q + 1 + 2

√
q)

≤
1
2
(t− 6)(q + 1) + 2(q + 1 + 2

√
q).

Thus, in both cases,

|C| ≤
1
2
(t− 6)(q + 1) + 2(q + 1 + 2

√
q)

= 1
2
(q − k − 3)(q + 1) + 2(q + 1 + 2

√
q).

Consequently,

1
2
k(q + 3− k) ≤ 1

2
(t− 6)(q + 1) + 2(q + 1 + 2

√
q).

So, either

k ≤ q + 2− {2q − 8
√
q + 3}1/2

or

k ≥ q + 2 + {2q − 8
√
q + 3}1/2.

This contradicts q − 1
2

√
q + 9

4
< k < q + 1. Hence, for q /∈ {256, 512}, C contains

over Fq either a linear component or consists entirely of conics and absolutely irre-

ducible quartic curves. Let C consist of ε conics and δ absolutely irreducible quartic

curves, with δ ≥ 1. If q = 32, then t = 3 and so k is even; hence q ≥ 64. Since
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1
2
(t− 4δ)(q + 1) + δ(q + 1 + 6

√
q) = 1

2
(q + 3− k)(q + 1) + δ(−q − 1 + 6

√
q)

≤
1
2
(q + 3− k)(q + 1)− q − 1 + 6

√
q,

so
1
2
k(q + 3− k) ≤ |C| ≤

1
2
(q + 3− k)(q + 1)− q − 1 + 6

√
q.

Consequently, either

k ≤ q + 2− {2q − 12
√
q + 3}1/2

or

k ≥ q + 2 + {2q − 12
√
q + 3}1/2.

This contradicts

q − 1
2

√
q + 9

4
< k < q + 1.

So over Fq , and with q /∈ {256, 512}, the curve C either contains a line or consists

entirely of conics.

Let � be a line of C, and suppose that � is not defined over Fq . Then |�| ≤ 1. Let

πi be a plane of K not passing through a point of � over Fq . The line �′ = π ∩ πi

intersects πi ∩Φ and so Φ, only in points over Fq. Hence the intersection of � and �′

is a point over Fq , a contradiction.

Now suppose that C consists of t/2 conics, ρ of which are not defined over Fq ,

with ρ ≥ 1. Then

1
2
k(q + 3− k) ≤ |C| ≤

1
2
(q + 3− k − 2ρ)(q + 1) + 4ρ

≤
1
2
(q + 1− k)(q + 1) + 4.

Hence, either

k ≤ q + 2− (2q − 5)1/2

or

k ≥ q + 2 + (2q − 5)1/2,

a contradiction. Consequently, for q /∈ {256, 512}, the curve C either contains a line

over Fq or consists of t/2 conics over Fq .

Let q = 512. Then (6.80) together with 5 ≤ m ≤ q + 1 − k < 1
2

√
q − 5

4
gives

m = 10 and k = 503. So suppose that m = 10 and t = 12. If C does not contain a

line, then

1
2
kt = 1

2
(503.12) ≤ |C| ≤ (q + 1) + (q + 1 + 72

√
q) = 1026 + 72

√
512,

a contradiction. Now, in the same way as for q /∈ {256, 512}, the curve C contains a

linear component over the ground field Fq . If q = 512 and if (6.80) is not satisfied

for m > 4, then the procedure is as in the case q /∈ {256, 512}.

Finally, let q = 256. Since 2 < t < 1
2

√
q + 3

4
with t even, then, from the bound

4 < m < t − 1, it follows that t = 8 and m ∈ {5, 6}. If t = 8,m = 5, and C does

not contain a line, then
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1
2
kt = 1

2
(251.8) ≤ |C| ≤ (q + 1 + 12

√
q) + (q + 1 + 2

√
q) = 738,

a contradiction; if t = 8, m = 6, and C does not contain a line, then

1
2
kt = 1

2
(251.8) ≤ |C| ≤ (q + 1 + 20

√
q) + (q + 1) = 834,

also a contradiction. As for q /∈ {256, 512}, the curve C contains a linear component

over the ground field Fq . If q = 256 and if there is no absolutely irreducible com-

ponent with m > 4, then proceed as in the case q /∈ {256, 512} with α = 0 and

α+ β = β ≥ 2. ��

Theorem 6.69. If q − 1
2

√
q + 9

4
< k < q + 1 and k is odd, then Φ contains a plane

as component over Fq or consists of (q + 3− k)/2 hyperbolic quadrics over Fq .

Proof. If Φ contains a plane ξ as component, then, for each plane πi of K, the line

ξ∩πi is an S-line; so ξ contains at least k lines over Fq and consequently ξ is defined

over Fq . Suppose therefore that Φ does not contain a linear component. From the

proof of Theorem 6.66, there is at least one plane which does not contain a line of

Φ. Let π be a plane for which Φ ∩ π = C consists of t/2 conics over Fq . First it is

shown that no two of these conics coincide. Therefore suppose that at least two of

the conics do coincide. Then

1
2
k(q + 3− k) ≤ |C| ≤

1
2
(q + 1− k)(q + 1).

So, either

k ≤ q + 2− (2q + 3)1/2

or

k ≥ q + 2 + (2q + 3)1/2.

This contradicts q − 1
2

√
q + 9

4
< k < q + 1. Hence the t/2 conics are distinct. The

number of points common to at least two of these conics is at most

4(t/2)(t/2− 1)/2 = 1
2
t(t− 2) < 1

2
(1
2

√
q + 3

4
)(1

2

√
q − 5

4
) < q/8.

Let C1 be one of the conics and let P be a point of π, with P /∈ C1, and P distinct

from the nucleus of C1. Then there is at least one line � of π through P which neither

contains a point over Fq of C1 nor contains a point over Fq common to at least two

conics. For this line �, each point of � ∩ Φ is a simple point for Φ. Over Fq ,

|� ∩ Φ| ≤ t− 2 < 1
2

√
q − 5

4
.

Since Φ does not contain a linear component, at each point of �∩Φ the tangent plane

of Φ contains at most t different lines of Φ. Hence each point of � ∩ Φ is contained

in at most t lines of Φ. Consequently, the number of planes π′ through � for which

π′ ∩ Φ contains a line as component over Fq is at most

(t− 2)t < (1
2

√
q − 5

4
)(1

2

√
q + 3

4
) = 1

4
q − 1

4

√
q − 15

16
< 1

4
q − 1

4

√
q.
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It follows that, for more than q+1− 1
4
q+ 1

4

√
q > 3

4
q+ 1

4

√
q planes π′ through �, the

curveΦ∩π′ consists over Fq of t/2 conics. Hence, over Fq, the two conjugate points

in the set �∩C1 are contained in more than (3q+
√
q)/4 conics of Φ, all defined over

Fq , lying in different planes through �. Let C1, C2, . . . , Cr be these conics, and let ξj
be the plane of Cj .

For any S-line �i, let ti be the number of conics of {C1, C2, . . . , Cr} = V con-

taining at least (and so exactly one) point of �i. The number of points of ξj ∩ Φ not

belonging to an S-line is at most

1
2
t(q + 1)− tk/2 = t(t− 2)/2 < 1

2
(1
2

√
q + 3

4
)(1

2

√
q − 5

4
) < 1

8
q − 1

8

√
q.

Hence the number Nj of points of Cj belonging to an S-line satisfies

Nj > q + 1− 1
8
q + 1

8

√
q > 7

8
q + 1

8

√
q.

As each point of Φ is on zero or two S-lines, it now follows that∑
i

ti >
1
4
(3q +

√
q) · 1

8
(7q +

√
q) · 2 = 1

16
(21q2 + 10q

√
q + q). (6.81)

The number of S-lines is equal to (q+3−k)k. Since the function f(x) = (q+3−x)x
is strictly decreasing for x ≥ (q + 3)/2, so

(q + 3− k)k < (1
2

√
q + 3

4
)(q − 1

2

√
q + 9

4
)

= 1
2
q
√
q + 1

2
q + 3

4

√
q + 27

16
. (6.82)

From (6.81) and (6.82), it now follows that

t̄ = (
∑

ti)/{(q + 3− k)k}

> {21q2 + 10q
√
q + q}/{8q

√
q + 8q + 12

√
q + 27}

> (21
√
q)/8− 2.

Hence there is an S-line �′ which has a point in common with more than 21
√
q/8−2

conics of the set V , say with C1, C2, . . . , Cs.

The common points of C1, C2, . . . , Cs are denoted by Q and Q′. Recall that Q,Q′

are conjugate points over Fq . For i = 2, 3, let Ri be the common point of �′ and

Ci and let m2,m
′

2 be the tangent lines of C2 at the respective points Q,Q′. The

absolutely irreducible quadric (over Fq) containing C1, R2, R3 and having m2,m
′

2

as tangent lines is denoted by Q. Since R2 ∈ Q and since the tangent lines m2,m
′

2

of C2 are tangent lines of Q, the conic C2 belongs to Q. Since �′ has at least three

points in common with Q, it also belongs to Q.

The common point of �′ and Ci is denoted by Ri, and the tangent lines of Ci
at the points Q,Q′ are denoted by mi,m

′

i
, with i = 1, 2, . . . , s. The tangent plane

of Φ at Q is m1m2 and the tangent plane of Q at Q′ is m′

1m
′

2. Therefore, the tan-

gent lines mi = m1m2 ∩ ξi and m′

i
= m′

1m
′

2 ∩ ξi of Ci, are also tangent lines of

Q, i = 3, 4, . . . , s. Since also Ri ∈ Q, the conic Ci belongs to Q, i = 3, 4, . . . , s.
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Consequently, the s conics C1, C2, . . . , Cs belong to Q. As 2s > 21
√
q/4 − 4 > 2t,

so Q ⊂ Φ by Bézout’s theorem.

Instead of C1 take any other conic of Φ ∩ π. It then follows that Φ consists of

t/2 absolutely irreducible quadrics over Fq . For any plane πi ∈ K, the curve πi ∩ Φ
consists of t different S-lines and so necessarily πi contains exactly two different

lines of any of the t/2 quadrics. It follows that any of the quadrics contains at least

2k > 2q−
√
q+ 9

2
lines, and hence is hyperbolic. ThereforeΦ either contains a plane

as component over Fq or consists of (q + 3− k)/2 hyperbolic quadrics over Fq . ��

Theorem 6.70. Any k-arc K of Σ = PG(3, q), with q even, k odd, and such that

q − 1
2

√
q + 9

4
< k < q + 1, can be extended to a (k + 1)-arc.

Proof. The hypotheses imply that q ≥ 64. By Theorem 6.69, Φ contains a plane as

component over Fq or consists of (q + 3− k)/2 hyperbolic quadrics over Fq .

If Φ contains a plane as component over Fq , then, by Theorem 6.59, K can

be extended to a (k + 1)-arc. Now suppose that Φ consists of t/2 hyperbolic

quadrics. By Theorem 6.59(v), the arc K is complete. Consider a k-arc of planes

K = {π1, . . . , πk}.

Let Δ1,Δ2 be distinct hyperbolic quadrics algebraically contained in Φ. The k

planes πi are tangent planes of Δ1 and Δ2. Using any correlation θ of Σ, consider the

situation that a k-arc Kθ of points of PG(3, q) lies on the intersection Ψ1 ∩Ψ2 = C

of the two quadrics Ψ1,Ψ2, where Ψ = Δiθ, i = 1, 2. The extension of the curve

C to the algebraic closure Fq is denoted by C̄.

There are three possible cases.

(I) C̄ contains as a component a line or a conic but not an irreducible cubic curve

In this case, for any k-arc in C the result is that k ≤ 8. However, since

q + 1 > k > q − 1
2

√
q + 9

4

and k is odd, so k ≥ 63 and a contradiction is obtained.

(II) C̄ factors into a twisted cubic curve C′ and a line �

In this case |C′ ∩ Kθ| ≥ 61; so the points of C′ in PG(3, q) form a (q + 1)-arc

K′. put K′′ = Kθ ∩ C′; then |K′′| ≥ k − 2 > q −
1
2

√
q + 1

4
. Since q ≥ 64 so

|K′′| > q − 1
2

√
q + 1

4
> (q + 4)/2. By the dual of Theorem 6.59(vi), all points of

Kθ lie on the (q + 1)-arc K′. By duality, K itself lies on a (q + 1)-arc and is not

complete, a contradiction.

(I) C̄ is an irreducible quartic

Let π be any plane of Σ not containing P1 where πiθ = Pi, 1 ≤ i ≤ k, and where

P1 is non-singular for C̄, noting that C̄ has at most one singular point. Projecting C

from P1 onto π gives an irreducible cubic C′ over Fq in π. If, for i > 1, the meet

P1Pi ∩ π = {Qi}, then {Q2, . . . , Qk} = L is a (k− 1)-arc of points of π contained

in the curve C′.

i
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First suppose that C′ has genus 1. Then, from the Hasse–Weil formula, Corollary

2.27 of PGOFF2, |C′| ≤ q + 1 + 2
√
q. For a given i > 1, at least

(k − 2)− {|C
′
| − (k − 1)}

lines QiQj, 1 < j �= i, contain exactly two points of C′. So, at points of L the

curve C′ has at least (2k − 3 − |C′|)(k − 1)/2 = F (k) distinct tangents. From the

Hasse–Weil formula, F (k) ≥ (2k− 3− q− 2
√
q− 1)(k− 1)/2 = G(k). Therefore

G(k) ≤ q+1+2
√
q. Since k > q− 1

2

√
q+ 9

4
, so 8q2−28q

√
q+10q−64

√
q−11 < 0,

a contradiction as q ≥ 64.

Next suppose that C′ has genus 0. Then, as for cubics in Section 11.4 of PGOFF2,

|C′| ≤ q+2. For a given i > 1, at least (k−2)−{|C′|−(k−1)} lines QiQj , 1 < j �= i,

contain exactly two points of C′. Since at most one point of L is singular for C′, the

curve C′ has at least (k−2)(2k−4−|C′|)/2 = F (k) distinct tangents at points of L

which are simple for C′. As |C′| ≤ q+2 so F (k) ≥ (k−2)(2k−4−q−2)/2 = G(k).
Since C′ has at most q + 1 simple points, G(k) ≤ q + 1; hence

(k − 2)(2k − q − 6) ≤ 2q + 2.

Since k > q − 1
2

√
q + 9

4
, it follows that 8q2 − 12q

√
q − 22q + 4

√
q − 19 < 0, a

contradiction.

From (I), (II), (III), Φ does not consist of t/2 hyperbolic quadrics; so K extends

to a (k + 1)-arc. ��

Theorem 6.71. Let K be any k-arc of points or planes in PG(3, q), q even and

q �= 2. If k > q − 1
2

√
q + 9

4
, then K can be completed to a (q + 1)-arc L, which is

uniquely determined by K.

Proof. Assume that q − 1
2

√
q + 9

4
< k < q + 1. By Theorems 6.67 and 6.70, the

k-arc K is not complete and so it extends to a (k + 1)-arc K′. If k + 1 = q + 1, the

result is proved. If k+1 < q+1 then, since k+1 > q− 1
2

√
q+ 9

4
, the arc K′ extends

to a (k+2)-arc K′′. Proceeding in this way, K can be extended to a (q+1)-arc L. By

Theorem 6.59(vi), L is uniquely determined by K since q − 1
2

√
q + 9

4
> (q + 4)/2.

��

Before proceeding to n dimensions, it is necessary to consider the analogue of

Theorem 6.59 in PG(4, q). Then, using the result of Theorem 6.49 that a (q+1)-arc

in PG(4, q) is a normal rational curve, Theorem 6.38 can be applied.

First, Theorems 6.57 and 6.58 are restated for n = 4.

Theorem 6.72. Let K = {π1, . . . , πk} be a k-arc of solids in Σ = PG(4, q), with

q = 2s. For i, j,m distinct, let Zijm denote the set of t = q + 4 − k points on the

line πi ∩ πj ∩ πm that lie on no other solid of K. Then

(i) there exists a curve Cij = Cji of degree t in the plane πi ∩ πj such that the

intersection Cij ∩ πm = Zijm;
(ii) for fixed i, the algebraic curves Cij are algebraically contained in an algebraic

surface Φi of degree t in πi with Φi ∩ πj = Cij ;
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(iii) all the algebraic surfaces Φi are algebraically contained in a hypersurface

Φ = Φ(K) for which Φ(K) ∩ πi = Φi;
(iv) if k > (q + 6)/2, the hypersurface Φ(K) is unique;
(v) if L = K∪{πk+1, . . . , πu} is an arc of solids with u > k and if k > (q+6)/2,

the hypersurface Φ(K) factors into Φ(L), πk+1, . . . , πu;
(vi) if k > (q + 6)/2, there is a bijection between solids of Σ extending K to a

(k + 1)-arc and linear components over Fq of Φ;
(vii) if k > (q + 6)/2, the arc K is contained in a unique complete arc of PG(4, q).

Theorem 6.73. Let K be a k-arc of solids in Σ = PG(4, q), q = 2h, with cardinality

k > q − 1
2

√
q + 13

4
and t = q + 4− k. Then

(i) Φi factors over Fq into t− 2 planes αi1, αi2, . . . , αi,t−2, called S-planes, and

a hyperbolic quadric Ψi, called an S-quadric;
(ii) the t− 2 S-planes in πi form an arc of planes;

(iii) in πi ∩ πj , i �= j, there are exactly two lines �ij and mij which are lines of Ψi;
(iv) also, in πi ∩ πj , i �= j, the lines �ij and mij together with the t − 2 lines

πj ∩αi1, . . . , πj ∩αi,t−2 and the k− 2 lines πi∩πj ∩πu, u ∈ Nk\{i, j} form

a (q + 2)-arc of lines;
(v) each plane αij contains two lines of Ψi;

(vi) in an S-plane αis of πi, the lines αis ∩ αiu, s �= u, the lines αis ∩ πj , i �= j,

and the two lines of Ψi in αis form a (q + 2)-arc of lines;
(vii) the 2(q + 1) generators of Ψi are the 2(k − 1) lines of Ψi ∩ πj , j �= i, and the

2(t− 2) lines of Ψi ∩ αis;
(viii) at most two members of the set V of the (t − 2)k + k planes αij and surfaces

Ψi contain any line of Σ;
(ix) for any S-planeαis of πi and any pointP of αis, there are at most two S-planes

containing P and meeting αis in a line.

Proof. By Theorem 6.40, k ≤ q + 1 for q > 4; for q = 4, also k ≤ 6 from Section

6.1. Since k > q − 1
2

√
q + 13

4
, it follows that q ≥ 32; also k > (q + 6)/2.

(i), (ii) Since K is an arc, for a fixed i, the k − 1 planes πi ∩ πj , i �= j, form an arc

M of planes in πi. Since k > q− 1
2

√
q+ 13

4
, so k− 1 = |M| > k > q− 1

2

√
q+ 9

4
.

By Theorem 6.71 M is embedded in a (q + 1)-arc L of planes in πi. The planes

of L\M are the S-planes in πi. Since L is a (q + 1)-arc, then from the structure of

Φ(L) the S-quadric in πi as in Theorem 6.61(ii) is obtained.

(iii) This follows from Theorem 6.61(iii).

(iv)–(vii) These all follow from (iii) and (iv) of Theorem 6.61.

(viii) Since the S-planes in a given solid πi form an arc of planes in πi, no three S-

planes of a given solid have a common line. From (vi), it cannot be that two S-planes

in πi and the S-quadric Ψi of πi all contain a common line.

Let m be any line of Σ lying in an S-plane σ1. Then σ1 lies in a unique solid

of K, say πi; so σ1 is one of the S-planes αis in πi. Suppose that m lies in some

other S-plane σ2 not in πi. Then σ2 is in πj , say, with j �= i. Now πi ∩ πj is a

plane πij containing m. In πi, the plane αis meets πij in exactly one line: this must

be m. From (iv), there are no other S-planes or S-quadrics containing m. A similar
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argument handles the case that m lies in αis and in Ψj , j �= i, or lies in Ψi and in

Ψj , j �= i.

In summary, if m lies in an element of V from πi and in an element of V from

πj , j �= i, then m lies in exactly two elements of V . If the only elements of V

containingm lie in a given arc solid, say πi, then againm lies in at most two elements

from V .

(ix) An argument similar to that proving (viii) applies. ��

Theorem 6.74. Let K = {π1, . . . , πk} be a k-arc of solids in Σ = PG(4, q), for

q = 2h, with q > k > q − 1
2

√
q + 13

4
. Then K can be extended to a q-arc.

Proof. Since q > k > q −
1
2

√
q + 13

4
, so q ≥ 128 and k > (q + 6)/2. By way

of contradiction, assume that K is complete. Since k > q − 1
2

√
q + 13

4
, the results

of the previous theorem apply. Any S-plane of πj , j > 1, meets π1 in a line of

π1 ∩πj . This line lies either in an S-plane of π1 or in the quadric Ψ1. Now, there are

exactly two lines of Ψ1 in π1 ∩ πj . Therefore, putting t = q + 4− k, the number of

S-planes not in π1 and having a line in common with some S-plane in π1 is at least

(k−1)(t−2)−2(k−1) = (k−1)(t−4). Recall that each solid contains exactly t−2
S-planes. Hence there exists an S-plane α = α1s in π1 having a line in common with

at least (k− 1)(t− 4)/(t− 2) S-planes not in π1. Thus the total number of S-planes

having at least one line in common with α is at least (k−1)(t−4)/(t−2)+(t−2).
Denote the set of such planes by V = {β1, β2, . . .} with

{β1, . . . , βt−2} = {α11, . . . , α1,t−2}, β1 = α11 = α,

and βi∩α = �i for βi �= α. Since k < q, so t > 4; hence (k−1)(t−4)/(t−2) ≥ 1.

Let the line �t−1 of α lie in πj , say, j �= 1. Put

Vj = {αj1, . . . , αj,t−2,Ψj} = {δj1, . . . , δj,t−1}.

Let ρn be the number of planes of V containing a line of δjn. Since any two S-planes

of Vj meet in a line and any S-plane of Vj contains a line (actually two lines) of Ψj

by Theorem 6.73(v),∑
ρn ≥ (k − 1)(t− 4)/(t− 2) + (t− 2)− 1 + (t− 1).

Averaging gives ρ̄ ≥ [(k − 1)(t − 4)/(t − 2) + 2t− 4]/(t − 1). So there exists an

element δjn for which

ρn ≥ [(k − 1)(t− 4)/(t− 2) + 2t− 4]/(t− 1).

Note that, in obtaining
∑

ρn, the fact that each plane of V not in πj meets exactly

one element of Vj in a line is used.

Now two cases are considered.

Case 1: t < [(k − 1)(t− 4)/(t− 2) + 2t− 4]/(t− 1).
Then δjn = Ψj or an S-plane of πj . Assume that δjn = Ψj . The S-plane α

in π1 meets π1 ∩ πj in a unique line �t−1 and �t−1 lies on a unique S-plane ηj
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of πj . Now, Ψj meets π1 ∩ πj in exactly two lines �, �′ both different from �t−1.

The lines �, �′, �t−1 are part of an arc of lines in π1 ∩ πj by Theorem 6.73(iv). So

Ψj ∩ α = {�t−1 ∩ �, �t−1 ∩ �′}. Any S-plane containing a line of Ψj and a line of

α must pass through �t−1 ∩ � or �t−1 ∩ �′. One such S-plane is ηj . So, by Theorem

6.73(ix), there are at most three S-planes altogether meeting Ψj and α each in lines.

Therefore 3 ≥ (k − 1)(t − 4)/(t − 2) + (2t − 4) > t; so 3 > t, contradicting the

fact that t ≥ 5 since t = q + 4− k and k < q by hypothesis.

Next assume that δjn is an S-plane, say αj1. If αj1 is the unique S-plane ηj of

πj containing �t−1 then the planes α and αj1 lie in a Π3. From Theorem 6.73(viii),

�t−1 lies in no other S-plane. Then any other S-plane containing a line of α and αj1

lies in this Π3. Therefore this Π3 contains more than t S-planes and so is a linear

component of Φ. From Theorem 6.72(vi), this Π3 is a solid of Σ extending K. This

contradicts the initial assumption that K is complete. Therefore αj1 is distinct from

ηj ; so αj1 ∩ α is a point P . Any S-plane containing a line of αj1 and α contains P .

It follows that there are more than t S-planes containing P and intersecting α in a

line, contradicting Theorem 6.73(ix) as t > 2.

Case 2: t ≥ [(k − 1)(t− 4)/(t− 2) + 2t− 4]/(t− 1).
This means that

t3 − 4t2 − (q − 3)t+ 4q + 4 ≥ 0. (6.83)

From the hypothesis, since t = q + 4− k,

4 < t < 1
2

√
q + 3

4
. (6.84)

For t = 5, 6, 7, the inequality (6.83) implies that q ≤ 32, a contradiction in each

case. So

8 ≤ t < 1
2

√
q + 3

4
. (6.85)

Rewriting (6.83) gives

(t2 − q)t+ 4q ≥ 4t2 − 3t− 4. (6.86)

For t ≥ 2, the right-hand side of (6.86) is positive. However, from (6.85),

(t2 − q)t+ 4q < ((1
2

√
q + 3

4
)2 − q)t+ 4q

= 3
4
(
√
q + 3

4
− q)t+ 4q

≤ 6(
√
q + 3

4
− q) + 4q

= −2q + 6
√
q + 9

2

< 0.

This gives the desired contradiction.

It has thus been shown that K extends to a (k + 1)-arc K′. If k + 1 < q, then

since k + 1 > q − 1
2

√
q + 13

4
, the arc K′ extends to a (k + 2)-arc K′′. This process

shows that K can be extended to a q-arc. ��

Using the notation above, the following result is shown.
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Theorem 6.75. Any q-arc of solids in Σ = PG(4, q), q = 2h, q ≥ 64, can be

extended to a (q + 1)-arc.

Proof. Let K = {π1, . . . , πq} be a q-arc of solids in Σ. By way of contradiction,

assume that K is complete. The number of S-planes not in π1 and having a line in

common with some S-plane in π1, or with Ψ1, is exactly (q− 1)(t− 2) = 2(q− 1).
So one of α11, α12 or Ψ1 has a line in common with at least 2(q − 1)/3 of these

S-planes.

There are two possibilities:

(a) α11 or α12 has a line in common with at least 2(q − 1)/3 of these S-planes;

(b) Ψ1 has a line in common with at least 2(q − 1)/3 of these S-planes.

In case (b), there are two further possibilities.

(I) For each solid πi, i > 1, at most one of the planes αi1, αi2 contains a line of Ψ1

Then at least q− 1 of the planes αi1, αi2, i > 1, contain a line of one of αi1, αi2. So

at least one of αi1, αi2 contains a line of at least 1
2
(q − 1) S-planes not contained in

π1.

(II) There is a solid πi, i > 1, for which the two S-planes αi1 and αi2 contain a line

of Ψ1

Then at least (2(q − 1)/3− 2)/3 S-planes not in π1 and πi contain a line of Ψ1 and

one of αi1, αi2,Ψi. From Theorem 6.73, in π1 ∩ πi, the intersection Φ(K)∩ π1 ∩ πi

contains exactly four lines �1, �2, �3, �4 with no three concurrent. Also, suppose that

�1 and �2 lie in Ψ1 and that �3 and �4 lie in Ψ2. So Ψ1 meets Ψ2 in four points no

three of which are collinear. An analysis shows that through each of these four points

there is at most one S-plane not in π1 or πi and having a line in common with Ψ1

and Ψi. Since (2(q − 1)/3− 2)/3 = (2q − 8)/9 is larger than 4, at least (2q− 8)/9
S-planes not in π1 and πi contain a line of Ψ1 and one of αi1, αi2.

Each solid of K contains two S-planes. Since

min{2(q − 1)/3, (q − 1)/2, (2q − 8)/9}+ 2 = (2q + 10)/9,

it follows from (a) and (b) that there exists an S-plane α = αj1 having a line in

common with at least (2q+10)/9 S-planes. Let the set of these S-planes be denoted

by V = {β1, β2, . . .}, with {β1, β2} = {αj1, αj2}, β1 = αj1 = α; also denote

βi ∩ α by �i, when βi �= α. Note that (2q − 8)/9 > 0. Then let �3 lie in πg, g �= j.

Put Vg = {αg1, αg2,Ψg} = {δg1, δg2, δg3}. Let ρn be the number of planes of V

containing a line of δgn. Then, as in the previous theorem,∑
ρn ≥ (2q + 10)/9− 1 + 3 = (2q + 28)/9.

Averaging gives ρ̄ ≥ (2q + 28)/27. Therefore there is an element δjn for which

ρn ≥ (2q + 28)/27. Note that t = 4 < (2q + 28)/27.
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Suppose, for example, that δgn = Ψg. Recall that α meets πj∩πg in just one line

�3 which, by assumption, lies in exactly one of the planes δg1 or δg2. Therefore Ψg

has no line in common with α but meets α in exactly two points lying on �3. Then,

from Theorem 6.73(ix), there are at most three S-planes intersecting Ψg and α in a

line one of which is the S-plane of πg through �3. So (2q+ 28)/27 ≤ 3 and q ≤ 16,

contradicting q ≥ 64. Therefore δgn is an S-plane, say αg1. If αg1 is the (unique)

S-plane of πg containing �3 then the planes αg1 and α are contained in a solid Π3.

Since, from Theorem 6.73(viii), �3 is in just two S-planes, this solid contains at least

(2q+28)/27 S-planes. Since (2q+28)/27 > 4 = t and Φ(K) has degree t = 4, the

solid Π3 is a linear component of Φ(K). From Theorem 6.72(vi), this solid extends

K, contradicting that K is complete. Therefore αg1 does not contain the line �3; so

αj1 ∩ α is a point P . Any S-plane containing a line of αj1 and α contains P . It

follows that there are at least (2q + 28)/27 S-planes containing P and intersecting

α in a line, contradicting Theorem 6.73(ix). ��

Theorem 6.76. Let K be a k-arc of points in PG(4, q), q = 2h, q �= 2. If also

k > q −
1
2

√
q + 13

4
, then K can be completed uniquely to a (q + 1)-arc that is a

normal rational curve.

Proof. Since k > q − 1
2

√
q + 13

4
, so q �= 4. By Theorem 6.40, k ≤ q + 1 for q > 4;

so k > q − 1
2

√
q + 13

4
implies that q ≥ 32 and k ≥ 33. If q > q − 1

2

√
q + 13

4
, then

q ≥ 64. From the previous two theorems, K lies in a (q + 1)-arc, which is complete

by Theorem 6.40 and which is a normal rational curve by Theorem 6.49. ��

This gives the climactic result of this section.

Theorem 6.77. In PG(n, q), q = 2h, q �= 2, n ≥ 4,

(i) if K is a k-arc with k > q − 1
2

√
q + n −

3
4
, then K lies on a unique normal

rational curve;
(ii) if q > (2n−

7
2
)2, every (q + 1)-arc is a normal rational curve;

(iii) if q > (2n−
11
2
)2, then m(n, q) = q + 1.

Proof. (i) This follows by induction from Theorems 6.38 and 6.76.

(ii) q + 1 > q − 1
2

√
q + n−

3
4
⇔ q > (2n−

7
2
)2.

(iii) This follows from Theorem 6.39(ii) and part (ii). ��

Corollary 6.78. In PG(n, q), q = 2h, q �= 2, n > q − 1
2

√
q − 11

4
,

(i) if K is a k-arc with k ≥ n+ 6, then K lies on a unique normal rational curve;
(ii) if n ≤ q − 5, then every (q + 1)-arc is a normal rational curve;

(iii) if n ≤ q − 4, then m(n, q) = q + 1.

Proof. These follow from Theorem 6.77, Theorems 6.33 and 6.35, and Corollary

6.37. ��



360 6 Arcs and caps

6.8 Notes and References

Section 6.1

The bound (6.1) is due to Bose [35]; it follows from Lemma 6.20. It is also immediate

that a 2n-cap in PG(n, 2) is the complement of a hyperplane. The bound (6.2) is also

due to Bose [35] and is discussed in Sections 8.1–8.2 of PGOFF2. The bound (6.3) is

due to Bose [35] for q odd and to Qvist [268] for q even; see Section 16.1 of FPSOTD

for the bound, and for the characterisation when q is odd or q = 4, and Section 16.4

of FPSOTD for another example of a (q2 + 1)-cap when q = 2h, h odd and h ≥ 3.

For q = 8, every (q2 + 1)-cap is one of these two types, Fellagara [131].

For q = 16, every (q2+1)-cap is an elliptic quadric, O’Keefe and Penttila [248].

The bound (6.4) is due to Pellegrino [261] and the bound (6.5) is due to Hill [166];

the classification in PG(4, 3) is due to Hill [169] and in PG(5, 3) is due to Hill

[168]. For the bound in PG(4, 4), see Tallini [305], Edel and Bierbrauer [128, 129],

Bierbrauer and Edel [27].

The bounds (6.12) and (6.13) for m′(2, q) are due to Segre [280] and proved in

Chapter 10 of PGOFF2. The improvement from (6.12) to (6.11) is due to Thas [332].

The exact value for m(2, q), q an even square, is due to Fisher, Hirschfeld and Thas

[135] and to Boros and Szőnyi [34] independently.

The bound (6.15) is due to Voloch [392], and by similar methods (6.16) and

(6.17) are due to Voloch [393]. The results (6.15)–(6.17) depend on an improvement

to the Hasse–Weil theorem as in Section 10.2 of PGOFF2, which gives an upper

bound on the number of points on a non-singular, irreducible, projective, algebraic

curve with a fixed-point-free linear series. This result, due to Stöhr and Voloch [297],

depends on q, on the genus g, on the order and dimension of the linear series, and

on the Frobenius order sequence. For (6.18)–(6.23), see Hirschfeld, Korchmáros and

Torres [176, Chapter 13].

Section 6.2

This is entirely based on Hill [168], apart from Theorem 6.15, which is due to Meshu-

lam [236].

Section 6.3

The proof of Theorem 6.16 is taken from Tallini [302]. The remainder of the section

is taken from Hirschfeld [172]; the essence of the argument is found in Segre [280].

The argument used to obtain the final result, Theorem 6.19, depends intricately on

the upper bound used for m′(2, q). This is both explicit in the proof of Theorem 6.19

and implicit in Theorem 6.17, on which the result heavily depends. Throughout, the

bound (6.12) is used. The nature of the argument given precludes a formula or a

bound for m2(n, q) in terms of m′(2, q); a change in the bound for m′(2, q) means

a complete reworking of the argument. This can be done separately for the bounds
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(6.11), (6.15), (6.16), (6.18)–(6.23). For example, if q is a sufficiently large prime

and n ≥ 4, then J. F. Voloch (personal communication) has shown that

m2(n, q) ≤
1983
2025

qn−1 +O(qn−2).

For many other bounds, see Hirschfeld and Storme [177].

Section 6.4

Lemma 6.23 and Theorem 6.24 are taken from Chao [71].

Hirschfeld and Thas [181] contains the details of Theorem 6.25. For Theorem

6.26, part (ii) is taken from Ferret and Storme [133], part (iii) from Cao and Ou

[66] and part (i) from Thas (2015, unpublished). The proof of Theorem 6.27 pro-

ceeds as in the proof of Theorem 27.4.5 in GGG1 or Theorem 4.1 in Hirschfeld

and Thas [181], using Chao’s bound for m′

2(3, q). Theorem 6.28(i) and (ii) is taken

from Thas (2015, unpublished); Theorem 6.28(iii) comes from Cao and Ou [66].

Theorem 6.29(iii) is taken from Ferret and Storme [133]; parts (iv)–(v) come from

Storme, Thas and Vereecke [301].

Section 6.5

The first part is an amalgam of Section 21.1 of FPSOTD and Segre [275]. The proof

of Theorem 6.32(i) is based on Kaneta and Maruta [190]. The remainder of the sec-

tion is taken from Thas [311], although this proof of Theorem 6.33 is taken from

Halder and Heise [146].

Section 6.6

Theorem 6.40 is due to Segre [275] for q odd and to Casse [69] for q even. Theo-

rem 6.41 is due to Thas [310], although the treatment here and hence the necessary

Theorems 6.38 and 6.39 follow Kaneta and Maruta [190]; part (iii) is an improve-

ment of Thas’s result from q > (4n − 5)2 to (4n − 9)2. Theorem 6.42(ii) is due to

Glynn [140]. Lemmas 6.44 to 6.48, Corollary 6.47, and Theorem 6.49 follow Casse

and Glynn [70]. Included in this paper is an elementary proof of the result that a

q-arc in PG(3, q), q even, is contained in a (q + 1)-arc; see also Kaneta and Maruta

[189]. Theorem 6.50 implies that m(5, q) = q + 1 for q even and q ≥ 8. Maruta and

Kaneta [223] have shown, for q even and q ≥ 16, that (i) in PG(3, q), a (q − 1)-
arc is contained in a unique (q + 1)-arc; (ii) in PG(4, q), a q-arc is contained in a

unique (q + 1)-arc; (iii) in PG(5, q), a (q + 1)-arc is a normal rational curve; (iv)

m(6, q) = q + 1. These results are dependent on those in Section 6.7. Theorem

6.51(i) is due to Ball and De Beule [9], parts (ii) and (iii) to Ball [8].
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Section 6.7

This is based on three papers: Bruen, Thas and Blokhuis [53], Blokhuis, Bruen and

Thas [31], and Storme and Thas [300]. In [31], Theorems 6.54 and 6.56 are also

applied to the case of q odd. This gives the following result analogous to Theorem

6.58.

Theorem 6.79. Let K be a k-arc in PG(n, q) with n ≥ 3 and q odd. If the cardinality

k > 2
3
(q − 1) + n, then K is contained in a unique complete arc.

Using other bounds for m′(2, q) from Section 6.1, improvements of parts of The-

orems 6.41 and 6.77 should be obtainable.



7

Ovoids, spreads and m-systems of finite classical polar

spaces

7.1 Finite classical polar spaces

In this chapter, ovoids, spreads and m-systems of finite classical polar spaces are

introduced. Also SPG-reguli, SPG-systems, BLT-sets and sets with the BLT-property

are defined. The main results on these topics are given, all without proof.

There are five types of finite classical polar spaces S = (P ,B).

(1) Wn(q): the elements of P are the points of PG(n, q), n odd and n ≥ 3; the

elements of B are the subspaces of the self-polar (n − 1)/2-dimensional spaces

of a null polarity of PG(n, q); the rank r = (n+ 1)/2.

(2) P(2n, q): the elements of P are the points of a non-singular quadric P2n of

PG(2n, q), n ≥ 2; the elements of B are the subspaces of the (n − 1)-
dimensional spaces on P2n; the rank r = n.

(3) H(2n + 1, q): the elements of P are the points of a non-singular hyperbolic

quadric H2n+1 of PG(2n + 1, q), n ≥ 1; the elements of B are the subspaces

of the n-dimensional spaces on H2n+1; the rank r = n+ 1.

(4) E(2n+ 1, q): the elements of P are the points of a non-singular elliptic quadric

E2n+1 of PG(2n + 1, q), n ≥ 2; the elements of B are the subspaces of the

(n− 1)-dimensional spaces on E2n+1; the rank r = n.

(5) U(n, q2): the elements of P are the points of a non-singular Hermitian variety

Un of PG(n, q2), n ≥ 3; when n is odd, the elements of B are the subspaces of

the 1
2
(n − 1)-dimensional spaces on Un and the rank r = 1

2
(n + 1); when n is

even, the elements of B are the subspaces of the (1
2
n − 1)-dimensional spaces

on Un and the rank r = n/2.

Definition 7.1. For a polar space S of rank r, the subspaces of dimension r − 1 are

the generators of S.

Theorem 7.2. With G(S) the set of generators of the finite classical polar space S,

the numbers of points and generators are given in Table 7.1.

© Springer-Verlag London 2016 363
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Table 7.1. Classical polar spaces

S |P| |G(S)|

Wn(q) (qn+1 − 1)/(q − 1) (q + 1)(q2 + 1) · · · (q(n+1)/2 + 1)

P(2n, q) (q2n − 1)/(q − 1) (q + 1)(q2 + 1) · · · (qn + 1)

H(2n+ 1, q) (qn + 1)(qn+1 − 1)/(q − 1) 2(q + 1)(q2 + 1) · · · (qn + 1)

E(2n+ 1, q) (qn − 1)(qn+1 + 1)/(q − 1) (q2 + 1)(q3 + 1) · · · (qn+1 + 1)

U(2n, q2) (q2n+1 + 1)(q2n − 1)/(q2 − 1) (q3 + 1)(q5 + 1) · · · (q2n+1 + 1)

U(2n+ 1, q2) (q2n+2 − 1)(q2n+1 + 1)/(q2 − 1) (q + 1)(q3 + 1) · · · (q2n+1 + 1)

7.2 Ovoids and spreads of finite classical polar spaces

Definition 7.3. Let S be a finite classical polar space of rank r ≥ 2.

(1) An ovoid O of S is a point set that meets every generator in exactly one point.

(2) A spread T of S is a set of generators that partitions the point set of S.

Theorem 7.4. The sizes of ovoids O and spreads T are given in Table 7.2.

Table 7.2. Sizes of ovoids and spreads

S |O| = |T |

Wn(q) q(n+1)/2 + 1

P(2n, q) qn + 1

H(2n+ 1, q) qn + 1

E(2n+ 1, q) qn+1 + 1

U(2n, q2) q2n+1 + 1

U(2n+ 1, q2) q2n+1 + 1

Definition 7.5. The number of points of a hypothetical ovoid O of S is the ovoid

number of S.
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7.3 Existence of ovoids

The existence and non-existence of ovoids O in a finite classical polar space S is

described in Table 7.3.

Any ovoid of PG(3, q), q even, is an ovoid of some W3(q) and, conversely.

Table 7.3. Existence of ovoids

S Existence of O References

W3(q), q even Yes [312]

W3(q), q odd No [312]

Wn(q), n = 2t+ 1 and t > 1 No [328]

P(4, q) Yes [213], [191], [259, 260],

[350], [263]

P(6, q), q prime, q > 3 No [10]

P(6, q), q = 3h Yes [326, 328], [191]

P(2n, q), n > 2 and q even No [328]

P(2n, q), n > 3 and q odd No [145]

H(3, q) Yes

H(5, q) Yes Table 15.10 of FPSOTD

H(7, q), q odd, with q prime Yes [125], [326, 328]

or q ≡ 0 or 2 (mod 3) [192], [193], [191], [287],

[74], [238] (∗)

H(7, q), q even Yes [326, 328]

H(2n + 1, q), n > 3, q = ph, p prime and No [33]

pn >
(
2n+p
2n+1

)
−

(
2n+p−2
2n+1

)
E(2n+ 1, q), n > 1 No [328]

U(3, q2) Yes [329], [259, 260], [350]

U(2n, q2), n ≥ 2 No [328]

U(2n+ 1, q2), n > 1, q = ph, p prime and No [239]

p2n+1 >
(
2n+p
2n+1

)2 − (
2n+p−1
2n+1

)2
U(5, 4) No [83]

7.4 Existence of spreads

The existence and non-existence of spreads T in a finite classical polar space S is

described in Table 7.4.
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Table 7.4. Existence of spreads

S Existence of T References

Wn(q), n = 2t+ 1 and t ≥ 1 Yes [213], [323], [191], [5], [350], [263]

P(2n, q), n ≥ 2 and q even Yes [125], [326, 328], [350]

P(6, q), q odd, with q prime Yes See (∗) in Table 7.3

or q ≡ 0 or 2 (mod 3)

P(4n, q), q odd No [312], [334]

H(3, q) Yes

H(7, q), q odd, with q prime Yes See (∗) in Table 7.3

or q ≡ 0 or 2 (mod 3)

H(4n+ 3, q), q even Yes [125], [326, 328]

H(4n+ 1, q) No

E(5, q) Yes [329], [259, 260], [350]

E(2n+ 1, q), n > 2, q even Yes [125], [326, 328]

U(4, 4) No

U(2n+ 1, q2) No [328], [334]

A spread of Wn(q), n = 2t + 1, is also a t-spread of PG(n, q). For every

n = 2t + 1, the polar space Wn(q) has a spread that is also a regular t-spread of

PG(n, q).
Any non-singular hyperbolic quadric of PG(2n+1, q), n ≥ 1, has two families

of generators; see Section 1.4. If π, π′ are generators, then they belong to the same

family if and only if the dimension of their intersection has the same parity as n. It

follows that H(4n+ 1, q) has no spread.

7.5 Open problems

For ovoids, establish the existence or non-existence in the following cases:

(a) P(6, q), q odd, q �= 3h and q not prime;

(b) H(7, q), q odd, q ≡ 1 (mod 3) and q not prime;

(c) H(2n+ 1, q), n > 3, q = ph, p prime and

pn ≤

(
2n+ p

2n+ 1

)
−

(
2n+ p− 2

2n+ 1

)
;

(d) U(2n+ 1, q2), (n, q) �= (2, 2), q = ph, p prime and

p2n+1
≤

(
2n+ p

2n+ 1

)2

−

(
2n+ p− 1

2n+ 1

)2

.
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For spreads, establish the existence or non-existence in the following cases:

(a) P(6, q), q odd with q ≡ 1 (mod 3) and q not prime;

(b) P(4n+ 2, q), q odd, for n > 1;

(c) H(7, q), q odd with q ≡ 1 (mod 3) and q not prime;

(d) H(4n+ 3, q), q odd, for n > 1;

(e) E(2n+ 1, q), n > 2, and q odd;

(f) U(4, q2), for q > 2;

(g) U(2n, q2), for n > 2.

7.6 m-systems and partial m-systems of finite classical polar

spaces

Definition 7.6. Let S be a finite classical polar space of rank r, with r ≥ 2.

(1) A partial m-system of S, with 0 ≤ m ≤ r − 1, is any set {π1, π2, . . . , πk} of

m-dimensional subspaces of S such that no generator containing πi has a point

in common with (π1 ∪ π2 ∪ · · · ∪ πk)\πi, with i = 1, 2, . . . , k.

(2) A partial 0-system of size k is also called a partial ovoid, or a cap, or a k-cap.

(3) A partial (r − 1)-system is also called a partial spread.

Theorem 7.7. An upper bound for the size of a partial m-system M of the classical

polar space S is given by the following table:

S |M| ≤

W2n+1(q) qn+1 + 1
P(2n, q) qn + 1
H(2n+ 1, q) qn + 1
E(2n+ 1, q) qn+1 + 1
U(2n, q2) q2n+1 + 1
U(2n+ 1, q2) q2n+1 + 1

Definition 7.8. A partial m-system M of the finite classical polar space S is an m-

system if the upper bound in Theorem 7.7 is attained.

For m = 0, the m-system is an ovoid of S; for m = r − 1, with r the rank of S,

the m-system M is a spread of S. The fact that |M| is independent of m explains

why an ovoid and a spread of a finite classical polar space S have the same size.

Theorem 7.9. Let M be a partial m-system of the finite classical polar space S of

rank r with m < r− 1. Then the number NM of (m+ 1)-dimensional subspaces of

S containing an element of M and a given point P of S not in an element of M is

independent of the choice of P ; it is given by the following table:
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S NM

W2n+1(q) qn−m + 1
P(2n, q) qn−m−1 + 1
H(2n+ 1, q) qn−m−1 + 1
E(2n+ 1, q) qn−m + 1
U(2n, q2) q2n−2m−1 + 1
U(2n+ 1, q2) q2n−2m−1 + 1

Remark 7.10. If P is a point of S not in an element of the m-system M, then, for

m < r − 1 and S �= W2n+1(q), Theorem 7.9 says that the tangent hyperplane of S

at P contains exactly NM elements of M; for m < r − 1 and S = W2n+1(q), the

hyperplaneP⊥, that is, PI with I the null polarity defining S, contains exactly NM

elements of M.

7.7 Intersections with hyperplanes and generators

In this section, S is a finite classical polar space of rank r, with r ≥ 2, and M is an

m-system of S.

Theorem 7.11. For S �= W2n+1(q), let RM be the number of elements of M con-

tained in a hyperplane π which is not tangent to S; for S = W2n+1(q), let RM be

the number of elements of M contained in a hyperplane P⊥, with P a point not in

an element of M. This number is given in the following table:

S NM = RM

W2n+1(q) qn−m + 1
P(2n, q) qn−m−1 + 1
and π ∩ P(2n, q) = H(2n− 1, q)
E(2n+ 1, q) qn−m + 1
U(2n, q2) q2n−2m−1 + 1

Remark 7.12. 1. When S = P(2n, q) and also π ∩ P(2n, q) = E(2n − 1, q), then

RM = 0 for m = n− 1, and RM depends on the choice of π for m < n− 1.

2. When S = H(2n + 1, q), then RM = 0 for m = n, and RM depends on the

choice of π for m < n.

3. When S = U(2n + 1, q2), then RM = 0 for m = n, and RM depends on the

choice of π for m < n.

Theorem 7.13. For S = W2n+1(q), E(2n + 1, q), U(2n, q2), again NM = RM;
that is, any hyperplane contains either one or NM elements of M. Hence the

union M̃ of the elements of M has two intersection numbers β1, β2 with respect

to hyperplanes:
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(i) for S = W2n+1(q),

β1 =
(qm+1 − 1)(qn + 1)

q − 1
− qn, β2 =

(qm+1 − 1)(qn + 1)

q − 1
;

(ii) for S = E(2n+ 1, q),

β1 =
(qm+1 − 1)(qn + 1)

q − 1
− qn, β2 =

(qm+1 − 1)(qn + 1)

q − 1
;

(iii) for S = U(2n, q2),

β1 =
(q2m+2 − 1)(q2n−1 + 1)

q2 − 1
− q2n−1, β2 =

(q2m+2 − 1)(q2n−1 + 1)

q2 − 1
.

Corollary 7.14. For S = W2n+1(q), E(2n+1, q),U(2n, q2), any m-system defines

a strongly regular graph and a linear projective two-weight code.

Remark 7.15. For more details on these graphs and codes, see Section 7.10.

Theorem 7.16. Let M be an m-system of the finite classical polar space S over Fq,

and let M̃ be the union of the elements of M. Then, for any generator γ of S,

|γ ∩ M̃| = (qm+1
− 1)/(q − 1).

Definition 7.17. Let S be a finite, not necessarily classical, polar space of rank r,

with r ≥ 2. Hence S may be a non-classical generalised quadrangle. A point set

K of S is a k-ovoid of S if each generator of S contains exactly k points of K. A

1-ovoid is just an ovoid.

Corollary 7.18. The union of all elements of an m-system of S over Fq is a k-ovoid

with k = (qm+1 − 1)/(q − 1).

7.8 Bounds on partial m-systems and non-existence of m-systems

Notation 7.19. Write

(a) c(n, r) =
(
n

r

)
;

(b) b(r1, r2, r3, r4) = c(c(r1, r2) + r3, r4);
(c) b′(m1,m2,m3,m4,m5,m6) = c(c(m1,m2)− c(m3,m4) +m5,m6).

Theorem 7.20. If K is a partial ovoid of size k of the finite classical polar space S

in PG(n, q), with q = ph and p prime, then

k ≤ c(p+ n− 1, n)h + 1. (7.1)
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(i) If S comes from a quadric in PG(n, q), then (7.1) can be improved to

k ≤ [c(p+ n− 1, n)− c(p+ n− 3, n)]
h
+ 1. (7.2)

(ii) If S arises from a quadric in PG(n, q) and if n and q are both even, then (7.2)

can be improved to

k ≤ nh + 1.

(iii) If S = U(n, q2), with q = ph, p prime, then (7.1) can be improved to

k ≤
[
c(p+ n− 1, n)2 − c(p+ n− 2, n)2

]h
+ 1.

Remark 7.21. Some results of Table 7.3 are deduced from Theorem 7.20.

Theorem 7.20 can be extended to m-systems of finite classical polar spaces. First,

a useful theorem on subspaces of PG(n, q) is stated.

Theorem 7.22. Consider in PG(n, q), n ≥ 2, with q = ph, p prime, a set of m-

dimensional subspaces π1, π2, . . . , πk and a set of (n − m − 1)-dimensional sub-

spaces π′

1, π
′

2, . . . , π
′

k
, with m ≤ (n− 1)/2, where πi ∩ π′

i
�= ∅ and πj ∩ π′

i
= ∅ for

all i, j = 1, 2, . . . , k with i �= j. Then

k ≤ b(n+ 1,m+ 1, p− 2, p− 1)h + 1. (7.3)

Theorem 7.23. (i) If M is a partial m-system of size k of the finite classical polar

space S in PG(n, q), with q = ph, p prime, then

k ≤ b(n+ 1,m+ 1, p− 2, p− 1)h + 1. (7.4)

(a) For S = P(n, q), H(n, q), E(n, q), with q odd, and for S = Wn(q), with

q and m odd, the inequality (7.4) can be improved to

k ≤ (b(n+ 1,m+ 1, p− 2, p− 1)− b(n+ 1,m+ 1, p− 4, p− 3))h + 1.

(b) When S = U(n, q2), then (7.4) can be improved to

k ≤ (b(n+1,m+1, p−2, p− 1)2−b(n+1,m+1, p−3, p−2)2)h+1.

(ii) If S admits an m-system, then the following hold:

(a) for S = W2n+1(q), q = ph and with m even if p is odd,

pn+1
≤ b(2n+ 2,m+ 1, p− 2, p− 1);

(b) for S = W2n+1(q), q = ph odd and m odd,

pn+1
≤ b(2n+ 2,m+ 1, p− 2, p− 1)− b(2n+ 2,m+ 1, p− 4, p− 3);

(c) for S = P(2n, q), q = 2h,

2n ≤ c(2n+ 1,m+ 1);
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(d) for S = H(2n+ 1, q), q = 2h,

2n ≤ c(2n+ 2,m+ 1);

(e) for S = E(2n+ 1, q), q = 2h,

2n+1
≤ c(2n+ 2,m+ 1);

(f) for S = P(2n, q), q = ph and q odd,

pn ≤ b(2n+ 1,m+ 1, p− 2, p− 1)− b(2n+ 1,m+ 1, p− 4, p− 3);

(g) for S = H(2n+ 1, q), q = ph and q odd,

pn ≤ b(2n+ 2,m+ 1, p− 2, p− 1)− b(2n+ 2,m+ 1, p− 4, p− 3);

(h) for S = E(2n+ 1, q), q = ph and q odd,

pn+1
≤ b(2n+ 2,m+ 1, p− 2, p− 1)− b(2n+ 2,m+ 1, p− 4, p− 3);

(i) for S = U(2n, q2), q = ph,

p2n+1
≤ b(2n+1,m+1, p− 2, p− 1)2−b(2n+1,m+1, p− 3, p− 2)2;

(j) for S = U(2n+ 1, q2), q = ph,

p2n+1
≤ b(2n+2,m+1, p− 2, p− 1)2−b(2n+2,m+1, p− 3, p− 2)2.

Theorem 7.24. (i) Let M be a partial m-system of size k of W2n+1(q), q = ph

and m > 0.

(a) For p odd with m even and for p = 2,

k ≤ b′(2n+ 2,m+ 1, 2n+ 2,m− 1, p− 2, p− 1)h + 1.

(b) For p odd with m odd,

k ≤ [b′(2n+ 2,m+ 1, 2n+ 2,m− 1, p− 2, p− 1)

− b′(2n+ 2,m+ 1, 2n+ 2,m− 1, p− 4, p− 3)]
h

+ 1.

(c) If M is a partial m-system of size k of P(2n, q), with m > 0 and q = 2h,
then

k ≤ [c(2n,m+ 1)− c(2n,m− 1)]h + 1.

(ii) If W2n+1(q) admits an m-system, q = ph and m > 0, then

(a) for p odd with m even and for p = 2,

pn+1
≤ b′(2n+ 2,m+ 1, 2n+ 2,m− 1, p− 2, p− 1);
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(b) for p odd with m odd,

pn+1
≤ b′(2n+ 2,m+ 1, 2n+ 2,m− 1, p− 2, p− 1)

−b′(2n+ 2,m+ 1, 2n+ 2,m− 1, p− 4, p− 3).

(iii) If P(2n, q) with q even admits an m-system, with m > 0, then

2n ≤ c(2n,m+ 1)− c(2n,m− 1).

The bound (7.3) has been improved and, as a corollary, a better bound for partial

m-systems has been obtained. However, this formula is more complicated than that

of (7.4).

Theorem 7.25. If M is a partial m-system of size k of the finite classical polar space

S in PG(n, q), with q = ph and p prime, then

k ≤ 1 +
h−1∏
j=0

K∑
i=0

(−1)i
(
n+ 1

i

)(
n+ (p− 1)(m+ 1)− ip

n

)
, (7.5)

where K =
⌊
(m+1)(p−1)

p

⌋
and �s� is the integer part of s.

Remark 7.26. For m = 0, the inequality (7.5) becomes (7.1).

7.9 m
′-systems arising from a given m-system

Here the constructions of m′-systems arising from a given m-system are surveyed.

Definition 7.27. The 0-system (or spread, ovoid) of

P2, E3, H1, U2, W1 = PG(1, q)

is the set of all their points.

Notation 7.28. In the context of polar spaces,

P(2, q) = P2,

E(3, q) = E3,

H(1, q) = H1,

U(2, q) = U2.

The sets P2, E3, H1, U2, W1 are also polar spaces of rank 1 or projective index 0.

Theorem 7.29. (i) If E(2n+1, q), n ≥ 1, has an m-system, then also P(2n+2, q)
and H(2n+ 3, q) have m-systems; if P(2n+ 2, q), n ≥ 0, has an m-system,

then H(2n+ 3, q) also has an m-system.
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(ii) If the polar space Sn, n ≥ 4, in PG(n, q) admits an ovoid, then the polar space

Sn−2 in PG(n− 2, q), of the same type as Sn, admits an ovoid.

(iii) If H(4n− 1, q), n ≥ 1, admits a spread, then P(4n− 2, q) admits a spread; if

P(2n, q), n ≥ 2, admits a spread, then E(2n− 1, q) admits a spread.

Corollary 7.30. The spaces P(4, q), H(5, q), H(3, q) each admit an ovoid.

Proof. Put (n,m) = (1, 0), (0, 0) in Theorem 7.29(i). ��

Theorem 7.31. For q even, the polar space P(2n, q), n ≥ 1, has an m-system if

and only if W2n−1(q) has an m-system.

Theorem 7.32. Let S1 and S2 be spreads of H(7, q), where the generators of S1 and

the generators of S2 belong to different systems of generators of H(7, q). Then,

(i) for each π ∈ S1, there is exactly one π′ ∈ S2 with π ∩ π′ a plane;
(ii) these q3 + 1 planes π ∩ π′ form a 2-system of H(7, q).

Theorem 7.33. If H(4n+ 3, q) admits a 2n-system, n ≥ 0, then it admits a spread.

This spread is obtained by considering all generators of a given system of generators

of H(4n+ 3, q) containing an element of the 2n-system.

Theorem 7.34. (i) If P(2n, q2), with n ≥ 1 and q odd, admits an m-system M,

then H(4n+ 1, q) admits a (2m+ 1)-system M′.

(ii) If P(2n, q2), with n ≥ 1 and q even, admits an m-system M, then P(4n, q),
and hence also H(4n+ 1, q), admits a (2m+ 1)-system M′.

(iii) If E(2n+1, qe), with n ≥ 1, admits an m-system M, then E(2e(n+1)− 1, q)
admits an (me+ e− 1)-system M′.

Corollary 7.35. (i) There exists a 1-system in H(5, q) and H(9, q).
(ii) For q even, there is a spread in P(4, q).

(iii) There is an (e − 1)-system in E(4e − 1, q).

Proof. (i), (ii) Put m = 0 and n ∈ {1, 2} in Theorem 7.34(i).

(iii) Put m = 0 and n = 1 in Theorem 7.34(ii). ��

Theorem 7.36. If W2n−1(q
e), n ≥ 1, admits an m-system M, then W2ne−1(q)

admits an (me+ e− 1)-system M′.

Corollary 7.37. The space W2e−1(q) admits an (e − 1)-system.

Proof. Put (n,m) = (1, 0) in Theorem 7.36. ��

Theorem 7.38. If U(2n, q2e), with n ≥ 1 and e odd, admits an m-system M, then

U(2ne+ e− 1, q2) admits an (me+ e− 1)-system M′.

Corollary 7.39. The space U(3e− 1, q2), with e odd, admits an (e− 1)-system.

Proof. Put (n,m) = (1, 0) in Theorem 7.38. ��
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Theorem 7.40. (i) If U(2n, q2), n ≥ 1, admits an m-system M, then E(4n+1, q)
admits a (2m+ 1)-system M′.

(ii) If U(2n+1, q2) admits an m-system M, then H(4n+3, q) admits a (2m+1)-
system M′.

Corollary 7.41. Both E(5, q) and H(7, q) admit 1-systems.

Proof. Put (n,m) = (1, 0) in Theorem 7.40. ��

Theorem 7.42. If U(2n, q2), n ≥ 1, admits anm-system M, thenW4n+1(q) admits

a (2m+ 1)-system M′.

Corollary 7.43. W5(q) admits a 1-system.

Proof. Put (n,m) = (1, 0) in Theorem 7.42. ��

Remark 7.44. Many infinite classes of examples can be constructed using the results

of this section.

7.10 m-systems, strongly regular graphs and linear projective

two-weight codes

Let V ⊂ PG(n, q), with n ≥ 2, such that, for any hyperplane π,

|π ∩ V| ∈ {β1, β2},

with β1 �= β2.

Let PG(n, q) be embedded in PG(n + 1, q); then two distinct points P1, P2 of

PG(n+1, q)\PG(n, q) are adjacent if the line P1P2 contains a point of V . With this

adjacency, PG(n+ 1, q)\PG(n, q) becomes a strongly regular graph.

Let V = {P1, P2, . . . , Ps}, with Pi = P(xi), xi = (xi0, xi1, . . . , xin) and

i = 1, 2, . . . , s. Then the matrix

G = [x∗

1 x∗

2 · · · x∗

s
]

generates a linear projective [s, n+ 1]q code C whose words can only have weights

s − β1 and s − β2. Recall that a linear code C is projective if and only if any two

columns of a generator matrix are linearly independent, that is, if and only if the

minimum weight of the dual code C⊥ is at least 3. Conversely, any linear projective

two-weight [s, n+1]q code C defines a set V of s points in PG(n, q), which has two

intersection numbers with respect to hyperplanes.

By Theorem 7.13 for any m-system M of the polar space S, where S is one of

W2n+1(q), E(2n+ 1, q), U(2n, q2), n ≥ 1, the union M̃ of the elements of M is

a set with two intersection numbers β1, β2 with respect to hyperplanes.

Expressing that the strongly regular graph arising from an m-system of these

polar spaces has λ ≥ 0 gives the following result.
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Theorem 7.45. Anm-system ofW2n+1(q), E(2n+1, q), U(2n, q2), n ≥ 1, satisfies

n ≤ 2m+ 1.

Corollary 7.46. An m-system of P(2n+ 2, q), with q even, satisfies n ≤ 2m+ 1.

From m-systems, other sets with two intersection numbers can be constructed.

Theorem 7.47. Let Mi be an mi-system of W2n+1(q), i = 1, 2, . . . , k, for some

integer k > 1. For i = 1, 2, . . . , k, let

ai =
(qmi+1 − 1)(qn + 1)

q − 1
.

(i) If, for all i �= j, Mi and Mj are disjoint, that is, M̃i ∩ M̃j = ∅, then the set

M̃1 ∪ M̃2 ∪ · · · ∪ M̃k has two intersection numbers a1 + a2 + · · · + ak and

a1 + a2 + · · ·+ ak − qn with respect to hyperplanes in PG(2n+ 1, q).
(ii) If Mi is covered by Mi+1, that is, every element of Mi is a subspace of a

unique element of Mi+1, i = 1, 2, . . . , k − 1, then

(a) if k is even, the set

K = (M̃k\M̃k−1) ∪ (M̃k−2\M̃k−3) ∪ · · · ∪ (M̃2\M̃1)

has two intersection numbers ak−ak−1+ak−2−ak−3+ · · ·+a2−a1 and

ak − ak−1 + ak−2− ak−3+ · · ·+ a2− a1− qn with respect to hyperplanes

of PG(2n+ 1, q);
(b) if k is odd, the set

K = (M̃k\M̃k−1) ∪ (M̃k−2\M̃k−3) ∪ · · · ∪ (M̃3\M̃2) ∪ M̃1

has two intersection numbers ak−ak−1+ak−2−ak−3+ · · ·+a3−a2+a1
and ak − ak−1 + ak−2 − ak−3 + · · ·+ a3 − a2 + a1 − qn with respect to

hyperplanes of PG(2n+ 1, q).

Theorem 7.48. Let Mi be an mi-system of E(2n+ 1, q), i = 1, 2, . . . , k, for some

integer k > 1. For i = 1, 2, . . . , k, let ai be as in Theorem 7.47. Then the same

conclusions hold.

Theorem 7.49. Let Mi be an mi-system of U(2n, q2), i = 1, 2, . . . , k, for some

integer k > 1. For i = 1, 2, . . . , k, define

ai =
(q2mi+2 − 1)(q2n−1 + 1)

q2 − 1
.

(i) If Mi and Mj are disjoint for all i �= j, then the set M̃1∪M̃2∪· · ·∪M̃k has

two intersection numbers a1 + a2 + · · ·+ ak and a1 + a2 + · · ·+ ak − q2n−1

with respect to hyperplanes of PG(2n, q2).
(ii) If Mi is covered by Mi+1, i = 1, 2, . . . , k − 1, then
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(a) if k is even, the set

K = (M̃k\M̃k−1) ∪ (M̃k−2\M̃k−3) ∪ · · · ∪ (M̃2\M̃1)

has two intersection numbers ak − ak−1 + ak−2 − ak−3 + · · · + a2 − a1
and ak − ak−1 + ak−2 − ak−3 + · · · + a2 − a1 − q2n−1 with respect to

hyperplanes of PG(2n, q2);
(b) if k is odd, the set

K = (M̃k\M̃k−1) ∪ (M̃k−2\M̃k−3) ∪ · · · ∪ (M̃3\M̃2) ∪ M̃1

has two intersection numbers ak−ak−1+ak−2−ak−3+ · · ·+a3−a2+a1
and ak − ak−1 + ak−2 − ak−3 + · · ·+ a3 − a2 + a1 − q2n−1 with respect

to hyperplanes of PG(2n, q2).

Example 7.50. (a) There are no examples of an m1-system M1 and an m2-system

M2 of the finite classical polar space S ∈ {W2n+1(q), E(2n + 1, q),U(2n, q2)}

with M̃1 ∩ M̃2 = ∅.

(b) For q even and for s1, s2, . . . , sk, t, with s1 < s2 < · · · < sk where si
divides si+1 for i = 1, 2, . . . , k − 1, sk ≤ s and st ≥ sk + 1, there exists a chain

of (st− si − 1)-systems Mi of E(2st− 1, q), i = 1, 2, . . . , k, where each element

Mi is covered by Mi+1, i = 1, 2, . . . , k − 1.

7.11 m-systems and maximal arcs

Maximal arcs in PG(2, q) were defined in Section 12.1 of PGOFF2. For general

planes of order q, not necessarily Desarguesian, maximal arcs are defined in a similar

way. Translation planes of order q can be constructed from n-spreads of the space

PG(2n + 1, q); see Section 4.7. Such a plane is Desarguesian if and only if the

n-spread is regular.

Theorem 7.51. Let S be a spread of the polar space E(2n+1, q) of PG(2n+1, q),
with n > 0. Suppose there exists an n-spread S = {π1, π2, . . . , πqn+1+1} of

PG(2n+ 1, q) such that

S = {E2n+1 ∩ πi | i = 1, 2, . . . , qn+1 + 1}.

Embed PG(2n+1, q) as a hyperplane in PG(2n+2, q) and choose some point P in

PG(2n+2, q)\PG(2n+1, q). Let K be the set of all points not in PG(2n+1, q) of

the cone PE2n+1. Then K is a maximal (q2n+1−qn+1+qn; qn)-arc in the projective

translation plane π(S) of order qn+1 determined by the n-spread S.

Remark 7.52. 1. Theorem 7.51 also holds if, for n = 1, the quadric E3 is replaced

by any ovoid of PG(3, q).
2. For q odd, a pair (S, S) as in Theorem 7.51 does not exist.
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3. For S regular, the maximal arc K of the Desarguesian plane π(S) can also be

constructed as in Theorem 12.12 of PGOFF2.

4. For q even, the n-spread S is always a spread of the polar space W2n+1(q) defined

by the polar space E(2n+ 1, q). Also, S is an (n− 1)-system of W2n+1(q).
5. Let q be even, let P2n+2 be a non-singular quadric of PG(2n+2, q) and let E2n+1

be contained in P2n+2. If S∗ is any spread of P(2n + 2, q), then S∗ induces

a spread S of E(2n + 1, q). By projection from the nucleus of P2n+2 onto the

hyperplane PG(2n + 1, q) containing E(2n + 1, q), the spread S∗ yields an n-

spread S of PG(2n+1, q) with the desired property. All possible pairs (S, S) are

obtained in this way.

Theorem 7.53. (a) Let M be an m-system of the polar space W2n+1(q) in the space

PG(2n+ 1, q), n > 0.

(b) Suppose there exists a spread S of W2n+1(q) such that M is covered by S.

Embed the space PG(2n + 1, q) in PG(2n + 2, q) and choose some point P in

the difference PG(2n+ 2, q)\PG(2n+ 1, q).

(c) Let K be the set of all points not in PG(2n+ 1, q) of the cone PM̃, with M̃ the

set of all points contained in elements of M.

Then K is a maximal (qn+m+2 − qn+1 + qm+1; qm+1)-arc in the projective

translation plane π(S) of order qn+1 determined by the n-spread S.

Remark 7.54. Consider an (n − 1)-system of E(2n + 1, qs), q even, covered by a

spread of the associated W2n+1(q
s), as in Theorem 7.51. By Remark 7.52(4), this

(n − 1)-system is also an (n − 1)-system of W2n+1(q). It follows that there exists

an (ns − 1)-system of W2ns+2s−1(q) covered by a spread of W2ns+2s−1(q); see

Theorem 7.36. However, the translation plane and maximal arc thus obtained are

isomorphic to the original translation plane and maximal arc. So nothing new is

constructed.

Consider a non-singular quadric H4n−1 of PG(4n − 1, q), n ≥ 2 and q even,

and let P4n−2 be a non-singular parabolic quadric on H4n−1.

1. Let N be the nucleus of P4n−2. Project P4n−2 from N onto a hyperplane

PG(4n − 3, q) of the subspace PG(4n − 2, q) containing P4n−2, with N not

in PG(4n− 3, q). Then the subspaces on P4n−2 are projected onto the subspaces

of a polar space W4n−3(q).
2. Let S be a spread of W4n−3(q). To S there corresponds a spread S′ of the quadric

P(4n− 2, q). The generators of a chosen system of generators of H4n−1, which

contain the elements of S′, constitute a spread Ŝ of H(4n− 1, q).
3. Now considering a non-singular parabolic quadric P∗

4n−2 on H4n−1 and inter-

secting it with the elements of Ŝ gives a spread S∗′ of P∗(4n− 2, q).
4. Projecting again from the nucleus N∗ of P∗

4n−2 gives a spread S∗ of some

W∗

4n−3(q). Such a spread S∗ is a cousin of S.

5. The projective translation plane π(S∗) of order q2n−1 arising from S∗ is a cousin

of the projective translation plane π(S).
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Let S be a spread of W4n−3(q), n ≥ 2 and q even. Then four cases are distin-

guished:

(I) N∗ = N ;

(II) N∗ �= N, N∗ ∈ NI, with I the null polarity defined by H4n−1;

(III) N∗ �= N , and the line NN∗ meets H4n−1 in two distinct points;

(IV) N∗ �= N and NN∗ ∩H4n−1 = ∅.

For S regular, spreads S∗ corresponding to different classes yield non-iso-

morphic translation planes π(S∗) of order q2n−1; spreads corresponding to the same

class do not necessarily yield isomorphic translation planes. It follows that, for S

regular and so π(S) Desarguesian, and N∗ �= N , the plane π(S∗) is always non-

Desarguesian.

Theorem 7.55. Let M be an m-system of a polar space E(4n − 3, q) in the space

PG(4n−3, q), n ≥ 2 and q even. Suppose that the associated polar spaceW4n−3(q)
admits a spread S such that M is covered by S. Then the m-system gives rise to

maximal (q2n+m − q2n−1 + qm+1; qm+1)-arcs in at least q of the projective planes

arising from the cousins of class (IV) of S.

Corollary 7.56. Let s, t be positive integers, with t > 1, such that st is odd. Then,

for q even, there exist maximal (q2st−s − qst + qst−s; qst−s)-arcs in at least q of the

cousins of class (IV) of PG(2, qst).

Remark 7.57. When s = 1, the maximal arcs of Corollary 7.56 are the maximal arcs

described in Theorem 7.51. However, for s > 1, the maximal arcs are new.

This procedure can also be applied to non-Desarguesian planes of order qst. But

the isomorphism problem for cousins of type (IV) has been solved only in the De-

sarguesian case, so that only in this case the maximal arcs can be identified as new.

7.12 Partial m-systems, BLT-sets and sets with the BLT-property

Definition 7.58. (1) A BLT-set is a non-empty set B of disjoint lines of W3(q), with

the property that every line of W3(q) which is not a member of B meets non-

trivially exactly either two or none of the lines of B.

(2) The dual concept in the generalised quadrangle P(4, q), which is the dual of the

generalised quadrangle W3(q), is a dual BLT-set.

(3) More generally, a BLT-set of PG(m, q)’s is a non-empty collection B of disjoint

subspaces of a polar space S of rank r ≥ 2, having the property that each line of

S not contained in a member of B meets non-trivially exactly either zero or two

members of B.

Remark 7.59. 1. BLT-sets play a key role in the theory of translation planes and in

the theory of generalised quadrangles; see Section 7.15.
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2. A BLT-set of points of S is a subset of the points of S with each line of S contain-

ing either zero or two points of this subset. Examples are the 56-cap on E(5, 3)
and the union of two disjoint ovoids of U(3, q2).

Theorem 7.60. A BLT- set B of PG(m, q)’s, with m > 0, of a polar space S exists

only in the following cases:

(a) m = 1 and S = W3(q), q odd, with |B| = q + 1;
(b) m = 1 and S = E(5, q), q odd, with |B| = q2 + 1.

Remark 7.61. 1. For W3(q), q odd, many non-isomorphic BLT-sets are known.

They lead to new generalised quadrangles, new projective planes, new ovoids of

H(5, q) and new ovoids of P(4, q).
2. For E(5, q), q odd, a unique example is known. Let π and π′ be two disjoint planes

of PG(5, q2) which are conjugate with respect to Fq2 over Fq; that is, {π, π′} is

an orbit of the Galois group with respect to this extension. Let C be a conic of

π and let C′ be the conic of π′ consisting of the points conjugate to those of C.

Joining the points of C to their conjugates gives q2 + 1 lines of PG(5, q). For q

odd, these lines are contained in a E(5, q) and form a BLT-set; these lines are also

contained in a H(5, q), and the union of the q2 + 1 lines is the intersection of E5
and H5. Under the Klein correspondence with the Klein quadric H5, the points on

these lines are the images of all tangent lines of some E3.

Definition 7.62. A non-empty set B of disjoint m-dimensional subspaces of a polar

space S of rank r ≥ 2 possesses the BLT-property if there is no line of S meeting

three distinct members of B non-trivially.

From partial m-systems of suitable size possessing the BLT-property, generalised

quadrangles can be constructed. A summary is given of all possible m-systems, hav-

ing the BLT-property, which yield a generalised quadrangle; there are some interest-

ing open problems.

1. S = W5(q), q odd, and B is a 1-system of q3 + 1 lines. The corresponding

generalised quadrangle has order (q2, q3). It was shown that there is exactly one

such B, and the corresponding generalised quadrangle is isomorphic to U(4, q2).
2. S = H(5, q), q odd, and B is a 1-system of q2 + 1 lines. The corresponding

generalised quadrangle has order (q2, q2). It was shown that there is exactly one

such B, and the corresponding generalised quadrangle is isomorphic to P(4, q2).
3. S = H(9, q), q odd, and B is a 2-system of q4 + 1 planes. The correspond-

ing generalised quadrangle has order (q3, q4). No such generalised quadrangle is

known.

4. S = E(4r−5, q), r ≥ 3, and B is an (r−2)-system of (r−2)-dimensional spaces

in number q2r−2+1. For each value of r one such B is known; the corresponding

generalised quadrangle is isomorphic to E(5, qr−1). It has been established that,

for r = 3, the 1-system B of E(7, q) is unique.

5. S = U(9, q2) and B is a 2-system of q9+1 planes. The corresponding generalised

quadrangle has order (q6, q9). No such B is known.
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7.13 m-systems and SPG-reguli

Definition 7.63. An SPG-regulus is a set R of subspaces π1, π2, . . . , πr, r > 1, all

m-dimensional, of PG(n, q), n > 1, satisfying the following conditions:

(a) πi ∩ πj = ∅ for all i �= j with i, j ∈ {1, 2, . . . , r};

(b) if PG(m+1, q) contains πi, with i ∈ {1, 2, . . . , r}, then it has a point in common

with either 0 or α > 0 spaces in R\{πi};

(c) if such a PG(m+ 1, q) has no point in common with πj for all j �= i, then it is a

tangent (m+ 1)-space of R at πi;

(d) if the pointP of PG(n, q) is not contained in an element ofR, then it is contained

in a constant number θ ≥ 0 of tangent (m+ 1)-spaces of R.

By (a), n ≥ 2m+ 1; if n = 2m + 1 then there are no tangent (m + 1)-spaces,

and so α = r − 1.

It can be shown that

α(q − 1) divides (r − 1)(qm+1
− 1)

and

θ =
(α(qn−m − 1)− (r − 1)(qm+1 − 1))rqm+1

α((qn+1 − 1)− r(qm+1 − 1))
.

Hence θ = 0 if and only if α(qn−m − 1) = (r − 1)(qm+1 − 1).
From an SPG-regulus a semi-partial geometry S with parameters

s = qm+1
− 1, t = r − 1, μ = (r − θ)α

can be constructed. Then S is a partial geometry if and only if θ = 0; if S is not a

partial geometry, that is, if θ �= 0, or, equivalently,α(qn−m−1) �= (r−1)(qm+1−1),
then, by Theorem 5.145, t ≥ s, and so r ≥ qm+1.

Example 7.64. (a) n = 2m + 1. Then the SPG-regulus has no tangent (m + 1)-
spaces; hence α = r − 1 and θ = 0. In this case, the semi-partial geometry is a

net of order qm+1 and degree r; see Section 5.6.

(b) n = 2m+ 2. If θ �= 0, then the corresponding semi-partial geometry has param-

eters

s = qm+1
− 1, t = r − 1,

α =
r2(qm+1 − 1)− r(qm+1 − 1)(qm+1 + 2) + q2m+3 − 1

r(qm+2 − 1)− (q2m+3 − 1)
,

μ =
r(r − 1)(qm+1 − 1)(r − (qm+1 + 1))

r(qm+2 − 1)− (q2m+3 − 1)
.

Theorem 7.65. Let R be a set of m-dimensional subspaces π1, π2, . . . , πr, with r

at least 2, of PG(2m + 2, q) satisfying (a) and (b) of Definition 7.63. If R admits

tangent (m+ 1)-spaces, then
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α(r(qm+2
− 1)− (q2m+3

− 1))

≤ r2(qm+1
− 1)− r(qm+1

− 1)(qm+1 + 2) + (q2m+3
− 1),

with equality if and only if R is an SPG-regulus.

Remark 7.66. Theorem 7.65 can be generalised to PG(n, q) by assuming that, for

all i, each tangent (m+1)-space at πi intersects at most ν tangent (m+1)-spaces at

the other r−1 elements of R. In particular, this applies if each tangent (m+1)-space

at πi intersects exactly ν̃ tangent (m + 1)-spaces at πj , for all j �= i. One case is if

two tangent (m+ 1)-spaces at different elements of R intersect.

Definition 7.67. (1) An SPG-regulus R satisfies the polar property if

(a) it has tangent (m+ 1)-spaces,

(b) n > 2m+ 1,

(c) the union of the tangent (m + 1)-spaces at each element πi of R is an

(n−m− 1)-dimensional subspace τi, with i = 1, 2, . . . , r.

(2) The subspace τi is the tangent (n−m− 1)-space of R at πi.

Remark 7.68. 1. If an SPG-regulus R satisfies the polar property, then

r = αqn−2m−1 + 1.

2. Let R be a set of m-dimensional subspaces π1, π2, . . . , πr, r > 1, of PG(n, q)
satisfying (a) and (b) of Definition 7.63. Assume also that R has tangent (m+1)-
spaces and that for all i = 1, 2, . . . , r, the union of all tangent (m + 1)-spaces at

πi is an (n−m− 1)-dimensional subspace. Then r ≤ 1+ q(n+1)/2 with equality

if and only if R is an SPG-regulus.

3. If an SPG-regulus R has the polar property, then the corresponding semi-partial

geometry S has parameters

s = qm+1
− 1, t = q(n+1)/2, α = q2m−(n/2)+3/2, μ = qm+1(qm+1

− 1).

It follows that 4m ≥ n− 3.

Theorem 7.69. (a) Let R = {π1, π2, . . . , πr}, with r > 1, be a set of r disjoint

m-dimensional subspaces in PG(n, q), with n > 2m + 1, such that, for each

i = 1, 2, . . . , r, there is an (m + 1)-dimensional subspace containing πi and

disjoint from all πj , j �= i.

(b) Assume that, for each i, the union of these (m+ 1)-dimensional subspaces con-

taining πi and disjoint from all πj , j �= i, contains an (n−m− 1)-dimensional

space τi.

Then the following hold when |R| = 1 + q(n+1)/2 :

(i) the set R is an SPG-regulus satisfying the polar property;
(ii) the r subspaces τi form an SPG-regulus R∗ satisfying the polar property in the

dual space of PG(n, q).
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Theorem 7.70. Let

(a) R = {π1, π2, . . . , πr}, with r > 1, be an SPG-regulus satisfying the po-

lar property, with π1, π2, . . . , πr all m-dimensional subspaces of PG(n, q) and

r = 1 + q(n+1)/2;
(b) τi be the tangent (n−m− 1)-space of R at πi;
(c) the tangent (n−m− 1)-spaces τ1, τ2, . . . , τs have a PG(n− 2m− 2, q) = π in

common;
(d) {π̄1, π̄2, . . . , π̄s} be a set of disjoint m-dimensional subspaces covering the same

point set as π1, π2, . . . , πs.

Then

R
′ = (R∪ {π1, π2, . . . , πs})\{π1, π2, . . . , πs}

is also an SPG-regulus satisfying the polar property, and is said to be derived from

R.

The relation between m-systems and SPG-reguli is given by the following theo-

rem.

Theorem 7.71. An m-system M of a polar space S in PG(N, q) is an SPG-regulus

in the following cases:

(i) S = E(2n+ 1, q) ⊂ PG(2n+ 1, q), n > 0;
(ii) S = W2n+1(q) ⊂ PG(2n+ 1, q), n > 0;

(iii) S = U(2n, q2) ⊂ PG(2n, q2), n > 0.

Remark 7.72. It follows from Section 7.7 that the m-systems in Theorem 7.71 are

the only ones which are also SPG-reguli.

7.14 Small cases

Theorem 7.73. (i) Up to isomorphism, the polar space W5(2) admits a unique

1-system and a unique spread. Hence each symplectic 2-spread of PG(5, 2),
that is, each 2-spread whose elements are self-polar for some null polarity, is

regular.

(ii) Up to isomorphism, the polar space W7(2) admits a unique 1-system, a unique

2-system and a unique spread. Hence all symplectic 3-spreads of PG(7, 2) are

regular.

(iii) The polar space W9(2) admits no 1-systems and no 2-systems. Up to isomor-

phism W9(2) admits exactly two spreads and ten 3-systems.

Theorem 7.74. The only cases that a k-cap K is an SPG-regulus are as follows:

(i) K is a (q + 2)-arc of PG(2, q), q even;
(ii) K is an ovoid of PG(3, q);

(iii) K is the projectively unique 11-cap in PG(4, 3);
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(iv) K is the projectively unique 56-cap in PG(5, 3);
(v) K is a particular 78-cap in PG(5, 4), an example of which has been constructed;

(vi) K is a particular 430-cap in PG(6, 4), whose existence is unknown.

Remark 7.75. The semi-partial geometries corresponding to the SPG-reguli (i)–(vi)

have respective parameters as follows:

(q − 1, q + 1, 1, q + 2), (q − 1, q2, 1, q2 − q), (2, 10, 1, 2),

(2, 55, 1, 20), (3, 77, 1, 14), (3, 429, 1, 110).

Theorem 7.76. There exists an SPG-regulus consisting of 21 lines in PG(5, 3), with

α = 2, θ = 0. Its partial geometry has parameters s = 8, t = 20, α = 2.

7.15 Notes and references

Section 7.1

For the size of orbits of subspaces under the symplectic group, see Wan [395]. In

particular these give |G(Wn(q))|.
For similar results on orbits under the pseudo-symplectic group, see Liu and Wan

[208], Pless [265, 266].

Sections 7.2–7.5

Apart from the references in Tables 7.3 and 7.4, see also the surveys by Thas [336,

341, 312, 323] and De Beule, Klein and Metsch [82]. The non-existence of spreads

in U(4, 4) is a computer result of A. E. Brouwer (unpublished, 1981).

Section 7.6

Partial m-systems and m-systems were introduced by Shult and Thas [289], who

proved Theorems 7.7 and 7.9.

Section 7.7

This is taken from Shult and Thas [289]. For rank r = 2, the concept of a k-ovoid

was introduced by Thas [333]. Results on k-ovoids are also contained in Bamberg,

Kelly, Law and Penttila [13], and Bamberg, Law, Penttila [14].

Section 7.8

Theorem 7.20 is due to Blokhuis and Moorhouse [33] and Moorhouse [239]. They

rely on a classical result of Hamada [149] on the rank of the incidence matrix of

points and m-dimensional subspaces of a PG(n, q); see also Goethals and Delsarte

[143], MacWilliams and Mann [221], and Smith [294]. From [33] and [239], Shult

and Thas [291] obtain Theorems 7.22, 7.23 and 7.24. Theorem 7.25 is due to Sin

[292].
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Section 7.9

This is taken from Shult and Thas [289, 290]; they also show that partial m-systems

can be constructed from m-systems.

Section 7.10

The relation between strongly regular graphs, linear projective two-weight codes and

sets of points in PG(n, q) with two intersection numbers with respect to hyperplanes

is due to Delsarte [115]; see also Calderbank and Kantor [62]. Theorem 7.45 is due

to Hamilton and Mathon [150]. Theorems 7.47 to 7.49 and Examples 7.50 are taken

from Hamilton and Quinn [153].

Section 7.11

Theorem 7.51 and Remarks 1, 4, 5 of 7.52 are due to Thas [316, 326]. Remark

2 of 7.52 is taken from Blokhuis, Hamilton and Wilbrink [32] and Remark 3 of

7.52 from Hamilton and Penttila [152]. Theorems 7.53 and 7.55, Corollary 7.56 and

Remarks 7.54 and 7.57 are due to Hamilton and Quinn [153]. The description of

the construction of cousins of spreads of W4n−3(q) follows that given in Kantor’s

Kerdock set papers [192, 193].

Material related to Theorem 7.51 is also contained in Maschietti [224, 225], and

Bader and Lunardon [6].

Section 7.12

BLT-sets were introduced by Bader, Lunardon and Thas [7]; the name is due to Kan-

tor [195]. In [7] it is shown that, from any flock of a cone PP2 with vertex P in

PG(3, q), q odd, that is, a partition of PP2\{P} into q disjoint conics, q derived

flocks can be constructed. Crucial to the construction is a dual BLT-set coming from

the given flock. BLT-sets and flocks gave rise to many new translation planes and

generalised quadrangles. In Shult and Thas [290], BLT-sets of m-dimensional sub-

spaces were defined; BLT-sets of lines in polar spaces of rank 2 were previously

introduced by Knarr [198]. In a paper on characterisations of generalised quadran-

gles of order (s, s + 2), De Soete and Thas [101] introduced dual BLT-sets, which

they called {0, 2}-sets, in generalised quadrangles of order (s, t), but their definition

is conceptually distinct from the definition given here.

For a description of the Hill’s 56-cap, see Hill [166] or Section 19.3 of FPSOTD.

For disjoint ovoids of U(3, q2), see Hamilton and Quinn [153]. For m = 1, Theorem

7.60 is due to Thas: the proof is contained in Knarr [198]. For m > 1, the proof is

in Shult and Thas [290]. For the relationships between BLT-sets, projective planes

and ovoids, see Bader, Lunardon and Thas [7], Kantor [195], Thas, K. Thas and Van

Maldeghem [352], and Payne and Thas [260]; many results on BLT-sets of lines of

E(5, q), q odd, are contained in Thas [345]. Definition 7.62 and the list of m-systems,

having the BLT-property, which yield a generalised quadrangle, is due to Shult and
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Thas [290]. The uniqueness of the 1-system of lines of W5(q) satisfying the BLT-

property, with q odd, is due to Thas [343]; the uniqueness of the 1-system of lines

of H(5, q), q odd, is due to Shult and Thas [290]; the uniqueness of the 1-system of

lines of E(7, q) is due to Luyckx and Thas [216, 220].

Section 7.13

Definition 7.63 and Examples 7.64 are taken from Thas [329], and Theorem 7.65 is

taken from Thas [342]. The results on SPG-reguli satisfying the polar property are

also taken from [329]. Theorems 7.69 and 7.70 are due to De Winter and Thas [107],

and Theorem 7.71 to Luyckx [214].

Section 7.14

Theorem 7.73 is due to Hamilton and Mathon [150] and Theorem 7.74 is taken from

Cameron [63], Calderbank [61], Coxeter [80], Hill [166, 167], Pellegrino [262], and

Tzanakis and Wolfskill [387]. Finally, Theorem 7.76 is taken from De Clerck, De-

lanote, Hamilton and Mathon [90].

Other papers relevant to this chapter are Bamberg and Penttila [15], Bloemen,

Thas and Van Maldeghem [30], Cardinali, Lunardon, Polverino and Trombetti [67],

Cardinali and Trombetti [68], De Winter and Thas [106], Luyckx and Thas [215,

217, 219, 218, 220], Lunardon and Polverino [212], Offer [243, 244, 245], Offer,

K. Thas and Van Maldeghem [246], Offer and Van Maldeghem [247], O’Keefe and

Thas [250], and Thas [338, 341, 344]. In particular, related material is contained in

Thas [342] and Thas, K. Thas and Van Maldeghem [352], where SPG-systems are

introduced and eggs are studied in great detail.
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(0, α)-geometries, 272–299

(k; r, s;n, q)-set, 305

complete, 305

maximum, 305

10-arc in PG(4, 9), 334

B-line, 42

S-line, 343

S-plane, 355

S-quadric, 355

Sn1;n2

maximal space, 208

maximal subspace, 208

V4
2

conic plane, 149

contact hyperplane, 152

nucleus, 152

tangent line, 150

tangent plane, 151

π-number, 168

spectrum, 168

Γ-arc, 154

Γ-plane, 154

Γ-tangent, 154

i-secant, 42

k-arc, 306

k-cap, 305

kr,n,q , 69

non-singular, 70

plane sections, 70

polar hyperplane, 78

regular, 73

residual, 82

singular, 70

singular space, 70

tangent cone at a point, 78

m-system, 367–383

amended weight, 311

amended weight distribution, 311

arcs, 305–307

Arf invariant of quadric, 3

BLT-set, 378–379

broken grid, 257

cap

bisecant, 320

external line, 320

tangent, 320

unisecant, 320

cap-code, 308

caps, 307–325

character of quadric, 12–17

characterisation of quadric, 42–53

code

extension, 309

projective, 308

residual, 309

codes, 307–314

equivalent, 308

cone, 3

conic, 2

conic plane of V4
2 , 149

conic plane of Vn, 153

conjugate points, 8

contact hyperplane of V4
2 , 152

coordinates
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Grassmann, 99–107

Plücker, 99–107

cousin of a spread, 377

cubic surface, 249

curve

normal rational, 326

rational, 326

discriminant of quadric, 3

double-six, 249

Eckardt point, 249

elation generalised quadrangle, 263

elliptic quadric, 1

extension of a code, 309

external space, 40

generalised hexagon, 55

generalised homology, 264

generalised quadrangle, 223, 226–232,

253–266

3-regular point, 254

anti-regular pair, 253

anti-regular point, 253

centre of triad, 228

characterisation, 253–266

classical, 226

closure of pair, 253

co-regular point, 253

collinear points, 227

concurrent lines, 227

elation, 263

grid, 225

hyperbolic line, 228

linear variety, 260

Moufang, 262–266

order of, 223

orthogonal points, 228

ovoid, 253

parameters, 223

perpendicular points, 228

proper subquadrangle, 256

quadrilateral, 262

regular point, 253

semi-regular point, 260

span of point pair, 228

spread, 254

subquadrangle, 256

trace of point pair, 228

triad of points, 228

generator of quadric, 13–19

generators

equivalent, 18

Grassmann coordinates, 99–107

elementary quadratic relations, 104

Grassmann space

embedded, 137

of index r, 123

Grassmann spaces

collineation, 124

isomorphism, 124

Grassmann variety, 107–141

fundamental polarity, 110

maximal space, 113

Grassmannian, 107

Greek space, 114

Greek system, 114

grid, 225

group

orthogonal, 21–29

unitary, 63

Hermitian cap, 198

Hermitian form, 57

Hermitian variety, 57–96

characterisation, 69–80

conjugate points, 60

conjugate spaces, 60

generator, 64

number, 57

on PG(1, q), 58

on PG(2, q), 58

on PG(3, q), 58

on PG(4, q), 58

on PG(5, q), 58

polar hyperplane, 60

polarity, 58–63

projective index, 64

section by subspace, 65–69

sub-generator, 64

tangent, 58

tangent hyperplane, 58–63

tangent space, 60

Hermitian Veronesean, 196–201

r-representation, 197

elliptic space, 198

quotient, 199

Higman’s inequality, 229
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hyperbolic quadric, 1

hyperplane

polar, 8

tangent, 8

hypersurface

for an arc, 338

internal space, 40

invariant of a quadric, 3–7

Klein quadric, 107

Krein inequalities, 267

Latin space, 114

Latin system, 114

linear space (LS), 122

Main Conjecture for Arcs, 306

matroid, 262

maximal arc, 376–378

maximal space of Sn1;n2
, 208

maximal subspace of Sn1;n2
, 208

mixed partitions, 221

Moufang generalised quadrangle, 262–266

net, 258

non-degenerate quadratic form, 1

non-nuclear space, 41

non-singular quadric, 1

normal rational curve, 326

tangent, 326

nuclear space, 41

nucleus of V4
2 , 152

nucleus of quadric, 8

number of quadrics, 21–23

orthogonal group, 21–29

ovoid, 43, 364–367

ovoid number, 364

ovoidal embedding, 200

parabolic quadric, 1

parabolic sections of quadric, 39–42

partial m-system, 367

partial geometries, 266–299

partial geometry

projective, 269

partial linear space, 121

collinear points, 122

covering, 122

irreducible, 122

maximal subspace, 122

proper, 122

subspace, 122

partial ovoid, 367

partial spread, 367

Plücker coordinates, 99–107

polar hyperplane, 8

polar space, 223–226, 363–383

generator, 363

ovoid number, 364

projective index, 223

rank, 223

rank 3, 225

subspace, 223

polarity of quadric, 9, 29–31

Principle of Triality, 53–54

projection of quadric

characterisation, 80–96

projective code, 308

projective index

of Hermitian variety, 64

of quadric, 13–14

projective partial geometry, 269

projective Shult space, 83, 232

projective space

homomorphism, 137

proper partial linear space

connected, 122

proper partial linear space (PPLS), 122

quadratic form, 1

non-degenerate, 1

quadratic set, 43

generator, 44

perspective, 43

projective index, 45

singular, 43

singular point, 43

sub-generator, 45

tangent space, 43

Witt index, 45

quadric

Arf invariant, 3

character, 12–17

characterisation, 42–53

conjugate points, 8

discriminant, 3

elliptic, 1
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external space, 40

generator, 13–19

group, 21–29

hyperbolic, 1

internal space, 40

invariant, 3–7

non-nuclear space, 41

non-singular, 1

nuclear space, 41

nucleus, 8

parabolic, 1

parabolic sections, 39–42

polarity, 9, 29–31

projective index, 13–14

sections, 31–39

stereographic projection, 17–19

Study, 53–54

subspaces, 19–21

tangent, 7

tangent hyperplane, 8

tangent space, 8, 10

Witt index, 13

quadric Veronesean, 143–196

quadrics

number, 21–23

number of distinct, 2

rational curve, 326

residual code, 309

sections of quadric, 31–39

Segre product, 201

Segre variety, 201–219

regular spread, 214

regulus, 212

spread, 212

semi-ovaloid, 245–247

semi-partial geometries, 272–299

semi-quadratic set, 245

radical, 245

singular point, 245

semi-quadric, 87

set of type (0, 1, 2, q + 1), 51

non-singular space, 51

singular space, 51

set of type (r1, r2, . . . , rs), 42

Shult space, 82–83, 88–89, 225–226,

232–253

(fully) embedded, 232

adjacent points, 225, 233

ambient space, 232

classical, 249

collar, 238

collinear points, 225

lax embedding, 247–253

linear closure, 241

linearly closed subset, 241

non-degenerate, 83, 225

polar, 238

projective, 83, 232

projective index, 225

radical, 225

rank, 225

secant, 235

subspace, 225

tangent, 235

tangent hyperplane, 237

tangent set, 235

space

polar, 223–226, 363–383

Shult, 82–83, 88–89, 225–226, 232–253

SPG-regulus, 380–382

spread, 364–367

cousin, 377

Steiner surface, 220

stereographic projection, 17–19

strongly regular graph, 369, 374–376

Study quadric, 53–54

subspaces on a quadric, 19–21

support of a point, 83

tangent hyperplane, 8, 315

tangent line of V4
2 , 150

tangent plane of V4
2 , 151

tangent space of quadric, 10

tangent to quadric, 7

trace, 4

Triality, 53–55

trihedral pair, 249

trilinear correspondence, 54

tritangent plane, 249

twisted cubic, 332

two-weight code, 369, 374–376

unitary group, 63

variety

Grassmann, 107–141
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Hermitian, 57–96

Segre, 201–219

Veronese, 143–196

Veblen–Pasch axiom, 259, 271

Veronese variety, 143–196

tangent line, 150

tangent plane, 150

Veronesean

characterisation, 153–196

conic plane, 153

Hermitian, 196–201

Veronesean cap, 155

dimension, 155

Veronesean of quadrics, 143

Veronesean set of subspaces, 166

hyperovoidal, 166

ovoidal, 166

proper, 166

weight

distribution, 310

of a codeword, 310

weight of a point, 140

weight of a set, 140

weight of an r-space, 140

Witt index of quadric, 13
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